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Abstract

NMR spectroscopy is not only for protein structure determination, but also for drug screening and

studies of dynamics and interactions. In both cases, one of the main bottleneck steps is backbone as-

signment. When a homologous structure is available, it can accelerate assignment. Such structure-based

methods are the focus of this thesis. This thesis aims for fast and robust methods for NMR assignment

problems; in particular, structure-based backbone assignment and chemical shift mapping. For speed, we

identified situations where the number of 15N-labeled experiments for structure-based assignment can be

reduced; in particular, when a homologous assignment or chemical shift mapping information is available.

For robustness, we modeled and directly addressed the errors. Binary integer linear programming, a well-

studied method in operations research, was used to model the problems and provide practically efficient

solutions with optimality guarantees.

Our approach improved on the most robust method for structure-based backbone assignment on 15N-

labeled data by improving the accuracy by 10% on average on 9 proteins, and then by handling typing

errors, which had previously been ignored. We showed that such errors can have a large impact on the

accuracy; decreasing the accuracy from 95% or greater to between 40% and 75%. On automatically picked

peaks, which is much noisier than manually picked peaks, we achieved an accuracy of 97% on ubiquitin.

In chemical shift mapping, the peak tracking is often done manually because the problem is inherently

visual. We developed a computer vision approach for tracking the peak movements with average accuracy

of over 95% on three proteins with less than 1.5 residues predicted per peak. One of the proteins tested

is larger than any tested by existing automated methods, and it has more titration peak lists. We then

combined peak tracking with backbone assignment to take into account contact information, which resulted

in an average accuracy of 94% on one-to-one assignments for these three proteins. Finally, we applied peak

tracking and backbone assignment to protein-ligand docking to illustrate the potential for fast 3D complex

determination.
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Chapter 1

Introduction

The majority of the data analysis in nuclear magnetic resonance (NMR) spectroscopy is connecting the

NMR signals to their underlying chemical structures. This is the topic of this thesis. We begin by

motivating the use of NMR for studying proteins.

1.1 X-ray vs. NMR

X-ray crystallography and NMR are the predominant methods for protein 3D structure determination.

Both provide an atomic view of the protein, but X-ray has been more productive in high-throughput

structural genomics. As of June 1, 2011, there are over 8.6 times more x-ray structures than NMR in

the protein databank (PDB). Structure determination with x-ray is rather routine and automated with

robots and software [21]. This is due to generally accepted standards in experimental and quality control

protocols. The SouthEast Collaboratory for Structural Genomics was able to get 85% of the 171 residue

structure with PDB:1NNQ within 4.5 hours starting from mounted crystal [2]. However, the time to

grow protein crystals is the rate determining step, and this can take months or even fail. Due to failed

experiments, making well-diffracting crystals is more expensive than diamonds either by weight or volume

[38].
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In contrast, it is difficult to automate NMR with robots due to lack of standards. There exists a wide

array of experiments and different combinations of such experiments. A list of the different experiment sets

used by the Northeast Structural Genomics consortium can be found on their wiki site [86]. In addition,

the data analysis that follows can take significantly longer than the experiments themselves due to manual

analysis [27]. Although there exist various software to automate the analysis, manual analysis is still the

most reliable method. Even when automated tools are used, manual verification is almost always done

due to issues with trusting automation to handle the wide array of possible errors.

Unlike x-ray, NMR is limited by protein size, but this limit is constantly increasing [125]. Larger

proteins typically result in more missing and overlapping signals; that is, poor sensitivity and resolution.

97% of NMR structures in the PDB are under 200 residues. One of the largest NMR structures is malate

synthase G (PDB:1Y8B) at 82 kDa and 731 residues. In contrast, x-ray structures of the ribosome can

be over 2000 kDa. Nevertheless, for proteins that do not form well-diffracting crystals, NMR is the

only alternative for atomic resolution structures. For example, flexible regions are often absent in x-ray

structures, but present for those determined by NMR. To account for variability, NMR PDB files typically

contain multiple possible models consistent with the experimental data. Membrane proteins are a challenge

for both methods [20, 79].

Although x-ray has produced more structures, there remains much more to investigate besides structure

[19], just like there is much more to investigate once a genome has been sequenced. Protein function is

an active area of research, and it will likely become more active given that a plateau in the discovery of

unique folds has been reached (Figure 1.1), while the number of structures is still increasing. The holy grail

is to obtain a video at atomic resolution of the protein folding pathway starting from translation in the

ribosome, and then following the changes to the protein as it interacts with its environment. This video

would provide information on the protein’s allostery, dynamics, interactions, pathways, and stability under

the conditions studied, such as a disease state or the presence of drug molecules. So far, this video can be

obtained only through molecular dynamics simulations, which is only a simulation of reality. Molecular

dynamics requires knowledge of the protein structure, and it is feasible for only small systems and short

time scales due to the prohibitive computational costs. Protein folding occurs at a time scale that molecular

2



Figure 1.1: Left: Growth of new unique folds in the PDB according to the SCOP hierarchical classification
database [83]. The number of folds in the superfamily group is displayed, which appears to have stopped
increasing by 2009. The top level of the SCOP hierarchy is the fold group consisting of proteins with
the same secondary structure and arrangement of structures, but not necessarily a common evolutionary
origin. The next level is the superfamily group (shown) consisting of proteins with a common evolutionary
origin. Proteins with low sequence identity, but common structural and function features are classified
into the same superfamily. Right: Growth of structures in the PDB. Source: Based on http://www.pdb.

org/pdb/static.do?p=general_information/pdb_statistics/index.html. Accessed May 2011.

dynamics currently cannot handle in general. While NMR also cannot provide this folding video, it can

provide snapshots at near physiological conditions. The main advantage of NMR over x-ray is that with

NMR, proteins can be studied in conditions resembling the protein’s native environment. Although time-

resolved x-ray crystallography can be used to study dynamics, it cannot do so in physiological conditions.

There are two types of NMR: solution/liquid-state and solid-state, depending if the proteins is studied in

liquids and solids, respectively. The former is used to study water-soluble proteins, while both can be used

to study membrane proteins. In this work, we focus on solution methods, and we ignore membrane proteins

because of the challenges they present, which is beyond the scope of this paper. In special circumstances,

it is even possible to do protein structure determination of proteins inside living cells rather than using

purified proteins in solution [101].
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1.2 Beyond Structure Determination

Figure 1.2 gives examples of protein dynamics over various time scales and the NMR measurements for

characterizing them. This thesis will focus on chemical shifts. NMR has been used to study protein-

protein interactions [130], protein dynamics [76], folding pathways [57], and drug interactions [90]. Among

the more successful NMR methods for drug design and screening, fragment-based methods, such as SAR

(structure-activity relationship) by NMR [42, 106], have found their way in pharmaceutical companies and

have resulted in discoveries that are currently undergoing clinical trials[43, 92]. In SAR by NMR, chemical

shift mapping is used to identify a pair of molecules that bind to different, but nearby sites (Figure 1.3).

Although each molecule may bind weakly, by linking the molecules together, a higher affinity molecule is

created. Another NMR fragment-based approach is SAR by ILOE (interligand nuclear Overhauser effect)

that does not require labeling of the protein target [97]. This thesis applies structure-based assignment

to chemical shift mapping, which can be used to identify residues in the binding interface. By combining

methods from protein-ligand docking, we demonstrate the potential for fast protein-ligand 3D complex

determination.

4



Figure 1.2: Characterizing protein dynamics over various time scales with NMR. The top row gives the
time scale starting from fast motions (left) to slower motions (right). The second row gives examples of
NMR measurements and experiments across the time scales. The third row illustrates various dynamic
processes. Adapted from http://www.embl-grenoble.fr/embo2008/files/THU_m_sattler.pdf

Figure 1.3: SAR by NMR. Ligands are screened for binding activity at adjacent sites and then linked to
improve the affinity.

5

http://www.embl-grenoble.fr/embo2008/files/THU_m_sattler.pdf


Chapter 2

Background

A review of the relevant basic NMR principles, experiments, and problems is presented for the computer

scientist. It is by no means a complete introduction to NMR spectroscopy.

2.1 Physical Principles

Atoms with an odd number of nucleons, which is the number of protons plus neutrons, have a non-zero

quantum mechanical property called spin. Atoms with spin 1
2 are of particular interest to protein NMR

spectroscopists. Examples include 1H, 13C and 15N. To facilitate NMR spectroscopy, proteins are usually

isotope labelled with 13C and 15N. NMR active nuclei can be visualized as magnets spinning about the

axis of their magnetic moment, much like the earth (Figure 2.1). In the presence of an applied magnetic

field, nuclei will be in one of two energy states. Those with their axis aligned with the field are in the

low energy state, while nuclei with the axis aligned against are in the high. Regardless of the state, the

applied field causes the spinning nuclei to precess/wobble, analogous to a spinning toy top. The frequency

of precession is proportional to the magnetic field “experienced” by the nuclei, which depends on the local

chemical environment of the atom, which in turn depends on the 3D structure of the protein. The field

experienced is affected by the surrounding electrons, which, according to the laws of electromagnetism,

6



Figure 2.1: An NMR-active nuclei spinning about its magnetic moment axis (black) while undergoing
precession at frequency ω (orange) in an applied magnetic field B.

will produce a magnetic field opposing the applied field. This shielding effect is less prominent for protons

near electronegative atoms because the electronegative atoms have a deshielding effect of drawing electrons

away from the proton. Deshielded protons experience the applied field more, and therefore have a higher

frequency of precession. The precession frequency is known as chemical shift, and sometimes referred to as

spin or resonance, and the value is relative to the frequency of standard compounds - DSS for 1H and liquid

ammonia for 15N [119]. Equation 2.1 gives the chemical shift in standard form, where δa represents the

value for atom a, ω represents its precession frequency in Hz, and ω0 the frequency of a standard compound.

The result is multiplied by a million to give a number in units of parts per million (ppm). Chemical shift

is measured by applying energy of frequencies in the radio wave region of the electromagnetic spectrum

to a protein sample in a magnetic field. If nuclei with frequency ω at the low energy state absorbs energy

of the same frequency, it will transition to the high energy state, and then release the energy and relax

back to the low energy state. The energy released gets detected. The energy applied produces a resonance

condition, analogous to pushing a child on a swing at the correct frequency that makes the child go higher

and higher.
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Figure 2.2: Simplified spectrometer operation. A spinning tube containing the protein sample is placed
in a magnetic field B0. A frequency generator generates alternating current on transmitter coil T , which
induces magnetic field B1, which in turn, perturbs the sample. The sample is then allowed to return to
an equilibrium state from a mechanism known as relaxation. This cycle of perturbation and relaxation
generates a fluctuating magnetic field in the sample, which induces an alternating current on a receiver coil
R. The resonance signals get recorded by a recorder/computer, which performs a fast Fourier transform
to convert the overlapping signals in the time domain to the frequency domain. Source: Adapted from
http://tonga.usip.edu/gmoyna/NMR_lectures/lecture2.pdf

δa =
ω − ωo
ω0

× 106 (2.1)

Figure 2.2 gives a simplified model of the operation of a spectrometer. It is not exactly how modern

spectrometers work, but it is sufficient for our purposes.

A lot of the data analysis in NMR is detective work, where the NMR signals serve as the observed

evidence of some unknown structure. The goal is to link the evidence to its correct interpretation. For

the evidence, we use chemical shifts. Each chemical shift value is associated with some atom, and a group

of chemical shifts is associated with groups of atoms that are related to each other in 3D space or some

other manner related to the structure. The difficulty is that the evidence is often incomplete and noisy.

Given enough information, one can reconstruct the 3D structure, or in terms of our detective analogy,

the crime. This thesis is focused on the linking part prior to the structure reconstruction. Note that

the problems are not independent since knowledge of one part can help the other. We focus on using
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structure information, such as from a homologous 3D structure, to simplify the linking step. For example,

if experiment X indicates that chemical shift A is associated with B, which in turn is associated with

C, and if we know that residue 4 is in contact with 5, and 5 with 8, then there is evidence that A is 4,

B is 5, and C is 8. Of course there are other possibilities, but the number of possible combinations of

assignments is reduced using this a priori information. This is analogous to using a detective’s experience

with certain types of crime scenes to better interpret the evidence. Although it might seem awkward

for structure determination methods to use an input structure for structure output, this is not the case.

Structure determination methods are typically iterative, so intermediate structures are used as input to

produce structures that fit better the NMR data. In addition, for drug screening and NMR studies on

dynamics, the output is not necessarily a structure. For example, it may suffice to know that binding is

occurring, which residues are involved, and the binding affinity. An input structure can accelerate these

studies if the structural changes are expected to be small upon binding, or the bound structure is similar

to other known bound structures.

2.2 Experiments

NMR experiments can yield multidimensional spectra. Figure 2.3, gives an example of a 2D spectra,

visualized as a contour diagram. It consists of peaks, which are local maxima whose multidimensional

coordinates give the chemical shift values of a set of atoms and whose height is the intensity of the signal.

Typically, peaks are selected or “picked” through manual inspection or with an automated peak picking tool

and then verified manually. The set of peaks from a given spectrum shall be referred to as its peak list. We

focus on experiments that do not use 13C because they are more expensive due to proteins having more C

than N. In addition, experiments using 13C typically require double labeling that includes both 13C and 15N.

In the online catalog of VLI Research Inc., http://www.vli-research.com/Order_Proteins/Catalog/,

for 10 mg of the protein Ubiquitin, the 15N-labeled costs $2250, the double labeled 13C and 15N costs

$5750, and the unlabeled costs $2100.

Each peak in a 2D 1H-15N-HSQC spectrum consists of the backbone amide N and HN chemical shifts

9
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Figure 2.3: A section of a 2D 1H-15N-HSQC spectrum. The horizontal dimension gives the HN chemical
shift and the vertical the N chemical shift; both in units of ppm. The slices give the peak intensity in each
dimension. The figure is a screenshot of SPARKY [37].
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of some residue. The chemical shifts of the side chain N, HN group of ASN, GLN, and TRP also appear

(those for ARG and LYS are usually not visible), but they can be filtered out using expected patterns

in this spectrum (Figure 2.4) and others (discussed below). As an abstraction, each HSQC peak can be

treated as a 2D point in chemical shift space plus an intensity value. The δN and δHN serves as an anchor

for matching peaks from other spectra with dimension two or greater. δN is typically in the range of

100-135 ppm, and δHN 6-11 ppm. Proline residues do not have a backbone HN, so it has no HSQC peak.

Each peak in a 3D 15N-TOCSY spectrum consists of backbone δN , δHN of some residue, and the

chemical shift of a proton in the side chain of that residue. Peaks with the same δN , δHN can be grouped

together to give the shifts of the residue’s side chain protons. In the literature, a grouping of related

chemical shifts, anchored by some HSQC peak, is called a spin system. As an example, for the spin system

(121.14, 8.29, 4.19, 1.98, 0.83, 0.80 ppm), there would be TOCSY peaks for the 8.29, 4.19, 1.98, 0.83, and

0.80 ppm with δN , δHN similar to 121.14, 8.29 ppm. There would also be an HSQC peak for 121.14,

8.29 ppm. Typically, a spin system consists of the chemical shifts of a single residue, and perhaps, for

linking purposes, those of an adjacent residue. Note that methyl protons have only one chemical shift

value visible in the TOCSY. For instance, if the above example is valine, the 0.83 ppm might represent the

3 HG1’s, and 0.80 ppm the 3 HG2’s. If the 6 HG’s have very similar values, then there might only be one

chemical shift value representing all of them. For the side chain N, HN of GLN, there will be spin systems

containing (NE2, HE21, HE22) and (NE2, HE22, HE21), where the HE’s have chemical shifts around 7

ppm; similarly for ASN for ND2. For TRP, there may be a spin system consisting of the shifts for NE1,

HE1, and one or more H’s with a value around 7 ppm.

Grouping peaks by chemical shift, which we shall call spin system compilation, requires a definition of

chemical shift distance. In this work, we use the following definitions

∆δN (h, h′) = |δN (h)− δN (h′)| (2.2)

∆δHN (h, h′) = |δHN (h)− δHN (h′)|

∆δNH(h, h′) = ∆δN (h, h′) + 10×∆δHN (h, h′)

11



Figure 2.4: 15N-HSQC spectrum showing the typical locations of side chain N, HN chemical shifts. Folding
refers to an artifact from NMR spectrum processing when signals are outside the spectrum boundaries.
These artifacts can often be detected easily. Source: http://www.protein-nmr.org.uk/spectra.html
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where δN (h) gives the N chemical shift of peak h, δHN (h) the HN chemical shift of h, and the 10 comes

from the gyromagnetic ratio of 1H and 15N. Euclidean distance and various types of weightings can also

be used [102]. Chemical shift degeneracy, defined as chemical shifts of very similar values but belonging

to different atoms, can cause ambiguities when using chemical shift to match peaks. For instance, HSQC

peaks 120.0, 7.85 ppm and 120.2, 7.81 ppm, corresponding to residues A and B, both match TOCSY peak

120.1, 7.83, 4.15 ppm that corresponds to proton C. C can belong to only one residue, unless it turns out

that both residues have a proton with chemical shift at 4.15 ppm.

Each peak in a 3D 15N-NOESY spectrum consists of the δN and δHN of some residue, and δH of a

nearby proton that is within 5Å of the HN. δH can represent a proton in the same or different residue.

Each peak also has an intensity value that is inversely proportional to the sixth power of the distance

between the protons. This distance-dependent phenomenon is known as the Nuclear Overhauser Effect

(NOE). However, for various reasons, such as spin diffusion and mobility, the intensity is often not an

accurate reflection of distance [118]. Therefore, in structure calculation, rather than using exact distances,

distance bins are used. NOEs can be weaker than expected by distance alone, so the lower distance bound

of each bin is the same, but the upper bound varies depending on the intensity. For instance, NOEs are

typically classified as strong, medium, and weak with distance bins 2-3Å, 2-4Å, and 2-5Å, respectively.

Given NOE (δN ,δHN , δH ), to determine whether or not a pair of spins systems/residues are in contact,

we match δN , δHN to the amide chemical shifts of one spin system based on some distance tolerance, and

δH to any proton chemical shift (including HN ) of another spin system. For example, given spin systems

(121.1, 8.29, 4.19, 1.98, 0.83 ppm) and (106.5, 7.45, 3.79, 3.63 ppm), the NOE (121.2, 8.32, 3.82) ppm

matches the amide chemical shift of the first spin system based on a 0.5, 0.05 ppm threshold, and the 3.79

ppm proton chemical shift of the second spin system based on a 0.05 ppm threshold. Note that there can

be many pairs of spin systems that match a given NOE. Typically, each backbone HN is near some proton

in an adjacent residue (often another HN or Hα), so embedded in the NOESY spectrum is sequential

connectivity information. Like 15N-HSQC and 15N-NOESY, combinations of double-labeled 13C , 15N

experiments can also give sequential connectivity information by correlating pairs of atoms separated by

a limited number of bonds. These experiments are known as through-bond experiments, which will not
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be discuss further. NOESY is a through-space experiment, which correlates atoms by distance. For the

side chain N, HN of GLN, there may be NOEs for (NE2, HE21, HE21), (NE2, HE21, HE22), (NE2, HE22,

HE21), and (NE2, HE22, HE22); analogously for ASN. For TRP, there may be an NOE for (NE1, HE1,

HE1) and perhaps NOEs for one or more (NE1, HE1, H), where H has a chemical shift around 7 ppm.

The magnetic fields of a pair of nearby NMR-active nuclei also interact via dipolar coupling, which

depends on their distance and the angle between their displacement vector and the vector representing the

direction of the external magnetic field in a global molecular coordinate frame. If the distance between

the atoms is known (e.g. they are connected by a bond) and the molecule is rigid, then the distance

can be treated as a constant, so we are left with the orientation of the vector in the molecular frame.

This information is global, and it supplements local distance information from NOEs. In solution, dipole

couplings average to zero, so alignment media, such as bicelles, are typically added to re-establish the

coupling. A residual dipolar coupling (RDC) represents the orientation information, but the angle cannot

be obtained directly from the RDC value due to ambiguities. Typically more than one media needs to be

used, and the magnetic field axis in the molecular frame, which is in the form of an alignment tensor (a 3x3

matrix), needs to be estimated. To estimate this, at least five (in practice > 15) unique RDC assignments

are needed [112]. 1H-15N-HSQC experiments can yield backbone N-HN RDCs (DNHN ). 13C experiments

can yield RDCs involving carbon and the protons attached to it.

2.3 Backbone Resonance Assignment

Resonance assignment is simply assigning each spin to its underlying atom. Depending on the context,

in this paper, we shall use “assignment” to mean a single spin-atom assignment, or all the spin-atom

assignments of a protein, or all the spin-atom assignments for a single residue. It will be clear from the

context what is meant. The assignment problem is one of the main bottleneck steps in NMR because it

can take weeks and even months for large proteins using semi-automated and manual methods. The focus

here is on the assignment of backbone N, HN chemical shifts to the underlying residues, which is equivalent

to assigning each 15N-HSQC peak to each amino acid residue. Proline residues cannot be assigned. The
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N-terminus residue and regions of high mobility, such as long unstructured loops, also cannot be assigned

due to poor NMR signals and undefined contacts.

Side chain proton assignment will not be considered except for Hα. In general, side chain assignment

is non-trivial because it is often not possible to unambiguously assign side chain proton chemical shifts to

the correct proton, especially stereospecifically. It might be worth investigating whether a pseudo atom

approach of representing the other side chain protons will work. Methods for assigning side chain chemical

shifts typically require a backbone assignment as input. Assigning each NOESY peak to the underlying pair

of protons in contact is known as NOE assignment. It is also normally done after the backbone assignment

step. The combination of side chain and NOE assignment is often needed to acquire a sufficient number of

distance constraints for structure determination. Double-labeled experiments are needed in this case. The

work in this thesis only performs backbone resonance and backbone NOE assignment because the focus is

not on structure determination.

Traditional sequence-based, backbone assignment methods depend on connectivity information from

double-labeled triple resonance experiments to connect chains of adjacent peaks together and to identify

possible amino acid types of each peak for anchoring the chain onto the protein sequence (reviewed in

[41, 18, 11], and illustrated in Figure 2.5). In contrast, structure-based methods, which is the focus of

this thesis, use information from a homologous 3D structure to speed up assignment. This is analogous

to molecular replacement in x-ray crystallography, where a homologous structure is used to help solve the

phase problem. The homologous structure is used as a guide or template for matching the experimental

data. This can accelerate the assignment step because the ambiguity is reduced. We shall call the

homologous structure the template structure and the structure from which the NMR data is derived as

the target structure. Sequence-based methods that also use NOEs and RDCs can also use a template

structure. Given the recent slow growth of unique folds in the PDB (Figure 1.1) in contrast to the growth

in the number of structures, it is likely that a homologous structure exists for the protein studied. So far,

there is no standard approach for assignment either in terms of experiments or algorithms. Table A1 in

[41] lists 44 programs for the assignment problem in general.

To see how assignment fits into structure determination, see Figure 2.6, which gives a generic structure
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Figure 2.5: Traditional backbone assignment from double-labeled triple resonance experiments. Double-
labeled NMR experiments give the chemical shifts for the atom types shown, which include the carbon
chemical shifts of the current and previous residue. In this example, the 3D peaks of chemical shifts are
grouped together using the amide chemical shifts. Two spin systems are shown along with their residue
assignment. The carbon chemical shifts in bold are connected together between adjacent amino acids
to give the backbone assignment for the polypeptide chain. This connection problem is known as the
Hamiltonian Path problem.

determination pipeline. It is a simplification of the one used by the NorthEast Structural Genomics

Consortium (NESG), which is one of the large scale US National Institutes of Health-funded structural

genomics centers of the Protein Structure Initiative. Although it might seem awkward to use structure-

based assignment for structure determination, this is not the case. The initial structure obtained from the

structure calculation step is typically of poor quality because of assignment errors and incorrect distance

restraints. Therefore, the pipeline is iterative, so that errors can be corrected. Intermediate structures are

used to identify NOEs supported or violated by the contacts in the structures. Gradually, the quality of the

structures improve. In general, it is not possible to satisify all distance restraints due to spurious NOEs.

By using structure-based assignment, we can jump into the middle of the iteration. The assignment score

can be used to measure how well the contacts in the structures match the NOE data. The ultimate goal

is to bootstrap this pipeline with computational structure prediction methods, which is especially useful

if there is no homolog, but there is a threading template. Achieving this goal requires the integration

of backbone and sidechain assignment with structure determination techniques, which are all non-trival

problems. For this thesis, we focus on only backbone assignment, which is the first step towards this goal.

2.3.1 Literature Survey

Among the older methods, GARANT [15, 14] can optionally use a homologous structure and/or chemical

shift assignments from a homologous protein to improve accuracy. Their method is based on matching

experimental peaks with expected peaks using a genetic algorithm, so presumably any spectra can be used
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Figure 2.6: Generic solution NMR structure determination pipeline. Note that this is an extreme simplifi-
cation of the process described in [80]. The pipeline is iterative as the results of subsequent steps are used
to correct errors in previous steps. The step labeled “other constraints” consists of constraints other than
distance constraints from NOE assignment. Examples include torsion angle and bond vector orientation.

17



including those for assigning side-chains. They tested their method on automatically picked peaks from

the spectra of a 74-residue, 68-residue, and a 165-residue protein. For the two smaller proteins, they used

2D 1H COSY (each peak gives a pair of protons that are at most 3 bonds apart), 2D 1H TOCSY, and

2D 1H NOESY. For the larger protein, they used 3D 13C- and15N-NOESY, and 3D CBCA(CO)NH (each

peak gives N, HN of residue i, and Cα or Cβ of i-1). Exact accuracy numbers were not given as their

results were reported as graphs, but their main conclusion is that using information from a homologous

protein with automatically picked peaks is equivalent to using manually picked peaks without homology

information. This indicates that fully automated methods must compensate for the poor quality output

of automatic peak picking methods with homology information in order to compete with the accuracy of

manual methods.

MARS [52, 53] is a sequence-based method that can use an input 3D structure in conjunction with

RDCs. The structure is used to backcompute RDCs that get compared to the experimental values in the

scoring function. The scoring function also matches predicted chemical shifts with experimental shifts.

MARS requires as input spin systems, which they call pseudoresidues, rather than the spectra or peak

lists. It assumes spin system compilation is done correctly, even though it is not a trivial problem due to

chemical shift degeneracy. MARS accepts chemical shifts from Ni, HN
i , Cαi , Ci

β , Cαi−1, Cβi−1, and Cαi−1.

The assignment algorithm exhaustively tries to place pseudoresidue fragments of length 5 onto all possible 5

residue segments of the sequence. The algorithm then generates different assignment possibilities by adding

noise to predicted chemical shifts. Conserved assignments are then fixed, and the process iterates using

fragments smaller than 5. For the two-domain 370-residue maltose-binding protein, using the chemical

shifts for Ni, HN
i , Cαi , Ci

β , Cαi−1, Cβi−1, and Cαi−1, and RDCs DNHN and DCαC′ , and a 20% missing

pseudoresidue rate, they assigned correctly 95% of the non-missing pseudoresidues.

For structure-based assignment, the Nuclear Vector Replacement (NVR) approach [66, 65] uses chemical

shifts from 15N-HSQC, DNHN RDCs in 2 media, sparse HN -HN NOEs from 3D 15N-NOESY, and amide

exchange rates. The problem was cast as a maximum bipartite matching problem, which they solved in

polynomial time. Using close structural templates, they achieved an accuracy of over 99%. Their work was

extended to handle more distant templates using normal mode analysis to obtain an ensemble of template
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structures [7]. Unlike NOEs, RDC experiments are not as commonly used for backbone assignment. It is

used more often for structure validation and refinement.

The contact replacement (CR) method uses the jigsaw approach [9], consisting of only 15N-labeled

data: 2D 15N-HSQC, 3D 15N-TOCSY, 3D 15N-NOESY, and 3JHNHα coupling constants derived from 3D

HNHA. The problem was cast as a subgraph matching problem, where one graph consists of the contacts

in the known protein structure, and the other consists of NOEs that connect spin system pairs. In general,

the mapping of NOESY peaks to specific contacts is ambiguous due to experimental errors, missing peaks,

and false peaks. Although the graph problem solved is NP-hard, the authors proved that under their noise

model, the problem could be solved in polynomial time with high probability. They developed a branch-

and-bound algorithm [123], which they later improved to a randomized algorithm [124]. The CR method

was demonstrated to tolerate 1-2Å structural variation, 2.5 to 6x noise, and 10-40% missing NOE edges.

Although they mentioned that there exists methods with close to 90% average accuracy for predicting a

spin system’s amino acid type class (types were grouped into 10 classes), such prediction errors were not

tested. The method achieved an assignment accuracy of above 80% in α-helices, 70% in β-sheets, and 60%

in loops. To our knowledge, it is the most error-tolerant structure-based method in terms of the noise

level.

In NOEnet [110], the problem was also cast as a subgraph matching problem. Unlike the CR method,

NOEnet generates an ensemble of assignments containing all possible assignments compatible with the

NMR data, and it requires only HN -HN NOEs. However, it requires unambiguous NOEs, such as those

from 4D NOESY experiments, so the noise is less than that handled by the CR method. NOEnet was

updated to handle RDCs and chemical shifts from 15N and 13C-labeled proteins [112]. Filters were used to

prune assignments that contain significant deviations from predicted RDCs and predicted chemical shifts.

For the 259-residue EIN protein, they obtained an accuracy of 100% using N and HN chemical shifts,

HN -HN NOEs, and HN -15N RDCs. Using HN -HN NOEs and N, HN , Ci
α , Ci−1

α chemical shifts, they

obtained an accuracy of 99.2%. The accuracy here allows for peaks to have multiple residue possibilities,

whereas the accuracies reported for the other methods require one-to-one assignments.

Besides sequence-based and structure-based methods, there are structure determination methods that
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do assignment indirectly. CLOUD-based methods use NOE information, antidistance constraints, and van

der Waals repulsions to generate putative positions for protons [40] or residue fragments [67] by molecular

dynamics or simulated annealing. The “clouds” generated are analogous to the electron density maps in

x-ray crystallography. The protons or fragments are then connected and assigned to the sequence using a

Monte Carlo search. Structures were generated for proteins with up to 137 residues [18].

Methods based on using Rosetta are typically used to produce or refine a structure rather than to

perform backbone assignment [95, 94, 104]. Here, assigned backbone chemical shifts, but unassigned NOEs

and unassigned side chain assignments, were used as inputs. There is an older version of Rosetta [74] that

did backbone assignment using a Monte Carlo algorithm from N, H, and C chemical shifts, RDCs, NOEs,

and structures predicted by Rosetta. The predicted structures were used to obtain predicted chemical shifts

and predicted RDCs. Structures for proteins up to 140 residues were obtained from backbone assignments

of up to 70% accuracy.

In general, NMR spectra are examined by visual inspection, where the peaks are picked by inspection,

or by automatic methods with manual checking to remove noise. The peaks get accumulated in a peak

list, and this list can change during the study as errors and inconsistencies are discovered during the

assignment step. Therefore, the peak picking and assignment steps are usually done together. We aim to

build a system that automates this process for 15N-labeled data when a homologous structure is available.

The difficulty is that automatically picked peak lists are noisier. To our knowledge, current structure-based

methods are still semi-automated due to automated peak lists being of lower quality. To start, we first

build upon the work of the CR method to address the limitation of ignoring type prediction errors. We

show that if these errors are ignored, the assignment accuracy can be poor. Our system corrects for such

errors with some success. In the absence of such errors, our system has comparable accuracy. The core

of our system is a binary integer linear programming model. For the automatically picked peaks problem,

as proof of concept, we solve it for human ubiquitin from a publicly available data set [44]. Instead of

using HNHA, which was not available for ubiquitin, and not commonly available in the BMRB, we used

chemical shifts from a homologous assignment (yeast ubiquitin), which is available in the BMRB. This

work on backbone assignment is described in our paper [49].
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Figure 2.7: An overlay of five 15N-HSQC spectra to illustrate peak tracking in fast exchange chemical shift
mapping. The spectrum of the unbound protein is in red and labeled with each peak’s residue number.
The colors of the other spectra in order of increasing ligand concentration are yellow, green, blue, and
purple.

2.4 Chemical Shift Mapping

This problem is similar to the backbone assignment problem in that the goal is to assign chemical shifts

to the underlying atoms. The difference is that in chemical shift mapping, we are interested in tracking

chemical shift changes when the chemical environment of the protein changes. Our focus is on identifying

residues involved in ligand binding, but the methods are applicable to other changes, such as temperature

and pH. Candidate residues are those whose atoms have chemical shift changes that exceed some threshold.

Note that chemical shift changes might also be attributed to allosteric changes. Therefore, additional

analysis is required to verify binding.

Figure 2.7 gives an overlay of five 15N-HSQC spectra for a protein under increasing ligand concen-

trations, where the assignment is known for the unbound condition. The first spectrum containing the

unbound protein shall be referred to as the reference spectrum, and its peaks as reference peaks. The last

spectrum containing the fully-saturated protein shall be referred to as the target spectrum, and its peaks

target peaks. The spectra excluding the reference shall be referred to as the perturbed spectra. If the

assignments are known for the peaks in the reference, the path of chemical shift changes can be tracked
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from reference peak to target peak via the perturbed peaks. The paths give the backbone assignment

for the protein in each environment. From the figure, it appears that residue 6 has moved, although it is

missing blue and purple peaks, and the paths of residues 32 and 90 are uncertain. The tracking problem

is analogous to the computer vision problem of tracking points through frames of a video.

Ligand binding is an example of chemical exchange, which is a kinetic process characterized by a rate

constant that measures the transition between the different states, such as between the free/unbound

state and the bound. The situation depicted in Figure 2.7 is known as fast exchange. In fast exchange,

the chemical shift is equal to the average of the free and bound state values weighted by their relative

concentration. That is, if δfree is the value for the free state, δbound is the value for the bound, then

δ = δfree
[free]

[free]+[bound] + δbound
[bound]

[free]+[bound] , where [free] + [bound] is the total protein concentration

consisting of those in the free and those in the bound states. This thesis will focus on fast exchange

because the SAR method is based on it, but there is another type of exchange. In slow exchange, both

the chemical shifts for the free and bound state may appear in the spectra at the same time, with the

intensity of the peaks proportional to the concentration of each state. The tracking is more difficult in

this case. If the protein in Figure 2.7 undergoes slow exchange, only the red and purple peaks would be

present. Ligands in fast exchange tend to bind weakly, and those in slow exchange bind tightly. Figure

2.8 summarizes the fast and slow exchange cases. In intermediate exchange, the peaks become exchange

broadened (flat and buried under noise), so the spectra are difficult to analyze. One can try to shift the

exchange to the fast or slow case by changing the temperature or external magnetic field.

Once putative binding residues have been identified, they can be used as constraints by protein-ligand

docking methods to obtain the structure of the complex (Figure 2.9). In addition, binding constants for

measuring the tightness of binding can be estimated from the peak paths (Section 2.4.3). For complex

determination, it is useful to isolate the inter-molecular NOEs between the binding partners and the

intra-molecular NOEs within. If one molecule is isotope-labeled (13C, 15N, or both) and the other is not,

isotope-edited and filtered NOESY experiments can be used to show and hide, respectively, the signal from

protons attached to the labeled isotope, and therefore, provide the inter- and intra-molecular NOEs. In

general, such experiments are amenable to only the slow exchange case because of line broadening and lack
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Figure 2.8: Fast and slow chemical exchange. The horizontal axis represents chemical shift, and the vertical
axis represents peak intensity. L:R is the concentration ratio between the ligand and receptor. Only the
chemical shift for the receptor protein is represented. In fast exchange, the chemical shift is an average
weighted by the concentration of the free and bound state. For example, at 0.5:1, half the receptors are
bound, so the chemical shift lies in the middle of free and bound. In slow exchange, chemical shifts for both
the free and bound state may appear, where the peak intensity is proportional to the relative concentration
of each state.
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Figure 2.9: Left: Backbone diagram of hBclXL with the residues highlighted by the magnitude of their
chemical shift changes. In order of increasing chemical shift change, the colors are blue, yellow, orange,
red. Residues in white are unassigned. Right: Spacefill diagram of the protein bound to Bak. To obtain
this complex, the putative binding residues were passed in as constraints to a protein-protein docking
program. Figure produced using Jmol [1].

of sensitivity due to rapid interconversion between the states in fast exchange. There are, however, cases

where such experiments worked in the fast exchange case [23, 32, 87, 115, 98]. Instead, in fast exchange,

transferred NOEs [34] are used to obtain the intramolecular NOEs of the bound ligand, and saturation

transfer difference [72] is used to give the binding residues of the ligand. These methods are ligand-based in

that they do not give information about the binding site on the larger receptor protein, which is provided

by chemical shift mapping. They are also more applicable to the fast exchange case than the slow.

2.4.1 Literature Survey

Typically chemical shift mapping is done manually due to various errors and artifacts such as noise peaks,

overlapping peaks, and missing peaks. Because of this, there are only a handful of automated methods for

fast exchange.

Felix-Autoscreen [91] formulates the assignment of peaks in the reference spectrum to peaks in a
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Figure 2.10: Peak walking by taking into account the path of a neighboring peak. The peak colors in
increasing ligand concentration are white, yellow, green, and blue. The shortest path for the left white
peak (dashed arrow) gives the wrong mapping because it results in a much longer path for the peak on
the right.

perturbed spectrum as a bipartite graph matching problem, such that the sum of the chemical shift and

peak shape differences is minimized. Optimizing the sum of the distances is better than choosing the

peak nearest to each reference peak because the local greedy approach disregards the mappings of other

peaks nearby, which results in errors (Figure 2.10). Dummy peaks were used to handle missing data,

and peaks were picked on the fly during the execution of their algorithm. To handle more than one

set of perturbed spectra, the bipartite matching algorithm was repeated successively, where the current

perturbed spectrum becomes the new reference spectrum once it has been mapped. They tested it on a

74-residue protein domain in 8 different ligand concentrations, and obtained results similar to their manual

efforts. The successive approach, however, is still a local greedy approach because it does not consider all

the spectra simultaneously, so information about potential peak movements in later perturbed spectra are

disregarded. Successive bipartite matching is an approximation of the k-dimensional matching problem

(Section 4.1).

NvMap [35] also uses a greedy algorithm to successively match perturbed spectra. However, unlike

FELIX-Autoscreen, the sum of the distances was not used. Instead, the pair of reference and perturbed

peaks with the shortest distance was chosen and removed from consideration, and then the process was

repeated for the next shortest. They tested their method on 97 residues of the SUMO protein on 2 different

ligands, each at 6 different ligand concentrations. They obtained an average accuracy of 95%. The main
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source of error was overlapping peaks within a spectrum, where only one of the peaks was picked and

added to the peak list.

Of note is an older method, MUNIN [28], which is an automated method that does not identify the peak

paths, but rather spectra similarity. Given a set of spectra, where each spectrum contains the protein with

a different ligand, MUNIN identifies the peaks that are present in some spectra and absent in others using

a 3-way decomposition method on the set without peak picking. If one or more spectra contains a ligand

known to bind or not to bind, then it is often possible to identify whether binding has occurred in the

other spectra. MUNIN was tested on a small region of the spectra of a 74-residue protein domain, where

it identified the only spectrum with binding. MUNIN, however, does not identify the binding residues.

For large proteins, ambiguous mappings are inevitable. Rather than finding the unique mapping

between peaks in the target to peaks in the reference, we find a set of plausible reference peaks for each

target peak, where plausibility is determined by a scoring function. If the assignment for the reference is

known, then the mappings give a set of possible residues for each target peak; e.g., ILE 3, LEU 27, LEU

78. We want this set to be small, but yet contain the correct residue. In this thesis, we present a novel

peak walking model that describes the movements that peaks can make, and an approach that generates

high scoring mappings by enumerating high scoring paths based on this model. Unlike previous methods,

errors are modeled explicitly without using dummy peaks. We call our method PeakWalker. We tested

it on 3 proteins with publicly available peak lists: UbcH5B titrated with Not4 [114]; hBclXL with BH3I-1

[62, 78]; and histone H1 at 2 different temperatures [109]. At 218 residues minus a removed flexible loop

region R45 to A84, which was removed from the DNA sequence prior to NMR, hBclXL is much larger

than the proteins tested by other automated methods. The average accuracy on the test set is over 95%,

with an average of less than 1.5 amino acids predicted per target peak. We compared PeakWalker to a

greedy approach similar to that used by NvMap, but modified to return multiple mappings. We also tested

PeakWalker by varying the number of noise peaks.

We then describe an updated version of our structure-based backbone assignment method, called

PeakAssigner, which takes the output of PeakWalker as input, and then resolves the mapping ambiguities

using 3D 15N-NOESY and the 3D structure of a homologous protein. In chemical shift perturbation
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studies, a 3D structure is often available, such as from the Protein Data Bank (PDB)[17]. It is often

the case that the bound structure of the protein is similar across different ligands that can bind to it, so

that one bound structure can be used for studying different ligands. For drug screening, we often look

for bound structures that are similar to the complex with a known drug. Here, we want to find drugs

that bind similarly, but have fewer side effects. It is unlikely that a drug with a significantly different

bound structure will have the desired effect. Therefore, structure-based assignment methods are ideal

for disambiguating the possible mappings. On hBclXL, UbcH5B, and histone H1, PeakAssigner achieves

an average accuracy of over 94%. The updated assignment method no longer uses 3D 15N-TOCSY and

a homologous resonance assignment to avoid their limitations. For large proteins, the TOCSY becomes

crowded, and the homologous assignment can vary from the true assignment depending on the similarity

of the proteins and the experimental conditions. Currently, there are no automated backbone resonance

assignment methods that use only a series of 15N-HSQC spectra and ambiguous NOEs from 15N-NOESY

spectra, and do backbone NOE assignment and Hα assignment, simultaneously. Although NOE and

Hα assignment is not the main output of our algorithm, we show that by performing them, there is an

improvement in backbone assignment accuracy, on average. This is demonstrated with simulated NOESY

peaks from the PDB structures 1KA5, 1EGO, 1G6J, 1SGO, and 1YYC. PeakWalker and PeakAssigner

are described in our paper [50].

2.4.2 Binding Models

Early binding models are based on shape complementarity, where one molecule acts as a “lock”, while the

other acts as the “key”. Then it was observed that some molecules can still bind even though the shape of

the key does not fit the lock. When the lock initially does not fit the key, the induced-fit model explains

that molecules can undergo a conformational change upon binding to adapt to the shapes of each other.

This model was later extended to one based on conformational selection and population shift [69]. The

idea is that copies of the same protein are distributed in different conformational states, including one

that is close to the bound state. Upon changes to the environment, such as the introduction of a binding

partner, the distribution becomes shifted towards the bound state.
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2.4.3 Binding Tightness

For the sake of completeness, we briefly describe how binding constants can be estimated once the peak

tracking is known. Consider the following chemical equilibrium

R+ L

k+1

↔

k−1

RL

where R represents the free receptor, L the ligand, RL the bound receptor, k+1 the rate coefficient of

the forward reaction, and k−1 the rate coefficient of the reverse reaction. The dissociation constant

Kd =
k−1

k+1
=

[R] + [L]

[RL]

measures the tightness of binding, where [·] represents concentration. The smaller the value of Kd, the

tighter the binding. Kd is estimated for each atom that is potentially part of the binding site, and then

the average is taken. To estimate Kd, one can use least squares data fitting between the experimental and

predicted chemical shifts. The predicted values depend on a binding model. For a fast exchange, single

binding site model with no allostery, the predicted value is given by δ =
δR+δRLK

−1
d [L]

1+K−1
d [L]

[62] where δR are

δRL are the experimental chemical shifts of the atom in the free state and bound states, respectively. If

the model is unknown, different models can be tested to find the best fit.

The different exchange cases are defined by the rate coefficients. Defining the exchange rate as Kex =

k+1 + k−1, a site is in fast exchange if Kex � ∆ν, slow exchange if Kex � ∆ν, and intermediate exchange

if Kex ≈ ∆ν, where ∆ν is the resonance frequency difference in Hz between the atom in the free and

bound state [100].
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2.5 Binary Integer Linear Programming

Our approaches use binary integer linear programming (BILP). A linear program (LP) in standard form

is expressed as

max cTx

subject to Ax ≤ b

x ≥ 0

where x is the n × 1 vector of real variables to be solved, c is an n × 1 coefficient vector, A is an m × n

constraint matrix, and the right-hand side b is an m × 1 vector of bounds. cTx is called the objective

function to be optimized, subject to the constraints Ax ≤ b and x ≥ 0. This problem is known to be solvable

in polynomial time, but if x is constrained to be integers, the problem becomes an integer linear program

(ILP), which is NP-hard. ILPs are typically solved using branch-and-bound with linear programming

relaxations to obtain the bounds. If x is constrained to be binary, taking on the boolean values of 0 or 1,

then the problem becomes a binary integer linear program (BILP), which is still NP-hard, but there exists

specialized branch-and-bound methods on boolean variables, such as the Balas Additive Algorithm [10].

For BILPs where A, b, and c are all integers, the problem becomes a pseudo-boolean program (PBP). PBPs

can exploit methods [3, 127] from both the operations research community, such as those for BILP, and also

methods from the computer science constraint programming community, such as constraint propagation.

A special case of PBP is the boolean satisfiability (SAT) problem, where is c = 0, so the problem becomes

a feasibility problem rather than optimization. Our problems are similar to pseudo-boolean programs

except that c does not consist of all integers. We did not consider rounding the values to integers to get

a PBP because the integer programming solver CPLEX, which we used, still outperforms PBP solvers on

PBPs according to the Pseudo-Boolean Competition 2010 (See OPT-SMALLINT-LIN, under which our

problems fall, at http://www.cril.univ-artois.fr/PB10/results/ranking.php?idev=36).

ILP solvers can return a solution with score guaranteed to be at most N% away from the optimal

score, where N is a user-specified parameter called the gap. The smaller the gap, the longer the run time.
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At 0%, it results in brute-force search. Unless stated otherwise, we used a gap of 1%. For generating

multiple solutions, the sequential algorithm, introduced by Greisdorfer et al. [39] and generalized to more

than two solutions [29], can be used to generate solutions that are guaranteed to be within a certain

percentage of the optimal solution and have maximum diversity as measured by a diversity measure,

such as average pairwise hamming distance. The one tree algorithm can also be used [29] with the same

optimality guarantees without the diversity maximization, but with better efficiency. We used the one tree

algorithm with CPLEX 12.2 and the sequential algorithm with CPLEX 9.13, which did not have the one

tree.
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Chapter 3

Backbone Resonance Assignment

The goal is robust methods that can tolerate sparse and noisy data. In terms of missing data and noise

for 15N-labeled data, the CR method is the most robust, so we improve upon their ideas to get better

error handling, optimality guarantees, and modeling flexibility. Modeling flexibility and efficiency often

do not go together. In practice however, our BILP modeling approach runs faster than the CR method

because we can incorporate constraints directly into the model to limit the search space. Incorporating

such constraints is more difficult to do with the CR method.

We decided to avoid 13C-labeling for not only reasons of cost, but also because the vast majority of

available methods use such data, so there is little room for improvement. However, if data from 13C-labeling

is available, our models are capable of accepting such data with minor modifications, which should only

improve the accuracy of our results. Our approach provides an alternative perspective to the problem. We

also do not use RDC data, although our models can accommodate it, since it is not often used for backbone

assignment. Since this thesis builds from the CR method, we first review graph matching and summarize

their graph data structures, which is one of the key contributions of their work, before presenting our

methods.

The input data consists of amide chemical shifts from 15N-HSQC, side chain proton chemical shifts
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from 15N-TOCSY-HSQC, J-coupling constants from HNHA, and HN -H NOEs from 15N-NOESY-HSQC.

Each spin system looks like the following example: 123.0, 8.94, (5.27, 2.9, 6.8 FYWH), J=4 (helix), [8.6,

8.94, 4.72, 4.81]. The first two numbers give the amide chemical shifts. The next set of numbers gives the

side chain proton chemical shifts, and possible amino acid types, which can be predicted from those shifts

(Section 3.7.3). The next number gives 3JHNHα, which is used to predict the secondary structure type

(Section 3.6). The final set of numbers in square parenthesis gives the chemical shifts of the protons that

are in contact with HN , which has chemical shift 8.94. The predicted amino acid and secondary structure

types are used to limit the possible residues for this spin system; e.g., F3, Y45, Y82, W50, H8, H65.

3.1 Graph Matching

The field of pattern recognition using the representation of objects as graphs is a well studied problem

in computer science [25]. Graph matching is also commonly used in bioinformatics and chemoinformatics

[96]. One approach to comparing two graphs is finding the largest subgraph common to both. This

maximum common subgraph (MCS) approach, also known as subgraph isomorphism, has different variations

depending on the constraints on the common subgraph; e.g., whether or not a vertex common to both

graphs can have an extra edge in only one of the graphs and still be allowed in the common subgraph.

Figure 3.1 illustrates the maximum common node-induced subgraph (MCIS) and maximum common edge

subgraph (MCES) of a pair of graphs. Both versions are NP-hard [36]. The problem is not only NP-hard,

but also APX-hard [26], which means it is difficult to even approximate.

A MCIS requires a one-to-one correspondence; that is, if vertices X and Y in the MCIS has an edge

between them, then in both graphs to be compared, there must be an edge between X and Y. If vertices

X and Y in the MCIS does not have an edge between them, then in both graphs, there must not be an

edge between them. In MCES, both graphs can have extra edges. The problem of finding the MCS can

be reduced to finding the maximum clique in a modular product/association/compatibility graph [13]. A

clique is a subset of vertices where every pair of vertices is connected by an edge.

The MCS problem can also be viewed as a graph editing problem. It is analogous to the sequence
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Figure 3.1: Different types of maximum common subgraphs (highlighted in red) for graphs A and B.
Note that in the node-induced case, only one vertex incident to the diagonal edge can be in the common
subgraph because if both vertices are in the common subgraph, then both graphs must have this diagonal
edge, which is not the case. Also note that the maximum common subgraph is not unique because we
could have included the other vertex instead.
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alignment problem, where the goal is to “edit” one string using the fewest character additions, deletions,

and substitutions to transform it to the other string. Unlike strings, minimizing the graph edit distance is

more difficult because graphs in general do not have a linear structure that can be exploited.

MCS is not the only graph-based approach for assignment. If both graphs consists of only vertices and

no edges, a new graph can be created from the two using the same vertices. Edges are added between

vertices from one graph to vertices in the other, where the weight of the edge measures the degree that

the vertex pair matches according to some criteria. To illustrate, in the NVR approach, one set of vertices

represents HN -N internuclear bond vectors, the other represents DNHN RDCs, and the edge weights

represent the similarity between RDCs predicted from the bond vectors and the experimental values. The

goal is to find a one-to-one mapping or matching from one set of vertices to the other, such that the total

weight of the edges is maximized. A matching is simply a set of edges, where the edges do not share any

vertices. This is known as the maximum bipartite graph matching problem, and it is solvable in polynomial

time; for example, by the Hungarian algorithm [64].

3.2 Backbone Assignment as Graph Matching

Many backbone assignment methods cast the problem as a graph matching problem. NOE-based methods

are typically based on MCS, where one graph represents the contacts and the other the NOE connectivities.

In this section, we describe the graph representation of the CR method and any changes that were made

to the representation.

3.2.1 Contact Graph

The template structure is represented by a contact graph (CG). Each vertex represents a proton; e.g., HN

of ALA 25. Only the 3D coordinates of HN and Hα protons are considered. Vertices are also labeled with

the amino acid type and secondary structure type of the residue containing the proton. Each edge is labeled

by the HN - Hα or HN - HN contact that it represents, where a contact is defined by a distance threshold.
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HN - Hα or HN - HN are the only interaction types considered. Among all the types of protons, NOEs

for contacts involving amide protons, and alpha protons are more reliable because they are observed more

frequently whenever such contacts are expected [31]. The edges are directed such that the tail represents

the HN of some residue and the head represents the Hα or HN of another residue. An HN - HN contact

will have two edges, one for each direction because in each NOE (δN , δHN , δH), the δN , δHN represent

only one of the amide groups; there should exist another NOE whose δN , δHN matches that of the other

amide group.

3.2.2 Interaction Graph

Proton chemical shift correlations in the 15N-NOESY are represented by an NMR interaction graph (IG).

Each vertex represents the chemical shift of a proton of unknown identity from an associated spin system;

e.g. 8.94 ppm from (123.1, 8.94, 5.26, 2.22, 1.86) ppm. Vertices are labeled by their predicted amino

acid type and secondary structure type. Amino acid type predictions were obtained from the RESCUE

software, version 1 [93] using the chemical shifts as input. RESCUE classifies each spin system into one of

ten possible amino acid classes. In our work, we used all classes with positive reliability score rather than

the highest scoring class to compensate for errors made by RESCUE. Secondary structure type predictions

can be obtained from 3JHNHα coupling constants [122].

Each edge represents an NOE match; e.g., NOE (121.2, 8.32, 3.82) ppm matches spin system (121.1,

8.29, 4.19, 1.98, 0.83 ppm) and spin system (106.5, 7.45, 3.79, 3.63 ppm) based on a δN , δHN , δH threshold

of 0.5, 0.05, 0.05 ppm (the matching chemical shifts are underlined). Each edge is directed from the amide

proton chemical shift to the other proton chemical shift. We consider only proton chemical shifts for HN

obtained from the HSQC peaks, and those for Hα in the range 2-6 ppm obtained from TOCSY peaks.

Like the CR method, contacts for other protons, such as to Hγ , were not considered because assigning the

non-alpha protons unambiguously is often not possible due to overlap. However, it is worth investigating

if leaving such assignments as ambiguous would improve or hinder overall assignment.

For each interaction, a match score is associated, which measures the match of the NOESY peak to

the pair of spin systems. Given NOESY peak (δN , δHN , δH ) that matches δAN , δAHN of spin system A and
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Figure 3.2: Left: Contact graph. HN in white and Hα in pink. HN is labeled by its residue number. Right:
Interaction graph. The maximum common subgraph is highlighted in red. The HN s are labeled by their
residue number in the IG, but in general, the labeling is not known.

some δBH (HNor Hα) of spin system B, the match score is defined as erfc(
|δH−δBH |
0.02×

√
2
) as used in [124], where

erfc is the complementary error function. The score ranges from 0 to 1, where if |δH − δBH | is small, i.e.

the match is close, then the score is closer to 1. The score does not use δN , δHN of the NOE.

An NOE can match the chemical shifts of many possible pairs of spin systems. In the IG, there are

edges for every possible match even though there is only one correct match. In general, IGs have many

more edges than the CG. The noise ratio or level is defined as the number of IG edges over the number of

CG edges. Hidden within the IG is some form of the CG, perhaps with extra and missing edges. The goal

is to find it. Figure 3.2 illustrates the graphs, and shows the matching subgraph embedded in the IG. For

illustrative purposes, edges were removed from the IG, so that the matching subgraph could be visible.
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3.2.3 NMR Graph Matching Approach

A CG vertex matches an IG vertex if the CG vertex’s amino acid and secondary structure type is present

in the IG vertex’s set of predicted amino acid and secondary structure types. A CG edge matches an IG

edge if the end point vertices match and the interaction type matches.

For simplification, protons belonging to the same residue in the CG were grouped together into a single

vertex, and proton chemical shifts in the IG belonging to the same spin system were grouped together into

a single vertex. Contacts between a pair of residues were grouped together into a single undirected edge

in the CG, but with the directions of each interaction preserved. NOESY peak matches between a pair of

spin systems were grouped together into a single undirected edge in the IG. A pair of CG and IG edges

match if their list of types have at least one type in common, and both pairs of end point vertices match.

For each edge match, we associate an edge score by taking the sum of the match scores for all interaction

types in common.

To find the best match, we used the MCES to maximizes the sum of the edge scores, subject to the

constraint that the vertices and edges match. MCIS was not chosen because NMR data, as represented by

the IG, is typically noisy and contains missing data. Since a polypeptide chain is sequential in nature, the

IG has an embedded Hamiltonian path. In graph theory, a Hamiltonian path is a path that visits each

vertex exactly once. Due to proline residues not having a backbone amide group, the Hamiltonian path

is fragmented. Finding this path and using it to guide the assignment was the approach taken by the CR

method. Since contacts outside the Hamiltonian path might be missed, we chose to solve the subgraph

isomorphism problem directly. We modeled the problem as a quadratic assignment problem and cast it

as a BILP. Our BILP is similar to the quadratic assignment linearization by Adams and Johnson used

for the maximum clique problem [22, 128]. In the quadratic assignment problem, the goal is to place N

facilities in N locations, such that the cost is minimized, where the cost depends on the distance between

the locations and the flow (e.g. weight of the load transferred) between the facilities. Formally, the cost

is minπ
∑
i 6=j fij · d(π(i), π(j)), where π is the assignment of facilities to locations, the sum is over all

pairs of facilities, fij is the flow between facilities i and j, and d(·, ·) is the distance between the locations.

The problem is APX-hard, both the minimization and maximization versions, although currently the
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minimization version is more difficult to approximate [84]. Our NMR problem is not as difficult since it

is a special case. The problem was proven to be solvable in polynomial time with high probability [124].

In practice, however, the algorithm based on that theory runs extremely slowly because the number of

possibilities to ensure the high probability can still be large. Using a BILP has the advantage of using

constraints to prune the possibilities.

BILPs are not new to the MCS problem [54]. They have even been used in NMR. In IPASS [5], a BILP

was used for sequence-based assignment that relies on sequential connectivity from double-labeled triple

resonance experiments. We use a BILP for structure-based, 15N-labeled-only NOESY-based backbone

assignment. A BILP was also used for assignment using RDCs by NVR-BIP [6]. Our BILP is different

from both. IPASS is based on Hamiltonian Path, and NVR-BIP is based on maximum bipartite matching.

Ours is based on maximum common subgraph. We chose a BILP because it models the problem naturally

as we will show. The commercial optimization package ILOG CPLEX® version 9.13 was used as the

solver.

3.3 Backbone Assignment BILP Model

Define Vc, Vi to be the set of vertices in the CG and IG, respectively. Define Ec, Ei to be the set of edges

in the CG and IG, respectively. For notation purposes, (a, b) shall denote a graph edge between vertices

a and b, and {a, b} shall denote the assignment of residue a to spin system b.

3.3.1 Binary Variables

Xa, s, b, t Equals to 1 if spin system s is assigned to amino acid residue a, and spin system t is assigned

to amino acid b; and 0 otherwise. This variable represents the assignment of edge (a, b) ∈ Ec to

edge (s, t) ∈ Ei, where vertex a is assigned to vertex s, and b to t. Xa, s, b, t is equivalent to Xb, t, a, s

(only one such variable exists), but Xa, t, b, s is different from Xa, s, b, t because a is assigned to t in

the former, and a to s in the latter.
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Xa, s Equals to 1 if spin system s is assigned to amino acid residue a; and 0 otherwise. This variable

represents the assignment of vertex a ∈ Vc to vertex s ∈ Vi. The set of all Xa, s variables set to 1

gives the backbone assignment.

3.3.2 Objective Function Coefficients

W (Xa, s, b, t) The score of assigning the contacts between residues a and b to the NOESY peak matches

between spin systems s and t. The score is equal to the sum of the match scores for all interaction

types in common. The score is non-negative. It represents the edge match score.

W (Xa, s) The score of assigning amino acid a to spin system s. Currently it is not used and set to 0. This

represents the vertex match score.

3.3.3 Objective Function

max
X

 ∑
{a, s}∈A

W (Xa, s) ·Xa, s +
∑

(a, b)∈Ec

∑
(s, t)∈Ei(a, b)

W (Xa, s, b, t) ·Xa, s, b, t

 (3.1)

where

A The set of all {a, s} that 1) match, where a ∈ Vc and s ∈ Vi , and 2) involved in at least one

edge match; i.e., there exists (a, b) ∈ Ec and (s, t) ∈ Ei such that (s, t) matches (a, b).

Ei(a, b) The set of all edges in the IG that match the edge (a, b) ∈ Ec. An edge (s, t) ∈ Ei matches

edge (a, b) if one: the edges have interactions in common, and two: if either the types of a

matches the types of s and the types of b matches that of t, or a with t and b with s.

The objective function expresses the total edge and vertex match score of the assignment. The first

summation is over all vertices that match and that are involved in at least one edge match. The second

summation is over all edges that match.
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3.3.4 Constraints

1. Each amino acid a is assigned to at most one spin system.
∑
sXa, s ≤ 1

2. Each spin system s is assigned to at most one amino acid.
∑
aXa, s ≤ 1

3. For edges that match, the pairs of end point vertices must also match. That is, ∀{a, s} ∈ A, ∀(a, b) ∈

Ec , if Xa, s, b, t = 1 then Xa, s = 1 and Xb, t = 1 and vice versa. This is
∑

t such that (s, t)∈Ei(a, b)
Xa, s, b, t ≤

Xa, s.

3.3.5 Discussion

The size of the model is dependent on the number of possible residues for each spin system; e.g., GLU 5,

GLU 35, ASP 79. This is known as the spin system typing. The spin system typing can also be defined

in the other direction as the possible spin systems for each residue. This typing can be obtained from the

amino acid type and secondary structure type predictions, which are used to limit the possible residues.

The number of variables is proportional to the number of pairs of edges that match. The number of pairs

of edges that match depend on the end point vertices matching, which in turn depends on the spin system

typing. In the worst case, all |Ec| × |Ei| pairs of edges match.

Constraint 3 accounts for the majority of the constraints. The number of such constraints is∑
r |Typing(r)| × Degree(r), where the summation is over all residues, |Typing(r)| is the number of

possible spin systems for the given residue, and Degree(r) is the number of edges incident to the vertex

that represents residue r in the CG. If the typing can be bounded by a constant, then the above summation

will be bounded by a constant factor on the number of edges in the contact graph. Theoretically, an NOE

corresponds to only one contact, but for efficiency reasons, like the CR method, the BILP presented here

does not enforce the constraint that each NOE is assigned to at most one contact, and therefore, does not

do backbone NOE assignment. However, both can be modified to do it. Section 4.3 describes a BILP that

also does NOE assignment, but with more variables and constraints. Results for this new BILP will be

presented in the next chapter.
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Since we look for the MCES instead of the MCIS, the objective function contains variables for possible

edge matches only rather than non-matches. Extra edges can get unmatched, especially since the IG tends

to have more edges than the CG. Since all scores are non-negative, non-matches implicitly have a score

of 0. Missing edges also have a score of 0 because it means an unmatched edge in the other graph. We

also do not assign vertices that are isolated, unless the vertices can be unambiguously assigned, such as

being the only ones with a particular amino acid and secondary structure type combination. Constraints

1 and 2 allow extra amino acids or spin systems to be unassigned because they are inequalities rather than

equalities. Note that the above formulation does not enforce that the common subgraph be connected, so

contacts in different domains of the protein can get matched, while the parts in-between are not matched.

A proof of correctness for Constraint 3 is given in Section 4.3.5, where an improved version of the BILP

is given. The idea is as follows: if Xa, s = 1 and Xb, t = 1, the left hand side of Constraint 3 can be zero,

so missing edges are allowed. However, edge match scores are always non-negative and we are maximizing

the score, so if an edge match exists between (a, b) and (s, t), we are guaranteed that one of the edge

match variables on the left is set to 1. Also, an edge in one graph cannot be assigned to more than one

edge in the other graph; e.g., Xa, s, b, t = 1 and Xa, u, b, v = 1, or Xa, s, b, t = 1 and Xi, s, j, t = 1 cannot occur

because one of Constraints 1 and 2 would be violated.

The advantage of using a BILP is that the scores in the objective function coefficients only need to

be computed once when searching through the space of all possible common subgraphs. In addition, by

relaxing the constraint that all variables are 0 or 1 by allowing them to be in the interval between 0

and 1, linear programming can be used to obtain an upper bound on the score, which is used to prune

suboptimal solutions. Note that if all the Xa, s, b, t variables are 0, the problem becomes a maximum

bipartite matching problem. In this case, we can relax the constraint that the Xa, s variables are integers

because the constraint matrix is totally unimodular [24], so linear programming, which is not NP-hard, is

guaranteed to give an integer optimal solution.
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3.4 Model Generalizations

The BILP model can be adapted to accommodate different situations by setting, adding, or removing

variables, modifying their coefficients, and adding or removing constraints.

3.4.1 Different Types of Data

Although we considered only chemical shift data in the scoring function, the objective function can easily

be modified to account for different types of data. This can be done as long as the data can be modeled as

matching features to residues and pairs of features to pairs of residues. Different weights on W (Xa, s, b, t)

can be used to emphasize matches to specific types of contacts, such as long range β-sheet contacts and local

Hα and HN contacts in α-helices. HN -HN NOEs, as used in NOEnet, can be encoded in the W (Xa, s, b, t)

terms.

For 13C-labeling, if there is carbon connectivity evidence that supports that spin systems s and t

is associated with adjacent amino acids ai and ai+1, the value of W (Xi, s, i+1, t) can be increased. The

variable Xi, s, i+1, t can also be removed if there is insufficient connectivity and contact information. The

CR method focused on finding common Hamiltonian path fragments. Similar to carbon connectivity, the

score for each edge match for adjacent residues can be scaled up to emphasize the Hamiltonian path, so

that the objective function contains a weighted version of the Hamiltonian path length.

The BILP model is also suitable for the iterative expectation/maximization framework of the NVR

method. For RDC data, once an alignment tensor has been estimated, back-computed RDCs can be

computed and compared with the experimental values to yield a value for each W (Xa, s). After running

the BILP, the assignment information can be used to update the alignment tensor, which in turn, is used

to update the W (Xa, s) terms.
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3.4.2 A Priori Assignment

BILP solvers can start from an initial solution to improve performance. This initial solution can even be a

partial assignment. If specific spin system-amino acid assignments are known, the corresponding variables

can be fixed to 1. The ability to fix specific assignments and to start from an existing assignment allows

for a semi-automated approach, where the returned assignment is examined and corrected manually. The

BILP can then be rerun using the new information rather than starting from scratch.

3.4.3 Multiple Solutions

The maximum common subgraph is not necessarily unique, so there may be multiple best scoring assign-

ments. The methods mentioned in Section 2.5 can be used to generate multiple solutions. Examining the

variability of each amino acid’s possible assignments among a set of near optimal assignments allows one

to assess the reliability. Assignments that do not change among the set of top assignments can be trusted

more than those that vary. The set of assignments can be used in consensus methods. For instance, the

above BILP can be used to generate a consensus assignment by setting each W (Xa, s) to the number of

times amino acid a is assigned to spin system s.

3.4.4 Approximate Matching

The input 3D structure may not match exactly the structure from NMR. To account for small differences,

extra edges can be added to the CG. For instance, to account for some alpha helices containing 310-helix

turns, edge match variables for Hα
i -HN

i+2 contacts can be added to the BILP, perhaps with score lower

than that for Hα
i -HN

i+3 alpha helix contacts. Off by one contacts for beta sheets can also be added; e.g.,

Hα
i − HN

j+1, Hα
i − HN

j−1, Hα
i+1 − HN

j , Hα
i−1 − HN

j . Larger conformational changes; however, are more

difficult to handle because they require the prediction of non-local contacts.
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3.5 Type Prediction Errors

The above graph matching requires an edge match to have the corresponding end point vertices match

in amino acid and secondary structure type. If there are type prediction errors, there will be assignment

errors. We build from the CR approach by handling such errors, which were ignored. To try to recover from

them, we identify assignments that are believed to be reliable, set their variables to 1, and then rerun the

algorithm by relaxing the type matching requirement for edge matches. The idea is similar to manual and

automated iterative NMR methods, such as MARS and NVR, that identify reliable assignments and then

redo the assignment with those assignments removed. Figure 3.4 summarizes our approach, and Figure

3.3 gives the intuition behind our approach. Figures like Figure 3.3 can be produced by our method to

gauge the reliability of each assignment.

To determine whether or not a particular residue-spin system assignment should be fixed, we examined

the percentage of contacts matched involving that residue given the assignments of the other residues. Due

to erroneous assignments, an overly tight criteria for identifying fixed assignments, which we shall refer to

as anchors, may exclude many correct anchors and result in a large problem size. An overly loose criteria,

can result in incorrect anchors that may lead to further incorrect assignments when the algorithm is rerun.

We chose a 50% cutoff, and then used progressively tighter criteria. We chose 50% because the majority

of the missing edge percentages in our data are below 50% (Table 3.2). The approach that we used for

identifying the confident assignments may appear rather weak, but in practice, a very large problem size

would have resulted if we had used a tigher criteria. To facilitate manual analysis, the percentage of

contacts matched and the number of sequential neighbors connected can be outputted for each residue.

After the BILP is solved with the anchors, some of the anchors may no longer satisfy the anchor criteria

because the number of contacts matched might have changed if the assignments for the unfixed residues

also changed. If the new set of anchors is different from the previous, the BILP is rerun again with the

new set. This is done until the set stabilizes. From our tests, the number of iterations did not exceed 5.

Although there is a finite number of possible anchors, it is possible that the loop does not terminate if the

same sequence of anchor sets appear in a cycle. This can be detected by remembering previous sets.
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Figure 3.3: Intuition behind fixing assignments. Each pink sphere represents a backbone HN atom labeled
by its residue number. For simplicity, only the HN -HN contacts are shown. Contacts in yellow have
an NOE assignment; while those in red do not. The amide chemical shift assignment for residues 16,
which has all of its contacts assigned, is more likely correct than compared to residue 48, which has no
contacts assigned. For the amide chemical shifts assigned to 48, we assume that a type prediction error is
a possibility, so we resolve the BILP while allowing these chemical shifts to be assigned to residues of any
type. For 16, its backbone assignment would be fixed during the resolving.
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For tightening the criteria, we considered sequential neighboring contacts, nonlocal contacts between

β-sheet residues, and local helix contacts (i ± 5). We first required only one sequential neighbor to be

matched in addition to the 50% criteria. Then we required both neighbors; assignments for residues at

the end points will never be fixed. Finally, we additionally required that β-sheet residues have at least one

β-sheet contact match, and that α-helix residues have at least one local contact match to a residue before

the α-helix residue and one local contact match after. We did not attempt to optimize the set of criteria

for fixing assignments because we do not have enough training data for the optimization.

The solution with the optimal score is not necessarily the correct assignment due to noisy edges in the

IG, increased ambiguity from relaxing the type matching requirement, incorrect fixed assignments, and

inaccuracies in the scoring function in modeling the problem. To account for this, multiple solutions of the

initial BILP were generated and each one entered the loop. At the end, we take the best scoring assignment.

Alternatively, one can take the consensus assignment as described in Section 3.4.3. Fortunately, from our

tests, we found that the score of the correct assignment is near the best scoring, and that the assignments

did not differ significantly. To explore possible solutions for the unfixed residues, multiple solutions can

be generated on the BILP with variables corresponding to the anchors set to 1.

The following anchor tests illustrate the behavior of anchors under various criteria. These results are

based on the new BILP described in Section 4.3, but the general patterns should be similar. Table 3.1

shows the anchor accuracy and the number of anchors for different groups of assignments with different

average accuracies per group. A 50% contact match criteria was used to identify the anchors. As the

assignment accuracy decreases, the anchor accuracy does not drop significantly, but the number of anchors

decreases noticeably. This is expected because fewer assignments will satisfy the anchor criteria when the

assignment accuracy is low, and it is unlikely that wrong assignments will satisfy the criteria. All the

assignments are for 1KA5. The pattern is similar for other proteins.

Figure 3.5 shows the relationship between the number of anchors and accuracy of anchors for different

fractions of contacts matched. Assignments for 1KA5 with accuracies between 35% to 100% were generated.

In general, as the required fraction of contacts increases, the number of anchors decreases and the number

of incorrect anchors decreases. The decrease in the number of anchors appears more pronounced. Figure
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Figure 3.4: Iterative BILP with fixed assignments.

Table 3.1: Number of anchors as a percentage of the total number of spin systems and anchor accuracy
for groups of assignments with different average accuracies. A 50% contact match criteria was used to
identify the anchors.

Avg. Assignment
Accuracy (%)

Anchor
Accuracy (%)

Num. Anchors
(% of Spin Systems)

100 100 52.2
95.3 100 41.3
90.5 99.8 33.9
84.9 100 25.1
79.6 99.8 19.6
74.7 99.2 15.7
70.9 100 11.6
64.9 99.4 10.4
59.9 100 6.3
54.9 97.5 5.9
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Figure 3.5: True and false positive rates for anchors based on the fraction of contacts matched. The
fraction ranges from 30% to 60%. The true positive rate is the fraction of correct assignments identified
as anchors, and the false positive rate is the fraction of anchors that are incorrect.

3.6 shows the relationship for the number of sequential neighbors with a contact match. In all cases, the

fraction of all contacts matched was set to 50%. Unlike the previous figure, there does not appear to

be any significant difference in the number of anchors and accuracy here. When the β-sheet and α-helix

contact requirements as described above were added, the differences were also not significant (results not

shown). It appears that the 50% criteria is already stringent enough that adding additional requirements

does not change the anchors substantially. The pattern is similar for other proteins.

Note that the results here are based on the new BILP that does NOE assignment directly by enforcing

that each NOESY peak is associated with at most one contact. In the non-NOE assignment case, a

contact match occurs if a pair of vertices in one graph is assigned to a pair of vertices in the other graph,

and the edge between the pairs share at least one interaction type. This effectively makes the contact

matching requirement less stringent because an NOE can satisfy more than one contact. Therefore, in this

case, adding the sequential neighbors and secondary structure anchor criteria should reduce the number
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Figure 3.6: True and false positive rates for anchors based on the number of sequential neighbors that
have a contact match. The required fraction of all contacts matched is 50% for all cases.

of anchors and decrease the false positive rate. For 1KA5, based on the number of anchors observed, a

50% cutoff in the first BILP is actually closer to a 25% cutoff in the new BILP. For a 25% contact match

criteria for 1KA5, the false positive rate was 5.7% and the fraction of correct assignments that are anchors

was 84%. When the requirement of two sequential neighbor contacts was added, the values decreased to

4.0% and 50.0%, respectively. When the requirement of secondary structure contacts was also added, the

values decreased to 1.8% and 37.5%, respectively.

The above anchor behavior provides insight into our iterative BILP approach. Initially, when the

assignment accuracy is low due to type prediction errors, a less stringent anchor criteria ensures that there

is a tractable number of anchors. After relaxing the type matching requirement for the non-anchors, the

score of the assignment tends to increase as more contacts get matched, and the assignment also tends to

have higher accuracy. Because the assignment accuracy is higher, we can use stricter anchor criteria and

still have a tractable number of anchors. The number of anchors still tends to decrease, which is necessary

for correcting errors in previous anchors. For 1KA5 with both amino acid and secondary structure type

prediction errors, the initial number of anchors was 63 out of 85 possible, and the final number was 48 for
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the old BILP. Note that we cannot ignore all the type predictions because it would allow each spin system

to be assigned to any residue. The resulting BILP will be too large to run. Among the results in Table

3.5, the largest BILP solved had about 150,000 variables and 25,000 constraints. This is for 1YYC for the

case with 70 anchors out of 158 possible spin systems.

3.6 Results

We tested the performance of our method on the simulated data used by the CR method, which consisted of

9 proteins. We obtained from the authors 5 interaction graphs, derived from the following NMR structures

from the PDB: 1KA5, 1EGO, 1G6J, 1SGO, and 1YYC. The data for 2NBT, 1RYJ, 2FB7, and 1P4W were

simulated according to their simulation method described in [123], where only one of the NMR models was

used to generate the NOESY peaks. Although the simulated data was derived from one of the models in

the PDB file, similar to the CR experiments, we tested the data using every model in the PDB file as the

template structure, where the number of models per PDB file ranged from 10 to 32. The structural noise

(in RMSD) of the models within each PDB file is given in Table 3.2, which summarizes the test set. Note

that the number of spin systems is less than the number of residues due to proline residues and missing

HSQC data. For measuring accuracy, we used the number of correct assignments over the number of spin

systems. A spin system assignment is incorrect for assignments to the incorrect residue, for assignments to

a residue with missing data, and for non-assignments when a correct assignment exists. To control noise,

our method automatically increases the distance cutoff at 0.25 Å increments until the noise level is under

8. This gave a small improvement over using a fixed 4 Å cutoff. The cutoffs used ranged from 4 to 4.5Å .

We used the same distance cutoffs in the CR software.

For the case with no type prediction errors, Table 3.3 compares our method with the CR method, where

the first row of each entry gives our results, while the row below gives the CR’s. On 8 of the 9 proteins, our

average accuracy on the entire protein was better. In two instances, the accuracy was better by over 20%.

Our method was better able to maximize the score as shown in column 4 of the table. In many instances,

the score was higher than the score of the correct assignment, which indicates inaccuracies in the scoring.
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Table 3.2: Summary of the test set for backbone assignment. From left to right: template structure, number
of residues in the template (total/helix/sheet/loop); number of spin systems (total/helix/sheet/loop);
number of prolines; noise level (number IG edges per CG edge); percentage of contacts missing in the
NMR data (total/helix/sheet/loop); average pairwise RMSD of the models in the template PDB file
(total/helix/sheet/loop).

Template No. Residues No. Spin Sys No.

PRO

Noise (x) Missing (%) RMSD (Å)

1KA5 88/40/23/25 85/39/23/23 1 5.5/5.6/5.9/5.3 21/20/21/22 0.2/0.2/0.1/0.2

1EGO 85/40/19/26 81/40/19/22 3 5.6/5.4/5.8/6.3 22/22/26/19 1.6/1.4/0.9/2.3

1G6J 76/18/22/36 72/18/22/32 3 4.4/3.5/5.1/4.8 33/31/32/35 1.1/0.6/0.4/1.5

1SGO 139/46/28/65 136/46/28/61 3 5.5/4.7/4.0/7.4 41/38/49/40 10.9/7.3/5.5/14.1

1YYC 174/36/72/66 158/36/70/52 10 6.6/5.2/7.5/7.3 38/35/38/40 4.0/2.5/1.6/6.0

2NBT 66/-/16/50 60/-/16/48 5 3.4/-/3.6/3.3 36/-/22/40 3.4/-/1.7/3.8

1RYJ 70/9/27/34 67/9/27/31 2 3.1/2.0/3.1/3.8 28/33/29/25 1.5/1.0/0.9/1.9

2FB7 80/-/32/48 73/-/32/41 7 3.1/-/3.0/3.2 34/-/30/36 5.4/-/2.0/6.8

1P4W 87/66/-/21 82/65/-/17 3 5.5/5.3/-/6.7 31/28/-/40 1.1/0.7/-/1.9

In particular, the contribution of an NOE can get counted twice (see Figure 4.5). For 2NBT, where 40%

of loop contacts were missing, we did slightly worse, but the scores were greater than the score of the

correct assignment; similarly for the helix residues in 1RYJ. Since amino acids in helices tend to have local

contacts with nearby amino acids, in many of our tests, we observed that missing NOE edges and typing

errors produced local errors in helices. For 1RYJ, the accuracy for helices using a (i ± 2) window, i.e.,

allowing a spin system to be assigned within two residues away from the correct residue, was 100%.

For recovering from type prediction errors, we first tested with only amino acid type prediction errors,

and then we tested with both amino acid and secondary structure typing errors. For 1KA5, 1EGO,

1G6J, 1SGO, and 1YYC, we ran RESCUE Version 1 [93] on the experimental proton chemical shifts from

the protein’s entry in the BMRB. Table 3.4 gives the results for amino acid type prediction errors. For

comparison, we included the result for when type prediction errors were ignored. Such errors were ignored

when type matching was strictly enforced for edge matching and the iterative algorithm was not used to

correct for the errors. In general, error correction resulted in large improvements. For 1G6J, the amino acid

typing accuracy was high, so the improvement was minimal. For 1YYC, the improvement was significant

even though the typing accuracy was low. The accuracy, however, varied substantially depending on the

model used as the template. Nevertheless, the template with the best score yielded an accuracy of 89.9%,
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Table 3.3: Comparison between the BILP model and the CR method for correct amino acid and secondary
structure typing. For each protein, the first row gives our results, while the second row gives the CR’s.
From left to right: template structure; average accuracy over all the models (total/helix/sheet/loop);
accuracy ranges (total/helix/sheet/loop); number of times the assignment score was greater than, less
than, or equal to the score of the correct assignment.

Template Avg Acc. (%) Acc. Range (%) Times Score
>,<, = Ref

1KA5 100/100/100/100
94/100/76/100

100/100/100
98-93/91-74/100

0, 0, 16
0, 16, 0

1EGO 98/100/100/93
96/96/100/93

100-97/100/100/100-90
100-92/100-90/100/100-79

15, 0, 5
4, 12, 4

1G6J 97/100/100/94
91/100/ 87/88

100-95/100/100/100-90
97-89/100/100-86/100-85

25, 2, 5
0, 32, 0

1SGO 96/97/100/94
80/95/95/62

100-86/100-95/100/100-70
88-71/100-87/100-86/76-45

13, 3, 4
0, 20, 0

1YYC 97/99/96/98
72/92/62/72

100-93/100/100-91/100-92
76-67/100-89/69-53/79-64

17, 0, 3
0, 20, 0

2NBT 91/-/98/88
92/-/95/90

96-85/-/100-93/95-79
100-88/-/100-88/96-82

10, 0 , 0
1, 9, 0

1RYJ 97/98/96/96
82/100/70/86

97-94/100-88/96/96-93
82-75/100/70/88-72

20, 0, 0
0, 20, 0

2FB7 96/-/97/96
92/-/94/90

100-91/-/100-93/100-90
95-88/-/100-94/95-83

7, 0, 3
0, 10, 0

1P4W 99/100/-/97
77/77/-/77

100-97/100/-/100-88
91-63/91-63/-/90-58

4, 0, 16
0, 20, 0
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Table 3.4: Assignment accuracy for amino acid typing errors and correct secondary structure typing. From
left to right: template structure; average accuracy for strict type matching enforcement; average accuracy
for iterative error correction over all the models (total/helix/sheet/loop); accuracy ranges for iterative
error correction (total/helix/sheet/loop); amino acid typing accuracy; number of times the assignment
score was greater than, less than, or equal to the score of the correct assignment. Values in parenthesis
give the accuracy within an i± 2 window.

Template Avg Acc

Strict (%)

Avg Acc

Iter (%)

Range Acc

Iter (%)

A.A. Typing

Acc (%)

Times Score

>, <, = Ref

1KA5 86 100/100/100/100 100/100/100/100 89 0, 0, 16

1EGO 86 94/92(99)/100/94 100-91/100-87/100/100-90 90 15, 3, 2

1G6J 92 94/100/93/91 97-87/100/100-90/100-78 96 7, 25, 0

1SGO 82 92/90(100)/95/93 96-87/100-84/100-82/96-83 92 7, 13, 0

1YYC 59 77/86 (92)/81/66 94-68/100-58/100-52/90-50 79 0, 20 , 0

which increased to 94.1% if an (i±2) window was considered. This indicates that using multiple templates,

such as those generated by normal mode analysis [7], can improve accuracy. In these tests, for the tightest

anchor criteria, we required both sequential neighbors to have contact matches, but we did not require

nonlocal β-beta sheet and local α-helix contact matches.

The standard method for predicting secondary structures from 3JHNHα coupling constants [122] is

similar to the following: if the coupling value is between 2.5 and 5.5, the spin system is predicted as helix.

If the value is between 8 and 11.5, the spin system is predicted as β-sheet; otherwise, it is predicted as

loop. From a test set of the following BMRB entries with accession numbers 4267, 4071, 2151, 4458, 4376,

4136, 4784, 4347, 4163, 4297, plus ubiquitin experimental values from the literature [116], we obtained

an average typing accuracy of 60% with a range of 50-69%. This will likely be too low for resonance

assignment, so we classified coupling constants into classes consisting of two secondary structure types,

which dramatically increased the average accuracy at the cost of increased problem size and increased

ambiguity. For values less than 6.5, we classify it as helix and loop; otherwise we classify it as β-sheet and

loop. With this, we obtained an average accuracy of 92% with a range of 82-100%.

Table 3.5 gives the results for both amino acid and secondary structure typing errors. The secondary

structure class prediction errors were introduced at random to yield accuracies below 92%. Unlike the

previous tests, for the tightest anchor criteria here, we required nonlocal β-beta sheet and local α-helix

contact matches as described in Section 3.5. Handling both typing errors resulted in a significantly larger
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Table 3.5: Assignment accuracy for both amino acid and secondary structure typing errors. From left
to right: template structure; accuracy for strict type matching; accuracy of the best scoring model for
iterative error correction (total/helix/sheet/loop); amino acid typing accuracy; secondary structure typing
accuracy; percentage difference in score of the best scoring assignment compared to the correct assignment
(+ means score of our assignment was higher). Values in parenthesis gives the accuracy in a (i±2) window.

Template Acc Strict

(%)

Acc Best Score

Iter (%)

A.A. Typing Acc

(%)

S.S. Typing Acc

(%)

Diff Ref

Score (%)

1KA5 72 100/100/100/100 89 91 0

1EGO 65 97/95(100)/100/100 90 85 -1.5%

1SGO 63 88/82(91)/96/88 92 87 -3.0%

1G6J 75 91/100/86/90 96 90 +0.5%

1YYC 40 70/91/71/53 79 91 -3.1%

search space. For instance, for 1YYC, it took over 40 hours versus less than 9 minutes if there are only

amino acid typing errors. For the convenience of time, we tested each target using only the first model in

the template. Column 2 of Table 3.5 shows that low assignment accuracies can result if spin system type

prediction errors are ignored, even if the type prediction accuracy is high. Relative to Table 3.3, where the

accuracies are 95% or better, the accuracies here for the no error handling case are between 40-75%. Error

handling improved this to 70-100%. For 1KA5, the assignment accuracy did not change from the previous

test. For 1EGO, the accuracy actually improved because of the tighter criteria for fixing assignments.

The larger 1SGO struggled to maximize the score, but the accuracy is still much higher than without the

iterative algorithm. For 1YYC, its large size combined with its low amino acid typing accuracy, produced

poor quality anchors, but there is still a large improvement over the case without the iterative algorithm.

Ubiquitin, a commonly used protein to test resonance assignment methods, was used to test the method

on peak lists from experimentally derived spectra as opposed to simulated data. We obtained 15N HSQC,

15N TOCSY, and 15N NOESY data from Richard Harris’s The Ubiquitin Resource Page [44]. Peaks were

picked manually by inspecting the spectra with SPARKY [37]. Results for peaks picked automatically by

the automated peak picking tool PICKY [4] are presented in Section 3.7.4. Ubiquitin has 76 residues and

3 prolines. The reference solution has 70 assigned residues. The noise level is 4.6 at a 4 Å cutoff, and

the missing edge percentage is 28.3%. HSQC peaks without an Hα chemical shift were correctly filtered

out as noise. For amino acid type prediction, RESCUE performed poorly, giving an accuracy of 68.6%.

The errors appear to be due to missing peaks that are hidden by peak overlap. Using a higher resolution
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TOCSY spectrum might improve accuracy. We performed the typing manually using each type’s expected

number of proton chemical shifts and their expected range of values. Manual typing gave an accuracy of

90%, where the average number of possible amino acid types per spin system is 3.3 with a range of 1 to 8

(Appendix 5). We used the results of manual typing for assignment. RESCUE version 2 [70], yielded an

accuracy of 90% as well, but only after the peaks were manually assigned to their spin systems. Amino acid

type prediction can be performed simultaneously with manual peak picking and spin system compilation,

so we chose to do the type prediction manually to save time versus using RESCUE after the spin systems

have been compiled. Section 3.7.3 describes our modification of the RESCUE method for simultaneous

amino acid type prediction and spin system compilation.

Experimental 3JHNHα coupling constants were obtained from the literature [116]. Eight spin systems

did not have J-coupling values, so their predicted class included all three secondary structure types. The

accuracy of secondary structure type prediction was 91%, yielding a combined typing accuracy of 83%.

Model 1 from PDB 1D3Z was used as the template structure. The template structure was not derived

from the NMR data. The best scoring assignment has accuracy 87.1%, with 64.3% on α-helix (85.7% with

i ± 2 window), 95.7% on β-sheet, and 90.0% on loops. When type prediction errors were ignored, the

overall accuracy dropped to 59%.

Although the accuracy for helix residues is low, many of the errors are due to a ±1 assignment position

error due to the HSQC peak of a nearby amino acid not being present in the NMR data. We also obtained

a consensus assignment by generating 10 solutions from the best scoring assignment with anchors based

on the tightest anchor criteria described in Section 3.5. Consensus gave an accuracy of 91% (62 out of 68

predictions) with 78% for helices (92% i±2) and the other types unchanged. This result on non-simulated

data is comparable to the result on the 1G6J simulated data, which is also for ubiquitin, except that

this test is slightly more difficult. This data set is missing HSQC peaks for 2 residues in addition to the

prolines. The simulated data is missing only prolines and the initial methionine. The local assignment

errors in helices show the limitations of using only backbone proton contact information. Since our BILP

model can accommodate different sources of information, it is of interest to test the relative contribution

of each source to assignment.
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3.7 Assignment From Automatically Picked Peaks

We tested our method on ubiquitin on automatically picked peaks. Using such peak lists is more challenging

because of increased noise and decreased sensitivity. This will be evident later when we compare the peak

lists of the manual and automated cases. The software PICKY was used to automatically pick peaks from

the same ubiquitin spectra as the manual case. Unlike the manual case, we did not use J-coupling constants

from 3D HNHA for two reasons. One, we did not have the spectra, and more importantly, obtaining a high

yield of J-coupling constants from HNHA becomes more difficult as the size of the protein increases due to

spectral overlap. In one study on calcium-free calmodulin [63], only 98 coupling constants were obtained

out of 132 possible. The increased noise from automatically picked peaks would exacerbate this problem.

J-coupling values do not seem to be commonly available in the BMRB, especially for large proteins. Using

G-matrix Fourier transform NMR experiments might alleviate these limitations [12], but more studies are

needed. Using HNHA to predict secondary structure is not as popular as chemical shift-based methods

that use 13C-labeled data, such as TALOS [103]. The reason is that chemical shift-based methods are

faster, more accurate, and less sensitive to protein size problems [16]. However, these methods require

carbon chemical shifts.

Since we did not have secondary structure information to limit the number of possible residues for the

chemical shifts, we used homologous assignment information from a homologous protein, which is typically

available in protein mutant studies. By using homology information, the number of possible residues is

reduced, which speeds up the assignment process. Figure 3.7 summarizes our approach. After peak

picking, TOCSY peaks with similar amide chemical shifts were grouped together to give the side chain

proton chemical shifts of some spin system (Section 3.7.1). NOESY peaks with similar amide chemical

shifts were grouped together to give the interactions from a given spin system. After grouping, the groups

of TOCSY and NOESY peaks were calibrated, so that their amide chemical shifts match the corresponding

HSQC peak (Section 3.7.2). The grouped TOCSY peaks were then used to identify possible amino acid

types and to identify the Hα chemical shifts (Section 3.7.3).

The NOESY interactions, predicted amino acid types, Hα chemical shift assignments, and homologous
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Figure 3.7: Automated backbone assignment with homologous assignment and structure. CS denotes chemical

shift. Arrows denote the flow of information, starting from NMR spectra. Different colored arrows represent

different steps. The possible residues and the possible contacts from the NOESY peak list are used to build the IG.

The contacts in the template structure are used to build the CG. The backbone assignment step is iterative (not

shown). Fixed assignments are used to reduce the set of possible residues for the other spin systems in the IG.
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assignment information were used to created the IG. The homologous assignment was obtained from the

BMRB (described below). The IG and CG were passed as input to the assignment step, which uses

the BILP described earlier. In the first iteration, only the homologous assignment information, which is

assumed to be more reliable than the amino acid type predictions, was used for identifying possible residues

for each spin system. The scoring function was augmented to take into account the amide chemical shift

difference between the spin systems and BMRB chemical shifts. It is similar to the match score described

earlier, but for Xa, s. In subsequent iterations, when anchors are used, both the amino acid type predictions

and the BMRB chemical shifts were used to identify the possible residues for the unfixed residues.

To identify which BMRB entry best matched the HSQC peaks, we used an amide chemical shift distance

scoring function together with the Hungarian algorithm [64] to score the match of the chemical shifts in

the BMRB entry to the HSQC peaks. This is simply a problem of matching a pair of 2D point sets. If the

number of amide chemical shifts were different, dummy nodes were added. Assignments to dummy nodes

were given the worst scores, so they could be ignored. Among 6 ubiquitin candidates, BMRB entry 15410

(human ubiquitin) had the best score, and yielded an assignment accuracy of 100%, with 70 correctly

assigned residues by the Hungarian algorithm alone. Therefore, we used the next best scoring entry, 4769

(yeast ubiquitin), which had 54 correct assignments. Any residue with δN , δHN that matched an HSQC

peak within a 0.75 ppm, 0.1 ppm tolerance was a possible residue for the spin system. If a particular spin

system still had no possible residues, the thresholds were doubled for this spin system. This yielded an

average of 2 residues per spin system with a range of 1 to 6. 62 spin systems had the correct residue in its

list of possible residues. However, because of noise peaks and erroneous Hα assignments, the assignment

accuracy can be less.

Chemical shifts are extremely sensitive to the environmental conditions and to conformation changes

from mutations. If we had used BMRB entry 5387, which is also human ubiquitin, but in a different

solvent, the Hungarian assignment would have given 41 correct. The RMSD between the two human

ubiquitins is only 1.8 Å, but about 40% of the chemical shifts are different. Therefore, use of the BMRB

is limited to similar proteins in similar conditions. This situation occurs often in chemical shift mapping,

where the chemical shifts of the unbound form of the protein is used to study different drug molecules.

58



Such chemical shift assignment information is invaluable in such studies.

The list of possible residues for each spin system, or just one residue for fixed spin systems was used to

filter edges in the IG that lack support from the contacts. For the edge between a pair of spin systems with

possible residue sets R1 and R2, if there did not exist at least one interaction in this edge that matched

any contact from the set of contacts in R1 × R2, then the edge was deleted. If a NOESY peak did not

match any IG edge, it was deleted. For filtering, residues involving alpha helices and beta sheets in the

input protein structure were considered in contact if they were 6.5Å apart. We used a cutoff larger than

4Å to account for structural variability because the input structure was not derived from the NMR data.

For contacts involving loops, we used a 12Å cutoff because loop regions are, in general, structurally more

variable. Prior to pruning, the noise ratio was 7.8. Afterwards, it was 2.7. Without noise filtering, the

noise ratio was over 12. Pruning resulted in 287 NOESY peaks, compared to 1552 peaks in the unfiltered

peak list. Fortunately, edge pruning did not remove any correct NOESY peaks and edges. Noisy HSQC

peaks were identified by sorting the peaks by intensity, and then using a 4 standard deviation cutoff to

remove low intensity peaks. After removal, the number of HSQC peaks was 84 versus 90 in the initial list.

No peaks corresponding to the backbone amides were removed.

In the other direction, the IG edges were used to prune the list of possible residues that lack NOE

support. Using all 4Å non-loop contacts from residue R, we tested spin system S from R’s possible spin

systems for NOE support. If there did not exist any matching IG edge among all possible pairs of spin

systems involving S and the possible spin systems of the residues at the other end of the contacts, then R

was removed from S’s list of possible residues. This pruning step resulted in one correct residue removed.

By using automatically picked NOESY peaks, the missing edge percentage increased to 36-45%, com-

pared to 28% for manual. The percentage is a range because our iterative assignment process rebuilds

the graphs using the assignment results from the previous iteration. The manual NOESY peak list had

376 peaks versus 287 here. From manual inspection of the automatic peak list, it appeared that some

low intensity peaks corresponding to some HN - HN contacts were not picked. Perhaps an approach of

integrating peak picking directly in the assignment step would help. For example, when deciding whether

or not a pair of spin systems have an NOE that matches some contact, the peak picker could adjust the
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noise threshold according to the distance of the contact. In general, peak picking is a non-trivial problem

and an urgent target for improvement [118].

The consensus assignment after the first assignment step yielded 61 correct assignments out of 62

assignments made. The ILP was run for 4 iterations; after which, the best score did not change. The

final consensus assignment yielded 67 correct assignments out of 69, for an accuracy of 97%. Five spin

systems with incorrect BMRB residue matches were assigned correctly due to correct amino acid type

prediction. One residue with incorrect BMRB matches and incorrect amino acid type predictions was

correctly assigned due to relaxing the type matching requirement for the unfixed residues. One error was

due to an assignment for a residue not in the reference solution, but which was clearly incorrect. The other

error was for the residue adjacent to that residue.

3.7.1 Peak Grouping

We took a naive approach for grouping peaks by mimicking the manual way. Using the amide chemical

shifts, 3D peaks matching at least one HSQC peak within a 0.5, 0.05 ppm tolerance were projected onto a

1D line representing the proton chemical shift. Peaks on the same line/strip were treated as a group if they

were within 0.5, 0.05 ppm of each other. A peak can occur in more than one strip due to peak overlap.

Ambiguities were resolved using the approach in Section 3.7.3. Peaks not in any strips were removed. For

TOCSY peaks only, an additional processing step was done. Peaks within a strip were split into at most 4

possible groups defined by the maximum, minimum N and maximum, minimum HN chemical shift values

of the peaks in the strip (Figure 3.8). Peaks were then assigned to the closest corner. If there were groups

of size at least 2 (since we want each strip to have at least HNand Hα), and the difference in the assigned

corners of the groups was larger than 0.25 ppm for N or 0.025 ppm for HN , the strip was split. Using

statistics from the BMRB, strips with no HN and putative Hα atoms were removed. Hαs typically have

chemical shift values between 2 and 6 ppm. Initially there were 2019 TOCSY peaks. After processing,

there were 311. Strips include other proton chemical shifts besides those for HN and Hα because they are

needed for amino acid type prediction.
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Figure 3.8: Splitting the peaks in a TOCSY strip using the maximum, minimum N and maximum,
minimum HN chemical shift values of the peaks in the strip. Here, there appears to be 2 different groups.
One with backbone amide chemical shifts near 120.5, 8.05 ppm, and the other with shifts near 120.0, 8.10
ppm. The proton chemical shift of each 3D peak is given inside the circle.

3.7.2 Peak List Calibration

The amide chemical shifts δN , δHN were used to group NOESY and TOCSY peaks together, and then

assign each group to its corresponding HSQC peak (by representing each group with a 2D peak). The

amide chemical shifts of each group do not necessarily correspond exactly to the values of their HSQC peak.

Finding offsets to add to each peak to make their amide chemical shifts match their HSQC peak is called

calibration. If calibration can be done with a common global offset added to every peak in the NOESY or

TOCSY, one can simply look for an unambiguous HSQC peak associated with some group, assuming the

chemical shift difference is not too large. This can be done manually quite easily using computer-aided

assignment software, such as CARA [58]. For our case, a global offset approach was sufficient. In general, a

global offset is sufficient unless, when measuring the different spectra, the experimental conditions change

that results in a change in structure.

If there is local noise about this global offset, and the noise is small relative to this offset, one can

take the average offset using the HSQC peaks that can be unambiguously associated with some group.

If desired, manual fine tuning can then be performed to get exact matches. As the size of the protein

increases, finding unambiguous matches becomes more difficult. As an alternate method, we propose a
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maximum clique approach with rectangles. Each HSQC peak is associated with a rectangle with width

equal to the N chemical shift match tolerance and height the HN tolerance. We used 0.5 ppm and 0.05

ppm, respectively. For each group of NOESY/TOCSY peaks with a common amide chemical shift, we

associate a rectangle with width equal to some user-specified maximum δN calibration offset and height

equal to some δHN maximum offset. We shall refer to these limits as search tolerances. Figure 3.9 describes

the method, which is based on the maximum clique of the intersection graph of rectangles. This problem

can be solved in O(nlogn) time [48]. An analogous method can be used to calibrate the side chain proton

chemical shifts, δH , of NOESY peaks to the side chain protons of TOCSY peaks. Each NOESY δH is

represented by an interval centered about its chemical shift value and with some user-specified maximum

width for the offset. Each TOCSY peak is represented by an interval with width equal to the H chemical

shift match tolerance, which is 0.05 ppm in our case. Instead of a maximum clique problem on the

intersection graph of rectangles, we have a maximum clique problem on the intersection graph of 1D line

intervals. This can be solved in linear time [77].

Table 3.6 compares the average unambiguous match method to the rectangle clique. Using 143 amide

chemical shifts from BMRB entry 15624, we generated for each peak a corresponding NOESY group with

a common global noise offset and a local noise offset that differed for each peak. This was done a 1000

times using different local noise generated at random. ∆δNH from Equation 2.2 was used to measure the

calibration error. In all tests, we used 1.0, 0.1 ppm for the search tolerance. If the local noise is small

(uniformly distributed within ±0.1, 0.01 ppm), the unambiguous method has smaller error, but when

the local noise increased to 0.15, 0.015 ppm, the method resulted in some peaks no longer matching its

corresponding HSQC peak according to the 0.5, 0.05 ppm threshold. The clique method did not have this

problem. We also tried different combinations of positive and negative global offsets, but the results were

similar. Generating missing and noise peaks in the NOESY group peaks (10-20% missing, 10-20% noise)

did not increase the error significantly in either case.

For ubiquitin, the local noise was negligible, so both methods worked fine. To remove the influence

of noise peaks, we used only the top 50% most intense NOESY and TOCSY peaks to determine the

calibration offsets. If calibration was not performed for ubiquitin, the missing edge percentage increased
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Figure 3.9: Rectangle intersection approach for calibrating the green peaks to the blue peaks. Left of the
arrow: For each green peak rectangle, we find all blue peak rectangles that intersect it. This is done by
first subtracting the centroid of the green peak to all intersecting peaks, so that the green peak is at the
origin. Search N, Search HN give the allowable amide chemical shift offsets to add to the green peaks. Blue
peaks match the green peak if the green peak has amide chemical shift within Match N, Match HN of the
blue. The red region gives the intersection. We illustrate this for 2 green peaks. Right of the arrow: All
the red regions are then intersected with a rectangle with dimensions Search N, Search HN and centered
at the origin. The region with the most overlap is in yellow. This region gives the global offset to add to
every green peak. If all green peaks are moved to the yellow, 2 blue peaks get matched as opposed to 1 if
the green is moved to the red region on the right.
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Table 3.6: Comparison between the rectangle clique and average unambiguous match calibration methods.
Local noise was generated randomly in the interval defined by column 2; allowing for positive and negative
values. For each known peak to peak association, the average ∆δNH was computed. Avg Missed is the
number of peaks out of 143, on average out of the 1000 trials, whose calibrated chemical shifts no longer
match those of their associated peak based on the match tolerances of 0.5, 0.05 ppm for N, HN .

Clique Unambiguous

Global
Offset

N, HN

Local Noise
(+/-)

N, HN

Avg Dist Avg

Missed

Avg Dist Avg

Missed

0.9, 0.09 0, 0 0.44 0 0 0

0.9, 0.09 0.1, 0.01 0.44 0 0 0

0.9, 0.09 0.15, 0.015 0.44 0 0.54 44.2

0.9, 0.09 0.2, 0.02 0.45 0 0.81 65.9

by 12%. Since the removal of peaks in the peak grouping step may change calibration, calibration and

grouping were repeated until no additional peaks were removed. Peak list processing is known to have a

significant impact on assignment accuracy [88]. Another calibration approach that is worth investigating

is the Hausdorff distance from the computer vision community [47].

3.7.3 Amino Acid Type Prediction and Hα Assignment

Our BILP for backbone assignment requires a list of possible residues for each spin system, and the

chemical shifts representing the Hα atoms. One way to identify the possible residues is to predict the

possible amino acid types; e.g. GLY, ALA. RESCUE 2 mimics the manual typing approach of comparing

the chemical shifts to their expected values in the BMRB. However, it assumes that the spin systems

have already been formed. In our case, forming spin systems requires grouping all TOCSY peaks with a

common amide chemical shift to get all the proton chemical shifts of the residue. An automated approach

was given in Section 3.7.1, but it allows a peak to occur in more than one strip due to peak overlap.

Therefore, we extended the Bayesian scoring model in RESCUE 2 to perform not only amino acid type

prediction, but also unambiguous TOCSY peak grouping, and Hα assignment using the ambiguous strips

of TOCSY peaks as input. Unlike the side chain assignment problem, we do not have an a priori backbone

assignment, so we can obtain only a distribution of possible assignments. For our problem, we considered

only the distribution of Hα chemical shifts for each spin system. To our knowledge, we are not aware of any
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other automated approach that can perform amino acid type prediction and Hα prediction simultaneously

without an a priori backbone assignment.

To obtain the amino acid type predictions, we sampled the posterior probability distribution of ~X,

which is the set consisting of predictions (i, R), where the residue represented by the amide chemical shift

of HSQC peak i is assigned to amino acid type R. Letting ~H represent the set of all HSQC peaks and ~T

represent the TOCSY peaks, and applying Bayes’ rule, we have

P ( ~X | ~H, ~T ) =
∑
~Z

P (~Z, ~X | ~H, ~T ) (3.2)

=
1

P ( ~H, ~T )

∑
~Z

P (~Z, ~X, ~H, ~T )

= α
∑
~Z

(
P (~T | ~H, ~Z, ~X)× P ( ~H | ~Z, ~X)× P (~Z | ~X)× P ( ~X)

)

where α is a normalization constant to denote P ( ~H, ~T ), which is related to the input peak lists, and

~Z is the set of all possible assignment cases, defined by the following sets ~A, ~M , and ~N . (i, j, Rk) ∈ ~A

denotes an assignment of TOCSY peak j to proton Rk (e.g. Hα, Hβ) of some residue represented by HSQC

peak i and with amino acid type R. (i, Rk) ∈ ~M denotes proton Rk assigned to HSQC peak i and missing

its TOCSY peak. j ∈ ~N denotes TOCSY peak j is noise. Denote δj to collectively represent the chemical

shift values of some peak, either TOCSY or HSQC. The summation in Equation 3.2 can be expanded to

give
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∑
( ~A, ~M, ~N)

((
P (~TA | ~A, ~XA)× P ( ~A | ~XA)

)
× P ( ~M | ~XM )×

(
P (~TN | ~N)× P ( ~N)

)
×

(
P ( ~H | ~X)× P ( ~X)

))
=

∑
( ~A, ~M, ~N)

( ∏
i, j, Rk∈ ~A

(
P (δj |Rk missing, j noise)× P (Rk missing, j noise | i, R)

)
×

∏
(i, Rk)∈ ~M

(
P (Rk missing | i, R)

) ∏
j∈ ~N

(
P (δj | j noise)× P (j noise)

)
×

∏
(i, R)∈ ~X, i∈ ~H

(
P (δi | i, R)× P (i, R)

))
(3.3)

where the top bars ¯ denote negation. ~TA denotes the TOCSY peaks in ~A, and ~XA the (i, R) amino

acid type assignments in ~A; similarly for ~M and ~N . Since the space of ~Z is large, we considered only

the top scoring assignments rather than all. That is, we first maximize the product inside the summation

with respect to ~X and ~Z, and then sample again to obtain the next largest assignment, and so on. For

each HSQC peak, the number of times it is assigned to each amino acid type is recorded. The number of

times each TOCSY peak is assigned to Hα of each amino acid type that is assigned to an HSQC peak is

also recorded. Since multiplying many fractions may result in a product that gets rounded to 0, instead

of maximizing, we take the negative logarithm and minimize. This replaces the product with a sum of

terms; i.e., − log
∏
j Pj = −

∑
j logPj . By using binary variables to denote whether or not a particular

assignment is selected, we can use a BILP to sample the top scoring assignments; e.g., −
∑
i xi logPi,

where xi equals to 1 if an assignment, denoted by i and consisting of a specific TOCSY peak, HSQC peak,

proton type, and amino acid type, is selected. The − logPi terms serve as objective function coefficients.

These terms are non-negative, where higher probabilities is associated with smaller values. This sum is

minimized when all the variables are zero, which is not what we want, so the coefficients are shifted by

subtracting each coefficient by the largest coefficient value, so that all coefficients are negative. RESCUE

2, however, does not need such a global optimization approach because when given the peak groupings,

each spin system can be amino acid typed independently of each other. Compared to Markov chain Monte

Carlo approaches, our sampling approach is deterministic. Both approaches have issues with determining

the required number of samples. In our case, the BILP gap parameter determines the number of samples.
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Typing BILP

The decision variables and their objective function coefficients (−log) are

� Xi, R is set to 1 if amino acid of type R is assigned to HSQC peak i. Only peaks whose chemical shifts

are within 3.5 standard deviations of the mean values of R are considered (3.5 for 99.9% confidence

interval).

� C(Xi, R) =P (δi | i, R) × P (i, R)=G(δNi , µ
N
R , σ

N
R ) × G(δHNi , µHNR , σHNR )× count(R)

len , where G is the

Gaussian density function with mean µ and standard deviation σ obtained from BMRB statistics

for type R (as used in RESCUE 2). count(R) is the number of residues of type R in the protein

sequence, and len is the length of the sequence.

� Xδj , Rk, i is set to 1 if TOCSY peak j is assigned to proton Rk, and HSQC peak i is assigned to type

R. Only TOCSY peaks whose δNj and δHNj is within 0.5, and 0.05 ppm of those of i , and whose δHj

is within 3.5σ of Rk are considered.

� C(Xδj , Rk, i) = P (δj |Rk missing, j noise)× P (Rk missing, j noise | i, R) = G(δNj , µ
N
R , σ

N
R )×

G(δHNj , µHNR , σHNR )×G(δHj , µ
H
R , σ

H
R )× countBMRB(Rk missing)× (

Ij
maxj

), where

countBMRB(Rk missing) is the number of chemical shifts for proton Rk in the BMRB statistics

divided by the maximum number of proton chemical shifts in the BMRB for type R. maxj is the

largest intensity of the TOCSY peaks nearby j according to a chemical shift threshold. Ij is the

intensity of peak j.

� XRk, i is set to 1 if proton Rk is missing its peak, and R is assigned to HSQC peak i.

� C(XRk, i) = P (Rk missing | i, R) = 1− countBMRB(Rk missing).

� Xj is set to 1 if TOCSY peak j is assigned as a noise peak.

� C(Xj) =P (δj | j noise)× P (j noise) = 1
K × P (j noise) = 1

K × (1− Ij
maxj

), where K is the product of

the N, HN , and H chemical shift ranges. We used 33× 4× 11.
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The constraints are

Xi, R =
∑
j

Xδj , Rk, i +XRk, i ∀i ∈ ~H, ∀Rk ∈ R (3.4)

∑
Rk, i

Xδj , Rk, i +Xj = 1 ∀j ∈ ~T (3.5)

∑
R

Xi, R ≤ 1 ∀i ∈ ~H (3.6)

∑
i

Xi, R ≤ count(R) ∀R ∈ AATypes (3.7)

Xi, R ≤
∑
j

Xδj , RHα, i ∀i ∈ ~H,∀R (3.8)

If HSQC peak i is assigned type R, Constraint 3.4 ensures that each proton type is assigned either to

a TOCSY peak or is missing its TOCSY peak. Constraint 3.5 ensures that each TOCSY peak is assigned

to either a proton or as noise. Constraint 3.6 ensures that each HSQC peak is assigned to at most one

amino acid type. We allow HSQC peaks to have no amino acid type assignment. Constraint 3.7 ensures

that the number spin systems assigned to a specific amino acid type does not exceed the number of such

residues in the protein sequence. Constraint 3.8 ensures that if an HSQC peak is assigned a type, it will

have an Hα assigned to a TOCSY peak. Alternatively, assignments to Hα atoms can be encouraged by

scaling the scores rather than using a constraint, so that missing Hα TOCSY peaks are allowed, but we

did not do this. Other constraints are possible, such as bounds on the number of noise peaks, which can

be estimated by the number of TOCSY peaks and the expected number of TOCSY peaks based on the

amino acid sequence.
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We used the sequential algorithm to generate multiple solutions. For ubiquitin, the number of solutions

was set to the number of residues. Even with this number, all the scores of the solutions were still within

1% of the optimal. To increase the sample space, all amino acid types in the class of the type predicted

were included with the prediction. We used the same classes as RESCUE 1 except that we grouped S and

T together, and V and A together because these residues have similar BMRB statistics. To ensure that

not all previous predictions get regenerated including the types from the same class, after obtaining each

solution, we added the following set of constraints, where boolean variable bi is equal to 1 whenever one

of the previously generated type predictions for HSQC peak i gets selected again.

∑
R∈Type(i)

Xi, R = bi ∀i ∈ ~H

∑
i

bi ≤ (
∑
i, R

Xi, R)− 1 (3.9)

Type(i) consists of the previously generated type predictions for HSQC peak i. The first constraint ensures

that bi is 1 if and only if one of the previously generated type predictions is predicted for i. The second

expression ensures that a new type prediction for at least one HSQC peak will be returned. For each

HSQC peak/spin system, all amino acid types with nonzero count were kept as possible types. For each

spin system, the TOCSY peak with the highest count that was assigned to an Hα was kept. For predictions

containing GLY, which has two Hαs, the TOCSY peak with the second highest count was also kept.

3.7.4 Results

We obtained 64 correct type predictions out of 70 predictions for ubiquitin. 14 HSQC peaks did not

have any type prediction. It turned out that all of these were noise peaks. The accuracy is better than

our manual prediction result; however, on average, each spin system had 4.4 amino acid types, versus

3.3 for manual. The range is 2 to 13. The range is large because one amino acid class had 7 residue

types (FYWHDNC). Better methods are needed to differentiate among the residues in this class. Due
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to the large number of amino acid types predicted per spin system and the lack of secondary structure

type prediction information, the search space for assignment will be large. Therefore, except for the Hα

predictions, the amino acid type predictions were not used in the first iteration of assignment. They were

used after anchors have been determined. Only the homologous BMRB assignments were used for typing

in the first iteration.

Type prediction errors were due to overlapped peaks, unidentified noise peaks, missing peaks, and

peaks matching the mean proton chemical shift values of the incorrect residue better than the correct. If

peak shape information was available, one of the noise peaks could have been removed because its shape

was distorted. For Hα assignment, 65 out of 70 spin systems had at least one Hα correct. Assignment

errors were due to amino acid type prediction errors, Hβ of serine or threonine being picked as the Hα,

and noise peaks that cannot be pruned based on intensity.

The assignment accuracy with the automatically picked peaks (67/69) is better than that with manual

(62/68). This is likely attributed to the use of homologous assignment information, which helped to

reduce both the noise level and the search space despite a larger initial noise level, lack of secondary

structure prediction information, and more missing edges. Although this was only one test, it highlights

additional challenges besides the backbone assignment step: peak picking, peak grouping/spin system

formation, peak list calibration, spin system type prediction, and Hα side chain assignment without an a

priori backbone assignment. To our knowledge, there are no fully automated methods for structure-based

backbone assignment using only 15N-labeled data.

3.8 Conclusion

So far, we have only considered structure-based assignment with a homologous structure. For non-fully

automatic assignment for 1EGO, we tried using the more distant structure 1HQO as the template, which

has 12% sequence identity with 1EGO and a structure alignment of 2.4 Å on 76 aligned residues using the

structure alignment software CE [105]. For no amino acid or secondary structure type prediction errors,

the accuracy was 80%. Since the secondary structure boundaries of the protein structures do not align
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exactly, for graph vertex matching, we allowed residues along the secondary structure boundaries (within 2

residues) to also take on the secondary structure type of the adjacent structure. By doing this the accuracy

increased to 84%. For amino acid typing errors only, the accuracy dropped significantly to 65% for inexact

boundary matching (44% for the loops), but the drop was even more for exact boundary matching at 54%.

Inexact boundary matching helped, but there is definitely room for improvement.

When we tried fully automatic assignment on two other proteins, we discovered some practical limita-

tions. In the BMRB’s time-domain library, the data we needed was only available for 2 proteins: the 112

residue At3g17210 from Arabidopsis thaliana and the 120 residue ubiquitin-like domain of tubulin-folding

cofactor B. Finding proteins with 15N-HSQC and 3D 15N-NOESY was not the issue. It was finding the

3D 15N-TOCSY that was challenging. It turns out that there is a practical reason why 3D 15N-TOCSY

is not popular, especially for large proteins. For large proteins, the spectra becomes very crowded with

many overlapping peaks. For the two proteins, which are much larger than ubiquitin, we had difficulty

performing manual amino acid type prediction because we could not determine which peaks should be

grouped together. Automated amino acid type prediction did no better. The set of predicted amino acid

types for each spin system was too large to be useful. For the two proteins, their data sets actually con-

sisted of both 15N- and 13C-labeled data likely because using only 15N was not sufficient. For very large

proteins, the protein is often protonated, so amino acid type prediction from the TOCSY proton chemical

shifts will not be possible for most residues due to suppressed signals.

Using the BMRB for identifying the possible residues also has its limitations. Chemical shifts are

extremely sensitive to environmental conditions and conformational changes, such as from mutations.

When we tried using human ubiquitin in a different solvent, BMRB 5387, the result from applying the

Hungarian algorithm gave 41 correct assignments, compared to 70 for human ubiquitin from BMRB 15410.

Instead of using TOCSY and the BMRB, perhaps other sources of data, such as RDCs, could be used.

In the next chapter, we used chemical shift mapping to identify the possible residues for each spin

system. Chemical shift mapping is often used for monitoring chemical shift perturbations due to the

binding of a ligand, which is important in NMR drug discovery [90]. In this case, homologous structure

information is often available, so rapid assignment from only 15N-labeled data is desirable as a starting
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point for further analysis. Manual analysis and additional experiments can then be performed to obtain

the assignments for the unassigned residues, and for the residues with few contact-NOE matches. The

next chapter will also present the updated BILP for backbone assignment that also does backbone NOE

assignment. It is used in the chemical shift mapping algorithm.
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Chapter 4

Chemical Shift Mapping

In this chapter, we present a computer vision approach to fast-exchange mapping, followed by an attempt

at slow-exchange mapping. Chapter 3 described a graph-based approach to backbone assignment. In this

chapter, we provide a non-graph-based perspective.

4.1 Peak Walking Problem

In the fast-exchange situation as depicted in Figure 2.7, there is a noticeable peak “walking” pattern. This

problem is similar to the computer vision problem of tracking objects through the frames in a video [126].

In our case, the objects are peaks, represented as 2D points.

PeakWalker is based on k-dimensional maximum matching (Figure 4.1), which is NP-Complete and

APX-complete for k > 2 [55, 129]. For k = 2, the problem is maximum bipartite matching, which is

solvable in polynomial time [64].

Definition 1. In maximum k-dimensional matching, we are given disjoint sets of vertices {Ti | i ∈

[0, 1, . . . , k − 1]}, where vertices in one set have edges to vertices in only the adjacent sets. The goal
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Figure 4.1: Fast-exchange peak walking as k-dimensional matching. Peaks belonging to the same residue
have the same color. Peaks in adjacent peak lists with N, HN chemical shift values within 1.0, 0.2 ppm
are connected by an edge.

is to find the largest set of paths M ⊆ T0 × T1 × ...× Tk−1 , such that the paths do not share vertices; i.e.,

they are independent paths.

The fast-exchange case can be viewed as k-dimensional matching if we let {Ti | i ∈ [0, 1, . . . , k − 1]}

denote the peak lists in increasing ligand concentrations, where T0 denotes the reference peaks, whose

residue assignments are known, and Tk−1 denotes the target peaks, whose assignments are unknown. Each

peak is represented by a vertex. An edge is drawn between vertices in adjacent peak lists if the chemical

shift change is within some distance threshold. That is, for peaks h ∈ Ti and h′ ∈ Ti+1, an edge is drawn
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between them if ∆δN (h, h′) ≤ tN and ∆δHN (h, h′) ≤ tHN , where tN and tHN are user-specified thresholds

and the 4δ’s are defined in Equation 2.2. Euclidean distance and various types of weights can also be used

to measure chemical shift change [102]. For UbcH5B and histone H1, 1.0 ppm and 0.2 ppm were used for

tN and tHN , respectively. This is comparable to the thresholds used by FELIX-Autoscreen [91]. Smaller

thresholds of 0.75 ppm and 0.125 ppm were used for hBclXL because it has more perturbed spectra, so the

chemical shift changes are expected to be more gradual.

Our problem is a constrained version of maximum weighted k-dimensional matching, where we find the

set of paths M that maximizes a scoring function under the constraint that the paths are limited by the

peak movements defined by our peak walking model. In our model, we handle various cases as illustrated

in Figure 4.2. Figure 4.3 shows the allowable transitions from the perspective of a single peak. A peak

in Ti can transition to nearby peaks in Ti+1 within tN and tHN . These transitions shall be referred to as

consecutive transitions. A peak can also disappear permanently, or disappear in Ti+1, but then reappear

in Ti+2. The former shall be referred to as a disappearing/missing transition, and the latter a jump. One

explanation for disappearing peaks is that the underlying atom is undergoing intermediate exchange. Only

jumps of length 2 are explicitly modeled. Finally, a peak in Ti can correspond to a residue with no peaks in

Tj , ∀j < i. These shall be referred to as new peaks. Transitions correspond to directed edges in the graph.

New peaks have no predecessor peak, and disappearing peaks have no successor. Both of these peaks

result in subpaths. Peaks that have almost identical chemical shifts can have only one peak present in the

peak list due to peak overlap. To handle this, we define two peak states: ambiguous and unambiguous.

A peak can be in only one state. An ambiguous or overlapped peak allows multiple transitions, while

an unambiguous peak allows only one in- and one out-transition. Ambiguous peaks allow paths to share

peaks subject to a penalty. The number of in- and out-transitions for peaks in any state are equal because

peaks can only be created or destroyed in the ways allowed by our model. To limit the number of possible

paths, only consecutive transitions are allowed for ambiguous peaks. A peak that corresponds to noise is

modeled implicitly. Noise peaks are those not assigned to any path.

Definition 2. The mappings for peak hi ∈ Tk−1 is the set of its possible residues R(hi). This set is

obtained by first finding M , the maximum weighted k-dimensional matching on the graph defined by the
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Figure 4.2: Examples of the transitions and errors in our peak walking model for fast exchange.
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Figure 4.3: Peak walking model for fast exchange from the perspective of a single peak labeled Peak C. The
allowable transitions include new peak, consecutive, jump, and disappearing. A peak is either ambiguous
or unambiguous.

peak walking model and with weight on the transitions and peak states. Let S be the amino acid sequence

of the protein, and one-to-one function f0 : T0 → S be the known reference assignment. For paths in

M with end points hj ∈ T0 and hi ∈ Tk−1, add f0(hj) to R(hi). If |R(hi)| > 1, or if |R(hi)| = 1 and

R(hi) ∩R(hl) 6= ∅ for hl 6= hi, then R(hi) is ambiguous.

The optimal and near optimal sets of paths were generated to obtain different mappings per peak.

This was done by modeling the problem as a BILP and using the one-tree algorithm [29] to generate

multiple solutions. We used CPLEX® version 12.2 as the solver. Integer linear programming has been

used successfully in the computer vision problem of tracking multiple objects [51, 81].

4.2 BILP Model for Fast-Exchange

Before presenting the model, we present some background on reified/indicator and logical constraints

which give BILPs additional expressiveness. CPLEX supports such constraints by translating them into

equivalent linear constraints on binary variables. We found that the automatic translations resulted in

models that run very slowly (likely because of Big M values - a very large number used to ensure that

all inequalities hold), so we performed the translation manually. How the automatic translation is done is

undocumented, so in the following sections, we provide our manual translations.
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4.2.1 Reified Constraints

Reified constraints allow the truth value of a logical condition to be stored; i.e. Y = 1⇔ C = 1, which is

equivalent to Y = C. This means whenever condition C is true (equal to 1), Y is 1; and when C is false,

Y is 0. Note that Y = 1⇒ X = 1 ≡ Y ≤ X. We shall use ≡ to denote equivalent.

1. Y = 1⇔
∑
iXi ≥ K , for some positive integer K, ≡ (both (a) and (b) are added to the BILP)

(a) Y = 1⇒
∑
iXi ≥ K ≡ KY ≤

∑
iXi . To see this, whenever Y = 1, the summation is greater

than or equal to K; whenever Y = 0, the summation is always true.

(b) Y = 0⇒
∑
iXi ≤ K−1 ≡

∑
iXi ≤MY +K−1. Whenever Y = 0, the constraint is enforced,

and whenever Y = 1, the constraint is always true.

4.2.2 Logical Constraints

Logical conditions can be combined and then reified. We shall show this for AND, OR, and the absolute

value. For notation purposes, we shall use X ⇔ Y to denote X = 1⇔ Y = 1.

1. AND (∧)

(a) A ∧B ≡ A+B ≥ 2

(b) X ⇔ A ∧B ≡

i. X ⇒ A ∧B ≡ 2X ≤ A+B

ii. X̄ ⇒ Ā ∨ B̄, where X̄ = 1−X, ≡ A+B ≤ X + 1

2. OR (∨)

(a) A ∨B ≡ A+B ≥ 1

(b) X ⇔ A ∨B ≡

i. X ⇒ A ∨B ≡ X ≤ A+B

78



ii. X̄ ⇒ Ā ∧ B̄ ≡ A+B ≤ 2X

3. For |X| ≥ K and A⇔ |X| ≥ K, where X is an integer variable, K is a positive integer, and A is a

binary variable, we refer the reader to Appendix 5. We ended up not using the result of this part,

but it is left here for completeness and to illustrate the expressiveness of logical constraints since we

could not find this in any textbook.

We now present the BILP for fast exchange.

4.2.3 Binary Variables

The variables indicate the transitions and peak states.

� Xhih′ Equals to 1 if peak h ∈ Ti transitions to h′ ∈ Ti+1. This variable represents a consecutive

transition.

� Xhi Equals to 1 if h ∈ Ti is a single unambiguous peak. Equals to 0 if it is an ambiguous peak.

This variable represents the peak state.

� Dhi Equals to 1 if h ∈ Ti is missing its peaks in Tj , ∀j > i. This represents a peak that disappears

and no longer reappears.

� Jhih′ Equals to 1 if h ∈ Ti is missing in Ti+1, but transitions to h′ ∈ Ti+2. This represents a jump.

� Nhi Equals to 1 if h ∈ Ti has no associated peaks in Tj , ∀j < i. This represents a new peak.

4.2.4 Objective Function Coefficients

The objective function is maximized. The coefficients score the transitions and peak states, so the sum

of the coefficients multiplied by their corresponding variables gives the score of the paths. Ideally, if

a database of peak lists and chemical shift mappings are available, these coefficients could be obtained

through training with machine learning techniques, so that the manual mapping process can be modeled.
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Unfortunately this database does not exist, so we used our best judgment to scale the scores relative to

each other.

� C(Xhih′) = Φ(∆δN (h′, h), 0, tolN) + Φ(∆δHN (h′, h), 0, tolHN). This is the score of a consecutive

transition, where Φ(x, µ, σ) = 2× (1− cdf(x, µ, σ)). cdf is the cumulative distribution function of

a normally distributed variable with mean µ and standard deviation σ. tolN and tolHN were set to

values, such that tN and tHN (Section 4.1), respectively, correspond to 2 standard deviations from a

mean value of 0. The score is a number between 0 and 1, with small chemical shift differences being

closer to 1 (because x is positive, so cdf returns a value of at least 0.5).

� C(Xhi) = −2×(k − i− 1)×(Φ( 3tN
4 , 0, tolN) +Φ(

3tHN
4 , 0, tolHN)), where Xhi = 1−Xhi. The score

is negative to penalize ambiguous peaks. We require ambiguous peaks to have at least 2 paths worth

of transitions from i to k − 1 to compensate for the penalty. The penalty decreases with increasing

i because there are fewer transitions remaining in the path.

� C(Dhi) = Φ(tN , 0, tolN) + Φ(tHN , 0, tolHN). This is the score for disappearing peaks. We give

such peaks a positive score similar to a consecutive transition with a chemical shift difference of tN

and tHN .

� C(Jhih′) = 0.75×(Φ(∆δN (h′, h), 0, tolN) + Φ(∆δHN (h′, h), 0, tolHN)). This is the score for jumps.

The 0.75 encourages consecutive transitions over jumps of the same chemical shift difference.

� C(Nhi) = − (k − i− 1) × (Φ( 3tN
4 , 0, tolN) + Φ(

3tHN
4 , 0, tolHN)). This is the score for new peaks.

The score is negative to ensure that there must exist compensating transitions from i to k − 1.

� Peaks corresponding to noise have no transitions, and they get set to unambiguous because we are

maximizing and unambiguous peaks are not penalized.

4.2.5 Constraints

1. For each peak (ambiguous or unambiguous), the number of in-edges is equal to the number of out-

edges. Even if a peak disappears permanently (an out-edge), the peak must have come from a
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previous transition or be a new peak, which is considered an in-transition. From Figure 4.3, we

can see that this constraint is ∀i ∈ [1, k − 2], ∀h ∈ Ti,
∑
h′ Xh′(i−1)h +

∑
h′ Jh′(i−2)h + Nhi =∑

h′ Xhih′ +Dhi +
∑
h′ Jhih′ .

2. Ambiguous peaks are limited to only consecutive transitions. To get rid of jumps, define the reified

constraint Jhi = 1↔
∑
h′ Jh′(i−2)h ≥ 1, ∀i ∈ [2, k−1], ∀h ∈ Ti, where Jhi is a binary variable. Then

jumps are removed with Jhi ≤ Xhi since if Xhi = 0 (ambiguous), then Jhi = 0 and
∑
h′ Jh′(i−2)h = 0.

Disappearing and new peaks are handled similarly.

3. For each unambiguous peak, the number of in-transitions is bounded above by 1; similarly for out-

transitions. Define the reified constraints Ihi = 1 ↔
∑
h′ Xh′(i−1)h +

∑
h′ Jh′(i−2)h + Nhi ≤ 1 , and

Ohi = 1 ↔
∑
h′ Xhih′ + Dhi +

∑
h′ Jhih′ ≤ 1. Then the constraint is expressed as Ihi = Xhi and

Ohi = Xhi. This, combined with Constraint 2, also handles, for ambiguous peaks, the constraint

that the number of consecutive in-transitions is greater than 1 and the number of consecutive out-

transitions is greater than 1.

4. Consecutive transitions generally do not zig-zag. That is, peaks typically do not take a large step in

one direction and then take a large step in the reverse direction. To enforce this, let h ∈ Ti, h′ ∈ Ti+1,

h′′ ∈ Ti+2. If 0.5 ≤ ∆δN (h, h′) ≤ tN , 0.05 ≤ ∆δHN (h, h′) ≤ tHN , 0.5 ≤ ∆δN (h′, h′′) ≤ tN ,

0.05 ≤ ∆δHN (h′, h′′) ≤ tHN , then consider the following vectors: Vhh′ = (δN (h′) − δN (h), 10 ×

(δHN (h′) − δHN (h))) and Vh′h′′ = (δN (h′′) − δN (h′), 10 × (δHN (h′′) − δHN (h′))). The consecutive

transitions h to h′ to h′′ zig-zag if the angle between Vhh′ and Vh′h′′ , θhh′h′′ , is between 105 and

180 degrees. When h transitions to h′, transitions from h′ to h′′ that result in zig-zag are prevented

by adding the constraint Xhih′ ≤ Zh′(i+1), where we have the reified constraint Zh′(i+1) = 1 ←→

(
∑
h′′| θhh′h′′∈[105,180]Xh′(i+1)h′′ = 0). Thus, if Xhih′ = 1, then all consecutive transitions from h′ to

h′′ that cause zig-zag are prevented because the sum is forced to 0.

5. For ambiguous peaks, the number of consecutive transitions entering must equal to the number

leaving. We want
∑
h′ Xh′(i−1)h =

∑
h′ Xhih′ whenever Xhi = 0. To implement this constraint, let

Dhi =
∑
h′ Xh′(i−1)h −

∑
h′ Xhih′ and define the reified constraint Whi ↔ |Dhi| ≥ 1 , where Whi is
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Protein Num Peak
Lists

Range of Num
Peaks in Lists

Num
Residues

hBclXL 11 120-136 178
Ubch5b 5 119-127 147

Histone H1 2 86-97 92

Table 4.1: PeakWalker test set.

a binary variable. The reified constraint can be implemented using the results in Appendix 5. We

want Whi ≤ Xhi because when Xhi = 0, Whi is forced to 0, which in turn, forces Dhi to 0. Note

that constraints 1 and 2 already imply this constraint, so this is not needed.

4.2.6 Results

PeakWalker was tested on hBclXL, UbcH5B, and histone H1. Table 4.1 gives the characteristics of the

test set. Note that hBclXL is much larger than ubiquitin. hBclXL consisted of 11 peak lists. The reference

peak list contained 148 peaks, while the target contained 142. UbcH5B consisted of 5 peak lists. The

reference contained 127 peaks, while the target also contained 127. Histone H1 consisted of 2 peak lists.

The reference contained 97 peaks, while the target contained 86. Unlike the other proteins, the assignment

for Histone H1 was unknown, so we had to perform the chemical shift mapping manually to obtain a

reference solution. Due to ambiguities inherent with chemical shift mapping, especially using only 2 peak

lists, we produced both an ambiguous mapping, and for testing purposes, our best guess unambiguous

mapping.

The peak lists of hBclXL, UbcH5B, and histone H1 were edited to introduce additional errors. To

obtain errors due to overlapped peaks, peaks within the same peak list that have ∆δN ≤ 0.1 ppm and

∆δHN ≤ 0.01 ppm were merged into a single peak. Such peaks would likely appear as a single peak when

viewing the spectra. Multiple peaks could be merged into a single peak. In hBclXL, 5 residues had identical

chemical shifts in the target list. After merging, hBclXL had 136 peaks in the reference list and 122 in the

target. UbcH5B had 127 in the reference and 123 in the target. There were no changes to the Histone

H1 lists. To simulate noise peaks, in each peak list, we introduced noise peaks in the range of the N and

HNchemical shifts, 99-133 ppm and 6.25-10.75 ppm, respectively. Unless stated otherwise, the number of
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Figure 4.4: The number of residues per target peak/spin system as a function of the number of solutions
for histone H1.

noise peaks added to each peak list is equal to 10% of its size prior to the addition.

Multiple solutions were generated to obtain multiple possible paths. The number of solutions generated

is dependent on the gap tolerance provided to CPLEX. Unless specified otherwise, a gap of 1% was used.

To determine the number of solutions that should be generated, various numbers were tested to determine

their effect on the average number of residues predicted per peak. We observed that as the number of

solutions increased, the average number of residues plateaus, so we used the value at the start of the

plateau as the number of solutions (Figure 4.4). Likely, no new mappings were generated because paths

containing these mappings caused a violation of the gap optimality criteria.

For comparison purposes, we implemented the greedy approach in NvMap, but also added no zig-

zagging as described above, and jump handling of arbitrary length by allowing unmatched peaks in Ti to

be matched to peaks in Tj for any j > i. The same chemical shift thresholds as those used by PeakWalker

were used. None of the existing approaches deal directly with ambiguous mappings. To generate these

without generating many mappings per peak, we used a naive approach. For hi ∈ Tk−1, where hi is

matched to hj ∈ T0, in increasing order of ∆δNH(hj , hb) for any hb 6= hi in Tk−1, add f0(hj) to R(hb) (fo
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Protein Method Num

Correct

Num Correct

Range

Acc (%) Acc Range (%) Avg Num

Res/Peak

hBclXL Greedy 110.9 110-111 95.7 94-96.5 1

Greedy 111.1 111-112 90.7 89.5-91.7 1.7

PeakW 116.3 116-117 96.8 95.9-97.5 1.4

Ubch5b Greedy 114.6 113-115 94.2 91.5-96.7 1

Greedy 116.9 116-118 94.4 93.5-95.2 1.2

Greedy 120.8 120-122 97.2 96-98.4 1.5

PeakW 120.4 119-123 98.1 96.0-99.2 1.2

Histone H1U Greedy 78.1 76-83 91.4 89.4-93.3 1

Greedy 83.0 83-83 95.5 94.3-96.5 1.5

PeakW 85.1 85-86 99.3 97.7-100 1.3

Histone H1A Greedy 72.0 72-72 82.8 80.9-83.7 2.0

PeakW 76.0 76-76 88.8 87.4-89.4 1.3

Table 4.2: Comparison between Greedy and PeakWalker. Results for the best guess unambiguous mapping
(U) and the ambiguous mapping (A) are given for Histone H1. The mappings for a peak is correct in the
ambiguous case if it contains all possible residues.

and R defined in Section 4.1) until a maximum number of additional mappings have been added. Various

values for the maximum were tested. We did not test the consecutive bipartite matching approach because

it is an approximation of k-dimensional matching, which we solve directly.

Table 4.2 compares the accuracy between the greedy algorithm and PeakWalker. Different values for

the maximum number of candidate residues were tested with greedy. Accuracy is defined as the number

of target peaks whose possible mappings contain the correct residue divided by the number of peaks with

mappings predicted, including noise peaks. Since one could predict mappings for only a few peaks and

still have high accuracy, we have also included the number of peaks whose mappings contain the correct

residue. The numbers are averages over 10 trials, where each trial used different noise peaks. The average

number of residues predicted per peak varied by at most 0.1 in the trials (not shown). For Histone H1, the

accuracy for the ambiguous case is defined as the number of target peaks whose mappings include all the

possible residues divided by the number of peaks with mappings. In general, PeakWalker has comparable

or better accuracy, and comparable or more correct predictions with fewer candidate residues per peak.

Greedy does not perform as well because it does not consider complete alternative paths; it focuses on

only alternative neighboring peaks. Returning multiple paths generally improved the results for both the

number of correct and the accuracy. For hBclXL , if only one path is returned for each peak, then the
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number of correct assignments dropped to 110.2 with an accuracy of 94.1%. For Ubch5b, the result was

115.2 and 95.6%., and for histone H1, the result for the unambiguous mapping case was 81.1 and 95.1%.

The peak lists of hBclXL contained the most errors among the proteins. Out of 136 peaks in the

reference, only 114 had a complete path without any missing peaks between the reference and target.

12 residues did not have any peak in the reference list, but had peaks in the other lists. There was one

residue with a jump of length 2, and 3 residues with a jump of length 3. There were no jumps longer than

3. Despite not explicitly modeling jumps of length 3, on average PeakWalker got 2.4 of those mappings

correct because neighboring peaks provided alternative paths. For UbcH5B, all the target peaks had

corresponding peaks in the reference peak list. There were 2 jumps of length 2, and 4 jumps of length 3.

On average, PeakWalker got 3.2 out of those 4 correct. There were no jumps in histone H1.

We also tested hBclXL using only 6 peak lists instead of 11 by taking every other list. This corresponds

to performing fewer NMR experiments. The accuracy decreased slightly to 95.7% with 114.9 correct

predictions. hBclXL was also tested with no overlapped peaks merged in the input. This corresponds to

the result if all overlapped peaks could be predicted. For this test, at a cost of optimality, the gap was

set to 4% to keep the run time to less than 5 mins per trial on an Intel Core 2 Duo T9300 laptop with

3 GB RAM. Nevertheless, the accuracy was 98.7% with an average number of correct mappings of 138.0

(an increase of over 21), at an average of 1.7 residues per peak. This indicates that peak overlap can hide

many peak mappings, which can be a problem if these residues are involved in binding. However, binding

residues tend to have chemical shift changes upon binding, so to completely hide such a residue, every

time it moves there must exist at least another peak with similar chemical shift to overlap it. In the case

of hBclXL, peak overlap masked only the target peak of one known binding residue with significant shift

change, but the residue’s other peaks were not masked, so the movement of these peaks were detected.

Table 4.3 displays the results of a noise test on hBclXL. The results are averages over 10 trials. The

number of noise peaks added ranged from 0 to 50% of the number of peaks prior to addition. All the

tests in Table 4.2 had 10% noise. The accuracy at 10% is actually slightly larger than the accuracy at

0% because by chance, some noise peaks provided alternative paths from the target peak to its correct

reference. Accuracy depends on the location of the noise peaks relative to non-noise peaks. In general,
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Noise (%) Num Correct Num Correct
Range

Acc (%) Acc Range (%)

0 116 116-116 96.7 96.7-96.7
10 116.3 116-117 96.8 95.9-97.5
20 115.8 115-117 95.8 95-97.5
30 115.5 114-116 94.9 91.9-97.5
40 115.2 114-116 95.3 93.4-96.6
50 115.2 113-117 93.5 91.1-95.1

Table 4.3: Results for PeakWalker on hBclXL with various noise levels.

the number of correct predictions and the accuracy decreases with increasing noise, but the decrease is

relatively graceful for randomly distributed noise.

4.3 Backbone Assignment Version 2.0

The previous chapter presented a BILP for backbone resonance assignment, which was used for assignment

from automatically picked peaks for a small protein. However, using 3D 15N-TOCSY and a homologous

assignment limited the practicality of the method. In large proteins, the TOCSY can have many overlapped

peaks. Using a homologous assignment to find possible residues for each target peak is similar to chemical

shift mapping using only 2 peak lists. There is usually more ambiguity when fewer peak lists are used. In

addition, the experimental conditions for the protein in the homologous assignment can be significantly

different from that of the current study.

In this chapter, we present a BILP that no longer uses TOCSY. The TOCSY was previously used to

identify possible amino acid types for each target peak, and this was used to reduce the number of possible

mappings. To reduce the possibilities without TOCSY, a series of perturbed spectra could be used. The

TOCSY was also used to obtain the chemical shifts of the Hα atoms for matching against NOESY peaks.

Such Hα chemical shifts are available in the NOESY spectrum, but in a more noisy form. We have also

added a further improvement. The constraint that each NOESY peak is assigned to at most one contact

was not enforced in our previous algorithm. In adding this constraint, our new algorithm not only performs

resonance assignment, but also backbone NOE assignment and Hα assignment, simultaneously. The two
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Figure 4.5: Difference between Assignment 1.0 and 2.0. The top line gives the contacts of residue A25 to
two residues. The line below gives the spin systems assigned to those residues, and the NOEs between the
central spin system and two other spin systems. One NOE, highlighted in pink, has two directed edges.
In 1.0, an undirected edge match occurs (green with orange) when the edges share at least one interaction
type in common, which is the case for the two edges in this example. However, the NOE in pink indirectly
gets assigned to two contacts (to the two HN-HA contacts). The score for this NOE gets counted twice.
In 2.0, constraints are added so that an NOE can only be assigned to at most one contact.

BILPs are identical except for additional constraints, and how we determine the possible residues for each

amide chemical shift - amino acid and secondary structure type versus peak walking paths. Figure 4.5

illustrates the difference between the two assignment methods. Figure 4.6, illustrates how PeakWalker is

combined with PeakAssigner to obtain one-to-one assignments. Although NOE and Hα assignment is not

the main output of our algorithm, we show that by performing them, there is an improvement in backbone

assignment accuracy, on average. This is demonstrated with simulated NOESY peaks from the protein

structures 1KA5, 1EGO, 1G6J, 1SGO, and 1YYC. On hBclXL, UbcH5B, and histone H1, we obtain an

average accuracy of over 94%.

Unlike the old BILP, PeakAssigner does not do iterative typing error correction because it was not

necessary due to the high accuracy of the input from PeakWalker and the small number of possible

residues per spin system. Iterative typing error correction can take hours depending on the size of the

protein and the number of errors, so using peak tracking input can potentially save a lot of time. The new

BILP will be presented formally as an “assignment problem” in the combinatorial optimization context

rather than as a maximum common subgraph problem, although one can be converted to the other. A

few definitions are required before we can formally define the problem. Note that PeakWalker can be run

independently of PeakAssigner. PeakAssigner is simply used to incorporate contact information from a
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Figure 4.6: Combining peak walking with backbone assignment. CS denotes chemical shift. Arrows with
the same color are in the same step. To determine the potential binding interface residues, the amide
chemical shifts of the protein in the fully bound state is assigned and then compared to the chemical shifts
from the unbound state.

homologous structure to resolve ambiguities.

4.3.1 Definitions

Definition 3. The mappings or typings for backbone amide chemical shifts δN , δHN of HSQC peak

hi ∈ Tk−1, is the set of its possible residues R(hi); e.g., ALA 3, LEU 57.

In chemical shift mapping studies, possible residues for each peak can be obtained by tracing paths

from peaks of unknown assignment to peaks with known assignment. It is often the case that peak tracing

results in a many-to-one mapping between residues and backbone amide chemical shifts. The goal of

backbone assignment is to find a one-to-one mapping; that is, to pick at most one residue in R(hi) for each

hi using additional evidence to determine the most likely mapping. In our case, we use contact information

from the NOESY.
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Definition 4. A contact c consists of two protons and an interaction type: c[0] =Ha
N , which is the amide

proton of some amino acid denoted by a, and c[1]=Hb
Nor Hb

α, the amide or alpha proton of another amino

acid denoted by b. For Hα, it is possible that a = b. Let P (c) be the proton type (HNor Hα) of c[1].

In NOE assignment, contacts are mapped to NOESY peaks. A NOESY peak can represent an intra-

residue or inter-residue contact. For intra-residue contacts, usually only Hα - HN is visible among contacts

to side chain protons. The other protons are usually too far away from HN . A spin system can be extracted

from an intra-residue peak because it gives the chemical shifts of the protons within the same residue.

Definition 5. A NOESY peak p (δN (p), δHN (p), δH(p)) induces an Hα chemical shift for HSQC peak h

(δN (h), δHN (h)) if the amide chemical shifts match and the proton chemical shift of the NOESY peak is

similar to a typical Hα chemical shift. Formally, all of this means ∆δN (p, h) ≤ σN , ∆δHN (p, h) ≤ σHN ,

and δH(p) matches within 3 standard deviations of the mean value of δHα(T (a)) of at least one amino

acid a ∈ R(h), where T (a) is the amino acid type of a. The mean and standard deviations of each amino

acid type were obtained from the Biological Magnetic Resonance Data Bank (BMRB) [113]. σN , σHN are

match tolerances.

For match tolerances, we used 0.5, 0.05 ppm. Since the intensity of NOESY peaks is inversely propor-

tional to the distance of the underlying protons in contact, and intra-residue HN , Hα’s are relatively close,

we can expect the intensity of intra-residue HN -Hα NOESY peaks to be large. Among the 8 closest (by

∆δNH(p, h)) NOESY-induced Hα peaks of HSQC peak h , we took the 4 most intense peaks as a possible

induced δHα(h).

It is possible that the N, HN chemical shifts of a NOESY peak matches the chemical shifts of more

than one HSQC peak, and the H chemical shift matches the HN shift of more than one HSQC peak or

more than one induced Hα shift. For NOE assignment, we define the concept of a NOESY peak match

to account for this ambiguity. If there is only one possible NOESY peak match for a given NOESY peak,

then that peak is unambiguous.

Definition 6. A NOESY peak match n consists of a pair of HSQC peaks that match the chemical shifts

of the contacting protons as represented by the NOESY peak, the NOESY peak itself, plus an interaction
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type. Formally, n consists of n[0] = (δN (s), δHN (s)) of HSQC peak s, n[1] = δHN (t) or an induced

δHα(t) of HSQC peak t, n[2] = (δN (p), δHN (p), δH(p)) of some NOESY peak p; where, ∆δN (s, p) ≤ σN

, ∆δHN (s, p) ≤ σHN , and ∆δH(t, p) ≤ σH . We used 0.05 ppm for σH . For Hα, it is possible that s = t.

Define P (n) to be the proton type of n[1].

Assigning NOESY peaks to contacts is equivalent to assigning NOESY peak matches to contacts if we

constrain NOESY peaks to be assigned to at most one NOESY peak match.

To limit the number of assignment possibilities, we consider only the residues and contacts that match

the experimental peaks.

Definition 7. Amino acid a matches HSQC peak h if a ∈ R(h).

Definition 8. Contact c matches NOESY peak match n if the end points match and the interaction types

match. Formally, this is i) a ∈ R(s), where amino acid a = c[0] and peak s = n[0] (a is a possible amino

acid type for HSQC peak s); ii) b ∈ R(t), where b = c[1] and t = n[1] (b is a possible amino acid type of

HSQC peak t), and iii) P (c) = P (n).

4.3.2 Problem Statement

Given the above definitions, we define the backbone structure-based assignment problem.

Definition 9. Let S be the amino acid sequence, H the set of all backbone amide chemical shifts, C the

set of all contacts from the 3D structure of a homologous protein, P the set of all NOESY peaks, and N the

set of all NOESY peak matches. The backbone resonance assignment is a one-to-one function f : H → S,

where h ∈ H matches f(h), and the backbone NOE assignment is a one-to-one function g : N → C,

where n ∈ N , n[2] ∈ P , and n matches the contact g(n). The best resonance and NOE assignment is one

that maximizes the scoring function

∑
h∈H

∑
f(h)∈S

wf (h, f(h))

+

∑
n∈N

∑
g(n)∈C

wg(n, g(n))


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The scoring functions wf : H × S → R and wg : N × C → R weigh each individual resonance and NOE

assignment, respectively. Since N contains peaks in H, the two functions are dependent.

Unlike other definitions, this one takes into account both backbone resonance and NOE assignment

simultaneously. Bipartite graph and linear assignment versions of the problem only look for f , while

subgraph isomorphism and quadratic assignment versions look for both f and g. The former problem is

solvable in polynomial time, while the latter is NP-hard.

Our BILP for backbone assignment is based on the following input: The possible residues R(hi) for

each 2D HSQC peak hi, a 3D 15N-NOESY peak list, and a 3D structure from a homologous protein. The

main assumption is that the homologous protein has similar structure. For binding, if the structure is of

the unbound form, then the assumption is that the structure does not change significantly upon binding.

For B-cell lymphoma-extra large (Bcl-xL), this is the case. For a protein like calmodulin (CaM), this is

not the case. However, if a structure is known for the CaM bound form with some other ligand, then it

is likely that other molecules that bind to CaM have similar bound structures. Therefore, the structure

of one bound form can be used for assignment for other bound molecules. This has applications for drug

screening on a library of molecules.

4.3.3 Binary Variables

The variables indicate individual resonance (vertex) and NOE (edge) assignments. Note that contacts are

assigned to NOESY peak matches rather than NOESY peaks, but assigning contacts to NOESY peak

matches is equivalent to assigning contacts to NOESY peaks because constraints are used to ensure that

each NOESY peak is assigned to at most one NOESY peak match and vice versa.

� Xa,h Equal to 1 if amino acid a is assigned to HSQC peak h, where a matches h.

� Xc,n Equal to 1 if contact c is assigned to NOESY peak match n, where c matches n.
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4.3.4 Objective Function Coefficients

A linear objective function is maximized. The coefficients are the weights, and they are non-negative.

� wf (Xa,h) = 3 × (1 − ∆δNH(f−1
0 (a), h)−min(h)

max(h)−min(h) ) This is the score of assigning amino acid a with

reference peak f−1
0 (a) (defined in Section 4.1) to target peak h. Shorter peak paths have higher

score because we do not expect many chemical shift changes except for the residues in the binding

interface. min(h) and max(h) is the smallest and largest, respectively, ∆δNH between h and the

reference peaks of the amino acids in R(h). This normalizes the score based on the lengths of the

alternative paths for h. It is possible to use a chemical shift prediction program to predict the

chemical shift of a residue, and then measure its distance to the target peak. We tried the program

ShiftX [85], but it did not improve the accuracy of the results.

� wg(Xc,n) = Φ(∆δN (p, s), 0, σN2 ) + Φ(∆δHN (p, s), 0,
σHN

2 ) + Φ(∆δH(p, t), 0, σH2 ) + F (c), where

Φ(x, µ, σ) = 2×(1−cdf(x, µ, σ)). cdf(x, µ, σ)) is the cumulative distribution function of a normally

distributed variable with mean µ and standard deviation σ. We used a mean of 0, and standard

deviation values such that x equal to 0.5 and 0.05 ppm for δN and δHN , respectively, corresponds

to 2 standard deviations. This weight is the score of assigning contact c to NOESY peak match

n, where HSQC peak s = n[0], HSQC peak t = n[1], and NOESY peak p = n[2]. NOESY peak

matches, where the HSQC peaks have very similar chemical shifts to the NOESY peak chemical

shifts, have higher score. F (c) is a weight on the type of contact. In the absence of missing NOESY

peaks, contacts involving adjacent amino acids should have a NOESY peak match, so it is natural

for adjacent amino acid contacts to have higher weight than nonadjacent.

4.3.5 Constraints

1. Each amino acid a is assigned to at most one HSQC peak. This is
∑
hXa,h ≤ 1.

2. Each HSQC peak h is assigned to at most one amino acid. This is
∑
aXa,h ≤ 1.

3. Each contact c is assigned to at most one NOESY peak match. This is
∑
nXc,n ≤ 1.
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4. Each NOESY peak p = n[2] of NOESY peak match n is assigned to at most one contact. This is∑
c, n[0], n[1]Xc,n ≤ 1.

5. Each pair of HSQC peaks n[0], n[1] of NOESY peak match n has at most one NOESY peak. This is∑
c, n[2]Xc,n ≤ 1.

6. Contact c is assigned to NOESY peak match n if and only if amino acid c[0] is assigned to HSQC

peak n[0], and c[1] is assigned to n[1].

(a) ∀c, ∀h,
∑
n |h=n[0]Xc,n ≤ Xc[0],h

(b) ∀c, ∀h′,
∑
n |h′=n[1]Xc,n ≤ Xc[1],h′

Proof. Suppose contact c is assigned to NOESY peak match n. Then Xc,n = 1 and the summation

on the left-hand side is 1, and at most 1 based on constraints 3-5. This forces Xc[0],h = 1 and

Xc[0],h′ = 1, so c[0] is assigned to h = n[0] and c[1] is assigned to h′ = n[1]. Suppose Xc[0],h = 1 and

Xc[1],h′ = 1, then since we are maximizing the score, the summations on the left-hand sides must be

set to one if a matching NOESY peak exists. Note that we cannot have Xc,n = 1, where h = n[0]

and Xc,n′ = 1, where h′ = n′[1] and n 6= n′ because it violates constraint 3.

7. Each Hα proton, za of an amino acid a, is assigned to at most one induced Hα peak, yh of HSQC

peak h. Let bza,yh = 1 ↔
∑
c, n | za∈c[1], yh=n[1]Xc,n ≥ 1 be a reified constraint, where bza,yh = 1

when za is assigned to yh. The summation is over all Xc,n that contain za and yh. The constraint is

then ∀za,
∑
yh
bza,yh ≤ 1.

8. Each induced Hα peak, yh of HSQC peak h, is assigned to at most one Hα proton. This constraint

is then ∀yh,
∑
za
bza,yh ≤ 1.

4.3.6 Multiple Assignment Possibilities

To identify robust assignments, we find additional near-optimal solutions to yield different assignment

possibilities for each peak. The idea is that an assignment in the optimal solution is more reliable if it
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PDB ID 1KA5 1EGO 1G6J 1SGO 1YYC

Noise (X) 5.6 5.3 3.8 8.2 7.6

Acc v2.0 (%) 100 95.6 93.5 87.9 95.2

Range v2.0 (%) 100 89.9-100 93.1-94.4 81.8-99.3 90-99.4

Acc v1.0 (%) 100 92.8 94.4 86.7 89.4

Range v1.0 (%) 100 89.9-97.5 94.4-94.4 76.7-96.3 75.5-96.8

NOE Acc (%) 92.6 89.0 94.2 86.6 89.8

Range NOE (%) 91.0-94.0 79.4-94.7 92.3-96.2 81.8-93.5 84.9-94.2

Table 4.4: Comparison between the two BILP assignment methods. The new version is denoted as v2.0
and the old v1.0. The accuracy is the number of correct one-to-one mappings divided by the number
of mappings. NOE assignment accuracy is the number of correct NOESY peak to contact assignments
divided by the number of assignments. NOE assignment accuracy is only for v2.0 because v1.0 does not
do it.

is also in the near-optimal solutions. We used CPLEX 12.2 and the one-tree algorithm. A consensus

assignment can be obtained from the set of solutions, by setting the objective function terms wf (Xa,h) to

the number of times amino acid a was assigned to peak h, and wg(Xc,n) to the number of times contact c

was assigned to NOESY peak match n.

4.4 Results

To compare the combined NOE and resonance assignment approach of PeakAssigner with the old BILP,

we ran both on data simulated from the structures 1KA5, 1EGO, 1G6J, 1SGO, and 1YYC, which were

part of the test set in our previous work. Rather than using the simulated data provided by the authors

of the CR method, which was done in the previous tests, we simulated the data ourselves so that we could

trace the results back to the data. In these tests, the possible mappings for each peak contained the correct

residue, and there were no Hα assignment errors. Later tests will introduce such errors. NOESY peaks

were simulated using chemical shift data from the protein’s BMRB entry: 2030 for 1KA5, 491 for 1EGO,

5387 for 1G6J, 6052 for 1SGO, and 6515 for 1YYC.

The results are given in Table 4.4. Each PDB file contained multiple 3D models. The table shows the

average result from using every pair of structures, where one was the template structure and the other was

the target. The noise level is defined as the number of NOESY peak matches divided by the number of
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Accuracy Target Typing Size Type Error Probability Missing Hα Probability
151/151
151/151

3FDL 4 0 0

151/151
145/151

3FDL 5 0 0

150/150
149/150

3FDL 6 0 0

149/150
-

3FDL 7 0 0

131/144
112/148

3FDL 5 0.1 0

125/141
102/148

3FDL 5 0.15 0

135/144
-

3FDL * 5 0.1 0.05

114/144
101/147

LOMETS * 4 0.1 0.05

127/142
115/144

LOMETS * 3 0.1 0.05

Table 4.5: Comparison between the two BILP assignment methods under various parameters. For each
row, the top line gives the result for v2.0 and the line below for v1.0. 3FDL was used as the template
for all cases. Results with a ‘-’ did not complete within an hour. The target proteins for NOE simulation
include 3FDL and a structure obtained from the protein threading server LOMETS [121]. A distance
cutoff of 4.5Å was used for simulation. The superposition of 3FDL and the LOMETS model is 13.6 Å,
and 2.3 Å over 110 residues in the structure alignment result from CE [105]. Typing size is the number
of possible residues per target peak. The possible residues excluded the correct residue according to Type
Error Probability. Missing Hα chemical shifts were introduced with probability given in the last column.
(*) In the last 3 cases only, missing NOEs were introduced with probabilities 0, 0.05, 0.21, 0.41, 0.51 for
contacts with distances 1.0, 2.0, 3.0, 4.0, 4.5Å, respectively.
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Protein UbcH5B Histone H1 hBclXL hBclXL
∗

Num Correct 119.5 66.2 101.9 99.8
Num Correct Range 119-120 65-67 101-103 99-101

Acc (%) 98.0 94.7 95.6 94.5
Acc Range (%) 97.5-98.4 92.9-95.7 94.4-97.2 93.5-95.2

Num HN -HN Correct 157 114 116.1 118.3
Acc HN -HN (%) 92.7 90.9 90.0 86.3

Num HN -Hα Correct 168.2 104.9 128.6 0
Acc HN -Hα (%) 75.6 65.4 63.1 0

Table 4.6: One-to-one backbone assignment results from PeakWalker input. The input many-to-one
mappings for hBclXL had a 96.7% accuracy with 116 correct and 1.3 residues per peak on average. The
input for UbcH5B had values of 98.3%, 120, and 1.2, respectively. The input for histone H1 had values
of 98.8%, 85, and 1.3. The NOE assignment accuracy for each contact type is defined as the percentage
of the number of contacts of the given type that were assigned to the correct NOESY peak. ∗ The last
column gives the results of using only HN -HN contacts for hBclXL.

contacts. With the exception of 1G6J, which has a low noise level, our new method was better, especially

when the noise level increased. We also tested 1SGO with different noise levels by using different values

for the match tolerance. For a noise level of 4.6, the old method was 0.5% more accurate, but for noise

levels from 5.5 to 10.3, the new method did 0.2 to 4.2% better. Larger proteins typically have higher noise

levels due to increased peak overlap.

Table 4.5 compares the approaches on 3FDL as the template structure. The accuracy for the old BILP

for a typing size of 5 residues per peak versus 6 residues is surprisingly worst despite less ambiguity. This

is likely because the residues in the typings, which were generated randomly, affected the possible NOESY

peak matches, so the typing composition influenced the accuracy. The new BILP performed better in

general. Surprisingly, when the typing size/level of ambiguity increased, the new BILP ran faster than

the old even though the number of variables in some cases was twice as many. In two cases, the old BILP

failed to complete within 1 hour. When there are errors, the search space tends to increase because of

increased ambiguity. The additional constraints in the new BILP likely pruned the search space better.

For a typing size of 5 on the LOMETS target with type error probability of 0.1, missing Hα probability

0.05, and missing NOEs, both methods did not complete within an hour (result not shown in the table).

For the test cases in Table 4.4, the old BILP ran faster likely because the search space was small due to

no typing errors.
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Table 4.6 shows the assignment results for hBclXL, UbcH5B, and histone H1 with the new BILP.

The values are averages over 10 trials, where each trial is a different NOESY peak simulation. Section

4.4.1 describes the NOESY peak simulation in detail, and Section 4.4.2 describes the input template

structures. Peak mappings were obtained from PeakWalker, and the unambiguous reference mapping was

used to measure the accuracy on histone H1. As expected, the resonance assignment accuracies were

slightly less than those for the input many-to-one mappings. However, the number of correct assignments

for hBclXL and histone H1 was less than expected when comparing to Table 4.2. This is likely due to

differences between the contacts in the template and target structures. Their superpositions were greater

than that for UbcH5B, and the templates had fewer residues than the target. When we used the target

as the template structure for resonance assignment, the number of correct assignments increased by 8.9

for hBclXL and 6.1 for histone H1. Other types of errors, such as missing NOESY peaks, had only a small

influence on the number of correct assignments. Another factor is that our accuracy definition did not take

into account peaks that were assigned to the wrong residue, but have almost identical chemical shift to

the correct peak of the wrong residue. When this is taken into account, the number of correct assignments

increased by about 2.6 for hBclXL. There was no change for histone H1 because its peak lists had no

overlapped peaks.

When comparing PeakWalker one-to-one mappings, which did not take into account contact infor-

mation, to PeakWalker-PeakAssigner one-to-one mappings, the accuracies were similar, but PeakWalker

alone had more number of correct except for UbcH5B, where the combination had over 4 more correct

on average. The reason for this result is that PeakAssigner currently does not produce assignments for

residues not in the template structure. For hBclXL, the template structure had 24 fewer residues compared

to the number of target peaks, and for histone H1, 7 fewer residues. For UbcH5B, the number of residues

is the same as the number of peaks. It is possible to modify PeakAssigner to go with PeakWalker’s results

if a residue does not have an assignment due to not being in the template structure. In terms of getting

the binding residues correct, the combination of PeakWalker and PeakAssigner did slightly better. For

hBclXL, both approaches got the same binding residues correct, but for UbcH5B, the combination got one

extra binding residue correct due to an ambiguous mapping. Histone H1 was not a binding situation, but
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Num Correct Input 111/123 111/123 111/115 111/115
Avg Num Res/Peak 2.3 3.3 2 3
Num Correct Avg 92.2 86.3 95.1 94.3

Num Correct Range 90-95 80-93 93-97 93-96
Acc (%) 91.8 86.5 94.6 94.3

Acc Range (%) 89.1-95.0 79.2-93.0 92.1-96.9 92.1-96.0

Table 4.7: One-to-one assignment results for hBclXL with different input many-to-one mappings. The
results are averages over 10 trials, where each trial is a different NOESY simulation.

rather the protein at two different temperatures. For this protein, PeakWalker alone made 2 incorrect

assignments that the combination got correct. There was no instance where the combination made an

incorrect assignment, but PeakWalker alone made the correct one-to-one mapping. The main issue with

running PeakWalker alone is that some noise peaks received one-to-one mappings, whereas the combination

did not make any assignment for them because they were not supported by contact information.

Despite using ambiguous induced Hα chemical shift assignments, the HN -Hα contact assignments were

over 60%, even with a 5% Hα missing rate. Nevertheless, the comparable results for hBclXL that used

only HN -HN contacts indicate that the accuracy was not impacted significantly when Hα was not used.

Table 4.7 shows the results for hBclXL with different many-to-one input mappings. When the number

of candidate residues per peak increased, the accuracy and the number of correct assignments decreased.

However, the decrease was much more pronounced for the input with poorer accuracy. The decrease in

the other case was minimal, so erring on producing a few extra possible mappings is less detrimental if it

can be done accurately.

Once backbone assignment is done, one can compute the chemical shift change between each target

peak and its assigned reference peak. Residues with large changes might indicate their involvement in

binding. The binding affinity can then be determined by computing the dissociation constant, which can

be obtained from model fitting using the peak paths and the predicted paths according to some model of

binding [62]. Figure 4.7 shows the chemical shift changes of hBclXL. For this protein, residues with large

changes are involved in binding or near binding residues, but this is not always the case for all proteins

because changes can also be attributed to allosteric changes. Except for 2 residues involved in binding, the

reference solution and PeakAssigner agree. Residue 196 was not in the input structure for assignment, and
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Figure 4.7: The chemical shift changes for the residues of hBclXL upon binding. (LEFT) gives the known
changes on the correct NMR structure. (RIGHT) gives the changes based on the backbone assignment
on the template structure 3FDL. Residues are labeled by their residue number. Unassigned residues are
unlabeled and colored white.
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Figure 4.8: One possible peak walking path for residue 192 of hBclXL. The vertical spacing is δHN at
0.1 ppm units, and the horizontal spacing is δN at 1.0 ppm units. Peaks are denoted by circles with the
residue number followed by the peak list number after the underscore. Peak list 0 is the free protein. The
red arrow points to the true final peak position, which was concealed due to peak overlap with residue 190.
Red labels indicate peaks missing their next transition and the green circle indicates a peak predicated as
missing all its previous peaks. The peak for 192 is not present in lists 4 and 5. The grey circle is a noise
peak.

the target peak for 192 was concealed due to peak overlap with residue 190. However, 192 was correctly

predicted as missing its peak by PeakWalker, and correctly predicted as having a large shift change using

its peaks in the other peak lists (Figure 4.8). Figure 4.9 shows the result of docking the Bak peptide from

1BXL to the homology model for hBclXL using the putative binding residues 90, 94, 111, 112, 114, 146,

148, and 192 as constraints.

Figure 4.10 highlights the residues with chemical shift changes in UbcH5B. The residues with the largest

changes: 4, 60, 94, 96 match or are close to the actual residues in the interface: 3, 5, 58, 59, 63, 94, 96, 98.

Overlapped peaks resulted in residue 58 not being assigned. 2 peak lists had 58’s peak overlapped with

that of residue 132, so it ended up being predicted as being missing by PeakWalker. Missing transitions can

be flagged for manual analysis. FELIX-Autoscreen [91] uses peak shape information to identify overlapped
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Figure 4.9: Structure alignment of hBclXL-Bak protein-protein complex with 1BXL. The complex was
obtained by docking the Bak peptide (yellow) of 1BXL to the homology model for hBclXL using putative
binding residues 90, 94, 111, 112, 114, 146, 148, and 192 as constraints. ClusPro [61, 60] was used for
protein-protein docking, where the lowest energy structure from the largest cluster is shown. MM-align
[82] was used for the structure alignment.
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Figure 4.10: The chemical shift changes for the residues in UbcH5B. (LEFT) shows the changes based
on the backbone assignment on the template. In increasing order of shift change, the colors are blue,
yellow, orange, and red. Residues are labeled by their residue number. Unassigned residues are unlabeled
and colored white. (RIGHT) gives the actual structure of the complex with the non-blue and non-white
residues from the left highlighted. The ligand, Not4, is highlighted in yellow.

peaks. Peak shape can be incorporated into our model by scoring peaks as more likely ambiguous if they

have shapes resembling the sum of two or more peaks. However, shape information was not available in

the peak lists. They would have to be extracted from the raw spectra.

Residues 10, 11, and 12 do not appear to be part of the binding interface, but they have chemical shift

changes likely attributed to dynamics. We passed the 12 residue with the largest chemical shift changes

(4, 8, 10, 11, 12, 16, 60, 63, 94, 96, 98, 99) to ClusPro [61, 60] for docking, but unfortunately, it was unable

to find the correct docking conformation. Compared to Bak for hBclXL, which is a small helix, Not4 is a

larger ligand, so it is likely chemical shift mapping information is also needed for the ligand for complex
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determination. The ligand should be easier to study since it is often smaller than the receptor. We provided

the docking program HADDOCK [30], with the above residues as active residues, minus residues 10, 12,

60, 99, which did not meet the > 40% relative solvent accessibility criteria of HADDOCK for being active.

Solvent accessibility was computed using NACCESS [46] on the template structure. We also provided the

known active residues of the ligand: 16, 17, 18, 19, 40, 48, 49, 50, 52, 55, 56, 57. HADDOCK generates

ambiguous interaction restraints from the active residues to support ambiguously assigned intermolecular

NOEs. Figure 4.11 shows the best docking result, which was the third best scoring docking model among

the top 5 solutions returned. The first and second best scoring models had the ligand near the correct area,

but in the wrong orientation. Note that the restraints are ambiguous, so the docking program’s scoring

function was relied upon to determine which residues were supposed to be in contact. Using chemical

shift information in the docking scoring function [111], and interface information from transferred NOEs

and saturation transfer difference NMR should improve the results. We also tried ClusPro with the above

residues, but none of the top 10 solutions returned were correct.

As an alternative to ligand chemical shift information, differential chemical shifts can be used to orient

the ligand [73]. This method is useful when the comparison between the chemical shifts of the free and

bound protein fails due to most chemical shifts having changed. Instead, chemical shift mapping is done

on the target with different mutants of the ligand, assuming they bind. The mappings are examined for

differences. It is assumed that large chemical shift differences between the cases is due to the mutations,

and that the mutations do not change the docking significantly. Since the mutations are known, we know

which part of the ligand is associated with which residues of the target.

Histone H1, which was studied under two different temperatures, was not a binding test case, so we

decided not to pursue it any further.

4.4.1 NOESY Peak Simulation

NOESY peaks were simulated using the contacts in the 3D structure (within 4.5Å), N and HN chemical

shifts from the target peak list, and Hα chemical shifts from either ShiftX predictions [85] or from the

BMRB depending on availability. For hBclXL, we used the protein threading server LOMETS [121] to
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Figure 4.11: Structure alignment of the predicted and actual UbcH5B-Not4 complexes. Not4 is in blue
and yellow. The native complex is in yellow and red. HADDOCK was used for docking. MM-align was
used for the alignment.
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obtain the target structure. The structure chosen among the possibilities returned by LOMETS was the

one that used 1LXL as the threading template. It consisted of 178 residues after the flexible loop region

was removed. ShiftX was used to obtain the Hα chemical shift values. For Ubch5b, we used the structure

named “ubch5b-not4 1.pdb” that was provided with the peak lists, and ShiftX for the Hα chemical shifts.

The structure consisted of 147 residues. For histone H1, we used 1UST for the structure and BMRB entry

6161 for the Hα chemical shifts. It consisted of 92 residues.

A global offset to calibrate the N, HN chemical shifts of the NOESY against the HSQC is assumed to

have already been obtained from a calibration step, so we simulated only local calibration errors. Local

calibration noise, randomly distributed between 0 and 0.15 ppm for N, 0 and 0.015 ppm for HN , were

introduced to NOESY peaks. Global calibration can be performed manually relatively quickly compared

to backbone assignment. Missing inter-residue contacts were introduced with the following probabilities

(0, 0.05, 0.21, 0.41, 0.51) for contacts within the following distances (1.0, 2.0, 3.0, 4.0, 4.5)Å, respectively.

Missing intra-residue HN -Hα contacts were introduced with probability 0.05. With size 10% of the number

of NOESY peaks, NOESY peaks corresponding to noise were added in the range 99-133 ppm for N , 6.25-

10.75 ppm for HN , and 2-6 ppm for Hα.

4.4.2 Template Structures

The homology-modeling server SWISS-MODEL [8, 59, 89] was used to obtain the templates as input to

assignment. Reduce [120] was used to add the coordinates of hydrogen atoms to the templates. As input to

SWISS-MODEL, the template used for hBclXL was 3FDL. It consisted of 154 residues. Residues 27 to 82

were not present in the file. The 3D superposition between the target and template was 13.6Å. However,

the structure alignment using residues 85-194 was 2.3Å according to the program CE [105]. The template

for Ubch5b was 2ESK, which consisted of 147 residues. The superposition was 2.4Å, where all residues

aligned. The template for histone H1 was 1YQA, which consisted of 85 residues. The superposition was

4.9Å, but the structure alignment was 2.0Å using residues 9-82.
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4.5 Discussion

Even with NOE information, a one-to-one mapping for all residues is not always possible. Our approach,

however, facilitates an iterative semi-automated approach. Once assignments and paths have been verified,

perhaps using additional information, the corresponding variables can be removed from the BILP, and

then the model resolved. Multiple near-optimal solutions can be returned to account for ambiguity. NOEs

matching multiple contacts can also be outputted to facilitate manual analysis.

For single site binding, peaks trajectories are usually relatively straight. Our peak walking model

assumes peaks follow a non-zig-zagging trajectory, so curves are allowed as long as they do not zig-zag.

Curves can occur when there are multiple binding sites or a conformational change upon binding. Com-

plex determination when there is conformational change is still a challenge for flexible docking methods.

This is especially the case when there is a large change, such as in CaM (Figure 4.12). In the docu-

mentation of RosettaDock, it says “docking will not capture the flexibility of a molecule like calmodulin”

(http://rosettadock.graylab.jhu.edu/documentation). There does not appear to be many docking

methods that can handle large backbone changes. SnugDock [107] can model the flexibility of light and

heavy chains and antibody CDR loops in antibody-antigen docking. HADDOCK can model backbone

flexibility about a hinge residue [56] if it is given the hinge residue and the correct interface contacts, but

as ambiguous interaction restraints. It can determine the structure by cutting the protein at the hinge and

then performing multibody docking with connectivity and flexibility constraints between the boundary of

the two cut domains. CaM was not tested, so we tried it on HADDOCK. This version of HADDOCK is

currently only available with guru-level access on their webserver, which we obtained from the authors.

We started from the free-form structure with calcium bound (middle of Figure 4.12). The HADDOCK

paper provided guidelines on predicting hinge residues, so we tested them by using HingeProt [33] to

predict the hinge residue. It predicted residues 17, 64, 78, and 90. 17 and 90 are near the ends of helices,

64 is in a beta sheet, and 78 is near the middle of a long helix, so according to their guidelines, 78 is the

most likely hinge residue. It turns out 78 is closest to the residue with the largest chemical shift change,

which is 76. Specifying residue 78 as the hinge, residues 73-83 as fully flexible, and the correct active
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Figure 4.12: The different conformations of calmodulin. Upon binding of calcium (green spheres), the
central helices of free calmodulin (LEFT) join into a single helix (MIDDLE). Calcium-bound calmodulin
wraps around the peptide upon binding (RIGHT).

residues of both binding partners, but not which pairs of residues are in contact, HADDOCK gave all

incorrect conformations.

Next we tried providing it with some contacts in an ambiguous form, but which are all correct contacts.

We provided it with the following, where chain A is the protein and residues without a chain designation

are in the ligand: 19:A-{12, 13, 14, 15, or 22}, 32:A-{4 or 24}, 36:A-1, 48:A-2, 51:A-{2 or 6}, 54:A-{6 or 7},

55:A-6, 68:A-{8 or 10}, 71:A-{10, 11, or 12}, 72:A-{11, 12, or 13}, 77:A-{7 or 8}, 84:A-{16 or 18}, 88:A-{19

or 20}, 92:A-20, 109:A-24, 141:A-19, 145:A-{20, 22, or 24}. It was able to find a solution with RMSD

of 3.9Å in the MM-align alignment among the top 3 solutions returned, so it seems that intermolecular

contacts are needed in this case (Figure 4.13). We then tried providing HADDOCK with about half the

number of contacts (from only residues 36, 48, 54, 68, 72, 88, 109, and 149 of chain A), and the result was

almost as good, except that the helix peptide was off by one helix turn. We also tried providing about a

quarter of the number of contacts (from only residues 36, 54, 88, and 109), but this time docking was not

successful. Given that NOE data is typically sparse and ambiguous, the question remains how much data

loss and ambiguity can be tolerated in general. This is a topic for future work.

Our peak walking approach is applicable to the SAR by NMR method, which uses fast exchange
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Figure 4.13: Calmodulin complexed with the calmodulin binding domain of calcineurin predicted using
HADDOCK with the ligand from PDB 2JZI and the free form from 1EXR. The structure alignment with
the bound form 2JZI is shown. The break at the hinge is visible at the bottom.
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chemical shift mapping. However, for high-throughput screening, the SAR by NMR method is better suited

for validating hits rather than for generating hits from a large compound library. Nevertheless, advances

are making it more practical [108], and the number of hits to validate can still be large. According to a

senior scientist at Genentech, a pharmaceutical company, “the true strength and potential (of NMR) are

found in the follow-up of initial hits. NMR offers a unique set of atomic-level observables for the hit-to-lead

advancement not found in other techniques.” [71]. Ligand-based methods, such as transferred NOE and

saturation transfer difference, are more applicable for high-throughput screening because they require less

experimental time, less protein, and are less limited by the size of the target protein (reviewed in [68]).

However, ligand-based methods give information only about the ligand, such as whether or not binding is

possibly occurring. Chemical shift mapping is then used to obtain target binding site information, which

can be used by protein-ligand docking methods to produce the structure of the complex [108]. For large

proteins, selective labelling of individual amino acid types, segmental labelling of specific segments of the

chain, and deuteration are used to simplify the spectrum [117]. In these cases, peak tracking without

contact information may be sufficient for identifying the binding residues. SAR by NMR is based on

identifying weakly binding ligands and then linking them to produce a stronger binder. In most cases,

these ligands are in fast-exchange, which has limitations in obtaining intermolecular NOEs as discussed in

Section 2.4. Our approach, however, does not depend on intermolecular NOEs.

In the next section, we present a model for slow exchange peak tracking and preliminary results for

CaM. The results prompted us to build a combined BILP model that combines the peak walking BILP

and backbone assignment BILP. This combined model allows peak path information to be incorporated

directly into the backbone assignment algorithm. For SAR by NMR, the slow exchange model is more

applicable for validating the linked ligand rather than screening for weak binders.

4.6 Slow Exchange BILP

We develop a peak walking model for the slow exchange case, and present preliminary results for calmodulin

(CaM). Currently, we are not aware of any automated methods for slow exchange apart from those that
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use the same approach as fast exchange. In general, peak tracking is more difficult here because there are

no intermediate peaks to track peak movements in increments, and the number of peaks in the spectra can

be almost double the number in fast exchange. Similar to the fast exchange case, we model the problem

as a k-dimensional matching problem. The difference is that we allow vertices in the graph to represent

not only one peak, but also two. In addition, in the scoring function we consider for a pair of peaks their

intensities relative to the concentration ratio of the protein and ligand.

We define 3 types of vertices based on 3 different peak/residue states. A free vertex represents a peak

corresponding to a residue in the free form. A freebound vertex represents a pair of peaks corresponding

to the same residue in both the free and bound forms. A bound vertex represents a peak corresponding

to a residue in the bound form only. Figure 4.14 illustrates the possible transitions from each state. From

the free state, a residue can transition to any of the 3 states. Note that a transition does not necessarily

mean that the chemical shifts have changed. From the freebound state, a residue can remain in this state

or transition to the bound state. A residue in the freebound state cannot transition back to the free state.

Once in the bound state, a residue must remain there. All peaks in the initial peak list are in the free

state. In the final peak list, we assume the protein is fully saturated with the ligand, so no residues are

in the freebound state; they must be in one of the other two states. We also allow a residue to transition

to a missing state, where its peaks disappear in all subsequent peak lists. A missing transition from the

freebound state means that both peaks are missing. Similar to the fast exchange case, the problem is

modeled with a BILP.

4.6.1 Binary Variables

The variables represent the transitions/edges between vertices, where each vertex represents a peak or a

pair of peaks in some state and from some peak list.

� Xhish′s′ Equals to 1 if peak h ∈ Ti in state s ∈ {free, bound}, or a pair of peaks ha, hb in state

s = freebound, transitions to peak h′ ∈ Ti+1 in state s′ ∈ {free, bound} or a pair of peaks h′a, h
′
b in

s′ = freebound. For s′ = missing, h′ is empty.
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Figure 4.14: Slow exchange peak tracking model. The arrows describe the possible transitions from each
state. Transitions with no arrows at the end represent missing transitions, which correspond to the peaks
being missing in subsequent peak lists.

4.6.2 Objective Function Coefficients

The objective function is maximized. The score depends on the length of the assigned paths, where shorter

paths have higher scores, and for freebound transitions, how well the intensity ratio matches the expected

ratio.

� C(Xhi[free]h′[free]) = Φ(∆δN (h′, h), 0, 0.25)+Φ(∆δHN (h′, h), 0, 0.025), where Φ is defined in Section

4.3.4.

� C(Xhi[free]h′ah
′
b[freebound]) = Φ(∆δN (h′a, h), 0, 0.25) + Φ(∆δHN (h′a, h), 0, 0.025)+

Φ(| I(h′a)
I(h′a)+I(h′b)

− Ri|, 0, 0.15), where I(·) gives the intensity of the given peak, Ri is the expected

intensity ratio based on the concentration ratio of ligand to protein, and h′a is closer to h than h′b is

to h based on ∆δNH .

� C(Xhi[free]h′[bound]) = 0.001. Since the chemical shift of h′ for a given residue can be very different

from its h, we set this score to be a constant to give no preference for the different h′s in this

transition.
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� C(Xhahb[freebound]h′ah
′
b[freebound]) = Φ(∆δN (h′a, ha), 0, 0.25) + Φ(∆δHN (h′a, ha), 0, 0.025)+

Φ(∆δN (h′b, hb), 0, 0.25) + Φ(∆δHN (h′b, hb), 0, 0.025) + Φ(| I(h′a)
I(h′a)+I(h′b)

− Ri|, 0, 0.15), where h′a is

closer to ha than to hb.

� C(Xhahb[freebound]h′b[bound]) = Φ(∆δN (h′b, hb), 0, 0.25)+Φ(∆δHN (h′b, hb), 0, 0.025), where h′b is closer

to hb than to ha.

� C(Xhb[bound]h′b[bound]) = Φ(∆δN (h′b, hb), 0, 0.25) + Φ(∆δHN (h′b, hb), 0, 0.025)

� Transitions corresponding to missing peaks have a score of -0.001.

4.6.3 Constraints

� Define the following auxiliary variables for each vertex. Ohis =
∑
h′s′ Xhish′s′ , which represents the

sum of the variables corresponding to the out-edges from vertices that contain peak h ∈ Ti in state

s. Ihis =
∑
h′s′ Xh′[i−1]s′hs, which represents the sum of the variables corresponding to the in-edges

into vertices that contain peak h ∈ Ti in state s.

� The number of in-edges, and the number of out-edges is bounded by one to prevent path overlap.

This is Ihis ≤ 1 and Ohis ≤ 1, respectively.

� Analogous to the fast-exchange case, we have the number of in-edges equal to the number of out-

edges. This is Ohis = Ihis .

� Define the following auxiliary variables for each peak. Ohi =
∑
sh′s′ Xhish′s′ , which represents

the sum of the variables corresponding to the out-edges from vertices that contain peak h ∈ Ti in

any state. Ihi =
∑
h′s′sXh′[i−1]s′hs, which represents the sum of the variables corresponding to the

in-edges into vertices that contain peak h ∈ Ti in any state.

� Since a vertex can contain more than one peak, to ensure that each peak gets assigned to at most

one state and path, we have Ihi ≤ 1, Ohi ≤ 1, and Ohi = Ihi.
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4.6.4 Combined BILP

The BILP for chemical shift mapping can be combined with the BILP for backbone assignment assuming

that the number of possible paths per peak is not too large. A combined BILP enables the constraints to

work together; e.g. if residue A is supposed to be assigned to peak S, and residue B has a path to peak T,

and A and B are in contact, but S and T have no NOEs, then there is evidence against B being assigned to

T. Accounting for contact information can help eliminate incorrect paths. The variables and constraints

of both the above slow exchange BILP and the backbone assignment BILP are copied to a new BILP. To

this new BILP, we add the following.

� Let Pas be a path between residue a (reference peak) and spin system s (target peak). Note that there

can be more than one path between them. Define a new variable YPas associated with this path. This

variable is equal to one when all the variables corresponding to the transitions in the path are set.

That is, the constraint is YPas = 1←→
∑
t∈Pas Xt = k, where k is the path length, which is equal to

the number of peak lists-1, and the summation is over all variables corresponding to the transitions

(Section 4.6.1). This is equivalent to YPas = 1→
∑
t∈Pas Xt = k and YPas = 0→

∑
t∈Pas Xt ≤ k−1,

which in turn, is equivalent to −
∑
t∈Pas Xt + kYPas ≤ 0 and

∑
t∈Pas Xt − YPas ≤ k − 1.

� Since there can be more than one path between a and s, we enforce the constraint
∑
P ′as

YP ′as ≤ 1,

where the summation is over all such paths between a and s.

� Each residue a can be in at most one path. This is
∑
s

∑
Pas

YPas ≤ 1

� Each spin system s can be in at most one path. This is
∑
a

∑
Pas

YPas ≤ 1

� The path variables from a to s are linked to their corresponding assignment variables Xa,s from

Section 4.3.3. This is Xas = 1↔
∑
P ′as

YP ′as = 1. Since
∑
P ′as

YP ′as ≤ 1, the constraint can be written

as Xas =
∑
P ′as

YP ′as .

So far, this has been implemented for only slow exchange. A similar BILP applies for fast exchange.
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4.6.5 Preliminary Results

For testing CaM, we generated peak lists using the chemical shifts in BMRB 6541 (free form) and BMRB

15624 (bound form). Four peak lists with saturation levels 0:1, 1:4, 3:4, and 1:1 were generated. The

number of peaks in each list is 146, 238, 238, and 143, respectively. Residues in 6541 with backbone δN ,

δHN within 0.5, 0.05 ppm of their corresponding values in 15624 were assumed to have stayed in the free

state. The other residues were assumed to be in the freebound state in the intermediate peak lists. Peak

intensities were generated based on the saturation levels. For the case with no noise peaks, no missing

NOEs, and no errors, except for 3 residues present in 6541, but not in 15624, fast exchange PeakWalker

performed poorly with less than 100 residues correct because it does not use the intensity values. Cutoffs

of 2.0 ppm for the N chemical shifts and 0.4 ppm for HN were used.

We first tested PeakWalkerSlow without backbone assignment; that is, without the combined BILP.

No noise was added to the intensities to vary the values away from their expected values, but the level of

ambiguity was increased by using an intensity window of 30%, that is an intensity cutoff of ±15% difference

from the expected intensity ratio was used to determine whether or not a pair of peaks corresponds to the

freebound state. PeakWalkerSlow got 132 correct at 5.7 peaks/residue. All 11 incorrect had chemical shift

changes outside the 2.0, 0.4 ppm cutoffs. Unfortunately, CaM undergoes a large conformational change

upon binding (hinge motion in a long helix), and those 11 residues are important for either binding or

hinge motion. A 4.0, 0.8 ppm cutoff would be needed to cover the chemical shift changes of all residues,

but this will result in a prohibitive number of possible peaks per residue. One possible solution to this

problem is an iterative approach described below.

If noise is added to the intensity values, but still resulting in the values within ±15% difference of the

expected, the accuracy dropped significantly to 107 correct at 7 peaks/residue due to increased ambiguity.

We then tried the combined BILP, which used the free form structure 1EXR as the template. NOEs were

generated from the bound form 2JZI. The one-to-one assignment had 125 correct, which is better than the

solution that allows for 7 possible peaks per residue. There is a computational cost with using a combined

BILP, as it had over 82,000 variables and almost 35,000 constraints. An iterative approach that fixes

paths, identifies reliable assignments, identifies commonly occurring paths in multiple solutions, and uses
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intermolecular NOEs might be able to correct for some of the errors. For peaks matching intermolecular

NOEs, perhaps the 2.0, 0.4 ppm cutoffs could be increased to help identify the residues with significant

chemical shift changes. This investigation will be future work. So far, the results are for the case with

no errors. For the case with errors and missing data, which is the norm, additional data will likely be

needed to reduce the ambiguity. If the hinge region and binding site location can be narrowed down, such

as with segmental isotope labeling, then the search problem becomes much easier. This comes with an

added financial cost, but the time savings from avoiding additional experiments might be worth the cost.
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Chapter 5

Conclusion and Future Work

Structure-based assignment offers the possibility to bridge experimental structure determination with

computational prediction methods. If there is no homolog, structure prediction methods, such as threading,

can be used to obtain a template. Structure-based assignment methods can then be used to measure the

agreement between the NOEs and the contacts in the predicted structure. In CASD-NMR [99], which is a

protein structure determination by NMR competition, participants are provided with backbone and side

chain chemical shift assignment, and unassigned NOEs. Given this information, CS-DP-Rosetta [94], uses

the DP-score [45], to measure this agreement. The score is used as a filter to select the final structure

model from a large set of candidate models. The score is similar to our assignment 1.0 method in that

NOEs are not directly assigned to contacts. The difference is that the backbone assignment is provided

as the input. It is of interest whether an assignment 2.0 approach would produce better structures.

Conformation sampling methods would then be needed to sample contacts not in the template structure,

but in the unknown NMR structure and hidden in the set of NOEs.

Note that backbone NOEs normally provide only local contact information; e.g., local contacts cor-

responding to adjacent residues and alpha helices. Non-local beta sheet contacts are also visible, but

in general backbone NOEs do not provide a sufficient number of non-local contacts for structure deter-

mination because structures with different tertiary structure can have the same local contact patterns.
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Non-local (long range) contacts, such as side chain information from doubled-labeled NMR experiments,

or global orientation information, such as RDCs, is necessary for structure determination. In the case of

large proteins, where the protein is often deuterated, the set of distance restraints is usually sparse. One

can supplement this set with additional distance restraints from consensus contacts from an ensemble of

possible templates. This assumes that the unknown structure also has these common structural fragments

due to evolutionary reasons. The advantage of structure prediction methods is that they can predict such

templates without a dense set of NOEs, which is required by traditional NMR structure determination

methods. Our approach of using limited NMR data is a “mini-version” of large protein NMR, where

the data is very sparse, so backbone-only approaches and structure-based approaches become much more

important. Our research provides a glimpse of the computational challenges that should arise there.

Local contact information is often sufficient to obtain the backbone assignment if given a homologous

structure because sequential connectivity and secondary structure contacts can be exploited for linking the

spin systems. This backbone assignment information, however, when combined with interface information

has the potential for 3D complex determination if flexible docking methods are able to use the interface

information with an energy function to fold the protein as it undergoes conformational change upon

binding. This is not yet a reality, but the trend is towards complementing wet labs with in-silico methods

that enable experimental efforts to be reduced. Another difficulty is determining the contacts and hinge

residue with NMR, especially in the slow exchange case. Sequence-only approaches for detecting the hinge

residue [33] can be used to help differentiate between binding interface and hinge residues. NMR data is

typically sparse, and assignment errors are typically present. The tolerance of docking methods to these

issues would need to be investigated. Since peak tracking is easier in the fast-exchange case, and SAR drug

screening is based mainly on this case, our peak walking approach has potential to speed up these studies.

Ultimately, to confirm the utility of our methods, a large-scale study on a drug library will need to be

performed. This will require calibration with pharmaceutical companies. To encourage collaboration, we

must build an easy-to-use web service that automates the peak list to structure/complex pipeline while

allowing for user intervention at each step. This is the long-term goal. The short-term goal is to tackle the

conformational change problem. This will likely require using side chain NOEs or RDCs, and conformation
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sampling methods from the protein structure prediction and protein-ligand docking field.

When this thesis was conceived, the original topic was fully automated assignment. Computers and

NMR have been around for decades, but fully automated methods have still not caught on. The vast

number of possible deviations from the norm due to noise, missing data, ambiguity, and unexpected

observations make it difficult to trust full automation as a routine method; plus it is difficult for automated

methods to account for every possible case. Currently, only semi-automated methods are routine. Instead

of full automation, we focused on using limited NMR data, so that computer methods can still take on an

important role. However, full in-silico structure prediction, especially for large complexes, is currently a

challenge because of the size of the sample space and the poor ability of current docking energy functions

to accurately capture the binding affinity [75]. It is known that local docking (when the binding site is

limited to a specific location) is a much easier problem than global docking, so a combination of fast in

vitro and in silico methods is the way to go for studying proteomes and interactomes.
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Appendix A

Ubiquitin Spin Systems from

Manually Picked Peaks

The first two columns give the reference assignment, followed by the spin system chemical shifts, and then

the amino acid type predictions as single letter codes.

2 GLN 123.077 8.942 5.26 2.22 1.86 1.6 K R I L Q E

3 ILE 115.284 8.303 4.135 1.77 0.626 A I L V

4 PHE 118.681 8.606 5.622 3.02 2.85 F Y H D N

5 VAL 121.423 9.299 4.77 1.89 0.68 V I L

6 LYS 128.011 8.913 5.286 2.9 1.689 1.377 K R V I L

7 THR 115.67 8.747 4.904 1.18 A

8 LEU 121.5 9.13 4.77 4.28 1.91 1.77 1.01 I L T

9 THR 106.043 7.636 4.8 4.401 1.26 G T

10 GLY 109.377 7.823 4.319 3.583 G

11 LYS 122.085 7.262 4.323 2.89 1.67 1.389 1.21 K R I L

12 THR 120.784 8.646 5.03 3.93 1.05 T

13 ILE 127.85 9.538 4.5 1.87 0.85 I L A V
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14 THR 121.865 8.738 4.95 4.02 1.11 T

15 LEU 125.305 8.733 4.735 1.35 1.2 0.7 A T V I L

16 GLU 122.656 8.121 4.87 2.21 2.08 1.86 E Q M

17 VAL 117.705 8.938 4.68 2.3 0.7 0.4 V L

18 GLU 119.465 8.653 5.051 2.3 2.165 1.57 E Q M

20 SER 103.593 7.023 4.342 4.13 3.8 G S T

21 ASP 124.065 8.046 4.657 4.17 2.92 2.54 1.62 E Q M D N

22 THR 109.184 7.888 4.882 4.34 3.6 1.26 T S

23 ILE 121.407 8.519 3.63 2.47 0.79 F Y H D N V I L

25 ASN 121.543 7.924 4.523 3.188 2.844 F Y H D N

26 VAL 122.314 8.099 3.39 2.35 0.97 0.7 V I L R K

27 LYS 119.146 8.56 4.565 2.15 1.43 V I L

28 ALA 123.66 7.978 4.14 1.61 A

29 LYS 120.402 7.859 4.182 2.14 1.8 1.577 M Q E R K

30 ILE 121.514 8.281 3.477 2.36 0.66 V I L K R

31 GLN 123.775 8.55 3.815 2.487 2.228 1.933 1.5 K R E Q

32 ASP 119.914 8.019 4.315 2.782 A D N

33 LYS 115.613 7.421 4.291 3.14 2 1.82 1.604 K R E Q M

34 GLU 114.482 8.722 4.553 2.105 1.669 V E Q M

35 GLY 109.052 8.506 4.115 3.9 G

36 ILE 120.466 6.148 4.41 1.4 0.91 V I L

39 ASP 113.808 8.526 4.4 2.71 D N Y

40 GLN 117.051 7.819 4.44 2.402 1.81 Q E M

41 GLN 118.227 7.484 4.2 2.52 1.907 1.66 Q E M R K

42 ARG 123.207 8.5 4.458 3.07 1.677 1.446 R K

43 LEU 124.586 8.832 5.356 1.527 1.146 0.76 V I L

44 ILE 122.401 9.082 4.93 1.73 0.66 V I L
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45 PHE 125.362 8.845 5.118 3 2.8 F H D N

46 ALA 133.047 8.947 4.77 3.7 0.85 T

47 GLY 102.654 8.126 4.071 3.42 G S

48 LYS 122.178 7.978 4.59 3.11 1.87 1.49 K R I

49 GLN 123.153 8.636 4.53 2.22 1.96 D N Q E M

50 LEU 125.88 8.556 4.063 1.47 1 T V A

51 GLU 123.309 8.387 4.477 2.371 1.961 Q E M

52 ASP 120.535 8.162 4.36 2.543 D N

54 ARG 119.515 7.463 4.702 3.11 2.221 2 1.8 1.6 R K

55 THR 108.986 8.827 5.214 1.11 G A T

56 LEU 118.214 8.149 4.037 2.1 1.2 V Q E A

57 SER 113.696 8.478 4.227 3.773 G S T

58 ASP 124.691 7.932 4.263 2.98 2.274 E Q M D N

59 TYR 115.947 7.254 4.628 3.468 2.507 E Q M D N

60 ASN 116.179 8.152 4.327 3.287 2.77 E Q M D N H

61 ILE 119.064 7.246 3.36 1.4 1.09 0.44 -0.36 I L V

62 GLN 125.127 7.62 4.46 2.289 1.89 E Q M D N

63 LYS 120.763 8.495 3.953 2 1.9 1.48 G E Q M

64 GLU 114.733 9.311 3.316 2.44 2.22 D N H S E Q

65 SER 115.123 7.662 4.612 3.91 3.61 S

66 THR 117.579 8.737 5.26 4.08 0.91 T

67 LEU 127.837 9.42 5.07 1.612 0.65 I L V

68 HIS 119.307 9.234 5.122 3.1 2.896 D N H

69 LEU 124.223 8.291 5.157 1.62 1.32 1.1 0.86 0.75 I L K R

70 VAL 126.921 9.189 4.35 2 0.86 V A

71 LEU 123.274 8.109 5 1.65 0.926 I L V

72 ARG 123.967 8.593 4.241 3.15 1.73 1.5 K R
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73 LEU 124.723 8.352 4.374 1.6 0.89 I L V

74 ARG 122.163 8.438 4.269 3.19 1.8 1.63 K R T

75 GLY 111.275 8.491 4.76 3.946 G S

76 GLY 115.236 7.942 3.763 3.754 G

The following are spin systems that were filtered out as being non-backbone or noise; i.e., those with

TOCSY and NOE patterns resembling side chain N, HN chemical shifts, and those with no putative Hα

or HN .

112.571 6.820

112.583 7.281

111.646 7.543 6.816

112.228 7.728 6.739 4.770

111.645 6.815 7.537

110.065 7.838 6.887

112.224 6.736 7.721

110.273 7.654 6.808

110.064 6.887 7.836

111.382 6.747 7.684

110.272 6.813 7.651

111.369 7.682 6.747

112.554 7.669 6.835 4.770

124.853 7.037

96.448 4.748

124.183 7.251

123.875 7.119

123.871 7.188
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Appendix B

Absolute Value as Linear Constraints

Instead of binary, let X be an integer variable. Let |X| ≤ M for some positive integer M . To implement

|X| ≥ K, where K is a positive integer, we need 4 constraints. A ≡ B shall be used to denote that A is

equivalent to B. First define a binary variable Z, such that

1. (X ≥ 0⇒ Z = 1)∧ (X < 0⇒ Z = 0) ≡

(a) X ≥ 0⇒ Z = 1 ≡ X ≤ (M + 1)Z−1. To see this, whenever X ≥ 0, Z is forced to 1 (cannot be

0) in order for the inequality to hold; but when X < 0, Z can be either 1 or 0 and the inequality

still holds.

(b) X < 0⇒ Z = 0 ≡ MZ ≤ X +M . To see this, whenever, X < 0, Z is forced to 0 in order for

the inequality to hold; but when X ≥ 0, Z can be either 1 or 0 and the inequality still holds.

2. Now back to |X| ≥ K. This is equivalent to X ≥ K when X ≥ 0, and −X ≥ K when X < 0.

(a) When X ≥ 0, we have case 1(a). We want Z = 1 ⇒ X ≥ K ≡ (1 − Z)(−K −M) ≤ X −K.

This can be seen by substituting Z = 1 to give the desired inequality, and Z = 0 to give an

inequality that is always true for all values of X.
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(b) When X < 0. we have case 1(b). We want Z = 0⇒ −X ≥ K ≡Z(K +M) ≥ X +K. This can

be seen by substituting Z = 0 to give the desired inequality, and Z = 1 to give an inequality

that is always true for all values of X.

To implement A ⇔ |X| ≥ K, consider the above 4 constraints. Part 1 is the same, but we replace

Part 2 with the condition that |X| ≥ K holds only when A = 1, rather than always holding. Note that

Y = 1 ⇒ X = 1 ≡ Y ∨ X. The new constraints consist of the following, where A+ and A− are binary

variables.

1. (A+ = 1⇔ X ≥ K)

(a) Define CX≥K ⇔ X ≥ K. It is −M(1 − CX≥K) + KCX≥K ≤ X and X ≤ MCX≥K + K − 1.

This can be seen by substituting values for the binary variable CX≥K as in Section 4.2.1.

(b) Define CX≤K−1 ⇔ X ≤ K − 1≡ (CX≤k−1 = 1 ⇒ X ≤ K − 1) ∧ (CX≤k−1 = 0 ⇒ X ≥ K). It

is X ≤M(1− CX≤K−1) +K − 1 and X ≥ K(1− CX≤K−1)−MCX≤K−1.

(c) (A+ = 1 ⇔ X ≥ K)≡(A+ = 1 ⇒ CX≥K = 1) ∧ (A+ = 0 ⇒ CX≤K−1 = 1) ≡ (Ā+ ∨ CX≥K) ∧

(A+∨CX≤K−1)≡CĀ+∨X≥K∧CA+∨X≤K−1, where the C’s are obtained by reifying the OR state-

ments using the result in Section 4.2.2. CĀ+∨X≥K ∧CA+∨X≤K−1≡ C(Ā+∨CX≥K)∧(A+∨CX≤K−1),

which is obtained by reifying the AND statement.

2. (A− = 1⇔ −X ≥ K)

(a) Define C−X≥K ⇔ −X ≥ K. It is −M(1−C−X≥K)+KC−X≥K ≤ −X and −X ≤MC−X≥K +

K − 1.

(b) Define C−X≤K−1 ⇔ −X ≤ K − 1. It is −X ≤ M(1 − C−X≤K−1) + K − 1 and −X ≥

K(1− C−X≤K−1)−MC−X≤K−1.

(c) (A− = 1 ⇔ −X ≥ K)≡(A− = 1 ⇒ C−X≥K = 1) ∧ (A− = 0 ⇒ C−X≤K−1 = 1) ≡ (Ā− ∨

C−X≥K)∧ (A− ∨C−X≤K−1) ≡CĀ−∨(−X≥K) ∧CA−∨(−X≤K−1)≡ C(Ā−∨C−X≥K)∧(A−∨C−X≤K−1),

obtained by reifying the OR and then the AND statement.
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3. (A = 1⇔ |X| ≥ K) ≡(A = 1⇔ ((X ≥ 0∧A+)∨ (X < 0∧A−)) ≡(A = 1⇔ ((Z ∧A+)∨ (Z ∧A−)).

Each of the two AND terms can be reified using 2 constraints each as in Section 4.2.2, and then the OR

term can be reified using 2 constraints to give A⇔ C(Z∧A+)∨(Z∧A−) , which is A = C(Z∧A+)∨(Z∧A−).
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for resonance assignment of multidimensional nuclear magnetic resonance spectra. J. Comput. Chem.,

18(1):139–149, 1997.

[16] Mark V Berjanskii, Stephen Neal, and David S Wishart. PREDITOR: a web server for predicting

protein torsion angle restraints. Nucleic Acids Res, 34(Web Server issue):W63–W69, Jul 2006.

127



[17] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and

P. E. Bourne. The protein data bank. Nucleic Acids Res, 28(1):235–242, Jan 2000.

[18] Guillermo A Bermejo and Miguel Llinás. Structure-oriented methods for protein NMR data analysis.

Prog Nucl Magn Reson Spectrosc, 56(4):311–328, May 2010.

[19] Michael Bieri, Ann H Kwan, Mehdi Mobli, Glenn F King, Joel P Mackay, and Paul R Gooley.

Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution

structure determination. FEBS J, 278(5):704–715, Mar 2011.

[20] Roslyn M Bill, Peter J F Henderson, So Iwata, Edmund R S Kunji, Hartmut Michel, Richard

Neutze, Simon Newstead, Bert Poolman, Christopher G Tate, and Horst Vogel. Overcoming barriers

to membrane protein structure determination. Nat Biotechnol, 29(4):335–340, Apr 2011.

[21] Martin Billeter, Gerhard Wagner, and Kurt Wüthrich. Solution NMR structure determination of
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