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Abstract 

The main purpose of this PhD reseatch is to develop a numerical method for 

solyiog i l c ~  at all speeds using momentwn eomponent variables instead of the sep- 

lar velocity ones. The Werent nature of compressible and incompressible goveming 

equations of fluid flow generaüy elass* the solution techniques into tao main cate- 

gories of compressible and incompressible methods. However, one extended purpose 

of this research is to develop an approach which permits incompressible methods 

to be extended to compressible ones nsing the analogy of flow equations. The pr* 

posed momentum component variables play a signüicant role for tramferring the 

individual characteristics of the two formulations to each other in th& adapted 

forms. In this regard, the two-dimensional Navier-Stokes equations are treated to 

solve time-dependent laminar flows nom very low speeds, i.e. r d  incompressible 

flow, to supersonic flow. The approach is M y  Mplieit and employs a contro1- 

vo1ume-based finiteelement met hod with momentum components, pressure, and 

temperature as dependent variables. The proper definitions for considering the 

dual role of momentum components at control surfaces plus the strong connective 

expressions between the variables on control volume surfaces and the main nodal 

values remove the possibility of velocity-pressure decouphg and d o w  the use of a 

colocated grid arrangement. 

The performance of this new formulation is illustrated by solving different types 

of flow including incompressible and compressible (subsonic to supersonic), viscid 

and inviscid, and steady and unsteady options. No CFL number limit was en- 

countered for the test models except in supersonic cases. The results demonshate 

e x d e n t  performance of the flow analogy. 
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normal and tangentid surface stresses 

scalar at integration point and node 

stream function 

conserve quantity vector at node and integration point, Eq.(2.19) 

Miscellaneous 

convection fluxes, Eq.(2.20) 

dinnsion flues, Eq. (2.21) 

the area or the volume per unit depth of control volume 



AR 

bip 

IEC 

1P 

NO1 

RMS 

scv 
Si,SSi 

UEC 

Subscripts 

indicates the downs tream values, Figure 4.2 

integration point, Figure 2.2 

integration points, see Fig.3.1 

nodal points, see Fig.3.1 

normal 

tangent i d  

indicates the upstream values, see Figure 4.2 

Superscripts 

previous time step value 

Accents 

time rate of change 

convecting parameters 

lagged from previous inner iteration 

Acronyms 
A - aspect ratio or 

boundary integration points, Figure 4.3 

irrotational entry condition 

integration points, Figure 2.1 

number of iterations 

Root-Mean-Square, Eq. (5.1) 

sub-control-volume, Figure 2.1 

control-volume edge in xy plane, Figure 2.1 and Table 4.1 

d o m  entry condition 



Chapter 1 

Introduction 

In this chapter, we are concerned with the general position and spedic situation of 

this research, the purpose of this research, and its contributions. In this regard, a 

preliminary background is introduced in Section 1.1. It is followed by a literature 

review which presents the previous related works in Section 1.2. The objectives of 

this research are presented and discussed in Section 1.3. The outline of the thesis is 

presented in Section 1.4, where the progress of the subject during this investigation 

is discussed. 

1.1 Background 

This research is concenied with the branch of fluid dynamics known as Computa- 

tional Fluid Dylamics, or CFD, i.e., cornputer modeling and solving of fluid flow 

problems, which plays an important role in aerodynamics, fluid dynamics, and heat 

tram fer. 

Prediction of fluid flow and heat transfer problems has traditionally been ob- 
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t ained by experiment al investigations and t heoretical calculations. It is apparent 

that the most reliable information about a physical process is often given by actual 

measurement. However, full scale equipment that gives more accurate results for 

experimental methods is expensive and often difficult to construct. The majorïty of 

fluid flow problems of interest in engineering cannot be solved analyticdy because 

of the complexity of the governing coupled partial differential equations. 

Ln numerical methods, the dinerential equations are modeled by a set of dge- 

braic equations which must be solved by computer. Fortunately, the development 

of numerical methods and the availability of large digital computers have enabled 

practical problems to be solved successfdy. Indeed, CFD has made rapid progress 

since computers were fmt used as a tool in computational research. The contri- 

bution of CFD to the related sciences is remarkably high. CFD has also shown 

great contribution to experiment al science where accurate design of experiment al 

apparatus is necessary. Although research progress in numerical methods has been 

considerable, there is still room for signÜ;cant progress. Almost all research in this 

branch is focused on not only eliminating the Limitations and drawbacks of previous 

work but also on achieving an easy and optimum algorithm which would be capable 

of solving all real fiuid fiow and heat transfer problems. Accuracy of the results 

and stability of the method are two out of the many important goals in developing 

CFD codes. 

The behavior of fluid flow fiom very low Mach number to hypersonic flow is 

not the same. Various methods have been presented for solving cliffixent flows 

and Mach number ranges. Most of these methods have not been successful for 

0th- ranges. Many algorithms have b e n  developed for solving the Euler and 

Navier-S t okes equations. Also, difFereat cornput ational met ho& have been devel- 

oped through the years to deai with compressible and incompressible flows because 
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of the dinaences in the nature of these two types of flow. k n t l y ,  maay works 

have focused on algorithms capable of solving both compressible and incompress- 

ible flows. Most of these methods employ primitive variables (velouties, pressure, 

and temperature) as the dependent variables. 

The main objective of this research is to solve compressible and incompressible 

laminar flows where the dependent variables are momentum components, pressure, 

and temperature. Although the basic idea for tuning fiom velocity variables to 

momentum variables was to explore and identûy advantages while removing previ- 

ous drawbacks, there are other reasons for this switch which are presented in the 

following sections. 

A brief literature review of related works in this field is presented in the next 

section. 

1.2 Literature Review 

The literature in the CFD area is vast and it is not desirable to review it d. In this 
t 

section a brief review of the relevant literature is given. All dinerent methods in 

CFD have advantages and disadvantages. In some circumstances, it is very difncult 

to deude which outweighs the other. 

CFD numerical methods are dassified into different categories depending on the 

nature of the flow and governing equations. For example, a numerical approach may 

solve only compressible or incompressible, viscous or inviseid, steady or unsteady, 

or subsonic or supersonic flows. However, the distinction between two dinerent flow 

types is sometimes so strong that it does not permit extension from one method to 

another. This difncuky has b e n  experienced in extenduig compressible and incorn- 
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pressible methods to each other. The important role of density (and pressure) in 

the fluid governing equations has focused attention towards these two completely 

distinct branches of CFD. Various methods and techniques have been developed 

through the years to deal with each of them, but there are significant limitations 

for each in the range of the applicability of the other. From the mathematical 

viewpoint, the nature of the compressible and incompressible flow equations is also 

another issue which dec ts  the deveiopment of compressible methods to solve in- 

compressible flows. The unsteady compressible equations are parabolic-hyperbolic 

in nature, but the incompressible equations are of elliptic-parabolic type. This in- 

compatibility between the nature of the equations causes computational difnculties 

in extending methods developed for one regime to the other. These restrictions and 

obstacles have prompted an increasing effort in CFD for developing codes capable 

of solving flows for different options including both compressible and incompressible 

flows. This is also the main concern in the curent study. 

One important and critical issue in developing codes for solving compressible 

and incompressible flow is the selection of the dependent variable set. There are 

several different options of dependent variables, but here we consider only the prim- 

itive variables. The primitive variables may include eit her velocity or momentum 

components. The distinction is immaterial for pure incompressible flow, where 

density is constant. However, using momentum components is very attractive for 

compressible flows, for several reasons. First of al, this formulation may permit 

existing solution methods for incompressible flows to be extended to cover the en- 

tire flow speed range. Secondly, the need to linearize the terms of the governing 

equations which include momentum variables is removed. For example, the con- 

servative form of the continuity equation is preserved and it no longer needs to be 

linearized. Finally, mass flux is a constant parameter passing through a shock wave 
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whde velocity undergoes large changes. Using momentnm components may result 

in fewer oscillation around certain discontinuities in the flow. These advantages will 

be discussed hirther in Section 2.4. Many of these have encourageci compressible 

fiow solvers to use moment um components instead of velouty components. 

Although our interest in this research is in solving the Navier-Stokes equa- 

tions, the literature review is not restricted to Navier-Stokes methods. Methods 

for solving incompressible, compressible, pseudo-compressible, and compressible- 

incompressible flows are considered in turn. 

1.2.1 Incompressible Flows 

The primary difnculty in modeling incompressible flows lies in the fact that only 

gradients of pressure appear in the momentum equation and pressure does not ex- 

plicitly show up in the continuity equation, although it is the continuity constraint 

that is used to determine the pressure. This diflicdty may lead to decoupiing in the 

velocit y and pressure fields which creates non-physical solutions, Pat a h  [l] . This 
difficulty has led to methods like stream function-vorticity formulations which eiim- 

inate pressure from the goveming equations. Although stream function-vorticity 

formulations have been successful for predicting twwiimensional incompressible 

flow, they are diffcult to extend to three-dimensional flows. Alternatively, the 

considerable advantages of; the primitive variable formulation have attracted more 

investigators toward developing incompressible numerical methods. The staggered 

grid arrangement is a weii-known technique for treating the velocity-pressure de- 

coupling in the primitive variable formulation of finite diffaence methods. In this 

technique, pressure and velocity variables are treated on two separate grids [Il. The 

Marker and C d  (MAC) method of Harlow and WelJi [2] could be named as one of 
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the successfd pioneering works which uses primitive variables in a staggered grid 

arrangement. 

The segregation of variables has been a well-liked technique to solve for the 

primitive variables implicitly. Generdy speaking, segregated methods convert the 

indirect information in the continaity equation into a direct algorithm for the cal- 

cdation of pressure. This means that they determine velocities trom the solution of 

momentum conservation equations based on the best possible estimate of the pres- 

sure field. Then, pressure is determined from the solution of one or turo Poisson-lüre 

equations. This process rnust be repeated for updating the velocity and pressure 

fields. The segregated solutbn can satisfy both mass and momentum conservation 

equations if the correcting pressures and velocities vanish. Rait hby and Schneider 

[3], and Patankar [4] have developed methods based on the segregated approach. 

Using st aggered grids in finite-difierence segregated met hods guarantees the cou- 

pling of the velocity and pressure fields [3, 41. There are altemative methods which 

do not use a segregated approach. Zedan and Schneider [5] employed a Sirnultane- 

ous Variable Approach (SVA), that uses the strong couplhg between variables and 

solves aIl dependent variables simultaneously. In theh method, the equation for 

pressure is obtained by substituting the momentum conservative equation, without 

approximation for t the correspondhg velocity, into the mass conservation equation. 

Since the innovation of control-volume methods in CFD, there have been con- 

siderable efforts to use these in solving fluid flow problems including incompressible 

ones. The main advantage of these schemes is the conservation of the consenrative 

quantities in each W t e  control volume. Most of the control-volume-based met h- 

ods return to the original work of Patankar and Spalding [6] which is based on a 

pressure correction technique. They employed a semi-implicit segregated scheme, 

the Semi-Implicit Method for Pressuse-Linked Equations (SIMPLE), nhich requires 
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a heavy under-relaxation for the pressure correction to ensure convergence of the 

solution. A number of improved Mnants of the original SIMPLE algorithm in- 

duding SIMPLER were later developed for solving incompressible flows [4]. The 

SIMPLEbased methods generally use staggered grid arrangement. 

Contrary to a staggered grid arrangement in control-volume methods, it is the 

colocated grid arrangement which needs speual treatment for the coupling of v e  

locity and pressure. Colocated grid arrangements are mainly non-segregated. The 

main idea in a colocated arrangement is to consider the role of pressure as an ac- 

tive parameter in the continuity equation to remedy the decoupling. There are 

different approaches for removing the checkerboard problem in a colocated grid. 

Baliga and Pat ankar [7] used unequal order veloci ty-pressure interpolation to re- 

move the decoupling problem in t heir control-volume-based finite-element met hod. 

Unequal-order means, pressure is computed at much fewer grid points than ve- 

locity. Prakash and Patankar [SI also developed a non-segregated approach using 

a control-volume-based finiteelement method with equal-order velocity-pressure 

interpolation. Rhie and Chow [9] proposed a new technique for removing the de- 

coupling of velocity and pressure in their colocated grid approach for solving incom- 

pressible flows. Their technique includes a new method for treating the convected 

terms at control volume surfaces. These terms are interpolated between main grid 

points. Schneider and Raw [IO, Il] used a colocated grid approach in th& control- 

volume-based fiaite-element method which considers the physical a u e n c e  aspects 

of the flow in integration point equations. Later, Schneider and Karimian [12] 

showed that this derived formulation cannot parantee the coupling of velocity and 

pressure under cert a b  circums t ances. Consequently, they proposed a second inte- 

gration point velocity variable in order to remove the deficiencies of the previous 

formulation. With this remedy, a strong coupling between pressure and velocity 
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was obtained and the checkerboard problem was totally removed. Darbandi and 

Schneider [13] have also investigated the checkerboard problem in their pressure 

based momentum-component procedure. They remove the decoupling problem by 

introducing a second momentum-component variable at the control volume surface 

in th& colocated grid arrangement. 

Peric, Kessler, and Scheuerer [14] present a detailed comparison of two finite- 

volume solution methods for two-dimensional fluid flows, one with a staggered and 

the other with a colocated numerical grid. They show that the colocated scheme 

generally represents more advantages. 

1.2.2 Compressible Flows 

Compressible flows can be mainly divided into steady and unsteady methods. Most 

of the steady methods use the unsteady governing equations to integrate over tirne 

to reach steady flow conditions. Absolute steady methods are mainly space march- 

ing methods. The space marching method is used for solving equations which 

are parabolic in at least one spatial direction, the marching direction. ALishahi 

and Darbandi [15] solved supersonic flow for wing-body configuration problem by 

marching in centerline direction and using discrete zona1 approach. 

Uns teady methods are divided into explicit and implicit methods. Explicit 

schemes are subject to one or more stability restrictions on the temporal and spa- 

tial step sizes. These restrictions are asually given in terms of a Courant-Friedrich- 

Lewy (CFL) and viscous stability condition, which limits the time step. A nnmber 

of early methods such as PaIumbo and Rubin (161 implemented a twestep Lm- 

Wendroff scheme which advanced the solutions through tirne explicitly. MacCor- 

mack [17] fotwarded an important progress in explicit methods by introducing a 
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predictor-correc tor fini te-diffetence algori t hm to solve Euler equations. The indu- 

sion of artificial Vi~cosity in this algorithm has enabled it to solve flows with shock. 

Modifications have been done on this explicit Euler algorithm, which severly suffers 

hom the stiffness of the discrete Navier-S tokes approximation, to solve for viscous 

flow, e.g. MacCormack [la]. The method of Ref. [18] consists of two steps. The 

first step is an explicit predictor-corrector finite difference stage and yields second 

order accuracy in time and space. The second step is an impiicit stage. The second 

step removes the sever stability limitation of the fust explicit method step. 

Many advantages of implicit formulations have generdy shifted interests to- 

ward these schemes. There are several important Mplicit schemes that use a finite- 

difference formulation. Beam and Watming [19, 201 treated the conservation form 

of the governing equations by an AD1 based approximate factorization formulation 

to produce a block tridiagonal linear system of equations. Density, m r̂nPnti= 

components, and total energy are dependent variables in th& method. Shamroth, 

McDonald, and Briley [21] changed the momentum components to veloeity ones. 

Briley and McDonald [22] presented ano t her implici t approximat e fact orization 

method for solving the Navier-S tokes equations. The addition of a r t i f i d  diffusion 

is required for stability of their method and to catch shock waves. Indeed, the han- 

dling of boundary conditions becomes more severe when approximate factorization 

is used to break a multidimensional problem into a set of one-dimensional problems. 

Since the innovation of finite-element methods, there have been parallel works for 

solving compressible flows using finit e-element schemes. For example, Baker and 

Soliman [23] presented an implicit hite-element algorithm to solve compressible 

flows. 

Besides the progress of control-volume methods for incompressible flows, there 

have been many attempts to develop SIMPLEbased incompressible methods into 
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compressible one. One method was developed by Issa and Lockwood [24] who 

used an approximate form of the momentum equation to relate velocity corrections 

to pressure corrections in an staggered grid arrangement. Expressing continuity 

in terms of density and velocity corrections, these relations can then be used to 

determine an equation for pressure correction. Han [25] has also tried to extend 

the SIMPLE procedure for compressible flow calculations. However , det ails of flow 

discontinuities were not cap tured well due to excessive numerical smearing in Refs. 

[24, 251. More related works are presented in Section 1.2.4. 

Most of the schemes for compressible flow use density as a primary dependent 

variable and extract pressure fkom an equation of state, e.g. [18]. Since the role 

of density at low Mach numbers is very small, this approach cannot be used for 

incompressible flows as it is discussed in Section 1.2.3. There are also many other 

factors for each compressible method that prevent the use of these algorithms for 

low Mach numbers. Methods that use pressure as a primary dependent variable 

do not have the difficulties of the density-based methods because the change of 

pressure is always finite, irrespective of the flow Mach number. Therefore, i t  is 

possible to modXy pressure-based methods to cover the entire spectrnm of Mach 

numbers. Rhie [26] has presented a pressure-based segregated method for solving 

Navier-Stokes equations in compressible flows. This method is an extension of 

his previous incompressible methods [9]. He uses a multi-step pressure correction 

procedure, wit h implicit treatment of density, to correct the pressure field. 

1.2.3 Pseudo-Compressible Flows 

There are various design applications, such as automobile, ship, and turbomachin- 

ery design which typicdy solve very low speed flows using compressible algorithms. 
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Moreover, compressible algorithms are also important in the field of heat transfer 

where density has significant changes. As said in the previous sub-sections, the 

difference in nature between incompressible and compressible flows has spawned 

various computational schemes to be developed to treat these two types of flow. In 

the case of compressible flows, methods have b e n  developeci that use density as a 

primary variable. Such methods are known as density-based methods [18,20]. Con- 

trary to density-based methods, there are pressure-based ones which use pressure as 

a primary variable ins tead of density in the incompressible flow cases [IO, 26,27,28]. 

If it is realized that the incompressible goveming equations are derived from 

compressible ones, it is reasonable to recognize slightly compressible flow as being 

constructed fiom the incompressible one. Van Dyke [29] states that slightly com- 

pressible flow is a reguiar perturbation of incompressible flow. This promotes the 

idea of solving low speed flows using either compressible or incompressible algo- 

rithms. There are works which extend the original transonic flow solvers to low 

Mach nnmber applications [30, 311. On the other hand, there are works which are 

the extension of incompressible schemes and solve for compressible flows [28,32,33]. 

The simult aneous solution of the governing equations in compressible met h- 

ods enhances the stability compared with the segregated approaches of the incom- 

pressible techniques, Merk et al [34]. This has encouraged many incompressible 

investigators toward using compressible algorithms in applications [35]. However 

this intention in switching encounters some major drawbacks. The speed of sound 

approaches idmit y in the incompressible limit ; implementing compressible codes 

for simulating incompressible flows is not computationaliy efficient. The hyper- 

bolic tirnedependent Navier-Stokes equations become stiff at low Mach numbers 

because of the great clifference between the largest and the srnaIlest magnitudes 

of the system eigenvalues, Feng and Merkle 1361. Since the eigendues are the 
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speeds of the waves carrying information, one class of information related to the 

smallest one would be slowly transported within the region, while the t h e  step 

is limited by the speed of the fas test traveling wave. Nevertheless, the number of 

tirne steps needed to reach the steady-state solution wili approach infinity for an 

incompressible algorithm. Hence, convergence to a s teady-st ate solut ion is nsu- 

ally slow and for time-dependent solutions the permitteci time step becornes very 

smd. This is why most compressible dgorithms become either very inefficient 

or inaccurate at low Mach number speeds. Briley et al [37] rescale the equations 

to improve the convergence, however, the performance and the accuracy of their 

time-dependent compressible schemes are inadaquat e at low Mach numbers , Say 

M, <O.l. Volpe [30] compares the results of three widely-used twdimensional 

compressible codes of which two are Euler codes, using ~Le+volume scheme, and 

the other is a Navier-Stokes solver, using a finite-clifference scheme. These codes 

are examined for simple-low speed test cases with the solution accuracy enhanced 

by reducing the mesh-size. This reduction in turn causes deterioration of the con- 

vergence rates. 

There are methods to overcome the difficulty of ushg a compressible scheme to 

solve for incompressible flows. One method is preconditioning which modifies the 

time term. This can be made to appear as a new matrix multiplying the t h e  term 

in the vector form of the system of equations, Pletcher and Chen [38]. For steady 

problems, preconditioning is achieved by altering the physical time-derivative terms 

in the equations. On the other band, for unsteady problems, an additional pseudo- 

tirne term of a particular form is added to the equations, which changes the nature 

of the hyperbolic problem which is being advanced in pseudo tirne. Chorin [39] and 

Steger and Kutler [40] used artScid compressibility in solving the mass consmm 

tion equation. They fabricated a hyperbolic tirne-dependent system of equations 



by adding a time derivative of the pressure term to the continuity equation. Kwak 

et al [41] developed a code using pseudocompressible methods to cornpute specifi- 

&y incompressible flows. Choi and Merkle [42] similarly used a s m d  time step to 

overcome the difficulties of low Mach number speeds in th& implicit factorization 

scheme. 

Merkie and Choi [43] used asymptotic expansions of the Euler equations in th& 

perturbation method to solve for low Mach numbenr. They added an artifidal time 

derivative term to the energy equation. Perturbation schemes become inefficient 

when the Mach number is not very Iow. Another method for solving low Mach 

number flows is fluz-vector splitting method which treats the stiff terms not only 

differently in time but also in space [44]. 

In addition to the three presented methods which focus on low Mach num- 

ber Eows, there are compressible-incompressible and dl-speed-flow methods which 

solve for both incompressible and a wide range of compressible flows [32, 33, 451. 

However there are few researchers who report the performance of th& methods in 

solving very low Mach number problems, e.g. Chen and Pletcher [45]. Foliowing 

the methods for solving both compressible and incompressible methods, Darbandi 

and Schneider [46] developed an analogy based on momentum component vari- 

ables which enables existing incompressible methods to be extended to solve for 

compressible flows. The performance of the resulting method was ülustrated by 

applying to various test cases fiom very low to transonic Mach numbers. 

1.2.4 Compressible-Incompressible and AU-Speed Flows 

There are few numerical methods which are applicable to both incompressible and 

compressible flows. The idea of ~olving for all flow speeds with just one algorithm, 



CHAPTER 1. INTRODUCTION 14 

however, is not new. The important question is how to consider the dual role of 

pressure in compressible and incompressible flows. G e n d y  speaking, the idea 

of solving flow at all speeds has been studied using different approaches including 

finite-elemen t , finit e-difference, and cont rol volume met hods. The smch for an 

algorithm suitable for aU speeds goes back to the work of Harlow and Amsden [47]. 

They extended the MAC method for solving time dependent fluid flow problems for 

all Mach numbers. Their method s&s from a stability restriction and its scope 

of applicability is limited. Zienkiewicz, Szmelter, and Peraire [48] presented a semi- 

implicit algorithm for the calculation of both compressible and incompressible flows 

using a finite-element approach. Zienkiewicz and Wu [49] later developed this finite- 

element algorithm into a general explkit and semi-explicit method. Howevr, th& 

work is restricted to relatively low supersonic Mach numbers because the use of the 

non-conservative form of the equations may lead to inaccurate shock prediction. 

Hauke and Hughes [31] have similady worked in hiteslement context to develop 

their original compressible method to solve for incompressible lixnits. 

The advantages of control-volume-based methods have encouraged recent work 

using this approach. Most of the control-volume-based niethods for flow at all 

speeds return to the incompressible work of Patankar and Spalding (61 which is 

based on a pressure correction technique. Van Doormal, Raithby, and McDonald 

[50] have show that a pressure-based method can be extended to indude com- 

pressible flows. They used modified versions of the SIMPLE code with a staggered 

grid arrangement. Karki and Pat ankar [32] present ed ano ther control-vohmebased 

finite-difference method which is based on the compressible form of the SIMPLER 

algorithm. The steady-state form of the Navier-Stokes equations was solved in a 

s t aggered grid arrangement wi th generaiized non-ort hogonal coordinates. Their 

method suffers fiom sensitivity to grid smoothness which is due to the presence of 
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the cwatnre terms in the equations. Demirdzic, Lilek, and Peric [51] employed 

Cartesian based vectors instead of locally fixed based vectors of Karki et al [32], 

and removed the sensitivity to grid smoothness. Shyy, Chen, and Sun [52] have a b  

developed a similar procedure for flow at ail speeds using a multigrid algorithm. 

Lien and Leschziner [53] have induded the turbulent a e c t s  in their control-volume 

based method for solving compressible and incompressible flows. 

Chen and Pletcher [45] presented a colocated pressure-based technique for solv- 

ing the time-dependent Navier-Stokes equations applicable to low Mach numbers. 

They found that smoothing was not needed to control oscillations in pressure for 

subsonic flows despite the use of central differences in their finite diffaence a p  

proach. Raw, Galpin, and Raithby [54] have presented a colocated control-volume 

method to solve compressible and incompressible flow fields. Special integration 

point equations were derived at control volume surfaces to connect them to neigh- 

boring nodal valaes. Since the pressure of other nodal points also appear in their 

formulation they change them to lagged values. Karimian and Schneider [33] used 

the approach of Ref. [50] and developed the incompressible work of Ref. [IO] to 

solve for compressible flows. 

Most of the all-speed met hods are extensions of incompressible methods to corn- 

pressible flows, e.g. [32, 33,50,52]. Hence, they apply the incompressible primitive 

variables, i.e., velocity components, as the dependent variables for extending their 

work to compressible flows. The main objective of this work is to use the momentnm 

components as the unknown variables. The idea of using momentum component 

variables instead of velocity variables was introduced by Darbandi and Schneider 

[13, 5Y. They also examine the performance of their momentum-component for- 

mulation in the context of a flow analogy for solving flow at all speeds [56]. Their 

implicit scheme is based on a colocated grid arrangement. 
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1.3 Objectives of t his Research 

To derive numerical solutions for the nodal values of the dependent variables, it 

is necessary to develop algebraic relations which approximate the governing m e r -  

ential conservation equations. While no single method yet cont ains aIl desirable 

features while being void of disadvantages, the following at tributes and features are 

sought in the present formulation: 

1. C o n t d  Volume Basis 

Since the fluid flow governing equations are intrinsically conservative it is 

preferable t O use numerical met hods t hat ret ain t his property. Control- 

volume-based approaches have two major advantages. Firstly, they allow 

exact numerical conservation of the conserved quantities in each finite control 

volume. This means t hat mass, momentum, and energy are exactly conserved 

over any number of control volumes and consequently over the entire fluid flow 

domain. Secondly, t hey provide a physically meaningful intezpretation of the 

various terms such as fluxes and source terms in the discretized form of the 

governing equations. 

2. Finite Element Method 

The finite-element concept generdy returns calculus and vector field theory 

to the construction of disuete simulation aigosithms. The most important 

advantage of the finite element method is its great flexibility for handling 

highly complex solution domains. In the fmite element method, the variation 

of dependent variables consists of grid point values and interpolation between 

them. 
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Moomentum Components as Dependent Variables 

This formulation may permit existing solution methods for incompressible 

flows to be extended to cover the entire flow speed range. The need for 

linearizing the terms of the goveming equations which include momentum 

variables is removed. For example, the conservative form of the continuity 

eqnation is preserved and it no longer needs to be Iliearized. Mass flux does 

not change throngh shock waves in supersonic flows and this may cause less 

oscillations around discontinuities in the solution. 

Pressure as a Dependent Variable 

Pressure is selected as a dependent variable in prefixence to density because 

the pressure changes are finite at al1 flow speeds as opposed to the density 

changes which become very small at low Mach numbers. Thedore, pressure- 

based methods can be extended to solve incompressible flows. 

Colocution of Dependent Variables 

The use of a non-staggered grid arrangement may produce a wavy non- 

physical pressure field while still satisfying the discrete momentum equations. 

The geometrical simplicity of the colocated grid arrangement is very attrac- 

tive and it will be signiticant if the cause of the pressure oscillation can be 

removed. Boundary condition implementation difnculty and excessive book- 

keeping are two major objections to staggered grid methods. In addition, 

the velocities that satisty mass do not necessarily conserve momentum in the 

same control volume. However, the use of one velocity field, instead of two 

velocity fields which are used in colocated grid methods, is an advantage of 

s t aeeered =id met hod. 
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6. mly Implicit Formulation 

Although explicit methods are relatively simple to set up, t hey need very small 

t h e  steps to maintain s t ability. Conversely, the st ability of the implicit meth- 

ods can be maintained over much larger time steps. Large time steps may 

reduce accoracy of the transient solution, however, this is not important if 

only the steady-state solution is desired. In contrast to segregated methods, 

dl dependent variables are solved simultaneously in our fully implicit formu- 

lation. This reduces the need for tracking the solution of dependent variables 

through sequential iteration or time step advancement. 

1.4 Thesis Outline 

A numerical method calculates the values of the dependent variables at a finite 

number of locations, named grid points, in the calculation domain. To calculate 

the domain variables on grid points, it is necessary to disaetize the goveming 

equations. A discretized equation is an algebraic relation that connects the values 

of the dependent variables for a group of grid points. The development of an 

algebraic representation of equations includes a number of steps. 

First, the differential equations to be modeled and the dependent variables to 

be used must be determined. This task is accomplished in Chapter 2. In addi- 

tion, the research motivation is another issue which is discussed in this chapter. 

Second, the domain must be discretized. Chapter 2 describes the control volume 

approach and Appendix A presents the finite-element formulations which are used 

to expand the necessary geometry relationships. Third, the algebraic representa- 

tion which approximates the dinerential equations must be developed. This duty 

is elaborated in two chapters. In Chapter 3, a preliminary investigation is done 
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in a one-dimensional context in order to avoid unnecessary multi-dimensionality 

complexities, to discover and study the deficiencies of the formulation, and to solve 

them with appropriate techniques. For example, the pressure-veiocity decoapling 

issue is one which is considered in this chapter. The extension to twcdimensional 

modeling is accomplished in Chapter 4 to farther ilinstrate points and demonstrate 

applicability to multi-dimensional flows. The developed method is examined for 

several difkrent test models in Chapter 5. The test rnodels try to cover the en- 

tire range of flow speed conditions. The final chapter, Chapter 6, is where the 

major contributions and conclusions of this work are siimmarized and where the 

recommendations for future work are presented. 



Chapter 2 

Governing Equations and 

Research Motivation 

The main purpose of this chapter is to introduce the goveming equations, to present 

the method for discretizing the solution domain, and to provide the research rn* 

tivation. The general form of the governing equations is introduced in Section 2.1. 

In Section 2.2, the discretization of the solution domain is briefly explained. The 

options for dependent variables are presented in Section 2.3, together with a discus- 

sion on the roles of pressure and density in compressible and incompressible flows. 

The motivation for the current research is that choosing momentum variables has 

a number of conceptual advantages over velocity mmponents; This is discussed 

further in Section 2.4. 
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2.1 Governing Equations 

The difkrential equations governing the conservation of mass, momentum comp* 

nents, enagy, and 0th- scdars such as mass fraction and turbuience of kinetic 

energy can be cast into a general form as, Patankar [l], 

where 4 is a general dependent variable and s denotes the volumetric source (ot 

si&) of 9. The two terms inside the parenthesis represent convective and Musive 

flues respectively. The cases where + represents mas, momatum, and energy 

are of particnlar interest. Assume a Newtonian fluid, with constant viscosity and 

conductivity, and which obey s Stokes' law , the twcdmensional Cartesian form of 

these equations is 

+ a ( ~ h )  + B(wh) - -  UT- + gr) Nuria + v r i  - qu) 
ae 62 8~  62 4- 

8Y 
+ se (2.5) 

where extemal heat generation and body forces have been neglected. These equa- 

tions are derived in many texts, e.g. [57], and are referred to as the Navier-Stokes 

equations. The components of the stress tensor are 
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Using Fourier's laws of heat conduction, the components of heat flox in Eq.(2.5) 

are written as 

The braces, {), indicate those terms which vanish in the incompressible M t .  In 

addition to the above dxerential equations, one a d a r y  equation, the equation of 

state, is needed 

If the fluid is assumed to be a caloridy perfect gas, the equation of s tate is writ ten 

P =  PR^ 

The following relationships also exist for a perfect gas 

Although ç,, 4, and R vary slightly with temperature, they are assnmed constant 

in this study. If the change in potential energy is neglected, the total energy and 

enthalpy of the fluid per unit m a s  for a p d e c t  gas are 
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Alternatively, for compressible flows at very low Mach numbers, the pressure and 

density becorne less dependent on each other and; in the idediaed limit of incom- 

pressible flow, they are completely decoupled. For incompressible flow, the equation 

of state, Eq.(2.10), collapses to 

For isothermal flow, this equation is reduced to 

p = constant = p, (2.16) 

In this case, the transient term in Eq.(2.2) vanishes and the continuity equation 

becomes 

Therefore, for the idealized incompressible flow case the equation of state, Eq. (2. IO), 

is replaced by Eq.(2.16) with e given by Eq.(2.13) as for the perfect gas. 

Vector Form of Governing Equations 

Since the two-dimensional discretization of the governing equations is done based 

on the vector form of Navier-Stokes equations, it is useful to present this form of 

the equations here. Equations (2.2-2.5) are expressed in vector form as 

where the conserved quantity vector is dehed as 
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Using the definition of ent halpy, Eq. (2.14), the convection and ddbion flux vectors 

respectively are 

3= 

The components of the stress tensor and the heat flux vectos, in Eq.(2.21), are 

defined as before by Eqs.(2.62.8) and Eq.(2.9). The source vector is defined 

Euler Flow Governing Equations 

The Euler equations represent the special case of the Navier-Stokes equations where 

the dissipative transport phenornena of viscosity, mass diffusion, and thermal con- 

duction are neglect ed. Considering t his defini tion and assuming no source t erms, 

Eq.(2.18) is reduced to 

where 3 and 0 are given by Eq.(2.20). 
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2.2 Domain Discretization 

The first step to solving conservation eqnations is domain discretkation. The cur- 

rent numerical met hod uses a control-volume-based fiteelement discretizations as 

introduced in Section 1.3. This technique ras applied to the heat conduction prob- 

lem by Schneider and Zedan [58] and extended to fluid flow problems by Schneider 

and Raw (10,111. While these works have seledecl quadrilateral elements through- 

out the domain, there are other works which employ the same approach with other 

hite-element shapes. For example, Baliga and PatanLat [7] considered triangu- 

lar elements. The present met hod is control-volume-based because the element s 

are used to cons t a c t  the calculation domain wit h nonsverlapping control-volumes 

which fdl the solution domain. Nodes are located at the element corners, and will 

be the location of ail unknowns. In this study we consider quacldateral elements 

which consist of four edges and four vertices. 

The basic relations and transformations of the fmite element scheme are pre- 

sented in Appendix A for qaadrilateral elements. It wil i  be advantageous if the con- 

trol volumes are appropriately defined fiom the elements. If we imagine bounded 

domains around nodes which do not ovedap each other and aU together cover whole 

solution domain the preliminary tool for employing the control-volume part of the 

method is formed. In this regard, each element is broken up into four sub-elements 

by €=O and q=O lines, Figure 2.1. The assemblage of aJi sub-elements which touch 

a node form the requted bounded domain which is called control-volume, Figure 

2.2. It consists of eight h e  segments. Conservation balances for mas ,  momentums, 

and energy are applied for each control-volume. Since each sub-elements is used 

to d e h e  control-volumes, we rename it to a sub-control-volume or simply SCV. 

Figure 2.1 illustrates how (=O and r)=O lines have divided the element into four 
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4 

Figure 2.1: Definitions inside an element. 

L Control Volume 

X 

Figure 2.2: Twdimensional domain discretization. 



CHAPTER 2. GOVERNZNG EQUATIONS & RESEARCH MOTIVATION 27 

SCVs. A conservative flux discretization of the governing equations is accomplished 

by lochhg over all elements and then over all SCV faces within each element. The 

flux passing through each SCV face is assembled to the comxponding oum control 

volumes. The fluxes are estimated by integrating over the SCV surf'. The ar- 

gument of such integrals is approxhated by the mid-point of each surface.  These 

mid-points are denoted as integration points and labeled by ip .  They are illustrated 

in Figures 2.1 and 2.2 by crosses. As seen, the subsutfa~e8 are simply tagged by 

SS labels. 

This grid arrangement is called the colocated grid because all unhiowns of the 

problem are located at the same points. The geometric simpliuty of the colocated 

grid arrangement is very attractive and it will be sigaificant if the pressure checker- 

board problem can be removed, as discussed in Section 1.2.1. 

The integration over sub-surfaces require knowledge of the normal vector to 

each sub-surface. Assume that the sub-surface is stretched between points a with 

(z, y), and Q wit h (2, y)b, Figure 2.3. represents an outward normal vector 

to the segment line Ü6 if we assume conventionai counter-clockwise travel on the 

control-volume surface. It is writ ten as 

a = (AS). ; + (AS), 3 
whese 

(AS), = -A2 = -(zs - 2.) (2.25b) 

In Chapter 3, the one-dimensional form of the governing equations is studied. 

Therefore, a one-dimensional domain discretization is needed. A simple d o m  

one-dimensional mesh is shown and described in Figure 3.1 and Section 3.2. 
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Figate 2.3: Surface vec tor demons tration. 

2.3 Dependent Variables 

The governing equations were introduced in Section 2.1. Each of these equations is 

fkequently associated with one basic variable. This basic variable is explicitly repre- 

sented by the time derivative part of each equation. Density, vdocity components, 

and temperature (or enthalpy) are mainly associated with the mas, momentum, 

and energy equations, respectively. 

Most compressible flow methods solve the Navier-S tokes equations for density, 

velocity, and temperature and derive pressure from the equation of state. However, 

in the incompressible iimit, the density is no longer an unknown, and it vanishes 

from the continuity equation. Although some methods still use density as a de- 

pendent variable in the incompressible limit, they suffix fiom slow convergence, 

Ion accuracy, and instability, Volpe [30]. Instead, most methods for incompress- 

ible flow use pressure as the dependent variable and consider the pressure field to 

be set indirectly by the continuity equation. The choiees for dependent variables 

were compared by Hauke and Hughes 1311 who present a comparative study on 

the performance of three different set of dependent variables, excluding momentam 
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variable set, to solve compressible flow for incompressible lixnits. They deduced 

that pressure is a good choice in the incompressible limit. 

In the present work, pressure is selected as a dependent variable. The difficulty 

introduced with choosing pressure as a dependent variable is that checkerboard 

fields may arise, as discussed in Section 1.2.1. This problem is overcome with two 

different definitions for momentum integration point equations, which are discussed 

in Chapters 3 and 4. With this practice, both compressible and incompressible 

flows can be com~uted using the same cornputer program and speafying a proper 

pressure-densi ty relationship. 

For simple orthogonal coordinate systems such as Carteaian, as oppose to the 

non-orthogonal coordinate systems, the appropriate dependent variables in the 

momentum equations are the velocity components. There are other choices for 

non-orthogonal coordinate systems. The Cartesian velocity components have been 

widely used as the dependent variables in all speed solvers, Section 1.2.4. The 

advantage is that the governing equations are very simple and boundary condi- 

t ion application is easy. In this researeh, momentum component s (or, equivalently, 

mass fluxes; i.e., f =pu and g = p )  have been selected as dependent variables for 

the momentum equations. The reason for this is discussed in Section 2.4. For the 

energy equation either temperature or enthalpy could be chosen as the dependent 

variable. In the present work, temperature is chosen, as it facilitates boundary 

condition application. 

2.4 Research Motivation 

Generally speaking, there are dinetent reasons for research in a branch of study. 

The research path is always open to problems which are unsolved. The status of 
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the research for this type of problems is completely clear. However, the path of 

research is not ended as soon as the problem h solved. There are always rmm 

to improve the side faetors of the method and its solution like stability, efficiency, 

accntacy, and so on. There are generally two types of re~eafch approach. In the first 

category, an exis ting method is developed by adding extra professional treatments. 

In the second one, a new approach, i.e. a novel work, is proposed and investigated 

in order to h d  the pros and cons comparing with the other existing approaches. 

We categorize the curcent tesearch as a novel work and in this section we 

take a deeper look at the motivation for the c m n t  research. The compressible- 

incompressible analogy, methods of linearization, and smooth fluxes through abrupt 

changes in flow parameters are issues which form the foundation for selecting m e  

mentum variables as the dependent variables in this research. These issues are 

separately addressed in this section. 

2.4.1 Incompressible-Compressible Analogy 

The concept of analogy in this study is to develop incompressible methods for 

solving compressible flows by switching the dependent variables. In order to express 

the concept of analogy, it is necessary to expand either the conservation equations 

or the control-volume level of these equations. In this section, we are concerned 

with the continuity and momentum equations. On the other hand, as a start to 

analogy implementation, we confine the discussion to Eulez flow, which contains 

the basic physics of much high-speed flow. 

As the first step, we study the control-volume level of consemation equations. 

Recd the steady form of the Euler equations, Eq.(2.23), with zero source term. 

This equations could be integrated over an arbitrary control volume. At this stage 



we are not interested in the details of integration but the final form of the controi- 

volume level of conservation qationo. These for= are derïved in Chapta 3 for a 

one-dimensional study and in Chapta 4 for twcdimensional study. The integrated 

equations for an arbitrary quadrilateral control volume nin r e d t  in the foIlowing 

set of equations: 

J e... J c.. 

where cs. means integration over control surface and d 3  is a vector normal to the 

surface of control volume. For an incompressible flow, these equations reduce to 

where p* = plp. Here, u, v ,  and p* are considered as the dependent variables. The 

variables outside of parentheses are due to non-linearities, and need to be lineatized. 

Alternatively, for a compressible flow, Eqs.(2.26) can also be expressed as 

Je.,. J c.8. 
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Here, f ,  g, and p are considered as the dependent variables. Ifequations, Eq~(2.27) 

and Eqs.(2.28) are compared, it is seen that they are the same except for their vector 

of dependent variables. Equations (2.27) were developed for incompressible flows 

where u, v, and p' were dependent variables. However, Eqs. (2.28) were developed 

for compressible flows where f ,  g, and p were dependent variables. Therefore, the 

analogy suggests that incompressible control-volume methods using u, u, and p' as 

the dependent variables could be extended to solve compressible flows by switching 

to f ,  g, and p as the dependent variables. 

This analogy can also be applied to the non-conservative form of the governing 

equations. This non-conservative form may be selected as either the main govaning 

equations for solving the flow field or the equation for deriving integration-point 

operators in control-volume methods; in order to connect integration points to the 

main grid points. For incompressible flow, the steady form of the Euler equations 

becomes 

Here, u, v ,  and p* are considered as the dependent variables. Alternatively, for 

compressible flow, Eq.(2.23) can be written as 

af af + BP u-+v- -- - Terms 
a2 ag az 

47 &J + a p  
U- +v- - = T-s az ay ay 



CHAPTER 2. GOVERMNG EQUATIONS & RESEARCH MOTIVATION 33 

Here, f, g, and p are considered as the dependent variables. There are two more 

terms in the right-hand-side of the momentum equations which are a result of 

the nodinesr convection terms. These terms vanish in the incompressible limit. 

Again, comparing Eqs.(2.29) and Eqs.(2.30) shows that they are the same except 

for t heir dependent variables. Therefore, according to the aaalogy, incompressible 

goveming equations which are arranged for u, v ,  and p* as dependent variables 

could be extended to compressible governïng equations by switching to f ,  g, and p 

as the dependent variables. 

Therefore, this analogy provides an important argument for selecting momen- 

tum components as the dependent variables. 

2.4.2 Flues  versus Primitive Variables 

In the conservation equations, Eqs.(2.2-2.5), it is seen that the la-hand sides in- 

volve the divergence of the flux of some physical quantities: 

Rom Eq.(2.2) PY mass flux 

Rom Eq.(2.3) flux of 2-component of momentum 

Rom Eq.(2.4) pvY flux of y-component of momentum 

Rom Eq.(2.5) pe? flux of total energy 

Thus the conservation equations deal directly with the flux of mas,  momentum, 

and energy rather than just the primitive variables such as p, p, and c. The 

conservation equations can be cast in a common generic form as 

a a In this generic form, all arguments of the 88, x, -t- in Eq~~(2.2-2.5) 5 
are collected in a, b, and c flux vectors, respectively. All non-differential ter- are 
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mected in d which is d e d  the source vector. The term a is called the solution 

vector for an unsteady problem. Equation 2.31 iô called the stmng conservation 

f o m  of the govetning equations, in contrast to the Navier-Stokes equations which 

is a weak conservation form. Comparing 6 t h  Eq.(2.18), we see that 

For an inviseid flow, Eq.(2.31) reduces to Eq.(2.23). For an unsteady Euler 0ow 

problem, the proper dependent variables are {p, pu, pv , pe). However, for s teady 

Euler problems, a marching method with marching in one space direction may be 

chosen where the components of 3 are considered as the dependent variables [59]. 

This form of governing equations is popdar in CFD. There are reasons behind 

this popularity. For example, Anderson et al [60] have shown that the conservative 

form of the Euler equations ailows shock waves to be captured as weak solutions, 

thereby circumventing the need to apply shodr-fit king techniques. Furt hermore, 

in flow fields involving shock waves, there are sharp discontinuities in p, p, u, t, 

etc., across the shock. Experience has shown that the conservation f o m  of the 

governing equations is bet ter to be used with shock-capturing methods. The use of 

the conservation form does not result in unsatisfactory spatial osdations upstream 

and downstream of the shock wave, and the solution is generdy smooth and stable 

[61]. This is sketched in Figure 2.4. This plot depicts the flow aaoss a normal 

shock wave for a number of flow-field parameters and th& combinations. There 

are sharp discontinuities for. p, p, and u variables passing through a shock wave. If 
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Figure 2.4: The change of flow properties across a normal shock wave. 

these variables are chosen as dependent variables the equations would directly see 

a large discontinuity which in turn would resdt in numerical mors associated with 

t heir calculation. 

On the 0th- hand, the mass flwc, pu, is constant aerogs the shock wave, i.e., 

Hence, if pu is used as a dependent variable, the stability and accuracy of the 

solution would be increased. The investigation of the x-momentnm equation will 

result a similar condusion for the p + pu2 term, i.e., 

Again, although p, p, and u have sharp discontinuities aaoss the shock wave, the 

fiux variable of p + pu2 remains constant across the shock. If this flux variable is 

selected as the dependent variable, the conservation equations wouid see no error 

associated with sharp discontinuities in p, p, and u. 
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Since we are lookiag for developing a method capable of solving both steady 

and unsteady flows, the solution vector {p, pu, pv, pe) is selected as the dependent 

variables. However, it was shown in Section 2.3 that pressure should be chosen as 

a dependent variable rather than density for incompressible flows. 

Based on these arguments, we conclude that the appropriate choice for the 

vector of dependent variables is @, pu, pv). Another argument for the same choice 

is given in the next section. 

2-43  Tkeating the Nonlinearities 

The general form of the Navier-Stokes equations is non-linear regardless of the 

choice of dependent variables. In order to solve them using methods for linear 

equation systems, the non-linear terms must be linearized. There are many dinerent 

linearization techniques such as lagging the coefficients, simple iterative update of 

the equations, Newton linearization to iteratively update the coefficients, Newton 

linearization with coupling, and many more, Anderson et al [62]. Each of these 

linearizations ha9 advantages and disadvantages, and generally do not guarantee 

convergence. Thus they may be restricted to special applications. 

Generally speaking , linearization introduces some errors, such as iterative errors, 

in solution domain during the process of solving the non-linear equations. Iteration 

is used to solve non-linear equations by choosing an initial guess and updating 

it by solving the linearized equations until the residuals are reduced to a preset 

level. Iterative errors vanish if residuals are enough small. Besides the method of 

linearization, the number of linearized terms within an equation is $80 important. 

In generd, more iinearization wouid cause higher numerical errors. We should 

choose a method which requires as few linearizations as possible. 



Moment- Variable 1 Velocity Variable 

Yes 

Ya 

Table 2.1: Beatment of the nonlinearities i;i the m a s  and momentum equations. 

W e  now consider the number of linearizations required if the velocity or me 

ment- components are chosen as dependent variables. Table 2.1 provides a com- 

prehensive cornparison of important terms in Eqs.(2.2-2.4) for both velocity and 

momentum variables. It is important to note that the linearization is done for the 

cont rol-volume level of discret izat ion where the difkrential forms disappear by in- 

tegrating over the control-volume surfaces and volume. Therefore, the f is t  column 

shows the reai appearance of the nonlinear term in the general form of the governing 

equations and the other two columns show the linearization of the same term in the 
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control volume discretized form. The words of "Yes" and "No" are used to identify 

whether the term needs or does not need linearization with respec to the selected 

variables. In this table we see that for the continuity equation, the transient term 

needs linearization with both formulations, while the 0th- two terms need to be lin- 

earized only when using velocity components. The method of linearization couid be 

dinerent for different flow-fields and solution method. Compressible-incompressible 

solvers may use a Newton-Raphson linearization which mtains the important role 

of density for compressible flows but shihs this role to velocity in the incompressible 

l;mit, i.e. 

For the momentum equations, the convection terms need to be linearized for 

velocity or momentum formulations. However, the transient term needs to be lin- 

earized only for the velocity formulation. The diffusion terms must be linearized 

for the momentum formulations, as discussed in Appendk D. 

Here it must be noted that we are not to compare just the number of noalinear- 

ities in these two formulations and reach a conclusion. The method of linearization 

is another issue which surmounts the number of linearizations. For example, the 

relative weights of dinusion and convection in the momentum equations are not 

the same. Difhsion terms are always discretized using elliptical schemes. Since 

the same technique is used for ail dinusion terms, linearization then does not pose 

a major problem. However, the linearization of mass flux terms in the continuity 

equation and convection terms in the momentum equations require more improved 

treatment. This is because each component of the linearized term, e.g. p and u in 

the pu term, may require special treatment consistent with the physics of the orig- 

inal nonlinear term. Therefore, a suitable treatment of the nonlinearities is mach 
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important than reducing the number of linearizations. 

Thetefore, we sec! that the seleetion of momentum components over veiouty 

components prondes additional simplicity in the linearization of the governing 

equations, specially, the continuity equation. This is another reason for nsing the 

mornentum components as the dependent variables. 

2.5 Closure 

In this chapter, the general conservation equation and severai versions of the Navier- 

Stokes equations were introduced. This vas followed by a discussion on the selected 

dependent variables. It was also explained that if a computational scheme is to be 

valid for both incompressible and compressible flows, pressure should be selected as 

a dependent variable in prefaence to density. In addition, several reasons were given 

for selecting momentum components ins t ead of velocit y components as dependent 

variables. An analogy was introduced which enables incompressible methods to 

be extended to solve compressible flows. The smoothness of the fluxes through 

the discontinuities in the flow-field was another reason to switch to momentum 

components. Finally, it was shown that the momentum-variable formulation leads 

to fewer linearization difficulties and introduces less erroneous linearization. 



Chapter 3 

One-Dimensional Investigation 

and Results 

3.1 Introduction 

The development of a numerical method requires several steps. The initial steps 

are very important in the progress of subsequent stages. In a multi-dimensional 

method, there is no better way to test the method initidy than for the simple 

case of one-dimensional flow. In this chapter, we examine the method for one- 

dimensional investigations or formulations with some special applications. The 

procedure is started by discretizing the solution domain in Section 3.2. Then in 

Section 3.3, we introduce the one-dimensional governing equations and write the 

statement of conservative for them. Next, we derive the one+dimensiond integration 

point expressions and operators in Section 3.4. These derived expressions are fkst 

checked for sound physical behaviour for special flow cases. Lata in Section 3.5, 

they are checked for the velocity-pressure decouphg problem. The modeling of 



CHAPTER 3. ONEDIMENSIONAL m S T I G A T K N  AND RESULTS 41 

the velocity-based formulation is accomplished in Section 3.6. In Section 3.7, the 

method is tested for a number of test problems. In this regard, a source and 

sink combination is put in the one-dimensional flow and the resulting velouty and 

pressure field distributions are studied. The resdts codkm the decoupling problem 

under special circums t ances. The one-dimensional test is followed by ehecking 

the formulation for high speed flows with shocks. In this regard, the shock tube 

problem is selected and tested for one-dimensionai inviscîd flow and the resdts 

are compared with the anaiytical solution. Finally, a direct cornparison between 

the momentum-variable procedure and velocity-variable produre,  inciuding their 

results, is presented. 

3.2 One-Dimensional Domain Discret izat ion 

The twdimensional discre tization of the solution domain has been fdly discussed 

in Section 2.2 and Appendix A. For a one-dimensional study, the grid distribution 

is very simple. The number of nodes, integration points, and SCVs in each element 

are reduced considerably. Figure 3.1 austrates a simple uniform one-dimensional 

grid distribution. The Y and Z dimensions have unit lengths. 

Control volumes are located between the two crosses while elements are located 

between the solid circles. The notation used to denote relative control volume 

location is illustrated in this figure. The subscripts E and W are used to denote 

the nodal quantities associated with the control volume to the east and west of node 

P. Similady, e and w are east and west surfaces of the control volume centered at 

point P. Upper case let ters are assouated with quantities at main nodal grid points, 

while lower case let ters refèr to quantities at integration points. This convention is 

normaily respected throughout this thesis. 



Figure 3.1: One-dimensional domain discretization. 

3.3 Discretization of Governing Equations 

In t his section the algebraic representation for different terms of the mass, momen- 

tnm, and energy equations are derived according to control-volume-based methods. 

These algebraic equations have a nonlinear form. These nonlinearities need to be 

iinearized properly in order to use solution techniques applicable to linear algebraic 

equation systems. The one-dimensional conservative fonn of the governing equa- 

tions for mass, moment um, and energy are respectively derived fiom Eqs. (2.2-2.5) 

for flow in z direction as 

 PU) 
P. 

where I' = iP. The a d a r y  equation is the equation of state for compressible flow, 

Eq. @.Il), and the constant density assumption for incompressible flow, Eq.(2.16). 

The other necessary parameters, lilre total energy and enthalpy, are calculated fkom 

Section 2.1 considering the one-dimensionality. 
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3.3.1 Conservation of Mass Equation 

Integrating the equation of mass, Eq.(3.1), over a eontrol volume and using the 

divergence theorem wi l l  yield 

where and / are taken over the volume and the s u r f "  normal to the x-aPs 
P SP 

of the control volume, Figure 3.1. The transient term is approximated by a lumped 

m a s  approach in our hilly implicit method 

where J represents the volume of the control volume. The superscript ''on denotes 

the old values of the corresponding parameter. The subscript P refers to the nodal 

point P. Since e is not a major dependent variable it is properly linearized for 

compressible flovr using Eq.(B.B). The result is ,p = @ + & P - T. Similady, 

the source term is apprairimated as the source strength evaluated at point P times 

the volume of control volume 

The remaining flux term is simply integrated over the boundary surface of the 

cont rol volume 

f. and f, are evaluated at the integration points which are not nodal locations. 

The expressions which relate them to the main grid nodes are derived in Section 
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3.3.2 Conservation of Momentum Equation 

Integrating the momentum consavat ion 

trol volume wjll yield 

equation, Eq. (3.2), over an arbitrary con- 

The transient and source terms can be treated as before 

The convection term is simply integrated over the control volume surfaces 

These nonlinear terms at the control volume surfaces must also be linearized. It is 

possible to linearize them respect to f variable or both f and u variables. The d a  

tails are given in Appendix C and the result is writ ten here by employing Eq. (C. 14) 

The pressure term is mit ten as 

The last term is the diffusion term which is treated in a similar manner 
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The results do not directly involve the main dependent variables and an appropriate 

substitution is needed. Appendix D represents différent methods to linearize terms 

si& to the $ term. Here, the scheme of Eq.(D.P) is used to finearize the dinusion 

term. mer substituting, the results are written as 

The terms in the second bracelet can be evaluated by either using the lagged values 

of the density or by employing the method of Appendix B and considering them as 

active terms. As is seen, all terms except the transient and source terms need to be 

evaluated at the integration points which are not nodai locations. The necessary 

connections are developed in Section 3.4. 

3.3.3 Conservation of Energy Equation 

In this research, different methods for treating the one-dimensionai energy equation 

have b e n  used because the number of nonlinear terms is much more than the 

number in the momentum equation and they can be linearized dinerently. The 

final formulation which is presented in this sub-section presents just one which 

the final one-dimensional results are based on. Integrating the equation of energy, 

Eq.(3.3), over an arbitrary control volume nill yield 

The transient and source terms can be treated as before. However, the nonlinear 

transient term, i.e. pe, is linearized with respect to p and e using Eq.(B.6) in 

Appendix B. This gives pe = pe + ëp - jjë where a simple linearization for e is 



Using Eq.(B.5) for density and substituting it and Eq.(3.17) into the linearized 

form of pe d h d y  yield 

The subscript P for the t m s  in braces means that all terms are evdnated at the 

nodal location P. On the other hand, the convection term in Eq. (3.16), f e, is fLst 

linearized with respect to f and e using Eq.(B.G). Then one more hearization is 

done for the definition of e, Eq.(3.17). A combination of these two hearizations 

wil l  resuit in the following iinearized form for the convection tenn, 

where k = ~t + tr2. The viscous term in Eq.(3.16) is treated similady top the 

viscous term of the momentum equation. The extra u in the viscous tenn of the 

energy equation is lagged. The conduction term in Eq.(3.16) is approxhated at 

control volume surfaces by writing a central difference involving its neighboring 

nodal temperatures. The pressure term is changed to up = u(pRt) = R f t. Then 

using Eq.(B.G) we obtain 

As before, all terms except 

- Lfw]+ 1f.k - f,L] - [ ( m e  - (m) (3.20) 

the transient term were derived at integration points. 

The necessary connecting expressions between integration points and the main grid 

points are derived in the next section. 

3.4 Integration Point Operators 

The consemative treatment of mas, momentum, and energy was presented in the 

last section. However, to make the system of algebraic equations wd-posed, the 
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desived discretized fonas require that the dependent variables at control volume 

surf' be represented in termg of nodal variables. Thetefore, it is necessary to de- 

rive expressions for the major dependent variables of the formulation (i.e., momen- 

tum component, pressnre, and temperature variables) at control volume surfaces 

in terms of nodal values. 

3.4.1 Momentum Component Variable 

Although the continuity equation is treated as an equation for pressure it does not 

directly involve pressure in itself. This is critical for incompressible flow conditions. 

A simple connection of f. and f, in Eq.(3.7) to the neighbouring nodal F's does 

not directly brings the effect of pressure into the continuity eqnation. Moreover, 

it ensures the eheckerboard problem WU exist [l]. Various techniques have been 

adopted to overcome this shortcoming in the continuity equation. Many of them 

have paid attention to a better modeling of the integration point variables. In this 

regard, new schemes have tried to bring the correct physical aspects of the flow 

into the integration point equation. Baliga et al [7, 631, Prakash and Patankar 

[8], and Prakash [64] are few among many works who have presented profiles that 

attempt to include the relevant physics of the problem. Consequently, Schneider 

and Raw (101 employed a different approach that uses the governing equations, 

themselves, to derive the integration point equations. According to their work, 

an algebraic approximation to the appropriate differential equation is generated 

at each integration point which consequently WU indude dl of the physics and 

relevant couplings for that variable. This method will be employed in this work to 

derive the necessary integration point equations. 

Following the work of Schneider and Raw [IO], momentum integration point 
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eqnations are derived by a p p r h a t i a g  the non-consemative form of the momen- 

tum equation, which is derived fiom Eq.(3.2). It is 

The terms of this equation are treated in a manner that 

8f (3.21) 

tepresents the correct 

physical aspects of the flow. If these is a strong flow dong a specinc direction, then 

significant influences travel only fiom upstream to downstream in this direction. 

So, the conditions at a particdar point can be afkcted significantly by upstream 

conditions. The balance between diausion and convection terms depends on th& 

relative strengths. If convection is large enough then it overwhelms the elliptic 

efFect of the diffusion term. Considering a correct physicd treatment would reqnire 

a central difference approximation for the pressure gradient term and an upwind 

approximation for the convection tem. A central differenchg scheme is also used 

for the diffusion term which reflects the elliptical influence of parameters in the flow 

field. The transient term is treated as before by a backward diffaence in time. So, 

the terms of Eq.(3.21) are discretized as 
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Here, both convection terms are treated in an upwind manner. Appendix C presents 

a comprehensive discussion on the role of the veiocity components in the momen- 

tum's convection terms. These roIes could have a direct &ect on the way that 

these convection terms are diseretized. However, it is shown that if is treated in 

a central difference manner it produces poor results, Appendix E. Another form of 

treatment for Eq.(3.24) is 

This scheme will include just je and is directly transferred to the unknown part 

of the equation on the left hand side. The reason for avoiding this scheme is the 

possibility of poor stability of the method as is shown in AppendLr E. 

Substitution of the diseretized terms into Eq.(3.21) and remangement yieid the 

following expression for the momentum integration point equation 

where P and C are the grid Peclet and Courant numbers, i.e., 

As is seen, there is a strong comection between the momentum integration point 

vMable and neighbouring nodal dependent variables. The use of this expression 

in the mass conservation equation, Eq.(3.7), provides a couphg of pressure and 

momentum-variables and helps to eliminate the need for a staggered grid. Although 
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this procedure reduces the necessity of nsing a staggered grid, it may still reveal 

the checkerboard problem under special circumstances which are describeci in the 

next section. 

If P is changed nom zero to infinie, the influence of upstream and downstream 

nodd values is properly seen. This is examined for limiting values of the Peclet 

nuxnber in steady-state condition 

The influence of the momentum nodal values properly changes from that of M y  

elliptic for P + O, to that of f d y  parabolic for P -+ oc. This demonstrates a 

correct behaviour of the derived expression for the momentum component a t  the 

integration point. In the next sub-section, the ot her integration point variables are 

exazuined. 

3.4.2 Other Variables 

There is no direct equation to be used for deriving an integration point equation 

for pressure. Schneider and Raw [IO] used the pressure Poisson equation as an 

explicit partial differential equation to show that pressure is a strongly elliptic 

variable in incompressible flows. Thus, a linear interpolation is used to determine 

the integration point pressure which is analogous to conventional procedures insofar 

as its implementation is concerned. 
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The temperat ure integration point equation is obtained by direc tly discretizing 

the energy governing equation. The onedimensional energy equation for transient 

flow couid be written in the following form 

The tems of this equation are approrimated very s i d a r  to the apprba t iuns  

in Eqs.(3.22-3.26). The transient term is discretized by a badsward difference, an 

upwind difference is considered for the second term on lefbhand-side, and the third 

term of the left-side is approximated by a centrd clifference. 

t hese approximations into Eq. (3.34) yidds 

The substitution of 

- 0  (3.35) 

where the lagged dissipation term, e, is treated in the foliowing form: 

Thus, the temperature integration point equation could be derived &er some re- 

arrangement in Eq.(3.35), i.e., 

The steady-state form of this equation is reduced to 

The unlrnown density at an integration point can be calcdated fiom either the 

equation of state or the nonlinear form of the continuity equation. The importance 

of this variable is for connecting the momentum and velocity-variable quantities at 

integration points. In the first case, the equation of state is linearized with respect 
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to pressure and temperature, Appendk B, and then the pressure and temperature 

integration point equations are substituted. This form of linearization vas not 

employed in solving the test cases which are presented in Section 3.7. The second 

case employs the non-conservative form of the continuit y equation, i.e., 

Using a backward scheme for the transient term and an upwind scheme for the 

second tenn will tesult in 

in which the last term of Eq.(3.39) has been lagged. Note that the role of density 

integration point equation in moment um-variable formulation is not as critical as 

it is for velocity-variable procedures which uses density directly in the conservative 

treatment of the continuity equation. 

The remaining variables which are not mentioned here , like velocity, do not 

appear in the formulation with an active role but passive and lagged from previous 

iterations. Velocity is obtained by using the u = f definition. Other similslrly lagged 

variables are properly calculated by th& basic definitions, Section 2.1, using the 

magnitude of major dependent variables at integration points. 

3.5 Pressure-Velocity Decoupling Issue 

The absence of pressure in the continuity equation and the use of a central merence 

for the pressure term in the momentum equation permit the pressure field to accept 

a zig-zag solution in incompressible flows, Patankar [l]. Such a zig-zag field, which 

is known as the pressure checkerboard problem, is not physical. Any nnmber of 
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additional solutions can be umstructed by adding a checkerboard pressure field to 

a smooth pressure field solution. 

In this section, the pressure checkerboard problem is investigated for the derived 

discretized equations of Section 3.3 when the integration point equations of Section 

3.4 are ernployed. This study is started by simplifying the formulations for steady 

incompressible flow and testing it for speeial domain situations. 

3 S. 1 Decoupling in One-Dimensional Formulation 

We have already derived the momentum integration point equation, Eq.(3.28), 

which illustrates a strong coupling between the pressure and velocity fields. This 

compensates for the absence of pressure in the continuity equation. There remains 

a question of whether the velocity-pressure decoupling issue has been eliminated. 

It is intaesthg to investigate this in our colocated formulation which indudes pres- 

sure eff'ects in the discretized form of the continuity equation. Consider the control 

volume Iocated at point P in Figure 3.1, the control-volume discretized equations 

of mass and momentum for s teady-state, incompressible, Euler flow without any 

source terms are written 

Here, fe and fw are derived from Eq.(3.31) considering incompressible fiow condi- 

tions with no source term. They are 
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- The value of p* is ob tained from Eq. (3.33). A s h i k  interpolation for P, is p, - 
F. If these four integration point expressions are sabstituted into Eqs.(3.41) 

the folIowing results are obtained after some r-angement 

If the continuity and the momentum equations are respectively mdtiplied by 9 
and :, the consideration of 

m = (pu). = (pu), = mass flow rate = constant (3.44) 

will reduce these equations to 

Hem, the pressure term in the continuity equation acts as a source term to correct 

the momentum field. Schneider and Karimian [12] have shown that a zig-zag pres- 

sure field results in a zig-zag velocity field in their simila formulation. Following 

their work, a pressure field similar to 

can result in a zig-zag momentum field like 
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indicating that only every other node is connected. The non-physicai solution set, 

&s.(3.46 and 3.47), satisfies Eq43.45). In other words, a non-physicaî solution 

satisfies the discretized governing equations. 

A similar conclusion is obtained by direct examinhg of Eqs.(3.41). If u. = u, 

and p. = pw, then Eqi~(3.41) become 

Now, irrespective of any definition used for f. and f,, substitution of the first 

equation into the second one gives 

Considering the pe = -lPp and = pp:Pw approximations will result 

This shows that the possibility of a checkerboard problem still exists in this col* 

cated grid arrangement even with the strong coupling of pressure and momentum 

dependent variables. Thus, the appearance of pressure in the continuity equation 

is not the complete remedy for a colocated grid approach. The next sub-section 

introduces a remedy to eliminate this checkerboard dSculty. 

3.5.2 A Solution to the Decoupling Problem 

A general remedy to the pressure-velocity decoupling problem is the employment of 

a staggered grid scheme [l]. However, the current method has been established on a 

colocated grid arrangement which is proposed as being an advantage of the method, 
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Section 1.3. The dünculty could be overcome by introducing a new set of momentam 

components at integratioii points. The new set should not ody  involve all aspects 

and physics of the flow but &O consider the satisfaction of mass which the single 

integration point equation does not. This proposed new set of vaaiables could 

be used in conjunction with the continuity equation and wherever conservation of 

mass is addressed. Karimian and Schneider [33] present an argument to obtain the 

best new set of velocity components at integration points. It is deduced that the 

eqiiation which involves both momentum and continuity eqaation mors works rd. 

Folioï+ng their conclusion, a tweparts equation is presented to derive the second 

set of momentum components at integration points 

(Moment- Equation Error) - ~(Continuity Equation Error) = O (3.51) 

The main idea is to invoke the role of conservation of mass in the integration 

point equations. Such an equation has the dec t  of invoking momentum and mass 

conservation, even though it is indirect. We write a general form of this equation 

using Eqs.(3.1 and 3.2) 

where a is an arbitrary coefficient which determines the degree to which the con- 

tinuity equation error is involved. The discretization of this equation is exactly 

similar to what was done for the momentum integration point equation, Eqs.(3.22- 

3.26). In this regard, similar terms in the two braces are added and transient terms 
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are treated like previous treatments for the transient terms. The final result is 

This new integration point expression is dif£"rent fiom Eq.(3.28). We name it con- 

vecting rnomentum or m a s  conserving momentum because the conservation of m m  

is included in it. The hat on this variable, f ,  distinguishes it fkom the convected one, 

f ,  which was preseted before by Eq.(3.28). Comparing Eq.(3.53) with Eq.(3.28) 

shows that the convecting momentam and convected momentum are the same for 

a=O. The general convecting expression can be simplified to the special case of 

steady-state, Euler flow, i.e., 

Differing values of the arbitrary coefficient, a, will change the influence of nodal 

parameter values. This is shown for two different values of a in incompressible flow 

Before closing this section, it is instructive to show that the use of two integra- 

tion point equations for the momentum components does not permit the checker- 

board problem to persist. In this regard, Eqs.(3.48) are umitten in the forms that 
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involve bot h convected and convecting momentnms 

where fe and f, are substituted from Eqs.(3.42). Similar convecting momentums 

are derived from Eq. (3.56) considering incompressible flow conditions with no source 

t erm 

By comparing with Eqs.(3.42), it is possible to relate the convected and convecting 

momentums, Le., 

These expressions are substituted in Eq.(3.57a). Assuming ue=u, will result in 

This result can be substit uted in Eq.(3.57b) where p, and p, are approximated by 

Linear interpolation of the neighboring nodal pressures. The result is 

Contrary to Eq.(3.50), here adjacent nodes are connected and thus the checkerboard 

problem as ne  know it does not arise. A similar investigation shows that a zigzag 

pressure field like Eq.(3.46) caanot result in s zigzag momentum/veloQty field like 
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Eq.(3.47). This new momentum convectàng equation is a remedy for elimination 

of the checkerboard problem. In the next section, other possible techniques for 

deriving convecting momentum-variables are described. 

3.5.3 Ot her Possible Solutions 

Although the discretization of Eq.(3.52) was done similar to what had been done 

for Eq.(3.21), it is possible to treat the convection terms in dinerent manners to get 

different formulations. Both the convected equation, Eq.(3.31), and the convecting 

equation, Eq.(3.54), show that the momentum integration value is related to its 

upstream nodal momentum value for steady-state Euler flow. However, it can 

be argued that the integration point values should depend on both upstream and 

downstream nodal values. To examine this, the u v  term, which is a common 

term in both the continuity and momentum equations, is discretized in different 

ways. Once more, Eq.(3.52) is repeated hem while the concern is only on u q  

terms in those two braces, i.e., 

~0rnentÜ.m Errm Con t inui ty Error 

Considering the physical int erpret at ion of the UV t m  , 

= O  (3.62) 

both the continuity and 

momentum equation parts could result in different d i s a e t h g  options. Table 3.1 

summarizes some of the possibilities. The h s t  row of the table represents Method 

1 which was used in the preceding sub-section to derive je. The resdts of that 

formulation were presented there. Now, if central diffkrencing is employed to the 

teim in both braces the method is named Method II. The result of this approach 
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II II in Moment- Eqaation 1 in Continuity Eqnation (1 

Table 3.1: Different method of treating in mass conserving equation. 

Method III 

Method IV 

for s teady-st at e Euler flow is 

The influence of neighbouring momentum nodal values is again changed if a is 

changed. This is examined for incompressible flow 

Upwind Diffaence 

Central Diff'ence 

The change of a from 1 to 2 provides for this interpolation to be changed from an 

absolute upwind to an absolute average of neighbouring nodal momentum values. 

Central Diffaence 

Upwind Difference 

Another way for treating the UV term is a combination of upwind differencing 

for the momentum part and central differencing for the continuity part, Method 

III. This form ratifies the convecting prescription for the continuity equation and 

the convected prescription for the momentum equation. The resdt for steady-state 

Euler %ow is 
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When a + O, this equation approaches the limiting convected equation, Eq. (3.31). 

In this case, both convected and convecting momentums are the same. However, 

for a=2 in incompressible flows, the average of neighbouring nodal momentums 

results for approximating the integration point equation, 

There is a fourth method, Method IV, which uses central differencing for the 

momentum part and upwind differencing for the continuity part. The upwind 

mode1 was used to treat the continuity parts in Method 1 where the purpose was 

to make a consistent discretization for similar differential terms of the equation. 

Generaliy speaking, the main idea in deriving a convecting equation is to employ 

upwind differencing for momentum convection terms and central differencing for the 

continuity terms, however, Method IV is presented as yet another possible option. 

The result of this case for steady-state Euler flow is 

Az 
(d l  - c&sm) 2üe(1 - a) 

Considering a=O reduces this equation 

conditions: 

(3.68) 

to the following form for incompressible flow 

which is an inappropriate expression for approximating the momentum integration 

point value. However, considering a=2 improves it to an appropriate expression 

These different methods were studied in a one-dimensional procedue for which 

resuits are presented in Section 3.7. 
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3.6 Velocity Component Based Formulation 

At this stage, the one-dimensional modeling for the moment um component formula- 

tion is complete. This formulation provides the mechanism with which to examine 

Merent onc+dimensional test problems with regards to its ability to solve such 

problems. However, the solution of these test problems by itself does not provide 

any advantages or disadvant ages wit h respect to the velocity-variable formulation. 

Where feasible, a compatison will be made of the tesults of the momentam-variable 

formulation with those of the velocity-variable formulation. In this respect, we wili 

be concerned with methods which have been developed for solving compressible 

and incompressible flows at d-speeds. The work of Karimian and Schneider [33] 

is the best among the available methods for such flows. They provide a damping 

mechanism in th& formulation in order to avoid spatial oscillations in the vicinity 

of discontinuities and shocks. This damping also results in improved convergence. 

Since the current method is free fiom employing any damping mechanism, a corn- 

parison between the two formulations wili be performed on the bais of there being 

no damping or density averaging in either method. 

In order to pursue this latter idea, the one-dimensional approach of Karimian 

and Schneider [65], who apply it to the shock tube problem, is formulated in the 

folîowing. A dearer comparison WU be obtained if the energy equation can be 

separated nom the continuit y and momentum equstions. In th& way only the flow 

couphgs are considered and the additional complications of the energy equation 

and its couplings are avoided. Thus, an isothermal flow is assumed throughout the 

domain and a constant temperature field is specified via the energy equation. The 

statement of consetvative for the mass and momentum equationa can be obtained 

fkom Eqs. (3.1 and 3.2) assoming zero diffusion and source terms. The final form of 
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these statements ean be directly written fkom Sections 3.3.1 and 3.3.2 as 

The transient term in the continuity equation and the pressure term in the momen- 

tum equation are treated as in Sections 3.3.1 and 3.3.2, respectively. The convection 

term in the moment um equation is simply linearized respect to the velocity-variable, 

i.e. p u  = (F)u .  Aowever, the mass flux terms in the continuity equation require 

special treatment. They are treated by using a Newton-Raphson linearization, 

Eq.(B.G). This treatment, which was introduced in Section 2.4.3, allows the strong 

importance of density in highly compressible flows to shift to that of velocity in the 

incompressible limit. The mass flux is given by 

The non-linear density in the second term on the right-hand-side is determined by 

The non-linear transient term in the momentum equation is fi~st treated by a 

Newton-Raphson linearization, i.e. eU = GU + De - p. Then, the non-linear 

density is treated by using Eq. (B.5). 

In the next step, the convected velocity at the integration point is derived from 

the non-conservative form of the moment um equation, i.e., 
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Wnting a backward diffetence in tirne, an upwind difference approximation for the 

convection term, and a central difference approximation for the pressure term and 

rearranging the resulting terms give the following expression 

This integration point veloaty is the convected one which is substituted into the 

convection term of the momentum equation. SimiIarly, the convecting velocity at 

the integration point is derived fiom the following equation 

where the term in the fust parenthesis is modeled using central differencing for the 

spatial derivatives and backward Merencing in time for the transient term. The 

following result is obtained &er some rearrangement 

L 'L 
(UP + UB) + Ue = 

1 +2@ Peu& + 2C) 
(PP - 9) + TERMS (3.78) 

where 

Ge üec TERMS = u: 
(Pe - P Z )  + pe(l + 2@) (ës -@Pl + 1 +2c (3.79) 

A U +  2@) 

This convecting velocity at the integration point is substituted into the mass flux 

terms of the continuity equation, Eq.(3.73). 

Now, the modeling of velocity-variable formulation is now complete. HOW- 

ever, Karimian and Schneider [65] improve this formulation by treating TERMS 

in Eq.(3.78) and the second term on right-hand side of Eq.(3.74) using an absohrte 

hamonic interpolation scheme. This treatment damps oscillations in the vicinity 

of shock waves and discontinuities in the numerical solution. 
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3.7 Applications 

To check the accnracy of our n u d e a l  solutions, a cornparison will be made with an 

exact d y t i c a l  solution for incompressible and compressible Euler flows. Although 

our interest in this research is in solving the complete Navier-Stokes equations, 

the Euler equations are of importance in many flows and do exhibit the strong 

coupling between velocity, pressure, and density. They thaefore provide a good 

preliminary tool to evaluate the performance of a NavkStokes solver. In this 

section, source and sink test cases are h s t  applied to incompressible flows and 

the resdts are eramined. Subsequently, the shock tube problem is examined to 

examine the compressible part of the method. Findy, a direct comparison between 

the results of momentum-based and velocity-based formulations is provided. 

3.7.1 Incompressible Flow 

The main purpose here is to examine the checkerboard problem in a flow field when 

a sudden positive or negative change in mass or pressure is imposed. Therefore, 

the source terms in the continuity and momentum equations have non-zero values. 

The test case is a one-dimensional, steady-state, Euler flow through a constant area 

channel with unit length and with mass/pressure-sowce/sinlt inside it. There are 

twenty-one d o r m  node distributions. The source and sink divide the domain into 

tbree equal parts, Figure 3.2. For the sake of space, some part of domain has not 

been shown in this figure. The mass is specified at the upstream boundary and pres- 

sure is defined at the downstream boundary of the domain for boundary condition 

implementation. Also, mass and pressure are nondimensionalized with respect to 

inlet momentum component, Fint and idet dynamic pressure, ( f eU&), respectively. 

Two diBetent possible arrangements are considered for each source/sink. They are 
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Ekmcnt SourMink Disrribution 

Conml Volume Source/Sink Distribution 

Figare 3.2: Source and si& distribution in ont+dimensional domain. 

dehed by either two neighbonring nodes, named an element eource/sinl, or by two 

neighbouring integration points, named a control volume source/sink, Figure 3.2. 

If the source is distnbuted within an element, it is equaliy split between the two 

control volumes of t hat element. 

The discretized equations of continuity and momentum have analytical solu- 

tion for mass and pressure variables when element pressure-source/sink is located 

in the domain. For this case, the results of the code are codkmed by the ana- 

lytical solution, Figure 3.3. This analytical solution cannot be obtained for other 

types of source and sink distributions. For the control-volume source/sink, there is 

some oscillations around the source and sink in the numerical results. These local 

oscillations around the source and sink do not reflect the checkerboard problem. 

For example, Figure 3.4 shows the results of code for locating a control-volume 

mass-source/sink in the domain. The numerical result does not fit the required 

distribution in the domain. In these distributions, the migration fiom before to 

after a source happens within more than one discrete distance between two integra- 

tion points or nodes. Figures 3.5 and 3.6 show the results of the code for loc&ing 

an element mass-source/sink in the domain. One applies the mass conserving a p  

proach and the 0th- does not. If the mass conserving equation is not applied in the 
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- Anaiydcai and present solution for node O 

Anaiytical and premnt mlutloci for lg. x 
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Node and 1.p distribution 

Figure 3.3: The d e c t  of element pressure-source/sink on pressure and velocity 

distributions. 

continuity equation instead of convected one, the pressure checkerboard problem 

appears, Figure 3.5, while the use of a convecting equation does no t aiiow the growth 

of non-physical oscillations in the domain, Figure 3.6. This has &O b e n  shown for 

the other type of source/sink configuration in the domain. For example, Figures 

3.7 and 3.8 illustrate the ciifference for a control-volume pressure-source/sink con- 

siderations. The Iack of mass conserving equation WU result non-physical solution 

in domain. 

AU the resdts of this section (up to here) were obtained by employing the 

convecting momentum expression of Method 1 into the continuity equation and 

considering a=l, Eq.(3.56). The depicted figures show that mass is constant in 

passing through pressure-source/sink while pressure is not constant passing through 

a mass-source/sink. The use of momentum convecting equations in continuity equa- 
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Pressure Disiribution 
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Figure 3.4: The &ct of control-volume mass-source/sink on pressure and velocit y 

distributions. 

equation removes the checkerboard problem and res trict s oscillations to t kee nodes 

or less. 

There are also many o tha  results with employing Method II and Method III 

of Section 3.5.3. They show satisfactorily results in removing the pressure checker- 

board problem. These results have been compared with each other. Genedly, 

Method 1 shows better or similar results compared with Method II and Method III. 

For example, Figure 3.9 shows the pressure dis tribution cornparison when control- 

volume pressure-sourcefsink is located in the domain. The Method II with a=2, 

Eq.(3.65), shows overshoot and undershoot in the neighbouring nodal &es but 

Method 1 wit h a=l, Eq.(3.56), shows just one stronger overshoot downstream of 

the source or si&. Three nodal points are affected by the sink/source in the Method 

XI while this is decressed to two nodes in Method 1. The reason for the difference in 
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Figure 3.5: The d e c t  of element mass-source/sink on pressure and velocity distri- 

butions without using convecting momentum equation. 
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Figure 3.6: The effect of element mass-source/sink on pressure and velocity distri- 

butions. 
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Figure 3.7: The effect of control-volume pressure-source/sink pressure and velocity 

distributions without using conuecting momentum equation. 
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Figure 3.8: The &ect of control-volume pressure-soarce/sink on pressure and ve- 

locity distributions. 
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Figure 3.9: Comparing the numerical results of Method 1 and II using control- 

volume pressure-source/sinlr in domain. 

solutions returns to the connection of momentum components at integration point 

to its neighbouring nodes. In an upwind scheme, the integration point is dected 

by upstream values while in central differencing scheme, the effect is fiom both 

ups tream and downs tream values. 

3.7.2 Compressible Flow 

Aere, the shock tube problem has been selected to present the resdts of the one- 

dimensional formulation for compressible flow. The selection of the shock tube 

problem as a test case is due to the availability of its analytical solution which en- 

ables us to examine the accuracy of the numerical solution. On the other hand, this 

transient problem includes both transient fiow featntes and a wide range of Mach 

nnmber, i.e., a moving normal shock wave, expansion waves, a contact discontinuity, 



CHAPTER 3. ONEDIMENSIONAL INVESTIGATION AND RESULTS 72 

and having subsonic, transonic, and supersonic regimes. 

The shock tube geometry and wave pattern is shown in Figure 3.10. The pres- 

sures at the left and right of the diaphragm are taken as lOOOkPa and 100kPa, re- 

spectively. The temperature is uniform tkoughout the shodr tube at 25 OC before 

nipturing the diaphragm. Gas properties are e. = 720 J/kgK,  R = 287.0 J/kgK,  

and 7 = 1.4. To the left of the contact line, gas expansion causes a reduction in 

Contact Surface 

Figure 3.10: Shock tube problem and its wave pattern. 

temperature, whereas to the right of the discontinuity, the compressed wave raises 

the temperature of the gas. At the contact line, there is a discontinuity in the 

temperature profile and hence the density profle. 

The resdts show the mass flux, pressure, temperature, and density distribu- 

tions throughout the shock tube 500 ps der nipturing the diaphragm. The exact 

solution is superposed in ail figures. 201 nodes are chosen with a t h e  step of 0.7 

pu. The pressure and temperature are nondimensionalized by lower pressure aide 
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values and the initial temperature of the shock tube, respectively. The convergence 

criterion in each time step is checked for all nodes, 

where i indicates the node number and e=lOO'. 

The shock tube problem is examined both for different Courant numbers and for 

Methods 1, II, and III. Figure 3.11 shows the results employing the mass conserving 

procedure of Method 1. The moving shock wave is captured within a few nodes, but 

0.5 
Shodc Tube Axis (m) Shed< Tube k j s  (m) 

Figure 3.11: Shock tube results for Method 1 with a =1, -0.4, and 201 nodes. 

some overshoot is seen downstream of the shock wave. The Courant number for 

this case is 0.4. In order to find the limits of stability for our implicit algorithm, 

the time step is gradoally increased to increase the Courant number. Figures 3.12 

and 3.13 show the results with larger time step sizes, i.e., At=l2ps and At=17ps, 

respectively. They show that the method is stable for higher Courant numbers of 
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Shock Tuba Axii  (m) 

Figure 3.12: Shock tube results for Method 1 with a=l,  6 0 . 7 ,  

OB*- 0.5 1 

Shodc Tub, ki (m) 

and 201 nodes. 

Figure 3.13: Shodt tube results for Method 1 with a=l ,  61.0, and 201 nodes. 
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C = O  .7 and G 1  .O, respectively. The inaease in Courant nnmber does cause more 

smearing around discontinaities because the transient details are not captured accu- 

rately in fnlly implicit methods with large time steps. No b i t s  were encountered 

for higher Courant numbers. There are results available for Courant number of 

e 6 . 3  which are not presented hem. 

In the second stage, compressible flow is tested for two more test cases involving 

Method II and Method III. The results have been depicted in Figures 3.14 and 3.15 

for Method II with a=l and for Method III with a=2, respectively. The results 

of Method II are identical with the results of Method 1 because their formulation 

become identical for the defined a's in this test case. It is interes ting to note that 

discontinuities are predicted within a fewer number of nodes in Method III, but at 

the cost of higher undershoot and overshoot around discontinuities. 

The final stage is to study the effect of mesh refinement. Following the results 

presented in Figure 3.11, G 0 . 4  is selected as constant and At is changed for a 

total number of 151 nodes to maintain Uk0.4. The resdts are seen in Figure 3.16. 

As is expected, sharp changes of the parameters are smeared and there would be 

less accuracy than the case of Figure 3.1 1 with 50 more nodes. 

As the results show, all methods remove the cheekerboard problem and provide 

the desired coupling between pressure and the momentum components. These 

preliminary result s show good agreement wit h the t heoretical solution alt hough 

neit her ar tificial viscosit y nor ot her overshoot treat ment is explicitly considered 

in the formulation. Moreover, no smoothing or damping function has been used 

to reduce oscillations. The results of this section confirm the success of the one- 

dimensional formulation for treating high speed flows. 



CHAFTER 3. O N E D ~ N S I O n r A  L S T l G A T l O N  AND RESWS 76 

t 
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Shock Tube Axis (m) 
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Figure 3.14: Shock tube, using Method II with a=l, -0.4, and 201 nodes. 

Figure 3.15: Shock tube, using Method III with a=2, G0.4,  and 201 nodes. 
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Figure 3.16: Shock tube results for Method 1 with a=l, e 0 . 4 ,  and 151 nodes. 

3.7.3 Cornparison Between Velocity and Momentum For- 

mulations 

As the final step of the one-dimensional investigation, the performance of the m e  

mentum component formulation is compared with that of the velocity component 

formulation. In this way we are able to investigate some of the potential adïan- 

tages of the momentum component formulation. One advantage relates to the 

benefits of using mass flux variable instead of the velocity-variable, Section 2.4.2, 

for flows involving discontinui ties, and mot her relates to the benefit s of simplifying 

the difficult treatment of nonlinearities, Section 2.4.3. The shock tube problem 

and the quasi-one-dimensional converging-diverging nozzle problem are two one- 

dimensional test problems which can be used to investigate the potential advan- 

tages of the momentun-variable formulation Li high speed flows with shocks. In 
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this section, we pursue this investigation for the shock tube problem which is a more 

difficult problem as was mentioned in Section 3.7.2. The initial conditions, the gas 

propesties, and the nodes distributions are defined as betore. This investigation 

is restricted to isothermal 0ow in order to provide a clearer cornparison between 

the two formulations. Equation 3.80 is used as a measure of convergence for the 

pressure. 

Figures 3.17 to 3.20 present the results obtained by both the vdocity-based 

and the momentum-based formulations. They show the distributions throughout 

the shock tube 5 0 0 p  after rupturing the diaphragm. The convergence criterion 

had been set c=lO-a for both formulations in this test. The velocity-based results 

have been obtained by modeling the equations as presented in Section 3.6 which 

represents the work of Karimian and Schneider [65] except for the exclusion of 

the damping mechanisms of th& formulation. They have presented a detailed 

study of their approach in solving the shock tube problem. The momentnm-based 

formulation has been treated in a manner which provides more consistency with the 

velocity-based formulation. For example, the momentum convection term in t his 

formulation, Eq.(3.12), is linearized very similar to the one in the velocity-based 

formulation, i.e. kt=: and k"=O. 

Several conclusions can be derived fiom this study and fiom examination of the 

presented figures. Generally speaking, the velocity-based fosmulation sders  from 

severe oscillations in the vicinity of the shock. Experience showed that there was 

also a maximum Courant number for the velocity-variable formulation that enabled 

solutions to be obtained. This value, =O. 1, is the one for which the presented re- 

sults have been obtained. Above this value, the method was unstable and diverged. 

Howeva, the momentum-variable method converged for higha Courant numbers, 

up to G 2 . 2 ,  although the accuracy of the solution was degraded with inaeasing 
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Figure 3.17: The comparison of mass flu distributions between velocity-variable 

and momentum-variable formulations, c= IO-? 

velocity distribution 
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Figure 3.18: The comparison of velocity distributions between velocity-variable and 

momentum-variable formulations, s-10-? 



Figure 3.19: The cornpaison of pressure distributions between velouty-variable 

pressure diiributbn 

and moment um-variable formulations, a= IO-'. 

10 

0 

8 

7 

E 6-  

4 

3 

2 

1 

Figure 3.20: The cornparison of density distributions between velocity-variable and 
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the Contant number. The presented result s for the momentnm-based formulation 

were obtained using e 0 . 3 5 .  

The distributions of the fiow parameters in this isothermal study show fewer 

discontinuities than the corresponding distributions in Figures 3.11 to 3.16. This 

has been shown in Figure 3.21 by pdorming a rough comparison between the 

isothermal and non-isothermal exact solutions. In this figure, we are concerned 

ody with the general distribution of the parameters rather than th& exact values 

and positions. As seen, a constant temperature field resdts in no discontinuity 

Mess flux 

Figure 3.21: A rough comparison between isothermal and non-isothamal exact 

solutions in the shock tube problem. 

in the form of a contact surface. However, there is still a sharp discontinuity 

with the moving shock which appears in ail distributions induding the mass flux 

distribution. These discontinuities are due to the nature of the problem which is 

a highly transient one. As a reminder, we were concerned with the two potential 
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advantages of the momentum-variable formulation, i.e. the constant mass flux 

through àiscontinuity and the nonlinearity treatment. Figure 3.21 shows that the 

number of discontinuities in the mass flux distribution is never less than the number 

of them in the velocity distribution. In other words, whereas F is indeed constant 

across a shock in steady flow, here it is not. This problem therefore demonstrates 

that the 0th- aspects of the momentum-based formulation, related to hearization 

reqnirements, have resulted in superior results to those from the velocity-based 

formulation. 

One more step was taken in this comparative study in order to che J the stability 

of the two formulations for meeting lower convergence aiterion. In this regard, the 

convergence criterion for the pressure was decreased from IO-' to IO-'. In this case, 

the vdocity-based formulation diverged for the previous Courant number, G0.1. 

The maximum Courant number which enabled solutions to be obtained with this 

lower convergence criterion was G0.03 .  The results for this Courant number have 

been illustrated in Figures 3.22 and 3.23. They show much stronger oscillations in 

the domain comparing with the previous results. The results for the momentum- 

based formulation have been obtained for Courant number 0.35, as before, and 

an extremely low convergence criterion of IO-'. The decrease of the convergence 

criterion fiom IO-' to increased the average number of iterations per time step 

from 5 to 14. 

A onedimensional investigation was pdormed in this chapter. The main purpose 

of this investigation was to ensure that the developed momentum-component pr* 

cedure works well in its one-dimensional form and that all proposed objectives have 
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pressure distribution 

Figure 3.22: Comparison of pressure distributions between velocity-variable and 

momentun-variable formulations, a= IO-'. 
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Figure 3.23: Cornparison of velocity distributions between velocity-variable and 

moment --variable formulations, a= IOœ5. 
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been satisfac t orily achieved. In t his regard, the conhol-volume-based formnlat ion 

was appiied to the one-dimensional governing equations. The related integration 

point operators wer- derived based on incorporating the correct physical idoence 

of the flow and other relevant schemes. The simplified forms of the derived expres- 

sions were tested for special flow cases with dSerent Peclet and Courant numbers 

for which the results illustrated a behaviour consistent with the physics of the flow. 

The pressure checkerboard problem was removed using convecting integration point 

operators for momentum components. In this regard, several integration point ex- 

pressions were derived for use in the continuity equation which showed satisfactory 

results in coupling the velocity and pressure fields. The ability of the method to 

remove the pressure checkboard problem was tested by putting a mass/pressure 

source/sinL in one-dimensional compressible flows. The method worked effectively. 

In compressible flow, the neu formulation was tested for the shodc tube problem 

which has many features of high speed compressible flows induding moving nor- 

mal shock and expansion waves. There was no CFL number limit observed for the 

present ed implici t algorit hm. 

A direct cornparison of the velocity-based and momentum-based formulations 

was performed. It was shown that the velocity-based formulation produces se- 

vere spatial oscillations if an explicit damping mechanism is not employed. These 

osdations subsequently resulted in increasing the number of iterations per tirne 

step and lowering the accuracy of the solution. Then, it was condudecl that the 

momentum-based procedure produced more accurate and stable solution than the 

velocity-based procedure without damping. 

The results of this chapter support the objectives of the current research and 

enable us to move towards extending the one-dimensional formulation to a h o -  

dimensional momentum-component formulation. 



Chapter 4 

Computat ional Modeling in Two 

Dimensions 

4.1 Introduction 

The preliminary investigations and results for one-hensional flow were accom- 

plished in Chapter 3 and shown to be satisfactory. Here we extend the proposed 

approach to two-dimensions. In this regard, the necessary steps of the discretba- 

tion procedure for the two-dimensional Navier-Stokes equations are presented in 

this chapter. These steps are similar to those taken in Chapter 3. 

After the introduction, Section 4.2 provides definitions and descriptions which 

are used throughout this chapter. In order to discretize the tw~dimensional gov- 

erning equations, a control-volume-based finite-element approach is employed to 

integrate them over the control volumes in Section 4.3. The discretized equations 

which axe derived in this manner require the evalaation of the dependent variables 

at control volume sudaces. Thus, the necessary integration point operators ate 
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derived in Section 4.4. This is where some important issues of convection-di&ision 

modeling and velocity-pressure coupling are discussed. The convecting momentnm 

equations are obtained in Section 4.5. The resdts of previoosly-mentioned three 

sections are assembled in Section 4.6 where the element stifiess matnx is built. 

Finally, the techniques used to invoke boundary conditions are explained in Section 

4.7. 

4.2 Preliminary Definitions and Descriptions 

In the following sections, the details of the discretization technique will be pre- 

sented. In order to unify all definitions and conventions which are used during 

discretization, it is helpfd to present them in an introductory section. This is 

accomplished in the current section. 

The discretization is started by integrating the governing equations over control 

volumes. In the employed control-volume-based approach, the procedure of inte- 

gration is accomplished in an element-by-element mamer. The process, within all 

elements, is started fiom SCVl (Su b Control Volume 1) of the element and extends 

to SCV4 of that element, Figure 2.1 in Section 2.2. In order to distinguish the 

sub-control-volumes, we use the index of i ,  i = 1.. .4, at the end of SCV to identify 

the SCV in question, Table 4.1. Furthamore, i is the relevant node namba in that 

SCV. There are four sides in each SCV only two of which are coincident with the 

correspondhg control volume edges. For example, SS4 and SSI are the edges when 

SCVl is treated. For an arbitrary SCVi, these sub-surfaces are Sl i  and S2i for 

which the numbers represent the sub-surfaces when a counter-clockwise rotation 

is selected around the center of the element for traveling fiom one sub-sudace of 

the SCVi to another. Table 4.1 also shows the arrangement of Sii and S2i for 
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Table 4.1: Abbreviations and parameter definitions. 

different SCVs of an element. The integration over these two sub-surfaces is briefly 

addressed by a single digit number index. For SCVl, it is given by 

l 

Similar defini tions 

eters of the SCVi 

- 

* 

have been tabulated for other SCVs in Table 4.1. Other param- 

SCV2 

SS1,SSZ 

SS,, + Is,, 
Vscvt 

may be identiiied directly by adding the subscripts i to them. 

SCVi 

Sii,SSi 

, $Si 

Yi 

For example, the volume per mit  depth of SCVi is s h o n  by 

SCVl 

SS4,SSl 

Jsss, + /sSn 
Vscvl 

SCV3 

SS2,SS3 

is,, + rssm 

YSCV~ 

Approximation of the governing equations will algebraicaily require the mod- 

eling of each of the operators in terms of at most four nodes and four integration 

points in each element . This results in tao sets of 4 x 1 array of unknowns which d 

repeatedly be encountered in this chapter. The iirst set represents the magnitude 

of dependent variable or anknowns at nodes, i.e., {P), {F), {G}, and {T), and 

the 0th- set represents them at integration points, i.e., @}, { f ) ,  {g), and {t). 

The latter are not nodal unknowns and must therefore be related to these nodal 

dependent variables. 

Generally speaking, there are four major govaning eqaations, four sub-conkol- 

volumes, four nodes, four integration points, etc. which make their tracking corn- 

SCV4 

SS3,SS4 

Jssm + jsss, 

vscvr - 
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plicated. In orda to have an organized procedute, many us& definitions are 

presented here. For example, the results of integration over each SCV are required 

to be stored in arrays. Special combination of subscripts and superscripts are used 

to recognize the identity of the elements of the arrays. They are generally written 

as 

The upper and lower cases for [A] and [a] mean the matrices multiply by the array 

of nodes or of integration points of an element , respectively. The notation spl refers 

to the related govaning equation, i.e., p:continuity, fiz-momentum, g: y-momentnm, 

and t:energy. The notation sp2 stands for the multiplier array to the matrix, i.e., p, 

f, g, and t for P, F, G, and T arrays, respectively. The notation sp3 means to which 

term the matrix belongs, e.g. 0: transient term, c:convection term, d:dinusion term, 

p:pressure term, and etc. The notation sbl stands for SCV number in question 

within element, and sb2 counts either the element node numbers, if the coefficient 

is upper case, or integration point number, if it is lower case. 

A well-posed discretization will require the representation of integration point 

values in terms of nodal ones. This procedure wiIl result in matrices similar to 

Eq.(4.3) which are identified by [Cl and [cl, i.e., 

All subscripts and superscripts are identically defined as those in Eq.(4.3) except 

for sbl which refers to integration point number now. The array of known d u e s  

in right-hand-side of elemental matrices, Eq.(4.3), and integration point matrices, 

Eq.(4.4), are identified by {A) and {C), respectively, i.e., 
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Thei. subscripts and superscripts have the same definition as before in tams of 

spl, sp2, sp3, sbl, and sb2. 

4.3 Discretizat ion of the Governing Equations 

The generai form of the governing equations was introduced in Section 2.1 by 

Eq.(2.18). Considering no source terms, these equations can be integrated over 

SCVi of an arbitrary &ment 

Using the divergence t heorem, the volume int egral of space derivatives is replaced 

by a surface integral which is evaluated over the surface of SCVi 

where d 3  is the outward normal vector to the surface, Figure 2.3. Integration on 

surfaces is broken into two sub-surface integration accordtig to Table 4.1 

/ ( I P ; . + T ~ ) * ~ s + L ~ ( R ~ + T ? ) - ~ ~  
Sli 

where Sli and S2i indicate the integration point number on the sub-surfaces. Since 

the method is f d y  implicit, d terms except the transient term are evaluated at the 

advanced time and the transient term is approximated by a lumped mus  approach, 

i.e., $ at each SCV is approximated by the nodal value of its correspondhg node 
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where Ji is the Jacobian of transformation and represents the volume of the subcon- 

ho1 volume per unit width, Eq.(A.15). A lineat variation of the integral argument 

is considered over eaeh sub-surface integrals. As a result, the value of the surf'ace 

integral is approximated by the value at the mid-point of that sub-surface, i-e., inte- 

gration point, times the area of the sub-surface. By this mid-point approximation, 

the arguments of the integrals are taken out of the integral and the areas of the 

sub-sudaces are computed using Eqs. (XE), i.e., 

Considering this mid-point approximation and substitution of Eq.(4.9) into Eq.(4.8) 

results in the final conservative discretization form of the governing equations for 

scvi 

where the subsaipt i of iY refers to SCVI. This general equation consists of aU 

transient, convection, and diffusion flux terms of the four governing equations. 

Recdling the definition of 7, Ç, 'R, and 7, Eqs.(2.20 and 2.21), shows that 

there are two major obstacles to solve Eq.(4.11). The first obstacle returns to 

the nonlinear nature of the system of equations. In order to use linear algebraic 

equation solvers, these equations must be iinearized. The second obstacle is the 

location of the unknown fluxes and flows. As seen, the locations of the unknowns 

are integration points which are not out nodal locations and they must somehow 

be related to the main nodal values. These difficulties are treated in the present 

and the following sections. 
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4.3.1 Conservation of Mass Equation 

The discretized form of conservation of mass could be extracted fiom the general 

form of Eq.(4.11) and re&g the definition of F and Ç nom Eq.(2.20) - 

The transient term is a non-linear term because e is not a major dependent vari- 

able and needs to be lineariized properly. The density in incompressible flow is 

constant, Eq.(2.16), and does not need any treatment. The equation of state is 

used to convert density in compressible flow. Appendix B presents methods for 

densi ty linearization. Regardhg the results of t his appendix, Eq. (B .5) is selected 

to linearize e with respect to bath P and T dependent variables 

Thus, the transient term is written as 

As seen, the results are easily converted to the compact sununation form. It should 

be noted that three of the f o u  components of each summation are zero in this 

general form, i.e., 
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Now, the transient term, Eq.(4.14), is written in snmmation form for an arbitrary 

sub-control-volume of i as 

A similar procedure could be repeated for the mass flux terms of the continuity 

equation. & c d  Eq.(4.8) and consider the bracketed terms of Eq.(4.12), the sum- 

mation form becomes 

Here, two of the four elements in each siimmation are zero, i.e., 

(AS.),, j = Sli 

A j = s 2 i  

O eise 

(ASu),, j = S l i  

j = S2i 

O else 

The two discretized equations, Eq.(4.18) and Eq.(4.19), can now be assembled and 

written in the usual matrix form for an arbitrary sub-control-volume of i 

It should be noted that the above equation is written only for one portion of a 

four-control-volume element. It is not expected that it conserves the mass within 
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that sub-control-volume of i .  The conservation of mass is only valid for a whole 

control volume which consists of an assemblage of four suh-control-volume equcl- 

tions, Figure 2.2. If al l  four sub-control-volume equations of an element are put 

togetha they take the foIIowing matrix form: 

where the brackets are 4 x 4 square matrices and the braces are 4 x 1 colnmn vec- 

tors. The rows of arrays represent the sub-control-volume numba and the columns 

represent the node number. 

Notice that Eq.(4.23) has discretized the mass flux terms into an algebraic 

expression involving the integration point variables as w d  as nodal Mnables. This 

expression is not complete at this stage and needs to be modified. This modification 

is done in Section 4.5. 

4.3.2 Conservation of Moment u m  Equat ion 

Discretkation of the momentum conservation equations is much more complex than 

that for the continuity equation. The complexity of the equation &ses due to the 

appearance of difïerent types of nonlinear terms, and from the large number of them. 

The one-dimensional discretization of Section 3.3.2 will facilitate the procedure of 

discretization in this section. The transient term does not need any linearization 

and it is easily discretized by plugging the definition of $ fiom Eq.(2.19) into 

Eq. (4. Il), usiog a mas-lumped approach, 
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A s-ation form similar to Eq.(4.18) could be arranged for an arbitrary sub- 

control-volume i 

w here 

As the n a t  step, the convection terms are treated. In this regard, the appr* 

priate terms of 3 and Ç, Eq.(2.20), are substituted in the integral form of the 

convection terms 

We fkst treat the pressure integration term which is linear. Considering the previous 

procedure, we write 

Using our previous definitions, this equation is reformed in general sammation form 

for an arbitrary sub-control-volume i as 

where the coefficients of a{? and those of 4'im in Eq.(4.20) are the same, i.e., 
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As seen, the pressure term is &O represented by integration point variables which 

in tum shodd be represented in terms of nodal variables. This WU be accomplished 

in Section 4.4.1. 

The first integration on the right-hand-side of Eq.(4.28) can be expanded for 

As seen, the discretized equation is nonlinear and needs to be linearized properly. 

Appendix C has a comprehensive stndy on different methods of linearization for 

the convection terms of the conservative momentum equation. Providhg a simpler 

approach at this stage, Eqs. (C.10 and C.ll) with k' = O are nsed to linearize the 

nonlineari t ies , i.e., 

where ü and ü are calculated explicitly fiom known values of the previous iteration 

which will be explained later in Section 4.5. Using these linearizations in Eq.(4.32), 

we obtain 
2 

( p u ;  + p u  j )  dS [[u f (AS,) + ü f (AS,)], (4-34) 
k=1 

The general summation form for an arbi trary sub-control-volume i is 

where the coefficients are 
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As the second step, integration point values which appear in lineaxized terms have 

to be calculated as a funetion of the nodal variables in the element. The appropriate 

equations for f and g are derived in Section 4.4.1. 

To complete the momentum conservation equation, the d i h i o n  terms must 

be treated. Modeling of the diffusion terms is relatively more routine than the 

convection terms due to their elliptic nature. Following the previous procedure, the 

right-hand-side of Eq. (4.11) could be extended to the momentum equations using 

the definition of 'R and 7 fiom Eq.(2.21). The result is 

Looking back to the definition of stress terms in Eqs.(2.6 and 2.7) shows that they 

are nonlinear in terms of momentum component variables. In the one-dimensional 

investigation, Section 3.3.2, the linearization scheme of Appendk D was selected 

to linearize the 2 term. In the two-dimensional difhsion terms, the essence of 

nonlinearity is the same although they are more plentifid. As before, we use the 

approach presented by Eq.(D.2) in Appendix D to linearize the velocity differential 

forms. Employing t his linearization scheme to the stress terms of Eqs. (2.6 and 2.7) 

results in 

The second terms in ail braces vanish in the incompressible limit. 

are now lagged and calculated explicitly from the knoum d u e s  of 

(4.38) 

(4.39) 

(4.40) 

These terms 

the previous 
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iterations. This results in a source term on the right-hand-side of Eq.(4.8) in mm- 

pressible flows. To reveal the elIiptic nature of difbion, dl active and inactive 

differential terms are modeled thrmgh differentiation of the finitdement shape 

hctions for the hear quadrilateral elements, Eq.(A.3). The fonowing results are 

obtained after rearranging and sorthg active and inactive terms together: 

Now, Eqs.(4.41 and 4.42) are substituted in Eq.(4.37). The resulting equation can 

be rearranged and written in general summation form for an arbitrary SCVi 

where the coefficient of ~ { f "  and are 

2 

A{!'  = - 4/i B Nj 
(AS.) + --(AS*)] P air 

Ski 

2 

A{!$ = - 2p (AS.) + -%(AS,,)] 
p 62 S L ~  
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Non, we can assemble all the terms of the momentum equation. In this regard, 

Eqs.(4.25, 4.30, 4.35, and 4.44) are plugged into E44.7) and the result is 

which could be cast into the matrix form as 

[A"' + Af f d ] { ~ )  + [ A f g d j { ~ )  + [affq{f) + 

Similar to previous sections, t hese equations 

[a*] C p )  = {AI' + (4.49) 

are not well-posed because they 

involve integration point values. Closute for these terms wiU be f m e d  in the 

next sections. AU discussions in this section relate to the discretization of the 2- 

momentuxn equation. A similar procedure is applied for the y-moment u m  equat ion. 

The results of this would be an equation similar to Eq.(4.49). Comparing with this 

equation, it is written 

where the elements of the matrices could be estimated by cornparhg the equident 

terms of two momentum equations and the resulting elements of the z-momentum 

equation mat rices. 

4.3.3 Conservation of Energy Equation 

The discretization of the energy equation is not as straight forward as it was for mass 

and momentum equations. There are a variety of reasons behind this which cause 

the study of the energy equation to be not so routine as for the others. Among 

these reasons, one is the larger number of terms and the other is their higher 

complexi ty. This complexity however causes more complex nonlineari t ies for t hose 
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terms. These complex nonlinearities can be treated using difkrent techniques of 

linearization. Howevr, more study and experience is needed to M y  assess the 

pros and cons of different possible linearization. A poor linearization may cause 

oscillation in the solution which in turn may lead to divergence or slow convergence. 

Ail these reasom cause the study of the energy equation to be more diff idt  and 

ambiguous. Contrary to the important terms, there are a number of nonlinearities 

which are not so prominent. This permits us to ignore the active role of many terms 

and dculate  t hem approximately using the known values from previous iterations. 

We start the discretization by treating the transient part of the equation. Con- 

sidering Eq.(4.9) and the defmition of Ji from Eq.(2.19), the transient part of the 

equation is mitten as 

There are difkrent possible met hods t O derive the linearized 

(4.51) 

form of this equation. 

Appendix F presents a few of them. Regmding the comments of the Appendix 

and the one-dimensional procedure, Section 3.3.3, we use Eq. (F.2) to linearize the 

transient term 

This results in a general summation form for an 



CHAPTER 4. COMPUTATIONAL MODELING LN TW;O DIMENSIONS 100 

In the second step of disaetization, the energy convection t a m s  are discretized. 

Combining the proper components of 3 and Ç from Eq.(2.20) and the convection 

part of Eq.(4.7), we obtain 

a 2 

SimiIar to the momentum convective terms, this term is nonlinear and must be 

linearized in terms of momentum component variables. Appendix G presents dif- 

ferent schemes of linearization for the above nonlinearities. At this stage, they are 

linearized using the scheme presented by Eq.(G.3). The employment of this scheme 

y ields 

ü - (fi f + ü g  + 2cppt) (AS,)] 
2 ski 

This equation is reformed to a general snmmation form for an arbitrary SCVi 
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where the co&cients of the matrices are obtained fiom 

j = Sl i  

j = S2i 

else 

j = Sli  

j = S2i 

else 

j = S l i  

j = S2i (4.63) 

else 

Despite a full discretization, the unknowns of this equation still need to be related 

to the main nodal variables. This is accomplished in the next sections. The last 

part of the discretization process is the modeling of the energy viscous work t e r m s .  

As mentioned earlier, the elliptic nature of diffusion facilitates its treatment. To 

treat the diffusive conduction terms, Eq.(4.7) is recalled and the conduction terms 

of R and 7 in Eq. (2.21) is plugged in as 

Using the definition of q, and q, fiom Eq.(2.9) yields 

BT aT 
(n.g+quj)md?? = -LE [ z ( ~ ~ . )  + -(AS.)] (4.65) 

k=l s~ Ski 

The derivatives of the finite-element shape functions are employed to describe the 

diffaential forxns, i.e., 
4 2 SNj BNj 

(q= ; + , f ) 8 a -k [ - a ; ( ~ ~ = )  + S y ( ~ ~ u ) ]  Tj (4.66) 
j=l k=l Ski 
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The general form of this for an arbitrary SCVi is 

where 
2 

&!k = 
k=l Skà 

For the remainder of the diffusion terms, we use again the definition of R and 7 

h m  Eq.(2.21) and plug its energy part into Eq44.7). The result is 

The nonlinearity of the viscous work t e r m s  is much complicated than the diffu- 

sion terms in rnomentum equation. This  is due to the velocity components which 

rnultiply the stress components. At the f i s t  stage of the linearization, ali these 

veiocit y components are evaluated using lagged values fkom the previous iteration 

and the treatmerit of the remainder of the nonlinearities are s i d a  to those for 

the moment- equations. We start discretizing by plugging the linearized stress 

t a s ,  Eqs.(4.41-4.43), into Eq.(4.69). The resulting equation can be rearranged 

for the active and inactive variables. The general form of the resulting equation is 

presented in summation form for an arbitrary SCVi as 

where the matrix components are dehed as 
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ü2 aNj üü 8 N j  2U5 aNj  4ü2 8 N j ]  (ASy)) - -- +----- ëj (4.74) 
p 82 3 p  82 3p  By ski 

Now, n e  can assemble al1 the terms of the energy equation in Eq.(4.7). In this 

regard, Eqs.(4.53, 4.60, 4.67, and 4.70) are plugged in Eq.(4.7) and the resdt is 

which can be cast into the matrix form as 

The treatment of integration point values is necessary as it was in preceding sub- 

sections. The next section WU provide this treatment. 

4.4 Integration Point Equations 

The idea of connecting the integration point values to the correspondhg nodal 

values has been largely investigated in control volume methods. In Section 4.3, 

we diacretized the governing equations in a control volume manna. The resulting 



CHAPTER 4. COMPUTATIONAL MODELING IN TWO DlMENSIONS 104 

equations indudecl the m a y  of integration point unknowns which are not the major 

unknown nodal variables in our formulation. In order to have the discretization 

complete, it is required to represent the momentum components, pressure, and 

temperature at the integration points of an element in terms of their neighboring 

nodal values within that element. In Section 4.3.2, the nonlinear forms of 7Z and 

7, Eq.(2.21), were directly treated by invoking the elliptic nature of diffusion. On 

the 0th- hand, time dependent terms were directly computed from nodal d u e s .  

However, convective tenns are left to be evaluated in a special manner because 

th& treatment is not as direct as it was for the diffusion terms. Roughly, about 

(80 to 90)% of the difficulty in modeling of momentum equation terms returns to 

the complexity in modeling of convection terms, P a t a h  [66]. Central-diffaence 

schemes in finite-difference approaches and bilinear interpolation in hite-element 

approaches are the easiest ways to treat the convectivz iniegration point values 

wit hin an element, however, t hey are limited to diffusion-dorninated flows where 

Peclet number is less than 2. 

For convective dominated flows, it is better to use upwinding-based methods 

which consider the higher influence of the upstream nodal values at integration 

points. Figure 4.1 schematicaily shows how the upstream influence should be re- 

garded in evalaating convective integration point quantities. A pure upwind scheme 

works for all Peclet numbers, however, the accuracy of the solution is diminished. 

Raithby [67] has provided a comparative study on treating the convection terms by 

a number of upwtid schemes and shows that they produce fbdiff'usion. Raithby 

[68] has &O proposed a skewed upwind scheme which considers the real direction 

of the flow and mnsequently reduces the false-diffusion. The basic at temp t in most 

recent schemes is to mode1 the integration point values, &,, by upstream values, 
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Figure 4.1: A schematic influence of npwind point. 

dUp, and then correct it by A&, 

The essence is that the connection is not only based on complex mathematical 

fnnctions but also on the physical interpretation of the governing equations. Much 

dort has been expanded to determine be t t er and simpler interpret ations induding 

al1 necessary influences. There are three basic points which must be remembered 

in determinhg integration point operators; 1-efFect of directionality of the flow; 

%source (including pressure) term efFects; and t t h e  dinusion efFects. The basic 

idea in modeling convective quantities is to treat the integration point d u e s  by 

the correct influence of upstream values. This is why different schemes like hybrid, 

power-law, upwind, exponential, etc. have been established over the years for their 

treatment . 
The folloving sub-section present the methods of deriving the required integra- 

tion point equations for different variables. 
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4.4.1 Momentum Components 

In this section, we derive f and g integration point equations in an appropriate 

maMer which considers the physics of the problem. More recently, control-volume- 

based methods have been concemed with the physics of the problem rather than 

complex mathemat ical approximations. Following this, Schneider and Raw [IO] 

proposed a new scheme, Correct-Physical-Influence Scheme, which includes all the 

physics and relevant couplings for each variable. They have derived an algebraic 

approximation to the differentiai equations a t  each integration point. In Section 

3.4.1, it was shown that this new scheme yields a physicdy well-behaved solution 

in the one-dimensional study. Following the one-dimensional investigation, the tw* 

dimensional moment um integration point equations are derived by treating the non- 

conservative form of the momentum equations. In this way, the convection terms 

in the conservative form of the momentum equations are broken into two terms, 

combined with continuity equation and hal ly  written in a streamwise direction, 

Appendix H. The following momentum equations are the result of this procedure: 

Of a f 8~ 8~ - +Vw- -,.pu = -- a~ 
de 

+ u(- + V&-) + Viscous Terms ae (4.78) 
8s dz 0s 

as as a p  a p  a~ - + Vu- - p ~ 2 v  = -- + v(- + V--) + Viscous Terms ae as ay ae as (4.79) 

where Vw = I/w. Viscous Te- stand for the viscous terms which are not 

induded at this point. In this section, fip is derived fiom Eq.(4.78) and the results 

are similarly extended to which must be equally derived from Eq.(4.79). 

First of all, the transient term in Eq.(4.78) is written in backward form respect 

to time 
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where the subsaipt i denotes the integration point number. This disaetization can 

be a s t  into matrix form for an arbitrary integration point of i 

Here the notation of ipi is 

coefficients in question are 

switched to i which indicates integration point. The 

The key in this method is found in the convection term which has been written 

in the streamwise direction. This form provides the correct direction of upwinding 

in the streamwise direction. The one-dimensional investigation of this equation 

showed the flexibility of this formuktion to predict the correct f for highly dinu- 

sive and convective flows, Section 3.4.1. The convection term is upwinded in the 

s treamwise direction as 

where Lw and f, are iliustrated in Figure 4.1 for i p l .  The upstream location, 

up, is found by interseeting the extension of the streamline direction at integration 

point with the edges of the same dement. The value for f, is interpolated between 

the two adjacent nodes which are nodes 2 and 3 for ipl in Figure 4.1, i.e., 
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where (F,), and (Fd)+ refer to the nodal values of F at right and lefk of the 

upstream point 'upn, respectively, when "up" point is watched from integration 

point i. Using this dennition, a general form for integration point i is given by 

where the matrix coefficients are 

Here, the magnitude of c&" depends only on the flow direction which is obtallied 

by using Eq. (4.85). 

The Mass- Weight ed-Skew scheme of Schneider and Raw 1691 is another accurate 

method for treating the convection terms. It reduces the possibility of negative 

coefficients in the formulation. This scheme models the local directionality of the 

flow in the rnanner that ensures positive coefficients in the convection terms of the 

discretized control volume equations. It finds the flow direction within the element 

and cornputes Lw and f, based on the values and directions of flow parameters 

for both nodal and integration points. This results in a correct influence of flow in 

highly recirculating fiows. We do not present the details of this scheme because the 

results which are presented in this study are only based on the previously discussed 

scheme. 
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Finite element shape fimction deridives, Section A.3, are used to txeat the 

pressure term in Eq.(4.78) as 

where the matruc coefficients are 

The role of the incompressible part of the dinosion t m  is considered as an 

active one in deriving the integration point equation for f. Again, the elliptic 

nature of dinusion promotes the use of finite element shape faction derivative. 

After linearization of the Laplacian operator in terms of momentnm components, 

it can be approximated by 

where Ls is an appropriate diffusion length scale, Appendix 1. This approximation 

redoces to fi ziS1 NjFj when diffusion dominates the convection in incompress- 

ible flows, i.e. V2u=0. A general form of the Laplacian operator at an arbitrary 

integration point i can be written as 

where the coefficient of the matrices are 
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The 1 s t  part of the discretization is the treatment of the terms inside the 

parenthesis in the right-hand-side of Eq.(4.?8). This part is completely lagged and 

compnted fiom the previous known values. The approximation of this part for an 

arbitrary integration point i is 

With this discretization, the modeling of ail terms in Eq.(4.78) is complete. 

If these models, including Eqs.(4.81, 4.86, 4.89, 4.92, and 4.95), are plugged into 

Eq. (4.78) and similar coefficients are combined toget her the complete integration 

point equation for f is written as 

The matrix form of the algebraic equation for f is 

This integration point equation relates f at the integration point to its neighbour- 

ing nodal dependent variables. In order to derive a direct expression for f ,  the 

coefficient matrix of f is inverted and multiplied by the other coefficient matrices 

on the right hand side. The final form of the f operators at four integration points 

of the element could be summarized in the following fashion: 

Comparing with Eq.(4.77), it denotes that the two last terms in Eq.(4.98) are 

responsible for the streamwise correction, i.e. A4. The matrices on the right hand 

side are named iBfluence coeflcient matrices because they ver* the correct physicd 
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influence of the nodal values on the integration point values. They are 

{Cf) = [c'je + $fc + , f f d ] - l { ~ f i  + ~ f e )  (4.101) 

where Cf and Cfp are two 4 x4 matrices which indicate the d e c t  of F and P fields 

on f. The 4 x 1  array of {Cf) indudes dl known parts of the assembled terms. 

The first and second superscripts of C indicates to which equation and parameter 

of equation it respectively belongs. 

Similarly, an expression for g is derived by following the procedure t hat was just 

described for f but starting from Eq.(4.79). The hal result can be written as 

The elements of the referred matrices can be determined by comparing with the 

matrices of the f operator. 

Now, these integration point expressions of f and g are substituted in the m* 

mentum parts of the arrays 7 and Ç in Eqs.(4.49, 4.50, and 4.76). According to 

out experience in the ondimensional study, these expressions are not plugged into 

the continuity equation. Supplement ary integration point equations are derived in 

Section 4.5 for continuity equation. 

4.4.2 Pressure 

The integration point pressure which appeared in the conservative discretization of 

govaniag equations has to be calculated as a function of nodal dependent variables 
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in the element. The integration point pressure is needed for treating the pressure 

terms in the momentum and energy governing equations where velocity and tem- 

perature fields, respectively, are coupled with the pressure field. A strong coupling 

like that fiom the pressure Poisson equation, which can be derived by taking the 

divergence of the momentum equations, is not so critifal in this study. On the 

contrary, a simple interpolation will provide the primary connection and provides 

a good representation of the pressure field. In this regard, bilinear finiteelement 

shape fanctions are used to convey the eliiptic nature of pressure at the integration 

points 

Using the following definition 

will result in the matrix fonn of the integration point operator for the pressure 

The minus sign in the superscript means that p is not derived based on any gov- 

erning equations but on physical reasoning. 

4.4.3 Temperat ure Variable 

Following the procedure discussed in Section 3.4.2, the non-consetvative form of 

energy equation is used to derive the appropriate integration point operator for 

temperature. Either enthalpy or total energy as well as temperature are quanti- 

ties which can be treated in the manner that convected quantities are dealt with. 
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On the other hand, the energy equation can be written in a nnmba of ways to 

represent the transport of the parameter in question, i.e. h, e, and t. Here, we 

select the temperature form of this equation because the temperature is consid- 

ered as a dependent variable in this study. The use of other forms, i.e. enthalpy 

and total energy, require more linearization for h and e according to their dehi- 

Lions, Eqs. (2.13 and 2-14). The temperature fom of the energy equation could be 

formed by combining the continuity equation, Eq. (2.2), and the original form of the 

energy equation, Eq.(2.5). The h a 1  form d e r  employing the dehition of total 

energy, Eq.(2.13), assuming zero source term, and writing the convection terms in 

the streamwise direction, Appendix H, is 

where the therrnd dissipation faction is 

Comparing the l& hand side of Eq.(4.106) with that of Eq.(4.78) shows that their 
k transient and convection terms are identical if p is replaced by - and f by t. PCV 

Using this analogy and the general forms in Eqs.(4.81 and 4.86) will result in 

where the matrix elements are readily obtained by 
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Contraty to Eq.(4.78), the energy dinasion term does not need linearization here, 

where the matrix coefficients are given by 

The pressure term is approximated by 

The related matrix coefficient is written 

The dissipation term is completely approximated fiom previous known values 

where 

5 
ipi 
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Combining and rearranging the above terms WU result in the matrix arrangement 

of the aigebraic equation for t as 

This equation can be written in matrix form. The integration point expression for 

temperat ure is 

The d u e n c e  coefficient matrices on the right-hand-side are 

Eq.(4.121) is not the only choice that can be used to calcuiate integration point 

temperature. Bilinear interpolation and streamwise upwinding are tno other sim- 

ple methods which were applied in many cases to compute the integration point 

temperature. This will be discussed more in Chaptet 5 for solving mixed subsonic- 

supasonic flow with shock through a convergent-divergent nozzle. 

4.4.4 Other Integration Point Equations 

Before dosing Section 4.4, it is necessary to explain about the method of derivation 

of the other integration point quantities which do not directly appear in our dis- 

cxetized equation. One such variable is density which should provide information 

for deriving the velocity field from the computed momentum field a t  the integration 
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points. Density behaves as a convected quantity in highly compressible flows. Den- 

sity integration point equation could be calculated in a marner which was done in 

Section 3.4.2 in one-dimensional investigations. However, in tbis twdimensiond 

study, density was mostly computed by using the following expression 

where ph- is a simple bilinear interpolation and E is a weighting coefficient which 

measures the c o ~ ~ e c t  influence of the two approximations. It is dehed by 

The two approximations return to pure upwinding and bilinear interpolating, re- 

spectively. The density at upwind point, p,, is determined in a similar manner to 

Eq. (4.85) for approximating f,. 

The other integration point lagged d u e s  are computed by ushg the already de- 

rived integration point expressions, i.e., Eqs.(4.98, 4.102, 4.105, 4.121, and 4.125). 

In this regard, velocity integration point values are obtained by using the magni- 

tudes of the momentum components and density, i.e., 

The total energy and enthalpy integration point values are obtained by employing 

the new integration point values to t heir original definitions, Eqs. (2.13 and 2.14). 

4.5 Mass Conserving Connections 

In this section, the necessary remedy for removing the checkerboard problem which 

is a common problem for certain numerical methods with a colocated grid arrange- 

ment is explained. The expressions which we derived for f and g in Section 4.4.1 are 
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called convected ones. As discussed before, Section 3.5, these expressions are not 

substituted into the control volume continuity equation. The continuity equation 

constrains mass through the surfaces of the control volume which is highly affected 

by the pressure field. Thus, the pressure field is indirectly specified by the continu- 

ity equation although there is no explicit &ect of the pressure field on density in an 

incompressible formulation. The use of convected expressions for f and g should 

compensate for the absence of a pressure term in the continuity equation. However, 

the investigation shows that this remedy does not necessarily temove the possibility 

of velocity and pressure field decoupling, e.g. Darbandi and Schneider [13] , Section 

3.5.1. The missing point in this condusion codd be found by reviewing the daived 

expressions. Convected expressions for f and g wae originally derived from the m e  

mentuni equations. These expressions did not consider the &ect of the continuity 

equation which considers satisfaction of the mass. The idea of using two integration 

point values for a colocated grid arrangement goes badc to the work of Rhie and 

Chow [9]. There are ais0 other works which emphasize the employment of the two 

types of the integration point velocities, Schneider and Karimian [12]. Darbandi 

and Schneider [13] employed a new formulation for deriving a second integration 

point equation for momentum-components. These new expressions are obtained 

not only fiom modeling of the differential form of the momentum equations at each 

integration point, but the continuity equation is required to be used in conjunction 

with the momentum equations. To derive a second integration point valne for f 

or g, a velocity-weighted continuitysqnation error is subtracted nom the momen- 

tum governing equations. SimiIar to the one-dimensional study, the form of these 

equations is 

(2-Momentum Eq. Error) - u (Continuity Eq. Error) = O (4.128) 
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(y-Momentum Eq. Error) - v (Continuity Eq. Error) = O (4.129) 

Nor, these equations consider the numerical mors of both the continoity and 

momentum equations at the integration point. For the Mke of brevity, the method 

of discretization is explained only for convecting f which is derived from Eq.(4.128). 

The results can then be extended for g. By substituthg the governing equations 

into Eq. (4.128) the following equation is obtained 

Aii of the terms in the momentun part of this equation are treated as in Section 

4.4.1. The method of discretization for the second bracket is explained here. The 

U% term is treated in the same manner that it was treated in Eq.(4.95), i.e., 

The two other terms are discretized ushg bilinear interpolation 

This discretization is written in matrix form for an arbitrary control volume of i 

af 8s 
uifi(- + -lifi &fi az 6y 

where the coefficients are defined as 

4 

(4.132) 
j=l ipi ipi 
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There is another method for treating these two terms. In this method, is 

replaced by refixence to 2, with suitable alternative of Eq.(4.133), and then is 

discretized in streaxnwise direction. Regarding Figure 4.2, it is written 

where L,+Ld, is the distance between up  and dn points- fdn and f, are 

interpolated between adjacent nodes, Eq.(4.85). We have tested both 

met hods and the difference is not significant . 
2 

1 

P ~ O P ~ ~ Y  

of t hese 

Figure 4.2 : Element nomenclature and veloci ty upwinding . 

Now, the new derived discretizations of this section are combined with the 

discretization results of Section 4.4.1. This WU conclude with an equation for 

the convecting f , similar to Eq.(4.98) which was derived for the convected f .  After 

substitution of the terms of Eq.(4. UO), they are categorized and combined together 

and the following expression is finaily obtained 
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This new integration point expression is called the convecting momentum for f. 

In order to distinguish it from the convected one ne denote it by j. The new 

iduence coefncient matricer on right-hand-side are computed by adding the new 

matrix derivations to Eqs. (4.994 101), i.e., 

A simila convecting could be derived for convecting j .  The procedure is started 

from Eq. (4.129) and the convecting expression is similar to Eq. (4. M), i.e., 

{ j )  = [tif] {F) + [Co@] {G) + [Ch] {P) + {CD)  

These integration point expressions, i.e. Eqs.(4.137 and 4.142) are plugged into 

the continuity equation. Consequently, convecting velocities codd be obtained by 

using the following definitions, û = $ and 8 = $. Regarding the discussion in A p  

pen& C and respecting the two concepts of the convected and convecting velouties, 

the convecting expressions are used for computing lagged values in the convection 

terms of the conservative form of the momentum equations, i.e. Eq.(4.36). Either 

convected or convecting velocities could be plugged in the lagged velocities of the 

energy convection terms. However, in order to respect the consistancy it is better 

to use convecting ones. 
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4.6 Assembly 

In Section 4.3, we discretized the governing equations by nsing a mntrol-volume- 

based finite-element method. All discretizations were initially obtained for an ar- 

bitrary sub-control-volume and later extended for four sub-control-volumes of an 

element. The final results showed that the discretized equations involved nnlrnowns 

at integration points in addition to the main nodal unknoums, see Eqs.(4.23, 4.49, 

4.50, and 4.76). This difficulty resulted in deriving expressions for dependet vari- 

ables at integration points, i.e. f ,  g, p, and t in Eqs.(4.98, 4.102, 4.105, and 4.121). 

These expressions not only connect the integration point variables to theh neigh- 

bouring nodal variables but also mode1 the possible relevant physics. In addition 

fo f and g, supplementary integration point expressions were derived for momen- 

tum components, i.e. j and j in Ecp(4.137 and 4.142), in order to remove the 

pressure-velocity decoupling problem. 

In this section, the discretized equations and the derived integrstion point ex- 

pressions are combined and rearranged in order to provide a well-posed system of 

linear algebraic equations. We st  art the assembly procedure with treating the con- 

tinuity equation. There are two integration point variables, f and g, in Eq.(4.23). 

Convecting momentum components, Eqs. (4.137 and 4. M), are plugged in the con- 

tinuity equation. It results in 
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where 

The first and second superscripts of D indicates to which equation and parameter 

of equation it respectively belongs. Eq~~(4.49 and 4.50) show that the 2-momentum 

and y-momentum equations involve pressure and momentum component unLnowns 

at integration points. The integration point expression for pressure is given by 

Eq.(4.105). The convected momentum-component operators, Eqs.(4.98 and 4.102), 

are select ed for unknown momentum-components at integration points. The pro- 

cedure results in the following equation for the x-momentum 

where 

[ D I  = [ A ~ ~ ~ ]  (4.151) 
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Similar procedure for the y-momentum equation wili resdt in 

[ W { F )  + [ p O 1 { ~ )  + I D ~ I { P )  + [ m { T )  = {PI (4.155) 

where 

 DO^] = [AO'~] (4.156) 

[Dao] = [A~Q' + A W ~ ]  + [aoc] [Cgg] (4.157) 

[Dm] = [uggc] [Cm] + [ a m ]  [C-p] (4.158) 

[Dg'] = O (4.159) 

[Dg] = {A** + A U ~ )  - [ugoe]{Cg) (4.160) 

The energy equation, Eq.(4.76), involves f ,  g, and t unknowns at integcation 

points. The unknown temperature at the integration point is substituted from 

Eq.(4.121) and the convecting momentum-components, Eqs.(4.137 and 4.142), are 

plugged into unknown moment un-components at the integration point S. It yields 

[ D t t ] { ~ )  + [Dtg]{G) + [ D t p ] { ~ )  + [Dtt]{T)  = {b) 

where 

[D'!] = [A''' + Atfd] + [atfc] [ch] + [atgc] [ c ~ ~ ]  

[Dtg] = [A~"* + Atgd] + [ut f '1 [cffl] + [at#'] [ ~ û f l ]  

[Dtp] = [atfe] [cip] + [ u t g e ] [ ~ 9  + [atk] [Cep] 

[Ott] = [A'" + Attk] + [at? [CU] 

[Ot] = {A@ + Atd) - [atfc] {ci) - [atgc] {C i )  - [atk] {Ct) 
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The first stage of the assembly is finished now. We have already derived well- 

posed discretized equations for the continuity, Eq.(4.143), z-momentum, Eq. (4.149), 

y-momentum, Eq. (4. and energy, Eq. (4.161), equations. Each of these equa- 

tions consist of four sub-equations for four sub-control-volume of an element. The 

number of nnlniowns in each sub-equation can be 16 or less. This number indicates 

the m&um number of unknowns at four nodes of element. They are four Fs, 

four Gs, four Ps, and four Ts. 

In the second stage of the assembly, the derived elementai equations are put 

toget her 

[at] {F) + [Dgg] {G) + [DOP] { P )  + [Dg'] { T )  = {Dg) (4.167~) 

[D"] {F) + [Dîg]{G) + [Dtp ] {P)  + [Dtt] {T) = { D t )  (4.167 d) 

It could be written in the following matrix form as 

This 16 x 16 matrix is named elernental sti'ness matriz. As seen, the procedure of 

the assembly resulted in a well-posed system of algebraic equations having 16 equa- 

tions and 16 unknowns. It is important to note that this  mat^ does not provide 

information related to the conservation of the quaatities because the assembly pr* 

cedure is done for four sub-control-volumes of four difkent control-volumes. While 
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the governing equations are consened within individual eontrol volumes rather than 

element s or sub-control-volumes . 

At the third stage of assembly, the elemental stiffhess matrix is assembled into 

the global matrix of alI dements. In this regard, each derived snb-equation is added 

to the related global conservation equation. This global equation belongs to the 

control volume that the derived sub-equation belongs to one of its four sub-control- 

volumes. The assembly of four different sub-control-volumes of a control volume will 

result in the full conservation of the conserved quantities for that control volume. 

This is one of the most important advantages of the control-volume-based methods 

which provides the conservation laws for finite volumes. 

The resdted system of algebraic equations has been solved by a direct sparse 

matrix solver, Chu et al [7O]. 

4.7 Boundary Condit ion Implementation 

Before presenting the results of the application of the numerical method, it is im- 

portant to describe the techniques used to invoke boundary conditions. This not 

only eliminates repeating these discussions and thereby saving space but it also 

provides a collection of wor t hwhile detailed information for future rekence. 

The assembly of the elemental equations, Section 4.6, results in complete con- 

servation of mas ,  momentum, and energy equations for all control volumes of the 

domain except those which have one or more surfaces coincident with solution do- 

main boundary. The process of dosing the conservation equations for a boundary 

control volume is completed if mass, momentum, and energy boundary flows are 
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taken into account, i.e. 

(interna1 z-moment- equation)+ Q[ = O (4.170) 

(internal y-momentum equation)+ QI = O (4.171) 

(interna1 energy equation) + Qi = O (4.172) 

where Qbls represent the boundary mass, x-momentum, y-momantum, and energy 

0ows which are indicated by m, f ,  g, and e, respectively. They consist of elementary 

convection and diffusion flux terms 

These fluxes are calculated by approximating the integration over the sudaces which 

are coincident with the domain boundary surfaces. These surfaces have been illus- 

trated for the control volume in question in Figure 4.3. The crosses at the surface 

mid-points represent them, i.e. at bipl and bip2 integration points. The resulting 

flwes for the continuity equation are writ ten 
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Similady, the resulting fluxes for the momentum equations are given by 

And for the energy equation, they are are written 

where a, and ut are normal and tangential surface stresses. (AS), and (AS), were 

d h e d  before by Eqs.(2.25). 

A comprehensive discussion on the proper treatment of the above expressions 

and their combinations at bonndary surfaces has been presented by Schneider [71]. 
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volume 

I 

Figure 4.3: Boundary control volume and boundary condition implementation. 

There are many dinerent methods to implement the boundary conditions. How- 

ever, we are not interested in presenting all possible boundary implementations; 

conversely, we are only concenied with those implementations which have been 

employed in the test problems of Chapter 5. 

In the current study, the diffusion parts of the boundary conservation equa- 
f d  @d tions, i.e. Qb ,Qb , and Qgd, are treated assuming zero viscous diffusion through 

the domain boundaries. The value of all other Qb9s are approximated by linear in- 

t erpolation between adjacent boundary nodes unless the conservation equations are 

sacrificed to spedy the known boundary values or their directions. For example, 

Equation (4.178) could be expanded for the control volume in question in Figure 

4.3, 

Genady speaking, the mass and momentum equations are used to tteat pres- 

sure and velocity boundary conditions and energy is involved in treating tempera- 
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ture boundary conditions. The main purpose of the present boundary treatment is 

to conserve mass for all control volumes of the domain including the boundary. This 

is why the known pressure at the i d o w  and outflow boundaries of subsonic flow 

domains is speded  by nsing the momentum equations. Two factors are important 

in boundary treatment. One is the nature of the flow and whether it is viscous or 

inviscid. The other relates to the physics of the boundary which muld be classsed 

into solid wall, iaflow, outflow, etc. Based on these factors and sub-factors, sev- 

eral different boundary treatments could be constmcted whidi are explained in the 

following sub-sections. 

N c d p  boundary conditions are applied to mode1 solid walls for solving the Navier- 

Stokes equations. In this regard, the 2-momentum and pmomentum equations are 

replaced by F=O and G=O specifications for stationary wab and F=Fwu and 

G=Gdl for moving walls. Continuity is automatically closed for solid boundary 

becanse there is no mass flow through the solid boundary. Similady, energy is not 

transmitted from boundary surfaces because boundaty velocities are zero. Thus, an 
8T adiabatic boundary condition is applied to the energy equation, i.e. q, = k- ~n = 0. 

Inviscid Solid Wall M o  deling 

The flow tangency condition is considered for treating inviscid Euler flow over a 

solid w d .  This condition restricts the direction of the flow to be tangent to the 

wall boundary, Figure 4.3. In this case, the 2-momentum and y-momentum equa- 

tions are completed normdy for boundary control volumes assuming zero vismus 
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diffusion. Then, they are combined to form the tangential momentum equation, 

ms(@) {z-moment* + sin(p) {y-moment-) = O (4.187) 

Now, the x-momentum equation is replaced by this new derived tangential momen- 

tum equation for snch boundary control voIumes. The y-momentum equation is 

simply replaced by the normal n-flow condition for the boundary control volumes, 

Since there is no mass flow across the inviscid solid wall, continuity and energy 

equations are treated similar to those for a viscous solid wall. 

Inflow Boundary Modeling 

Most flow information is specified at an inlet section. In all subsonic, transonic, and 

incompressible cases, the x-component of mass or velocity is specified by replacing 

the 2-momentum equation by an equation that simply specifies the mass comp* 

nent or x-velocity. The y-component of mass or velocity is not always specified. 

For those test cases which are consistent with a uniform inlet velocity dis tribution, 

the y-momentum equation is discarded for corresponding boundary control volumes 

and replaced by G=O instead. However, for those inlets with n o n - d o m  inflow, 

like the sloped inlet of a convergent-divergent nozzle, the y-moment um equation is 

completed normally considering zero shear for those control volumes. The result of 

t his boundary implement ation is illustrated and mentioned in applications. Con- 

trary to the momentum equations, the continuity equation is always dosed for the 

above flow cases. 

A d o r m  inlet velocity specification does not necessarily describe a uniform 

mass distribution at the inlet and vice versa in compressible flow. In many cases, 
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it is necessary to compare our results with those of other workers who solve using 

a veiocity boundary condition. In order to have a oniform velocity at an x-inlet for 

our momentun variable procedure, F is specified via the x-momentum equation. 

Then, density is computed by using the equation of state and having the magni- 

tude correspondhg to the calcdated pressure and temperature. This calcuiated 

density is used to correct the inlet mass, FM, = @-CI,,. This new derived F 

is used to specify mass in the next iteration. Although this method of boundary 

implementation generally slows down convergence, it works well. 

For supersonic cases, P, F, and G are specified at the inlet by replacing the 

continuity, x-momentum, and y-momentum equations, respectively. Temperature 

is always specified by replacing the energy equation by an equation that simply 

specifies the temperature. This latter implementation is applied for all investigated 

tests. 

Outflow Boundary Modeling 

At an outflow boundary in the z-direction, neither the x-velocity nor x-component 

of the m a s  is specified. Pressure is speaed  here by replacing the 2-momentum 

equation with an equation specifying the desired pressure for subsonic and transonic 

flows. The method of treating the y-momentum equation is exactly similar to the 

one presented in inflow boundary modeling. The continuity equation is closed by 

an implicit treatment of the exit mass for subsonic and transonic flows. 

Since pressure is speeified at an upstream boundary in supersonic flow (see 

inflow boundary modeling) x-momentum equation is dosed assuming zero shear. 

There are few test problems in supersonic flow which speofy either pressure or mass 

at outflow by extrapolating specified values fiom the upstream of boundary nodal 
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points and inside of the domain. However, this form of modeling does not cause 

signiticant improvement in the result S. 

DSerent techniques are osed to deal with the energy equation for outflow bound- 

ary control volumes. In most cases, the energy equation is completed subject only 

to zero shear. In this modeling, dependent variables are implicitly involved in clos- 

ing boundary values. In supersonic flows, the energy equation is 4th- completed 

as before or temperature spedied with magnitude extrapolated fiom neighborhg 

upstream nodes. Another technique is to use an adiabatic boundary condition, 

q, = k s  = O. Such an equation relates each boundary node to its neighbonring 

nodes using fmite elernent connectors or a direct badrward dinerencing. 

Symmetry Boundary Modeling 

Symmetry boundary conditions are very beneficial for redueing cornputer t h e  and 

memory requirements when appropriate. The mas, momentum, and enagy flows 

do not intersect the symmetry boundary surface because the normal velocity and 

normal derivative of all other flow parameters are zero on that surface. This M- 

plements a normal dosing of the continuity equation. In this modeling, the z- 

momentum is replaced by an equation which specifies zero gradient for tangentid 

velocity at the boundary, i.e. = O. The y-moment- is aiso replaced by an 

equation, Eq.(4.188), which spedes  the direction of the symmetry boundary. The 

adiabatic boundary condition is implemented for treating temperat are as was done 

for viscous solid wall modeliag. 
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4.8 Closure 

The preliminary investigation on one-dimensional formulations has been extended 

in t his chap ter for twdimensional application. In t his regard, the twdimensional 

Navier-S t okes equations were discretized using a control-volume-based finite- 

element method and selecting the momentnm component variables as the dependent 

variables. The discretized form of conservation equations contained many nonlin- 

earities and formed an ill-posed systern of equations due to the integration point 

variables involved. Both of these difficulties were resolved using our one-dimensional 

experîence. The velocity-pressure decoupling issue which was detected in the one- 

dimensional investigation was addressed folowing our previous methodology. The 

resulting equations in this chapter were cast in a general matrix tom which will fa- 

ditate the future work. The details of the techniques which are employed to invoke 

boundary conditions were explained for different bonndary condition implement a- 

tion. The performance of this formulation will be studied and results presented in 

the next chapter. 



Chapter 5 

Two-Dimensional Result s 

Introduction 

In this chapter, the performance of the developed two-dimensional method is ex- 

amined. This examination comprises the investigation of several difFerent kinds of 

flow and test problem. The main purpose of this chapta is to cover a wide range 

of flows and problems. Based on the title of this research, the primary concern 

in this route is to test the validity of the method for two major types of flow, i.e. 

incompressible and compressible flow. There are 0th- factors like speed, viscosity, 

and tirne which break each type of flow into other categories. The time variable 

splits problems into steady and unsteady flows and viscosity into viscous and in- 

viscid flows. Flow speed is a major parameter in compressible flows which divides 

it into many other subdinsions like subsonic and supersonic flows. Flow problems 

can be huther categorized based on the flow boundary conditions. 

The one-dimensional resdts were completely discussed in Section 3.7. Here, we 

are concemed only with twdirnensional flows and mainly with interna1 flows. In 
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order to MiIl the objectives of this chapter, the flow problems are dassiîied into 

three categories of incompressible, pseudcxompressible, and highly compressible 

flows. The h s t  is limited to absolute constant density flows, the second addresses 

incompressible flows which are treated as compressible ones, and the last addresses 

highly compressible flows. Each component has specially been designed in such 

a manna that their assemblage would demonstrate the power of the method for 

a broad range of flows. Many other types of flow are examined in this chapter 

including viscous and inviscid flows. The factor of time ras  examined in Section 

3.7.2 where the one-dimensional transient flow in a shock-tube was investigated. 

Many diffkrent problems are modeled in this chapter induding the driven cavity 

problem, channel entrance flow, converging-diverging nozzle flow, and flow over 

both a bump and a ramp. There are three major examples which are tested almost 

in ail three parts. They are the cavity, entrance, and nozzle flows. This helps to 

follow the performance of the method through a wide range of fiow parameters. 

The general common specifications of each sub-section is generally discussed before 

presenting the individual results of that sub-section. 

In this chapter, the results of the present work are compared with those of other 

workers. Their results have been extracted either fiom the figures of their articles 

by using a digitizer or dicectly fkom the tables of their articles. These results may 

simply be indicated by symbols instead of continuous line distributions. The num- 

ber and location of the symbols do not necessasily indicate the grid distributions. 

In this chapter, all test problems are solved based on a tirne-dependent impliut 

algorithm. There are no interna1 iterations in each t h e  step because we are con- 

cerned ody with the steady-state solution. Marching in tirne is continued until a 

convergence criterion is reached. The Root Mean Square of the change fiom itera- 

tion (tirne step) to iteration is used as a measure of convergence for the dependent 
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variables, i.e. F, G, P, and T. For a general unknown #, the RMS is given by 

where 

H is the total number of grid nodes. The RMS is evaluated for all four unknown 

dependent variables, however, experience shows that the RMS of F is slower than 

the other variables for the test cases investigated . The RMS values for the depen- 

dent variables at the integration points are also checked using similar defmitions, 

however, experience shows that the convergence of the integration point variables 

is faster than t hat for the nodal values. The required criterion for convergence was 

set to IO-' for all cases unless otherwise stated. 

AU pre and post processing of this chapter have been accomplished using either 

MATLAB software or author based tools. W figures which illustrate the results 

have been depicted by MATLAB. Since the intent of this work was to demonstrate 

the procedure, a direct sparse mat& solver was used for the computations [70]. 

Thus it is not relevant to present computational times for solutions in this work. 

5.2 Incompressible Flow 

As the first step of our method validation, the capabilities of the incompressible 

algorithm of the code are investigated. In this algorith, the equation of state is 

reduced to Eq. (2.16) where absolute incompressible flow is spedied. In this section, 

two test models are examined to reveal the characteristic of the method. They are 
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the &en cavity problem and the entrance flow problem. They are addressed by 

solving the Na+-Stokes equations. Since viscous flow problems may be polluted 

by turbulence &ects it is necessary to respect laminai. restrictions for laminar flow 

solvers. The validity of the results is compared with the results of other numerical 

methods and available benchmark result S. A mes h sefinement s t udy is accomplished 

for the cavity test problem which demonstrates the ability of the method to attain 

accurate results for coarse grid distributions. All test cases in this section are solved 

within a time-marching algorithm and the results are obtained by choosing huge 

time steps which results in an infinite CFL number. 

5.2.1 Driven Cavity Problem 

The fust model problem is a classical problem to test the accuracy of numerical 

methods for incompressible viscous flows. It is the recirculating flow of a fluid in 

a square cavity which is bounded on three sides and whose fourth side moves at 

a constant speed, causing recirculation inside the cavity. The cavity problem is 

a difncult test problem because of two singularities at the corners of the lid and 

because of its several recirculation regions with their complexities dependent on 

the Reynolds number. This problem has been extensively studied as a benchmark 

problem, Chia et al [72]. In order to demonstrate the e t  of mesh size and 

Reynolds number on the results of the code, the study was done on five different 

uniform meshes, including 21x21, 31x31, 41x41, 51x51, and 71x71 grid nodes, 

and for three Reynolds numbers of 1000, 5000, and 7500. The length scale and 

density were considered to be unity. All velocities are nondimensionalized by the 

velody of the lid. Figures 5.1, 5.3, and 5.5 depict the streamline contours for the 

tkm Reynolds number of 1000, 5000, and 7500 on three different udorm grids of 

31 x31, 51 x51, and 71 x71, respectively. Plotting the streamline contours requires 
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the evaluation of the stream function within the solution domain. In this regard, 

the stream function values have been obtained by integrating the integration point 

velocities over control-volume surfaces. Al1 the first and second level vortices have 

been successfully detected in these three figures despite using relatively coarse grids. 

As Reynolds number increases the central vortex becomes much roundex and the 

secondary vortices much stronger. 

The u-velocity and Y-velocity profiles at the centerlines of each cavity have been 

calculated and iliustrated in Figures 5.2, 5.4, and 5.6 for three Reynolds number of 

1000, 5000, and 7500, respectively. In order to study the effect of mesh refinement 

on the accuracy of the results, each Reynolds number was tested on up to three 

dinerent grid distributions and compared with the benchmark results of Ghia et d 

[72] whîch are based on fme grid distributions. Their working grid is 129 x 129 for 

Reynolds 1000 and 257 x 257 for two other Reynolds numbers. Comparing with the 

results of benchmark work, this study shows that the accuracy of the solution is 

r apidly increased wi t h relat i d y  coarse grids . 
Following the mesh refinement study, a comparative study on the validity of the 

method is performed. Reynolds number of 3200 is selected for this study because of 

a d a b l e  results. Figure 5.7 compares the results of the present method with three 

other teferences two of wbich are based on d-speed methods. The benchmark work 

[72], which has already been introduced, uses a grid resolution of 129x 129. The 

grid resolution is 71 x 71 in (451 and 51 x 5 l  in (331. The present method hap used a 

grid distribution of 51 x51 which generdy shows better agreement cornparhg with 

the benchmark resuits. The streamline contour of this cavity fiow is presented in 

Figure 5.8. 

Certain cavity flow details have been studied and compared with those of the 

benchmark study. Table 5.1 shows a comprehensive survey of the primary and sec- 
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Figure 5.1: Cavity with a 31 x31 grid and Re =1000. 

grid study on cavity (Re=1000) 
U distribution on the vertical center line 

C 
O 
-3 0.4 -- 
Ho., )i 

- 
-0.5 O 0.5 1 

u velocity 
V distribution on the horizontal center line 

x position of nodes 

Figure 5.2: Mesh rehement study on centerline veloaties. 
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Figure 5.3: Cavity with a 51x51 grid and Re =5000. 
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Figure 5.4: Mesh rehement study on centerlhe velocities. 
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Figure 5.5: Cavity with a 71 x7l grid and Re =7500. 
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4 . 5  O 0.5 1 
u velocity 

V distribution on the horizontal center line 

O 0.5 1 
x position of nodes 

Figure 5.6: Mesh refinement st udy oa centerline velocities. 
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U disuibution on the vertical center line 

u velocity 

V distribution on the horizontal center lin0 

- Present work 51 x51 

O Ghia et al 129x129 @2] 
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x Karimian 8 Schneider 5 1 x51(33] 

O 0.5 1 
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Figure 5.7: Comparative stndy on the centerline velocities in cavity, Re=32OO. 
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maln Gnes 

Figure 5.8: Cavity with a 51  x5l grid and Re =3200. 

ondary vortices of the flow inside the driven cavity for Reynolds number of 5000. 

This survey includes the s trengt hs, dimensions, and locations of the main vortex 

and secondary vortices in the cavity. In this table, several abbreviations are used. 

P, T, B L, and BR represent primary, top, bot tom left, and bot tom right vortices. 

H and V represent the horizontal and vertical sizes of the vortex respectively mea- 

sured dong the correspondhg wall surface. The summarizeed results in Table 5.1 

demonstrate good quantitative agreement with the r e d t s  of Ghia et al [72]. It 

must be noted that the grid size has a ciirect and strong d e c t  on the order of er- 

rors and that vortices of smailer size would res& in higher errors on coarser grids. 

The smaiier vortices have not been presented in this table. S M a r  cornparisons for 

other Reynolds numbers show similar results. 

N d i p  boundary conditions were appiied on all soiid walls of the cavity. The 

cavity problem was studied as a steady-state problem and the results of each case 

were obtained using several iterations in a huge time step. The nomber of itera- 



Table 5.1: Comprehensive cornparison of cavity details for Re =5000 

tions was between 10 and 20 in each case to reach the reqnired criterion which is 

R M S < ~ O ' ~  for F and G. 

5.2.2 Channel Entrance Flow 

The second test problem is entrance flow between pacallel plates. The parailel 

plates geometry is a limiting geometry for the f d y  of both rectangular and con- 

centric annular ducts. The velocity distribution at the inlet of a duct wilî undergo 

a development from some initial profile at the entrance to a M y  developed profile 

at locations far downstream. The region of the duct in which this velocity develop 



ment occurs is called the entrunce region There has been considerable interest in 

determining the fluid behaviour Mthin the entrance region because of its general 

technical importance in engineering applications. The importance of this problem 

is also for developing laminar-flow theory and testing numerical sdemes for solving 

ellip tic conservation equations. There are no general exact solutions or experimen- 

t d  results for the entrance region. However, there are a variety of approximate 

analy tical and numerical met hods for the determinat ion of the flow characteris tics 

in this region, Darbandi and Schneider [73]. The development of a laminar flow at 

the entrance of two semi-infinite straight parallel plates is seen in Figure 5.9. The 

distance between two plates is H = 1. The entrance length, Xe, is defined as the 

y------------------ 
& Entrance Length 

- -t 

Figure 5.9: Developing and developed zones. 

distance from the inlet boundary, with d o m  inlet velocity profile, to the point 

where the centerline velocity reaches 99% of its asymptotic value. The entrance 

length divides the region into two zones. In the developing zone the velocity profile 

undergoes a transition from a flat to a parabolic profile. This developing profile 

may have two maxima at locations other than the centerline. The patabolic profile 

remains constant in the f d y  developed zone. Ali lengths are nondimensionalized 

by H and velocities by U'det. Because of the symmetrical nature of this problem, 

only the upper or lower half-channe1 could be calculated. However, in order to 
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emphasize on the symmetry of the obtained solution, the calculation is done based 

on a full height of the channel. 

The problem ras investigated for Reynolds nnmbas O, 1, 20, 200, 1000, and 

2000. The fitst one is creeping flow and is approximated by specifying a very large 

value for viscosity. A 101x41 grid distribution was used for all Reynolds numbers. 

The f i s t  and second numbers show the longitudinal and the f d  transverse grid 

distributions, respectively. The dis tribut ion dong the cross section was based on 

the hyperboiîc sine and the longitudinal dis tribution was uniform. 

Typical profiles of u-velocity for Reynolds numbers 200, 1000, and 2000 are 

shown in Figures 5.10 to 5.13 assuming a d o m  velocity profile at the inlet. 

Qualitatively, the development of the velocity profiles were found to be quite sim- 

ilar at all Reynolds numbers although the off-centerline maxima appear to be the 

greatest at Re=200. As is seen, the velocity profiles have a peculiar behaviour 

close to the entrance. They show a local minimum at the center of the duct and 

symmetrically two maxima near the wds .  These velocity overshoots are found 

at ail Reynolds numbers while their magnitudes deuease and finally vanish with 

increasing Reynolds number. Shah and London [74] present a comprehensive dis- 

cussion on the existence of these overshoots. They resdt iiom the condition that 

the velocity distribution at the inlet must be uniform. In order to maintain this 

condition, an adverse pressure gradient develops in a s m d  region on the centerline 

near the entrance. Fluid parcels near the centerline are not accelerated immediately 

where as the 0uid parcels next to the w d  are forced to be stationary as soon as 

they enter the inlet region. To satisfy the continuity equation, velocity overshoots 

are t bus forrned. 

There have been numerical [75], analytical [76,77], and experirnental[78] dor t s  

to determine whetha or not these overshoots are a part of the real behaviour of the 
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Figure 5.10: Entrance flow, Re=200, undeveloped. 

profile of u-mbQty in difieren t posilians in channu4 

Figure 5.11: Entrance flow, Re=200, developed. 

profile of u-veiocity in different positions in channd 

Figure 5.12: Entrance flow , Re=1000, undeveloped. 

profile of u-vdodty in different positions in channd 

Figure 5.13: Entrance flow , Re=2000, undeveloped. 
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flow. Abarbanel[76] analytically solved the problem for Stokes flow and conduded 

that these bulges are indeed a real part of the mathematical solution. Berman and 

Sant os [79] demonstrated wit h t heir experimental work that these velocity over- 

shoots in the entrance region for pipe flow are not just a mathematical oddity but 

are real [8O]. On the other hand, in the numericd category, AbddNour and Pot ter 

[SI] have solved the entrance flow of ducts by applying both d o r m  and actual 

inlet profiles and using vorticity and stream-hc tion variables. They concluded 

that both improvement in the boundary conditions and the use of smoothing func- 

tions could rninimize the magnitude of these overshoots. Darbandi and Schneider 

[73] have conducted a comprehensive study on the effect of mesh-rehement on 

velocity overshoot in the entrance region of a channel flow. They conduded that 

the veloci t y-over shoot dis tribution dong the channel approaches as ymp totic values 

with mesh rehement S. 

In order to study the effect of mesh size, the mesh size was changed from a 

non-uniform 10 1 x 41 grid to a 61 x 21 uniforxn grid distribution. The effect was low 

on the results of entrance length computation. Their changes were consistent with 

the change of mesh size at the end of developing region. The entrance length ha9 

been nondimensionalized with H and tabulated in Table 5.2 for different Reynolds 

numbers. The results of the present work are compared with those of Narang and 

Krishnamoorthy [82] who solved the boundary-laya equations and Morihara and 

Cheng [75] who solved the quasi-linear Navier-Stokes equations for incompressible 

flow. Although these results are based on the h e r  grid but they are not far fiom 

the results of the coarse grid which infêrs excellent result despite the use of a coarse 

grid. 



N.A. 

1.282 

2.220 

16.70 

91.080 

168.80 

Table 5.2: Entrance or developing flow length 

There is an empirical relationship for the hydrodynamic entrance lengt h, 

This expression is not valid for Reynolds numbers under 100 because Lhv is a 

strong function of Re for low Re flows. This length has been calculated for ou.  test 

problem and has b e n  tabulated and compared with others' results in Table 5.3. 

The number of iterations for attaining the convergence criterion, i.e. RMS<10-5 

for F and G, did not exceed six itaations, for the highest Reynolds number, in all 

test cases. 

Boundary Conditions 

The Navier-Stokes equations for pardel plates may be solved for different inlet 

conditions. The selection mainly depends on the dependent variables. Those who 

solve for cpC use irrotational entry conditions, lEC, at the inlet and those who 

solve using u-v use uniform entry condition, UEC. There is a third option which 
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considas the dom-velocity fat upstream of inlet section, e.g. (831, which is not 

considaed here. Van Dyke [84] pointed out that the vorticity at the inlet is not zero 

for low or moderate Reynolds numbers because of its upstream diffusion as soon as 

the flow m e t s  the entrance wall. Hence, the unifolpi entry velocity distribution is 

better than a zero vorticity distribution. Morihara [75] calculates and plots equi- 

vorticity lines in the duct and shows that the rp-C formulation is justified ody for 

large Reynolds numbers . 

There are works which apply both boundary conditions. Mcdonald [85] solved 

the complete set of Navier-S tokes equations for both the d o m  and irrot ational 

entries. He noted that the centerline velocities are higher for the irrotational entry 

than for d o r m  entry. This difference is higher for parallel plates compared to 

the circular tube. Ramos and Winowich [86] investigated magnetohydrodynamic 

channd flows. They showed t hat the primitive-variable formulation predic ts either 

steeper axial velocity gradients at the channel walls or lower tucial velocities at the 

Channel centerline than the stream fimetion-vorticity in fiaite-dinesence or finite- 

element methods. On the other hands, AbddNour and Potter [SI] show that the 

magnitude of overshwts could be minimized with improvement of boundary condi- 

tions in a y+( formulation. Ail these cornparisons between tr-v and (p( formulations 

Re 

20 

200 

1000 

2000 

Table 5.3: The hydrodynamic entrance length 

AbddNouz [81] 

0.045 

0.0442 

O .O442 

0.0443 

empirical result 

0.04 

0.04 

0.04 

0.04 

Present Morihara [75] 

0.0558 

0.0456 

0.0441 

0.0436 

0.0559 

0.0452 

N.A. 

0.0429 



show that t h e  would be tao different solutions considering either UEC or IEC. 

These solutions ate not identical. 

In this study the initial solution is always started with F=G=O aad P=Po at all 

mesh nodes throughout the domain. Then d o r m  en- condition, i.e. F=l and 

G=O, is applied at the inlet. Almost all of the methods in the literature assume f d y  

developed flow at infinity. Here, the d o r m  pressure and zero transverse velouty 

are speafied far downstream of the entrance length, Xe, for boundary condition 

implementation. Since the problem is solved for the haIf height of the domain, 

symmetnc boundary conditions are applied at the centerline. In this regard, mass 

flux and its related momentum are considered zero through the centerline. No-slip 

conditions are spefied on the w d  of the duct. 

5.3 Pseudo-Compressible Flows 

In this section, we are mainly concerned with the performance of the analogy to 

employ a compressible algorithm to solve for incompressible flows. Therefore, we 

are directly interested in evalaating the ability of the code to handle low-Mach- 

number flows known as pseud~compressible flows. These flows definitely have the 

characteristics of real incompressible flow. In order to demonstrate the pdormance 

of the analogy, many pseudcxompressible flows are first solved using the compress- 

ible algorithm of the code, using Eq.(2.11) as the equation of state, and the results 

are compared with the results of the incompressible algorithm of the code, using 

Eq. (2.16). 

In the following sections, there will appear a minimum low Mach number in 

each test case but this does not mean they are the lowest possible Mach numbers 

which could be solved by the compressible algorithm. It is the Mach number which 



definitely reveals the characteristic of teal incompressible flow. Cornparhg the 

resdts of these sections shows that there is no difference between these resnlts 

and those of incompressible flow although deasity was permitted to obey the ideal 

gas law. This high flexibility of the method in solving real incompressible flow 

as a compressible flow is not seen in compressible methods which are extended to 

solve incompressible flows. Volpe [30] has examined the performance of three t w e  

dimensional compressible flow codes at low Mach nunibers which did not exhibit 

this flexibility. 

In this section, the performance of the analogy is investigated in three different 

test cases of cavity problem, entrance flow problem, and converging-diverging nozzle 

flow problem. The two h s t  are solved by treating the Navier-S tokes equations and 

the last using the Euler equations. In order to complete the investigation, all 

compressible and pseudo-compressible results are compared with either analytical 

solutions or benchmark results. 

5.3.1 Cavity Flow Problem 

The fist mode1 problem is the two-dimensional cavity àriven by the movement of 

the lid. The complexity in flow conditions is associated with well dehed boundary 

conditions. This test problem was introduced in Section 5.2.1. The ability of the 

curent work in detecting the separate recirculating regions of the incompressible 

cavity was previously demonstrated by solving high Reynolds number cavity flows, 

Section 5.2.1. Here, we are not directly concerned with the details of the solution 

but the abiüty of the analogy to employ compressible algorithms to solve for incom- 

pressible flows. Following this purpose, two cavity problems with grids of 19 x 19 

and 31x31 are selected to study tao Reynolds nnmbas of 100 and 1000, respec- 



tively. The cavity has a unit length scale and velocities are nondimensionalized by 

the lid velocity. 

These problems are solved once by the incompressible algorithm and several 

times by the compressible algorithm. In the compressible case five difFerent Mach 

numbers are investigated. These Mach numbers are divided into hro degories of 

pseud~compressible, M ~ 0 . 3 ,  and compressible, M >0.3, Mach numbers. Again, 

it must be noted that the lowest Mach nnmber of M=0.00001 does not mean that 

it is the lowest possible Mach number for using the compressible algorithm. Figure 

5.14 illustrates the u-velouty profiles at the vertical centerline of the cavity and 

Figure 5.15 similarly does for the v-velocity profiles at the horizontal centerline. 

These figures demonstrate the results of both absolute incompressible flow and 

compressible flows fiom very low Mach numbers up to sonic speed. These velocities 

have been nondimensionalized and compared with the incompressible results of 

Ghia et al [72]. As these two figures show all results are absolutdy identical for both 

compressible and incompressible algorithms. There remains a question whether 

they are obtained under dinerent solution conditions. Surprisingly, the answer is 

negative, i.e., ail side conditions are definitely identical. Figure 5.16 compares the 

convergence history of F for diffaent cases. As seen they are dl identical. This is 

a feature not seen in the conventional compressible flow solvas and even in theif 

modified versions which solve for incompressible flows. 

One important issue which needs to be q l a i n e d  here, is the velocity profiles in 

highly compressible flows. The cornparison shows that the velocity distributions are 

identical dong cavity centalines for both highly wmpressible and r d  inwmpress- 

ible flows. The reason behind this similarity retums to the velocity distribution 

inside the incompressible cavity. As Figures 5.14 and 5.15 show, most of the re- 

gion inside the cavity is under incompressible conditions, i.e. Mach < 0.3. This 
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U distribution on the vertical center Iine 

Figure 5.14: The velocity distributions for vertical center grid of the cavity problem, 

V distribution on the vertical center lin8 
oz1 I 

x position of nodes 

Figure 5.15: The velocity distributions for horizontal cent- grid of the cavity prob- 

lem, Re=100. 
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Figure 5.16: Cornparison of the convergence histones in cavity with Re=100. 

causes a sharp drop of compressibility efTects beside the cavity lid. On the other 

band, the cavity region is almost a constant pressure field except at the regions 

dose to the leading and trailing edges of the moving lid. This has a direct effect in 

generating a constant density field. This independence of the solution fiom Mach 

number ha9 also been reported by Pletcher and Cheng [38]. This is why we have 

included the results of high subsonic flows with those of pseudc+compressible flows. 

In another words, the behaviour of high Mach nnmber subsonic flow is similar to 

that of very low Mach number flows and they could really be categorized in the 

pseud~compressible branch. 

The convergence study of the analogy is compared with that of Pletcher and 

Cheng [38] over a range of Mach nambers in Table 5.4. The cornparison is performed 

for both preconditioning and ncxonàitioning procedures. In this table NO1 stands 

for the Number-of-Iterations and NA means the case is Not-Available. For the 



Mach 

10-~ 

IO-= 

 IO-^ 

o. 1 

0.2 

0.4 

0.8 

1.0 

Precondi tioning [38] This Work 

Table 5.4: Cornparison of the results of different compressible schemes for cavity 

flow, Re = 100, grid 19x 19 

ncxonditioning scheme, it is not possible to use the same time step over a wide 

range of Mach numbers. They also could not reduce the number of iterations for 

the no-conditioning scheme to the level achieved with preconditioning for Mach 

numbers lower than 0.8. For the current study, the convergence was determined 

for the steady calculations when the Root-Meamsquare of ali dependent variables 

reached IO-'. The stability of the resdts of the curent analogy in achieving the 

convergence char acteristics are excellent in cornparison wit h t hose of the refkrence. 

The low number of time st eps is another issue which demons trates the ability of this 

work. This is not seen in conventional compressible methods which are applied to 

very low speed flows. Volpe [30] examines three different Euler and Navier-Stokes 

solvers at different low Mach numbers and deduces that the number of iteration 



cycles to reach the convergence criterion is excessively high. 

Many similar caldations were accomplished for other Reynolds numbers and 

grid resolutions and the similar results were achieved. As an example, Figures 5.17 

to 5.19 demonstrate a similar investigation and cornparison for a higher Reynolds 

number, Re=1000, in the same cavity. The mesh size is 31 ~ 3 1  in thh model. In 

order to illustrate the trend of convergence for lower RMS aiterion, this criterion 

has been diminished to 10-~. The secondary reeirenlsting regions become stronger 

Convergence History of F 

Figure 5.17: Cornparison of the convergence histories in cavity with Re=1000. 

at this Reynolds number. Despite this higher complenty of the flow, a similar con- 

clusion which was derived for Re=100 is once more determined here for Re=1000. 

It is noted that al1 identical results show identical rates of convergence. Section 

5.4.1 present s more result s for compressible cavity with higher Reynolds numbers. 
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U distribution on the vertical center line 

Ü / Ulid 

Figure 5.18: The velocity distributions for vertical center grid of the cavity problem, 

Re=1000. 
V distribution on the vertical center lin8 

Figure 5.19: The veiocity distributions for horizontal center grid of the cavity prob- 

lem, Re=1000. 



5.3.2 Channel Entrance Flow 

The schematic development of a laminar flow at the entrance of h o  semi-infinite 

straight parallel plates was shown in Figures 5.10 to 5.13. This mode1 problem has 

been inves tigat ed by the incompressible algorithm of the momentum-component 

procedure in Ref. (551 and Section 5.2.2. It has been shown that the velocity 

profile within the developing zone may have two maxima at locations other than 

the centerline. Here we are not directly interested in the overshoots or their mag- 

nitudes but in the performance of the analogy in solving both compressible and 

incompressible entrance flows. 

Figure 5.20 illus trat es the centerline velou ties for incompressible flow and four 

compressible flows with inlet Mach numbers of 0.001, 0.01, 0.05, and 0.1 and a 

grid distribution of 41x21. As is seen, compressibility dects are not important 

for M 50.01 and the results are identical with those for incompressible results. 

However , compressibiüty effects become noticeable as the inlet Mach numba a p  

proaches 0.1. The derived results are compared with those of Morihara and Cheng 

[75] w ho solve the quasi-linear Navier-S tokes equations for incompressible flow . In 

addition, they are compared with the compressible results of Chen and Pletcher 

[45] at M=0.05. Generally speaking, the agreement between the results is excel- 

lent. Figure 5.21 compares the convergence histories of the investigated cases. The 

low number of tirne steps to achieve the criterion of for d dependent variables 

is excellent. The deviation for M=0.1 is expected due to compressibility effects and 

the process of speeifying the velocity at the inlet. The latter means that at the end 

of each time s t ep the masses at inle t nodes are corrected by multiplying the specified 

valaes of velocity and the new calculated densities. These new masses are employed 

as speded  masses at the inlet for the next time step. When compressibility efEects 
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U distribution on œnterline grid 
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Figure 5.20: Centerline velocity distributions for incompressible and compressible 

flows in entrance region, Re=20. 

Convergence History of F 
1 O" 

Figure 5.21: Comparing the convergence histories for entrance flow , Re=20. 
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become noticeable, this correction slows the convergence rate. 

A similar presentation is given for Re=2000 in Figures 5.22 and 5.23. Here, the 

grid distribution is 101 x 11 which is considerably lower than that of references. The 

results of Morihara [75] and AbduWou [87] have been induded for comparison. 

AbddNour solves the stream fimction-vorticity form of the Navier-S t okes equations 

with implementing a second-order boundary conditions. Although this distribution 

is not consistent with the results of the previous investigators it has been illustrated 

here to show the very recent attempts in this regard. The distribution shows abrupt 

jump at the ialet of the channel which is due to abrnpt progress of the centerline 

velocity as soon as it enters the channel. The renults of Carvalho et al [88] have 

also been shown here. Their method of solution, an integral transform method, is 

applicable to high Reynolds numbers, Re + W. Moreover, the solutions in the 

entrance region approach asymptotic values when Re -+ W. As is meen, the results 

of the present solution at high Reynolds numbers show excellent agreement with 

the results of the limiting values. 

Finally, we examine the performance of the analogy with respect to conver- 

gence. In this regard, the entrance cases of Chen and Pletchex (451 who solve for 

all speed flows are selected and th& reported results are compared wit h the results 

of our analogy. The test cases include four cases with inlet Mach numbers of 0.05. 

Grid distributions of 21 x 11, 21 x 11, 31 x 11, 41 x 11 are used m t  h nondimensional 

channel lengths of 2, 4, 30, and 3000 to solve for Reynolds number of 0.5, 10, 75, 

and 7500, respectively. Here, the Reynolds number is based on the inlet vdouty 

and half width of channel. The mesh distribution is a n o n - d o m  one which is 

not similar to those used by the references. Table 5.5 presents the results of this 

comparison. The number of t h e  steps to achieve the convergence criterion of IO-' 

for aii dependent variables is significantly lower for the analogy-based procedure. 
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U distribution on œnlrline grid 

l 1 B  

Figure 5.22: Centerline velocity distribution for incompressible and compressible 

flows in entrance region, Re=2000. 
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Figure 5.23: Comparing the convergence histories for entrance flow , Re=2000. 



However for Re=0.5, the number of tirne steps is not as low as the others. In 

this regard, attention must be drawn t o n d  the selected grid. This grid does not 

appropriately reveal the flow pattern in such a short 1ength. Rapid convergence is 

recovered at higher Reynolds numbers. 

Table 5.5: The number of time steps to achieve the aiterion in compressible en- 

trame flow, M=0.05 

5.3.3 Converging-Diverging Nozzle Flow 

The third test problem is hyperbolic planar converging-diverging nozzle flow. The 

geometry of this nozzle is seen in Figure 5.24. This symmetric planar nozzle ha9 

an aspect ratio of AR = =2.0. Compntations were performed for this mode1 

using the Euler equations. In this test, 7=1.4 and T = 75°C were considered 

for the 0uid. The results have been obtained for the upper half-nozzle using a 

51*11 d o m  grid distribution. The grid lines are depicted by dotted lines in 

Figure 5.24. Slip boundary conditions were applied at the walls. Back pressure 

10 

21x11 

42 

3 

0.5 

21x11 

25 

6 

-7 

and mass flow were speded downstream and upstream of the nozzle respectively. 

Temperature was also spedied at the inlet and the energy equation was dosed for 

boundary control volumes at the outlet with zero difhisive flux. Adiabatic boundary 

conditions were applied to the walls. There was no condition on the y-component 

Reynolds 

Grid 

Chen and Pletcher [45] 

This work 
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Figure 5.24: Hyperbolic convérging-divérging nozzle coconfigoration, AR=2.0. 

of mass flux at either inlet or a i t .  In this study the mass flux and density variables 

are normally nondimensionalized with the values of the parameters at the inlet of 

the nozzle when they are plotted in figures. Pressure is nondimensionalized with 

the badc pressure, Phck. For the initial condition, the flow is considered to be at 

rest and having ambient pressure at aJl grid locations. 

This test problem is solved for incompressible flow and for a number of low 

Mach number compressible flows. The details of the procedure is quite simiiar to 

those for the cavity problem. The low Mach numbers are M=0.001, 0.01, 0.05, 

and 0.1 which approximate incompressible flow. Figure 5.25 shows the density 

distribution along the centerline of the nozzle for these test cases. As seen at 

lower Mach numbers, the density becomes uniform. Figure 5.26 compares the 

distribution of other flow parameters along the nozzle centerline for the tested low 

Mach nnmba flows. These sub-figures iliustrate the consistency.of the other field 

parameters with the density field. Finally, the convergence histories for Werent 

low inlet Mach numbers have been depicted in Figure 5.27. It shows that the trend 

of convergence is similar to the trend in the cavity problem with slight différences. 

Since the pressure field changes are much sensitive at higher Mach numbers, the 

dec t  indirectly shows up in the convergence history. Although at the very low 

Mach number of M=0.001 the result is definitely identical with the incompressible 
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RO distribution on centerline grid 
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Figure 5.25: Density distributions for four different low inlet Mach numbers. 
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Figure 5.26: Mach distributions for four dinerent low inlet Mach numben. 
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one, a depatture is seen for highet Mach number flow where the compressibility 

is slighkly effective. This is more serious for M=0.1. Sesterhem et d [44] has 

examined similar cases of Iow Mach namber flows in a quasi one-dimensionai Lavai 

nozzle using 100 equally spaced control volumes. A total of 22 time steps ras 

needed to achieve the speded criterion by changing the CFL numba h m  100 to 

2000. Their method was restricted to only a one-dimensional study. 

Figue 5.27: Comparison of convergence histories for low inlet Mach number flows 

in nozzle. 

5.4 Compressible Flows 

Contrary to the previous sections, highly compressible flows with considerable 

changes in density are investigated in this section. Highly compressible flows are 

mainly divided into subsonic, transonic, sapersonic, and hypersonic flows. There 
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are no shock waves in subsonic regimes while shock discontinuities become a major 

problem in treating the other regimes of flow. We start our testing with subsonic 

flow regimes. Lata, this examination is extended to inchde the other flow regimes. 

In consequence of onr studying compressible cavity and nozde flows, these are 

two which are selected fiom the previous sections to be examined once more for 

high speed compressible flows. Dinkrent CFL nambers have been used to solve the 

problems in this section. They are provided for each case. 

5.4.1 Compressible Cavity Problem 

To demonstrate the performance of the present method in solving compressible 

flows, the cavity problem is recded. This mode1 problem was introduced in Section 

5.2.1 and it has already been solved for both absolute incompressible flow, Section 

5.2.1, and pseud~compressible flow, Section 5.3.1. The cavity problem is once more 

tested here to emphasize the performance of the compressible algorithm of the code 

in solving high Reynolds number flows with high subsonic speeds. Section 5.3.1 and 

Ref. [55] provide more det ails. 

In order to increase the compressibility dects  within the cavity, the velocity 

of the lid is gradually increased. The efFect is to raise the Mach number. Many 

cases were examined at different Mach numbers up to sonic speeds. Here we select 

M=0.8 to represent the related results. This test problem was also studied for 

severd Reynolds numbers including high Reynolds number of 3200, 5000, and 7500 

with a grid distribution of 51 x 51, 51 x51, and 71 x 71, respectively. Figures 5.28 

to 5.30 illustrate the centerline velocity distributions for these selected problems. 

The oenterline velocities have been nondimensionalized by the velocity of the 

moving lid in ail cases. The resdts have been compared with the incompressible 
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Compressibility study in cavity (Re-3200) 
U distribution on the vertical center line 

u velocity 

V distribution on the horizontal center line 
0.6 1 

O Ghia129x129(72] 1 

O 0.5 1 
x position of nodes 

Figure 5.28: Compressible cavity, Re=3200, grid 51 x 51, M d . 8 .  



Compressibility study in cavity (Re=5000) 
U distribution on the vertical center line 

u velocity 

V distribution on the horizontal center line 
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O Ghia257x257 [72] 1 

O 0.5 1 
x position of nodes 

Figure 5.29: Compressible cavity, Re=5000, grid 51 x 51, Me0.8. 



Compressibility study in cavity (Re=7500) 
U distribution on the vertical center line 
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V distribution on the horizontal center 
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Figure 5.30: Compressible cavity, Red500, grid 71x71, MeO.8. 
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results of Ghia et al [72]. At the same t h e ,  they have been compared with the 

incompressible results of the present method. There was a discussion about this 

agreement in Section 5.3.1 which is not repeated here. 

These excellent results represent the performance of the method in solving 

Navier-Stokes equations for compressible flow with implementing a closed bound- 

ary condition. In the following sections, this performance is tested for solving Euler 

flow equations with 0th- form of flow boundary conditions. 

5.4.2 Converging-Diverging Nozzle Problem 

In this part, converging-diverging nozzle configuration is tested for several different 

types of moderate and high compressible flows. They indude subsonic, supersonic, 

and their combinations. Since most of the results of the current method in this 

section is compared with the analytical solution of the one-dimensional flow, the 

nozzle configuration has been selected in such a shape that its results are closer to 

the one-dimensional flow. 

Subsonic Flow 

The fùst step in subsonic flow investigation is to study the d e c t  of nozzle oonfigu- 

ration in the accuracy of the solution respect to the ondimensional exact solution. 

This study is directed tkough an isothermal flow condition. The nozzle configu- 

ration in Figure 5.24 with ail side conditions presented in Section 5.3.3 is recded. 

Here, the flow is isothermal which eliminates the &ect of temperature field changes. 

Figure 5.3 1 illustrates the distribution of Mach and pressure on the centerline of the 

nozzle. The highest subcritical Mach nnmber in isothermal flow is l a s  than that in 

isentropic flow. In an isothermal region, the flow becornes critical if M > (?)-If2. 
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For air, this limit is M > 0.85. T b  has been emphasized in Figure 5.31 by drawing 

a horizontal d d  line in the Mach plot. There is a good agreement between the 

results of the current method and that of the one-dimensional solution. 

Convergent-Divergent Noule Resuits 
Mach 

Figure 5.31: Mach and pressure distributions for an isothermal nozzle, Min a0.25. 

Next, we change the nozzle configuration in order to study the &ect of tw* 

dimensionality of the configuration and flou. In this regard, the nozzle configuration 

is changed to a more realistic shape which is fm fiom one-dimensional asswnption. 

The geometry of this nozzle is seen in Figure 5.32. This symmetric planat nozzle 

bas an aspect ratio of AR = =2.035. W e  present the results of solving 

the Euler equations for this test problem and compare them with the available 

one-dimensional exact solution [89]. 
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The test case was examined using a 31x11 d o r m  grid distribution. The 

grid lines are depicted by dotted lines in Figare 5.32. This figure a b  illustrates 

the Mach contours within the flow field. Since the flow fieid is totally snbsonic, 

these contours are convex in the convergent part and concave in the divergent part. 

These schematic patterns are in good agreement with those of other predictions, 

Oswatitsch and Rothstein [go]. 

The isothermal Mach number and pressure distributions on the walls and the 

centerline are shown in Figure 5.33. These results are compared with the exact s e  

lution of the one-dimensional isot hermd flow t kough a nozzle [89]. There is a good 

agreement between the two solutions. However, the &ect of the twedimensionality 

of the flow is much more critical in this test case t han the one presented in Figure 

5.31. The geometry of the nozzle shows how the one-dimensional solution could 

be far from the real solution. A cornparison between the convergent and divergent 

parts shows that the deviation of the numerical solution fiom the one-dimensional 

solution is dinerent in these two regions. The convergent part is much farther fiom 

the one-dimensional solution than the divergent part. This would cause more devi- 

ation fiom the one-dimensional solution in the convergent part which is consistent 

mth the obtained results. This model was tested for longer lengths while retaining 

the aspect ratio constant. The results showed that the distribution dong both walls 

and dong the centerline approached the one-dimensional solution. 

After this preliminmy s tudy on isothermal flow and the importance of the nozzle 

geometry, we r e c d  the nozzle in Figure 5.24 to test the compressible algorithm foi 

subsonic non-isothermal flows. In this regard, the inlet velocity is appropriately 

k e d  upstream to capture three high subsonic Mach numbers of 0.5, 0.8, and 0.95 

at the throat. The density, Mach, and temperature fields are depicted in Figures 

5.34 to 5.36. These figures present the distribution at the walls aad dong the 
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nodal M contour I i  in Ibw field 

Figure 5.32: Mach contour lines in a converging-diverging nozzle with AR=2.035. 
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Figure 5.33: Isot hermal Mach and pressure distributions for the nozzle presented 

Pressure 

in Figure 5.32 with Mh =0.3. 

1.1 

1 

3 g 0.9 
z 

0.8 

0.7 

I I I l I I 

- 

- 
- 
-' L 1 1 I I I 

O S 1 O 15 20 25 30 35 
nodes in X-direaion 



CHAPTER 5. TWO-DIMENSIONAL RESULTS 175 

centerüne of the nozzle. These resdts have been compared with the exact solution 

of the one-dimenaional isentropic flow approximation tkough a nozzle. There is an 

excellent agreement between the two solutions. At first, it might be expected to 

see the onedimensional solution alaays between the centerhe and rd solutions. 

This is h e  until the throat reaches sonic speed. Then, the throat Mach number 

becornes highly sensitive to siight changes in inlet Mach number. Cornparhg the 

inlet Mach numbers for the cases with throat Mach numbers of M=0.8 and 0.95 

revealr the high sensitivity of the throat values near sonic speeds. In another words, 

numerical mors will cause significant deviation fiom the exact solution near sonic 

speeds. On the other hand, a look at  the geometry of the nozzle reveais how far it 

is fÎom being one-dimensional. The two-dimensionality of the problem is another 

reason which causes deviation fiom the ondimensional solution. 

In addition to the two factors of the nozzle geometry and the sensitivity at 

high Mach numbers, there is the mesh size factor which aEects the accuracy of the 

numerical solution. The d e c t  of this factor ha9 been ilîustrated in Figures 5.37 and 

5.38 for the nozzle problem with MthtOot e0.95. This nozzle problem has been tested 

for t h  different mesh sizes of 101x11, 51x6, and 25x4. The Mach distributions 

on the centerline have been compared with the one-dimensional solution. As is seen, 

her  grid shows better accuracy comparing with the one-dimensional solution. The 

Mach contour lines have been depicted for these three different mesh sizes in Figure 

5.37. Finer grid distribution demonstrates smoother distribution around the throat 

comparing with coarser distributions. 

Generdy speaking, Figures 5.34 to 5.36 present excellent pafonnance of the 

compressible aigorithm for solving high subsonic compressible flows. It is essential 

that the obtained solution presents a symmetric distribution left and right of the 

throat section. This symmetry is well demonsttated within these plots. Identical 
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RO distribution on center grid and walls 
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Figure 5.34: Density distribution for three different throat Mach numbers. 
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Figure 5.35: Mach distribution for tkee different throat Mach numbers. 
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T distribution on center grid and Wls 

'.Oe@ 

Figure 5.36: Temperature distribution for three different throat Mach numbers. 

values of the parameters at the inlet and out!et of the domain supports the ability 

of the code in solving the Euler flow equations. 

For the boundary condition implementation, the pressure was specified down- 

strearn, which is why all three lines of pressure distribution are matched at the exit 

of the nozzle. The upstream pressure was computed by the code. k an Euler flow, 

both upstream and downstrearn should attain the same pressure if th& aspect 

ratios are the same. This was a good test for checkhg the pressure drop in this 

method. The pressure drops which are presented on Figures 5.31 and 5.33 report 

the pressure loss from inlet to outlet. These low numbers are another indication of 

the accuracy of the method for this subsonic flow. 
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Figure 5.37: The &ect of mesh size on the Mach contour distribution. 

Figure 5.38: Mesh size &ect on the accnracy of the numerical solution. 



Wied Subsonic-Supersonic Flow 

In this part, the shock capturing capability of the curent method is investigated 

by test ing mixed subsonic-supersonic flow t hrough a converghg-diverging nozzle. 

There are two limiting cases for convergent-divergent nozzle flow when the Mach 

numba of the throat is unity. The flow in divergent part of the nozzle can either be 

M y  subsonic, with symmetric distribution of flow variables respect to the throat 

section, or supersonic, with a smooth deaease or increase of the flow parameters 

from inlet to exit. Between these two limiting cases, the flow is not stable unless 

there is a shock in the divergent part of the nozzle. In order to generate a shock in 

the nozzle, it is necessary to have sonic speed at the throat. In this regard, the idet 

stagnation pressure is increased nrtil the flow is choked. Then, the back pressure 

is decreased to a lower value than the inlet. This results in s normal shock wave 

within the divergent part of the nozzle. The ratio of & determines the location 

and the strength of the shock. 

The nozzle figure is as before in Figure 5.24, while the grid distribution has 

been changed to a d o r m  51 x 9  distribution for the whole nozzle. Initidy, the 

inlet stagnation pressure was specified at the inlet and the exit pressure was se- 

lected in such a mannes that a pressure ratio of &=0.7932 produced shock at 
M. t the particular section *=1.31 with strength, *=2.575. The results of the cur- 

rent method are depicted in Figures 5.39 and 5.40 and compared with that of the 

one-dimensional exact solution and Karki (911. Karki solves the test case using a 

quasisne-dimensional algorithm. Schneider and Karimian [12] have also solved this 

problem using a quasi-one-dimensional algorithm without mentioning the ptoiile of 

the nozzle. Since the continuity equation is sacfificed to speufy mass at the inlet, 

the control volumes which are placed at the inlet do not necessarily conserve mass. 
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Figure 5.39: Mach distribution in nozzle with M-x1.67. 
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Figure 5.40: Pressure distribution in nozzle with M- =l.67. 



As o b m e d  in Fi- 5.39, this defèct causes some discrepancies in the dut ion 

doae to the inlet. The exact solution har been computd right at the noda and 

these values are shown by circies. The exact location of the shock ia not necessady 

at nodes but somewhae between tao neighboring nodes in the vicinity of the shock 

discontinuity. 

As seen, the shock has been capturecl very well in the divergent part despite 

using a coarse grid. The shock position and the exit Mach number have been pre  

àicted very w d  comparing with the one-dimensional solution. Lien and Leschziner 

[53] have solved a similar inviscid nozzle flow using either the quasi-one-dimensional 

or twdimensional models in their aU speed flow solva. They show that the ta+ 

dimensional results are farther than the quasi-one-dimensional dution to the one- 

dimension$ exact solution around the shock. consistent with th& eqerience, oiir 

resdts a h  show that the shock has been slightly smeared in the front of the shock 

and a minor undershoot is obsented behind it. The source of this oscillation is fiom 

the temperature integration point caldation which is appmxhated by a bilinear 

interpolation in this case. The test problem was solved with a msirimum Courant 

number of 1.25. This maximum occurs at the left-hand-side of the shock. A totd of 

222 time steps wae executed to achieve the RMS of IO-' for most of the dependent 

variables. It should be noted that no special treatment has b e n  speafied for the 

distribution in the vicinity of the shock wave. 

In the second test, this nozzle configuration is ernmined for floa with stronger 

normal shock wave, Figures 5.41 to 5.43. In addition to th&, the oscillation around 

the shock wave is investigated. In order to generate a stronger shock, the exit pres- 

sure is r e d u d  to &=0.57. This produces a shock at section Sd .837 ,  with 

a strength of *=3.74. The maximum Mach number f a  thk case is Mw=2.1 

which is only 0.1 less than the mnlcimum Mach number for a funy supersonic flow 
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MACH disaibution on lower and upper wails 

Figure 5.50: Mach distributions on the walls of channel with and without using 

convecting momentum equation, Mi,=0.5. 

Tkansonic Flow 

In this part, the method is examined for more highly compressible flows, tran- 

sonic flow. The test configuration and its grid arrangement are as before while the 

inlet Mach number of the flow is increased to a supercritical transonic case, i.e. 

Mim=0.675. This Mach nnmber causes s supersonic region in the solution domain 

which is terminateci by a shock. Figure 5.51 depicts Mach contour lines within the 

domain. These lines are no longer symmetric respect to the mid-chord line because 

there is a shock on the bump. The Mach contour Iines are also not perpendicalar to 

the wall donnistream of the bump, as they are upstream, because the flow becornes 

rotationai upon passing the shock. Figure 5.52 demonstrates the distributions of 

Mach numba on the uppa and Iowa walls of the channe1 and compares these 



nodal M contour lines in flow field 

Figure 5.51: Mach contours for transonk flow in a Channel with a bump, Mh=0.675. 
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Figure 5.52: Mach distribution on the walls of ehannel and eomparing with [92] 

using 89 x 33, [33] using 60 x20, and [32] using 67 x 22 non-dorm grids, Mh=0.675. 
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with the resuits of other workers. The agreement of this work with the resdts of 

Eidelman [92] is very good although a little disparity i s  observed behind the shocl. 

In orda to have a quantitative cornparison as w d  as qualitative one, the location 

and magnitude of the captured shock have been determined and represented in 

Table 5.6. The results of the cment work are compareci with those of [33,92,93]. Ni 

[93] developed a mdtigrid scheme in the context of the density-based compressible 

Bon algorithm. His r d t s  are more accurate. Since the shock for this work has a 

bit of spread its location has been calculated based on the midpoint between the 

upstream and downstream of the shock. The resdts of the current work compare 

favorably with those of the other researcher. 

- - - - - 

Table 5.6: Location of the shock in percentage of the bump chord length 

.. 

The initial condition was F=G=O for this case. The total of 50 time steps 

was required to reach the convergence criterion, i.e. RMSCIO-~ for aii dependent 

variables, with A8=0.1. 

Supersonic Flow 

Bnmp Chord% 

Max. Mach No. 

The finai case examined for the bump Channel flow is for supersonic flow. The 

configuration of the test model remains the same except the bump thickness is 

reduced to 4%. The grid mangement for this case b different nom the previous 

one. It is a n o n - d o m  77x21 grid distribution which is shown in Figure 5.53. A 

Present method 

75% 

1.29 

Ni (931 

72% 

1.37 

Eidelman [92] 

72% 

1.29 

Karimian [33] 

75% 

1.25 



coarser distribution has been considered for upstream of the bomp because the flow 

in that region is not affkcted by the bump. The grid distribution dong the dianne1 

over bump and its downstream are reiatively d o r m ,  however, n o n - d o m  grid 

distribution has been considered for the cross sections to have bettes resolution of 

the shodc on walls. The inlet Mach nnmber of Mk=1.65 is selected to be compatible 

with the results of other workers. 

Grid distribution for supersonic flow 

Figure 5.53: Grid distribution for supersonic flow in a channei with bump. 

The isobar iiaes in Figure 5.54 show the position of the shock waves inside the 

channel. As observed, two oblique shock waves are formed at the corners of the 

bump. The 1eading edge shock is followed by expansion waves reflected from the 

bump's body. This shodt later strikes the upper wall and is reflected back by the 

wall into the expanding flow field. The trailing edge shock leaves the computational 

domain âom the exit boundary after intersecting the expansion waves. The numba 

of intersections and reflections indicates that this supersonic problem is a difficult 

one. 

The Mach distributions on the lower and uppa walls are seen in Figure 5.55. 

The results of the curent method are compared with those of the previous rderences 

for which the grid arrangements were different fiom the previous test cases. As seen  



nodai P contour lines in flw fieid 

Figure 5.54: Mach contours for supersonic flow in a Channel with a bump, Min=l-65. 
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Figure 5.55: Mach distribution on the walls of channel and comparing with [92] 

using 89 x 33, [33] using 60 ~ 2 0 ,  and [32] asing 67 x 22 non-dona @ds, Min=l.65. 



fiom the figures, the agreement of the results on the lower wall h better than that of 

the upper wail, however, for the lower w d ,  the flow near the channel exit displays 

some osdatory behaviour. This behaviour identifies the need for improvement 

in this region of the flow. Although the cause of this is not entirely ciear, the 

intersection of the reflected shock with that corner might be an important factor. 

The problem was started with initial conditions of Fo=500 kg/(m/s2), Go=O.O 

kg/(m/s2), P0=86,100 Pa, and To=300 "K. This non-zero Fo speeds up the conver- 

gence. The number of time steps to reach the convergence aiterion for RMSCIO-~ 

was 220. The maximum Courant number used for this test case was 0.86. 

5.4.4 Supersonic Flow in a Channel with a Ramp 

The purpose of this section is to study the performance of the cmen t  method in 

solving flow with strong oblique shock waves. The test model is a channel with 

a ramp mounted on its lower wail. This problem is very appropriate because of 

the availability of the exact solution. This enables us to evaiuate the accuracy of 

the method. The geometry and grid distribution for this problem are shown in 

Figure 5.56. The longitudinal and transverse lengths are 1.3 and 1.2m, respec- 

tively. The ramp angle is 21.57-deg and its leading-edge is located at z=0.3m. The 

ramp angle creates an oblique shock wave with 45deg angle if the inlet Mach num- 

ber is Min=2.5. This shock has an strength of M2/Ml=0.628, P2/Pi=3.497, and 

T2/Ti=1.508. This shock will leave the solution domain without colliding the solid 

waUs. A non-uniform grid dis tnbution of 41 x 37 has been used for the comput ation, 

Figure 5.56. 

Figure 5.57 depicts the Mach contour lines in the solution domain. As is seen, 

the main changes of the flow parameters occurs across the shock wave. The oblique 
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Figure 5.56: Grid distribution within a Channel with a ramp. 

nodal M contour lines in fbw field 
I 

Figure 5.57: Mach contour lines plot for ramp with Mim=2.5. 
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shock wave leaves the domain with an angle of 45-deg which is identical with the 

analytical solution. 

The details of the solution inside the channel have been psovided in Figure 5.58. 

This figare shows the Mach distribution at a constant height of y=0.15m inside the 

channel and compares the results of the carrent method with that of Karimian and 

Schneider [33]. The cornparison of these results with the exact solution shows that 

the shock wave has been captured within almost 6 nodes by the bath methods. 

However, the current method shows an overshoot behind the shock. This is not 

seen in the results of the reference. This might be the d e c t  of damping mechanism 

which is used by the reference. The results demonstrate the ability of the current 

method to capture strong oblique shock wave without using any irnplicit artificial 

viscosity or damping mechanism in its algorithm. 

MACH distribution at ~ 4 . 7 5  

Exact Solution 

present method 41x37 

x x x Kanmian & Schneider 45x30 (33) 

Figure 5.58: Comparing Mach distribution resdt at height y=0.75m with 0th- 

results in a duct with a ramp. 
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In this test problem, the selected convergence criterion of RMS<10-5 was d e  

creased to RMS<lO-' because the time step, or Courant number, for this problem 

was lower than that of the previous tested problems, Table 5.4. This small time 

step can lead to a wrong steady-state solution if RMS is not enough low. Since we 

are looking for the steady-state solution, we have to decrease the RMS aiterion to 

be sure that the converged result s performs the steady-st ate solution. 

The problem was started with initial conditions of Fo=500 kg/(m/s2), Go=O.O 

kg/(m/s2), Po=86,100 Pa, and To=300 OK. A non-zero Fo speeds up the conver- 

gence. The problem was solved for an inlet Courant number of about 0.55. The 

total number of 416 t h e  steps were needed to satisty the RMS<1W6 for F and 

G. This number is reduced to 265 if RMS<10-'. 

5.5 Cornparison Between Velocity and Momen- 

t um Formulations 

In this section, we present a cornparison between the momentum-based and velocity- 

based formulations for high speed compressible flow. It is noted that there is no 

significant difference between the velocitjj-based and momentum-based formulation 

for absolute incompressible flow where density is a constant. The discussion on 

the paformance of the corrent method in solving pseud<tcompressible flows was 

presented in Section 5.3 and is not repeated here. 

A fiterature review of the methods which solve for incompressible and compress- 

ible flows at all speeds was presented in Section 1.2.4. Zienkiewicz and Wu [49] 

solve subsonic and supersonic flows for a number of applications using an expliut 

or mmi-explicit finite-element method. They solve the non-consetvative fcaa or" 
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the goveming equations and admit that this may lead to dXerent shock behaviour 

than that involving the conservation form. They do not report the convergence 

histories for their steady-state solutions. Van Doormal et al [50] ülustrates the 

appiicability of segregated methods for solving flow at dl speeds and evaluates the 

relative convergence behaviour of these methods for solving the ondimensional 

and two-dimensional lamina compressible flows. This provides a good potential 

to compare the pedormance of the current method with that of the segregated 

ones. However, this cornparison has been done for twdimensiond studies with a 

different segregated approaches. Karki and PatanLat [32] have developed SIMPLE- 

based methods to solve for flow at a l l  speeds. The density at the integration point 

is always upwind-biased. This provides an artificial damping which allows for the 

successfid computation of transonic and supersonic flows. Their resnlts have b e n  

compared with the results of the current formulation as illustrated in Figures 5.39 

to 5.42, for the converging-diverging nozzle problem mth  shock, and Figures 5.49, 

5.52, and 5.55, for flow in a channe1 with a bump. Their results show smearing in 

the vicinity of shodrs due to excessive numerical dissipation. They do not report 

the convergence histories of th& solut ions. 

Chen and Pletcher [38, 451 employ explicit/implicit second-order and explicit 

fourth-order smoo t hing terms in t heir time-marching met hod to solve transient 

flow and flow at all speeds. Their work is fully impliut and d variables, (u,v,p, t ) ,  

are computed simultaneously. They report the convergence behaviour of th& so- 

lutions which we compared with that of the current work. This comparison has 

been presented in Table 5.4 for solving the compressible cavity flow and in Table 

5.5 for solving subsonic entrance flows. GeneraUy spealing, the momentum-based 

procedure provides fater convergence and higher stability. 

In addition to the above methods which solve for flow at ail speeàs, it  is the 



method of Karimian and Schneider [27, 331 which enables us to provide a direct 

comparison between the performance of the momentnm-based formulation and that 

of the vdocity-based formulation. As ras mentioned in Section 3.6, a di tndty  

with their method is the requirement of an explicit damping mechanism. This does 

not permit a neat and dear cornparison between the two formulations. In a one- 

dimensional investigation, a cornparison was performed by direct modeling of their 

method without considering the damping mechaniom, Section 3.6. For the tw* 

dimensional investigation, there remains a question of whether the velocity-based 

formulation can retain its characteristics of cmvergence and stability if the darnping 

mechanism is elirninated from the scheme. Karimian [94] states that th& velocity- 

based procedure would diverge without inelosion of the damping mechanism. This 

statement results in several important concIusions which are discussed subsequently 

in this section. 

Table 5.7 provides an informative comparison between the velocity-based and 

momentum-based formulations for highly compressible flow problems which indude 

flow through channels with a bump and with a ramp on the lowa boundary. The 

nnmber of iterations, NOI, and tirne step, A@, are tabulated based on an RMS 

convergence criterion of IOm5 for the momentum formulation and of IO-' for the 

velocity formulation. Alt hough the initiai and boundary conditions are the same for 

both formulations, the grid resolutions and distributions are not exactly identical. 

Despite different RMS criterions for velocity-based and moment um-based for- 

mulations, a numba of points codd be resulted if we assume that they are the 

highest criterions to which s teady-state solutions are botained in each of these for- 

mulations. For the subsonic flow, it is the moment- procedure which shows faster 

convergence in comparison with the velocity procedure in meeting a definecl RMS. 

For transonic and supersonic flows, this f a t  convergence is diminishes with inmeas- 



II withnodamping 1 with artificial damping 

momentum-based formulation velocity-based formulation 

R.M.S 

NO1 

II ~&rsonic Bump, M, =1.65 

this research 

0.00001 

AtY 

Table 5.7: Comparative study of the convergence histories between the velocity- 

based and momentum-based formulations. 

Katimian and Schneider [33] 

0.001 

Subsonic Bump, Mi,=0.5 

ing Mach number. For supersonic flow, the performance of the vdocity procedure 

with damping is superior to the momentun procedure without damping. Although 

both procedures start with s m d  t h e  steps, the velocity-based approach multi- 

plies it &es a number of preliminary steps. The time step inaease speeds up the 

convergence toward the steady-st ate solution. If the time step is inaeased for the 

8 

huge 

8 

1.0 

Bansonic Bump, Min =O .675 
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momentam-based formulation which is fiee from any explicit damping mechanisma, 

it m o t  handle the acceleration produeed by the force of the initial flow and of 

the boundary condition implement ation. 

Generally speaking , the moment am-based formulation has sever al advant ages 

with respect to the velocity-based formuiation without damping. The use of the 

momentnm-component formulation does increase the stability of the method in 

cornparison with the veloeity-component formulation which requires a damping 

mechanism for all time steps in order to converge. Some under/overshoots are 

observed around strong shocks in the momentum-based formulation but do not 

cause serious diEculties in the convergence if the time step is smaU enough. It is 

the lack of a damping mechanism which does limit the time step to s m d  values. 

Indeed, the momentum-based formulation does need improvement if it is desired to 

achieve faster convergence. This provides one possible area for future research. 

At the end, it is noted that the advantages of the momentnm-based formulation 

in obtaining better convergence without using a damping mechanism are supported 

by a number of factors. Two important factors were discussed in the research 

motivation. They are the stability of the mass flux in passing through shocks, 

Section 2.4.2, and the reduction in the linearization requlements, Section 2.4.3. 

However, the importance of each of these factors in promoting cannot be fUy 

evaluated separately. 

5.6 Closure 

The proposed momentum variable procedure was examined for many different tw* 

dimensional flows including incompressible, pseudo-compressible, and subsonic to 

supersonic compressible flows. The method showed excellent performance in solving 
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flow at ail speeds. There was no CFL number limit in solving incompressible and 

subsonic flows. The solution converged very rapidly aithin a small number of 

iterations. However, the convergence slowed doan in supersonk flows with CFL 

numbers l a s  than one. Despite not employing any explicit artüicial viscosity or 

dissipation and in spite of using marse grids, excellent solutions wae obtained 

in cornparison with the work of other refêrences. However, the formulation stU 

needs improvement to increase its convergence in cornparison 4 t h  the velwty- 

based formulation where damping is employed. The proposed formulation showed 

excellent performance in solving very low Mach number flows with respect to both 

the solution accuracy and the convergence history. 



Chapter 6 

Concluding Remarks 

6.1 Summary 

The difference in the nature of compressible and incompressible flows has resulted 

in the development of numerous numerical techniques to deal with each of these 

two types of flow separately. There have alPo been sorts to develop algorithms 

capable of solving both compressible and incompressible flows. In this thesis, a new 

tw~dimensional unsteady viscous computational algonthm has been developed to 

solve flow at all speeds. A strong motivation for this development has been to ex- 

plore the use of momentum component vaxiables instead of the velocity components 

usually used in all speed solvers. Several reasons were behind this. A significant 

one of which is the strong analogy that exists between the two kinds of flow when 

such variables are used. This analogy, developed in this thesis, p d t s  incom- 

pressible flow methods to be applied to compressible flow problems. In addition, 

using the momentum components improves stability amund shocks and reduces the 

linearization difficulties. 



The two-dimensional Navier-Stokes equations were selected to examine the per- 

formance of the proposed method. The method was developed using a control- 

volumebased nnitdement scheme. The finite-element part of this scheme pre  

vides the benefit s of finit e-element geome tric flexibility while the advant ages of 

conservative discretization procedures are provided by the use of the eontrol-volume 

formulation. 

Initidy, this proposed new direction was explored for one-dimensional flow 

modeling. In this one-dimensional investigation, momentum, pressure, and tem- 

perature were selected as the dependent variables in a colocated grid arrangement. 

The governing equations were treated in conservative manner. The integration 

point equation for the momentum component was daived by approximating the 

non-conservative form of the momentum equation at the integration point. Rear- 

rangement of t his equation enabled the integration-point momentum, or convected 

momentum, to be determined. If only this convected momentum component was 

employed in the conservative form of the discretized equations, it was found that 

a special form of the pressure checkerboard problem resulted. A number of difE'er- 

ent treatments to overcome this difficulty were examined. In this regard, a new 

integration point equation was derived by the combination of the momentum and 

continuity equation mors. This new equation was named the convecting equa- 

tion which represented the convecting momentum component. The influence of 

the continuity error was examined by applying an appropriate factor. The use of 

bot h the convected and convecting momentum equations removed the possibilit y 

of the pressure-velocity decoupling problem. The resulting one-dimensional algo- 

rithm was then validated for incompressible flow by using several source/sink test 

cases. The algorithm was &O validated for compressible %on by comparing with 

the analytical results for the shock tube problem. Finally, the performance of this 



one-dimensional momentum-component formulation was compared with that of the 

velocity-component formulation by direct modeling of the l a t t a  formulation. 

Next, the procedure was extended for solving tw*dimennional flows. Convected 

and convecting integration point equations were again derived by approximating the 

non-conservative form of momentum and the consenative form of continuity equa- 

tions at the integration points. The stream-rrise treatment of the convection terms 

had an important impact in achieving the correct physical modeling of the flow. 

The tw~dimensional algorithm was validated for many dinerent flows induding in- 

compressible and compressible ones. The flow models were dassified into the three 

categories of incompressible, pseud~compressible, and compressible flows. The re- 

sults of the developed method were compared with those of several velocity-based 

procedures which solve flow for all speeds. The good to excellent performance of 

the method in achieving reliable results on coarse grids without using the explicit 

artüicial viscosity and damping mechanisms are noteworthy. The folowing sections 

present the main conclusions of this work and tecornmendations for future research. 

6.2 Conclusions 

The main purpose of this PhD research has been to explore and h d  the advan- 

tages and disadvantages of the momentum-variable procedm in cornparison with 

the velocity-based procedure. The potential advantages of the momentum-based 

formulation motivated this research: the existence of a ffow analogy between the 

governing equations for compressible and incompressible flow, the stability of the 

mass flux throagh shocks, and reduced difficuity in linearjzing the nonlinear terms. 

It is dmost impossible to recognize the degree to which each potentiai advan- 

tages ie involved in gsiniag the superior malta for the rnomentum-bd procedure. 



In a one-dimensional unsteady flow investigation, it was shown that the stability 

of the mass flux passing through shocks was not a crucial fmtor. However, this 

assessrnent was much more diffxcult in the twdimensiond study. Considering this 

difliculty, the advantages and disadmtages of the momentum-variable procedure 

are discussed in the following paragraphs mainly without reference to the factors 

which cause such advantage or disadvantage. 

The conclusions are divided into two parts. In the h s t  part, the characteristics 

and capabilities of the new method are presented. This part is developed mainly by 

comparing with exact solutions and the results of other workers. The second part 

compares the advantages and disadvant ages of the moment um-variable procedure 

with those of the velocity-variable procedures. This part is conduded by a direct 

cornparison with the results of the velocity-based procedures which solve flow for 

aU speeds. Based on the method development and the demonstrated results of its 

application, the fust part of the conclusions are 

1. The benefits of the finite-element bais of the method facilitates domain dis- 

cretization, and no difficulty was encountered in fitting the grid to the domain. 

2. The integration point equations which were derived provide correct physical 

behavior of the flow variables. This ability was shown not only by the numer- 

i d  solution but also by an andytical investigation. The Peclet and Courant 

numbers are two parameters which provide flexibility of the formulation for 

a wide range of flow parameters. 

3. The proper consideration of the role of velocities at control-volume surfaces 

resulted in two sets of integration point equations; convected and convecting 

ones. The correct application of these equations generated a strong connection 

between the velocity and pressure fields and removed the possibility of the 



cheekerboard problem. This capabity was demonstrated by nnmerous tests 

in both one-dimensional and twdimensional studies. 

4. The method showed good to excelient performance in solving 00w at all speeds 

including: incompressible and compressible (pseud~compressible to super- 

sonic), viscous and inviscid, and steady and nasteady. Excellent resdts were 

obtained for incompressible and subsonic compressible flows despite using 

coarse grids. The demonstrated results co&m the e x d e n t  performance of 

the developed method in solving low and high Reynolds number flow cases. 

Very good resulto wae obtained in ~upasonic flows despite the exclusion of 

explicit artificid viscosity or dissipation functions. This was clearly observed 

in solving high speed inviscid flows. 

5. No CFL number limitation was encountered in solving incompressible, sub- 

sonic compressible, and transonic flows. This advantage enabled the present 

time dependent method to meet the convergence criterion within a rektivdy 

small number of iterations using large t h e  steps. 

6. The selection of pressure as a dependent variable and developing a pressure- 

based method enabled the method to be highly robust in treating very low 

Mach-numba compressible flows. The results of solving the subsonic and 

transonk flows were noteworthy with regard to the coarse grid distribution 

and the number of tirne steps required to reach a s tdy-s ta te  solution. 

7. Some difficulties wae encountered in supersonic flow, which generally slowed 

down the convergence of the solution and limited the CFL number to dose 

to one. This may be due to the lack of attificial dissipation andior damping 

functions. Despite these restrictions, the results were fairly good. 



8. An andogy between compressible and incompressible iior motivated the use 

of momentam-components as dependent variables. The pseud~compressible 

and compressible models were nsed to demonstrate this analogy. The analogy 

worked w d  not only in deriving similar results for both compressible and 

incompressible flows but also in providing similar convergence histories. 

9. The entire d o r t  the curent work was to develop the method as simple as 

possible. Complex and time-consuming techniques were avoided so that the 

conceptual aspects of the method d d  be emphasized. For example, all 

integration point equations were derived based only on the element nodd 

point S. The otbcr t hree int egration point value8 were not involved in deriving 

the fourth. Despite excluding such a potential benefit, very good results were 

obtained for highly recirculating flows. 

A direct cornparison between the results of the momentum-variable and velocity- 

variable procedures which solve flow for 811 speeds results in the second part of the 

condusions. The condusions are categorized based on the characteristics of the 

different types of flow, 

1. There is no significant différence between the velocit y-variable formulation 

and momentum-variable formulation when density is constant. However, the 

momentum-based formulation involves and discretizes terms in the momen- 

tum equations which are not existent in the momentum equations of the 

velocity-based formulation. Although t hese terms are mathematicdy zero, 

they are numerically non-zero. These terms couid be a source of difference 

between the above procedures. 
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2. The momentum-variable formulation is robust for psendcxompressible 0 0 ~ s .  

However, this may be accounted for as a direct advantages of using a pressure- 

based algorithm. Essentidy, the pressure-based methods which solve com- 

pressible flows could be extended to solve for pseudo-compressible flows. How- 

ever, there is no reason for a pressure-based method to show identical solution 

and convergence history behaviour for both the absolute incompressible and 

pseudo-compressible flows. The existence of these capabilities in the results 

of the momentam-component formulation could be accounted for as a direct 

dec t  of the existence of the flow analogy in that formulation. 

3. Although bot h the velocit y-based and moment um-based formulation success- 

fully solve the subsonic compressible flows, the latter one generally shows 

better performance in cornparisou with the former one. This is concluded 

by comparing the number of iterations which they need to meet the preset 

convergence cri t erion. 

4. In supersonic flow, the velocity-based procedure sders from severe oscilla- 

tions in the vicinity of the shock if no explkit damping mechanism or dis- 

sipation is included. This results in major time-step and Courant number 

restrictions. These oscillations subsequently results in instability and diver- 

gence if a lower coavergence aiterion is desired. However, the use of a damp 

ing mechanism in the velocity-based procedure could result in bet ter st ability 

and accuracy. The momentum-based procedure, on the other hand, had ex- 

cellent st ability and good accuracy, even without explicit damping, provided 

the time step and Courant number restrictions were satisfied. 



6.3 Recommendations for Future Research 

No single method contains all desirable features while avoiding any disadvantages. 

The following recommendations are snggested for the continuation of fatnre research 

in this field: 

1. There is a need to further investigate the problems encomtered with super- 

sonic flow. This investigation should generally address a number of issues. 

The ikst is to extend the ability of the supersonic application to solve for 

higher Courant numbers which will then result in faster convergence. The 

second is the use of artxcial dissipation techniques and damping mechanisms 

ro remove undershoots and overshoots around the shock waves and improve 

convergence . The third is to extend the scheme to more accurate shock 

cap t uring techniques. 

2. The possible unification of and the justification for the two convected and 

convecting momentum component s is ano t her interes ting subject for future 

research. Alt hough mat hematically demonstrated, our unders t anding of t his 

issue could be firrther enhanced. 

3. While the discretization of the domain interior is f d y  conservative, the 

boundaries may not be. The modification of boundary condition treatment 

toward obtaining a M y  conservative solution domain is another subject for 

future teseuch. 

4. A number of other extensions of the present method codd also be parsaed, 

such as extending the method to: three-dimensional flows, flows with more 

complicated geometries and boundaries, buoyant flows, heat transfet prob- 

lems, and other types of finite elements (such as triangles). 
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Appendix A 

Element Geomet ric Relations 

In this Appendix, after the introduction, we f is t  discuss the discretization of so- 

lution domain into a number of elements using finiteelement discretization. k t ,  

the details of elemental geometric relations are presented. They provide necessary 

geometricd transformations between local and global coordinates are derived. 

A.1 Introduction 

Before discretizing the governing equations, it is necessary to discretize the calcu- 

ktion domain in some fashion. In the past two decaàes, Werent techniques have 

been developed for generating computational grids required in the finite-difference 

or finite element solutions of partial differential equations on arbitrary regions. Sta- 

bility of the method, convergence speed, and accuracy of the solution are aspects 

which could be atfected by choosing inappropriate grids. A poorly chosen grid 

may cause results to be erroneous or may fail to reveal aitical aspects of the true 

solution. 
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Generally speaking, the accuracy of finite-difference methods is increased if the 

underlying mesh fits the region boundaries and is dosely spaced in regions where 

the solution is rapidly -mrying. 'Ransformation fkom orthogonal eoordinate sys- 

tem to either non-orthogonal or orthogonal boundary-fitted coordinates will ensure 

the exact boundary fitting and arbitrary grid concentrating; however, this may 

cause more compIexity in Merential equations which need more numerical works, 

e.g. Alishahi and Darbandi 1151. Contrary to fuiitedifference method, there is 

hi tedement method which has been widely selected for diacre tiPng the solution 

domain because it is capable of modeling quite arbitrary and irregular geometries 

and has long been used to solve problems with cornplex geometries vay success- 

fdy .  No global topology or or thogonalit y res trietions is required for finite-dement 

grid. Roundaries are automatically fit ted and there is no restriction in concentrat- 

ing the grid. Besides the finite-element and finite-clifFerence methods, there are the 

contirol-volume approaches which have the advantage of providing a conservative 

discretization of the governing equations. Those approaches allow exact numerical 

conservation of the conserved quantities in each finite control volume. 

A.2 Finite-Element Discret ization 

In the finite-element method, the solution domain is broken into s number of sub- 

regions which are cded elements, Fig.A. 1. The vertices of the element are nodal 

locations of the domain. They are the location of the problem unknowns. Ditferent 

element shapes are used in fiaite-element method. Regarding the simplicity and 

economy of the solution, quadrilateral elements have b e n  selected in this study. 

In Fig.A.2, a single element is separated fkom the 0th- elements in order to ex- 

pand the fiaite-element relations for it. As seen, there are h o  coordinate systems, 
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a global orthogonal eoordinate system of (z,y) and a local non-orthogonal coordi- 

nate system of ( t , ~ ) .  The ranges of t and r) are nom -1 to +l within the dement. 

This local co<ndinate system permits d element to be treated individually and 

identically despite its shape, position, and location. In order to use the benefits of 

Figure A. 1: Finite-element discretization within a nozzle domain. 

Figure A.2: An isolated element. 
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local system, it is necessary to relate local and global coordinates. Fite-element 

shape functions, Ni with i=l ... 4, are used to connect th-, i.e. 

where xi and y6 are the coordinates of node i. In this study, ne use bilinear shape- 

functions which are defined by 

A.3 Local-Global Coordinate Tkansformation 

The procedure of the discretization of the governing equations requires sewral dif- 

ferentiations and integrations to be performed within an element. Simple connec- 

tion presented in Eq.(A.2) does not provide enough device to do that. In order 

to develop our local-global transformations ne, start with differentiation of the 

dependent variable 4 as 
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Since and are not known the hain d e  is used to convert them to suitable 

for m 

Here all terms are hown except and 3 terms. Thus, we transfom them into 

the following matrir structure 

BBZi @ %  % 
( a . )  -G = [ $  g] ( a " . )  * 

the solution of which is 

where J is the Jacobian of transformation and is d&ed by 

Equation (A.6) is used to derive and forms as a function of and forms 

in the foliowing manner. Initially, the foIIowing differentid forms are obtained fiom 

Eq.(A.l) as 



APPENDIX A. ELEMENT GEOMETRIC RELATIONS 228 

Next , shape hiaction derivatives with respect to C and q are derived from Eq. (A.2), 

This cornpletes the process of eomputing and forms. 

In the next step, we pay attention to the process of integration oves an arbitrary 

sub-domain ( = O + tl and r) = O -t m. If the vector T is dehed as 

its differential form is given by 

(A. 10) 

The area or the volume per unit depth of this sub-domain is calculated by the 

produet of df and df, i.e., 

m = ~ & x d r j ~  (A. 12) 

Considering Eq. (A.?), this equation is simplified to 

The integration over the defined domain nill yield 

(A. 13) 

(A. 14) 

(A. 15) 



Appendix B 

Density Linearizat ion 

Since density is not a major dependent variable it is necessary to comect it to the 

other major dependent variables. This variable appears in many terms of the gov- 

erning equations and their discretized forms, e.g . the transient terms. The densit y 

in incompressible flow is constant and needs no treatment. There is no difficulty for 

computing the density if it is a lagged value. However, the density needs treatment 

whenever it appears as an unknown in our equations in compressible flow. The a p  

propriate conneetion is provided by the equation of state and specifically the ideal 

gas law 

As seen, the density is a function of both pressure and temperature. A simple 

linearization for this equation is provided by considering an active role for P and a 

lagged for T as 



This form of lineafization is excellent for the compressible flows with isothermal 

assumptions. The overline denotes a lagged d u e  fiom the previons inner/outer 

iterations* Anothes method of treatment is to exnploy a Taylor series expansion 

which considers active roles for both P and T. It is given by 

The density differential forms are derived fiom &.(BA), i.e., 

Now, these expressions are substituted in Eq.(B.3) and the results are simplified to 

This linearization is similar to a Newton-Raphson linearization, Anderson et al [6Z]. 

In this form of hearization, s nonlinear product of two parameters of A and B is 

linearized to 

AB= B A + A B - A B  

This form of linearization is cailed many times during this thesis. 
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Linearization of Moment um 

Convections 

Before presenting the different possible linearizations for the nonlinear convection 

terms of the momentum equations, it is necessary to have an introduction to the 

concept of the individual elements in those terms. These t ams  need to be studied 

more carefully than the other terms because two diffetent concepts could be defined 

for t hose individuals. 

To expand those concepts, it is helpfd to recall the method of derivation of 

those t m s  in the momentum equations. White [57] presents the basic dinerentid 

equations by considering an elemental control volume, Figure C. 1. The balance of 

the mass and the convection part of the linear-momentnm conservation equations 

could be written for this infinitesimai fixed control volume as 

i but i lin 
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Figure C.l: A control volume showing inlet and outlet mass flows on the x faces. 

where dz and dy present the control volume dimensions and S indicates the area of 

each control surface. Table C.l presents the mass and momentun fluxes thrmgh 

the control volume faces. If these terms are plugged in Eq. (C. 1) and Eq. (C.2) the 

results after some simplifications are given by 

As is seen, the velocity components appear in two positions in each term of 

Eq. (C.4), either as a part of the mass flux components or as a veloaty components. 

This causes two difkent meanings for these two velocities. The velocity compe 

nents which appear in the mass flux components are named conuecting ueloeities 

or m a s  cowerving velocities. This name retums to Eq.(C.S) where these velocity 

components numerically satisfy the mass conservation eguation. They convect 



Table C. 1: Mass and linear momentum flwces for control volume in Figure C. 1. 

F 

through the control volume. On the other hand, the components of ? in Eq.(C.4) 

are called conuected uelocities. These velocities are convected by the mass fluxes 

through the control volume surfaces. In order to distinguish these two types of 

velocities, The convecting is identified by a hat (^). Now, we can expand Eq.(C.4) 

in z and y directions while th& original concepts are retained 

Faces 

2 

Y 

Faces 

2 

Y 

x - direction 

y - direction 

Idet mass flux 

pu dv 

pu& 

Inlet momenttun flux 

ptiy 
pvy dx 

It is worthf'ul to note that an arbitrary switch from convected to convecting or from 

convecting to convected may destnict the original concepts which derivation of the 

equations are based on. 

Generally spealing, we study two different forms of the linearization for the 

convection terms of the momentum equations. At this stage, we are concerned 

with the equations which are derived based on control volume discretkation. Table 

2.1 shows the result of simple linearization of the convection terms of the momeentum 

Outlet mass flux 

lptr+&pu)~ldv 

[P"+&(pv)d4& 

Outlet momentum flux 

, 

,, 

L 

~puY+ $(PUY) dz] dg 

[prq + $(&) dy] 



equations which are repeated here with considering the above concepts 

- 
pu u =û(p16) 

- 
pû u O ( p )  

- 
pû v = 5 U ( p )  

- 
pV u nû(pu)  

A second form of linearization is possible using a Newton-Raphson linearization 

d e ,  Eq.(B.6). This linearization considers more active roles for the individuals in 

the nonlinear term. We show the procedure for the linearization of the p u  term 

which is linearized in the foliowing manner 

Since 4 is not a major unknown in this study, one more Newton-Raphson lineariza- 

tion is used for u = 7 ,  i.e., 

If Eq. (C.8) is plugged in Eq. (C.7) and some more simplifications are done the result 

is 

This linearization results in active roles for both convected and convecting velocities 

as weil as density in x-momentam equation term. The density t a m  is simply corn- 

puted by the lagged d u e s  fiom the previous iterations. Considering this approxi- 

mation and the dehition of momentum components, n e  define a general equation 
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in order to include both foam of the simple and Newton-Raphscm linearizations, i.e. 

Eq.(C.6) and Eq.(C.9), 

where k' =O results in simple linearization and kf= l  represent Newton-Raphson lin- 

earization. This procedure codd be aimilarly followed for the tkee other convection 

terms in the momentum equations. The results will be 

(C. 12) 

(C. 13) 

Eq. (C. IO) was tes ted in the onedimensional investigation with success. It generaüy 

showed bet ter results than the simple linearization. 

One more form of linearization was tested in the oneaimensional investigations. 

In this form the two concepts of convected and convecting were mixed up and the 

following linearization was derived, 

(C. 14) 

where k' and k" are constants which make the two linearizations possible. The 

consideration of k'=kt'=l results in Newton-Raphson linearization and the con- 

sideration of kg=$ and kf'=O results in a simple linearization form. This form of 

Iùiearization generaüy showed fater convergence than the previous ones. 

The discussion in this appendix is important in colocated grid f o d a t i o n  where 

the decouphg of pressure and velocity fieids may happen. 



Appendix D 

Linearizat ion of Moment um 

Diffusion Terms 

The terms involving the differential form of velocity components, i.e. e, g, 2, and - terms, are nonlinear if the momentum components are selected as the dependent au 
variables. There are methods t O linearize t hese nonlineari ties. Here, we present the 

result of linearization only for 2 with this knowledge that the other three foms 

are linearized in the same manner. The first method uses the advantages of the 

chin rule to derive an appropriate expression for $ as 

Rearrangement of this expression yields 

The nonlinear density variable, which is derived by the spatial discretization of the 

second term in the right-hand-side of the eqoation, could either be iinearized using 

the methods presented in Appendix B or be lagged from the known values of the 
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previous iterations. The latter has been chosen to treat the above density term 

t hroughout this t hesis. 

In the second method, the second term in right-hand-side of Eq.(D.2) is replaced 

The next step is to linearize this term as 

This form of linearization was not used in this thesis. 



Appendix E 

Convection in Non-conservat ive 

Momentum 

The following investigation was performed for t wo terms of the one-dimensional 

moment- equation, i.e. pu& and u y .  This investigation presents the possible 

weak forms of discretization for the above tenns. One rnethod for linearizing pu$ 

tenn the momentum equation is the use of lagged values for g. This results in 

a direct transfer of this term to left hand side of the integration point equation. 

This form of linearization is studied for the steady-state Euler flow which is derived 

fiom Eq.(3.21) and linearized as 

A central difference for d result in 

The investigation for a constant pressure field shows that this equation results in a 

wrong approximation for the integration point d u e .  
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In the nad step, an apwind clifference is considered for 2 in Eq. (E. 1). Now, if - - 82 is approximated by an upaind ciifference, the resdt is written as 

- 
and a central clifference for $ wiIl result in 

Similarly, the investigation for a constant pressure field shows that these two ap- 

proximations are not appropriate approximations do resdt in wrong evahations 

of the integration point values. Indeed, both of them are subject to negative or 

infini te coeflicient s for F, . 

Similarly, Equation (3.21) is recalled with the assnmption of the steady-state 

inviscid flow in order to expand the investigation for u& t e  m of that equation, 

A central clifference for and an upwind difference for $ d l  finally result in 

This expression also presents a wrong approximation for the integration point value. 

The correct approximation for the velocity at the integration point would be the 

average of the neighboring nodal velocity values if the pressure field is constant. 



Appendix F 

Linearization of Energy Transient 

Term 

Tliere are a number of techniques to deal with the nonlinear transient term of the 

energy equation in conservative treatment. In all cases the original form of this 

term is discretized by mass lumped approach and using backward scheme in t h e ,  

Here, the concern is on the nonlinear form of the first tam inside the parenthesis. 

A simple way to linearize this term is to substitute E fiom Eq.(2.13) and try to 

linearize the equation appropriately as 

The other form of linearization is derived by the use of the Newton-Raphson lin- 

earization scheme, Eq. (B .6), 
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In this form, e is substituted fkom Eq.(B.5) and E is treated as 

After the substitution of these nonlinear treatments in Eq. (F.3) and some rear- 

rangement, the foilowing form is resulted 

This form of lindzation produces negative coetncient for temperature and cannot 

be reliable. 

Another form of linearization is possible if Eq.(F.l) is treated in another form 

as 

Similar to Eq.(F.3), nonlinear form of eT is changed to eT + Fe - and e is 

linearized by Eq.(B.à) and is substituted in it. The final result is given by 

a(pe)  G Ü V e0 EO - - P + - F + - G - -  
dû RAB 2A8 2A8 AB 

which does not include T term. This form was not used in this work. 



Appendix G 

Linearization of Energy 

Convection Terms 

Regarding the conservative treatment of the convection terms in the enzrgr equa- 

tion, a number of approaches is applicable. The two convection terms can be mitten 

either in the enthalpy form 9 + or in the energy form + B. Sv eV 
Here we are concerned o d y  on enthalpy form and restnct the approaches to two 

possible form of linearizations. In this s tudy, the original concepts of mvected and 

convecting, which were described in Appendir C, are respected. For example, 

The fist linearization approach uses the definition of h, Eq.(2.14), and substitutes 

it directly in convection term. The remainder is to linearize the resuited expressions 

appropriately respect to the dependent variables, 
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If the concept of convected and convecting is not respected these equations are 

written as 

A second linearization uses the Newton-Raphson schema, i.e. Eq. (B.6), to lin- 

earize these convection terms. It is given by 

Using the definition of enthalpy, substitutiag it 

them in an appropriate manner wodd result in 

in above equations, and treating 

Ignoring the concepts of convect ing and convec t ed result s in 

Ali lagged values of these equations can be calculated fiom the previous iterations 

by using the known values of eitha conveeted or conveeüng variables. 



Appendix H 

Streamwise Discretization 

Approach 

In two-dimensional flows, the direction of the flow has an important role in dis- 

cretizing some differential t m s  of the governing equations. In a one-dimensional 

flow, grid lines and flow direction are coincident, however, this is not the case for the 

twdimensional flows. The importance of the flow direction is in evaluating some 

diff'ential terms in streamwise direction. The inconsistency between grid lines and 

flow directions does not allow discretization in streamwise direction. For tunately, 

convection Merential terms which are sensible to flow direction could be combined 

and written in streamwise direction as 

These terms can be writ ten in the local streamwise direction as 
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where 

and 

Eq. (H.2) provides a straightfomard difkrential form to be used for discretization 

in streamwise direction like streamaOse upwinding, central-diff'erencing, etc. 



Appendix 1 

Laplacian Operator Discretization 

The procedure of computing integration point expressions requires the discretiza- 

tion of the diffusion terms which may take Laplaeian foxm. Finite element dis- 

cretization of the nonlinear Laplacian form is not straightforward. Here, the a p  

proach was taken by Schneider [71] is followed. In this regard, consider the Lapla- 

uan of an scdar 4 which is given by 

Considering Fig.I.1, we can obtain some approximations for terms of Eq.(I.l) at 

integration point of 1 as 

If these expressions are substituted in Eq.(I.l) the following enpression be 

resdted atta some remangement 
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Figure 1.1: Laplacian length scale. 

Which the diffnsion length scale is defined as 

As is observed, the derived approximation for the Laplacian Eq.(I.3) satisfact* 

rily satisfy the limiting case of diffusion dominated flows. In another words, when 

Eq.(I.3) is reduced to the bilinear interpolation form of the nodal values, i.e., 

Which is a correct approximation. 

Eq.(I.3) was derived based on a rectangular element shape. However, it does 

not result in a correct approximation for g e n d  fom of the quadrilateral finite 

eiements which we use during this study. For a general fotm of elementr, ne use 
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Eq.(I.3) with a corrected Ld. hrthermore, Az and A g  are replaced by the length 

scalea perpendicalar and tangentid, respectively, to the face in question. This 

means Ag is considered as the length of the face in question and Az is determined 

b ~ 9  

where 1 JI is the magnitude of the Jacobian of transformation, Eq. (A.?). 




