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This thesis describes biological mechônisms of degradation of nitroaromatic 

compounds and more specifically the interrelationships between biodegradative 

metabolism of nitrophenols ( W s )  and nitrobenzene (NB). An initial study on conversion 

of NB to NPs by electron beam provided the impetus for the biodegradative study. 

Electron beam irradiation of aqueous solutions containing 25-30 mg/L of NB at 

60kGy dose removed 78% of the contaminant. Three mono-NPs were detected as 

byproducts of electron beam treatment of NB. A mixed culture which degraded both NPs 

and NB v+ as e ~ c h e d  fiom municipal activated sludge using a mixture of three mono- 

NPs as sole carbon, nitrogen and energy sources. Bacterial growth and degradation rate 

could be increased by supplementing the medium with 0.1% YE. The mixed culture 

degraded both the residual NB and the NP products in the electron beam treated samples, 

and this observation led to the conceptuai design of a two-stage electron beam microbial 

process for degradation of NB. Percentage removal of NB in this two-stage treatrnent, 

increased with increasing electron beam dose. 

Three groups of bacteria were isolated from the mixed culture afier intensively 

sub-culturing on the NPs as the growth substrates. Strains of group A (2W3iNPINP+) 

were Pseztdomonas species, which grew on 4-NP, but not on 2-NP or 3-NP. Strains of 

group B (2W+31Vf4NP) were also Pseudomonas species, which grew on 2-NP and 3- 

NP, but not on 4-NP. Strains of group C (ZNP~NP+.INP),  grew on 3-NP, but not on 2- 

NP or 4-NP. One of the two strain types was identified as Variovorax paradomis. 

Degradation of 2- and 4-NP produced nitnte. Only 3-NP-grown cells of strains of Group 

B and C, degraded NB and produced arnrnonia from both NB and 3-NP. 

Pseudomonas pzrtida 2NP8, a typical strain of group B, was investigated for 

mechanism and interrelationship of NB and NP metabolism. 2-NP was degraded with 

production of nitrite. Degradation of 3-NP resulted in the formation of ammonia. Cells 

grown on 2-NP did not degrade NB. A specific NB degradation activity transforming NB 

into ammonia, was induced by 3-NP in this strain. The ammonia release mechanism in P. 

putida 2NP8, was investigated by characterizing production of metabolites from NB. 

Nitrosobenzene and hydroxylaminobenzene were detected as metabolites of NB 



degradation by the 3-NP-grown cells, indicating a cometabolism of  NB catalyred by the 

3 -NP nitroreductase-initiated enzyme system. 

Biotransformation products of hydroxylaminobenzene and aminop henol, 

produced b y 3 -NP-grown cells o f  Pseztdomonas putida 2NP8, were characterized. 

Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N- 

acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were 

produced fiom hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2- 

aniinophenoxazine-3-one were produced from 2-arninophenol. Al1 of  these metabolites 

were also found in the NB transformation medium, and this demonstrated that they were 

metabolites o f  NB transformation via hydroxylaminobenzene. Production of 2- 

aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. 

Rapid release of  ammonia fiom 2-aminophenol transformation indicated that hydrolysis 

of the imine interrnediate was the dominant reaction. The low level o f  2- 

aminophenoxazine-3-one indicated that formation of this compound was probably due to 

a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4- 

Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. 

The degradation pathway of 3-NP in P. pufida 2NP8 was postdated, based on NB 

transformation products. This rnechanism suggested that 1,2,4-trihydroxylbenzene is the 

dioxygenase ring-cleavage substrate in 3-NP metabolism 

The 3-NP-grown cells of fieudomonas putida 2NP8 had wide substrate range in 

rnetabolizing the nitroaromatic substrate through to ammonia production. When thirty 

nitroaromatic compounds were tested as substrates, dl were quickly degraded except 4- 

NP, 2,4-di-NP, 2,4,6-tri-NP, 2-nitrobenzoic acid and 2-nitrofuran. Amrnonia production 

fiom most o f  the nitroaromatic substrates appeared to be stoichiometric. Metabolites 

more hydrophobic and hydrophilic than the nitroaromatic substrates were observed 

dunng transformation and the metabolites exhibited retention time patterns similar to 

those observed in the NB biotransformation. A pathway, similar to that for NB 

transformation, was proposed for degradation of nitroaromatic substrates into ammonia 

via a hydroxylarnino arornatic compound, aminophenol, quinone monoimine and 

quinone. An apparently constitutive enzyme activity, oxidizing nitrobenzyl alcohol and 

nitrobenzaldehyde into nitrobenzoic acids, was also observed. This system rnanifested 



Iow oxidizing activity toward Znitrobentyl aIcoho1. The cells also reduced 

nitrobenzaldehyde into the corresponding alcohoI product. Degradation of nitrobenzyl 

alcohol into ammonia in the 3-NP grown ce11 media occurred either before or after 

oxidation of the alcohol group. 

The 2-NP-induced enzyme system of Pseudomonaspufi~ 2NP8 transforms 2-NP 

into nitrite and the 3-NP-induced system transforms 3-NP into àmmonia. When thirty 

nitroaromatic substrates with one, two or three nitro substitutions, were tested for their 

capacity to induce a nitrite-releasing activity only 2-NP and 4-CI-2-NP were found to be 

the inducers. When the thirty compounds were tested as substrate of a 2-NP-induced 

enzyme system, only 2-NP and 4-Cl-2-NP were substrates. This contrasted with the very 

broad substrate specificity of the 3-NP-induced enzyme system. This strain transformed 

4-Cl-2-NP into a dead-end metabolite, which was believed to be 4-chlorocatechol. 
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1.1. General aspects of degradation 

Complete degradation of industrial toxic compounds using chemicd or biological 

processes resutts in carbon dioxide production through an oxidation reaction with or without 

involvement of oxygen. Incomplete degradation results in partly oxidized carbonic compound 

and loss of hydrogen. Chemical methods use active 'oxygen'. Biodegradative procesçes, 

usually involving aerobic oxidation or anaerobic digestion are cellular enzymes-assisted 

processes. Cells gain energy and intermediates for growth and ce11 maintenance. Aerobic 

metabolism occurs when oxygen is available for aerobic bactena. Anaerobic respiration 

occurs when oxygen is not available but where an oxidant other than oxygen, such as sulfate 

or carbon dioxide, is used 

Disappearance of a compound does not necessarily mean that it is degraded. It may be 

chemically rnodified or transferred to another phase through absorption, evaporation, and 

difision. The method for rneasuring 'degradation' is crucial to determine what kind of 

transformation has occurred. The degradation process, used to remove a hazardous and toxic 

compound, should produce non-toxic products, preferably carbon dioxide and water as 

mineralized products. This contrasts with a process in which a compound is transformed into 

a more toxic product, which is termed as 'bioactivation'. 

Two types of compounds may be discerned in terms of their biodegradability. The first 

type, consisting of organic compound of biological origin, such as glucose, amino acids and 

fatty acids, are easily biodegradable and are common nutrients for biological organisms. The 

second, consisting of fossil-originated hydrocarbon compounds that are not direct substrates 

for primary and centrai biological metabolism, are more recalcitrant to biological degradation. 

Accidental spills of these compounds generally need special remedial technologies to speed 

up their degradation. Chemical, biological and physical methods have been investigated for 

their disposal. 

Chemical oxidation introduces oxygen atoms into the hydrocarbon moIecule, thus 

called oxygenation. Thennodynamicall y, reactions between hydrocarbons and oxygen release 

energy, but reactions between ground state dioxygen and ground state organic compounds do 

not occur at room temperature. Combustion of gasoline in automobiles needs initialignition to 



to prime the reaction, releasing heat to propagate the combustion. For a dilute aqueous 

solution of an organic compound two strategies are utilized for oxidation: the material is 

treated with singlet-form (excited state, high energy) oxygen species, such as hydroxy 1 

radicals, which can react rapidly with organic compounds under ambient temperature; or an 

oxygenation is conducted under high temperature and high pressure. 

Biological oxidation is an ambient degradation process. Two types of oxygen 

incorporation reactions are known: 1) addition of water to a double bond; 2) direct 

oxygenation fiom dioxygen. The first type is seen in the central metaboIism of nutrient 

chernicals containing labile chernical bonds (for example C-O-H, C-N-H) such as in sugars, 

amino acids and fatty acids (Armstrong 1989). These compounds are oxidized through 

transfer of H, or electrons to biochemical electron acceptors such as NAD(P)' or Fm',  and 

the oxygen is introduced into the metabolizing substrate from water, not oxygen. 

Heterotrophic organisms have finely-evolved metabolic systems to transform these labile 

compounds, and to use thern as carbon and energy source. Enzymes catalyze removal of 

hydroçen from the labile bond to f o m  reduced CO-enzymes which pass the electrons through 

a membrane electron transfer system, to oxygen (aerobic metabolism) or other oxidant 

(anaerobic metabolisrn). The electron flow creates across-membrane proton concentration 

gradients, which drive synthesis of high-energy molecules. The hydrogen attached to the 

carbon backbone is gradualiy repIaced by oxygen fiom water molecules and carbon dioxide is 

released. 

The second type of biological oxidation, direct oxygenation, is observed in the 

oxygenation of inert C-H bonds of hydrocarbons (Hayaishi 1974; Nozaki et al. 1982). For 

example, oxygenase catalyzes incorporation of the oxygen atom fiom dioxygen into aliphatic 

hydrocarbon produce alcohol, which is then oxidized through dehydrogenase-catalyzed loss 

of hydrogen into central metabolic intermediates (in the trïcarboxlic acid cycle). Biological 

oxidation does not necessarily begin by oxygenation, and for those substituted synthetic 

hydrocarbons, removal of the substitution may accompany formation of substrates for 

dehydrogenase (Nakazawa et al. 1996). 

Increase in halogen, nitro group and other electrophilic substitutions decreases the 

tendency of hydrocarbons to be oxidized. These electrophilic group-substituted compounds 



are more resistant to both chemical and biological oxidation than their non-substituted 

counterparts. 

1.2. Chernical oxidation methods 

1.Z.I .  Degrridation of hydrocarbons with oxygen species 

Singlet oxygen or fiee oxygen radical can react with a wide range of chernicals 

includinç hydrocarbons. SingIet oxygen or free radicals can be produced from dioxygen, 

hydroçen peroxide and water molecules. Triplet dioxygen reacts with an unpaired electron in 

other radicals or transition metal ions with partially filled d-orbitals (Spiro and Stigliani 1996) 

and produces singlet oxygen or oxygen radical. I n  sunshine-exposed surface water, the 

dissolved organic materials absorb sunlight and can transfer this energy to oxygen and convert 

tnplet oxygen into singlet oxygen molecules (Haag and Hoigné 1986). The ' 0 2  can be 

transformed into superoxide ion (0i-) and hydroxyl radical through interaction with sunlight, 

unsaturated oranic matter and transitional metal ions (Cooper et al. 1988). These oxygen 

species can initiate a cascade of free radical reactions with hydrocarbons leading to 

mineralization. Hydroxyl radical is a very strong and nonselective oxidant and can react with 

various chlorinated and non-chlorinated contaminants in aqueous phase at reaction rates of 

10' to 10" M' s" (Haag and Yao 1992). EEcient generation of hydroxyl radicals is the basis 

of chemical oxidation degradation technologies. 

1.2.2. Technologies genernn'ng oxygen rrinicnls fronz oxygen an(L4or wuter 

The ambient temperatures processes, in which hydroxyl radical is rnostly derived from 

photolysis of ozone and hydrogen peroxide are called "advanced oxidation processes (AOP)" 

(Galze et al. 1992; Carey 1992; Venkatadri and Peters 1993; Takiyama et al. 1994). 

Technologies producing hydroxyI radicals may be separated into five groups based on the 

substrates and energy sources used. 

1.2.2.1. Dye-sensitized photo-oxidalion 

Dye-sensitized photo-oxidation requires oxygen, a visible light source and photoactive 

material such as methyl blue (Acher and Rosenthal 1977). The dye absorbs and transfers light 

energy to either organic material or oxygen molecuIes. The receiving organic matenai reacts 

with triplet oxygen. Receiving oxygen molecules in the ground state (tnplet form) are raised 

to singlet form, capable of oxidizing organic matenal. This photo-oxidation is important in 



rernoval of organic matters in natural aquifers in strong sunlight regions, and has been 

investigated for sewage disinfection (Acher et al. 1990) and degradation of chlorophenols (Li 

et ai. 1992). Removal of dyes from the treated effluent could be troublesome. 

1.2.2.2. Photo-mediateci &sis of hydroge~ peroxide or decomposition of ozone 

Photo-rnediated lysis of hydrogen peroxide or decomposition of ozone produces 

hydroxyi radicals (Staehelin and HoIgné 1985). Ozonation, without photo irradiation, only 

selectively and incompletely degrades organic compounds, but photo-radiation assisted 

ozonation can completely degrade various compounds and has been used to successftlly treat 

water polluted by balogenated aliphatics, simple aromatic compounds and cnolorinated 

aromatics (Czter et al. 1992; Zeff and Banch 1992; Venkatadri and Peters 1993). 

1.2.2.3. Fer? torr 's reaction 

Hydroxyl radical is produced tlirough a Fenton-like reaction of hydrogen peroxide 

with transition metals with unpaired electrons, such as ferrous ions or its oxide, at acidic to 

keep the metal ions from precipitation (Carey 1992; Venkatadri et al. 1993). Goethite, the 

most common crystaliine iron oxyhydroxide [Fe(OOH)2] mineral in soi1 and sand, reticulated 

iron, and Fe (III) fiinetion similarly to transition metal ions, facilitating hydrogen peroxide 

treatment of soils polluted by chlorinated compounds (Carey 1992; Pignatello and Chapa 

1994; Ravlkumar and Gurol 1994; Takemura et al. 1994; Watts et al. 2 993). 

1.2.2.4. Scmico~~dzrctor-cata&zed ph0 fo-decomposin of water 

Semiconductor-catalyzed photo-decomposition of water uses a semiconductor catalyst 

such as TiOz (which is stable and economic) to absorb illuminated light to eject electrons 

fiom the catalyst surface and produce a positive hde. The positive hole oxidizes water 

molecules or hydroxyl ions, producing hydroxyl radicals, or directly oxidizes pollutants 

(Richard and Boule 1994). Electrons (Glaze et al. 1993) and secondary superoxide ions or 

hydrogen radicals also participate in degradation and can reduce highly halogenated 

compounds. This process is not sensitive to pH or colour cornpounds (Pmden and Ollis 1983; 

PeIizzetti et al. 1988; Matthews 1986; Matthews 1990; Halmann et al. 1992; Hidaka et al. 

1994; Hidaka and Zhao 1992). 

1.2.2.5. Wotsr- decornposition thmgh  high-energy particle bombardnzent 

Water decomposition through high-energy particle bombardrnent involves production 

of hy droxy 1 radicals, hydrogen radicals, and solvated electrons using y-Rays from 



radioactives, or high-energy electrons fiom electron generators and accelerators. Electron 

beam-mediated degradation of water pollutants (Cooper et al. l992a,b, Cooper et al. 1993% b; 

Nickelsen and Cooper 1992) or air pollutants (Prager et al. 1995) has been demonstrated. 

Ozone can enhance degradation eEciency by electron beam irradiation (Gehringer et al. 

1992). The method is advantageous in that oxidative and reductive species are involved 

(Buxton 1987) since the latter improves removal of highIy oxidized compounds. Electron 

beam is safer than radioactive and has rnany industrial applications (Kurucz et al. 1991; Frank 

1995)- A 1SMeV electron accelerator facility in Miami was investigated for removal of 

various pollutants (Kurucz et al. 199 1). 

1-23. Factors rr ffecting radical-bmed chentical degradation fechnology 

The hydroxyl radical is the main decomposer of chemicals in wastewater treatment, 

with concentration of hydroxyl radical determining chemical oxidation rate. Energy input, 

amount of catalyst, concentration of radical-precursor and medium conditions affect 

production of fiee hydroxyl radicals. Unless an excess of f?ee hydroxyl radicals is generated, 

degradation is a hnction of concentration of both radicals and the pollutant. Degradation 

sEciency is affected by hydroxyl radical scavengers (such as carbonate ions, nitrate ions) and 

total dissolved organics. 

1.2.4. Chenricd oxihtïon renction niecltnnisnts 

Chemical oxidation reaction mechanisms mainly involve hydroxyl radical-induced 

oxygenation of organic chemicals leading to formation of carbon dioxide and water. Hydroxyl 

radicals may abstract H-atoms fiom saturated alkanes and produce water and other carbon 

radicals, which in return combine wit h either oxygen molecules or another hydroxy 1 radical, 

or react by addition to unsaturated compounds producing oxygenated products. These two 

types of reactions lead to mineralization of hydrocarbons. 

1.3. Biological metabolism of synthetic hydrocarbons 

Microorganisms have evolved the capacity to oxidize and grow on petroleum, coals 

and fossil-fuel derived organic compounds such as polymeric materials, solvents, 

pharmaceuticals, agricultural chemicals, dyes and explosives, which are widely distributed in 

the environments. 



1.3.1. Okygenation of hydrocarbon skeïefon structure 

For non-substituted aliphatic (Watkinson and Morgan, 1990; Murrell, 1994; Beilen et 

al. 1994) or aromatic hydrocarbons (Smith, 1990; Pothuluri and CernigIia 1994; Harayama 

and Timmis 1992), the fust step of their biodegradation is activation of oxygen and 

production of alcohol or catecho!, mediated by mono- and di-oxygenase. Monooxygenases 

insert one oxygen into hydrocarbon and produce a water molecule (Lipscomb 1994; Van 

BerkeI and Müller 1990), in reactions involving oxygenation of aliphatic groups, epoxidation 

of alkenes, monohydroxylation of monophenols and biological Iactonation of ketones 

(Watkinson and Morgan 1990; TrudgiI1 1990; Smith 1990; Powlowski and Shingler 1994). 

Dioxygenase catalyzes insertion of two oxygens into aromatic hydrocarbons (Butler and 

Mason 1997; Nason and Cammack 1992; Lipcomb and OrvilIe 1992). 

Most oxygenases have transition metal ions at the reactive sites, which have unpaired 

electrons in their outmost orbital, and dioxygen is activated into oxidative spe~ies by bonding 

to these metal ions (Harayama and Timmis 1992; Jassen and Witholt 1992; Kok and Neidle 

1992; Lipscomb 1994; Butler and b4ason 1997; Mason and Cammack 1992; Lipscomb and 

O d e  1992). For hydroxylating oxygenase electron transfer is involved in the activation of 

dioxygen. NAD(P)H is the electron donor to the dioxygen, and the initial hydroxylation 

consumes NAD(P)H (Mason and Cammack 1992). Hydroxylating oxygenase has two 

cornponents: a reductase system and an oxygenase component. The reductase system is a 

single flavin protein with a bonded or separate iron-suhr cluster. The flavin group on the 

reductase first accepts electron fiom NAD(P)H and becomes a two-electron reservoir. The 

electrons are then transferred, one by one, to the [ZFe-2S] cluster. The oxygenase component 

is also an iron-suIfur protein, and has a catalytic haern (for P450 oxygenase) or non-haern iron 

Fe@). The oxygenase iron accepts electron from the reductase iron and then combines with 

dioxygen and produces oxidative oxygen species. 

I.J.2. Bacterial growth on hydrocarbon 

The biochemical basis of hydrocarbons supporting bacterial growth is that the bacteria 

which grow on the hydrocarbons can convert them into C2 or Cq products, which are utilized 

in the TCA cycle for growth or energy production. 

Monooxygenase-initiated oxygenation of aliphatic compounds produces alcohol which 

is converted into a fatty acid (Watkinson and Morgan 1990). For alkene bonds, acid is formed 



via monooxygenase catalyzed epoxidation, hydrolysis into di01 and oxidation of this diol. 

Monoterpenes are converted to fatty acid via ring cleavage react ions involving initial 

oxygenation of methylene group into alcohol, dehydrogenation of alcohol into ketone, 

monooxygenase-catalysed baeyer-Villiger reaction of ketone into Iactone, folIowed by 

hydrolysis (TrudgilI 1990). Carboxylic acid is fûrther converted into acetyl group via a beta- 

oxidation pat hway or other al temative route. Methane is metabolized by bacterial 

monooxygenase-catalyzed oxygenation with subsequent oxidation into formaldehyde, which 

is either assimilated via the serine pathway or further oxidized into carbon dioxide (Murrel 

1994; Lipscomb 1994). 

Degradation of chlorinated aliphatic hydrocarbons as substrates for bacterial growth 

begins with dechlorination and subsequent production of alcohol or acid (Janssen and Witholt 

1992; Belkin 1992; Fetzner 1998; Slater et al. 1995; Lee et al. 1998). 

Akhough different aromatic compounds are degraded via different pathway, they are 

al1 converted into 1,2- or 1,4-dihydroxyl compounds as substrates of ring-cleaving 

dioxygenases (Williams and Sayers 1994; Smith 1990; Harayama and Timmis 1992). The 

dihydroxyl aromatic compounds are converted to Cz and Ce TCA cycle intermediates via 

different aromatic ring-cleavage pathways. 

Certain anaerobic bacteria also metabolize sorne aromatic compounds into C2 and C4 

TCA cycle intermediates to obtain carbon for growth, but these arumatic compounds are 

limited to those with hydroxyl, amino, and carboxyl substituents, such as phenol, 3,4,5- 

tnhydroxybenzoate, and benzoic acid (Heider and Fuchs 1997; Gibson and Harwood 1994). 

Transformation of these aromatic compounds begins by reductase-catalyzed reduction of the 

benzene ring, followed by ring cleavage. 

1.3.3. Ren~owzl of non-carbon substituents 

Removal of non-carbon substitution groups via oxygenative, substituitive, and 

reductive mechanisms is key to degradation of synthetic organic compounds, facilitating t heir 

use as growth substrates. Some bacteria use the chiorinated compounds as terminal electron 

acceptor of anaerobic respiration, producing dead end products. 

Even though presence of the electrophilic substituents decreases the tendency of 

hydrocarbons to be oxidized, sorne bacteria have evolved the capacity to use oxygenase to 



initiate degradation of certain substituted aromatic compounds. RemovaI of the substitutent 

fiom the aromatic ring, as a result of the oxygenase reaction, was observed in some of the 

oxygenase-involved degradation of aromatic compounds (Reineke 1994; Fetzner 1998; Hale 

and Wiegel 1994; Karayama and Timmis 1992). The initial dioxygenase attacks the 1,2 

position relative to the substitution, and foms a cis-dihydrodiol adduct. The substituent is 

spontaneously released as an anion (with a a, producing a catechol as a substrate for fùrther 

ring-cleavage metzbolism. Two electrons are consumed for this energy-consuming 

conversion. A substitutive strategy has been reported for removal of halogen substituent in 

both aliphatic and aromatic compounds. The chlorine of 1,2-dicholoroethane are replaced by 

two hydroxyl groups fiom water through hydrotytic enzymes in bacteria with 1,2- 

dichloroethane as growth substrate (Janssen et al. 1994). Reductive removal of electrophilic 

substituent has been observed in both aerobic and anaerobic degradation of chlorinated and 

nitro compounds, and the chioro group is replaced by hydrogen. Thus the reductive removal 

of chlorine is an energy-consuming reaction (Fetwier 1998). The substitutent may not be 

removed from the substituted compound in the initial degradation reaction, but fiom an 

intermediate. Dechlorination from the intermediates, rather than in the initial reactions was 

observed in degradation of dichlorobenzene and other chlorinated compounds (Harayama and 

Tirnmis 1992; Schlomann 1994; Reineke 1994; Hale et ai. 1994). 

Specific aspects of removal of nitro groups are described section 1.5.2. 

1.3.4. Con~etnbolism 

Some enzymes, which are induced to degrade simple growth substrate in certain 

bacteria, have relaxed substrate selectivity and attack a wide range of substituted synthetic 

hydrocarbons. This phenornenon is called cornetaboIism, or fortuitous metabolism or co- 

oxidation (Janssen and Withoit 1992; Hanson and Brusseau 1994; Belkin 1992). 

Cometabolism allows the removal of the chloro-substituents and produce more biodegradable 

compounds. TCE is degraded by methane monooxygenase (Henry and Grbie-Galik 1994). 

TCE is oxidized into a TCE epoxide, and the latter is spontaneously rearranged via hydrolysis 

into carbon monoxide, formate, dichioroacetate, and glyoxylate. Polycyclic aromatic 

hydrocarbons and chlorinated compounds are degraded by extra-cellular ligninase (lignin 

peroxidase and mangnese peroixidase) (Hamme1 1992; Fernando and Aust 1994). While 



PCBs hardly supports bacterial growth as carbon source, bacteria with biphenyl as growth 

substrate could cometabolize certain PCB congeners (Furukawa 1994; Brenner et ai. 1994). 

1.4. Combination of degradation technoIogies 

Many high-profile toxicants are recalcitrant to biological oxidation. These cornpounds 

rnay not be degraded via a single biological process due to their high concentration; toxicity to 

bacterial cells; low bioavailability, or the Iack of biotransforming enzyme, and process 

combinations have been investigated for their mineralization. 

1.4.1. Combinntion of an aerobic degradation with an anaerobic process 

Aerobic degradation degrades lowly substituted hydrocarbons, but does not degrade 

compounds with rnany eIectrophilic substitutions. Anaerobic processes can reduce the 

polychlorinated compounds, producing lowly chlorinated compounds as dead-end products. A 

combination of anaerobic process with aerobic pretreatment facil itates mineral ization of the 

compounds with many electrophitic substitutions (Field et al. 1995). Using a reductive 

anaerobic process to remove a chlorine is a promising approach to convert the substrate into 

Iowly chlorinated products amenable to aerobic degradation (Lee et al. 1998) as has been 

shown for PCB degradation (Abramowicz and Olson 1995). 

1.4.2. MùrEd culture degrarintiun 

Chernical poIIutants on real sites are exposed to the metabolic activity of mixed 

cultures. A compound, which may not be shown to be mineralized by any specific strain, may 

be mineralized in the environments through sequential degradation by multiple strains. 

1.5. Degradation of aromatic compounds 

1. S. II ChemicnC oxidntion of aromntic compounds 

Non-selective addition of hydroxyl radicals on the benzene ring was demonstrated for 

phenol, catechol, resorcinol, and p-hydroquinone during electron treatment of benzene 

(Nickelson et al. 1992, 1994), with production of common chernical oxidation aromatic ring 

cleavage products such as formaldehyde, acetaldehyde and glyoxal. Phenol, catechol, 

hydroquinone, p-benzoquinone, muconic acid are degradation intermediates of a 

semiconductor-catalyzed degradation of benzene @ashimoto et al. 1984; Pelizzetti et al. 



1988). Catechol, hydroquinone, muconic acid, maieic acid, nimark acid, glyoxal, glyoxylic 

acid, oxalic acid and fonnic acid were degradation products of phenol by photo-enhanced 

ozonation. (Takahashi 1990) and semiconductor-catalysed p hoto-oxidation (Richard and 

Boule 1994). The oxygen molecule could react with the radical intermediates and participate 

in ring opening (Getoff 1996). 

Photo-oxidation of 2,4-dinitrotoluene caused aromatic ring cleavage and produced 

nitrate ions. Fenton's reagent degraded nitrobenzene (NB) via three mononitrophenois 1,2,4- 

benzenetriol, hydroquinone, hydroxy-4-benzoquinone, 4-benzoquinone. 4-Nitrocatechol was 

detected as fenton's regent degradation product fkom 4-nitrophenol (Lipczynska-Kochany 

199 1). Serniconductor-catalysed photo-oxidation of NB produced monohydroxy-, dihydroxy- 

and tnhydroxy-nitrobenzene with nitrohydroquinone, and parabenzoquinone as intemediates 

(Minero et ai. 1994; Maillard-Dupuy et al 1994). Nitrosobenzene, isomers of dinitrobenzenes 

and phenol were also observed and indicated complicated reactions including a reductive 

degradation through electron or hydrogen radicals. Low molecular weight chernicals such as 

acetate and formate, and mineralized products such as carbon dioxide, nitrate ions, nitrite ion 

and ammonium ion were found (Minero et al. 1994; Maillard-Dupuy et al. 1994). These 

reactions demonstrated a ring-opening degradation mechanism through both addition of 

hydroxyl radicals and reduction through reductive species, such as electron and hydrogen 

radicals. Production of hydroquinone, nitrocatechol, trihydroxybenzene, aliphatics, nitrate 

and nitrite ions, ammonia was also reported for TiOz-catalysed photo-oxidation of 4- 

nitrophenol (Dieckmann and Gray 1996). 

Radioactive-induced degradation of NB also produced mononitrophenol and 

aminophenols (Kuruc et al. 1994; Cechova et al. 1987; Cefova et al. 1986). Since similar 

degradative species are produced in both semiconductor-catalysed and irradiation-assisted 

decomposition of water, sirnikir degradation rnechanism should be involved for NB. 

1.5.2. Bidogical nzetcrbolism of aromatic cornpounds 

Ai1 aerobic bacteria, which grow on aromatic compounds, via different peripheral 

initial reactions, convert these aromatics into common 1,4- or 1,2-dihydroxylated aromatic 

compounds (Houghton and Shanley 1994; Schlom 1994; Williams and Sayers 1994; Smith 

1990; Harayama and Timmis 1992). There are two types of ring-cleavage pathway for 1,2- 

di hydroxyl aromatic compounds: ortho-cleavage dioxygenase catalyzes insertion of two 



producing 2-hydroxymuconic semialdehyde. For 1,4-dihydroxyl aromatic compounds, the 

cleavege occurs between a hydroxyl group and a neighboring carbon, producing 4- 

hydroxymuconic semialdehyde (Spain and Gibson 1990). The ring-cleaved products are 

firther converted to Cz or C4 TCA cycle intermediates by hydration of double bond, oxidation 

of alcohol group and a reversed aldolase reaction. 

1,2,4-Benzenetriol is a common degradation intermediate in degradation of phenolic 

compounds with multiple substitutents (Chamberlain and Dagley 1968; Chapman and 

Ribbons 1976; Daubaras et al. 1996; Haigler et al. 1999; Joshi and Gold 1993; Latus et al. 

1995; Rieble et ai. 1994; Sze and Dagley 1984; Valli et a1. 1992; Zaborina et al. 1995). The 

benzene ring of 1,2,4-benzenetriol is cleaved via an ortho- or a meta-cleavage pathway. 

The aromatic compounds with electronphilic substitutent are converted into 1,4 or 1,2 

dihydroxyl products and converge to the above central ring-cleavage meatabolism (Winter 

and Zimmermann 1992; Commandeur and Parsons 1990; Harayama and Timmis 1992). The 

removal of substituents in the initial reaction or from the intermediates is key to their 

metabolism to produce TCA cycle intermediates and support bacterial growth, and the 

strategy for removal of the substituent may be oxygenolic, substitutive or hydrolytic as 

mentioned above- 

Anaerobic mineralization of some aromatic compounds, suîh as p henolics, amines and 

benzoate, were reported (Heider and Fuchs 1997; Gibson and Harwood 1994). Key steps 

involved are: reduction of the benzene ring and production of olefinic compound, addition of 

water to the double bond to produce aicohol, oxidation of the alcohol and splitting of the ring 

via a reversed aldolase reaction producing a acetyl-CoA which enters the TCA cycle 

substrate. Phenol and aniline was degraded via initial conversion into benzoyl-CoA. Aromatic 

rings of 1,3,5-tri hydroxybenzene or l,3 -dihydroxybenzene could be direct1 y reduced. 

1.6, Biological metabolism of nitroaromatic compounds. 

Nitroaromatics have widespread applications as solvents, manufacturing raw materials 

for dyes, pharmaceuticals and explosives. Nitroaromatic compounds collectively account for 

almost 10 percent of total chernical sales (Hartter 1984). Biodegradation of nitroaromatics has 



been reviewed (Marvin-Sikkerna and de Bont 1994; Spain 1995qb; Gorontzy et al 1992; 

Higson, 1992), and three main strategies were described for bacteria to initiate degradation of 

mono-, di-, or tri-nitrated aromatics. Oxygenase, benzene ring reductase and nitroreductase 

(type 1) have been reported for bacteria to initiate degradation of nitroaromatic compounds. 

The first two initial reactions produce nitrite and the third produces ammonia. 

1.6. I .  Oxygensê-initclited nzetabolism 

Despite the electron deficiency of nitroaromatic compounds due to the presence of the 

nitro group, rnany aerobic bacteria are capable of attacking the aromatic ring of mono- and di- 

nitroaromatic compounds with specific oxygenases producing 1,2 or 1,4-dihydroxylated 

aromatic compounds. This pathway was observed in degradation of 2-nitrophenol (NP) 

(Zeyer and Kearney 1984), 4-NP (Hame et al. 1993; Spain and Gibson 1991), dinitrophenols 

(Bruhn 1987; Ecker et al- 1992), NB (Nishino and Spain 1995), 2-nitrototuene (Haigier et al. 

1994), and 1 ,Ldinitrobenzene @ickel and Knackmuss 199 1). The dioxygenase-catalyzed 

removal of nitro group tiom aromatic ring involves three steps: 1) oxygen molecule activation 

by 2e (or H in NAD(l?)H)J; 2) addition of two 'OH'S to the 1 and 2 position of aromatic ring 

relative to nitro group, foming a cis-cis-dihydrodiol; 3) release of a nitrite anion and 

formation of a catechol product (for dioxygenase). The catechol is then subjected to ring- 

cleavage metabolism. 

1.6.2. Nilrorê(luctme-initinted me fnboifsrn 

Under both aerobic and anaerobic conditions non-specific nitroreductases in certain 

rnicroorganism catalyze reduction of the electrophilic nitro group of some nitroaromatics and 

amines as dead-end reduction products (Blasco and Castillo 1993; Bryant and McEIroy 1991; 

Cerniglia and Somerville 1995; Glaus et al 1992; Gorontzy et al. 1993; Oren et al. 1991; 

Schackmann and Muller, 1991). Some aerobic bacteria use nitroreductase (type 1) to initiate 

degradation of nitroaromatic compounds as growth substrate, and produce ammonia. This 

nitroreductase-initiated aerobic degradation was found in degradation of NB (Nishino and 

Spain 1993 b; Park et al. 1999) and Cnitrobenzoate (Groenewegen et al. l992), Cnitrotoluene 

and 3-NP (Meulenberg et al. 1996; Schenzle et al. 1997,1999). Two approaches have been 

described for ammonia-release fiom hydroxylamine intermediates in this nitroreductase- 

initiated aerobic degradation of nitroaromatics: (a) the hydroxylarnine intermediate is 

rearranged into aminop henol and then ammonia is released after the aminophenol is cleaved 



by an dioxygenase; (b) conversion of arylhydroxylamine into l,2-dihydroxyl aromatic 

compounds by proposed hydrolytic hydroxylaminolyases. Nishino and Spain (1993b) 

observed the first approach in the NB degradation pathway of a Psezrdomo~rczs 

pse~rdoalcaligenes and a simiiar pathway was observed in degradation of NB in P- pttti'da 

(Park et al. 1999)- degradation of 4-nitrotoluene in a Mycobacten'zmz strain (Spiess et al. 1998, 

He and Spain 2000). Groenewegen et al (1992) reported the second route in degradation of 4- 

nitrobenzoate in Cornanzonas acinovorans NBA-10 and this pathway was also described for 

degradation of 4-nitrotoluene in Psezidomot~as sp (Haigler and Spain 1993; Rhys-Williams et 

al. 1993) and degradation of 3-NP in P. putida B2 (Meulenberg et al. 1999). 

There were few reports that bacteria grew on polynitrated compounds as nitrogen 

source via reduction into amine. Boopath et al. (1993) reported that an anaerobic bacterium, 

Desrtlfo\~ibrio sp. B strain, converted 2,4,6-trinitrotoluene into toluene via mono-, di- and tri- 

aminotoluene, and produced arnmonia as nitrogen source for bacterial growth. The arnmonia- 

release mechanism from the above polynitrated compounds still remains poorly characterized. 

1.6.3. A rorrintic ring reciuctme initiated metabolisnz via the meisen lieinter conzplex- 

For polynitrated aromatic compounds, such as di- or tri-nitrophenols and toluene, a 

direct reduction of the nitrated benzene ring by H' under aerobic conditions with the release of  

nitrite was reported (Lenke and Knackmuss 1992; Lenke et al. 1992; Vorbeck et ai. 1994). 

Knackmuss' group (1992qb) first proposed a nitrite release mechanism via a hydride- 

meisenheimer complex in degradation of 2,4-dinitrophenol and 2,4,6-trinitrophenol (picric 

acid) wi th Rhodacoccrrs el ythropolis. 

Rieger et al (1999) described formation of a hydride-meisenheimer complex in 

degradation of 2,4,6-trinitrop henol biodegradation using Rhodococcus eryrhropolis. Rajan et 

al. (1996) described mineralization of picric acid in Nocardioides sinplex, and Ebbert et al. 

(1999) identified a F4zo-dependent enzyme system, which catalyze hydride transfer fiom 

NADPH to picric acid to form a hydride-meisenheimer complex in this strain. Formation of  

this hydride-meisenheimer complex was also found 2s an intermediate in mineralization of 

2,4,6-trinitrotoluene (Vorbex et al. 1994) by 4-nitortoluene-grown cells of a Mycobacteriirnr 

strain, a strain which was previously isolated on 4-nitrotoluene and which degraded 4- 

nitrotoluene via a nitroreductase-initiated pathway (Spiess et ai. 1998). 



1.7. Thesis objectives and results summary 

Biodegradation of substituted synthetic hydrocarbons necessitates the removaf of the 

substitution, especially electrophilic groups, which decrease biodegradability (Klopman et al. 

1995; Boethling et al. 1994; Howard et al. 1992; Kameya et al. 1995). Advanced oxidation 

processes (AOP) degraded aromatic compounds mainly through hydroxyl radical oxidation 

reaction, and production of hydroxyl products and other low molecular weight biodegradable 

products that are more supportive to bacterial growth. In this research the feasibility of 

combining electron bearn pretreatment with biodegrdation to degrade a mode1 compound, NB 

was explored and the subsequent metabolism of mixtures of the NP products and NB was 

characterized. The specific goals of this research are: to enrich microbial cultures fiom 

activated sludge which are able to degrade both nitrobenzene and its degradation products, 

nitrophenols; to identie the microorganism which degrades NB and/or NP; to study the 

biochemical metabolism involved in NB and NP degradation by pure cultures. These goals 

were achieved and the results were presented in chapter 2 to 7. 

We used moderate doses of electron beam radiation to degrade aqueous NB produce a 

mixture of NB and nitrophenoIs. To enrich the cultures that degrade both NB and NP, we 

used NB and/ or NP as the sole carbon and nitrogen sources for growth of bacteria in the 

activated sludge. We obtained a mixed culture which degraded both NP and NB by using the 

mixture of three mono-nitorphenols as the sole carbon and nitrogen sources (Zhao and Ward 

1999, Chapter 2 of this thesis). Through intensive subculturing, we isolated three groups of 

bacteria from this mixed culture: group 4 21W3W4NPf  where growth was observed on 4- 

NP), but not on 2- or 3-NP; group B, 2NPf3NPç4NP where growth was observed on 2-NP 

and 3 - N P ,  but not on 4-NP, and group C ,  2NP3APf lAP where growth was observed on 3-  

NP, but not on 2- or 4-NP (Chapter 3). Strains of group A and B belonged to Ps~zJ~o???o~~s 

sp. One strain of group C was identified as Vuriovormparadoxus. Only 3-NP-grown cells of 

strains of Group B and C, degraded NB, and produced ammonia fiom both NB and 3-NP. We 

investigated the NB degradation mechanism by a typical strain of group B, Pseudomonns 

yufida 2NP8, and observed that a 3-NP-induced enzyme system cometabolize NB into 

ammonia via nitroso and hydroxylaminobenzene (Zhao and Ward 2000, Chapter 4 of this 

thesis). We observed production of aminophenol, 4-benzoquinone, 2-aminophenoxazine-3- 



one, 4-hydroquinone, catechol, and ammonia production fiom hydroxylaminobenzene, and 

this allowed us to conclude that the hydroxylarninobenzene was first converted to 2- or 4- 

aminophenol, and that ammonia was released via an oxidation of aminophenol into 

benzoquinone monoimine with subsequent hydrolysis into benzoquinone (Zhao et al. 2000, 

Chapter 5 o f  this thesis). Based on these results, we proposed that degradation of the growth 

substrate 3-NP involved conversion into 3-hydroxylaminophenol, rearrangement into 

aminophenolic compounds, followed by oxidization into monoimines with subsequent 

hydrolysis into quinones and reduction into 1,2,4-benzenetnol (Zhao et al. 2000, chapter 5 o f  

this thesis). We fùrther investigated the substrate selectivity of the 3-NP-induced enzyme 

system in P. ptida 2NP8 and found that a wide range of nitroaromatic compounds were 

transformed into arnmonia (Chapter 6 of this thesis). However, 2-NP-grown cells of this strain 

rnanifested a narrow degradation selectivity, and only 2-NP and 4-Cl-2-NP among the 30 

nitroaroamtic compounds were transformed into nitrite (Chapter 7 of this thesis). 



2. MLCROBIAL DEGRADATION OF NITROBENZENE AND MONO- 

NTIROPHENOL BY BACTERIA ENRICEiED FROM MUNICIPAL 

ACTIVATED SLUDGE ' 

2.1. Abstract 

Using a mixture of three mono nitrophenols as sole carbon, nitrogen and energy 

sources, mixed cultures were enriched fiom municipal activated sludge to degrade both 

nitrophenols and nitrobenzene. Bacterial growth and degradation rate could be increased by 

supplementing the medium with 0.1% YE. Microorganisms were isolated from the 

nitrophenols e~chment ,  and they were identified as strains of Comamonas festosteroni and 

Acidovom dela_fieldii. These strains showed broad degradation ability toward nitrophenols 

and nitrobenzene. 

2.2. Introduction 

Nitroaromatic compounds are very important industrial chemicals, which collectively 

accouiit for almost 10 percent of total chernical sales (Hartter 1984). Nitrobenzene (NB) is one 

of the fastest growing end use products (Richards 1996) and Nitrophenols @IFS) and NB are 

acutely toxic @artter 1984) 

The nitro group is a strong electron-wit hdrawing group, which causes nitroaromatic 

compounds to be resistant to aerobic biodegradation (Field et. al. 1995). Biodegradation of 

nitroaromatics has been extensively reviewed in recent publications (Mamin-Sikkema and Bont 

1994; Spain 1995). Reported h d f  lives for NB in environments such as surfacewater, ground 

water, soi1 and activated sludge ranged from two to more than 625 days (Mackey et al. 1995), 

illustrating the persistence of this chernical. Anaerobic biodegradation, which occurs in the 

natural environment, produces dead-end amines and mutagenic nitroso compounds (Field et al. 

1995). The combination of anaerobic and aerobic degradation has been investigated for 

degradation of NB, and resulted in the removal of 95% of 102 mgIl NB in a system with a 

hydraulic retention time of 24 hours (Atiz et al. 1994). In sucrose produced acidogenic 

" Tlus paper lias been published in Canadian Journal of Microbiology (1999). 45: 427432, Co-author is Chven 
P. Ward. 



conditions, acid was produced by anaerobic metabolisrn of sucrose, and caused the pH to drop 

to 3-4. Under these conditions of anaerobic metabolism, NB was reduced to aniline. The 

aerobic degradation of 4-nitrophenol (4-NP) is relatively common (Mackey et. Al- 19951, but 

there are very few reports on the degradation of Z N P ,  or 3-NP (Schen.de et al. 1997; Zeyer 

and Kearney 1984; Meulenberg 1996). Degradation haif-lives of these moIecules in surface 

water and soi1 may be up to 10 days (Mackey et al. 1995). 

Some aerobic bacteria capable of degrading NPs and NB have been isolated, despite 

the recalcitrance of these compounds to biodegradation. Psezrdomonas species (Heitkarnp et al- 

1990, Nishino and Spain 1993a), Morarella species (Spain and Gibson 1991) and 

Arthr-obczcter azirescem and Nocardia sp (Hanne et al 1993) were reported as 4-NP degraders. 

One strain of Pse~idorno~~aspz~tidu degraded 2-NP and 3-NP (Zeyer and Kearney 2984) and 

was recently reported to grow on NB (Meulenberg et al. 1996). Rnlstoitia ezrtr-ophn, a 

degrader of 2,4-D, was found recently to degrade 3-NP and transfonn NB into dead-end 

aminophenok (SchenzIe, et al 1997). Pse~donionas psezidoaZcaZigetzes (Nishino and Spain 

1993b) and a Con~anzor~as species were isolated fiom NB contarninated sites as NB degraders 

mishino and Spain 1995). The Pseudornortas species could also transform NPs. To the best of 

our knowledge, simultaneous aerobic rernovd of 2-NP, 3-NP, 4-NP and NB by pure or mixed 

culture has not been reported. 

We have previously shown ability of electron beam technology to remove NB from the 

aqueous phase (Lubicki et al. 1997). However, the rernoval efficiency decreased significantly 

as the concentration of NB was reduced. Three mono NPs were aIso found in the electron 

beam treated NB solution. We are explonng the possible use of a cornbination of electron 

beam pretreatment and biodegradation to remove NB. Since mild electron beam treatment of 

NB produces a mixture of NPs and residud NB, we sought to develop an e ~ c h m e n t  culture 

containing degraders of both NB and NPs.  In this paper, we present Our results of enrichment 

of both NB and hTs degraders tiom municipal activated sludge and degradation of NB and 

NPs by enriched rnixed cultures. 



2.3. Material and Methods 

2.3.1. Media 

Basic salt liquid medium contained (d): K W O J ,  1; Na&POJ 12Hz0, 7; femc citrate, 

0.04; CaC12 2HD, 0.1; MgS04 m, 0.3; pH 7.35. Trace metals solution (TMS) (mg/l): 

FeC13 6H20, 162; ZnC12 4Hz0, 14.4; CoC122H20, 12; NatMo042H~0, 12; CaC122H20, 6;  

CuS045H20, 1900; &BO4, 50; HCl, 0.44 mole. Basic salts/TMS medium was basic salts 

medium supplemented with TMS (3mVml). Basic/TMS/YE medium was the basic salts 

medium supplemented with TMS (3mi/L) and sterile yeast extract (YE) ( I g L ) .  YPS medium 

(g): YE, 10; Bacto peptone, 10; NaCI, 5. Nitroaromatics, TMS and Y '  were added into 

autoclaved liquid media before incubation or before pouring plates. 

2.3.2. Culture enrichment and bioïiegrnddion tests 

Five miIliliters of fiesh activated sludge was inoculated into 50 ml of YPS medium in a 

250ml Erlenrneyer flask and incubated on an orbital shaker at 180 rpm, room temperature 

(26°C) for 24 h. A 10% inoculum was transferred into fiesh YPS medium and incubated 

under the sarne conditions for 24 h. Then 5ml was inoculated into a 250 ml Erlenrneyer flask 

containing 50 ml of basic salts medium containing 20mgA of 2-NP, 3-NP and 4-NP, and was 

again incubated at 26 OC, 180rpm. M e r  96 h, the yellow colour disappeared and the same 

amount (20 mgA) of each NP isomer was added. M e r  colour disappearance, 10 ml culture 

was transferred into fiesh NPs basic salts medium and the NP (20 mgA) supplement and colour 

removal step was repeated three tirnes. The disappearance of yellow colour indicated the 

degradation of NPs because the pH of the medium is 7.36 and 2-NP and 4-NP should givè a 

yellow colour at this pH (3-NP only shows a very faint yellow colour at 20 mg/l). The 

relationship between colour rernoval and degradation of NPs was codïrmed by HPLC analysis. 

The NPs enrichment culture was then re-grown in NPs-supplemented basic salts/TMS/YE 

medium under the same conditions to get more growth. 

The eesh enrichment was streaked on the basic sdts/TMSTYE agar plates containing 

corresponding nitroaromatic compounds. Colonies were isolated and streaked on YPS agar 

plates again. Pure cultures were coUected fiom the agar pIates. The following procedure was 

followed for pure culture degradation. Biodegradation was câmed out by first inoculating one 

!oop of fksh pure culture cells on YPS agar into 5 mi of YPS liquid media and incubating for 



24 h and then inoculating 1 ml into 9 r d  basic salts/TMS/YE medium containing 

nitroarornatics. The OD of the inoculated culture was around 1.0. NB and/or NPs stock 

solutions were added into the media to  achïeve the designed concentration. The bottles used 

for biodegradation were 40 ml amber glass with the Teflon/silicone septa lined screw caps. The 

caps were Ioosened during shaking to facilitate aeration. The degradation was stopped after 

shaking for 48 or 96 h. 

Growth and biodegradation studies were conducted at room temperature, with 200 

rpm shaking on an orbital shaker. Biomass concentration was rneasured in diluted cultures in a 

S himadm UV- 120-02 spectrophotometer (Shimadm Corporation, Kyoto) at 6OOnm in a 1 cm 

Iight path. Cultures were centrifûged and the ce11 pellets were suspended in water to give OD 

recordings of <O.S. NPs enrichment was maintained and grown in the NPs-supplemented basic 

salts/TMS media. Frequent addition of NPs immediately after losing yellow colour is necessary 

to get more biomass for inoculation. The fi-eshly grown NPs-fiee (colourless) culture was used 

as inocutum for the rnixed culture degradation test. NPs mixture biodegradation was carried 

out in 250d flasks. Whereas any cultures containing NB were in loose capped amber glass, 40 

ml vials with Teflordsilicone septa lined screw caps. 

2.3.3. AritroplzenoZ nnci nitrobcnzene annlysis 

Samples fiom biodegradation tests were subjected to centrifùgation at 9000 g for 3 

minutes to remove the cells and 0.9 ml of supernatant was transferred into 4 ml of amber glass 

via1 with screw tightened and Tefion-lined caps. Then 0.1 ml of  0.4N HCI solution was added 

to NP-containing sarnples (not necessary for analysis of h-). Ethyl acetate, 1 ml, was added 

and the mixture vortexed for 1 min. The organic Iayer liquid was collected and used directly 

for HPLC anaiysis. When NB and N P s  were added to kiiled cells (boiled for 1 min) and 

subsequently extracted, greater thm 95% of the substrates was recovered. Consequently it was 

concluded that the cells do not retain NB or NPs and do not influence analytical results. The 

HPLC analysis was performed on a 3.9 X 300mm @ondaPakm Ci8 colurnn (Waters, 

Milford, MA). The apparatus consisted of two Shimadzu LC-600 pumps, a Shimadzu SPD-6A 

UV spectrophotometnc detector and a sample injector 7125 (dl components are fiom 

Shimadzu Corporation, Kyoto). Sample (15 11) was injected and eluted with methanol and 

milliQ water (0.1% acetic acid). For NP sdutions, solvents were delivered at the rate of 0.22 



(methanol) and 0.78 (miliiQ water) d M n .  For NB samples, solvents were delivered at the 

rate of OSS(methano1) and 0.45 (miEiQ water) mVrnin. Compounds were monitored at W 

Au4,. The linear equations were used for analyses of every NP isomer and NB. Samples with 

the concentration of more than 6mgL were diIuted. Analytical data were obtained in duplicate. 

2.4. Results and discussions 

The initial objective was to find bacteria that had the capability to degrade both NB and 

NPs. Three e ~ c h r n e n t  approaches were taken with the following series as enriching 

substrates respectively: (a) 60 mg/l of NPs (concentration of  each NP isomer is 20 mg/l), @) 

60 mg/l of  NB, (c) both 60 mgA of  NB and 60 mgA of  NPs. In the case of @) and (c), in 

addition to the 60 mgIl NB added, a small viai containing I ml ofNB was fked inside the flask 

as a N B  reservoir, because NB is known to  volatize. A sirnilar NB feeding procedure has been 

employed by other researchers, including Nishino and Spain (199313). This NB feeding 

procedure was oniy used in these prelirninary enrichment studies. Because of toxicity of the 

serial substrates, little or  no bacterial growth occurred by enriching in a basal salts media. 

Fresh activated sludge (from the municipal wastewater treatment plant, Waterloo, Ont), was 

first enriched on YPS medium and then inoculated into the basic salt medium. Nitroaromatics 

were used as the sole c ~ b o n  and nitrogen sources. 

N P s  were found to  be able to support bactenal growth as the soIe carbon and nitrogen 

sources and were removed after four days. No NP disappearance occurred in the non- 

inoculated control flask. The biomass increased by repeated feeding of NPs into the degrading 

liquid media. NP rernoval was observed visually by disappearance of the yellow colour and 

then confirmed by HPLC analysis. The time needed for cornplete removal was shortened once 

the cultures were acclimated (Table 2.1). When the concentration of NPs was increased fiom 

60 up to 120 and 240 mgA, NP removal times by a c c h a t e d  cultures were extended to  42 h 

and 192 h, respectively. 

In a two-month incubation there was no apparent bacterial growth in the NB medium 

or  in the rnixed NB/NPs medium. There was no loss of NPs in the M3/NPs medium. NB 

appeared t o  be a poor substrate for activated sludge bacteria, and with a mixture of NPs and 

NB, NB suppressed growth of  the bacteria on NPs. 



In order to test the abiiity of the NPs enriched rnixed culture to tolerate NB, a senes of 

NB concentrations (0-5.7 mgA) was initidy added into the Nfs-supplemented basic salt 

medium. When these media were inoculated with the NP acclimated mixed cultures and 

incubated under standard conditions, bacterial growth was visuaily observed. Disappearance of 

NPs occurred after 23 h (Table 2.2). The 23 h culture acclirnated with 5-7 m g  of NB was 

used to inoculate NP-supplemented media containing a series of 5.7-1 18 mgA of NB. For this 

and the folIowing series of tests, an inoculation rate of 5% was always used and resulted in an 

initial 0D600 of 0.02-0.03. NP removal in the presence of up to 22.8 mg/l of NB was observed 

aIso at 23 h, and NP removal in the presence of 35.4-1 18 mgIl of NB was observed at 33 h. 

This 33-hour culture was used to inoculate NPs-supplemented media containing a higher NB 

concentration ranging fiom 227 to 1180 mg/l of NB, and in each case the time for NP removal 

was determined. No rernoval of NP was observed when more than 457 mgB of NB was added. 

Growth and NP disappearance in the NPs supplemented basic salts/TMS media inoculated with 

NPs (24 h) enriched rnixed culture, was characterized. Individual NPs were quantified by 

HPLC. The results are presented in Figure 2.1. Biomass OD increased tiom 0.23 to 0.38 in 30 

h, at which 94% of total NPs were transformed. 4-NP was preferentially transforrned, followed 

by 2-NP and 3-NP. When YE (0.1%) was added to the NPs supplemented basic salts/TMS 

media, a dramatic increase in ce11 growth (0-23 OD to 0.90 OD in 18 h) and increased rates of 

NP degradation were observed (Figure 2.2). 

The three NPs were utilized as the nitrogen sources for soi1 bacterial growth (Bruhn et 

al. 1987). To the best of our knowledge, there has been no report on the simultsneous aerobic 

degadation of the three NPs as the sole carbon, nitrogen and energy sources, even though 

degadation of 4-NP was observed in soil or fiesh water (Hanne et al 1993; Heikamp et al 

1990) and that of 2-NP, 3-NP was reported in soil (Zeyer and Keamey 2984). 

NB (8 mgA) suppIemented basic salts/TMS media with or without YE supplement were 

inoculated with NPs-enriched culture and incubated under standard conditions. Biomass and 

NB degradation was monitored over tirne (Figure 2.3). In the absence of YE, growth and NB 

disappearance were very low. In the presence of 0.1% YE, a rapid burst of growth and NB 

transformation was observed in the first 30h. The cessation of NB disappearance when growth 

ceases suggests that NB degradation relies on growth and is a cometabolic process, which 



would also result in production of intermediates which may be toxic and may contnbute to ceU 

1 ysis- 

The effect of  NP on NB disappearance md vice-versa was also examined. NPs were 

added to the NB-supplemented solution without YE followed by inoculation with NPs 

enriched culture and incubated under standard conditions. NB, NPs and biomass were 

monitored over time (Figure 2.4). NP supplement increased the rate of disappearance of NB 

(compare to Figure 2.3). The presence of  NB decreased the rate of degradation of total NPs, 

specifically 2-NP. Supplementation with a srnaIl amount of YE led to a dramatic increase in 

biomass OD (0.30 to 1-70 in 34.5 h) and a rapid degradation of NB and NP. Degradation of 8 

mbg4 of NB was also found to be incomplete and only 50% of NB degradation was achieved. 

YE addition accelerated degradation but did not change the final concentration of substrates. 

The influence of NP and NB concentration on their degradation by the NPs e ~ c h e d  

culture was investigated in the basic salts/TMS/YE media (Table 2.3). With 5rnM each of 2- 

NP, 3-NP and 4-NP and 2mgA of NB, al1 nitroaromatics were completely degraded, but at high 

concentrations, the degradation was incomplete. 

Degradation of NB by acclimation of activated sludge with other nitroaromatics has 

been reported without rnicrobial chracterization, such as, acclimation with aniline and pyridine 

(Gomolka and Gomolka 1979); degradation of NB and aniline (Patil and Shinde 1988) or 2,4- 

d m  (Patil and Shinde 1989); degradation of NB, 4-NP and 4-nitroaniline (Janeczko and Gaz 

1984); degradation of 4-NP and chlorinated mono or diNB (Kwiatkowski and Ostrowska 

1984). Transformation of NPs by ceils of Psez~dornonas psezrdoaIcaZigenes grown on hTB was 

reported, but the strain could not grow on NPs wshino and Spain 1995). There are no other 

reports on the aerobic degradation of N B  by N P s  degraders, or on the simultaneous aerobic 

degradation of NB, 2-NP, 3-NP and 4-NP by pure or rnixed culture. 

The NPs enriched culture was plated out on NPs supplemented basic salts/TMS/YE 

agar media and incubated for three days at room temperature. Colonies appeared quite similar. 

Twenty three of the largest colonies were randornly isolated, inoculated into the basic 

salts/TMS/YE liquid media containing 2 mg/l of NB and 5 mgA of %NP, 3-NP and 4-NP, and 

incubated for 4 days. Most isolates showed broad degradative ability to both NB and each 

isomer of NP in the mixture medium. Three out of four were found to be Comamo~~as 



tesiosteroni, which may or may not be identical, while one was identifïed as Acidovorux 

dela$eldil' (Table 2.4). 

A Comamo~zus species isolated fiom NB contarninated wastewater (Nishino and Spain 1995) 

was able to grow on NB. Conianionas tesfosteroni was shown to degrade PCBs (Dercova et 

al. 1993), PAH mixtures (Goyd and Zylstra 1996), aryl suKonate (Oppenberg et ai. 1995) and 

chloro- and methyl phenol (Hollender et al. I994), but has not been shown to possess the 

a b i l i ~  of degrading both NB and NPs. Acidovorax deZa$eZdii strains were also reported as 

degraders of aromatic compounds (Dercovii et al. 1993; Goyai and Zylstra 1996; Oppenberg et 

ai. 1995; Hoiiender et ai. 1994), but never reported as NB or NPs degraders. The significance 

of degradation of N B  by degraders of phenolics c m  be estimated by the fact that phenolic 

compounds are ofien found as the chernical or biological transformation products of the non- 

hydroxylated parent compounds (Carey 1992). The degradation mechanism of NB and NPs in 

this enriched culture is being addressed at the pure culture level, and toxicities of these 

chexnicals and other factors to microbial growth and biodegradation are being evaluated. 
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Table 2.1. Acclimation of YPS-grown activated sludge culture with NPs and idluence of NP 
concentration on NPs removal by the acclimated culture 

Inoculum NPs concentration (msg/l))L Tirne of NPs removalc (h) 
Acctirnation of activated sludge 
with NPs 

Unacclimated cultured 
Above 96 h cultured 60 3 1 
Above 3 1 h cultured 60 21 

Ratio of 2-NP: 3-NP: 4-NP = 1: 1 : 1 
NPs (99% purchased fiom Sigma, St Louis, MO) stock solutions were prepared at a 
concentration of 10 mdml in Methanol (HPLC grade, 99.8%, obtained h m  EM Science, 
Gibbstown, NJ) 
N P  removal was observed visually at the point of disappearance of the yellow colour 
and was then confirmed by HPLC anaiysis. 
Lnoculum rate: 5%; incubation media: basal salts/TMS. 
Unacclimated culture: activated sludge culture pre-grown in YPS medium. 



Table 2.2. Infiuence o f  NB concentration on NPs removal by the NPs enrichment' 

Lnoculum (rnixed culture) 1 NB2 conc. 1 Time for 
Enriching procedure 1 (mgA) 1 NP removal(h) 

2 NB: 99% pure, purchased fiom British Drug House, Toronto, Ont. Stock solution was 
prepared by dissolving 1.00 ml of  NB in 20 ml o f  methanol to give a concentration of 
60 mg/mL 

1 1 d r 457 1 no degradation 
1 NP/conc(mg/l): 2-NP/20; 3 -NP/20; 4-NW20 



O 5 10 15 20 25 30 35 

Incubation tirne*) 

Figure 2.1 Degradation of three mono-nitrophenols mixture by NPs enrichment (no YE) 



O 5 10 15 20 25 

Incubation time (h) 

Figure 2.2 Degradation of three mono-nitrophenois mixture by NPs enrichment (O. I%YE) 
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Figure 2.3 Biodegradation of nitrobenzene by NPs e ~ c h e d  mixed cultures in the absence 

of N P s  
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Figure 2.4 Degradation of nitrobenzene by NPs enriched mixed culture in the presence of N P s  



TabIe 2.3. Influences of NP and NB concentration on degradation 

by the NPs enrichment(inocu1ation: NPs-grown culture, OD=0.26) 

NB and NPs conc. (mg/l) 
NPs* NB 

60 2 
60 10 
60 30 
15 2 
15 10 
15 30 
O 2 
O 10 
O 30 

Degradation (&er 48 h, %) 
NB 4-NP,3-NP 2-NP 
15 99 58 
47 99 5 1 
24 99 27 
92 99 99 
68 99 99 
36 99 99 
92 
66 
65 

* Ratio of 2-NP : 3-NP : 4-NP = 1: 1: 1 



Table 2.4. Degradation of NPs and NB mixture by isolates fi-om the N P s  
enrichments and their identifications lo2 

lsolates Degradation (%) 
4-NP 3-NP 2-NP NB 

Comamonas teslosteroni NPs-4 98 54 38 35 
Comamonas fesfosteroni NPs- 1 3 32 41 53 49 
A cidovorax delafleldii NPs- 1 5 55 29 37 44 
Con7amortas feslostero~zi NPs-24 69 40 55 46 

1 Inoculation is 24 h YPS grown celis and initia1 OD is 0.8-1 .O; Medium: 
2mgL NB and 5mgL 2-NP, 3-NP,4-NP, O.lYoYE, 4days 

2 lsolates were identified using MIDI-Microbial Identification System 
based on fatty acid 



3. PROCESS FOR DEGRADATION OF NITROBENZENE: COMBINING 

ELECTRON BEAM IRRADIATION WITH BIOTRAE3SFORMATION' 

3.1. Abstract 

Electron beam irradiations of aqueous solutions containing 15-3 0 mg/L of nitrobenzene 

at 6OkGy dose removed 78% of the contaminant. Three mono-nitrophenols were detected as 

byproducts of electron beam treatment of nitrobenzene. A mixed culture emiched on a mixture 

of 2-, 3- and 4-nitrophenol degraded both the residual nitrobenzene and the nitrophenol 

products. Percentage removal of nitrobenzene increased with increasing electron beam dose. 

This observation led to the conceptua1 design of a two-stage electron beam rnicrobid process 

for degradation of nitrobenzene. Three groups of pure isolates were characterized fiom the 

mked culture based on their abilities to grow on corresponding nitrophenol substrates: group 

A 2NP3WirNP'; group B, 2NP'3NP'4NP and group C, 2NP3NP411W. Bacteria that grew 

on 3-NP transformed nitrobenzene into ammonia in the electron beam treated nitrobenzene 

sarnples. 

3.2. Introduction 

Nitrobenzene (NB) is one of the fastest growing end use synthetic products of benzene, 

world demand of which was estimated to be growing at an annual rate of 3.1% (R~chard 

1996). NB has been used to produce aniline, and as an organic solvents, and has been widely 

dispersed in water and soi1 causing great environmental concem (Hartter 1984; Howard 1989). 

The strong electron-withdrawing property of the nitro group of NB causes resistance to 

aerobic biodegradation (Mackey et al. 1995). NB and some of its transformation metabolites, 

such as nitrosobenzene, hydroxylaminobenzene and aniline, exhibited toxic and mutagenic 

effects on biological systems (Cho and Lindeke 1988; Gorontzy and Blotevogel 1993; Mansuy 

et al. 1978; Schackmam and Muller 1991; Thompson et al. 1983). Exploration of effective 

methods for its degradation represents an important research challenge. 

" This paper Iras been acçepted by Biotechnology and Bioengineering. Co-authors are Owen Ward, Piotr 
Lubicki, James D. Cross, and Peter Huck. 
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Advanced oxidation processes (AOP) are water treatment processes implemented 2t 

ambient temperature which involve generation of highly oxidative chemical species as 

decomposers of organic chernicals (Carey 1992; Glaze et al. 1992). These AOP processes are 

not very efficient in generating hydroxyl radicals and are sensitive to the presence of hydroxyl 

radical scavengers. Longer irradiation or reaction durations are needed to treat wastewater 

with high concentrations of poiiutants and radical scavengers @erg et al. 1994). AOP 

pretreatments have led to enhanced biodegradation of some aromatic compounds such as 

PCBs (polychlorinated biphenyls) and PAHs (polynuclear aromatic hydrocarbons) (Aronstein 

et al- 1995; Carbeny et al, 1995; Martens et al. 1995). 

Radiation is a source of  hi@-energy particles, which decompose water molecules into 

hydroxyl radicals, hydrogen atoms and electrons (Buxton 1987). Degradation of NB by 

radioactive irradiation has been reported, but such methods are a cause of public concem 

(Cechova et al. 1987; Kumc et al. 1994). An electron beam, consisting of hi&-speed electrons, 

is considered to be a safer and more effective method for removal of environmental pollutants 

from aqueous solution (Cooper et al. 1992a,b; Frank 1995; Geoff et al. 1996; Kumcz et al. 

1991; Nickelsen et al. 1994; Wang et ai. 1994). 

A mixed culture e ~ c h e d  on a mixture of 2-, 3- and 4-nitrophenol (NP) was previously 

reported to degrade both NP and NB, but satisfactory removal of NB (92%) was only 

achieved at low concentrations of the contaminant (2mgL) (Zhao and Ward 1999). The 

objective of this paper is to investigate the application of a combination of electron beam 

pretreatment with biodegradation to transform high concentrations of NB. 

3.3. Materials and methods 

3.3.1- Chernicals and stock solutions 

2-, 3- and 4-NP were purchased fiom Sigma (St Louis, Mo). NB was obtained from 

BDH (Toronto, Ont) (99%). Methanol was obtained from EM Science (Gibbstown, NJ) 

(HPLC grade, 99.8%). Stock solutions: 2-NP, 3-NP, 4-NP and NB were dissolved in methanol 

to give a concentration of lOmg/ml. 



3.3.2. Electron beam degraddion of aqueous solutions of NB 

Aqueous (in deionized water) solutions containing 15 mg/L. and 30 mg/L of NB were 

subjected to electron beam treatment. The low voltage electron beam facility located in the 

high-voltage lab in the Department of Electrical Engineering, University of Waterloo was used 

for these tests (Lubicki et al. 1997). A schematic diagram of this electron beam apparatus is 

presented in Figure 3.1. A 10 pm boron nitride window was used, which aiiowed more than 

90% transmission of the electron beam for an applied voltage of about 100 kV. 2 L of liquid 

sample was circulated to pass the electron beam wïndow at a fked rate of 1 L/rh. 100 kV 

voltage was applied with the electron current of 0.1 to 0.3 mA. The circulating time and the 

current controlled the dose applied to the sample. Total dose: D= 

I(current)V(voltage)T(circulation timc)/F (flow rate). If V= 1 00 kV, I=0.2 mA, FR= i Kgsec, 

t=10 min, D=0.2 rnA X lOOkV X (10 X 60) sec =12 kGy. The electron beam was stopped 

f i e r  certain duration to take a sample for analysis of NB and products. To increase electron 

beam dose, the electron beam gun was re-primed to radiate the flowing NB solution for 

additional time as required. 

3.3.3- Media 

Basic salts liquid medium contained (g/l): KI-I~POJ, 1; NazHPOJ 22H20, 7; femc 

citrate, 0.04; Ca& 2H20, 0.1; MgSOj 7H20, 0.3; pH 7.35. Trace metals solution 

(TMS)(mg/l): FeClj 6 H S ,  162; ZnCl2 4&0, 14.4; CoC12 2H20, 12; Na2Mo04 2H20, 12; 

CaC12 2H20, 6; CuS04 5&0, 1900; H3B04, 50; HCI, 0.44 mole. Basic sa!ts/TMS medium 

were basic salts medium supplemented with TMS (3 ml/L). Basic salts/TMS/YE medium was 

the basic salts medium supplemented with TMS (3mVL) and stenle yeast extract (lg/L). YPS 

medium (g/l): yeast extract, 10; Bacto peptone, 10; NaCI, 5.  Nitroaromatics, TMS, yeast 

extract were added into autoclaved liquid media before incubation or before pounng plates. 

The medium was autoclaved at 120°C for 30 min. 



Figure 3.1. Schematic diagram of electron beam apparatus (LV: low voltage 
source; HV: high voltage source) 



3.3.4. Biodegradan'on of electron beam prefteated NB sampIes 

Afier incubating the NPs enrichment in basic salts/TMS/YE medium containing 20 

m a  of2-, 3- and 4-NP for 24 h, the cells were recovered by centrifugation (8832 g) fiom 1 

ml of liquid culture and were suspended into 1 ml of saline. Then the saline cells suspension 

was inoculated into 10 ml of the degradation medium, which was composed of  2 ml of five 

times concentrated basic salts/TMSrYE medium and 8 ml electron beam treated NB solution. 

The medium was incubated on a rotary shaker at 180 rpm, 26OC for 48 h. 

3.3.5. Isolation of pure cultures front n mired culture enriehed on a mixture of 2-, 3- and 

4-NP- municipal activated sludge 

A mixed culture enriched from the municipal wastewater treatrnent plant (Waterloo, 

Ont), with a mixture of 2-, 3- and 4-NP as the sole carbon and Ntrogen sources, was reported 

previously (Zhao and Ward 1999). It was maintained in the basic salts/TMS media 

supplemented with 20 mgA of 2-, 3- and 4-NP. To isolate pure cultures fiorn this mixed 

culture, it was incubated in the basic s a l t s I U S  media supplemented with either individual NP 

or  a mixture of three NPs as the sole carbon, nitrogen and energy source(s). When NP had 

disappeared, the culture was transferred into fresh media of the sarne composition. This 

process was repeated for up to fifieen times to enrich bactena growing on the corresponding 

NP substrate(s) of interest. Bacterial growth was observed during this enrichment process by 

the increase in turbidity of liquid media. The liquid e ~ c h m e n t s  were streaked ont0 fiesh YPS 

agar plates and colonies were chosen after 72 h incubation at 26 OC. Isolates were purified by 

restreaking them onto £kesh YPS agar plates twice. NP degradation capacity of isolates was 

evaluated by inoculating the isolates, freshly grown on YPS, into basic salts media 

supplemented with individual NP or a mixture of 2-, 3- and 4-NP. Removal of 2-NP and 4-NP 

was indicated by the disappearance o f  their yrilow colour and was confirmed by HPLC. 

Removal of 3-NP and NB was monitored by HPLC analyses. Growth of  pure culture on NP 

was indicated by an increase in biomass (OD6oom) in the basic salts media supplemented with 

corresponding substrate(s). Mirite was measured according to US EPA method 354.1 @PA 

1979). Nessler's regent (VWR scientinc products, West Chester, PA) was used to  qualitatively 

test for ammonia. 



3.3.6. Degradation of NP and NB by pure cultures 

To assess NP degradation capacity of pure cultures, fi-e'shly YPS-grown cells of isolates 

were inoculated into 2.5 ml of basic saits/'TMS media supplemented with individual NP (20 

mg/L), or a mixture of three NPs (each isomer is 20 mg/L), with or without 0.1% of yeast 

extract. The production of nitrite and ammonia was analyzed in the yeast extract-fiee 

degradation media. 

To study biotransformation of NP and NB by resting cells, cells grown in the presence 

or absence of 3-NP were harvested in the followùlg way. The inoculated Sm1 of basic 

salts/TMS/YE media supplemented with 20 mgiL of 3-NP were incubated overnight. These 

cultures were transferred into 500-mi flasks containing 100 ml of media of the same 

composition. During a 26-h incubation, yeast extract and 3-NP were fed at the following times 

{ time(h)/YE(%)/3 -NP(mg/L) ) : 7/0.1/20; l4/0/2O; 22/0.1/20; 25/0/20. The cuiture was 

centrihged (16,300 g, 15 min) and the ce11 pellet was washed with 50 mi of the phosphate 

buffer (25 rnM, pH 7.3) once. The harvested cells were re-suspended in 6 ml of saline. Cells 

grown on yeast extract alone were also harvested by parallel incubations of bacteria in the 3- 

NP-free media. 0.3 ml of ce11 suspensions were added into 2.5 d of phosphate buffer (25 

mM, pH 7.3) in 20-ml of vials with the caps loosened to maintain aerobic conditions. Ce11 

density in these biotransformation media ranged fi-om 1.2 to 3.5. The concentration 

of individual NP or NB was 20 mg/L. The biotransformation reactions were conducted at 26 

OC on a rotary shaker at 180 rpm for 2 h. 

3.3. Z Bacterid identification 

MlDI fatty acid method (MIS; Mïcrobiai ID Inc. wn, Newark, Del.): The medium 

for fatty acids analyses was Trypticase soy broth agar. Fatty acid composition was analyzed by 

a standard gas chromatoraphic (GC) analysis. Isolate identification was based on the sirnilarity 

between the fatty acids GC profile of the organism and those in the database. This method 

requires a minimum similarity index of 0.3 with a minimum of 0.1 between the first 

identification and any secondary identification. 

Identification by GN MicroPlate of Biolog system @iolog, Inc., Hayward, CA)( 

Bochner 1989): The isolate was grown on TSA agar plate (~rypt icase~ Soy Agar, Becton 

Dikinson and company, Cockeysville, MD) at 30°C for 46 h. Agar-Eee ceils were suspended 



in sterile saline by gently picking up cells fiom the agar using a wet sterile swab. 150 pl of ce11 

suspension with transparency of 49% (required range for Biolog system: 48.5-53%), measured 

by specific Biolog spectrophotometer and gIass tubes, was inoculated into every well of the 

95-tests GN MicroPlate panel, The MicroPlate was incubated at 30°C for 24 h, and the pattern 

of the colour reaction on the panel was scanned for cornparison with those of typical gram 

negative bacteria in the database. Identification was positive only when a sirnilarïty index of 0.5 

as minimum for 24 h incubation was found between the carbon source profile of the unknown 

strain and those of typical strains in the library of the Biolog system. 

Biochernical tests and motility of isolates were done according to conventional 

methods. 

3.3.8. HPLCanrrlysis 

The HPLC analysis was performed on a 3.9 X 300mm @ondapakThf C l 8  column 

(Waters, Milford, MA). The apparatus consists of two Shimadzu LC-600 pumps, a Shimadzu 

SPD-6A UV spectrophotornetric detector and a sample injector 7125 (dl components are fiom 

Shimadzu Corporation, Kyoto). Samples (15 pl) were injected and eluted with methanol and 

milliQ water (O. 1% acetic acid). For NP solutions, solvents were delivered at the rate of 0.22 

(methanol) and 0.78 (rniIliQ water) mürnin. For NB samples, solvents were delivered at the 

rate of 0.55(methanol) and 0.45 (milliQ water) d m i n .  Compounds were monitored at UV 

A25Jm. The linear equations obtained fiom standard samples were used for the quantitative 

analyses of every NP isomer and NB. Dilution was needed for samples with the concentration 

of more than 6 rng/L. AU the analytical data were obtained in duplkates. 

Samples fiom biodegradation tests were subjected to centrifugation at 8832 g for 3 

minutes to remove the cells. To analyze N P s ,  the aqueous sarnple was acidified to pH 2-3 and 

then extracted with ethyl acetate. 0.9 ml of supernatant or electron beam treated solution was 

mixed with 0.1 ml of 0.4 N HCI solution in a 4-ml of arnber glass via1 with screw tightened and 

Teflon-lined caps. Ethyl acetate, 1 mi, was added and vortexed for 1 min, The ethyl acetate 

layer was injected into the HPLC column for analyses of 2-NP and NB. To analyze low 

concentration of 3- or 4-NP in the electron beam treated samples, the ethyl acetate extract was 

concentrated by drying under nitrogen and the residue was re-dissolved into srnaller amount of 

methanol. When standard nitroaromatics 0 0 . 5  mglL) were added to the killed cells (boiled for 



1 min), 95% of then were recovered fiom the aqueous phase under the sarne analytical 

conditions, therefore we concluded that the celis do not retain NB and NPs (Zhao and Ward 

1999). HPLC detection Iimit: 2- and 3-NP, 0.25 m a ;  4-NP, 0.5 mg/L; NB, 0.05 m a .  

3.4. Results 

3.4.1. Electron beam treafment of NB 

The enèct of electron bearn treatment of an aqueous solution of NB was determined as 

a tùnction of total electron beam dose. Initiai NB concentrations were 15 and 30 m a .  NB 

concentration decreased as electron beam doses increased (Figure 3.2). Percentage removal 

rates were the same at both NB concentrations. At dose rates of 40and 60 kGy removal rates 

were 60% and 78%, respectively. 

As a result of the electron beam irradiation of NB, a yeliow color was produced in the 

aqueous solution suggesting a conversion of NB to yeliow nitrophenolic compounds. 

Production of 2-, 3-, and 4-NP was confirmed by HPLC analysis (Figure 3.2). At the point of 

maximum NP production, concentration of 2-NP was greater than the combined 

concentrations of 3- and 4-NP. Total NPs were also determined and up to 3.5mg/L of total 

N P s  was accumulated in the 30 mg/L NB sample. Total NPs dso diminished as a result of 

increasing electron bearn dose rate. 

3.4.2. Biodcgradniion of electron beam hcared NB sample by a mired culture 

A mixed culture, capable of degrading NP and low concentrations of NB (Zhao and 

Ward 1999), was used to treat a NB solution &en it was treated with different electron beam 

doses. M e r  the electron beam pretreatment at 60 kGy dose and biological degradation, the 

concentration of NB was reduced fiom 15 mg+ of NB to below the analytical detection lirnit 

of 50 pgL Figure 3.3). In the uninoculated controls and controls with killed cells, no removal 

of NB and NP was observed. Killed cells did not retain NB or NP under the experimental 

conditions and did not S e c t  their analysis. 
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3- 4.3. Isolation and chatacten~zaîion of NP-degrading pure cultures 

Nitroaromatics-degrading pure cultures were isolated after the mixed culture was 

intensively sub-cultured on either individuai NP or a mixture of three NPs as the sole carbon 

and nitrogen source(s). AI1 strains were gram negative rods and positive in both catalase and 

oxidase enzyme activity. They al1 grew on YPS media with an optimal temperature of 30°C. 

These strains were classified into three groups according to their growth substrate selectivity 

on NP- 

Group A was designated as 2NP3AF4NP' as growth was observed on 4-NP, but not 

on 2- or 3-NP. The bactena were slightly yeIlow colored and were non-rnotile. They oxidized 

but did not ferment glucose and fi-uctose. Fatty acids profiles showed that the closest match for 

their identification was Psezidomonas sp. The simiiarity indexes of these 4-NP degraders with 

P. putida were high, ranging fkom 0.70 to 0.9. Nitrite was produced fiom 4-NP degradation. 

Group B was designated as 2 N P ' 3 N P ' J .  based on their growth substrate selectivity. 

They were motile and oxidized but did not ferment glucose and fructose. Fatty acids profiles 

analyses indicated that they were close to Psez(dornonas sp. The sirnilarity indexes of some of 

these strains with P. prtida were very high (>0.9), while others manifested high similarity 

indexes with P. fltrotescens (B0.84). Biolog substrate profiles analyses also showed they were 

close to Psez~domoms sp. Their Biolog similarity indexes with P. putida were more than 0.66. 

Therefore we concluded that these strains belonged to the genus Pseudomonas. Nitrite was 

produced fiom 2-NP and ammonia was produced fiom 3-NP. 

Group C ( Z A P 3 A P ' 4 W )  grew on 3-NP, but not on 2- or 4-NP. The strains were 

non-motile, and did not oxidize or ferment glucose and tnictose. One strain, bright yellow in 

color, exhibited a similarity index of more than 0.8 with Vmiovormcparadoms using both the 

MIDI and Biolog rnethoods. Therefore we identified it as Variovorax sp. Another strain, C20, 

had white and mucoid colonies. It grew weU at 37°C but little at 20°C. Its favored Biolog 

substrates were organic acids and amino acids but not carbohydrates except for a weak 

reaction on D-fnictose. Its closest similarity indexes to strains in the Biolog and h4IDI database 

were <0.3, suggesting there were no matching cultures in the database. Further data are 

needed for its identification. This strain degraded 3-NP with release of amrnonia. 



3.44. Biodegradation of NB by NP degroding pure CU ltures 

Removal of NB by pure cultures of the three isolate groups was investigated. Resting 

cells of group A ( 2 W 3 W 4 W ' )  did not show significant degradation capacity toward NB. 

Group B (2NP'3AP'JW) and C (2NP3NP44P)  showed NB degradation activity. Thus 

isolates which coutd grow on 3-NP degraded NB. 

Transformation activities of NB and NP by resting ceHs of strains fiom group B and C 

(2NP8, C23 and C20) were tested individually in the ceIl suspension with ceUs grown in media 

containing YE in the presence or absence of 3-NP. The most important information observed 

in Table 3.1 is that each strain when grown on 3-NP had the ability to completely transform 

NB with release of amrnonia. The results showed some differences in the degradation pattern 

of NPs. Cells grown in the absence of 3-NP did not degrade NB. In a detailed characterization 

of the metabolic process for NB transformation by 2NP8 (Zhao and Ward 2000), we have 

identified the transformation intenediates and confinned that the stoichiometric release of 

ammonia occurred. These results suggested that the 3-NP-degrading strains present in the 

mixed culture had the capacity to degrade the residual NB in the electron beam treated 

samples. 

3.5. Discussion 

A novel NB degradation process combinïng electron beam irradiation with biological 

treatment has been described. Transformations involved in this two-step NB degradation 

process in summarized in Figure 3.4. To the best of Our knowledge, use of an electron beam 

process to degrade nitroaromatic compounds has not been reported previously. 

Chernical degradation of NB and production of NP has been observed when an aqueous 

solution of NB was treated with CO" (Cechova et al. 1987; Cefova et al. 1986)' Ti02 

(Dieckmann and Gray 1996; Maillard-Dupuy et al. 1994; Mïnero et al. 1994), or Fenton's 

reagent (Lipczynska-Kochany 199 1, 1 l992b). Degradation of 4-NP mediated by TiOz or 

Fenton's reagent was also described. 



Table 3 -  1 .  Biotransfonnation substrate selectivity of resting cells of 3-NP degraders 

grown on yeast extract in the presence or absence of 3-NP. 

Group 

Bactena 

Pseudomonas 

sp. 2NPS 

Variovorax 

paradoxus 

C23 

medium 

Yes 

No 

Yes 

No 

Yes 

Biotransfomation 

( O D d  1 Substrate 1 % substrate 1 Nitrogen 

form released 

1.3 NB LOO m3 



Our results showed that the percentage of  NB removal at 15 or  30 mg/L was the same 

when the solutions were treated with same dose of electron beam. Cooper et al (1993qb) 

described that the electron beam dose for 90% removal of other contaminants, such as 

polyhalogenated methane and ethylenes, at various concentrations of pollutants was also the 

same. Electron beam was reported to be used for removal of micro pollutants at the ppb 

(pg/L) level in drinking or groundwater (Cooper et al. 1992 a,b). The decrease in removal 

efficiency per dose of electron beam irradiation was apparent as poilutant concentration 

decreased (Figure 3.2, this report; Cooper et al. 1992a,b), 

High concentrations of NB are toxic to bacteria, such as for Pseudomonm pzrfida, 

where the toxic threshold for ce11 multiplication was reported to be 7mgL (Verschueren, 

1983). We characterized the toxicity of NB to nitroaromatics-degrading bacteria in municipal 

activated sludge and observed oniy a 50% removal of NB by this nitroaromatic-degrading 

mixed culture when the NS concentration was more than 10 mg/L (Zhao and Ward 1999). NB 

concentrations in aniline plant wastewater were reported to be as high as 2010 m g L  (Patil and 

Shinde 1988). Pretreatment to reduce the concentration is necessary prior to a biological 

treatment. The process reported here first reduced NB concentration by conversion to NP and 

then used a mixed culture to degrade the NP products and NB, achieving complete removal of 

NB (1 5 mg/L). Without electron beam pretreatment, the NPs-enrichment only could degrade 

low concentration of NB (2 mg/L) (Zhao and Ward 1999). NPs are more biodegradable 

compounds and are more supportive of bacterial growth in municipal activated sludge than NB 

(Zhao and Ward 1999). Using N F s  degraders to degrade NB avoids the difficulty of enriching 

NB degraders on NB. 

Combinations of AOP and biodegradation have been reported to remove priority 

pollutants with enhancement of biodegradation (Aronstein et al. 1995; Lee and Carbeny 1992; 

Martens and Frankenberger 1995). co60 y-rays (Taghipour and Evans 1996) or high-energy 

electron beam (Wang et al. 1994) irradiation improved the biodegradation of the recalcitrant 

chlorinated compounds in puip and paper miU effluent. 

Bacterial strains isolated fiom the mùred culture, identified as being similar to 

Pseudornonas sp and Vmiovorax sp, could degrade NB and NPs in the electron beam treated 

samples. Pseudonromzs species have been reported as degraders of nitroaromatic compounds 



(Marvin-Sikkema and de Bont 1994; Spain 1995). An oxygenase-initiated pathway with the 

release of nitrite was described for degradation of 4- and 2-NP (Spain 1995; Zeyer and 

Knearney 1984). Detection of nitnte fiom 2- or 4-NP degradation by pure cultures isolated in 

this report suggests a similar oxygenase-initiated degradation pathway. For those bacteria 

reported to grow on 3-NP as the sole carbon and nitrogen sources, the nitroreductase was 

found to initiate degradation of 3-NP with production of ammorüa (Meulenberg et al. 1996; 

SchenzIe et al- 1997). Our observation of ammonia production fiom degradation of 3-NP by 

the three 3-NP degraders was consistent with these iiterature results. To the best of Our 

knowIedge, production of amrnonia from 3-NP degradation by 3-NP-degrading bacteria, and 

nitroaromatics degradation activity in Vmiovorax sp have not been reported previously. 

Only cells grown on 3-NP substrate degraded NB. The mechanism of NB 

transformation by 3-NP-degrading pure cultures is currently being investigated. 
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4. COMETABOLIC BIOTRANSFORMATION OF NlTROBENZENE BY 3- 

MTROPHENOL DEGRADXNG PSEUDOMONRT PUTDA 2NPaa 

4.1. Abstract 

A strain of Psetidomo~tmputidiA (2NP8) capable of growing on both 2-nitrophenol and 

3-nitrophenol, but not on nitrobenzene, was isolated fiom municipal activated sludge. 2- 

Nitrophenol was degraded by this strain with production of nitrite. Degradation of 3- 

nitrophenol resulted in the formation of ammonia. Cells grown on 2-nitrophenol did not 

degrade nitrobenzene. A specific nitrobenzene degradation activity was induced by 3- 

nitrophenol. Ammonia, nitrosobenzene and hydroxylaminobenzene have been detected as 

metabolites of nitrobenzene degradation by the cells grown in the presence of 3-nitrophenol. 

These results indicated a NB cometabolism rnediated by 3-nitrophenol nitroreductase. 

4.2. Introduction 

Nitroarornatics have widespread applications as solvents, rnanufactunng raw materials 

for dyes, pharmaceuticals and explosives. Among the nitroaromatics, nitrobenzene (NB) is 

one of the fastest growing end use products of benzene, world demand for which is growing at 

an annual rate of 3.1% and will reach 30.6 million metic tons in 2000 (Richard 1996). Tt is 

acutely toxic (Hartter 1984; Richard 1996) and is a prionty pollutant (Keith and Telliard 

1979). Due to the strong electron-withdrawing property of the nitro group, it is resistant to 

aerobic biodeçradation (Mackey et al. 1995). 

Biodegradation of nitroaromatics has received much attention recently (Gorontzy et al. 

1994; Higson 1992; Marvin-Sikkema and de Bont 1994; Spain 1995). Attack on the nitro 

group attached to the benzene ring is usually the key step in its metabolism. Under both 

aerobic (Schackrnam and Muller 1991) and anaerobic conditions (Gorontzy et al. 1994), the 

electrophilic nitro group of nitroaromatics can be subjected to fortuitous reduction by 

unspecific reductase with amines as dead end and toxic products. In spite of the resistance of 

nitroammatic compounds to aerobic degradation, aerobic bacteria growing on them have been 

isolated fiom their contaminated sites. Two main strategies were found in these bacteria to 

" Tlus paper lias been pubLished in the Canadian Journal of Microbiology (2000). 46: 643652. Co-author is 
Owen P. Ward. 



initiate degradation of mono or di-nitrated aromatics. Oxygenase-initiated release of nitrite 

occurred on degradation of 2-nitrophenol (NP) (Zeyer and Kearney 1984), 4-NP (Hanne et al. 

1993; Spain and Gibson 1991), dinitrophenols (Bruhn 1987; Ecker et al. 1992), NB(Nishino 

and Spain 1995), 2-nitrotoluene (Haigler et al. 1994), and 1,3-dinitrobenzene (Dickel and 

Knackmuss 1991). A nitroreductase initiated nitro group reduction leading to formation of 

arnmonia was comonly found for degradation of NB (Nishino and Spain 1993; Park et al. 

1999) and 4-nitrobenzoate (Groenewegen et ai. 1992) and 3-NP (Meulenberg et al. 1996; 

Schenzle et al. 1997). 

For multinitrated aromatic compounds, such as di- or tri-nitrophenols and toluene, a 

direct reduction of the nitrated benzene ring by hydrogen ions with the release of nitnte was 

reported under aerobic conditions (Duque et al. 1993; Lenke and Knackmuss 1992a; Lenke et 

al. 1992b; Vorbeck et al. 1994). Anaerobic degradation of tnnitrotoluene (TNT) with 

production of ammonia as a nitrogen source for growth of Deszrlfovibrio sp. was reported 

(Boopathy et al. 1993). 

While NB-degrading pure cultures have been isolated from nitroarornatics 

contaminated sites, NB tends to be persistent in the environment. Estimated half-life of NB in 

the environments such as surface water, ground water and soi1 ranged fiom two days to as 

high as more than 625 days (Mackey et al. 1995). Important factors key to biodegradation of 

nitroaromatics include induction of a nitro group removing enzyme and growth of the 

bacterium producing this enzyme. Inertness and the electron deficiency of the nitrated 

benzene ring would not favor aerobic degradation and bacterial growth, but substituents such 

as hydroxyl groups on the benzene ring would improve aerobic biodegradability according to 

the well-documented structural and biodegradability relationship (Klopman et al. 1992; 

Boethling et al. 1994). It is also known that some enzymes have relaxed substrate selectivity 

(Marvin-Sikkeman and de Bont 1994; Delgado et aI. 1992), and this led us to postulate that 

nitro-group attacking enzymes of NP-degrading bacteria might effect NB degradation. 

Therefore we set out to explore degradation of NB by a NP degrading pure culture. 

In this paper we report the isolation of a strain of Pseudornonas pufida (2NP8), 

capable of growing on 2-NP and 3-NP, fiom municipal activated sludge. NB did not support 

growth of this strain either as a carbon or nitrogen source, however cells grown in the 

presence of 3-NP eEected CO-rnetabolic degradation of NB with release of ammonia. A 



nitroreductase-initiated route for NB degradation in the 3-NP grown cells was demonstrated 

by identification of nitrosobenzene (NOB) and hydroxylaminobenzene (HAJ3) as metabolites 

fiom NB. 

4.3. Materials and methods 

4- 3.1. Cheniicals 

2-NP, 3-NP, 4-NP, nitrosobenzene (NOB) were purchased fiom Sigma (St Louis, 

Mo). NB was obtained fiom British Drug House (Toronto, Ont) (99%). Methanol was 

obtained from EM Science (Gibbstown, NI) W L C  grade, 99.8%). Hydroxylaminobenzene 

(Hm) was prepared according to literature method (Fumiss et aI. 1989) and its structure was 

confirmed by melting point and UV spectrum. 

4-3.2. Media 

Stock solutions of NPs: 2-NP, 3-NP and 4-NP were dissolved in methanol to give a 

concentration of each isomer of lOmg/ml. NB stock solution (IL) contained lm1 of NB 

dissolved in methanol to give a concentration of 60mg/ml. Basic salts liquid medium 

contained (dl): -PO4, 1; Na2HP04 12H20, 7; ferric citrate, 0.04; CaC12 2H20, 0.1; MgS04 

7H20, 0.3; 3ml trace metal solution; pH 7.35. Trace metals solution (mgîl): FeCI3 6H20, 162; 

ZK12 4&0, 14.4; CoC122H20, 12; NazMo042H20, 12; CaC122H20, 6; CuS045H20, 1900; 

H3BO4, 50; HCI, 0.44 mole. 'Mess  otherwise noted, the basic salts medium contained 20 

mg/L of each of three NP isomers: 2-NP, 3-NP and 4-NP (NPs basic medium) or single NP 

isomer (NP basic salts medium). Yeast extract (YE), O.Z%, was added into the above NP(s) 

basic salts medium to form NP(s)/YE basic salts medium. YPS medium contained (g/l): YE, 

10; Bacto peptone, 10; NaCI, 5. Nitroaromatics, Sterile TMS and YE were added into 

autoclaved liquid media before incubation or before pouring plates. Agar media contained 2% 

agar. Media were autoclaved at 120°C for 30min. 

4.3.3. Bacterid isolation and growth 

Enrichment of the nitrophenols (NPs)-degrading mixed culture fiom the activated 

sludge of the municipal wastewater treatment plant (Waterloo, Ont) was reported earlier 

(Zhao and Ward 1999). The mixed culture enriched on NPs was maintained in NPs basic salts 

medium. The fiesh culture grown in NPdYE basic salts medium overnight was inoculated 

into 50 mi of 2-NP or NPs or 3-NP basic salts medium in a 250 ml clear glass Erlenmeyer 



flask. Bacterial incubation was conducted at room temperature, shaken on an orbital shaker at 

200 rpm. The ovemight culture was transferred into fiesh NP(s) basic salts medium. M e r  

subculturing twelve times within two weeks, the cultures were streaked on YPS agar plates 

and the isolated colonies were re-streaked on YPS agar to assure purity. Pure cultures were 

maintained on YPS agar plates. Degradation of NP or NB by isolates was assessed by 

inoculating fiesh cells into NP or N B  basic salts medium. Growth of Pseudomonas puh'da 

2NP8 on hT as sole carbon or nitrogen source was conducted by first growing in 2 - W / Y E  or 

3-NP/YE basic salts media, and then cells were harvested and washed to be used as inocda. 

Al1 tests of P. putida 2NP8 refated to growth on NB or NP or biodegradation of NP or NB by 

growing cells were conducted in 50 ml of basic salts media in foam-plugged 250 ml clear 

glass Erlenmeyer flasks on an orbital shaker at 200rpm, 26 OC. Bacterial growth was 

monitored by detecting OD at 600nm in a 1 cm Iight path or by measunng ce11 counts. 

Bacterial identification was performed by the standard MIDI f a m  acid method (MIS; 

Microbial ID Inc. W I ] ,  Newark, Del.). The medum for fatty acids analysis was Trypticase 

soy broth agar and fatty acid composition was analyzed by a standard gas 

chrornatographic(GC) analysis. Isolate identification was based on the sirnilarity between the 

fatty acids GC profile of the organism and those in the database. This method requires a 

minimum similarity index of 0.3 with a minimum of O. 1 between the first identification and 

any secondary identification. 

4.3.4. Prepnration of P. putida 2NP8 cells p v n  in the presence of 3-NP and degradation 

of NB and nitrosobenzene (NOB) 

P. ptida 2NP8, maintained on YPS a g a ,  was inoculated into 5 mi of YPS liquid 

medium and grown for 24h. Unless otherwise noted, the strain was grown in the following 

steps in clear glass Erlenmeyer flasks at 26 OC, 200 rpm on an orbital shaker. This culture was 

transferred into 50 ml 3-NP/YE basic salts medium in a 250ml flask and grown ovemight. Al1 

of the 50ml culture was transferred into 375ml of 3-NP/YE basic salts medium in a 2L flask. 

In the medium, 3-NP and YE concentration were 20 mg/L and 0.1%, respectively. M e r  5h of 

shaking, the same amounts of 3-NP and YE were fed to the medium to facilitate growth for an 

additionai two hours. Then the same amount of 3-NP alone was fed to further induce 3-NP 

degrading enzymes for 1 hour. Final ce11 density was 1.6 (OD 600nm, lcm light path). Cells 

were harvested by centnfiging at 16,300g for 15 min and washed with lOOml of stenle 



phosphate buffer (KH2P04, IgA; Na2HP04 12H20, 7g/L; pH, 7.35). Freshly prepared cells 

were used immediately for biotransformation of NB, NOB or NP. A similar procedure was 

used to prepare 2-NP-grown cells for biotransformation of NB and NP (Table 1.). Unless 

otherwise mentioned, the bottles used for NB andlor NP biodegradation were 401111 amber 

glass with the Teflon/silicone septa lined caps. The 3-NP fieshly grown cells fiom the above 

375 ml medium were suspended in 12 ml phosphate buffer, and dispensed 1 ml of it into 9 ml 

phosphate buffer containing different concentrations of NB. Final ce11 density was 3.5 (OD 

600nm, Icm light path). The screw caps of bottles were always loosened to maintain aerobic 

conditions. The bottles were incubated on an orbital shaker at 200 rprn and 36°C. For 

measuring initial rates of N B  removal, 0.5-lm1 of sampIe was taken at 0, 0.5, 1.0, 1.5, 2.0, 

3 .O, 4.0h. NB and NP were determined by HPLC. 

4.3.5. A nalysis of nitrite and ammonia 

Nitrite was measured according to US EPA method 354.1 @PA 1979). Arnmonia was 

quantitatively analyzed by L-glutamate dehydrogenase and NADPH (Sigma diagnostics 

ammonia reagent, Sigma, St. Louis, MO). Nessler's reagent (VWR scientific products, West 

Chester, PA) was used to qualitatively test ammonia. 

NP, NB and metabolite analysis by HPLC: SampIes from biodegradation tests were 

subjected to centrifûgation at 9000 g for 3 min to remove the cells and 0.9 ml of supernatant 

was transferred into 4 ml of amber glass via1 with screw tightened and Teflon-lined caps- 

Then O. 1 ml of 0.4 M HCI sdution was added to samples (not necessary for analysis of NB). 

Ethyl acetate, 1 ml, was added and the mixture was vortexed for 1 min. The organic layer 

liquid was collected and used directly for HPLC analysis. The HPLC analysis was performed 

on a 4.6 X 250mm ZORBAX SB-Cl8 column (Hewlett Packard, purchased fiom 

Chromatographie Specialties Inc, Brockville, Ontario, Canada). The apparatus consisted of 

two Shimadzu LC-600 purnps, a Shimadzu SPD-6A W ~~~~~~~~~~~~~~~~~ic detector and a 

sample injector 7225 (al1 components are fiom Shimadzu Corporation, Kyoto). Sample (15 

pl) was injected and eluted with methanol and rnilliQ water (0.1% trifluoroacetic acid). 

Solvents were delivered at the rate of 0.5 (methanol) and 0.5 (milliQ water) d m i n .  

Cornpounds were monitored by their UV absorbance at 254nm. More sensitive quantitative 

analysis of NOB was also analyzed at 306nm. Under these conditions, the compounds were 

eluted at the following retention times (min): NOB, 14.2; NB, 1 1.7; 2-NP, 1 1.2; 3-NP, 8.8; 4- 



NP, 8.2; HAB, 3.9- The retention time may Vary according to the column conditions. The 

linear equations were used for the quantitative analyses of every NP isomer, NB and NOB. 

Al1 the analytical data were obtained in duplicates. 

UV spectrum was recorded on a SPD-M1OA Shirnadm diodearray detector (Kyoto, 

Japan). Both samples of NB degradation by the 3-NP-grown resting cells and the authentic 

NB, NOB and HAB samples were run under the above same HPLC conditions and the UV 

spectra were recorded. UV spectrum peaks of the standard compounds were (wavelength, 

nrn): NOB: 283,306; HAB: 236, 281. 

4.3.6. fiperinientntion and annlysis 

Al1 growth and degradation tests were conducted in duplicate flasks and samples were 

also analyzed in duplicate. Duplicate samples from the same flask exhibited variations of less 

than 5%, and results between duplicate flasks showed variation of less than 10%. Data are 

expressed as the averages of these detenninations. 



4.4. Results 

4.4.1. Isolntion and chluacterizntion of Pseudornonas putida ZNP8 

NFs were used to enrich bacteria with NB degradation activity from a municipal 

activated sludge. The mixed culture degrading both NP and NB was obtained, and NP 

degrading pure cultures were isolated after intensely subcult~ring it on individual NP or  a 

mixture of NPs. One strain (2NP8) was isolated by subculturing the mixed culture on 2-NP as 

the sole carbon and nitrogen source. Similar strains were aIso isolateci by intensively 

subculturing this mixed culture on the mixture of NPs or  3-NP as the sole carbon and nitrogen 

source. Strain 2NP8 grew well at 20°C and 30°C on YPS medium, and had a slightly 

yellowish color. It was motile and contains both oxidase and catalase activity. The strain 

oxidised glucose and fnictose, but did not ferment these substrates anaerobically. This strain 

was identified as P. putida biotype B (similarity index: 0.932) by MIDI fatty acid method. 

Therefore it was designated as Pseudomonas pztiidada 2NP8. 

This strain grew on both 2-NP and 3-NP as sole carbon and nitrogen sources as 

demonstrated in Figure 4.1. Nitrite was stoichiometrically released as 2-NP disappeared and 

biomass increased in the basic saIt medium, likely suggesting an initial oxygenase-initiated 

degradation mechanism for 2-NP. Disappearance of 3-NP was accompanied by increase in 

biornass and accumulation of ammonia in the medium. The concentration of ammonia 

produced in the 3-NP medium was approximately half the initial 3-NP concentration. In the 

inoculated control medium without 3-NP oniy insignificant amounts of ammonia were 

detected. This suggested production of ammonia was the result of 3-NP degradation and 

indicated an initial reductive pathway for 3-NP degradation. 



Sole C, N source: 3-NP Sole C, N source: 2-NP 

Incubation tirne (h) 

Figure 4.1. Growth of P. pufida 2NP8 on 2-NP or 3-NP as the sole carbon, nitrogen 

and energy sources. 

Washed cells pre-grown on 2-NP or 3-NP were inoculated into 50 ml basic salts 

medium supplemented with 2-NP or 3-NP and incubated on an orbital shaker 

(200rpm, 26 OC). Control was set as inoculated media without NP. In the control 

media, only insignificant amount of arnmonia, no nitrite, and no biomass increase 

was detected. 



This strain was aIso able to remove NB, but did not grow on NB. In the basic salts 

medium supplemented with 2-NP, 3-NP, 4-NP and NB, NB was degraded as 2-NP and 3-NP 

disappeared (Figure 4.2). 4-NP was not removed fiorn the medium. Addition of  YE greatly 

shortened the NP and NB degradation time Eom nearly 40h to less than 10 h (Figure 4.2). Y .  

was presumed to stimulate bacterial growth, thus raising the rate of  NP and NB removal. 

Growth and removal o f  NB in the absence of N P  was also monitored in a basic salts medium 

supplemented with YE. SimilarIy, a rapid increase of  O&J~- 6 o m  0.065 to 0.67 within the 

initial 13 hours was observed during a 40-h incubation, but a Iower NB removal (44%) was 

achieved compared to those in the media in thepresence of a mixture of NPs (84%, YE added; 

77%, no YE). NB degradation leveled off as growth ceased. 

4.4.2. NB clegrndczfion nctivity is inrluced by 3-NP 

In order to deterrnine the relationship between NB and NP degradation, cells grown in 

the presence of  different substrates were tested for their degradation selectivity toward NP and 

NB. The results of NP and NB transformation by resting cells within 1.5h are presented in 

Table 4.1. CeiIs grown on 2-NP only exhibited the ability to remove 2-NP and 3-NP. Cells 

grown on 3-NP degraded NB, 2-NP and 3-NP. Cells grown on YE or glucose plus ammonium 

in the presence of NB, showed relatively Little NB degradation activity within 1Sh. This 

indicated the presence of 3-NP induced NB degradation activity in P. ptrrida 2NP8. 

Other carbon or  nitrogen sources were tested for their ability to  induce NB degradation 

activity. Different carbon or nitrogen sources were added to the basic salts medium inoculated 

with uninduced YPS grown cells, and remaining NB concentration was monitored over 24 h. 

The resuits are presented in Figure 4.3. Compared to the medium containing NB alone, 

addition of glucose, citrate and succinate did not enhance NB degradation even though 

bacterial growth was observed. A.ddition o f  ammonium chloride caused a decrease in biomass 

and delayed NB degradation. Inclusion of  3-NP in the medium did not increase bacterial 

growth but significantly improved NB degradation, fûrther suggesting an active NB 

degradation activity was induced by 3-NP. This 3-NP-induced enzyme activity was presumed 

to attack NB as a CO-substrate. The observed lower level NB degradation (50%) in the 

growing ceil medium without 3-NP, including the basic salts medium containing NB alone, is 

indicative of  a constitutive NB degradation activity, which w-e think is related to the longer 

incubation period under growth conditions. 



4-43. Effect of NB concentration on initial rate of NB degradation &y the celis grown in 

the presen ce of 3-NP 

The effect of NB concentration on initial degradation rate of NB by the whole cells 

grown in the presence of 3-NP was measured. The cells were suspended in the phosphate 

buffer (pH 7.35) and were incubated aerobically at 26 OC. Initial NB removal rates were 

measured. The results are presented in Figure 4.4. NB degradation rate decreased with an 

increase in NB concentration, approaching zero at 2000jA4. 

44.4. Production of metaboliles of NB négradation by cells grown in the presence of3-NP 

Both oxygenase and nitroreductase-initialized NB degradation has been reported 

(Spain 1995). In order to determine how 3-NP induced celIs of P. pztrida 2NP8 to degrade 

NB, degradation of NB at an optima1 NB concentration (3 7OCrM, in phosphate buffer, pH7.3 5) 

by freshly harvested 3-NP grown cens was conducted with analyses for metabolites. 

Degradation of NB was indicated by the appearance of a yellowish-brown color in the 

degradation medium within an initial 3h  period. The colour disappeared afier 4 h. As shown 

in Figure 4.5, compIete removal of NB was observed within 2h. Compared to NB removal in 

growth media as shown in Figure 4.2 and 4.3, quicker removal was achieved in this resting 

ce11 transformation medium due to higher density (3.5 OD) of cells fùlly induced by 3-NP. 

Qualitative production of ammonia was observed by using Nessler's reagent, and quantitative 

analysis of animonia was performed by enzymatic analysis using glutamate dehydrogenase. 

Resting cells in phosphate bufYer exhibited a slow release of ammonia in the absence of NB, 

and this endogenous ammonia release was subtracted fkom the values observed in the actual 

NB degradation sample. Stoichiometric release of amrnonia was observed and this indicated 

complete degradation of NB. No nitnte was detected in the degradation medium. Ammonia 

production suggested that the cells grown in the presence of 3-NP initiated NB degradation by 

a nitroreductase mechanism. This is consistent with the observation that ammonia was also 

produced fiom 3-NP degradation by P. pufida 2NP8 (Figure 4.1). 
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Figure 4.2. Degradation of a mixture of NP and NB by P. putida 2NP8. 

Cells pre-grown on YPS agar were inoculateci into 50ml basic salts medium 

containing a mixture of 2NP, 3-NP, 4-NP and NB and incubated on an 

orbital shaker (tOOrpm, 26 OC) with or without (0.1% yeast extract. 



Table 4.1. Degradation substrate selectivity of P. pzitida 2NP8 resting celis. 

Growth substrates Degradation (x)~  

2-NP (YE) " 1 O0 4 O O 

3-NP(YE) " 94 100 O 100 

NB(YE) 12 22 19 O 

Glucose and r n ) t S 0 4  28 22 19 O 

% b. c, d. . General growth or reaction conditions are given in material and 

methods. concentrations: nitroaromatics, 20 mg& YE, 0.1%; glucose, 

O. 1%; m)2so4, O. 1%. 

" : d e r  growth in NP/YE basic salts medium, NP was fed to further 

induce enzyme; 

b- C:gr~wth time, 10h; 

*:tells density, 3.5 (OD600nm, 1 cm light path); medium, phosphate 

buffer (27 mM, pH: 7.35); incubation, 200rpm (orbital shaker) at 26°C; 

incubation time, 1 Sh. 
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Figure 4.3. Effect of carbon or nitrogen sources on NB degradation by P. putida 2NP8. 

CelIs pre-grown on YPS agar were inoculated (0- 15 OD6oM) into 50ml NB basic salts 

medium which was supplemented with 0.1% other carbon nutrients (giucose, succinate, 

citrate), or nitrogen nutnents (0.01% =CI, 20 mg/L 3-NP), or with no supplement. 



O 500 1000 1500 2000 2500 

NB concentration @A) 

Figure 4.4. Effect of NB concentration on its initial degradation rate by 

resting ce1 1s of P. putida 2 W 8  grown in the presence of 3-NP. 

Degradation conditions: OD6oom, 3.5; phosphate buffer, 27 mM, pH 

7.35; temperature, 26 OC; shaken at 200rpm; incubation time, 2h. Initial 

rates were measured within 0.5-2h (NB concentration, measuring time: 

134@4, 0.5h; 358-748w lh; 1374-21 14w 2h) 
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Figure 4.5. NB metabolism by P. putida 2NP8 resting cells grown in the 

presence of 3-NP. 

Cells grown in the presence o f  3-NP were washed and suspended in 10 ml 

phosphate buffer (pH 7.35, 27 mM, 3.5 OD600m) and incubated on a? orbital 

shaker (200 rpm) at a temperature of 26OC. NB, NOB, HAB, and M& were 

monitoreci with time. 



Met abolites were fûrther analyzed by reverse-phase HPLC. Under experimental 

conditions, NB has a retention time of 11.8. Two new peaks were found at 14.2min 

(compound 1) and 3.9 min (compound II). Compound 1 had the same retention time as 

authentic nitrosobenzene (NOB). When NOB standard sample was added into the ethyl 

acetate extraction of NB biodegradation sample, no new peak appeared on HPLC analysis, but 

the peak of compound 1 was enhanced- When the peak was scanned for its UV spectrurn, it 

has the same UV spectrum (two peaks at 283nm and 306nm) as the authentic NOB. The 

identification of NOB suggested involvement of 3-NP nitroreductase, which is plausible since 

3-NP was degraded with production of ammonia. 

Compound II accumulated as NB disappeared fiom the reaction mixture with the 

formation of NOB. This compound was proposed as hydroxylaminobenzene (HAB), an 

immediate downstream nitro reduction reaction product corn NOB. In order to confirm this, 

HAB was prepared fiom NB and zinc powder according to the literature rnethod Furniss et 

al. 2989) and the structure of the HAB product was confirmed by its rnelting point and UV 

spectrum (two peaks at 236nm and 280nm). This chemically synthesized product had the 

sarne HPLC retention time and UV spectrum (two peaks at 236nrn and 280nm) as the 

unknown compound II. 

The detection of NOB and HAB and ammonia clearly demonstrated an initial 

reductive metabolisrn of NB. This supported the involvement of an 3-NP-induced 3-NP 

nitroreductase enzyme system. 

4.4.5 Degrahrion of NOB by resîing cells gro,vn in the presence of 3-NP 

While the nitroso compound was generally proposed to be the first intermediate of 

chemical or biochemical nitro group reduction, detection of NOB in the medium of NB 

biodegradation was seldom reported. In this research, we observed NOB production peak as 

NB removal proceeded (Figure 4.5). The decline of NOB concentration suggested it was 

reductively transformed. In order to test if NOB was a possible substrate of the 3-NP-induced 

enzyme system, it was added into the medium containing fiesh or killed cells grown in the 

presence of 3-NP, and its conceritration was monitored over time. NOB rapidly disappeared 

fiom the fresh ce11 medium within l h  (Figure 4.6). However, no NOB rernoval was observed 

in the killed ce11 medium over two hours. HAB formation (detected as a retention tirne of 



3.9min on HPLC) was also observed as NOB degradation proceeded in the f?esh ce11 medium. 

These results suggested that NOB and HAB were intermediates of NB degradation by the 3- 

NP induced enzymes. 

4.4.6. Does NB support bacterial grmuth of P. putida 2NP8 ? 

Quantitative production of ammonia from NB biotransformation (350pM NB, 2h, 

Figure 4.5) by cells (initial ce11 amount: 3.5 OD6OOnm) grown on 3-NP suggested that NB 

rnight be able to support bacterial growth as a carbon or nitrogen source. 

Growth of P. pufi& 2NP8 on NB was investigated in the following media: a) NB as 

the sole carbon and nitrogen source; b) NB as a nitrogen source and citrate as a carbon source. 

Washed ce1ls grown on 3-NP were inoculated (0.05 OD 600nm) into the NB basic salts 

medium with and without citrate. N B  disappearance was observed (NB loss in the medium 

without inoculation was insignificant) and NB was fed in increments upon its rernoval. 

Similar results were observed for both situations (Figure 4.7). Little or no bacterial growth 

(OD 600nm) was observed as NB was removed, A low concentration ( 5 0 m  of arnmonia 

production was detected even when significant removal of NB was achieved. The low 

ammonia-releasing activity may be because of either a low level of initial enzyme (0.05 OD 

of ce11 zdded) or a toxic effect of NB and its transformation intermediates. Addition of citrate 

as a carbon source did not increase growth, NB biotransformation and ammonia production. 

Under both situations, NB desadation ceased after NB was fed four times. This suggested the 

Ioss of existing NB-degrading enzyme activity. Failure of growth of this strain on citrate as a 

carbon source might be caused by toxicity of high concentration of NB to the relatively low 

density (0.05 OD6OOnm) of inoculated cells. This toxicity might be related to the toxic NB 

degradation metabolites such as NOB and HAB as identified in the above tests. Thus NB was 

not found to be a sole nitrogen and carbon source or a sole nitrogen source for growth of P. 

purida 2NPû in this test. 



Bacterial growth in the basic salts media supplemented with a carbon source such as 

glucose alone was observed in the presence or absence of  NB when washed cells grown on 

YPS used as inoculum (Figure 4.3). This could be because the inoculated ceIls contained 

enough nitrogen for further growth. Therefore, growth in these carbon-supplemented NB 

media inoculated with YPS grown cells (Figure 4.3)  did not prove that NB was a nitrogen 

source for growth. The reason for the observed NB disappearance in these carbon- 

supplemented NB media (Figure 4.3) susgested a constitutive NB degradation activity, which 

was 1ikeIy related to an incubation over a long period, since Iittle NB rernoval was observed in 

the resting cells within 1.5h (Table 4.1). 

A strain of P. prtida utiIizing both 2-NP and 3-NP was previously reported to grow on 

NB as a carbon source (MeuIenberg et al. 1996). To determine if NB is a carbon source of P. 

pzcîida 2NP8, cells grown on YPS were inoculated into basic salts medium supplemented with 

0.1% ammonium sulfite and with concentrations of NB ranging from O to 2.7 mM. Bacterial 

growth over a period of 82 h was not enhanced by inclusion of NB at any concentration under 

these conditions. NB concentration change was not monitored in these tests, but NB removal 

was likely, especialIy at low NB concentration, due to constitutive NB degradation activity as 

suggested in Figure 4 - 3 -  Thus, it was concluded this strain does not grow on NB as a carbon 

source. 

The above results confimed that NB is neither a carbon nor a nitrogen source for 

bacterial growth, even though cells grown on 3-NP transformed NB into ammonia. 

Transformation of N B  is a cometabolic activity of the 3-NP degrading system of this strain. 
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Figure 4.6. Degradation of nitrosobenzene by 3-NP-grown 

resting cells of P. pufida 2NP8. Degradation conditions: lOml 

phosphate buffer (pH 7.35, 27 m . )  contained a cell density of 

2.6 OD 60011% incubated at 200 rpm, 26 OC. Cells were killed 

by boiling for 1 min. 
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Figure 4.7. NB degradation and growth of P. puticIa 2NP8 (with 3-NP-grown 

cells as inoculum). 

3-NP-grown cells were washed and inoculated into 50 ml o f  NB basic salts 

medium in the absence or presence of  citrate (0.1%), and were incubated on an 

orbital shaker (200 rpm, 26 OC). NB was fed dunng the incubation and 

concentration of OD600nm, NB, NH3 and NOB were measured. 



4.5, Discussion 

P. pzrtida 2NP8, utilizing both 2-NP and 3-NP as growth substrates, was isolated frorn 

municipal activated sludge, not known to have been polluted by nitroaromatic compounds. It 

metabolized NB with production of ammonia when grown on 3-NP.  A strain of Pseudamonas 

putida growing on both 2-NP and 3-NP was previously reported (Zeyer and Kocher 1988; 

Zeyer and Kearney 1984; Meulenberg et aI. 2996). Although biotransformation of hB by 3- 

NP-degrading enzymes was observed during investigation of 3-NP metabolism by a strain of 

XnIstonia erltpopha, aminop henols were descri bed as dead end products (Schenzle et al. 

1997). 

So far al1 bacteria growing on 3-Ni? have been reported to metabolize 3-NP through an 

initial reduction of the nitro group leading to production of ammonia. Liberation of a nitrite 

group from 3-NP was onIy observed in 3-nitrotoluene cometabolism by a PCB degrader, 

Pse~(domonas put& OU83 (Ali-Sadat et al. 1995), in which 3-NP was an intermediate. Our 

results showed that the enzymes induced by 3-NP in P. pzttida 2NP8 converted NB into NOB, 

HAB and ammonia. This suggested that a 3-NP nitroreductase was the initial enzyme ofNB 

metabolism leading to production of ammonia. 

Bacteria growing on NB have been isoiated from NB contarninated sites. Both the 

oxygenase-initiated route with the release of nitrite by a strain of Comamonas (Nishino and 

Spain 1995) and the nitroreductase-initiated route with release of ammonia by strains of 

Pseztdomonas (Nishino and Spain 1993) were reported. NP degradation by a NB dioxygenase 

was mentioned by Nishino and Spain (Nishino and Spain 1995). None of above strains was 

reported to grow on 3-NE! 

Nitroso and hydroxylamino aromatic compounds have been reported as degradation 

metabolites of a few nitroaromatic compounds. Formation of 4-chloronitrosobenzene and 4- 

chlorophenylhydroxylamine were observed as metabolites of 4-chloronitrobenzene by a yeast 

strain of Rhodosporidium, and amines were observed as dead end products (Corbett and 

Corbett 1981). 4-Nitrobenzoate is a carbon and energy growth substrate of a strain of 

Comamonas acidovorans, and 4-hydroxy laminob enzoate and ammo nia was detected as 

metabolites fi-om 4-Nitrobenzoate, but 4-nitrosobenzoate was not successfùlly identified 

(Groenewegen et al. 1992). Nitroso and hydroxylamino aromatic compounds were proposed 

as reductive intermediates of 3-NP (Meulenberg et al. 1996), and NB (Niishino and Spain 



1993) and chloronitrobenzenes (Park et al. 1999), but direct detection of these compounds in 

biodegradation of 3-NP and NB was not reported. 

Nishino and Spain (2993) reported that 2-aminophenol was an interrnediate of NB 

reduction by a P. pseztdoaIcaIigenes, and release of amrnonia was achieved only after a 

dioxygenase-catalyzed ring-opening of 2-aminophenol. Both 2- and Caminophenot fkom NB 

were observed as dead end products by a 3-NP-degrading enzyme system in Ralsfonia 

ezrhopha JMP 134(Schenzle et al. 1997). Release of ammonia from 3-NP by R eufropha JMP 

134 was shown to occur after conversion of 3-hydroxylaminopheno1 into aminohydroquinone 

and no ammonia formation was recorded dunng transformation of 3-hydroxylaminophenol 

under anaerobic condition. For 4-nitrobenzoate, however, ammonia was reported to be 

released from hydroxylaminobenzoate before ring-opening with formation of 3,4- 

dihydroxybenzoate under oxygen-limited or anaerobic condition and a hydroxylaminolyase 

activity (Groenewegen et al. 1992) was proposed. Similarly a hydroxylaminolyase activity 

was indicated during 3-NP metabolism by Pseudornonasputic(a B2 (Meulenberg et al. 1996), 

and 1,2,4-benzenetriol was observed as a 3-NP degradation intermediate under anaerobic 

condition. No hydroxylaminolyase was ever reported in metabolism of NB. For P. putidn 

2NP8, the mechanism of ammonia production from HAB and downstream degradation 

remains to be investigated. 

Observation of amrnonia production fiom NB degradation by 1-NP-induced enzyme 

activity clearly indicated a substantiai degradative metabolism of NB. However, we did not 

observe any growth of strain 2-NP8 on NB as either carbon or nitrogen sources. Addition of 

citrate as a seconda.  carbon source did not improve bacterial growth in cultures inoculated 

with 3-NP-grown cells. Accumulation of NOB and HAB, during NB degradation by 3-NP- 

grown cells, suggested that these metabolites might be toxic to bacterial growth. For example, 

they have been reported to combine with protein and nucleic acid (Gorrod and Damani 1985), 

It is possible that this strain lacks the critical enzymes for downstream metabolism of HAB 

leading to formation of growth precursors. 

Thus Our results demonstrate that the NP-degrading system has the capacity to 

transform NB into ammonia This cornetabolic transformation is initialized by a 3-NP induced 

nitroreductase in the cells grown in the presence of 3-NP. The partial N B  degradation 

pathway is shown in Figure 4.8. 



Figure 4.8. Proposed partial pathway of NB metabolism by 3- 

NP-grown cells of P. purida 2NP8. 



4.6. Acknowledgements 

Support for this research by the Nahird Science and Engineering Research Council of 

Canada is gratefully acknowledged. Help fiom X. -D. Huang in obtaining W spectra is 

greatly appreciated. We also thank A Singh for valuable discussion. 



5. BIOTRANSFORMATION OF HYDROXYLAMINOBENZENE AND 

AMINOPHENOL BY PSEUDOMONAS PUTIDA 2 W S  CELLS GROWN IN 

THE PRESENCE OF 3-NITROPHENOLa 

5.1. Abstract 

Biotransformation products of hydroxylaminobenzene and aminophenol produced by 

3-nitrophenol-grown cells of Pseudornonas plrtida 2NP8, a strain grown on 2- and 3- 

nitrop henol, were characterized. Ammonia, 2-aminophenol, 4-aminop henol, 4-benzoquinone, 

N-acetyl-4-aminophenol, N-acetyl-2-aminophenoI, 2-arninophenoxazine-3-one, 4- 

hydroquinone, and catechol were produced fiom hydroxylaminobenzene. Ammonia, N-acetyl- 

2-aminophenol, and 2-aminophenoxazine-3-one were produced f?om 2-aminophenol. Al1 of 

these metabolites were aIso found in the nitrobenzene transformation medium, and this 

demonstrated that they were metaboiites of nitrobenzene transformation via 

hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 

2-aminophenol via imine occurred. Rapid reiease of arnmonia fi-om 2-aminophenol 

transformation indicated that hydrolysis of the irnine intermediate was the dominant reaction. 

The low level of  2-aminophenoxazine-3-one indicated that formation of this compound was 

probably due to a spontaneous reaction accompanying oxidation of 2-aminophenoi via imine. 

4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on 

these transformation products, we propose a new ammonia release pathway via oxidation of 

aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of 

nitroarornatic compounds by 3-nitrophenol-grown cells of P. purida 2NP8. We propose a 

paraIlel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which al1 the possible 

intermediates are postulated. 

5.2. Introduction 

Toxic nitroarornatic compounds tend to be reduced by biological systems in the 

environment due to electron deficiencies on the nitrogen atom or the benzene ring (Cemiglia 

et al. 1995; Marvin-Sikkema and de Pont 1995; PreuB and Rieger 1995; Spain 1995). 

"This papa has been publishd in Applied and Environmentai MicrobioIogy (2000)- 66: 2336-2342. Co-authors 
are Ajay Singh, Xiao-Dong Huang, and b e n  P. Ward. 



Arylhydroxylamine is one of the common intermediate products during nitro-group reduction. 

Hydroxylamines are both reductants and oxidants that attack biomolecules and have highly 

toxic, carcinogenic, and mutagenic effects on biological systems and hurnan tissues (Corbett 

and Corbett 1995; Mansuy and Beaune 1978). 

The previously descnbed routes for metabolism of arylhydroxylamines, which are 

involved in nitroreductase-initiated degradation of nitroarornatic compounds, include (i) a 

two-electron reduction process that produces dead end amines, (ii) the Bamberger 

rearrangernent-like reaction which Ieads to production of Zaminophenol (2-AP) or 4-AP 

vishino and Spain 1993; Park wt al. 1999; Schenzle et al. 1997), and (iii) conversion into a 

1,Z-dihydroxyl aromatic product by hydroxylaminolyase (Groenewegen et al. 1992; HaigIer 

and Spain 19% ; Meulenberg and de Pont 1995; Rhys-Williams 1993). 

Only ammonia release fiom nitroaromatic compounds avoids production potentially 

toxic amines in the environment. The following two ammonia release processes during 

nitroreductase-initiated aerobic degradation of nitroaromatic compounds have been described: 

(i) ammonia release via ring fission of AP and (ii) ammonia release before ring fission 

(conversion of arylhydroxylamine into 1,2-dihydroxyl aromatic compounds by proposed 

hydrolytic hydroxylaminolyases). Nishino and Spain (1993) observed the first process in the 

nitrobenzene (NB) degradation pathway of Pseudarnonas pseudoalcaligenes. and 

Groenewegen et al. (1992) reported the second process in the 4-nitrobenzoate degradation 

pathway in Contamonas acidovorans M3A- 10. 

Two pathways have been described for degradation of 3-nitrophenol (3-NP), and both 

of them are initiated by nitroreductases. Meulenberg et ai. (1996) reported that Psezrdornonas 

ptrtida 3 2  converts 3-NP to 1,2,4-benzentriol and amrnonia and proposed that a 

hydroxylaminolyase activity is responsible for the process. Schenzle et al. (1997) observed a 

Bamberger rearrangement type conversion of 3-hydroxylaminophenol to aminohydroquinone 

during degradation of 3-NP in Ralsronia eutropha JMP 134 and did not investigate the 

ammonia release mechanism further. We isolated P. putidir 2NP8 growing on 2-NP and 3-NP. 

3-NP-grown cells of this strain aerobically released arnmonia fiom both the growth substrate, 

3 -NP, and a cometaboIizing su bstrate, NB. We observed hydroxylaminobenzene (HAB) 

production during NB transformation by 3-NP-grown cells of P. putidz 2NP8. To shed light 

on the ammonia release mechanism in this strain, HAB transformation was investigated 



because of the instability of the metabolites of the growth substrate, 3-NP. In study this, we 

characterized products obtained fkom HAB and AP transformation by 3-NP-grown cells of 

strain 2NP8 and obtained evidence that ammonia was released via oxidation of aminophenolic 

intermediates into irnines and subsequent hydrolysis. 

5.3. Materials and methods 

5- 3.1. Sources of chernicals 

Benzoquinone, hydroquinone, and catechol were obtained from Sigma (St. Louis, 

Mo.); 2-AP, 4-AP, N-acetyl-2-AP, and N-acety 1-4-AP were obtained from Aldrich 

(Milwaukee, Wis.); and high-performance liquid chromatography (IPLC) grade methanol 

was obtained from EM Science (Gibbstown, N.J.). HA3 was prepared by using a previously 

described method (Furniss et al. 1989). Other reagents were 99% pure. 

5.3.2. Media 

3-NP was dissolved in methanol to obtain a concentration of 10 mg/ml. We have 

previously described the basic salts medium used (Zhao and Ward 1999). 3-NP basic salts 

medium contained 20 mg of 3-NP per liter in the basic salts medium. The latter medium was 

supplemented with 0.1% yeast extract (YE) to obtain 3-W/YE basic salts medium. YPS 

medium contained (per liter) 10 g YE, 10 g of Bacto peptone, and 5 g of NaCI. 3-NP, stenle 

trace metal soIution, arid YE were added to autoclaved liquid media. Agar media contained 

2% agar. Media were autoclaved at 120°C for 30 min. 

5-3.3. ficpartrtion of cells grown in thepresence of 3-NP and degradation of HAB and AP 

P. pztrida 2NP8, a strain isolated by members of Our group fiom municipal activated 

sludge (Waterloo, Ontario) (Zhao and Ward 1999), was maintained on YPS agar. Unless 

otherwise noted, the strain was grown in 250-mi clear gIass Erlenrneyer flasks at 26°C and 

200 rpm on an orbital shaker. A fiesh YPS culture (5 ml) was inoculated into 50 ml of 3- 

N P M 2  basic salts medium grown overnight, and then transferred into 375 ml of 3-NP/YE 

basic salts medium in a 2 Iiter flask. Mer 5 h 3-NP (20 mglliter) and YE (0.1%) were added. 

M e r  another 2 h 3-NP (20 mg/liter) was added, and the preparation was incubated for 1 h. 

The final optical density at 600 nrn (OD600) ( k m  light path) was 1.6. Cells were harvested by 

centrifugation at 16,300 X g for 15 min and were washed with 100 ml of sterile phosphate 

buffer (1 g of m P 0 4  per liter, 7 g of Na2H.04 - 12H20 per liter; p H  7.35). The cells were 



used irnrnediately for biotransformation of HM3 and AP. The bottles used for HAB andor AP 

biodegradation experiments were 40-ml amber glass bottles with the Teflon-silicone septum 

Iined caps. Freshly grown cells that were suspended at an of 3.5 (1-cm light path) in 

phosphate buffer. containing different concentrations of NB were incubated on an orbitai 

shaker at 200 rpm and 26°C. The caps of the bottles were loosened to maintain aerobic 

conditions. 

5.3.4 Preparntion of N-acetyl-2-AP and 2-amin ophenoxnzine-3-one (APX) fronz 2-AP 

Five grams (wet weight) of P. putida 2NP8 cells grown on 3-NP was harvested from 

1.2 iiters of 3-NPM5 medium as described above, During incubation for 22 h, YE and 3-NP 

were added at the folIowing times: 0.2% YE and 42 mg of 3-NP per liter at 7 h; O. 1% YE and 

35 mg of 3-NP per liter at 17 h; 0.05% YE and 25 mg of 3-NP per Iiter at 20 h; and 25 rns of 

3-NP per liter at 21 h. Washed cells were suspended in 1 liter of sodium phosphate buffer (25 

miV, pH 7.3) supplemented with 150 mg of 2-AP in a 2 liter foam plugged clear glass flask 

and incubated at 26OC on an orbital shaker at 200 rpm for 24 h. A yellow colour appeared 

after 4 h and developed into a brown colour as incubation proceeded. A brown precipitate 

formed at a Iater stage, and 2-AP had cornpletely disappeared fiom the medium after 24 h. 

The coloured compound was separated from both the supernatant and the ce11 pellet by 

centrifbgation of biotransformation medium at 16,300 X g for 15 min. 

The supernatant was extracted with 400 ml of ethyI acetate and was dried with 

anhydrous sodium sulfate. The extract was concentrated under a vacuum in a rotary 

evaporator at room temperature (26"C), and the residue was further evaporated to dryness 

under nitrogen gas. The solid was extracted with 3 ml of methanol and filtered. A brown 

powder (7 mg) was obtained. The filtrate was injected in batches (injection volume, 0.1 ml) 

into an SB-Cl8 HPLC coIumn. The following elution program was used: O tolS min, 30% 

methanol; 15 to30min, 70% methanol. Two main products were collected at 5 to 1Omin (N- 

acetyI-2-AP) and at 24 to 25 min (APX). Fractions were pooled and concentrated at 26°C and 

dried under nitrogen gas. Three milligrams of solid was obtained fkom the 5 tol0-min sample 

with a single HPLC peak at 8.6 min. Ody 1 mg of brown powder was obtained fiom the 24- 

to 25-min sample. 

An air-dried pellet was crushed into powder, and ethyl acetate was used to extract 

metabolites ftom the powder; this was folIowed by extraction with a mixed solvent 



(methanol-ethyl acetate-chloroform, 22: 1, vol/voVvol), and 150 rn1 of extract was obtained. 

The extract was concentrated by rotary vacuum evaporation at 26OC. The total amount of the 

brown product obtained fiom both the supernatant and the ce11 pellet was 113.8 mg. This 

brown powder was separated by using a dry column (32.5 by 2.5 cm) that was packed with 

Silica Gel 60 (70-230 mesh; EM Reagents, E. Merck, Darmstadt, Gerrnany) and dried 

overnight in an 80°C oven; acetone-chloroform-cyclo hexane (5 : 17.5: 17.5, volho Wvol) was 

used as the eluant, and 38.2 mg of solids was obtained. Purity was examined by performins 

siiica gel thin-layer chromatography (mC) with three rnixed solvents (Table 5.1). We 

observed minor product that was light yellow in methanol, but it was not identified because of 

the srnall amount present. 

5- 3.5- Anabsis of metabolite 

HAB and its metabolites were analyzed by using a ZO-AX SB-Cl8 HPLC column 

(4.6 by 250 mm; Chromatographie Specialties, Brockville, Ontario, Canada). We have 

previousIy described the HPLC instruments, general procedures, and methods used for NB 

and 3-NP anaIysis (Zhao and Ward 1999). For HAB and AP and their rnetaboIites, 

biotransformation samples were centrifuged at 9000 X g for 3 min, and 15 VI protions of 

supernatant were injected and eluted with methanol and Mi11iQ water. Compounds were 

monitored at 254 nm. 

W-visible spectra of both metabolites and authentic samples were recorded with a 

mode1 SPD-M1OA diodearray detector (Shimadzu, Kyoto, Japan) by using the HPLC 

anaIytica1 conditions described above. An Si 250F plate (5 by 20 cm; J. T. Baker Chemical 

Co., Phillipsburg, N.J.) was used for TLC analysis. Al1 spectra (mass spectra, infiared spectra; 
1 H nuclear magnetic resonance spectra) of the metabolites were recorded by using standard 

instruments. 

Ammonia was anal yzed qualitative1 y by using Nessler' s reagent (VWR Scientific 

Products, West Chester, Pa) and quantitative1 y by using L-glutamate dehydrogenase and 

NADPH (Sigma diagnostic ammonia reagent; Sigma). 



5.4. Results 

5.4.1. 3-NP induced transformation of NB 

3-NP-grown cells of P. pufia? 2m8, which were used throughout this study, 

transformed 3-NP and NB, and ammonia was released at rates of 280 and 230 pM - h-' (pH, 

7.3; OD600, 3.5), respectively- Uninduced cells grown on glucose and ammonium sulfate 

exhibited lower rates of activity with 3-NP (60 p M  . h-') and no activity with NB. NO 

transformation activity with either NB or 3-NP was observed in cells grown on YE alone. 

These results demonstrated that the transformation activity with 3-NP and NB was induced by 

3-NP. Our preliminary experiments established that 3-NP-grown cells metabolized NB to 

ammonia via HAE3. 

5.4.2. Trnnsformntion of HAB into AP 

We used an approach similar to the approach described by Schenzle et al. (1997) to 

investigate aerobic transformation of HAB by resting cells of P. putida 2NPS grown on 3-NP. 

The extracellular metabolites of HAB transformation were analyzed by HPLC. By cornparhg 

the W spectra and KPLC retention times with the W spectra and HPLC retention times of 

authentic compounds, we found that 2-AP and 4-AP were initial metabolites of HAB, and this 

findings was similar to the finding of Schenzle et al. (1997). We also observed 4- 

benzoquinone, 4-hydroquinone, and catechol in the HAB transformation medium (Table 5.2). 

We observed decomposition of  HAB in phosphate buffer containing no cells or dead cells (pH 

7.3)- Mulvey and Waters (1977) reported that the disappearance of HAB could be due to 

disproportionation. We observed no peaks under out experimental HPLC conditions. We did 

not find the metabolites produced fiom cell-mediated transformation of HAB in the 

decomposing HAB phosphate buffer that did not contain live cells. 

5.4.3. Biotrunsforrnafion of AP 

To investigate how ammonia is released, we characterized transformation products of 

AP formed by 3-NP grown cells. Rapid appearance of a yellow colour and accumulation of a 

dominant product with an HPLC retention tirne of 8.6 min indicated that transformation of 2- 

AP occurred. The initial rate of removal of 2-Al? was 220 pM . h" (ODsoo, 3.5; pH 7.3). In the 

control medium containing dead cells, little removal of 2-AP and no yellowish colour were 

observed within 6 h, even though prolonged (48-h) incubation did result in a light yellowish 



colour- Using the HPLC retention time and UV spectmm of this compound, we identified it as 

a transformation product formed from HAB and NB (Table 5.2); this suggested that the 

compound is a common metabolite. 

Transformation products formed £kom 2-AP were prepared by performing 

transformation experîments with a high concentration of 2-AP (150 mg/liter) and then 

extracting the aqueous phase with ethyl acetate and purifying it on a preparative silica gel and 

by HPLC. The compound that had a retention time of 8.6 min was a white powder. TLC and 

spectral data for it are presented in Table 5.1. On the basis of the spectra, w e  established that 

the compound was N-acetyl-2-AP- We purified the yellow substance  YOM a 2-AP 

transformation preparation and obtained a brown powder by extraction with ethyl acetate 

from both the aqueous phase and the cell pellet and by dry silica gel chromatography. We 

obtained 45.2 mg of the brown powder (31% yield [moVmoi]) from a 24-h preparation 

obtained from 150 mg of 2-AP substrate. This rnatenal produced a single peak on TLC and 

HPLC gels and UV peaks at 235 and 438 nrn (Tables 5.1 and 5.2). On the basis of its ES1 

spectra, mass spectra, and nuclear magnetic resonance spectra, we deterrnined that this 

compound was APX (Table 5.1) .  The aqueous phases of HAB and NB transformation 

preparations were analyzed by HPLC to determine whether APX was present; and production 

of  trace amounts of APX fiom both HAB and NB was clearly observed. 

4-AP is unstable in aerobic solutions. Corbett (1969, 1970, 1978, 1979) reported that a 

mild oxidant, ferriccyanide was able to rapidly oxidize 4-AP in an aqueous medium, which 

formed 4-benzoquinone monoimine, and that this was followed by rapid hydrolysis, which 

formed Cbenzoquinone and ammonia. The presence of 4-benzoquinone in the HAB 

biotransformation medium containing 3-NP-grown cells in this study showed that oxidation 

of  4-AP leading to release of ammonia occurred, 

Identification of N-acetyl-2-AP in the 2-AP biotransfarmation medium led us to 

consider the possibility that N-acetyl-4-AP might ais0 be a metabolite of 4-AP. By comparing 

the UV spectmm and HPLC retention time with the W spectra and HPLC retention times of 

authentic compounds, we identified N-acetyl-4-AI? in the HAB degradation medium 

containhg 3-NP grown cells (Table 5.2). 



Table 5,1. Silica gel TLC and spectral data for N-iicely 1-2-AP wid APX 

Compound Rf (X100) with [lx: following solvcnts: 'H nuclear M m  spçctm (ndz) Infmrcd spcctnliii 

Acctone- Benzcne- Hexane- magnctic ES1 iiiass El inass Higli- (cm" ) 

clilorofonn- metlianol etl~yl 'csonance spcctruinC spcctrumd rcsolution 

cy clo hexane (305, acetate Speclniin EI inass 

(10:35:35, vollvol) (30: 15, spcctruin 

voll\~ollvol) vollvol) 

N-Acety l- 27 7 1 47 8.6 1 @road pcak, s, NDb 15 1 (@, ND 340 1,3300-2300, 
IH); 7.4 l(brorid, 

2-AP s,lH); 7,1(t, 1H); 109, 80, 1657, 1594, 1537, 
7.0 (d, 1H); 6.9 (ci, 

1H; 6.8 (1, 1H); 1451,766 
2.25 (s, 3H) 

APX 33 58 7.7(d, I H); 7.4(m, 2 13 2 1 2 0 ,  2 12.059 3309, 1585 
3W); 6,5(s, 1 H), 

6.3(~,  1H); (M~H)' 186,185, (Cl2H~NI 
6.15(broad, s, 2H) 

144, 130, 02) 

'The solvcnts used wcre CDC13 for N-acctyl-2-AP and d6-acelonc for APX. 
ND, not dctermincd. 
' ESI, Electronspray ionization. 

El, electmn impact. 
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Table 5.2. Identification of metabolites on the basis of HPLC retention times and UV spectraa 

Metabof ite 

APX 60 9.8-10.2 9.8-10.2 

HAB 30 7.3-7.1 7.3-7.4 

Ni trosobenzene 60 7.7-7.9 7.7-7.9 

% of methanol in 
eluthg solvent 

30 

%PLC was performed with ZORBAX SB-CL8 column (4.6 

Retention t h e  (min) 

!y 250 mm) by using a mixture 

Unknown 

5-9-68 

Unknoivn 

228,283 

of methanol and water as the eluting solvent (flow rate, 1 ml/min). Al1 UV spectra were 

recorded at 254 nm in aqueous methanol. The UV spectra of authentic chemicals deterrnined 

in rnethanol. Ali of the W spectmm profiles of metabolites were the same as the profiles of 

authentic chemicals. 

Au thentic 
chemical 

5.9-6.8 

Authentic 
chernical 

227,283; 229, 
281(14,16) 

233,303 233,303 (47) 



5- 4.4. T h e  course for qunntitaiive metabolite production front HA B 

The time course for production of metabolites fkorn 459 pM HAB is shown in Figure 

5.1. Based on the initial HAB concentration of 459 ph4, the yield (on a mole equivalent basis) 

of 4-AP and its derivatives (including N-acetyl-4-AP and 4-benzoquinone) was 13%, the yield 

of 2-AP and its denvatives (including N-acetyl-2-AP and APX) was IO%, and the yield of 

ammonia was 30%. A trace amount of nitrosobenzene, an oxidation product of KAB, was also 

detected in media with or without live cells. 4-Benzoquinone and N-acetyl-2-AP were major 

metabolites of HAB transformation formed by resting cells grown on 3-NP. Even though 4- 

AP is the first product of HAB transformation, production of 4-AP appeaïed to occur later 

than production of Cbenzoquinone and N-acetyl-4-AP. This might have been due to the 

instability of CAP in the aerobic transformation medium and to rapid conversion of 4-AP into 

its derivatives. Instability during aerobic analytical tests might also have contributed to the 

observed delay in 4-AP production. 

HAB was unstable in buffer containing no cells or kiIIed cells, and it had a half-life of 

20 min. The rest of the initial amount of HAB in Figure 5.1 probably disappeared due to the 

disproportionatioil reaction described by Mulver and Waters (1977), and the products of this 

side reaction could not be detected under the analytical conditions used. 

5.4.5. Quantitative irarisformafion lime course for 2-AP and NB 

To quantitatively characterize biotransformation of AP and Ni, time courses for 

transformation of 2-AP and NB were determined. During biotransformation of 2-AP, one-half 

of the substrate was converted into arnmonia, and the rest was converted into N-acetyl-2-Ae 

(Figure 5.2A). While a strong yellow colour was produced, quantitative analysis revealed that 

only O. 1% (mole equivalent) of 2-AP was converted into APX. The initial rates of ammonia 

and APX production were 73 and 0.10 ph4 h-', respectively. Release of arnrnonia was 730 

times faster than formation of APX. 



O 1 2 3 4 5 

Incubation time (h) 

Figure 5.1. Quantitative analyses of metabolites produced fkom HAB by cells of P. putida 

2NP8 grown on %NP. The reaction medium contained 50 mg HAB per liter, cells 

(OD600, 3.9, and 20 ml of 50  mM phosphate buffer (pH 7.30). Biotransforrnation was 

performed in a 40 ml screw-cap amber via1 on a rotary shaker at 150 rpm and 26°C. The 

cap was loosened to maintain aerobic conditions. 



450 1 Substrate: 2-AP (A) T 

Substrate: NB (8) 0.045 
-- - . .,.. . . . . . . .,APX 

0.036 
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0.009 

"8"" 

incubation time (h) 

Figure 5.2. Quantitative analyses o f  metabolites obtained fiom 

transformation o f  2-AP (A) and NB (8) by cells o f  P. putirla 2NP8 grown 

on 3-NP, The biotransformation and HPLC conditions were the same as 

those described in the legend to Figure 5.1. 



Approxirnately stoichiornetrk production of ammonia from NB transformation by 3- 

NP-grown cells was obsexved under optimal transformation conditions. To retard 

transformation and favor metabolite accumulation, a higher concentration of NB (406 CLM) 

and a lower level of aeration were used in this test. Quantitative analyses revealed that the 

organic metabolites produced 28% N-acetyl-44P, 9.3% N-acetyl-2-AP, 3.7% 4- 

benzoquinone and 0.0 1 % APX (Figure 5.2B). The rest of NB was transformed into amrnonia. 

OnIy trace arnounts of nonacetylated 4-AP and 2-AP were detected as transient products due 

to either instability or rapid conversion of these intermediates. Production of APX fiom NB 

was much less than production of APX (O. 1%, mole equivalent) from 2-AP- Quantitative time 

courses for NB transformation confmed that AP and the oxidation products 4-benzoquinone 

and APX were products of NB transformation by 3-NP-grown cells. 



5. 5. Discussion 

Based on identification of the transformation products of  HAB and AP, we propose a 

pathway leading to ammonia release fkom HAB by 3-NP-grown cells o f  P. pzrrida 3NP8 

(Figure 5.3). Our results revealed a new mechanism of  ammonia release through oxidation o f  

AP to imine, followed by hydrolysis, for transformation o f  nitroaromatic compound. 

Corbett (1969, 1970, 1978, 1979) reported that 4-AP was oxidized to 4-benzoquinone 

manoirnine, but the monoimine product could not be isolated because o f  it was rapidly 

hydrolyzed in the aqueous buffer into quinone. We obsewed both 4-benzoquinone and 4-AP 

in the HAB and NB transformation media, and this indicated that oxidation of  4-AP led to 

release of ammonia. Compared to 4-AP, 2-AP is relatively stable in aqueous solutions and 

oxidation of 2-AP requires a stronger oxidant. Chernical (Mamyama et al. 1996; Simandi et 

al. 1987; Szeverenyi et al. 1991) or  e q m a t i c  (Barry et al. 1988; Barry et al. 1989; Subba 

Rao et al. 1967; Yano et al. 1991) oxidation of 2-AP with production of  APX has been 

described in many reports, and it has been proposed that 2-benzoquinone monoimine is the 

first oxidation product o f  2-AP, which leads to production of  M X .  Nogami et  al (Nogami et 

al. 1975) investigated reactions of  2-benzoquinone monoimine in aqueous media and 

observed the following two reactions involving the imine: (i) hydrolysis into ammonia and 2- 

benzoquinone and (ii) coupling with another molecule of  2-AP and formation o f  APX through 

two addition reactions and two oxidation reactions. These authors reported that the optimal 

pH for hydrolysis was 6 to 8. The pH of  the 2-AP biotransformation medium in Our tests (7.3) 

fell in this range. Because both imine and 2-AP are needed for formation of  APX, only the 

presence of an excess amount of 2-AP favours APX formation which means that hydrolysis is 

a dominant reaction at low concentrations of 2-AP. This is consistent with our findings that 

Iess than 0.1% APX was produced in the 2-AP biotransformation medium and a much lower 

yield o f  APX was obtained in the NB and HAB media (Figure 5-1 and 2B) than in the 2-AP 

medium (Figure 5.2A). Therefore, w e  propose that 2-AP oxidation to imine and the 

subsequent hydrolysis are the dominant reactions during NB metabolism. 



NHOH 
I 

NHCOCH, NH 

4-BQMI 2-BQMI N-acetvl-2-AP 
OH O 2-AP 

APX - 

4-hvdroauinone catechol 

Figure 5.3. Proposed route of HAB biotransformation in P. put ih  2NP8 cells grown 

on 3-NP. BQMI, benzoquinone monoimine. Brackets indicate unidentified 

compounds. 



Corbett (1 979) reported that 4-benzoquinone disappeared rapidl y from an aqueous 

medium, and this explained the low yield of 4-benzoquinone. Many authors @rown 1967; 

Musso 1967; Nogarni et al. 1975; Ternay 1979) have found that 2-benzoquinone is very 

reactive and more unstable than 4-benzoquinone, especially at a low concentration. This 

explains Our failure to identi% 2-benzoquinone in the reaction media. The catechol and 4- 

hydroquinone detected in the transformation media are reduction products of benzoquinones. 

The link between formation of APX and 2-AP oxidation via imine has been 

established in various studies. Chernical oxidation of 2-AP has been reported to produce 

either APX (Simandi et al. 1996; Szeverenyi et al. 1991; Yano et al. 1991) or the azo product 

2,2'-dihydroxyazobenzene, as the sole product (3,13) or a mixture of APX and the azo 

product (Mayama  et aI. 1996; Simandi et al- 1987). The mechanisms leading to formation of 

the azo product or APX have been reported to be different (Benedini et al. 1985; Simandi et 

al. 1996; Subba Rao et al. 1967; Yano et al. 1991). A specific phenoxazinone synthase that 

catalyzes formation of APX and APX analogs from aminophenols is present in 

microorganisms, plants, animals, and humans (Barry et al. 1989; Ogawa et al. 1983; Savage 

and Prinz 1977). Enzymes with phenoxazinone synthase activity have been identified by other 

researchers as oxidative enzymes; these enzymes include catalase (E3arry et al. 1989; Ogawa 

et al. l983), hemoglobin in hurnan erythrocytes (Tomoda et al. l984), tyrosinase (Toussaint 

and Lerch 1987), and a copper-containing oxidase (Barry et al. 1989). In al1 studies of 

production of APX fiom 2-AP, imine was considered the first intermediate during chernical or 

enzyrnatic oxidation of 2-AP. In this study, 3-NP-grown cells transformed 2-AP at a rate of 

220 p M  - h-l and ammonia was released simultaneously at a rate of 73 pM - h*'. Based on the 

APX concentration in the extracellular aqueous phase, the initial rate of APX production (0.10 

pM h") was as much as 2,200 and 730 times slower than the disappearance of 2-AP and the 

release of ammonia, respectively. Killed cells did not transfomi 2-AP. This indicated that 

biological oxidation of 2-Al? into imine occurred along with subsequent hydrolysis as the 

dominant reactions. The reaction in which APX is formed is probably a spontaneous reaction 

that accompanies oxidation of ZAP, and we could not conclude that a specific phenoxazinone 

synthase is involved. P. pufida 2NP8 is an oxidase- and catalase-positive strain, and oxidase 

and catalase may play a role in oxidation of 24.P and formation of APX. This ammsnia 



release mechanism is different fiom the mechanisms observed for 2-AP metabolism in 

Psezidornoïzas sp. strain AP-3, as described by Takenaka et  al (Takenaka et al. 1998) and in 

P. pse i~do~ka~igenes  JS45, as described by Nishino and Spain (Nishino and Spain 1993); in 

these organisms ammonia is released after dioxygenase cleavage of the aromatic ring. 

Our results also provided information conceming the mechanism of ammonia release 

fiom 3-NP, a growth substrate and inducer of NB transformation activity in strain 2NP8. Celk 

induced by 3-NP transformed 3-NP, NB, and 2-AP at similar initial rates (280, 230, and 220 

p M  h-l respectively). Uninduced cells grown on glucose-ammonium sulfate exhibited 

activity toward 3-NP of 60 pIi4 h-l. Uninduced cells grown on YE alone exhibited no activity 

toward 3-NP. Neither of these types of cells transfonned NB. These observations indicated 

that the enzyme(s) that transformed NB was induced by 3-NP. Our conclusion was also 

supported by the results of Schenzle et al. (19971, who reported that 3-NP-induced cells of R.. 

eutropha J M P  134 converted both 3-hydroxylaminophenol and HAB via a Bamberger 

rearrangement. We propose a parallel 3-NP degradation pathway in which al1 of the possible 

intermediates are postulated based on HAB transformation (Figure 5.4). 3- 

Hydroxylaminophenol, the reduction product produced by 3-NP nitroreductase, would be 

converted to two possible products, aminohydroquinone and 4-arninocatechol, via ortho and 

para Bamberger rearrangements, respective1 y. Both aminohydroquinone and 4-aminocatechol 

shou!d be oxidized into imines more easily than AP is oxidized into imines because of the 

presence of an additional hydroxyl group (1 969, 1970, 1978, 1979). Only 1,2,4-benzenetriol 

can be expected if hydrolysis of imines and subsequent reduction of the quinones occur. 

Meulenberg et al. (1996) identified 1,2,4-benzenetriol as an intermediate of nitroreductase- 

initiated 3-NP transformation by P. pufida B2 under anaerobic conditions. Schenzle et al. 

(1997) described aminohydroquinone as an intermediate of 3-NP nitroreductase-initiated 3- 

NP transformation by R.. euh-oph JMP134 under anaerobic conditions. Ail of these results 

are consistent with our proposed 3-NP degradation mechanism. Our proposed mechanism for 

3-NP degradation, which was based on evidence obtained fiom transformation of the 3-NP 

analog NB, needs to be confirmed by direct studies of 3-NP metabolism, and we are currently 

exploring ways to do this. 



Figure 5.4. Proposed route of 3-NP biotransformation in cells of P. purida 2NP8. Al1 

intermediates were postulated based on HAB biotransformation by 3-NP-grown cells. 



AP is toxic to bacteria @ h m  and Speece 1991; Musaev et al. 1984; Nendza and 

Seydel 1990; Thompson et al 1983), and detoxification activity in P. plcti& 2NP8 was clearly 

indicated by presence of acetylated amines. These compounds are known to be important in 

microbial detoxification and have been wideiy observed dunng nitroreductase-initiated 

degradation of nitroaromatic compounds (Gilcrease and Murphy 1995; Noguera and 

Freedman 1996; Park et al. 1999; Schackrnann and Muller 1991; Schenzle et al. 1997; 

Tweedy et al. 1970). APX is an analog of the toxic compound actinomycin, whicb combines 

with DNA and inhibits RNA synthesis (Hollstein 1974). The eEect of APX on growth has 

toxicological significance. 



6. SUBSTRATE SELECTIVITY OF A 3-NITROPHENOLINDUCED 

IWETABOLIC SYSTEM IN PSEUDOMS PUTIDA 2NP8 TRANSFORMING 

NITROAROMATIC COMPOUNDS INTO AMMONIA UNDER MROBIC 

CONDITIONS' 

6.1. Abstract 

The 3 -nitrophenol-grown cells of Psezido~nanas pzrrida 2NP8 had wide substrate range 

in metabolizing the nitroaromatic substrate through to arnmonia production. Al1 the thirty 

nitroaromatic compounds were quickiy degraded except 4-nitrophenol, 2,4-dinitrophenol, 

2,4,6-trinitrophenol, 2-nitrobenzoic acid and 2-nitrohan. Ammonia production £tom most of 

nitroaromatic substrates appeared to be stoichiometric. Metabolites more hydrophobic and 

hydrophilic than the nitroaromatic substrates were observed during transformation and the 

metabolites exhibited retention time patterns similar to those observed in the nitrobenzene 

(NB) biotransformation. A pathway similar to that for NB transformation was proposed for 

degradation of nitroarornatic substrates into arnmonia via a hydroxytamino aromatic 

compound, aminophenoi, quinone monoimine and quinone. We also observed an apparently 

constitutive enzyme activity oxidizing nitrobenzyl alcohol and nitrobenzaldehyde into 

nitrobenzoic acids. This system manifested low oxidizing activity toward 2-nitrobenzyl 

alcohol. The cells also reduced nitrobenzaldehyde into the corresponding aIcohol product. Our 

results showed that degradation of  nitrobenzyl alcohol into ammonia in the 3-NP grown ce11 

media occurred either before or d e r  oxidation of the alcohol group. 

6.2. Introduction 

Three types of metabolic pathways have been reported for the initial utilization of 

nitroaromatic compounds, as the carbon andor nitrogen sources, by aerobic bacteria. The first 

type is mono- o r  di-oxygenase-initiated release of nitrite and production of 1,2 or 1,4- 

dihydroxylated aromatic compounds. Knackmuss' group (Dickel et al. 1991; Ecker et al. 

1992), Spain and his CO-workers (Haigler et al. 1994; Jain et al. 1994; Nishino and Spain 

1993a; Nishino and Spain 1995; Spain and Ginson 1991; Spanggord et al. 1991; Suen and 

Spain 1993), Hame et al (1993) and Zeyer et a1 (1984, 1988, 1986) described this pathway in 

" T'lis papes lias been revised to Applied and Environmental Microbiology. Co-author is Owen Ward. 
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degradation of mono- or di-nitrated arornatic compounds in certain bacterial strains. The 

second pathway type is nitroreductase-catalyzed reduction of nitroaromatic compounds into 

hydroxylamino aromatic compounds with either subsequent rearrangement into aminophenol 

or direct conversion into 1,Z-dihydroxylated aromatic compounds and ammonia. The research 

groiips of de Bont (Groenewegen and de Bont 1992; Groenewegen et al. 1992; Meulenberg et 

al. 1996), Spain (Haigler and Spain 1993; Nishino and Spain 1993b), Williams (Rhys- 

Williams et al. 1993), Knackmuss (Schenzle et al. 1997, 1999% 1999b; Spiess et al. 1998) and 

Ward (Zhao and Ward 2000; Zhao et al. 2000) reported this pathway in the degradation of 3- 

NP, nitrobemene, Cnitrotoluene and Cnitrobenzoate in certain bacteria. Knackmuss' group 

first described a pathway producing a hydride-meisenheimer complex followed by release of 

nitnte in degradation of 2,4-dinitrophenol and 2,4,6-tnnitrophenol (picric acid) in 

Rhodococais erythrupolis (Lenke and Knackmuss 1992; Lenke et ai. 1992; Rieger et al. 

1999). Rajan et al (1996) described mineralization of picric acid in a Nocardioidrs simpkx. 

Ebert et al (1999) reported that a F420 dependent enzyme system in N. simplex catalyzed 

hydride transfer fiom NADPH to picric acid. 

There were few reports that bacteria grew on mdtinitrated compounds as nitrogen 

source via reduction into amine. Boopath et al. (1993) reported that an anaerobic bacterium, 

Desii[fovibrio sp. B strain, converted 2,4,6-trinitrotoluene into arnmonia and toluene via 

mono-, di- and tri-aminotoluene, and provided nitrogen for bactenal growth. Duque et al 

(1993) observed that a strain of Pserrdmonar sp. aerobically removed nitrite fiom 2,4,6- 

trinitrotoluene. The ammonia-release rnechanism from the above multinitrated compounds 

still remains poorly characterized. Complete reduction of the nitro group has usually been 

found as cometabolic reductive events under aerobic conditions (Glaus et al. 1992; 

Schackmann et al. 1991) or anaerobic metabolism (Gorontzy et al. 1993; Oren et al. 1991) 

with amines as dead end products in many instances Pryant and McEIroy 1991; Cerniglia 

and Somerville 1995; Glaus et al. 1992; Gorontzy et al. 1993; Oren et al. 1991; Schackrnann 

and Müller 199 1). 

The nitroreductase-initiated rnetabolism was reported for bactena which utilize 3-NP 

as growth substrate with production of amrnonia. In Psetrdonzonas prriido B2, Meulenberg et 

al described a production of 1,2,4-tnhydroxylbenzene fiom 3 -NP via 3 -hydroxylaminophenoI 

(Meulenberg et al. 1996) and this was similar to the mechanism descx-ibed for degradation of 



4-nitrobenzoate in C. acidovorm~s NB A- l O (Groenewegen and de Bont 1992; Groenewegen 

et al. 1992). In R eutropha JMP 134, Schenzle et al (1997, 1999a,b) reported conversion of 3- 

N P  into aminohydroquinone via 3-hydroxyIaminophenoI, without characterization of the 

ammonia release mechanism fiom amino hydroquinone. 

Recently we observed that 3-NP-induced enzymes in P. putda 2NP8 could convert 

nîtrobenzene, a cometabolic substrate, into ammonia, via conversion into aminophenols, 

subsequent oxidation into imines, and hydrolysis of the imines (Zhao and Ward 2000; Zhao et 

al. 2000)- We postulated that this strain could convert 3-NP, the growth substrate, into 

hydroxylquinol (1,2,4-benzenetriol) via oxidation of aminohydroquinones into imine, 

hydrolysis of imine into quinone, and reduction of quinone (Zhao et al- 2000). Our proposa1 

was supported by many reports describing hydroxylquinol as a ring-cleaving dioxygenase 

substrate in metabolism of wide range of arornatic compounds (Chamberlain and Dagley 

1968; Chapman and Ribbons 1976; Daubaras et al. 1996; Haigler et al. 1999; Joshi and Gold 

1993; Latus et al. 1995; Rieble et al. 1994; Sze and Dagley 1984; ValIi et al. 1992; Zaborina 

et al. 1995). Our results have shown that catechol was one product of nitrobenzene 

degradation by the 3-NP-induced enzyme, but that nitrobenzene was not a growth substrate. 

This is consistent with the results of Latus et a1 (1995) in Azotobacter sp. and Daubaras et al 

(1996) in Bzrrkholderia cepcia AC1 100, which claimed that hydroxylquinol dioxygenase 

does not accept catechol as substrate. 

Removal of nitro group fiom the aromatic ring is crucial to degradation of 

nitroarornatic compounds. Conversion of NB, a non-growth substrate, into arnmonia by these 

3-NP-induced enzymes in P. pzrtida 2NP8 (Zhao and Ward 2000), encouraged us to specuIate 

that other nitroaromatic compounds might also be degraded substantialiy into ammonia. In 

this paper, we investigated the substrate selectivity of this enzyme system and found that the 

3-NP-induced enzyme system in P. putida 2NP8 had wide substrate range and transformed 

many nitroaromatic substrates into ammonia. 

6.3. Materials and methods 

6.3.1. Sources of ch enucnls 

Nitroaromatic compounds: Aldrich (Milk, WI); methanol: EM Science (HPLC grade, 

Gibbstown, NJ). 



6.3.2. Media 

3-NP and other nitroaromatic compounds were dissolved individually in methanol to 

give a concentration of lOmg/ml. We have previously described the basic salts media (55-57). 

NA basic salts medium contained 20 mg/L of individual nitroaromatic compound in the basic 

salts medium. The latter medium was supplernented with 0.1% yeast extract (YE) to form 

NNYE basic salts medium. YPS medium contained (gll): YE, 10; Bacto peptone, 10; NaCI, 

5. Nitroaromatic compound, sterile TMS and YE were added into autoclaved liquid media. 

Agar media contained 2% agar. Media were autoclaved at 120°C for 30min. 

6.3.3. Prepnrntion of cells grown in the presence of 3-NP and degradation of 

n itrotrronicrtic conzporrnds 

P. pzrîih 2NP8, a strain isoIated by our group fiom municipal activated sludge 

(Waterloo, Ontario) (Zhao and Ward 1999, 2000), was maintained on YPS agar. Unless 

otherwise noted, the strain was grown in clear g l a s  Erlenmeyer 250-ml flasks 2t 26"C, at 200 

rpm on an orbital shaker. Fresh culture grown on 3-NP/YE (Sml, overnight) was inoculated 

into 50 ml 3-NPIYE basic salts medium and grown ovemight (12 h). The latter culture was 

transferred into 1 L of 3-NP/YE medium in a 5L Bask. After 14h 3-NP (50 mg/L) and YE 

(0.25%) were added and incubated ovemight for 10h. At this time point, more 3-NP (60 

m e )  and YE (0.15%) was added. M e r  3h, 3-NP (40 mg/L) was added and the latter was 

incubated for 1 hour. Final ce11 density was 2.8 (OD 600nm, lcm light path). Cells (3 -850, 

wet celis) were harvested by centrifuging at 16,300g for 20 min and washed with lOOm1 of 

sterile phosphate buffer (KH2P04, lg/l; NazHP04 12Hz0, 7gL; pH, 7.35). Cells were used 

immediately for biotransformation of nitroaromatic compounds. Bottles used for 

biodegradation were 40ml amber glass with the Teflon/silicone septa lined caps. Cells, 

suspended in phosphate buffer (8 mg wet cells per ml) (ODsoom 5.6, 1 cm light path), 

containing nitroaromatic compounds substrate (50 m a ) ,  were incubated on an orbital shaker 

at 200 rpm and 26°C. Caps of bottles were loosened to maintain aerobic conditions. The 

weight ratio of dry cells to wet cells was 21.7% (wet cells were dried in 85 OC oven, 5 days). 

The specific 3-NP transformation activity was 22 C1M/h/mg (dry ce11 weight). 



6.3.4. Preparation of cells grown on glucose and degradation of nitroaromatic conipounds 

A similar process was used for nitroarornatic substrate transformation with glucose- 

grown ceIls as was used in 3-NP-grown ce11 transformation except the cells were pregrown in 

the liquid medium containing 0.1% giucose and 0.1% ammonium sulfate instead of 3-NP. 

6.3.5. HPLC nnuïysis of nitroaromutic substrate and metabolites 

The nitroaromatic compounds and metabolites were analyzed using a 4.6 X 250mm 

ZORBAX SB-Cl8 WPLC column (Chromatographic Specialties, Brockville, Ontario, 

Canada). We have previously reported the HPLC instruments, general procedures and 

methods for NB and 3-NP analysis (Zhao and Ward 1999, 2000; Zhao et al. 2000). 

Biotransformation samples were centrifuged at 9000g for 3 min. For samples of 3- 

nitroaniline, 4-nitrocatechol, picric acid, nitrobenzylalco hoI, nitrobenzaldehyde, supernatants 

were directly injected for HPLC analysis. For the samples of other nitroaromatic cornpounds, 

the HPLC sarnples were prepared as follows. 0.45 ml of supernatant was transferred into 2 ml 

of via1 with screw tightened and TeBon-lined caps. Then 0.05 ml of 0.4N HCI solution was 

added to samples. Ethyl acetate, 0.5 ml, was added and the mixture was vortexed for 1 min. 

The organic layer liquid was collected and used directly for HPLC analysis. Volumes of 

samples (1Spl) were injected and eluted with mixture of 60% methanol and 40% milliQ water 

(0.1% trifluroacetic acid) at a flow rate of 1 mVmin. Eluting compounds were monitored at 

254nm. 

Ammonia was analyzed quantitatively with L-glutamate dehydrogenase and NADPH 

(Sigma diagnostic ammonia regent, Sigma, St. Louis, MO). Nitrite was measured according to 

US EPA rnethod 354.1 @PA 1979) (1 979). 

6.4. Results 

6.4. I .  3-NP-grrnvn cclls degraded a wide range of nitroarornatic coinpounds 

We have reported that 3-NP-induced nitroreductase-initiated metabolic activity in P. 

putida 2NP8, transforming the growth substrate 3-NP and the cometabolic substrate NB into 

ammonia (Zhao and Ward 2000; Zhao et al. 2000). To investigate substrate selectivity of this 

3-NP-induced metabolic pathway in this strain, we tested the removal of 30 nitroaromatic 

conipounds by resting cells pregrown on 3-NP. The concentration of the substrates in the 

aqueous phase of transformation samples was analyzed. Loss of substrates in controls with 



killed ceIIs was negligible for al1 nitroaromatic compounds and 2-nitrofiiran except for 1- 

nitronaphthalene, 50% of which was retained by biomass wthin 3h. The specific initial 

removal rates were calculated and the results are presented in Table 6-  I - 
Overall, our results showed that the 3-NP-grown cells quickly degraded al! the 

nitroaromatic compounds except 2-nitrobenzoic acid, 4-nitrophenol, 2,4-dinitrophenol, 2,4,6- 

tnnitrophenol, and that the rate of removal o f  2-nitrotùran was also low. This indicated a wide 

substrate range of this 3-NP-degrading enzyme system. We found that 2-nitrobenzaldehyde 

was transformed via oxidation of the aldehyde group into the acid rather than by reduction of 

the nitro group. 

We analyzed the effect of  different substitutions at various positions of the aromatic 

ring and found that the degradation rate was greatly affected by hydroxyl groups located at the 

2- or  4-position relative to the nitro group or by a carboxylic group at the 2-position only. 

Cells showed good degradation ability to al1 of the 4-substituted nitroaromatics including 

dinitrotoluenes except where that substituent was a hydroxyl group. Low or no degradation 

activity was observed toward 4-NP, 2,4-dinitrophenol, and 2,4,6-trinitrophenol. It seemed that 

the presence of hydroxyl group at the 4-position relative to the nitro group reduced the 

degradation rate. The hydroxyl group is different tiom others in that it is acidic and a strong 

electron donor, thus causing a decrease in the reduction potential o f  the nitro group, the first 

enzymôtic reaction in the 3-NT-induced enzyme system. All the nitrobenzenes, with 

substitutions at the 2-position relative to the nitro group, were degraded except those 

containing aldehyde or carboxyl group. This rnay be caused by the tendency of the carbonyl 

bond of  the aldehyde or carboxylic group on the benzene ring to forrn a rigid structure 

creating steric hindrance to the neighbonng nitro group reaction. Other groups at the 

neighboring position may freely move away from the nitro group. This may avoid steric 

congestion and interference of the reduction reaction. 2-Nitrophenols had a lower degradation 

rate, which might be due to the electron donating effect of the hydroxyl group to the 

neighboring nitro group. Substitutions at the 3-position, including hydroxyl and carboxyl 

groups, did not reduce the degradation rate. 4-Nitrocatechol, having hydroxyl groups at both 

the 3- and 4-position, was degraded but at a rate intermediate between the rates observed for 

3-nitrophenol and 4-nitrophenol. 



It was noteworthy that the nitrated ftsed aromatic ring compound, 1 -nitronap hthalene, 

was quickiy removed. 2-Nitrofuran, a nitrated five-ring hetero aromatic cornpound was 

degraded, albeit at a relative1 y low rate, indicating t hat the 3 -NP-induced specific 

nitroreductase may be different fiom the non-specific nitrofixran nitroreductase found in E. 

coli (E3ryant and McEIroy 1992; Cerniglia and Somerville 1995). 

6.42. 3-Wgrown ceUs îransfornied nitronronzatic compounds into clnimonin 

We chose the nitroaromatic substrates that manifested high rates of degradation by 3- 

NP-grown cells, and investigated ammonia production fiom the nitroaroamtic compounds 

(Table 6.2). Amrnonia-release f?om many of the substrates appeared to be stoi~hiorr~etric. 

Lower ammonia production was observed fiom 2-NP, 4-nitrocatechol and 3,4-dinitrotoluene. 

Because there have been reports on nitrite release via reduction of the aromatic ring 

(Ebert et al. 1999; Lenke and Knackmyss 1992; Lenke et al. 1992; Rajan et al- 1996; Gieger 

et ai. 1999), we also analyzed nitrite production fkom these nitroaromatic substrates. We 

found no nitrite in the 3-NP-grown ce11 transformation media and excluded this possibility. 

These results demonstrated that the broad specific activity of the 3-NP-induced enzyme 

system in P. pzttida 2NP8 was not limited to the initial nitro group reduction step, as reported 

previously by Schenzle et al. (1997) and Meulenberg et al. (1996) but extended fkther down 

to ammonia production. 
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Table 6.1 Degradation rates ( W m g  dcw) of nitroaromatic substrate b y 3 -nitrop henol grown ceils 

Substrate stmctirre Rate 1 Substrate structure Rat( 

NO- 

,,+dinitro- 
phenol 

NO2 
OH 

4-nitro- 
catechol OH 

OH 

1 0 2  

NO2 

2,4-dinitro- ($, 
tol uene 

NO2 
CH3 

2.6-dinitro- 
toluene 

NO2 

nitro benzene 25 

4-chloro- 
nitrobenzene 

c 1 

NO2 
3-chloro- 
o b e n n  & l9 

a 

;-nitroanisole Q 20 

OMe 

Substrate structure Rate 

2-nitro benryl CH,OH 
alcohol 20 

NO, 
3-nitrobenzyl 4 20 
alcohol 

CH,OH 

NO2 

4nitrobenql ($ ,, alcohol 

2-nitro- 
benzoic acid 1 

"COOH 1 

-nitro- 
enzoic acid 6 17 



Table 6.2. Ammonia production fiom nitroaromatic compounds after transformation 

Nitroaromatic substrate Substrate ammount Substrate transformation Amrnonia produced 
(pmole) ( O h ,  3h) (pmole) 

3-nitrophenol 1.4 100 1.3 
4-chloro-3-nitrophenol 

2-nitrophenol 
4-chloro-2-nitrophenol 

4-nitrocatechol 
nitro benzene 

1 -chlore-4-nitrobenzene 
1 -chlore-3-nitrobenrene 

2-nitrotoluene 
4-nitrotoluene 
2-nitroanisole 
3-nitroanisole 

3-nitro benzoate 
4-nitrobenzoate 

2-nitrobenzyialcohol 
3-nitrobenzylalcohol 
4-nitrobenzylalcohol 
2-nitrobenzaldehyde 
4-nitro benzaldehyde 

3-nitro benzonitrile 
2,4-dinitrotoluene 
3,4-dinitrotoluene 
2,6-dinitrotoluene 



6-43. Metabolite production from nitroaromaîk cumpounds when incubated w i t J z  3-W-  

grown cdls 

We have reported previously that this strain cometabolized NB into arnrnonia and 

produced nitrosobenzene, hydroxylaminobenzene, aminophenol, 2-aminophenoxazine-3-one, 

N-acetylaminop hneol, benzoquinone and hydroquinone and catechol as metabolites (Zhao 

and Ward 2000; Zhao et ai. 2000). As we used a similar procedure to conduct the 

biotransfmations reported in this paper, the celIs must have used a similar pathway if 

amrnonia production occurred. We analyzed the positive biotransformation samples for 

metabolites when we incubated 3-NP-gown celis with the nitroaromatic compounds. The 

controls contained transformation medium with killed 3-NP-grown cells and Iive glucose- 

grown cells- We observed new compounds produced dunng the transformation (Table 6.3).  

These compounds strongly absorbed UV at 25411% thus indicating an unsaturated structure, 

likely an intact aromatic ring. With aqueous methanol as solvent the reversed C-18 column, 

used for analysis, would retain hydrophobic compounds (less polar) more strongly than 

hydrophilic cornpounds (polar), resulting in the non-polar compounds having higher retention 

times than the polar compounds, Retention times of metabolites produced fiom 3-NP grown- 

ceIl biotransformations of nitroaromatic substrate are listed in Table 6.3. With 60% methanoi 

as solvent, metabolites f?om NB transformation were separated into two groups. The first 

group consists of metaboIites, which are more hydrophobic than the substrate, such as nitroso 

compound. Nitroso compound (Rt, 8.lmin) is a major and stable metabolite observed in 

transformation of nitrobenzene by 3-NP-grown ceUs of P. pirida 2NP8 (Zhao and Ward 

2000). The second group consists of metabolites, which are more hydrophilic than the 

substrate, such as hydroxylaminobenzene, arninophenol, quinone and others (Zhao et al. 

2000). The major HPLC peaks with retention times of about 3 min, represent these 

hydrophilic products formed from fûrther transformation of nitroso compound. 

We analyzed the retention time pattern of metabolites produced from transformation 

of nitrobenzene and other nitroaromatic substrates and found that degradation of nitroaromatic 

compounds tested in this paper were aIso consecutive, multistep transformation events 

consistent with the pathway that we prciposed previously (Zhao et al. 2000). 



Table 6.3. HPLC retention times of metabolites formed fiom nitroaromatic compounds when 

incubated with 3-NP-grown cells ofP. ptida 2NP8 

Nitroaromatic substrate C-18 reversed HPLC column retention time 
(Rt.. min. 60% methanol as solvent) 

Substrate Rt. Metabolite Rt. mt-m) 
1 

(Rte-s) < Rt. (s)" > Rt. (s )~ 
3-nitrophenol(3NP) 5.5 - - 

4-chloro-3 -nitrophen01 8 -4 - (16.3) 
(4C13NP) 

2-nitrop henol(2NP) 7.0 3 -5 7.5, 7.9 
4-chloro-2-nitrophenol 12.3 5.2, 8.1 - 

(4C 12NP) 
4-nitrocatecho 1 (4NC) 4.1 - - 

nitrobemene (NB) 7.0 2.8,3.3 8.1 (nitrosobenzene), 
10 (Z-aminophenoxazine- 

3 -one) (Ref 57) 
4-chloronitrobenzene (4ClNB) 11.8 5.4, 7.1, 10.2 - 
3 -chIoronitrobenzene (3 C m )  13 -9 3.3, 3.5, 5.4 - 

(10.6, 12.6) 
2-nitrotoluene (2NT) 10.3 ( 3.8) - 
4-nitrotoluene (4NT) 11.0 (5.2, 10.2) - 
2-nitroanisole (2NAS) 5.7 3 -2 10.5 

3-nitrobenzoic acid (3NBA) 5.9 - 6.6, (7.1) 
4-nitrobenzoic acid (4NBA) 6.3 2.9 7.3 

2-nitrobenzyl alcohol(2NBAL) 4.5 1 2.7, 3.0, 6.8, 7.4, (5.1) 



Notes and symbols: 

-: no peak appeared in this retention time region. Major peaks and minor peaks (in bracket) 

were given according to the UV absorbance at 254nm. High AZ54- should not be always 

interpreted as high concentration in the media when cornparhg different cornpound, thus 

characterization by absorbance at singte wavelength is subjective. 

": peaks with smaller retention time than initial substrate indicates hydrophilic metabolite, 

such as hydroxylamino compound, aminophenol, N-acetylaminophenol, quinones and 

catechol compounds; 

b: peaks with larger retention times indicates nitroso or condensed products (dirner); The 

possible retention time order of metabolites according to their chernical structure, HPLC 

column and our previous resufts (56, 57) of nitrobenzene biotransformationjs: Rt. (dimer) > 

Rt. (nitroso compound) > Rt. (nitroaromatic substrate) > Rt. (hydroxylamino compound) > N- 

acetylaminophenol-catechol-aminophenol-quinone Nitrosoaromatic compound has strong 

absorbance at 254nm, and it was eluted about 1-2min later aRer the nitroaromatic substrate. 

The strong peaks at 3min are most tikely those of the quinone and aminophenol derivatives. 



The metabolite production sequence from nitrobenzene transformation is (cornpound, 

(retention time)): NB (7.0 min)+ metabolite 1 (8hnin,  nitrosobenzene)+ metabolite 2 or  3 

(2.8-3.3 min, hydroxylamino cornpound, aminophenol, and quinones etc) (Zhao et al. 2000). 

We observed similar metabolite formation sequence in transformation of other substrates, 

such as: 4-nitrobenzoic acid, substrate (6.3min)+metabolite 1 (7.3rnin)+metabolite 2 

(2.9rnin); 2-nitrophenol, substrate (7.0min) -+ metabolite 1 (7.9 min) + metabolite 2 

(3Smin); 1-nitronaphthalene, substrate (19.7min) + metabolite 1 (22.2min) + metabolite 2 

(7. lmin). Dinitrotoluene has two nitro goups and one o r  two of them could be attacked. W e  

observed two major peaks with equal yield, having a slightly larger retention time than the 

substrate (likely a nitroso product) in transformation of 3,4-dinitrotoluene {substrate (7.3 min) 

+ metabolite 1 (8.8 min) and metabolite 2 (9-3 min)), thus suggesting that either one o f  the 

two neighboring nitro groups, were initially attacked. We observed only one major peak with 

a retention time slightly larger than the substrate from 2,4-dinitrotoluene {substrate (9.4min) 

+ metabolite l(11.8 min)} and this suggests that only one of the two nitro groups was 

preferably selected to be attacked. Since the two nitro groups o f  2,6-dinitrotoluene are at 

positions syrnmetrical t o  each other, only one nitroso compound would be produced as a 

result of the initial reduction. This was confirmed by our observation that only one major 

metabolite produced with retention time slightly larger than the substrate {substrate (9.07min) 

-+ metabolite 1 (1 3 -3 min)). We observed little metabolite formation f b m  sorne substrates 

such as 3-NP and 4-chloro-)-NP, and this may be due to  more rapid degradation of the 

metabolites. 

We monitored the biotransformation tirne-courses of al1 utilized substrates, twelve o f  

which are presented in Figure 6.1(A-L). Each of these time-courses dernonstrated removal o f  

substrate, formation of metabolites and arnrnonia production. 



Figure 6.1 A-L. Times courses of nitroaromatic compounds biotransformation 

catakzed by P. putidn 2NP8 resting cells grown on 3-NP. 

Right Y, Metabolites amount, the unit is A254~10,000 unless otherwise noted. 

Unit of metabolite m3 .O in Figure 6.1 G: A254d 100,000. 

Biotransformation conditions: 5 ml phosphate buffet (25mM, pH 7.3), aerobic, 150 

rpm shaker, 26 OC, 8mgL wet cells- 

HPLC analytical conditions: solvent, 40% ultra pure water (containing 0.1% 

trifluroacetic acid) and 60% methanol; column, Zorbax SB-C 18 colurnn; flow rate, 

1 ml/min; W detector wavelength, 254nm (attenuation, 1). 

Symbols: m5.2, metabolite with HPLC retention time of 5.2min; 4CENP, 4-chloro-2- 

nitrophenol; 3CINB, 3-chloronitrobenzene; 3NB4 3-nitrobenzoic acid; 4NBA, 4- 

nitrobenzoic acid; ' 3NBAL, 3-nitrobenzyl alcohol; 4NB4 4-nltrobenzyl alcohol; 

4BALD, 4-nitrobenzaldehyde; 24DNT, 2,4-dinitrotoluene; 34DNT, 3,4-dinitrotoluene; 

26DNT, 2,6-dinitrotoluene; 3NAS, 3 -nitroanisole; l m ,  1 -nitronaphthalene. 
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6.4.4. Metabolic pntlrivay of nitrobentyl alcohol, nitrobenzaldehyde and nitrobentoic ncid 

in 3-NP-groivn cells of P. autida 2NP8 

In 3-NP-grown ceIl biotransformation media, we observed production of 50% of 2- 

nitrobenzoic acid fiom 2-nitrobenzaldehyde and 3.5% of 4-nitrobenzoate produced fiom 4- 

nitrobenzaldehyde. In the control media with live glucose-grown cells, we found the cells 

both oxidized nitrobenzaldehyde into nitrobenzoic acid and reduced them into nitrobenzy 1 

alcohol. Yield of biotransformation products £rom the glucose-grown celf media were 

(substrate: produa / yield): 2-nitrobenzaldehyde: alcohol / 40%, acid / 60%; 4- 

nitrobenzaldehyde: alcohol/0.2%, acid/92%. Thus formation of nitrobenzoic zcid fiorn 

nitrobenzaldehyde in the 3-NP-grown cell media appeared to be due to a constitutive enzyme 

activity. In the transformation medium with nitrobenzaldehyde and 3-NP-grown cells, a high 

level of 2-nitrobenzoic acid was observed, but oniy a low yield of 4-nitrobemoic acid was 

observed. This suggested either fast degradation of 4-nitrobenzoic acid following its 

formation or a direct degradation via initial attack on the nitro group. 2-Nitrobenzoic acid 

could not be degraded. We did not find an alcohol product fiom nitrobenzaldehyde using 3 -  

NP-grown cells. 

The glucose-grown resting ce1 Is also exhibited apparent constitutive enzyme activity 

degrading 3- or Cnitrobenzyl alcohol, with little activity on 2-nitrobenzyl alcohol and al1 

other nitroarornatic compounds including nitrotoluenes. Glucose-grown cells slowly oxidized 

3- (14%) or 4-nitrobenzyl alcohol (4%) into nitrobenzoate. We observed production of trace 

amount of nitrobenzoic acid fiom 3- or 4-nitrobenzyl alcohol in transformation media 

containing 3-NP-grown cells, indicating a quick degradation of these products by 3-NP-grown 

cells. A high degradation rate of 3- or 4-nitrobenzyl alcohol in the 3-NP-grown ce11 media 

demonstrated that degradation via initial reduction of the nitro group, instead of oxidation of 

the alcohol group, was the dominant reaction. Since there were reports that a strain of 

Psezidornonns sp. could degrade Cnitrotoluene via initial oxidation of methyl group, leading 

to its degradation into ammonia (Haigler and Spain 1993; Rhys-Williams et al. 1993), we 

analyzed the ability of Our strain (P. pifi& 2NP8) to oxidize nitrotoluene into nitrobenzyl 

alcohol. We found that cells of this strain, grown on glucose or 3-NP, Iacked this enzyme 

activity. 



Based on the evidence presented, combined with Our previous reports (Zhao and Ward 

2000; Zhao et al. 2000), we concluded that this strain transformed the nitroaromatic 

compounds into ammonia via a pathway similar to that of nitrobenzene degradation. The - 

proposed pathway is given in Figure 6.2A A proposed mixed pathway for degradation of 

nitrotoluene, nitrobenzyl alcohol, nitrobenzaldehyde and nitrobenzoic acid by 3-NP-grown 

cells o f  P. puticiir 2NPS is also summarized in Figure 6.2B-D. Al1 nitrobenzyl alcohols, 

nitrobenzaldehydes except 2-nitrobenzaIdehyde were degraded into ammonia with or  without 

initial attack on the aldehyde or alcohol group, We did not test whether 3-nitrobenzaldehyde 

c m  be reduced or directly degraded into ammonia, however the aldehyde is obviously an 

intermediate of oxidation of 3-nitrobenzyl alcohol. Even though oxidation activity of 

nitrotoluene is missing in the strain, the CO-metabolic activity of the 3-NP-grown cells seems 

to resemble in other respects other specific 4-nitrotoluene degraders (Haigler and Spain 1993; 

Rhys-Williams et al. 1993) with inducible nitrotoluene oxidation and 4-nitrobenzoic acid 

reduction activity. 



hydroxyiamino 
aromatic intemiediate 

aminophenol 

benzoquinone 
monoirnine 

benzoquinone 

Figure 6.2. Proposed pathway for ammonia-release from nitroaromatic 

compounds and transformation o f  nitrobenzyl alcohol in P. ptida 2NP8. 

(Bracket indicates unidentified compound. Question mark indicates the reactions 

not tested-) 



6.5. Discussions 

In this paper, we demonstrated that the 3-NP-induced enzymatic systern for 

transformation of nitroaromatic compoud has wide substrate range and could convert many 

substituted nitroaromatic compounds into ammonia. 

Two 3-NP-induced enzyme systems have been reported. The initial enzyme in al1 the 

3-NP degrading bacteria with 3-NP as growth substrate was nitroreductase. The initial 

nitroreductase was found to have wide substrate range in reducing the nitroaroamtic 

compounds with NAD(I?)H Weulenberg et al. 1996; Schenzle et al. 1997). Meulenberg et al 

(1996) described a 3-NP-induced enzyme system in P. putida B2, and found that the initial 3- 

NP nitroreductase in cell-free extract had the ability to catalyze reduction of many other 

nitroaromatic compounds with NAD(P)H as an electron donor. However, neither the cell-fiee 

extract nor the intact cells of P. prrtidn B2 grown on 3-NP, converted the nitroaromatic and 

hydroxylaminoaromatic substrates, other than 3-NP, into ammonia. This contrasts with Our 

results in that a wide range of nitroaromatic compounds were transformed into ammonia by 

the 3-NP-grown cells of P. putida 2NP8, thus indicating a different 3-NP degrading system. 

Schenzle et al (1 997, 1999a, 1999b) reponed another 3-NP-degrading enzyme system 

in RcrIsto~Nn ezttr-opha MP 134. The initial 3-NP nitroreductase also catalyzed reduction of a 

wide range of nitroaromatic substrates with NADPH as electron donor (Schenzle et al. 

1999a). 3-NP-grown cells of this strain converted 3-NP and 2-chloro-5-NP into ammonia. 

However, NB was converted into dead end amino phenols (4 l), rather than ammonia. This 3- 

NP-induced enzyme is also different fiom the one we reported in P. yu& 2NP8. 

Both our results in P. ptitida 2NP8 and the results for R eutropha M l 3 4  reported by 

Schenzle et al (1999a) showed that the enzyme system did not attack 4-NP, 2,4-dinitrophenol 

and 2-nitrobenzoate. Meulenberg et a1 (1996) also observed that the initial enzyme in P p l i d n  

B2 exhibited a low capacity to reduce 4-NP and Znitrobenzoate. Schenzle reported (1999a) 

that the  initial enzyme in R. eutropha JM.134 reduced picric acid but not 2-nitrotoluene. We 

observed the opposite, namely that P. pzctidn 2NP8 reduced 2-nitrotoluene but not picric acid. 

Both nitroreductase- and oxygenase-initiated (CeMglia and Somerville 1995; 

Groenewegen and de Bont 1992; Groenewegen et d.1992; Haigler et al. 1994; Nishino and 

Spain 1993qb; Park et al. 1999; Rhys-Williams et al. 1993; spanggord et al. 1991; Spiess et 

al. 1998; Valli et al. 1992; Zeyer et al. 1986) metabolism has been reported for transformation 



of many nitroaromatic compounds tested in this paper. The metabolic pathways descnbed in 

these reports are different fkom those we propose for P. putidCr 2NP8. 

WhiIe nitroreductase-initiated metabolism of nitrobenzene, nitrobenzoic acid and 4- 

nitrotohene, as growth sübstrates, has been reported, IittIe is known about substrate 

selectivity in bacterial degradation of non-growth-supporting nitroaromatic substrates. 

Groenewegen et al. (1992) reported nitroreductase-initiated metaboIism of 4-nitrobenzoate in 

Cornmonas acidovorans NB A- O, and proposed a hydroxylarninolyase t hat converted the 

hydroxylaminobenzoate intermediate directly into 3,4-dihydroxylbeozoate and ammonia. 

Rhys-Williams et al ( 1  993) reported that fieudomonas sp. TW3 used the same mechanism to 

degrade 4-nitrobenzoate, an intermediate from 4-nitrotoluene transformation by this strain, via 

oxidation of methyl group. Spiess et al (1998) observed degradation of 4-nitrotoluene in a 

Mycobacterium strain (HL 4-NT-1) via initial reduction of nitro group leaving the rnethyl 

group intact. However, this strain transformed the substrate into ammonia via ring-cleavage of 

6-amino-3-cresol by aminophenol dioxygenase similar to that reported for nitrobenzene 

degradation by P. pseztdoaicaligenes JS45 (Nishino and Spain 1993b). Park et al (1999) 

reported a nitroreductase initiated transformation of choloronitrobenzene by NB-grown cells 

of a strain of P. p~rtidn, with N-acetylated-choloroaminophenoI (chlorohydroxyacetanilide) as 

dead end product. Cemiglia et al (1995) reported microbial transformation of nitropo1ycycIic 

aromatic hydrocarbons by non-specific nitroreductase and described nitroso, hydroxylamino 

intermediates and amine, but not amrnonia, as metabolites. 

Bacteria also used oxygenase to initiate degradation of some of the nitoraroamtic 

compounds reported in this paper. Haigler et al (1994) descnbed a constitutively expressed 

dioxygenase in Pseudon~onas sp. strain JS42, converting Znitrotolene into nitrite. For 4- 

chloro-2-NP, Zeyer et al (1986) reported release of nitrite via a dioxygenase in P. pzitih B2. 

Spanggord et al (1991) reported that a strain of Pse~ldomonas sp. transformed 2,4- 

dinitrotoluene into 4-methyl-nitrocatechol by a dioxygenase. Valli et al (1992) reported that 

the lignin-degrading fungus, Phanerochaete chrysosporium, transforrned 2,4-dinitrotoluene 

via a multistep pathway including an initial reduction into amines followed by oxidation into 

benzoquinones with release of ammonia. Duque et al (1993) isolated a strain of Pseudomonas 

sp. (C1S 1 )  which converted trinitrotoluene into dinitrotoluene, mononitrotoluene, and toluene, 

with release of nitrite. The mechanism related to nitrotoluene conversion remains unclear. 



Ali-Sadat et al (1995) described cometabolic degradation of 3-nitrotoluene in P. pzttida OU83, 

and found both 3-aminotoluene and nitrite released via 3-NP.  

Haigler and Spain (1993) and Rhys-Williams et al (1993) reported that 4-nitrobenzyl 

alcohol and 4-nitrobenzaldehyde were intermediates in degradation of 4-nitrotoluene by a 

strain of Psez~domomzs sp. We detected an apparently constitutive enzyme activity in P. 

pzttida 2NP8, oxidizing nitrobenzylalcohol and nitrobenzaldehyde into nitrobenzoic acid. We 

also observed a quick conversion of the substrate into ammonia. There were overlaps in 

metabolite profile of 4-nitrobenzyl alcohol and 4-nitrobenzaldehyde and 4-nitrobenzoic acid 

(Table 6.3 and Figure 6.1D, E, F), suggesting cornmon metabolites. Both 4-nitrobenzyl 

alcohol and 4-nitrobenzaldehyde were converted into metabolites with retention times of 

2.9min, 6.4 min (4-nitrobenzoic acid), 7.4minY 6.9min, 1 l.0rnin and 1 1 -8min. This in turn 

suggests a shared upstrearn pathway, likely the degradation via the aldehyde and the acid. 

Both 4-nitrobenzoic acid and 4-nitrobenzaldehyde produced metabolites with retention tirne 

of 2.9min and 7.3min, again suggesting a shared metabolism from 4-nitrobenzoic acid. There 

were also differences between metabolite profiles of  the three substrates, indicating 

degradation before they converge to 4-nitrobenzoic acid. At a constant biomass concentration 

(wet cells, 8 mg/ml), the oxidation product (4-nitrobenzoic acid) yield ( 1 3 ,  5%) fiom 4- 

nitrobenryl alcohol in the glucose-grown cells medium is much lower than 4-nitrobenzyl 

aIcohol degradation yield ( I S h ,  100%, Figure 6.1G) in 3-NP-grown cells medium. This 

suggested that degradation of 4-nitrobenzyl alcohol must have occurred before oxidation and 

is the dominant reaction. This evidence indicated this strain could convert the substrates into 

ammonia either before or after they were oxidized into nitrobenzoic acid and these mixed 

pathway are presented in Figure 6.2B-D. 

Haigler and Spain (1993) and Rhys-willams et al (1993) described a complete 

degradation of 4-nitrotoluene into ammonia via initia1 oxidation of methyl group and a 

subsequent nitroreductase-initiated metabolism of 4-nitrobenzoic acid. We observed an 

apparently constitutive enzyme activity oxidizing nitrobenzyl alcohol into nitrobenzoic acid, 

but this strain (P. putida 2NP8) lacked the methyl group oxygenase. Robertson et al (1992) 

reported oxidation of nitrotoluenes into nitrobeml alcohol by toluene dioxygenase. Delgado 

et al (1992) reported that an toluene-induced toluene rnonooxygenase had the ability to 

oxidize a) nitrotoluene into nitrobenzyl alcohol, b) nitrobenzyl alcohol into 
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nitrobenzaldehyde, and c) oxidation of nitrobenzaldehyde. They concluded nitrotoluene was 

not the induction effector of the pathway. The constitutive enzymatic activity in P. pzctidn 

needs to be characterized to understand how it is different fiom the above toluene and 4- 

nitrotoluene oxygenase. 

We have reported previousiy that 3-NP-grown ceIIs of P.purida 2NP8 transformeci 

nitro benzene into ammonia via: 1) reduction of nitrobemene to hydroxylaminobenzene; 2) 

rearrangement of  hydroxylaminobenzene into aminophenol; 3) oxidation of  aminophenol into 

benzoquinone monoirnine; 4) hydrolysis o f  imine into ammonia and quinone (Zhao et al. 

2000). Praduction of ammonia fiom the nitroaromatic compounds tested in this paper 

demonstrated ail the enzymes in the pathway must have relaxed substrate selectivity, thus 

allowing reaction o f  a11 the intermediates to proceed to release of ammonia (F-igure 6.2). 

Further characterization of the metabolites and enzymes involved in these biotransformations 

will now be conducted. 



7. DEGRkDATION OF MlTROAROlMATIC COMPOUNDS VIA ELIMINATION 

OF NITRITE IN CELLS OF PSEUDOMONRT PUTDA 2NP8 

7.1. Abstract 

The 2-nitrophenol-induced enzyme system of Pseudomonas purida 2NP8 transforms 

2-nitrophenol into nitrite and the 3-nitrophenol-induced system transforms 3-nitrophen01 into 

ammonia. When thirty nitroaromatic substrates with one, two or three nitro substitutions, were 

tested for their capacity to induce a nitrite-releasing activity only 2-nitrophenol and 4-CI-2- 

nitrophenol were found to be the inducers. Likewise when the thirty compounds were tested 

as substrate of a 2-nitrophenol-induced enzyme system, only 2-nitrophenol and 4-CI-2- 

nitrophen01 were substrates of the 2-nitrophenol-induced nitnte-releasing enzyme system. 

This contrasts with the very broad substrate specificity of the 3-nitrophenol-induced enzyme 

system. This strain transformed 4-CI-2-nitrophen01 into a dead-end metabolite A, which is 

believed to be 4-chlorocatechol based on its HPLC performance and a proposed oxygenase- 

initiated pathway. 

7.2. Introduction 

Three types of enzymes have been reported for aerobic bacteria to initiate degradation 

of the inert nitroaromatic compounds as their growth substrates: a) oxygenase; b) benzene 

ring reductase; c) nitroreductase. The first two initial reactions produce Ntrite and the third 

produces ammonia. The benzene ring reductase-initiated degradation of some multinitrated 

compounds and hydride ion benzene ring reduction form a meisenheimer intermediate as a 

precursor to nitnte release (Ebert et al. 1999; Lenke and Knackmuss 1992; Lenke et al. 1992; 

Rajan et al. 1996; Rieger et al. 1999; Vorbeck et al. 1994; Vorbeck et al. 1998). The 

nitroreductase was the first enzyme in the degradation of some nitroaromatic compounds such 

as nitrobenzene (Nishino and Spain 1993b; Park et al. 1999; SoineMlle et al. 1995), 4- 

nitrotoluene (Suen et al. 1993), 4-nitrobenzoic acid (Groenewegen and de Bont 1992; 

Groenewegen et al. 1992; Haigler and Spain 1993; Rhys-WiIIiarns et al. 1993), 3-nitrophen01 

(3-NP) (Meulenberg et al. 1996; Schenzle et al. 1997, 1999% 1999b; Zhao and Ward 1999; 

Zhao et al. 2000; Zhao and Ward, unpublished results) in certain bactena grown on these 

nitroaromatic compounds. In the nitroreductase-initiated metaboIisrn of nitroaromatic 



compounds, the ammonia is released via an incomplete reduction of the nitro group into a 

hydroxylamino group, rather than a complete reduction to amine as observed (Schackmann 

and Müller 1991) in cometabolisrn involving unspecific nitroreductase. Although the 

nitroaromatic compounds are electron defkient due to the presence of the nitro group, many 

aerobic bacteria are capable of attacking the aromatic ring with specific oxygenase and release 

nitrite from mono- and di-nitroarornatic compounds @ickel and Knackmuss 1991; Haigler et 

al. 1994; Hanne et al. 1993; Jain et al- 1994; Nishino and Spain 1993% 1995; Spain and 

Gibson 1991; Spain et ai- 1979; Spanggord et al. 1991; Suen and Spain 1993; Zeyer et al. 

1986; Zeyer and Kearney 1984; Zhao and Ward, unpublished results). 

The oxygenase-catalyzed removal of the nitro group £?om the aromatic ring involves 

three steps: 1) oxygen molecule activation; 2) addition of the 'active oxygen' to aromatic ring, 

forming a non-arornatic and unstable adduct and 3) release of a nitrite anion and formation of 

a quinone intermediate (for monoxygenase) or a dihydroxy-product (for dioxygenase) @ickel 

and Knackmuss 1991; Haigier et al. 1994; Nishino and Spain 1995; Spain and Gibson 1991; 

Spain et al. 1979; Spanggord et al. 1991; Zeyer and Kocher 1988). The dihydroxyl aromatic 

compounds are the products of this initial oxygenase-reaction and subjected to ring-cleavage 

metabolism. Bacteria ernploy this route to degrade 2- or 4-NP- 4-hT degradation activity has 

been found in many environments (Hanne et al. 1993; Jain et al. 1994; Nishino and Spain 

1993a; Spain and Gibson 1991; Zhao and Ward, 1999 and unpublished results), but there is 

only one report on bacterial degradation of 2-NP as growth substrate (Zeyer and Kearney 

1984). Zeyer and Keamey described a Psezïdomonas pzrtida B2 degrading 2-NP and 3-NP 

(36). No strain has been reported to degrade 2-NP alone but not 3-NP. We also isolated a 

strain of P. putida 2NP8 which degraded both 2-NP and 3-NP, has a 3-NP-induced enzyme 

system capable of converting nitroaroamtic compounds into catechols and arnmonia (Zhao 

and Ward 2000; unpublished results). Zeyer et al. reported that the purified 2-NP oxygenase 

in P. putida B2 had the capacity to degrade some other substituted 2-NP (Zeyer et ai. 1986). 

In this paper we investigated the capacity of thirty mono-, di- and tri-nitroaromatics to induce 

the 2-NP-degrading enzyme system and to participate as substrates in the reaction. 



7.3- Materials and methods 

7.3.1. Sources of chemicals 

Nitroaromatic compounds: Aldrich (Milk, WI); methanol: EM Science (HPLC grade, 

Gibbstown, NJ). 

7.3.2. Media 

2-NP and other nitroaromatic compounds were dissolved individually in methanol to 

give a concentration of ZOmg/rnl. We have previously described the basic salts media (Zhao 

and Ward 1999). NA basic saIts medium contained 20 mg/L of individual nitroarornatic 

compound in the basic salts medium. The latter medium was supplemented wïth 0.1% yeast 

extract (YE) to form NNYE basic salts medium. YPS medium contained (M): YE, IO; Bacto 

peptone, IO; NaCl, 5 .  Nitroaromatic compound, sterile TMS and YE were added into 

autoclaved liquid media. Agar media contained 2% agar. Media were autoclaved at 120°C for 

30rnin. 

7.3.3. Prepmtion of cefk grorvn on 2-NP or glucose and degradation of nitronromntic 

compounds 

P. yrrtida 2NP8 was inoculated into 2-NPIYE (50ml in 250 ml clear flask) and 

incubated ovemight on a rotary shaker at 200 rpm, at 26 OC. To get more growth, 2-NP (40 

mg/L) and YE (0.2%) was then added and the latter incubated for 10h. This culture was 

transferred to 1 L of 2-NP/YE medium. After a 3-h incubation, 2-NP (50 mg/L) and YE 

(0.25%) was added and the culture was incubated for 1 l h  (overnight). At this time point 2-NP 

(40 mgL) and YE (0.2%) was added. M e r  another 3-h incubation, 2-NP (20 m g L )  was 

added and the culture was incubated for 1 hour. Final ce11 density was 2.83 (OD600m, lcm 

light path). Cells (4.588, wet cells) were harvested by centrifbging at l6,3 00g for 20 min and 

washed with IOOrnl  of stede phosphate buffer O(H2P04, I d ;  NazHP04 12H20, 7giL; pH, 

7.35). CeIIs were used immediately for biotransformation. The specific 2-NP transformation 

activity was 22 w m g  (dry ce11 weight). Bottles used for biodegradation were 40ml amber 

g las  with the Teflon/silicone septa Iined caps. Celis, suspended in phosphate buffer (8 mg 

wet cells per ml) (OD600Nn 5.6, 1 cm light path), containing nitroaromatic cornpounds 

substrate (50 mg/L), were incubated on an orbital shaker at 200 rpm and 26°C. Caps of botîles 

were loosened to maintain aerobic conditions. The ratio of dry ce11 versus wet cells was 

21 -7% (wet cells were dried in 85 OC oven, 5 days). 



Z 3.4. Degradation of nitronromntic cornpounds by grûwing cells 

Fresh culture (0.2Srnl) of P. purida 2NP8 grown in YPS medium (overnight), was 

inoculated into 5 ml of NANE media in 25 ml glass tube, containing different nitroaromatic 

compounds (20 mg/L). The initial 0D600nm was 0.3 1. The cultures were incubated at 26OC at 

200 rpm on an orbital shaker- After 24 h, the OD600nm was increased to 0.7-0.9. Samples were 

taken for centrifiigation and the supernatant was analyzed for concentration of substrate 

remaining in the media and for nitrite produced. 

7.3.5. HPLC analysis of substrates and metabolites 

The nitroaromatic compounds and metabolites were analyzed using a 4.6 X 250mm 

ZORl3AX SB-C 18 NPLC column (Chromatographie Specialties, BrocZNiIIe, Ontario, 

Canada). We have previously reported the HPLC instruments, general procedures and 

methods for NB and 3-NP analysis (Zhao and Ward 1999 and 2000). Biotransforrnation 

samples were centtifûged at 9000g for 3 min. For samples containing 3-nitroaniline, 4- 

nitrocatechol, picric acid, nitrobenzylalcohol and nitrobenzaldehyde, the supernatants were 

directly injected for HPLC analysis. For other nitroaromatic compounds, the HPLC samples 

were prepared as follows: 0.45 ml of supernatant was transferred into 2 ml of via1 with screw 

tightened and Teflon-lined caps. Then 0.05 ml of 0.4N HCl solution was added to samples. 

Ethyl acetate, 0.5 ml, was added and the mixture was vortexed for 1 min. The organic layer 

liquid was collected and used directly for HPLC analysis. 15p1 volumes of samples were 

injected and eluted with mixture of 60% methanol and 40% milliQ water (0.1% tx-ifiuroacetic 

acid) at a flow rate of 1 ml/min. Compounds were monitored at 254nm. 

Nitrite was measured according to US EPA method 354.1 (EPA 1979). 



7.4. Results 

7.4.1. N'troaromatic compound induced nitnoie-elimination activity in P. putida Z N P 8  

We have previously reported that P. p u f i h  2NP8 degrades 2-NP via release of nitrite 

(Zhao and Ward 2000). We therefore surveyed the capacity of this strain to degrade 30 

nitroaromatic compounds and to produce nitrite in media containing YE for 24h (Table 7.1). 

Only 2-NP and 4-Cl-2-NP were degraded with production of significant amounts of nitrite, 

6lp.M fiom 1 15 pM of 4-Cl-2-NP and 105 ph4 from 144 pM of 2-NP. A metabolite (A) with 

a retention time of 3.3min accumulated in the growth media with 4-Cl-2-NP as substrate. No 

corresponding metabolite was observed with 2-NP. Based on its UV absorbance at 254nm 

(almost 3 times the absorbance of the initial substrate, 4-Cl-2W), we considered it to be a 

dead end product or a poor substrate for further metabolism. Zeyer and Kearney have reported 

oxygenase-initiated nitrite elimination fiom 2-NP in P. putida B2 (Zeyer and Kearney 1984). 

Our strain seemed similar to P. putida B2 in that both 4-Cl-2-NP and 2-NP induced nitrite 

eiimination activity, and 4-Cl-2-NP was a poor substrate for fùrther metabolism. 

We also analyzed how the culture degraded other nitroaromatic compounds without 

releasing nitrite. For nitrobenzaldehydes and nitrobenzyl alcohols, we found that they were 

transformed via oxidation andior reduction of aldehyde and alcohol groups and the results 

were presented in TabIe 7.2. The dominant reaction of 2- nitrobenzyl aldehyde was the 

reduction into the alco ho1 product (75%), but 4-nitrobenzaldehyde was preferably oxidized 

into the acid (92%). The culture degraded less than 50% of al1 other nitroaromatic compounds 

except 3,4-dinitrotoluene (72%) and 1-nitronaphthalene (72%), producing little nitrite. 

Adsorption of the hydrophobic 1-naphthalene to the biomass attributed partly to the loss of 

substrate in the media, because 50% of the latter was found to be retained to biomass in a 

suspension containing 8mg/ml of killed cells and 50 mg/L of the compound. Cells growing on 

the nitroaromatic substrate other than 2-NP and 4-Cl-2-NP had little capacity to produce 

nitrite. 



Table 7.1. Mtroaromatic substrate removal @m.) and nitrite production by 

Nitroaromatics tested Substrate conc (FM) Rm-(%) NO2-conc. (FM) 

2-nitrophenol 1 44 100 105 
4-chloro-2-nitrophenol 115 100 61 

3-nitrophenol 144 100 1 
4-chloro-3-nitrophenol 115 12 3 

2,4-dinitrophenol 1 08 17 4 
4-nitrophenol 144 8 3 

picnc acid 87 O 1 
3-nitroaniline 145 40 3 

4-nitrocatechol 129 28 4 
nitro benzene 162 6 3 

1 -chlore-4-nitrobenzene 127 49 8 
1 -chlore-3-nitrobenzene 127 49 11 

2-nitrotoluene 146 18 4 
4-nitrotoluene 146 54 5 
2-nitroanisole 130 20 3 
3-nitroanisole 130 3 1 16 

2-nitrobenzoate 120 21 1 
3-nitrobenzoate 120 71 1 
4-nitrobenzoate 120 39 17 

2-nitrobenzylalcohol 130 9 1 
3-nitrobenzyIalcohol 130 89 2 
4-nitrobenzylalcohol 130 38 3 
2-nitrobenzaldehyde 132 100 2 
44trobenzaldehyde 132 1 O0 7 

3-nitrobenzonitrile 135 32 1 
2,4-dinitrotoluene 110 28 O 
3,4-dinitrotoluene 110 72 4 
2,6-dinitrotoluene 110 25 4 

2-nitrofuran 177 16 26 
1 -nitronaphthalene 115 72 3 



Table 7.2 Transformation of nitrobenzaldehyde and nitorbenzylalcohol by growing 
cells of P. puticia 2NP8 (substrate concentration, 25 mgL) 

B: oxidation of nitrobenzyl alcohol into nitrobenzoic acid 

A: transformation of nitrobenzaldehyde via attacking on the aldehyde group 
Substrates Product and Yield (%) 

- - 

Substrates Acid product Yield (%) 
2-nitrobenzylalcohol 2-nitrobenzoic acid trace 

Alcohol Yield 
2-nitrobenzaldehyde 2-nitrobenzyl alcohol 75 
4-nitrobenzaldehyde 4-nitrobenzyl alcohol 8 

3-nitrobenzylalco ho1 3 -nitrobenzoic acid 62 

Aci d Yield 
2-nitrobenzoic acid 25 
4-nitrobenzoic acid 92 

4-nitrobenzylalcohol 4-nitrobenzo ic acid 40 



Z4.2 2-NP-grown cells catalyzed degradation of nitroammatic substrate 

2-NP-grown whole cells of P. putida 2NP8 exhib ited good degradation activity toward 

2-NP, 4-Cl-2-NP and two nitrobenzaldehydes and comp letel y removed t hese compounds 

within 1Sh. The cells degraded some of 3- and 4-nitrobenzyl alcohols, and 3-nitroanisole. No 

degradation was observed for mono- or di-nitrotoluene, nitrobenzoic acids, 1-nitronapthalene 

and other compounds, which were substrates of a 3-NP-induced enzyme system in the same 

strain (unpublished results). Nitrite production patterns in this 2-NP-grown ceIl media (Table 

7.3) were similar to those observed in the growing ce11 media incubated with individual 

nitroaromatic substrates. Nitrite accumulation was quantitative fiom 2-NP. Nitrite yield nom 

4-Cl-2-NP is 67%. A significant amount of the metabolite 4 with a retention time of 3.3 min, 

was also accumulated in the medium containing 4-Cl-2NP. 

Since the retention time of metabolite A was much srnaller than those (1 1 -2min) of the 

substrate (4-Cl-2-NP) under the reversed phase (C-18 column) separation conditions, we 

concluded metabolite A was a highly hydrophilic compound, a substantially degraded product 

from 4-CI-2-NP. According to the mechanism as proposed by Zeyer and Kearney (Zeyer and 

et al. 1986; Zeyer and Kearney 1984), the possible product fiom 4-Cl-2-NP is 4- 

chlorocatechol. Authentic 4-chlorocatechoI was not available for confirmation. The retention 

time (3.8min) of 4-nitrocatechol, a structural analog to 4-chlorocatechol, was very close to 

that (3.3min) of metabolite A The metabolite A arnount (A254- value, 6.5 X 10') 

accurnulated in the transformation medium was close to that (2.3 X los, 50 rng/L) of the 

initial substrate, CCI-2-NP, and that (2.4 X 106, 50 m a )  of Cnitrocatechol. This metabolite 

A, presumably 4-chlorocatechol, was a poor substrate for iùrther metabolism. 4-nitrocatechol 

(Table 7.4), an analog to 4-chlorocatechol, was also not a substrate for the 2-NP-induced 

enzyme system in the whole cells of this strain, supporting this conclusion. 

The 2-NP-gmwn cells exhibited little capacity (5 ph4, 3%) to produce nitrite from 

nitroarornatic substrates other than 2-NP and 4-Cl-2-NP (Table 7.3). Nitrobenzaldehydes and 

nitrobenzyl alcohols were degraded via attack on the aldehyde or the alcohol group (Table 

7.4). Both 2- and 4-nitrobenzaldehyde were predorninantly oxidized into the acids, with a 

lower conversion of 3-nitrobenzyl alcohol into the acid (Table 7.4). 

The glucose-grown cells exhibited little nitrite production activity toward al1 the 

nitroaromatic compounds including 2-NP and 4-Cl-2-NP. These uninduced cells exhibited 



degradation activity toward nitrobenzyl alcohols, nitrobenzaldehydes. Little transformation 

activity w2s observed toward all other nitroaromatic compounds (Table 7.3). The 

transformation reaction patterns of nitrobenzaldehdye and nitrobenzyl alcohol in the glucose- 

grown ce11 media were the same as those in 2-NF-grown cells media (Table 7.4). 

7.5. Discussions 

In this paper, we observed that only 2-NP and 4-Cl-2-NP induced nitrite producing 

activity from nitroaromatic compounds by P. pulida 2NP8 and that the same compounds were 

the only substrates. Our findings are consistent with an oxygenase-initiated pathway described 

by Zeyer et al. (1984, 1986, and 1988) who described that a strain of P. p u t i h  B2, capable of 

growing on 2-NP as the sole carbon and nitrogen source which transformed 2-NP into 

catechol via release of nitnte. The initial 2-NP oxygenase and the followed ring-cleavage 

catechol 1,Zdioxygenase in P. putida B2 could be induced by a few other 2-NP with 

substitution at 4-position relative to hydroxyl group, including 4-Cl-2-NP (Zeyer and Kocher 

1988). Zeyer et al (1986) observed that 2-NP oxygenase activity toward 4-CI-2-NP was only 

20% of that toward 2-NP while catechol 1,2-dioxygenase toward 4-chlorocatechol was oniy 

4% of that toward catechol and 4-CI-2-NP was not a growth substrate. The metabolite 4 
which we concluded to be 4-chlorocatechot, was found as a product of 4-Cl-2-NP 

transformation in P. putida 2NP8 and was a poor substrate for fùrther metabolism. Bmhn et 

al (1988) described that 2-NP and 4-Cl-2-NP were inducers and substrates of a nitrophenol 

oxygenase in a strain of Psezidomonas sp. N3 1. Strain N3 1 converted 4-Cl-2-NP into 4- 

chlorocatechol and converted 2-NP into catechol, but the latter two products could not be 

further metabolized due to lack of the catechol dioxygenase activity. 2-NP and 4-Cl-2-NP was 

only nitrogen source for growth of strain N3 I. They constructed new strains which were able 

to use 2-NP and 4-Cl-2-NP as the sole carbon and nitrogen source for growth by transferring 

into the strain the chlorocatechol metabolic genes f?om those chloroaromatics-degrading 

bacteria, 

Zeyer et al (1986, 1988) reported that the nitrophenol dioxygenase in P. putda B2 

had the capacity to degrade many other 2-NP with substitutions at Cposition relative to the 

hydroxyl group, but did not report the degradation activity of the enzyme on other 

nitroaroamtic compounds. 



Table 7.3 Nitroaromatic compound removai (Rm.) and nitrite production by resting 

celis (1.5h)- 

Nitroaromatic su bstrate Conc (PM) Substrate conversion and nitrite production 
2-NP-Q~O-W~ cells Glucose-arown cells 

2-nitrophenola 
4-chloro-2-nitmphenolb 

2,44initrophenoI 
3-nitrophenol 

4-chloro-3-nitrophenol 
4-nitrophenol 

picric acid 
3-nitroaniline 

4-nitrocatechol 
nitro benzene 

1 -chlore-4-nitro benzene 
1 -chforo-3-nitrobenzene 

2-nitrotoIuene 
4-nitrotoluene 
2-nitroanisole 
3-nitroanisole 

2-nitrobenzoate 
3-nitrobenzoate 
4-nitro benzoate 

2-nitrobenzylalcohol 
3-nitrobenzylalcohol 
4-nitrobenzylalcoho! 
2-nitrobenzaldehyde 
4-nitrobenzaldehyde 

3-nitrobenzonitrile 
2,4-dinitrotoluene 
3,4-dinitrotoluene 
2,6-dinitrotoluene 

2-nitrofuran 
- 

3 h nitrite production: ": 28OpM; b:158p~. 



Tabte 7.4. Transformation of nitrobenzaldehyde and nitorbenzylalcohol by P. pzrrida 

2NP8 resting cells (substrate concentration, 50 mgL) 

A: transformation of nitrobenzaldehyde via attacking on the aldehyde group 

B: oxidation of nitrobenzyl alcohol into nitrobenzoic acid 

Substrates Product and yield (%) by cells grown on different media 
2-NP-gown (1.5h) 
Alcohol Acid 

2-nitrobenzaldehyde 40 60 
4-nitrobenzaldehvde 0.2 92 

2-nitrobenry lalcohol 2-nitrobenzoic trace 1 2-nitrobenzoic trace 

Glucose-grown (1 -5 h) 
Alcohol Acid 

40 60 
0.2 92 

Substrates Product yield (%) by cells gown on different media 
2-NP-grom (1.5 h) 

Acid product Yield 
Glucose-.grown(l S h )  

Acid product Yield 

acid 
3 -nitrobenzylalcohol 3 -nitrobenzoic 20 

acid 
3-nitrobenzoic 14 

acid 
4-nitrobenzylalcohol 4-nitrobenzoic 3.5 

acid 

acid 
4-nitrobenzoic 5 

acid 



Oxygenases degrading other nitroaromatic cornpounds via elimination of nitnte have 

been described, but none of them accept 2-NP as substrate. Monooxygenase-initiated 

degradation of 4-NP was found to be present in many bacteria, such as MormceZZu (Spain and 

Gibson 199 1 ; Spain et al. 1979), actinrnycetes (Hanne et ai. 1993) and Arthrobacter sp (Jain 

et al. 1994) and Pseudomonar sp (Nishino and Spain 1993a). Haigler et al (1993) and 

S panggord et al (1 99 1) described a dioxygenase-initiated degradation of 2-nitrotoiuene and 

Z+dinitrotoluene respectively in Pseudomo~zas sp. Ali-Sadat et ai (1995) observed nitrite- 

release from 3-NP, an intermediate fkom 3-nitrotoluene in Pseudomonas purida, without 

characterizing the mechanism. Our results demonstrated the 2-NP-induced enzymes in P. 

pzitida 2NP8 did not accept the nitroaromatic compounds other than 2-nitrophenols as 

inducing or reaction substrates. 

Knackmuss' group reported (Ebert et al. 1999; Lenke and Knackmuss 1992; Lenke et 

al. 1992; Rieger et al- 1999; Vorbeck et al. 1994; Vorbeck et al. 1998) release of nitrite 

through reduction of benzene ring of trinitroaromatic compounds, such as 2,4-dinitrophenol, 

2,4,6-tnnitrophenol (picric acid) and 2,4,6-trinitrotoluene in certain bacteria. Because the 2- 

NP-grown cells of P. pirtida 2NP8, did not attack di- or tri-nitroaromatic compounds, it is 

unlikely that a benzene ring reductase was involved in elimination of nitrite fiom 2-NP and 4- 

Cl-2-NP. Therefore we concluded that an oxygenase activity as described by Zeyer et el 

(1984, 2986), was likely to be responsibie for initial metabolism of the growth substrate, 2- 

NP, in P. putida 2NP8 (Figure 7.1). 

From our previous results (Zhao and Ward 2000 and unpublished results; Zhao et al. 

2000) and those described here, we have demonstrated that P. purida 2NPS has 3-NP- and 2- 

NP-induced enzyme systems manifesting broad and narrow specificity toward nitroaroarntic 

substrates, and producing arnmonia and nitrite as end products, respectively. 



Figure 7.1. Proposed pathway for initial degradation of  2-NP (a) and 4-Cl-2-NP 

(b) in P. puti& 2NPS. Catechol was not identified. 4-chlorocatechol was the 

postulated structure o f  a metaboiite fkom 4-Cl-2-NP. 



8.1. Summary of the main findings 

An initial study on conversion of nitrobenzene to nitrophenols by electron beam 

provided the impetus to investigate the intenelationships between biodegradative metabolism 

of nitrophenols and NB by a mixed culture and pure isolates. The main findings of this study 

are summarized as follows: 

Electron beam irradiation of aqueous solution of NB produced three mononitrophenols. A 

60 kGy dose of electron bearn removed 78% percent of 15-30 mg/L of NB. 

A mixed culture, isolated fiom a municipal activated sludge using 2-NP, 3-NP and 4-NP 

as the sole carbon, nitrogen and energy source, degraded ail the mononitrophenols and 

NB. 

The mixed culture degraded the nitrophenols and residual NB remained in the electron 

beam treated sample. A combination of electron beam with biodegradation exhibited 

better contaminant removal than electron beam treatment or biological degradation alone. 

Three groups of bacteria were isolated from the rnixed culture d e r  intensive sub- 

culturing on the nitrophenols as the growth substrates. Strains of group A ( 2 W 3 N P  

4AP3 were Pseudomonas species which grew on 4-NP, but not on 2-NP or 3-NP. Strains 

of group B (2NP'3iW'4W) were also Psezidomon~s species, which grew on 2-NP and 3- 

NP, but not on 4-NP. Strains of group C ( 2 N F 3 A P f 4 ~ ) ,  grew on 3-NP, but not on 2-NP 

or 4-NP. One of the two strain types contained in group C was identified as Variovorax 

paradomsS Degradation of 2- and 4-NP produced nitnte while degradation of 3-NP 

produced amrnonia. 

Only 3-NP-grown cells of groups B and C transformed NB into ammonia. 2- or 4-NP- 

grown cells did not transform NB. 

Pseudomonasputidz 2NP8, a typical strain o f  group B, cometabolically degraded NB into 

ammonia when grow on 3-NP, with nitrosobenzene and hydroxylaminobenzene as 

intermediates. 

3-NP-induced enzymes in P. putiab 2NP8 transformed hydroxylaminobenzene in the 

following sequence: hydroxylaminobenzene was converted to 2- or 4-aminophenol; 

aminophenols were oxidized to benzoquinone monoimine; the imines were hydroiyzed 



into quinones and ammonia and the quinones were reduced to hydroquinone and catechol. 

N-acetylated aminophenols and 2-arninophenoloxazine-3-one were also found as 

biotransformation products fiom NB and hydroxylaminobenzene. 

The degradation pathway of 3-NP in P. putida 2NP8 was postulated, based on NB 

transformation products- An ammonia release pathway via oxidation of aminophenol and 

the subsequent hydrolysis of imine, was proposed for the first time for degradation of 

nitroaromatic compounds. This mechanisrn suggested that 1,2,4-benzenetriol is the 

dioxygenase ring-cleavage substrate in the 3-NP metabolism. 

The 3-NP-induced enzyme system in P. putiuh 2NP8, had wide substrate range, and could 

transform many mono- and di-nitroaromatic compounds into arnrnonia. Metabolites, 

similar to those observed in the NB transformation, were observed. 4-NP, 2,4- 

dinitrophenol, and 2,4,6-trinitrophenol were not substrates for this enzyme system. 

10. Only 2-NP and 4-chloro-2-NP, arnong 30 nitroaromatic compounds examined, were 

inducers and substrates of the nitrite elimination activity in P. putida 2NP8. 4-CI-catechol 

was proposed to be a dead end transformation product in this strain. 

8.2. Suggestions for future research 

According to the results presented in the thesis, the following aspects of biological 

degradation of nitroaromatic compounds and electron beam treatment need to be addressed: 

1. 1,2,4-Benzenetriol is postulated to be the ring-cleavage substrate in 3-hi 

metabolism via 3 -hydroxyIaminop henol and the subsequent transformation into 4- 

aminocatechol andior arninohydroquinone. 1,2,4Benzenetriol was reported in 3-NP 

degradation in P. puticia B2 (Meulenberg et al. 1996) while Ralstoizia eutropha JMP134 

transformed 3-NP into aminohydroquinone (Schenzle et al. 1997, 1999qb). The 3-NP 

nitroreductase, 3-hydroxyIaminophenoI mutase, aminop henol oxidase, and 1,2,4-benzenetriol 

dioxygenase activities in strain P. ptida 2NP8 need to be charactenzed to fiilly describe this 

pathway. Characterization of 3-NP degradation metabolites is also necessary to validate the 

proposed 3-NP metabolic pathway. 

2. 3-NP is the only nitrogen and carbon source for the pure culture. It wilI be 

interesting to investigate how metabolism of a single compound, 3-NP, can meet the demand 

for gowth carbon intermediates, energy and nitrogen source at the same time. 



3. Optimization of 3-NP-degradation enzyme biosynthesis and biotransformation 

conditions for degradation of nitroaromatic compounds into arnmonia requires investigation. 

4. The 3-NP-induced enzyme system transformed many nitroaromatic compounds into 

catechol products, which are biodegradable and deemed not to be persistent in the 

environment. This could provide a remedial solution to some high profile nitroaromatic 

wastes, such as 2,4,6-trinitritoluene (Rieger and Knackrnuss 1995) and nitro-polycyclic 

aromatic hydrocarbons (Cerniglia and Somerville 1995). Further exploration of degradatior. of 

these high-profile nitroaromatics is of special interest. 

5.  Because of the wide substrate range of this 3-NP-induced enzyme system, 

elucidation of the 3-hT metabolic genes will be helpfil in attempting to understand the 

regdation and ongin of this nitroreductase system. 

6. In this research we isolated three types of 3-NP degraders. The 3-NP degrading 

enzyme activities in two other strains (Variovorax paradimus 3NP23 and unknown strain 

3NP20) need to be characterized. 

7. Nitroreductase-initiated degradation of NB (Nishino and Spain 1993; Park et al. 

1999) and 4-nitrotoluene (Spiess et ai. 1998) as bacterial growth substrates has been reported, 

and the ring cleavage substrates are aminophenols, not catechols. P. purida 2NP8 has the 

genes for metabolism of NB via aminophenol, which was oxidized to hydroquinone and 

reduced to catechol. This strain seems to have the catechol degradation gene because it 

metabolized 2-NP via release of nitrite (producing catechol). The following questions remains 

unanswered: can cells grown on a mixture of 2- or 3-NP mineralize NB? Can this 3-NP 

degrading strain be engineered to use NB as growth substrate? 

8. Cometabolic transformation of NB by the 3-NP-grown cells produced catechol. The 

wide susbtrate selectivity of the enzyme system suggests that these cells transforrn many other 

nitroaromatic compounds into catechol cornpounds, which are usefûl fine chemicals and 

hardIy available by chemical methods. Investigation of biotransforamtion of nitroaromatic 

compounds into catechol compounds will be of interest (Meulenberg and de Pont 1995). 

9. One important aspect of the two-step process is the combination of electron beam 

treatment with biodegradation. Using the electron beam degradation alone to remove al1 the 

NB is difficult, but it can significantly decrease the NB concentration to a level suitable to be 

discharged or to be treated by a subsequent biological system. The results in this thesis 



showed that a mixture of three mono-nitrophenols could be used to enrich the culture to 

degrade both the residual NB and the toxic nitrophenolic products. This raises a question: can 

we use a mixture of phenolic derivatives of some recalcitrant compounds such as PCBs or 

PAHs, to enrich cultures that degrade both the phenols and their parent compounds? 

A key challenge for degradation of synthetic compounds is to address the initial 

biodegradation bamers, namely hydrophobicity of the substrate and the presence of 

electrophilic substituents. Removal of electrophilic substituent and/or increase the polarity 

and hydrophilicity are two targets to increase the biodegradability (i3oethling et al. 1994; 

Howard et al. 1992). Chernical pretreatment is an important tool for introduction of hydroxyl 

groups, thereby increasing biodegradability while cometabolism is an important biological 

method for transforming non-growth-promoting compounds into substrates which can be 

utilized as microbial nutrients. More attention needs to be focused on both chemical and 

cornetabolic enzyme treatments as methods to degrade those recalcitrant cornpounds in 

polluted wastewaters and soils. 
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