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Abstract 

The probabilistic design of dynamic systems with degrading components is difficult. Design of 

dynamic systems typically involves the optimization of a time-invariant performance measure, 

such as Energy, that is estimated using a dynamic response, such as angular speed. The 

mechanistic models developed to approximate this performance measure are too complicated to 

be used with simple design calculations and lead to lengthy simulations. When degradation of the 

components is assumed, in order to determine suitable service times, estimation of the failure 

probability over the product lifetime is required. Again, complex mechanistic models lead to 

lengthy lifetime simulations when the Monte Carlo method is used to evaluate probability. 

Based on these problems, an efficient methodology is presented for probabilistic design of 

dynamic systems and to estimate the cumulative distribution function of the time to failure of a 

performance measure when degradation of the components is assumed. The four main steps 

include; 1) transforming the dynamic response into a set of static responses at discrete cycle-time 

steps and using Singular Value Decomposition to efficiently estimate a time-invariant 

performance measure that is based upon a dynamic response, 2) replacing the mechanistic model 

with an approximating function, known as a “metamodel” 3) searching for the best design 

parameters using fast integration methods such as the First Order Reliability Method and 4) 

building the cumulative distribution function using the summation of the incremental failure 

probabilities, that are estimated using the set-theory method, over the planned lifetime.  

The first step of the methodology uses design of experiments or sampling techniques to select a 

sample of training sets of the design variables. These training sets are then input to the computer-

based simulation of the mechanistic model to produce a matrix of corresponding responses at 

discrete cycle-times. Although metamodels can be built at each time-specific column of this 

matrix, this method is slow especially if the number of time steps is large. An efficient alternative 

uses Singular Value Decomposition to split the response matrix into two matrices containing 

only design-variable-specific and time-specific information. The second step of the methodology 

fits metamodels only for the significant columns of the matrix containing the design variable-

specific information. Using the time-specific matrix, a metamodel is quickly developed at any 

cycle-time step or for any time-invariant performance measure such as energy consumed over the 

cycle-lifetime. In the third step, design variables are treated as random variables and the First 
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Order Reliability Method is used to search for the best design parameters. Finally, the 

components most likely to degrade are modelled using either a degradation path or a marginal 

distribution model and, using the First Order Reliability Method or a Monte Carlo Simulation to 

estimate probability, the cumulative failure probability is plotted. The speed and accuracy of the 

methodology using three metamodels, the Regression model, Kriging and the Radial Basis 

Function, is investigated.  

This thesis shows that the metamodel offers a significantly faster and accurate alternative to 

using mechanistic models for both probabilistic design optimization and for estimating the 

cumulative distribution function. For design using the First-Order Reliability Method to estimate 

probability, the Regression Model is the fastest and the Radial Basis Function is the slowest. 

Kriging is shown to be accurate and faster than the Radial Basis Function but its computation 

time is still slower than the Regression Model. When estimating the cumulative distribution 

function, metamodels are more than 100 times faster than the mechanistic model and the error is 

less than ten percent when compared with the mechanistic model. Kriging and the Radial Basis 

Function are more accurate than the Regression Model and computation time is faster using the 

Monte Carlo Simulation to estimate probability than using the First-Order Reliability Method. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

The design of physical systems involves finding the values of the design variables that in turn 

position the performance measures to best meet their specification limits. Design variables 

include, for example, sizes, weights and material composition of parts. In order to allow 

convenient and cheap experimentation on the physical system, a mathematical representation, 

called the “mechanistic model”, is developed.  

For real physical systems, experimentation to improve the design is costly and time consuming, 

especially when the experimental space is large. In response to this, mathematical models, or 

mechanistic models have been developed and computer simulations run to provide the behaviour. For 

a static system we have 

Static System:   0),,( dvzf      (1.1) 

Where z contains the responses and v represents the design variables. The solution is obtained by a 

Newton-Raphson iteration process. When the mechanistic model is complex and simulations are time 

consuming, the design process becomes onerous and thus a faster, metamodel, approach has been 

investigated. The idea is to use a few properly selected training sets of the design variables, simulate 

the outcomes and then fit a simpler, explicit, model.  

In dynamic systems, the mechanistic models are usually in the form of differential equations that 

are typically non-linear and complex (Cochin 1980); (Esfandiari and Lu 2010) and (Ogata 2004) and 

we write 
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Dynamic System:   0)0(        ),,,,( zzdvzz   f    (1.2) 

Where τ is the cycle time usually in seconds and d are the drivers. A response is now provided by a 

numerical simulation over the life-time. Most dynamic systems, such as position or velocity servo 

systems, automotive stability control systems, hammer mechanisms, hydraulic actuators, and so forth, 

are repetitive in nature and exhibit common performance measures. Examples include over-shoot at 

peak time, settling error at settling time, energy consumed over the life-time or common performance 

indices such as the integral of the squared error. Usually, there are multiple, competing performance 

measures.  

Any degradation through aging and deterioration affects the design variables over time and this 

changes the problem to 

Degrading System: 0)0(        ),,),(,( zzdvzz  tF    (1.3) 

where t is the service time typically in years and the design variables, v, due to degradation, are now a 

function of the service time. Clearly, the cycle-time dynamic responses change over service time. 

Based on customer needs, a set of design specifications are normally provided that involves a 

range within which an acceptable response should lie. Since experimentation on the physical 

system is costly, a mathematical representation is developed that can be used for design 

calculations.  

Quality is the “goodness of fit” or the “conformance to specifications” of a product (Savage 

and Carr 2001). The design of the systems traditionally involves deterministic optimization 

where the design variables are identified and the optimization routine searches for the 

combination of the design variables that result in the best response. However, due to variations in 

manufacturing or environmental conditions that inevitably exists, the design variables are never 

the same value leading to the violation of the constraints by the response (Ju and Lee 2008); (Tu, 

Choi and Park 1999); (Jensen and Catalan 2007). Robust design techniques attempt to ensure that 

the system responses are insensitive to both the input uncertainty and component variations 

without actually eliminating the causes. This is done by first assuming that the design variables 

follow a particular distribution types whose distribution parameters are assumed to exist.  

In quality design applications, the standard deviation is normally expressed as a percentage 

tolerance of the mean (Park 1996). Using the provided design specifications and the mechanistic 
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model, a “limit-state function” is developed and the failure probability (the probability of not 

meeting design specifications) is estimated at the current mean and tolerance of the design 

variables (Madsen, Krenk and Lind 1986); (Melchers 1987). Not all combinations of the design 

variables will produce a response that meets design specifications. The simplest method to 

determine an acceptable system is to estimate the failure probability. Limits are now placed on 

the failure probability to determine an acceptable performing system. Probabilistic design, 

therefore, involves searching for the mean and tolerance of the design variables that result in an 

acceptable failure probability.  

Mechanistic models of dynamic systems typically involve state equations that cannot be easily 

used in probability or quality based design methods. Therefore, in order to estimate the failure 

probability, sampling methods are used. Sampling methods, such as the Monte Carlo Simulation 

(MCS), importance sampling and adaptive sampling, are typically used to estimate failure when 

uncertainty is considered. Sampling methods involve finding the response at various possible 

combinations of the design variables and determining the number of occurrences in which the 

response falls outside of specification limits. Even though computer power is increasing, the 

complexity of the mechanistic models also increases (Youn and Choi 2004); (Gayton, Bourinet 

and Lemaire 2003); (Schueremans and Van Gemert 2005) leading to computer simulations that 

are still time-consuming. For an accurate probability estimation in any sampling method, 

typically 10n+2 ~ 10n+3 samples are needed to accurately compute a probability of failure of 10-n 

(Andrieu-Renaud, Sudret and Lemaire 2004).  

An alternative to these sampling methods are the fast integration methods (Wu, Millwater and 

Cruse 1990) such as the First Order Reliability Method, the Second-Order Reliability Method or 

the Advanced Mean Value Method. Normally, when provided with the distributions of the design 

variables, the estimation of the probability of failure would normally involve integrating the joint 

probability distribution function. However, this can lead to complicated integrals for correlated 

design variables. Fast integration methods approximate the integrand by transforming the 

variables to uncorrelated u-space and using a Taylor series expansion, the Most Likely Failure 

Point is approximated, along with the reliability index, that enables an efficient calculation of 

probability (Madsen and Tvedt 1990); (Chiralaksanakul and Mahadevan 2005); (Bucher and 
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Bourgund 1990). In most cases, due to the complexity of the physical system, complex or 

implicit mechanistic models lead to complex limit-state functions that are difficult to use with 

FORM or SORM. 

Most researchers have started using “metamodels” to approximate the mechanistic model to 

allow simple analysis and design. Metamodels have been popular in response prediction (Barton 

1998); (Clarke, Griebsch and Simpson 2005); (Hussain, Barton and Joshi 2002), deterministic 

optimization (Barton and Meckesheimer 2006); (Srivastava, et al. 2004) and even some 

reliability analysis (Deng 2006) but not in probability-based design optimization. Reliability is 

defined as the probability that, when operating under stated conditions, a system will perform its 

intended function successfully for a specified interval of time (Son 2006). The reliability of a 

system is important since degradation of the component inevitably exists. Degradation typically 

arises from environment conditions or stresses under which the component operates. Degradation 

is defined as the deterioration in quality, level or standard of performance of a functional unit that 

is an entity of hardware, software, or both, capable of accomplishing a specified purpose. 

Performance reliability is defined as the probability that performance measures of a system are 

within specification limits for the lifetime, conditional on the system being in a functional 

topology (Savage and Carr 2001). Furthermore, degradation must be accounted for due to its 

impact on quality, reliability and cost through aging and deterioration.  

The traditional design methods for system performance reliability improvement using 

component degradation data have been based upon a sampling-based approach that uses Monte-

Carlo simulation (MCS) to predict system reliability. More specifically, the sampling approach 

takes samples of the component distributions at time zero and traces their paths using their 

particular degradation function to provide time variant system responses. Through tracking and 

comparing the time-variant responses with critical specification limits, a system performance 

reliability function is predicted. However, there are the usual concerns when applying the 

sampling approach to predict reliability measures. For example, a large number of simulations 

and a vast computer memory are required to achieve a reasonable accuracy.  

Design for quality has focused on the uncertainty issues at time zero and it has invoked robust 

design techniques such as Taguchi’s method (Park 1996). Furthermore, for an acceptable system, 
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customers would require that the quality at the start of the lifetime (time zero) is high for an 

acceptable period of time. 

For systems that exhibit aging, deterioration and degradation the problem is compounded and 

methods to find the distributions are not straightforward. Traditionally, lifetime distributions 

have been invoked; however, this approach is limited since there is usually insufficient data to 

estimate the required distribution. One way to overcome the disadvantage of lifetime distribution 

models is to model the degradation of the characteristics of the actual components (e.g. 

dimensions and material properties). 

1.2 Motivation and Goals 

Based upon the problems outlined in the previous section, this thesis is motivated by several 

factors 

 The increasing complexity of mechanistic models that result in an increase in the CPU 

time of the computer-based simulation. Implicit or too complex models are too difficult 

to use in simple design calculations. 

 Using the uncertainty inevitably present in design variables to search for a design that 

meets design specifications. 

 The lack of research that uses metamodels to plot the failure of a system as it degrades. 

The goal of this thesis is to develop an efficient and accurate methodology that combines 

Singular Value Decomposition with metamodels in order to search for the best design of dynamic 

systems when uncertainty is considered in its components. Also, when degradation is assumed in 

the components, the set-theory method will be used to estimate the incremental failure using two 

contiguous service time increments. 
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1.3 Proposed Methodology 

1.3.1 Approach 

The methodology involves four major steps: 

1) Selecting the training design using some design of experiments technique or sampling 

method. For a dynamic system, the sampled dynamic responses are recorded as a set of 

static responses at discrete cycle time increments. 

2) To this matrix of static responses at various training design variable sets, SVD is applied 

to get two matrices containing design-variable-specific and time-specific information. 

Metamodels are built for only the dominant columns of the design-variable-specific 

matrix. 

3) Based upon the design specifications, the limit-state function is estimated, using the 

metamodel that is then used with FORM to estimate the failure probability. The best 

design parameters (mean and tolerance of the design variables) are then searched for 

using parameter design, tolerance design or integrated design methods. 

4) Finally, the degradation is modelled using a particular type of degradation model and the 

incremental failure probability is estimated using the set-theory method. 

In order to fit the metamodel, a sample of design variable sets and the corresponding responses 

must be obtained. Factorial designs or sampling methods select the sample of design variable 

combinations, known as “training sets”. These training sets are then input to a computer-based 

model of the mechanistic model to obtain the corresponding “training responses”. Now, in the 

case of a dynamic response, an estimate of a time-invariant performance measure is required, for 

design, that is based upon a time-varying response. The dynamic cycle lifetime of the response is 

broken into a set of discrete time increments/steps and the response at each of these steps is 

recorded into a matrix whose rows correspond to the response at each training set and the 

columns represent the response at the discrete cycle-time increments. This matrix consists of two 

main “feature spaces” which are the “time feature-space” and the “design-variable feature-

space”. To this matrix, SVD is applied.  
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After SVD, three matrices are obtained; the first contains only the design-variable feature-

space information of the original matrix, the second contains the so-called “singular values” and 

the third contains the time feature-space information. From principal component analysis the 

singular values quantify the importance of the rows of the first matrix (or the columns of the 

second matrix). Therefore, using only dominant singular values, a metamodel at any discrete time 

can be efficiently built and, ultimately, for the time-invariant performance measure such as the 

Integral Squared Error or Energy. This thesis investigates the speed and accuracy of three 

metamodels.  

In the third step, using the metamodel estimate of the time-invariant response and the design 

specifications, a limit-state function is built. The fast integration method, FORM, is used to 

compute probability. In robust design applications, there are three types of design methods; 

parameter design searches for the means of the design variables that result in a reduced system 

failure, tolerance design moves the tolerances of the design variables while keeping the means 

constant and integrated design moves both the means and tolerances of the design variables. 

In the final step, the degrading component is modelled a degradation path model. The intended 

lifetime is then broken into a series of discrete service time increments. At each service-time 

increments, the instantaneous failure probability is estimated and, using the set-theory method 

proposed by (Savage and Son 2011), the incremental failure probability is estimated. Finally, the 

cumulative distribution failure (Cdf) function is plotted to show how the system failure increases 

over time. A list of steps, shown below, illustrates the methodology required to plot the Cdf 

function of a dynamic degrading system. 

1. Performance measures and their specification limits are selected. At initial time, t0, the 

important component characteristics (through sensitivity analysis) are designated as 

design variables and M training sets are selected. Degradation rates are also determined 

through experimental analysis of a similar system to determine how the component 

degrades. 
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2. Discretize the service time by an increment ∆t and let t = t0, t1,..tl..tL where tl = tl-1 + ∆τ. 

For each service time, discretize the cycle time, of the response used to estimate the 

performance measure, by an increment ∆τ so that τ = τ0..τc..τLt where τc = τc-1 + ∆τ. 

3. At service time tl, the responses for the M experiments are simulated using the 

mechanistic model and evaluated at cycle time τc. For any tl a matrix [Zl]M×C is produced 

(Chapter 3). 

4. Apply SVD to separate [Zl]M×C into design variable space [Dl]M×M and time space 

 
CM

T
l 

Q (Chapter 3). 

5. Develop a metamodel for each significant column of Dl and store into a row vector  vd
Tˆ

that is subsequently used to calculate an approximate dynamic response over τ (Chapter 

3). 

6. Assign distributions (through experimental analysis or prior knowledge) to the design 

variables and degradation rates. Transform the limit-state functions that relate time-

invariant performance measures and specification limits to u-space using a 

transformation method such as the Rosenblatt transformation (Chapter 4). 

7. At each discrete service time, a sequence of limit-state functions is developed. Using the 

set-theory method, the incremental failure at service time tl emerging from the safe region 

at tl-1 is obtained (Chapter 7). 

1.3.2 Novelties and Significance 

The novelties of this research are: 

 Using SVD to quickly find a metamodel approximation of a time-invariant 

performance measure whose estimation depends upon a dynamic response. 

 Combining the metamodel of the time-invariant response with FORM to search for the 

best design parameters (the mean and/or tolerance of each design variable) that meets 

specifications at discrete cycle times and for the performance measure. 
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 Combining set-theory and metamodels to estimate the Cdf and incremental failure 

probabilities, of a dynamic system, when degradation is considered in the components. 

The speed and accuracy of three metamodels will be compared and conclusions will be based 

upon results obtained. 

 

Example: For ease of presentation of the steps involved in building the Cdf, consider an explicit 

model of the over-damped decay of the shaft speed of a electro-mechanical servo 

t
R
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Where k is a deterministic lumping of several parameters and R is the rotor winding resistance. 

Let R degrade according to a degradation path model then an expression for the speed in service 

time tl and cycle time τ becomes 
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Let R0 and KR be uncertain, then for any service time tl and samples of R0 and KR, the angle can 

be captured at any cycle time τk. In Figure 1-1 the uncertainty over cycle-time is shown plus the 

change in this uncertainty through aging of the resistance for initial time and some future service-

time. The three curves show three samples of the dynamic response. The figure on the left shows 

the three sampled dynamic responses at the start of the service time, t0, and the figure on the right 

shows the three samples at a later service time, tl. Notice how the samples move which is due to 

the degradation of the resistance. 
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Figure 1-1: An uncertain dynamic response and the effects of degradation: (a) t = t0 and (b) t = tl 

 

Suppose for service time tl and through a few selected sets of R0 and KR with corresponding 

experiments, we are able to write a simple deterministic metamodel for the shaft speed at τk, say 

Rkl KRtz 2010),(ˆ    

where β0, β1 and β2 are deterministic fitting parameters. We note that time has been subsumed 

and we are left with a function of the design variables. Then we treat R0 and KR as random 

variables to reintroduce the uncertainty in the angle. A choice of a specification limit, ζ, for the 

shaft speed leads to limit-state functions lg and with Normal distribution parameters, for 

example, we have  

 )]()([ 222211110 uugl    

Given the distribution parameters, a plot of gl = 0 for the axis variables  21,uu provides the limit-

state surface from which the failure region and the associated joint density function provide the 

probability of failure. Then the associated joint density function of R0 and KR provides the 

probability of failure. As service time advances the LSS moves and probability of failure 

changes. For complex systems where the model is implicit, the metamodel approach, using 

design of experiments, lets us write an explicit function of the response - similar to that in the 

example. 
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Figure 1-2: Limit-state surface with failure side shaded 

1.4 Outline 

Chapter 2 presents an overview of the previous work done with metamodels, reliability-based 

analysis and optimization. Chapter 3 provides a discussion of the Singular Value Decomposition 

method and how it is used to develop a metamodel to represent the time-invariant performance 

measure. The mathematical background of three metamodels, the Regression Model, Kriging and 

the Radial Basis Function that are used is also presented. This chapter also discusses how the 

accuracy of the metamodels is checked. Chapter 4 discusses how the First Order Reliability 

Method and the Monte Carlo Simulation are used to estimate the probability of failure and the 

three techniques involved to optimize the parameters of the design variables. Chapters 5 and 6 

presents examples to show probability-based design optimization of static and dynamics systems 

using metamodels. Chapter 7 presents an overview of the set-theory method that is used to 

estimate the Cumulative Distribution Function when degradation of the design variables is 

assumed and Chapter 8 presents a case study to illustrate how the Cumulative Distribution 

Function of dynamic degrading systems is plotted. Finally, Chapter 9 presents a summary of the 
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thesis and possible future directions. Figure 1-3 presents a flowchart of the main steps in the 

methodology. 

 

Figure 1-3: The sequence of steps in the proposed methodology. 

 

Step 1: Select design variables, performance measures, specification limits and 

degradation rates. Define the product lifetime tL and response cycle-time τL. 

Step 2: Let t = t1,...,tl,...,tL where tl = tl-1 + ∆t. For each tl discretize the cycle time 

so that τ = τ0,...,τc,...,τL where τc = τc-1 + ∆τ. 

Step 3: At t0, select the M training sets and simulate them using the mechanistic 

model evaluated at each τc. Store the results in a matrix Z. 

Step 4: Apply SVD to separate Z into D and Q. 

Step 5: Develop a metamodel for each significant column of D and store into a row 

vector  vd
Tˆ  that is used to calculate an approximate dynamic response over τ. 

Step 6: Using the specification limits in step 1, build LSFs that relate time-invariant 

performance measures and specification limits. Specify the distributions of the 

design variables and transform LSFs to u-space. 

Step 7: Search for the best design using parameter, tolerance or integrated design. 

Step 8: Using the best design, at each discrete service time, tl, defined in step 2, 

repeat steps 3 – 6 to get service-time variant LSFs. Set-theory is invoked to obtain 

the incremental failure at tl emerging from the safe region at tl-1. 
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Chapter 2 

Literature Review 

Design optimization typically involves determining the most desirable design under various 

conditions with deterministic optimization being the most popular in engineering design (Ju and 

Lee 2008). Deterministic optimization searches for the best setting of the design variables that 

result in some function of interest being optimized. Various techniques for deterministic 

optimization of static systems involve gradient-based methods to search for local optima or 

genetic algorithms for global optimization. When uncertainty is considered, designers typically 

use Taguchi methods or reliability-based design optimization (Chiralaksanakul and Mahadevan 

2005);. For the deterministic optimization of dynamic systems, particle swarm optimization, used 

by (Eberhart and Shi 2001), is an evolutionary computation technique similar to a genetic 

algorithm where the system is initialized with a population of candidate solutions.  

Some authors have explored various methods for the optimization of dynamic systems when 

uncertainty is considered. Chen and Wu 2004 presented an interval optimization method for the 

dynamic response of structures with interval parameters. In their paper, in order to account for 

the error or uncertainties present in some structural parameters caused by manufacture, 

installation or measurement, the errors from the aforementioned uncertainties were predicted and 

denoted by intervals. For parameter design, Chang 2006, developed an optimization approach for 

dynamic multi-response systems based upon backpropagation neural networks, BPN, and 

desirability functions to the parameter design of the dynamic multi-response. The BPN is the 

metamodel and is used to predict all possible multi-responses of the system by inputting all 

combinations of the parameters. An alternative parameter measurement was then developed for 
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dynamic multi-response to measure and integrate the multi-responses into a single desired value 

by introducing desirability functions. The best parameter setting was then obtained by 

maximizing the desired value.  

In order to simplify the mechanistic model, (Han, Ruduyi and Korvink 2005) focussed on the 

application of model order reduction techniques so as to reduce the transient analysis time for the 

optimization process. They presented open-source software, known as “mor4ansys”, to perform 

model order reduction directly from ANSYS models (engineering simulation software) to 

generate a reduced model of a second-order linear system. They were able to integrate this 

method into an optimization process to optimize MEMS system rapidly. As illustrated through a 

structural dynamics problem expressed in the second-order ODEs, the use of reduced-order 

models within the optimization cycles produces almost the same optimization results and reduces 

the total computational costs by about an order of magnitude. 

There has also been an attempt to utilize metamodels with robust optimization tools for design. 

A paper by Kim et. al, 2007 presents a metamodel-based design optimization for dynamic 

response optimization which avoids design sensitivity analysis and overcome the numerical 

noise. The authors utilized their method for the Design for Six Sigma (DFSS) optimization of the 

dynamic response of a paper feeding mechanism. Their design objective was to minimize the slip 

amounts between paper and mechanisms and satisfy the 6-sigma constraint for the nip forces of 

rollers. Through the use of the gradient information of metamodels, the authors have found that 

DFSS and robust optimization is easily implemented.  

The main problem of most dynamic systems is that the mechanistic model can become very 

complex. In such cases, simplification is required in either the model or the optimization method. 

This thesis proposes to simplify the mechanistic model using a metamodel and using this 

approximate function, fast integration methods can be easily applied to quickly search for a 

design that reduces failure probability. The following sections will discuss previous research 

done with metamodels and reliability methods. 



Chapter 2 – Literature Review 

 15 

2.1 Metamodels 

Metamodels, or approximating functions, are most often used in analyses where the behaviour of 

a physical system is being investigated. Metamodels are typically used for response prediction 

and curve fitting (Barton, 1998). However, more recently, metamodels are gaining attention 

where they replace mechanistic models to allow for more efficient and simpler design.  

Most research pertaining to the design of a physical system involves building a mechanistic 

model of the physical system and then using computer software to perform simulations (Barton 

1998); (Kleijnen and Sargent 2000). Conceptually, if the inputs to a computer simulation are 

supplied in vector X, and the outputs from the analysis in vector z, then the mathematical model 

evaluates z = f(v) where f(v) is a complex engineering analysis function such as finite element 

analysis or Lagrange equations. The metamodel enables the real function f(v) to be approximated 

by a simpler function  vf̂   where               and ε is the error term (Clarke, Griebsch 

and Simpson 2005).  

There exist a number of popular metamodels such as response surface models based on 

regression methods, neural networks or Kriging models. Among these, the most popular are 

regression based response surface models. The simplicity of this method is a result of the 

simplicity in estimating the model parameters compared with the other three metamodels. 

Although simple to use, the ability of these models to estimate highly nonlinear responses is quite 

poor. Neural networks and Kriging models are the alternative option which offer a better fit of 

highly nonlinear responses (Clarke, Griebsch and Simpson 2005).  The major downfall with 

these methods is that estimating model parameters requires more effort than the Regression 

Model.  

In order to fit the metamodel, an experimental design (termed hereafter as the “training 

design”) must be selected. For this, various design of experiments techniques are considered. 

Statistical design of experiments refers to the process of planning the experiment so that 

appropriate data that can be analyzed by statistical methods will be collected, resulting in valid 

and objective conclusions. Many experiments involve the study of the effects of two or more 

factors/variables. Factorial designs, which are the most efficient for this type of experiment, 
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involve investigating all possible combinations of the levels of the factors in each complete trial 

or run of the experiment (Montgomery 2005). For example, if there are a levels of factor A and b 

levels of factor B, the experiment has ab treatment combinations. Factorial designs have several 

advantages; they are more efficient than one-factor-at-a-time experiments and they are necessary 

when interactions may be present to avoid misleading conclusions. Finally, factorial designs 

allow the effects of a factor to be estimated at several levels of the other factors, yielding 

conclusions that are valid over a range of experimental conditions. Other popular techniques 

include the central-composite design, Box-Behnken design or D-optimal designs (Montgomery 

2005).  

Sometimes, three levels are used instead of two so that curvature in the system can be more 

accurately captured. A three-level factorial design consists of k factors each at three levels. This 

is denoted as a 3k design. The three levels are referred to as low, intermediate and high. The 

major disadvantage of factorial designs is that a full design can get big quickly, especially 3k 

designs. For example, 32 design = 9 runs, 33 design = 27 runs, 34 design = 81 runs and so on. In 

many instances, the experimenter may not have the resources available to run a full factorial 

design. Therefore, fractional factorial designs are used.  

Since the 3k factorial design can get very large quickly, a fractional replicate of the full design 

is usually performed. Fractional 3k factorial designs are not normally performed. Instead a Box-

Behnken, Central Composite or D-optimal designs can be used (Montgomery 2005). Other 

methods that may be used are sampling methods such as the Latin-Hypercube Sampling method 

or space-filling designs. 

The second step of the metamodelling process involves selecting a metamodel and estimating 

the model parameters. Some popular metamodels include response surface models, Radial Basis 

Functions and Kriging (Hussain, Barton and Joshi 2002). All of these techniques are capable of 

function approximation, but they vary in their accuracy, robustness and computational efficiency. 

Much research has compared the performance of the different metamodel on approximating 

deterministic computer models (Hussain, Barton and Joshi 2002); (Simpson, Peplinski, et al. 

2001); (Jin, Chen and Simpson 2001). 
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Hussain, Barton and Joshi, 2002, used the Radial Basis Function on some known test 

functions. The performance of the RBF as a metamodel was tested and compared to the popular 

Regression-Based Response Surface Models using the same set of input points selected through 

the factorial and the Latin Hypercube design. Seven test functions were used and the performance 

of each metamodel using both training designs was compared. The authors found that the RBF 

metamodel provided a better fit than the RM for all seven cases studied.  

Jin, Chen and Simpson, 2001, provided a detailed comparison of four popular Metamodelling 

techniques, RM, multivariate adaptive regression splines (MARS), RBFs and Kriging, based on 

multiple performance criteria using fourteen test problems representing different classes of 

problem. The fourteen test problems were classified based on the following representative 

features of engineering design problems: Problem Scale (two scales: no. of variables ≥10, no. of 

variables = 2,3), Nonlinearity of the performance behaviour and “noisy” versus “smooth” 

behaviour. The performance of each metamodel was measured using the following aspects 

o Accuracy: Capability of predicting the system response over the design space of 

interest. 

o Robustness: Capability of achieving good accuracy for different problems. 

Indicates whether a modelling technique is highly problem dependent. 

o Efficiency: Computational effort required for constructing the metamodel and for 

predicting the response for a set of new points by metamodels. 

o Transparency: Capability of providing the information concerning contributions of 

different variables and interactions among variables. 

o Conceptual Simplicity: Ease of implementation. Simple methods should require 

less user input and be easily adapted to each problem. 

Based on the above aspects, the authors found that in terms of accuracy and robustness, when 

large sample sizes are used, MARS, Kriging and RBF perform equally well. When noise in the 

data is considered, the RM performs the best and RBF works well; however, Kriging was found 

to be quite sensitive to the noise because it interpolates the sample data. When efficiency is 

considered, Kriging can be very time-consuming especially for large-scale problems with large 

sample sizes and RM takes the least amount of time for model building. In terms of accuracy and 

robustness, for small and scarce sample sets, RBF performs the best. The RM has good 
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transparency. This feature makes it very helpful to reduce the scale of a problem by removing 

insignificant factors; neither Kriging nor RBF have such transparency. Finally, the RM and RBF 

were found to be the easiest to implement while estimating the parameters for Kriging was found 

to be difficult. 

There has been one attempt to apply metamodels for response prediction of a dynamic 

response. Lee et. al, 2007 attempted to predict the motion of a tracked vehicle travelling on soft 

soil by using the Kriging metamodel. Their paper has found that Kriging has been better able to 

predict the dynamic response than the Regression Model. Kriging was found to accurately 

approximate the nonlinear response of the vehicle. 

Along with fitting the metamodel, validating the metamodel is important to show how well it 

fits the data. Also important is the method used to validate the metamodel. Since simulations are 

assumed to be time consuming, a method must be chosen such that additional simulation runs are 

not required. (Meckesheimer, et al. 2002), investigated validation strategies for assessing the 

metamodel fidelity of deterministic computer simulation codes without the use of additional 

expensive computer simulations. In their work, the authors investigated the leave-k-out cross-

validation strategy for metamodel assessment. This method was applied to two test problems that 

were each fit using Kriging, a low-order polynomial and the Radial Basis Function using 

different methods for selecting design points. 

In terms of practicality, the leave-k-out cross-validation strategy provides a reasonable 

indicator of metamodel fidelity without the use of additional computationally expensive analyses. 

The method involves dividing the training design into a set of Nf groups, known in cross-

validation applications as “folds”. One fold is withheld while the others are used to fit the 

metamodel. The response at each design variable set of the withheld fold is estimated using the 

newly fit metamodel. This process is repeated until all folds are used in fitting the metamodel. 

Since the metamodels are fit Nf times during each cross-validation cycle, the numerical 

efficiency of the leave-k-out cross-validation strategy depends on the type of metamodel. Where 

accuracy and precision of estimating an error measure is concerned, their results show that as 
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more points are omitted during the metamodel fit, the 
CVRMSEAVE

1 estimate increases when using 

LOP and RBF metamodels. Based on the observations from the experimental study conducted to 

assess the leave-k-out cross-validation strategy, a value of k = 1 is recommended for providing a 

prediction error estimate that was within ± 25% of the true prediction error. Choosing k as a 

function of the fitting design (that is, k = 0.1N or N k  ) is recommended for estimating the 

prediction error for Kriging metamodels (Meckesheimer, et al. 2002); (Kleijnen and Sargent, 

2000) and (Martin and Simpson, 2003). 

Metamodels have been previously used in reliability analysis. Deng, 2006 observed the 

feasibility of using three Radial Basis Function networks in reliability analysis methods. 

According to the author, the Regression Model becomes impractical for problems involving a 

large number of nonlinear random variables or in cases where mixed or statistically dependent 

random variables are involved.  

2.2 Reliability-Based Design Optimization 

Traditional deterministic design optimization has been successfully applied, in engineering 

design to reduce the cost and improve quality. Previously, iterative optimization methods have 

often been used in conjunction with engineering simulation models to search for designs with 

desired properties. Such methods have been time consuming due to expensive run times of the 

simulation model caused by underlying complex mechanistic models. Metamodels have been 

used many times in response prediction applications. Due to their popularity and feasibility for 

these applications, authors have started using metamodels for optimization and reliability 

analysis (Barton and Meckesheimer, 2006).  

Due to uncertainties present in engineering simulation or manufacturing process, authors have 

used reliability-based design optimization models for robust and cost-effective designs (Tu, Choi 

and Park 1999); (Allen, et al. 2004). Reliability-based design optimization, denoted as RBDO, of 

an engineering system deals with optimizing a prescribed performance function while ensuring 

that the system reliability is within an acceptable limit (Chiralaksanakul and Mahadevan 2005).  

                                                   
1 Average Root Mean Squared Cross-Validation 
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In the RBDO model for robust system parameter design, the mean values of the design variables 

and the cost are optimized subject to prescribed probability constraints by solving a mathematical 

nonlinear programming problem. Deng, 2006 has shown how to employ multi-layer perceptron 

(MLP) techniques to approximate implicit performance functions and derivates for the first- and 

second-order reliability methods. 

Grandhi and Wang, 1998 used reliability methods for structural optimization in a 

multidisciplinary environment. Probabilistic structural analysis is a computationally intensive 

procedure and it requires multiple, sometimes hundreds of deterministic analyses. Thus, there is 

strong motivation to develop efficient techniques for reducing computer time. Allen et. Al., 2004 

studied the feasibility, potential and limitations of using electromechanical simulation for the 

reliability-analysis and design optimization of Micro-Electrical Mechanical Systems (MEMS). In 

their paper, they stated that the stochastic nature of engineering systems have been compensated 

for through the use of safety factors. They also state that such approaches were found to lead to 

either a conservative design or over-compensating for uncertainties. The authors, therefore, used 

FORM, to deal with uncertainty, combined with electromechanical modeling to develop a 

reliability-based design optimization framework for the design of electrostatically actuated 

MEMS devices.  

In this thesis, structural reliability concepts are used to search for the best design. Structural 

reliability analysis deals with the statistical nature of many basic variables in structural safety and 

design (Deng 2006). Therefore, when presented with a physical system, it is assumed that the 

design variables are modeled using a mean and standard deviation. 

The Monte-Carlo simulation (MCS), the first-order reliability (FORM) and the second-order 

reliability methods (SORM) are the three methods that have been widely used to estimate the 

failure probability of structural systems (Deng 2006). The MCS requires the calculations of 

hundreds of thousands of performance function values. In the first-order reliability method, an 

approximation to the probability of failure is obtained by linearizing the limit-state surface (the 

boundary of the failure domain) at the “most likely failure point”. This is the point on the limit-

state surface that is nearest to the origin in a standard normal space obtained by a suitable 

transformation of the random variables. Due to the rotational symmetry and exponential decay of 

the probability density in the standard normal space, the design point has the highest density 



Chapter 2 – Literature Review 

 21 

among all points in the failure domain. It follows that the neighbourhood of this point makes the 

dominant contribution to the failure probability integral. This property is the basis for FORM 

which in effect constructs an approximation to the failure probability integral by using the 

tangent plane at the design point as the integration boundary (Der Kiureghain and Dakessian 

1998). 

The FORM and SORM generally demand the values and partial derivatives of the performance 

function with respect to the design random variables. Such calculations can be performed 

efficiently when the performance function g(v) can be expressed as an explicit form or simply 

analytical form in terms of the basic variables v. When the performance functions are implicit, 

such calculations require additional effort and will be time-consuming.  

Kaymaz, 2005 investigated the use of the Kriging method for structural reliability problems 

by comparing it with the commonly used RM. Some advantage and disadvantages of Kriging is 

reported. This paper used a two-stage approach to find the final design point. In the first stage, 

the design point has been found using either FORM or MCS. Using this design point, a new point 

is obtained using a method proposed by Bucher and Bourgund, 1990. This two-stage approach 

has been used in three numerical examples to compare the classical RM with the Kriging method. 

The first two examples have an explicit limit state function with two random variables whilst the 

third involves an implicit LSF. Among these three examples, Kriging was able to produce better 

results than the RM. The author also observed the effect of the choice of the Kriging parameters, 

theta and the value of the reliability index. It has been found that the choice of theta does affect 

the value of the calculated reliability index. The choice of correlation function in the Kriging 

model is also important. For problems having a nonlinear LSF, the Gaussian correlation function 

is a much better choice than either the linear or exponential functions. 

2.3 Degradation Modelling 

Degradation of the components of systems is inevitable due to wear or aging. In order to ensure 

the system is acceptable over the product lifetime, the times and frequencies of inspection, 

maintenance and replacement are required (Savage and Son, 2009). However, due to uncertainty 

in the degradation rates of the components, determining service times is a complicated process. 
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Traditionally, the uncertainty in aging, deterioration and degradation is modelled using lifetime 

distributions (Savage and Son 2011). Instead of using lifetime distribution models, the 

degradation of the characteristic of the actual components is modelled using any one of three 

models; (a) random variable models, (b) marginal distribution models and (c) cumulative damage 

models (Savage and Son 2011). 

Modelling degradation data has been used to infer 1) failure distribution, 2) system reliability 

from inferred component reliabilities and 3) the system reliability from component degradation 

data using analytical system response. Previously, the path-tracing approach, a sample-based 

method that uses Monte Carlo Simulation, has been used to model degradation. Sampling 

approaches take a sample of the variable assumed to degrade, say R0, from its pdf at time zero 

and traces it path over time using a particular degradation function denoted as K. A conceptually 

simpler and more efficient approach has been proposed to solve the time-history problem called 

the set-theory method (Savage and Son 2006); (Savage and Son 2011). 

The set-theory method has several advantages over the path-tracing approach. First, no explicit 

lifetime is required. Second, the conceptual simplicity of the method comes from including the 

random degradation rate in the joint pdf of the design variables, v. Thirdly, the probabilities are 

found, contiguously, at successive time increments and finally, for explicit limit-state functions, 

the method is especially computationally efficient since vector arithmetic may be used to 

evaluate the signs of a vector of limit-state functions. The set-theory method will be discussed in 

more detail in Chapter 7. 

In general, there are three types of reliability degradation models: degradation path models, 

marginal distribution models and cumulative damage models (Huang and Dietrich 2005); 

(Savage and Son 2011). Degradation modelling based upon degradation path models assumes 

that each component degrades in the same way under fixed environmental conditions. Therefore, 

each degradation path has the same functional form. Random coefficients are introduces to 

describe variations in the path model and the variations are due to either manufacturing process 

or environmental conditions (Lawless 1982). Statistical distribution parameters of random 

coefficients are numerically estimated using observed degradation data. The simplest form of a 

degradation path model of, for example, resistance R is 
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KtRR  0       (2.1) 

Where R0 is the initial resistance and K is the degradation rate.  

The second type of model, the “marginal distribution model”, characterizes degradation data 

using a change of distribution parameters versus time. The two-step statistical analysis, that 

includes (1) estimating the distribution parameters at each observed time and (2) fitting time-

dependent distribution parameter functions, is carried out to model the degradation data. 

Degradation data are, therefore, modelled as time-variant distribution parameters that are 

functions of initial distribution parameters and time. For example, since the distribution 

parameters are now functions of the service time t 

  tRR p0        (2.2) 

Where p(t) denotes the service-time variant parameters. 

The third type of model, the cumulative damage (CD) model, assumes that the degradation is 

caused by shocks and that damage accumulated additively (Bogdanoff and Kozin 1985); 

(Finkelstein and Cha 2010). These models are used when temporal uncertainty associated with 

the deterioration cannot be ignored. Examples that use this type of model include bridge deck 

degradation and storm water pipe deterioration.  
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Chapter 3 

Metamodels 

3.1 Introduction 

Metamodels has been commonly used in function approximation where the analyst replaces a 

more complex mathematical model with the metamodel in order to estimate the response at some 

untried inputs. In the literature, many types of metamodels exist with the most common being the 

Regression Model (RM). Although simple to use, this metamodel usually is not as accurate in 

response prediction as some of the more complex metamodels such as Kriging or neural 

networks. Building a metamodel normally involves three main steps; selecting the training 

design, estimating metamodel parameters and then checking the fit of the metamodel.  

 

Figure 3-1: The three main steps involved in the metamodelling process. 

Metamodelling 

1. Select a Training 

Design. 

2. Select a Metamodel such 

as RM, RBF or Kriging. 

3. Validate the fit of the 

Metamodel. 
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In this thesis, three popular metamodels are investigated; the RM, Kriging and the Radial Basis 

Function (RBF). This chapter will present the general form of these metamodels and show how 

the metamodel parameters are estimated. This chapter will also show how, using Singular Value 

Decomposition, SVD, time-specific metamodels are derived and then used with the QT matrix in 

SVD to develop a time-invariant metamodel. The metamodel is put into matrix form by 

collecting and grouping the constant and variable terms. This is done to allow for efficient 

differentiating that is required for the application of FORM. 

3.2 Training Design 

We assume we have a mechanistic model that relates responses to design variables for which we 

have their initial or nominal values. The number of prospective design variables is usually large 

but may be reduced by a sensitivity-based importance analysis so only η variables that provide 

the greatest perturbations are retained. Rejected variables are considered deterministic. 

Deterministic variables are set to their nominal values. In order to fit the metamodel, a sample set 

of design variables and responses, called the “training design” is selected. The training design is 

chosen through the use of design of experiments techniques, sampling methods or space-filling 

designs and assists with estimating metamodel parameters. The most common design of 

experiments technique is the factorial experiment where the controllable factors are varied 

together instead of one at a time (Montgomery 2005). Other methods that can be used to develop 

the training design are sampling methods such as Latin Hypercube Sampling, D-optimal designs, 

Box-Behnken Designs or Central Composite Designs (Montgomery 2005).  

Using either a full or fractional factorial design, a sample of design variables is obtained 

which we call the “training sets”. In order to set up the training design, the number of levels, λ, is 

assigned to each variable. Following a full factorial design formulation, the total number of 

training sets M = λη where η represents the total number of design variables. Other design of 

experiments, sampling methods or space-filling designs can be used to select the training sets. 

The choice of method depends upon the number of experiments that can be performed or the data 

available. The M training sets are recorded into a matrix X as shown in (3.1) where  ijx
 

corresponds to the ith  training set of the jth design variable (i = 1,…,M and j = 1,…,η).  
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3.3 General Metamodel 

In the mechanistic modelling process, the modeller abstracts properties of various components 

and their interactions and formulates these properties into a set of equations. In most cases, these 

models are highly non-linear, or even implicit, thus making them difficult to use in design 

calculations or just too time-consuming. In an alternative way, using design of experiments and 

fitting functions, a model of the mechanistic model, called a metamodel is used to approximate 

the normally complex or implicit mechanistic models (Barton, 1998); (Barton amd 

Meckesheimer, 2006).  The most common metamodels available are the Regression Models, Radial 

Basis Functions and the more recent Kriging models. The details are presented later. Now let us 

develop a matrix-vector form of the metamodels that are advantageous for our purposes. 

 

Static systems 

Let us consider the static model in (1.1) and from M experiments place the corresponding responses 

in a column z.  
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      (3.2) 

For our purposes, let a metamodel have the universal form 

     )()(ˆ vrwv
Tz                                                          (3.3) 

The vector w  contains the so-called fitting parameters that are functions of the data (i.e. zX, ). The 

vector )(vr depends on the particular metamodel, and the vector v represents the design variables. 

Both vectors in (3.3) have length L. Note eq. (3.3) provides an explicit, approximate, response for any 

set of design variables. 
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Dynamic systems 

Next, let us expand the above to a dynamic problem as outlined in (1.2).  To build on static system 

ideas, it is convenient to capture the response at only selected time increments Δτ. For a dynamic 

lifetime L , 
the continuous response is broken into a set of static responses at individual time steps 

and recorded into a matrix, Z. Let the number of discrete times be
 

1





 LC                                                            (3.4) 

where τL represent the cycle lifetime of the dynamic response and ∆τ is the time increment size. 

The vector of all discrete cycle times is 

 TCk  1τ

 
Computer simulations provide the cycle-time responses for all of the M training sets. The response 

magnitudes at τ for each experiment are recorded in the matrix Z  
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The rows of Z represent the dynamic response at various design variable combinations and the 

columns represent the discrete time step. There are a total of M design variable combinations and 

C discrete time steps.  

When the system is dynamic, one major question that must be answered is how to determine 

the best value for ∆τ. Consider the case where some performance measure such as integral 

squared error or energy must be estimated using a dynamic response.  First, an initial value for ∆τ 

is assumed, the dynamic response is recorded at each discrete time increment and the 

performance measure is estimated. The time increment, ∆τ, is then reduced and the performance 

measure is estimated again. When an asymptotic value for the performance measure is reached 

then an acceptable value for ∆τ has been obtained. 

In order to estimate a performance measure based upon the dynamic response such as the integral 

squared error or energy, a metamodel can be built for each column in (3.5).  However, a more 

efficient approach exists using Singular Value Decomposition. 
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3.3.1 Singular Value Decomposition 

Singular Value Decomposition, denoted as SVD, can be used in cases where the dynamic 

response of a system is required to estimate some time-invariant performance measure such as 

estimating the energy consumed using the dynamic angular velocity. In order to do this, the 

feature-space extraction and principal component analysis (PCA) characteristics of SVD is used. 

A paper by Hassanpour, Mesbah and Boashash, 2004, shows how SVD was used to extract EEG 

feature signals of newborn babies to detect seizure activity. In another paper by Wall, 

Rechtsteiner and Rocha, 2007, SVD was used to analyze gene expression data for visualization 

of gene expression data, representation of the data using a smaller number of variables and 

detection of patterns in noisy gene expression data. These two characteristics can be combined to 

build a ‘time-dependent metamodel’ of the nonlinear dynamic response of a vehicle to replace 

the high computational effort of using SIMULINK in optimization (Wehrwein and Mourelatos 

2008).  

In the paper by Wehrwein and Mourelatos, 2008, the dynamic response was recorded into a 

matrix and SVD was used to separate the two features spaces. After which, the significant 

singular values were used to reduce the matrix containing design variable information. A 

metamodel was then built for each column of the matrix containing the design variable 

information. Ultimately, the authors found their ‘time-dependent metamodel’ to be efficient and 

accurate. The continuous dynamic response is broken into a set of static responses at discrete 

time steps. This information is recorded into an M × C matrix, Z, shown in (3.5). In this matrix, 

Z,          is the response of the ith design variable set at the jth time step. 

Elements of the ith row of Z form the C-dimensional vector         which is referred to as the 

dynamic response of the ith design variable set. Elements of the jth column form the M-

dimensional vector         which is referred to as the response profile of the jth time step at the 

various design variable sets. 

The equation for SVD of Z is  

T
CCCCCMCM   QSUZ      (3.6) 

where       and      ; therefore U and Q are orthogonal. Columns of U are called the 

left eigenvectors, ku , and form an orthonormal basis in the M-dimensional space of design 
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variable combinations. Rows of QT contain the elements of the right eigenvectors,    , and form 

an orthonormal basis in the C-dimensional space of time instances (Wehrwein and Mourelatos 

2008); (Hassanpour, Mesbah and Boashash 2004).  

Calculating the SVD consists of finding the eigenvalues and eigenvectors of ZZT and ZTZ. 

The eigenvectors of ZTZ make up the columns of Q, the eigenvectors of ZZT make up the 

columns of U. The elements of S are only nonzero on the diagonal and are called the singular 

values. The singular values of S are square roots of eigenvalues from ZZT or ZTZ. The singular 

values are ordered from high-to-low with the highest singular value in the upper left index of the 

S matrix. By setting the small (non-dominant) singular values to zero, we can obtain matrix 

approximations whose rank equals the number of remaining singular values.  

Since the columns of U represent the information of Z in the space of design variable 

combinations, a matrix P can be formulated that contains the columns of U corresponding to the 

dominant singular values of S. If P is multiplied by the dominant singular values of S, a matrix 

containing the dominant design variable information of Z is obtained.  Therefore 

sssMsM   SPD      (3.7) 

Where s is the number of dominant singular values of S. 

Now, another question that must be answered, similar to the previous step where C must be 

determined, is what are the dominant singular values of S? This question is answered in a similar 

way as the first. Using the first column of S, and estimate of the matrix of training responses, Ẑ , 

is computed and the performance measure is estimated. These estimates are compared with the 

“true” values found using the original matrix Z. The comparison is done by simply finding the 

error between    and Z. If the error is not small enough, another column of S is added until the 

error is negligible. The total number of columns of S, denoted as s, that results in an acceptable 

error is retained and s metamodels are built where s << C. 

Herein, metamodels are built only for the columns of D and for hth column  (i.e. hd ) the 

metamodel is denoted as  vdh
ˆ . After fitting a metamodel for each significant column, the s 

metamodels are assembled into a vector  

        vvvvd s
T ddd ˆˆˆˆ

21       (3.8) 
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When an estimate of the dynamic response at v is required, then (3.8) pre-multiplies the time-

feature matrix to give 

       Cs
TT

s
T

 Qvdτvz 1
ˆ,ˆ      (3.9) 

Every metamodel comprises constants, the “fitting parameters”, and functions of the design 

variables v. These constants and functions may be grouped into two vectors; one containing only 

constants and the other only vectors and can be written in a universal form as 

shd h
T
hh 1,2...      )()(ˆ  vrwv       (3.10) 

For each of the s columns in D, the vector wh contains the fitting parameters that are functions of 

the training sets and responses (i.e. X, dh). The vector rh(v) depends upon the particular 

metamodel (regression, Kriging or RBF) and the vector v represents the design variables. Using 

this general metamodel form, (3.9) becomes 
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Again, grouping and separating constants and variables, (3.11) becomes the column vector 
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Now, using (3.9) and (3.11), the dynamic response of v is written as a column vector 
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                             (3.13) 

Stacking )( ),( 21 vrvr to form )(vr , a simpler notation for the dynamic response at some 

unknown v, is 

)(),(ˆ vrQWτvz                                                                 (3.14) 

In some cases, like the Regression Model, r(v) never changes for each column of D. Therefore, if 

r1(v) = r2(v) = ...= rh(v) =... = rs(v), then (3.13) becomes 
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Or succinctly 

   vTrvrIWQτvz  )(),(ˆ                                                         (3.16) 

The form of (3.16) is extremely informative since it shows how a single column function of the 

design variables is propagated over the cycle time. Indeed, it is shown later that functions of the 

dynamic response, such as energy, need only the single column of functions. For the response at a 

selected cycle time only the corresponding row ofΤ is required and the column of functions.  

Since rows of Q correspond to the cycle-time information of Z, the response at some important 

cycle time (e.g. peak or settling time) can be found by picking out the corresponding row in Q 

and pre-multiplying the matrices W and  vr . If the response at cycle-time step τc is required, the 

corresponding row number of Q is  

c

Lc



1

     

(3.17) 

Where c represents the row number of Q corresponding to the cycle-time of interest. For 

example, if τL = 0.1 and the response at cycle time τc = 0.004, then c = 26 which means that the 

26th row of Q is selected. 

     vrWqvz cc  ,ˆ      (3.18) 

Where q(τc) represents the row in Q that corresponding to the cycle-time of interest.  

In gradient-based FORM optimization, the first derivative is required. From (3.14) 

   TT
v

vr
QW

v

tvz








 )(),(ˆ

     (3.19) 

If, however, r(v) is the same, then differentiating (3.16) 
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Dynamic Degrading Systems 
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The metamodel work involved in static and dynamic systems can be combined to solve the 

degradation problem in (1.3). This is discussed in detail in Chapter 7. Now, the theory behind 

each metamodel will be discussed. 

3.4 Regression Models 

Regression models (RM), were originally developed to analyze the results of physical 

experiments to create empirically based models of the observed response values. Given a 

response, z, and a vector of design variables, v influencing z, the relationship between z and v is 

   βv,ˆ fz       (3.21) 

 is the random error and is assumed  2,0~ RMN  . The error, i , at each observation is assumed 

to be independent and identically distributed. The most widely used Regression Models are low-

order polynomials. In this work, the accuracy and speed a second-order polynomial is 

investigated. The general form of these models is  
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The model parameter, β, represents the expected change in the response z per unit change in vj 

when all remaining independent variables vi (i≠j) are held constant (Montgomery 2005). 

Equation (3.22) can be converted to the general metamodel form by grouping together the fitting 

parameters, β, to form w and the corresponding functions of v make up r(v) as shown  
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 (3.23) 

The length L of wT and r(v) depends upon the degree of the polynomial and number of design 

variables η. For a second order Regression Model, the length, L, is found from 
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The L fitting parameters in w are estimated using the least square method (Montgomery 2005). 

First, the data matrix X shown in (3.1), is augmented by both a unit vector to its left and an 

appropriate sub-matrix of functions of X to its right. Therefore,  
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The sub-matrix of functions of X, f(X), reflects the higher-order and interaction terms of the 

vector (3.23). By the least squares method, the fitting parameters for the hth column of D are  
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
       (3.26) 

Since wT is a row vector of constants, to find the derivative of the RM, only derivatives of the 

vector r(v) is required. Therefore, 
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Note that for the RM, r(v) and, hence, its derivative never changes. Therefore, the only task is to 

estimate wh. 

 

Example 1: Converting the standard RM to a general metamodel. 

As an example to show how the Regression Model can be converted to the general metamodel 

form, consider a 2nd order RM with two design variables from (3.24), L = 6 

  215
2
24

2
1322110

ˆ vvvvvvd  v    (3.28) 

Grouping and separating the constants, β, and the variables, v, two vectors from (3.28) are 

obtained  

 
61543210 
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w     (3.29) 
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1621
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2
1211


vr     (3.30) 

Differentiating the Regression Model is not difficult because r(v) does not contain complex 

functions of the design variables. Therefore, the matrix of derivatives of r(v) with respect to each 

variable is 
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Notice the dimensions of 0, I, I(v) and F(v) in (3.31) coincide with the general form in (3.27). 

3.5 Kriging Model 

Kriging predicts the response of unobserved points (i.e. those whose response has not been 

obtained by the simulation) based on all of the training responses (i.e. the response that has 

already been obtained). It is a method of spatial prediction that is based on minimizing the mean 

error of the weighting sum of the sampling values. The general form of the Kriging metamodel is 

     vvv  fd̂      (3.32) 

There are two main types of Kriging model and each is identified by the form of f(v). In 

Universal Kriging, f(v) is a known function (usually a linear Regression Model) that “globally” 

approximates the design space. In Ordinary Kriging, f(v) takes a constant value, β (Simpson, 

Peplinski, et al. 2001). Herein a universal Kriging metamodel is used.  

The second part, ε(v), is a realization of a stochastic process with mean 0, variance 2 and 

nonzero covariance (Rijpkema, Etman and Schoofs 2001). It creates “localized” deviations so 

that the Kriging model interpolates the M sampled data points (Martin and Simpson, 2003). The 

covariance is calculated from the product of the variance and a correlation function as shown 

      kjkj xxxx ,,cov 2      (3.33) 

The correlation function, γ(xj,xk) , affects the smoothness of the model, the impact or weight of 

nearby points and the differentiability of the surface by quantifying the correlation between two 

observations (Martin and Simpson, 2003). Kriging requires iterative calculations to estimate the 

model parameters; therefore, a correlation function with the least number of fitting parameters is 

most desirable. The most commonly used is the Gaussian correlation function 
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where θ is a vector of the fitting parameter. 

The general form of the Kriging model is  
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vector of responses in column h of D and 
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The derivation of the Kriging model is shown in Appendix A. Now, if the Kriging model is 

converted to the general form, w and r(v) would look like 
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Each element in  vr~ is computed using the expression  
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which can be further simplified  

    vv hjhjr ,, exp~       (3.40) 

where  

      jh
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   (3.41) 

In some cases, θ can be the same for each of the s columns of D. If this can happen, then (3.37) 

does not change for each column of D nor does Γ-1. Therefore vectors (3.37) and (3.38) become 
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T
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This simplifies Kriging further since r(v) is generated only once and   
  depends only upon dh. 

 

Example 2: Converting the Kriging Model to a general metamodel. 

Consider a Kriging model consisting of two design variables, v1 and v2. In its common form, this 

model would look like 
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Where  
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Grouping and separating constants and variables 
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From these groupings, T
β
~

, β and  βXdΓ b1  are all vectors whose elements contain constants. 

Therefore, further grouping all these terms into the matrix wT, the two design variable universal 

Kriging model looks like 
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3.5.1 Estimating Kriging Model Parameters 

In most instances, the parameters θ and β, are estimated, for each column of D, using Maximum 

likelihood estimation (MLE) (Martin and Simpson 2003). From MLE, the log of the Gaussian 

likelihood function is  
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MLE assumes that the residuals have a known probability distribution shape, which in most cases 

is assumed to be the Gaussian probability distribution. By taking the derivative of the log-

likelihood equation with respect to σ2 and β and solving for zero, the closed-form solutions are  

     hbhhbhhKG
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An explicit form does not exist for θ for most SCFs; therefore, numerical optimization is used 

(Simpson, et al. 2001). Therefore, after substituting equations (3.50) and (3.51) into (3.49), the 

best estimate of correlation parameter, θ, is found by maximizing 

       θΓdθ hhKGh ML lnˆln
2

1ˆ 2       (3.52) 

To maximize (3.52), a simulated annealing algorithm is normally used (Kleijnen and Van Beers 

2003). 

Although the MLE is the common method used to estimate Kriging model parameters, it 

assumes that the data follows a Gaussian distribution. Cross-validation can also be used to 

estimate model parameters where the data does not follow a Gaussian distribution. Cross-

validation of a Kriging model is determined by holding all of the model parameters, β,    
  and θ, 

constant while creating Nf Kriging models using each subset of the remaining M – (M/Nf) points 

and calculating the error at each omitted location in turn (Martin and Simpson 2003). The best 

parameters are those that minimize the cross-validation mean squared error. Martin and Simpson 

2003 presents a method that uses Cross-Validation to estimate Kriging model parameters. 

3.5.2 Kriging Derivatives 

Recall the first derivative of the general metamodel is 
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The right side derivative in (3.53) looks like 
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From the chain rule of differentiation 
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After some simplification the derivative in (3.55) becomes 
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Example 3: Differentiating the Kriging Metamodel. 

Returning to example 2, the first derivative with respect to v1 looks like 
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Now, following equation (3.56)  
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and after simplification 
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But     vv hjhjr ,, exp~  , therefore, 
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We repeat the above for v2 and, finally, for two variables  
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3.6 Radial Basis Functions 

Another popular metamodel, the Radial Basis Function (RBF), is a type of layered feed-forward 

neural network (NN) capable of approximating any continuous function  (Andina and Pham 

2007). The RBF network consists of two layers. The input level distributes input vectors to each 

of the receptive field units in the second layer (hidden layer) without any multiplicative factors. 

The hidden layer has M receptive field units (or hidden units) each of which represents a 

nonlinear transfer function called a basis function (Karray and De Silver 2004).  

The hidden units play a role in simultaneously receiving the input vector and nonlinearly 

transforming the input vector into an M-dimensional vector. The outputs from the M-hidden units 

are then linearly combined with weights to produce the network output at the output layer. Thus, 

the typical RBF model is described by specifying the number of “basis functions” (hidden units), 

basis function parameters, and the weights of the basis function outputs to produce the network 

output. 
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Figure 3-2: A Radial Basis Function Neural Network (Deng 2006). 

Given an input vector v, the output of the RBF network is given by  
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T
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where r(v) represents the RBF and M is the number of training sets. The most commonly used 

Radial Basis Functions are multiquadratics, inverse multiquadratics and Gaussians (Deng 2006).  

Table 3-1: The most common RBF functions 
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In this work, the feasibility of the simplest function, the multiquadratic RBF, is investigated. 

From Table 3-1, for a multi-quadratic RBF, each element of r(v) in (3.64) looks like 

    Mjbr hjjhj ,,12
,

2
,  vv     (3.65) 

Where ρj is the Euclidean distance calculated using (3.65) and bj is the metamodel parameter to 

be estimated. 
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Efficient training algorithms have been developed to minimize the sum of squared error by 

adaptively updating the fitting parameters of the RBF network. These parameters are the centre 

of each basis function (centroids of the hidden layer), the receptive field widths and the output 

layer weights. Training of the RBF metamodel involves choosing the centre and width of each 

RBF and calculating the weights of the output layer. This can be done using the k-mean 

clustering approach. However, most analysis involving the RBF metamodel uses all the training 

sets as the centres to produce a total of M basis functions. 

Since all training sets are taken to be the centres of the network and the width of the jth basis 

function is determined using cross-validation. To estimate the weight matrix, w, the inverse or 

pseudo-inverse method is normally used. The matrix R(x) is defined in (3.67) where each 

element is calculated using equation (3.68).  
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If R-1 exists, then the weight matrix is estimated from 

hhh dRw
1ˆ       (3.69) 
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If, however, R is ill-conditioned or even non-square, then the pseudo-inverse method is used to 

estimate the weight matrix (Karray and De Silver 2004) 
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3.6.1 Radial Basis Function Derivatives 

Like the Kriging model, differentiation of rj(v) for the RBF involves the chain rule of 

differentiation as follows 
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Using eqs. (3.65) and (3.66), the two terms on the right hand side of (3.71) are 
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After substituting equations (3.72) and (3.73) into (3.71), the first derivative of rj(v) with respect 

to vi is 
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3.7 Metamodel Error Analysis 

Now, after estimating metamodel parameters, the next step is to determine the fit of the 

metamodel. Checking the fit of the metamodel determines if the metamodel has been able to 

capture the relationship between the design variable and the response with an acceptable amount 

of accuracy. A poor fit will result in inaccurate estimates of the response at untried design sets 

and will ultimately result in an inaccurate calculation of the best design. There are two main ways 

to determine if a metamodel is a good fit 1) estimating the fitting error and 2) estimating the 

predictive error. Estimating the fitting error determines how well the metamodel fits the training 
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design. Estimating the predictive error, on the other hand, determines how well the metamodel 

would predict the response at some new training design set sample. 

When building a response surface model, the commonly used method to check the fit of the 

model is to calculate the coefficient of determination (R2).  

Total

Err

SS

SS
R 12      (3.75) 

In (3.75), for dh, the Error Sum of Squares (SSErr) and the Total Sum of Squares (SSTotal) are 

estimated using (3.76) and (3.77) respectively. 
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    (3.77) 

Since one of the features of Kriging is to exactly predict the training design (Kleijnen and Van 

Beers 2003); (Sakata, Ashida and Zako 2003), SSErr = 0 thereby always producing an R2 value 

equal to 1 thus providing an inaccurate estimate of the performance of the method. One option is 

to fit the model with the existing training design and then run the simulation again to obtain 

responses at some additional sample design variable sets. The accuracy of the metamodel is then 

checked by calculating the error of the metamodel prediction at the additional sample sets. 

Although effective in determining the accuracy of the metamodel in prediction, this method 

would require additional simulations which can be potentially expensive. 

Using this idea of checking the fit at new design variable sets instead of the training sets, 

authors use the cross-validation method to determine the fit of a particular metamodel. In this 

method, the training design is divided into Nf groups normally called “folds”. For a particular 

fold, there is a total of (M/Nf) design variable sets that are used as test sets and the remaining (M 

– M/Nf) training sets are used to fit the metamodel.  This process is repeated until all folds are 

used to both train and validate the metamodel (Meckesheimer, et al. 2002); (Kleijnen and Sargent 

2000). In the end, there are response estimates for all of the original M training sets. 

As an illustration, suppose we have an experimental design made up of a total of 15 design 

variable sets. Suppose the 15 sets are grouped into 5 folds with each fold containing a total of 3 

design variable sets. In cross-validation, one fold is withheld and the other 4 folds are used to fit 
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the metamodel. Using the newly fit metamodel, the response at each of the design variable sets of 

the withheld fold is estimated. This procedure is repeated until all folds are used to fit the 

metamodel. Most common is the leave-one-out cross-validation method where one training set is 

withheld and the remaining sets are used to fit the metamodel. Eventually, there are estimates of 

the response at all the training sets. Using these response estimates, different methods can be 

used to assess the metamodel (Ahmed and Qin 2009); (Wang and Shan 2007). Among these are 

the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE). The formulae for 

CV-RMSE and CV-MAE are shown below. 
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Since CV-RMSE and CV-MAE are error estimates, a smaller CV-RMSE or CV-MAE value is 

ideal. 

3.8 Summary 

In this chapter, two main steps in the proposed methodology for metamodel-based probabilistic 

design optimization of dynamic systems have been described in detail. These include (1) 

describing how SVD is used to reduce the number of metamodels to be built when provided with 

a time-varying response that is used to estimate the performance measure and (2) presenting the 

theory behind the three popular metamodels that are used throughout this thesis. A method for 

checking the predictive error of each metamodel, the CV-RMSE or CV-MAE, has also been 

described. Since the goal of this work is to present an accurate methodology, the sources of 

possible error must be known.  

When approximating the response matrix Z with   , the three possible sources of error are 

shown in eq. (3.80) 

Metamodelˆ ˆˆˆˆ     SVDZ
    (3.80) 
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The first term on the right hand side of (3.80) refers to the step size, ∆τ, being too large. The step 

size is chosen by selecting a value for ∆τ and then estimating the performance measure. The step 

size is then reduced and the performance measure is re-calculated. This process is repeated until 

an asymptotic value for the performance measure is reached. 

The second source of error is from estimating the matrix D in SVD,   , with a reduced number 

of columns in S. The adequate number of columns is checked in a similar way as checking the 

best step size. Here, a value of s is chosen and the performance measure estimated. If the error is 

negligible, stop, however, add another column to   . 

The third source of error is from the fit of the metamodel. The error of the metamodel is 

quantified using cross-validation methods. The only way to reduce this error is to choose a better 

metamodel or, perhaps, a different method to select the training design. 
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Chapter 4 

Probability Evaluations and Design 

Optimization 

One of the main goals is to optimize a dynamic system when design variables are uncertain. 

When uncertainty is assumed in the design variables, they are typically described by a type of 

distribution whose parameters are defined. Design optimization involving uncertain design 

variables tries to find the distribution parameters that minimize system failure or total cost. In 

order to estimate system failure, the conceptual components are assumed to follow a series or 

parallel arrangement. Estimating the probability of failure is important in design of systems with 

uncertain parameters. Therefore, two main points must be addressed. First, how to relate the 

response to the specification limits to determine when ‘success’ or ‘failure’ occurs and second, 

how to calculate the probability of failure (Madsen, Krenk and Lind 1986) (Melchers 1987). The 

first is answered using a ‘limit state function’. The probability of failure can be estimated using 

either a Monte Carlo Simulation (MCS) or some fast integration method such as the First-Order 

Reliability Method (FORM). 

This chapter will show how limit-state functions and surfaces are built to relate the metamodel 

for the performance measure of interest with the design specification. The methods, MCS and 

FORM, will be presented to show how the probability of failure is estimated. Then, three  design 

optimization methods will be presented to show how to find the best mean that minimizes system 

failure (parameter design), tolerance that minimizes cost (tolerance) or mean and tolerance that 

minimizes cost (integrated design). 
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4.1 Limit State Function 

By definition, when provided with an upper or lower specification limit, ζ , the limit-state 

function (LSF) is written as 

    vv zg ˆ                                                              (4.1) 

where   (v) is the metamodel. For an upper specification limit,     vv zg ˆ  and for a lower 

specification limit      vv zg ˆ . By definition, 
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The probability of conforming to specifications (success or S) is defined as Pr{g(V) > 0}, the 

probability of failure is Pr{g(V) < 0}. An example of the limit-state surface (LSS), in v-space, is 

shown in Figure 4-1.   

 

Figure 4-1: Failure surface in v-space. 

If the joint pdf of V is fv(v), then the probability of failure is evaluated using the integral 

(Madsen, Krenk and Lind 1986) 
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The direct evaluation of (4.2) is difficult for three reasons; first, since several random variables, 

V, are involved, the probability integration is multi-dimensional. Second, the integrand fV(V) is 

the joint pdf of V and is generally a nonlinear multidimensional function and third, the limit-state 

surface, g(v) = 0, is also multi-dimensional and usually a nonlinear function. Due to these three 

reasons, there is seldom an analytical solution to the probability integration to find the solution 

due to the high dimensionality in most engineering applications. There are two main methods to 

estimate the failure probability, these are sampling methods or fast-integration methods. These 

will be discussed later. 

4.2 System Failure 

In system reliability applications, when the system failure is to be estimated, the assumption is 

that the components follow either a series or parallel arrangement. This does not mean that the 

components are physically arranged in a series or parallel way but that the system failure is 

calculated based upon the well-known characteristics of these arrangements (Rao, 1992); (Savage 

and Son, 2011). If the system assumes a series arrangement, then system failure occurs if any one 

of the components fails. Using a set-theory interpretation, the system failure is  

LFnFFF  21F
  

  (4.3) 

In terms of probability, eq. (4.3) becomes 
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In parallel systems, system failure occurs if all components fail. Therefore, from the set-theory 

interpretation 
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4.3 Monte Carlo Simulation 

Traditionally, sampling methods have been used to estimate probability. Among these, the most 

popular is the Monte Carlo Method that is based upon the theory of large numbers (Papadrakakis 

and Lagaros 2002). For a Monte Carlo evaluation, N sample sets of v are generated and 

substituted into each LSF. Then, the output at each sample set is observed to determine if failure 

occurs. For any sample set, an indicator, ek, for the kth sample set, v(k) 
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For a series system we expand the idea in (4.6) and along with (4.4) 
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For a parallel system, the idea in (4.6) and the intent in (4.5) 
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Therefore, for a total of N sample sets, the number of failing sets is
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The system failure is  

 
N

N f
FPr      (4.9) 

4.4 Transformation of Variables from v-space to u-space 

Approximation methods such as the first-order reliability method (FORM) or the second-order 

reliability method (SORM) simplify the evaluation of the integral in equation (4.2) by 

simplifying fv(v) so that its contours become more regular and symmetric. The following section 

discusses transforming the variables to u-space where the contours of fu(u) are symmetric.  
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In general, the design variables may have arbitrary distributions. Since probability is simply 

approximated in a standardized normal space a one-to-one transformation can be used to convert 

the non-normal and correlated variables into standard u-space using a transformation method 

such as the Rosenblatt transformation (Madsen, Krenk and Lind, 1986). Symbolically the 

transformation is 

VUT :      (4.10) 

Where U = U1, U2, ..., Uη are uncorrelated and standardized normally distributed variables. The 

inverse transformation may also be obtained which is written as 

VUT  :1      (4.11) 

In general for j random variables there are j equations of the form  

  0,  vuT      (4.12) 

where a particular mapping is obtained by solving the equations given one of the sets of 

variables.  

For our purposes, let the η-design variables be joint Normal and then the parameters in matrix 

form are 
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In standard Normal space, by definition, we must have 
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The transformation is a generalization of the one-dimensional form )(
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and we write 

the linear form 

])[( VVAU E                                                      (4.13) 
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where A is η x η. Also note that A-1 gives the reverse transformation.  

][VUAV 1 E 
                                                  (4.14) 

Let us now find A. From (4.14), we subtract the expected value, E[U], from each side and write 

)( VAU   

Next, we multiply each side by the transpose to get 

TAVVAUU TT ))((   

Where  UUU E  and  VVV E . The application of the expected value operator gives 

the covariance relation 
T
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We now pre-multiply by A-1 and then post-multiply by (AT)-1 in order to isolate CV. We have 
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The Cholesky decomposition can be found in any linear algebra text and essentially finds the 

matrix A that has a lower triangular form with positive diagonals. After transformation, the 

performance function becomes g(u) and eq. (4.2) becomes 
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Where  uu  is the joint pdf of U.  
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Example 1: Mapping from U-space to V-space. 

Suppose we have the two-variable covariance matrix  
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and we write the mapping explicitly as 
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Suppose the limit-state function is 
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where the space variables u  are [ u2, u3 ] and the design parameters p are ],,,,[ 3232  . 

Note the special case when the correlation coefficient  is zero. 

4.5 First-Order Reliability Method (FORM) 

Since the standard normal random variables are independent, the joint pdf is the product of the 

individual pdfs, and is given by 
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The probability of failure is then evaluated as 
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The first-order reliability method (FORM) makes the assumption that the failure surface can be 

fitted exactly with a tangent hyper-plane through u* which is the closest point to the origin on the 

LSS. Since the probability density function is rotationally symmetric, the linear-approximation of 

the failure surface can be rotated to any convenient position without changing the probability 

content on either side of the surface. The most convenient position is such that it is perpendicular 

to any single axis, since then, the probability calculation becomes one-dimensional.  

 

Example 2 

Consider the case for two variables shown in Figure 4-2. In order to estimate the failure 

probability, the failure surface is first approximated by a “failure-line” tangent at the Most Likely 

Failure Point, MLFP, denoted as u*, and a distance βR from the origin. Next, this line is rotated 

so that it is perpendicular to u1 on the left of the origin (on the negative u1 axis and parallel to u2). 

Notice the position of the new, but equivalent, non-conformance region. Figure 4-2(a) shows a 

limit state surface (curve) fitted by a tangent hyperplane (solid line) at u*. Figure 4-2(b) shows 

the tangent hyperplane rotated to a point perpendicular to u1 and parallel to u2. For the bivariate, 

standard normal density function  21 ,uu   
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In (4.18), the u2 term is unity, therefore, the probability of failure is now 
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By definition of the normal CDF, the probability of failure is then 

      RgF  0PrPr u      (4.20) 

The reliability index, βR, is just a distance and thus it is always positive.  
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 (a): The LSS and its tangent hyperplane approximation in u-space 

 

 (b): The LSS rotated to a point perpendicular to the u1 axis. 

Figure 4-2: The limit-state surface in u-space. 

 

However, once u* has been found, it is not obvious which side of the limit-state surface 

represents the conformance region and which side represents the failure region. In order to 

mathematically identify the conformance and non-conformance regions, the sign of the limit-

state function g(u) at the origin (u = 0) is tested. A positive value indicates that the highest 

probability density point (the origin) is in the conformance region and so Pr(F) = Φ(-βR). 
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Conversely, a negative value of g(u = 0) indicates that the highest probability density point is in 

the non-conformance region and so now Pr(F) = Φ(βR). For the ith limit-state function, we let ai = 

sign(gi(u = 0)) = ±1. We then write 

   iRii aF ,Pr       (4.21) 

4.5.1 Multiple Limit-State Functions 

For a series system, the expression in (4.4) is re-written as  
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One way to simplify (4.22) is to consider at most, pair-wise intersection events. The intersection 

probability of all pairs of correlated non-conformance events is calculated using the angle 

between the vectors to MLFPs. To show how intersection probabilities are calculated, consider 

Figure (4-3) that shows the intersection probability of two arbitrary hyper-plane limit-state 

surfaces. The two planes, identified as AA and BB, are located at distances β1 and β2 from the 

origin with an angle θ separating the vectors to each MLFP. 

 

Figure 4-3: Geometry for calculating intersection probability. 
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An indication of correlation between planes is ρ = cos(θ) and then the probability in the region 

AYB is obtained via the bi-variate cumulative function  
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The numerical evaluation of this integral is provided by (Drezner and Wesolowsky 1990) and the 

MATLAB® files that are used to compute this integral are shown in the appendix (Seshadri 

2002).   

Consider the case when θ = 0 and ρ = 1 then the failure regions are fully correlated such as g1 

and g2 in Figure 4-4. For such a case, the system failure is corresponds to the larger failure region 

where, for the example shown in Figure 4-4, is g1(u). Consider the case when θ = 180 and ρ = -1 

then the failure regions are fully anti-correlated such as g1 and g3 in Figure 4-4 

 

Figure 4-4: An example of fully correlated limit-state surfaces. 

 

 

 

 

g1(u)=0 

g2(u)=0 

u1 

u2 

g3(u)=0 
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4.5.2 An algorithm for Most-Likely Failure Point (MLFP) 

The position of the MLFP, u*, may be found via the constrained optimization problem 

 
  0 Subject to

Minimize

u

uu
u

g

T

     (4.24) 

A suitable, gradient-based algorithm exists to find u* (Madsen, Krenk and Lind 1986).  Let k be 

a counter and for k = 0, the initial conditions are u0 = 0 in u-space. The steps in the algorithm are 

1. Convert uk to vk using the inverse probability transformation such as the Rosenblatt 

Transformation. 

2. Calculate g(vk) and calculate the gradient in u-space, evaluated in v-space,  kg vu . 
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3. Calculate a new u-space location. 
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4. Calculate the distance from the origin to uk+1 and denote it as δk+1. 

5. Stop when |δk+1 – δk| ≤ ε. 

The gradient,  ig vu , is calculated using the chain rule 
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Instead of using this algorithm, another constraint is to find a plane perpendicular (via the null 

space vectors) to the outward normal gradient vector; then, at the MLFP the vector u* is 

perpendicular to each of the null space vectors. More specifically, if we have η design variables, 

there will be η-1 null space vectors – each of length η – denoted as the matrix   uu ignull  . An 

additional feature is that at u* we have the orthogonal conditions as η-1 scalar products 

   1,,2,10  jgnull
jii vu u    (4.26) 
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4.6 Parameter Design 

In parameter design, we find the means of the design variables, with fixed tolerances, to meet 

some objective. Suppose we have initial design that we wish to improve. There are three steps 

involved. The first step is to find the starting MLFPs using (4.24). 

The second step is to search for a feasible design such that the sign of each LSF at the origin is 

positive and the corresponding failure region is small. This step ensures that the probability of 

failure is small. A weight for each limit-state function is written as  

 
iRiiW  exp      (4.27) 

Where   0 uii gsign . The weight Wi approaches zero for a large 
iR and positive i  but 

becomes large for negative products (
iRi ). Further, the exponential changes rapidly for small 

changes about a small βi. The vector of weights of all limit-state functions is defined as 

  WWT 1      (4.28) 

A useful objective function is obtained by invoking the sum-of-squares type of formulation 
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If all ai = 0, then the success region contains the origin in u-space and the objective function has a 

lower bound of zero for very large βR. Finally, using (4.29) and the constraint in (4.26), a feasible 

design is found using 
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A third possible step is to minimize the system probability of failure.  
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4.7 Tolerance Design 

Tolerance design suggests that the mean values of the design variables are fixed and just the 

tolerances are adjusted. However, in order to minimize the objective functions used in parameter 

design, the tolerances would go to zero. Since this is not physically or economically feasible, 

some cost objective is needed to impede this tendency. The cost is typically the production cost 

(Cp) and it always increases for tighter tolerances. 

Typically, the smaller the tolerance the higher the cost since more labour and energy is 

required to produce a “higher quality” product. This is due to three main factors: 

 Cost of machines – Machines capable of high accuracy are manufactured to more 

exacting standards and are usually more expensive. 

 Cost of set-up – Tighter tolerances require more careful and longer set-ups. 

 Cost of tooling – Costs of tools and special fixtures rise for tighter tolerances. 

There is a variety of cost versus tolerance mathematical models. In general, the two constants 

denoted as ac and bc are cost parameters set by a particular manufacturing process where ac 

represents the fixed costs and the cost of means and bc represents the cost of producing a single 

component dimension to a specified tolerance (Seshadri and Savage, 2002). The common cost-

tolerance models are shown in Table 4-1 (Seshadri and Savage, 2002). 
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Table 4-1: Cost-tolerance models. 

Model Name Cost Model (Cp) 

Reciprocal ac + bc/tol 

Reciprocal Squared ac + bc/tol2 

Reciprocal Power ac + bc/tolk 

Exponential bcexp(-m.tol) 

Exponential/Reciprocal Power be-mtol/tolk 

Piecewise Linear ai – bitoli 

 

The manufacturing cost, denoted as Cp, is only part of the cost picture. If a product, comprising 

of many random design variables, is manufactured, some products will meet the specifications 

assigned to the responses and some will not. The products outside of the limit specifications will 

be assigned to the “scrap box” or if possible “reworked”. The cost of this “loss of quality” of the 

unacceptable products is denoted as CLQ and depends upon 1) how many systems are in the non-

conforming category and 2) the unit cost, denoted as CS  needed to scrap or rework the product  

CLQ = Pr(F) × Cs      (4.32) 

In general, the total cost CT combines the production costs and loss of quality costs and we 

have 

CT = CP + CLQ      (4.33) 

The best tolerance is allocated as 
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4.8 Integrated Design 

So far, we have seen that Parameter design entails moving the means of the design variables 

while keeping the tolerances constants. Tolerance design holds the means constant while the 

tolerances are moved. A third option, integrated design, argues that both the means and tolerance 

values of the design variables should be treated together simultaneously to reach the optimal 

design (Seshadri and Savage 2002). In general, the integrated robust design problem is posed as a 

minimum total cost problem in the following form 
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4.9 Summary 

A discussion of five main topics; Limit-State Functions, System Reliability, MCS, FORM and 

Probability-Based Optimization Methods has been presented in this chapter. The limit-state 

function has been introduced that relates the design specification with the metamodel. The limit-

state function is particularly important for probability evaluation since it provides a conceptually 

simple way of determining when failure or success takes place.  

System Reliability concepts has been used to deal with systems with many components. Here, 

it is assumed that components follow either a series or parallel arrangement. For a series 

arrangement, system failure occurs if any component fails and for a parallel arrangement, system 

failure occurs only when all components fail. This chapters has shown how the probability of 

system failure is estimated using either MCS or FORM. 

The MCS generates a large sample of sets that are substituted into the limit-state functions and 

the number of times the limit-state function goes to zero is counted. FORM evaluates probability 
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by converting the variables to standard normalized variables and the distance from the origin to 

the MLFP on the LSS is estimated.  

Three probabilistic design optimization methods have also been presented; parameter design, 

tolerance design and integrated design. Parameter design attempts to find the means of the design 

variables that reduce system failure. If the optimum tolerance is required, a cost function is 

involved. Therefore, tolerance design attempts to find the tolerance of the design variables that 

minimizes the total cost. Since tolerance design is not commonly used since design would 

involve also moving the means of the design variables, integrated design is just an extension to 

tolerance design that searches for both the mean and tolerance that minimizes the total cost.  
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Chapter 5 

Examples: Probabilistic Design of Static 

Systems 

This chapter will illustrate the metamodel-based design methodology as applied to static systems. 

The static system has the form of (1.1) and the general metamodel for a static system has been 

discussed in Chapter 3. The methodology will be used for both parameter and integrated design 

and the results obtained from the three metamodels will be compared. Metamodel accuracy will 

be compared using cross-validation methods and comparing the metamodel-based FORM 

estimate of failure probability with both the metamodel-based and mechanistic model-based 

MCS methods. 

5.1 Example 1 – Simple Servo 

Consider a simple servo system where the rotational steady-state shaft speed is a function of the 

voltage E, the motor’s torque constant K, and the electrical power amplification G. The design 

variables are K and E, v1 and v2 respectively, with G deterministic. The steady-state shaft speed, z 

has the function 

 
1

2

v

v
Gz v       (5.1) 

where G = 2. The variables follow a normal distribution with parameters shown in Table 5-1. 
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Figure 5-1: Schematic of a simple electro-mechanical servo motor. 

 

The distribution parameters of v1 and v2 are shown in Table 5-1.  

Table 5-1: The distribution and corresponding parameters of each design variable. 

Design Variable Distribution mean Units 
Standard 

Deviation 

v1 – Torque Constant 

(K) 
Normal 0081.00079.0 1    Nm/A 










300

2 1
1


  

v2 – Applied Voltage (E) Normal 1.19.0 2    V 









300

5.1 2
2


  

 

In order to fit the metamodels, the training design range is chosen to be wider than the range of 

the means of the design variables. This is to compensate for the event that the final design is one 

of the upper or lower limit boundaries. To develop the training design, the three levels of each 

design variable are shown in Table 5-2. 

Table 5-2: The low, nominal and high values of each design variable. 

Variable v1 v2 

Low 0.0078 0.8 

Nominal 0.0080 1.0 

High 0.0082 1.2 

 

G 

K 

E ω 
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Since there are 3 levels (λ = 3) for 2 design variables (η = 2), the total number of training sets, M, 

is M = λη = 9. The nine unique training sets are recorded into a matrix X 
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The corresponding training responses are found by substituting X into (5.1) to get 
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For a static system, the general metamodel looks like 

   vrwv
Tz ˆ       (5.2) 

Regression Model 

A two-variable Regression Model has already been discussed in Chapter 3 where  
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In order to estimate the parameters in wT, a matrix Xa must first be developed from the training 

design X that is substituted into (3.26). Following (3.25), Xa looks like 
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Kriging Model and RBF 

The Kriging and RBF 2-variable models have been presented in Chapter 3 and follow the same 

format for this example. 
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The accuracy of each metamodel is checked using the techniques CV-RMSE and CV-MAE. 

These values are shown in Table 5-3. 

Table 5-3: The CV-RMSE and CV-MAE of each metamodel for the simple servo example. 

Model CV-RMSE CV-MAE 

RM 4.014 × 10
-3 9.813 × 10

-3
 

Kriging 4.028 × 10
-4 

3.714 × 10
-4

 

RBF 5.102 × 10
-5

 1.376 × 10
-4

 

 

Smaller values of CV-RMSE and CV-MAE are better since these are error calculations. From 

Table 5-3, all three metamodels provide excellent fits of the training design as seen by the very 

low CV-RMSE and CV-MAE values. Among the three metamodels, the RBF is best. All three 

metamodels will be used with FORM to search for the final design. 

Our goal is to find the means of the design variables that result in a reduced failure probability. 

For this servo, the upper and lower design specifications are 255 rad/s and 245 rad/s respectively. 

Therefore, the two LSFs become 

   vv zg  2551      (5.3) 

    2452  vv zg      (5.4) 

Since the variables are assumed to be Normal distributed and uncorrelated, following example 1 

in Chapter 4, the transformation to u-space looks like 
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The first step is to search for a feasible design using (4.30) and then using this feasible design as 

a starting point, we search for the minimum system failure calculated using (4.31). Since the 

limit-state surfaces do not intersect, the optimization problem is formulated as shown in (5.5). 
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The constraints ensure that the MLFP is found and the means fall within the specified 

boundaries.  

Since the mechanistic model is very simple, the best design found using each metamodel is 

compared with the design found using the mechanistic model. In Table 5-4, the MLFP at each 

LSS is shown along with the corresponding reliability index. The design found using each 

metamodel is very close to that obtained when the mechanistic model is used. Following the 

metamodel validation results shown in Table 5-3 where the RBF provided the best fit, the MLFP 

estimated using the RBF is closest to the MLFP found using the mechanistic model. This result is 

also seen when comparing the reliability indices.  

Table 5-4: The MLFP, and the corresponding reliability index, at the best design. 

Model Best Design

 

MLFP and βR 

Mechanistic 







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9997.0

008000.0
V  









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429.1

944.1
1u  












450.1

896.1
2u  

413.2
1
R

 

387.2
2
R

 

RM 









9999.0

008001.0
V  











418.1

929.1
1u  












460.1

907.1
2u  

394.2
1
R

 

402.2
2
R

 

Kriging 









9999.0

008001.0
V  











419.1

929.1
1u  












462.1

910.1
2u  

395.2
1
R

 

405.2
2
R

 

RBF 







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001.1

008006.0
V  






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417.1

929.1
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2
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Table 5-5 compares the failure probabilities calculated using FORM and a MCS where Pr(F1) = 

Pr(g1(V) < 0) and Pr(g2(V) < 0). For MCS, 500,000 sample sets have been used to estimate 

probability. For the RM and Kriging, the FORM estimate of failure probability is very close to 

that found using the MCS. For the RBF, however, the error is larger. An interesting point, 

however, is that the when MCS is used with the RBF to estimate probability, the failure 

probability is closer to the mechanistic model results than either RM or Kriging. This result 

coincides with Table 5-3 that shows the RBF has the lowest predictive error. 

Finally, the limit-state surfaces at the best design are plotted and are shown in Figure 5-2. The 

position of the LSSs is one of the special cases discussed in Chapter 4 where θ = 180 and ρ = -1, 

therefore the intersection is zero and the system failure is just the sum of the two failure regions. 

From Figure 5-2, it is clear that the design is also “balanced” since the distance of the LSSs from 

the origin is approximately equal. This point is also noticed in Table 5-4 where the reliability 

indices corresponding to each LSS is almost equal. 

Table 5-5: The best design found using the model identified in the first column with FORM.  

Model Best Design 

FORM MCS 

Pr(F1) Pr(F2) 
CPU 

Time 
Pr(F1) Pr(F2) 

CPU 

Time 

Mechanistic 









9997.0

008000.0
V  0.007912 0.008490 < 2s 0.007778 0.008606 < 1s 

RM 









9999.0

008001.0
V  0.008323 0.008159 < 2s 0.008505 0.008030 < 1s 

Kriging 









9999.0

008001.0
V  0.008285 0.008133 ~ 3s 0.008404 0.008118 ~ 4.5s 

RBF 









001.1

008006.0
V  0.008400 0.008000 ~ 8s 0.007830 0.008320 ~ 4s 
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Figure 5-2: The two limit-state surface (in U-space) and the joint Normal PDF contours. 

Summary 

This example has found the means of the design variables that minimizes the system failure. The 

results found using the metamodel approximation of the LSF has been compared to those found 

using the original LSF. All metamodels have been able to estimate the location of the MLFP very 

accurately. The accuracy is checked by comparing the results from the metamodels with those 

obtained using the mechanistic model. When FORM is used to search for the best design, the 

results obtained from the RM and Kriging are better than those from the RBF. However, when 

the MCS is used to check the failure probability at the best design, the RBF has been found to be 

more accurate.  In terms of speed, using FORM with the RM has been found to be the fastest but 

slowest with the RBF. For MCS, the RM is still the fastest but now the RBF is just about as fast 

as Kriging.  
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5.2 Example 2 - Thin Film Layer 

The electrical impedance of a film is given explicitly as a function of three variables v1, v2 and v3 

through the equation (Bagchi and Templeton 1994) 

  













32

1

8.0

98.5
ln

2

87

vv

v
z


v      (5.6) 

The dielectric constant of the material, ε, has the value ε = 3.094539. Previous work done with 

this example assumes that the variables are normally and independently distributed with means 

and tolerances as shown in Table 5-6. 

Table 5-6: The distribution parameters of each variable. 

Design Variable Distribution Parameters 
Standard 

Deviation 

V1 – Insulator Thickness Normal μ1 = 26.6 σ1 = 0.3333 

V2 – Conductor Line Width Normal μ2 = 17.5 σ2 = 0.2222 

V3 – Line Height Normal μ3 = 6 σ3 = 0.1111 

 

Using the relation μi ± 6σi, three levels of each design variable are obtained, as shown in Table 5-

7, and a full 33 factorial design is used to generate the training sets. In the event that the final 

design may fall on the boundary constraints of the mean of each design variable, a training design 

range is chosen to be wider than the 3σ design limits to ensure that the metamodel fits outside of 

the design range. 

Table 5-7: The low, nominal and high values of each design variable. 

Variable x1 x2 x3 

Low 24.6 16.17 5.33 

Nominal 26.6 17.5 6 

High 28.6 18.83 6.67 

  

A sample of the training sets is shown in (5.7). 
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3273273,272,271,27

3,262,261,26

3,22,21,2

3,12,11,1

67.683.186.28

683.186.28

617.166.24

33.517.166.24
















































 

xxx

xxx

xxx

xxx

X

                                  

(5.7) 

Similar to example 1, the fitting parameters of each metamodel are estimated and CV-RMSE 

and CV-MAE is estimate for each metamodel. The results are shown in Table 5-8. All three 

metamodels again provide good fits of the training design. In this case, however, the best fit is 

obtained using the RM. 

Table 5-8: The CV-RMSE and CV-MAE estimates of each metamodel. 

Model CV-RMSE CV-MAE 

RM 410053.1   410272.7   

Kriging 2.67 × 10
-4 2.39 × 10

-3
 

RBF 310849.1   210678.1   

 

For the electrical impedance of the thin-film layer introduced in the previous chapter, the upper 

and lower specifications are 86Ω and 84Ω respectively. Based on these specifications, the limit-

state functions are  

   vv zg ˆ861       (5.8) 

    84ˆ
2  vv zg      (5.9) 

Variables are transformed according to the transformation in the previous example. Therefore, V 

is a function of the mean (µV) and standard deviation (σV). 

This problem is similar to (5.5) 

     

  
  

VVVVV

uu

uu

VV

 3  3-           

0

0

:Subject to

0Pr0Prmin

22

11

21









gnull

gnull

gg

    (5.10) 

The best designs are shown in Table 5-9 along with the corresponding MLFPs and the reliability 

indices. 
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The best design found using the mechanistic model is assumed to be the most accurate. From 

table 5-9, the closest design to the mechanistic model has been found using the RM followed by 

Kriging and then the RBF. A comparison of the MLFP and reliability indices also shows the 

closest estimates have been found using the RM.  

Table 5-9: The MLFP and reliability index at the best design found using each metamodel. 

Model Best Design MLFP 1R  
2R  

Mechanistic 



















329.6

00.18

60.27

v  





















5211.0

8643.0

184.1

1u  



















5229.0

8299.0

190.1

2u  
1.556

 

1.542

 

RM 



















328.6

01.18

60.27

v  





















5219.0

8665.0

185.1

1u  



















5226.0

8295.0

191.1

2u  1.558 1.543 

Kriging 



















330.6

00.18

60.27

v  





















5244.0

8519.0

183.1

1u  



















5198.0

8319.0

188.1

2u  1.553 1.544 

RBF 



















323.6

02.18

6.27

v  





















5328.0

8670.0

180.1

1u  



















5092.0

8275.0

193.1

2u  1.558 1.538 

 

Table 5-10 shows the probability of failure estimates using FORM and MCS and the 

corresponding CPU times. For MCS, 100,000 runs have been used. Similar to the previous 

example, the fastest times have been observed with the RM. When FORM is used to evaluate 

probability, the RBF is slowest but becomes a lot faster when MCS is used. 
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Table 5-10: The failure probability at the best design. 

Model 
Best Design 

best
V  

FORM MCS 

Pr(F1) Pr(F2) 
CPU 

Time 
Pr(F1) Pr(F2) 

CPU 

Time 

Mechanistic 



















329.6

00.18

60.27

v  0.05986 0.06158 2s 0.05957 0.06097 < 1s 

RM 



















328.6

01.18

60.27

v  0.05965 0.06147 2s 0.05865 0.06144 < 1s 

Kriging 



















330.6

00.18

6.27

v  0.06070 0.06172 6s 0.06024 0.06166 ~ 1.5s 

RBF 



















323.6

02.18

60.27

v  0.0597 0.0620 15s 0.0593 0.0622 ~ 1s 

 

Summary 

Metamodels have been used to search for the means of the design variables that minimize the 

system failure. The designs found are the best that meet boundaries placed upon the means of the 

design variables. From Table 5-8, the CV-RMSE and CV-MAE estimates indicate that the best 

accuracy comes from the RM. These results coincide with those of Table 5-9 that shows the 

estimate of the MLFP found using each metamodel. From Table 5-8, the RM model has been 

found to be the best in terms of both speed and accuracy. The speed of Kriging and the RBF is 

very slow with FORM but must faster when the MCS is used to evaluate probability.  
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5.3 Example 3 - Voltage Divider 

Consider the voltage divider circuit shown in Figure 5-3 taken from (Seshadri and Savage 2002).  

 

Figure 5-3: A Voltage Divider Circuit. 

The potential source is a constant at E1 = 5V (deterministic variable) and the two impedances R2 

and R3 are the design variables (denoted as v1 and v2) each with a normal distribution

 





 
2

2

300
%, iii

tol  . The potential at B and the flow in the network are the responses of 

interest. The target potential at B is 2.5 units and the target flow is 0.0025 units. The two 

responses are functions of the deterministic and design variables whose mechanistic models are 

shown in (5.11) and (5.12) respectively 
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v       (5.11) 

 
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vv
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z


v       (5.12) 

For the design variables, the correlation coefficient is ρ = 0. The design parameters are the means 

and tolerances of the two impedance distributions and their limits are shown below 

105

1100900





i

i

tol


     (5.13) 

Using the boundary of the mean, three levels of each design variable have been obtained and 

used to develop the training design based upon a 32 factorial design. The training design is then 

R2 

A B 

E1 

+ 

- 

R3 
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substituted into (5.11) and (5.12) to find the corresponding training responses for voltage and 

current. The metamodel parameters are estimated and the CV-RMSE and CV-MAE estimates are 

shown in Table 5-11. According to Table 5-11, the smallest predictive error comes from the 

RBF. 

Table 5-11: The CV-RMSE and CV-MAE estimates for each metamodel. 

Model 
Voltage Current 

CV-RMSE CV-MAE CV-RMSE CV-MAE 

RM 41048.4   41098.1   410017.6   310379.1   

Kriging 41096.2   41084.1   41060.5   41005.8   

RBF 510534.2   510035.7   510774.9   410256.2   

 

The upper and lower specifications for both responses are ± 4% of target giving rise to four limit-

state functions 

   vv 11 6.2 zg       (5.14) 

    4.212  vv zg       (5.15) 

   vv 23 0026.0 zg       (5.16) 

    0024.024  vv zg      (5.17) 

Figure 5-4 shows a plot of the LSSs at the original design. The LSS corresponding to g4 is not 

shown since it falls outside of the plot area. Although g1 and g2 seem to be acceptable, g3 is not 

since it lies very close to the origin. The first step is, therefore, to search for a feasible design 

using (4.30). 

This problem is an integrated design problem, therefore, after finding the feasible design, the 

best design is found by minimizing the total cost subject to the constraints shown in (5.18). 

  

10tol5              

1000900              
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:Subject to
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Figure 5-4: The limit-state surfaces at the initial design. 

The total cost is the sum of the production and scrap costs. For the production cost, the two 

impedances are assumed to have reciprocal cost relations of the form, costi = bi/toli. The cost of 

disposing the non-conforming product is Cs. The cost function for nc circuits is then 

   csiiT nCtolF
tol

b

tol

b
C 










 ,Pr

2

2

1

1     (5.19) 

For this study, it is assumed that nc = 1000, bi = 0.3 and Cs = $0.6. The optimal design parameters 

are shown in Table 5-12.  

Table 5-12: The optimal parameters, found using each model, along with the corresponding 

conformance probability and cost. 

Model 
Optimal Parameters Probability of 

Conformance 
Cost 

Means Tolerances 

Mechanistic  T4.10014.1001V   T044.6044.6Vtol  0.99 105.3 

RM  T4.10012.1001V   T023.6023.6Vtol  0.99 105.6 

Kriging  T5.10015.1001V   T041.6041.6Vtol  0.99 105.3 

RBF  T4.10014.1001V   T018.6017.6Vtol  0.99 105.7 

 

 

g1(u) = 0 

g3(u) = 0 

g2(u) = 0 
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Summary 

The optimal parameters found using each metamodel are similar. However, the design found 

using Kriging is closest to the results from the mechanistic model. Figure 5-5 shows the LSSs at 

the best design. A comparison of Figure 5-5 with Figure 5-4 shows a more balanced design than 

the original design since all LSSs are about the same distance from the origin.  

 

Figure 5-5: The limit-state surfaces at the best design. 

5.4 Example 4 – Overrun Clutch Assembly 

An automotive overrun clutch (Seshadri and Savage, 2002 and Son, 2006), shown in Figure (5-

6), comprises four different parts: one hub, one cage, four rollers and four springs. The springs 

push the rollers out to remain in contact with both the cage and the hub. If the hub is turned 

counter-clockwise, relative to the cage, the rollers bind, causing the cage to turn with the hub. If 

the hub turns clockwise, relative to the cage, the rollers slip and there is no torque transmission. 

The contact angle, shown as Z, is important for proper operation. If the value of the angle is 

greater than the upper specification limit or less than the lower specification limit, the clutch does 

not work correctly and it must be reworked or scrapped.  
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The overrun clutch, shown in Figure 5-6, comprises three design variables v1, v2, and v3 

associated with the dimensions of the cage, the hub and the rollers. 

 

Figure 5-6: An overrun clutch assembly (Source: Seshadri and Savage, 2002). 

 

Each of the design variables is assumed to be normal and the nominal values of the design 

variables are 55.29mm, 22.86mm, and 101.69mm. The response z is the angle given by the 

function 

  
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


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


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
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211cos
vv
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z v      (5.20) 

The angle has a target-is-best performance measure with upper and lower specification, 

0.122±0.035rad respectively. These two design specifications lead to two LSFs shown in (5.21). 
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From Son, 2006, the upper and lower bounds of the means are considered as nominal values ± 

0.2mm. Using this relation, three levels of each design variables are obtained as shown in Table 

5-13. A full factorial design is used to develop the training design where the 3 levels of each 

design variable are shown in Table 5-13.  

Table 5-13: The three levels of each design variable. 

Levels x1 x2 x3 

Lower 55.09 22.66 101.49 

Nominal 55.29 22.86 101.69 

Upper 55.49 23.06 101.89 

 

The parameters of each metamodel are estimated and the predictive error of each is shown in 

Table 5-14. 

Table 5-14: The error estimates of the fit of the metamodels. 

Model CV-RMSE CV-MAE 

RM 3.657 × 10
-6

 2.599 × 10
-5

 

Kriging 2.159 × 10
-9

 4.514 × 10
-9

 

RBF 2.395 × 10
-6

 4.380 × 10
-5

 

 

From Table 5-14, all metamodels give very small estimates of CV-RMSE and CVMAE. The best 

metamodel in this case is Kriging. 

Holding v2 constant at the mean value, the limit-state surfaces are plotted (Figure 5-7) for each 

model-type estimate of the LSF. All four figures show linear limit-state surfaces. Also, the 

metamodel approximation of the limit-state surfaces is very similar to the mechanistic model 

limit-state surface. This shows the accuracy of the metamodels. Now, FORM is used to check the 

failure probability at the initial design using each model. 

From Table 5-15, the MLFP and reliability index estimates found using the mechanistic, 

regression and Kriging models are close. Also, the number of iterations required to converge to 

the MLFP is the same. For the RBF, however, the position of the MLFP found is not as accurate 

as those obtained using the other two metamodels. Also, for the RBF, the number of iterations 

required to converge to the MLFP is larger than for the RM or Kriging. The probability of failure 

and CPU time comparison is shown in Table (5-16). 
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(a)                                                      (b) 

 

 

(c)           (d) 

Figure 5-7: Plot of the limit-state surfaces. (a) Mechanistic Model, (b) Regression Model, (c) 

Kriging and (d) RBF. 
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Table 5-15: The MLFP estimates, from each model, at the original design.  

Model FORM

 

Iterations

 

MLFP and βR 

Mechanistic 



















7842.0

179.1

4920.0
*
1u  























5978.0

9023.0

3783.0
*
2u  

3 

β1 = 1.499 β2 = 1.147 

RM 



















7829.0

177.1

4912.0
*
1u  























5991.0

9043.0

3791.0
*
2u  

3 

β1 = 1.496 β2 = 1.149 

Kriging 



















7842.0

178.1

4920.0
*
1u  























5978.0

9024.0

3783.0
*
2u  

3 

β1 = 1.498 β2 = 1.147 

RBF 



















7804.0

185.1

4950.0
*
1u  























5930.0

8838.0

3730.0
*
2u  

15 

β1 = 1.503 β2 = 1.128 

 

From Table 5-16, when FORM is used to estimate probability, the best estimates are found 

using either the RM or Kriging. The same conclusion can be drawn when MCS is used for 

probability evaluation. In terms of CPU time, the fastest time is observed when FORM is used 

with the RM and the slowest from the RBF. For MCS, the RBF is not as slow.  
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Table 5-16: The probability of failure estimates at the original design. 

Method Pr(g1(U) < 0) Pr(g2(U) < 0) CPU Time 

Mechanistic and 

FORM 
0.0670 0.1258 2s 

Mechanistic and MCS 

(50,000 runs) 
0.06693 0.1242 1s 

Metamodel FORM 

Regression 

Kriging 

RBF 

 

0.0673 

0.0671 

0.0665 

 

0.1253 

0.1257 

0.1297 

 

2s 

7s 

36s 

Metamodel and MCS 

(50,000 runs) 

RM 

Kriging 

RBF 

 

 

0.06614 

0.0670 

0.0685 

 

 

0.1242 

0.1261 

0.1284 

 

 

1s 

2s 

2s 

 

This problem aims to reduce the total cost which is the sum of the production and loss of 

quality costs. The production and loss of quality costs for the clutch assembly, (Seshadri and 

Savage 2002), are calculated using (5.22) and (5.23) respectively. Notice that the production cost 

uses a reciprocal cost-tolerance model. 
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
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



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










421

88.0
5.0

65.0
0.3

75.0
5.3

toltoltol
C p    (5.22) 

  sLQ CC  FPr      (5.23) 

The problem is formulated as shown in (5.24) where the lower and upper bounds of the means 

are provided in Table (5-13) and there are also limits on the tolerances. The scrap cost, Cs, is set 

as $20 and the goal is to search for the set of means and tolerances, of each variable, that 

minimizes the total cost.  
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From Table 5-18, using the results obtained from the Mechanistic model as the true or most 

accurate results, the best mean and tolerance, of each design variable, has been found to be 

almost identical when the Regression Model or Kriging is used. The same accuracy has not been 

observed with the RBF. Cost estimates are also the same using Kriging or the RM. 
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Table 5-17: The best means and tolerances found using each metamodel. 

Model Mean Tolerance 
FORM 

Cost 
MLFP and βR 

Mechanistic 



















89.101

878.22

497.55

V  



















3667.0

2082.0

25.0

Vtol  



















000.1

139.1

6847.0
*
1u  























9972.0

140.1

6884.0
*
2u  

CT = 17.45 

Cp = 15.52 

Clq = 1.925 

β1 = 1.663 β2 = 1.664 

RM 



















89.101

878.22

497.55

V  



















3667.0

2082.0

25.0

Vtol  



















000.1

139.1

6847.0
*
1u  























9972.0

140.1

6884.0
*
2u  

CT = 17.45 

Cp = 15.52 

Clq = 1.925 

β1 = 1.663 β2 = 1.664 

Kriging 



















89.101

878.22

497.55

V  



















3666.0

2082.0

25.0

Vtol  




















000.1

138.1

6849.0
*
1u  























9973.0

140.1

6883.0
*
2u  

Ct = 17.45 

CP = 15.52 

CLQ = 1.925 

β1 = 1.663 β2 = 1.664 

RBF 



















73.101

881.22

317.55

V

 



















3682.0

2285.0

25.0

Vtol

 





















9516.0

1940.1

6482.0
*
1u  























8424.0

0766.1

5937.0
*
2u  

Ct = 17.568 

CP = 15.24 

CLQ = 2.33 

β1 = 1.659 β2 = 1.490 

 

Summary 

This example has attempted to use metamodels to search for the best design of an overrun clutch 

assembly. From the results found in Table 5-17, the final design found using Kriging is closest to 

that obtained using the mechanistic model. The RBF produced the least accurate design. In terms 

of speed, the number of iterations required to find the MLFP at the original design has been 

recorded. Both Kriging and the RM have been found to converge quickly. The same has not been 

observed for the RBF. The accuracy of the FORM-based probability estimates has been 

compared with the MCS-based probability estimates and the percentage error has been recorded 

in Table 5-16. From this table, although all percentage errors have been found to be very small, 
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the largest error has been observed from the RBF. This indicates that, perhaps, the using FORM 

with the RBF is not as accurate as with the other metamodels. 

5.5 Conclusions 

In this chapter, the optimization of static systems with uncertain design variables has been 

performed using a metamodel approximation of the mechanistic model and FORM to estimate 

probability of failure. A MCS has also been performed to check the accuracy of the design found 

using FORM. Results have been compared and a brief summary following each example has 

been provided. Generally, the metamodels seem to have a lot of potential for probability-based 

design optimization. In terms of speed, in all cases, the RM has been found to be the fastest when 

both FORM and the MCS has been used to estimate probability. This is expected since the 

metamodel is not as complicated as either Kriging or the RBF. When FORM has been used to 

estimate probability, the RBF has been found to be the slowest of the three metamodels. 

However, the RBF has produced a faster computation time when the MCS has been used to 

estimate probability. In these static examples, the RM has been found to be the best in terms of 

speed and its good accuracy.  
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Chapter 6 

Probabilistic Design of Dynamic Systems 

6.1 Introduction and Problem Description 

This chapter shows how SVD and metamodels are used to approximate a time-invariant 

performance measure based upon a time-variant response through the use of a position-control 

servo mechanistic. FORM will be used to estimate probability and the final design will be the 

combination of the means of the design variables that result in a reduced failure probability. 

Since there is no cost component for this example, tolerance design is performed by lowering the 

tolerance of the variables and searching for the means that meet the optimization goals.  

The servo is to be operated as a position control system whereby the final rotational angle of 

the shaft is important to the over-all mechanism. A system schematic is shown in Figure 6-1 and 

comprises mainly an amplifier, a motor and an angular position detector.  

 

Figure 6-1: A Schematic of the Position-Control Servo 
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A load torque T0 (N-m) models the subsystem attached to the drive shaft. The input is the 

reference angle R and the output is the shaft angle although angular speed  and motor current 

i are measureable as well. The dynamic lifetime, τL, is identified as the time at which the angular 

speed becomes steady-state. The prospective design variables are the amplifier gain G (V/V), the 

system rotational friction B (N-m-s/rad), the system rotational inertia J ( kg-m2), the motor 

winding inductance L (H), the winding resistance R (Ω) and the motor torque constant K (N-

m/A). A model of the servo is formed as a set of state equations in terms of the shaft angle, the 

angular speed and the motor current and has the form 
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                           (6.1) 

The winding resistance, R, and the friction, B, are prone to degradation and their values increase 

over time. Equation (6.1) has been simulated using Simulink® in MATLAB®. 

For an arbitrary initial design, an importance analysis ranks the normalized sensitivities and 

then is used to separate the variables into a) four deterministic variables L, J, R and B, that 

subsequently remain deterministic, and b), two design variables G and K that retain their 

uncertainty. The performance measures of interest are functions of angle and its angular speed. 

For the probabilistic design of the position control servo, three performance measures that 

include the angular position only and these are a) the integral of squared error (ISE), b) the 

angular position at peak time (i.e. τpk = 0.035s) and c) the angular position at settling time(i.e. τL 

= 0.1s). The most common index is the integral of the squared error, ISE (Ogata 1990). The ISE 

is a performance index that indicates the “goodness” of a system performance. A control system 

is considered optimal if the values of the parameters of the design variables are chosen so that the 

selected performance index is minimum or maximum (Ogata 1990). For this example, we attempt 

to minimize the ISE.  Given an input signal zR(τ) and the system response z, the ISE index is 

defined as 

     
L

dzzISE R





0

2
,v     (6.2) 
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Or in sampled mode 

    



C

l

llR zzISE
0

2
,ˆ  v     (6.3) 

With vector notation, the time-invariant ISE is 

           
 v

τvzτzτvzτzv
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


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,ˆ,ˆ
R

T

RISE
    (6.4) 

The derivative of (6.4) is then 

 
    

 
T

T

RT

ISE

v

τvz
τvzτz
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
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

 ,ˆ
,ˆ2      (6.5) 

The performance measures are written in terms of the metamodels at appropriate times. The 

initial design gives 3100.11 ISE . For the desired angular position of one radian, the design 

criteria set the maximum over-shoot shaft angle as 1.11 radians and the minimum shaft angle at 

settling time as 0.978 radians. Now we can write three LSFs 

 
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For probabilistic design we let  
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   (6.7) 

Since variables are assumed to be independent and follow a Normal distribution, the 

transformation to u-space looks like 

iiii uv    

6.2 Training Design 

In the initial design, the deterministic noise variables are set as follows: resistance R = 4 Ω, the 

motor friction B = 10-4 N-m-s/rad, the system rotational inertia J = 10-6 kg-m2 and the motor 

inductance L = 18/10000 H. The conversion variables k1 and k2 are 1 V/rad. The load torque is set 

to a constant τ0 = 2/10000 N-m. The two control variables G and K are assigned independent 

normal distributions and their nominal values are 5.0 and 8/1000 respectively.  

For design, a wide enough range should be selected so the metamodel fits a large enough range 

of the design variables to search for an improved design. Using the relation µi ± 6σi, five levels of 

each variable, G and K, are selected and denoted as L (Low), LN (Low-Nominal), N (Nominal), 

HN (High-Nominal) and H (High).  
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The reference angle is one radian, entered as a step, and the dynamic life time is 0.1s.  

When provided with the training design, the first step is to determine how many cycle time 

increments are necessary. In order to obtain this information, the angular position response is 

recorded at various possible cycle time increments. The ISE is then estimated using (6.4) and 
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recorded. When the ISE estimate starts to converge, that cycle time increment is chosen. Table 6-

1 shows the ISE estimates for three possible cycle time increments that have been recorded at 5 

sample training sets.  

 

Table 6-1: The ISE estimates using three possible cycle time increments at 5 training sets. 

G K ∆τ = 0.002 ∆τ = 0.001 ∆τ = 0.0005 

4.5 0.0072 0.012916 0.012416 0.012166 

4.75 0.0076 0.012191 0.011691 0.011441 

5.00 0.0080 0.011568 0.011068 0.010818 

5.25 0.0084 0.011027 0.010528 0.010278 

5.50 0.0088 0.010554 0.010054 0.009804 

 

From Table 6-1, the difference between the estimates at ∆τ = 0.001 and ∆τ = 0.0005 is small. 

It is important to note that the number of time steps a particular cycle time increment produces 

should also be taken into consideration. Although SVD is used to reduce the number of 

metamodels to be built, finding a metamodel to represent the ISE requires that a metamodel at 

every cycle time increment is obtained that is then subtracted from the desired input signal. As ∆τ 

gets smaller, the number of increments gets larger and the process to build the ISE metamodel 

gets slower. Since ∆τL = 0.1, the three possible time increments would lead to 51, 101 and 201 

time increments respectively. Based on accuracy and speed of computation, ∆τ is chosen to be 

0.001. Computer experiments and time sampling with Δt = 0.001 provide the angular position, 

angular speed and motor current matrices   10125Θ and   10125Ω and   10125Ι  respectively. Herein, 

only the angular position matrix   10125Θ is considered.  

After application of SVD to the matrix [Θ]25×101, the second step is to determine the number 

of significant singular values, s. Now, using various possible value of s, the response matrix is 

estimated using the expression 

   
10125

ˆ



s

T

s ΘΘ QDΘ      (6.8) 

Using   , ISE is estimated and compared with the ISE estimates using Θ. Results are shown in 

Table 6-2 for a sample of 5 training sets. The best results are obtained when s = 4 or s = 5. Since 
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the result is exact to 6 decimal places when s = 5, this value is chosen to be the number of 

significant values. A metamodel is now fit for each of the five columns of D. 

Table 6-2: ISE estimate using three possible values of s. 

G K 
Mechanistic 

Model 
Number of columns of S 

s = 3 s = 4 s = 5 

4.5 0.0072 0.012416 0.012398 0.012417 0.012416 

4.75 0.0076 0.011691 0.011693 0.011689 0.011691 

5 0.008 0.011068 0.011072 0.011069 0.011068 

5.25 0.0084 0.010528 0.010526 0.010529 0.010528 

5.5 0.0088 0.010054 0.010051 0.01005 0.010054 
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6.3 Results 

Experiment 1: Tolerance =5% 

Starting with an initial design, 1000/8,5  KG   let tol = 5 in the variance terms. The LSFs at 

this initial design are built, transformed to u-space and their tangent hyper-planes plotted as 

shown in Figure 6-2. The surfaces estimated by the metamodels are all very similar in appearance 

and fall at approximately the same position relative to the normal CDF contours. From the 

figures, the g1 LSS has the worst failure probability.  

To determine the position of the failure region, the sign of the LSF at the origin is determined. 

At the original design, these signs are a1 = -1, a2 = 1, a3 = 1. Since a1 = -1, this means that the 

failure region corresponding to g1(u) covers the origin. The LSSs at the original design, plotted 

using a RM approximation of the LSF, are shown in Figure 6-2(a). Figures 6-2(b) and 6-2(c) 

show similar results when the Kriging and RBF metamodels are used to approximate the LSS. 

 From the figures, g2(u) seems to be at an acceptable location because it is quite far away from 

the origin thus producing a small failure region. The other two surfaces, however, are still too 
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close to the origin especially g1(u) that is almost on the origin. The goal is, therefore, to push the 

failure surfaces further away from the origin. 

  

(a)       (b) 

 

(c) 

Figure 6-2: The limit-state surfaces at the original design. (a) Regression Metamodel, (b) Kriging 

Metamodel (c) RBF Metamodel. 
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In order to check the actual failure probability, the MLFP at the initial design is found for each 

metamodel. These results are shown in Table 6-3. The position of the MLFP estimated using 

each metamodel is very similar. All metamodels converge in 5 iterations; however, the time to 

converge differs as observed in Table 6-4. In order to check the accuracy of the metamodels, the 

failure probability at the initial design is estimated using a MCS of the mechanistic model and 

compared with probability estimates obtained using the metamodels with FORM and MCS. 

These results are shown in Table 6-4. 

From Table 6-4, the best probability estimates are observed at the RBF. Although slow when 

used with FORM, the accuracy is maintained when MCS is used and the CPU time is a lot faster. 

Even though FORM with the RBF is so slow, it is still six times faster than using a MCS 

simulation of the mechanistic model. An increase in speed is further obtained using a MCS of the 

metamodels. 

Table 6-3: The MLFP and reliability index estimates from each metamodel. 

Model MLFP and βR 

RM 














1592.0

1699.0
1u  










743.1

087.3
2u  














8116.0

8623.0
3u  

1R  = 0.2328 
2R  = 3.545 

3R = 1.185 

Kriging 














1559.0

1668.0
1u  










737.1

115.3
2u  














7143.0

8510.0
3u  

1R  = 0.2283 
2R  = 3.567 

3R  = 1.111 

RBF 














1559.0

1671.0
1u  










741.1

118.3
2u  














7127.0

8572.0
3u  

1R = 0.2285 
2R  = 3.571 

3R  = 1.115 
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Table 6-4: Probability comparisons at the initial design. 

Model Pr(g1(U) < 0) Pr(g2(U) < 0) Pr(g3(U) < 0) Time 

Metamodel and FORM 

RM 

Kriging 

RBF 

 

0.4080 

0.4097 

0.4096 

 

1.962 × 10-4 

1.806 × 10-4 

1.779 × 10-4 

 

0.1180 

0.1333 

0.1325 

 

15s 

200s 

500s 

Metamodel and MCS 

(100,000 runs) 

RM 

Kriging 

RBF 

 

 

0.4111 

0.4120 

0.4109 

 

 

2.2 × 10-4 

1.8 × 10-4 

2.0 × 10-4 

 

 

0.1350 

0.1345 

0.1317 

 

 

3s 

4s 

4s 

Mechanistic Model and 

MCS 

(100,000 runs) 

 

0.4089 

 

1.6 × 10-4 

 

0.1323 

 

3000s 

 

The next step is to obtain a feasible design using (4.30). Since the accuracy of the Regression 

Model is quite good and is the fastest, this model is used to search for a feasible design that is 

then used by all metamodels to search for the best design. The limit-state surfaces at the feasible 

design are shown in Figure 6-3. A test of the sign of the LSSs at the origin show that a1 = 1, a2 = 

1 and a3 = 1which means that the origin does not fall in any failure region and, therefore, the 

design is feasible. From Figure 6-3, g1(u) is still too close to the origin. The algorithm to find the 

best design attempts to push the failure surfaces as far away from the origin as possible.  
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Figure 6-3: The limit-state surfaces at the feasible design. 

 

 

Figure 6-4: The limit-state surfaces, at the best design when tolerance = 5%, plotted using the 

Regression metamodel. 

 

g1(u)=0 

g2(u)=0 

g3(u)=0 

g1(u)=0 

g2(u)=0 

g3(u)=0 
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The LSSs at the best design, when tol = 5%, is plotted in Figure 6-4 and the results are shown 

in Table 6-5. All designs are very close but there is some difference in the location of the MLFP 

and the reliability index. In order to check the accuracy, a MCS of the mechanistic model is used 

where  T0084.097.4v to estimate failure probability. These results are shown in Table 6-6. 

 

Table 6-5: The best design, found using each metamodel, when tolerance = 5%. 

Model 
FORM Results 

Best Design MLFP and βR 

RM 









0084.0

968.4
v  















309.1

410.1
1u  










107.1

242.2
2u  














956.1

092.2
3u  

1R  = 1.924 
2R = 2.500 

3R = 2.864 

Kriging 









0084.0

970.4
v  















314.1

418.1
1u  










132.1

229.2
2u  














691.1

063.2
3u  

1R = 1.933 
2R = 2.500 

3R = 2.668 

RBF 









0084.0

978.4
v  















371.1

463.1
1u  










9093.0

329.2
2u  














980.1

031.2
3u  

1R = 2.009 
2R = 2.500 

3R = 2.836 

 

From Table 6-6, the failure probability estimates using the RBF with MCS are the best in two 

cases; Pr(g2(U) < 0) and Pr(g3(U) < 0). Again, RBF with FORM is the slowest but fastest with 

the RM. The probability of failure of the ISE limit-state function, g1, has been best estimated 

using the RM. 
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Table 6-6: Probability and CPU time comparisons. 

Model Pr(g1(U) < 0) Pr(g2(U) < 0) Pr(g3(U) < 0) CPU Time 

Metamodel and FORM 

RM 

Kriging 

RBF 

 

0.0272 

0.0266 

0.0223 

 

0.0062 

0.0062 

0.0062 

 

0.0021 

0.0038 

0.0023 

 

11s 

115s 

230s 

Metamodel and MC 

(100,000 runs) 

RM 

Kriging 

RBF 

 

 

0.02807 

0.02626 

0.0219 

 

 

0.00594 

0.00582 

0.00615 

 

 

0.00454 

0.00348 

0.00253 

 

 

3s 

4s 

4s 

Mechanistic Model and MC 

(100,000 runs) 

 

0.02728 

 

0.0652 

 

0.00280 

 

3000s 

 

In order to find a better design, the tolerance is lowered to 3%. As in the previous case for 

tolerance = 5%, the feasible design is found and then used to search for the best design. The 

results are shown in Table 6-6. The best design found using the RM and Kriging metamodels are 

the same but the difference lies in computing the MLFP. This difference, however, is quite small 

and finally leads to almost indistinguishable estimates of the reliability index, β. 

The next step is to check the accuracy of the final design by MCS of the mechanistic model at 

the best design found using each metamodel. There are two possible designs produced; one from 

using PR and Kriging, and the other when the RBF is used. A sample of 100,000 runs is 

generated at each of the two possible designs and the responses estimated using the mechanistic 

model. The results are shown in Table 6-8. In this case, using Kriging and RBF with MCS 

produces much better results than if FORM was used. 
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Table 6-7: The best design, found using each metamodel, when tolerance = 3%. 

Model 
FORM Results 

Best Design MLFP and βR 

RM 









00856.0

931.4
v  














663.2

881.2
1u  










678.1

678.3
2u  














740.3

018.4
3u  

β1 = 3.924 β2 = 4.042 β3 = 5.489 

Kriging 









00856.0

940.4
v  














746.2

973.2
1u  










700.1

473.3
2u  














237.3

008.4
3u  

β1 = 4.040 β2 = 3.867 β3 = 5.151 

RBF 









00856.0

940.4
v  















738.2

968.2
1u  










692.1

477.3
2u  














241.3

010.4
3u  

β1 = 4.038 β2 = 3.867 β3 = 5.156 

 

Table 6-8: The failure probability comparisons. 

Model Pr(g1(U) < 0) Pr(g2(U) < 0) Pr(g3(U) < 0) 
CPU 

Time 

Metamodel and FORM 

RM 

Kriging 

RBF 

 

4.363 × 10-5 

2.676 × 10-5 

2.693 × 10-5 

 

2.649× 10-5 

5.508 × 10-5 

5.503 × 10-5 

 

2.023× 10-8 

1.293 × 10-7 

1.259 × 10-7 

 

11s 

115s 

230s 

Metamodel and MC 

(100,000 runs) 

RM 

Kriging 

RBF 

 

 

4 × 10-5 

3 × 10-5 

4 × 10-5 

 

 

3 × 10-5 

7 × 10-5 

6 × 10-5 

 

 

0 

0 

0 

 

 

3s 

4s 

4s 

Mechanistic and MC 

(100,000 runs) 

 

5 × 10-5 

 

7 × 10-5 

 

0 

 

3000s 

6.4 Conclusions 

Based on results that have been obtained using a MCS of the mechanistic model, there has been 

some error from the results obtained using the metamodels. Since the original angular position 

response is continuous and dynamic, converting the response into a set of static responses at 

discrete time steps introduces the first source of error. Intuitively, as the number of time steps 
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increases, the accuracy for estimating the ISE increases. However, since a metamodel has been 

developed at each time step, as ∆τ increases, the number of metamodels increases and, thus, the 

computation time for developing a metamodel for ISE also increases. This point is especially 

evident for metamodels like Kriging and RBF that uses every training-set to develop the 

metamodel. Therefore, a balance must be struck between accuracy and speed. 

The next possible source of error is in selecting the appropriate number of columns of S that 

are significant. Analysis that has been done at the start of the chapter shows that 5 columns are 

appropriate since    is accurate to six decimal places when compared with Z. The third source of 

error comes from the metamodel itself. The only way to reduce this error is to change the 

metamodel or to change the training design. The fit of each metamodel has been tested by 

checking the prediction accuracy using CV-RMSE and CV-MAE. These results are shown in 

Table 6-9. All metamodels have provided good accuracy. In terms of speed, the RM has been 

found to be the fastest of all metamodels. 

Table 6-9: The CV-RMSE and CV-MAE estimates of each column of Dθ. 

 

RM Kriging RBF 

CV-RMSE CV-MAE CV-RMSE CV-MAE CV-RMSE CV-MAE 

Column 1 3.248×10
-5

 1.007 × 10
-4
 5.922×10

-6
 4.067×10

-6
 6.218×10

-6
 2.083×10

-5
 

Column 2 6.572×10
-5

 2.199×10
-4

 3.796×10
-6

 2.578×10
-6

 3.786×10
-7
 1.268×10

-6
 

Column 3 3.197×10
-5

 1.223×10
-4

 7.070×10
-6

 4.838×10
-6

 4.908×10
-7
 1.647×10

-6
 

Column 4 3.693×10
-5

 1.255×10
-4

 7.455×10
-7

 4.677×10
-7

 1.240×10
-7
 4.168×10

-7
 

Column 5 7.348×10
-5

 2.422×10
-4

 8.882×10
-7

 4.797×10
-7

 3.519×10
-7
 1.185×10

-6
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(a)                                                             (b) 

 

(c) 

Figure 6-5: Plots of the ISE performance measure function. (a) Regression Metamodel, (b) 

Kriging Metamodel and (c) RBF Metamodel. 
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Chapter 7 

Dynamic Systems with Degradation 

A degrading dynamic system has the general form in eq. (1.3) where one or more of the 

components (design variables) degrade as time passes. Path-tracing sampling methods have 

previously been used to find failures of performance measures in times. The set-theory method 

provides a more efficient approach and is the method of choice in this thesis to estimate the 

cumulative distribution function of the time to failure, Cdf, when degradation of the components 

is assumed. Both methods have been successfully applied to systems with static responses 

(Stewart and Rosowsky 1998); (Van den Bogaard et al, 2003); (Savage and Son, 2011). A goal of 

this thesis is to show how the set-theory method can be simply adapted to dynamic systems with 

degradation. The Cdf is obtained by summing incremental probabilities of failure as the limit-

state functions move through discrete “service times”. Other probability functions, such as the 

density function, follow from the Cdf. It is important to note that the form of the metamodels in 

static and dynamic systems can be adapted to degrading systems. This is shown in the next 

section. 

7.1 General Metamodel for Dynamic Systems with Degradations 

Degradation rates may be random. Let consider service time at discrete intervals ∆t then

Ll tttt 10 ,t where ttt ll  1 . It follows that we can produce a sequence of response matrices, 

similar to (3.5), at each service time and we write 

Ll ZZZZ 10                                                      (7.1) 
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Then following the work with dynamic systems in Chapter 3 we obtain a sequence of responses 

),(ˆ),(ˆ),(ˆ),(ˆ
10 τvzτvzτvzτvz Ll                                            (7.2) 

Where 

)(),(ˆ vrWQτvz lll                                                                 (7.3) 

or 

)()()(),(ˆ vrΤvrIWQτvz llll                                                          (7.4) 

 

Note how the column of functions of the design variables is service-time invariant. In gradient-

based optimization and FORM, the derivative of the response with respect to the design variables 

is required. Since, at each service time, the fitting parameters in W and the time contributions in 

Q are constants, the derivatives of interest from (7.4) are 

 
TllT

l

v

vr
IWQ

v

tvz








 )(),(ˆ
                                                           (7.5) 

7.2 Degradation Model LSF 

A service time-dependent limit-state function is denoted as g(v,t) where t denotes the service 

time. As stated in Chapter 4, positive values, of the LSF, correspond to the safe domain and 

negative values to the failure domain. For a dynamic system, consider an arbitrary service time tl; 

a model of the performance measure that comprises either a dynamic response evaluated at cycle-

time τk is denoted as  lk t,, v or one evaluated over all cycle times τ, is denoted as  lt,, τv . 

When provided with an upper or lower specification limit, ζ, for the performance measure, the 

LSF, for a response evaluated over all cycle times, is written as 

    ttg l ,,, τvv        (7.6) 

The failure at the component level within the lifetime [0,tL] gives the event 

Pr(FT) = Pr{g(v,t) ≤ 0 for     [0,tL]}    (7.7) 

When time is a fixed parameter, say t = tl, the probability of failure at tl is 

     0,PrPr  ll tgt VF      (7.8) 
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In general, this probability evaluation is not the same as (7.7) since it does not take into account 

the time history of the system, in particular the possible failure before t. For the general case, let 

us see how to combine the simplicity of (7.8) with the correctness in (7.7).  

Consider Figure 7-1 where, for example, the u1 axis represents an initial random variable and 

axis u2 its random degradation rate. Three service-time progressions of a common limit-state 

surface (solid lines here) are shown where hatching represents the failure regions. Notice that 

region B is the actual failure region emerging at time t2 as the LSS progresses through time t1 

from time t0. The samples in region B contain all of the available initial values and all of the 

available degradation rates. This area and the joint probability density function of our random 

variables provide the incremental probability of failure that contributes to the Cdf. A 

conceptually simple and efficient approach to solve the time-history probability problem - called 

the set-theory method (STM) exists (Savage and Son, 2011). The STM features are as follows:  

a) No planned time need be explicitly specified,  

b) The method is conceptually simple since it includes the random degradation rates in the 

joint pdf of V,  

c) Probabilities are found contiguously at successive service time increments. 

 

Figure 7-1: Time-variant limit-state surfaces (Source: Savage and Son, 2011).  
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7.3 Set-Theory Method 

Let there be nLF LSFs. Consider, a desired product lifetime, tL, that is made up of a set of discrete 

time steps using the service-time increment ∆t. For a time index l = 0, 1,...L, where L is the 

number of time steps to the planned time, the time at the lth step is tl = l × ∆t. For a performance 

measure based upon a dynamic response, an approximation to (7.7) using discrete time events 

based upon a finite time step is written as 

     



























 

 
L

l

n

i

liLT

LF

tgtF
0 1

0,PrPr V     (7.9) 

A set that represents the instantaneous failure region of the ith LSF at any selected discrete 

service time, tl is defined as 

  0,:,  liil tgF vVv      (7.10) 

Following the system failure discussions in Chapter 4, for a series system configuration, the 

system instantaneous failure region at service time tl is defined to be the set 


LF

LF

n

i

ilnllll FFFF
1

,,2,1,



F     (7.11) 

Next, the system cumulative failure set Al is defined as the set that represents the accumulation of 

all system instantaneous failure regions for all discrete times up to tl. This set extends (7.11) and 

is written as 


l

q

qllA
0

210



 FFFFF     (7.12) 

The safe set is denoted as   
 . The emergence of the incremental failure region from a safe region, 

from time tl during time interval ∆t, is defined as 





































 
l

q

q

l

q

qlll AA
0

1

0

1 FFB     (7.13) 

Using the distribution and complement law,   lqq FFFF 0  . Applying this 

relation to (7.13) for q = 0, 1,...,l, a simpler relation is 
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ll

l

q

qll A 



 1

0

1 FFFB       (7.14) 

It is straightforward to show both that (a) the failure time history can be written as 

     

l

llll AA

BBBF

FFFFFFFF



 




100

101201011
 

and (b) that all events above are mutually exclusive. The probability of failure is then 

            1100 PrPrPrPrPrPr  LlLtF BBBBF   

The following example will show that the incremental failure region and its probability is correct 

and applicable to complex systems. 

 

Example: Consider the system shown in Figure 7-2 that consists of two components in a parallel 

arrangement. There are two time-variant limit-state functions g1 and g2. Their limit-state surfaces 

in 2-D standard normal space, at two times t0 and t1, are shown in Figure 7-2(b). The movement 

of the surfaces over time are denoted as solid for t0 and dashed for t1. The failure regions with 

respect to each LSS are shown as grey areas. The ten mutually exclusive events are indicated as 

the unique areas a,b,...,m in Figure 7-2(b).  
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Figure 7-2: A parallel subsystem and the corresponding failure regions: (a) System arrangement 

(b) failure regions of g1 and g2 at t0 and t1. (Source: Savage and Son, 2011). 

 

Table 7-1: The sets corresponding to Figure 7-2. 

 t0 t1 

g1 F0,1 = dcba   gfedcbF 1,1  

g2 mkfedcF 2,0  medF 2,1  

Instantaneous 

Failure 

dcFF  2,01,00F
 

edFF  2,11,11,1F
 

Cumulative 

Safe mkhgfeba

A



 00 F

 mkhgfba

A



 101 FF

 

1 

2 

(a) 

d 

e 

m k 
h 

f 

g 

a 

b 

c 

g1(t1) = 0 

g1(t0) = 0 

g2(t0) = 0 

g2(t1) = 0 

(b) 
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The right of (7.14) may be reduced so that instantaneous failure sets at only two contiguous 

time intervals tl and tl+1 are needed. Then the corresponding incremental failure probability 

becomes 

      llllll A  FFFFB 11 PrPrPr     (7.15) 

where     lllll A FFFF   11 PrPr . To illustrate this argument, consider Figure 7-3 that 

shows a time-variant limit-state surface at three contiguous discrete times (t0, t1 and t2). Dark 

areas indicate failure regions. The sets of interest are shown in Table (7-2). From Table 7-2, 

      = a and    001 AFF  . Using equation (7.15), B0 = a which coincides with the 

correct evaluation of B0 using the equation           
  . Next, for B1, from Table (7-2), 

           and              . Since the correct result is B1 = b, there is a positive 

and conservative probability error due to the region d. Since      , the probability error is 

small. If, however, the time step is reduced, the region, d, begins to vanish. Therefore, 

   lll FFB  1PrPr      (7.16) 

 

 

Figure 7-3: A time-variant limit-state surface as it moves through time. 
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Table 7-2: Sets for Figure 7-3. 

t0 t1 t2 

 gfed 0F   gfa 1F   gdba 2F  

 cba 0F   edcb 1F   fec 2F  

 gfedA 0   gfedaA 1   gfedbaA 2  

 

A more convenient probability evaluation follows. By invoking the identity  

 lllll FFFFF   11     (7.17) 

and replacing the last intersection in (7.17) with Bl, (7.17) becomes 

llll BFFF 1      (7.18) 

Finally the incremental failure probability in terms of two contiguous service time increments 

becomes 

     llll FFFB PrPrPr 1                                                  (7.19) 

Probability evaluation by Monte Carlo is straightforward and follows. 

7.3.1 Probability Evaluation 

A Monte Carlo evaluation provides the safe-fail elemental state for any LSF gi at time tl as 

 



 


otherwise     1

0, if     0
,

li

il

tg
e

v

 

Then for a system at time tl we have the state 






state safe ain  is system  theif1

state failure ain  is system  theif0
l  

For example, given a parallel system comprising nLF elements, the system state is calculated as 





LFn

i

ill e
1

, )1(1  

For example for nLF elements in series, the system state is 





LFn

i

ill e
1

, )(  
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Let us define two test functions at the system level in terms of the system states to help 

enumerate the incremental probabilities of system failure: these are,  



 


otherwise  0

0 if  1
),(1

l

lt


 v  

 



 





otherwise  0

0or  0 if  1
),,(

1

12

ll

ll tt


 v  

 

For N sample sets, with v(k) denoting the kth sample set, the number of systems that fail at time tl 

is calculated as 

    



N

k

l
k

lf ttN
1

1 ,v

 

Similarly, the number of systems that fail at time tl or tl+1 is 

   


 
N

k

ll
k

llf ttttN
1

1
)(

21 ,,, v  

From equation (7.19), it follows that the predicted incremental failure over time ∆t is evaluated as 

 
   

N

tNttN lfllf

l




1,
Pr B     (7.20) 

With the help of (7.20), the relation between the true and predicted Cdf is written as 

          





1

0

0 PrPrPrPr
L

l

lLLT tFtF BF    (7.21) 

7.4 Error Analysis 

The accuracy of the Cdf depends upon the accuracy of the incremental probabilities. The true 

incremental failure is represented as 

     1,PrPr  llTotallTl ttBB     (7.22) 

Where the total error, εTotal(tl,tl+1) is written as the sum of three error sources 

1. ε1(tl,tl+1) due to sample size N too small (MCS) 

2. ε2(tl,tl+1) due to using only two contiguous events 
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3. ε3(tl,tl+1) due to making finite time step ∆t too large. 

The error ε1 is due to the number of random samples taken to estimate probability. This error can 

be reduced by increasing N. The error ε2 occurs when the historical time events, in set Al, are 

simplified using only two contiguous time events, Fl+1 and Fl. Finally, the error ε3 is due to 

approximating continuous time using discrete time events with step size ∆t. In general, as the 

value of ∆t decreases, so does the magnitude of ε3. A smaller time step size, however, leads to 

more evaluations and to a longer computation time over tL. Typically, the optimum step size is 

determined by estimating the correlation coefficient from the positions of a particular LSF, say gi, 

at contiguous times tl and tl+1 (Savage and Son, 2011).  

7.5 Summary 

This chapter has shown how the general form of the metamodels is adapted for dynamic 

degrading systems. By the selection of performance measures, cycle-time invariant LSFs have 

been obtained. In u-space a contiguous movement of the LSSs over service time has been 

observed. The incremental failure regions have been identified by the set-theory method. 

Probabilities of the incremental failure region have been used to estimate the Cdf. The set-theory 

method has been illustrated using a few examples and a Monte Carlo evaluation of the 

incremental failure probability has been presented.  
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Chapter 8 

Case Study: Estimating the Cdf for the 

Servo 

8.1 Introduction 

The servo control system presented in Chapter 6 will be used to illustrate the methodology for 

approximating the cumulative failure when degradation is assumed. The design variables follow 

from Chapter 6 along with their nominal values. Shaft angle, angular speed and current were 

available from the model although only shaft angle was used. For this example, the performance 

measures of interest are the settling angle, θs and the energy, E, required to drive the load. The 

settling angle response is easily found. However, the energy supplied by the servo is not 

explicitly known, it must be estimated using the responses available. Let us write energy over 

cycle lifetime as 

    
LL

dTdPE



 

00

    (8.1) 

where ω(τ) represents the dynamic angular speed, τL represents the lifetime of the dynamic 

response and T(τ) represents the load torque. For ω(τ) recorded at incremental cycle times ω(τk) 

an approximation of (8.1) is expressed as 

   



C

k

kkTE
1

ˆ         (8.2) 
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where C is the total number of incremental time steps that make up the lifetime, ω(τk) is the 

angular speed at each time increment, ∆τ is the cycle time increment and T(τk) is the torque at 

each time increment. In vector form (8.2) becomes 

    vτvωT   ,ˆˆ TE      (8.3) 

When the angular speed vector is replaced by (7.3) or (7.4) we now write, for service time tl, the 

energy has a function of only the design variables 

 vlEE ˆ       (8.4) 

Since the supply energy is required to drive the motor, a supply energy that is too low would 

not be able to drive the motor. Therefore, for energy the design specification a “larger-is-better” 

criterion required. This means that a lower limit is used when building the limit-state function 

that the Energy should not fall below. From some previous experimental work, the lower limit 

design specification for energy is shown in (8.5). The design specification for the settling angle is 

the same as in the previous example. Based on these requirements, the two limit-state functions 

for settling angle and supply energy, for any service time, are 

 

  3
2

1

101959.0

978.0





Eg

g s

v

v 

    

(8.5) 

8.2 Problem Set-up 

Selecting ∆τ 

Now, let us select ∆τ that sets C the number of columns in the response matrix. We consider the 

following approach. As shown in (8.3), the cycle-time increment is important. Ideally, the 

smaller the time increment, the more accurate would be the energy estimation. In order to 

determine the most accurate number of time steps, the dynamic response is recorded at various 

time increments and the energy is computed using (8.2). The time increment is reduced until the 

estimated energy approaches an asymptotic value. Table (8-1) shows the energy estimate at five 

levels of the amplifier gain, G, and winding resistance, R, around their nominal values. 
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Table 8-1: The supply energy estimates using three possible cycle time increments. 

G R 
Cycle-Time Increments 

∆τ = 0.005 ∆τ = 0.002 ∆τ = 0.001 ∆τ = 0.0005 

4.966 3.82 0.000193966 0.000196141 0.000196242 0.000196234 

5.083 3.91 0.000193737 0.00019559 0.000195686 0.000195675 

5.2 4 0.000193936 0.000196149 0.000196256 0.000196248 

5.317 4.09 0.00019431 0.000196668 0.00019679 0.000196789 

5.434 4.18 0.000193908 0.000196156 0.000196268 0.000196261 

 

From Table 8-1, we note that at ∆τ = 0.001 the energy is sufficiently accurate. Now from (3.4) C 

= 101.  

Selecting the Training Design 

The winding resistance, R¸ is assumed to degrade and, using a degradation path model, the 

degradation of the resistance is modelled as. 

 tKRR R 10       (8.6) 

where KR represents the percentage degradation rate of the resistance. In the degradation path 

model, it is assumed that the degradation rate is also a random variable. Assume, for each service 

time increment, the three design variables, G (v1), R0 (v2) and KR (v3) are assigned independent 

normal distributions.  

Assuming tolerance 3% of the mean, five levels of each design variable are obtained using the 

relation μi±4.5σi. 
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Where M = 125. The experiments are run and the angular speed response matrix, Ω, is generated.  
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Selecting s 

Now let us look at SVD at service time t0. Application of SVD generates Ω̂ . Comparison of 

energy using Ω and Ω̂  indicates that five columns of S (hence D) are sufficient as shown in 

Table 8-2. 

Table 8-2: The energy estimate using different values of s. 

G R 

Mechanistic  

Model 

Number of columns of D. 

s = 3 s = 4 s = 5 s = 6 

( ×10
-4

) ( ×10
-4

) ( ×10
-4

) ( ×10
-4

) ( ×10
-4

) 

4.966 3.82 1.958585 1.959082 1.958589 1.958574 1.958568 

5.083 3.91 1.958686 1.958979 1.958708 1.958678 1.958685 

5.2 4 1.958784 1.958866 1.958808 1.958774 1.958785 

5.317 4.09 1.958880 1.958748 1.958890 1.958864 1.958872 

5.434 4.18 1.958973 1.958624 1.958957 1.958948 1.958945 

 

Metamodels are produced for angular speed over cycle time. Performance measures are now 

readily written as functions of the design variables v. 

Feasible Design 

Before the Cdf is estimated, let us determine if a feasible design exists at t0. Starting with the 

nominal values G(v1) = 5.2 and R(v2) = 4, the LSSs are plotted (Figure 8-1) and the reliability 

indices and signs are calculated. From Figure 8-1, the LSSs are quite far away from the origin 

indicating that the failure probability is small and the signs are positive. A quick calculation of βR 

for each LSF gives βR1 = 4.6429 and βR2 = 2.6914 which gives failure probabilities of 1.718 × 10-6 

and 0.0036 respectively. Since this design is feasible, the Cdf is now estimated. 
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Figure 8-1: The LSSs at the initial design. 

8.3 Building a Cdf  

The product lifetime is assumed to be 5 years (tL = 5) and, for ∆t = 0.2, a total of 26 service time 

increments is produced. At each service time increment, the SIMULINK model of the 

mechanistic model is run and a new set of responses at the training design is obtained. 

Metamodels are then built and FORM or MCS, along with the set-theory method, is used to 

estimate the system and incremental failure probabilities. The results are compared with a MCS 

of the mechanistic model.  

In order to illustrate how the limit-state surfaces move through time, the limit-state surfaces are 

plotted at three service time increments as shown in Figures 8-2(a), (b) and (c). Each figure 

represents the limit-state surface plotted when the different metamodels are used to approximate 

the LSF. From the figures, as the servo “ages”, the surfaces move closer to the origin which 

means that the probability of failure increases. Since the surfaces are fully correlated (the angle 

between surfaces is equal to zero), the system failure is equal to the failure probability from g2 or 

Pr{g2(U) < 0}. Also, the failure regions move through time in one spatial direction indicating that 

g1(u) = 0 g2(u) = 0 
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the time-varying failure regions are also fully correlated. In other words, the failure region of g2 

at 1 year comprises of the entire failure regions of g2 at the start of the product lifetime.  

From the three figures, the surfaces are mostly straight lines (exact for the RBF estimate where 

there is some curvature), therefore, the failure probability estimate using FORM should be almost 

exactly the same as the failure probability obtained using a MCS. At each service time, the 

failure regions corresponding to g1 and g2 are fully correlated; therefore, the system failure is 

calculated by estimating Pr(g2 < 0). Also, since the LSSs have a constant spatial direction, then 

the instantaneous probability is the same as the cumulative probability (Savage and Son 2011). 

Finally, the failure surfaces from the three graphs are very similar; therefore, the FORM 

probability of failure estimates should be very close.  

  

(a)      (b) 

g1(t =0)=0 

g1(t =1)=0 

g1(t =2)=0 

g2(t =0)=0 

g2(t =1)=0 

g2(t =2)=0 

g1(t =0)=0 

g1( t =2)=0 

g2(t =0)= 0 

g2(t =1)=0 

g2(t =2)=0 
g1(t =1)=0 
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(c) 

Figure 8-2: The limit-state surfaces at three service time increments. (a) RM approximation, (b) 

Kriging and (c) RBF. 

8.3.1 Experiment 1: µ(KR) = 0.4% 

Table (8-3) shows the failure probability at each service time estimated using each metamodel 

with FORM. The second column shows the instantaneous failure probability using a MCS of the 

mechanistic model. These results are assumed to be the most accurate and are used to determine 

the accuracy of the metamodel estimates. From a visual inspection of the probability estimates, 

the metamodels produce good results. For a better analysis of the errors, the percentage error of 

the FORM and MCS estimates are plotted in Figures (8-3) and (8-4) where the error is calculated 

as 

   
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 (8.7) 

If the error is positive, then the metamodel estimates are “optimistic” and for negative errors, the 

metamodel estimates are “conservative”. From Figure 8-3, regression-based FORM estimates are 

always optimistic. For Kriging and the RBF, the error estimates are conservative up to 3 years 

and then they become optimistic. In terms of overall accuracy, the errors of Regression Model 

estimates are larger than those obtained using Kriging or the RBF. When a MCS is used, with the 

metamodels, to estimate probability, the trend is the same and, again, the Regression Model 

g1(t=0) = 0 

g1(t =1) = 0 

g1(t =2) = 0 

g2(t =0) = 0 

g2(t =1) = 0 

g2(t =2) = 0 
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produces the largest error. Based on Figures 8-3 and 8-4, the FORM-based probability estimates 

for the Kriging and RBF metamodels are larger than the MCS-based estimates. Another trend 

that is observed is large errors at the start of the produce lifetime. Since probability of failure at 

the start is quite small (order 10-3), following (8.7), dividing by a small number results in a large 

percentage error. A comparison of the Cdf’s shown in Figures 8-5 and 8-6 show that the errors 

are really very small at the start of the service-time.  

Table 8-3: The cumulative failure probability estimated using FORM and each metamodel. 

Time 
Mechanistic RM Kriging RBF 

MCS FORM MCS FORM MCS FORM MCS 

0 0.0039 0.0036 0.0039 0.0040 0.0039 0.0031 0.0040 

0.2 0.0044 0.0042 0.0045 0.0046 0.0044 0.0050 0.0047 

0.4 0.0051 0.0049 0.0053 0.0054 0.0051 0.0053 0.0056 

0.6 0.0064 0.0058 0.0060 0.0063 0.0061 0.0062 0.0065 

0.8 0.0075 0.0068 0.0068 0.0074 0.0072 0.0079 0.0077 

1 0.0086 0.0079 0.0079 0.0086 0.0085 0.0085 0.0089 

1.2 0.0095 0.0092 0.0092 0.0100 0.0099 0.0098 0.0100 

1.4 0.0113 0.0106 0.0106 0.0115 0.0113 0.0113 0.0115 

1.6 0.0128 0.0123 0.0123 0.0133 0.0131 0.0131 0.0133 

1.8 0.0144 0.0142 0.0141 0.0153 0.0152 0.0151 0.0152 

2 0.0171 0.0163 0.0163 0.0176 0.0173 0.0173 0.0173 

2.2 0.0198 0.0187 0.0188 0.0201 0.0201 0.0199 0.0197 

2.4 0.0222 0.0214 0.0214 0.0230 0.0229 0.0226 0.0225 

2.6 0.0255 0.0244 0.0244 0.0262 0.0259 0.0258 0.0254 

2.8 0.0298 0.0278 0.0278 0.0297 0.0290 0.0293 0.0289 

3 0.0343 0.0315 0.0314 0.0336 0.0330 0.0332 0.0324 

3.2 0.0391 0.0356 0.0354 0.0379 0.0376 0.0374 0.0369 

3.4 0.0439 0.0402 0.0401 0.0427 0.0422 0.0422 0.0415 

3.6 0.0495 0.0452 0.0454 0.0479 0.0473 0.0473 0.0468 

3.8 0.0563 0.0507 0.0508 0.0536 0.0539 0.0529 0.0524 

4 0.0621 0.0568 0.0568 0.0598 0.0603 0.0591 0.0590 

4.2 0.0685 0.0633 0.0636 0.0666 0.0672 0.0658 0.0658 

4.4 0.0772 0.0705 0.0708 0.0740 0.0746 0.0733 0.0732 

4.6 0.0854 0.0783 0.0786 0.0820 0.0832 0.0811 0.0817 

4.8 0.095 0.0867 0.0872 0.0906 0.0908 0.0897 0.0903 

5 0.1041 0.0957 0.0961 0.0998 0.101 0.0990 0.100 
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Figure 8-3: The metamodel-based FORM %error for each metamodel. 

 

Figure 8-4: The %error from using MCS with the metamodels to estimate probability. 

Now, the Cdf is plotted using the probability estimates from both FORM and MCS. Figure 8-5 

shows the Cdf plot using FORM and the metamodels and is compared with the Mechanistic 

model results. The error plots discussed previously displayed large optimistic results from the 

Regression Model. This is observed in both Figures 8-5 and 8-6 where the Regression Model Cdf 

falls below the curves obtained from the mechanistic model, Kriging and the RBF. Generally, the 

curves are similar but the metamodel estimates are optimistic. 
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Figure 8-5: The approximate Cdf where probability is estimated using FORM with Metamodels. 

 

Figure 8-6: The approximate Cdf where probability is estimated using MCS with metamodels. 
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Error Analysis 

Since metamodels are built for each column of D, the predictive error of each metamodel is 

estimated at each column of D. At each service time, a new response matrix, Ω is generated  

     Ll ttt ,,,,,, 1 τvΩτvΩτvΩ   

which leads to a new Dω matrix and thus fits for the metamodels. A sample of the predictive error 

of each column of Dω for three chosen service times is shown in Table 8-4 and Table 8-5 shows 

the error for the settling angle. Generally, both Kriging and the RBF are better than the RM. This 

result has been observed in Figures 8-3 and 8-4. 

Table 8-4: The CV-RMSE and CV-MAE at three service times for each metamodel. 

Time Model Method 
Column of Dω 

1 2 3 4 5 

0 

RM 
CV-RMSE 9.22×10

-03
 1.16×10

-02
 2.34×10

-02
 4.85×10

-03
 1.99×10

-02
 

CV-MAE 6.76×10
-03

 9.28×10
-03

 1.76×10
-02

 3.43×10
-03

 1.30×10
-02

 

Kriging 
CV-RMSE 3.49×10

-04
 1.33×10

-03
 1.51×10

-03
 1.90×10

-04
 1.64×10

-04
 

CV-MAE 2.39×10
-04

 9.22×10
-04

 1.04×10
-03

 1.30×10
-04

 8.96×10
-05

 

RBF 
CV-RMSE 2.95×10

-03
 1.05×10

-03
 8.28×10

-05
 1.52×10

-05
 9.77×10

-6
 

CV-MAE 2.07×10
-03

 7.33×10
-04

 5.65×10
-05

 1.20×10
-05

 6.93×10
-6

 

1 

RM 
CV-RMSE 9.18×10

-03
 1.15×10

-02
 2.33×10

-02
 4.77×10

-03
 1.98×10

-02
 

CV-MAE 6.73×10
-03

 9.24×10
-03

 1.76×10
-02

 3.39×10
-03

 1.30×10
-02

 

Kriging 
CV-RMSE 3.46×10

-04
 1.33×10

-03
 1.50×10

-03
 1.88×10

-04
 1.63×10

-04
 

CV-MAE 2.37×10
-04

 9.18×10
-04

 1.03×10
-03

 1.28×10
-04

 8.93×10
-05

 

RBF 
CV-RMSE 9.82×10

-03
 6.40×10

-04
 5.50×10

-04
 1.30×10

-05
 4.04×10

-05
 

CV-MAE 6.30×10
-03

 4.36×10
-04

 3.74×10
-04

 1.08×10
-05

 2.81×10
-05

 

2 

RM 
CV-RMSE 9.14×10

-03
 1.15×10

-02
 2.32×10

-02
 4.71×10

-03
 1.97×10

-02
 

CV-MAE 6.70×10
-03

 9.19×10
-03

 1.75×10
-02

 3.34×10
-03

 1.29×10
-02

 

Kriging 
CV-RMSE 3.44×10

-04
 1.32×10

-03
 1.49×10

-03
 1.87×10

-04
 1.62×10

-04
 

CV-MAE 2.35×10
-04

 9.15×10
-04

 1.03×10
-03

 1.27×10
-04

 8.87×10
-05

 

RBF 
CV-RMSE 9.62×10

-03
 6.18×10

-04
 5.46×10

-04
 1.28×10

-05
 3.98×10

-05
 

CV-MAE 7.10×10
-03

 4.30×10
-04

 3.73×10
-04

 1.07×10
-05

 2.76×10
-05
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Table 8-5: CV-RMSE and CV-MAE estimates for each metamodel at three services times for the 

settling angle response. 

Time Model 

Predictive 

Error 

Method 

Settling Angle 

µ(KR) = 0.004 

0 year 

RM 
CV-RMSE 3.32 × 10

-05
 

CV-MAE 2.15 × 10
-05

 

Kriging 
CV-RMSE 2.76 × 10

-07
 

CV-MAE 1.46 × 10
-07

 

RBF 
CV-RMSE 7.21 × 10

-07
 

CV-MAE 4.86 × 10
-06

 

1 year 

RM 
CV-RMSE 3.32 × 10

-05
 

CV-MAE 2.16 × 10
-05

 

Kriging 
CV-RMSE 2.65 × 10

-07
 

CV-MAE 1.38 × 10
-07

 

RBF 
CV-RMSE 4.69 × 10

-05
 

CV-MAE 3.09 × 10
-05

 

2 years 

RM 
CV-RMSE 3.318 × 10

-05
 

CV-MAE 2.16 × 10
-05

 

Kriging 
CV-RMSE 2.53 × 10

-07
 

CV-MAE 1.31 × 10
-07

 

RBF 
CV-RMSE 4.29 × 10

-05
 

CV-MAE 2.88 × 10
-05

 

 

Figure 8-7 shows the error between the FORM and MCS estimates of probability. This error is 

calculated as follows 

   
 

100ˆ% 












 


MCSl

MCSlFORMl

FORM
F

FF
                       (8.8) 

Since the LSSs are linear, this error should, ideally, be zero. The error also depends on the 

number of samples used in MCS. From Figure 8-7, the error starts off being large for all 

metamodels then reduces. This occurs because at the start of the product lifetime, probabilities 

are around the order of 10-3 (refer to Table 8-3) and following (8.8), dividing by a small number 

leads to a large percentage error. A comparison of the estimated Cdf shows that the errors from 

the metamodels are small. As the failure probability gets larger this error is reduced. From Figure 

8-7, FORM errors are smallest with the RM.  
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Figure 8-7: The %error between FORM and MCS probability estimates. 

8.3.2 Experiment 2: µ(KR) = 0.8% 

For the second degradation rate, a new training design is required for v3. Using the same µ ± 4.5σ 

range, the 5 levels for x1 and x2 remain the same. However, since the mean of the degradation rate 

is now different, 5 new levels for x3 are obtained.  
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A new matrix of responses is obtained at the new training design and metamodels are again fit. 

Table 8-6 shows the instantaneous failure probability for each metamodel using FORM and 

MCS. A larger degradation rate would imply a shorter time to failure. Therefore, the probability 

at each time increment should be greater than the corresponding probability when the degradation 

rate mean is 0.4%. From Table 8-6, a quick observation shows that this is true since the failure at 

the end of 5 years is 0.5332 instead of 0.1041 in the previous example. Figures 8-8 and 8-9 show 

the error estimates when FORM and MCS are used to estimate probability.  

Table 8-6: The cumulative system failure probability when µkR = 0.008. 
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Time 
Mechanistic RM Kriging RBF 

MCS FORM MCS FORM MCS FORM MCS 

0 0.0039 0.0038 0.0038 0.0040 0.0040 0.0040 0.0041 

0.2 0.0051 0.0047 0.0048 0.0056 0.0057 0.0055 0.0058 

0.4 0.0075 0.0065 0.0065 0.0076 0.0077 0.0075 0.0078 

0.6 0.0095 0.0089 0.00903 0.0102 0.0105 0.0101 0.0107 

0.8 0.0128 0.0119 0.0121 0.0136 0.0137 0.0134 0.0139 

1 0.0171 0.0158 0.0158 0.0180 0.0179 0.0177 0.0182 

1.2 0.0222 0.0208 0.0208 0.0234 0.0233 0.0231 0.0236 

1.4 0.0298 0.0271 0.0268 0.0302 0.0301 0.0298 0.0306 

1.6 0.0391 0.0348 0.0349 0.0384 0.0384 0.0381 0.0390 

1.8 0.0495 0.0443 0.0444 0.0485 0.0487 0.0481 0.0493 

2 0.0621 0.0556 0.05611 0.0606 0.0609 0.0600 0.0614 

2.2 0.0772 0.0693 0.0700 0.0748 0.0753 0.0742 0.0760 

2.4 0.095 0.0853 0.08543 0.0914 0.0913 0.0907 0.0921 

2.6 0.1141 0.1040 0.1041 0.1106 0.1104 0.1099 0.1115 

2.8 0.1336 0.1254 0.1257 0.1324 0.1324 0.1317 0.1335 

3 0.1591 0.1497 0.1501 0.1570 0.1572 0.1562 0.1585 

3.2 0.1879 0.1769 0.1770 0.1845 0.1843 0.1836 0.1859 

3.4 0.2169 0.2070 0.2076 0.2146 0.2145 0.2138 0.2163 

3.6 0.2511 0.2400 0.2408 0.2474 0.2478 0.2465 0.2495 

3.8 0.2865 0.2755 0.2761 0.2827 0.2829 0.2818 0.2846 

4 0.3229 0.3134 0.3142 0.3201 0.3204 0.3192 0.3221 

4.2 0.3594 0.3534 0.3534 0.3594 0.3592 0.3585 0.3612 

4.4 0.4043 0.3949 0.3959 0.4002 0.4008 0.3994 0.4028 

4.6 0.4454 0.4377 0.4383 0.4420 0.4422 0.4412 0.4442 

4.8 0.4884 0.4811 0.4807 0.4844 0.4837 0.4837 0.4858 

5 0.5332 0.5246 0.5242 0.5270 0.5264 0.5262 0.5283 

 

 

From Figure 8-8, the FORM-based probability estimates are the worst with the RM. Again, 

failure estimates are much better using either Kriging or the RBF.  
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Figure 8-8: The error between the FORM estimate, using each metamodel, and the MCS of the 

mechanistic model. 

 

Figure 8-9: The error between MCS-based metamodel and MCS-based mechanistic model 

probability estimates. 

As in the previous example, the percentage error between FORM and MCS probability estimates 

is plotted as shown in Figure 8-10. Here, the largest errors occur for the RBF. After 2.5 years, the 

%error is approximately consistent and not as erratic as the start of the product lifetime. 
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Figure 8-10: The %error between FORM and MCS failure estimates. 

The Cdf is plotted using both FORM and MCS probability estimates and shown in Figures 8-

11 and 8-12. This time, all metamodels provide very accurate plots. The Cdf estimates for the two 

degradation rates are shown in Figure 8-13. This figure is useful since it shows how a larger 

degradation rate results in a larger failure probability at the end of the service time. 

 

Figure 8-11: The Cdf estimate using FORM and each metamodel. 
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Figure 8-12: The Cdf estimate using MCS and each metamodel. 

 

Figure 8-13: The Cdf estimates for the two degradation rates. 

Finally, the CPU time required to build to Cdfs are shown in Table 8-7. From the table, the 

metamodel with FORM or MCS is much faster than using the Mechanistic Model. An increased 

speed is observed using MCS with the metamodels especially in the case of the RBF. 
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Table 8-7: The computation time for the various methods. 

Model 
Computation time 

to build CDF 

Mechanistic Model and MC 

(100,000 runs) 
60,000s 

Metamodel and FORM 

RM 

Kriging 

RBF 

 

115s 

550s 

2000s 

Metamodel and MCS 

(100,000 runs) 

RM 

Kriging 

RBF 

 

 

100s 

450s 

200s 

 

Error Analysis for experiment 2 

The fit of the metamodels is checked in a similar way as in section 8.2.1. Tables 8-8 and 8-9 

show the CV-RMSE and CV-MAE estimates for each metamodel at three service times for Dω 

and θs. As before, Kriging and RBF are better than the RM. For the settling angle response, 

Kriging is almost always better. 

Table 8-8: The CV-RMSE and CV-MAE estimates for each metamodel, built for each column of 

Dω. at three service time increments, 

Method Time Model 
Column of Dω 

1 2 3 4 5 

0 

RM 
CV-RMSE 9.22×10

-03
 1.16×10

-02
 2.34×10

-02
 4.85×10

-03
 1.99×10

-02
 

CV-MAE 6.76×10
-03

 9.28×10
-03

 1.76×10
-02

 3.43×10
-03

 1.30×10
-02

 

Kriging 
CV-RMSE 3.49×10

-04
 1.33×10

-03
 1.51×10

-03
 1.90×10

-04
 1.64×10

-4
 

CV-MAE 2.39×10
-04

 9.22×10
-04

 1.04×10
-03

 1.30×10
-04

 8.96×10
-04

 

RBF 
CV-RMSE 2.95×10

-03
 1.05×10

-03
 8.28×10

-05
 1.52×10

-05
 9.77×10

-6
 

CV-MAE 2.07×10
-03

 7.34×10
-04

 5.65×10
-05

 1.20×10
-05

 6.93×10
-6

 

1 

RM 
CV-RMSE 9.14×10

-03
 1.15×10

-02
 2.32×10

-02
 4.71×10

-03
 1.97×10

-02
 

CV-MAE 6.70×10
-03

 9.19×10
-03

 1.75×10
-02

 3.34×10
-03

 1.29×10
-02

 

Kriging 
CV-RMSE 3.45×10

-04
 1.32×10

-03
 1.49×10

-03
 1.87×10

-04
 1.62×10

-04
 

CV-MAE 2.36×10
-04

 9.16×10
-04

 1.03×10
-03

 1.28×10
-04

 8.84×10
-05

 

RBF 
CV-RMSE 7.46×10

-03
 5.88×10

-04
 5.15×10

-04
 1.46×10

-05
 3.78×10

-05
 

CV-MAE 4.74×10
-03

 3.91×10
-04

 3.44×10
-04

 9.26×10
-06

 2.51×10
-05
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2 

RM 
CV-RMSE 9.06×10

-03
 1.14×10

-02
 2.31×10

-02
 4.57×10

-03
 1.95×10

-02
 

CV-MAE 6.64×10
-03

 9.10×10
-03

 1.74×10
-02

 3.25×10
-03

 1.28×10
-02

 

Kriging 
CV-RMSE 3.41×10

-04
 1.32×10

-03
 1.48×10

-03
 1.83×10

-04
 1.60×10

-04
 

CV-MAE 2.33×10
-04

 9.10×10
-04

 1.02×10
-03

 1.25×10
-04

 8.73×10
-05

 

RBF 
CV-RMSE 7.45×10

-03
 5.85×10

-04
 5.11×10

-04
 1.42×10

-05
 3.67×10

-05
 

CV-MAE 4.73×10
-03

 3.98×10
-04

 3.42×10
-04

 8.99×10
-06

 2.43×10
-05

 

 

Table 8-9: The CV-RMSE and CV-MAE estimates for each metamodel built to model the 

settling angle response. 

Time Model 

Prediction 

Error 

method 

Settling Angle 

µ(KR) = 0.008 

0 year 

RM 
CV-RMSE 3.32 × 10

-05
 

CV-MAE 2.15 × 10
-05

 

Kriging 
CV-RMSE 2.76 × 10

-07
 

CV-MAE 1.46 × 10
-07

 

RBF 
CV-RMSE 7.21 × 10

-06
 

CV-MAE 4.86 × 10
-06

 

1 year 

RM 
CV-RMSE 3.32 × 10

-05
 

CV-MAE 2.16 × 10
-05

 

Kriging 
CV-RMSE 2.52 × 10

-07
 

CV-MAE 1.32 × 10
-07

 

RBF 
CV-RMSE 3.43 × 10

-05
 

CV-MAE 2.18 × 10
-05

 

2 years 

RM 
CV-RMSE 4.29 × 10

-05
 

CV-MAE 2.88 × 10
-05

 

Kriging 
CV-RMSE 2.30 × 10

-07
 

CV-MAE 1.21 × 10
-07

 

RBF 
CV-RMSE 2.30 × 10

-07
 

CV-MAE 1.21 × 10
-07
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8.4 An Investigation of Various Training Designs 

In order to choose the training design, a range is selected which is then broken into a series of 

“levels”. The range is chosen using the relation µi ± riσi where ri = 3, 4.5, 6 or 10. Within the 

upper and lower boundaries specified by the aforementioned relation, the number of “levels” is 

chosen. These levels are training samples selected to make up the training design and follows 

from the specific design of experiments technique chosen. For example, if λ = 3, then the training 

site of each design variable is µi - riσi, µi and µi + riσi. In this example, 4 different ranges are 

investigated along with 2 values of λ; 3 and 5.  

At each of the eight training designs (Appendix C), the cumulative failure probability is plotted 

and the accuracy and speed of estimating the CDF, using each metamodel, is compared. The 

failure probabilities are estimated using both FORM and the MCS. The results for each 

metamodel are first discussed independently and then an overview of all the results is presented.  

Regression Model 

At each of the eight training design, a new Regression Model is fit. FORM and MCS are then 

used to estimate the failure probability and the results are compared with the mechanistic model 

failure estimates. Figure 8-14 show the error estimates when FORM is used to estimate 

probability. Since the results from all eight training designs were not able to fit on one graph, two 

graphs are shown. Figure 8-14(a) shows the percentage error when 3 levels are used and Figure 

8-14(b) shows the percentage error when 5 levels are used with the four ranges. The percentage 

error is estimated as 

 
   

 
100%

cMechanisti

MetamodelcMechanisti 












 


l

ll

lError
F

FF
 

From Figure 8-14, as the range increases, the accuracy decreases. Also, a lower percentage error 

is observed when the number of levels is increased to 5 for the two larger ranges (6σ and 10σ). 

When MCS is used to estimate probability, the results are similar to those obtained using FORM. 

When 3 levels are used the accuracy starts to get very poor at the 6σ range and higher. However, 

when the number of levels is increased to 5, a 6σ range produces a percentage error of 10% as 

opposed to about 15% when 3 levels are used. Similar results are observed at the 10σ range; an 

increase in the number of levels results in improved accuracy.  
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(a)      (b) 

Figure 8-14: The %error of the probability estimate, using FORM, for various possible training 

designs. (a) 3 Levels and (b) 5 levels. 

 

(a)      (b) 

Figure 8-15: The error of the probability estimate, using MCS, at each service time increments 

for various possible training designs. (a) 3 Levels and (b) 5 Levels. 
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The process is repeated for the Kriging and RBF metamodels. 

 

Kriging Metamodel 

Now, a Kriging metamodel is fit for the responses at each training design and the error estimates 

using FORM and MCS for the mean degradation rate, KR = 0.4%, is plotted. Figure 8-16 shows 

the percentage errors when FORM is used to estimate failure probability and Figure 8-17 shows 

the errors when MCS is used to estimate probability. 

From Figure 8-16, the largest errors are observed at a 10σ range. Unlike the Regression Model, 

at a 10σ range training design, Kriging has become conservative since the errors are now 

negative. Like the Regression Model, an increase in accuracy for the 10σ range is obtained by 

increasing the number of levels to 5. When 5 levels are used, the accuracy among the 3 lower 

ranges is very small. 

 

(a)      (b) 

Figure 8-16: The %error when FORM is used with Kriging, trained by each possible training 

design, to estimate probability. (a) 4 ranges each with 3 Levels (b) 4 ranges each with 5 Levels 
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When a MCS is used to estimate probability, the results are about the same as those obtained 

from FORM. For the 10σ range, the accuracy increases when the number of levels increases to 5. 

 

 

(a)      (b) 

Figure 8-17: The %error when MCS is used with Kriging, trained by the eight possible training 

designs, to estimate probability. (a) 4 ranges each with 3 Levels and (b) 4 ranges each with 5 

levels. 

 

RBF Metamodel 

For the final metamodel, the results are shown in Figures 8-18 and 8-19. These results are close 

to those obtained from Kriging with conservative failure estimates at the 10σ range.  
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(a)      (b) 

Figure 8-18: The %error when FORM is used with the RBF, trained by each possible training 

design, to estimate probability. (a) 4 ranges each with 3 Levels (b) 4 ranges each with 5 Levels 

 

(a)      (b) 

Figure 8-19: The %error when MCS is used with Kriging, trained by the eight possible training 

designs, to estimate probability. (a) 4 ranges each with 3 Levels and (b) 4 ranges each with 5 

levels. 
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Finally, the speed of the metamodels at the various training designs is tested. For all 

metamodels, the speed depends on the size of the matrix of training sets which depends on the 

number of levels. This is especially true for Kriging and the RBF that uses the training sets to 

build the metamodel. Therefore, the speed of the metamodels is recorded at the two test levels 

and compared. Table 8-10 shows these results. When FORM is used to estimate probability, the 

slowest metamodel is the RBF with the Regression Model being the fastest. For MCS-based 

probability estimates, the fastest metamodel is still the Regression Model but now Kriging and 

the RBF is the same speed. 

Table 8-10: The computation time for the two levels. 

Metamodel Levels 
Time 

Metamodel 

and FORM 

Metamodel 

and MCS 

RM 
λ = 3 100s 40s 

λ = 5 110s 100s 

Kriging 
λ = 3 200s 80s 

λ = 5 600s 400s 

RBF 
λ = 3 250s 80 

λ = 5 2000s 400s 

8.4.1 Summary 

For this degradation modelling problem, errors likely come from four sources; using SVD to 

approximate the performance measure, fitting the metamodel, using FORM to estimate failure 

probability and using the set theory method to estimate the Cdf. A discussion of these errors has 

been presented at the end of each experiment. 

In summary, the error due to SVD has been controlled by comparing the estimate of Ω or Θ 

using dominant singular values with the true value. This error has been shown to be very small 

and is not significant. Since the metamodel is an approximate model of the mechanistic model, it 

is very difficult to completely eliminate this error. The only way is to reduce this error by either 

choosing a different metamodel or a different training design. Among the three metamodels, 

Kriging was the best followed closely by the RBF and then the Regression Model. These errors 

have been quantified using cross-validation to estimate the RMSE and MAE. To further compare 

the accuracy of the metamodels, the angular speed response is plotted, at the means of the design 
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variables, using each metamodel. From Figure 8-20, the metamodels produce an 

indistinguishable response estimate. Further inspection of the error, at each cycle-time increment 

is shown in Figure 8-21 and it can be seen that the smallest errors occur when Kriging is used. 

 

Figure 8-20: The angular speed response estimate, at the mean of each design variable, using 

each metamodel. 

 

Figure 8-21: The error, at each cycle-time increment, of the angular speed response estimate 

using each metamodel. 
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Another source of error occurs when using FORM to estimate failure probability. A 

comparison of the FORM results with estimates obtained using the MCS show that the error due 

to FORM is small. The final source of error is from the set-theory method. For this problem, 

since the LSS does not turn but moves in the same direction as the component “fails”, the 

incremental failure region is just 

     lll FFB PrPrPr 1    

Following the discussion in Chapter 7, since the movement of the failure surfaces is in a constant 

spatial direction, ρi(tl,tl+1) = 1 and ε3(tl,tl+1) = 0. Any service time increment is suitable but a 

smaller ∆t produces a smoother Cdf. Now, a marginal distribution model is used to plot the Cdf.  

8.5 Degradation Modelling using the Marginal Distribution Model. 

Another type of model that exists to model degradation of the response is the marginal 

distribution model. In this model, degradation is assumed to exist in the parameters of the design 

variables. Following the examples found in (Son, 2006) involving the distribution-based 

degradation model, for a variable Vi 

   tKt ii  10      (8.9) 

   tKt ii  10      (8.10) 

Where σi(t) = (toliµi)/300. As in the previous example, µ1 =5.2 and µ2 = 4.0 tol1 = tol2 = 3%. Two 

constant deterministic degradation rates, 0.4% and 0.8%, are investigated. To develop the 

training design, a 4.5σ range is used with λ = 5 to obtain a total of 25 unique design variable sets. 

As before, the service time increment is ∆t = 0.2years. 

 

8.5.1 Degradation rate = 0.4% 

Figure 8-22 shows the error due to using FORM to estimate probability for each metamodel. This 

error is computed as before. The Regression Model results in a higher error than those found 

using either Kriging or the RBF. The Kriging and RBF errors are very similar, in some cases 

Kriging is better (3.5years and higher) and sometimes the RBF is better (0.5years to 2years). The 

RM produces conservative probabilities while Kriging and the RBF starts being optimistic then 
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become conservative. The conservative estimates, however, are very small (less than 4%). The 

percentage error is also estimated when MCS is used to estimate failure probability and is shown 

in Figure 8-23. 

 

Figure 8-22: The %error when FORM is used to estimate failure probability. 

Similar results to FORM estimates are found when MCS is used.  The Regression Model 

produces the largest errors and Kriging and the RBF are close. The absolute error of Kriging and 

RBF estimates are less than 10% which is good for design. The MCS estimates follow a trend 

very close to FORM which indicates the probability estimates are similar. This is means that the 

error due to using FORM to estimate probability is small which is desirable if FORM is to be 

used for design. 
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Figure 8-23: The %error when MCS is used to estimate failure probability. 

Figure 8-24 shows the error due to FORM computed as the difference between FORM 

probability of failure estimates and MCS probability estimates. The errors are generally small 

since the worse case is only -3%.  

 

 

Figure 8-24: The %error between FORM and MCS probability estimates. 
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The Cdf  is shown in Figure 8-25 and is similar to the degradation path model. The Cdf reflects 

the error results observed in Figures 8-22 and 8-23 where the Regression Model produces the 

largest error. From Figure 8-24, this is again observed as the Cdf curve from the regression falls 

below Kriging and RBF that are closer to the mechanistic model results. The CPU times using 

the various methods to estimate the Cdf is shown in Table 8-11.  

From Table 8-11, using the metamodels with either FORM or MCS is more than 100 times 

faster than using the mechanistic model. When the metamodels are used, between FORM and 

MCS, MCS is even faster for Kriging and the RBF.  

 

 

Figure 8-25: The Cdf estimated using MCS of each metamodel and the mechanistic model when 

KR = 0.004. 
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Table 8-11: The CPU time comparison. 

Model 
Time to build 

CDF 

Mechanistic with MC 

(100,000 runs) 
60,000s 

Metamodel with FORM 

RM 

Kriging 

RBF 

 

37s 

120s 

150s 

Metamodel with MC 

(100,000 runs) 

RM 

Kriging 

RBF 

 

 

35s 

60s 

70s 

 

8.5.2 Degradation rate = 0.8%. 

A second degradation rate, K = 0.8%, is also investigated. Errors are computed when the 

metamodel with FORM is used to estimate failure probability and when the metamodel is used 

with MCS to estimate probability. These results are shown in Figures 8-26 and 8-27. As in the 

previous examples, the least accuracy comes from the Regression Model and Kriging and the 

RBF is about the same. This pattern is observed when both FORM and MCS is used to estimate 

failure probability. 
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 (a)      (b) 

Figure 8-26: The %error of the (a) FORM-based metamodel and (b) MCS-based metamodel 

estimates of failure probability. 

 

 

Figure 8-27: The %error between FORM and MCS probability estimates. 
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Figure 8-28: The Cdf estimated using MCS of each metamodel and the mechanistic model when 

KR = 0.008. 
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faster than those obtained when the degradation path model is used. This is because, for the 
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Figure 8-29: The LSSs, estimate using the Regression Model, as they move through time. 

8.6 Conclusions 

This chapter has shown how metamodels are combined with set-theory to build a Cdf of a 

dynamic degrading position-control servo mechanism. Two types of degradation models have 

been used to model degradation and, for each model-type, two possible degradation rates have 

been chosen. Using several possible training designs, it has been found that the choice of training 

design can affect the accuracy of the metamodels. Also, the speed of FORM with the 

metamodels, MCS with the metamodels and MCS of the mechanistic model has been compared. 

Based on the results, metamodels provide a substantial decrease in computation time. Times for 

probability calculations with FORM and MCS are metamodel dependent. In general, our vector 

form of the metamodels has resulted in faster computation times using MCS than FORM. For all 

experiments, Kriging and RBF have provided more accurate results than the RM. Two different 

degradation rates have shown how the failure increases as the components degrade and if the 

degradation rate increases. A comparison of the Cdfs built with different degradation rates has 

shown the usefulness of the methodology.  

 

g1(t = 0) = 0 

g1(t = 1) = 0 

g1(t = 2) = 0 

g2(t = 0) = 0 

g2(t = 1) = 0 

g2(t = 2) = 0 
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Chapter 9 

Conclusions and Future Work 

The main contribution of this thesis has been to present a methodology that uses metamodels for 

the design optimization of dynamic systems when the design variables are uncertain (due to 

varying environmental or manufacturing conditions) and to plot the Cdf (cumulative distribution 

function of time to failure) when degradation of the design variables is assumed. Metamodels 

have been found to provide simple alternatives to otherwise complex mechanistic models and 

have been easily used with probability evaluation methods such as MCS (Monte Carlo 

Simulation) or FORM (First-Order Reliability Method). Metamodels have also been used with 

the set-theory method to build the Cdf when degradation of the design variables is assumed. A 

few examples have been used to illustrate the methodology and to compare the speed and 

accuracy of three popular metamodels, the RM (Regression Model), Kriging and the RBF (Radial 

Basis Function). A general metamodel form has been developed that has been found to be 

applicable to model static systems, dynamic systems and dynamic degrading systems. Examples 

have been presented to illustrate flexibility of the general metamodel form.  

Errors have been shown to come from six sources; the choice of cycle-time increment, the 

choice of the number of singular values, s, using FORM or the MCS to estimate probability, the 

choice of the service-time increment and using two contiguous service time increments in the set-

theory method to estimate the Cdf. An example has been presented to show how the cycle-time 

increment and the number of columns of S are chosen. Reducing the error from the fit of the 

metamodel has been found to be difficult. The only way is to perhaps choose another metamodel 

or stick with the mechanistic model. In the set-theory method, errors come from using only two 

contiguous time steps and making the time step too large. Previous research has shown that if the 

value of ∆t is small enough, using two events is sufficient. In order to determine the appropriate 
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size of ∆t, a correlation coefficient from two position of a particular limit-state function at 

contiguous time tl and tl+1 is computed. Ideally, this value should be greater than 0.995. 

Examples have been presented to show the probabilistic-design of static systems using 

metamodels, probabilistic-design of dynamic systems using metamodels and dynamic 

degradation modelling using the set-theory method and metamodels. For the simple static 

examples, the Regression Model has been found to be both fast and accurate. The RBF has been 

found to be the slowest metamodel when FORM has been used to estimate probability of failure. 

The speed of the RBF has been found to increase when MCS has been used. For probabilistic 

design optimization of the dynamic systems, the metamodels have provided a simple analytical 

function for the time-invariant performance measure. The metamodel approximation has been 

found to be accurate and to provide an optimal design much faster than would normally be found 

using the mechanistic model. Kriging has been found to be accurate and converges in the same 

number of iterations as the RM. However, Kriging is much slower than the RM. 

Finally, metamodels have been used with the set-theory to plot the approximate Cdf when 

degradation of the design variables has been assumed. The degradation path and marginal 

distribution models have been used to model degradation of the Resistance of a position-control 

servo. A comparison of the FORM-based metamodel and MCS-based metamodel results with the 

MCS-based mechanistic model results have shown that metamodels combined with the set-theory 

method and have achieved good accuracy and a better computation time than the mechanistic 

model. For probability evaluation, MCS with the metamodels has been found to be feasible due 

to its accuracy and efficiency. 

Overall, it has been found that metamodels can provide a suitable alternative to the mechanistic 

model for both design optimization or degradation modelling. 

9.1 Contributions and Goals 

This thesis has developed a methodology (see Figure 1-3) that uses metamodels for probability-

based design optimization and for estimating the Cdf, using the set-theory method, when 

degradation of the design variables is assumed. The major contributions have been 
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 Developing a general metamodel that can be quickly built for static, dynamic or dynamic 

degrading systems.  

 Combining SVD with metamodels to efficiently estimate a time-invariant performance 

measure based upon a dynamic response. 

 Using the metamodel approximation to build a LSF to allow reliability-based design 

optimization using parameter design, tolerance or integration design methods. 

 Combining metamodels with the set-theory method to estimate the incremental failure 

probability and to estimate the Cdf when degradation of the variables is assumed. 

 Comparison of the Regression Model, Kriging and RBF, in terms of speed and accuracy, 

for probabilistic-based design optimization and estimating the Cdf. 

9.2 Comments about the Methodology 

The examples presented have assumed normal and independently distributed design variables. 

For the case where the variables are correlated and do not follow a normal distribution, a 

transformation method can be used to convert the variables to u-space when FORM is to be used 

to estimate the failure probability. A popular transformation method is the Rosenblatt 

transformation (Rosenblatt 1952); (Robinson 1998). The Rosenblatt transformation is illustrated 

in Appendix D along with an example.  

Examples presented have also used a range wider than the design space to select the training 

design. However, there may be cases where this is not possible or not feasible. Other training 

design selection methods may include space-filling designs, such as the Latin Hypercube Design, 

that allow the design space to be thoroughly searched. For deterministic design variables, the 

tolerance can be set to zero and the variable is set to the mean value. Optimization then becomes 

a parameter design problem. 
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9.3 Future Research and Extensions 

Since the Cdf can be built using a metamodel, one of the major future directions of this work is to 

use reliability-based design to search for a design to have a desired product lifetime. Therefore, 

the future of this work is in dependability design where the distribution parameters of the design 

variables, in degrading systems, are selected that reduces cost and minimizes the failure 

probability. Some work has been done in this area and applied to static systems but none with 

dynamic degrading systems. 

This thesis has found that the RM is very fast compared with Kriging or the RBF. Although the 

efficiency of the model is desirable, the accuracy is sometimes not as good as Kriging. A future 

direction may also search for ways to improve the accuracy of the RM or using the RM to 

quickly locate a good design and then using Kriging to plot an accurate Cdf.  Investigating space-

filling designs, instead of the factorial type design that has been used, with metamodels can also 

be a future direction.  
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Appendix A 

Kriging Model Background 

Let the set of M known inputs (training points) to the computer model be 

   Md xxxX ,,, 21  where  is the set of all possible inputs to the model that result in an 

output. For an individual column in D, the resulting outputs are d              . Given 

these sampled outputs or observations of the computer model, consider a linear predictor of the 

output at any point v . 

   dvwv
Td ~ˆ       (A.1) 

Kriging treats  vd̂  as a random function and finds the best linear unbiased prediction (BLUP),

 dvw
T~ , that minimizes the mean square error (MSE) of the prediction (A.2) subject to the 

unbiasedness constraint (A.3) (Sacks, et al. 1989). 

 

       2~EˆMSE vdvwv dd T      (A.2) 

     vdvw dEE T ~      (A.3) 

The MSE of (A.2) becomes (A.4) 

        vrvwvwΓvw ~~2~~12 TT
KG      (A.4) 

From equation (A.4), Γ is a correlation matrix composed of the spatial correlation between each 

possible combination of the training sets. Therefore, the M training sets produce the M x M 

matrix of correlation pairs 
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

   (A.5) 

The matrix, Γ, is symmetric since    1221 ,, xxxx   and the diagonal consists of all ones. The 

elements of the vector, r~ , represents the correlation between a vector of unknown points,    , 

and the M known training sets points, xj 



Appendix 

 150 

      T
MM

T




11 ,,~ xvxvvr       (A.6) 

The unbiasedness constraint (A.3) becomes (A.7) where  vvR 11v . 

  R
T

vvwX ~       (A.7) 

Introducing Lagrange multipliers     for the constrained minimization of the MSE, the 

coefficient  vw~ of the BLUP must satisfy 

 
   

































vr

v

vw

v

ΓX

X
~

0 R

d

T
d

L
     (A.8) 

Then, by inverting the partitioned matrix, the BLUP can be written as equation (A.9) which is the 

standard form for the Universal Kriging model. 

     βXdΓvrvβv b
TTd  1

0
~~ˆ      (A.9) 
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Appendix B 

Computation of the Bivariate Normal Integral 

To evaluate the normal integral, we define L(h,k;ρ) in such a way that the following quality holds 

(Drezner and Wesolowsky 1990) 

        1,,,,  khkhLkh      (B.1) 

Here L(h,k,ρ) is 

   
 























h k

dxdy
yxyx

khL
2

22

2 1

2

2

1
exp

12

1
,,






    (B.2) 

L(h,k,ρ) is selected over the CDF Φ(h,k;ρ) because it is more commonly calculated. Equation 

(B.2) is reduce to the one-dimensional integral 

      










1cos

222 sin2/cos2exp
2

1
;, dzzzhkkhkhL   (B.3) 

Differentiating (B.2) by ρ, the following relationship is obtained 

     222

2
12/2exp

12

1











khkh

L
   (B.4) 

By equation (B.1), 
 






 L
. Since L(h,k;ρ) = Φ(-h)Φ(-k) 

      












0

;, khd
L

khL     (B.5) 

From equations (B.3) and (B.4) 

The Gaussian quadrature formulae based on Legendre polynomials with K = 5 points can be used 

to evaluate (). The subroutine used to evaluate the probability with K = 5 points is given. It is 

named bv1 and the inputs are h, k and ρ denoted by h1, hk and r respectively. The subroutine phi 

calculates normal probabilities. MATLAB® code for subroutine bv1 and phi are given (Seshadri 

2002). 

 

% Calculation of bivariate normal probabilities 

function l2 = bv1(h1,hk,r) 
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% Points of function evaluations - Legendre Polynomials 
x = [0.04691008,0.23076534,0.50,0.76923466,0.95308992]; 

  

% The weights 
w = [0.018854042,0.038088059,0.0452707394,0.038088059,0.018854042]; 
l2 = 0; 
h2 = hk; 
h12 = (h1*h1 + h2*h2)/2; 
h3 = h1*h2; 
r2 = 1-r*r; 
if(r2==0) 
    if(r>0) 
        l2 = phi(max(h1,h2)); 
    else 
        h2 = -h2; 
        l2 = max(0,phi(h1)-phi(h2)); 
    end 
else 
    for i = 1:5 
        r1 = r*x(i); 
        rr2 = 1-r1*r1; 
        l2 = l2+w(i)*exp((r1*h3-h12)/rr2)/sqrt(rr2); 
    end 
    l2 = phi(h1)*phi(h2)+r*l2; 
    if(l2>0) l2 = 0; 
    end 
end 

 
% Subroutine for Calculation of normal probabilities 
function prob = phi(z) 

  
a = [-0.72657601,0.71070688,-0.142248368,0.127414796]; 
x = 1/(1+0.23164189*abs(z)); 
g = 0.53070271; 
for i = 1:4 
    g = g*x + a(i); 
end 
prob = g*x*exp(-z*z/2); 
if(z<0) prob = 1-prob; 

end 
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Appendix C 

Tables and Figures for Chapter 8 Case Study 

Table C.1: The energy estimates when the response is broken into different time steps. 

Time 
Energy 

∆τ = 0.005 ∆τ = 0.002 ∆τ = 0.001 ∆τ = 0.0005 

1 0.000193966 0.000196141 0.000196242 0.000196234 

2 0.000193966 0.000196141 0.000196242 0.000196234 

3 0.000193966 0.000196141 0.000196242 0.000196234 

4 0.000193737 0.000195865 0.000195963 0.000195953 

5 0.000193737 0.000195865 0.000195963 0.000195953 

6 0.000193737 0.000195865 0.000195963 0.000195953 

7 0.000193507 0.00019559 0.000195686 0.000195675 

8 0.000193507 0.00019559 0.000195686 0.000195675 

9 0.000193507 0.00019559 0.000195686 0.000195675 

10 0.00019415 0.000196415 0.000196527 0.000196522 

11 0.00019415 0.000196415 0.000196527 0.000196522 

12 0.00019415 0.000196415 0.000196527 0.000196522 

13 0.000193936 0.000196149 0.000196256 0.000196248 

14 0.000193936 0.000196149 0.000196256 0.000196248 

15 0.000193936 0.000196149 0.000196256 0.000196248 

16 0.000193715 0.000195878 0.000195982 0.000195973 

17 0.000193715 0.000195878 0.000195982 0.000195973 

18 0.000193715 0.000195878 0.000195982 0.000195973 

19 0.00019431 0.000196668 0.00019679 0.000196789 

20 0.00019431 0.000196668 0.00019679 0.000196789 

21 0.00019431 0.000196668 0.00019679 0.000196789 

22 0.000194115 0.000196416 0.000196533 0.000196529 

23 0.000194115 0.000196416 0.000196533 0.000196529 

24 0.000194115 0.000196416 0.000196533 0.000196529 

25 0.000193908 0.000196156 0.000196268 0.000196261 

26 0.000193908 0.000196156 0.000196268 0.000196261 

27 0.000193908 0.000196156 0.000196268 0.000196261 
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Table C.2: The energy estimate for various columns of S. 

M 
Energy 

Original 3 Columns 4 Columns 5 Columns 

1 1.958585E-04 1.959082E-04 1.958589E-04 1.958574E-04 

2 1.955712E-04 1.956125E-04 1.955790E-04 1.955698E-04 

3 1.952945E-04 1.953175E-04 1.953011E-04 1.952939E-04 

4 1.950323E-04 1.950145E-04 1.950160E-04 1.950321E-04 

5 1.947875E-04 1.946966E-04 1.947166E-04 1.947851E-04 

6 1.961554E-04 1.961869E-04 1.961477E-04 1.961558E-04 

7 1.958686E-04 1.958979E-04 1.958708E-04 1.958678E-04 

8 1.955869E-04 1.956195E-04 1.956064E-04 1.955865E-04 

9 1.953150E-04 1.953422E-04 1.953444E-04 1.953165E-04 

10 1.950564E-04 1.950579E-04 1.950763E-04 1.950602E-04 

11 1.964395E-04 1.964532E-04 1.964288E-04 1.964414E-04 

12 1.961593E-04 1.961594E-04 1.961432E-04 1.961594E-04 

13 1.958784E-04 1.958866E-04 1.958808E-04 1.958774E-04 

14 1.956022E-04 1.956242E-04 1.956305E-04 1.956021E-04 

15 1.953349E-04 1.953631E-04 1.953830E-04 1.953378E-04 

16 1.967054E-04 1.967192E-04 1.967143E-04 1.967071E-04 

17 1.964375E-04 1.964102E-04 1.964091E-04 1.964392E-04 

18 1.961631E-04 1.961326E-04 1.961380E-04 1.961626E-04 

19 1.958880E-04 1.958748E-04 1.958890E-04 1.958864E-04 

20 1.956170E-04 1.956269E-04 1.956517E-04 1.956169E-04 

21 1.969486E-04 1.969949E-04 1.970143E-04 1.969451E-04 

22 1.966983E-04 1.966613E-04 1.966799E-04 1.967006E-04 

23 1.964357E-04 1.963692E-04 1.963902E-04 1.964368E-04 

24 1.961669E-04 1.961064E-04 1.961324E-04 1.961654E-04 

25 1.958973E-04 1.958624E-04 1.958957E-04 1.958948E-04 
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Table C.3: The incremental and instantaneous failure probabilities, using the degradation path 

model with µ(kR) = 0.004 using FORM. 

Time 
Mechanistic RM Kriging RBF 

MCS FORM Pr(Bl) FORM Pr(Bl) FORM Pr(Bl) 

0 0.0039 0.0036  0.004  0.003913  

0.2 0.0044 0.004196 0.000596 0.004604 0.000604 0.004945 0.001032 

0.4 0.0051 0.004935 0.000739 0.005405 0.000801 0.005318 0.000372 

0.6 0.0064 0.005787 0.000853 0.006325 0.000919 0.006231 0.000914 

0.8 0.0075 0.006768 0.000981 0.007389 0.001064 0.007869 0.001638 

1 0.0086 0.007893 0.001125 0.008599 0.00121 0.008474 0.000605 

1.2 0.0095 0.009179 0.001286 0.009984 0.001385 0.009817 0.001342 

1.4 0.0113 0.01064 0.001465 0.011545 0.00156 0.01135 0.001532 

1.6 0.0128 0.01231 0.001665 0.013329 0.001784 0.01311 0.001765 

1.8 0.0144 0.01419 0.001885 0.015339 0.00201 0.01512 0.002003 

2 0.0171 0.01632 0.002128 0.017609 0.00227 0.01732 0.002201 

2.2 0.0198 0.01872 0.002395 0.02014 0.002531 0.01986 0.002546 

2.4 0.0222 0.02141 0.002688 0.022967 0.002827 0.02264 0.002776 

2.6 0.0255 0.02441 0.003006 0.026164 0.003197 0.02580 0.003163 

2.8 0.0298 0.02776 0.003352 0.029686 0.003522 0.02930 0.003496 

3 0.0343 0.03149 0.003726 0.033596 0.003909 0.03321 0.003913 

3.2 0.0391 0.03562 0.004129 0.037908 0.004312 0.03742 0.004212 

3.4 0.0439 0.04018 0.004561 0.042671 0.004763 0.04219 0.004765 

3.6 0.0495 0.045203 0.005023 0.047889 0.005217 0.04732 0.005129 

3.8 0.0563 0.050717 0.005514 0.053593 0.005705 0.05292 0.005598 

4 0.0621 0.056752 0.006035 0.059842 0.006249 0.05912 0.006205 

4.2 0.0685 0.063336 0.006584 0.066619 0.006777 0.06579 0.006668 

4.4 0.0772 0.070498 0.007162 0.074017 0.007398 0.07331 0.007524 

4.6 0.0854 0.078263 0.007766 0.081988 0.007971 0.08111 0.007795 

4.8 0.095 0.086658 0.008394 0.090609 0.008621 0.08972 0.008614 

5 0.1041 0.095703 0.009045 0.09979 0.009181 0.09895 0.009226 
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Table C.4: The Pr(Bl) estimates when MCS is used to estimate failure probability. 

 
Mechanistic RM Kriging RBF 

Time MCS Pr(g2<0) Pr(Bl) Pr(g2<0) Pr(Bl) Pr(g2<0) Pr(Bl) 

0 0.0039 0.00385  0.0038 
 

0.00399 
 

0.2 0.0044 0.00446 0.00061 0.00436 0.00056 0.00472 0.00073 

0.4 0.0051 0.00527 0.00081 0.00511 0.00075 0.0056 0.00088 

0.6 0.0064 0.00601 0.00074 0.00613 0.00102 0.0065 0.0009 

0.8 0.0075 0.00683 0.00082 0.00723 0.0011 0.00769 0.00119 

1 0.0086 0.00789 0.00106 0.00846 0.00123 0.00887 0.00118 

1.2 0.0095 0.00917 0.00128 0.00992 0.00146 0.01002 0.00115 

1.4 0.0113 0.01061 0.00144 0.01126 0.00134 0.01153 0.00151 

1.6 0.0128 0.01227 0.00166 0.0131 0.00184 0.01329 0.00176 

1.8 0.0144 0.01413 0.00186 0.01516 0.00206 0.01522 0.00193 

2 0.0171 0.01627 0.00214 0.01729 0.00213 0.01733 0.00211 

2.2 0.0198 0.0188 0.00253 0.02011 0.00282 0.01968 0.00235 

2.4 0.0222 0.02144 0.00264 0.02294 0.00283 0.02252 0.00284 

2.6 0.0255 0.02443 0.00299 0.02587 0.00293 0.0254 0.00288 

2.8 0.0298 0.02779 0.00336 0.02902 0.00315 0.02893 0.00353 

3 0.0343 0.03137 0.00358 0.03297 0.00395 0.0324 0.00347 

3.2 0.0391 0.03541 0.00404 0.03764 0.00467 0.03693 0.00453 

3.4 0.0439 0.04008 0.00467 0.04221 0.00457 0.0415 0.00457 

3.6 0.0495 0.04538 0.0053 0.04731 0.0051 0.04675 0.00525 

3.8 0.0563 0.05082 0.00544 0.05391 0.0066 0.05237 0.00562 

4 0.0621 0.05677 0.00595 0.06033 0.00642 0.05901 0.00664 

4.2 0.0685 0.06358 0.00681 0.06716 0.00683 0.06577 0.00676 

4.4 0.0772 0.07079 0.00721 0.07464 0.00748 0.07321 0.00744 

4.6 0.0854 0.07863 0.00784 0.0832 0.00856 0.08172 0.00851 

4.8 0.095 0.08718 0.00855 0.09078 0.00758 0.09028 0.00856 

5 0.1041 0.09607 0.00889 0.10053 0.00975 0.1002 0.00992 
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Table C.5: The training sets, for each variable, for each range using λ = 3. 

Range Training Design 

µ±3σ 



















356.5

200.5

044.5

1x



















12.4

00.4

88.3

2x  



















00412.0

00400.0

00388.0

3x

 

µ±4.5σ 



















434.5

200.5

966.4

1x



















18.4

00.4

82.3

2x  



















00481.0

00400.0

00382.0

3x

 

µ±6σ 



















512.5

200.5

888.4

1x



















24.4

00.4

76.3

2x

 


















00424.0

00400.0

00376.0

3x

 

µ±10σ 



















72.5

20.5

68.4

1x



















40.4

00.4

60.3

2x

 



















0044.0

0030.0

0036.0

3x
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Table C.6: The training sets, for each variable, for each range using λ = 5. 

Range Training Design 

µ±3σ with λ 

= 5 

























356.5

278.5

200.5

122.5

044.5

1x

























12.4

06.4

00.4

93.3

88.3

2x  

























00412.0

00407.0

004.0

00393.0

00388.0

3x

 

µ±4.5σ with 

λ = 5 

























434.5

317.5

200.5

083.5

966.4

1x

























18.4

09.4

00.4

91.3

82.3

2x

 
























00481.0

00409.0

00400.0

00391.0

00382.0

3x

 

µ±6σ with λ 

= 5 

























512.5

356.5

200.5

044.5

888.4

1x

























24.4

12.4

00.4

88.3

76.3

2x

 
























00424.0

00412.0

00400.0

00388.0

00376.0

3x

 

µ±10σ with 

λ = 5 

























72.5

46.5

200.5

94.4

68.4

1x

























40.4

20.4

00.4

80.3

60.3

2x

 
























00440.0

00420.0

00400.0

00380.0

00360.0

3x
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Appendix D 

The Rosenblatt Transformation 

For arbitrary pdf`s of design variables, the Rosenblatt Transformation transforms the variable`s 

pdf from v-space to u-space resulting in a one-to-one mapping of the arbitrary pdf to the standard 

normal distribution. Suppose the  vvv ,,, 21 v  is a vector of statistically dependent random 

variables. Let the joint probability and cumulative density function of v be defined as f(v) and 

FV(v) respectively. Define the marginal density functions and cumulative distribution functions 

as 

    








  dsdsssvvvfvvvf iiiiii  112121 ,,,,,,,,,   (D.1) 

   


 

iv

iiii

i

iii dssvvvf
k

vvvvH ,,,,
1

,,, 121121     (D.2) 

Where  




 iiiii dssvvvfk ,,,, 121  and H1(v1) = F1(v1). The new set of independent standardized 

Gaussian random variables are then given by 

           11
1

122
1

11
1

21 ,,,,,,,, 
   vvvHvvHvHuuu u   (D.3) 

Example 

From Robinson 1998, let V1 be a Gaussian distributed random variable with mean µ1 and 

standard deviation σ1. Let V2 be lognormally distributed random variable with pdf 

 
 
















 








LNv

v
vf 2

2

2

ln

2

1
exp

2

1
    (D.4) 

Where, provided with the median, 2
~v , and coefficient of variation, 2k  
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Assume V1, V2 are correlated such that ρ1,2 = 0.6. Applying the Rosenblatt Transformation (D.3) 
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and 













2

2








H  

The new vector of reduced space random variables is therefore composed of 
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