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Abstract

The main purpose of this PhD research is to develop a numerical method for
solving flow at all speeds using momentum component variables instead of the regu-
lar velocity ones. The different nature of compressible and incompressible governing
equations of fluid flow generally classify the solution techniques into two main cate-
gories of compressible and incompressible methods. However, one extended purpose
of this research is to develop an approach which permits incompressible methods
to be extended to compressible ones using the analogy of flow equations. The pro-
posed momentum component variables play a significant role for transferring the
individual characteristics of the two formulations to each other in their adapted
forms. In this regard, the two-dimensional Navier-Stokes equations are treated to
solve time-dependent laminar flows from very low speeds, i.e. real incompressible
flow, to supersonic flow. The approach is fully implicit and employs a control-
volume-based finite-element method with momentum components, pressure, and
temperature as dependent variables. The proper definitions for considering the
dual role of momentum components at control surfaces plus the strong connective
expressions between the variables on control volume surfaces and the main nodal
values remove the possibility of velocity-pressure decoupling and allow the use of a

colocated grid arrangement.

The performance of this new formulation is illustrated by solving different types
of flow including incompressible and compressible (subsonic to supersonic), viscid
and inviscid, and steady and unsteady options. No CFL number limit was en-
countered for the test models except in supersonic cases. The results demonstrate

excellent performance of the flow analogy.
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Chapter 1

Introduction

In this chapter, we are concerned with the general position and specific situation of
this research, the purpose of this research, and its contributions. In this regard, a
preliminary background is introduced in Section 1.1. It is followed by a literature
review which presents the previous related works in Section 1.2. The objectives of
this research are presented and discussed in Section 1.3. The outline of the thesis is
presented in Section 1.4, where the progress of the subject during this investigation

is discussed.

1.1 Background

This research is concerned with the branch of fluid dynamics known as Computa-
tional Fluid Dynamics, or CFD, i.e., computer modeling and solving of fluid flow
problems, which plays an important role in aerodynamics, fluid dynamics, and heat

transfer.

Prediction of fluid flow and heat transfer problems has traditionally been ob-

1



CHAPTER 1. INTRODUCTION 2

tained by experimental investigations and theoretical calculations. It is apparent
that the most reliable information about a physical process is often given by actual
measurement. However, full scale equipment that gives more accurate results for
experimental methods is expensive and often difficult to construct. The majority of
fluid flow problems of interest in engineering cannot be solved analytically because

of the complexity of the governing coupled partial differential equations.

In numerical methods, the differential equations are modeled by a set of alge-
braic equations which must be solved by computer. Fortunately, the development
of numerical methods and the availability of large digital computers have enabled
practical problems to be solved successfully. Indeed, CFD has made rapid progress
since computers were first used as a tool in computational research. The contri-
bution of CFD to the related sciences is remarkably high. CFD has also shown
great contribution to experimental science where accurate design of experimental
apparatus is necessary. Although research progress in numerical methods has been
considerable, there is still room for significant progress. Almost all research in this
branch is focused on not only eliminating the limitations and drawbacks of previous
work but also on achieving an easy and optimum algorithm which would be capable
of solving all real fluid flow and heat transfer problems. Accuracy of the results
and stability of the method are two out of the many important goals in developing
CFD codes.

The behavior of fluid flow from very low Mach number to hypersonic flow is
not the same. Various methods have been presented for solving different flows
and Mach number ranges. Most of these methods have not been successful for
other ranges. Many algorithms have been developed for solving the Euler and
Navier-Stokes equations. Also, different computational methods have been devel-

oped through the years to deal with compressible and incompressible flows because
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of the differences in the nature of these two types of flow. Recently, many works
have focused on algorithms capable of solving both compressible and incompress-
ible flows. Most of these methods employ primitive variables (velocities, pressure,

and temperature) as the dependent variables.

The main objective of this research is to solve compressible and incompressible
laminar flows where the dependent variables are momentum components, pressure,
and temperature. Although the basic idea for turning from velocity variables to
momentum variables was to explore and identify advantages while removing previ-
ous drawbacks, there are other reasons for this switch which are presented in the

following sections.

A brief literature review of related works in this field is presented in the next

section.

1.2 Literature Review

The literature in the CFD area is vast and it is not desirable to review it all. In this
section a brief review of the relevant literature is given. All different methods in
CFD have advantages and disadvantages. In some circumstances, it is very difficult

to decide which outweighs the other.

CFD numerical methods are classified into different categories depending on the
nature of the flow and governing equations. For example, a numerical approach may
solve only compressible or incompressible, viscous or inviscid, steady or unsteady,
or subsonic or supersonic flows. However, the distinction between two different flow
types is sometimes so strong that it does not permit extension from one method to

another. This difficulty has been experienced in extending compressible and incom-
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pressible methods to each other. The important role of density (and pressure) in
the fluid governing equations has focused attention towards these two completely
distinct branches of CFD. Various methods and techniques have been developed
through the years to deal with each of them, but there are significant limitations
for each in the range of the applicability of the other. From the mathematical
viewpoint, the nature of the compressible and incompressible flow equations is also
another issue which affects the development of compressible methods to solve in-
compressible flows. The unsteady compressible equations are parabolic-hyperbolic
in nature, but the incompressible equations are of elliptic-parabolic type. This in-
compatibility between the nature of the equations causes computational difficulties
in extending methods developed for one regime to the other. These restrictions and
obstacles have prompted an increasing effort in CFD for developing codes capable
of solving flows for different options including both compressible and incompressible

flows. This is also the main concern in the current study.

One important and critical issue in developing codes for solving compressible
and incompressible flow is the selection of the dependent variable set. There are
several different options of dependent variables, but here we consider only the prim-
itive variables. The primitive variables may include either velocity or momentum
components. The distinction is immaterial for pure incompressible flow, where
density is constant. However, using momentum components is very attractive for
compressible flows, for several reasons. First of all, this formulation may permit
existing solution methods for incompressible flows to be extended to cover the en-
tire flow speed range. Secondly, the need to linearize the terms of the governing
equations which include momentum variables is removed. For example, the con-
servative form of the continuity equation is preserved and it no longer needs to be

linearized. Finally, mass flux is a constant parameter passing through a shock wave
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while velocity undergoes large changes. Using momentum components may result
in fewer oscillation around certain discontinuities in the flow. These advantages will
be discussed further in Section 2.4. Many of these have encouraged compressible

flow solvers to use momentum components instead of velocity components.

Although our interest in this research is in solving the Navier-Stokes equa-
tions, the literature review is not restricted to Navier-Stokes methods. Methods
for solving incompressible, compressible, pseudo-compressible, and compressible-

incompressible flows are considered in turn.

1.2.1 Incompressible Flows

The primary difficulty in modeling incompressible flows lies in the fact that only
gradients of pressure appear in the momentum equation and pressure does not ex-
plicitly show up in the continuity equation, although it is the continuity constraint
that is used to determine the pressure. This difficulty may lead to decoupling in the
velocity and pressure fields which creates non-physical solutions, Patankar [1]. This
difficulty has led to methods like stream function-vorticity formulations which elim-
inate pressure from the governing equations. Although stream function-vorticity
formulations have been successful for predicting two-dimensional incompressible
flow, they are difficult to extend to three-dimensional flows. Alternatively, the
considerable advantages of the primitive variable formulation have attracted more
investigators toward developing incompressible numerical methods. The staggered
grid arrangement is a well-known technique for treating the velocity-pressure de-
coupling in the primitive variable formulation of finite difference methods. In this
technique, pressure and velocity variables are treated on two separate grids [1). The
Marker and Cell (MAC) method of Harlow and Welch (2] could be named as one of
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the successful pioneering works which uses primitive variables in a staggered grid

arrangement.

The segregation of variables has been a well-liked technique to solve for the
primitive variables implicitly. Generally speaking, segregated methods convert the
indirect information in the continuity equation into a direct algorithm for the cal-
culation of pressure. This means that they determine velocities from the solution of
momentum conservation equations based on the best possible estimate of the pres-
sure field. Then, pressure is determined from the solution of one or two Poisson-like
equations. This process must be repeated for updating the velocity and pressure
fields. The segregated solution can satisfy both mass and momentum conservation
equations if the correcting pressures and velocities vanish. Raithby and Schneider
(3], and Patankar [4] have developed methods based on the segregated approach.
Using staggered grids in finite-difference segregated methods guarantees the cou-
pling of the velocity and pressure fields (3, 4]. There are alternative methods which
do not use a segregated approach. Zedan and Schneider [5] employed a Simultane-
ous Variable Approach (SVA), that uses the strong coupling between variables and
solves all dependent variables simultaneously. In their method, the equation for
pressure is obtained by substituting the momentum conservative equation, without

approximation for the corresponding velocity, into the mass conservation equation.

Since the innovation of control-volume methods in CFD, there have been con-
siderable efforts to use these in solving fluid flow problems including incompressible
ones. The main advantage of these schemes is the conservation of the conservative
quantities in each finite control volume. Most of the control-volume-based meth-
ods return to the original work of Patankar and Spalding [6] which is based on a
pressure correction technique. They employed a semi-implicit segregated scheme,

the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), which requires
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a heavy under-relaxation for the pressure correction to ensure convergence of the
solution. A number of improved variants of the original SIMPLE algorithm in-
cluding SIMPLER were later developed for solving incompressible flows [4]. The
SIMPLE-based methods generally use staggered grid arrangement.

Contrary to a staggered grid arrangement in control-volume methods, it is the
colocated grid arrangement which needs special treatment for the coupling of ve-
locity and pressure. Colocated grid arrangements are mainly non-segregated. The
main idea in a colocated arrangement is to consider the role of pressure as an ac-
tive parameter in the continuity equation to remedy the decoupling. There are
different approaches for removing the checkerboard problem in a colocated grid.
Baliga and Patankar [7] used unequal order velocity-pressure interpolation to re-
move the decoupling problem in their control-volume-based finite-element method.
Unequal-order means, pressure is computed at much fewer grid points than ve-
locity. Prakash and Patankar [8] also developed a non-segregated approach using
a control-volume-based finite-element method with equal-order velocity-pressure
interpolation. Rhie and Chow [9] proposed a new technique for removing the de-
coupling of velocity and pressure in their colocated grid approach for solving incom-
pressible flows. Their technique includes a new method for treating the convected
terms at control volume surfaces. These terms are interpolated between main grid
points. Schneider and Raw [10, 11] used a colocated grid approach in their control-
volume-based finite-element method which considers the physical influence aspects
of the flow in integration point equations. Later, Schneider and Karimian [12]
showed that this derived formulation cannot guarantee the coupling of velocity and
pressure under certain circumstances. Consequently, they proposed a second inte-
gration point velocity variable in order to remove the deficiencies of the previous

formulation. With this remedy, a strong coupling between pressure and velocity
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was obtained and the checkerboard problem was totally removed. Darbandi and
Schneider [13] have also investigated the checkerboard problem in their pressure-
based momentum-component procedure. They remove the decoupling problem by
introducing a second momentum-component variable at the control volume surface

in their colocated grid arrangement.

Peric, Kessler, and Scheuerer [14] present a detailed comparison of two finite-
volume solution methods for two-dimensional fluid flows, one with a staggered and
the other with a colocated numerical grid. They show that the colocated scheme

generally represents more advantages.

1.2.2 Compressible Flows

Compressible flows can be mainly divided into steady and unsteady methods. Most
of the steady methods use the unsteady governing equations to integrate over time
to reach steady flow conditions. Absolute steady methods are mainly space march-
ing methods. The space marching method is used for solving equations which
are parabolic in at least one spatial direction, the marching direction. Alishahi
and Darbandi [15] solved supersonic flow for wing-body configuration problem by

marching in centerline direction and using discrete zonal approach.

Unsteady methods are divided into explicit and implicit methods. Explicit
schemes are subject to one or more stability restrictions on the temporal and spa-
tial step sizes. These restrictions are usually given in terms of a Courant-Friedrich-
Lewy (CFL) and viscous stability condition, which limits the time step. A number
of early methods such as Palumbo and Rubin (16} implemented a two-step Lax-
Wendroff scheme which advanced the solutions through time explicitly. MacCor-
mack [17] forwarded an important progress in explicit methods by introducing a
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predictor-corrector finite-difference algorithm to solve Euler equations. The inclu-
sion of artificial viscosity in this algorithm has enabled it to solve flows with shock.
Modifications have been done on this explicit Euler algorithm, which severly suffers
from the stiffness of the discrete Navier-Stokes approximation, to solve for viscous
flow, e.g. MacCormack [18]. The method of Ref. [18] comsists of two steps. The
first step is an explicit predictor-corrector finite difference stage and yields second
order accuracy in time and space. The second step is an implicit stage. The second

step removes the sever stability limitation of the first explicit method step.

Many advantages of implicit formulations have generally shifted interests to-
ward these schemes. There are several important implicit schemes that use a finite-
difference formulation. Beam and Warming (19, 20] treated the conservation form
of the governing equations by an ADI based approximate factorization formulation
to produce a block tridiagonal linear system of equations. Density, momentum
components, and total energy are dependent variables in their method. Shamroth,
McDonald, and Briley [21] changed the momentum components to velocity ones.
Briley and McDonald [22] presented another implicit approximate factorization
method for solving the Navier-Stokes equations. The addition of artificial diffusion
is required for stability of their method and to catch shock waves. Indeed, the han-
dling of boundary conditions becomes more severe when approximate factorization
is used to break a multidimensional problem into a set of one-dimensional problems.
Since the innovation of finite-element methods, there have been parallel works for
solving compressible flows using finite-element schemes. For example, Baker and
Soliman [23] presented an implicit finite-element algorithm to solve compressible

flows.

Besides the progress of control-volume methods for incompressible flows, there

have been many attempts to develop SIMPLE-based incompressible methods into
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compressible one. One method was developed by Issa and Lockwood [24] who
used an approximate form of the momentum equation to relate velocity corrections
to pressure corrections in an staggered grid arrangement. Expressing continuity
in terms of density and velocity corrections, these relations can then be used to
determine an equation for pressure correction. Han [25] has also tried to extend
the SIMPLE procedure for compressible flow calculations. However, details of flow
discontinuities were not captured well due to excessive numerical smearing in Refs.

[24, 25]. More related works are presented in Section 1.2.4.

Most of the schemes for compressible flow use density as a primary dependent
variable and extract pressure from an equation of state, e.g. [18]. Since the role
of density at low Mach numbers is very small, this approach cannot be used for
incompressible flows as it is discussed in Section 1.2.3. There are also many other
factors for each compressible method that prevent the use of these algorithms for
low Mach numbers. Methods that use pressure as a primary dependent variable
do not have the difficulties of the density-based methods because the change of
pressure is always finite, irrespective of the flow Mach number. Therefore, it is
possible to modify pressure-based methods to cover the entire spectrum of Mach
numbers. Rhie [26] has presented a pressure-based segregated method for solving
Navier-Stokes equations in compressible flows. This method is an extension of
his previous incompressible methods [9]. He uses a multi-step pressure correction

procedure, with implicit treatment of density, to correct the pressure field.

1.2.3 Pseudo-Compressible Flows

There are various design applications, such as automobile, ship, and turbomachin-

ery design which typically solve very low speed flows using compressible algorithms.
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Moreover, compressible algorithms are also important in the field of heat transfer
where density has significant changes. As said in the previous sub-sections, the
difference in nature between incompressible and compressible flows has spawned
various computational schemes to be developed to treat these two types of flow. In
the case of compressible flows, methods have been developed that use density as a
primary variable. Such methods are known as density-based methods [18, 20]. Con-
trary to density-based methods, there are pressure-based ones which use pressure as

a primary variable instead of density in the incompressible flow cases (10, 26, 27, 28].

If it is realized that the incompressible governing equations are derived from
compressible ones, it is reasonable to recognize slightly compressible flow as being
constructed from the incompressible one. Van Dyke [29] states that slightly com-
pressible flow is a regular perturbation of incompressible flow. This promotes the
idea of solving low speed flows using either compressible or incompressible algo-
rithms. There are works which extend the original transonic flow solvers to low
Mach number applications [30, 31]. On the other hand, there are works which are

the extension of incompressible schemes and solve for compressible flows [28, 32, 33].

The simultaneous solution of the governing equations in compressible meth-
ods enhances the stability compared with the segregated approaches of the incom-
pressible techniques, Merk et al [34]. This has encouraged many incompressible
investigators toward using compressible algorithms in applications [35]. However
this intention in switching encounters some major drawbacks. The speed of sound
approaches infinity in the incompressible limit; implementing compressible codes
for simulating incompressible flows is not computationally efficient. The hyper-
bolic time-dependent Navier-Stokes equations become stiff at low Mach numbers
because of the great difference between the largest and the smallest magnitudes
of the system eigenvalues, Feng and Merkle [36). Since the eigenvalues are the
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speeds of the waves carrying information, one class of information related to the
smallest one would be slowly transported within the region, while the time step
is limited by the speed of the fastest traveling wave. Nevertheless, the number of
time steps needed to reach the steady-state solution will approach infinity for an
incompressible algorithm. Hence, convergence to a steady-state solution is usu-
ally slow and for time-dependent solutions the permitted time step becomes very
small. This is why most compressible algorithms become either very inefficient
or inaccurate at low Mach number speeds. Briley et al [37] rescale the equations
to improve the convergence, however, the performance and the accuracy of their
time-dependent compressible schemes are inadequate at low Mach numbers, say
M, <0.1. Volpe [30] compares the results of three widely-used two-dimensional
compressible codes of which two are Euler codes, using finite-volume scheme, and
the other is a Navier-Stokes solver, using a finite-difference scheme. These codes
are examined for simple-low speed test cases with the solution accuracy enhanced
by reducing the mesh-size. This reduction in turn causes deterioration of the con-

vergence rates.

There are methods to overcome the difficulty of using a compressible scheme to
solve for incompressible flows. One method is preconditioning which modifies the
time term. This can be made to appear as a new matrix multiplying the time term
in the vector form of the system of equations, Pletcher and Chen [38]. For steady
problems, preconditioning is achieved by altering the physical time-derivative terms
in the equations. On the other hand, for unsteady problems, an additional pseudo-
time term of a particular form is added to the equations, which changes the nature
of the hyperbolic problem which is being advanced in pseudo time. Chorin [39] and
Steger and Kutler [40] used artificial compressibility in solving the mass conserva-

tion equation. They fabricated a hyperbolic time-dependent system of equations
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by adding a time derivative of the pressure term to the continuity equation. Kwak
et al [41] developed a code using pseudocompressible methods to compute specifi-
cally incompressible flows. Choi and Merkle [42] similarly used a small time step to
overcome the difficulties of low Mach number speeds in their implicit factorization

scheme.

Merkle and Choi [43] used asymptotic expansions of the Euler equations in their
perturbation method to solve for low Mach numbers. They added an artificial time
derivative term to the energy equation. Perturbation schemes become inefficient
when the Mach number is not very low. Another method for solving low Mach
number flows is fluz-vector splitting method which treats the stiff terms not only

differently in time but also in space [44].

In addition to the three presented methods which focus on low Mach num-
ber fiows, there are compressible-incompressible and all-speed-flow methods which
solve for both incompressible and a wide range of compressible flows (32, 33, 45].
However there are few researchers who report the performance of their methods in
solving very low Mach number problems, e.g. Chen and Pletcher [45]. Following
the methods for solving both compressible and incompressible methods, Darbandi
and Schneider [46] developed an analogy based on momentum component vari-
ables which enables existing incompressible methods to be extended to solve for
compressible flows. The performance of the resulting method was illustrated by

applying to various test cases from very low to transonic Mach numbers.

1.2.4 Compressible-Incompressible and All-Speed Flows

There are few numerical methods which are applicable to both incompressible and

compressible flows. The idea of solving for all flow speeds with just one algorithm,
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however, is not new. The important question is how to consider the dual role of
pressure in compressible and incompressible flows. Generally speaking, the idea
of solving flow at all speeds has been studied using different approaches including
finite-element, finite-difference, and control volume methods. The sezrch for an
algorithm suitable for all speeds goes back to the work of Harlow and Amsden [47].
They extended the MAC method for solving time dependent fluid flow problems for
all Mach numbers. Their method suffers from a stability restriction and its scope
of applicability is limited. Zienkiewicz, Szmelter, and Peraire [48] presented a semi-
implicit algorithm for the calculation of both compressible and incompressible flows
using a finite-element approach. Zienkiewicz and Wu [49] later developed this finite-
element algorithm into a general explicit and semi-explicit method. However, their
work is restricted to relatively low supersonic Mach numbers because the use of the
non-conservative form of the equations may lead to inaccurate shock prediction.
Hauke and Hughes [31] have similarly worked in finite-element context to develop

their original compressible method to solve for incompressible limits.

The advantages of control-volume-based methods have encouraged recent work
using this approach. Most of the control-volume-based methods for flow at all
speeds return to the incompressible work of Patankar and Spalding [6] which is
based on a pressure correction technique. Van Doormal, Raithby, and McDonald
[50] have shown that a pressure-based method can be extended to include com-
pressible flows. They used modified versions of the SIMPLE code with a staggered
grid arrangement. Karki and Patankar [32] presented another control-volume-based
finite-difference method which is based on the compressible form of the SIMPLER
algorithm. The steady-state form of the Navier-Stokes equations was solved in a
staggered grid arrangement with generalized non-orthogonal coordinates. Their

method suffers from sensitivity to grid smoothness which is due to the presence of
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the curvature terms in the equations. Demirdzic, Lilek, and Peric [51] employed
Cartesian based vectors instead of locally fixed based vectors of Karki et al [32],
and removed the sensitivity to grid smoothness. Shyy, Chen, and Sun [52] have also
developed a similar procedure for flow at all speeds using a multigrid algorithm.
Lien and Leschziner [53] have included the turbulent effects in their control-volume

based method for solving compressible and incompressible flows.

Chen and Pletcher [45] presented a colocated pressure-based technique for solv-
ing the time-dependent Navier-Stokes equations applicable to low Mach numbers.
They found that smoothing was not needed to control oscillations in pressure for
subsonic flows despite the use of central differences in their finite difference ap-
proach. Raw, Galpin, and Raithby [54] have presented a colocated control-volume
method to solve compressible and incompressible flow fields. Special integration
point equations were derived at control volume surfaces to connect them to neigh-
boring nodal values. Since the pressure of other nodal points also appear in their
formulation they change them to lagged values. Karimian and Schneider [33] used
the approach of Ref. [50] and developed the incompressible work of Ref. [10] to

solve for compressible flows.

Most of the all-speed methods are extensions of incompressible methods to com-
pressible flows, e.g. [32, 33, 50, 52]. Hence, they apply the incompressible primitive
variables, i.e., velocity components, as the dependent variables for extending their
work to compressible flows. The main objective of this work is to use the momentum
components as the unknown variables. The idea of using momentum component
variables instead of velocity variables was introduced by Darbandi and Schneider
[13, 55]. They also examine the performance of their momentum-component for-
mulation in the context of a flow analogy for solving flow at all speeds [56]. Their

implicit scheme is based on a colocated grid arrangement.
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1.3 Objectives of this Research

To derive numerical solutions for the nodal values of the dependent variables, it
is necessary to develop algebraic relations which approximate the governing differ-
ential conservation equations. While no single method yet contains all desirable
features while being void of disadvantages, the following attributes and features are

sought in the present formulation:

1. Control Volume Basis
Since the fluid flow governing equations are intrinsically conservative it is
preferable to use numerical methods that retain this property. Control-
volume-based approaches have two major advantages. Firstly, they allow
exact numerical conservation of the conserved quantities in each finite control
volume. This means that mass, momentum, and energy are exactly conserved
over any number of control volumes and consequently over the entire fluid flow
domain. Secondly, they provide a physically meaningful interpretation of the
various terms such as fluxes and source terms in the discretized form of the

governing equations.

2. Finite Element Method
The finite-element concept generally returns calculus and vector field theory
to the construction of discrete simulation algorithms. The most important
advantage of the finite element method is its great flexibility for handling
highly complex solution domains. In the finite element method, the variation
of dependent variables consists of grid point values and interpolation between

them.
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3. Momentum Components as Dependent Variables
This formulation may permit existing solution methods for incompressible
flows to be extended to cover the entire flow speed range. The need for
linearizing the terms of the governing equations which include momentum
variables is removed. For example, the conservative form of the continuity
equation is preserved and it no longer needs to be linearized. Mass flux does
not change through shock waves in supersonic flows and this may cause less

oscillations around discontinuities in the solution.

4. Pressure as a Dependent Variable
Pressure is selected as a dependent variable in preference to density because
the pressure changes are finite at all flow speeds as opposed to the density
changes which become very small at low Mach numbers. Therefore, pressure-

based methods can be extended to solve incompressible flows.

5. Colocation of Dependent Variables

The use of a non-staggered grid arrangement may produce a wavy non-
physical pressure field while still satisfying the discrete momentum equations.
The geometrical simplicity of the colocated grid arrangement is very attrac-
tive and it will be significant if the cause of the pressure oscillation can be
removed. Boundary condition implementation difficulty and excessive book-
keeping are two major objections to staggered grid methods. In addition,
the velocities that satisfy mass do not necessarily conserve momentum in the
same control volume. However, the use of one velocity field, instead of two
velocity fields which are used in colocated grid methods, is an advantage of
staggered grid method.



CHAPTER 1. INTRODUCTION 18

6. Fully Implicit Formulation
Although explicit methods are relatively simple to set up, they need very small
time steps to maintain stability. Conversely, the stability of the implicit meth-
ods can be maintained over much larger time steps. Large time steps may
reduce accuracy of the transient solution, however, this is not important if
only the steady-state solution is desired. In contrast to segregated methods,
all dependent variables are solved simultaneously in our fully implicit formu-
lation. This reduces the need for tracking the solution of dependent variables

through sequential iteration or time step advancement.

1.4 Thesis Outline

A numerical method calculates the values of the dependent variables at a finite
number of locations, named grid points, in the calculation domain. To calculate
the domain variables on grid points, it is necessary to discretize the governing
equations. A discretized equation is an algebraic relation that connects the values
of the dependent variables for a group of grid points. The development of an

algebraic representation of equations includes a number of steps.

First, the differential equations to be modeled and the dependent variables to
be used must be determined. This task is accomplished in Chapter 2. In addi-
tion, the research motivation is another issue which is discussed in this chapter.
Second, the domain must be discretized. Chapter 2 describes the control volume
approach and Appendix A presents the finite-element formulations which are used
to expand the necessary geometry relationships. Third, the algebraic representa-
tion which approximates the differential equations must be developed. This duty
is elaborated in two chapters. In Chapter 3, a preliminary investigation is done
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in a one-dimensional context in order to avoid unnecessary multi-dimensionality
complexities, to discover and study the deficiencies of the formulation, and to solve
them with appropriate techniques. For example, the pressure-velocity decoupling
issue is one which is considered in this chapter. The extension to two-dimensional
modeling is accomplished in Chapter 4 to further illustrate points and demonstrate
applicability to multi-dimensional flows. The developed method is examined for
several different test models in Chapter 5. The test models try to cover the en-
tire range of flow speed conditions. The final chapter, Chapter 6, is where the
major contributions and conclusions of this work are summarized and where the

recommendations for future work are presented.



Chapter 2

Governing Equations and

Research Motivation

The main purpose of this chapter is to introduce the governing equations, to present
the method for discretizing the solution domain, and to provide the research mo-
tivation. The general form of the governing equations is introduced in Section 2.1.
In Section 2.2, the discretization of the solution domain is briefly explained. The
options for dependent variables are presented in Section 2.3, together with a discus-
sion on the roles of pressure and density in compressible and incompressible flows.
The motivation for the current research is that choosing momentum variables has
a number of conceptual advantages over velocity components; This is discussed

further in Section 2.4.

20
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2.1 Governing Equations

The differential equations governing the conservation of mass, momentum compo-
nents, energy, and other scalars such as mass fraction and turbulence of kinetic

energy can be cast into a general form as, Patankar [1],
o -
753PP) +V - (pV$—TV¢) =4 (21)

where ¢ is a general dependent variable and s denotes the volumetric source (or
sink) of ¢. The two terms inside the parenthesis represent convective and diffusive
fluxes respectively. The cases where ¢ represents mass, momentum, and energy
are of particular interest. Assume a Newtonian fluid, with constant viscosity and
conductivity, and which obeys Stokes’ law, the two-dimensional Cartesian form of

these equations is

() o 2 - ®

ag:;) . a(g:u) N 6(gvyu) + _g_z _ %1;3 + % +3 (2.3)
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where external heat generation and body forces have been neglected. These equa-
tions are derived in many texts, e.g. [57], and are referred to as the Navier-Stokes

equations. The components of the stress tensor are

Tz = 2;&%% - {%#(g% + gg)} (26)
Tey = Tyz = p(g% + g%) (27)

o =282 - {Ju(Ge + P} 23)
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Using Fourier’s laws of heat conduction, the components of heat flux in Eq.(2.5)

are written as
gz = —k— (2.93)
q = -k (2.9b)

The braces, {}, indicate those terms which vanish in the incompressible limit. In
addition to the above differential equations, one auxiliary equation, the equation of
state, is needed

p=p(p,t) (2.10)
If the fluid is assumed to be a calorically perfect gas, the equation of state is written
p=pRt (2.11)

The following relationships also exist for a perfect gas

p—c=R (2.12a)
o= % (2.12b)

Although ¢, c,, and R vary slightly with temperature, they are assumed constant
in this study. If the change in potential energy is neglected, the total energy and
enthalpy of the fluid per unit mass for a perfect gas are

e=oct+ -;-(.f +v7) (2.13)

h=ct+ -21-(u= +v?) (2.14)
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Alternatively, for compressible flows at very low Mach numbers, the pressure and
density become less dependent on each other and; in the idealized limit of incom-
pressible flow, they are completely decoupled. For incompressible flow, the equation

of state, Eq.(2.10), collapses to
p = p(t) (2.15)
For isothermal flow, this equation is reduced to
p = constant = p, (2.16)

In this case, the transient term in Eq.(2.2) vanishes and the continuity equation

becomes
V.-V=0 (2.17)

Therefore, for the idealized incompressible flow case the equation of state, Eq.(2.10),
is replaced by Eq.(2.16) with e given by Eq.(2.13) as for the perfect gas.

Vector Form of Governing Equations

Since the two-dimensional discretization of the governing equations is done based
on the vector form of Navier-Stokes equations, it is useful to present this form of

the equations here. Equations (2.2-2.5) are expressed in vector form as

&  OF(Y) , 9G(¥) _ OR(Y) , 0T (¥)
%t s T oy =~ 8z T oy +8 (2.18)

where the conserved quantity vector is defined as

P = (2.19)

P
pu
pY
pe
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Using the definition of enthalpy, Eq.(2.14), the convection and diffusion flux vectors

respectively are

pu Y
U+ 17
F = putTe , G= v (2.20)
puv pvv +p
puh pvh
0 0
Tez T,
R = , T= v (2.21)
Tzy Twy
UTzy + VTzy — ¢z UTyze + VTyy — Gy

The components of the stress tensor and the heat flux vector, in Eq.(2.21), are

defined as before by Eqs.(2.6-2.8) and Eq.(2.9). The source vector is defined
Sm

s=| ¥ (2.22)
3

Se

Euler Flow Governing Equations

The Euler equations represent the special case of the Navier-Stokes equations where
the dissipative transport phenomena of viscosity, mass diffusion, and thermal con-
duction are neglected. Considering this definition and assuming no source terms,

Eq.(2.18) is reduced to

&  0F(Y) L 95(¥) _
2wt 8.t 3y =0 (2.23)

where F and G are given by Eq.(2.20).
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2.2 Domain Discretization

The first step to solving conservation equations is domain discretization. The cur-
rent numerical method uses a control-volume-based finite-element discretizations as
introduced in Section 1.3. This technique was applied to the heat conduction prob-
lem by Schneider and Zedan [58] and extended to fluid flow problems by Schneider
and Raw [10, 11]. While these works have selected quadrilateral elements through-
out the domain, there are other works which employ the same approach with other
finite-element shapes. For example, Baliga and Patankar [7] considered triangu-
lar elements. The present method is control-volume-based because the elements
are used to construct the calculation domain with non-overlapping control-volumes
which fill the solution domain. Nodes are located at the element corners, and will
be the location of all unknowns. In this study we consider quadrilateral elements

which consist of four edges and four vertices.

The basic relations and transformations of the finite element scheme are pre-
sented in Appendix A for quadrilateral elements. It will be advantageous if the con-
trol volumes are appropriately defined from the elements. If we imagine bounded
domains around nodes which do not overlap each other and all together cover whole
solution domain the preliminary tool for employing the control-volume part of the
method is formed. In this regard, each element is broken up into four sub-elements
by é=0 and n=0 lines, Figure 2.1. The assemblage of all sub-elements which touch
a node form the required bounded domain which is called control-volume, Figure
2.2. It consists of eight line segments. Conservation balances for mass, momentums,
and energy are applied for each control-volume. Since each sub-elements is used
to define control-volumes, we rename it to a sub-control-volume or simply SCV.

Figure 2.1 illustrates how {=0 and =0 lines have divided the element into four
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Figure 2.2: Two-dimensional domain discretization.
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SCVs. A conservative flux discretization of the governing equations is accomplished
by looking over all elements and then over all SCV faces within each element. The
flux passing through each SCV face is assembled to the corresponding own control
volumes. The fluxes are estimated by integrating over the SCV surface. The ar-
gument of such integrals is approximated by the mid-point of each surface. These
mid-points are denoted as integration points and labeled by ip. They are illustrated
in Figures 2.1 and 2.2 by crosses. As seen, the sub-surfaces are simply tagged by
SS labels.

This grid arrangement is called the colocated grid because all unknowns of the
problem are located at the same points. The geometric simplicity of the colocated
grid arrangement is very attractive and it will be significant if the pressure checker-

board problem can be removed, as discussed in Section 1.2.1.

The integration over sub-surfaces require knowledge of the normal vector to
each sub-surface. Assume that the sub-surface is stretched between points a with
(z,y)a and b with (z,y)s, Figure 2.3. A% represents an outward normal vector
to the segment line ab if we assume conventional counter-clockwise travel on the

control-volume surface. It is written as

AS = (AS). i+ (AS), ] (2.24)
where

(AS)e= Ay= (v —va) (2.25a)

(AS), = —Az= —(z4— za) (2.25b)

In Chapter 3, the one-dimensional form of the governing equations is studied.

Therefore, a one-dimensional domain discretization is needed. A simple uniform

one-dimensional mesh is shown and described in Figure 3.1 and Section 3.2.
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Figure 2.3: Surface vector demonstration.

2.3 Dependent Variables

The governing equations were introduced in Section 2.1. Each of these equations is
frequently associated with one basic variable. This basic variable is explicitly repre-
sented by the time derivative part of each equation. Density, velocity components,
and temperature (or enthalpy) are mainly associated with the mass, momentum,

and energy equations, respectively.

Most compressible flow methods solve the Navier-Stokes equations for density,
velocity, and temperature and derive pressure from the equation of state. However,
in the incompressible limit, the density is no longer an unknown, and it vanishes
from the continuity equation. Although some methods still use density as a de-
pendent variable in the incompressible limit, they suffer from slow convergence,
low accuracy, and instability, Volpe [30]. Instead, most methods for incompress-
ible flow use pressure as the dependent variable and consider the pressure field to
be set indirectly by the continuity equation. The choices for dependent variables
were compared by Hauke and Hughes [31] who present a comparative study on

the performance of three different set of dependent variables, excluding momentum
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variable set, to solve compressible flow for incompressible limits. They deduced

that pressure is a good choice in the incompressible limit.

In the present work, pressure is selected as a dependent variable. The difficulty
introduced with choosing pressure as a dependent variable is that checkerboard
fields may arise, as discussed in Section 1.2.1. This problem is overcome with two
different definitions for momentum integration point equations, which are discussed
in Chapters 3 and 4. With this practice, both compressible and incompressible
flows can be computed using the same computer program and specifying a proper

pressure-density relationship.

For simple orthogonal coordinate systems such as Cartesian, as oppose to the
non-orthogonal coordinate systems, the appropriate dependent variables in the
momentum equations are the velocity components. There are other choices for
non-orthogonal coordinate systems. The Cartesian velocity components have been
widely used as the dependent variables in all speed solvers, Section 1.2.4. The
advantage is that the governing equations are very simple and boundary condi-
tion application is easy. In this research, momentum components (or, equivalently,
mass fluxes; i.e., f=pu and g=pv) have been selected as dependent variables for
the momentum equations. The reason for this is discussed in Section 2.4. For the
energy equation either temperature or enthalpy could be chosen as the dependent
variable. In the present work, temperature is chosen, as it facilitates boundary

condition application.

2.4 Research Motivation

Generally speaking, there are different reasons for research in a branch of study.
The research path is always open to problems which are unsolved. The status of
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the research for this type of problems is completely clear. However, the path of
research is not ended as soon as the problem is solved. There are always room
to improve the side factors of the method and its solution like stability, efficiency,
accuracy, and so on. There are generally two types of research approach. In the first
category, an existing method is developed by adding extra professional treatments.
In the second one, a new approach, i.e. a novel work, is proposed and investigated

in order to find the pros and cons comparing with the other existing approaches.

We categorize the current research as a novel work and in this section we
take a deeper look at the motivation for the current research. The compressible-
incompressible analogy, methods of linearization, and smooth fluxes through abrupt
changes in flow parameters are issues which form the foundation for selecting mo-
mentum variables as the dependent variables in this research. These issues are

separately addressed in this section.

2.4.1 Incompressible-Compressible Analogy

The concept of analogy in this study is to develop incompressible methods for
solving compressible flows by switching the dependent variables. In order to express
the concept of analogy, it is necessary to expand either the conservation equations
or the control-volume level of these equations. In this section, we are concerned
with the continuity and momentum equations. On the other hand, as a start to
analogy implementation, we confine the discussion to Euler flow, which contains

the basic physics of much high-speed flow.

As the first step, we study the control-volume level of conservation equations.
Recall the steady form of the Euler equations, Eq.(2.23), with zero source term.
This equations could be integrated over an arbitrary control volume. At this stage
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we are not interested in the details of integration but the final form of the control-
volume level of conservation equations. These forms are derived in Chapter 3 for a
one-dimensional study and in Chapter 4 for two-dimensional study. The integrated
equations for an arbitrary quadrilateral control volume will result in the following

set of equations:

/ (pu)i - dS + / (pv)j-d§ =0 (2.26a)
/ (puu)i - dS + / (pvu) - dS + / pi-dS=0 (2.26b)

/ (puv)i - dS + / (pvv)7 - dS + / pi-d§=0 (2.26¢)

where c.s. means integration over control surface and d3 is a vector normal to the

surface of control volume. For an incompressible flow, these equations reduce to

L } (u)i-dS + / i (v)j-dS =0 (2.27a)
L., u(u)i-dS + /M. v(u)j - dS + /“- pi-ds=0 (2.27b)

[ u(v)i-dS + / v(v)j-dS + / p°7-d§=0 (2.27¢)

c.8.
where p* = p/p. Here, u, v, and p* are considered as the dependent variables. The
variables outside of parentheses are due to non-linearities, and need to be linearized.

Alternatively, for a compressible flow, Eqs.(2.26) can also be expressed as

[... (F)i-d5+ / (9)j-d5 =0 (2.28a)
/c... wf)i-d5 + /c_,_ w(f)i-d5 + /c _p-ds=0  (2280)

/ u(g)i - dS + / v(g9)j - dS + / pi-dS=0 (2.28¢)
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Here, f, g, and p are considered as the dependent variables. If equations, Eqs.(2.27)
and Eqs.(2.28) are compared, it is seen that they are the same except for their vector
of dependent variables. Equations (2.27) were developed for incompressible flows
where u, v, and p°* were dependent variables. However, Eqs.(2.28) were developed
for compressible flows where f, g, and p were dependent variables. Therefore, the
analogy suggests that incompressible control-volume methods using u, v, and p* as
the dependent variables could be extended to solve compressible flows by switching
to f, g, and p as the dependent variables.

This analogy can also be applied to the non-conservative form of the governing
equations. This non-conservative form may be selected as either the main governing
equations for solving the flow field or the equation for deriving integration-point
operators in control-volume methods; in order to connect integration points to the

main grid points. For incompressible flow, the steady form of the Euler equations

becomes
g_:. + % =0 (2.2a)
u-g—:- + u%‘ + % =0 (2-29b)
-g—: + vg—: + %’;: =0 (2-29¢)

Here, u, v, and p* are considered as the dependent variables. Alternatively, for

compressible flow, Eq.(2.23) can be written as

af Og

3 T By = 0 (2.30a)
of of  dp_

v + va—y + y Terms (2.30b)

uiq. + ou.a..g. + @. = Terms (2.30¢)
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Here, f, g, and p are considered as the dependent variables. There are two more
terms in the right-hand-side of the momentum equations which are a result of
the nonlinear convection terms. These terms vanish in the incompressible limit.
Again, comparing Eqgs.(2.29) and Eqs.(2.30) shows that they are the same except
for their dependent variables. Therefore, according to the analogy, incompressible
governing equations which are arranged for u, v, and p* as dependent variables
could be extended to compressible governing equations by switching to f, g, and p

as the dependent variables.

Therefore, this analogy provides an important argument for selecting momen-

tum components as the dependent variables.

2.4.2 Fluxes versus Primitive Variables

In the conservation equations, Egs.(2.2-2.5), it is seen that the left-hand sides in-

volve the divergence of the flux of some physical quantities:

From Eq.(2.2) pl-;' mass flux

From Eq.(2.3) puV flux of z-component of momentum
From Eq.(2.4) poV flux of y-component of momentum
From Eq.(2.5) peV flux of total energy

Thus the conservation equations deal directly with the flux of mass, momentum,
and energy rather than just the primitive variables such as p, p, and V. The

conservation equations can be cast in a common generic form as

6a 0b Oc
3-0-+$+a—y=d (2.31)

In this generic form, all arguments of the 333, Bai’ and %—tetms in Egs.(2.2-2.5)

are collected in a, b, and ¢ flux vectors, respectively. All non-differential terms are
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collected in d which is called the source vector. The term a is called the solution
vector for an unsteady problem. Equation 2.31 is called the strong conservation
form of the governing equations, in contrast to the Navier-Stokes equations which

is a weak conservation form. Comparing with Eq.(2.18), we see that

a=yp (2.32a)
b=F-R (2.32b)
c=G-T (2.32¢)
d=s (2.32d)

For an inviscid flow, Eq.(2.31) reduces to Eq.(2.23). For an unsteady Euler flow
problem, the proper dependent variables are {p, pu, pv,pe}. However, for steady
Euler problems, a marching method with marching in one space direction may be

chosen where the components of F are considered as the dependent variables [59].

This form of governing equations is popular in CFD. There are reasons behind
this popularity. For example, Anderson et al [60] have shown that the conservative
form of the Euler equations allows shock waves to be captured as weak solutions,
thereby circumventing the need to apply shock-fitting techniques. Furthermore,
in flow fields involving shock waves, there are sharp discontinuities in p, p, u, ¢,
etc., across the shock. Experience has shown that the conservation form of the
governing equations is better to be used with shock-capturing methods. The use of
the conservation form does not result in unsatisfactory spatial oscillations upstream
and downstream of the shock wave, and the solution is generally smooth and stable
[61]. This is sketched in Figure 2.4. This plot depicts the flow across a normal
shock wave for a number of flow-field parameters and their combinations. There

are sharp discontinuities for. p, p, and u variables passing through a shock wave. If
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u, pu, p, p, (p + pu?)

‘ discontinuity position

o, (p + pu?)

Figure 2.4: The change of flow properties across a normal shock wave.

these variables are chosen as dependent variables the equations would directly see
a large discontinuity which in turn would result in numerical errors associated with

their calculation.

On the other hand, the mass flux, pu, is constant across the shock wave, i.e.,

P1U1 = paliz (2.33)

Hence, if pu is used as a dependent variable, the stability and accuracy of the
solution would be increased. The investigation of the x-momentum equation will

result a similar conclusion for the p + pu? term, i.e.,
P+ p1u] = p2 + pauj (2.34)

Again, although p, p, and u have sharp discontinuities across the shock wave, the
flux variable of p + pu® remains constant across the shock. If this flux variable is
selected as the dependent variable, the conservation equations would see no error

associated with sharp discontinuities in p, p, and u.



CHAPTER 2. GOVERNING EQUATIONS & RESEARCH MOTIVATION 36

Since we are looking for developing a method capable of solving both steady
and unsteady flows, the solution vector {p, pu, pv, pe} is selected as the dependent
variables. However, it was shown in Section 2.3 that pressure should be chosen as

a dependent variable rather than density for incompressible flows.

Based on these arguments, we conclude that the appropriate choice for the
vector of dependent variables is {p, pu, pv}. Another argument for the same choice

is given in the next section.

2.4.3 Treating the Nonlinearities

The general form of the Navier-Stokes equations is non-linear regardless of the
choice of dependent variables. In order to solve them using methods for linear
equation systems, the non-linear terms must be linearized. There are many different
linearization techniques such as lagging the coeflicients, simple iterative update of
the equations, Newton linearization to iteratively update the coefficients, Newton
linearization with coupling, and many more, Anderson et al [62]. Each of these
linearizations has advantages and disadvantages, and generally do not guarantee

convergence. Thus they may be restricted to special applications.

Generally speaking, linearization introduces some errors, such as iterative errors,
in solution domain during the process of solving the non-linear equations. Iteration
is used to solve non-linear equations by choosing an initial guess and updating
it by solving the linearized equations until the residuals are reduced to a preset
level. Iterative errors vanish if residuals are enough small. Besides the method of
linearization, the number of linearized terms within an equation is also important.
In general, more linearization would cause higher numerical errors. We should

choose a method which requires as few linearizations as possible.
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[Noninensies | Momentuan Vaiabe | Vloity Vaciabe]
-gg Yes Yes
gg"—:—’- No put+iap—pu |
o) No pv +p — PV
I 2(8%)- No Yes
%) No Yes
o) @(pu) Fau
Uewu) (pu) Fou
Aoww) i(pv) i
o) 3(pv) |
% L(%-a%) No |
% L(%-%) No
% 5 (8 -9%) No
| & | @@ |

Table 2.1: Treatment of the nonlinearities in the mass and momentum equations.

We now consider the number of linearizations required if the velocity or mo-
mentum components are chosen as dependent variables. Table 2.1 provides a com-
prehensive comparison of important terms in Eqs.(2.2-2.4) for both velocity and
momentum variables. It is important to note that the linearization is done for the
control-volume level of discretization where the differential forms disappear by in-
tegrating over the control-volume surfaces and volume. Therefore, the first column
shows the real appearance of the nonlinear term in the general form of the governing

equations and the other two columns show the linearization of the same term in the
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control volume discretized form. The words of “Yes” and “No” are used to identify
whether the term needs or does not need linearization with respec to the selected
variables. In this table we see that for the continuity equation, the transient term
needs linearization with both formulations, while the other two terms need to be lin-
earized only when using velocity components. The method of linearization could be
different for different flow-fields and solution method. Compressible-incompressible
solvers may use a Newton-Raphson linearization which retains the important role
of density for compressible flows but shifts this role to velocity in the incompressible

limit, i.e.

For the momentum equations, the convection terms need to be linearized for
velocity or momentum formulations. However, the transient term needs to be lin-
earized only for the velocity formulation. The diffusion terms must be linearized

for the momentum formulations, as discussed in Appendix D.

Here it must be noted that we are not to compare just the number of nonlinear-
ities in these two formulations and reach a conclusion. The method of linearization
is another issue which surmounts the number of linearizations. For example, the
relative weights of diffusion and convection in the momentum equations are not
the same. Diffusion terms are always discretized using elliptical schemes. Since
the same technique is used for all diffusion terms, linearization then does not pose
a major problem. However, the linearization of mass flux terms in the continuity
equation and convection terms in the momentum equations require more improved
treatment. This is because each component of the linearized term, e.g. p and u in
the pu term, may require special treatment consistent with the physics of the orig-

inal nonlinear term. Therefore, a suitable treatment of the nonlinearities is much
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important than reducing the number of linearizations.

Therefore, we see that the selection of momentum components over velocity
components provides additional simplicity in the linearization of the governing
equations, specially, the continuity equation. This is another reason for using the

momentum components as the dependent variables.

2.5 Closure

In this chapter, the general conservation equation and several versions of the Navier-
Stokes equations were introduced. This was followed by a discussion on the selected
dependent variables. It was also explained that if a computational scheme is to be
valid for both incompressible and compressible flows, pressure should be selected as
a dependent variable in preference to density. In addition, several reasons were given
for selecting momentum components instead of velocity components as dependent
variables. An analogy was introduced which enables incompressible methods to
be extended to solve compressible flows. The smoothness of the fluxes through
the discontinuities in the flow-field was another reason to switch to momentum
components. Finally, it was shown that the momentum-variable formulation leads

to fewer linearization difficulties and introduces less erroneous linearization.



Chapter 3

One-Dimensional Investigation

and Results

3.1 Introduction

The development of a numerical method requires several steps. The initial steps
are very important in the progress of subsequent stages. In a multi-dimensional
method, there is no better way to test the method initially than for the simple
case of one-dimensional flow. In this chapter, we examine the method for one-
dimensional investigations or formulations with some special applications. The
procedure is started by discretizing the solution domain in Section 3.2. Then in
Section 3.3, we introduce the one-dimensional governing equations and write the
statement of conservative for them. Next, we derive the one-dimensional integration
point expressions and operators in Section 3.4. These derived expressions are first
checked for sound physical behaviour for special flow cases. Later in Section 3.5,
they are checked for the velocity-pressure decoupling problem. The modeling of

40
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the velocity-based formulation is accomplished in Section 3.6. In Section 3.7, the
method is tested for a number of test problems. In this regard, a source and
sink combination is put in the one-dimensional flow and the resulting velocity and
pressure field distributions are studied. The results confirm the decoupling problem
under special circumstances. The one-dimensional test is followed by checking
the formulation for high speed flows with shocks. In this regard, the shock tube
problem is selected and tested for one-dimensional inviscid flow and the results
are compared with the analytical solution. Finally, a direct comparison between
the momentum-variable procedure and velocity-variable procedure, including their

results, is presented.

3.2 One-Dimensional Domain Discretization

The two-dimensional discretization of the solution domain has been fully discussed
in Section 2.2 and Appendix A. For a one-dimensional study, the grid distribution
is very simple. The number of nodes, integration points, and SCVs in each element
are reduced considerably. Figure 3.1 illustrates a simple uniform one-dimensional

grid distribution. The Y and Z dimensions have unit lengths.

Control volumes are located between the two crosses while elements are located
between the solid circles. The notation used to denote relative control volume
location is illustrated in this figure. The subscripts E and W are used to denote
the nodal quantities associated with the control volume to the east and west of node
P. Similarly, e and w are east and west surfaces of the control volume centered at
point P. Upper case letters are associated with quantities at main nodal grid points,
while lower case letters refer to quantities at integration points. This convention is

normally respected throughout this thesis.
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Figure 3.1: One-dimensional domain discretization.

3.3 Discretization of Governing Equations

In this section the algebraic representation for different terms of the mass, momen-
tum, and energy equations are derived according to control-volume-based methods.
These algebraic equations have a nonlinear form. These nonlinearities need to be
linearized properly in order to use solution techniques applicable to linear algebraic
equation systems. The one-dimensional conservative form of the governing equa-
tions for mass, momentum, and energy are respectively derived from Eqs.(2.2-2.5)

for flow in z direction as

O(pu)  O(puu) dp 9 _Ou
50 + 5z F ot (1‘a )+ 8¢ (3.2)
3(pe) d(pue +up) _ 3q=
26 oz (F 8:!:) =5 T (3:3)

where I' = 4. The auxiliary equation is the equation of state for compressible flow,
Eq.(2.11), and the constant density assumption for incompressible flow, Eq.(2.16).
The other necessary parameters, like total energy and enthalpy, are calculated from

Section 2.1 considering the one-dimensionality.
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3.3.1 Conservation of Mass Equation

Integrating the equation of mass, Eq.(3.1), over a control volume and using the

divergence theorem will yield
/ @dv+/ fdS=[ sndV (3.4)
v, 99 S, Vo

where fv,, and [, s, are taken over the volume and the surfaces normal to the x-axis
of the control volume, Figure 3.1. The transient term is approximated by a lumped

mass approach in our fully implicit method

Op py .. 1 (Cp— 0%

where J represents the volume of the control volume. The superscript “o” denotes
the old values of the corresponding parameter. The subscript P refers to the nodal
point P. Since g is not a major dependent variable it is properly linearized for
compressible flow using Eq.(B.5). The result is ¢ =3+ g P — qu- T. Similarly,
the source term is approximated as the source strength evaluated at point P times
the volume of control volume

/ 3 AV = (8m),p T, (3.6)
v

P

The remaining flux term is simply integrated over the boundary surface of the

control volume
[ fas=t-t (3.7)
SP

f. and f, are evaluated at the integration points which are not nodal locations.
The expressions which relate them to the main grid nodes are derived in Section

3.5.
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3.3.2 Conservation of Momentum Equation

Integrating the momentum conservation equation, Eq.(3.2), over an arbitrary con-

trol volume will yield
af
JV+/ (uf) dS + pdS = I‘—d.S'+ s;d’V (3.8)
Vp Sp

The transient and source terms can be treated as before

/ O v~ (F’—A'aﬂ) (3.9)
/v WG, T, (3.10)

The convection term is simply integrated over the control volume surfaces

[s (uf) dS = (uf)e — () (3.11)

These nonlinear terms at the control volume surfaces must also be linearized. It is
possible to linearize them respect to f variable or both f and u variables. The de-

tails are given in Appendix C and the result is written here by employing Eq.(C.14)
[ @) dS w2 af, - wue] - ¥'(325, - 82.) (3.2)
SP
The pressure term is written as
/ pdS=p, —p, (3.13)
sP
The last term is the diffusion term which is treated in a similar manner

Ou ou Ou
[s gy 45~ (0~ (Tg0)e (3.14)
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The results do not directly involve the main dependent variables and an appropriate
substitution is needed. Appendix D represents different methods to linearize terms
similar to the %‘ term. Here, the scheme of Eq.(D.2) is used to linearize the diffusion

term. After substituting, the results are written as

e enr((2) -(2)]<[G2).-G2)) e

The terms in the second bracelet can be evaluated by either using the lagged values
of the density or by employing the method of Appendix B and considering them as
active terms. As is seen, all terms except the transient and source terms need to be
evaluated at the integration points which are not nodal locations. The necessary

connections are developed in Section 3.4.

3.3.3 Conservation of Energy Equation

In this research, different methods for treating the one-dimensional energy equation
have been used because the number of nonlinear terms is much more than the
number in the momentum equation and they can be linearized differently. The
final formulation which is presented in this sub-section presents just one which
the final one-dimensional results are based on. Integrating the equation of energy,
Eq.(3.3), over an arbitrary control volume will yield

a(pe)dv+/‘(fe)ds+f up dS = /I‘u ds — /q,ds+/ se dV

Yp Ve
(3.16)
The transient and source terms can be treated as before. However, the nonlinear
transient term, i.e. pe, is linearized with respect to p and e using Eq.(B.6) in

Appendix B. This gives pe = pe + ép — pé where a simple linearization for e is

e—cuT-i-z—;f (3.17)
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Using Eq.(B.5) for density and substituting it and Eq.(3.17) into the linearized
form of pe will finally yield

/‘ 8(pe)dv~_A_§[f2fp+RT p+(gc,,___)'r (gE)"]P (3.18)

The subscript P for the terms in braces means that all terms are evaluated at the
nodal location P. On the other hand, the convection term in Eq.(3.16), fe, is first
linearized with respect to f and e using Eq.(B.6). Then one more linearization is
done for the definition of e, Eq.(3.17). A combination of these two linearizations

will result in the following linearized form for the convection term,
./S- fe dS = [k f. — Ruful + [fete — Futu] = [(Fe)e — (Fe)ul (3-19)

where £ = c,t + u?. The viscous term in Eq.(3.16) is treated similarly to- the
viscous term of the momentum equation. The extra u in the viscous term of the
energy equation is lagged. The conduction term in Eq.(3.16) is approximated at
control volume surfaces by writing a central difference involving its neighboring
nodal temperatures. The pressure term is changed to up = u(pRt) = R f t. Then
using Eq.(B.6) we obtain

[ wdS ~ R{ES ~ Bl + Fute = Futd] - (P - (LD} 320)

P
As before, all terms except the transient term were derived at integration points.

The necessary connecting expressions between integration points and the main grid

points are derived in the next section.

3.4 Integration Point Operators

The conservative treatment of mass, momentum, and energy was presented in the

last section. However, to make the system of algebraic equations well-posed, the
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derived discretized forms require that the dependent variables at control volume
surfaces be represented in terms of nodal variables. Therefore, it is necessary to de-
rive expressions for the major dependent variables of the formulation (i.e., momen-
tum component, pressure, and temperature variables) at control volume surfaces

in terms of nodal values.

3.4.1 Momentum Component Variable

Although the continuity equation is treated as an equation for pressure it does not
directly involve pressure in itself. This is critical for incompressible flow conditions.
A simple connection of f. and f, in Eq.(3.7) to the neighbouring nodal F’s does
not directly brings the effect of pressure into the continuity equation. Moreover,
it ensures the checkerboard problem will exist {1]. Various techniques have been
adopted to overcome this shortcoming in the continuity equation. Many of them
have paid attention to a better modeling of the integration point variables. In this
regard, new schemes have tried to bring the correct physical aspects of the flow
into the integration point equation. Baliga et al (7, 63], Prakash and Patankar
(8], and Prakash [64] are few among many works who have presented profiles that
attempt to include the relevant physics of the problem. Consequently, Schneider
and Raw [10] employed a different approach that uses the governing equations,
themselves, to derive the integration point equations. According to their work,
an algebraic approximation to the appropriate differential equation is generated
at each integration point which consequently will include all of the physics and
relevant couplings for that variable. This method will be employed in this work to

derive the necessary integration point equations.

Following the work of Schneider and Raw [10], momentum integration point
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equations are derived by approximating the non-conservative form of the momen-

tum equation, which is derived from Eq.(3.2). It is

0f f 0P
F TRt T f + 32 az(

The terms of this equation are treated in a manner that represents the correct

l‘-—) + 3¢ (3.21)

physical aspects of the flow. If there is a strong flow along a specific direction, then
significant influences travel only from upstream to downstream in this direction.
So, the conditions at a particular point can be affected significantly by upstream
conditions. The balance between diffusion and convection terms depends on their
relative strengths. If convection is large enough then it overwhelms the elliptic
effect of the diffusion term. Considering a correct physical treatment would require
a central difference approximation for the pressure gradient term and an upwind
approximation for the convection term. A central differencing scheme is also used
for the diffusion term which reflects the elliptical influence of parameters in the flow
field. The transient term is treated as before by a backward difference in time. So,
the terms of Eq.(3.21) are discretized as

g 5 f,Aof (3.22)

ugi . f; /1; (3.23)
22 o e Frlee (3:24)

-aa% ~ _Iig_z—;& (3.25)

OPu _ Fo/2, —2fe/Pe + Fylts (3.26)

oz (Az/2)3
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Here, both convection terms are treated in an upwind manner. Appendix C presents
a comprehensive discussion on the role of the velocity components in the momen-
tum’s convection terms. These roles could have a direct effect on the way that
these convection terms are discretized. However, it is shown that if g—ﬁ is treated in
a central difference manner it produces poor results, Appendix E. Another form of

treatment for Eq.(3.24) is

Su Fu
I8z~ 52 (3.27)

This scheme will include just f. and is directly transferred to the unknown part
of the equation on the left hand side. The reason for avoiding this scheme is the

possibility of poor stability of the method as is shown in Appendix E.

Substitution of the discretized terms into Eq.(3.21) and rearrangement yield the
following expression for the momentum integration point equation

15. [ 2+P+2P ﬁe( 1 )
= -fe e | F + £ F 3.28
f 20, ((%+1)P+2 ‘°+§B (+t)P+2/ ° (3:28)

+ . (Pp— Pg)+ —3s — 4 az__,
2. [(+0)+2] ¢ T I+ T R+ +2) ]

where P and C are the grid Peclet and Courant numbers, i.e.,

p g Bl (3.29)
C= ﬂzﬁ" (3.30)

As is seen, there is a strong connection between the momentum integration point
variable and neighbouring nodal dependent variables. The use of this expression
in the mass conservation equation, Eq.(3.7), provides a coupling of pressure and

momentum-variables and helps to eliminate the need for a staggered grid. Although
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this procedure reduces the necessity of using a staggered grid, it may still reveal
the checkerboard problem under special circumstances which are described in the

next section.

If P is changed from zero to infinity, the influence of upstream and downstream
nodal values is properly seen. This is examined for limiting values of the Peclet

number in steady-state condition

_1p 1 5. AY 3 (Az)? _
P—0 fe= 23, F, + 25, F. + T pe(Pp ~ Pg) + T (3.31)
_1 Pe 1 Az
P— o fe= 5(1 + 5, )Fe. + 1. (Pp - Pg) + e (3.32)

The influence of the momentum nodal values properly changes from that of fully
elliptic for P — 0, to that of fully parabolic for P — oo0. This demonstrates a
correct behaviour of the derived expression for the momentum component at the
integration point. In the next sub-section, the other integration point variables are

examined.

3.4.2 Other Variables

There is no direct equation to be used for deriving an integration point equation
for pressure. Schneider and Raw [10] used the pressure Poisson equation as an
explicit partial differential equation to show that pressure is a strongly elliptic
variable in incompressible flows. Thus, a linear interpolation is used to determine
the integration point pressure which is analogous to conventional procedures insofar

as its implementation is concerned.

~ Pt Ps

P. > (3.33)

8
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The temperature integration point equation is obtained by directly discretizing
the energy governing equation. The one-dimensional energy equation for transient

flow could be written in the following form

ot ot ou O Ou g,
P + puce 5 + Py, = -5;(1‘1:5-2- ~ 9z (3.34)

The terms of this equation are approximated very similar to the approximaticns
in Eqs.(3.22-3.26). The transient term is discretized by a backward difference, an
upwind difference is considered for the second term on left-hand-side, and the third
term of the left-side is approximated by a central difference. The substitution of
these approximations into Eq.(3.34) yields

-tc"t: ‘tc"TP -FS/EB-FP/§P~'
PRy tofpan YR om0 (3.35)

where the lagged dissipation term, ©, is treated in the following form:

_ - 2 — - - - -
= - — 2i, -2t.+ T
O~T [%gt] +Ta, U, (A2:/2';; Ug + kTp(Ait/;)'; E | g, (3.36)

Thus, the temperature integration point equation could be derived after some re-

arrangement in Eq.(3.35), i.e.,

2C p. 2C [F., F 2C O
t, = fr—— | £ - L — 37
«=T32C Pt 3o f1+2C [g‘s é,,]+1+2C2c.,f, (3:37)
The steady-state form of this equation is reduced to
p. [F. F, <]
b =T+ -[:E-.—’]+ _ 3.38
F 2¢vfe LOg Op 2¢fe ( )

The unknown density at an integration point can be calculated from either the
equation of state or the nonlinear form of the continuity equation. The importance
of this variable is for connecting the momentum and velocity-variable quantities at

integration points. In the first case, the equation of state is linearized with respect
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to pressure and temperature, Appendix B, and then the pressure and temperature
integration point equations are substituted. This form of linearization was not
employed in solving the test cases which are presented in Section 3.7. The second

case employs the non-conservative form of the continuity equation, i.e.,

9 dp Bu
25+ vg; tP5; =0 (3.39)

Using a backward scheme for the transient term and an upwind scheme for the
second term will result in

_2C P Az 2C Ou
Pe=T1racer™ +

1+2C " 2a.1+2C \Y3z),
in which the last term of Eq.(3.39) has been lagged. Note that the role of density

(3.40)

integration point equation in momentum-variable formulation is not as critical as
it is for velocity-variable procedures which uses density directly in the conservative

treatment of the continuity equation.

The remaining variables which are not mentioned here , like velocity, do not
appear in the formulation with an active role but passive and lagged from previous
iterations. Velocity is obtained by using the u = ;E definition. Other similarly lagged
variables are properly calculated by their basic definitions, Section 2.1, using the

magnitude of major dependent variables at integration points.

3.5 Pressure-Velocity Decoupling Issue

The absence of pressure in the continuity equation and the use of a central difference
for the pressure term in the momentum equation permit the pressure field to accept
a zig-zag solution in incompressible flows, Patankar [1]. Such a zig-zag field, which

is known as the pressure checkerboard problem, is not physical. Any number of
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additional solutions can be constructed by adding a checkerboard pressure field to

a smooth pressure field solution.

In this section, the pressure checkerboard problem is investigated for the derived
discretized equations of Section 3.3 when the integration point equations of Section
3.4 are employed. This study is started by simplifying the formulations for steady

incompressible flow and testing it for special domain situations.

3.5.1 Decoupling in One-Dimensional Formulation

We have already derived the momentum integration point equation, Eq.(3.28),
which illustrates a strong coupling between the pressure and velocity fields. This
compensates for the absence of pressure in the continuity equation. There remains
a question of whether the velocity-pressure decoupling issue has been eliminated.
It is interesting to investigate this in our colocated formulation which includes pres-
sure effects in the discretized form of the continuity equation. Consider the control
volume located at point P in Figure 3.1, the control-volume discretized equations
of mass and momentum for steady-state, incompressible, Euler low without any

source terms are written
fe—fu=0 (3.41a)
2[‘&:’: - ﬁwfw] - (ﬁ:Pe - a:,Pw) +p. —p, = 0 (341b)

Here, f. and f,, are derived from Eq.(3.31) considering incompressible flow condi-

tions with no source term. They are
fe= F.+-(Pp—Pg) (3.42a)

fo= Fy+7=(Pw—Pp) (3.42b)
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The value of p, is obtained from Eq.(3.33). A similar interpolation for P, is p_, =
fetPw If these four integration point expressions are substituted into Eqs.(3.41)

the following results are obtained after some rearrangement

1 1,1 1 1
~-F, +F, ~ ZE:PW + z(a + 'ﬁ:)Pp - E;Ps =0 (3.43a)
_2['.‘wa - ﬁer] +P, - P, = (ﬁ.’,Pe - ﬁ'znp"-') (3-43b)

If the continuity and the momentum equations are respectively multiplied by %

and g, the consideration of
m = (pu). = (pu), = mass flow rate = constant (3.44)

will reduce these equations to

o
—;-"-(F,, -F,) - (P,—-2P,+P,) =0 (3.45a)
3}(1«; _F) + (P.-P,)) =0 (3.45b)

Here, the pressure term in the continuity equation acts as a source term to correct
the momentum field. Schneider and Karimian [12] have shown that a zig-zag pres-
sure field results in a zig-zag velocity field in their similar formulation. Following
their work, a pressure field similar to

Pw = +P¢
Pp=—P, (3.46)
PE = +Pa

can result in a zig-zag momentum field like
F,=fa
FP = fa + g: (3.47)
Fo=fa
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indicating that only every other node is connected. The non-physical solution set,
Eqs.(3.46 and 3.47), satisfies Eq.(3.45). In other words, a non-physical solution

satisfies the discretized governing equations.

A similar conclusion is obtained by direct examining of Eqs.(3.41). If 4. = u,,
and p. = p,, then Eqs.(3.41) become

fe—fu=0 (3.48a)
2u(fe — fu)+p.—p. =0 (3.48b)

Now, irrespective of any definition used for f. and f,, substitution of the first

equation into the second one gives

Pe —Pw =0 (3.49)
Considering the p¢=£ﬁ';—P£ and p,=£L';£“’- approximations will result

P.—-P, =0 (3.50)

This shows that the possibility of a checkerboard problem still exists in this colo-
cated grid arrangement even with the strong coupling of pressure and momentum
dependent variables. Thus, the appearance of pressure in the continuity equation
is not the complete remedy for a colocated grid approach. The next sub-section
introduces a remedy to eliminate this checkerboard difficulty.

3.5.2 A Solution to the Decoupling Problem

A general remedy to the pressure-velocity decoupling problem is the employment of
a staggered grid scheme [1]. However, the current method has been established on a

colocated grid arrangement which is proposed as being an advantage of the method,
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Section 1.3. The difficulty could be overcome by introducing a new set of momentum
components at integration points. The new set should not only involve all aspects
and physics of the flow but also consider the satisfaction of mass which the single
integration point equation does not. This proposed new set of variables could
be used in conjunction with the continuity equation and wherever conservation of
mass is addressed. Karimian and Schneider [33] present an argument to obtain the
best new set of velocity components at integration points. It is deduced that the
equation which involves both momentum and continuity equation errors works well.
Following their conclusion, a two-parts equation is presented to derive the second

set of momentum components at integration points
(Momentum Equation Error) — u{Continuity Equation Error) =0 (3.51)

The main idea is to invoke the role of conservation of mass in the integration
point equations. Such an equation has the effect of invoking momentum and mass
conservation, even though it is indirect. We write a general form of this equation

using Eqgs.(3.1 and 3.2)

of u, 8f Jp 0 . 0u p Of _
[ao*f e +Fz"$r5§“”] aa*'a"""‘]“o (3.52)

where « is an arbitrary coefficient which determines the degree to which the con-
tinuity equation error is involved. The discretization of this equation is exactly

similar to what was done for the momentum integration point equation, Eqs.(3.22-

3.26). In this regard, similar terms in the two braces are added and transient terms
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are treated like previous treatments for the transient terms. The final result is

i = 14 2+P+(1-a)EP F+-é'-( 1 )F
© 25, d (x+1-9P+2)°F

(=+1-3)P+2 Zs
1 fe
Pr - Pg) + e
+4a,[é+1—g+§1( » = Ps) 1+2C2-a)+ %
alz 9p Az

+ — + — 84 = QrlleSyy 3.53
L1000 T eI g ") (353)

This new integration point expression is different from Eq.(3.28). We name it con-
vecting momentum or mass conserving momentum because the conservation of mass
is included in it. The hat on this variable, f, distinguishes it from the convected one,
f, which was presented before by Eq.(3.28). Comparing Eq.(3.53) with Eq.(3.28)
shows that the convecting momentum and convected momentum are the same for
a=0. The general convecting expression can be simplified to the special case of

steady-state, Euler flow, i.e.,

;. (1-a)+ g‘ 1 Az
- %P — - P — )
e o F, + 2.2 — ) (Pp— Pg) + T2 —a) (85 — afi.sy) (3.54)

Differing values of the arbitrary coefficient, a, will change the influence of nodal

parameter values. This is shown for two different values of a in incompressible flow

s 1 Az

a=0 fe:FP+4ﬁe(PP_PE)+4_ﬁ, 'y (3.55)
- 1 Az -

a=1 fe=F, + 2. (Pp — Pg) + %, (85 — 2tiesm) (3.56)

Before closing this section, it is instructive to show that the use of two integra-
tion point equations for the momentum components does not permit the checker-

board problem to persist. In this regard, Eqs.(3.48) are written in the forms that



CHAPTER 3. ONE-DIMENSIONAL INVESTIGATION AND RESULTS 58

involve both convected and convecting momentums

-

f—fu=0 (3.57a)
2u(fe — fu) +p.—p, =0 (3.57b)

where f. and f,, are substituted from Eqs.(3.42). Similar convecting momentums
are derived from Eq.(3.56) considering incompressible flow conditions with no source

term
fe= Fo+ 3 (Pr— Pg) (3.58a)
fu= Fy+3(Pw - Pp) (3.58b)

By comparing with Eqs.(3.42), it is possible to relate the convected and convecting

momentums, i.e.,

fe= fe+ 3 (Pp— Pg) (3.59a)

fo= fu+=(Pw— Pp) (3.59b)

These expressions are substituted in Eq.(3.57a). Assuming u.=u,, will result in
Jfe—fu= %(Pw — 2Pp + Pg) (3.60)

This result can be substituted in Eq.(3.57b) where p. and p,, are approximated by

linear interpolation of the neighboring nodal pressures. The result is
Pg—Pp=0 (3.61)

Contrary to Eq.(3.50), here adjacent nodes are connected and thus the checkerboard
problem as we know it does not arise. A similar investigation shows that a zig-zag

pressure field like Eq.(3.46) cannot result in a zig-zag momentum/velocity field like
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Eq.(3.47). This new momentum convecting equation is a remedy for elimination
of the checkerboard problem. In the next section, other possible techniques for

deriving convecting momentum-variables are described.

3.5.3 Other Possible Solutions

Although the discretization of Eq.(3.52) was done similar to what had been done
for Eq.(3.21), it is possible to treat the convection terms in different manners to get
different formulations. Both the convected equation, Eq.(3.31), and the convecting
equation, Eq.(3.54), show that the momentum integration value is related to its
upstream nodal momentum value for steady-state Euler flow. However, it can
be argued that the integration point values should depend on both upstream and
downstream nodal values. To examine this, the ug-g%l term, which is a common
term in both the continuity and momentum equations, is discretized in different
ways. Once more, Eq.(3.52) is repeated here while the concern is only on u%‘-’-:-l

terms in those two braces, i.e.,

d(pu) d(pu) -
‘[...+u 52 +...]‘—au‘[...+ 52 +...4-0 (3.62)
Momentum Error Continuivty Error

Considering the physical interpretation of the u%%‘)- term in both the continuity and
momentum equation parts could result in different discretizing options. Table 3.1
summarizes some of the possibilities. The first row of the table represents Method
I which was used in the preceding sub-section to derive f.- The resulis of that
formulation were presented there. Now, if central differencing is employed to the

term in both braces the method is named Method II. The result of this approach
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" " in Momentum Equation | in Continuity Equation "

Method I Upwind Difference Upwind Difference |
Method II Central Difference Central Difference
Method III Upwind Difference Central Difference
Method IV Central Difference

Upwind Difference

Table 3.1: Different method of treating ﬂg—l in mass conserving equation.

for steady-state Euler flow is

Pg) QlieSmm) (3.63)

fo= ”*F+ a-lp _F)

z
24,
The influence of neighbouring momentum nodal values is again changed if a is

changed. This is examined for incompressible flow

. 1 Az _
a=1 fe—Fp+'2_1{c'(PP_PE)+'2—ﬁ—;("f-u¢-’m) (364)
_ : F, +F, 1 Az _
a=2 fo= EE 4 g (Pr- (3.65)

The change of « from 1 to 2 provides for this interpolation to be changed from an

absolute upwind to an absolute average of neighbouring nodal momentum values.

Another way for treating the u%?—:l term is a combination of upwind differencing
for the momentum part and central differencing for the continuity part, Method
II1. This form ratifies the convecting prescription for the continuity equation and
the convected prescription for the momentum equation. The result for steady-state

Euler flow is

(Pp — Pa)
4ii,

fo = -(1 + )F + [F - F.l+ 4- (s; — Qiiesm)  (3.66)
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When a — 0, this equation approaches the limiting convected equation, Eq.(3.31).
In this case, both convected and convecting momentums are the same. However,
for a=2 in incompressible flows, the average of neighbouring nodal momentums

results for approximating the integration point equation,
s F,+F,;

1
a=2 fe=—"= —+4ﬁ(PP_PE)+

There is a fourth method, Method IV, which uses central differencing for the

Az
4i,

(85 — 2G.8m) (3.67)

momentum part and upwind differencing for the continuity part. The upwind
model was used to treat the continuity parts in Method I where the purpose was
to make a consistent discretization for similar differential terms of the equation.
Generally speaking, the main idea in deriving a convecting equation is to employ
upwind differencing for momentum convection terms and central differencing for the
continuity terms, however, Method IV is presented as yet another possible option.

The result of this case for steady-state Euler flow is

a— 2 1 1

-~ _ 6? _
Az -
2—1_‘3—(1-—a)(8! - au,s,,.) (3.68)

Considering a=0 reduces this equation to the following form for incompressible flow

conditions:
PO | 1

1 Az _
a=0 fe= §Fp + EFE + E;(Pp - Pg)+ Zﬁ—,(sf —2E.8,) (3.69)

which is an inappropriate expression for approximating the momentum integration

point value. However, considering a=2 improves it to an appropriate expression

. F,+F 1
a=2  fo="rl 84 —(Pr-Ps)+

Az _

These different methods were studied in a one-dimensional procedure for which

results are presented in Section 3.7.
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3.6 Velocity Component Based Formulation

At this stage, the one-dimensional modeling for the momentum component formula-
tion is complete. This formulation provides the mechanism with which to examine
different one-dimensional test problems with regards to its ability to solve such
problems. However, the solution of these test problems by itself does not provide
any advantages or disadvantages with respect to the velocity-variable formulation.
Where feasible, a comparison will be made of the results of the momentum-variable
formulation with those of the velocity-variable formulation. In this respect, we will
be concerned with methods which have been developed for solving compressible
and incompressible flows at all-speeds. The work of Karimian and Schneider [33]
is the best among the available methods for such flows. They provide a damping
mechanism in their formulation in order to avoid spatial oscillations in the vicinity
of discontinuities and shocks. This damping also results in improved convergence.
Since the current method is free from employing any damping mechanism, a com-
parison between the two formulations will be performed on the basis of there being

no damping or density averaging in either method.

In order to pursue this latter idea, the one-dimensional approach of Karimian
and Schueider [65], who apply it to the shock tube problem, is formulated in the
following. A clearer comparison will be obtained if the energy equation can be
separated from the continuity and momentum equations. In this way only the flow
couplings are considered and the additional complications of the energy equation
and its couplings are avoided. Thus, an isothermal flow is assumed throughout the
domain and a constant temperature field is specified via the energy equation. The
statement of conservative for the mass and momentum equations can be obtained

from Eqs.(3.1 and 3.2) assuming zero diffusion and source terms. The final form of
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these statements can be directly written from Sections 3.3.1 and 3.3.2 as

22 (0r = 02) + (pu)e = (pu)o = 0 (371)

-gco.((gv), — (eU)2) + (puu)e ~ (put)w +p. —p. =0 (3.72)

The transient term in the continuity equation and the pressure term in the momen-
tum equation are treated as in Sections 3.3.1 and 3.3.2, respectively. The convection
term in the momentum equation is simply linearized respect to the velocity-variable,
i.e. puu = (pi)u. However, the mass flux terms in the continuity equation require
special treatment. They are treated by using a Newton-Raphson linearization,
Eq.(B.6). This treatment, which was introduced in Section 2.4.3, allows the strong
importance of density in highly compressible flows to shift to that of velocity in the

incompressible limit. The mass flux is given by

pu = pu+ ip — pu (3.73)
The non-linear density in the second term on the right-hand-side is determined by
1 Es — ?p
- £s " Ee 3.7
Pe = BT, Pp + 3 (3.74)
The non-linear transient term in the momentum equation is first treated by a
Newton-Raphson linearization, i.e. oU = gU + Up — oU. Then, the non-linear
density is treated by using Eq.(B.5).

In the next step, the convected velocity at the integration point is derived from

the non-conservative form of the momentum equation, i.e.,

Ou du Op
P'ag*‘lm—“-l-a—z—

e 0 (3.75)
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Writing a backward difference in time, an upwind difference approximation for the
convection term, and a central difference approximation for the pressure term and

rearranging the resulting terms give the following expression

2C C u?
Up + — (Pp - PB)+1+2C

1+2C Peiic(1 + 2C) (3.76)

U =

This integration point velocity is the convected one which is substituted into the
convection term of the momentum equation. Similarly, the convecting velocity at

the integration point is derived from the following equation

Ou @) 0p

(p5g +Pug, ( =t P5; o) =0 (3.77)

where the term in the first parenthesis is modeled using central differencing for the
spatial derivatives and backward differencing in time for the transient term. The

following result is obtained after some rearrangement

. C C
e = 75¢ (Up +Us) + 1120 (Pp — Pg) + TERMS (3.78)
where
TERMS = 2 (5 — ) + soos (e =)+ Trgg  (379)
7L+ 20) Pe =Pt o oc) @ ) Tog :

This convecting velocity at the integration point is substituted into the mass flux

terms of the continuity equation, Eq.(3.73).

Now, the modeling of velocity-variable formulation is now complete. How-
ever, Karimian and Schneider [65] improve this formulation by treating TERMS
in Eq.(3.78) and the second term on right-hand side of Eq.(3.74) using an absolute
harmonic interpolation scheme. This treatment damps oscillations in the vicinity

of shock waves and discontinuities in the numerical solution.
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3.7 Applications

To check the accuracy of our numerical solutions, a comparison will be made with an
exact analytical solution for incompressible and compressible Euler flows. Although
our interest in this research is in solving the complete Navier-Stokes equations,
the Euler equations are of importance in many flows and do exhibit the strong
coupling between velocity, pressure, and density. They therefore provide a good
preliminary tool to evaluate the performance of a Navier-Stokes solver. In this
section, source and sink test cases are first applied to incompressible flows and
the results are examined. Subsequently, the shock tube problem is examined to
examine the corapressible part of the method. Finally, a direct comparison between

the results of momentum-based and velocity-based formulations is provided.

3.7.1 Incompressible Flow

The main purpose here is to examine the checkerboard problem in a flow field when
a sudden positive or negative change in mass or pressure is imposed. Therefore,
the source terms in the continuity and momentum equations have non-zero values.
The test case is a one-dimensional, steady-state, Euler flow through a constant area
channel with unit length and with mass/pressure-source/sink inside it. There are
twenty-one uniform node distributions. The source and sink divide the domain into
three equal parts, Figure 3.2. For the sake of space, some part of domain has not
been shown in this figure. The mass is specified at the upstream boundary and pres-
sure is defined at the downstream boundary of the domain for boundary condition
implementation. Also, mass and pressure are nondimensionalized with respect to
inlet momentum component, F;,, and inlet dynamic pressure, (%QU'?,'), respectively.

Two different possible arrangements are considered for each source/sink. They are
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Figure 3.2: Source and sink distribution in one-dimensional domain.

defined by either two neighbouring nodes, named an element source/sink, or by two
neighbouring integration points, named a control volume source/sink, Figure 3.2.
If the source is distributed within an element, it is equally split between the two

control volumes of that element.

The discretized equations of continuity and momentum have analytical solu-
tion for mass and pressure variables when element pressure-source/sink is located
in the domain. For this case, the results of the code are confirmed by the ana-
lvtical solution, Figure 3.3. This analytical solution cannot be obtained for other
types of source and sink distributions. For the control-volume source/sink, there is
some oscillations around the source and sink in the numerical results. These local
oscillations around the source and sink do not reflect the checkerboard problem.
For example, Figure 3.4 shows the results of code for locating a control-volume
mass-source/sink in the domain. The numerical result does not fit the required
distribution in the domain. In these distributions, the migration from before to
after a source happens within more than one discrete distance between two integra-
tion points or nodes. Figures 3.5 and 3.6 show the results of the code for locating
an element mass-source/sink in the domain. One applies the mass conserving ap-

proach and the other does not. If the mass conserving equation is not applied in the
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Figure 3.3: The effect of element pressure-source/sink on pressure and velocity

distributions.

continuity equation instead of convected one, the pressure checkerboard problem
appears, Figure 3.5, while the use of a convecting equation does not allow the growth
of non-physical oscillations in the domain, Figure 3.6. This has also been shown for
the other type of source/sink configuration in the domain. For example, Figures
3.7 and 3.8 illustrate the difference for a control-volume pressure-source/sink con-
siderations. The lack of mass conserving equation will result non-physical solution
in domain.

All the results of this section (up to here) were obtained by employing the
convecting momentum expression of Method I into the continuity equation and
considering a=1, Eq.(3.56). The depicted figures show that mass is constant in
passing through pressure-source/sink while pressure is not constant passing through

a mass-source/sink. The use of momentum convecting equations in continuity equa-
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Figure 3.4: The effect of control-volume mass-source/sink on pressure and velocity

distributions.

equation removes the checkerboard problem and restricts oscillations to three nodes

or less.

There are also many other results with employing Method II and Method III
of Section 3.5.3. They show satisfactorily results in removing the pressure checker-
board problem. These results have been compared with each other. Generally,
Method I shows better or similar results compared with Method II and Method III.
For example, Figure 3.9 shows the pressure distribution comparison when control-
volume pressure-source/sink is located in the domain. The Method II with a=2,
Eq.(3.65), shows overshoot and undershoot in the neighbouring nodal values but
Method I with a=1, Eq.(3.56), shows just one stronger overshoot downstream of
the source or sink. Three nodal points are affected by the sink/source in the Method

IT while this is decreased to two nodes in Method I. The reason for the difference in
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Figure 3.9: Comparing the numerical results of Method I and II using control-

volume pressure-source/sink in domain.

solutions returns to the connection of momentum components at integration point
to its neighbouring nodes. In an upwind scheme, the integration point is affected
by upstream values while in central differencing scheme, the effect is from both

upstream and downstream values.

3.7.2 Compressible Flow

Here, the shock tube problem has been selected to present the results of the one-
dimensional formulation for compressible flow. The selection of the shock tube
problem as a test case is due to the availability of its analytical solution which en-
ables us to examine the accuracy of the numerical solution. On the other hand, this
transient problem includes both transient flow features and a wide range of Mach

number, i.e., a moving normal shock wave, expansion waves, a contact discontinuity,
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and having subsonic, transonic, and supersonic regimes.

The shock tube geometry and wave pattern is shown in Figure 3.10. The pres-
sures at the left and right of the diaphragm are taken as 1000kPa and 100kPa, re-
spectively. The temperature is uniform throughout the shock tube at 25 °C before
rupturing the diaphragm. Gas properties are ¢, = 720 J/kgK, R = 287.0 J/kgK,

and v = 1.4. To the left of the contact line, gas expansion causes a reduction in

. Contact Surface
Expansion Waves / S}ock Wave
/7

Figure 3.10: Shock tube problem and its wave pattern.

temperature, whereas to the right of the discontinuity, the compressed wave raises
the temperature of the gas. At the contact line, there is a discontinuity in the

temperature profile and hence the density profile.

The results show the mass flux, pressure, temperature, and density distribu-
tions throughout the shock tube 500 us after rupturing the diaphragm. The exact
solution is superposed in all figures. 201 nodes are chosen with a time step of 0.7

us. The pressure and temperature are nondimensionalized by lower pressure side
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values and the initial temperature of the shock tube, respectively. The convergence

criterion in each time step is checked for all nodes,

R-Py,  Ti-T.
Maz , —F—l l ’ l —T—l I < € (380)
4 s =1,R

where ¢ indicates the node number and e=10-5.

The shock tube problem is examined both for different Courant numbers and for
Methods I, II, and III. Figure 3.11 shows the results employing the mass conserving

procedure of Method I. The moving shock wave is captured within a few nodes, but
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Figure 3.11: Shock tube results for Method I with a =1, C=0.4, and 201 nodes.

some overshoot is seen downstream of the shock wave. The Courant number for
this case is 0.4. In order to find the limits of stability for our implicit algorithm,
the time step is gradually increased to increase the Courant number. Figures 3.12
and 3.13 show the results with larger time step sizes, i.e., At=12us and At=17us,
respectively. They show that the method is stable for higher Courant numbers of
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Figure 3.12: Shock tube results for Method I with a=1, C=0.7, and 201 nodes.
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Figure 3.13: Shock tube results for Method I with a=1, C=1.0, and 201 nodes.
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C=0.7 and C=1.0, respectively. The increase in Courant number does cause more
smearing around discontinuities because the transient details are not captured accu-
rately in fully implicit methods with large time steps. No limits were encountered
for higher Courant numbers. There are results available for Courant number of

C=6.3 which are not presented here.

In the second stage, compressible flow is tested for two more test cases involving
Method II and Method III. The results have been depicted in Figures 3.14 and 3.15
for Method II with a=1 and for Method III with a=2, respectively. The results
of Method II are identical with the results of Method I because their formulation
become identical for the defined a’s in this test case. It is interesting to note that
discontinuities are predicted within a fewer number of nodes in Method III, but at

the cost of higher undershoot and overshoot around discontinuities.

The final stage is to study the effect of mesh refinement. Following the results
presented in Figure 3.11, C=0.4 is selected as constant and At is changed for a
total number of 151 nodes to maintain C=0.4. The results are seen in Figure 3.16.
As is expected, sharp changes of the parameters are smeared and there would be

less accuracy than the case of Figure 3.11 with 50 more nodes.

As the results show, all methods remove the checkerboard problem and provide
the desired coupling between pressure and the momentum components. These
preliminary results show good agreement with the theoretical solution although
neither artificial viscosity nor other overshoot treatment is explicitly considered
in the formulation. Moreover, no smoothing or damping function has been used
to reduce oscillations. The results of this section confirm the success of the one-

dimensional formulation for treating high speed flows.
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Figure 3.16: Shock tube results for Method I with a=1, C=0.4, and 151 nodes.

3.7.3 Comparison Between Velocity and Momentum For-

mulations

As the final step of the one-dimensional investigation, the performance of the mo-
mentum component formulation is compared with that of the velocity component
formulation. In this way we are able to investigate some of the potential advan-
tages of the momentum component formulation. One advantage relates to the
benefits of using mass flux variable instead of the velocity-variable, Section 2.4.2,
for flows involving discontinuities, and another relates to the benefits of simplifying
the difficult treatment of nonlinearities, Section 2.4.3. The shock tube problem
and the quasi-one-dimensional converging-diverging nozzle problem are two one-
dimensional test problems which can be used to investigate the potential advan-

tages of the momentum-variable formulation in high speed flows with shocks. In
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this section, we pursue this investigation for the shock tube problem which is a more
difficult problem as was mentioned in Section 3.7.2. The initial conditions, the gas
properties, and the nodes distributions are defined as before. This investigation
is restricted to isothermal flow in order to provide a clearer comparison between
the two formulations. Equation 3.80 is used as a measure of convergence for the

pressure.

Figures 3.17 to 3.20 present the results obtained by both the velocity-based
and the momentum-based formulations. They show the distributions throughout
the shock tube 500us after rupturing the diaphragm. The convergence criterion
had been set e=10"3 for both formulations in this test. The velocity-based results
have been obtained by modeling the equations as presented in Section 3.6 which
represents the work of Karimian and Schneider [65] except for the exclusion of
the damping mechanisms of their formulation. They have presented a detailed
study of their approach in solving the shock tube problem. The momentum-based
formulation has been treated in a manner which provides more consistency with the
velocity-based formulation. For example, the momentum convection term in this
formulation, Eq.(3.12), is linearized very similar to the one in the velocity-based

formulation, i.e. K=} and k"=0.

Several conclusions can be derived from this study and from examination of the
presented figures. Generally speaking, the velocity-based formulation suffers from
severe oscillations in the vicinity of the shock. Experience showed that there was
also a maximum Courant number for the velocity-variable formulation that enabled
solutions to be obtained. This value, C=0.1, is the one for which the presented re-
sults have been obtained. Above this value, the method was unstable and diverged.
However, the momentum-variable method converged for higher Courant numbers,

up to C=2.2, although the accuracy of the solution was degraded with increasing
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the Courant number. The presented results for the momentum-based formulation

were obtained using C=0.35.

The distributions of the flow parameters in this isothermal study show fewer
discontinuities than the corresponding distributions in Figures 3.11 to 3.16. This
has been shown in Figure 3.21 by performing a rough comparison between the
isothermal and non-isothermal exact solutions. In this figure, we are concerned
only with the general distribution of the parameters rather than their exact values

and positions. As seen, a constant temperature field results in no discontinuity

Figure 3.21: A rough comparison between isothermal and non-isothermal exact

solutions in the shock tube problem.

in the form of a contact surface. However, there is still a sharp discontinuity
with the moving shock which appears in all distributions including the mass flux
distribution. These discontinuities are due to the nature of the problem which is

a highly transient one. As a reminder, we were concerned with the two potential
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advantages of the momentum-variable formulation, i.e. the constant mass flux
through discontinuity and the nonlinearity treatment. Figure 3.21 shows that the
number of discontinuities in the mass flux distribution is never less than the number
of them in the velocity distribution. In other words, whereas F is indeed constant
across a shock in steady flow, here it is not. This problem therefore demonstrates
that the other aspects of the momentum-based formulation, related to linearization
requirements, have resulted in superior results to those from the velocity-based

formulation.

One more step was taken in this comparative study in order to check the stability
of the two formulations for meeting lower convergence criterion. In this regard, the
convergence criterion for the pressure was decreased from 10™2 to 10~°. In this case,
the velocity-based formulation diverged for the previous Courant number, C=0.1.
The maximum Courant number which enabled solutions to be obtained with this
lower convergence criterion was C=0.03. The results for this Courant number have
been illustrated in Figures 3.22 and 3.23. They show much stronger oscillations in
the domain comparing with the previous results. The results for the momentum-
based formulation have been obtained for Courant number 0.35, as before, and
an extremely low convergence criterion of 10™°. The decrease of the convergence
criterion from 1073 to 10~° increased the average number of iterations per time step

from 5 to 14.

3.8 Closure

A one-dimensional investigation was performed in this chapter. The main purpose
of this investigation was to ensure that the developed momentum-component pro-

cedure works well in its one-dimensional form and that all proposed objectives have
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been satisfactorily achieved. In this regard, the control-volume-based formulation
was applied to the one-dimensional governing equations. The related integration
point operators were derived based on incorporating the correct physical influence
of the flow and other relevant schemes. The simplified forms of the derived expres-
sions were tested for special flow cases with different Peclet and Courant numbers
for which the results illustrated a behaviour consistent with the physics of the flow.
The pressure checkerboard problem was removed using convecting integration point
operators for momentum components. In this regard, several integration point ex-
pressions were derived for use in the continuity equation which showed satisfactory
results in coupling the velocity and pressure fields. The ability of the method to
remove the pressure checkerboard problem was tested by putting a mass/pressure
source/sink in one-dimensional compressible flows. The method worked effectively.
In compressible flow, the new formulation was tested for the shock tube problem
which has many features of high speed compressible flows including moving nor-
mal shock and expansion waves. There was no CFL number limit observed for the

presented implicit algorithm.

A direct comparison of the velocity-based and momentum-based formulations
was performed. It was shown that the velocity-based formulation produces se-
vere spatial oscillations if an explicit damping mechanism is not employed. These
oscillations subsequently resulted in increasing the number of iterations per time
step and lowering the accuracy of the solution. Then, it was concluded that the
momentum-based procedure produced more accurate and stable solution than the

velocity-based procedure without damping.

The results of this chapter support the objectives of the current research and
enable us to move towards extending the one-dimensional formulation to a two-

dimensional momentum-component formulation.



Chapter 4

Computational Modeling in Two

Dimensions

4.1 Introduction

The preliminary investigations and results for one-dimensional flow were accom-
plished in Chapter 3 and shown to be satisfactory. Here we extend the proposed
approach to two-dimensions. In this regard, the necessary steps of the discretiza-
tion procedure for the two-dimensional Navier-Stokes equations are presented in

this chapter. These steps are similar to those taken in Chapter 3.

After the introduction, Section 4.2 provides definitions and descriptions which
are used throughout this chapter. In order to discretize the two-dimensional gov-
erning equations, a control-volume-based finite-element approach is employed to
integrate them over the control volumes in Section 4.3. The discretized equations
which are derived in this manner require the evaluation of the dependent variables

at control volume surfaces. Thus, the necessary integration point operators are

85
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derived in Section 4.4. This is where some important issues of convection-diffusion
modeling and velocity-pressure coupling are discussed. The convecting momentum
equations are obtained in Section 4.5. The results of previously-mentioned three
sections are assembled in Section 4.6 where the element stiffness matrix is built.
Finally, the techniques used to invoke boundary conditions are explained in Section
4.7.

4.2 Preliminary Definitions and Descriptions

In the following sections, the details of the discretization technique will be pre-
sented. In order to unify all definitions and conventions which are used during
discretization, it is helpful to present them in an introductory section. This is

accomplished in the current section.

The discretization is started by integrating the governing equations over control
volumes. In the employed control-volume-based approach, the procedure of inte-
gration is accomplished in an element-by-element manner. The process, within all
elements, is started from SCV1 (Sub Control Volume 1) of the element and extends
to SCV4 of that element, Figure 2.1 in Section 2.2. In order to distinguish the
sub-control-volumes, we use the index of ,Z = 1...4, at the end of SCV to identify
the SCV in question, Table 4.1. Furthermore, i is the relevant node number in that
SCV. There are four sides in each SCV only two of which are coincident with the
corresponding control volume edges. For example, S54 and SS1 are the edges when
SCV1 is treated. For an arbitrary SCVi, these sub-surfaces are S1: and S2i for
which the numbers represent the sub-surfaces when a counter-clockwise rotation
is selected around the center of the element for traveling from one sub-surface of
the SCVi to another. Table 4.1 also shows the arrangement of S1¢ and S$2i for
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[ scvi | scwvi SCV2 SCv3 SCV4 ||
S$1:,S2: S$54,SS1 $S51,582 S$52,SS3 S$S3,554 "
fS.' fsssc +f$ss: fsssn +f$ssz fsss*z +fssg_ fs +f5
Vi Vseva Vscva Vscvs Vscva
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Table 4.1: Abbreviations and parameter definitions.

different SCVs of an element. The integration over these two sub-surfaces is briefly
addressed by a single digit number index. For SCV1, it is given by

L1+l
S Ssse Sss1

Similar definitions have been tabulated for other SCVs in Table 4.1. Other param-
eters of the SCVi may be identified directly by adding the subscripts ¢ to them.

(4.1)

For example, the volume per unit depth of SCVi is shown by

Vi = Vscovi (4.2)

Approximation of the governing equations will algebraically require the mod-
eling of each of the operators in terms of at most four nodes and four integration
points in each element. This results in two sets of 4x1 array of unknowns which will
repeatedly be encountered in this chapter. The first set represents the magnitude
of dependent variable or unknowns at nodes, i.e., {P}, {F}, {G}, and {T'}, and
the other set represents them at integration points, i.e., {p}, {f}, {g}, and {¢}.
The latter are not nodal unknowns and must therefore be related to these nodal

dependent variables.

Generally speaking, there are four major governing equations, four sub-control-

volumes, four nodes, four integration points, etc. which make their tracking com-
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plicated. In order to have an organized procedure, many useful definitions are
presented here. For example, the results of integration over each SCV are required
to be stored in arrays. Special combination of subscripts and superscripts are used
to recognize the identity of the elements of the arrays. They are generally written

as

l"pzv Pa 1' 2,.’13
A:fl..bz 8 “::1.::3 (4.3)

The upper and lower cases for [A] and [a] mean the matrices multiply by the array
of nodes or of integration points of an element, respectively. The notation spl refers
to the related governing equation, i.e., p:continuity, f:z-momentum, g:y-momentum,
and t:energy. The notation sp2 stands for the multiplier array to the matrix, i.e., p,
f, g, and t for P, F, G, and T arrays, respectively. The notation sp3 means to which
term the matrix belongs, e.g. 6:transient term, c:convection term, d:diffusion term,
p:pressure term, and etc. The notation sbl stands for SCV number in question
within element, and sb2 counts either the element node numbers, if the coefficient

is upper case, or integration point number, if it is lower case.

A well-posed discretization will require the representation of integration point
values in terms of nodal ones. This procedure will result in matrices similar to

Eq.(4.3) which are identified by [C] and [¢], i.e.,

spl,sp2,sp3 spl,sp2,0p3
Cb1.0b2 Cobl, b2 (4.4)

All subscripts and superscripts are identically defined as those in Eq.(4.3) except
for sbl which refers to integration point number now. The array of known values
in right-hand-side of elemental matrices, Eq.(4.3), and integration point matrices,

Eq.(4.4), are identified by {A} and {C}, respectively, i.e.,

AT et (4.5)



CHAPTER 4 COMPUTATIONAL MODELING IN TWO DIMENSIONS 89

Their subscripts and superscripts have the same definition as before in terms of

spl, sp2, sp3, sbl, and sb2.

4.3 Discretization of the Governing Equations

The general form of the governing equations was introduced in Section 2.1 by
Eq.(2.18). Considering no source terms, these equations can be integrated over

SCV: of an arbitrary element

iy oOF / /‘
a()dV+ " ade-f- 4V + (4.6)

Using the divergence theorem, the volume integral of space derivatives is replaced

by a surface integral which is evaluated over the surface of SCVi
81[’ ] ) ic - - y ¢
wdv+/$“ (fz+§1)-d3—/s‘(Rt+TJ)-dS (4.7)

where dS is the outward normal vector to the surface, Figure 2.3. Integration on
surfaces is broken into two sub-surface integration according to Table 4.1

g’;’dv+/sﬁ(}‘2+g§)-d?9+fsz‘(}‘€'+93) -d5 =

/S . (Ri+7j5)-dS+ /S ] (Ri+7T3)-d3 (4.8)

where S1i and S2: indicate the integration point number on the sub-surfaces. Since
the method is fully implicit, all terms except the transient term are evaluated at the
advanced time and the transient term is approximated by a lumped mass approach,

i.e., ¥ at each SCV is approximated by the nodal value of its corresponding node

/ AV J(‘I’ 'I') (4.9)
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where J; is the Jacobian of transformation and represents the volume of the subcon-
trol volume per unit width, Eq.(A.15). A linear variation of the integral argument
is considered over each sub-surface integrals. As a result, the value of the surface
integral is approximated by the value at the mid-point of that sub-surface, i.e., inte-
gration point, times the area of the sub-surface. By this mid-point approximation,
the arguments of the integrals are taken out of the integral and the areas of the
sub-surfaces are computed using Eqs.(2.25), i.e.,

(ASz)ip = ssi dS. (4.10a)

(AS,)y = [ _dS, (4.10b)

Considering this mid-point approximation and substitution of Eq.(4.9) into Eq.(4.8)
results in the final conservative discretization form of the governing equations for

SCV:

Ji ‘I’iA—O‘I’? +[F(ASz) + G(AS)sy; + [F(AS:) + G(ASy)]sy; =

[T(AS:) + R(ASY)]sy; + [T(AS:) + R(AS)]s,;  (4:11)

where the subscript i of ¥ refers to SCVi. This general equation consists of all

transient, convection, and diffusion flux terms of the four governing equations.

Recalling the definition of F, G, R, and T, Eqs.(2.20 and 2.21), shows that
there are two major obstacles to solve Eq.(4.11). The first obstacle returns to
the nonlinear nature of the system of equations. In order to use linear algebraic
equation solvers, these equations must be linearized. The second obstacle is the
location of the unknown fluxes and flows. As seen, the locations of the unknowns
are integration points which are not our nodal locations and they must somehow
be related to the main nodal values. These difficulties are treated in the present

and the following sections.
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4.3.1 Conservation of Mass Equation

The discretized form of conservation of mass could be extracted from the general
form of Eq.(4.11) and recalling the definition of F and G from Eq.(2.20)

. — n° 2
FEE 1Y [(AS)S + (8l = 0 (4.12)
k=1

The transient term is a non-linear term because p is not a major dependent vari-
able and needs to be linearized properly. The density in incompressible flow is
constant, Eq.(2.16), and does not need any treatment. The equation of state is
used to convert density in compressible flow. Appendix B presents methods for
density linearization. Regarding the results of this appendix, Eq.(B.5) is selected
to linearize p with respect to both P and T dependent variables

1

; e —— e ™ § N -'
& = . P; T‘T. + & (4.13)

Thus, the transient term is written as

f%gdee.-—e;_ Ji 1 p+( J '-")T;--A’—‘a(e:—a.-) (4.14)
Vi

A9 ~ AGRT, ‘T \  AMT:
W
4 e 4 apte Az
1=1 70 j=1 g

As seen, the results are easily converted to the compact summation form. It should
be noted that three of the four components of each summation are zero in this

general form, i.e.,

Ji L =1
A',?f;‘:{ asrr  JTF (4.15)
0 J#t

- & =12
AP = { asr; =8 (4.16)
0 IEX]
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AP = —-(e. - &) (4.17)

Now, the transient term, Eq.(4.14), is written in summation form for an arbitrary
sub-control-volume of ¢ as
p pto P9
/ 259 ~ ZA P+ZA,.JT,-—Ai (4.18)
I=1 J=1
A similar procedure could be repeated for the mass flux terms of the continuity
equation. Recall Eq.(4.8) and consider the bracketed terms of Eq.(4.12), the sum-
mation form becomes
4
/S (f;- + g;) 5 xSRI 4 EG,J g, (4.19)
‘ =1 J=1

Here, two of the four elements in each summation are zero, i.e.,

((aS.)., =S5l
ai™={ (AS.),, =52 (4.20)
0 else

\

[ (AS)), §=5l
@y = J (AS)) g, J=S52% (4.21)
0 else

\
The two discretized equations, Eq.(4.18) and Eq.(4.19), can now be assembled and
written in the usual matrix form for an arbitrary sub-control-volume of ¢
4
Z AT'P; + Z AT + Z ai™f, + ) afimg, = AP (4.22)
J=1 I=1 I=1 J=1
It should be noted that the above equation is written only for one portion of a

four-control-volume element. It is not expected that it conserves the mass within
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that sub-control-volume of :. The conservation of mass is only valid for a whole
control volume which consists of an assemblage of four sub-control-volume equa-
tions, Figure 2.2. If all four sub-control-volume equations of an element are put

together they take the following matrix form:
[A7]{P} + [APHT} + [a*™){f} + [a™™]{g} = {A"°} (4-23)

where the brackets are 4x4 square matrices and the braces are 4x1 column vec-
tors. The rows of arrays represent the sub-control-volume number and the columns

represent the node number.

Notice that Eq.(4.23) has discretized the mass flux terms into an algebraic
expression involving the integration point variables as well as nodal variables. This
expression is not complete at this stage and needs to be modified. This modification

is done in Section 4.5.

4.3.2 Conservation of Momentum Equation

Discretization of the momentum conservation equations is much more complex than
that for the continuity equation. The complexity of the equation arises due to the
appearance of different types of nonlinear terms, and from the large number of them.
The one-dimensional discretization of Section 3.3.2 will facilitate the procedure of
discretization in this section. The transient term does not need any linearization
and it is easily discretized by plugging the definition of ¥ from Eq.(2.19) into
Eq.(4.11), using a mass-lumped approach,

of F-F J_ J_,
v,.'éo'dv’”J‘ a0 —agh T agh (424)
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A summation form similar to Eq.(4.18) could be arranged for an arbitrary sub-

control-volume 1

E) 4
[ UavnY MIF - 4l (4.25)

J=1

where

J .
A9 — { ap 1= (4.26)

0 j#i

J:
,.fO =k
4 Af

F? (4.27)

As the next step, the convection terms are treated. In this regard, the appro-
priate terms of F and G, Eq.(2.20), are substituted in the integral form of the
convection terms

/ ((puu+p)2+pw5')-d'75=f(puu2+pw5')-d‘3+/ pi-dS  (4.28)
s; S; 5;

We first treat the pressure integration term which is linear. Considering the previous
procedure, we write
2
[T LD TN (4.29)
S; k=1
Using our previous definitions, this equation is reformed in general summation form
for an arbitrary sub-control-volume ¢ as
4
/s pi-dS =~ 2 af%p, (4.30)
i =1

where the coefficients of a,{?’ and those of a{'j"‘ in Eq.(4.20) are the same, i.e.,

[a?77] = [a*™] (4.31)
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As seen, the pressure term is also represented by integration point variables which

in turn should be represented in terms of nodal variables. This will be accomplished
in Section 4.4.1.
The first integration on the right-hand-side of Eq.(4.28) can be expanded for

sub-control-volume 1 as
2
[ lpuni i) -d5 = 3o M) AS) + (o) @S lg (432)
: k=1

As seen, the discretized equation is nonlinear and needs to be linearized properly.
Appendix C has a comprehensive study on different methods of linearization for
the convection terms of the conservative momentum equation. Providing a simpler
approach at this stage, Eqs.(C.10 and C.11) with ¥’ = 0 are used to linearize the

nonlinearities, i.e.,

puu = uaf (4.33a)

pruxof (4.33b)

where % and ¥ are calculated explicitly from known values of the previous iteration

which will be explained later in Section 4.5. Using these linearizations in Eq.(4.32),

we obtain
2
[, Gt o) -d5 = 30 (652 + 58S, (4.34)
i k=1
The general summation form for an arbitrary sub-control-volume ¢ is
4

ui+ pvul)-dS = a;-”.c i 4.35
[ i+ v >t (4.39)

where the coefficients are
[(AS.) +9(AS)]sy 5= Sk
afl*={ [@(AS.) +9(AS,)gy 7= S% (4.36)
0 else



CHAPTER 4. COMPUTATIONAL MODELING IN TWO DIMENSIONS 96

As the second step, integration point values which appear in linearized terms have
to be calculated as a function of the nodal variables in the element. The appropriate

equations for f and g are derived in Section 4.4.1.

To complete the momentum conservation equation, the diffusion terms must
be treated. Modeling of the diffusion terms is relatively more routine than the
convection terms due to their elliptic nature. Following the previous procedure, the
right-hand-side of Eq.(4.11) could be extended to the momentum equations using
the definition of R and 7 from Eq.(2.21). The result is

/S (reei + 1)) A5 % Y [ree(AS2) + (A8, (4.37)
i k=1

Looking back to the definition of stress terms in Eqs.(2.6 and 2.7) shows that they
are nonlinear in terms of momentum component variables. In the one-dimensional
investigation, Section 3.3.2, the linearization scheme of Appendix D was selected
to linearize the g—: term. In the two-dimensional diffusion terms, the essence of
nonlinearity is the same although they are more plentiful. As before, we use the
approach presented by Eq.(D.2) in Appendix D to linearize the velocity differential
forms. Employing this linearization scheme to the stress terms of Eqs.(2.6 and 2.7)

results in
ez W ({2af -2-3“'}-{%;1—5%3}) (4.38)
o BB O, B0 0
T =T = i)‘({ay "ay}+{az ”az}) (4.39)
n 2B (_0f _ 08, (09,00
Ty 35( { 3% 6z}+{2 By 29 3y}) (4.40)

The second terms in all braces vanish in the incompressible limit. These terms

are now lagged and calculated explicitly from the known values of the previous
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iterations. This results in a source term on the right-hand-side of Eq.(4.8) in com-
pressible flows. To reveal the elliptic nature of diffusion, all active and inactive
differential terms are modeled through differentiation of the finite-element shape
functions for the linear quadrilateral elements, Eq.(A.3). The following results are

obtained after rearranging and sorting active and inactive terms together:

Tnzz('%yaN . 2;43N,G} {4;1 3N93+2u ON; }) (4.41)

= 3p Oz
4
p ON; pON; u_ON; _  p_ON;_
Toy = Tyz N {=2F+=32G;}+{-=u—7=0; — v } (4.42)
wwg(m,paz, 5% — 5t
4
- 2u ON; ON; 2p 3N . 4p aN; _
w3 (-2 50n+ B0y + (eaflie - o ad) (4

Now, Eqs.(4.41 and 4.42) are substituted in Eq.(4.37). The resulting equation can

be rearranged and written in general summation form for an arbitrary SCVi

/ (Tex i+ 7z J) -dS = — EA”"F ZA{"’G + A4 (4.44)

=1 j=1
where the coefficient of Af jd and A gd are
2
44 ON; ON;
f1d _ [t Jod
af=-3 0 [T as) +4 s (4.45)
Al = [ 2 6N’ By (85:) + uoN; (AS.,)] (4.46)
P Oz Ski
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Now, we can assemble all the terms of the momentum equation. In this regard,
Eqs.(4.25, 4.30, 4.35, and 4.44) are plugged into Eq.(4.7) and the result is

4

4 4 4
DALY+ AR+ D ASG + X alf S+ 3ol = Al + ALY (448)

J=1 =1 I=1 i=1

which could be cast into the matrix form as

[ Al 4 A”"] {F}+[ A!ad] {G} + [aﬂc]{ 1+ [afpp]{p} ={ ATl + Ald} (4.49)

Similar to previous secti;)ns, these equations are not well-posed because they
involve integration point values. Closure for these terms will be fulfilled in the
next sections. All discussions in this section relate to the discretization of the z-
momentum equation. A similar procedure is applied for the y-momentum equation.
The results of this would be an equation similar to Eq.(4.49). Comparing with this

equation, it is written
[A99{F} + [A9%° + A%U|{G} + [a®°|{g} + [a®]{p} = {A% + A%}  (4.50)

where the elements of the matrices could be estimated by comparing the equivalent
terms of two momentum equations and the resulting elements of the z-momentum

equation matrices.

4.3.3 Conservation of Energy Equation

The discretization of the energy equation is not as straight forward as it was for mass
and momentum equations. There are a variety of reasons behind this which cause
the study of the energy equation to be not so routine as for the others. Among
these reasons, one is the larger number of terms and the other is their higher

complexity. This complexity however causes more complex nonlinearities for those
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terms. These complex nonlinearities can be treated using different techniques of
linearization. However, more study and experience is needed to fully assess the
pros and cons of different possible linearization. A poor linearization may cause
oscillation in the solution which in turn may lead to divergence or slow convergence.
All these reasons cause the study of the energy equation to be more difficult and
ambiguous. Contrary to the important terms, there are a number of nonlinearities
which are not so prominent. This permits us to ignore the active role of many terms

and calculate them approximately using the known values from previous iterations.

We start the discretization by treating the transient part of the equation. Con-
sidering Eq.(4.9) and the definition of ¥ from Eq.(2.19), the transient part of the

equation is written as

/a(pe) Olpe) py o, ;. (eE)i — (eE): (4.51)
Ad '

There are different possible methods to derive the linearized form of this equation.
Appendix F presents a few of them. Regarding the comments of the Appendix
and the one-dimensional procedure, Section 3.3.3, we use Eq.(F.2) to linearize the

transient term

B(pe) JiU; Vi cuidi .___. o
/. @~ 3R, +2MG 4 By, gy (4.52)

This results in a general summation form for an arbitrary SCVi

3(1"3) dV ~ Z Atfo F; + Z Af‘aG, + E AMT; - A¥ (4.53)

Vi =1 j=1 i=1

where

J:U; . o
!a 2=1 J =1
A:,j = { a8 (4.54)
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FAA j=i

AP = ;4‘ . (4.55)
7 1
c,.]'-g'- P

ag={ s 07 (4.56)
0 J#i

A = AI‘a o E? (4.57)

In the second step of discretization, the energy convection terms are discretized.
Combining the proper components of 7 and G from Eq.(2.20) and the convection
part of Eq.(4.7), we obtain

/ (pubi 4 poh3)-d5 = 3 [(Puh)(AS) + (pRYAS)lgs  (458)

k=1
Similar to the momentum convective terms, this term is nonlinear and must be
linearized in terms of momentum component variables. Appendix G presents dif-
ferent schemes of linearization for the above nonlinearities. At this stage, they are
linearized using the scheme presented by Eq.(G.3). The employment of this scheme
yields

2

/ (puhi+poh) -8 = Y [2 (3 f +9g+20,00) (AS)+
k=1

N @

(@8f+79+2,5t)(AS,)] . (459)

This equation is reformed to a general summation form for an arbitrary SCV:

/ (puhi + pvh}) - dS =~ Za‘f‘ fi+ Za,u1 g; + Z afst; (4.60)

Jj=1 =1 =1
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where the coeflicients of the matrices are obtained from
r i - -
{2[a(AS:) + 8(AS,)}s,;, JF=Su
aff = {E[5(AS.) +9(AS)}s,, 5= S2 (4.61)

LO else

({S[a(AS.) +5(AS)} g, J= 5L
a‘f.'; = 1 {g [a(AS:) + ‘-’(Asv)]}sz; J=852% (4.62)
[ 0 else

(26, {5((AS.) + (BS)}sy; i =51
aii = | 26{P[(AS:) +(AS))}sy 5 =52 (4.63)
0 else

\
Despite a full discretization, the unknowns of this equation still need to be related

to the main nodal variables. This is accomplished in the next sections. The last
part of the discretization process is the modeling of the energy viscous work terms.
As mentioned earlier, the elliptic nature of diffusion facilitates its treatment. To
treat the diffusive conduction terms, Eq.(4.7) is recalled and the conduction terms

of R and 7 in Eq.(2.21) is plugged in as

f @i+a7)-d5x 3 [0AS.) + (85, s (4.64)
k=1
Using the definition of ¢; and g, from Eq.(2.9) yields
orT
/ (¢zi+qyj)-dS ~ —k; [ 52 (AS:) + By (AS,,)] w (4.65)

The derivatives of the finite-element shape functions are employed to describe the

differential forms, i.e.,
4« 2

‘/S‘(qzi-i-%;)-ds —RZZ[ J(AS.,.)+ ayJ(ASv)] T; (4.66)

i=1 k=1
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The general form of this for an arbitrary SCVi is

/ (-7 + gy 7) - dS = ZA?,-"T,- (4.67)
where
teke _ : i oN;
r z_;[ @5+ s (4.68)

For the remainder of the diffusion terms, we use again the definition of R and 7

from Eq.(2.21) and plug its energy part into Eq.(4.7). The result is

/ [(uTez + v7ay) 3 + (uTye + v7,) 7] - dS = z [(uTez + v72)(AS:)+
k=1

(ure + vy )(AS))|sh;  (4-69)

The nonlinearity of the viscous work terms is much complicated than the diffu-
sion terms in momentum equation. This is due to the velocity components which
multiply the stress components. At the first stage of the linearization, all these
velocity components are evaluated using lagged values from the previous iteration
and the treatmeat of the remainder of the nonlinearities are similar to those for
the momentum equations. We start discretizing by plugging the linearized stress
terms, Eqs.(4.41-4.43), into Eq.(4.69). The resulting equation can be rearranged
for the active and inactive variables. The general form of the resulting equation is

presented in summation form for an arbitrary SCVi as

/ [(4Tes + v72y) i + (uTye + 7)) 7] -dS =~ — z AY, dF Z A""G + A¥(4.70)
S;

J=1 i=1
where the matrix components are defined as

efd _ ({4u ON; v aN #Z8ON; 250N;
k-—l

ot g Has) + GRE - 28y as,) @
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2 2a0N; o aN, uaN, 45 ON;
=Y (5250 + 3TN0 + CE + 5 HAs) 47

4 2
d_ _ 4@ ON;  2ub ON; ﬂai__’_g{]
A=y ) [ 595t 3 Gy " 7 o (AS.)+  (473)
_17._2 3N, _ E@N, + 2%y ON; 4172 ON;
p Oy p Oz 3p 9z 3p Oy

=1 k=1

2] as.) &

Now, we can assemble all the terms of the energy equation in Eq.(4.7). In this
regard, Eqs.(4.53, 4.60, 4.67, and 4.70) are plugged in Eq.(4.7) and the result is

Y (A + AT F + ) (AT + A%)G; +Z(A-“‘ + AT, +

1=1 I=1 i=1

Z alif, + Z af¥g, + E afst, = AP + A¥ (4.75)

J=1 i=1

which can be cast into the matrix form as
[AY8 + AMO){F} + [A%® + A%9){G} + [A* + A*){T} +
[a*1{f} + [a*}{g} + [a™]{t} = {4* + A*'} (4.76)

The treatment of integration point values is necessary as it was in preceding sub-

sections. The next section will provide this treatment.

4.4 Integration Point Equations

The idea of connecting the integration point values to the corresponding nodal
values has been largely investigated in control volume methods. In Section 4.3,

we discretized the governing equations in a control volume manner. The resulting
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equations included the array of integration point unknowns which are not the major
unknown nodal variables in our formulation. In order to have the discretization
complete, it is required to represent the momentum components, pressure, and
temperature at the integration points of an element in terms of their neighboring
nodal values within that element. In Section 4.3.2, the nonlinear forms of R and
T, Eq.(2.21), were directly treated by invoking the elliptic nature of diffusion. On
the other hand, time dependent terms were directly computed from nodal values.
However, convective terms are left to be evaluated in a special manner because
their treatment is not as direct as it was for the diffusion terms. Roughly, about
(80 to 90)% of the difficulty in modeling of momentum equation terms returns to
the complexity in modeling of convection terms, Patankar [66]. Central-difference
schemes in finite-difference approaches and bilinear interpolation in finite-element
approaches are the easiest ways to treat the convective iniegration point values
within an element, however, they are limited to diffusion-dominated flows where

Peclet number is less than 2.

For convective dominated flows, it is better to use upwinding-based methods
which consider the higher influence of the upstream nodal values at integration
points. Figure 4.1 schematically shows how the upstream influence should be re-
garded in evaluating convective integration point quantities. A pure upwind scheme
works for all Peclet numbers, however, the accuracy of the solution is diminished.
Raithby [67] has provided a comparative study on treating the convection terms by
a number of upwind schemes and shows that they produce false-diffusion. Raithby
[68] has also proposed a skewed upwind scheme which considers the real direction
of the flow and consequently reduces the false-diffusion. The basic attempt in most

recent schemes is to model the integration point values, ¢;,, by upstream values,
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Figure 4.1: A schematic influence of npwind point.
dup, and then correct it by A,

¢t’p = ¢up + A¢ip (4'77)

The essence is that the connection is not only based on complex mathematical
functions but also on the physical interpretation of the governing equations. Much
effort has been expanded to determine better and simpler interpretations including
all necessary influences. There are three basic points which must be remembered
in determining integration point operators; l-effect of directionality of the flow;
2-source (including pressure) term effects; and 3-the diffusion effects. The basic
idea in modeling convective quantities is to treat the integration point values by
the correct influence of upstream values. This is why different schemes like hybrid,
power-law, upwind, exponential, etc. have been established over the years for their

treatment.

The following sub-section present the methods of deriving the required integra-

tion point equations for different variables.
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4.4.1 Momentum Components

In this section, we derive f and g integration point equations in an appropriate
manner which considers the physics of the problem. More recently, control-volume-
based methods have been concerned with the physics of the problem rather than
complex mathematical approximations. Following this, Schneider and Raw [10]
proposed a new scheme, Correct-Physical-Influence Scheme, which includes all the
physics and relevant couplings for each variable. They have derived an algebraic
approximation to the differential equations at each integration point. In Section
3.4.1, it was shown that this new scheme yields a physically well-behaved solution
in the one-dimensional study. Following the one-dimensional investigation, the two-
dimensional momentum integration point equations are derived by treating the non-
conservative form of the momentum equations. In this way, the convection terms
in the conservative form of the momentum equations are broken into two terms,
combined with continuity equation and finally written in a streamwise direction,

Appendix H. The following momentum equations are the result of this procedure:

of + Vm—g% —uViy = —%’- + u(-g—z + Vm—g-s) + Viscous Terms (4.78)

00,y B8 u 0, B0,y 0,
30+Vm33 yVv——ay+v(aa+Vmas)+V1scousTerms (4.79)

where Ve = V2 + 2. Viscous Terms stand for the viscous terms which are not
included at this point. In this section, f;; is derived from Eq.(4.78) and the results
are similarly extended to g;, which must be equally derived from Eq.(4.79).

First of all, the transient term in Eq.(4.78) is written in backward form respect

to time
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where the subscript ¢ denotes the integration point number. This discretization can
be cast into matrix form for an arbitrary integration point of ¢
of S 416 0
(55). =Yy Jf'f;-cl (4.81)
in =1
Here the notation of ipi is switched to ¢ which indicates integration point. The

coefficients in question are

L oo
=3 A8 777 (4.82)
0 j#s
6 _ T
cff =3¢ (4.83)

The key in this method is found in the convection term which has been written
in the streamwise direction. This form provides the correct direction of upwinding
in the streamwise direction. The one-dimensional investigation of this equation
showed the flexibility of this formulation to predict the correct f for highly diffu-
sive and convective flows, Section 3.4.1. The convection term is upwinded in the
streamwise direction as

N\ (g f=f
(Vmga)‘”’rv VMT:‘,)'-”- (484)

where L, and f,, are illustrated in Figure 4.1 for ipl. The upstream location,
up, is found by intersecting the extension of the streamline direction at integration
point with the edges of the same element. The value for f,, is interpolated between
the two adjacent nodes which are nodes 2 and 3 for ipl in Figure 4.1, i.e.,

(fup)ipi = %(F..,.—)ipi +(1- %)(anx).'p.' (4.85)
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where (Fupe )ipi and (Fupt)ipi refer to the nodal values of F at right and left of the
upstream point “up”, respectively, when “up” point is watched from integration
point i. Using this definition, a general form for integration point ¢ is given by
af 4 4
(Vgac"ég) o= Z C!,-fcf,' + Z Cé’ch (4.86)
P =1 i=1
where the matrix coefficients are

cte = (%f:),. i=t (4.87)

i

0 j#i
( (%f:%) j = (upr)ip
~ P
Gl =1 (f=a- %))” j = (upl)is (4.88)
ipi
| 0 else

Here, the magnitude of C,-’jf  depends only on the flow direction which is obtained
by using Eq.(4.85).

The Mass-Weighted-Skew scheme of Schneider and Raw [69] is another accurate
method for treating the convection terms. It reduces the possibility of negative
coeflicients in the formulation. This scheme models the local directionality of the
flow in the manner that ensures positive coefficients in the convection terms of the
discretized control volume equations. It finds the flow direction within the element
and computes L,, and f,, based on the values and directions of flow parameters
for both nodal and integration points. This results in a correct influence of flow in
highly recirculating flows. We do not present the details of this scheme because the
results which are presented in this study are only based on the previously discussed

scheme.
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Finite element shape function derivatives, Section A.3, are used to treat the
pressure term in Eq.(4.78) as
4
- (%)~ L= cirn (459)
=1 =1

where the matrix coefficients are

clr = ~(=2)ips (4.90)

The role of the incompressible part of the diffusion term is considered as an
active one in deriving the integration point equation for f. Again, the elliptic
nature of diffusion promotes the use of finite element shape function derivatives.
After linearization of the Laplacian operator in terms of momentum components,

it can be approximated by

4 Waiip (L),
Vi) = (v’ ! ) S e 4.91
(795 = (V) o @9

where L, is an appropriate diffusion length scale, Appendix I. This approximation

reduces to f; =~ 2;=1 N;F; when diffusion dominates the convection in incompress-
ible flows, i.e. V2u=0. A general form of the Laplacian operator at an arbitrary

integration point ¢ can be written as

(V) EC”‘F Z cfl'f; (4.92)

i=1 i=1

where the coefficient of the matrices are

1 ..
B (-—!) J=1
ol = PLa) i (4.93)

clti= £ (i;) ‘ (4.94)
ipi
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The last part of the discretization is the treatment of the terms inside the
parenthesis in the right-hand-side of Eq.(4.78). This part is completely lagged and
computed from the previous known values. The approximation of this part for an

arbitrary integration point 1 is

17 a e . p—p° . o P—P
Uipi (5§ + V‘“a_s). = Cl =iy (p A: + Vm%) (4.95)
ipé iv

With this discretization, the modeling of all terms in Eq.(4.78) is complete.
If these models, including Eqs.(4.81, 4.86, 4.89, 4.92, and 4.95), are plugged into
Eq.(4.78) and similar coefficients are combined together the complete integration

point equation for f is written as
4 4 4
Sl + i+ i =Y (CHF + CHHF; + Y CiPP, + CF + Cf° (4.96)
=1 i=1 j=1

The matrix form of the algebraic equation for f is
[ + e + 1Y {f} = [C¥fe + CHY{F} + [C?P|{P} + {C** + C'} (4.97)

This integration point equation relates f at the integration point to its neighbour-
ing nodal dependent variables. In order to derive a direct expression for f, the
coefficient matrix of f is inverted and multiplied by the other coefficient matrices
on the right hand side. The final form of the f operators at four integration points

of the element could be summarized in the following fashion:
{f} = [CV){F} + [c”|{P} + {C'} (4.98)

Comparing with Eq.(4.77), it denotes that the two last terms in Eq.(4.98) are
responsible for the streamwise correction, i.e. A¢. The matrices on the right hand

side are named influence coefficient matricesbecause they verify the correct physical



CHAPTER 4. COMPUTATIONAL MODELING IN TWO DIMENSIONS 111

influence of the nodal values on the integration point values. They are

€] = [+ e+ S et + 1) (4.99)
[€f?] = [+ fe + 19 o) (4.100)
{¢*} = [+ + ) {CH + C¥) (4.101)

where C/f and C’? are two 4x4 matrices which indicate the effect of F and P fields
on f. The 4x1 array of {C’} includes all known parts of the assembled terms.
The first and second superscripts of C indicates to which equation and parameter

of equation it respectively belongs.

Similarly, an expression for g is derived by following the procedure that was just
described for f but starting from Eq.(4.79). The final result can be written as

{g} = [C*{G} + [C™{P} + {C} (4.102)

The elements of the referred matrices can be determined by comparing with the

matrices of the f operator.

Now, these integration point expressions of f and g are substituted in the mo-
mentum parts of the arrays F and G in Eqs.(4.49, 4.50, and 4.76). According to
our experience in the one-dimensional study, these expressions are not plugged into
the continuity equation. Supplementary integration point equations are derived in

Section 4.5 for continuity equation.

4.4.2 Pressure

The integration point pressure which appeared in the conservative discretization of

governing equations has to be calculated as a function of nodal dependent variables
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in the element. The integration point pressure is needed for treating the pressure
terms in the momentum and energy governing equations where velocity and tem-
perature fields, respectively, are coupled with the pressure field. A strong coupling
like that from the pressure Poisson equation, which can be derived by taking the
divergence of the momentum equations, is not so critical in this study. On the
contrary, a simple interpolation will provide the primary connection and provides
a good representation of the pressure field. In this regard, bilinear finite-element
shape functions are used to convey the elliptic nature of pressure at the integration

points

Pipi = i:(Nj)ipiPJ’ (4.103)

=1

Using the following definition
Ci* = (Nj)ipi (4.104)
will result in the matrix form of the integration point operator for the pressure
{r} = [C7"|{P} (4.105)

The minus sign in the superscript means that p is not derived based on any gov-

erning equations but on physical reasoning.

4.4.3 Temperature Variable

Following the procedure discussed in Section 3.4.2, the non-conservative form of
energy equation is used to derive the appropriate integration point operator for
temperature. Either enthalpy or total energy as well as temperature are quanti-

ties which can be treated in the manner that convected quantities are dealt with.
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On the other hand, the energy equation can be written in a number of ways to
represent the transport of the parameter in question, i.e. h, e, and ¢t. Here, we
select the temperature form of this equation because the temperature is consid-
ered as a dependent variable in this study. The use of other forms, i.e. enthalpy
and total energy, require more linearization for h and e according to their defini-
tions, Eqs.(2.13 and 2.14). The temperature form of the energy equation could be
formed by combining the continuity equation, Eq.(2.2), and the original form of the
energy equation, Eq.(2.5). The final form after employing the definition of total
energy, Eq.(2.13), assuming zero source term, and writing the convection terms in

the streamwise direction, Appendix H, is

ot o k_, 1 o~ o
'é—é Vtoea - P—va t= P_Cu -pV -V+ #9} (4.106)
where the thermal dissipation function is
2 .0u Ov
- 2 ov.9 2 _ % 2
2ge) +€geV + (ge + 52— 3o+ 59) (4.107)

Comparing the left hand side of Eq.(4.106) with that of Eq.(4.78) shows that their
transient and convection terms are identical if u is replaced by 'l%; and f by t.
Using this analogy and the general forms in Eqs.(4.81 and 4.86) will result in

a ua té uc

5 V“"a ~; tj — Ct gc © ¢; +§C (4.108)

where the matrix elements are readily obtained by

c = c{f (4.109)
te.

c¥ fé (4.110)

ot = cfle (4.111)

c=clf (4.112)
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Contrary to Eq.(4.78), the energy diffusion term does not need linearization here,

ie.,

2 (N5 — tis .
(—k—V’t) ~ k2ot (Ni)ipTs — tips =ZC§JT5-ZC§;4Q (4.113)
ip

PCo CoPipi (L3)ips =1 i=1

where the matrix coefficients are given by

(), o=
d =3 Y \PLa/ (4.114)
0 i#i
k / N;
Cctd = — (—’-) 4.115
(3%} Co ﬁL‘z‘ i ( )

The pressure term is approximated by
4 4 4
- - aNl - aN L
—pV Vo — {Z (a_z) T+ (a—y’) .v;} S (V)P (4.116)
=1 b d =1 P J=1

The related matrix coefficient is written
4 4

o = =~ {z (%) o+2 (%),.,,.‘"'} S (M (a1t

Pipis |15 pi =1 =1

The dissipation term is completely approximated from previous known values

cr =t o, 4.118
where
4 z 4 2 4
8N, aN;| - AR
wm1(S54] o) o255 #) (554 v
J=1 ipi i=l1 ipi J=1 ipi
‘. oN *af&oN ‘. ON; :
_ Al Al
+2 a"u»”f) s\ T | Tty | B e
=1 j= ipi =1 ipi
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Combining and rearranging the above terms will result in the matrix arrangement

of the algebraic equation for ¢ as

4 4 4
Do+ + =) _(CH + CENT; + ) CIFP, + (C¥ + CF*) (4.120)

WJ
j=1 =1 J=1

This equation can be written in matrix form. The integration point expression for

temperature is
{t} = [C“1T} + [C®){P} + {C*} (4.121)

The influence coefficient matrices on the right-hand-side are

[C“] = [ctw + otte + cttd]-l[Cuc + Cud] (4.122)
[€*] = [+ ¢t + )t C) (4.123)
{Ct} — [cue + ctte + cttd]-l{cw + Cu} (4.124)

Eq.(4.121) is not the only choice that can be used to calculate integration point
temperature. Bilinear interpolation and streamwise upwinding are two other sim-
ple methods which were applied in many cases to compute the integration point
temperature. This will be discussed more in Chapter 5 for solving mixed subsonic-

supersonic flow with shock through a convergent-divergent nozzle.

4.4.4 Other Integration Point Equations

Before closing Section 4.4, it is necessary to explain about the method of derivation
of the other integration point quantities which do not directly appear in our dis-
cretized equation. One such variable is density which should provide information

for deriving the velocity field from the computed momentum field at the integration
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points. Density behaves as a convected quantity in highly compressible flows. Den-
sity integration point equation could be calculated in a manner which was done in
Section 3.4.2 in one-dimensional investigations. However, in this two-dimensional

study, density was mostly computed by using the following expression

where py; is a simple bilinear interpolation and k is a weighting coefficient which
measures the coirect influence of the two approximations. It is defined by
k- { 0 M<1 (4.126)
-3 M>1
The two approximations return to pure upwinding and bilinear interpolating, re-
spectively. The density at upwind point, p.p, is determined in a similar manner to
Eq.(4.85) for approximating fyp.
The other integration point lagged values are computed by using the already de-
rived integration point expressions, i.e., Eqs.(4.98, 4.102, 4.105, 4.121, and 4.125).
In this regard, velocity integration point values are obtained by using the magni-

tudes of the momentum components and density, i.e.,

u=d =9 (4.127)
P P
The total energy and enthalpy integration point values are obtained by employing
the new integration point values to their original definitions, Eqs.(2.13 and 2.14).

4.5 Mass Conserving Connections

In this section, the necessary remedy for removing the checkerboard problem which
is a common problem for certain numerical methods with a colocated grid arrange-

ment is explained. The expressions which we derived for f and g in Section 4.4.1 are
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called convected ones. As discussed before, Section 3.5, these expressions are not
substituted into the control volume continuity equation. The continuity equation
constrains mass through the surfaces of the control volume which is highly affected
by the pressure field. Thus, the pressure field is indirectly specified by the continu-
ity equation although there is no explicit effect of the pressure field on density in an
incompressible formulation. The use of convected expressions for f and g should
compensate for the absence of a pressure term in the continuity equation. However,
the investigation shows that this remedy does not necessarily remove the possibility
of velocity and pressure field decoupling, e.g. Darbandi and Schneider [13], Section
3.5.1. The missing point in this conclusion could be found by reviewing the derived
expressions. Convected expressions for f and g were originally derived from the mo-
mentum equations. These expressions did not consider the effect of the continuity
equation which considers satisfaction of the mass. The idea of using two integration
point values for a colocated grid arrangement goes back to the work of Rhie and
Chow [9). There are also other works which emphasize the employment of the two
types of the integration point velocities, Schneider and Karimian {12]. Darbandi
and Schneider [13] employed a new formulation for deriving a second integration
point equation for momentum-components. These new expressions are obtained
not only from modeling of the differential form of the momentum equations at each
integration point, but the continuity equation is required to be used in conjunction
with the momentum equations. To derive a second integration point value for f
or g, a velocity-weighted continuity-equation error is subtracted from the momen-
tum governing equations. Similar to the one-dimensional study, the form of these

equations is

(z-Momentum Eq. Error) — u (Continuity Eq. Error) = 0 (4.128)
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(y-Momentum Eq. Error) — v (Continuity Eq. Error) =0 (4.129)

Now, these equations consider the numerical errors of both the continuity and
momentum equations at the integration point. For the sake of brevity, the method
of discretization is explained only for convecting f which is derived from Eq.(4.128).
The results can then be extended for g. By substituting the governing equaﬁons
into Eq.(4.128) the following equation is obtained

0 . 0
g£ + Vioe af - uVu + 52 + Viscous Terms — u(% - Vg“a—f:)
dp  Of Bg _
[aa +3g + 3y =0 (4130

All of the terms in the momentum part of this equation are treated as in Section
4.4.1. The method of discretization for the second bracket is explained here. The

ugg term is treated in the same manner that it was treated in Eq.(4.93), i.e.,

ap) jm _ - (ﬁ - p")
Uii | 72 ) = CI™ =t (4.131)
P (80 ipi P\ Aé i
The two other terms are discretized using bilinear interpolation
i) i) aN
Uipi(7 f —+3 g ).,. N ips Z F; + Z G; (4.132)
ij=1 =1 ipi

This discretization is written in matrix form for an arbitrary control volume of 2

) TN
w2+ Byin S climm 4 3l (4139)

IJ=1 J=1

where the coefficients are defined as

ffm =

Cii™ =t 5 . (4.134)
; ON;

Clf™ =y =2 (4.135)
J p 3y it
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There is another method for treating these two terms. In this method, gzl is
replaced by reference to g{, with suitable alternative of Eq.(4.133), and then %f is
discretized in streamwise direction. Regarding Figure 4.2, it is written

af _ fdn - fﬂﬂ (4.136)

88  Lup+ Laa
where Lyp+ Lan is the distance between up and dn points. f4, and f,, are properly
interpolated between adjacent nodes, Eq.(4.85). We have tested both of these
methods and the difference is not significant.

.' .,

Figure 4.2: Element nomenclature and velocity upwinding.

Now, the new derived discretizations of this section are combined with the
discretization results of Section 4.4.1. This will conclude with an equation for
the convecting f, similar to Eq.(4.98) which was derived for the convected f. After
substitution of the terms of Eq.(4.130), they are categorized and combined together
and the following expression is finally obtained

{f} = [CN{F} + [cs}{G} + [c#|{ P} + {c'} (4.137)



CHAPTER 4. COMPUTATIONAL MODELING IN TWO DIMENSIONS 120

This new integration point expression is called the convecting momentum for f.
In order to distinguish it from the convected one we denote it by f. The new
influence coefficient matrices on right-hand-side are computed by adding the new
matrix derivations to Eqs.(4.99-4.101), i.e.,

€] = [0+ e + Yo He 4 oHd 4 oI (4.138)
(€] = [0+ S 4 92 chm) (4.139)
€] = [+ + 19 e (4.140)
{cf} = [+ Mo+ cf + cI) (4.141)

A similar convecting could be derived for convecting §. The procedure is started
from Eq.(4.129) and the convecting expression is similar to Eq.(4.137), i.e.,

{3} = [CY|{F} + [C¥|{G} + [C*|{P} + {C?} (4.142)

These integration point expressions, i.e. Eqs.(4.137 and 4.142) are plugged into
the continuity equation. Consequently, convecting velocities could be obtained by
using the following definitions, & = -“:: and ¥ = g. Regarding the discussion in Ap-
pendix C and respecting the two concepts of the convected and convecting velocities,
the convecting expressions are used for computing lagged values in the convection
terms of the conservative form of the momentum equations, i.e. Eq.(4.36). Either
convected or convecting velocities could be plugged in the lagged velocities of the
energy convection terms. However, in order to respect the consistancy it is better

to use convecting ones.
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4.6 Assembly

In Section 4.3, we discretized the governing equations by using a control-volume-
based finite-element method. All discretizations were initially obtained for an ar-
bitrary sub-control-volume and later extended for four sub-control-volumes of an
element. The final results showed that the discretized equations involved unknowns
at integration points in addition to the main nodal unknowns, see Eqs.(4.23, 4.49,
4.50, and 4.76). This difficulty resulted in deriving expressions for dependent vari-
ables at integration points, i.e. f, g, p, and ¢ in Eqs.(4.98, 4.102, 4.105, and 4.121).
These expressions not only connect the integration point variables to their neigh-
bouring nodal variables but also model the possible relevant physics. In addition
fo f and g, supplementary integration point expressions were derived for momen-
tum components, i.e. f and § in Eqs.(4.137 and 4.142), in order to remove the

pressure-velocity decoupling problem.

In this section, the discretized equations and the derived integration point ex-
pressions are combined and rearranged in order to provide a well-posed system of
linear algebraic equations. We start the assembly procedure with treating the con-
tinuity equation. There are iwo integration point variables, f and g, in Eq.(4.23).
Convecting momentum components, Eqs.(4.137 and 4.142), are plugged in the con-

tinuity equation. It results in

[DY]{F} + [D*|{G} + [D"{ P} + [D*]{T} = {D"} (4.143)
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where
[D*] = [*™][c¥] + [a*™](c¥] (4.144)
[D%] = [a™][C7] + [a™™]iC%] (4.145)
(D7) = [47] + [a®f™][C?] + [ [C%] (4.146)
[DP] = [AP) (4.147)
[D°] = {4%} - [*™}{C} - [a®{C?} (4.148)

The first and second superscripts of D indicates to which equation and parameter
of equation it respectively belongs. Eqs.(4.49 and 4.50) show that the z-momentum
and y-momentum equations involve pressure and momentum component unknowns
at integration points. The integration point expression for pressure is given by
Eq.(4.105). The convected momentum-component operators, Eqs.(4.98 and 4.102),
are selected for unknown momentum-components at integration points. The pro-

cedure results in the following equation for the z-momentum

[DI){F} + [D*{G} + [DP|{ P} + [D"*{T} = {D’} (4.149)
where
[DMf] = [Af#® + AT + [a7Fe)[CH] (4.150)
(D] = (A% (4.151)
[D'] = [a)[c??] + [D'**][C~7] (4.152)
[Df] = 0 (4.153)

[Df] = {A% + AT} - [19{C’} (4.154)
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Similar procedure for the y-momentum equation will result in

[D“){F} + [D®|{G} + [D"}{ P} + [D"{{T} = {D*}

where

(D] = (4"
[ D“] = [ A996 + Aaad] + [aaac] [caa]
[D] = [a%][C] + [a7][C7]

0

H

[D¥]

[DF] = {A”+ A%} - [a*]{C"}

(4.155)

(4.156)
(4.157)
(4.158)
(4.159)

(4.160)

The energy equation, Eq.(4.76), involves f, g, and ¢t unknowns at integration

points. The unknown temperature at the integration point is substituted from

Eq.(4.121) and the convecting momentum-components, Eqs.(4.137 and 4.142), are

plugged into unknown momentum-components at the integration points. It yields

[D*){F} + [D¥|{G} + [D*¥){ P} + [D*]{T} = {D*}

where
(D] =
(D%] =
D] =
[D%] =

D =

(A% + A9 + [a*9][CT) + [a9e)[CP]
[4%° + A% + [a)[C%9] + [at°)[CP9]
[a4<][C7] + [a**][C%] + [a<][C*"]
[4%° + A™] + [a*][c¥]

{4% + 4} — [a19{CT} - [a*{C?} - [a*]{C*}

(4.161)

(4.162)
(4.163)
(4.164)
(4.165)

(4.166)



CHAPTER 4. COMPUTATIONAL MODELING IN TWO DIMENSIONS 124

The first stage of the assembly is finished now. We have already derived well-
posed discretized equations for the continuity, Eq.(4.143), z-momentum, Eq.(4.149),
y-momentum, Eq.(4.155), and energy, Eq.(4.161), equations. Each of these equa-
tions consist of four sub-equations for four sub-control-volume of an element. The
number of unknowns in each sub-equation can be 16 or less. This number indicates
the maximum number of unknowns at four nodes of element. They are four F's,

four Gs, four Ps, and four T's.

In the second stage of the assembly, the derived elemental equations are put

together
[DY|{F} + [D"|{G} + [D""|{P} + [D*|{T} = {D"} (4.167a)
[DI|{F} + [D'*){G} + [D'?|{ P} + [D"'|{T} ={D} (4-167b)
[D¥}{F} + [D*|{G} + [D"]{P} + [D"{T} ={D°} (4-167¢)
[DY){F} + [D{G} + [D*){P} + [D"{T} ={D'} (4.167d)

It could be written in the following matrix form as

[(071) (7] (D] [D#] (¢F}] [{D7})
(D) 1p%) (o] (D) {GHL _ | {01} w.168)
(Do) D) (Do) (D) | (P} | (D%}

(0 (0% (o 4 \{T}) (0%

This 1616 matrix is named elemental stiffness matriz. As seen, the procedure of
the assembly resulted in a well-posed system of algebraic equations having 16 etjua-
tions and 16 unknowns. It is important to note that this matrix does not provide
information related to the conservation of the quantities because the assembly pro-

cedure is done for four sub-control-volumes of four different control-volumes. While
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the governing equations are conserved within individual control volumes rather than

elements or sub-control-volumes.

At the third stage of assembly, the elemental stiffness matrix is assembled into
the global matrix of all elements. In this regard, each derived sub-equation is added
to the related global conservation equation. This global equation belongs to the
control volume that the derived sub-equation belongs to one of its four sub-control-
volumes. The assembly of four different sub-control-volumes of a control volume will
result in the full conservation of the conserved quantities for that control volume.
This is one of the most important advantages of the control-volume-based methods

which provides the conservation laws for finite volumes.

The resulted system of algebraic equations has been solved by a direct sparse

matrix solver, Chu et al [70].

4.7 Boundary Condition Implementation

Before presenting the results of the application of the numerical method, it is im-
portant to describe the techniques used to invoke boundary conditions. This not
only eliminates repeating these discussions and thereby saving space but it also

provides a collection of worthwhile detailed information for future reference.

The assembly of the elemental equations, Section 4.6, results in complete con-
servation of mass, momentum, and energy equations for all control volumes of the
domain except those which have one or more surfaces coincident with solution do-
main boundary. The process of closing the conservation equations for a boundary

control volume is completed if mass, momentum, and energy boundary flows are
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taken into account, i.e.

(internal continuity equation)+ QF =0 (4.169)
(internal z-momentum equation)+ Q{ =0 (4-170)
(internal y-momentum equation)+ Qf =0 (4.171)

(internal energy equation)+ @Qf =0 (4.172)

where @Q,’s represent the boundary mass, z-momentum, y-momentum, and energy
flows which are indicated by m, f, g, and e, respectively. They consist of elementary

convection and diffusion flux terms

Qf =l +Qfr-qf* (4.173)
Q= Q¥ +Qr - @ (4.174)
Qs =QF + Q¥ - Q¢° (4.175)

These fluxes are calculated by approximating the integration over the surfaces which
are coincident with the domain boundary surfaces. These surfaces have been illus-
trated for the control volume in question in Figure 4.3. The crosses at the surface
mid-points represent them, i.e. at bipl and bip2 integration points. The resulting
fluxes for the continuity equation are written

er = ), /;. pij-d'S' (4.176)

=t
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Similarly, the resulting fluxes for the momentum equations are given by

Q°

Qf

Jd
b

ge
b

d
Q

X

Q

Q

2
p‘uV -d§
=1 bipj

Z[P(AS )z ]bipi

=1

Y [oa(AS)z — 0(AS), s

i=1
2 - -
pvV -dS

j=1 bipj

2
Y [p(AS)yluies

i=1

2

Z[a’n(As)v + 0e(AS):]bip;

i=1

And for the energy equation, they are are written

2

i=1

2= 3 [ e7eds
bipj

2
2o ) [3:(AS): + 0 (AS)yluis

i=1

QF ~ ) [(uTez + v7)(AS)e + (uTiz + v )(AS), Jbips

i=1

(4.177)

(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)

(4.185)

where 0, and o; are normal and tangential surface stresses. (AS), and (AS), were

defined before by Eqs.(2.25).

A comprehensive discussion on the proper treatment of the above expressions

and their combinations at boundary surfaces has been presented by Schneider [71].
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solid boundary

boundary control volume

Figure 4.3: Boundary control volume and boundary condition implementation.

There are many different methods to implement the boundary conditions. How-
ever, we are not interested in presenting all possible boundary implementations;
conversely, we are only concerned with those implementations which have been

employed in the test problems of Chapter 5.

In the current study, the diffusion parts of the boundary conservation equa-
tions, i.e. Q,’:“,Qﬁd, and Qfd, are treated assuming zero viscous diffusion through
the domain boundaries. The value of all other Q,’s are approximated by linear in-
terpolation between adjacent boundary nodes unless the conservation equations are
sacrificed to specify the known boundary values or their directions. For example,
Equation (4.178) could be expanded for the control volume in question in Figure
4.3,

2
QU = 3 IpAS-Juvs = (FP+ SP)(ASo i + (3P + 3 P)(AS i (4186)
i=

Generally speaking, the mass and momentum equations are used to treat pres-

sure and velocity boundary conditions and energy is involved in treating tempera-
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ture boundary conditions. The main purpose of the present boundary treatment is
to conserve mass for all control volumes of the domain including the boundary. This
is why the known pressure at the inflow and outflow boundaries of subsonic flow
domains is specified by using the momentum equations. Two factors are important
in boundary treatment. One is the nature of the flow and whether it is viscous or
inviscid. The other relates to the physics of the boundary which could be classified
into solid wall, inflow, outflow, etc. Based on these factors and sub-factors, sev-

eral different boundary treatments could be constructed which are explained in the

following sub-sections.

Viscous Solid Wall Modeling

No-slip boundary conditions are applied to model solid walls for solving the Navier-
Stokes equations. In this regard, the z-momentum and y-momentum equations are
replaced by F=0 and G=0 specifications for stationary walls and F=F,.u and
G=Guau for moving walls. Continuity is automatically closed for solid boundary
because there is no mass flow through the solid boundary. Similarly, energy is not
transmitted from boundary surfaces because boundary velocities are zero. Thus, an

adiabatic boundary condition is applied to the energy equation, i.e. ¢, = k%’f =0.

Inviscid Solid Wall Modeling

The flow tangency condition is considered for treating inviscid Euler flow over a
solid wall. This condition restricts the direction of the flow to be tangent to the
wall boundary, Figure 4.3. In this case, the z-momentum and y-momentum equa-

tions are completed normally for boundary control volumes assuming zero viscous
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diffusion. Then, they are combined to form the tangential momentum equation,
cos(B) {z-momentum} + sin(8) {y-momentum} = 0 (4.187)

Now, the z-momentum equation is replaced by this new derived tangential momen-
tum equation for such boundary control volumes. The y-momentum equation is

simply replaced by the normal no-flow condition for the boundary control volumes,
sin(B) F — cos(B) G= 0 (4.188)

Since there is no mass flow across the inviscid solid wall, continuity and energy

equations are treated similar to those for a viscous solid wall.

Inflow Boundary Modeling

Most flow information is specified at an inlet section. In all subsonic, transonic, and
incompressible cases, the x-component of mass or velocity is specified by replacing
the z-momentum equation by an equation that simply specifies the mass compo-
nent or x-velocity. The y-component of mass or velocity is not always specified.
For those test cases which are consistent with a uniform inlet velocity distribution,
the y-momentum equation is discarded for corresponding boundary control volumes
and replaced by G=0 instead. However, for those inlets with non-uniform inflow,
like the sloped inlet of a convergent-divergent nozzle, the y-momentum equation is
completed normally considering zero shear for those control volumes. The result of
this boundary implementation is illustrated and mentioned in applications. Con-
trary to the momentum equations, the continuity equation is always closed for the

above flow cases.

A uniform inlet velocity specification does not necessarily describe a uniform

mass distribution at the inlet and vice versa in compressible flow. In many cases,
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it is necessary to compare our results with those of other workers who solve using
a velocity boundary condition. In order to have a uniform velocity at an x-inlet for
our momentum variable procedure, F is specified via the z-momentum equation.
Then, density is computed by using the equation of state and having the magni-
tude corresponding to the calculated pressure and temperature. This calculated
density is used to correct the inlet mass, Fintet = OnewUintee- This new derived F
is used to specify mass in the next iteration. Although this method of boundary

implementation generally slows down convergence, it works well.

For supersonic cases, P, F, and G are specified at the inlet by replacing the
continuity, z-momentum, and y-momentum equations, respectively. Temperature
is always specified by replacing the energy equation by an equation that simply
specifies the temperature. This latter implementation is applied for all investigated

tests.

Outflow Boundary Modeling

At an outflow boundary in the z-direction, neither the x-velocity nor x-component
of the mass is specified. Pressure is specified here by replacing the z-momentum
equation with an equation specifying the desired pressure for subsonic and transonic
flows. The method of treating the y-momentum equation is exactly similar to the
one presented in inflow boundary modeling. The continuity equation is closed by

an implicit treatment of the exit mass for subsonic and transonic flows.

Since pressure is specified at an upstream boundary in supersonic flow (see
inflow boundary modeling) z-momentum equation is closed assuming zero shear.
There are few test problems in supersonic flow which specify either pressure or mass

at outflow by extrapolating specified values from the upstream of boundary nodal
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points and inside of the domain. However, this form of modeling does not cause

significant improvement in the results.

Different techniques are used to deal with the energy equation for outflow bound-
ary contro] volumes. In most cases, the energy equation is completed subject only
to zero shear. In this modeling, dependent variables are implicitly involved in clos-
ing boundary values. In supersonic flows, the energy equation is either completed
as before or temperature specified with magnitude extrapolated from neighboring
upstream nodes. Another technique is to use an adiabatic boundary condition,
Gn = k%ﬁ— = 0. Such an equation relates each boundary node to its neighbouring

nodes using finite element connectors or a direct backward differencing.

Symmetry Boundary Modeling

Symmetry boundary conditions are very beneficial for reducing computer time and
memory requirements when appropriate. The mass, momentum, and energy flows
do not intersect the symmetry boundary surface because the normal velocity and
normal derivative of all other flow parameters are zero on that surface. This im-
plements a normal closing of the continuity equation. In this modeling, the z-
momentum is replaced by an equation which specifies zero gradient for tangential
velocity at the boundary, i.e. %’.‘ = 0. The y-momentum is also replaced by an
equation, Eq.(4.188), which specifies the direction of the symmetry boundary. The
adiabatic boundary condition is implemented for treating temperature as was done

for viscous solid wall modeling.
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4.8 Closure

The preliminary investigation on one-dimensional formulations has been extended
in this chapter for two-dimensional application. In this regard, the two-dimensional
Navier-Stokes equations were discretized using a control-volume-based finite-
element method and selecting the momentum component variables as the dependent
variables. The discretized form of conservation equations contained many nonlin-
earities and formed an ill-posed system of equations due to the integration point
variables involved. Both of these difficulties were resolved using our one-dimensional
experience. The velocity-pressure decoupling issue which was detected in the one-
dimensional investigation was addressed following our previous methodology. The
resulting equations in this chapter were cast in a general matrix form which will fa-
cilitate the future work. The details of the techniques which are employed to invoke
boundary conditions were explained for different boundary condition implementa-
tion. The performance of this formulation will be studied and results presented in

the next chapter.



Chapter 5

Two-Dimensional Results

5.1 Introduction

In this chapter, the performance of the developed two-dimensional method is ex-
amined. This examination comprises the investigation of several different kinds of
flow and test problem. The main purpose of this chapter is to cover a wide range
of flows and problems. Based on the title of this research, the primary concern
in this route is to test the validity of the method for two major types of flow, i.e.
incompressible and compressible flow. There are other factors like speed, viscosity,
and time which break each type of flow into other categories. The time variable
splits problems into steady and unsteady flows and viscosity into viscous and in-
viscid flows. Flow speed is a major parameter in compressible flows which divides
it into many other subdivisions like subsonic and supersonic flows. Flow problems

can be further categorized based on the flow boundary conditions.

The one-dimensional results were completely discussed in Section 3.7. Here, we

are concerned only with two-dimensional flows and mainly with internal flows. In

134
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order to fulfill the objectives of this chapter, the flow problems are classified into
three categories of incompressible, pseudo-compressible, and highly compressible
flows. The first i1s Limited to absolute constant density flows, the second addresses
incompressible flows which are treated as compressible ones, and the last addresses
highly compressible flows. Each component has specially been designed in such
a manner that their assemblage would demonstrate the power of the method for
a broad range of flows. Many other types of flow are examined in this chapter
including viscous and inviscid flows. The factor of time was examined in Section

3.7.2 where the one-dimensional transient flow in a shock-tube was investigated.

Many different problems are modeled in this chapter including the driven cavity
problem, channel entrance flow, converging-diverging nozzle flow, and flow over
both a bump and a ramp. There are three major examples which are tested almost
in all three parts. They are the cavity, entrance, and nozzle flows. This helps to
follow the performance of the method through a wide range of flow parameters.
The general common specifications of each sub-section is generally discussed before

presenting the individual results of that sub-section.

In this chapter, the results of the present work are compared with those of other
workers. Their results have been extracted either from the figures of their articles
by using a digitizer or directly from the tables of their articles. These results may
simply be indicated by symbols instead of continuous line distributions. The num-
ber and location of the symbols do not necessarily indicate the grid distributions.

In this chapter, all test problems are solved based on a time-dependent implicit
algorithm. There are no internal iterations in each time step because we are con-
cerned only with the steady-state solution. Marching in time is continued until a
convergence criterion is reached. The Root Mean Square of the change from itera-

tion (time step) to iteration is used as a measure of convergence for the dependent
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variables, i.e. F, G, P, and T. For a general unknown ¢, the RMS is given by

1 Z:=1(¢ - ¢;)2
RMS = %w\/ ; (5.1)

/ R 42
¢avﬂ = Ej_;l ¢’ (5.2)

R is the total number of grid nodes. The RMS is evaluated for all four unknown

dependent variables, however, experience shows that the RMS of F is slower than

where

the other variables for the test cases investigated . The RMS values for the depen-
dent variables at the integration points are also checked using similar definitions,
however, experience shows that the convergence of the integration point variables
is faster than that for the nodal values. The required criterion for convergence was

set to 1075 for all cases unless otherwise stated.

All pre and post processing of this chapter have been accomplished using either
MATLAB software or author based tools. All figures which illustrate the results
have been depicted by MATLAB. Since the intent of this work was to demonstrate
the procedure, a direct sparse matrix solver was used for the computations [70].

Thus it is not relevant to present computational times for solutions in this work.

5.2 Incompressible Flow

As the first step of our method validation, the capabilities of the incompressible
algorithm of the code are investigated. In this algorithm, the equation of state is
reduced to Eq.(2.16) where absolute incompressible flow is specified. In this section,

two test models are examined to reveal the characteristic of the method. They are
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the driven cavity problem and the entrance flow problem. They are addressed by
solving the Navier-Stokes equations. Since viscous flow problems may be polluted
by turbulence effects it is necessary to respect laminar restrictions for laminar flow
solvers. The validity of the results is compared with the results of other numerical
methods and available benchmark results. A mesh refinement study is accomplished
for the cavity test problem which demonstrates the ability of the method to attain
accurate results for coarse grid distributions. All test cases in this section are solved
within a time-marching algorithm and the results are obtained by choosing huge
time steps which results in an infinite CFL number.

5.2.1 Driven Cavity Problem

The first model problem is a classical problem to test the accuracy of numerical
methods for incompressible viscous flows. It is the recirculating flow of a fluid in
a square cavity which is bounded on three sides and whose fourth side moves at
a constant speed, causing recirculation inside the cavity. The cavity problem is
a difficult test problem because of two singularities at the corners of the lid and
because of its several recirculation regions with their complexities dependent on
the Reynolds number. This problem has been extensively studied as a benchmark
problem, Ghia et al [72]. In order to demonstrate the effect of mesh size and
Reynolds number on the results of the code, the study was done on five different
uniform meshes, including 21x21, 31x31, 41x41, 51x51, and 71x71 grid nodes,
and for three Reynolds numbers of 1000, 5000, and 7500. The length scale and
density were considered to be unity. All velocities are nondimensionalized by the
velocity of the lid. Figures 5.1, 5.3, and 5.5 depict the streamline contours for the
three Reynolds number of 1000, 5000, and 7500 on three different uniform grids of
31x31, 51x51, and 71x71, respectively. Plotting the streamline contours requires
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the evaluation of the stream function within the solution domain. In this regard,
the stream function values have been obtained by integrating the integration point
velocities over control-volume surfaces. All the first and second level vortices have
been successfully detected in these three figures despite using relatively coarse grids.
As Reynolds number increases the central vortex becomes much rounder and the

secondary vortices much stronger.

The u-velocity and v-velocity profiles at the centerlines of each cavity have been
calculated and illustrated in Figures 5.2, 5.4, and 5.6 for three Reynolds number of
1000, 5000, and 7500, respectively. In order to study the effect of mesh refinement
on the accuracy of the results, each Reynolds number was tested on up to three
different grid distributions and compared with the benchmark results of Ghia et al
[72] which are based on fine grid distributions. Their working grid is 129x129 for
Reynolds 1000 and 257 x257 for two other Reynolds numbers. Comparing with the
results of benchmark work, this study shows that the accuracy of the solution is
rapidly increased with relatively coarse grids.

Following the mesh refinement study, a comparative study on the validity of the
method is performed. Reynolds number of 3200 is selected for this study because of
available results. Figure 5.7 compares the results of the present method with three
other references two of which are based on all-speed methods. The benchmark work
[72], which has already been introduced, uses a grid resolution of 129x129. The
grid resolution is 71x 71 in [45] and 51x51 in [33]. The present method has used a
grid distribution of 51 x51 which generally shows better agreement comparing with
the benchmark results. The streamline contour of this cavity flow is presented in
Figure 5.8.

Certain cavity flow details have been studied and compared with those of the
benchmark study. Table 5.1 shows a comprehensive survey of the primary and sec-
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Stream knes

Figure 5.1: Cavity with a 31x31 grid and Re =1000.
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Figure 5.2: Mesh refinement study on centerline velocities.
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Stream knes

Figure 5.3: Cavity with a 51x51 grid and Re =5000.
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Figure 5.4: Mesh refinement study on centerline velocities.
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Stream knes

Figure 5.5: Cavity with a 71x71 grid and Re =7500.
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Figure 5.8: Cavity with a 51x51 grid and Re =3200.

ondary vortices of the flow inside the driven cavity for Reynolds number of 5000.
This survey includes the strengths, dimensions, and locations of the main vortex
and secondary vortices in the cavity. In this table, several abbreviations are used.
P, T, BL, and BR represent primary, top, bottom left, and bottom right vortices.
H and V represent the horizontal and vertical sizes of the vortex respectively mea-
sured along the corresponding wall surface. The summarized results in Table 5.1
demonstrate good quantitative agreement with the results of Ghia et al [72]. It
must be noted that the grid size has a direct and strong effect on the order of er-
rors and that vortices of smaller size would result in higher errors on coarser grids.
The smaller vortices have not been presented in this table. Similar comparisons for

other Reynolds numbers show similar results.

No-slip boundary conditions were applied on all solid walls of the cavity. The
cavity problem was studied as a steady-state problem and the results of each case

were obtained using several iterations in a huge time step. The number of itera-
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Ghia et al {72] | present method | Error % "

257 %257 5151 |
-0.11897 -0.1120 586 |
0.512, 0.535 | 0.514, 0.545 | 0.4, 1.87
1.4564E-3 1.984E-3 36
z,y | 0.063,0910 | 0.069,089 | 9.5, 2.1
H, V| 0121,0.269 | 0.113,0242 | 6.6,10
Pmaz | 1.3611E-3 1.23E-3 9.6
BL | z,y | 0.070,0.137 | 0.079,0.149 |12.9,8.38
| #.v| 0318,0264 | 0.340,0274 | 69,38
@maz |  3.083E-3 3.17E-3 2.8
BR || z,y | 0.809,0074 | 0.802,0080 |0.87,8.1
H,V | 0.357,0.418 0.38,042 | 6.4,05

Table 5.1: Comprehensive comparison of cavity details for Re =5000

tions was between 10 and 20 in each case to reach the required criterion which is

RMS<10-% for F and G.

5.2.2 Channel Entrance Flow

The second test problem is entrance flow between parallel plates. The parallel

plates geometry is a limiting geometry for the family of both rectangular and con-

centric annular ducts. The velocity distribution at the inlet of a duct will undergo

a development from some initial profile at the entrance to a fully developed profile

at locations far downstream. The region of the duct in which this velocity develop-
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ment occurs is called the entrance region. There has been considerable interest in
determining the fluid behaviour within the entrance region because of its general
technical importance in engineering applications. The importance of this problem
is also for developing laminar-flow theory and testing numerical schemes for solving
elliptic conservation equations. There are no general exact solutions or experimen-
tal results for the entrance region. However, there are a variety of approximate
analytical and numerical methods for the determination of the flow characteristics
in this region, Darbandi and Schneider [73]. The development of a laminar flow at
the entrance of two semi-infinite straight parallel plates is seen in Figure 5.9. The
distance between two plates is H = 1. The entrance length, X,, is defined as the

1]

developing zone developed zone
! = e oy ee— = = e X

Xo Entrance Length

Figure 5.9: Developing and developed zones.

distance from the inlet boundary, with uniform inlet velocity profile, to the point
where the centerline velocity reaches 99% of its asymptotic value. The entrance
length divides the region into two zones. In the developing zone the velocity profile
undergoes a transition from a flat to a parabolic profile. This developing profile
may have two maxima at locations other than the centerline. The parabolic profile
remains constant in the fully developed zone. All lengths are nondimensionalized
by H and velocities by Unjee. Because of the symmetrical nature of this problem,
only the upper or lower half-channel could be calculated. However, in order to
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emphasize on the symmetry of the obtained solution, the calculation is done based
on a full height of the channel.

The problem was investigated for Reynolds numbers 0, 1, 20, 200, 1000, and
2000. The first one is creeping flow and is approximated by specifying a very large
value for viscosity. A 101x41 grid distribution was used for all Reynolds numbers.
The first and second numbers show the longitudinal and the full transverse grid
distributions, respectively. The distribution along the cross section was based on

the hyperbolic sine and the longitudinal distribution was uniform.

Typical profiles of u-velocity for Reynolds numbers 200, 1000, and 2000 are
shown in Figures 5.10 to 5.13 assuming a uniform velocity profile at the inlet.
Qualitatively, the development of the velocity profiles were found to be quite sim-
ilar at all Reynolds numbers although the off-centerline maxima appear to be the
greatest at Re=200. As is seen, the velocity profiles have a peculiar behaviour
close to the entrance. They show a local minimum at the center of the duct and
symmetrically two maxima near the walls. These velocity overshoots are found
at all Reynolds numbers while their magnitudes decrease and finally vanish with
increasing Reynolds number. Shah and London [74] present a comprehensive dis-
cussion on the existence of these overshoots. They result from the condition that
the velocity distribution at the inlet must be uniform. In order to maintain this
condition, an adverse pressure gradient develops in a small region on the centerline
near the entrance. Fluid parcels near the centerline are not accelerated immediately
where as the fluid parcels next to the wall are forced to be stationary as soon as
they enter the inlet region. To satisfy the continuity equation, velocity overshoots

are thus formed.

There have been numerical {75), analytical [76, 77], and experimental [78] efforts

to determine whether or not these overshoots are a part of the real behaviour of the
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profile of u-velocity in different positions in channel
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Figure 5.10: Entrance flow, Re=200, undeveloped.
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Figure 5.12: Entrance flow, Re=1000, undeveloped.
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Figure 5.13: Entrance flow, Re=2000, undeveloped.
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flow. Abarbanel [76] analytically solved the problem for Stokes flow and concluded
that these bulges are indeed a real part of the mathematical solution. Berman and
Santos [79] demonstrated with their experimental work that these velocity over-
shoots in the entrance region for pipe flow are not just a mathematical oddity but
are real [80]. On the other hand, in the numerical category, AbdulNour and Potter
[81] have solved the entrance flow of ducts by applying both uniform and actual
inlet profiles and using vorticity and stream-function variables. They concluded
that both improvement in the boundary conditions and the use of smoothing func-
tions could minimize the magnitude of these overshoots. Darbandi and Schneider
(73] have conducted a comprehensive study on the effect of mesh-refinement on
velocity overshoot in the entrance region of a channel flow. They concluded that
the velocity-overshoot distribution along the channel approaches asymptotic values

with mesh refinements.

In order to study the effect of mesh size, the mesh size was changed from a
non-uniform 101x41 grid to a 61 x21 uniform grid distribution. The effect was low
on the results of entrance length computation. Their changes were consistent with
the change of mesh size at the end of developing region. The entrance length has
been nondimensionalized with H and tabulated in Table 5.2 for different Reynolds
numbers. The results of the present work are compared with those of Narang and
Krishnamoorthy [82] who solved the boundary-layer equations and Morihara and
Cheng [75] who solved the quasi-linear Navier-Stokes equations for incompressible
flow. Although these results are based on the finer grid but they are not far from

the results of the coarse grid which infers excellent result despite the use of a coarse

grid.
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Present | Narang [82] | Morihara [75]
101%(2*21) 41*21
1.3 N.A. 1.282
1.3 1.282 1.302
2.2 2.220 2.237
18.0 16.70 18.060
87.5 91.080 N.A.
170.0 168.80 171.600
Table 5.2: Entrance or developing flow length
There is an empirical relationship for the hydrodynamic entrance length,
X
+ e
Ly, = H R = 0.04 (5.3)

This expression is not valid for Reynolds numbers under 100 because L}, is a
strong function of Re for low Re flows. This length has been calculated for our test
problem and has been tabulated and compared with others’ results in Table 5.3.
The number of iterations for attaining the convergence criterion, i.e. RMS<10~°
for F and G, did not exceed six iterations, for the highest Reynolds number, in all

test cases.

Boundary Conditions

The Navier-Stokes equations for parallel plates may be solved for different inlet
conditions. The selection mainly depends on the dependent variables. Those who
solve for p-( use irrotational entry conditions, IEC, at the inlet and those who
solve using u-v use uniform entry condition, UEC. There is a third option which
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'ﬂl Present | Morihara [75] | AbdulNour [81] | empirical result "
0.0558 0.0539 0.045 0.04
0.0456 0.0452 0.0442 0.04
0.0441 N.A. 0.0442 0.04
0.0436 0.0429 0.0443 0.04

Table 5.3: The hydrodynamic entrance length

considers the uniform-velocity far upstream of inlet section, e.g. [83], which is not
considered here. Van Dyke [84] pointed out that the vorticity at the inlet is not zero
for low or moderate Reynolds numbers because of its upstream diffusion as soon as
the flow meets the entrance wall. Hence, the uniform entry velocity distribution is
better than a zero vorticity distribution. Morihara [75] calculates and plots equi-
vorticity lines in the duct and shows that the ¢-( formulation is justified only for
large Reynolds numbers.

There are works which apply both boundary conditions. Mcdonald [85] solved
the complete set of Navier-Stokes equations for both the uniform and irrotational
entries. He noted that the centerline velocities are higher for the irrotational entry
than for uniform entry. This difference is higher for parallel plates compared to
the circular tube. Ramos and Winowich [86] investigated magnetohydrodynamic
channel flows. They showed that the primitive-variable formulation predicts either
steeper axial velocity gradients at the channel walls or lower axial velocities at the
channel centerline than the stream function-vorticity in finite-difference or finite-
element methods. On the other hands, AbdulNour and Potter [81] show that the
magnitude of overshoots could be minimized with improvement of boundary condi-

tions in a (- formulation. All these comparisons between u-v and -( formulations
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show that there would be two different solutions considering either UEC or IEC.

These solutions are not identical.

In this study the initial solution is always started with F=G=0 and P=PF, at all
mesh nodes throughout the domain. Then uniform entry condition, i.e. F=1 and
G=0, is applied at the inlet. Almost all of the methods in the literature assume fully
developed flow at infinity. Here, the uniform pressure and zero transverse velocity
are specified far downstream of the entrance length, X, for boundary condition
implementation. Since the problem is solved for the half height of the domain,
symmetric boundary conditions are applied at the centerline. In this regard, mass
flux and its related momentum are considered zero through the centerline. No-slip

conditions are specified on the wall of the duct.

5.3 Pseudo-Compressible Flows

In this section, we are mainly concerned with the performance of the analogy to
employ a compressible algorithm to solve for incompressible flows. Therefore, we
are directly interested in evaluating the ability of the code to handle low-Mach-
number flows known as pseudo-compressible flows. These flows definitely have the
characteristics of real incompressible flow. In order to demonstrate the performance
of the analogy, many pseudo-compressible flows are first solved using the compress-
ible algorithm of the code, using Eq.(2.11) as the equation of state, and the results
are compared with the results of the incompressible algorithm of the code, using
Eq.(2.16).

In the following sections, there will appear a minimum low Mach number in
each test case but this does not mean they are the lowest possible Mach numbers

which could be solved by the compressible algorithm. It is the Mach number which
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definitely reveals the characteristic of real incompressible flow. Comparing the
results of these sections shows that there is no difference between these results
and those of incompressible flow although density was permitted to obey the ideal
gas law. This high flexibility of the method in solving real incompressible flow
as a compressible flow is not seen in compressible methods which are extended to
solve incompressible flows. Volpe [30] has examined the performance of three two-
dimensional compressible flow codes at low Mach numbers which did not exhibit
this flexibility.

In this section, the performance of the analogy is investigated in three different
test cases of cavity problem, entrance flow problem, and converging-diverging nozzle
flow problem. The two first are solved by treating the Navier-Stokes equations and
the last using the Euler equations. In order to complete the investigation, all
compressible and pseudo-compressible results are compared with either analytical

solutions or benchmark results.

5.3.1 Cavity Flow Problem

The first model problem is the two-dimensional cavity driven by the movement of
the lid. The complexity in flow conditions is associated with well defined boundary
conditions. This test problem was introduced in Section 5.2.1. The ability of the
current work in detecting the separate recirculating regions of the incompressible
cavity was previously demonstrated by solving high Reynolds number cavity flows,
Section 5.2.1. Here, we are not directly concerned with the details of the solution
but the ability of the analogy to employ compressible algorithms to solve for incom-
pressible flows. Following this purpose, two cavity problems with grids of 19x19
and 31x31 are selected to study two Reynolds numbers of 100 and 1000, respec-
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tively. The cavity has a unit length scale and velocities are nondimensionalized by
the lid velocity.

These problems are solved once by the incompressible algorithm and several
times by the compressible algorithm. In the compressible case five different Mach
numbers are investigated. These Mach numbers are divided into two categories of
pseudo-compressible, M <0.3, and compressible, M >0.3, Mach numbers. Again,
it must be noted that the lowest Mach number of M=0.00001 does not mean that
it is the lowest possible Mach number for using the compressible algorithm. Figure
5.14 illustrates the u-velocity profiles at the vertical centerline of the cavity and
Figure 5.15 similarly does for the v-velocity profiles at the horizontal centerline.
These figures demonstrate the results of both absolute incompressible flow and
compressible flows from very low Mach numbers up to sonic speed. These velocities
have been nondimensionalized and compared with the incompressible results of
Ghia et al [72]. As these two figures show all results are absolutely identical for both
compressible and incompressible algorithms. There remains a question whether
they are obtained under different solution conditions. Surprisingly, the answer is
negative, i.e., all side conditions are definitely identical. Figure 5.16 compares the
convergence history of F for different cases. As seen they are all identical. This is
a feature not seen in the conventional compressible flow solvers and even in their

modified versions which solve for incompressible flows.

One important issue which needs to be explained here, is the velocity profiles in
highly compressible flows. The comparison shows that the velocity distributions are
identical along cavity centerlines for both highly compressible and real incompress-
ible flows. The reason behind this similarity returns to the velocity distribution
inside the incompressible cavity. As Figures 5.14 and 5.15 show, most of the re-

gion inside the cavity is under incompressible conditions, i.e. Mach < 0.3. This
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Figure 5.14: The velocity distributions for vertical center grid of the cavity problem,

Re=100.

Figure 5.15: The velocity distributions for horizontal center grid of the cavity prob-

lem, Re=100.
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Convergence History of F
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Figure 5.16: Comparison of the convergence histories in cavity with Re=100.

causes a sharp drop of compressibility effects beside the cavity lid. On the other
hand, the cavity region is almost a constant pressure field except at the regions
close to the leading and trailing edges of the moving lid. This has a direct effect in
generating a constant density field. This independence of the solution from Mach
number has also been reported by Pletcher and Cheng [38). This is why we have
included the results of high subsonic flows with those of pseudo-compressible flows.
In another words, the behaviour of high Mach number subsonic flow is similar to
that of very low Mach number flows and they could really be categorized in the

pseudo-compressible branch.

The convergence study of the analogy is compared with that of Pletcher and
Cheng [38] over a range of Mach numbers in Table 5.4. The comparison is performed
for both preconditioning and no-conditioning procedures. In this table NOI stands
for the Number-of-Iterations and NA means the case is Not-Available. For. the
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“:ﬂmonditio_n-ing [38] I Preconditioning [38] | This Work
" " A=10° A6=10°
Mach Ab NOI NOI Nor |
10~° NA NA 52 7
10-3 NA NA 92 7
10-2 || 0.00025 2123 NA 7
0.1 0.03 264 92 7
0.2 0.1 138 52 7
0.4 0.2 68 52 7
0.8 0.3 o1 52 7
1.0 NA NA 53 7
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Table 5.4: Comparison of the results of different compressible schemes for cavity

flow, Re = 100, grid 19x19

no-conditioning scheme, it is not possible to use the same time step over a wide
range of Mach numbers. They also could not reduce the number of iterations for
the no-conditioning scheme to the level achieved with preconditioning for Mach
numbers lower than 0.8. For the current study, the convergence was determined
for the steady calculations when the Root-Mean-Square of all dependent variables
reached 10~5. The stability of the results of the current analogy in achieving the
convergence characteristics are excellent in comparison with those of the reference.
The low number of time steps is another issue which demonstrates the ability of this
work. This is not seen in conventional compressible methods which are applied to
very low speed flows. Volpe [30] examines three different Euler and Navier-Stokes

solvers at different low Mach numbers and deduces that the number of iteration
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cycles to reach the convergence criterion is excessively high.

Many similar calculations were accomplished for other Reynolds numbers and
grid resolutions and the similar results were achieved. As an example, Figures 5.17
to 5.19 demonstrate a similar investigation and comparison for a higher Reynolds
number, Re=1000, in the same cavity. The mesh size is 31x31 in this model. In
order to illustrate the trend of convergence for lower RMS criterion, this criterion

has been diminished to 10~°. The secondary recirculating regions become stronger

Convergence History of F

Lid Mach No.

o : T R
time steps

Figure 5.17: Comparison of the convergence histories in cavity with Re=1000.

at this Reynolds number. Despite this higher complexity of the flow, a similar con-
clusion which was derived for Re=100 is once more determined here for Re=1000.
It is noted that all identical results show identical rates of convergence. Section

5.4.1 presents more results for compressible cavity with higher Reynolds numbers.
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U distribution on the vertical center line
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5.3.2 Channel Entrance Flow

The schematic development of a laminar flow at the entrance of two semi-infinite
straight parallel plates was shown in Figures 5.10 to 5.13. This model problem has
been investigated by the incompressible algorithm of the momentum-component
procedure in Ref. [55] and Section 5.2.2. It has been shown that the velocity
profile within the developing zone may have two maxima at locations other than
the centerline. Here we are not directly interested in the overshoots or their mag-
nitudes but in the performance of the analogy in solving both compressible and

incompressible entrance flows.

Figure 5.20 illustrates the centerline velocities for incompressible flow and four
compressible flows with inlet Mach numbers of 0.001, 0.01, 0.05, and 0.1 and a
grid distribution of 41x21. As is seen, compressibility effects are not important
for M <0.01 and the results are identical with those for incompressible results.
However, compressibility effects become noticeable as the inlet Mach number ap-
proaches 0.1. The derived results are compared with those of Morihara and Cheng
[75] who solve the quasi-linear Navier-Stokes equations for incompressible flow. In
addition, they are compared with the compressible results of Chen and Pletcher
[45) at M=0.05. Generally speaking, the agreement between the results is excel-
lent. Figure 5.21 compares the convergence histories of the investigated cases. The
low number of time steps to achieve the criterion of 10~° for all dependent variables
is excellent. The deviation for M=0.1 is expected due to compressibility effects and
the process of specifying the velocity at the inlet. The latter means that at the end
of each time step the masses at inlet nodes are corrected by multiplying the specified
values of velocity and the new calculated densities. These new masses are employed

as specified masses at the inlet for the next time step. When compressibility effects
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U distribution on centerline grid
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Figure 5.20: Centerline velocity distributions for incompressible and compressible

flows in entrance region, Re=20.
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Figure 5.21: Comparing the convergence histories for entrance flow, Re=20.
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become noticeable, this correction slows the convergence rate.

A similar presentation is given for Re=2000 in Figures 5.22 and 5.23. Here, the
grid distribution is 101x 11 which is considerably lower than that of references. The
results of Morihara [75] and AbdulNour [87] have been included for comparison.
AbdulNour solves the stream function-vorticity form of the Navier-Stokes equations
with implementing a second-order boundary conditions. Although this distribution
is not consistent with the results of the previous investigators it has been illustrated
here to show the very recent attempts in this regard. The distribution shows abrupt
jump at the inlet of the channel which is due to abrupt progress of the centerline
velocity as soon as it enters the channel. The results of Carvalho et al [88] have
also been shown here. Their method of solution, an integral transform method, is
applicable to high Reynolds numbers, Re — oco. Moreover, the solutions in the
entrance region approach asymptotic values when Re — co. As is seen, the results
of the present solution at high Reynolds numbers show excellent agreement with
the results of the limiting values.

Finally, we examine the performance of the analogy with respect to conver-
gence. In this regard, the entrance cases of Chen and Pletcher [45] who solve for
all speed flows are selected and their reported results are compared with the results
of our analogy. The test cases include four cases with inlet Mach numbers of 0.05.
Grid distributions of 21x11, 21x11, 31x11, 41x11 are used with nondimensional
channel lengths of 2, 4, 30, and 3000 to solve for Reynolds number of 0.5, 10, 75,
and 7500, respectively. Here, the Reynolds number is based on the inlet velocity
and half width of channel. The mesh distribution is a non-uniform one which is
not similar to those used by the references. Table 5.5 presents the results of this
comparison. The number of time steps to achieve the convergence criterion of 10~*

for all dependent variables is significantly lower for the analogy-based procedure.
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U distribution on centerline grid

18 v v

150 -,#M."'.‘

by
>
Y

o o Morihara & Cheng [75]
¢ * Carvaho et al [88]
x x AbdulNour [87]

Ucl/Uinlet
™

inlet Mach No.

soseees. M=0.001

— M=0.01

-~~~ M=0.05

— _Me0.1

+ + Incompressible

[

° 0005 001 0015 0.02 0.055 003 0035 004 0045 0.05
x/Re

Figure 5.22: Centerline velocity distribution for incompressible and compressible

flows in entrance region, Re=2000.
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Figure 5.23: Comparing the convergence histories for entrance flow, Re=2000.
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However for Re=0.5, the number of time steps is not as low as the others. In
this regard, attention must be drawn toward the selected grid. This grid does not
appropriately reveal the flow pattern in such a short length. Rapid convergence is
recovered at higher Reynolds numbers.

Reynolds 05 | 10 | 5 | 500

Grid H;lxll 21x11 | 31x11 | 41x11
Chen and Pletcher [45] || 25 | 42 | 87 | 200 |
This work u 6 3 3 3 "

Table 5.5: The number of time steps to achieve the criterion in compressible en-

trance flow, M=0.05

5.3.3 Converging-Diverging Nozzle Flow

The third test problem is hyperbolic planar converging-diverging nozzle flow. The
geometry of this nozzle is seen in Figure 5.24. This symmetric planar nozzle has
an aspect ratio of AR = :—:ﬂ% =2.0. Computations were performed for this model
using the Euler equations. In this test, y=1.4 and T = 75°C were considered
for the fluid. The results have been obtained for the upper half-nozzle using a
51*11 uniform grid distribution. The grid lines are depicted by dotted lines in
Figure 5.24. Slip boundary conditions were applied at the walls. Back pressure
and mass flow were specified downstream and upstream of the nozzle respectively.
Temperature was also specified at the inlet and the energy equation was closed for
boundary control volumes at the outlet with zero diffusive flux. Adiabatic boundary

conditions were applied to the walls. There was no condition on the y-component
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Figure 5.24: Hyperbolic converging-diverging nozzle configuration, AR=2.0.

of mass flux at either inlet or exit. In this study the mass flux and density variables
are normally nondimensionalized with the values of the parameters at the inlet of
the nozzle when they are plotted in figures. Pressure is nondimensionalized with
the back pressure, Puck. For the initial condition, the flow is considered to be at

rest and having ambient pressure at all grid locations.

This test problem is solved for incompressible low and for a number of low
Mach number compressible flows. The details of the procedure is quite similar to
those for the cavity problem. The low Mach numbers are M=0.001, 0.01, 0.05,
and 0.1 which approximate incompressible flow. Figure 5.25 shows the density
distribution along the centerline of the nozzle for these test cases. As seen at
lower Mach numbers, the density becomes uniform. Figure 5.26 compares the
distribution of other flow parameters along the nozzle centerline for the tested low
Mach number flows. These sub-figures illustrate the consistency of the other field
parameters with the density field. Finally, the convergence histories for different
low inlet Mach numbers have been depicted in Figure 5.27. It shows that the trend
of convergence is similar to the trend in the cavity problem with slight differences.
Since the pressure field changes are much sensitive at higher Mach numbers, the
effect indirectly shows up in the convergence history. Although at the very low
Mach number of M=0.001 the result is definitely identical with the incompressible



CHAPTER 5. TWO-DIMENSIONAL RESULTS

RO distribution on centerline grid
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one, a departure is seen for higher Mach number flow where the compressibility
is slightly effective. This is more serious for M=0.1. Sesterhenn et al [44] has
examined similar cases of low Mach number flows in a quasi one-dimensional Laval
nozzle using 100 equally spaced control volumes. A total of 22 time steps was
needed to achieve the specified criterion by changing the CFL number from 100 to
2000. Their method was restricted to only a one-dimensional study.
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Figure 5.27: Comparison of convergence histories for low inlet Mach number flows

in nozzle.

5.4 Compressible Flows

Contrary to the previous sections, highly compressible flows with considerable
changes in density are investigated in this section. Highly compressible flows are

mainly divided into subsonic, transonic, supersonic, and hypersonic flows. There
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are no shock waves in subsonic regimes while shock discontinuities become a major
problem in treating the other regimes of flow. We start our testing with subsonic
flow regimes. Later, this examination is extended to include the other flow regimes.
In consequence of our studying compressible cavity and nozzle flows, these are
two which are selected from the previous sections to be examined once more for
high speed compressible flows. Different CFL numbers have been used to solve the

problems in this section. They are provided for each case.

5.4.1 Compressible Cavity Problem

To demonstrate the performance of the present method in solving compressible
flows, the cavity problem is recalled. This model problem was introduced in Section
5.2.1 and it has already been solved for both absolute incompressible flow, Section
5.2.1, and pseudo-compressible flow, Section 5.3.1. The cavity problem is once more
tested here to emphasize the performance of the compressible algorithm of the code
in solving high Reynolds number flows with high subsonic speeds. Section 5.3.1 and
Ref. {55] provide more details.

In order to increase the compressibility effects within the cavity, the velocity
of the lid is gradually increased. The effect is to raise the Mach number. Many
cases were examined at different Mach numbers up to sonic speeds. Here we select
M=0.8 to represent the related results. This test problem was also studied for
several Reynolds numbers including high Reynolds number of 3200, 5000, and 7500
with a grid distribution of 51x51, 51x51, and 71x71, respectively. Figures 5.28
to 5.30 illustrate the centerline velocity distributions for these selected problems.

The centerline velocities have been nondimensionalized by the velocity of the

moving lid in all cases. The results have been compared with the incompressible
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Compressibility study in cavity (Re=3200)
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Figure 5.28: Compressible cavity, Re=3200, grid 51x51, M=~0.8.
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Compressibility study in cavity (Re=5000)
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Figure 5.29: Compressible cavity, Re=5000, grid 51x51, M=0.8.
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Compressibility study in cavity (Re=7500)
U distribution on the vertical center line
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Figure 5.30: Compressible cavity, Re=7500, grid 71x71, M=0.8.
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results of Ghia et al [72]. At the same time, they have been compared with the
incompressible results of the present method. There was a discussion about this

agreement in Section 5.3.1 which is not repeated here.

These excellent results represent the performance of the method in solving
Navier-Stokes equations for compressible flow with implementing a closed bound-
ary condition. In the following sections, this performance is tested for solving Euler

flow equations with other form of flow boundary conditions.

5.4.2 Converging-Diverging Nozzle Problem

In this part, converging-diverging nozzle configuration is tested for several different
types of moderate and high compressible flows. They include subsonic, supersonic,
and their combinations. Since most of the results of the current method in this
section is compared with the analytical solution of the one-dimensional flow, the
nozzle configuration has been selected in such a shape that its results are closer to

the one-dimensional flow.

Subsonic Flow

The first step in subsonic flow investigation is to study the effect of nozzle configu-
ration in the accuracy of the solution respect to the one-dimensional exact solution.
This study is directed through an isothermal flow condition. The nozzle configu-
ration in Figure 5.24 with all side conditions presented in Section 5.3.3 is recalled.
Here, the flow is isothermal which eliminates the effect of temperature field changes.
Figure 5.31 illustrates the distribution of Mach and pressure on the centerline of the
nozzle. The highest subcritical Mach number in isothermal flow is less than that in

isentropic flow. In an isothermal region, the flow becomes critical if M > (v)~/2.
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For air, this limit is M > 0.85. This has been emphasized in Figure 5.31 by drawing
a horizontal solid line in the Mach plot. There is a good agreement between the

results of the current method and that of the one-dimensional solution.
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Figure 5.31: Mach and pressure distributions for an isothermal nozzle, M;, ~0.25.

Next, we change the nozzle configuration in order to study the effect of two-
dimensionality of the configuration and flow. In this regard, the nozzle configuration
is changed to a more realistic shape which is far from one-dimensional assumption.
The geometry of this nozzle is seen in Figure 5.32. This symmetric planar nozzle
has an aspect ratio of AR = :—::% =2.035. We present the results of solving

the Euler equations for this test problem and compare them with the available

one-dimensional exact solution [89].
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The test case was examined using a 31x11 uniform grid distribution. The
grid lines are depicted by dotted lines in Figure 5.32. This figure also illustrates
the Mach contours within the flow field. Since the flow field is totally subsonic,
these contours are convex in the convergent part and concave in the divergent part.
These schematic patterns are in good agreement with those of other predictions,

Oswatitsch and Rothstein [90].

The isothermal Mach number and pressure distributions on the walls and the
centerline are shown in Figure 5.33. These results are compared with the exact so-
lution of the one-dimensional isothermal flow through a nozzle [89]. There is a good
agreement between the two solutions. However, the effect of the two-dimensionality
of the flow is much more critical in this test case than the one presented in Figure
5.31. The geometry of the nozzle shows how the one-dimensional solution could
be far from the real solution. A comparison between the convergent and divergent
parts shows that the deviation of the numerical solution from the one-dimensional
solution is different in these two regions. The convergent part is much farther from
the one-dimensional solution than the divergent part. This would cause more devi-
ation from the one-dimensional solution in the convergent part which is consistent
with the obtained results. This model was tested for longer lengths while retaining
the aspect ratio constant. The results showed that the distribution along both walls
and along the centerline approached the one-dimensional solution.

After this preliminary study on isothermal flow and the importance of the nozzle
geometry, we recall the nozzle in Figure 5.24 to test the compressible algorithm for
subsonic non-isothermal flows. In this regard, the inlet velocity is appropriately
fixed upstream to capture three high subsonic Mach numbers of 0.5, 0.8, and 0.95
at the throat. The density, Mach, and temperature fields are depicted in Figures
5.34 to 5.36. These figures present the distribution at the walls and along the
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nodal M contour lines in flow field

Figure 5.32: Mach contour lines in a converging-diverging nozzle with AR=2.035.
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Figure 5.33: Isothermal Mach and pressure distributions for the nozzle presented
in Figure 5.32 with M;, ~0.3.
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centerline of the nozzle. These results have been compared with the exact solution
of the one-dimensional isentropic flow approximation through a nozzle. There is an
excellent agreement between the two solutions. At first, it might be expected to
see the one-dimensional solution always between the centerline and wall solutions.
This is true until the throat reaches sonic speed. Then, the throat Mach number
becomes highly seunsitive to slight changes in inlet Mach number. Comparing the
inlet Mach numbers for the cases with throat Mach numbers of M=0.8 and 0.95
reveals the high sensitivity of the throat values near sonic speeds. In another words,
numerical errors will cause significant deviation from the exact solution near sonic
speeds. On the other hand, a look at the geometry of the nozzle reveals how far it
is from being one-dimensional. The two-dimensionality of the problem is another

reason which causes deviation from the one-dimensional solution.

In addition to the two factors of the nozzle geometry and the sensitivity at
high Mach numbers, there is the mesh size factor which affects the accuracy of the
numerical solution. The effect of this factor has been illustrated in Figures 5.37 and
5.38 for the nozzle problem with My,o.e =0.95. This nozzle problem has been tested
for three different mesh sizes of 101x11, 51x6, and 25x4. The Mach distributions
on the centerline have been compared with the one-dimensional solution. As is seen,
finer grid shows better accuracy comparing with the one-dimensional solution. The
Mach contour lines have been depicted for these three different mesh sizes in Figure
5.37. Finer grid distribution demonstrates smoother distribution around the throat

comparing with coarser distributions.

Generally speaking, Figures 5.34 to 5.36 present excellent performance of the
compressible algorithm for solving high subsonic compressible flows. It is essential
that the obtained solution presents a symmetric distribution left and right of the
throat section. This symmetry is well demonstrated within these plots. Identical



CHAPTER 5. TWO-DIMENSIONAL RESULTS 176

RO distribution on center grid and walls
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Figure 5.34: Density distribution for three different throat Mach numbers.
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Figure 5.35: Mach distribution for three different throat Mach numbers.
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T distribution on center grid and walls
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Figure 5.36: Temperature distribution for three different throat Mach numbers.

values of the parameters at the inlet and outlet of the domain supports the ability

of the code in solving the Euler flow equations.

For the boundary condition implementation, the pressure was specified down-
stream, which is why all three lines of pressure distribution are matched at the exit
of the nozzle. The upstream pressure was computed by the code. In an Euler flow,
both upstream and downstream should attain the same pressure if their aspect
ratios are the same. This was a good test for checking the pressure drop in this
method. The pressure drops which are presented on Figures 5.31 and 5.33 report
the pressure loss from inlet to outlet. These low numbers are another indication of

the accuracy of the method for this subsonic flow.
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Figure 5.37: The effect of mesh size on the Mach contour distribution.
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Figure 5.38: Mesh size effect on the accuracy of the numerical solution.
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Mixed Subsonic-Supersonic Flow

In this part, the shock capturing capability of the current method is investigated
by testing mixed subsonic-supersonic flow through a converging-diverging nozzle.
There are two limiting cases for convergent-divergent nozzle flow when the Mach
number of the throat is unity. The flow in divergent part of the nozzle can either be
fully subsonic, with symmetric distribution of flow variables respect to the throat
section, or supersonic, with a smooth decrease or increase of the flow parameters
from inlet to exit. Between these two limiting cases, the flow is not stable unless
there is a shock in the divergent part of the nozzle. In order to generate a shock in
the nozzle, it is necessary to have sonic speed at the throat. In this regard, the inlet
stagnation pressure is increased urtil the flow is choked. Then, the back pressure
is decreased to a lower value than the inlet. This results in a normal shock wave
within the divergent part of the nozzle. The ratio of (l;:‘)f_‘; determines the location

and the strength of the shock.

The nozzle figure is as before in Figure 5.24, while the grid distribution has
been changed to a uniform 51x9 distribution for the whole nozzle. Initially, the
inlet stagnation pressure was specified at the inlet and the exit pressure was se-
lected in such a manner that a pressure ratio of I’—;:gf_‘;=0.7932 produced shock at
the particular section £-=1.31 with strength, Mi"_,‘::—‘=2.575. The results of the cur-
rent method are depicted in Figures 5.39 and 5.40 and compared with that of the
one-dimensional exact solution and Karki [91]. Karki solves the test case using a
quasi-one-dimensional algorithm. Schneider and Karimian [12] have also solved this
problem using a quasi-one-dimensional algorithm without mentioning the profile of
the nozzle. Since the continuity equation is sacrificed to specify mass at the inlet,

the control volumes which are placed at the inlet do not necessarily conserve mass.
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MACH distribution for supersonic nozzle, isentropic
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Figure 5.39: Mach distribution in nozzle with M,,,.=1.67.
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Figure 5.40: Pressure distribution in nozzle with M,,.=1.67.
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As observed in Figure 5.39, this defect causes some discrepancies in the solution
close to the inlet. The exact solution has been computed right at the nodes and
these values are shown by circles. The exact location of the shock is not necessarily
at nodes but somewhere between two neighboring nodes in the vicinity of the shock
discontinuity.

As seen, the shock has been captured very well in the divergent part despite
using a coarse grid. The shock position and the exit Mach number have been pre-
dicted very well comparing with the one-dimensional solution. Lien and Leschziner
[53] have solved a similar inviscid nozzle flow using either the quasi-one-dimensional
or two-dimensional models in their all speed flow solver. They show that the two-
dimensional results are farther than the quasi-one-dimensional solution to the one-
dimensional exact solution around the shock. consistent with their experience, our
results also show that the shock has been slightly smeared in the front of the shock
and a minor undershoot is observed behind it. The source of this oscillation is from
the temperature integration point calculation which is approximated by a bilinear
interpolation in this case. The test problem was solved with a maximum Courant
number of 1.25. This maximum occurs at the left-hand-side of the shock. A total of
222 time steps were executed to achieve the RMS of 10~° for most of the dependent
variables. It should be noted that no special treatment has been specified for the

distribution in the vicinity of the shock wave.

In the second test, this nozzle configuration is examined for flow with stronger
normal shock wave, Figures 5.41 to 5.43. In addition to that, the oscillation around
the shock wave is investigated. In order to generate a stronger shock, the exit pres-
sure is reduced to 15,3:?;:0.57. This produces a shock at section %:1.837, with
a strength of g'“2=3.74. The maximum Mach number for this case is Miese=2.1
which is only 0.1 less than the maximum Mach number for a fully supersonic flow
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MACH distribution on lower and upper walls
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Figure 5.50: Mach distributions on the walls of channel with and without using

convecting momentum equation, M;,=0.5.
Transonic Flow

In this part, the method is examined for more highly compressible flows, tran-
sonic flow. The test configuration and its grid arrangement are as before while the
inlet Mach number of the flow is increased to a supercritical transonic case, i.e.
M;»,=0.675. This Mach number causes a supersonic region in the solution domain
which is terminated by a shock. Figure 5.51 depicts Mach contour lines within the
domain. These lines are no longer symmetric respect to the mid-chord line because
there is a shock on the bump. The Mach contour lines are also not perpendicular to
the wall downstream of the bump, as they are upstream, because the flow becomes
rotational upon passing the shock. Figure 5.52 demonstrates the distributions of

Mach number on the upper and lower walls of the channel and compares these
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Figure 5.51: Mach contours for transonic flow in a channel with a bump, M;,=0.675.
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Figure 5.52: Mach distribution on the walls of channel and comparing with [92]
using 89x 33, [33] using 60x20, and [32] using 67 x22 non-uniform grids, M;,=0.675.
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with the results of other workers. The agreement of this work with the results of
Eidelman [92] is very good although a little disparity is observed behind the shock.

In order to have a quantitative comparison as well as qualitative one, the location
and magnitude of the captured shock have been determined and represented in
Table 5.6. The results of the current work are compared with those of [33, 92, 93]. Ni
[93] developed a multigrid scheme in the context of the density-based compressible
flow algorithm. His results are more accurate. Since the shock for this work has a
bit of spread its location has been calculated based on the midpoint between the
upstream and downstream of the shock. The results of the current work compare

favorably with those of the other researcher.

" “ Present method | Ni [93] | Eidelman [92] | Karimian [33]

| Bump Chord% 75% 72% 12% 75%
Max. Mach No. 1.29 137 1.29 1.25

Table 5.6: Location of the shock in percentage of the bump chord length

The initial condition was F=G=0 for this case. The total of 50 time steps
was required to reach the convergence criterion, i.e. RMS<10~% for all dependent
variables, with A8=0.1.

Supersonic Flow

The final case examined for the bump channel flow is for supersonic flow. The
configuration of the test model remains the same except the bump thickness is
reduced to 4%. The grid arrangement for this case is different from the previous
one. It is a non-uniform 77x21 grid distribution which is shown in Figure 5.53. A
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coarser distribution has been considered for upstream of the bump because the flow
in that region is not affected by the bump. The grid distribution along the channel
over bump and its downstream are relatively uniform, however, non-uniform grid
distribution has been considered for the cross sections to have better resolution of
the shock on walls. The inlet Mach number of M;,=1.65 is selected to be compatible
with the results of other workers.

Grid distribution for supersonic flow

Figure 5.53: Grid distribution for supersonic flow in a channel with bump.

The isobar lines in Figure 5.54 show the position of the shock waves inside the
channel. As observed, two oblique shock waves are formed at the corners of the
bump. The leading edge shock is followed by expansion waves reflected from the
bump’s body. This shock later strikes the upper wall and is reflected back by the
wall into the expanding flow field. The trailing edge shock leaves the computational
domain from the exit boundary after intersecting the expansion waves. The number
of intersections and reflections indicates that this supersonic problem is a difficult
one.

The Mach distributions on the lower and upper walls are seen in Figure 5.55.

The results of the current method are compared with those of the previous references

for which the grid arrangements were different from the previous test cases. As seen
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nodal P contour lines in flow field

Figure 5.54: Mach contours for supersonic flow in a channel with a bump, M;,=1.65.
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Figure 5.55: Mach distribution on the walls of channel and comparing with [92]
using 89x33, [33] using 60x20, and [32] using 67 %22 non-uniform grids, M;,=1.65.
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from the figures, the agreement of the results on the lower wall is better than that of
the upper wall, however, for the lower wall, the flow near the channel exit displays
some oscillatory behaviour. This behaviour identifies the need for improvement
in this region of the flow. Although the cause of this is not entirely clear, the

intersection of the reflected shock with that corner might be an important factor.

The problem was started with initial conditions of Fy=500 kg/(m/s?), Go=0.0
kg/(m/s?), P,=86,100 Pa, and T,=300 °K. This non-zero F, speeds up the conver-
gence. The number of time steps to reach the convergence criterion for RMS<10~°

was 220. The maximum Courant number used for this test case was 0.86.

5.4.4 Supersonic Flow in a Channel with a Ramp

The purpose of this section is to study the performance of the current method in
solving flow with strong oblique shock waves. The test model is a channel with
a ramp mounted on its lower wall. This problem is very appropriate because of
the availability of the exact solution. This enables us to evaluate the accuracy of
the method. The geometry and grid distribution for this problem are shown in
Figure 5.56. The longitudinal and transverse lengths are 1.3 and 1.2m, respec-
tively. The ramp angle is 21.57-deg and its leading-edge is located at 2=0.3m. The
ramp angle creates an oblique shock wave with 45-deg angle if the inlet Mach num-
ber is M;,=2.5. This shock has an strength of M;/M;=0.628, P,/P,=3.497, and
T2/T;=1.508. This shock will leave the solution domain without colliding the solid
walls. A non-uniform grid distribution of 41x37 has been used for the computation,
Figure 5.56.

Figure 5.57 depicts the Mach contour lines in the solution domain. As is seen,

the main changes of the flow parameters occurs across the shock wave. The oblique
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shock wave leaves the domain with an angle of 45-deg which is identical with the
analytical solution.

The details of the solution inside the channel have been provided in Figure 5.58.
This figure shows the Mach distribution at a constant height of y=0.75m inside the
channel and compares the results of the current method with that of Karimian and
Schneider [33]. The comparison of these results with the exact solution shows that
the shock wave has been captured within almost 6 nodes by the both methods.
However, the current method shows an overshoot behind the shock. This is not
seen in the results of the reference. This might be the effect of damping mechanism
which is used by the reference. The results demonstrate the ability of the current
method to capture strong oblique shock wave without using any implicit artificial

viscosity or damping mechanism in its algorithm.

MACH distribution at y=0.75
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Figure 5.58: Comparing Mach distribution result at height y=0.75m with other

results in a duct with a ramp.
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In this test problem, the selected convergence criterion of RMS<10~% was de-
creased to RM S<10~% because the time step, or Courant number, for this problem
was lower than that of the previous tested problems, Table 5.4. This small time
step can lead to a wrong steady-state solution if RMS is not enough low. Since we
are looking for the steady-state solution, we have to decrease the RMS criterion to
be sure that the converged results performs the steady-state solution.

The problem was started with initial conditions of Fo=500 kg/(m/s?), Go=0.0
kg/(m/s?), P,=86,100 Pa, and T5=300 °K. A non-zero Fy speeds up the conver-
gence. The problem was solved for an inlet Courant number of about 0.55. The
total number of 416 time steps were needed to satisfy the RMS<10~° for F and
G. This number is reduced to 265 if RMS<10-5.

5.5 Comparison Between Velocity and Momen-

tum Formulations

In this section, we present a comparison between the momentum-based and velocity-
based formulations for high speed compressible flow. It is noted that there is no
significant difference between the velocity-based and momentum-based formulation
for absolute incompressible flow where density is a constant. The discussion on
the performance of the current method in solving pseudo-compressible flows was

presented in Section 5.3 and is not repeated here.

A literature review of the methods which solve for incompressible and compress-
ible flows at all speeds was presented in Section 1.2.4. Zienkiewicz and Wu [49]
solve subsonic and supersonic flows for a number of applications using an explicit

or semi-explicit finite-element method. They solve the non-conservative form of
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the governing equations and admit that this may lead to different shock behaviour
than that involving the full conservation form. They do not report the convergence
histories for their steady-state solutions. Van Doormal et al [50] illustrates the
applicability of segregated methods for solving flow at all speeds and evaluates the
relative convergence behaviour of these methods for solving the one-dimensional
and two-dimensional laminar compressible flows. This provides a good potential
to compare the performance of the current method with that of the segregated
ones. However, this comparison has been done for two-dimensional studies with a
different segregated approaches. Karki and Patankar [32] have developed SIMPLE-
based methods to solve for flow at all speeds. The density at the integration point
is always upwind-biased. This provides an artificial damping which allows for the
successful computation of transonic and supersonic flows. Their results have been
compared with the results of the current formulation as illustrated in Figures 5.39
to 5.42, for the converging-diverging nozzle problem with shock, and Figures 5.49,
5.52, and 5.55, for flow in a channel with a bump. Their results show smearing in
the vicinity of shocks due to excessive numerical dissipation. They do not report

the convergence histories of their solutions.

Chen and Pletcher [38, 45] employ explicit/implicit second-order and explicit
fourth-order smoothing terms in their time-marching method to solve transient
flow and flow at all speeds. Their work is fully implicit and all variables, (u,v,p,t),
are computed simultaneously. They report the convergence behaviour of their so-
lutions which we compared with that of the current work. This comparison has
been presented in Table 5.4 for solving the compressible cavity flow and in Table
5.5 for solving subsonic entrance flows. Generally speaking, the momentum-based

procedure provides faster convergence and higher stability.

In addition to the above methods which solve for flow at all speeds, it is the
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method of Karimian and Schneider [27, 33] which enables us to provide a direct
comparison between the performance of the momentum-based formulation and that
of the velocity-based formulation. As was mentioned in Section 3.6, a difficulty
with their method is the requirement of an explicit damping mechanism. This does
not permit a neat and clear comparison between the two formulations. In a one-
dimensional investigation, a comparison was performed by direct modeling of their
method without considering the damping mechanism, Section 3.6. For the two-
dimensional investigation, there remains a question of whether the velocity-based
formulation can retain its characteristics of convergence and stability if the damping
mechanism is eliminated from the scheme. Karimian [94] states that their velocity-
based procedure would diverge without inclusion of the damping mechanism. This
statement results in several important conclusions which are discussed subsequently

in this section.

Table 5.7 provides ar informative comparison between the velocity-based and
momentum-based formulations for highly compressible flow problems which include
flow through channels with a bump and with a ramp on the lower boundary. The
number of iterations, NOI, and time step, Af, are tabulated based on an RMS
convergence criterion of 10~5 for the momentum formulation and of 10~3 for the
velocity formulation. Although the initial and boundary conditions are the same for

both formulations, the grid resolutions and distributions are not exactly identical.

Despite different RMS criterions for velocity-based and momentum-based for-
mulations, a number of points could be resulted if we assume that they are the
highest criterions to which steady-state solutions are botained in each of these for-
mulations. For the subsonic flow, it is the momentum procedure which shows faster
convergence in comparison with the velocity procedure in meeting a defined RMS.

For transonic and supersonic flows, this fast convergence is diminishes with increas-
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momentum-based formulation | velocity-based formulation

with no damping with artificial damping
this research Karimian and Schneider [33)
RMS 0.00001 0.001 |

. " Subsonic Bump, M;,=0.5 1]

NOI 8 8

Af huge 1.0
. " Transonic Bump, M;,=0.675 ||
| ~or 50 25 u

A6 0.1 1.0
" ” Supersonic Bump, M;, =1.65

NOI 220 10+18
. Ab 0.0005 0.0002, 0.02
|. Supersonic Ramp, M;, =2.5

NOI 265 1041049

Ad 0.0002 0.0001, 0.001, 0.01

Table 5.7: Comparative study of the convergence histories between the velocity-

based and momentum-based formulations.

ing Mach number. For supersonic flow, the performance of the velocity procedure
with damping is superior to the momentum procedure without damping. Although
both procedures start with small time steps, the velocity-based approach multi-
plies it after a number of preliminary steps. The time step increase speeds up the

convergence toward the steady-state solution. If the time step is increased for the
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momentum-based formulation which is free from any explicit damping mechanisms,
it cannot handle the acceleration produced by the force of the initial low and of

the boundary condition implementation.

Generally speaking, the momentum-based formulation has several advantages
with respect to the velocity-based formulation without damping. The use of the
momentum-component formulation does increase the stability of the method in
comparison with the velocity-component formulation which requires a damping
mechanism for all time steps in order to converge. Some under/overshoots are
observed around strong shocks in the momentum-based formulation but do not
cause serious difficulties in the convergence if the time step is small enough. It is
the lack of a damping mechanism which does limit the time step to small values.
Indeed, the momentum-based formulation does need improvement if it is desired to

achieve faster convergence. This provides one possible area for future research.

At the end, it is noted that the advantages of the momentum-based formulation
in obtaining better convergence without using a damping mechanism are supported
by a number of factors. Two important factors were discussed in the research
motivation. They are the stability of the mass flux in passing through shocks,
Section 2.4.2, and the reduction in the linearization requirements, Section 2.4.3.
However, the importance of each of these factors in promoting cannot be fully

evaluated separately.

5.6 Closure

The proposed momentum variable procedure was examined for many different two-
dimensional flows including incompressible, pseudo-compressible, and subsonic to

supersonic compressible flows. The method showed excellent performance in solving
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flow at all speeds. There was no CFL number limit in solving incompressible and
subsonic flows. The solution converged very rapidly within a small number of
iterations. However, the convergence slowed down in supersonic flows with CFL
numbers less than one. Despite not employing any explicit artificial viscosity or
dissipation and in spite of using coarse grids, excellent solutions were obtained
in comparison with the work of other references. However, the formulation still
needs improvement to increase its convergence in comparison with the velocity-
based formulation where damping is employed. The proposed formulation showed
excellent performance in solving very low Mach number flows with respect to both

the solution accuracy and the convergence history.
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Concluding Remarks

6.1 Summary

The difference in the nature of compressible and incompressible flows has resulted
in the development of numerous numerical techniques to deal with each of these
two types of flow separately. There have also been efforts to develop aigorithms
capable of solving both compressible and incompressible flows. In this thesis, a new
two-dimensional unsteady viscous computational algorithm has been developed to
solve flow at all speeds. A strong motivation for this development has been to ex-
plore the use of momentum component variables instead of the velocity components
usually used in all speed solvers. Several reasons were behind this. A significant
one of which is the strong analogy that exists between the two kinds of flow when
such variables are used. This analogy, developed in this thesis, permits incom-
pressible flow methods to be applied to compressible flow problems. In addition,
using the momentum components improves stability around shocks and reduces the

linearization difficulties.

203
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The two-dimensional Navier-Stokes equations were selected to examine the per-
formance of the proposed method. The method was developed using a control-
volume-based finite-element scheme. The finite-element part of this scheme pro-
vides the benefits of finite-element geometric flexibility while the advantages of
conservative discretization procedures are provided by the use of the control-volume

formulation.

Initially, this proposed new direction was explored for one-dimensional flow
modeling. In this one-dimensional investigation, momentum, pressure, and tem-
perature were selected as the dependent variables in a colocated grid arrangement.
The governing equations were treated in conservative manner. The integration
point equation for the momentum component was derived by approximating the
non-conservative form of the momentum equation at the integration point. Rear-
rangement of this equation enabled the integration-point momentum, or convected
momentum, to be determined. If only this convected momentum component was
employed in the conservative form of the discretized equations, it was found that
a special form of the pressure checkerboard problem resulted. A number of differ-
ent treatments to overcome this difficulty were examined. In this regard, a new
integration point equation was derived by the combination of the momentum and
continuity equation errors. This new equation was named the convecting equa-
tion which represented the convecting momentum component. The influence of
the continuity error was examined by applying an appropriate factor. The use of
both the convected and convecting momentum equations removed the possibility
of the pressure-velocity decoupling problem. The resulting one-dimensional algo-
rithm was then validated for incompressible flow by using several source/sink test
cases. The algorithm was also validated for compressible flow by comparing with
the analytical results for the shock tube problem. Finally, the performance of this
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one-dimensional momentum-component formulation was compared with that of the

velocity-component formulation by direct modeling of the latter formulation.

Next, the procedure was extended for solving two-dimensional flows. Convected
and convecting integration point equations were again derived by approximating the
non-conservative form of momentum and the conservative form of continuity equa-
tions at the integration points. The stream-wise treatment of the convection terms
had an important impact in achieving the correct physical modeling of the flow.
The two-dimensional algorithm was validated for many different flows including in-
compressible and compressible ones. The flow models were classified into the three
categories of incompressible, pseudo-compressible, and compressible flows. The re-
sults of the developed method were compared with those of several velocity-based
procedures which solve flow for all speeds. The good to excellent performance of
the method in achieving reliable results on coarse grids without using the explicit
artificial viscosity and damping mechanisms are noteworthy. The following sections

present the main conclusions of this work and recommendations for future research.

6.2 Conclusions

The main purpose of this PhD research has been to explore and find the advan-
tages and disadvantages of the momentum-variable procedure in comparison with
the velocity-based procedure. The potential advantages of the momentum-based
formulation motivated this research: the existence of a flow analogy between the
governing equations for compressible and incompressible flow, the stability of the
mass flux through shocks, and reduced difficulty in linearizing the nonlinear terms.

It is almost impossible to recognize the degree to which each potential advan-
tages is involved in gaining the superior results for the momentum-based procedure.
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In a one-dimensional unsteady flow investigation, it was shown that the stability
of the mass flux passing through shocks was not a crucial factor. However, this
assessment was much more difficult in the two-dimensional study. Considering this
difficulty, the advantages and disadvantages of the momentum-variable procedure
are discussed in the following paragraphs mainly without reference to the factors

which cause such advantage or disadvantage.

The conclusions are divided into two parts. In the first part, the characteristics
and capabilities of the new method are presented. This part is developed mainly by
comparing with exact solutions and the results of other workers. The second part
compares the advantages and disadvantages of the momentum-variable procedure
with those of the velocity-variable procedures. This part is concluded by a direct
comparison with the results of the velocity-based procedures which solve flow for
all speeds. Based on the method development and the demonstrated results of its

application, the first part of the conclusions are

1. The benefits of the finite-element basis of the method facilitates domain dis-

cretization, and no difficulty was encountered in fitting the grid to the domain.

2. The integration point equations which were derived provide correct physical
behavior of the flow variables. This ability was shown not only by the numer-
ical solution but also by an analytical investigation. The Peclet and Courant
numbers are two parameters which provide flexibility of the formulation for

a wide range of flow parameters.

3. The proper consideration of the role of velocities at control-volume surfaces
resulted in two sets of integration point equations; convected and convecting
ones. The correct application of these equations generated a strong connection

between the velocity and pressure fields and removed the possibility of the
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checkerboard problem. This capability was demonstrated by numerous tests

in both one-dimensional and two-dimensional studies.

4. The method showed good to excellent performance in solving flow at all speeds
including: incompressible and compressible (pseudo-compressible to super-
sonic), viscous and inviscid, and steady and unsteady. Excellent results were
obtained for incompressible and subsonic compressible flows despite using
coarse grids. The demonstrated results confirm the excellent performance of
the developed method in solving low and high Reynolds number flow cases.
Very good results were obtained in supersonic flows despite the exclusion of
explicit artificial viscosity or dissipation functions. This was clearly observed

in solving high speed inviscid flows.

5. No CFL number limitation was encountered in solving incompressible, sub-
sonic compressible, and transonic flows. This advantage enabled the present
time dependent method to meet the convergence criterion within a relatively

small number of iterations using large time steps.

6. The selection of pressure as a dependent variable and developing a pressure-
based method enabled the method to be highly robust in treating very low
Mach-number compressible flows. The results of solving the subsonic and
transonic flows were noteworthy with regard to the coarse grid distribution

and the number of time steps required to reach a steady-state solution.

7. Some difficulties were encountered in supersonic flow, which generally slowed
down the convergence of the solution and limited the CFL number to close
to one. This may be due to the lack of artificial dissipation and/or damping

functions. Despite these restrictions, the results were fairly good.



CHAPTER 6. CONCLUDING REMARKS 208

8. An analogy between compressible and incompressible flow motivated the use
of momentum-components as dependent variables. The pseudo-compressible
and compressible models were used to demonstrate this analogy. The analogy
worked well not only in deriving similar results for both compressible and

incompressible flows but also in providing similar convergence histories.

9. The entire effort the current work was to develop the method as simple as
possible. Complex and time-consuming techniques were avoided so that the
conceptual aspects of the method could be emphasized. For example, all
integration point equations were derived based only on the element nodal
points. The other three integration point values were not involved in deriving
the fourth. Despite excluding such a potential benefit, very good results were
obtained for highly recirculating flows.

A direct comparison between the results of the momentum-variable and velocity-
variable procedures which solve flow for all speeds results in the second part of the
conclusions. The conclusions are categorized based on the characteristics of the

different types of flow,

1. There is no significant difference between the velocity-variable formulation
and momentum-variable formulation when density is constant. However, the
momentum-based formulation involves and discretizes terms in the momen-
tum equations which are not existent in the momentum equations of the
velocity-based formulation. Although these terms are mathematically zero,
they are numerically non-zero. These terms could be a source of difference

between the above procedures.
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2. The momentum-variable formulation is robust for pseudo-compressible flows.
However, this may be accounted for as a direct advantages of using a pressure-
based algorithm. Essentially, the pressure-based methods which solve com-
pressible flows could be extended to solve for pseudo-compressible flows. How-
ever, there is no reason for a pressure-based method to show identical solution
and convergence history behaviour for both the absolute incompressible and
pseudo-compressible flows. The existence of these capabilities in the results
of the momentum-component formulation could be accounted for as a direct

effect of the existence of the flow analogy in that formulation.

3. Although both the velocity-based and momentum-based formulation success-
fully solve the subsonic compressible flows, the latter one generally shows
better performance in comparison with the former one. This is concluded
by comparing the number of iterations which they need to meet the preset

convergence criterion.

4. In supersonic flow, the velocity-based procedure suffers from severe oscilla-
tions in the vicinity of the shock if no explicit damping mechanism or dis-
sipation is included. This results in major time-step and Courant number
restrictions. These oscillations subsequently results in instability and diver-
gence if a lower convergence criterion is desired. However, the use of a damp-
ing mechanism in the velocity-based procedure could result in better stability
and accuracy. The momentum-based procedure, on the other hand, had ex-
cellent stability and good accuracy, even without explicit damping, provided

the time step and Courant number restrictions were satisfied.
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6.3 Recommendations for Future Research

No single method contains all desirable features while avoiding any disadvantages.
The following recommendations are suggested for the continuation of future research

in this field:

1. There is a need to further investigate the problems encountered with super-
sonic flow. This investigation should generally address a number of issues.
The first is to extend the ability of the supersonic application to solve for
higher Courant numbers which will then result in faster convergence. The
second is the use of artificial dissipation techniques and damping mechanisms
ro remove undershoots and overshoots around the shock waves and improve
convergence . The third is to extend the scheme to more accurate shock

capturing techniques.

2. The possible unification of and the justification for the two convected and
convecting momentum components is another interesting subject for future
research. Although mathematically demonstrated, our understanding of this
issue could be further enhanced.

3. While the discretization of the domain interior is fully conservative, the
boundaries may not be. The modification of boundary condition treatment
toward obtaining a fully conservative solution domain is another subject for

future research.

4. A number of other extensions of the present method could also be pursued,
such as extending the method to: three-dimensional flows, flows with more
complicated geometries and boundaries, buoyant flows, heat transfer prob-

lems, and other types of finite elements (such as triangles).



Bibliography

1. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere,
Washington, D.C., 1980.

2. Harlow, F.M., and Welch, J.E., “Numerical Calculation of Time Depen-
dent Viscous Incompressible Flow with Free Surface”, Physics of Fluids,
v.8, pp.2182-2189, 1965.

3. Raithby, G.D., and Schneider, G.E., “Numerical Solution of Problems

in Incompressible Fluid Flow; Treatment of the Velocity-Pressure Cou-
pling”, Numerical Heat Transfer, v.2, pp.417-440, 1979.

4. Patankar, S.V., “A Calculation Procedure for Two-Dimensional Elliptic
Situations”, Numerical Heat Transfer, v.4, pp.409-425, 1981.
5. Zedan, M., and Schneider, G.E., “A Coupled Strongly Implicit Proce-

dure for Velocity and Pressure Computation in Fluid Flow Problems”,

Numerical Heat Transfer, v.8, pp.537-657, 1985.
6. Patankar, S.V., and Spalding, D.B., “A calculation procedure for Heat,

Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows”,

International Journal of Heat and Mass Transfer, v.15, pp.1787-1806,
1972.

211



BIBLIOGRAPHY 212

7.

10.

11.

12.

13.

14.

Baliga, B.R., and Patankar, S.V., “A Control-Volume Finite-Element
Method for Two Dimensional Fluid Flow and Heat Transfer”, Numer-
ical Heat Transfer, v.6, pp.245-261, 1983.

Prakash, C., and Patankar, S.V., “A Control-Volume Based Finite-
Element Method for Solving the Navier-Stokes Equation Using Equal
Order Variable Interpolation”, Numerical Heat Transfer, v.8, pp.259-280,
1985.

Rhie, C.M., and Chow, W.L., "Numerical Study of the Turbulent Flow
Past and Airfoil with Trailing Edge separation” AIAA Journal, v.21,
pp-1525-1532, 1983.

Schneider, G.E., and Raw, M.J., “Control Volume Finite Element Method
for Heat Transfer and Fluid Flow Using Co-located Variables - 1. Com-
putational Procedure”, Numerical Heat Transfer, v.11, pp-363-390, 1987.

Schneider, G.E., and Raw, M.J. “Control Volume Finite Element Method
for Heat Transfer and Fluid Flow Using Co-located Variables - 2. Appli-
cation and Validation”, Numerical Heat Transfer, v.11, pp.391-400, 1987.

Schneider, G.E., and Karimian, S.M.H., “Advances in Control-Volume
Based Finite-Element Methods for Compressible flows”, Computational
Mechanics, v.14, pp.1-16, 1994.

Darbandi, M., and Schneider, G.E. “Momentum Comporent Variable
Procedure for Flow at All Speeds”, The Proceedings of the Third Annual
Conference of the CFD of Society of Canada, Banff, Alberta, Canada,
June 25-29, pp.145-156, 1995.

Peric, M., Kessler, R., and Scheuerer, G., “Comparison of Finite-Volume

Numerical Methods with Staggered and Colocated Grids”, Computers



BIBLIOGRAPHY 213

15.

16.

17.

18.

19.

20.

21.

22.

and Fluids, v. 16, pp.389-403, 1988.

Alishahi, M.M., and Darbandi, M., “Multiple-Zone Potential Solution
around Wing-Body Configurations”, Journal of Aerospace Engineering,
v.6, pp.-329-346, 1993.

Palumbo, D.J., and Rubin, E.L., "Solution of two Dimensional Unsteady
Compressible Navier-Stokes Equations Using a Second Order Accurate
Numerical Scheme”, Journal of Computational Physics, v.9, pp.466-495,
1972.

MacCormack, R.W., "The Effect of Viscosity in Hypervelocity Impact
Cratering”, AIAA Paper 69-354, 1969.

MacCormack, R.W., ”A Numerical Method for Solving the Equations of
Compressible Viscous Flows”, AIAA Journal, v.20, pp.1275-1281, 1982.

Beam, R.M., and Warming, R.F., "An Implicit Finite Difference Algo-
rithm for Hypersonic Systems in Conservation Law Forms”, Journal of

Computational Physics, v.22, pp.87-110, 1976.

Beam, R.M., and Warming, R.F., ”An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations”, AJAA Journal, v.16, pp.393-402,
1978.

Shamroth, S.J., Briley, W.R., and McDonald, H., “Prediction of Cas-
cade Flow Fields Using the Averaged Navier-Stokes equations”, Journal
of Engineering for Gas Turbine and Power, v.106, pp.383-390, 1984.

Briley, W.R., and McDonald, H., “Solution of the Multidimensional Com-
pressible Navier-Stokes Equations by a Generalized Implicit Method”,
Journal of Computational Physics, v.24, pp.372-392, 1977.



BIBLIOGRAPHY 214

23.

24.

25.

26.

27.

28.

29.

30.

31.

Baker, A.J., and Soliman, M.O., “A Finite Element Algorithm for Com-
putational Fluid Dynamics”, AIAA Journal, v.21, pp.816-827, 1983.

Issa, R.I., and Lockwood, F.C., "On the Prediction of Two Dimen-
sional Supersonic Viscous Interactions Near Walls”, AIAA Journal, v.15,
pp-182-188, 1977.

Han, S.M., “A Generalized Finite Difference Method for Transient Anal-
ysis of Compressible and Incompressible Flows”, Numerical Methods for
Fluid Transient Analysis, presented at Applied Mechanics, Bioengineer-
ing, and Fluids Engineering Conference, ASME, Houston, Texas, June
20-22, 1983.

Rhie, C.M., “Pressure Based Navier-Stokes Solver Using the Multigrid
Method”, ATIAA Journal, v.27, pp.1017-1018, 1989.

Karimian, S.M.H., and Schneider, G.E. “Numerical Solution of Two
Dimensional Incompressible Navier-Stokes Equations: Treatment of
Velocity-Pressure Coupling”, AIAA Paper 94-2359, AIAA 25th Fluid Dy-
namics Conference, Colorado, June 20-23, 1994.

Issa, R.L., “Solution of the Implicit Discretized Fluid Flow Equations by
Operator-Splitting”, Journal of Computational Physics, v.61, pp., 1985.

Van Dyke, M., “Perturbation Methods in Fluid Mechanics”, Academic
Press, New York, Chapter 2, 1964.

Volpe, G., “Performance of Compressible Flow Codes at Low Mach Num-
bers”, AIAA Journal, v.31, pp.49-56, 1993.

Hauke, G., and Hughes, T.J.R., "A Unified Approach to Compressible
and Incompressible Flows”, Computer Methods in Applied Mechanics
and Engineering, v.113, pp.389-395, 1993.



BIBLIOGRAPHY 215

32.

33.

34.

35.

36.

37.

38.

39.

Karki, K.C., and Patankar, S.V., “Pressure Based Calculation Proce-
dure for Viscous Flows at All Speeds in Arbitrary Configurations”, AIAA
Journal, v.27, pp.1167-1173, 1989.

Karimian, S.M.H., and Schneider, G.E. “Pressure Based Control-Volume
Finite-Element Method for Flow at All Speeds”, AIAA Journal, v.33,
pp.1611-1618, 1995.

Merk, C.L., and Venkateswaran, S., and Buelow, P.E.O., “The Relation
Between Pressure-Based and Density-Based Algorithms”, AIAA Paper
92-0425, 1992.

Ekaterinaris, J.A., and Giddens, D.P. “Numerical Solutions of Aerial
Flows Using a Low Mach Number Compressible Approach”, ASME Ap-
plied Mechanics Division (Publication) AMD v.84, Published by ASME,
New York, pp.65-68, 1987.

Feng, J., and Merkle, C.L., “Evaluation of Preconditioning Methods for
Time-Marching Systems”, AIAA Paper 90-0016, 1990.

Briley, W.R., McDonald, H., and Sharmoth, S.J., “A Low Mach Num-
ber Euler Formulation and Application to Time-Iterative LBI Schemes”,
AIAA Journal, v.21, pp.1467-1469, 1983.

Pletcher, R.H., and Chen, K.H., “On Solving the Compressible Navier-
Stokes Equations for Unsteady Flows at Very Low Mach Numbers”, AIAA
93-3368, Proceedings of the 11th Computational Fluid Dynamics Confer-
ence, Orlando, FL, July 6-9, pp.765-775, 1993.

Chorin, A.J., “A Numerical Method for Solving Incompressible Viscous
Flow Problems”, Journal of Computational Physics, v.2, pp.12-26, 1967.



BIBLIOGRAPHY 216

40.

41.

42.

43.

44.

45.

46.

47.

48.

Steger, J.L., aud Kutler, P., “Implicit Finite-Difference Procedures for the
Computation of Vortex Wakes”, AIAA Journal, v.15, pp:581-590, 1977.

Kwak, D., Chang, J.L.C., Shanks, S.P., and Chakrararthy, S.R., “A
3D Incompressible Navier-Stokes Flow Solver Using Primitive Variables”,

AJAA Journal, v.24, pp.390-396, 1986.

Choi, D., and Merkle, C.L., “Time-Derivative Preconditioning for Viscous
Flows”, AIAA Paper 91-1652, 1991.

Merkle, C.L., and Choi, Y.H., “Computation of Low Speed Flow with
Heat Addition”, AIAA J. v.25, pp.831-838, 1987.

Sesterhenn, J, Muller, B., and Thomann, H., “Flux-Vector Splitting for
Compressible Low Mach Number Flow”, Computers Fluids, v.22, pp.441-
451, 1993.

Chen, K.H., and Pletcher, R.H., “Primitive Variable, Strongly Implicit
Calculation Pr..cedure for Viscous Flows at All Speeds”, AIAA Journal,
v.29, pp.1241-1249, 1991.

Darbandi, M., and Schneider, G.E. “Use of a Flow Analogy in Solv-
ing Compressible and Incompressible Flows”, AIAA Paper 97-0706, 35th
AJAA Aerospace Sciences Meeting & Exhibit, Reno, NV, January 6-9,
1997.

Harlow, F.M., and Amsden, A.A., “A Numerical Fluid Dynamics Calcu-
lation Method for All Flow Speeds”, Journal of Computational Physics,
v.8, pp.197-213, 1971.

Zienkiewicz, O0.C., Szmelter, J., and Peraire, J., “Compressible and In-
compressible Flows; An algorithm for all seasons”, Computational Meth-
ods in Applied Mechanics and Engineering, v.78, pp:105-121, 1990.



BIBLIOGRAPHY 217

49.

50.

5l

52.

53.

54.

55.

56.

57.

Zienkiewicz, O.C., and Wa, J., “A General Explicit or Semi-Explicit Algo-
rithm for Compressible and Incompressible Flows”, International Journal
for Numerical Methods in Engineering, v.35, pp.457-479, 1992.

Van Doormal, J.P., Raithby, G.D., and McDonald, B.H., “The Segregated
Approach to Predicting Viscous Compressible Fluid Flows”, Journal of
Turbomachinery (Transaction of ASME), v.109, pp.268-277, 1987.

Demirdzic, I., Lilek, Z., and Peric, M., “A Colocated Finite Volume
Method for Predicting Flows at All Speeds”, International Journal for
Numerical Methods in Fluids, v.16, pp.1029-1050, 1993.

Shyy, W., Chen, M.H., and Sun, C.S., “Pressure-Based Multigrid Algo-
rithm for Flow at All Speeds”, AIAA Journal, v.30, pp.2660-2669, 1992.

Lien, F.S., and Leschziner, M.A., " A General Non-Orthogonal Collocated
Finite Volume Algorithm for Turbulent Flow at All Speeds”, Computer
Methods in Applied Mechanics and Engineering, v.114, pp.149-167, 1994.

Raw, M.J., Galpin, F.P., and Raithby, G.D., “The Development of an
Efficient CFD Analysis Procedure”, AIAA-89-2394, 25th Join Propulsion
Conference, Monterey, July 10-12, 1989.

Darbandi, M., and Schneider, G.E. “Solving Compressible and Incom-
pressible Flows Using a Momentum Variable Calculation Procedure”,
ATAA Paper 96-0605, AIAA 34th Aerospace Sciences Meeting & exhibit,
Reno, NV, January 15-18, 1996.

Darbandi, M., and Schneider, G.E. “An Analogy-Based Momentum-
Variable Procedure for Flow at all Speeds”, to be presented in the 28th
Fluid Dynamics Conference, Snowmass, CO, June 29-July 2, 1997.

White, F.M., Fluid Mechanics, McGraw-Hill Inc., New York, 1994.



BIBLIOGRAPHY 218

58.

99.

60.

61.

62.

63.

64.

65.

Schneider, G.E., and Zedan, M., “Control-Volume-Based Finite Element
Formulation for the Heat Conduction Equation”, Spacecraft Thermal
Control, Design, and Operation, Progress in Asironautics and Aeronau-

tics, v.86, pp.305-327, 1983.

Kutler, P., “Computation of Three-Dimensional, Inviscid Supersonic
Flows”, in H.J. Wirz (ed), Progress in Numerical Fluid Dynamics,
Springer-Verlag, Berlin, 1975, pp.293-374, 1975.

Anderson, W.K., Thomas, J.L., and Van Leer, B., “Comparison of Finite
Volume Flux Vector Splittings for the Euler Equations”, AIAA Journal,
v.24, pp-1453-1460, 1986.

Anderson, J.D., Introduction to Computational Fluid Dynamics, Lecture

Series, Von Karman Institute for Fluid Dynamics, 1987.
Anderson, D.A., Tannehill, J.C., and Pletcher, R.H. Computational

Fluid Mechanics and Heat Transfer, Hemisphere Publishing Co., New
York, 1984.

Baliga, B.R., Pham, T.T., and Patankar, S.V., “Solution of Some Two-
Dimensional Incompressible Fluid Flow and Heat Transfer Problems Us-
ing a Control Volume Finite Element Method”, Numerical Heat Transfer,
v.6, pp.263-282, 1983.

Prakash, C., “An Improved Control Volume Finite Element Method for

Heat and Mass Transfer and for Fluid Flow Using Equal-Order Velocity-
Pressure Interpolation”, Numerical Heat Transfer, v.9, pp.253-276, 1986.

Karimian, S.M.H., and Schneider, G.E. “Application of a New Control-
Volume-Based Finite-Element Formulation to the Shock Tube Problem”,



BIBLIOGRAPHY 219

66.
67.

68.

69.

70.

71.

72.

73.

ATAA Paper 94-0131, 32nd Aerospace Sciences Meeting & Exhibit, Reno,
January 10-13, 1994.

Patankar, N.S., “Private Communications”, Banff, Alberta, June 1995.

Raithby, G.D., “A Critical Evaluation of Upstream Differencing Applied
to Problems Involving Fluid Flow” Computer Methods in Applied Me-
chanics and Engineering, v.9, pp. 75-103, 1971.

Raithby, G.D., “Skew Upstream Differencing Schemes for Problems In-
volving Fluid Flow” Computer Methods in Applied Mechanics and Engi-
neering, v.9, pp. 153-164, 1976.

Schneider, G.E., and Raw, M.J., “A Skewed Positive Influence Coef-
ficient Upwinding procedure for Control-Volume-Based Finite-Element
Convection-Diffusion Computation”, Numerical Heat Transfer, v.8, pp.1-
26, 1986.

Chu, E., George, A., Liu, J., and Ng, E. “SPARSPAK; Waterloo Sparse
Matrix Package; User’s Guide for SPARSPAK-A", Research Report CS-
84-36, University of Waterloo, Department of Computer Science, Water-

loo, Ontario, November 1984.

Minkowycz, W.J., Sparrow, E.M., Schneider, G.E., and Pletcher, R.H.
“Handbook of Numerical Heat Transfer”, John Wiley & Sons, New York,
pp.379-421, 1988,

Ghia, U., Ghia, K.N., and Shin, C.T., “High-Re Solutions for Incompress-
ible Flow Using the Navier-Stokes Equations and a Multigrid Method”,
Journal of Computational Physics, v.48, pp.387-411, 1982.

Darbandi, M., and Schneider, G.E. “A Study of the Overshoots of the
Entrance Flow Using Control Volume Method”, The Proceedings of the



BIBLIOGRAPHY 220

74.

7.

76.

7.

78.

79.

80.

81.

Fourth Annual Conference of the CFD of Society of Canada, Ottawa,
Ontario, Canada, June 2-6, pp.219-227, 1996.

Shah, R.K., and London. A.L., “Laminar Flow Forced Convection in
Ducts”, Academic Press, New York, 1978.

Morihara, H., and Cheng, R.T., “Numerical Solution of Viscous Flow
in the Entrance Region of Parallel Plates”, Journal of Computational
Physics, v.11, pp.550-572, 1973.

Abarbanel, S., Bennet, A., Brandt, A., and Gillis, J., “Velocity Profiles
of Flow at Low Reynolds Numbers”, Journal of Applied Mechanics, v.37,
pp-2-4, 1970.

Li, L.C., and Ludford, G.S.S., “The Overshoot in Entry Flow”, Archives
of Mechanics, v.32, pp.741-746, 1980.

Burke, T.P., and Berman, N.S., “Entrance Flow Development in Circu-
lar Tubes at Small Axial Distances”, American Society of Mechanical
Engineers, Paper 69-WA /FE-13, 1969.

Berman, N.S., and Santos, V.A., “Laminar Velocity Profiles in Developing
Flows Using a Laser Doppler Technique”, AICHE Journal, v.15, pp.323-
327, 1969.

Berman, N.S., “Private Communications”, Arizona State University,

Tempe, Arizona, March 1996.

AbdulNour, B.S., and Potter, M.C. “A Stable, Iterative Finite-Difference
Procedure for the Navier-Stokes Equations”, ASME Fluids Engineering
Division (Publication) FED v.93, Published by ASME, New York, pp.15-
19, 1990.



BIBLIOGRAPHY 221

82.

83.

84.

85.

86.

87.

88.

89.

90.

Narang, B.S., and Krishnamoorthy, G., “Laminar Flow in Entrance Re-
gion of Parallel Plates”, Journal of Applied Mechanics, v.43, pp.186-188,
1976.

Nguyen, T.V., and Maclaine-Cross, LL., “Incremental Pressure Drop
Number in Parallel-Plate Heat Exchangers”, Journal of Fluids Engineer-
ing, v.110, pp.93-96, 1988.

Van Dyke, M., “Entry Flow in a Channel”, Journal of Fluid Mechanics,
v.44, pp.813-823, 1970.

Mcdonald, J.W., V.E,, Denny, and Mills, A.F., “Numerical Solutions of
the Navier-Stokes Equations in Inlet Region”, Journal of Applied Me-
chanics, v.39, pp.873-878, 1972.

Ramos, J.I., and Winowich, N.S., “Finite Difference and Finite Element
Methods for MHD Channel Flows”, International Journal for Numerical
Methods in Fluids, v.11, pp.907-934, 1990.

AbdulNour, B.S., “A Numerical Simulation for a Plane Viscous Entry
Flow Problem”, Proceedings of the ASME International Computers in
Engineering Conference and Exposition, Boston, Aug. 5-9, v.2, pp.481-
486, 1990.

Carvalho, T.M.B., Cotta, R.M., and Mikhailov, M.D., “Flow Develop-
ment in Entrance Region of Ducts”, Communications in Numerical Meth-

ods in Engineering, v.9, pp.503-509, 1993.

Zucrow, M.J., and Hoffman, J.D., Gas Dynamics; Volume I, John Wiley
& Sons, Inc., New York, 1976.

Oswatitsch, K., and Rothstein, W., “Flow Patterns in a Converging-
Diverging Nozzle", NACA TM No. 1215, 1949.



BIBLIOGRAPHY 222

9.

92.

93.

94.

Karki, K.C., A Calculation Procedure for Viscous Flows at All Speeds
in Complex Geometries, Ph.D. Thesis, University of Minnesota, Min-
neapolis, MN, 1986.

Eidelman, S., Colella P., and Shreeve, R.P., “Application of the Gudnov
Method and Its Second-Order Extension to Cascade Flow Modeling”,
AIAA Journal, v.22, pp.1609-1615, 1984.

Ni, R.H., “A Multiple-Grid Scheme for Solving the Euler Equations”,
AIAA Journal, v.20, pp.1565-1571, 1982.

Karimian, S.M.H., “Private Communications”, Amir Kabir University of

Technology, Tehran, Iran, September 1996.



Appendix A

Element Geometric Relations

In this Appendix, after the introduction, we first discuss the discretization of so-
lution domain into a number of elements using finite-element discretization. Next,
the details of elemental geometric relations are presented. They provide necessary

geometrical transformations between local and global coordinates are derived.

A.1 Introduction

Before discretizing the governing equations, it is necessary to discretize the calcu-
lation domain in some fashion. In the past two decades, different techniques have
been developed for generating computational grids required in the finite-difference
or finite element solutions of partijal differential equations on arbitrary regions. Sta-
bility of the method, convergence speed, and accuracy of the solution are aspects
which could be affected by choosing inappropriate grids. A poorly chosen grid
may cause results to be erroneous or may fail to reveal critical aspects of the true

solution.

223
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Generally speaking, the accuracy of finite-difference methods is increased if the
underlying mesh fits the region boundaries and is closely spaced in regions where
the solution is rapidly varying. Transformation from orthogonal coordinate sys-
tem to either non-orthogonal or orthogonal boundary-fitted coordinates will ensure
the exact boundary fitting and arbitrary grid concentrating; however, this may
cause more complexity in differential equations which need more numerical works,
e.g. Alishahi and Darbandi {15]. Contrary to finite-difference method, there is
finite-element method which has been widely selected for discretizing the solution
domain because it is capable of modeling quite arbitrary and irregular geometries
and has long been used to solve problems with complex geometries very success-
fully. No global topology or orthogonality restrictions is required for finite-element
grid. Boundaries are automatically fitted and there is no restriction in concentrat-
ing the grid. Besides the finite-element and finite-difference methods, there are the
control-volume approaches which have the advantage of providing a conservative
discretization of the governing equations. Those approaches allow exact numerical

conservation of the conserved quantities in each finite control volume.

A.2 Finite-Element Discretization

In the finite-element method, the solution domain is broken into a number of sub-
regions which are called elements, Fig.A.1. The vertices of the element are nodal
locations of the domain. They are the location of the problem unknowns. Different
element shapes are used in finite-element method. Regarding the simplicity and
economy of the solution, quadrilateral elements have been selected in this study.

In Fig.A.2, a single element is separated from the other elements in order to ex-

pand the finite-element relations for it. As seen, there are two coordinate systems,



APPENDIX A. ELEMENT GEOMETRIC RELATIONS 225

a global orthogonal coordinate system of (z,y) and a local non-orthogonal coordi-
nate system of (£,7). The ranges of £ and 5 are from —1 to +1 within the element.
This local coordinate system permits each element to be treated individually and

identically despite its shape, position, and location. In order to use the benefits of
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Figure A.2: An isolated element.
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local system, it is necessary to relate local and global coordinates. Finite-element
shape functions, N; with i=1...4, are used to connect them, i.e.

z(&,n) = Y Nil€,n) = (A.la)
=1
y(én) = Z Ni(&,n) w (A.1b)

where z; and y; are the coordinates of node ¢. In this study, we use bilinear shape-

functions which are defined by

Ni(e,n) = 71 +8)1 +n) (A22)
Ny(6m) = 3(1 - 1 +1) (A2b)
Ns(,n) = 1(1-©)(1 =) (A20)
Ne(,m) = 3(1+6)(1 —n) (A.24)

A.3 Local-Global Coordinate Transformation

The procedure of the discretization of the governing equations requires several dif-
ferentiations and integrations to be performed within an element. Simple connec-
tion presented in Eq.(A.2) does not provide enough device to do that. In order
to develop our local-global transformations we, start with differentiation of the

dependent variable ¢ as

d¢ . ON;
=1 =) & (A.3a)
9z &n E Oz &n
9¢ 1. 8N,

- 3 A.3b
ay én ; ay €.n¢ ( )

-,
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Since %’:ﬂ and %Eyi are not known the chain rule is used to convert them to suitable

form
ON; ON;8z  O8N; 8y
5% -~ 0z -az + By O¢ (A.4a)
ON; 8N,z 9=z 9dN; dy (A.4b)

dn 0z 8n Oy On

Here all terms are known except 2 g& and 3—”‘ terms. Thus, we transform them into
oN;
Dz
( %Ig‘ (A.5)
the solution of which is

8
(B)[FH(E)

where J is the Jacobian of transformation and is defined by

Oz 6y ay oz
8¢y OEdn

Equation (A.6) is used to derive ¥ and a" forms as a function of Z¥ ¢ and %%’ forms

the following matrix structure

ON; oz
B2

k.

J = (A7)

in the following manner. Imtxally, the followmg differential forms are obtained from

Eq.(A.1) as

g% = 2:.-:1 aN'zi g% = z:=1 aN.zi (AS)
g% =Y 8N-y‘_ g% =Ta Qa%iyi
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Next, shape function derivatives with respect to £ and 5 are derived from Eq.(A.2),

1e.,

0N _ 1(1+) N, _ 11 4¢)
aN. 1 ON; _ 1 :
= (1 1-¢§
i + 1) z(l ) (A.9)

This completes the process of computing %’} and % forms.

In the next step, we pay attention to the process of integration over an arbitrary

sub-domain £ = 0 — § and n =0 — n;. If the vector 7 is defined as

F=zi+y) (A.10)
its differential form is given by
or or
dFf = — —d A.
=3 §d£ + on n (A.11)

The area or the volume per unit depth of this sub-domain is calculated by the
product of dg and d7, i.e.,

dV =| df x dif | (A.12)
or
or Oor

Considering Eq.(A.7), this equation is simplified to
dy =| J | d dy (A.14)
The integration over the defined domain will yield

& m
v=[" [ 171 dn=171g4 (A15)



Appendix B

Density Linearization

Since density is not a major dependent variable it is necessary to connect it to the
other major dependent variables. This variable appears in many terms of the gov-
erning equations and their discretized forms, e.g. the transient terms. The density
in incompressible flow is constant and needs no treatment. There is no difficulty for
computing the density if it is a lagged value. However, the density needs treatment
whenever it appears as an unknown in our equations in compressible flow. The ap-
propriate connection is provided by the equation of state and specifically the ideal

gas law

P
== (B.1)

As seen, the density is a function of both pressure and temperature. A simple
linearization for this equation is provided by considering an active role for P and a

lagged for T as

P (B.2)
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This form of linearization is excellent for the compressible flows with isothermal
assumptions. The overline denotes a lagged value from the previous inner/outer
iterations. Another method of treatment is to employ a Taylor series expansion

which considers active roles for both P and T. It is given by
-, 0., 5 . 00, =
e—g+aP(P—P)+aT(T T) (B.3)
The density differential forms are derived from Eq.(B.1), i.e.,
G0 1 K P

3P~ RF o~ R (B-4)

Now, these expressions are substituted in Eq.(B.3) and the results are simplified to

- 1 P
Q=Q+ﬁp—--ﬁ-TTZT (B5)

This linearization is similar to a Newton-Raphson linearization, Anderson et al [62].
In this form of linearization, a nonlinear product of two parameters of A and B is

linearized to

AB=BA+AB-7A (B.6)

This form of linearization is called many times during this thesis.



Appendix C

Linearization of Momentum

Convections

Before presenting the different possible linearizations for the nonlinear convection
terms of the momentum equations, it is necessary to have an introduction to the
concept of the individual elements in those terms. These terms need to be studied
more carefully than the other terms because two different concepts could be defined
for those individuals.

To expand those concepts, it is helpful to recall the method of derivation of
those terms in the momentum equations. White [57] presents the basic differential
equations by considering an elemental control volume, Figure C.1. The balance of
the mass and the convection part of the linear-momentum conservation equations

could be written for this infinitesimal fixed control volume as

2 (pSVa)| =D (pSVa)i| =0 (C.1)

z R= Z(mt‘-}')m - Z(ﬁuﬁ)e,. (C.2)
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Yy
[ev + £(pv) dy) d=
(pu) dy dy [pu + & (pu) dz] dy
dz
(pv) dz

Figure C.1: A control volume showing inlet and outlet mass flows on the x faces.

where dz and dy present the control volume dimensions and S indicates the area of
each control surface. Table C.1 presents the mass and momentum fluxes through
the control volume faces. If these terms are plugged in Eq.(C.1) and Eq.(C.2) the

results after some simplifications are given by

52 (p1) + () =0 (C3)
25 LR 5"+ 2 eo?) (C4)

As is seen, the velocity components appear in two positions in each term of
Eq.(C.4), either as a part of the mass flux components or as a velocity components.
This causes two different meanings for these two velocities. The velocity compo-
nents which appear in the mass flux components are named convecting velocities
or mass conserving velocities. This name returns to Eq.(C.3) where these velocity

components numerically satisfy the mass conservation equation. They convect 174
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|| Inlet mass flux Outlet mass ﬂux_l]

z pudy (pu+ 2(pu)daldy |
y pvdz [ov + 2(pv) dy] dz
|’ Inlet momentum flux | Qutlet momentum flux |

T puV dy [puV + %(p’ul?) dz)dy
y pVde | [poV + (o7 dyldz |

Table C.1: Mass and linear momentum fluxes for control volume in Figure C.1.

through the control volume. On the other hand, the components of V in Eq.(C.4)
are called convected velocities. These velocities are convected by the mass fluxes
through the control volume surfaces. In order to distinguish these two types of
velocities, The convecting is identified by a hat (). Now, we can expand Eq.(C.4)

in z and y directions while their original concepts are retained

z — direction Hl_d_;]R’ = a%(p& u) + a%(pﬁ u) (C.5a)
y — direction TR = 2 (v v) + %(pﬁ v) (C.5b)

It is worthful to note that an arbitrary switch from convected to convecting or from
convecting to convected may destruct the original concepts which derivation of the

equations are based on.

Generally speaking, we study two different forms of the linearization for the
convection terms of the momentum equations. At this stage, we are concerned
with the equations which are derived based on control volume discretization. Table

2.1 shows the result of simple linearization of the convection terms of the momentum
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equations which are repeated here with considering the above concepts

pii u = %(pu) (C.6a)
P u = 5(pu) (C-6b)
pis v = i(pv) (C.6¢c)
pi v = 9(pv) (C.6d)

A second form of linearization is possible using a Newton-Raphson linearization
rule, Eq.(B.6). This linearization considers more active roles for the individuals in
the nonlinear term. We show the procedure for the linearization of the puu term

which is linearized in the following manner

pit u =i (pu) = @ (pu) + (%) & — puie (C.7)

Since # is not a major unknown in this study, one more Newton-Raphson lineariza-
tion is used for u = %, ie.,
(i) 1

% -
U = —— ——p+u C.8
== (pi2) 5 P (C.8)

»

If Eq.(C.8) is plugged in Eq.(C.7) and some more simplifications are done the result

is
pii u = @ (pu) + & (pi) — uiip (C.9)

This linearization results in active roles for both convected and convecting velocities
as well as density in x-momentum equation term. The density term is simply com-
puted by the lagged values from the previous iterations. Considering this approxi-

mation and the definition of momentum components, we define a general equation
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in order to include both form of the simple and Newton-Raphson linearizations, i.e.
Eq.(C.6) and Eq.(C.9),

piuxi f+ k(@ f—utp) (C.10)

where k'=0 results in simple linearization and &'=1 represent Newton-Raphson lin-
earization. This procedure could be similarly followed for the three other convection

terms in the momentum equations. The results will be

pruxd f+k(@§—uip) (C.11)
piv=i g+ k(@ f-vap) (C.12)
pov=d g+ k(@ g~ vip) (C.13)

Eq.(C.10) was tested in the one-dimensional investigation with success. It generally

showed better results than the simple linearization.

One more form of linearization was tested in the one-dimensional investigations.
In this form the two concepts of convected and convecting were mixed up and the

following linearization was derived,
piux2k @ f—k"@p (C.14)

where k' and k” are constants which make the two linearizations possible. The
consideration of k'=k"=1 results in Newton-Raphson linearization and the con-
sideration of k'=} and k”=0 results in a simple linearization form. This form of

linearization generally showed faster convergence than the previous ones.

The discussion in this appendix is important in colocated grid formulation where
the decoupling of pressure and velocity fields may happen.



Appendix D

Linearization of Momentum

Diffusion Terms

The terms involving the differential form of velocity components, i.e. 3%, 8%, 2, and

% terms, are nonlinear if the momentum components are selected as the dependent
variables. There are methods to linearize these nonlinearities. Here, we present the
result of linearization only for g—: with this knowledge that the other three forms

are linearized in the same manner. The first method uses the advantages of the

chain rule to derive an appropriate expression for -g—: as
i) _ Ou ap
728 = pp tuge (D.1)

Rearrangement of this expression yields

o _10f 50
8z poz por (D-2)

The nonlinear density variable, which is derived by the spatial discretization of the
second term in the right-hand-side of the equation, could either be linearized using

the methods presented in Appendix B or be lagged from the known values of the
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previous iterations. The latter has been chosen to treat the above density term

throughout this thesis.

In the second method, the second term in right-hand-side of Eq.(D.2) is replaced

by
ou _10f
0z joz
The next step is to linearize this term as
_2 19 _f
Oz paz

a,1
f32) (D3)
sy (D.4)

This form of linearization was not used in this thesis.



Appendix E

Convection in Non-conservative

Momentum

The following investigation was performed for two terms of the one-dimensional
momentum equation, i.e. pu% and u%%). This investigation presents the possible
weak forms of discretization for the above terms. One method for linearizing p‘u%
term in the momentum equation is the use of lagged values for 2¢ 55 This results in
a direct transfer of this term to left hand side of the integration point equation.
This form of linearization is studied for the steady-state Euler flow which is derived
from Eq.(3.21) and linearized as

_a Ju
af 20t a = (E.1)
A central difference for %;'— will result in
Fu]™ Gp
fo= —x| F-Fl- 5| 3 (E2)
83 e ¢

The investigation for a constant pressure field shows that this equation results in a

wrong approximation for the integration point value.

238
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In the next step, an upwind difference is considered for %zl in Eq.(E.1). Now, if

% is approximated by an upwind difference, the result is written as

A A ou  2a]” Op
f-= [1 + P ]e F, + [8_+ Az). az (E.3)
and a central difference for % will result in
21" 3p
P LA N Y &

Similarly, the investigation for a constant pressure field shows that these two ap-
proximations are not appropriate approximations do result in wrong evaluations
of the integration point values. Indeed, both of them are subject to negative or
infinite coefficients for F,.

Similarly, Equation (3.21) is recalled with the assumption of the steady-state

inviscid flow in order to expand the investigation for ugﬁ te'm of that equation,

of Ou JOp _
u,a +f¢ + 5— =0 (E.5)

A central difference for Z and an upwind difference for & 5 will finally result in

Az dp

1
fc=Fp+'2'[Fp-Fs] 2 az

(E.6)

This expression also presents a wrong approximation for the integration point value.
The correct approximation for the velocity at the integration point would be the
average of the neighboring nodal velocity values if the pressure field is constant.



Appendix F

Linearization of Energy Transient

Term

There are a number of techniques to deal with the nonlinear transient term of the
energy equation in conservative treatment. In all cases the original form of this

term is discretized by mass lumped approach and using backward scheme in time,

O(pe 1
() ~ 25(eE - ) (F.1)

Here, the concern is on the nonlinear form of the first term inside the parenthesis.
A simple way to linearize this term is to substitute E from Eq.(2.13) and try to

linearize the equation appropriately as

%ee) o L pr Vg &ar CF (F.2)

~5

a9 246 2A0 Al Al
The other form of linearization is derived by the use of the Newton-Raphson lin-
earization scheme, Eq.(B.6),

oE ~ gE + Ep — pE (F.3)
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In this form, p is substituted from Eq.(B.5) and E is treated as

U V
E~ceT+ Eé’F + Z_EG (F.4)

After the substitution of these nonlinear treatments in Eq.(F.3) and some rear-

rangement, the following form is resulted

d(pe)  E o v . 0+
o0 ~ miasl t2a8” t3a6°

J* _CoF
2TA0 L AB

(F.5)

This form of linearization produces negative coefficient for temperature and cannot

be reliable.

Another form of linearization is possible if Eq.(F.1) is treated in another form

dpe) U v,

eoEo
58 ~ 3ag” t3A8C

Cv
+ E(BT) Ve (F.6)

Similar to Eq.(F.3), nonlinear form of T is changed to oT + To — T and o is
linearized by Eq.(B.5) and is substituted in it. The final result is given by

pe) . o U |2 e°E°
26 ~ Rasl T2as” T 2a8C ~ Ad (F.7)

which does not include T term. This form was not used in this work.



Appendix G

Linearization of Energy

Convection Terms

Regarding the conservative treatment of the convection terms in the encrgy equa-
tion, a number of approaches is applicable. The two convection terms can be written

either in the enthalpy form 9—%’:—"1 + ﬂg"T"l or in the energy form ‘9("";: up) o .%w;;w) .

Here we are concerned only on enthalpy form and restrict the approaches to two
possible form of linearizations. In this study, the original concepts of convected and

convecting, which were described in Appendix C, are respected. For example,

2 2
puh = pi(ct + 5 + ) (G.1)

The first linearization approach uses the definition of A, Eq.(2.14), and substitutes

it directly in convection term. The remainder is to linearize the resulted expressions

appropriately respect to the dependent variables,

-

puhz%f+1;—vg+c,,ﬁﬁt (G.2a)
pohx - f+ o g+ bt (G.2b)
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If the concept of convected and convecting is not respected these equations are

written as
puh ~ 3‘2-(17, F+og+26pt) (G.3a)
poh = g(a f+5g+2c5t) (G.3b)

A second linearization uses the Newton-Raphson scheme, i.e. Eq.(B.6), to lin-

earize these convection terms. It is given by
puh~ fh+hf —hf (G.4a)
pvh ~ gh + hg — hg (G.4b)

Using the definition of enthalpy, substituting it in above equations, and treating

them in an appropriate manner would result in
g+cft—hf (G.5a)
g+cgt—hg (G.5b)

Ignoring the concepts of convecting and convected results in

puh%(%+5)f+%g+cpft—ﬁ (G.6a)
- _2 —
mhz%f+(”?+ﬁ)g+c,gt—hg (G.6b)

All lagged values of these equations can be calculated from the previous iterations

by using the known values of either convected or convecting variables.



Appendix H

Streamwise Discretization

Approach

In two-dimensional flows, the direction of the flow has an important role in dis-
cretizing some differential terms of the governing equations. In a one-dimensional
flow, grid lines and flow direction are coincident, however, this is not the case for the
two-dimensional flows. The importance of the flow direction is in evaluating some
differential terms in streamwise direction. The inconsistency between grid lines and
flow directions does not allow discretization in streamwise direction. Fortunately,
convection differential terms which are sensible to flow direction could be combined

and written in streamwise direction as

Fove =12,
V.V¢-uaz+uay (H.1)

These terms can be written in the local streamwise direction as

pu% + pv% = me%f (H.2)
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where
Vit = VUu? 4+ v2 (H.3)
and
u v

Eq.(H.2) provides a straightforward differential form to be used for discretization

in streamwise direction like streamwise upwinding, central-differencing, etc.



Appendix I

Laplacian Operator Discretization

The procedure of computing integration point expressions requires the discretiza-
tion of the diffusion terms which may take Laplacian form. Finite element dis-
cretization of the nonlinear Laplacian form is not straightforward. Here, the ap-
proach was taken by Schneider [71] is followed. In this regard, consider the Lapla-
cian of an scalar ¢ which is given by
2 2
L(¢) =V’¢=g§+g—f§

Considering Fig.I.1, we can obtain some approximations for terms of Eq.(I.1) at

(L1)

integration point of 1 as

3¢ 1 (3R +1i%) - b — (302 +19s)
(@).-,,1 =i { — - Ve } (L.2a)

) By 14y 38y
If these expressions are substituted in Eq.(I.1) the following expression will be

(a=¢) 1 {(-;-«m%@z)-cm_¢1-(%‘f=+%"*’} (L2b)
ipl

resulted after some rearrangement
E::; N;®; — Pipt

T3 x3)

v’¢ipl =
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2. : ‘1
> : AX -
q :xli)l -
"""" Iﬁz"""i‘""""‘iﬁi""'
y fip3
3¢ H o4
X

Figure I.1: Laplacian length scale.

Which the diffusion length scale is defined as

2 8 1°*
(La)im = { By + 3 Ay)’} (1.4)

wpl

As is observed, the derived approximation for the Laplacian Eq.(I.3) satisfacto-

rily satisfy the limiting case of diffusion dominated flows. In another words, when
Vi =0 (L5)

Eq.(1.3) is reduced to the bilinear interpolation form of the nodal values, i.e.,
4
¢ =) N;&; (16)
i=1
Which is a correct approximation.
Eq.(I.3) was derived based on a rectangular element shape. However, it does

not result in a correct approximation for general form of the quadrilateral finite

elements which we use during this study. For a general form of elements, we use
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Eq.(1.3) with a corrected Ly. Furthermore, Az and Ay are replaced by the length
scales perpendicular and tangential, respectively, to the face in question. This

means Ay is considered as the length of the face in question and Az is determined

by,

|71
Az - Ay (L7

where |J| is the magnitude of the Jacobian of transformation, Eq.(A.7).





