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Abstract

A novel method of simulating edge-emitting semiconductor lasers in a non-equilibrium
steady-state is developed. The simulation is based on a non-equilibrium Green’s
function (NEGF) method. The Dyson equation (central equation of this method) is
derived and written in a basis suitable for numerical implementation. The electron-
photon self-energy is derived form scratch for the case of the edge-emitting laser.
Other interactions present in the simulation are phenomenological scattering and
scattering due to longitudinal optical phonons. This microscopic approach signifi-
cantly reduce the number of phenomenological parameters needed to simulate laser.
As an example, the theory is applied to analyze quantum well laser with the effective
mass Hamiltonian. The major laser characteristics such as modal gain, threshold
gain, carrier and current densities are determined.
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Chapter 1

Introduction

1.1 Motivation

Semiconductor lasers, also known as laser diodes, are an important part of modern
devices. Because of their small manufacture costs and miniature size they are perfect
choice for mass-produced optoelectronics. A mounted, ready for sale, laser diode has
a typical size of only few millimeters, power output ranging from milliwatts to a
couple of watts, and price somewhere between one and a few hundred dollars. Laser
diodes have literally hundreds of applications. Probably the most widely known
application of laser diodes is their use in optical drives (CD, DVD, Blue-ray) where
they are utilized for either data reading by measuring their reflection, or to data
writing by heating up organic dye layer. Other examples of applications of laser
diodes are in oral surgery, where the laser is used to cut soft tissue, or in laser
absorption spectrometry, which allows one to measure concentration of particles of
particular substances in different gaseous mixtures. However, perhaps their most
crucial application is in fiber-optic communications. Because semiconductor laser’s
signal is easily modulated by a changing voltage, it is an irreplaceable element of any
fiber-optic network, as an electrical to optical signal transmitter.

Laser diodes have been in commercial production for many years. Currently, a
variety of lasers are available with wavelengths ranging from 400 nm to over 2600
nm. The constantly changing electronics and telecommunication markets require
development of new devices and improvement of already produced lasers to be more
reliable, efficient, and cheaper in production. One of the major factors that affect the
price of a final product is the cost of research and design. Although engineers have
gathered extensive experience over the years and the fundamental physics sufficient
to describe all relevant processes is already known, the physical processes in the
nano-scale devices are so complex that until very recently it was almost impossible
to predict device’s properties before building a prototype.

First simulators provided only most basic quasi-classical calculations which were
enough for larger devices (hundreds of nanometers). Quick technological progress in
manufacturing technologies allowed to construct much smaller (a few nanometers)
and more complex devices which require more detailed, fundamental physical models.

Almost all up-to-date simulators are based on quasi-classical methods with some
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CHAPTER 1. INTRODUCTION 2

quantum corrections accounting for most crucial quantum effects. The most popular
simulation technique is the drift-diffusion method. This method is derived from the
Boltzman transport equation [1, 2] using the momentum expansion [3, 4]. It has
been successfully used to simulate variety of lasers: heterostructure lasers [5, 6, 7, 8],
quantum well lasers [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], distributed feedback lasers
[19, 20, 15], and surface emitting lasers [21, 22, 23].

Although computationally fast, these simulators have many disadvantages. Be-
cause they are not based on the microscopic theories, they require a huge number
of experimental parameters and some of those parameters are very hard to estimate
theoretically and even harder to measure experimentally. For example, Auger and ra-
diative recombination rate parameters are available only for few III-V semiconductor
materials and most of their values are 20 to 30 years old [24]. Additionally, different
sources provide values for the same substance which differ even by two orders of
magnitude.

Another very serious disadvantage of the most common laser simulators is the gain
calculation method [25, 26, 27, 28]. Because the stimulated emission is a quantum
mechanical effect, classical theory cannot be used to calculate it. Instead, the gain
is calculated by solving the equilibrium quantum well problem with quasi-Fermi
levels determined from the drift-diffusion equations. The gain calculated in this
way has a lot of shortcomings. During the gain calculation, it is assumed that the
bandedge profile is flat, while in reality it is not. When the real bandedge profile is
much different form the flat band, there is a significant shift of energy levels inside
the quantum well. Another problem is that this method forces artificial distinction
between 2-D carriers inside quantum well and 3-D carriers outside of the well. This
is very problematic when there is a large carrier concentration inside the well and the
carriers occupy states near the top of the quantum well or in the barriers. Finally,
the drift-diffusion assumes a parabolic, effective mass Hamiltonian, while the gain is
usually calculated with many-band non-parabolic k · p Hamiltonians [29, 30, 31].

A promising answer to the demand for more precise modeling of optoelectronic
devices is a quantum many-body theory tool called non-equilibrium Green’s functions
method (NEGF). The non-equilibrium Green’s functions method has been used to
successfully model resonant tunneling diodes (RTDs) [32, 33, 34, 35, 36, 37, 38],
molecular junction [39], metal-oxide-semiconductor field-effect transistors (MOS-
FETs) [40, 41, 42, 43, 44], carbon nanotubes (CNTs) [45, 46, 47, 48], photodetectors
[49, 50], light emitting diodes (LEDs) [51], and solar cells [52]. As for the lasers,
NEGF method has been applied in [53, 54, 55] to calculate some properties of the
laser, and by [56] to describe a special case of a quantum cascade laser. NEGF tech-
nique was also indirectly used in [57, 58] to obtain the quantum Boltzman equation
for the case of an edge-emitting laser.

In this method instead of wavefunctions or density matrix, one uses Green’s
functions which essentially carry less information about the system but still allow
for a calculation of statistical average value of any given operator. At the cost of a
loss of some information, one gains the possibility for perturbative inclusion of many-
body interactions such as electron-electron interaction, electron-photon interaction,
etc. Contrary to the quasi-classical approaches mentioned before, NEGF allows
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one to introduce many-body interactions directly from a microscopic theory instead
of modeling them with semi-empirical functions and parameters. Fundamentals of
this theory were developed in 1960’s [32, 59, 60, 61, 62]. At that time, the huge
computational power demanded by this method made it completely impractical.
Using current technology it is possible to implement NEGF to accurately model
semiconductor devices at small scale in equilibrium and under static non-equilibrium
conditions such as steady-state current flow.

In this thesis, NEGF technique is applied to the so called semiconductor edge
emitting lasers to calculate crucial characteristics such as material gain and voltage-
power relationship.

1.2 Outline

In Chapter 2, a general theory of semiconductor laser is presented together with a
short description of different types of semiconductor lasers, emphasizing edge emit-
ting lasers.

Chapter 3 introduces the idea of time contour and the non-equilibrium Green’s
function is defined on a time contour. The Dyson equation is formally derived using
functional derivative technique. Equations for Green’s function and self-energies
responsible for many-body interactions are obtained in very abstract, but general
form.

In Chapter 4 the Dyson equation is written in discrete basis suitable for numer-
ical implementation and formulas connecting Green’s functions to crucial physical
observables are derived. Final equations are provided for all relevant self-energies.

Chapter 5 contains description of the numerical implementation. The general
structure of the code is presented in form of a flow diagram. A method of creating
accurate numerical meshes for position, energy, and wavevector is discussed as well
as convergence criteria and range of various numerical parameters.

In the final chapter, the code is used to simulate a sample single-well Al0.2Ga0.8As/GaAs
semiconductor laser. Calculations are performed for two different cases: system with-
out phonons and system with phonons. The chapter ends with conclusions concerning
accuracy and applicability of the simulator described in this work and plans for the
future development.

Throughout this thesis it is assumed that the reader is familiar with fundamental
concepts of non-relativistic quantum mechanics [63] and solid state physics [1].



Chapter 2

Laser diodes

This chapter presents the basic principles of laser action. It provides a short intro-
duction to the theory of semiconductor laser diodes based on p− i− n junction and
describes most important laser types.

The first section contains a brief description of semiconductors and explains why
they are suitable for laser manufacturing. It describes major features of an Fabry-
Perot edge-emitting laser design such as formation of a p−i−n junction, waveguiding
effect, and mirror facets. The light generation process due to stimulated emission
is explained and the idea of material gain is introduced. The section ends with a
simple derivation of lasing conditions (for both phase and amplitude of the wave)
and a brief discussion of emission characteristics below and above threshold.

The second section explains motivation behind construction of more complex
lasers than the simple Fabry-Perot edge-emitting laser introduced in the first section.
The general structure of few lasers using Bragg reflectors is shown.

The third section of this chapter provides a short overview of the currently used
simulators.

2.1 Principles of semiconductor lasers

2.1.1 Semiconductors

Semiconductors are a subcategory of insulators – in the absolute zero temperature
they do not conduct electrical current because all bands are either completely filled or
completely empty [1]. The major criteria which is used to distinguish semiconductors
from all other insulators is a small bandgap – forbidden energy between top of the
highest filled band (valence band) and bottom of the lowest empty band (conduction
band). The commonly accepted bandgap value below which the insulator is called
semiconductor is 4 eV. Because of the bandgap, when the electrons move between
bands they either emit photon (when moving from the conduction to the valence
band) or absorb photon (when jumping from the valence to the conduction band).
Because the bandgap is small, the emitted or absorbed photons are usually in the
visible spectrum which makes semiconductors perfect for application as lasers and
photodetectors.
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Another crucial property of semiconductors is the possibility of changing the
number and type of conduction carriers (electrons and holes) by introducing partic-
ular impurities (doping) to the crystal [1, 30, 64]. These doped semiconductors are
generally known as extrinsic while undoped are called intrinsic. There are two kinds
of dopants: donors and acceptors. The donor dopants release additional electrons to
the conduction band, while the acceptor dopants absorb electrons from the valence
band, which effectively creates holes in the valence band.

Introduction of the doping allows one to increase the number of carriers and
significantly improve conductivity if there is not enough thermally excited carriers.
Because the activation energies of the dopants are located very close to the bandeges,
the dopants release a significant number of additional electrons or holes even in low
and moderate temperatures (such as the room temperature). Additionally, manip-
ulation with doping allows for creation of materials where electrons are dominant
conduction carriers (n-type) and materials where holes are predominant carrier type
(p-materials). Those two properties – small bandgap and a possibility to manipulate
with type and quantity of current carriers, allow to build an extraordinary number of
electronic and optoelectronic devices such as p− n diodes, transistors, laser diodes,
light emitting diodes, and optical amplifiers.

2.1.2 Laser structure overview

There are four major mechanisms in which carriers may move between the conduc-
tion and valence bands. These mechanisms are: spontaneous emission, stimulated
emission, absorption, and non-radiative transitions form which the most dominant
are defect and impurity recombination (Shockley-Read-Hall) [65, 66], and Auger
[67, 68, 69] recombination. A laser utilizes stimulated emission effect: photon in-
teracts with electron-hole pair forcing its recombination and generation of another,
identical photon. The process repeats itself and the photon number grows expo-
nentially. However for lasing action to occur, a number of conditions have to be
satisfied.

It is necessary that a semiconductor material in which the electron-hole pairs are
located has a direct bandgap: the bottom of the conduction band has to be at the
same point of the first Brillouin zone as the top of the valence band. The majority
of electrons and holes are located close to minimums of the valence and conduction
bands in momentum space. Because in all recombination processes momentum has to
be conserved, photon’s momentum must be equal to the difference between electron’s
and hole’s momentum. When the conduction band and the valence band are located
in different points of the first Brillouin zone, the momentum difference between
them is much larger than photon’s momentum from the visible spectrum and the
emission/absorption cannot occur.

The electron-hole pairs have to be localized in the same region of the real space
(inversion of states) and because every photon created by stimulated emission causes
electron-hole pair to recombine, there has to be a mechanism to sustain inversion
of states. Modern laser didoes are in general p − n junctions with a quantum well
structure sandwiched in between p-doped and n-doped materials. The quantum well
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Figure 2.1: A bandedge diagram of a forward biased p− n junction with a quantum
well. At p-side, due to acceptor dopants, the quasi-Fermi level Fp is close to valence
band edge and carriers are predominantly holes. Similarly, at n-side, Fn is close to the
conduction band edge and the conduction is dominated by the electrons. Quantum
well traps both types of carriers in a small space allowing for recombination to occur.

consists of a very thin (5-10 nanometers) active layer placed in between two barriers
which are made of material with a higher bandgap value than the active layer. This
structure ensures that when a p− n junction is connected to an external bias, holes
flowing from the p-side and electrons form the n-side are both trapped in the central
active layer creating inversion of states and a constant current flow sustains inversion
of states regardless of the ongoing stimulated emission. Figure 2.1 shows bandedge
(energy at k = 0) diagram of p− n junction with quantum well.

Part of electromagnetic wave has to be reflected back into the device to assure
sufficient number of photons to support the stimulated emission. Along the wave
propagation direction, the laser diode has a mirror on each end, which usually reflects
around 30% of light back into the laser body. To prevent power propagation in two
other dimensions, the light is kept inside the device (p − n junction plus quantum
well) by the waveguiding effect. The device is embedded in the material with lower
refractive index which confines light inside the structure.

There are two main types of lasers: lasers in which light emission is perpendicular
to the crystal growth direction – edge-emitting lasers, and lasers in which emission
direction is the same as crystal growth direction – vertical-cavity surface-emitting
lasers (VCSEL). This work focuses on edge-emitting lasers, the scheme of such a
laser is presented in Fig. 2.2.

2.1.3 Fundamentals of laser action

In general, physics of the laser diode is very complex. In this section only the most
basic effects are described without any derivations. Also, only steady-state condition
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Figure 2.2: A simple scheme of edge-emitting semiconductor laser. From the top to
bottom the layers are: n-side electrode, n-type material, barrier, active layer, barrier,
p-type material, p-side electrode. Light is emitted in the direction perpendicular to
the direction of crystal growth (z).

is considered, as it greatly simplifies the discussion of the laser action.
There are two major light generation mechanisms: spontaneous and stimulated

emission [70, 64]. In laser diodes, the dominating mechanism is the stimulated emis-
sion. Because there are a lot of photons present in an active laser, one can use the
classical Maxwell equations to describe the optical part of the laser action. Photons
from stimulated emission have the same polarization and direction as the photons
which caused the emission, and thus the stimulated emission can be seen as a neg-
ative absorption. In optoelectronics, a popular way to describe it is via so called
material gain, which is defined as

g (ω, r) = −2
ω

c
Im (n (ω, r)) , (2.1)

where n is refraction index.
On the other hand, the spontaneously emitted photons have random polarization

and direction, and can be described classically only as a random noise added to the
equations. Although in lasers the overall strength of the spontaneous emission is very
small in comparison to the stimulated emission, the spontaneous emission noise has
to be included in the Maxwell equations to obtain any non-trivial solution [71, 72].

In general, the material gain and absorption are position and frequency depen-
dent. A typical material gain spectrum is shown in Fig. 2.3. It has a characteristic
shape with maximum value called gain peak. Figure 2.3a shows the case in which
only first levels (one in the valence band and one in the conduction band) inside the
quantum well are occupied. Figure 2.3b shows situation when both first and second
levels are populated.

Because the refractive index has an imaginary part, the electromagnetic wave
propagating inside the device will experience exponential growth. This growth can
be very non-trivial but can be calculated by solving the Maxwell equations for a
particular laser geometry. A detailed discussion of this problem is provided in next
chapters. Here, only a simplified version of edge-emitting laser is discussed.
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Figure 2.3: Typical material gain spectrum. (a) Spectrum of gain in quantum well,
with first levels populated. (b) Spectrum with first and second levels populated.

The edge-emitting laser under consideration is presented in Fig. 2.2. It is assumed
that in the propagation direction (x), it can be treated as the Fabry-Perot resonator
[73, 27] which consists of a uniform cavity and two mirrors at each end of the cavity.
This approximation can be used only for edge-emitting lasers as they are usually
close to uniform in the light emission direction while VCSELs are highly nonuniform
in the emission direction. In this case, a wave propagating throughout the cavity
experiences constant exponential growth egnetx, where

gnet = gmod − α. (2.2)

In the above formula, α stands for total absorption, and a modal gain gmod is the
modal gain (gain of power of electromagnetic wave during propagation in the laser
cavity). Even in this simplified picture gmod 6= g because g is present only in the
active layer (quantum well) and only a fraction of the wave is propagating in that
region. To obtain gmod, the material gain is multiplied by the confinement factor Γ
which is roughly equal to ratio of power of the wave propagating in the active region
to total power propagating inside the cavity

gmod = Γg. (2.3)

The absorption coefficient α is usually assumed to be the same everywhere in the
cavity and that is why it does not have to be multiplied by the confinement factor.
A simple scheme of the Fabry-Perot resonator laser is shown in Fig. 2.4.

From Fig. 2.4 two resonance conditions can be deducted: one for a phase and
one for an amplitude of the wave. The phase condition is easy to derive since it is
obvious that for the resonance, wave inside the device has to be a standing wave
satisfying

λ =
2L

m
, (2.4)

where L is a length of the resonator, λ is a wavelength of the wave inside the cavity,
and m is a natural number. Different wavelengths satisfying condition (2.4) are called
lasing modes. An amplitude condition states that the total gain gnet experienced
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Figure 2.4: Illustration of resonance in Fabry-Perot cavity. Wave propagating inside
the cavity experiences exponential growth. At two mirrors with reflectivities R1 and
R2 part of the wave is reflected back into the device.

by the wave has to be equal to losses caused by reflection at the mirrors. This
condition can be obtained using the following arguments: assume that a wave starts
propagating at x = 0 to the right with a unit amplitude. When it reaches x = L it has
an amplitude of egnetL, and after the reflection is has an amplitude of R2e

gnetL. Then,
after going back and reflecting again at x = 0 it has an amplitude of R1R2e

2gnetL.
For the stimulated emission to be sustained, the wave after making such round trip
has to have exactly the same amplitude as it had at the beginning, this means that
R1R2e

2gnetL = 1. Thus, the second resonance condition is

gnet = αmirror =
1

2L
ln

1

R1R2

. (2.5)

In general, both types of emission depend on the averaged number of carriers
(inversion of population) inside the active region. Carriers can be added by increasing
the forward bias across the device and thus increasing the injection current. For low
currents, the condition (2.5) is not satisfied, and the spontaneous emission is the
dominant process. When the injection current increases, more carriers are inside the
active region and the spontaneous emission rate slowly increases. When the current
(and thus carrier density) reaches a so-called threshold value (Ith) where the total
gain is equal to losses through the mirrors, the stimulated emission becomes the
dominating process. In steady-state, the total gain clearly cannot be bigger than
losses as the energy of the electromagnetic wave propagating inside the device would
be infinite. When the injection current becomes larger than its threshold value, the
carrier density, and thus the gain stay at their threshold values. This happens because
when the injection current raises above the threshold, the stimulated emission rate
rises accordingly and keeps the carrier density at the threshold level. That is why
above the threshold, when the injection current rises, the spontaneous emission rate
stays constant (it is proportional to the carrier density) but the stimulated emission
rate increases. In a more general non-steady-state, the carrier density and gain can
temporarily reach values above the threshold, but similarly to the steady-state case,
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Figure 2.5: Semiconductor laser’s behavior below and above the threshold. (a) Power
emitted as a function of current intensity. (b) Averaged carrier density inside the
active region as a function of current intensity.

Figure 2.6: Power spectrum of laser diode. (a) Below threshold level. (b) Above
threshold level.

those are quickly reduced because the stimulated emission rate also rises and hence
decreases the number of carriers.

Figure 2.6 shows a power spectrum of the laser diode below and above the thresh-
old. One can see that below the threshold, when a spontaneous emission dominates,
the power spectrum is quite broad and although visible, the phase condition (2.4)
is not strictly satisfied. Above the threshold, the phase condition becomes very vis-
ible and the power spectrum consists of stripes satisfying condition (2.4). Another
interesting fact about the power spectrum above the threshold, is that one stripe
at an energy point corresponding to gain peak becomes dominating. This happens
because, above the threshold, when the second resonance condition (2.5) is satisfied
for one frequency, the stimulated emission suppresses gain at other frequencies to
satisfy Eq. (2.5), and in the end, the laser emits light at a single frequency only.
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Figure 2.7: Schematics of a DBR laser (left) and DFB laser (right).

2.2 Other types of laser diodes

One of the biggest shortcomings of a Fabry-Perot laser is that there are many modes
present. Although in the steady state, majority of the laser’s emission is in a one
dominating mode, lasers almost never operate in a steady-state. When a laser is mod-
ulated, the mode-hopping occurs: wavelength of emitted light jumps between some
number of modes. This is generally an undesired effect and thus some mechanism of
locking the laser at one mode is necessary. Two major types of lasers that provide
better mode selectivity are: distributed Bragg reflector lasers (DBR) [74, 75, 73] and
distributed feedback lasers (DFB) [76, 20, 77], both shown in Fig. 2.7.

DBR lasers are in principle very similar to standard Fabry-Perot lasers. The
main difference is that there are Bragg mirrors outside of the cavity. Bragg mirrors
are passive waveguides which are periodically corrugated along the propagation di-
rection. Because of the corrugation, the refractive index of the mirror also becomes
a periodic function in the propagation direction. Usually they are made by etching
the surface of the waveguide and then refilling it with a material with slightly dif-
ferent refractive index. The corrugation has a λ/ (2neff) period, where λ is intended
emission wavelength (in vacuum) and neff is the effective refractive index. Bragg
mirrors have high reflectivity of electromagnetic waves with the λ wavelength and
a very small reflectivity of other wavelengths. This effect takes place because the
wave is reflected many times at each interface, and because of the periodic design
of the reflector they all have the same phase and thus add to form large reflected
wave. This does not occur if the wavelength is much different than the intended
emission wavelength, since reflected waves have different phases and therefore the
total reflection is much smaller.

In a DFB laser the periodic corrugation is fabricated in the laser cavity itself.
Both the passive and active part of the laser can be corrugated. The general prin-
ciple of mode selection is identical as in DBR laser but DFB lasers are easier to
manufacture and have smaller losses. However, the advantage of a DBR over DFB
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Figure 2.8: Schematic of a VCSEL laser.

laser is that in a DBR laser the reflectivity of the mirrors and thus lasing wavelength
can be tuned. It is done by attaching an additional electrode to the mirror and
utilizing the electro-optic effect, which allows one to modify the refractive index of
the mirror with current from the additional electrode.

Distributed Bragg mirrors are also used in vertical cavity surface-emitting lasers
(VCSELs) [21, 78, 24]. VCSEL is a laser in which emission of light occurs in the
same direction as the crystal growth direction. It consists of two Bragg mirrors
which are created by growing alternately high and low refractive index layers, each
one λ/ (4neff) thick. The cavity itself is very small and modal gain is typically two
orders of magnitude smaller than gain in edge-emitting laser. Laser emission is
possible due to Bragg mirrors, which have to have total reflectivity of over 99.9%.
Because of their short cavity they operate in a single mode only. A very important
feature of VCSELs is that they can be produced in arrays on a single wafer [77] since
no cleaving is necessary during the growth process. This significantly reduces the
production costs and makes VCSELs increasingly popular.

2.3 Overview of the semiconductor laser simula-

tors

2.3.1 Basic components

In general there is no one universal technique to simulate all aspects of semiconductor
lasers. Majority of up-to-date simulators consists of three major parts: optical,
electrical, and gain model.

Because the number of photons present during laser action is significant, the
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optical part can be treated classically [64, 70]. Taking as an input parameters the
geometry of the system and material gain due to stimulated emission, one can cal-
culate field profile which can be later used to calculate photon density. There are
many different methods of solving Maxwell equations for lasing system. The most
popular are finite difference time-domain (FDTD) method [72], eigenmode expan-
sion using eigenmodes that satisfy round-trip condition [20, 72], and electromagnetic
Green’s functions [71, 79]. The choice of the best method depends strongly on a
type of the device which is simulated, and a simulation type (steady-state or signal
analysis). For example, FTDT is very good when dealing with large signals but for
small signals and steady-state, eigenmode expansion is much faster. On the other
hand the Green’s function method allows for a very realistic treatment of noise due
to spontaneous emission.

As mentioned before, the most common approach to the electrical transport in
the laser is the drift-diffusion method. The major advantage of this method is that
it is very fast and robust. It has been in use for over three decades and it is very
successful in simulating relatively large electric devices. Up-to-date drift-diffusion
simulators allow for 2-D and 3D calculations with non-zero temperature gradient.
The drift-diffusion model is capable of calculating carrier and current densities in
the device. However, due to its quasi-classical and phenomenological nature it is
very inaccurate when quantum effects have significant influence on the performance
of the device.

The material gain is the most important characteristic of a laser. Because gain
is purely quantum mechanical effect, one has to use a microscopic to model it
[26, 70, 28, 24, 64, 72]. To calculate gain, the Schrödinger equation is solved using
a single-particle Hamiltonian. Solution of the Schrödinger equation gives eigenfunc-
tions and eigenvalues of the confined states inside the quantum well. Eigenfunctions
and eigenvalues of the confined states allow to obtain gain by using Fermi golden
rule. However, because the gain is so crucial in laser simulations, calculating it us-
ing only single-particle Hamiltonian is very inaccurate and many-body interactions
have to be included. Modern simulators include variety of many-body corrections
to the material gain. Some of them are: Hartree-Fock term, direct collision term,
and electron-phonon interaction. Although these corrections increase precision of the
gain model, many of them relay heavily on a number of assumptions and material
parameters, and have extremely complicated analytical form.

2.3.2 Selected list of currently developed commercial simu-
lators

PICS3D by Crosslight Software [28, 79] is one of the most sophisticated and compre-
hensive laser simulator available on the market. It allows to simulate very large range
of lasers including DFB, DBR, VCSELs, and Fabry-Perot lasers. Optical equations
are solved using 2-D scalar approximation of Helmholtz equation and electromag-
netic Green’s function method. Electrical transport is modeled using quasi 3D or
full 3D drift-diffusion method with quantum corrections in the active region. The
simulator has also state of the art gain model which uses non-parabolic Hamiltonian
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and can take into account variety of many-body interactions.
Silvaco [80] provides laser simulator as an extension of its flag ship device simu-

lation framework ATLAS. It allows to analyze VCSELs and Fabry-Perot lasers. The
software provides a parabolic gain model where gain broadening is taken into account
using purely phenomenological parameters and not many-body theory. Similarly as
in all other commercial models carrier transport is simulated using drift-diffusion
method.

DESSIS-Laser by Integrated System Engineering [81] is an extension of DESSIS
device simulator. DESSIS-Laser is able so simulate Fabry-Perot lasers as well as
VCSELs. It allows for non-parabolic gain model but, similarly as in the case of
ATLAS, gain broadening is purely phenomenological.

LaserMOD by RSoft Design Group [82] is another advanced laser simulator. It
can be used to simulate all major types of lasers. It allows for 1-D, 2-D, and quasi
3-D simulations. Gain is calculated using 8×8 Hamiltonian. Modification of gain due
to many-body interactions can be taken into account by uploading gain databases
from Nonlinear Control Strategies [83] which uses sophisticated quantum many-body
theory to calculate gain, refractive index, and photo-luminescence spectra for semi-
conductor quantum wells.

HAROLD simulator made by Photon Design [84], allows for 1-D and 2-D simu-
lation of a Fabry-Perot semiconductor laser. The gain is calculated using parabolic
approximation and takes into account carrier-induced bandgap narrowing effect.



Chapter 3

Non-equilibrium Green’s functions
(NEGF)

Because the exact calculations in a realistic system with many particles are virtually
impossible, one has to resort to perturbative methods. The non-equilibrium Green’s
function method allows one to deal with both a non-equilibrium system and to de-
velop a perturbative series to account for many-body interactions. As usual, easier
calculations are possible at a cost of some information loss. The Green’s function of
a given system allows only to calculate the average values of quantum mechanical
operators, while the non-perturbative approach with a density matrix, allows one to
get all the information about the system.

The first section of this chapter introduces the Heisenberg and interaction pictures
of quantum mechanics and shows the motivation behind a time contour. In the
second section, the contour-time Green’s function is defined. Major properties of
contour-time Green’s function are shown and a mechanism of conversion of contour-
time functions to real-time functions is provided.

The third section describes derivation of the Dyson equation which is the central
equation of the theory. Functional derivative technique is used to obtain expressions
for self-energies responsible for electron-electron and electron-photon interactions. At
the end of this section, a method of including most significant effects of ion lattice
and phonons is provided.

In general, this chapter provides only purely abstract formulation of the Dyson
equation and the many-body interactions present in it. The only assumptions about
the system are limited to form the Hamiltonian and the initial conditions. In this
general form, the Dyson equation can describe variety of systems such as: lasers,
LEDs, solar cells, RTDs, etc. Especially, the terms containing many-body interac-
tions – self-energies, are formulated in terms of abstract equations not yet suitable for
numerical implementation. However, in the next chapter those equations will serve
as a framework during formulation of much more practical systems of equations for
a laser.

15
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3.1 Preliminaries

To define Green’s function for a many-body system, it is necessary to use the Heisen-
berg picture of quantum mechanics. It holds true even for time-independent systems
in equilibrium [85, 86]. The Heisenberg picture is briefly described at the beginning
of this section. More details about various pictures of quantum mechanics can be
found in Appendix A.

When applying the Green’s function technique to a non-equilibrium system it is
very convenient to introduce the so-called time contour. Introduction of the time
contour significantly simplifies derivation of the Dyson equation. The idea of time
contour is presented in the second part of this section in an example of a statistical
average of the particle density operator in a time-dependent system.

3.1.1 Heisenberg and interaction pictures

Systems in non-equilibrium are generally time-dependent. The Hamiltonian of a
given time-dependent system can be separated into static and time-dependent parts.
Furthermore, one can assume that a time-dependent perturbation is turned on at
some time t0, and the total Hamiltonian can be written as

Ĥ (t) =

{
Ĥ0 for t < t0

Ĥ0 + Ĥint (t) for t ≥ t0
. (3.1)

The boundary conditions placed on the equation of motion described by this Hamil-
tonian are also static until t0 and time-dependent after t0.

The Heisenberg picture of quantum mechanics is particularly convenient when
working with time-dependent problems. In time-dependent problems the Hamilto-
nian has explicit time dependence in the Schrödinger picture and the wavefunction
can not be separated into a product of position dependent function and phase factor
containing time. In the Heisenberg formulation of quantum mechanics all time de-
pendency is shifted into operators and hence the wavefunctions are independent of
time.

To formally derive the Dyson equation it is necessary to formulate operators in the
Heisenberg picture and then express the time-dependent operators in the interaction
picture, which is yet another formulation of quantum mechanics. The interaction
picture can be viewed as an intermediate formulation between the Schrödinger and
the Heisenberg pictures, where only some of the time dependence is moved to oper-
ators. A detailed description of the Heisenberg and interaction pictures and relation
between them is presented in Appendix A. Although operators in the interaction
picture will not explicitly show up in any of the final equations, this is a necessary
step in the derivation of the Dyson equation.

In this section, the following convention is used to distinguish between pictures:
“I” subscript indicates the interaction picture, “H” subscript indicates the Heisenberg
picture, no subscript means the Schrödinger picture. This convection applies to both
operators and vector states.



CHAPTER 3. NON-EQUILIBRIUM GREEN’S FUNCTIONS (NEGF) 17

Vector states and operators (which can have explicit time dependency even in the
Schrödinger picture) in the interaction picture are described by the unitary transfor-
mation from the Schrödinger picture

|ΨI (t)〉 = e
i
~ Ĥ0(t−t0) |Ψ (t)〉 , (3.2)

ÔI (t) = e
i
~ Ĥ0(t−t0)Ô (t) e−

i
~ Ĥ0(t−t0). (3.3)

In the Heisenberg picture, the states and operators can be expressed by states and
operators in the interaction picture using evolution operators Ŝ and Ŝ†

|ΨH〉 = Ŝ−1 (t, t0) |ΨI (t)〉 , (3.4)

ÔH (t) = Ŝ† (t, t0) ÔI (t) Ŝ (t, t0) . (3.5)

Operators Ŝ and Ŝ† are defined as

Ŝ (t, t0) = T+

[
exp

(
− i
~

ˆ t

t0

dt′Ĥint,I (t′)

)]
, (3.6)

Ŝ† (t, t0) = T−

[
exp

(
− i
~

ˆ t0

t

dt′Ĥint,I (t′)

)]
, (3.7)

where T+ (T−) is time (anti-time) ordering operator which orders time dependent
operators chronologically (anti-chronologically), from left to right with decreasing
(increasing) time arguments – higher (lower) times are placed to the left. Operators
Ŝ and Ŝ† have the following properties

Ŝ† (t1, t2) = Ŝ−1 (t1, t2) , (3.8)

Ŝ (t, t) = 1̂, (3.9)

Ŝ−1 (t1, t2) = Ŝ (t2, t1) , (3.10)

Ŝ (t1, t2) = Ŝ (t1, t3) Ŝ (t3, t2) . (3.11)

From Eqs. (3.2) and (3.4) one can see that at t = t0 all three pictures coincide and
|ΨH〉 = |ΨI (t0)〉 = |Ψ (t0)〉.

As described in Appendix A, when the order of two Hamiltonians Ĥint,I (t1) and

Ĥint,I (t2) is changed by T+ or T− the whole expression retains its sign i.e., Hamil-
tonians with different time arguments commute under time and anti-time ordering
operator. However, in many-particle systems all physical Hamiltonians consist of
even number of creation and annihilation operators, and one has to additionally
specify their behavior under operation of time and anti-time ordering. According
to [85], creation and annihilation operators under the time and anti-time ordering
operator commute for bosons and anti-commute for fermions. For example, a time
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Figure 3.1: Time contour.

and anti-time ordering of a pair of operators Â (t1) and B̂ (t2) which can be any
combination of creation and annihilation operators is

T+

[
Â (t1) B̂ (t2)

]
= θ (t1 − t2) Â (t1) B̂ (t2)∓ θ (t2 − t1) B̂ (t2) Â (t1) , (3.12)

T−

[
Â (t1) B̂ (t2)

]
= θ (t2 − t1) Â (t1) B̂ (t2)∓ θ (t1 − t2) B̂ (t2) Â (t1) , (3.13)

where upper (−) sign refers to fermions and lower (+) to bosons. It is also assumed
that creation/annihilation operators for different kinds of particles always commute.
For example, operators commute where one is a boson and one a fermion, or even
when both are fermions of a different kind.

3.1.2 Time contour

The time contour, for the first time introduced in [62] is a tool which significantly sim-
plifies the derivation of the Dyson equation. However, it is not absolutely necessary,
and all equations can be derived using only regular time axis and time and anti-time
ordering operators, although that would be a very difficult task. In this subsection,
the motivation behind time contour is shown using an example of a particle density
operator.

One can consider a statistical average of a particle density operator n̂p = Ψ̂†Ψ̂
(spin and spatial dependency is suspended for brevity). The density of particles
is named np to avoid confusion with quasiparticle electron density, which will be
denoted as n. The statistical average np (t) can be initially written in the Schrödinger
picture and then converted to the Heisenberg and interaction pictures

np (t) =
〈

Ψ̂† (t) Ψ̂ (t)
〉

=
〈

Ψ̂†H (t) Ψ̂H (t)
〉

0

=
〈
Ŝ (t0, t) Ψ̂†I (t) Ψ̂I (t) Ŝ (t, t0)

〉
0
, (3.14)

where the subscript 0 next to the bracket 〈〉 indicates that the statistical average is
calculated by taking trace of a density matrix expressed in a basis of states written
in the Heisenberg picture. Construction of a statistical average in the Heisenberg
representation is discussed in Appendix A.

To write Eq. (3.14) in a more compact form, one can define time contour which
goes from t0 to some arbitrary tm > t (in practice, the limit tm → +∞ is taken) and
then back to t0. This contour is presented in Fig. 3.1. It is said that such contour
consists of two branches: upper b = +1 which goes from t0 to tm, and lower b = −1,
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which goes back from tm back to t0. One can also introduce the contour-time ordering
operator Tc which works like T+ but it orders operators along time contour. Clearly,
whenever operator Tc orders functions of times which are on the upper branch it
behaves like T+, when all times are on the lower branch it behaves like T−. Because
operators Ŝ (t1, t2), where t2 > t1 depend on T+, in the contour formalism they are
located on the upper branch. On the other hand operators Ŝ† (t1, t2) = Ŝ (t2, t1),
where t2 > t1 depend on T− and in the contour formalism they are located on the
lower branch.

The average value of the particle density operator can be written as

np (t) =
〈
Ŝ (t0, t) Ψ̂†I (t) Ψ̂I (t) Ŝ (t, tm) Ŝ (tm, t) Ŝ (t, t0)

〉
0

=
〈
T+

[
Ŝ (t0, tm) Ψ̂†I (t+ δt) Ψ̂I (t)

]
Ŝ (tm, t0)

〉
0

=
〈
Tc

[
Ŝ (t0, tm) Ŝ† (t0, tm) Ψ̂†I (t+ δt, b = +1) Ψ̂I (t, b = +1)

]〉
0
, (3.15)

where tm > t is arbitrary, t in the annihilation operator was replaced by t + δt to
preserve correct order under T+, and b = +1 was added to both the annihilation and
creation operator to indicate that their times are located on the upper branch. The
product Ŝ (t0, tm) Ŝ† (t0, tm) is usually written as a contour evolution operator

Ŝc (t0, tm) = Ŝ (t0, tm) Ŝ† (t0, tm) . (3.16)

In the calculations of the particle density operator it was assumed that both
annihilation and creation operators are located on the upper branch – this is not a
unique choice. Using exactly the same procedure it can be shown that

np (t) =
〈
Tc

[
ŜcΨ̂

†
I (t− δt, b = −1) Ψ̂I (t, b = −1)

]〉
0
. (3.17)

To obtain more a compact expression, one can define the contour-time

t = {t, b} , (3.18)

and hence contour integral

ˆ
dt =

ˆ tm

t0

dt+1 +

ˆ t0

tm

dt−1 =
∑

b∈{+1,−1}

b

ˆ tm

t0

dtb. (3.19)

Now, the contour evolution operator can be expressed as

Ŝc (t0, tm) = Tc

[
exp

(
− i
~

ˆ
dt′Ĥint,I (t′)

)]
, (3.20)

where Ĥint,I (t′, b = +1) = Ĥint,I (t′, b = −1) = Ĥint,I (t′), and therefore the statistical
average of the particle density operator is

np (t) =
〈
Tc

[
ŜcΨ̂

†
I

(
t+
)

Ψ̂I (t)
]〉

0
. (3.21)
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The “+” superscript next to contour-time indicates that t+ is infinitesimally larger on
contour than t . A Similar procedure can be applied to any single-particle operator.

In conclusion, introduction of contour time allows one to replace operators in the
Heisenberg picture with contour-time ordered operators in the interaction picture.
This replacement will be crucial in the derivation of the Dyson equation for non-
equilibrium Green’s function.

3.2 Definition of the NEGF

From this point on, the Schrödinger picture is not going to be used any more, and
most of the operators will be written in the Heisenberg picture. Because of that,
and to simplify notation, the subscript “H” next to the operators in the Heisenberg
picture is dropped, as well as the subscript 0 next to the statistical average brackets
〈〉.

To make the notation more compact, the following convention is used

k = {rk, σk, tk} ,
k = {rk, σk, tk} = {rk, σk, tk, bk} , (3.22)

where contour-time is indicated as tk and consists of two variables: real-time value tk
and branch index (+1 or −1), rk is position vector, and σk is a spin index. Integrals
over k and k are defined as

ˆ
dk =

∑
σk

ˆ
d3rk

ˆ
dtk,

ˆ
dk =

∑
σk

ˆ
d3rk

ˆ
dtk =

∑
σk

∑
b

b

ˆ
d3rk

ˆ
dtb. (3.23)

For example, using the above notation any function F (r1, σ1, t1) can be written
simply as F (1) and ∑

σ1

ˆ
d3r1

ˆ
dt1F (r1, σ1, t1) =

ˆ
d1F (1) . (3.24)

The contour Green’s function is defined as [62, 60, 87]

G (1, 2) =
1

i~

〈
Tc

[
Ψ̂ (1) Ψ̂† (2)

]〉
, (3.25)

where the contour extents beyond the largest of two time arguments t1 and t2.
Green’s function can be converted to the interaction picture by using the same tech-
nique as in the previous section for a particle density operator

G (1, 2) =
1

i~

〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
. (3.26)
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Of course, to perform any meaningful calculations, contour Green’s function has
to be converted to a real-time function. By fixing branch indices b1 and b2, four
different real-time Green’s functions are obtained: lesser (G¡), greater (G>), time
ordered (Gt), and anti-time ordered (Gt̄)

G (1, 2) =



G< (1, 2) = − 1
i~

〈
Ψ̂† (2) Ψ̂ (1)

〉
, b1 = +1, b2 = −1

G> (1, 2) = 1
i~

〈
Ψ̂ (1) Ψ̂† (2)

〉
, b1 = −1, b2 = +1

Gt (1, 2) = 1
i~

〈
T+

[
Ψ̂ (1) Ψ̂† (2)

]〉
, b1 = +1, b2 = +1

Gt (1, 2) = 1
i~

〈
T−

[
Ψ̂ (1) Ψ̂† (2)

]〉
, b1 = −1, b2 = −1

. (3.27)

Properties of the components of contour Green’s function defined by Eq. (3.27),
and contour-time functions in general, are shown in Appendix B. It is easy to see
that the Green’s function from Eq. (3.27) has a general form described by Eq. (B.3)
with A2 = 0 (no singular term).

In general, the contour-time formulation is only a means to derive the Dyson
equation. After the derivation is completed, final equations are converted to real-
time functions and then solved.

Although functions Gt and Gt̄ are easy to get from the contour Green’s function
(3.25), for reasons explained in Appendix B, they are not very convenient when
solving the Dyson equation. Instead of using Gt and Gt̄, one can introduce advanced
(GA) and retarded (GR) Green’s functions

GR (1, 2) = Gt (1, 2)−G< (1, 2) , (3.28)

GA (1, 2) = G< (1, 2)−Gt̄ (1, 2) . (3.29)

Because retarded and advanced functions are nothing more than linear combinations
of Gt, Gt̄ , and G<, the set (G<, G>, GA, GR) has the same information about the
system as (G<, G>, Gt, Gt̄).

Using Eqs. (B.9) and (B.10) from Appendix B, one can find that the advanced
and retarded Green’s functions have the following properties

GR (1, 2) = θ (t1 − t2) [G> (1, 2)−G< (1, 2)] , (3.30)

GA (1, 2) = −θ (t2 − t1) [G> (1, 2)−G< (1, 2)] . (3.31)

3.3 The Dyson equation

The derivation of the Dyson equation consists of three major steps. The first step
is to determine the exact form of Hamiltonian of the system. The second step is to
take a time derivative from Eq. (3.25) and evaluate it using the equation of motion
for an operator in the Heisenberg picture given in Appendix A. The third step is to
apply a functional derivative technique [88, 60, 89, 90] to simplify the equation of
motion obtained in step two.
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3.3.1 Hamiltonian of the system

The Hamiltonian of a laser diode should include all of the most important interactions
affecting the laser action. These are: electron-photon interaction for a radiative
recombination, electron-electron interaction for Auger recombination and broadening
of levels inside the quantum well, electron-impurity interaction for Shockley-Read-
Hall recombination, and of course phonons which significantly affect all the mentioned
above effects. Because of both conceptual complications and numerical constrains,
in this work, Shockley-Read-Hall and Auger recombinations are neglected.

In the derivations in this section, the Hamiltonian is limited to only electrons and
photons. Electron-phonon interaction is not included, as the addition of full (not only
single-particle effective potential) electron-lattice interaction is a formidable task and
it is beyond the scope of this work. Instead, at the end of this section, the influence
of the static ion lattice and phonons on the system is discussed. It is shown how to
modify the previously obtained equations “by hand” to account for some of the most
important lattice/phonon effects.

Up to this point the only assumption about the Hamiltonian was that it consist
of two parts [62, 60, 87]

Ĥ = Ĥ0 + Ĥint, (3.32)

where H0 is the unperturbed part, and Hint is explicitly time-dependent perturbation
turned on at t = t0.

In Eq. (3.32) Ĥ0 is the usual Hamiltonian consisting of the kinetic energy term,
electron-electron interaction, current-field interaction etc. The second term in (3.32)
Ĥint, is a time-dependent interaction of the system with some external sources (other
than a heat bath) which creates a non-equilibrium state.

Inclusion of a time-dependent perturbation Ĥint has a double purpose. The first
one is that it introduces non-equilibrium conditions to the system that otherwise
would be in equilibrium because it is governed by explicitly time-independent Ĥ0.
Non-equilibrium conditions have to be caused by some externally controlled sources,
which are not part of the system itself. That is why it is assumed that externally con-
trolled sources are regular functions and not operators acting in the Hilbert space.
Those sources have an influence on the system, but the system does not have in-
fluence on them. For example, external charges are charges located far away from
the system which create a field that influences particle inside the system. However,
the non-equilibrium conditions can also be introduced by time-dependent boundary
conditions which are turned on at t = t0.

The second purpose for Ĥint is to allow for derivation of the Dyson equation using
the functional derivative approach. This is because the Dyson equation contains
response functions (such as polarization) which are a system’s response to a variation
of externally controlled charges/currents. Those external sources play a crucial role
in this derivation, and Ĥint has to have very specific form determined by interactions
present in Ĥ0. For example, if Ĥ0 has electron-electron interaction via the Coulomb
potential, then Ĥint must have have external charges interacting with the system via
the Coulomb potential. If Ĥ0 posses a current-field (electron-photon) interaction,
then Ĥint must include the interaction of an external current with the system, and
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so on for every type of interaction.
If such interactions with external sources are not physically present, then all, or

just some of them can be set to zero at the end of calculations. For example, in
this work, all source terms in Ĥint will be set to zero at the end of calculations and
non-equilibrium conditions will be imposed by the boundary conditions only.

In conclusion, the time-dependent perturbation Ĥint is used as a mathematical
tool to derive the Dyson equation. It might, but not necessary has to be a real
physical interaction. In case it is not physical, the boundary conditions are used to
introduce a non-equilibrium state in the system.

Static (internal) Hamiltonian consists of

Ĥ0 = Ĥs + Ĥm + Ĥf + Ĥe-f. (3.33)

The parts of unperturbed Hamiltonian are defined as follows:

1. Ĥs is a single-particle part of Hamiltonian

Ĥs =
∑
σσ′

ˆ
d3rΨ̂† (r, σ, t) (t (r) δσ,σ′ + u (r, σ, σ′)) Ψ̂ (r, σ′, t) , (3.34)

where t (r) δσ,σ′ + u (r, σ, σ′) is a single-particle Hamiltonian in first quantiza-

tion with a possible spin-mixing (u) term. The operators Ψ̂ and Ψ̂† are field
annihilation and creation operators in the Heisenberg picture. If the system
consist only of electrons and photons then t (r) is just a kinetic energy, and
u (r, σ, σ′) = 0. However, for now those terms are left in a general form. They
will be explicitly specified in Subsection 3.3.4 to include some of the influence
of a static ion lattice, and ionized impurity on the system.

2. Ĥm is a term responsible for electron-electron interaction [85, 86]

Ĥm =
e2

2

∑
σσ′

ˆ
d3r

ˆ
d3r′Ψ̂† (r, σ, t) Ψ̂† (r′, σ′, t)V (r− r′) Ψ̂ (r′, σ′, t) Ψ̂ (r, σ, t) ,

(3.35)
where the Coulomb potential is defined as

V (r− r′) =
1

4πε0

1

|r− r′|
. (3.36)

3. Free electromagnetic field Hamiltonian describes the behavior of an electro-
magnetic field without sources [63]

Ĥf =
1

2

ˆ
d3r

ε0(∂Â (r, t)

∂t

)2

+
1

µ0

(
∇× Â (r, t)

)2

 . (3.37)

4. Electron-field interaction Hamiltonian is [63]

Ĥe-f = −
∑
σ

ˆ
d3rĴ (r, σ, t) Â (r, t) , (3.38)
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where the Coulomb gauge (∇ · Â = 0) is chosen for the vector potential Â,
and the current operator Ĵ is a sum of the paramagnetic current Ĵ∇ and the
diamagnetic current ĴA [86]

Ĵ∇ =
e~

2mi

((
∇Ψ̂† (r, σ, t)

)
Ψ̂ (r, σ, t)− Ψ̂† (r, σ, t)

(
∇Ψ̂ (r, σ, t)

))
, (3.39)

ĴA = −e
2

m
Â (r, t) Ψ̂† (r, σ, t) Ψ̂ (r, σ, t) . (3.40)

In the Coulomb gauge, the power of the electromagnetic plane wave (classical)
is proportional to the absolute value of the squared vector potential A. It can
be shown [70] that in a usual semiconductor laser |eA| � |p|, where p is a
typical momentum of a particle. In analogy with this classical picture, in this
work, it is assumed that terms in the Hamiltonian proportional to Â2 are small
in comparison with terms proportional to eÂ~

i
∇, and hence part of the Hamil-

tonian proportional to Â2 is neglected. It is equivalent to approximating the
total current with only the paramagnetic term Ĵ∇. Inserting the paramagnetic
current operator (3.39) into Eq. (3.38), and using the Coulomb gauge to shift
the gradient operator gives an alternative form of electron-field interaction

Ĥe-f = i~
e

m

∑
σ

ˆ
d3rΨ̂† (r, σ, t) Â (r, t)∇Ψ̂ (r, σ, t) . (3.41)

The perturbation Hamiltonian (external) contains only two parts

Ĥint = Ĥext + Ĥk, (3.42)

which are defined as:

1. Ĥext describes the interaction of externally controlled carriers and currents with
the system [55]

Ĥext(t) =
∑
σ

ˆ
d3r
(
ρext (r, σ, t) φ̂ (r, t)− Jext (r, σ, t) Â (r, t)

)
, (3.43)

where

φ̂ (r, t) = −e
∑
σ′

ˆ
d3r′V (r− r′) Ψ̂† (r′, σ′, t) Ψ̂ (r′, σ′, t) . (3.44)

2. Ĥk is the term describing externally controlled carriers and currents (for ex-
ample their kinetic energy)

Ĥk =
∑
σ

ˆ
d3rF (ρext (r, σ, t) ,Jext (r, σ, t)) , (3.45)

where F is some function. This term is a number and does not contain operators
as externally controlled charges and currents are not part of the system. During
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derivation of the Dyson equation the particular form of Ĥk does not have to be
specified since it will not enter the final equations. In fact, inclusion of Ĥk is
not necessary and many authors do not include it as all [60, 91, 55, 92]. Here,
it is included only to have a complete description of the external charges and
currents, and to show that it has no effect on the Dyson equation. Calculations
shown in Appendix C confirm that Ĥk defined by Eq. (3.45) indeed has no
influence on the final equations and can be neglected.

3.3.2 Equation of motion for contour Green’s function

To calculate equation of motion for Green’s function it is convenient to write the
Green’s function defined by Eq. (3.25) using the contour step function introduced in
Appendix B

G (1, 2) =
1

i~

〈
Tc

[
Ψ̂ (1) Ψ̂† (2)

]〉
=
θ (t1, t2)

i~

〈
Ψ̂ (1) Ψ̂† (2)

〉
−θ (t2, t1)

i~

〈
Ψ̂† (2) Ψ̂ (1)

〉
.

(3.46)
Now, the time derivative can be written as

i~
d

dt
G (1, 2) = θ (t1, t2)

〈
dΨ̂ (1)

dt1
Ψ̂† (2)

〉
− θ (t2, t1)

〈
Ψ̂† (2)

dΨ̂ (1)

dt1

〉

+
dθ (t1, t2)

dt1

〈
Ψ̂ (1) Ψ̂† (2)

〉
− dθ (t2, t1)

dt1

〈
Ψ̂† (2) Ψ̂ (1)

〉
. (3.47)

The above formula can be simplified using the following arguments:

1. Easy to prove anti-commutation relations for operators in the Heisenberg pic-
ture (〈

Ψ̂ (1) Ψ̂† (2)
〉

+
〈

Ψ̂† (2) Ψ̂ (1)
〉)

t1=t2=t

=
[
Ψ̂ (r1, σ1, t) , Ψ̂

† (r2, σ2, t)
]

+
= δ(r1 − r2)δσ1,σ2 , (3.48)

[
Ψ̂ (r1, σ1, t) , Ψ̂ (r2, σ2, t)

]
+

=
[
Ψ̂† (r1, σ1, t) , Ψ̂

† (r2, σ2, t)
]

+
= 0. (3.49)

2. Equation of motion for operator (not explicitly time dependent) in the Heisen-
berg picture from Appendix A

i~
d

dt
ÔH (t) =

[
ÔH (t) , ĤH (t)

]
−
. (3.50)

3. The definition of a contour delta function from Appendix B
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δ (t1, t2) =
d

dt1
θ (t1, t2) . (3.51)

In the above formulas []− is the commutator and []+ is the anti-commutator. The
equation of motion for Green’s function then becomes

i~
d

dt
G (1, 2) =

1

i~

〈
Tc

[[
Ψ̂ (1) , Ĥ (1)

]
−

Ψ̂† (2)

]〉
+ δ (1, 2)

= θ (t1, t2)
1

i~

〈[
Ψ̂ (1) , Ĥ (1)

]
−

Ψ̂† (2)

〉
− θ (t2, t1)

1

i~

〈
Ψ̂† (2)

[
Ψ̂ (1) , Ĥ (1)

]
−

〉
+ δ (1, 2) , (3.52)

where
δ (1, 2) = δ (t1, t2) δ (r1 − r2) δσ1σ2 . (3.53)

The commutator
[
Ψ̂ (1) , Ĥ (1)

]
−

can be evaluated by calculating commutators

of each part of Hamiltonian Ĥ (1) by using standard commutator/anti-commutator
properties. Anti-commutation relations for field operators in the Heisenberg picture
are given by Eqs. (3.48) and (3.49). Additionally, boson and fermion operators
always commute.

Partial commutators of
[
Ψ̂ (1) , Ĥ (1)

]
−

are

[
Ψ̂ (1) , Ĥs (1)

]
−

= t (r1, σ1) Ψ̂ (r1, σ2, t1) +
∑
σ3

u (r1, σ1, σ2) Ψ̂ (r1, σ2, t1) , (3.54)

[
Ψ̂ (1) , Ĥm (1)

]
−

= e2
∑
σ2

ˆ
d3r2V (r1 − r2) Ψ̂† (r2, σ2, t1) Ψ̂ (r2, σ2, t1) Ψ̂ (r1, σ1, t1) ,

(3.55)[
Ψ̂ (1) , Ĥf (1)

]
−

= 0, (3.56)[
Ψ̂ (1) , Ĥe-f (1)

]
−

= i~
e

m
Â (r1, t1)∇Ψ̂ (r1, σ1, t1) , (3.57)[

Ψ̂ (1) , Ĥext (1)
]
−

= −e
∑
σ2

ˆ
d3r2V (r2 − r1) ρext (r2, σ2, t1) Ψ̂ (r1, σ1, t1) , (3.58)

[
Ψ̂ (1) , Ĥk (1)

]
−

= 0. (3.59)

Insertion of these partial commutators into Eq. (3.52) gives the equation of motion
for Green’s function
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i~
d

dt1
G (1, 2) = δ (1, 2) + t (1)G (1, 2) +

ˆ
d3u (1, 3)G (3, 2)

+
e2

i~

ˆ
d3V (1, 3)

〈
Tc

[
Ψ̂†
(
3++

)
Ψ̂
(
3+
)

Ψ̂ (1) Ψ̂† (2)
]〉

+
e

m
∇ (1)

〈
Tc

[
Â
(
1+
)

Ψ̂ (1) Ψ̂† (2)
]〉
− e
ˆ
d3V (1, 3) ρext (3)G (1, 2) (3.60)

where the following notational convention is used

t (1) = t (r1) ,

V (1, 2) = V (r1 − r2) δ (t1, t2) ,

u (1, 2) = u (r1, σ1, σ2) δ (r1 − r2) δ (t1, t2) ,

∇ (1) = ∇ (r1) =

(
∂

∂x1

,
∂

∂y1

,
∂

∂z1

)
.

The “+” subscript indicates the limit from above with respect to all continuous
variables, for example for 1+ it is defined as

1+ = lim
tk→t

+
1

lim
rk→r+

1

(tk, rk, σk = σ1) , (3.61)

where the limit does not include spin (it is a discrete variable) and the contour-time
limit is defined in Appendix B. This limit has two purposes. Because the ordering
operation is not defined for identical times, in the fourth term on RHS of (3.60) its
purpose is to preserve proper ordering under the chronological ordering operator in
the case of identical time argument values. Note that there is no such problem for
two boson operators with the same time argument (or one boson and one fermion)
as those operators always commute under the time ordering operator. Also in the
same term, argument 3 is indexed with “+” and “++” because V (1, 3) contains
contour delta function and overall (after integration) three field operators have the
same contour time argument. In the fifth term on RHS of (3.60) the limit is used to
move spatial derivative in front of the vector potential Â.

3.3.3 Functional derivative approach

The functional derivative technique allows one to replace terms that involve field
operators in Eq. (3.60) with terms (in a form of infinite series) that depend only
on Green’s function. It was developed for the path integral in [93] and adapted to
Green’s functions in [88, 61, 60]. First, the average values of field operators will be
replaced by functional derivatives of Green’s functions, and later it will be shown
how to replace those derivatives with infinite series consisting of Green’s functions.
Detailed derivations of most of equations presented in this subsection can be found
in Appendix C.

To apply the functional derivative technique to the equation of motion for Green’s
function (3.60), one has to introduce a formal distinction between the external per-
turbation Ĥint (t, b = +1) which takes the system forward in time (the upper branch
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of time contour), and Ĥint (t, b = −1) which takes the system backward in time (the
lower branch of time contour) [93]. This is necessary because to derive the Dyson
equation with the functional derivative technique, it is necessary to take functional
derivative over external sources for each branch separately.

Because in the derivation of the equation of motion (3.60) no distinction of Ĥint

between branches was made (Ĥint was the same on both branches), before insert-
ing the result from functional derivative calculations, the limit Ĥint (t, b = +1) =
Ĥint (t, b = −1) = Ĥint (t) is taken.

With the mentioned above distinction between the upper and lower branch, the
definition of Green’s function can be written as

G (1, 2) =
1

i~

〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 ∣∣∣Ĥint(t,+1)=Ĥint(t,−1) . (3.62)

When the limit is taken,
〈
Ŝc

〉
= 1, and Eq. (3.62) becomes the same as Eq. (3.26).

The denominator
〈
Ŝc

〉
is necessary to normalize the expression, because after the

distinction between the interaction Hamiltonian on upper and lower branches is
made, the expression 〈

Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
is no longer normalized. In fact it becomes divergent [94].

This procedure can be applied not only to a Green’s function but also to a sta-
tistical average of any operator Ô

〈
Ô (1)

〉
=

〈
Tc

[
ŜcÔI (1)

]〉
〈
Ŝc

〉 ∣∣∣Ĥint(t,+1)=Ĥint(t,−1) . (3.63)

In further calculations, for convenience, the following shorthand notation is used〈
Tc

[
ŜcÔI (1)

]〉
〈
Ŝc

〉 ≡
〈
Ô (1)

〉
. (3.64)

For calculations in this section and in Appendix C where intermediate steps are
shown, indication of the limit Ĥint (t,+1) = Ĥint (t,−1) is dropped to simplify the
already complex notation. For example

δG (1, 2)

δρext (3)

∣∣∣Ĥint(t,+1)=Ĥint(t,−1) ≡
δG (1, 2)

δρext (3)
, (3.65)

or



CHAPTER 3. NON-EQUILIBRIUM GREEN’S FUNCTIONS (NEGF) 29

〈
Tc

[
Ô (1) Ô (2)

]〉
=

〈
Tc

[
ŜcÔI (1) ÔI (2)

]〉
〈
Ŝc

〉 ∣∣∣Ĥint(t,+1)=Ĥint(t,−1)

≡

〈
Tc

[
ŜcÔI (1) ÔI (2)

]〉
〈
Ŝc

〉 . (3.66)

Functional derivatives over external charges and sources, necessary to get rid of
the field operators in the equation of motion (3.60) are

δG (1, 2)

δρext (1+)
= −e

ˆ
d3V (1, 3)G

(
3, 3+

)
G (1, 2)

− e
(

1

i~

)2 ˆ
d3V (1, 3)

〈
Tc

[
Ψ̂†
(
3++

)
Ψ̂
(
3+
)

Ψ̂ (1) Ψ̂† (2)
]〉
, (3.67)

and

δG (1, 2)

δJi,ext (1+)
=

1

i~

〈
Âi (1)

〉
G (1, 2)−

(
1

i~

)2 〈
Tc

[
Âi (1) Ψ̂ (1) Ψ̂† (2)

]〉
. (3.68)

Insertion of Eqs. (3.67) and (3.68) into equation of motion (3.60) yields

(
i~

d

dt1
− t (r1) + e

ˆ
d3V (1, 3)

(
ρext (3) + ei~G

(
3, 3+

))
+
i~e
m

〈
Â (1)

〉
∇ (1)

)
G (1, 2)

= δ (1, 2) +

ˆ
d3u (1, 3)G (3, 2)− ei~ δG (1, 2)

δρext (1+)
− (i~)2 e

m

3∑
i=1

∂i (1)
δG (1, 2)

δJi,ext (1+)
.

(3.69)

To proceed further, one has assume that contour Green’s function has an unique
inverse

ˆ
d3G−1 (1, 3)G (3, 2) =

ˆ
d3G (1, 3)G−1 (3, 2) = δ (1, 2) . (3.70)

This assumption is possible only if the influence of initial correlations (existing
before Ĥint is turned on) on the system is negligible. In other words, the system has
to have no memory of its state before t0 [60, 90]. The necessary condition for this to
happen, is that the initial time t0 has to be equal −∞. Maximal time tm can be also
shifted +∞, and now the time contour goes from −∞ → +∞ and then back from
+∞→ −∞.

Shifting the initial time to −∞ is not a sufficient condition as one can imagine
a system that is initially in an ordered state (ferromagnetic, superconductor) and
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perturbation is not strong enough to disorder that state. Then, even after an infi-
nite time, the system will stay in the initial state. This is why the validity of the
assumption that the initial correlations are negligible, depends on the properties of
a particular system. In this work, laser diodes are investigated in their steady-state
only, which obviously satisfy condition of no memory of the initial state. A more
detailed discussion of initial correlations can be found in [60, 87, 90]. A Green’s
function theory which takes initial correlations into account is described in [95, 96].

The functional derivative terms in Eq. (3.69) can be replaced by a so-called
self-energy Σ (1, 2) defined as

Σ (1, 2) = ΣL (1, 2) + ΣT (1, 2) , (3.71)

where the longitudinal self-energy ΣL is

ΣL (1, 2) = −ei~
ˆ
d3

δG (1, 3)

δρext (1+)
G−1 (3, 2) , (3.72)

and the transverse self-energy ΣT is

ΣT (1, 2) = −(i~)2 e

m

3∑
i=1

∂i (1)
δG (1, 2)

δJi,ext (1+)
G−1 (3, 2) . (3.73)

With the above definitions, Eq. (3.69) becomes

(
i~

d

dt1
− t (1) + eU (1) +

i~e
m

〈
Â (1)

〉
∇ (1)

)
G (1, 2)

= δ (1, 2) +

ˆ
d3 (u (1, 3) + Σ (1, 3))G (3, 2) . (3.74)

If the self-energy Σ in Eq. (3.74) is expressed by an infinite series containing consec-
utive powers of Green’s functions, then equation (3.74) is called the Dyson equation.
The inverse Green’s function G−1 (1, 2) is

G−1 (1, 2) =

(
i~

d

dt1
− t (1) + eUeff (1) +

i~e
m

〈
Â (1)

〉
∇ (1)

)
δ (1, 2)

− u (1, 2)− Σ (1, 2) , (3.75)

where Ueff defined as

Ueff (1) =

ˆ
d3V (1, 3) (ρext (3) + 〈ρ̂ (3)〉) , (3.76)

is the effective potential acting on the particle. It is a sum of two potentials: poten-
tial created by the external sources ρext, and a potential from the averaged density of
all electrons present in the system 〈ρ̂ (1)〉 = −e 〈n̂p (1)〉. The averaged electron den-
sity can be expressed by Green’s function, by combining formulas for the statistical
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average of particle density (3.21) and the definition of the contour Green’s function
(3.25)

〈ρ̂ (1)〉 = −e 〈n̂p (1)〉 = e
〈
Tc

[
Ψ̂ (1) Ψ̂†

(
1+
)]〉

= ei~G
(
1, 1+

)
. (3.77)

The Dyson equation (3.74) is in differential form, but it can also be stated in the
integral form. To get the integral form one can define G0 as

(
i~

d

dt1
− t (1) + eUeff (1) +

i~e
m

〈
Â (1)

〉
∇ (1)

)
G0 (1, 2) = δ (1, 2) . (3.78)

With the above definition of G0, the integral form of the Dyson equation is

G (1, 2) = G0 (1, 2) +

ˆ
d3

ˆ
d4

ˆ
d3G0 (1, 3) (u (3, 4) + Σ (3, 4))G (4, 2) , (3.79)

which can easily be proven to be correct by applying(
i~

d

dt1
− t (1) + eUeff (1) +

i~e
m

〈
Â (1)

〉
∇ (1)

)
to both sides of Eq. (3.79) and then using the definition of G0.

Longitudinal self-energy

The longitudinal self-energy is responsible for electron-electron interaction via the
Coulomb potential.

Under the assumption that Ueff does not depend on external current Jext i.e.,
δUeff/δJext,i = 0, the longitudinal self-energy ΣL can be expressed as

ΣL (1, 2) = −i~
ˆ
d3

ˆ
d4G (1, 3) γ (3, 2, 4)W

(
4, 1+

)
, (3.80)

where

longitudinal vertex function: γ (1, 2, 3) =
δG−1 (1, 2)

δUeff (3)
, (3.81)

screened Coulomb potential: W (1, 2) =
δUeff (1)

δρext (2)
, (3.82)

longitudinal polarization function: p (1, 2) =
δ 〈ρ̂ (1)〉
δUeff (2)

. (3.83)

The screened Coulomb potential (plasmon Green’s function) W (1, 2) can be ob-
tained by solving the following equation

W (1, 2) = V (1, 2) +

ˆ
d3

ˆ
d4V (1, 3)p (3, 4)W (4, 2) . (3.84)
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One should remember that, although both W (1, 2) and V (1, 2) are written as func-
tions of 1 = (r1, σ1, t1, b1), none of them have actual spin dependence. Equation
(3.84) is very similar to the integral Dyson equation (3.79), where the Coulomb
potential is the zeroth order term which is modified (screened) by the longitudinal
polarization p (1, 2), which in turn is analogous to a self-energy term in the Dyson
equation.

By acting with the Laplace operator on both sides of Eq. (3.84), using

V (1, 2) =
1

4πε0

1

|r1 − r2|
δ (t1, t2) , (3.85)

for the Coulomb potential and the following property of the Dirac delta function

∇2 (r1)
1

|r1 − r2|
= −4πδ (r1 − r2) , (3.86)

one can get the equation for a screened Coulomb potential which is analogous to the
differential Dyson equation (3.74)

− ε0∇2 (r1)W
(

3̃, 2̃
)

= δ
(

1̃, 2̃
)

+

ˆ
d3̃p̃

(
1̃, 3̃
)
W
(

3̃, 2̃
)
. (3.87)

Notational convention used in the above equation is

k̃ = {rk, tk} = {rk, tk, bk} ,ˆ
dk̃ =

ˆ
d3rk

ˆ
dtk =

∑
b

b

ˆ
d3rk

ˆ
dtb,

δ
(

1̃, 2̃
)

= δ (t1, t2) δ (r1 − r2) , (3.88)

and the term p̃
(

1̃, 2̃
)

is defined as

p̃
(

1̃, 2̃
)

=
∑
σ1σ2

p (1, 2) . (3.89)

The two remaining equations for p (1, 2) and γ (1, 2, 3) are

p (1, 2) = −ei~
ˆ
d3

ˆ
d4G (1, 3) γ (3, 4, 2)G

(
4, 1+

)
, (3.90)

and

γ (1, 2, 3) = eδ (1, 2) δ (1, 3)

+

ˆ
d4

ˆ
d5

ˆ
d6

ˆ
d7
δΣL (1, 2)

δG (4, 5)
G (4, 6) γ (6, 7, 3)G (7, 5) . (3.91)

Equations (3.80), (3.84), (3.90), and (3.91) allow to express longitudinal self-
energy as an infinite series containing only Green’s functions G. This series can
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be evaluated as follows: to the first order γ (1, 2, 3) = −δ (1, 2) δ (1, 3). This value
is inserted into equation for p (1, 2), and both γ (1, 2, 3) and p (1, 2) are used to
evaluate the first order ofW (1, 2). The values of p (1, 2) andW (1, 2) are inserted into
equation for the longitudinal self-energy (3.80) to obtain the first order of ΣL (1, 2).
The first order self-energy, ΣL (1, 2) and the first order γ (1, 2, 3) are used to calculate
the second order correction to γ (1, 2, 3). The procedure repeats itself up to the
desired order.

Transverse self-energy

The transverse self-energy describes electron-photon interaction. The procedure of
calculating transverse self-energy is analogous to the procedure that led to the ex-
pressions for the longitudinal self-energy.

In analogy to the effective potential Ueff (1), the effective vector potential is de-
fined as

Ai,eff (1) =
〈
Âi (1)

〉
, (3.92)

and it is assumed that δAi,eff/δJi,ext = 0.
The equation for transverse self-energy is

ΣT (1, 2) = i~
ˆ
d3

ˆ
d4

3∑
i,j=1

(
i~e
m
∂i (r1)

)
G (1, 3) Γj (3, 2, 4)Dj,i

(
4, 1+

)
, (3.93)

where

transverse vertex function: Γi (1, 2, 3) = −µ0
δG−1 (1, 2)

δAi,eff (3)
, (3.94)

photon Green’s function: Di,j (1, 2) = − 1

µ0

δAi,eff (1)

δJj,ext (2)
, (3.95)

transverse polarization function: Pi,j (1, 2) = −µ0

δ
〈
ĴT
i (1)

〉
δAj,eff (2)

, (3.96)

Similarly, as in the case of the screened Coulomb potential, the photon Green’s
function Di,j (1, 2) does not depend on the spin index. In the expression for the

transverse polarization function (3.96), ĴT
i is the transverse current defined as

ĴT
i (1) =

3∑
j=1

ˆ
d2δT

i,j (1, 2) Ĵj (2) , (3.97)

where δT
i,j (1, 2) is the transverse delta function

δT
i,j (1, 2) =

[
δi,jδ(r1 − r2) +

1

4π
∂i (r1) ∂j (r1)

1

|r1 − r2|

]
δσ1,σ2δ (t1, t2) . (3.98)
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Average value of the paramagnetic current operator (3.39) is expressed by the
electron Green’s function as

〈
Ĵi (1)

〉
=

e~
2mi

lim
2→1

(∂i (1)− ∂i (2))
〈

Ψ̂† (1) Ψ̂ (2)
〉

= −i~Πi

(
1, 1+

)
G
(
1, 1+

)
, (3.99)

where

Πi (1, 2) =
e~

2mi
(∂i (1)− ∂i (2)) . (3.100)

The photon Green’s function can be evaluated directly from Eq. (3.95)

Di,j (1, 2) =
1

i~µ0

(〈
Tc

[
Âi (1) Âj (2)

]〉
−
〈
Âi (1)

〉〈
Âj (2)

〉)
, (3.101)

or calculated by solving the differential equation

(
∇2 (r1)− 1

c2

d2

dt21

)
Di,j

(
1̃, 2̃
)

= δT
i,j

(
1̃, 2̃
)

+

ˆ
d3̃P̃i,k

(
1̃, 3̃
)
Dk,j

(
3̃, 2̃
)
, (3.102)

where

P̃i,k

(
1̃, 2̃
)

=
∑
σ1,σ2

Pi,k (1, 2) , (3.103)

and δT
i,j

(
1̃, 2̃
)

is defined analogously to δT
i,j (1, 2), but without δσ1,σ2 on the RHS in

Eq. (3.98). From now on, Eq. (3.102) will be referred to as the photon Dyson
equation. The equation for the photon Green’s function can be also expressed in
terms of integral equation

Di,j (1, 2) = D0
i,j (1, 2) +

3∑
k,l=1

ˆ
d3

ˆ
d4D0

i,k (1, 3)Pk,l (3, 4)Dl,j (4, 2) , (3.104)

where D0
i,j (1, 2) satisfies(

∇2 (r1)− 1

c2

d2

dt21

)
D0
i,j

(
1̃, 2̃
)

= δT
i,j

(
1̃, 2̃
)
. (3.105)

Validity of Eq. (3.104) can be checked by acting on it with
(
∇2 (r1)− 1

c2
d2

dt21

)
and

using definition of D0
i,j (1, 2).

The transverse vertex function Γi is determined using the following equation

Γi (1, 2, 3) =
i~eµ0

m
δ (1, 3) ∂i (1) δ (1, 2)

+

ˆ
d4

ˆ
d5

ˆ
d6

ˆ
d7
δΣT (1, 2)

δG (4, 5)
G (4, 6) Γi (6, 7, 3)G (7, 5) , (3.106)
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and the equation for transverse polarization is

Pi,j (1, 2) = i~
3∑

k=1

ˆ
d3

ˆ
d4

ˆ
d5δT

i,k (1, 3)

× Πk

(
3, 3+

)
G (3, 4) Γj (4, 5, 2)G

(
5, 3+

)
. (3.107)

The equations for the longitudinal (3.80) and transverse (3.93) self-energies along
with all six supplementary equations for the polarization, vertex function, etc. allow,
at least in principle, to account for all electrostatic (through screening of Coulomb
potential) and electromagnetic (through interaction with photons) many-body inter-
actions caused by electromagnetic field, up to an arbitrary order.

3.3.4 Static ion lattice, ionized impurities, and phonons

During derivations of the Dyson equation, the interaction of electrons with the ion
lattice as well as possible impurities, was neglected. The derivation of interaction
between electrons and ion lattice is a complex task. A very detailed description of
how to include an ion lattice and phonons in the functional derivative approach can
be found in [92].

In this work, the influence of static ion lattice, ionized impurities, and phonons
is included only at the very basic level. The most important terms for accurate
description of a laser diode are added “by hand” to the previously derived equations.

The direct influence of a static ion lattice and ionized dopants is taken into
account by adding single-particle potential to the single-particle Hamiltonian. The
explicit form of term t in the Hamiltonian (3.34) is

t (r) = t′ (r) + e2

ˆ
d3r′V (r, r′) (NA (r′)−ND (r′)) , (3.108)

where the second term in above equation is the potential due to ionized dopants and
t′ (r) consists of a sum of kinetic energy and an ion lattice single-particle potential
without the spin mixing term

t′ (r) = − ~2

2m
∇2 − eVl (r) . (3.109)

The spin mixing term u has only one component – part of the ion lattice potential
that is responsible for spin-orbit interactions

u (r, σ, σ′) = −eVso (r, σ, σ′) . (3.110)

Another effect which the static ion lattice introduces, is additional screening.
This screening is taken into account in a simplest possible way: by multiplying
vacuum permittivity ε0 by the relative static permittivity εs whenever electrostatic
interactions are considered, and by relative high frequency permittivity ε∞ whenever
the electrodynamic effects are considered.
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Finally, the interactions with phonon waves will introduce a self-energy term
similar to the transverse self-energy (which contains electron-photon interaction).
The exact form of this electron-phonon self-energy is discussed in the next chapter
along with a more detailed formulation of other self-energy terms.



Chapter 4

Application of NEGF to a laser
diode

In this chapter, the formalism discussed in Chapter 3 is used to derive equations
describing a laser diode that are suitable for numerical implementation.

Section 4.1 provides a more detailed description of the laser diode system under
consideration, and it explains reasons for the most important assumptions necessary
to simplify the general equations from the previous section.

In Section 4.2 the contour Dyson equation is converted into a real-time equation.
Green’s functions are expanded in a discrete basis to allow for a convenient numerical
implementation.

The next section introduces the concept of quasiparticle electrons and holes. It
provides formulas connecting Green’s function written in discrete basis to physical
quantities such as electron/hole densities and quasiparticle current densities.

In the final section of this chapter, the electron-photon interaction self-energy
given by Eq. (3.93) is calculated for the case of edge-emitting laser. This section
also includes a short description of electron-phonon self-energy [97], and the phe-
nomenological Golizadeh self-energy [98].

4.1 Description of the system

The system considered in this work, is an edge-emitting laser diode based on a quan-
tum well. It is in a non-equilibrium steady-state. In the light emission direction x, it
is a Fabry-Perot (FP) resonator with two selective mirrors. The mirrors are assumed
to reflect only light with a specific frequency ωm, and are perfectly transparent for
all other frequencies. In the transverse plane y − z, it is a layered structure grown
in the z direction with at least one quantum well among the layers.

The system has to be described differently when dealing with optical quantities
and differently when dealing with electrical quantities. This is necessary because
the quasiparticles (electrons and holes) have substantially shorter wavelengths than
electromagnetic field from the visible spectrum. Because of this, for the particles, a
significant length scale is of the order of a nanometer while for photons this scale is

37
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in a micrometer range. Without this separation, the electrical part of the simulation
would have to a contain huge, and computationally intensive region which would be
mostly irrelevant.

For the purpose of the electrical part of the simulator, the system consists only
of the portion of the resonator that is in the close vicinity of the quantum well. It is
assumed that this system is infinite and macroscopically uniform in the transverse
plane x− y, but non-uniform in the z direction (crystal growth direction). It forms
a p− i− n junction (in z direction) with quantum wells in the intrinsic region.

In the optical part of the equations, the system consist of a full Fabry-Perot res-
onator and vacuum around it. It is assumed that the laser operates in one transverse
mode (fundamental mode) only, and that the electric field of the fundamental mode
is polarized in the y direction.

4.2 The real-time Dyson equation in discrete basis

To preform any meaningful calculations, the abstract Dyson equation (3.74) has
to be rewritten as set of equations containing only real times and then written in
a basis suitable for numerical implementation. In this section, with the help of
contour algebra from Appendix B, the Dyson equation (3.74) is converted into a set
of equations containing only real times. Next, the discrete basis is introduced. It
consists of a product of rapidly varying functions as well as slowly varying envelope
functions. At the end of this section, the Dyson equation is formulated in mentioned
basis and boundary conditions are imposed.

4.2.1 The Dyson equation for real-time functions

Using the contour algebra described in Appendix B, the full contour Dyson equation
(3.74) can be converted into four real-time equations for lesser, greater, advanced,
and retarded Green’s functions. However, only the equation for the retarded Green’s
function is necessary, and other three Green’s functions can be obtained from the
retarded Green’s function. The equations which allow to obtain advanced, lesser,
and greater Green’s functions from the retarded Green’s function will be called sup-
plementary equations.

Because the external charges and currents are not physically present in the system
under consideration, they are set to zero at this point. It is also assumed that in the

steady-state, the average of vector potential
〈
Â
〉

= 0 [55]. With this assumption,

the inverse of contour Green’s function (3.75) becomes

G−1 (r1σ1t1, r2σ2t2) =

[(
i~

∂

∂t1
− t (r1) + eUeff (r1, t1)

)
δσ1,σ2 − u (r1, σ1, σ2)

]
× δ (r1 − r2) δ (t1, t2)− Σ (r1σ1t1, r2σ2t2) , (4.1)

The effective potential Ueff can be expressed by electron density np only
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eUeff (ρext = 0) = −e2i~
∑
σ3

ˆ
d3r3V (r1, r3)G

(
r3σ3t1, r3σ3t

+
1

)
= −e2

∑
σ3

ˆ
d3r3V (r1, r3)i~G< (r3σ3t1, r3σ3t1) = −e2

ˆ
d3r3V (r1, r3)np (r3) ,

(4.2)

where the limit of contour Green’s function is calculated using Eq. (B.43), and the
total electron density np does not depend on time because the steady-state condition
is assumed. Using Eq. (3.108) to explicitly write t (r1) and u (r1), the effective
potential can be combined with the potential coming from ionized dopants

− t (r1) + eUeff (r1, t1, ρext = 0) =
~2

2m
∇2 (r1) + eVl (r1)

− e2

ˆ
d3r′V (r1, r3) (np (r3, t1) +NA (r3)−ND (r3)) . (4.3)

Now, one can define the total electrostatic potential VP as

VP = −e
ˆ
d3r′V (r1, r3) (np (r3, t1) +NA (r3)−ND (r3)) , (4.4)

which is a solution of the electrostatic Poisson equation

ε0
∑
i

∂i [εs (r) ∂iVP (r)] = e (np (r) +NA (r)−ND (r)) , (4.5)

where the static relative permittivity εs (r) is added to account for ion lattice screen-
ing.

Inserting Eq. (4.1) into Eq. (3.70), and taking the retarded component of the
resulting equation yields the final Dyson equation for retarded Green’s function

(
i~

∂

∂t1
+

~2

2m
∇2 (r1) + eVP (r1) + eVl (r1)

)
GR (r1σ1t1, r2σ2t2)

+
∑
σ3

eVso (r1, σ1, σ3)GR (r1σ3t1, r2σ2t2) = δσ1,σ2δ (r1 − r2) δ (t1 − t2)

+
∑
σ3

ˆ
d3r3

ˆ
dt3ΣR (r1σ1t1, r3σ3t3)GR (r3σ3t3, r2σ2t2) . (4.6)

The advanced Green’s function can be calculated from the retarded Green’s func-
tion using Eqs. (3.31), (3.30), and definitions of lesser and greater Green’s functions
given by Eq. (3.27)
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GA (1, 2) = −θ (t2 − t1)

[
1

i~

〈
Ψ̂ (1) Ψ̂† (2)

〉
+

1

i~

〈
Ψ̂† (2) Ψ̂ (1)

〉]
=

(
θ (t2 − t1)

[
1

i~

〈
Ψ̂ (2) Ψ̂† (1)

〉
+

1

i~

〈
Ψ̂† (1) Ψ̂ (2)

〉])∗
= (θ (t2 − t1) [G> (2, 1)−G< (2, 1)])

∗
=
[
GR (2, 1)

]∗
=
[
GR (1, 2)

]†
. (4.7)

The equation for lesser Green’s function can be calculated from Eq. (3.70) with
the inverse Green’s function defined by (3.75). All components (<, >, R, A) of the
functions present in those equations, such as delta function δ (1, 2), or inverse Green’s
function G−1 (1, 2), are calculated using the contour algebra from Appendix B.

By taking lesser (<) component of Eq. (3.70) one gets

0 =

ˆ
d4
((
G−1

)R
(3, 4)G< (4, 2) +

(
G−1

)<
(3, 4)GA (4, 2)

)
. (4.8)

Acting with
´
d3GR (1, 3) on both sides of Eq. (4.8), gives

G< (1, 2) = −
ˆ
d3

ˆ
d4GR (1, 3)

(
G−1

)<
(3, 4)GA (4, 2)

=

ˆ
d3

ˆ
d4GR (1, 3) Σ< (3, 4)GA (4, 2) . (4.9)

In the derivation of above formula, the existence of non-zero homogenous lesser
Green’s function was neglected, i.e., the lesser Green’s function that satisfy

ˆ
d3
[
G−1

]R
(1, 3)G<

h (3, 2) = 0, (4.10)

is always zero G<
h (3, 2) = 0. If such a solution existed, it would have to be added

to Eq. (4.9). This is because during derivation of Eq. (4.9), information of the
homogenous part of the solution G<

h was lost after acting with
´
d3GR (1, 3) on

both sides of Eq. (4.8). However, the existence of a homogenous solution would
have violated the basic assumption about Green’s function having an unique inverse
(3.70) that was made in Chapter 3. The homogenous solution could have always
been added to the retarded Green’s function and the retarded component of Eq.
(3.70) would not be true. The homogenous solution is directly connected to initial
correlations [87, 99] which are neglected in this work.

Finally, knowing GR, GA, and G<, the equation for G> can be obtained by
rearranging Eq. (B.11) or (B.12)

G> (1, 2) = GR (1, 2)−GA (1, 2) +G< (1, 2) . (4.11)

Equations (4.6), (4.7), (4.9), and (4.11), together with equations for the retarded
and lesser self-energies ΣR, Σ<, and the Poisson equation (4.5), form a complete set
of equations describing the system.
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Figure 4.1: Tent-shaped functions.

4.2.2 Discrete basis and temporal Fourier transform

To perform any numerical calculations, all equations have to be written is some
discrete basis. It was stated in Section 4.1 that for electrical part of the simulator,
the system is assumed to be infinite and macroscopically uniform in the transverse
plane x − y. This implies that the basis in the transverse plane can consist of
plane waves. Since in the crystal growth direction z, the system is nonuniform even
macroscopically, the plane wave basis cannot be used for this dimension. Finally, on
the microscopic scale, the crystal is non-uniform in all three directions, and the basis
should take this fact into account, as well.

The basis used in this work is chosen to be the same as in [51]. It consists of a
product of fast varying (over the crystal primitive cell) zone-center Bloch functions
uα, slowly varying plane waves in the transverse direction, and functions wa which
are slowly varying in the crystal growth direction z

fkt,α′,a (R) =
1√
A
eiktrtwa (z)uα′ (rc) . (4.12)

In the above equation r = (rt, z) is the macroscopic position, rc is microscopic
position vector, R = r + rc is the total position (macroscopic + microscopic), kt

is the transverse wavevector, wa is the localized basis in z direction, and A is the
transverse surface. The fast changing basis Bloch functions uα′ (rc) are indexed by
Greek indexes with primes α′, β′, ... (but never σ′ as σ is reserved for spin). Bloch
functions and spins combined (when combined they will be referred to as bands), with
α, β, ..., i.e., α = {α′, σ}, and slowly changing functions wa (z) with Latin symbols
a, b, ....

The functions wa (z) are chosen to be tent-shaped functions equal to 1 at position
point za and going linearly to 0 at adjacent za−1 and za+1 points. Functions wa are
presented in Fig. 4.1.

Basis (4.12) is obviously non-orthogonal because functions wa are non-orthogonal.
Whenever dealing with non-orthogonal set of functions, it is necessary to introduce
also a bi-orthogonal set va (z) [97]. Bi-orthogonal function set va (z) is defined as

ˆ
dzwa (z) v∗b (z) = δa,b. (4.13)

A detailed description of the properties of non-orthogonal and bi-orthogonal sets
is presented [97]. In this work, the exact form of bi-orthogonal set va (z) and its
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properties are irrelevant – the only important fact is that such basis always exists
and satisfies Eq. (4.13).

The rapidly varying Bloch functions uα (rc) are unknown as their form is very
complex and depends on the static ion lattice potential. However their exact form
is not necessary as fast varying coordinates rc will be integrated out, leaving the
matrix elements 〈uα′ |h|uβ′〉, where h is a single-particle Hamiltonian. Those ma-
trix elements are well known in optoelectronics [70, 27, 64], and their values are
determined from experimental measurements.

Because the system is macroscopically uniform in the transverse plane, all double
position functions (such as Green’s functions and self-energies) become functions of
the difference of transverse positions

F (R1,R2) = F (r1,cr1,tz1, r2,cr2,tz2)→ F (r1,cz1, r2,cz2, r1,t − r2,t) . (4.14)

Similarly, because the system is in the steady-state, all double time function
become functions of time difference only, F (t1,t2) → F (t1 − t2). The temporal
Fourier transform can be taken with respect to (t1 − t2) to shift functions from the
time difference domain to the energy domain. The temporal Fourier transform and
inverse temporal Fourier transform are defined as

F (t1 − t2) =
1

2π~

ˆ
dEe−i

E
~ (t1−t2)F (E), (4.15)

F (E) =

ˆ
d (t1 − t2) ei

E
~ (t1−t2)F (t1 − t2) . (4.16)

4.2.3 Discretization of the Dyson equation

Using the basis provided by Eq. (4.12) and the temporal Fourier transform given by
Eq. (4.15), any Green’s function or self-energy can be written as

F (1, 2) =
1

2π~

ˆ
dEe−i

E
~ (t1−t2) 1

A

∑
kt

∑
α′,β′

∑
a,b

eikt(r1,t−r2,t)

× wa (z1)w∗b (z2)uα′ (r1,c)u
∗
β′ (r2,c)Fαa,βb (kt, E) , (4.17)

where F can be any Green’s function or self-energy, and α = {α′, σ1}, β = {β′, σ2}.
Functions Fαa,βb (kt, E) can be viewed as matrices parametrized by kt and E with
number of elements equal to the number of bands times the number of spatial grid
points in the z direction. They can be calculated using the formula

Fαa,βb (kt, E) =

ˆ
d (t1 − t2) ei

E
~ (t1−t2)

ˆ
d2 (r1,t − r2,t) e

−ikt(r1,t−r2,t)

× 1

V 2
c

ˆ
d3r1,c

ˆ
d3r2,cu

∗
α′ (r1,c)uβ′ (r2,c)

ˆ
dz1

ˆ
dz2v

∗
a (z1) vb (z2)F (1, 2) , (4.18)
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where Vc is the volume of a primitive cell.
The formula (4.17) can be used to expand all Green’s functions and self-energies

in Eqs. (4.6), (4.7), (4.9), and (4.11). After integrating out the rapidly changing
variables rc, Eqs. (4.6), (4.7), (4.9), and (4.11) become a set of four matrix equations

GR (kt, E) =
[
E−H (kt)−Σ

′R (kt, E)
]−1

, (4.19)

G< (kt, E) = GR (kt, E) Σ
′< (kt, E) GA (kt, E) , (4.20)

GA (kt, E) =
[
GR (kt, E)

]†
, (4.21)

G> (kt, E) = GR (kt, E)−GA (kt, E) + G< (kt, E) . (4.22)

In the above equations, E = ES and Σ
′(A,R,<) = SΣ(A,R,<)S. For brevity, in most of

the calculations the prime sign is dropped. The Hamiltonian and S matrix are

Sαa,βb = δα,β

ˆ
dzw∗a (z)wb (z) , (4.23)

Hαa,βb =

ˆ
dzw∗a (z) (hα,β (kt, z)− eVP (z) δα,β)wb (z) . (4.24)

The single-particle Hamiltonian hα,β (kt, z) is defined as

hα,β (kt, z) =
1

A

ˆ
d2rte

−iktrt
1

Vc

ˆ
d3rcu

∗
α′ (rc)

× (t′(rc, rt, z)δσ1,σ2 + u (rc, rt, σ1, σ2))uβ′ (rc) e
iktrt , (4.25)

where α = {α′, σ1}, β = {β′, σ2}, and Hamiltonian elements t′ and u are discussed
in Subsection 3.3.4. The Poisson potential VP (z) is the solution of the 1-D Poisson
equation in the macroscopic coordinates. The Poisson equation in the macroscopic
coordinates can be obtained from the general Poisson equation (4.5) by integrating
out the rapidly varying variables, and noticing that because the system is macro-
scopically invariant in the transverse plane, the potential can change only in the z
direction. The final form of the Poisson equation is

ε0∂z [εs (z) ∂zVP (z)] = e (n (z)− p (z) +NA (z)−ND (z)) . (4.26)

Because the system under consideration is a heterostructure the Hamiltonian
(4.25) will have discontinuities and additional heterointerface conditions have to be
specified. For example, for a simple effective mass Hamiltonian the usual conditions
at z = zi are [70, 27]

1

meff

(
z+
i

) d

dz
w (z)

∣∣∣∣
z=z+

i

=
1

meff

(
z−i
) d

dz
w (z)

∣∣∣∣
z=z−i

, (4.27)

where meff is position a dependent effective mass. In general those conditions can be
arbitrary as long as the Hamiltonian remains Hermitian [27]. The exact method of
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how to calculate the Hamiltonian form Eq. (4.24) and discussion of the heterinterface
conditions can be found in [100, 101].

It is worth noticing that the Hamiltonian in Eq. (4.25) as well as all Green’s
functions and self-energies in Eqs. (4.19)-(4.22) are now written in basis which is
a direct product of rapidly varying Bloch functions and spin functions. This is not
a unique choice, and sometimes it is more convenient to use basis which is a linear
combination of the direct product base. For example, for III-V semiconductors the
most important fast varying Bloch functions are called [27] |s〉, |px〉, |py〉, and |pz〉
because they have the same symmetry as s and p orbitals. However, because of
presence of the spin-orbit interaction, the Hamiltonian is most often written in the
total angular momentum basis [29, 30, 27, 31, 102] which is a linear combination of
|s〉
∣∣1

2
,±1

2

〉
, |px〉

∣∣1
2
,±1

2

〉
, |py〉

∣∣1
2
,±1

2

〉
, and |pz〉

∣∣1
2
,±1

2

〉
, where

∣∣1
2
,±1

2

〉
are spin func-

tions. The use of the total angular momentum basis allows one to simplify the form
of Hamiltonian and hence to get a better overview of the problem (for example to
choose good numerical parameters for the calculations).

In case a different basis is used, the final equations (4.19)-(4.22) do not change,
and the only difference is in the form of the Hamiltonian (4.25). The generalization
of Eq. (4.25) for different basis is straight forward

hα,β (kt, z) =
1

A

ˆ
d2rte

−iktrt 〈α |t′ + u| β〉 eiktrt .

In fact, one can assume from the beginning that the basis in which the Green’s
functions are expanded is a total angular momentum basis (or any other linear com-
bination of the direct product base). However, in this work the direct product base
is used because of the didactic reasons. Calculations in the direct product base are
conceptually simpler (especially during calculation of the transverse polarization in
Section 4.4 and Appendix E) and do not result in the loss of generality.

Equations (4.19)-(4.22) form a complete set of discretized equations. However to
solve them, proper boundary conditions have to be set. The boundary conditions for
the NEGF technique used in this work have been described for orthogonal basis in
[103, 90, 99] and for non-orthogonal basis in [97].

The major idea is that the device is surrounded from both sides (in the z direction)
by two semi-infinite leads. Each of the leads is in equilibrium but with different quasi-
Fermi level. Because of the difference between quasi-Fermi levels of the leads, the
device which is in between them is in the non-equilibrium state.

The leads are described by the same single-particle Hamiltonian as the device
(4.24). Because the leads are in equilibrium, the electrostatic potential is constant
there. In the left lead it is equal to the potential at the left end of the device, and
in the right lead it is the same as potential at the right end of the device.

It is assumed that there are no realistic many-body interactions in the leads. The
only allowed scattering mechanism in the leads is phenomenological scattering via
so-called Büttiker probes [104, 105]. Because of that, the leads have self-energies in
the form of Büttiker probes

ΣR =
[
ΣA
]†

= iηS, (4.28)
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Figure 4.2: Separation of the system into interacting device, and non-interacting
leads. The leads are in equilibrium, each with a different quasi-Fermi level (chemical
potential) F . The realistic many-body interactions are present only in the device
region, while the leads contain a phenomenological scattering in form of Büttiker
probe self-energies. The influence of the leads on the device is expressed by the
boundary self-energies ΣB,L and ΣB,L which are added to other self-energies in the
device region.

where η is small real number, or they have no self-energies at all (η = 0). With the
self-energy of the leads given by Eq. (4.28), all influence of leads on the device can
be described by the boundary self-energies ΣR

B and Σ<
B , which are added to other

self-energies in Eqs. (4.19) and (4.20).
The general idea of this method is presented in Fig. 4.2. Detailed calculations

and final formulas for boundary self-energies can be found in Appendix D.

4.3 Quasiparticles and physical observables

The first part of this section introduces, common for semiconductor physics, the
idea of quasiparticles. It provides formulas allowing to obtain carrier and current
densities, and a local density of states using Green’s functions. In the second part
of this section the formula for the divergence of current is shown and it is used
to formulate current-conservation condition as well as derive the formula for power
emitted due to electron-hole recombination.

4.3.1 Conduction and valence bands

When dealing with transport in semiconductors, it is convenient to introduce quasi-
particles: electrons and holes. A qusiparticle electron is an electron in a state that is
above the bandgap energy of the semiconductor and a quasiparticle hole is a missing
electron from below the bandgap energy. Bands which have states above bandgap
energy are called conduction bands (usually labeled as CB) and bands below the
bandgap are valence bands (VB). From now on, the electrons (real particles) will be
called particle electrons and quasiparticle electrons and holes will be called just elec-
trons and holes. More information about quasiparticles can be found in [70, 27, 78].
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Here, the concept of quaisparticles is illustrated using an example of carrier den-
sity. It is shown how quasiparticle densities are related to the particle density.

Because all single-particle functions can be expanded in a basis made of zone-
center functions uα (rc), the field operators can also be expanded in this basis, for
example

Ψ̂ (R, σ) =
∑
α

uα (rc) Ψ̂α (r) , (4.29)

where the band index α incorporates the spin index σ. The field operator is defined
as

Ψ̂α (r) =
∑
a

Fa (r) ĉa,α, (4.30)

where Fa (r) is some complete basis of functions that depend on macroscopic position
vector, and ĉa,α is the annihilation operator of a particle in state a in band α.

The total density of particle electrons expanded in Bloch’s functions basis is

np (R) =
∑

α,β∈ all bands

uα′ (rc)u
∗
β′ (rc)

〈
Ψ̂α (r) Ψ̂†β (r)

〉
. (4.31)

After integrating out the fast varying variables, the above equation becomes

np (r) =
∑

α∈ all bands

〈
Ψ̂α (r) Ψ̂†α (r)

〉
. (4.32)

Quasiparticle electrons are electrons located in the conduction band, and therefore
the quasiparticle electron density is

n (r) =
∑
α∈CB

〈
Ψ̂α (r) Ψ̂†α (r)

〉
. (4.33)

The hole density is defined as “negative” electron density in the valence band

p (r) = −
∑
α∈VB

〈
Ψ̂α (r) Ψ̂†α (r)

〉
=
∑
α∈VB

〈
Ψ̂†α (r) Ψ̂α (r)

〉
. (4.34)

Insertion of Eqs. (4.33) and (4.34) into Eq. (4.32) yields a relation between
particle and quasiparticle densities

np (r) =
∑

α∈ all bands

〈
Ψ̂α (r) Ψ̂†α (r)

〉
= n (r)− p (r) . (4.35)

Similarly, one can define a quasiparticle local density of states and quasiparticle
currents.
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4.3.2 Charge and current densities

The particle electron density can be obtained from Green’s function using formula

np (R, t) =
∑
σ

〈
Ψ̂† (Rσt) Ψ̂ (Rσt)

〉
= −i~

∑
σ

G<
(
Rσt,Rσt+

)
. (4.36)

After expanding the above formula in basis (4.12), integrating out the rapidly varying
coordinates and taking a temporal Fourier transform, the equation for quasiparticle
electron and hole density is

n (za, E) =
i~
A

∑
kt

∑
α∈CB

G<
αa,αa (kt, E) , (4.37)

p (za, E) = −i~
A

∑
kt

∑
α∈VB

G>
αa,αa (kt, E) . (4.38)

The total quasiparticle densities are calculated by integrating formulas (4.37) and
(4.38) over the energy divided by 2π~. For example for the total electron density is

n (za) =

ˆ
dE

2π~
n (za, E) . (4.39)

In equilibrium, the fluctuation-dissipation theorem states that lesser and greater
Green’s functions are connected by the following relation [90]

G> (E) = −eβ(E−F )G< (E) , (4.40)

which together with Eq. (4.11) yields

G< (E) = −f (E − F )
(
GR (E)−GA (E)

)
, (4.41)

G> (E) = f (F − E)
(
GR (E)−GA (E)

)
, (4.42)

where f (E − F ) is the Fermi-Dirac distribution function and F is a quasi-Fermi
level. In a non-equilibrium state, the above two formulas are also valid, but the
quasi-Fermi level has to be position dependent. With spatially varying quasi-Fermi
level, one can insert Eq. (4.41), (4.42) into Eqs. (4.37), (4.38) to define a local
density of states (LDOS)

Dn(p) (E, za) = − i

2π

1

A

∑
kt

∑
α∈CB(V B)

(
GR
αa,αa (kt, E)−GA

αa,αa (kt, E)
)
, (4.43)

where the summation is done over conduction bands (CB) for electrons, and over
valence bands (VB) for holes. Now, the electron and hole densities can be written as
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n (za) =

ˆ
dEf (E − F (za))Dn (E, za) , (4.44)

p (za) =

ˆ
dEf (F (za)− E)Dp (E, za) . (4.45)

The general formula for the particle current (of particle electrons) is

J (R, t) =
∑
σ

i~
2m

(
∇ (R)−∇

(
R+
)) 〈

Ψ̂† (Rσt) Ψ̂
(
R+σt

)〉
=
∑
σ

~2

2m

(
∇ (R)−∇

(
R+
))
G<
(
Rσt,R+σt+

)
. (4.46)

Similarly, as in case of density, the particle current can be separated into quasiparticle
electron and hole currents. The formula for quasiparticle currents, expressed in the
basis (4.12) is [97, 90, 99]

Jn(p) (za → za+1, E) = (−)
1

A

∑
kt

∑
α∈CB(V B)

((Hαa,αa+1 (kt)− Eαa,αa+1)

×G<(>)
αa+1,αa (kt, E)− (Hαa+1,αa (kt)− Eαa+1,αa)G

<(>)
αa,αa+1 (kt, E)

)
. (4.47)

4.3.3 Current conservation and power absorption/emission.

Divergence of quasiparticle current is given by the following equation [99, 97, 90]

∂zJn(p) (za, E) = (−)
1

A∆a

∑
kt

∑
α∈CB(V B)

[
ΣR (kt, E) G<(>) (kt, E)

+ Σ<(>) (kt, E) GA (kt, E)−GR (kt, E) Σ<(>) (kt, E)

−G<(>) (kt, E) ΣA (kt, E)
]
αa,αa

, (4.48)

where ∆a = (za+1 − za−1) /2.
The formula for the current divergence (4.48) is used in NEGF simulations for

two purposes. First, because the system in a steady-state, the divergence of the total
electric current given by

∂zJ (za) =

ˆ
dE

2π~
(e∂zJp (za, E)− e∂zJn (za, E)) , (4.49)

has to be zero for every grid point a.
The above condition can also be formulated in terms of a particle electron current
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∂zJ (za) =

ˆ
dE

2π~
e

A∆a

∑
kt

∑
α∈ all bands

[
ΣR (kt, E) G< (kt, E)

+ Σ< (kt, E) GA (kt, E)−GR (kt, E) Σ< (kt, E)

−G< (kt, E) ΣA (kt, E)
]
αa,αa

= 0. (4.50)

The second use for the current divergence formula, is that it allows one to calculate
the recombination rates due to particular scattering mechanisms. The recombination
rate is connected to the divergence of a particle current by [70]

R = A

ˆ
dz∂zJn (z) , (4.51)

where A is a cross-section of the device.
Because the self-energies are additive, Eq. (4.48) can be broken into a sum of

divergences due to different scattering mechanisms. In particular, one can take only
the divergence due to a radiative generation/recombination.

One can assume that the radiative generation/recombination self-energy Σrad can
be further broken into a sum of self-energies which generate/recombine electron-hole
pairs with a particular energy ~ωm

Σrad =
∑
m

Σωm . (4.52)

With the above formula, one can obtain an equation for absorbed/emitted power
due to the generation/recombination self-energy Σrad

P (ωm) = ~ωmR (ωm) = ~ωmA
ˆ
dz∂zJn,m (z) , (4.53)

where ∂zJn,m (z) is calculated using Eq. (4.48) with Σ = Σωm .

4.4 Self-energies

Because of the computational limitations, in this work there are only three types of
scattering present: electron-photon, electron-optical phonon, and phenomenological
scattering.

The electron-photon scattering self-energy for the edge-emitting laser is responsi-
ble for stimulated and spontaneous emission of the light and it is the crucial element
of this simulator. Formula for this self-energy is derived by solving Eqs. (3.93),
(3.102), (3.106), and (3.107) for the Fabry-Perot resonator.

Scattering due to interaction with polar optical phonons is non-elastic i.e., carriers
scattered by the phonons either increase or decrease their energy by the amount equal
to the energy of the phonon. Inclusion of this scattering mechanism is very important
because it allow carriers to change their energy within the same band, while traveling
through the device – this process is known as thermalisation.
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The phenomenological Golizadeh scattering self-energy [98] serves as a simple
substitution of an electron-electron self-energy, which itself is too demanding com-
putationally. The most important reason to include this self-energy is to broaden
the very fine energy levels inside the quantum well.

4.4.1 Electron-photon scattering

Electron-photon self-energy is given by Eq. (3.93) which is coupled to Eq. (3.102)
for the photon Green’s function, Eq. (3.106) for the transverse vertex function, and
Eq. (3.107) for the transverse polarization.

The first order approximation of the electron-photon self-energy is calculated as
follows. The first step is to approximate Eq. (3.107) for transverse polarization with
its first order term. Next, the approximated transverse vertex function is inserted
into Eq. (3.107) to obtain the first order transverse polarization. This polarization
is then used to calculate the photon Green’s function using Eq. (3.102). Finally, the
polarization and the photon Green’s function are inserted into Eq. (3.93), which the
gives the first order term of electron-photon self-energy.

Because it is assumed that the electric field is polarized in the y direction only,
the transverse vertex function possesses only the y component, and the polarization
and photon Green’s function tensors have only (y, y) components

Γi = δi,yΓ, (4.54)

Pi,j = δi,yδj,yP, (4.55)

Di,j = δi,yδj,yD. (4.56)

The transverse polarization is defined as a functional derivative from the trans-
verse current, which creates a problematic transverse delta function in Eq. (3.107).
In general, the transverse part of some quantity is a part with a vanishing divergence.
Because in this work it is assumed that system is in a steady-state, divergence of the
total current is always zero and thus the total current is equal to the transverse cur-
rent. Because of that, the transverse delta δT

i,j (r1, r2) in Eq. (3.107) can be replaced
with a regular (contour) delta function δi,jδ(r1 − r2).

In the first order approximation, the vertex function in Eq. (3.107) is approxi-
mated by its first order term

Γ (1, 2, 3) =
i~eµ0

m
δ (1, 3) ∂y (1) δ (1, 2) , (4.57)

and the polarization becomes

P (1, 2) = −i~
3e2µ0

2m2

(
∂y (1)− ∂y

(
1+
))

× [∂y (2)G (1, 2)]G
(
2, 1+

)
. (4.58)
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It is assumed that the wavevectors of photons present in the system are much
smaller than wavevectors of quasiparticles, and the momentum matrix element de-
fined as

1

Vc

ˆ
d3rcu

∗
α′ (rc) ∂yuβ′ (rc) δσα,σβ =

i

~
pyα,β =

i

~
pα,β, (4.59)

is much larger then the quasiparticle wavevector. With above assumptions, formula
for the (y, y) component of the lesser and greater polarization averaged over primitive
cell, summed over spin indices, and Fourier transformed to the frequency (energy)
domain is

P av,≶ (ra, rb, ~ω) = δ (ra,t − rb,t)P
av,≶ (za, zb, ~ω)

= δ (ra,t − rb,t)
e2µ0

im2

ˆ
dE

2π

1

A

∑
kt

∑
α,β,µ,ν

G≶
αa,βb (kt, E + ~ω)

× p∗α,νpβ,µG
≷
µb,νa (kt, E) . (4.60)

A detailed derivation of the average polarization in Eq. (4.60) from general
formula (4.58), with all intermediate steps is shown in Section E.1 in Appendix E.

One should also remember that if the Hamiltonian (4.25) is not written in a direct
product base (product of Bloch functions and spin functions), then the momentum
matrix pα,β also has to be written in the same basis as the Hamiltonian (in Eq. (4.59)
the momentum matrix is written in the direct product base). The generalization is
straight forward: pα,β = 〈α |p̂| β〉, where p̂ is momentum operator, and |α〉 is the
basis in which the Hamiltonian is written.

The retarded and advanced components of polarization can be calculated from
the lesser and greater components using formulas (B.9) and (B.10) (with singular
part f (t) = 0). In practice, only the formula for retarded polarization is necessary,
and the application of temporal Fourier transform to Eq. (B.10) gives

PR (E) = Pr

ˆ
dE

′

2π
i
P>
(
E
′)− P<

(
E
′)

E ′ − E

+
P> (E)− P< (E)

2
, (4.61)

where Pr indicates principal value of the integral. The above equation is valid for
any double contour time function for which the singular part is equal to zero. Using
the properties of contour functions from Appendix B, it can be shown that

P> (E)− P< (E) = PR (E)−
[
PR (E)

]∗
= 2iImPR (E) , (4.62)

and thus the first term in Eq. (4.61) is purely real while the second is purely imagi-
nary.

The next step is to obtain the equation for retarded photon Green’s function from
the general contour equation (3.102).
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The photon Green’s functions posses properties very similar to the electron Green’s
functions, in particular they satisfy equations similar to Eqs. (4.7), (4.9), (4.11) with
the transverse polarization functions instead of self-energies [55, 106]

DA
i,j (1, 2) =

[
DR
i,j (1, 2)

]†
, (4.63)

D≶
i,j (1, 2) =

∑
k,l

ˆ
d3d4DR

i,k (1, 3)P≶
k,l (3, 4)DA

l,j (4, 3) , (4.64)

D>
i,j (1, 2) = DR

i,j (1, 2)−DA
i,j (1, 2) +D<

i,j (1, 2) . (4.65)

The above equations can be derived similarly to analogous equations for the electron
Green’s functions by using Eqs. (3.101), (3.102), and contour algebra from Appendix
B. To derive Eq. (4.64), it has to be assumed that the homogenous photon Green’s
function is zero (this is the same assumption that has been done for electron Green’s
functions). In general, the homogenous solution corresponds to the vacuum-induced
part of a photon Green’s function, while the non-homogenous solution corresponds
to the medium-induced part of photon Green’s function [106]. In lasers, the medium-
induced emission is dominant and therefore the homogenous solution is neglected.

Applying the contour algebra from Appendix B to Eq. (3.102), and using Eq.
(4.60) yields

(
∇2 (r1) + n2

b (r1)
ω2

c2

)
DR (r1, r2, ω) = δ(r1 − r2)

+

ˆ
VD

d3r3δ(r1,t − r3,t)P
av,R (z1, z3, ~ω)DR (r3, r2, ω) , (4.66)

where
´
VD

indicates that the integral is taken over the whole volume of the FP cavity,
and nb =

√
ε∞ is added to take into account screening due ion lattice.

By replacing the polarization P av,R (z1, z2, ~ω) in Eq. (4.66) with some approxi-
mate formula proportional to delta function δ (z1 − z2), integral on the RHS of Eq.
(4.66) is eliminated, and the polarization can be added to the refractive index. Such
approximation is justified if the function P av,R (z1, z2, ~ω) has a peak at z1 = z2 and
decreases to zero when |z1 − z2| increases. Additionally, it has to decrease rapidly on
a length scale small in comparison to the length scale on which DR varies. Because
DR varies on the length scale of a micrometer, P av,R has to decrease to zero when
|z1 − z2| is not larger than few nanometers.

By numerically calculating the polarization from Eq. (4.60), it can be shown that
P av,R (z1, z2, ~ω) has significant non-zero values as long as z1 and z2 are in the area
where population of carriers is inverted. Outside of that region polarization is very
small and can be considered to be zero. Because the active region (quantum well) is
a few nanometers long, the approximation by delta function is justified. Thus, for a
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system with a one active region the following replacement is made

P av,R (z1, z2, ~ω)→ δ (z1 − z2)

ˆ
QW

dz3

× P av,R (z3, z3, ~ω) = δ (z1 − z2)P av,R
QW (~ω) , (4.67)

for z1, z2 inside the active region, and

P av,R (z1, z2, ~ω)→ 0, (4.68)

when z1, z2 are outside the active region. This approximation can be easily general-
ized to a multiple quantum well system in which case the equation for the retarded
photon Green’s function becomes(

∇2 (r1) + n2 (r1)
ω2

c2

)
DR (r1, r2, ω) = δ(r1 − r2), (4.69)

where the total refractive index n is

n2 (r) = n2
b (r)− c2

ω2
P av,R

QW (~ω, r) , (4.70)

and

P av,R
QW (r, ~ω) =

{
P av,R

QW,i (~ω) =
´

QW,i
dz3P

av,R (z3, z3, ~ω) for r ∈ VQW,i

0 otherwise
, (4.71)

Here VQW,i is the volume of the ith quantum well. Equation (4.70) allows one to

easily connect the averaged polarization with material gain. The real part of c2

ω2P
av,R
QW

can usually be assumed to be much smaller than n2
b and

Imn = − c2

2nbω2
ImP av,R

QW = − c2

4nbω2

(
P av,>

QW − P av,<
QW

)
, (4.72)

Substitution of the above formula into the definition of material gain given by Eq.
(2.1) allows one to express material gain by the transverse polarization functions

g = −2
ω

c
Imn =

c

ωnb

ImP av,R
QW =

c

2ωnb

(
P av,>

QW − P av,<
QW

)
. (4.73)

With the assumption that most power is propagating in the fundamental mode,
the general solution of Eq. (4.69) for a Fabry-Perot laser can be written as [71]

DR (r1, r2, ω) = DR
x (x1, x2, ω)φ (y1, z1)φ∗ (y2, z2) , (4.74)

where function φ is fundamental eigenmode of a 2-D scalar Helmholtz equation(
∂2
y + ∂2

z + n2 (y, z, ω)
ω2

c2

)
φ (y, z) = k2

eff (ω)φ (y, z) , (4.75)
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and DR
x (x1, x2, ω) satisfies(

∂2
x1

+ k2
eff (ω)

)
DR

x (x1, x2, ω) = δ (x1 − x2) . (4.76)

Equation (4.75) can easily be solved numerically with the boundary condition
φ (y, z) = 0 at the boundary of a computation window. The most popular methods
to solve this kind of Helmholtz equation are finite difference method [107] and finite
elements method [100].

It is assumed that the FP laser has a left mirror at x = −Lx/2 , and a right
mirror at x = Lx/2. Inside the laser cavity, the propagation constant is keff = neff

ω
c
,

and both mirrors possess the same reflectivity coefficient r.
The solution of Eq. (4.76) can be obtained analytically [71, 54, 55], and inside

the laser cavity (−Lx

2
< x < Lx

2
) it is

DR
x (x1, x2) = θ (x1 − x2)F (x1)F (−x2)

+ θ (x2 − x1)F (x2)F (−x1) , (4.77)

where

F (x) =
eikeffx + rbe

−ikeffx√
2ikeff (1 + r2

b)
, (4.78)

and
rb = eikeffLxr. (4.79)

Lesser and greater photon Green’s function are obtained by substituting the re-
tarded photon Green’s function and the lesser/greater transverse polarizations into
Eq. (4.64)

D≶ (r1, r2, ω) =

ˆ
d3r3d

3r4D
R (r1, r3, ω)

× P≶ (r3, r4, ω)
[
DR (r2, r4, ω)

]∗
=

ˆ
Lx

dx3D
R
x (x1, x3, ω)

[
DR

x (x2, x3, ω)
]∗
φ (y1, z1)

× φ∗ (y2, z2)
∑
i

P av,≶
QW,i (ω)

ˆ
AQW,i

dy3dz3 |φ (y3, z3)|2 , (4.80)

where
´
Lx

means that this integration is done over the laser cavity only. For the

integral
´
AQW,i

the integration is done over the surface of ith quantum well.

For the system to be uniform in the transverse direction, the photon Green’s
function can only depend on the difference of transverse coordinates x1 − x2 and
y1− y2. From Eq. (4.80) one can see that D≶ (r1, r2, ω) has no such dependence. To
deal with this problem, the photon Green’s function is averaged over x and y i.e.,
the following replacement is made
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ˆ
Lx

dx3D
R
x (x1, x3, ω)

[
DR

x (x2, x3, ω)
]∗

↓
1

Lx

ˆ
Lx

dx1

ˆ
Lx

dx2D
R
x (x1, x2, ω)

[
DR

x (x1, x2, ω)
]∗
, (4.81)

φ (y, z)→ φ̄ (z) =
1

Ly

ˆ
dyφ (y, z) . (4.82)

The average of the product of two photon Green’s functions can be calculated
analytically to be

1

Lx

ˆ
Lx

dx1

ˆ
Lx

dx1D
R
x (x1, x2, ω)

[
DR

x (x1, x2, ω)
]∗

=
2I (keff)

|2ikeff (1 + r2
b)|2

, (4.83)

where I =
∑9

i=1 Ii is

I1 =
1

2Imkeff

(
eImkeffLx

sinh (ImkeffLx)

ImkeffLx

− 1

)
, (4.84)

I2 = − |rb|4

2Imkeff

(
e-ImkeffLx

sinh (ImkeffLx)

ImkeffLx

− 1

)
, (4.85)

I3 = |rb|2 L
(

sinh (ImkeffLx)

ImkeffLx

)2

, (4.86)

I4 = Re

[
irb

Rekeff

(
e−iRekeffLx

sinh (ImkeffLx)

ImkeffLx

− sin (k∗effLx)

k∗effLx

)]
, (4.87)

I5 = Re

[
r∗b

Imkeff

(
eImkeffLx

sin (RekeffLx)

RekeffLx

− sin (keffLx)

keffLx

)]
, (4.88)

I6 = Re

[
r∗b |rb|2

Imkeff

(
sin (k∗effLx)

k∗effLx

− e−ImkeffL
sin (RekeffLx)

RekeffLx

)]
, (4.89)

I7 = Re

[
i |rb|2

Rekeff

(
e−iRekeffLx

sin (RekeffLx)

RekeffLx

− sin (2RekeffLx)

2RekeffLx

)]
, (4.90)

I8 = Re

[
i (r∗b)2

Rekeff

(
1− eiRekeffLx

sin (RekeffLx)

RekeffLx

)]
, (4.91)

I9 = Re

[
ir∗b |rb|2

Rekeff

(
e−iRekeffLx

sinh (ImkeffLx)

ImkeffLx

− sin (keffLx)

keffLx

)]
. (4.92)
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The final formula for the lesser and greater photon Green’s functions is then

D≶ (z1, z2, ω) =
I

2 |keff|2 |(1 + r2
b)|2

φ̄ (z1) φ̄∗ (z2)

×
∑
i

P av,≶
QW,i (ω)

ˆ
AQW,i

dy3dz3 |φ (y3, z3)|2 . (4.93)

Detailed analysis of the term 1/ |(1 + r2
b)|2 reveals that it has local maximums at

resonance frequencies for which

Re (keff (ω)) =
lπ − ph (r)

Lx

, (4.94)

where l is an integer number, ph (r) is a phase of the reflection coefficient. Addition-
ally, it has singularities when the total gain is equal to the total losses through the
mirrors. It occurs when

Im (keff (ω))→ 1

2Lx

ln
1

|r|2
, (4.95)

which is the usual laser threshold condition. In general, the spectrum of D≶ (ω)
has very sharp peaks at the resonance frequencies. With the increasing bias voltage
across the junction, the height of those peaks increases and their widths decrease
– they tend to be delta function peaks. To properly implement those functions
numerically, a very fine numerical grid would be necessary – consisting of at least
tens of thousands points.

To get around this problem, the D≶ (ω) is approximated by the following expres-
sion

Dav,≶ (ω) =
∑
m

θ

(
|ω − ωm| −

∆ωm
2

)
D≶ (ωm) , (4.96)

where ωm are frequencies of the peaks and ∆ωm are widths of the peaks at half-
maximum (FWHMs).

Assuming that the phase of reflection coefficient is small and can be neglected,
and that the real part of effective refractive index depends weakly on frequency so
that Re (neff (ω)) can be approximated by its value at some ω0 which was chosen to
be the lasing frequency, formulas for the peak values and FWHMs are

ωm =
lmπc

Re (neff (ω0))Lx

, (4.97)

∆ωm =
|r|−2 eg(ωm)Lx − 1√
2LxRe (neff (ω0)) /c

. (4.98)

The formula for FWHM is obtained by expansion of the denominator 1/ |(1 + r2
b)|2

in Eq. (4.93) in Taylor series around resonance frequencies ωm. This approximation
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is accurate only for sharp and narrow peaks – as long as the majority of the peak can
be described by the second order Taylor series. The accuracy of this approximation
increases as gain approaches its threshold value (peaks become narrower and higher).
However, in the real systems the gain never reaches its threshold value and formula
(4.98) might need some tuning.

Finally, inserting the approximated transverse vertex function from Eq. (4.57)
into Eq. (3.93) gives

Σ (1, 2) =
iµ0e

2~3

m2
[∂y (1) ∂y (2)G (1, 2)]D (2, 1) . (4.99)

The calculated dependence of Dav,≶ on z1 and z2 is very weak and therefore
the function φ̄ (z) present in formula (4.93) for lesser and greater photon Green’s
functions is replaced with its value in the middle of the structure. Equation (4.99)
is written in basis (4.12) in a similar way as it was done for polarization (4.60).
Detailed calculations are provided in Section E.2 in Appendix E.2

Σ
′≶ (kt, E) = SΣ≶S

= iµ0

( e
m

)2
ˆ +∞

−∞

d (~ω)

2π
Dav,≷ (ω) pG≶ (kt, E + ~ω) p

= iµ0

( e
m

)2
ˆ ∞

0

d (~ω)

2π
p
(
Dav,≷ (~ω) G≶ (kt, E + ~ω)−Dav,≶ (~ω) G≶ (kt, E − ~ω)

)
p

=
iµ0~
2π

( e
m

)2∑
m

p
(
D≷ (ωm) ∆ωmG≶ (kt, E + ~ωm)−D≶ (ωm) ∆ωmG≶ (kt, E − ~ωm)

)
p.

(4.100)

where ωm > 0, and

pαa,βb = pα,β

ˆ
dzw∗a (z)wb (z) . (4.101)

The retarded and advanced self-energy are obtained from lesser and greater self-
energy using Eq. (4.61) and (B.9), where the term containing principal value of the
integral is small and can be ignored [99, 51]

Σ
′R (E) =

Σ
′> (E)−Σ

′< (E)

2
, (4.102)

Σ
′A (E) = Σ

′R (E)− (Σ
′> (E)−Σ

′< (E)) = −Σ
′> (E)−Σ

′< (E)

2
, (4.103)

Additionally, the lesser photon Green’s function corresponds to emission while
the greater is responsible for absorption. In lasers, emission is much greater than
absorption and the greater photon Green’s function D> is therefore neglected.
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4.4.2 Electron-phonon scattering

Although there are many types of phonons present in the III-V semiconductor, in this
work only the interaction with longitudinal optical phonons is taken into account.
This is because scattering by polar optical phonons in strongly inelastic. As it
is shown in Chapter 6, inelastic scattering has a very significant influence on the
performance of the laser.

The polar optical phonons are modeled with the Fröhlich approach [108], and
contrary to electrons and photons, the phonons are assumed to be in constant equi-
librium. It is also assumed that phonons in the layered structure can be approximated
by phonons from the bulk structure. Material parameters such as relative electric
permittivity are set to have identical values in all layers.

The general formula for the first order electron-phonon scattering self-energy is
[97, 90, 99]

Σ
′≶
µm,νn (kt, E) =

e2~ωLO

2ε0

(
1

ε∞
− 1

εs

)
1

A

∑
qt

F (qt,∆m,n, kt, q0)

×
(
S
(
NLOG≶ (qt, E ∓ ~ωLO) + (NLO + 1) G≶ (qt, E ± ~ωLO)

)
S
)
µm,νn

. (4.104)

In the above formula ~ωLO is the energy of a longitudinal optical phonon, NLO is the
average number of phonons determined from the following formula

NLO =
1

e~ωLO/kT − 1
, (4.105)

and the function F is

F (qt,∆m,n, kt, q0) =

ˆ 2π/a

0

dqz cos (qz∆m,n)

 1(
(q2
z + q2

t + q2
0 + k2

t )
2 − 4k2

t q
2
t

)1/2

−q2
0

q2
z + q2

t + q2
0 + k2

t(
(q2
z + q2

t + q2
0 + k2

t )
2 − 4k2

t q
2
t

)3/2

 . (4.106)

In Eq. (4.106), q0 is the Debye screening length [109] which is taken to be a constant
parameter, ∆m,n = zm − zn, and a is a lattice constant. Retarded and advanced
self-energy can be calculated from lesser and greater self-energies by using formulas
(4.102) and (4.103).

4.4.3 Golizadeh scattering

Due to the numerical limitations, no electron-electron scattering other than Hartree
term is present. However, addition of some simplified substitute of electron-electron
self-energy is necessary because energy levels inside the quantum well are very narrow
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(on energy scale) and some broadening mechanism is necessary to avoid very fine
energy grids. Numerical experiments showed that electron-phonon self-energy is not
enough to broaden confined levels inside the quantum well.

In [98, 51], it is argued that the second order electron-electron self-energy (as-
suming that the scattering is elastic) has a general form Σi,j = Di,jGi,j, where i, j
are position nodes and Di,j is a complicated term depending on the Green’s function
itself. The complicated term Di,j can be replaced by dδi,j, where d is a constant
“scattering strength”. In non-orthogonal basis this leads to the following form of
self-energy

Σ
′≶,R,A (kt, E) = dSG≶,R,A

diag (kt, E) S, (4.107)

where Gdiag is a Green’s function with diagonal elements only.



Chapter 5

Numerical implementation

This chapter presents a detailed description of numerical implementation of the the-
ory developed in the previous chapters. The first section describes a creation of
numerical grids for position, energy, and wavevector. It provides a method of cre-
ating energy and wavevector grids which do not violate the current conservation
condition given by Eq. (4.49).

The general structure of the simulator is presented in Section 5.2. This section
includes a flow diagram and discussion of convergence criteria. Numerical approach
and the boundary conditions for the 1-D Poisson equation (4.26) are discussed in
Section 5.3. The last section describes an application of the bisection method to deal
with numerically unstable calculation of the photon Green’s function.

5.1 Numerical grids of position, energy, and wavevec-

tor

The determination of a good position grid is fairly simple. The discrete basis given
by Eq. (4.12) allows for non-uniform spatial grids. Spatial grid can have more nodes
inside and around the quantum well region, and less nodes everywhere else. Contrary
to drift-diffusion models, current is conserved for any choice of the grid.

In general, a higher number of nodes (shorter distance between adjacent nodes)
makes calculations more accurate. However, one needs to remember that it was
assumed that slowly varying functions (which are described at the nodes of the
grid) are approximated as constant over primitive cell. For III-V semiconductors the
length of the primitive cell in the z direction is equal to half of the lattice constant
which is roughly a/2 ≈ 0.27 nm. Thus, if the simulation requires a spatial grid
with a step significantly shorter than 0.27 nm then, even with a very dense grid, the
results are meaningless since it means that supposedly slowly varying functions vary
significantly over primitive cell.

Because of the current conservation condition given by Eq. (4.50), the energy grid
is more difficult to determine than the spatial grid. The four self-energies used in
this work (electron-photon, electron-phonon, Golizadeh, and boundary self-energy)
all satisfy the mentioned condition in the case of continuous values of energy. In case

60
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of discrete values of energy, condition (4.50) becomes violated whenever self-energy
is proportional to Green’s function with energy which is not located on the energy
grid. For example self-energies from Eqs. (4.100) and (4.104) have the following
general form

Σ (kt, Ej) ∼ G (kt, Ej ± ~ω) . (5.1)

In general, the energy Ej ± ~ω will not be located exactly on the energy grid
point and Green’s function for this value of energy has to be calculated as a linear
combination of Green’s functions at the adjacent energy points Ei < Ej±~ω < Ei+1.

In the case of electron-photon interaction self-energy (4.100), the problem is
avoided by assuming that the laser operates at one frequency ωm only. This is
equivalent to the assumption that the mirrors reflect only light with frequency ωm
and are perfectly transparent for all other frequencies. Such structure can be viewed
as an ideal distributed Bragg reflector laser. The energy grid consists of two regions
with the same constant step: one for the valence band, and another for the conduc-
tion band. The energy grid is constructed in a way that for all significant energy
levels in the valence band E (those which are occupied by carriers inside quantum
well), energies Ej + ~ωm are located exactly at grid points in the conduction band.

Additionally, if electron-phonon self-energy (4.104) is present, the constant step
∆E in both regions of the energy grid is chosen to satisfy

~ωLO

∆E
= n n = 1, 2, 3, . . . , (5.2)

where ~ωLO is the energy of the optical phonon. Choice of the constant step satisfying
Eq. (5.2) assures that energies Ei ± ~ωLO are located exactly at the nodes of the
energy grid.

As for the lower and upper boundaries of the energy grid, they should be chosen
in such a way that the energy grid will cover all energies for which the values of
the carrier density are significant. In addition, the energy grid should cover the
region just below the lowest level of the valence band edge, and just above the
highest level of the conduction band edge even if there are no carriers there. This is
because of the existence of ballistic current [90, 99]. In terms of energy, the ballistic
current starts just below the lowest valence band edge (hole current) and above the
highest level of the conduction band edge (electron current). In both cases, it has
the form of a relatively sharp peak (on the energy scale) which goes to zero after
approximately 0.2 eV from the respective band edge. However, when ballistic current
can be neglected (for example when recombination current is orders of magnitude
larger), it is sufficient for the energy grid to cover only the region where the carrier
density is significant.

As mentioned before, for the purpose of electric calculations, the device is consid-
ered to be infinite in the transverse plane and thus summation over the wavevector
can be replaced by an integral

1

A

∑
kt

→ 1

(2π)2

ˆ kmax

0

ktdkt

ˆ 2π

0

dφk. (5.3)
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Figure 5.1: Flow diagram of the simulator. The three major loops are indicated with
boxes with different shades of blue.

To reduce computation time and memory requirements, it is assumed in this work
that the Hamiltonian and all self-energies are isotropic (are functions of kt only) and
integration over angle φk is just equal to multiplication by 2π

1

(2π)2

ˆ
ktdkt

ˆ
dφk =

1

2π

ˆ
ktdkt. (5.4)

The simplest possible Hamiltonian – the effective mass Hamiltonian is already isotropic
and no additional approximations are necessary. More complicated Hamiltonian
models: 4× 4, and 6× 6 Luttinger-Kohn Hamiltonians [70, 27, 24] can be approxi-
mated as isotropic, by setting Luttinger parameters γ2 and γ3 to be equal.

The grid for kt is taken to be uniform spanning from 0 to some kmax. The value
of wavevector kmax depends on the curvature of the bands – flatter bands need larger
values. It is also worth mentioning that a dense wavevector grid is necessary to
remove sharp ripples in spectral currents and quasiparticle densities plots, which are
caused by numerical integration over kt.
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5.2 General structure of the code

The calculation scheme of the simulator is presented in Fig. 5.1. It starts with
an initial guess of the electrostatic potential form VP present in Eqs. (4.19) and
(4.26). The initial guess is obtained by determining the applied voltage bias, doping
concentrations, and by using the depletion region approximation described in [70].

Next, the initial guess of potential is used to calculate the single-particle Hamil-
tonian from Eq. (4.24) and boundary self-energies using Eqs. (D.16) and (D.26).

The next step is the initial guess of D<. After all approximations of photon
Green’s function, D< is just a real, positive number. The value of initial guess of D<

is not crucial as the algorithm is not very sensitive to initial values and converges
even if it differs from the real solution by many orders of magnitude. Initial guess of
Green’s functions is obtained by solving Eqs. (4.19)-(4.22) with boundary self-energy
only (the only one which does not depend on Green’s function).

The initial Green’s functions are used to calculate self-energies (Golizadeh, phonon,
and photon), which are again inserted into Eqs. (4.19)-(4.22) to update Green’s func-
tions. This loop continues until the convergence criteria described in Section 5.5 are
met. When it happens, Green’s functions are used to calculate polarizations using
Eqs. (4.60) and (4.61). Polarizations allow to update photon Green’s function D<,
which is used instead of the initial guess of D<. Unfortunately, this loop does not
allow for self-consistent calculations i.e., if a new D< is calculated directly from Eq.
(4.93) and inserted into Eq. (4.100) for electron-photon self-energy the procedure
does not converge. Instead, the bisection method is used to obtain convergence. This
procedure is described in detail in Section 5.4.

When the second loop converges, electron and hole densities are calculated us-
ing Eqs. (4.37) and (4.38). Updated carrier densities are inserted into the Poison
equation (4.26), allowing update of the electrostatic potential. Updated electrostatic
potential is used to update Hamiltonian, and the procedure repeats itself. When
convergence is reached, the desired output is calculated from Green’s functions.

5.3 Method of solving the Poisson equation

The Poisson equation (4.26) has to be supplemented with proper boundary condi-
tions. In this work, boundary conditions (BC) are chosen to be Neumann boundary
conditions

∂zVP|z=z1 = ∂zVP|z=zN = 0, (5.5)

where z1 is the first grid point and zN is the last grid point in the device. These BC
are consistent with the assumption that the potential inside the leads is constant.

Equation (4.26) is discretized by using basis functions wa shown in Fig. 4.1. After
discretization, it has the following form

KV = -Mρ (V), (5.6)

where matrices K and M are defined as



CHAPTER 5. NUMERICAL IMPLEMENTATION 64

Ki,j = ε0

ˆ
dzwi (z) ∂zεs (z) ∂zwj (z) , (5.7)

Mi,j =

ˆ
dzwi (z)wj (z) , (5.8)

and vectors V and ρ are

ρi = −e (n (zi)− p (zi) +NA (zi)−ND (zi)) (5.9)

Vi = VP (zi) . (5.10)

To calculate elements of matrix K, additional boundary conditions on interfaces
(where εs is discontinuous) have to be specified. Because the electric field vector is
orientated in the z direction, the boundary condition at the interface is [70]

εs
(
z+
)
∂zV

(
z+
)

= εs
(
z−
)
∂zV

(
z−
)
. (5.11)

This is exactly the same interface condition as in the case of an effective mass Hamil-
tonian with εs instead of 1/mc(v) or Luttinger parameters in the case of more com-
plicated Hamiltonians. A detailed description of how to calculate elements in Eq.
(5.7) with boundary conditions given by Eq. (5.11) can be found in [100, 101].

Equation (5.6) has to solved self-consistently with the Dyson equation. Unfortu-
nately, with Neumann boundary conditions given by Eq. (5.5), matrix K is singular
and Eq. (5.6) has no solutions. Singularity of the matrix is caused solely by the
Neumann boundary conditions and not by the discretization method. For exam-
ple, discretization of the Poisson equation with the finite difference also leads to the
singular matrix [99].

Although Eq. (5.11) has no exact solutions, it can be solved approximately. A
very good description of how to deal with this problem is presented in [99]. After
calculating of n and p (with potential VP), those functions are modeled with the
Fermi-Dirac distribution with position dependent quasi-Fermi levels of electrons (Fn)
and holes (Fp). Quasi-Fermi levels are found by inverting the following equations

n (p) (zi) = Nc(v) (zi)F 1
2

(
(−)

Fn(p) (zi)−
(
Ec(v) (zi)− eVP (zi)

)
kT

)
, (5.12)

where

Nc(v) = 2

(
mc(v) (zi) ekT

2π~2

) 3
2

, (5.13)

F 1
2

(x) is a Fermi-Dirac integral [70], Ec(v) is the bandedge of conduction (valence

band), and mc(v) is the conduction (valence) band effective mass. When the Hamil-
tonian of the system has more than one valence band, for example if the Hamiltonian
is a 4 × 4 Luttinger-Kohn Hamiltonian [70], better equation for modeling the hole
distribution is
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p = phh + plh, (5.14)

where

phh(lh) (zi) = Nhh(lh) (zi)F 1
2

(
−
Fp (zi)−

(
Ehh(lh) (zi)− eVP (zi)

)
kT

)
. (5.15)

Exact values of material parameters (such as effective masses and bandedges) in Eqs.
(5.12) and (5.15) are not crucial here, however they have to resemble those of the
real structure being modeled.

After Fn and Fp are extracted, equations (5.12) and (5.15) are inserted into Eq.
(5.6). This time however, quasi-Fermi levels are fixed (equal to the values extracted
in the previous step) and VP is assumed to be variable. This results in the following
equation non-linear equation

f (V) = KV + Mρ(V) = 0. (5.16)

The above equation is then solved with the Newton-Raphson method. The Jacobian
necessary for the Newton-Rhapson method is calculated analytically using properties
of Fermi-Dirac integral [70].

5.4 Application of bisection to an unstable photon

Green’s function loop

The reason why the middle loop from Fig. 5.1 is unstable, is the singularity in Eq.
(4.93). Equation (4.93) is well defined for modal gain

gmod = Im (keff (ω)) /2 <
1

2Lx

ln
1

|r|2
,

approaches infinity (+∞) when

Im (keff (ω))→ 1

2Lx

ln
1

|r|2
,

and becomes meaningless when

Im (keff (ω)) >
1

2Lx

ln
1

|r|2
.

As explained in Chapter 2, gmod can never physically reach or exceed threshold
gth = 2

Lx
ln 1
|r| . However, during intermediate steps in steady-state calculations this

happens i.e., sometimes gmod calculated from Green’s functions is too big, and D<

cannot be calculated. Numerical experiments have shown that no matter how good
the initial guess of D< is, self-consistent calculations will always lead at some point
to gmod larger than gth.
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If it is assumed that the laser operates in one mode only D< (ωm) = D<, this
problem can be solved by bisection method. Initially, it is assumed that the real
value of D< is located somewhere in the range [D<

min, D
<
max] = [0,+∞]. The bisection

method is used for the following equation

D<
c (D<

i )−D<
i = 0, (5.17)

where D<
i is the value from the previous step (in the first step it is the initial guess)

and D<
c is calculated using formula (4.93) after solving the Dyson equation (most

inner loop in Fig. 5.1) with electron-photon self-energy containing D<
i . At each

step of the bisection method, after solving the Dyson equation, gmod is calculated
and checked if it is smaller than gth. If it is smaller, then D<

c is calculated using
Eq. (4.93) and bisection is used to determine new D<

i , D<
min, and D<

max. If it is
not, then it means that D<

i is too big and new D<
i and D<

max are determined to be
D<

i,new = (D<
i +D<

min) /2, D<
max,new = D<

i .

5.5 Convergence criteria and numerical simplifi-

cations

As can be seen from Fig. 5.1 there are three major loops: most outer Poisson loop,
middle photon loop, and inner Green’s function loop.

The most inner loop (the Dyson equation) usually requires many iterations (hun-
dreds) to reach convergence. The most intuitive convergence condition is to require
that relative change of quasiparticle densities and currents between iterations are
smaller than some error criterion parameter. For example the criteria for electrons
are

‖n− nprev‖
‖n‖

< εn, (5.18)

‖Jn − Jn,prev‖
‖J‖

< εJ, (5.19)

where ni = n (zi), Jn,i = Jn (zi), and ‖‖ is a norm (for example infinity or an
Euclidean norm). Though intuitive, the conditions (5.18) and (5.19) are not optimal.
This is because there are Nk × NE Green’s functions and only a small subset of all
Green’s functions requires many loops to converge, while others usually converge in
2-5 iterations. If conditions (5.18) and (5.19) are used, all Nk×NE Green’s functions
have to be iterated many times. It is much better to set the convergence criteria for
every (ki, Ei) separately

‖n (ki, Ej)− nprev (ki, Ej)‖
nref

< εn, (5.20)

‖J (ki, Ej)− Jprev (ki, Ej)‖
Jref

< εJ. (5.21)
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where nref = max (‖n (ki, Ej)‖) and Jref = max (‖J (ki, Ej)‖). The conditions for hole
density and current are analogous to (5.20) and (5.21). Note that in the denominators
of conditions (5.20) and (5.21) there are reference values instead of just ‖n (ki, Ej)‖
and ‖J (ki, Ej)‖. This is because for some (ki, Ei) where carrier and/or current
densities should be zero (for example in the bandgap), numerical round-off error
causes the values of n and/or J to be not exactly zero, but still orders of magnitude
less than any significant value. For such (ki, Ei), it might happen that the calculations
never converge (the result is just a numerical noise). The denominators nref and Jref

assure that for such (ki, Ei) the convergence criteria are satisfied immediately. That
is, even if the error ‖n (ki, Ej)− nprev (ki, Ej)‖ is always significant in relation to
‖n (ki, Ej)‖, in relation to nref it is much smaller than convergence parameter εn.

For the middle loop, there are two possible convergence conditions

|D<
c (D<

i )−D<
i |

D<
i

< εD, (5.22)

or

|D<
max −D<

min|
D<

i

< εD. (5.23)

The number of steps to reach convergence with the bisection method depends linearly
on the desired precision εD.

If the initial guess of the Poisson equation is obtained from the depletion region
approximation [70], the outer loop usually requires only a few steps to converge. The
convergence condition used in this work is

‖V −Vprev‖
‖V‖

< εV, (5.24)

with Vi = VP (zi).
To ease the computational burden, three major approximations are done.
First, only block-diagonal and a limited number of block-off-diagonals of Green’s

functions and self-energies are calculated and stored (where block size is the number
of bands of the Hamiltonian). Physically, this corresponds to limiting the range of
many-body interactions. For example, by leaving only 2 off-diagonals (1 above and
1 below the diagonal) the range is limited to ∆ = zi+1 − zi.

Second, if the Hamiltonian from Eq. (4.24) does not have conduction-valence
band coupling elements, then the Green’s functions and consequently the self-energies
will not have conduction-valence band elements either. In that case, memory and
time requirements can be reduced by introducing separate conduction band Green’s
functions and valence band Green’s functions instead of solving the Dyson equation
for the full Green’s function (conduction + valence bands). The Dyson equation
is then solved separately for conduction and valence bands. For example, for the
simplest effective mass Hamiltonian having the following form [70]
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h =


hc 0 0 0
0 hc 0 0
0 0 hv 0
0 0 0 hv

 , (5.25)

hc(v) = (−)

(
− ~2

2m0

∂

∂z

1

mc(v) (z)

∂

∂z
+

~2k2
t

2m0

)
, (5.26)

and a spatial grid with 100 points, a single 400 × 400 Green’s function matrix is
reduced to 4 100 × 100 matrices. In the case where there are also no spin coupling
terms, as it is in the Hamiltonian from Eq. (5.25), it is enough to solve equations
only for one spin orientation only (2 100×100 matrices) and multiply the final results
(carrier densities etc.) by 2.

A final simplification is made after noticing that for relatively low voltages, the
carrier density modification induced by electron-photon and electron-phonon interac-
tions is small. Because the electrostatic potential depends only on carrier densities,
calculations with electron-photon and electron-phonon interaction self-energies and
without them give approximately the same value of electrostatic potential. When
this is the case, initial calculations to obtain the potential profile across the device
can be performed without those interactions. The electrostatic potential determined
in this way, is then used as the initial guess in full calculations (with all interactions),
and, for this step, only one or two iterations with the Poisson equation (third loop)
are necessary.



Chapter 6

Sample results and conclusions

This chapter presents a sample of possibilities of the simulator. Calculations are
performed on an exemplary standard single-well Al0.2Ga0.8As/GaAs edge-emitting
laser. The first section provides electrical and optical results for the system without
electron-phonon interaction present. The results include carrier densities, current
densities, local density of states and modal gain. In addition to the current and
carrier density plots, contour plots presenting spectral distributions of the carrier
and current densities are shown.

In the second section, based on the contour plot of current density, it is argued
why any realistic simulation has to include inelastic scattering mechanism (such as
scattering by longitudinal optical phonons). Calculations for a system with optical
phonons are presented and compared with calculations for a system without phonons.

The last two sections of this chapter include final remarks and conclusions about
the theory presented in this work. A path for future development of the model is
discussed.

6.1 System without phonons

The system under consideration is an Al0.2Ga0.8As/GaAs edge-emitting laser. It is
300 µm long, with two mirrors having identical reflection coefficients r2 = 0.33. The
geometry of the laser is presented in Fig. 6.1 and in Tab. 6.1. Material parameters
used in simulation are listed in Tab. 6.2. Intraband transitions were neglected
transitions by assuming that intraband momentum matrix element pc,c = pv,v = 0.

Lasing frequency is chosen to be fixed at ~ω = 1.506 eV. It corresponds to a
wavelength λ = 0.82 µm.

Wavevector k is discretized with 125 uniformly distributed points, with kmin = 0
and kmax = 1 nm−1. The hole effective mass is taken to be much smaller than the
commonly accepted value – this allows one to significantly reduce wavevector grid
and thus computation time and memory required. Energy grid has a total of 1000
points, 500 hundred for the valence and 500 for the conduction band. The minimal
value of energy on the energy grid is Emin = −0.41 eV and maximal is Emax = 1.7 eV.
Such choice of minimal and maximal values of energy grid does not cover energies in
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Figure 6.1: Geometry of the simulated laser. Central region consists of many layers
which are given in Tab. 6.1. Reprinted with permission from [110]. Copyright 2012,
American Institute of Physics.

thickness [nm] material doping [m−3]

15 Al0.3Ga0.7As n− 1025

7.5 Al0.3Ga0.7As −
7.5 GaAs −
7.5 Al0.3Ga0.7As −
15 Al0.3Ga0.7As p− 1025

Table 6.1: Characteristics of the central region. Reprinted with permission from
[110]. Copyright 2012, American Institute of Physics.

parameter symbol [unit] well barriers

electron mass me [m0] 0.067 0.084
hole mass mh [m0] 0.1 0.117

CB bandedge VCB [eV] 1.59 1.85
VB bandedge VVB [eV] 0.164 0

Golizadeh const. d [eV2] 1.96 · 10−4

Debye screening length q0 [nm−1] 0.2
lattice constant a [nm] 0.5653 0.5655

high dielectric const. ε∞[ε0] 10.89 10.07
stat. dielectric const. εs[ε0] 13.1 11.69
momentum matrix pc,v[kg · m

s
] 9.68 · 10−25 9.42 · 10−25

Table 6.2: Parameters used in the simulation.
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Figure 6.2: Bandedge profile for applied voltage bias and for Va = 1.625 V and for
Va = 0 V (equilibrium). The applied forward bias flattens the bandedge profile which
allows for the formation of confined states inside the quantum well region.

which the ballistic current is located. However, this is acceptable since the ballistic
current is much smaller than the current due to electron-hole recombination and thus
the ballistic current can be safely neglected.

Spatial grid is taken to be nonuniform one, consisting of 92 points with denser
distribution around the quantum well region and less dense in the barriers.

The plots presented in this section were obtained for applied forward bias Va =
1.625 V. The applied bias counters the built-in electric field and flattens the bandedge
profile. The comparison of bandedge profile of the system in equilibrium and under
bias is presented in Fig. 6.2.

One of the biggest advantages of the Green’s function technique is that it allows
one to obtain spectral characteristics of carriers and current densities as well as local
density of states (LDOS).

Figure 6.3a shows a contour plot of LDOS. Different structure of density of states
inside and outside of the quantum well is clearly visible. LDOS for a few selected
position points presented in Fig. 6.3b reveals that far away form the quantum well
the density of states resembles density of states of a bulk system [70] i.e., it increases
as square root of energy. Inside the quantum well, density of states becomes a step
function characteristic for a 2-D system.

One can see that the LDOS function in Fig. 6.3 collapses for very small (negative)
values and for very high values (not shown) of energy. This is caused by finite range
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Figure 6.3: LDOS for Va = 1.625 V. On the left-hand side the contour plot (a) clearly
shows different structure of density of states inside and outside of the quantum well.
The LDOS for three selected positions points is shown in plot (b). LDOS far away
from the quantum well resemble square root dependency of a bulk material [70].
Inside the quantum well, density of states behaves like density of states of a 2-
D structure [70]. For extreme values of the energy, LDOS collapses and becomes
inaccurate. It is caused by insufficient rage of kt in the numerical calculations, but
has no influence on the physical results as long as those states remain unoccupied.

of inverse wavevector kt. This collapse does not influence physical quantities as long
as states for which this collapse occur remain unoccupied. LDOS (and also other
quantities) have characteristic ripples caused by numerical integration over kt. Those
can be removed or at least reduced by making kt grid more dense.

The local density of states for kt = 0 presented in Fig. 6.4 gives further insight
into the distribution of states inside the device. It shows a characteristic stripe
pattern which is caused by superposition of injected states and states reflected form
the bandedge. The first and second confined levels are clearly visible inside the
quantum well. Because the LDOS inside the quantum well is very sharply peaked,
the energy grid has to be very dense in that region. This sharp peaks are major
reason for inclusion of phenomenological scattering. The electron-photon scattering
or even electron-phonon is not enough to sufficiently broaden the states inside the
quantum well and extremely dense energy grid would be necessary (at least tens of
thousands points).

Figure 6.5 shows spectral and spatial distributions of carrier densities. In Fig.
6.5b, inversion of population is clearly visible in the quantum well region. The central
region (quantum well) has an inversion of population which creates the material gain
and allows for lasing action to occur. This region is not electrically neutral (locally)
which reduces the gain because it is proportional to the smaller value of electron
and hole densities. This mismatch is not observed in the conventional gain models
[70, 27, 24, 64] which use the flat band approximation. The gain model considered
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Figure 6.4: LDOS at kt = 0 for Va = 1.625 V. The contour plot (a) shows character-
istic stripe pattern due to superposition of injected states and states reflected from
the potential edge. Inside the quantum well region the first and the second quantum
levels are clearly visible in both the conduction and valence bands. Plot (b) shows
the LDOS for z = 23.4 nm (inside the quantum well). The fundamental energy levels
are better confined and thus are more sharply peaked in comparison to second levels
in the well.

in this work does not approximate potential profile as flat – this can be seen in Fig.
6.2.

Carrier densities at the edges of the structure have the same values as doping
concentrations which assures that the leads are electrically neutral and hence the
potential profile inside them is flat.

The current flowing through the device is shown in Fig. 6.6. Figure 6.6a shows
electron current flowing from the n-side and hole current flowing from the p-side.
Both currents are terminated in the quantum well where the electron-hole recom-
bination and emission take place. These spectral currents are very sharply peaked
and the distance between the peaks is roughly equal to energy of emitted photons.
It is clear from Fig. 6.6a that the quantum tunneling plays an important role in
delivering the current to the quantum well. Figure 6.6b proves that the total current
(electron + hole) is conserved.

Finally, Fig. 6.7 shows the modal gain for three different voltages with and
without the stimulated emission. Because the gain is a purely electric quantity (it is
related to polarization) it can be calculated even if the electromagnetic field is not
present. Figure 6.7a shows the modal gain without electron-photon coupling. The
gain increases as the voltage bias (and thus inversion of population) increases with
the slight shift of a gain peak. Each of the gain curves rises rapidly at E = 1.4575
eV – roughly the bandgap energy, reaches a peak value, and then drops to negative
values (not shown on the pictures). With electron-photon interaction, gain at the
lasing frequency is suppressed below its threshold level which can be determined
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Figure 6.5: Carrier densities for Va = 1.625 V. The contour plot (a) shows spectral
distribution of carriers and plot (b) shows spatial distributions of carrier densities.
Due to deviation of bandedge profile from flat band profile the peaks of electron and
hole densities inside quantum well do not occur at the same point in space. This
effect reduces the material gain of the well and is not taken into account in majority
of conventional laser models [70, 27, 72, 24].

Figure 6.6: Current densities for Va = 1.625 V. The contour plot (a) shows spectral
current consisting of two very sharp peaks (on the energy scale). The distance
between the peaks in roughly equal to the energy of emitted light. It is clearly
visible that the quantum tunneling is an important mechanism of delivering current
to the quantum well where the recombination takes place. The plot presenting spatial
dependency of current densities (b) shows that the total current is indeed conversed.
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Figure 6.7: The plot on the left-hand side (a) shows the modal gain for a few selected
applied voltages before electron-photon interaction is turned on. Plot (b) shows
a comparison of the modal gain with and without electron-photon interaction for
Va = 1.625 V. The vertical line indicates the lasing frequency and the horizontal one
indicates threshold gain value. Electron-photon interaction reduces the value of the
modal gain (at the lasing frequency) so that after interaction is turned on the modal
gain is slightly below the threshold gain.

from the condition

gth =
2

Lx

ln
1

r
. (6.1)

6.2 System with phonons

Figure 6.6a shows one of the major shortcoming of not including phonons or any other
thermalization mechanism into the simulation. Without phonons, the only way the
current can be delivered to the quantum well is via quantum tunneling effect. One
can imagine an extreme case when with the increasing applied bias Va, the potential
profile eventually becomes flat. When this happens, all levels in the quantum well
are below (or above in case of holes) bandedge of the barrier and the current cannot
be delivered via quantum tunneling effect. This concept is shown in Fig. 6.8. This
means that if the quantum tunneling was the only way to deliver the current to the
quantum well, for large enough potentials there would be no emission at all. Because
such effect is not observed in experiments, the model has to be expanded to include
a thermalization mechanism (inelastic scattering).

Addition of inelastic scattering by phonons allows for the current to flow with
a high energy and then when it is in the quantum well region to get to the lower
energy levels through the inelastic scattering.

The most significant difference after addition of the electron-phonon interaction
is a change in current characteristics. Figure 6.9 shows spectral current of a system
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Figure 6.8: For moderate values of applied bias (a), the current can be delivered to
the quantum well via quantum tunneling. For large voltages (b), the current flows
above the well and without inelastic scattering mechanism it cannot flow into the
quantum well.

voltage [V] gain [1/m]

1.625 4019
1.6375 4282
1.65 4483
1.675 4666

Table 6.3: Values of gain at the lasing frequency before turning on electron-photon
interaction.

with the electron-phonon scattering present. Now, the current flows in a much wider
energy range. It consists of sharp peaks (on the energy scale). The peaks are
separated by ~ωLO – energy of longitudinal optical phonons.

Figure 6.10 shows the power and current for four different values of the applied
voltage for the system with and without phonons. With the phonons present, much
more current can reach the quantum well and recombine, hence the stimulated emis-
sion is stronger than in the model without phonons.

From Fig. 6.10 one can see that for the system without phonons, with increasing
voltage, the current first increases and then starts to decrease. This happens be-
cause of the change of the shape of bandedge profile. Although the gain increases,
the barrier potential which the current has to tunnel through, also increases which
results in a decreased current. This artificial effect is avoided by including inelastic
scattering. With the phonons present, the current can be delivered to the deep levels
of the quantum well not only by the quantum tunneling mechanism but also by the
inelastic scattering inside the quantum well.

Finally, the I−V characteristics in Fig. 6.10 do not show the regular exponential
dependency because the only recombination mechanism is through the emission of
photons with a particular energy ~ω = 1.5086 eV. The scattering strength (and thus
the current) is proportional to the value of the modal gain (calculated before the
electron-photon interaction is taken into account) at this energy. In general, the
gain peak increases exponentially with the applied voltage, however the gain value
for a particular frequency does not increases exponentially as can be seen from Tab.
6.3 and Fig. 6.7b.
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Figure 6.9: Current characteristics for applied voltage Va = 1.625 V. Figure (a) shows
a contour plot of spectral current density with electron-phonon coupling. Inelastic
electron-phonon scattering allows for the current to flow in much wider energy range
that in the case without electron-phonon scattering. Plot (b) contains a comparison
of the spectral electron current for z = 0.375 nm for the model with and without
electron-phonon interaction. The distance between the current peaks is roughly equal
to the energy of longitudinal optical phonons.

6.3 Summary

This work presents a complete description of a fully quantum mechanical model of a
semiconductor laser under the steady-state conditions. Equations necessary to sim-
ulate a laser diode were derived straight from the microscopic theory. In comparison
to usual simulation techniques, the model presented here requires only a couple of
most fundamental material parameters such as parameters of the Hamiltonian or
electric permittivity.

Because NEGF equations are derived from the microscopic theory, they are much
more fundamental that the commonly used equations to describe semiconductor
lasers. Because of its quantum nature, this formalism naturally includes the quantum
tunneling. Unlike in the popular drift-diffusion methods, carriers and currents are
energy dependent and the effect of spectral distributions of those quantities on the
characteristics of the laser can be investigated. For example, the stimulated emission
depends not only on the number of carriers in the quantum well but also on their
spectral distribution. The drift-diffusion models can only use the effective mass
Hamiltonian to describe the dynamics of quasiparticles. Although in this work only
the effective mass Hamiltonian was used, NEGF technique is fully capable of using
much more complex Hamiltonians to describe the dynamics of carriers. Finally, the
gain model presented here, naturally takes into account the complex shape of the
bandedge. This is a significant improvement over the usual flat-band approximation
which not only assumes that the bandedge profile is flat but also makes an artificial
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Figure 6.10: Current and emitted power as a function of applied bias for a sys-
tem with and without phonons. Addition of inelastic scattering mechanism greatly
increases both current and the power output.
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distinction between the 2-D quantum well states and 3-D bulk states.
In general, the technique presented in this work is able to capture much more of

the complex processes occurring in a laser diode. However, the increased accuracy
of this model comes at a price. Even after the significant simplifications, the compu-
tational burden and memory requirements are enormous. Additionally, inclusion of
every scattering mechanism significantly increases the computation time. Because of
the fundamental nature of the NEGF technique, some scattering mechanisms cannot
be omitted even in a simplest simulations. At the same time, it is very difficult to
model scattering mechanisms phenomenologically.

6.4 Further development

To make NEGF applicable for engineering use it is necessary to reduce the compu-
tation time and complexity without loosing too much of the accuracy. The most
urgent improvement is to decrease the number of steps necessary for convergence
of the Dyson equation – self-energy loop. At this point for some values of input
parameters, in the most extreme cases this loop needs ten of thousands iterations to
converge. This reduction can probably be done by improving the initial guess and
by improving the method of updating the solution during iterations.

The simulator should also be expanded to be able to take into account more
longitudinal modes. Although the presence of other modes is not desirable in laser
diodes, they are always present and have an influence on the performance of the
lasers. However, in this work it was assumed that the stimulated emission occurs
at a single frequency only i.e., that the mirrors reflect only photons at this single
frequency and are perfectly transparent for all other frequencies. This quite artificial
assumption is forced only by numerical difficulties – the theory presented here is fully
capable of taking into account more than one mode. Because the bisection method
used in this work cannot be expanded to solve for more than one mode, a completely
new algorithm has to be developed.

The complete laser simulator should also possess other major types of scatter-
ing: Shockley-Read-Hall, Auger, spontaneous emission, and possibly more types of
inelastic scattering.

Although the spontaneous emission is included in the electron-photon self-energy
derived in this work, because of the limitation of the emission to the single frequency
only, the spontaneous emission is also limited to this one frequency. Addition of
the spontaneous emission for the other frequencies without adding the stimulated
emission is straight forward. The limitation of the stimulated emission was achieved
by setting the photon Green’s function to zero at all frequencies other than the desired
lasing frequency. If the spontaneous emission is to be included, instead of setting
photon Green’s function to zero at other frequencies, one has to replace them with a
photon Green’s function of a free photon field. The free photon Green’s function is
easy to calculate and can quite realistically represent spontaneous emission [51]. The
spontaneous emission was not taken into account in this work solely due to already
too large computational burden.
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The Auger recombination can be obtained as a second order electron-electron
interaction combined with the phonons. The second order process would require
much more computational power because the scattering self-energy is proportional
to the product of two Green’s functions and can involve up to 4 integrals (2 over
kt and 2 over E). The Auger recombination also requires a Hamiltonian which can
accurately describe distant energy bands and that is accurate for large values of the
inverse wavevector kt. Obviously the k·p and effective mass Hamiltonian do not meet
those requirements and would have to be replaced by either the Hamiltonian obtained
from the ab initio calculations or by the effective orbital Hamiltonian. Taking into
account all the above arguments, it is clear that the Auger recombination self-energy
has to be modeled phenomenologically rather than derived from the first principles.

Contrary to the Auger recombination, the Shockley-Read-Hall (SHR) recombi-
nation is a first order process and it is much more plausible that it can be included
in the simulation in the near future. The addition of SHR will require a microscopic
model of the impurities and an additional very fine energy grid inside the bandgap
to cover the energy levels of the impurities.

Because the optical part of the problem is determined solely by the solution of
the photon Green’s function for the particular geometry of the laser, it should be
relatively easy to simulate other types of lasers such as VCSEL or DFB lasers.

Finally, for the most practical calculations it is not enough to assume that the
transport of carriers occurs in one dimension only, and that the current flows only
in the vicinity of the quantum well. However it is very doubtful that this approach
can be expanded to encompass a second dimension or to even have one dimension
but a few micrometers long. In the future, this method should be somehow merged
with the drift-diffusion method. Then, the NEGF formalism could be used for the
region in the vicinity of the active region where the high accuracy is necessary and
a drift-diffusion model would be used to simulate behavior far away from the active
region.

Due to the early stage of development of our model and all the mentioned above
shortcomings, the device simulated in this chapter is a very simplistic one and thus
a fair comparison with experiment is not possible at this stage. A reasonable com-
parison with experiment will be possible to make after further improvement of the
numerical procedures. More efficient numerical routines will allow to use Hamilto-
nian with realistic effective mass of the holes (or even more complex Luttinger-Kohn
Hamiltonian) and addition of the SHR and Auger recombination mechanisms (even
if modeled phonomenologically).



Appendix A

Pictures of quantum mechanics

In transport theory, one has to deal with time-dependent systems. The standard
formulation of the Schrödinger equation (also called the Schrödinger picture) is very
convenient when dealing with static problems where the Hamiltonian of the system is
not explicitly time-dependent. One can easily get rid of time from the state vectors
and deal with a static problem only. However, when considering time dependent
phenomena, such simplification is not possible and the Schrödinger picture is not the
best approach anymore. For time-dependent Hamiltonians two methods have been
developed: the Heisenberg picture and the interaction picture. In the interaction
picture, part of the time dependency is moved into operators, while in the Heisenberg
picture all of the time dependency is in the operators, making the state vectors
time independent. Although this topic is very basic and both pictures are usually
described in quantum mechanics textbooks, they are often introduced without proper
motivation or justification. This short appendix provides the most important facts
and derivations concerning both types of pictures.

In the first section, two different time evolution operators are introduced. In
the second section, time evolution operators are used to define the interaction and
Heisenberg pictures, as well as connections between them. At the end of the second
section, the time evolution of quantum statistical ensemble is considered.

A.1 Time evolution operators

The time dependent Schrödinger equation is

i~
∂

∂t
|Ψ (t)〉 = Ĥ (t) |Ψ (t)〉 , (A.1)

where the Hamiltonian can be separated into time independent and time dependent
parts

Ĥ (t) = Ĥ0 + Ĥint (t) . (A.2)

One can assume that state |Ψ (t)〉 can be expressed by the action of time evolution
operator Û operating on that state at some reference time t0
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|Ψ (t)〉 = Û (t, t0) |Ψ (t0)〉 . (A.3)

It is assumed that the evolution operator is unitary so that it does not change
the length of the vector state on which it operates, and that it can evolve the vector
state both forward and backward in time. With those assumptions and the definition
(A.3), one can immediately specify properties of Û

Û † (t1, t2) = Û−1 (t1, t2) , (A.4)

Û (t, t) = 1̂, (A.5)

Û−1 (t1, t2) = Û (t2, t1) , (A.6)

Û (t1, t2) = Û (t1, t3) Û (t3, t2) . (A.7)

Substitution of (A.3) into the Schrödinger equation (A.1) gives

i~
d

dt
Û (t, t0) |Ψ (t0)〉 = Ĥ (t) Û (t, t0) |Ψ (t0)〉 ,

and

i~
d

dt
Û (t, t0) =

(
Ĥ0 + Ĥint (t)

)
Û (t, t0) . (A.8)

To find solutions of the evolution equation (A.8), it will be assumed that the
evolution operator Û can be written as

Û (t, t0) = e−
i
~ Ĥ0(t−t0)Ŝ (t, t0) , (A.9)

which can always be done since nothing is assumed about operator Ŝ. Operator Ŝ
is called the interaction picture time evolution operator – the reason for this name
is explained in the next section when the interaction picture is defined. By inserting
formula (A.9) into Eqs. (A.4)-(A.7), it can be shown that operator Ŝ has exactly
the same properties as operator Û .

To obtain the equation of motion for operator Ŝ, Eq. (A.9) is substituted into
Eq. (A.8)

i~
d

dt
Û (t, t0) = Ĥ0e

− i
~ Ĥ0(t−t0)Ŝ (t, t0) + Ĥint (t) e−

i
~ Ĥ0(t−t0)Ŝ (t, t0) . (A.10)

Taking the time derivative of the Eq. (A.9) gives

i~
d

dt
Û (t, t0) = Ĥ0e

− i
~ Ĥ0(t−t0)Ŝ (t, t0) + i~e−

i
~ Ĥ0(t−t0)∂tŜ (t, t0) . (A.11)

When combined, the last two equations give the formula for Ŝ

i~
d

dt
Ŝ (t, t0) = Ĥint,I (t) Ŝ (t, t0) , (A.12)
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where

Ĥint,I (t) = e
i
~ Ĥ0(t−t0)Ĥint (t) e−

i
~ Ĥ0(t−t0). (A.13)

Formal integration of Eq. (A.12) from t0 to t, with initial condition Û (t0, t0) = 1̂⇒
Ŝ (t0, t0) = 1̂ gives

Ŝ (t, t0) = 1̂− i

~

ˆ t

t0

dt′Ĥint,I (t′) Ŝ (t′, t0) . (A.14)

The solution of the above equation is described in detail in [85]. The overall result
can be represented as following series

Ŝ (t, t0) =
∞∑
n=0

(
− i
~

)n
1

n!

ˆ t

t0

dt1

ˆ t1

t0

dt2 . . .

ˆ tn−1

t0

dtnĤint,I (t1) Ĥint,I (t2) . . . Ĥint,I (tn)

=
∞∑
n=0

(
− i
~

)n
1

n!

ˆ t

t0

dt1 . . .

ˆ t

t0

dtnT+

[
Ĥint,I (t1) . . . Ĥint,I (tn)

]
= T+

[
exp

(
− i
~

ˆ t

t0

dt′Ĥint,I (t′)

)]
, (A.15)

where T+ is the positive time-ordering operator

T+

[
Â (t1) B̂ (t2)

]
= θ (t1 − t2) Â (t1) B̂ (t2) + θ (t2 − t1) B̂ (t2) Â (t1) , (A.16)

which orders operators from left to right with decreasing time arguments (higher
times are to the left).

One can also take the Hermitian adjoint of both sides of Eq. (A.12) to get the
equation of motion for the adjoint operator Ŝ†

− i~ d
dt
Ŝ† (t, t0) = Ŝ† (t, t0) Ĥint,I (t) . (A.17)

The solution of the adjointed equation is obtained in a similar way as the solution
of the original equation, it is

Ŝ† (t, t0) =
∞∑
n=0

(
i

~

)n
1

n!

ˆ t

t0

dt1 . . .

ˆ t

t0

dtnT−

[
Ĥint,I (t1) . . . Ĥint,I (tn)

]
= T−

[
exp

(
i

~

ˆ t

t0

dt′Ĥint,I (t′)

)]
= T−

[
exp

(
− i
~

ˆ t0

t

dt′Ĥint,I (t′)

)]
, (A.18)

where T− orders operators from left to right with increasing time arguments (lower
times are to the left).
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A.2 Interaction and Heisenberg pictures

To avoid confusion, the following notational convention is used to distinguish between
pictures: “I” subscript indicates the interaction picture, “H” subscript indicates the
Heisenberg picture, no subscript means the Schrödinger picture.

In the previous subsection, times t and t0 were completely arbitrary. At this point
it is assumed that t0 < t and that the time dependent part of the Hamiltonian (A.2)
is turned on at t0

Ĥ (t) =

{
Ĥ0 for t < t0

Ĥ0 + Ĥint (t) for t ≥ t0
.

A state vector in the interaction picture is defined as

|ΨI (t)〉 = e
i
~ Ĥ0(t−t0) |Ψ (t)〉 . (A.19)

Such defined state vector has the same length in both Schrödinger and interaction
pictures because the operator e

i
~ Ĥ0(t−t0) is unitary. Average value of any operator

Ô (t) is

〈
Ô (t)

〉
=
〈

Ψ (t)
∣∣∣Ô (t)

∣∣∣Ψ (t)
〉

=
〈

ΨI (t)
∣∣∣e i~ Ĥ0(t−t0)Ô (t) e−

i
~ Ĥ0(t−t0)

∣∣∣ΨI (t)
〉
,

(A.20)
so any operator (even explicitly time-dependent) Ô (t) in the interaction picture takes
the following form

ÔI (t) = e
i
~ Ĥ0(t−t0)Ô (t) e−

i
~ Ĥ0(t−t0). (A.21)

A state vector in the Heisenberg picture is defined as a state vector at a reference
time t0

|ΨH〉 = |Ψ (t0)〉 = Û−1 (t, t0) |Ψ (t)〉 = Ŝ−1 (t, t0) |ΨI (t)〉 . (A.22)

With this definition of the Heisenberg picture, it is clear why the operator Ŝ is
called the interaction picture evolution operator – it can evolve states between the
interaction and the Heisenberg pictures similarly as evolution operator Û evolves
states between the Schrödinger and Heisenberg pictures.

The average value of an operator Ô (t) can be now written as

〈
Ô (t)

〉
=
〈

Ψ (t)
∣∣∣Ô (t)

∣∣∣Ψ (t)
〉

=
〈

ΨH

∣∣∣Û † (t, t0) Ô (t) Û (t, t0)
∣∣∣ΨH

〉
=
〈

ΨH

∣∣∣Ŝ† (t, t0) ÔI (t) Ŝ (t, t0)
∣∣∣ΨH

〉
, (A.23)

hence the operator in the Heisenberg is

ÔH (t) = Û † (t, t0) Ô (t) Û (t, t0) = Ŝ† (t, t0) ÔI (t) Ŝ (t, t0) . (A.24)
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Because in the Heisenberg picture, vector states are time-independent and all
time dependency is moved to the operators, it is useful to have equation of motion
for operator in this picture. It can be done by taking the time derivative of Eq.
(A.24), and utilizing equation of motion for the time evolution operator (A.8). The
final formula for the equation of motion of operator in the Heisenberg picture, also
called the Heisenberg equation of motion, is

i~
d

dt
ÔH (t) =

[
ÔH (t) , ĤH (t)

]
−

+ i~
[
∂

∂t
Ô (t)

]
H

, (A.25)

where []− is a commutator, and the last term in square brackets means that for an
operator which is explicitly time dependent, one has to first take the time derivative
of the operator in the Schrödinger picture and then transform the result into the
Heisenberg picture using the evolution operator Û † (t, t0).

For nonzero temperatures, the following form of density operator in the Schrödinger
picture is assumed

ρ̂ (t) =
∑
k

|Ψk (t)〉P (|Ψk (t0)〉) 〈Ψk (t)| , (A.26)

where |Ψk (t)〉 is a complete, orthonormal set of states, and P (|Ψk (t0)〉) is the classi-
cal probability of the system being in state k. With this form of the density operator,
it is assumed that the classical probability does not change in time and such stays
“frozen” at t0. Physically, this means that heat reservoir changes slowly enough that
its evolution in time can be ignored.

Using equation (A.3), the density operator can be written as

ρ̂ (t) = Û (t, t0) ρ̂0Û
† (t, t0) , (A.27)

where ρ̂0 is defined as

ρ̂0 = ρ̂ (t0) =
∑
k

|Ψk (t0)〉P (|Ψk (t0)〉) 〈Ψk (t0)|

=
∑
k

|Ψk,H〉P (|Ψk,H〉) 〈Ψk,H| . (A.28)

The average value of operator Ô is therefore

〈
Ô (t)

〉
= Tr

[
ρ̂ (t) Ô (t)

]
= Tr

[
Û (t, t0) ρ̂0Û

† (t, t0) Ô (t)
]

= Tr
[
ρ̂0Û

† (t, t0) Ô (t) Û (t, t0)
]

= Tr
[
ρ̂0Ŝ

† (t, t0) ÔI (t) Ŝ (t, t0)
]

=
〈
Ŝ† (t, t0) ÔI (t) Ŝ (t, t0)

〉
0

=
〈
ÔH (t)

〉
0
, (A.29)

where subscript 0 next to the bracket 〈〉 denotes that the average is taken with the
density operator ρ0 (Heisenberg picture).



Appendix B

Contour algebra

Although it is very convenient to use contour notation during the derivation of the
Dyson equation and related formulas for self-energies, to obtain any meaningful re-
sults it is necessary to switch back to the real-time. This procedure is non-trivial
whenever two or more double-time functions are under the same integral over contour
time.

In this appendix, a method of evaluating contour integrals is shown, contour-time
step and delta functions are defined, and a limit of function in the contour sense is
discussed.

The time contour consists of an upper branch specified by the argument b = +1
going from t0 to tm > t0, and a lower branch where b = −1 which goes back from tm
to t0. In general, values of t0 and tm can be arbitrary as long as t0 is smaller than tm,
including t0 = −∞ and tm = +∞. Contour time consists of a set of two numbers:
one for the value of time and another to indicate the branch t = {t, b}. Integration
over the contour is defined as

ˆ
dt =

ˆ tm

t0

dt+1 +

ˆ t0

tm

dt−1 =
∑

b∈{+1,−1}

b

ˆ tm

t0

dtb (B.1)

For any double-time function A (t1, t2) described on a contour, four distinct com-
ponents can be defined

lesser: A< (t1, t2) for b1 = +1 b2 = −1,

greater: A> (t1, t2) for b1 = −1 b2 = +1,

time ordered: At (t1, t2) for b1 = +1 b2 = +1,

anti-time ordered: At (t1, t2) for b1 = −1 b2 = −1. (B.2)

An arbitrary function A (t1, t2) defined on a contour (known as a contour func-
tion) becomes a lesser (greater) function when the first argument is before (after)
the second in the contour sense, and time ordered (anti-time ordered) when both
arguments are on the upper (lower) branch.

Contour-time functions present in the Dyson equation and in all the supplemen-
tary equations have a very specific form which limits the number of independent
components of any relevant contour-time function

86
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A (t1, t2) = A1 (t1, t2) + A2 (t1, t2) , (B.3)

where A1 and A2 are contour functions with the following properties

A<1 (t1, t2) arbitrary,

A>1 (t1, t2) arbitrary,

At
1 (t1, t2) = θ (t1 − t2)A>1 (t1, t2) + θ (t2 − t1)A<1 (t1, t2) ,

At
1 (t1, t2) = θ (t2 − t1)A>1 (t1, t2) + θ (t1 − t2)A<1 (t1, t2) , (B.4)

and

A<2 (t1, t2) = 0,

A>2 (t1, t2) = 0,

At
2 (t1, t2) = δ (t1 − t2) f (t2) ,

At
2 (t1, t2) = −δ (t1 − t2) f (t2) ,

f (t2) arbitrary. (B.5)

It can be seen from the definition of the contour Green’s function that it has the
same properties as A1. Because all other double time functions are related to Green’s
function (they are functionals of Green’s function) they also posses the same general
form as A1. The presence of A2 is to accommodate singular behavior originating from
d
dt1
A1 (t1, t2) and the contour delta function, both present in the Dyson equation.
Using Eqs. (B.3), (B.4), and (B.5) one can show that the double-time function

A (t1, t2) also has following the property

At (t1, t2)− A< (t1, t2) =
(
At

1 (t1, t2) + At
2 (t1, t2)

)
− (A<1 (t1, t2) + A<2 (t1, t2)) = θ (t2 − t1) (A>1 (t1, t2)− A<1 (t1, t2))

− δ (t1 − t2) f (t2) = A> (t1, t2)− At (t1, t2) . (B.6)

Although time and anti-time ordered functions can be obtained directly from
contour functions by specifying branches of time arguments, usually it is more con-
venient to work with retarded and advanced functions. The major reason is that
the final formulas for calculating contour integrals have simpler forms if retarded
and advanced functions are used instead of time and anti-time ordered functions.
Retarded and advanced functions are defined as

advanced: AA (t1, t2) = A< (t1, t2)− At (t1, t2) , (B.7)

retarded: AR (t1, t2) = At (t1, t2)− A< (t1, t2) . (B.8)

Equation (B.6) allows one to express the retarded and advanced components as
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AA (t1, t2) = −θ (t2 − t1) (A>1 (t1, t2)− A<1 (t1, t2)) + δ (t1 − t2) f (t2) , (B.9)

AR (t1, t2) = θ (t1 − t2) (A>1 (t1, t2)− A<1 (t1, t2)) + δ (t1 − t2) f (t2) . (B.10)

With the definitions of advanced component (B.7), retarded component (B.8),
and Eq. (B.6), time and anti-time ordered functions can be expressed as

At (t1, t2) = A< (t1, t2) + AR (t1, t2) = A> (t1, t2) + AA (t1, t2) (B.11)

At (t1, t2) = A< (t1, t2)− AA (t1, t2) = A> (t1, t2)− AR (t1, t2) (B.12)

It is also useful to have contour step and delta functions. A step function is
defined as

θ (t1, t2) =

{
1 for t1 > t2 on time contour

0 for t1 < t2 on time contour
. (B.13)

Its explicit form is obtained by specifying branches of arguments t1 and t2 and using
equations (B.7) and (B.8) for retarded and advanced components to get

θ< (t1, t2) = 0, (B.14)

θ> (t1, t2) = 1, (B.15)

θt (t1, t2) = θ (t1 − t2) , (B.16)

θt (t1, t2) = −θ (t2 − t1) , (B.17)

θR (t1, t2) = θ (t1 − t2) , (B.18)

θA (t1, t2) = −θ (t2 − t1) . (B.19)

From the above equations, one can see that the step function is a function described
by Eq. (B.3) with A<1 = 0, A>1 = 1, and f = 0.

A regular delta function can be defined as a derivative of a step function. A
contour delta function can be defined analogously, but instead of a normal step
function, a contour step function (B.13) is used

δ (t1, t2) =
d

dt1
θ (t1, t2) , (B.20)

whose explicit form is

δ< (t1, t2) = 0, (B.21)

δ> (t1, t2) = 0, (B.22)

δt (t1, t2) = δ (t1 − t2) , (B.23)

δt (t1, t2) = −δ (t1 − t2) , (B.24)

δR (t1, t2) = δ (t1 − t2) , (B.25)

δA (t1, t2) = −δ (t1 − t2) . (B.26)
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It is easy to see that this is also a function satisfying Eq. (B.3) with A<1 = 0, A>1 = 0,
and f = 1.

The simplest, and most important contour integral is of the following form

C (t1, t2) =

ˆ
dt3A (t1, t3)B (t3, t2) . (B.27)

The goal is to calculate all real-time components of C (lesser, greater, retarded,
and advanced) using only the real-time components of A and B.

The lesser component of C can be calculated by breaking the contour integral
into an integral over the upper branch and over the lower branch according to Eq.
(B.1). After the integral is broken, contour functions can be replaced by proper
real-time components

C< (t1, t2) =

ˆ
dt3A (t1,+1, t3)B (t3, t2,−1)

=

tmˆ

t0

dt3,+1A (t1,+1, t3,+1)B (t3,+1, t2,−1)−
tmˆ

t0

dt3,−1A (t1,+1, t3,−1)B (t3,−1, t2,−1)

=

tmˆ

t0

dt3A
t (t1, t3)B< (t3, t2) +

t0ˆ

tm

dt3A
< (t1, t3)Bt (t3, t2)

=

tmˆ

t0

dt3

(
At (t1, t3)B< (t3, t2)− A< (t1, t3)Bt (t3, t2)

)
. (B.28)

Equations (B.11) and (B.12) can be used to replace time and anti-time ordered
functions with advanced and retarded components

C< (t1, t2) =

tmˆ

t0

dt3
(
A< (t1, t2)B< (t1, t2) + AR (t1, t2)B< (t1, t2)

−A< (t1, t2)B< (t1, t2) + A< (t1, t2)BA (t1, t2)
)

=

tmˆ

t0

dt3
(
AR (t1, t3)B< (t3, t2) + A< (t1, t3)BA (t3, t2)

)
. (B.29)

A similar procedure can be done for the greater component to get

C> (t1, t2) =

tmˆ

t0

dt3
(
AR (t1, t3)B> (t3, t2) + A> (t1, t3)BA (t3, t2)

)
. (B.30)
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To derive formulas for advanced and retarded functions, first it is necessary to have
formulas for time and anti-time ordered components. Again, they are obtained in
the same way as for the lesser component

Ct (t1, t2) =

tmˆ

t0

dt3
(
AR (t1, t3)B> (t3, t2)

+A< (t1, t3)BA (t3, t2) + AR (t1, t3)BA (t3, t2)
)
, (B.31)

Ct (t1, t2) =

tmˆ

t0

dt3
(
AR (t1, t3)B< (t3, t1)

+A> (t1, t3)BA (t3, t2)− AR (t1, t3)BA (t3, t2)
)
. (B.32)

Using definitions of advanced (B.7) and retarded (B.8) functions, and formulas
(B.29), (B.30), (B.31), and (B.32), the final formulas for advanced and retarded
components are

CA (t1, t2) = C< (t1, t2)− Ct (t1, t2) =

tmˆ

t0

dt3A
A (t1, t3)BA (t3, t2) , (B.33)

CR (t1, t2) = Ct (t1, t2)− C< (t1, t2) =

tmˆ

t0

dt3A
R (t1, t3)BR (t3, t2) . (B.34)

The complete set of equations necessary to evaluate integral (B.27) is

C< (t1, t2) =

tmˆ

t0

dt3
(
AR (t1, t3)B< (t3, t2) + A< (t1, t3)BA (t3, t2)

)
, (B.35)

C> (t1, t2) =

tmˆ

t0

dt3
(
AR (t1, t3)B> (t3, t2) + A> (t1, t3)BA (t3, t2)

)
, (B.36)

CA (t1, t2) =

tmˆ

t0

dt3A
A (t1, t3)BA (t3, t2) , (B.37)

CR (t1, t2) =

tmˆ

t0

dt3A
R (t1, t3)BR (t3, t2) . (B.38)

If one needs, for example the time-ordered component Ct, then after calculating
C<, C>, CA, and CR, Eq. (B.11) can be used to get the time-ordered component.

One can easily see now why retarded and advanced functions are better choices
than time and anti-time ordered functions. The advanced and retarded components
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of integral (B.27) are expressed only by advanced and retarded components of func-
tions under the integral (A and B). If, instead of choosing lesser, greater, advanced,
and retarded functions to describe the integral (B.27), one chooses lesser, greater,
time and anti-time ordered functions, they will also form a complete set of four
equations. However, the equations for time and anti-time ordered components will
be expressed not only by time and anti-time ordered functions A and B but also by
the lesser and greater components of A and B. For example, Ct = AtBt − A<B>.

By setting A (t1, t3) = δ (t1, t3) and B (t3, t2) = C (t3, t2), and using equations
form the frame above, one can also easily show that contour delta function has the
following property

C (t1, t2) =

ˆ
dt3δ (t1, t3)C (t3, t2) . (B.39)

Finally, more complicated contour time integrals present in the Dyson equation
can be expressed by equations derived for the basic integral (B.27). For example,
the retarded component of

D (t1, t2) =

ˆ
dt3

ˆ
dt4A (t1, t3)B (t3, t4)C (t4, t2) , (B.40)

can be obtained by applying formula (B.38) to contour integral over t3 only, and
then using the same formula to get the retarded component of integral over t4

DR (t1, t2) =

tmˆ

t0

dt3A
R (t1, t3)

[ˆ
dt4B (t3, t4)C (t4, t2)

]R

=

tmˆ

t0

dt3

tmˆ

t0

dt4A
R (t1, t3)BR (t3, t4)CR (t4, t2) . (B.41)

The contour time limit frequently encountered in the Dyson equation has the
following form

A
(
t1, t

+
1

)
= lim

t2→t
+
1

A (t1, t2) . (B.42)

The meaning of this expression is that value t2 is approaching or equal to t1 but
t2 remains further on the contour than t1. This situation can occur in three cases:
when both times are on the upper branch and the value of t2 is infinitesimally larger
than t1; when both are on the lower branch and t2 is infinitesimally smaller than t1;
and finally when t1 is on the upper branch, t2 on lower branch and they both have
the same values t2 = t1 or t2 → t1. Inspection of equations (B.3), (B.4), and (B.5)
immediately reveals that all three cases lead to the same result

A
(
t1, t

+
1

)
= A< (t1, t1) , (B.43)

and thus the limit A
(
t1, t

+
1

)
is well defined. Similarly one can introduce and evaluate

other limits such as A
(
t+1 , t1

)
, A
(
t−1 , t1

)
, etc.



Appendix C

Functional derivative technique

This appendix contains intermediate calculations for Subsection 3.3.3. All notation
used here is explained in Chapter 3.

C.1 Functional derivatives of Green’s function over

external sources

To calculate the functional derivative of

G (1, 2) =
1

i~

〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 , (C.1)

over ρext (1) and Jext (1) it is necessary to evaluate variation δG as a function of
variations δρext and δJext. To do this it is best to start by evaluating variation the
δŜc.

The perturbation Hamiltonian
(
Ĥint,I

)
in the interaction picture is

Ĥint,I(t) =
∑
σ

ˆ
d3r

(
ρext (r, σ, t)

∑
σ′

ˆ
d3r′V (r− r′)

[
−eΨ̂†I (r′, σ′, t) Ψ̂I (r′, σ′, t)

]
−Jext (r, σ, t) ÂI (r, t) + Ĥk (ρext (r, σ, t) ,Jext (r, σ, t))

)
, (C.2)

where Ĥk does not contain any quantum mechanical operators, and the source terms
are formally different on different branches of time contour: ρext (t,+1) 6= ρext (t,−1)
and Jext (t,+1) 6= Jext (t,−1). With the above form of the Hamiltonian operator Ŝc

becomes

92
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Ŝc = Tc

[
exp

(
− i
~

ˆ
dt′Ĥint,I(t

′)

)]
= Tc

[
exp

(
− i
~

ˆ
d1

(
−eρext (1)

ˆ
d2V (1, 2)Ψ̂†I

(
2+
)

Ψ̂I (2)

−Jext (1) ÂI (1) + Ĥk (ρext (1) ,Jext (1))
))]

. (C.3)

Its first variation with respect to ρext and Ji,ext is

δŜc = Tc

[
Ŝc

1

i~

(
−e
ˆ
d1

ˆ
d2V (1, 2)δρext (1) Ψ̂†I

(
2+
)

Ψ̂I (2)

−
3∑
i=1

ˆ
d1δJi,ext (1) Âi,I (1) +

ˆ
d1

δĤk

δρext (1)
δρext (1)

+
3∑
i=1

ˆ
d1

δĤk

δJi,ext (1)
δJi,ext (1)

)]
. (C.4)

With the variation of Ŝc, one can calculate the variation of G in analogous way one
would calculate the regular differential. The variation of G is

δG (1, 2) = δGA (1, 2) + δGB (1, 2)

= − 1

i~

〈
δŜc

〉
〈
Ŝc

〉
〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉
+

1

i~

〈
Tc

[
δŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 , (C.5)

where δGA and δGB can be evaluated using Eq. (C.4) to obtain

δGA (1, 2) = −

− e

i~

ˆ
d3

ˆ
d4V (3, 4)δρext (3)

〈
Tc

[
ŜcΨ̂

†
I (4+) Ψ̂I (4)

]〉
〈
Ŝc

〉
− 1

i~

3∑
i=1

ˆ
d3δJi,ext (3)

〈
Tc

[
ŜcÂi,I (3)

]〉
〈
Ŝc

〉 +

ˆ
d3

δĤk

δρext (3)
δρext (3)

+
3∑
i=1

ˆ
d3

δĤk

δJi,ext (3)
δJi,ext (3)

)
1

i~

〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 , (C.6)
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and

δGB (1, 2) = −e
(

1

i~

)2 ˆ
d3

ˆ
d4V (3, 4)

〈
Tc

[
ŜcΨ̂

†
I (4+) Ψ̂I (4) Ψ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 δρext (3)

−
(

1

i~

)2 3∑
i=1

ˆ
d3δJi,ext (3)

〈
Tc

[
ŜcÂi,I (3) Ψ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉
+

(ˆ
d3

δĤk

δρext (3)
δρext (3) +

3∑
i=1

ˆ
d3

δĤk

δJi,ext (3)
δJi,ext (3)

)
1

i~

〈
Tc

[
ŜcΨ̂I (1) Ψ̂†I (2)

]〉
〈
Ŝc

〉 .

(C.7)

Summation of δGA (1, 2) and δGB (1, 2) gives the total variation of G with respect
to ρext and Jext. One can easily see that the contributions from Ĥk (kinetic energy
of the externally controlled sources) in δGA (1, 2) and δGB (1, 2) are the same but
with different signs, and after the summation they cancel each other. This confirms
what was said in Subsection 3.3.1, that the exact form of Ĥk has no influence on the
calculations presented here.

The variation δG (1, 2) can now be used to calculate the functional derivative of
G (1, 2) over ρext (3) and Jext (3)

δG (1, 2)

δρext (3)
= −e

ˆ
d4V (3, 4)G

(
4, 4+

)
G (1, 2)

− e
(

1

i~

)2 ˆ
d3V (1, 3)

〈
Tc

[
Ψ̂†
(
4+
)

Ψ̂ (4) Ψ̂ (1) Ψ̂† (2)
]〉
, (C.8)

δG (1, 2)

δJi,ext (3)
=

1

i~

〈
Âi (3)

〉
G (1, 2)−

(
1

i~

)2 〈
Tc

[
Âi (3) Ψ̂ (1) Ψ̂† (2)

]〉
. (C.9)

C.2 Derivation of the longitudinal self-energy and

related terms

With the definition of inverse Green’s function (3.70), one may calculate the func-
tional derivative from the delta function and substitute this delta function with Eq.
(3.70) to obtain

0 =
δ

δBext (3)
δ (1, 2) =

δ
´
d4G (1, 4)G−1 (4, 2)

δBext (3)
=

=

ˆ
d4
δG (1, 4)

δBext (3)
G−1 (4, 2) +

ˆ
d4G (1, 4)

δG−1 (4, 2)

δBext (3)
, (C.10)
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where Bext can be any of the external sources ρext or Ji,ext. With the above formula,
the derivative in the equation for longitudinal self-energy (3.80) can be shifted from
G to G−1

ΣL (1, 2) = −ei~
ˆ
d3

δG (1, 3)

δρext (1+)
G−1 (3, 2) = ei~

ˆ
d3G (1, 3)

δG−1 (3, 2)

δρext (1+)
, (C.11)

Under the assumption that δUeff/δJi,ext = 0, the equation for longitudinal self-energy
can be further rearranged

ΣL (1, 2) = ei~
ˆ
d3

ˆ
d4G (1, 3)

δG−1 (3, 2)

δUeff (4)

δUeff (4)

δρext (1+)

= ei~
ˆ
d3

ˆ
d4G (1, 3) γ (3, 2, 4)W

(
4, 1+

)
. (C.12)

The equation for the screened Coulomb potential W (3.84) can be derived using
only the definition of W (3.82), effective potential Ueff (3.76) and chain rule for
functional derivative (analogous to the chain rule for regular derivative)

W (1, 2) =
δUeff (1)

δρext (2)
= V (1, 2) +

ˆ
d3

ˆ
d4V (1, 3)

〈ρ̂ (1)〉
δUeff (4)

δUeff (4)

δρext (2)

= V (1, 2) +

ˆ
d3

ˆ
d4V (1, 3)p (3, 4)W (4, 2) . (C.13)

Finally, equations for the longitudinal polarization p and longitudinal vertex func-
tion γ are derived using the definitions of p, γ, ΣL,〈ρ̂ (1)〉 and the chain rule

p (1, 2) =
δ 〈ρ̂ (1)〉
δUeff (2)

= ei~
δG (1, 1+)

δUeff (2)
= ei~

ˆ
d3

ˆ
d4
δG (1, 3)

δUeff (2)
G−1 (3, 4)G

(
4, 1+

)
= −ei~

ˆ
d3

ˆ
d4G (1, 3)

δG−1 (3, 4)

δUeff (2)
G
(
4, 1+

)
= −ei~

ˆ
d3

ˆ
d4G (1, 3) γ (3, 4, 2)G

(
4, 1+

)
,

(C.14)

γ (1, 2, 3) =
δG−1 (1, 2)

δUeff (3)
= eδ (1, 2) δ (1, 3)− δΣL (1, 2)

δUeff (3)

= eδ (1, 2) δ (1, 3)−
ˆ
d4

ˆ
d5
δΣL (1, 2)

δG (4, 5)

δG (4, 5)

δUeff (3)

= eδ (1, 2) δ (1, 3)−
ˆ
d4

ˆ
d5
δΣL (1, 2)

δG (4, 5)

ˆ
d6

ˆ
d7
δG (4, 6)

δUeff (3)
G−1 (6, 7)G (7, 5)

= eδ (1, 2) δ (1, 3) +

ˆ
d4

ˆ
d5
δΣL (1, 2)

δG (4, 5)

ˆ
d6

ˆ
d7G (4, 6)

δG−1 (6, 7)

δUeff (3)
G (7, 5)

= eδ (1, 2) δ (1, 3) +

ˆ
d4

ˆ
d5

ˆ
d6

ˆ
d7
δΣL (1, 2)

δG (4, 5)
G (4, 6) γ (6, 7, 3)G (7, 5) .

(C.15)
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C.3 Derivation of the transverse self-energy and

related terms

The formula for the transverse self-energy (3.93) is derived exactly the same way
as the formula for the longitudinal self-energy: first, with the help of Eq. (C.10),
the functional derivative is shifted from G to G−1 and then, under assumption that

δ
〈
Âi (1)

〉
/δJi,ext = 0, the chain rule is used

ΣT (1, 2) = − e

m
(i~)2

3∑
i=1

∂i (1)

ˆ
d3

δG (1, 3)

δJi,ext (1+)
G−1 (3, 2)

= i~
3∑
i=1

(
ie~
m
∂i (1)

) ˆ
d3G (1, 3)

δG−1 (3, 2)

δJi,ext (1+)

= i~
ˆ
d3

ˆ
d4

3∑
i,j=1

(
ie~
m
∂i (1)

)
G (1, 3)

δG−1 (3, 2)

δ
〈
Âj (4)

〉 δ
〈
Âj (4)

〉
δJi,ext (1+)

= i~
ˆ
d3

ˆ
d4

3∑
i,j=1

(
i~e
m
∂i (1)

)
G (1, 3) Γj (3, 2, 4)Dj,i

(
4, 1+

)
. (C.16)

Photon Green’s function can be calculated by direct evaluation of the derivative

in (3.95). The variation of
〈
Âi (1)

〉
with respect to external current Jj,ext (2) is

calculated in the same as the variation of Green’s function given by Eqs. (C.6) and
(C.7)

δ
〈
Âi (1)

〉
= −

〈
Tc

[
δŜc

]〉
〈
Ŝc

〉
〈
Tc

[
ŜcÂi,I (1)

]〉
〈
Ŝc

〉 +

〈
Tc

[
δŜcÂi,I (3)

]〉
〈
Ŝc

〉
=

1

i~

3∑
j=1

ˆ
d2
〈
Âj (2)

〉〈
Âi (1)

〉
δJj,ext (2)

− 1

i~

3∑
j=1

ˆ
d2
〈
Tc

[
Âj (2) Âi (1)

]〉
δJj,ext (2)

+ (terms dependent only on δρext) . (C.17)

Combination of definition of photon Green’s function (3.95) and Eq. (C.17) gives
the following formula for photon Green’s function

Di,j (1, 2) = − 1

µ0

δ
〈
Âi (1)

〉
δJj,ext (2)

=
1

i~µ0

(〈
Tc

[
Âj (2) Âi (1)

]〉
−
〈
Âj (2)

〉〈
Âi (1)

〉)
.

(C.18)
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The first step to obtain Eq. (3.102) for Di,j (1, 2), is to use the equation of motion
for an operator in the Heisenberg picture (A.25) to calculate the second derivative
(regular) of the vector field operator Â over time

d2Âi
dt2

=
d

dt

(
dÂi
dt

)
=

1

i~

[
dÂi
dt

, Ĥ

]
−

, (C.19)

where it is assumed that Â does not have explicit time dependence causing the last
term in equation (A.25) to vanish. For brevity, here the following notation is used

Âi (t) = Âi, (C.20)

dÂi (t)

dt
=

˙̂
Ai. (C.21)

Using the definition of the Hamiltonian from Subsection 3.3.1, the second derivative
of Âi is

i~
d2Âi (r)

dt2
=

1

2

ˆ
d3r′

(
ε0

[
˙̂
Ai (r) ,

˙̂
Ai (r

′)
2
]
−

+
1

µ0

[
˙̂
Ai (r) ,

(
∇× Â (r′)

)2
]
−

)
−

3∑
j=1

∑
σ′

ˆ
d3r′

(
Ĵj (r′, σ′) + Jj,ext (r′, σ′)

) [
˙̂
Ai (r) , Âj (r′)

]
. (C.22)

The commutation relations for
˙̂
Ai and Âi are [63][

Âi (r) , Âj (r′)
]
−

=
[

˙̂
Ai (r) ,

˙̂
Aj (r′)

]
−

= 0, (C.23)

ε0

[
Âi (r) ,

˙̂
Aj (r′)

]
−

= i~
[
δi,jδ(r− r′) +

1

4π
∂i (r) ∂j (r)

1

|r− r′|

]
= i~δT

i,j(r− r′).

(C.24)

The commutator

[
˙̂
Ai (r) ,

(
∇× Â (r′)

)2
]
−

can be calculated using commutation re-

lations (C.23), (C.24), and the definition of the curl operator ∇×(
∇× Â (r)

)
i

= ei,l,m∂lÂm (r) , (C.25)

where ei,l,m is a Levi-Civita symbol. This approach yields[
˙̂
An (r) ,

(
∇× Â (r′)

)2
]
−

=
[

˙̂
An (r) ,

(
∇× Â (r′)

)
i

]
−

(
∇× Â (r′)

)
i

+
(
∇× Â (r′)

)
i

[
˙̂
An (r) ,

(
∇× Â (r′)

)
i

]
= ei,l,mei,α,β

([
˙̂
An (r) , ∂lÂm (r′)

]
−
∂α

˙̂
Aβ (r′) +

(
∂α

˙̂
Aβ (r′)

) [
˙̂
An (r) , ∂lÂm (r′)

]
−

)
=

2~
iε0

(
∂α (r′) δ(r′ − r)∂α (r′) Ân (r′)− ∂β (r′) δ(r′ − r)∂n (r′) Âβ (r′)

)
. (C.26)
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After integration over r′, the above formula becomes

ˆ
d3r′

[
˙̂
An (r) ,

(
∇× Â (r′)

)2
]
−

=

=
2~
iε0

ˆ
d3r′

(
∂α (r′) δ(r′ − r)∂α (r′) Ân (r′)− ∂β (r′) δ(r′ − r)∂n (r′) Âβ (r′)

)
=

= − 2~
iε0

ˆ
d3r′δ(r′ − r)

(
∂α (r′) ∂α (r′) Ân (r′)− ∂n (r′) ∂β (r′) Âβ (r′)

)
=

=
2i~
ε0
∂α (r) ∂α (r) Ân (r) =

2i~
ε0
∇2Ân (r) . (C.27)

Combination of Eqs. (C.27), (C.23), (C.24) and the initial equation for the second
time derivative of Â (C.22) gives

d2Âi (r)

dt2
=

1

ε0µ0

+

(
∇2Âi (r) + µ0

∑
j

∑
σ′

ˆ
d3r′δT

i,j(r− r′)
(
Ĵj (r′, σ′) + Jj,ext (r′, σ′)

))
.

(C.28)

Going back to full contour notation, one may write

(
∇2 (1)− ε0µ0

d2

dt2

)〈
Âi (1)

〉
= −µ0

∑
σ1

〈
ĴT
i (1)

〉
−µ0

ˆ
d2δT

i,j(r1−r2)δ (t1, t2) Jj,ext (2) ,

(C.29)
and by taking the functional derivative with respect to Ji,ext (2) on both sides of eqn.
(C.29) and using the chain rule on the RHS, one gets

(
∇2 (1)− ε0µ0

d2

dt21

) δ
〈
Âi (1)

〉
δJj,ext (2)

= −µ0δ
T
i,j(r1 − r2)δ (t1, t2)

− µ0

∑
σ1

3∑
k=1

ˆ
d3
δ
〈
ĴT
i (1)

〉
δ
〈
Âk (3)

〉 δ
〈
Âk (3)

〉
δ
〈
ĴT
j (2)

〉 . (C.30)

After using the definitions of transverse vertex function (3.94), transverse self-energy
(3.94), photon Green’s function (3.95), and notation (3.88), Eq. (C.30) becomes

(
∇2 (1)− 1

c2

d2

dt21

)
Di,j

(
1̃, 2̃
)

= δTi,j

(
1̃, 2̃
)

+

ˆ
d3̃P̃i,k

(
1̃, 3̃
)
Dk,j

(
3̃, 2̃
)
. (C.31)

Final formulas for the transverse polarization (3.107) and the transverse vertex
function (3.107) are calculated from their definitions by using the chain rule in exactly
the same way as it is done for their longitudinal counterparts.



Appendix D

Boundary self-energies

This appendix presents a method of imposing open boundary conditions on the Dyson
equation. The method presented here has been described for the case of an orthogonal
basis in [103, 90, 99] and for a a non-orthogonal basis in [97]. The major idea behind
this method in presented in Fig. D.1. The infinite system (in the z direction)
is separated into two semi-infinite leads and a finite device. It is assumed that
both leads are in equilibrium but with different quasi-Fermi levels. The difference
between the quasi-Fermi levels creates a non-equilibrium state in the device. It is
also assumed that inside the leads there are no realistic many-body interactions and
the only allowed scattering mechanism in the leads is phenomenological scattering
via so-called Büttiker probes [104, 105].

With the above assumptions about the leads, it is possible to solve the Dyson
equation for the device region only. The whole influence of the leads on the device
can be taken into account by adding additional boundary self-energies to the device
region. The exact method of calculation of these boundary self-energies is presented
below.

The Dyson equation and three supplementary equations for the whole system
(the device + semi-infinite leads) are

tRGR = 1, (D.1)

Figure D.1: Separation of the infinite system into the finite device and two quasi-
infinite leads. The nodes of the spatial grid in the left lead are numbered from −∞
to 0, in the device from 1 to N , and in the right lead from N + 1 to +∞.

99
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G< = GRΣ<GA, (D.2)

GA =
[
GR
]†
, (D.3)

G> = GR −GA + G<, (D.4)

where 1 is a unit matrix of infinite dimension (leads are infinite), and t is the inverse
of the retarded Green’s function

tR =
[
GR
]−1

= E−H (kt, E)−ΣR (kt, E) . (D.5)

All matrices in Eqs. (D.1)-(D.4) can be written as matrices containing sub-
matrices corresponding to each region (leads and device). For example, the retarded
Green’s function is

GR =

 GR
LL,LL GR

LL,D GR
LL,RL

GR
D,LL GR

D,D GR
D,RL

GR
RL,LL GR

RL,D GR
RL,RL

 , (D.6)

where indices are defined as: LL – left lead, RL – right lead, D – device.
The goal is to derive equations which allow to calculate Green’s function in the

device region: GR
D,D, GA

D,D, G<
D,D, G>

D,D. From the block diagonal form of the
Green’s function of the whole system (D.6), and Eqs. (D.3), (D.4), one can see that
the equations for the device part of the greater and advanced Greens functions are

GA
D,D =

[
GR
D,D

]†
, (D.7)

G>
D,D = GR

D,D −GA
D,D + G<

D,D. (D.8)

It is assumed that there is no direct interaction between leads, and thus the tR

matrix is

tR =

 tR
LL,LL tR

LL,D 0LL,RL
tR
D,LL tR

D,D tR
D,RL

0RL,LL tR
RL,D tR

RL,RL

 . (D.9)

Inserting Eq. (D.6) and Eq. (D.9) into the Dyson equation (D.1) gives 9 equations,
of which the relevant ones are

tR
D,LLGR

LL,D + tR
D,DGR

D,D + tR
D,RLGR

RL,D = 1D,D, (D.10)

tR
L,DGR

D,D + tR
L,LGR

L,D = 0L,D, (D.11)

where Eq. (D.11) represents two equations (one for each lead) with index L =
{RL,LL}. Equation (D.11) can be rearranged to get
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GR
L,D = −

[
tR
L,L

]−1
tR
L,DGR

D,D = −gR
L,LtR

L,DGR
D,D, (D.12)

where the retarded Green’s function of the lead is defined as

tR
L,LgR

L,L = 1L,L. (D.13)

Small gR as well as gA, and g<, are Green’s functions of leads when they are dis-
connected from the rest of the system (both the device and the other lead). Equation
(D.12) can be inserted into Eq. (D.10) to get the Dyson equation for the device region
only (

tR
D,D − tR

D,LLgR
LL,LLtR

LL,D − tR
D,RLgR

RL,RLtR
RL,D

)
GR
D,D = 1D,D. (D.14)

Using Eq. (D.5), the above equation can be expressed as

GR
D,D =

[
ED,D −HD,D −ΣR

D,D −ΣB,R
D,D

]−1

, (D.15)

where the retarded boundary self-energy for the device is

ΣB,R
D,D = ΣBL,R

D,D + ΣBR,R
D,D = tR

D,LLgR
LL,LLtR

LL,D + tR
D,RLgR

RL,RLtR
RL,D. (D.16)

In general, the boundary self-energy ΣB,R
D,D is going to be dependent on GR

D,D

because terms tR
D,LL, tR

LL,D, tR
D,RL, and tR

RL,D contain device-lead self-energies ΣR
D,LL,

ΣR
LL,D, ΣR

D,RL, and ΣR
RL,D which are dependent on GR

D,D. However, here it is assumed
that all device-lead (lesser, greater, advanced, and retarded) self-energies are equal
to zero, so all boundary self-energies can be calculated independently of Green’s
functions.

To calculate the lesser boundary self-energy, one needs expressions for GA
LL,D,

GA
RL,D, GR

D,LL, and GR
D,RL. The formula for GR

D,LL and GR
D,RL is obtained from the

same matrix equation as Eq. (D.11)

GR
D,L = −GR

D,DtR
D,LgR

L,L. (D.17)

To get formula for GA
LL,D and GA

RL,D, one can use the relation given by Eq. (4.21)

GA
L,D =

[
GR
D,L

]†
= −

[
gR
L,L

]† [
tR
L,D

]† [
GR
D,D

]†
= −gA

L,L

[
tR
L,D

]†
GA
D,D, (D.18)

where the advanced Green’s function of the lead is

gA
L,L =

[
gR
L,L

]†
. (D.19)

Keeping in mind that all lead-device and left lead-right lead self-energies are zero,
the lesser self-energy reduces to

Σ< =

 Σ<
LL,LL 0LL,D 0LL,RL

0D,LL Σ<
D,D 0D,RL

0RL,LL 0RL,D Σ<
RL,RL

 , (D.20)
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and, using Eq. (D.2) for the lesser Green’s function, one gets

G<
D,D = GR

D,DΣ<
D,DGA

D,D

+ GR
D,LLΣ<

LL,LLGA
LL,D + GR

D,RLΣ<
RL,RLGA

RL,D. (D.21)

The left lead component of Eq. (D.21) is

GR
D,LLΣ<

LL,LLGA
LL,D

= GR
D,DtR

D,LLgR
LL,LLΣ<

LL,LLgA
LL,LL

[
tR
LL,D

]†
GA
D,D

= GR
D,DtR

D,LLg<LL,LL
[
tR
LL,D

]†
GA
D,D, (D.22)

and the right lead term is

GR
D,RLΣ<

RL,RLGA
RL,D = GR

D,DtR
D,RLg<RL,RL

[
tR
RL,D

]†
GA
D,D, (D.23)

where the lesser Green’s function of the lead is

g<L,L = gR
L,LΣ<

L,LgA
L,L. (D.24)

Inserting Eqs. (D.22) and (D.23) into Eq. (D.21) gives the final formula for the
lesser Green’s function of the device

G<
D,D = GR

D,D

(
Σ<
D,D + ΣB,<

D,D

)
GA
D,D, (D.25)

where

ΣB,<
D,D = ΣBL,<

D,D + ΣBR,<
D,D = tR

D,LLg<LL,LL
[
tR
LL,D

]†
+ tR

D,RLg<RL,RL
[
tR
RL,D

]†
. (D.26)

In the following derivation of ΣB,R
D,D and ΣB,<

D,D it is assumed that both E and H are
non-zero only at elements corresponding to nodes (a− 1, a), (a, a), and (a, a+ 1) –
those matrices are block-tridiagonal where the dimension of the block is determined
by the type of Hamiltonian used. In general, when dealing with Hamiltonians with
larger number of off-diagonals, one can always introduce virtual nodes made of two or
more real nodes. For example, assume that 2-band Hamiltonian with 100 nodes has
1 main diagonal and 4 off-diagonals each made of 2×2 sub-matrices. The number of
off-diagonals may be reduced from 4 to 2 by interpreting this Hamiltonian as 4-band
with 50 virtual nodes. Now, the diagonal and 2 off-diagonals are each made of 4× 4
sub-matrices because each virtual node contains 2 real nodes.

Numbering method for spatial nodes in the whole system (device + leads) is
shown in Fig. D.1. For the left lead-device interface, elements tR

LL,D and tR
D,LL have

the following form

tR
LL,D =


...

...
...

...
...

...
0 0 · · · 0

tR
0,1 0 · · · 0

 , (D.27)

and
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tR
D,LL =


· · · · · · 0 tR

1,0

· · · · · · 0 0
...

...
· · · · · · 0 0

 , (D.28)

where tR
0,1 = E0,1−H0,1, and tR

1,0 = E1,0−H1,0. The elements Ea,b and Ha,b are sub-
matrices of the full matrices E, H from Eq. (D.5), corresponding to the particular
grid points a, b. The terms tR

LL,D and tR
D,LL have such form because it is assumed

that there are no lead-device self-energies, and all other elements of tR are block-
tridiagonal. Inserting Eqs. (D.27) and (D.28) into Eq. (D.16) gives the following
equation for the left boundary self-energy

ΣBL,R
D,D = tR

D,LLgR
LL,LLtR

LL,D

=


· · · · · · 0 tR

1,0

· · · · · · 0 0
...

...
· · · · · · 0 0




. . .
...

...
. . .

...
...

· · · · · · gR
−1,−1 gR

−1,0

· · · · · · gR
0,−1 gR

0,0




...
...

...
...

...
...

0 0 · · · 0
tR

0,1 0 · · · 0



=


· · · · · · tR

1,0g
R
0,−1 tR

1,0g
R
0,0

· · · · · · 0 0
...

...
· · · · · · 0 0




...
...

...
...

...
...

0 0 · · · 0
tR

0,1 0 · · · 0



=


tR

1,0g
R
0,0t

R
0,1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (D.29)

A similar procedure is done for the right lead, this time

tR
D,RL =


...

...
...

...
...

...
0 0 · · · 0

tR
N,N+1 0 · · · 0

 , (D.30)

tR
RL,R =


· · · · · · 0 tR

N+1,1

· · · · · · 0 0
...

...
· · · · · · 0 0

 , (D.31)

and the full retarded boundary self-energy becomes
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ΣB,R
D,D =


tR

1,0g
R
0,0t

R
0,1 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 tR

N,N+1g
R
N+1,N+1t

R
N+1,N

 . (D.32)

Exactly the same procedure is repeated for ΣB,<
D,D, given by Eq. (D.26). Because

there are no lead-device self-energies, tR
a,b =

[
tR
]†
a,b

for all (a, b) at the lead-device

interfaces ((1, 0), (0, 1), (N + 1, N), (N,N + 1)), and the final equation for ΣB,<
D,D is

the same as Eq. (D.32) but with g< instead of gR.
Because leads are in equilibrium, g<0,0 and g<N+1,N+1 can be calculated from gR

0,0

and gR
N+1,N+1 using the fluctuation-dissipation theorem [97, 90]. The lesser Green’s

functions in the leads are

g<0,0 (E) = −f (E − FL)
(
gR

0,0 −
[
gR

0,0

]†)
(D.33)

for the left lead, and

g<N+1,N+1 (E) = −f (E − FR)
(
gR
N+1,N+1 −

[
gR
N+1,N+1

]†)
, (D.34)

for the right lead. In the above equations, f (E) is a Fermi-Dirac distribution func-
tion, FL the quasi-Fermi level (chemical potential) of the left lead, and FR the quasi-
Fermi level of the right lead.

To get the final formulas for ΣB,R
D,D and ΣB,<

D,D, one still has to calculate the retarded

Green’s functions of the leads gR
0,0 and gR

N+1,N+1. Retarded Greens functions are
calculated using formula (D.13). The single-particle Hamiltonian in this equation is
the same as the one in the device but with constant potential. For the left lead this
potential is equal to the potential at the first node of the device, and for the right
lead it is the same as the potential at last node of the device. As mentioned before,
the retarded self-energy in the leads is assumed to have form of Büttiker probe

ΣR
L,L =

[
ΣA
L,L

]†
= iηSL,L, (D.35)

where η is a small real number or zero. With the above definition, the Dyson equation
for the retarded Green’s function in the lead (D.13) becomes

tR
L,LgR

L,L = (EL,L −HL,L − iηSL,L) gR
L,L = 1. (D.36)

Under the assumption that all nodes in the leads are uniformly distributed and
E, H, and ΣR, are the same on every node of the lead, Eq. (D.36) can be written as
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tR
LL,LLgR

LL,LL =

=


. . .

...
...

...
...

· · · D TU 0 0
· · · TL D TU 0
· · · 0 TL D TU

· · · 0 0 TL D




. . .
...

...
...

· · · gR
−2,−2 gR

−2,−1 gR
−2,0

· · · gR
−1,−2 gR

−1,−1 gR
−1,0

· · · gR
0,−2 gR

0,−1 gR
0,0



=


. . .

...
...

...
. . . 0 0 0

· · · 0 1 0 0
· · · 0 0 1 0
· · · 0 0 0 1

 , (D.37)

where D = tR
0,0, TL = tR

0,−1, TU = tR
−1,0.

The following two equations can be extracted form Eq. (D.37)

TLgR
−1,0 + DgR

0,0 = 1, (D.38)

and

TLgR
a−2,a + DgR

a−1,i + TUgR
a,a = 0, (a ≤ 0) . (D.39)

To construct solutions satisfying Eq. (D.39) one can use functions φa satisfying
the following equations

. . .
...

...
...

...
· · · D TU 0 0
· · · TL D TU 0
· · · 0 TL D TU

· · · 0 0 TL D




...

φ−3

φ−2

φ−1

φ0

 =


...

0V

0V

0V

0V

 , (D.40)

and

TLφa−2 + Dφa−1 + TUφa = 0V. (D.41)

If matrices D, TL, TU, 0 are n×n matrices, then φa and 0V are n×1 vectors, where
the “V” subscript was added to distinguish between zero matrices and zero vectors.
Because the distance between adjacent nodes is constant and equal to ∆, vectors φa

have to be periodic

φa = φ0e
ik(za−z0) = φ0e

−aik∆, (D.42)

where k is constant, and

φa−1 = φae
−ik∆, (D.43)
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φa−2 = φae
−2ik∆ = φa−1e

−ik∆. (D.44)

Inserting the two above results into Eq. (D.41) leads to set of equations for φa{
TLφa−1e

−ik∆ + Dφae
−ik∆ + TUφa = 0V

φ0 = φa−1e
ik∆

, (D.45)

which in matrix form is(
D TL

1 0

)(
φa

φa−1

)
= eik∆

(
−TU 1

0 1

)(
φa

φa−1

)
. (D.46)

The above equation can be rearranged into an eigenequation for
(
φa,φa−1

)
(
−TU 0

0 1

)−1(
D TL

1 0

)(
φa

φa−1

)
= eik∆

(
φa

φa−1

)
. (D.47)

In general there are 2n solutions of Eq. (D.47), of which only n will be used
to construct the retarded Green’s function. The condition for choosing the right
solutions is shown later but for now it is assumed that the proper solutions are
chosen. The retarded Green‘s function satisfying Eq. (D.39) and its Hermitian
adjoint is

gR
a,b = Φeik(za−z0)g̃R

[
eik(zb−z0)

]†
Φ† (a < b ≤ 0) . (D.48)

In the above equation, Φ is an n × n matrix which holds n proper eigenvectors φ0

(φa with a = 0) of Eq. (D.47)

Φ =
[
φ1

0,φ
2
0, . . . ,φ

n
0

]
. (D.49)

eik(za−z0) is an n× n matrix whose elements are[
eik(za−z0)

]
µ,ν

= δµ,νe
ikµ(za−z0), (D.50)

where µ is an eigenvalue number, and g̃R is an n× n matrix yet to be determined.
Validity of (D.48) can be checked by inserting it into Eq. (D.39) and its adjoint.

To determine g̃R, formula (D.48) is inserted into eq. (D.38) to get

TLΦe−ik∆g̃RΦ† + DΦg̃RΦ† = 1, (D.51)

which can be rearranged to obtain the final formula for g̃R

g̃R =
[
Φ†TLΦe−ik∆ + Φ†DΦ

]−1
. (D.52)

Combination of Eqs. (D.52) and (D.47) gives the final equation for the retarded
Green’s function of the left lead

gR
a,b = Φeik(za−z0)

[
Φ†TLΦe−ik∆ + Φ†DΦ

]−1 [
eik(zb−z0)

]†
Φ†. (D.53)

The equation for gR
0,0 necessary to calculate boundary self-energy of the left lead is
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gR
0,0 =

[
TLΦe−ik∆Φ−1 + D

]−1
. (D.54)

To determine which eigenvectors of Eq. (D.47) should be used to construct the
retarded Green’s function, one can take Eq. (D.48) and set a and b to be 0 to get

g̃RΦ† = Φ−1gR
0,0. (D.55)

The above result can be again inserted into Eq. (D.48), but this time for arbitrary
a and b = 0, to get

gR
a,0 = Φeaik∆Φ−1gR

0,0. (D.56)

Retarded Green’s function should decrease to zero with increasing distance ∆a and
thus the condition for choosing proper eigenvalues is∣∣eikµ∆

∣∣ > 1. (D.57)

In the case that ΣR
LL,LL = ΣA

LL,LL = 0, the Dyson equations for the retarded
and the advanced Green’s function are identical, and the above condition cannot
always be used because there are cases when

∣∣eikµ∆
∣∣ = 1. In this case, half the

solutions of Eq. (D.47) correspond to the retarded Green’s function and another
half to the advanced Green’s function. To choose the solutions corresponding to
the retarded Green’s function one has to refer to the physical interpretation of the
retarded Green’s function [88, 111].

The retarded Green’s function gR
a,b describes propagation of perturbation originat-

ing at z = zb and terminating at z = za. Because Eq. (D.48) is valid for a < b only,
the solutions corresponding to the retarded Green’s function, are waves propagating
from right to left i.e., solutions for which dE

dkµ
< 0.

The procedure of finding the retarded Green’s function for right lead is analogous,
and thus only major points are shown. For right lead one has

tR
RL,RLgR

RL =


D TU 0 0 · · ·
TL D TU 0 · · ·
0 TL D TU · · ·
0 0 TL D · · ·
...

...
...

...
. . .




gR
N+1,N+1 gR

N+1,N+2 gR
N+1,N+3 · · ·

gR
N+2,N+1 gR

N+2,N+2 gR
N+2,N+3 · · ·

gR
N+3,N+1 gR

N+3,N+2 gR
N+3,N+3 · · ·

...
...

...
. . .



=


1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0

. . .
...

...
...

. . .

 , (D.58)

where D = tR
N+1,N+1, TL = tR

N+2,N+1, and TU = tR
N+1,N+2. It gives two equations

analogous to (D.38) and (D.39)
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TUgR
N+2,N+1 + DgR

N+1,N+1 = 1, (D.59)

TLgR
a,a + DgR

a+1,a + TUgR
a+2,a = 0 (a ≥ N + 1) . (D.60)

This time vectors φa satisfy

φa = φN+1e
ik(za−zN+1) = φN+1e

aik∆, (D.61)

and the eigenequation for
(
φa,φa+1

)
is(

−TL 0
0 1

)−1(
D TU

1 0

)(
φa

φa+1

)
= e−ik∆

(
φa

φa+1

)
. (D.62)

Solution of Eq. (D.60) constructed from functions φa is

gR
a,b = Φeik(za−zN+1)g̃R

[
eik(zb−zN+1)

]†
Φ† (a > b ≥ N + 1) , (D.63)

and g̃R is

g̃R =
[
Φ†TUΦeik∆ + Φ†DΦ

]−1
. (D.64)

Finally, the retarded Green’s function necessary to calculate right boundary self-
energy is

gR
N+1,N+1 =

[
TUΦeik∆Φ−1 + D

]−1
. (D.65)

The condition for physical eigenvalues is derived by inserting Eq. (D.65) into Eq.
(D.63) and taking a = b = N + 1 which results in

g̃RΦ† = Φ−1gR
N+1,N+1. (D.66)

Equation (D.66) is inserted again into Eq. (D.63) for b = N + 1 which gives

gR
a,N+1 = Φeaik∆Φ−1gR

N+1,N+1, (D.67)

and, because the retarded Green’s function should decrease to zero with increasing
distance ∆a, the condition for choosing proper eigenvalues is∣∣eikµ∆

∣∣ < 1. (D.68)

In the case thatΣR
LL,LL = ΣA

LL,LL = 0, one can use the same reasoning as for
the left lead to see that solutions corresponding to the retarded Green’s function are
waves propagating from left to right i.e., solutions for which dE

dkµ
> 0.



Appendix E

Polarization and electron-photon
self-energy

This appendix presents all intermediate steps between the general formulas for trans-
verse self-energy (3.93) and transverse polarization (3.107), and their final forms
given by Eqs. (4.100) and (4.60).

E.1 Transverse polarization

In the first order approximation, the transverse vertex function in Eq. (3.106) is
approximated by its first order term

Γi (1, 2, 3) =
i~eµ0

m
δ (1, 3) ∂i (1) δ (1, 2) . (E.1)

Under the assumption that all currents are transverse (this assumption is discussed
in Subsection 4.4.1), the transverse delta function in Eq. (3.107) can be replaced
with the regular delta function. Insertion of Eq. (E.1) into Eq. (3.107) yields

Pi,j (1, 2) = i~
ˆ
d4

ˆ
d5Πi

(
1, 1+

)
G (1, 4)

i~eµ0

m
δ (4, 5) ∂j (4) δ (4, 2)G

(
5, 1+

)
= −~2eµ0

m

ˆ
d4Πi

(
1, 1+

)
G (1, 4)

i~eµ0

m
∂j (4) δ (4, 2)G

(
4, 1+

)
= −~2eµ0

m

ˆ
d4Πi

(
1, 1+

)
G (1, 4)

(
[∂j (4) δ (4, 2)]G

(
4, 1+

)
+ δ (4, 2) ∂j (4)G

(
4, 1+

))
= −~2eµ0

m
Πi

(
1, 1+

) (
− [∂j (2)G (1, 2)]G

(
2, 1+

)
−G (1, 2) ∂j (2)G

(
2, 1+

)
+G (1, 2) ∂j (2)G

(
2, 1+

))
=

~2eµ0

m
Πi

(
1, 1+

)
[∂j (2)G (1, 2)]G

(
2, 1+

)
= −i~

3e2µ0

2m2

(
∂i (1)− ∂i

(
1+
))

[∂j (2)G (1, 2)]G
(
2, 1+

)
. (E.2)

109
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The Green’s functions are then expanded in basis (4.12), and the (y, y) component
of the transverse polarization is

Py,y (1, 2) = −i~
3e2µ0

2m2

1

A2

∑
kt,k

′
t

∑
α,β,µ,ν

∑
a,b,m,n

δσ1,σαδσ1,σνδσ2,σβδσ2,σµ

×Gαa,βb (kt, t1 − t2)Gµm,νn

(
k
′

t, t2 − t1
)
wa (z1)w∗b (z2)wm (z2)w∗n (z1)

×
(
∂y1 − ∂y1+

) [
∂y2e

ikt(r1,t−r2,t)uα′ (r1,c)u
∗
β′ (r2,c)

]
eik
′
t(r2,t−r1+,t)uµ′ (r2,c)u

∗
ν′ (r1+,c) ,

(E.3)

where α = {α′, σα} etc. The average polarization is obtained by integrating Eq.
(E.3) over the primitive cell, summing over spin indices σ1, σ2, and applying a Fourier
transform with respect to (r1,t − r2,t)

P av (z1, z2,qt, t1 − t2) =
∑
σ1,σ2

ˆ
d2 (r1,t − r2,t) e

−iqt(r1,t−r2,t)
1

V 2
c

ˆ
d3r1,c

ˆ
d3r2,cPy,y (1, 2) .

(E.4)
The last term in Eq. (E.3), call it X, is

X =
(
∂y1 − ∂y1+

)
eik
′
t(r2,t−r1+,t)uµ′ (r2,c)u

∗
ν′ (r1+,c) ∂y2e

ikt(r1,t−r2,t)uα′ (r1,c)u
∗
β′ (r2,c)

= eik
′
t(r2,t−r1+,t)

(
∂y1 + ik

′

y − ∂y1+

)
uµ′ (r2,c)u

∗
ν′ (r1+,c)

× eikt(r1,t−r2,t) (−iky + ∂y2)uα′ (r1,c)u
∗
β′ (r2,c)

= e
i
(
k
′
t−kt

)
(r2,t−r1,t)

(
∂y1 + iky + ik

′

y − ∂y1+

)
× uµ′ (r2,c)u

∗
ν′ (r1+,c) (−iky,t + ∂y2)uα′ (r1,c)u

∗
β′ (r2,c)

= e
i
(
kt−k

′
t

)
(r1,t−r2,t)

{(
iky + ik

′

y

)
uµ′ (r2,c)u

∗
ν′ (r1,c) (−iky + ∂y2)uα′ (r1,c)u

∗
β′ (r2,c)

+ uµ′ (r2,c)u
∗
ν′ (r1,c) (−iky + ∂y2) [∂y1uα′ (r1,c)]u

∗
β′ (r2,c)

−uµ′ (r2,c) [∂y1u
∗
ν′ (r1,c)] (−iky + ∂y2)uα′ (r1,c)u

∗
β′ (r2,c)

}
. (E.5)

The momentum matrix is defined as

piα,β =
1

Vc

ˆ
d3rcu

∗
α′ (rc)

~
i
∂iuβ′ (rc) δσα,σβ . (E.6)

The above formula for y component gives

1

Vc

ˆ
d3rcu

∗
α (rc) ∂yuβ (rc) δσα,σβ =

i

~
pyα,β =

i

~
pα,β, (E.7)

1

Vc

ˆ
d3rcuα (rc) ∂yu

∗
β (rc) δσα,σβ = − i

~
p∗α,β. (E.8)
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With the above definitions of the momentum matrix, the formula (E.5) averaged
over the primitive cell is

∑
σ1,σ2

ˆ
d2 (r1,t − r2,t) e

−iqt(r1,t−r2,t)
1

V 2
c

ˆ
d3r1,c

ˆ
d3r2,cδσ1,σαδσ1,σνδσ2,σβδσ2,σµX

=

ˆ
d2 (r1,t − r2,t) e

i
(
kt−k

′
t−qt

)
(r1,t−r2,t)

((
iky + ik

′

y

)(
−iky −

i

~
p∗µ,β

)
δν,α

+

(
−iky −

i

~
p∗µ,β

)
i

~
pν,α −

(
−iky −

i

~
p∗µ,β

)(
− i
~
p∗α,ν

))
= δk′t,kt−qt

(
−iky −

i

~
p∗µ,β

)((
iky + ik

′

y

)
δν,α +

i

~
pν,α +

i

~
pν,α

)
. (E.9)

Plugging Eqs. (E.3), and (E.9), into Eq. (E.4) gives

P av (z1, z2,qt, t1 − t2) =
i~3e2µ0

2m2

1

A

∑
kt

∑
α,β,µ,ν

∑
a,b,m,n

×Gαa,βb (kt, t1 − t2)Gµm,νn (kt − qt, t2 − t1)wa (z1)w∗b (z2)wm (z2)w∗n (z1)

×
(
iky +

i

~
p∗µ,β

)(
(2iky + iqy) δν,α +

2i

~
pν,α

)
. (E.10)

As mentioned in the Subsection 4.4.1, the wavelength of the photons in much
greater than the wavelength of the quasiparticles and qt � kt. Also p � ky, so the
terms proportional to p2 in the above formula are dominating. Taking those facts
into account, values of P av (z1, z2,qt) at the nodes z1 = za, z2 = zb can be determined
from

P av (za, zb,qt, t1 − t2) = −i~e
2µ0

m2

1

A

∑
kt

∑
α,β,µ,ν

Gαa,βb (kt, t1 − t2) p∗α,νpβ,µGµb,νa (kt, t2 − t1) .

(E.11)
The final formula for the lesser and greater polarizations is obtained by fixing the

contour branches of t1 and t2 in Eq. (E.11), applying a temporal Fourier transform
and an inverse spatial Fourier transform with respect to qt. The final formula is

P av,≶ (ra, rb, ~ω) = −i~e
2µ0

m2
δ (ra,t − rb,t)

ˆ
dE

2π

1

A

∑
kt

∑
α,β,µ,ν

G≶
αa,βb (kt, E + ~ω)

× p∗α,νpβ,µG
≷
µb,νa (kt, E) . (E.12)

E.2 Transverse (electron-photon) self-energy

Approximated transverse vertex function from Eq. (E.1) inserted into the general
formula for transverse self-energy (3.93) gives
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Σ (1, 2) = i~
ˆ
d3

ˆ
d4

3∑
i,j=1

(
i~e
m
∂i (1)

)
G (1, 3)

i~eµ0

m
δ (3, 4) ∂j (3) δ (3, 2)Dj,i

(
4, 1+

)
= −i~µ0

(
e~
m

)2 3∑
i,j=1

ˆ
d3∂i (1)G (1, 3) ∂j (3) δ (3, 2)Dj,i

(
3, 1+

)
= −i~µ0

(
e~
m

)2 3∑
i,j=1

ˆ
d3∂i (1)G (1, 3) ([∂j (3) δ (3, 2)] + δ (3, 2) ∂j (3))Dj,i

(
3, 1+

)
= −i~µ0

(
e~
m

)2 3∑
i,j=1

(−∂i (1) [∂j (2)G (1, 2)]

−∂i (1)G (1, 2) ∂j (2) + ∂i (1)G (1, 3) ∂j (2))Dj,i

(
2, 1+

)
= i~µ0

(
e~
m

)2 3∑
i,j=1

[∂i (1) ∂j (2)G (1, 2)]Dj,i (2, 1) . (E.13)

Under the assumption that Dj,i (2, 1) = δi,yδj,yD (z2, z1, t2 − t1), the right-hand
side of Eq. (E.13) is expanded in the basis (4.12)

Σ (1, 2) = i~µ0

(
e~
m

)2
1

A

∑
µ,m,ν,n,kt

wm (z1)w∗n (z2)Gµm,νn (kt, t1 − t2)

×D (z2, z1, t2 − t1) ∂y1∂y2e
ikt(r1,t−r2,t)uµ′ (r1,c)u

∗
ν′ (r2,c) δσ1,σµδσ2,σν

= i~µ0

(
e~
m

)2
1

A

∑
µ,m,ν,n,kt

wm (z1)w∗n (z2)Gµm,νn (kt, t1 − t2)D (z2, z1, t2 − t1)

× (iky + ∂y1) (−iky + ∂y2)uµ′ (r1,c)u
∗
ν′ (r2,c) δσ1,σµδσ2,σν . (E.14)

Multiplying both sides from the left by 1
Vc

´
d3r1,cu

∗
α′ (r1,c),

1
Vc

´
d3r2,cuβ′ (r2,c),
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and setting σ1 = σα, σ2 = σβ gives

1

A

∑
µ,m,ν,n,kt

wm (z1)w∗n (z2) δµ,αδν,βΣµm,νn (kt, t1 − t2)

= i~µ0
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A
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+
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1
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= i~µ0

(
e~
m

)2
1
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∑
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×
(
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yδµ,αδν,β +

pα,µp
∗
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~2
+ δµ,αky

p∗β,ν
~

+ δν,βky
pα,µ
~

)
. (E.15)

Similarly as during calculations of the polarization, only terms proportional to p2

are left. It is also assumed that D (z2, z1, t2 − t1) is constant for z1 and z2 inside the
device (this approximation is discussed in Subsection 4.4.1) and after multiplying
both sides by

´
dz1w

∗
a (z1) and

´
dz2wb (z2), Eq. (E.15) becomes

∑
µ,m,ν,n

Sαa,µmΣµm,νn (kt, t1 − t2)Sνn,βb = i~µ0

( e
m

)2

× pαa,µmGµm,νn (kt, t1 − t2) pνn,βbD (t2 − t1) , (E.16)

where

pαa,µm = pα,µ

ˆ
dzw∗a (z)wb (z) . (E.17)

Applying of the temporal a Fourier transform to lesser and greater component of
transverse self-energy in Eq. (E.16) gives

∑
µ,m,ν,n

Sαa,µmΣ≶
µm,νn (kt, E)Sνn,βb = i~µ0

( e
m

)2

×
∑

µ,m,ν,n

ˆ +∞

−∞

d (~ω)

2π
pαa,µmG

≶
µm,νn (kt, E + ~ω) pνn,βbD

≷ (~ω) . (E.18)

The above formula can be also expressed in a compact matrix notation
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Σ
′≶ (kt, E) = SΣ≶ (kt, E) S = iµ0

( e
m

)2
ˆ +∞

−∞

d (~ω)

2π
D≷ (~ω) pG≶ (kt, E + ~ω) p.

(E.19)
By taking a temporal Fourier transform of Eq. (3.101) it can be shown quite

generally that

D≷
i,j (r1, r2, ~ω) = D≶

j,i (r2, r1,−~ω) , (E.20)

and Eq. (E.19) can be written as

Σ
′≶ (kt, E) = iµ0

( e
m

)2
ˆ ∞

0

d (~ω)

2π
p
(
D≷ (~ω) G≶ (kt, E + ~ω)−D≶ (~ω) G≶ (kt, E − ~ω)

)
p.

(E.21)
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