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Abstract

In this thesis, we develop a number of operational tests and tools for benchmarking the
quantum nature of optical quantum communication devices. Using the laws of quantum
physics, ideal quantum devices can fundamentally outperform their classical counterparts,
or even achieve objectives which are classically impossible. Actual devices will not be
ideal, but they may still be capable of facilitating quantum communication. Benchmark-
ing tests, based on the presence of entanglement, can be used to verify whether or not
imperfect quantum devices offer any advantage over their classical analogs. The general
goal in this thesis is to provide strong benchmarking tools which simultaneously require
minimal experimental resources but also offer a wide range of applicability. Another major
component is the extension of existing qualitative benchmarks (‘Is it quantum or classi-
cal?’) to more quantitative forms (‘How quantum is it?’).

This thesis is structured as follows. Chapters [1] and [2 provide an introduction and
background material on quantum theory and quantum optics. Specifically, we outline the
basic notions of quantum mechanics from a quantum information perspective, define some
theoretical concepts which are important throughout the thesis, and detail two different
methods for encoding quantum information in states of light, namely single-photon and
continuous-variable encodings.

In Chapter [3| we develop our first benchmarking results, for remote state preparation
(RSP) protocols. To do this, we first distinguish quantum RSP protocols from classical RSP
protocols by allowing the use of a pre-shared entangled state in the quantum case. Using
the average fidelity between the desired target states and the actual remotely-prepared
states to measure performance, we show how to calculate the best value achievable by a
classical protocol. We apply these results to a number of different ensembles of target
states, including pure states, mixed states, discrete ensembles, and continuous ensembles.
From this, we propose a number of simple benchmarks based on Platonic solids. Finally,
the proposed benchmarks are used to certify a quantum RSP experiment.

In Chapters [4H6], we deal with the problem of extending existing continuous-variable
(CV) quantum benchmarks to provide useful quantitative information. In Chapter , af-
ter reviewing the known CV benchmarking results, in particular the entanglement-based
approach, we outline a quantification scheme based on entanglement measures and pro-
jections of infinite-dimensional optical systems to more managable finite subspaces. From
this, two complementary paths are taken for the choice of projection. In Chapter 5], we pur-
sue a two-qubit projection, which gives good quantitative results when the tested devices
are near their ideal operating point. On the other hand, Chapter [] follows the approach of
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projecting onto low-energy Fock states. This provides a better capacity to certify devices
with larger degrees of imperfection.

Finally, in Chapter [7, we show how to perform quantum benchmarking using arbitrary
test states. Since many existing benchmarks are still limited to special cases, this provides a
much-needed way to certify devices under more realistic testing conditions. We also study
how to strengthen such benchmarks, leading to the best chance of certifying quantum
devices. We use this approach, along with the quantitative tools developed in Chapters
and [6] to certify a real CV quantum memory. Together, the results contained in this
thesis comprise a comprehensive suite of tools which can be used to perform efficient
benchmarking tests on quantum devices using realistic experimental resources.
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Chapter 1

Introduction



“Have no fear of perfection — you’ll never reach it.” - Salvador Dali

Quantum communication is the transmission of information via quantum states. Al-
though the fundamentals of quantum physics have been known for almost a century, it took
more time for the idea of using quantum states as information carriers to become promi-
nent. Indeed, many modern communication technologies are based primarily on classical
laws of physics, especially the theory of electromagnetism. Of course, as components are
designed to function at smaller and smaller scales, quantum effects start to come into play.
Often, these quantum effects are seen as undesirable since they do not fit into the classi-
cal framework. But if the fundamental small-scale workings of the universe are quantum
mechanical (and to the best of our knowledge, they are), then we should embrace such
quantum effects. Instead of designing our technologies based on classical laws, we should
make use of the more fundamental quantum rulebook. Since classical physics is anyway
a course-grained, macroscopic version of quantum physics, this shift can only improve our
technological capabilities.

Indeed, this new perspective has led to the development of important quantum commu-
nication protocols that can fundamentally outperform classical technologies. For instance,
quantum teleportation protocols can enable the accurate transmission of the state of a
particle from one location to another using only a finite amount of resources, while any
classical protocol would require infinite resources for faithful transmission. As well, quan-
tum cryptography schemes enable users to communicate their information in true security,
whereas many commonly-used classical cryptography schemes can be broken with powerful
enough resources (such as a quantum computer, another device made possible through the
use of quantum information carriers).

Part of the reason that quantum information theory is only now getting an appropriate
level of attention is that our control over the quantum world has been imperfect in the past.
For quantum communication, light is undoubtedly the best carrier for quantum informa-
tion, owing to its speed and weakly-interacting nature. Advances in quantum light sources
(single photons, entangled states), transmission (optical fibres, free space, light/atom in-
terfaces), and detectors (high efficiency photodetectors, homodyne interferometers) have
provided greater access to the quantum properties of light.

However, even in modern experiments, some degree of imperfection is inevitable. Such
imperfections may degrade the operation of quantum communication devices to a point
where a comparable classical device could achieve the same level of performance. In this
case, there would no longer be any advantage to using the quantum framework. Fortu-
nately, it is still possible to perform meaningful quantum communication tasks with im-
perfect components, provided the degree of imperfection is not too large. Indeed, quantum



devices with small deviations from the ideal are able to outperform their classical analogs.
Although current experiments and devices remain imperfect, they are certainly at a level
where the advantage of the quantum framework can be convincingly demonstrated.

The goal of quantum benchmarking is to certify quantum communication devices or
experiments, i.e. to establish that a particular quantum device outperforms all compara-
ble classical devices. Quantum devices include quantum teleportation systems, quantum
memories, quantum repeaters, quantum channels, and quantum remote state preparation
systems, among others. For all of these devices, a fundamental distinction must be made:
genuine quantum communication devices cannot be simulated by comparable classical de-
vices. A device that can be classically simulated is not useful for quantum communication
purposes, and there is no advantage to using the quantum framework. In order to deter-
mine whether or not a device can be classically simulated, we will focus on the presence
of entanglement, an undeniably quantum resource. Of primary importance will be to find
and explore the quantum domain, the regime of operation that is only possible for genuine
quantum devices. Once we have fixed a classical analog, we can map out the limits of its
performance. Any device performing beyond these limits must be in the quantum domain.

Quantum benchmarking is important because it allows us to conclude that a device can
facilitate quantum communication. In networks containing many quantum communication
devices, the failure of one device can adversely affect the entire network, so it is important
that every component functions properly. That being said, experimentalists should be free
to focus on the demanding tasks of designing and building quantum devices. Therefore,
it is up to the theorists to develop conceptual tools that make the actual benchmarking
task as practical and pain-free as possible. Hence, we should aim for benchmarks that
require a minimal amount of experimentally realistic resources at all stages. Finally, it
can be useful to have benchmarks that are quantitative in nature, rather than strictly
qualitative (‘classical/quantum’). This allows us to not only determine whether a device
is in the quantum domain, but also to compare the performance of different devices within
the quantum domain.

This thesis contains various results related to the task of quantum benchmarking. In
particular, the goal of this research was to develop strong, practical, quantitative, and gen-
eral tools for the quantum benchmarking problem. Often, these results build on previous
works in the same direction. For example, a large portion of this thesis is devoted to tools
for benchmarking so-called continuous variable (CV) optical devices, in which quantum
information is encoded using continuous degrees of freedom. The common starting point
for these tools is the entanglement-based framework for CV benchmarking (which will be
summarized in Ch. . The CV benchmarking results in this thesis can be seen as an
extension or as a filling out of the existing benchmarking toolbox, enabling a better un-



derstanding of the quantum nature of communication devices. Where appropriate, we will
show the advantage of the new techniques by comparing with previous results. As well, in
cases where an actual experimental device is available, we will demonstrate the practical
application of the benchmarking tools.

This thesis is organized as follows. In the next chapter, we review important back-
ground concepts from quantum physics that will be necessary later in the thesis. We pro-
vide some mathematical details about state preparation, evolution, and measurement, as
well as introducing some tools from quantum information theory that are useful in quantum
benchmarking. On the practical side, we outline how some of these concepts are realized
within a quantum optical setting. Chapter |3|is devoted to obtaining benchmarks for a par-
ticular discrete quantum communication protocol called remote state preparation (RSP).
These benchmarks are applied to certify a real-world RSP experiment. The remainder
of the thesis is dedicated to benchmarking tools and results for continuous-variable quan-
tum devices. In Chapter [4] we summarize previous CV benchmarking results and begin
the first steps for extending these results to make quantitative statements about devices
within the quantum domain. At this point, two complimentary approaches to quantitative
benchmarking are developed: one approach is best for low degrees of imperfection, while
the other works better on systems with larger imperfections. These two approaches are
outlined in Chapters [5] and [0, respectively. Chapter [7] concerns the problem of bench-
marking with experimentally realistic testing resources. We demonstrate how to design
quantum benchmarks using arbitrary test states, which are then used to certify a physical
CV quantum memory. Together, the result in this thesis contribute in new ways to the
problem of benchmarking optical quantum communication devices using experimentally
practical resources.



Chapter 2

Background



Quantum information theory deals with information processing and communication
using quantum systems as the fundamental resources. Quantum mechanics, on the other
hand, is the most well-tested theory we have developed for understanding the workings
of the universe on a small scale. Therefore, an understanding of the basics of quantum
mechanics is crucial before proceeding into any discussions of quantum information theory.
At its heart, quantum mechanics is a mathematical framework for describing the behaviour
of quantum systems. To certain primitive operational tasks, we associate a specific math-
ematical description. This mathematical formalism allows us to make predictions for the
outcome of experiments or protocols.

On the most general level, we can identify three important operational primitives. First,
a userl| makes a preparation of a quantum system. This system could be prepared in a
fixed state, or the preparation could be a probabilistic mixture of states (whether this
mixture is intentional or not). Second, the system is subject to evolution. Again, the
evolution might be in a deterministic form or it might have a more stochastic nature. The
stochasticity could be due to interaction with the ambient environment or another outside
agent. Finally, another user (or possibly the same one) makes a measurement on the
system by interacting it with some measurement apparatus. Often, the quantum system
is destroyed or converted to some unusable form by the measurement process.

As a useful guiding point, for each of the above primitives, we can identify an idealized
situation and a more realistic general situation. We will now outline how these concepts fit
into the mathematical framework of quantum mechanics. The interested reader is referred
to any standard quantum information textbook for a more detailed exposition (e.g., [75]).
We begin by fixing a Hilbert space H (i.e., a complete vector space endowed with a complex-
valued inner product), called the state space. Vectors in this Hilbert space are denoted with
the ‘ket’ symbol |-).

2.1 Preparation

If a quantum system cannot be considered as a probabilistic mixture of other states, we
say that it is ‘pure.” Such preparations are mathematically described as follows.

Definition 2.1.1 (Pure states). The state of a ‘pure’ quantum system is represented by a
normalized vector |¢) in the state space H.

'We use the general term ‘user’ to refer to an entity who participates in a quantum physics experiment
or a quantum communication protocol. This entity could be a real person or a physical device.



Pure states are not the most general preparations for quantum systems. As mentioned
above, it is possible to have preparations that are probabilistic mixtures as well. Such
probabilistic preparations could be caused by a user randomly preparing different pure
states, from imperfections in the preparation process, from taking a subsystem of a larger
system, or from combinations of these. To describe these ‘mixed’ preparations, we need
to consider the set of bounded linear operators on the Hilbert space H, denoted by B(H).
In this framework, each pure state |¢)) € H is identified with the corresponding projection
operator |¢)(¢| € B(H). Often, |¢)(¢)] is also referred to as a pure state.

Definition 2.1.2 (Mixed states). The state of a ‘mized’ quantum system is represented
by an operator that is a probabilistic mixtunﬂ of pure states, i.e., p = Da [Va)(Va| with
Pa >0V aand ) p,=1.

All preparations, whether mixed or pure, can be represented by an appropriate choice
of operator p € B(H), called a density operator or density matrix. Because the probabil-
ity coefficients must sum to one, states are always normalized with respect to the trace
operation, i.e., Trp = 1. As well, from the above definition, states are necessarily positive
semidefinite operators, p > 0. Alternatively, we could have used these two properties to
define general quantum states.

Often, we are interested in describing situations where several quantum systems are
prepared in some joint state. Most basically, if we have two quantum systems, labelled A
and B, with corresponding state spaces H 4 and Hp, the state space of the joint system
is given by the tensor product Hap = Ha ® Hp. Pure states and mixed states of the
joint system are defined on the state space as before. We can recover the state of each
subsystem using the partial trace operation.

Definition 2.1.3 (Reduced state). If pap € B(Hap) is a bipartite state, we describe
the state of one subsystem by tracing out the other subsystem, i.e., pa = Trppap and

pB = Trapap

A factorized state on the joint system is a state that can be split into states on both
subsystems.

Definition 2.1.4 (Factorized states). A pure state |¢) ,5 € Hap is factorized when it can
be decomposed into the form |¢) 5 = |U) 4®|U) g, with [¢) 4 € Ha and |¢p) 5 € Hp. A mized
state pap € B(Hag) is factorized when it can be decomposed into the form pap = pa ® pg,
with pa € B(HA) and pg € B(HB)

2If the index « is continuous, the summation symbol represents some appropriate integration.
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As well, we can consider a probabilistic mixture of factorized states [103].

Definition 2.1.5 (Separable states). A state pap € B(Hagp) is said to be separable when
it can be decomposed as pap = Y, DaP% @ P, with p§ € B(Ha), p% € B(Hp) V o, and

Zapa =1

At this point we can introduce one of the distinguishing features of quantum theory,
namely entanglement. Entanglement is an important property of quantum systems which
can be employed as a resource for quantum communication tasks. Let S4p denote the set
of separable states on B(Hap).

Definition 2.1.6 (Entangled states). A state pap € B(Hap) is said to be entangled if it
is not separable, i.e., if pap & Sap.

Given the above definition, a pure state |[¢)) ;5 € Hap is entangled whenever it is not a
factorized state.

2.2 Evolution

The next operational primitive is allowing the quantum system to evolve. This evolution
can consist of a controlled transformation, an uncontrolled interaction with an environment
or other auxilliary system, some combination of these, or a transformation that leaves the
system unchanged. From a quantum information perspective, we are primarily interested in
situations where the evolution is generated by a time-independent Hamiltonian H. These
Hamiltonians are self-adjoint operators, H=H f_ which represent the basic evolution of a
quantum system, according to the Schrodinger equation:

d .
ih ) = H [u). (2.1)

Henceforth, we use the convention that A = 1. The solution of the Schrodinger equation
with time-independent Hamiltonian can be found by exponentiation. Since the Hamilto-
nian is self-adjoint, the evolution of the state must be unitary.

Proposition 2.2.1 (Unitary evolution). Evolution of a pure quantum system from an
initial state |{w) € H to a final state |thou) € H occurs as a unitary process: |tou) =
U [¢n), with U € B(H) and UTU UU' = 1. Similarly, mized states evolve according
to the unitary operation pow = UpmUT.



In principle, Proposition [2.2.1] only describes the evolution of closed quantum systems.
In general, evolution may also be open, involving interaction with other systems or trans-
ferral of the system to a different state space. Such possibilities are represented by the
notion of completely positive, trace-preserving (CPTP) maps. But first, we need a few
preliminary concepts relating to transformations between states with different state spaces
(represented by Hi, and Hous)-

Definition 2.2.2 (Positive map). A transformation A : B(Hiwn) — B(Houw) is called a
positive map if, whenever X € B(Hi) is positive semidefinite, then A[X] € B(Hou) is
positive semidefinite, i.e., X > 0= A[X] > 0.

Definition 2.2.3 (Trace-preserving map). A map A : B(Hin) — B(Hous) is trace-preserving
if Tr(A[X]) = TeX for all X € B(Hin)-

Clearly, positive trace-preserving maps will always take density matrices to density
matrices. However, we also need to consider the situation where only one subsytem of a
joint system is subject to evolution. We demand that the resulting output is a genuine
state in this case as well.

Definition 2.2.4 (Completely positive map). Let Hane be the state space of any ancillary
system. A map A @ B(Hin) — B(Houw) is said to be completely positive when, for any
positive semidefinite operator defined on the joint system, X € B(Hane ® ’HAin), partial

A

evolution by A leads to a positive semidefinite output, i.e., (id @ A)[X] >0V X > 0.

Completely positive, trace-preserving maps represent the most general form of evolu-
tion for quantum systems (open or closed). In quantum information theory, such general
evolution is often called a quantum channel. In particular, one type of channel will be of
interest later, so we note it here.

Definition 2.2.5 (Entanglement-breaking channel). A channel, represented by the map
A B(Hin) — B(Hout), is said to be entanglement-breaking if it always produces a separable
output when acting partially on any state, i.e., (id ® A)[p] is separable ¥ p > 0.

2.3 Measurement

The last operational primitive is the process of measurement. This task is accomplished by
interacting the relevant system with some measurement device. The measurement device
then provides to the user the outcome of the measurement (e.g., through a ‘click/no click’

9



event or a dial reading), which we will label by a.. As well, in the process of measurement,
the system itself is transformed into some post-measurement state. We mathematically
describe the process of measurement using a set of operators with certain properties.

Prop0s1t10n 2.3.1. Measurement of a quantum system is represented by a set of opemtors
{M }. acting on the state space H, that satisfy the completeness relation ) ]\/[ TN, =1y
For a state represented by the density operator p € B(H), the probability of obtaining
measurement outcome ‘o’ is p(a)) = Tr(pMIM,).

The post-measurement state ppy; for outcome ‘a’ is given by
M, pM{

— e 2.2
Tr(M,pMY) (22)

prPM =

Typically, the measurement process is irreversible. If we are not interested in the post-
measurement state, it is often convenient to represent measurements in a slightly different
way.

Definition 2.3.2 (POVM). A positive-operator-valued measure (POVM) is a set of oper-
ators P, € B(H) satisfying the following properties: (i) P, > 0V «, and (ii) S Py=1y

For a given set of measurement operators, we can identify corresponding POVM elements
using

P, = MiM,. (2.3)

More generally, POVMs can also be defined by summing together (or ‘course-graining’) a
number of suitably-normalized elements in the form of Eq. (2.3). In some special cases,
measurements are projective (or repeatable), and POVMs reduce to a simpler form:

Definition 2.3.3 (PVM). A projection-valued measure (PVM) is a set of operators {15 }
acting on H that are orthogonal projectors, PyPy=0bu aPa, and that satisfy the complete-
ness relation Y, P, = 1y

In many situations, we will not know the exact state of a system, and a measurement
might be used to gain more information. Due to the probabilistic nature of quantum
systems, a single measurement cannot provide a full description of the system. However,
if we can prepare many identical copies of the same state, then repeated measurement
will allow us to build up a faithful statistical description of the state. We will often be
interested in certain aspects of a system that can be revealed through measurement.

10



Deﬁnitjon 2.3.4. An observable is a self-adjoint operator O = Ot that acts on the state
space, O : H — H.

Observables represent some physical property of the system that can be quantified numer-
ically (e.g., the energy). The expectation value of an observable with respect to a state is
the numerical value of the associated physical quantity for that state. Expectation values
can be computed using the following rule.

Proposition 2.3.5 (Born rule). If an observable is represented by an operator O and a
state by the density matrixz p, then the expectation value of the observable with respect to

this state is given by <O> = Tr(Op).

Since observables are self-adjoint, their eigenvalues Ao are real-valued and their eigen-
vectors |A\p) are orthogonal. Hence, we can consider a PVM containing projectors onto the
cigenvectors, PO = |IAo)(Ao|. Weighting these outcomes by the appropriate eigenvalues,
we can obtain expectation values through the measurement process. For all the situations
considered in this thesis, it is possible to find a set of observables {Oa} that are tomo-
graphically complete for a relevant state space H (i.e., the observables span B(H)). Any
density matrix p defined on that state space can be written as some linear combination of

these observables: )
p=>_ caOa. (2.4)

[

2.4 Quantum information theory

In this section, we introduce some concepts and techniques from quantum information
theory that will be useful throughout the thesis. We begin with mixed states, the most
general description of quantum systems. The following functional quantifies the degree of
mixedness of a state.

Definition 2.4.1 (Purity). The purity of a density matriz p is defined by P(p) = Tr(p?).
Purity is positive for any state, with a maximal value of 1. A state has unit purity if and
only it is pure.

It is often more convenient or elegant to work with pure states. Even when we must
consider mixed states, it is always possible to represent such states as pure states in a
larger space.

11



Definition 2.4.2 (Purification). Let p € B(Hsys) be a density matriz describing a par-
ticular quantum state (pure or mized). Let Hane be an ancillary state space. A state
|W,) € Heys @ Hane @5 called a purification of p if Tranc(|¥,XV,|) = p.

Among other uses, purifications allow us to generalize the concept of state overlap or
transition probability to mixed states.

Definition 2.4.3 (Fidelity). Let p,0 € B(Hsys) be two density operators. Let |V,),|V,) €
Heys @ Hane be purifications of these states (with the same purifying space). The fidelity
F(p,o0) is defined as the mazimum square overlap of the purifications, i.e.,

F — U W, )2 2.5
(p,o) |@If>1?§a>|< o Vo)™, (2.5)

where Trane [V (V)| = p and Tran |Vo ) (¥s| = 0.

The fidelity can be interpreted as a quantitative measure of (in)distinguishability for
pairs of quantum states. Alternatively, we could have omitted the square in Eq. .
This alternative definition is also common in the literature, and they are both referred to
as fidelity. To avoid confusion, we will refer to the unsquared quantity as the root fidelity.
In this thesis, we will mainly use the first characterization. To go with the above formal
definition, we also have the following closed formula [96], [52]:

Theorem 2.4.4 (Uhlmann). The fidelity is given by

F(p, o) = [Tr (\/mﬂ . (2.6)

In Ch. |7, we will show how the (root) fidelity of two arbitrary states can be computed
numerically using the methods of semidefinite programming.

Finally, fix two state spaces "4 and Hp, with orthonormal basis vectors {|i) ,} and
{l7) g}, respectively, and consider the composite system Hap = Ha ® Hp. As mentioned
earlier, quantum theory allows composite systems to be entangled. Unfortunately, it can
be difficult to determine in practice whether a given density matrix pap € B(Hap) is
separable or entangled [31]. One approach to this problem is to determine whether or not
a state lies in some easier to characterize set Sp that contains the set of separable states,
Sap € S'AB. If pap ¢ SAB, then the state is entangled, but if pap € gAB, no conclusion
can be made. A common choice for the set S4p, which will be employed throughout this
thesis, is the set of states that are positive under partial transposition, or PPT [80, [41].
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Definition 2.4.5 (PPT). Let T4 : B(Ha) — B(Ha) denote the transposition map Ta[|i)(j| 4] =
|7)(i| 4 for alli,j in the basis {|i) ,}. A density matriz pap has the PPT property with re-
spect to system A when (Ta ®@1id)[pag] > 0.

We can define an analogous partial transposition on system B. We point out that although
the partial transposition of p4p is basis-dependent, its spectrum is independent of the basis
[61]. Frequently, partial transposition will be denoted by the shorter form pg‘}g or pﬁ%. For
dimH sp < 6, the set of separable states and the set of PPT states are equivalent. However,
for higher dimensions, there exists entangled states which are not PPT. Entangled states
which are PPT are said to have ‘PPT entanglement,” while those which are not PPT will
be called ‘NPT’ entangled states.

Though it is not obvious from the earlier definition, entanglement can be thought of as
a quantitative property of quantum systems. Therefore, it is useful to have mathematical
measures which serve to enumerate the entanglement. Formally, an entanglement mea-
sure is a non-negative functional on quantum states satisfying some additional properties.
Although the full set of desired properties are not universally agreed upon, entanglement
measures must minimally meet two requirements [43].

Definition 2.4.6 (Entanglement measure). A functional £ : B(Hap) — RTU{0} is called
an entanglement measure when it satisfies the following two requirements:

1. Monotonicity: If a system undergoes a protocol involving only local operations and
classical communication between users Alice and Bob (a so-called LOCC protocol),
then the quantity of entanglement cannot increase. In other words, if the protocol is
represented by the map Arocc, then E(pag) > E(ALocc|pas])-

2. Zero on separable states: If pap is separable, then E(pag) = 0.

In the above definition, an ‘operation’ consists of any of the aforementioned operational
primitives, i.e., state preparation, evolution, or measurement. The important distinction
is that they be done locally, i.e., separately on the spaces H4 and Hp. Classical commu-
nication allows users to share information and undergo further operations based on this
information. Many entanglement measures actually obey a stronger form of monotonicity.

Definition 2.4.7 (Strong monotonicity). Let the map Arocc represent a LOCC protocol
that, when acting on a state pap, outputs the state p, with probability p, (Y., P = 1), i.e.,
Avocclpas] = D, Papa. An entanglement measure has the strong monotonicity property

of
E(pan) = Y Pa&(pa)- (2.7)
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An entanglement measure that is employed in many parts of this thesis is the negativity
[111, (8, 102, 82).

Definition 2.4.8. The negativity of a bipartite state pap is given by

Ta -T
N(PAB) — HPABHl 5 r(pAB>’ (28)

where || - ||1 denotes the trace norm, i.e., the sum of the singular values.

By construction, the negativity of a state vanishes if and only if that state is in the PPT
class, so it can’t detect all entangled states. The negativity has the strong monotonicity
property, and it is well-defined for non-normalized states (notice that we have included
the term Tr(pap) in Eq. (2.8), which is usually set to unity). The ability to evaluate
non-normalized states will be useful in later chapters. Although the negativity may not
have as nice an operational interpretation as some other entanglement measures, its main
strength is that it is computable. At this time, we also note the following variational
characterization of the negativity (cf. [102]):

m)}n TrX
N(pap) = { subject to X >0 : (2.9)
piy+X >0

We remark that this variational formulation has the form of a semidefinite program [99].

2.5 Quantum optical implementations

In this final background section, we connect the above concepts to an actual physical
implementation, namely quantum optics. Quantum states of light make the best carriers
for quantum communication due to the fast transmission speed and weak interactions.
The material in this section can be found in many standard quantum optics books; we will
largely follow [6] and [59], especially for continuous-variable quantum optics.

Mathematically, the electromagnetic field can be decomposed into a collection of inde-
pendent normal modes, which represent classical solutions to Maxwell’s equations. This
field is quantized by associating a quantum harmonic oscillator system to each mode. The
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state space H of a harmonic oscillator has a countable basis {|n)}%, defined implicitlyf|
via a ladder operator a:

iln) =+/nln—1), (2.10)
atln) =vn+1|n+1). (2.11)

The states {|n)} are called Fock states or photon-number states, since they are eigenstates
of the number operator
n = a'a. (2.12)

We say that a mode contains n photons when it is in the state |n). The state |0) is called
the vacuum state. The ladder operator and its adjoint do not commute; instead, they
follow the commutation relation

[a,af] = 1. (2.13)

All further operators of interest can be built from suitable combinations of G and af. For
several modes, represented with the index «, the associated ladder operators a, satisfy

~

[&a’7 dl] = 604’&1- (214)

There are different ways to encode quantum information in the degrees of freedom of light.
In this thesis, we will encounter two distinct encodings, so it is important to differentiate
between them.

2.5.1 Single-photon encoding

One popular discrete encoding of quantum information is to split a single photon among
several different modes. The modes could represent paths in an interferometer, temporal
time bins, polarizations of the light field, or some combination of these. For two modes,
labelled H and V, the relevant state space is H = span(|H) ,|V)), where the basis vectors
are given by

[H) = [1) @10}y, (2.15)
V) =10)5 ©[1)y - (2.16)

In quantum information applications, these basis vectors are often denoted as |0) and |1)
(not to be confused with Fock states). Two-dimensional state spaces are referred to as

3In this thesis, we work in units such that the frequency w and Planck’s constant A are equal to one.

15



qubit systems. The state space for a single photon shared between more than two modes
is analogous, but we will not need to consider such cases.

A convenient parameterization scheme for qubit systems is the Bloch sphere. Any pure
qubit state |¢)) can be written in the form

[(0, ¢)) = cos(3)[0) + e sin(5) 1), (2.17)

for some choice of angles 0 € [0, 7], ¢ € [0,27]. On the other hand, any mixed qubit state
p can be written R
1+ 77

2 Y

where | 7| < 1 and & = (X,Y, Z) are the two-dimensional Pauli matrices (in the compu-
tational basis {|0),|1)}):

X:B é]yz[? _OZ},Z:B _01] (2.19)

This decomposition can also be expressed in the form

p (2.18)

O |

for some pure state |1(6, o)) with » = | 7| and 6 and ¢ the polar and azimuthal angles of
the ‘Bloch vector’ 77, respectively. This paramaterization allows us to represent any qubit
state as a suitable vector within the unit ball (the ‘Bloch sphere’), as depicted in Fig. 2.1]

By combining two single-photon systems in the right way, we can produce two-photon
entangled states. Let A denote a single-photon system, with basis vectors {|0) 4, [1) 4},
and similarly for system B. A two-qubit Bell state is given by

1
|27 4 = E(|H>A®|H>B+’V>A®|V>B)' (2.21)

This state is also referred to as a maximally-entangled state. Entangled states are impor-

tant resources in quantum communication protocols, such as teleportation or remote state
preparation (see Ch. [3)).

Evolution of single-photon states can be accomplished using simple linear-optical ele-
ments, such as beam splitters and phase shifters. As well, there might be external envi-
ronmental interactions that change the state of the photons in undesirable ways. Measure-
ments are typically performed by splitting the system (using linear optical elements) into a
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0)

1)

Figure 2.1: Representation of a single-qubit state as a vector in the Bloch sphere

number of different modes, each with its own photodetector. We can infer the state of the
system by which detector registers a detection eventlz_f]. Two detectors, for modes H and V,
together make up a measurement device that performs the PVM {|H)(H|, |V )V}.

Importantly, since this encoding contains only one photon, it is highly susceptible to
photon loss. When loss occurs, prepared states are transferred out of the encoding space
and no photons are detected during measurement. Thus, the number of detection events
will be less than the number of prepared states. In this situation, it is common to assume
fair sampling [22], 79, 21], i.e., that the subset of experimental runs where a photon was
successfully detected are representative of the whole. Some care must be taken with the
fair sampling hypothesis when working in an adversarial situation, i.e., when an eaves-
dropper could have contributed to the photon loss in some biased manner. For quantum
benchmarking purposes, where the experiments are under our control and no adversary is
present, we will assume fair sampling in single-photon protocols.

4T:he POVM elements for a photodetector measurement can ideally be modelled as Proclick = [vac){vac|
and Peick = 1 — Phoclick, Where |vac) is the state with no photons in the detector mode.
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2.5.2 Continuous-variable encoding

Another approach is to encode quantum information in phase space, a continuous-variable
characterization of quantum light. We first define the field quadratures as

PR (a' +a), (2.22)

V2
1
A /\'i' ~
=—(a'—a). 2.23
pi= 5 (@ - a) (2.23)

The quadrature operators have continuous spectra,

§ = /OO o |2\ dz, (2.24)

o0

p= /_OO p|p){p| dp, (2.25)

o0

and are analogous to position and momentum, having the commutation relation [z, p| = il.
Exploiting this analogy, we can represent the state of light with a distribution in some
continuous phase space. For a single mode, this phase space is parameterized by two
scalars (z,p) € R?, which correspond to the quadratures # and p. Multimode states can
be represented by combining the phase spaces of each mode, though we will largely be
concerned with single-mode CV systems.

The most common phase-space distribution is the Wigner function [104]. For a single
mode, a given operator p has the Wigner function

Wi(z,p) = L /_OO exp(ipq) (z — | p|z + 1) dg. (2.26)

27
If p is a valid state, the Wigner function is real and normalized to unity. Since the
Wigner function may become negative in some regions of phase space, it is referred to
as a quasiprobability distribution. As well as describing states, the Wigner function can be
used to evaluate overlaps and expectation values. Perhaps most importantly, the marginals
of the Wigner distribution are connected to the field quadratures,

/ " W e p)dp = (2l pla). / W p)de = (ol plp) (2.27)

A number of other phase-space representations can be defined, notably the @) function [46]
and the P function [28] 93], though we will not need these.
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An important subset of continuous-variable states is the Gaussian states, consisting of
states whose Wigner functions are Gaussian distributions. The Gaussian states for a single
mode are: coherent states, squeezed states, displaced squeezed states, thermal states, and
displaced-squeezed thermal states. Such states are completely characterized by the first
and second moments of the quadrature operators. Specifically, for a single mode, we define
the vector of operators [14]

~

§ = (Z,p) (2.28)
and represent the associated phase-space scalars by
£ = (z,p). (2.29)

The first moments of a state p can be gathered into a displacement vector
D= <§> , (2.30)
p

and the second moments into the covariance matriz (or correlation matriz)

7ij = Re Tr [P (fz - <€z>> <§J - <§j>>] : (2.31)

The Wigner function of a single-mode Gaussian state is given by

1
= ———¢x
2my/det y P

Gaussians states are typically easier to work with theoretically than more general states
of light because of this compact description.

Wele) (-3t D)0 - )7, (2.32)

Two types of CV states will be important for later chapters, so we define them here.
First, we have the coherent states:

o) = exp (-%) i \% In) . (2.33)

Coherent states, defined for all o € C, are eigenstates of the ladder operator, with eigen-
values a. The coherent states form an overcomplete basis for the state space of a single
mode, so any quantity of interest can be expressed using them. The other important states
are the squeezed vacuum states. For any ¢ € C, with r = |(| and ¥ = arg(, these states
are given by:

|¢) = /sech(r) Z . 512'”)' [—2e™tanh(r)]" [2n) . (2.34)
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Coherent states and squeezed states are not only Gaussian states, but they also share
the virtue of being minimum uncertainty states. To understand this property, we introduce
the general quadrature operators, defined for any angle ¢ € [0, 27]:

1 . .
Ty = 7 (afe’® +ae™™). (2.35)

The operators for angles ¢ and ¢+ 7 are said to be conjugate quadratures, since they satisfy
the commutation relation

[%,5%%] = 4. (2.36)

Alternatively, we have Z, = & cos ¢ + psin ¢, so the regular quadrature operators & and p
correspond to angles ¢ = 0 and ¢ = 7, respectively. Because of the commutation relation
(2.36), any physical state must satisfy the Heisenberg uncertainty relation

1

Var (Z4) Var (A ) > 7 (2.37)

T, .«
o+5

N

A A\ 2 A
where Var(O) := <02> — <O> for any operator O. States that achieve the lower bound

%1 for some angle ¢ are called minimum uncertainty states. States that are not minimum
uncertainty states are said to have excess noise. In particular, all mixed states will have
some excess noise.

For coherent states, the parameter « is related to the quadratures,

1 . )
(a] 2y ]a) = —= (ae™™ + a’e). (2.38)

V2

Coherent states also have fixed variance in every direction,
. . 1
Var|q) (Z) = Var|a) <$¢+g) =5 (2.39)
so they achieve the minimum value of the uncertainty relation (2.36)) for all ¢. Squeezed
vacuum states, on the other hand, have first moments of zero,

(¢l 24 [C) = 0. (2.40)

Because of this, the variances of a squeezed state are equal to the corresponding second
moments

Varyg) (zy) = (¢l 5 |C)
:% [ sin® (¢ — %) + e cos® (¢ —

SIS

)] (2.41)
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Figure 2.2: a) Measurement apparatus for balanced homodyne detection. b) When the

local oscillator is phase-shifted by ¢, the homodyne apparatus provides the expectation
value of the quadrature 4

ol

Squeezed states achieve the minimum value }L in the uncertainty relation 1' when either
¢ = 0 (i.e., there is no squeezing), or when the angles satisfy ¢ — ¥ = k%, k € Z. In the

2
second case, the variances are either given by
Vare (24) = 27, Vare (4,7 ) = 1e* (2.42)
¢ \o 2 ’ ¢ P+ 2 :

or vice versa.

Homodyne measurement

A convenient setup for measuring CV states is balanced homodyne detection [109)], depicted
in Fig. [2.2] This scheme involves interfering a signal mode with a reference field (called
the local oscillator) in a strong coherent state at a 50/50 beam splitter. The signal and
local oscillator should have a fixed phase relationship, which is usually accomplished by
generating both fields from the same master laser. The local oscillator phase, relative to
some global reference point, is set by a phase shifter to some value ¢. After interference,
the two output modes are fed into separate linear-response photodiodes, which output elec-
tronic currents proportional to the incident intensity. These currents are then subtracted
electronically to yield the quantity of interest.

Mathematically, we represent the signal and local oscillator modes by their ladder
operators ag and arp. The output modes a; and as are related to the signal and local
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oscillator modes by the beamsplitter relation

R r
ai/j2 = E ((15 + aLo) . (243)

The photocurrents I; and I in each detector arm are proportional to the incident photon
numbers n; and no, so the difference photocurrent Io; = Iy — I is proportional to the
observable

figy = fig — Ty = arodly + ab oas. (2.44)

The local oscillator is fixed in a strong coherent state |azp), where aro = |arole® and
larol is large. This state is decoupled from the signal (i.e., the bipartite state input to the
homodyne apparatus is of the form ps ® pro), so the above observable reduces to

ﬁ21 = \/§|OJL0’ <&L~€i¢ + &Seii(ﬁ) = \/5’0@0‘52'(1,, (2.45)

where 2, denotes a general quadrature operator for the signal mode. Hence, the homodyne
detector performs a measurement of the signal quadrature along angle ¢ in phase space.

As stated in Eq. (2.27), the quadrature operators & and p are related to the marginals
of the Wigner function along the z and p axes. The same correspondence holds between
the general quadrature operators 4 and T4z and the marginal distributions at angles ¢
and ¢ + 5. When we have many identical copies of a state p at our disposal, we may use
homodyne measurements to tomographically reconstruct the state. This is accomplished
by first fixing the phase angle ¢ and measuring enough copies of the state to get an accurate
marginal distribution for that angle. By repeating this process over many angles ¢ € [0, 7,
we can reconstruct the full Wigner function to arbitrary precision, giving us a complete
description of the state [59] [69].
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Chapter 3

Remote state preparation
benchmarks
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This chapter is devoted to quantum benchmarks for a particular discrete-encoded quan-
tum communication protocol, namely remote state preparation (RSP). The material in this
chapter, as well as the accompanying App. , is based largely on [53], for which I am the
primary author and theoretical researcher. The published article is copyright 2010 by the
American Physical Society (APS). Portions of the article have been adapted for this thesis,
under permission from APS.

The field of quantum information processing has revealed many communication and
computational protocols that can theoretically outperform their classical counterparts
[11, [75]. Among the most famous quantum information protocols is quantum telepor-
tation [§], wherein a user Alice uses pre-shared entanglement and limited forward classical
communication to produce an arbitrary unknown quantum state at the location of an-
other user, Bob. Remote state preparation [63] [78] is a variant of teleportation where
Alice has full knowledge of the state she intends to prepare at Bob’s location. RSP pro-
tocols have several practical applications including forming part of deterministic arbitrary
single-photon sources [51] or efficient, high-fidelity quantum repeaters [86].

However, due to the practical limitations of imperfect devices, no RSP experiment
can yield remotely-prepared output states that exactly match the intended states. In-
deed, we should be satisfied when the output states have a high fidelity with the intended
states. This raises the question: how high must this fidelity be, on average, to demon-
strate a quantum advantage? If we restrict Alice and Bob to a comparable, fixed amount
of classical communication, e.g., two classical bits for RSP of qubit states—but no shared
entanglement—what is the optimal average RSP fidelity they could achieve? It is only
when an experiment surpasses such a classical threshold that we can be sure of having
demonstrated the advantage of quantum communication.

In several early publications on teleportation, benchmarks are given to justify which
results are genuinely in the non-classical regime [27, 10, 12, 13]. For example, for the
teleportation of qubit states, average fidelities higher than % are not possible with only
classical communication [70]. However, although a number of RSP experiments have been
performed to varying degrees [5], 86, 51, 25, 81 108, 62, 107], there are almost no ac-
companying benchmarking tests or results. Notably, the authors of Ref. [95] introduced
thresholds for RSP in the context of cluster state quantum computing. Their definition
and the calculated benchmarks for the two specific situations they discuss coincide with
some later results in this chapter. Although they make similar observations as we do in
this chapter, they stop short of building a general benchmarking framework.

The material in this chapter is meant to address the lack of RSP benchmarks. By
outlining a general framework for RSP protocols and examining the limits on RSP with
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and without shared entanglement, we derive several benchmarks for separating genuinely
quantum results from those that can be achieved with only classical communication. These
benchmarks cover a variety of cases, including pure states, mixed states, finite ensembles,
and continuous ensembles. At the end, we use these derived results to benchmark a real-
world RSP experiment.

3.1 Benchmarking framework

The goal of remote state preparation is to prepare a quantum state at a distant location,
without sending the actual state. Alice, the sending party, knows exactly the target state
" that she wants Bob, the receiving party, to have. The required communication resources
(classical and/or quantum) for performing this task are limited, yet the protocol should
yield output states p°** at Bob’s location that closely match the target states p** that Alice
intended to prepare. There is no universally preferred measure for evaluating protocol
performance, but in benchmarking situations where we want target and output states to
match, the quantum fidelity (Eq. (2.6))) is a suitable choice. Ideally, the fidelity should be
F(p¥ p°"*) = 1 for any target state.

In order to make meaningful comparisons, we need a common framework to test the
performance of RSP protocols and experiments (see Fig. B.1)). We imagine that Alice and
Bob are challenged with the following task.

RSP framework. Both parties are given full prior knowledge of some fized ensemble of
target states {p®*, po}, and may coordinate beforehand on their strategy. Alice samples
from the ensemble and, with probability p,,, she picks the index O‘OEI' She communicates a
message to Bob, sending a limited number ¢ of classical bits (cbits). Without any further
communication, Bob prepares an output state pd**. Their goal is for the output states
to match the target states with the highest possible quantum fidelity, on average, i.e., to

mazximize the quantity
F=> paF(pi, po). (3.1)

We will be considering the situation where the target ensemble consists of a finite
number of states as well as that where the target ensemble forms a continuum. In the latter
situation, the above sum and probabilities are generalized to an integral and probability
densities, respectively.

1Unlike teleportation, Alice accesses the state index, not the state, though she has complete information
about the state and may prepare herself a copy if desired.
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Figure 3.1: Schematic of remote state preparation protocols. Alice samples a state pf* from
a given distribution of target states and Bob aims to prepare a closely matching state. In
classical RSP protocols, Alice may send only a limited number of classical bits to Bob. In
quantum RSP protocols, the parties also share some pre-distributed entanglement. Their
goal is to maximize Y poF(p", po™*), the RSP fidelity averaged over the entire target

distribution.

We are concerned in this work with two types of remote state preparation, which we
call ‘quantum RSP’ and ‘classical RSP’. These labels refer to the communication resources
allowed, not the state prepared, which is always quantum mechanical. In the quantum
case, Alice and Bob share a pre-distributed entangled state to help with their task. In the
classical case, no initial quantum correlations between Alice and Bob are allowed. In both
cases, once a target state has been selected, only ¢ cbits may be sent, and this classical
communication is only permitted one way, from Alice to Bob. We will now investigate
both of these cases separately.

3.1.1 Quantum RSP

For a quantum RSP protocol, the two users share some pre-distributed entangled state,
which may be used to reduce the classical communication cost of the protocol. In this
subsection, we will review a scheme for the remote preparation of arbitrary single qubit
states with the aid of a Bell state (also called an ebit). The experimental implementation of
this protocol, achieved via linear optics, will be tested against the theoretical benchmarks
derived throughout the rest of this chapter.

Because of the similarity between RSP and teleportation, explicit RSP protocols can
be given based on analogous teleportation protocols [63]. Because Alice has knowledge
of the states to be prepared, the task of RSP should be easier than teleportation, both
in terms of resource requirements and performance. This makes it harder to demonstrate
a quantum advantage. It has been proven that two cbits and one ebit are necessary
and sufficient communication resources for the remote preparation of an arbitrary pure
qubit state [63], 60, B8]. This is the same communication cost as teleportation, but the
advantage of RSP is that it does not require joint Bell-state measurements, which can be
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experimentally demanding to perform, especially in linear-optical implementations [17], 56].
If we prepare states from a more restricted ensemble, then the required communication cost
can be smaller. The following protocol [53], based partially on [83], uses at most two cbits
and one ebit for remote preparation of arbitrary pure or mixed qubit statesﬂ

Consider first the Bell state |®*) from Eq. (2.21). This Bell state can be rewritten in
terms of any arbitrary pure state |[¢(6, ¢)) as

1 3
[25) =35> om@on ) @ )s, (3.2)
m=0

where [¢)*(6, )) is the complex conjugate of |1/(0, ¢)) in the computational basis {|0) , |1)},
and o ® € {1,X,XZ, 7} are Pauli operators acting on Alice’s (Bob’s) system. When
Alice wishes to remotely prepare the pure state |1/(6, ¢)), she first performs a measurement
on her system using the following POVM:

{E0,0)} = {50m W) ol Frmo- (3-3)

If she receives outcome m € {0,1,2,3}, Bob’s qubit will be left in the state o, [¢){¢| o] .
By communicating the outcome m using 2 cbits, Bob can learn the state of his qubit. Since
the Pauli operators are unitary, Bob can recover |1)){1| by applying the correction o .

Finally, observe that if Alice replaces the proper message by some fixed one (e.g., ‘00’),
and Bob acts as above, then Bob’s qubit will be in the mixed state %IAL. By mixing these two
strategies (with probability r, Alice sends the correct measurement result; otherwise, she
sends ‘00’), they can prepare any mixed qubit state. Notice that this reduces the expected
communication cost of the protocol (i.e., the Shannon entropy) to less than 2 cbits.

Before moving to an investigation of classical RSP protocols, we remind the reader of
the fact that linear-optical experiments typically require postselection of data on successful
detection of photons. The linear-optical experiment which is benchmarked later in this
chapter is no different; it is possible that Alice performs her part of the protocol but Bob
never receives his photon from the entangled state |®*). For benchmarking purposes, we
will assume a fair-sampling hypothesis, namely that the postselected set of experimental
outcomes is statistically representative of the full experiment. The reader is referred to
[53] for more detailed discusssion.

2 Author’s declaration: I did not aid in the design of this protocol, nor its experimental implementation.
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3.1.2 Classical RSP

We now examine the classical case, where Alice and Bob share no entanglement. As our
goal is to find the optimal achievable fidelity F', we assume in this scenario that Alice
and Bob are unencumbered by the imperfections of real-world devices. This assumption is
in the spirit of security proofs for quantum key distribution, where any adversary Eve is
assumed to be limited only by the laws of physics. It is only by surpassing the limits of this
ideal scenario that an experiment can provably demonstrate genuine quantum advantages.
Therefore, the one-way classical channel between Alice and Bob is assumed to be perfect,
as is Bob’s ability to prepare any desired output state.

To enable an experimental comparison, the specific benchmark values calculated in this
chapter are for qubit states. However, many of the results in this section hold equally well
for states in any finite dimensional Hilbert space. We begin with no assumptions about
the dimension except that it is finite, and we will specialize to qubits (dimension 2) when
appropriate. Furthermore, we are primarily interested in the case where the target states

are pure, p* = [ (17| so that the quantum fidelity is equal to the matrix element

Fpu", o) = (0| o i) - (3.4)

Accordingly, we assume that the target ensemble consists of pure states {|")  p,}. In
Sec. [3.2) we give benchmarks based on specific choices for this target ensemble.

We now examine the question: what is the optimal RSP strategy when the parties
share no entangled state, and Alice may only send ¢ cbits to Bob? For every target state
|yptar) - Alice sends a string of ¢ classical bits. We can label all messages of this type by
a natural number m(a) = k € {0,1,...,2° — 1}. In general, the message assignment may
be either deterministic (e.g., m(a) = 3) or probabilistic, i.e., m(«) = k with probability
g (o), where for each a, ), gx(a) = 1. Deterministic message schemes effectively split the
target states into fixed partitions. The probabilistic framework contains all deterministic
strategies as special cases.

Upon receiving the message k, Bob prepares some output state p?™*. A probabilistic

messaging strategy would necessarily lead Bob to prepare a mized output state p2" =

> p @) pP™ whenever state [1%") is chosen. Similarly, for a given message k, Bob may
change the output state probabilistically. This strategy is naturally incorporated into our

framework, where we allow the output states p"* to be mixed.

To determine which choice of output states optimize the average fidelity, we rewrite it
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in terms of the 2¢ unique messages:

Zpa <,l/]tar out },¢tar

2¢—1
= > Pati(@)Tr([0 M| o)
= Z prTr(prpp™) (3.5)

where pr, = Y Pagr(c) is the probability of Alice sending message k and

1 tar tar
= %:paqk(a) DSOS

(3.6)

is a weighted average of the states where message k might be sent. When the fidelity is
written in this form, two notable features become apparent:

1. For each k, the quantity Tr(prps™) is upper bounded by the largest eigenvalue A\*** of
the average state py; this can be achieved if Bob outputs the corresponding eigenstate
Pt = AR ARex|. Thus, the optimal output states give

2¢—1

_max Z pkAmaX (37)

2. Since the optimal fidelity depends on the purity of the average states pg (by point
1), the optimal messaging strategy must be deterministic, not probabilistic. In other
words, a fixed message is sent for each target state. This corresponds to only one
qr(a) being non-zero for each a.

Taking these two points into account greatly simplifies the structure of the fidelity
optimization. Because the optimal message assignment is deterministic, the target en-
semble is effectively split into 2¢ disjoint partitions, depending only on the message k €
{0,1,...,2¢7'}. For each partitioning of the target ensemble, we can also calculate the
optimal output state and the resulting fidelity value using Eq. . All that remains
is to determine which partitioning maximizes the value of Eq. (3.7). To clarify notation,
we will henceforth use k to label both a message and the partition of the target ensemble
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Figure 3.2: Example of a possible classical remote state preparation strategy. The target
ensemble consists of the 6 pure states {|0),]1), \% (10y £ 1)), \% (|0) £4|1)) (represented
here as the vertices of an octahedron inscribed within the Bloch sphere) with equal prob-
abilities. A possible partitioning strategy is given for the case where two chits of classical
communication are allowed, and the optimal output state for partition 11 is detailed.

consisting of states for which that message is sent. The meaning will be clear from the
context.

In principle, for a finite number n of target states, the remaining optimization problem
only requires checking the value of Eq. for each of the finite number of possible
partitionings, which can be done by computer. However, the number of possible partition-
ings scales exponentially in n, rendering this calculation unreasonable for more than about
n = 10 states. In Sec. we outline an algorithm that efficiently provides relatively tight

bounds to Eq. (3.7).

Qubits

If the states in question are qubits, we can put Eq. (3.7) into a simple geometric form.
When expressed in its eigenbasis, a qubit state takes the form
1 [1 +r 0 }

P=3 0 1—r

> (3.8)

where r is the radius of the state’s Bloch vector. The largest eigenvector of a qubit is
directly related to the radius: A™* = 1—'2” For any deterministic partitioning of the target
ensemble, we denote the average Bloch vectors by 7, = ka > ack PaTo and their magnitudes

by ry. We find that the maximal average fidelity for qubits is given by
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2¢—1

—=max 1
F™ =2 (1 + ;pkrk) . (3.9)

Hence, for a given deterministic partitioning, the best average fidelity is determined by
two sets of quantities: the probabilities p; of sending each message and the length of the
average Bloch vectors 7, within each of the 2¢ partitions. In the next section, we will
outline how to determine which choice of messages, i.e., which partitioning of the target
ensemble, maximizes Eq. (3.9).

3.2 Threshold calculations

3.2.1 Finite ensembles

Assume now that we have fixed a finite ensemble of target states {pf, po}7"_;. It is clear
that whenever n < 2¢ the optimal classical protocol can achieve perfect fidelity since there
is sufficient capacity in the message to uniquely label the state. The interesting cases have
n > 2¢ Given the results of the previous section, the optimum average fidelity can be
determined by checking the value of Eq. for all partitionings of the n target states
into 2¢ disjoint subsets, but this can be inefficient even for modest values of n and c.

Upper bounding the maximal classical fidelity

Instead of directly checking every possible partition to determine the maximal classical

. —=max . . —=bound . .
fidelity F' ™ it can be useful to instead find some upper bound F' " on this quantity
which is easier to compute. If an experiment surpasses the upper bound, it has demon-
strated its quantum nature, since we would have

—observed —bound —max

F > FO S T (3.10)

We will now outline an efficient algorithm for determining such upper bounds. For this
algorithm, we make the additional assumption that each target state has equal probability
to be chosen from the target ensemble. We note that each partition contains some number
s of states and contributes one term to the sum in Eq. . Two different partitions with
the same number of states may contribute differently to the average fidelity, depending
on the arrangement of the states. However, for each number s € {0,1,...,2¢ — 1}, there
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is a set of s states that yields the maximal possible contribution F?ax. By using these
maximal values in Eq. (3.7) instead of the actual values, we obtain an upper bound on the
threshold.

The first step in the algorithm involves checking all partitions of size s to find the
maximal contribution F, . Next, we list all the ways in which n elements can be divided
into 2¢ subsets. The order of the subsets does not matter, so for simplicity we can create
our list in order of decreasing partition size. This list forms a table with 2¢ columns. For
each row i, we have a list of numbers {s;; }?;1 that sum to n. To determine the upper
bound, we calculate the quantity

(3.11)

The highest F; provides us with an upper bound on the optimal average fidelity, i.e.,

o= max 7. (3.12)

%

It may even be the case that the threshold is equal to the upper bound found via the
above algorithm, especially if the target ensemble exhibits a high degree of symmetry. To
verify this, one would have to find a specific partitioning that leads to the same value as the
upper bound. On the other hand, if we can show through other arguments that the highest
F; is unachievable, then a new, smaller, upper bound can be obtained by re-running the
above algorithm without that unachievable case. We will make use of both of these points
below.

Benchmarks

Before proceeding, we pause to discuss the tradeoff between classical and quantum com-
munication resources. The remote state preparation scheme outlined in Sec. uses
one entangled qubit (ebit) and two cbits sent from Alice to Bob to remotely prepare pure
qubit states and less than two cbits for mixed states. A classical analog might limit Al-
ice to sending two cbits to Bob each run, with Bob not allowed to send any messages to
Alice. However, it may be argued that to distribute the entangled qubit between Alice
and Bob requires at least one use of a quantum channel. A more fair comparison scenario
might then allow Alice one use of this quantum channel per run, but only to send classical
information. In this scenario, Alice sends three cbits in total.
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Arguably, allowing an extra classical bit is unnecessary as one could consider the en-
tanglement to be distributed by Bob or by a third party. As well, the distribution of
entanglement can be restricted to take place before Alice chooses the index. Since Alice
and Bob are already allowed to set their strategy in advance, an extra preliminary classi-
cal channel use, whether from Alice to Bob or Bob to Alice, would not change anything.
However, the more cbits Alice is allowed to transmit, the higher the average fidelity the
parties can achieve, rendering the benchmark that much harder to surpass in experiment.
For completeness and comparison purposes we henceforth consider both the two and three
chit cases.

Thus far no specific target ensemble has been chosen. We now examine several specific
ensembles for comparison with experiment. We restrict ourselves to ensembles of pure qubit
states with a uniform distribution: p, = % If our goal is to find benchmarks that are low
enough to be experimentally surpassed, we should make the classical task as difficult as
possible. Given the results above, this is accomplished by choosing ensembles of states
that are maximally ‘spread apart’, so that the average Bloch vector within any partition
is as small as possible.

An effective choice is to use the vertices of the Platonic solids inscribed in the Bloch
sphere as the target states. The Platonic solids are the tetrahedron, octahedron, cube,
icosahedron, and dodecahedron, with 4, 6, 8, 12, and 20 vertices, respectively. Note that
the orientation of these vertices with respect to a Cartesian reference frame does not matter
in the classical case, but a specific choice must be made in an experiment. Also note that
the tetrahedron states do not provide a surpassable benchmark for ¢ > 2 because they can
be prepared with perfect fidelity simply by assigning a unique message to each of the four
states. Similarly, for three cbits, the benchmarks yielded by the tetrahedron, octahedron
and cube ensembles are all trivially unity. For the other cases, however, we expect fidelity
thresholds less than unity.

Indeed, using the algorithm above (Egs. (3.1143.12))), we can calculate upper bounds on
the remaining thresholds, all of which are less than unity. In fact, for every example studied

except for one, the upper bounds were actually equal to the optimal classical thresholds,
—bound —max

ie., F = F . This was verified by finding explicit partitions such that Eq.
saturated the upper bounds. The one exception to this statement is the dodecahedron
ensemble when ¢ = 2. In this case, the upper bound returned by the algorithm would only
be possible if we could partition the dodecahedron vertices into four disjoint pentagons.
This is geometrically impossible, so we can omit this upper bound. The next highest bound,
consisting of partitions of size 6, 5, 5, and 4, is indeed possible. The optimal thresholds
and their corresponding partitions, along with experimental results, are given in Fig. [3.3]
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Figure 3.3: Five examples of pure state target ensembles, given by the vertices of the
Platonic solids inscribed within the Bloch sphere, with uniform probability distributions.
For both two and three cbits message capacity, optimal partitioning strategies are shown,
along with the corresponding optimal average fidelity benchmarks. States labeled with
the same symbol (e.g., red circles) are in the same partition. The tetrahedron (two or
three cbits), octahedron (three cbits), and cube (three cbits) examples can in principle be
remotely prepared with perfect fidelity using only classical communication, whereas the
remaining ensembles cannot. Experimentally achieved mean fidelities for these ensembles
are given in the bottom row; the reported uncertainty is the standard error of the mean.
For all non-unity benchmarks, the experimental values surpass the benchmarks for two
(three) transmitted cbits by at least 96 (46) times the standard error of the mean. The 2
cbit octahedron bound also appears in Ref. [95].
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3.2.2 Continuous ensemble

Perhaps the most meaningful target ensemble is the uniform ensemble of all pure qubit
states, i.e., the Bloch sphere itself. For the related problem of teleportation, the optimal
classical strategy leads to an average fidelity of % [70]. Remote state preparation should
be easier than teleportation, since Alice has complete knowledge of the state. The fidelity
threshold should therefore be higher, though the threshold will also depend on how many
communicated cbits are allowed. Therefore, demonstrating genuine non-classical behaviour
experimentally is more difficult for RSP than for teleportation.

We will now derive upper and lower bounds on the classical threshold for both two
and three cbits. Many of the results for pure states from the previous section, suitably
generalized, still hold here. Partitions will be denoted by €2, with their union forming the
surface of the Bloch sphere, U,Q, = S2. The optimal average fidelity is still given by Eq.
, but we make the modifications

1 A
pk—>—/ o ==~
Q

AT 47’
11 1

T — —— 7pdQ) = — 7 dS2, (3.13)
Pk 2T Jq, k JQ,

where Aj, is the surface area of partition k.

To obtain lower bounds on the threshold, we simply choose a particular partitioning.
For two cbits, we imagine that a tetrahedron is inscribed in the Bloch sphere and connect
the four vertices by segments of great circles (note: this is not to be confused with use
of Platonic solids in Sec. . This leads to four disjoint regions on the surface of the
Bloch sphere which form our partitions. To calculate the optimal average fidelity for this
arrangement, we integrate Eq. (3.13) and make use of the following equation for great
circles in spherical coordinates: cot(f) = asin(¢ + ¢) ([72], Lemma 28.1). Here, 6 € [0, 7]
and ¢ € [0, 27] are the polar and azimuthal angles, respectively, and a and ¢ are constants
determined by substituting two points on the great circle. Using this relation, the bound
can be worked out to be 0.8724. For three cbits, we use the eight octants as our partitions
(equivalently, we connect the vertices of an inscribed octahedron). This straightforwardly
gives a lower bound on the threshold of 0.9330. We conjecture that these two lower bounds
are the optimal values, but we cannot provide evidence or proof of this.

To obtain upper bounds, we use an idea similar to the algorithm detailed in Sec. [3.2.1]
If we can determine the maximal weighted average fidelity F r:ax achievable for a given
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surface area A of the sphere, then we can calculate an upper bound using these values:

201 2¢—1
F"™ <N Fy st > Ay =4 (3.14)
k=0 k=0

Out of all possible configurations of a given partition with area Ay, a circular cap on the
Bloch sphere gives the longest average Bloch vector, and hence the largest average fidelity.
Also, the optimal distribution occurs when all partition areas are equal, A, = é—f V k (see
App. for proofs of these statements). Of course, it is only possible to cover the Bloch
sphere with 2¢ disjoint circular caps when ¢ = 0 or 1, so the upper bounds for ¢ > 2 are
not achievable.

Using the equations derived in App. [A.I], the upper bounds for ¢ = 2 and ¢ = 3 work
out to be 0.8750 and 0.9375, respectively. Even these simple ideas yield reasonably tight
bounds on the continuum thresholds for two and three cbits, which we summarize in the
following proposition.

Proposition 3.2.1 (Continuous ensemble fidelity bounds). For RSP of arbitrary pure
states on the Bloch sphere, the optimal average fidelity achievable by protocols allowed c
chits of communication from Alice to Bob is confined to the following numerical regions:

0.8724 < F™ < 0.8750 for ¢ = 2,
0.9330 < F ™ < 0.9375 for ¢ = 3.

These numbers are significantly higher than the optimal classical teleportation fidelity
of % This confirms that, when restricted to classical communication only, the remote
preparation of a known quantum state is indeed easier than the teleportation of an unknown
quantum state. It is thus more difficult to demonstrate a genuine quantum advantage in
an RSP experiment than in a teleportation experiment.

3.2.3 Mixed states

Here we consider the same type of qubit ensembles as in Sec. [3.2.1], but with the mod-
ification that every state in an ensemble is a mixed state with Bloch vector length r.
Unfortunately, if the target states are mixed states, finding classical thresholds is more
complicated than in the pure state case. For instance, the optimal strategy is not necessar-
ily one with deterministic messaging. Consider a target ensemble consisting of the three
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qubit states pgv = |0)0], phy = [1X1], pgy =

(€3]
messages according to the distribution

13 . .1 1 .
31 with equal probability 3. Alice sends

%(041) =1, Q1(041) =0
%(042) =0, Ch(az) =1
(a5) = 2, q1(s) = 5
(0% = — (8% = —
Qo3 9 q1{a3 9

and Bob prepares the two output states pJ™ = |0)(0], p™* = |[1)(1|. It is easy to see that
this probabilistic messaging strategy, which uses only one cbit, allows Alice and Bob to
remotely prepare any of these three states with arbitrarily high fidelity.

In fact, for any target ensemble that is contained in the convex hull of N < 2¢ suitably
chosen points, Alice and Bob can achieve an arbitrarily high fidelity by using a probabilistic
messaging strategy. For instance, if Alice has access to two cbits, she could specify four
pure states that form the vertices of a tetrahedron and prepare any state within this
tetrahedron with perfect fidelity. Similarly, with three cbits, she could perfectly prepare
any state located within a cube whose vertices were pure states. For example, consider a
uniform dodecahedron ensemble with each state having Bloch radius r. For two (three)
cbits, if this radius is not larger than the radius of a sphere inscribed in the tetrahedron
(cube), then the ensemble can be prepared with perfect fidelity. For two (three) cbits, the

1

insphere radius is 3

(\/g) Similar statements can be made for any ensemble with states
of constant radius.

The possibility that the optimal strategy could involve probabilistic messaging renders
the optimization trickier, as we can no longer use a partitioning argument to find the
optimal value. Another approach is to focus on finding the optimal strategy that involves
only deterministic messages. This is the special case where, for each target state pf, only
one of the gx(a) is non-zero. The optimal value in this case, found by optimizing over output
states, provides a lower bound to the true optimum. Unfortunately, this restriction does
not fairly match with the experimental protocol outlined in Sec. [3.1.1], where messages are
probabilistically determined by measurement outcomes. However, surpassing this bound
is at least a mecessary condition, if not a sufficient one, for any remote state preparation
experiment to demonstrate non-classical advantages. Assuming deterministic messaging,

we can give the following formula for the classical threshold.

Proposition 3.2.2. Let the target states all have the same Bloch vector radius r € (0,1].

If Alice’s messages are deterministic, the optimal choices of p3™ achieve a mazimal average
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fidelity of
—=max ]_ 21
Fdeterm.:§ ( +Zpk\/7’,%+l—7”2) s (315)
k=0
where py, and 1y, are the same quantities as defined for pure qubit states (Eq. )

A proof of this proposition is provided in App. [A.2] In general, this optimal value is
achieved using mixed output states. The fidelity in Eq. is modified from the pure
state case, Eq. , by the additional term 1 — r? under the square root. Since this term
is fixed beforehand and the same for every k, it does not change which partitioning of the
target ensemble is optimal. In other words, whichever partitioning maximizes Eq.
for an ensemble of pure states will also maximize Eq. , the classical fidelity threshold
for the corresponding ensemble with Bloch radius r. Experimental data is compared with
these theoretical bounds in Fig.

3.3 Experimental test

The above benchmarks were used to test a specific linear-optical implementation [53] of
the protocol outlined in Sec. [3.1.1] In this experiment, although postselection is used to
verify that Alice and Bob share an entangled state, no other ‘accidental’ photon detection
coindences (e.g., due to stray light, detector dark counts, or other flaws) were subtracted.
These additional events contribute to the imperfections of the experiment, which will be
tested with the benchmarks. The experimental entangled state was imperfect as well,
having a fidelity (obtained through tomographic reconstruction) of 0.9807 and 0.9813 with
the ideal state over the two days of the experiment. The density matrices of the remotely
prepared output qubits were tomographically reconstructed using an overcomplete POVM
based on the 6 vectors {|0), 1), \%(K)} + |1)), \/Li(]m + (1))} and a maximum-likelihood
technique [49].

Pure states |1(6, ¢)) were remotely prepared using angles corresponding to the vertices
of each of the five Platonic solids inscribed in the Bloch sphere. The specific orientations,
along with the corresponding fidelity benchmarks, are shown in Fig. [3.3] The benchmark
results are also compared graphically with the thresholds for classical RSP using two and
three cbits in Fig.[3.4] For all meaningful cases, where the classical RSP benchmark is less
than unity, the experimentally-determined fidelity value conclusively beats the classical
threshold. This confirms that the experiment produces data that is not possible without
the shared entanglement, even if we allow an additional classical bit.
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| r [ 0.00 [0.25 [ 0.50 [ 0.75 [ 1.00 |

Icosahedron || 0.99944 0.99967 0.99964 0.9987 0.9841
£ 0.00008 | +0.00007 | £ 0.00008 | £ 0.0002 =+ 0.0007

Dodecahedron || 0.9995 0.99961 0.99963 0.9987 0.9836
£ 0.00006 | +=0.00003 | £0.00004 | £0.00015 | £ 0.0007

Table 3.1: Experimentally achieved average RSP fidelities F versus Bloch vector radius
r (see also Fig[3.5). The data is for ensembles with settings {6, ¢} corresponding to the
vertices of an icosahedron and dodecahedron with varying outsphere radii . The reported
uncertainty is the standard error of the mean.

To test RSP using mixed states, the icosahedron and dodecahedron ensembles were
used, for radii » € {0.00, 0.25, 0.50, 0.75, 1.00}. The calculated average fidelity values
are summarized in Table [3.1, These values are compared in Fig. to the lower bounds
for classical RSP with deterministic messaging strategies derived in Sec. Again, the
experimental data beats the classical bounds whenever the bounds are less than unity.

Summary and outlook

In this chapter, we developed a number of benchmarking tools for discriminating genuinely
quantum RSP experiments from those whose performance is no better than a classical RSP
setup. We outlined how to find useful benchmarks for a number of situations, including
pure states, mixed states, discrete ensembles, and continuous ensembles. For qubit states,
we proposed a number of specific benchmarks based on Platonic solids, which were used
to certify a quantum RSP experiment. In all cases considered, the results show a clear
violation of the classical benchmark values whenever the classical protocols do not trivially
allow for a perfect RSP strategy.

The results found in this chapter are easily adaptable and can be readily used in any fu-
ture RSP experiment. As well, some of the general results may be useful for benchmarking
other discrete quantum systems. One interesting extension to this work would be to deal
carefully with post-selection. Because of device inefficiencies and losses, one photon from
an entangled pair can sometimes be detected by one party, but the other photon is lost.
These single counts are not used in the final analysis. Carefully counting the lost photons
and allowing Alice and Bob to use them as comparable classical resources, without loss,
would lead to more difficult benchmarks. Yet it would also provide even stronger support
for claims that an experiment evidences genuine quantum behaviour.
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Figure 3.4: Experimentally-achieved mean fidelities F' and optimal classical benchmarks
for target ensembles of pure states based on the five Platonic solids shown in Fig. [3.3]
The error bars shown are the standard error of the mean. Any experimental data point
above the green diamonds (blue squares) represents results that are not possible with only
two (three) cbits communication and no preshared entanglement. In all cases where the
classical benchmark is less than unity, the experimental results surpass the benchmarks
conclusively. Note: lines are included only to guide the eye and do not represent calculated

thresholds.
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Figure 3.5: Experimentally-achieved mean fidelities and optimal classical thresholds versus
Bloch vector radius. The target ensembles consist of uniform distributions of states of Bloch
radius r which form the vertices of either an icosahedron or dodecahedron. The lower
(upper) pair of lines are bounds on the classical average fidelity arising from specific two
(three) cbit classical strategies. Within each pair, the higher bound is for the icosahedron.
Experimental data must lie above and to the right of the bounds to be in the quantum
regime, but even points in this region may be possible to achieve without pre-shared
entanglement by some non-deterministic classical strategy. Experimental data points are
for the dodecahedron ensemble. The results for the icosahedron ensembles are similar
but were not plotted because at this scale they are not distinguishable from those of the
dodecahedron.

41



Chapter 4

Benchmarking continuous variable
quantum communication devices
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We saw in the previous chapter that single-photon systems are capable of producing
high fidelities in quantum communication protocols. However, one of the weaknesses of
the single-photon encoding is its susceptibility to photon loss. In practice, this necessitates
the postselection of data based on successful final detection of photons. In scenarios where
the communication channel may be accessible to an adversarial eavesdropper Eve, this
presents a problem: Eve could exploit this loophole to hide the evidence of her presence.

As an illustrative example, we imagine a protocol where one of two nonorthogonal
states {|vo) , [11)} is prepared by Alice, with equal probability, using the single-photon
encoding. Alice then sends the state to Bob via a quantum channel. Eve intercepts
the state and performs the measurement with POVM elements By = a(1 — [¢1)(¢]),
P = b(1 — |1o)(1o]), and P, =1 — By — P, for some appropriate coefficients a and b.
Such a POVM allows unambiguous state discrimination [4§], in which Eve either correctly
determines the state (without error), or she has an inconclusive outcome. When there is
a conclusive outcome, Eve creates a new copy of the appropriate state and forwards it to
Bob. When the outcome is inconclusive, Eve blocks any photons from reaching Bob. By
postselecting their data, Alice and Bob allow Eve to participate in the protocol undetected.
Although this hypothetical protocol is rather simplistic, it illustrates that postselection can
be dangerous.

On the other hand, protocols realized with a continuous-variable encoding can avoid
many of the issues associated with postselection. In CV protocols, an output state is mea-
sured for every input state, even if this output state is the vacuum. Photon loss affects
the states by attenuating their amplitude in phase space. The drawback of CV protocols
is that the fidelity between input and output states may be much lower than in single-
photon encodings. But this does not preclude CV systems from being useful for quantum
communication. Fidelity is a convenient measure of similarity, but it is not the only tool
for benchmarking quantum communication devices. Indeed, we will see in this and the
following chapters that entanglement measures can be of great use for quantum bench-
marking. In particular, entanglement measures will allow us to make useful quantitative
benchmarking statements and to compare different devices within the quantum domain.

In this chapter, we will mainly review previous results on quantum benchmarking in CV
systems. In particular, we will focus on the entanglement-based approach to benchmarking,
in which quantum devices can be certified by witnessing the presence of entanglement
or entanglement-like correlations. We will review a tool widely used for entanglement-
based benchmarking, the expectation value matriz. We will then present the first steps for
applying entanglement measures to the CV benchmarking problem, relying on projection
to finite-dimensional spaces. This chapter leads into Chs. [5] and [0, where we present two
choices for this projection, namely a two-qubit projection and a Fock-state projection.
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4.1 Quantum benchmarking framework

In this section, we review the underlying framework of quantum benchmarking, focusing
mainly on the entanglement-based approach, which has been developed by other authors
[85, [84], 37, 135, B6]. The new contributions in this chapter will begin in Sec. . The
framework we outline here is somewhat different from that used for RSP in the previous
chapter. We are still concerned about which data can be produced by a classical device,
but the definition of a classical device will be appropriately altered. In many quantum
communication protocols, especially quantum key distribution schemes, the goal is for two
or more users to share strong quantum correlations. Indeed, there is a minimal amount of
correlations that must be present for a protocol to be considered genuinely quantum.

Picture the situation, common to many quantum communication protocols, where Alice
prepares a quantum state, chosen from some pre-specified ensemble, and sends the state
to Bob via a channel. Imagine now that this particular channel functions as follows (see
Fig. . First, the input state is measured with some POVM and the post-measurement
state is discarded. Next, the outcome of this measurement is encoded and transmitted as
classical data to the output node of the channel. Finally, based on this classical measure-
ment data, a new quantum state is prepared and forwarded to Bob. Such channels are
called measure and prepare (MP) or intercept-resend channels. Although this channel takes
quantum states as input and gives quantum states as output, it is not a true quantum-
communication channel, since the communication step is accomplished with classical means
alone. In fact, by locally performing the same measurements and re-preparations them-
selves, Alice and Bob can achieve the same results using only a classical channel.

Measure and prepare channels will serve as the classical analog for all following quantum
benchmarks. Even if a device is not designed as a MP channel, its operation may be
imperfect enough that a MP channel could achieve the same performance. We will make
no distinctions between MP channels and channels whose operation can be simulated by
MP channels, since we have no way to discriminate between the two. It is often convenient
to picture benchmarking in an adversarial way. In this scenario, we allow the possibility
that a quantum device could have been replaced by a MP channel trying to pass our
quantum tests. Only by conclusively ruling out MP operation can we certify a quantum
device as genuine. A potential quantum device can therefore be certified by proving that
its operation cannot be simulated by a MP channel. Devices that pass this test are said
to be in the quantum domain.

With this classical yardstick set, we can proceed to the corresponding quantum bench-
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marking scheme. All devices to be tested are treated as black box quantum channelf],
inputing and outputing quantum states on some relevant state spaces H;, and Hqye. Math-
ematically, we represent the tested device by a map A : B(Hi,) — B(How). The general
benchmarking protocol is the following.

Benchmarking framework. In each run of the benchmarking protocol, test states are
prepared from some fized ensemble {p™ € B(Hw)} according to some given probability
distribution {p, > 0| >__, pa = 1}. These test states are input into the device under investi-
gation, and the device outputs the corresponding states {p2™ = A[p] € B(Houw)}. Finally,
measurements of some observables {O%} are performed on the output states.

This procedure is repeated many times to generate statistically faithful measurement
data for all of the test states. Using the measurement data and knowledge of the test
ensemble, we must determine whether or not the device is in the quantum domain. If we
use a sufficient number of test states and a sufficient set of measurements, we can determine
the exact functioning of a device, a procedure known as process tomography. Having process
tomography, we can calculate a device’s performance against any theoretical benchmark
[64,[65]. However, process tomography can be resource intensive, especially for CV systems.
Our goal will be to certify quantum devices with minimal requirements in terms of test
states and measurements. If a given benchmarking test fails, it may still be possible to
certify a device by employing more test states and more measurements.

4.1.1 Fidelity-based benchmarking

At this point, one could take a similar approach as that used in Ch. [3] Namely, the average
fidelity between input states and output states

F = ZpaF(pglapgut> (41>

can be used as a figure of merit. If the test states are not perfectly distinguishable, a MP
channel will not be able to achieve perfect fidelity. Benchmarks can thus be based on the
maximal fidelity Fﬁ; achievable by MP channels on the given set of test states, i.e., a
device is in the quantum domain when

—observed —max

F > For. (4.2)

INote the distinction between a quantum channel, i.e., a channel which has quantum states as input
and output, and a quantum device, a quantum channel whose performance cannot be simulated by any
MP channel.
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Figure 4.1: a) Device implementing a measure and prepare strategy: A measurement is
made on the input state, the result is stored or transmitted classically, and a new quantum
state is prepared based on this measurement result.

b) Example ensembles of CV test states: Entanglement-based benchmarks have been de-
signed for ensembles consisting of two or more coherent states on a ring, squeezed and
antisqueezed vacuum, as well as for generalizations to two mixed states.

Figure appears in [55], copyright 2011 the American Physical Society. Reprinted with
permission.

This approach has a few experimental and theoretical requirements. First, we must

theoretically determine (or bound) the optimal value Fy,p for the given test ensemble.
—=observed

Additionally, we must calculate (or bound) the experimentally observed fidelity F
which will typically require tomography on the output states. Finally, we should also
perform tomography on the prepared test states in order to ensure a match with the
theoretical ensemble. A number of fidelity-based benchmarks have been derived for various
choices of continuous-variable test states. In Refs. [12] B33] [74], benchmarks are proposed
and proved for a Gaussian distribution of all coherent states, centred at the origin of
phase space. Ref. [29] also considers an ensemble of coherent states, but it uses a more
restrictive model for classical channels than the one we are interested in here. Benchmarks
for undisplaced (pure or mixed) squeezed states were studied in [I], and for displaced
(pure or mixed) squeezed states in [77]. Results for test ensembles that are rotationally
symmetric in phase space can be found in [16]. Most CV quantum benchmarks are derived
for test ensembles with an infinite number of states, but this is not a necessary condition.
In [73], fidelity-based benchmarks are calculated for test ensembles consisting of only two
nonorthogonal pure states. We can also use this benchmarking scheme with figures of merit
other than the fidelity, such as distance measures or inner products between states [77, [30].

The main drawback for fidelity-based benchmarks is that it is often very difficult to
find the optimal classical value. Indeed, for the qubit RSP benchmarks detailed in Ch.
Bl a computer algorithm was employed to search for bounds on the optimal value. For
continuous-variable states, the state space is infinite dimensional, greatly increasing the
complexity of this search. Some simplifications may be made if the test states are pure
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and/or Gaussian; indeed, nearly all of the benchmarks mentioned above require such test
states. However, the difficulty of finding Fﬂa; makes it challenging to use this approach in
a general setting with arbitrary test states. Even when the fidelity threshold is known, (ex-
perimentally costly) tomographic reconstruction of the output states is typically required
in order to compute the observed fidelity. When tomographic reconstruction is not an
option, then unverified assumptions may have to be made, which goes against the aims of
benchmarking. Finally, ensembles with an infinite number of test states present a separate
concern. Since we can only test with a finite-sized ensemble, we must make extra efforts
to ensure that fidelity benchmarks based on infinite ensembles are valid in practice.

4.1.2 Entanglement-based benchmarking

An alternative approach to quantum benchmarking, which avoids many of the above prob-
lems, is to show that a device preserves entanglement (see Fig. . The motivation behind
this is that MP channels are equivalent [42] to entanglement-breaking channels (see Def.
. Thus, devices that preserve entanglement cannot be simulated by classical MP
channels. Indeed, the effective distribution of entanglement is a necessary precondition for
secure quantum key distribution [23]. Importantly, we can certify that a device preserves
entanglement without having to actually prepare physical entangled states. Instead, we
can consider a virtual entangled state which is intimately connected with the test states
{pa}. This effective entanglementﬂ approach, which we will now outline, allows us to use
the same device testing scenarios as the fidelity-based benchmarks above. The theoretical
description of the benchmarking protocol, however, is much different.

For now, we assume that the test states are pure. The extension of entanglement-based
benchmarks to arbitrary states, first studied in [35], will be discussed in Ch. [ We modify
notation so that H;, becomes Ha,. As well, we assume that the ensemble contains a finite
number M of test states, which we will now label with Latin indices:

{pi € B(Ha)|pi = [oe){vnl bty (4.3)

For entanglement-based benchmarking, we imagine that the test states are coupled with
an ancillary system to form the following bipartite entangled state [9, 23], 85]:

1 M—-1
‘\Ijent>AA’ - \/_M Z |k>A ® |¢k>A/ . (44)
k=0

2We warn that ‘effective entanglement’ should not be confused with the usage in [87], where the term
refers to the minimal entanglement compatible with some given measurement results. This second concept
is also important in this thesis, but we will typically refer to it as the ‘minimal entanglement.’

47



a) | \I,ent> b)

A A

M —

par =11 O 10eXtr]

k=0

—

V
Entanglement?

Figure 4.2: a) Entanglement-based benchmarking: Is there any entanglement remaining
after part of the state [T , ,, passes through the device? How much remains?

b) ‘Effective entanglement’: Any source which produces a classical mixture of the test
states |¢x) can be pictured as internally preparing the entangled state in Eq. and
performing a projective measurement on subsystem A. This theoretical picture is also
called a ‘source replacement’ scheme.

Figure appears in [55], copyright 2011 by the American Physical Society. Reprinted with
permission.

Here, the ancillary system is defined on a M-dimensional state space H 4 for which the
vectors {|k) ,}," form an orthonormal basis. Both the A and A’ subsystems belong to
Alice, who prepares the entangled state. For later chapters, it will be convenient to write

this state in a block form. Using the basis {|0),...,|M — 1)} for system A, we have
PO PR Por
in ent / e L plo A Plua
Pliar = (TN, = M : : - : ’ (4.5)
Pi]\r/}_Lo Pij\r}[—u T Pijr\}[—1,M—1

where the diagonal blocks are equal to the test states, pi, = pi* and the off-diagonal blocks
are given by pit = |t )t € B(Har). Since pif,, is Hermitian, we also have pl = (pif)1.

The device being investigated (represented by a map A) is allowed to act on the A’
subsystem, giving outputs on some state space Hpg, while subsystem A is kept isolated.
The reduced density matrix p4 therefore remains the same, independent of the device. Its
entries are given by the relation

(kl pall) = 2Tr (pff) = == (tals) (16)

Ignoring the prefactor and a possible transposition, the reduced density matrix p4 is the
Gram matrix, or matrix of overlaps, for the test states. This Gram matrix connection will
be especially important in Ch. [7]
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By performing the local PVM {II% := ]k)<k|A}M ' on the entangled state, Alice can
effectively prepare the test states {|1x) 4 }ory' at random. These states pass through the
device, producing the corresponding output states

ou ou M*l
{A" € BHp)lpp™ = Al }_y - (4.7)
For the full bipartite system, the output state is given by
P = (ida @ A) [wet)wen| (4.8)

Again, it will often be convenient to express this state in block form. To this end, we write

out out . out

Poo Po1 Po,M—1
out out out
out 1 P1o P11 T PLM-1
PaB = 1Y : : : ) (4.9)
out out out
Prv—10 PmM-11 " PM—-1,M—-1

where the diagonal blocks are equal to the output states, p(it = p"* (we will use the

notations pit and pP™ interchangeably) and the off-diagonal blocks pf* € B(Hp) are
matrices of free parameters satisfying the constraints

out

1

ST () = (Kl pall) = = Wil ) (1.10)

In addition, p2i* = (p5*)T must hold.

Up to this point, everything has been quite general. Now, we will specialize by fixing
a particular choice of measurements for Bob to perform on the output states, namely
homodyne measurements. Using a balanced homodyne scheme, Bob can build up over
many runs the expectation values (z), (p), and the variances

Var(z) = (2*) — : (4.11)
Var(p) = (p*) — (p)* (4.12)

of the quadrature operators for each output state. These measurement results, along with
the Gram matrix p4, are used to determine whether or not the bipartite output state p%%
remains entangled. In the past, this has been achieved through a witnessing procedure
[85], 841 137, [36], which we will review shortly. Another way to accomplish this would be to
lower bound the value of some entanglement measure based on the available information.
The entanglement measure approach will be developed further in the next few chapters. As
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well, any experimental implementation will have some uncertainty associated with these
expectation values, which should also be considered in the benchmarking. In Ch. [7], where
we benchmark a physical system, error bars will also be included in the analysis.

We restrict the available measurements on system A to the projections {II% ML This
might seem to limit our ability to detect entanglement. However, this restriction allows us
to consider the entangled state |U*") , ,, as a virtual construct. In practice, we only need
to prepare and make measurements using the test states. The reduced density matrix p4,
serving as the Gram matrix for the test states, provides the connection between the test
ensemble and the entangled state. With this source-replacement picture, we can determine
whether entanglement can be preserved without needing to physically prepare the actual
entangled state. One might imagine performing more general measurements on system A,
which would prepare superpositions of the test states. However, we can straightforwardly
include these superposition states within the set of test states and recast this new ensemble
back to the entanglement-based form.

To ensure agreement with the theoretical test ensemble, we must have an accurate nu-
merical description of the experimentally prepared test states. Typically, this will require
tomographic reconstruction of the prepared states. In contrast, we do not require tomog-
raphy on the output states to perform entanglement-based benchmarking. Indeed, the
above scheme, where only two conjugate quadratures are measured, has proven sufficient
for successful quantum benchmarking [67, [106]. From an experimental resource point of
view, entanglement-based benchmarking can be much more practical than fidelity-based
approaches.

Expectation value matrix

The entangled state |T") , ,, has an unusual form, containing both discrete and continuous
subsystems. On one hand, density matrices are useful for representing small-dimensional
discrete states. On the other hand, continuous states can be more compactly (though not
uniquely) represented by covariance matrices and displacement vectors containing the first
and second moments of the quadratures  and p. In order to represent hybrid discrete-
continuous states such as |U") , ,,, a tool is needed that combines the strengths of both
the density matrix and the covariance matrix. One such tool is the expectation value matriz
(EVM) [85, B7, B4]. We will now briefly summarize the EVM method because it forms
the qualitative comparison for later results on quantitative benchmarking. The EVM is
defined as follows’t

3The definition of the EVM differs slightly between its original introduction [85] and its more general
characterization [37], but the two definitions are equivalent (see e.g., App. B of [34]). We follow [37] here.
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Definition 4.1.1 (Expectation value matrix). Let Algce and Bob share a joint state pagp.
Fiz a set of measurement operators on each system, {A;} and {B;}. The expectation value
matriz x(pap) is a bipartite matriz with entries given by

it = (il 4 ® (Glp X [k) 4 @ |I) = Tr(papAl Ay ® B;él)- (4.13)

By construction, the EVM has the following important property: for all physical states
and all choices of measurement operators, the expectation value matrix is a positive semi-
definite matrix, i.e., ) R

V {4}, {B;}, pap > 0= x(pan) > 0. (4.14)

As well, the EVM has the property that separable states pip = >, Pap% ® p% always lead
to separable EVMs, i.e.,

X(O5R) =) paX ® X5 (4.15)

where we define the local EVMs by
(X4l = Te(p3 AlA)), (4.16)
XBliy = Tr(p3B]B)). (4.17)

Thus, the entanglement of the state pap can be determined by testing a corresponding
EVM for separability. In particular, we can use the PPT test (see Def. [2.4.5)) on the level
of the EVM, giving the following criterion:

X" (pag) # 0= pap is entangled. (4.18)

The advantage of the EVM formalism is that, by choosing small sets of measurement
operators {A;},{B;}, we can test for separability of infinite-dimensional states using a
small finite-dimensional matrix. Indeed, for the case we are interested in, the relevant
measurement operators are

A= ||, i=0,...,M—1 (4.19)
where |?) is any fixed state vector, and
B; € {1,,p}. (4.20)

As an example, consider a hybrid state p4p which has a 2-dimensional subsystem A and
an infinite-dimensional subsystem B. The above choice of measurement operators leads to
the 6 x 6 EVM
(0)0|® B),,,, (0X1|@B),,,
= , 4.21
Xas) = Lol @ By, (111 B) 2

PAB
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where

g & P
B:=1|3% 32 :%]3 . (4.22)
popr P

Of course, the operators Zp and pi& are not strictly measurable (though their expectation
values can be inferred from linear combinations of other measurements). Neither can we
measure any of the off-diagonal terms |[0)(1| ® B. However, some of these expectation
values can be written in terms of known quantities. For instance, in the benchmarking
scheme described above we have full knowledge of p4, since it is the Gram matrix of the
test states. Thus, we know the value

(101 © L) = (1] pa |0} = 7 (ol ) (423

Other expectation values that are not experimentally measured must enter the EVM as
free parameters. An EVM thus represents an equivalence class of all states which have the
same values for the actual measured observables.

Having an incomplete EVM does not prevent the detection of entanglement, but may
weaken it. Letting x®(pap) represent an EVM with free parameters Z, the entanglement
verification criterion becomes: an incomplete EVM x%(pag) corresponds to an entangled
state if, for all values of the free parameters T, there is no solution satisfying

X (pas) >0, (4.24)
" (pap)]™ > 0. (4.25)

Finally, we may encode information about the structure of the measurement operators as
additional constraints in the above search. Notably, because of the commutation relation
[z,p] = i1, the matrix B in Eq. has the following structure: By — Bs; = iByy.
Often, we must rely on numerical optimization techniques to solve the above feasibility
problem. In particular, the tools of semidefinite programming are quite useful [99].

Known entanglement-based benchmarking results

The EVM formalism has been applied to a number of benchmarking scenarios, corre-
sponding to different choices of the test states. Originally, the EVM was developed to
benchmark quantum key distribution protocols based on two coherent states of opposite
phase, |¢0/1> = |+a) [R5, 67]. This approach was generalized to benchmark arbitrary
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Figure 4.3: Quantum domain for test ensemble containing two coherent states |+«a) with
different channel transmissivities 7' (cf. Fig. 1 in [37]). Data below the curves must come
from entangled states.

quantum devices in [37]. The quantum domain for this choice of test states, found with
the EVM method, can be mapped out by considering the loss and excess noise induced on
the quadratures by the device. Specifically, the loss is parameterized by 1 — T, where T is
the transmissivity defined by
VT = Blow (4.26)
<x>in

and the excess noise is given by
Var(Zow) = Var(Zi,) + Vex (2). (4.27)

Here, it is assumed that the loss/noise is the same for both test states and both quadratures.
This assumption is not required, but aids the graphical display of the quantum domain,
which is depicted in Fig.

In Ref. [36], this scheme is extended to M coherent states having the same amplitude
a € R and symmetrically-distributed phase angles, [¢y) = ‘awﬁﬁ, where wy; = exp(%).
Using the same loss/noise parameterization as before, the EVM method provides the quan-

tum domain shown in Fig. [4.4]
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Figure 4.4: Quantum domain for test ensemble containing M = 3,4,5,6 symmetrically
distributed coherent states |aw},), with channel transmissivity 7 = 1.0 (cf. Fig. 3 in [30]).
Data below the curves is from entangled states.
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Figure 4.5: Quantum domain for a squeezed/antisqueezed pair |+r), where r = 0.35 and
the channel transmissivity is 7" = 1.0 (cf. Fig 1 in [35]). Data between the forbidden region
and the upper curve must come from entangled states.

The final situation of interest, initially considered in [35], is when the test ensemble
consists of a squeezed /antisqueezed pair of states, [to/1) = |+7). In this case, (&) = (p) =0
for both input states, so the first moments are not included in the benchmark. The output
state variances may take any values consistent with the uncertainty relation. To simplify
the graphical depiction of the quantum domain, it is assumed that the initial symmetry
relations Varg(Z) = Var;(p) and Varg(p) = Vary(&) also hold for the output states. The
quantum domain for this situation is displayed in Fig. [4.5]

The quantum domains depicted in Figs. |4.3H4.5| will serve as the qualitative comparison
for the quantitative benchmarks to be developed in the rest of this chapter and in Chs.
and [0] Ideally, the quantitative benchmarking results should be faithful with these known
qualitative results, giving the same quantum domains. We note that for Figs. and
[4.5] it is been shown that any quadrature data outside the depicted quantum domains can
be produced by separable states [37, B5]. Therefore, for these two cases, having data in
the depicted quantum domains is necessary and sufficient for certifying a device with the
available information.
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4.2 Quantitative benchmarking

The previous section was a review of the known entanglement-based benchmarking tools
and results. The rest of this thesis is devoted to the development of newer, stronger, and
more general tools which build on the existing framework. The remainder of this chapter,
as well as Chs. will study the idea of quantitative benchmarking.

The expectation value matrix can be thought of as a matrix-valued entanglement wit-
ness. The purpose of entanglement witnesses is simply to verify entanglement with minimal
measurements, and the EVM accomplishes this. For quantum benchmarking, this allows
us to discriminate between genuine quantum devices and devices that can be emulated by
MP channels, i.e., to make the general distinction: quantum or classical? But there is
a richer structure within the quantum domain. Several devices may be in the quantum
domain, yet they may perform quite differently. Some devices may consume more quantum
resources than others to accomplish the same task.

To capture this difference in performance, we propose a natural extension of entanglement-
based benchmarking. Instead of verifying entanglement, we should study how well a given
device preserves entanglement, a notion that we term the quantum throughput. Since all
operations are local, entanglement cannot be created during a benchmarking test, only
destroyed. By comparing the entanglement content of the initial state @) , ,, with that

out

of the final bipartite state p%}%, we can see how well or how poorly a particular device
preserves entanglement.

Of course, any conclusions we make are only relevant for the subspace spanned by the
chosen test states. Indeed, a device might have a much different quantum throughput for
states in some complementary subspace. Because of this, it may be instructive to test a
device using many different test state ensembles. On the other hand, we should keep in
mind the desired application of a device, and use this to guide the choice of test states. Our
primary interest will be the quantum throughput for states near experimentally desired
working points. The examples studied in this thesis are chosen to reflect typical or ideal
experimental states.

4.2.1 Benchmarking with entanglement measures
In order to study the quantum throughput of devices, it is necessary to develop quanti-

tative tools for entanglement-based benchmarking. Fortunately, there are well-established
methods for quantifying entanglement, namely entanglement measures (recall Def. [2.4.6)).
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However, there is no universally-preferred entanglement measure for general states; differ-
ent measures capture different notions of entanglement. Showing that a device preserves
entanglement with respect to one measure does not necessarily allow us to make conclu-
sions about other measures. For the particular quantitative approach developed below, we
will make certain choices that will restrict the type of allowed measures. These choices are
made to allow the best connection to CV quantum benchmarking.

Ideally, the quantitative measure should fit as much as possible within the established
framework for entanglement-based benchmarking. The available information remains the
same: knowledge of the test states pi® through the Gram matrix p4 (Eq. and homodyne
measurements for each of the corresponding output states pi™* (Eq. . Unfortunately,
this information is not tomographically complete, so we cannot determine the entanglement
exactly. However, we can search for the minimal entanglement, with respect to some
measure &£, compatible with the available information [4]. The result of this search will
give a lower bound on the true entanglement. Mathematically, this search takes the general
form of an optimization problem:

min E(oap)
out 7apZ0 27 27
Emin(PAB) = § subject to  Tr(oap |EXE| , @ CF) = Tr(p™CyL) YV k., j - (4.28)

Trg(oag) = pa

The operators {CA’f3 3]:0 may represent observables measured in experiment (e.g., the quadra-
tures) or something more abstract (e.g., projections onto pure states) that can be inferred
from experimental data.

Projecting to finite dimensions

The main hurdle with the above optimization is that the search space is infinite-dimensional,
making a numerical search problematic. To get around this issue, we make the observation
that although CV states are properly defined on an infinite-dimensional Hilbert space, it
is often possible to achieve a faithful description of such states on a finite-dimensional sub-
space. By finding suitable finite subspaces to project onto, we can render the optimization
in Eq. tractable. Provided we are careful, this simplification does not adversely af-
fect our overall goal. Indeed, for any entangled state, entanglement can always be found by
searching within some finite subspace [91]. As well, provided the entanglement measure £
satisfies the strong monotonicity property (Def. , the entanglement of the projection
can be used to lower bound the entanglement of the true state.
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To see this property, let s B(Hpg) be a projector onto some (finite) subspace of Hp

and let Qp := 15 — IIz. We denote the (unnormalized) projection of the benchmarking
out

output state p%5 by R )
pap = (La @ 1lp)pE(la ® p) (4.29)

and the projection probability by p := Tr(p'i5). By strong monotonicity, we have
(1a @ T1g)p%f(1a @ T1p)
p
]1 9 out j A
(1 p)E (( 4% Q)i A®@B>>_
-Pp

E(pap) = pE

(4.30)

The second term, which quantifies the (weighted) entanglement in the complementary
subspace, is non-negative, so it can be discarded at the expense of another inequality,
leaving

out pEB
E(0) > pE (7) (431)

It will later be convenient to work directly with unnormalized states (0 < Trpli; < 1), so
we further restrict to entanglement measures that are well-defined on unnormalized states
and that allow the prefactor to be absorbed, i.e., if p € (0,1] and 7 > 0, then

pE(T) > E(pr). (4.32)
For any entanglement measure £ satisfying these demands, we have the bound

E(pAB) = E(Plip). (4.33)

For the remainder of this thesis, we will use the negativity (Eq. (2.8])) as our entanglement
measure of choice. It satisfies all of the desired properties, and it also has the virtue that
it is efficiently computable as a semidefinite program (Eq. (2.9)).

One drawback of the negativity is that it is not faithful, since it is not able to detect PPT
entangled states. However, for benchmarking schemes based on quadrature measurements
of two test states, it is not possible to detect PPT entanglement anyway. From Observation
2 in [37], for any PPT entangled state, there is always a separable state that gives the same
measurement results. Hence, the unfaithfulness of the negativity is not an issue in this case.
Benchmarks based on more than two test states are less well understood. In this situation,
it is not known whether or not PPT entanglement can be unambiguously identified; if so,
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it might be possible to quantify PPT entanglement with a different measure than the one
used here.

Finally, depending on the choice of projection, we may need to relax the constraints in
Eq. . Even if we know an expectation value for the state p%%, we do not necessarily
know the corresponding expectation value for the projection p'i. In principle, the expec-
tation values of p%% may contain contributions from the projected subspace as well as from
the complementary subspace. But if we understand the underlying system well enough, it
should be possible to find projections for which the contribution from the complement is
small. In addition, we should be able to constrain the projection’s expectation values using
our knowledge of the observed expectation values. Ideally, we should aim to restrict each
projection expectation value to some small convex set C that is dependent on the observed
results. If we can find such constraints, the optimization (4.28|) may be modified to a more
tractable finite-dimensional form.

Finite-dimensional entanglement minimization. Let p%% be the final state of an
entanglement-based benchmarking test as in Egs. (--) Let o'{y be an arbitrary (un-
normalized) state on the finite subspace (]1,4 ® HB)’HAB(ILA ® HB) Our entanglement-
manimaization problem takes the form

min E(olip)
- O'AB>O »
Emin(pap) = subject to  Tr(ofg |k)k|, @ C%) € C(p3™, C%) Y k,j (4.34)

Trs(oiip) € Cpa)

where C(p9™, ci ) and C(pa) are some conver sets representing constraints on the measure-
ment operators Cg and the reduced density matriz pa. The solution of this optimization
problem provides a rigorous lower bound on the entanglement of po:

E(pAB) = Emin(pian)- (4.35)

This final formulation of the entanglement minimization problem will serve as the
basis for our quantitative approach to quantum benchmarking. We note here that all
optimizations of this form will be carried out using semidefinite programs (SDPs) [99].
This aproach requires two main ingredients: an objective function which is linear in the
desired variables (e.g., Eq. ), and constraints which take the form of linear inequalities
(e.g., x > xg) or positive-semidefinite matrix inequalities (e.g., X > Xj). Often, some work
will have to be done to put the constraints in this form. The payoff is that SDPs can be
numerically calculated in an efficient manner.
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Summary

To summarize, we propose to extend the existing framework of entanglement-based bench-
marking by quantifying how well entanglement is preserved through a tested device. For
this, we use the same information as previous qualitative benchmarks, namely knowledge
of the test states and measurement of two conjugate quadratures. We tackle the problem
of infinite-dimensional states by projecting the states onto some tractable finite subspace.
We search within this subspace for the least entangled state that is consistent with both
the observed expectation values and the given projection operation. Choosing an entangle-
ment measure with certain monotonicity properties and finding suitable convex constraint
regions C, we can numerically perform the optimization in Eq. . The solution to
this optimization problem gives a lower bound to the entanglement of the benchmarking

output state p%.

Of course, we have omitted many of the finer details of this approach. There are a
number of open questions remaining. What projection should be used? How can we find
the constraints for the projected state? How do we encode the optimization numerically?
How well does this approach compare to the qualitative approach? All of these questions
will be addressed in the following two chapters. In each chapter, we make a specific choice
for the finite projection and follow through with the rest of the optimization. These two
choices are somewhat complementary, each having its own strengths and drawbacks. The
first choice, outlined in Ch. [5] is to project onto the smallest possible system that can have
entanglement, namely a two-qubit system. This approach is applicable only to benchmarks
using the two test states |£a), but it works quite well when there is a very low level of
imperfection in the device, i.e., when the output states are nearly pure. The second choice,
found in Ch. [6] involves projecting onto a number of low-dimensional Fock states. This
choice of projection lends itself well to situations with higher levels of imperfection, and it
is easily adapted to different types of test states.
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Chapter 5

Quantitative benchmarking I:
two-qubit projection
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In this chapter, we outline one method for achieving quantitative CV benchmarks using
the framework of Ch. ] namely by projecting onto a two-qubit subsystem. The material
in this chapter, as well as the accompanying App. is based largely on [54], for which
I am the primary author and researcher. The published article is copyright 2010 by the
American Physical Society (APS). Portions of the article have been adapted for this thesis,
under permission from APS.

This chapter proceeds as follows. After fixing a particular choice of test states, we
identify a two-qubit subspace that is the most significant for our purposes. Following the
approach of Ch. 4} we consider the projection pY of the benchmarking output state p%%
down to this finite subspace. We then outline how to estimate the relevant constraints and
perform the entanglement optimization in Eq. , i.e., how to calculate the minimal
entanglement of the projected state compatible with the available information. Finally,
the results of this optimization, which give lower bounds on the actual entanglement, are

presented and discussed.

5.1 Quantification procedure

In this chapter, we will concentrate on the test ensemble consisting of two coherent states
with the same amplitude but opposite phase: [g) = |a), |¢1) = |—a), where @ € R. These
states are nonorthogonal for all « € C. As well, they are readily generated under ideal
experimental conditions and can be used as the signal states in a simple CV quantum key
distribution protocol [85], 84] 67]. The initial virtual entangled state therefore takes the

form (cf. Eq. (4.4))

ent ]-
“I] >AA':E(‘O>A®‘Q>A’+’1>A®’_a>A/); (5.1)

where system A is a qubit and system A’ is an optical mode. This is an entangled state for
all values av # 0, since it is pure but not factorized. The device being tested (represented by
A) acts on the mode A’; we label the resulting output mode by the index B. The bipartite
output state p%s = (ida @A) [Tt} (We| , ,, is, in general, infinite-dimensional, but we can
simplify it using the finite projection method from the previous chapter. Fortunately, the
specific form of the test states allows us to choose a projection that can capture a lot of

information in a very small subspace.
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5.1.1 Choosing the projection

Our choice of projection is motivated by the following observation. When the pure test
states {|a),|—a)} pass through the device, they are subject to loss and noise, and evolve
in general to mixed states {pd", p{*'}; however, because these are coherent states, the
change in purity comes only from the noise. Indeed, a noiseless but lossy channel (with

transmissivity 7') will map these coherent states to a new pair of coherent states ‘i\/T a>.

Along the same lines, if a channel is noisy, but the added noise is small, then the output
states pg" and p™* will still be nearly pure. In this case, most of the information about the
state p9% is still contained in a very small subspace of the full infinite-dimensional Hilbert
space. Additionally, for low levels of noise, the output states will be close to minimum
uncertainty states, i.e., they will be close to the minimum value in the uncertainty relation
of Eq. . For such states, we expect that quadrature measurements capture nearly all
of the important information.

Therefore, we would like to identify a small mode subspace that contains as much
information as possible about both output states. For simplicity, we will concentrate on
the simplest non-trivial subspace, namely one of dimension 2. Writing the output states

Pt and p9"* in terms of their eigenvectors, in order of descending eigenvalues, we have

pout E:MM>AJ (5.2)

When an output state is nearly pure, one eigenvalue will be large and all others will
be small. Hence, we identify the most significant subspace as the one formed using the
largest eigenvalue for each state, i.e., the subspace which has |A\)) and [\?) as basis vectors.

To simplify notation, we will henceforth denote the largest eigenvalues by Ay := A and
AL := X9, The corresponding eigenvectors will similarly be denoted })\L> |AJ) and
!AL> 9.

In general, these two basis vectors will not be orthogonal. The subspace projection
operator Iz will thus take the form

= )] + e XA (5.3)

where the orthogonal vector ‘)\I(;L> is related to the other two by
25 = = (1) =) ). (5.4)
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and we have introduced the shorthand notations ¢ := <)\IOJ| )\%> an s :=1— \t]Q. Therefore,
three parameters will be important to identify this subspace: the eigenvalues A} and A}, as
well as the overlap t. We will estimate these parameters using homodyne detection. Exactly
how this is done will be shown in the next part. With these parameters, we can build a 4-
dimensional density matrix p'i 5, which corresponds to the projection of the full qubit-mode
state p% onto the two-qubit subspace spanned by the basis {]0) 4, [1) 4} ®{|)\%>B : ’)\%>B}.

5.1.2 Estimating the constraints

Having fixed the projection, our next important task is to develop the constraints for the
optimization in Eq. . The available homodyne measurement information does not
directly lead to such constraints. However, based on the above intuition, the homodyne
results can be indirectly connected to constraints on the two-qubit subspace. Since we are
interested in quantum benchmarking, we will not make any approximations. Instead, we
will develop rigorous bounds which will form the required constraints.

First, we will provide bounds on the three parameters A}, A} and </\%’)\If> that char-
acterize the projection subspace. We will then explicitly connect these bounds to the
projected state pii 5. The derivations for many of the bounds in this part are largely tech-
nical and unilluminating, so we will mostly relegate these to App. |B| to avoid obscuring
the main focus. Now, in Ref. [84], which considers a related entanglement-verification
problem, several useful formulas for estimating the maximal eigenvalues and the overlap
are given. These bounds are later refined in [I10], where they are used to derive secret
key rates for continuous-variable quantum key distribution. Here, we use these bounds as
a starting point toward constraining the projected state p'iz. We will roughly follow the
notation of [I10] in the following.

Since the output states {pg", p7"*} have unit trace, their maximal eigenvalues can be

parameterized by

MNo=:1—-2, (k=0,1), (5.5)
with & € [0,1]. Then Egs. (65) and (68) from [110] give directly the following bound.

Proposition 5.1.1 (Largest eigenvalue bounds). Define the quantity Uy as

Ui = Kvark@s) + %) (Vark(ﬁ) + %) - 11 | (5.6)

Then the mazimal eigenvalue Ny differs from unity by no more than Uy, i.e., & < Uy.
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Importantly, the bound can be calculated using only the measured variances of the output
states.

Estimating the overlap t = <)\3‘ )\%> is more involved. We need to derive bounds on its
magnitude based on our available information. Again, we begin with bounds provided in
Refs. [84] 110]. With suitable relaxations, their bounds can be put into a specific form
that will be more useful for our final entanglement minimization. The specific details of
this relaxation are straightforward, and are outlined in App. [B.1l To write these relaxed
bounds, we will need an additional parameter, x, which can be calculated directly using
the measured first moments {(z), , (), }x=0.1. Defining two coherent states with the same
means as the output states,

) = | 5 (20 +¢<ﬁ>k>>, (5.7)

the new parameter is given through the overlap of these coherent states,
Using this quantity, the relaxed bounds are as follows (cf. Egs. (C17)-(C18) of [110]).

Proposition 5.1.2 (Overlap bounds). The overlap t = <)\%‘)\If> can be bounded to the
following region:

bi(Up, Ur, k) < |t| < by (Uo, Uy, K), (5.9)

where
Uo
bi(Uo, U, k) = k\/1—2Ug\/1 —2U; — V1 — K2
1— 20,

/1= A

’i¢1—2m Vl—ﬂ%¢1—2m (5.10)
and

U() Ul
, _ 1 2 — 2
bu(Uo, U, k) = K+V1—k 1_2U0—l—\/1 H”l—2U1
A1
¢1—ﬂ%¢1—ﬂh (5.11)
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Connecting the bounds to the projected state

With these primary bounds, computable using only homodyne measurements, we can move
on to constraining the elements of the projected density matrix p'i. For more compact

notation, we parameterize the matrix elements involving |)\L> and ‘)\L> the following way
(recall the definition of pgit from Eq. (4.9)):

i A8 O ot || O o [ (88t )
T
) O )
) Ot A1)

F i g (] e 35| R 2
)\L‘ ptl)blt |)\L> <)\L‘ out })\L> </\L| out ‘)\L

} out ‘)\L

()
0o |
(A
K

L}p(l)u ‘)\L

[ 1 Y121 22
*
Yp T2|%3 24

(5.12)

* * *
| %2 %4 (Y2 T4

As the name Y4, suggests, this is an expectation value matrix based on the vectors
{10} 4,|1) 4} and {’)\L> ,’)\%>B}. We remind the reader that we use the output state
notations pfit and pP™* interchangeably.

Having set the parameters, we can explicitly write p'{ 5 in the basis {|0) , |[1)}&{|A§) , |\§+)}

(cf. Eq. (£9)):

11
PaB =
[ T \/Lg(yl — txy) 21 \/Lg(ZQ —t21)
1 \/Lg(yf —t*z}) L(wo — ty} — t'yr + [t)*21) %(23 —t27) Lz —tzy — U+ |t2)
2 21 T2 —ta1) T3 5 (Y2 — tas)
7 7
| (e —tta) (el e — e+ [HR])| p (0 — ) (e —tys — e+ [tas)

(5.13)

We will not attempt to estimate every parameter of the EVM in Eq. (5.12)). Instead, we will
concentrate on constraining the diagonal elements of each block, namely the parameters x1,
To, T3, T4, 21, and z4. We can already estimate matrix elements of the form <)\I,;‘ o |)\%>
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(i.e., x; and x4) using Prop. [5.1.1} but we need a different approach to constrain the
supplementary elements <)\jL‘ PR |>\]L> for j # k (i.e., o and z3). To get these, we first
expand p2i into its eigenbasis, Eq. . Then, using the fact that |(¢|€)|* € [0,1] for
any normalized vectors, we can derive the following bounds on the desired matrix elements

(see App. for full details).

Proposition 5.1.3 (Supplementary diagonal bounds). The matriz elements given by xo =
<)\H e })\If> and x3 = <)\15‘ po |)\%> can be restricted to the following intervals:

(1= Uo) |t]* < o < (1 =) |t|* + U, (5.14)
(1—=U) |t < a5 < (1—Uy) |t} + Uy (5.15)

Finally, we need to estimate some elements of the off-diagonal blocks of pYz, or else
there would be no way to differentiate an entangled state from a classical mixture of the
output states. Recall that for quantum benchmarking, the test state overlaps are encoded
into the reduced density matrix:

ou 1 ]' &
Trppis = pa = 3 L* 1} ; (5.16)

where ¢ = (—a|a). Each element in Eq. (5.16]) is the trace of the corresponding block
from Eq. (4.9), so we can enforce the condition Tr(pgi*) = c. Using this as our starting
point, we can determine the following (full details can be found in App. |B.3)).

Proposition 5.1.4 (Off-diagonal bounds). The off-diagonal elements z1 = (A§| pgi* | A§)

and z4 = <)\If| pout ‘)\If> can be constrained to the following regions:

1] 2lel — VToy/1— (1 - 0y) I (5.17)
J2al 2lel = VOiy/1 = (1= Uo) I (5.18)

We now have enough information to sufficiently constrain the projected state for the
optimization of Eq. (4.34). To summarize, we have the quantities x and U, (k = 0,1),
which can be calculated from measurements of the first moments and second moments,
respectively. We want to determine pY 5, which is the projection of p3% onto the subspace
spanned by {]0) 4, [1) 4} ®{‘)\8>B ,|AT) g}, where ‘)\3>B and ‘)\HB are the most significant
eigenvectors of the output states. We have estimated some of the overlaps of p93 with

these basis vectors in Props. and [5.1.4] These estimates depend only on the
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input parameter ¢ = (—a|«) and on the output state quantities Uy, Uy, and t. The overlap
t is itself bounded to a region defined by Prop. [5.1.2] which depends only on Uy, U; and
k. Hence, for a fixed input overlap ¢ and a fixed set of homodyne measurement results,
we have a parameter region that forms a set of constraints on pYi;. For completeness, the
full set of constraints used in the final optimization are listed in App. [B.4l This constraint
region must be searched to find the minimal entanglement compatible with plf .

5.1.3 Minimizing the entanglement

As mentioned in Ch. [4] we will use the negativity (Eq. as the entanglement measure for
demonstrating our method. In principle, we would like to find the minimal entanglement
using the methods of semidefinite programming (e.g., Eq. . However, semidefinite
programs require that the constraints are convex and the objective function is linear in the
employed parameters. As currently given, our constraints are non-convex (e.g., Eqs. —
(5.18])) and our parameters do not appear in a linear manner (e.g., quadratic dependancy
on the parameter t). Hence, we must make some further simplifications and relaxations
to bring our problem to the required form. Fortunately, the minimal entanglement under
relaxed constraints will still form a lower bound to the true entanglement.

First, we exploit the fact that local unitary operations cannot change the quantity
of entanglement. Therefore, without loss of generality, we can assume that the overlap
t = <)\3‘ )\%> is real and positive (since this can be accomplished by a relative change of
phase on subsystem B):

t>0. (5.19)

As well, we can perform local phase changes on subsystem A, which allows us to also make
the restriction
2 > 0. (5.20)

The other off-diagonal element of interest, z4 = <)\If| povt ‘)\ﬂ, is in general still a

complex number. The accompanying bound, Eq. (5.18)), is a non-convex constraint on zy,
so we have to replace it with a set of convex constraints. We accomplish this by denoting

the right-hand side of Eq. (5.18) as

el = VO 1= (1= U [t =i 7 (5.21)

and expanding the constraint to the region

|Re(z4)] + |Im(z4)] > 7. (5.22)
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Figure 5.1: Relaxing the non-convex constraint Eq. by inscribing a square within the
circle (solid lines). Four new convex search regions (I-IV) are defined by the intersection
of each quadrant with the weaker constraint Eq . These correspond to the outer
regions in the diagram. Better approximations of the circular region can be made using an
inscribed octagon or other polygons, but this increases the number of convex regions that
must be searched for the overall minimum (dotted lines).

This relaxed constraint is still non-convex, but we can search for the minimum entangle-
ment independently in each of the four quadrants, where the constraints are convex (see
Fig. [p.1)), and take the minimum over these four searches. The final result will be a lower
bound to the minimum entanglement in the region constrained by Eq. . We can
extend this idea further, replacing the inscribed square from Fig. with any other in-
scribed polygon. With more sides, we can better approximate the non-convex constraint
Eq. , but this will also increase the number of convex subregions that must be
searched to find the overall minimum. Numerical evidence indicates that the minimum
entanglement is often, though not always, found at a point outside the circle. The scheme
was also tested with an inscribed octagon and it was not found to alter the final results
significantly.

Fixing the overlap

The last hurdle comes from the overlap ¢ = <>\%‘)\If>, which appears in the density matrix

(Eq. (5.13)) and many constraints (e.g., Eqs. (5.14)-(5.15) and (5.17)-(5.18))) in a prob-

lematic non-linear manner. One approach would be to scan the parameter ¢ through the
domain [b;, b,] using a discrete but fine set of points. The minimum values found in each
run can be compared to find the overall minimum. However, this approach might open up
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some unappealing continuity loopholes, nevermind the increased computational time.

Fortunately, when the other parameters are fixed, the two-qubit state with the minimal
entanglement must always be one that has the largest possible overlap, t = b,. The reason
for this is that, for fixed values of A}, A}, and ¢, there always exists a CPTP map 2 on
the B subsystem which preserves the maximal eigenvalues while making the corresponding
overlap larger. Thus, a pair of qubit states with non-maximal overlap ¢ < b, can always be
mapped to a pair with the same eigenvalues but maximal overlap ¢t = b,. Such a local map
cannot increase the entanglement, so indeed the minimal entanglement must come from a
pair with overlap ¢t = b,. Exploiting this fact, we can eliminate the non-linear dependance
in the optimization by replacing the parameter ¢ with the fixed numerical quantity b,,.

The existence of the map €2 can be proven as a corollary to a theorem from [2] related
to transformations on qubit pairs.

Theorem 5.1.5 (Alberti and Uhlmann). Let {vy }x—01 and {wi}r=01 be two pairs of qubit
density matrices. There exists a CPTP map 0 such that wy = Qvg] for k = 0,1 if and
only if

l|lwo — swi|]1 < ||vo — svall1 V s >0, (5.23)

where || - ||1 denotes the trace norm.

Now let {7} }x=0,1 and {wy}r=01 be the Bloch vectors of these qubit states, and let 6,
be the interior angle between the Bloch vectors of o and py (1 = v,w). Then the above
trace norm equates to, e.g.,

llwo — swi]|1 = max{|1l — s|, |Wy — s} (5.24)

By expanding the second term in Eq. (5.24) using the law of cosines, and enforcing the
condition |w| = |f| for k = 0, 1, we find, for all s > 0,

’1170 — sw’1| < |ﬁ0 — 8ﬁ1| =4 Hw < 6,/. (525)

Therefore, if the qubits {wy} have the same Bloch vector lengths as {v} (relative to the
index k), but smaller interior angle, then there is always a CPTP map taking the former
to the lattefl] Finally, we note that the parameters A, A}, and ¢ can be put into direct
correspondence with Bloch vector lengths and an interior angle for qubit states within the
projected subspace. By enacting the simplification made possible by this theorem, we can
finally put the entanglement minimization into a practical linear form (see App. for a
full list of the simplified constraints).

INote that this is a special case. In general, there need not exist transformations between qubit pairs
when the Bloch vector lengths are not fixed; see e.g., [3].
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5.2 Results

In the previous section, we outlined how to estimate constraints and perform the entan-
glement optimization of Eq. for a projection onto the most significant two-qubit
subspace. With all the pieces now in place, we can finally apply our scheme to benchmark-
ing quantum communication devices. For this, we do not want to make any assumptions
about how a tested device works. However, in the absence of experimental data, we pa-
rameterize the device’s effect on the first quadrature moments by a loss parameter and
on the second moments by the excess noise, as defined in Egs. and (4.27). Since
these parameters are defined using measurement results, we can always obtain them for
the given test states.

To simplify the graphical representation of the results, and to be consistent with pre-
vious qualitative benchmarks [37], we assume that the loss and excess noise are symmetric
for each state and for both quadratures £ and p. Note that our method does not rely on
making these assumptions. The optimization was performed in Matlab as a semidefinite
programming problem (see App. using the YALMIP interface [66] along with the
solver SDPT3 [94]. The main results are shown in Fig. where the minimal negativity
of pli5 compatible with the initial overlap and symmetric variances is given, for two dif-
ferent values of the transmissivity 7. This quantity gives a lower bound on the negativity
of the full state p9%. The entanglement of the initial state, Eq. , is also shown as
a function of the initial overlap in Fig. This initial entanglement can be compared
with the calculated bounds to help elucidate the quantum throughput of the device. We
note that a maximally entangled two-qubit state has negativity N = % For Fig. the
modification &« — v/Ta is made to the entangled input state in Eq. to give similar
comparisons. In the limit of zero excess noise and zero loss, our entanglement bound is
tight with the initial entanglement.

Our bounds are quite high for very low noise, but they become lower as the measurement
results get more noisy. At some point, a non-trivial entanglement bound can no longer be
given, even though the quantum domain is known to extend to higher noise values (see
e.g., Fig. or . As well, for larger loss values, the tolerance for excess noise is lower,
and the region where non-trivial bounds can be given becomes smaller. The exact noise
value where our bounds become trivial depends on the initial overlap and on the measured
loss, but the highest tolerable excess noise is around 0.025 for 7" = 1.0. This shrinks to
about 0.015 for a transmissivity of 7" = 0.5. Though the quantification region is small, it
is within the limits of current experimental technology [105].

Some entanglement degradation should be expected as the noise is increased, but entan-
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Figure 5.2: Minimal negativity of pli5 consistent with initial overlap (a|—a) and channel
loss and noise parameters. For comparison, the dashed lines show the negativity for states
of the form of Eq. 1} with « replaced by v/T'e. For no loss and no noise, the bound
exactly matches the initial entanglement. As either loss or noise increases, the bound
lowers, until it becomes trivially equal to zero.
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Figure 5.3: Example benchmark results using two coherent states (1" = 0.448). The upper
line was found using the EVM method; any data below this line is in the quantum domain.
States for which the two-qubit projection scheme gave non-zero entanglement lie below
the lower line. The ‘quantitative domain’ does not match the quantum domain, indicating
that the two-qubit projection is not well-suited to higher noise values. Figure appears in
[55], copyright 2011 by the American Physical Society. Reprinted with permission.
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glement can be verified (though not previously quantified) under the same testing scenario
up to much higher noise values than seen here. Thus, our bounds do not provide the
full picture. The weakening of the bounds with higher noise is mainly due to the estima-
tion procedure. Certain approximations become cruder (though still valid) as the noise
increases. First, for higher noise, the output states become more mixed, spreading out into
more of the infinite-dimensional mode Hilbert space. This leads to additional information
being lost when we truncate down from p%% to a two-qubit piz. Another problem stems
from the bounds we use to estimate pY5. Higher noise leads to weaker bounds on the

maximal eigenvalues from Prop. |5.1.1] which weakens all other inequalities.

To examine the effects of these two approximations, we briefly consider a simple channel
where the test state, Eq. , is mixed at a 50 : 50 beam-splitter with a thermalized
vacuum. The first moments reduce by a factor of Lz’ and the increased variances of the
output optical states can be determined from the mean photon number 7 of the thermal
state. For m > 0, the output states are displaced thermal states. The reason for studying
this channel is that we can ezactly determine the maximal eigenvalues A}, AL, and the
overlap <)\3‘)\%>. This allows us to study our approximations independently, since we
decouple the effects of the two-qubit projection from the homodyne parameter estimation
(in practice, of course, our quantification scheme must use both). In Fig. we show the
result of the quantification scheme when this extra information is included.

We see that the tolerable excess noise is around 0.05, more than three times what it
would be if we had to estimate the eigenvalues and overlap using homodyne results (cf.
Fig.[p.2D]). Also included in Fig. [5.4]is the quantum domain boundary obtained using the
EVM method. Any data with lower variances than this curve are in the quantum domain
and must come from entangled states. The two-qubit projection is tight to the quantum
domain boundary for low overlaps. For higher values, the projection becomes weaker, only
working to about half the noise value that the boundary curve reaches.

Summary and outlook

We began this chapter by proposing the simplest possible finite-dimensional projection
that will still allow entanglement, namely onto a two-qubit subspace. We compiled a
number of bounds relating the available benchmarking information to the most relevant
parameters of the two-qubit subspace. Collectively, these bounds formed the constraints
for the entanglement-minimization problem of Eq. (4.34). We also gave a number of
simplifications which enabled this optimization to be performed as a semidefinite program.
We were successfully able to quantify a non-zero amount of entanglement for the considered
benchmarking scenario, the first successful result in this direction. The tools developed
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Minimal negativity

Figure 5.4: Results of the quantification scheme for a simple test channel where we can
exactly determine the two-qubit projection parameters Af, Af, and (Af|AL). The excess
noise is due to the non-zero mean photon number of the thermal state. The overall channel
transmissivity is T=0.5, as in Fig. [5.2b. We also show the region where entanglement can
be verified (points with lower noise than the black line), i.e., the quantum domain. The
two-qubit projection gives non-trivial entanglement bounds for roughly half the points
where the entanglement can be verified.
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in this section can be directly applied to quantitatively benchmark any device which fits
within the given quantitative region.

Ideally, we want to be able to calculate non-trivial values for the entanglement wherever
it can be verified. This would give us a true quantitative complement to existing entangle-
ment verification methods. Comparing the quantum domain with the quantitative domain
in Fig. we see that the approach taken in this chapter is not strong enough to enable
quantification for higher noise values. Thus, more work needs to be done to address this
discrepancy. One obvious extension of the present scheme would be to truncate the mode
subspace using the two largest eigenstates from each output state, or even more. In theory,
this would strictly improve the estimates. However, in practice, this will increase the com-
plexity of the quantification calculation, since some simplifying assumptions (e.g., certain
overlaps are real) may no longer be valid. As well, the number of additional minimizations
we have to do, as in our non-convex relaxation of Eq. , increases fourfold with each
added dimension. Another approach might therefore be necessary to overcome this prob-
lem. One such approach is examined in the next chapter. Nevertheless, the quantification
scheme outlined here is a useful method for characterizing the degree of quantumness of
optical channels, especially when these channels introduce low noise.
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Chapter 6

Quantitative benchmarking II:
Fock-state projection

7



This chapter outlines an alternate method for achieving quantitative CV benchmarks
using the framework of Ch. [4 This time, the finite-dimensional projection involves low-
energy Fock states. The material in this chapter, as well as the accompanying App. [C] is
based largely on [55], for which T am the primary author and researcher. The published
article is copyright 2011 by the American Physical Society (APS). Portions of the article
have been adapted for this thesis, under permission from APS.

This chapter is organized as follows. We first identify a finite subspace, based on low-
energy Fock states, to be used with the projection method of Ch. [l We then derive a
number of rigorous bounds which form the constraints for our finite-dimensional entangle-
ment minimization problem, Eq. . We proceed to show how these constraints can
be encoded compactly as positive semidefinite matrix inequalities, allowing us to numeri-
cally solve the given optimization. Finally, the strength of this approach is demonstrated
through a number of examples involving different test ensembles.

6.1 Quantification procedure

The quantitative benchmarking results presented in the previous chapter are an important
first step, but it is clear that there remains room for improvement. For one, the ‘quan-
titative domain’ should be as faithful as possible with the quantum domain. Ideally, a
quantitative scheme should be just as strong for detecting entanglement as a qualitative
scheme (like the EVM method), with the quantitative component providing an extra layer
of information. Although the two-qubit projection in the previous chapter is quite good
for low levels of imperfection, it is not very effective for higher excess noise. The resulting
quantitative domain is much smaller than the corresponding quantum domain, as seen in
Fig.[5.3l Additionally, the results of the previous chapter are only applicable to the case of
two coherent test states. Thus, it is desirable to have a stronger and more general approach
that can be applied to a number of different CV testing scenarios.

6.1.1 Choosing the projection
In order to keep our scheme as general as possible, we should use a subspace that is not

based specifically on one type of test state. Indeed, we would like the subspace to contain
information about many different types of relevant states. One common feature for many
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of the CV test states typically used for benchmarking is that they are low—energyﬂ This
motivates the use of a subspace which itself is made of low-energy states. For numerical
simplicity, we want this subspace to be small in dimension. But it should not be too
small; indeed, we saw in the previous chapter that projecting onto a qubit subspace led to
important information being lost.

Given this motivation, perhaps the most natural choice of projection is a projection
onto the energy eigenstates, namely the Fock states {|n)}>>,. These states form a basis
for the state space of a mode, so we can define a subspace simply by truncating at some
finite number N. Intuitively, the larger the cutoff N is, the closer the projected state p'i
should be to the full state p4%. In fact, in the limit N — oo, the projected state converges
to the full state.

The projection operator for this subspace takes the form

g = [m)mly. (6.1)

The corresponding projected output state can be written as (cf. Eq. (4.9))

Pgo P% T p(]];Mfl
- 11 o Puin ot Pt (6.2)
AB ™ Ar : : B : ' :
Pﬁ—l,o /)]z\\g—m T pJ]\V/f—l,M—1
where we define each block using the truncated Fock basis,
N
pry =i Tlp = Y (ml g3 In) [m){nl ;. (6.3)
m,n=0

To distinguish this type of projection, we will also denote the projected state by p 5.

6.1.2 Estimating the constraints

We use the same general optimization framework of Eq. (4.34]) as the two-qubit projection
of the previous chapter. As was the case there, the given homodyne measurements do not

ITest states that are not low-energy, but which have high mutual overlaps can be converted to low-
energy states through a unitary displacement of the origin of phase space.
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directly tell us anything about the chosen subspace. Thus, it is necessary to determine
some useful constraints indirectly from the available information. In the spirit of quan-
tum benchmarking, we seek rigorous bounds, not approximations. We already gave some
bounds for the two-qubit projection in Ch. 5l We will see that the projection onto Fock
states leads to a much different set of constraints than the two-qubit case.

To begin, we make the important observation that it is not necessary for the projected
subspace to be excessively large. As long as the cutoff dimension NV is large compared to
the mean photon number 7, a state and its projected form will be nearly identical. Why
is this so? Because high Fock levels contribute more to the state’s energy than low Fock
levels. If we know 7, we can put strong bounds on the contributions from high Fock levels.
We make this intuition concrete with the following lemma.

Lemma 6.1.1 (Trace constraint). Let 7 be the state of a single optical mode, with mean
photon number Tr(Th) = < co. Let Ty be the (unnormalized) projection of T up to the

Fock level N > 0,
N

™~ =Y {(m|7|n)|m)n|, (6.4)

m,n=0

and denote the expectation value of Ty with respect to n by

Tr(an) =: Tiy. (6.5)
Then the following inequality holds:
Tr(7) — Tr(ry) < Tf,v_f]lv . (6.6)
Proof. For k > 0, parametrize the diagonal entries of 7 by
c
_—_ = =, 6.7
i = (m| ) = (67)
The coefficients ¢, are positive, but otherwise unknown. We have
Tr(th) = Z MTyy = Z Cm =T, (6.8)
m=0 m=1
and
N
Tr(ryil) = c = Ty (6.9)
m=1



This leads to

Tr(7) — Tr(ry) = Z m
m=N+1
m=N+1 N + 1
1 o0 N
(e )
m=1 m=1
n—ny
= ) 6.10
N+1 ( )
O
Note that this upper bound can actually be saturated, for example by the state
1= ) J0)0] + e [N+ 1N £ 1] (6.11)
T = — . :
N +1 N +1

This lemma provides an upper bound on how different the trace of a state is from the
trace of its projected form. Since the mean photon number can be inferred from homodyne
measurements,

mi= (i) = 5 [(32) + (%) — (D), (612

we can easily apply this lemma to the present benchmarking scenario. In this case, the
quantity my will be a free parameter which is a linear combination of diagonal elements
from 7y. It is only constrained by the obvious bounds 0 < ny < m. Although it would
be valid to replace the right hand side of Eq. with the fixed numerical quantity
/(N 4 1), it is more useful to use the bound as is, since it links the constraints on Tr(7y)
and ny. Most importantly, since m is fixed, the bound can be made arbitrarily tight by
increasing the cutoff N.

We can derive similar constraints (also depending on 7 and N) for all the other impor-
tant expectation values. For instance, if a state 7 has some known values of (z) and (p),
then the expectation values of the same operators with respect to the truncated state 7y
cannot be entirely arbitrary. In fact, if IV is large enough, the truncated state’s quadratures
have to be quite close to the infinite-dimensional state’s quadratures. We can make this
argument explicit with the following bound, involving the ladder operator a = \%(i +1ip).
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Lemma 6.1.2 (First-order constraint). Define the quantity € as follows:

¢ .= /(1 —7an)(Tr(r) — Tr(1n-1)), (6.13)

where Tn_1 is the truncation of the state T up to Fock level N — 1. Then the expectation
value Tr(7a) is constrained to the following region:

|Tr(ra) — Tr(rya)| < e. (6.14)

This constraint can be straightforwardly derived by expanding the ladder operator in the
Fock basis and applying the triangle and Cauchy-Schwarz inequalities, as well as appealing
to the positivity of 7. The full derivation can be found in App.

Although the quantity Tr(7a) is not directly measurable, it can be found from the
expectation values of the quadratures £ and p with respect to 7. As well, the bound € is
not fixed, since it depends on other parameters. However, by the Fock cutoff lemma, it
has an upper bound

n
VN’
Thus, it is clear that the constraint in Eq. (6.14) can also be made tighter by increasing
N. In practice, we will use the adaptive constraint of Eq. (6.13)), not the weaker numerical
bound \/iﬁ

e < (6.15)

The other important operators for our problem are #? and p?. Instead of directly
working with these, it is useful to consider their difference,

d:=2*—p*=al?+a2 (6.16)

Although this operator is itself an observable, the required expectation values can be readily
found from the available homodyne data. The original operators can be recovered using
the relations

% = [d+ 2n + 11] , (6.17)

]52

N — DN

[—CZ + 20+ 11} . (6.18)

In a similar manner as before, we can bound the difference in expectation values of d for
the measured infinite-dimensional state and for its truncation.
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Lemma 6.1.3 (Second-order constraint). Define the quantity ¢ as follows:

§:=2/( —7in) [(M — in_z) + (Te(7) — Tr(7n_2))], (6.19)

where Tn_o 18 the truncation of t@e state T up to Fock level N —2 and iy _o := Tr(1y_2n).
Then the expectation value Tr(7d) is constrained to the following region:

‘Tr(rcf) ~ Tr(ryd)| < 6. (6.20)

The proof of this bound uses similar arguments as the € bound (see App. for details).

The final source of information in our benchmarking scheme is the reduced density
matrix p4. To see how to include this type of information, let 745 be a blpartlte state,
with reduced density matrix 74 = TI"B(TAB) Let I3 be the projector given in Eq. and
recall the complementary projector Qp = 1 — g (which implies Qplly = HBQB = 0).
We also let R R A X

s = (14 @ Up)Tap(la ® 1), (6.21)

and similarly define TffB using ). Using the given relations, we find

=Trp(rap(la ® [z + Q5]%)) (6.22)
—TTB( p(1a ®p)?) + Trp(tap(la ® Qp)?). (6.23)

But ) R ) R A A
TIB(TAB(ILA & HB)Q) = TIB((]IA & HB)TAB(ILA & HB))> (624)

(and similarly for the @ term), so that
7a = Trp(thy) + Trp(r3s). (6.25)

Since 745 and rff are positive matrices, so are their reduced forms Trg(735) and Trg (TEB).
Removing Trp(755) at the expense of an inequality, we are left with the following.

Lemma 6.1.4 (Reduced density matrix constraint). Let 74p be an arbitrary state and
g its projection up to Fock level N. Let the reduced density matrices be denoted by
74 := Trg(tag) and 7 := Trg(7y). Then the following matriz inequality must hold:

TAZ TS (6.26)
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Although it may not be obvious at this point, Lemma [6.1.4] can be used to tightly
constrain expectation values for the off-diagonal blocks ppy of the projected state. As with
the other bounds, increasing the cutoff N will strengthen the constraints. We will elaborate
further about how to use this matrix inequality below. The inequalities found in Lemmas
6.1.146.1.4] can be used as constraints for the general entanglement-minimization problem
of Eq. (4.34). Asymptotically, as N — 0o, these inequalities become equality constraints,
and the finite-dimensional optimization of Eq. converges to the infinite-dimensional
optimization of Eq. . We explore how to numerically encode the finite optimization
in the next subsection.

6.1.3 Minimizing the entanglement

From the homodyne measurements, we can determine the expectation values of a and d
for each of the output states pp™. Along with 1p, these will be the operators éfg found
in the entanglement minimization problem of Eq. (4.34). The bounds given in Lemmas
6.1.146.1.3 with 7 replaced by the test states p{™, constitute the corresponding constraint

regions C(pQ™, CA%) As well, we can substitute the reduced density matrix p4 into Lemma

to define the constraint region C(p4).

To solve the optimization problem, we again turn to semidefinite programming. In
principle, the matrices representing the operators  and p in the Fock basis are infinite-
dimensional. This can lead to problems when working with them numerically. However,
for a state that only has support up to Fock level N, there is no cause for concern. Such
expectation values can be implemented by using truncated versions of the quadrature
operators themselves. Indeed, if 5 = 154115 is the (bounded) projection of & up to Fock
level N, then

Tr(tn@) = Tr(Tndn). (6.27)

Hence, expectation values of the quadratures are simply finite linear combinations of ele-
ments from 7y. The same idea holds as well for higher powers of the quadratures, as in
the operator d.

Conveniently, the above constraints can all be written in the form of matrix inequalities.
For instance, for any 7 that is positive, the constraint in Lemma [6.1.2] may be recast as

n—TNy Tr(ra) — Tr(rya)

Tr(rat) — Tr(rwa’) Tr(r) — Tr(ra—1) > 0. (6.28)

Similarly, we can rewrite the second order constraint found in Lemma [6.1.3] as the matrix
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inequality
A(m—7ny) Tr(7d) — Tr(rnd)

Tr(rd) — Te(ryd) 7 —Tin_s + Tr(r) — Tr(ry_2)| = (6.29)

We recall that two-dimensional matrices are positive semidefinite if and only if the diagonal
entries and the determinant are all non-negative. This lets us compactly encode the above

expectation value bounds (the determinant) as well as some auxilliary bounds (the diagonal

entries). These matrix inequality constraints can be formed for each output state p"*.

Finally, the reduced density matrix inequality from Lemma [6.1.4] can be applied to the
benchmarking states, giving directly a positive semidefinite constraint

pa > ph, (6.30)

where plY := Trp(p)p) is the reduced form of the projected state. To understand this
constraint better, we recall the block form of pYi from Eq. (6.2). The (k,[)-element of p’y
is connected directly to the trace of the block pyy, i.e.,

(k] o 1) = 3T (of). (6.31)

The inequality (6.30]) allows us to constrain the trace of each block piy. To see this, consider
a scenario where subsystem A is two dimensional. Then matrix inequality (6.30]) becomes

Tr(pro) — Tr(pfy) Tr(pun) — Tr(pl))

Taking the determinant, we get

{Tr(poo) = Tr(pgo)  Trlpor) = Tr(pin)| - (6.32)

ITr(por) — Te(of)] < \/[Tr(po0) — Tr(o)] [Tr(pnr) — (o). (6.33)

This constraint is therefore very similar to the other ones, and it should be clear that we
can make it stronger by increasing the cutoff N. We should point out that if subsystem
A has more than two dimensions, the inequality becomes even stronger since it also
forces higher order determinants to be positive.

As in the previous chapter, we choose the negativity (Eqgs. (2.8)-(2.9))) as our entan-
glement measure. Hence, the constraints and the objective function of the entanglement
minimization problem can all be encoded into a semidefinite program.
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6.2 Results

We present results for the following ensembles of test states: (a) two coherent states [84] 37],
(b) two squeezed states [35], and (c) three coherent states [36]. All optimizations were
encoded as semidefinite programs in Matlab using the solver SDPT3 [04] and the frontend
YALMIP [66], on a desktop computer with a 3 GHz dual-core processor and 4 GB of RAM.
First, our results for the two coherent state benchmark are shown in Fig. [6.1 where we
have used a cutoff at N = 20 and fixed the transmissivity as 7' = 1.0. To be consistent
with previous qualitative benchmarks, and to simplify the display of results, we assume the
transmissivity and the excess noise are symmetric for both states and both quadratures.
We can see that the results are very faithful, being non-zero throughout nearly all of
quantum domain. For other values of T', where the quantum domain is smaller, the results
are similarly faithful.

Only in the extreme regions of low overlap/low variance and high overlap/high variance
are there small differences between the quantitative domain and the quantum domain.
Both of these cases correspond to high values of 7, where the constraints are the weakest.
But we expect very little effective entanglement can be found in these regions anyway.
The region where (a|—a) — 1 has very little initial entanglement (since the test states
are nearly identical), and there will be even less after the test states pass through the
device. On the other hand, in the region where (a|—a) — 0, pa becomes diagonal and
the entangled state is indistinguishable from a classical mixture of the test states with
the available information. Although the benchmarking state may be highly entangled, we
cannot recognize any entanglement in our source-replacement scheme with a diagonal p4.
In principle, the quantitative domain could be extended by raising the cutoff V. Since in the
limit N — oo, the finite optimization problem (4.34)) converges to the infinite-dimensional
version , we conjecture that any mismatch between the quantitative domain and the
quantum domain can be resolved by using sufficiently large computational resources.

Another important class of entanglement-based benchmarks uses squeezed and anti-
squeezed vacua as test states. For consistency with previous qualitative results [35], we
restrict ourselves to devices whose operation is phase independent, so that the changes
in the squeezed /antisqueezed quadratures are the same for both test states, regardless of
their orientation. In this case, the relevant parameters for the quantum domain are simply
the initial squeezing magnitude r and the output variances of one test state, Varg(Z) and
Vary(p). Example results for this benchmark type are shown in Fig. [6.2] for the parame-
ters r = 0.35 and N = 20. We see that the quantitative domain is very faithful with the
quantum domain in the given parameter region. For much larger values of the variance
than shown in Fig. the entanglement bounds eventually decay. Again, this is due to
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Figure 6.1: Entanglement bounds for the two coherent state benchmark, using a Fock-state
projection (with N = 20), assuming no loss (7" = 1.0). The dashed black line represents
the boundary of the quantum domain, found using the EVM method. Variances lower
than this line correspond to devices within the quantum domain, whereas variances higher
than this line are known to be compatible with separable states [37] (note that the axes
are inverted in order to see the results better). Direct comparison with Fig. shows a
dramatic improvement in the entanglement bounds at higher variances.
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Figure 6.2: Entanglement quantification for squeezed/antisqueezed state benchmarks, us-
ing initial squeezing magnitude 7 = 0.35 and cutoff N = 20 (cf. Fig. [1.5). The bottom
left region is forbidden by the uncertainty relation. The quantum domain lies between the
forbidden region and the upper dashed line (found with EVM method — variances above
this line are compatible with separable states [35]). The quantitative domain, shown using
level curves of the minimal negativity, is very faithful in this parameter regime; the zero
contour and the quantum domain boundary coincide within the numerical resolution. For
much larger values of Vary(Z), the two domains begin to diverge due to reduced numeri-
cal accuracy. The small ‘sawtooth’ gap near the unphysical boundary is due to the finite
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the chosen cutoff N = 20 not being large enough to counter higher noise values.

Finally, the last example we will consider is three coherent states distributed symmet-
rically on a ring. Benchmarks with multiple coherent states are known to lead to larger
quantum domains than those with just two coherent states (see Fig. . The magnitude
|| of the coherent states is used as an input parameter, while loss and excess noise para-
matrize the output (again assumed symmetric). The results for this scenario are shown
in Fig. , using N = 15 (this is lower than in the previous cases because the extra
dimension on subsystem A also needs to be accommodated within our available compu-
tation resources). We find that the quantitative domain is larger than for two coherent
states. However, there is a small but noticable gap between the quantitative domain and
the known quantum domain.

To explore the strength of our scheme, we consider the following hybrid of the opti-

mizations (4.28) and (4.34):

rnnin E(dlip)
04520
Enyoria(PA5) = | subject to  Tr(oy [k)(k], ® C4) = Te(™Ch) ¥ k,j o (6:34)

TrB<U,1;l[B) = pA

where, as above, the projection is onto {|m)}~¥_, and the operators C’fB are taken from
the set {1, a, cZ} In this optimization problem, we search through states in the projected
subspace (for some fixed value of N), but we force the expectation values to be exactly
those of the infinite-dimensional state p%%. Whereas the results in Fig. are a lower

bound on the minimal entanglement of p%%, the result of the hybrid optimization will

necessarily be an upper bound on the minimal entanglement of p%%. In other words, we

have the relation
gmin(pr) < 5min(p?4u1§> < ghybrid (pOAl}:t?) (6-35)

In Fig. we compare the upper bound found by this hybrid optimization (using
N = 15) with the results shown in Fig. by considering a section at amplitude |a| = 0.2.
We see that our result is fairly tight to the upper bound for most variance values. We
also see that there is very little negativity to be found (less than 0.03) for Var(z) > 1.
The mismatch between the quantitative domain and the quantum domain again seems
to be due to the combination of low entanglement and weaker constraints at high noise
values. If desired, the quantitative domain could likely be extended by employing more
computational resources, since this would make the constraints tighter.
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Figure 6.3: Entanglement quantification for the three coherent state benchmark, with no
loss (T = 1.0) and cutoff N = 15 (cf. Fig.[4.4). Variance values below the dashed black
line are known to be in the quantum domain (note again that the axes are flipped to
aid visualization of the results). Unlike benchmarks using two test states, it is not known
whether variances higher than the dashed line must come from separable or PPT entangled
states. Although the quantitative domain is larger than the case with two coherent states,
it does not cover the entire known quantum domain due to the smaller cutoff and higher
energies involved.

90



0.25———

0.2 -
20.15 -
>
©
o
2 0.1 .

L

0 | | | | - L | |
05 06 07 08 09 1 11 12 13 14 15
Var(x)=Var(p)

Figure 6.4: Upper and lower bounding the minimal entanglement of the infinite-
dimensional benchmarking state p%%. The lower curve is a slice through the surface in
Fig. @ at || = 0.2 and the upper curve corresponds to results of the hybrid optimization
of Eq. (6.34). We see that the minimal entanglement must be quite small after Var(z) ~ 1.
Higher values of the cutoff N would be needed to have strong enough constraints to detect

this entanglement.
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Summary and outlook

In this chapter we examined a projection onto a finite subspace spanned by low-energy
Fock states. Provided the chosen truncation level is large compared to the mean photon
number, the projected states closely match the output states. We made this intuition
rigorous by providing several bounds which relate the quadrature expectation values for
the projected states and the output states. Incorporating these bounds into a semidefinite
program, we calculated the minimal entanglement consistent with given data for a number
of cases. For benchmarks based on two coherent states and squeezed /antisqueezed vacuum
states, the quantitative domain matched very well with the qualitative domain. For three
coherent states, the quantitative domain was large, but there was a noticable gap with the
known quantum domain. We further studied this gap and concluded that there was very
little (but non-zero) entanglement in this region, which could be captured with improved
numerical capacity.

The Fock-state projection performs quite well compared to the two-qubit projection
from Ch. [5 allowing us to quantify entanglement throughout much more of the quantum
domain. We should note, however, that the results presented in this chapter do not su-
persede those from the previous chapter. Indeed, the two-qubit projection appears to be a
better choice when the level of noise is small, as can be seen by comparing Figs. and
6.1 In Fig. the entanglement lower bounds exactly match the entanglement of the
initial state when the excess noise is zero. Thus, the two-qubit approach is able to quantify
all available entanglement in this case. In constrast, the corresponding entanglement lower
bounds in Fig. are numerically less than the initial entanglement. Thus, at least for
the case of two coherent test states, the two approaches are complimentary.

Of course, the Fock-state projection has the additional advantage that it is more gener-
ally applicable. It can also be used to make quantitative statements in other benchmarking
scenarios. As well as the presented example, this framework can be applied to essentially
any finite ensemble of low-energy states. In fact, in the next chapter, we will use the Fock-
state projection to help benchmark a quantum memory using multiple mixed test states,
which represents the most general scenario.

92



Chapter 7

Benchmarking with realistic states
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In this chapter, we extend the framework of entanglement-based benchmarking to allow
arbitrary test states. The material in this chapter, as well as the accompanying App.
D] is based largely on an unpublished manuscript, for which I am the primary author
and researcher. I intend to submit this manuscript to the journal Physical Review A. If
published, the article will be copyright 2012 by the American Physical Society. Portions
of the manuscript have been adapted for this thesis.

So far, we have developed several tests and tools for verifying the quantum nature
of imperfect devices. Now, if we recognize that our quantum communication devices are
imperfect, we must also recognize that our state preparations may be imperfect as well.
Excess noise or other flaws in the preparation procedure can cause the prepared test states
to be different from the theoretical test states. This leads to discrepencies between the
idealized benchmarking situation and the experimental realization. Recall from Sec. [4.1.1]
that most CV benchmarks assume that the test states are pure and/or Gaussian, since
such states are much more amenable to theoretical analysis than more general states of
light. Using state tomography or some other process to obtain numerical descriptions of
the prepared states, we may find that these states are not consistent with the ideal form
(e.g., not pure or not Gaussian). In this case, is it valid to apply benchmarks which assume
the ideal form? Addressing such discrepencies between theory and experiment is essential
for a quantum benchmark to be meaningful.

In this chapter, we show how to extend existing quantum benchmarking methods to
accommodate arbitrary states, not just states with a special form. Ref. [36] already outlines
entanglement-based benchmarks for arbitrary numbers of pure states, which formed the
starting point for the quantitative extensions of Chs. in this thesis. The first attempt
to generalize entanglement-based benchmarks to mixed states was taken in [35], but this
was restricted to the special case of only two mixed test states. We also note that, although
the chosen examples in both [36] and [35] all consist of Gaussian states, this form is not
at all necessary. Hence, what remains is to generalize these previous results to the case
of more than two mixed states, which would allow us to derive quantum benchmarks for
arbitrary finite ensembles of test states.

The remainder of this chapter is laid out as follows. First, we outline how to generalize
entanglement-based benchmarks to any number of mixed test states. We recognize that
there is some inherent freedom allowed in this extension, and we study how to strengthen
benchmarks to give the largest quantum domain, i.e., the best chance of certifying im-
perfect quantum devices. We briefly show how this idea also applies to fidelity-based
benchmarks. As an application, we consider phase symmetric test ensembles, and derive
a simple standard form. Finally, our general benchmarking scheme is used to certify an
actual implementation of a CV quantum memory.
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7.1 Benchmarking framework for arbitrary states

Experimentally, the benchmarking protocol follows the exact same lines as in previous

chapters, except that the test states {pi® fcw: 61 may now be mixed. The device acts on

these mixed test states and outputs states p™ on subsystem B, which Bob measures.
Along with a suitable Gram matrix p4, this is the only information available to determine
the entanglement of the output state p%%. As we will see shortly, the theoretical treatment
of the benchmarking procedure is somewhat different than before, though the goal remains
the same. We still aim to rule out adversarial MP devices which attempt to mimic true

quantum channels.

7.1.1 Entanglement-based benchmarking with arbitrary states

How can the virtual entangled state in Eq. be extended to the case where the test
states {pi}27 ! are mixed? Some progress was made in this direction in [35], restricting to
the case of only two test states. Among several potential ways to generalize Eq. , it was
found that using purifications of the test states was the most useful. In this framework, we
imagine that instead of preparing the test states, we prepare purifications {|I'x) 4 4~ 24: 61,
where A” is some purifying system, i.e.,

Tear (D) Tkl arar) = P (7.1)

From now on, |T')) will always refer to a purification of pi.

By offering the purifications instead of the actual test states, we give extra power to an
adversarial MP device, since the purifications may be more easily distinguished than the
test states. Although this modification may result in a slightly smaller quantum domain,
any benchmarks based on the purifications are valid. Ref. [35] offers one method to reduce
the impact of this relaxation, but this introduces additional numerical complexity, and we
will not consider it in this thesis. However, there remains some additional freedom in the
protocol, namely the choice of purifications. When choosing purifications, we should aim
to make the task of an adversarial device as hard as possible. We must develop this basic
intuition further in order to strengthen mixed-state benchmark schemes using purifications.

To clarify, the experimental procedure (using the test states {pi"}) remains the same.
Theoretically, the benchmarking procedure is analyzed as if the purifications {|I'y) 4 4n}
were used instead, i.e., the device is allowed to act on the larger system A’A”. Measure-
ments are still restricted to the B subsystem, and the only information we retain about
the purifications are the overlaps (I';|I').
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For two mixed test states pi and pi", the virtual entangled state takes the form

1
) aar = <75 (1004 @ o) + 104 @ 00000 ) (7.2

Purifications are not unique, but we must fix some choice to proceed further. Since we
only retain information about the overlap (I'g|T';), it is important to know the range of
allowed values for this parameter. From Def. and Thm. [2.4.4, we have

2
Try\[\ oo o o8| (7:3)

where F(pi, p") is the fidelity between the two test states. In [35], it was argued that
the best benchmarks (i.e., those which give the best opportunity to certify devices in the
quantum domain) come from purifications which saturate the fidelity bound. There was
some numerical support for this claim, but one can also appeal to the fact that the fidelity
is a measure of (in)distinguishability. Accordingly, choosing purifications which are as
indistinguishable as possible will make it harder for a MP channel to simulate a quantum
channel reliably.

max | (To|T1) |2 = F(p, pi*) =
max |(DolT) = F(off, pi)

It is straightforward to generalize the entangled state in Eq. (7.2) to accomodate M > 2
mixed states. Specifically, we will use

M—-1
1
“IJ>AA/A“ - \/M Z ’k>A® ‘Fk>A/A”' (74)
k=0

The reduced density matrix pa = Trarar [U) V|, 4 4~ is now (aside from the prefactor) the

Gram matrix of the purifications {|Tx) 12,k

(Kl pa 1) = 27 (DT, (7.5)
It is not straightforward how to choose purifications in this case. The fidelity is a useful
measure for two states, but there is no clear extension of the concept for multiple states.
Indeed, the set of allowed values for the overlaps (I'y|I';) has a more subtle structure than
just a product of the ranges allowed by Eq. . It may not be possible to choose
purifications which achieve the fidelity bound for all pairs. In order to determine the best
choice of purifications, we will examine the structure of entanglement-based benchmarking
at a deeper level.
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7.1.2 Optimizing the purifications

How can we choose purifications to optimize the strength of entanglement-based bench-
marks based on multiple mixed test states? To begin answering this, we make the following
observation.

Proposition 7.1.1 (Strengthening benchmarks using CPTP maps). Let {|T})}25," and
(AR I be two different sets of purifications of the test states {p"}rly'. Assume that
there is a completely positive, trace-preserving (CPTP) map which transforms one set of
purifications to the other, i.e., there exists €2 such that

QTRNCR]] = [Ar)Ak| (7.6)

for all k. If we cannot conclude that a device is in the quantum domain with information
based on the {|A)}, then we cannot conclude that the same device is in the quantum
domain using information about the {|Tx)}.

Proof. Represent the device under investigation by the map A. This map takes in states on
the joint A’A” system and outputs states on the B system. We proceed in two steps. First,
we assume that we can perform tomographically complete measurements on the output
states. Later we will relax this to incomplete measurements. In either case, we work under
the constraint that, for all k,

A[JARNAK] = A[Te)Tk]] = o2 (7.7)

where p?"* is the output state corresponding to the test state pi. This constraint is
experimentally enforced, since the output states are independent of the purification we use
to theoretically describe the protocol. Consider the case where we describe the test states
using the purifications {|Ax)}. A benchmarking protocol is unsuccessful when we cannot
discriminate between the device and a MP channel, i.e., when there is a MP channel which
gives the same output states as the device. Assume then that there exists an MP channel
A v p such that

Aarpl| Ak AR = 2 (7.8)

for all k. Now consider the alternate situation where we use the purifications {|I'x)}, and
there exists a CPTP map Q as in Eq. (7.6). We define another channel 3,,p by

ZMP = AMPOQ. (79)
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The concatenation of any channel with a MP channel is as a MP channel, so ¥,,;p is in
the MP class. From Eqs. (7.6)-(7.8), we must have

Sup[[Te)(Tel] = o2 (7.10)

for all k. Therefore, there exists a MP channel which gives the observed output states
when using the purifications {|['x)}.

Even when we do not have enough measurements for complete tomography, we can
follow simular arguments. Instead of having one output state p3"* for every k, we have
a set of states C[p"], all of which have the same expectation values with respect to the

employed measurement operators {O]B}
Clo] = {r € B(Hz) | Te(rOh) = (O)meas ¥ i . (7.11)

In this case, a benchmarking protocol is unsuccessful when there is a MP channel Ajp
such that .
Avpl|Ar)Ax]] € Clop™] (7.12)

for all k. Using this channel, we again define a MP channel ¥;,p as in Eq. (7.9)). By Egs.
(7.6) and (7.12), we conclude

Sup[[Te)Twl] € Clpg™]. (7.13)

In either case, if benchmarking is unsuccessful for the {|A)}, it cannot be successful for
the {|I'y)}.

O

This proposition has some important consequences. For one, it tells us that in the
source-replacement scheme we are using, the quantity of entanglement does not have a
direct bearing'l Instead, the focus should be to find those purifications which cannot be
collectively transformed, via CPTP maps, to any other valid set. Benchmarking schemes
built with such purifications provide the hardest challenge for an adversarial MP device
attempting to mimic a true quantum device. Indeed, such limiting purifications necessarily
lead to a larger quantum domain than any other comparable choice. Because we only use

1For example, when the entangled state in Eq. has maximal entanglement, the purifications must
be orthogonal, (I'x|T';) = dx;. But orthogonal purifications can be perfectly distinguished and reproduced
by a particular MP channel, giving the same output as a perfect quantum memory. Thus, no benchmarking
protocol will be successful in ruling out MP channels when Eq. is maximally entangled.
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the overlaps for benchmarking, we can optimize the CPTP map condition on the level of
Gram matrices. In the rest of this chapter, we will use the terms ‘purifications” and ‘Gram
matrix (of the purifications)’ somewhat interchangeably.

The following theorem will help us translate the CPTP map condition to a more
amenable form.

Theorem 7.1.2 (Allowed Gram matrix transformations [97, (I8, 19]). Let {|v)}15," and
{166) 12551 be two sets of pure states. Let G and D be the corresponding Gram matrices,
with elements Gyj = (vj|v) and D;j == (6;]0;). There exists a CPTP map Q) taking the
former states to the latter if and only if the Gram matrices are related by

G=PoD, (7.14)

where o denotes the Hadamard (or Schur or entrywise) product. The matriz P satisfies
P >0 and its diagonal elements are given by diag(P) = {1,1,1,...}.

To avoid potential confusion, we point out that while the CPTP map (2 takes the {|vx)}
to the {|dx)}, the Gram matrix condition, Eq. , has the opposite sense, i.e., G is
obtained by doing a particular operation on D. Since some of the matrix elements of P
could be zero, we cannot invert the equation to give D as a function of G, so we leave
the relation in this form. We also point out a corollary to this theorem: all compatible
purifications of the test states {pi"} can be prepared by applying a CPTP map to a set
of purifications which are orthogonal. Therefore, orthogonal purifications can be seen as
generators for the rest of the set of purifications. Of course, we are interested in the other
end of this generation, i.e., the limiting sets of purifications.

Finding candidate purifications

Given some ensemble of test states, it may be quite difficult to determine the best purifi-
cations analytically, especially for arbitrary test states. Alternatively, we can attempt to
find limiting purifications by maximizing some objective function f, defined on ensembles
of pure states (or on the corresponding Gram matrix), which preserves the order structure
induced by CPTP maps. In other words, if there exists a CPTP map (2 taking the pure
states {|7x) }2L," to the pure states {|6;) 122", the desired function must satisfy

fEe}) < F({166) 1) (7.15)

When this property holds, the purifications which are limiting in the sense of CPTP maps
will maximize the objective function f. Before discussing candidates for the objective
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function, we point out one caveat. Namely, the order structure imposed on the purifications
by CPTP maps is not a total order. Accordingly, purifications which are not linked by
a CPTP map are not comparable. Nevertheless, we can design quantum benchmarking
schemes with any feasible set of purifications, and this heuristic provides a way to obtain
the best choice out of all comparable purifications.

A good candidate for the objective function is the purity of the reduced density matrix
pa (recall from Eq. (7.5)) that p4 is essentially the Gram matrix of the chosen purifications).

Definition 7 1 3 (Gram matrix purity). Let {|Tx)}ary! be a set of purifications of the test
states {pP 1!, with Gram matriz Gij = (Tj|T;) and let pa = -G. We define the Gram
matrix purity as

| (De| T2 (7.16)

From Thm. [7.1.2] when there is a CPTP map taking {|I'x)} — {|Ax)}, we must have
Tk 1) = Pu (Ax|A), (7.17)

with |Py| < 1. Therefore the Gram matrix purity is monotonic with respect to CPTP
maps, as required.

The Gram matrix purity also has links to the distinguishability of the test states. For
example, when working with only two test states pi and pi", the maximal value of P is

ITo),T'1)

maXP—le <2+2 max [(I'o|Ty)] )

L (14 F (o). (718)

Aside from a fixed affine transformation, the Gram matrix purity is the fidelity between
the test states. For M > 2, the Gram matrix purity defines a kind of averaged multi-state
analog of the fidelity (where the maximization has a more subtle form). Finally, consider
the state

1 M-1

paat = 3f 2 k)Tl arar - (7.19)
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Since a device has no information about which test state was prepared, this is the effective
state input to the device in the purification picture. But since the virtual entangled state in
Eq. is pure, the spectra of the reduced states are equal, i.e., spec(pa) = spec(parar).
Therefore, when p,4 is of high purity, then so is the effective test state pa 4». Provided
the test states are non-orthogonal, a measure and prepare channel will introduce some
unavoidable disturbance on p4s4». Intuitively, by making the effective test state pa 4+ as
pure as possible, we can magnify the observable effects of any disturbance.

One drawback of the Gram matrix purity is that it will be difficult to compute the
maximum for M > 2, where we do not currently have an analytic formula like Eq. .
Alternatively, since the objective function in Eq. is convex and the set of compatible
Gram matrices is convex (see App. , we could maximize this function numerically using
the methods of convex optimization. Although this presents one path towards our goal,
we will not pursue it here. Instead, the Gram matrix purity helps us motivate a slightly
different objective function which is easier to optimize numerically.

Definition 7.1.4 (Alternate objective function). Abbreviate the overlaps by Zg = (I'x| 1)
and decompose them into real and imaginary parts, Zy = X +iYy. The alternate objective
function is given by

S
S

-1

h({IT;)} (Xu + Yir) - (7.20)

~M

Il
o

k=l+1 1

Aside from a prefactor and duplicated terms, the main difference between h and the
Gram matrix purity P is that the squared modulus of the overlaps is replaced by a sum of
the real and imaginary parts. The advantage of this objective function is that it is linear
in the parameters Xj; and Y}, allowing us to numerically optimize it using a semidefinite
program. In cases where the the imaginary parts Yj; vanish, then X, 4+ Y} is a lower
bound to the modulus |Zy|. As well, when the objective function & is large, the Gram
matrix purity will also be large, meaning we are close to a limiting Gram matrix. The
main drawback of this objective function is that it is not monotonic. Nevertheless, we
remind the reader that any Gram matrix found by optimizing A is valid for benchmarking
purposes. Indeed, we will see in Sec. that, despite being non-monotonic, this function
leads to a Gram matrix with near-optimal purity.

Before moving on, we pause to summarize the main results of this section. Given some
arbitrary ensemble of test states {p kM: 51, we consider a virtual entangled state as in
Eq. (7.4), where the states {|T'x) y 4n }ory" arve purifications of the test states. Although
the test states are used in practice, we benchmark a device by assuming that the device
has access to the purifications. This procedure may slightly weaken the benchmarking,
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but there is also some flexibility in the choice of purifications, which can be used to best
restrict the effects of this relaxation. We showed that purifications which are extremal in
the sense of CPTP maps are better for benchmarking than all other comparable choices,
so we should aim to build benchmarks using such purifications. We suggest finding good
candidate purifications by optimizing some appropriate function which is monotonic with
respect to CPTP maps. We propose the Gram matrix purity P as a suitable candidate
for this objective function, although it may be difficult to compute. We also propose a
numerically simpler, though non-monotonic, objective function which may be used in place
of the Gram matrix purity.

7.1.3 Fidelity-based benchmarking with arbitrary states

At this point we make a short digression to show how the above ideas can be applied to
fidelity-based benchmarks. Although we are mainly interested in using entanglement to
benchmark CV quantum devices, fidelity-based benchmarks still have some utility, particu-
larly for discrete systems (e.g., the RSP protocol of Ch. . In fact, Ref. [36] demonstrated
a link between the fidelity-based approach and the entanglement-based approach by show-
ing that they could give the same quantum domain (although the entanglement-based
approach required far less resources).

In order to study this connection, we first give a convenient formulation of the (root)
fidelity as a semidefinite program.

Theorem 7.1.5 (Fidelity as SDP). Let 79, 1 € B(Hg) be two arbitrary density matrices.
Then the root fidelity of these two density matrices is given by the solution to the following
optimization:

max Tr <X+TXT>
XeB(HB)
VF(19, 1) = o X : (7.21)
subject to >0
XT T

Proof. Normalizing the constraint matrix and using {|0),,|1) 4} as orthonormal vectors
on some indexing space H 4, we define

b = SL10K0L, @m0+ [OX1], @ X

+1X0] , ® XT + [1)(1] , ® 7). (7.22)
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Since ¢ 4p is normalized and ¢4 > 0 must hold, then ¢ 45 is a valid density matrix. Thus,
we can consider its purification |®) 5. (with Tre [N ®|,5- = ¢ap), where the Hilbert
space on C'is a copy of Hx ® Hp. Without loss of generality, we can write

1
|P) upc = 7

From this, we deduce that |) 5 and |$) 5 must be normalized purifications of 7, and
71, respectively. But this also means that

HO)A ® |QO>BC + |1>A ® |Ql>BC] : (7-23)

X =Tre (|Q0)( U] 50) (7.24)
so the objective function in the SDP is
X + Xt
T (+T) — Re[(Q0] ). (7.25)

Without loss of generality, we can take TrX to be real and positive, so the right hand side
of Eq. (7.25]) is equal to [{Q|€2;)|. Comparing to Eq. (2.5)), we conclude that the solution
of the above SDP is the root fidelity v/ F(ry, 7).

O

Not only does Eq. (7.21]) provide another method to calculate the fidelity, but it can also
be used to compute the maximum fidelity between two states which are not fully known,
since SDPs allow for free parameters.

Now, we imagine the situation where we know the test states {pi"}. Since channels are
linear, we can parameterize the corresponding output states {p0"|p" = A[pi*]} as linear
transformations of the test states. Using the Choi-Jamiolkowski isomorphism [50} 20],
complete positivity of the channel can be encoded as a positive semidefinite constraint.
In a similar manner, the trace preservation property can be realized as a linear constraint
on the channel (see e.g., [7]). Combining these constraints with Thm. [7.1.5, we can

optimize the average root fidelity vF = >, peVE(pi?, p3*) over arbitrary channels using
a semidefinite program.

Although the root fidelity is slightly different than the fidelity, it is also valid to use
it as the figure of merit for fidelity-based benchmarking, since MP channels will still have
an optimal value less than unity for suitable test ensembles. If we could further enforce
that A corresponds to a MP channel, then we could use the above formulation to calculate
the maximum root fidelity achievable by such channels, forming the benchmark thresh-
old. Unfortunately, it is not known how to efficiently encode this property, since it is
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equivalent to deciding if a given state is separabile, a known hard problem [31]. However,
we can instead use the weaker requirement that the channel breaks NPT entanglement
[77]. Because the set of PPT states contains the set of separable states, the class of NPT-
entanglement-breaking channels (i.e., channels such that (id® A)[p] is PPT V p) necessarily
contains all MP channels as a subset. Thus, the maximum average root fidelity over NPT-
entanglement-breaking channels will be higher than the maximum over MP channels,

——Inax

VFyprp > VFyp. (7.26)

This provides a sufficient (but not necessary) benchmark: any device that can achieve

—F—Inax
higher root fidelity than v/F ypppg is in the quantum domain. The new benchmark value,
although weaker, can be more efficiently determined, since PPT conditions can be checked
within a semidefinite program.

Examples of fidelity-based benchmarking

To exemplify the above ideas, we consider M pure test states {|¢x)} on the Bloch sphere,
each having the same polar angle 0, = 6 € [0, 2] but symmetrically-distributed azimuthal
angles oy = % (cf. Eq. (2.17)). We assume equal probability of using each test state,
Pr = % These symmetry conditions are used only to simplify the results and are not

necessary to calculate benchmarks.

To consider NPT-entanglement-breaking channels, we need to introduce entanglement
somewhere. To do this, we follow the familiar recipe of Eq. (4.4]), which provides some
initial entangled state p'f,, = [T P|,,,. A device (represented by A) acts on the
A" subsystem, mapping to some output subsystem B. The output state p%% = (id ®
A) [Tty (Bent| , o, takes the usual form of Eq. (4.9). The diagonal blocks pgit of the output
state are connected to the test states pj' by some fixed linear and positive-semidefinite
constraints, due to the NPT-entanglement-breaking map A. Finally, the standard Gram

matrix condition Trg(p%%) = Tra/(p4) = pa is enforced.

Using the above constraints and the variational formula of Eq. (7.21)), we can compute

the benchmark value vF ]n\;j:T p for the given test states with a SDP. Results for this inves-
tigation are shown in Fig. for M = 2,3 test states and varying polar angle . We can
also study the effect of Gram matrix purity on fidelity benchmarks by replacing the true
Gram matrix by some modified version. As an example, consider the case of M = 2 pure
states. The true Gram matrix is

1] 1 ()
PAZ S ) 1| (7.27)
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Figure 7.1: Example fidelity-based benchmark thresholds /F ?;(T for the given qubit
states. Solid curves: 2 states, dashed curve: 3 states. Data above the curves cannot
come from NPT-entanglement-breaking channels. The various solid curves represent the
thresholds for different Gram matrix purities. From top to bottom, these correspond to

the parameter values b = 0.0, 0.25, 0.5, 0.75, and 1.0 in Eq. (7.28).

We replace this by a modified version

~ 1 b (Y] o)
PA= 10 (o) 1

We take |b| < 1, so that the purity of p4 is upper bounded by the purity of p4. The results
of the root fidelity optimization, for different values of b, are also included in Fig. [7.1] It is
clear that the purer the Gram matrix, the larger the quantum domain, as expected based
on the previous section. We could also have used mixed states, and the different Gram
matrices would represent different choices of purifications.

(7.28)

For two pure test states, we can compare these benchmarks to the known results of
[26, (73], which were labourously derived analytically. Now, the analytic results are for the

max

optimal average fidelity Fnj\}?, whereas we have the quantity vF ~prp- Fortunately, the
set of PPT states and the set of separable states are the same for the case of two qubits
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Figure 7.2: Comparison between fidelity benchmarks obtained by optimization and analyt-
ically. Points above the analytical threshold are in the quantum domain. The lower bound,
obtained using the results of the root fidelity optimization, is tight with the analytically-
derived optimal fidelity.

[41], which is the situation here. Thus, the set of NPT-entanglement-breaking channels is
equivalent to the set of MP channels, giving

Fyxprs = Fup- (7.29)
To handle the square root, we can take the root fidelities f™ := v F(pi*, p2"*)|ops. found
from our SDP optimization and substitute their squares into the average fidelity formula.
The result, representing a particular achievable fidelity value over NPT-entanglement-
breaking channels, forms a lower bound to F E?T - To summarize, by squaring and aver-
aging the root fidelity terms found in our optimization, we can get a lower bound on the
analytic bound, i.e.,

1 opt. —=max
5 2 (™) < Fap. (7.30)

k=0,1

The analytic result and the lower bound calculated using the results of the optimization
are shown in Fig.[7.2, We see that the two results are in agreement. Thus, the root fidelity
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terms obtained via our optimization are just the square roots of the optimal fidelity terms
for MP channels. A similar correspondence between separable and PPT states holds for
systems of dimension 2 x 3, so we suspect that the root fidelity thresholds for three single-
qubit test states also correspond to the optimal MP values.

Although we have not studied the topic too deeply, it is possible to find a common
framework for fidelity-based and entanglement-based benchmarks. By using the varia-
tional formula of Eq. , we can compute fidelity-based benchmarks using semidefinite
programming. Although the benchmarks computed this way agree with known analytic re-
sults for very low dimensions, they are likely weaker in general. Nevertheless, this technique
provides a quick method to get useful benchmarks for finite-dimensional systems.

7.1.4 Benchmarking with phase-symmetric ensembles

Another useful application for the earlier ideas of this chapter is in testing devices which
are phase covariant. A device (represented by A) is phase covariant when it commutes
with unitary rotations of phase space, i.e.,

A[UsoUJ] = UsA[o]UL Y 0. (7.31)

The rotation unitary is given by Uy = exp(—i¢n), with n the standard number operator, so
U ; = U_4. We note that any channel can be made phase covariant by phase-randomization,

1 2m
Acl - T=52 | UsAlU-o( - Ut UL, (7.32)
One way to accomplish this phase randomization is to use a drifting optical phase [30],
a situation which is common in many continuous-variable setups. If a phase-randomized
channel passes a quantum benchmark, then the channel itself must be in the quantum
domain as well. On the other hand, phase-randomization may weaken a channel’s ability
to beat a benchmark, since it involves concatenation with other channels.

Phase-covariant channels offer a number of advantages. On the experimental side, they
can be benchmarked using only one physical test state. The effects of a phase-covariant
channel on many other test states can be inferred by symmetry. On the other hand, phase
covariance can lead to great numerical simplifications. If the test states are unrelated,
the number of free parameters in the density matrix pQ% scales quadratically with the
number of states M. When phase symmetry conditions are imposed, we will show that the

number of free parameters can be made to scale only linearly with M. This gives us more
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computational room to push up the number of states M in the test ensemble, leading to
stronger benchmarks.

To benchmark a phase-covariant channel, we consider test states from the rotationally-
symmetric ensemble
{1 = Us ot U 1 (7.33)
where 0 = QM” For phase-covariant devices, we have

Aloi] = Uy Alog')U3", (7.34)

so we can infer the channel’s effect on pi* by suitable rotations of its action on one real
test state pi. In this way we can generate multi-state benchmark data efficiently from any
seed state. We will refer to the situation where both the test states are phase symmetric
and the tested device is phase covariant as phase-symmetric benchmarking.

We will now present two standard form results relevant to phase-symmetric bench-
marking. In the purification picture, the virtual entangled state takes the form p'},, ,» =
| were)(pent| |, 40 and the corresponding output state is pQi = (idg @ A) [T T, 440
The block decompositions of Eqgs. and remain valid with the additional require-
ment that p'} ,, = Tr 4 (p'f 4 4 ). For phase-symmetric states, the following relation can be
imposed on the blocks of p'}

Uepikr}U(;r = pikn+17l+1 (mod M) V k, 1. (7.35)
For a phase-covariant channel, the corresponding output state blocks pgj* will have the same
symmetry. Density matrices with this symmetry can be brought into a simple standard

form.

Theorem 7.1.6 (Standard form). Let

M-1

TAB = % i
k=0
2

be an arbitrary bipartite matriv. Let 0 = 37 and let wy = exp(if) denote the primitive
Mth root of unity. Assume that the following symmetry relation holds:

UpTiaU) = Thr1001 (modM) ¥ k, 1. (7.37)

M-1
Z k)4 @ Ths (7.36)
1=0

Then Tap is unitarily equivalent to a block diagonal matriz
M-1
D(7a5) = P Ex (7.38)
k=0
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where

1M
Ek:MZ

1
=0

whitrU}. (7.39)

Moreover,
M—

Z Ey = 700, (7.40)
k=0

—_

and Tap s positive semidefinite iff all of the Ej are positive semidefinite.

Proof. See App. [D.2]

In the next section, we will quantify the entanglement of the state p%% by computing
lower bounds on the negativity (Eq. . , which involves the trace norm of the partial
transpose (p9%)74. For phase-symmetric benchmarking situations, we can greatly simplify

this calculation.

Theorem 7.1.7 (Trace norm in standard form). Let Tap be as in Thm. . Then the
trace norm of the partially transposed state ng reduces to the form

Imaslh = Z || B, (7.41)

where the {E 3200 are formed by rearranging the matriz elements of {Ey}25" from the
standard form of Tag. Specifically, the matrix elements in the Fock basis are determined
via

[Ex)ji = [Ejri-xljn (mod M). (7.42)

Proof. See App. [D.3|

These two standard form results allow us to reduce the numerical complexity of phase-
symmetric benchmarking. Although the available information remains unchanged (the
Gram matrix p4 and measurements on the seed state piI'), the virtual benchmarking states
are more compactly encoded by using the M square matrices Ej) instead of the w
independent blocks 7.
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7.2 Certifying a quantum memory

We now apply the above theoretical results to the task of certifying a continuous variable
quantum memoryP} This memory is based on a three-level lambda gradient echo scheme
involving hyperfine spin states of warm (~ 80°C) rubidium atoms. Its fundamental oper-
ation has been outlined in detail elsewhere [40] [44]; the data used here are based on the
results reported in [44]. For the purposes of benchmarking, we will mainly omit the finer
details and treat it as a black box. The one exception is to point out that the equations
which model its ideal operation are phase independent [40]. On the level of actual test
data, there is also no indication of any phase sensitivity in the memory, i.e., the observed
loss and excess noise are uniform with respect to the angle in phase space. Finally, the
experimental phase reference was allowed to drift freely between runs. Ideally, this drift
can be used to phase randomize the device [30], i.e., to render the channel phase covari-
ant. Unfortunately, the observed phase drift was not fast enough to ensure the uniform
distribution of phase angles required in Eq. . Nevertheless, we will work under the
assumption that the memory operation is phase covariant, and test the memory using a
phase-symmetric ensemble generated by a single test state piI'.

During an experimental run, light is generated with a continuous-wave master laser.
This light is split into a coupling field (for activating the memory), a strong continuous
wave local oscillator, a weak signal pulse, and a memory reference pulse. The signal
and memory reference pulses share the same optical phase relative to the local oscillator.
Before entering the memory, the reference pulse is detuned from the active frequencies
of the memory, so it passes through unaffected. The reference pulse enters the memory
shortly before the signal pulse, with a temporal separation that is small compared to the
timescale of experimental phase fluctuations. The reference pulse thus serves as a way to
determine the phase of the signal before the memory. Both the output signal and reference
pulses are interfered with the local oscillator (which has not passed through the memory) in
a homodyne measurement apparatus. This process generates quadrature amplitude data
for the output state pg"*. The phase angle of the measurement is inferred through the
beating pattern of the detuned reference pulse and the local oscillator. Similar data can
be obtained for the input state p when the memory is inactive.

Over repeated runs, many quadrature/phase data points are collected to form a raw
data set. Tomographic reconstruction was performed using an iterative maximum-likelihood
algorithm [47] using data from 100,000 pulses, giving density matrices for both the input

2 Author’s declaration: I did not aid in the design of this memory, nor the gathering of experimental data,
nor the tomographic reconstruction. My contributions consisted of analyzing the data (raw quadrature
data and tomographically-reconstructed density matrix) for quantum benchmarking purposes
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and output states in the Fock basis. A constant phase offset between the input and output
signals was observed; this offset was cancelled digitally during the tomographic reconstruc-
tion. The tomographically-reconstructed density matrices were numerically truncated after
the first 30 Fock states (]0),...,|29)). This cutoff is supported by the fact that both the
input state and output state are essentially confined to the first 10 Fock levels, for which
the cutoff error in either state is ~ 107>, From the tomography, the input state was found
to have mean photon number (n;,) = 0.67 [44]. We do not categorize this state, but it qual-
itatively resembles a coherent state with added noise. The tomographically-reconstructed
output state had a similar form, with mean photon number (7,,) = 0.57.

As demonstrated in earlier chapters, output state tomography is not required for suc-
cessful benchmarking; measurement of two conjugate quadrature variables may be suf-
ficient. However, having the tomographically reconstructed density matrices will allow
us to study the difference in strength between the two approaches. To get the required
quadrature expectation values, we collected the original data into bins containing 500 data
points and restricted our attention to two bins corresponding to the quadratures & and p.
Taking the mean and standard deviation of the data within these bins, we get estimates
of (z), (p), Var(z), and Var(p). Error bars, based on the finite sample size of the bins,
are calculated using standard error propagation techniques. The final quadrature moment
values are listed in Table [7.1]

Operator | First moment (-) | Second moment ()
T 0.01 £ 0.03 0.57 £ 0.04
D -0.95 £ 0.03 1.41 £ 0.09

Table 7.1: Experimentally-determined first and second moments for the conjugate quadra-
tures z and p.

7.2.1 Finding the Gram matrix

The test ensemble is generated by rotations of the seed state piI', as in Eq. , form-
ing a ring in phase space. Our theoretical description of the seed state comes from the
tomographic reconstruction with the finite cutoff in Fock space. We make no further as-
sumptions about the seed state other than that the tomographic description is accurate.
Purifications, and the associated Gram matrix, are based on this numerical description.
Due to the mixed nature of this state, previous entanglement-based benchmarks would be
limited to only two test states. We will see later that two test states are not sufficient in
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this case to reliably (i.e., within experimental error) certify the memory, but adding more
test states enables a successful benchmarking.

In order to find candidate Gram matrices for the purifications, we convert the opti-
mization to a semidefinite program. To this end, we consider the bipartite matrix (cf. Eq.

(#-5))

piar =Tran(pharan)
| Mo1M-
- kXL, ® ol (7.43)

k=0 1=0

The diagonal blocks of p'},, are the test states, i.e., pit = pit, and the off-diagonal blocks
pi € B(Ha) consist of free parameters. The off-diagonal blocks are linked to the purifica-
tions through the relation

in 1
Te(pir) = (Kl pa|l) = 7 (TilTw) - (7.44)
We have traced out the purifying system A” since no measurements are performed on
that system, but we have kept subsystem A’ in order to later ascribe some quantity of
entanglement to the input state.

As stated in Sec. [7.1.2, instead of using the Gram matrix purity P, we optimized
the slightly different and numerically more simple objective function h from Def. [7.1.4]
Although it might be more elegant to use the Gram matrix purity P, nothing in the
benchmarking procedure depends on that function. In fact, the Gram matrix found by
optimizing h over the given experimental data works quite well for our purposes. To
see this, we can consider simple lower and upper bounds on the maximum value of P
compatible with the given constraints.

For one, the purity of the Gram matrix that maximizes h (denoted arg maxh) is less
than the maximum possible Gram matrix purity over all purifications, i.e.,

P| < maxP. (7.45)

argmaxh —

On the other hand, we can easily find an upper bound on P by considering the pairwise

fidelities:
M—1M-1

1 in _in
max P < el Z ZF(pk,pl ). (7.46)
k=0 1=0
In Fig. [7.3, we plot the values of these lower and upper bounds for different numbers

of rotationally symmetric test states (omitting the constant factors trz). The computed
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bounds are very close to each other, differing only in the third decimal place. This is the
same order as the estimated numerical precision of the optimization. We conclude that
using the modified objective function from Def. is suitable for the situation we are
considering, and that the obtained Gram matrix purity is close to what would be obtained
by maximizing P itself.

7.2.2 Computing the entanglement

Having used the heuristic function h to find a feasible p'f,, which corresponds to a near-
optimal Gram matrix, we now consider the entanglement of the corresponding output state
p%AE. We use the negativity (Eqs. (2-8)-(2.9)) as our entanglement measure. For states
written in standard form, the negativity can be computed on the level of the individual
matrices Ej. Using the entanglement quantification tools developed in Chs. [4] and [0, we
compute the lowest value of the negativity that could be compatible with the given data.
For this test, we impose the optimization cutoff at Fock level N = 15, making the truncated
matrices 16-dimensional.

The quantification procedure was applied to four measurement scenarios:

(i) Tomography: the output density matrix is fully known numerically (up to the
truncation level N);

(ii) Quadratures from tomography: only measurements on conjugate quadratures
Z and p for the output state are used, and these values are obtained from the
tomographically-reconstructed density matrix;

(iii) Quadratures from data: same as (ii), but the quadrature values are obtained
directly from the homodyne data;

(iv) Quadratures with error bars: the same quadrature data is used as in (iii), but
estimates of data error bars are included in the computation (o — 3¢ levels).

Recall from Ch. [6] that the choice of Fock cutoff N affects the strength of the optimization
procedure itself, not just the density matrix. Truncating at a higher level would lead to
better bounds on the entanglement. In all cases, we used the standard form results of Thms.
[7.1.6/and [7.1.7] Finally, we straightforwardly included error bars by relaxing the constraint
regions C(pp™, C’é) in the entanglement minimization of Eq. . We performed the
optimization as a semidefinite program in Matlab, using the frontend YALMIP [66] and

the solvers SDPT3 [94] and SeDuMi [02]. The numerical uncertainty of this optimization
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Figure 7.3: Upper and lower bounds for the maximum purity P of experimentally-
compatible Gram matrices, corresponding to rotationally symmetric test ensembles of dif-

ferent cardinality. We have removed the factor

1
ek

which is common to both the upper

and lower bounds, and independent of the purifications. The difference between the two
bounds is on the order of 1073 or less (inset), meaning that the obtained Gram matrix has
purity which is near-optimal (represented by the lower curve). The estimated numerical
precision of the optimization is ~ 1073.
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is estimated to be ~ 1072 by comparing results from the two solvers under a number of
situations. The results of these computations for different sized rotationally-symmetric
ensembles are shown in Figs. [7.4] and

There are a number of things to point out about the results in Figs. and [7.5]
Primarily, we can certify that the memory is in the quantum domain. Not only is the
output state p%% entangled for all M when we use the tomographically reconstructed
density matrix pJ"*, but we can also see non-zero entanglement using the restricted set of
measurements, including error bars. Furthermore, there is an evident advantage in using
more than two test states, since it leads to higher entanglement in all cases. Indeed, it
is not until M > 2 that the 3o level conclusively leads to non-zero entanglement in the
output state.

Another interesting result is that scenarios (i) and (ii) give very similar result{] for
the entanglement when M > 3. This is likely due to the fact that the output state
has low levels of excess noise. The quadratures would already reveal that such a state
is close to a minimum uncertainty state. Additional measurement information therefore
does not contribute significantly to our knowledge of the state. For other types of states,
quadrature measurements and tomography should not be expected to yield similar results
(though there may be other choices of measurement operators which work well).

We also point out the advantage offered by phase-symmetric benchmarking and the
standard form. In Ch. [6), we were limited, for numerical reasons, to considering only
two or three test states. Although the Fock-projection approach applies to any number
of (pure) test states, the computational resources required for more than three test states
were prohibitive. Here, using the standard form, we have no problem pushing up to much
higher numbers of states; Figs. [7.347.5| contain results for up to 8 test states. In fact, with
a desktop PC, we were able to calculate benchmarks for up to 10 states, but these results
are not included in the figures because they do not significantly change after M = 8.

Summary and outlook

In this chapter, we generalized entanglement-based benchmarks to handle arbitrary test
states, not just those of a special form. We showed how this generalization leads to some
freedom, namely in the choice of purifications used to describe the test states. By opti-
mizing the purifications, we make the associated benchmarks stronger, leading to a larger
quantum domain and a better chance of certifying quantum devices. We also studied

3Note that we do not compare situations (i) and (iii) because of the extra phase shift included in the
tomographic reconstruction.
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Figure 7.4: Quantum memory benchmarking results based on rotationally symmetric test
ensembles using tomographically-reconstructed density matrices. The top curve is the
negativity of the input state p'},, found by optimizing the heuristic function h. The
other curves are lower bounds to the negativity of p%% based on (in descending order):
(i) tomographic reconstruction and (ii) quadrature values obtained from the tomographic
reconstruction. Having output state negativity larger than zero is sufficient to certify the
quantum memory.
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Figure 7.5: Quantum memory benchmarking results based on rotationally symmetric test
ensembles using direct quadrature measurement data. The top curve is the same as Fig.[7.4]
The other curves are lower bounds to the negativity of p%% based on (in descending order):
(iii) quadrature values obtained directly from measurement data and (iv) quadrature data
with error bars included in the optimization (1o, 20, and 30 levels). For more than 3 test
states, there is non-zero entanglement remaining even when including error estimates.
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the effect of using different Gram matrix purities by considering some simple fidelity-based
benchmarks. We gave a variational formula for the fidelity, which allowed these benchmarks
to be computed using a semidefinite program. We also proved theorems for reducing the
test states to a standard form under phase-symmetry conditions, allowing us to generate
benchmarks efficiently from any single seed state. Although we mainly considered test
states which were of a continuous-variable nature, all of our results, except the standard
form, apply to discrete states as well. Together, these theoretical results were used to cer-
tify a CV quantum memory and to quantitatively explore how well the memory preserves
entanglement in different scenarios.

Together, Chs. provide a number of tools and techniques for benchmarking CV
quantum communication devices with minimal and realistic experimental demands. Not
only did we extend existing protocols to allow for entanglement quantification, but we also
generalized entanglement-based schemes to accommodate arbitrary finite ensembles of test
states. We applied a number of these tools to the task of certifying a CV quantum memory.
Now that the theory of entanglement-based benchmarking has been developed in sufficient
breadth and depth, we hope that this approach will be used to benchmark many more
CV-encoded quantum optical devices. Indeed, this approach can be employed not only for
optical systems, but for any situation where quantum information is encoded continuously
in a harmonic oscillator system.
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Chapter 8

Final remarks
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The overarching goal of this thesis was to develop a suite of tools and tests for char-
acterizing genuine quantum communication devices. Although we considered two different
types of quantum technologies (single-photon devices and continuous-variable devices), the
underlying principle was the same, namely that entanglement can be used to distinguish
quantum devices from their classical analogs. From this general starting point, we built
up a variety of quantum benchmarking results.

To make the benchmarking task as efficient and pain-free as possible, many of the
benchmarks were designed to provide useful information with limited experimental re-
sources. Our fidelity-based benchmarks for remote state preparation, based on Platonic
solid ensembles, allow the certification of RSP systems using a small number of test states.
On the other hand, the minimal requirements for benchmarking continuous variable de-
vices are measurements of conjugate quadratures and the Gram matrix p4. With only
these basic ingredients, we can study the power of CV quantum communication devices to
preserve entanglement. i.e.,

Another major focus in this thesis was to provide quantitative extensions to existing
qualitative CV benchmarking tools. Using these quantitative tools, we can compare the
strength of different communication devices within the quantum domain. We proposed to
tackle the infinite dimensionality of optical-mode systems by projecting down to a finite
subspace. With an appropriately chosen entanglement measure, e.g. the negativity, we
can find lower bounds on how much entanglement was preserved in a particular device
by searching within the projected space. We proposed two quite different choices for the
projection and outlined how to solve the resulting entanglement optimization problems
efficiently. These two choices are complementary; the two-qubit projection performs better
for low levels of noise while the Fock projection is better suited for higher noise values.

Finally, the developed benchmarking results were used to certify two real-world quantum-
optical devices. Using our calculated classical fidelity thresholds, a single-photon RSP ex-
periment was shown to be strongly in the quantum domain. This experiment outperformed
not only the optimal 2-cbit classical RSP device, but also the best 3-cbit classical device.
The RSP experiment also met necessary conditions to be in the quantum domain for mixed
state preparations. On the other hand, a number of our CV benchmarking results were
used to demonstrate the entanglement-preserving ability of a quantum memory. In addi-
tion to the Fock-state projection used to quantify the entanglement, we also made use of
standard form results for phase-symmetric benchmarking and studied how to strengthen
the benchmarking scheme when using multiple realistic mixed states.

Although we considered specific scenarios, the ideas developed in this thesis are also
applicable to a number of other situations. The most obvious extension is to move from
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a prepare and measure scenario to one where actual discrete/continuous entangled states
are present. Such ‘hybrid’ entangled states play a role in proposed quantum repeater
systems [98, [57] and nanomechanical demonstrations of quantum phenomena [88]. The
tools developed in Chs. would be directly applicable for quantifying the entanglement
in such systems. Another potential application for the ideas in this thesis would be to
continuous-variable quantum key distribution. The two-qubit projected state from Ch.
has connections to related QKD protocols [I10], but the corresponding key rates are not
particularly good. Potentially, the bounds from the Fock projection in Ch. [6] could be
adapted to this problem.

As well, the variational formula for the fidelity appearing in Ch. [7] could also prove
useful for problems outside of quantum benchmarking. As already noted, it may be used
to find the maximum possible fidelity between two states which are not completely known.
Another potential use is to calculate the success probability of Grover’s algorithm with
mixed states [90]. Perhaps most importantly, since the fidelity is linked to the Bures
distance [15, 45], the variational formulation can be used to efficiently compute the distance
of any given state to the set of PPT states, which is a measure of PPT entanglement
[101], 100].

We have developed a number of tools which expand the feature set of entanglement-
based benchmarking, but there is still room for further improvement. For one, we have
considered imperfect devices and imperfect state preparations, but we have not addressed
the question of imperfect measurement devices. Most importantly, the local oscillator in
homodyne measurements is typically assumed to be in a strong decoupled classical state
during measurement. If unverified, this assumption opens up a potential loophole which
can be exploited by an adversarial device. On the other hand, this loophole can be closed
by considering so-called Stokes measurements, which incorporate the local oscillator, and
successful quantum benchmarking is still possible in such a situation [37]. It would be
fruitful to extend the quantitative picture to this scenario. Another direction for future
research is to consider phase-symmetric benchmarks for the case where the test ensemble
has an infinite number of states. Indeed, there are some very suggestive links between our
standard form results and continuous Fourier transforms [32]. Finally, we have resisted
fixing a formal definition for the quantum throughput in this thesis. However, it could be
useful and illuminating to mathematically define and study the properties of this concept.

Entanglement is clearly of fundamental importance to quantum communication and
quantum benchmarking, but we should be wary of subscribing too strictly to Schrodinger’s
much-quoted dictum [89]: “T would not call (entanglement) one but rather the character-
istic trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought.” Not to begrudge Schrodinger’s seminal contributions to the development
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of quantum theory, but entanglement is not the only quantum correlation of importance.
In recent years, there has been a trend in quantum information research toward identifying
and quantifying other types of correlations that are not present in classical systems, such
as the quantum discord [76], 39] or the measurement-induced disturbance [68]. Indeed, in
Ch. [7, we noticed that the best test ensembles within our quantum benchmarking frame-
work are those that have high Gram matrix purity, not necessarily those that provide the
highest initial entanglement. It would thus be illuminating to further study the Gram
matrix purity and its possible connections to other measures of quantum correlations.
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Appendix A

Supplement for remote state
preparation benchmarks

A.1 Proof of bound for continuous case

In this appendix, we prove two claims from Sec. used to find upper bounds on the
classical threshold for states on the Bloch sphere.

Claim 1. Define a circular cap as the set of points on the surface of the Bloch sphere lying
north of some fixed latitude or any rigid spherical rotation of this. Amongst all partitions
of surface area A > 0, a circular cap has the longest average Bloch vector.

Proof. Consider an arbitrary partition of total surface area A > 0 (we do not assume that
this partition is connected). This partition, which we call I'; defines some average Bloch
vector 7. We will compare partition I' with a circular cap of area A centred along the
direction of 7, which we shall denote by C'. Partition C' has an average Bloch vector 7.
If 71 is the zero vector, then ro > rp = 0. If not, then without loss of generality we can
assume 7 points along the z-axis. By construction, 7 must also point along the z-axis.
Using I' and C, the Bloch sphere can be divided into four disjoint regions: R; = I'N C),
Ry =T—-C, Ry =T°NC, and Ry = I'°—C. Each of these regions has average Bloch vector
7; and area A;, i = 1,...,4. Also note that we must have A, = As.
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Since I' = R; U Ry, and C' = R; U R3, we must have

Aq Ao
T = ) e d Al
T A T A (A1)
Ay As
ro = ) rs. A2
rc A1+A2T1+A1+A3T3 (A.2)
From this we conclude that

R S

i.e., that the vector 73 — 75 also lies along the z-axis. However, it might point in the negative
z-direction.

(75 — 72), (A.3)

But the boundary of C' lies at some fixed height Hs on the z-axis. By construction,
every state in R3 has a z-component higher than Hs and every state in R, has a z-
component lower than Hs. Then the z-component of 73 must be larger than that of 75.
Therefore, their difference 73 — 75 has a positive z-component. From Eq. , we can
conclude that 7¢ is longer than 7. Thus, for fixed area A, a circular cap gives the longest
average Bloch vector. O]

Claim 2. Knowing that a circular cap gives the optimum Bloch vector length for fixed area
A, we want to optimize the objective function

2¢—1 1 2¢_1
Z F, = 3 (1 + Z pkr}fa"> (A.4)
k=0 k=0

subject to the constraint
201

> Ay =4 (A.5)
k=0
We claim that this is optimized when all areas are equal.

Proof. To obtain the optimal Bloch vector as a function of area, we temporarily centre a
spherical cap on the z-axis and integrate up to some final angle 6,]: ,

2T 9£
/ / sin(#) cos(0)dedd
p=0 J60=0

I
:A—kﬂ sin?(6)). (A.6)

(6] A,
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f
Reparameterizing using Aj, = 47 sin? (%’“), we end up with

P (A) =1 — % (A7)

The corresponding probabilities are given by p = ‘2—7’;. We can group the objective function
(A.4) together with the constraint (A.5)) into the following Lagrange function:

A(Ay, \) :% (1 + Z i’; (1 i’;))
A (Z f—; - 1) . (A.8)

Solving this Lagrange problem for the maximum yields A; = ‘;—f for every k. Hence, the
optimal distribution of areas occurs when all they are all equal. O]

A.2 Proof of optimal average fidelity for mixed states

In this appendix, we prove the optimality of Eq. (3.15). Since we are dealing with qubits,
we can make use of an alternative formula for fidelity found in |71}, namely

F(o,7) = Tr(o7) + /1 — Tr(62)y/1 — Tr(72). (A.9)

Under the assumptions that the target states all have the same Bloch vector length r and
that the message strategy is deterministic, the average fidelity is

F= Zpa (o2, p2™)

2¢—1

_ Z Z D F p;ar’ pzut

k=0 ack
— 2
Tr(pept™) + \/ T \/1 — Tr((pg™) ] . (A.10)

201
=D
k=0
As before, pp = Y 4 Po is the probability of sending message k and py = Zaek DapPao 1S
the weighted average of states where message k is sent. The quantity in square brackets
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will be denoted by

Bl = ™) + /g /T~ Tr((g™)?) (A1)

For each k, we need to find the choice of p{™ that optimizes By. Working in the
eigenbasis of pi, we have

ou a b
o= [b* d] : (A.12)

with a,d € R,b € C. From the above expression for the fidelity, the optimal choice of p™*
should be simultaneously diagonal with py, i.e., b = 0. Equivalently, the Bloch vectors of
7r and the optimal p9"* should be parallel. Denoting the magnitudes of these Bloch vectors
by rp and s, respectively, we are left with

By, [(T4+7re) (1 +sg) + (1 —7i) (1 — sp)]

\/1—73\/1—5,C

1 1—7r2 [1—35?
:§(l+rksk)+\/ 5 \/ 2'“. (A.13)

Since 1y is fixed by the choice of target state partitioning, we differentiate By with respect
to s, and find where this derivative equals zero. The result is

hkh—‘

Tk

The positive root will give the maximum of By, which works out to be

1 /
B];nax _ E (1 + 7,2 + 1 — 7"2> . <A15)

Collecting all the terms together yields Eq. (3.15)).

(A.14)

Sk::t
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Appendix B

Supplement for two-qubit projection
scheme

B.1 Derivation of overlap bounds

In this appendix, we derive the bounds from Egs. (5.10)-(5.11)) for the magnitude of the
overlap of the maximal eigenstates t = <)\%})\%>. As the starting point, Refs. [84, [110]
provide the following statement (cf. Eqs. (C17)-(C18) of [110]):

Overlap Bounds. Let the largest eigenvalue of p?™* be parameterized by
Np=:1—5, (B.1)

and let the fidelity between the output states and the coherent states |dy) from Eq. (5.7))
be given by

(G| ™" Gy =2 1 — e (B.2)
and let
K= |{ag|aq)]|. (B.3)
Then the following holds:
Cl(’%;‘gk;ék) < |t’ < Cu(’%?gk?ék)? (B4)
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with

\/1—60—50\/1—61—51
Cl = KR
: 1— 25 1— 28

1—80 81—51
— /1= g2
“¢h@¢

124
_m\/l_gl\/go_go
I1—-&V1-2

_\/51—51 50—50
1-25V1-2¢

\/1—60\/1—51
Cy = R = =
1—80 1—51

and

1—80 51—51
=
& 1—50

1—2¢&

1—-¢

1 — 25,

51—51 50—50
+\/1—2§1 1—2¢

(B.5)

(B.6)

In our scenario, we cannot calculate the quantities € or € in practice. We now modify
these bounds from the above form to one involving only the parameters « (calculated from
first moments) and the Uy (calculated from second moments). To do this, we make use

only of the following inequalities (cf. Eqgs. (65) and (68) from [110]):

0<ép <éep < U

From this, we can easily derive the following auxiliary inequalities:

1—€~k<1’
\/1—5 -

JEs e o [ (<),
1— 28, 1— 28, 120, 2

j— 1
JeE ks Tt (U< 2 ).
125, 2
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It is important to note that the second and third inequalities only hold so long as U < %
For symmetric noise, the value Uy, = 1 corresponds to Varg(2) = Vary(p) = v2—3 ~ 0.914,
almost twice the vacuum variance. This value is far outside the region where our method
gives non-trivial bounds, so it is not an issue. Substituting the inequalities and
into Egs. (B.F]) and (B.6]), we arrive at the bounds given in Egs. (5.10)-(5.11)).

B.2 Derivation of supplementary diagonal bounds

Here we aim to bound the quantities <)\]L| P ‘)\JL> for j # k, as found in Egs. —.

An eigenbasis expansion of pdi* leads to

(Wi M) = (1= 2o [OB A+ DA [OSAD)

< (1 2 | SR 3 a

(1= Z0) | (AL B + &

o (1= |6 ) + [ AP

Ua (1= [OS1M)) + 1614

— (1= Up) [(AF| AW + U (B.11)

IN

A lower bound can be derived in a similar way:

(bl o3t [AF) =(1 = 20) [ AN+ D A6 [N
k=1

>(1=&) [ (6] A1)
>(1 = Ug) [(AE[ A (B.12)

Substituting the parameters zo = <)\H pet |)\%> and t = <)\3‘ AD), we arrive at the desired
bounds. The bounds for z3 = <)\%‘ Pt })\IOJ ) follow by interchanging indices.
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B.3 Derivation of off-diagonal bounds

This appendix outlines the derivation of the off-diagonal bounds from Egs. (5.17)-(5.18).
We completely know pa4, which constrains that we must have Tr(pdi*) = (—a|a) = c.
First, we consider the full density matrix p%% in the basis defined by {|0),]1)} for system
A and the eigenbasis of pgit, {|Af)}72,, for system B. Using the block form of Eq. ,
we denote the diagonal elements of the block pfi* by {br}32, and the diagonal elements
of the block pdi* by {di}2, (the diagonal elements of pQi* are its eigenvalues). Using the

triangle inequality, we have

el = | Te(pgy*)| =

do + i dy,
k=1

< |d0’+2|dk|- (B.13)
k=1
From positivity of ps4p, we find

e < |do] +) \/A»’S\/E (B.14)
k=1

and from the Cauchy-Schwarz inequality,

e < |dol + <§: A’é) (i bk>. (B.15)

The first sum is just £y and the second is 1 — by. Now, using the bounds from App. [B.2]
we get

bo = (A| A1 |A5)
>(1— ) [ ) (B.16)
which we can substitute above to obtain
e < [do] + v/Eo\/1 = (1= Uy) [(AFI ALY (B.17)

Replacing do with (Af| pgi* | ), we are led to the off-diagonal bound

(A |p6" [A6)| = lel = \/70\/1 — (1= U) [ DI (B.18)

Finally, we substitute in the parameters z; = </\0L{ pout ‘)\104> and t = </\OL{)\%> to give the
desired bounds. By applying the same arguments using the eigenbasis of pi*, we can arrive

at an analogous bound for z4 = <)\ﬂ e !)\If>
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B.4 Constraints for two-qubit optimization

In this appendix, we explicitly list the full set of constraints used in the two-qubit projection
optimization of Ch. The reader is referred to the chapter itself for definitions of the

parameters (in particular, Eqgs. (5.6), (5.12)), (5.13), and (5.21])). In these constraints, the

optimal substitution ¢ — b, has already been incorporated.

The constraints are the following:

1. Physicality of density matrix constraints
i pr >0
o Tr(plip |0)(0], @ 1p) <
o Tr(plip 1)1, ®1p) <

N= N

2. Test state constraints

e 1 >1-U,

o ;<1

ey, >1-0U;

o 7, <1

e I > Xy

e 1y > I3

° 1y >(1—UO)]bu|2

[ ( Uo)’bu’2+U0
[ ] = (]_ — U1)|b |2
. g(l—Ul)]b ?+ U,

3. Off-diagonal constraints
e Re(z1) >0
e Im(z)=0
e Re(z1) > |c| — VUo/1 — (1 — Uy) b,|?
o |Re(z4)| + [Im(24)| > r, with r := |¢| — VU1 /1 — (1 — Up)|by|?
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Appendix C

Supplement for Fock-state projection
scheme

C.1 Derivation of first order constraint

Here, we detail how to arrive at the bound given in Lemma ((6.1.2)), which forms part of
the constraints for the Fock state projection. Let 7 be a bounded positive-semidefinite
operator and let 7y be the projection of 7 onto the subspace spanned by the Fock states
{10),...|N)}: 7v = Z;Ym:o (I| 7|m) |I){(m|. We seek to bound the magnitude of the differ-
ence

o

Tr(ra) — Tr(rna) = Y (m| (7 — 7x)a |m)

m=0

=Y Vm(m|(r —7x)|m—1). (C.1)

For simplicity, denote general matrix elements by (m|7|n) =: 7,,,, and diagonal entries
by Tm.m =: Tm. Then, from the triangle inequality,

Tr(ra) — Tr(rya)| < Y VM [Tmmei] (C.2)
m=N-+1

From the positivity of 7, we must have

| Tni|” < T (C.3)
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Therefore,

Tr(ra) — Tr(rna)| < Y VTt (C.4)

m=N+1
Using the Cauchy-Schwarz inequality on this sum, we find

I Tr(rd) — Tr(Tya)| < ( > me) ( > Tm_1>. (C.5)

m=N+1 m=N+1

The first bracketed term is the difference in mean photon number between 7 and 7y, while
the second is the difference in trace between 7 and its truncation after the level N — 1.
Finally, we arrive at the desired bound:

ITr(7a) — Tr(rva)| < /(@ — ) (Tr(r) — Tr(ta_1)). (C.6)

C.2 Derivation of second order constraint

In this appendix, we outline how to arrive at the bound on the difference operator found
in Lemma which forms another constraint for the Fock state projection. We begin
with
[e.e]
Tr(ra™?) — Tr(rya'™ Z (m| (1 — 7n)a' |m)

= Z vm 4+ 1IVm + 27, o, (C.7)
=N—

m 1

Similarly,

Te(ra®) — Te(rnd®) = > Vm+ IVm + 275 0, (C.8)
=N—

m 1

Therefore, with d:=af?+ a®,

Tr(rd) — TI‘(T]\ﬂI?)‘ =2 i vm + 1vm + 2Re[T, m2]

m=N-—1
<2 Y Vm+IVm+ 2| Tmmeal (C.9)
m=N-—1
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As in App. [C.1] we can use the positivity of 7 and the Cauchy-Schwarz inequality to get

Tr(rd) — Tr(ryd) ’

<2 ( 3 (m+2)7’m+2> ( i (m—l—l)Tm).

Finally, by rewriting the right hand side as

2y/(n —ny) (7 = An_s) + (Tr(7) — Tr(7n_2))] =6,

we arrive at the desired bound.
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Appendix D

Supplement for benchmarking with
arbitrary states

D.1 Convexity proofs

In this appendix, we prove the following two statements about convexity relevant to Ch.
[% (i) the objective function in Eq. is a convex function, and (ii) the set of Gram
matrices which are consistent with purifications of the test states is a convex set. First,
for positive semidefinite operators, the purity is equivalent to the squared Hilbert-Schmidt
norm. By definition, all norms are convex, and taking the square preserves this convexity.
Hence, our objective function is convex.

To prove the second statement, let {|T9) ., ., }oly! and {|TL) yan fosy' be two sets of
purifications of the test states {pi 24: 51 (without loss of generality, we can consider the
purifying system to be the same), with Gram matrices Gy and G, respectively. Fix some
p € [0,1] and take the convex combination of Gram matrices G = pGy + (1 — p)G;. We
need to show that there is some compatible set of purifications leading to the Gram matrix

G.
To do this, we define the following states:

|Xk>A’A”A’” = \/]_7 ‘F2>A’A” ® |O>A’” + V 11— D |F'I£>A’A” & |1>A”’ 3 (Dl)

where |0) ,,» and |1) ,,, are orthonormal states on some additional purifying system A"
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Tracing out all systems except A’, we find

Traram X)Xk arar am = PTrar [TEXTR 440
+ (1= p)Trar [TXTh] 4 an
o (D.2)

Thus, the |xx) 4 4n 4 are purifications of the pi*. The elements of the corresponding Gram
matrix are

(xelxi) = p(TR|T7) + (1 — p) (T4 |T])
= p|Golu + (1 — p)[G1]w, (D.3)

which are exactly the elements of the convex combination GG. Therefore, the set of Gram
matrices which come from purifications of the test states is a convex set.

D.2 Proof of standard form

In this appendix, we prove the standard form results for phase-symmetric benchmarking
found in Thm. [7.1.6, To begin, when the symmetry condition of Eq. (7.37)) holds, then

Tap can be transformed by the unitary matrix

M—1
R=EPUy (D.4)
k=0
to the form
C(TAB) = RTTABR
[ Too Wor Woa - WO,Mfl_
1 WO,M—1 Too Wor - Wo,M—z
= — [Wom—2 Wom—1 700 -+ Wonm-s (D.5)
M . . . .. .
| W Woo  Wos -+ 700 |

with W;; = Tierj. The matrix C(74p) has a block circulant structure, meaning that each
row of blocks is the same as the previous row, but shifted by one to the right. Now, let
wyr = exp(if) be the primitive Mth root of unity and let

[FM]Z']‘ = \/LMWM (D.6)
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be the (unitary) discrete Fourier transform matrix. Using a standard theorem on block
circulant matrices [24], C(T4p) can be block diagonalized by the matrix Fy;®1 5. Explicitly,

D(rap) =(F}; ® 15)C(rap)(Fa ® 1p)

M-1
=P &, (D.7)
k=0
with
Z Wi Wkl (D8)

Since the partial trace is unaffected by local unitaries on the same subsystem, we have

M-1 M-1
k=0 k=0

:TI”AD(TAB)
:TI'AC(TAB). (Dg)

Comparing this with Eq. (D.5)), we conclude

M—-1
Z Ek = 700, (DlO)
k=0

which proves Eq. (7.40). Finally, the positive semidefinite condition follows directly from
the unitary equivalence of 745 and D(Tap).

O

D.3 Proof of trace norm in standard form

In this appendix, we prove Thm. which gives a formula for the negativity involving
the standard form. Now, if 745 Satlsﬁes the symmetry condition in Eq. (7.37), then so will
the partial transpose TXB Therefore, 744 is unitarily equivalent to some block diagonal
matrix B(115) = 24:61 E). The trace norm is a unitarily invariant norm, so we must have

B
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M-—1 ~
= S, (D11)
k=0
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which proves Eq. (7.41)).

In order to determine the matrices Ej, in Eq. |D we first find an explicit expression
relating the standard form matrices E} and the matrix 745. Define the matrix elements of
a bipartite matrix H by

[H]ij,kl = <i|A ® <j|BH |k>A ® WB- (D~12)

For subsystem B, we work in the Fock basis, where the rotation operator Uy is diagonal,
with elements .

[Ug]jl = w}jéﬂ. (Dl?))
The unitary matrix R in Eq. , formed by taking powers of Uy, is also diagonal in this
basis, with the following elements:

[R]ij,kl = w;/[i.j5ik5jl‘ (D14)

Therefore, the Fock basis elements of the block circulant matrix C(74p), defined in Eq.

(D.5)), are given by

(C(TaB)|ijm = wﬂ_k'l (TaBlijki (D.15)

To get the standard form, we need to perform a Fourier transform on the block circulant
matrix C(74p5) as in Eq. (D.7). The elements of the discrete Fourier transform Fj, are
given in Eq. (D.6). After substitution, we arrive at the matrix elements of the standard
form:

1 M—-1M-1
(D(Tan)lijm =57 DD W C(TAB) I
m=0 n=0
1 M—-1M-1 o
i SN W E D (D.16)
m=0 n=0

Since D(14p) is block diagonal, D(14p) =
(Bt -=[D(TaB)]kjm
—1

—_
3

= wM(j—k)—l—n(k—l)[TAB]ijLl‘ (Dl?)

This is the final formula linking the elements of 745 and the matrices {Ek}M L For
completeness, the inverse formula is given by

[TaBlijm = Z Wi TR (D.18)
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When 744 is used in this formula instead of 745, we find the relation
) | MorMer
[Ek]jl = i Z Z W;Z(J—k)—i-n(k—l) [TAB]nj,ml' (D.19)
m=0 n=0
Hence, the matrix £ indexed by (j + [ — k) has elements

1 m(k—1)+n(j—
(Ejrioulit = 57 Yo @ Y ggms (D-20)

which is the same as Eq. (D.17), after interchanging the summation indices m and n.

Therefore, [Ej4i—k|ji = [Ex]ji (in the Fock basis).
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