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Abstract

The probabilistic design of dynamic systems with degrading components is difficult. Design of
dynamic systems typically involves the optimization of a time-invariant performance measure,
such as Energy, that is estimated using a dynamic response, such as angular speed. The
mechanistic models developed to approximate this performance measure are too complicated to
be used with simple design calculations and lead to lengthy simulations. When degradation of the
components is assumed, in order to determine suitable service times, estimation of the failure
probability over the product lifetime is required. Again, complex mechanistic models lead to
lengthy lifetime simulations when the Monte Carlo method is used to evaluate probability.

Based on these problems, an efficient methodology is presented for probabilistic design of
dynamic systems and to estimate the cumulative distribution function of the time to failure of a
performance measure when degradation of the components is assumed. The four main steps
include; 1) transforming the dynamic response into a set of static responses at discrete cycle-time
steps and using Singular Value Decomposition to efficiently estimate a time-invariant
performance measure that is based upon a dynamic response, 2) replacing the mechanistic model
with an approximating function, known as a “metamodel” 3) searching for the best design
parameters using fast integration methods such as the First Order Reliability Method and 4)
building the cumulative distribution function using the summation of the incremental failure
probabilities, that are estimated using the set-theory method, over the planned lifetime.

The first step of the methodology uses design of experiments or sampling techniques to select a
sample of training sets of the design variables. These training sets are then input to the computer-
based simulation of the mechanistic model to produce a matrix of corresponding responses at
discrete cycle-times. Although metamodels can be built at each time-specific column of this
matrix, this method is slow especially if the number of time steps is large. An efficient alternative
uses Singular Value Decomposition to split the response matrix into two matrices containing
only design-variable-specific and time-specific information. The second step of the methodology
fits metamodels only for the significant columns of the matrix containing the design variable-
specific information. Using the time-specific matrix, a metamodel is quickly developed at any
cycle-time step or for any time-invariant performance measure such as energy consumed over the

cycle-lifetime. In the third step, design variables are treated as random variables and the First
iii



Order Reliability Method is used to search for the best design parameters. Finally, the
components most likely to degrade are modelled using either a degradation path or a marginal
distribution model and, using the First Order Reliability Method or a Monte Carlo Simulation to
estimate probability, the cumulative failure probability is plotted. The speed and accuracy of the
methodology using three metamodels, the Regression model, Kriging and the Radial Basis
Function, is investigated.

This thesis shows that the metamodel offers a significantly faster and accurate alternative to
using mechanistic models for both probabilistic design optimization and for estimating the
cumulative distribution function. For design using the First-Order Reliability Method to estimate
probability, the Regression Model is the fastest and the Radial Basis Function is the slowest.
Kriging is shown to be accurate and faster than the Radial Basis Function but its computation
time is still slower than the Regression Model. When estimating the cumulative distribution
function, metamodels are more than 100 times faster than the mechanistic model and the error is
less than ten percent when compared with the mechanistic model. Kriging and the Radial Basis
Function are more accurate than the Regression Model and computation time is faster using the

Monte Carlo Simulation to estimate probability than using the First-Order Reliability Method.
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Chapter 1

Introduction

1.1 Problem Statement

The design of physical systems involves finding the values of the design variables that in turn
position the performance measures to best meet their specification limits. Design variables
include, for example, sizes, weights and material composition of parts. In order to allow
convenient and cheap experimentation on the physical system, a mathematical representation,

called the “mechanistic model”, is developed.

For real physical systems, experimentation to improve the design is costly and time consuming,
especially when the experimental space is large. In response to this, mathematical models, or
mechanistic models have been developed and computer simulations run to provide the behaviour. For

a static system we have

Static System: f (z,v,d)=0 (1.1)
Where z contains the responses and v represents the design variables. The solution is obtained by a
Newton-Raphson iteration process. When the mechanistic model is complex and simulations are time
consuming, the design process becomes onerous and thus a faster, metamodel, approach has been
investigated. The idea is to use a few properly selected training sets of the design variables, simulate
the outcomes and then fit a simpler, explicit, model.
In dynamic systems, the mechanistic models are usually in the form of differential equations that
are typically non-linear and complex (Cochin 1980); (Esfandiari and Lu 2010) and (Ogata 2004) and

we write
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Dynamic System: z(z)= f(z,v,d,z), z(r=0)=z, (1.2)
Where 1 is the cycle time usually in seconds and d are the drivers. A response is how provided by a
numerical simulation over the life-time. Most dynamic systems, such as position or velocity servo
systems, automotive stability control systems, hammer mechanisms, hydraulic actuators, and so forth,
are repetitive in nature and exhibit common performance measures. Examples include over-shoot at
peak time, settling error at settling time, energy consumed over the life-time or common performance
indices such as the integral of the squared error. Usually, there are multiple, competing performance
measures.
Any degradation through aging and deterioration affects the design variables over time and this

changes the problem to

Degrading System: z=F(z, v(t),d, ), z(r=0)=z, (1.3)
where t is the service time typically in years and the design variables, v, due to degradation, are now a
function of the service time. Clearly, the cycle-time dynamic responses change over service time.
Based on customer needs, a set of design specifications are normally provided that involves a
range within which an acceptable response should lie. Since experimentation on the physical
system is costly, a mathematical representation is developed that can be used for design
calculations.

Quality is the “goodness of fit” or the “conformance to specifications” of a product (Savage
and Carr 2001). The design of the systems traditionally involves deterministic optimization
where the design variables are identified and the optimization routine searches for the
combination of the design variables that result in the best response. However, due to variations in
manufacturing or environmental conditions that inevitably exists, the design variables are never
the same value leading to the violation of the constraints by the response (Ju and Lee 2008); (Tu,
Choi and Park 1999); (Jensen and Catalan 2007). Robust design techniques attempt to ensure that
the system responses are insensitive to both the input uncertainty and component variations
without actually eliminating the causes. This is done by first assuming that the design variables

follow a particular distribution types whose distribution parameters are assumed to exist.

In quality design applications, the standard deviation is normally expressed as a percentage

tolerance of the mean (Park 1996). Using the provided design specifications and the mechanistic
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model, a “limit-state function” is developed and the failure probability (the probability of not
meeting design specifications) is estimated at the current mean and tolerance of the design
variables (Madsen, Krenk and Lind 1986); (Melchers 1987). Not all combinations of the design
variables will produce a response that meets design specifications. The simplest method to
determine an acceptable system is to estimate the failure probability. Limits are now placed on
the failure probability to determine an acceptable performing system. Probabilistic design,
therefore, involves searching for the mean and tolerance of the design variables that result in an

acceptable failure probability.

Mechanistic models of dynamic systems typically involve state equations that cannot be easily
used in probability or quality based design methods. Therefore, in order to estimate the failure
probability, sampling methods are used. Sampling methods, such as the Monte Carlo Simulation
(MCS), importance sampling and adaptive sampling, are typically used to estimate failure when
uncertainty is considered. Sampling methods involve finding the response at various possible
combinations of the design variables and determining the number of occurrences in which the
response falls outside of specification limits. Even though computer power is increasing, the
complexity of the mechanistic models also increases (Youn and Choi 2004); (Gayton, Bourinet
and Lemaire 2003); (Schueremans and Van Gemert 2005) leading to computer simulations that
are still time-consuming. For an accurate probability estimation in any sampling method,
typically 10™2 ~ 10™* samples are needed to accurately compute a probability of failure of 10™
(Andrieu-Renaud, Sudret and Lemaire 2004).

An alternative to these sampling methods are the fast integration methods (Wu, Millwater and
Cruse 1990) such as the First Order Reliability Method, the Second-Order Reliability Method or
the Advanced Mean Value Method. Normally, when provided with the distributions of the design
variables, the estimation of the probability of failure would normally involve integrating the joint
probability distribution function. However, this can lead to complicated integrals for correlated
design variables. Fast integration methods approximate the integrand by transforming the
variables to uncorrelated u-space and using a Taylor series expansion, the Most Likely Failure
Point is approximated, along with the reliability index, that enables an efficient calculation of
probability (Madsen and Tvedt 1990); (Chiralaksanakul and Mahadevan 2005); (Bucher and
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Bourgund 1990). In most cases, due to the complexity of the physical system, complex or
implicit mechanistic models lead to complex limit-state functions that are difficult to use with
FORM or SORM.

Most researchers have started using “metamodels” to approximate the mechanistic model to
allow simple analysis and design. Metamodels have been popular in response prediction (Barton
1998); (Clarke, Griebsch and Simpson 2005); (Hussain, Barton and Joshi 2002), deterministic
optimization (Barton and Meckesheimer 2006); (Srivastava, et al. 2004) and even some
reliability analysis (Deng 2006) but not in probability-based design optimization. Reliability is
defined as the probability that, when operating under stated conditions, a system will perform its
intended function successfully for a specified interval of time (Son 2006). The reliability of a
system is important since degradation of the component inevitably exists. Degradation typically
arises from environment conditions or stresses under which the component operates. Degradation
is defined as the deterioration in quality, level or standard of performance of a functional unit that
is an entity of hardware, software, or both, capable of accomplishing a specified purpose.
Performance reliability is defined as the probability that performance measures of a system are
within specification limits for the lifetime, conditional on the system being in a functional
topology (Savage and Carr 2001). Furthermore, degradation must be accounted for due to its
impact on quality, reliability and cost through aging and deterioration.

The traditional design methods for system performance reliability improvement using
component degradation data have been based upon a sampling-based approach that uses Monte-
Carlo simulation (MCS) to predict system reliability. More specifically, the sampling approach
takes samples of the component distributions at time zero and traces their paths using their
particular degradation function to provide time variant system responses. Through tracking and
comparing the time-variant responses with critical specification limits, a system performance
reliability function is predicted. However, there are the usual concerns when applying the
sampling approach to predict reliability measures. For example, a large number of simulations

and a vast computer memory are required to achieve a reasonable accuracy.

Design for quality has focused on the uncertainty issues at time zero and it has invoked robust
design techniques such as Taguchi’s method (Park 1996). Furthermore, for an acceptable system,
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customers would require that the quality at the start of the lifetime (time zero) is high for an
acceptable period of time.

For systems that exhibit aging, deterioration and degradation the problem is compounded and
methods to find the distributions are not straightforward. Traditionally, lifetime distributions
have been invoked; however, this approach is limited since there is usually insufficient data to
estimate the required distribution. One way to overcome the disadvantage of lifetime distribution
models is to model the degradation of the characteristics of the actual components (e.g.

dimensions and material properties).

1.2 Motivation and Goals

Based upon the problems outlined in the previous section, this thesis is motivated by several

factors

e The increasing complexity of mechanistic models that result in an increase in the CPU
time of the computer-based simulation. Implicit or too complex models are too difficult

to use in simple design calculations.

e Using the uncertainty inevitably present in design variables to search for a design that

meets design specifications.
e The lack of research that uses metamodels to plot the failure of a system as it degrades.

The goal of this thesis is to develop an efficient and accurate methodology that combines
Singular Value Decomposition with metamodels in order to search for the best design of dynamic
systems when uncertainty is considered in its components. Also, when degradation is assumed in
the components, the set-theory method will be used to estimate the incremental failure using two

contiguous service time increments.
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1.3 Proposed Methodology

1.3.1 Approach

The methodology involves four major steps:

1)

2)

3)

4)

Selecting the training design using some design of experiments technique or sampling
method. For a dynamic system, the sampled dynamic responses are recorded as a set of

static responses at discrete cycle time increments.

To this matrix of static responses at various training design variable sets, SVD is applied
to get two matrices containing design-variable-specific and time-specific information.
Metamodels are built for only the dominant columns of the design-variable-specific

matrix.

Based upon the design specifications, the limit-state function is estimated, using the
metamodel that is then used with FORM to estimate the failure probability. The best
design parameters (mean and tolerance of the design variables) are then searched for

using parameter design, tolerance design or integrated design methods.

Finally, the degradation is modelled using a particular type of degradation model and the

incremental failure probability is estimated using the set-theory method.

In order to fit the metamodel, a sample of design variable sets and the corresponding responses

must be obtained. Factorial designs or sampling methods select the sample of design variable

combinations, known as “training sets”. These training sets are then input to a computer-based

model of the mechanistic model to obtain the corresponding “training responses”. Now, in the

case of a dynamic response, an estimate of a time-invariant performance measure is required, for

design, that is based upon a time-varying response. The dynamic cycle lifetime of the response is

broken into a set of discrete time increments/steps and the response at each of these steps is

recorded into a matrix whose rows correspond to the response at each training set and the

columns represent the response at the discrete cycle-time increments. This matrix consists of two

main “feature spaces” which are the “time feature-space” and the “design-variable feature-

space”. To this matrix, SVD is applied.
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After SVD, three matrices are obtained; the first contains only the design-variable feature-
space information of the original matrix, the second contains the so-called “singular values” and
the third contains the time feature-space information. From principal component analysis the
singular values quantify the importance of the rows of the first matrix (or the columns of the
second matrix). Therefore, using only dominant singular values, a metamodel at any discrete time
can be efficiently built and, ultimately, for the time-invariant performance measure such as the
Integral Squared Error or Energy. This thesis investigates the speed and accuracy of three

metamodels.

In the third step, using the metamodel estimate of the time-invariant response and the design
specifications, a limit-state function is built. The fast integration method, FORM, is used to
compute probability. In robust design applications, there are three types of design methods;
parameter design searches for the means of the design variables that result in a reduced system
failure, tolerance design moves the tolerances of the design variables while keeping the means

constant and integrated design moves both the means and tolerances of the design variables.

In the final step, the degrading component is modelled a degradation path model. The intended
lifetime is then broken into a series of discrete service time increments. At each service-time
increments, the instantaneous failure probability is estimated and, using the set-theory method
proposed by (Savage and Son 2011), the incremental failure probability is estimated. Finally, the
cumulative distribution failure (Cdf) function is plotted to show how the system failure increases
over time. A list of steps, shown below, illustrates the methodology required to plot the Cdf

function of a dynamic degrading system.

1. Performance measures and their specification limits are selected. At initial time, to, the
important component characteristics (through sensitivity analysis) are designated as
design variables and M training sets are selected. Degradation rates are also determined
through experimental analysis of a similar system to determine how the component

degrades.
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Discretize the service time by an increment At and let t = to, ty,..t;..t. where t; = 4 + At.
For each service time, discretize the cycle time, of the response used to estimate the

performance measure, by an increment At SO that = = 7o..1c..7.t Where ¢ = 7.1 + At

At service time t, the responses for the M experiments are simulated using the
mechanistic model and evaluated at cycle time t.. For any t; a matrix [Z]Juxc is produced
(Chapter 3).

Apply SVD to separate [Z]uxc into design variable space [Diuxm and time space

[Q,T ]M . (Chapter 3).

Develop a metamodel for each significant column of D, and store into a row vector d' (v)

that is subsequently used to calculate an approximate dynamic response over t (Chapter
3).

Assign distributions (through experimental analysis or prior knowledge) to the design
variables and degradation rates. Transform the limit-state functions that relate time-
invariant performance measures and specification limits to u-space using a

transformation method such as the Rosenblatt transformation (Chapter 4).

At each discrete service time, a sequence of limit-state functions is developed. Using the
set-theory method, the incremental failure at service time t, emerging from the safe region
at t;., is obtained (Chapter 7).

1.3.2 Novelties and Significance

The novelties of this research are:

Using SVD to quickly find a metamodel approximation of a time-invariant

performance measure whose estimation depends upon a dynamic response.

Combining the metamodel of the time-invariant response with FORM to search for the
best design parameters (the mean and/or tolerance of each design variable) that meets

specifications at discrete cycle times and for the performance measure.
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e Combining set-theory and metamodels to estimate the Cdf and incremental failure
probabilities, of a dynamic system, when degradation is considered in the components.

The speed and accuracy of three metamodels will be compared and conclusions will be based

upon results obtained.

Example: For ease of presentation of the steps involved in building the Cdf, consider an explicit

model of the over-damped decay of the shaft speed of a electro-mechanical servo

k
- =t
ot)=e [Rj
Where k is a deterministic lumping of several parameters and R is the rotor winding resistance.
Let R degrade according to a degradation path model then an expression for the speed in service

time t; and cycle time z becomes

{ )
a)(t,,z-):e (Ro+KRty)

Let Ry and Kg be uncertain, then for any service time t; and samples of Ry and Kg, the angle can
be captured at any cycle time . In Figure 1-1 the uncertainty over cycle-time is shown plus the
change in this uncertainty through aging of the resistance for initial time and some future service-
time. The three curves show three samples of the dynamic response. The figure on the left shows
the three sampled dynamic responses at the start of the service time, to, and the figure on the right
shows the three samples at a later service time, t;. Notice how the samples move which is due to

the degradation of the resistance.
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Figure 1-1: An uncertain dynamic response and the effects of degradation: (a) t=tp and (b) t =t

Suppose for service time t; and through a few selected sets of Ry and Kg with corresponding

experiments, we are able to write a simple deterministic metamodel for the shaft speed at 1y, say
2(t, 7)) = Bo + PRy + B Ky
where fo, f1 and p, are deterministic fitting parameters. We note that time has been subsumed
and we are left with a function of the design variables. Then we treat R, and Kg as random
variables to reintroduce the uncertainty in the angle. A choice of a specification limit, , for the
shaft speed leads to limit-state functions g,and with Normal distribution parameters, for
example, we have
0y = (&~ LBy + il +orth) + By (11 + 0,)])

Given the distribution parameters, a plot of g, = 0 for the axis variables (u,,u, )provides the limit-
state surface from which the failure region and the associated joint density function provide the
probability of failure. Then the associated joint density function of Ry and Kg provides the
probability of failure. As service time advances the LSS moves and probability of failure
changes. For complex systems where the model is implicit, the metamodel approach, using
design of experiments, lets us write an explicit function of the response - similar to that in the

example.
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U Contours of probability
density for u; and u,
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at a cycle time t,

Figure 1-2: Limit-state surface with failure side shaded

1.4 Outline

Chapter 2 presents an overview of the previous work done with metamodels, reliability-based
analysis and optimization. Chapter 3 provides a discussion of the Singular Value Decomposition
method and how it is used to develop a metamodel to represent the time-invariant performance
measure. The mathematical background of three metamodels, the Regression Model, Kriging and
the Radial Basis Function that are used is also presented. This chapter also discusses how the
accuracy of the metamodels is checked. Chapter 4 discusses how the First Order Reliability
Method and the Monte Carlo Simulation are used to estimate the probability of failure and the
three techniques involved to optimize the parameters of the design variables. Chapters 5 and 6
presents examples to show probability-based design optimization of static and dynamics systems
using metamodels. Chapter 7 presents an overview of the set-theory method that is used to
estimate the Cumulative Distribution Function when degradation of the design variables is
assumed and Chapter 8 presents a case study to illustrate how the Cumulative Distribution

Function of dynamic degrading systems is plotted. Finally, Chapter 9 presents a summary of the
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thesis and possible future directions. Figure 1-3 presents a flowchart of the main steps in the
methodology.

Step 1: Select design variables, performance measures, specification limits and
degradation rates. Define the product lifetime t_ and response cycle-time 7.

\ 4

Step 2: Let t =t,....t;,...,t, where t; = t; + At. For each t, discretize the cycle time
so that T = 1o,...,7¢,...,7. Where 7. = 7.4 + Ar.

A 4

Step 3: At ty, select the M training sets and simulate them using the mechanistic
model evaluated at each t.. Store the results in a matrix Z.

v

Step 4: Apply SVD to separate Z into D and Q.

A 4
Step 5: Develop a metamodel for each significant column of D and store into a row
vector d’ (v) that is used to calculate an approximate dynamic response over t.

A 4

Step 6: Using the specification limits in step 1, build LSFs that relate time-invariant
performance measures and specification limits. Specify the distributions of the
design variables and transform LSFs to u-space.

'

Step 7: Search for the best design using parameter, tolerance or integrated design.

Y
Step 8: Using the best design, at each discrete service time, t;, defined in step 2,
repeat steps 3 — 6 to get service-time variant LSFs. Set-theory is invoked to obtain
the incremental failure at t; emerging from the safe region at t,.;.

Figure 1-3: The sequence of steps in the proposed methodology.
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Literature Review

Design optimization typically involves determining the most desirable design under various
conditions with deterministic optimization being the most popular in engineering design (Ju and
Lee 2008). Deterministic optimization searches for the best setting of the design variables that
result in some function of interest being optimized. Various techniques for deterministic
optimization of static systems involve gradient-based methods to search for local optima or
genetic algorithms for global optimization. When uncertainty is considered, designers typically
use Taguchi methods or reliability-based design optimization (Chiralaksanakul and Mahadevan
2005);. For the deterministic optimization of dynamic systems, particle swarm optimization, used
by (Eberhart and Shi 2001), is an evolutionary computation technique similar to a genetic

algorithm where the system is initialized with a population of candidate solutions.

Some authors have explored various methods for the optimization of dynamic systems when
uncertainty is considered. Chen and Wu 2004 presented an interval optimization method for the
dynamic response of structures with interval parameters. In their paper, in order to account for
the error or uncertainties present in some structural parameters caused by manufacture,
installation or measurement, the errors from the aforementioned uncertainties were predicted and
denoted by intervals. For parameter design, Chang 2006, developed an optimization approach for
dynamic multi-response systems based upon backpropagation neural networks, BPN, and
desirability functions to the parameter design of the dynamic multi-response. The BPN is the
metamodel and is used to predict all possible multi-responses of the system by inputting all
combinations of the parameters. An alternative parameter measurement was then developed for

13
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dynamic multi-response to measure and integrate the multi-responses into a single desired value
by introducing desirability functions. The best parameter setting was then obtained by

maximizing the desired value.

In order to simplify the mechanistic model, (Han, Ruduyi and Korvink 2005) focussed on the
application of model order reduction techniques so as to reduce the transient analysis time for the
optimization process. They presented open-source software, known as “mor4ansys”, to perform
model order reduction directly from ANSYS models (engineering simulation software) to
generate a reduced model of a second-order linear system. They were able to integrate this
method into an optimization process to optimize MEMS system rapidly. As illustrated through a
structural dynamics problem expressed in the second-order ODEs, the use of reduced-order
models within the optimization cycles produces almost the same optimization results and reduces

the total computational costs by about an order of magnitude.

There has also been an attempt to utilize metamodels with robust optimization tools for design.
A paper by Kim et. al, 2007 presents a metamodel-based design optimization for dynamic
response optimization which avoids design sensitivity analysis and overcome the numerical
noise. The authors utilized their method for the Design for Six Sigma (DFSS) optimization of the
dynamic response of a paper feeding mechanism. Their design objective was to minimize the slip
amounts between paper and mechanisms and satisfy the 6-sigma constraint for the nip forces of
rollers. Through the use of the gradient information of metamodels, the authors have found that

DFSS and robust optimization is easily implemented.

The main problem of most dynamic systems is that the mechanistic model can become very
complex. In such cases, simplification is required in either the model or the optimization method.
This thesis proposes to simplify the mechanistic model using a metamodel and using this
approximate function, fast integration methods can be easily applied to quickly search for a
design that reduces failure probability. The following sections will discuss previous research

done with metamodels and reliability methods.
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2.1 Metamodels

Metamodels, or approximating functions, are most often used in analyses where the behaviour of
a physical system is being investigated. Metamodels are typically used for response prediction
and curve fitting (Barton, 1998). However, more recently, metamodels are gaining attention
where they replace mechanistic models to allow for more efficient and simpler design.

Most research pertaining to the design of a physical system involves building a mechanistic
model of the physical system and then using computer software to perform simulations (Barton
1998); (Kleijnen and Sargent 2000). Conceptually, if the inputs to a computer simulation are
supplied in vector X, and the outputs from the analysis in vector z, then the mathematical model
evaluates z = f(v) where f(v) is a complex engineering analysis function such as finite element

analysis or Lagrange equations. The metamodel enables the real function f(v) to be approximated
by a simpler function f(v) where f(v) = f(v) + ¢ and ¢ is the error term (Clarke, Griebsch

and Simpson 2005).

There exist a number of popular metamodels such as response surface models based on
regression methods, neural networks or Kriging models. Among these, the most popular are
regression based response surface models. The simplicity of this method is a result of the
simplicity in estimating the model parameters compared with the other three metamodels.
Although simple to use, the ability of these models to estimate highly nonlinear responses is quite
poor. Neural networks and Kriging models are the alternative option which offer a better fit of
highly nonlinear responses (Clarke, Griebsch and Simpson 2005). The major downfall with
these methods is that estimating model parameters requires more effort than the Regression
Model.

In order to fit the metamodel, an experimental design (termed hereafter as the “training
design”) must be selected. For this, various design of experiments techniques are considered.
Statistical design of experiments refers to the process of planning the experiment so that
appropriate data that can be analyzed by statistical methods will be collected, resulting in valid
and objective conclusions. Many experiments involve the study of the effects of two or more

factors/variables. Factorial designs, which are the most efficient for this type of experiment,
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involve investigating all possible combinations of the levels of the factors in each complete trial
or run of the experiment (Montgomery 2005). For example, if there are a levels of factor A and b
levels of factor B, the experiment has ab treatment combinations. Factorial designs have several
advantages; they are more efficient than one-factor-at-a-time experiments and they are necessary
when interactions may be present to avoid misleading conclusions. Finally, factorial designs
allow the effects of a factor to be estimated at several levels of the other factors, yielding
conclusions that are valid over a range of experimental conditions. Other popular techniques
include the central-composite design, Box-Behnken design or D-optimal designs (Montgomery
2005).

Sometimes, three levels are used instead of two so that curvature in the system can be more
accurately captured. A three-level factorial design consists of k factors each at three levels. This
is denoted as a 3 design. The three levels are referred to as low, intermediate and high. The
major disadvantage of factorial designs is that a full design can get big quickly, especially 3
designs. For example, 3% design = 9 runs, 3* design = 27 runs, 3* design = 81 runs and so on. In
many instances, the experimenter may not have the resources available to run a full factorial

design. Therefore, fractional factorial designs are used.

Since the 3% factorial design can get very large quickly, a fractional replicate of the full design
is usually performed. Fractional 3% factorial designs are not normally performed. Instead a Box-
Behnken, Central Composite or D-optimal designs can be used (Montgomery 2005). Other
methods that may be used are sampling methods such as the Latin-Hypercube Sampling method

or space-filling designs.

The second step of the metamodelling process involves selecting a metamodel and estimating
the model parameters. Some popular metamodels include response surface models, Radial Basis
Functions and Kriging (Hussain, Barton and Joshi 2002). All of these techniques are capable of
function approximation, but they vary in their accuracy, robustness and computational efficiency.
Much research has compared the performance of the different metamodel on approximating
deterministic computer models (Hussain, Barton and Joshi 2002); (Simpson, Peplinski, et al.
2001); (Jin, Chen and Simpson 2001).
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Hussain, Barton and Joshi, 2002, used the Radial Basis Function on some known test
functions. The performance of the RBF as a metamodel was tested and compared to the popular
Regression-Based Response Surface Models using the same set of input points selected through
the factorial and the Latin Hypercube design. Seven test functions were used and the performance
of each metamodel using both training designs was compared. The authors found that the RBF
metamodel provided a better fit than the RM for all seven cases studied.

Jin, Chen and Simpson, 2001, provided a detailed comparison of four popular Metamodelling
techniques, RM, multivariate adaptive regression splines (MARS), RBFs and Kriging, based on
multiple performance criteria using fourteen test problems representing different classes of
problem. The fourteen test problems were classified based on the following representative
features of engineering design problems: Problem Scale (two scales: no. of variables >10, no. of
variables = 2,3), Nonlinearity of the performance behaviour and ‘“noisy” versus “smooth”
behaviour. The performance of each metamodel was measured using the following aspects

o Accuracy: Capability of predicting the system response over the design space of
interest.
o Robustness: Capability of achieving good accuracy for different problems.
Indicates whether a modelling technique is highly problem dependent.
o Efficiency: Computational effort required for constructing the metamodel and for
predicting the response for a set of new points by metamodels.
o Transparency: Capability of providing the information concerning contributions of
different variables and interactions among variables.
o Conceptual Simplicity: Ease of implementation. Simple methods should require
less user input and be easily adapted to each problem.
Based on the above aspects, the authors found that in terms of accuracy and robustness, when
large sample sizes are used, MARS, Kriging and RBF perform equally well. When noise in the
data is considered, the RM performs the best and RBF works well; however, Kriging was found
to be quite sensitive to the noise because it interpolates the sample data. When efficiency is
considered, Kriging can be very time-consuming especially for large-scale problems with large
sample sizes and RM takes the least amount of time for model building. In terms of accuracy and

robustness, for small and scarce sample sets, RBF performs the best. The RM has good
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transparency. This feature makes it very helpful to reduce the scale of a problem by removing
insignificant factors; neither Kriging nor RBF have such transparency. Finally, the RM and RBF
were found to be the easiest to implement while estimating the parameters for Kriging was found
to be difficult.

There has been one attempt to apply metamodels for response prediction of a dynamic
response. Lee et. al, 2007 attempted to predict the motion of a tracked vehicle travelling on soft
soil by using the Kriging metamodel. Their paper has found that Kriging has been better able to
predict the dynamic response than the Regression Model. Kriging was found to accurately
approximate the nonlinear response of the vehicle.

Along with fitting the metamodel, validating the metamodel is important to show how well it
fits the data. Also important is the method used to validate the metamodel. Since simulations are
assumed to be time consuming, a method must be chosen such that additional simulation runs are
not required. (Meckesheimer, et al. 2002), investigated validation strategies for assessing the
metamodel fidelity of deterministic computer simulation codes without the use of additional
expensive computer simulations. In their work, the authors investigated the leave-k-out cross-
validation strategy for metamodel assessment. This method was applied to two test problems that
were each fit using Kriging, a low-order polynomial and the Radial Basis Function using

different methods for selecting design points.

In terms of practicality, the leave-k-out cross-validation strategy provides a reasonable
indicator of metamodel fidelity without the use of additional computationally expensive analyses.
The method involves dividing the training design into a set of N; groups, known in cross-
validation applications as “folds”. One fold is withheld while the others are used to fit the
metamodel. The response at each design variable set of the withheld fold is estimated using the

newly fit metamodel. This process is repeated until all folds are used in fitting the metamodel.

Since the metamodels are fit Ny times during each cross-validation cycle, the numerical
efficiency of the leave-k-out cross-validation strategy depends on the type of metamodel. Where

accuracy and precision of estimating an error measure is concerned, their results show that as
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more points are omitted during the metamodel fit, the AVE e ! estimate increases when using

LOP and RBF metamodels. Based on the observations from the experimental study conducted to
assess the leave-k-out cross-validation strategy, a value of k = 1 is recommended for providing a
prediction error estimate that was within + 25% of the true prediction error. Choosing k as a

function of the fitting design (that is, k = 0.1N or k=+/N) is recommended for estimating the
prediction error for Kriging metamodels (Meckesheimer, et al. 2002); (Kleijnen and Sargent,
2000) and (Martin and Simpson, 2003).

Metamodels have been previously used in reliability analysis. Deng, 2006 observed the
feasibility of using three Radial Basis Function networks in reliability analysis methods.
According to the author, the Regression Model becomes impractical for problems involving a
large number of nonlinear random variables or in cases where mixed or statistically dependent

random variables are involved.

2.2 Reliability-Based Design Optimization

Traditional deterministic design optimization has been successfully applied, in engineering
design to reduce the cost and improve quality. Previously, iterative optimization methods have
often been used in conjunction with engineering simulation models to search for designs with
desired properties. Such methods have been time consuming due to expensive run times of the
simulation model caused by underlying complex mechanistic models. Metamodels have been
used many times in response prediction applications. Due to their popularity and feasibility for
these applications, authors have started using metamodels for optimization and reliability

analysis (Barton and Meckesheimer, 2006).

Due to uncertainties present in engineering simulation or manufacturing process, authors have
used reliability-based design optimization models for robust and cost-effective designs (Tu, Choi
and Park 1999); (Allen, et al. 2004). Reliability-based design optimization, denoted as RBDO, of
an engineering system deals with optimizing a prescribed performance function while ensuring

that the system reliability is within an acceptable limit (Chiralaksanakul and Mahadevan 2005).

! Average Root Mean Squared Cross-Validation
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In the RBDO model for robust system parameter design, the mean values of the design variables
and the cost are optimized subject to prescribed probability constraints by solving a mathematical
nonlinear programming problem. Deng, 2006 has shown how to employ multi-layer perceptron
(MLP) techniques to approximate implicit performance functions and derivates for the first- and
second-order reliability methods.

Grandhi and Wang, 1998 used reliability methods for structural optimization in a
multidisciplinary environment. Probabilistic structural analysis is a computationally intensive
procedure and it requires multiple, sometimes hundreds of deterministic analyses. Thus, there is
strong motivation to develop efficient techniques for reducing computer time. Allen et. Al., 2004
studied the feasibility, potential and limitations of using electromechanical simulation for the
reliability-analysis and design optimization of Micro-Electrical Mechanical Systems (MEMS). In
their paper, they stated that the stochastic nature of engineering systems have been compensated
for through the use of safety factors. They also state that such approaches were found to lead to
either a conservative design or over-compensating for uncertainties. The authors, therefore, used
FORM, to deal with uncertainty, combined with electromechanical modeling to develop a
reliability-based design optimization framework for the design of electrostatically actuated
MEMS devices.

In this thesis, structural reliability concepts are used to search for the best design. Structural
reliability analysis deals with the statistical nature of many basic variables in structural safety and
design (Deng 2006). Therefore, when presented with a physical system, it is assumed that the

design variables are modeled using a mean and standard deviation.

The Monte-Carlo simulation (MCS), the first-order reliability (FORM) and the second-order
reliability methods (SORM) are the three methods that have been widely used to estimate the
failure probability of structural systems (Deng 2006). The MCS requires the calculations of
hundreds of thousands of performance function values. In the first-order reliability method, an
approximation to the probability of failure is obtained by linearizing the limit-state surface (the
boundary of the failure domain) at the “most likely failure point”. This is the point on the limit-
state surface that is nearest to the origin in a standard normal space obtained by a suitable
transformation of the random variables. Due to the rotational symmetry and exponential decay of
the probability density in the standard normal space, the design point has the highest density
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among all points in the failure domain. It follows that the neighbourhood of this point makes the
dominant contribution to the failure probability integral. This property is the basis for FORM
which in effect constructs an approximation to the failure probability integral by using the
tangent plane at the design point as the integration boundary (Der Kiureghain and Dakessian
1998).

The FORM and SORM generally demand the values and partial derivatives of the performance
function with respect to the design random variables. Such calculations can be performed
efficiently when the performance function g(v) can be expressed as an explicit form or simply
analytical form in terms of the basic variables v. When the performance functions are implicit,

such calculations require additional effort and will be time-consuming.

Kaymaz, 2005 investigated the use of the Kriging method for structural reliability problems
by comparing it with the commonly used RM. Some advantage and disadvantages of Kriging is
reported. This paper used a two-stage approach to find the final design point. In the first stage,
the design point has been found using either FORM or MCS. Using this design point, a new point
is obtained using a method proposed by Bucher and Bourgund, 1990. This two-stage approach
has been used in three numerical examples to compare the classical RM with the Kriging method.
The first two examples have an explicit limit state function with two random variables whilst the
third involves an implicit LSF. Among these three examples, Kriging was able to produce better
results than the RM. The author also observed the effect of the choice of the Kriging parameters,
theta and the value of the reliability index. It has been found that the choice of theta does affect
the value of the calculated reliability index. The choice of correlation function in the Kriging
model is also important. For problems having a nonlinear LSF, the Gaussian correlation function

is a much better choice than either the linear or exponential functions.

2.3 Degradation Modelling

Degradation of the components of systems is inevitable due to wear or aging. In order to ensure
the system is acceptable over the product lifetime, the times and frequencies of inspection,
maintenance and replacement are required (Savage and Son, 2009). However, due to uncertainty

in the degradation rates of the components, determining service times is a complicated process.
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Traditionally, the uncertainty in aging, deterioration and degradation is modelled using lifetime
distributions (Savage and Son 2011). Instead of using lifetime distribution models, the
degradation of the characteristic of the actual components is modelled using any one of three
models; (a) random variable models, (b) marginal distribution models and (c) cumulative damage
models (Savage and Son 2011).

Modelling degradation data has been used to infer 1) failure distribution, 2) system reliability
from inferred component reliabilities and 3) the system reliability from component degradation
data using analytical system response. Previously, the path-tracing approach, a sample-based
method that uses Monte Carlo Simulation, has been used to model degradation. Sampling
approaches take a sample of the variable assumed to degrade, say Ro, from its pdf at time zero
and traces it path over time using a particular degradation function denoted as K. A conceptually
simpler and more efficient approach has been proposed to solve the time-history problem called
the set-theory method (Savage and Son 2006); (Savage and Son 2011).

The set-theory method has several advantages over the path-tracing approach. First, no explicit
lifetime is required. Second, the conceptual simplicity of the method comes from including the
random degradation rate in the joint pdf of the design variables, v. Thirdly, the probabilities are
found, contiguously, at successive time increments and finally, for explicit limit-state functions,
the method is especially computationally efficient since vector arithmetic may be used to
evaluate the signs of a vector of limit-state functions. The set-theory method will be discussed in

more detail in Chapter 7.

In general, there are three types of reliability degradation models: degradation path models,
marginal distribution models and cumulative damage models (Huang and Dietrich 2005);
(Savage and Son 2011). Degradation modelling based upon degradation path models assumes
that each component degrades in the same way under fixed environmental conditions. Therefore,
each degradation path has the same functional form. Random coefficients are introduces to
describe variations in the path model and the variations are due to either manufacturing process
or environmental conditions (Lawless 1982). Statistical distribution parameters of random
coefficients are numerically estimated using observed degradation data. The simplest form of a

degradation path model of, for example, resistance R is
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R=R, + Kt (2.1)

Where Ry is the initial resistance and K is the degradation rate.

The second type of model, the “marginal distribution model”, characterizes degradation data
using a change of distribution parameters versus time. The two-step statistical analysis, that
includes (1) estimating the distribution parameters at each observed time and (2) fitting time-
dependent distribution parameter functions, is carried out to model the degradation data.
Degradation data are, therefore, modelled as time-variant distribution parameters that are
functions of initial distribution parameters and time. For example, since the distribution

parameters are now functions of the service time t
R=R, [p(t)] (22)
Where p(t) denotes the service-time variant parameters.

The third type of model, the cumulative damage (CD) model, assumes that the degradation is
caused by shocks and that damage accumulated additively (Bogdanoff and Kozin 1985);
(Finkelstein and Cha 2010). These models are used when temporal uncertainty associated with
the deterioration cannot be ignored. Examples that use this type of model include bridge deck

degradation and storm water pipe deterioration.
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Metamodels

3.1 Introduction

Metamodels has been commonly used in function approximation where the analyst replaces a
more complex mathematical model with the metamodel in order to estimate the response at some
untried inputs. In the literature, many types of metamodels exist with the most common being the
Regression Model (RM). Although simple to use, this metamodel usually is not as accurate in
response prediction as some of the more complex metamodels such as Kriging or neural
networks. Building a metamodel normally involves three main steps; selecting the training

design, estimating metamodel parameters and then checking the fit of the metamodel.

Design. as RM, RBF or Kriging.

Metamodelling

a

{ 1. Select a Training } { 2. Select a Metamodel such ]

3. Validate the fit of the
Metamodel.

Figure 3-1: The three main steps involved in the metamodelling process.
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In this thesis, three popular metamodels are investigated; the RM, Kriging and the Radial Basis
Function (RBF). This chapter will present the general form of these metamodels and show how
the metamodel parameters are estimated. This chapter will also show how, using Singular Value
Decomposition, SVD, time-specific metamodels are derived and then used with the Q" matrix in
SVD to develop a time-invariant metamodel. The metamodel is put into matrix form by
collecting and grouping the constant and variable terms. This is done to allow for efficient
differentiating that is required for the application of FORM.

3.2 Training Design

We assume we have a mechanistic model that relates responses to design variables for which we
have their initial or nominal values. The number of prospective design variables is usually large
but may be reduced by a sensitivity-based importance analysis so only # variables that provide
the greatest perturbations are retained. Rejected variables are considered deterministic.
Deterministic variables are set to their nominal values. In order to fit the metamodel, a sample set
of design variables and responses, called the “training design™ is selected. The training design is
chosen through the use of design of experiments techniques, sampling methods or space-filling
designs and assists with estimating metamodel parameters. The most common design of
experiments technique is the factorial experiment where the controllable factors are varied
together instead of one at a time (Montgomery 2005). Other methods that can be used to develop
the training design are sampling methods such as Latin Hypercube Sampling, D-optimal designs,
Box-Behnken Designs or Central Composite Designs (Montgomery 2005).

Using either a full or fractional factorial design, a sample of design variables is obtained
which we call the “training sets”. In order to set up the training design, the number of levels, 4, is
assigned to each variable. Following a full factorial design formulation, the total number of
training sets M = A" where » represents the total number of design variables. Other design of
experiments, sampling methods or space-filling designs can be used to select the training sets.
The choice of method depends upon the number of experiments that can be performed or the data

available. The M training sets are recorded into a matrix X as shown in (3.1) where x;

corresponds to the i training set of the j™ design variable (i=1,....Mand j=1....,7).
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X, X11 X1
T
X = X5 _ X2,1 Xzy,7 (3 l)
X Xm 1 XM ey

3.3 General Metamodel

In the mechanistic modelling process, the modeller abstracts properties of various components
and their interactions and formulates these properties into a set of equations. In most cases, these
models are highly non-linear, or even implicit, thus making them difficult to use in design
calculations or just too time-consuming. In an alternative way, using design of experiments and
fitting functions, a model of the mechanistic model, called a metamodel is used to approximate
the normally complex or implicit mechanistic models (Barton, 1998); (Barton amd
Meckesheimer, 2006). The most common metamodels available are the Regression Models, Radial
Basis Functions and the more recent Kriging models. The details are presented later. Now let us

develop a matrix-vector form of the metamodels that are advantageous for our purposes.

Static systems
Let us consider the static model in (1.1) and from M experiments place the corresponding responses

ina column z.

£
2(x)=| 22 (32)

Z(XLl ) M x1
For our purposes, let a metamodel have the universal form
2(v)=w'r(v) (3.3)
The vector w contains the so-called fitting parameters that are functions of the data (i.e. X,z). The
vector r(v)depends on the particular metamodel, and the vector v represents the design variables.

Both vectors in (3.3) have length L. Note eq. (3.3) provides an explicit, approximate, response for any

set of design variables.
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Dynamic systems
Next, let us expand the above to a dynamic problem as outlined in (1.2). To build on static system
ideas, it is convenient to capture the response at only selected time increments Az. For a dynamic

lifetime 7, the continuous response is broken into a set of static responses at individual time steps

and recorded into a matrix, Z. Let the number of discrete times be

T
C=—L+1 34
e (3.4)

where Tt represent the cycle lifetime of the dynamic response and Az is the time increment size.
The vector of all discrete cycle times is

T:[Tl oo Tk cee TC]T
Computer simulations provide the cycle-time responses for all of the M training sets. The response

magnitudes at T for each experiment are recorded in the matrix Z

2" (xy,7) 2(x,7y)  2(xy7,) . 2(Xg7e)
2 ZT(%Z,T) _ Z(Xz;,rl) z(x%,rz) = z(xz.,rc) 35)
2" (Xy,7) 2(Xy,7) 2(Xy.7) o 2(Xy.7e) MxC

The rows of Z represent the dynamic response at various design variable combinations and the
columns represent the discrete time step. There are a total of M design variable combinations and
C discrete time steps.

When the system is dynamic, one major question that must be answered is how to determine
the best value for At. Consider the case where some performance measure such as integral
squared error or energy must be estimated using a dynamic response. First, an initial value for At
is assumed, the dynamic response is recorded at each discrete time increment and the
performance measure is estimated. The time increment, At, is then reduced and the performance
measure is estimated again. When an asymptotic value for the performance measure is reached
then an acceptable value for At has been obtained.

In order to estimate a performance measure based upon the dynamic response such as the integral
squared error or energy, a metamodel can be built for each column in (3.5). However, a more

efficient approach exists using Singular Value Decomposition.
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3.3.1 Singular Value Decomposition

Singular Value Decomposition, denoted as SVD, can be used in cases where the dynamic
response of a system is required to estimate some time-invariant performance measure such as
estimating the energy consumed using the dynamic angular velocity. In order to do this, the
feature-space extraction and principal component analysis (PCA) characteristics of SVD is used.
A paper by Hassanpour, Mesbah and Boashash, 2004, shows how SVD was used to extract EEG
feature signals of newborn babies to detect seizure activity. In another paper by Wall,
Rechtsteiner and Rocha, 2007, SVD was used to analyze gene expression data for visualization
of gene expression data, representation of the data using a smaller number of variables and
detection of patterns in noisy gene expression data. These two characteristics can be combined to
build a ‘time-dependent metamodel’ of the nonlinear dynamic response of a vehicle to replace
the high computational effort of using SIMULINK in optimization (Wehrwein and Mourelatos
2008).

In the paper by Wehrwein and Mourelatos, 2008, the dynamic response was recorded into a
matrix and SVD was used to separate the two features spaces. After which, the significant
singular values were used to reduce the matrix containing design variable information. A
metamodel was then built for each column of the matrix containing the design variable
information. Ultimately, the authors found their ‘time-dependent metamodel’ to be efficient and
accurate. The continuous dynamic response is broken into a set of static responses at discrete

time steps. This information is recorded into an M x C matrix, Z, shown in (3.5). In this matrix,

Z, z(xi,rj) is the response of the i" design variable set at the j™ time step.

Elements of the i row of Z form the C-dimensional vector z(x;, T) which is referred to as the

dynamic response of the i design variable set. Elements of the j™ column form the M-
dimensional vector z(X, rj) which is referred to as the response profile of the j™ time step at the

various design variable sets.
The equation for SVD of Z is

Ly = UMXCSCXCQEXC (3-6)
where UTU = I and QT Q = I; therefore U and Q are orthogonal. Columns of U are called the

left eigenvectors, {u, }, and form an orthonormal basis in the M-dimensional space of design
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variable combinations. Rows of Q' contain the elements of the right eigenvectors,{g;}, and form
an orthonormal basis in the C-dimensional space of time instances (Wehrwein and Mourelatos
2008); (Hassanpour, Mesbah and Boashash 2004).

Calculating the SVD consists of finding the eigenvalues and eigenvectors of ZZ™ and Z'Z.
The eigenvectors of Z'Z make up the columns of Q, the eigenvectors of ZZ™ make up the
columns of U. The elements of S are only nonzero on the diagonal and are called the singular
values. The singular values of S are square roots of eigenvalues from ZZ" or Z'Z. The singular
values are ordered from high-to-low with the highest singular value in the upper left index of the
S matrix. By setting the small (non-dominant) singular values to zero, we can obtain matrix

approximations whose rank equals the number of remaining singular values.

Since the columns of U represent the information of Z in the space of design variable
combinations, a matrix P can be formulated that contains the columns of U corresponding to the
dominant singular values of S. If P is multiplied by the dominant singular values of S, a matrix
containing the dominant design variable information of Z is obtained. Therefore

Duss = PussSes 3.7)
Where s is the number of dominant singular values of S.
Now, another question that must be answered, similar to the previous step where C must be

determined, is what are the dominant singular values of S? This question is answered in a similar

A

way as the first. Using the first column of S, and estimate of the matrix of training responses, Z,
is computed and the performance measure is estimated. These estimates are compared with the

“true” values found using the original matrix Z. The comparison is done by simply finding the

error between Z and Z. If the error is not small enough, another column of S is added until the
error is negligible. The total number of columns of S, denoted as s, that results in an acceptable

error is retained and s metamodels are built where s << C.

Herein, metamodels are built only for the columns of D and for h™ column (i.e. d,) the

metamodel is denoted as d, (v). After fitting a metamodel for each significant column, the s

metamodels are assembled into a vector

4" (v)=ld,(v) d,(v) ... d,(v)] (3.8)
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When an estimate of the dynamic response at v is required, then (3.8) pre-multiplies the time-

feature matrix to give

2" (vr)=ldv)L o7 e (39)
Every metamodel comprises constants, the “fitting parameters”, and functions of the design
variables v. These constants and functions may be grouped into two vectors; one containing only

constants and the other only vectors and can be written in a universal form as

d.(v)=wlr,(v) h=12.s (3.10)
For each of the s columns in D, the vector w;, contains the fitting parameters that are functions of
the training sets and responses (i.e. X, dy). The vector r,(v) depends upon the particular
metamodel (regression, Kriging or RBF) and the vector v represents the design variables. Using

this general metamodel form, (3.9) becomes

EIT(V)z[WIrl Wir, ... wlrs]jxS (3.11)

Again, grouping and separating constants and variables, (3.11) becomes the column vector

w;, 0 0 r,(v)
T
N L I (312
0 0o .. W-sr sx(sxL) rs(v) (sxL )1

Now, using (3.9) and (3.11), the dynamic response of v is written as a column vector

w, 0 .. 0 r, (V)

. 0 w, ... 0 r,(v)

tvola=Ql.| . "7 7 2 (3.13)
0 0 .. w, x(on) AVIW

Stacking r;(v),r,(v)---to formr(v), a simpler notation for the dynamic response at some
unknown v, is

2(v, 1) =QWr(v) (3.14)
In some cases, like the Regression Model, r(v) never changes for each column of D. Therefore, if

ri(v) = ra(v) = ..= ry(v) =... = ry(v), then (3.13) becomes
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w, 0 0 |1,
By ks =0k © 2 O . (3.15)
0 0 ..owl |l
Or succinctly
2(v,1) = Q(WT)r(v) =Tr(v) (3.16)

The form of (3.16) is extremely informative since it shows how a single column function of the
design variables is propagated over the cycle time. Indeed, it is shown later that functions of the
dynamic response, such as energy, need only the single column of functions. For the response at a
selected cycle time only the corresponding row of T is required and the column of functions.

Since rows of Q correspond to the cycle-time information of Z, the response at some important
cycle time (e.g. peak or settling time) can be found by picking out the corresponding row in Q

and pre-multiplying the matrices W and (v). If the response at cycle-time step . is required, the

corresponding row number of Q is

c=1+L (3.17)

Tc

Where c¢ represents the row number of Q corresponding to the cycle-time of interest. For
example, if . = 0.1 and the response at cycle time t. = 0.004, then ¢ = 26 which means that the

26" row of Q is selected.

2(\/1 Tc ): q(Tc )\N?(V) (318)
Where q(z.) represents the row in Q that corresponding to the cycle-time of interest.

In gradient-based FORM optimization, the first derivative is required. From (3.14)

0z(v,t) or(v)
Y QW i (3.19)
If, however, r(v) is the same, then differentiating (3.16)
0z(v,t or(v
a(vT ):Q(Wl)ﬁ (3.20)

Dynamic Degrading Systems
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The metamodel work involved in static and dynamic systems can be combined to solve the
degradation problem in (1.3). This is discussed in detail in Chapter 7. Now, the theory behind
each metamodel will be discussed.

3.4 Regression Models

Regression models (RM), were originally developed to analyze the results of physical
experiments to create empirically based models of the observed response values. Given a
response, z, and a vector of design variables, v influencing z, the relationship between z and v is

2=f(v,p)+e (3.21)
& is the random error and is assumed & ~ N(O, O ) The error, ¢; , at each observation is assumed
to be independent and identically distributed. The most widely used Regression Models are low-

order polynomials. In this work, the accuracy and speed a second-order polynomial is

investigated. The general form of these models is

f(v.B)=5, +Z:Bivi +22ﬂijvivj te (3.22)

i=1 j=1
The model parameter, g, represents the expected change in the response z per unit change in v;
when all remaining independent variables v; (i#/) are held constant (Montgomery 2005).
Equation (3.22) can be converted to the general metamodel form by grouping together the fitting

parameters, B, to form w and the corresponding functions of v make up r(v) as shown
r(v)z[l ViV, VELvE vy, vy (Vi j)L (3.23)

The length L of w' and r(v) depends upon the degree of the polynomial and number of design

variables #. For a second order Regression Model, the length, L, is found from
1 -
n+(2-j)
L=||———= (3.24)
The L fitting parameters in w are estimated using the least square method (Montgomery 2005).

First, the data matrix X shown in (3.1), is augmented by both a unit vector to its left and an

appropriate sub-matrix of functions of X to its right. Therefore,
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Xa=[1 X 1)y (3.25)

The sub-matrix of functions of X, f(X), reflects the higher-order and interaction terms of the
vector (3.23). By the least squares method, the fitting parameters for the h column of D are

W, =[XIx, [ X1d, (3.26)
Since w' is a row vector of constants, to find the derivative of the RM, only derivatives of the
vector r(v) is required. Therefore,

0
or(v) iy
v = 2lv,,, (3.27)

F (V) (L—Zr]—l)xr]

Ixn

Note that for the RM, r(v) and, hence, its derivative never changes. Therefore, the only task is to

estimate wi,.

Example 1: Converting the standard RM to a general metamodel.
As an example to show how the Regression Model can be converted to the general metamodel

form, consider a 2™ order RM with two design variables from (3.24), L = 6

d(V)Zﬂo + By + BoVy + BNy + BV + PeViV, (3.28)

Grouping and separating the constants, B, and the variables, v, two vectors from (3.28) are
obtained

w' Z[,Bo Br B By B ﬂs]ke (3.29)

r(V):[l Vi oV, VPV, ]lxl (3.30)

Differentiating the Regression Model is not difficult because r(v) does not contain complex
functions of the design variables. Therefore, the matrix of derivatives of r(v) with respect to each

variable is
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0
1 0 [0]....
orlv 1 [l]zxz
- 2 0 || 21V (33D
0 2v,| |[F(v)L,

Notice the dimensions of 0, I, I(v) and F(v) in (3.31) coincide with the general form in (3.27).

3.5 Kriging Model

Kriging predicts the response of unobserved points (i.e. those whose response has not been
obtained by the simulation) based on all of the training responses (i.e. the response that has
already been obtained). It is a method of spatial prediction that is based on minimizing the mean

error of the weighting sum of the sampling values. The general form of the Kriging metamodel is
d(v)=f(v)+&(v) (3.32)

There are two main types of Kriging model and each is identified by the form of f(v). In
Universal Kriging, f(v) is a known function (usually a linear Regression Model) that “globally”
approximates the design space. In Ordinary Kriging, f(v) takes a constant value, B (Simpson,

Peplinski, et al. 2001). Herein a universal Kriging metamodel is used.

The second part, £(V), is a realization of a stochastic process with mean 0, variance &?and
nonzero covariance (Rijpkema, Etman and Schoofs 2001). It creates “localized” deviations so
that the Kriging model interpolates the M sampled data points (Martin and Simpson, 2003). The

covariance is calculated from the product of the variance and a correlation function as shown
CO\’{g(Xj)’g(Xk )]2527(inxk) (3.33)

The correlation function, y(X;j,Xx) , affects the smoothness of the model, the impact or weight of
nearby points and the differentiability of the surface by quantifying the correlation between two
observations (Martin and Simpson, 2003). Kriging requires iterative calculations to estimate the
model parameters; therefore, a correlation function with the least number of fitting parameters is

most desirable. The most commonly used is the Gaussian correlation function
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)= 30, -0 F) 30)

where 0 is a vector of the fitting parameter.

The general form of the Kriging model is

dAh(V):ﬁo,h BV (VI (dy, —X,B4) (3.35)
where BT =[5 ... ] v=lu . v,] Xo=[ Xl B=[B B L o b is the

vector of responses in column h of D and

(3.36)

yXuxe) 7(XuoXg) o (X xy) MxM
The derivation of the Kriging model is shown in Appendix A. Now, if the Kriging model is

converted to the general form, w and r(v) would look like

wy = [ﬁh l";l(dh = XuBn )L(M+(,7+1)) (3.37)
Tn (V) = [1 v Fh (V)]E—M +{n+)p (3.38)

Each element in T(v)is computed using the expression

Tin =exp{—izﬂllq9i’h(vi — X; )sz j=1...M (3.39)
which can be further simplified
Ty (v)=expl- p; ,(v)) (3.40)
where
pin()=lv—x;T 0, Jv-x] (3.41)

In some cases, 0 can be the same for each of the s columns of D. If this can happen, then (3.37)

does not change for each column of D nor does I'*. Therefore vectors (3.37) and (3.38) become

W-rl; :[ h l—‘_l(dh — XpBr, )L(M+(n+l)) (3.42)
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r(v)=[t v FV)y.(enpa (3.43)

This simplifies Kriging further since r(v) is generated only once and w?, depends only upon d.

Example 2: Converting the Kriging Model to a general metamodel.
Consider a Kriging model consisting of two design variables, v; and v,. In its common form, this
model would look like

dAh (V): Bon + BipVy + BopVy + FhT (V)Fﬁl (dh - XpBh ) (3.44)
Where

T (v)= [exp(— Prh (V)) e EXp(_ PM h (V))]lxM (3.45)
Grouping and separating constants and variables

A

dh(V):ﬁo,h "‘BIV"'FhT (V)Fﬁl(dh _Xth) (3.46)

1 X X

- 1
Where B Z[ﬂLh ﬂz,h]’ f(V):[Vl Vz]T B :[:BO,h Pin ﬁz,h]T and X, = :

Xo1 X

1 X X
M1 M2 |y

From these groupings, ET , pand I*(d - X,p) are all vectors whose elements contain constants.

Therefore, further grouping all these terms into the matrix w', the two design variable universal

Kriging model looks like

wh=[pr (05— XoBo )b (347)
) VAR A %) A (3.48)

3.5.1 Estimating Kriging Model Parameters

In most instances, the parameters 0 and B, are estimated, for each column of D, using Maximum
likelihood estimation (MLE) (Martin and Simpson 2003). From MLE, the log of the Gaussian

likelihood function is

M 1 1
L(Bhio-lie(dh)'Gh):_?In(Z”O-IiG(dh))_Eln|rh|_ 2 (dh _Xth)TFh(dh _Xth)(3-49)

200 (d h )
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MLE assumes that the residuals have a known probability distribution shape, which in most cases
is assumed to be the Gaussian probability distribution. By taking the derivative of the log-

likelihood equation with respect to 6* and p and solving for zero, the closed-form solutions are

5o (A )= (e = X Ty = X (3:50)

B, =(XI X, ' XI Ty, (3.51)
An explicit form does not exist for @ for most SCFs; therefore, numerical optimization is used
(Simpson, et al. 2001). Therefore, after substituting equations (3.50) and (3.51) into (3.49), the
best estimate of correlation parameter, 0, is found by maximizing

L(éh)=—%(|v| (62, (d, )+ Inr, (0)) (3.52)

To maximize (3.52), a simulated annealing algorithm is normally used (Kleijnen and Van Beers
2003).

Although the MLE is the common method used to estimate Kriging model parameters, it
assumes that the data follows a Gaussian distribution. Cross-validation can also be used to
estimate model parameters where the data does not follow a Gaussian distribution. Cross-
validation of a Kriging model is determined by holding all of the model parameters, B,62; and 0,
constant while creating Ny Kriging models using each subset of the remaining M — (M/Ns) points
and calculating the error at each omitted location in turn (Martin and Simpson 2003). The best
parameters are those that minimize the cross-validation mean squared error. Martin and Simpson

2003 presents a method that uses Cross-Validation to estimate Kriging model parameters.

3.5.2 Kriging Derivatives

Recall the first derivative of the general metamodel is

ad 0
ahv(V) —w! rahv(_v) (3.53)

The right side derivative in (3.53) looks like

T

or,(v) _ [o o' (GEV(V)” (3.54)
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From the chain rule of differentiation

orj (v) B orj h (v) " apj,h(v)

= (3.55)
v, 0Pjn (V) ov;
After some simplification the derivative in (3.55) becomes
aFj,h (V)

o =—2<9i,h(Vi - X; )ijh(v) (3.56)
Therefore,

OV

_ —20,,(v; =X, ; Jrun (V)
(arh(V)Jz 'h( lj)lh (357)
- 20, (Vi —Xum,j )rM,h (v)
Example 3: Differentiating the Kriging Metamodel.

M x1

Returning to example 2, the first derivative with respect to v; looks like

who@l] e

Now, following equation (3.56)

aFj,h(V) B
op;n(v) =-expl-p;,(v) (359)
OPjn (v)
N 26, (v, - x,,) (3.60)
and after simplification
8Fg\h/(v) =-20,, (vl — Xy )exp(— Pin (v)) (3.61)
But Fj,h (V) = exp(_ Pih (V)), therefore,
[%(V)} B [_ “un (Vl T )ﬁh (v) - —20, (Vl ~Xma )FM h (V)] (3.62)

We repeat the above for v, and, finally, for two variables
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0 0
1 0
or, (v) 0 1
= . . 3.63
ov — 26, (Vl — X1 )rl,h (V) - 20, (Vz — X1 )rl,h (V) ( )
|20, (Vl — XM )FM w(V) =20, (Vz = Xn,2 )FM h (V)_(M ap2

3.6 Radial Basis Functions

Another popular metamodel, the Radial Basis Function (RBF), is a type of layered feed-forward
neural network (NN) capable of approximating any continuous function (Andina and Pham
2007). The RBF network consists of two layers. The input level distributes input vectors to each
of the receptive field units in the second layer (hidden layer) without any multiplicative factors.
The hidden layer has M receptive field units (or hidden units) each of which represents a
nonlinear transfer function called a basis function (Karray and De Silver 2004).

The hidden units play a role in simultaneously receiving the input vector and nonlinearly
transforming the input vector into an M-dimensional vector. The outputs from the M-hidden units
are then linearly combined with weights to produce the network output at the output layer. Thus,
the typical RBF model is described by specifying the number of “basis functions” (hidden units),
basis function parameters, and the weights of the basis function outputs to produce the network

output.
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Figure 3-2: A Radial Basis Function Neural Network (Deng 2006).
Given an input vector v, the output of the RBF network is given by
d, (vV)=w]r(v) (3.64)
where r(v) represents the RBF and M is the number of training sets. The most commonly used

Radial Basis Functions are multiquadratics, inverse multiquadratics and Gaussians (Deng 2006).

Table 3-1: The most common RBF functions

RBF Name RBF
Multi-quadratic PJ-Z(V)+ by

1
Inverse multi-quadratic m
Gaussians eXp - Pf)‘?i}

J

Thin Plate Spline p(v); '”(bjpj(V))
Cubic (,Oj (v)+b; )3
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In this work, the feasibility of the simplest function, the multiquadratic RBF, is investigated.
From Table 3-1, for a multi-quadratic RBF, each element of r(v) in (3.64) looks like

a(V)=ypi(v)+b2  j=1...M (3.65)
Where p; is the Euclidean distance calculated using (3.65) and b is the metamodel parameter to
be estimated.

P2W)=(v-x, T (v=x,)=3 -, F i=1..M (3.66)

i=1
Efficient training algorithms have been developed to minimize the sum of squared error by
adaptively updating the fitting parameters of the RBF network. These parameters are the centre
of each basis function (centroids of the hidden layer), the receptive field widths and the output
layer weights. Training of the RBF metamodel involves choosing the centre and width of each
RBF and calculating the weights of the output layer. This can be done using the k-mean
clustering approach. However, most analysis involving the RBF metamodel uses all the training

sets as the centres to produce a total of M basis functions.

Since all training sets are taken to be the centres of the network and the width of the ™ basis
function is determined using cross-validation. To estimate the weight matrix, w, the inverse or
pseudo-inverse method is normally used. The matrix R(x) is defined in (3.67) where each

element is calculated using equation (3.68).

réXl,X1; rgxl,ng rExl,xM))
R(x)= r(x,,x,) r xz:, , r(x,, Xy -
M%) 1(X o Xo) oo Ty Xy )]y

o, )= J[Z( P +bz] @68)

i=1

If R exists, then the weight matrix is estimated from
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If, however, R is ill-conditioned or even non-square, then the pseudo-inverse method is used to
estimate the weight matrix (Karray and De Silver 2004)

. 1
w, =(RIR, ) 'RId, (3.70)

3.6.1 Radial Basis Function Derivatives

Like the Kriging model, differentiation of rj(v) for the RBF involves the chain rule of
differentiation as follows

i (v) G (v) Pin (v)
_ % (3.71)
v, 0Pjn (v) ov;
Using egs. (3.65) and (3.66), the two terms on the right hand side of (3.71) are
or. (v :
J,h( ): Pin (3.72)

Pin Jipjz’h +bj2‘h )

op; V. — X
p],h — ( 1 I.]) (373)
ov; Pih

After substituting equations (3.72) and (3.73) into (3.71), the first derivative of rj(v) with respect
to v; is
or. (v V. — X
nlv)_ %) j=1..M (3.74)

Vi v Pin 07

3.7 Metamodel Error Analysis

Now, after estimating metamodel parameters, the next step is to determine the fit of the
metamodel. Checking the fit of the metamodel determines if the metamodel has been able to
capture the relationship between the design variable and the response with an acceptable amount
of accuracy. A poor fit will result in inaccurate estimates of the response at untried design sets
and will ultimately result in an inaccurate calculation of the best design. There are two main ways
to determine if a metamodel is a good fit 1) estimating the fitting error and 2) estimating the
predictive error. Estimating the fitting error determines how well the metamodel fits the training
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design. Estimating the predictive error, on the other hand, determines how well the metamodel
would predict the response at some new training design set sample.

When building a response surface model, the commonly used method to check the fit of the
model is to calculate the coefficient of determination (R?).

SSErr
SSTotal

R®=1- (3.75)

In (3.75), for dy, the Error Sum of Squares (SSgr) and the Total Sum of Squares (SStota) are
estimated using (3.76) and (3.77) respectively.

M ~

sS® = (dy, —dy,) h=1...s (3.76)
i=1
M - \2

ss™. =M (dy; —d,f h=L...s (3.77)

i=1

Since one of the features of Kriging is to exactly predict the training design (Kleijnen and Van
Beers 2003); (Sakata, Ashida and Zako 2003), SSg, = 0 thereby always producing an R? value
equal to 1 thus providing an inaccurate estimate of the performance of the method. One option is
to fit the model with the existing training design and then run the simulation again to obtain
responses at some additional sample design variable sets. The accuracy of the metamodel is then
checked by calculating the error of the metamodel prediction at the additional sample sets.
Although effective in determining the accuracy of the metamodel in prediction, this method
would require additional simulations which can be potentially expensive.

Using this idea of checking the fit at new design variable sets instead of the training sets,
authors use the cross-validation method to determine the fit of a particular metamodel. In this
method, the training design is divided into N; groups normally called “folds”. For a particular
fold, there is a total of (M/Ny) design variable sets that are used as test sets and the remaining (M
— MINy) training sets are used to fit the metamodel. This process is repeated until all folds are
used to both train and validate the metamodel (Meckesheimer, et al. 2002); (Kleijnen and Sargent
2000). In the end, there are response estimates for all of the original M training sets.

As an illustration, suppose we have an experimental design made up of a total of 15 design
variable sets. Suppose the 15 sets are grouped into 5 folds with each fold containing a total of 3

design variable sets. In cross-validation, one fold is withheld and the other 4 folds are used to fit
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the metamodel. Using the newly fit metamodel, the response at each of the design variable sets of
the withheld fold is estimated. This procedure is repeated until all folds are used to fit the
metamodel. Most common is the leave-one-out cross-validation method where one training set is
withheld and the remaining sets are used to fit the metamodel. Eventually, there are estimates of
the response at all the training sets. Using these response estimates, different methods can be
used to assess the metamodel (Ahmed and Qin 2009); (Wang and Shan 2007). Among these are
the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE). The formulae for
CV-RMSE and CV-MAE are shown below.

CV-RMSE®™ ===+ (3.78)

M ~
> [dns = |
CV-MAE® =12 (3.79)
M
Since CV-RMSE and CV-MAE are error estimates, a smaller CV-RMSE or CV-MAE value is

ideal.

3.8 Summary

In this chapter, two main steps in the proposed methodology for metamodel-based probabilistic
design optimization of dynamic systems have been described in detail. These include (1)
describing how SVD is used to reduce the number of metamodels to be built when provided with
a time-varying response that is used to estimate the performance measure and (2) presenting the
theory behind the three popular metamodels that are used throughout this thesis. A method for
checking the predictive error of each metamodel, the CV-RMSE or CV-MAE, has also been
described. Since the goal of this work is to present an accurate methodology, the sources of

possible error must be known.

When approximating the response matrix Z with Z, the three possible sources of error are

shown in eq. (3.80)

E5 =Ep; + E€svp + € Metamodel (380)

Z
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The first term on the right hand side of (3.80) refers to the step size, At, being too large. The step
size is chosen by selecting a value for At and then estimating the performance measure. The step
size is then reduced and the performance measure is re-calculated. This process is repeated until

an asymptotic value for the performance measure is reached.

The second source of error is from estimating the matrix D in SVD, D, with a reduced number
of columns in S. The adequate number of columns is checked in a similar way as checking the
best step size. Here, a value of s is chosen and the performance measure estimated. If the error is

negligible, stop, however, add another column to D.

The third source of error is from the fit of the metamodel. The error of the metamodel is
quantified using cross-validation methods. The only way to reduce this error is to choose a better

metamodel or, perhaps, a different method to select the training design.
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Chapter 4
Probability Evaluations and Design

Optimization

One of the main goals is to optimize a dynamic system when design variables are uncertain.
When uncertainty is assumed in the design variables, they are typically described by a type of
distribution whose parameters are defined. Design optimization involving uncertain design
variables tries to find the distribution parameters that minimize system failure or total cost. In
order to estimate system failure, the conceptual components are assumed to follow a series or
parallel arrangement. Estimating the probability of failure is important in design of systems with
uncertain parameters. Therefore, two main points must be addressed. First, how to relate the
response to the specification limits to determine when ‘success’ or ‘failure’ occurs and second,
how to calculate the probability of failure (Madsen, Krenk and Lind 1986) (Melchers 1987). The
first is answered using a ‘limit state function’. The probability of failure can be estimated using
either a Monte Carlo Simulation (MCS) or some fast integration method such as the First-Order
Reliability Method (FORM).

This chapter will show how limit-state functions and surfaces are built to relate the metamodel
for the performance measure of interest with the design specification. The methods, MCS and
FORM, will be presented to show how the probability of failure is estimated. Then, three design
optimization methods will be presented to show how to find the best mean that minimizes system
failure (parameter design), tolerance that minimizes cost (tolerance) or mean and tolerance that

minimizes cost (integrated design).
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4.1 Limit State Function

By definition, when provided with an upper or lower specification limit, { , the limit-state
function (LSF) is written as

g(v)=+(¢ - 2(v)) (4.1)
where 2(v) is the metamodel. For an upper specification limit, g(v)=(¢ - 2(v))and for a lower
specification limit g(v)=2(v)— £ . By definition,

g(v)>0 v eSafe Region

g(v)=0 veLimit-StateSurface

g(v)<0 v eFailure Region
The probability of conforming to specifications (success or S) is defined as Pr{g(V) > 0}, the
probability of failure is Pr{g(V) < 0}. An example of the limit-state surface (LSS), in v-space, is

shown in Figure 4-1.

A
Vo

Failure Surface
g(v) =0.

Joint PDF Safe Region /
g(v) >0 / Failure Region

Contours g(v) <0

Figure 4-1: Failure surface in v-space.
If the joint pdf of V is f,(v), then the probability of failure is evaluated using the integral
(Madsen, Krenk and Lind 1986)

Pr(F)=Pr(g(V)<0)= I f, (v)dv (4.2)
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The direct evaluation of (4.2) is difficult for three reasons; first, since several random variables,
V, are involved, the probability integration is multi-dimensional. Second, the integrand fy(V) is
the joint pdf of V and is generally a nonlinear multidimensional function and third, the limit-state
surface, g(v) = 0, is also multi-dimensional and usually a nonlinear function. Due to these three
reasons, there is seldom an analytical solution to the probability integration to find the solution
due to the high dimensionality in most engineering applications. There are two main methods to
estimate the failure probability, these are sampling methods or fast-integration methods. These
will be discussed later.

4.2 System Failure

In system reliability applications, when the system failure is to be estimated, the assumption is
that the components follow either a series or parallel arrangement. This does not mean that the
components are physically arranged in a series or parallel way but that the system failure is
calculated based upon the well-known characteristics of these arrangements (Rao, 1992); (Savage
and Son, 2011). If the system assumes a series arrangement, then system failure occurs if any one
of the components fails. Using a set-theory interpretation, the system failure is
F=FUF,U..UF,_ (4.3)

In terms of probability, eq. (4.3) becomes

Pr(F)=PH{F, UF, U...u FnLF)zP{nLLjFiJ (4.4)

In parallel systems, system failure occurs if all components fail. Therefore, from the set-theory

interpretation

Pr(F)= P{ni(j FJ (4.5)
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4.3 Monte Carlo Simulation

Traditionally, sampling methods have been used to estimate probability. Among these, the most

popular is the Monte Carlo Method that is based upon the theory of large numbers (Papadrakakis

and Lagaros 2002). For a Monte Carlo evaluation, N sample sets of v are generated and

substituted into each LSF. Then, the output at each sample set is observed to determine if failure

occurs. For any sample set, an indicator, e, for the k™ sample set, v

o b if gk(v("))<0
K 0 otherwise

For a series system we expand the idea in (4.6) and along with (4.4)

o )1 if gl(v("))<00rgz(v("))<00r...orgnLF (v(k))<0
““|o otherwise

For a parallel system, the idea in (4.6) and the intent in (4.5)

o )1 if gl(v(k))<0andgz(v(k))<Oand...gnLF(v(k))<0
|0 otherwise

Therefore, for a total of N sample sets, the number of failing sets is

The system failure is

Nf
Pr(F)=——
()=

4.4 Transformation of Variables from v-space to u-space

(4.6)

(4.7)

(4.8)

(4.9)

Approximation methods such as the first-order reliability method (FORM) or the second-order

reliability method (SORM) simplify the evaluation of the integral in equation (4.2) by

simplifying f,(v) so that its contours become more regular and symmetric. The following section

discusses transforming the variables to u-space where the contours of f,(u) are symmetric.
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In general, the design variables may have arbitrary distributions. Since probability is simply
approximated in a standardized normal space a one-to-one transformation can be used to convert
the non-normal and correlated variables into standard u-space using a transformation method
such as the Rosenblatt transformation (Madsen, Krenk and Lind, 1986). Symbolically the

transformation is

T:UeV (4.10)
Where U = Uy, Uy, ..., U, are uncorrelated and standardized normally distributed variables. The

inverse transformation may also be obtained which is written as
T U=V (4.11)
In general for j random variables there are j equations of the form

I;(u,v)=0 (4.12)
where a particular mapping is obtained by solving the equations given one of the sets of

variables.

For our purposes, let the n-design variables be joint Normal and then the parameters in matrix

form are
™ ov cov(V,,V,) ... cov(Vl,V,])
- ﬂ\:/z and C, - cov(\/.z,vl) a?z = cov(\{z,vﬂ)
Hy, covv,,V,) cowv,.V,) ... o,

In standard Normal space, by definition, we must have

Hy =\ and C, =
0 |
The transformation is a generalization of the one-dimensional form U = i(\/ — ) and we write
o

the linear form

U=A(V-E[V]) (4.13)
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where A is 7 X 5. Also note that A™ gives the reverse transformation.

V=A"U+E[V] (4.14)
Let us now find A. From (4.14), we subtract the expected value, E[U], from each side and write
AU = A(AV)

Next, we multiply each side by the transpose to get

AUAUT = A(AV)(AV AT

Where AU=U -E[U] and AV =V —E[V]. The application of the expected value operator gives
the covariance relation

C,=AC, A"

and from this we conclude that
AC AT =C, =1

We now pre-multiply by A™ and then post-multiply by (AT)? in order to isolate Cy. We have

C, =(ATA)"
or

AAT =C

and by definition

A =Cholesky(C")

or

A =Cholesky(C,,)

The Cholesky decomposition can be found in any linear algebra text and essentially finds the
matrix A that has a lower triangular form with positive diagonals. After transformation, the

performance function becomes g(u) and eq. (4.2) becomes
Pr(F,)=Pr{g;(U)<0}= j¢u (u)du (4.15)
gi(u)<0

Where ¢,(u) is the joint pdf of U.
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Example 1: Mapping from U-space to V-space.
Suppose we have the two-variable covariance matrix

C :{ o; po—zo's}

2
PO,03 O3

Then,

o 0
A = Cholesky(C ):[ 2 }
Y 03P Oyy1-p’

and we write the mapping explicitly as

{VZ}:[GZ ; }{uz}{ﬂz}
V, o,p 0\1-p° | u, U
Suppose the limit-state function is

V3
V, + Vs,

g(v)=¢ -
Then, in u-space
(43 + POy, +T3y1- p*Uy)

(42 +GUp) + (113 + PO, +T34/1- p°uy)

where the space variables u are [ up, uz] and the design parameters p are [u,, 15,0,,05, p].

g(u,p)=¢—-

Note the special case when the correlation coefficient p is zero.

4.5 First-Order Reliability Method (FORM)

Since the standard normal random variables are independent, the joint pdf is the product of the

individual pdfs, and is given by
é, (u)=ﬁiexp(—£ui2j (4.16)
i 2r 2
The probability of failure is then evaluated as

52



Chapter 4— Probability Evaluations and Design Optimization

du; ...du, (4.17)

1

Pi(F)= |

...“l[Lex _lu?]
glug.~u, ko i=1 NPT 2"
The first-order reliability method (FORM) makes the assumption that the failure surface can be
fitted exactly with a tangent hyper-plane through u* which is the closest point to the origin on the
LSS. Since the probability density function is rotationally symmetric, the linear-approximation of
the failure surface can be rotated to any convenient position without changing the probability
content on either side of the surface. The most convenient position is such that it is perpendicular

to any single axis, since then, the probability calculation becomes one-dimensional.

Example 2

Consider the case for two variables shown in Figure 4-2. In order to estimate the failure
probability, the failure surface is first approximated by a “failure-line” tangent at the Most Likely
Failure Point, MLFP, denoted as u*, and a distance r from the origin. Next, this line is rotated
so that it is perpendicular to u; on the left of the origin (on the negative u; axis and parallel to u,).
Notice the position of the new, but equivalent, non-conformance region. Figure 4-2(a) shows a
limit state surface (curve) fitted by a tangent hyperplane (solid line) at u*. Figure 4-2(b) shows
the tangent hyperplane rotated to a point perpendicular to u; and parallel to u,. For the bivariate,

standard normal density function ¢#(u,,u, )

u 2

0

_ _uz
Pr(F)—_fRijidu du (4.18)
= J \/2—7 \/E U4 .

f
V4
In (4.18), the u, term is unity, therefore, the probability of failure is now

Pr(F)= I ~—du, (4.19)

By definition of the normal CDF, the probability of failure is then

Pr(F)=Pr(g(u)<0)=d(- 5;) (4.20)

The reliability index, Bg, is just a distance and thus it is always positive.
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Tangent
Hyperplane

(a): The LSS and its tangent hyperplane approximation in u-space

S\
L/

v

(b): The LSS rotated to a point perpendicular to the u; axis.

Figure 4-2: The limit-state surface in u-space.

However, once u* has been found, it is not obvious which side of the limit-state surface
represents the conformance region and which side represents the failure region. In order to
mathematically identify the conformance and non-conformance regions, the sign of the limit-
state function g(u) at the origin (u = 0) is tested. A positive value indicates that the highest

probability density point (the origin) is in the conformance region and so Pr(F) = ®(-Bg).
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Conversely, a negative value of g(u = 0) indicates that the highest probability density point is in
the non-conformance region and so now Pr(F) = ®(Bg). For the i"" limit-state function, we let a; =

sign(gi(u = 0)) = £1. We then write
Pr(F;)= (- a; 55, ) (4.21)

4.5.1 Multiple Limit-State Functions

For a series system, the expression in (4.4) is re-written as

e

P{Lj FiJ = (PrF))- X > Pr(R NFY)+ X > 30 PriR NF NRY)-- (422)
i=1 i=1

One way to simplify (4.22) is to consider at most, pair-wise intersection events. The intersection
probability of all pairs of correlated non-conformance events is calculated using the angle
between the vectors to MLFPs. To show how intersection probabilities are calculated, consider
Figure (4-3) that shows the intersection probability of two arbitrary hyper-plane limit-state
surfaces. The two planes, identified as AA and BB, are located at distances f; and g, from the

origin with an angle 6 separating the vectors to each MLFP.

B FNF, A

Non-conformance
region 2

(F2)

Non-conformance
region 1

(F1)

Figure 4-3: Geometry for calculating intersection probability.
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An indication of correlation between planes is p = cos(d) and then the probability in the region
AYB is obtained via the bi-variate cumulative function

2
Pi(F, A F,)=®(B,. 3. p) II L 2”uluﬁuzjduloluz (4.23)

b 27 \/ﬁ 1-p*
The numerical evaluation of this integral is provided by (Drezner and Wesolowsky 1990) and the
MATLAB® files that are used to compute this integral are shown in the appendix (Seshadri
2002).
Consider the case when 6 = 0 and p = 1 then the failure regions are fully correlated such as g;
and g, in Figure 4-4. For such a case, the system failure is corresponds to the larger failure region
where, for the example shown in Figure 4-4, is g;(u). Consider the case when 6 = 180 and p = -1

then the failure regions are fully anti-correlated such as g; and gz in Figure 4-4

— <« J1(u)=0

g2(u)=0 /44;;::22
/—

N

gs(u)=0

» U1

Y

Figure 4-4: An example of fully correlated limit-state surfaces.

56



Chapter 4— Probability Evaluations and Design Optimization
4.5.2 An algorithm for Most-Likely Failure Point (MLFP)

The position of the MLFP, u*, may be found via the constrained optimization problem

Mianize\/W (4.24)
Subject to g(u)=0
A suitable, gradient-based algorithm exists to find u* (Madsen, Krenk and Lind 1986). Let k be
a counter and for k = 0, the initial conditions are up = 0 in u-space. The steps in the algorithm are
1. Convert ux to vk using the inverse probability transformation such as the Rosenblatt
Transformation.
2. Calculate g(vi) and calculate the gradient in u-space, evaluated in v-space, V,g(v, ).

_ &g _ag(v) v
ou"  ov' oau'

v,9(v)
3. Calculate a new u-space location.

oo wviglv)-gvy)
k+1 —
Vug(Vk)VEg(Vk)

4. Calculate the distance from the origin to ux+; and denote it as dx+1.

V,9(vy)

5. Stop when [dx+1 — Ok| < €.

The gradient, V,g(v, ), is calculated using the chain rule
_ &9 _og(v) ov

au’  avt au'
Instead of using this algorithm, another constraint is to find a plane perpendicular (via the null

v,a(v)

(4.25)

space vectors) to the outward normal gradient vector; then, at the MLFP the vector u* is
perpendicular to each of the null space vectors. More specifically, if we have » design variables,

there will be -1 null space vectors — each of length 5 — denoted as the matrix null(V,g; (u)). An

additional feature is that at u* we have the orthogonal conditions as #-1 scalar products

u; -null(v,g;(v)); =0 j=12,...,7-1 (4.26)
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4.6 Parameter Design

In parameter design, we find the means of the design variables, with fixed tolerances, to meet
some objective. Suppose we have initial design that we wish to improve. There are three steps
involved. The first step is to find the starting MLFPs using (4.24).

The second step is to search for a feasible design such that the sign of each LSF at the origin is
positive and the corresponding failure region is small. This step ensures that the probability of
failure is small. A weight for each limit-state function is written as

W, =expl-a; 4z ) (4.27)
Where ¢, =sign(g;(u=0)). The weight W; approaches zero for a large Br and positive «; but
becomes large for negative products (55 ). Further, the exponential changes rapidly for small

changes about a small ;. The vector of weights of all limit-state functions is defined as

7= w ] (4.28)

A useful objective function is obtained by invoking the sum-of-squares type of formulation

T 1 NLE

Q=37Tr=5| S expl-2a,5;,) (4.29)
i=1

If all & = 0, then the success region contains the origin in u-space and the objective function has a

lower bound of zero for very large Pr. Finally, using (4.29) and the constraint in (4.26), a feasible

design is found using

minnLF exp(— ZaiﬂRi)
st. ;ji(u)=0
u; -null(v,g; (u)); =0 (4.30)

min max
My S iy S fy
tol,, is constant
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A third possible step is to minimize the system probability of failure.

min Pr(F)
st. g;(u)=0
u; - null(vg(u;)); =0 (4.31)

min max
My S py S fy
tol,, is constant

4.7 Tolerance Design

Tolerance design suggests that the mean values of the design variables are fixed and just the
tolerances are adjusted. However, in order to minimize the objective functions used in parameter
design, the tolerances would go to zero. Since this is not physically or economically feasible,
some cost objective is needed to impede this tendency. The cost is typically the production cost

(Cp) and it always increases for tighter tolerances.

Typically, the smaller the tolerance the higher the cost since more labour and energy is
required to produce a “higher quality” product. This is due to three main factors:
e Cost of machines — Machines capable of high accuracy are manufactured to more

exacting standards and are usually more expensive.
e Cost of set-up — Tighter tolerances require more careful and longer set-ups.
e Cost of tooling — Costs of tools and special fixtures rise for tighter tolerances.

There is a variety of cost versus tolerance mathematical models. In general, the two constants
denoted as a. and b, are cost parameters set by a particular manufacturing process where a.
represents the fixed costs and the cost of means and b, represents the cost of producing a single
component dimension to a specified tolerance (Seshadri and Savage, 2002). The common cost-

tolerance models are shown in Table 4-1 (Seshadri and Savage, 2002).
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Table 4-1: Cost-tolerance models.

Model Name Cost Model (Cp)
Reciprocal a. + b/tol
Reciprocal Squared a. + bg/tol?
Reciprocal Power a. + b/tol®
Exponential bc.exp(-m.tol)
Exponential/Reciprocal Power be™'/tol
Piecewise Linear a; — bitol;

The manufacturing cost, denoted as C,, is only part of the cost picture. If a product, comprising
of many random design variables, is manufactured, some products will meet the specifications
assigned to the responses and some will not. The products outside of the limit specifications will
be assigned to the “scrap box” or if possible “reworked”. The cost of this “loss of quality” of the
unacceptable products is denoted as C,q and depends upon 1) how many systems are in the non-
conforming category and 2) the unit cost, denoted as Cs needed to scrap or rework the product

CLo =Pr(F) x Cs (4.32)

In general, the total cost Cy combines the production costs and loss of quality costs and we

have

Ci=Cp+ CLQ (433)
The best tolerance is allocated as

Minimize C; (u,tol)
subject to
gi(u)=0
u; -null(vg(u, ), =0 (4.34)
tol™ <tol; <tol™

Uy is constant
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4.8 Integrated Design

So far, we have seen that Parameter design entails moving the means of the design variables
while keeping the tolerances constants. Tolerance design holds the means constant while the
tolerances are moved. A third option, integrated design, argues that both the means and tolerance
values of the design variables should be treated together simultaneously to reach the optimal
design (Seshadri and Savage 2002). In general, the integrated robust design problem is posed as a

minimum total cost problem in the following form

Min C; =C, +Cyq
subject to
g;(u)=0 435
u; -nul(vg(u;)), =0 (4.35)
/Uimm < U S/”imax

tol™ <tol, <tol™

4.9 Summary

A discussion of five main topics; Limit-State Functions, System Reliability, MCS, FORM and
Probability-Based Optimization Methods has been presented in this chapter. The limit-state
function has been introduced that relates the design specification with the metamodel. The limit-
state function is particularly important for probability evaluation since it provides a conceptually

simple way of determining when failure or success takes place.

System Reliability concepts has been used to deal with systems with many components. Here,
it is assumed that components follow either a series or parallel arrangement. For a series
arrangement, system failure occurs if any component fails and for a parallel arrangement, system
failure occurs only when all components fail. This chapters has shown how the probability of

system failure is estimated using either MCS or FORM.

The MCS generates a large sample of sets that are substituted into the limit-state functions and

the number of times the limit-state function goes to zero is counted. FORM evaluates probability
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by converting the variables to standard normalized variables and the distance from the origin to
the MLFP on the LSS is estimated.

Three probabilistic design optimization methods have also been presented; parameter design,
tolerance design and integrated design. Parameter design attempts to find the means of the design
variables that reduce system failure. If the optimum tolerance is required, a cost function is
involved. Therefore, tolerance design attempts to find the tolerance of the design variables that
minimizes the total cost. Since tolerance design is not commonly used since design would
involve also moving the means of the design variables, integrated design is just an extension to

tolerance design that searches for both the mean and tolerance that minimizes the total cost.
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Chapter 5
Examples: Probabilistic Design of Static

Systems

This chapter will illustrate the metamodel-based design methodology as applied to static systems.
The static system has the form of (1.1) and the general metamodel for a static system has been
discussed in Chapter 3. The methodology will be used for both parameter and integrated design
and the results obtained from the three metamodels will be compared. Metamodel accuracy will
be compared using cross-validation methods and comparing the metamodel-based FORM
estimate of failure probability with both the metamodel-based and mechanistic model-based
MCS methods.

5.1 Example 1 - Simple Servo

Consider a simple servo system where the rotational steady-state shaft speed is a function of the
voltage E, the motor’s torque constant K, and the electrical power amplification G. The design
variables are K and E, v; and v, respectively, with G deterministic. The steady-state shaft speed, z
has the function

Vs

z2(v)=G "

(5.1)

where G = 2. The variables follow a normal distribution with parameters shown in Table 5-1.
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Figure 5-1: Schematic of a simple electro-mechanical servo motor.

The distribution parameters of v, and v, are shown in Table 5-1.

Table 5-1: The distribution and corresponding parameters of each design variable.

Design Variable Distribution mean Units gf:/r;ggg?]
vy — Torque Constant 21
Normal 0.0079< 44, £0.0081 =L
. 1.5u,
v, — Applied Voltage (E) Normal 09<u, <11 \V; o, = 300

In order to fit the metamodels, the training design range is chosen to be wider than the range of
the means of the design variables. This is to compensate for the event that the final design is one
of the upper or lower limit boundaries. To develop the training design, the three levels of each

design variable are shown in Table 5-2.

Table 5-2: The low, nominal and high values of each design variable.

Variable Vi vV,
Low 0.0078 | 0.8
Nominal | 0.0080 | 1.0
High 0.0082 1.2
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Since there are 3 levels (1 = 3) for 2 design variables (r = 2), the total number of training sets, M,
is M = 1" = 9. The nine unique training sets are recorded into a matrix X

X4 X1 Xq2
T
X, X1 X
_| T _
X=X, =1 X1 X3
.
[ X9 gx2 [ Xon %92 Jg.,

The corresponding training responses are found by substituting X into (5.1) to get

-21 XI
Z, XE
Z(X)= Z3 Xg

;
| Z9 (Xg )_ oxt

For a static system, the general metamodel looks like

2(v)=w"r(v) (5.2)
Regression Model

A two-variable Regression Model has already been discussed in Chapter 3 where

WT=[,30 B B ﬂlz ﬂzz ﬂlﬂz]]xﬁ

W)=l v v, v Vo],
In order to estimate the parameters in w', a matrix X, must first be developed from the training
design X that is substituted into (3.26). Following (3.25), X, looks like
X1 Xa1 X12:1 X;l X11%21
X2 X2 X12,1 Xzz,z X1,2%X2,2

_ 2 2
Xa=[1 X3 Xp3 X{3 X3 Xi3Xp3

2 2
1 Xg Xo9 Xig Xig XyoXpg

Kriging Model and RBF
The Kriging and RBF 2-variable models have been presented in Chapter 3 and follow the same

format for this example.
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The accuracy of each metamodel is checked using the techniques CV-RMSE and CV-MAE.
These values are shown in Table 5-3.

Table 5-3: The CV-RMSE and CVV-MAE of each metamodel for the simple servo example.

Model | CV-RMSE | CV-MAE
RM 4014 x 10 | 9.813 x 10°
Kriging | 4.028 x 10® | 3.714 x 10
RBF 5.102 x 10® | 1.376 x 10™

Smaller values of CV-RMSE and CV-MAE are better since these are error calculations. From
Table 5-3, all three metamodels provide excellent fits of the training design as seen by the very
low CV-RMSE and CV-MAE values. Among the three metamodels, the RBF is best. All three

metamodels will be used with FORM to search for the final design.

Our goal is to find the means of the design variables that result in a reduced failure probability.
For this servo, the upper and lower design specifications are 255 rad/s and 245 rad/s respectively.

Therefore, the two LSFs become
g,(v)=255-2(v) (5.3)

g,(v)=2(v)-245 (5.4)
Since the variables are assumed to be Normal distributed and uncorrelated, following example 1

o]

The first step is to search for a feasible design using (4.30) and then using this feasible design as

in Chapter 4, the transformation to u-space looks like

tol,u
v, - ﬂ1(1+—3801J

tol,u
Vo — K, (1+ —3602 j

I(u,v, g, tol; )=

a starting point, we search for the minimum system failure calculated using (4.31). Since the

limit-state surfaces do not intersect, the optimization problem is formulated as shown in (5.5).
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min Pr(F)=Pr(g,(V)<0)+Pr(g,(V)<0)
Subject to:
u, -null(vg, (u)), =0 (5.5)
us - nu"(ng(u))l =0

0.0078) _ _[0.0081
09 [T*V=] 11

The constraints ensure that the MLFP is found and the means fall within the specified

boundaries.

Since the mechanistic model is very simple, the best design found using each metamodel is
compared with the design found using the mechanistic model. In Table 5-4, the MLFP at each
LSS is shown along with the corresponding reliability index. The design found using each
metamodel is very close to that obtained when the mechanistic model is used. Following the
metamodel validation results shown in Table 5-3 where the RBF provided the best fit, the MLFP
estimated using the RBF is closest to the MLFP found using the mechanistic model. This result is

also seen when comparing the reliability indices.

Table 5-4: The MLFP, and the corresponding reliability index, at the best design.

Model Best Design MLFP and fr
"0.008006] | U’ = [—1.944] = I 1.896}
Mechanistic | sy =| Y] 1429 2| -1.450
0.9997
- Pe, =2.413 P, =2.387
f0.008001 | uf = [-1.929] U = [ 1.907
RM wy =\ '] 1418 271 -1.460
0.9999 - - =
- - P, =2.394 P, =2.402
r0.00800d | U’ [—1.929] U [1.910
. 1= 2 =
Krigi = 1.419 -1.462
g AT 0.9999 - - S
- - Br, =2.395 P, =2.405
0.0080 . [-1.929] - 1,912 |
RBF uy =\ 06 Y] 1417 2| -1.464
1.001 = = -
- Br, =2.393 Pr, =2.408
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Table 5-5 compares the failure probabilities calculated using FORM and a MCS where Pr(F;) =
Pr(g:(V) < 0) and Pr(g.(V) < 0). For MCS, 500,000 sample sets have been used to estimate
probability. For the RM and Kriging, the FORM estimate of failure probability is very close to
that found using the MCS. For the RBF, however, the error is larger. An interesting point,
however, is that the when MCS is used with the RBF to estimate probability, the failure
probability is closer to the mechanistic model results than either RM or Kriging. This result
coincides with Table 5-3 that shows the RBF has the lowest predictive error.

Finally, the limit-state surfaces at the best design are plotted and are shown in Figure 5-2. The
position of the LSSs is one of the special cases discussed in Chapter 4 where 6 = 180 and p = -1,
therefore the intersection is zero and the system failure is just the sum of the two failure regions.
From Figure 5-2, it is clear that the design is also “balanced” since the distance of the LSSs from
the origin is approximately equal. This point is also noticed in Table 5-4 where the reliability

indices corresponding to each LSS is almost equal.

Table 5-5: The best design found using the model identified in the first column with FORM.

FORM MCS
Model Best Design CPU CPU
Pr(Fs) Pr(F2) Time Pr(F1) Pr(F2) Time
. [0.008000]
Mechanistic | u, = 0.9997 0.007912 | 0.008490 <2s 0.007778 | 0.008606 <1s
[0.008001]
RM My = 0.008323 | 0.008159 <2s 0.008505 | 0.008030 <1s
| 0.9999 |
. [0.008001]
Kriging My = 0.008285 | 0.008133 ~3s 0.008404 | 0.008118 ~4.5s
| 0.9999 |
0.008006
RBF My = 1001 0.008400 | 0.008000 ~8s 0.007830 | 0.008320 ~4s
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Figure 5-2: The two limit-state surface (in U-space) and the joint Normal PDF contours.

Summary

This example has found the means of the design variables that minimizes the system failure. The
results found using the metamodel approximation of the LSF has been compared to those found
using the original LSF. All metamodels have been able to estimate the location of the MLFP very
accurately. The accuracy is checked by comparing the results from the metamodels with those
obtained using the mechanistic model. When FORM is used to search for the best design, the
results obtained from the RM and Kriging are better than those from the RBF. However, when
the MCS is used to check the failure probability at the best design, the RBF has been found to be
more accurate. In terms of speed, using FORM with the RM has been found to be the fastest but
slowest with the RBF. For MCS, the RM is still the fastest but now the RBF is just about as fast
as Kriging.
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5.2 Example 2 - Thin Film Layer

The electrical impedance of a film is given explicitly as a function of three variables vy, v, and vz
through the equation (Bagchi and Templeton 1994)

87 5.98v,
2(v)= N In(O.SVZ +V3J (5.6)

The dielectric constant of the material, €, has the value ¢ = 3.094539. Previous work done with

this example assumes that the variables are normally and independently distributed with means
and tolerances as shown in Table 5-6.

Table 5-6: The distribution parameters of each variable.

Design Variable Distribution | Parameters gtar_lda}rd
eviation
V1 — Insulator Thickness Normal W = 26.6 o1 = 0.3333
V, — Conductor Line Width Normal u,=17.5 o, =0.2222
V3 — Line Height Normal Uz =6 c3=0.1111

Using the relation p; + 60, three levels of each design variable are obtained, as shown in Table 5-
7, and a full 3° factorial design is used to generate the training sets. In the event that the final
design may fall on the boundary constraints of the mean of each design variable, a training design
range is chosen to be wider than the 3o design limits to ensure that the metamodel fits outside of

the design range.

Table 5-7: The low, nominal and high values of each design variable.

Variable X1 X2 X3
Low 246 | 16.17 | 5.33

Nominal | 26.6 | 17.5 6
High 28.6 | 18.83 | 6.67

A sample of the training sets is shown in (5.7).
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Xg1 Xeo o Xpg [24.6 16.17 5.33]
Xo1  Xg2  Xy3 246 1617 6
X=| : : : =| : : (5.7)
Xoe1  Xog2 X263 286 1883 6
Xo11 Xor2 Xazsl, . 286 1883 667,

Similar to example 1, the fitting parameters of each metamodel are estimated and CV-RMSE
and CV-MAE is estimate for each metamodel. The results are shown in Table 5-8. All three
metamodels again provide good fits of the training design. In this case, however, the best fit is
obtained using the RM.

Table 5-8: The CV-RMSE and CV-MAE estimates of each metamodel.

Model CV-RMSE CV-MAE

RM 1.053x10™" | 7.272x10™*
Kriging | 2.67x10" | 2.39x10°

RBF 1.849x107°% | 1.678x1072

For the electrical impedance of the thin-film layer introduced in the previous chapter, the upper
and lower specifications are 86Q and 84Q respectively. Based on these specifications, the limit-

state functions are

9,(v)=86-2(v) (5.8)

9,(v)=2(v)-84 (5.9)
Variables are transformed according to the transformation in the previous example. Therefore, V
is a function of the mean (uv) and standard deviation (ov).

This problem is similar to (5.5)

min  Pr(g,(V)<0)+Pr(g,(V)<0)
Subject to:
u, - null(Vg, (u))=0 (5.10)
u, -null(Vg,(u))=0
ty =30y Spy <py +30y

The best designs are shown in Table 5-9 along with the corresponding MLFPs and the reliability
indices.

71



.Chapter 5 Probabilistic Design of Static Systems

The best design found using the mechanistic model is assumed to be the most accurate. From
table 5-9, the closest design to the mechanistic model has been found using the RM followed by
Kriging and then the RBF. A comparison of the MLFP and reliability indices also shows the
closest estimates have been found using the RM.

Table 5-9: The MLFP and reliability index at the best design found using each metamodel.

Model Best Design MLFP Br, | Pr,
[27.60] [ 1.184 ] ~1.190]

Mechanistic | #, =|18.00 u; =|-0.8643 us =| 0.8299 1556 | 1542
6.329] | —0.5211] 0.5229
[27.60] [ 1.185 | [-1.191]

RM u, =18.01| | u; =|/-0.8665| | u; =|0.8295 1.558 | 1.543
6.328] | -0.5219) 05226
[27.60] [ 1.183 [-1.188]

Kriging u,=|1800| | u; =/-0.8519| | u; =|0.8319| | 1.553 | 1.544
6.330] | —0.5244 | 0.5198]
276 ] 1.180 -1.193

RBF u, =|18.02 u; =|—0.8670 u, =|0.8275 1.558 | 1.538
6.323 -0.5328 0.5092

Table 5-10 shows the probability of failure estimates using FORM and MCS and the
corresponding CPU times. For MCS, 100,000 runs have been used. Similar to the previous
example, the fastest times have been observed with the RM. When FORM is used to evaluate

probability, the RBF is slowest but becomes a lot faster when MCS is used.
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Table 5-10: The failure probability at the best design.
Best Design FORM MCS

Model CPU
Iu{)/est Pr(Fl) Pr(FZ) Time Pr(Fl) PF(FZ)

CPU
Time

[27.60

Mechanistic | , ={18.00 0.05986 | 0.06158 2s 0.05957 | 0.06097 <1s
6.329

[27.60

RM u, =|18.01 0.05965 | 0.06147 2s 0.05865 | 0.06144 <1s
6.328

[27.6

Kriging u, =|18.00 0.06070 | 0.06172 6s 0.06024 | 0.06166 | ~1.5s
6.330

[27.60]

RBF u, =|18.02 0.0597 0.0620 15s 0.0593 0.0622 ~1s
6.323

Summary

Metamodels have been used to search for the means of the design variables that minimize the
system failure. The designs found are the best that meet boundaries placed upon the means of the
design variables. From Table 5-8, the CV-RMSE and CV-MAE estimates indicate that the best
accuracy comes from the RM. These results coincide with those of Table 5-9 that shows the
estimate of the MLFP found using each metamodel. From Table 5-8, the RM model has been
found to be the best in terms of both speed and accuracy. The speed of Kriging and the RBF is
very slow with FORM but must faster when the MCS is used to evaluate probability.
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5.3 Example 3 - Voltage Divider

Consider the voltage divider circuit shown in Figure 5-3 taken from (Seshadri and Savage 2002).

R2

E:

Figure 5-3: A Voltage Divider Circuit.
The potential source is a constant at E; = 5V (deterministic variable) and the two impedances R,

and R; are the design variables (denoted as v; and v;) each with a normal distribution

[ui,aiz z(tol%ooyi ﬂ The potential at B and the flow in the network are the responses of

interest. The target potential at B is 2.5 units and the target flow is 0.0025 units. The two
responses are functions of the deterministic and design variables whose mechanistic models are

shown in (5.11) and (5.12) respectively

2,(v)=—25L (5.11)
vV, +V,

z,(v)= B, (5.12)
Vv, +V,

For the design variables, the correlation coefficient is p = 0. The design parameters are the means

and tolerances of the two impedance distributions and their limits are shown below

900< z; <1100

5.13
5<tol; <10 (6.13)
Using the boundary of the mean, three levels of each design variable have been obtained and
used to develop the training design based upon a 3% factorial design. The training design is then
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substituted into (5.11) and (5.12) to find the corresponding training responses for voltage and
current. The metamodel parameters are estimated and the CV-RMSE and CV-MAE estimates are
shown in Table 5-11. According to Table 5-11, the smallest predictive error comes from the
RBF.

Table 5-11: The CV-RMSE and CV-MAE estimates for each metamodel.
Voltage Current
CV-RMSE CV-MAE CV-RMSE CV-MAE

RM 4.48x107* 1.98x10* | 6.017x10™* | 1.379x10°°
Kriging | 2.96x10™* 1.84x10™* 5.60x107* 8.05x107*
RBF 2.534x107° | 7.035x10° | 9.774x107° | 2.256x107*

Model

The upper and lower specifications for both responses are + 4% of target giving rise to four limit-

state functions

9,(v)=2.6-z,(v ) (5.14)
92(v)=2(v)-2 (5.15)
05(v)=0.0026-z () (5.16)
9.(v)=2,(v)—0.0024 (5.17)

Figure 5-4 shows a plot of the LSSs at the original design. The LSS corresponding to g4 is not
shown since it falls outside of the plot area. Although g; and g, seem to be acceptable, gs is not
since it lies very close to the origin. The first step is, therefore, to search for a feasible design
using (4.30).

This problem is an integrated design problem, therefore, after finding the feasible design, the

best design is found by minimizing the total cost subject to the constraints shown in (5.18).

min C; =C, +C\q
Subject to:
u; -null(v, g; (u)); =0 (5.18)
900< 1, <1000
5<tol, <10
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gi(u)=0 —>

Figure 5-4: The limit-state surfaces at the initial design.

The total cost is the sum of the production and scrap costs. For the production cost, the two
impedances are assumed to have reciprocal cost relations of the form, cost; = bi/tol;. The cost of

disposing the non-conforming product is Cs. The cost function for n circuits is then

C, =(l+b—2+ Pr{F(,ui,toIi)}*Cijnc (5.19)

For this study, it is assumed that n, = 1000, b; = 0.3 and C = $0.6. The optimal design parameters

are shown in Table 5-12.

Table 5-12: The optimal parameters, found using each model, along with the corresponding
conformance probability and cost.

Model Meansoptimal Paramete;;erances E:L%k;g?:::;)r/]gg S
Mechanistic | x4, =[10014 10014] | tol, =[6.044 6.044] 0.99 105.3
RM u, =[10012 10014] | tol, =[6.023 6.023] 0.99 105.6
Kriging 1, =[10015 10015]" | tol, =[6.041 6.041] 0.99 105.3
RBF u, =[10014 10014] | tol, =[6.017 6.018] 0.99 105.7
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Summary

The optimal parameters found using each metamodel are similar. However, the design found
using Kriging is closest to the results from the mechanistic model. Figure 5-5 shows the LSSs at
the best design. A comparison of Figure 5-5 with Figure 5-4 shows a more balanced design than
the original design since all LSSs are about the same distance from the origin.

3

gi(u) =0

O2(u) =0
W) =0
(=0
Normal

CDF

Figure 5-5: The limit-state surfaces at the best design.

5.4 Example 4 - Overrun Clutch Assembly

An automotive overrun clutch (Seshadri and Savage, 2002 and Son, 2006), shown in Figure (5-
6), comprises four different parts: one hub, one cage, four rollers and four springs. The springs
push the rollers out to remain in contact with both the cage and the hub. If the hub is turned
counter-clockwise, relative to the cage, the rollers bind, causing the cage to turn with the hub. If
the hub turns clockwise, relative to the cage, the rollers slip and there is no torque transmission.
The contact angle, shown as Z, is important for proper operation. If the value of the angle is
greater than the upper specification limit or less than the lower specification limit, the clutch does

not work correctly and it must be reworked or scrapped.
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The overrun clutch, shown in Figure 5-6, comprises three design variables vi, v,, and vs
associated with the dimensions of the cage, the hub and the rollers.
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Figure 5-6: An overrun clutch assembly (Source: Seshadri and Savage, 2002).

Each of the design variables is assumed to be normal and the nominal values of the design

variables are 55.29mm, 22.86mm, and 101.69mm. The response z is the angle given by the
function

z(v)=cos™ (uJ (5.20)
Vi —V,
The angle has a target-is-best performance measure with upper and lower specification,

0.122+0.035rad respectively. These two design specifications lead to two LSFs shown in (5.21).

9,(v)=0.157-z(v)

9,(v)=2(v)-0.087 (5.21)
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From Son, 2006, the upper and lower bounds of the means are considered as nominal values +
0.2mm. Using this relation, three levels of each design variables are obtained as shown in Table
5-13. A full factorial design is used to develop the training design where the 3 levels of each

design variable are shown in Table 5-13.

Table 5-13: The three levels of each design variable.

Levels X1 X X3

Lower 55.09 | 22.66 | 101.49
Nominal 55.29 | 22.86 101.69
Upper 55.49 | 23.06 | 101.89

The parameters of each metamodel are estimated and the predictive error of each is shown in
Table 5-14.

Table 5-14: The error estimates of the fit of the metamodels.

Model CV-RMSE | CV-MAE

RM 3.657 x 10° | 2.599 x 10®
Kriging | 2.159x10° [ 4514 x 107
RBF 2.395x 10° | 4.380 x 10®

From Table 5-14, all metamodels give very small estimates of CV-RMSE and CVMAE. The best
metamodel in this case is Kriging.

Holding v, constant at the mean value, the limit-state surfaces are plotted (Figure 5-7) for each
model-type estimate of the LSF. All four figures show linear limit-state surfaces. Also, the
metamodel approximation of the limit-state surfaces is very similar to the mechanistic model
limit-state surface. This shows the accuracy of the metamodels. Now, FORM is used to check the

failure probability at the initial design using each model.

From Table 5-15, the MLFP and reliability index estimates found using the mechanistic,
regression and Kriging models are close. Also, the number of iterations required to converge to
the MLFP is the same. For the RBF, however, the position of the MLFP found is not as accurate
as those obtained using the other two metamodels. Also, for the RBF, the number of iterations
required to converge to the MLFP is larger than for the RM or Kriging. The probability of failure

and CPU time comparison is shown in Table (5-16).
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Figure 5-7: Plot of the limit-state surfaces. (a) Mechanistic Model, (b) Regression Model, (c)
Kriging and (d) RBF.
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Table 5-15: The MLFP estimates, from each model, at the original design.

FORM .
Model
MLFP and pr Iterations
0.4920 -0.3783
u, = 1179 u, =| -0.9023
Mechanistic —0.7842 0.5978 3
B; = 1.499 B2 =1.147
[ 0.4912 | [-0.3791]
u, = 1.177 u, =| —0.9043
RM | -0.7829) | 0.5991 | 3
BL=1.496 Po=1.149
[ 0.4920 | [-0.3783]
uy=| 1178 | | u;=|-0.9024
Kriging | -0.7842) | 05978 | 3
BL=1.498 Po=1.147
[ 0.4950 | [-0.3730]
u, =| 1185 u,=|-0.8838
RBF ~0.7804 0.5930
L - = - 15
B1=1.503 P2=1.128

From Table 5-16, when FORM is used to estimate probability, the best estimates are found
using either the RM or Kriging. The same conclusion can be drawn when MCS is used for
probability evaluation. In terms of CPU time, the fastest time is observed when FORM is used
with the RM and the slowest from the RBF. For MCS, the RBF is not as slow.
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Table 5-16: The probability of failure estimates at the original design.

Method Pr(gi(U)<0) | Pr(g2(U)<0) | CPU Time
Mechanistic and
FORM 0.0670 0.1258 2s
Mechanistic and MCS
(50,000 runs) 0.06693 0.1242 1s
Metamodel FORM
Regression 0.0673 0.1253 25
Kriging 0.0671 0.1257 7s
RBF 0.0665 0.1297 36s
Metamodel and MCS
(50,000 runs)
RM 0.06614 0.1242 1s
Kriging 0.0670 0.1261 25
RBF 0.0685 0.1284 2s

This problem aims to reduce the total cost which is the sum of the production and loss of
quality costs. The production and loss of quality costs for the clutch assembly, (Seshadri and
Savage 2002), are calculated using (5.22) and (5.23) respectively. Notice that the production cost

uses a reciprocal cost-tolerance model.

C,=|35+ 0.75 +[3.0+ 0.65 +105+ 0.88 (5.22)
tol, tol, tol,
Cyo =Pr(F)xC; (5.23)

The problem is formulated as shown in (5.24) where the lower and upper bounds of the means
are provided in Table (5-13) and there are also limits on the tolerances. The scrap cost, Cs, is set
as $20 and the goal is to search for the set of means and tolerances, of each variable, that

minimizes the total cost.
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min C; =C4 +Cp
st.
g;(u)=0 i=12

u; -nuII(Vugi(U))j =0 (5.24)
/1\58 < Uy SIU\L;B |

0.12 0.25
0.08|<tol, <| 0.3
0.2 0.4

From Table 5-18, using the results obtained from the Mechanistic model as the true or most
accurate results, the best mean and tolerance, of each design variable, has been found to be
almost identical when the Regression Model or Kriging is used. The same accuracy has not been

observed with the RBF. Cost estimates are also the same using Kriging or the RM.
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Table 5-17: The best means and tolerances found using each metamodel.

FORM
Model Mean Tolerance MLFP and r Cost
0.6847 —-0.6884
55.497 0.25 u; =| 1.139 u, =| —1.140 Cr = 1745
Mechanistic | z, =|22.878| | tol, =|0.2082 -1.000 0.9972 C,=1552
101.89 0.3667 Ciq = 1.925
B =1.663 B, = 1.664
0.6847 ~-0.6884
55.497 0.25 u; =| 1.139 u,=| —1.140 C, = 17.45
RM u, =|22.878| | tol, =|0.2082 -1.000 0.9972 C,=15.52
101.89 0.3667 Ciq =1.925
B =1.663 B, =1.664
0.6849 -0.6883
u, =| 1.138 u, =| —1.140
o497 025 ~1.000 0.9973 | | St=1745
Kriging uy =|22.878| | tol, =/0.2082 ' ' Cp=15.52
101.89 0.3666 Co=1.925
B.=1.663 B, =1.664
0.6482 -0.5937
55.317 0.25 up=| 11940 | | u;=|-10766| | o _; 564
RBF My =|22.881 tol,, =|0.2285 —-0.9516 0.8424 Cp=15.24
10173 0.3682 Co=2.33
B. = 1.659 B, = 1.490
Summary

This example has attempted to use metamodels to search for the best design of an overrun clutch

assembly. From the results found in Table 5-17, the final design found using Kriging is closest to

that obtained using the mechanistic model. The RBF produced the least accurate design. In terms

of speed, the number of iterations required to find the MLFP at the original design has been

recorded. Both Kriging and the RM have been found to converge quickly. The same has not been

observed for the RBF. The accuracy of the FORM-based probability estimates has been

compared with the MCS-based probability estimates and the percentage error has been recorded

in Table 5-16. From this table, although all percentage errors have been found to be very small,
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the largest error has been observed from the RBF. This indicates that, perhaps, the using FORM
with the RBF is not as accurate as with the other metamodels.

5.5 Conclusions

In this chapter, the optimization of static systems with uncertain design variables has been
performed using a metamodel approximation of the mechanistic model and FORM to estimate
probability of failure. A MCS has also been performed to check the accuracy of the design found
using FORM. Results have been compared and a brief summary following each example has
been provided. Generally, the metamodels seem to have a lot of potential for probability-based
design optimization. In terms of speed, in all cases, the RM has been found to be the fastest when
both FORM and the MCS has been used to estimate probability. This is expected since the
metamodel is not as complicated as either Kriging or the RBF. When FORM has been used to
estimate probability, the RBF has been found to be the slowest of the three metamodels.
However, the RBF has produced a faster computation time when the MCS has been used to
estimate probability. In these static examples, the RM has been found to be the best in terms of

speed and its good accuracy.
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Chapter 6

Probabilistic Design of Dynamic Systems

6.1 Introduction and Problem Description

This chapter shows how SVD and metamodels are used to approximate a time-invariant
performance measure based upon a time-variant response through the use of a position-control
servo mechanistic. FORM will be used to estimate probability and the final design will be the
combination of the means of the design variables that result in a reduced failure probability.
Since there is no cost component for this example, tolerance design is performed by lowering the

tolerance of the variables and searching for the means that meet the optimization goals.

The servo is to be operated as a position control system whereby the final rotational angle of
the shaft is important to the over-all mechanism. A system schematic is shown in Figure 6-1 and

comprises mainly an amplifier, a motor and an angular position detector.
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Figure 6-1: A Schematic of the Position-Control Servo
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A load torque To (N-m) models the subsystem attached to the drive shaft. The input is the

reference angle @, and the output is the shaft angle @ although angular speed @ and motor current

i are measureable as well. The dynamic lifetime, z_ is identified as the time at which the angular
speed becomes steady-state. The prospective design variables are the amplifier gain G (V/V), the
system rotational friction B (N-m-s/rad), the system rotational inertia J ( kg-m?), the motor
winding inductance L (H), the winding resistance R (©2) and the motor torque constant K (N-
m/A). A model of the servo is formed as a set of state equations in terms of the shaft angle, the
angular speed and the motor current and has the form

0 0 1 0 T6o() o 0],
ol=| 0 -B/J K/ o)+ 0 1/J [ R} (6.1)
i| |-G/L -K/L -R/L|i(z)| |G/L 0 |-°
The winding resistance, R, and the friction, B, are prone to degradation and their values increase
over time. Equation (6.1) has been simulated using Simulink® in MATLAB®.

For an arbitrary initial design, an importance analysis ranks the normalized sensitivities and
then is used to separate the variables into a) four deterministic variables L, J, R and B, that
subsequently remain deterministic, and b), two design variables G and K that retain their

uncertainty. The performance measures of interest are functions of angle and its angular speed.

For the probabilistic design of the position control servo, three performance measures that
include the angular position only and these are a) the integral of squared error (ISE), b) the
angular position at peak time (i.e. tox = 0.035s) and c) the angular position at settling time(i.e. 7
= 0.1s). The most common index is the integral of the squared error, ISE (Ogata 1990). The ISE
is a performance index that indicates the “goodness” of a system performance. A control system
is considered optimal if the values of the parameters of the design variables are chosen so that the
selected performance index is minimum or maximum (Ogata 1990). For this example, we attempt
to minimize the ISE. Given an input signal zz(t) and the system response z, the ISE index is

defined as

ISE = j[z z(v,7)Pdr (6.2)
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Or in sampled mode

1SE=ArS [2a(r, ) 2(v,7, )P (6.3)
With vector notation, the time-invariant ISE is
ISE(V)= Az (2)- 20, [z (7) - 2(v.7)] 6.4
=y(v)

The derivative of (6.4) is then

%z_zm[zR(r)_z(v,r)]T i(vvf) (6.5)
The performance measures are written in terms of the metamodels at appropriate times. The
initial design gives ISE=11.0x107°. For the desired angular position of one radian, the design
criteria set the maximum over-shoot shaft angle as 1.11 radians and the minimum shaft angle at

settling time as 0.978 radians. Now we can write three LSFs

9, =11.0x107° - ISE
g, =1.11-6(t,,) (6.6)
g5 =06(t, )-.978

|: }
uv—
K

And using the statistical tolerance (i.e. 30) as a percentage of the mean, then

tol x g 2
300
cov, =

2
0 tol x gz,
300

For probabilistic design we let
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Minimize Pr(g,(z, )<0)
Iy

st.

®(- 4)=25 =123

g;(u)=0i=123 (6.7)

u; -null(vg; (u;)), =0 i=123j=1

Lg +30g S g <Hg —30¢

L 430 Spu¢ <H —30y
Since variables are assumed to be independent and follow a Normal distribution, the
transformation to u-space looks like

Vi =4 oY

6.2 Training Design

In the initial design, the deterministic noise variables are set as follows: resistance R = 4 Q, the
motor friction B = 10 N-m-s/rad, the system rotational inertia J = 10° kg-m? and the motor
inductance L = 18/10000 H. The conversion variables k; and k;are 1 V/rad. The load torque is set
to a constant 7o = 2/10000 N-m. The two control variables G and K are assigned independent
normal distributions and their nominal values are 5.0 and 8/1000 respectively.

For design, a wide enough range should be selected so the metamodel fits a large enough range
of the design variables to search for an improved design. Using the relation y; + 6c;, five levels of
each variable, G and K, are selected and denoted as L (Low), LN (Low-Nominal), N (Nominal),
HN (High-Nominal) and H (High).

x- [ 45] xy [0.0072]
x N |4.75 x:N10.0076
x' =| 50 x) =| 0.008
x™ 1525 xsN10.0084
x/  |5.50] x;'0.0088

The reference angle is one radian, entered as a step, and the dynamic life time is 0.1s.

When provided with the training design, the first step is to determine how many cycle time
increments are necessary. In order to obtain this information, the angular position response is
recorded at various possible cycle time increments. The ISE is then estimated using (6.4) and
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recorded. When the ISE estimate starts to converge, that cycle time increment is chosen. Table 6-
1 shows the ISE estimates for three possible cycle time increments that have been recorded at 5

sample training sets.

Table 6-1: The ISE estimates using three possible cycle time increments at 5 training sets.

G K At=0.002 | At=0.001 | At=0.0005
4.5 0.0072 | 0.012916 0.012416 0.012166
4.75 0.0076 | 0.012191 0.011691 0.011441
5.00 0.0080 | 0.011568 0.011068 0.010818
5.25 0.0084 | 0.011027 0.010528 0.010278
5.50 0.0088 | 0.010554 0.010054 0.009804

From Table 6-1, the difference between the estimates at At = 0.001 and At = 0.0005 is small.
It is important to note that the number of time steps a particular cycle time increment produces
should also be taken into consideration. Although SVD is used to reduce the number of
metamodels to be built, finding a metamodel to represent the ISE requires that a metamodel at
every cycle time increment is obtained that is then subtracted from the desired input signal. As At
gets smaller, the number of increments gets larger and the process to build the ISE metamodel
gets slower. Since At = 0.1, the three possible time increments would lead to 51, 101 and 201
time increments respectively. Based on accuracy and speed of computation, At is chosen to be
0.001. Computer experiments and time sampling with At = 0.001 provide the angular position,

angular speed and motor current matrices [@],5,0,and [Q],5,,,and [I],5.,, respectively. Herein,
only the angular position matrix [©],s.,,, is considered.

After application of SVD to the matrix [@]sx101, the second step is to determine the number
of significant singular values, s. Now, using various possible value of s, the response matrix is

estimated using the expression

0= [D@ ]25xs [Q(TE) ]leOl (6.8)

Using ®, ISE is estimated and compared with the ISE estimates using @. Results are shown in

Table 6-2 for a sample of 5 training sets. The best results are obtained when s =4 or s = 5. Since
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the result is exact to 6 decimal places when s = 5, this value is chosen to be the number of
significant values. A metamodel is now fit for each of the five columns of D.

Table 6-2: ISE estimate using three possible values of s.

Mechanistic Number of columns of S
Model s=3 s=4 s=5
45 0.0072 | 0.012416 | 0.012398 | 0.012417 | 0.012416
4.75 0.0076 | 0.011691 | 0.011693 | 0.011689 | 0.011691

5 0.008 0.011068 | 0.011072 | 0.011069 | 0.011068
5.25 0.0084 | 0.010528 | 0.010526 | 0.010529 | 0.010528
55 0.0088 | 0.010054 | 0.010051 | 0.01005 | 0.010054

G K

—-8.948 -0.4534 -0.04937 0.006255 —0.0009667

_|—9.005 -0.3469 -0.02792 0.002084 —0.0002849

Dy = (6.9)

—-9.331 04316 -0.05372 -0.0004822 0.004245 |, .

6.3 Results

Experiment 1: Tolerance =5%

Starting with an initial design, x; =5, 14 =8/1000 let tol = 5 in the variance terms. The LSFs at

this initial design are built, transformed to u-space and their tangent hyper-planes plotted as
shown in Figure 6-2. The surfaces estimated by the metamodels are all very similar in appearance
and fall at approximately the same position relative to the normal CDF contours. From the
figures, the g; LSS has the worst failure probability.

To determine the position of the failure region, the sign of the LSF at the origin is determined.
At the original design, these signs are a; = -1, a, = 1, a3 = 1. Since a; = -1, this means that the
failure region corresponding to g;(u) covers the origin. The LSSs at the original design, plotted
using a RM approximation of the LSF, are shown in Figure 6-2(a). Figures 6-2(b) and 6-2(c)
show similar results when the Kriging and RBF metamodels are used to approximate the LSS.

From the figures, g»(u) seems to be at an acceptable location because it is quite far away from

the origin thus producing a small failure region. The other two surfaces, however, are still too
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close to the origin especially g;(u) that is almost on the origin. The goal is, therefore, to push the

failure surfaces further away from the origin.
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Figure 6-2: The limit-state surfaces at the original design. (a) Regression Metamodel, (b) Kriging
Metamodel (c) RBF Metamodel.
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In order to check the actual failure probability, the MLFP at the initial design is found for each
metamodel. These results are shown in Table 6-3. The position of the MLFP estimated using
each metamodel is very similar. All metamodels converge in 5 iterations; however, the time to
converge differs as observed in Table 6-4. In order to check the accuracy of the metamodels, the
failure probability at the initial design is estimated using a MCS of the mechanistic model and
compared with probability estimates obtained using the metamodels with FORM and MCS.
These results are shown in Table 6-4.

From Table 6-4, the best probability estimates are observed at the RBF. Although slow when
used with FORM, the accuracy is maintained when MCS is used and the CPU time is a lot faster.
Even though FORM with the RBF is so slow, it is still six times faster than using a MCS
simulation of the mechanistic model. An increase in speed is further obtained using a MCS of the

metamodels.

Table 6-3: The MLFP and reliability index estimates from each metamodel.

Model MLFP and Br
[—0.1699] 3.087] [~ 0.8623]
u, = u, = Us =
RM | —0.1592] |1.743] | —0.8116]
Pr, =0.2328 Pr, =3.545 Pr, = 1.185
[—0.1668] [3.115] [—0.8510)]
u, = u, = Us =
Kriging | —0.1559| 11.737| | —0.7143]
Pr, =0.2283 Pr, =3.567 Br, =1.111
[—0.1671] 3.118] [—0.8572]
u, = u, = Uz =
RBF | —0.1559] 11.741] | —0.7127|
g, = 0.2285 Pr, =3.571 Br, =1.115
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Table 6-4: Probability comparisons at the initial design.

Model Pr(g:(U) <0) Pr(g2(U) <0) Pr(gs(U) <0) Time
Metamodel and FORM
RM 0.4080 1.962 x 10™ 0.1180 15s
Kriging 0.4097 1.806 x 10™ 0.1333 200s
RBF 0.4096 1.779 x 10™ 0.1325 500s
Metamodel and MCS
(100,000 runs)
RM 0.4111 2.2 x 10" 0.1350 3s
Kriging 0.4120 1.8 x 10™ 0.1345 4s
RBF 0.4109 2.0 x 10 0.1317 4s
Mechanistic Model and
MCS 4
(100,000 runs) 0.4089 1.6 x 10 0.1323 3000s

The next step is to obtain a feasible design using (4.30). Since the accuracy of the Regression
Model is quite good and is the fastest, this model is used to search for a feasible design that is
then used by all metamodels to search for the best design. The limit-state surfaces at the feasible
design are shown in Figure 6-3. A test of the sign of the LSSs at the origin show that a; = 1, a; =
1 and a3 = 1which means that the origin does not fall in any failure region and, therefore, the
design is feasible. From Figure 6-3, gi(u) is still too close to the origin. The algorithm to find the

best design attempts to push the failure surfaces as far away from the origin as possible.
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Figure 6-4: The limit-state surfaces, at the best design when tolerance = 5%, plotted using the
Regression metamodel.

95



Chapter 6 — Probabilistic Design of Dynamic Systems

The LSSs at the best design, when tol = 5%, is plotted in Figure 6-4 and the results are shown
in Table 6-5. All designs are very close but there is some difference in the location of the MLFP
and the reliability index. In order to check the accuracy, a MCS of the mechanistic model is used

where 1, =[4.97 0.0084]" to estimate failure probability. These results are shown in Table 6-6.

Table 6-5: The best design, found using each metamodel, when tolerance = 5%.

FORM Results
Model
Best Design MLFP and Br
L _[reto) | _f2242] | o [-2092
RM u, =| 4968 ' -1.309 1107 *1-1.956
Y 0.0084
Br, =1.924 Br, = 2.500 P, = 2.864
! [—1.418} ! {2.229} ! {— 2.063}
4.970 1) 2= 37| _
Kriging | s, - 1.314 1.132 1.691
0.0084
Pr, = 1.933 Br, = 2.500 B, = 2.668
L _[-1463] | _[2320] | [-2031
RBE | u, =| +978 t-1371 ?0.9093 1 -1.980
Y| 0.0084
Br, = 2.009 Br, = 2.500 B, = 2.836

From Table 6-6, the failure probability estimates using the RBF with MCS are the best in two
cases; Pr(gz2(U) < 0) and Pr(gs(U) < 0). Again, RBF with FORM is the slowest but fastest with
the RM. The probability of failure of the ISE limit-state function, g;, has been best estimated
using the RM.
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Table 6-6: Probability and CPU time comparisons.

Model Pr(g1(U) <0) | Pr(g2(U) <0) | Pr(gs(U)<0) | CPU Time
Metamodel and FORM
RM 0.0272 0.0062 0.0021 11s
Kriging 0.0266 0.0062 0.0038 115s
RBF 0.0223 0.0062 0.0023 230s
Metamodel and MC
(100,000 runs)
RM 0.02807 0.00594 0.00454 3s
Kriging 0.02626 0.00582 0.00348 4s
RBF 0.0219 0.00615 0.00253 4s
Mechanistic Model and MC
(100,000 runs) 0.02728 0.0652 0.00280 3000s

In order to find a better design, the tolerance is lowered to 3%. As in the previous case for
tolerance = 5%, the feasible design is found and then used to search for the best design. The
results are shown in Table 6-6. The best design found using the RM and Kriging metamodels are
the same but the difference lies in computing the MLFP. This difference, however, is quite small
and finally leads to almost indistinguishable estimates of the reliability index, f.

The next step is to check the accuracy of the final design by MCS of the mechanistic model at
the best design found using each metamodel. There are two possible designs produced; one from
using PR and Kriging, and the other when the RBF is used. A sample of 100,000 runs is
generated at each of the two possible designs and the responses estimated using the mechanistic
model. The results are shown in Table 6-8. In this case, using Kriging and RBF with MCS

produces much better results than if FORM was used.
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Table 6-7: The best design, found using each metamodel, when tolerance = 3%.

del FORM Results
Mode Best Design MLFP and Br
_ _ [—2.881] [3.678] [~ 4.018]
RM u, =| 4932 T _oeea| | Y27 |1e78| | Y T|-3.740
¥ 10.00856 - . - - - -
- b B1 = 3.924 B, = 4.042 B3 = 5.489
_ _ [—2.973] [3.473] [~ 4.008]
Kriging | x, = 4940 Y7 o746 | "2 7|1700| | "2T|-3237
0.00856 - - S - -
- h B1 = 4.040 B, = 3.867 B3 =5.151
- 4040 ! [-2.968] ! 3477 ! _[-4.010]
. 1~ 2 3
RBF =] 00856 | -2.738] 11692 | —3.241)
- - B, = 4.038 B, = 3.867 B3 =5.156
Table 6-8: The failure probability comparisons.
CPU
Model Pr(gi(U) <0) | Pr(g2(U)<0) | Pr(gs(U)<0) Time
Metamodel and FORM
RM 4363 x10° | 2.649x 10° 2.023x 108 11s
Kriging 2.676x10° | 5508 x10° | 1.293x 10" 115s
RBF 2.693 x10° | 5503x10° | 1.259 x 107 230s
Metamodel and MC
(100,000 runs)
RM 4x10° 3x10° 0 3s
Kriging 3x10° 7 x10° 0 4s
RBF 4x10° 6 x 107° 0 4s
Mechanistic and MC
(100,000 runs) 5x10° 7 x10° 0 3000s

6.4 Conclusions

Based on results that have been obtained using a MCS of the mechanistic model, there has been
some error from the results obtained using the metamodels. Since the original angular position
response is continuous and dynamic, converting the response into a set of static responses at

discrete time steps introduces the first source of error. Intuitively, as the number of time steps
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increases, the accuracy for estimating the ISE increases. However, since a metamodel has been
developed at each time step, as At increases, the number of metamodels increases and, thus, the
computation time for developing a metamodel for ISE also increases. This point is especially
evident for metamodels like Kriging and RBF that uses every training-set to develop the
metamodel. Therefore, a balance must be struck between accuracy and speed.

The next possible source of error is in selecting the appropriate number of columns of S that
are significant. Analysis that has been done at the start of the chapter shows that 5 columns are
appropriate since Z is accurate to six decimal places when compared with Z. The third source of
error comes from the metamodel itself. The only way to reduce this error is to change the
metamodel or to change the training design. The fit of each metamodel has been tested by
checking the prediction accuracy using CV-RMSE and CV-MAE. These results are shown in
Table 6-9. All metamodels have provided good accuracy. In terms of speed, the RM has been

found to be the fastest of all metamodels.

Table 6-9: The CV-RMSE and CV-MAE estimates of each column of D,.

RM Kriging RBF
CV-RMSE | CV-MAE | CV-RMSE | CV-MAE | CV-RMSE | CV-MAE
Column1 | 3.248x10° | 1.007 x 10* | 5.922x10° | 4.067x10° | 6.218x10° | 2.083x10°
Column2 | 6.572x10° | 2.199x10™* | 3.796x10° | 2.578x10° | 3.786x107 | 1.268x10°
Column3 | 3.197x10° | 1.223x10* | 7.070x10° | 4.838x10° | 4.908x107 | 1.647x10°
Column4 | 3.693x10° | 1.255x10* | 7.455x107 | 4.677x107 | 1.240x10" | 4.168x10”
Column5 | 7.348x10° | 2.422x10™* | 8.882x107 | 4.797x10” | 3.519x107 | 1.185x10°
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Figure 6-5: Plots of the ISE performance measure function. (a) Regression Metamodel, (b)
Kriging Metamodel and (c) RBF Metamodel.
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Chapter 7

Dynamic Systems with Degradation

A degrading dynamic system has the general form in eq. (1.3) where one or more of the
components (design variables) degrade as time passes. Path-tracing sampling methods have
previously been used to find failures of performance measures in times. The set-theory method
provides a more efficient approach and is the method of choice in this thesis to estimate the
cumulative distribution function of the time to failure, Cdf, when degradation of the components
is assumed. Both methods have been successfully applied to systems with static responses
(Stewart and Rosowsky 1998); (Van den Bogaard et al, 2003); (Savage and Son, 2011). A goal of
this thesis is to show how the set-theory method can be simply adapted to dynamic systems with
degradation. The Cdf is obtained by summing incremental probabilities of failure as the limit-
state functions move through discrete “service times”. Other probability functions, such as the
density function, follow from the Cdf. It is important to note that the form of the metamodels in
static and dynamic systems can be adapted to degrading systems. This is shown in the next

section.

7.1 General Metamodel for Dynamic Systems with Degradations

Degradation rates may be random. Let consider service time at discrete intervals At then

t=ty,t ---t, ---t, wheret, =t,_; + At. It follows that we can produce a sequence of response matrices,

similar to (3.5), at each service time and we write

Z, Z, Z, - Z, (7.1)
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Then following the work with dynamic systems in Chapter 3 we obtain a sequence of responses

2o(v,t) Zy(v,t) --2y(v,T) - 2(V,7T) (7.2)
Where
2,(v,1)=QWT(Vv) (7.3)
or
2,(v,1) =Q (W, D)r(v) =T,r(v) (7.4)

Note how the column of functions of the design variables is service-time invariant. In gradient-
based optimization and FORM, the derivative of the response with respect to the design variables
is required. Since, at each service time, the fitting parameters in W and the time contributions in
Q are constants, the derivatives of interest from (7.4) are

0z,(v,t)

ar(v)
aVT

Q (W| T) (7.5)

7.2 Degradation Model LSF

A service time-dependent limit-state function is denoted as g(v,t) where t denotes the service
time. As stated in Chapter 4, positive values, of the LSF, correspond to the safe domain and
negative values to the failure domain. For a dynamic system, consider an arbitrary service time t;;
a model of the performance measure that comprises either a dynamic response evaluated at cycle-

time 7 is denoted as w(v,z,,t, )or one evaluated over all cycle times 7, is denoted as w(v,1,t,).

When provided with an upper or lower specification limit, {, for the performance measure, the

LSF, for a response evaluated over all cycle times, is written as

g(v.ty)=+(¢ ~y(v. 1)) (7.6)
The failure at the component level within the lifetime [0,t.] gives the event
Pr(Fr) = Pr{g(v,t) <0 for 3t €[0,t. ]} (7.7)
When time is a fixed parameter, say t = t;, the probability of failure at t; is
Pr(F(t ))=Pr(g(V.1,)<0) (7.8)
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In general, this probability evaluation is not the same as (7.7) since it does not take into account
the time history of the system, in particular the possible failure before t. For the general case, let

us see how to combine the simplicity of (7.8) with the correctness in (7.7).

Consider Figure 7-1 where, for example, the u; axis represents an initial random variable and
axis up its random degradation rate. Three service-time progressions of a common limit-state
surface (solid lines here) are shown where hatching represents the failure regions. Notice that
region B is the actual failure region emerging at time t, as the LSS progresses through time t;
from time t,. The samples in region B contain all of the available initial values and all of the
available degradation rates. This area and the joint probability density function of our random
variables provide the incremental probability of failure that contributes to the Cdf. A
conceptually simple and efficient approach to solve the time-history probability problem - called
the set-theory method (STM) exists (Savage and Son, 2011). The STM features are as follows:

a) No planned time need be explicitly specified,

b) The method is conceptually simple since it includes the random degradation rates in the
joint pdf of V,

c) Probabilities are found contiguously at successive service time increments.

Uy

g(u.2)=0

Contours of probability 7 gu.n)=0
density for w, and u>

gu.0)=0
Figure 7-1: Time-variant limit-state surfaces (Source: Savage and Son, 2011).
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7.3 Set-Theory Method

Let there be n g LSFs. Consider, a desired product lifetime, t_ that is made up of a set of discrete
time steps using the service-time increment Az. For a time index | = 0, 1,...L, where L is the
number of time steps to the planned time, the time at the 1™ step is t, = | x A¢. For a performance
measure based upon a dynamic response, an approximation to (7.7) using discrete time events

based upon a finite time step is written as

o, <tL>>=Pr{g[@gi(v,t.)so)}} 9

A set that represents the instantaneous failure region of the i™ LSF at any selected discrete

service time, t; is defined as

Following the system failure discussions in Chapter 4, for a series system configuration, the

system instantaneous failure region at service time t; is defined to be the set

N g
F=FR,UFR,u..UF, =(JR; (7.11)

i=1
Next, the system cumulative failure set A, is defined as the set that represents the accumulation of
all system instantaneous failure regions for all discrete times up to t;. This set extends (7.11) and

is written as

|
A =Fy UF, UF, u..UF = JF, (7.12)
q=0

The safe set is denoted as A;. The emergence of the incremental failure region from a safe region,

from time t; during time interval At, is defined as

Bi=A.NA= (M J (h qJ (7.13)

q=0 g=0
Using the distribution and complement law, F, m( Fo . .mﬁ.)z(b. Applying this

relation to (7.13) for q =0, 1,...,1, a simpler relation is
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|
B/ =Fia[ |Fy=FanA (7.14)
q=0

It is straightforward to show both that (a) the failure time history can be written as
AL =UF|+1 =F, u(F1 mfo)u(Fz mFlTFO)u...u(F|+1 N K,)
=F, UB,UB; U...UB,
and (b) that all events above are mutually exclusive. The probability of failure is then
Pr(F(t,))=Pr(F,)+Pr(B,)+Pr(B,)+...+Pr(B,)+...+Pr(B_,)
The following example will show that the incremental failure region and its probability is correct

and applicable to complex systems.

Example: Consider the system shown in Figure 7-2 that consists of two components in a parallel
arrangement. There are two time-variant limit-state functions g; and g,. Their limit-state surfaces
in 2-D standard normal space, at two times t, and t;, are shown in Figure 7-2(b). The movement
of the surfaces over time are denoted as solid for t, and dashed for t;. The failure regions with
respect to each LSS are shown as grey areas. The ten mutually exclusive events are indicated as

the unique areas a,b,...,m in Figure 7-2(b).
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(@)

d

i) =0 T
e - = = = <o
, s :\C =~ g(t)=0

a(t) =0 == 4 {iib\ Galts) = 0
7 h
\\‘
‘N

(b)

Figure 7-2: A parallel subsystem and the corresponding failure regions: (a) System arrangement
(b) failure regions of g; and g at t, and t;. (Source: Savage and Son, 2011).

Table 7-1: The sets corresponding to Figure 7-2.

tO t]_
01 Fop=aubucud F,=bucudueufug
02 Fo,=cudueufukum F,=dueum
Instantaneous Fo=Fo, N, =cud F.=F.NnF,=duUe
Failure
Cumulative | %0 =Fo A =Fy R
Safe =aubueu fuguhukum =avubufuguhukum
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The right of (7.14) may be reduced so that instantaneous failure sets at only two contiguous
time intervals t; and t.; are needed. Then the corresponding incremental failure probability

becomes

P(B,)=Pr(F, "F )-P(F."F)nA) (7.15)
where Pr((F,, "F )~ A )<<PrF, ~F ). To illustrate this argument, consider Figure 7-3 that
shows a time-variant limit-state surface at three contiguous discrete times (to, t; and t;). Dark
areas indicate failure regions. The sets of interest are shown in Table (7-2). From Table 7-2,
F,nF,= a and (F1 mfo)on =@. Using equation (7.15), By = a which coincides with the
correct evaluation of By using the equation B, = A;,; N 4; . Next, for By, from Table (7-2),
F,nF,=budand (F,nF,)NnA; =d. Since the correct result is B; = b, there is a positive

and conservative probability error due to the region d. Since d «< b U d, the probability error is

small. If, however, the time step is reduced, the region, d, begins to vanish. Therefore,

Pr(B,)<PrF . NF) (7.16)

Uz A

g(t2)

» U1

Figure 7-3: A time-variant limit-state surface as it moves through time.
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Table 7-2: Sets for Figure 7-3.

to

—

1 t

F,=(dueufug) F=@ufug) F,=(aubudug)

, =(aubuc) F=(bucudue) F,

(cueuf)

F F =
A =(dueufug) | A=@audueufug) | A =(aubudueu fug)

A more convenient probability evaluation follows. By invoking the identity

F.UF =F U(F,.F) (7.17)
and replacing the last intersection in (7.17) with By, (7.17) becomes

F.,,UF =K UB, (7.18)
Finally the incremental failure probability in terms of two contiguous service time increments
becomes

Pr(B,)<Pr(F,, UF, )-Pr(F,) (7.19)

Probability evaluation by Monte Carlo is straightforward and follows.

7.3.1 Probability Evaluation

A Monte Carlo evaluation provides the safe-fail elemental state for any LSF g; at time t; as

o, [0 if gi(v,t,)<0
11 otherwise
Then for a system at time t; we have the state

|0 if thesystemisin a failurestate
' |1 if thesystemisin a safestate

For example, given a parallel system comprising n._r elements, the system state is calculated as
Nk
A4 =1—H(1—e|,i)
i=1
For example for n ¢ elements in series, the system state is
g

A= H(el,i)

i=1
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Let us define two test functions at the system level in terms of the system states to help
enumerate the incremental probabilities of system failure: these are,

1if 4, =0

0 otherwise

¢1(V’t|):{

22T 0 otherwise

For N sample sets, with v denoting the k™ sample set, the number of systems that fail at time t,

is calculated as

k=1

Similarly, the number of systems that fail at time t; or tj.; is

N
N ()t )= Z¢2(V(k),t| vt|+1)
k=1

From equation (7.19), it follows that the predicted incremental failure over time At is evaluated as

Pr(BI ): N f (tl 'tl+:\|)_ Nf (tl) (720)

With the help of (7.20), the relation between the true and predicted Cdf is written as

-

-1

Pr(Fr (t, )< Pr(F(t, ))=Pr(Fy)+ >_(Pr(B,)) (7.21)

Il
o

7.4 Error Analysis

The accuracy of the Cdf depends upon the accuracy of the incremental probabilities. The true

incremental failure is represented as

Pr(B| )T = Pr(B| )+ gTotaI(tI at|+1) (7.22)
Where the total error, erorai(ti,ti+1) is written as the sum of three error sources
1. &(t,ti+1) due to sample size N too small (MCS)

2. &(t,ti+1) due to using only two contiguous events
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3. &3(t,ti+1) due to making finite time step Az too large.

The error ¢; is due to the number of random samples taken to estimate probability. This error can
be reduced by increasing N. The error ¢, occurs when the historical time events, in set A, are
simplified using only two contiguous time events, Fi.; and F,. Finally, the error ¢; is due to
approximating continuous time using discrete time events with step size Az. In general, as the
value of Ar decreases, so does the magnitude of ¢;. A smaller time step size, however, leads to
more evaluations and to a longer computation time over t.. Typically, the optimum step size is
determined by estimating the correlation coefficient from the positions of a particular LSF, say g;,
at contiguous times t; and t+; (Savage and Son, 2011).

7.5 Summary

This chapter has shown how the general form of the metamodels is adapted for dynamic
degrading systems. By the selection of performance measures, cycle-time invariant LSFs have
been obtained. In u-space a contiguous movement of the LSSs over service time has been
observed. The incremental failure regions have been identified by the set-theory method.
Probabilities of the incremental failure region have been used to estimate the Cdf. The set-theory
method has been illustrated using a few examples and a Monte Carlo evaluation of the

incremental failure probability has been presented.
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Chapter 8
Case Study: Estimating the Cdf for the

Servo

8.1 Introduction

The servo control system presented in Chapter 6 will be used to illustrate the methodology for
approximating the cumulative failure when degradation is assumed. The design variables follow
from Chapter 6 along with their nominal values. Shaft angle, angular speed and current were
available from the model although only shaft angle was used. For this example, the performance
measures of interest are the settling angle, &; and the energy, E, required to drive the load. The
settling angle response is easily found. However, the energy supplied by the servo is not
explicitly known, it must be estimated using the responses available. Let us write energy over

cycle lifetime as

E =TPTdT:TT(r)a)(T)dT (8.1)

where o(z) represents the dynamic angular speed, t_ represents the lifetime of the dynamic
response and T(t) represents the load torque. For o(t) recorded at incremental cycle times w(ty)

an approximation of (8.1) is expressed as

E=x ZT(TK Joolz, AT (8.2)
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where C is the total number of incremental time steps that make up the lifetime, w(ty) is the
angular speed at each time increment, At is the cycle time increment and T(ty) is the torque at

each time increment. In vector form (8.2) becomes

A

ExT a(v,t\A7)=w(v) (8.3)
When the angular speed vector is replaced by (7.3) or (7.4) we now write, for service time t, the
energy has a function of only the design variables

A

E=E(v) (8.4)

Since the supply energy is required to drive the motor, a supply energy that is too low would
not be able to drive the motor. Therefore, for energy the design specification a “larger-is-better”
criterion required. This means that a lower limit is used when building the limit-state function
that the Energy should not fall below. From some previous experimental work, the lower limit
design specification for energy is shown in (8.5). The design specification for the settling angle is
the same as in the previous example. Based on these requirements, the two limit-state functions

for settling angle and supply energy, for any service time, are

9,(v)=6, —0.978

8.5
gz(V)= E -0.1959x10°° (8.5)

8.2 Problem Set-up

Selecting At

Now, let us select At that sets C the number of columns in the response matrix. We consider the
following approach. As shown in (8.3), the cycle-time increment is important. Ideally, the
smaller the time increment, the more accurate would be the energy estimation. In order to
determine the most accurate number of time steps, the dynamic response is recorded at various
time increments and the energy is computed using (8.2). The time increment is reduced until the
estimated energy approaches an asymptotic value. Table (8-1) shows the energy estimate at five

levels of the amplifier gain, G, and winding resistance, R, around their nominal values.
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Table 8-1: The supply energy estimates using three possible cycle time increments.

G R Cycle-Time Increments
At =0.005 At =10.002 At=0.001 | At=10.0005
4.966 3.82 0.000193966 | 0.000196141 | 0.000196242 | 0.000196234
5.083 3.91 0.000193737 | 0.00019559 | 0.000195686 | 0.000195675
5.2 4 0.000193936 | 0.000196149 | 0.000196256 | 0.000196248
5.317 4.09 0.00019431 | 0.000196668 | 0.00019679 | 0.000196789
5.434 4.18 0.000193908 | 0.000196156 | 0.000196268 | 0.000196261

From Table 8-1, we note that at Az = 0.001 the energy is sufficiently accurate. Now from (3.4) C
=101.

Selecting the Training Design

The winding resistance, R, is assumed to degrade and, using a degradation path model, the

degradation of the resistance is modelled as.

R=R,(1+Kgt) (8.6)
where Kg represents the percentage degradation rate of the resistance. In the degradation path
model, it is assumed that the degradation rate is also a random variable. Assume, for each service
time increment, the three design variables, G (v1), Ro (v2) and Kg (v3) are assigned independent
normal distributions.

Assuming tolerance 3% of the mean, five levels of each design variable are obtained using the

relation pj+4.50;.

x- | [4.966] | x| [3.82] | xt | [0.00382]
x| 15083 |xN| |3.91| [xiN| |0.00391
x\' [=]5.200| | x) |=]4.00| | x3' |=| 0.004
7N | 15317 [xiN | 14.09] |x™ | |0.00409
x| |5.434] | x}' | [418] | x| [0.00418]

Where M = 125. The experiments are run and the angular speed response matrix, €, is generated.
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Selecting s
Now let us look at SVD at service time t,. Application of SVD generates Q. Comparison of
energy using © and © indicates that five columns of S (hence D) are sufficient as shown in

Table 8-2.

Table 8-2: The energy estimate using different values of s.

Mechanistic Number of columns of D.
G R Model s=3 s=4 s=5 s=6
(x10%) (x10) | (x10%) | (x107) | (x10%)

4.966 3.82 1.958585 1.959082 | 1.958589 | 1.958574 | 1.958568
5.083 3.91 1.958686 1.958979 | 1.958708 | 1.958678 | 1.958685

5.2 4 1.958784 1.958866 | 1.958808 | 1.958774 | 1.958785
5.317 4.09 1.958880 1.958748 | 1.958890 | 1.958864 | 1.958872
5.434 4.18 1.958973 1.958624 | 1.958957 | 1.958948 | 1.958945

Metamodels are produced for angular speed over cycle time. Performance measures are now
readily written as functions of the design variables v.
Feasible Design

Before the Cdf is estimated, let us determine if a feasible design exists at t,. Starting with the
nominal values G(v;) = 5.2 and R(v,) = 4, the LSSs are plotted (Figure 8-1) and the reliability
indices and signs are calculated. From Figure 8-1, the LSSs are quite far away from the origin
indicating that the failure probability is small and the signs are positive. A quick calculation of Sr
for each LSF gives fri = 4.6429 and fr; = 2.6914 which gives failure probabilities of 1.718 x 10®

and 0.0036 respectively. Since this design is feasible, the Cdf is now estimated.
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Figure 8-1: The LSSs at the initial design.

8.3 Building a Cdf

The product lifetime is assumed to be 5 years (t. = 5) and, for At = 0.2, a total of 26 service time
increments is produced. At each service time increment, the SIMULINK model of the
mechanistic model is run and a new set of responses at the training design is obtained.
Metamodels are then built and FORM or MCS, along with the set-theory method, is used to
estimate the system and incremental failure probabilities. The results are compared with a MCS

of the mechanistic model.

In order to illustrate how the limit-state surfaces move through time, the limit-state surfaces are
plotted at three service time increments as shown in Figures 8-2(a), (b) and (c). Each figure
represents the limit-state surface plotted when the different metamodels are used to approximate
the LSF. From the figures, as the servo “ages”, the surfaces move closer to the origin which
means that the probability of failure increases. Since the surfaces are fully correlated (the angle
between surfaces is equal to zero), the system failure is equal to the failure probability from g, or

Pr{g.(U) < 0}. Also, the failure regions move through time in one spatial direction indicating that
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the time-varying failure regions are also fully correlated. In other words, the failure region of g,

at 1 year comprises of the entire failure regions of g, at the start of the product lifetime.

From the three figures, the surfaces are mostly straight lines (exact for the RBF estimate where

there is some curvature), therefore, the failure probability estimate using FORM should be almost

exactly the same as the failure probability obtained using a MCS. At each service time, the

failure regions corresponding to g; and g, are fully correlated; therefore, the system failure is

calculated by estimating Pr(g, < 0). Also, since the LSSs have a constant spatial direction, then

the instantaneous probability is the same as the cumulative probability (Savage and Son 2011).

Finally, the failure surfaces from the three graphs are very similar; therefore, the FORM

probability of failure estimates should be very close.
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Figure 8-2: The limit-state surfaces at three service time increments. (a) RM approximation, (b)
Kriging and (c) RBF.
8.3.1 Experiment 1: u(Kg) = 0.4%

Table (8-3) shows the failure probability at each service time estimated using each metamodel
with FORM. The second column shows the instantaneous failure probability using a MCS of the
mechanistic model. These results are assumed to be the most accurate and are used to determine
the accuracy of the metamodel estimates. From a visual inspection of the probability estimates,
the metamodels produce good results. For a better analysis of the errors, the percentage error of
the FORM and MCS estimates are plotted in Figures (8-3) and (8-4) where the error is calculated

as

%é‘l _ ([H ]Mechanistic - [FI ]Metamodel j %100 (87)

[FI ]Mechanistic
If the error is positive, then the metamodel estimates are “optimistic” and for negative errors, the
metamodel estimates are “conservative”. From Figure 8-3, regression-based FORM estimates are
always optimistic. For Kriging and the RBF, the error estimates are conservative up to 3 years
and then they become optimistic. In terms of overall accuracy, the errors of Regression Model
estimates are larger than those obtained using Kriging or the RBF. When a MCS is used, with the

metamodels, to estimate probability, the trend is the same and, again, the Regression Model
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produces the largest error. Based on Figures 8-3 and 8-4, the FORM-based probability estimates
for the Kriging and RBF metamodels are larger than the MCS-based estimates. Another trend
that is observed is large errors at the start of the produce lifetime. Since probability of failure at
the start is quite small (order 10°®), following (8.7), dividing by a small number results in a large
percentage error. A comparison of the Cdf’s shown in Figures 8-5 and 8-6 show that the errors
are really very small at the start of the service-time.

Table 8-3: The cumulative failure probability estimated using FORM and each metamodel.

Time Mechanistic RM Kriging RBF
MCS FORM MCS FORM MCS FORM MCS
0 0.0039 0.0036 0.0039 0.0040 0.0039 0.0031 | 0.0040
0.2 0.0044 0.0042 0.0045 0.0046 0.0044 0.0050 | 0.0047
0.4 0.0051 0.0049 0.0053 0.0054 0.0051 0.0053 | 0.0056
0.6 0.0064 0.0058 0.0060 0.0063 0.0061 0.0062 | 0.0065
0.8 0.0075 0.0068 0.0068 0.0074 0.0072 0.0079 | 0.0077
1 0.0086 0.0079 0.0079 0.0086 0.0085 0.0085 | 0.0089
1.2 0.0095 0.0092 0.0092 0.0100 0.0099 0.0098 | 0.0100
14 0.0113 0.0106 0.0106 0.0115 0.0113 0.0113 | 0.0115
1.6 0.0128 0.0123 0.0123 0.0133 0.0131 0.0131 | 0.0133
18 0.0144 0.0142 0.0141 0.0153 0.0152 0.0151 | 0.0152
2 0.0171 0.0163 0.0163 0.0176 0.0173 0.0173 | 0.0173
2.2 0.0198 0.0187 0.0188 0.0201 0.0201 0.0199 | 0.0197
2.4 0.0222 0.0214 0.0214 0.0230 0.0229 0.0226 | 0.0225
2.6 0.0255 0.0244 0.0244 0.0262 0.0259 0.0258 | 0.0254
2.8 0.0298 0.0278 0.0278 0.0297 0.0290 0.0293 | 0.0289
3 0.0343 0.0315 0.0314 0.0336 0.0330 0.0332 | 0.0324
3.2 0.0391 0.0356 0.0354 0.0379 0.0376 0.0374 | 0.0369
3.4 0.0439 0.0402 0.0401 0.0427 0.0422 0.0422 | 0.0415
3.6 0.0495 0.0452 0.0454 0.0479 0.0473 0.0473 | 0.0468
3.8 0.0563 0.0507 0.0508 0.0536 0.0539 0.0529 | 0.0524
4 0.0621 0.0568 0.0568 0.0598 0.0603 0.0591 | 0.0590
4.2 0.0685 0.0633 0.0636 0.0666 0.0672 0.0658 | 0.0658
4.4 0.0772 0.0705 0.0708 0.0740 0.0746 0.0733 | 0.0732
4.6 0.0854 0.0783 0.0786 0.0820 0.0832 0.0811 | 0.0817
4.8 0.095 0.0867 0.0872 0.0906 0.0908 0.0897 | 0.0903
5 0.1041 0.0957 0.0961 0.0998 0.101 0.0990 | 0.100
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Figure 8-3: The metamodel-based FORM %error for each metamodel.
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Figure 8-4: The %error from using MCS with the metamodels to estimate probability.

Now, the Cdf is plotted using the probability estimates from both FORM and MCS. Figure 8-5
shows the Cdf plot using FORM and the metamodels and is compared with the Mechanistic
model results. The error plots discussed previously displayed large optimistic results from the
Regression Model. This is observed in both Figures 8-5 and 8-6 where the Regression Model Cdf
falls below the curves obtained from the mechanistic model, Kriging and the RBF. Generally, the

curves are similar but the metamodel estimates are optimistic.
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Figure 8-5: The approximate Cdf where probability is estimated using FORM with Metamodels.
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Figure 8-6: The approximate Cdf where probability is estimated using MCS with metamodels.
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Error Analysis
Since metamodels are built for each column of D, the predictive error of each metamodel is
estimated at each column of D. At each service time, a new response matrix,  is generated

Qv,1.1,)...Q(v,1,t,)...Q(v, 7,1, )

which leads to a new D,, matrix and thus fits for the metamodels. A sample of the predictive error
of each column of D,, for three chosen service times is shown in Table 8-4 and Table 8-5 shows
the error for the settling angle. Generally, both Kriging and the RBF are better than the RM. This
result has been observed in Figures 8-3 and 8-4.

Table 8-4: The CV-RMSE and CV-MAE at three service times for each metamodel.

. Column of D,
Time Model Method
1 2 3 4 5
CV-RMSE | 9.22x10% | 1.16x10% | 2.34x10% | 4.85x10% | 1.99x10™
RM CV-MAE | 6.76x10% | 9.28x10% | 1.76x10% | 3.43x10% | 1.30x10™%
0 Kri CV-RMSE | 3.49x10™ | 1.33x10% | 1.51x10® | 1.90x10™ | 1.64x10™
rigin

N9 TCVIMAE | 239%x10% | 9.22x10% | 1.04x10% | 1.30x10% | 8.96x10%
RBE CV-RMSE | 2.95x10% | 1.05x10% | 8.28x10% | 1.52x10® | 9.77x10°
CV-MAE | 2.07x10% | 7.33x10%™ | 5.65x10% | 1.20x10% | 6.93x10°
M CV-RMSE | 9.18x10% | 1.15x10% | 2.33x10% | 4.77x10% | 1.98x10™*
CV-MAE | 6.73x10% | 9.24x10® | 1.76x10™ | 3.39x10%° | 1.30x10%
. Kriin CV-RMSE | 3.46x10™ | 1.33x10% | 1.50x10% | 1.88x10™ | 1.63x10™
N9 TEVIMAE | 237x10™ | 9.18x10™ | 1.03x10%° | 1.28x10™ | 8.93x10™
RBE CV-RMSE | 9.82x10% | 6.40x10™ | 5.50x10% | 1.30x10™ | 4.04x10™
CV-MAE | 6.30x10% | 4.36x10™ | 3.74x10% | 1.08x10™ | 2.81x10™®
RM CV-RMSE | 9.14x10% | 1.15x10% | 2.32x10% | 4.71x10™ | 1.97x10™
CV-MAE | 6.70x10% | 9.19x10% | 1.75x10% | 3.34x10% | 1.29x10™%
) Krigin CV-RMSE | 3.44x10™ | 1.32x10% | 1.49x10™ | 1.87x10™ | 1.62x10™
99 TEVIMAE | 2.35x10™ | 9.15x10% | 1.03x10%° | 1.27x10% | 8.87x10™
RBE CV-RMSE | 9.62x10% | 6.18x10™ | 5.46x10% | 1.28x10™ | 3.98x10™®
CV-MAE | 7.10x10% | 4.30x10™ | 3.73x10™ | 1.07x10% | 2.76x10%
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Table 8-5: CV-RMSE and CV-MAE estimates for each metamodel at three services times for the
settling angle response.

Predictive | Settling Angle
Time Model Error
Method W(Kr) = 0.004
CV-RMSE 3.32x10%®
RM 05
CV-MAE 2.15 % 10
0 Krid CV-RMSE 2.76 x 107
r rigin
yea ging CV-MAE 1.46 x 10"
CV-RMSE 7.21 x 10"
RBF 06
CV-MAE 4.86 x 10
CV-RMSE 3.32x10%
RM 05
CV-MAE 2.16 x 10
L vear Krigin CV-RMSE 2.65 x 10"
Y ging CV-MAE 1.38 x 10"
CV-RMSE 4.69 x 10
RBF 05
CV-MAE 3.09 x 10
CV-RMSE | 3.318 x10®
RM 05
CV-MAE 2.16 x 10
. CV-RMSE 2.53 x 107
2 years Kriging o7
CV-MAE 1.31x 10
CV-RMSE 429 x 10%
RBF 05
CV-MAE 2.88 x 10

Figure 8-7 shows the error between the FORM and MCS estimates of probability. This error is

calculated as follows

OnA _ [F| ]FORM _[FI ]MCS
o€ Fomm _( Rl x100 (8.8)

Since the LSSs are linear, this error should, ideally, be zero. The error also depends on the
number of samples used in MCS. From Figure 8-7, the error starts off being large for all
metamodels then reduces. This occurs because at the start of the product lifetime, probabilities
are around the order of 10 (refer to Table 8-3) and following (8.8), dividing by a small number
leads to a large percentage error. A comparison of the estimated Cdf shows that the errors from
the metamodels are small. As the failure probability gets larger this error is reduced. From Figure
8-7, FORM errors are smallest with the RM.
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Figure 8-7: The %error between FORM and MCS probability estimates.

8.3.2 Experiment 2: u(Kg) = 0.8%

For the second degradation rate, a new training design is required for v;. Using the same p + 4.50
range, the 5 levels for x; and x, remain the same. However, since the mean of the degradation rate

is now different, 5 new levels for x3 are obtained.

[ xt ] [4966] [ xt ] [382] [ xi ] [0.00764]
xN | 5083 |xiN| 391 [xgN| |0.00782
x\' [=]5.200| | x)' |=]4.00| | x3' |=| 0.008

x™ | 15317] | x| |4.09| x| [0.00818
x| |5434] | x| |418] | x!' | |0.00836)

A new matrix of responses is obtained at the new training design and metamodels are again fit.
Table 8-6 shows the instantaneous failure probability for each metamodel using FORM and
MCS. A larger degradation rate would imply a shorter time to failure. Therefore, the probability
at each time increment should be greater than the corresponding probability when the degradation
rate mean is 0.4%. From Table 8-6, a quick observation shows that this is true since the failure at
the end of 5 years is 0.5332 instead of 0.1041 in the previous example. Figures 8-8 and 8-9 show

the error estimates when FORM and MCS are used to estimate probability.

Table 8-6: The cumulative system failure probability when pyr = 0.008.
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. Mechanistic RM Kriging RBF
Time MCS FORM MCS FORM MCS FORM MCS
0 0.0039 0.0038 0.0038 0.0040 0.0040 0.0040 0.0041
0.2 0.0051 0.0047 0.0048 0.0056 0.0057 0.0055 0.0058
0.4 0.0075 0.0065 0.0065 0.0076 0.0077 0.0075 0.0078
0.6 0.0095 0.0089 | 0.00903 | 0.0102 0.0105 0.0101 0.0107
0.8 0.0128 0.0119 0.0121 0.0136 0.0137 0.0134 0.0139
1 0.0171 0.0158 0.0158 0.0180 0.0179 0.0177 0.0182
1.2 0.0222 0.0208 0.0208 0.0234 0.0233 0.0231 0.0236
1.4 0.0298 0.0271 0.0268 0.0302 0.0301 0.0298 0.0306
1.6 0.0391 0.0348 0.0349 0.0384 0.0384 0.0381 0.0390
1.8 0.0495 0.0443 0.0444 0.0485 0.0487 0.0481 0.0493
2 0.0621 0.0556 | 0.05611 | 0.0606 0.0609 0.0600 0.0614
2.2 0.0772 0.0693 0.0700 0.0748 0.0753 0.0742 0.0760
2.4 0.095 0.0853 | 0.08543 | 0.0914 0.0913 0.0907 0.0921
2.6 0.1141 0.1040 0.1041 0.1106 0.1104 0.1099 0.1115
2.8 0.1336 0.1254 0.1257 0.1324 0.1324 0.1317 0.1335
3 0.1591 0.1497 0.1501 0.1570 0.1572 0.1562 0.1585
3.2 0.1879 0.1769 0.1770 0.1845 0.1843 0.1836 0.1859
3.4 0.2169 0.2070 0.2076 0.2146 0.2145 0.2138 0.2163
3.6 0.2511 0.2400 0.2408 0.2474 0.2478 0.2465 0.2495
3.8 0.2865 0.2755 0.2761 0.2827 0.2829 0.2818 0.2846
4 0.3229 0.3134 0.3142 0.3201 0.3204 0.3192 0.3221
4.2 0.3594 0.3534 0.3534 0.3594 0.3592 0.3585 0.3612
4.4 0.4043 0.3949 0.3959 0.4002 0.4008 0.3994 0.4028
4.6 0.4454 0.4377 0.4383 0.4420 0.4422 0.4412 0.4442
4.8 0.4884 0.4811 0.4807 0.4844 0.4837 0.4837 0.4858
5 0.5332 0.5246 0.5242 0.5270 0.5264 0.5262 0.5283

From Figure 8-8, the FORM-based probability estimates are the worst with the RM. Again,

failure estimates are much better using either Kriging or the RBF.
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Figure 8-8: The error between the FORM estimate, using each metamodel, and the MCS of the
mechanistic model.
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Figure 8-9: The error between MCS-based metamodel and MCS-based mechanistic model
probability estimates.

As in the previous example, the percentage error between FORM and MCS probability estimates
is plotted as shown in Figure 8-10. Here, the largest errors occur for the RBF. After 2.5 years, the
%error is approximately consistent and not as erratic as the start of the product lifetime.
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Figure 8-10: The %error between FORM and MCS failure estimates.
The Cdf is plotted using both FORM and MCS probability estimates and shown in Figures 8-

11 and 8-12. This time, all metamodels provide very accurate plots. The Cdf estimates for the two

degradation rates are shown in Figure 8-13. This figure is useful since it shows how a larger

degradation rate results in a larger failure probability at the end of the service time.
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Figure 8-11: The Cdf estimate using FORM and each metamodel.
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Figure 8-12: The Cdf estimate using MCS and each metamodel.
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Figure 8-13: The Cdf estimates for the two degradation rates.
Finally, the CPU time required to build to Cdfs are shown in Table 8-7. From the table, the
metamodel with FORM or MCS is much faster than using the Mechanistic Model. An increased

speed is observed using MCS with the metamodels especially in the case of the RBF.
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Table 8-7: The computation time for the various methods.

Computation time

Model to build CDF
Mechanistic Model and MC
(100,000 runs) 60,000
Metamodel and FORM
RM 115s
Kriging 550s
RBF 2000s
Metamodel and MCS
(100,000 runs)
RM 100s
Kriging 450s
RBF 200s

Error Analysis for experiment 2

The fit of the metamodels is checked in a similar way as in section 8.2.1. Tables 8-8 and 8-9

show the CV-RMSE and CV-MAE estimates for each metamodel at three service times for D,

and 6s. As before, Kriging and RBF are better than the RM. For the settling angle response,

Kriging is almost always better.

Table 8-8: The CV-RMSE and CV-MAE estimates for each metamodel, built for each column of
D, at three service time increments,

. Column of D,
Method | Time Model I 3 2 z
CV-RMSE | 9.22x10% 1.16x10% 2.34x10% 4.85x10™° 1.99x10™%
R M -03 -03 -02 -03 -02
CV-MAE | 6.76x10 9.28x10 1.76x10 3.43x10 1.30%10
0 Kriai CV-RMSE | 3.49x10™ | 1.33x10% | 1.51x10® | 1.90x10™ 1.64x10™
rigin
9N TV MAE | 2.30x10% | 9.22x107 1.04x10% 1.30x10™ | 8.96x10™
RBE CV-RMSE | 2.95x10% 1.05x10% | 8.28x10% 1.52x10% 9.77x10°
CV-MAE | 2.07x10%® | 7.34x10™ | 5.65x10% 1.20x10°% 6.93x10°
M CV-RMSE | 9.14x10% 1.15x10% 2.32x10% 4.71x10™ 1.97x10%
CV-MAE | 6.70x10% | 9.19x10™® 1.75x10% | 3.34x10* 1.29x10™%
. Kriai CV-RMSE | 3.45x10™% 1.32x10% 1.49x107% 1.87x107% 1.62x10™%
rigin
gng CV-MAE | 2.36x10% | 9.16x10™ 1.03x10% 1.28x10™ | 8.84x10®
RBE CV-RMSE | 7.46x10% 5.88x10™ 5.15x10™ 1.46x10°% 3.78x10™
CV-MAE | 4.74x10™ 3.91x10™ 3.44x10™ 9.26x10™% 2.51x10%
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M CV-RMSE | 9.06x10% | 1.14x10% | 2.31x10% | 4.57x10% | 1.95x10™
CV-MAE | 6.64x10% | 9.10x10% | 1.74x10% | 3.25x10% | 1.28x10%

) Kriging CV-RMSE | 3.41x10™ | 1.32x10% | 1.48x10% | 1.83x10% | 1.60x10™
CV-MAE | 2.33x10% | 9.10x10™ | 1.02x10%® | 1.25x10™ | 8.73x10™®

RBE CV-RMSE | 7.45x10%® | 585x10™ | 511x10% | 1.42x10% | 3.67x10™®
CV-MAE | 4.73x10% | 3.98x10% | 3.42x10™ | 8.99x10% | 2.43x10%

Table 8-9: The CV-RMSE and CV-MAE estimates for each metamodel built to model the

settling angle response.

Prediction | Settling Angle
Time Model Error K =
method M(Ks) = 0.008
CV-RMSE 3.32x10™
RM 05
CV-MAE 2.15 x 10
0 Kri CV-RMSE 2.76 x 10
ear rigin
Y ging CV-MAE 1.46 x 10
CV-RMSE 7.21 x 10°%
RBF —
CV-MAE 4.86 x 10
CV-RMSE 3.32x10™
RM 05
CV-MAE 2.16 x 10
. Kriai CV-RMSE 2.52 x 10
ear rigin
y ging CV-MAE 1.32 x 10V
CV-RMSE 3.43x10%
RBF 05
CV-MAE 2.18 x 10
CV-RMSE 429 x 10
RM -05
CV-MAE 2.88 x 10
) Kriai CV-RMSE 2.30 x 10"
ears rigin
y ang CV-MAE 1.21 x 10
CV-RMSE 2.30 x 10
RBF —
CV-MAE 1.21 x 10
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8.4 An Investigation of Various Training Designs

In order to choose the training design, a range is selected which is then broken into a series of
“levels”. The range is chosen using the relation y; + rio; where r; = 3, 4.5, 6 or 10. Within the
upper and lower boundaries specified by the aforementioned relation, the number of “levels” is
chosen. These levels are training samples selected to make up the training design and follows
from the specific design of experiments technique chosen. For example, if A = 3, then the training
site of each design variable is Y; - rioi, i and W + ric;. In this example, 4 different ranges are
investigated along with 2 values of A; 3 and 5.

At each of the eight training designs (Appendix C), the cumulative failure probability is plotted
and the accuracy and speed of estimating the CDF, using each metamodel, is compared. The
failure probabilities are estimated using both FORM and the MCS. The results for each
metamodel are first discussed independently and then an overview of all the results is presented.
Regression Model
At each of the eight training design, a new Regression Model is fit. FORM and MCS are then
used to estimate the failure probability and the results are compared with the mechanistic model
failure estimates. Figure 8-14 show the error estimates when FORM is used to estimate
probability. Since the results from all eight training designs were not able to fit on one graph, two
graphs are shown. Figure 8-14(a) shows the percentage error when 3 levels are used and Figure
8-14(b) shows the percentage error when 5 levels are used with the four ranges. The percentage

error is estimated as

(%Error), _ ([Fl ]Mechanistic B [FI ]Metamodel J %100
[Fl ]Mechanistic

From Figure 8-14, as the range increases, the accuracy decreases. Also, a lower percentage error
is observed when the number of levels is increased to 5 for the two larger ranges (66 and 100).
When MCS is used to estimate probability, the results are similar to those obtained using FORM.
When 3 levels are used the accuracy starts to get very poor at the 66 range and higher. However,
when the number of levels is increased to 5, a 66 range produces a percentage error of 10% as
opposed to about 15% when 3 levels are used. Similar results are observed at the 10c range; an

increase in the number of levels results in improved accuracy.
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Figure 8-14: The %error of the probability estimate, using FORM, for various possible training
designs. (a) 3 Levels and (b) 5 levels.
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Figure 8-15: The error of the probability estimate, using MCS, at each service time increments
for various possible training designs. (a) 3 Levels and (b) 5 Levels.
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The process is repeated for the Kriging and RBF metamodels.

Kriging Metamodel
Now, a Kriging metamodel is fit for the responses at each training design and the error estimates
using FORM and MCS for the mean degradation rate, Kr = 0.4%, is plotted. Figure 8-16 shows
the percentage errors when FORM is used to estimate failure probability and Figure 8-17 shows
the errors when MCS is used to estimate probability.

From Figure 8-16, the largest errors are observed at a 10c range. Unlike the Regression Model,
at a 10c range training design, Kriging has become conservative since the errors are now
negative. Like the Regression Model, an increase in accuracy for the 10c range is obtained by

increasing the number of levels to 5. When 5 levels are used, the accuracy among the 3 lower

ranges is very small.

%Error
%Error

20 r r r r r r r r r

Time [yr] Time [yr]

() (b)

Figure 8-16: The %error when FORM is used with Kriging, trained by each possible training
design, to estimate probability. (a) 4 ranges each with 3 Levels (b) 4 ranges each with 5 Levels
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When a MCS is used to estimate probability, the results are about the same as those obtained

from FORM. For the 10 range, the accuracy increases when the number of levels increases to 5.

10 T T T T T T T

10 T T T T T T

%Error
%Error

_50 r r r r r r r r r _20 r r r
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Time [yr] Time [yr]
(@) (b)

Figure 8-17: The %error when MCS is used with Kriging, trained by the eight possible training
designs, to estimate probability. (a) 4 ranges each with 3 Levels and (b) 4 ranges each with 5
levels.

RBF Metamodel
For the final metamodel, the results are shown in Figures 8-18 and 8-19. These results are close

to those obtained from Kriging with conservative failure estimates at the 10c range.
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Figure 8-18: The %error when FORM is used with the RBF, trained by each possible training
design, to estimate probability. (a) 4 ranges each with 3 Levels (b) 4 ranges each with 5 Levels
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Figure 8-19: The %error when MCS is used with Kriging, trained by the eight possible training
designs, to estimate probability. (a) 4 ranges each with 3 Levels and (b) 4 ranges each with 5
levels.
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Finally, the speed of the metamodels at the various training designs is tested. For all
metamodels, the speed depends on the size of the matrix of training sets which depends on the
number of levels. This is especially true for Kriging and the RBF that uses the training sets to
build the metamodel. Therefore, the speed of the metamodels is recorded at the two test levels
and compared. Table 8-10 shows these results. When FORM is used to estimate probability, the
slowest metamodel is the RBF with the Regression Model being the fastest. For MCS-based
probability estimates, the fastest metamodel is still the Regression Model but now Kriging and
the RBF is the same speed.

Table 8-10: The computation time for the two levels.

Time
Metamodel | Levels e oqel T Metamodel
and FORM and MCS
A=3 100s 40s
RM
=5 110s 100s
— A=3 200s 80s
Kriging
r=5 600s 400s
L=3 250s 80
RBF
A=5 2000s 400s

8.4.1 Summary

For this degradation modelling problem, errors likely come from four sources; using SVD to
approximate the performance measure, fitting the metamodel, using FORM to estimate failure
probability and using the set theory method to estimate the Cdf. A discussion of these errors has

been presented at the end of each experiment.

In summary, the error due to SVD has been controlled by comparing the estimate of Q or ®
using dominant singular values with the true value. This error has been shown to be very small
and is not significant. Since the metamodel is an approximate model of the mechanistic model, it
is very difficult to completely eliminate this error. The only way is to reduce this error by either
choosing a different metamodel or a different training design. Among the three metamodels,
Kriging was the best followed closely by the RBF and then the Regression Model. These errors
have been quantified using cross-validation to estimate the RMSE and MAE. To further compare

the accuracy of the metamodels, the angular speed response is plotted, at the means of the design

135



Chapter 8 — Case Study: Estimating the Cdf for the Servo

variables, using each metamodel. From Figure 8-20, the metamodels produce an
indistinguishable response estimate. Further inspection of the error, at each cycle-time increment
is shown in Figure 8-21 and it can be seen that the smallest errors occur when Kriging is used.

60 T T T T T T T T T

——RM

50 — Kiriging
< —+— RBF
y —S— Mechanistic

Angular Speed

0 001 002 003 004 005 0.06 0.07 0.08 009 0.1
Time [yr]

Figure 8-20: The angular speed response estimate, at the mean of each design variable, using
each metamodel.
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Time [yr]
Figure 8-21: The error, at each cycle-time increment, of the angular speed response estimate
using each metamodel.
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Another source of error occurs when using FORM to estimate failure probability. A
comparison of the FORM results with estimates obtained using the MCS show that the error due
to FORM is small. The final source of error is from the set-theory method. For this problem,
since the LSS does not turn but moves in the same direction as the component “fails”, the
incremental failure region is just

Pr(B,)<Pr(F.,)-Pr(F)
Following the discussion in Chapter 7, since the movement of the failure surfaces is in a constant
spatial direction, pi(ti,ti+1) = 1 and &3(t,ti1) = 0. Any service time increment is suitable but a
smaller At produces a smoother Cdf. Now, a marginal distribution model is used to plot the Cdf.

8.5 Degradation Modelling using the Marginal Distribution Model.

Another type of model that exists to model degradation of the response is the marginal
distribution model. In this model, degradation is assumed to exist in the parameters of the design
variables. Following the examples found in (Son, 2006) involving the distribution-based

degradation model, for a variable V;

44 ()= o (L4 Kt) (8.9)

oi(t)=0c, 1+ K;t) (8.10)

Where oi(t) = (tolipt;)/300. As in the previous example, W; =5.2 and p, = 4.0 tol; = tol, = 3%. Two
constant deterministic degradation rates, 0.4% and 0.8%, are investigated. To develop the
training design, a 4.5¢ range is used with A = 5 to obtain a total of 25 unique design variable sets.

As before, the service time increment is At = 0.2years.

8.5.1 Degradation rate = 0.4%

Figure 8-22 shows the error due to using FORM to estimate probability for each metamodel. This
error is computed as before. The Regression Model results in a higher error than those found
using either Kriging or the RBF. The Kriging and RBF errors are very similar, in some cases
Kriging is better (3.5years and higher) and sometimes the RBF is better (0.5years to 2years). The

RM produces conservative probabilities while Kriging and the RBF starts being optimistic then
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become conservative. The conservative estimates, however, are very small (less than 4%). The
percentage error is also estimated when MCS is used to estimate failure probability and is shown

in Figure 8-23.
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Figure 8-22: The %error when FORM is used to estimate failure probability.

Similar results to FORM estimates are found when MCS is used. The Regression Model
produces the largest errors and Kriging and the RBF are close. The absolute error of Kriging and
RBF estimates are less than 10% which is good for design. The MCS estimates follow a trend
very close to FORM which indicates the probability estimates are similar. This is means that the

error due to using FORM to estimate probability is small which is desirable if FORM is to be

used for design.
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Figure 8-23: The %error when MCS is used to estimate failure probability.
Figure 8-24 shows the error due to FORM computed as the difference between FORM

probability of failure estimates and MCS probability estimates. The errors are generally small

since the worse case is only -3%.
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Figure 8-24: The %error between FORM and MCS probability estimates.
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The Cdf is shown in Figure 8-25 and is similar to the degradation path model. The Cdf reflects
the error results observed in Figures 8-22 and 8-23 where the Regression Model produces the
largest error. From Figure 8-24, this is again observed as the Cdf curve from the regression falls
below Kriging and RBF that are closer to the mechanistic model results. The CPU times using
the various methods to estimate the Cdf is shown in Table 8-11.

From Table 8-11, using the metamodels with either FORM or MCS is more than 100 times
faster than using the mechanistic model. When the metamodels are used, between FORM and
MCS, MCS is even faster for Kriging and the RBF.

012 T T T T T T T T T
Mechanistic
0.1l —— Kiriging &
—&— RBF ’
—— Regression £
0.08 !

0.06

0.04

Cumulative Failure Probability

0.02

Time [yr]

Figure 8-25: The Cdf estimated using MCS of each metamodel and the mechanistic model when
Kr = 0.004.
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Table 8-11: The CPU time comparison.

Time to build
Model CDF
Mechanistic with MC
(100,000 runs) 60,000s
Metamodel with FORM
RM 37s
Kriging 120s
RBF 150s
Metamodel with MC
(100,000 runs)
RM 35s
Kriging 60s
RBF 70s

8.5.2 Degradation rate = 0.8%.

A second degradation rate, K = 0.8%, is also investigated. Errors are computed when the
metamodel with FORM is used to estimate failure probability and when the metamodel is used
with MCS to estimate probability. These results are shown in Figures 8-26 and 8-27. As in the
previous examples, the least accuracy comes from the Regression Model and Kriging and the
RBF is about the same. This pattern is observed when both FORM and MCS is used to estimate
failure probability.
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Figure 8-26: The %error of the (a) FORM-based metamodel and (b) MCS-based metamodel
estimates of failure probability.
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Figure 8-27: The %error between FORM and MCS probability estimates.
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Figure 8-28: The Cdf estimated using MCS of each metamodel and the mechanistic model when
Kr = 0.008.

The CPU time comparison is the same as those shown in Table 8-11. Notice, these times are
faster than those obtained when the degradation path model is used. This is because, for the
distribution-based model, only two random variables are involved. Like the previous example,
the largest CPU time occurs when the mechanistic model has been used, with MCS, to estimate
failure probability. When FORM is used with the metamodels, the Regression Model, again,
results in the lowest CPU time with RBF being the longest. This time, the difference in
computation time between RBF and Kriging is not as large as in the previous example. A plot of

the LSSs as they move through time is shown in Figure 8-29.
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Figure 8-29: The LSSs, estimate using the Regression Model, as they move through time.

8.6 Conclusions

This chapter has shown how metamodels are combined with set-theory to build a Cdf of a
dynamic degrading position-control servo mechanism. Two types of degradation models have
been used to model degradation and, for each model-type, two possible degradation rates have
been chosen. Using several possible training designs, it has been found that the choice of training
design can affect the accuracy of the metamodels. Also, the speed of FORM with the
metamodels, MCS with the metamodels and MCS of the mechanistic model has been compared.
Based on the results, metamodels provide a substantial decrease in computation time. Times for
probability calculations with FORM and MCS are metamodel dependent. In general, our vector
form of the metamodels has resulted in faster computation times using MCS than FORM. For all
experiments, Kriging and RBF have provided more accurate results than the RM. Two different
degradation rates have shown how the failure increases as the components degrade and if the
degradation rate increases. A comparison of the Cdfs built with different degradation rates has

shown the usefulness of the methodology.
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Conclusions and Future Work

The main contribution of this thesis has been to present a methodology that uses metamodels for
the design optimization of dynamic systems when the design variables are uncertain (due to
varying environmental or manufacturing conditions) and to plot the Cdf (cumulative distribution
function of time to failure) when degradation of the design variables is assumed. Metamodels
have been found to provide simple alternatives to otherwise complex mechanistic models and
have been easily used with probability evaluation methods such as MCS (Monte Carlo
Simulation) or FORM (First-Order Reliability Method). Metamodels have also been used with
the set-theory method to build the Cdf when degradation of the design variables is assumed. A
few examples have been used to illustrate the methodology and to compare the speed and
accuracy of three popular metamodels, the RM (Regression Model), Kriging and the RBF (Radial
Basis Function). A general metamodel form has been developed that has been found to be
applicable to model static systems, dynamic systems and dynamic degrading systems. Examples

have been presented to illustrate flexibility of the general metamodel form.

Errors have been shown to come from six sources; the choice of cycle-time increment, the
choice of the number of singular values, s, using FORM or the MCS to estimate probability, the
choice of the service-time increment and using two contiguous service time increments in the set-
theory method to estimate the Cdf. An example has been presented to show how the cycle-time
increment and the number of columns of S are chosen. Reducing the error from the fit of the
metamodel has been found to be difficult. The only way is to perhaps choose another metamodel
or stick with the mechanistic model. In the set-theory method, errors come from using only two
contiguous time steps and making the time step too large. Previous research has shown that if the

value of At is small enough, using two events is sufficient. In order to determine the appropriate
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size of At, a correlation coefficient from two position of a particular limit-state function at
contiguous time t; and t.; is computed. Ideally, this value should be greater than 0.995.

Examples have been presented to show the probabilistic-design of static systems using
metamodels, probabilistic-design of dynamic systems using metamodels and dynamic
degradation modelling using the set-theory method and metamodels. For the simple static
examples, the Regression Model has been found to be both fast and accurate. The RBF has been
found to be the slowest metamodel when FORM has been used to estimate probability of failure.
The speed of the RBF has been found to increase when MCS has been used. For probabilistic
design optimization of the dynamic systems, the metamodels have provided a simple analytical
function for the time-invariant performance measure. The metamodel approximation has been
found to be accurate and to provide an optimal design much faster than would normally be found
using the mechanistic model. Kriging has been found to be accurate and converges in the same

number of iterations as the RM. However, Kriging is much slower than the RM.

Finally, metamodels have been used with the set-theory to plot the approximate Cdf when
degradation of the design variables has been assumed. The degradation path and marginal
distribution models have been used to model degradation of the Resistance of a position-control
servo. A comparison of the FORM-based metamodel and MCS-based metamodel results with the
MCS-based mechanistic model results have shown that metamodels combined with the set-theory
method and have achieved good accuracy and a better computation time than the mechanistic
model. For probability evaluation, MCS with the metamodels has been found to be feasible due

to its accuracy and efficiency.

Overall, it has been found that metamodels can provide a suitable alternative to the mechanistic

model for both design optimization or degradation modelling.

9.1 Contributions and Goals

This thesis has developed a methodology (see Figure 1-3) that uses metamodels for probability-
based design optimization and for estimating the Cdf, using the set-theory method, when

degradation of the design variables is assumed. The major contributions have been
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e Developing a general metamodel that can be quickly built for static, dynamic or dynamic

degrading systems.

e Combining SVD with metamodels to efficiently estimate a time-invariant performance

measure based upon a dynamic response.

e Using the metamodel approximation to build a LSF to allow reliability-based design
optimization using parameter design, tolerance or integration design methods.

e Combining metamodels with the set-theory method to estimate the incremental failure
probability and to estimate the Cdf when degradation of the variables is assumed.

e Comparison of the Regression Model, Kriging and RBF, in terms of speed and accuracy,

for probabilistic-based design optimization and estimating the Cdf.

9.2 Comments about the Methodology

The examples presented have assumed normal and independently distributed design variables.
For the case where the variables are correlated and do not follow a normal distribution, a
transformation method can be used to convert the variables to u-space when FORM is to be used
to estimate the failure probability. A popular transformation method is the Rosenblatt
transformation (Rosenblatt 1952); (Robinson 1998). The Rosenblatt transformation is illustrated

in Appendix D along with an example.

Examples presented have also used a range wider than the design space to select the training
design. However, there may be cases where this is not possible or not feasible. Other training
design selection methods may include space-filling designs, such as the Latin Hypercube Design,
that allow the design space to be thoroughly searched. For deterministic design variables, the
tolerance can be set to zero and the variable is set to the mean value. Optimization then becomes

a parameter design problem.
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9.3 Future Research and Extensions

Since the Cdf can be built using a metamodel, one of the major future directions of this work is to
use reliability-based design to search for a design to have a desired product lifetime. Therefore,
the future of this work is in dependability design where the distribution parameters of the design
variables, in degrading systems, are selected that reduces cost and minimizes the failure
probability. Some work has been done in this area and applied to static systems but none with
dynamic degrading systems.

This thesis has found that the RM is very fast compared with Kriging or the RBF. Although the
efficiency of the model is desirable, the accuracy is sometimes not as good as Kriging. A future
direction may also search for ways to improve the accuracy of the RM or using the RM to
quickly locate a good design and then using Kriging to plot an accurate Cdf. Investigating space-
filling designs, instead of the factorial type design that has been used, with metamodels can also

be a future direction.
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Kriging Model Background

Let the set of M known inputs (training points) to the computer model be
X4 =[X1,%9,....xy | Q@where Qis the set of all possible inputs to the model that result in an

output. For an individual column in D, the resulting outputs are d= [d(x;) .. d(xy)]. Given
these sampled outputs or observations of the computer model, consider a linear predictor of the

output at any point veQ.
d(v)=w"(v)d (A1)
Kriging treats d(v) as a random function and finds the best linear unbiased prediction (BLUP),

w' (v)d, that minimizes the mean square error (MSE) of the prediction (A.2) subject to the

unbiasedness constraint (A.3) (Sacks, et al. 1989).

ME[d(v)|= Eff@" (vjd - d(v)] (A2)
E[w" (v)d]=E[d(v)] (A3)

The MSE of (A.2) becomes (A.4)
o2 [+ W T (VINW(V) - 20" (v)F(v)] (A.4)

From equation (A.4), I' is a correlation matrix composed of the spatial correlation between each
possible combination of the training sets. Therefore, the M training sets produce the M x M

matrix of correlation pairs

(A5)

yu X)X Xa) o (X Xy ) MxM
The matrix, T, is symmetric since y(x;,X,)=(x,,x;)and the diagonal consists of all ones. The

elements of the vector, T, represents the correlation between a vector of unknown points, v € Q,

and the M known training sets points, X;
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rr (V): [V(V- Xy) . (VX )]LM (A.6)
The unbiasedness constraint (A.3) becomes (A.7) wherevg =fl v, ... v, |.
XTW(v)=vg (A7)

Introducing Lagrange multipliers L(v)for the constrained minimization of the MSE, the
coefficient W(v)of the BLUP must satisfy

x ¥ L) a9

Then, by inverting the partitioned matrix, the BLUP can be written as equation (A.9) which is the

standard form for the Universal Kriging model.

d(V)=8, + BTv+TT (VI (d - X,B) (A.9)
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Appendix B

Computation of the Bivariate Normal Integral

To evaluate the normal integral, we define L(%,4;p) in such a way that the following quality holds
(Drezner and Wesolowsky 1990)

@(h,k, p)=L(h,k, p)+ ®(h)+ Dd(k)-1 (B.1)
Here L(4,k,p) is

L(h,k, p)= 1 w}dxdy (B.2)

hk277\/1 p° p(

L(h,k,p) is selected over the CDF ®(h,k;p) because it is more commonly calculated. Equation

(B.2) is reduce to the one-dimensional integral

L(h,k; p) = Iexp [h2 +k? - 2hkcosz] [25|n z]}dz (B.3)

cos p
Differentiating (B.2) by p, the following relationship is obtained
oL _ 1
P 27\1- p?

By equation (B.1), oP =§—L Since L(A,k;p) = ©(-h)D(-k)
op Oop

expl-[h? - 2phk + k2 /2l - p2 ] (B.4)

P

L(h, k;p)=j2—;dp + (= h)p(- k) (B.5)

0
From equations (B.3) and (B.4)
The Gaussian quadrature formulae based on Legendre polynomials with K = 5 points can be used
to evaluate (). The subroutine used to evaluate the probability with K = 5 points is given. It is
named bvl and the inputs are h, k and p denoted by hl, hk and r respectively. The subroutine phi
calculates normal probabilities. MATLAB® code for subroutine bvl and phi are given (Seshadri
2002).

% Calculation of bivariate normal probabilities
function 12 = bvl (hl,hk,r)
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% Points of function evaluations - Legendre Polynomials
[0.04691008,0.23076534,0.50,0.76923466,0.95308992];

X
I

% The weights
= [0.018854042,0.038088059,0.0452707394,0.038088059,0.0188540427];

w
12 = 0;
h2 = hk;
hl12 = (hl*hl + h2*h2)/2;
h3 = hl*h2;
r2 = l-r*r;
if (r2==0)
if (r>0)
12 = phi(max (hl,h2));
else
h2 = -h2;
12 = max (0, phi (hl)-phi (h2));
end
else
for i = 1:5
rl = r*x(1i);
rr2 = 1-rl*rl;
12 = 12+w (i) *exp ((r1*h3-hl12) /rr2) /sqgrt (rr2);
end

12 = phi (hl) *phi (h2)+r*12;
if(12>0) 12 = 0;
end

end

% Subroutine for Calculation of normal probabilities
function prob = phi (z)

a = [-0.72657601,0.71070688,-0.142248368,0.12741479¢6];
x = 1/(1+0.23164189%*abs (z)) ;

g = 0.53070271;

for i = 1:4

= g*x + a(i);

Q

end
prob = g*x*exp (-z*z/2);
if (z<0) prob = l-prob;
end
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Appendix C

Tables and Figures for Chapter 8 Case Study

Table C.1: The energy estimates when the response is broken into different time steps.

Time Energy

AT=0.005 | AT=0.002 | At=0.001 | At=0.0005
1 | 0.000193966 | 0.000196141 | 0.000196242 | 0.000196234
2 |0.000193966 | 0.000196141 | 0.000196242 | 0.000196234
3 |0.000193966 | 0.000196141 | 0.000196242 | 0.000196234
4 | 0.000193737 | 0.000195865 | 0.000195963 | 0.000195953
5 | 0.000193737 | 0.000195865 | 0.000195963 | 0.000195953
6 | 0.000193737 | 0.000195865 | 0.000195963 | 0.000195953
7 ] 0.000193507 | 0.00019559 | 0.000195686 | 0.000195675
8 | 0.000193507 | 0.00019559 | 0.000195686 | 0.000195675
9  |0.000193507 | 0.00019559 | 0.000195686 | 0.000195675
10 | 0.00019415 | 0.000196415 | 0.000196527 | 0.000196522
11 | 0.00019415 | 0.000196415 | 0.000196527 | 0.000196522
12 | 0.00019415 | 0.000196415 | 0.000196527 | 0.000196522
13 | 0.000193936 | 0.000196149 | 0.000196256 | 0.000196248
14 | 0.000193936 | 0.000196149 | 0.000196256 | 0.000196248
15 | 0.000193936 | 0.000196149 | 0.000196256 | 0.000196248
16 | 0.000193715 | 0.000195878 | 0.000195982 | 0.000195973
17 | 0.000193715 | 0.000195878 | 0.000195982 | 0.000195973
18 | 0.000193715 | 0.000195878 | 0.000195982 | 0.000195973
19 | 0.00019431 | 0.000196668 | 0.00019679 | 0.000196789
20 | 0.00019431 | 0.000196668 | 0.00019679 | 0.000196789
21 | 0.00019431 | 0.000196668 | 0.00019679 | 0.000196789
22 | 0.000194115 | 0.000196416 | 0.000196533 | 0.000196529
23 | 0.000194115 | 0.000196416 | 0.000196533 | 0.000196529
24 | 0.000194115 | 0.000196416 | 0.000196533 | 0.000196529
25 | 0.000193908 | 0.000196156 | 0.000196268 | 0.000196261
26 | 0.000193908 | 0.000196156 | 0.000196268 | 0.000196261
27 | 0.000193908 | 0.000196156 | 0.000196268 | 0.000196261
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Table C.2: The energy estimate for various columns of S.

<

Energy

Original

3 Columns

4 Columns

5 Columns

1.958585E-04

1.959082E-04

1.958589E-04

1.958574E-04

1.955712E-04

1.956125E-04

1.955790E-04

1.955698E-04

1.952945E-04

1.953175E-04

1.953011E-04

1.952939E-04

1.950323E-04

1.950145E-04

1.950160E-04

1.950321E-04

1.947875E-04

1.946966E-04

1.947166E-04

1.947851E-04

1.961554E-04

1.961869E-04

1.961477E-04

1.961558E-04

1.958686E-04

1.958979E-04

1.958708E-04

1.958678E-04

1.955869E-04

1.956195E-04

1.956064E-04

1.955865E-04

OO |IN|OO|OB|IW|IN|F-

1.953150E-04

1.953422E-04

1.953444E-04

1.953165E-04

[EEN
o

1.950564E-04

1.950579E-04

1.950763E-04

1.950602E-04

[N
[N

1.964395E-04

1.964532E-04

1.964288E-04

1.964414E-04

[EEN
N

1.961593E-04

1.961594E-04

1.961432E-04

1.961594E-04

[EEN
w

1.958784E-04

1.958866E-04

1.958808E-04

1.958774E-04

[HEN
o~

1.956022E-04

1.956242E-04

1.956305E-04

1.956021E-04

=
(6]

1.953349E-04

1.953631E-04

1.953830E-04

1.953378E-04

=
(2]

1.967054E-04

1.967192E-04

1.967143E-04

1.967071E-04

[
~

1.964375E-04

1.964102E-04

1.964091E-04

1.964392E-04

=
0]

1.961631E-04

1.961326E-04

1.961380E-04

1.961626E-04

[ERN
©

1.958880E-04

1.958748E-04

1.958890E-04

1.958864E-04

N
o

1.956170E-04

1.956269E-04

1.956517E-04

1.956169E-04

N
[

1.969486E-04

1.969949E-04

1.970143E-04

1.969451E-04

N
N

1.966983E-04

1.966613E-04

1.966799E-04

1.967006E-04

N
w

1.964357E-04

1.963692E-04

1.963902E-04

1.964368E-04

N
S

1.961669E-04

1.961064E-04

1.961324E-04

1.961654E-04

N
(6)]

1.958973E-04

1.958624E-04

1.958957E-04

1.958948E-04
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Table C.3: The incremental and instantaneous failure probabilities, using the degradation path
model with p(kg) = 0.004 using FORM.

) Mechanistic RM Kriging RBF
Time MCS FORM Pr(B) FORM Pr(B) FORM Pr(B))
0 0.0039 0.0036 0.004 0.003913
0.2 0.0044 0.004196 | 0.000596 | 0.004604 | 0.000604 | 0.004945 | 0.001032
0.4 0.0051 0.004935 | 0.000739 | 0.005405 | 0.000801 | 0.005318 | 0.000372
0.6 0.0064 0.005787 | 0.000853 | 0.006325 | 0.000919 | 0.006231 | 0.000914
0.8 0.0075 0.006768 | 0.000981 | 0.007389 | 0.001064 | 0.007869 | 0.001638
1 0.0086 0.007893 | 0.001125 | 0.008599 | 0.00121 | 0.008474 | 0.000605
1.2 0.0095 0.009179 | 0.001286 | 0.009984 | 0.001385 | 0.009817 | 0.001342
1.4 0.0113 0.01064 | 0.001465 | 0.011545 | 0.00156 | 0.01135 | 0.001532
1.6 0.0128 0.01231 | 0.001665 | 0.013329 | 0.001784 | 0.01311 | 0.001765
1.8 0.0144 0.01419 | 0.001885 | 0.015339 | 0.00201 | 0.01512 | 0.002003
2 0.0171 0.01632 | 0.002128 | 0.017609 | 0.00227 | 0.01732 | 0.002201
2.2 0.0198 0.01872 | 0.002395 | 0.02014 | 0.002531 | 0.01986 | 0.002546
2.4 0.0222 0.02141 | 0.002688 | 0.022967 | 0.002827 | 0.02264 | 0.002776
2.6 0.0255 0.02441 | 0.003006 | 0.026164 | 0.003197 | 0.02580 | 0.003163
2.8 0.0298 0.02776 | 0.003352 | 0.029686 | 0.003522 | 0.02930 | 0.003496
3 0.0343 0.03149 | 0.003726 | 0.033596 | 0.003909 | 0.03321 | 0.003913
3.2 0.0391 0.03562 | 0.004129 | 0.037908 | 0.004312 | 0.03742 | 0.004212
3.4 0.0439 0.04018 | 0.004561 | 0.042671 | 0.004763 | 0.04219 | 0.004765
3.6 0.0495 0.045203 | 0.005023 | 0.047889 | 0.005217 | 0.04732 | 0.005129
3.8 0.0563 0.050717 | 0.005514 | 0.053593 | 0.005705 | 0.05292 | 0.005598
4 0.0621 0.056752 | 0.006035 | 0.059842 | 0.006249 | 0.05912 | 0.006205
4.2 0.0685 0.063336 | 0.006584 | 0.066619 | 0.006777 | 0.06579 | 0.006668
4.4 0.0772 0.070498 | 0.007162 | 0.074017 | 0.007398 | 0.07331 | 0.007524
4.6 0.0854 0.078263 | 0.007766 | 0.081988 | 0.007971 | 0.08111 | 0.007795
4.8 0.095 0.086658 | 0.008394 | 0.090609 | 0.008621 | 0.08972 | 0.008614
5 0.1041 0.095703 | 0.009045 | 0.09979 | 0.009181 | 0.09895 | 0.009226
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Table C.4: The Pr(B,) estimates when MCS is used to estimate failure probability.

Mechanistic RM Kriging RBF
Time MCS Pr(g2<0) | Pr(B)) | Pr(g2<0) | Pr(B) | Pr(g2<0) | Pr(By)
0 0.0039 0.00385 0.0038 0.00399
0.2 0.0044 0.00446 | 0.00061 | 0.00436 | 0.00056 | 0.00472 | 0.00073
0.4 0.0051 0.00527 | 0.00081 | 0.00511 | 0.00075 | 0.0056 | 0.00088
0.6 0.0064 0.00601 | 0.00074 | 0.00613 | 0.00102 | 0.0065 | 0.0009
0.8 0.0075 0.00683 | 0.00082 | 0.00723 | 0.0011 | 0.00769 | 0.00119
1 0.0086 0.00789 | 0.00106 | 0.00846 | 0.00123 | 0.00887 | 0.00118
1.2 0.0095 0.00917 | 0.00128 | 0.00992 | 0.00146 | 0.01002 | 0.00115
1.4 0.0113 0.01061 | 0.00144 | 0.01126 | 0.00134 | 0.01153 | 0.00151
1.6 0.0128 0.01227 | 0.00166 | 0.0131 | 0.00184 | 0.01329 | 0.00176
1.8 0.0144 0.01413 | 0.00186 | 0.01516 | 0.00206 | 0.01522 | 0.00193
2 0.0171 0.01627 | 0.00214 | 0.01729 | 0.00213 | 0.01733 | 0.00211
2.2 0.0198 0.0188 | 0.00253 | 0.02011 | 0.00282 | 0.01968 | 0.00235
2.4 0.0222 0.02144 | 0.00264 | 0.02294 | 0.00283 | 0.02252 | 0.00284
2.6 0.0255 0.02443 | 0.00299 | 0.02587 | 0.00293 | 0.0254 | 0.00288
2.8 0.0298 0.02779 | 0.00336 | 0.02902 | 0.00315 | 0.02893 | 0.00353
3 0.0343 0.03137 | 0.00358 | 0.03297 | 0.00395 | 0.0324 | 0.00347
3.2 0.0391 0.03541 | 0.00404 | 0.03764 | 0.00467 | 0.03693 | 0.00453
3.4 0.0439 0.04008 | 0.00467 | 0.04221 | 0.00457 | 0.0415 | 0.00457
3.6 0.0495 0.04538 | 0.0053 | 0.04731 | 0.0051 | 0.04675 | 0.00525
3.8 0.0563 0.05082 | 0.00544 | 0.05391 | 0.0066 | 0.05237 | 0.00562
4 0.0621 0.05677 | 0.00595 | 0.06033 | 0.00642 | 0.05901 | 0.00664
4.2 0.0685 0.06358 | 0.00681 | 0.06716 | 0.00683 | 0.06577 | 0.00676
4.4 0.0772 0.07079 | 0.00721 | 0.07464 | 0.00748 | 0.07321 | 0.00744
4.6 0.0854 0.07863 | 0.00784 | 0.0832 | 0.00856 | 0.08172 | 0.00851
4.8 0.095 0.08718 | 0.00855 | 0.09078 | 0.00758 | 0.09028 | 0.00856
5 0.1041 0.09607 | 0.00889 | 0.10053 | 0.00975 | 0.1002 | 0.00992
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Table C.5: The training sets, for each variable, for each range using A = 3.

Range Training Design
[5.044] 3.88] 0.00388]
u+3o X, =15.200| x, =| 4.00 X5 =[0.00400
|5356]  [4.12] 0.00412
[4.966 | 3.82] 0.00382]
pu+4.5¢ X, =15.200| x, =| 4.00 X5 =[0.00400
15434 | 418 0.00481]
[4.888] [3.76 | 0.00376
nt60 X, =|5.200| x, =| 4.00 X5 =| 0.00400
5.512] | 4.24) 0.00424]
4.68 3.60 0.0036
u£10c X, =|5.20| x, =| 4.00 X5 =| 0.0030
5.72 4.40 0.0044
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Table C.6: The training sets, for each variable, for each range using A = 5.

Range Training Design

[5.044] 3.88] 10.00388
436 with 5.122 3.93 0.00393

X, =|5.200| x, =| 4.00 X, =| 0.004
=5 5.278 4.06 0.00407
5.356] 14.12] 0.00412,
[4.966] [3.82] [0.00382]
44,56 with 5.083 3.91 0.00391
X, =| 5.200| x, = 4.00 X, = 0.00400
A=35 5.317 4.09 0.00409
| 5.434] 4.18] 0.00481
[4.888] [3.76] [0.00376]
465 with A 5.044 3.88 0.00388
X, =| 5.200| x, =| 4.00 X, = 0.00400
=5 5.356 4.12 0.00412
5512 4.24] 0.00424
[4.68 ] [3.60] [0.00360]
L4106 with 4.94 3.80 0.00380
X, =|5.200| x, =| 4.00 X, =| 0.00400
A=5 5.46 4.20 0.00420
| 5.72 | 4.40] 0.00440
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Appendix D

The Rosenblatt Transformation

For arbitrary pdf's of design variables, the Rosenblatt Transformation transforms the variable’s
pdf from v-space to u-space resulting in a one-to-one mapping of the arbitrary pdf to the standard

normal distribution. Suppose the v:[vl,vz,...,vnj is a vector of statistically dependent random

variables. Let the joint probability and cumulative density function of v be defined as f(v) and
Fv(v) respectively. Define the marginal density functions and cumulative distribution functions
as

o0 o0

f, (v, Vp,..n, V)= '[ 'f fi(vl,vz,...,vi,si+1,...,s,7)dsi+1...ds,7 (D.1)

—00 —00

1
Hi(vi|V1’V2""'Vi—1):k_ I f,(V,Vp,..., Vi, S; )dS, (D.2)

i~

Wherek; = j f.(v;,Vy,...,Vi 4,8 )ds; and Hy(v1) = Fi(v1). The new set of independent standardized

—00

Gaussian random variables are then given by

u=(u,uy,..., un)z {(D’l[Hl(vl)],(D’l[H2(v2|vl)],...,(I)’llH,](v,]‘vl,...,v,]_l)J} (D.3)
Example

From Robinson 1998, let V; be a Gaussian distributed random variable with mean p; and

standard deviation c;. Let V, be lognormally distributed random variable with pdf

1 {MH (D.4)

1
f - - _ =
v,) vzgm”p{ L k).

Where, provided with the median, v,, and coefficient of variation, «,
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Assume Vi, V, are correlated such that p; , = 0.6. Applying the Rosenblatt Transformation (D.3)

DUy )=H, (v)

(D.5)
DU, )= Hz(V2|V1)
Where
( | ) In(V )_/1LN /)T (%1)(\/1 _ﬂl)
Ha WV, [V, )= @ (D.6)
EN1-nf,
and
P| o>
77 = | —=
3 g [ﬂzj
The new vector of reduced space random variables is therefore composed of
u =1 (D.7)
O
In(Vz )_ A — 1y (G J(Vl - /Ul)
u; = : (D.8)
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