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Abstract

Side channel attacks, where an attacker learns some physical information about the state
of a device, are one of the ways in which cryptographic schemes are broken in practice.
“Provably secure” schemes are subject to these attacks since the traditional models of
security do not account for them. The theoretical community has recently proposed leakage
resilient cryptography in an effort to account for side channel attacks in the security model.
This thesis provides an in-depth look into what security guarantees public key leakage
resilient schemes provide in practice.






Acknowledgements

There are a number of people who have been integral to the creation of this thesis. First, I
would like to thank my friends and family for their support and warmth. My fiancee Sarah,
in particular, helped to keep me sane during some of the harder periods. Also particularly
important are my fellow grad students who have been an invaluable resource — a special
thanks goes out to Andrew, Gurleen, Marco, Ben, David, Becky, and Leanne.

[ would also like to thank my readers David Jao and Edlyn Teske-Wilson for their helpful
feedback. Sherman Chow also provided feedback during the early stages of my research.
I am grateful to Catherine Gebotys who gave me permission to use an image from one of
her papers. Additionally, I would like to thank Neal Koblitz for his role in creating a series
of papers taking a critical look at the value of “provably secure” cryptography in practice,
including the paper that forms the basis for this thesis.

Finally, and most importantly, I wish to thank my advisor Alfred Menezes who has
been a better resource than I could have ever imagined. Alfred’s guidance has always been
excellent and his input has made the once impossible task of writing a thesis a reality.

vii






Dedication

To Dan Bernstein, Ian Goldberg, Kevin McCurley, and Moti Yung, who taught me the
meaning of leakage.

X






Table of Contents

List of Tables xiii
List of Figures XV
1 Introduction 1
1.1 Mathematical Background . . . . . .. ... ... ... 3
1.1.1 Notation . . . . . . . . .. . 3
1.1.2  Cryptographic Background . . . . . . . .. ... ... ... ... .. 3
1.1.3 A Tiny Bit of Information Theory . . . . . . . ... ... ... ... 7
1.2 Side Channel Attacks . . . . . . . . ... 7
1.2.1 History . . . . . o o 7
1.2.2  Simple Power Analysis . . . . . .. .. ... ... .. ... 10
1.2.3 Differential Power Analysis . . . . . .. . .. ... ... ... ..., 12
1.24 Cold Boot Attacks . . . . . . . . ... 13
1.2.5 Countermeasures . . . . . . . . . . ... 14
1.2.6  What We Don’t Know . . . . . .. .. .. ... .. .. ....... 18
2 Leakage Resilience 21
2.1 Leakage Resilience to the Rescue . . . . . . . .. ... ... ... ..., 21
2.1.1 Computational vs. Memory Leakage . . . . . . . . ... ... .... 22

2.1.2 Bounded-Length, Bounded Entropy, Bounded Retrieval, Computa-
tionally Hard-to-Invert . . . . . . . . .. .. ... ... .. ..... 22
2.1.3  One-time vs. Continual Leakage . . . . . . . .. ... .. ... ... 25
2.1.4 Putting it All Together . . . . . . . . ... ... ... ... ... .. 26
2.2 ACloser Look . . . . . . . . 30
2.2.1 Leakage Leakage Leakage Leakage . . . . . . . . . .. .. ... ... 33

el



2.2.2 Bounded-Length . . . . .. ... ... oo

2.2.3 Bounded Entropy . . . . . . .. oo
2.2.4 Bounded Retrieval . . . . ... ..o oo
2.2.5 Computationally Hard-to-Invert . . . . . . ... .. ... ... ...
22.6 BHHO . .. ... . .
2.2.7 Indistinguishability and Leakage Resilience . . . . . . . . . . .. ..
2.2.8 Cold Boot and Partial Key Recovery Attacks . . . ... ... ...
2.2.9 Summary . . ...

3 A Leakage Resilient Signature Scheme

3.1 Schnorr-f . . . . . .
3.2 Comparison with Standard Schnorr . . . . . .. .. .. ... ... .....
3.3 Lattice Attacks . . . . . . . ..

4 Leakage Resilience and Key Updates

4.1 The Case for Key Updates . . . . . . .. .. .. ... ... ... ....
4.2 Intuition for MTVY . . . . . . . oo
4.3 Preliminaries . . . . . . ...

4.3.1 Groth-Sahai Proofs . . . . . . . ... ... ... ...

4.3.2 Independent Preimage Resistant Hash Functions . . . . . . . . . ..
4.4 The Scheme . . . . . . . ..
4.5 Sketch of Proof . . . . . .. ..
4.6 Something Out of Nothing . . . . . . . ... .. ... ... ... .. ....
4.7 Performance Analysis . . . . . . .. ...

4.7.1 Comparison with Schnorr-¢ . . . . . .. . ... ... ... ...

5 Conclusions

References

xii

47
47
o1
93

57
o7
o8
29
60
61
62
63
70
73
4

77

79



List of Tables

2.1

3.1
3.2

4.1

Comparison of leakage resilient schemes. . . . . . . . ... ... ... ... 31
Allowed leakage in Schnorr-¢ . . . . . . . . . . .. ... ... ... ... 52
Parameters for successful lattice attacks . . . . . . ... ... ... .... 56

Comparison of the MTVY and Schnorr-¢ signature schemes at the 128-bit
security level. . . . . ..o 74

xiil






List of Figures

1.1 The double-and-add point multiplication algorithm . . . . ... ... ... 5
1.2 The Montgomery powering ladder . . . . . . . . .. ... ... ... .... )
1.3 The Schnorr signature scheme. . . . . . . .. .. ... ... 6
1.4 Partial power trace for an elliptic curve point multiplication. . . . . . . . . 10
3.1 The Schnorr-¢ signature scheme. . . . . . . . . .. ... ... ... 47
4.1 The MTVY signature scheme . . . . . . ... ... ... ... ... ..., 62

XV






Chapter 1

Introduction

Mathematicians are often not concerned about the practicality of their work. Nonetheless,
they must make sure that the problem they solve is meaningful in some way. Theoretical
cryptographers are faced with an additional challenge: the problems they wish to solve
frequently arise in practical situations. Unfortunately, it is usually not useful to solve a
practical problem with a theoretical solution. This is particularly the case when the prob-
lem does not have a nice theoretical formulation (that is to say, when it is not meaningful
or interesting without its practical context). The goal of this thesis is to examine such a
practical problem and the response from the theoretical community.

Traditionally, research papers in theoretical cryptography have assumed that an at-
tacker has access to only the inputs and outputs of a cryptographic algorithm. For example,
in the case of an encryption scheme, an attacker has access only to plaintexts (the input)
and ciphertexts (the output). In public key cryptography the attacker also has access to
any public information, like the public key itself. Nonetheless, a fundamental assumption
is that the attacker never learns any information about the internal state of the algorithm.
This is what is known as a black box assumption and so cryptographic algorithms are often
referred to as black boxes.

These assumptions, however, tend to be violated in practice. To be realized in practice,
a scheme must have a particular physical implementation. The implementation emits
information about the physical processes involved in the computation of the cryptographic
algorithm. For example, throughout the computation the device consumes power, emits
electromagnetic radiation, and also makes noise (possibly inaudible to the human ear). All
of these types of emissions can leak information about the internal state of the algorithm
which can in turn lead to the scheme being broken. Throughout this thesis, we will refer
to attacks which gather and use information about the internal state of a cryptographic
algorithm as side channel attacks.

Note that other definitions of side channel attacks can be formulated. For example,
some authors restrict the notion to attacks where an attacker can only listen in and can-
not disrupt the computation in any way. Additionally, attacks where the hardware is
accessed in some non-standard way (for example by depackaging a chip) are not deemed
side channel attacks by some. While we do not employ such restrictions, we do not consider



attacks where the cryptographic algorithm is totally circumvented. In particular, we do
not consider scenarios where an attacker directly learns a user’s password or secret key —
for example using a keylogger or social engineering — to be side channel attacks.

Starting with the work of Micali and Reyzin in 2004 [57], there has been an effort to
include all side channel attacks in the theoretical model of security. Schemes secure in the
new models are referred to as leakage resilient. However, as noted by Koblitz and Menezes
[45], the failure of authors in this area to address many aspects of the practical problem
may mean that their schemes are, in fact, a step backwards in terms of achieving security
against side channel attacks. This thesis is an in-depth discussion of the theoretical work
and its successes and failures. In doing this, we hope to steer future work in directions
we feel are most likely to aid practitioners. We also attempt to address some of the issues
that remain largely ignored in the theoretical works.

In a certain sense this thesis can be seen as a first response to the following call of
Wichs:

Many interesting and important questions remain unanswered. Perhaps most
importantly, the proposed model of leakage may still not be the “right one.”
There is certainly a need for better empirical analysis of whether the model is
sufficient to capture all realistic examples of side-channel attacks [71, p. 145].

While for the most part our analysis is not empirical, it provides a partial answer to this
“most important” question as well addressing and asking many others. We should note
that our analysis focuses exclusively on the work done on public key schemes.

We stress two important details that are fundamental to understanding the purpose
of this work. First, we do not take any issue with the idea of theoretical works or works
that are not practical in nature. Nonetheless, we feel that it is fair to analyze works that
purport to solve a practical problem in a practical context. Second, we do not wish to
disparage the quality and ingenuity of the mathematics involved in any of the works we
criticize. Our issue is not with the, often very clever, mathematics the authors use in
their papers, but simply the lack of context surrounding that mathematics. In fact, it may
turn out that some of the techniques developed in these papers play an important role in
creating schemes which are indeed more secure against side channel attacks.

We now present an outline of what is to come. The rest of this chapter gives some
preliminary background of the mathematics and notation we will use, as well as a detailed
look at side channel attacks. Chapter 2 presents an overview of leakage resilient public
key cryptography. It contains a high-level explanation of the various new security models,
an overview of results in the field, and criticisms of both the theoretical response as a
whole and of specific leakage models. Chapters 3 and 4 contain an in-depth look at two
different leakage resilient signature schemes. By examining them, we hope to gain a better
understanding of the kinds of techniques used in this field as well as provide a more quan-
titative understanding of the security guarantees and efficiency of the proposed schemes.
Chapter 5 contains our conclusions including next steps and open questions.



1.1 Mathematical Background

The purpose of this section is to explain some of the terminology we will use throughout
this thesis. Additionally, we will present the Schnorr signature scheme as an example to
which later signature schemes can be compared, as well as to help make the side channel
attacks discussed below more concrete.

1.1.1 Notation

Whenever it is used PK refers to the public key of an arbitrary scheme and SK the
corresponding secret key. We use log to mean the base 2 logarithm. When z is a number,
the notation |z| refers to the (approximate) bit length of x. All schemes are initialized
in terms of a security parameter k. When we refer to a scheme (or algorithm) as being
probabilistic polynomial time (PPT), we mean that it runs in a number of steps that is
polynomial in k. As such, all of its associated parameters (e.g. |PK|, |SK]|, the plaintext
and ciphertext sizes, etc.) must also be polynomial in k. In practice, when a scheme is
implemented at a security level k, it means that we expect an attacker to need to perform
at least 2% computations to break the scheme. In theory, when a scheme is secure with
security parameter k, it means that no attacker can break the scheme unless there is a
(probabilistic) algorithm that can solve the underlying hard problem in time polynomial
in k. A (positive) function f is negligible if for every (positive) polynomial p there exists
N so that for every k > N, f(k) < 1/p(k). When we refer to a problem as being hard, we
mean that no PPT algorithm to solve the problem is known. The notation x € S means
that x is picked uniformly at random from the set S. Vectors are denoted by bold-faced
roman letters. When it cannot be avoided we will sometimes have to number vectors; to
distinguish between a vector and a component of a vector we will make the subscript bold
in these cases (i.e. x; is a vector and x; is the i*" component of the vector x).

1.1.2 Cryptographic Background

A hash function, H, takes a string of arbitrary length as input and outputs a fixed length
string. One desirable property for hash functions used in cryptographic contexts is collision
resistance. We say H is collision resistant if it is hard to find inputs, z and y, so that
H(z) = H(y) and x # y. A random oracle is a hash function whose outputs are random
but consistent (i.e. two different calls to the oracle with the same input will produce the
same output).

Most schemes discussed in this thesis use a group G of prime order ¢q. To simplify
analysis, we will imagine such schemes as being implemented using elliptic curves (as they
are in practice). Over some elliptic curve groups the following problem is believed to be
hard. Given some generator P € G and some element ) €z G, find an exponent x € Z,
so that P = (). This is known as the discrete log problem and henceforth we will refer to
it as DLOG. The best known algorithm for DLOG in this case finds x in about /g steps.
Thus when our security parameter is k we pick ¢ so that |g| =~ 2k.
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In many elliptic curve groups, the following problem is believed to be hard. Given
P and three points P, yP €r G and 2P € G decide if xyP = zP, where z,y,2 € Z,
(note x, y, and z are unknown). This is known as the decisional Diffie-Hellman problem
(DDH). If instead of being given zP we are asked to compute zyP, this is known as the
computational Diffie-Hellman problem (CDH). Note that a PPT algorithm which solves
DLOG can be used to solve CDH in polynomial time. Similarly a PPT algorithm which
solves CDH can be used to solve DDH in polynomial time. Thus, DLOG is at least as hard
as CDH which is in turn at least as hard as DDH. The word “assumption” after a believed
hard problem, means we assume that problem is hard. Therefore the DDH assumption
implies the CDH assumption which implies the DLOG assumption.

Some schemes also make use of a bilinear pairing.

Definition 1.1.1. Given three groups Gi, G5, and Gr all of prime order ¢, a function
e : Gy x Gy — Gr is a bilinear pairing if the following three properties hold for all
generators g; € G and g9 € G

Non-degeneracy: ¢(gi, g2) # I Dr.
Bilinearity: For all a,b € Z;, e(g{, 95) = e(g1, g2)*"-
Computability: e can be efficiently computed.

We often drop the word “bilinear” when referring to pairings in a cryptographic con-
text. Pairings where G; = G5 are called symmetric and those where G; # G5 are called
asymmetric. (Strictly speaking we should replace equality in the last statement with the
availability of efficiently computable isomorphisms between the two groups.) In practice,
such pairings can be constructed from special classes of elliptic curves. For an introduction
to pairings in a cryptographic context see [55].

The operation of scalar point multiplication is one of the essential ingredients in any
elliptic curve cryptosystem. We present two different algorithms that can be used for
computing these multiplications. The naive double-and-add algorithm will later be used
to illustrate the susceptibility of this operation to attack. The Montgomery powering
ladder (also just the Montgomery ladder), first proposed to speed up factoring attacks on
RSA, provides a nice example of how the mathematical structure of groups can be used
to compute the same value in different ways. In both algorithms we refer to the group
identity as the point co. The description of the algorithm in Figure 1.1 is well-known, but
our definition is from [64]. The algorithm in Figure 1.2 is due to Montgomery [58], but
more clearly presented for our purposes in [40].

A signature scheme consists of three phases: key generation, signing, and verification.
In the key generation stage the algorithm outputs a public-key /secret-key pair (PK, SK).
The signing phase takes as input a public key PK, a secret key SK, and a message m
and outputs a signature o for m. The verification phase takes as input a public key PK,
a message m, and signature o and outputs a value indicating whether or not o is a valid
signature for m. Usually we require the property that if a message is signed with SK, then
the verification of that signature with the public key PK always succeeds. The standard
notion of security for a signature scheme is the following.



Input: Point P and m-bit multiplier r = 327 ' 7,2 where r; € {0, 1}
Output: Q =rP
Q=P
if 1o = 1 then
R:=P
else
R =
end if
fori=1tom—1do
Q =20Q
if r, =1 then
R:=R+Q
end if
: end for

— = =
My =2

Figure 1.1: The double-and-add point multiplication algorithm

Input: Point P and m-bit multiplier r = 327 " 7,2 where r; € {0, 1}
Output: Ry =rP

1: Ry:=P

2: Rl = 2P

3: for : =m — 1 downto 0 do

4: if r; =0 then

5: Ry :=Ry+ Ry
6: RO = 2R0

7 else

8: Ry = Ry + R,
9: R1 = 2R1

10: end if

11: end for

Figure 1.2: The Montgomery powering ladder




Definition 1.1.2. A signature scheme is ezistentially unforgeable under adaptive chosen
message attacks if no PPT forger succeeds at the following game with non-negligible prob-
ability.

e The challenger generates a key pair (PK,SK) and sends PK to the forger.

e The forger requests and receives signatures on polynomially many messages of her
choosing.

e The forger chooses a message m and outputs a pair (m, o).

The forger succeeds if ¢ is a valid signature for m and she has not previously requested a
signature for m.

Figure 1.3 presents the (generalized) Schnorr signature scheme. It makes use of a group
G of prime order ¢ where DLOG is hard, a random oracle H : {0,1}* — Z,, and a generator
g € (G as system parameters.

Key Generation: To generate her keys, Alice selects x €r Z;. Alice’s public key is
PK = ¢g” and her secret key is SK = x.

Signing: To sign a message m, Alice first selects r € Z;. Next, she computes A = ¢g" and
calculates the hash ¢ := H(m||A). Finally, she outputs the signature (A, cx 4+ r mod q).
Verification: To verify Alice’s signature (A,«) on a message m, Bob first computes
¢ := H(ml||A). Then he checks that A - (¢*)¢ = g If equality holds, he accepts the
signature.

Figure 1.3: The Schnorr signature scheme.

Theorem 1.1.3 ([66]). Assuming the hardness of DLOG in G, the Schnorr signature
scheme is existentially unforgeable under chosen message attacks.

Schnorr first proposed this scheme in [66] where the group used was a subgroup of 7,
for p > q. The generalization we present is well-known, although we slightly change the
structure of the signature for ease of comparison with the scheme we present in Chapter 3.

Public key encryption schemes tend to be used as key encapsulation mechanisms in
practice. That is, suppose Alice wishes to encrypt the message m using a public key scheme
for Bob. Their agreed upon public key protocol will include a symmetric key cipher. So,
to perform the encryption Alice picks a random key x for the symmetric key cipher and
encrypts m using x. Then using the public key scheme, she encrypts x and sends both
encryptions to Bob. To decrypt, Bob decrypts x using the public key scheme and then uses
that to decrypt m using the symmetric key scheme. This mode of operation is referred to
as hybrid encryption. Hybrid encryption is used since public key schemes tend to be much
slower than symmetric key schemes, and since the message m may in fact be very long
whereby encrypting it may require calling the encryption algorithm many times. Because
of this observation, it may be fair to assume that public key schemes encrypt only random
messages in practice — this will be important in modelling side channel attacks later in the
thesis.




1.1.3 A Tiny Bit of Information Theory

The concept of min-entropy gives us an idea of how close a random variable’s distribution
is to uniform. The concept is well-known; the definition we give is from Katz [42].

Definition 1.1.4. The min-entropy of a random variable X € {0,1}" is defined as

Hoo(X) := min {—log, Pr[X = z]}.
ze{0,1}"

The conditional min-entropy of X given an event V is

Ho(X |V):= min {—log, Pr[X ==z | V]}.

ze{0,1}7

We often refer to min-entropy as a number of bits, since if a variable X can take on 2"
different equally likely values, it has min-entropy 7. In this case we might also say that X
has 7 bits of entropy. A useful fact [21] is that on average the conditional min-entropy of
X conditioned on the output of some function with § bit outputs is at most ¢ less than
the min-entropy of X. More precisely, given X € S and f : S — S with |S| = 27, we
have E[Hwo (X | f(X))] > Hoo(X) — 0. So even after she observes § bits of leakage, we can
expect an attacker to have reduced her search space by a factor of at most 2°.

The number of bits that are 1 in a binary string is called the Hamming weight of the
string. The number of bit positions in which two binary strings differ is referred to as the
Hamming distance of the two strings.

1.2 Side Channel Attacks

1.2.1 History

Side channel attacks appear to have been discovered in the West during World War II.
While unintended emissions had previously been used to glean classified information, they
were not used to break encrypted channels. According to a paper declassified by the NSA
[30], during the war a researcher at Bell Telephone discovered that their cipher device
was leaking the plaintext via electromagnetic emanations. Since the device was deployed
by the Army and Navy at the time, Bell contacted them immediately. Eventually Bell
convinced the Forces of the threat and were commissioned to modify the device to become
more secure. They presented a new design but unfortunately,

Signal Corps took one look at it and turned thumbs down. The trouble was,
to contain the offending signals, Bell had to virtually encapsulate the machine.
Instead of a modification kit that could be sent to the field, the machines would
have to be sent back and rehabilitated. The encapsulation caused problems of
heat dissipation, made maintenance extremely difficult, and hampered opera-
tions by limiting access to the various controls [30, p. 2].
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Bell engineers managed to reduce emissions to a reasonable level, but because their
solution failed to understand the entirety of the practical context, it was essentially useless.
It also seems that knowledge of these attacks was lost after the war. It wasn’t until 1951
that the CIA rediscovered the attacks — on the same cipher machine no less. At that point,
the NSA began the process of testing all their cipher equipment and found, to their dismay,
that all of their machines were vulnerable to side channel attacks [30].

In Britain in the mid-to-late 1950s MI5 (British counter-intelligence) and GCHQ de-
veloped a couple of side channel techniques to break various schemes. In particular, they
broke the Hagelin cipher machine based on the sounds made by the rotors being set and
the French high-grade ambassadorial cipher by noticing that there was a faint second signal
on the line which turned out to be the plaintext [72].

It is unclear what Soviet intelligence organizations knew about this subject, although
they almost certainly knew of some of these types of attacks at about the same time as they
were discovered in the West. It is certainly possible that their knowledge of side channel
attacks was much more advanced than that of their Western counterparts.

It is interesting to note that the idea of such attacks was well publicized in the 1980s.
First, there were the presentations of Wim van Eck on the possibility of recovering the
image from a computer monitor (or other similar device) based on its electromagnetic emis-
sions. This phenomenon, known as van Eck phreaking, got widespread attention from the
general public. Two years later, Peter Wright, a former MI5 intelligence officer, published
his autobiography [72]. Likely as a result of the legal battle by the British government to
prevent its publication, the book became a bestseller. It contains, in no uncertain terms, a
discussion of how side channel attacks can be used to break cryptosystems. Further, parts
of the NSA’s TEMPEST program to shield against compromising emissions were discussed
in unclassified settings in the 1960s. Despite the general knowledge of these techniques,
the first paper on side channel attacks did not appear in the cryptographic literature until
1996. In the meantime, theoretical cryptographers loudly proclaimed their work to be
invincible because it came with the all important proof of security.!

Kocher’s 1996 publication on timing attacks [46] opened up a new field of cryptographic
research. From that point on, side channel attacks have become a hot topic of research
and an important consideration for practitioners. A number of different types of attacks
have been discovered as well as a host of countermeasures. In the sections that follow we
will discuss a few different side channel attacks as well as a variety of countermeasures.
Before doing so, it will be helpful to have a better understanding of the sorts of scenarios
that give rise to side channel attacks.

One of the points that authors of papers on side channel attacks frequently make is
that the equipment needed for such attacks is usually inexpensive. In many cases the total
cost of the equipment used is under $500. However, these attacks come with a substantial
hidden cost. Two important factors must be considered. First of all, attacks often require
physical proximity to the target device. Obtaining such access to the device may be risky

1Koblitz and Menezes discuss these claims in [45], part of a series of papers examining the problems of
a theoretical community not paying sufficient attention to the context of practice.



(which we can consider as an expense) or at the very least quite difficult. In particular, it
might lead to the attackers being detected. Another issue, is that attacks often need to be
custom-designed for the target platform and thus require technical expertise. The cost of
the labour needed to do the work may be many times the cost of the equipment. These
costs must be weighed against the relative importance of the information that is trying
to be recovered. Additionally, there may be other attacks possible to obtain access to the
data.

Security is only as strong as its weakest link, and so an attacker will only use a side
channel attack insofar as it is the best way to recover the secrets. In many practical
scenarios things like malware, social engineering, or exploiting weak passwords will all be
more likely candidates for attacks. Even if the cryptography itself is exploited, other areas
of the system may be targeted. For example, an attack might exploit a weakness in the way
random numbers are generated. A recent paper [49] showed that about 4% of the moduli
used in the RSA public keys examined shared at least one factor with another public key
in the set studied. All such keys are compromised since knowing the secret key (and thus
factorization) of a modulus with p as a factor allows one to compute the factorization of
any other modulus with p as a factor.

Thus we feel that, so far as it is helpful, we should consider the attacker to be an
intelligence organization like the NSA, GCHQ, or CSEC. These organizations have access
to all the resources (in particular the personnel) needed to perform the attacks. Thus the
single entity Eve will be replaced with the much more nefarious group of attackers EVE.?
The target for such attacks must also be in possession of a relatively valuable secret, and
so potential candidates include governments, companies with good security policies, and
individuals believed to be a threat to intelligence organizations, such as suspected terrorists
or spies.

In general, we consider the device performing the cryptographic operation to be some
form of dedicated device (i.e. only used for cryptography) that is computationally re-
stricted. The prototypical example of this would be the chip used in a smart card. In
particular, we usually do not consider the attacked device to be a general purpose com-
puter, like a laptop, since they are both vulnerable to malware type attacks and generally
much noisier (in a communication sense) than dedicated devices. Further, certain attacks
may work better depending on whether the cryptographic operation is implemented in
hardware or software. When we say a scheme is implemented in software, we, in general,
are referring to the target device as being some form of programmable microcontroller.

The fundamental premise of any side channel attack is that differing input (message
and key) may lead to (subtly) different physical output. Therefore, if some relation can
be observed between certain key and/or message bits and the observed physical emission,
it may be possible to determine portions of the secret information. We usually assume
the attacker has the ability to induce the target device to perform its operation on some
number of messages of the attacker’s choosing.

2Despite its capitalization, EVE is not an acronym. Thus it serves as an uncrackable code, ready to
stymie unwary cryptanalysts looking for meaning where none can be found.



1.2.2 Simple Power Analysis

Of the many attacks in the literature, simple power analysis (SPA) — introduced by Kocher
et al. in 1998 [47] — is among the easiest to understand. The primary assumption made
in such attacks is that an attacker can only perform a small number of operations on the
target device. In the simplest case an attacker has access to the power consumed by a
device while performing its operation on only one pair of key and message (with the key
unknown and the message known). We refer to the power data collected by the attacker
in this instance as a power trace or sometimes just a trace.

As an example of how even this little information can be of use, consider an attack on
Schnorr. Such an attack might consist of observing the power consumed by a smart card
while it signs a message.> Recall that during signing the exponentiation ¢” is computed.
In our case, this becomes the elliptic curve point multiplication P which we will further
suppose is implemented using the naive double and add algorithm (Figure 1.1). Notice
that in the algorithm for computing this value, if the bit i*® bit r; of 7 is a 0, the card
performs only a doubling operation; if it is a 1, then the card performs both a doubling and
an addition. Since doubling and addition operations tend to have easily identifiable power
signatures, the attacker can simply read off the bits of r by looking at the power trace.
Figure 1.4 (from [32]) demonstrates exactly this phenomenon; here doubling steps (D) are
clearly distinguishable from addition or sum steps (S). Notice that once an attacker learns
any single per-message secret r, she can easily compute the secret key x using the known
value o := cx +r (mod q), since c¢ is also known.
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Figure 1.4: Partial power trace for an elliptic curve point multiplication.

Let’s recap what the attackers would need to know to perform this attack. If we assume
the device is idle while it is not signing, then it is trivial to know when the power trace for
the signature starts and ends. Thus, the attackers would need only a rudimentary idea of
what a double or addition operation might look like to determine the key. This is because
the two operations will look different enough to avoid any confusion between the two unless
countermeasures are employed. It is also likely that attackers with a decent idea of what
the power signature of a double or an addition looks would not even need to know what
method was used to implement the multiplication, since an examination of the power trace
would reveal this.

3The attack we describe is totally independent of the message being signed.
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Given the threat of such attacks, let us now imagine a situation in which a more suitable
method of point multiplication is used — the Montgomery powering ladder presented in
Figure 1.2. In this case, since both a doubling and an addition are performed regardless
of the value of r;, the simple power analysis attack described above will fail. However,
another type of simple power analysis can still be used here. It relies on the ability of the
attackers to obtain a device identical to the attacked device. Then they use their device to
compute many different signatures. For each signature they can compute the per-message
secret r, since they know the secret key.

For many different values of r the attackers have the power trace associated with the
point multiplication rP. Then for each bit ¢ of the per-message secrets, they group the
traces into two categories: those where the bit r; is 0 and those where it is 1. They
then average all such traces in each case, obtaining “templates”. In the end hopefully the
average trace is relatively constant except for a spike at the time when the key bit is used
in the point multiplication. Then, taking a single power trace of the target device, they
compare the trace to the average traces for each of the bits in the per-message secret and
so can make a guess for each bit of . Here even though both a doubling and an addition
are performed regardless of the value of r;, the scheme may still be vulnerable unless
the underlying field operations themselves are protected. See [54] for more information
on template-style attacks on elliptic curves and [53] for more details on these attacks in
general.

For completeness we describe a third type of simple power analysis attack, although
it is much more applicable to symmetric key schemes. Let the input to a scheme be the
message m = myq, ..., mg and the secret key = x,...,x4. Here the inputs are broken
into d equally sized blocks (for example each m; might correspond to a bit or a byte of
m). It may be the case that for two different message inputs, the same intermediate value
is computed. That is, suppose at some point the intermediate value f(-,-) is computed.
Then there may be pairs (m;, ;) # (m}, z;) such that f(m;,z;) = f(m}, x;). This is called
a collision. Given that power consumption will depend on this intermediate value in some
way, the attackers may be able to detect such collisions. Then, by using a template-style
attack, when the attackers hypothesize that a collision has occurred, they will be able to
restrict the options for the particular bit or byte (since we assume they know the input
message) of the key that caused the collision. If they can do this for enough key bits/bytes,
they may be able to reduce the keyspace to a small enough size to perform a brute-force
search.

One thing to note is that we referred to a single power trace as being a small amount
of information. While this is true in a certain sense, a single power trace can be megabits
or even gigabits of information. Our description of SPA attacks is based on [53], which
focuses on symmetric key schemes, but is very detailed, and [64], which deals with elliptic
curve point multiplication. These references are also our sources for the differential power
analysis attacks we will describe next.
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1.2.3 Differential Power Analysis

Differential power analysis (DPA), also introduced in [47], depends on the attacker being
able to obtain a large number of power traces from the attacked device. One scenario in
which this might occur is that a group of attackers gain access to a smart card and its
PIN, but wish to learn its secret key so that they can make additional copies.

Attacks in this case function similarly to the template attacks described in Section 1.2.2.
However, instead of building templates, the attackers make guesses about how key and
message pairs will affect power consumption. More concretely, suppose the attacked device
contains a 16-bit processor and the group used has order |¢| ~ 256. Each of the doublings
and additions that occur in an exponentiation will then have to be split into chunks.
That is to say, for example, when computing 2P, each coordinate of the point P must
first be broken into 16 blocks of 16 bits, which in this context is a word. The various
computations involved in a doubling operation will then actually be done one word at a
time. As is turns out, the power consumption caused by these operations may be heavily
dependent on the structure of their input words. In particular, operations on words with
low Hamming weight may have lower or higher power needs than those on words with high
Hamming weight. It may also be the case that one of the inputs has a much larger effect
on the power consumption than the other (e.g. the power consumption of add(a,b) might
be very strongly correlated with the Hamming weight of ¢ and basically independent of
the Hamming weight of b).

Now we can examine how the attackers might make use of such a scenario. Instead of a
signature algorithm, let us consider the case where the attacked operation is an ElGamal-
based decryption using the Montgomery powering ladder (Figure 1.2). In such a decryption
Bob uses his secret key SK = x to compute the point multiplication zP (where P is
dependent on the ciphertext). The first stage in such an attack consists of recording the
power trace while the device computes zP; for many different values of P; chosen by the
attacker. Having gathered these traces, an attack might proceed as follows. The attackers
select an operation, say a multiplication that occurs in the doubling, that they know has
power consumption dependent on the Hamming weight of its first input. Their goal is
determine which of Ry or R; is being doubled and so find the key bit for that round. They
attack the algorithm bit-by-bit and so their guess for the first bit is used to gather enough
information to make a guess for the second bit and so on.

In the first round, the attackers know the Hamming weights of the two possible inputs
to the multiplication. For each of their gathered power traces they use their guess for the
power consumption characteristics of the multiplication to determine which of Ry or Ry is
being doubled. Then, whichever one was guessed more often leads to a guess for the first
key bit. Using this information, they can determine the Hamming weights of the inputs
to the target multiplication in the second round. Using the same traces, they repeat this
process to make a guess for the second bit. They use the first two bits and the same power
traces to make a guess for the third bit and so on. When finished, they will have a guess
for the entire key.

The effectiveness of the attack depends on the number of power traces gathered, the
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power consumption characteristics of the target multiplication (or other operation), and
the quality of the attackers’ guesses about these characteristics. Also, if we assume that
the probability p of success for each bit is only a function of the number of traces collected,
then the probability of correctly guessing the i*" bit of the key is p’. The overall probability
of success is therefore pl*l. For a 256 bit key we need p ~~ .9973 for the attackers to succeed
with probability at least 1/2. However, an attacker who knows the 128 least significant
bits of x can find the discrete log of #P in about 2% steps. In this case, p ~ 0.9946 gives
an attacker a 50% chance of success.

Instead of one operation like the multiplication in our example, an attacker might look
at some sequence of operations. Additionally, in some cases not just the Hamming weight
matters and so an attacker could create a model for all 2!6 input values. In other situations
both inputs to an operation might have similar effects on power consumption. In these
cases, the combined Hamming weight of both inputs might be important. The attack could
proceed in a similar manner as above, although more traces would be needed for the same
probability of success (assuming the other properties of the operation were similar).

Another approach that can be used is to perform a template-style attack, like the one
described in Section 1.2.2. This requires the assumption that the attackers can make
arbitrary requests to the attacked device as well as to an identical device for which they
know the key. The attack proceeds as above, except that each power trace is used to
calculate the probability p; that key bit ¢ equals 0 for all . Using statistical methods,
these probabilities are combined to give the overall probability that key bit 7 is 0. At the
end the attacker simply picks the key that corresponds to the greater probabilities.

1.2.4 Cold Boot Attacks

While earlier we said that the attack target tends to be a device like a smart card and
not a PC, this is not true for cold boot attacks [34]. The authors envisioned a scenario in
which the entire hard disk of a computer is encrypted. Thus, whenever it is operating, the
secret key for such a system must be stored in RAM.

The values in RAM dissipate over time while the RAM is not receiving power. However,
reading the values shortly after power is lost means that many of the previous values will
remain intact. Thus, one method of attack is to turn off the target system by cutting
power (other shutdown techniques may give the system time to overwrite RAM values),
insert a bootable USB disk into the computer which contains a stripped down operating
system whose only purpose is to dump the contents of memory, and then search through
the memory for plausible values of the secret key. The effectiveness of the attack can be
increased by rapidly cooling the RAM immediately at the time the machine loses power.
This can be done by using, for example, a normal “can of air” type duster. If the cooling
method is used, it is also possible to remove the RAM and place it into another computer
to perform the attack. If the attack target is a desktop, the attackers could swap out the
RAM for their own and then leave to perform the attack later. This would conceivably
take less than a minute while still being very hard to detect.

13



It is important to note that the attack requires the computer to be on or in sleep/
standby mode. However, some systems remain vulnerable even if they are completely shut
off since they load the secret key into RAM without requiring a password.

The two remaining issues are how the attackers detect where in RAM the secret key is
stored and what they do in the event that some key bits have been corrupted. To answer
both questions, let’s conceive of a slightly different situation in which the attacked computer
is running a web server whose public key is known to the attackers. The attackers wish
to learn the corresponding secret key. The public information and secret key will likely be
stored together in some standardized format. Then, the attackers can search for the public
information in RAM and use that to pinpoint what must be the private key. Subsequently,
they can use the known public key to attempt to correct errors in the recovered secret key.
However, if the secret key is badly corrupted more advanced methods are required.

One such method is that to speed computations, some implementations of cryptosys-
tems contain extra private data. For example, this is true for RSA-style cryptosystems
which frequently store not just the decryption exponent d, but also the prime factors p
and ¢ of the RSA modulus as well as d (mod p) and d (mod ¢) and sometimes also ¢~*
(mod p). Each of these pieces of information can (in combination with the public key) be
used to derive any of the others. Thus an attacker can further use these extra pieces of
information to gather more information about the secret key.

Another important observation of [34] is that within a region of RAM, values tend
towards 0 or 1 uniformly. That is to say, one “block” of RAM would either tend towards
all its values becoming 0 or all its values becoming 1. Therefore, it is much easier to detect
which of the secret key bits have decayed when performing the attack. It will be the case
that either all the 1’s or all the 0’s in the recovered key will be true bits. Further, if a
significant fraction of bits have decayed?, then it will be extremely likely that the Hamming
weight of the “block” will determine which direction the decay is occurring in (towards 0
or towards 1).

Techniques also exist to find and recover symmetric keys from RAM. These work using
a similar principle as in the public key case when additional secret values are stored to
speed up computations. However, if these extra secret values are not stored, then finding
the secret key may be too computationally intensive. Nonetheless, if no decay occurs,
it is feasible to test every appropriately-sized chunk of RAM to see if it turns out to be
the key [34]. We feel this technique may also be possible when a small amount of decay
has occurred, especially if the attacker improves the method by only testing values with
plausible Hamming weight (since keys are chosen randomly, they will likely have Hamming
weight very close to one half of their length).

1.2.5 Countermeasures

Before we begin our discussion of countermeasures, it is important to better understand
what sort of information an attacker is actually exploiting. One observation from Sec-

41f not very many bits have decayed, the attackers can quickly recover the key using brute force methods.
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tion 1.2.2 is that different operations have different physical outputs. Here, operations
refer to the actual low-level computations being performed by the chip. However, some-
thing we did not discuss is that in many cases operations are performed in parallel. Thus
the physical outputs of the attacked device might simultaneously depend on several dif-
ferent computations. This makes the job of the attacker much more difficult, since either
the model is more complicated or the measurements are noisier. Another thing to consider
is that in all the attacks above, the attackers can chose the input to the attacked device.
While this is a scenario that should be protected against, attacks also exist in the case
where the attackers know, but cannot choose, the input and where the input is unknown.

The implementation of an algorithm is tied to the device that will be performing the
computation. The most obvious way this occurs is that chips of different word sizes (e.g. 8-
bit vs. 64-bit) will need different implementations. These (device-specific) implementations
play an important role in determining the utility of the physical output to an attacker. For
example, AES is structured to be processed in 8-bit chunks and so a 64-bit implementation
might simultaneously be performing operations using 8 different portions of the key. As
noted above, this drastically increases the complexity of an attack on the device. Other
hardware properties of the device are important as well. For example, the manner in
which the device powers its registers might make some operations’ power consumption
more dependent on their input.

Whether the algorithm is implemented in hardware or software seems to have relatively
little impact on the complexity of the attack. For example, in [53] the authors use 224
power traces to recover the key of a software implementation of AES and 6532 traces
for a hardware version; in [24], however, the authors break the proprietary encryption
scheme KeelLoq using between 10 and 30 traces in hardware and several thousand traces
in software. Also, as can be seen from these examples, many factors determine the number
of traces needed to recover the key. In [53] there is a discussion of a formula for estimating
the number of power traces needed provided one can estimate the correlation between
actual power consumption and the guess for these values (e.g. how much the actual power
consumption depends on the Hamming weight of the input). Note that these are only a
couple of data points and there are instances where a successful attack might require orders
of magnitude more power traces (e.g. see Figure 11 of [59] which shows how the number
of traces affect chances of success in a particular DPA attack).

Countermeasures come in two primary flavours, which we will refer to as hardware/
physical countermeasures and implementation countermeasures. Hardware/physical coun-
termeasures are those which attempt to prevent attackers from learning the (unaltered)
physical outputs. For example, an organization might consider placing their important
cryptographic devices inside a Faraday cage to prevent electromagnetic emanations. Im-
plementation countermeasures are themselves divided into two categories: hiding counter-
measures where the physical outputs are made similar for all inputs, and masking counter-
measures where the values being processed are altered in some way (that does not affect
the final output). In our discussion below, general purpose countermeasures are based on
[53], those for elliptic curves on [39], and cold boot attacks on [34].

15



Hardware and Physical Countermeasures

We will only briefly touch on the variety of countermeasures that prevent physical observa-
tions from occurring. These range from very low-tech solutions such as keeping equipment
in a locked and guarded room, to highly engineered solutions such as encasing the device
in a tamper-resistant mesh that overwrites the secret key with 0’s when it is physically
disturbed. Among the defences against power analysis attacks is the use of an onboard
battery. Especially when coupled with tamper-resistant surroundings this makes it very
hard for an attacker to learn the power consumed by such a device.

Many of these solutions only work in very specialized applications and may substantially
increase the cost of the device. For example, smart cards tend not to use batteries for both
cost and space reasons. In fact, smart cards are generally chosen as a vehicle for attack in
the literature since they are very hard to secure physically (at a reasonable cost).

Almost all of the techniques for preventing cold boot attacks are of this sort. For
example, important methods include always turning off a computer when it is to be left
alone. Beyond that, it should not be left alone until a reasonable amount of time has
passed (maybe 3 or so minutes) from when it was turned off. Further techniques include
storing secret keys in special memory that is not subject to the attack (e.g. it is welded
to the motherboard and cannot be read from a RAM dump), making sure keys are only
in RAM while they are being used, writing over keys when the computer is turned off,
and writing over RAM when the computer is turned on. Another countermeasure is to
re-compute extra secret values as needed, as opposed to constantly storing them — this
involves significant efficiency tradeoffs.

Hiding Countermeasures

To better discuss hiding countermeasures let us consider another kind of side channel
attack. Timing attacks, as the name implies, measure the amount of time a device takes to
perform a cryptographic operation. Depending on the type of attack, it may be possible to
measure the time required to compute chunks of the algorithm instead of the whole thing.
In any case, hiding countermeasures prevent timing attacks by making all operations take
the same amount of time. For example one method of defeating a timing attack on a
naive implementation of point multiplication is to insert dummy operations. That is, in
each round of the double-and-add algorithm if only a doubling is to occur, we also perform
an addition, but store the result in a register whose value we don’t care about. Dummy
operations are an important countermeasure when the operation being patched cannot
make use of some form of mathematical structure to perform the operation in another way.
Dummy operations can also be used in a more generic way. One can simply insert them
randomly into the algorithm making it harder for an attacker to extract the true timing.

Notice however, that all hiding countermeasures against timing attacks have the follow-
ing downside: the algorithm always performs in its worst case running-time. In fact many
hiding countermeasures against other forms of attack also have this downside. For exam-
ple, one could also randomly insert dummy operations to help prevent a power analysis
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attack, but this would again lead to a slower algorithm.

One issue which we ignored in our discussion of power analysis is that for multiple
measurements to be used together they need to be correctly aligned. That is, time ¢ in one
power trace might not correspond exactly to time ¢ in another power trace (for example
they might be misaligned by a matter of nanoseconds). The difficulty of aligning the
power traces can be increased if the implementation executes certain instructions in an
unpredictable order. This is another hiding countermeasure that can be used.

One of the most important hiding techniques is one which we already discussed above.
By parallelizing parts of the algorithm and performing multiple computations at once, an
implementer makes it much harder for an attacker to associate one operation with one phys-
ical output. This technique is particularly important if one of the operations contributes
strongly to the physical output while being affected very little by the input key or message.
The resultant noise will make it very difficult to abstract anything meaningful from the
physical output. This technique is especially important since it also has the potential to
speed up the computation of the algorithm, unlike most other hiding countermeasures.

When the cryptographic operation makes use of elliptic curves there are a number of
extra hiding options available. In particular, by writing the curve in different forms (as
opposed to the typical Weierstrass form) it is possible, for instance, to make doubling and
addition require the exact same series of operations. In that case, the power traces for the
two operations would be indistinguishable.

Masking Countermeasures

The most important type of masking countermeasure is the concept of blinding. Blinding
works by randomizing the input to some part of the cryptographic algorithm in a reversible
way. Consider, for example, the point multiplication 2 P in a group of order ¢. This could be
computed by first selecting a random r € Z,, computing Q1 = (x/2—7r)P, Q2 = (x/2+7r)P
and then adding 1 + Q2. Since /2 —1r and x/2+r are random elements of Z,, this makes
the physical output of the two point multiplications computed independent of the value
of x. This is an example of additive blinding. Two other common types of blinding are
multiplicative blinding, where the input value is multiplied by a random value, and boolean
masking, where the input value is XORed with a random value.

Blinding is easier in the case where the function is linear with respect to the operation
used for blinding. For example a multiplicative function f has the property that f(ab) =
f(a)f(b) and so is linear with respect to multiplication. In most public key settings,
functions are not linear with respect to XOR and so additive or multiplicative blinding are
used.

For elliptic curves some blinding methods make use of alternative coordinates as op-
posed to the Weierstrass form. In some cases these can be combined with the hiding
methods for elliptic curves described above. This is a useful synergy since it is not always
possible to combine countermeasures.
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Blinding countermeasures may present a significant efficiency loss. Take for instance
our example above for a method of blinding point multiplication. This requires two point
multiplications and so approximately doubles the time it takes to perform the operation.
There are ways to make blinding less expensive, but they generally require a tradeoff in
security (for example, picking small random values).

A Balancing Act

One of the most alarming properties of countermeasures is that certain techniques might
make other attacks easier or open the system to new attacks. This problem has existed
since the early days of TEMPEST when it was discovered that attempts to soundproof a
cipher room actually made acoustic side channel attacks when the microphone is in the
same room as the machine much easier [30].

A more current example is an attack on schemes which use dummy operations. In
particular, consider a situation where dummy operations are inserted into the double-
and-add point multiplication algorithm. If a fault is induced into the device during the
addition operation, this will have no effect on the final computation if it is a dummy
operation. However, if it was a real operation, this will cause the output to be wrong
(something which will eventually be detected). Thus by determining whether or not the
output was valid the attacker can learn the key bit for that round.

These examples show that the selection of countermeasures represents a careful bal-
ancing act. Practitioners must make sure that in the process of trying to defend against
one attack they did not make their scheme insecure against another. In some contexts
this might mean they need to leave a scheme more vulnerable against a certain kind of
attack to protect against another which is considered more dangerous in the threat model.
In other cases, it may mean that implementing one countermeasure prevents them from
implementing another. All the while they must also ensure that their solution is practical
in the context in which they wish to deploy it.

1.2.6 What We Don’t Know

There are no magic bullets when it comes to defending against side channel attacks — no
one-size-fits-all cure. Defences must be carefully crafted both for a particular scheme and
a particular hardware platform. It may even be the case that countermeasures need to
be custom designed for a particular organization. Note that while there is no one formula
for success, as with all areas of cryptography, there are a number of design principles that
practitioners can use to guide themselves when implementing a scheme. Techniques like
blinding and parallelization have proved themselves to be useful in many different scenarios.

Electromagnetic radiation attacks use many of the same techniques of power analysis
and are theoretically stronger attacks. Further, it may be possible to perform them at
a significant distance from a target device. At the very least, such attacks are much less
intrusive (and so bypass many of the physical safeguards designed to prevent other attacks).
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Yet, relatively little has been published about these attacks in the cryptographic literature.
Seeing as these were the first attacks discovered by the intelligence community, it seems
reasonable to assume that their knowledge about such techniques is relatively advanced.

In fact, this particular area of cryptography may be the one where the intelligence
community is furtherest ahead of the public. Certainly they have known about and worked
on side channel attacks for much longer than the public. Since practitioners cannot be sure
how powerful of an attacker they are defending against, it is important they not take the
threat of side channel attacks lightly. Another thing to consider is that for a number of
reasons attacks in the literature use relatively low cost equipment. However, intelligence
organizations might reasonably have access to much higher quality equipment allowing
them to make even more precise measurements.

Another important issue is that almost all of the literature on side channel attacks
focuses on key recovery. One reason for this is that defences tend to be responsive (that is,
defences are presented for attacks that are already known, not against the possibility of an
attack). Since attacks which recover the secret key are seen as stronger than attacks which,
for example, allow an adversary to recover the plaintext, these are the attacks which are
published. Because of the responsive nature of countermeasures, they also mostly cover
key recovery attacks. Nonetheless, other forms of attacks present a very real threat. For
example, notions of indistinguishability are much harder to achieve in the context of side
channel attacks (see Section 2.2.7). Since such notions are at the core of the security of
almost all encryption schemes, the inability to realize them in practice may have significant
ramifications.
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Chapter 2

Leakage Resilience

2.1 Leakage Resilience to the Rescue

In an attempt to unite theoretical cryptography with the practical truth of side channel
attacks, Micali and Reyzin devised a theoretical model of cryptography that would cover
all such attacks [57]. In particular, their goal was that if a scheme could be proved to
be secure under their model, then it would also be secure against side channel attacks.
Since showing a scheme to be secure against all such attacks regardless of the associated
physical implementation seems to be an impossible task, they acknowledged that future
works might need to make some assumptions about the security of the underlying imple-
mentation to obtain more meaningful results. Their paper does not contain an example of
any cryptographic scheme secure in this new model.

It is important to note the central idea of this work is similar to the central idea of
provable security in general. Namely, that if a scheme can be proved secure, then it is
secure against all (side channel) attacks, even ones that have not yet been discovered.
The major benefit of this notion is summarized well in a paper posted shortly after [57]
(but not published until 2009). In reference to their similar framework, the authors of [68]
say it “allows getting rid of most of the subjective parameters that were limiting previous
specialized and often ad hoc approaches in the evaluation of physically observable devices.”

Since then, many papers have been published which contain several types of provably
secure leakage resilient schemes (signatures, encryption, IBE, etc.). These schemes come
with a number of different models of the attacker’s abilities. That is to say, in Micali and
Reyzin’s work they envisioned an attacker who had access to an extra source of information
(related to some sort of physical observation). They made some very general restrictions
on this leakage, but nonetheless it was still a very powerful adversarial notion. To actually
prove their schemes secure, the authors of these papers significantly restricted the types
of leakage that were allowed. The various models of leakage are outlined in the next few
sections.

One of the implicit properties of the leakage functions we consider is that they are
polytime computable. While it is not immediately obvious to us that physical phenomena
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can be modelled in this way, Micali and Reyzin claim this is the case [57]. Additionally,
Standaert et al. claim that not even the full power of polytime computable functions is
needed and a weaker model suffices [69].

2.1.1 Computational vs. Memory Leakage

One of the axioms of Micali and Reyzin is that “only computation leaks information”.
Initially, all schemes were proved secure with this restriction. With the introduction of
cold boot attacks, however, it was clear that the axiom did not hold in practice. Thus,
many later papers have done away with this restriction. Nonetheless, it has been argued
26, 44] that under reasonable assumptions cold boot attacks can be modelled under a
slight modification of the original axiom. Hence, some recent papers have gone back to
the original model (or something close to it). In any case, a compelling argument for one
or the other should be made. In our discussion of various schemes, we will add the tag
“memory” to models that include memory leakage.

2.1.2 Bounded-Length, Bounded Entropy, Bounded Retrieval,
Computationally Hard-to-Invert

Bounded-Length

The most important way in which papers contain the damage due to leakage is by restricting
how much information it gives about the secret key. In the simplest model we restrict
the length of the output of the leakage function. That is, for some number b we say
that an attacker can learn at most b bits of secret information. Note that since there is
(almost) no other restriction on what form the leakage takes, we must have that b < |SK]|,
otherwise the function could give away the entire secret key, SK. In fact we must have that
b < |SK| — k, since otherwise we do not meet the requirements of the security parameter,
k. More generally, we often refer to the fraction (in terms of secret key size) of bits that
can be leaked. That is, each scheme in this model has an associated function f so that
0 < ¢ = f(k)/|SK| < 1. Here c is the proportion of key bits that can be leaked and
is known as the leakage rate. We will refer to schemes using this model of leakage as
“bounded-length” schemes.

A concrete, and somewhat realistic, example is to suppose a scheme has leakage rate
1/2 4 € for some £ > 0. Then supposing the secret key is 512 bits long, a function which
reveals the 256 least significant bits of SK would be allowed here. More specifically, a
timing attack which used 256 bits of timing information would also be allowed.

To better understand this notion we formalize the security of a signature scheme under
this model (with memory leakage) with the definition below.

Definition 2.1.1 ([11]). A signature scheme is existentially unforgeable under chosen
message attacks in the memory bounded-length leakage model with leakage parameters
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(Lg, Lg, Ly) if every PPT forger F succeeds at the following security game with at
most non-negligible probability.

e F selects a leakage function f; and sends it to the challenger who generates the public
and private key (PK,SK) and sends them to F along with fo(SK,rq), where r¢ is
the randomness used during key generation.

e F may perform a polynomial number of signature queries by providing a message m;
and a leakage function fg, to the challenger and receiving fs, (SK, r;) and a signature
o; on m;, where r; is the randomness used during signing.

e F may make a polynomial number of leakage queries by providing a leakage function
fi to the challenger and getting back f;(SK) (these leakages correspond to memory
attacks).

e F concludes the game by outputting a signature o for the message m whose signature
it has not requested.

F succeeds at the game if o is a valid signature for m, |fo(SK,rq)| < Lg|SK],
|fs,(SK,r;)| < Lg|SK| for each i, and the total number of bits output from leakage
functions is less than Ly |SK].

Notice that if there is no leakage, this definition becomes the standard notion of signa-
ture security. A similar statement is true for the altered definition of security for encryp-
tion schemes. Unfortunately, a fundamental restriction in all leakage models for encryption
schemes is that no leakage can occur after the challenge ciphertext has been issued (there
are many ways to come up with a leakage query that will reveal which plaintext was en-
crypted). To combat this, Halevi and Lin [35] propose the notion of “entropic security”
where queries are permitted after the challenge provided they leave it with enough entropy.
We will discuss the difficulties of maintaining indistinguishability in a leaky environment
in greater detail in Section 2.2.7.

Bounded Entropy

Instead of restricting the length of the output, one could instead ensure that even after
seeing the leakage an attacker does not have enough information to determine the secret
key. More formally, we require the (min-)entropy of the secret key, conditioned on the
leakage to be relatively high. This is a useful extension of bounded-length leakage in that
it both allows us to leak as much useless information as we want (we will see why this is
actually useful soon) and it also models the fact that the attacker generally receives noisy
information. We will refer to schemes using this model of leakage as “bounded entropy”
schemes. See the full version (ePrint link) of [60] for more details.

Very few schemes actually prove their security in the bounded entropy model. In most
cases, the scheme is proved secure in the bounded-length model (for ease of analysis) and
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then the authors claim or argue that their scheme is in fact secure in this more general
model. This is an unsurprising development, since many of the proofs of security make
use of the fact that the key still has high min-entropy even after (bounded-length) leakage
occurs.

As an example of this type of leakage, suppose a secret key is chosen uniformly at
random from {0,1}1%9%* and given the public key each possibility for SK is still equally
likely. Now suppose that an attacker may learn any information about SK provided SK
still has n/8 bits of entropy. Here a power analysis attack which reveals at most 896 bits of
SK would be allowed (the situation is actually more complicated than this, see Section 2.2
for more details). This is because each of the remaining 128 unknown bits is still equally
likely to be one or zero and so there are 2'2® equally likely possibilities left for SK.

Bounded Retrieval

Another quite different approach is the following. Consider the case where you have an
extremely large number of secret keys corresponding to one public key. In a particular
instantiation of such a scheme the actual secret key consists of many of these secrets.
However, a signature or decryption uses only a tiny portion of the secret key. Further,
learning even a large number of the individual secrets leaves an attacker unable to compute
any of the others. Here, for any bound b on the number of bits to be leaked, by choosing a
secret key large enough we can get a secure scheme. This is known as the bounded retrieval
model. Since the previous definitions of this model include memory attacks, we will not
add the tag “memory” (despite allowing such attacks) to avoid confusion with definitions
of the term in the literature.

For an example of an allowed leakage in the bounded retrieval model, suppose we wish
to be secure against a cold boot attack that recovers 23° bits (a gigabit) of information.
Then for any scheme secure in this model, by creating a large enough amount of secret key
information (in this case maybe several gigabytes), we can guarantee security against such
cold boot attacks.

A drawback of the bounded retrieval model is that the standard notion of signature
security is no longer applicable. In particular, since we generally assume that the number
of bits that can be leaked in this scenario is very large, an attacker can simply request
a valid signature for a message as a leakage query. To deal with this, Alwen et al. [3]
propose “entropically unforgeable signatures.” Basically, an attacker’s forgery must be
on a message chosen from a set of messages with high enough entropy'. This choice of
message must be made after all leakage queries have occurred. Halevi and Lin’s method
of allowing leakage after seeing the challenge ciphertext can be thought of as the analogue
of this approach in the context of encryption schemes.

!'Note that both the particular message and the set of messages are chosen by the attacker
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Computationally Hard-to-Invert

The auxiliary input model was originally proposed by Dodis et al. in [20]. While this
work focused on symmetric key schemes, in [17] Dodis et al. deal with the model in the
context of public key schemes. The idea here is that we should be able to allow all leakage
functions whose output leaves the secret key hard to compute (even if it is information
theoretically revealed). In particular, if (PK, SK) is a public-key/secret-key pair, then a
function f is allowed if even given f(PK,SK), no polynomial time algorithm can recover
SK with non-negligible probability. As it turns out, this model is often too strong. Thus,
in the slightly weaker model, it must be hard to compute SK given PK and f(PK,SK).
While this seems like a natural restriction, there may be issues with this. For a more
in-depth discussion of these issues see Section 2.2.5. We will refer to this type of leakage
as “computationally hard-to-invert”.

It seems very difficult to come up with a concrete and practical example of a function
allowed in the computationally hard-to-invert model. While the model generalizes the
bounded-length and bounded entropy models, and so the examples there would also work
here, they do not show the greater power of the model.

2.1.3 One-time vs. Continual Leakage

Another restriction which we implicitly used in the discussion of leakage bounds in Sec-
tion 2.1.2 was that the leakage only happens once. That is to say, in, for example, the
bounded-length model, after b bits have been leaked, no more leakage can occur. (These
b bits, however, can be collected over time and adaptively, if required.) However, more
recently schemes have looked at the case where only the leakage in a particular time frame
is bounded. They do this by adding key updates to their scheme. Thus, they restrict the
amount (or type) of leakage that can occur between updates. We denote schemes in this
model by adding the tag “continual.”

As an example we present the formal definition of security for a signature scheme in
the continual memory bounded-length leakage model, i.e., the continual version of Defini-
tion 2.1.1.

Definition 2.1.2 ([11]). A signature scheme is existentially unforgeable under chosen mes-
sage attacks in the continual memory bounded-length leakage model with leakage parameters
(Lg, Ly, Ls, Ly) if every PPT forger F succeeds at the following security game with at
most non-negligible probability.

e F selects a leakage function f; and sends it to the challenger who generates the public
and private key (PK, SKy) and sends PK to F along with fo(SKy,rg), where r¢ is
the randomness used during key generation.

e F may perform a polynomial number of signature queries by providing a message
m; and a leakage function fg, to the challenger and receiving fg,(SK;,rs,) and a
signature o; on m;, where rg, is the randomness used during signing.
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e F may make a polynomial number of leakage queries by providing a leakage function
fi to the challenger and getting back f;(SK;) (these leakages correspond to memory
attacks).

e F may perform a polynomial number of update queries by sending a leakage function
Ju to the challenger who updates SK; to SKj 1 and sends fy(SKj,ry,;) to F, where
ry; is the randomness used during key updates.

e F concludes the game by outputting a signature o for the message m whose signature
it has not requested.

F succeeds at the game if o is a valid signature for m, |fe(SKo,re)| < La|SKo,
|fs,(SKj,rs,)| < Ls|SK;| for each i, | fu,(SKj,ry,)| < Ly,|SKj| for each j, and the total
number of bits output from leakage functions between updates is less than Ly, |SKj|. Notice
that the leakage during key updates counts towards the master leakage in both the period
where SK; is the secret key and where SKj; is the secret key.

2.1.4 Putting it All Together

Here we provide a brief overview of results in each of the models. In the bounded-length
model an (identity-based) encryption scheme has three leakage parameters each expressed
as a fraction of the length of the secret key: leakage during key generation, leakage during
decryption, and master leakage (the overall amount of leakage that can occur). We express
this as the triple (Lg, Lp, Lpys). A signature scheme has similar parameters, except we
replace Lp with Lg, the leakage during signing. Continual schemes have an additional
parameter L, the leakage during key updates. In this case, L,; refers to the amount of
leakage that can occur between key updates.

On top of the results we present below, a number of general purpose compilers have
been proposed [27, 28, 41]. These convert any standard (cryptographic) algorithm into one
that is leakage resilient. All rely on the availability of some form of leak-proof hardware.

Throughout this discussion, k is the security parameter, n is the message length (in
bits), and ¢ is a parameter affecting the secret key size. In many cases, the secret key
will consist of O(¢) group elements. Furthermore, we will say that a scheme has a global
leakage parameter if all of its associated leakage parameters are equal (e.g. in a signature
scheme Lg = Lg = Lys). Also, unless otherwise noted, encryption schemes achieve chosen-
plaintext security. Further, we assume that for constructions which make use of groups of
prime order ¢, we have |q| ~ 2k.

Bounded Retrieval Schemes
Alwen et al. [3] construct an identification (ID) scheme, an authenticated key agreement

(AKA) scheme, and a signature scheme. The signature scheme is entropically secure in
the bounded retrieval model. Their AKA and signature schemes rely on random oracles
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for their security proofs. Their ID and signature schemes are secure under the gap Diffie-
Hellman assumption? and the AKA scheme is secure under DDH. It is assumed that no
leakage occurs during key generation.

Alwen et al. [2], in their 2009 paper show how to construct public key and identity-based
encryption schemes in this model. To accomplish this they propose an identity-based hash
proof system. They present three constructions of this primitive using bilinear groups,
lattices, and the quadratic residuosity assumption. In each case no leakage is allowed
during key generation. They also show that their IBE scheme can achieve CCA security
and construct a generic transformation from CPA to CCA security for standard encryption
schemes in the bounded retrieval model.

Memory Bounded-Length Schemes

In 2009, Akavia et al. [1] describe an encryption scheme and an IBE scheme that globally
tolerate at most a 1/logn and 1/log®n fraction of leakage, respectively, under the learning
with errors lattice assumption.

Also in 2009, Katz and Vaikuntanathan [43] propose a few different signatures schemes.
One globally tolerates a 1 — |SK|¢ fraction of leakage assuming the existence of a univer-
sal one-way hash function mapping |SK]| bits to |SK|® bits. Unfortunately, due to its
reliance on an unbounded simulation sound non-interactive zero-knowledge proof system,
the scheme is fairly inefficient. They also propose two different one-time schemes which
they show can be extended to ¢-time schemes that have global leakage parameter 1/t.

Another scheme independently discovered in an early version of [42] by Katz and by
Alwen et al. [3] is a modification of the Schnorr signature scheme. Chapter 3 provides a
detailed discussion of this scheme. It globally tolerates a % — 2% — ¢ fraction of leakage for
any € > 0 under the discrete log and random oracle assumptions.

Still in 2009, Naor and Segev [60] propose several different encryption schemes. First
of all, they show a general construction based on hash proof systems. They proceed to
give specific examples, including showing that the scheme of Boneh et al. [9], BHHO, is
secure even after a 1 — % fraction of global leakage occurs, where ¢ is a negligible
function of k. This scheme appears in a number of papers on leakage resilience and is
the subject of further discussion in Section 2.2.6. They also present a modification of the
scheme which tolerates a (¢ — 2 —log, 1/¢)/{ leakage rate. They propose a CCA-1 secure
scheme based on Cramer-Shoup “lite” with a global leakage rate of 1 — %, where w
is the usual “little omega” from complexity theory. Note that the only way to increase the
number of bits that can be leaked in this scheme is to increase the size of the underlying
group. A similar scheme based on Cramer-Shoup achieves CCA-2 security with a global

leakage rate of 1 — %. The three above schemes rely on the hardness of DDH.

In their 2010 paper, Chow et al. [15] present a number of identity-based encryption
schemes. All of their schemes are close in efficiency to the previously known (non-leakage-
resilient) schemes they are based on. They present two schemes that have global leakage

2Here we assume that DDH is easy, but CDH is hard.
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parameter 1/3—¢ based upon the decisional bilinear Diffie-Hellman assumption and another
which achieves 1/9 — ¢ using assumptions based on the generalized subgroup decision
assumption.

In 2010, Dodis et al. [19] propose a new primitive: true-simulation extractable non-
interactive zero-knowledge arguments. Using this and a leakage resilient key generation
algorithm, they devise generic constructions of a signature scheme and a CCA-secure en-
cryption scheme. They give specific instantiations of each under the symmetric external
Diffie-Helman assumption® (SXDH) and the decisional linear assumption* (DLIN). The
signature scheme has global leakage rate 1 — ¢ where the signature length is approximately
18/£424 group elements under SXDH and 57/e+70 group elements under DLIN. Similarly,
the encryption scheme has global leakage rate 1 — ¢, Where the ciphertext size is approxi-
mately - B +1 72y T 15 group elements under SXDH and EE +1 o T 34 group elements under
DLIN. Using their signature and encryption schemes they also construct identification and
authenticated key agreement protocols.

In 2011, Halevi and Lin [35] construct entropically secure encryption schemes based
on the generic constructions of Naor and Segev [60]. The amount of leakage tolerated
depends on the specific instantiation of the tools they use (a strong extractor and a hash
proof system).

Notice that the schemes of Dodis et al. require a rather large number of group elements
even when the fraction of leakage is very small. Unsurprisingly, the operations required to
compute these elements make the schemes impractically inefficient. In fact, of the schemes
mentioned, only the IBE schemes of Chow et al. and the modifications of Schnorr and
BHHO are reasonably close to being practical. Furthermore, even the fastest known IBE
schemes are significantly slower than public key encryption schemes used in practice.

Continual Bounded-Length Schemes

In 2010, Faust et al. [26] showed how to convert a 3-time signature scheme that allows for
up to L bits of leakage into a continually secure scheme that allows L/3 bits of leakage
per signature. However, their scheme needs access to truly random bits and its efficiency
depends (logarithmically) on the number of messages that can be signed in the lifetime of
the system.

In 2010, Kiltz and Pietzrak [44] prove the CCA security of a blinded variant of ElGamal
encryption in the generic group and continual bounded-length models. They further require
that the scheme is instantiated over bilinear groups of prime order p, where p — 1 is
not smooth (i.e. it has a large prime factor). The scheme has global leakage parameter
1/2—(3logq+k/2)/|SK| where ¢ is the number of queries an attacker can make. They go
on to conjecture that a practical variant of their scheme is secure even for arbitrary groups
as long as p — 1 is not smooth.

3This assumption is that DDH is hard in both of the “input” groups to a bilinear asymmetric pairing.
4A slight generalization of DDH in the input group of a symmetric pairing.

28



Recall that blinding is one of the well-known countermeasures for several types of side-
channel attacks. Furthermore, ElGamal encryption in the form of ECIES is a scheme
that is used in practice. So, it is interesting to see an attempt to prove the security of a
countermeasure in this model. Unfortunately, they were unable to prove the security of
their practical scheme. Nonetheless, we feel that the idea of proving the security of known
countermeasures presents a good compromise between theory and practice. Also, it would
be interesting to compare the efficiency of their practical scheme with one where blinding
occurs at the implementation level.

Continual Memory Bounded-Length Schemes

In the discussion for schemes in this model, the notation log as a leakage parameter means
that the scheme can tolerate O(logk) bits of leakage during that phase. In every case
where this appears, the schemes make use of a lemma we will discuss in detail later. For
more information see Lemma 4.6.1.

In 2010, Dodis et al. [18] construct the primitive of a continuous leakage resilient one-
way relation. Using this they construct a signature scheme in the random oracle model,
that under the d-linear assumption has leakage parameters (log, log, ﬁ — €, #H —¢),
where € > 0 is a constant. They also construct ID schemes in the standard model, and
AKA and “challenge-response” interactive signatures in the random oracle model. The
efficiency of all these schemes depends on the number of queries an attacker can make
between updates.

In 2010, Brakerski et al. [11] propose the first public key encryption scheme in this
model. Its leakage parameters are (log, log, E_SZ_W, e—gz—y) under DLIN and (log, log,

%7, Z_%_V) under SXDH, for v > 0. They also construct an IBE scheme with similar
leakage parameters under DLIN. Additionally, they create a signature scheme that makes
use of a leakage resilient encryption scheme (actually, it only uses the key generation and
update facilities of such a scheme). The leakage parameters of the resulting scheme are
(LG, Ly, Ly /2k, L) where the leakage resilient scheme has parameters (Lg, Ly, Lar, L)-
However, every signature of this scheme also leaks 2ks bits to the attacker, where s is a
parameter that affects the efficiency of the scheme. The signature scheme relies on a

primitive for which constructions are only known in the random oracle model.

In 2011, Lewko et al. [51] construct IBE, hierarchical IBE, and attribute-based encryp-
tion schemes that rely on three assumptions on composite order bilinear groups. All have
leakage parameters approximately (0,0,1 —e,1 —¢), where ¢ is a small positive value that
shrinks as ¢ increases. In the HIBE scheme, the amount of leakage allowed depends on
height of the key in the hierarchy (higher keys can leak less).

In 2011, Lewko et al. [50] construct the first schemes that can tolerate more than a
logarithmic amount of leakage per update in this model. They construct an encryption
scheme and a signature scheme under three assumptions based on the generalized subgroup
decision assumption. Both schemes have security parameters (0, L, L, L) where L ~ 1/162.
Note that at the 128-bit security level, their scheme needs a key size of at least 2048 bits
to allow more leakage during key updates than previous schemes.
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In 2011, Malkin et al. [52] construct a signature scheme secure under the SXDH as-
sumption. The scheme has leakage parameters (log, log, 1 — QJFT'Y, 1— 2+77) where v > 0 is a
constant. We will present this scheme in detail in Chapter 4.

In 2011, Boyle et al. [10] construct signature schemes in both the memory bounded-
length leakage and continual memory bounded-length leakage model. Their continual
scheme is secure under the d-linear assumption with leakage parameters (0,0,1/d—e,1/d—

£).
The only schemes that have close to practical efficiency are those of Boyle et al. and

Malkin et al. Our discussion in Chapter 4 of the scheme of Malkin et al. contains a detailed
efficiency analysis.

Memory Computationally Hard-to-Invert Schemes

In 2010, Dodis et al. [17] proposed several encryption schemes in the computationally
hard-to-invert model. In particular, they show that BHHO is secure (in their strong no-
tion of security) against leakages that leave any polynomial time attacker with a success
probability of at most 279" where the secret key has size (8k)/e.

For ease of comparison we have compiled Table 2.1. In the table, “type” refers to the
type of scheme and “leakage notes” contain leakage parameters or restrictions.

2.2 A Closer Look

At a first glance, leakage resilient cryptography seems tremendously useful; finally we can
account for side channel attacks in a theoretical model of security. However, it is unclear
how well the proposed solutions actually model realistic attacks. Thus, a fair question
to ask at this point is “Are leakage resilient schemes really secure against side channel
attacks?” The answer is unfortunately “no”: none of the models above cover all classes
of practical side channel attacks. In particular, any side channel attack which reveals the
entire secret key (or reduces the search space to a small enough size) is not allowed under
any of the above models. Further, it is impossible to construct a scheme that could be
secure against such an attack. This may seem to be incredibly thin criticism at first, since of
course some information must remain secret in cryptography. Nonetheless, these schemes
provide us with no assurance that such devastating leakage will not occur. Moreover, they
go no further in preventing it than schemes used in practice. This is in stark contrast to
other countermeasures against side channel attacks, which often prevent or severely limit
a large class of practical attacks.

The problem that arises here is that side channel attacks happen at the implementation
level. That is to say if someone were to perform a power analysis attack on the Schnorr
signature scheme, they would really be attacking the particular implementation® of elliptic

5There are examples of scheme-level defences like some instances of blinding, but for the most part
countermeasures are low-level.
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curve point multiplication that was used and not the scheme itself. Brakerski et al. [11]
referring to the previous lack of an encryption scheme secure in the continual memory
bounded-length model, subtitled their paper “Overcoming the hole in the bucket.” To
steal the bucket metaphor, imagine a cryptographic scheme as a bucket full of water (the
secret key) and the implementation of that scheme as a lid. As it stands, the quality of
the lid varies and so when we turn the bucket upside down a lot of the water may leak out.
Leakage resilient cryptography seeks to solve that problem by building a bigger bucket (at
the same cost hopefully). Thus, even if some of the water leaks out, we still have enough
left for our purposes. But, if the lid is not secured, at the end of they day, there still
won’t be any water left no matter how big our bucket is. Further, in some cases, the new
“leakage resilent” buckets require custom lids which have yet to be invented (and may be
harder to build).

More formally, the approach of (public key) schemes in leakage resilient cryptography,
since they are above the level at which the leakage is occurring, is to make sure that even if
some leakage occurs, the secret is still safe. There are several drawbacks to this approach.
First of all, since it is not the scheme itself that is leaking, we have no idea just by looking
at it how much it will leak. Secondly, there are very few known attacks against currently
deployed schemes where partial key leakage leads to an algorithm faster than the best
known generic algorithm on this smaller key space.® That is to say, in some ways these
new schemes are only more secure in the sense that they have larger keys (and so when
a fixed amount of leakage occurs the remaining key space is larger in the new schemes).
This comes with the added downside that in many cases, for practical security levels and
leakage bounds, currently deployed schemes with increased key sizes are faster than these
new schemes. Finally, and perhaps most crucially, one is still left with the need to create
secure implementations of these schemes. In particular, a practitioner still needs to add all
of the countermeasures he would have previously (otherwise the schemes are still vulnerable
to the side channel attacks which fall outside their security models). Unfortunately, the
new schemes are often much more complex than practical schemes and may use operations
that we have little experience in developing countermeasures for. Consequently, it may”
be much harder to implement these schemes securely.

Certainly, an argument could be made that it is useful to be able to prove security
given some assurances that the implementation is not too leaky. However for such proofs
to be worthwhile, we would need evidence that there is a non-leaky implementation of the
scheme. None of the papers we examined provided such evidence.

At this point it is important to note that we are neither criticizing the motivation of
leakage resilient cryptography nor the quality or creativity of the work in the field. Instead,
we are concerned that the current direction of the field will not contribute anything to
achieving the original goal: creating cryptosystems secure against side channel attacks.

60nly attacks on factoring are known — see [36] for one such attack.
"We are forced to concede that since no one has attempted to implement these schemes, there is some
possibility that they are not harder to secure.
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2.2.1 Leakage Leakage Leakage Leakage

The heading here is not a typo; in fact, it is a quote from the 2011 Crypto Rump session
panel on leakage.® It also nicely summarizes our sentiment that getting too caught up in
leakage (resilience) can lead one to forget its raison d’étre. In this sense, we feel the name
change away from “physically observable cryptography” is a bad one. While that name
has it issues (there are classes of side channel attacks that do not correspond to physical
observations), it keeps the focus pretty clearly on security against side channel attacks.
When that focus slips away, we get results like that of Dziembowski and Pietzrak who
created a (provably) leakage resilient stream cipher [23] which was subsequently shown to
be less secure against DPA attacks than an unprotected implementation of an AES-based
cipher [67].

Related to this problem is that many papers refer to the fact that “in practice” the
standard cryptographic assumptions made about the attack model do not hold in the pres-
ence of side channel attacks. Nonetheless, their authors fail to address how their schemes
fit into a practical cryptographic setting — neither in terms of its abilities to withstand side
channel attacks, nor in terms of its efficiency. With respect to efficiency, many schemes
in this model are labelled by their designers as “efficient”, whereas a practitioner might
regard them as “horribly inefficient.” In some cases, this is because in the authors’ minds
there seems to be no distinction between an “efficient” algorithm and a polynomial time
algorithm. In other cases an “efficient scheme” means that previous schemes were even
more inefficient.

Given the practical nature of the problem leakage resilience attempts to solve, we feel
that authors should expend greater effort to place their schemes in a practical setting.
They should do this by analyzing both how well their scheme might fare against realistic
side channel attacks and the scheme’s efficiency (in practical terms, not just with big O
notation). Even mentioning that the scheme is impractical and a short discussion of what
could be done to address this would be a step forward for the field.

Beyond this, consider this quote from Brakerski et al. on page 5 of [11]:

We note that the main drawback of our [signature] schemes is that the leakage-
rate that we can tolerate is not optimal. For example, we can only tolerate a
leakage-rate of 1/4 — € between each update procedure. We don’t view this as
a serious drawback, since it simply means that we should update our secret key
more often.

Their main signature scheme is totally inefficient (it requires O(k*) computations), but
its “main drawback” is that its leakage rate is “not optimal.” In fact, not once do they
comment on the efficiency of any of their schemes, despite the fact that all of them are
impractical. This is alarming to us since the motivation for their work is that the assump-
tions of (provable) public key cryptography do “not hold in practice” (p. 1). On top of

8 Attributable to any of the three panel members as well as the moderator, since the only word said for
those two or so minutes was “leakage.” A video of the presentation is available at http://www.youtube.
com/watch?v=i-3tfQ9EQQw. See also the follow-up paper [6].
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this, the second part of their quote dramatically oversimplifies the issue as their scheme
only allows for a tiny bit of leakage during updates (and so frequently needing to update
means making a strong assumption).

Now, consider the following quote about the bounded leakage and bounded retrieval
models from Alwen et al. on page 1 of [3]:

In many situations, the attacker might get some partial information about se-
cret keys through means which were not anticipated by the designer of the
system and, correspondingly, not taken into account when arguing its security.
Such attacks, referred to as key-leakage attacks, come in a large variety. For
example, this includes side-channel attacks [46, 8, 7, 47, 65, 31], where an ad-
versary observes some “physical output” of a computation (radiation, power,
temperature, running time etc.) in addition to the “logical output” of the com-
putation. Alternatively, this also includes the “cold-boot” attack of Halderman
et al. [34], where an adversary can learn (imperfect) information about memory
contents even after a machine is powered down. Lastly, this can include various
malware /virus/hacking attacks where the adversary can download arbitrary in-
formation from an attacked computer.

In this work, we assume that the attacker can repeatedly and adaptively
learn arbitrary functions of the secret key sk, as long as the total number of
bits leaked during the lifetime of the system is bounded by some parameter ¢.
Due to its generality, this model seems to include a very large class of attacks
mentioned above, and has recently attracted a lot of attention from the research
community.

First of all, the authors seem to ignore the fact that any system not secured at the imple-
mentation level is vulnerable to attack. Next, as we argue in Section 2.2.2, the bounded-
length model might not even be able to account for many of the side channel attacks they
mention. Finally, we find it disingenuous to include malware, viruses, and hacking in the
list of attacks as these typically result in complete system compromises, in which case no
scheme (leakage resilient or otherwise) is helpful.

That last point is part of a broader trend that we find particularly worrying. Many
authors feel the need to exaggerate the utility of the previous works in the field. Koblitz
and Menezes make this point as well:

Although an implementer would search in vain for anything of practical use in
[57] or [68], among theoreticians [57] and [68] are considered landmark papers.
In [42, 43] we read:

In the past few years, cryptographers have made tremendous progress
toward modeling security in the face of such information leakage [57,
68], and in constructing leakage-resilient cryptosystems secure even
in case such leakage occurs.
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This use of the words “tremendous progress” to refer to the philosophical essays
[57, 68] seems to us to be a bit of hyperbole [45, p. 21].

Dodis et al. say,

[A] new goal has been set within the theory of cryptography community to build
general theories of physical security against large classes of side channel attacks.
A large body of work has accumulated by now in which different classes of side
channel attacks have been defined and different cryptographic primitives have
been designed to provably withstand these attacks [17, p. 1].

We take issue with equating classes of leakage with classes of side channel attacks when
there is much work to be done on understanding how closely related these two things are.
Additionally, this quote seems to be moving the definition of side channel attacks away
from its practical and realistic roots to one of theoretical interest only.

The same new view of side channel attacks is expressed in the abstract of [10] by Boyle
et al. who state,

A signature scheme is fully leakage resilient (Katz and Vaikuntanathan, ASI-
ACRYPT ‘09) if it is existentially unforgeable under an adaptive chosen-message
attack even in a setting where an adversary may obtain bounded (yet arbitrary)
leakage information on all intermediate values that are used throughout the life-
time of the system. This is a strong and meaningful notion of security that
captures a wide range of side-channel attacks.

On top of this, one of our biggest points of contention, and one which arises repeatedly in
this thesis, is that it is very hard to appreciate what these security guarantees mean. So
we are not sure in what way Boyle et al. find the notion “meaningful.”

In his thesis?, Wichs provides another example of this phenomenon:

Leakage-resilience in [the bounded leakage] model is a property of only the
algorithmic description of a cryptosystem and not its implementation. If a
cryptosystem is shown to be resilient to bounded leakage, then any implemen-
tation of it on any hardware architecture is resilient [71, p. 12] (emphasis in
original).

Once again, this disregards that an insecure implementation will leave the scheme totally
vulnerable no matter how “leakage resilient” it is.

Overstating the results of the field makes it harder to understand the important question
of which definition of leakage is best and undermines areas of research that are critical to
the success of leakage resilience. In particular, we find the design of schemes which can
tolerate some leakage and are competitive with practical schemes in terms of efficiency and
in terms of security of their implementations to be the fundamental problem of leakage
resilient cryptography. It seems pointless to solve a problem that only makes sense in a
practical context with a theoretical solution.

9Wichs’s thesis provides an excellent overview of the field in general as well as touching upon a number
of important issues which are largely ignored in other works.
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Unfortunately, any scheme faces the following efficiency loss in the presence of leakage.
To account for leakage we must make the secret key larger than the minimum dictated by
the security parameter. For example, a secret key for the Schnorr signature scheme at the
128-bit security level is 256 bits. If we leak even 1 bit of the key, then we no longer have
128 bits of security. Thus, we have to increase the key size by the number of bits we expect
to leak. This in turn makes our entire scheme slower. Nonetheless, since current schemes
do not have their parameters inflated to deal with such issues, the new scheme may still
be a useful notion.

The above criticisms hold even assuming that the various classes of leakage functions
actually do model a large class of realistic side channel attacks. However, the assumptions
made on the types of leakage may prevent us from successfully modelling side channel
attacks. In the next few sections we will look more closely at these restricting assumptions.

2.2.2 Bounded-Length

The bounded-length leakage setting faces the fundamental problem that many attacks (e.g.
power analysis attacks) simply require too much data to be covered by the model. More
specifically, in any of these schemes, the size of the secret key provides an absolute upper
bound on the number of bits that can be leaked. However, a single power trace contains
megabits of information and so violates that bound.

This example, however, sidesteps a subtle issue with the definition. How do we deal with
the issue of an attacker learning compressed data? As it turns out, since secret information
is random, anything that divulges that secret information cannot be compressed much.
In particular if the attacker learns a string = that can be (losslessly) compressed to a
b-bit string, then we can say that the attacker has learned b bits of information about
the secret.!'® In any case, these schemes are actually secure against any leakage that is
efficiently compressible to sizes within their leakage bounds. Unfortunately, the output of
many practical side channel attacks (e.g. power analysis, timing, cold boot) is not efficiently
compressible.

To mitigate concerns over many attacks not being allowed, Kiltz and Pieztrak argue it is
only the output of the side channel attack that matters [44]. In general, this output is some
number of key bits. Then, provided this number is small enough, this leakage would be
allowed by the model. This is dissatisfying for a number of reasons. First of all, the whole
point of having provably secure schemes is to avoid having to make intuitive arguments
like this. Next, how can one tell how many key bits a given side channel attack will reveal?
Given our earlier analysis, we can see that determining this is impossible just by looking
at the scheme. Thus, further experimentation is required, beyond what is presented in any
of the papers, just to be able to even remotely understand what their security guarantees
are. Finally, if we are only considering the outcome of these side channel attacks, why not
simplify the model by having the leakage just be some number of key bits?

100n average, the best a compression algorithm can do on random strings is to change the string size
by 0 bits (it may increase the string size in some instances and decrease it in others).
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This last point actually deserves further discussion. The idea has been the subject of
research in the past. Dodis et al. put forward the idea of exposure resilient cryptography
[12, 16, 22], where a scheme is secure even after an attacker learns a subset of the key bits.
Wichs criticizes the notion in his thesis: “exposure-resilient cryptography may be overly
restrictive in the type of leakage, by only allowing an attacker to probe individual bits of
the state, but not allowing her to learn any global properties” [71, p. 7]. As an example, he
says that Hamming weight is often used as part of DPA attacks. Nonetheless, we propose
the following situation. Suppose an attacker wishes to break a public key scheme and is
given some function f(SK) of the secret key with |f(SK)| < |SK]| as extra information.
Is there ever a situation in which she would not want f to reveal some number of bits of
SK as opposed to some other function? In particular, is there a realistic scheme where
learning some function of the secret key of length b is ever better than learning b bits of
the secret key? Basically, our issue with Wichs’s example of the Hamming weight, is that
this is then used in conjunction with other information. Our question is, when looking at
that information as a whole, would we prefer it over bits of the secret key? If not, why
bother with the additional complexity of the bounded-length model? Is it possible that
stronger results can be proved in this slightly weaker'* model?

Even supposing that a single measurement associated with a given attack is acceptable
under the model, it does not account for the fact that attacks like DPA involve repeating a
measurement thousands of times. For example, while most schemes will allow leaking the
Hamming weight of a per-message secret once, leaking this value every time a message is
signed, say, would eventually violate the leakage bound. This is a fundamental weakness of
the model, since we expect a scheme that leaks to leak some amount during each execution
and so the overall amount it leaks is unbounded.

Continuity

The issue of not allowing repeated measurements is exactly the problem that is solved by
making schemes in the bounded model continual. While these schemes run into the same
problems of not necessarily being able to allow a single measurement, they do allow for
a potentially unbounded amount of leakage. They do this by adding in a mechanism to
update the secret key (while leaving the public key unchanged). These sort of primitives
can be used to defeat attacks like DPA, by updating the key before too much information
is gathered (as long as a single measurement does not contain too much information).

The natural question to ask then is “When do we update the key?” This is a tricky
question and depends on a number of factors.'? Most notably, “what are the assumptions
made about leakage during updates?” and “how fast are the updates?” If key updates are
significantly faster than the main operation of the scheme (signing, for a signature scheme),
then we can perform the update every time we perform this operation without having a
significant impact on efficiency. However, if we assume that not many bits (relative to the
master leakage) can leak during updates (as several schemes in this model do), then this

1 Although, if indeed directly leaking bits of the secret key is always best, it is not at all weaker.
12Unsurprisingly, it is largely unaddressed by authors of these schemes.
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significantly weakens the security of our scheme. In some cases, depending on the update
procedure, this may indeed be a valid assumption. Nonetheless, this analysis does not
appear in any of the papers that use this model.

Another issue is that by looking at Definition 2.1.2, we can see that the security model
implicitly assumes the existence of secure erasures. That is to say, it assumes that after
updating the secret key all knowledge of that secret and any per-message secrets since
the last update are erased (via a leak-proof operation). It is currently unknown how to
(efficiently) achieve such a goal and as such it is a very strong primitive. Note that the
model does indeed require secure erasures since otherwise an attacker could (over time)
request any amount of information about an old secret key and so eventually recover it.
This would be a total break of the scheme, since by learning any of the secret keys associated
with the public key, an attacker could forge signatures. This criticism also applies to
encryption schemes in this model, since they have a similar definition of security.

2.2.3 Bounded Entropy

Restricting leakage by bounding remaining entropy rather than length potentially enables
us to actually allow attacks like power analysis. Recall that the problem before is that
a single power trace may contain megabits of data — much more than is allowed to be
leaked in bounded-length schemes. Despite this, the trace itself might not contain very
much information about the key. By (lower) bounding the amount of entropy the secret
key has (in the view of the attacker) after the leakage is observed, we can account for
this possibility. In a certain sense, bounded entropy allows us to leak as much useless
information as we want. This is significant, since the length of the information an attacker
learns is much less important than its quality.

The entropy model also more accurately portrays the type of information an attacker
learns. For example, if an attacker performs a cold boot attack, she does not actually learn
secret bits. Instead she learns noisy values of those bits. The more noisy the values, the
more entropy the secret key retains. Thus, we can see that the entropy model more closely
matches the reality of side channel attacks.

Unfortunately, this model still has a major drawback: there is basically no way to tell
whether a given leakage is actually allowed under the model. Thus, it is nearly impossible
to understand the security guarantee provided by a scheme in this model. We re-explore
this issue in our discussion of the computationally hard-to-invert model below.

2.2.4 Bounded Retrieval

The bounded retrieval model is weak against the following type of attack. Suppose Alice
and Bob wish to use an encryption scheme that is secure under this model. When Alice
proceeds to decrypt Bob’s message, Eve performs a side channel attack and recovers the
part of the secret key used for that exchange (and the plaintext as well). Notice that one
particular round of encryption is not guaranteed to be any more secure than that of a
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standard scheme. Thus, the security of the scheme depends heavily on the security of its
implementation. While this is true in other models, in this case we have no guarantee of
any kind that any given round is secure.

Nonetheless, the model offers several benefits. First of all, side channel attacks often
require physical access to the device in question. Since recovering the secret used in one
exchange does not help us decrypt future exchanges, fully breaking this scheme may require
long-term physical access. Secondly, it may be very expensive to carry out a particular side
channel attack and in this case a successful attack would not completely break the scheme.
Finally, if the attacker cannot control which subset of keys will be used in each exchange
(i.e. she is passive), then this makes attacks like DPA, which build up information about
a key over time, basically impossible.

The bounded retrieval model is also the only leakage model that imposes significant
constraints on the device in which it is implemented. To be most effective, the decrypter
needs to store a large number of secret keys. Unfortunately, this is not possible for devices
like smart cards which have limited storage.

Another drawback is that none of the schemes proposed so far in this model allow for
leakage during key generation. While that may be a reasonable assumption, it means that
the number of bits that can be leaked is absolute. That is, suppose Alice is running a
scheme in this model and is worried that she is getting close to the leakage bound. She
cannot simply use the key generation algorithm to generate extra secret information, since
a small amount of leakage at that stage might totally compromise the algorithm [45].

2.2.5 Computationally Hard-to-Invert

Recall that the first model Dodis et al. [17] propose is that given f(PK,SK) it is hard to
compute SK. As it turns out, this model is often too strong. In fact, in the original version
of their paper Dodis et al. claimed “for every public-key encryption scheme, we show an
auxiliary input function h such that it is hard to compute SK given h(PK,SK), and yet
the scheme is completely insecure in the presence of the leakage given by h.” Details of
this h were to follow in the full version of the paper. However, in the full version this claim
is simply removed.

Notice that if |PK| ~ |SK| and if h = SK & PK (applying padding as necessary),
then in general it seems very hard to recover SK just given this information. However, in
any public key scheme we are also given PK and then it is trivial to recover SK.

A natural way to avoid this type of leakage is to redefine the leakage functions allowed.
The other definition Dodis et al. consider is to make f allowed only if SK is hard to recover
given f(SK,PK) and PK. The two definitions of the classes of functions are given below.

Let Ho,(¢(k)) be the class of all polytime computable functions f : {0, 1}SKIFIPKl
{0, 1}* such that given f(SK, PK), no PPT algorithm can find SK with probability greater
than £(k), where £(k) > 27% is the hardness parameter.
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Let Hpr—ow(£(K)) be the class of all polytime computable functions f : {0, 1}SEFIPET
{0, 1}* such that given f(SK, PK) and PK, no PPT algorithm can find SK with proba-
bility greater than £(k), where £(k) > 27% is the hardness parameter.

The notion of CPA security is the usual one although an attacker is additionally allowed
to learn some function h € H (where H is the allowed family of functions) before the
challenge ciphertext is issued. A scheme that is CPA secure with respect to H,,, is called
auxiliary input CPA secure (¢(k)-AI-CPA secure). A scheme that is CPA secure with
respect to Hpk—oy is called weak auxiliary input CPA secure (¢(k)-wAI-CPA secure). Notice
that for CPA security to hold, we must trivially have ¢(k) < negl(k). By making ¢ as large
as possible (that is by having ¢ be as big a negligible function of k as possible) we allow
the largest class of functions.

¢

Despite the more natural seeming definition of the “weak” notion of security, Dodis et
al. note that by making PK contain more information about SK a larger class of leakage
functions will be allowed. In a certain sense this makes the scheme “more secure”. In fact,
the authors claim that if PK = SK the scheme is “wAI-CPA ‘secure’, since we [have]
now ruled out all ‘legal’ auxiliary functions, making the notion vacuously true.” This
statement is true since their definition makes every scheme secure with respect to auxiliary
inputs from the empty set. Since this does not seem to be a fundamental restriction of the
definition of security, we find this claim misleading. A more reasonable definition would
make such a scheme totally insecure.

The full version also presents a more “convincing” example. But they only show that
a stronger looking version of a scheme “might” be insecure, while the weaker (looking)
version, is definitely secure. Since they do not provide a concrete example of such a scheme
or auxiliary function, it is unclear whether the necessary conditions for the stronger looking
scheme to be insecure can ever be met.

Regardless, they claim wAI-CPA security is still a useful notion when PK is short. They
prove that when |PK| = t, then {(k)-wAI-CPA security implies (27*4(k))-AI-CPA security.
Since the proof amounts to guessing a value of PK, we can see that the example given
above of the problems with AI-CPA security does not apply to schemes with small public
keys (compared to the size of their private keys). They also argue that weak auxiliary
input security allows the reuse of the same public key and secret key pair for multiple
cryptographic applications (e.g. encryption and signing) without weakening the security of
either scheme.

Unfortunately, even if we decide that both of the above notions are “useful”, it is not
clear how a scheme that is secure with respect to either of them fares against side channel
attacks. In particular, a side channel attack (or combination of side channel attacks) seems
to be allowed under the definition as long as it doesn’t work (i.e. it doesn’t recover the
secret key). However, the definition gives us no insight into which attacks will work. Thus
when asked whether or not a scheme secure in this model is secure against a particular
class of side channel attacks, the authors of the scheme will likely be forced to answer “We
don’t know.” While this is a similar criticism to the one we gave for the bounded entropy
model, it is even stronger here, since it is even harder to tell which leakage functions are
allowed.
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There is another way in which it is very hard to analyze the security guarantee of the
computationally hard-to-invert model. That is, the leakage parameter of these schemes
is an upper bound on the success probability any algorithm has of guessing the secret
key based on observing the leakage. So suppose we have a scheme that is 27/*)° secure.
What value of € should we pick when implementing our scheme? The problem is that our
desired upper bound on the success probability for an attacker depends on the number of
computations she must perform to attain that probability. Since the security definition
gives us no information about how many computations the best attacker must perform,
it is very difficult to understand what an upper bound on her success probability should
be. As an example, consider an attacker who performs no computations — her success
probability should certainly not be more than 27 if our security parameter is to have any
meaning. Even having made that assumption, we still cannot tell which functions of the
secret key leave us vulnerable to that bound. For example, a lemma in [17] assures us that
this as at least as strong as being able to leak k —log(1/27%) = 0 bits. So while it is likely
that we would be able to leak some key bits (initializing BHHO, one of the schemes shown
to be AI-CPA secure in [17], at the 128-bit security level with these restrictions yields a
key of almost 20000 bits), there is no guarantee of this fact.

2.2.6 BHHO

One of the schemes used by at least two papers [17, 60] is the BHHO encryption scheme
proposed by Boneh et al. [9]. This scheme may be vulnerable to a non-standard side
channel attack. The private key in the scheme is an m-bit string s (i.e. s; € {0,1}). Then
for public parameters g, ..., g, (elements of some group G), the public key is

=119
=1

Notice that a nalve implementation of this scheme is almost certainly vulnerable to a
(simple) power analysis attack on key generation. If a multiplication is done in a given step,
then the associated key bit is one, otherwise, it’s zero. Obviously, there are countermeasures
that could be implemented against such attacks (although care of course needs to be taken
since, for example, inserting dummy operations can lead to other vulnerabilities), but they
are less studied than countermeasures for point multiplication.

We should note that [60] propose a modification of the scheme that improves its ef-
ficiency. They suggest that instead of picking the secret key as a binary string, that it
should consist of ¢ large exponents instead. This suggestion seems to accidentally avoid
the above concerns, in that it defeats the attack although that was not the motivation for
introducing the modification.

2.2.7 Indistinguishability and Leakage Resilience

The notion of indistinguishability may be hard to achieve in the face of leakage in practice.
For example, Standaert et al. claim that power analysis attacks often reveal the Hamming
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weight of a message [69]. In cases where the adversary has control of the message inputs,
learning the Hamming weight of the message being encrypted clearly ruins any chance
of indistinguishability. Even if the messages are selected randomly there is little chance
that they will have the same Hamming weight. These attacks essentially deny any hope of
achieving a standard notion of security for leakage resilient encryption schemes.

The problem with the security definition may not be easy to fix by using a slightly
relaxed definition. For example, attempting to define indistinguishability for messages of
the same Hamming weight does not seem to be a particularly good solution. This is because
an attacker will likely be able to determine Hamming weight of each word (a string of bits
equal in length to the processor’s instruction inputs) of the secret key. Further, any more
precise definition may become platform dependent in addition to being hard to work with.

So if (ciphertext) indistinguishability cannot be achieved, what notion of security should
be used for leakage resilient encryption schemes? One of the difficulties in answering that
question was brought up in Section 1.2.6. That is, relatively little research has been done
on side channel attacks whose goal is message recovery (or partial recovery) especially in
public key settings. Nonetheless, it may be the case that a comparatively weak notion of
security suffices for public key encryption schemes,; since in practice they encrypt random
messages. Thus, it might be reasonable to expect that being able to distinguish between
messages is not particularly helpful for an attacker.

A related problem is the following dilemma facing leakage resilient encryption schemes.
In standard schemes, where encryption is treated as a black box, it makes sense that
an attacker only sees one encryption from the challenger. In the new model it may be
advantageous to watch the attacker encrypt the same message several times. Furthermore,
even if the output of two functions is indistinguishable, it may be easy for an attacker
who observed the computation to decide which one was used. For example, some (bit)
encryption schemes act differently to encrypt the message 0 as they do for message 1.
Depending on how different these operations are, even a simple power analysis attack
could be used to determine which message was encrypted. Beyond that, it may be very
hard to make the two different operations have indistinguishable physical output. In at
least one case [11], a leakage resilient encryption scheme has been proposed where the two
operations appear to be easily distinguishable. This points to a fundamental flaw in the
security definition for leakage resilient encryption schemes.

Indistinguishability is one of the most important tools in theoretical cryptography. The
security proofs for many schemes use the fact that an attacker breaking scheme A must
also break scheme B since scheme B’s interaction with the attacker is computationally
indistinguishable from scheme A’s. However, since side channel attacks might reveal which
of the functions is being computed, extreme care needs to be taken when applying these
methods especially when decisional assumptions are used.

2.2.8 Cold Boot and Partial Key Recovery Attacks

The (memory) bounded leakage model seems to most closely correspond to cold boot
attacks where an attacker learns a significant fraction of the key bits. The question facing
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standard schemes in the face of such leakage is whether or not they are vulnerable to partial
key attacks. That is, can learning a substantial number of key bits lead to an attack that
is much faster than the best known algorithm in the smaller key space? In the case of
factoring we know the answer to be yes. RSA is particularly vulnerable [36] since when
the public encryption exponent is 21 + 1, as it often is in practice, many of the secret key
bits are revealed.

There are no known partial key attacks on systems based on discrete log or other related
assumptions. In particular, elliptic curve systems have not been shown to be weak to such
attacks. We are also unaware of any research suggesting that such attacks are either likely
or unlikely to exist. Evidence for the existence of these attacks would dramatically increase
the importance of developing leakage resilient schemes, especially given the discovery of
cold boot attacks. However, evidence that such attacks do not exist would leave leakage
resilient schemes offering very little in terms of security gains.

Let us more carefully examine the ramifications of the existence of these attacks. If
they do exist, there are still two important ways in which leakage resilient schemes may
not be as good as they sound. First, while some schemes allow almost the entire secret
key to leak, to permit, for example, 90% of the key bits to leak would require them to be
impractically slow. Thus, it may be the case that we are only guaranteed safety if a small
fraction of key bits leak. Depending on the attacks discovered on standard schemes, it
may be that this fraction is less than the fraction needed for the attack to succeed. Even
if this is not the case, it will likely be very difficult to ensure that too many bits do not
leak. For example, suppose a partial key attack is discovered against Schnorr that requires
about 30% of the key bits. Further suppose that a new leakage resilient scheme could
guarantee security even if up to 40% of its secret key bits are leaked. Then it would only
be reasonable to implement the new scheme if one expects more than 30, but less than 40
percent of the key bits to leak. It seems very unlikely that a practical scenario would arise
where this would be the case. Nonetheless, the fact that the security bound of the leakage
resilient scheme is violated does not necessarily mean that there is an attack against it.

The second way in which leakage resilience might not be the answer is related to our
earlier discussion of exposure-resilient cryptography. That is, in this scenario we are specif-
ically worried about leakages that reveal some number of key bits and not those that cor-
respond to arbitrary functions of the secret key. Therefore, it seems to make little sense to
allow the attacker this extra power if we are mostly concerned about attacks which do not
make use of it. This is especially important in a context where efficiency is crucial, since
the more powerful attacker may lead to more inefficient schemes.

Even if such attacks do not exist, it is still necessary to account for the security loss if
we expect such leakages to occur. That is, to maintain 128 bits of security if we expect
around half of our secret key to leak, we would need to implement Schnorr with a 512 bit
key. This would entail a substantial loss in efficiency. Leakage resilient schemes deal with
this issue to some extent, but since their goal is not specifically to maintain efficiency in
the face of such leakage they are not optimal. We feel investigation into fast schemes with
relatively large secret key sizes to be an interesting direction of research that could lead
to practical results. Note that such schemes would not need to provide additional security

43



guarantees over standard schemes and so would not necessarily be provably secure with
respect to the leakage (they would hopefully remain as secure as traditional schemes with
large secret keys).

Studies of these sorts of attacks will also have important implications for the compu-
tationally hard-to-invert model. One of the issues with that model is determining which
leakage functions are allowed. This appears to be a very difficult task. For example, no one
can prove that discrete logarithm is a hard problem (doing so would mean solving the most
important open question in computer science). Thus, it is assumed to be hard in order to
prove the security of various schemes. However, the problem of finding a discrete log where
some fraction of the bits are known requires a second assumption. The cryptographic com-
munity has gathered evidence over time that discrete log is indeed a hard problem and so
it is considered a safe assumption. If such evidence were also gathered for discrete log with
some (fixed) fraction of known bits, then it might also become a safe assumption. This
would in some sense make the computationally hard-to-invert model more meaningful.

2.2.9 Summary

We conclude this chapter by summarizing our outlook on leakage resilience. First, we
need to address the question of which leakage model is best. As noted above, all of the
models have their downsides. The computationally hard-to-invert model is in some ways
the setting most analogous to practical concerns. We only need to worry about attackers
who are computationally bounded. However, it is extremely difficult to analyze the security
guarantees of this model, since understanding which leakages are allowed is very hard. On
the other hand, the bounded leakage model, while being much easier to analyze, may not
be strong enough to cover many important examples of side channel attacks. The bounded
retrieval model provides a clever approach but does not guarantee the security of a single
exchange. Further, there is no compelling evidence to suggest that these models are more
secure against realistic attacks than conceptually easier models which only allow key bits
to be leaked. Additionally, the advantages imbued by continual variants may not be any
greater than schemes in the standard models which allow for key updates.

Another observation is that as leakage resilience has “progressed” schemes have become
“better” by allowing for either more leakage or a larger class of leakage functions. However,
we feel that this a bad approach to take. In particular, we would rather see schemes
which soundly defeat smaller classes of attacks, than those which provide slim guarantees
against a large class of attacks. For example, the creation of an efficient scheme which is
provably secure against power analysis attacks would be a major accomplishment. Further,
implementers of such a scheme would now need to install countermeasures for fewer attacks
and not worry about certain countermeasures aiding power analysis attacks. Even a scheme
that could guarantee security if an attacker did not collect too many power traces would
be an interesting result.

Another reason the mantra of “more leakage” is a poor approach is that by focusing only
on allowing as much leakage as possible the proposed schemes are almost all impractically
inefficient. This is one of a number of ways in which work on leakage resilience has failed
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to address many of the practical concerns surrounding side channel attacks. Impractical
solutions to practical problems are useless except to the extent that the ideas present in
such solutions can be used in other contexts or the solutions can be adapted to become
realistic. Unfortunately, the theoretical model of leakage resilience is not meaningful with
the practical motivation removed and the current literature provides no analysis of the
details required to implement leakage resilient schemes.

At best, leakage resilience represents only one piece of the puzzle in terms of com-
batting side channel attacks. Even then, current approaches may be leading away from
the desired goal. Significant analysis is needed to better determine what information is
revealed by realistic attacks on both standard and new schemes. Especially important is
empirical analysis to determine what sort of information is available to attackers in prac-
tice. Any successful theoretical approach towards combating side channel attacks needs to
be informed by the entire practical context in which the schemes will be deployed.
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Chapter 3

A Leakage Resilient Signature
Scheme

3.1 Schnorr-/

The first leakage resilient scheme we will discuss is a natural extension of the Schnorr
signature scheme, independently discovered by Alwen et al. [3] and Katz [42]. The idea is
to move from one base g and exponent x to £ of each. The scheme is provably secure in the
memory bounded leakage model. One of the key ways it achieves this security is by having
many different secret keys correspond to a single public key. Thus, even when an attacker
learns some bits of the secret key she will still not be able to determine (information
theoretically) which secret key the signer has. This is important, since in general with
schemes in this model learning two different secret keys is hard. Our approach mirrors
that of [42], although our proofs fill in some missing steps for greater clarity.

The scheme makes use of system parameters H, a random oracle, ¢, a large prime, and
G, a group of order ¢ where the discrete log problem is hard.

Key Generation: To generate her keys, Alice first selects ¢1,¢0,...,9, €r G* and
T1,%,...,% €r Z;. She then sets h := Hle g;t.  Alice’s public key is PK =

)

(91,92, - -, ge, h) and her secret key is SK = (1, xa, ..., x¢).

Signing: To sign a message m, Alice first selects ry,7y,...,7¢ €r Z;. Next, she computes
A= Hle g;" and calculates the hash ¢ := H(m||A). Finally, she outputs the signature
(A, a1, a9, ...,ap), where a; = cx; +1; (mod q).

Verification: To verify Alice’s signature (A, ai,as,...,ap) on a message m, Bob first

computes ¢ := H(m||A). Then he checks that A - h¢ = [[_, ¢*. If equality holds, he
accepts the signature.

Figure 3.1: The Schnorr-¢ signature scheme.

The proof of security will show how a forger can be used to solve the f-representation
problem.
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Definition 3.1.1. The ¢-representation problem is defined as follows: given group elements

91,92, -, gefind x = (21,29, ..., 2) and X' = (2!, ), ..., z}) such that Hle gt = Hle gf;
and x # X/.

It is easy to see that the (-representation problem is at least as hard as discrete log,

/ /
. . xr1 T2 (Ll $2
since solving g7'gs* = g;'g,* allows one to recover log, go.

Recall Definition 1.1.4, the concept of min-entropy, which gives us a measure of how
close a random variable’s distribution is to uniform. In particular, when there are many
different secret keys that correspond to one public key, just given the public key the attacker
views all corresponding secret keys as being equally likely and so the min-entropy of the
secret key is high. If the min-entropy of the secret key is high even after leakage occurs,
then there remain many possible secret keys. Thus, even if an attacker recovers a secret
key, it is unlikely that it will equal the original secret key.

Next we will prove a lemma that will be a key ingredient in the security proof of the
scheme. In words, it tells us that learning an arbitrary function f of a random variable X
is very unlikely to decrease the min-entropy of X by significantly more than the size of the
image of f.

Lemma 3.1.2 ([42]). Let X be a random variable with min-entropy n and f be an arbitrary
function with image {0,1}*. For any A € [0,n)], if

Y ={ye {01} | Ho(X |y = f(X)) <n— A},
then Pr[f(X) € Y] < 2274,
Proof. Fix y € {0,1}*. Let # € {0,1}" be such that f(z) = y and x is a minimizer of
Hoo(X |y = f(X)). Note that
Pr[X = z]
~ Prfy = (0]

since Pr[X = z and y = f(x)] = Pr[X = z|. Thus, by the definition of x and Y, we have
y € Y only if

PriX =z |y= f(X)]

o Pr[X = z]
® Prly = /(X)

log Pr[X = z]
* Prly = f(X)]

Pr[X = z]
Priy = f(X)]
; 24
Priy = f(X)] ~

Priy = f(X)] <275,

where (1) follows since — log, Pr[X = 2] > H.,(X). Since the range of f is {0,1}*, we

have |Y| < 2* and so, since y was arbitrary, Pr[f(X) € Y] = |Y]-Pr[f(X) = y] <2}2 as
desired. O

< HOO(X) —A
< —log, Pr[X =z]— A (1)

> Pr[X = x] - 28

V
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The idea of the security proof is to induce the forger to create two different signatures
for the same message. We will show that doing this allows us to find exponents ', ...,z

(2
x # x' and thus using a forger we can solve the (-representation problem.

so that Hle gt = Hle g5 ‘. The proof concludes by arguing that with high probability

Theorem 3.1.3 ([42]). If the discrete log problem is hard in G, then the above scheme is
leakage resilient in the memory bounded leakage model with leakage parameters (L, L, L)
(—1—2le

here L =
where 57

Proof. We will construct an algorithm A that, given a forger F for the scheme, solves the
discrete logarithm problem in G. In particular, such an A will be polytime and succeed
with non-negligible probability as long as both those properties hold for F.

Let gy be the number of hash queries made by the forger and suppose it succeeds
with probability 6. We will assume that if F outputs the signature (A, a1, ..., ap) for the
message m, then at some point it queried the random oracle for H(m||A). We can do this
without loss of generality since a successful forgery requires knowledge of H(m/||A) except
with negligible probability.

To solve the ¢-representation problem with respect to gy, ..., gs, A first picks a random
private key x1,...,x, and sends the corresponding public key to F. Then A plays the
security game of Definition 1.1.2 with A simulating the random oracle for F.

Eventually, F outputs a signature (A, aq, ..., ay) for m. If this is valid, A rewinds F to
the point where it first queried the random oracle for H(m||A) = c. At this point, A picks
a new random value ¢ for this query and continues F answering signature queries using
new random values, but being consistent with the previous run when answering random
oracle queries. We will say A succeeds if F outputs a second valid signature (A4, o}, ..., a})
for m.

If ¢ # ¢, then h*h™ = T[], gia"_a; since both signatures are valid. But h*¢ =
IL ggc_d)“, so [1; gf‘”‘“’)/(c‘c') = []g¢/". Thus, taking z; = (a; — af)/(c — ) yields a
set of exponents solving the f-representation problem provided x # x’.

In the following two claims we will argue that the probability of A succeeding is a non-
negligible function of the probability of F creating a valid forgery and that the probability
that x # x’ is also non-negligible.

Claim 3.1.4. The probability p that A succeeds is at least §*/qy.

Proof. Let h; denote the i*" hash query made by F. If F terminates with a valid forgery
(A, v, ..., ap) for m, we say that a hash query h; is associated with the forgery if h; = m|| A.
Let a; be the probability that F reaches a state where it makes the query h;. Further, let
b; be the probability that after making the query h;, F eventually outputs a valid forgery
associated with h;.

Since every valid forgery is associated with some unique h;, we have that >, a;-b; =9
the overall probability of success of F. Further, it’s clear that ) . a; is at most gp.
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Now, by construction we see that A succeeds with probability >, a; - (b;)%. Recall
Jensen’s inequality [38] for a convex function ¢, z; in its domain, and positive constants

C;.
> cip(x;) > CiT;
> v e
So we have
2 Zz Qi - (bi)2
IS e
> @i bi ’
- zz: " ( P
52
N Zz a;
52
2 D)
qH
as claimed. O]

Claim 3.1.5. The probability that A solves the representation problem is at least 1/2-(p—
Vg —qu/q*").

Proof. If A succeeds, two events can happen which prevent A from solving the represen-
tation problem. First, it could be the case that ¢ = ¢/, but this happens with probability
1/q. Second, x could equal x’. We will show that this is an unlikely occurrence. In partic-
ular, we will show that with high probability the min-entropy of x is at least 1 and so the
probability that x # x’ is at least 1/2.

Let A = (1/2 —1/(2¢) —¢€) - £ - logq. This is an upper bound on the number of bits
leaked during each run of F. The public key constrains x to lie in an (¢ — 1)-dimensional
vector space over Z, (i.e. there are ¢‘~! possible choices for x). Also, it is known [63] that
signature queries do not further constrain x. Thus, the min-entropy of x in the view of F
based on the public key and the signature queries is (¢ — 1) - log ¢ bits. As well, F learns
at most 2- A bits of information about x from the leakage queries and an additional log gy
bits from its state associated with the first forgery. Applying lemma 3.1.2, the conditional
min-entropy of x is at least 1 except with probability at most

22A+10qu7(€71)-logq _ 2(57172€£)-logq+loqu7(f71)-logq = qy - 2(7256) logg _ qm - q72s€'
Thus, the probability that A succeeds is as claimed. O

Combining the two claims we see that A solves the (-representation problem with
probability at least
1 (52 1 qg
2 \aw q ¢*')°

Since qg is polynomial, € is constant, and 1/q is negligible, this probability is non-negligible
whenever § is. Thus, no PPT forger can exist by the assumed hardness of the discrete
logarithm problem. ]
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3.2 Comparison with Standard Schnorr

The obvious question to ask at this point is “What have we gained?”. In particular, what
security guarantees do we now have compared to standard Schnorr? To answer this, we
will make the schemes more concrete. First of all, suppose we wish to instantiate both
schemes using elliptic curves at the 128-bit security level. We will thus replace group
exponentiations with point multiplications (so g;* becomes z;P;). To know exactly how
much we can leak, we need to know what values of ¢ and ¢ to pick.

Clearly, the larger ¢ is the more inefficient our scheme becomes, but the more leakage
we can tolerate. With ¢, the analysis is more difficult. Certainly smaller values of € lead to
better leakage results. However, here the impact is on the proof itself. More specifically the
value of ¢ will determine how good a bound the proof will give us for the success probability
of an attacker given some assumptions about the hardness of DLOG. Suppose we wish no
attacker to forge signatures with probability greater than § = 273!, We believe that any
algorithm trying to recover discrete logs in GG that operates in t steps and succeeds with
probability p satisfies p/t < 27128, Taking gz to be the number of steps a forger performs,
for the proof to be meaningful we need that

1. (&8 1 _ qu

2’ (‘IH q ‘IM) > 9128,
da

If we take gy to be 232, substituting in the desired value of § yields ¢®¢¢ > 2'%7, which
gives el > 127/512 ~ 1/4. Notice that since gy is the bound on the running time and we
only restrict it to being 232, this is a far too strong a restriction of our adversary to be
meaningful in practice. Unfortunately, for § = 273! the inequality above gives ¢% < 2%
and so we cannot make gy any bigger than 232. If instead we set § = 271, then we could
have g as large as 2°® which is somewhat of a meaningful restriction. In this case though,
0 is too small for the result to be meaningful in practice. We should note that similar
statements are true for the security guarantees provided by standard Schnorr, although
the results are somewhat less severe in that case.

Table 3.1 gives the number of bits we can leak, for various values of ¢ and . Here for
a given value of ¢, we use the above calculation to determine an appropriate value of ¢.
Throughout the table we have that & = 128, § = 273!, and ¢y = 2%2.

Notice that since Schnorr-¢ contains ¢ times as many point multiplications as Schnorr
during signing, we can expect it to take significantly longer to sign messages. However, the
cost of these multiplications can be reduced using Shamir’s trick. To calculate the value
S riP;, one first precomputes the 2¢ possible values of Y b;P; where b; € {0,1}. Then
one considers the matrix whose rows are the r;’s written in binary, starting with the least
significant bit. Starting with the lefthand column one sets A := > r;; P, where r;; is the
4" bit of r;. Proceeding rightwards we update A := 2A + > rioP; and so on. On average,
this requires the same number of doublings and 2 — 1/27! times as many additions as a
single (naive) point multiplication. For very small ¢ the precomputation stage is also very
fast and reasonable to store (the table requires 2k - 2¢ bits to store). However, even for ¢
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Table 3.1: Allowed leakage in Schnorr-¢

l € Leakable bits | Secret key bits
3] 1/12 192 768
4 1/16 320 1024
5 1/20 510 1280
6 1/24 576 1536
10 | 1/40 1088 2560
20 | 1/80 2568 5120
40 | 1/160 4928 10240
50 | 1/200 6208 12800
75 | 1/300 9408 19200
100 | 1/400 12608 25600

as small as 20, it requires 32 megabytes of storage at the 128-bit security level. Also, this
operation still needs to be protected against side channel attacks and the added complexity
of Shamir’s trick may make this more difficult.

Despite this improvement, since even microsecond speedups can be important in prac-
tice, this slow down may represent a very large performance hit. Thus, it might be rea-
sonable to demand that the security gain also be very large. To examine the security gain,
suppose we implement Schnorr-4 to try to mitigate the efficiency loss. So what assurance
does being able to leak 320 bits give us? Certainly, we are still not known to be safe against
power analysis attacks since those attacks use megabits of information. In fact, in many
ways, cold boot attacks are the thing best modelled by this type of security. These clearly
result in a one time leakage of information which might be reasonably within the bounds
of the model.

Note, as discussed in [45], if many signatures are computed in quick succession, there
may be a high amount of key information in RAM. Suppose 50 signatures are computed
back-to-back. Fach signature requires 1024 bits of randomness and likely also requires us
to copy the key into RAM. Further, there is no guarantee that the system will overwrite
the RAM used for the operation when it finishes. Thus we might reasonably expect there
to be about 100 kilobits (102400 bits) of secret information in RAM. Our ability to leak
only 320 of those bits seems suddenly not so useful.! Even if the values in RAM are deleted
after each signature, meaning only about 2048 secret bits are present at once, is there any
reason to believe that an attacker would recover fewer than 320 bits? Since cold boot
attacks can be assumed to reveal a percentage of secret key information, a similar attack
on standard Schnorr with a secret key size of 256 bits would reveal less than 80 secret bits.
Is that enough to be useful in practice?

One might argue, however, that even though computing signatures in quick succession
might leave a lot of information in RAM, it may be that most of it is useless. For example,

IThis example may be unrealistic. There is, however, no indication of this in the leakage resilient
literature. The scarcity of analysis relating security guarantees to the strength of practical attackers
makes it very hard to tell what “realistic” is.
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an attacker may learn the same bits of one of the x;’s several times or perhaps they may
learn several bits of the r;’s from different rounds. Even disregarding the validity of such
claims (we will see an attack that recovers the key in the second scenario), the major
advantage Schnorr-¢ has over regular Schnorr in terms of leakage is that it comes with a
proof of security.

If we start letting intuition about attacks guide us for Schnorr-¢, then we ought to do
the same for Schnorr. For example, suppose we were to use Schnorr with a 256-bit key. The
best known attack in this scenario is Pollard’s rho algorithm which takes approximately
2256/2 = 2128 gteps. Now suppose we learn the 128 least significant bits of the key. The
best known attack now takes 2(256-128)/2 — 264 gtapg. In other words, we have no evidence
to suggest that revealing half the secret key in Schnorr does anything but leave us as if we
were using a key half the size.

All this being said, if we have reason to believe that we may, over time, leak half the
bits of our secret key, to obtain the same security level using normal Schnorr, we would
have to double its size. Alternatively, we could use Schnorr-2. We have almost every reason
to believe that Schnorr-2 is at least as secure as doubling the key size in Schnorr. This
comes with the added benefit that the efficiency of doing two exponentiations in a fixed
sized group is much better than doing one exponentiation in a group of squared size (even
without using Shamir’s trick).

Notice, however, that if no key leakage occurs, then a discrete logarithm attack on
Schnorr-2 will run in about the square root of the amount of time it would take on Schnorr
with a doubled secret key size (i.e. = ~ ¢?). For example, if larger secret key sizes for
Schnorr are suggested in the future, it will likely be because we believe that discrete log
attacks on small key sizes are becoming feasible due to better hardware. In this case, we
cannot just use Schnorr-2 with the same group order to increase security. Also, a minor
drawback to Schnorr-/ is that there is a class of side channel attacks which function slightly
faster than on regular Schnorr (where both have the same key size). Such an attack will
be the topic of our next section.

3.3 Lattice Attacks

Let us consider a type of leakage that at first glance seems to fit within the model above.
In this attack the attacker learns a few bits of the per-message secret (the r;’s) every time a
message is signed. Certainly, each such leakage is allowed under the model. However, after
many such leakages the attacker will have learned too much information and so this falls
outside the model. Nonetheless, there is an attack that depends on this sort of leakage.

Howegrave-Graham and Smart [37] discovered lattice attacks on Schnorr-like signatures.
Nguyen and Shparlinski [62] improved their attack and were able to recover the secret when
even as few as 3 bits of each per-message secret were learned. We will describe the attack
on regular Schnorr, then explain how it extends to the Schnorr-¢ case.

These attacks centre around the fact that each signature is of the form (A, ) where
a = cx+r (mod ¢g). By having many such congruences where a few of the least significant
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bits of r are known, the attack is able to recover the secret key z. To continue with the
description, we will need another piece of terminology.

Definition 3.3.1. Let by, ..., b,, € R" be a set of linear independent vectors. A lattice is
the set of integer linear combinations of the b;’s. In particular, any element v of the lattice
has the form v = a1by + - - - + a,;,bm where a; € Z. We refer to the set B = {by,...,bn}
as a basis of the lattice.

The attack works by finding a short vector in a specially constructed lattice. In theory,
finding such vectors is hard, but in practice there are efficient algorithms that have a
reasonable chance of success. One such algorithm that we will use in our attack is the LLL
lattice reduction algorithm [48]. The algorithm, given a basis B for a lattice L, outputs
a second basis B’ where all the vectors are short (i.e. they are not too much bigger than
the smallest possible nonzero vectors in the lattice with respect to some norm). While the
theoretical guarantees on the shortness of the vectors in B’ are not very good, in practice
LLL tends to do much better than what is guaranteed.

The attack

Throughout this section the notation a (mod ¢) = b means the least positive residue of
a mod ¢ equals b. A similar notion is meant if “=" is replaced with some other comparison
sign like “<”. Here we describe the approach of [62]. The authors formulate the problem
of finding x as a hidden number problem (HNP). In HNP one is given d random values t;
as well as values u; so that (zt; — u;) mod ¢ < ¢/2°7!. In a sense, we can view the u;’s as
revealing the s most significant bits of xt;. The problem is then to find the hidden number
x.

Suppose we are given the s least significant bits of the per-message secret r in a Schnorr
signature. In particular, we know 0 < a < 2° — 1 so that r — a = 2°b for some non-negative
integer b. Then the congruence o = cx + r (mod ¢) can be re-written as

a—cxr=a+2°b (mod q)
(¢ —a)27°=2"%cx=b (mod q).

In particular, if we set ¢t := —27%¢ (mod ¢) and u := (a — a)27° (mod q), then (t — u)
(mod q) = b < ¢/2°. Note that since ¢, «, and a are known, t and u can be easily
computed. Thus, learning the s least significant bits of r reveals the s most significant bits
of zt.

Now suppose we are given d signatures and the s least significant bits of the per-
message secret for each signature. As seen above, this is equivalent to being given d
random ¢; € Z; and the corresponding s most significant bits u; of zt;. By definition
we then have (xt; — u;) mod ¢ < ¢/2°T!. Now consider the (d + 1)-dimensional lattice L
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spanned by the rows of the matrix

g 0 -~ 0 0
0 ¢ . .
P { :
0 -~ 0 g¢q 0
t e e 1y 1/28+1

Let xt; (mod q) =: y;. Notice that the vector h = (y1,...,yq, 2/2°T!) belongs to L since
it can be obtained by multiplying the last row by z and then subtracting multiples of the
first d rows. From h we can clearly recover the hidden number x and so it is known as
the hidden vector. Notice h is very close the vector u = (ug,...,uq,0). In fact, since
(z; — w;) mod g < ¢/2°! and x < ¢ we have ||h — ul|, < ¢/2°.

Suppose v is a vector in L even closer to u than h is, ie. ||v — ullw < ||h — U]/ c.-
Then, by the triangle inequality, ||h — v||o < ¢/2°. Notice however that h — v is a vector
in L. Without going into too many details, this vector is very short (we would expect an
arbitrary vector to have infinity norm close to ¢). Thus, it is reasonable to expect it has a
special form. Lemma 1 in [62] proves that with high probability (given large enough s and
d) the vector h—v is of the form (0,...,0, 3/2°!) where 3 is a multiple of q. In particular,
we have that if 7 is the last coordinate of v then 2571y = z + 8 and so z = 25Ty (mod q).
Thus, finding v reveals x.

All that remains is to find a method to find such a v. As it turns out, this is a well-
known problem called the closest vector problem (CVP). Babai’s CVP algorithm [4] takes
as input a lattice and a vector and outputs the vector in the lattice that is closest (with
respect to some norm) to the given vector. While this is certainly one approach that can
be taken, experiments in [62] yielded better results using the following approach. Define a
new lattice L’ spanned by the rows of the following matrix

(ﬁ q/ SSH) '

We then apply the LLL algorithm to reduce the basis into short vectors. Our hope is
then that the shortest vector in L' or one of the reduced basis vectors is of the form
(u—v,q/2°%1). Table 3.2 shows values of d and s known to recover z for a 160-bit prime
q (37, 62].

The attack can be extended to one on Schnorr-¢ by finding each x; individually. For
example, one could use the equations of the form a; = cx; + r; to recover z; and then do
the same for z5 and so on. Thus, such an attack should take exactly ¢ times as long and
require ¢ times as many leaked bits, as an attack on regular Schnorr.

We can see that at a minimum the attack needs at least the same number of bits as the
length of the key to be leaked. Thus, it clearly falls outside the security model of Schnorr-£.
In fact, any scheme using the (memory) bounded leakage model will not be able to account
for such an attack. The problem here is that while only a few bits are being leaked each
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S d
80 | 2
40 | 4
16 | 11
8 | 30
5 1 70
3 1100

Table 3.2: Parameters for successful lattice attacks

signature, over time this will eventually mean the leakage conditions are violated for any
scheme in this model. This fundamental problem can be avoided by including a key update
mechanism. Such schemes, and the corresponding security model, will be the topic of the

next chapter.
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Chapter 4

Leakage Resilience and Key Updates

4.1 The Case for Key Updates

We have seen that lattice attacks gather information each round until a threshold is reached
and the secret key can be recovered. Therefore, the attacks can be totally defeated by
changing the secret key before too much information is leaked. Unfortunately, the only
way to change the secret key in standard schemes is to re-key the system and so also create
a new public key. Since public key distribution is a very expensive operation, it should be
avoided except when absolutely necessary. Thus, an additional property one might desire
for a scheme is the ability to update the secret key without changing the public key.

Schemes with key updates have the property that there are many secret keys corre-
sponding to a single public key. Notice that this was the case in Schnorr-¢. Possession of
any one of these secret keys allows the owner to perform the main function of the scheme
(e.g. signing). Thus, an attacker learning any one of these keys (even one never used by
the real owner of the secret key) represents a total compromise of the system. However,
many of these systems have the property that information learned about one secret key
gives (almost) no information about any of the other possible secret keys.

With that in mind, let’s investigate a method to add key updates to Schnorr-¢. Recall
that Schnorr-/ satisfies the property that there are ¢! secret keys corresponding to a given
public key (where ¢ is the group size). Unfortunately, the hardness of the ¢-representation
problem guarantees that the signer, Alice, cannot update her secret key. However, suppose
that instead of choosing random group elements obliviously, Alice generates her public
key by selecting a generator g €g G and ¢ exponents ay,...,a; €r Z; and then setting
gi == g“. Then to update her secret key she could first compute X := > a;z;. Next she
could select 7, ..., 7y | €r Z; and set

-1
Ty = (X — Zawé) Jas.
i=1

Her new secret key x’ still satisfies the property [], g; i — b and so is a valid secret key
corresponding to the public key, h. The scheme also has the nice property that Shamir’s
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trick is no longer needed to perform the exponentiation during signing; instead we have
that []; g can be computed as g where R := > a;r;. Thus, the cost of an exponentiation
is basically identical to what it is in standard Schnorr.

Unfortunately, this approach is totally insecure in the context of leakage resilience.
Recall that continual memory bounded length schemes can leak an unbounded amount of
information over time. In particular, over time an attacker can learn any information which
does not change between key updates. In this case, we have that the values ay,...,a, and
the discrete logarithm X of h are all fixed. Thus an attacker can eventually learn these
values and then compute a secret key using the exact same procedure Alice uses to update
her key.

However, this method does prevent the lattice attacks described earlier provided that
the key is updated before the threshold of bits required to recover the key is breached.
Notice that with high probability even an attacker who learns the values zy, ..., x, 1 does
not learn anything about the discrete logarithm X of A unless she also learns z,. Fur-
ther, it would appear that the operations associated with the scheme are unlikely to leak
information about X directly under known side channel attacks. Thus, even though this
scheme is not leakage resilient, it may be more secure against side channel attacks than
standard schemes.

To attain continual leakage resilient security we will examine a totally different scheme
proposed by Malkin, Teranishi, Vahlis, and Yung in [52], which will refer to as MTVY.
While lattice attacks are not applicable to this scheme, it also aims to defeat DPA attacks,
which share many properties with lattice attacks. Most notably, recall that DPA works by
collecting many power traces using the same secret value. If too few traces are collected,
then the noise is too great and little or no information is revealed. However, if enough
traces are collected potentially the whole secret key can be recovered. Thus, by changing
the secret key relatively frequently, the goal is to ensure that the required number of traces
can no longer be gathered. The approach we take in the next few sections mirrors that of
[52], although we make a few minor changes. Most notably, in several places we “sacrifice”
formality in an attempt to make concepts easier to understand. Nonetheless, the various
theorems and lemmas (and the ideas used to prove them) that make up the security proof
are essentially unchanged from [52].

4.2 Intuition for MTVY

To explain the idea behind MTVY, let us first consider what exactly a signature is. A
signature on a message m can be viewed as a (non-interactive) proof of knowledge of SK
that somehow incorporates m. Furthermore, this proof should give almost no information
about the secret value SK. The secret value used in a proof of knowledge is known as
a witness. MTVY makes use of a proof system which guarantees that no information is
revealed about which witness was used, provided that a certain problem is hard. This
forms the basis for the signature scheme.
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Signature schemes, like many non-interactive proof systems, are often constructed by
performing a transformation to an interactive protocol. Traditionally, the security proofs
for signature schemes often relied on a random oracle assumption, since they were based on
the Fiat-Shamir transform [29]. This transformation turns an identification scheme, where
the prover sends a commitment to the verifier and then receives back a (random) challenge
before sending the proof, into a signature scheme. It works by using the random oracle to
preserve both the commitment and the random challenge. Recently, Waters developed a
clever method to avoid the use of random oracles in many schemes that rely on them for
security [70]. This technique is known as the Waters hash and is used by MTVY to avoid
the random oracle assumption.

With these two pieces in place we can begin to describe the idea behind MTVY. First,
parameters for the proof system are chosen and they become the secret and public keys. To
sign a message, a common reference string (CRS) is chosen based on the Waters hash of the
message. The signature is a proof using the proof system as well as the common reference
string. To verify a signature, Bob runs the verification algorithm of the proof system using
the common reference string. The secret key is actually a randomly selected element of a
given affine space (any element in this space will be a valid secret key). To update, Alice
simply selects another random element of the affine space (by adding a specially formed
random offset). The security of the scheme is based on the hardness of finding a witness
not in the affine space. The proof of security relies on properties of the proof system and a
lemma from Brakerski et al. [11] to show that even with leakage a successful forgery leads
to the recovery of a witness outside the affine space with high probability.

4.3 Preliminaries

The MTVY scheme makes use of three groups of prime order ¢, G, G5, and Gr and a
pairing e : G; X Gy — Gp. We will refer to the identity element in G as I Dy and the
identity elements in GG; and Gy as 0. The hardness assumption is the symmetric external
Diffie-Hellman (SXDH) assumption which states that DDH is hard in both G and G,. For
vectors u € GY and v € GY the notation e(u, v) refers to the product Hle e(u;,v;) € Gr.
It is easy to see that e(au,bv) = e(u,v)® for all a,b € Z,.

Let R € (Z,)"** be a matrix, u € G{ and v € G%. If R; is the i'" row of R, we have

e(Ru,v) = He(RZ- ‘u, ;) = H€ (Z Rijuy, Ui)
= HHG(RZ']'U]', ’Ui) = HH€<uj7 Rijvi)
= HHG(U]', Ri]"l)i) = He(ujv (RT)j ) V)

= e(u, R™v).
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Remark 4.3.1. The security proof will require the concept of statistical distance, a mea-
sure of how similar two different distributions are. We will not provide a more rigorous
definition, since the details are not important. We will only make use of two properties of
statistical distance. First, if the distance between two distributions is negligible then any
adversary has negligible advantage in distinguishing between them. Further, the distance
satisfies the triangle inequality; that is if the distance is denoted dist(:,-), then for any
random variables X, Y, and Z, we have

dist(X, Z) < dist(X,Y) + dist(Y, Z).

We also require some background from linear algebra.

Definition 4.3.2. An affine space A is the set of all vectors formed by summing all the
elements of a vector space with a fixed vector that is not in the vector space. In other
words, let V' be a vector space and v an arbitrary vector not in V. Then we can write
A={v+w |w e V}. Itiseasy tosee that any affine space satisfies the following property.
If zy,...,2, € A, then we have

n n
E a;z; € A whenever E a; = 1.
i—1 i=1

For any vectors x1, . . ., x, we denote by Aff(xy,...,xy) the smallest affine space containing
X1y..9Xp.

4.3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [33] makes use of two algorithms, a prover and a verifier.
The proofs show knowledge of a witness w € G% so that e(v, w) = t where (v, t) € G4 X Gr
is the input to the verifier. Let the common reference string be crs = (g, h) € G3*%. The
two algorithms can then be described as follows.

Prover To prove a statement using the inputs crs, (v,t) and w, Alice selects the matrix
R € Z*?, then computes

c:= Rg, d :=w + Rh, and f.=R'v
and outputs o = (c,d,f).

Verifier To verify a proof ¢ = (c,d,f) under c¢rs, Bob checks if e(v,c) = e(f,g) and
e(v,d) =t-e(f, h). If both equalities hold, he accepts and otherwise he rejects.
Notice that
e(v,c) = e(v,Rg) = ¢(R"v,g) = e(f, g)
and

e(v,d) = e(v,w + Rh) = ¢(v,w) - e(R'v,h) =t - e(f, h)
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and so the verifier always accepts a correctly generated proof.

Groth and Sahai showed that for random g and h, the proof system is perfectly witness
hiding. That is, no (unbounded) attacker can determine which witness was used to compute
the proof with more than negligible probability. On the other hand, when g and h form a
DDH tuple, i.e. h = ag for some o € Z,, then whenever ¢ and d are part of a valid proof
we have that e(v,d — ac) = t. Thus w* := d — ac is a valid witness. This property is
known as perfect extractability. Notice that under SXDH an attacker will not be able to
tell if the CRS is a DDH tuple and so even in the witness extractable case, the witness
remains computationally hidden.

4.3.2 Independent Preimage Resistant Hash Functions

Ideally the proof of security for the scheme would make use of the fact that finding a
witness w' # w so that e(v,w) =t = e(v,w’) is hard. This can be viewed as the idea
that the hash function H,(y) = e(v,y) is second preimage resistant. Unfortunately, this
would make it impossible to update the secret key. Instead Malkin et al. [52] generalize
the notion of second preimage resistance to (¢, k)-independent preimage resistance where
finding a preimage outside of a particular affine subspace of dimension k is hard. Since
we do not need the full details of the definition we will not present them and instead only
show that the hash function used inside the proof of security is secure in this sense.

The proof will make use of the fact that we have assumed DDH is hard in GG;. However
it will not use this fact directly and instead relies on a related problem.

Definition 4.3.3. Given points Py, Q)1 € Gy, the double pairing problem is to find points
PQ, Q2 € Gg SO that €(P1, P2) . 6(@1, QQ) == ]DT and (PQ,QQ) 7é 0.

It is easy to see that any adversary who succeeds in solving this problem with probability
¢ leads to any adversary who solves DDH in (G; with probability e. We know this since
given an instance (P, Q, P', Q") of DDH the double pairing problem adversary can compute
R, R’ such that e(P,R) - e(Q, R') = IDy. But then the original instance is a DDH tuple
iff e(P",R)-e(Q',R') =IDr.

With this definition in hand, we can move on to showing the desired property of the
hash function.

Lemma 4.3.4. Given v € G, y1,...,yi1 € G5, and t € Gr such that H,(y;) =
e(v,yi) =t, it is hard to find y* € GY so that H,(y*) =t and y* ¢ Aff(y1,...,y0 1)

Proof. Given a PPT algorithm A that solves the above problem with probability € we will
construct a PPT algorithm B which solves the double pairing problem with probability e.
To do this B first receives an instance (P, Q) of the double pairing problem. It then chooses
a,bep Zf; and y,_1 €r G5 and sets v := aP+bQ and t := e(v,y,_1). B then selects £ —2
vectors z; €g Zf; sothat a-z; =b-z; =0and Z := {z1,...,2/_2} is linearly independent.
Notice that Z forms a basis for the nullspace of the matrix (a b). Next B selects W € Gy
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and sets y; 1= y,—1 +2z;W, for 1 < ¢ < ¢ —2. B then gives (v,t,y1,...,ye-1) to A as
input and receives back y*. B sets z :=y* —y, 1 and (R, R') = (a-z,b-z). Notice that
e(v,z)=e(v,y*)/e(v,yer1) = IDr if e(v,y*) = t. Further if y* is affinely independent
from {y1,...,yr1}, then z is linearly independent from {y; — ys1,...,yr2 — Y1} =
{z1W, ..., z_oW?}. This in turn implies that z’, the vector consisting of the discrete logs
(to the base W) of all the elements in z, is linearly independent from Z = {z1,...,2, 2}.
But since Z is basis for the nullspace of (a b) we have that (a-z',b-2') # 0 and so
(R,R) # 0 (since z # 0). Thus (R, R') forms a solution to the double pairing problem
and so B succeeds with the same probability as A. [

4.4 The Scheme

We are almost ready to fully describe the MTVY scheme, but first we need to explain the
Waters hash in more detail. The hash is defined in terms of a matrix H = (Hy, Hy, ..., Hy,)

€ ng(nﬂ) where the message space is {0,1}". Let m; be the j* bit of a message m. Then
the Waters hash is the function h where

h(H,m) = Hy+ Y _m;H;.
j=1

Throughout the scheme the matrix H will be fixed (but will change in the security proof)
and so we will just write h(H,m) as h(m). Notice that h(m) € G3.

Key Generation: To generate her keys, Alice first selects g €z G2 and the hash matrix
H = (Hy,...,H,) €r G;X("H). Next she selects v €p Gy, u €r Go, and a,b € Z!
such that a-b = 0. Then she sets v := av and u = bu. Finally she selects w €p G
and computes t := e(v,w). Her public key is PK = (g, H,v,t,u) and her secret key is
SK =w.

Key Update: To update her secret key Alice first selects r € Z;. She updates w :=
w + ru and this new value of w is her new secret key.

Signing: To sign a message m, Alice first computes the hash h := h(m). Then using the
CRS (g, h) she computes a Groth-Sahai proof ¢ on the pair (v,t) using w as a witness.
Her signature on m is o.

Verification: To verify Alice’s signature o on a message m, Bob first computes h := h(m).
He then runs the verification component of the proof system using (g,h) as the CRS. If
the verification succeeds he accepts the signature and otherwise he rejects it.

Figure 4.1: The MTVY signature scheme

The MTVY signature scheme is presented in Figure 4.1. Since all the different letters
used in the scheme can be confusing, we tried to name things in a way that would be easy
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to remember. H is so named because it is the hash matrix and g is named because it is
always the first component of the CRS and so it always comes before the output h of the
hash function. The two main components of the public key, which is sometimes called the
verification key, are v and ¢ which is in Gp. The vector u is only used in the key update
procedure and so can be thought of as the update vector. Finally the secret key w acts as
a witness in the Groth-Sahai proof system.

Correctness of the MTVY scheme clearly follows from correctness of Groth-Sahai proofs.
Also, e(v,u) = e(av,bu) = e(v,u)*P = e(v,u)? = ID;. Thus, the update portion is also
correct since e(v,w +ru) = e(v,w) - e(v,ru) =t-e(v,u)" =t for all r € Z;.

4.5 Sketch of Proof

In this section we will explore most of the details of the proof of security for MTVY. In
particular, we will explain the idea behind the proofs of the various lemmas used in the
main security theorem. Where the rigorous details are easy to explain or add additional
insight they are presented; otherwise they can be found in [52]. Additionally, we will be
explicit about when notions of indistinguishability are used and treat them with extreme
caution as we recommended in Section 2.2.7.

We will now state the main security theorem and prove it in terms of a number of
claims and lemmas. The rest of this section will provide proofs (or sketches) for these
claims except for Lemma 4.6.1 to which we will pay special attention in Section 4.6.

Theorem 4.5.1 ([52]). Under the SXDH assumption the MTVY signature scheme is exis-
tentially unforgeable under chosen message attacks in the continual memory bounded-length
leakage model with leakage parameters

clogk clogk 2+7y 2+
) ) - ) - )
llogq’ llogq 14 14

where ¢ > 0 and v > 2 are constants.

One thing to note is that Theorem 4.5.1 has slightly worse leakage bounds than the
one proved by Malkin et al. in [52]. When we plugged the values into the proof, something
that is never done in [52], we found that we needed v > 2; in contrast, the authors of [52]
require that v € ©(1/Vk).

Proof. We will prove the theorem by showing that any PPT forger F that can break
the MTVY scheme with non-negligible probability can be used to solve SXDH with non-
negligible probability. The first step in showing this is Lemma 4.6.1 which allows us to
change the first two leakage parameters both to 0. That is, we continue with the proof as
we would for a scheme that allows no leakage during key generation or update.

Suppose F can forge a signature with probability €. Let ¢, and g5 be upper bounds
on the number of update and signature queries made by F, respectively. For ¢ € {1,2},
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let 9; be the advantage any PPT algorithm has in solving DDH in G;. We will show that
F can forge a signature in a slightly different signature scheme with only slightly reduced
probability. In this scheme the Waters hash is computed in a different way. In particular
let 0 := [qs/e] and X := {—n(0—1),—n(@—1)+1,...,0} x{0,1,...,0—1}". Let x €r G3,
X' = (20,...,1],) €Er X, @ €Er Ly, y := ag, and y' = (y5,...,¥,) €r Z;™". Then we set

Hj := 2lx +yiy for each j € {0,...,n} and so the hash matrix is H := (Ho,..., H,).
Further, define K (x’,m) and L(y’,m) as

K(x',m) =z + Z wim;  and  L(y',m) = yo + Zygmj (mod q).
=1

j=1

Note that K is computed over the integers while L is computed over Z,. With this notation
we can rewrite h(H,m) = K(x',m)x + L(y’,m)y.

We say F is only successful if for every message m whose signature it queried we have
K(x';m) # 0 and K(x',m*) = 0 holds for the message m* whose signature it forged.
We will call a forgery with this property a “special forgery”. Lemma 4.5.2 shows that
F succeeds in producing a special forgery in this new scheme with probability at least

e?/(ngs) — ds.

Notice that when a special forgery is produced, the CRS computed in all the signature
queries made by F ensures that the Groth-Sahai proof is witness indistinguishable. This
happens since h(H, m) = K(x',m)x + L(y’,m)y and K(x',m) # 0 and so by choice of g,
x and y the CRS is only a DDH tuple when x = &'g for some o' € Z, which happens
with probability 1/¢g. Further, since K(x',m*) = 0 we have that h(H,m*) = L(y’,m")y =
L(y’,m*)ag. Thus the CRS used in the forgery made by F is (g, L(y’,m*)ag) and so a
witness can be extracted from it, provided « is known. We will use these two properties
later in the proof.

Next we change how the witness w is selected. The vectors v and u are selected the
same way as before (in particular v = av). In addition, vectors aq,..., a3 €g Zf; and
an element z €r G are selected so that e(v,z;) = [ Dy for all j, where z; = ;2 (this is
done by selecting a;’s so that aj-a = 0). Further s €x G is selected and now ¢ := e(v,s).
Let W = s + span(zy, ..., 2,_3). The secret key w is now selected as a random element of
W in key generation and update. Lemma 4.5.6 shows that F produces a special forgery
in this new scheme with probability at least £?/(ngs) — 205. Lemma 4.5.9 shows that the
new scheme is statistically indistinguishable from one where the secret key is chosen as
a random element of the set S := {w € G% | e(v,w) = t}. Notice that |S| > ¢*~* and
IW| < ¢*~3. Thus the probability that a randomly selected element of S is in W is at most
q~2. Therefore, if a secret key can be recovered from the forgery that F produces, then
with high probability it will not be in the affine space W.

Finally we show how a forger for the new scheme violates the property of the hash
function hy(w) = e(v, w) proved in Lemma 4.3.4. Algorithm A runs F as a subroutine by
choosing all the parameters of the new scheme correctly and sending the public information
to F. Since it knows the secret information it can answer signing and leakage queries. At
the end F outputs a forgery (m*, o). We know that by construction the CRS used in the
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proof ¢ is a DDH tuple (g, L(y’, m*)ag). Further, since A knows « it can extract a witness
w* from o as discussed in Section 4.3.1. From the argument above, however, we can see
that with high probability the witness w* is not in the affine space VW. But then A has
violated the independent preimage resistance of hy(w) = e(v, w).

In Lemma 4.5.9, we see that the probability that the subspace W is not hidden from
the view of F is at most ¢' /2 /qu. Thus the success probability p of A is

p = Pr[F produces a special forgery in the new scheme] — ¢*~7/%/q,
> &% /(ngs) — 202 — ¢" % /qu — negl(k),

where negl(k) is bounded by some polynomial p evaluated at ¢~'. The negl(k) is a tiny
factor (approximately 272%) and has no bearing on the meaning of the proof in practice. [

Lemma 4.5.2. Any PPT forger F for the MTVY signature scheme who succeeds in forging
a signature with probability € succeeds in forging a special signature for the scheme where
the Waters hash has been changed as described above with probability at least € /(nqs) — da.

Proof. The proof of this lemma is broken into three claims. When proving these claims it
is important to keep in mind that no leakage occurs during key generation.

Claim 4.5.3. Suppose the matrix H for the Waters hash is computed as follows. Set
0 =qs/e], and X = {-n(0—1),—n(@—1)+1,...0} x{0,1,...,0 —1}". Letx, y €r G3,
x' = (xh,...,7,) € X, ¥ = (Y, ¥) €r ZJ*'. Then we set Hy := 23X + y,y for
each k € {0,...,n} and so the hash matriz is H :== (Hy, ..., H,). Notice that'y is chosen
randomly, which is different from how it is chosen in the actual modified scheme used in
the proof of security. Using this Waters hash instead of the one defined by MTVY does not

change the success probability of F.

Proof of Claim 4.5.3. Notice that each Hy is still a random element of G% and thus this
definition does not change the distribution of H. Since no leakage occurs during key
generation, F cannot possibly tell that the parameters have been generated differently and
so this change cannot alter its success probability. O]

Claim 4.5.4. Recall K(x',m) := x4+ 37, ¥m;. A special sequence of messages is one
where every message m submitted as a signature query satisfies K(x',m) # 0 and the
forgery is on a message m* where K(x';m) = 0. When the Waters hash in Claim 4.5.3 is
used, F produces a special signature with probability at least €2 /(ngs)

Sketch of proof of Claim 4.5.4. Two lemmas from [5] give a lower bound on the probabil-
ity of any given sequence of messages satisfying the special property and show that the
probability that a particular sequence is used is independent from the probability that it
is special. In sum we have that

1—¢

Pr(special| > and Pr(special and chosen| = Pr|special|-Pr|chosen]|.
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Notice also that the probability of a sequence being special is dependent only on x whose
distribution is hidden from F (once again because no leakage occurs during key generation).
Thus the probability of F producing a special sequence of messages is independent from
its probability of producing a valid forgery. So we have

Pr[valid and special] = Pr[valid] - Pr[special]
=c- Z Pr[special and chosen]

message

sequences
=c- Z Pr[special] - Pr[chosen]
sequences
1—¢
>c- Pr|chosen
sequences
1—c¢
=c- Z Pr[chosen]
n(gs/e = 1) +1 e
1—c¢
€ -1
— n(gs/e—1)+1
> e2(1 —¢)
n(Qs - 5)
2
>
ngs
as desired. O]

Claim 4.5.5. Suppose that the Waters hash for a scheme otherwise identical to MTV'Y is
generated as in Claim 4.5.3 except that y is generated differently. In particular, o €g Z,
is selected and then'y := ag. F succeeds in producing a special forgery in this scheme with
probability only negligibly different than in Claim 4.5.4.

Proof of Claim 4.5.5. Suppose F makes a special forgery in the setting of Claim 4.5.4 with
probability § and in the setting of this claim with probability ¢’. Then clearly we have
that dy > |0 — ¢’| since we can create an algorithm for DDH in G5 based on whether or not
F succeeds. In other words we have ¢’ > § — do = 0 — negl(k) since DDH is assumed to be
hard. Here it is crucial that no leakage occurs during key generation, since even a single
bit of leakage could be enough to solve DDH. O

Putting the three claims together we can see that F produces a special forgery for
MTVY with the altered Waters hash with probability at least €2/(ng,) — da. O

Lemma 4.5.6. Consider the MTVY signature scheme altered in the following way. First
the hash function is changed as in Lemma 4.5.2. Neat, vectors zy,...,z,_3 € G5 ands €
GY are selected (as described in the proof of Theorem 4.5.1 above) so that e(v,z;) = I Dy for
all i and t :=e(v,s). Let W = s+span(zy,...,2p-3). The secret key w is now selected as
a random element of W in key generation and update. A forger F for MTVY that succeeds
with probability €, succeeds in this new scheme with probability at least €2 /(ngs) — 205.
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Proof. To begin this proof we first state a well-known result. Consider the problem where
an adversary must determine whether a given vector was generated randomly or in the
following way. First z, , € G5 and Bi,..., 83 €r Z, are selected. Then z, := Bz} ,
is computed for 1 < i < ¢ — 3 and the vector output is (z,...,z; ). We will use
the fact that the advantage of any PPT adversary for this problem is at most 5. An
intuition for why this is true can be seen in the following way. Given the DDH challenge
C:=(P,Q,zP,yQ) we can create any number of independent challenges C;, by setting

Ci = (a;P + b;Q, ;P + d;Q, a;x P + byQ, a;x P + byQ),

where a;, b;,¢;,d; €g Z,. It can be verified that whenever C' is a DDH tuple (i.e. z = y)
then so is C; and whenever C' is random then so is C;. Further we can easily extend this
technique to make these challenges contain an arbitrary number of elements (i.e. they can
be of the form (P,..., Py, x1 Py, ..., x,P,) for any choice of ¢ > 2).

We will now construct an algorithm A that uses a forger F for MTVY to solve the
above problem. Basically A will construct inputs for the forger based on a challenge for
the above problem in such a way that if the challenge was random then the secret key will
be selected as it is in the MTVY scheme where only the hash is modified and otherwise it
will be selected as described in the statement of this lemma.

A takes as input a challenge (z},...,2z, ,) for the above problem. It generates the
parameters for MTVY as follows. First it generates v by selecting v €z G; and aq, ..., ap_1
€r Z, and setting v := (a0, ...,a,—1v,v). Then for each 1 <7 < ¢ — 2 it sets

/-1
P— / / — g vy
Zi «-— Zi,l’ P 72@’,[717 CL]ZZ,]
J=1

where z; = (2] ,...,2;, ;). Further it sets u := z, 5. Notice that by definition of the z;’s
we have

e(v,z1) =---=e(v,zp_2) = e(v,u) = I Dr.
A now selects s € G5 and sets w to be a random element of W := s + span(zy, . .., 2s_3)

for both key generation and updates. It proceeds with the remainder of key generation as
normal and gives the public key to F as input. Since A has access to the secret key, it can
faithfully respond to all queries from F.

Clearly when (z},...,2z,_5) is random, this is exactly the modified key generation
method in the hypothesis of the lemma. Further when z{ = (;z, 5 for some 3, € Z,,
it is clear that z; = 7,2z,_2 = v;u for some ~; € Z,. Hence, if the challenge is not random,
W = s + span(u). But this is exactly the set from which w is picked in the version of
MTVY where only the hash is modified. Thus if A simply outputs 1 based on whether
or not the forger is successful we see that A has advantage |¢%/(ngs) — d2 — €'| in solving
the above problem where &’ is F’s probability of success for MTVY with the modified key
generation. But then from the fact discussed above we have |e?/(ngs) — d2 — €| < do and
so &' > €%/(ngs) — 209, as claimed. O
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Before we can prove the final lemma used in the security proof, we need to state a
theorem from [11] about random subspaces. It will be helpful to recall the notion of
statistical distance we discussed in Remark 4.3.1.

Theorem 4.5.7 ([11]). Let { > 5, Q) be a finite set, K an (-dimensional vector space over
Zy, and f : K = Q be an arbitrary function. Let Z = (z1,...,2i-3) €r K3 and set
Z :=span(zy,...,2¢-3). Let vEr Z andu €x K. Then

aist(Z, F(v), (Z, F(w))) < 5
whenever |Q| < ¢=*6%.

Note that this is actually a special case of the theorem in [11] which is slightly more
general. We will use this theorem to show that the following “subspace game” is hard.

Lemma 4.5.8. We will use the same notation as in Theorem 4.5.7. Additionally, let
vi €r Z and u; €g K for 1 <1 < q,. A challenger selects a random bit and if it is 1
sets wi := u; and otherwise sets wi := vi. The adversary adaptively selects leakage queries
fi,-- s fq. and receives fi(wy) for all i. The adversary then outputs a bit; its advantage is
the difference between the probability it outputs 1 in the two different cases. The advantage
of any (unbounded) adversary for this game is at most 6 whenever |Q| < ¢*~*(5/q.)?.

Sketch of Proof. The idea is to feed an adversary A for the subspace game the result of
its query on a random element of K for the first ¢ — 1 queries and a random element of Z
for the remaining queries. To ease notation we will say that for 1 < j < ¢ — 1 the query
occurs on wj €r K and for ¢ < j < ¢, the query occurs on WJf €r Z. Let f; be the 4th
query made by A. Then we set D; to be the distribution

(2, fr(wa)), - (Z, fia(Wi1), (2, fi(W2)), -5 (2, fau (Wg,))-

Suppose that A succeeds with probability e. We then have that

qu
g S diSt(Dl, un+1) S Z dlSt(Dz, Di+1)

=1

by the triangle inequality. Thus, for some ¢ we must have that dist(D;, D;y1) > £/qu.
Notice, however, that the only difference in the two distributions D; and D;,; is that in
the first case f; is given an element of C and in the second it is given an element of Z.
But from Theorem 4.5.7, this must mean that the two distributions are at most 1/|Q|/¢*~*
apart. Since |Q| < ¢"*(§/q,)? this means that ¢/q, < dist(D;, Di11) < 6/q, and so
e <. [

Lemma 4.5.9. The signature scheme defined in Lemma 4.5.6 is statistically indistinguish-
able from one in which the key is chosen as a random element from the set of all preimages
of t (i.e. w eg S :={w | e(v,w) =t}) under the assumption that F produces a successful

forgery.
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Sketch of proof. Here we give the main ideas of the proof although we will omit many
details. We will use a forger F to create an adversary A for the subspace game. Suppose
F succeeds with probability € when w is chosen randomly from W and &’ when it is chosen
randomly from S. The main idea we will use is that since A is unbounded, it will able to
be generate signatures without knowledge of a secret key. To generate leakage queries it
will rely on the leakage oracle for the subspace game. It can do this since, by construction
of the special Waters hash and the requirements on F, signature queries requested by
F always use a non-DDH CRS. In particular, this means the corresponding proofs are
perfectly witness indistinguishable. Thus for any choice of witness and randomness (w, R)
producing a proof o, for every other witness w’ there exists unique randomness R’ so the
proof using (w’, R’) and the same CRS also equals o.

A generates all parameters for the modified MTVY scheme except the vector (zq, ...,
zy_3) and sends them to F. Let us first imagine a case where F can only make one signature
query (m, f) per update. In this case A computes the CRS normally and selects a random
element o from the set of all proofs using that CRS. To answer the leakage query it has
the challenger for the subspace game:

1. Generate the appropriate vector w; for the round.

2. Compute w := s + w; and find the randomness R so that the proof computed using
w, R, and the CRS is o.

3. Output f(w, R).

We will attempt to give an idea of what to do in the general case (note that Malkin et al.
do not describe what to do in this situation saying only that it “follows in a straightforward
way”). Unfortunately, the method we were able to devise is not very straightforward due
to the possibility of leakage and signature queries being adaptive and the fact that A
can only query the challenger once per update. Very roughly speaking, in the general
case, A examines the description of F and determines what messages could be possibly
signed between a particular pair of key updates. It computes signatures for all these
messages as described above. It then feeds these signatures into the challenger as well as
the description of F for that time period. It has the challenger generate the key for that
round as before. The challenger can calculate the output of the various leakage functions
(calculating the randomness for the signatures as described above). At the end it outputs
the concatenation of the appropriate results of the leakage functions. By examining this
output and the description of F, A can determine which signatures were requested and
send them to F one-by-one along with the appropriate results of leakage queries.

Since no leakage can occur during key updates, A does not need to do anything for
update queries. In the end it outputs 1 depending on whether or not F was successful.
Further, by our observation above about witness indistinguishability for Groth-Sahai proofs
the distribution of (o, f(w, R)) generated by A for F is correct. Furthermore, we see that
whenever the challenger’s random bit is 0, the secret keys are always chosen from S, and
whenever it is 1, they are always chosen from W. Therefore A succeeds at the subspace
game with advantage 0 := | — €/|.
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By assumption on the forger, the number of bits requested from the challenger at each
round is (1 —(2+7)/¢)-£-1logq. Thus |Q| = ¢""277 = ¢**¢*7. So we can see that setting
¢"4(6/qu)? = ¢""*¢*>™ we have 0 = ¢'~7/2 - ¢,, which is negligible for any v > 2 since g, is
polynomial in k£ and ¢ is exponential in k. Thus, by definition of §, the difference in the
success probability of F in the two cases is negligible, as required. [

4.6 Something Out of Nothing

In this section we will take an in-depth look at the lemma that allows leakage during
key generation and updates. In particular we will consider what it means in practice,
especially as it relates to the MTVY scheme. The lemma (although not explicitly stated)
first appeared as a part of the security proof for the encryption scheme of Brakerski et al.
[11]. We will state the lemma in terms of a signature scheme, but the authors of [18] cite
personal communication with Waters stating that it holds for any one-way relation.

Lemma 4.6.1 ([11, 52]). Any signature scheme that is secure in the continual memory
bounded-length leakage model with leakage parameters (0,0, Lg, Lyy), security parameter k,
and secret key size S, is also secure in the same model with leakage parameters

c-logk c-logk
s S

for any ¢ > 0 provided that Ly is w(logk/|SK]).

7L57LM>

Notice that this lemma allows for ¢ - logk bits of leakage during key generation and
update. We will not give the details of the proof since they are not much more enlightening
than the proof idea. The idea is to take a forger F which is permitted to issue leakage
queries during key generation and update and turn it into a forger A which does not. We
run F and each time it asks for leakage during key generation or update we record its state
and make the following memory leakage query to the challenger for A:

1. Let A be one of the possible outputs of F’s leakage query. Run another copy F' of
F using the recorded state and A as the answer to its leakage query. Answer further
leakage queries normally (so F’ is run to completion). Repeat this process (i.e.
running F’ with A as the answer to its leakage query) k times using fresh randomness.

2. Repeat step 1 for each of the 2¢1°¢% = k¢ possibly values of ).

3. Output the leakage value that leads to the highest number of successful forgeries.

Notice that since ¢ is constant, k¢ is polynomial in &, and so this leakage function is
polytime-computable. The rest of the proof is a statistical argument that the new forger
A succeeds with probability at least one half that of F.

The first thing to notice about this proof is that the result for key generation is trivial.
In particular for leakage that only happens once, one trying to convert F into A can
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simply guess a value for this leakage. The reason why this is trivial requires some further
terminology. The tightness of a proof (of security) refers to how close the probability of
breaking the scheme is to the probability of breaking the underlying hard problem. That
is, suppose that if an attacker can break a scheme with probability €, then she can solve,
say, DLOG with probability f(¢) (in the same number of steps). A proof is tight if f(e)
is very close to €. In principle, if a proof is non-tight the key size should be increased
so that the difficulty, based on the security proof, of solving the underlying hard problem
meets the requirements of the security parameter. In practice, this is never done and so
non-tight proofs could lead to schemes which are insecure. Fortunately, such proofs are
almost always secure, in the sense that there does not appear to be a way to exploit the
lack of tightness.

All that being said, the loss of tightness that results from guessing all possible values of
leakage during key generation is meaningful. Otherwise, any scheme could reduce its key
size by ¢ - log k bits without incurring any loss in security (by revealing ¢ - log k bits of the
secret key). Thus the need to perform k™' operations to permit leakage of ¢ - logk bits
is a meaningful loss in tightness. However, the key update leakage is not subject to this
argument. That is, if we simply guess all values for the leakage in key updates, our new
procedure would be guaranteed to succeed with probability k£~ times the probability of
success of F, which is negligible. Nonetheless, we feel that the very nature of a secure
(signature) scheme with key updates may trivially allow this key update leakage.

We may assume that any secret information which an attacker learns over time through
leakage is initially given to her (that is, any unchanging secret values can be given to the
attacker in the first place). Further, it is reasonable to expect that leakage about the secret
key SK; reveals no information about the secret key SK; ;. Basically, the intuition is that
old leakage is almost entirely unhelpful after the secret key has been updated. Thus it can
be viewed as if each time the secret key is updated the entire system is re-keyed. While
this overstates the security imbued by key updates, something almost as strong must hold,
otherwise the system would get weaker and weaker after each update occurred.! But, if key
updates are equivalent to rekeying, then the leakages allowed under Lemma 4.6.1 are, in
some sense, independent. In other words, a wrong guess for one leakage value will only alter
the probability of success of F in the current round. This conclusion makes sense since,
because of the availability of memory leakages, the only advantage F gets by receiving
leakage during key updates is the ability to learn some function of the randomness used
for those particular updates. In other words, the update leakages only reveal information
about a particular key and not about the set of keys corresponding to the public key.

Combining these assertions with our observations about the leakage during key gen-
eration, we see that once again the loss of tightness needed to achieve provable security
despite key update leakage is meaningful. Put another way, the proofs of Lemma 4.6.1
found in [11, 52] provide no assurances that leakage should actually be allowed during key
generation or update.

We might not be the first to have these concerns either. In [18], the authors note
that their leakage parameters could include leakage during key generation and updates by

IFor MTVY we see that the number of updates only alters security if g, is almost as big as ¢'~7/2.
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applying the lemma. Boyle et al. [10] and Lewko et al. [51] note the existence of the lemma
but specifically do not apply it to their schemes. While we are not sure of the reasoning
behind the authors’ decisions to not include the lemma, it is curious that they would not
take the opportunity to add “free leakage” if they felt it was meaningful to do so.

Even if we were to disregard the above, what does Lemma 4.6.1 tell us in practice? To
make things concrete we will look at how it applies to the MTVY scheme at the 128-bit
security level. The first thing we need to do is determine what value of ¢ is appropriate.
Brakerski et al. suggest that ¢ = 1 is a reasonable choice [11], and we are not inclined to
make it much higher because even for ¢ = 2 the proof described above results in a tightness
loss by a factor of over a million. When ¢ = 1 and k£ = 128 the lemma shows MTVY to
be secure even if it leaks 7 bits during key generation and update. It is hard to imagine a
scenario in which an implementer is worried about these procedures leaking information,
but not more than 7 bits. We will discuss the ramifications of only allowing such few bits
of leakage in Section 4.7.1.

There may be another very subtle possible problem with using Lemma 4.6.1 in conjunc-
tion with MTVY. In particular, if §; is the advantage any PPT algorithm has in solving
DDH in G; and ¢ is the probability of success of some PPT forger F, then the proof of
security tells us that d; > f(e) — 2d, for some non-negligible function f. However, an
adversary who can observe the selection of DDH parameters (i.e. one that gets leakage)
can trivially solve DDH if this observation reveals whether or not the output is a DDH
tuple. Notice that even a single bit of leakage suffices to totally compromise DDH security.
Furthermore, the security proof for MTVY essentially consists of using F to construct an
algorithm for solving DDH in G;. This algorithm only ever gives to F values that depend
on the first two elements of a DDH challenge. Thus, even if F had access to leakage during
key generation, it would not be able to tell if the challenge was a DDH tuple. However,
the proof uses the fact that DDH is hard in GG5. Moreover, it does this in such a way that
with leakage, an adversary would be able to tell whether or not certain parameters it was
given form a DDH tuple. Thus, we cannot use the security proof directly to show that
some leakage can be allowed during key generation for MTVY.

So now suppose F' is a forger that requires a single bit of leakage during key generation.
Further, suppose F’ creates a special forgery with probability /. We now create a forger
F that runs ' making a random guess for the value of the leakage bit and outputs the
signature produced by F. It is clear that F produces a special forgery with probability
e > ¢'/2. In those cases where F succeeds, it can still be used to solve DDH in G, but
this does not necessarily mean that ¢ must be negligible. In particular, there seems to be
no way of knowing that F does not solve DDH in (G5 in those cases where its guess for
the bit is correct. Notice that if this were the case F may only have negligible advantage
in solving DDH in G5, but could still produce a forgery with non-negligible probability. It
is very hard to tell whether the loss in tightness incurred by the proof is enough to make
its conclusions meaningless when paired with the DDH assumption in this way. Further
research is required to determine the applicability of Lemma 4.6.1 to schemes which use
decisional hardness assumptions in this way.

While the proof may not say anything in the case where leakage occurs during key
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generation and update, we do not necessarily think that this scheme is insecure when this
extra amount of leakage is allowed. In particular, solving DDH in GG does not immediately
lead to an attack on the scheme. This is normal for schemes based on decisional problems
like DDH. Even with MTVY, the proof of security ends up using the forger to solve a
computational problem which is likely harder than DDH (in the sense that it could not be
solved even with access to a DDH oracle). We again emphasize that theoreticians should
use extreme caution when dealing with (decisional) indistinguishability and leakage. The
argument above shows both that it is possible to base leakage resilient schemes (even ones
with leakage during key generation) on decisional hardness problems like DDH, but also
that extreme care should be used when doing so.

4.7 Performance Analysis

We will now attempt to analyze the performance characteristics of MTVY, including its
leakage resilience. We will do so as if Lemma 4.6.1 made sense for this scheme. In particular
we will allow a small amount of leakage during key generation and update. Doing so allows
us to examine the security of the scheme as expected by Malkin et al. [52]. As usual we
will assume that |¢| = 2k. In practice, asymmetric pairings at the 128-bit security level
are implemented on Barreto-Naehrig (BN) curves. With these curves one input group has
coordinates of size |¢| and the other of size |¢*|. The output group has elements of size |¢'?|.
So for this scheme we may assume that elements of G| can be represented with |¢*| = 4k
bits, elements of Gy can be represented using |q| = 2k bits, and elements of G can be
represented using |¢'?| = 24k bits.

The public key consists of g which is two elements of G5, H which is 2n elements of
G5, v and u which are ¢ group elements each in G; and G5 respectively, and ¢ which is 1
Gr element. Since, in practice, messages are hashed by a collision-resistant hash function
before they are signed, we can set n, the size of the message space, equal to 2k. In total,
the public key is comprised of ¢ elements in Gy, 4k + ¢ + 2 elements of G5 and 1 element
of Gr. The secret key consists of ¢ elements of Gy. A total of (4 + 4k + 30)2k bits of
randomness are needed for key generation as well as ¢ point multiplications each in G; and
G5 and one pairing computation.

In key update, 2k random bits are needed and ¢ point multiplications in G5 are com-
puted. Signing requires 4¢k random bits, 2¢ point multiplications in G, and 4¢ point
multiplications in G5. The signature consists of 2 elements in GG; and 2/ elements in Gs.
The verification algorithm consists of 2¢ + 4 pairing computations. When evaluating effi-
ciency, we will use the rough estimate that 1 exponentiation in GGy costs 4 exponentiations
in GQ.

In terms of leakage, we have seen that we desire ¢'=7/2) . ¢, < €2 /(2kq,). For k = 128
and ¢, = q, = 1/e = 232 we can see that this happens when 7 is a little more than 3. So
we will choose 7 = 3.25. As discussed earlier, we will set ¢ = 1 and so then the number of
bits that can be leaked at each stage is

(log k,log k, 2k(¢ — 5.25),2k(¢ — 5.25)) .
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4.7.1 Comparison with Schnorr-/

The next natural step is to compare MTVY to the schemes we have already looked at.
Table 4.1 shows the various parameters of MTVY and Schnorr-/ for a few different values of
¢. In the efficiency columns M refers to a point multiplication and P a pairing computation.

, Scheme Size Master leakage Efficiency
PK SK | Signature | Bits Rate Sign | Verify
6 MTVY | 139264 | 1536 4096 192 0.125 72M 16P
Schnorr-¢ | 1792 1536 1792 576 0.375 6M ™
7 MTVY | 140032 | 1792 4608 448 0.25 84M 18P
Schnorr-¢ | 2048 1792 2048 704 0.3929 ™ 8M
3 MTVY | 140800 | 2048 5102 704 0.34375 96M 20P
Schnorr-¢ | 2304 | 2048 2304 832 0.4063 8M 9M
50 MTVY | 173056 | 12800 26624 11456 0.895 600M | 104P
Schnorr-¢ | 13056 | 12800 13056 6208 0.485 50M 51M
100 MTVY | 211456 | 25600 52224 24256 | 0.9475 | 1200M | 204P
Schnorr-¢ | 23856 | 25600 23856 12608 | 0.4925 100M | 101M

Table 4.1: Comparison of the MTVY and Schnorr-¢ signature schemes at the 128-bit
security level.

The values in this column for Schnorr-¢ assume that Shamir’s multi-exponentiation trick
is not used. Similarly, the values in the column for MTVY assume no methods are used
for accelerating products of pairings. Notice that in MTVY the public key is always very
large due to the need to include the Waters hash. Perhaps the most striking thing to note
is that for small values of ¢, Schnorr-¢ can actually leak more bits between updates than
MTVY. Furthermore, there is no restriction on the time periods where leakage can occur
in Schnorr-¢ whereas in MTVY only 7 bits can be leaked during key generation or update.
However, since the key cannot be updated in Schnorr-¢, the overall number of bits that
can be leaked in MTVY is much larger. In other words, for (almost) practical values of
¢, Schnorr-/ is slightly more secure against one-shot attacks like cold boot, and MTVY is
much more likely to be secure against attacks that require many measurements like DPA.

Other than this security tradeoff, signing in (unoptimized) MTVY is also 12 times
slower than it is in (unoptimized) Schnorr-¢, which is already ¢ times slower than a practical
scheme like Schnorr. Comparing the verification algorithms is a little more difficult, since
pairing computations and point multiplications are not as nicely comparable. Nonetheless,
it is safe to say that pairing computations are significantly slower than point multiplica-
tions and so verification is more than twice as slow in MTVY compared to (unoptimized)
Schnorr-¢. Further, the enormous public key makes the scheme unusable in applications
with constrained hardware such as smart cards. However, it may be possible to replace the
Waters hash with a random oracle and so a more practical implementation of the scheme
using a standard hash function is probably possible. Further, since MTVY does not rely
on a random oracle, its security guarantees can be seen as more concrete, in some sense,
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than those of Schnorr-¢. That being said, there are no known attacks against schemes that
rely on the random oracle assumption using a cryptographic hash function in practice. Ad-
ditionally, Chatterjee and Sarkar [14] show that storage requirements for the Waters hash
can be reduced at the cost of needing more computations during signing and verification
and a loss in tightness.

Another important drawback of MTVY is the inability to leak more than 7 bits during
key update. While it is plausible that the key is securely generated, i.e. in an environment
where it is unlikely that leakage will occur, the same cannot be said for key update. In
particular, in the most likely use case key update and signing are done in the exact same
environment and so are equally prone to leak. The effective need for a safe haven to perform
key updates makes the key update procedure much more costly.

There is a way the scheme could be used without such a safe haven while still maintaing
(provable) security. Suppose an implementer is only worried about point multiplications
as sources of leakage. Further, she knows that at most 7 bits will leak every ¢ point
multiplications (no matter which group they were performed in). Thus she can be sure that
key updates satisfy the leakage bound. Since signing consists of 6¢ point multiplications, she
can also be sure that at most 42 bits leak per signature. When ¢ = 6, this means she must
update her key after every 4 signatures so that the scheme will remain provably secure.
The question remains: how could an implementer ever obtain such an assurance of the
leakiness of point multiplications? Is it reasonable to expect that each point multiplication
leaks only around one bit of information? Of course, if no leakage can be tolerated (which
we argue in two different ways above), then not even this limited scenario can be achieved.

We emphasize that an implementer should not take the leakage bounds during key
generation and update lightly. Recall that the fact that no leakage occurred during either
period was used several times in the proof. While it is certainly not clear that an attack
exists against this scheme when these conditions are violated, it is also not clear that
such attacks do not exist. At the very least there is a possibility that leakage during key
generation and update significantly weakens the security of the scheme.

Of course, the ability to leak an overall unbounded number of bits is a significant
advantage MTVY has over Schnorr-£. This allows it the possibility of being secure against
attacks that overall use a very large amount of information like DPA or lattice-type attacks.
However, as noted in Section 2.2.2, the model may not be able to tolerate any style of power
analysis attacks. Furthermore, it is not known how to apply DPA and lattice-type attacks
to any schemes that employ key update, even ones which are not provably leakage resilient.

One thing to note about MTVY is that while it makes use of pairings, pairing com-
putations do not need to be secured against side channel attacks. This is because the
only time a pairing is computed using a secret value as input is during key generation
when it is assumed that (almost) no leakage occurs. That is, to guarantee that no leakage
occurs during key generation in practice, it would likely need to be implemented in a safe
environment where side channel attacks could not be performed (and so there would be no
need for secure implementations of any of the primitives used during key generation). If
leakage was permitted when pairings were computed using secret values, however, research
into side channel attacks against pairings would need to be done. We mention this, since

75



it is possible that other leakage resilient schemes make use of pairings in this way. With-
out a secure implementation of pairing computations, these schemes would be useless in
protecting against side channel attacks.
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Chapter 5

Conclusions

In this thesis we have examined leakage resilience, the response by the theoretical com-
munity to the problem of side channel attacks. We have argued that while some ideas
and techniques used in leakage resilient public key schemes may prove useful in eventually
constructing side channel resistant schemes, current leakage models and schemes are insuf-
ficient to guarantee security against side channel attacks. Most importantly, practitioners
need to implement all the same countermeasures for the new schemes as they would for
traditional schemes. Additionally, it is possible that new countermeasures need to be de-
veloped or that these new schemes are harder to protect against side channel attacks and
S0, in practice, they may actually fare worse against side channel attacks than traditional
schemes.

We also demonstrated a disconnect between authors’ claims about the utility of their
schemes and the practicality of these schemes. By disguising theoretical results as practical,
the claims help exacerbate the division between practitioners and theoreticians. We feel
that this division is particularly damaging, since only by the combined work of theoreticians
and practitioners can we hope to achieve security against side channel attacks. Further, we
claim that the current direction of the field is one which will not be helpful in protecting
against side channel attacks. That is, if anything, the field is becoming more theoretical,
even though a substantial effort is already required to assess the benefits of proposed
schemes in practice.

We have made several proposals in an effort to steer the field towards practical results.
First, we suggest that authors give a practical analysis of the running time and leakage
bounds of their schemes. For schemes that are clearly impractical, authors should make
mention of this fact and hopefully propose some methods for overcoming these impracti-
calities. Further, authors should note the ways in which their schemes are vulnerable to
existing side channel attacks. By doing so, they can identify components of their schemes
for which new countermeasures need to be implemented. In the end, they should give
some assessment of how difficult it is to implement countermeasures for their schemes (in
comparison to traditional schemes). We also noted that schemes which tolerate only a
small amount of leakage but have practical efficiency are much more useful than those that
tolerate a large amount of leakage, but are impractical.
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Ultimately, to fully analyze these schemes we need to be able to understand their
security guarantees. To that end, we suggest research into several areas which is needed
to determine which attacks are indeed covered by current leakage models. In particular,
some notion of how many bits are leaked (or how much entropy is lost) when a given side
channel measurement is performed is required for many of these models to be meaningful.
Additionally, we noted that indistinguishability of ciphertexts may be hard to achieve for
leakage resilient encryption schemes. Thus, we feel that current definitions which do not
allow leakage during the encryption of the challenge (or allow only “entropic leakage”)
are inadequate. Therefore, we recommend that research is done into alternate security
definitions for these schemes.

We also provided an in-depth look at two different leakage resilient signature schemes.
We showed that Schnorr-/, one of the most efficient schemes proposed so far, is significantly
less efficient than standard Schnorr. Furthermore, for (almost) practical instantiations of
the scheme we saw that only a (relatively) small number of bits could be leaked. In
particular, we found it was hard to imagine a scenario in which the security guarantee was
meaningful, especially given that no attacks are known on standard Schnorr when such
little leakage occurs. That being said, we demonstrated that when around half the key
bits are expected to leak Schnorr-2 is a better scheme to use than Schnorr with its key
size doubled (note that neither scheme is provably secure in this scenario). We further
explored a type of attack on Schnorr which extends to Schnorr-¢ and showed that such
attacks are not permitted under the (memory) bounded length leakage model.

Finally, we examined the MTVY signature scheme. In addition to the scheme being
very slow (but still faster than other proposed schemes), we demonstrated that the tiny
amount of leakage it allows during key updates makes its security guarantees of limited
value in practice. Additionally, for reasonable instantiations of the scheme, we saw that
it is actually less secure against cold boot attacks than Schnorr-¢. We also argued that
that loss of tightness in Lemma 4.6.1 that is used by this and several other schemes to
permit (some) leakage during key generation and update may make the lemma meaningless.
We also showed that, ignoring the previous argument, the lemma might not actually be
applicable to MTVY. Here the particular reliance of the security proof on a DDH problem
may make the security guarantee of the scheme meaningless after applying the lemma.
We suggested further research into this area to better understand the relation between
Lemma 4.6.1 and decisional hardness assumptions. We used this example to once again
argue that extreme care needs to be taken when using indistinguishability arguments in
leakage resilient schemes.

The examination of the two schemes showed that it is unclear whether leakage resilient
schemes offer any additional protection. That is, there are traditional schemes which are
not known to be insecure even after leakage occurs. Even schemes in continual models are
not necessarily more secure than other schemes with key updates. Further, the price of the
ability to tolerate leakage is a rather large efficiency loss. Given that side channel attacks
are much harder to mount than a number of other practical attacks, there is little evidence
to suggest that the added protection of these schemes is worth the efficiency loss.
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