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Abstract

The classical mean-variance model, proposed by Harry Markowitz in 1952, has been one

of the most powerful tools in the field of portfolio optimization. In this model, parameters

are estimated by their sample counterparts. However, this leads to estimation risk, which

the model completely ignores. In addition, the mean-variance model fails to incorporate

behavioral aspects of investment decisions. To remedy the problem, the notion of ambiguity

aversion has been addressed by several papers where investors acknowledge uncertainty in

the estimation of mean returns. We extend the idea to the variances and correlation

coefficient of the portfolio, and study their impact. The performance of the portfolio is

measured in terms of its Sharpe ratio. We consider different cases where one parameter is

assumed to be perfectly estimated by the sample counterpart whereas the other parameters

introduce ambiguity, and vice versa, and investigate which parameter has what impact on

the performance of the portfolio.
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Chapter 1

Introduction

The mean-variance (MV) model, first introduced by Harry Markowitz [Markowitz (1952)],

has been popular since its inception, and the main concept of the model has been widely

used by mutual and pension funds. The model requires knowledge of the expected returns,

variances, and covariances of the returns of the assets in the portfolio. However, in practice,

these parameters are typically estimated from a sample, and the estimation risk is ignored.

Despite the usefulness of the MV model and its simplicity, the presence of estimation risk

is a major limitation, and many researchers have noted its effects on the choice of portfolio

rules. The estimates are solely based on historical performance, and Fabozzi stresses that

“markets and economic conditions change throughout time”, so past performance is a

poor indication of future returns, [Fabozzi, (2007)]. In addition, Michaud suggests that

“MV optimization significantly overweights (underweights) those securities that have large

(small) estimated returns, negative (positive) correlations and small (large) variances”,

[Michaud (1989)]. Kroll and Levy study the effect of sampling error on the portfolio,

and conclude that a large sample size is required to maintain the extent of the error at a

prescribed level, [Kroll, Levy (1980)].

Another practical limitation of the classical mean-variance model is “the computational

difficulty associated with solving large-scale quadratic programming problem with a dense

covariance matrix”, [Konno, Yamazaki (1991)]. Konno and Yamazaki propose the mean-
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absolute deviation (MAD) portfolio optimization model to circumvent in the difficulty

the pain of dealing with quadratic problems. The mean-absolute deviation model retains

all the features of the mean-variance model, and does not require the covariance matrix.

However, Simann shows that ignoring the covariance matrix leads to greater estimation

risk, [Simann (1997)].

An effort to control estimation risk leads to the Bayesian approach, which is more

practical. The discrepancy between population and sample parameters is acknowledged

by treating unknown parameters as random variables. A Bayesian investor constructs a

predictive distribution from a pre-specified distribution with observations, but is assumed

to be neutral with respect to Knightian uncertainty, [Knight (1921)]. In this context,

risk refers to measurable risk that can be represented numerically, whereas uncertainty

refers to unmeasurable risk which cannot. There is extensive literature showing that a

rational investor does not treat risk and uncertainty the same way, and that aversion to

such uncertainty is present in decision making. This is best illustrated by the Ellsberg

paradox, [Ellsberg (1961)]. The Bayesian approach fails to capture this aversion, which is

commonly referred to as ambiguity aversion, [Epstein (1999)].

Uncertain of returns certaintly cannot be overlooked because it “tends to have more

influence than risk in mean-variance optimiation”, [Fabozzi (2007)]. Thus, the need to

consider investors with multiple priors arises to take ambiguity aversion into consideration,

and Garlappi, Uppal, and Wang propose a modified mean-variance model which is based

on a max-min optimization of the utility function, [Garlappi, Uppal, Wang (2007)]. The

usage of confidence intervals is a widely used concept in robust optimization, and it requires

the knowledge of the underlying distribution of the data, [Fabozzi (2007)]. The model

proposed by Garlappi et. al allows uncertainty in mean returns by obtaining confidence

intervals instead of point estimates. However, they still assume that the covariance matrix

of the assets is perfectly estimated by its sample counterpart. Just like the estimate for

sample mean returns, the sample covariance matrix is prone to estimation risk, which many

researchers have tried to improve by applying different techniques, such as shrinkage, to

covariance estimation. Fabozzi also suggests robust estimation of covariance matrices using

elliptic distributions.
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In this thesis, we present a model that incorporates uncertainty in the covariance matrix

as well as mean returns of the assets, and study the impact of this new layer of uncertainty,

and aim

1. to explain why ambiguity aversion could be useful in the mean-variance model,

2. to study the impact of ambiguity aversion in other model parameters,

3. to investigate which parameter has the greatest impact on the portfolio performance.

Chapter 2 re-visits the standard mean-variance model, and further discusses the behav-

ioral aspects of portfolio optimization. In Chapter 3, we motivate our problem by consider-

ing the simplest case where the portfolio consists of one risky asset and one risk-free asset.

In this simple case, we analyze how uncertainty in mean returns and the variances can

affect the portfolio rules. In Chapter 4, we extend the simplest case presented in Chapter

3 to the multi-asset case. A complication arises in the multi-asset case with the presence of

correlations among the risky assets. We study the distribution of correlation coefficients,

and analyze the portfolio rules. Chapter 5 applies theoretical results from earlier sections

to empirical data to verify our model and analysis. We conclude with recommendations

on how to extend the idea and results to more general cases.
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Chapter 2

Motivation

Mean-variance analysis is the cornerstone of modern portfolio theory. Although the exten-

sive literature claims that the mean-variance model itself is not practical, its core concept

has been widely used, and it is worth reviewing the model. In the first section, we re-

visit the classical mean-variance portfolio model, and discuss mathematically how sample

estimates of the parameters in the model may lead to poor results/performance of the

portfolio.

The biggest drawback in the classical mean-variance model is the lack of the behavioral

aspects of decision making. In practice, information available to investors is imperfect and

investors are prone not only to risk, but also to uncertainty in their choice of portfolio

rules. Existing research mostly focuses on dealing with risk, but there is evidence that

investors react to uncertainty in ways that violate the expected utility hypothesis. In the

second section, we first study the expected utility hypothesis, and present the Ellesberg

paradox. This famous example violates the expected utility hypothesis, and we discuss its

implications on portfolio rules.
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2.1 Mean-Variance Optimal Allocation

The classical mean-variance model suggests that the optimal portfolio rule of N stocks (or

any risky assets) is obtained by solving the optimization problem

max
ω

[
ωTµ− γ

2
ωTΣω

]
(2.1)

where ω ∈ RN denotes proportions of wealth invested in each stock, γ > 0 is a constant that

represents the investors’ risk aversion, µ ∈ R is the true excess returns over the risk-free

asset, and Σ ∈ RN×N is the covariance matrix of the N stocks, which is positive definite.

Proposition 2.1.1 The solution to the optimization problem (2.1) is given by

ω∗ =
1

γ
Σ−1µ (2.2)

where ω∗ denotes the optimal portfoio rule. When there is no risk-free asset, the solution

to (2.1) is

ω∗∗ =
1

γ
Σ−1 (µ− µ0 · 1) (2.3)

where

µ0 =
µTΣ−11− γ
1TΣ−11

(2.4)

is the expected return on the zero-beta portfolio associated with the optimal portfolio ω, and

1 ∈ RN is a N-vector of 1’s.

Proposition 2.1.1 is a well-known result, but we recall here the proof of it.

Proof. With no risk-free asset, the additional constraint ωT1 = 1 is imposed. Let λ > 0.

By the method of Lagrange multipliers, we define

Λ (ω, λ) = ωTµ− γ

2
ωTΣω − λ

(
ωT1− 1

)
5



First order conditions are

∂Λ (ω, λ)

∂ω
= µ− γΣω − λ1

∂Λ (ω, λ)

∂λ
= −ωT1 + 1

By setting the first order conditions to 0, we obtain

ω =
1

γ
Σ−1 (µ− λ1)

1 = ωT1

We note that ωT1 = 1Tω, so

1 = 1T
[

1

γ
Σ−1 (µ− λ1)

]
=⇒ γ = 1TΣ−1µ− 1TΣ−1λ1

=⇒ λ =
1TΣ−1µ− γ
1TΣ−11

=
µTΣ−11− γ
1TΣ−11

Choose µ0 = λ to obtain (2.4), and we obtain the desired result. �

The underlying assumption of the classical mean-variance portfolio model is that in-

vestors have perfect information about the market, or in other words, µ and Σ are known

with certainty. Since this is not true in practice, investors estimate the parameters µ and

Σ by their counterparts, µ̂, the sample mean, and Σ̂, the sample covariance matrix. Hence,

the solution to the classical mean-variance model becomes

ω̂ =
1

γ
Σ̂−1µ̂ (2.5)

If we use T observations for each stock, and if we assume that the excess returns µi ∈
RN , i = 1, 2, · · · , T are normally distributed, then µ̂ ∼ N

(
µ, Σ

T

)
, a multinormal distribution

with mean µ ∈ RN and covariance matrix Σ ∈ RN×N . (T − 1)Σ̂ ∼ WN (T − 1,Σ), is a

Wishart distribution with covariance matrix Σ ∈ RN×N and T − 1 degrees of freedom,
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where

µ̂ =
1

T

T∑
i=1

µi

Σ̂ =
1

T − 1

T∑
i=1

(µi − µ̂) (µi − µ̂)T

In the expression for the sample covariance matrix, we notice that the denominator is T−1

instead of T . This is known as Bessel’s correction, and is needed for Σ̂ to be an unbiased

estimator of Σ. As T → ∞, the difference between T − 1 and T becomes negligible, and

the significance of Bessel’s correction diminishes.

Proposition 2.1.2 If the sample covariance follows the Wishart distribution with T − 1

degrees of freedom and covariance matrix Σ, or mathematically, Σ̂ ∼ WN (T − 1,Σ), then

E
[
Σ̂−1

]
=

Σ−1

T −N − 2

The result follows from the fact that Σ̂−1 ∼ W−1
N (T − 1,Σ−1), the inverted Wishart distri-

bution. One fundamental property of a normal distribution is that the sample mean and

sample covariance are independent. In other words,

E
[
Σ̂ · µ̂

]
= E

[
Σ̂
]
· E [µ̂]

If we take the expectation of ω̂ in (2.5),

E [ω̂] =
T − 1

T −N − 2
ω∗ (2.6)

where ω∗ is the optimal portfolio rule with perfection information in (2.2).

Proposition 2.1.2 is a standard statistics result that can be found in [Morrison (1967)].

In Proposition 2.1.2, ω̂ is a vector, and we define E [ω̂] as the vector of the expectation

of each element of ω̂. Provided that T > N − 2, we obtain |E [ω̂] | > |ω∗| from (2.6),

where the inequality sign is component-wise. This result indicates that investors who use

the sample mean and sample covariance as true parameters tend to overestimate the true

optimal portfolio rule, which may lead to poor performance out of sample.
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2.2 Behavioral Aspects of Portfolio Choice

The expected utility hypothesis was first initiated by Bernoulli in 1738, and incorporates

risk aversion in the preferences of people with regard to unpredictable outcomes. Daniel

Bernoulli stated

"The determination of the value of an item must not be based

on the price, but rather on the utility it yields. There is

no doubt that a gain of one thousand ducats is more

significant to the pauper than to a rich man though both gain

the same amount."

The expected value criterion is a naive rule that prefers an investment with higher expected

value. However, the St.Petersburg paradox shows a contradiction between the choice that

rational investors make and the choice that the expected value criterion recommends. We

consider a simple example to illustrate this point.

Example 2.2.1 A fair coin is tossed repeatedly until a tail appears, which marks the end

of the game. If a tail appears on kth toss for the first time, you win 2k−1. For example, if

a head appears on the first toss and then a tail on the second toss, you win $2. How much

would you pay to enter this game?

If we consider the expected payoff of the game presented in Example 2.2.1, we see

that it is infinity. In other words, based on the expected value criterion, one should enter

the game for any fixed amount of dollars, which is, however, not the case with rational

investors. The expected value criterion fails to account for a highly unlikely event with a

large payoff that rational (or risk-averse) investors tend to opt out of. The expected utility

theory was proposed to remedy this problem of the expected value criterion possesses. The

classical mean-variance model is consistent with the expected utility theory since

• The model introduces a constant that represents investors’ risk-aversion, denoted as

γ in (2.1).
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• The utility function that investors aim to maximize is a completely concave function

with respect to proportions of wealth allocated in the portfolio.

However, the expected utility theory has been challenged for years with empirical results

that violate it. The most famous example is the Ellsberg paradox [Ellsberg (1961)], which

we present here to illustrate violations of the expected utility theory.

Example 2.2.2 You have an urn that contains 30 red balls and 60 other balls that are

either black or yellow in unknown proportion. You draw one ball from the urn of a total of

90 balls. Suppose you are given the following two choices to bet on.

Red Black Yellow

I $100 $0 $0

II $0 $100 $0

Choice I means that you bet on ‘Drawing a red ball’, and Choice II means that you

bet on ‘Drawing a black ball’, with the exact same payout. Which choice would you take?

Consider the following two other choices.

Red Black Yellow

III $100 $0 $100

IV $0 $100 $100

Choice III means that you bet on ‘Drawing either a red or a yellow ball’, and Choice

IV means that you bet on ‘Drawing either a black or a yellow ball’. Which choice would

you take?

We denote a � b to mean ‘a is preferred to b’. A natural response, based on [Ellsberg

(1961)], is Choice I � Choice II, and Choice IV � Choice III. In this simple model (or

game), uncertainty comes from unknown proportion between black and yellow balls. The

probability of drawing a red ball is P (I) = 1
3
, and the probability of drawing a black ball is

9



P (II) ∈
[
0, 2

3

]
, and the distribution of the number of black balls is even unknown. Choice I

� Choice II indicates that people prefer a fixed probability to a uncertain probability even

though the uncertain one could potentially be higher than the fixed one. In other words,

people are averse to such uncertainty or ambiguity. Based on the expected utility theory,

Choice I � Choice II should imply Choice III � Choice IV because the only difference made

to the first set of choices (I and II) from the second set of choices (III and IV) is the addition

of extra payoff to drawing a yellow ball. Mathematically, a � b =⇒ a + c � b + c, ∀c > 0.

However, the second set of choices clearly violates this property as Choice IV � Choice

III. This violation happens due to a removal of ambiguity that was present with the first

set of choices. The probability of drawing either a black or yellow ball is P (IV) = 2
3

with certainty. The second set of choices also possesses ambiguity in Choice III as the

probability of drawing either a red or yellow ball is P (III) ∈
[

1
3
, 1
]
.

Example 2.2.2 shows that there is some other factor that the expected utility theory

missed (because clearly, it is violated), and that people are averse to ambiguity. The notion

of ambiguity aversion should be distinguished from risk aversion. In simple terms, risk

aversion is due to pessimism about events that are less likely to happen whereas ambiguity

aversion is associated with situations where one has less knowledge of what he is getting

himself into. To elaborate and make a connection with portfolio rules, we consider the

mean-variance model. Investors estimate the parameters, and obtain what they think are

true values. Based on the variance (risk) of the portfolio, it may or may not perform

better than the estimated return. Risk averse investors do not appreciate high variance

(risk) and tend to favour porfolios with lower variance. Unfortunately, estimation error is

always present, and they cannot be certain how accurate their estimates are. Consider two

hypothetical portfolios with their estimated returns and variances in the following table.

Return Variance

Portfolio I 10% 30%

Portfolio II 15% 30%

Risk averse investors would definitely choose Portfolio II over Portfolio I. However,

investors cannot be 100% certain of these point estimates. Suppose they believe that

Portfolio I would have a rate of return between 8% and 20% with variance between 25%

10



and 35%, and that Portfolio II would have a rate of return between 7% to 18% with variance

25% and 60%. In other words, the ‘actual’ (true) returns and variances of the two portfolios

are uncertain (ambiguous). In this case, such ambiguity would lead risk averse investors

to believe their choice of Portfolio II could be prone to more risk for a given rate of return.

In the next chapter, we discuss how to treat ambiguity with statistical distributions, and

construct a model that incorporates ambiguity aversion.
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Chapter 3

Simple World: One-Stock Case

In this thesis, expected returns of risky assets are assumed to follow a normal distribution.

At first, the normality assumption on equity returns appears to be restrictive. However,

we can make our case by observing that intraday returns consist of many trades over

short time periods. Returns over these short periods might not be normally distributed.

However, as the number of trades per day is considered to be large enough, based on Central

Limit Theorem1, we suggest that daily returns are approximately normal. Based on this

assumption, our model requires knowledge of the normal, χ2, and Student’s t distributions,

and we recall these distributions and their associated properties. The main focus of this

chapter is the study of a simple portfolio consisting of only one risky asset and a risk-free

asset. We also illustrate the impact of uncertainty on portfolio decision rules.

1The distribution of the average of many random numbers is normally distributed, independent of the

distribution of each number.
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3.1 Review of Statistics and Distributions

3.1.1 Normal and Student’s t Distributions

The probability density function of the normal distribution N (µ, σ2) is given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R (3.1)

where µ is the mean, and σ2 is the variance. In particular, the standard normal distribution

refers to N (0, 1), and any normal random variable can be standardized to follow the

standard normal distribution. Let X ∼ N (µ, σ2). Then,

Z =
X − µ
σ

(3.2)

is a standard normal random variable.

One useful property of the normal distribution is that the sum of identically inde-

pendently distributed (i.i.d.) normal random variables also follows a normal distribution.

Suppose X1, X2, · · · , Xn ∼ N (µ, σ2). Then,

n∑
i=1

Xi ∼ N
(
nµ, nσ2

)
(3.3)

and from (3.3), we can easily see that

X̄ =

∑n
i=1 Xi

n
∼ N

(
µ,
σ2

n

)
(3.4)

Another useful property is that the sample mean and the sample (co-)variance are inde-

pendent, as noted earlier in Proposition 2.1.2. This particular property can be proven with

Basu’s theorem which states that any bounded, complete sufficient statistic is independent

of any ancillary statistic2. Suppose X1, X2, · · · , Xn ∼ N (µ, σ2), i.i.d. normal random

2An ancillary statistic is a statistic whose sampling distribution does not depend on the (unknown)

parameter being sampled. For example, if X1, · · · , Xn are i.i.d. normal random variables with unknown

expected value µ and known variance σ2, the sample variance
∑n

i=1(Xi−X̄)2

n is an ancillary statistic because

its sampling distribution does not chance as µ changes.
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variables. Then, the sample mean

µ̂ =

∑n
i=1Xi

n
(3.5)

is a complete sufficient statistic, and the sample variance

s2 =

∑n
i=1

(
Xi − X̄

)2

n− 1
(3.6)

is an ancillary statistic, and hence, they are independent.

The Student’s t-distribution (or simply t-distribution) is closely related to the normal

distribution as the t-distribution arises in estimating the mean of a normally distributed

population when the sample size is relatively small. In mathematical terms, we consider

a population of i.i.d. normal random variables {Xi}i∈N, Xi ∼ N (µ, σ2) ,∀i ∈ N, and a

subset of n elements {Xt1 , Xt2 , · · · , Xtn} , tj ∈ N, j = 1, 2, · · · , n. Then, the sample mean

of the subset, µ̂, follows the t-distribution with n− 1 degrees of freedom.

The probability density function of the t-distribution is given by

f(t) =
Γ
(
ν+1

2

)
√
νπ · Γ

(
ν
2

) (1 +
t2

ν

)− 1
2

(ν+1)

(3.7)

where ν = n− 1 is degrees of freedom, and Γ(·) is the gamma function defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt

As the sample size n grows, it can be verified that the t-distribution approaches the stan-

dard normal distribution.

3.1.2 χ2 Distribution

The χ2 distribution with ν degrees of freedom, often denoted as χ2 (ν), is the distribution of

a sum of the squares of ν independent standard normal random variables. The probability

density function of χ2 (ν) is given by

f(x) =
1

2
ν
2 · Γ

(
ν
2

)x ν2−1e−
x
2 , x ∈ R+ (3.8)

14



where R+ denotes a set of all non-negative real numbers.

Remark 3.1.1 If X ∼ N (0, 1) and Y ∼ χ2 (n), then

X√
Y/n

∼ tn−1 (3.9)

where tn−1 denotes the t-distribution with n − 1 degrees of freedom. Moreover, X and Y

are independent.

We recall another useful property of the χ2 distribution.

Remark 3.1.2 Consider a population of {Xi}i∈N Xi ∼ N (µ, σ2) ,∀i ∈ N, and a subset of

n elements {Xt1 , Xt2 , · · ·Xtn} , tj ∈ N, j = 1, 2, · · · , n. Then,

(n− 1)
s2

σ2
∼ χ2 (n− 1) (3.10)

where the sample variance s2 is defined in (3.6).

Remarks 3.1.1 and 3.1.2 are useful building blocks on our model as illustrated in the next

section.

3.2 Uncertainty in One-Stock Case

As a simple illustration, we consider a portfolio that consists of one stock (or any other

risky asset) and a risk-free asset. Then, (2.1) is simplified as

max
ω1

[
ω1µ1 −

γ

2
ω2

1σ
2
1

]
(3.11)

where ω1 is the proportion of wealth invested in the stock, µ1 is the true return on the

stock, and σ2
1 is the variance of the stock return. A fundamental idea is to restrict the
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return and the variance of the stock to fall within particular intervals, rather than to obtain

point estimates. If T denotes the number of observations, then from Remarks 3.1.1 and

3.1.2 with (3.2), we can easily see that

µ1 − µ̂1

s1/
√
T
∼ tT−1 (3.12)

and

(T − 1)
s2

1

σ2
1

∼ χ2 (T − 1) (3.13)

where µ̂1 and s2
1 are the sample mean and the sample variance, respectively, on the risky

asset. The objective is to control unknown quantities µ1 and σ2
1, and (3.12) and (3.13)

suggest that we can construct intervals in which those quantities lie, at a prescribed con-

fidence level. We introduce ambiguity parameters ε1 ∈ [0,∞), δl1 ∈ [0, 1], and δu1 ∈ [0,∞)

such that (
µ1 − µ̂1

s1/
√
T

)2

≤ ε1 (3.14)

and

1− δl1 ≤
s2

1

σ2
1

≤ 1 + δu1 (3.15)

If investors are absolutely certain that perfect information on the market is available to

them, or in other words, that returns and variances of the risky assets are estimated by their

sample counterparts with no estimation risk, then the ambiguity parameters are equivalent

to 0. Non-zero ambiguity parameters reflect an acknowledgement of possible discrepancies

between µ1 and µ̂1, and between σ1 and s1. This can be seen from (3.14) and (3.15) as

µ1 = µ̂1 and σ1 = s1 if and only if ε1 = 0, δl1 = 0, and δu1 = 0. In practice, this ideal

situation is hardly the case. At a specific confidence level α, we can obtain the values of

ε1, δl1, and δu1 as the statistics in (3.14) and (3.15) follow well-known distributions whose

cumulative distribution functions are readily available.

Once we construct confidence intervals for µ1 and σ1, we impose an additional mini-

mization over the set of possible values for µ1 and σ1, subject to (3.14) and (3.15). This
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additional minimization ensures that investors are not neutral to ambiguity, [Garlappi,

Uppal, Wang (2007)]. In other words, it reflects the behavior of investors that they tend

to invest less (more) as the ambiguity level rises (lowers).

The problem (3.11) can be formulated as

max
ω1

[
min
µ1,σ1

[
ω1µ1 −

γ

2
ω2

1σ
2
1

]]
(3.16)

subject to

µ̂1 −
s1
√
ε1√
T

≤ µ1 ≤ µ̂1 +
s1
√
ε1√
T

s2
1

1 + δu1
≤ σ2

1 ≤
s2

1

1− δl1

(3.17)

Remark 3.2.1 We note that sign (µ̂1) is known since µ̂1 is computed directly from his-

torical observations. From the constraints (3.17), we see that the necessary condition to

determine sign (µ) is

|µ̂1| >
s1
√
ε1√
T

(3.18)

Otherwise, µ̂1− s1
√
ε1√
T

and µ̂1 +
s1
√
ε1√
T

would have different signs, and sign (µ1) is not known.

The condition (3.18) suggests that if ε1 <
(
µ̂1
s1

)2

T , then sign (µ̂1) = sign (µ1). In other

words, investors have no knowledge about the sign of µ1 if the ambiguity parameter ε1

rises above
(
µ̂1
s1

)2

T . The sign of µ1 is especially important in the one-stock case or in the

uncorrelated multi-stock cases because investors, intuitively, would not invest any wealth

in stocks that have negative returns, and vice versa. Thus, if the ambiguity parameter ε1

is such that the sign of µ1 is unknown, investors would simply not invest in the risky asset.

Theorem 3.2.1 If we solve the inner minimization problem in (3.16) with (3.17), (3.16)

is equivalent to

max
ω1

[
ω1µ1 −

γ

2
ω2

1

(
s2

1

1− δl1

)
− |ω1|

s1
√
ε1√
T

]
(3.19)

17



The optimization problem (3.19) is maximized when

ω1 =



µ̂1 − s1
√
ε1√
T

γs2
1

(
1− δl1

)
, µ1 > 0

0 , ε1 >
(
µ̂1
s1

)2

T

µ̂1 +
s1
√
ε1√
T

γs2
1

(
1− δl1

)
, µ1 < 0

(3.20)

Proof. We first assume that ω1 6= 0. Otherwise, the portfolio is equivalent to a single

risk-free asset, and in such case, there is no diversification involved. We define

f (ω1, µ1σ1) = ω1µ1 −
γ

2
ω2

1σ
2
1

so the objective function (3.16) can be written simply as

max
ω1

[
min
µ1,σ1

f (ω1, µ1, σ1)

]
We first consider the inner minimization. The term γ

2
ω2

1σ
2
1 is always non-negative regardless

of ω1, so the largest value possible for σ2
1 would minimize f (ω1, µ1, σ1). The term ω1µ1 is

a linear function of µ1, so the value of µ1 that minimizes f (ω1, µ1, σ1) depends on the sign

of ω1. If ω > 0 (ω < 0), then the smallest (largest) possible value of µ1 would minimize

f (ω1, µ1, σ1). Thus, if we solve the inner minimization problem, (3.16) becomes

max
ω1

[(
µ̂1ω1 − sign (ω1)

s1
√
ε1√
T

)
− γ

2
ω2

1

(
s2

1

1− δl1

)]
With ω · sign (ω1) = |ω1|, it is equivalent to

max
ω1

[
ω1µ̂1 − |ω1|

s1
√
ε1√
T

µ̂1 −
γs2

1ω
2
1

2(1− δl1)

]
Define g (ω1) = ω1µ̂1 − |ω1| s1

√
ε1√
T
− γs21ω

2
1

2(1−δl1)
. Since |ω1| is differentiable at ω1 6= 0, and we

assumed ω1 6= 0,
∂g (ω1)

∂ω1

= µ̂1 −
ω1

|ω1|
·
s1
√
ε1√
T
− γs2

1ω1

1− δl1
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From Remark 3.2.1, we know that ω1 = 0 if ε1 >
(
µ̂1
s1

)2

T , so we assume ε1 <
(
µ̂1
s1

)2

T ,

which means sign (µ1) = sign (µ̂1). In one-stock case, we can easily verify that sign (ω1) =

sign (µ̂1). Then, the first order condition above is equivalent to

∂g (ω1)

∂ω1

=


µ̂1 −

s1
√
ε1√
T
− γs2

1ω1

1− δl1
, µ̂1 > 0

µ̂1 +
s1
√
ε1√
T
− γs2

1ω1

1− δl1
, µ̂1 < 0

(3.21)

By setting ∂g(ω1)
∂ω1

= 0, we obtain

ω1 =


µ̂1 − s1

√
ε1√
T

γs2
1

, µ̂1 > 0

µ̂1 +
s1
√
ε1√
T

γs2
1

, µ̂1 < 0

(3.22)

as desired. Since
∂2g (ω1)

∂ω2
1

= − γs2
1

1− δl1
< 0

the solution (3.20) indeed maximizes g (ω1). �

The solution (3.20) has several implications. First, when perfect information is available

to investors, or equivalently, ε1 = 0 and δl1 = 0, the solution agrees with the solution to the

classical mean-variance portfolio model given in (2.2). Second, as uncertainty increases,

mathematically represented by a rise in ε1 and δl1, ω1 decreases. The less confident investors

are about the true parameters, the less they invest in the risky asset. Third, if the mean

ambiguity parameter ε1 rises above a certain level, namely
(
µ̂1
s1

)2

T , no wealth is invested

in the risky asset. In plain words, it shows that too much uncertainty is too risky. Lastly,

uncertainty in the variance of the risky asset does not change the investment plan (i.e.

short or long) whereas uncertainty in the mean return of the risky asset certainly does.
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Chapter 4

Generalization: Two-Stock Case

The one-stock case illustrates how we can model ambiguity in mean returns and variances.

In reality, a portfolio usually contains more than one risky asset, and correlation coefficients

among the risky assets should also be considered. On that note, we now generalize the

idea presented in the earlier section to multi-assets, and we consider a portfolio with two

risky assets to illustrate the generalization.

In the first section of the chapter, we first study the distribution of the sample correla-

tion coefficient. The distribution is used to impose bounds on the correlation coefficient at

a prescribed confidence level. We also discuss the distribution and the hypothesis testing of

the sample covariance matrix. Then, we consider three scenarios. First, we analyze the case

of unknown variances, assuming that the correlation coefficient can be perfectly estimated.

The assumption here is somewhat unrealistic, but the objective of the first scenario is to

investigate how ambiguity in variances may affect portfolio rules with a given correlation.

Second, we study the opposite case of unknown correlation coefficient, assuming that the

variances of the risky assets are perfectly estimated by sample variances. Lastly, we study

the case of unknown covariance matrix as a whole, which is the most realistic scenario in

practice.
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4.1 Two-Stock Case: No Short-Selling

The main difference of the two stock-case from the one-stock case is the presence of the

correlation coefficient between the risky assets. From the standard mean-variance model

(2.1), the inner minimization illustrated in (3.11) for the one-stock case is now with re-

spect to both mean returns, µ, and the entire covariance matrix, Σ. Then, the model is

formulated as

max
ω

[
min
µ,Σ

[
ωTµ− γ

2
ωTΣω

]]
(4.1)

subject to

µ ∈M ⊂ R2×1 , Σ ∈ S ⊂ R2×2 (4.2)

where M and S are determined based on a prescribed level of significance. In the two-

stock case, if we hold one of the parameters certain, we can simplify (4.1), and analyze how

portfolio rules change with respect to one parameter when the other is held certain (no

ambiguity). In this section, we impose the restriction of no short sale, or ω ≥ 0. We first

consider simpler cases where ambiguity is assumed on only one of variance and correlation

with the other being held known.

4.1.1 Two-Stock Case: Unknown Variances

The objective is to solve the max-min problem (4.1). If we simplify (4.1) in linear form,

the problem is equivalent to

max
ω1,ω2

[
min

µ1,µ2,σ1,σ2,ρ

[
(ω1µ1 + ω2µ2)− γ

2

(
ω2

1σ
2
1 + ω2

2σ
2
2 + 2ω1ω2βσ1σ2

)]]
(4.3)

If we impose the restriction of no short sale, or in other words, ω1, ω2 ≥ 0, then solving

the optimization problem becomes rather straightforward. We suppose that it is the case.

We also note that the correlation coefficient between the two risky assets is the sample
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correlation coefficient, β, as we assume that it is perfectly estimated by sample. The

conditions (4.2) can be restated as

µ̂i −
si
√
εi√
T

≤ µi ≤ µ̂i +
si
√
εi√
T

s2
i

1 + δui
≤ σ2

i ≤
s2
i

1− δli

(4.4)

Proposition 4.1.1 If we solve 4.3 for ω1 and ω2, with 4.4, we obtain[
ω1

ω2

]
=

1

γ

[
(σu1 )2 βσu1σ

u
2

βσu1σ
u
2 (σu2 )2

]−1 [
µl1
µl2

]
(4.5)

or in explicit form,

[
ω1

ω2

]
=

1

γ


(σu2 )2 µl1 − βσu1σu2µl2
(σu1 )2 (σu2 )2 (1− ρ2

u)

(σu1 )2 µl2 − βσu1σu2µl1
(σu1 )2 (σu2 )2 (1− ρ2

u)

 (4.6)

where

µli = µ̂i −
si
√
εi√
T

, µui = µ̂i +
si
√
εi√
T(

σli
)2

=
s2
i

1 + δui
, (σui )2 =

s2
i

1− δli

(4.7)

Proof. The inner minimization problem is with respect to mean returns µ1, µ2 and covari-

ance matrix σ1, σ2. We define

f (µ1, µ2, σ1, σ2) = f1 (µ1, µ2)− f2 (σ1, σ2) (4.8)

where

f1 (µ1, µ2) = ω1µ1 + ω2µ2 (4.9)

f2 (σ1, σ2) =
γ

2

(
ω2

1σ
2
1 + ω2

2σ
2
2 + 2ω1ω2βσ1σ2

)
(4.10)
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Then, the problem is equivalent to minimizing f (µ1, µ2, σ1, σ2), which is then equivalent

to minimizing f1 (µ1, µ2) with respect to µ1, µ2 and maximize f2 (σ1, σ2) with respect to

σ1, σ2. Here, f1 (µ1, µ2) is a linear function of µ1 and µ2, so it is minimized at the lowest

values of µ1 and µ2. The max-min problem (4.3) becomes

max
ω1,ω2

[(
ω1µ

l
1 + ω2µ

l
2

)
− γ

2

(
ω2

1 (σu1 )2 + ω2
2 (σu2 )2 + 2ω1ω2βσ

u
1σ

u
2

)]
(4.11)

We define g (ω1, ω2) to be the function in (4.11). The first order conditions are

∂g (ω1, ω2)

∂ω1

= µl1 − γ
(
ω1 (σu1 )2 + ω2βσ

u
1σ

u
2

)
(4.12)

∂g (ω1, ω2)

∂ω2

= µl2 − γ
(
ω2 (σu2 )2 + ω1βσ

u
1σ

u
2

)
(4.13)

We set the first order conditions to 0, and then solve for ω1, ω2 to obtain the solution. �

The solution is valid only when(
σl2
)2
µl1 − βσu1σu2µl2 ≥ 0 ,

(
σl1
)2
µl2 − βσu1σu2µl1 ≥ 0

Re-arranging the condition, we obtain

β ≤ σu2
σu1
· µ

l
1

µl2
(4.14)

This condition tells us that the solution is only valid when the correlation is smaller than

the ratio of two Sharpe ratios. This result agrees with the fact that if the correlation is

high, there is no (or less) merit in diversification, and hence, the proportion invested in one

of the risky asset becomes zero (or minimal). Mathematically, if the correlation is higher

than
σu2
σu1
· µ

l
1

µl2
, no diversification is needed, and the entire wealth would be invested in the

stock with a higher rate of return. We next consider the other case where we assume that

the variances of the risky assets are perfectly estimated by sample, and allow ambiguity in

the correlation between the assets.

4.1.2 Case of Unknown Correlation

In this section, we consider the case where the variances of the risky assets are assumed to

be perfectly estimated by the sample variances, and mean returns and correlation coefficient
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of the stocks leave room for uncertainty. Then, the problem (4.1) is simplifed, in a linear

form,

max
ω1,ω2

[
min
µ1,µ2,ρ

[
ω1µ1 + ω2µ2 −

γ

2

(
ω2

1s
2
1 + ω2

2s
2
2 + 2ω1ω2ρs1s2

)]]
(4.15)

subject to

µ̂i −
si
√
εi√
T

≤ µi ≤ µ̂i +
si
√
εi√
T

, i = 1, 2

ρl ≤ ρ ≤ ρu

(4.16)

Definition 4.1.1 We define the adjusted Sharpe ratio, θ, as

θ =
µ̂− s

√
ε√
T

s
(4.17)

The adjusted Sharpe ratio resembles the actual Sharpe ratio, but it takes the mean ambiguity

into account, with the standard deviation estimated by its sample counterpart.

Proposition 4.1.2 With ω ≥ 0, the solution to (4.15) subject to (4.16) is

[
ω1

ω2

]
=

1

γ

 s2
1 ρus1s2

ρus1s2 s2
2


−1
 µ̂1 −

s1
√
ε1√
T

µ̂2 −
s2
√
ε2√
T

 (4.18)

or equivalently

[
ω1

ω2

]
=


µ̂1 − s1

√
ε1√
T

(1− ρ2
u)s

2
1

−
µ̂2 − s2

√
ε2√
T

(1− ρ2
u)s1s2

ρu

µ̂2 − s2
√
ε2√
T

(1− ρ2
u)s

2
2

−
µ̂1 − s1

√
ε1√
T

(1− ρ2
u)s1s2

ρu

 (4.19)

Proof. Following the proof of Theorem 3.2.1, we solve the inner minimization of (4.15) to

obtain

max
ω1,ω2

[
ω1µ

l
1 + ω2µ

l
2 −

γ

2

(
ω2

1s
2
1 + ω2

2s
2
2 + 2ω1ω2ρus1s2

)]
(4.20)
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where µli = µ̂i − si
√
εi√
T

. We define

f (ω1, ω2) = ω1µ
l
1 + ω2µ

l
2 −

γ

2

(
ω2

1s
2
1 + ω2

2s
2
2 + 2ω1ω2ρus1s2

)
(4.21)

The optimization (4.20) is two-dimensional, and we obtain the first order conditions as

∂f (ω1, ω2)

∂ω1

= µl1 − γ
(
ω1s

2
1 + ω2rus1s2

)
(4.22)

∂f (ω1, ω2)

∂ω2

= µl2 − γ
(
ω2s

2
2 + ω1rus1s2

)
(4.23)

Setting the first order conditions to 0 and rearranging,

s2
1ω1 + ρus1s2ω2 =

µl1
γ

ρus1s2ω1 + s2
2ω2 =

µl2
γ

(4.24)

If we write (4.24) into matrix notations, we obtain (4.18). For the solution (4.18) to be

valid, we have to check that it is non-negative. Using Definition 4.1.1, the solution we

obtain is [
ω1

ω2

]
=

1

γ


θ1 − θ2ρu
s1(1− ρ2

u)

θ2 − θ1ρu
s2(1− ρ2

u)

 (4.25)

From (4.25), the solution is valid when

θ1 − θ2ρu ≥ 0 , θ2 − θ1ρu ≥ 0

or equivalently,

min

(
θ1

θ2

,
θ2

θ1

)
≥ ρu (4.26)

�

The condition (4.26) implies that the ratio of the adjusted Sharpe ratios between the

two risky assets should be at least greater than ρu. Otherwise, no wealth is invested in the

stock with the smaller adjusted Sharpe ratio. In other words, if one adjusted Sharpe ratio

is relatively small compared to the other, there is no merit in investing in the stock with

the smaller adjusted Sharpe ratio if no short sale is allowed.
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Proposition 4.1.3 If no short sale is allowed, and uncertainty in the correlation coeffi-

cient between the two stocks increases, then a proportion of wealth decreases in the stock

with the smaller adjusted Sharpe ratio.

Proof. Without loss of generality, suppose θ1 ≤ θ2. Re-writing (4.19),

ω =

[
ω1

ω2

]
=

1

γ


θ1 − θ2ρu
s1(1− ρ2

u)

θ2 − θ1ρu
s2(1− ρ2

u)

 (4.27)

Then,

∂ω

∂ρu
=

1

γ


2θ1ru − θ2r

2
u − θ2

s1(1− ρ2
u)

2

2θ2ru − θ1r
2
u − θ1

s2(1− ρ2
u)

2

 (4.28)

Note that

2θ1ρu − θ2ρ
2
u − θ2 = = −θ2

(
ρ2
u −

2θ2

θ1

ρu

)
− θ2

= −θ2

(
ρu −

θ1

θ2

)2

−θ2 +
θ2

1

θ2︸ ︷︷ ︸
≤0

≤ 0

Since s1(1− ρ2
u)

2 ≥ 0, the inequality above implies that

∂ω1(ρ∗)

∂ρu
≤ 0 (4.29)

so that ω1 and ρu move in the opposite direction. �

We can also derive the solution for the case of no risk-free asset (all wealth is distributed

among the risky assets only) as the corollary below shows.
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Corollary 4.1.1 With no risk-free asset, the additional constraint ωT · 1 = 1 is imposed,

and the solution to (4.15) is

[
ω1

ω2

]
=


(µl1 − µl2)− γ(ρus1s2 − s2

2)

γ(s2
1 + s2

2 − 2ρus1s2)

(µl2 − µl1)− γ(ρus1s2 − s2
1)

γ(s2
1 + s2

2 − 2ρus1s2)

 (4.30)

Proof. This result directly follows from (2.3). �

Now we study the distribution of the correlation coefficient, and explain how we ob-

tained ρu and ρl defined earlier in the section. We define Xik to be kth observation of the

ith stock. In two stock cases with T observations, i = 1, 2 and j = 1, 2, · · · , T . Then, the

sample correlation coefficient between stock i and stock j, rij, is defined as

rij =

∑T
k=1

(
Xik − X̄i

) (
Xjk − X̄j

)√∑T
k=1

(
Xik − X̄i

)2
√∑T

k=1

(
Xjk − X̄j

)2
(4.31)

where X̄i = 1
T

∑T
k=1Xik is the sample mean of stock i. We denote ρij to be the population

correlation coefficient between stock i and stock j. In two-stock cases, we simplify the

notation as rij = r, ρij = ρ. The distribution of a sample correlation coefficient r, proposed

in [Hotelling (1953)], is given as

f(r;T, ρ) =
T − 2√

2π
· Γ (T − 1)

Γ
(
T − 1

2

) · (1− ρ2)
T−2
2 (1− r2)

T−1
4

(1− ρr)T+ 1
2

2F1

(
1

2
,
1

2
;T − 1

2
;
1 + ρr

2

)
(4.32)

where T is the sample size, ρ is the correlation coefficient, and 2F1 (a, b; c; z) is a hyperge-

ometric function

2F1 (a, b; c; z) =
∞∑
n=0

(a)n (b)n
(c)n

· z
n

n!
, (x)n =

Γ(x+ n)

Γ(x)

We refer to [Anderson (1958)] for the derivation of the distribution (4.32). The cumulative

distribution function F (r0) = P (r ≤ r0) can then be obtained by

F (r0;T, ρ) =

∫ r0

−1

f(r)dr (4.33)
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Tables of values for (4.3.3) are provided in the appendix, and these numbers are verified

with results from [David (1938)].

The main task is to construct bounds of the population correlation coefficient ρ at a

certain confidence level. This can be achieved by hypothesis testing on the null hypothesis

H0 : ρ = ρ0 against the alternative hypothesis H1 : ρ 6= ρ0. Based on [David (1938)], the

region of rejection at the α% level of significance is [−1, rl) ∪ (ru, 1] such that

[1− F (ru;T, ρ0)] + F (rl;T, ρ0) = α (4.34)

where the function F (·, ·, ·) is defined in (4.33). It is often suggested that rl and ru are

chosen so that

[1− F (ru;T, ρ0)] =
α

2
= F (rl;T, ρ0)

In other words, rl and ru are chosen in such a way that each tail probability is equal.

Example 4.1.1 If we want to test the null hypothesis H0 : ρ = 0.3 against the alternative

hypothesis H1 : ρ 6= 0.3 at the 5% level of significance with the sample size of 30, we should

find rl and ru such that

F (rl; 30, 0.3) = 0.025 , F (ru; 30, 0.3) = 0.975

and we find that rl = −0.0627 and ru = 0.5998. In simple plain words, at the 5% confidence

level, ρ is inside [rl, ru]. Trivially, if we set α = 100%, rl = ru, implying that the bound is

indeed equivalent to the point estimate for ρ and hence, no ambiguity.

Once we obtain rl and ru from (4.34), we can apply the same concept to the correlation

coefficient as we did to the return and variance. If the level of significance is low, we note

that a positive (negative) sample correlation does not guarantee that the true correlation

will be positive (negative).

4.1.3 Case of Unknown Covariance Matrix

In practice, the variance and correlation coefficient of the risky assets are never perfectly

estimated by sample, so it is natural to study the portfolio rule with ambiguity in both
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variances and correlation coefficient. In other words, the covariance matrix as a whole

is ambiguous. In the earlier section, we presented the confidence interval of the corre-

lation coefficient. In this section, we assume that variances and correlation coefficient

are independent, and we consider their bounds in isolation from one another. This naive

assumption of independence would underestimate the portfolio rule as the width of the

bound for the correlation coefficient with a given level of confidence is wider than that of

the bound obtained from the covariance matrix as a whole.

The formulation of the problem is nearly identical to the previous case of unknown

variance, but we revisit the problem with its derivation here. The objective is to solve

max
ω1,ω2

[
min

µ1,µ2,σ1,σ2,ρ
(ω1µ1 + ω2µ2)− γ

2

(
ω2

1σ
2
1 + ω2

2σ
2
2 + 2ω1ω2ρσ1σ2

)]
(4.35)

subject to

µ̂i −
si
√
εi√
T

≤ µi ≤ µ̂i +
si
√
εi√
T

s2
i

1 + δui
≤ σ2

i ≤
s2
i

1− δli
ρl ≤ ρ ≤ ρu

(4.36)

We define

f1(µ1, µ2) = ω1µ1 + ω2µ2 (4.37)

f2(σ1, σ2, ρ) = ω1σ
2
1 + ω2

2σ
2
2 + 2ω1ω2ρσ1σ2 (4.38)

The inner minimization of the problem (4.35) is equivalent to minimizing f1 with respect

to µ1 and µ2, and maximizing f2 with respect to σ1, σ2, and ρ. Since we assume no short

sale, and f1 is a linear function of µ1 and µ2, the smallest possible values for µ1 and µ2

minimize f1. Similarly, the largest value possible for ρ maximizes f2. However, depending

on the sign of ρu, values of σ1 and σ2 that maximize f2 are different. If ρu > 0, then the

largest possible values for σ1 and σ2 maximize f2, and vice versa. We denote

µli = µ̂i −
si
√
εi√
T

, µui = µ̂i +
si
√
εi√
T

σu2
i =

s2
i

1− δli
, σl2i =

s2
i

1 + δui

(4.39)
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Then, (4.35) is equivalent to

max
ω1,ω2

[(
ω1µ

l
1 + ω2µ

l
2

)
− γ

2

(
ω2

1σ
u2
1 + ω2

2σ
u2
2 + 2ω1ω2ρuσ

∗
1σ
∗
2

)]
(4.40)

where

σ∗i =

{
σui , ρu > 0

σli , ρu < 0
(4.41)

If we solve the system for ω1 and ω2, we obtain

[
ω1

ω2

]
=

1

γ

 (σu1 )2 ρuσ
∗
1σ
∗
2

ρuσ
∗
1σ
∗
2 (σu2 )2


−1
 µ̂1 −

s1
√
ε1√
T

µ̂1 −
s2
√
ε2√
T

 (4.42)

We can see that the solution resembles the solution for the case of unknown variance. In

this section, we imposed ambiguity bounds on the variances and correlation independently.

This approach does not solve the original problem accurately as the naive assumption of

independence between variances and the correlation overestimates ambiguity. Therefore,

the assumption would lead to a solution that is more conservative. Figure 4.1 shows how

dependence between the variances and correlation would affect the solution plane. The

numbers used in this illustration are ρ = 0.4 and σ = 0.3. The vertical axis represents

the correlation, and the horizontal axis is the variance. In fact, the axes themselves also

represent the bounds on each of the parameters. In other words, assuming the variance and

correlation are independent, we would have the entire region of the figure as the solution

plane. However, with dependence between the two parameters, the solution plane would

actually be an oval as shown in the figure. We also note that the scatter plot shows more

density around the centre of the oval.

In Section 4.3, we will discuss how we can incorporate dependence into our solution

using the Wishart distribution. This distribution generalizes the χ2 distribution to multiple

dimensions.
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Figure 4.1: Dependence between Variance and Correlation

4.2 Two-Stock Case: Generalization

The ultimate objective is to obtain a general solution to the max-min problem (4.3). As

presented in the earlier section, a certain restriction on ω1, ω2 leads to an analytic solution

is available. However, for the general case, numerical methods may be required to obtain

the solution, especially when the number of risky assets in the portfolio is large. The

following two remarks are deemed useful to solve the max-min problem.

Remark 4.2.1 We can transform the max-min problem into the minimax problem with

the identity

max
x

min
i∈I

fi (x) = −min
x

max
i∈I
−fi (x)
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where I denotes the index set. In other words, {fi}i∈I denotes a set of functions of x that

we aim to obtain the maximum of the minimums of.

MATLAB provides a built-in numerical function to solve a minimax problem, so the

identity in Remark 4.2.1 can be used to solve the max-min problem. The following remark

illustrates how a double optimization problem could be simplified to a single optimization

problem.

Remark 4.2.2 For any a, b ∈ R,

max (a, b) =
a+ b+ |a− b|

2
(4.43)

This identity certainly holds for any real-valued functions. If, for x ∈ R,

f1(x) = 3x2 − 2x+ 1

f2(x) = −x2 + x− 4

then,

min
x

[
max
i∈{1,2}

(f1(x), f2(x))

]
= min

x

[
(2x2 − x− 3) + |4x2 − 3x+ 5|

2

]
(4.44)

in which case the problem is simplified to a simple optimization problem in one dimension.

A simple calculation gives x =
1

3
as the solution to the above example.

In our context, x in Remark 4.2.2 is a vector of µ1, µ2, σ1, σ2, and ρ, and values of

these parameters serve as coefficients of functions of ω1 and ω2. The double optimization

problem faces the following complications:

1. The problem of our interest is not one dimensional.

2. The index set is not finite as µ1, µ2, σ1, σ2, and ρ can take any real values in intervals

(4.4).
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The first point can be handled by numerical methods for multi-dimensional optimization.

One well-known method is Newton’s method that involves calculations of the gradient,

second derivatives, and the Hessian matrix with respect to the parameters. If we denote

xn to be the solution at nth iteration, then the solution at the n + 1th iteration can be

obtained by

xn+1 = xn − γ [Hf (xn)]−15 f (xn) (4.45)

where H denotes the Hessian matrix, and 5 is the gradient of the objective function f (x),

and γ > 0. We use approximations to handle the second point. We evenly divide intervals

for each parameter in (4.4) to obtain finite number of possible values for each parameter.

Then, we use numerical algorithm on the finite number of functions to solve the problem.

4.3 Case of Unknown Covariance Matrix

In the previous sections, we considered the notion of ambiguity for mean returns, variances,

and the correlation separately by introducing ambiguity parameters for each parameter.

Using the fact that the sample covariance matrix follows a Wishart distribution, we now

study ambiguity aversion in the variance and correlation collectively. When returns of

the stocks follow the multivariate normal distribution with the covariance matrix Σ, the

sample covariance S follows a Wishart distribution W (S; Σ, T − 1) where the probability

density function is

p (S; Σ, T − 1) =
s
T−3
2

2T |Σ|T2 Γp
(
T
2

)exp

(
−1

2
tr
(
Σ−1S

))
(4.46)

We denote Σ0 to be the true, unknown covariance, and S to be the sample covariance,

and test the null hypothesis H0 : Σ = Σ0 against the alternative H1 : Σ 6= Σ0. Following

notations and results presented in [Morrison (1967)], the test statistic L is

L = ν
(
ln |Σ0| − ln |S|+ tr

(
SΣ−1

0

)
− p
)

(4.47)

where ν = T − 1 is a general degrees of freedom parameter, and p is the dimension (p = 2

for the two-stock case). For large T , L is distributed as a χ2 variate with 1
2
p (p+ 1) degrees
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of freedom. Based on L, [Barlett (1954)] introduced the scaled statistic

L′ =

[
1− 1

6(T − 1)

(
2p+ 1− 2

p+ 1

)]
L (4.48)

and the decision rule is to reject H0 if L′ > χ2
α; 1

2
p(p+1)

. Since the objective is to minimize

ωTµ − γ
2
ωTΣω, we need to find Σ′ that satisfies L′ (Σ′) < χ2

α; 1
2
p(p+1)

. We present the

following numerical example to show how the Wishart distribution can be used in our

problem.

Example 4.3.1 Suppose we obtain the sample covariance matrix

S =

[
0.6 0.2

0.2 0.4

]
from the sample size of T = 27. Our objective here is to find a matrix Σ′ that follows

W (S, T ) such that L (Σ′) < χ2
α; 1

2
p(p+1)

where we denote its elements as

Σ′ =

[
a11 b

b a22

]
In this example, suppose we use α = 0.5. Since we are considering the two-stock case here,

p = 2. From (4.48), we obtain

L (Σ′) =

[
1− 1

6(T − 1)

(
2p+ 1− 2

p+ 1

)]
L

=
35

36

[
26

(
ln
(
a11a22 − b2

)
− ln(0.2) +

0.4a11 + 0.6a22 − 0.4b

a11a22 − b2
− 2

)]
and this quantity should be less than χ2

0.5,3 = 25.3365. Re-arranging the inequality,

ln
(
a11a22 − b2

)
+

0.4a11 + 0.6a22 − 0.4b

a11a22 − b2
< 1.3929

In the inequality above, we see the dependence between the variances, a11 and a22, and

correlation,
b

√
a11a22

. Our ultimate goal here is to find a matrix Σ′ that maximizes γ
2
ωTΣ′ω

whose elements satisfy the inequality above.
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One problem is that a11, a22, and/or b can still be far off from the sample covariance

matrix even with a high level of confidence. Even with an additional condition a11a22−b2 >

0 since a covariance matrix is positive-definite, we have 3 unknowns with 2 conditions which

leaves the solution space for a11, a22, and b wide open. One solution to this problem is to

use the bounds on the variances that have been discussed in the previous sections. It

is widely known that variances are easier to estimate than mean returns and correlation

coefficients. Additionally, variances are known to follow a well-known distribution so that

they are easy to manipulate. Therefore, we impose the bounds on a11 and a22, which in

turn controls the bounds for b. That way, we ensure that with a certain level of confidence,

the matrix we are looking for is not far off from the covariance matrix.
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Chapter 5

Numerical Results

In this chapter, we apply results from previous chapters to numerical examples. Firstly, we

use simulated returns, which are assumed to be normally distributed. This is easily done

with a random number generator readily available in most programming languages, and we

apply our results to these simulators. Next, we use actual returns calculated from indices

as opposed to stocks. This is done to avoid any data issues, e.g. stock splits. Moreover,

indices are more standard.

We us the Sharpe ratio to measure the performance of each portfolio. We use a different

set of values for ambiguity parameters, and also vary the length of time frame to study the

impact of ambiguity aversion. In the first section, we consider the simplest one-stock case.

We compare results from the mean-variance portfolio, the portfolio with mean ambiguity

(Garlappi, Uppal, Wang), and the portfolio with mean and variance ambiguity incorpo-

rated. In the second section, we consider the multi-asset case. We compare results from

each portfolio to see the impact of each ambiguity parameter.
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5.1 One-Stock Case

We define α to be the confidence level of the investors on the parameters. In our models,

ε = 0 corresponds to no ambiguity in mean, and ε =∞ corresponds to complete ambiguity

in mean. The latter case means that there is absolutely no information available about

the market. Ambiguity parameters in variance, δl, δu are defined in a similar fashion. We

understand α = 0 means that investors have no confidence in accuracy of the estimated

parameters, and α = 1 to mean perfect confidence in their estimation. The following tables

summarizes values of ε, δl, δu for given α.

α ε δl δu

0.00 ∞ 1.0000 ∞
0.05 1.9801 0.2378 0.2696

0.15 1.4489 0.1802 0.1922

0.25 1.1560 0.1469 0.1505

0.35 0.9383 0.1215 0.1201

0.45 0.7579 0.1000 0.0952

0.55 0.5995 0.0808 0.0737

0.65 0.4549 0.0631 0.0542

0.75 0.3194 0.0462 0.0361

0.85 0.1895 0.0298 0.0190

0.95 0.0628 0.0137 0.0025

1.00 0.0000 0.0000 0.0000

Table 5.1: Values of ambiguity parameters for given confidence level α, with T = 60

We see that when α = 0, then ε =∞, implying that the true mean return can possibly

lie anywhere within (−∞,∞). Likewise, α = 0 leads to δl = 1 and δu = ∞. This implies

that the ratio of the sample variance and true variance,
s2

σ2
, can possibly be any positive

real number. For α = 1, then ε = 0, δl = 0, and δu = 0, implying that confidence intervals

degenerate into point estimates. In the next sections, we present the results of the one-stock

case with simulated returns as well as empirical data.
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5.1.1 Simulated Results

The numerical method of Monte Carlo simulations is a powerful tool, yet easy to implement,

to verify the validity of the results if appropriate conditions are satisfied. Before we use

empirical data, we use simulations as a quick check that the theory behind our model is

indeed valid. Throughout this chapter, we use a window of T = 60 days to estimate the

model parameters, and update the portfolio for the next 50 days. Based on the portfolio

returns for the 50 days, we calculate the average return and the standard deviation, and

eventually, the Sharpe ratio of the portfolio. We have prepared empirical data for S&P

500 and NIKKEI 225 indices. We extract 307 days of returns from these indices, from May

31, 2011 and back, calculate the mean return and standard deviation of each index, and

treat those values as true parameter values for each index in our simulation. As we are

using 60 observations to estimate the parameter to measure performance for the next 50

days, we simulate 110 returns. Table 5.2 outlines the values for mean returns and standard

deviations we use in our simulations.

S&P 500 NIKKEI 225

Mean 0.00495 -0.00233

St.Dev 0.00454 0.06238

Table 5.2: Mean daily returns and standard deviations for S&P 500 and NIKKEI 225

The objective here is to verify if ambiguity aversion leads to superior performance as we

claimed it would in the earlier chapters. We consider simulating 110 observations as one

run, and we test 100,000 runs to see how often the classical mean-variance model would

outperform our model that incorporates ambiguity aversion. Based on our simulations,

there is not one single run that the mean-variance portfolio outperformed the portfolio

with ambiguity aversion, and no one single run that the portfolio with ambiguity in mean

returns only outperformed the portfolio with ambiguity in both mean returns and the

variance, with performance measured in terms of Sharpe ratios. Assuming that 100,000

runs are enough to make our case, we see that the notion of ambiguity certainly improves

portfolio returns per unit risk. On rare instances depending on a set of normal random
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numbers generated, Sharpe ratios for a few particular runs blow up due to extremely small

standard deviations. We exclude those rare instances in from our calculations.

S&P 500 NIKKEI 225

MV A1 A2 MV A1 A2

Average 0.1983 0.2352 0.2752 0.2741 0.3475 0.3670

St.Dev 0.00312 0.00409 0.00421 0.00193 0.00476 0.00492

Table 5.3: Average Sharpe ratios and standard deviations for 100,000 simulated runs

(a) S&P 500 Returns (b) S&P 500 Weights

Figure 5.1: One-Stock case, S&P 500 Simulation

MV refers to the classical mean-variance model, A1 is the portfolio with ambiguity

in mean returns, and A2 is the portfolio with ambiguity in both mean returns and the

variance. Numbers for A1 and A2 are based on αε = 0.50 and αδ = 0.50. We see that the

performance of the portfolio improves as we incorporate more ambiguity into investment

decisions, and as noted earlier, none of our runs has contradicted this result. Figure 5.1

and 5.2 show portfolio returns and weights over the 50 days for a single run 100,000 runs,

as illustration purposes. We see that returns on the mean-variance portfolio is very volatile

whereas ambiguity models reduces shocks substantially.
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(a) NIKKEI 225 Returns (b) NIKKEI 225 Weights

Figure 5.2: One-Stock case, NIKKEI 225 Simulation

5.1.2 Empirical Results

For the numerical results for one-stock case, we use the S&P 500 and NIKKEI 225 indices

as our data. We use historical daily returns calculated by the difference between the two

dates divided by the index value of the earlier date of the two. The daily risk-free rate

is estimated to be 0.34% obtained from the 3-month bond yield by Bank of Canada. We

denote T to be the estimation window, which means that if, for example, T = 60, we

use 60 days of returns to estimate the parameters, to obtain µ̂ and s2. We use T number

of observations to study the performance of the portfolio for the next 50 days. In other

words, if we use T = 60, then we use observations from Day 1 to Day 60 to estimate the

parameters, which are used to determine the portfolio rule for Day 61. On Day 61, we use

observations from Day 2 to Day 61 to estimate the parameters, which are then used to

determine the portfolio rule for Day 61. We constantly update the portfolio rule with the

most recent T number of observations for the next 50 days.

Table 5.4 and 5.5 shows Sharpe ratios for different combinations of ambiguity levels in

mean returns and variance. Here, αε and αδ denote the confidence level on the estimation
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αδ

0.1 0.3 0.5 0.7 0.9 1.0

αε

0.1 0.4053 0.3841 0.3741 0.3673 0.3619 0.3575

0.3 0.3752 0.3591 0.3515 0.3463 0.3422 0.3389

0.5 0.3254 0.3123 0.3061 0.3019 0.2986 0.2959

0.7 0.2804 0.2696 0.2645 0.2610 0.2583 0.2561

0.9 0.2607 0.2521 0.2480 0.2480 0.2431 0.2413

Table 5.4: T = 60, Sharpe Ratio, S&P 500

αδ

0.1 0.3 0.5 0.7 0.9 1.0

αε

0.3 1.7902 1.6088 1.5138 1.4440 1.3855 1.3586

0.5 0.5712 0.5228 0.4975 0.4789 0.4633 0.4561

0.7 0.3846 0.3592 0.3459 0.3362 0.3280 0.3242

0.9 0.2335 0.2193 0.2118 0.2064 0.2018 0.1996

Table 5.5: T = 60, Sharpe Ratio, NIKKEI 225

of mean returns and variances, similar to α in Table 5.1. For example, αepsilon = 0.5

and αδ = 0.7 means we set the confidence level on the estimation of mean returns at

50% and that of variances at 70%. Again, a higher α value translates into less ambiguity

incorporated into the model, and vice versa. The mean-variance model with the same set

of data gives the Sharpe ratio of 0.2375 for S&P 500 and 0.1229 for NIKKEI 225. The last

column indicates the portfolio with ambiguity in mean returns only. These simulations are

consistent with the main ideas of our result, namely:

1. The mean-variance model shows a high volatility in portfolio returns.

2. The weights on the indices are inflated for the mean-variance model, and ambiguity

models are more conservative.

One important observation is that in ambiguity models, the weight on the risky asset
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(a) S&P 500 Returns (b) S&P 500 Weights

Figure 5.3: One-Stock case, S&P 500

(index in this case) could possibly be 0 for an extended period time. For the portfolio with

S&P 500 index, for example, we see that the weight on the index is 0 from Day 26 to Day

33. This tells us that if the confidence level on parameter ambiguity is above a certain

level, it is advisable not to invest in the risky asset.

5.2 Multi-Stock Case

We use a portfolio consisting of the S&P 500 and NIKKEI 225 indices, and a risk-free

asset. The two-stock case is constructed in a similar way as the one-stock case. We picked

the Japanese index since it has a somewhat smaller correlation with S&P 500 than any

other major indices in North America. A smaller correlation would make a better case

for diversification. We use T = 60 observations to construct a portfolio (or estimate the

parameters) from March 16, 2011 to May 31, 2011, a total of 50 business days. We present

the numerical results for each case for the two-asset model, outlined in Chapter 4.
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(a) NIKKEI 225 Returns (b) NIKKEI 225 Weights

Figure 5.4: One-Stock case, NIKKEI 225

5.2.1 Two-Stock Model: Mean-Variance Model

We briefly present the results of the mean-variance model for comparison to our ambiguity

models. The Sharpe ratio for the mean-variance model is 0.1342. Figure 5.5 shows the

portfolio returns and weights on the indices based on the mean-variance model. We use

these results to study how ambiguity impacts portfolio returns and rules.

5.2.2 Two-Stock Model: Unknown Variance

We first consider the model with ambiguity in mean returns and the variances. Assuming

no ambiguity in correlation, we use the sample correlation between the two indices in the

covariance matrix. As illustrated in Chapter 4, the variance of the risky asset follows the

χ2 distribution. Once we obtain the bounds on the variances, then we can use numerical

approximations to find the optimal portfolio rules. The numerical algorithm is as follows:

we divide the bounds of mean returns and variances into the finite number of sub intervals.

Suppose we have σ2 ∈ [0.3, 0.8], for instance, and we divide this interval into n = 5 evenly
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(a) Mean-variance Returns (b) Mean-variance Weights

Figure 5.5: Two-Stock Case, Mean-Variance Model

spaced sub intervals. Whether they are evenly divided or not becomes less important once

n gets bigger. If we use n = 5, then we have 6 different values for σ2, namely 0.3, 0.4,

0.5, 0.6, 0.7, and 0.8. We do the same for mean returns. Then, there are a total of 36

combinations of values for the mean return and the variance. We use these combinations

to obtain 36 different real-valued functions of ω. Then, we use the minimax solver to solve

for ω, as presented in Section 4.2.

We use αε and αδ between 0.3 and 0.8, and obtain Sharpe ratios for the portfolio with

ambiguity in mean returns and variances based on these confidence levels. Table 5.6 shows

Sharpe ratios for different levels of confidence in parameter estimates. Compared to the

Sharpe ratio of the mean-variance model which is 0.1342, we notice that the performance

of the portfolio has been greatly improved. We also note that to acknowledge less certainty

in parameter estimates leads to higher Sharpe ratios. Compared to the Sharpe ratio at

αε, αδ = 0.3 to the Sharpe ratio at αε, αδ = 0.8, it shows nearly 50% improvement. Lastly,

one important result here is that a change in αε has a greater impact on the performance

of the portfolio than αδ. In other words, we see that ambiguity in mean returns plays a

bigger role than in variances and this result is in line with the fact that mean returns are

44



αδ

0.3 0.4 0.5 0.6 0.7 0.8

αε

0.3 0.4409 0.4324 0.4288 0.4234 0.4125 0.4111

0.4 0.4223 0.4166 0.4102 0.4044 0.3979 0.3933

0.5 0.4155 0.4062 0.3942 0.3830 0.3797 0.3782

0.6 0.4029 0.3942 0.3812 0.3750 0.3691 0.3611

0.7 0.3854 0.3734 0.3648 0.3601 0.3529 0.3433

0.8 0.3701 0.3621 0.3544 0.3482 0.3410 0.3332

Table 5.6: T = 60, Sharpe ratios for two-stock portfolio with S&P 500 and NIKKEI 225,

ambiguity in mean returns and variances

generally more difficult to correctly estimate than the variances.

Figure 5.6 shows portfolio returns and weights on S&P 500 and NIKKEI 225 indices,

at αε, αδ = 0.50. We see that the ambiguity model advises substantially decreased weights

on both indices, and as a result, the portfolio returns show less volatility or shocks, which

in turn leads to higher Sharpe ratios. It is intuitive that weights on NIKKEI 225 are

substantially smaller because the sample mean return on NIKKEI 225 is negative and

smaller than that of S&P 500.

5.2.3 Two-Stock Model: Unknown Correlation

In this section, we consider another case where we assume ambiguity in the mean returns

and correlation coefficient. The algorithm is very similar to the earlier case in Chapter

5.2.2. Compared to the mean returns and variances, correlation coefficients have not been

the focus of research in portfolio theory. In this section, we consider the model with

ambiguity in mean returns and the correlation coefficient, with variances estimated by the

sample variances.

We notice that the impact of ambiguity in the correlation coefficient is not as large as

the impact of ambiguity in variances. Table 5.7 shows values for Sharpe ratios for different
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(a) A2 Returns (b) A2 Weights

Figure 5.6: Two-Stock Case, Ambiguity in mean returns and variances

values of αε and αρ. Although ambiguity in correlation certainly improves the performance

of the portfolio compared to the mean-variance model, the results indicate that the impact

might be as large.

5.2.4 Two-Stock Model: Unknown Covariance Matrix

We now consider the case of the unknown covariance matrix. The numerical algorithm for

ambiguity on the covariance matrix is explained in Chapter 4.3. In practice, estimations

error is present in both the variances and correlation coefficient, and the result for this

section would be the closest to practical situations.

The Sharpe ratio for the classical mean variance portfolio is 0.1342. In Table 5.8, αε

denotes a confidence level on mean returns, and αΣ on the covariance matrix. Table 5.8

summarizes Sharpe ratios for the portfolio with ambiguity in mean returns and covariance

matrices. We see that Sharpe ratios for the portfolio with ambiguity are much higher than

that of the classical mean-variance portfolio. It is also important to note that a change
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αρ

0.3 0.4 0.5 0.6 0.7 0.8

αε

0.3 0.4415 0.4379 0.4301 0.4233 0.4187 0.4161

0.4 0.4297 0.4221 0.4159 0.4099 0.4023 0.3989

0.5 0.4159 0.4091 0.4026 0.3973 0.3900 0.3828

0.6 0.4066 0.3929 0.3849 0.3777 0.3703 0.3649

0.7 0.3892 0.3810 0.3739 0.3661 0.3559 0.3474

0.8 0.3728 0.3644 0.3591 0.3504 0.3478 0.3421

Table 5.7: T = 60, Sharpe ratios for two-stock portfolio with S&P 500 and NIKKEI 225,

ambiguity in mean returns and correlation coefficient

in confidence level on mean returns has a bigger impact on Sharpe ratios than a change

in confidence level on the covariance matrix. As noted in one-stock case, a higher level of

confidence tends to lead to smaller Sharpe ratios. This is mainly due to a higher variance

of portfolio returns when we are less conservative.

5.3 Comparison

In the earlier sections, we presented the numerical results for different cases of ambigu-

ity portfolios consisting of S&P 500 and NIKKEI 225 indices. The sample correlation

coefficient between the two indices based on 307 observations is 0.4694. Since it is even

below 0.50, the effect of diversification could be useful. As we compare Sharpe ratios for

each case, we notice that introducing ambiguity in variances, correlation, or the covariance

matrix as a whole improves the performance of the portfolio in terms of Sharpe ratio, as

opposed to ambiguity in mean returns only. However, the impact from ambiguity in corre-

lation coefficient is not as significant as that from ambiguity in variances or the covariance

matrix as a whole. In addition, it is computationally more expensive to obtain bounds for

correlation coefficients, than to obtain bounds for the variances or covariance matrix, as

the distribution for the correlation coefficient is much more complex and not well-known.
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(a) A2 Returns (b) A2 Weights

Figure 5.7: Two-Stock Case, Ambiguity in mean returns and correlation coefficient

For each case, it is advisable to short sell NIKKEI and buy long S&P 500. This is

intuitive because the mean return on the S&P 500 index is positive, and negative on the

NIKKEI 225 index.
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αΣ

0.3 0.4 0.5 0.6 0.7 0.8

αε

0.3 0.5245 0.5172 0.5109 0.5042 0.4958 0.4892

0.4 0.4989 0.4833 0.0.4787 0.4703 0.4656 0.4609

0.5 0.4841 0.4774 0.4699 0.4620 0.4578 0.4519

0.6 0.4687 0.4615 0.4579 0.4523 0.4469 0.4401

0.7 0.4555 0.4498 0.4431 0.4381 0.4211 0.4098

0.8 0.4391 0.4269 0.4153 0.4021 0.3879 0.3725

Table 5.8: T = 60, Sharpe ratios for two-stock portfolio with S&P 500 and NIKKEI 225,

ambiguity in mean returns and covariance matrix

αε 0.3 0.4 0.5 0.6 0.7 0.8

Sharpe Ratio 0.3917 0.3822 0.3703 0.3525 0.3321 0.3264

Table 5.9: Sharpe ratios, Portfolio with ambiguity in mean returns
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Chapter 6

Conclusion

Ever since mean-variance analysis has been proposed by Harry Markowitz in 1952, the

importance of diversification has constantly been addressed. The theory is based on bal-

ancing the returns of the portfolio against the standard deviation of return, and is a great

improvement over the naive expected value criterion. The main concept of the classical

mean-variance portfolio model is that an investment is a tradeoff between risk and ex-

pected return where an asset’s return is typically assumed to be normally distributed.

Although the model has now been widely used in the industry as well as in academia,

many researchers have challenged its limitations. The key limitations are the absence of

estimation risk and the lack of the behavioral aspects of decision making. Using the no-

tion of ambiguity aversion discussed in the literature, we use statistical distributions to

incorporate this in the covariance matrix of the risky assets as well as their returns.

The basic idea of ambiguity aversion resembles that of stress testing as we are con-

sidering the minimum performance of the portfolio given specific ranges for the model

parameters. In other words, we argue that rational investors are averse to ambiguity in

parameters, and try to invest conservatively whenever such ambiguity is present. We mea-

sure the performance of the portfolio using its Sharpe ratio, and our results show that the

model with ambiguity incorporated has higher Sharpe ratios.
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The model and our analysis still leave room for improvement. We assumed that the

daily stock returns are normally distributed, and we may support this assumption using

the Central Limit Theorem, as briefly noted in Chapter 3. However, in practice, it is

not uncommon to observe a standard deviation movement larger than, say, 3, which is

exceptionally rare with the normal distribution. Therefore, it could also be useful to

consider other appropriate distributions. In addition, although we are able to obtain

closed-form solutions when we impose the no short sale restriction, we rely on simulations

and numerical methods to solve the general case. With some reasonable restrictions, we

might be able to derive closed-form solutions for the general case.
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Appendix A

Cumulative Distribution Table

ρ\ r -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

-0.9 0.534 0.979 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.8 0.031 0.530 0.902 0.986 0.998 1.000 1.000 1.000 1.000 1.000

-0.7 0.001 0.126 0.526 0.837 0.958 0.991 0.998 1.000 1.000 1.000

-0.6 0.000 0.020 0.196 0.523 0.792 0.929 0.980 0.995 0.999 1.000

-0.5 0.000 0.003 0.054 0.240 0.519 0.760 0.903 0.968 0.991 0.998

-0.4 0.000 0.000 0.012 0.085 0.267 0.515 0.738 0.884 0.957 0.987

-0.3 0.000 0.000 0.002 0.025 0.110 0.284 0.511 0.722 0.869 0.949

-0.2 0.000 0.000 0.000 0.006 0.037 0.128 0.294 0.508 0.711 0.860

-0.1 0.000 0.000 0.000 0.001 0.010 0.047 0.139 0.299 0.504 0.704

0.0 0.000 0.000 0.000 0.000 0.002 0.014 0.054 0.145 0.300 0.500

0.1 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.056 0.145 0.296

0.2 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.017 0.055 0.140

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.016 0.051

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.013

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Table A.1: CDF table for correlation coefficient, left-tail
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ρ\ r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.5 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.4 0.987 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.3 0.949 0.984 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000

-0.2 0.860 0.945 0.983 0.996 0.999 1.000 1.000 1.000 1.000 1.000

-0.1 0.704 0.855 0.944 0.983 0.997 1.000 1.000 1.000 1.000 1.000

0.0 0.500 0.700 0.855 0.946 0.986 0.998 1.000 1.000 1.000 1.000

0.1 0.296 0.496 0.701 0.861 0.953 0.990 0.999 1.000 1.000 1.000

0.2 0.140 0.289 0.492 0.706 0.872 0.963 0.994 1.000 1.000 1.000

0.3 0.051 0.131 0.278 0.489 0.716 0.890 0.975 0.998 1.000 1.000

0.4 0.013 0.043 0.116 0.262 0.485 0.733 0.915 0.988 1.000 1.000

0.5 0.002 0.009 0.032 0.097 0.240 0.481 0.760 0.946 0.997 1.000

0.6 0.000 0.001 0.005 0.020 0.071 0.208 0.477 0.804 0.980 1.000

0.7 0.000 0.000 0.000 0.002 0.009 0.042 0.163 0.474 0.874 0.999

0.8 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.098 0.470 0.969

0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.021 0.466

Table A.2: CDF Table for correlation coefficient, right-tail
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Appendix B

Matlab Codes

B.1 rcdf.m

function p = rcdf(T,rho,z)

% \rho \in [-1,1]

if z > 1 || z < -1 error(’[!Correlation is between -1 and 1!]’); end

% Probability Density Function

function p0 = rpdf(T,rho,r)

p0 = (T-2)*gamma(T-1)*(1-rho^2)^((T-1)/2)*(1-r.^2)^((T-4)/2)/ ...

(sqrt(2*pi)*gamma(T-1/2)*(1-rho.*r)^(T-3/2))* ...

hypegeometric(1/2,1/2,(2*T-1)/2,(rho*r+1)/2);

end

% Riemann Sum to approximate the CDF

dx = 1e-4; r = -1:dx:z;

for i = 1: length(r) R(i) = rpdf(T,rho,r(i)); end

p = trapz(r,R);

end
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B.2 hypergeometric.m

function F = hypergeometric(a,b,c,x,tol)

% If tolerance is not specified, use 1e-7 as default

if nargin == 4 tol = 1e-10;

elseif nargin ~= 5 error(’Wrong Number of Arguments’);

end

s0 = 0; s1 = 1; j = 1;

while abs(s1-s0) > tol

s0 = s1;

s1 = s1 + gamma(a+j)/gamma(a)*gamma(b+j)/gamma(b)* ...

gamma(c)/gamma(c+j)*x^j/factorial(j);

j = j + 1;

end

F = s1;

end

B.3 wishlow.m

function Z = wishlow(Sigma, df, alpha)

n = length(Sigma); [T D1] = wishrnd(Sigma, df);

X = chi2inv(1-alpha,n*(n+1)/2);

while (1)

Z = wishrnd(Sigma,df,D1)/df;

L = df*(log(det(Z))-log(det(Sigma))+trace(Sigma*inv(Z))-n);

L = (1-1/(6*df)*(2*n+1-2/(n+1)))*L;

if L <= X && abs(L-X) < 10e-5 break; end

end

end
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