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Abstract

A t-design is a combinatorial structure consisting of a collection of blocks over a set of
points satisfying certain properties. The existence of ¢t-designs given a set of parameters
can be reduced to finding nonnegative integer solutions to a given integer matrix equation.
The matrix in this equation can be quite large, but by prescribing the automorphism
group of the design, the matrix in the equation can be made more manageable so as to
allow the equation to be solved via integer programming tools; this fact was developed by
Kramer and Mesner. Algorithms to generate the matrix equation generally follow a simple
template. In this thesis, a generic framework for generating the Kramer-Mesner matrix
equation and solving it via integer programming is presented.
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Chapter 1

Introduction

Combinatorial designs have many applications in areas as diverse as biology, cryptography,
geometry, statistics, and software testing. A key question in this field is the existence of
combinatorial designs given a set of parameters, and, should they exist, to construct a
combinatorial design for a given set of parameters.

The existence of a special kind of combinatorial design known as a t-design, given a
set of parameters, is a well-researched problem. This question can be reduced to finding
nonnegative integer solutions to matrix equations, for which there are many different ap-
proaches to solving them. Algorithms that assist in this endeavour have been extensively
explored, analyzed, and implemented with the help of various computer algebra systems.
However, there are very few tools that find ¢-designs without any dependencies on these
systems.

In Chapter 2, we will explore the basic concepts behind ¢-designs and algorithms that
assist in finding ¢-designs. In Chapter 3, we will look at our implementation of these
algorithms as part of a generic algorithm framework implemented in C++4, and we will
evaluate its performance in Chapter 4. Additional work suitable for future research is
placed in Chapter 5.






Chapter 2

Background

2.1 Preliminaries

2.1.1 t-designs

A t-design with parameters v, k, and A, alternatively denoted t-(v,k,\) design, is a
combinatorial structure consisting of a set X = {1,...,v} of points and a collection B
of k-subsets of X, such that every subset of X of size ¢ (henceforth termed ¢-subset) is
contained in exactly A subsets in B; the sets in B are known as blocks. The t-design is
said to be simple if all the blocks are distinct.

It is to be noted that from the definition of a t-design, a t-design is also a u-design for
every u < t; given a t-(v, k, \) design, it is also a u-(v, k, \,) design, where:

A7)
)

Clearly, there exist trivial examples of t-designs.

Ay =

Definition 1 (Trivial ¢-designs). A trivial ¢-design is a t-design whose blocks consist of
n copies of every k-subset in X for some integer n. The parameters of a trivial design are
t,v, k,and A = n(”_t).

k—t

2.1.2 Existence of t-designs

Definition 2 (Incidence Matrix of a ¢-design). The incidence matrix of a t-design is a
v X | B| matrix where each row represents a point and each column represents a block. The



{1,2,4} {1,3,7} {1,5,6} {2,3,5} {2,6,7} {3,4,6} {4,5,7}
1 1 1 1 0 0 0 0
2 1 0 0 1 1 0 0
310 1 0 1 0 1 0
4] 1 0 0 0 0 1 1
50 0 0 1 1 0 0 1
6| 0 0 1 0 1 1 0
710 1 0 0 1 0 1

Figure 2.1: The incidence matrix of a 2-(7,3,1) design.

(4, 7)-entry in the matrix is 1 if the point associated with point ¢ is contained in the block
associated with column 7, and 0 otherwise.

Incidence matrices are a good way of representing t-designs, but they do not provide
for a way to determine the existence of ¢t-designs given each of the four parameters ¢, v,
k, and A\. A major question in this field is determining whether a t-design exists given
these four parameters. Firstly, there are some necessary conditions for existence: for the
definition to make sense, we must have that ¢t < k < v.

Another condition of the existence of t-designs that is immediately apparent is known as
the divisibility condition. From the fact that a ¢-design is also a u-design for 1 < u < t,
we have it that if there exists a t-(v, k, \)-design, then we have that (l::;‘) must divide
)\(1’:3) for every 0 < u < t. If ¢ = 1, the converse also applies. Thus, there will always
be a minimum value of A for which a ¢-(v, k, \) must exist, and a value of A* for which a
t-(v, k, A) design (not necessarily simple) must exist for every A > \*.

Less apparent is a result from Teirlinck [27] effectively stating that for any given ¢,

there exists a simple and nontrivial ¢-(v, k, A) design for some v, k, and .

2.1.3 Finding t-designs via recursive construction

Given an existing t-design, it is possible to construct additional ¢-designs. Clearly, from
taking n copies of all the blocks in a t-design, a t-(v, k,n\)-design can be constructed.
Three other simple constructions can also be obtained from the definition:

Definition 3 (Complement of a t-design). The complement of a ¢-design consists of
the collection of blocks obtained by taking the complement under X of each block in the



t-design. The complement of a t-(v, k, A)-design is, in fact, a t-(v, v — k, A*)-design, where

v—k
)\* — )\< t )
k
()
An intermediate corollary that occurs is that since the complement of a t-design is
another t-design, then we need only look for ¢-designs with k& < v/2.

Definition 4 (Residual t-design). The residual ¢-design of a t-design is obtained by
removing a point from the point set as well as removing the blocks that contain the removed
point from the collection of blocks. If the original ¢-design has parameters ¢, v, k, and A,
then the residual ¢-design is a (t — 1)-(v — 1, k, \*)-design, where

Av — k)
E—t+1

*

Definition 5 (Derived ¢-design). Let x be a point, and B be the collection of blocks in a
t-design that contain the point z. The derived t-design consists of the point set X — {z}
and the blocks B’, obtained from removing x from each block in B. If the original ¢-design
has parameters t, v, k, and A, then the derived ¢-design is a (t — 1)-(v — 1, k — 1, \)-design.

A number of theorems were also published from Alltop[2] that constructed ¢-designs
from other t-designs:

Theorem 1 (Alltop’s First Theorem (1)). Let B be the blocks of a t-(2k, k, \)-design, where
t 1s even. If it is the case that the complement under X of each block in B is not also in B,
then the blocks in B along with their complements form a (t + 1)-(2k, k, \*)-design, where

2X\(k —t)
No= 2T Y
2k —t
Theorem 2 (Alltop’s First Theorem (2)). Let B be the blocks of a t-(2k,k, \)-design,

where t is even. If it is the case that the complement under X of each block in B s also
in B, then B also forms a (t + 1)-(2k, k, \*)-design, where

MMk —1t)

2k —t
Theorem 3 (Alltop’s Second Theorem). Let B be the blocks of a t-(2k + 1, k, \)-design,
where t is even. Suppose also that x is a point not in X. Then, the blocks B', formed from

adding x to each block in B, and B", formed from taking the complement under X of each
block in B, together form a (t + 1)-(2k + 2,k + 1, \)-design.

A=
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Theorem 4 (Alltop’s Third Theorem). Let B be the blocks of a t-(2k + 1, k, \)-design,
where t is odd. Suppose also that x is a point not in X . If there are exactly %(%];H) blocks
in B, then the blocks B’', formed from adding x to each block in B, and B", the collection

of complements under X of each k-subset not in B, form a (t+1)-(2k+2,k+ 1, X)-design.

More complicated recursive constructions can be found through the concept of large
sets.

Definition 6 (¢-design Partition). Let (By, Ba, ..., B,) be a partition of the k-subsets of X.
If all of the B; form t-designs, then the partition is known as a t-(v, k, A) partition of the
k-subsets of X, where A = (A1, Ag,..., \,) is the sequence of A\ parameters corresponding
to the t-designs represented by the B;.

A partition for which all of the A\; are the same is said to be uniform. Uniform
partitions thus partition the k-subsets of X into (Zj) /A t-(v, k, X)-designs. Depending on
the literature, these t-designs may be referred to as a large set of ¢t-designs, though other
sources claim that in order for a uniform partition to be a large set, A must itself be the
minimum value that satisfies the divisibility condition.

A number of results have been published that link the existence of large sets for various
combinations of ¢, v, k, and A, which in turn implies the existence of t-designs with the
same parameters. Teirlinck in [27] shows that a t-design must exist for every ¢ by showing

the following:

Theorem 5 (Teirlinck’s Proposition). Ift = v (mod (t+1)!*1), then there exists a large
set of t-(v,t + 1, (t + 1)12*1) designs.

2.1.4 Finding t-designs by solving matrix equations

The definitions and theorems above all depend on the existence of a pre-existing ¢t-design
with certain parameter combinations. For all other combinations of parameters, other
methods must be employed.

A straightforward constructive method of determining the existence of a t-design is
provided by the following theorem:

Theorem 6. A t-(v,k,\) design exists if and only if the matriz equation
A

At,kX = :
A

k) matriz where:

has a nonnegative integer solution. The matriz A,y is a (:) X (

6



k-subset
k-subset

t-subset

t-subset

)subsets

1 if the t-subset is a subset of the k-subset, 0 otherwise

Wy

\t

L (Z) subsets |

Figure 2.2: A visualization of the matrix in Theorem 6.

e Fach row of Ay is associated with a t-subset of X
e Fach column of Ay, is associated with a k-subset of X

o The (i,j)-entry of Ay is 1 if the t-subset for row i is a subset of the k-subset corre-
sponding to column j, and 0 otherwise.

The solution vector x details the k-subsets that form the t-design and the number of
repetitions therein.

Though straightforward, solving the equation above suffers from serious drawbacks:
the finding of a nonnegative integer solution is itself not an easy problem, and it is only
exacerbated by the fact that the dimensions of A, grows exponentially with larger ¢ and
k. A common way of reducing the difficulty of the problem is to reduce the dimensions of
the matrix. This involves the following:

Definition 7 (Tactical Decomposition of a Matrix). Let A be any matrix. A tactical
decomposition of A is a partition of its rows and a partition of its columns such that
every submatrix formed from taking one set of rows and one set of columns all have constant
row and column sums.

For every matrix, there is at least one tactical decomposition: by taking every row and
every column individually, we form a set of 1 x 1 submatrices, which by definition have

7



constant row and column sums. For the incidence matrix of a t-design, there is also a
second trivial tactical decomposition, that being the whole of the matrix: by definition,
each column sums to k, and as every t-design is also a 1-design, each row must also sum
to a constant.

A tactical decomposition of the matrix from the theorem is of particular interest; how-
ever, before it can be explained, a few other concepts from [17] and [25] are needed.

Definition 8 (¢-design Automorphism). An automorphism of a ¢-design is a bijection f
over X such that if B is a block in the design, then f(B) is another block in the design.

As t-design automorphisms are permutations over X, the automorphisms of a t-design
form a subgroup of Sx, the symmetric group over X; this group is known as the auto-
morphism group of the t-design, and is denoted by Aut(B).

Definition 9 (Group Actions). Suppose G is a group and X is a set of points. A group
action is a function G x X — X such that the group operation is preserved. We say that
X is a G-set, and that G acts on X.

Definition 10 (Orbit of a Point). The orbit of a point x € X, denoted Gz is the set of
points that results from applying every element of G on it.

Definition 11 (Stabilizer Subgroup). The set of elements in G that fix a point « is known
as the stabilizer of z, denoted G,. The stabilizer of x is a subgroup of GG, and thus it may
also be referred to as the stabilizer subgroup of x.

The definition of orbits and stabilizers can be expanded so that it encompasses se-
quences of points or sets of points by having G act on each element therein separately.

Definition 12 (Quotient of a Set of Points). Orbits of points in X under G form a partition
of X, known as the quotient of X under G, and denoted X/G.

Note the similarity of notation between the quotient of a set of points X and the set
of all left cosets of a subgroup of G. This is as every point in X is bijectively associated
with its stabilizer subgroup, and thus the orbit of a point in X can be associated with a
left coset of that stabilizer subgroup.

2.2 Kramer-Mesner matrices

If G = Aut(B), then G partitions both the points and blocks of a t-design. Thus, the
orbits of t-subsets and k-subsets of X form a tactical decomposition of the matrix from
Theorem 6. By replacing each submatrix with a specially chosen scalar value, the matrix
from Theorem 6 can be made smaller and manageable. The end result is the following:



Theorem 7 (Kramer-Mesner Matrix Equation Theorem). A t-design ezists with automor-
phism group G if and only if the matriz equation

A
AthX = :
A
has a nonnegative integer solution. The matriz Ay, (or Atcfk if there is a need to differen-
tiate between groups) is a py X pr matriz where:

e p; is the number of orbits of t-subsets of X
o pi is the number of orbits of k-subsets of X
e Each row of Ay is associated with a representative of one of the p, t-subset orbits

e Fach column of Ay is associated with a representative of one of the py k-subset
orbits

o The (i,7)-entry of Ay is the number of sets in the orbit of the k-subset for column
j in which the t-subset for row i (or any subset in its orbit) is a subset.

The matrix from this theorem, first published in [13], is known as the Kramer-Mesner
matrix, and the equation as a whole is thus the Kramer-Mesner matrix equation.
Like the equation from Theorem 6, the Kramer-Mesner matrix equation is a constructive
method of determining the existence of t-designs; the t-design is reconstructed by taking
copies of the orbits under the automorphism group of each of the subsets represented in
the solution vector.

There are a few properties of Kramer-Mesner matrices:

Theorem 8. If A, is a Kramer-Mesner matriz, the following properties hold:

e The sum of the entries in any row of Ay is (Z) (Iz)/(:)

o Ift<s<k, then Ay = (Z:E)ilAtysA&k. In particular:

Ak =Appr o Apoip/(k—1t)!

o Let Ly be the vector of length pr whose entries are the sizes of the orbits of k-subsets
under GG. Then (];) Ly =LA y.



k-subset orbit representative
k-subset orbit representative

t-subset orbit representative

t-subset orbit representative

Number of sets in the k-subset orbit
for which the t-subset representative is a subset

H pyrepresentatives %I

| Pk representatives

Figure 2.3: A visualization of a Kramer-Mesner matrix, as presented in Theorem 7.

{1,2,3} {1,2,4} {1,2,5} {1,2.6} {1,27} {1,3.4} {1,3,7} {1,4,5} {2,3,6} {2.6,7}
1,2} 1 1 1 1 1 0 0 0 0 0
{1,3} 2 0 0 0 0 2 1 0 0 0
(1,44 | 0 1 2 0 0 1 0 1 0 0
{1,7} 0 0 2 0 2 0 1 0 0 0
{2,3} 2 0 0 0 0 0 1 0 2 0
{2,6} 0 0 0 1 2 0 0 0 1 1

Figure 2.4: The Kramer-Mesner matrix Ay3 over ((145)(276), (26)(45)), with row and
column labels.[15] The value of 1 the top-left entry denotes the fact that {1,2} is a subset
of one set in the orbit of {1, 2, 3}, namely {1, 2, 3} itself. The 2-(7,3,1) design represented by
the incidence matrix in Figure 2.1.2 can be constructed from a solution to the corresponding
Kramer-Mesner matrix equation.
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Today, the Kramer-Mesner matrix equation is the primary method in which new ¢-
designs are discovered. It can be summarized as follows:

Algorithm 1 Generic t-design finding algorithm
1: Select a group G, and parameters v, t, and k.
2: Construct the Kramer-Mesner matrix.

3: Solve the Kramer-Mesner matrix equation.
4: If a solution exists, reconstruct the ¢t-design.

2.3 Kramer-Mesner matrix algorithms

The Kramer-Mesner matrix can be computed from the ordinary incidence matrix by simply
grouping up and adding all the columns representing k-subsets in the same orbit, and
grouping up and keeping only one row for each t-subset in the same orbit. Computing the
Kramer-Mesner matrix in this fashion, however, would involve enumerating the ¢-subsets
and k-subsets of X, followed by computing the orbits of each under GG, which is horribly
impractical.

More practical algorithms for computing the Kramer-Mesner matrix are typically of
the following form:

Algorithm 2 Detailed generic ¢t-design finding algorithm
The following computes the Kramer-Mesner matrix A;y, given the t-design parameters
and the automorphism group G.

1: for ¢ from 1 to k do

2:  Compute p;. This can be done using Burnside’s lemma.

3:  Obtain the orbit representatives of (i — 1)-subsets. The sole orbit representative for
0-subsets, is, of course, the empty set. All other orbit representatives are computed
from previous iterations of this loop.

4:  Populate the set of i-representative candidates by taking each (i — 1)-representative
and adding in each member of X not present therein.

5. Prune the set of candidates until p; candidates remain, each of which representing a
different orbit.

6: end for

7: Compute the Kramer-Mesner matrix given the t-candidates and k-candidates.

8: Solve the Kramer-Mesner matrix equation.

9: If a solution exists, reconstruct the t-design.

11



The loop at the beginning of this algorithm reduces the number of candidates being
considered to a value that is much more manageable compared to obtaining the row and
column orbit representatives from a list of (1;) and (Z) candidates, respectively. However,
note also that the method of pruning the number of candidates down to the required p;
candidates is not explicitly mentioned.

It is also to be noted that there is the additional consideration of choosing a set that
is representative of its orbit. This would imply the use of some form of ordering relation
on subsets of the same size. Lexicographical ordering is a natural subset ordering that is
often used for this purpose, and will be used for the remainder of the discussion on the
algorithm.

2.3.1 Candidate pruning

If pp = 1, then every candidate belongs to the same orbit, and we can arbitrarily pick one
candidate to be representative of all k-subsets. Pruning the candidate list down to the
required number pj, is considerably more difficult if p, > 1, though.

The task of reducing the collection of candidates to the collection of orbit representa-
tives, at the lowest level, boils down to this decision problem:

Definition 13 (Set Image Problem). Given a group G acting on a set of points X, and
two subsets A and B of X, the set image problem (alternately named the orbit dis-
crimination problem) is a decision problem that accepts its input if and only if there
exists an element g € G such that g(A) = B.

A naive way of solving the set image problem is simply by iterating through the elements
of G explicitly and seeing if the image of A under the current group element is in fact B.
This leads to the following pruning algorithm:

12



Algorithm 3 Explicit pruning algorithm
This algorithm reduces the set of k-subset representative candidates down to the p; orbit
representatives of k-subsets.

1: repeat

2:  for all candidates S do

3 for all g € G do

4: Compute the image g(.5) of S under g.

5 Compare S to g(S) using the ordering relation. If g(S) compares favourably,
remove S from the set of candidates, and, if necessary, insert g(.S) to the set of
candidates.

Continue the iteration with S as the set that was compared more favourably.
end for
end for
until the set of candidates is of size py

Of course, if the ordering relationship is stronger (as is the case for lexicographical
ordering), the candidate set can itself be ordered, which reduces the pruning algorithm to
that of removing the least element from the candidate set and eliminating candidate sets
in the same orbit from further consideration, and repeating this p; times. Even then, this
is an extremely expensive operation, especially as k or |G| get larger.

Fortunately, there are many approaches to reduce the time it takes to compute orbit
representatives. In the end, however, it is well known that the set image problem is at
least as hard as the graph isomorphism problem, and thus we should not be expecting
polynomial runtimes with any specific approach.

Three specific approaches are explored here: the first involves using functions that do
not depend on the specific element of G that is currently being iterated upon, the second
involves iterating through a smaller subset of G that serves to represent the whole of G,
and a third exploits the relationship between the set image problem and a related problem.

2.3.2 The table method

The naive way of solving the set image problem is to evaluate a boolean function on three
inputs: a group element g € G and the two input sets; if the function rejects its input for
every g € (G, then the two input sets must be in different orbits. Iteration of the elements
in a group is a fairly expensive operation especially as |G| gets large, and the central idea
of the table method is to consider functions that do not make use of ¢ in determining
acceptance or rejection; this would render iterating through G unnecessary.

13



Formally, if a function f takes in an element of G and a k-subset of X as input and
returns a value from a set Y, then this function is G-invariant if f(g,x) for a fixed x
returns the same value for all g € G.

It is thus apparent that for any G-invariant function over k-subsets, the size of the
codomain is at most the size of the quotient of k-subsets under G, i.e. pi. If in fact
the codomain of such a function is of size pg, then the set image problem is reduced to
evaluating this function finding whether or not their outputs are the same. Such functions
are known as discriminators.

Clearly, G-invariant functions and discriminators exist: if p, = 1, then a constant
function is trivially the discriminator over k-subsets. Several families of nontrivial G-
invariant functions also exist, and will be discussed later. Furthermore, it is to be noted
that the cartesian product of G-invariant functions is itself a G-invariant function, and its
codomain is at least as big as the codomain of its largest component. Thus, given enough
G-invariant functions, it is possible to create a discriminator for k-subsets. This gives us
the following algorithm:

Algorithm 4 Table method for pruning candidates
This algorithm finds the p; orbit representatives from a complete list of candidates.

1. Start with a table with no rows. Associate one column of the table to each orbit
representative candidate.
repeat

Construct a new G-invariant function, f, and add a row to the table.

Evaluate f on every candidate, and store its result in its corresponding table cell.
until the number of distinct columns in the table is py
Partition the orbit representatives based on their associated column values, and take
one candidate from each grouping in the partition.

This algorithm remains open-ended with regards to how each G-invariant function is
to be added. Ideally, these functions should be simple to construct and cheap to evaluate,
while having large codomains. To this end, Magliveras and Leavitt, in [21] identify three
nontrivial G-invariant functions suitable for use in this algorithm.

Anchor Sets

An anchor set is a large subset of X that can be used to create a G-invariant function,
evaluated as follows.

14



Algorithm 5 Anchor set evaluation

This algorithm evaluates the G-invariant function created from an anchor set on a k-subset
B of X.

Precompute the orbit of the anchor set under G.
Initialize a running tally of integers.
for all set .S in the orbit do

Compute |S N B| and add it to the running tally.
end for
return the running tally

Note that anchor sets may be any size; however, the reliability (codomain size) of the
function is maximized when the anchor set is half the size of X and the size of B is small
relative to the size of the anchor set. Note also that anchor sets may also be reused for
different sizes of input.

Taxonomy 1

This method relies on a specified element of G. If g € GG, then g can be expressed as a
disjoint union of cycles. If all of the points in one of these cycles were to be treated as a
set, then g would fix the set. Furthermore, if each of these cycles was treated as a set, then
the resulting collection of sets would partition X. If G' acts on a partition of X by acting
on each of the sets in the partition separately, then we have a G-invariant function that is
evaluated as follows:

Algorithm 6 Taxonomy 1 evaluation
This algorithm evaluates the G-invarjant function created from a group element g via the
Taxonomy 1 method on a k-subset B of X.

1: Precompute the orbit of the partition created by g.
: Initialize a running tally of running tallies.
: for all collection of sets S in the orbit do

Initialize a running tally of integers.

for all sets T"in S do

Compute |T'N B| and add it to the running tally of integers.

end for

Add the running tally of integers to the running tally of running tallies.
end for
return the running tally of tallies

© PN DTy
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The G-invariant function created from the Taxonomy 1 method is, in many ways, similar
to that of the one created from an anchor set; it can be viewed from another standpoint as
evaluating a large number of small anchor sets. Like anchor sets, this may also be reused
for different sizes of input, though unlike them, the reliability of this method is subject to
both the selection of g as well as the structure of G itself. In particular, this method is
entirely useless if G is cyclic or if the chosen element ¢ is the identity element; in both of
these cases a constant function is returned.

Taxonomy 2

This method relies on the existence of a discriminator of size ¢t < k, and is evaluated as
follows:

Algorithm 7 Taxonomy 2 evaluation
This algorithm evaluates the G-invariant function created from a discriminator of ¢-subsets
(t < k) via the Taxonomy 2 method on a k-subset B of X.

1: Initialize a running tally of the values returned by the discriminator.
for all t-subsets S of B do

Evaluate the discriminator on S, and add its result to the tally.
end for
return the running tally

The G-invariant function created from this method is, unlike the others, less reusable for
different sizes of input due to the presence of the discriminator. It is said that the reliability
of functions created from this method is consistently high, though the performance of this
function is highly dependent on that of the discriminator.

2.3.3 Pruning via minimum orbit representatives

Lexicographical ordering, like other total linear orderings, allows us to speak of the notion
of a minimum among a finite collection. Specifically, among different k-subsets in the same
orbit, we can now speak of a set that is minimum among them to represent the orbit as a
whole. There are various ways of finding the minimum orbit representatives for k-subsets.
Efficient methods to find them, however, depend on the way permutation groups are stored
in memory. Permutation groups are often stored via a construction known as a base and
strong generating subset, or BSGS for short.
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Definition 14 (Base of a Group). A sequence of distinct points (ay,...,a,) is known as
a base for a group G if the only element in G to fix the sequence pointwise is the identity
element; that is, if ¢ € G and g(ay) = a4, ..., g(a,) = a,, then g is the identity element.

It is to be noted that a permutation g € G can be thought of as a base for G if it is
treated as the sequence (g(1),g(2),...,g(v)).

Given the base B = (a1, ...,ay), let G; be the pointwise stabilizer G4, . q,). Then, it
can be shown that G is a subgroup of G, for all 7 > j. The sequence of G; is known as the
stabilizer chain of G for the base B, and B is said to be nonredundant if all of these
subgroup inclusions are proper.

Definition 15 (Strong Generating Set). A strong generating set relative to a base B
of a group G is a set of group elements S such that the group generated by S N G; is G;
itself for each of the G; in the stabilizer chain.

The stabilizer chain for a base also leads to the following: suppose H is a subgroup
of GG. Then, we have it that the group elements of GG are partitioned by the right cosets
of H. A right transversal of G modulo H is a set which contains one representative of
each of the sets in the partition. (A similar construction with left cosets produces the left
transversals of G modulo H.) Because each G; is a subgroup of G;_;, we can define the
right transversal sets U;_; of GG;_; modulo G;, and claim that every group element can be
uniquely decomposed into the product of elements u,u,_1 ...u;, where u; € U;.

Bases, even nonredundant bases, are not unique for a given group: for example, if
G is cyclic, then any single point (and thus any sequence of distinct points) would be a
base. This in turn implies the ability to reconstruct the same group using a different base.
Efficient algorithms exist for changing the base and its associated data structures.

The judicious use of base changing allows us to efficiently find the minimum orbit
representative of a k-subset given any other k-subset. A simple algorithm that does this
using backtracking is provided by Kreher and Stinson in [16], while another algorithm
involving breadth-first search is given by Linton[20].

Backtracking algorithm

A main premise of the backtracking algorithm from Kreher and Stinson in [16] is that each
k-subset is also associated with a k-tuple consisting of the elements of the subset presented
in increasing point order. Thus, the minimum orbit representative for a k-subset K is a
set associated with the sequence (s, ..., sx_1) satisfying three properties:

® S < s < ... < Sk
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e There exists h € G such that h(K) = {sq,...,Sk—1}

e If there is another set {¢o, . .., tx_1} satisfying the first two properties, then {sq, ..., sr_1}
is smaller in lexicographical order: that is, sg < tg, s1 < ty, ..., and sp_1 < t_1.

The backtracking algorithm’s subroutine attempts to determine the elements in the
sequence s; one element at a time. In determining element s;, the algorithm first assumes
the existence of h € G which in turn determine the elements s; for ¢ < j. Then, the
algorithm finds an element g € G fixing s; for ¢ < j that minimizes g(x) for the elements
x € h(K) not in {so,...,s;—1}. The use of base changing allows us to efficiently find g, as
we only need to search through the elements of one transversal set rather than the whole
group.

The process of doing so is as follows:

Algorithm 8 Backtracking algorithm for minimum orbit representative
This algorithm computes the minimum orbit representative for a given k-subset of X.

1: Let Cy be the input set.

2: Let S; be a sequence, presently initialized to the sequence of elements in Cy in point
order.

3: Perform the subroutine, passing in the parameter 7 = 0.

4: return the set of points in the sequence S;
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Algorithm 9 Subroutine for backtracking algorithm

This subroutine is a recursive subroutine, used to find the minimum orbit representative
for a given k-subset of X. It requires the sequence S from the main algorithm, the set of
globals C;, and takes in an additional parameter j.

1: Let m be a point, presently uninitialized.

2: for all x € C; do

3:  Let r be the first index before j for which s, = S,; if no such index exists, set r to
J.

4:  Ifr < jand s, > 9,, return.

5. Change the base of G' to the sequence (so,...,s;j_1,2).
Let U; be the right transversal set. (This will be the one corresponding to the base
point z.)

7. Let g be an element of U, such that g(x) is the smallest point.

8:  if m is uninitialized or g(x) < m then

9: Set m to g(x), and set s; to m.

10: if k=741 then

11: Let p be the first index after r for which s, # S,; if no such index exists, skip
the next step.

12: If s, < S, then replace the sequence S; with the sequence s;.

13: else

14: Set Cj41 to the set g(C;) — {m}.

15: Perform this subroutine, passing in the parameter j = j + 1.

16: end if

17:  end if

18: end for

Linton’s algorithm

Linton’s algorithm consists of a series of k iterations, in which iteration ¢ computes M;,
the lexicographically smallest ¢t-subset among the orbits under G of every t-subset of the
input set. The actual t-subsets that map to the minimum are computed through this
process and kept for use by the next iteration in determining the lexicographically smallest
(t 4 1)-subset.
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Algorithm 10 Linton’s algorithm

This algorithm computes the minimum orbit representative for a given k-subset of X.
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Let C; be a list of candidate records for t-subsets. A candidate record is a pair
(C, A) where C'is a t-subset of the input set B, and A is the image of B under a group
element g € G such that ¢g(C) = M,.
From the above, let Cy be a singleton list containing the record ((}, B) and My = 0.
Let G; be the ¢th group in the stabilizer chain of G.
for ¢ from 1 to k£ do
Let m be a point, presently uninitialized.
Let P be a list of candidate records.
for all candidate records (C,A) in C;_; do
Let m(c a) be the smallest point in the orbit of any point in A — C under G;_;
if m is uninitialized or mca) < m then
Set m to be mc ).
Set P to the singleton list containing the record (C, A).
else if m = m(c ) then
Add the record (C, A) to P.
end if
end for
Set M; to be the set M, U{m}.
If 4 = k then return M.
Change the base of G;_; so that m is the first point in the base. (After this step, the
base of G itself will have M; ordered in ascending point order as the initial portion
of its base.)
Let U; be the right transversal set. (This will be the one corresponding to the new
base point m.)
for all candidate records (C,A) in P do
for all points z in A do
If there exists a permutation v € U; mapping m to x, add the record (C' U
{m},u=(A)) to C;.
end for
end for
end for
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Candidate pruning algorithms

Given an algorithm for finding the minimum orbit representative of a given k-subset, then,
one can make a simple candidate pruning algorithm by seeing whether the minimum orbit
representative of a specific k-subset is itself, and discarding those that are not. Kreher and
Stinson in [16] also propose this algorithm for finding the orbit representatives as they are
generated:

Algorithm 11 Backtracking method for pruning candidates

This algorithm computes the p, orbit representatives of k-subsets from the set of orbit
representative candidates. The list of candidates must have been formed by taking a
(k — 1)-subset representative and adding a point larger than all points therein.

1: Start with an empty set of representatives

2: for all candidates S do

3:  Take the set A to be S, less its largest element. (i.e. the (k — 1)-representative
generating 5)

:  Find the minimum orbit representative R of S.

5. Add R to the representative set, if not already present.
Let S’ be a sequence of points, ordered as follows: first, include the elements of S
in numerical order. Then, include the remaining elements of X, again in numerical
order. Note that the point z added to A to form S is in position k in this sequence.

7. Change the base of G to S’.

8: for all g € Uy do

9: Remove AU {g(x)} from the set of candidates.
10:  end for
11: end for

2.3.4 Pruning via double cosets

Another method of generating orbit representative candidates and pruning them comes
from Schmalz in [26], and his method is generally the method that is used in practice when
constructing Kramer-Mesner matrices.

Recall that the right cosets of G under a subgroup H partition GG; the partition is often
denoted H\G. Similarly, the left cosets of G under a subgroup K partition G; the partition
is denoted G/K. The two concepts can be combined together to partition G to double
cosets under H and K, denoted H\G/K.

Definition 16 (Young Subgroup). Suppose (aq, s, ...,a,) is a partition of X, and G;
be the permutations of Sy, the symmetric group over X, fixing every element of X not
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in a;. The Young subgroup corresponding to the partition is the group S, as,....an) =
Gy x Gy x...xG,.

Essentially, if g is a permutation in a Young subgroup, then g maps the elements of
«; only to elements of «; for each i. For the purposes of brevity, we denote the group
S({1,ar}fa141,a14as}, . fv—ant1,0}) 8 Slayas,...an)- We also note that the first component
group in S4 p) is the stabilizer of the set B in Sx.

It was noted in [26] that the computation of orbit representatives is equivalent to finding
a transversal of a double coset partition (i.e. selecting one permutation from each set in the
partition). Specifically, each right coset Sp,_j 7 of Sp_gx in Sx corresponds bijectively
to the set of points that = maps to the set {v —k+1,...,v}. If G acts on the former from
the right and the latter on the left, then each double coset Sp,_j 7G corresponds to the
orbit under G of the points that 7 maps to the set {v —k+1,...,v}.

To find the orbit representatives of t-subsets and k-subsets, then, a transversal of
Sw—t,4\Sx/G and Sp,_k\Sx /G, must be computed. This, in turn, is done through a
version of the generic t-design algorithm that Schmalz, in [26], calls “Leiterspiel”.

Definition 17 (Ladder of Groups). A sequence of groups (Gg, G, ...,G,) is known as a
ladder of groups if it is the case that G; is a subgroup of either G;_; or G,y for each
group in the sequence. The transition between G;_; to G; is known as a step-down if G;
is a subgroup of G;_1, and is known as a step-up if G;_; is a subgroup of G,.

The Leiterspiel algorithm traverses a ladder from Sx to Sj,—ik, and computes the
double coset representatives of Sy under the group in the ladder and the input group G.
Because of the structure of a Young subgroup, a ladder will always exist between Sy and
any Young subgroup therein.

Each iteration of the generic t-design finding algorithm except the first consists of a
step-down and a step-up; in the first iteration no step-up is performed. In each step-down,
the group Sp,—(k—1),k—1] is transitioned to Sj,_,1,1—1), and each double coset of S}, _ 1) k—1]
and G is partitioned in such a way as to get the double cosets of Sp,_g1x-1) and G.
Conversely, in each step-up, the group Sj,_j,1x-1) transitions to Sy}, and the double
cosets of Sp,_j,1k—1) and G are combined in a disjoint union to get the double cosets of
Shy—t ]

In each step-down, each double coset Sj,_x41,4—1)7G is partitioned into a number of dou-
ble cosets Sp—_j1 517G, where t is an element from the transversal of Sjy_g 1 k1] \Sp—k+1,6-1]-
Computing a transversal for this latter partition is simple, as each coset in the partition
consists of permutations that maps the points in {v — k + 2,..., v} amongst themselves,
maps a specific point in {1,...,v —k + 1} to v — k + 1, and maps the remaining points
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amongst themselves. However, it is very likely that some of these v — k + 1 double cosets
Shy—r,1,k—1)tTG generated from Sp,_j41 x—1)7G are in fact the same.

In each step-up, each double coset Sj,_j y7G is formed from a number of double cosets
Sh—k,1,k—1)tTG, where ¢ is a permutation in a transversal of S[v_m,k_u\S[v_k’k]. Again, such
a transversal is easy to compute, as each coset in the partition consists of permutations
that maps the points in {1,...,v — k} amongst themselves, maps a specific point in {v —
kE+1,...,v} tov—k+ 1, and maps the remaining points amongst themselves.

A detailed process of performing the step-downs and step-ups is provided in [18].

2.3.5 Computing the Kramer-Mesner matrix

Given T and K, the orbit representatives for both t-subsets and k-subsets, respectively, a
simple algorithm can be used to compute the Kramer-Mesner matrix:

Algorithm 12 Kramer-Mesner matrix computation algorithm

This algorithm computes the Kramer-Mesner matrix A, ; over the automorphism group G,
given T, the set of orbit representatives for t-subsets, and K, the set of orbit representatives
for k-subsets.

1: Initialize A, as the p; X pj zero matrix.

2: Initialize stab, a p; column vector, as the zero vector.
3: for all g € G do

4:  for all K € K do

5: Compute the image g(K) of K under g.

6: if K = g(K) then

7: Increment the corresponding entry in stab.
8 end if

9: for all T € T do

10: if T'C g(K) then

11: Increment the corresponding entry in A, .
12: end if

13: end for

14:  end for

15: end for

16: Divide each row in Ay by its corresponding entry in stab.

It’s to be noted above that in addition to explicit iteration through G, the size of the
setwise stabilizer G of K for each k-representative is also explicitly computed.
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However, given the properties of Kramer-Mesner matrices, we can also compute the
Kramer-Mesner matrix piecemeal after the candidate pruning process but before mov-
ing to the next iteration for subset sizes between t and k. This process creates the se-
quence Kramer-Mesner matrices Ay i1, App1442,- .-, Ar—2k—1, Ar_1%, which can then be
combined via Theorem 8 to produce Ay .

Algorithm 13 Incremental Kramer-Mesner matrix computation algorithm
This algorithm computes the Kramer-Mesner matrix Ay x11 given 7 the list of orbit rep-
resentatives for k-subsets, and /C, the list of representatives for (k + 1)-subsets.

1: Initialize Ay ;11 as the py X pi zero matrix.
2: for all T € T do
3: forallze X —Tdo

4 for all k-subsets 7" of T'U {z} do

5 if 7" € T then

6: Let K’ be the (k + 1)-subset representative in IC for T'U {z}.

7 Increment the entry in Ay ;4q for the row representing 7" and column repre-
senting K.

8: end if

9: end for

10:  end for

11: end for

It is also to be noted that the entries of Aj ;41 can also be computed without trying to
find the orbit representative corresponding to a (k + 1)-subset. In Schmalz’s description
of the Leiterspiel algorithm, he describes the construction of a layered graph called the
double coset graph for which each layer corresponds to a particular group H in the
algorithm’s subgroup ladder. An example of such a graph is outlined in Figure 2.5. Vertices
in each layer corresponds to the double coset representatives H\Sx/G (and thus their
associated sets and tuples), while edges exist between layers only where the double coset
representatives are split and merged to form the double coset representatives of the layer
below. The edges in step-downs are further labeled with the value |G4]/|G2|, where |G|
and |G,| are the setwise and tuplewise (respectively) stabilizers under G of the objects
associated with the tail and head of the edge, respectively. In constructing Ay x4, only
three layers (two in the first iteration, as there is no step-up) are constructed: the top layer
representing k-subsets, the bottom layer representing (k + 1)-subsets, and the middle layer
representing singleton subset and k-subset pairs. Only edges between the top layer and
the middle layer are weighted, as the transition between the two layers is a step-down. To
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Stk \Sx /G

Step-Down

S[v—k—l,l,k] \Sx G

Step-Up

S[v—k—l,k+1] \SX /G

Figure 2.5: Three layers of a double coset graph. An entry of Ay ;i is computed from
adding up the edge weights in every labelled edge on every path between the k-subset and
the (k 4 1)-subset associated with the entry.

compute the value of an entry in Ay j+1, take all of the paths from the vertex representing
the k-subset representing the entry’s row and the (k + 1)-subset representing the entry’s
column and add up all of the edge weights therein.

This process can be generalized to compute the final Kramer-Mesner matrix A, ; with-
out computing any of the intermediate matrices by constructing a graph with additional
layers; however, the edge weights of all of the edges in a path from a t-subset vertex to a
k-subset vertex must first be multiplied together to form a path weight before all the path
weights are added together, after which a factor of (k —t)! is divided to represent the fact
that the order in which additional points are added to create the k-representative from
the t-representative does not matter. This generalized process is thus effectively identical
to the incremental construction of Kramer-Mesner matrices via matrix multiplication, as
stated in Theorem 8.

2.4 Solving the Kramer-Mesner matrix equation

As the initial theorem implies, the question of the existence of ¢-designs is reduced to an
application of integer programming. In particular, the Kramer-Mesner matrix equation
has made the problem more manageable by reducing the size of the matrix to be solved.
Finding {0,1}-solutions (for simple ¢-designs) or nonnegative integer solutions (for general
t-designs) to integer matrix equations is known to be NP-complete: if A, has only one
row, then finding a {0,1}-solution to the Kramer-Mesner matrix equation is equivalent to
the subset-sum problem.
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However, even a Kramer-Mesner matrix may still be too large and unwieldy; this is
apparent if:

e there is a large difference between t and k
e there is a large difference between v and k
e [ is large

e (G has small order

All of these factors would cause a large difference between the number of rows and the
number of columns. Thus, it is advisable that the Kramer-Mesner matrix be a starting
point towards finding an optimized matrix that will still produce the same t-designs; such
a matrix will hopefully have fewer columns even if it means more rows will have to be
added.

In practice, the use of the generic algorithm typically revolves around using either
large input groups or small values of ¢ and k to keep the size of the matrix manageable.
Otherwise, additional input used in post-processing a Kramer-Mesner matrix to reduce
it to a more manageable size is needed. Methods such as those in [14] have been used
with some success to find 2-designs for large v and small k, and can be easily adapted to
t-designs in general.

2.4.1 Solution-finding Algorithms

Whether or not post-processing (or “pre-solving”) occurs, there are ultimately three ap-
proaches to solving the resulting integer matrix equation: backtracking, integer program-
ming techniques, and lattice basis reduction. These methods can be used to find individual
t-designs (and t-designs that can be constructed from them), enumerate them, or even par-
titioning all k-subsets of X into a large set of t-designs.

Integer programming

Integer programming is the process of finding an optimal solution to a matrix equation
given certain constraints. Specifically, given a matrix A and vectors b and c, we must
find a solution x satisfying Ax = b that minimizes (or maximizes) the scalar value c’x.
Furthermore, the values in x must all be nonnegative integers. A vector x satisfying only
the matrix equation is said to be a feasible solution, and a feasible solution that also
satisfies the second condition (sometimes referred to as the objective function) is said
to be optimal.
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Integer programming is thus related to linear programming (in the latter problem the
values in x need not be integers and that each entry in Ax need only to be less than
or equal to the corresponding entry in b), but whereas linear programming can be solved
efficiently, it is known that integer programming is NP-hard in general, and binary integer
programming, the special case of integer programming where the values in x must be 0
or 1, is listed among the list of Karp’s 21 NP-complete problems. [11]

Clearly, finding a t-design using the Kramer-Mesner matrix equation can be expressed as
an integer programming problem, and in many cases, altering the linear objective function
c¢’x can give us t-designs with particular characteristics. For example, the t-design with
the fewest number of blocks, if it exists, can be found if we let ¢ = L;. It must also
be noted that if ¢ = 0, then we are claiming that any solution to the Kramer-Mesner
matrix equation is considered to be optimal, allowing us to solve the original problem of
the general existence of ¢t-designs.

A common heuristic for solving integer programming problem is the cutting plane
method: it first relaxes the problem by ignoring the integrality constraint and solving
the related linear program. If a solution exists and the solution obtained from that is, in
fact, an integer vector, then we have a solution to the original matrix equation. However,
if it is not, a second heuristic (known as a cut) will attempt to use the non-integer vector
to find an integer solution to the matrix equation that is near it, or at the very least find
a related problem which will assist in doing the same.

One example of this heuristic is the feasibility pump, described in detail in [9]. In
this heuristic, the linear programming relaxation is solved as usual, and if a solution vector
exists but is not an integer vector, then the closest integer vector (as defined by rounding
each entry in the vector to the nearest integer) is computed. This, of course, is not a
solution to the matrix equation (original or relaxed). However, from it, we can find the
solution (again, to the linear programming relaxation) that is closest to this new vector.
It is the hope that the feasibility pump would produce results that would converge to their
integer roundings, and thus arrive at an integer solution.

Note that if optimality is a concern, then if a solution is found, then it may not be
an optimal solution, and other methods will be needed to enhance the optimality of the
obtained solution. The branch and bound technique is a method that is used to find an
optimal solution. When both the cutting plane method and the branch and bound method
is used, the resulting algorithm is often called a branch and cut. As the name implies,
the branch and bound method is one that splits the problem into a number of subproblems
(the “branching”) whose constraints together cover the main problem. Heuristics can then
determine upper and lower bounds (the “bounding”) for the objective function’s value for
the optimal solution for each subproblem. If the lower bound of one subproblem is larger
than the upper bound of another, then the first subproblem cannot contain the optimal
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solution, and thus it can be excluded from further consideration.
A more detailed treatise on integer programming is available in [29].

Lattice basis reduction

It was observed by Kreher and Radziszowski in [15] that if x was a (0,1)-solution to the
Kramer-Mesner matrix equation, then the vector [xT,0,...,0]" would be an integer linear
combination of the columns of the matrix

In other words, the vector [x?,0,...,0]7 is a vector in the lattice spanned by the
columns of B. Since x is a (0,1)-solution to the Kramer-Mesner matrix equation, [x7,0, ..., 0]"
will tend to be a short vector in the lattice. Based on this, Kreher and Radziszowski then
proceed to adapt the Lenstra-Lenstra-Lovasz (LLL) algorithm, first introduced in [19], for
lattice basis reduction to solve the Kramer-Mesner matrix equation.

According to Kreher and Radziszowski, the LLL algorithm alone often cannot find
simple t-designs in practice, but if augmented by two supplementary subroutines, called size
reduction and weight reduction, then the resulting algorithm can be made more effective
in finding simple ¢-designs.

Definition 18 (Weight of a Lattice Basis). Let B = (by,...,b,) be a lattice basis. The
weight of the basis is defined as w(B) = Y i, ||b;]|%.

The first of these two subroutines is called weight reduction. Weight reduction is
based on the premise that, in practice, given the output of LLL, an ordered basis of a
lattice closely approximating an orthogonal basis, that it is often the case that there are
two distinct basis vectors b; and b; such that either ||b; + b;|| or ||b; — b;|| is smaller than
the larger of ||b;|| and ||b;]|. Replacing the latter vector (b; or b;, whichever is longer) with
the former (b; +b; or b; — b;, whichever is shorter) will result in a basis with smaller weight.
Since this basis is “less orthogonal”, the LLL algorithm can then be reapplied to get a
“more orthogonal” lattice basis. The weight reduction subroutine performs this process
repeatedly until the weight of the basis cannot be reduced further.

For size reduction, recall that we must find an integer linear combination of the
columns of B that sums to [x7,0,...,0]%. If there is a row in the lower portion of B with
exactly one nonzero entry, then the column corresponding to the nonzero entry does not
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contribute to the linear combination. This, then, allows us to remove the row and column
containing the nonzero entry from B (and the corresponding entry from [x7,0,...,0]"),
reducing our original problem to that of a smaller size. Of course, this may rarely occur,
but it was observed that if a row in the lower portion of B was multiplied by ||b;||?, where
b; is the longest lattice basis vector, and then LLL was subsequently applied, the affected
row would almost always end up being of this form. The size reduction subroutine thus
performs this for every row in the lower portion of B, which would ideally reduce an
(n4+m) x (n+1) matrix (given that A,y is an m x n matrix) to an n x (n —m+ 1) matrix.

The Kreher-Radziszowski algorithm consists of using LLL, size reduction and weight
reduction, in this order, on B, to find t-designs. Since then, there have been various
improvements to this algorithm or to LLL itself that have made this algorithm even more
efficient. More details on improvements to LLL can be found in [7], and details on other
lattices based on Kramer-Mesner matrices which also lead to t-designs may be found in
[28].
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Chapter 3

Implementation

This chapter will describe our implementation of a flexible generic program used to find
t-designs based on computing the Kramer-Mesner matrix and solving the Kramer-Mesner
matrix equation, with a concrete implementation of the table method. This program is
written in C++4, with the C+4-03 standard in mind, but can be easily fitted for C++11
through a small number of edits.

The source code is available in a git repository at https://github.com/kelvSYC/
MatrixGenerator.

3.1 permlib and the Group class

The functionality needed for permutation group manipulation is done through the use of
the permlib [24] library, a C++ language library for computational group theory. This
library also makes use of the Boost C++ Libraries [8] for its implementation, and as such
the rest of the program also makes use of Boost. We have chosen permlib for this program
because of its its relatively simple API and the lack of dependencies on computer algebra
systems such as GAP [10] and Magma [6], as well as the fact that it had shown to be faster
than both in various computational group operations.

The Group class is the main interface to permlib in our program, and contains other
convenience methods and supporting classes that facilitate iteration through the elements
of the group in GroupElementIterator and the calculation of p; for different values of k
through GroupBurnsideCache. Group is also accompanied by supporting operations such
as equality operators, hashing functions (suitable for use with Boost’s unordered associative
containers), and a weak ordering (suitable for use with standard associative containers).
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3.2 The Pruner hierarchy

In order to generate the orbit representative candidates for k-subsets and then pruning
them down to the p, representatives that are needed, we have commissioned the Pruner
class hierarchy. The Pruner class itself is an abstract class that provides basic functionality
for generating the candidates, retrieving the list of representatives after the candidates have
been pruned, and determining the representative for a given subset, for the purposes of
populating the entries of the Kramer-Mesner matrix. Pruners may also rely on additional
data that they may need from one iteration to the next, which they may create and pass
on. The generic algorithm does not prescribe whether or not the same Pruner is used
throughout the algorithm, nor does it describe whether or not Pruners must interpret
the auxiliary data generated by other Pruners; in this implementation, we have chosen to
create a new Pruner in each iteration, with all Pruners created being of the same type.
Four pruners are provided with this implementation:

e ExplicitPruner explicitly computes the orbits of representatives to determine whether
or not a candidate is in the orbit of a known representative.

e SetImagePruner uses backtracking search to determine the existence of a permuta-
tion in G' mapping a known representative to a candidate.

e TablePruner uses the table method by Magliveras and Leavitt to find representatives
from candidates.

e MinRepPruner uses Linton’s algorithm, as implemented in permlib, to find the min-
imum representative of a candidate.

The table method, through TablePruner, is very complex, and is implemented via a
large number of classes.

3.2.1 The CandidateGenerator hierarchy

To generate candidates, Pruners rely on the CandidateGenerator class hierarchy. Pruners
are free to use whatever CandidateGenerators they desire, and two general-purpose
CandidateGenerators are provided with this implementation. The FullCandidateGenerator
generates the full complement of candidates, while the DefaultCandidateGenerator only
generates k-candidates for which the newly-inserted point is larger than the existing points

of the (k—1)-representative. All of the existing Pruners use the latter CandidateGenerator

by default.
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Figure 3.1: The GInvariant class hierarchy.

3.3 TablePruner and supporting classes

The table method lends itself well to an object-oriented implementation. Besides TablePruner
itself, which manages the actual evaluation table, there are two main groups of classes that
assist in the implementation of the table method: the GInvariant class hierarchy encom-
passes the G-invariant functions that are needed for the table method, and the KMStrategy
class hierarchy governs the selection of GInvariants for use in the building of the table.

3.3.1 The GInvariant class hierarchy

As the name implies, GInvariant is the base class for all G-invariant functions. There
are five concrete subclasses to GInvariant, as summarized in Table 3.1: one subclass for
each of the three nontrivial G-invariant functions, one for discriminators that are built from
these, and the fifth for trivial discriminators, built when py = 1 for a specific k. GInvariant
itself does not contain any behaviour, though it does provide storage for the Group the
GInvariant is invariant over, as well as some partially-defined functions such as those
needed for equality comparison and hashing. Above all else, however, is the evaluate ()
method, which acts as the common interface for the evaluation of the G-invariant function
represented by the GInvariant.

Along with the classes representing the G-invariant functions themselves, there are a
number of supporting classes that assist in imparting metadata about G-invariant functions
into type traits used in template metaprogramming. For example, the isDiscriminator
class is a template metafunction that separates the two discriminator subclasses from the
other three.

Each of the G-invariant functions have been implemented factoring in various practical
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concerns. For example, the anchor set used in AnchorSet is always randomly generated,
and is always half the size of X. Similarly, Taxonomy1 is backed by a randomly-chosen
element of the group, and a Taxonomy2 represents a G-invariant function over (k + 1)-
subsets given a k-discriminator.

Most subclasses also have a collection of supporting classes that assist in implementing
the behaviour of the G-invariant functions that they represent. Key among them are
evaluation caches that help avoid the overhead of re-evaluating the G-invariant functions
repeatedly, as evaluations may be expensive to perform.

Evaluators

For each of the four nontrivial subclasses of GInvariant, the actual functionality of eval-
uating their corresponding G-invariant functions is delegated to an evaluator class. These
evaluators are similar in interface, and follow a convention that, in C++ parlance, is known
as a concept.

Evaluators are C++ function objects that define a type called FrequencyVector,
named as such as the return types are often vectors returned from running tallies. The
function application operator takes in only one argument, the input set to the G-invariant
function, and return a FrequencyVector. The input set is assumed to be compatible with
the G-invariant function being modelled by the evaluator class. Evaluators must also be
copy-constructible and copy-assignable, and FrequencyVector must be of a type that has
a strict weak ordering. The reason for this requirement is that the evaluate() method
of GInvariant specifically demands that an integral value is returned, and thus after the
evaluator class returns a result, it must then be translated into an integral value via a
lookup table.

There is no specific requirement on how evaluator classes are created by their corre-
sponding GInvariant subclass, though in this implementation this is done through a call
to the createEvaluator () call in all GInvariant subclasses that use evaluator classes.

Result caches

Result caches are used to both translate the returned FrequencyVectors from evaluator
classes to the integral value required by GInvariant’s evaluate() method and to store
the results of previous evaluations. This framework also separates out the results of G-
invariant functions which can be reused for different input sizes, such as AnchorSet, by
input size. They are effectively a thin template-based layer that separates out the needs of
the cache’s key and value types from the associative container type that backs them. The
overall structure of the result caches used in our program is summarized in Figure 3.2.
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Figure 3.2: Overview of the result cache structures used in the implementation of the table
method. The type of the evaluation cache varies based on the nature of the GInvariant
being modelled; hence, this diagram may have minor variations for specific GInvariant
subclasses.

One important consideration in the implementation of result caches is that the contents
of each cell in the table created from the table method is independent of the contents of any
other cell in the table. Because of this, each cell in a row may be concurrently evaluated.
The conversion of the FrequencyVector to an integral value as well as the caching of this
value thus creates a synchronization point between the threads that are evaluating the
G-invariant function on different inputs. Because of this, caches also act as a thread-safe
wrapper for their backing containers. Thread safety is provided through the use of Boost’s
thread library, and read-write locks are used extensively.

The root interface for result caches is the Cache class, which has two templated sub-
classes: MapCache for caches backed by an associative container, and CacheAdapter for
caches that are backed by other caches (used in cases such as transforming the value
type of the backing cache to a different type). A key template parameter is the delegate
class, which is used to insert a value into a cache when the key is not found. In the
case above, the translation from FrequencyVector to integral value is performed using an
EvaluatorDelegate.

3.3.2 The KMStrategy hierarchy

A key step in the table method is to construct a new G-invariant function and add a new
row to the table. Since there are many types of G-invariant functions, an overall strategy
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to govern what to add is needed. KMStrategy is a class that represents this. Specifically,
a KMStrategy answers two specific questions:

e Given the results of the previous iteration, which G-invariant functions over k-subsets
should we use to attempt to find a k-discriminator?

e What should be done if the G-invariant functions above fail to produce a k-discriminator?

Two sample KMStrategy subclasses are provided as concrete examples. The first is the
Taxonomy2Strategy, which, provided the discriminator from the previous iteration is non-
trivial, uses the Taxonomy2 backed by the (k — 1)-discriminator as its sole initial function;
if the previous iteration is trivial, no initial function is provided. The second strategy,
RecyclerStrategy, leverages the fact that anchor sets are G-invariants over subsets of
any size. Because of this, the anchor sets that are used by the (k — 1)-discriminator can
be reused as G-invariant functions over k-subsets. In both strategies, should the initial
functions fail to produce a k-discriminator, additional anchor sets are created.

Concurrent cell evaluation

Recall that the result caches are thread-safe so as to facilitate the concurrent evaluation
of all of the cells in the table. Two compile-time macros are provided as an option for
determining the granularity of concurrent evaluations. Concurrent evaluations are provided
through the use of Boost’s Thread and Asio libraries, the latter of which being used to
implement a worker thread pool.

The evaluation of G-invariant functions may depend on the results of evaluating other
G-invariant functions, as is the case when discriminators are evaluated. Thus, evaluating
a single table cell will result in a tree of dependent evaluations, and evaluating an entire
table row will result in a graph. (We can further assume that this graph is acyclic, as the
two types of G-invariant functions that have dependencies only depend on evaluations on
inputs of the same or smaller size.) A compile-time constant allows us to control the gran-
ularity of the concurrency desired: that is, whether or not this evaluation graph needs to
be computed. In the event that this is done, the graph is built, nodes representing cached
evaluations and their dependencies are eliminated, and the remaining nodes are then topo-
logically sorted before each evaluation is performed; the net result is that each G-invariant
function evaluation depend only on previously cached values. The graph construction is
implemented through the use of the Boost Graph Library.

Note that the graph construction is only relevant if at some point, the prevalent
KMStrategy dictates that a row for a G-invariant function with dependencies is to be added
to the table. In certain situations, the penalty of having to construct the dependency graph
may be too great to overcome, which in turn influences the KMStrategy design.
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3.4 The KMBuilder class

The KMBuilder class is a class that produces KMBuilderQOutputs, which in turn encapsu-
lates the intermediate outputs produced by each iteration of the generic t-design finding
algorithm: the set of orbit representatives for k-subsets, the Kramer-Mesner matrix Aj_1 j,
and whatever auxiliary data is produced by the Pruner class. In the generic t-design find-
ing algorithm, each iteration begins by creating a KMBuilder, which in turn creates the
appropriate Pruner with the data from the previous iteration’s KMBuilderOutput. The
Pruner is then responsible for generating the orbit representatives for this iteration, before
the new Kramer-Mesner matrix for this iteration is constructed by KMBuilder itself. At
this point, the new KMBuilderQutput is created.

Though the generic algorithm starts from finding the orbit representatives for singleton
sets from the single orbit representative for the empty set, this implementation unrolls the
first iteration, and thus begins with the orbit representatives for singleton sets, which in
turn are explicitly computed.

Trivial iteration detection

If pr = 1 for a particular iteration k, then the use of a Pruner is unnecessary. As the
sequence of py is nondecreasing, we can conclude that the Kramer-Mesner matrix is a 1 x 1
matrix whose entry is v — k. The use of lexicographical ordering throughout the generic
t-design finding algorithm also allows us to use the set {1, ..., k} as the orbit representative
for k-subsets. Thus, a KMBuilderOutput can be built right away.

Currently, pp is computed by KMBuilder itself, but it may be the case that a future
version of the algorithm will delegate this to the Pruner classes, as not all Pruners would
need pp to be computed. To this end, all existing Pruners also detect the case where
pr = 1, even though this is strictly unnecessary.

3.5 The Solver class hierarchy

After a Kramer-Mesner matrix is created, we employ the Solver class hierarchy is used to
find solutions to the Kramer-Mesner matrix equation. Our program directly passes in the
Kramer-Mesner matrix to the applicable solver; no attempts have been made to presolve or
otherwise further reduce the size of the matrix before it is processed by the solver. Rather
than providing a concrete implementation of any specific algorithm for finding nonnegative
integer solutions to the Kramer-Mesner matrix equation, a solver that leverages CPLEX]1]
and its integer programming tools is provided through the CPlexSolver class.
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CPLEX]1] is a commercially available solver for linear programming and integer pro-
gramming problems. For integer programming, it relies on a branch and cut technique to
obtain solutions, and it has the ability to analyze the input and use the appropriate algo-
rithms to find an optimal solution. Like permlib, it has a C++ API so that the transition
from the KramerMesnerMatrix class to t-design solution vectors can be made as seamless
as possible.

The CPlexSolver class will attempt to find any 0-1 solution, treating all solutions as
optimal, by using a null (constant) objective function.

3.6 Creating custom Solvers

The program can be modified to make use of other solvers that may be more efficient for
specific types of integer matrices, or for when different optimization conditions are needed.
A custom Solver must implement the solve () method, which must return a boolean value
to indicate whether a solution is found. If so, the getSolutionVectors() method can be
used to retrieve any solutions that have been found. Solver does not prescribe how the
information from the Kramer-Mesner matrix (specifically, the KramerMesnerMatrix class)
and the input parameter A\, otherwise unused by the algorithm up to this point, is to be
input.
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Chapter 4

Results

Our implementation of the generic t-design finding algorithm leaves room for the use of
many different candidate generators, pruners, and, for the table method, selection strate-
gies. The different selections each affect the runtime of the algorithm, and the following
are some empirical conclusions drawn from their use in practice.

4.1 Selection strategy with TablePruner

Among one of the key factors in the table method is the overall KMStrategy used to insert
G-invariant functions to the table. The paper [21] introducing the table method had used
it to construct a 6-(33,8,36) designs over PI'L,(32), the projective semilinear group on the
two-dimensional vector space over field of 32 elements, which serves as the basis of strategy
comparison in this section.

4.1.1 The Taxonomy2 Strategy

As Taxonomy?2 is the easiest function to construct given a non-trivial Discriminator and
AnchorSets being the cheapest GInvariant to create in general, this forms the basis of
our first strategy, the Taxonomy2Strategy. According to [21], Taxonomy2 tends to be one
of the more reliable GInvariants in terms of getting large codomain sizes, and this claim
is indeed justified: we were able to show with our program that the £k = 7 and £ = 8
iterations fully discriminated the 32 and 97 orbit representatives respectively using only
the Taxonomy?2 alone, and the one iteration where this was not the case (k = 6) only one
additional AnchorSet is needed. The results of this are summarized in Table 4.1.
However, for all its purported efficiency, there is a massive downside to using a Taxonomy?2:
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Table 4.1: The Taxonomy2Strategy in finding a 6-(33,8,36) design over PT'Ly(32)

k | pr | Columns in Table | GInvariant class | Discrimination | Uncached evaluations

5| 3 29 AnchorSet 3/3 29

6| 13 81 Taxonomy?2 8/13 729
AnchorSet 13/13 81

7|32 308 Taxonomy?2 32/32 9779

8197 684 Taxonomy?2 97/97 44004

Column 1
Column 2
Column 3

| Taxonomy2

| Discriminator | | | | | | | |

Figure 4.1: The major issue with Taxonomy2Strategy is that each successive Taxonomy?2
is more expensive than the last to evaluate.

| Taxonomy?2 | | | | | AnchorSet

the exponential growth in table columns with each iteration is only exacerbated by the num-
ber of uncached evaluations that must be performed in order to fully populate the row, as
illustrated in Figure 4.1. Each evaluation of a Taxonomy2 spawns k£ — 1 Discriminator
evaluations (of which at least one is cached), which in turn minimally spawns a Taxonomy?2
evaluation and (due to the Discriminator-finding process being probabilistic) a poten-
tially unbounded number of AnchorSet evaluations. These Taxonomy2 evaluations on
(k —1)-sets can then be further unrolled into (k —2)-Discriminator calls, and so on down
to the first value of k for which the discriminator is nontrivial. In practice, each value of
k on our input increases the number of uncached evaluations for the row by an order of
magnitude. On a quad-core laptop, compiled with clang 3.0 with full optimizations, creat-
ing the Kramer-Mesner matrix using this strategy took eight hours, of which the majority
was dedicated to the last iteration alone.
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Table 4.2: The RecyclerStrategy in finding a 6-(33,8,36) design over PT'Ly(32)

k | pr | Columns in Table | GInvariant class | Discrimination | Uncached evaluations
5| 3 29 AnchorSet 3/3 29
6| 13 81 AnchorSet 13/13 81
7|32 308 AnchorSet 32/32 308
8197 684 AnchorSet 97/97 684

4.1.2 The Discriminator-free Strategy

It becomes apparent that the Taxonomy2Strategy becomes untenable if k is large but
the first nontrivial iteration occurs early, assuming that each uncached evaluation takes
roughly the same amount of time to evaluate (given that a function’s dependent evaluations,
if any, are computed before the function itself is evaluated). It’s also to be noted that it
is mentioned in [21] that a Taxonomyl alone could almost fully discriminate the k = 8
iteration. Though that claim is not fully tested, the difference between having only 1368
uncached evaluations from a Taxonomyl and an AnchorSet compared to 44004 uncached
evaluations from a Taxonomy?2 is too great to ignore.

Thus, we have created a second strategy where the aim is to avoid evaluating (and thus
computing) the Discriminator or any other GInvariant which rely on other GInvariant
evaluations, which removes Taxonomy?2 from consideration. This strategy takes advantage
of the fact that both AnchorSet and Taxonomyl work for different input sizes, and involves
exclusively using either of these two GInvariants to construct a Discriminator. Once
one is found, the same GInvariants are used as the initial collection in the search for the
next Discriminator.

The RecyclerStrategy proved to be far more effective on the same input compared to
the Taxonomy2Strategy, as summarized in Table 4.2: it was capable of full discrimination
in all iterations using a single AnchorSet in roughly one hour on an quad-core laptop
compiled with clang 3.0 with full optimizations. The strategy also appears to refute the
claim in [21] that AnchorSet is unreliable in discriminating orbits, at least with the same
group and parameters that they had used.

Both tables were compiled using the FullCandidateGenerator rather than the
DefaultCandidateGenerator used by default in the TablePruner.
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Table 4.3: Run times for a 6-(33,8,36) design over PI'Ly(32) using different Pruners

Number of TablePruner
k | pg | candidates | ExplicitPruner | (RecyclerStrategy) | SetImagePruner | MinRepPruner
51 3 29 6:03.81 1:36.07 0:00.43 0:00.08
6|13 78 1:03:47.50 3:46.68 0:07.12 0:00.37
7|32 231 13:02:58.53 14:40.12 1:54.75 0:01.93
8|97 589 113:33:08.57 33:21.55 20:13.39 0:06.64

4.2 Pruner comparison

One apparent weakness to TablePruner and the table method is that none of the G-
invariant functions proposed by Magliveras and Leavitt in [21], in fact, remove the require-
ment of iterating through the group: both anchor sets and the Taxonomy 1 method rely on
precomputation of the images of items under the group, and these images may be the size
of the group itself. Thus, the evaluations of these G-invariant functions and, to a lesser
extent, G-invariants which use them as a dependent, also effectively iterates through the
group. Furthermore, the table-based method does not provide any guarantees as to the
number of functions that are needed to ensure full discrimination, meaning that a poor
choice of KMStrategy can result in unbounded runtime (even worse than explicit iteration
through the elements of G).

Neither the traditional backtracking algorithm (as implemented by SetImagePruner)
or Linton’s algorithm have these disadvantages. Neither algorithm iterates through the
elements of G, instead iterating through the transversal sets for G (or a subgroup therein),
which may be efficiently computed on an as-needed basis. It is also to be noted that,
like the G-invariant functions used in the table method, the minimum orbit representative
function is itself G-invariant (it is, by definition, a discriminator). Thus, we can claim that
any KMStrategy involving GInvariants which do not guarantee full discrimination in only
one row will perform poorly compared to MinRepPruner. In practice, we will expect that
MinRepPruner will thus greatly outperform TablePruner with RecyclerStrategy.

In Table 4.3 above, the various Pruners are compared to each other by comparing the
lifetime of each KMBuilder object. All of the tests were run on a quad-core laptop, with
the program compiled with clang 3.0 with no optimizations. The times in the table were
measured using the Boost Timer library, and does not include the time needed to compute
Pk, which is performed in KMBuilder’s constructor.
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Table 4.4: MinRepPruner timings for a 6-(33,8,36) design over PT'Ly(32)

k | pr | Candidates | Computation Time
51 3 29 0:00:00.02
6|12 78 0:00:00.14
732 231 0:00:00.85
8197 589 0:00:03.25

Table 4.5: CPLEX timings for a 6-(33,8,36) design over PI'Ly(32)
Generators for G | (124 816)(3 61224 17)(5 10 20 9 18)(7 14 28 25 19)(11 22 13 26 21)(15 30 29 27 23)
(118 30)(2 21 12)(3 10 28)(4 31 32)(5 24 14)(6 7 17)(8 25 27)(9 19 20)(11 15 13)(16 23 29)(22 33 26)
Kramer-Mesner matrix size | 13 x 97

Design Found by CPLEX | oOrbit of {1,2,3,4,5,6,7,8}
Orbit of {1,2,3,4,5,6,8,13}
Orbit of {1,2,3,4,5,6,8, 26}
Orbit of {1,2,3,4,5,6,9,22}
Orbit of {1,2,3,4,5,6,10,15}
Orbit of {1,2,3,4,5,6,11,12}
Orbit of {1,2,3,4,5,6,12,26}
Orbit of {1,2,3,4,5,6, 14,24}
Orbit of {1,2,3,4,5,6,17,19}
Orbit of {1,2,3,4,5,6,17,33}
Orbit of {1,2,3,4,5,7, 10,20}
Orbit of {1,2,3,4,5,7, 10,32}
Orbit of {1,2,3,4,5,9,12, 24}
Total Computation Time | 0:01:05.97

4.3 Effectiveness of CPlexSolver

Regardless of the choice of Pruner, once the Kramer-Mesner matrix is generated, our
program use CPLEX to solve it. In this section, all of the results were obtained from
running the program on a 64-core server with gecc 4.1.

CPLEX proved to be very capable in finding a simple 6-(33,8,36) design over PI'Ly(32),
as shown in Table 4.4 and 4.5. Other well-known designs over PI'Ly(32) were also found
quickly, as summarized in 4.6.

As summaries in Tables 4.7 and 4.8, a simple 5-(36,6,1) design over PGLy(17) x Cy, first
discovered in [5], shows that certain Kramer-Mesner matrix equations are more amenable
to CPLEX] as its presolve routines may eliminate a large number of rows and columns
(compared to the Kramer-Mesner matrix equations over PI'Ly(32), for which the CPLEX
presolver were unable to do so). This may be attributed to the small value of A.

However, it appears that integer programming has its limitations. Though finding the
Kramer-Mesner matrix was a non-issue (as shown in Table 4.9), in attempting to find an 8-
(31,10,93) design over PSL3(5), CPLEX was unable to find a {0, 1}-solution after allowing
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Table 4.6: CPLEX timings for a 7-(33,8,10) design over PI'Ly(32)
Generators for G | (1248 16)(3 6 1224 17)(5 10 20 9 18)(7 14 28 25 19)(11 22 13 26 21)(15 30 29 27 23)
(118 30)(2 21 12)(3 10 28)(4 31 32)(5 24 14)(6 7 17)(8 25 27)(9 19 20)(11 15 13)(16 23 29)(22 33 26)
Kramer-Mesner matrix size | 32 x 97

Design Found by CPLEX | orbit of {1,2,3,4,5,6,7,11}
Orbit of {1,2,3,4,5,6,7, 32}
Orbit of {1,2,3,4,5,6,8,15}
Orbit of {1,2,3,4,5,6,8, 20}
Orbit of {1,2,3,4,5,6,8,21}
Orbit of {1,2,3,4,5,6,8, 23}
Orbit of {1,2,3,4,5,6,8, 24}
Orbit of {1,2,3,4,5,6,8, 27}
Orbit of {1,2,3,4,5,6,9,11}
Orbit of {1,2,3,4,5,6,9,13}

Orbit of {1,2,3,4,5,6,9,17}
Orbit of {1,2,3,4,5,6,9, 24}
Orbit of {1,2,3,4,5,6,9, 26}
Orbit of {1,2,3,4,5,6,10,11}
Orbit of {1,2,3,4,5,6, 10, 13}
Orbit of {1,2,3,4,5,6, 10, 18}
Orbit of {1,2,3,4,5,6, 10, 19}
Orbit of {1,2,3,4,5,6, 10,25}
Orbit of {1,2,3,4,5,6,11, 16}
Orbit of {1,2,3,4,5,6,11,26}
Orbit of {1,2,3,4,5,6,11,27}
Orbit of {1,2,3,4,5,6,11,33}
Orbit of {1,2,3,4,5,6,12,20}
Orbit of {1,2,3,4,5,6,12,24}
Orbit of {1,2,3,4,5,6,12,26}
Orbit of {1,2,3,4,5,6,12,32}
Orbit of {1,2,3,4,5,6,16, 17}
Orbit of {1,2,3,4,5,6,17,33}
Orbit of {1,2,3,4,5,7,9,12}
Orbit of {1,2,3,4,5,7,9,32}
Total Computation Time | 0:01:03.91

the program to run for over a month, even with the most aggressive optimizations geared

towards finding a feasible solution, despite the fact that ABP%S(S) has roughly the same
number of rows and fewer columns than A§§L2(”)XC2. In contrast, Betten et al., in [3],

found and enumerated all 138 such designs in an hour using the DISCRETA [4] software
suite, which uses lattice basis reduction to solve the Kramer-Mesner matrix equation. It
may be the case that the linear relaxation of the Kramer-Mesner matrix equation has found
a local minimum, for which there are no integer solutions nearby.
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Table 4.7: MinRepPruner timings for a 5-(36,6,1) design over PGLy(17) x Cy

k| pr | Candidates | Computation Time
2| 3 35 0:00:00.00
31 3 67 0:00:00.01
41 17 65 0:00:00.02
5| 48 249 0:00:00.16
6 | 259 545 0:00:00.73

Table 4.8: CPLEX timings for a 5-(36,6,1) design over PGL3(17) x Cs
3

Generators for G | (1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(35111215717 1318 16 10 9 6 14 4 8)(21 23 29 30 33 25 35 31 36 34 28 27 24 32 22 26)
(38414691016 18 1317 715 12 11 5)(21 26 22 32 24 27 28 34 36 31 35 25 33 30 29 23)
(2345678910 111213 14 15 16 17 18)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1311815957174 14 16 12 6 13 10 18)(19 21 29 26 33 27 23 25 35 22 32 34 30 24 31 28 36)

Kramer-Mesner matrix size | 48 x 259

Design Found by CPLEX | Orbit of {1,2,3,4,5,30}
Orbit of {1,2,3,4,7,34}
Orbit of {1,2,3,4,8,26}
Orbit of {1,2,3,4,19,21}
Orbit of {1,2,3,5,9,26}
Orbit of {1,2,3,5,27,32}
Orbit of {1,2,3,6,26,30}
Orbit of {1,2,3,19,22,36}
Orbit of {1,2,3,19,23,35}
Orbit of {1,2,3,19,25,33}
Orbit of {1,2,3,19,27,31}
Orbit of {1,2,3,22,23,24}
Orbit of {1,2,3,22, 25,28}
Orbit of {1,2,3,22,31,35}
Orbit of {1,2,3,24,25,31}

Total Computation Time | 0:00:03.41

Table 4.9: MinRepPruner timings for an 8-(31,10,93) design over PSL3(5)

k| pr | Candidates | Computation Time
31 2 29 0:00:00.00
41 3 52 0:00:00.02
5] 5 69 0:00:00.06
6| 12 101 0:00:00.16
71 22 193 0:00:00.48
8 | 42 321 0:00:01.11
91 92 440 0:00:02.24
10 | 174 869 0:00:06.14
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Chapter 5

Future Work

The existence and construction of ¢-designs can be summed up using the generic ¢t-design
construction algorithm for solving the Kramer-Mesner matrix equation. In this thesis, we
have summarized various approaches to generating the Kramer-Mesner matrix as well as
solving the matrix equation, and created a program that does just that. A result from the
use of our program showed that Linton’s algorithm was sufficiently fast in generating the
Kramer-Mesner matrix, and integer programming techniques were able to reproduce many
previously-discovered ¢-designs in reasonable time.

This generic t-design construction program can certainly be refined, be it though new
orbit representative construction methods, better candidate pruning methods, or better
solvers. Our program has made some accommodations for some of these potential refine-
ments. In particular, we have not used the full functionality of permlib, whose advanced
algorithms for various types of searches can be leveraged for greater refinements and new
approaches to candidate generation of pruning. Techniques used in the Leiterspiel algo-
rithm’s step-downs can be used to create a better CandidateGenerator resulting in fewer
candidates to prune via Linton’s algorithm or traditional backtracking search. Alterna-
tively, it is possible to implement Leiterspiel’s step-ups via a Pruner. It is believed that
permlib already has the tools needed to do all of this, though it may, in the end, perform
worse than MinRepPruner in practice.

Though we have shown that the table method is largely impractical with the demon-
strated GInvariant functions due to the need to iterate through the whole group, there may
yet exist an easily constructible and cheap to evaluate GInvariant function that may allow
TablePruner to be used as a base for a probabilistic approach to finding Kramer-Mesner
matrices. However, such a function would have to compete against Linton’s algorithm,
which imposes steep performance requirements, in addition to having to guarantee full
discrimination with high probability.
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Given such functions, a useful addition to the table method is a way to determine a
priori that a nontrivial GInvariant will evaluate to a constant value for all candidates,
making it a useless and unnecessary addition. Currently, this function would still be added
rather than discarded. Another useful addition to the table method would be a KMStrategy
that makes use of state, which may help in improving the table method with regards to
GInvariant selection in order to make the table method more competitive to Linton’s
algorithm.

Similarly, we have not fully utilized the advanced functionality of CPLEX, and fine-
tuning the use of CPLEX may offer better performance.

Relating to this is the development of better Solvers that do not directly use the
Kramer-Mesner matrix equation. One such Solver which may prove to obtain results in
a more timely manner comes from Moura [22], which states that a {0, 1}-solution to the
matrix equation of Theorem 6 is also the optimal solution to both the set-packing model
and the set-covering model, both of which are binary integer programming problems.
The former maximizes [1, ..., 1]7x subject to A;xx < [A,...,A\]?, and the latter minimizes
the same objective function subject to A;xx > [A,...,A\]7. It is believed that this can
be adapted to solving Kramer-Mesner matrix equations in a straightforward manner by
substituting in Ly in the objective function and replacing the regular incidence matrix with
the Kramer-Mesner matrix.

As an alternative to CPLEX, a hybrid approach incorporating techniques from both
lattice basis reduction and integer programming may prove to solve the Kramer-Mesner
matrix equation faster than either technique alone. The Solver hierarchy does not pre-
scribe in any way how the Kramer-Mesner matrix equation is to be solved, or whether or
not the Kramer-Mesner matrix equation is used as-is; with some sets of inputs, the matrix
may be too large or otherwise too difficult to solve without additional processing. Some
progress, such as those in [14], have been made to this effect, and the incorporation of
these efforts into a better Solver may prove to be useful.

Another potential addition to our program comes from work that has, up until this
point, been specialized into finding 2-designs but have yet to be generalized for larger
t. An example of this is in [23], which proposes that a ¢-design exists if and only if a
specific system of equations of variables with degree ¢ has a solution. Whether this can
be combined with the Kramer-Mesner matrix equation approach in any meaningful way is
still unknown.
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