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ABSTRACT 

 

Piles have been used since prehistoric times in areas with weak subsurface conditions either to reinforce 

existing ground, create new ground for habitation or trade, and support bridges and buildings. 

Originally piles were composed of timber and driven to depths of approximately 3 metres (10 feet) with 

drop hammers using very heavy ram weights. As technology improved so did the materials that piles 

are composed of; after timber, precast concrete, then cast in place or in situ concrete, then steel tube and 

H piles were developed and used. Similarly pile driving equipment evolved as well; after drop 

hammers, steam or air, diesel, hydraulic, and then vibratory hammers were developed. Alternative 

techniques for installing piles also exist such as excavating and boring methods; these advances in 

piling materials and driving hammers allow piles to be driven to greater depths and support larger loads 

than ever before. Currently, piling is a multibillion dollar a year industry, thus the need to develop more 

accurate prediction methods can potentially represent a significant savings in cost, material, and man 

power. 

 

Multiple predictive methods have been developed to estimate developed pile capacity. These range 

from static theoretical formulae based on geotechnical investigation prior to pile driving even occurring 

using specific pile and hammer types to semi empirically based dynamic formulae used during actual 

driving operations to more recently developed computer modeling and signal matching programs which 

are calibrated with site condition during initial geotechnical investigations or test piling to full scale 

static load tests where piles are loaded to some predetermined value or failure condition.  

 

In this thesis, dynamic formulae are used to predict pile capacity from those installed by drop and diesel 

hammers and are compared to the results from pile load tests, which are taken as the true measure of 

developed bearing capacity. The dynamic formulae examined are the Engineering News Record (ENR), 

Gates, Federal Highway Administration (FHWA) modified Gates, Hiley, and Ontario Ministry of 

Transportation (MTO) modified Hiley formulae. 

 

The basis of the study is 77 piles driven throughout Ontario, Canada by the MTO. The predicted 

capacities are compared to the measured field estimated capacities and analysed by simple statistical 

factors such as regression analysis, coefficients of determination, standard deviations, percent 

differences, and correlation values. The findings are also compared to other studies using data mainly 
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form North America as well as a handful from around the world and it found that the variability in the 

estimated to field tested capacities are similar. 

  

The second phase of research was to vary select parameters from each formula in order to improve 

predictive capacities, first by back calculating the specific parameter value on a pile by pile basis which 

result in a perfect match of predicted to measured capacity, taking the average value, and re-calculating 

the predictive capacities for each pile by each dynamic formula.  

 

The third phase involved solving the inverse by using the solver function of Microsoft Excel to find a 

value of the parameters from each formula which results in the lowest difference between predicted and 

measured capacities. Along with altering the original parameters, others are added to the energy term of 

the ENR and Gates formulae as well as the coefficient of restitution term of the Hiley and MTO 

modified Hiley formulae and varied in order to improve predicated pile capacities.  

 

The fourth and fifth phase of research re-examined the dynamic formulae from the second and third 

phases of analysis but included removing the safety factor to determine the resulting effect on the 

predicted pile bearing capacity. The piles installed are examined as a whole then subdivided by hammer 

type, then pile material as well as hammer type and pile material simultaneously.  

 

In general after using the revised parameter values, all dynamic formulae predictive capacities 

improved despite hammer and material type, the only exception to this are timber piles which results in 

relatively poor predictions despite the type of driver used to advance the pile or the dynamic formula 

employed.  

 

Even though the MTO modified Hiley formula had the largest amount of improvement, after the revised 

parameters are used, it still results in predictions with relatively large amount of variation. Contrarily, 

after the revised values were determined, the ENR and Gates formulae predicted values most closely 

match the measured pile capacities from field tests. When examining the results based on hammer types 

the ENR formula favoured diesel hammered piles while the Gates formula is best suited to predict 

capacities for drop hammered piles.  

 

It was determined that for the ENR and Gates formula the most accurate piles predictions were obtained 

when the c and the 
1
/7 coefficients were changed to 0.21 and 2.29, respectively. The most accurate 
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predictions from the MTO modified Hiley formula occurred when the e and C coefficients were varied 

simultaneously to 1 and 55.66, respectively, as given by the multi regression analysis. 

 

Thus, it is recommended that for drop hammered piles, the Gates formula with the revised coefficient is 

used to predicted pile capacities. Whereas for diesel hammered piles both the ENR and MTO modified 

Hiley formula are used and with the more conservative prediction being taken as the predicted pile 

bearing capacity. 
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2
) 

Ip – Pile moment of Inertia (kg
.
m

2
 or lb

.
ft

2
) 

Js – Smith Damping Factor (s/m or s/ft) 

K – Effective Earth Coefficient 

Ko – At Rest Earth Coefficient 

kb, k’b  – Bearing Capacity Factor 

Kr – Relative Pile Stiffness (kN/m
2
 or lb/ft

2
) 

L – Embedded Pile Length (m or ft) 

M – Foundation Bending Moment (N
.
m or lb

.
ft) 

m – Number of Rows in a Pile Group 

N – Blow Count (blows/mm or blows/in) 

n – Number of Piles within each Row in a Pile Group 

n – Efficiency of Hammer Blow 

N60, (N1)60 – Average SPT Obtained Field Number 

   
       – Average Corrected SPT Values 

  
  – Bearing Capacity Factor 

  
  – Bearing Capacity Factor 

Nφ – Rock Friction Angle Factor 

P – Pile Perimeter (m or ft) 

PI – Plasticity Index 

pa – Atmospheric Pressure (taken as 100 kN/m
2
 or 2 000 lb/ft

2
) 

q – Displacement or Quake where Pile Behaves Plastically (m or ft) 

ql – Limiting Pile Point Bearing Resistance (kN/m
2
 or lb/ft

2
) 

q’ – Effective Vertical Stress at the Pile Tip (kN/m
2
 or lb/ft

2
) 
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qc(eq) – Equivalent Average CPT Resistance Value (kN/m
2
 or lb/ft

2
) 

qc1, qc2 – Average CPT Resistance Values Below and Above Pile Tip (kN/m
2
 or lb/ft

2
) 

Q – Load Applied to Pile (kN or lb, ton, kip) 

Qp – Point Bearing Pile Capacity (kN or lb, ton, kip) 

Qp(ult) – Ultimate Pile Point Bearing Capacity in Rock (kN or lb, ton, kip) 

Qs – Skin or Friction Bearing Pile Capacity (kN or lb, ton, kip) 

Qu – Ultimate Pile Bearing Capacity (kN or lb, ton, kip) 

Qu – Ultimate Load Applied to Pile during Load Test (kN or lb, ton, kip) 

qp – Unit Pile Point Bearing Resistance (kN/m
2
 or lb/ft

2
) 

qu – Unconfined Compressive Strength of Rock (kN/m
2
 or lb/ft

2
) 

qu(design) – Designed UCS of Rock (kN/m
2
 or lb/ft

2
) 

R – Allowable Pile Bearing Capacity (kN or lb, ton, kip) 

Ru – Ultimate Pile Bearing Capacity (kN or lb, ton, kip) 

R1 – Shear Strength to Atmospheric Pressure Ratio Factor for Cone Penetrometer 

R2 – Cone Penetrometer Model Factor 

R
2
 – Coefficient of Determination 

SF – Factor of Safety 

s – Final Pile Set (mm/blow or in/blow) 

σ – Vertical stress (kN/m
2 
or lb/ft

2
) 

σ’,   
  – Effective vertical stress (kN/m

2 
or lb/ft

2
) 

  
     – Mean Effective vertical stress (kN/m

2 
or lb/ft

2
) 

  
  – Preconsolidation Pressure (kN/m

2 
or lb/ft

2
) 

t – Time (seconds) 

u – Pile Displacement (m or ft) 

v – Velocity of Ram Fall (m/s or ft/s) 

Wp – Pile Weight (kg or lb, ton, kip) 

Wr – Ram Weight (kg or lb, ton, kip) 

x – Offset from Pile Load Test Graph (mm) 

y – Pile Lateral Deflection (mm or in) 

z – Pile Section Depth Below Ground Surface (m or ft) 
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UNIT CONVERSIONS 
 

For reference, typical conversions for the units, both imperial and metric, commonly used throughout 

this thesis are given below (All conversions are approximate except those defined by convention): 

 

 

1 m = 100 cm 

1cm = 10 mm  

1 in = 25.4 mm 

1 m = 3.28 ft 

1 ft = 12 in 

1 lb/ft
3
 = 16 kg/m

3 

1 kip = 1 000 lb 

1 kg force = 2.204 lb force 

1 ton force = 2 000 lb force 

1 ton force = 8.90 kN 

1 kip force = 4.45 kN 

1 lb force = 4.45 N 

1 ft
.
lb = 1.36 N

.
m 

1 kip
.
ft = 1.36 kN

.
m 

1 kPa = 1 kN/m
2
 

1 kN/m
2
 = 20.885 lb/ft

2 

1 psi = 144 lb/ft
2
 

1 psi = 6.895 kN/m
2
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1.0 INTRODUCTION  
 

 

This thesis compares various dynamic pile driving formulae and attempt to identify which formula(e) 

results in the most accurate prediction of bearing capacity when compared to pile load tests. The term 

„most accurate‟ is in reference to the prediction which gives the closest value to the actual pile bearing 

capacity as determined by the pile load test, has the lowest coefficient of variation (CV), and the highest 

coefficient of determination (R
2
) values. 

 

The basis of this thesis is from data provided by the Ontario Ministry of Transportation (MTO); both 

the MTO report EM-48 Rev. 1993; Pile Load and Extraction Tests 1954 – 1992 and MTO provided 

Microsoft Excel files. In total this database comprises 41 pile sites and contains 371 unique pile load 

tests. Of these, 48 are extraction tests, 24 are lateral load tests, 118 are multiple repeated (extraction, 

lateral and axial compression) tests, and 181 are unique axial compression pile load tests. From these 

181 tests, 40 are not taken to failure, 9 are Franki displacement or cast in situ concrete piles, 2 are batter 

piles, and 53 are missing information required by specific dynamic pile driving formulae, leaving a 

subset of 77 piles for comparison purposes.  

 

The piles are composed of timber, steel (H Pile, open and closed end tubes), and pre-cast concrete 

materials of varying cross sectional geometries, areas, and lengths. The information from the MTO 

report and Excel sheets with regards to pile materials, lengths driven, blow counts, pile driving 

equipment including hammer weights, fall lengths, rated hammer energy, and cap weights is used to 

predict the pile capacity based on site observations. Since the formulae used to predict pile capacity 

originated, in some cases, over 100 years ago many of them are derived in terms of imperial units thus 

this thesis presents both imperial and metric units throughout. Any measured or calculated values are 

presented the units are given and when values of pile capacity are presented metric units are always 

used. 

 

This thesis is subdivided into chapters in order to present the material in a logical sequence to aide in 

understanding the criteria used in selecting specific formulae that may best predict pile bearing 

capacity, the results based on statistical analysis, and the recommendations made. 
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Chapter one presents background information on piling; a brief history of piling, the importance of 

piled foundations, pile uses, the various types of piles that exist, installation methods, and methods for 

determining bearing capacity. 

 

Chapter two presents piling in depth; significant characteristics of piles, types of piles, pile 

classifications, load transfer mechanisms, uses of piles, limitations of particular piles, behaviour of piles 

in groups, and alternatives to conventional piles. 

 

Chapter three presents information on pile driving equipment, going into detail about various pile 

drivers, when they are developed, and installation methods used. 

 

Chapter four describes various methods for determining pile capacities from predictive static formulae, 

predictive dynamic formulae, computer models, dynamic signal matching methods, static pile load 

tests, and alternatives to allowable stress methods as well as discuss the limitations of each method.   

 

Chapter five presents the MTO database in detail including the sites and pile tests used in this project, 

analysis of results from the dynamic formulae including statistical investigation, comparison to other 

similar studies in North America, and suggest modifications to existing coefficients and dynamic 

formulae to better match the predicted pile capacity to that of the measured pile load tests. 

 

Chapter six presents the discussions and conclusions reached based on the above mentioned results 

including which predictive formula(e) has the closest correlation(s) to the measured pile capacity and 

which does not; as well as possible explanations for the trends observed. 

 

Chapter seven provides recommendations to improve each specific formula examined, suggestions for 

data to be collected in future driving efforts which when applied to the dynamic formulae examined 

may result in more accurate predictions or increase confidence of the determined results, and potential 

future work to both improve the predictive ability of dynamic pile formulae as well as provide 

alternatives predictive methods which may yield more accurate results. 

 

1.1 Background 

 

Piles are defined as vertical or near vertical members that are installed into the earth to act as or aid in 

the support of large loads and are comprised of a variety of materials. They are a type of deep 
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foundation; deep foundations are defined as any structure whose embedded length to width ratio greater 

than five (Terzaghi and Peck, 1960). They are used in areas where the soil layers near ground surface 

are deemed too weak to support the loads imposed on them by a superstructure above and used when 

excavation to a more competent soil layer is uneconomical. Piles have been used in foundation design 

since pre historic times; some records indicate timber being used as far back as 12 000 years ago in 

Switzerland (Sowers, 1979) with certain sites containing over 100 000 piles and driven to depths of up 

to three metres (Fleming et al., 1992). More recently entire cities have been founded on piles, such as 

those of Lake Maracaibo in Venezuela, Amsterdam in Holland and Venice in Italy as far back as 1 000 

years ago on piles 15 to 20 metres deep (Fleming et al., 1992). These piles are used for many purposes 

such as building bridges to cross streams and rivers, creating settlements for the habitation and 

protection of people, and constructing areas to allow for trading by sea. 

 

Prior to the 19
th
 century all piles were made from felled timber, this material limited the amount of load 

that is safely supportable as well as the length driven and thus limits the size of the structures which are 

built upon them. Since the 1820s piles have been constructed from timber, concrete, steel, and a 

combination of these materials (Fleming et al., 1992). These new materials increase both the strength of 

the piles as well as the depths they are installed to thus increasing the carrying capacity of the piles 

which in turn increased the size of the loads or structures placed atop them.  

 

As pile design becomes more sophisticated so does the methods used to install them. Originally, pile 

drivers use percussion methods to pile into the soil and are simple gravity driven machines where 

weights are raised by man power, pulleys, and leverage then dropped on to the heads of the piles. With 

the industrial revolution of the early 19
th
 century steam powered drivers became invented, followed by 

diesel and eventually hydraulically powered machines in 1801, 1946, and the 1960s, respectively 

(Sowers, 1979; Hough, 1969). Besides impact based drivers, others are manufactured which install piles 

by excavation, jetting, boring, jacking, vibration, and electroosmosis.  

 

Piles transfer the loads from structures above them by two basic means; one is when the weight of the 

structure is passed down to a more competent soil strata and the base of the pile supports the majority of 

the load, known as tip or end bearing and the other is when the weight is distributed through the soil 

along the length of the pile, known as friction bearing (Das, 2004). With these mechanisms known, a 

need to predict the actual amount of load that a pile can safely withstand arose.  
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Several methods have been developed to determine the bearing capacity of piles. Originally depending 

upon the type of soil the pile encountered and the material the pile is made from; rules of thumb arose 

to the amount of load that a pile could support. Next, theoretical formulae are developed based upon the 

transfer mechanism of the pile used to support the weight, as well as the sub surface conditions present, 

and the material of the pile. These calculations are usually done pre driving to determine an estimate of 

load that each pile can withstand. As is the nature of geotechnical engineering, it is evident that soil 

contains much heterogeneity which is not accounted for in laboratory testing or during theoretical 

calculations; thus another method to determine pile capacities became necessary to develop. Dynamic 

pile prediction formulae are created to account for site specific conditions as they occurred. With 

improvements in technology and the advent of computers came software able to predict pile capacity. 

Modeling programs, analogous to the theoretical formulae, use site data prior to pile installation while 

signal matching programs are similar to dynamic prediction formulae and use site conditions during the 

actual installation process. Still other methods are developed to better ascertain the actual bearing 

capacity values of piles, these include an ultimate working strength design method known as Load and 

Resistance Factor Design (LRFD) which uses stoichiometric parameters and computer software such as 

neural networks which uses back propagation algorithms to determine pile capacity. 

 

The importance of using piles since prehistory is known from archaeological studies which shown that 

they allowed man to expand, develop, and provide protection for thousands of years. So much so that in 

some cultures driving piles is part of the everyday lives of its peoples. Herodotus in the 4
th
 century BC 

wrote that the Peonions, a polygamous African tribe have a law stating that each time a man wishes to 

marry he has to first drive three piles (Fleming et al., 1992). This aids in building dwellings for a people 

with an ever expanding community. Piles are no less important today. In 2001, Trade and MSI 

projected that piling is almost a 600 billion Canadian dollar a year industry in England alone and in five 

years that number is expected to increase one and a half times that much to 900 billion Canadian 

dollars, meanwhile other types of foundations such as ground improvement and underpinning would 

stay approximately constant at 200 and 100 billion Canadian dollars a year, respectively (Knight, 2008). 

With the population of urban areas increasing in communities such as Waterloo, Ontario which are 

limiting urban sprawl by creating legislation restricting the extents to which cities can expand; land to 

build on or develop is becoming more and more scarce (Curie, 2003). The reasons for limiting urban 

sprawl are numerous and include environmental protection by restricting construction on greenlands, 

minimizing congestion on major roads, highways, and lowering costs of eventual infrastructure 

maintenance and replacement (Martins, 2004). With policies such as these, people are required to build 

heavier and taller structures not just for commercial or industrial applications but for residential housing 
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a well. This means that in areas where shallow foundations such as mats are adequate to support small 

story buildings, piles may become necessary to support new construction. The need for a more accurate 

method to predict pile capacity then becomes obvious; even if bearing predictions improve by 10 

percent; it may result in cost savings of at least 90 billion Canadian dollars a year in man hours, 

material, and transportation. 
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2.0 PILES 
 

 

In the most general sense there are three types of piles; wide thin piles, wide flange piles, and 

cylindrical shaped piles. Wide thin and flange piles are known as sheet and soldier piles, respectively 

(Coduto, 2001). Sheet and soldier piles are attached together to form walls, as shown below in Figures 1 

and 2, and are usually used as a lateral temporary support to hold back water, groundwater, and or soil 

in excavations and open water areas. Sheet piles are made from steel, reinforced concrete, wood, 

aluminum, fiberglass, vinyl or polyvinyl chloride whereas soldier piles are made from vertically 

installed steel members with horizontal wood supports between them (Coduto, 2001).   

 

 

 

Figure 1: Sheet piles (Coduto, 2001) 
 

 

 

Figure 2: Soldier pile wall (Coduto, 2001) 
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Cylindrical piles are made from steel, concrete, timber or a combination of these materials and are 

circular, square, octahedral or H in cross sectional design. Cylindrical piles are used mainly for axial 

compression, tensile or lateral load resistance. Since the main focus of this thesis is on cylindrical piles 

only they are discussed further. Cylindrical piles are classified according to many different criteria 

which include; installation orientation, material type, installation methods, displacements produced, 

load transfer mechanisms, and uses. 

   

2.1 Pile Classification 

 

2.1.1 Installation Orientation 

 

One of the simplest ways to classify piles is their orientation below ground surface. Two possible 

orientations exist; piles which are installed at an angle and piles which are installed vertically.  

 

Inclined piles, also known as batter or raker piles are installed at horizontal to vertical ratios up to 1:4 

(Coduto, 2001). Initially, designers assume that piles could resist only axial loads, thus engineers 

installed batter piles to provide support when horizontal loads are present so that the pile is only 

subjected to loads along its axis. Batter piles are traditionally used to resist lateral loads such as those 

induced by wind, earthquake action, downhill slope movement, open water forces, and cable/wire 

support for towers, etc. (Coduto, 2001). When piles are installed at an angle the foundations they 

support becomes very rigid. Historically these foundations do not perform well during earthquakes 

whose large forces are known to cause extreme curvatures in the piles, the piles themselves to buckle, 

and fail. This can also lead to the structure on top of the piles to become damaged. This poor behaviour 

is the reason that the popularity of batter piles diminished and accordingly most of the piles installed 

now are vertical piles. Batter piles are only presented for completeness and since pile driving formulae 

are developed for piles driven in vertically, only they are discussed further.   

 

Vertical piles are used to resist loads in two main ways. They resist axial compressive or axial tensile 

loads through frictional and toe resistance and lateral loads through bending moments and shear forces.  

 

Piles are used to resist axial compressive loads such as those imposed by heavy structures above ground 

surface, axial tensile loads such as those induced by expansive and collapsible soils or structures 

subjected to uplift forces such as basement foundations below the water table, offshore platforms or 

towers (Das, 2004). Piles are also used to resist lateral loads such as those caused by wind and 
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earthquakes, and provide support for bridge abutments and piers near open water locations where the 

ground surface is susceptible to erosion by wave action. 

   

Labelling piles as either batter or vertically orientated is straightforward and clearly understandable; 

however, there are many types of vertical piles that exist and grouping them together in one category is 

not helpful during pile capacity investigation and may in fact hinder bearing capacity analysis.     

 

2.1.2 Installation Methods 

 

Another technique to classify piles is according to the method in which they are installed into the 

subsurface. Numerous technologies exist to install piles which include percussion or hammer action 

from gravity, steam, diesel, or hydraulic powered pile driving rigs; vibratory methods, pile jacking, 

jetting, excavating, boring, and electroosmosis, etc.  

 

The difficulty with this classification system is that as technologies evolve and new techniques for 

installing piles develop, specific pile installations may be classified into one or more categories which 

may cause confusion when trying to determine the most suitable method for piling from certain 

predictive methods. 

 

Since the installation method is a result of the machinery used when piling, it is further discussed in 

Chapter 3: Pile Driving Equipment.  

    

2.1.3 Soil Displacement Types 

 

An alternative pile classification system and perhaps the most significant to pile analysis is to examine 

the effect that the pile produces in the soil that it is driven into. There are three basic types of piles 

according to how they are installed; large displacement, low displacement, and non-displacement piles. 

Large soil displacements occur when timber, pre-cast concrete piles, and closed end pipe or tube piles 

are driven into the subsurface. Research shows that the area affected ranges from two to two and a half 

pile diameters from the centre of driving (Das, 2004). Low displacements occur when H and open end 

tube piles are driven into the subsurface; accordingly the area affected is less than high displacement 

piles. When precast concrete piles are excavated, screwed or bored into place or concrete piles are 

formed in situ, they are referred to as non-displacement piles.  
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High displacement piles cause the soil around the pile circumference to displace downwards and move 

laterally away from the pile while the soil further away from the pile is thrust upwards (Coduto, 2001). 

In cohesionless soils, very loose to compact sands, and gravels this action causes an increase in the 

density and internal friction angle of the soil nearest to the pile which increases the bearing capacity of 

the soil. In dense to very dense sands and gravels the act of driving results in the opposite effect and 

causes dilation and temporary negative pore pressure generation. This causes an increase in apparent 

driving resistance and implies larger than actual bearing capacities; once the pore pressure dissipates the 

piles load bearing resistance lowers to its natural state as governed by the soil – pile system (Sowers, 

1979). An additional effect of driving is the development of excess pore pressure; in sands and gravels 

the high hydraulic conductivity causes the excess pressure to dissipate quickly in hours to days 

however, in cohesive soils the excess pore pressure of the soil can take days to weeks to dissipate. The 

act of driving in cohesive soils cause the soil to undergo successive shear failures which results in a loss 

of shear strength and an increase excess pore water pressure. After the excess pore pressure dissipates 

the soil regains its original shear strength in a phenomenon known as set up (Coduto, 2001).   

 

Low displacement piles cause similar reactions within the subsurface as large displacements piles but to 

a smaller degree. H and open end tube piles are classified as low displacement piles because only the 

soil below and directly adjacent to the flange and web of H piles and the walls of tube piles is 

compacted; these sections are generally at most 25 millimeters or 1 inch in thickness and often only half 

that much (Das, 2004).  

 

Non displacement piles, such as predrilled, augured, excavated or bored cast in place concrete piles 

cause the opposite reaction in sub surface soil. Rather than increasing the density or internal angle of 

friction of the soil, the soil surrounding the walls of the boring become looser and the internal angle of 

friction decreases as well as the angle of the soil – pile interface (Sowers, 1979). Non displacement 

piles are constructed by drilling out soil and either pouring in concrete with or without a reinforced steel 

cage or hammering in a precast concrete pile or steel tube. To ensure adequate frictional support is 

formed, the pre formed pile installed is slightly larger in diameter than the hole formed, this causes a 

small amount of displacement but less than when low displacement piles are driven.      

 

Additional selected methods are presented below for completeness only. Since the piles examined from 

the MTO records are only high and low displacement piles these other methods are only summarized.  

 

This list is in no way exhaustive and other methods which exist are not mentioned here. 
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Other categories of displacement piles include hybrid installation methods (a combination of high and 

non-displacement or low and non-displacement piles) such as screwing, jetting, spudding; pressure 

injected footings such as Franki displacement piles, pile installed by vibratory methods, and 

electroosmosis. Since these classifications are determined by the driving rig employed they are further 

discussed in Chapter 3: Pile Driving Equipment.  

 

The importance of displacement categories is that they are the used in static pile driving predictive 

formulae and are discussed further in Chapter 4: Pile Bearing Capacities.  

 

2.1.4 Pile Composition 

 

The material the pile is composed of is presented as another method to classify piles. The majority of 

piles are constructed from timber, concrete, steel or a combination of these materials such as timber–

concrete piles, steel-concrete piles and are discussed below. In this study piles examined are made from 

timber, steel, concrete, and a combination of steel and concrete however others are described for 

completeness. 

 

In Canada timber piles are most commonly made from Spruce, Douglas Fir, Western Red Cedar, Jack 

Pine, and Red Pine. Within Ontario the most common types of timber piles are those made from Jack 

Pine and Red Pine (CITC, 1962). The maximum compressional strength of timber piles depends upon 

the species of tree used; in general Douglas Fir is the strongest and Cedar is the weakest. Strengths 

range from 36 680 to 49 850 kN/m
2
 (5 320 to 7 230 psi) and have BCLMA and CSA standard allowable 

loading stresses of 5 170 to 11 380 kN/m
2
 (750 to 1 650 psi) (CITC, 1962). Timber piles are used since 

they are relatively inexpensive, readily available, easy to drive, supports small to medium loads, and 

can last for 100s to 1000s of years if properly installed and protected as shown by a the ones in Venice 

which were reused in 1902 to support a new tower after the original structure, built in 900 AD, fell 

(Sowers, 1979). Timber pile properties are given in Table 1 below.  

 
Modern concrete, as it is now, was developed in 1824 by Joseph Aspdin and used as piling material by 

A. A. Raymond since 1897 (Fleming et al., 1992). Two main types of concrete piles exist; precast 

concrete and in situ cast in place piles. Cast in place piles are further subdivided into two categories; 

cased and uncased. Precast concrete piles are solid or hollow, whole or comprised from pieces jointed 

together.  
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Table 1: Timber Pile Properties  
(compiled Sowers, 1979; Fleming et al., 1992; Das, 2004; Coduto, 2001; 

Terzaghi and Peck, 1960; Chellis, 1961; CITC, 1962; and Hunt, 1974) 
Wood  

Species 
Oak, Mixed Hardwoods Southern Pine 

Spruce, Douglas Fir, 

Jack Pine 

Length 

m (ft) 
18 (60) 24 (80) 30 – 40 (100 – 130) 

Toe Diameter 

mm (in) 

Up to 475 

(18) 

Up to 500 

(20) 
150 – 500 (6 – 20) 

Tip Diameter 

mm (in) 
125 – 250 (5-10) 

Working loads 

kN (tons) 

150 – 300, maximum 500 

(15 – 30, maximum 50) 

 

Originally precast concrete piles are reinforced with post tensioned rebar; however, now almost all 

concrete is pre stressed (Coduto, 2001), manufactured with cables with a typical strength of 900 – 1 300 

MN/m
2
 (130 000 – 190 000 psi) to a maximum of 1 800 MN/m

2
 (260 000 psi), whereas the concrete 

itself ranges in strength from 34.5 to 41.4 MN/m
2
 (5 000 to 6 000 psi) depending on how much cable is 

used in the concrete (Das, 2004). Concrete is used as a piling material because it is less expensive than 

steel piles, has high compressional strength, can withstand high driving forces, support large loads, and 

is easily combined with an overlying concrete pad or superstructure. See Table 2 below for precast pile 

properties. 

 

Table 2: Precast Pile Properties  
(compiled from Sowers, 1979; Fleming et al., 1992; Das, 2004; Coduto, 

2001; Terzaghi and Peck, 1960; Chellis, 1961; CITC, 1962; and Hunt, 1974) 
Concrete Type Precast Piles 

Solid Hollow Jointed 

Length 

m (ft) 

15 – 45 

(50 – 150) 

60 

(200) 

30 

(100) 

Sectional length  

m (ft) 
– – 

1 – 13 

(3 – 43) 

Wall/shell thickness  

mm (in) 
– 

100 – 150 

(4 – 6) 
– 

Diameter or Width 

mm (in) 

200 – 760 

(8 – 30) 

900 – 1 500 

(35 – 60) 

250 – 400 

(10 – 16) 

Working loads 

kN (tons) 

150 – 8 500 

(15 – 850) 

2 000 

(200) 

700 – 2 500 

(70 – 250) 

 

Cast in place piles are either poured directly into open excavations/borings or within a shell system. 

Because of this cast in place piles are often considered as composite piles, either on the basis of 

materials (concrete and steel) or piling methods (percussion hammers forming a hole then pouring 

concrete into it to form the pile) used. They have the advantage of the hole being inspected prior to 

concreting, are easy to extend to any length required or formed to any diameter required, depending 
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upon pile driving equipment used. Many patented types are in use, a few are presented below in Table 3 

for completeness.  

 

Table 3: Cast in Place Pile Properties  
(compiled from Sowers, 1979; Fleming et al., 1992; Das, 2004; Coduto, 

2001; Terzaghi and Peck, 1960; Chellis, 1961; CITC, 1962; and Hunt, 1974) 

Concrete 

Type 

Cast in Place 

Raymond 

Standard 

Raymond 

Step Taper 

Franki  

PIF 
Auger 

Cobi 

Hercules 

Bored 
Wests Shell 

Uncased Cased 

Length 

m (ft) 

10–50  

(30–165) 

29 

(96) 

30 

(100) 

18–60  

(60–200) 

30 

(100) 

15–40  

(50–130) 

30 

(100) 

36 

(120) 

Sectional 

length  

m (ft) 

– 
2.4 

(8) 
– – – – – 

0.914 – 1.220 

(3 – 4) 

Wall/Shell 

thickness 

mm (in) 

– – – – 
200–500  

(8–20) 
– 

254–610 

(10–24) 

92 – 127 

(35/8 – 5) 

Diameter 

Width 

mm (in) 

400–600 

(16–24) 

220–350 

(8
5
/8–13

3
/8) 

560–610 

(22–24) 

Base 1 (3) 

300–3 000 

(12–120) 
– 

254–750  

(10–30) 
– 

276–610  

(10
7
/8–24) 

Working 

loads 

kN (tons) 

300–500  

(30–50) 

400–750 

(40–75) 

1000–10 000  

(100 – 1000)  

1000–20 000  

(100–2 000) 

300–600 

(30–60) 

150–2 600 

(15–260) 

150–1 500 

(15–150)  

45–1 200 

(45–120) 

 

Steel piles came into use in the early 1900s with the advent of H rolled steel and tube piles. H piles 

quickly became common place replacing I beams from the 1890s and cast iron used since the late 1830s 

(Chellis, 1961). Steel piles became popular since they are light weight, can withstand high driving 

stresses, penetrate hard layers, support heavy loads, are easy to handle, cut, and splice. Lengths of piles 

are controlled by transportation and equipment limitations. Single piles can be driven as deep as 39 

metres (127 feet) below ground surface (Chellis, 1961) and spliced together to lengths as much as 210 

metres (700 feet) long (Coduto, 2001). Properties of H and tube piles are given below in table 4 

including typical lengths driven, sectional lengths, wall thicknesses, diameters, and working loads.  

 

 Table 4: Steel Pile Properties  
(compiled from Sowers, 1979; Fleming et al., 1992; Das, 2004; Coduto, 

2001; Terzaghi and Peck, 1960; Chellis, 1961; CITC, 1962; and Hunt, 1974) 
Steel H Pile Tube Pile 

Length 

m (ft) 

15 – 60, max 92  

(50 – 200, max 304)  

30 – 120 

(100 – 400) 

Sectional length  

cm x kg/m (in x lb/ft) 

20 – 36 x 54 - 174 

(8 – 14 x 36 – 117)  
– 

Wall/Shell thickness 

 mm (in) 
–  

2.78 – 38, max 76 

(
7
/64 – 1.5, max 3) 

Diameter or Width 

mm (in) 
– 

150 – 1 000, max 3 000 

(6 – 39, max 10) 

Working loads 

kN (tons) 

300 – 1 800 

(30 – 180) 

450 – 7 000 

(45 – 700) 
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2.2 Load Transfer Mechanisms 

 

As previously stated, piles primarily resist two types of loads; lateral and axial. 

 

Similar to batter piles, lateral loads are only mentioned for completeness and after this section the thesis 

focuses only on axial loads; their mechanisms of load transfer, calculating, and predicting the amount of 

axial loads that a pile can support. Laterally loaded piles are sub divided into two categories; long and 

short. Long piles behave rigidly and short piles behave elastically (Das, 2004).  

 

Long or rigid piles are ones whose toe or end is fixed against movement or rotation and short or elastic 

piles are ones where rotation is allowed to occur. Because of this, lateral loads acting on short piles 

cause the soil to fail in shear before the pile, whereas on long piles, the pile fails due to bending before 

the soil, as depicted in Figure 3.  

 

 

Figure 3: Lateral loads affecting short piles versus long piles (Coduto, 2001) 
 

The classification of a “long” or “short” pile is dependent upon the stiffness of the soil and the pile 

itself. In general for timber piles, long piles are one where the embedded depth to width ratio is greater 

than 20 and for concrete or steel, the ratio is greater than 35 (Coduto, 2001). Alternatively, in 1995 

Meyerhof defined a long or rigid pile as one whose relative stiffness (Kr) is greater than 0.01 as defined 

by Equation 1 below (Das, 2004). 

 

     
    

    
                                                              (1) 
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where: Ep is the modulus of elasticity of the pile material (kN/m
2
 or lb/ft

2
); Ip is the moment of inertia of 

the pile (kN
.
m

2
 or lb

.
ft

2
); Es is the horizontal soil modulus of elasticity (kN/m

2
 or lb/ft

2
); and L is the 

length of the pile (metres or feet).  

 

When lateral loads are placed on a pile, the pile resists it by utilizing the passive pressure in the soil 

surrounding it (Das, 2004). Long and short piles resist lateral loads by inducing shear and moments as 

seen in Figures 4 and 5, respectively. 

 

 

 

Figure 4: Reaction of a rigid pile to lateral loading (Das, 2004) 

 

 

Figure 5: Reaction of an elastic pile to lateral loading (Das, 2004) 

 

The methods used to determine the amounts of lateral load that a pile can support are numerous and 

range from the simple to the very complex for rigid and elastic piles. For long piles, they include 



15 
 

straightforward equations from structural mechanics such as defining the bending moment (M) in the 

foundation as: 

 

    
   

   
                                                                           (2) 

 

where: M is the bending moment in the foundation; E is the modulus of elasticity of the foundation; I is 

the moment of inertia of the foundation; y is the lateral deflection, in units of length; and z is the depth 

below ground surface being examined, in units of length. 

 

The shear force experienced by the foundation and lateral soil resistance per unit length of the 

foundation is determined by differentiating Equation 2 with respect to depth once and twice, 

respectively (Das, 2004). 

 

For elastic foundations analysis becomes more complicated but is computed using finite element 

methods and finite difference models found in commercial software such as COM624, Florida Pier, and 

LPILE which uses p-y methods where the pile - soil system is modeled as a series of fixed non-linear 

springs attached to a series of nodes as seen in Figure 6 (Das, 2004). 

 

 

Figure 6: p-y model used in analytical analysis of lateral loads (Coduto, 2001) 
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Models both full scale and bench scale such as ASTM D3966: Standard Test Methods for Deep 

Foundations Under Lateral Load, lateral statnamic tests, and centrifuge tests are used to determine 

lateral load capacities of single piles in the field and laboratory. 

 

Axial loads are further sub divided into two categories; axial compression and axial tensile loads.  

 

Axial compressive or downward loads are transferred to the pile via skin frictional and end bearing 

resistance. Axial tensile or upwards/uplift loads are resisted by the pile via skin friction only, see Figure 

7 below. 

 

 

 

 
Figure 7: Axial compressive and tensile loads distributed through a pile-soil system (Das, 2004) 

   

Friction bearing piles develop carrying capacity as they are installed into the subsurface. For driven 

piles the resistance is increased layer by layer for each incremental length driven, commonly a few 

centimetres or inches at a time. In cohesionless soil this is accomplished by densification of the surficial 
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area around the pile shaft. Research shows that this area extends in width from one to two and a half 

pile diameters from the centre of the pile being driven (Sowers, 1979, Das, 2004). Meyerhof (1961) 

shows that the internal friction angle of soil in the affected zone typically increases by 4 and 6 degrees 

for driven piles in loose and compact sand, respectively. For the frictional capacity of the pile to 

become fully mobilized, the pile must settle on average 0.5 to 2 percent of the pile diameter (Fleming et 

al., 1992) or 5 to 10 millimetres (0.2 to 0.4 inches) (Coduto, 2001). For example, a 300 millimetre or 12 

inch wide pile would require a settlement of 1.5 to 6 millimetres (0.06 to 0.24 inches) to fully mobilize 

the available frictional resistance.   

 

In cohesive soils, the zone affected due to pile driving may be as large as nine pile diameters away from 

the centre of the pile for large displacement piles. This remoulded zone initially experiences a loss of 

shear strength but regains full strength within a few days to weeks (Coduto, 2001) as the excess pore 

water pressure, caused by the driving action, dissipates.  

    

End bearing piles develop carrying capacity as a reaction to being driven against solid material such as 

a dense layer of sand or gravel or bedrock, which for all intended purposes has an infinite bearing 

capacity. Working bearing capacities of rock layers common in Southern Ontario are given below. 

 

Table 5: Typical Unconfined Compressive Strengths of Rocks (after Das, 2004) 
Rock Type qu (kN/m

2
) qu (lb/ft

2
) 

Sandstone 70 000 – 140 000 1 500 000 – 2 900 000  

Limestone 105 000 – 210 000 2 200 000 – 4 400 000 

Shale 35 000 – 70 000    730 000 – 1 500 000 

Granite 140 000 – 210 000 2 900 000 – 4 400 000 

Marble 60 000 – 70 000 1 300 000 – 1 500 000 
 

 

Comparing Tables 1 through 4 with Table 5 it is seen that the rated pile capacities and pile strengths are 

far below the amount of load that bedrock can safely support. 

 

Piles under normal conditions are not usually loaded to any amount near their ultimate strength; 36 830 

to 50 050 kN/m
2 

(5 320 to 7 230 psi) for timber, 34 500 to 41 400 kN/m
2
 (5 000 to 6 000 psi) for pre 

stressed concrete or the 4 000 kN (400 tons) yield point for steel H piles (Sowers, 1979). The load 

required to cause an acceptable amount of settlement on most piles is nowhere near the maximum 

strengths listed. When piles are driven to bedrock, if the stresses imparted on them by driving does 

exceed their compressive/tensile strength it can cause the piles to crack, split or buckle. 
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To fully mobilize the end bearing resistance, the pile tip must undergo a settlement of 10 to 25 percent 

of the pile width (Das, 2004). For example, a 300 millimetre or 12 inch wide pile requires a settlement 

of 30 to 75 millimetres or 1.2 to 3 inches. Since most building codes such as that of Canada only allow 

settlement of up to 25.4 millimetres or 1 inch (CITC, 1962); this means that most piles do not reach 

their full end bearing potential capacity, thus frictional resistance supports the majority of the applied 

load.  

 

Sowers (1979) estimates that for long piles, 66 to 75 percent of the load supported is due to frictional 

resistance and only 25 to 33 percent of the load supported is due to end bearing capacity. For short 

piles, the end bearing capacity increases proportionally as the ratio of pile width to embedded pile 

length increases. The need to properly estimate the proportion of load supported via frictional resistance 

and end bearing becomes significant; this is discussed further in Chapter 4: Pile Bearing Capacities.         

 

The National Building Code of Canada gives guidelines for the allowable end bearing capacity for 

various soils, see Table 6 below. 

 

Table 6: End Bearing Capacity of Various Soils (after Hunt, 1974 and Chellis, 1961) 

Soil (National Building Code, 1967) kN/m2 lb/ft2 

Soft clay, medium 100 – 140 2 100 – 3 000  

Medium stiff clay 240 – 260  5 000 – 5 400 

Stiff clay 310 6 500 

Silt 80 1 600 

Loamy sand, dense, well compacted 180 3 800 

Sand, fine loose 140 – 190  3 000 – 4 000  

Sand, coarse loose; compact fine sand; and loose sand-gravel 
mixture 

290 – 310  6 000 – 6 500  

Gravel, loose; and compact coarse sand 380 – 420 8 000 – 8 700  

Sand-gravel mixture, compact 470 – 570    9 800 – 12 000  

Hardpan and exceptionally compacted or partially cemented 
gravels or sands 

960 20 000 

Sedimentary rocks, such as hard shales, sandstones, silt 
stones in sound condition 

1 440 30 000 

Limestone 500 – 2 510 10 500 – 52 500 

Foliated rock, such as schist or slate in sound condition 3830 80 000 

Granite 1 000 – 10 000 21 000 – 210 000 

Massive bed rock – such as granite, diorite, gneiss, trap rock – 
in sound condition 

9 580 200 000 
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Frictional resistance of various soils and rock types is given by Terzaghi and Peck and summarized in 

Table 7. 

 

Table 7: Developed Pile Skin Friction (after Terzaghi and Peck, 1960) 

Soil Type kN/m2 lb/ft2 

Soft clay and silt 10 – 30 200 – 600 

Sandy silt 20 – 50    400 – 1 000 

Stiff clay   40 – 100    800 – 2 000 

Loose Sands / Long Piles 25 500 

Very Dense Sands / Short Piles 100 2 000 
 

 

2.3 Pile Limitations 

 

Each type of pile has its own advantages, disadvantages, and each is used in accordance to specific 

circumstances which best exploits their unique strengths. The merits of various piles are already 

discussed in section 2.1.4. As previously stated piles are classified according to installation orientation, 

displacements produced, and material composition. 

 

Piles are either installed vertically or at an angle up to 20 degrees from the vertical, known as batter 

piles. Batter piles, originally designed to support lateral loads are shown to perform poorly during 

earthquakes strong repeated horizontal forces (Harn, 2004), whereas long vertical piles are quite 

effective in minimizing soil movement and settlement. 

  

As piles are installed the displacements developed may be high, low or none. Each type is suitable for 

specific applications. High displacement piles are used where large load support is required and 

mobilizing as much frictional resistance as well as end bearing support as possible is required. 

 

Low displacement piles are used when driving a large number of piles as close to each other as possible 

is necessary or where soil heaving is kept to a minimum such as near pre-existing structures or 

underpinning.  

 

Non displacement piles are used when very large loads require support and or where soils would require 

very high blow counts to penetrate hard layers, such as very dense clays. However non-displacement 

piles are most often formed by boring or excavating which causes the soil around the circumference of 
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the hole to relax, which reduces the soils internal angle of friction and if it weakens too much, soil may 

collapse into the hole.  

 

Timber piles are limited, by species, to the depths they are driven, usually 20 to 30 metres (65 to 100 

feet) as well as safe loads supported, usually limited to 500 kN (50 tons). Timber piles are also 

vulnerable to biological decay such as from bacteria, fungi, land, and marine insects. Water both 

beneath and at surface can damage timber piles, especially in areas which undergoes wet dry cycles 

such as swash zones in open water areas and the vertical distance in which the groundwater table rises 

and drops to with seasonal changes or pumping activities. Timber piles which are constantly dry or 

constantly wet last well with time. Temperatures also affect pile behaviour, if constant the pile integrity 

is more likely to remain intact over its lifespan however, freeze thaw cycles may deteriorate piles 

prematurely. 

 

During driving, timber piles may become damaged by the hammer used, if its weight is too heavy, 

causing brooming of the pile head and cracks within the shaft (Fleming et al., 1992). Splicing timber 

piles is difficult, costly, and historically performs poorly while undergoing tensile and lateral loads 

(Das, 2004).  

 

Concrete piles are driven as precast members or formed in situ. They handle large loads and are cheaper 

than steel; however, precast piles are heavy, more likely damaged during handling and transport, cannot 

endure hard driving forces as well as steel piles, and are difficult to cut and splice thus knowing the 

exact pile length needed beforehand is critical but also unrealistic. Cast in place piles are formed to any 

depth and width required, subject to equipment limitations; however, during pouring in open 

excavations a risk of soil collapse and squeezing of concrete is possible, especially in wet cohesionless 

soils. If the concrete is poured too rapidly, voids may be created causing the pile to become weaker than 

its assumed strength or carrying capacity. The process of drilling or boring almost guarantees a 

relaxation of the soil and a reduction in the soils internal angle of friction. This implies that cast in place 

piles rely primarily on end bearing support and minimally on frictional resistance. 

 

Concrete piles are also susceptible to water action and chemicals within the water. Horizontal stresses 

such as waves in sea water act abrasively on the pile surface causing physical degradation. If the water 

contains high levels of sulphates (200 to 400 ppm) it can produce cracking within the pile (Fleming et 

al., 1992). Acidic groundwater caused by organic and inorganic acids, alkalis, plant and animal fats, and 

other organic matter can also damage concrete piles by causing rusting of the metal reinforcement.  
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Steel piles are used since they can withstand hard driving, support heavy loads, are easy to transport, 

handle, cut, and splice. H piles contain small cross sectional areas which allow them to penetrate hard 

layers; however this also allows the pile to be easily deflected or twisted when encountering boulders or 

other major obstructions. 

 

Tube piles are larger, can support heavier loads, and are more rigid than H piles. This means that tube 

piles are less likely to bend or deflect. They have the advantage in that they are inspected after 

installation but prior to concreting to check for defects and damage; however, open end tube piles are 

routinely cleaned or the end may become plugged and act as a high displacement closed end pile rather 

than a low displacement pile. When driving, tube piles are hit on centre with the pile hammer or there is 

a risk that the pile undergoes accordion type damage. Only steel tubes specifically constructed for pile 

driving are used, if the carbon content is too low or high there is a risk that the pile may split or yield 

(Sowers, 1979).  

 

Steel piles are more expensive than timber or concrete piles and also produce more noise during 

driving. Steel piles are vulnerable to corrosion by air, water, and soil if driven in areas with acidic soil, 

certain organic matter, or high level of salts (Sowers, 1979). In air, corrosion rates are measured at 2.5 

to 10 and as high as 20 millimetres per 100 years in industrial areas (0.1 to 0.4 and 4 inches per 100 

years). Rates of 5.0 to 25 millimetres (0.2 to 1 inch) in water environments, just below the water line 

and in marine environments corrosion rates are as much as 34 and 60 millimetres (1.36 and 2.4 inches) 

occur, respectively, per 100 years. Soil, although less damaging to steel than air or water can still 

corrode piles, rates range from 0.5 to 7.5 millimetres (0.02 to 0.3 inches) per 100 years (Fleming et al., 

1992). Despite these rates, the rule of thumb for the amount of corrosion that steel undergoes is on 

average 1 to 2 millimetres (0.05 to 0.1 inches) before the rust acts as a protective barrier. Other methods 

of protecting piles are discussed below in section 2.4. 

 

Composite piles are sensitive to the same limitations of driving stresses, maximum lengths permissible, 

loads supported, and susceptibility to physical, biological, and chemical damage as piles made from 

single materials. Additionally however, while joining two dissimilar piles, both with respect to 

composition and geometry, every measure is taken to ensure that the contact between piles is flush, 

properly aligned, and structurally sound (Sowers, 1979). Piles with poor splicing may become damaged 

relatively easily during driving, while undergoing tensile loads or from environmental action faster than 

piles composed from a single material.   



22 
 

2.4 Pile Protection 

 

To safeguard timber piles, the wood is physically covered or undergoes chemical treatment. Physical 

protection includes measures such as engineering the soil (fill) around the pile, leaving a layer of bark 

on the outside of the pile, adding concrete sleeves to shield vulnerable areas against deterioration or 

applying a coating of coal, tar, creosote, or petroleum to the outside of the pile as well as maximizing 

the effectiveness of the protection by the addition of heating or pressurized treatments (Chellis, 1961; 

CITC, 1962). These provide protection by poisoning the food source of insects and minimizing the 

physical reaction from water action.  

 

Concrete piles are susceptible to corrosion by air, water, and soil; especially by the air in industrial 

areas with certain pollutants, if the water is very saline or if the soil is acidic. To protect the 

reinforcement inside concrete piles, a protective layer with a minimum thickness of 50 millimetres (2 

inches) is often suggested (Sowers, 1979). Other types of physical protection include painting the pile, 

impregnating the concrete with asphalt, coating the pile with shotcrete, epoxy, resin, bitumen or adding 

a wood jacket, making the concrete mix denser than usual during pouring, adding specialized cements 

or encasing the pile in steel or pvc liners (Chellis, 1961; Fleming et al., 1992).   

 

Steel piles are susceptible to rusting and pitting which may cause premature failure and is somewhat 

preventable by painting, tarring, galvanizing or cathodic protection. Steel piles are also encased with 

concrete armour to aid in slowing the decay of metal (Sowers, 1979). Adding copper to the steel, 

approximately 0.2 percent, aids in protection against the pile reacting with air (Chellis, 1961). Other 

properties that are altered are that the thickness of the web or flange is increased to allow or compensate 

for the occurrence of some pile damage (Fleming et al., 1992). 

   

When piles are made from a combination of materials it is to increase the service life of the foundation. 

For example, piles installed near open water that are subjected to the tides or those embedded into the 

earth where the groundwater level fluctuates seasonally has the lower half, beneath where the water 

level is constantly wet, composed of timber and in the swash zone above it they are composed of 

concrete. Guidelines also exist for other combinations of material such as for a concrete – steel pile 

which suggest that the steel portion is driven at least five metres into the concrete portion of the pile. 

 

During hammer installation, shoes are often employed to protect the tip of the pile, especially during 

hard driving. These attachments are often made from hardened steel and pointed to allow the pile to 
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break through hard soil strata, thin rock layers, cobbles, and boulders without damaging the pile. To 

prevent timber piles from brooming a steel cap or band is often placed at the top of the pile to protect it 

throughout the driving process (Das, 2004).      

 

2.5 Pile Groups 

 

The main purpose of piles is to support loads from superstructures above them and this is most often 

accomplished by distributing the weight of the load among multiple piles, known as a pile group, via a 

cap. 

 

The majority of analysis on pile capacity is performed on single piles however the majority of piles in 

use are bundled together in groups of at least three. The amount and distribution of load transferred to 

an individual pile within a group compared to a single pile by itself is required. If known, this aids in 

counteracting eccentric loadings and in locating where individual piles are driven. Additionally, the pile 

groups‟ efficiency factor is also required. A pile group‟s efficiency is determined by comparing the 

ultimate load that the group can safely support to the summation of the individual loads that each pile 

within the group can support. For end bearing piles the group efficiency is taken as approximately one, 

for driven piles in sand the efficiency factor typically ranges from one to as high as two or three, for 

driven piles in clays the efficiency factor is less than one, and for bored piles the efficiency factor is 

taken as about two-thirds, to account for the lack of increased frictional resistance during installation 

and the decreased internal angle of friction (Sowers, 1979; Knight 2008).   

 

End bearing piles support loads rather well since the majority of the stresses is carried down to the hard 

or impermeable stratum on which the tips rest; this results in negligible amounts of settlement and 

practically no foundational failure, unless the loading exceeds the strength of the pile material itself, as 

mentioned above. Frictional piles however are more susceptible to failure; either because of loading 

which may cause excessive amounts of settlement via punching or shear failure of the soil, or 

differential settlement due to eccentric loading (Chellis, 1961). Therefore the remainder of this section 

only discusses the behaviour of friction piles in groups. 

 

As previously mentioned; single piles driven in clay behave and carry loads differently than single piles 

driven in sand. This is also true for groups of piles driven in clays compared to in sands. Pile groups in 

clay act as one large cohesive unit or block encompassing the outside area of the installed piles. This 

block develops shear failure planes like other structures in or on clay. The more piles in clay the easier 
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it is for the block to fail. Since the efficiency factor is less than one, the total loads applied to the group 

of piles is one third to one half of the ultimate load which the pile group can support (Terzaghi and 

Peck, 1960) as a precaution or factor of safety against excessive settlement and  punching failure. 

 

Research shows that the usual sub surface area affected by pile driving is at least five pile diameters 

away from the driven pile. It is also shown that piles driven four or more pile diameters apart on centre 

have no practical effect on adjacent piles and cause the pile cap to cover too large an area to be 

economical. The exception to this is when driving piles in marine environments; in which case piles are 

spaced at least five diameters apart, centre to centre distance, to avoid abrasion and eddying (Chellis, 

1961). Piles which are spaced closer than two pile diameters apart on center in cohesive soils can cause 

stress zones to overlap so much so that they can cause failure simply from the act of driving and 

preliminary loading if not the full load itself despite the results from predictive capacity analysis and 

pile load tests. As such the usual spacing of piles in groups is between two and half to four pile 

diameters apart centre to centre distance (Terzaghi and Peck, 1960). In cohesionless soils, driving piles 

beside other previously driven piles further increases the soils density and thus the internal angle of 

friction which then allows the piles able to support larger loads due to the developed overlapping stress 

bulbs. In rare cases, the bearing capacity of the soil decreases a short while after initial driving 

(Terzaghi and Peck, 1960). This is caused by the temporarily high developed stresses at the pile tip 

during driving, after the stresses dissipate the soil relaxes and as such the bearing capacity they can 

support is less than indicated during the original driving process. However, piles driven too close 

together can cause an unacceptable amount of soil heave and cause adjacent piles to move laterally or 

even vertically up from the ground possibly damaging the pile itself, separating spliced segments, 

squeezing freshly poured concrete, shearing pile joints or crushing pile casings in the process. 

    

Formulae such as the one listed below are empirically derived to predict the efficiency of the pile group 

based upon spacing, both longitudinally and laterally rather than pile type, length, shape, soil properties, 

or method of installation. 

 

In Ontario the most commonly used formulae is the Converse Labarre Method, as seen below: 

 

                 
             

    
                                          (3) 
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where: φ is equal to the angle whose tangent is the quotient of the pile diameter to the pile spacing, m is 

the number of rows in the pile group, and n is the number of piles within each row.  

 

Other methods to determine group efficiency are the Los Angeles Group action, Masters, Feld, Seiler 

and Keeney, Pressure Area, and Cylindrical Pier methods as well as direct measurements such as the 

Pretest method (Chellis, 1960). These methods take the pile lengths into account calculating stress from 

Boussinesq equations, are modified Converse Labarre methods, are based on rules of thumb, are a 

combination of the Converse Labarre and Masters methods, are based on the pile group area, and 

assume that the group acts as one large pier whose ultimate carrying capacity is the sum of the carrying 

capacity of an equivalently sized pier plus the product of the shearing resistance per unit area of the pile 

and the outside area of the pile group, respectively. Direct measurement methods either test pile 

capacities in groups or record individual pile reactions during driving via strain gauges. Whichever 

method is used, for a group with the same number of piles the efficiencies range from just under 20 and 

up to 75 percent, as seen in Figure 8 (Chellis, 1960).     

  

 

Figure 8: Comparison of Pile Efficiencies by Various Methods (Chellis, 1960). 
 



26 
 

From studying the behaviour of piles in groups some conclusions are determined by Chellis, 1960. He 

determined that friction bearing piles in rectangular and circular groups can support greater loads before 

succumbing to shear failure than piles in square groups. Additionally, that a group composed of a small 

number of long piles can support loads better than a pile group of equal area which consists of a greater 

number of piles driven to shallower depths spaced more closely together. This is because the generated 

stress bulbs of piles spaced further apart do not overlap as much as closely spaced piles and that the 

shearing value per pile length is reduced in long piles when compared to short piles.   

 

2.6 Alternatives To Conventional Piles 

 

For completeness, alternatives to pile driving are presented as potentially viable options depending 

upon the soil properties and bearing capacity required. They include chemical and physical 

modifications such as grouting, pneumatic, vibratory, and thermal methods as well as variations based 

on conventional pile technologies.    

 

Grouting is a general term referring to a number of processes which are used to increase soil strength 

and decrease permeability. Ideally the effects are permanent while not being detrimental to the soil or 

further soil modifications. Methods include silt injection, cement, bituminous, and chemical grouting. 

Silt injection is the addition of a silt slurry into the subsurface to consolidate fine grained porous soils. 

Cement grouting consists of pumping pure cement, cement and clay, cement and sand or any 

combination thereof and is limited only to sand sized or larger soil particles. If the soil contains more 

than 0.5 percent sodium, calcium, magnesium or potassium sulphates, cement injected in the soil may 

be destroyed within 10 years (Chellis, 1961). Sulphides, organic acids, dissolved carbon dioxide, and 

pH values less than 6 and greater than 8 are also detrimental to cement addition. Cemented soils can 

support loads up to 120 kN/m
2
 (2 500 lb/ft

2
) without causing noticeable settlement (Chellis, 1961). In 

cemented cohesive and cohesionless soils, unconfined compressive strengths (UCS) of up to 1 400 

kN/m
2
 (200 lb/in

2
) and 10 350 kN/m

2
 (1 500 lb/in

2
) are achieved, respectively (Sowers, 1979; Das, 

2004). Bituminous grouting consists of adding emulsified asphalt mixed with cement to fine grained 

porous soils up to 2 millimetres (0.08 inches) in diameter and increase compressive strengths up to 960 

kN/m
2
 (10 tons/ft

2
) and shearing resistance up to 350 kN/m

2
 (50 lb/in

2
) (Chellis, 1961).        

 

Chemical grouting is the addition of two or more solutions which react and harden in order to increase 

the bearing capacity of soils. Usually a silicon solution and any heavy metal salt such as calcium 

chloride, hydrogen chloride, calcium hydroxide or aluminum sulphate combine to produce a gel like 
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substance which binds soil grains together to form an artificial sandstone like mass (Sowers, 1979). 

Strengths in excess of 1 900 kN/m
2
 (20 tons/ft

2
) to 4 800 kN/m

2
 (700 lb/in

2
) and tensile strengths of      

1 080 kN/m
2
 (157 lb/in

2
) are observed in fine sands and compressive strengths up to 8 300 kN/m

2
        

(1 200 lb/in
2
) are reported in gravels (Chellis, 1961) in deposits up to 35 metres (115 feet) thick (Das, 

2004).  

 

Physical improvements to soils include compaction by, dynamic and vibratory (vibroflotation, vibro 

compaction and vibro replacement) forces, stone columns, sand compaction piles, in situ reinforcement, 

and modified piles.  

 

Dynamic Compaction is accomplished by dropping weights from 4 to 36 Mg (5 to 40 tons) (Coduto, 

2001) with 20 000 kg (44 000 pounds) force from a height of 6 to 30 metres (20 to 100 feet) which 

impacts an area from 2 to 4 square metres (22 to 43 ft
2
) (Chellis, 1961). This soil is compacted by both 

vibrations and impact forces which propagate down 5 to 10 metres (16 to 32 feet) below ground 

surface. Vibroflotation, vibro compaction or vibro replacement are other methods which use vibration 

and jetting to form an opening 2 to 3 metres (8 to 10 feet) in diameter up to 15 metres (50 feet) deep 

(Sowers, 1979) and compacts soil particles by rearranging them increasing their overall density, 

compressive strength, and shear resistance.   

 

Thermal methods such as heating or freezing may also be used. Freezing temporarily increases soil 

strength from; 6 to 14 MN/m
2
 (125 to 290 kip/ft

2
) in clean sands, 4 to 13 MN/m

2
 (80 to 270 kip/ft

2
) in 

sandy silts and 1.5 to 6 MN/m
2
 (30 to 125 kip/ft

2
) in clays, depending upon the temperature applied. 

Heating is another method which desiccates the soil by creating temperatures greater than 1 100
o
C       

(2 000
o
F); the process is permanent and can consolidate soils up to a depth of 10 metres (32 feet) 

(Chellis, 1961; Sowers, 1979). 

 

Micro piles, also known as pin or root piles are typically 50 to 250 millimetres (2 to 10 inches) in 

diameter, installed to lengths of 20 to 50 metres (66 to 170 feet) (Sowers, 1979)  below ground surface 

and are able to support loads from 20 to 500 kN (5 to 110 kips) (Fleming et al., 1992). Like customary 

piles, micro piles are installed via pneumatic, vibratory or augured methods. They can also be spliced or 

threaded together or formed by pouring concrete with or without a casing or reinforcement. They are 

typically used where overhead space is limited, near pre-existing structures which may be negatively 

affected by conventional installation methods or as a corrective measure for current foundations. 
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3.0 PILE DRIVING EQUIPMENT 
 

 

Bearing capacities of various pile types due to frictional and tip resistance are discussed in Chapter 2. 

This chapter focuses on various pile driving rigs (see Figure 9), how they change and develop with 

time, their physical properties, and the mechanisms in which they install various piles.   

 

 

Figure 9: Pile Rig Components (Coduto, 2001) 
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Historically, pile drivers have been around since the act of piling itself. From 12 000 years ago until the 

early 1800s, the technology for installing piles as well as piles themselves remained relatively constant. 

As previously discussed with piles, pile drivers themselves have also evolved with time.  

 

Since the MTO database used primarily for analysis employs drop and diesel hammers exclusively, 

only they are presented in detail. However, other types of pile drivers such as steam powered, gun 

powder, hydraulic, and vibratory drivers exist as well as pile installation by jacking, jetting, boring, 

excavating, and driving by electroosmosis are also discussed. 

 

3.1 Drop Hammers 

 

The earliest pile drivers are simple gravity pulley systems in which a weight free-falls onto the head of 

a pile via a trigger mechanism or actuator. The weight is guided by leads and raised by man power 

through a rope and winch. In the 1700s, drop hammers with ram weights from 1.2 to 3.5 kN (0.27 to 

0.79 kips) achieved blow rates as high as 25 to 30 times per minute; however, since these are man 

powered a break of 1 to 2 minutes normally occurred effectively lowering the blow rates to 8 to 10 

blows per minute, resulting in a relatively slow and cumbersome progress. In the early to mid-1800s, 

weights as much as 15 kN (3.4 kips) have been used and raised by man or horse power (Fleming et al., 

1992). More recently, weights from 2 to 13.3 kN (0.5 to 3 kips) are in use with a drop height from 2 to 

3 metres (6 to 10 feet) (Sowers, 1979). The energy imparted on the pile per hammer blow is the product 

of the ram weight and the height of the fall.  

 

 

Figure 10: Drop Hammer Components (Das, 2004) 
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3.2 Single Acting Steam Hammers 

  

With new innovations in technology pile drivers went from simple gravity systems with a large drop 

weight to single acting steam hammers developed in 1801 by John Rennie in Britain (Fleming et al., 

1992). Powered by steam, steam or air enters the base of the chamber and uses an engine to raise a ram 

0.6 to 1 metre (2 to 3 feet) high inside a cylinder and drop due to gravity in a manner similar to the drop 

hammer. Hammer weights range from 22 to 2 669 kN (5 to 600 kips) and result in producing hammer 

energies from 20 to 2 500 kN
.
m (15 to 1 670 kip

.
ft). The blows are relatively slow with most of the 

energy coming from the mass of the ram, however, rates of 50 to 80 hammer blows per minute are 

achieved (Sowers, 1979; Fleming et al., 1992). 

  

 

Figure 11: Single Acting Steam Hammer Components (Das, 2004) 
 

After 40 years, the original single acting steam or air hammers are modified to a double acting steam 

hammers (Fleming et al., 1992). 

 

3.3 Double Acting Steam Hammers 

 

Double acting steam hammers lift the ram in the same method as single acting hammers; however, the 

top of the cylinder contains a valve which allows steam to force the ram down and was first developed 
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in 1843 by Nasmyth (Fleming et al., 1992) and enables blows from 80 to 240 blows per minute. This 

creates more energy imparted to the pile than gravity can provide alone. Ram weights range from 22 to 

62 kN (5 to 14 kips) and imparts energy from 22 to 49 kN
.
m (16 to 36 kip

.
ft) onto pile heads. The 

energy of the hammer is calculated by the following formula (Chellis, 1961; Fleming et al., 1992): 

 

   
   

 

  
                                                                       (4) 

 

where: En is the energy imparted from the hammer to the pile (kN
.
m or kip

.
ft), Wr is the weight of the 

ram (kN or kips), v is the velocity of the ram fall (m/s or ft/s), and g is the gravitational constant of 9.81 

m/s
2
 or 32.2 ft/s

2
.  

 

 

Figure 12: Double Acting Steam Hammer Components (Das, 2004) 
 

3.4 Gun Powder Hammers 

 

This type of hammer was in use for only a short period in the early 1870s by Shaw in Philadelphia 

(Fleming et al., 1992). It employs a mechanism similar to that of diesel hammers however instead of 

fuel being ignited it is gun powder. This has been stopped because it is dangerous for the operator and 

extremely loud. Blow rates of 15 to 20 blows per minute have been achieved and as many as thirty piles 

1.8 to 2.5 metres in length could be driven per day (Fleming et al., 1992).  
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However, gun powder powered hammers are innovative in the sense that they only required two people 

to operate, drivers before this usually required a team of about four to eight men to operate. This style 

no doubt led to diesel powered drivers that are now well known and used throughout the world today. 

 

3.5 Diesel Hammers 

 

Diesel hammers became common use in 1946 (Fleming et al., 1992). The physical action of the 

hammer is similar to that of steam hammers. In single acting diesel hammers the ram is raised 

mechanically and allowed to fall initially due to gravity. In this case, diesel fuel is injected into the 

bottom of the cylinder as the ram reaches its apex. As the ram falls the compressed air and heat causes 

an explosion to occur which forces the cylinder down onto the pile and the ram upwards, where fuel is 

injected again causing the cycle to repeat. In double acting diesel hammers; fuel is also injected into the 

top of the cylinder and ignited to cause the ram to travel down the cylinder. Diesel rigs utilize faster 

hammer blows and produce more energy per blow, 13 to 267 kN
.
m (9 to 197 kip

.
ft)  than earlier models, 

use smaller ram weights from 8 to 78 kN (1.8 to 17.6 kips), and in hard driving rates from 39 to 84 

blows per minute are possible (Sowers, 1979; Fleming et al., 1992). A disadvantage of diesel hammers 

is that the energy transferred to the pile depends largely upon driving resistance and is therefore very 

variable. During hard driving conditions, most of the theoretical maximum produced energy impacts the 

pile head, however in easy driving; the hammer produces less energy per blow.   

  

 

Figure 13: Diesel Hammer Components (Das, 2004) 
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3.6  Hydraulic Hammers 

 

One of the most recent types of hammers developed, in the 1960s, use hydraulic lines to add and 

decrease pressure to raise and lower the hammer weight and have gained more and more popularity 

since the 1990s (Fleming et al., 1992). The mechanisms involved are the same as the double acting 

hammers, however since hydraulic fluid is used in place of steam or diesel, the driving operation is 

faster, quieter, and environmentally cleaner. The high pressures produced allows the same energy to be 

transmitted to the pile during driving as steam hammers but with smaller ram weights; unfortunately, 

they also cause more mechanical wear of the pile rig and driving equipment. Ram weights typically 

used range from 29 to 290 kN (6.5 to 65 kips), fall distances of 0.2 to 1.2 metres (0.7 to 3.9 feet) and 

result in striking energies of 26 to 350 kN
.
m (19.5 to 262.5 kip

.
ft) with blow counts of 28 to 130 times 

per minute (Sowers, 1979).  

 

3.7 Vibratory Hammers 

 

Not as common as percussion style hammers, vibratory hammers install piles by applying a constant 

downward force imparted by two counter rotating weights. These hammers have the advantage of being 

much quieter and thus less intrusive to local areas than percussion hammers. The vibrations cause the 

soil beneath the pile to loosen thus advancing the pile under its own weight. Vibrators normally operate 

at frequencies from 12 to 40 Hz (Fleming et al., 1992) but may operate at frequencies as high as 150 Hz 

and weigh between 6.7 and 169 kN (150 and 3 800 pounds) (Sowers, 1979 and Coduto, 2001). As the 

driver weights rotate, the eccentricities cause the horizontal components of the generated force to cancel 

with each other resulting in only a net sinusoidal vertical force that allows the pile to travel downward. 

When the vibrators operate at a frequency above 100 Hz the pile and soil may act in resonance causing 

the pile to advance easily. Rates of 5 and up to 20 metres per minute are observed for dense granular 

and loose to moderately dense soil, respectively (Fleming et al., 1992).  When vibrators are operated at 

these relatively high frequencies the pile advances quickly; however, the dynamic force created often 

damages the vibrator thus advancing at resonance is not common. 

 

This method is effective in cohesionless but less so in cohesive soils; the disadvantage to the developed 

bearing capacity is that in sands and gravels the driving action fluidizes the soil, greatly reducing the 

friction between the pile and the soil, thus vibratory installed piles rely primarily on end bearing 

support.  
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Figure 14: Vibratory Hammer Components (Das, 2004) 
 

3.8 Excavating And Boring Methods 

 

Excavated or bored piles are developed as an alternative to conventional pile driving since they are 

constructed to any diameter or length required, depending upon machine limitations and can support 

much larger loads than driven steel piles alone. Concrete cast in Place piles, as they are commonly 

constructed now, first came in use in 1897 by A.A. Raymond. In 1903 R.J. Beale invented a technique 

to drive hollow tube piles and fill them in with concrete as the tube is withdrawn (Fleming et al., 1992). 

 

Bored piles came into common use in the United Kingdom since the early 1930s, installed by 

percussion equipment and later in the 1950s by rotary auguring machines.       

     

3.8.1 Screw Piles 

 

First used in 1838 by Alexander Mitchell (Fleming et al., 1992), screw or helical piles densify the soil 

rather than remove it as is done by boring or excavating methods. The auger head is advanced 

downwards and the soil underneath it becomes compacted, as the head is retreated, a hollow stem 

concrete is filled into the opening to form the pile. The process is shown below in Figure 16: 
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Figure 15: Bored Hammer Components (after Das, 2004) 

 

Figure 16: Atlas pile installed by screw method (Fleming et al., 1992) 
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3.8.2 Pressure Injected Footings  

 

Pressure injected footings (PIFs) were developed pre-World War I (Coduto, 2001). The process consists 

of driving a tube 300 to 600 millimeters (12 to 24 inches) in diameter by placing a hollow tube with 

either a plate on top or a concrete plug in the bottom and then hammering the tube into place. Once 

specified depth is reached, the tube is held in place as concrete is poured into it and compacted via 

hammer blows. This compaction causes the injected concrete to form a bulb at the bottom of the tube 

which increases end bearing resistance for compressive loads and tensile resistance for uplift loads. E. 

Frankignoul from Belgium, in 1908, invented an early Franki driven tube pile system (Fleming et al., 

1992). Once the specified amount of concrete is placed or a specific concrete is achieved, as indicated 

by the number of hammers blows, the shaft of the pile is constructed. This is done by either raising the 

tube while hammering additional amounts of concrete into the hole or inserting a shell and filling it 

with concrete. 

 

 

Figure 17: PIF Hammer Components (Coduto, 2001) 
 

 

3.8.3 Spudding 

  

Spudding involves attaching advancing hardened steel points. A point is advanced until it reaches a 

specified depth, usually past a dense layer of sand, gravel or rock. Once through, the metal point is 

extracted and the pile is driven through the formed hole.    
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3.9 Jetting 

 

Similar to excavating and boring methods, jetting uses a fluid in advance of the drill bit to aid in the 

drilling of soil.  

 

Jetting is the process where a nozzle which pumps high pressurized water is attached to the tip of the 

pile. The process loosens the soil below the pile tip so that little or no hammer blows are required to 

advance the pile. This procedure is effective when piling into sands and gravels but not when clays are 

encountered. 

  

3.10 Pile Jacking 

 

Pile jacking is performed by driving piles against a reaction, usually a structure already in place, and 

used for underpinning. It is most commonly used to drive micro and sheet piles where overhead spacing 

is limited and therefore traditional pile driving rigs are employed. It has the advantage of being quieter 

and causing fewer vibrations than percussion pile drivers. 

 

3.11 Electroosmosis 

 

Electroosmosis originally developed as a method of strengthening soil and has been in use since the 

1930s and 1940s (Chellis, 1961). The process involves placing anodes and cathodes into the subsurface 

and applying a current through them. Typical currents and voltages used range between 20 to 30 amps 

and 30 to 180 volts direct current, respectively. This causes the pore water to travel from the positive 

electrode to the negative one as well as the soil to dry out near the anode. The water near the cathode is 

then pumped out via extraction wells. Records show pumping rates to improve by a factor of nine to ten 

when electroosmosis is used in cohesionless soils. In cohesive soils the drying effect is known to 

increase shear resistance by 500 percent (Chellis, 1961). The drying effect is temporary and as the 

moisture returns a reduction in the soil shear strength is expected. 

 

In 1953 H.K.S. Begemann began experiments using electroosmosis in conjunction with percussion pile 

driving to aid pile advancing piles in clays (Nikolaev, 1962). A cathode is attached to the tips of the 

piles being driven; this causes the groundwater to develop around them creating a film, which aides in 

pile driving. The excess water reduces the frictional resistance of the soil and allows the pile to achieve 
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greater depths than by conventional methods with less hammer blows. Once the pile reaches its 

specified depth the electrodes are turned off and the soil regains its original strength; to accelerate the 

process the poles are reversed, turning the cathode into the anode, causing the soil at the pile tip to dry 

thus increasing its frictional resistance and shear strength.     

 

 

Figure 18: Electroosmosis Pile Setup (Nikolaev, 1962) 
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4.0 PREDICTIVE BEARING CAPACITIES 
 

 

The maximum ultimate load which a pile can support is determined by the lower value of either the 

compressional strength of the pile itself or the bearing capacity of the soil. Pile material strengths and 

maximum allowable loading values are previously discussed in sections 2.1.4 and guidelines for end 

bearing capacities and frictional resistance values based primarily on experience and engineering 

judgement are given in section 2.2. The ultimate load depends upon the pile composition and its cross 

sectional area; whereas, the ultimate bearing capacity derived from the soil depends upon the soil 

properties, the method of installation, and the embedded pile length. To safely support any structure, 

knowing the theoretical maximum load a pile can sustain is not sufficient for design purposes. The 

corresponding amount of acceptable settlement that occurs is also determined for design acceptability. 

There are many techniques available to predict the soil – pile bearing capacity and the resulting 

settlement.  

 

These predictive methods range from general rules of thumb as stated above to theoretical static 

formulae based on soil properties derived from field and laboratory testing to semi empirical dynamic 

formulae based on site observations made during pile driving to pile load tests based on the reactions of 

fully installed piles.  

 

Often times, all methods are used in conjunction to assure that the piles installed are able to support 

their designed capacity without allowing excessive settlement to occur. Theoretical formulae are used 

as a first step to determine approximate pile capacities based upon pile type, length, and soil conditions. 

They are regularly used as a design tool varying pile lengths, widths, material types, and installation 

methods until a combination is found which can withstand the required load with an appropriate factor 

of safety as well as being the most economically viable option. 

 

Methods based on site observations such as energy or momentum equations with appropriate factors of 

safety are used as a guide to aid in determining required embedded pile lengths needed to support 

design loads or developed pile bearing capacities depending upon pile resistance measurements made 

through hammer blow counts.  

 

In situ techniques such as pile load tests are performed on certain test piles, depending upon the number 

of piles installed or the number and confidence of geotechnical tests performed during site 
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investigations prior to pile design, as a check to confirm pile capacity and to determine expected 

settlement values.  

 

All of these techniques are discussed below for various soil and pile types. 

        

4.1 Theoretical Predictive Formulae 

 

Static formulae are used to calculate pile capacities based on the results of field and laboratory tests 

such as vane shear, standard penetration test (SPT), cone penetration test (CPT) triaxial, oedometer, 

hydrometer, grain size analysis, and moisture content tests to determine soil properties such as 

undrained shear strength (cu), effective internal angle of friction (φ’), effective cohesion (c’), water table 

levels, soils density (Dr), effective soil unit weight (  ), preconsolidation pressure (  
 ), and 

overconsolidation ratio (OCR).  

 

Various formulae are developed to predict pile reaction to being driven in sand, clay or rock as well as 

being driven by percussion or boring methods. With relevant site conditions known, the required pile 

capacity is computed by modifying the length of the pile; increasing it to add more frictional resistance 

or having the end terminate into various competent soil layers to determine which length results in the 

required capacity. The pile composition as well as installation method are varied to determine the effect 

that occurs on the frictional and end bearing resistance established. 

 

The ultimate capacity of a pile (Qu) is the summation of two factors; the end or point bearing capacity 

of the pile (Qp) and the frictional or skin resistance of the pile – soil system (Qs). 

 

The end bearing resistance is given by a modified version of Terzaghi‟s equation used for determining 

the bearing capacity of shallow foundations, as presented in Das, 2004 (Equation 5). The principle 

differences are that the effective vertical stress is used during the calculation to account for the length of 

pile installed below the water table and the term involving the width of the foundation is not accounted 

for because it is negligible compared to the overall foundation length.     

 

 

       
   

      
                                                             (5) 
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where: Qp is the end or point bearing capacity of the soil at the pile tip, Ap is the cross sectional area of 

the pile tip, c’ is the effective cohesion of the soil supporting the pile tip, q’ is the effective vertical 

stress at the pile tip, and   
  and   

  are bearing capacity factors. 

 

The frictional resistance is given by Equation 6 below (Das, 2004) 

 

                                                                             (6) 

 

where: Qs is the frictional resistance of the pile (kN or lb) which is the sum of; p, the perimeter of the 

pile (m or ft), ∆L, the incremental length (m or ft) over which the p and f are taken as constant, and f, 

the unit frictional resistance (kN/m
2
 or lb/ft

2
) at the vertical depth, z (m or ft), being examined.  

 

Described below are various techniques for calculating Qp and Qs, depending upon if the pile is 

embedded in sand, clay or rock for several methods of pile installation. 

 

4.1.1 Piles In Cohesionless Soils 

 

For piles in sand three basic techniques are used to determine pile capacity; the Meyerhof, standard 

penetration test (SPT), and cone penetration test (CPT) equations. However, many other methods such 

as those of Vesic, Janbu and Coyle, and Castello are in use as well to predict static pile capacity (Das, 

2004).  

 

4.1.1.1 Meyerhof Method  

 

The cohesion value of clean free draining sands is taken as zero; as such Meyerhof‟s end bearing 

formula is modified from Equation 5 to: 

 

      
   

                                                                     (7) 

 

where: Qp is the end bearing capacity (kN or lb), Ap is the cross sectional area of the pile (m
2
 or ft

2
),   

  

is a bearing capacity factor, and q’ is the effective stress at the pile tip (kN/m
2
 or lb/ft

2
) which is given 

by: 

 



42 
 

                                                                              (8) 

 

where: ɣ’
 is the effective unit weight of the soil (kN/m

3
 or lb/ft

3
) and z is the depth from ground surface 

to the pile tip (metres or feet). 

 

For the portion of the pile below the water table, the effective unit weight is given by: 

 

                                                                             (9) 

 

where: ɣT is the total unit weight of the soil and ɣw is the unit weight of water, taken as 9.81 kN/m
3
 or 

62.4 lb/ft
3
. 

  

Meyerhof‟s modified values of   
  for deep foundations are given in Figure 19 below: 

 

 

Figure 19: Bearing Capacity Factor   
  (Das, 2004) 

 

The unit end bearing capacity of the sand layer is not infinite and Meyerhof suggested limiting it to no 

more than a value of ql, given by: 
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                                                                  (10) 

 

where: ql is the limiting point bearing resistance, pa is atmospheric pressure, taken as 100 kN/m
2
 or        

2 000 lb/ft
2
, φ’ is the effective friction angle of the soil that the pile tip rests in (degrees), and   

  is the 

same bearing factor as given above in Figure 19. 

 

Meyerhof, in 1961, presented an equation to estimate frictional resistance of piles in sand. To account 

for the changes in soil conditions during driving, Meyerhof created certain assumptions based on 

observations and test results. These lead to Equation 11: 

 

     
                                                                      (11) 

 

where: f is the unit frictional resistance (kN/m
2
 or lb/ft

2
), K is the effective earth coefficient,   

  is the 

effective vertical stress (kN/m
2 

or lb/ft
2
) at the depth being analyzed, and δ is the soil – pile friction 

angle (degrees). 

 

Similarly to Meyerhof‟s end bearing equation, the frictional resistance developed from pile driving is 

also bounded by an upper limit. This is based on observations that the frictional resistance of sand 

increases with depth until the pile reaches a critical depth of 15 to 20 pile diameters. To be conservative 

f is taken to increase with depth until 15 pile diameters and thereafter is taken as constant for the 

remainder of the pile length.  

 

The effective earth coefficient (K) is approximately equal to the at rest earth coefficient (Ko) and 

changes depending upon pile installation method as given in Table 8.  

 

Table 8: Effective Earth Coefficients Depending on Installation Method (after Das, 2004) 

Pile Type Effective Earth Coefficient (K) 

Bored or Jetted Pile 1-sinφ’ 
Low Displacement Driven Pile 1.4(1-sinφ’) 
High Displacement Driven Pile 1.8(1-sinφ’) 

 

 

The effective vertical stress,   
 , is calculated in the same manner as q’ for end bearing capacity and δ, 

the soil-pile friction angle, ranges from 0.5φ’ to 0.8φ’ degrees. From investigation it appears that for 
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high displacement piles, the value of δ is equal to 0.8φ’ and for non-displacement or bored piles, the 

value of δ is equal to 0.5φ’. 

 

Another suggestion is that K is set as 1.0 and 2.0 for concrete piles driven in loose and dense sand, 

respectively, and 0.5 and 1.0 for steel H piles driven in loose and dense sand, respectively. The value of 

δ is set equal to 0.75φ’ for concrete piles and 20 degrees for steel piles (Craig, 2002). 

 

4.1.1.2 Beta Method 

 

Due to the rapid dissipation of excess pore water pressure in sands and gravels, the bearing capacity of 

cohesionless soils is calculated by the effective stress or beta method. The method is used to calculate 

the frictional and end bearing resistance. The frictional resistance is given below as: 

 

      
                                                                              (12) 

 

where: fs is the unit frictional resistance,   
  is the effective vertical stress at the pile section being 

examined, and β is a function of the at rest and effective earth coefficients, the shaft – soil interface 

angle, and the effective internal angle of friction as given in Equation 13: 

 

     
 

  
        

 

                                                                  (13) 

 

The ratio of the effective to at rest earth coefficients and shaft – soil to effective internal friction angles 

are given in Tables 9 and 10 below. 

 

Table 9: Ratio of Soil Pile to Effective Soil Internal Friction Angles (after Coduto, 2001) 

Interface Materials Typical Field Analogy δ/φ' 

Sand/rough concrete Cast-in-place 1 

Sand/smooth concrete Precast 0.8 to 1.0 

Sand/rough steel Corrugated 0.7 to 0.9 

Sand smooth steel Coated 0.5 to 0.7 

Sand/timber Pressure-treated 0.8 to 0.9 
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Table 10: Ratio of Effective to At Rest Earth Coefficients (after Coduto, 2001) 

Foundation Type & Installation Method K/Ko 

Driven Pile, small displacement 0.75 – 1.25 

Driven Pile, large displacement 1 – 2 

 

 

For large displacement piles, beta is simplified to Equation 14 as given by Coduto (2001). 

 

                                                                                (14) 

 

where: Dr is the relative density of the sand layers being examined, in decimal form. 

 

4.1.1.3 SPT Method 

 

Many correlations exist for calculating the unit point resistance (qp) for various soil types and 

installation methods, as shown in Table 11 below. 

 

Table 11: Unit Point Resistance Correlated from Field SPT Values (after Das, 2004) 

Soil Type Unit Point Resistance Equation 

Sand qp = 19.7pa(N60)
0.36

 

Cast in Place Pile in Sand qp = 3pa 

Bored Pile in Sand qp = 0.1paN60 

Bored Pile in Gravelly Sand qp = 0.15paN60 

Driven Piles, all soils qp = 0.3paN60 
 

 

In the above formulae qp is the unit point resistance (kN/m
2
 or lb/ft

2
), pa is atmospheric pressure (100 

kN/m
2
 or 2 000 lb/ft

2
), and N60 is the SPT number obtained in the field. The N60 value is derived from 

an average number of blows near the pile tip. The area near the pile tip is defined as a vertical distance 

from 10 pile diameters above to 4 pile diameters below the tip (Das, 2004). 

 

 The unit point resistance is used to calculate the end bearing capacity with Equation 15 below: 

 

                                                                           (15) 
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where: Qp is the point bearing capacity of the pile (kN or lb), Ap is the area of the pile (m
2
 or ft

2
), and qp 

is the unit point resistance (kN/m
2
 or lb/ft

2
). 

 

For homogenous granular soils, defined as those with less than 35% of samples passing through the 

number 200 sieve, Meyerhof advises limiting the unit point resistance (qp), as defined in Das, 2004 to: 

 

              
 

 
                                                        (16) 

 

where: ql is the limiting unit point resistance (kN/m
2
 or lb/ft

2
), pa is atmospheric pressure (100 kN/m

2
 or 

2 000 lb/ft
2
), (N1)60 is the SPT value obtained from averaging those from 10 pile diameters above to 4 

pile diameters below the pile tip, L is the embedded length of the pile (metres or feet), and D is the pile 

diameter or width (metres or feet). For bored piles unit point resistance is taken as one third the value 

given by Equation 16 (Craig, 2002).   

 

To determine the frictional resistance through SPT counts Meyerhof correlates them with the average 

unit frictional resistance for low and high displacement piles as seen in Equations 17 and 18, 

respectively (Das, 2004).  

 

             
                                                                 (17) 

 

             
                                                                 (18) 

 

where: fav is the average unit frictional resistance (kN/m
2
 or lb/ft

2
) over the length which the corrected 

SPT count is constant, pa is atmospheric pressure (100 kN/m
2
 or 2 000 lb/ft

2
), and    

       is the average 

corrected SPT value. For bored piles the frictional unit resistance is taken as one half of the value 

obtained by Equations 17 and 18.  

 

The average corrected SPT value   
       is calculated by multiplying the field obtained SPT value (N60) 

by a correction factor CN. The corrected value is to account for the variation of N60 due to the changing 

effective overburden pressure (  
 ) with depth. Das provides several methods for calculating CN, the 

most cited of those being the formulae developed by Skempton and Liao and Whitman (2004).   
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Table 12: Correction Factor for Field Obtained SPT values (after Das, 2004) 

Author‟s Relationship SPT Correction Factor 

Peck et al. (1974)            
  

 
   

  
 
  

Seed et al. (1975)              
  
 

  
  

Skempton (1986) 
   

 

   
   

  
 
 

Liao and Whitman (1986)     
  
   

 

    

 

Where   
  is the vertical effective stress at the elevation being considered (kN/m

2
 or lb/ft

2
) and pa is 

atmospheric pressure (100 kN/m
2
 or 2 000 lb/ft

2
). 

 

The pile capacity due to frictional resistance then becomes: 

 

                                                                           (19) 

 

where: Qs is the skin friction developed (kN or lb), p is the perimeter of the pile (metre or feet), ∆L is 

the incremental length over which the unit frictional resistance is constant (metre or feet), and fav is the 

unit frictional resistance over which the corrected SPT count    
       is constant (kN/m

2
 or lb/ft

2
). 

 

4.1.1.4 CPT Method 

 

The Laboratoire Central des Ponts at Chaussées (LCPC) and Dutch methods are the two most 

commonly used techniques to estimate pile end bearing capacities through CPT results (Das, 2004).  

 

The LCPC method involves calculating the average cone penetration resistance (qc(av)) value by taking 

the mean cone resistance values from 1.5 pile widths above the pile tip to 1.5 pile widths below the tip. 

Then calculating the equivalent cone resistance (qc(eq)) by eliminating the values that are greater than 1.3 

times qc(av) and less than 0.7 times qc(av), and recalculating the mean of the remaining values, as seen in 

Figure 20. 
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The unit point resistance is then calculated with the following equation: 

 

                                                                              (20) 

 

where: qp is the unit point resistance (kN/m
2
 or lb/ft

2
), qc(eq) is the equivalent average cone penetration 

resistance value (kN/m
2
 or lb/ft

2
), and kb is an empirical bearing capacity factor. Briaud and Miran 

suggest a kb value of 0.375 for sands and gravels (Das, 2004).  

 

 

Figure 20: LCPC method (Das, 2004) 
 

 

The Dutch method is similar to the LCPC method but more complicated. The first step involves 

summing the cone resistance values (qc) along the actual CPT path from the elevation of the pile tip 

down to the minimum CPT value recorded between 0.7 and 4 pile diameters below the pile tip. The 

second step is then to sum the qc values from the straight line path back up to the pile tip, see Figure 21. 

With these paths determined, qc1 is calculated, which is the average cone resistance value within the 

outlined area.  
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The next step is to calculate qc2, which is the average qc value from the pile tip to 8 pile diameters above 

the pile tip, while ignoring any minor depressions. With qc1 and qc2 known the unit point resistance is 

calculated as follows: 

 

   
         

 
  
                                                            (21) 

 

where: qp is the unit point resistance (kN/m
2
 or lb/ft

2
), qc1 and qc2 are the average cone penetration 

resistance value (kN/m
2
 or lb/ft

2
) below and above the pile tip, respectively, pa is atmospheric pressure 

(100 kN/m
2
 or 2 000 lb/ft

2
), and   

  is an empirical bearing capacity factor. DeRuiter and Beringen, 

1979, recommended a   
  value of 1 for normally consolidated sands and 0.67 for sands with an 

overconsolidation ratio between two and four (Das, 2004). The overconsolidation ratio is a measure of 

the maximum effective normal stress (preconsolidation pressure) that the soil profile has experienced in 

the past compared to the current vertical stress, at any elevation under investigation.   

 

 

Figure 21: Dutch method (Das, 2004) 
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Relationships to correlate the frictional resistance of piles with CPT results which are developed by 

Nottingham and Schmertmann (1975), and Schmertmann (1978) are given in the formula below (Das, 

2004): 

 

                                                                             (22) 

 

where: f is the unit frictional resistance (kN/m
2
 or lb/ft

2
), α’ is a skin friction coefficient of 

proportionality, and fc is the cone frictional resistance from CPT data (kN/m
2
 or lb/ft

2
). The value of α’ 

depends upon the embedded pile length (z) to width (D) ratio and the type of cone penetrometer; 

electric or mechanical, as shown in the figures below. 

 

 

Figure 22: Embedded Pile Length to Width Ratio vs α’ for Electric Cone Penetrometer (Das, 2004) 
 

 

Figure 23: Embedded Pile Length to Width vs α’ for Mechanical Cone Penetrometer (Das, 2004) 
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4.1.2 Piles In Cohesive Soils 

 

For cohesive soils such as clays and silts pile bearing capacity is primarily developed through skin 

friction. However, there may be limited tip or end bearing capacity developed as well, depending upon 

installation method and pile type.  

 

End bearing capacity is derived from the same formula in section 4.1: 

 

       
   

      
                                                               (5) 

 

4.1.2.1  Meyerhof Method 

 

The effective angle of internal friction (φ‘) in cohesive soils is taken as being equal to zero. Meyerhof 

suggests that since   
  is dependent on the soils friction angle, it is neglected and   

  is set equal to nine, 

thus the formula is reduced to: 

 

                                                                           (23) 

 

where: Qp is the unit bearing resistance (kN or lb), cu is the undrained shear strength of the soil (kN/m
2
 

or lb/ft
2
), and Ap is the pile area (m

2
 or ft

2
). For shear strengths determined by laboratory testing a 

reduction factor of 0.75 is advised (Craig, 2002). 

 

The undrained shear strength is determined from triaxial tests or in situ field vane shear tests. Equations 

of undrained shear strength are also correlated to other parameters such as vertical effective stress (  
 ), 

plasticity index (PI), and preconsolidation pressure (  
 ) as shown in Das, 2004. 

 

Table 13: Empirical Correlations of Undrained Shear Strength (after Das, 2004) 

Author Relationship Applicability 

Skempton (1957)                          
  

cu(vst) – cu from shear vane test 

For normally consolidated clays 

Jamiolkowski et al. (1985)                 
  For lightly overconsolidated clays 

Chandler (1988)                          
  

For over and normally consolidated 

clays, not fissured or sensitive clays 

Accuracy ± 25% 

Mesri (1989)          
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To determine the developed frictional resistance of piles in clay, four basic methods are used to 

determine the piles bearing capacity; the alpha (α), beta (β), lambda (λ), and CPT method. 

 

4.1.2.2 Alpha Method 

 

The alpha or total stress method involves determining the skin friction acting on a pile due to the 

undrained shear strength of clay and an adhesion factor, which is a function of the ratio of undrained 

shear strength to effective overburden pressure (see Figure 24, below). 

 

 

Figure 24: Adhesion Factor for Determining Frictional Capacity (Das, 2004) 

 

 

The unit skin friction is given as: 

 

                                                                          (24) 

 

where: f (kN/m
2
 or lb/ft

2
) is the unit skin friction, α is the adhesion factor, and cu is the undrained shear 

strength (kN/m
2
 or lb/ft

2
). In general the value of α is between 0.3 and 1 (Craig, 2002). 

 

4.1.2.3 Beta Method 

 

The beta or effective stress method is used to account for the temporary creation and subsequent 

dissipation of excessive pore water pressure in clays. The frictional resistance is by Equation 25: 
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                                                                      (25) 

 

where: f (kN/m
2
 or lb/ft

2
) is the unit skin friction,   

  is the vertical effective overburden pressure 

(kN/m
2
 or lb/ft

2
), and β is a function of the earth pressure coefficient and clay friction angle (see 

Equation 26 below). The average value of β is usually between 0.25 and 0.40 for normally consolidated 

clays and significantly higher with a wider range for overconsolidated clays (Craig, 2002). 

 

        
                                                                   (26) 

 

         
                                                                 (27) 

 

          
                                                              (28) 

 

where: K is the at rest earth pressure coefficient for normally and overconsolidated clays, respectively, 

  
  is the drained friction angle of remoulded clay (degrees) and OCR is the overconsolidation ratio of 

clay. 

 

4.1.2.4 Lambda Method  

 

The lambda method is based on the supposition that the installed pile induces passive lateral pressures 

in the soil during driving and that the frictional resistance developed is described by Equation 29 below: 

 

        
                                                                     (29) 

 

where: fav is the unit frictional resistance of the pile (kN/m
2
 or lb/ft

2
),   

     is the mean effective vertical 

strength for the entire pile embedment length (kN/m
2
 or lb/ft

2
), cu is the undrained shear strength of clay 

(kN/m
2
 or lb/ft

2
), and λ is a coefficient which varies with pile length as shown below: 
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Figure 25: Variation of Lambda with Pile Embedment Length (Das, 2004) 

 

The equation to calculate the frictional capacity is then modified to: 

 

                                                                            (30) 

 

where: Qs is frictional resistance of the pile (kN or lb), p is the pile perimeter (metres of feet), L is the 

total embedded pile length (metres or feet), and fav is the average unit frictional resistance caused by 

pile driving (kN/m
2
 or lb/ft

2
). 

 

4.1.2.5 CPT Method  

 

The LCPC method to determine the end bearing capacity of piles is cohesive soils is similar to the end 

bearing capacity of piles in cohesionless soils. The equation is the same as in section 4.1.1.3; however 

the empirical bearing capacity factor (kb) changes from 0.375 for sands and gravels to 0.6 for silts and 

clays. 
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To calculate the end bearing capacity using the Dutch method, the unit point is resistance is given as: 

 

       
         

 
  
                                                        (31) 

 

where: qp is the unit point resistance (kN/m
2
 or lb/ft

2
), pa is atmospheric pressure (100 kN/m

2
 or 2 000 

lb/ft
2
), qc1, qc2, and   

  are calculated in the same methods as described in section 4.1.1.3, R2 is set to a 

value of 1 when an electric cone penetrometer is used and 0.6 when a mechanical cone penetrometer 

used, and R1 is a function of the undrained shear strength of the soil and atmospheric pressure as given 

in the table below: 

 

Table 14: R1 Values for Cohesive Soils Used With the Dutch Method (Das, 2004) 
  
  

 R1 

≤ 0.50 1.00 

0.75 0.64 

1.00 0.53 

1.25 0.42 

1.50 0.36 

1.75 0.33 

2.00 0.30 
  

   

The method to calculate the unit frictional resistance of piles in clay using CPT results is the same for 

piles in sand, however the α’ coefficient is a function of the cone penetration resistance and atmospheric 

pressure rather than pile embedded depth and width, as shown below: 

 

The frictional resistance is given by the same formula as in section 4.1.1.3: 

 

                                                                           (19) 

 

where: f is  the unit frictional resistance (kN/m
2
 or lb/ft

2
), α’ is the CPT skin friction coefficient, and fc 

is the cone frictional resistance (kN/m
2
 or lb/ft

2
). 

 



56 
 

 

Figure 26: CPT Coefficient Versus Cone Resistance and Atmospheric Pressure (Das, 2004) 
 

 

4.1.3 Piles In Rock 

 

A method to determine the bearing capacity of piles driven to and into rocks is given by Goodman, 

1980 (Das, 2004). The ultimate bearing capacity is: 

 

                                                                           (32) 

 

where: Qp(ult) is the ultimate end bearing capacity of the pile on rock (kN or lb), qu(design) is the designed 

unconfined compressive strength (UCS) of the rock (kN/m
2
 or lb/ft

2
), Ap is the area of the pile (m

2
 or 

ft
2
), and Nφ is a function of the friction angle of the rock (as shown below). 

 

           
  

 
                                                           (33) 

 

where: φ’ is the effective friction angle of the rock mass (degrees). Typical friction angles according to 

rock type are displayed in Table 15. 
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Table 15: Effective Internal Angle Classified by Rock Type (Das, 2004) 

Rock Type Friction Angle, φ’ (degrees) 

Sandstone 27 – 45 

Limestone 30 – 40 

Shale 10 – 20 

Granite 40 – 50 

Marble 25 – 30 
 

 

The design UCS of rock (qu(design)) is typically one fifth of the UCS values determined from cores during 

laboratory testing. A factor of safety is used to account for scaling effects; tested cores are often intact 

whereas the rock mass itself frequently contains many discontinuities, such as joints, fractures, fissures, 

seams, and faults which decrease the strength of the stratum and may be missed during sampling. 

Laboratory determined UCS of rocks is given in Table 5 in section 2.2. The allowable end bearing 

capacity of the pile (Qp(all)) is customarily taken as one third of the calculated ultimate end bearing 

capacity (Qp(ult)). A factor of safety of three is used to account for unseen qualities in the rock, the 

uncertainty of the length of pile is driven into the rock, if the pile end is damaged due to driving or not 

and the extent of the damage, the fact that the pile may not develop full end bearing capacity since the 

settlement of the pile is likely less than the 10 to 25% of the pile width required, and the possibility that 

the end of the pile does not make full contact with the rock layer, either due to pile damage or rock and 

soil debris at the bottom of the socket in the rock layer.   

   

The limiting factors for estimating the bearing capacity of piles on the basis of theoretical formulae is 

that in general these methods are based upon test results which are carried out in-situ or in a laboratory 

where the samples are as undisturbed as possible, thus they represent the site conditions prior to pile 

driving and the method of installation is only taken into account for some formulae and not others. 

However, during driving the sub surface conditions change; i.e. in loose cohesionless soil the internal 

angle of friction increases, in very dense cohesionless soils the density decreases, in cohesive soils the 

remoulded zone loses strength and large pore water pressures are generated, and the soil beneath and 

around the pile increases in density. As such the predictions based on static formulae are inherently 

erroneous from the actual soil conditions and pile capacity. 

 

To predict the created pile bearing capacity with more accuracy, other methods are developed which 

take into account changes in soil properties as well as the method of installation. Some of these methods 

include pre-construction analysis such as computer modeling, analysis during driving such as by 
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dynamic formulae, and post driving analysis which physically loads the pile until failure to determine 

the true ultimate pile bearing capacity.      

 

From the 77 piles designated for comparisons of predicted to measured bearing capacities it is 

determined that none could be analysed for all of the theoretical formulae described above. The 

borehole records from the MTO publication are examined and none of the soil layers from any 

boreholes have the internal angles of friction or relative densities recorded. Ten do not contain the 

ground water elevations, only 17 have unit weights for all soil layers given, 53 piles have SPT counts 

recorded, but only nine also have unit weights for all soil layers given. Only 8 pile sites have CPT data 

recorded and only 19 have shear strength values for each soil layer recorded.  

 

For a complete list of theoretical static formulae including applicable soil types, general rules of thumb 

for parameters such as active earth coefficients, relative densities, a, b, β coefficients, friction angles, 

and digital borehole records from the MTO publication see Appendix A. 

 

4.2 Dynamic Predictive Formula 

 

Dynamic formulae are one of the oldest and most controversial methods used to predict pile capacity. 

They are formed on the basis of the principals of conservation of energy and momentum. They have the 

advantage of measuring conditions during driving and as such there is no need to estimate or assume 

soil properties at one location from information at another. Another possible advantage is that they are 

simple and straight forward, relating the ultimate pile capacity to common field measurements such as 

pile driver properties and blow counts and are independent of soil types and properties, thus similar 

blow counts in any soil should allow the piles to support similar ultimate loads. 

 

The disadvantages of dynamic formulae are that they are used to predict static pile bearing capacities of 

soils through observations from when the pile is advancing and the resulting soil reaction; but it is well 

known that soils behave very differently under dynamic and static conditions. This effect may explain 

the extreme variability in results when comparing predicted capacities to pile load tests which measure 

the actual ultimate load that a pile can support. Historically dynamic formulae under and over predict 

pile capacity by as much as a half to 30 times, respectively. Another failing is that dynamic formulae in 

no way convey the amount or rate of settlement that a pile may undergo after loading. Since most 

dynamic formulae do not take pile composition into account, there is no method which stipulates how 
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much of the developed capacity is due to frictional resistance and how much is due to end bearing 

resistance when they are used alone.  

 

Dynamic formulae are essentially energy balance equations where the energy generated by the hammer 

is equal to the energy imparted on the pile with the exception of any losses. The losses may be due to 

friction created by the ram weight during its fall, compression of the hammer weight, the pile, the pile 

cushion, and the soil during striking. Other areas of energy loss are due to hammers not performing at 

peak efficiencies, formulae which do not consider freeze effects, piles flexing during striking, and 

possible differences in pile driver properties used to calculate predictive capacities and those used 

during subsequent pile driving operations (Coduto, 2001).  

 

There are several assumptions made by basing the pile bearing capacity on dynamic methods, such as 

the behaviour of a pile during static loading is the same as its behaviour during dynamic loading and 

that the pile acts as a rigid rod which experiences an instantaneous compressive wave as the pile is 

struck. This assumes that when the pile is struck it experiences a compressional wave over its entire 

length and moves downward as a single unit; however, in reality only sections of a pile experience 

compressional forces at a time and if the pile is terminated in a very hard or dense stratum, the reflected 

stress wave may cause part of the pile to undergo tensile forces. Implicit in these formulae is the 

assumption that the ram weight used to strike the pile is significantly heavier than the pile itself. Once 

the ram weights are similar to the pile weights, as may occur in the case of long piles or pile made from 

heavy material such as concrete or concrete filled steel tubes then the assumption is no longer valid and 

the dynamic predictive formulae become less accurate.     

 

Dynamic formulae are used in two ways; to determine the specifications required during driving such as 

minimum hammer energy, blow counts, energy loses permitted and pile lengths or as a field aid in 

determining when the required pile capacity is achieved and when to terminate pile driving. This is 

done by inputting the required capacity, rated hammer energy and back calculating the number of blow 

counts required to create this capacity. This blow count is then used in the field as a guide to determine 

when a pile is driven to a satisfactory depth or bearing capacity. For greater confidence, the usual 

practice is to obtain a specified number of hammer blows per feet and repeat this for two to three feet 

sequentially.  

 

Although hundreds of equations exist for estimating pile capacity through dynamic means, the four 

most commonly used ones in North America are the Engineering News Record (ENR), Gates, FHWA 



60 
 

Modified Gates, and Hiley formulae. The MTO uses a customized version of the Hiley formula 

(hereafter referred to as the MTO modified Hiley formula), which is also used to analyse pile capacity 

from driving records and compared to the others as well as results from pile load tests.  

 

Dynamic formulae are developed according to results observed for driven piles only, thus piles installed 

by other means (boring, excavating, augering, vibratory, etc.) are not used during the analysis. 

 

4.2.1 ENR Formula 

  

The Engineering News Record or ENR formula is the oldest of the five studied, developed in 1888 by 

A. M. Wellington (Coduto, 2001) for timber piles installed by drop hammer (Fragaszy et al., 1985) and 

named after the civil engineering journal in which it first appeared which is given below as: 

 

  
   

   
                                                                      (34) 

 

where: R is the allowable pile capacity (lb) and En is the hammer energy (ft
.
lb). For drop hammers the 

energy is calculated as the product of the ram weight (lb) and the fall height (ft). For all other hammers, 

the energy is the rated energy of the pile driver and s is the final set of the pile (inches). The final set is 

defined as the amount of settlement the pile undergoes per one hammer blow at the end of driving, 

though it is typically averaged over the last 20 blows. The coefficient c represents the energy loss 

during the driving process by the means described above, in inches. From a unit check the numerator is 

in terms of feet and the denominator in inches, taking into account the 2 the units are still out of 

agreement by a factor of 6. This difference is taken as the safety factor to compensate for the 

heterogeneity within the subsurface, the variability in the energy developed, and measurements of pile 

set. 

     

The simplest of the formulae examined, it assumes that the energy created by the hammer is equal to 

the energy imparted on the pile minus any losses, given by the parameter c. The loss term is to account 

for the inefficiencies during the driving process. The amount of energy lost, given in inches is set equal 

to 1; later the c coefficient is modified to 0.1 inches for all other pile drivers including diesel and 

hydraulic hammers.  
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As illustrated in Section 3, as hammer technology improved, the force striking the pile as well as the 

blow rates generally increased; however, ram weights and fall heights decreased, thus some of the 

assumptions mentioned above lose validity and as a result the equations inherently become less 

accurate. Published findings consistently show that the ENR formula is under conservative, probably 

for this very reason. 

 

One of the objectives of this study is to determine if the loss (c) value should be modified to better 

reflect energy losses for modern hammers which are commonly used during pile driving. 

 

4.2.2 Gates Formula  

 

The Gates formula (Equation 35) named after Marvin Gates and developed in 1957 is based on his 

results from comparing the results from 130 pile load tests to the hammer energy used and the set 

developed for each pile driven (Gates, 1957). The piles examined are composed of steel, timber, precast 

concrete, thin shell cast in place concrete, pipe, and one composite pile. The predictive formula is given 

below as: 

 

  
 

 
                                                                       (35) 

 

where: R is the allowable bearing capacity of the pile (tons), En is the developed hammer energy 

calculated in the same manner as in the ENR formula (ft
.
lb), and s is the final pile set (inches). The 

1
/7 

parameter is derived from solving for the constants of inequality which relate the driving resistance to 

the hammer energy and pile set as well as applying a factor of safety of three. 

 

Unlike other formulae, the Gates formula uses the square of the developed energy based on 

Redenbacher‟s analysis. Mathematically, the maximum set is most 10 inches; larger sets cause the value 

of R to become negative; which does not make physical sense. A pile advancing 10 inches per blow 

indicates very easy driving. Although rare, in the 77 piles examined for this thesis one such case 

occurred. The predicted pile capacities are correspondingly low; however, pile load tests indicate a safe 

bearing capacity of 89 kN or approximately 10 tons.  
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4.2.3 FHWA Modified Gates Formula 

 

Many modifications are developed using the original Gates formula as a basis, to better predict pile 

capacity by taking into account novel technologies such as longer, heavier piles and innovative driving 

equipment. To account for these changes in driving techniques, governmental groups as well as private 

companies altered the Gates formula to better fit their own experiences during the construction 

processes.  

 

The Federal Highway Administration (FHWA) suggests using the following formula since 1997, first 

developed by Hannigan et al. (Allen, 2005): 

 

                                                                      (36) 

 

where: R is the allowable bearing capacity (kip), En is the energy of the hammer calculates in the same 

manner as in the ENR formula (ft
.
lb), N is the inverse of the pile set (blows/in). 

 

The FHWA modified Gates formula also contains a built in factor of safety of three. The modified 

formula also takes the efficiency of the pile driver used into account. For drop hammers the En term is 

multiplied by 0.75 and for all others it is multiplied by 0.85; this is meant to account for all the loses in 

energy transferred from the driver to the pile. The 1.75 coefficient at the beginning of the formula is an 

empirical factor to aid in giving the resulting capacity a closer estimate to field observations of true pile 

capacity as well as a fudge factor to give the resulting answer the correct units. 

 

There is a mathematical limitation on the logarithmic term. In order to keep the calculated capacity 

greater than zero, the N term must be greater than 0.1 or the calculated value does not make physical 

sense. Purely to aid in better correlating the predicted pile capacity to the measured pile capacity, a term 

of 100 is added to the end of the equation. This also makes no physical sense, since it implies that zero 

energy imparted onto a pile or that a pile that is not driven at all is able to support a load of negative 

100 kip. 
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4.2.4 Hiley Formula 

 

The Hiley formula is often described as the most elegant or comprehensive dynamic formula 

developed. This is due to the fact that it takes into account the pile driver efficiency, the weight of the 

pile, the length of the pile, and quantifies the loss of transferred energy due to the compression of the 

pile cap, pile, and soil explicitly. 

 

One of the most common versions of Hiley formula used is presented in Chellis (1961) for drop and 

single acting steam hammers as: 

 

   
     

               
 

    
   

     
                                                  (37) 

 

and for double acting, differential acting, and diesel hammers as: 

 

   
      

               
 

    
   

     
                                                  (38) 

 

where: Ru is the ultimate bearing capacity of the pile (lb), ef is the efficiency factor of the pile driver, 

which ranges from 65 to 100 percent, depending upon hammer type and manufacturer. During this 

study, the efficiency factor is taken as 75% for drop hammers and 100% for diesel hammers. Wr is the 

ram weight (lb), h is the fall height (in), En is the rated hammer energy (ft
.
lb), s is the final set of the pile 

(in), Wp is the pile weight including any soil attached to the outside, inside or within the flanges of the 

pile (lb), and e is the coefficient of restitution of the pile, which ranges from 0 to 0.8 depending upon 

cap material, physical condition and pile material. During this study the coefficient of restitution is 

taken as 0.5. C1, C2, and C3 are the amount of compression of the pile cap and head, pile, and soil, 

respectively (in). Compression values from Chellis (1961) are given below as Tables 16 to 18. 

 
Table 16: Temporary Compression Values of C1 - Pile Cap and Head (after Chellis, 1961) 

Material to Which Blow is 

Applied 
Easy Driving Medium Driving Hard Driving Very Hard Driving 

Head of Timber Pile no Cap 0.05 0.10 0.15 0.20 

Cap on Concrete Pile 0.12 0.25 0.37 0.50 

Steel Cap on Steel Pile 0.04 0.08 0.12 0.16 

Steel Pile no Cap 0.00 0.00 0.00 0.00 
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Table 17: Temporary Compression Values of C2 - Pile (after Chellis, 1961) 
Pile Type Easy Driving Medium Driving Hard Driving Very Hard Driving 

Timber  0.004 x L 0.008 x L 0.012 x L 0.016 x L 

Precast Concrete 0.002 x L 0.004 x L 0.006 x L 0.008 x L 

Steel 0.003 x L 0.006 x L 0.009 x L 0.012 x L 

 

 

Table 18: Temporary Compression Values of C3 – Soil (after Chellis, 1961) 
 Easy Driving Medium Driving Hard Driving Very Hard Driving 

Pile of Constant Cross Section 0 – 0.10 0.10 0.10 0.10 

 

 

The Hiley formula assumes that the pile acts as a rigid rod and that the compression it undergoes during 

striking is instantaneous throughout the entire pile length. This assumption is incorrect and causes 

predicted pile capacities to be much lower than they actually are for relatively long or heavy piles. 

Some authors suggest calculating the predicted capacity with half the pile length for hard driving 

conditions or using an equivalent pile length based on the time between hammer blows.      

 

4.2.5 MTO Modified Hiley Formula 

 

MTO engineers (Tse, 2010) use the following modified version of the Hiley Formula for drop and 

single acting steam hammers: 

 

   
       

     
                                                                   (39) 

 

and for diesel, double acting, and differential acting steam hammers: 

 

   
     

     
                                                                      (40) 

 

where: Ru is the ultimate pile resistance (kN), s is the measured pile penetration per hammer blow 

(mm), C is the measured rebound of the pile per hammer blow (mm), En is the rated hammer energy 

(Joules), Wr is the  mass of the pile ram or piston (kg), H is the free fall height of the mass (metres), g is 

the gravitational constant (9.81 m/s
2
), ef is the hammer efficiency based on the manufacturers‟ gross 

rated energy. For drop hammers ef is set to 0.75, for steam hammers ef is taken from 0.6 to 0.8, and for 

diesel hammers ef is set to 1.0, and n is the efficiency of the hammer blow, given as: 
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                                                                    (41) 

 

where: Wr is the same as defined above, Wp is the mass of the pile and anvil or helmet (kg), and e is the 

coefficient of restitution set to 0.25 for timber piles driven with a pile cushion, 0.32 for steel piles 

driven with a cushion, and 0.55 for steel piles driven without a cushion. 

 

Substituting equation 38 into 36 or 37 gives very similar equations to that of the original Hiley 

formulae; with the exception of the units, the set values, the coefficient of restitution (e), and the 

compression values (C). In the original Hiley Formulae C1, C2, and C3 are assumed from published 

works; however, in the MTO modified Hiley formulae C is measured from the individual pile being 

driven. Since the MTO modified Hiley formulae uses site data, it is assumed to be more accurate than 

the earlier Hiley formulae, nevertheless the results may still be similar depending on the sensitivity of 

the parameters e and C and the accuracy of the published data compared to real world observations.  

 

Since the MTO modified Hiley Formula is based on the same assumptions as the original it experiences 

the same limitations as the original.  

 

4.3 Computer Modeling 

 

The concept of relating developed pile capacity to measured site observations is appealing since it is 

intuitive, straight forward, and simple. Unfortunately, semi empirical dynamic formulae historically 

result in large variations and often skewed predictions of pile capacity so computer models are created 

to better correlate pile capacity with hammer energies, impact forces, and blow counts taking into 

account soil and pile properties.   

 

As mentioned in Section 4.2, pile prediction methods assumed that piles acts as a rigid body when 

struck by a hammer; however, this assumption is false and in reality the pile acts as a slender rod when 

experiencing stress waves from hammer impacts. In 1931, Isaacs suggested analyzing piles based on 

propagating stress waves. He described pile movement by the following one dimensional double 

differential equation (Coduto, 2001): 

 

   

   
 

 

 

   

   
                                                                    (42) 
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where: z is the depth of the pile section being analyzed (metres or feet), u is the displacement of the pile 

at the depth z (metres of feet), t is time (seconds), E is the modulus of elasticity of the pile (kN/m
2
 or 

lb/in
2
), and ρ is the density of the pile (kg/m

3
 or lb/ft

3
).  

 

When considering the boundary conditions of pile – soil system, the solution to the differential equation 

becomes non trivial and numerical methods are used to approximate the solution. In 1951 E.A.L. Smith 

began experimenting with computer programs and by 1960 developed the first numerical model used to 

predict pile bearing capacity via wave analysis (Coduto, 2001). He simulated the soil – pile system as a 

series of weightless springs and dashpots as shown below.    

 

 
Figure 27: Smith’s Numerical Model of pile soil system (Coduto, 2001) 

 

Each element of the system represents the properties of the pile or soil at that location in reality thus the 

stiffness of the spring corresponds to the stiffness of the pile and soil at the same depth being analysed. 

The springs and dashpots on the side of the pile represent the frictional resistance of the soil whereas 

the springs and dashpots on the bottom of the pile represent the point or end bearing resistance of the 

pile. 
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The springs are modeled as bilinear components which behave elastically until they reach their ultimate 

resistance (Ru) at a displacement q (or quake) at which point they are assumed to act completely 

plastically. The dashpots are set to behave linearly and react to the velocity of the pile being driven 

whose resistance is given by the Smith damping factor Js (s/m or s/ft) (Coduto, 2001).  

 

The factors Ru, q, and Js are calibrated to actual site values determined from comparisons to pile load 

tests and used as a site specific tool to estimate bearing capacities of future piles driven at the same site 

assuming the same pile driving equipment and same pile types are used. The wave analysis is used to 

produce multiple charts relating various blow counts to ultimate bearing pile capacities. These charts 

are then used on site to determine which blow count is necessary to obtain the desired pile capacity or, 

inversely, to indicate the current pile capacity developed at the current blow count and conclude if 

further driving is required or not. The wave analysis also has the advantage of calculating the stresses 

acting on the pile and determines if the pile is able to withstand the driving forces necessary for 

particular sites or applications. 

 

Examples of commercial wave analysis programs are TTI developed at Texas A&M University and 

WEAP (Wave Equation Analysis Program) developed at the Case Western Reserve University, both 

developed in 1976. WEAP has been updated several times; in 1981, as CUWEAP in 1983 and 

completely rewritten in 1986 (Goble and Rausche, 1986). In 1988 by GRL Engineers Inc. developed 

GRLWEAP which is still in use today with the most recent update in 2010. As programs evolve they 

are updated to include various pile driver properties such as different hammer models, energy, and 

velocity imparted to the pile and ram, cushion, cap and equipment properties such as weights, 

conditions, sizes, and elastic modulus. Many other finite element models are developed specifically for 

civil engineering and piling purposes such as midasGTS, FOXTA, DEFPIG, PIES, SCARP, ZSOIL, 

Plaxis 3D Foundation, IMAGINE, AFENA, and AllPile. 

 

The newest computer programs which are used for pile capacity analysis are specially written finite 

difference geotechnical code such as Fast Lagrangian Analysis of Continua in two or three dimensions 

(FLAC and FLAC3D) and Universal Distinct Element Code in two or three dimensions (UDEC and 

3DEC), both created by Itasca International Inc. first released in 1986 and 1988 which uses various soil 

models such as Mohr Coulomb, Cam Clay, Hoek Brown, Drucker Prager, elastic, and bilinear plastic  

to simulate the reaction to various forces acting in the subsurface using soil parameters such as internal 

angle of friction, shear strength, cohesion, water table level, soil unit weight, shear modulus, bulk 

modulus, and Young‟s modulus for different soil layers and structures.  
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The limitations of using computer models are similar to those of static theoretical formulae in that the 

basis for model meshes are most often from boreholes which are not always at the exact location of the 

pile being installed. Typically few boreholes are used to describe a relatively large area and as such the 

computer model is a simplified version of reality; additionally some subsurface features such as thin 

clay seams, vertical faults, fissures etc. may be missed by drilling samples. As well geologic conditions 

can change relatively abruptly from one geographic location to the other, thus the accuracy is limited 

from the beginning of the process. As with all techniques the accuracy of the prediction lays with the 

precision of the input parameters therefore the utmost care is required when measuring soil properties in 

the field or laboratory.  

 

Next specific programs are designed which record observations from hammer strikes during driving and 

are used to calculate pile capacity. Since these are methods used during driving they are discussed 

further in the following subsection. 

 

Unfortunately for this thesis, vital parameters of soil properties such as soil stiffness, damping factors, 

internal angles of friction, cohesion, shear and young‟s moduli, unit weights, and occasionally 

groundwater conditions and shear strength are not recorded for pile driving sites thus computer 

modelling results would yield limited benefits into assessing its accuracy as a tool to predict pile load 

capacity. 

 

4.4 Signal Matching Programs 

 

Developed relatively recently, signal matching is a high strain dynamic curve fitting predictive method 

which uses the measured force and acceleration acting on the pile during driving to predict pile bearing 

capacity by a correlation factor Jc (Coduto, 2001). This correlation factor is determined from comparing 

the measured values to static load tests at the site of driving.   

 

The earliest methodology developed at Case Western Reserve University from the 1960s to the early 

1970s is called CASE. The CASE method involves attaching strain gauges and accelerometers to the 

upper most portion of a pile and recording, via a pile driver analyzer (PDA), strain and acceleration data 

which the pile undergoes when struck. This data is transmitted to a personal computer in real time and 

the information is used to calculate forces acting on the pile, displacements achieved, and is then used 
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to infer hammer efficiencies, stresses induced within the pile, pile integrity, and developed pile bearing 

capacity.  

 

In 1972, Case Western Reserve University also developed the Case Pile Wave Analysis Program or 

CAPWAP. This methodology combines the numerical modeling of wave equation analysis programs 

such as WEAP or GRLWEAP with the onsite wave trace data from PDAs used in CASE type analysis. 

The basis of this approach is to compensate for the weaknesses of each method, namely that the WEAP 

method uses assumptions about the hammer energies and efficiencies achieved when driving piles, and 

the CASE method correlates the compressional force and velocity data to static load tests by the factor 

jc to predict pile capacity, which due to the variability of subsurface properties and soil stratigraphy may 

change from one pile to another even on the same site. CAPWAP takes the data measured during 

striking and uses that as the source for numerical modeling which is based on detailed soil properties 

measured in situ or from laboratory testing rather than empirical derived comparative values. The result 

is much more accurate predictions of pile bearing capacities.        

 

Research shows that wave analysis and wave trace programs drastically improves the predictive 

capacity of a pile compared to theoretical formulae, dynamic formulae, and computer modeling alone. 

The limitations of computer modeling programs are the assumptions that the programs are based upon 

as well as the simplification of the geology in which the pile is being driven. Wave trace programs 

suffer in the sense that it is not economical to instrument and record PDA measurements for every pile 

advanced on a site, thus only a select few piles can benefit from this analysis while the remainder may 

over or under predict pile capacities, the extent of which is determined by the estimates, assumptions, 

and uncertainties in pile driving equipment and subsurface conditions.  

 

Unfortunately for the analysis performed on the chosen sites, information required to execute wave 

trace programs such as driving measurements of force, velocity, and strain acceleration is not available 

in the pile records studied thus no comparison to dynamic formulae are established.  

 

4.5 Pile Load Tests 

 

Often considered the true measure of pile capacity are the results derived from static load tests typically 

performed a few days after driving, to allow time for soil set up or freeze to occur. Set up is the increase 

in soil strength as the excess pore water pressure created during driving dissipates for cohesionless soils 

or the partial strength that is regained after remoulding effects for cohesive soils dissipated. The average 
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time for excess pore water pressure to dissipate for cohesive soils is in the range of days to weeks 

depending upon hydraulic conductivity, thus static load tests performed on piles whose majority of 

resistance is from clay or silt layers may give conservative values of pile capacity subject to the time 

between driving and load testing.  

 

Many types of pile load tests exist such as, compression, extraction, tensile or pull, and lateral load 

tests. Seven types of compressive tests are commonly performed in North America; quick, maintained, 

loading in excess of maintained, constant time interval, constant rate of penetration, constant movement 

increment, and cyclic loading tests, all of which are standardized in ASTM D1143: Standard Test 

Methods for Deep Foundations Under Static Axial Compressive Load. Only the quick test is mandatory 

when testing piles according to the ASTM standard, the remaining six are optional.  

 

Standard D1143 allows for pile load tests to be conducted between 3 and 30 days or longer after driving 

to allow for soil setup or relaxation thus the measured capacity is as close to the long term pile capacity 

as possible. For more detailed information on the various types of pile load tests consult ASTM D1143 

directly. During the quick test, the pile is loaded at increments of 5% of the total estimated failure load, 

as calculated from one of the methods described in sections 4.1 or 4.2. The load is kept constant for a 

minimum of 4 to a maximum of 15 minutes during which time the pile displacement is recorded. The 

pile is similarly loaded until failure; however, the total load added should not be greater than the 

structural capacity of the pile. During unloading, the same time intervals are used and complete 

unloading is accomplished in five to ten equal decrements. Pile displacements are recorded at 0.5, 1, 2, 

4, 8, and 15 minute intervals after each load increment, at 1, 4, 8, and 15 minute intervals after each 

unloading decrement, and after all loads are removed.  

 

The maintained test involves loading the pile up to 200% of the design load or until failure, whichever 

occurs first. Each load is applied in increments of 25% of the design load and held until the rate of pile 

movement is less than 0.25 millimetres (0.01 inches) per hour. If failure occurs before the total 200% 

load weight is added, the failure load is maintained until the pile movement equals 15% of the pile 

width or diameter, after which the load is taken off the pile in 25% decrements with a maximum of 1 

hour between decrements. The overall test should take at least 12 hours. While performing the 

maintained test as well as the loading in excess of maintained, constant time interval loading, and cyclic 

loading tests the pile displacements are recorded before and after each loading increment at the 5, 10, 

and 20 minute mark as well as every 20 minutes thereafter. After the total load is applied, readings are 

taken in the same manner for the first two hours of the test and then every hour after that until the 12
th
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hour and then every 2 hours until the 24
th
 hour of the test. If failure occurs, the pile displacement is 

recorded immediately prior to removing the first load. During unloading, pile movements are recorded 

at 20 minute intervals for each unloading decrement as well as the 12
th
 hour after all loads are removed.   

 

Loading in excess of the maintained test is performed after the pile is unloaded from a previous test by 

loading it to its preceding maximum capacity in 50% increments within a maximum of 20 minutes per 

increment. After which load increments decrease to 10% of the design load until failure or the 

maximum required load is obtained. If failure occurs the load is increased until the pile displacement is 

15% of the pile width or diameter. Otherwise the full load is held for 2 hours then the load is taken off 

in four equal decrements of 20 minutes each. 

 

The methodology of the constant time interval loading test is done in a manner similar to the other tests 

however the increments are 20% of the design load and are completed in 1 hour stages. The unloading 

decrements are also completed in 1 hour intervals. 

 

The constant rate of penetration test employs any device which can vary the load smoothly to ensure 

that the rate of pile displacement is 0.25 to 1.25 millimetres (0.01 to 0.05 inches) per minute in cohesive 

soils or 0.75 to 2.5 millimetres (0.03 to 0.1 inches) per hour in cohesionless soils. The load is increased 

until the pile penetration is 15% of the pile width or until pile advancement cannot continue. Because of 

the constant rates of penetration readings are taken every 30 seconds during loading and immediately 

after unloading as well as an hour after the final load is removed.  

 

The constant movement increment test is performed by applying loads which cause the top of the pile to 

advance downward at a rate of 1% of the pile width, additional loads are only introduced when the 

variation in load required to keep the movement increment constant is less than 1% of the total load 

applied per hour. The pile is loaded in this fashion until the total displacement is equal to 15% of the 

pile width or diameter. The pile is unloaded in four equal decrements, each one taken off when the rate 

of load variation is less 1% of the total load applied per hour. Pile displacements are recorded 

immediately prior to and after each loading increment as well as each unloading decrement and as 

frequently as necessary to ensure that the rate of load variation is properly calculated to maintain each 

incremental settlement as well as measure the pile rebound due to unloading. Additionally, a final 

reading is recorded 12 hours after the final load is removed. 
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When completing the cyclic loading test, the pile is loaded to 50, then 100, then 150% of the design 

load holding the total test load of each case for an hour. While unloading, the decrements are equal to 

the loading ones but are completed in 20 min intervals. After removing the maximum load the 

following loads are applied in 50% increments of the design load allowing 20 minutes between load 

increments.  

 

Despite the method(s) chosen, the results are a set of graphs which charts the applied loads and test 

times against pile displacements. ASTM D1143 classifies failure during a test as when the total applied 

load causes the pile displacement to be 15% of the average pile width or diameter; however the safe 

working load or capacity of the pile is determined by the engineer according to the test results.  

 

The Canadian Foundation Manual (CFM, 1985) suggests performing the quick or constant rate of 

penetration tests because they are less time consuming, more cost effective, and the results, in terms of 

estimating bearing capacities are easier to interpret than those from the other methods described above. 

In Canada there are three main methods are used for determining the safe bearing capacity of the pile, 

listed below. This is done by measuring the amount of deflection as loading is increased and comparing 

it to the settlement that the pile undergoes. 

 

4.5.1 Brinch Hansen 80% Failure Criterion 

 

First proposed in 1963, the Brinch Hansen 80% failure criterion assumes that the mechanism governing 

pile failure is plunging, thus the derived bearing capacity value it gives is considered the true pile 

failure value. To determine the ultimate bearing capacity of the pile, a chart of the root of settlement 

over load (  /Q) against settlement (∆) is graphed, as seen in Figure 28.  

 

 

Figure 28: Brinch Hansen 80% Failure Criterion Example (CFM, 1985) 
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The slope of the line in Figure 28 is denoted as C1 and the y-intercept as C2. The ultimate load is then 

given by Equation 43: 

 

   
 

      
                                                                    (43) 

 

where: Qu is the ultimate load (kN or tons), C1 is the slope of the graphed line (1/kN
.
    or 

1/ton
.
   ), and C2 is the y-intercept (   /kN or    /tons).  

 

The calculation of Qu is only valid if the following criteria are met; namely that the points plot as a 

straight line and the load test causes a plunging failure of the pile to occur. Confirmation that the second 

criteria is done by plotting the point (0.25∆u, 0.8Qu) on the load settlement graph, if it lies on or near the 

curve then the pile has been loaded to failure. The value of ∆u (mm or in) is taken as the y intercept 

divided by the slope of the Brinch Hansen graph (C2/C1).    

 

If plunging failure is not reached then the standard practice is to assume that the maximum applied load 

is the load which causes failure. This is obviously erroneous and data from pile load tests should not be 

extrapolated to obtain higher working load values than tested, for safety reasons. 

 

4.5.2 Chin Failure Criterion 

 

Published in 1970, the Chin failure criterion results in a straight line graph, indicating if a pile reaches 

failure during the load test, similar to that of the Brinch Hansen method having settlement (∆) on the x 

axis but with the settlement over load (∆/Q) on the y axis, not the root of settlement over load. 

 

The inverse of the slope of the straight line is taken as the ultimate pile bearing capacity; however, the 

value is always greater than the maximum load applied during the static pile test. Thus extreme caution 

must be used if this value is used as the basis of design procedures. The Chin failure criterion does have 

the advantage of being able to show if the pile is damaged or not during the load test. If so this shows 

up as sharp changes or curves in the graphed line.  
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4.5.3 Davisson Offset Limit Load 

 

Developed in 1972, the Davisson offset limit load is a method which is used to predict the safe bearing 

capacity of piles by considering the elastic shortening that the pile undergoes when having various 

loads placed on it during pile load tests. To be effective, the resulting load settlement chart should be 

linear on both axes and have a scale such that when graphing the elastic compression of the pile the line 

it forms is at an angle of approximately 20 degrees between it and the load axis of the chart. Calculating 

the safe bearing capacity of the pile involves determining the load (QL) which corresponds to a 

specified pile head displacement (∆) as given by the formula below (CFM, 1985): 

 

                                                                        (44) 

 

where: ∆ is the movement of the pile head (mm), b is the width or diameter at the pile toe or expanded 

pile base (mm), and δ is the elastic shortening of the pile (mm); as given below: 

 

  
  

   
                                                                        (45) 

 

where: Q is the applied load (kN or ton), L is the pile length (metre or feet), Ap is the cross sectional 

area of the pile (m
2
 or ft

2
), and E is the elastic or Young‟s modulus of the pile material (kN/m

2
 or 

ton/ft
2
). 

 

Once ∆ is known, it is input into Equation 46. 

  
  

 
                                                                       (46) 

 

where: all parameters are the same as defined above. Equation 43 gives a straight line which is the 

theoretical elastic compression or deformation that the pile undergoes during testing. A parallel line is 

then drawn with an offset given by: 

 

                                                                         (47) 

 

The point where the parallel line intersects the load settlement curve is taken as the offset limit load 

(QL) as seen in Figure 29. 
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Figure 29: Davisson Offset Limit Load Determination Example (CFM, 1985) 

 

The offset limit load is developed for end bearing driven piles assuming that little to no resistance is 

developed by skin friction. Other assumptions are that the pile head is free and the end is fixed. These 

assumptions are not always valid and as such the calculated allowable load are overly conservative.  

 

Some limitations of the offset limit load are that if it is used for bored piles the estimated pile capacity 

is overly conservative, it is very susceptible to errors in recording amounts of loads, pile movements, 

and estimating Young‟s modulus, especially for pre-cast and cast in place concrete piles and if used for 

friction piles the elastic deformation is less than the theoretically calculated value and thus the 

calculation of safe bearing capacity of the pile is overestimated. Since the methodology is developed for 

driven piles, the offset distance or required pile displacement, x, may not be sufficient for cast in place 

piles to fully develop toe bearing resistance. This is due to the fact that in situ piles develop a dense soil 

bulb during placement thus the amount of settlement needed to undergo is greater than that of 

displacement piles.   
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4.6 Load And Resistance Factor Design 

 

All the methods discussed thus far estimate pile capacity on the basis of an allowable stress design 

(ASD). The ASD method involves determining the ultimate capacity or strength of a pile by various 

methods which calculate the ultimate load that a pile can support through theoretical, empirical or semi-

empirical formulae, and physical tests. The allowable load is then calculated as the ultimate pile 

strength, resistance or capacity divided by a factor of safety. The factor of safety is somewhat arbitrary 

and for pile design can range anywhere from slightly greater than 1 to 6, although a value of 1.5 to 3 is 

typical.  

 

The general rule of thumb is that the larger the uncertainty in design, the larger the factor of safety used. 

In certain instances the factor of safety is predetermined such as built in ones within certain dynamic 

formulae or prescribed as in specific building codes. In other cases the factor of safety is dependent 

upon the judgement and experience of the engineer. Uncertainty in design is with respect to the 

variability or unknowns in applied pile loads, estimated and measured pile capacities, assessed and 

assumed soil properties, and rated and actual installation equipment parameters. Another consideration 

for determining safety factors is the consequence of failure; the greater the magnitude of failure, 

monetary loss or loss of life, the greater the factor of safety employed. Unfortunately as the factor of 

safety increases so does the cost of the construction project, thus from an economical viewpoint, the 

less efficient the design becomes. 

 

Due to the subjective nature of assigning the actual value to the factor of safety, projects which use the 

ASD method are occasionally criticized as being overdesigned, wasteful, and redundant. This is 

because during typical pile design, factors of safety are used at many sections, not just at the end 

calculation when the ultimate pile capacity is determined. During the initial design piles are never 

intended to be loaded to their full structural capacity, predictive formulae use various factors of safety 

to estimate bearing capacities, and static load test derived capacities are from investigations which 

generally only load piles enough to cause a set amount of settlement. When various piles are tested the 

assumed bearing capacity for all piles is set equal to the results of the weakest pile and in the case of 

differential loadings the load that every pile undergoes during the foundation lifespan is taken as the 

maximum possible load which is most likely to occur. Another point of contention is that the 

determined safe pile load comes from a mixture of different techniques, namely theoretical, dynamic, 

and static methods. Theoretical techniques assume that parameters are exact, constant, and every aspect 

of the foundation soil system acts ideally which is erroneous. Combining static and dynamic methods 
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are equally faulty since it assumes that piles behave the same during static loading as they do during 

dynamic loading which is also incorrect.      

 

One method used which attempts to overcome these limitations is to perform a reliability based design 

which uses probabilities to estimate the actual or maximum pile capacities developed based on 

examining critical design parameters such as pile strengths, capacities, moments, deflections, 

settlements, etc. through numerous samples of previously installed pile datasets, therefore these designs 

are referred to as ultimate stress designs or USDs. The three most popular reliability techniques include 

stochastic, first order second moment (FOSM), and load and resistance factor design methods (LRFD). 

The manufacturing industry utilizes reliability methods which are proven to save money and aid in 

increasing the efficiency and reliability of designs (Coduto, 2001). Despite the method being used the 

aim of each is the same; to quantify the probability that a specific design fails or succeeds based upon a 

specified reliability while ensuring that the project is still as economical as possible. Corollary effects 

are that the results obtained may be used to form construction guidelines to aid in the overall design or 

specific components of deep foundations. LRFD is the simplest of the reliability methods discussed and 

the most similar to traditional ASD methods, thus it is likely to be the most readily adopted by civil and 

geotechnical engineers. Designs are based on performing a probability analysis on a statistically 

sufficient number of samples to determine how they are distributed and allowing parameters such as 

means, standard deviations and coefficients of variation to be calculated and probability density 

functions to be created. For deep foundations, the probability density functions typically describe the 

likelihood of a pile achieving a certain bearing capacity or having a specific load applied to it, as seen in 

Figure 30.  

 

 

Figure 30: PDF of deep foundation bearing capacity (Allen, 2005) 
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The overlapping sections of the density functions above indicate the probability that the applied load 

exceeds the pile resistance for a specific design. The design is then stipulated to ensure that the 

possibility of pile failure during its expected lifespan is as low as feasibly possible. To account for the 

variability and uncertainties in field conditions, pile behaviour, developed capacities and applied loads, 

load and resistance factors are calculated to ensure that a certain level of reliability in the design is 

consistently achieved. Resistance factors, also known as reduction factors, are values less than unity 

while the load factors are greater than unity. This is similar to factors of safety used in ASD methods; 

however, whereas safety factors are based upon uncertainties in design and are somewhat subjective, 

LRFD factors are based upon examination of piles by type, installation method, soil conditions, and 

their behaviour via measured resistance. These factors are then applied to current or newly developed 

formulae to determine if a particular pile design is adequate to support the desired load or indicate if 

another type of pile or installation method is required. 

 

Relatively new to the field of geotechnical engineering; LRFD has been used in concrete design and 

steel construction since 1960 and 1986, respectively, and is currently in development for wood and 

masonry applications (Coduto, 2001). Unlike steel or concrete, soil is not a manmade substance thus 

properties such as strength are not constant but vary considerably from site to site, soil layer to layer, 

within a single layer laterally and even vertically within a soil profile. This variability may cause 

difficulty in the determination of the factors and may result in a range of values rather than a single 

value. 

 

In the United States, departments of transportation (DOT) such as those of Washington State (Allen, 

2005) commissioned studies to better predict pile capacities from dynamic formulae and wave analysis 

programs such as ENR, Hiley, Gates, WEAP, GRLWEAP, CAPWAP equations. LRFD is used to 

calibrate these formulae to improve their pile predictive capabilities. The results from the studies 

concluded that LRFD analyses along with Monte Carlo simulations most improved predications of 

CAPWAP formulae with resistance, or reduction, factors of 0.7 to 0.8.  

 

Ideally, LRFD allows for the creation of formulae which better predicts pile behaviour consistently to a 

predetermined degree of reliably based upon objective measurements; however, the current state of load 

and resistance factors is to modify existing dynamic formulae rather than develop new ones based 

entirely upon results from LRFD studies and as such are still affected by the same limitations 

previously discussed such as using dynamic measurements to predict the static behaviour of piles. 
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5.0 RESULTS 
 

 

In order to determine which dynamic formulae best predicts pile load bearing capacities, the MTO 

publication Pile Load and Extraction Tests 1954 – 1992 and given Excel files; PD_Records10s.xls, 

PD_Records20s.xls, and PD_Records30s.xls are used as the basis to create a database to compare pile 

load test results to the calculated pile capacities derived from the five formulae discussed in section 4.2. 

 

The results from each dynamic formula are compared to the pile load tests as well as each other and 

subdivided into groups by hammer type and pile material to determine which factors affect dynamic 

predictive accuracy. Simple statistics are carried out to quantify the variability of each predictive 

method through R – squared, correlation, factor of safety, and standard deviation values.    

  

5.1 MTO Database 

 

The MTO publications contain a total of 371 pile installation records from 41 different sites across 

northern and southern Ontario. All the piles are load tested, however out of 98 compression tests taken 

to failure only 77 are determined as adequate for pile analysis, 48 load tests are pull or extraction tests, 

118 tests are repeated compression and extraction tests, 24 piles are lateral load tests, 9 piles are 

installed by boring or coring methods, 2 piles are installed at orientations other than vertical, 40 

compression static load tests are not taken to failure or their maximum permissible load and the 

remainder are missing pertinent information required for analysis such as static load test results, final 

set or blow count and hammer information including type, weight, and rated energy output. If this 

information is found and added, the database can potentially expand to 148 piles, almost double the 

current size and potentially add more reliability to the derived results. Tables 19 through 22 goes into 

detail with regards to site number, pile number, material type, driven lengths, and load tests performed. 

Table 23 presents the piles which are not used during the analysis and states which missing parameters 

are required. 

 

For a complete record of all MTO piles which have undergone compression load tests please see 

Appendix B.   
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Table 19: Compression Load Tested Piles used for Analysis 
Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 

1 C1 Size 32 Timber – Untreated   7.19 

2 5 Steel Tube Concrete Filled   5.79 

4 2 Steel Tube Concrete Filled 35.97 

7 2 HP 310 x 79 22.25 

14 2 Steel Tube Concrete Filled 18.29 

15 1 Franki Displacement Pile   7.32 

15 2 Size 36 Timber – Untreated   8.99 

16 3 Size 36 Timber- Untreated 12.19 

17 1 HP 310 x 110 25.72 

17 2 HP 310 x 110 26.47 

22 3 Steel Tube Concrete Filled 15.30 

22 4 Steel Tube Concrete Filled 30.15 

22 5 Steel Tube Concrete Filled 15.28 

22 9 Size 36 Timber – Untreated 14.46 

23 1 Size 36 Timber – Untreated   3.11 

23 2 Steel Tube Concrete Filled   3.02 

23 3 HP 310 x 110   3.05 

24 1 Size 36 Timber - Untreated 14.25 

24 2 Steel Tube Concrete Filled 15.39 

24 3 Steel Tube Concrete Filled 22.40 

24 4 HP 310 x 79 22.40 

24 5 HP 310 x 79 15.39 

25 1 Steel Tube Concrete Filled  5.64 

25 4 HP 310 x 79 18.44 

25 5 Steel Tube Concrete Filled 18.35 

25 6 Steel Tube Concrete Filled   9.27 

25 9 HP 310 x 79   9.39 

26 1 Steel Tube Concrete Filled 12.19 

26 4 Steel Tube Concrete Filled 30.48 

26 5 Steel Tube Concrete Filled 42.67 

26 9 Size 36 Timber – Untreated 21.95 

28 1 HP 310 x 79   6.10 

28 2 HP 310 x 79 18.29 

28 3 HP 310 x 79 12.19 

28 4 Precast Concrete Pile 11.89 

28 5 Precast Concrete Pile 17.98 

28 6 Precast Concrete Pile   5.79 

28 7 Steel Tube Concrete Filled   6.10 

28 8 Steel Tube Concrete Filled 18.29 

28 9 Steel Tube Concrete Filled 12.04 

29 1 Size 33 Timber – Untreated 13.72 

29 2 Size 33 Timber – Untreated 13.72 

31 1 Size 30 Timber – Treated   6.55 

31 2 Size 30 Timber – Treated   4.72 

31 3 Size 36 Timber – Treated   3.51 

32 4 Size 36 Timber – Treated 13.48 
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Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 

32 5 Size 33 Timber – Treated   9.14 

32 6 Size 30 Timber – Treated   7.58 

33 2 Steel Tube Concrete Filled 32.67 

33 3 Precast Concrete Pile 34.85 

33 4 Precast Concrete Pile 16.61 

33 5 Size 36 Timber – Treated   8.69 

35 1 HP 310 x 110 14.78 

35 4 Steel Tube Concrete Filled 14.69 

35 5 HP 310 x 110 27.58 

35 6 Steel Tube Concrete Filled 27.42 

35 7 Size 36 Timber – Treated 12.67 

35 10 Precast Concrete Pile 14.63 

36 389 Steel Tube Concrete Filled 29.57 

36 391 Steel Tube Concrete Filled 31.39 

37 3 HP 310 x 79 14.48 

37 5 HP 310 x 79 31.24 

37 6 HP 310 x 110 14.48 

37 8 HP 310 x 110 30.92 

37 9 Size 36 Timber – Untreated   9.55 

37 10 Size 36 Timber – Treated 10.36 

38 2 Size 36 Timber – Treated   3.30 

38 3A Size 34 Timber – Treated   5.00 

38 4 Steel Tube Concrete Filled 11.90 

38 5 Steel Tube Concrete Filled 16.10 

39 1 Size 36 Timber – Treated 17.13 

39 2 HP 310 x 110 25.50 

39 3 Steel Tube Concrete Filled 25.40 

40 1 Size 36 Timber – Treated 14.70 

40 2 HP 310 x 110 24.50 

40 3 Steel Tube Concrete Filled 17.20 

41 1 Size 36 Timber – Treated   8.00 
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Table 20: Extraction Load Tested Piles 
Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 

22 3 Steel Tube Concrete Filled 15.30 

22 4 Steel Tube Concrete Filled 30.15 

22 5 Steel Tube Concrete Filled 15.28 

23 1 Size 36 Timber – Untreated   3.11 

23 2 Steel Tube Concrete Filled   3.02 

23 3 HP 310 x 110   3.05 

24 1 Size 36 Timber - Untreated 14.25 

24 2 Steel Tube Concrete Filled 15.39 

24 3 Steel Tube Concrete Filled 22.40 

24 4 HP 310 x 79 22.40 

24 5 HP 310 x 79 15.39 

25 1 Steel Tube Concrete Filled   5.64 

25 4 HP 310 x 79 18.44 

25 5 Steel Tube Concrete Filled 18.35 

25 6 Steel Tube Concrete Filled   9.27 

25 9 HP 310 x 79   9.39 

26 1 Steel Tube Concrete Filled 12.19 

26 4 Steel Tube Concrete Filled 30.48 

26 5 Steel Tube Concrete Filled 42.67 

26 9 Size 36 Timber – Untreated 21.95 

28 2 HP 310 x 79 18.29 

28 5 Precast Concrete Pile 17.98 

28 7 Steel Tube Concrete Filled   6.10 

28 8 Steel Tube Concrete Filled 18.29 

28 9 Steel Tube Concrete Filled 12.04 

29 1 Size 33 Timber – Untreated 13.72 

29 2 Size 33 Timber – Untreated 13.72 

35 1 HP 310 x 110 14.78 

35 4 Steel Tube Concrete Filled 14.69 

35 5 HP 310 x 110 27.58 

35 6 Steel Tube Concrete Filled 27.42 

35 7 Size 36 Timber – Treated 12.67 

35 10 Precast Concrete Pile 14.63 

37 3 HP 310 x 79 14.48 

37 4 HP 310 x 79 38.94 

37 5 HP 310 x 79 31.24 

37 6 HP 310 x 110 14.48 

37 7 HP 310 x 110 45.29 

37 8 HP 310 x 110 30.92 

39 1 Size 36 Timber – Treated 17.13 

39 2 HP 310 x 110 25.50 

39 3 Steel Tube Concrete Filled 25.40 

40 1 Size 36 Timber – Treated 14.70 

40 2 HP 310 x 110 24.50 

40 3 Steel Tube Concrete Filled 17.20 

41 1 Size 36 Timber – Treated   8.00 

41 2 HP 310 x 110 19.50 

41 3 Steel Tube Concrete Filled 16.00 
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Table 21: Lateral Load Tested Piles 
Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 

21 2 Cast In Situ Concrete Pile 18.59 

21 6 HP 370 x 108 22.99 

35 5 HP 310 x 110 27.58 

35 6 Steel Tube Concrete Filled 27.42 

37 3 HP 310 x 79 14.48 

37 4 HP 310 x 79 38.94 

37 5 HP 310 x 79 31.24 

37 6 HP 310 x 110 14.48 

37 7 HP 310 x 110 45.29 

37 8 HP 310 x 110 30.92 

38 1 HP 310 x 110 16.20 

38 2 Size 36 Timber – Treated   3.30 

38 3A Size 34 Timber – Treated   5.00 

38 4 Steel Tube Concrete Filled 11.90 

38 5 Steel Tube Concrete Filled 16.10 

39 1 Size 36 Timber – Treated 17.13 

39 2 HP 310 x 110 25.50 

39 3 Steel Tube Concrete Filled 25.40 

40 1 Size 36 Timber – Treated 14.70 

40 2 HP 310 x 110 24.50 

40 3 Steel Tube Concrete Filled 17.20 

41 1 Size 36 Timber – Treated   8.00 

41 2 HP 310 x 110 19.50 

41 3 Steel Tube Concrete Filled 16.00 

 

 

Table 22: Piles Installed by Coring/Boring Methods 
Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 

3 A Franki Displacement Pile   8.00 

3 B Franki Displacement Pile 12.31 

15 1 Franki Displacement Pile   7.32 

18 C1 Cast In Situ Concrete Pile   9.45 

20 SA4 Franki Displacement Pile 16.46 

21 2 Cast In Situ Concrete Pile 18.59 

27 1 Cast In Situ Concrete Pile   5.79 

27 2 Cast In Situ Concrete Pile   6.25 

27 3 Cast In Situ Concrete Pile   5.92 
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Table 23: Piles Missing Essential Information for Analysis 

Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 
Missing Data 

4 1 Not Recorded Not Recorded Pile Load Test Results 

5 1 HP 310 x 79 33.53 Pile Load Test Results 

5 37 HP 310 x 79 50.60 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

5 43 HP 310 x 79 20.73 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

5 F10 HP 310 x 79 16.76 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

5 G5 HP 310 x 79 16.76 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

6 3 Not Recorded Not Recorded Pile Load Test Results 

6 5 Not Recorded Not Recorded Pile Load Test Results 

6 8 Not Recorded Not Recorded Pile Load Test Results 

7 1 Not Recorded Not Recorded Pile Load Test Results 

7 3 Not Recorded Not Recorded Pile Load Test Results 

8 1 
Size 36 Timber – 

Treated 
  9.85 Hammer Model/Ram Weight 

8 2 
Size 36 Timber – 

Treated 
10.06 Hammer Model/Ram Weight 

10 A 
Size 32 Timber – 

Treated 
15.06 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

10 D 
Size 36 Timber – 

Treated 
15.51 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

11 1 HP 310 x 79 26.82 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

18 T1 
Size 30 Timber – 

Treated 
12.50 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

18 T2 
Size 36 Timber – 

Treated 
12.34 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

18 T3 
Size 32 Timber – 

Treated 
12.38 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

18 C1 
Cast In Situ 

Concrete Pile 
  9.45 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

19 3 
Size 36 Timber – 

Untreated 
13.72 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

19 4 
Size 36 Timber – 

Untreated 
  8.84 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

21 7 HP 14 x 73 23.04 Pile Load Test Results 

22 8 
Steel Tube 

Concrete Filled 
22.56 Pile Load Test Results 

24 6 
Steel Tube 

Concrete Filled 
22.56 Pile Load Test Results 

24 7 
Steel Tube 

Concrete Filled 
24.09 Pile Load Test Results 



85 
 

Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 
Missing Data 

24 8 
Steel Tube 

Concrete Filled 
25.91 Pile Load Test Results 

24 9 
Steel Tube 

Concrete Filled 
22.25 Pile Load Test Results 

25 2 
Steel Tube 

Concrete Filled 
18.29 Pile Load Test Results 

25 3 
Steel Tube 

Concrete Filled 
18.29 Pile Load Test Results 

25 7 
Steel Tube 

Concrete Filled 
18.29 Pile Load Test Results 

25 8 
Steel Tube 

Concrete Filled 
18.29 Pile Load Test Results 

26 2 
Steel Tube 

Concrete Filled 
36.58 Pile Load Test Results 

26 3 
Steel Tube 

Concrete Filled 
36.58 Pile Load Test Results 

26 7 
Steel Tube 

Concrete Filled 
36.58 Pile Load Test Results 

26 8 
Steel Tube 

Concrete Filled 
36.58 Pile Load Test Results 

29 35 Not Recorded 12.50 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

29 65 Not Recorded 12.50 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

29 95 Not Recorded 21.03 
Hammer Model, Rated Energy, Final 

Set/Blow Count 

30 3-1 
Steel Tube 

Concrete Filled 
44.50 Pile Load Test Results 

30 3-2 
Steel Tube 

Concrete Filled 
39.01 Pile Load Test Results 

30 4 
Steel Tube 

Concrete Filled 
40.39 Pile Load Test Results 

30 5-1 
Steel Tube 

Concrete Filled 
39.93 Pile Load Test Results 

30 5-2 
Steel Tube 

Concrete Filled 
40.54 Pile Load Test Results 

30 9 
Steel Tube 

Concrete Filled 
40.84 Pile Load Test Results 

30 10-1 
Steel Tube 

Concrete Filled 
39.01 Pile Load Test Results 

30 10-2 
Steel Tube 

Concrete Filled 
40.23 Pile Load Test Results 

30 12 
Steel Tube 

Concrete Filled 
39.93 Pile Load Test Results 

31 41 
Size 14 Timber – 

Treated 
  6.40 Pile Load Test Results 

31 43 
Size 14 Timber – 

Treated 
  5.18 Pile Load Test Results 
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Site 

Number 

Pile 

Number 
Pile Type 

Embedded 

Length (m) 
Missing Data 

31 51 
Size 14 Timber – 

Treated 
  5.49 Pile Load Test Results 

34 15 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

34 18 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

34 19 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

34 23 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

34 25 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

34 27 
Steel Pile Concrete 

Filled 
18.59 

Hammer Model, Rated Energy, Final 

Set/Blow Count 

35 2-1 
Steel Pile Concrete 

Filled 
27.13 Pile Load Test Results 

35 2-2 HP 12 x 74 24.99 Pile Load Test Results 

35 3 
Steel Pile Concrete 

Filled 
25.30 Pile Load Test Results 

35 8 
Steel Pile Concrete 

Filled 
27.43 Pile Load Test Results 

35 9 
Steel Pile Concrete 

Filled 
28.48 Pile Load Test Results 

35 12 HP 12 x 74 26.52 Pile Load Test Results 

35 14 HP 12 x 74 17.37 Pile Load Test Results 

35 15 HP 12 x 74 25.30 Pile Load Test Results 

35 16 HP 12 x 74 27.74 Pile Load Test Results 

35 18-1 HP 12 x 74 17.37 Pile Load Test Results 

35 18-2 HP 12 x 74 24.38 Pile Load Test Results 

35 19 HP 12 x 74 24.69 Pile Load Test Results 

35 21 HP 12 x 74 24.38 Pile Load Test Results 

35 22 HP 12 x 74 27.13 Pile Load Test Results 

 

 

In summary from the 77 piles analysed; 27 piles are composed of concrete filled steel tubes, 24 are 

composed of timber, 19 are composed of steel H sections, and 7 are composed of precast concrete. 

Examining piles based on installation method, 32 are installed by drop hammer and 45 are installed by 

diesel hammer. Of the drop hammered installed piles, 10 are composed of concrete filled steel tubes, 12 

are timber, 6 are steel H section, and 4 are precast concrete piles. Of the diesel hammered installed 

piles, 17 are composed of concrete filled steel tubes, 12 are timber, 13 are steel H sections, and 3 are 

precast concrete piles.    
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When comparing the Excel sheets to the MTO book, several pile records repeated between the two 

sources; however some discrepancies exist with respect to pile types, driven lengths, hammer types, 

rated energies or blow counts. In the case of conflicting information, the MTO book is taken as having 

the correct information and values from it are used as the source of all calculations. Other pile records 

which are missing pertinent information such as hammer energies, fall heights, and ram weights are 

taken from literature published about the specific hammer make and model used during driving. Those 

records which are missing information which is essential to perform predictive bearing capacity 

calculations or the information could not be found in published literature are omitted from the study 

database.      

 

5.2 Dynamic Predictions 

 

To calculate bearing capacities according to Equations 31 to 38, only the rated energy and set or blow 

count is required; however, for the Hiley and MTO modified Hiley formulae the weight of the pile 

including any soil around or within the pile is also required. 

 

In Ontario, the two most common species of trees grown which are used for piling are jack pines and 

red pines, however throughout Canada other species commonly used include Douglas fir, western red 

cedar, western larch, spruces, oaks, maples, and tamarack (CITC, 1962). Since it is not known which 

species are used in the MTO database, bearing capacity calculations are performed using both the low 

and high end range of timber densities ranging from 390 to 810 kg/m
3
 (24 to 51 lb/ft

3
) for tree species 

based upon values presented in
 
ASTM standard 2555-06. The percent difference in bearing capacities 

predicted from using these two values range from 1.3% to 20.9% for calculations derived from the 

Hiley formula and 1.6% to 30.9% for calculations derived from the MTO modified Hiley formula. 

Although the percent difference of the latter numbers appears significant, the average percent difference 

derived from the Hiley and MTO modified Hiley formulae are 6.8% and 9.4%, respectively, therefore 

they are considered an insignificant source of variation.   

 

Since only the material density of H piles and steel tubes are given in the database, the density of all 

other materials is estimated based on typical values found in literature. For H piles, the total pile weight 

is assumed to include the weight of the steel pile itself plus the soil displaced between the flanges. For 

the calculation two assumptions are made; that the soil displaced within the flange extends for the entire 

length of the pile and the density of the soil is 2 650 kg/m
3
 (165 lb/ft

3
). 
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Similarly as for H piles, the linear weight of steel tubes is given in units of kg/m or lb/ft; however the 

density of concrete is not. From literature values, the density of concrete is assumed to range from        

2 082 to 2 243 kg/m
3
 (130 to 140 lb/ft

3
). Bearing capacities are determined using both densities and 

have a percent difference ranging from 1.0% to 1.9% from Hiley formula calculations and 1.1% to 

3.0% from MTO modified Hiley formula calculations for concrete filled steel tube piles and 1.0% to 

2.2% from Hiley formula calculations and 1.3% to 3.6% from MTO modified Hiley formula 

calculations for precast concrete piles. 

 

On average, the percent difference in predicted bearing capacities from using the high and low end 

density values of wood and concrete is determined as 3.7% from the Hiley formula and 5.3% from the 

MTO modified Hiley formula. Since this is a relatively small difference in bearing capacities, for 

consistency, the larger values are arbitrarily chosen and always used for analysis purposes. 

 

For further detail on pile driving records including blow counts, pile types, hammer types, rated 

energies, and dynamic bearing capacity calculations see Appendix C. To determine any trends in the 

predicted bearing capacities derived from each dynamic formula, the piles are analyzed by first dividing 

them into three categories; all installed piles, those installed by drop hammer, and those installed by 

diesel hammers. The piles are further subdivided by pile type; timber, H, concrete filled steel tube, and 

precast concrete piles to determine if pile type contributes to any bias in the predicted capacities, either 

under or overestimating pile capacity. The following graphs, 31 to 35, show the predicated bearing 

capacities compared to the measured static capacities derived from pile load test results. 

 

In the below graphs, predicted pile loads (in kN) calculated from dynamic formulae are presented on 

the x axis whereas the estimated failure loads (in kN) from static pile load tests are presented on the y 

axis. Ideally, if the predicted values match the load tested values exactly, all the data points lie on the 

black 1:1 (45
o
) line giving the equation of the best fit line as y = 1x + 0 and a coefficient of 

determination of 1. A summary of equations of best fit lines and coefficients of determinations are 

presented in table 24 below. 
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Figure 31: ENR formula predicted capacities vs. pile test failure loads  
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Figure 32: Gates formula predicted capacities vs. pile test failure loads 
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Figure 33: FHWA modified Gates formula predicted capacities vs. pile test failure loads 
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Figure 34: Hiley formula predicted capacities vs. pile test failure loads 
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Figure 35: MTO modified Hiley formula predicted capacities vs. pile test failure loads 

 



94 
 

Table 24: Summary of Best Fit Lines and Coefficient of Determinations of Graphed Pile Capacities 
Hammer ENR Formula Gates Formula FHWA Modified Gates Formula Hiley Formula MTO Modified Formula 

All Piles y = 0.5007x + 594.43 y = 2.9419x – 12.7 y = 0.501x + 263.5 y = 0.0643x + 873.13 y = 0.0255x + 933.84 

R2 = 0.414 R2 = 0.4474 R2 = 0.4383 R2 = 0.0114 R2 = 0.0017 

Drop y = 2.5173x + 446.99 y = 2.4565x + 194.23 y = 0.462x + 400.99 y = 0.1675x + 607.17 y = 0.1688x + 618.23 

R2 = 0.1509 R2 = 0.2762 R2 = 0.2759 R2 = 0.0414 R2 = 0.0405 

Diesel y = 0.6246x + 386.76 y = 4.1941x - 599.81 y = 0.743x - 269.75 y = -0.1031x + 1328.2 y = -0.131x + 1348.7 

R2 = 0.4239 R2 = 0.4664 R2 = 0.4664 R2 = 0.0227 R2 = 0.0391 

 

 

Since the ideal situation does not occur, the equations for the best fit lines are useful in determining, 

qualitatively, the bias created from each formula used; whether the specific formula tends to under or 

over predict pile capacity. If the slope is greater than unity, on average, the dynamic formula under 

predicts the pile capacity and conversely if it is less than unity the formula over predicts the capacity. 

The y intercept gives an indication of how closely the trend line matches the 1:1 slope, the further away 

from an intercept of zero, the worse the match. Similarly the R
2
 value gives an indication of the amount 

of variation within the data set; the smaller the value the less the correlation and the larger the amount 

of variation. Conversely, if all the data points fell on a straight line, the R
2
 value would reach its upper 

limit of unity and the variation of the data would be minimal, therefore the equation for the linear best 

fit line and R
2
 value for each graph is given in the top right hand corner. 

 

From the above graphs, it is seen that in general the ENR formula over predicts the pile bearing 

capacity and results in a relatively low coefficient of determination of approximately 42% when 

examining all piles and piles installed by diesel hammers. While considering piles installed by drop 

hammers solely, the ENR formula under predicts the pile capacity and results in a significantly lower 

coefficient of determination, approximately 11%. Since the number of drop hammered piles to diesel 

hammered piles is similar, 32 compared to 45, it appears that the higher failure loads and coefficients of 

determination in the data points control the best fit line equations and coefficients of determination 

rather than the number of piles driven per installation method. The difference in trends between the 

drop and diesel hammered piles may be due to the fact that the ENR formula is based on semi empirical 

observations of pile driving in which ram weights are considerably less than the weight of the pile. This 

is still true for diesel hammers today; however, as progressively longer and larger capacity piles are 

required for modern day construction projects, the pile weights almost match the ram weights of drop 

hammers. The alternative is to increase the fall height; however increased velocities are more likely to 

damage the pile top. Another possible explanation is that the energy loss coefficient (c) of 1 inch is too 

large a value for modern drop hammers and thus the resulting bearing capacities are grossly under 

predicted. 
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The Gates derived predicative values, in general, under predict the pile bearing capacities despite the 

installation method used. However, in general, piles installed by drop hammers solely show a tendency 

to under predict pile capacities by a much smaller amount than those installed by diesel hammer. This is 

shown in the graphs as the value of the slope of 1.07 and 4.19 for drop and diesel hammered piles, 

respectively. This may be due to the fact that diesel hammered piles develop maximum estimated 

failure load approximately twice that of drop hammers, thus the slope is subsequently higher. Similarly 

with the ENR predicted capacities, the coefficient of determination of the Gates predicted capacities for 

the drop hammered piles is significantly lower than those from diesel hammered piles, 10% and 47%, 

respectively. This may also be due to the higher estimated failure loads reached by the diesel installed 

piles. A possible explanation of the nearly vertical trend in the data points of the Gates formula is that it 

is derived from piles which reached a maximum safe resistance of 600 kN (60 tons) and installed by 

drop and steam hammered piles only (Gates, 1957). Since piles within the MTO database exceed these 

bearing capacities and are also installed by diesel hammers it may not be adequate to extrapolate the 

formula to piles and installation methods past its original parameters.  

 

In 1997, the FHWA suggested that U.S. DOTs start using the Modified Gates formula to better estimate 

the bearing capacity of piles. From the graphs it is seen that the data points seem to centre about the 1:1 

line more than with the ENR and Gates methods even though the modified Gates formula does slightly 

over predict the pile bearing capacity when compared to the results of the pile load tests. The coefficient 

of determination is slightly higher than for the Gates formula when examining all the piles installed and 

those installed solely from diesel hammers; while those installed by drop hammers increased by 

approximately 2.5 times to 28 percent. 

 

The Hiley formula also seems to centre on the 1:1 line for drop hammered piles and with a few 

noticeable data points lying to the extreme right of the graph, however the average from the best fit line 

indicates that on all three graphs the predicted capacities are considerably over estimated. The 

coefficients of determination are also very small at 1% to 4% which indicates a very large amount of 

scatter within the dataset. This is somewhat counter intuitive since the Hiley formula seems to account 

for most if not all the energy losses during driving by inputting values based on field observations or 

published literature to account for hammer efficiencies, coefficients of restitutions, temporary 

compression of the pile, pile cap material, and soil during driving. The large range in data may be 

caused by the semi arbitrarily used compressional values, since they are based on published literature 

rather than field observations; if a record of pile compressions caused by hammer strikes are recorded 

and used in the calculations more realistic predictive capacities may be obtained. Another cause of 
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potential error is that the Hiley formula is based on specific assumptions, one being that the pile acts as 

a long slender rod and when it undergoes compression from pile driving the entire pile is compressed 

instantaneously over its entire length. Wave mechanics and published literature shows that this 

assumption does not hold true for very long piles and since the C2 value is dependent upon pile length, 

it may be the source of some of the error in the predicted capacities.       

 

Correspondingly to the Hiley predicted values, the capacities from the MTO modified Hiley formula 

are equally poor with similar over predicted tendencies and very low coefficient of determination 

values. This is due to the fact that the formulae are similar, with the exception for the values of the 

coefficients of restitution, and the fact that the same values of compression are used in both formulae 

since there are no recorded values of compression available in the MTO pile driving records.    

 

Piles are also subdivided into groups according to material type; concrete filled steel tube, timber, steel 

H section, and precast concrete to determine if composition affects bearing capacity prediction 

accuracy. Graphs 36 to 45 show the predictive capacities from each dynamic formula for each pile type 

according to installation method used, drop and diesel hammer. 

 

Examining the predicited values of the ENR formula, it appears that when piles are installed via drop 

hammer, the predictive formula severly underpredicts the bearing capacity to a maximum of 

approximately 300 kN, despite the type of pile used. For most material typs installed by diesel 

hammers, the data points seem to centre around the 1:1 line consistently, however for timber piles there 

is still a high amount of variation and the predicted values appear to spread out horizontally rather then 

along the 1:1 slope. For steel tube, H, and precast concrete piles, the piles tend to follow the 1:1 line 

much closer than drop hammered piles with a smaller amount of variation 
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Figure 36: ENR formula predicted capacities vs. pile test failure loads divided by hammer and pile type 
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 Figure 37: ENR formula predicted capacities vs. pile test failure loads divided by pile type 

 

 

When looking at specific pile types; the predictive accuracy of the dynamic formula does not not 

improve by combining installation methods except for precast concrete piles. This may be due to the 

limited number of samples available for that particular pile type and by simply adding to the data set 

increases the derived reliability. Therefore the ENR formula may provide a good estimate for pile 

bearing capacity for steel tube, H, and precast concrete piles but not timber piles and only when 

intsalled by diesel hammers, not drop hammers.    
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Figure 38: Gates formula predicted capacities vs. pile test failure loads divided by hammer and pile 

type 
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Figure 39: Gates formula predicted capacities vs. pile test failure loads divided by pile type  

 

 

While examining the predicted capacity calculated from the Gates formula, according to installation 

method, pile type, and pile type and installation method together it is determined that the Gates formula 

underpredicts pile capacity for each combination studied. However the variation within the data for 

diesel hammer installed piles is on average smaller than that for drop hammer installed piles, with the 

exception of timber piles which result in some of the lowest coefficient of determination values of all 

pile types and installation methods.   
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Figure 40: FHWA modified Gates formula predicted capacities vs. pile test failure loads divided by 

hammer and pile type 
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Figure 41: FHWA modified Gates formula predicted capacities vs. pile test failure loads divided by pile 

type 

 

 

The FHWA modified Gates formula improves on the predicted values of the Gates formula as is seen 

by the data points centered around the 1:1 line rather than extending vertically near the y axis. 

However, the data seems to be biased towards being over predicted by a maximum factor of roughly 

four but more commonly by a factor of approximately two. 

 

The FHWA modified Gates formula seems to provide a good estimate for drop and diesel hammer 

installed piles regardless of pile type except for timber piles which once again result in a low coefficient 

of determination value and whose capacity is grossly over predicted, more so than for other pile types. 
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Figure 42: Hiley formula predicted capacities vs. pile test failure loads divided by hammer and pile 

type 
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Figure 43: Hiley formula predicted capacities vs. pile test failure loads divided by pile type 

 

 

From the plots above, the Hiley formula seems to result in generating the most highly variable data 

points with respect to the values of bearing capacity obtained from field tests. Unlike the other fomrulae 

mentioned thus far, the Hiley formula seems to be better suited for predicting bearing capacity piles 

driven by drop hammers rather than those driven by diesel hammers. While examining individual piles 

types, it is determined that combining both diesel and drop hammered piles does not increase the 

predictive pile capacity accuracy with the exception of piles composed of precast concrete. The 

observed increased accuraacy may be due to the limited number of samples and thus increasing them 

increases the predicted reliability; however, if more samples are added the increased variation may be 

counter productive and cause the predicted capacities to be as inaccurate as for the other pile types.  
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Figure 44: MTO modified Hiley formula predicted capacities vs. pile test failure loads divided by 

hammer and pile type 
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Figure 45: MTO modified Hiley formula predicted capacities vs. pile test failure loads divided by pile 

type 

 

 

The predicted capacities derived from the MTO modified Hiley formula exhibits similar trends to those 

derived from the original Hiley formula, however the variability within the dataset is greater than for 

the original formula with consistently lower coefficient of determination values. The values derived 

from the two Hiley formulae similarly over predict the pile capacity by factors as high as nine times the 

actual value.    

 

To quantify which formulae are best suited to predict pile capacities, at least for the MTO piles 

examined from southern and central Ontario, a statistical analysis on the results is carried out to 

determine the values of predicted to measured capacity factors, standard deviations, percent differences, 

correlations, and is discussed further in section 5.3 below. 
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5.3 Statistical Analysis  

 

The results of the statistical analysis are summarized in Tables 25 to 27 below and are based upon the 

77 piles as a whole as well as separately as the 32 piles installed by drop hammered drivers and the 45 

piles installed by diesel hammered drivers. 

 

Table 25: Ratios and Standard Deviations of Dynamic Predicted to Field Estimated Pile Capacities  
Hammer ENR Formula Gates Formula FHWA Modified Gates Formula Hiley Formula MTO Modified Hiley Formula 

Maximum 

Drop 0.381 0.990 2.153 2.179 2.105 

Diesel 3.581 1.563 6.820 14.508 13.870 

Minimum 

Drop 0.072 -0.191 -6.000 0.201 0.156 

Diesel 0.357 0.173 0.812 0.552 0.388 

Average 

Drop 0.174 0.331 0.852 1.115 1.013 

Diesel 1.279 0.504 2.240 3.057 2.684 

All 0.820 0.432 1.663 2.250 1.990 

 
St. Dev. ENR Formula Gates Formula FHWA Modified Gates Formula Hiley Formula MTO Modified Hiley Formula 

Drop 0.073 0.179 1.315 0.509 0.495 

Diesel 0.767 0.324 1.395 2.896 2.730 

All 0.802 0.285 1.518 2.427 2.259 

 

 

 

Comparing the predicted bearing capacities to the estimated values based on field tests results in the 

ratios within Table 25. Ideally, a ratio of one indicates a perfect prediction of pile bearing capacity 

while those greater than one indicates that the bearing capacity is over predicted and those less than one 

indicates that the bearing capacity is under predicted. Negative values are due to dynamic formulae 

limitations and indicate a negative bearing capacity value which is not physically possible; for the 

purposes of analysis they should be ignored except as a tool to aid in defining boundaries within which 

the formulae are valid.   

 

The ratios spread from a minimum of -6 to a maximum of 14.5 with an average range of 0.4 to 2.3 

when considering all piles. While examining piles installed by drop hammers, the MTO modified Hiley 

formula is the most accurate with an average difference of 0.013 from the ideal case of a predicted to 

estimated ratio of one. The ENR formula resulted in the most accurate prediction when piles are 

installed by diesel hammers with an average difference of 0.279. When combining installation methods, 

the ENR formula provides the closest match of predicted to estimated pile bearing capacities with an 

average ratio of 0.820.  
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Considering the standard deviations associated with the ratios of predicted to estimated bearing 

capacities of each pile installation method; the ENR formula results in the smallest amount of variation 

for drop hammered piles while the Gates formula results in the smallest amount of variation for piles 

installed by diesel hammer as well as when examining all driven piles simultaneously. 

 

In addition to examining the ratios of predicted to field estimated pile capacities, the percent difference 

of predicted to estimated pile capacities are also investigated. In order to ensure that positive percent 

differences correspond to predicted capacities being greater than field estimated capacities and 

conversely negative values corresponding to estimated capacities being greater than predicted capacities 

the following formula is used: 

 

                    
                                           

                        
                  (48) 

 

Table 26: Percent Difference and Standard Deviations of Predicated to Field Estimated Capacities 
Hammer ENR Formula Gates Formula FHWA Modified Gates Formula Hiley Formula MTO Modified Hiley Formula 

Maximum 

Drop -61.889 -0.977 115.250 117.853 110.487 

Diesel 258.108 56.306 581.982 1350.750 1287.000 

Minimum 

Drop -92.826 -119.101 -700.000 -79.862 -84.356 

Diesel -64.301 -82.713 -18.762 -44.838 -61.241 

Average 

Drop -82.578 -66.894 -14.841 11.527 1.329 

Diesel 27.890 -49.585 123.982 205.715 168.375 

All -18.019 -56.778 66.289 125.013 98.953 

 
St. Dev. ENR Formula Gates Formula FHWA Modified Gates Formula Hiley Formula MTO Modified Hiley Formula 

Drop 0.073 0.179 1.315 0.509 0.495 

Diesel 0.767 0.324 1.395 2.896 2.730 

All 0.802 0.285 1.518 2.427 2.259 

 

 

From Table 26 it is seen that the ENR and Gates formula consistently under predicts drop hammered 

pile capacity as well as when considering all piles overall. Additionally, the ENR and Gates formulae 

are the only formulae which on average under predict pile capacity; the FHWA modified Gates, Hiley, 

and MTO modified Hiley formulae generally over predict pile capacity. The ENR formula, despite 

having a negative overall percent difference, matches the field estimated value the closest with an 

average of -18 percent. The Gates and FHWA modified Gates formula under and over predict the 

estimated pile capacities by approximately the same amount, respectively while the Hiley and MTO 

modified Hiley formulae over predict the developed pile capacities. 
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The standard deviations of the percent difference are exactly the same as for the ratios of predicted to 

estimated pile capacities based upon field testing. A final analysis of determining the correlation 

between the data sets of predicted and estimated pile capacities is conducted in order to aid in 

determining which formula best predicts the developed pile bearing capacity. The results are shown in 

Table 27 below. 

 

Table 27: Correlation of Predicted to Field Tested Results of Pile Capacities 
Hammer ENR Formula Gates Formula FHWA modified Gates Formula Hiley Formula MTO modified Hiley Formula 

Drop 0.333 0.323 0.528 0.209 0.204 

Diesel 0.651 0.683 0.685 -0.150 -0.196 

All Piles 0.643 0.632 0.662 0.103 0.042 

 

 

Since an ideal correlation results in a value of one, the FHWA modified Gates formula gives the closest 

values of dynamic formula predicted to field estimated capacities. For diesel hammered piles and both 

diesel and drop hammered piles all three; ENR, Gates, and FHWA modified Gates formulae result in 

the highest and very similar values of correlation; however, the correlation values from the FHWA 

modified Gates formula are approximately 1.6 times greater than the previously mentioned formulae 

and 2.5 to 15 times greater than the Hiley and MTO modified Hiley formulae.                   

 

From the ratios of predicted to estimated pile capacities, percent differences and correlation values, it is 

evident that on average the ENR, Gates, and FHWA modified Gates formulae predict pile bearing 

capacities more accurately than the Hiley and MTO modified Hiley formulae whose data points contain 

much more scatter as shown by the higher standard deviation and lower coefficient of determination 

values.  

 

Despite the relatively high correlation, coefficient of determination, low standard deviation, and 

relatively low percent difference values, the Gates formula is not recommended for predicting pile 

bearing capacity. This is due to the vertical trending behaviour of the calculated data points. While the 

field estimated capacities range from 89 kN to 2 713 kN with an average value of approximately 966 

kN and a median value of 712 kN, the Gates predictive formula produces predicted capacities with a 

minimum and maximum value of -17 kN and 707 kN, respectively, an average of approximately 338 

kN and a median value of 315 kN. This low upper predicted limit results in a very small spread of data 

however it also severely under predicts the pile capacity, especially when the actual value is relatively 

high and thus the amount of error developed increases proportionally.  
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The Hiley and MTO modified Hiley formulae are not recommended to use since the correlation values, 

coefficients of determinations, and best fit line slopes are relatively low, the standard deviations and 

percent differences are relatively high and the ratios of predicted to estimated field capacities are on 

average 2.2 and 1.9 times greater than unity, respectively. 

 

Since the FHWA modified Gates formula results in best fit lines with slopes closer to unity, higher 

coefficient of determination values, and produces data points which better predicts pile capacity for 

drop hammered piles it is recommended for use rather than the ENR formula. However, the ENR 

formula results in a smaller percent difference, ratios of predicted to estimated field capacities closer to 

one, smaller standard deviations, and produces data points which better center around the 1:1 line for 

diesel hammered piles, thus it is recommended to use when diesel hammer drivers advance piles. 

 

No formula is accurate for predicting the developed bearing capacities of timber piles; the only 

potential exception to this is when using the FHWA modified Gates formula to predict capacities for 

drop hammered timber piles. However, the predicted results only result in a coefficient of determination 

of 26 percent and piles with predicted capacities of greater than 1 500 kN are severely over predicted. 

 

To determine if the results from the statistical analysis are typical or not, they are compared to other 

studies. If the results are largely dissimilar it may provide insight on the cause of the errors which 

occurred during one of the studies or illustrate the sensitivity to geographic locations or geologic 

conditions and if similar it adds confidence to the findings from this thesis.    

 

5.3.1 Comparison To WSDOT Studies 

 

To check the validity of the calculated predictive capacities, with regards to other independent findings, 

the derived values are compared to the results of similar studies performed by the Washington State 

Department of Transportation (WSDOT) in 1985 and 2005. The studies are commissioned to 

investigate and determine the accuracy of predicted piles. A 1985 report entitled Development Of 

Guidelines For Construction Control Of Pile Driving And Estimation Of Pile Capacity by Fragaszy, in 

which Higgins and Lawton surveyed all U.S. DOTs as well as conducted a literature search on the 

current state of predicting static bearing capacities for piling sites. 

 

The 1985 report is comprised of a survey of the United States DOTs in regards to their methods of 

determining installation and quality control procedures when piling. Of all the states questioned, 34 



111 
 

responded and 11 replied that they use the ENR formula to predict pile capacity, while 10 use a 

modified version of the ENR formulae, five stated that they stopped utilizing the ENR formula in 

favour of wave equation analysis such as WEAP or TTI programs, while three others use wave equation 

analysis in conjunction with ENR formulae, two states indicated that they use pile analyzers with ENR 

formulae and wave analysis to aid in pile predictions and are satisfied with the results. Unfortunately, 

the majority of states do not explicitly transcribe the form of the ENR formulae which they use or 

present any data which are used for comparison purposes. However on the basis of prior experience 

most DOTs state, qualitatively, that the wave analysis if properly calibrated and pile analyzers are used 

that they provide much more accurate estimates of pile capacity then do dynamic pile driving formulae. 

 

A literature search of comparisons between measured pile load test capacities to those derived from 

predictive dynamic formulae and wave equation analyses is also completed. The search consists of 

reviewing data from 10 publications which examines results from sites which installed 5 to 171 piles 

from across the United States as well as one site in Ontario. Piles are terminated into sand, gravel, 

clayey silt, and silty sand strata and consist of thin mandrel, fluted steel, timber, precast concrete, H, 

and closed and open ended tube piles with and without concrete. The pile driving rigs used to install the 

piles ranged from double acting to differential acting to drop hammers. The pile load tests capacities are 

compared to the ENR, modified ENR, Eytelwein, modified Eytelwein, Navy-McKay, Canadian 

National Building Code (CNBC), Pacific Coast Uniform Building Code (PCUBC), Hiley, Gates, Gow, 

Rabe, Janbu, Danish, modified Danish, and Weisbach dynamic formulae. Although the ENR, Gates, 

Hiley, and Janbu formulae are used most often in the comparative studies, no single equation is used in 

all of them. 

 

The task of comparing the predicted values to load tests is made more difficult since certain studies use 

the allowable capacities from the dynamic formulae while others correct for the intended safety factor 

(such as 3 and 6 for the Gates and ENR formula, respectively) and use the ultimate bearing capacity as 

the basis of comparison. The failure loads themselves vary depending upon the method used to 

calculate them; while all studies base the estimated failure on the load settlement graph of a pile load 

test, the criteria for failure depends upon the author‟s method. Some studies set failure load to the load 

which causes a specific amount of settlement, such as 6.35 to 25.4 millimetres (0.25 to 1 inches) or 10% 

of the pile width or diameter, while others set the failure load as those which cause a plunging rate to 

exceed a certain limit, others still use the load which corresponds to the location that the tangents of the 

steep and horizontal portions of the settlement curve intersect, and finally others calculate the estimated 

failure load as the average of all the aforementioned methods. Due to the various methods used to 
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calculate the predicted and estimated failure loads the data from the studies cannot be directly compared 

to each other; however the findings from each study are compared to the others to see if the results are 

similar. 

 

The literature search suggested that the Hiley, PCUBC, Janbu, Gates, and Danish predictions are the 

most consistent, that wave equation and pile driver analysis is as or more accurate than dynamic 

formulae, and that the ENR and Modified ENR formulae are among the least accurate. The only 

exception to this is the study by Ramey and Hudgins which found that the ENR formula is the most 

accurate and the Hiley formula the least.  

 

Although the raw data used in the studies is not provided, the predicted to measured ultimate load 

ratios, safety factors, best fit trend line parameters, and correlation coefficients are provided. These 

values, given in Tables 26 to 28 below are presented in a format which allows them to be compared to 

the results from this thesis. 

 

Table 28: Summary of Comparative Studies (after Fragaszy et al, 1985) 
Dynamic 

Formula 

Predicted to Actual Bearing Capacity 

(Safety Factor) 

Coefficient of Determination 

(R
2
) 

ENR 

0.40 – 9.4 

Average of 0.964 – 2.89 

 

26 to guarantee SF > 1, 98% of the 

time 

0.012 – 0.689 

 

Gates 1.4 – 2.16 0.085 – 0.740 

`Hiley 
0.55 – 3.83 

Average of 0.92 – 1.4 
0.002 – 0.712 

Wave 

Equation 

0.80 – 4.04 

Average of 2.6 
0.526 – 0.863 

       

 

From Table 25, the ratio of predicted to actual bearing capacity for the ENR, Gates, and Hiley formulae 

ranged from 0.07 – 3.58, 0.17 – 1.56, and 0.20 – 14.51 with averages of 0.82, 0.43, and 2.25, 

respectively. The coefficients of determination from Table 22 for the ENR, Gates, and Hiley formula 

range from 0.111 – 0.424, 0.104 – 0.466, and 0.011 – 0.044, respectively. 

 

Although the lower end values of the predicted to measured bearing capacity ratios from this thesis are 

less than those of the WSDOT 1985 study, the values are comparable with the higher end and average 

values within in range given in the older study. The only exceptions to this are the high end and average 
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value from the Hiley and Gates formula respectively, which are lower and higher than the given range 

by approximately a factor of 3.5. 

   

The coefficients of determination for the ENR and Gates formula fall within the range of the WSDOT 

report as well; however, the values from the Hiley formula fall in the lower end of the given range, 

which indicates that the amount of scatter from the results of this thesis are considerably higher than the 

average from the results of the comparative papers.   

 

Allen (2005) builds upon by load test data by Paikowsky in 1994 and 2004 and compares the pile load 

test results to predicted values derived from CAPWAP/TEPWAP analysis and the WSDOT dynamic 

equation. The WSDOT dynamic equation is based upon the original Gates formula but modified to 

better reflect soil conditions around Washington State.  

 

The study consisted of analyzing 141 individual piles; 118 from 24 of the 50 United States, 10 from 

Southern Ontario, 6 from China, 3 from Holland, 2 from Israel and 2 from Australia. Of the 141 piles 

installed, 40 are installed by air/steam hammers, 62 are installed by open ended diesel hammers, 29 are 

installed by closed ended diesel hammers, 5 are installed by hydraulic hammers, and 3 are installed by 

drop hammers into a variety of soil types including till, silty sand, silty clay, clay, clayey sand, sand, 

gravel, and bedrock including limestone and shale. This diversity in hammer, piles, and geology ensure 

that the results are not biased due to installation method or geographic location.          

 

The report compared the WSDOT, ENR, and FHWA Gates predictive bearing capacities as well as 

those from CAPWAP analysis to pile load test values and presented the results as Figures 46 to 48. 

 

Unfortunately, only the plots are published and not the actual values of the predicted capacities; 

however, since the raw data used is presented, the predicted bearing capacity values are calculated 

using the ENR, Gates, and FHWA modified Gates formulae. The results using the WSDOT pile load 

test data are then compared to those based on the MTO database to determine if any similarities exist 

between the data sets and corresponding conclusions. 
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Figure 46: Measured Pile Bearing Capacity Versus ENR Nominal Resistance (Allen, 2005) 

 
 

 
Figure 47: Measured Pile Bearing Capacity Versus FHWA Gates Nominal Resistance (Allen, 2005) 
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Figure 48: Measured Pile Bearing Capacity Versus WSDOT Nominal Resistance (Allen, 2005) 
  

Table 29: Summary of Predictive Findings using Averaged Values from the WSDOT Database  
Dynamic Equation ENR Formula Gates Formula FHWA Modified Gates Formula 

Equation of Best Fit Line y = 0.7409x + 1365.4 y = 6.0757x – 393.31 y = 1.0771x + 86.074 

Coefficient of Determination 0.4420 0.4422 0.4443 

Predicted to Measured Capacity Ratio 0.731 0.225 1.056 

Standard Deviation 0.392 0.095 0.438 

Correlation 0.665 0.665 0.667 

Percent Difference -26.872 -77.469 5.596 

 

 

From Table 29 it is seen that in general the ENR and Gates formulae under predict pile capacity while 

on average, the FHWA modified Gates formula predicts the measured pile capacity very accurately 

when using the WSDOT database. Comparing Tables 24 to 27 with Table 29 it is seen that the trends 

are similar for the predictive capacities based on the MTO database; where the ENR formula over 

predicts capacities for piles which support more than 1 200 kN loads and under predicts capacities for 

loads less than 1 200 kN, the Gates formula similarly extremely under predicts pile capacity, and on 

average the FHWA modified Gates formula over predicts pile capacity.   

 

It is also observed that the MTO database results in similar values of coefficients of determination; the 

values from the MTO database range from 0.400 to 0.438 while using data from the WSDOT paper 

range from 0.442 to 0.444. Likewise, the correlation values are also similar ranging from 0.632 to 0.662 

and 0.665 to 0.667 for the MTO and WSDOT datasets, respectively. The average ratio of predicted to 
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pile load tested bearing capacities are also similar between the two datasets; for the ENR, Gates, FHWA 

modified Gates formulae the values are 0.820, 0.432, 1.663, and 0.731, 0.225, 1.056, for the MTO and 

WSDOT calculated capacities, respectively. The percent difference between the predicted and field 

estimated pile bearing capacities for the ENR, Gates, and FHWA modified Gates formula are -18.019, -

56.778, 66.289, and -26.872, -77.469, 5.596 for MTO and WSDOT data, respectively.  The percent 

difference between the MTO and WSDOT values differ by a factor of approximately 1.4 for the ENR 

and Gates formulae while the FHWA modified Gates formula values differ by a factor of 11, however 

the trends remain similar for both datasets; under and over predicted bearing values from the different 

formulae remain under and over predicted respectively despite the database being used.  

 

Both, the 1985 and 2005 WSDOT reports as well as the 1993 MTO report conducted comparisons of 

predicted pile capacity using wave equation analysis programs such as GRLWEAP and signal matching 

programs such as CAPWAP with pile driving analyzers. 

 

The literature search from the 1985 WSDOT report contained three studies, ranging from analysis 

based on 5 to 78 pile load tests, two of which used wave equation analysis and the other which used the 

signal matching methodology. The 2005 WSDOT report compared CAPWAP/TEPWAP analysis 

performed on 136 piles to pile load test results while the MTO report compared wave equation and 

CAPWAP analysis to 22 and 12 pile load test results, respectively. The summary of the findings are 

presented in Table 30 below. 

 

Table 30: Summary of Wave Equation and Signal Matching Analysis 

Study Agerschou 
Ramey and 

Hudgins 

Kazmierowski and 

Devata 
2005 WSDOT Report 1993 MTO Report 

Analysis 
Wave 

Equation 

Wave 

Equation 
Pile Analyzer CAPWAP Analysis Wave Equation CAPWAP 

Equation of 

Best Fit Line 
  y = 0.7134x + 257.05 y = 0.9667x + 1014.9 y = 0.611x + 470.1 y = 0.8308x + 358.36 

Coefficient of 

Determination 
  0.6931 0.5296 0.7846 0.8955 

Predicted to 

Measured 

Capacity Ratio 

0.385  1.062 0.712 0.995 0.877 

Standard 

Deviation 
0.23 0.065 – 0.341  0.339 0.318 0.327 0.196 

Correlation  0.725 – 0.929 0.833 0.728 0.886 0.946 

Percent 

Difference 
  6.186 -28.751 -0.451 -12.339 

 

 

 

The Agerschou paper from the 1985 WSDOT paper implies that the ratio of predicted to measured pile 

capacity is comparatively low compared to the wave equation analysis of the MTO report and analyses 
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using pile analyzers. This may be due to the fact that the examinations performed are during the infancy 

of wave equation analysis in 1962. Later analysis, performed from the mid-1970s to early 1980s, shows 

that predictions using both wave equation software with signal matching programs are much more 

accurate with ratios which range from 0.712 to 1.062. The cause for which may be that as experience is 

gained and computer code is refined both computationally as well as the values for soil and hammer 

properties used, the predictive accuracy increases. 

 

The standard deviation in the data remained relatively constant from 19.6 to 34.1 percent; the only 

exception being the value from Ramey and Hudgins for concrete piles, which is 6.5 percent. This is 

most likely caused by the low number of piles examined, six, as well as the high correlation value of 

92.9 percent reported. The correlation and corresponding coefficients of determination values from the 

other studies are consistent from 72.8 to 94.6 and 53.0 to 89.6 percent, respectively. The correlation of 

predicted to measured bearing capacity from the other analyses ranges from 72.8 to 94.6 percent with 

coefficients of determination on the order of 0.530 to 0.895.     

 

For wave equation analysis, the percent difference could only be calculated for the MTO study and is 

determined as -0.451 percent. The percent difference from pile analyzer data ranges from -28.751 to 

6.186 percent. From the ratio and percent difference data it is seen that in general that the wave analysis 

and signal matching techniques result in bearing capacities being over predicted except at relatively low 

capacities, on the order of 1 000 kN or less. 

 

Comparing the pile capacity predictions from dynamic formulae and computer programs using the 

MTO database to those of the WSDOT reports show that the results are similar and thus the trends 

observed are typical despite geographic location, geology embedded into, driving equipment, and 

material types used. This gives confidence to the findings; however, with the correlation values and 

coefficients of determination being relatively low it is decided to attempt to improve on the predictive 

capacities which the dynamic formulae gives in order to increase accuracy and diminish the amount of 

scatter within the dataset. This is accomplished by adjusting the coefficients in the formulae and 

analyzing the resulting predictive values. 

 

For the raw calculations of predicted bearing capacity from dynamic formulae using the WDSOT piles, 

please see Appendix D.       

 



118 
 

5.3.2 Piles Bearing Predictions From Revised Coefficients 

 

To aid in potentially improving and confirming which dynamic formula is the most accurate for 

predicting pile capacity, an analysis of the constants used in each pile driving formula, drop and diesel 

hammer, is conducted in which the parameters are varied to determine if revised values can be 

ascertained.   

 

The parameters adjusted are the c coefficient of the ENR formula, the 
1
/7 coefficient at the beginning of 

the Gates formula and the 1.75 and 100 coefficients at the beginning and end of the FHWA modified 

Gates formula. The Hiley and MTO modified Hiley formulae describe the amount of compression that 

the pile soil system undergoes during driving by the C coefficient. For the Hiley formula, the coefficient 

is the sum of the compression of the pile cap and head (C1), pile (C2), and soil (C3) as given by Tables 

16 to 18; for the MTO modified Hiley formula the C coefficient is measured in the field. Since this data 

is not available, the C coefficients are assumed equal between the two formulae. As a result, for the 

analysis, only the MTO modified Hiley formula is analysed with respect to varying the soil – pile 

system compression values. 

 

The analysis consisted of determining which coefficient values are required, on a case by case basis, to 

result in the dynamic formulae predictions being identical to the field test estimated values, whenever 

possible. The findings are summarized in Table 31 below. 

 
Table 31: Summary of Revised Dynamic Formulae Coefficients 

Formula 
ENR Gates FHWA Modified Gates MTO Modified Hiley 

Drop Diesel Drop Diesel Drop Diesel Drop Diesel 

Original 

Value 
1 0.1 

1
/7 1.75 100 1.75 100 See Tables 16 to 18 

Revised Values 

Minimum 

Value 
0.01 0.00 0.90 1.21 1.10 1 0.60 46 2.0 0.8 

Maximum 

Value 
0.13 0.75 4.31 10.90 3.55 253 2.09 496 34.5 129 

Average 

Value 
0.05 0.21 2.29 3.53 1.80 119 1.17 276 16.2 39.7 

Standard 

Deviation 
0.05 0.19 0.69 2.27 0.52 0.37 54 111 10.5 33.5 

 

 

The above values are based on matching the predicted to field estimated pile capacities for the 77 piles 

used in the study. However, due to the nature of the formulae, when using the ENR formula to predict 



119 
 

bearing capacities only 39 pile records could be matched to pile load test results. When considering the 

Gates predictive formula, as well the first coefficient of the FHWA modified Gates formula only 76 pile 

records could be matched to field tested values. Varying the second coefficient of the FHWA modified 

Gates formula could result in only matching 72 pile records to pile load test results. Revised 

coefficients of the MTO modified Hiley formula could match 66 pile records to the field estimated 

capacities. The reasons for which the piles could not be matched to field values via revised predictive 

formulae is that the coefficients required would not make physical sense, such as the coefficient having 

a negative value or that as the coefficient becomes increasingly larger the predicted capacity approaches 

a limiting value and never  reaches the field estimated value.  

 

For the purposes of the analysis the average values in Table 31 are used, omitting the piles which could 

not be matched to the estimated bearing capacity from pile load tests. The predictive capacities are then 

recalculated using the average value as the revised coefficients, in bold. The results are graphed and 

shown in Figures 49 to 53 and summarized in Table 32 below. 

      

Table 32: Summary of Best Fit Lines and Coefficient of Determinations of Revised Pile Capacities 

Hammer ENR Formula Gates Formula 
1.75 FHWA Modified 

Gates Formula 

100 FHWA Modified 

Gates Formula 

MTO Modified 

Formula 

All Piles y = 1.075x + 322.65 y = 1.7129x – 333.02 y = 0.9118x + 86.365 y = 0.7145x + 316.55 y = 0.5044x + 608.45 

R2 = 0.4930 R2 = 0.4292 R2 = 0.4556 R2 = 0.4867 R2 = 0.0898 

Drop y = 0.5966x + 526.69 y = 0.8014x + 195.64 y = 0.4613x + 390.25 y = 0.4587x + 442.55 y = 0.3032x + 562.73 

R2 = 0.2176 R2 = 0.2758 R2 = 0.2846 R2 = 0.2706 R2 = 0.0719 

Diesel y = 1.3081x + 117.15 y = 2.1148x - 599.59 y = 1.1074x - 107.26 y = 0.7431x + 312.27 y = 0.388x + 816.89 

R2 = 0.5062 R2 = 0.4660 R2 = 0.4661 R2 = 0.4662 R2 = 0.0432 

 

 

Comparing Figures 31 to 35 to Figures 49 to 53, the revised predictions using the new c values to that 

of the original ones, it is concluded that for the ENR formula, the revised values of 0.05 and 0.21 rather 

than 1 and 0.1 for drop and diesel hammers, respectively, results in less scatter and trend lines closer to 

the 45
o
 line, especially for piles installed by drop hammer as well as higher coefficient of determination 

values. However, in contrast to the original ENR predictions, the calculations become more 

conservative and bearing capacities become under predicted using the revised average c coefficient 

from Table 29. 
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Figure 49: Revised c coefficient ENR formula predicted capacities vs. pile test failure loads 
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Figure 50: Revised 1/7 coefficient Gates formula predicted capacities vs. pile test failure loads 
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Figure 51: Revised 1.75 coefficient FHWA modified Gates formula predicted capacities vs. pile test 

failure loads 
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Figure 52: Revised 100 coefficient FHWA modified Gates formula predicted capacities vs. pile test 

failure loads 
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Figure 53: Revised c coefficient MTO modified Hiley formula predicted capacities vs. pile test failure 

loads  
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Applying the revised average coefficients of 2.29 and 3.53, for drop and diesel hammers respectively, 

rather than the original 
1
/7 at the beginning of the Gates formula yields similar results, with a decrease in 

scatter and thus an increase in the coefficient of determination and best fit lines which match up closer 

to the 45
o
 line. However the data points still appears to trend vertically, thus as high capacity piles are 

used or as actual developed capacities increase so do the differences between it and the predicted 

values.  

 

Whereas the original FHWA predicted values tend to overestimate the pile capacities, the revised 

predictions using values of 1.80 for drop hammer installed piles and 1.17 for diesel hammer installed 

piles rather than 1.75 seem to centre about the 1:1 line more accurately. Even though the revised data‟s 

best fit lines match the 45
o
 line better than the original predicted values, the amount of scatter is 

approximately the same. Varying the second coefficient of 100 to 119 and 276 for drop and diesel 

hammer drivers, respectively, results in similar values to those due from changing the 1.75 coefficient. 

However, the best fit lines from the revised 100 coefficient predictions exhibit a greater difference from 

the 1:1 line than does the best fit line derived from data points calculated using the revised 1.75 

coefficient values. Similarly, the data points from the revised 100 coefficient formula result in a larger 

spread of predicted capacity data than that from the revised 1.75 coefficient value.  

 

Since all the parameters of the MTO modified Hiley formula are predetermined, either by the MTO 

guidelines, pile driver manufacturers published specifications or the pile itself the only coefficient 

which can be altered is the C coefficient, the rebound of the pile due to a single hammer blow. Ideally, 

this amount of rebound is measured in the field and depends on the type of pile being used, the 

equipment and method of installation, and the soil conditions. Since these factors vary from site to site, 

the coefficient is different for each pile installation, therefore using an average value for all piles sites 

does not seem justified, yet it is useful to determine the amount of influence the C factor produces on 

the final pile prediction. If a single value causes varying degrees of difference in predicted capacities; 

for example if the revised value causes a large change in the predicted capacity from the original for 

some piles and little to no change in others then the capacity is assumed to be sensitive to the 

coefficient and as such it should be measured for each site for each pile type.  

 

However, if the changes in revised capacities are all large or all small, by the same amount for all piles 

then the predicted bearing capacity can be deemed as is insensitive in regards to the C coefficient and 

possibly cause one value to accurately estimate actual developed pile capacity. Since, in this study, the 

C coefficient of the MTO modified Hiley formula is taken as the sum of all the c coefficients of the 
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Hiley formula, only the MTO formula is considered and it assumes that the results apply to the original 

Hiley formula in the same manner. 

 

Using the average C coefficient values of 16.2 and 39.7 for drop and diesel hammer installed piles, 

respectively; it is seen from Figure 53 that the data points plot much more closely to the 1:1 line than in 

Figure 35. This is especially true for diesel hammered piles rather than drop hammered piles and is 

most likely due to the C coefficient being more than twice as large for diesel hammer drivers than drop 

hammer drivers. However, since the predicted capacities for drop hammered piles seem to centre about 

the 1:1 line, the chosen coefficient value appears to be appropriate. Despite the improvements in the 

coefficient of determination values; an increase by a factor of 1.1, 1.7, and almost 50 when considering 

diesel hammered piles, drop hammered piles, and all installed piles, respectively, and they are still 

relatively low in the range of 4% to 9% indicating that the amount of variation within the dataset is still 

high. 

 

Similarly, as with the original predicted capacities the revised coefficient predictions are also 

subdivided by pile type and installation method to determine if the adjusted coefficients better predicted 

one pile composition, driver used or combination thereof. The graphs are presented below as Figures 54 

to 63.         

 

Comparing the below 12 figure to those of the original ENR formula predicted capacities it is seen that 

points which represent drop hammered piles no longer trend vertically but follow more closely to the 

1:1 line, however they still under predict the estimated failure load capacity. The revised diesel 

hammered piles which previously centers about the 1:1 line are now also under predicted. In general, 

the coefficients of determination are increased by a factor of approximately one to more than five, the 

only exceptions being for drop hammered concrete piles which decreased from 49 percent to less than 1 

percent and diesel hammered timber piles which increase by a factor of 880 but still has an absolute 

value of less than 1 percent.      
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Figure 54: Revised ENR formula predicted capacities vs. pile test failure loads divided by hammer and 

pile type 
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Figure 55: Revised Engineering News Record formula predicted capacities vs. pile test failure loads 

divided by pile type 
 

 

 

When comparing the revised predicted values to the original ones by pile type, the coefficients of 

determination are similar, differences range from factors of 0.87 to 1.5, being lower for timber and 

concrete piles and higher for H and steel tube piles. Similarly the slopes of the best fit lines follow the 

same pattern.     

 



129 
 

                  

                  

                  

                  
Figure 56: Revised Gates formula predicted capacities vs. pile test failure loads divided by hammer and 

pile type 
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Figure 57: Revised Gates formula predicted capacities vs. pile test failure loads divided by pile type 

 

 

When comparing the revised predicted pile capacities to original ones, by installation method and pile 

type, it is seen that the for drop hammered piles, the data points centre around the 1:1 line rather than 

trending vertically as previously calculated. When examining diesel hammered piles, the data points 

still appear to trend vertically however they are shifted to the right towards the 1:1 line. Using the 

revised coefficients causes the slopes of the best fit lines to approach a value closer to unity for all pile 

types, except timber piles. Despite the coefficients used, original or revised, the coefficients of 

determination remains similar for all piles whether installed by either drop or diesel hammer drivers.       

 

When considering predictive accuracy solely on the basis of pile type, the revised coefficients results in 

best fit lines with slopes closer to unity than for the original Gates formula, except for timber piles 

which decreases by approximately a factor of two even though the data points center around the 1:1 

line. The coefficients of determination decreases for timber and concrete piles, increases for concrete 

filled steel tube piles, and remain approximately constant for H piles. 
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Figure 58: Revised 1.75 coefficient from FHWA modified Gates formula predicted capacities vs. pile 
test failure loads divided by hammer and pile type 
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Figure 59: Revised 1.75 coefficient from the FHWA modified Gates formula predicted capacities vs. 

pile test failure loads divided by pile type 

 

 

For drop hammered piles, the revised coefficient does not cause a significant impact on predictive pile 

values since the equations of the best fit line and coefficients of determination remain approximately 

constant to that of the FHWA modified Gates formula. Using the revised coefficient for diesel 

hammered piles causes the data points to shift to the left and center about the 45
o
 line. This slightly 

improves the predictive accuracy for all pile types by causing the slope of the best fit line to approach 

unity except for H piles which become slightly under predicted. Similarly to drop hammered piles, the 

coefficients of determination for diesel hammered piles are approximately equal to those derived from 

the original FHWA modified Gates formula.  

 

On the basis of pile types, the revised coefficients cause the data points to shift to the left, centre around 

the 1:1 line, and plot nearer to each other. Using the revised coefficients improves the slope of the best 

fit lines for timber and concrete filled steel tube piles, worsens for precast concrete piles, and remained 

approximately constant for H piles. The coefficients of determination increased for concrete filled steel 

tube piles, remained constant for timber and H piles, and decreased for precast concrete piles. 
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Figure 60: Revised 100 coefficient from the FHWA modified Gates formula predicted capacities vs. pile 

test failure loads divided by hammer and pile type 
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Figure 61: Revised 100 coefficient from the FHWA modified Gates formula predicted capacities vs. pile 

test failure loads divided by pile type 

 

 

The predictive capacities calculated from the revised coefficients results in values similar to the 

capacities using the original coefficient value of 100, even though the new data points are shifted 

towards the 1:1 line for diesel hammer piles, those installed by drop hammer remain constant. This is 

demonstrated by the best fit line equations and coefficients of determinations which are approximately 

equal between the two formulae when considering piles installed by hammer type. 

 

Analysis of predictive capacities with respect to pile type exhibits that the revised coefficient causes the 

data point to shift to the left, about the 1:1 line and increase predictive accuracy for concrete filled steel 

tube and H piles. This is seen by the increase in the coefficients of determination and the slopes of the 

best fit lines being closer to unity. The only exceptions are for timber and precast concrete piles whose 

coefficients of determination decrease. For precast concrete piles, the calculated bearing capacities 

become slightly under predicted as well. 
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Figure 62: Revised MTO modified Hiley formula predicted capacities vs. pile test failure loads divided 

by hammer and pile type 
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Figure 63: Revised MTO modified Hiley formula predicted capacities vs. pile test failure loads divided 

by pile type 

 

 

The revised coefficient causes the predicted values of the MTO modified Hiley formula to plot closer 

together. For all drop hammered pile types this results in improved equations of best fit lines and 

coefficients of determination with the exception of precast concrete piles which results in a smaller 

coefficient of determination value and a slope of best fit line further away from unity. For diesel 

hammered piles, the effects of using the revised coefficient are more pronounced, however in general 

the capacities become under predicted.  The coefficient of determination increases for all pile types 

except for timber. The slopes of the best fit approach a value nearer unity for concrete filled steel tube 

and H piles but not for Timber and precast concrete piles.     

 

When considering all pile types regardless of installation method, the revised coefficients improve the 

coefficients of determination for all pile types except timber piles. The slopes of the best fit line 

approach closer to unity for all material types except precast concrete piles. 
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Similarly as with the original dynamic analysis of MTO driven piles, a statistical analysis of the results 

using the revised coefficients is also performed. Tables 33 to 35 present the ratios of predicted to field 

measured pile capacities, percent difference, and standard deviation of predicted to field measured pile 

capacities and the correlation values between predicted and field measured pile capacities, respectively. 

 

Table 33: Ratios and Standard Deviations of Revised Dynamic Predicted to Field Tested Pile Capacities 

Hammer 
ENR 

Formula 
Gates 

Formula 
1.75 FHWA Modified 

Gates Formula 
100 FHWA Modified 

Gates Formula 
MTO Modified 
Hiley Formula 

Maximum 

Drop 1.611 1.833 2.248 1.943 1.658 

Diesel 2.486 3.099 3.914 3.288 2.997 

Minimum 

Drop 0.105 -0.584 -6.034 -6.955 0.151 

Diesel 0.314 0.343 0.491 0.383 0.241 

Average 

Drop 0.486 0.951 0.894 0.708 0.840 

Diesel 0.861 1.000 1.304 1.174 0.989 

All 0.705 0.979 1.133 0.981 0.927 

 

St. Dev. 
ENR 

Formula 

Gates 

Formula 

1.75 FHWA Modified 

Gates Formula 

100 FHWA Modified 

Gates Formula 

MTO Modified 

Hiley Formula 

Drop 0.303 0.408 1.330 1.452 0.382 

Diesel 0.507 0.644 0.796 0.704 0.710 

All 0.470 0.555 1.063 1.095 0.598 

 

 

In general, using the revised coefficients results in ratios of predicted to measured capacities close to 

unity and shows an improvement over values from the original dynamic analysis from piles in the MTO 

database (Table 25). This is true for the ENR formula when considering drop and diesel hammered 

piles separately; however, when considering them together the ratio actually moves away from unity by 

a factor of approximately 1.16. For the Gates formula, the ratio is improved for all pile installation 

methods and approaches a value very close to unity. The ratios from the FHWA modified Gates 

formulae for all installation methods and revised values improved except when adjusting the 100 

coefficient for drop hammered piles which became under predicted. Similarly, the results from the 

MTO modified formula using the revised C3 coefficient causes the ratios to decrease towards unity, the 

exception is again for piles installed by drop hammers which become under predicted.   

 

The variation in the data, on average, as given by the standard deviations also improves when using the 

revised coefficients for the analysis. The only notable exception to this for values derived from the 

Gates formula, which increases despite the pile driver type. For the ENR formula the standard deviation 

decreases for all installation methods except drop hammered piles, this is also true for the revised 

FHWA modified gates formulae. The standard deviations derived from using the MTO modified 

formula decrease for all pile driver types utilized. 
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Table 34: Percent Difference and Standard Deviations of Revised Predicated to Estimated Capacities 

Hammer 
ENR 

Formula 

Gates 

Formula 

1.75 FHWA Modified 

Gates Formula 

100 FHWA Modified 

Gates Formula 

MTO Modified 

Hiley Formula 

Maximum 

Drop 61.096 88.250 124.750 94.250 65.750 

Diesel 148.649 209.910 291.441 228.829 199.698 

Minimum 

Drop -89.542 -158.427 -703.371 -795.506 -84.875 

Diesel -68.587 -65.721 -50.903 -61.701 -75.882 

Average 

Drop -51.440 -4.929 -10.639 -29.162 -16.020 

Diesel -13.881 -0.023 30.388 17.425 -1.114 

All -29.490 -2.062 13.338 -1.936 -7.308 

 

St. Dev. 
ENR 

Formula 

Gates 

Formula 

1.75 FHWA Modified 

Gates Formula 

100 FHWA Modified 

Gates Formula 

MTO Modified 

Hiley Formula 

Drop 0.303 0.408 1.330 1.452 0.382 

Diesel 0.507 0.644 0.796 0.704 0.710 

All 0.470 0.555 1.063 1.095 0.598 

 

 

Comparing Table 34 to 26, it is evident that the percent difference between predicted and measured 

capacities using the revised coefficients significantly decrease when compared to the original dynamic 

analysis for all pile driver types, except when considering drop and diesel hammered piles together for 

the ENR formula which increases by approximately 11 percent and drop hammered piles from the 

revised 100 coefficient of the FHWA modified Gates formula and MTO modified Hiley formula which 

decrease by approximately 15 and 17 percent, respectively.  

 

Table 35: Correlation of Revised Predicted to Field Tested Results of Pile Capacities 
Hammer ENR Formula Gates Formula 1.75 FHWA Modified Gates Formula 100 FHWA Modified Gates Formula MTO Modified Hiley Formula 

Drop 0.466 0.525 0.533 0.520 0.268 

Diesel 0.711 0.683 0.683 0.683 0.208 

All Piles 0.702 0.655 0.675 0.698 0.300 

 

 

Comparing Tables 35 and 27 indicates that in general the correlation values stayed constant or slightly 

increased when predicting piles bearing capacities from dynamic formulae using the revised 

coefficients rather than the original values. On average, all correlation values range from 48.6 to 71.1 

percent except for those the MTO modified Hiley formula which range from 20.8 to 30 percent, which 

is significantly lower than the values from the other formulae. 

 

Since the decision to use the average value for each coefficient is somewhat arbitrary, a multi 

regression analysis is also completed to determine if other coefficient values produce more accurate 

predictions of pile bearing capacities. 

 

For complete calculation using the revised coefficients, see Appendix E.   
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5.3.3 Pile Bearing Capacities from Multi Regression Analysis  

 

Multi regression analysis (MRA) is performed using the built in solver function of Microsoft Excel. 

Select coefficients from each dynamic formula are varied so that when the predicted bearing capacity is 

compared to the measured pile capacity the lowest possible amount of normalized error is produced. 

The normalized error is given by the formula below: 

 

                  
                                                                                                        

                                                                             (49) 

 

For the ENR, Gates, FHWA modified Gates, Hiley, and MTO modified Hiley dynamic formulae the 

normalized error is calculated for piles installed by drop hammers and diesel hammers separately as 

well as together. Additionally, for the Hiley and MTO modified Hiley formulae the normalized error is 

also calculated for piles by material type; timber, concrete, H, and open ended concrete filled steel tube 

as well as installation method; drop hammer, diesel hammer, and combined drop and diesel hammered 

piles together. 

 

For each coefficient value calculated by solver, the trend line equation and coefficients of determination 

are recorded for comparison purposes and are given as Tables 36 to 47 below. The trend line is 

calculated in two ways; using the least squares method as well as forcing the y intercept to equal zero. 

Since Excel contains a known issue of calculating the coefficient of determination graphically within 

the chart function when the intercept is forced to zero it is instead calculating using the LINEST 

equation within Excel which is designed to overcome this error.  

 

The tables are divided into three sections, the top third is the analysis of piles installed by drop hammer, 

the middle third is the results for piles installed by diesel hammer and the bottom third is for both drop 

and diesel hammered piles. The formula for each dynamic formula is given in the second column and 

the variable being adjusted is described in the third column. The values of the variables are given in the 

next two columns. The sixth column gives the value of the normalized error. The seventh and eighth 

columns contain the equation of the best fit regression line and corresponding coefficient of 

determination, respectively. The last column gives the number of piles used in the analysis. 

 

The analysis consisted of varying the c coefficient so that a minimal amount of error is produced while 

increasing the coefficient of determination as much as possible and having the resulting slope and 
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intercept of the trend line equation be as close as possible to one and zero, respectively. For each 

revised coefficient value the trend line equation is recorded as is and with the intercept equal to zero.  

 

Table 36: Multi Regression Analysis for ENR Dynamic Formula Predictions 

Pile Type Formula Coefficient Condition c Coefficient 
Modified 

Energy 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R =  

2 * Energy /  

(s+c) 

Original Value 1 1 6.0016 
y = 2.5172x + 447.24 

y = 5.8106x 

0.1505 

0.8203 

32 

Solving for c 0.000 1 1.1452 
y = 0.3089x + 600.97 

y = 1.0296x 

0.1650 

0.6051 

Solving for Modified Energy 1 7.0831 0.4603 
y = 0.3554x + 447.24 

y = 0.8203x 

0.1505 

0.8203 

Solver Values 0.4175 4.3217 0.4124 
y = 0.4781x + 353.97 

y = 0.8549x 

0.2525 

0.8549 

1:1 Slope 
0.4 2 1.1920 y = 1.0125x +354 0.2556 
1 5.8100 0.5083 y = 1.0001x 0.8203 

R =  

2 * Energy /  

(s+c) + 100 000 

Best Fit Equation 0.131 1 0.3730 y = 0.9995x + 4.8866 0.2552 

Diesel 

R =  

2 * Energy /  

(s+c) 

Original Value 0.1 1 0.4877 
y = 0.6246x + 386.83 

y = 0.8655x 

0.4239 

0.8258 

45 

Solving for c 0.108 1 0.4848 
y = 0.6712x + 362.68 

y = 0.909x 

0.4318 

0.8313 

Solving for Modified Energy 0.1 1.048 0.4851 
y = 0.5959x + 386.83 

y = 0.8258x 

0.4239 

0.8258 

Solver Values 0.8443 4.776 0.3517 
y = 1.1468x - 379.85 

y = 0.8899x 

0.6169 

0.8899 

1:1 Slope 
0.3 1.85 0.4026 y = 1.0232x – 28.588 0.5453 

0.1 0.8655 0.5337 y = 1x 0.8258 

R =  

2 * Energy /  

(s+c) + 50 000 

Best Fit Equation 0.1625 1 0.4320 y = 1x - 2.2513 0.4761 

Combined 

R =  

2 * Energy /  

(s+c) 

Original Value 1/0.1 1 0.8462 
y = 0.5007x + 594.50 

y = 0.8941x 

0.4139 

0.7012 

77 

Solving for c 0.0945 1 0.6686 
y = 0.5384x + 511.29 

y = 0.8847x 

0.4471 

0.7633 

Solving for Modified Energy 1/0.1 1.2751 0.7797 
y = 0.3927x + 594.5 

y = 0.7012x 

0.4139 

0.7012 

Solver Values 1.0446 6.0056 0.4005 
y = 0.7967x + 100.45 

y = 0.8710x 

0.5284 

0.8710 

1:1 Slope 
1.7 7.35 0.4762 y = 0.9987x + 78.352 0.4972 
1 5.0000 0.4332 y = 1.0093x 0.8713 

R =  

2 * Energy /  

(s+c) + 90 000 

Best Fit Equation 0.198 1 0.4294 y = 1.0013x – 11.024 0.4920 

 

 

For data derived from the ENR formula, forcing the intercept equal to zero always results in the slope 

increasing in value and becoming closer to unity and in all but one case. The coefficient of 

determination values associated with the best fit line equations seems artificially high, especially when 

comparing it to the coefficients of determination of best fit lines using the regression method of least 

squares. For this reason only the results from the least squares regression without forcing the intercept 

to zero is discussed below. 

 

When examining the results it becomes clear that no change in the c coefficient can cause the predicted 

values or trend lines to match the measured pile bearing capacities or 1:1 line, respectively. To try and 
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overcome this limitation a modifier is added to the energy term, initially set to a value of one and varied 

to determine if a trend line which lies closer to the 1:1 line is produced.  

 

Solving for one variable at a time does not produce the desired effect however solving for both 

simultaneously results in the lowest normalized error. For drop and both diesel and drop hammered 

piles examined together, this does not result in a trend line with slope of one, however for diesel 

hammered piles solely the solver determined values of the c and energy modifier coefficient does 

produce a trend line with a slope near unity.    

 

To force the trend line slope towards unity c values of 0.4 and 0.3 and energy modifier values of 2 and 

1.85 are required for drop and diesel hammered piles respectively. An alternative technique to obtain a 

best fit equation with a minimal intercept value is to add an offset to the dynamic equation which shifts 

the least squares line to almost match the 1:1 line. However this introduces the same problem as with 

the FHWA modified Gates formula; where a set of zero results in the pile being able to support some 

load, either positive or negative, which does not make physical sense.  

 

The original coefficient of 
1
/7 at the beginning of the Gates formula is denoted by the variable D. 

Similarly as with the analysis performed on the ENR formula a term is multiplied to the energy value in 

an effort to improve the predictive capability of the dynamic formula.   

 

Similarly, as with the regression analysis of predicted bearing capacities derived from the ENR formula, 

forcing the best fit line to intercept the y axis at zero causes the coefficient of determination values to 

increase significantly. Unlike the data from the ENR formula, forcing the intercept to zero causes the 

slope of the best fit lines to decrease for all installation methods except when considering drop 

hammered piles solely. Solving for the D and energy modifying terms simultaneously does not result in 

a best fit line with a slope of one and produces coefficients of determination which are similar to those 

from when solving for the D and energy modifying coefficients individually, which gives the lowest 

normalized error. Setting the D coefficient value an adding an extra term at the end of the formula 

which results in a best fit line with a slope of one also increases the amount of error between predicted 

and field estimated bearing capacities. 
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Table 37 Multi Regression Analysis for Gates Dynamic Formula Predictions 

Pile Type Formula Coefficient Condition Coefficient D 
Modified 

Energy 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R =  

D * Energy1/2 *  

(1-log(s)) 

Original Value 1/7 1 2.6711 
y = 2.4497x + 195.6 

y = 3.2585x 

0.2757 

0.8821 

32 

Solving for D 0.5277 1 0.3592 
y = 0.6631x + 195.6 

y = 0.8821x 

0.2757 

0.8821 

Solving for Modified Energy 1/7 13.6486 0.3592 
y = 0.6631x + 195.6 

y = 0.8821x 

0.2757 

0.8821 

Solver Values 0.5397 0.9561 0.3592 
y = 0.6631x + 195.6 

y = 0.8821x 

0.2757 

0.8821 

1:1 Slope 
0.35 1 0.6148 y = 0.9999x +195.6 0.2757 

0.4655 1 0.3825 y = 1x 0.8821 

R =  

D * Energy1/2 * 

(1-log(s)) + 21 

Best Fit Equation 0.350 1 0.3701 y = 0.9999x + 8.6738 0.2757 

Diesel 

R =  

D * Energy1/2 *  

(1-log(s)) 

Original Value 1/7 1 2.2767 
y = 4.1958x – 600.47 

y = 2.8360x 

0.4663 

0.8456 

45 

Solving for D 0.4791 1 0.4067 
y = 1.251x - 600.47 

y = 0.8456x 

0.4663 

0.8456 

Solving for Modified Energy 1/7 11.2481 0.4067 
y = 1.251x - 600.47 

y = 0.8456x 

0.4663 

0.8456 

Solver Values 0.5381 0.7927 0.4067 
y = 1.251x - 600.47 

y = 0.8456x 

0.4663 

0.8456 

1:1 Slope 
0.6 1 0.4496 y = 0.999x – 600.47 0.4663 

0.4051 1 0.4423 y = 1.0001x 0.8456 

R =  

D * Energy1/2 * 

(1-log(s)) - 68 

Best Fit Equation 0.600 1 0.4381 y = 0.999x + 4.2588 0.4663 

Combined 

R =  

D * Energy1/2 *  

(1-log(s)) 

Original Value 1/7 1 2.4405 
y = 2.9418x - 12.711 

y = 2.9089x 

0.4472 

0.8507 

77 

Solving for D 0.4896 1 0.4068 
y = 0.8584x - 12.711 

y = 0.8488x 

0.4472 

0.8507 

Solving for Modified Energy 1/7 11.7451 0.4068 
y = 0.8584x - 12.711 

y = 0.8488x 

0.4472 

0.8507 

Solver Values 0.5538 0.7817 0.4068 
y = 0.8584x - 12.711 

y = 0.8488x 

0.4472 

0.8507 

1:1 Slope 0.419 1 0.4397 y = 1.003x - 12.711 0.4472 
y = 0.9918x 0.8507 

R =  

D * Energy1/2 * 

(1-log(s)) 

Best Fit Equation 0.4156 1 0.4434 y = 0.9999x  0.8507 

 

 

For the analysis of data calculated from the FHWA modified Gates formula, only the coefficients at the 

beginning and end of the formula are varied rather than adding a term to modify the energy imparted 

into the soil – pile system. Unlike the previous formulae, forcing the best fit line to intercept the y axis 

at zero does not automatically increase or decrease its slope.      

 

Solving for both coefficients simultaneously results in the lowest normalized error and best fit lines 

with a slope of one however the offset is significant. Changing the second coefficient reduces the offset 

considerably while keeping the coefficient of determination value the same and without significantly 

increasing the amount of error. 
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Table 38: Regression Analysis for FHWA modified Gates Dynamic Formula Predictions 

Pile Type Formula Coefficient Condition 
1st 

Coefficient 

2nd 

Coefficient 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R =  

C1*0.75*Energy1/2 

*log(10N) - C2 

Original Value 1.75 100 0.4565 
y = 0.4618x + 401.16 

y = 0.9049x 

0.2757 

0.8380 

32 

Solving for 1st Coefficient 1.8982 100 0.4377 
y = 0.4258x + 385.11 

y = 0.8067x 

0.2757 

0.8451 

Solving for 2nd Coefficient 1.75 64.2405 0.4105 
y = 0.4618x + 327.65 

y = 0.7791x 

0.2757 

0.8636 

Solver Values 0.8082 -66.0723 0.3433 
y = 1x – 98.493 

y = 0.8866x 

0.2757 

0.8866 

1:1 Slope 
0.8082 -66.0723 0.3433 y = 1x – 98.493 0.2757 
0.8082 -43.9500 0.3655 y = 1x 0.8872 

Best Fit Equation 0.808 -44 0.3654 y = 1x – 0.2491 0.2757 

Diesel 

R =  

C1*0.85*Energy1/2 

*log(10N) - C2 

Original Value 1.75 100 0.4858 
y = 0.743x – 269.75 

y = 0.6138x 

0.4663 

0.8553 

45 

Solving for 1st Coefficient 1.3421 100 0.4005 
y = 0.9688x - 169.25 

y = 0.8567x 

0.4663 

0.8576 

Solving for 2nd Coefficient 1.75 215.834 0.4173 
y = 0.743x + 113.33 

y = 0.8117x 

0.4663 

0.8581 

Solver Values 1.3003 86.477 0.4003 
y = 1x - 215.56 

y = 0.8566x 

0.4663 

0.8566 

1:1 Slope 
1.3003 86.477 0.4003 y = 1x – 215.56 0.4663 

1.3003 135 0.4370 y = 1.0003x 0.8594 

Best Fit Equation 1.3003 135 0.4372 y = 1x + 0.4186 0.4663 

Combined 

R =  

C1*Energy1/2 

*log(10N) - C2 

Original Value 1.75 100 0.5214 
y = 0.501x + 263.62 

y = 0.6448x 

0.4382 

0.8355 

77 

Solving for 1st Coefficient 1.4745 100 0.4808 
y = 0.5946x + 305.28 

y = 0.7985x 

0.4382 

0.8295 

Solving for 2nd Coefficient 1.75 117.9591 0.5191 

y = 0.5010x + 

303.6612 

y = 0.6717x 

0.4382 

0.8297 

Solver Values 0.8767 -54.276 0.4149 
y = 1x - 200.94 

y = 0.8451x 

0.4382 

0.8451 

1:1 Slope 
0.8767 -54.276 0.4149 y = 1x - 200.94 0.4382 
0.9094 0 0.4592 y = 1x 0.848 

Best Fit Equation 0.8767 -9 0.4563 y = 1x + 0.5819 0.4382 
 

 

The Hiley formula is the most complex equation discussed so far, with variables for nine unique 

parameters which are specific to the pile driver being used, soil being driven into, and the pile itself. 

Since most variables are either given; such as rated energy from the pile driver, measured; such as the 

set and weight of the ram or calculated; such as the pile weight, only two parameters are varied during 

the analysis; the compression of the soil during driving, C3, and the coefficient of restitution, e. 

 

The compression and coefficient of restitution variables are chosen since the values are somewhat 

arbitrarily assigned. According to Chellis, the amount of soil compression is taken as a constant of 

0.254 cm (0.1 inches) despite soil type, pile type or difficulty of driving. The coefficient of restitution is 

chosen as 0.5 since the pile cap material and physical condition is not available in many if not in all of 

the pile records. 

 

 

 

 



144 
 

Table 39: Multi Regression Analysis for Hiley Dynamic Formula Predictions 

Pile Type Formula 
Coefficient 

Condition 

C3 

Coefficient 

Coefficient of 

Restitution (e) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.5639 
y = 0.182x + 598.24 

y = 0.8213x 

0.0437 

0.7480 

32 

Solving for C3 

Coefficient 
0.8159 0.5 0.5636 

y = 0.1788x + 598.64 

y = 1.3006x 

0.0441 

0.7605 

Solving for e 

Coefficient 
0.1 0.7986 0.4936 

y = 0.274x + 475.04 

y = 0.7014x 

0.1277 

0.8090 

Solver Values 0.5555 1.0000 0.4333 
y = 0.4062x + 400.87 

y = 0.8250x 

0.1769 

0.8379 

1:1 Slope 
21.5 1 9.2303 y = 1.003x + 657.86 0.0250 
0.997 1 0.4918 y = 0.9999x 0.8275 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 150 000 

Best Fit Equation 21.5 1 0.4189 y = 1.003x – 11.761 0.0250 

Diesel 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.7432 
y = -0.0685x + 1258 

y = 0.4750x 

0.0084 

0.5666 

45 

Solving for C3 

Coefficient 
0.4500 0.5 0.6695 

y = -0.0098x + 1116.1 

y = 0.7109x 

7E-5 

0.6293 

Solving for e 

Coefficient 
0.1 0.7290 0.7016 

y = 0.0487x + 1011.2 

y = 0.4132x 

0.0044 

0.6640 

Solver Values 1.553 1.0000 0.4169 
y = 1.1221x - 382.78 

y = 0.8599x 

0.4175 

0.8401 

1:1 Slope 
1.320 1 0.4268 y = 1.0004x – 358.03 0.3973 

1.953 1 0.4453 y = 1x 0.8455 

R = (ef*En) / 

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

– 80 000 

Best Fit Equation 1.320 1 0.4637 y = 1.0004x – 1.8014 0.3973 

Combined 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.7794 
y = 0.0999x + 824.96 

y = 0.5112x 

0.0242 

0.5796 

77 

Solving for C3 

Coefficient 
0.4144 0.5 0.7089 

y = 0.2135x + 738.17 

y = 0.7317x 

0.0501 

0.6370 

Solving for e 

Coefficient 
0.1 0.7026 0.7441 

y = 0.1604x + 687.31 

y = 0.4517x 

0.0802 

0.6546 

Solver Values 1.3910 1.0000 0.4794 
y = 0.6472x + 265.57 

y = 0.8419x 

0.3692 

0.8182 

1:1 Slope 
2.53 1 0.6888 y = 1x + 226.65 0.3975 
1.834 1 0.5173 y = 1x 0.8243 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 50 000 

R = (ef*En) / 

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 50 000 

Best Fit Equation 2.53 1 0.4742 y = 1x + 4.1048 0.3975 

 

 

Solving for both coefficients simultaneously improves the predictive capabilities of the dynamic 

formula as well as the coefficient of determination values; however the slope of the best fit line does not 

reach unity except when examining diesel hammered piles solely.  

 

When attempting to obtain a best fit line with a slope of one, the coefficient of restitution is set to a 

value of unity and the C3 coefficient depended upon the hammer type, with diesel hammers dominating 

the required value. The coefficients of determination values are comparable to those corresponding to 

solver determined values except for drop hammered piles which decrease by a factor of seven. The y 

intercept of the best fit line equations are considerably offset from the zero coordinate. To overcome 

this a term of 15 000, -8 000, and 50 000 is added to the end of the dynamic formula for hammers 
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installed by drop, diesel, and drop and diesel hammered piles together, respectively. This is similar to 

the format of the FHWA modified Gates formula and thus also contains the same concerns, where a set 

of zero results in a pile being able to support some load either positive or negative.  

 

Due to the large differences in C3 values between drop and diesel hammered installed piles it is decided 

to redo the analysis according to pile type to determine the significance that pile material plays in 

bearing capacity predictions.           

 

Table 40: Multi Regression Analysis for Hiley Dynamic Formula Predictions for Timber Piles 

Pile Type Formula 
Coefficient 

Condition 

C3 

Coefficient 

Coefficient of 

Restitution (e) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.4578 
y = 0.1702x + 507.23 

y = 0.6292x 

0.2516 

0.8998 

12 

Solving for C3 

Coefficient 
0.6129 0.5 0.2910 

y =0.2692x + 492.1 

y = 0.9442x 

0.1991 

0.9236 

Solving for e 

Coefficient 
0.1 0 0.4270 

y = 0.1814x + 506.12 

y = 0.6681x 

0.2469 

0.9020 

Solver Values 0.5276 0.0000 0.2893 
y = 0.2749x + 489.19 

y = 0.9495x 

0.2042 

0.9247 

1:1 Slope 
N/A N/A N/A N/A N/A 

0.607 0 0.2944 y = 0.9998x 0.9267 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Diesel 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.9512 
y = -0.1037x + 1013.7 

y = 0.2427x 

0.3174 

0.6750 

12 

Solving for C3 

Coefficient 
1.6884 0.5 0.5640 

y = -0.2849x + 1002 

y = 0.7385x 

0.2267 

0.7260 

Solving for e 

Coefficient 
0.1 0.3690 0.8507 

y = -0.1055x + 1007.7 

y = 0.2494x 

0.3217 

0.6641 

Solver Values 2.3908 1.0000 0.4946 
y = -0.2917x + 1005.5 

y = 0.7888x 

0.1642 

0.7802 

1:1 Slope 
N/A N/A N/A N/A N/A 

3.231 1 0.5542 y = 1x 0.7834 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Combined 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.8828 
y = -0.0138x + 739.17 

y = 0.2927x 

0.0075 

0.6447 

24 

Solving for C3 

Coefficient 
1.3182 0.5 0.6081 

y = -0.0293x + 737.27 

y = 0.7491x 

0.0044 

0.7160 

Solving for e 

Coefficient 
0.1 0 0.8730 

y = -0.0196x + 746.36 

y = 0.3126x 

0.0134 

0.6313 

Solver Values 1.8353 1.000 0.5718 
y = 0.0086x + 709.53 

y = 0.7687x 

0.0044 

0.7442 

1:1 Slope N/A N/A N/A N/A N/A 
2.618 1 0.6437 y = 0.9999x 0.7523 

N/A Best Fit Equation N/A N/A N/A N/A N/A 
 

 

When examining timber piles it is determined that no combination of C3 and coefficient of restitution 

values could result in a best fit equation with a slope near unity even with an additional term added to 

the end of the formula.   

 

For precast concrete piles, best fit equations with slopes of one are achieved for all three categories of 

pile installation methods. For drop hammered piles the coefficient of restitution value which yields the 

best result is that of the original value of 0.5, while for diesel hammered piles, a value of one is used, 

and that for diesel and drop hammered piles together, a value of approximately 0.73 is used. The C3 
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coefficients range from 1 to 6.3 to 8.5 for drop and diesel hammered, diesel hammered, and drop 

hammered piles, respectively.  

 

Table 41: Multi Regression Analysis for Hiley Dynamic Formula Predictions for Precast Piles 

Pile Type Formula 
Coefficient 

Condition 

C3 

Coefficient 

Coefficient of 

Restitution (e) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.3118 
y = 0.6768x + 46.312 

y = 0.7253x 

0.5269 

0.9676 

4 

Solving for C3 

Coefficient 
0.5002 0.5 0.2065 

y =0.6312x + 218.94 

y = 0.9133x 

0.6007 

0.9638 

Solving for e 

Coefficient 
0.1 0 0.2403 

y = 0.6768x + 144.94 

y = 0.8576x 

0.3589 

0.9545 

Solver Values 0.3688 0.2950 0.1807 
y = 0.7866x + 130.26 

y = 0.9663x 

0.5831 

0.9694 

1:1 Slope 
8.507 0.5 3.1799 y = 1x + 502.64 0.5447 

0.7277 0.5 0.2376 y = 1x 0.9525 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 115 000 

Best Fit Equation 8.507 0.5 0.1805 y = 1x – 9.21 0.5447 

Diesel 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.3033 
y = -0.0084x + 2198.2 

y = 0.8060x 

0.0652 

0.9292 

3 

Solving for C3 

Coefficient 
0.2855 0.5 0.2639 

y = -0.1112x + 2223.8 

y = 0.9485x 

0.0751 

0.9339 

Solving for e 

Coefficient 
0.1 0.4640 0.3007 

y = -0.0878x + 2198.7 

y = 0.8355x 

0.0723 

0.9231 

Solver Values 1.421 1.0000 0.1019 
y = 0.124x + 1752.1 

y = 0.9921x 

0.0056 

0.9896 

1:1 Slope 
6.286 1 1.9966 y = 1x + 1329.6 0.0047 

1.441 1 0.1023 y = 1.0002x 0.9897 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 300 000 

Best Fit Equation 6.286 1 0.0903 y = 1x – 5.6992 0.0047 

Combined 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.3357 
y = 0.7236x + 134.44 

y = 0.7925x 

0.7232 

0.9331 

7 

Solving for C3 

Coefficient 
0.3098 0.5 0.2840 

y = 0.8823x + 98.461 

y = 0.9425x 

0.7329 

0.9363 

Solving for e 

Coefficient 
0.1 0.4390 0.3287 

y = 0.7529x + 155.27 

y = 0.8376x 

0.6834 

0.9231 

Solver Values 0.9716 0.845 0.2152 
y = 0.9042x + 65.592 

y = 0.9433x 

0.8512 

0.9646 

1:1 Slope 
1 0.7323 0.2484 y = 1.05357x - 29.752 0.8147 

1.589 1 0.2428 y = 0.9999x 0.9569 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 20 000 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 20 000 

Best Fit Equation 1 0.7323 0.2289 y = 0.999x + 0.1676 0.8291 

 

 

When determining values which results in slopes of best fit lines near unity, the low corresponding 

coefficient of determination values for diesel hammered piles seem to be affected by the small number 

of piles within the sample set. When more piles are analyzed such as with the drop hammered piles, and 

drop and diesel hammered piles together, a much higher value is obtained.  

 

Considering only H piles, a slope of one for the best fit line for drop hammered piles is not possible to 

obtain. Using solver to simultaneously calculate C3 and coefficient of restitution values for drop and 
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diesel hammered piles also does not result in trend lines with slopes close to one; however, for 

combined drop and diesel hammered pile as well as solely diesel hammered pile analyses, slopes of one 

are obtained with correlation values only slightly lower than those from the solver determined values 

when setting the C3 value to 1.9 and 0.88, respectively and the coefficient of restitution to unity.        

 

Table 42: Multi Regression Analysis for Hiley Dynamic Formula Predictions for H Piles 

Pile Type Formula 
Coefficient 

Condition 

C3 

Coefficient 

Coefficient of 

Restitution (e) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.7991 
y = 0.3212x + 571.23 

y = 1.2562x 

0.0374 

0.7638 

6 

Solving for C3 

Coefficient 
-0.1427 0.5 0.6441 

y =0.2466x +571.26 

y = 0.8767x 

0.0765 

0.7190 

Solving for e 

Coefficient 
0.1 0.8249 0.4924 

y = 0.3551x + 442.38 

y = 0.7899x 

0.157 

0.7995 

Solver Values 0.4781 0.5000 0.4271 
y = 0.524x + 315.45 

y = 0.8735x 

0.1685 

0.8373 

1:1 Slope 
N/A N/A N/A N/A N/A 

0.697 1 0.4558 y = 1.0001x 0.8382 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Diesel 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.7991 
y = 0.0027x + 1532.6 

y = 0.8394x 

3E-6 

0.7672 

14 

Solving for C3 

Coefficient 
0.1136 0.5 0.5077 

y = 0.0124x + 1516.5 

y = 0.8519x 

7E-5 

0.7692 

Solving for e 

Coefficient 
0.1 0.6122 0.4768 

y = 0.0957x + 1342.7 

y = 0.7201x 

0.0044 

0.7917 

Solver Values 1.2977 1.0000 0.3609 
y = 1.3082x - 769.49 

y = 0.8841x 

0.3084 

0.8736 

1:1 Slope 
0.881 1 0.4006 y = 1.0002x - 614.09 0.2670 

1.599 1 0.3819 y = 1.0002x 0.8759 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

– 135 000 

Best Fit Equation 0.881 1 0.3903 y = 1.0002x – 13.084 0.2670 

Combined 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.5625 
y = 0.439x + 705.96 

y = 0.8572x 

0.1698 

0.7595 

20 

Solving for C3 

Coefficient 
0.865 0.5 0.5623 

y = 0.4277x + 713.64 

y = 0.8445x 

0.1666 

0.7575 

Solving for e 

Coefficient 
0.1 0.6255 0.5205 

y = 0.425x + 600.32 

y = 0.7214x 

0.2194 

0.7856 

Solver Values 1.2263 1.0000 0.4067 
y = 0.7456x + 219.93 

y = 0.8735x 

0.4236 

0.8610 

1:1 Slope 
1.89 1 0.5061 y = 0.998x + 177.33 0.4354 

1.553 1 0.4331 y = 1.001x 0.8634 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 40 000 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 40 000 

Best Fit Equation 1.89 1 0.4156 y = 0.998x – 0.3515 0.4156 

 

 

Solving for C3 and the coefficient of restitution simultaneously to achieve the lowest amount of error 

does not produce trend lines with a slope of approximately one. Although selecting certain values does 

allow for slopes near unity, however the normalized error is slightly larger and coefficients of 

determination to range from significantly smaller to slightly larger.   

 

A final regression analysis is performed on the results from using the MTO modified Hiley formula and 

is given in Tables 44 to 47 below. 
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Since the only difference between the MTO modified Hiley and original Hiley formulae are the values 

of the coefficient of restitution, it is decided that the coefficient are varied as well. Since the formulae 

are so similar, instead of varying the C coefficient which may result in similar findings the energy 

efficiency factor is also changed to determine the effect it plays on pile bearing predictions. 

 

Table 43: Multi Regression Analysis for Hiley Dynamic Formula Predictions for Steel Tube Piles 

Pile Type Formula 
Coefficient 

Condition 

C3 

Coefficient 

Coefficient of 

Restitution (e) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.7739 
y = 0.6598x + 442.31 

y = 1.2311x 

0.2222 

0.7843 

10 

Solving for C3 

Coefficient 
-0.3500 0.5 0.5303 

y =0.4739x + 429.7 

y = 0.8296x 

0.3316 

0.7981 

Solving for e 

Coefficient 
0.1 0.9500 0.4530 

y = 0.5442x + 306.87 

y = 0.7992x 

0.3205 

0.8332 

Solver Values 0.2579 1.0000 0.4444 
y = 0.5881x + 236.09 

y = 0.8397x 

0.3134 

0.8354 

1:1 Slope 
1.48 1.0000 0.825 y = 0.9988x + 272 0.2451 

0.584 1.0000 0.4868 y = 1.0001x 0.8324 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 60 000 

Best Fit Equation 1.48 1.0000 0.4609 y = 0.9988x + 5.2533 0.2451 

Diesel 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.8051 
y = -0.0054x + 893.11 

y = 0.4383x 

6E-5 

0.5188 

16 

Solving for C3 

Coefficient 
0.4980 0.5 0.6644 

y = 0.2267x + 649.87 

y = 0.7692x 

0.0239 

0.6429 

Solving for e 

Coefficient 
0.1 0.7053 0.7736 

y = 0.034x + 815.87 

y = 0.3671x 

0.0027 

0.5861 

Solver Values 1.7465 1.0000 0.4297 
y = 1.7983x - 1101.3 

y = 0.8555x 

0.6328 

0.8265 

1:1 Slope 
0.858 0.8 0.5024 y = 1.0002x - 367.61 0.2752 

2.1944 1 0.4584 y = 1x 0.8349 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

– 80 000 

Best Fit Equation 0.858 0.8 0.5700 y = 1.0002x – 11.467 0.2752 

Combined 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

Original Value 0.1 0.5 0.8590 
y = 0.0465x + 814.13 

y = 0.5073x 

0.005 

0.5084 

26 

Solving for C3 

Coefficient 
0.3824 0.5 0.7598 

y = 0.1725x + 713.65 

y = 0.7742x 

0.0257 

0.6076 

Solving for e 

Coefficient 
0.1 0.7152 0.8180 

y = 0.0663x + 765.6 

y = 0.4162x 

0.0145 

0.5608 

Solver Values 1.3789 1.0000 0.5266 
y = 0.5907x + 269.56 

y = 0.8157x 

0.2183 

0.7682 

1:1 Slope 
2.48 1 0.6985 y = 0.9995x + 166.14 0.283 

1.9001 1 0.5707 y = 1x 0.7829 

R = (ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 40 000 

R = (12*ef*En) /  

(s+1/
2(C1+C2+C3)) * 

((Wr+e2*Wp)/(Wr+Wp) 

+ 40 000 

Best Fit Equation 2.48 1 0.5248 y = 0.9995x – 11.814 0.283 

 

    

Table 44 examines all the piles studied; coefficient of restitution values of 0.25, 0.32, and 0.55 are 

applied to timber piles, steel piles, and steel piles driven without a cushion, respectively. The hammer 

efficiencies of 0.75 and 1 are used for piles installed by drop and diesel hammers, respectively. 
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Solving for both parameters simultaneously resulted in the closest match of predicted to measured pile 

capacities, rather than for one coefficient at a time. Similarly to the results of the Hiley formula, the 

optimal value of the coefficients of restitution is found at a value of unity. To obtain the lowest amount 

of normalized error, the efficiency value is calculated as approximately 0.55, 0.44, and 0.40 for drop, 

diesel, and combined drop and diesel hammered piles together, respectively. In order to obtain trend 

lines with a slope of unity efficiency values of 0.22, 0.49, and 0.29 are required for drop, diesel, and 

combined drop and diesel hammered piles, respectively. Changing these values does increase the 

normalized error by an approximate factor of three; however the coefficient of determination values 

stay constant at 8, 13, and 20 percent for diesel, combined drop and diesel, and drop hammered pile 

analysis, respectively.    

 

Table 44: Multi Regression Analysis for MTO Modified Hiley Formula 

Pile Type Formula Coefficient Condition 
Coefficient of 

restitution (e) 

Hammer 

Efficiency (ef) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = 

(n*ef*WgH) /  

(s+c/
2) 

Original Value 0.25/0.32/0.55 0.75 0.6223 
y = 0.1787x + 613.19 

y = 0.8748x 

0.0415 

0.7259 

32 

Solving for e 

Coefficient 
0.801 0.75 0.4906 

y =0.2837x + 471.33 

y = 0.7076x 

0.1321 

0.8103 

Solving for ef 

Coefficient 
0.25/0.32/0.55 0.9038 0.5903 

y = 0.1483x + 613.19 

y = 0.7259x 

0.0415 

0.7259 

Solver Values 1.0000 0.5482 0.4465 
y = 0.3997x + 414.7 

y = 0.8323x 

0.1956 

0.8323 

1:1 Slope 
1 0.2191 1.5592 y = 1x + 414.7 0.1956 

1 0.4562 0.5966 y = 1x 0.7725 

R = (n*ef*WgH) / 

(s+c/2) + 415 
Best Fit Equation 1 0.2191 0.3851 y = 1x – 0.2911 0.1956 

Diesel 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.25/0.32/0.55 1 0.8202 

y = -0.1099x + 

1308.2 

y = 0.4931x 

0.0234 

0.4955 

45 

Solving for e 

Coefficient 
0.7248 1 0.7006 

y = 0.0476x + 1014.5 

y = 0.4153x 

0.0041 

0.6633 

Solving for ef 

Coefficient 
0.25/0.32/0.55 0.9950 0.8202 

y = -0.1105x + 

1308.2 

y = 0.4956x 

0.0234 

0.4955 

Solver Values 1.0000 0.4356 0.5333 
y = 0.4077x + 536.09 

y = 0.7419x 

0.0789 

0.7420 

1:1 Slope 
1 0.1776 1.4178 y = 1x + 536.09 0.0789 

0.4 0.4934 1.0830 y = 1.001x 0.5232 

R = (n*ef*E) / 

(s+c/2) + 537 
Best Fit Equation 1 0.1776 0.5735 y = 1x – 0.9042 0.0789 

Combined 

R = 

(n*ef*WgH) /  

(s+c/2) 

 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.25/0.32/0.55 0.75/1 0.9546 
y = 0.0175x + 940.93 

y = 0.4082x 

0.0012 

0.4554 

77 

Solving for e 

Coefficient 
0.7728 0.75/1 0.8451 

y = 0.1059x + 737.25 

y = 0.3452x 

0.0644 

0.6208 

Solving for ef 

Coefficient 
0.25/0.32/0.55 0.8481 0.8998 

y = 0.0035x + 961.72 

y = 0.4754x 

3E-5 

0.4754 

Solver Values 1.0000 0.4030 0.6147 
y = 0.3362x + 569.42 

y = 0.7085x 

0.1348 

0.7084 

1:1 Slope 
1 0.1355 1.9889 y = 0.999x + 569.42 0.1348 

1 0.2855 0.7303 y = 1x 0.7084 

R = (n*ef*WgH) / 

(s+c/2) + 570 

R = (n*ef*E) / 

(s+c/2) + 570 

Best Fit Equation 1 0.1355 0.5655 y = 0.9999x – 0.5318 0.1348 

 

 

In order to determine if pile types combined with driving equipment influences the accuracy of the 

bearing capacity predictions, the analysis is redone using coefficients of restitution as the basis of study. 
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First timber piles are examined with an original coefficient of restitution value of 0.25 and hammer 

efficiencies of 75 and 100 percent for drop and diesel hammered piles, respectively.  

 

It is found that there exists no combination of coefficient of restitution and hammer efficiency values 

which results in timber pile predictions with a trend line slope near unity, except for those installed by 

drop hammers.  

 
Table 45: Multi Regression Analysis for MTO Hiley Formula for Timber Piles 

Pile Type Formula Coefficient Condition 

Coefficient 

of restitution 

(e) 

Hammer 

Efficiency 

(ef) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = 

(n*ef*WgH) /  

(s+c/
2) 

Original Value 0.25 0.75 0.4344 
y = 0.1704x + 517.38 

y = 0.6685x 

0.2275 

0.8941 

12 

Solving for e 

Coefficient 
0 0.75 0.4274 

y =0.1727x + 517.54 

y = 0.6784x 

0.2257 

0.8944 

Solving for ef 

Coefficient 
0.25 0.5607 0.3503 

y = 0.228x + 517.38 

y = 0.8941x 

0.2275 

0.8941 

Solver Values 0 0.5689 0.3497 
y = 0.2277x + 517.54 

y = 0.8944x 

0.2257 

0.8944 

1:1 Slope 
1 0.1028 3.5772 y = 0.9999x + 521.21 0.2403 

0 0.5088 0.3698 y = 1.0001x 0.8944 

R = (n*ef*WgH) / 

(s+c/2) + 522 
Best Fit Equation 1 0.1028 0.1658 y = 0.9999x + 521.21 0.2403 

Diesel 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.25 1 0.8459 
y = -0.1097x + 1009.2 

y = 0.2566x 

0.3306 

0.6602 

12 

Solving for e 

Coefficient 
0.1664 1 0.8459 

y = -0.1103x + 1007.3 

y = 0.2588x 

0.3319 

0.6565 

Solving for ef 

Coefficient 
0.25 0.3886 0.6438 

y = -0.2822x + 1009.2 

y = 0.6602x 

0.3306 

0.6602 

Solver Values 1.000 0.2808 0.5643 
y = -0.3135x + 1031.8 

y = 0.724x 

0.2748 

0.7240 

1:1 Slope 
N/A N/A N/A N/A N/A 

1.000 0.2033 0.6632 y = 1x 0.7240 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Combined 

R = 

(n*ef*WgH) /  

(s+c/2) 

 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.25 0.75/1 0.8740 
y = -0.0179x + 744.14 

y = 0.3102x 

0.0114 

0.6339 

24 

Solving for e 

Coefficient 
0 0.75/1 0.8713 

y = -0.0195x + 746.01 

y = 0.3156x 

0.0131 

0.6305 

Solving for ef 

Coefficient 
0.25 0.4475 0.6417 

y = -0.0531x + 756.84 

y = 0.6882x 

0.0176 

0.6883 

Solver Values 1 0.3373 0.6099 
y = -0.0145x + 726.86 

y = 0.7154x 

0.0012 

0.7153 

1:1 Slope 
N/A N/A N/A N/A N/A 

0.8 0.264 0.7329 y = 1.0002x 0.7088 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

 

 

Like the majority of solver determined values for the coefficient of restitution from the Hiley analysis, 

the MTO modified Hiley optimal coefficient of restitution value is also one. The hammer efficiencies 

for timber piles are also similar for all the piles overall, except those installed by diesel hammers. For 

drop and drop and diesel hammered timber piles together, the efficiencies which results in the lowest 

normalized error are 57 and 34 percent respectively, while for diesel hammers it is 28 percent, 

significantly lower than for the piles installed by diesel hammers. 

 



151 
 

For steel piles installed with a driving cushion the solver determined values for coefficients of 

restitution which gives the lowest normalized error is one and the hammer efficiencies are 57, 48, and 

49 percent for drop, diesel, and combined drop and diesel hammer driven piles, respectively.  

 

Table 46: Multi Regression Analysis for MTO Hiley Formula for Steel Piles Driven With a Cushion 

Pile Type Formula Coefficient Condition 

Coefficient 

of restitution 

(e) 

Hammer 

Efficiency 

(ef) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = 

(n*ef*WgH) /  

(s+c/
2) 

Original Value 0.32 0.75 0.8871 
y = -0.0005x + 715.98 

y = 1.1168x 

2E-7 

0.6700 

18 

Solving for e 

Coefficient 
0.8341 0.75 0.5214 

y =0.2151x + 529.48 

y = 0.7266x 

0.0695 

0.7757 

Solving for ef 

Coefficient 
0.32 1.000 0.6827 

y = -0.0004x + 715.98 

y = 0.8376x 

2E-7 

0.6700 

Solver Values 1.000 0.5736 0.5016 
y = 0.282x + 489.8 

y = 0.7907x 

0.1054 

0.7907 

1:1 Slope 
1 0.1617 2.5332 y = 1.0003x + 489.8 0.1054 

1 0.4535 0.5641 y = 1x 0.7907 

R = (n*ef*WgH) / 

(s+c/2) + 490 
Best Fit Equation 1 0.1617 0.4130 y = 1.0003x – 0.321 0.1054 

Diesel 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.32 1 0.6824 
y = 0.2582x + 942.81 

y = 0.8784x 

0.0373 

0.6749 

29 

Solving for e 

Coefficient 
0.6035 1 0.5354 

y = 0.4249x + 476.7 

y = 0.6551x 

0.1198 

0.7554 

Solving for ef 

Coefficient 
0.32 1.000 0.6824 

y = 0.2582x + 942.81 

y = 0.8784x 

0.0373 

0.6749 

Solver Values 1.000 0.4755 0.4518 
y = 1.0003x - 312.65 

y = 0.815x 

0.2929 

0.8090 

1:1 Slope 
1 0.4755 0.4518 y = 1.0001x – 312.65 0.2929 

1 0.3875 0.5023 y = 1.0001x 0.8090 

R = (n*ef*E) / 

(s+c/2) - 312 
Best Fit Equation 1 0.4755 0.5062 y = 1.0001 – 0.6145 0.2929 

Combined 

R = 

(n*ef*WgH) /  

(s+c/2) 

 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.32 0.75/1 0.7515 
y = 0.4717x + 650.51 

y = 0.9013x 

0.1332 

0.6701 

47 

Solving for e 

Coefficient 
0.6159 0.75/1 0.5850 

y = 0.4277x + 444.98 

y = 0.6656x 

0.2455 

0.7472 

Solving for ef 

Coefficient 
0.32 1 0.7071 

y = 0.392x + 649.29 

y = 0.8719x 

0.1066 

0.6740 

Solver Values 1.000 0.4910 0.4896 
y = 0.6782x + 195.57 

y = 0.8040x 

0.3531 

0.8041 

1:1 Slope 
1 0.333 0.6791 y = 1x + 195.57 0.3531 

1 0.3948 0.5460 y = 1x 0.8041 

R = (n*ef*WgH) / 

(s+c/2) + 196 

R = (n*ef*E) / 

(s+c/2) + 196 

Best Fit Equation 1 0.333 0.5214 y = 1x – 0.4259 0.3531 

 

 

To obtain trend lines with a slope of one; the hammer efficiencies for drop, diesel, and combined drop 

and diesel installed piles changes to 16, 48, and 33 percent, respectively. Although the magnitude of 

normalized errors increases, the coefficients of determination values remain constant. 

 

The final analysis is performed on piles that are driven without caps. The values of the coefficient of 

restitution and hammer efficiency which gives the lowest normalized error values are similar to those of 

the other analyses performed with data derived from the MTO modified Hiley formula, being one for 

the coefficient of restitution and  hammer efficiencies of 0.35 and 0.42 for diesel and combined drop 

and diesel hammered piles, respectively. The only exception to this is the optimal hammer efficiency of 
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drop hammered piles which is set to 0.64. It is determined that no combination of coefficient of 

restitution and hammer efficiency values could achieve a trend line with a slope of one. Although the 

coefficient of determination values are relatively high, this should not be taken as an indication of the 

accuracy of the dynamic formula, but rather it is more likely due to the low number of samples. 

 

Table 47: Multi Regression Analysis for MTO Hiley Formula for Steel Piles Driven Without a Cushion 

Pile Type Formula Coefficient Condition 

Coefficient 

of restitution 

(e) 

Hammer 

Efficiency 

(ef) 

Norm. 

Err. 

Equation of Straight 

Line 

R2 

Value 

Sample 

Set 

Drop 

R = 

(n*ef*WgH) /  

(s+c/2) 

Original Value 0.55 0.75 0.4177 
y = 5.4265x - 4666.1 

y = 1.2321x 

1 

0.9271 

2 

Solving for e 

Coefficient 
0.8610 0.75 0.2479 

y = 3.0963x – 3258.3 

y = 0.9227x 

1 

0.9396 

Solving for ef 

Coefficient 
0.55 0.9968 0.2710 

y = 4.0829x – 4666.1 

y = 0.9271x 

1 

0.9271 

Solver Values 1 0.6383 0.2382 
y = 2.9031x – 2880.3 

y = 0.9440x 

1 

0.9440 

1:1 Slope 
N/A N/A N/A N/A N/A 

0.7788 0.7500 0.2616 y = 1x 0.9336 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Diesel 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.55 1 0.8093 
y = -0.229x + 1767.4 

y = 0.3610x 

0.3464 

0.5396 

4 

Solving for e 

Coefficient 
0.7309 1 0.7923 

y = -0.2043x + 1836.9 

y = 0.3146x 

0.302 

0.6120 

Solving for ef 

Coefficient 
0.55 0.6689 0.7618 

y = -0.3423x + 1767.4 

y = 0.5396x 

0.3464 

0.5396 

Solver Values 1 0.3507 0.5811 
y = -0.4616x + 1913.6 

y = 0.6948x 

0.2279 

0.6948 

1:1 Slope 
N/A N/A N/A N/A N/A 

1 0.2436 0.6973 y = 1.0002x 0.6948 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

Combined 

R = 

(n*ef*WgH) /  

(s+c/2) 

 

R = 

(n*ef*E) / 

(s+c/2) 

Original Value 0.55 0.75/1 0.8157 
y = -0.1785x + 1607.5 

y = 0.43302x 

0.1843 

0.5252 

6 

Solving for e 

Coefficient 
0.7016 0.75/1 0.8016 

y = -0.1452x + 1600 

y = 0.3793x 

0.1494 

0.5675 

Solving for ef 

Coefficient 
0.55 0.7614 0.7371 

y = -0.2544x + 1660.8 

y = 0.5725x 

0.1884 

0.5725 

Solver Values 1 0.4207 0.6143 
y = -0.2299x + 1607 

y = 0.6773x 

0.0884 

0.6774 

1:1 Slope 
N/A N/A N/A N/A N/A 

1 0.2849 0.7465 y = 1.0002x 0.6774 

N/A Best Fit Equation N/A N/A N/A N/A N/A 

 

 

From the analysis it becomes clear that no revised c coefficient, pile parameters, soil compression, or 

coefficient of restitution values, either by themselves or in conjunction with each other can result in a 

dynamic formula which accurately predicts pile bearing capacity and results in a minimal scatter of the 

data. For the ENR and Gates formulae, the modification found which produces the most accurate pile 

predictions is to add a positive or negative term to the end of the formula similar to the modified Gates 

formula. This forces the trend line to fall on the 1:1 ideal line for predictions using piles from the MTO 

database, however adding a term which shifts the trend line left or right does not make physical sense 

since it implies that a pile which is not driven, a set equal to zero, can already support some load, either 

positive or negative. 
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5.3.4 Predictive Capacities Removing Safety Factors 

 

As discussed in Section 4.2, the dynamic formulae in this study contain various factors of safety. The 

factor of safety in the ENR, Gates and FHWA modified Gates formula is six, three and three, 

respectively. The Hiley and MTO modified Hiley formula do not contain any factor of safety thus the 

predicted capacity is meant to represent the ultimate bearing capacity of the pile while the other 

formulae give the safe working capacity of the pile. Additionally, the bearing capacities derived from 

the MTO pile load tests are taken as the estimated failure loads thus the ultimate capacity that the pile 

can withstand. To allow for a more direct comparison between the dynamic formulae themselves and to 

the pile load test results the multi regression analysis was repeated with the factors of safety omitted 

from each formula. 

 

Figures 64 to 66 shows the predicted pile versus the estimated failure load tested capacities without any 

applied factors of safety and Tables 48 to 53 gives the statistics of the predicted dynamic capacities to 

the measured capacities derived from pile load tests. The analysis is not performed for Hiley and MTO 

modified Hiley derived capacities since these formulae do not contain any factors of safety and thus the 

results would be redundant. 

 

Table 48: Best fit lines and Coefficients of Determination of Pile Capacities without Safety Factors 
Hammer ENR Formula Gates Formula FHWA Modified Gates Formula 

All 
y = 0.0834x + 594.5 y = 0.9806x – 12.711 y = 0.167x + 114.97 

R
2
 = 0.4139 R

2
 = 0.4472 R

2
 = 0.4382 

Drop 
y = 0.4195x + 447.24 y = 0.8166x + 195.6 y = 0.1539x + 264.12 

R
2
 = 0.1505 R

2
 = 0.2757 R

2
 = 0.2757 

Diesel 
y = 0.1041x + 386.83 y = 1.3986x – 600.47 y = 0.2477x – 490.23 

R
2
 = 0.4239 R

2
 = 0.4663 R

2
 = 0.4663 

 

 

Table 49: Ratio Dynamic Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

Hammer ENR Formula Gates Formula FHWA Modified Gates Formula 

Maximum 

Drop 2.100 1.847 8.686 

Diesel 21.490 4.688 24.466 

Minimum 

Drop 0.431 -0.568 -8.014 

Diesel 2.142 0.519 2.766 

Average 

Drop 1.012 0.933 4.159 

Diesel 7.673 1.513 7.935 

All 4.905 1.272 6.366 
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Figure 64: ENR formula predicted capacities without safety factors vs. pile test failure loads 
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Figure 65: Gates formula predicted capacities without safety factors vs. pile test failure loads 
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Figure 66: FHWA Modified Gates formula predicted capacities without safety factors vs. pile test 

failure loads 



157 
 

Table 50: Percent Difference of Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

 

 

 

 

 

 

 

Table 51: Standard Deviations of Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

 

 

 

 

Table 52: Correlation of Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

 

 

Table 53: Coefficients of Variation of Predicted to Field Estimated Capacities without Safety Factors 
 

 

 

 

 

From the above Tables and Figures it is seen that removing the safety factors from the dynamic 

formulae increases the average predicted capacities by an approximate factor of three to five when 

compared to the original dynamic formulae derived capacities. For the ENR and FHWA modified Gates 

formulae this causes the predicted capacities to be greatly over estimated.  

 

Hammer ENR Formula Gates Formula FHWA Modified Gates Formula 

Maximum 

Drop 110.047 84.721 768.560 

Diesel 2049.029 368.759 2346.571 

Minimum 

Drop -56.913 -156.797 -901.384 

Diesel 114.250 -48.119 176.564 

Average 

Drop 1.166 -6.679 315.917 

Diesel 667.294 51.250 693.497 

All 390.462 27.176 536.581 

St. Dev. ENR Formula Gates Formula FHWA Modified Gates Formula 

Drop 0.376 0.400 2.635 

Diesel 4.599 0.973 5.055 

All 4.819 0.834 4.597 

Hammer ENR Formula Gates Formula FHWA Modified Gates Formula 

Drop 0.388 0.525 0.525 

Diesel 0.651 0.683 0.683 

All Piles 0.643 0.669 0.662 

C of V ENR Formula Gates Formula FHWA Modified Gates Formula 

Drop 0.372 0.428 0.634 

Diesel 0.599 0.644 0.637 

All 0.983 0.656 0.722 
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However the Gates formula, which significantly underestimated pile capacities specifically as the 

estimated failure loads becomes relatively large, now is comparatively accurate. This is especially true 

when all piles are examined simultaneously. For only drop hammered piles, the best fit trend line 

slightly underestimates the estimated field capacity while for diesel hammered piles, on average, the 

predicted capacities are overestimated for piles which can support loads less than 1500 kN and 

overestimated for piles which can support loads greater than 1500 kN.  

 

On average the percent difference between the predicted and field estimated bearing capacities range 

from 27 to 546 percent and the standard deviation values ranges from 0.8 to slightly greater than 4.5. 

The former is from capacities derived from the Gates formula while the other latter is from the ENR 

and FHWA modified Gates formulae.       

 

Despite the best fit trend line closely matching the 1:1 line from the Gates formula by removing the 

factor of safety and the greatly increased predicted capacities from the ENR and FHWA modified Gates 

formulae, the average correlation coefficient from all three formulae are approximately constant at 

values of 0.64 to 0.66. However, the coefficient of variation increases by as much as 1.5 times.  

 

For consistency and to improve the predictive capabilities of the dynamic formulae, the analysis of 

predicted bearing capacities without the factors of safety was then by using Solver within Excel to 

determine the optimal value for various coefficients. For the ENR formula, the value of the c coefficient 

which results in the most accurate prediction of pile capacity was determined by Solver. For the Gates 

formula the 
1
/7

th
 term at the front of the formula is varied. For the FHWA modified Gates formula the 

1.75 and -100 coefficients are varied independently and then simultaneously. For the Hiley formula the 

e and C3 coefficients are varied independently and then simultaneously. For the MTO modified Hiley 

Formula the e and ef coefficients are varied independently and then simultaneously. To be more 

comparable to the results from the Hiley formula, the e and C coefficients of the MTO modified Hiley 

formula are varied as well, first independently and then simultaneously. 

 

The results from the analysis are given in Figures 67 to 79 and Tables 56 to 61 below. 
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5.3.5 Multi Regression Analysis Without Safety Factors  

 

As with the original dynamic formulae; the analysis of the formulae without any safety factors is 

performed a second time by varying specific parameters to determine whether or not the accuracy of the 

predictive capacities of the formulae can be significantly improved. 

 

The coefficients that are altered are the same as in section 5.3.3 and are presented in Tables 54 and 55 

below. The revised values are determined by the Solver function of Excel in the same method as 

previously performed.   

 

Table 54 presents the coefficients which are altered independently; where two coefficients are altered 

first one is varied while the other remains constant, then the other is varied while the first is set to its 

original value. 

 

Table 55 presents the determined coefficient values where both coefficients are varied simultaneously 

which results in improving the accuracy of the predicted pile bearing capacities. 

 

Table 54: Summary of Independently Varied Dynamic Formulae Coefficients 

Formula 
ENR Gates FHWA Modified Gates Hiley MTO Modified Hiley 

Drop Diesel Drop Diesel Drop Diesel Drop Diesel Drop Diesel 

Coefficient c c - - - e/C3 e/C3 ef/e/C ef/e/C 

Original 
Value 

1 0.1 
1
/7 1.75/100 1.75/100 

0.5/See 

Tables 

16 to 18 

0.5/See 

Tables  

16 to 18 

0.75/0.25, 

0.32, 0.55 
/See Tables 

16 to 18 

1/0.25, 

0.32, 0.55 
/See Tables 

16 to 18 

Varied 
Value 

0.70 1.10 0.18 0.16 0.63/348 0.44/1234 0.80/0.12 0.78/0.48 
0.89/0.81 

/8.34 
0.99/0.77 

/19.37 

 

 

Table 55: Summary of Simultaneously Varied Dynamic Formulae Coefficients 

Formula 

FHWA Modified 
Gates 

Hiley MTO Modified Hiley 

Drop Diesel Drop Diesel Drop Diesel Drop Diesel 

Coefficient - - e/C3 e/C3 e/ef e/ef e/C e/C 

Original 
Value 

1.75/100 1.75/100 

0.5/See 

Tables              

16 to 18 

0.5/See 

Tables     

16 to 18 

0.25, 0.32, 
0.55/0.75 

0.25, 0.32, 
0.55/1 

0.25, 0.32, 

0.55/See 
Tables      

16 to 18 

0.25, 0.32, 

0.55/See 
Tables    

16 to 18 

Varied 
Value 

0.27/-66 0.69/344 1/0.58 1/1.55 1/0.54 1/0.44 1/21.66 1/55.66 
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The results of the analysis using the values from the above Tables are shown in Figures 67 to 79. 

Statistical analysis consisting of determining the coefficients of determination, trend lines, percent 

differences, standard deviations, correlation and coefficients of variation values from predicted to field 

measured values are also calculated and presented in Tables 56 to 61. 

 

Table 56: Best fit lines and Coefficients of Determination from MRA without Safety Factors 

Hammer c ENR Formula 1/7 Gates Formula 
1.75 FHWA Modified 

Gates Formula 
100 FHWA Gates Formula 

All 
y = 0.9195x – 71.011 y = 0.9304x – 101.13 y = 0.8016x + 76.291 y = 0.2069x + 616.97 

R2 = 0.5473 R2 = 0.4593 R2 = 0.4628 R2 = 0.3178 

Drop 
y = 0.4049x + 391.64 y = 0.6632x + 195.6 y = 0.4258x + 385.12 y = 0.1539x + 434.07 

R2 = 0.197 R2 = 0.2757 R2 = 0.2757 R2 = 0.2757 

Diesel 
y = 1.1732x – 423.84 y = 1.2511x – 600.47 y = 0.9844x – 162.32 y = 0.2477x + 760.32 

R2 = 0.6187 R2 = 0.4663 R2 = 0.4663 R2 = 0.4663 

1.75/100 FHWA Gates 

Formula 

e Hiley Formula C3 Hiley Formula e/C3 Hiley Formula ef MTO Mod Hiley Formula 

y = 0.6753x + 245.32 y = 0.1405x + 695.21 y = 0.1624x + 787.15 y = 0.8244x + 33.533 y = 0.0134x + 948.71 

R2 = 0.4844 R2 = 0.0745 R2 = 0.026 R2 = 0.3824 R2 = 0.0004 

y = 0.9993x - 98.265 y = 0.2598x + 486.95 y = 0.1704x + 606.69 y = 0.4035x + 404.25 y = 0.1422x + 618.35 

R2 = 0.2757 R2 = 0.1234 R2 = 0.0412 R2 = 0.1746 R2 = 0.0404 

y = 0.6258x + 358.13 y = 0.0105x + 1101.8 y = -0.0491x + 1195.3 y = 1.1135x – 373.36 y = -0.1327x + 1348.6 

R2 = 0.4663 R2 = 0.0002 R2 = 0.0018 R2 = 0.3854 R2 = 0.0391 

e MTO Mod Hiley 
Formula 

e/ef MTO Mod Hiley 
Formula 

C MTO Mod Hiley 
Formula 

e/C MTO Mod Hiley 
Formula 

 

y = 0.1409x + 696.5 y = 0.4082x + 476.07 y = 0.3197x + 605.89 y = 0.9258x - 63.924  

R2 = 0.0742 R2 = 0.1407 R2 = 0.1313 R2 = 0.5672  

y = 0.2717x + 478.35 y = 0.3939x + 419.51 y = 0.2365x + 563.51 y = 0.4924x + 335.39  

R2 = 0.1302 R2 = 0.1935 R2 = 0.0905 R2 = 0.2679  

y = 0.0089x + 1106.2 y = 0.2657x + 735.75 y = 0.232x + 802.83 y = 1.1729x - 423.81  

R2 = 0.0002 R2 = 0.0341 R2 = 0.0538 R2 = 0.6187  

 

 

From the above Figures and Table 56 it is determined that varying the coefficients of the dynamic 

formulae result in the ENR and MTO modified Hiley formulae producing, on average, the largest 

coefficient of determination values. The parameters altered are the c coefficient for the ENR formula 

and the e and C coefficients simultaneously for the MTO modified formula. Varying the 
1
/7 coefficient 

of the Gates formula and the 1.75, 100, and simultaneously the 1.75 and 100 coefficients the FHWA 

modified Gates produces slightly smaller coefficients of determination. The exception to this is for drop 

hammered piles for which the ENR formula produces coefficient of determination values approximately 

10 percent less than those from the Gates, FHWA modified Gates, and MTO modified formulae where 

e and C are varied simultaneously. Every parameter and combination of parameters altered for the Hiley 

and MTO modified Hiley formulae result in significantly lower coefficient of determination values. The 

exception to this is from the simultaneously varied e and C parameters of the MTO modified Hiley 

formula as discussed above. 
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Figure 67: Predicted capacities from the Multi Regression Analysis c coefficient of the ENR formula 

without safety factors vs. pile test failure loads  
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Figure 68: Predicted capacities from the Multi Regression Analysis 1/7

th coefficient of the Gates formula 
without safety factors vs. pile test failure loads  
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Figure 69: Predicted capacities from the Multi Regression Analysis 1.75 coefficient of the FHWA 

modified Gates formula without safety factors vs. pile test failure loads 
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Figure 70: Predicted capacities from the Multi Regression Analysis 100th coefficient of the FHWA 

modified Gates formula without safety factors vs. pile test failure loads 
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Figure 71: Predicted capacities from the Multi Regression Analysis 1.75 and 100th coefficient of the 

FHWA modified Gates formula without safety factors vs. pile test failure loads 
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Figure 72: Predicted capacities from the Multi Regression Analysis e coefficient of the Hiley formula vs. 

pile test failure loads 
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Figure 73: Predicted capacities from the Multi Regression Analysis C3 coefficient of the Hiley formula 

vs. pile test failure loads 
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Figure 74: Predicted capacities from the Multi Regression Analysis e and C3 coefficient of the Hiley 

formula vs. pile test failure loads 
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Figure 75: Predicted capacities from the Multi Regression Analysis ef coefficient of the MTO modified 

Hiley formula vs. pile test failure loads 
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Figure 76: Predicted capacities from the Multi Regression Analysis e coefficient of the MTO modified 

Hiley formula vs. pile test failure loads 
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Figure 77: Predicted capacities from the Multi Regression Analysis e and ef coefficient of the MTO 

modified Hiley formula vs. pile test failure loads 
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Figure 78: Predicted capacities from the Multi Regression Analysis C coefficient of the MTO modified 

Hiley vs. pile test failure loads 
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Figure 79: Predicted capacities from the Multi Regression Analysis e and C coefficient of the MTO 

modified Hiley factors vs. pile test failure loads 
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Table 57: Ratio of MRA Dynamic Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Examining the trend lines produced from the formulae show that varying the c, 
1
/7, 1.75, e and C3, and 

e and C parameters of the ENR, Gates, FHWA modified Gates, Hiley, and MTO modified Hiley 

formula, respectively result in slopes near unity when diesel and combined drop and diesel hammered 

piles are considered. The only combination of varying parameters which results in a trend line slope 

near unity for drop hammered piles is when the 1.75 and 100 parameters of the FHWA modified Gates 

formula are altered simultaneously. However, for diesel and combined drop and diesel hammered piles 

altering the 1.75 and 100 parameters does not produce trend line slopes near unity for diesel and 

combined drop and diesel hammered piles. 

 
 
 
 
 

Hammer 
c ENR 

Formula 
1/7 Gates Formula 

1.75 FHWA 
Gates Formula 

100 FHWA 
Gates Formula 

Maximum 

Drop 2.335 2.275 2.430 5.926 

Diesel 4.339 5.240 4.656 4.711 

Minimum 

Drop 0.479 -0.699 -6.090 -20.418 

Diesel 0.704 0.580 0.573 -2.166 

Average 

Drop 1.238 1.149 0.999 2.197 

Diesel 1.532 1.691 1.543 1.059 

All 1.410 1.466 1.317 1.532 

1.75/100 FHWA 

Gates Formula 

e Hiley 

Formula 
C3 Hiley Formula 

e/C3 Hiley 

Formula 

ef MTO Mod 

Hiley Formula 

Maximum 

2.841 2.476 2.259 1.989 11.723 

3.576 11.020 5.795 4.837 9.597 

Minimum 

0.569 0.323 0.201 0.390 0.074 

0.356 0.835 0.381 0.592 0.337 

Average 

1.285 1.387 1.116 1.193 1.133 

1.294 3.470 1.775 1.649 2.261 

1.290 2.604 1.501 1.460 1.792 

e MTO Mod Hiley 

Formula 

e/ef MTO Mod 

Hiley Formula 

C MTO Mod 

Hiley Formula 

e/C MTO Mod 

Hiley Formula  

Maximum  

11.723 11.723 11.723 11.723  

11.001 6.040 5.487 4.339  

Minimum  

0.074 0.074 0.074 0.074  

0.827 0.535 0.416 0.704  

Average  

1.147 1.141 1.126 1.152  

3.449 1.933 1.713 1.532  

2.492 1.604 1.469 1.374  
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Table 58: Percent Difference of MRA Predicted to Field Estimated Capacities without Safety Factors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 59: Standard Deviation of MRA Predicted to Field Estimated Capacities without Safety Factors 
 

 

 

 

 

 

 

 

 

 

 

 

Hammer c ENR Formula 
1/7 Gates 
Formula 

1.75 FHWA 
Gates Formula 

100 FHWA 
Gates Formula 

Maximum 

Drop 133.455 127.463 142.988 492.565 

Diesel 333.910 424.044 365.565 371.072 

Minimum 

Drop -52.112 -169.938 -709.038 -2141.811 

Diesel -29.587 -42.000 -42.688 -316.565 

Average 

Drop 23.798 14.914 -0.123 119.732 

Diesel 53.183 69.089 54.303 5.945 

All 40.971 46.575 31.685 53.233 

100/1.75 FHWA 

Gates Formula 
e Hiley Formula 

C3 Hiley 

Formula 

e/C3 Hiley 

Formula 

ef MTO Mod 

Hiley Formula 

Maximum 

184.067 147.636 125.884 98.353 1072.308 

257.595 1001.971 479.486 383.675 859.732 

Minimum 

-43.089 -67.694 -79.927 -61.037 -92.569 

-64.357 -16.546 -61.915 -40.810 -66.262 

Average 

28.466 38.654 11.593 19.319 13.260 

29.436 246.951 77.480 64.921 126.079 

29.033 160.386 50.099 45.969 79.193 

e MTO Mod 

Hiley Formula 

e/ef MTO Mod 

Hiley Formula 

C MTO Mod 

Hiley Formula 

e/C MTO Mod 

Hiley Formula  

Maximum  

1072.308 1072.308 1072.308 1072.308  

1000.138 503.987 448.729 333.910  

Minimum  

-92.569 -92.569 -92.569 -92.569  

-17.300 -46.498 -58.384 -29.587  

Average  

14.662 14.067 12.577 15.179  

244.874 93.291 71.335 53.183  

149.202 60.367 46.916 37.389  

St. Dev. 
 c ENR 

Formula 

 1/7 Gates 

Formula 

1.75 FHWA Gates 

Formula 

100 FHWA Gates 

Formula 

Drop 0.439 0.492 1.368 4.292 

Diesel 0.892 1.088 0.948 1.579 

All 0.749 0.926 1.165 3.046 

1.75/100 FHWA 
Gates Formula 

e Hiley 
Formula 

C3 Hiley 
Formula 

e/C3 Hiley 
Formula 

ef MTO Mod 
Hiley Formula 

0.442 0.565 0.517 0.420 2.158 

0.785 2.701 1.395 1.054 2.099 

0.661 2.329 1.159 0.876 2.182 

e MTO Mod 

Hiley Formula 

e/ef MTO Mod 

Hiley Formula 

C MTO Mod 

Hiley Formula 

e/C MTO Mod 

Hiley Formula  

2.161 2.160 2.158 2.163  

2.687 1.449 1.275 0.892  

2.718 1.809 1.710 1.551  
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Table 60: Correlation of MRA Predicted to Field Estimated Pile Capacities without Safety Factors 
 

 

 

 

 

 

 

 

                           

 

Table 61:  Coefficients of Variation of MRA Predicted to Estimated Capacities without Safety Factors 
 

 

 

 

 

 

 

 

 

 

 

By examining the ratios of predicted to field estimated bearing capacities it is seen that on average 

varying the 1.75 and 100 parameters of the FHWA modified formula simultaneously results in 

predicted bearing capacities being closest to the tested field capacities. For drop and diesel hammered 

piles, varying the 1.75 and 100 parameters, respectively of the FHWA modified formula results in ratio 

closes to unity. The least accurate prediction, on average, is when the e coefficient of the Hiley formula 

is varied. For drop and diesel hammered piles, varying the 100 coefficient of the FHWA modified Gates 

formula and the e coefficient of the MTO modified Hiley formula results in the least accurate 

predictions, respectively.        

  

The percent differences between the predicted and field estimated pile capacities follow the same trend 

as that of the ratio of predicted to field estimated bearing capacities in the paragraph above. This 

implies that in general the FHWA modified Gates formula results in more accurate predicted bearing 

Hammer  c ENR Formula 
 1/7 Gates 
Formula 

1.75 FHWA 
Gates Formula 

100 FHWA 
Gates Formula 

Drop 0.444 0.525 0.525 0.525 

Diesel 0.787 0.683 0.683 0.683 

All Piles 0.740 0.678 0.680 0.564 

1.75/100 FHWA 

Gates Formula 
e Hiley Formula 

C3 Hiley 

Formula 

e/C3 Hiley 

Formula 

ef MTO Mod 

Hiley Formula 

0.525 0.351 0.203 0.418 0.201 

0.683 0.015 -0.043 0.621 -0.198 

0.696 0.273 0.161 0.618 0.021 

e MTO Mod 

Hiley Formula 

e/ef MTO Mod 

Hiley Formula 

C MTO Mod 

Hiley Formula 

e/C MTO Mod 

Hiley Formula  

0.361 0.440 0.301 0.518  

0.013 0.185 0.232 0.787  

0.272 0.375 0.362 0.753  

C of V 
 c ENR 

Formula 

 1/7 Gates 

Formula 

1.75 FHWA 

Gates Formula 

100 FHWA 

Gates Formula 

Drop 0.355 0.428 1.370 1.953 

Diesel 0.582 0.644 0.615 1.491 

All 0.531 0.631 0.885 1.988 

1.75/100 FHWA 

Gates Formula 

e Hiley 

Formula 

C3 Hiley 

Formula 

e/C3 Hiley 

Formula 

ef MTO Mod 

Hiley Formula 

0.344 0.408 0.463 0.352 1.906 

0.606 0.779 0.786 0.639 0.928 

0.512 0.894 0.772 0.600 1.218 

e MTO Mod 

Hiley Formula 

e/ef MTO Mod 

Hiley Formula 

C MTO Mod 

Hiley Formula 

E/C MTO Mod 

Hiley Formula  

1.885 1.893 1.917 1.878  

0.779 0.749 0.744 0.582  

1.091 1.128 1.164 1.129  
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capacities compared to the other four formulae examined while the Hiley formula results in the least 

accurate predictions. 

 

The correlation values indicate that the Gates and FHWA modified Gates formulae equally result in the 

most accurate predicted pile capacities for drop hammered piles. For diesel hammered piles, varying the 

c coefficient of the ENR formula and the e and C coefficients simultaneously of the MTO modified 

Hiley formula equally result in the most accurate predications when compared to all five dynamic 

formulae. Comparing all the MTO installed piles, the MTO modified Hiley formula results in the most 

accurate pile predictions when the e and C coefficients are varied concurrently. The smallest correlation 

values are from the Hiley formula, specifically when the ef coefficient is varied. 

 

Examination of the coefficients of variation indicates that varying the 1.75 and 100 coefficients 

simultaneously of the FHWA modified Gates formula results in predicted pile capacities containing the 

least amount of dispersion for drop hammered piles and drop and diesel hammered piles together. For 

diesel hammered piles the least amount of dispersion is equally obtained when predicting the pile 

capacities by altering the c coefficient of the ENR formula and the e and C coefficients simultaneously 

of the MTO modified Hiley formula. Varying the 100 coefficient of the FHWA modified Gates formula 

results in the highest coefficients of variation when predicting pile capacities for all installed piles; 

drop, diesel, and drop and diesel hammered piles together.  

 

5.3.6 Comparison of All Dynamic Formulae by Analysis 
 

To objectively determine which version of the multiple dynamic formulae used best predicts pile 

bearing capacity each one was compared to the other with the most accurate being summarized in Table 

62 below. For example, of the five versions of the ENR formula used; original without any 

modifications, revised one where the c coefficient is taken as the average of the required c values to 

exactly match predicted to estimated pile capacities, multi regression analysis of the c coefficient, the 

dynamic formula omitting the built in safety factor, and multi regression analysis of the c coefficient 

omitting the built in safety factor, it is determined that the revised formula produces the most accurate 

predictions. The same analysis is conducted for the Gates, FHWA modified Gates, Hiley and MTO 

modified Hiley formulae. The parameters examined to aid in determining which formula is the most 

accurate are the trend line slopes and y intercepts, the coefficients of determination, the average ratios 

of predicted to field estimated pile capacities, the percent differences, the standard deviations, the 
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coefficients of variation, and the correlation values between the predicted and field estimated pile 

capacities.  

 

Ideally, the most accurate dynamic formula will result in a slope of unity, a y intercept of zero, an R
2
 

value of unity, an average ratio of predicted to estimated bearing capacity of one, as well as an average 

percent difference, a standard deviation and coefficient of variation of zero, and a correlation value of 

one, between the predicted and estimated bearing capacity values. 

 

Table 62: Summary of the Most Accurate of Pile Capacity Analysis divided by Dynamic Formula 

Dynamic Formula Parameter ENR Gates 
FHWA modified 

Gates 
Hiley 

MTO 

modified 

Hiley 

Varied 

Coefficient(s) 
 

revised 

 c 

revised 
1
/7 

revised 

e/C3 multi 

regression 

analysis  

e/C multi 

regression 

analysis  

Original 

Coefficient Value 

Drop 0.1 
1
/7 1.75 100 

0.5 / 

variable 

0.25, 0.32, 

0.55 / variable 

Diesel 1 
1
/7 1.75 100 

0.5 / 

variable 

0.25, 0.32, 

0.55 / variable 

Revised 

Coefficient Value 

Drop 0.05 2.29 1.80 119 1 / 0.58 1 / 21.66 

Diesel 0.21 3.53 1.17 276 1 / 1.55 1 / 55.66 

Drop Hammered 

Piles 

Slope 0.5966 0.8014 0.4613 0.4587 0.4035 0.4924 

y – intercept 526.69 195.64 390.25 442.55 404.25 335.39 

R
2
 0.2176 0.2758 0.2846 0.2706 0.1746 0.2679 

Avg Ratio 0.486 0.951 0.894 0.708 1.193 1.152 

Avg % Diff. -51.440 -4.929 -10.639 -29.162 19.319 15.179 

St. Dev. 0.303 0.408 1.330 1.452 0.420 2.163 

CV 0.623 0.429 1.488 2.05 0.352 1.878 

Correlation 0.466 0.525 0.533 0.520 0.418 0.518 

Diesel Hammered 

Piles 

Slope 1.3081 2.1148 1.1074 0.7431 1.1135 1.1729 

y – intercept 117.15 -599.59 -107.26 312.27 -373.36 -423.81 

R
2
 0.5062 0.4660 0.4661 0.4662 0.3854 0.6187 

Avg Ratio 0.861 1.000 1.304 1.174 1.649 1.532 

Avg % Diff. -13.881 -0.023 30.388 17.425 64.921 53.183 

St. Dev. 0.507 0.644 0.796 0.704 1.054 0.892 

CV 0.589 0.644 0.610 0.600 0.639 0.582 

Correlation 0.711 0.683 0.683 0.683 0.621 0.787 

All Installed Piles 

Slope 1.075 1.7129 0.9118 0.7145 0.8244 0.9258 

y – intercept 322.65 -333.02 86.365 316.55 33.533 -63.924 

R
2
 0.4930 0.4292 0.4556 0.4867 0.3824 0.5672 

Avg Ratio 0.705 0.979 1.133 0.981 1.460 1.374 

Avg % Diff. -29.490 -2.062 13.338 -1.936 45.969 37.389 

St. Dev. 0.470 0.555 1.063 1.095 0.876 1.551 

CV 0.667 0.567 0.938 1.116 0.600 1.129 

Correlation 0.702 0.655 0.675 0.698 0.618 0.753 
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From examining Table 62 and using the guidelines above, it is seen that for drop hammered piles the 

Gates formula with a revised coefficient of 2.29 results in values which most closely satisfy the 

conditions compared than the other formulae.  

 

For diesel hammered piles it is seen that the ENR formula with a revised c value of 0.21 results in 

values which most closely satisfy the conditions compared than the other formulae. The MTO modified 

Hiley formula with revised e and C coefficient values of 1 and 55.66 result in values which satisfy 

conditions such as a slope value near unity, the largest R
2
 and correlation values, and the smallest 

coefficient of variation, however, it also results in some of the largest ratio, percent differences and 

standard deviation values. 

 

Considering all piles simultaneously, the revised Gates formula with a coefficient of 2.29 for drop 

hammered piles and 3.53 for diesel hammered piles results in values which best satisfy the condition 

with respect to the average ratio and percent difference of predicted to field estimated pile bearing 

capacities and low standard and coefficient of variation values. However, the revised Gates formula 

also results in the largest slope and offset y intercept value. Whereas, the revised MTO modified 

formula, with e and C values of 1 and 21.66 and 1 and 55.66 for drop and diesel hammered piles, 

respectively results in a slope value which is closest to unity, a relatively small y intercept, and the 

largest R2 and correlation values when compared to the other dynamic formula. However, the revised 

MTO modified formula also results the largest standard deviation and coefficient of variation values 

and a high average ratio of predicted to field estimated pile capacity when compared to the other four 

dynamic formulae.   

 

For complete calculations of the mutli regression analyses, see Appendix F. The findings from the 

above analyses are further investigated in section 6: Discussion and Conclusions. 
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6.0 DISCUSSIONS AND CONCLUSIONS  

 

From the analyses performed in sections 5.2 to 5.3, it is determined that the comparison of the dynamic 

formulae predictions to the measured static field tested pile bearing values of the MTO publications 

matched the results from similar studies conducted in the United States as well as Canada.  

 

6.1 Original Dynamic Formula Analyses Summary 

 

Examining Tables 24 to 27 with Table 29, it becomes evident that the original analysis performed on 

the MTO driven piles from dynamic formulae matches the trends found when comparing them to the 

results from the WSDOT database. The major difference is that the slope of the trend line describing the 

data is larger for the WSDOT piles, by factors of 1.48 to 2.23. The difference in slopes may seem large; 

however, this is most likely due to the difference in the y intercept of the best fit trend lines as well as 

the fact that the 2005 WSDOT study included piles driven by drop, diesel, sir/steam, and hydraulic 

hammers while the piles from the MTO database are driven by drop and diesel hammers only. When 

the best fit lines are normalized, by forcing to intercept to zero, the slopes only differ by factors of 1.32 

to 1.91. Even though the slopes differ; the coefficients of determination and thus the correlation values 

of the data, from predicted to measured pile capacity only differ by approximately one and half to 

slightly greater than ten percent, with a mode value near six percent. The ratios of predicted to field 

estimated bearing capacities from pile load tests are all larger for the MTO database than those from the 

WSDOT study by factors of 1.12 to 1.92 times. The percent differences in predicted to measured 

bearing capacities between the two databases, in general, are similar and differ by a factor of 1.49, 1.36, 

and 11.85 for the ENR, Gates, and FHWA modified Gates formulae, respectively. 

 

6.2 Revised Dynamic Formula Analyses Summary  

 

Back calculating the predicted bearing capacities from the MTO database to exactly match the 

measured capacities from field tests by solving for specific variables from each dynamic formula and 

using the averaged values as the basis for re-analysis causes the trend line slopes for all piles examined 

(drop, diesel, and combined drop and diesel hammered piles together) to become closer to unity. 

However, the revised coefficients cause some formulae which previously under predicted pile 

capacities to now over predict them and vice versa as well. Even though the coefficients of 

determination increases for almost all formulae using the revised coefficients; it is only by -0.086 to 
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19.4 percent for diesel hammered piles and 3.9 to 115.9  percent for combined drop and diesel 

hammered piles. When considering drop hammered piles solely, the coefficients of determination 

changes from approximately -3.06 to 389 percent; even though this seems significant the actual 

coefficient of determination values range only from 0.07 to 0.28.  

 

The revised ratios of predicted to estimated pile capacities range from 0.705 to 1.133 being smallest for 

bearing capacities being derived from the ENR formula and largest for bearing capacities being derived 

from the 1.75 revised coefficient of the FHWA modified Gates formula. This is a relatively large 

improvement over the values from the original dynamic analysis which on average under predicted and 

over predicted pile capacities by 56.8 to 99.0 percent, respectively.  

 

The average percent difference from the revised formulae ranges from -29.5 to 13.3 percent from the 

ENR formula to the 1.75 revised coefficient of the FHWA modified Gates formula. Compared to the 

original analysis based on piles in the MTO database, the revised coefficients result in a smaller spread 

of values by approximately 110 percent. Similarly, the correlations improve by values of 0.013 to 0.258 

from using the revised formulae when compared to the original dynamic analysis of piles from the 

MTO database. 

 

6.3 Multi Regression Analysis Summary  

 

The performed multi regression analysis involved adjusting two variables for each dynamic formula 

examined in order to minimize the amount of error between the predicted and measured pile capacities 

from piles given in the MTO database by using the solver function of Microsoft Excel. The variables 

are modified according to installation method as well as pile type for the analysis of the Hiley and MTO 

modified Hiley formulae.  

 

Similar to the other analyses, the equation of the trend lines and coefficients of determination from the 

graphs of predicted versus measured pile capacities are compared using the results from the original 

dynamic formulae to those from the revised versions. The optimal coefficient values are determined in 

four stages; first, one variable is kept constant as its original value while the other is varied and vice 

versa. The second analysis involves solving them simultaneously to result in the minimum amount of 

error possible. An additional analysis is completed by varying the coefficients such that the 

corresponding trend line slope is as near to unity as possible. The final analysis is completed whereby a 

term is added to the end of the dynamic formula to ensure that the offset of the trend line equation is as 
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small as possible. These analyses are conducted for all piles according to installation method and pile 

type; drop, diesel, and both combined together. For the Hiley dynamic formula the same methodology 

is used as for all piles within the MTO database as well as specifically on timber, precast concrete, H, 

and concrete filled steel tube piles. Based on the coefficients of restitution used by the MTO; the 

analysis is performed on predictions from the MTO modified Hiley formula and are done for all piles 

within the MTO database, then specifically for timber piles, piles driven with a steel cushion, and piles 

driven without a steel cushion, despite actual pile type. 

 

During the ENR analysis it is observed that using Excel to solve for the c and modified energy 

coefficients does not produce a best fit line with a slope near unity except for diesel hammered piles. 

However, when all piles are examined together the values of c and modified energy which are 

determined as optimal are 0.4 and 6, respectively. This is interesting, since the ENR formula contains a 

built in safety factor of 6, thus performing calculations without the safety factor may result in more 

accurate pile predictions. The c and modified energy coefficient values which result in the best fit line 

having a slope near one for drop hammered piles are 0.4 and 2 and for diesel hammered piles are 0.3 

and 1.85, respectively.   

 

The Gates formula produces the most accurate predictions when an energy modifier of 0.78 to 0.96 is 

used and the 
1
/7 coefficient at the beginning of the formula is varied from 0.54 to 0.55. However, when 

the energy term is left unchanged and the 
1
/7 coefficient is changed to 0.35 for drop hammered piles and 

0.60 for diesel hammered piles the slope of the best fit line approaches unity. It is found that the 

predicted values which cause a trend line to most closely match the 1:1 line occurs when examining all 

piles simultaneously and the 
1
/7 coefficient is changed to 0.419.          

 

For the analysis of the FHWA modified Gates formula the coefficients at the beginning and end of the 

equation are varied to produce the smallest amount of error between predicted and measured values as 

well as values which give a best fit line with slopes as near to unity as possible. Unlike the other 

dynamic formulae studied, the values of the coefficients which meet the two objectives are the exact 

same. To meet these criteria the 1.75 coefficient is varied between 0.8 and 1.3 and the 100 coefficient is 

varied between -66 to 86 for all piles examined together, drop hammered, and diesel hammered piles. 

The values of the coefficients of determination from the FHWA modified Gates formula are very 

similar to those of the original Gates formula, however when comparing the best fit line equations the 

offset from the Gates formula is smaller than that from the FHWA modified Gates formula.   
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During the analysis of the Hiley formula, it is determined that for timber and steel H piles no 

combination of soil compression (C3) and coefficient of restitution (e) values result in best fit lines with 

an average slope of unity. For precast concrete, concrete filled steel tube, and all pile types examined 

simultaneously to obtain slopes of one, the coefficient of restitution in most cases is set to one, however 

for precast concrete piles it ranges between 0.5 and 1 depending upon installation method and for 

concrete filled steel tube piles a value of 0.8 is needed for a slope of unity but only when examining 

diesel hammered piles by themselves. The soil compression values ranged from 0.86 to 21.5 inches, in 

general the compression values are larger for drop hammered piles, decrease for diesel hammered piles, 

and vary when all piles are examined simultaneously, where some are in between the values of drop and 

diesel hammered piles while others are the lowest and highest values determined. 

 

For pile prediction analysis based on the MTO modified Hiley formula, timber and steel piles installed 

without a cushion could not achieve a trend line with a slope of one. Only six piles within the MTO 

database are installed without a cushion and thus the results from statistical analysis based on such a 

small sample set may not be applicable. Examining all pile types simultaneously and steel piles 

installed with a cushion yielded predictions which could result in best fit lines with slopes of one once 

the required coefficients of restitutions and hammer efficiencies are chosen. In all cases, for all pile 

types and installation methods the optimal predictions occur when the coefficient of restitution is set to 

one. Hammer efficiencies which are originally taken as 0.75 for drop hammers and 1.00 for diesel 

hammers are found to give the optimal results when they are reduced to 0.55 to 0.64 for drop hammered 

piles and 0.28 to 0.48 for diesel hammered piles. When all piles are examined together, the optimal 

hammer efficiencies, those which result in the lowest amount of error between predicted and measured 

bearing capacities, range between 0.34 and 0.49. To achieve best fit lines with slopes of one, pile 

efficiencies are modified to range from 0.18 to 0.48 for diesel hammered piles, 0.10 to 0.22 for drop 

hammered piles, and 0.14 to 0.33 when examining all piles simultaneously. 

 

Despite the fact that best fit lines with slopes of unity can be obtained for predictions based on the multi 

regression analysis of Hiley and MTO Hiley formula variables, the coefficients of determination and 

correlation values are significantly lower than those given from the multi regression analysis of ENR, 

Gates, and FHWA modified Gates formulae. 

  

Of the three formulae which best predict pile capacity from the multi regression analysis, in general, the 

FHWA modified Gates formula produced the smallest amount of error. When considering drop hammer 

piles solely, on average, the ENR formula produces pile predictions which under predict pile capacity 
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and gives the largest amount of error while the Gates formula produces slightly more accurate 

prediction however they are still underestimated, the FHWA modified Gates formula produces the most 

accurate results with the trend line lying over top the 1:1 slope and gives the least amount of error. 

 

The coefficients determined from the multi regression analysis for diesel hammered piles resulted in 

predictions whose best fit lines overlay the 1:1 slope for capacities derived from the ENR and FHWA 

modified Gates formulae; the FHWA modified formula also gives the lowest amount of error. The 

Gates formula overpredicted pile capacities and resulted in the largest amount of error between 

predicted and measured pile capacities.  

 

6.4 Dynamic Formulae Omitting Safety Factors Summary 

 

Removing the safety factors from the dynamic formulae, in general, causes the predicted capacities to 

be greater overestimated, with an average of 4.9 to 6.4 and up to 24 times the actual estimated failure 

loads for the ENR and FHWA modified Gates formulae. This translates into an average difference of 

390 to 537 and as high as 2346 percent above the estimated capacities from pile load tests. The only 

dynamic formula whose predictive accuracy increases is the Gates formula which when examining all 

installed piles results in a trend line with a slope of 0.98 and an y intercept of -12.7. The average ratios 

of predicted to estimated bearing capacities range from 0.93 to 1.51 for drop and diesel hammered piles, 

respectively.  

 

The standard deviations from the three formulae are greatly increased from 2 to 6 times when compared 

to the same dynamic formulae used to predict pile capacities when the safety factors are present. In 

general, the correlation values between the two sets of formulae, with and without safety factors, are 

almost identical without any one method being obviously superior to the other. The coefficients of 

variation are also almost identical between the two types of dynamic formulae, with the exception for 

drop hammered piles which slightly decrease for drop hammered piles. 

 

6.5 Revised Dynamic Formulae Omitting Safety Factors Summary 

 

Removing the safety factors and modifying select parameters results in slopes very close to unity for 

predictions derived from the ENR, Gates, FHWA modified Gates (when the 1.75 coefficient is varied), 

the Hiley (when the e and C3 coefficients are varied simultaneously), and the MTO modified Hiley 

(when the e and C coefficients are varied simultaneously) formulae when compared to the field 
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estimated bearing capacities, when considering drop and diesel hammered and diesel hammered piles 

solely. The resulting slopes range from 0.80 to 0.93 with y intercepts from -101 to 76 for all hammered 

piles and slopes of 0.98 to 1.35 with y intercepts from -600 to -162 for diesel hammered piles. None of 

the varied coefficients result in predictive trend line slopes near unity for drop hammered piles except 

for the FHWA modified Gates formula when varying the 1.75 and 100 coefficients simultaneously. 

However, for drop and diesel hammered piles and diesel hammered piles solely, the trend line produced 

have slopes of 0.63 to 0.68, respectively. Since the trend lines are comparatively low, only the five 

formulae above will be discussed below.   

 

Comparing the revised predictions to those of the original formula it is noted that the coefficients of 

determination increase by 0 to 58 percent, with the largest changes being from the Hiley and MTO 

modified Hiley formula and the smallest from the Gates and FHWA modified Gates formulae. The 

absolute values of coefficients of determination range from 38 to 62 percent for all piles installed and 

those installed from diesel hammers only. For drop hammered piles, the coefficients of determination 

range from 17 to 28 percent. 

 

The average ratios of predicted to field estimated capacities from the revised formulae without safety 

factors range from 1.32 to 1.47, 1.00 to 1.24, and 1.53 to 1.69 for all installed piles, drop hammered 

piles, and diesel hammered piles, respectively. This is an improvement from the original formulae 

which under and over predict pile capacities by an average of 0.17 to 3.06 times, respectively.  

 

The subsequent correlation values improved by factors of 1 to 18 times compared to those of the 

original analysis. The largest improvements are from predicted values derived from the Hiley and MTO 

modified Hiley formulae, but the largest correlation values come from the FHWA modified Gates 

formula when the 1.75 coefficient is varied. In general, the coefficient of variations decreased by 0 to 

46 percent when examining predicted capacities from all piles derived by all revised dynamic formulae; 

the only exceptions to this are for drop hammered piles while using the MTO modified Hiley formula 

and diesel hammered piles while using the ENR formula which increase by 280 and 16 percent, 

respectively. Despite the decreased coefficients of variation, the standard deviations for the ENR and 

Gates formulae derived predicted capacities increased for drop, diesel, and drop and diesel hammered 

piles by factors of 1.16 to 3.3. For the FHWA modified Gates, Hiley, and MTO modified Hiley 

formulae the standard deviations decreased by 5 to 67 percent; the only exceptions are for the drop 

hammered piles using the FHWA modified Gates and MTO modified Hiley formulae which increase by 

4 and 337 percent, respectively.   
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6.6 Summary Of All Dynamic Formula Analyses 

 

Based upon section 5.3.6, the Gates formula, with a revised coefficient of 2.29 rather than 
1
/7, results in 

pile bearing capacity predictions which most accurately match field estimated values form pile load 

tests for drop hammered piles.  

 

Examining diesel hammered piles demonstrates that the ENR formulae with a revised coefficient of 

0.21 instead of 0.1 and the MTO modified Hiley formula using multi regression analysis to solve for e 

and C values of 1 and 55.66, respectively, results in the most accurate bearing capacity predictions 

when compared to all other dynamic formulae by all other types of analyses. The average ratio of 

predicted to estimated pile capacities are slightly under predicted (0.86) when calculating values with 

the ENR formula and are over predicted by a factor of 1.5 when the MTO modified Hiley formula is 

used. The average percent difference between predicted and estimated bearing capacities along with the 

standard deviations are less for the ENR formula than the MTO modified Hiley formula as well; -14 

and 0.6 compared to 53 and 0.9. However, the MTO modified Hiley Formula results in predictions with 

a slope closer to unity (1.17 compared to 1.31), larger coefficient of determination values (0.62 

compared to 0,51) and larger correlation values (0.79 compared to 0.71) than the ENR formula.  

 

When both drop and diesel hammered are considered together, the ENR and MTO modified Hiley 

formulae with revised coefficients from multi regression analysis result again in the most accurate pile 

bearing capacity values with the same trends between them observed when examining diesel hammered 

piles only.    
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7.0 RECOMMENDATIONS AND FUTURE RESEARCH 
 

 

The following recommendations are given based upon the findings discovered during this study:  

 

Based upon the findings in this study, it is determined that without performing any adjustments to the 

dynamic formulae the FHWA modified Gates formula is the most accurate of the five studied. It results 

in best fit with slopes closest to unity and minimal y-intercept values. It also results in the highest 

correlation values and data points which are the most centered about the 1:1 line and the smallest 

percent difference between predicted and measured pile capacities for drop hammered piles as well as 

the ratio of predicted to measured capacity closest to unity for drop hammered piles.        

 

The Engineering News Formula gives, on average, gives the smallest percent differences and ratios 

closest to unity for predicted to measured pile capacities as well as data points which center the best, 

compared to the other dynamic formulae, about the 1:1 line for diesel hammered piles.  

 

Using the revised coefficients to predict pile capacity results in the FHWA modified Gates formula 

producing data points which centers the best about the 1:1 line when varying both the 1.75 and then the 

100 coefficients at the beginning and end of the formula, respectively. It is determined that changing the 

1.75 coefficient resulted in a smaller spread of data and best fit line slopes closer to unity with offsets 

closer to zero than when altering the 100 coefficient.     

 

During the multi regression analysis, the ENR and FHWA modified Gates formulae are found to give 

the most accurate pile predictions. Depending upon the criteria selected, such as coefficients of 

determination, the ENR formula seems better suited to determine pile predictions while the FHWA is 

more accurate when looked at the amount of error between predicted and measured pile values. 

 

It was determined that the removing the safety factors of the ENR, Gates and FHWA modified Gates 

formula did not increase their predictive capacity, except in the case of the Gates formula for drop 

hammered and combined drop and diesel hammered pile analysis. However the coefficient of variation 

and standard deviation values were still relatively high. 

 

Removing the safety factors and using mulit regression analysis to solve for select coefficients of the 

ENR, Gates and FHWA modified Gates improved their predictive capacities more so than simply using 
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multi regression analysis alone. However, using multi regression analysis on the e and C3 and e and C 

coefficients of the Hiley and MTO modified Hiley showed the most amount of improvement.  

 

Thus, it is not advised to use any of the dynamic formulae in their original form but rather with the new 

coefficients from the revised or multi regression analyses. This is due to the increased accuracy that the 

new values provide. Because of the ease of calculations it is recommended that when predicting the 

bearing capacity of drop hammered piles, that the Gates formula with a revised coefficient of 2.29 is 

used. When predicting the bearing capacities of diesel hammered piles that both the revised ENR 

formula with a c coefficient of 0.21 and MTO modified Hiley formula and e and C coefficients of 1and 

55.66 are used and the more conservative estimate is taken. 

 

 

If the Hiley or MTO modified Hiley formulae are used, then field investigations and observations 

should record the unit weight of the soil being driven into, the unit weight of concrete or timber being 

used if applicable, the material that the pile cap is composed of and the condition of the pile cap in 

addition to the usual data collected in order to minimize the amount of uncertainty in parameters such 

as the coefficient of restitution and ultimately the predicted capacity. Once the uncertainty is 

minimized, the formulae can be re-examined to determine if the predicted capacity can be improved.    

 

 

Whenever future piles are driven, the total amount of compression that the soil – pile system undergoes 

during hammer strikes should be recorded so that it can be inputted into the MTO modified Hiley and 

Hiley formulae to aid in determining the true extent of how accurate the formula is and if changing 

parameters, such as the coefficient of restitution, improves bearing capacity predictions.  This is 

especially true for high capacity piles since it has been previously shown that changing the C3 or C 

coefficients values for all drop and diesel hammered piles has drastic effects on the predicted values of 

large bearing capacities and causes less variation when bearing capacities are relatively small.  

 

For each borehole record compiled the static water level, unit weights, effective cohesions, shear 

strengths, unconfined shear strengths, unconfined compressive strengths, effective angles of internal 

friction, preconsolidation pressures, over consolidation ratios and soil densities of each stratigraphic 

unit the pile may be driven into should be determined.   
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If computer programs are used, then soil parameters such as those above should be obtained in addition 

to specific parameters used by the analytical code such as soil stiffness, damping factors, and shear and 

elastic moduli.       

 

Because of the high correlation values between predicted and measured capacities from wave equation 

analysis from both the WSDOT study and the MTO publication, the relatively low expense of 

instrumenting piles, and the convenience and computing powers of laptops as many piles as practicably 

possible should be instrumented with strain gauges and accelerometers to record force and velocity 

measurements at the moment of striking. 

 

Based on the literature review and review of the data available during this study the following avenues 

for future research are suggested: 

 

Pile predictions should be performed based on the theoretical static equations, assuming the necessary 

parameters are available, to determine how accurate bearing capacities derived from them are when 

compared to measured values determined from pile load tests. 

 

Research should also be conducted in determining and improving pile predictions from wave equation 

analysis and if found superior to dynamic formulae to eventually replace them as indicators of pile 

bearing capacity. 

 

The next phase of research should be inputting borehole and pile driving data into computer programs 

to allow them to predict pile capacities. Since these programs are based on soil properties and possibly 

preliminary pile driving observations there may be some time required between the reported results and 

further pile driving activities. This may aid in allowing more accurate bearing capacity predictions but 

most likely program parameters need to be calibrated to site specific data such as pile load test results 

which may then be used to aid future pile driving operations on the same site or into similar soils. 

Additionally, the wait time between the first piles driven to gather data for computations and the 

remaining piles after the results are analyzed may be too great to be practical. 

 

Much research has been conducted upon analysis of single piles, however in practice most piles are 

utilized in groups of three or more. Because of the high bearing capacity once in groups more often than 

not load testing them to failure is not practically possible. However if in future jobs it is found to be 

feasible, then load tests should be conducted on pile groups to determine if the actual settlements are 
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similar to the predicted values and if group efficiencies given by geometric formulae are accurate or 

not. If not then they can then be altered to produce more accurate predictions for future sites.    

 

Although LRFD is relatively new to the field of geotechnical engineering it has already been studied by 

AASHTO, FHWA, and academia in the United States and appears to be intricately involved in the 

future of pile design. As such, the MTO should perform a study based on piles driven in Canada to 

quantify the uncertainty in pile behaviour and improve pile predictions by using probabilities from 

previously installed piles. 

 

Alternatives to deep foundations such as mid foundations, soil improvement techniques, and micro piles 

should also be examined to determine if they can provide feasible substitutions for conventional piles. 

Ideally, this results in creating the required bearing capacity and save both time and money on 

construction projects while also providing reliable designs which lasts the intended project lifetime. 
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