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Abstract 

 

Industrial robots and automation technology have advanced rapidly in the last several decades. New 

types of manipulators that uses parallel mechanisms are becoming more popular due to their high speed 

and high stiffness. This thesis focuses on a sub-class of parallel manipulators that uses cables to replace 

rigid links for further increase in speed. The design strategies in this study were expanded from research 

works by Khajepour. Behzadipour, and Edmon Chan. This thesis presents analysis and development of a 

new cable-based planar parallel manipulator that is based on a previous prototype built by Edmon Chan. 

 The new manipulator design added a new rotational DOF to the end-effector, and the number of 

cables are doubled in order to increase the stiffness. New methods for kinematics and dynamics analysis 

are formulated to make the procedure more systematic. A new mathematical formulation for stiffness 

matrix of the end-effector is presented. The resultant stiffness matrix is equivalent to the stiffness matrix 

formulated by Behzadipour. Additional stiffness analysis is conducted on valid range of stiffness 

calculation and comparison of different cable configurations. A multi-objective optimization problem is 

formulated in order to search for the best set of design parameters for the manipulator, and it is solved 

with an exhaustive complete search method.  

A physical prototype of the manipulator is modelled and manufactured with the help of partners from 

Conestoga college. Experiments with the manipulator show that more powerful motors are needed to run 

the robot at full speed. Motor torque measurements show that the dynamics analysis of the manipulator is 

valid. Stiffness of the manipulator is measured by applying external force to the end-effector, and it is 

shown to be strong.  The manipulator is able to demonstrate a sort and pick-and-place operation at 60 

cycles per minute while running at 70% of the maximum speed, with an acceleration of 2.8 g and velocity 

of 4 m/s. 
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Chapter 1 

 

Introduction 

 

Advancement in automation technology has helped the manufacturing industry grow rapidly in the 

last several decades. Industry always seeks for faster, better quality, and less expensive solutions. Fast and 

accurate pick-and-place operation is one of many manufacturing processes helped by automation 

technology. Typical applications of pick-and-place operations include packaging, sorting, and placing 

parts for assembly. It is a common practice to align multiple planar pick-and-place robots with a planer 

workspace to have a conveyer belt carry parts normal to the robot workspace. This speeds up the process 

and saves precious factory space. In this thesis, a new 2D cable-based parallel manipulator is proposed for 

fast and accurate pick-and-place operation of light objects, and heavier objects up to 20 kg at lower speed.  

Desired properties of a pick-and-place robot are speed, accuracy, and repeatability. Accuracy is 

dependent on the backlash and stiffness of the robot since higher stiffness results in less deformation 

under high loads. Speed is dependent on actuator power and moving inertia of the robot. High stiffness 

and powerful actuators typically result in heavier parts which provide more moving inertia. It is up to the 

designer to make compromises and choose a suitable balance for a design. 

The most common type of industrial robots are serial manipulators. Their structure is a series of rigid 

links connected by various types of joints forming a single of kinematic chain. Each joint is controlled 

independently by an actuator mounted at the joint, which results in masses of the actuators to be included 

in the moving inertia of the robot. The motor at the fixed base of the robot must support inertia of all the 
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links and other motors. This greatly limits the speed and the load capacity of serial manipulators. 

Furthermore, errors at each joint can accumulate and amplify from link to link which reduces the overall 

accuracy. 

Parallel mechanisms are newer concept for robotic manipulator design. They are closed-loop 

mechanisms in which the end-effector is connected to the base by two or more independent kinematic 

chains. Robotic manipulators which uses the parallel mechanism design are becoming increasingly more 

popular. In parallel manipulators, movements of multiple kinematic chains are coupled together to control 

the position of the end-effector. This allows all the actuators to be placed at the base, which reduces the 

moving inertia and effectively increases the maximum speed and load capacity. Accumulation of error is 

reduced due to the use of multiple kinematic chains. Any force applied to the manipulator is distributed 

among all the kinematic chains, which also increases stiffness. These properties make parallel 

manipulators much more attractive compared to serial manipulators for high-speed applications. 

Cable-based parallel manipulators have further potential to reduce moving inertia while still 

maintaining a reasonable amount of stiffness. In a cable-based manipulator, some rigid links are replaced 

with cables under tension. These cables are virtually massless and they provide good mechanical strength 

as long as they have tension. In addition to lower moving inertia, cable-based manipulators also have 

advantages of reduced material cost and less maintenance. However, cable-based manipulators come with 

their own design challenges. All cables must guaranteed to be under tension at all times in order to avoid 

structural failure. Cables provide less mechanical stiffness compared to rigid links, hence is it is necessary 

to analyze stiffness of cable-based manipulators and ensure that the stiffness is high enough. This thesis 

expands design principles from research done by Khajepour, Behzadipour, and Edmon Chan on cable-

based parallel manipulators [1][2][20][22][29]. In particular, this thesis focuses on revising the design and 

analysis of 2D planer cable-based parallel manipulator researched by Edmon Chan [1]. 
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The layout of this thesis is as follows: Chapter 2 presents literature review of some parallel 

mechanisms and design considerations regarding cable tension and stiffness that are specific to cable-

based mechanisms. Chapter 3 introduces conceptual design and kinematic schemes for the previous 

prototype by Edmon Chan and a new proposed 2D cable-based parallel manipulator with new features 

and design changes. Chapter 4 presents new methods for kinematics and dynamics analysis for the new 

proposed manipulator, which is necessary for performance evaluation, stiffness analysis, and optimization 

of design parameters. Chapter 5 discusses stiffness analysis for cable-based structures as well as strategies 

to estimate the validity of stiffness calculations and design cable configurations with better stiffness. 

Chapter 6 provides methods for the optimization of design parameters and the final set of design 

parameters selected for building a physical prototype. Chapter 7 presents the design of a fully functional 

prototype and results from experimental measurements, as well as a pick-and-place demonstration. 

Chapter 8 gives concluding remarks of this work and highlights future research directions. 
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Chapter 2 

 

Literature Review 

 

2.1  Introduction to Parallel Mechanisms 

 The idea and theory of parallel mechanisms existed for a long time. One of the earliest US patent 

involving a parallel mechanism dates back to 1931; it was an idea of a moving platform for amusement 

purposes. The first industrial robot patented in US in 1942 is a parallel mechanism, although it was not 

the first industrial robot built [3]. Early parallel mechanisms were usually targeted for 6 degree of 

freedom (DOF). One of the simplest designs is the Gough Platform introduced by Gough and Whitehall 

in 1947 [4]. The Stewart platform is another famous design introduced after the Gough Platform. This 

type of parallel mechanism is commonly known as the Gough-Stewart platform. Figure 2-1 shows a 

schematic of the Gough-Stewart platform. Parallel manipulators with this type of design has been most 

commonly used  for motion simulators such as flight simulators [5][6] and tire testing machines [7], and it 

is still being studied today. 

 The Gough-Stewart design has limited application as industrial robots due to its large footprint and 

bulky design. A different type of parallel mechanism called Delta was introduced by Clavel in 1990 [8]. 

Figure 2-2 shows a schematic of the Delta design. The moving platform is actuated by three kinematic 

chains, where each one is driven independently. The parallelogram structure on each kinematic chain 

fixes the orientation of the moving platform. The Delta design has been studied extensively and many 

modified designs have been proposed [9][10][11].  
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Figure 2-1: Schematic of Gough-Stewart Platform 

 

 

Figure 3-2: Schematic of Delta Design 
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 Some researchers focused on 2DOF translational parallel mechanisms. Ghorbel developed Rice 

Planar Delta robot in 1990s to demonstrate control and analysis techniques for parallel robot [12]. 

However, the Rice Planar Delta robot had limited application, because the orientational DOF is coupled 

with the translational DOF. This problem was later addressed by Huang et al., who introduced parallel 

links in the structure much like the Delta design [13]. 

 Researches have developed and analyzed many different types of parallel mechanisms. Analysis tools 

for parallel manipulators are usually subject to certain specific conditions, and there is no universal way 

to systematically analyse parallel mechanisms. For example, kinematics and dynamics of parallel 

mechanisms can vary significantly with its design. Some researches choose to use the Denavit–

Hartenberg (DH) method for kinematic analysis [14][15], while other researches choose to use 

geometrical methods [16][17].  

2.2  Introduction to Cable-Based Mechanisms 

 While there are many different types of parallel mechanisms designs, this thesis focuses on one class 

of parallel mechanisms that uses cables in its kinematic chains. Cable-based parallel mechanisms usually 

have lower moving inertia compared to parallel mechanisms with rigid links. This allows cable-based 

mechanisms to achieve very high speed. Additionally, the use of cables reduce manufacturing costs and 

maintenance requirements. Some early cable-based manipulators are Landsberger’s design that is an 

extension of the Gough-Stewart platform [18], and Falcon design that features high DOF and a large 

workspace [19]. The Falcon design is an excellent example of high speed of cable-based manipulators, it 

is capable of achieving an acceleration of 43g and a peak velocity of 13 m/s. Cable-based mechanisms 

with the Delta design has been studied by Behzadipour et al. for both 3D and planar applications [20]. 

The design of a new proposed cable-based manipulator in this thesis is an extension of works done by 

Behzadipour [2] and Edmon Chan [1]. 
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 Cable-based manipulators introduce extra design considerations not present in normal parallel 

manipulators. In order for cables to act as substitutes for rigid links, they must remain under tension at all 

operation conditions. Ming and Higuchi conducted early studies on tension distribution on high DOF 

cable-based manipulators [21]. Behzadipour et al. studied cable robot configurations and conditions to 

guarantee positive cable tensions [22].  Other researchers have also analyzed cable tensions in various 

types of cable-based manipulators including planar manipulators [23][24]. Another important factor in 

cable-based manipulator is stiffness analysis, because cables do not provide the same mechanical stiffness 

as rigid links. Low stiffness can result in less structural rigidity and poor accuracy. Stiffness analysis for 

parallel manipulators has been studied by many researchers. Griffis and Duffy derived stiffness matrix for 

a Gough-Stewart platform [25]. Ciblak and Lipkin continued this research by considering an arbitrary 

number of limbs [26]. Svinin et al. studied stiffness matrix for the stability of parallel manipulators 

[27][28]. Behzadipour and Khajepour extended stiffness analysis for cable-based mechanisms, and 

developed stiffness matrix for general cable-based structures using a spring model for cables [29]. 
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Chapter 3 

 

Robot Design Overview 

 

3.1  Introduction of 2D Cable-Based Parallel Manipulator 

 The main design objective in high-speed manipulators is to reduce moving inertia while maintaining  

reasonable amount of stiffness. A parallel mechanisms typically have lower moving inertia compared to 

serial mechanisms because actuators are not part of moving inertia. In order to further reduce moving 

inertia, this thesis proposes to replace some rigid links with flexible cables. This has additional benefit of 

reducing material cost and maintenance requirement. One challenge in cable-based manipulator is to 

make sure that all cables have tension in order to maintain overall stiffness and avoid structural failure. 

Section 3.1.1 shows conceptual design of the proposed 2D cable-based parallel manipulator and how 

tension in cables are maintained. Section 3.1.2 discusses necessary conditions to guarantee that all cables 

are always under tension.  

 

3.1.1 Conceptual Design 

 The workspace of the proposed manipulator is planer with 2 DOF. Figure 3-1 shows the simplest 

parallel mechanism to achieve this motion with two angular inputs. Figure 3-2 shows schematic of the 

proposed cable-based design, which is based on the parallel mechanism shown in Figure 3-1. Actuators 

attached on the fixed base rotate two upper links, which determine the position and orientation of two 

lower links. In the cable-based design, the upper links are rigid links called “arms”, and the lower links 



9 
 

are replaced with cables. The end-effector is attached to the lower end of the cables. In order to maintain 

tension in the cables, a pneumatic cylinder is added to the structure which applies a constant downward 

force on the end-effector to pull the cables tight and give them tension. This constant downward force is 

called “spine force”. Rotational orientation of the end-effector is maintained by a parallelogram structure 

formed by a pair of two cables on the right side of the manipulator. 

 

Figure 3-1: Schematic of Simple 2D Parallel Mechanism 

 

 

Figure 3-2: Schematic of the Proposed 2D Cable-Based Manipulator 
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3.1.2 Tensionability 

 In a cable-based structure, it is crucial that all cables always have tension under any operational 

circumstance. The cabled-based manipulator proposed in this work uses a pneumatic cylinder to apply 

constant downward force in order to maintain tension in the cables. Disturbances to cable tension can 

come from any external force and moment applied to the end-effector, which can be parcel load or force 

due to acceleration when the end-effector is under a motion.  

Other researchers of cabled-based manipulator calls this tension requirement “tensionability”. The 

formal definition of tensionability is as following: 

Definition: Tensionability A non-singular pose is tensionable if and only if for any arbitrary external 

load, there exists a finite spine force (in this case, the pneumatic cylinder force) to make the manipulator 

rigid. Tensionability, the ability to apply tension to the cables is a necessary condition to maintain a 

cable-based manipulator in a rigid pose regardless of any other external load. 

Design of a cable-based manipulator must have a “tensionable configuration”. This means that 

tension in all cables monotonically increases with increase in the spine force. This condition guarantees 

that a finite spine force can balance any external force and moment on the end-effector and maintain 

tension in all the cables. 

Definition: Tensionable Configuration In a cable-based manipulator, an end-effector has a tensionable 

configuration if and only if tensions in all cables increases monotonically with increase in the spine force. 

An end-effector with tensionable configuration can always satisfy tensionability.  

 Tensionable configurations for 3D and 2D cable-based manipulators have been analyzed and proven 

in works by Behzadipour [2], and Edmon Chan [1]. Both conclusions are best shown graphically. For 3D 

cable-based manipulator, define a polygon created from cable tension vectors as shown in Figure 3-3. If 

the spine force is within this polygon, and if all tension vectors and spine force coincide at a single point, 
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then it is a tensionable configuration. The result is similar for 2D cable-based manipulators. Tensions in 

the parallel cable pair are combined to a single tension vector, then a region is defined between the two 

tension vectors as shown in Figure 3-4. If the spine force is within this region, and if the two tension 

vectors and spine force coincide at a single point, then it is a tensionable configuration. The result for 2D 

cabled-based manipulator applies to the new proposed manipulator in this thesis. 

 

 

Figure 3-3: Tensionable Configuration for 3D Cable-Based Manipulator 

 

 

Figure 3-4: Tensionable Configuration for 2D Cable-Based Manipulator 
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3.2  Design of Previous Prototype 

 The previous prototype of 2D cable-based manipulator built by Edmon Chan follows the basic design 

concept discussed in Section 3.1.1. The kinematic scheme of the manipulator is shown in Figure 3-5. The 

workspace for the previous prototype is 0.7 m long and 0.1 m high. It is designed for maximum 

acceleration and velocity of 4 g  and 4.0 m/s, respectively.  

 

 

Figure 3-5: Kinematic Scheme of the Previous Manipulator 
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Definition: Out-of-Plane Motion In a 2D planar manipulator, movement of the end-effector must be on 

the workspace plane. Any undesired motion in directions normal to the workspace plane is called out-of-

plane motion. 

 In order to eliminate out-of-plane motion, the pneumatic cylinder is connected to the fixed base and 

end-effector with revolute joints, which mechanically constrains the end-effector in the workspace plane. 

Stiffness of the end-effector in the out-of-plane direction is purely dependent on mechanical stiffness of 

the pneumatic cylinder and revolute joint. On the other hand, stiffness of the end-effector in the 

workspace plane is dependent on motor backlash and combination of forces from the spine force and 

cable tensions. 

 

3.3  Design of New Proposed Manipulator 

3.3.1 Design Objectives 

The workspace for the new proposed manipulator has a horizontal length of 1.2 m and height of 0.3 m. 

This requires the manipulator to be much larger and heavier than the previous design, but it is a goal to 

maintain high speed of the robot. The new design is aimed at a maximum acceleration and velocity of 4 g 

and 6.0 m/s, respectively, and a cycle of time 90 cycles per minute that is comparable to the previous 

design. One new feature for the proposed design is to add a third DOF for rotation of the end-effector 

about the vertical axis. This allows the robot to pickup arbitrarily oriented objects and rearrange them in 

the same orientation. The new DOF is completely independent from the 2 DOF of the planer motion and 

it does not affect the planer design. In order to transmit the third axis rotation to the end-effector, the two 

revolute joints on the pneumatic cylinders are replaced with universal joints. Recall that these revolute 

joints are used to mechanically constrain the end-effector from out-of-plane motion. Replacing them with 

universal joints would allow the end-effector to move in the out-of-plane direction again. Next section 

discusses this in more detail, and proposes a new kinematic scheme to solve this problem. 
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3.3.2 Kinematic Scheme 

 Front view of the new proposed 2D cable-based manipulator is shown in Figure 3-6. Design of the 

right side arm is changed to a structure with combination of two parallelograms and a triangle. This 

structure serves the purpose of both mechanically coupling the two right side arms and maintaining the 

orientation of the end-effector. Let “angle of neutral position” define the angle for the arms that orient the 

parallelogram into a rectangle. As the arms move away from the angle of neutral, the parallelogram 

becomes smaller until it is a line, and the structure approaches a singularity. The maximum angular range 

of the structure is less than 180 degrees, because the two arms mechanically interfere with each other as 

they move closer to 180 degrees. In order to optimize usage of this limited range, the maximum required 

range for the arm angle is calculated from kinematic analysis, and then the parallelogram structure is 

oriented such that angle of neutral position is at the center of the required arm movement range. This 

concept is shown in Figure 3-7. 

 

Figure 3-6: Kinematic Scheme of the New Proposed Manipulator (Front) 
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Figure 3-7: Orientation of Arms and Parallelogram Structure 
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plate through the inner manipulator piece. 
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Figure 3-8: Cross-Section View of  the New End-Effector Design 

 

As previously mentioned, replacing the revolute joints with universal joints eliminates the mechanical 

constraint that prevents the end-effector from out-of-plane motion. Figure 3-9 and Figure 3-10 show top 

view and side view of the new proposed manipulator, respectively. In the design of previous prototype, all 

cables are on the workspace plane. However, in the new design, each cable is replaced with a pair of two 

cables as shown in Figure 3-9, which increases the total number of cables to six instead of  three. Both 

Figure 3-9 and Figure 3-10 (a) show that on the left side of the structure, the separation distance between 

pair of cables is constant. However, on the right side of the structure, the separation distance is wider at 

the arms and becomes narrower towards the end-effector until it is zero. This is an important decision that 

affects the out-of-plane stiffness of the end-effector, and it is discussed in more detail in Section 5.4. For 

now it is enough to understand that this cable configuration creates a force relationship shown in Figure 

3-10 (b) with some cable tensions having an out-of-plane component, which helps increase stiffness in the 

out-of-plane direction. There are some disadvantages to this six cable design. Increasing the number of 

cables results in less tension on each cable, thus the spine force must be roughly doubled to maintain the 

same tension as the three cable design. Although the separation distance at the arms increases out-of-

plane stiffness, there is a practical limit since the robot is a 2D manipulator and it is undesirable to have a 

large out-of-plane profile. 

 

Cylinder Extension 

Spine Force 
Inner 

Manipulator Piece 

Outer  
Base Plate 

Suction Cup 

Universal Joint 



17 
 

 

Figure 3-9: Kinematic Scheme of the New Proposed Manipulator (Top) 

 

 

 

 

Figure 3-10: Kinematic Scheme of the New Proposed Manipulator (Side) 
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Chapter 4 

 

Kinematics and Dynamics Analysis 

 

4.1  Coordinate System and Parameters 

 This section defines the coordinate system, dimensional parameters, and numbering conventions used 

for the kinematic and dynamic analysis. Refer to Figure 4-1 and 4-2 for graphical information. This will 

help in reading and understanding rest of this section. More parameters are introduced later as needed. 

Coordinate System 

 x-axis:  horizontal axis, positive is towards the right side in the front view 

 y-axis:  vertical axis, positive is downward in the front view 

 z-axis:  out-of-plane axis, positive is into of the page in the front view 

  :   coordinate origin, located at the upper universal joint 

   :   coordinate of the end-effector, located at the lower universal joint 

Kinematic Parameters 

   :   length between the origin and axis of left side motor 

   :   length of the arm 

  : length of the cable in the front view, note that this is not the true cable length  

  : length of the end-effector, it is also the distance between the cables at the triangle 

   :  length of the cable separation distance at the left arm 

    :  length of the cable separation distance at the right arm(s) 

  :   Angle of the left arm from the horizontal axis, positive is CCW 

  :   Angle of the right arm(s) from the horizontal axis, positive is CW 
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Numbering Convention 

Arms:  arms are numbered 1 to 3 from left to right as shown in Figure 4-1. 

Cables: cables are numbered 1 to 6 as shown in Figure 4-2. 

 

 

Figure 4-1: Fully Labelled Kinematic Scheme (Front) 

 

 

Figure 4-2: Fully Labelled Kinematic Scheme (Top) 
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4.2  Kinematic Analysis 

 In order to simplify the formulation of forward kinematic and inverse kinematic analysis for the 

manipulator, the robot model is simplified into a kinematically equivalent system shown in Figure 4-3. 

The parallelogram structure on the right is collapsed to a structure equivalent to the left side.     and     

are coordinates of cable connections to left arm and right arm respectively. 

 

Figure 4-3: Kinematically Equivalent System 

 

 

4.2.1 Forward Kinematic 

Forward kinematic for the system shown in Figure 4-3 can be solved using intersection of two circles 

on a plane as shown in Figure 4-4. The two circles are centered at     and     with both having radius of 

  . There are variety of methods to solve intersection of two circles, and this thesis does not cover a 

specific method since the problem is trivial. Note that in the case of two solutions to the problem, the 

solution with the largest y value is selected to keep end end-effector below the fixed base. 
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Figure 4-4: Forward Kinematic 

 

 

4.2.2 Inverse Kinematic 

 Inverse kinematic is solved geometrically using the cosine law. The solution for the right side system 

(  ) is shown in Equations (4.1) and Figure 4-5 on the next page. Due to the symmetry about the y-axis, 

the solution for the left side system (  ) uses the same equations with negative value of x. 

              
  

                 
 

      
          

  

              
 

    
  

                             

                           

 

  

   
   

      

    
    

   

   

x 

 

y 

 

          

Point of Intersection 

(4.1) 

Intersec

tion 



22 
 

 

Figure 4-5: Inverse Kinematic 

 

Gradient and Hessian of the inverse kinematic equation is necessary for dynamics formulation. Let 
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. Gradient and Hessian are calculated for the right side 

system (  ), and then solutions for the left side system (  ) can be determined through symmetry. 
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4.3  Dynamics Analysis 

 There is no way to simplify the robot model for dynamic analysis; the full 6-cable model must be 

used. The dynamics of a closed-loop parallel mechanism is typically complicated with several constraint 

equations. However, there are two specific goals in the dynamics formulation, and it is not necessary to 

obtain the complete set of dynamics equations. The first goal is to obtain expressions for tension in each 

cable given the spine force, acceleration, and velocity of the end-effector. The second goal is to use the 

cable tensions to calculate the required torque on the two motors. Equations for these two goals are used 

to calculate stiffness in Chapter 5 and perform optimization on the design parameters in Chapter 6. 

 

Figure 4-6: 2D Free-Body Diagram of the End-Effector 
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4.3.1 End-Effector Dynamics 

Cable tensions can be calculated from dynamic equilibrium at the end-effector. Figure 4-6 shows the 

free-body diagram of the end-effector. Note that the acceleration due to gravity (    ) is positive downward. 

me is the mass of the end-effector including the payload. The center-of-mass for me is typically shifted to 

somewhere below the center of end-effector due to the payload. This offset is called “eccentricity”, and it 

is represented by   . For now, only eccentricity in the y direction is considered for simplicity, since it is 

trivial to add eccentricity in the other directions later.     is the constant spine force from the pneumatic 

cylinder.     is other forces applied to the end-effector from the pneumatic cylinder. This includes static 

force from weight of the cylinder (      ), and dynamic reaction force (      ) from the cylinder.     is 

direction unit vector of i-th cable, and    is scalar value of  tensile force of i-th cable. Multiplication of     

and    represents the vector of tensile force for i-th cable. Let    be the position vector of the end-effector 

with (x, y) corresponding to the coordinate of PE. Then     and     represent acceleration and velocity of the 

end-effector respectively. 

The following equation can be derived from Newton’s second law: 

                                    
  

Rearranging the equation for cable tensions gives the following: 

            
                          

Static force and dynamic force from the pneumatic cylinder (       and       ) are the only unknown 

parameters in Equation (4.4). The next section examines the dynamic of the pneumatic cylinder to 

determine these unknown forces. 
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 Now consider moments acting on the end-effector. Figure 4-7 shows a partial free-body diagram of 

the end-effector in 3D with some forces not shown.      is the distance vector of i-th cable connection from 

   (the center of the end-effector). 

 

Figure 4-7: 3D Partial Free Body-Diagram of the End-Effector 

The summation of moments at point    must be zero for the end-effector to maintain its rotational 

orientation.     and     are not shown in the free body diagram, and they do not cause moments on the 

end-effector since they passes through   . Then, moments on the end-effector are caused by cable 

tensions and eccentricity of the center-of-mass of me. Let    be a vector of eccentricity, or in other words 

the distance between the center-of-mass and   .  

 The summation of moments about    gives the following: 

                       
                

Rearranging the equation for cable tensions gives the following: 
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4.3.2 Cylinder Dynamics 

 For analysis of the cylinder dynamics, a new coordinate frame that is attached to the pneumatic 

cylinder is defined and shown in Figure 4-8.     and     are unit vectors for the global coordinate frame 

used to define position of the end-effector.     is a unit vector for the axial (longitudinal) direction of the 

cylinder, and     is a unit vector normal to the axial direction of the cylinder.   is the angle that the 

cylinder makes with the vertical axis (   ), it is positive in the CCW direction. 

 

Figure 4-8: Coordinate Frame of the Pneumatic Cylinder 

 

The pneumatic cylinder is divided into two sections. The upper body is called “cylinder base” and it 

is represented by the subscript “cy”. The lower body is called “piston” and it is represented by the 

subscript “p”. Parameters for the cylinder base and piston are listed in the next page along with a diagram 

of the entire cylinder shown in Figure 4-9. 
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Parameters 

   :   coordinate of connection between the cylinder and fixed base, equivalent to P0 

   :   coordinate of contact point between the cylinder body and piston 

   :   coordinate of connection between the cylinder and end-effector, equivalent to PE 

    :  mass of the cylinder body 

   :   mass of the piston 

    :  half the length of the cylinder body (distance to the center-of-mass) 

  :   half the length of the piston (distance to the center-of-mass) 

 :   current total length of the entire pneumatic cylinder 

  :   distance from P1 to P2 

 

 

 

Figure 4-9: Parameters for the Pneumatic Cylinder 
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Figure 4-10: Free-Body Diagrams of the Pneumatic Cylinder 

 

Figure 4-10 (a) and (b) shows free-body diagrams of the cylinder body and piston respectively.          

   and     are internal reaction force and internal reaction moment between the cylinder body and piston. 

     and      are axial and radial components of the reaction force from the end-effector. Sum of      

and      equals to the negative value of     mentioned in the end-effector dynamic section. Reaction 

forces from the fixed base at    are not necessary for this analysis. 

 First consider static component of the reaction force. The sum of moments at    and    are zero since 

they are universal joints. Taking moments at these points and isolating for the internal reaction moment, 

Mi , gives the following: 

                          

 

                             

Combining the two equations above and isolating for the internal reaction force    gives: 
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Then, the expression for the static component of      and      can be obtained from the sum of forces on 

the piston. Let         and         be the static component of      and     , respectively. They can be 

expressed as shown in Equation (4.10), where the subscript “ cf ” on       means that it is expressed in 

the local coordinate frame of the pneumatic cylinder in terms of   and  . 

           
       

       
   

           

              
  

 

Let     be inertia of the cylinder body and    be inertia of the piston. Equivalent inertia of the entire 

pneumatic cylinder at P1 is: 

                      
 
 

Let         be the dynamic component of     . Dynamic forces acting on the piston in the axial direction 

are linear acceleration and centrifugal acceleration of the piston. The sum of these two forces equal the 

total dynamic force in the axial direction: 

           
                   

Let         be the dynamic component of     . There are forces in the radial direction due to tangential 

acceleration and Coriolis effect. The sum of Moments at    equals to the moment caused by dynamic 

force in the radial direction: 

                                     

Equations (4.12) and (4.13) can be written in a matrix form representing a standard dynamics equation. 
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Let           represent a vector of dynamic force expressed in the local coordinate frame of the cylinder in 

terms of   and  . Simplifying Equation (4.14) and rearranging for           gives the following: 

        
 
           

 

          
 
                      

 

               
  
         

 
          

  
       

 

          
 
   

      and       are acceleration and velocity vectors in terms of   and  .        is a mass inertia matrix. 

      is a three dimensional Christoffel symbol.       is a constant coefficient matrix. 

 

4.3.3 Coordinate Transformation 

 In the previous section, expressions for static and dynamic components of the reaction force,        

and       , are found for the local coordinate frame of the pneumatic cylinder in terms of   and  . It is 

necessary to apply coordinate transformations to these expressions before it can be substituted back into 

the end-effector dynamics equation shown in Equation (4.4).  

Let        represent the rotation matrix between the pneumatic cylinder coordinate frame and end-

effector global coordinate frame described in Figure 4-8. 
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(4.21) 
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Let       and       be Jacobian and Hessian matrices for this relationship respectively. 

 

 

      

 
 
 
 
 
  

  

  

  
  

  

  

   
 
 
 
 

  

 

 

 

 
 

    
 

 

    

  

 

 

 

      

 
 
 
 
 

 
 
 
 

  
 
 
 
 
 
   

   

   

    

   

    

   

    
 
 
 
 

 
 
 
 
 
   

   

   

    

   

    

   

    
 
 
 
 

  

 
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 

 
 
 
 
        

  

  
 
   

  
    

    
   

  
    
  

  
     
 
 
 

 
 
 
  

     

  

     

  
   

    
     

  

     

  
    

 
 
 

 

 
 
 
 
 

 
 
 
 

 

 

Let    be the coordinate defined by (x, y), and let      be coordinate defined by (R, ). Then, the 

transformation for velocity and acceleration between the two coordinate frames are as following: 

             
  

 

             
               

  

Now        and        can be expressed in the end-effector global frame. A negative sign is added since the 

direction of reaction force acting on the end-effector is opposite from the direction of reaction force acting 

on the piston. 
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Equation (4.26) is simplified using      and       to substitute for equivalent mass inertia matrix and 

Christoffel symbol of the cylinder reaction force in the end-effector global frame. 

            
       

  
       

            
       

  
        

 
                        

                  
             

    

 

4.3.4 Expression for Cable Tension 

 Recall the dynamics equation of the end-effector from Equation (4.4). Substituting        and        

from Equations (4.25) and (4.29) gives: 

               
             

                 
           

                           

Expression for forces from Equation (4.29) and expression for moments from Equation (4.6) can be 

written together in a single matrix expression. Let     be a 6 x 6 matrix with columns representing      and 

         for each cable. Let     be a 6 x 1 vector representing scalar values of cable tensions. 

 

     

 
 
 
 
 
                   

                              

  

 
 
 
 
 
 

 

 

 

                        
  

 

 

 

        

 
 
 

 
 

  

  
  
  
  

  

  

  

 
 
 

 
 

                           

 

(4.27) 

Intersec

tion 
(4.28) 

Intersec

tion 
(4.29) 

Intersec

tion 

(4.30) 

Intersec

tion 

(4.31) 

Intersec

tion 

(4.32) 

Intersec

tion 

(4.29) 

Intersec

tion 



33 
 

    is 2 x 1 acceleration vector of the end-effector consisting of             , and     is 2 x 1 velocity vector 

of the end-effector consisting of            . 

    is a 6 x 2 matrix with mass and inertia parameters. It has the end-effector mass component with    

and acceleration dynamic force component (    ) from the pneumatic cylinder. Since the dimension of 

     is 2 x 2 with components in    and   , a 4 x 2 zero matrix is appended to make it a 6 x 2 matrix. 

       

 
 
 
 
 
 
 
 
 
  

  

  

   

    

       
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

  

  

  

    
 
 
 
 
 
 
 

 

    is a three dimensional 2 x 2 x 6 Christoffel symbol matrix that comes directly from velocity dynamic 

force component (    ) from the pneumatic cylinder. Since the dimension of      is 2 x 2 x 2 with 

components in    and   , zero matrices are also appended here as well. 

     
       

      
 

     
    

   
  

B is a 6 x 1 matrix that represents static component of forces and moments from the constant spine force 

and masses of the end-effector and pneumatic cylinder. Subscripts “x” and “y” on    and      
             

represents x and y components of the forces respectively. 
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Finally, the tension for each cable can be obtained by multiplying the inverse of matrix   on both sides of 

Equation (4.32). 

                                     

 

4.3.5 Expression for Actuator Torque 

 Now that the expression for cable tensions is available, the actuator torque can be calculated. 

Consider the free-body diagram of the left side arm shown in Figure 4-11.  

 

Figure 4-11: Free-Body Diagram of Left Side Arm 

 

     is the effective tension acting on the left arm that comes from the vector summation of    and   .    

   is the angle between the arm and cable, which can be calculated from inverse kinematics.    is mass 

of the arm, and    is the inertia of the arm. The expression for left side actuator torque (    can be 

obtained from a moment balance at the joint between the fixed base and left arm. 
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Figure 4-12: Free Body Diagram of Right Side Arms 

 

Now, consider the free body diagram of the right side arms shown in Figure 4-12 a).      is the effective 

tension that comes from vector summation of    and   .       is the effective tension that comes from 

vector summation of    and   .      the is mass of the triangle structure. In order to simplify the 

calculation for actuator torque, some simplifications are made to the structure as shown in Figure 4-12 b). 

Arm    is moved to the same location as arm    so that their center-of-mass coincide. The center-of-

mass of the triangle is moved to the end of arm   . Tension     is moved to a point    away from the end 

of arm    in the direction parallel to     Finally, expression for right side actuator torque (  ) is: 

                                                       
 

 
                             

        

 

                                                                                           

   is calculated from the Gradient (  ) and Hessian     ) of   found in Equations (4.1) and (4.2) in the 

inverse kinematic section as shown below: 

                                       

where       is position of the end-effector,     is acceleration vector of the end-effector, and     is velocity 

vector of the end-effector. 
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Chapter 5 

 

Stiffness Analysis 

 

5.1  Introduction of Stiffness in Cable-Based Manipulator 

 Chapter 3 discussed concept and importance of tensionability and tensionable configuration in cable-

based manipulator design. In Chapter 4, equations for calculating cable tensions are formulated, which 

can be used to verify tensionability. However, tensionability does not guarantee good stiffness, and a 

cable-based mechanism has an inherent disadvantage in stiffness due to lack of lateral and torsional 

stiffness on cables compared to rigid links. Therefore, stiffness analysis on a cable-based manipulator is 

just as important as tensionability analysis. In the case of the new proposed manipulator design, stiffness 

analysis is especially important for minimizing out-of-plane motion. 

 There has been a great deal of research on the topic of stiffness of parallel mechanisms. However, few 

have studied stiffness of cable-based mechanisms. Khajepour and Behzadipour studied 3D cable-based 

delta design and developed basis for stiffness analysis of cable-based manipulators [29]. This thesis 

proposes a slightly different method to formulate the stiffness matrix compared to their work, which may 

be easier to understand. In the end, the stiffness matrix formulated in this thesis is equivalent to the 

stiffness matrix formulated by in [29] and Behzadipour’s thesis [2]. In addition to formulating the 

stiffness matrix, this thesis discusses a valid range for stiffness calculation, an estimation method, and 

analysis comparing stiffness of different cable configurations.  
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5.2  Formulation of Stiffness Matrix 

5.2.1 Definition of Stiffness Matrix 

Stiffness is defined as resistance of an elastic body to deformation by an applied force. It is typically 

expressed in the following form: 

            
 

  
 

  is the force applied to the body, and    is the displacement of the body. Another way to interpret 

stiffness is the amount of force required to move a body per unit length. Let       be external forces and 

moments applied to the end-effector, and let    represent the change in position and orientation of the end-

effector. 

                          
 

                       

Now consider a free-body diagram of a conceptual end-effector under a static case shown in Figure 5-1. 

Stiffness analysis in this thesis is strictly for static forces, therefore dynamic forces are not considered. 

 

Figure 5-1: Free Body Diagram of a Conceptual End-Effector  
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    represents the static force from masses of the pneumatic cylinder and end-effector due to gravity.     is 

the unit vector of i-th cables,     is the distance vector of i-th cable connection from the center of the end-

effector to the i-th cable connection.    is the scalar value of tension in i-th cable.    is the unit vector of 

the scalar spine force,   . Note that    points outward from the end-effector, while    points toward the 

end-effector. This convention is used to keep the scalar values of    and    positive. 

Let     be a 6 x 6 matrix with columns representing      and          for each cable. Let     be a 6 x 1 

vector representing scalar values of cable tensions.     and     are equivalent to the matrix and vector 

introduced in Equation (4.30) and (4.31) in Section 4.3.4. They are shown again here for clarity: 

     

 
 
 
 
 
                   

                              

  

 
 
 
 
 
 

 

                       
  

The sum of forces and moments on the end-effector is zero at the equilibrium. Rearranging for the applied 

forces and moments (       gives the following equation: 

                          

 

                            

Taking the derivative of  both sides of Equation (5.2) with respect to    gives: 

       

   
  

 

   
                      

 

The left side of Equation (5.3) is in the form of  
 

  
, and therefore this equation represents stiffness of the 

end-effector.     can be eliminated from this partial derivative because direction and magnitude of     do 
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not change with respect to   . Now, taking a closer look at the remaining terms,     and    are unit vectors 

of cables and pneumatic cylinder which are affected by   .      is the constant spine force, and its 

magnitude does not change with respect to   .     is a vector of cable tensions, and it is affected by    due to 

changes in the length of cables. The cables are modeled as linear springs with a very high spring constant 

( ) as shown: 

                

in Equation (5.4).    is the final tension on the cable after the end-effector is moved by   .   is the 

unstretched pre-tension on the cable.    and   are the final length and unstretched length of the cable 

respectively.  

Since     and    are both direction unit vectors, and     and    are both scalar values of forces, it is possible 

to group them together and simplify the right side of Equation (5.3) as follows: 

 
 

   
                 

 

   
            

  

   
    

 

   
    

         

                
    

  
  
 
   

   

 

It is possible to treat the spine force with    and    as one of the cables with unit vector     and tension   . 

    is zero since     goes into the center of the end-effector. Stiffness of the pneumatic cylinder is zero 

since it is connected to a constant pressure, therefore   in Equation (5.4) is zero for   .  

Equation (5.5) can be rewritten in a summation form: 
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Finally, the stiffness matrix     of the end-effector becomes: 

    
  

   
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
   

   
   

   
   

   
   

   
   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

   
   

   
   

   
   

   
   

   
   

   
   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           

   

           

   
 

           

   

           

   

           

   
 

           

   

           

   

           

   
 

           

   

                

   

                

   
 

                

   

                

   

                

   
 

                

   

                

   

                

   
 

                

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   

 

 

 

Now, consider each term in the stiffness matrix. Ignore the summation on the right side of Equation (5.7) 

and consider one cable at a time. Let     represent displacement part of    with (        ), and let     

represent rotation part of    with (        ). Then, the stiffness matrix can be divided into four quadrants: 

     

 
 
 
 
 

  

  

    

  

    

  

    

  

    

  

 
 
 
 
 

 

 
 
 
 
 

 

  
       

    
  

       

    

  
            

    
  

            

    

 

 
 
 
 
 

   
                    

                    
   

 

 

 

Quadrant 1 represents translational stiffness of the end-effector. Quadrant 4 represents rotational stiffness 

of the end-effector. Quadrants 2 and 3 represent the coupling effect between translational stiffness and 

rotational stiffness. In order to keep the calculation manageable, it is best to consider one quadrant at a 

time. 
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5.2.2 First Quadrant  

 The partial derivatives in the stiffness matrix requires the product rule since     and   are both 

variables of   . The partial derivative in the first quadrant becomes: 

 
 
       

    
    

     

    
   

    

    
  

 

Figure 5-2 shows what happens to the direction vector    and cable length   for a single cable when the 

end-effector is moved by a small displacement    .    and     are the original and final directions of the 

cable.   and    are the original and final lengths of the cable. 

 

Figure 5-2: Changes in Cable Direction and Length under Small Displacement     

 

Consider the first term in Equation (5.9), the partial derivative for the unit vector can be written with the 

limit definition of derivative as following: 

      

    
    

    

      

   
 

 

Let     and      be vector forms of the original and final lengths of the cable, where their magnitudes are   

and   . The relationship between (  ,    ,  ) and (   ,     ,   ) is: 
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Substituting these Equations (5.11) through (5.13) into Equation (5.10) gives: 

 
     

    
        

    

      

   
        

    

    

  
 
   
 

   
        

    

            

       
 

 

 

The scalar lengths   and    can be expressed in terms of components of     and     : 

 
     

    
    

  
 

 
      

 
    

 
    

 
 

         
         

 
        

 

    
    

    
                      

    
    

 

                         
    

    
 

     
        

  
 
       

  

 

 

where         represents                , and         represents   
    

    
 
.  

Substituting Equations (5.15) and (5.16) into Equation (5.14) gives: 
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Now, consider the partial derivative of Equation (5.17) limited to     with respect to   : 

      

   
     

    

    

    

  
       

        
  

 
       

  

        
        

  
 
       

  

      
    

    

    

             
      
  

 
  

 

  

        
      
  

 
  

 

  

   
 

 
 

 

 

 

This yields an undefined solution to the limit, therefore the L'Hôpital's rule is necessary. Derivatives of 

the numerator and denominator with respect to    gives: 

 

      

   
     

    

    

    

      
 
  

          
  

   
      
  

 
  

 

  

     
      
  

 
  

 

  
                

 

 

The second part of the denominator is omitted, because it is multiplied by    and becomes zero. 

Evaluating the limit and simplifying gives the following final solution: 

 
      

   
 

     
 
  
       

  

 
 

    
   

 

  

 
  

        
  

  
 

 

By the same pattern, partial derivatives of     with respect to    and     with respect to    are: 
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Now, consider partial derivative of Equation (5.17) for     with respect to   : 

      

   
     

    

    

    

  
       

        
  

 
       

  

        
        

  
 
       

  

      
    

    

    

             
      
  

 
  

 

  

        
      
  

 
  

 

  

   
 

 
 

 

 

 

This limit also yields an undefined solution. Using the L'Hôpital's rule again gives: 

 

      

   
     

    

    

    

    
 
  

          
  

   
      
  

 
  

 

  

     
      
  

 
  

 

  
                

 

 

Evaluating the limit and simplifying gives: 

 
      

   
 

   
 
  
       

  

 
  

      

  
 

 

By the same pattern, other terms in the partial derivative are: 
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Finally, the first term in Equation (5.9) becomes the following: 

 

   
     

    
 

 

  
 

      
                

              
         

                      
 

   
 

 
                

 

where        is an 3 x 3  identity matrix.  

Now, consider the second term in Equation (5.9). The partial derivative for the tension can be written in 

the limit definition of derivative as: 

     

    
    

    

     

   
 

 

Recall that the cables are modeled as linear springs with the equation for tension given in Equation (5.4). 

Rearranging this Equation gives: 

                

                   

Substituting Equation (5.33) and the expression for    from Equation (5.16) into Equation (5.32) gives: 

 

    

    
    

    

     

   
    

    

        

   
    

    
 
    

        
  

 
       

  
   

   
 

 

The partial derivative of Equation (5.35) for   with respect to    gives: 
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Using the L'Hôpital's rule, derivatives of the numerator and denominator with respect to    gives: 

 
    

   
     

    

    

    

     
 

 
 

          
  

   
      
  

 
  

 

  

 

 

Evaluating the limit and simplifying gives: 

 
    

   
       

 

 
 

       
  

 
    

   
 

         

 

By the same pattern, partial derivatives for   with respect to    and   with respect to    are: 

     

   
          

 

  
    

   
          

 

Then, the second term in Equation (5.9) becomes the following: 

 
   

    

    
                             

 

The final solution for the first quadrant of the stiffness matrix becomes: 
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5.2.3 Second Quadrant  

 Using the product rule, the partial derivative in the second quadrant becomes: 

 
 
       

    
    

     

    
   

    

    
  

 

 

When the end-effector rotates by a small rotation    , the distance vector    from the center of the end-

effector to the cable connection also rotates by    . This causes the location of the cable connection to be 

moved by a small distance    as shown in Figure 5-3, and it has the same effect as     on the direction unit 

vector    and cable length  . 

 

Figure 5-3: Changes in Cable Direction and Length under Small Rotation     

 

Applying the chain rule with the new displacement variable  , Equation (5.42) can be written as: 

 
 
       

    
    

     

   
 
     

    
   

    

   
 
     

    
 

 

Since    is virtually equivalent to    , the following is true from the solution to the first quadrant: 
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Then, the only new unknown in Equation (5.43) is the partial derivative of    with respect to    . The 

following equations show x, y, and z components of     in terms of                   : 

                    

 

 

                      

 

 

                    

 

 

Based on Equations (5.46) to (5.48), it is not difficult to derive every term for this partial derivative: 

 

     

    
 

 
 
 
 
 
 
 
 

  

     

   

     

   

     

   

     

   

     

   

     

   

     

   

     

   

     

   

  

 
 
 
 
 
 
 
 

   

        

        

        

          

 

The matrix       is the cross product operator, or the skew-symmetric matrix, of vector 

              , which it has the form: 

 

         

        

        

        

    

 

and it has the property              . 

Substituting Equations (5.44), (5.45), and (5.49) into Equation (5.43) gives the final solution for the 

second quadrant of the stiffness matrix: 
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5.2.4 Third Quadrant  

 Using the product rule, the partial derivative in the third quadrant becomes: 

 
  

            

    
    

        

    
        

    

    
 

 

 

The cross product between    and    can be represented by a matrix multiplication between       and   : 

 

         

           

           

           

             

 

 

Since   is constant with respect to    ,       can be taken out from the partial derivative. The first part of 

Equation (5.52) becomes: 

 
   

        

    
    

          

    
         

     

    
 

 

 

Substituting Equation (5.41) from the first quadrant into Equation (5.54) gives: 

 
   

        

    
         

     

    
 

 

 
                     

 

 
                    

 

 

Similarly, substituting Equation (5.41) into the second part of Equation (5.52) gives: 

 
        

    

    
           

     

    
                                

 

 

Then, the final solution for the third quadrant of the stiffness matrix becomes the following: 
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5.2.5 Fourth Quadrant  

 In this quadrant, the displacement vector    changes with respect to change in    . Therefore,       

requires the product rule. The partial derivative in the fourth quadrant becomes: 

 
  

            

    
   

            

    
     

        

    
           

     

    
        

    

    
  

 

 

Solutions for the second term and third term are already available from combinations of previous results 

from the second quadrant and third quadrant: 

 
        

     

    
 

 

 
                           

 

 
                                

 

 
        

    

    
                                              

 

 

The first term involves the partial derivative of       with respect to    , which can be rearranged as: 

 
    

        

    
        

        

    
     

          

    
        

      

    
 

 

 

It can be observed from Figure 5-3 that          . The derivative of    with respect to     is equal to the 

derivative of    with respect to    , which evaluates to        from Equation (5.49).  

 
    

        

    
           

      

    
         

      

    
                

 

 

Then using the property               gives: 

 
    

        

    
                                

 

 

Then the final solution for the fourth quadrant of the stiffness matrix is as following: 
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5.2.6 Complete Stiffness Matrix and Stability  

Solutions for the partial derivatives for each quadrant was determined in Sections 5.2.2 to 5.2.5. 

Combining these solutions together gives the stiffness matrix for a single cable. Adding the summation 

back gives a complete stiffness matrix for the end-effector. The following equation shows this complete 

stiffness matrix for the end-effector,    , separated into three parts: 

 
       

        
       

         
       

 

              
                

       
 
  

    
   

  

  
   

              
       

          
       

 

                     
             

                 
       

 
   

    
         

  

              
 

 

 

 

Let   ,   , and    represents each part of the complete stiffness matrix: 

              

            

 

   

       
       

         
       

 

              
                

       
 
   

                

 

   

  
  

   
              

       
          

       
 

                     
             

                 
       

 
    

             

 

   

        
  

              
  

 

 

   comes from changes in cable tensions due to movement of the end-effector.    and    come from 

changes in direction of cable tensions.    contributes for the majority of the total stiffness while    and 

   are relatively small. This is because    is usually a very large number over      N/m for steel cable, 

compared to    which typically ranges between 20 to 200 N.  
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 The complete stiffness matrix obtained in this section is equivalent to the stiffness matrix derived by 

Behzadipour in his thesis [2].       is equivalent to    from Equation (6.27) from his thesis, and    is 

equivalent to    from Equation (6.31) from his thesis. How to include the spine force in the stiffness 

calculation was not discussed in [2], but the derivation in this thesis shows that the spine force should be 

treated as one of the cable tension with zero for both the displacement vector (  ) and cable stiffness ( ).  

 Behzadipour introduces the concept of “stability” and “stabilizability” in his thesis. His definition of 

stabilizability is: 

Definition: Stabilizability A cable-based manipulator is stabilizable if and only if its total stiffness matrix 

can be made positive definite under any arbitrary external load by choosing a proper set of antagonistic 

forces. 

In this case, the antagonistic force refers to the spine force. Another way to interpret stabilizability is that 

external forces and moments necessary to move the end-effector must increase as the end-effector moves 

further away from the original position. Stability of the end-effector can be verified from its stiffness 

matrix. The end-effector is stable if and only if the stiffness matrix is positive definite. 
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5.3  Valid Range for Stiffness Calculation 

 A stiffness of a linear spring is valid for any spring length as long as there is no plastic deformation. 

However, this is not the case for stiffness matrices of cable-based manipulators. The complete stiffness 

matrix for the end-effector shown in Equation (5.65) depends on a set of cable tensions. Magnitudes and 

directions of these cable tensions change depending on the position of the end-effector in the workspace. 

Therefore, a stiffness matrix calculated at a particular end-effector position is not valid elsewhere. In 

order to understand stiffness of the end-effector along the entire workspace, it is required to calculate the 

stiffness matrix at every single position. This is fine for stiffness in the x and y directions, but it is a 

problem for stiffness in the z direction, which causes the end-effector to move in the out-of-plane 

direction. Equations for calculating cable tensions formulated in Section 4.3.4 do not consider out-of-

plane motions, and tensionability of the manipulator is not guaranteed in the out-of-plane direction. This 

means that even if the calculated stiffness is high, it may only be valid for a short range of motion due to 

changes in cable tensions. Stiffness of the end-effector is significantly reduced if one of the cables loses 

tension. 

In the new proposed manipulator design, the most important part of the stiffness matrix is 

translational stiffness in the z (out-of-plane) direction. Reformulating new equations for inverse 

kinematics and cable tensions to include out-of-plane component would require these equations to be 

much more complicated. Instead, a simpler method is proposed to estimate the force required to make at 

least one of the cables lose tension. This method applies an external force in the out-of-plane direction 

while keeping the end-effector fixed, and then calculates new cable tensions. The external force is 

increased until one of the cables loses tension. In reality, the end-effector would move when an external 

force is applied. However, it is difficult to calculate the exact movement of the end-effector because the 

stiffness matrix changes at each step. Therefore, valid range of stiffness calculated with this method 

should only be used as an estimate, or to compare stiffness of different designs. 
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Method for Estimating Valid Range of Stiffness 

1. Select a position (x, y) to examine the out-of-plane stiffness. Calculate the cable tensions and 

stiffness matrix     at this position using Equations (4.32) and (5.65). 

 

2. Let   be a vector of applied forces and moments on the end-effector: 

 

                          

 

3. Initialize all terms in       to be 0.  

 

4. Select a term from       and increase it by a small step, for translational stiffness in the out-of-plane 

direction,    is the most appropriate choice. 

 

 

5. Recalculate new cable tensions with Equation (4.32), but include       and ignore the dynamic 

terms: 

 

                     

 

6. Go to step 7 if at least one of the cable tensions is lesser than or equal to 0. Otherwise go back to 

step 4 and further increase the selected term by a small step to repeat the process. 

 

7. Use the vector       that satisfies condition stated in step 6 and inverse of the stiffness matrix     to 

estimate displacement of the end-effector under the applied forces and moments      : 
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5.4  Comparison of Stiffness Between Different Cable Configurations 

 In Section 5.2.6, it is stated that    contributes for the majority of the total stiffness because the 

coefficient   is typically large. This coefficient   is the elongation stiffness of the steel cable itself, and it 

only acts along the axial direction of the cable, or in other words along the cable direction unit vector   . 

Stiffness in the lateral direction normal to the unit vector    is not very strong. Therefore, in order for the 

end-effector to have good stiffness in all 6 DOF, the cable configuration becomes important. In general, it 

is a good design decision to have more component of    in the direction that requires more stiffness. In the 

case of the new proposed manipulator, the translational stiffness in the out-of-plane direction is most 

important. Therefore, the cables should have as much component in the z direction as possible without 

making the out-of-plane profile of the robot too large. 

In addition to the consideration on   , tensionability, and stability, there is another factor that affects 

the cable orientation and configuration. Figure 5-4 shows the path of a cable fixed at one end. The cable is 

assumed to be under tension at all time, and it behaves like a rigid link. Let this path be called “natural 

path” of the cable. Figure 5-5 shows an end-effector with two cables in a parallelogram configuration. 

There is virtually no translational stiffness in the horizontal direction since the natural paths of the cables 

are equivalent. However, rotational stiffness is very high because rotating the end-effector would move 

them away from the natural paths. Figure 5-6 shows an end-effector with cables in a triangle 

configuration. The end-effector cannot translate at all without moving away from the natural paths, which 

gives the triangle configuration very high translational stiffness. However, it has virtually no rotational 

stiffness since the end-effector is free to rotate about the center. Figure 5-7 shows an end-effector with 

cables in a trapezoid configuration. The end-effector can translate and rotate to some degree while staying 

on the natural paths. Translation and rotation are coupled together in this case. This configuration 

provides both translational and rotational stiffness, but neither is as high as rotational stiffness in 

parallelogram or translational stiffness in triangle.  
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Figure 5-4: Natural Path for a Single Cable 

 

 

Figure 5-5: Natural Paths for Parallelogram Configuration 

 

Figure 5-6: Natural Paths for Triangle Configuration 

 

Natural Path 

 

Fixed Point 
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Figure 5-7: Natural Paths for Trapezoid Configuration 

 

 The parallelogram configuration provides high rotational stiffness but low translational stiffness. The 

triangle configuration provides high translational stiffness but low rotational stiffness. The cable 

configuration used in the new proposed design is based on the idea of combining parallelogram and 

triangle configurations to have both high translational stiffness and high rotational stiffness. Figure 5-8 

(a) shows that cable pairs 3-4 and 5-6 creates a parallelogram configuration. Figure 5-8 (b) shows that 

cable pairs 3-4 and 5-6 can be reduced into a single cable, and then it creates a triangle configuration with 

cable pair 1-2. Therefore, the cable configuration in the front view is a combination of a parallelogram 

and a triangle. The parallelogram configuration provides high rotational stiffness about the z axis, while 

the triangle configuration provides high translational stiffness in the x direction. The cable configuration 

in the side view is also a combination of parallelogram and triangle as shown in Figure 3-10. 

 

Figure 5-8: Cable Configuration for the New Proposed Design (Front View) 

 

                  (a)                                                                                    (b) 
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Cable 5-6 
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Figure 5-9 shows a sample stiffness matrix for the new proposed manipulator design. Translational 

stiffness in the x and z directions are highlighted bold in the stiffness matrix, and they are entries in cells 

(1,1) and (3,3) respectively. Translational stiffness in the x direction is much higher than translational 

stiffness in the z direction. This is because the cable direction unit vectors (  ) have more component in 

the x direction. It can be observed that the second and third quadrants of the stiffness matrix are zero 

matrices, which means that there is no coupling effect between translational stiffness and rotational 

stiffness. Table 5-1 shows the displacement of the end-effector caused by various magnitudes of applied 

forces in the z direction. The end-effector is estimated to move 2.8 mm under 40 N of applied force. 

 

            

 
 
 
 
 
 
 
 
 

  

                 

                 

            

                 

                 

           

  

 
 
 
 
 
 
 
 
 

 

Figure 5-9: Sample Stiffness Matrix for the New Proposed Design 

 

 

Table 5-1: Sample Displacement of the End-Effector 
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Suppose that the cable configuration for the new proposed design is slightly modified as shown in 

Figure 5-10. The side view is now a combination of parallelogram and trapezoid configurations, while the 

front view is kept the same. No other changes are made to this modified design. 

 

Figure 5-10: Cable Configuration for the Modified Design 

 

Figure 5-11 shows the stiffness matrix for the modified design. It can be observed that translational 

stiffness in the x direction remains unchanged, but translational stiffness in the z direction decreased 

significantly. Table 5-2 shows displacements of the end-effector caused by various magnitudes of applied 

forces in the z direction. The table shows that displacements are much larger compared to the design 

before the modification, and there are coupled rotations about the x and y axis associated with 

displacement in the z direction. This is coupling effect is also shown in the stiffness matrix because the 

second and third quadrants are no longer zero matrices. 

            

 
 
 
 
 
 
 
 
 

  

                 

                 

                       

                      

                      

           

  

 
 
 
 
 
 
 
 
 

 

Figure 5-11: Sample Stiffness Matrix for the New Proposed Design (Modified) 

 

(Front View) 

 
(Side View) 
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Table 5-2: Sample Displacement of the End-Effector (Modified) 
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 Two conclusions can be made from comparing cable configurations in the new proposed design 

versus the modified design. The combination of parallelogram configuration and triangle configuration is 

very effective in providing both high translational stiffness and high rotational stiffness. A slight 

modification in the cable configuration can significantly alter the overall stiffness due to changes in the 

natural paths of the cables. 

 

 

5.5  Limitations in Stiffness Calculations and the Physical Model 

 This section discusses some assumptions in the stiffness calculation and limitations in manufacturing 

of the physical model.  

 

 Cables are treated as linear springs in the stiffness calculation, which allows both elongation and 

compression. However, cables can only accept elongation, and the only time they do compress is 

when they lose tension. The stiffness calculation ignores the fact that some cables may have 

negative changes in length. Verifying tensionability and valid range for stiffness should address 

this problem to some degree. 
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 The cable configuration for the new proposed design requires some cable attachments to be right 

beside each other on the end-effector. This is not physically possible due to mechanical 

interference. The cables will be attached as close to each other as possible, but this will result in 

some loss of translational stiffness in the out-of-plane direction. 

 

 Unequal cable lengths can distort the position and orientation of the end-effector, or cause one of 

the cables to lose tension faster than expected. This causes problems in both tensionability and 

loss of stiffness. 
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Chapter 6 

 

Optimization of Design Parameters 

 

6.1  Introduction to Optimization of Design Parameters 

 The purpose of optimization in the design of the new proposed manipulator is to determine the best 

set of design parameters that satisfies certain design specifications. Design specifications are requirements 

that must be met, such as size of the workspace and maximum payload. The design parameters to be 

optimized are kinematic dimensions of the manipulator, such as lengths of the arms and cables. Different 

sets of design parameters are compared according to their cost functions, which include dynamic 

performance, stiffness performance, and size of the manipulator. 

 

6.1.1 Design Specifications 

 The workspace of the new proposed manipulator is a rectangle with horizontal length of 1.2 m and 

height of 0.3 m. The payload for the manipulator is set to be 1.0 kg including the end-effector itself. Most 

of the weight is assumed to be the end-effector, since the high-speed pick-and-place operation is done by 

a vacuum suction cup which cannot lift too much weight. The eccentricity in the y direction is set to 5 cm 

below the end-effector, while eccentricity in the x and z directions are ignored and set to zero . In order to 

determine the minimum required spine force, the absolute minimum cable tension is defined to be 15 N. 

This means that even under the worst case scenario, cable tensions will never drop below 15 N. The cycle 

time is aimed at 90 cycles per minute, which requires the end-effector to move at maximum acceleration 
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and velocity of 4 g and 6.0 m/s respectively. The requirements for maximum acceleration and velocity are 

reduced near the edge of the workspace as shown in Figure 6-1. The end-effector is not expected to move 

very fast near the edge of the workspace, and it is also where the minimum cable tension occurs. 

Reducing the maximum acceleration and velocity prevents over-designing the manipulator for extreme 

corner cases, and focuses on more common area of the workspace. 

 

Figure 6-1: Reduction of Maximum Required Acceleration and Velocity 

 

6.1.2 Design Parameters 

 The design parameters to be optimized are listed in Table 6-1. Most of them are kinematic dimensions 

already shown in Section 4.1 with their usage shown in Figure 4-1 and Figure 4-2. The only new 

parameter introduced here is    , which represents “starting height of the workspace”. Figure 6-2 shows 

an example of the required rectangular workspace that can fit in a total available workspace created by a 

parallel structure. The required workspace is much smaller than the total available workspace.     is the 

vertical distance from the origin of the manipulator to the top of the required workspace. Note that the 

bottom of the required workspace should avoid contact with the edge of the total available workspace, 
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because the edge is near singularity for the arms and cables. Ranges for the design parameters are 

arbitrarily chosen to be reasonable values that are not too large or too small. The range for     is 

calculated based on the size of available workspace determined from other design parameters. 

 

Table 6-1: List of Design Parameters 

Parameter Range 

                 

                 

                 

                 

                  

                  

        

 

 

Figure 6-2: Required Workspace and Total Available Workspace 
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6.1.3 Cost Functions 

 Table 6-2 lists all the cost functions used in the optimization for the best set of design parameters. 

Minimum required spine force, is the amount of spine force required to satisfy the minimum required 

cable tension of 15 N under the worst case. Maximum cable tension is the highest cable tension value 

calculated based on the minimum required spine force. Maximum static torque, maximum dynamic 

torque, and maximum angular velocity are cost functions associated with the motor dynamic. Stiffness for 

different sets of design parameters are compared with the amount of out-of-plane displacement when a  

40 N external force is applied to the end-effector. Size of the manipulator is compared by area of a 

rectangular box that can encase the entire manipulator. 

Table 6-2: List of Cost Functions 

Cost Description Limit Weight 

       minimum required spine force           

     maximum cable tension           

        maximum static torque             

        maximum dynamic torque             

      maximum angular velocity             

   

out-of-plane displacement under 

40 N of force in the z direction 
        

      size of the manipulator in area         

 

The “limit” column shows the maximum allowable value for each cost functions. For example, limit 

for maximum static torque and maximum dynamic torque are defined by the motor datasheet. If any one 

of the cost functions evaluates to a value higher than the limit, that particular set of design parameters are 

considered invalid, and the total cost is set to infinity. 

These cost functions must be summed into a single total cost function in order to compare different 

sets of design parameters. This summation is not a trivial task for two reasons. First, not all cost functions 
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are weighted equally as shown in the “weight” column, since some cost functions are more important than 

others. Second, the cost functions have different units, and they cannot be summed without normalization 

of their values. The expression for the total cost function is as following: 

 

                                  
       

                       

 

   

 

 

 

The weight for each cost functions are assigned based on experience and prior knowledge in designs 

of cable-based manipulators. For example, increasing the spine force would directly increase cable 

tensions and motor torques, but in this case the motors are more likely to reach their dynamic limit before 

the cylinders or cables do. Therefore, cost functions for the motor dynamic are weighted higher than 

minimum required spine force and maximum cable tension. The same applies for maximum dynamic 

torque compared to maximum static torque. The motors are more likely to reach the dynamic torque limit 

before the static torque limit. 

 

 

6.2  Evaluation of Cost Functions 

In order to compare dynamic performances of different sets of design parameters, it is necessary to 

find the worse case value for each cost functions. In order to do this, the required workspace is divided 

into many data points as shown in Figure 6-3, and then all cost functions are evaluated at each data point. 

The interval between each point is decided to be 1 cm for performing the optimization. This creates 121 

points in the x direction, 31 points in the y direction, and 3751 points in total.  

It is necessary to go through the entire workspace twice for a single set of design parameters. The first 

time is for determining the minimum required spine force, and the second time is for calculating the 

remaining dynamic performances. The process of evaluating the cost functions can be divided into three 

steps shown in this section. 

(6.1) 

Intersec

tion 
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It should be noted that the search for the best set of design parameters is different from the search in 

the workspace. The purpose of the optimization is to search for the best set of design parameters, and in 

order to compare different sets of design parameters, it is necessary to search through the entire 

workspace to calculate cost functions for each sets of design parameters. This section discusses the search 

in the workspace required to evaluate the cost functions. Optimization methods used for the search of the 

best set of design parameters are discussed in the next section. 

 

Figure 6-3: Workspace Divided into Data Points 

 

6.2.1 Step 1: Workspace Verification 

 The first step is to check if the current set of design parameters can generate a large enough available 

workspace to fit the required workspace. The valid range for     is also calculated for each set of design 

parameters. Figure 6-4 shows that the lower bound for     is equal to   . The value of     is increased 

by a small step until the upper bound is reached, where the bottom corners of the rectangular workspace is 

outside of the available workspace. This is checked with the inverse kinematic equation. If a specified    

(x, y) coordinate is outside of the available workspace, the solutions for    and    includes imaginary 

component. Every valid step of     is considered as a candidates for the best set of design parameters. 

         x 

 

y 

 

                                            

                       

Actual division of the workspace is 

finer than shown on this figure 
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Therefore, cost functions are evaluated for each one. If there is no valid value of    , it means that the 

current set of design parameters does not have an available workspace large enough to fit the required 

workspace. In this case, the current set of design parameters is rejected immediately with the total cost 

function set to infinity. The majority of available combinations of design parameters are rejected in this 

first step. The cost function for size of the end-effector       can be calculated in this step. 

 

 

Figure 6-4: Lower Bound and Upper Bound for     
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6.2.2 Step 2: Evaluation of Minimum Required Spine Force 

 In this step, the entire workspace is examined for the first time and the following tasks are completed 

at each data point: 

 Check for singularity between arms and cables. 

 Evaluate matrices    ,    ,    , and     for Equation (4.32) and store it step 3. 

 Calculate the spine force required for minimum cable tensions of 15 N. 

The following data are recorded for later use: 

 Minimum and maximum values of    and    for mechanical design. 

 Minimum required spine force. 

Singularity between arms and cables occur when they are parallel to each other. In order to avoid the 

regions near singularity, the angles between the arm and the cable,  , is limited between 10 degrees to 

170 degrees as shown in Figure 6-5. The value of   is calculated from the inverse kinematic equation, 

and if   is outside of the allowed limit, the current set of design parameters is rejected. 

 

Figure 6-5: Limits for Angle between Arms and Cables  
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The values of    and    returned from the inverse kinematic equation are compared against previous 

data points to record the maximum and minimum values among the entire workspace. This data is used to 

determine the angle for neutral position discussed in Section 3.3.2 and shown in Figure 3-7. 

Before continuing to the calculation of the minimum required spine force, it is necessary to have a 

method to determine the directions of acceleration and velocity that result in minimum and maximum 

cable tensions. Recall the expression for cable tensions from Equation (4.32): 

                                    

In order to maximize or minimize the value of     , it is necessary to find     that maximize or minimize 

       , and also find     that maximizes or minimizes            . The maximum magnitudes for both of 

them are already defined in the design specifications, and therefore only their directions need to be found. 

By the principal axis theorem, the maximum value of         occurs when     is in the direction of Eigen-

vector associated with the largest Eigen-value of    . Then, the minimum value of         occurs when     

is in the negative direction of the same Eigen-vector. Similarly, the maximum value of             occurs 

when    is in the direction of Eigen-vector associated with the largest Eigen-value of    . Since     is 

multiplied twice it is similar to squaring    , then the minimum value of            occurs when     is in the 

direction of Eigen-vector associated with the smallest Eigen-value of    . Let       ,        and       , 

       represent accelerations and velocities that maximize or minimize the cable tensions. 

In Equation (4.35), the spine force     is part of the constant     matrix. Increasing the spine force in 

this equation results in a monotonic increase in the cable tensions. The equation indicates that there are 

linear relationships between the spine force and cable tension for each cable. If two points are known on 

this relationship, it is possible to derive the equation of the line and interpolate any other points on this 

line. One way to calculate the minimum required spine force is to first find the cable tensions at two 

random spine forces (for example 0 N and 500 N), and then use interpolation to find the spine force where 

the cable tension is 15 N as shown in Figure 6-6. 
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Figure 6-6: Linear Relationship between Spine Force and Cable Tensions  

 

The interpolation method requires the calculation of matrix     twice for each test point, and then one 

more time at the end for the minimum required spine force. An alternative method is proposed here that 

only requires calculation of the   matrix once for the entire process: 

 

Method for Calculating Minimum Required Spine Force 

1. Let      be the direction unit vector of   , and let    be   matrix without any component of   . 

                                                        

                    

2. Calculate Matrices    ,    ,    ,     , and      at each data point, and store it for later use. 

 

3. Formulate the following equation to be the cable tensions at      . Calculate the minimum 

values for      using        and        discussed in the previous page. 

                             

 

                    

4. Let        be a vector of minimum required cable tensions. 
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5. Let         be a vector of spine forces that gives 15 N of tension on each cables. For example, the 

first term in         is the spine force required to give 15 N of tension on cable number 1. 

                                                              
   

 

 

6. Formulate the following equation using      and       . 

                               

 

                                    

7. Combine Equation (6.4) with Equation (6.7), and then rearrange to solve for        . 

 
        

            
          

 
 

8. The minimum required spine force for each data point is the largest value in         . 

                        

9. The minimum required spine force for the entire workspace is the largest value of             . 

                       

10. After        is determined, calculate the     matrix at each data point using Equation (6.3), and 

store it in memory for later use. 

                       

 

6.2.3 Step 3: Evaluation of Dynamic Performances and Stiffness 

 The third and last step examines the entire workspace for the second time to complete the following 

tasks at each data point: 

 Calculate cable tensions. 

 Calculate static torque, dynamic torque, and angular velocity. 

 Evaluate minimum stiffness matrix and check for stability 

 Calculate out-of-plane displacement under 40 N of force in the z direction. 
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The following data are recorded: 

 Maximum value of cable tension. 

 Maximum values of static torque, dynamic torque, and angular velocity. 

 Maximum value of out-of-plane displacement. 

The maximum cable tension at each data point is calculated using Equation (4.32) with        and 

      , and matrices    ,    ,    , and     are stored in memory from step 2. The maximum cable tension 

for each data point is the largest value among all the cables in the     vector. The maximum cable tension 

for the entire workspace is the largest value of cable tension among all the data points. 

                    

                     

 The gradient of the inverse kinematic equation shown in Equation (4.2) is calculated at each data 

point, and then the maximum angular velocity at each data point is calculated using the gradient and 

     . For calculating maximum static torque, maximum static cable tension is recalculated without the 

dynamic components (         ), and then Equations (4.37) or (4.38) for calculating motor torque 

are used with maximum static cable tension and maximum angular velocity. Similarly, maximum 

dynamic torque is calculated using the same equations with maximum dynamic cable tension and 

maximum angular velocity. The largest value for each one of these motor dynamic performances in the 

entire workspace is used for the cost functions. 

In order to find the largest out-of-plane displacement, it is necessary to find minimum stiffness matrix 

that occurs when the cable tensions are minimum, which is calculated using Equation (4.32) with        

       and       , and matrices    ,    ,    , and    . The stiffness matrix is calculated based on these 

minimum cable tensions, and then the out-of-plane displacement is calculated using Equations (5.65) and 

(5.71) with 40 N applied in the z direction. 

(6.12) 

Intersec
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Intersec
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6.3  Options for Optimization Methods 

 The challenge in optimization for the best set of design parameters is that there are multiple cost 

functions to consider simultaneously. This type of optimization problem is classified as a multi-objective 

optimization. It was proposed in Section 6.2 to sum all individual cost functions into a single total cost 

function with Equation (6.1), but it is difficult to assign appropriate weights and normalization factors for 

each cost function. This section presents four optimization methods that were considered for the search of 

the best set of design parameters. Brief introductions are given for each optimization method, and their 

advantages and disadvantages with respect to the challenge in assigning weights and normalization 

factors are discussed. This thesis does not show detailed algorithms or implementation steps for the four 

optimization methods because that is out of scope of this thesis. The methods presented in this section are 

all well-known optimization strategies, and there are abundance of literature surrounding their algorithms 

and implementations. 

6.3.1 Option 1: Nelder-Mead (Direct Search) 

 The problem space of the optimization for the best set of design parameters is highly nonlinear due to 

having multiple cost functions. The Nelder-Mead method, or otherwise known as the downhill simplex 

method, is a common derivative-free nonlinear optimization method. This method was used by Edmon 

Chan in his optimization for the previous design of the 2D cable-based manipulator [1]. The method 

defines a polygon with     vertices in   dimensions, where   is the number of optimization 

parameters. For example, this polygon would be a triangle on a plane, and tetrahedron in a three 

dimensional space. The cost function is evaluated at each vertex, and then the vertex with the highest cost 

is moved to an another point in the problem space, usually toward and through the centroid of the 

remaining   points in an attempt to reduce the cost. This process moves the polygon in the problem space 

until most of the vertices converge at a local minimum. Figure 6-7 shows a sample step in the search 

process of the Nelder-Mead method for a 2D problem. 
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 The Nelder-Mead method is one of the most simple and well-defined optimization algorithm, and it is 

easy to implement. However, there are several disadvantages associated with this method. The time 

required for optimization increases proportionally to the number of optimization parameters, which makes 

this method not suitable for a large number of optimization parameters. This method works best when the 

optimization space is smooth and unimodal, but this is not the case with multiple nonlinear cost functions. 

There could be many potential local minima that trap the polygon and prevent this method from finding 

the global minimum. Edmon Chan addressed this problem by using multiple starting points distributed 

evenly across the entire problem space, but this significantly increases the optimization time. Finally, this 

method does not address the problem with assigning weights and normalization factors at all. 

 

Figure 6-7: Searching Process of Nelder-Mead Method – 2D Example  

 

6.3.2 Option 2: Genetic Algorithm (Stochastic Search) 

The Genetic Algorithm method solves optimization problems by emulating population propagation 

and the concept of the “survival of the fittest”. The optimization parameters are modelled as genes or 

chromosomes of a population of candidates.  In the beginning, a population of candidates are created with 

randomly selected genes. Then, each candidate in the population is evaluated for its fitness based on the 

cost function, and half of the population with poor fitness is removed. The remaining population 
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reproduces children to take the place of the removed candidates. In the reproduction phase, two parent 

candidates form a pair and create two child candidates by mixing their genes; this process is called 

crossover. The most simple crossover method is shown in Figure 6-8. After the reproduction phase, a 

small portion of the population goes under mutation to randomly change their genes, which adds 

randomness in the optimization method to help it escape from local minima. This cycle of selection, 

reproduction, and mutation is continued until majority of the population converges to a similar gene. 

The strength of Genetic Algorithm is its ability to avoid being trapped in local minima using the 

random mutation phase. This makes Genetic Algorithm well suited for solving the optimizations with 

highly nonlinear problem space such as the search for the best set of design parameters. However, due to 

the randomness of the algorithm, it is still good idea to run the optimization several times and compare 

the solutions for convergence. A challenge in Genetic Algorithm is that the user must define many 

parameters for the algorithm, such as the population size, method of crossover, and frequency of mutation. 

This is not simple without some experience, but there is software available with Genetic Algorithm tools 

such as MATLAB that will take care of these parameters. This method still does not address the problem 

with assigning weights and normalization factors to the cost functions. 

 

 

Figure 6-8: One-Point Crossover Method for Genetic Algorithm  
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6.3.3 Option 3: NSGA-II (Multi-Objective Search) 

 NSGA-II stands for “Non-dominated Sorting Genetic Algorithm”, and it is a an extension to the 

Genetic Algorithm method that is specifically designed to solve multi-objective optimization problems. 

This method simultaneously optimizes two or more conflicting objectives to find points where improving 

an objective would make other objectives worse. This point is called Pareto point, and there are many 

Pareto points in a multi-objective optimization problem. Therefore, NSGA-II gives multiple valid 

solutions to the problem. 

 The advantage of NSGA-II is that it handles multi-objective optimization problems without  

specifying weights or normalization factors. However, the lack of necessity for decision making prior to 

the optimization process creates a problem later, when selecting one of many solutions given by the 

NSGA-II method. Therefore, it is still unavoidable to have some human decision making in the 

optimization process. In the case of the NSGA-II method, the decision making part is simply delayed 

until the end of the optimization algorithm. 

 

6.3.3 Option 4: Complete Search 

 Complete Search is an optimization method where every single combination of optimization 

parameters are examined. It uses brute force to explore the entire problem space, and therefore it is 

guaranteed  to find the global minimum. Although this is not an elegant solution, it does have important 

advantages compared to other optimization methods. 

A problem space can have multiple regions of good solutions. Since Complete Search examines the 

entire problem space, it can identify these multiple regions similar to multiple Pareto points in NSGA-II. 

The Nelder-Mead method and Genetic Algorithm method both lack the ability to provide any information 

other than the final solution, and there is no easy way to examine other good regions or explore parameter 



78 
 

sensitivity without a sensitivity analysis. Even for NSGA-II, there may be some solutions better than any 

Pareto points in the opinion of human eyes.  

In Complete Search, it is not necessary to come up with a single total cost function. It is sufficient to 

only calculate each individual cost function and organize the results in a spreadsheet for a human to 

examine. This is not possible for other optimization methods such as Nelder-Mead or Genetic Algorithm, 

since a total cost function is required to run these algorithms. It was concluded that human decision-

making is unavoidable in the optimization of design parameters. The Complete Search method uses the 

most basic search algorithm and relies completely on human decision making for selecting the best set of 

design parameters. Since information about the entire problem space is available for human eyes, this 

method guarantees to find a solution desired by a human. 

There are two obvious disadvantages to the Complete Search method. It takes a tremendous amount 

of time to compute solutions for the entire problem space, and there is large amount of data for a human 

to examine. However, there are ways to address both disadvantages. The computation time is significantly 

reduced  by modern computing technology with high clock speeds and multi-core processors. It is 

possible to divide the problem space and run multiple instances of the computation program in separate 

threads, or even use multiple computers since they are widely available. The amount of valid solutions is 

significantly reduced during the evaluation of cost functions due to kinematic verification and dynamic 

limits. When the human examines the remaining results, it is still useful to rank them with a total cost 

function. The normalization factor for each cost functions can be set to the highest value of that particular 

cost function in the entire problem space. Weight for each cost function can be arbitrary chosen and 

changed at any time. Since all the results are organized in a spreadsheet, it is very fast to calculate the 

maximum of a cost function or to see the effect of changing the value of a weight. This allows a human to 

experiment with the results and identify multiple regions of good solutions. 
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6.4  Optimization Result and Final Design 

6.4.1 Optimization Process and Result of Each Method 

 The Complete Search method was chosen to be tested first for the search for best set of design 

parameters, because it is the simplest to implement and it can provide general idea on how to choose 

appropriate weights and normalization factors. The search program was implemented in MATLAB, and it 

was run on a relatively powerful computer with quad-core processor and 8 available threads. The entire 

search was separated into two sessions, with each session covering half of the entire problem space. Six 

instances of the search program were run at the same time in each session. The search process took 

approximately 8 hours to complete, which is a very long time but certainly not unreasonable. The 

Complete Search method is viable for this particular optimization problem, and benefits provided by it 

outweigh the long search time. 

 After the Complete Search method was completed, results were organized in a spreadsheet and 

inspected manually. In order to identify good solutions, a total cost function was created with the weights 

listed in Table 6-2 and the maximum value of each cost function as normalization factors. The absolute 

best solution according to the total cost function had cable length of 1.8 m, which was impractically long. 

However, there were other solutions with cable length of around 1.3 m and comparable dynamic 

performances. This illustrates the problem with assigning weights on a multi-objective optimization 

problem. The current set of weights made the total cost function choose negligible increases in dynamic 

performance over unreasonably large increases in the cable length. It is obvious to a human that the 

solution with shorter cable length and similar dynamic performances is more preferred, and the weights 

need to be modified to increase the importance of manipulator size. This kind of information is easily 

identifiable in the Complete Search method, but it is hidden in Nelder-Mead or Genetic Algorithm 

methods because these only give a single solution.   
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Nelder-Mead, Genetic Algorithm, and NSGA-II, were also tested for experimental purposes. The 

weights for the cost functions were changed based on the result of the Complete Search method. In order 

to avoid an unreasonably long cable, the weight for size of manipulator was increased, and also the 

evaluation of cost function itself was changed to put more emphasis on the length of cable instead of the 

total area. The new set of weights was designed to select the most preferred solution identified in the 

Complete Search method as the highest ranking solution. Choosing new values for the weights is simple 

because it is fast to recalculate the total cost function in the spreadsheet. 

The Nelder-Mead method took the longest time to complete because it was necessary to perform the 

search from multiple starting locations. It was able to identify the same preferred solution from the 

Complete Search method as long as the starting location was not too far from the solution. The Genetic 

Algorithm method had the best performance. The method was tested 5 times in total, and it was able to 

find the preferred solution in less than an hour every single time. If appropriate weights and normalization 

factors were known beforehand, Genetic Algorithm would definitely the best optimization method out of 

the four options considered. NSGA-II took about 2 hours to complete with a variety of Pareto points that 

were mostly unreasonable. Some solutions were close to the final solution from the Complete Search 

method, but they were less preferred in terms of the trade-off between cable length and dynamic torque, 

which is information is only available in the Complete Search method. 

6.4.2 Final Design Parameters and Performances 

 Table 6-3 shows the final set of design parameters selected based on the Complete Search method. 

The arm length is close to the upper bound of the search range because longer arms increases available 

workspace and reduces maximum angular velocity. The cable separation distance at the arms (   ) is 

almost always at its maximum value for good solutions, because it increases stiffness in the out-of-plane 

direction while having very little effect on dynamic costs. This means that larger value for     is almost 

always better, but it is limited at 0.30 m since it is not desirable to have a large out-of-plane profile for the 
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manipulator. This set of design parameters is attractive because it has the shortest cable length and 

starting height of workspace out of all the good solutions while having competitive dynamic 

performances.  This set of design parameters offers the best ratio between size of the manipulator and 

dynamic performances. 

Table 6-3: Design Parameters for the Final Design 

Parameter Value 

          

          

          

          

           

           

           

 

 

Table 6-4 shows the dynamic performances associated with the final set of design parameters. The 

maximum dynamic torque is close to the motor limit of 300    , but this is still one of the best 

solutions. It was noticed during the Complete Search method that very few solutions had their maximum 

dynamic torque under the limit, and majority of the solutions were rejected due to going over the limit.  

 

Table 6-4: Dynamic Performances for the Final Design 

Cost Description Value 

       minimum required spine force       

     maximum cable tension       

        maximum static torque         

        maximum dynamic torque         

      maximum angular velocity         
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Figure 6-9 shows the distribution of maximum dynamic torque in the workspace. It can be observed 

that the maximum dynamic torque is close to the motor limit of 300     throughout majority of the 

workspace. This is troublesome because 300     is the absolute peak limit, and the actual rated motor 

torque is 146     at rated current of 6 A. Note that this graph shows the absolute worst case defined by 

       and       , where the arms are most likely moving vertically at maximum acceleration and velocity. 

In a normal pick-and-place operation, it is very rare to reach this absolute worst case. However,        

Figure 6-10 shows the distribution of maximum static torque in the workspace, and it also indicates 

trouble for the torque limit. This graph shows that the static torque is already close to the rated torque of     

146     throughout most of the workspace. This suggests that as soon as the end-effector starts moving, 

the motors will go over their rated torque, and this is a normal case scenario instead of the worst case. 

Usually at this point, the design should be revised or more powerful motors should be considered. 

However, due to the budget limit at the time of this project, it was decided to use the current motors for 

prototyping and replace it later when the budget allows. The implication of this decision to the 

performance of the manipulator is discussed in the next Chapter. 

Figure 6-11 shows the distribution of minimum cable tension in the workspace for static case. 

Showing maximum cable tension would not be useful because the upper limit for cable tension is very 

high. On the other hand, the distribution of minimum cable tension can show where in the workspace the 

manipulator is closest to losing tension on one of the cables. The lowest cable tension occurs at bottom 

right of the workspace for the static case. The graph shows that tension for at least one of the cable drops 

to 52 N around this region. Figure 6-12 shows the distribution of minimum cable tension in the workspace 

for dynamic cases. This graph shows that low cable tension can happen nearly everywhere in the 

workspace under the worst case defined by        and       . 
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Figure 6-9: Distribution of Maximum Dynamic Torque (N-m) 

 

 

 

Figure 6-10: Distribution of Maximum Static Torque (N-m) 
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Figure 6-11: Distribution of Minimum Cable Tension for Static Case (N-m) 

 

 

 

 

Figure 6-12: Distribution of Minimum Cable Tension for Dynamic Case (N-m) 
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Figure 6-13 shows the complete stiffness matrix of the end-effector with the final set of design 

parameters at a sample position of (             , which is at the exact center of the workspace. The 

main components of translational stiffness in the x direction and z direction are bolded. Table 6-5 shows 

the displacement of the end-effector in the z direction caused by various magnitudes of applied forces in 

the z direction. The end-effector is estimated to move 2.8 mm under 40 N of applied force. However, the 

calculation for valid range of stiffness discussed in Section 5.3 estimates that at least one of the cables 

will lose tension under 23 N of applied force. Therefore, the estimated displacements under 30 N and 40 N 

in Table 6-5 may not be valid. The valid range of stiffness of 23 N is still acceptable, because the external 

force in the out-of-plane direction is not expected to be that large. 

 

            

 
 
 
 
 
 
 
 
 

  

                 

                 

            

                 

                 

           

  

 
 
 
 
 
 
 
 
 

 

Figure 6-13: Stiffness Matrix for the Final Design 

 

Table 6-5: Displacement of the End-Effector for the Final Design 

 
Applied Force in z direction (N) 

10 20 30 40 

   (m)                                  

 

Finally, the maximum value and minimum value for    and    for the final set of design parameters 

are recorded to be 88.42 degrees and -23.49 degrees. Therefore, the angle for the neutral position of the 

parallelogram structure on the right side arm (discussed in Section 3.3.2) is the midpoint between the 

maximum and minimum angle, which evaluates to 32.46 degrees. 
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Chapter 7 

 

Prototyping and Experimental Results 

 

7.1  Mechanical Design of the Prototype 

 Figure 7-1 and Figure 7-2 show the CAD model of the mechanism designed based on the final set of 

design parameters. The CAD model is created by partners from Conestoga College. There are some 

aesthetic changes to the shape of the arms and triangle structure on the right side to make them look 

similar to other cable-based manipulators designed and built by AEMK System. These changes do not 

affect the kinematics of the manipulator, since the distances between all the joints remains the same. 

In the early stage of testing, the spine force was limited to approximately 260 N before the motor 

faulted due to a torque limitation, which is less than the theoretically planned 314 N. One of the problems 

caused by this issue is less tension in the cables and reduced stiffness. In order to reinforce the stiffness in 

the out-of-plane direction, additional parts were designed to be installed at the upper universal joint of the 

pneumatic cylinder as shown in Figure 7-3. These add-on parts contain a revolute joint that acts as an 

additional mechanical constraint that prevents out-of-plane movement, while the inner universal joint still 

allows the transmission of rotation between the 3rd motor axis and cylinder axis. The weakness of a 

mechanical stiffness is that any small displacement at the upper universal joint can be amplified at the 

end-effector due to the long pneumatic cylinder. Large 20 mm diameter clevis pins are used to minimize 

the amount of backlash. 
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Figure 7-1: CAD Model of the Mechanical Design (Front View) 
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Figure 7-2: CAD Model of the Mechanical Design (Isometric View) 

 

 

Figure 7-3: Add-on Parts at the Upper Universal Joint 
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 Figures 7-4 shows a photograph of the fully assembled manipulator with the outer mounting frame. 

The manipulator is controlled with BeckHoff control system and TwinCAT PLC program. The control 

program is based on an existing program written for a 3D cable-based manipulator created by AEMK 

System. On top of the fixed base, there are pneumatic parts for the cylinder and suction cup. The 

photograph shows that there are some air hoses running to the pneumatic cylinder. Figure 7-5 shows a 

photograph of the control box and workstation for the manipulator. The control box contains three 

BeckHoff motor drivers, PLC module, a power supply unit, and a computer running TwinCAT control 

software. Figure 7-6 shows a photograph of the end-effector. 

 

Figure 7-4: Photograph of the Manipulator 
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Figure 7-5: Photograph of the Control Box 

 

 

Figure 7-6: Photograph of the End-Effector 
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7.2  Experimental Results 

 

7.2.1 Torque Measurement 

 It was mentioned in the previous section that the spine force can only supply up to approximately   

260 N instead of the originally planned 314 N, due to the limitation with the motors. This reduces the 

amount of tension in the cables and also reduces the amount of static torque. Figure 7-6 shows the new 

distribution of maximum static torque in the workspace with a spine force of 260 N. In order to verify the 

static torque calculation, the end-effector was moved to various locations in the workspace and measured 

motor torques were compared with calculated motor torques in Table 7-1. It can be observed that the 

values in Figure 7-6 and the calculated values are reasonably close to the measured values. The measured 

values were consistently lower than the calculated values. This most likely suggests that the value of the 

spine force estimated from the air pressure was higher than the actual value, because the spine force 

contributes for most of the static torques. 

 

 

Figure 7-6: New Distribution of Maximum Static Torque (N-m) 
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Table 7-1: Measured Static Torque vs. Calculated Static Torque 

Left Motor Right Motor 

Calculated Toque Measured Torque Calculated Toque Measured Torque 

                                     

                                    

                                    

                                    

                                     

                                      

 

 

Next, the measured dynamic torques and calculated dynamic torques are compared. Figure 7-7 shows 

the movement of the end-effector in x and y axis with respect to time for a sample pick-and-place path. 

Figure 7-8 shows the movement of the end-effector in the workspace for the same path.  

 

 

Figure 7-7: Movement of the End-Effector with respect to Time for a Sample Path 
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Figure 7-8: Movement of the End-Effector in the Workspace for a Sample Path 

 

Figure 7-9 shows the comparison of measured torque and calculated torque for the left motor, and 

Figure 7-10 shows the comparison for the right side motor. The calculated torques are off by up to 20% 

compared to the measured torque at some places, and the measured torque varies more erratically. 

However, they are fairly close and the key features of the curves match with each other. The peaks after 

1.5 seconds and 4 seconds correspond to the quick vertical movements of the end-effector for pick-up and 

drop-off motion .  

 

 
Figure 7-9: Measured vs. Calculated Torques for Sample Path (Left Motor) 
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Figure 7-10: Measured vs. Calculated Torques for Sample Path (Right Motor) 

 

 

7.2.2 Stiffness Measurement 

 The stiffness of the end-effector is measured with a simple experimental setup. The end-effector is 

equipped with a laser pointer that marks its position on the table, and a spring gauge is used to pull the 

end-effector in the out-of-plane direction with some force. The displacement of the end-effector is 

measured in terms of the displacement of the laser beam projected on the table. This is certainly not an 

accurate way to measure stiffness, but it can provide rough estimates. Measurements were taken at several 

different end-effector positions, but no measurable differences were observed because the displacements 

of the laser projection were very small. Table 7-2 shows the measurement result at the exact center of the 

workspace. Note that these measurements were taken with the add-on parts installed at the upper 

universal joint for increased stiffness. 
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Table 7-2: Displacement of the Laser Projection in the Out-of-Plane Direction 

Applied Force 
Displacement of the 

Laser Projection 

          

          

          

          

           

 

 It is hard to conclude anything from this crude measurement except for the fact that the end-effector 

has very good out-of-plane stiffness. The end-effector moves about 3 mm with 40 N of applied force. This 

is close to the calculated value shown in Table 6-5. Recall that the valid range of stiffness estimated in 

Section 6.4 is only 23 N, but in reality the end-effector is able to handle 90 N of applied force with the 

help of mechanical stiffness provided by the additional revolute joint mechanism. 90 N is far beyond the 

expected value of external force in the out-of-plane direction.  

 

7.2.3 Pick-and-Place Demonstration and Performance 

 A demonstration for the manipulator is performed for an actual pick-and-place operation. Figure 7-11 

shows the front view of the demonstration setup. A conveyer belt is placed at bottom center of the 

workspace. A COGNEX camera system is mounted on the fixed base, out of the workspace plane in the 

negative z direction. Both the conveyer and camera are connected to the PLC Module and computer to be 

managed from the control program. Figure 7-12 shows the top view of the demonstration setup. The 

conveyer carries spoons and forks in various spacing and orientations. The program identifies locations 

and orientations of spoons and forks with the COGNEX camera, then the manipulator picks them up and 

places them in either the spoon pile or fork pile in a fixed orientation. Rotating the spoons and forks to fix 

their orientations is an excellent way to demonstrate the new rotational DOF of the end-effector. 
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 Due to the limitation with the motors, the manipulator was only able to run at 70% of the maximum 

speed, at around maximum acceleration of 2.8 g and maximum velocity of 4.2 m/s. The motors were 

overstressed, and there was a risk of faulting the motors if the manipulator was run at higher speed.  

Another reason is that the kinematics of the manipulator is not properly calibrated at the time of 

demonstration due to a time constraint. Without proper kinematic calibration, the position of the end-

effector has some inaccuracy. In order to address this problem, a simple calibration is applied at the 

software level to offset images taken by the camera. Although it was not quantitatively measured, the 

success rate of the pick-and-place operation and repeatability of the manipulator observed during the 

demonstration was very good. The stiffness of the manipulator is high enough to keep the end-effector 

sturdy without any noticeable vibrations. In the end, the manipulator was able to achieve 60 cycles per 

minutes for the pick-and-place operation. 

 

Figure 7-11 Pick-and-Place Demonstration Setup (Front View) 
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Figure 7-12 Pick-and-Place Demonstration Setup (Top View) 
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Chapter 8 

 

Conclusions and Recommendations 

 

8.1  Conclusions 

 The goal of this thesis was to investigate and validate the design and implementation of a new 2D 

cable-based parallel manipulator. The new manipulator design added a new rotational DOF to the end-

effector in addition to the original 2D planar workspace design. This thesis proposes to transmit rotation 

to the end-effector by physically rotating a kinematic link in the structure, which in this case is a 

pneumatic cylinder. This keeps the manipulator a true parallel mechanism where all the actuators are 

located at a fixed base. In order to transmit rotation to the end-effector, revolute joints on the pneumatic 

cylinder were replaced with universal joints. This caused the manipulator to lose a significant amount of 

out-of-plane stiffness. A new six-cable design was proposed to increase the stiffness in the out-of-plane 

direction, and there were several other mechanical design changes. 

The methods for kinematic and dynamic analysis were revised to make the procedure more 

systematic, and expressions for calculating cable tensions and motor torques were formulated in terms of 

matrices. This thesis presented a mathematical formulation for the stiffness matrix of the end-effector 

using spring models for the cables. The resultant stiffness matrix is equivalent to the stiffness matrix 

formulated by in [2] and [29]. This thesis also presented the concept of a valid range of stiffness 

calculations and a method to estimate it for this particular manipulator design. Additionally, this thesis 
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compared stiffness of different cable configurations and showed that the cable configuration has 

significant effect in the stiffness of the end-effector.  

A multi-objective optimization problem was formulated in order to search for the best set of design 

parameters for the manipulator. The challenge in multi-objective optimization is selecting appropriate 

weights for each cost function. This thesis presented four optimization methods and compared them in 

terms of their ability to handle highly non-linear problem space and multiple objectives. It was concluded 

that the Complete Search method was feasible and it was the best option for the particular optimization 

problem in this thesis.  

A mechanical model of the manipulator was drafted with the best set of design parameters chosen 

from the optimization process, and a physical prototype of the manipulator was manufactured with the 

help of partners from Conestoga college. Several experiments and demonstrations were conducted with 

the physical prototype, and it showed that more powerful motors were needed to run the robot at full 

speed. Measured torques and calculated torques are compared to verify the dynamic analysis. A pick-and-

place demonstration showed that the manipulator has very good stiffness and repeatability. The 

manipulator was able to demonstrate a sorting and pick-and-place operation at 60 cycles per minute while 

running at 70% of the maximum speed, which is approximately acceleration of 2.8 g and velocity of 4 m/s. 
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8.2  Recommendations 

 This thesis would like to make the following recommendations for improving the manipulator 

developed in this thesis and future development of similar cable-based manipulators: 

 Accuracy for this particular manipulator can be increased by applying kinematic calibration to 

correct for imperfection in the manufactured parts. Additionally, further tuning of motor control 

parameters to reduce the settling time may help as well. 

 

 More powerful actuators are required for manipulator of this size. 2D manipulators require more 

powerful motors in order to have similar workspace size compared to 3D manipulators, because 

the arms are required to be much larger and the number of motors are reduced from three to two. 

 

 For development of similar cable-based manipulators, consider the valid range of stiffness 

calculation in the stiffness analysis. The further the end-effector moves away from its original 

position, the actual stiffness is more likely to deviate from the calculation and for one of the 

cables to start losing tension. 

 

 Cable configuration should be the first consideration in cable-based design, because it has 

significant effect on stiffness due to the natural paths of the cables. This thesis suggests a 

combination of a parallelogram configuration and a triangle configuration.  

 

 The Complete Search method should be considered as one of the options for optimization of 

design parameters, because it has unique advantages over other optimization methods.. With the 

advancement in computing technology, the Complete Search method is becoming more feasible. 
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