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Abstract 
 

Sugar fatty acid esters are of practical importance and have a variety of applications that 

include biodegradable detergents and emulsifiers in resin polymerization. Traditionally, they are 

synthesized chemically with low selectivity and different degrees of esterification. In this study, 

different sugar esters were enzymatically synthesized from a variety of sugars/sugar alcohols and 

fatty acids. The removal of water in an esterification reaction is critical in determining the 

reaction direction due to the reversibility of the reaction. Furthermore, if the water generated in 

the reaction is not removed continuously lower ester yields and a significant reduction in the 

activity and stability of immobilized enzymes can occur due to partial inhibition. The enzyme 

used was Lipozyme Candida antartica Lipase B (CAL-B) and the approach taken here was to 

investigate the feasibility of using Celite® supported sol-gel immobilized enzymes (CSSIE) as 

biocatalysts. The sol-gel consisted of PTMS (trimethoxypropylsilane) and TMOS 

(tetramethylorthosilicate) and was supported by three different types of Celite® – R632, R633 

and R647.  CSSIE was dried and reused a number of times without a significant loss of activity.  

The CSSIE were found to behave as highly porous adsorbents with a high capacity to absorb 

water by selective uptake of polar substances. Their strong affinity for water not only prevented 

significant co-adsorption problems but also offered the consistent performance required for 

industrial applications. 

Maximum yield of product was obtained using CSSIE and results were compared to literature 

data using a variety of biocatalysts and moisture adsorbing media including unsupported sol-

gels, Novozym, Celite® and molecular sieves. Although the moisture adsorbing capacity of the 

CSSIE decreased with reuse due to saturation, sol-gel aging marginally increased enzyme 
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activity with a half life of 8 repeated uses with the highest conversion obtained when using the 

supported sol-gel 8-days after initial preparation. No appreciable side products were observed for 

any of the reaction combinations examined and the highest product yield (96.7%) was obtained 

for the product sorbitan monooleate. Experiments were also conducted to determine conversion 

and moisture content as a function of substrate molar ratio, quantity of enzyme, type of solvent, 

nature of the fatty acid and reaction temperature. The highest conversion was obtained by the use 

of acetone as the reaction solvent, longer chain fatty acids and a reaction temperature of 40
°
C. 

The maximum protein immobilization of 85% of the supplied protein was obtained using sol-gel 

supported by Celite®-R633.  Sol-gel clusters on the surface of the Celite® were observed 

following repeated reuse of the CSSIE which may partially explain the decrease in conversion 

observed with reuse. 
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1. Literature Review 
 

Sugar fatty acid esters are widely used in the food, pharmaceutical, detergent, agricultural, 

fine chemical and personal care industries. They are tasteless, odorless, non-toxic, non-irritant, 

and biodegradable and have practical importance as emulsifiers, wetting agents, surfactants, 

detergents and lubricants (Colbert, 1974). They can be synthesized by an esterification reaction 

between sugars/sugar alcohols (e.g. sucrose, fructose, glucose, sorbitol, xylitol) and fatty acids 

(e.g. oleic acid, palmitic acid, myristic acid, stearic acid, caprylic acid).They are surface active in 

aqueous solutions and consist of a polar head (sugar) and a non-polar tail (fatty acid) (Colbert, 

1974). Thus, they are amphiphillic and nonionic based on the absence of formally charged 

groups on the sugar head group. To overcome the problems of synthesizing sugar esters 

chemically as discussed in Section 1.4, this study explored an enzymatic approach using lipase 

immobilized in a sol-gel matrix supported on a Celite® carrier.  

Celite® supported sol-gel immobilized enzymes (CSSIE) were prepared from sol-gels made 

of PTMS and TMOS and a variety of different Celite® types (R632, R633 and R647). The most 

common approach used to remove the water liberated during enzymatically-mediated 

esterification reactions is the addition of molecular sieves to the reaction media.  This has been 

found to help in the absorption of the water produced as a by-product (Yoo, Park & Yoon, 2007). 

The yield of product for a variety of sugars and fatty acids when CSSIE was used was studied 

and is compared to the use of unsupported sol-gel enzymes, Celite®, Novozym and molecular 

sieves. A drying approach was explored to determine if the water could be removed from the 

CSSIE and allow reuse without a significant decrease in activity.  Other key parameters were 
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investigated like moisture content as a function of biocatalyst, reaction rate, fatty acid, reaction 

temperature and quantity of enzyme. 

 

1.1 Chemical Synthesis Techniques 

 

Two chemical techniques for performing the transesterification reaction between sugars and 

fatty acids have been described in Ota et al. (1972) and Farone & Serfass (1995). Both these 

approaches have been carried out chemically with different degrees of esterification at high 

temperatures and very low product yield.  Ota et al. (1972) approach consisted of combining 

sugar with the fatty acid in a molar ratio 1:4.5 followed by heating at 230
°
C in a nitrogen gas 

stream for 2 hours with continuous stirring. Following this, the product was cooled to 80
°
C and 

acetic anhydride with sulfuric acid was added to the mixture and refluxed for 4 hours. The 

product was then washed with boiling water and dried under reduced pressure. Activated clay 

and activated carbon were added and the mixture was heated at 120
°
C for 1 hour for 

decolourisation following steam injection for deodorization. The final product was dissolved in 

twice the amount of ethanol and left undisturbed for 8 hours. The resulting product was a light 

brown solid with a melting point of 34.5
°
C, hydroxyl value of 23 and a saponification value of 

243. This end product was fractionally crystallized and contained a mixture of sugar diesters 

(38%) with sugar fatty acid triesters as the main product. 

Farone & Serfass (1995) have developed an approach where the sugar fatty acid ester 

transesterification is conducted in a series of steps as described below. The reaction between the 
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fatty acid and methyl/ethyl alcohol was first carried out in the presence of a sulfuric acid catalyst 

to produce fatty acid esters and water. 

                       Ethyl Alcohol                             

The sulfuric acid catalyst was then neutralized with a metal carbonate (potassium carbonate) 

to form a metal sulfate which was separated from the fatty acid ester, alcohol and water by 

filtration. The metal sulfate, alcohol and water were recovered from the fatty acid ester at the end 

of the reaction as by-products and reused in the process. The fatty acid ester was reacted with 

sugar dissolved in dimethyl sulfoxide in the presence of the metal carbonate catalyst to produce 

the sugar ester product and alcohol. 

                                                       

The reaction time was from 8 to 24 hours at a temperature of 105 – 125
°
C. The dimethyl 

sulfoxide was then separated from the reaction mixture by vacuum distillation. The sugar ester 

product and unreacted fatty acid ester were emulsified by the addition of water and the unreacted 

sugar and metal carbonate were dissolved in the water. The dimethyl sulfoxide was separated 

and reused in the process. The emulsion that contained the sugar ester product and unreacted 

fatty acid ester was separated from the water by filtration, decanting or centrifugation. The metal 

carbonate was recovered and used as a mineral supplement for molasses and animal feed. The 

final sugar ester product was purified by dissolving the unreacted fatty acid in ethyl acetate. The 

dimethyl sulfoxide, alcohol and ethyl acetate were separated for reuse by fractional distillation 

and drying of the non-aqueous solvents. All the unreacted sugar in a concentrated form was 

recovered. 
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In comparison, Ota et al. (1972) conducted the reaction using sorbitol and palmitic acid and 

obtained an end product of sorbitan tripalmitate ester monoacetate and 38% by weight of 

sorbitan dipalmitate ester monoacetate. Farone & Serfass (1995) obtained a 92% mixture of 

sucrose mono and di-stearate which is above the 80% commercial requirement. Farone & Serfass 

(1995) also proposed an integrated commercial facility that could be used to produce 800 tons of 

sucrose stearate per year. 

 

1.2 Other Experimental Approaches 

 

1.2.1. Supercritical Carbon Dioxide 

 

Habulin, Sabeder & Knez (2008) synthesized sugar fatty acid esters using lipase with 2-

methyl 2-butanol and supercritical carbon dioxide as the reaction solvent. Molecular sieves were 

used in the reaction. The inhibitory effect of sugar esters on the growth of microorganisms was 

tested and it was found that sucrose laurate inhibited the growth of Bacillus cereus, a food 

poisoning bacteria, at a concentration of 9.375 mg/ml. The highest palmitate acid conversions 

obtained for fructose palmitate synthesis in t-butanol and supercritical carbon dioxide were 65% 

and 61%, respectively. 

 

1.2.2. Ionic Liquids and Ultrasound Radiation 

 

Lee et al. (2008) synthesized sugar esters by mixing an aqueous sugar solution with an 

organic solvent and ionic liquid (IL). They found that this approach enabled high sugar 
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concentrations in the IL which significantly improved the initial reaction rate and conversion of 

the lipase catalyzed reaction. The enzyme activity was greatly enhanced when ultrasound 

radiation was used in the IL and no significant effect on the stability of enzymes was observed. 

Xiao et al. (2005) investigated the synthesis of glucose esters using ultra-sound radiation and 

shaking in a non-aqueous media. They found that enzyme activity in ionic liquids increased 1.4 

times when ultrasound radiation was applied. 

 

1.2.3. Pervaporation Dehydration 

 

Sakaki et al. (2006) applied pervaporation dehydration using a zeolite NaA membrane to 

remove the water formed in the lipase-catalyzed esterification reaction of sugar with palmitic 

acid in 2-methyl 2-butanol. The water content in the reaction mixture was reported to decrease 

ten-fold from 0.3 weight% to 0.03 weight% by this technique. 

 

1.2.4. Molecular Sieves 

 

Yoo, Park & Yoon (2007) performed the enzymatic synthesis of sugar esters in a pilot reactor 

removing the water by recycling the reaction media through a molecular sieve column outside 

the reactor. A yield of 98% xylitol monooleate was obtained under these conditions. The 

limitation of this approach however is that there is an increase in the reactor volume and mass 

transfer limitations could occur due to challenges associated with mixing. In addition, the price 

of molecular sieves is higher than other types of desiccant-based dehumidifiers and they have not 

yet been approved by the FDA for foodstuff and pharmaceutical applications. 
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1.2.5. CO2-Acetone System 

 

Tai & Brunner (2009) explored the production of fatty acid-sugar esterification in a CO2-

acetone system catalyzed using Novozym 435. Key process parameters such as pressure, 

temperature and concentrations of the substrate and enzyme were examined. The optimum 

temperature and pressure were found to be 50°C and 65 bar, respectively. Water was removed 

using a multi-phase distribution of acetone-CO2-water-sugar system. 

 

1.2.6. Packed-bed Reactor 

 

Ye, Pyo & Hayes (2010) produced saccharide-fatty acid esters using immobilized Rhizomucor 

miehei lipase-catalyzed esterification in various solvent free systems at 65°C. The solvent-free 

suspensions consisted of molecular sieves and a packed-bed reactor operated under continuous 

recirculation. A fructose oleate yield of 88% with 92% monoester was obtained with high rates 

of reaction. 

 

1.2.7. Recombinant DNA technology 

 

Chang & Shaw (2010) discussed protein and metabolic engineering concepts to improve the 

catalytic efficiency, thermostability and pH stability of biocatalysts for the enzymatic synthesis 

of sugar esters. This review also focused on the advantages of using recombinant DNA 

technology for the large-scale production of enzymes and cloning of key enzyme genes for 

carbohydrate biosynthesis. This is an interesting approach as the production of large quantities of 
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enzymes in a heterologous host would substantially lower the overall production cost. The 

importance of solvent engineering to improve sugar ester yields is also discussed in this review. 

 

1.3 Challenges in Performing the Esterification Reaction 

 

Some of the challenges faced in the synthesis of sugar esters include the following: 

1. Choice of a solvent due to opposite polarities of substrates 

Sugars are soluble only in hydrophilic solvents such as DMF, DMSO and pyridine which are 

toxic to sugars/fatty acids and unsuitable for commercial use. However it has been found that 

enzymes were quickly inactivated by these solvents and stability affected which has resulted in 

low reaction rates and conversions (Yoo, Park & Yoon, 2007). Due to the hydrophobicity of fatty 

acids, the use of water as a reaction solvent results in low product yields (Yoo, Park & Yoon, 

2007). Some of the methods proposed to counteract this challenge is to use activated fatty acids 

(condensation of the compound molecule with a nucleotide) in polar solvents (Therisod &  

Klibanov, 1986), activated sugars in apolar solvents (Oguntimein, Erdmann & Schmid, 1993), 

achieve partial solubilization of both substances in intermediate polarity solvents (Coulon et al., 

1996) and the use of ionic liquids (organic salts that melt below 100
°
C) (Lee et al., 2008) 

Regioselective modification of carbohydrate molecules has also been shown to be a challenge 

due to the presence of multiple hydroxyl groups that result in lower conversions (Chang & Shaw, 

2010). 

According to Yan et al. (2001), a solvent must be chosen that is non-toxic without affecting 

the stability and activity of different biocatalysts and be reasonably priced for large-scale use. 
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Furthermore, the solvent should dissolve enough substrate to allow the enzymatic reaction to 

occur. Acetone, t-butanol, dimethylformamide, dimethylsulfoxide and pyridine are the most 

widely used solvents in literature for sugar-fatty acid esterification reactions. Although sugars 

and sugar alcohols are highly soluble in hydrophilic solvents such as DMF, DMSO and pyridine, 

these are toxic and unsuitable for commercial use and t-butanol has been banned for use in the 

manufacture of food additives by FDA. 

 

2. Formation of water as a by-product  

Esterification is a reversible reaction and hence the water by-product must be continuously 

removed to reduce the rate of inhibition of the reverse reaction and to obtain higher yields of 

sugar ester product (Adachi & Kobayashi, 2005). Enzyme activity and stability has also been 

shown to be affected by a high concentration of water (Yoo, Park & Yoon, 2007). In addition, 

when the immobilized enzyme is covered by a layer of water this prevents the substrates from 

interacting with the enzyme (Chamouleau et al., 2001) and reduces the reaction rate. Some 

methods that have been employed to remove the water formed during the reaction included 

evaporation under reduced pressure, azeotropic distillation (Yan et al., 1999), microwave heating 

(Carillo-Munoz et al., 1996), use of inorganic salts (Hertzberg et al., 1992), pervaporation 

(Kwon et al., 1995), evacuation in vacuum (Napier et al., 1996), multiphase distribution of 

acetone-CO2-water-glucose (Tai & Brunner, 2009), vapor permeation and membrane separation 

(Tsitsimpikou, Daflos & Kolisis, 1997), gas sparging (Won & Sun, 2001) and circulation of 

reaction media through an external column packed with molecular sieves (Yoo, Park & Yoon, 

2007). 
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1.4 Advantages of an Enzymatic Process 

 

The advantages of an enzyme-based approach in a chemical reaction has been compiled in 

Table 1 based on information reported by Fregapane et al. (1994) and Pauly, Engasser & Ghoul 

(1999). The enzymatic approach has the advantage of monomer formation and trace amounts of 

undesirable side products at mild reaction conditions (Yoo, Park & Yoon, 2007) unlike the 

chemical approach with different degrees of esterification at high temperatures and very low 

product yield (Ota et al., 1972). 

Table 1. Comparison of chemical-based and enzymatic approaches for sugar ester synthesis 

Chemical Process Enzymatic Process 

Consumes high quantities of energy Consumes low quantities of energy 

Forms considerable amounts of undesirable side products Forms trace amounts of undesirable side products 

Produces a whole range of structural isomers due to the 

presence of multiple hydroxyl groups in carbohydrate 

substrates 

Monomer formation 

Forms very complex mixtures of various compounds due to 

the non-specific nature of the chemical condensation reaction 

between sugars/sugar alcohols and fatty acids 

Specificity of enzyme usually results in the 

formation of simple product mixtures 

High temperatures and pressures leads to parasitic reactions, 

polymerization and coloring of products 

Mild reaction conditions;  

De-coloring of products 

Low selectivity leads to formation of a mixture of sugar 

esters with different degrees of esterification 

Enzymes are very selective and this led to 

monoester production 

Requires toxic organic solvents Does not require toxic organic solvents. Acetone 

could be used 

 

 

1.5 Product Applications 

 

a) Drug Delivery Applications 
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Sugar esters have different HLB (Hydrophilic – Lipophilic Balance) values that depend on the 

fatty acid chain length and have been used to modify the uptake and excretion of drugs. Sugar 

esters with large HLB values of 16 resulted in an increased uptake and excretion of drugs (Szuts 

et al., 2010). They have also been used to improve the disintegration of drugs.  For example 

sucrose palmitate, which has a large HLB value, improved the rate of dissolution of nifedipine 

(Ntawukulilyayo, Bouckaert & Remon, 1993); sucrose stearate [HLB = 16] improved the rate of 

dissolution of phenytoin (Otsuka & Matsuda, 1995) and glybuzole (Otsuka, Ofusa & Matsuda, 

1998); three sugar esters of [HLB = 16] increased the rate of dissolution of spironolactone 

(Marton, Auner & Csoka, 2005) and the permeation rate through the skin and mucosa. When 

used as microemulsions they improved the diffusion of hydrocortisone through the stratum 

corneum (Lehmann, Keipert & Gloor, 2001) and increased the absorption of lidocaine 

hydrochloride by oral mucosal permeation (Ganem Quintanar et al., 1998). The factors that led 

to an increase in the rate of transport of lidocaine included the high HLB value and formation of 

a microemulsion. Sugar esters have also been used as drug delivery agents for transdermal 

therapeutic agents (Csoka et al., 2007); as tablet matrix formers with microcrystalline cellulose 

(Ntawukulilyayo, Demuynck & Remon, 1995) due to their ability to form hydrogen bonds 

between the sugar esters and cellulose in the final product; in the preparation of enteric coating 

emulsifying systems for insulin delivery (sucrose erucate) (Toorisaka et al., 2005), and in solid-

oil non-dispersions for transcutaneous protein delivery (sucrose erucate) (Tahara et al., 2008). 

Sucrose stearates have also been used to develop the controlled release (excretion) of 

proniosome-based niosomes (Abd-Elbary, El-laithy & Tadros, 2008). 
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b) Cancer Applications 

Sugar esters exhibited anti-cancer and anti-tumor properties (Ferrer et al., 2005 and 

Benrezzak & Nigam, 1992). Maltose fatty acid esters have showed cytotoxicity against many 

tumor cells. Maltose tetrapalmitate has been used on rats as an immunoadjuvant against a weakly 

immuno transplanting mammary adenocarcinoma (Nishikawa et al., 1981). Nishikawa et al. 

(1981) found that sugar fatty acids of stearates, palmitates and myristates were far more efficient 

anti-tumor agents than their derivatives with shorter fatty acid chains such as laurate and 

caprylate esters. Monoesters have also found to be in general, better anti-cancerous agents than 

higher substituted derivatives.  Trehalosediesters of carbon chain lengths from 8 to 12 also 

inhibited tumor necrosis. However, the inhibitory effect of maltose and trihalose esters was 

greater than sucrose esters and monosaccharide fatty acid esters did not display any significant 

anti-cancer properties.  

Ferreret al. (2005) found that fatty acid esters of maltotriose had anti-tumor properties and 

inhibited cancer cell spreading. These esters were prepared by the transesterification reaction of 

vinyl laurate with maltotriose in the presence of an immobilized lipase. The solvents used were 

2-methyl 2-butanol and dimethyl sulfoxide. Cytotoxic activity towards two human cancer cell 

types Hep-G2 and HeLa were observed. 6-O-palmitoyl maltotriose exhibited 50% inhibition 

values of 2.3 µM for Hep-G2 and 3.6 µM for HeLa. From this study, trisaccharides appeared to 

be more promising inhibitors than disaccharides and exhibited marginal cytotoxicity towards rat 

hepatocytes. 
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c) Hydrocarbon Emulsifiers 

Hydrocarbons are organic compounds and a huge source of air and water pollution. Certain 

microorganisms degrade insoluble organic pollutants by producing emulsions (Kelkar, Kumar & 

Zinjarde, 2007; Zinjarde & Pant, 2002a; Chaillan et al., 2004). These microbes showed increased 

degradation of hydrocarbons when emulsifiers were added externally (Lee et al., 2006). Kelkar, 

Kumar & Zinjarde (2007) produced a sugar fatty acid ester hydrocarbon emulsifier (lauroyl 

glucose) which they examined for its potential to control environmental pollution.  This 

emulsifier enhanced the disintegration of aliphatic, aromatic (benzene, toluene and xylene) 

hydrocarbons and crude oil. A linear relationship between the concentration of the sugar fatty 

acid ester (50 – 450 µg/L) and emulsification activity was observed under assay conditions. The 

microbial culture degraded 70% of the aliphatic portion of crude oil when the external sugar 

ester emulsifier was at a concentration of 200 mg/L. 

 

d) Plant growth inhibition 

Afach et al. (2006) enzymatically synthesized sugar fatty acid esters from D-allose (a rare 

sugar) using a lipase catalyzed transesterification approach with D-allose and vinyl octanoate. 

The growth inhibiting activity of the resulting 6-O-octanoyl-D-allose on lettuce seedlings was 

found to be six times greater than the effect of using D-allose. It was concluded that the 

introduction of the octanoyl group induced a 6-fold increase in its inhibitory activity. 
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1.6 Technical Specifications 

 

1.6.1 Stability under Acidic and Basic Conditions 

 

The stability of sucrose fatty acid esters under acidic and basic conditions was evaluated by 

Okumura et al. (2011). The glycoside and ester bond were preferentially hydrolyzed under acidic 

and basic conditions where the rate of hydrolysis was determined to be a function of the solution 

pH, product concentration and the position of the acyl sugar monoester. These monoester 

products had excellent stability at a pH from 5 to 7 and moderately stable at a pH of 7 but were 

unstable at pHs greater than 8. 

 

1.6.2 Effect of Different Biocatalysts 

 

The influence of enzymes and different lipases on the enzymatic synthesis of sugar fatty acid 

esters has been studied by various researchers. The properties of sugar monoesters were shown 

to vary with the use of different biocatalysts as shown by Plou et al. (2002) in which different 

sources of enzymes such as lipase and protease were analyzed for the ester reaction using 

sucrose and maltose with vinyl laurate in 2-methyl 2-butanol and dimethyl sulfoxide. The lipase 

from Thermomyces Lanuginosus exhibited the highest activity in this study. Glucose esters were 

tested and hydroxyl groups at the 6 position were preferentially acylated. Monoesters were 

formed at a sugar:fatty acid molar ratios of 1:1. Lipases from different sources such as 

Pseudomonas sp. and Rhizomucor meihei were found to be regiospecific. Lipases from Candida 

antartica resulted in products of 6 and 6
1
-monoesters in the study conducted by Woudenberg & 

Rantwijk (1996). 
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1.6.3 Influence of Acyl Donor 

 

The influence of the acyl donor on the yield of product is well studied in the area of sugar 

ester synthesis.   Kawase, Sonomoto & Tanaka (1992) detected the formation of an acyl-enzyme 

intermediate and Schmid & Verger (1998) found that the nature and type of the acyl donor had a 

notable effect on the reactivity with the observation that longer carbon chains led to higher 

conversions.  It was also found that the rate of the ester synthesis with hydroxyl-containing vinyl 

ester compounds was about 20-100 times faster than with alkyl esters. 

 

1.6.4 Effect of Support in Immobilized Enzymes 

 

The advantage of using immobilized enzymes as biocatalysts has been widely recognized due 

to advantages such as increased mechanical strength, chemical and physical stability, enzyme 

loading capacity, hydrophobic and hydrophilic character and economic considerations (Mateo et 

al., 2007). Most literature report on the enzymatic acylation of sugars that have been performed 

using immobilized commercial lipases. For example, Ferrer et al. (2002) used lipase from 

Thermomyces langinosus and studied the effect of using a polypropylene support which was 

found to increase the initial activity of the enzyme; however, a reduction in the yield of 

monoester noticed was attributed to the formation of excessive amounts of diesters. The use of 

different supports has been studied such as the covalent attachment to Eupergit C that has very 

low synthetic activity and silica granulation that exhibited high selectivity. There were also 

differences in reactivity and selectivity due to pore diameter and surface area of the support 

(Ferrer et al., 2002). 
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1.6.5 Structural Dependence on Functional Properties 

 

The effect of the sugar ester structure on the functional properties has also been studied by 

Ullrich, Metz & Mader (2008). Di and Tri-saccharide esters were more soluble in water than 

monoesters due to the increased hydrophilicity of sugar groups. Pharmaceutical excipients are 

substances other than the active drug that are contained in the finished product dosage. In this 

study, the application of gentle heat and shear stress led to nanosized pharmaceutical excipients 

without the use of any organic solvents that resulted in increased stability. This was beneficial as 

it led to the production of stable pharmaceutical excipients. 

 

1.6.6 Hydophilic-Lipophilic Balance (HLB) 

 

Surfactants have been widely used to modify the surface and interfacial interactions of 

immiscible substances such as oils and water. The polar ends of sugar ester surfactants are 

hydrophilic and the non-polar ends are lipophilic or hydrophobic.  The non-polar regions vary in 

the number of chains, chain length, composition and chain saturation or branching while the head 

groups are polar, ionic or zwitter ionic (Colbert, 1974).  

The hydrophilic-lipophilic balance (HLB) of a surfactant is the measure to which the sugar 

ester is hydrophilic or lipophilic determined by calculating the values for different regions of the 

molecule (Boyd, Parkinson & Sherman, 1972).  

HLB = (20 * Molecular mass of the hydrophilic portion of the molecule) / 

(Molecular mass of the whole molecule) 
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A HLB value of 0 corresponds to a completely hydrophobic molecule and a value of 20 

corresponds to a completely hydrophilic molecule. The HLB value of surfactants has been 

modified to predict the surfactant properties of a compound. Generally, a value of 0-3 

corresponds to an antifoaming agent, 4-6 corresponded to a W/O emulsifier, 7-9 corresponds to a 

wetting agent, 8-18 indicates an O/W emulsifier, 13-15 indicates typical detergents and 10-18 

indicates solubilisers or hydrotropes (Orafidiya & Oladimeji, 2002).  

The effect of change in HLB with increased temperature was analyzed by Szuts et al. (2007). 

Sugar esters decomposed at temperatures below 220
°
C. Esters with high or medium HLB values 

were vitrified when melted. Hydrophilic and lipophilic sugar esters also softened and melted 

when subjected to heat treatment. An interesting phenomenon that was observed after melting 

and solidification was that the sugar esters had a partially amorphous structure which slowly 

crystallized in lime. The melting point of sucrose esters was from 40-79
°
C. When samples of 

sugar esters were heated to 100
°
C, the loss of mass that occurred was less than 1%. Crystal 

structures of sugar esters with a high or moderate HLB had a glass transition temperature instead 

of an amorphous melting temperature. HLB values which were characterized by these melting 

points disintegrated due to heating and did not recrystallize even when cooled. In general, 

recrystallization was faster for sugar esters with low HLB values. The original structure was not 

retained for any type of sugar ester irrespective of the HLB value after melting, solidification or 

heating.  

A surfactant with a higher HLB value was water soluble and a lower HLB value was oil 

soluble. Hence, it was observed that high temperatures had a permanent effect on surfactant 

structure. This phenomenon was observed to be an important consideration in drug delivery 
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where the modification in the structure of a sugar ester pharmaceutical product might alter the 

dissolution rate in the body which would result in mass transport limitations and other 

complications (Szuts et al., 2007).   

 

1.6.7. Critical Micelle Concentration (CMC) 

 

Surfactants contain surface-active molecules and have the ability to self-assemble in aqueous 

solutions forming micelles, lamellae etc. Theoretically, as surfactants are added to a solution the 

surface concentration increases and surface tension decreases. The critical micelle concentration 

is the concentration of the surfactant beyond which the addition of surfactant solution results in 

the formation of more micelles but constant surface tension (De Vendittis et al., 1981).  

The CMC of sucrose fatty acid esters was analyzed by Molinier et al. (2005) and was found to 

be strongly affected by the composition of the mixture. Generally, micelle properties depend on 

the size of the alkyl chain and the head group.  Micelles that were formed at surfactant 

concentrations just above the CMC were spherically shaped with a constant hydrodynamic radius 

up to a concentration at which the micelles became much larger in size and were not spherical 

with a variable diffusion coefficient. As expected, these micelles grew at higher surfactant 

concentrations and the concentration range for constant micelle radius was large. This condition, 

however, was not satisfied in the case of octanoate-derived esters. Sugar monoester micelles with 

a carbon chain length of 10 to 14 were oblate shaped with the exception of sucrose palmitate 

micelles that were prolate shaped and sucrose monooctanoates which were hexagonal with a 

radius of 13 Å. Micelles were also influenced by differences in the intramolecular hydrogen 

bonding of the sucrose head due to varying substitution. 
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1.6.8. Study of Interfacial and Foaming Properties 

 

Interfacial and foaming properties of sugar ester surfactants have been of considerable interest 

to researchers in the recent past. Surface tension has often been a key concept used to 

characterize interfacial systems. Foaming has been defined by the foam volume that can be 

obtained from a unit volume of liquid and is a function of material, physicochemical conditions 

and test methods respectively (Koczo & Racz, 1991). The foam formation process has also been 

described as the formation of a new gas-liquid interface.  

In particular, the foam property of a liquid has been characterized by its foam stability and is 

an important characteristic in surfactant solutions. Foaming and interfacial properties of sucrose 

laureates such as surface tension, thin film drainage, thickness and mobility were compared and 

studied by Husband et al. (1998). Dilaurates displayed poorer foaming properties and higher 

surface tension than monoesters. Crude sucrose monolaurate also exhibited high foam stability in 

comparison to the other sucrose laurates analyzed. Addition of diesters to monoesters in a molar 

ratio 1:4 improved the foaming properties to an optimum level which increased light scattering 

and reduction of the CMC. There were no appreciable differences in the surface tension and thin 

film properties between plain monoesters and the mixture of monoester and diester mixtures. 

Sucrose-based surfactants with a wide HLB range were produced by the esterification of the 

sucrose head group at a maximum of 8 sites and by variation in the length of the fatty acid. 

Molecular modelling experiments suggested that acyl chains of diester isomers were inclined at 

an angle greater than 120
°
. Diesters also had much higher light absorbance than monoesters 

which were constant with time. The foam stability increased with the concentration of the sugar 

ester. Foams corresponded to 40-100% of the total quantity of monoesters.  
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The reasons attributed to high foam stability of a mixture of monoesters and diesters were due 

to a higher surface activity than plain monoesters and the intermolecular interaction of the 

monoesters and diesters which was due to the solubilisation effect of monoesters in diesters and 

led to the formation of smaller aggregates and micelles. Thus, these interactions were attributed 

to mixed micelle formation and the bridging effect between monoester micelles and diesters. The 

lower surface activity of the diester indicated a more open structure with reduced efficiency of 

packing at the surface and formation of stable aggregates that affected the kinetics of adsorption. 

Coke et al. (1990) observed that interactions at interfaces increased interfacial viscoelasticity and 

simultaneously reduced drainage and increased foam stability.  

Drainage of the foam lamellae was also not affected by crude diesters and hence it was 

concluded that the increased foamability was not an interfacial effect. In a mixture that contained 

monoesters and diesters, the presence of diesters reduced the CMC of the monoester but there 

was no effective change in the surface tension of the surfactant. This suggested that the effect of 

the diester was mainly in the bulk in the form of micelles rather than at the interface. The effect 

of presence of BSA protein on foam stability was also studied. Decrease in foam stability in the 

presence of a protein was attributed to competitive adsorption according to Clark, Wilde & 

Wilson (1991). Another interesting study that explained the formation of a viscoelastic layer due 

to the stabilization of the interface by proteins was conducted by Wilde & Clark (1996). 

According to this study, the protein was displaced from the interface by the surfactant but a high 

concentration of surfactant was not present to stabilize the interface. This resulted in the presence 

of both the protein and surfactant at the interface that led to the production of an unstable system. 
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 In general, the foam stability increased with surfactant concentration. The binding of proteins 

with the fatty acid affected its stability according to Coke et al. (1990). Thus, the addition of 

sucrose diester to pure monoester enhanced its foaming properties due to the monoester-diester 

interaction and there was no observed effect on the surface tension and other thin film properties. 

Furthermore, these sucrose esters destabilized BSA protein containing foams. Liquid sugar esters 

also wetted the solid substrate and maintained contact due to intermolecular interactions and pair 

potentials. The degree of wetting or wettability was found to vary with the balance between the 

work of adhesion and the work of cohesion and depended on the solid surface properties. 

 

1.7. Sol-gel Chemistry 

 

The sol-gel process involves the chemical formation of an inorganic network in a solution at 

low temperatures (Schmidt, 1988). The solid (multiphase gel) is the final product formed from 

the liquid (colloidal solution) in the sol-gel process. The process starts with the hydrolysis of the 

precursor. The hydrolyzed precursor then undergoes condensation and gelation to form the gel. 

The properties of the gel change over time, with aging and drying. Aging of sol-gel is the 

expulsion of solution from the shrinking pores that contracts the gel-matrix due to 

polycondensation reactions. Structural reinforcement with additional cross links occurs due to 

sol-gel aging (Reetz, Zonta & Simpelkamp, 1995). Some common requirements of the 

precursors include solubility in the reaction media and reactivity to allow the gel-formation 

process to occur. They should also be able to form inorganic monomers for the sol-gel reaction. 

Schmidt (1988) described the applicability of finely divided silica that could be peptized to 
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produce sols. Alkaloids are frequently used as precursors due to their solubility in common 

organic solvents and the ability to control hydrolysis. 

Schmidt (1988) also described the potential advantages of the sol-gel process including the 

ease of purifying precursors, the use of chemistry to control reactions, formation of pre-organic 

network in the solution, introduction of permanent organic grouping in solutions and adjustment 

of appropriate viscosity for coatings. The gelation step involves the neutralization of surface 

charges, aggregation, further condensation by the reactive surface groups and the formation of 

the solid gel. 

 

1.8. Enzyme Immobilization 

 

Enzymes are catalysts that are selective and specific and can be used under mild experimental 

and environmental conditions. Immobilization has been found to be a powerful tool to improve 

enzyme properties such as stability, activity, specificity and selectivity leading to a reduction in 

inhibition and improved enzyme recovery. Recovery and reuse are important criteria that make 

enzymatic processes economically feasible. Immobilization also simplifies reactor design and 

can be used to control the reaction (Mateo et al., 2007). 

An ideal immobilization process should limit the use of toxic reagents and the immobilized 

enzyme should be highly stabilized. The enzyme support used for immobilization is vital for 

enzyme stabilization as undesirable support-enzyme interactions would decrease enzyme 

stability after immobilization and would not be suitable for reuse. Physical modification of 

immobilized enzymes generates a micro-environment that increases enzyme stability under 
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distorting conditions. Chemical modification has also been found to improve enzyme 

performance after immobilization by increasing its surface reactivity. Also, chemical and genetic 

amination of enzyme surfaces e.g. glutaryl acylase / penicillin G acylase improves the covalent 

attachment and enzyme stability (Mateo et al., 2007). 

 

1.9. Sol-gels in Enzyme Immobilization 

 

Reetz, Zonta and Simpelkamp (1995) carried out the lipase immobilization in sol-gels and 

found that the enzymatic activity was dramatically increased in an organic medium (88 fold 

when compared to the unimmobilized lipase). This was attributed to the high dispersion of lipase 

in the sol-gel matrix and the interaction between the lipophilic domains of the lipases and the 

hydrophobic regions of the sol-gel matrix. High enzyme activity of the heterogeneous biocatalyst 

was found to occur in water, which was 41% greater than in an aqueous homogeneous solution. 

In this study carried out by Reetz, Zonta and Simpelkamp (1995), the lipase was entrapped in 

chemically inert hydrophobic silica gel that was prepared by the hydrolysis of alkyl substituted 

silanes in the presence of an enzyme. The gel precursors used were alkoxysilane derivatives like 

RSi-(OMe)3 where R was an alkyl, aryl or alkoxy group. Gelatin and polyvinyl alcohols were 

used as aqueous solutions and PTMS & TMOS were used to prepare the sol-gel. 

 

1.10. Celite® as an Enzyme Support Material 
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Celite®, also known as diatomaceous earth, is a naturally occurring soft, silicaeous, 

sedimentary rock that easily crumbles into a fine while to off-white powder  with a typical 

chemical composition consists of 80 – 90% silica, 2 – 4% alumina and 0.5 – 2% iron oxide (De 

Martin et al., 1999). Common applications of Celite® include use as a filtration aid, liquid 

absorbents and reinforcing filler in plastics and rubber. Particle size and pore diameters for the 

Celite® usied in this study are provided in the Appendix (Section C). Wehtje, Adlercreutz & 

Mattiasson (2004) analyzed the use of Celite® as a support in enzyme immobilization and 

compared its activity to the use of controlled pore glass and glycerol-controlled pore glass as 

support materials. The enzyme immobilized by Celite® exhibited higher activities than the use 

of the other two support materials. Albumin was added during the immobilization of enzyme as 

an additive and this led to a stabilizing effect of the enzyme activity. Controlled pore glass 

supported enzyme required larger additions of albumin to provide the same activity exhibited by 

the Celite® supported enzyme. Without the addition of albumin, Celite® was the best support 

material and resulted in an activity of 0.25 mg / g Celite®. The enzyme used in this study was 

mandelonitrile lyase and a buffer solution of 1 ml / g support was used to prepare the enzyme 

solution. 

The enzyme solution was added to the Celite® support material (1 – 2 ml solution / g support) 

and the water was removed by evaporation in a vacuum. The enzyme loading was also higher 

(20 mg / g Celite®) than the use of controlled pore glass. However, an activity loss occurred 

when the enzyme was added directly to the support without water removal, which was a critical 

phase during immobilization. The addition of polyethylene glycol as an additive made the 

properties of the support more favorable to retention of the enzyme activity and protected the 

enzyme from inactivation during the immobilization step.  
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1.11. Celite® Supported Sol-Gels 

 

Meunier & Legge (2010) was the first group to exploit the effective use of CSSIE for the 

production of biodiesel in a transesterification reaction and investigated properties such as the 

activity, stability and reusability of the enzyme. Encouraging results were reported with the 

supported sol-gels showing good conversion, high initial enzyme activity and protein loading 

capacity. An average conversion of 60% was reported after a reaction time of 6 hours with the 

highest surface area coverage of the sol-gel supported on Celite®-R632.  
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2.  Materials and Methods 
 

2.1. General 

 

Celite® - R632, R633, R647 samples were gifts from World Minerals (Santa Barbara, CA). 

Lipozyme, Candida antartica Lipase B (CAL-B) and Novozym 435 were gifted from 

Novozymes North America Inc. (Franklinton, NC). The biological source of Novozym was 

Candida antartica and its commercial activity was 10,000 PLU/g. Other materials used in this 

study were tetramethylorthosilicate (TMOS) (Aldrich), trimethoxypropylsilane (PTMS) (Sigma), 

oleic acid (90%) (Sigma Aldrich), palmitic acid (99%) (Sigma), stearic acid (98%) (Aldrich), 

lauric acid (98%) (Aldrich), myristic acid (98%) (Sigma), fructose, sucrose, sorbitol, xylitol 

(Aldrich), pyridine (99%) (Sigma), hexamethyldisilazane:trimethylchlorosilane (HMDS:TMCS 

3:1) (Supelco), pentadecanoic acid (90%) (Sigma) (internal standard for fatty acid analysis), 

tetrahydroxyfuran (99%) (Sigma), BSTFA (Supelco) (derivatization agent for GC-MS analysis), 

dimethoxyformamide (99%) (Sigma), molecular sieves (4 Å, 1/16 inch pellet) (Supelco), Milli-Q 

water purification system (Millipore, Billerica, MA) and HYDRANAL Coulomat CG catholyte 

(coulometric KF titration) (Fluka). Acetone and 2-methyl-2-propanol (t-butanol) were used as 

the reaction solvents. 

 

2.2. Preparation of CSSIE 

 

Celite® supported sol-gel immobilized enzymes (CSSIE) were prepared following the 

immobilization of procedure described in Meunier & Legge (2010). The hydrolyzed precursor 

solution was prepared from PTMS (0.08 mol), TMOS (0.02 mol), ultrapure water (1 mol) and 
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hydrochloric acid (200 µL of 0.1 M). Lipase and phosphate buffer (50 mM, pH 7)  were added to 

the precursor (14 ml of protein concentration 4000 µg/ml) after sonicating (1 hr) and rotary 

evaporation (40
°
C for 30 min) to remove water and alcohol. This mixture was combined with the 

desired Celite® support (6 g) and the gel was air-dried in a Petri dish at 4
°
C for 24 hours and 

washed with 15 ml of phosphate buffer (50 mM, pH 7) to remove the protein that was 

unimmobilized. In the case of unsupported sol-gels, the gel was dried without the addition of 

Celite®. 

 

2.3. Sugar Fatty Acid Esters Synthesis 

 

The reaction mixture consisted of 3 mmol sugar, 3 mmol fatty acid, 5 g of CSSIE (or) 0.03 g 

of unsupported sol-gel (or) a combination of 0.03 g and 5 g of Novozym and molecular sieves / 

Celite® with 25 ml of solvent. Previous studies of Yoo, Park & Yoon (2007) indicate that a high 

solubility of the sugar in the solvent was vital for achieving high ester product yield, thus sugar 

was added to the acetone in a stoppered glass bottle and agitated at 250 rpm in a shaker at 25
°
C 

for 8 hours before introducing the fatty acid and enzyme into the reaction mixture. Once the 

sugar was dissolved in the solvent, esterification was initiated by adding the fatty acid with the 

enzyme and mixed using a magnetic stirrer at 125 rpm. The reaction was allowed to proceed by 

mixing for 12 hours at 25
°
C. The yield of product was calculated from the decrease in the 

concentration of reactants and increase in the concentration of the sugar monoester assayed using 

GC-MS. 
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2.4. Conversion as a Function of Reaction Temperature 

 

An evaluation of temperature and type of sugar was conducted using oleic acid with sol-gel 

supported on Celite®-R633 using acetone as reaction solvent. The reactions were carried out 

using a shaking bath and constant temperatures of 25
°
C, 40

°
C, 50

°
C, 60

°
C. The reaction was 

conducted in a 10 ml sealed glass vial using a magnetic stirrer at 125 rpm. 

 

2.5. Sol-Gel Aging 

 

The procedure used to prepare and wash the CSSIE described in Section 2.2 was adopted. 

After washing, the excess solvent was allowed to evaporate from the gel at room temperature for 

14 hours and the gels were stored in a sealed Petri dish at 4
°
C (Meunier & Legge, 2010). 

Throughout the duration of this experiment, the sample was aged and dried under these 

conditions for the reaction between fructose and oleic acid in acetone. For each experiment, a 

newly prepared reaction mixture and a small quantity of CSSIE were used and the remaining sol-

gel was stored in a sealed Petri dish at 4
°
C. 

 

2.6. Gas Chromatography-Mass Spectrometry (GC/MS) Analysis 

2.6.1. Sample Derivatization 

Sugar/Sugar Alcohols  
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The carbohydrates were derivatized (Sweeley et al., 1963) by mixing 0.01 g of sugar/sugar 

alcohol with 1 ml of pyridine (99%) + 0.1 ml of HMDS and 0.1 ml of TMCS. The mixture was 

shaken vigorously and then heated at 60
°
C for 10 minutes. Sample concentrations ranging from 1 

to 10 mmol/L were analyzed for calibration purposes. 

Fatty Acids 

The derivatization method used by Severson et al. (1977) was adapted to derivatize fatty acids 

in this study. The fatty acids were derivatized by mixing 0.05 g of fatty acid with 0.05 g of 

pentadecanoic acid (internal standard) + 26.25 ml of tetrahydrofuran and the BSTFA-based 

derivatization was carried out at 75
°
C for 45 minutes. Concentrations ranging from 1 to 10 

mmol/L were analyzed for calibration purposes. 

Sugar Fatty Acid Ester 

The derivatization method used by Severson et al. (1977) was adapted to derivatize sugar 

fatty acid esters in this study. The purified product was reacted with BSTFA:DMF of ratio 1:1 

and was heated at 75
°
C for 45 min.   

 

2.6.2. Product Analysis 

 

Reactant and product analysis was performed on a Varian GC-MS system (CP-3800 gas 

chromatograph / Saturn-2000 mass spectrometer / mass spectrometer). Trimethylsilyl derivatives 

(1µL) were prepared according to Sweeley et al. (1963) as described in Section 2.6.1 and 

injected into a Hewlett-Packard Ultra 2 (Agilent Inc.), 25 m * 0.22 mm fused-silica capillary 

column with a 5% phenylmethyl silicone phase of 0.33 µm film thickness. The carrier gas used 
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was helium with a linear flow rate = 35 cm/s, split ratio = 25, electron impact ionization energy = 

70 eV, scan range = 40-650 Da and scan rate = 0.88 scans/s. The injector and detector 

temperature were held at 285
°
C and the temperature program was: 100

°
C for 0.5 minutes, 

increased to 240
°
C at 8.3

°
C/min, increased to 300

°
C at 10

°
C/min and held for 10 minutes (based 

on Fregapane et al., 1994). Quantitative data was obtained from peak areas and calibration plots. 

The yield of product was determined based on the decrease in the concentration of the reactants 

(conversion). Mass spectra fragmentation patterns were recorded and verified to identify sugar 

esters and fatty acids. 

 

2.7. Procedure for CSSIE reuse 

 

At the end of the each reaction the CSSIE was separated by filtration using a 0.45 µm DB 

filter paper (Chromatographic Specialties Inc.). The CSSIE was then washed once with 5 ml of 

phosphate buffer (50 mM, pH 7.0) and excess buffer was evaporated from the gel at room 

temperature and the gel was stored in a sealed container for 24 hr before reuse. After 24 hr 

storage, the CSSIE was dried at 40
o
C for 1 hour before reuse. 

 

2.8. Determination of Immobilized Mass of Protein in Sol-Gel 

 

Protein analysis was determined according to Meunier & Legge (2010) using a Varian HPLC 

(High-Performance Liquid Chromatography) system (Varian Inc., Mississauga, ON) with an 

Agilent Zorbax Bio Series GF-250 column (Agilent Technologies, Mississauga, ON) and a 

Prostar 325 UV–Vis detector. The HPLC conditions employed a partial loopfill injection mode, 
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absorbance of 280 nm and mobile phase flow rate of 1 ml/min. The mobile phase consisted of 

200 mM of phosphate buffer at pH of 7. A quantity of 15 ml of Lipozyme CAL-B of protein 

concentration 2000 µg/ml was used. The retention time of the Lipozyme CAL-B was 16.7 

minutes. 

 

2.9. Moisture Content Analysis 

 

The moisture content of the product was determined using a CA-06 Karl Fischer (KF) 

Moisture Titrator with an end point potential of 30 mv, VA-T=40, SENS=45, titration 

parameters = 1, 3, 5 minutes and end point waiting time of 30 sec. These were all parameters 

specific to the Moisture Titrator used in this study. 

Product moisture content was calculated by the formula, 

                                                                 

(                         )              
 

The product that contained a certain quantity of water was injected into the titration chamber 

that contained the reagent. Based on the amount of hydrogen iodide formed that was measured 

by the detection electrode, the water content of the sample was calculated. It was important that 

the stirrer speed was adjusted and the detection electrode & stirrer unit had to be connected 

properly. The desiccant tube (drying tube) was attached to remove any condensation that formed 

and the drain cock was closed. The titration flask and cathode chamber were filled with 100 ml 

of reagent and 1 vial of catholyte solution respectively. 



31 

 

At the end of the reaction, the enzyme was separated from the product mixture by filtration 

(0.45 µm filter paper) and the purified product was injected into the titration chamber that 

contained the reagent. The moisture content (%) was then measured. 

 

2.10. CSSIE Reuse – Scanning Electron Microscopy (SEM) 

 

A Hitachi S570 scanning electron microscope (Hitachi High-Technologies, Berkshire, 

England) was used to characterize the surface morphology and textural characteristics of the 

samples.   All samples were coated with 24-carat gold prior to the analysis and electron beam 

energy of 15 kV was used for the analysis. 
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3. Results and Discussion 
 

Meunier & Legge (2010) reported the development of Celite® supported sol-gel immobilized 

enzymes (CSSIE) for the production of biodiesel in a transesterification reaction and investigated 

properties such as the activity, stability and reusability of this enzyme preparation. Their results 

demonstrated that this approach can achieve good conversion with high initial enzyme activity 

and that they were able to achieve a high protein loading capacity. The objective of this study 

was to demonstrate the potential of this immobilized enzyme preparation for the production of 

sugar fatty acid esters. 

The first section of the results and discussion presents the results obtained from experiments 

carried to select the support with highest lipase activity out using different Celite® carriers. This 

is followed by a series of experiments designed to optimize and characterize the selected support 

using different parameters with this system. The potential reusability of the enzyme preparation 

is then presented closing with experiments designed to explain the moisture absorbing properties 

of the preparation.   

 

3.0.   Selection of Celite® Support 

 

3.0.1.   Immobilized Mass of Protein in Sol-Gels 

 

As a starting point, the suitability of the sol-gel and Celite® combination for protein 

immobilization was evaluated.  A comparison was conducted using three different Celite® 

carriers that included:    R632, R633 and R647. It had been shown in previous studies (Meunier 



33 

 

& Legge, 2010) that the greater the lipase immobilization the higher the enzyme activity, 

substrate conversion and product yield. The particle size and pore diameter for each type of 

Celite® carrier are given in the Appendix (Section C). As shown in Figure 1, the maximum 

protein immobilization occurred for the CSSIE supported with Celite®-R633 with 85% of the 

initial protein mass immobilized followed by the CSSIE supported with Celite®-R632 (77.5%), 

Celite®-R647 (58%) and unsupported sol-gel (55%). The determination of immobilization is 

shown in the Calculations (Section C). Meunier & Legge (2010) reported that R647 and R632 

had significantly less percent sol-gel on the surface of the Celite® compared to R633. This was 

determined by measuring the increase in the surface area of the support after coating with lipase 

sol-gel. Celite®-R647 increased from 58.92 (uncoated) to 64.39 m
2
/g; Celite®-R632 increased 

from 1.49 (uncoated)  to 1.52 m
2
/g; Celite®-R633 showed the largest increase from 0.9 

(uncoated) to 1.37 m
2
/g. This indicated that the lipase sol-gel did not adhere as well to the 

Celite®-R647 and Celite®-R632. Celite®-R633 was also reported to favor sol-gel adhesion over 

cohesion to the Celite® surface due to a smaller particle size (300-600 µm) than Celite®-R632 

and Celite®-R647 (600-1400 µm). These are the characteristics of Celite®-R633 that might have 

resulted in higher immobilization in this study. 
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Figure 1. Percentage of immobilized protein for various sol-gel preparations. The error bars represent the 

95% confidence interval of the sample mean based on n=3. 

 

3.0.2. CSSIE Activity and the Effect of Sol-Gel Aging 

 

This experiment was conducted to detect and evaluate enzyme activity using the sol-gels in 

the reaction between fructose and oleic acid in acetone. From Figure 2 it can be seen that 

fructose monooleate was produced without any evidence of side product formation based on GC-

MS data. Stoichiometric and material balance calculations also confirmed the absence of any 

side products as shown in the Appendix (Section A) and Calculations (Section A) respectively. 

All the sol-gels used were active and the activity trend followed the sequence Celite®–R633 > 

Celite®–R632 > Celite®–R647 > Unsupported Sol-Gel based on oleic acid conversions. 

Sol-gel aging as a phenomenon has been a topic of interest among researchers due to 

polycondensation reactions that complete gel formation over time. Aging causes the sol-gel 

structure to be reinforced with additional cross links which result in the contraction of the gel 
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matrix and expulsion of solution from the shrinking pores (Jin & Brennan, 2002). Meunier & 

Legge (2010) reported that sol-gel aging occurred over time and that this resulted in increased 

enzyme activity. Jin & Brennan (2002) reported that this phenomenon is caused by significant 

structural and conformational changes in the entrapped proteins such as a result of changes in 

internal composition and protein-silica interactions. This might cause an increase in activity due 

to an increase in the protein’s conformational flexibility over the aging time.  Peltola et al. 

(2000) also reported similar aging phenomena in the conversion of atmospheric carbon dioxide 

to methanol due to confinement and matrix effects for the use of silica sol-gels where the 

precursor was TMOS. A study was conducted to determine if aging occurred for the 

transesterification reaction and it was found that during sol-gel aging the conversion of oleic acid 

initially gradually increased for the supported sol-gels. Maximum conversion of the oleic acid 

was obtained for a sol-gel aging time of 8 days (94.2%). After this, the conversion decreased for 

a sol-gel aging time of 16 days and 30 days as shown in Figure 2 for the Celite®-R633 supported 

sol-gel. Maximum conversion was obtained when the sol-gel supported when Celite®–R633 was 

used. Unsupported sol-gels showed a drop in conversion with for the first 8 days followed by an 

increase in conversion up to day 16. The aging times reported are based on the number of days 

after which the wash buffer had completely evaporated from the gel. From Figure 2, there 

appears to be less variability for the supported sol-gels over the aging period in comparison to 

the unsupported sol-gel. This might be due to greater structural and conformational stability of 

the protein due to additional cross link protein-silica interactions in the presence of the Celite® 

support over the aging period (Jim & Brennan, 2002). It is noted that the aging effect is in 

agreement with the increased activity with aging reported by Meunier & Legge (2010). 
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Figure 2. Conversion of oleic acid to fructose monooleate in acetone for various sol-gels. The error bars 

represent the 95% confidence interval of the sample mean based on n=3. 

 

3.1. Oleic Acid Conversion using Selected Sol-Gel Supports 

3.1.1. Conversion as a Function of Different Preparations 

 

Yoo, Park & Yoon (2007) reported the highest conversion of oleic acid to sugar oleates when 

Novozym was combined with molecular sieves in the reaction media.  A study was conducted to 

determine the effect of Novozym and molecular sieves and to compare these results to the use of 

Celite®-R633 supported sol-gels. From Figure 3 it is evident that the highest conversion of oleic 

acid was obtained when CSSIE was used followed by Novozym and molecular sieves with the 

lowest conversion with unsupported sol-gels. The difference was found to be statistically 

significant by randomized blocking and multiple comparison techniques using the least 

significant difference (LSD) approach and the Bonferroni inequality. The maximum conversion 

of oleic acid was 96.7% for sorbitan monooleate in acetone with a 1:1 molar ratio of sugar:oleic 

acid. The conversion was found to be partly dependent on the sugar substrates although the 
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differences were not significant. When CSSIE, Novozym and molecular sieve and unsupported 

enzyme were used, the average conversions for different sugars were 92.23%, 79.66% and 

77.45%, respectively. The lowest conversion for oleic acid was 70.32% when sucrose and 

unsupported sol-gel were used. The use of sugar alcohols (sorbitol and xylitol) as the substrates 

resulted in a higher oleic acid conversion than for sugars (sucrose and fructose). According to 

Yoo, Park & Yoon (2007), higher carbohydrate solubilities in the reaction solvent lead to higher 

conversions. The solubilities of the various sugars at 60
°
C in t-butanol are 17.5 g/L for xylitol, 

10.6 g/L for sorbitol and 1.1 g/L for sucrose and in acetone the reported solubilities are 3.1 g/L 

for xylitol and 0.21 g/L for sucrose. The differences in solubility may be an important factor for 

the higher conversions observed using xylitol and sorbitol (sugar alcohols) compared to sucrose. 

Oleic acid conversions reported by Yoon, Park & Yoon (2007) for sugar fatty acid esters using 

Novozym and molecular sieves were also found to be similar to the results in this study. 

 

Figure 3. Conversion of oleic acid using CSSIE, Novozym and molecular sieves and unsupported sol-gel 

in the enzymatic esterification reaction between sugars/sugar alcohols and oleic acid in acetone. The error 

bars represent the 95% confidence interval of the sample mean based on n=3. 
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3.1.2. Effect of Sugar and Fatty Acid Molar Ratio on Conversion 

 

The sugar ester yield for different molar ratios of sugar/oleic acid was studied for different 

sugars in acetone using Celite®-R633 supported sol-gel. As seen in Figure 4, when the molar 

ratio was increased from 1 to 3, there was an increase in the conversion of oleic acid for all 

sugars (~ 3% increase for sucrose and fructose). However, with further increases in molar ratio 

up to a maximum of 9, the conversion increased only marginally for the sucrose and fructose 

monoesters and was relatively constant for the xylitol and sorbitan monoesters. These results are 

in agreement with Yoo, Park & Yoon (2007) who reported similar conversions for different 

molar ratios and related the equilibrium constant of the esterification reaction to the substrate 

concentrations. Ferrer et al. (2002) reported that the pre-dissolution of the sugar in DMSO causes 

a notable acceleration of the reaction. It was also reported that a high initial amount of sugar 

inhibits sugar and fatty acid conversion so slight solubility of sugar in CO2 saturated acetone was 

facilitated and maximum conversion was determined at a sugar:oleic acid molar ratio of 2:1. Tai 

& Brunner (2009) reported that a greater quantity of fatty acid (greater than a fatty acid: sugar 

molar ratio of 2:1) increased the viscosity of the reaction mixture which lowered the reaction 

rate.  Mutua & Akoh (1993) reported a decrease in conversion at high molar values due to 

substrate inhibition or saturation at the enzyme active site. 
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Figure 4. Conversion of oleic acid for different sugar-oleic acid molar ratios in the enzymatic 

esterification reaction between sugars/sugar alcohols and oleic acid in acetone. The error bars represent 

the 95% confidence interval of the sample mean based on n=3. 
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synthesis was investigated as a function of reaction time. The amount of CSSIE used for the 

reaction was from 1 g to 15 g for the reaction mixture along with the fatty acid. Once the enzyme 

was added, the conversion of oleic acid was determined every 2 hours for different CSSIE 
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but higher initial reaction rates were obtained with increasing CSSIE loading. The initial reaction 

rates were determined on the basis of the linear portion of the reaction time course and are 

provided in Table 2. The lowest conversion of oleic acid was obtained using 1 g of CSSIE 

(60%). Tai & Brunner (2009) reported similar results that with larger amounts of Novozym-435 

the total conversion increased since more active sites were available for the reaction which 

resulted in higher initial reaction rates measured. However higher loadings of enzyme, greater 

than 50% Novozym-435 in relation to the % amount of dissolved palmitic acid, resulted in a 

slower reaction due to agglomeration of the enzyme particles. This loading would translate to 35 

g CSSIE in terms of protein content which has not been evaluated in this study. Ferrer et al. 

(2002) also reported that the product yield increases with the lipase content over the range of 10 

– 100 mg/ml solvent. Yoo, Park & Yoon (2007) reported that higher enzyme amounts increased 

the initial reaction rate with quantities similar to those reported in this study. 

 

Figure 5. Conversion of oleic acid using different quantities of Celite®-R633 supported sol-gel in the 

enzymatic esterification reaction between sucrose and oleic acid in acetone. The error bars represent the 

95% confidence interval of the sample mean based on n=3. 
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Table 2. Reaction rates for various amounts of CSSIE 

CSSIE Loading (g) Initial Reaction Rate 

(mmol/L·hr) 

1 12.6 

2.5 24.6 

5 31.2 

10 37.2 

15 40.8 

 

 

3.1.4. Reaction Rate as a Function of Solvent 

 

The rate of the reaction was evaluated as the conversion of oleic acid at varying times and for 

acetone and t-butanol. Each reaction mixture consisted of sugar/sugar alcohol:oleic acid with a 

molar ratio 3:1 and CSSIE (Celite®-R633 supported) in the solvent. Based on Figures 6 and 7 

acetone resulted in a higher sugar ester yield in comparison to t-butanol for all the reaction 

combinations considered. The sugar ester yield was highest with sorbitol (97.1%) and lowest 

with sucrose (91.4%) with acetone as the reaction solvent. The sugar ester yields with sorbitol 

and sucrose in t-butanol were 89.16 and 79.31%, respectively. The average product yield for 

acetone and t-butanol was 93.1 and 85.2%, respectively. Therefore the use of acetone as the 

reaction solvent for the synthesis of sugar ester was found to be a more favorable alternative to t-

butanol based on these results. The time taken for the conversion of oleic acid to level off was 

consistent for both types of reaction solvents (about 10 hours). The initial reaction rates of all 

sugars/sugar alcohols in acetone were also higher than t-butanol as seen in Table 3.  For 

example, the reaction rate of sorbitol monooleate in acetone (43.8 mmol/L·hr) was higher than in 

t-butanol (31.2 mmol/L·hr) as shown in Table 3. These results are in agreement with data 

reported by Tai & Brunner (2009) who selected acetone because it is an accepted extraction 
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solvent by the FDA for the manufacture of food products and additives. The reaction rates for the 

sorbitol were also higher than for the sugars in both solvents. According to Yoo, Park & Yoon 

(2007), higher solubilities in the reaction solvent lead to higher reaction rates. The differences in 

solubility may be an important factor for the higher reaction rates observed using sorbitol 

compared to sucrose and fructose. High initial rates of reaction (900 µmol/h/g enzyme) were 

reported by Yoo, Park & Yoon (2007) who attributed this to the high activity of the enzyme in 

acetone. 

 

Figure 6. Time course for the conversion of oleic acid in the enzymatic esterification reaction between 

sugars/sugar alcohols and oleic acid in acetone. The error bars represent the 95% confidence interval of 

the sample mean based on n=3. 
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Figure 7. Time course for the conversion of oleic acid in the enzymatic esterification reaction between 

sugars/sugar alcohols and oleic acid in t-butanol. The error bars represent the 95% confidence interval of 

the sample mean based on n=3. 
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comparison techniques using the least significant difference (LSD) approach and was 

comparable to the use of oleic acid. The lowest conversion of 62% was obtained for fructose 

monolaurate production where lauric acid was the acyl donor.  Plou et al. (2002) studied the 

influence of the acyl donor and fatty acid chain length (from 12 – 18 carbon atoms) on 

conversion to sugar esters and reported similar results in that longer carbon chains resulted in 

higher conversion. Kawase et al. (1992) and Schmid & Verger (1998) also reported that the 

nature of the acyl donor had a notable reactivity. 

 

Figure 8. Conversion of fatty acid using Celite®-R633 sol-gel in the enzymatic esterification reaction 

between sugars/sugar alcohols and fatty acids in acetone. The error bars represent the 95% confidence 

interval of the sample mean based on n=3. 

 

3.1.6. Time Course Analysis – Conversion as a Function of Reaction 

Temperature 

 

Oleic acid conversion was measured at different reaction temperatures for a variety of sugars 

using sol-gel supported by Celite®-R633 as shown in Figure 9. Based on these results the 

optimum temperature for maximum conversion with the highest initial reaction rate was obtained 

  
  

  
  

 C
o
n
v
er

si
o
n
 o

f 
 

  
  

  
  

  
fa

tt
y

 a
ci

d
 (

%
) 

 xylitol         sorbitol           sucrose         fructose 

Stearic acid (18 carbon) 

Palmitic acid (16 carbon) 

Myristic acid (14 carbon) 

Lauric acid (12 carbon) 

 



45 

 

at 40
°
C. The conversion of oleic acid steadily decreased at higher temperatures of 50

°
C and 60

°
C. 

This was similar to results reported by Tai & Brunner (2009) who found that the stability of the 

enzyme was adversely affected at higher temperatures (50 & 60ºC) and resulted in decreased 

reaction rates and yield. The initial reaction rates for all sugars followed a similar trend as shown 

in Table 4. The maximum conversion of oleic acid was 96.5% for sorbitan monooleate with no 

side product formation. The lowest conversion was 64% for the production of sucrose 

monooleate at 60
°
C. These results are similar to those obtained by Ferrer et al. (2002) who 

reported that maximum fatty acid conversion was observed at a temperature of 40
°
C. The 

enzyme used in their study was granulated lipase and Accurel-supported lipase.  They also 

observed significant reductions in enzyme activity at temperatures greater than 40
°
C. Tai & 

Brunner (2009) attributed these high levels of conversion to a temperature effect on the 

configuration of the active site of the enzyme. Similar temperature effects on sugar fatty acid 

production have also been reported by Mutua & Akoh (1993) and Ward (1997) using 

immobilized lipase from Candida antartica. 
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Figure 9. Time course for the conversion of oleic acid as a function of reaction temperature in the 

enzymatic esterification reaction between sugars/sugar alcohols and oleic acid in acetone. The error bars 

represent the 95% confidence interval of the sample mean based on n=3. 
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Table 4. Reaction rates as a function of reaction temperature and type of sugar 

 

Temperature 

(ºC) 

Initial Reaction rate (mmol/L·hr) 

Sucrose Fructose Sorbitol Xylitol 

25
°
C 30.6 21.0 43.8 17.4 

40
°
C 39.78 26.53 58.4 20.85 

50
°
C 40.12 22.10 47.45 17.66 

60
°
C 27.28 19.89 42.12 15.94 

 

 

Figure 10. Conversion of oleic acid using Celite®-R633 supported sol-gel at different reaction 

temperatures in the enzymatic esterification reaction between sugars/sugar alcohols and oleic acid in 

acetone. The error bars represent the 95% confidence interval of the sample mean based on n=3. 
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azeotropic distillation (Yan et al., 1999), microwave heating (Carillo-Munoz et al., 1996), use of 

inorganic salts (Hertzberg et al., 1992), pervaporation (Kwon et al., 1995), evacuation in vacuum 

(Napier et al., 1996), multiphase distribution of acetone-CO2-water-glucose (Tai & Brunner, 

2009), vapor permeation and membrane separation (Tsitsimpikou, Daflos & Kolisis, 1997), gas 

sparging (Won & Sun, 2001) and circulation of reaction media through an external column 

packed with molecular sieves (Yoo, Park & Yoon, 2007). In this study the water content for 

different biocatalysts was measured to determine the potential for absorption of water.  As a 

starting point, sugar esters were synthesized using a variety of sugars and oleic acid in acetone. 

The moisture content at the end of the reaction was determined by calculating the difference in 

the moisture content of the product and the blank solution described in Section 2.9. As seen in 

Figure 11, the lowest product moisture content was obtained for sol-gel supported with Celite®-

R633 with fructose.  For all types of CSSIE the final moisture content was found to be 

significantly less (< 0.1%) than the Novozym - molecular sieve combination.  When Novozym or 

unsupported sol gel was used the water content was found to be in the range of 0.3 - 0.4%, which 

was close to the theoretical quantity of water formed for specified quantity of sugars and oleic 

acid from mass balance and stoichiometric relationship. The average moisture content with 

Novozym and molecular sieves was 0.15%.  The moisture content for Novozym and molecular 

sieves was similar to the results obtained by Yoo, Park & Yoon (2007). These results can be 

partly explained based on some of the physical characteristics of Celite®.  The manufacturer 

reports a much higher water adsorption capacity (240% mass of water to mass of Celite®) 

compared to 84% for R632 and 163% for R647. Similar results were obtained by Sabeder, 

Habulin & Knez (2005) for sugar ester production using Novozym and molecular sieves. They 

reported that at molecular sieve concentrations (weight of molecular sieve/weight of reaction 
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mixture) greater than 12.1% there was a decrease in yield of product due to the excessive 

removal of essential water from the vicinity of the enzyme and interference in the mass transfer 

phenomena. Tarahomjoo & Alemzadeh (2003) who analyzed the influence of quantity of 

molecular sieve to glucose palmitate production in hexane made similar observations.  

 

 

Figure 11. Moisture content of the reaction medium with various sugars and oleic acid in acetone for 

different biocatalysts combinations and a reaction time of 12 hours. The error bars represent the 95% 

confidence interval of the sample mean based on n=3. 
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large amounts of molecular sieve (15 g) were added, conversion was greater than 90%. They also 

reported that the final water content was 0.3% without molecular sieves which is consistent with 

the results reported here using unsupported sol-gel.  

The moisture content was determined for different quantities of CSSIE when producing 

fructose monooleate. From Figure 12 it is observed that the addition of large amounts of CSSIE 

decreased water content during the reaction and at the end of the reaction. Samples were taken at 

2 hour intervals and moisture content analyzed.  In all cases the moisture content leveled off after 

8 hours regardless of CSSIE.  

 

Figure 12. Moisture content in reaction medium for fructose with oleic acid in acetone for different 

quantities of Celite®-R633 supported sol-gel. The error bars represent the 95% confidence interval of the 

sample mean based on n=3. 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

Reaction time after enzyme addition (hrs) 

1 g 

2 g 

3 g 

4 g 

5 g 

 

M
o
is

tu
re

 c
o
n
te

n
t 

%
 



52 

 

3.2.3. Moisture Content as a Function of Reaction Temperature 

 

Experiments were conducted to determine the effect of reaction temperature on the moisture 

content of the reaction medium for different temperatures and sugar/sugar alcohols with oleic 

acid and Celite®-R633 supported sol-gel. From Figure 13 it is observed that the maximum 

moisture content occurred at 40
°
C for sorbitol.  This could be attributed to the fact that this was 

the combination for which the highest enzyme activity was observed.  The moisture content was 

found to be the highest consistently for sorbitol which agree with the previous finding that 

conversion was the highest for sorbitol. The lowest moisture content at 60
°
C was the lowest for 

which can be related to the low conversions observed at this temperature. The lowest moisture 

content was observed for sucrose and fructose which can be related to the lower yield of products 

compared to the sugar alcohols.  

 

Figure 13. Moisture content at different temperatures in the enzymatic esterification reaction between 

sugars/sugar alcohols and oleic acid in acetone and a reaction time of 12 hours. The error bars represent 

the 95% confidence interval of the sample mean based on n=3. 
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3.2.4. Moisture Content as a Function of Fatty Acid 

 

This study was conducted to determine if there was a relationship between moisture content 

and the different fatty acids using Celite®-R633 supported sol-gel in acetone (Figure 14). A 

similar pattern for moisture content was observed to that for the conversion data for the different 

fatty acids.  This is reasonable as the greater the conversion the more water produced as a 

product.  From Figure 14 it is observed that the fatty acids with a shorter chain length resulted in 

decreased water contents due to reduced substrate conversion. The highest moisture content 

occurred for xylitol monostearate at 0.12% and the lowest for fructose monolaurate at 0.03%. 

 

Figure 14. Moisture content as a function of fatty acid in the enzymatic esterification reaction between 

sugars/sugar alcohols and fatty acids in acetone. The error bars represent the 95% confidence interval of 

the sample mean based on n=3. 
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CSSIE alone and the moisture content was determined. From Figure 15 it is seen that the 

maximum water adsorption was observed for Celite®-R632 followed by Celite®-R633 then 

Celite®-R647. From Section 3.2.1 the maximum water adsorption was obtained Celite®-R633 

sol-gel. Adlercreutz (2005) discussed the potential of water absorption for enzymes supported 

with Celite®.  He reported that Celite® (30-80 mesh) could absorb 2 mg of water per gram of 

Celite® and act as a suitable support for chymotrypsin with the highest activity in comparison to 

other supports like Accurel PA6 (polyamide) and controlled pore glass.  The reaction was 

conducted between N-acetyl-L-phenyl alanine ethyl ester with 1-butanol with the enzyme horse 

liver alcohol dehydrogenase. It was observed that the enzymes bound varying quantities of water 

depending on the thermodynamic water activity and that the polyamide support  Accurel PA6 

adsorbed more water than Celite®. De Martin et al. (1999) also examined the water absorbing 

properties of Celite® and reported the adsorption and release of water for Celite®-R640 rods. It 

was found that the rods could be used to maintain a constant water activity within defined ranges 

of water concentration and adsorbed water in excess of 90% of the Celite’s® weight. Adsorption 

isotherms were presented and it was observed that water penetrated into the inner zones of the 

rods and that water exchange with the external phase was very slow. The rods were also ground 

into a powder and it was found that the adsorption properties changed dramatically.  It is 

apparent that the macroscopic 3-dimensional organization underwent partial destruction although 

the pores were unbroken. It was concluded that the ability of Celite®-R640 to buffer the water 

activity was mainly related to its porosity (0.8 cm
3
/g).  

One of the reasons that Celite®-R633 (pore diameter 6.5 µm) could absorb more water than 

Celite®-R647 (0.07 µm) as observed in this study may be due to differences in the pore 

diameter. The Celite® - sol-gel - lipase combination that had the greatest water adsorbing effect 
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for Celite®-R633 supported sol-gels could be due to the thermodynamic water activity and 

increased water penetration into the inner zones of sol-gel. This could increase the water binding 

capacity of the Celite®-R633 supported sol-gel. It is also evident that Celite® alone did not 

facilitate maximum water adsorption although a certain quantity of water was absorbed by the 

Celite®. In terms of % moisture content the effect of 5 g of Celite®-R632 was comparable to the 

effect of 5 g of molecular sieve and the addition of larger amounts of Celite® lowered the 

moisture content. 

 

Figure 15. Moisture content in the enzymatic esterification of fructose with oleic acid in acetone using 

Celite® and Novozym and a reaction time of 12 hours. The error bars represent the 95% confidence 

interval of the sample mean based on n=3. 
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water absorbed so that the sol-gel could be reused. The approach was to dry the Celite®-R633 

supported sol-gel at 40
o
C.  To establish a time frame for drying, the weight of CSSIE was 

determined at ten minute intervals during the drying process and results are presented in Figure 

16.   From Figure 16 it is observed that a constant weight was reached after 40 minutes of drying 

at 40
°
C.  For subsequent re-use experiments, the CSSIE was dried for 40 minutes.    

 

Figure 16. Celite®-R633 supported sol-gel mass as a function of time at 40
°
C. The error bars represent 

the 95% confidence interval of the sample mean based on n=3. 
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adsorption was experienced until the 3
rd

 reuse. The moisture content obtained with the 4
th

 reuse 

of CSSIE (0.3%) was equal to the theoretical quantity of water that would be predicted based on 

the amount of product formed. The maximum water adsorption was observed for Celite®–R633 

for each reuse compared to Celite®–R632 and R647. A gram of CSSIE was found to adsorb 

0.00592 g of water for the first reuse without drying as shown in the Calculations (Section B). 

 

Figure 17. Moisture content of the reaction medium for the production of fructose monooleate 

following reuse CSSIE without drying. The error bars represent the 95% confidence interval of the 

sample mean based on n=3. 
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was equal to the theoretical quantity of water that would be predicted based on the amount of 

product formed.  This illustrates that the drying approach could be used to extend the usefulness 

of the CSSIE adsorption capacity and extend the number of possible reuses. A gram of CSSIE 

was found to adsorb 0.0073 g of water for the first reuse with drying in comparison to 0.00592 g 

of water without drying as shown in the Calculations (Section B).   Claon & Akoh (1994) 

utilized this enzyme drying method for a reaction between geraniol and acetic acid using 

Candida Anatartica lipase SP382 40 BLU/g immobilized on acrylic resin. In their study, the 

immobilized enzyme was removed by passing the reaction mixture through an anhydrous sodium 

sulfate column and was rinsed with hexane and dried in a desiccator. This was found to increase 

the stability of the enzyme and allow reuse. Adlercreutz (2005) also reported that the drying of 

Celite® supported enzymes increased the water absorbing capacity of the enzyme. 

 

Figure 18. Moisture content in the synthesis of fructose monooleate with reuse of the CSSIE following 

drying at 40
°
C for 40 min after each use. The error bars represent the 95% confidence interval of the 

sample mean based on n=3. 
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3.3.2.   Enzyme Half Life 

 

Enzyme half-life is an important consideration in the engineering of immobilized enzymes.  A 

study was conducted to compare the half-life of CSSIE to that of Novozym which has a reported 

half-life in the way of reuses of 9 repeated uses as reported by Yoo, Park & Yoon (2007). Claon 

& Akoh (1994) reported a half life of 7 repeated uses for a reaction between geraniol and acetic 

acid using Candida antartica lipase immobilized on acrylic resin.  

The oleic acid conversion was determined for Celite®-R633 supported sol-gel with various 

sugar/sugar alcohols in acetone.   After the CSSIE was separated from the reaction mixture it 

was dried and then reused. The half-life of the CSSIE was defined as the number of repeated 

uses until the conversion was one-half of the conversion obtained with the first CSSIE use. 

Figure 19 shows that the activity of the CSSIE increased marginally (1%) until the 4
th

 reuse 

during which increased oleic acid conversion was observed. Conversion with the 5
th

 reuse was 

equal to the conversion obtained for the initial CSSIE cycle. Conversion decreased substantially 

after the 5
th

 reuse and an enzyme half-life of 7 reuses was observed. The half-life was found to 

be the same for all sugar esters based on oleic acid conversion. The relatively constant 

conversion for up to 4 reuses could be due to the sol-gel aging effect discussed in Section 3.0.2 

and the subsequent conversion drop off could be due to decreased enzyme activity and water 

absorption capacity of the supported sol-gel in spite of drying after every use.  
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Figure 19. Conversion of oleic acid with CSSIE (Celite®-R633) reuse in the enzymatic esterification 

reaction between sugars/sugar alcohols and oleic acid in acetone. The error bars represent the 95% 

confidence interval of the sample mean based on n=3. 
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sol-gel clusters were visible even after drying and reuse. The enzyme activity and moisture 

absorbing capacity could be attributed to the preservation of sol-gel clusters and the porosity of 

the Celite® with repeated use. Meunier & Legge (2010) conducted SEM analysis of CSSIE and 

determined that R633 had 38 sol-gel clusters in 477,000 µm
2
 of surface area imaged with an 

average cluster size of 1270 µm
2
. R633 and R632 had a comparable number of sol-gel clusters; 

however, R647 had very few clusters. It was suggested that R633 and R632 favored adhesion of 

sol-gel as a thinner layer on the surface rather than cohesion of thicker sol-gel clusters as with 

R647.   
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Figure 20. SEM Images at 3000 x magnification (a) Celite®-R633 (b) Celite®-R632 (c) Celite®-R647 

(d) Unsupported lipase sol-gel (e) Celite®-R633 supported sol-gel after 1
st
use (f) Celite®-R633 supported 

sol-gel after 2
nd

 use (g) Celite®-R633 supported sol-gel after 3
rd

 use. Arrows indicate sol-gel clusters on 

the surface of the Celite®. 
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4.       Research Highlights 
 

1. CSSIE was made up of sol-gel that consisted of PTMS and TMOS and supported by 

three different types of Celite®–R632, R633 and R647. They were found to be effective  

as biocatalysts in the esterification reaction between sugars/sugar alcohols and fatty acids 

and adsorbed quantities in excess of 90% of the water by-product which resulted in high 

sugar fatty acid ester product yields. About 20 hours of total reaction time was required 

before oleic acid conversion leveled off. The highest yield of 96.7% was obtained for the 

production of sorbitan monooleate with no appreciable quantities of side products formed 

for any of the reactions reported based on stoichiometric calculations and GC-MS data.  

2. Maximum product yield and water adsorption was achieved by Celite®-R633 supported 

sol-gel. Highest oleic acid conversions were obtained with the use of sorbitol as the acyl 

acceptor. Sugar alcohols (sorbitol and xylitol) resulted in higher oleic acid conversions 

than sugars (sucrose and fructose). Acetone was a more favorable reaction solvent than t-

butanol based on the higher oleic acid conversions obtained. 

3.  A CSSIE drying and reuse approach was developed which involved heating for 40 

minutes at 40
0
C before reuse.  This appeared to activate the adsorption sites by removing 

the water from the previous reaction.  A half-life of 8 repeated uses was observed. The 

moisture adsorbing capacity of the sol-gel supported by Celite®-R633 was 20% more 

than Novozym and molecular sieve. Celite® partially adsorbed water but did not facilitate 

maximum water adsorption. Supported sol-gels experienced an aging effect with highest 

conversions observed with a sol-gel aging time of 8 days. 

4. Excess of dissolved sugar favored the conversion of fatty acid to product. Quantities of 

sugar greater than a sugar:fatty acid molar ratio of 3:1 did not significantly increase oleic 
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acid conversions. Large quantities of enzyme also favored higher conversion of reactants. 

Concentrations of enzyme in excess of 1.66 g/mmol fatty acid did not significantly 

increase oleic acid conversion. 

5. Highest oleic acid conversions were obtained with the use of longer chain fatty acids and 

a reaction temperature of 40
º
C. Maximum immobilization of 85% of initial protein mass 

was obtained by using the sol-gel supported by Celite®-R633. 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

5.         Future Research Prospects and Recommendations 
 

 

Accurel supported sol-gel immobilized enzymes 

Adlercreutz (2005) reported that the polyamide support Accurel PA6 adsorbed more water 

than Celite®. It might be useful to explore the use of Accurel supported sol-gel immobilized 

enzymes for fatty acid sugar ester synthesis. 

 

Membrane Separation 

Although membrane separation techniques such as pervaporation dehydration (Sakaki et al., 

2006) have been explored as an approach to remove water its potential in sugar ester purification 

would be interesting. Membranes composed of cellulose and synthetic polymers or ceramic 

materials could also be modified to be highly selective towards polar molecules and have the 

advantage of low cost, high durability and ease of manufacture. Reverse osmosis, electrodialysis 

and freeze drying are also practical options that could be possible alternatives to the approach 

utilized here.   

 

Zeolites 

The use of zeolites as an adsorbing agent has not been used in sugar fatty acid ester synthesis. 

They facilitated selective adsorption of polar molecules due to their uniform pore size and high 

adsorption capacity (Grace Division, 2006). This approach may be an effective water adsorbent 



67 

 

in esterification reactions. The preferential uptake of water by zeolites was carried out even at 

low concentrations due to its negatively charged framework which increases the ion exchange 

due to intermolecular attractive forces with the positive ions of polar molecules. An advantage of 

this technique would be the reversibility of the adsorption process and the lack of any structural 

change of the zeolite (Grace Division, 2006).  
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6. Conclusions 
 

From the results of this study the use of sol-gels supported with Celite®–R633 as a 

biocatalyst is a feasible approach for the production of sugar fatty acid esters due to the water 

adsorption characteristics of the Celite® support. The selective uptake of polar molecules by 

CSSIE may provide consistent performance which would be required in large scale industrial 

application of these enzymes in esterification reactions.  

Although it might be too early to conclude that CSSIE is the most favorable biocatalyst for 

the enzymatic synthesis of sugar fatty acid esters the results of this study suggest that Celite®-

R633 should be considered as a promising support for lipase immobilized sol-gels. The CSSIE 

seems to be an effective alternative for the removal of water and are comparable to approaches 

like molecular sieves in combinations with Novozym.   
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Appendix 

 

A. Example Chromatograph for GC-MS Analysis 

 

Samples containing a variety of sugars with oleic acid and CSSIE were derivatized and then 

analyzed by the GC-MS.  A typical chromatogram for a full complement of reactants and 

products is shown in Figure 21. This chromatogram reflects good separation of all esters 

produced, unconverted sugars and oleic acid. The molecular formula and weights of the 

derivatized products are provided in Table 5. Quantitative data was obtained from peak areas and 

calibration plots. The yield of product was evaluated from the conversion of oleic acid and 

stoichiometric and mass balance calculations in the absence of any evidence of side products 

which could be attributed to the regioselectivity of the enzyme. Mass spectra fragmentation 

patterns were recorded and used to identify of the sugar esters and fatty acids. The retention 

times and mass spectral data for each peak matched the retention times and mass spectral data 

obtained for derivatized samples of the individual compounds.   
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Figure 21. Example chromatogram of a sample containing unconverted reactants and products 

 

Table 5. Assignment of retention times for compounds analyzed by GC-MS. 

Peak 

Number 

Sample  Molecular 

weight (g/mol)  

Molecular 

formula 

Retention Time 

(minutes) 

1 Xylitol 224 C8H20O5Si 7.658 

2 Fructose 252 C9H20O6Si 8.605 

3 Sorbitol 254 C9H22O6Si 10.946 

4 Oleic acid 354 C21H42O2Si 11.200 

5 Sucrose 414 C15H30O11Si 12.616 

6 Xylitol monooleate 488 C26H52O6Si 13.034 

7 Fructose monooleate 516 C27H52O7Si 13.618 

8 Sorbitan monooleate 518 C27H54O7Si 13.886 

9 Sucrose monooleate 678 C33H62O12Si 14.881 
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B. Chemical Structures of Compounds used in this Study 

 

The structures of the compounds used in this study are provided in Table 6.  

Table 6. Structures of sugars, fatty acids and of the derivatization agents 

 

 

Fructose 

 
Systematic Name - D-Fructose 

Molecular formula  -  C6H12O6 

Molecular weight  -  180.1559 

 

 

 

Sorbitol 
 

Systematic name  -  D-Sorbitol 

Molecular formula  -  C6H12O6 

Molecular weight  -  180.1559 

 

 

 

 

Sucrose 

 
Systematic Name - β-D-fructofuranosyl α-D-glucopyranoside 

Molecular formula  -  C12H22O11 

Molecular weight  -  342.11 

 

 

 

Xylitol 

 
Systematic Name - D-Xylitol 

Molecular formula  -  C5H12O5 

Molecular weight  -  152.0685 
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Oleic acid 

 
Systematic Name - (9Z)-octadec-9-enoic acid 

Molecular formula  -  C18H34O2 

Molecular weight  -  282.256 

 

 

 

 

 

 

 

 

Palmitic acid 

 
Systematic Name - (9Z)-octadec-9-enoic acid 

Molecular formula  -  C16H32O2 

Molecular weight  -  256.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lauric acid 

 
Systematic Name - Dodecanoic acid 

Molecular formula  -  C12H24O2 

Molecular weight  -  200.177 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myristic acid 

 
Systematic Name - Tetradecanoic acid 

Molecular formula  -  C14H28O2 

Molecular weight  -  228.209 

 

 

In the process of derivatization of the substrates/products with BSTFA, HMDS or TMCS, the 

active hydrogen was replaced by –Si(CH3)3 (trimethylsilyl group) in the –OH,  –COOH, =NH, –

NH2 and –SH groups. 

http://www.google.ca/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/thumb/2/29/Oleic_acid_structure.svg/800px-Oleic_acid_structure.svg.png&imgrefurl=http://commons.wikimedia.org/wiki/File:Oleic_acid_structure.svg&h=400&w=800&sz=11&tbnid=gqmiq1E9uq7KkM:&tbnh=60&tbnw=119&prev=/search?q=oleic+acid+structure&tbm=isch&tbo=u&zoom=1&q=oleic+acid+structure&docid=pogXm4G0EqUjAM&hl=en&sa=X&ei=0MdVTqGOFuTk0QHDlfmhDA&sqi=2&ved=0CCQQ9QEwAw&dur=1500
http://www.google.ca/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/1/10/Palmitic_acid_structure.png&imgrefurl=http://fr.wikipedia.org/wiki/Fichier:Palmitic_acid_structure.png&h=150&w=1060&sz=4&tbnid=RjUD6NXjQ33SQM:&tbnh=17&tbnw=120&prev=/search?q=palmitic+acid+structure&tbm=isch&tbo=u&zoom=1&q=palmitic+acid+structure&docid=Ac0FIOs3wUkvkM&hl=en&sa=X&ei=_MdVTrzjMar10gGw1s2OBg&sqi=2&ved=0CDsQ9QEwBA&dur=1156
http://www.google.ca/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/archive/7/7f/20100524132536!Lauric_acid.png&imgrefurl=http://en.wikipedia.org/wiki/File:Lauric_acid.png&h=150&w=811&sz=4&tbnid=1rP4yxOPX6ZjUM:&tbnh=22&tbnw=120&prev=/search?q=LAURIC+ACID+STRucture&tbm=isch&tbo=u&zoom=1&q=LAURIC+ACID+STRucture&docid=WUV2SrHgQRje9M&hl=en&sa=X&ei=QshVToKiFKHa0QGn0aX5Cw&ved=0CDQQ9QEwBA&dur=1047
http://www.google.ca/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/archive/4/42/20100621164423!Myristic_acid.png&imgrefurl=http://en.wikipedia.org/wiki/File:Myristic_acid.png&h=128&w=800&sz=16&tbnid=-6BoYSrdmh8iAM:&tbnh=20&tbnw=122&prev=/search?q=MYRISTIC+ACID+STRucture&tbm=isch&tbo=u&zoom=1&q=MYRISTIC+ACID+STRucture&docid=JjYEaMjQQbGqPM&hl=en&sa=X&ei=X8hVTvrFLOnr0gHXt9nfAg&ved=0CE8Q9QEwBg&dur=1032
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N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) 

 
Molecular formula  -  C18H18F3NOSi2 

Molecular weight  -  257.087 

 

 

 

 

 

Hexamethyldisilazane 

 
Molecular formula  -  C6H19NSi2 

Molecular weight  -  161.105 

 

 

 

 

Chlorotrimethylsilane 

 
Molecular formula  -  C3H9ClSi 

Molecular weight  -  108.016 

 

 

 

 

 

 

 

 

 

 

Stearic acid 

 
Molecular formula   -  C18H36O2 

Molecular weight  -  284.48 
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C. Celite® Particle Size and Pore Diameter 

 

Table 7. Particle size and pore diameters for the Celite® used in this study 

(Based on manufacturer's specifications provided by Meunier & Legge, 2010) 

 

Celite® Particle Size (µm) Pore Diameter (µm) 

R633 300 - 600 6.5 

R632 600 - 1400 7 

R647 600 - 1400 0.07 
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Calculations 
 

A. Mass Balance  

 

The mass balance for sucrose monooleate synthesis using Celite®-R633 supported sol-gel 

was conducted as follows. 

When 3mmol of sucrose reacts with 3 mmol of oleic acid, 3 mmol of sucrose monooleate and 

3 mmol of water were formed.  Thus on a mass basis 1.0269 g of sucrose would react with 0.847 

g of oleic acid and form 1.82 g of sucrose monooleate ester and 0.0565 g of water.  This 

translates into the formation of 0.3 g of water for 100 g of sugar monooleate. This is in 

agreement to moisture content % from Karl Fischer data. 

The final water content in the reaction medium was 0.03 g for every 100 g of product formed 

using Celite®-R633 supported sol-gel which translates into to 90% water of the water being 

adsorbed.    

 

B. Calculation of Water Adsorbing Capacity of CSSIE 

 

Consider for example the production of sucrose monooleate in acetone using Celite®-R633 

supported sol-gel. 

Quantity of water adsorbed by supported sol-gel after its first use 

Initial weight of CSSIE used in the reaction mixture = 5 g 



85 

 

From mass balance calculations 1.0269 g of sucrose reacted with 0.847 g of oleic acid and 

produced 1.82 g of sucrose ester and 0.0565 g of water. 

From the GC-MS data an oleic acid conversion of 95.13% was observed thus 0.0537 g of 

water was formed with no side products formed. 

From KF data 0.07% water was present in the final product using the supported sol-gel. By 

the use of the unsupported sol-gel 0.33% water was present in the final product.  Therefore, 

78.79% of the total water formed in the reaction (0.0537 g) was absorbed by 5 g of CSSIE 

for the first use = 0.0423 g 

Quantity of water absorbed per g of CSSIE = 0.00846 g 

 

Quantity of water adsorbed by supported sol-gel after its first reuse without drying 

Initial weight of CSSIE = 5.314 g 

From mass balance calculations 1.0269 g of sucrose reacted with 0.847 g of oleic acid and 

formed 1.82 g of sucrose ester and 0.0565 g of water. 

From the GC-MS data an oleic acid conversion of 96.12% was observed, thus 0.0543 g of 

water was formed with no side product formation observed. 

From KF data 0.15% water was present in the final product. The use of the unsupported sol-

gel resulted in 0.33% water in the final product. 

Therefore 54.54% of the total water formed in the reaction (0.0543 g) was absorbed by 5 g of 

CSSIE = 0.0296 g 
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Quantity of water absorbed per g of CSSIE while reusing it for the first time without 

adopting the drying approach = 0.00592 g 

 

Quantity of water adsorbed by supported sol-gel after its first reuse with drying  

Initial weight of CSSIE = 4.722 g 

From mass balance calculations 1.0269 g of sucrose reacted with 0.847 g of oleic acid and 

formed 1.82 g of sucrose ester and 0.0565 g of water. 

From the GC-MS data an oleic acid conversion of 96.12% was determined thus 0.0543 g of 

water was formed. 

From KF data 0.12% water was present in the final product. By the use of the unsupported sol-

gel 0.33% water was present in the final product. 

Therefore 63.64% of the total water formed in the reaction (0.0543 g) was absorbed by 5 g of 

CSSIE = 0.0345 g 

Quantity of water absorbed per g of CSSIE while reusing it for the first time with drying = 

0.0073 g 

Thus the CSSIE drying approach increased the water absorption capacity of the biological 

catalyst. 
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C. Determination of Protein Immobilized in Lipase Analysis by HPLC  

 

Mass Balance of Protein  

                                              

                                                             

                                    

                                       

 

Mass of protein from each buffer wash was determined from the calibration plot in Figure 22. 

Initially 15 ml of enzyme with a protein concentration of 2000 µg/ml was used and the total 

initial mass of protein was 30,000 µg. 

Quantity of buffer used for each wash = 15 ml 

 

Mass of immobilized of protein in sol-gel supported by Celite®-R633  

= 30,000-3,000-1,500 µg = 25,500 µg 

= 85% of initial protein mass immobilized 

 

Immobilized mass of protein in sol-gel supported by Celite®-R632 

= 30,000-3,750-3,000 µg = 23,250 µg 

= 77.5% of initial protein mass immobilized 
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Immobilized mass of protein in sol-gel supported by Celite®-R647 

= 30,000-7,350-5,250 µg = 17,400 µg 

= 58% of initial protein mass immobilized 

 

Immobilized mass of protein in unsupported sol-gel  

= 30,000-9,750-3,750 µg = 16,500 µg 

= 55% of initial protein mass immobilized 

The retention time of the lipase was 16.7 minutes assuming that the largest peak on the 

chromatogram was lipase. The calibration plot provided in Figure 22 is for Lipozyme CAL-B 

lipase. 
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Figure 22. Calibration plot for determining protein loading in sol-gels. The error bars represent the 95% 

confidence interval of the sample mean based on n=3. 

Resp. Fact. RSD = 21.85% 

Regression coefficient (R
2
) = 0.999548 

Curve Type = Quadratic 

y = 3.350398e - 3x
2
 + 5.8215e1x + 1.178849e + 2 
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Figure 23. Chromatogram for a sample of 1000 µg/ml total protein based on manufacturers 

specifications. 
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Statistical Data Analysis 
 

The effect of the Karl-Fischer (KF) titration reagent on moisture content was statistically 

analyzed using different preparations. The statistical calculations were based on randomized 

block designs and least significant difference (LSD) methods by Montgomery & Runger (2011). 

Experimental Details 

Blocked Variable – Number of times 100 ml of KF reagent was used for titration  

Factor – Different types of enzymes with (or) without molecular sieves 

Response Variable – Moisture Content  

Number of replicates – 3  

The amount of Karl Fischer reagent used for each replicate was always 100 ml. It was 

suspected that there was an error in the response variable along with the instrumental error and 

hence a blocked variable was chosen to be the number of times the same reagent was used. To 

neglect the sol-gel aging effect fresh sol-gel was prepared two days before each analysis.  

Product moisture content was calculated by the formula, 

                                                                 

(                         )             
 

Karl Fischer Titration 

I2  +  SO2  +  H2O  →  2HI  +  SO3 
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The KF reagent contained iodine and sulphur dioxide. Based on the amount of hydrogen 

iodide formed measured by the detection electrode the water content of the sample was 

calculated. The stirrer speed was adjusted and the detection electrode and stirrer unit were 

connected directly before each analysis. The desiccant tube was attached to remove any 

condensation that formed and the drain cock was closed. The titration flask and cathode chamber 

were filled with 100 ml of fresh reagent and 1 vial of catholyte solution. The same reagent was 

reused for 3 titration replicates. Three types of samples were compared for the production of 

fructose monooleate in acetone. 

Treatment 1 – Novozym (0.03 g) 

Treatment 2 – Novozym (0.03 g) + Molecular sieves (5 g) 

Treatment 3 – Sol-gel supported by Celite®-633 (5 g) 

At the end of the reaction the treatments were separated from the product mixture by filtration 

with a 0.45 µm DB filter paper (Chromatographic Specialties Inc.) and the purified product was 

injected into the titration chamber that contained the KF reagent. The percentage moisture 

content was determined and analyzed statistically. 

Statistics and Data Analysis 

Number of times 
same reagent 
was used (Block) 

            % Moisture Content for Different Samples 

Novozym Novozym + molecular sieve Supported sol-gel 

1 0.33 0.13 0.06 

2 0.35 0.15 0.03 

3 0.3 0.16 0.05 
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Figure 24. Moisture content in fructose monooleate production for different preparations. The error bars 

represent the 95% confidence interval of the sample mean based on n=3. 

 

The statistical techniques used were based on the approach by Montgomery & Runger (2011) 

and the following methods were adopted to determine the Analysis of Variance (ANOVA) table. 

1. Randomized Block Design by Single factor experiment 

2. Multiple comparisons using the Least Significant difference (LSD) 

Table 8. Randomized block design by single factor experiment 

Number of times 
same reagent was 
used (Block) 

 
Percentage moisture content of product for different 
treatments  

 Novozym Novozym + 
molecular sieve 

Supported 
sol-gel 

Block totals 

1 0.33 0.13 0.06 0.52 

2 0.35 0.15 0.03 0.53 

3 0.3 0.16 0.05 0.51 

Treatment totals 0.98 0.44 0.14 1.56 
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Table 9. ANOVA table of effect of KF reagent on moisture content 

Source SS Df MS Fobs 

Factor 0.1208 2 0.0604 111.851 

Block 0.0000667 2 0.00003335 0.0632 

Error 0.00213 4 0.00053  

Total 0.123 8   

 

Summary of results 

1. Variation of moisture content for different treatments was significant. 

2. The number of uses of KF reagent did not influence the product moisture content for 

three replications. 

3. Blocking accounted for 3% variation which was insignificant. 

 

Discussion of analysis and conclusions 

 The LSD approach confirmed that the use of different treatments significantly affected 

the moisture content and that supported sol-gels adsorbed more water than Novozym and 

molecular sieves. 

 The use of the same KF reagent did not significantly affect the moisture content. 

However if the number of replications were increased it would possibly change statistical 

data and interpretations. Prior to this analysis KF reagent was changed after every use. 

 The effect of blocking was not vitally important since only 3% of variation not associated 

with enzymes was explained by blocks. 


