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Abstract

Datacenters are a signiėcant capital expense formany enterprises. Yet, they aredifficult tomanage and are
hard to design andmaintain.ĉe initial design of a datacenter network tends to follow vendor guidelines,
but subsequent upgrades and expansions to it are mostly ad hoc, with equipment being upgraded piece-
meal aěer its amortization period runs out and equipment acquisition is tied to budget cycles rather than
changes in workload. ĉese networks are also briĨle and inĚexible. ĉey tend to be manually managed,
and cannot perform dynamic traffic engineering.

ĉehigh-level goal of this dissertation is to reduce the total cost of owning a datacenter by improving
its network. To achieve this, wemake the following contributions. First, we develop an automated, theo-
retically well-founded approach to planning cost-effective datacenter upgrades and expansions. Second,
we propose a scalable traffic management framework for datacenter networks. Together, we show that
these contributions can signiėcantly reduce the cost of operating a datacenter network.

To design cost-effective network topologies, especially as the network expands over time, updated
equipment must coexist with legacy equipment, which makes the network heterogeneous. However,
heterogeneous high-performance network designs are not well understood. Our ėrst step, therefore, is
to develop the theory of heterogeneous Clos topologies. Using our theory, we propose an optimization
framework, calledLEGUP,whichdesigns a heterogeneousClos network to implement in anewor legacy
datacenter. Although effective, LEGUP imposes a certain amount of structure on the network. To deal
with situations when this is infeasible, our second contribution is a framework, called REWIRE, which
using optimization to design unstructuredDCN topologies.Our results indicate that these unstructured
topologies have up to ǉǈǈ-Ǎǈǈƻ more bisection bandwidth than a fat-tree for the same dollar cost.

Our third contribution is two frameworks for datacenter network traffic engineering. Because of the
multiplicity of end-to-end paths in DCN fabrics, such as Clos networks and the topologies designed by
REWIRE, careful traffic engineering is needed to maximize throughput. ĉis requires timely detection
of elephant Ěows—Ěows that carry large amount of data—and management of those Ěows. Previously
proposed approaches incur high monitoring overheads, consume signiėcant switch resources, or have
long detection times. We make two proposals for elephant Ěow detection. First, in the Mahout frame-
work, we suggest that such Ěows be detected by observing the end hosts’ socket buffers, which provide
efficient visibility of Ěowbehavior. Second, in theDevoFlow framework, we add efficient stats-collection
mechanisms to network switches. Using simulations and experiments, we show that these frameworks
reduce traffic engineering overheads by at least an order of magnitude while still providing near-optimal
performance.
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ǉ.ǉ Introduction

ĉescale of today’s datacenters is unprecedented. Largedatacenters containǍǈ,ǈǈǈ–ǊǍǈ,ǈǈǈ servers
and consume up to ǎǈ MW of power. Applications running on these datacenters operate at massive
scale by distributing their workloads across the many available servers. For example, distributed ėle
systems such asGoogle File System (GFS) [Ǎǉ] andHadoopDistributed File System (HDFS) [ǎǉ]
provide efficient, scalable, and reliable access to data and applications like MapReduce [ǋǑ] and
Dryad [Ǐǌ] allow one to distribute computation across thousands of servers. Because these systems
are distributed, they all rely on the network. However, network architectures have previously not
been designed to interconnect hundreds of thousands of high-performance hosts.

First-generation datacenter network (DCN) architectures were based primarily on enterprise
network architectures.ĉese proved to be inadequate for large-scale datacenters, because of scaling
andperformance issues [ǍǍ].ADCNmust connect hundredsof thousandsof end-hosts andprovide
up to petabits of bisection bandwidthǉ between them. Guidelines from equipment vendors, such as
Cisco [ǊǑ], arrange the DCN topology as a ǉ+ǉ redundant treeǊ. Doing so results in underprovi-
sioned networks—Microsoě researchers [ǍǍ] have found links with a ǉ:Ǌǌǈ oversubscription ratio
in their datacenters! Such high levels of oversubscription are appropriate for enterprise networks,
but not for high-performance networks likeDCNs.Oversubscribed links limit server utilization be-
cause they restrict service agility—the ability to assign any server to any service [ǍǏ]. Underprovi-
sioned networks also are a boĨleneck in modern distributed applications such asMapReduce [ǋǑ],
Dryad [Ǐǌ], partition-aggregate applications such as search [ǉǉ], and scientiėc computing.

Because of these high-performance demands, researchers have proposed DCN architectures,
that provide up to full bisection bandwidth and can scale to hundreds of thousands of servers, e.g.,
[ǉǈ, ǋǋ, ǍǍ, ǍǑ, ǎǈ, ǉǊǋ]. ĉey achieve this by using high-performance topology constructions and
custom addressing, routing, and load-balancing schemes. For example, VLǊ [ǍǍ] requires a Clos
topology, CamCube [ǋǋ] requires a ǋD torus topology, and BCube [ǍǑ] requires a BCube topol-
ogy. (Details are in Chapter Ǌ.) ĉe topologies used by these DCN architectures are prescriptive

ǉA bisection of a network is a partition of its nodes into disjoint sets of equal size, say (S, S′). ĉis is also called
a cut. ĉe bandwidth across this cut is the sum of link bandwidths for links with one endpoint in S and the other in
S′. A network where the bandwidth of all bisections is equal to half the number of servers is said to have full bisection
bandwidth.

ǊA 1+1 redundant tree is a topology that consists of two identical, disjoint trees.ĉe second tree provides connec-
tivity in the event of a single failure
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constructions, that is, the topology is deėned by a small set of inputs, typically the switch radix (i.e.,
the number of ports per switches) and a number of recursive levels. Additionally, the load balancing
schemes used by some of these architectures (such as VLǊ’s randomized load balancing, which ran-
domly selects a path for a Ěow), are not effective for someworkloads. For example, Al-Fares et al. [ǐ]
found that dynamic load balancing can improve aggregate throughput up to ǉǈǈƻ versus VLǊ’s ran-
domized load balancing for some workloads on a fat-tree topology.

Because these architectures rely on custom topologies, they are best suited for “greenėeld”, or
new, datacenters. Even if a DCNwas built for a speciėc architecture, it can be challenging to expand
or upgrade these networks since they are regular, prescribed constructions.ĉerefore,we investigate
new DCN topologies—ones that support heterogeneous switch radices and link rates. To support
heterogeneous switch types, we developed the theory of heterogeneous Clos networks, which gen-
eralizes the Clos network. To automate the design of these topologies, we developed an optimiza-
tion framework called LEGUP (Chapter ǋ). Because the heterogeneous Clos network still imposes
structure on the topology, we then initiated the study of unstructured DCN topologies. We present
our optimization framework for unstructured DCN design, called REWIRE, in Chapter ǌ. Overall,
we ėnd that unstructured networks can signiėcantly outperform networks that are based on regular
topology constructions.

A DCN needs a large bisection bandwidth to increase service agility, but it also needs load bal-
ancing to enable the use of the full bisection bandwidth. Because DCN topologies contain numer-
ous end-to-end paths for each pair of endpoints, traffic engineering can oěen improve the aggregate
throughput by dynamically pinning Ěows to paths. In prior work, Al-Fares et al. proposed a system
for dynamicDCN traffic engineering calledHedera [ǐ].ĉey showed thatHedera can improve net-
work performance signiėcantly; however, their approach relies on OpenFlow [ǐǍ], which has scal-
ing issues as summarized in Section ǎ.Ǌ.ĉerefore, we study low-overheadDCN traffic engineering.
We study the problem from two angles. First, we introduce a traffic engineering framework, named
Mahout, that uses a low-overhead shim in the end-host’s network stack to classify elephant Ěows,
which are long-lived, high-throughput Ěows. ĉese elephant Ěows are then dynamically monitored
and routed by a centralized controller. Mahout is described in Chapter Ǎ. Finally, we evaluate the
effectiveness of using DevoFlow [ǐǎ, ǋǐ], a modiėcation of the OpenFlow framework that reduces
OpenFlow’s overheads. ĉese results are described in Chapter ǎ.

LEGUPandREWIRE signiėcantly reduce datacenter capital expenses. Recent estimates peg the
capital cost of networking equipment—switches, routers and load balancers—at Ǎ–ǉǍƻ of the total
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monthly budget of a typical datacenter [ǍǏ, ǎǊ]. ĉerefore, reducing network capital expenditure
can signiėcantly reduce a datacenter’s total cost of ownership. For example, REWIRE can save up to
$ǋ million per year in a typical datacenter with ǍǈK servers.

Further, increasing datacenter service agility allows for a higher peak server utilization. If a ǍǈK-
serverdatacenter has apeak server utilizationof ǌǈƻand this couldbe improved toǐǈƻbyproviding
beĨer load balancing in the network or upgrading it, then the datacenter operator could cut the
number of servers they deploy in half. As servers represent ǌǍ–ǎǈƻ of the datacenter’s overall cost,
reducing their expense is crucial to overall cost reduction.

Before discussing related work in the next chapter, we describe (ǉ) typical datacenter applica-
tions, (Ǌ) the characteristics of an ideal DCN, and (ǋ) the contributions of this dissertation.

ǉ.Ǌ Datacenter Applications

To understand the requirements of a datacenter network, we ėrst need to understand the load appli-
cations place on the network. Applications in the datacenter broadly fall into two categories: inter-
active or batch. Both are typically built on top of a distributed ėle system, which we describe below.

1.2.1 Interactive applications

Interactive application need fast response times to keep users engaged. Examples of interactive ap-
plications include: search, web, games, and messaging. Adding ǉǈǈs of milliseconds of latency to
response times has been shown to decrease website usage [ǉǈǐ]; therefore, interactive datacenter
applications need to respond to queries as quickly as possible.

Tominimize response times, it is common for computation-heavy applications (such as search)
touse apartition-aggregate computationmodel.Under thismodel, computation is partitionedacross
many end-hosts (up to thousands of servers), and then their responses are aggregated by a few ma-
chines.To satisfy end-user SLAs, a typical query resolvedby apartition-aggregate computationmust
be answered within a deadline of Ǌǈǈ ms or less [ǉǉ]. To achieve this, an aggregator partitions the
query and assigns a task to each worker. Each worker is given a deadline of ǉǈ–ǉǈǈ ms to complete
their task. If a deadline is missed, the aggregator ignores that response, lowering the quality of the
resultǋ.

ǋPartition-aggregate workloads cause another problem: incast, a form of congestion collapse that occurs when
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Other common interactive applications include web and data-transfer services. Both are well-
suited to distributed implementations. Because modern web services are typically implemented
with a tiered architecture, they create intra-datacenter network traffic as well as egress traffic that
leaves the datacenter. ĉese egress Ěows tend to consist of mostly “mice” Ěows, that is, very short-
lived Ěows, and have few “elephant” or long-lived Ěows [ǉǌ]. Data-transfer services, such as video
andmusic streaming services, tend to create elephant Ěows; however, it is oěen acceptable for these
Ěows to have have a relatively low throughput. ĉis happens if, for example, the bit rate of an au-
dio ėle is ǉǊǐ Kb/s. In this case, the ėle only needs to be sent at ǉǊǐ Kb/s since the user listens in
real-time to the audio.

1.2.2 Batch jobs

Many datacenter applications are batch jobs.ĉat is, their results are not needed within a strict time
limit. For example, an application that analyzes log ėles to learn user behavior characteristics is a
batch job, because its results are not immediately needed by a user. A few other types of batch jobs
include:

• Analytics

• Analyzing user behavior

• Machine learning

• Data mining

• Natural language processing

• Log analysis

• Image analysis

ĉe use of distributed, data-Ěow computation frameworks (such as [ǋǑ, Ǐǌ, ǉǊǎ]) make it easy to
implement these types of jobs at huge scale.

For example, frameworks that implement MapReduce [ǋǑ] require that developers implement
a “map” function and a “reduce” function.When the job is executed, theMapReduce system divides
the input across workers and executes the map function in parallel. Once complete, the results of
the map phase are sent to all the reduce-phase workers, where the reduce function is executed in

many workers reply simultaneously to an aggregator. ĉis behavior has prompted the study of DCN-speciėc TCP
variants [ǉǉ, ǉǉǐ, ǉǊǊ]
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parallel.Doing soputs ahigh loadon thenetwork, and if thenetworkdoesnothave enoughbisection
bandwidth, it can be a boĨleneck in a job’s run-time [ǉǋ]. In general, batch jobs can create huge
amounts of network traffic, because they may process terabytes, or more, of data.

1.2.3 Distributed ėle systems

To provide high availability and scalability, storage in the datacenter is oěen provided by a dis-
tributed ėle system (DFS), which allows any server to access the data stored at any other server
in a transparent, scalable way. Google has described their proprietary DFS, called the Google ėle
system [Ǎǉ], and the Hadoop distributed ėle system (HDFS) [ǎ] is a popular open source imple-
mentation.

Because a DFS allows servers to access remote data, this type of ėle system can heavily utilize
the network if applications donot take data locality into accountwhenmaking scheduling decisions.
Additionally, a DFS can place load on the network when replicating data. Typical DFS implementa-
tions maintain at least three copies of each data block, so if one of these copies fails, the DFS creates
another replicate.

ǉ.ǋ Datacenter NetworkGoals

An ideal DCN should be agile, scalable, Ěexible, resilient, manageable and cost-effective. We now
describe each of these traits in detail.

Agile

ĉe switching fabric is never the limiting factor in the transmission rate between end-hosts in an
ideal DCN. ĉe end-hosts’ network interface cards (NICs) are the only limitation on transmission
rates in such a network. ĉerefore, we would like to deėne network agility so that it measures a
network’s ability to handle any possible workload. A network with full agility can handle any traffic
matrix feasible under the server NIC rates. A more precise deėnition is given shortly.

At ėrst blush, this goal sounds extreme.However, it is motivated by the availableDCNmeasure-
ment studies. From them, we know that DCN workloads exhibit a high degree of variance [Ǐǎ, ǉǐ,
ǍǍ, ǉǏ]. In a Ǌǌ hour time period, there can be an order of magnitude difference between the peak
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and minimum load in the DCN [ǎǎ]. ĉe network needs enough capacity to handle the peak load,
and it needs to be Ěexible enough to cope with future workloads. DCN traffic is also unpredictable
over short periods [Ǐǎ, ǉǏ]. Full details of DCN traffic are given in Section Ǌ.ǉ.

To precisely deėne network agility, we need to introduce a couple of terms. A network can fea-
sibly route a traffic matrix (TM) if there exists a routing of the traffic demands such that no link’s
utilization is greater than ǉ. Note that we assume multipath routing, which means that the traffic
from node s to node t can be split across multiple paths. Mathematically, if the NIC rate of server i

is given by r(i), then a hose TM T has:∑
j∈V

tij ≤ r(i) and
∑
j∈V

tji ≤ r(i)

whereV is the set of all servers and tij is the i-j entry in the TMT .ĉe set of all hose TMs is known
as the set of hose traffic matrices and this model is known as the hose model [ǌǋ]. ĉe hose traffic
matrices form a polyhedron, and we denote them by T . Now, we can deėne a network with full
agility as one that can feasibly route all hose traffic matrices.

Some networks may only be able to route a scaled version of the worst-case TM. ĉerefore, the
agility of a network G is the maximal value λ such that λ · T can be feasibly routed for all T ∈ T ,
where T is the hose traffic matrices for G. An ideal network in our seĨing has λ ≥ 1, meaning that
it can feasibly route all hose TMswithout over-utilizing any link.ĉe hosemodel was introduced in
the context of provisioning virtual private networks and the intuition is that eachnodehas set ingress
and egress rates, but we do not have any additional insight as to the amount of traffic one node will
send another, so the network should be designed to feasibly route any possible trafficmatrix possible
given the nodes’ ingress/egress rates [ǍǍ].

Deėning agility in terms of cuts. A result of this dissertation is to prove that agility can be equiv-
alently described in terms of network cuts. ĉis is a generalization of bisection bandwidth [ǉǈǈ]. A
bisection of a network is a segmentation of the network into two parts, say S and S, such that each
set contains the same number of nodes. ĉe capacity of a bisection is the available link bandwidth
across the bisection (i.e., the sum of link rates for links with one endpoint in S and the other in S).
ĉen, the bisection bandwidth of a network is the worst-case capacity of any bisection of the net-
work’s nodes. Note that this deėnition does not account for node rates, because it only depends on
the link bandwidth, not the amount of traffic that may be sent across those links. Because of this
limitation, bisection bandwidth is not a good metric for networks with heterogeneous node rates.
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We generalize this notion to measure the worst-case bandwidth across any cut and to account
for node rates. A cut is a partition of a network’s nodes into two sets, denoted byS andS. A network’s
normalized cut bandwidth is then the worst-case bandwidth across any network divided by the max-
imum amount of Ěow that may cross that cut, and is denoted by bw(G). Let the bandwidth of a link
e be denoted byw(e).ĉen, the normalized cut bandwidth of a networkG = (V, E), where V is its
nodes and E is its links and we assume G is connected, is:

bw(G) = min
S⊆V

∑
e∈δ(S) w(e)

min{
∑

i∈S r(v),
∑

i∈S r(v)}

where δ(S) is the set of edges with one endpoint in S and another in S = V − S. We always
deal with the normalized version of cut bandwidth in this dissertation, because it takes into account
heterogeneous node rates.

A result of this dissertation is to show the equivalence of normalized cut bandwidth and agility.
ĉis is proved in ĉeorem ǌ, which shows that there is a form of a min-cut, max-Ěow theorem that
exists for the hose traffic model.

As an example of agility, consider a network consisting of two switches, each aĨached to ǌǐ
servers at ǉ Gbps and a single ǉǈGbps port that connects the switches.ĉe agility of this network is
10/48.More generally, if we haven servers aĨached to the ėrst switch andm aĨached to the second,
then we have the agility of the network is 10/min{n,m}. Here, we divide by the minimum of the
two values because the hoseTMs do not allow any server to send or receivemore than ǉGbps of traf-
ėc, that is, even if there are ǌǐ servers aĨached to one switch and ǉ server aĨached to the other, the
maximum receiving rate of lone server is ǉ Gbps so nomore than that will ever cross the connecting
ǉǈ Gbps link.

Scalable

ĉe network should not be the limiting factor in determining the number of servers deployed in a
datacenter. An ideal DCN architecture and topology should enable connection of up to hundreds
of thousands of servers.
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Flexible

Most datacenters grow and evolve over timeǌ.ĉe network should be Ěexible enough to accommo-
date this. At short time scales, servers may be turned on or off to match variable workloads. As a re-
sult, virtualmachines (VMs) need to transparentlymigrate across servers [ǉǍ].Over longer time pe-
riods, an operator may need to add or remove servers and other IT equipment.ĉe network should
permit this constant evolution.

Flexibility reduces costs because it improves agility, can reduce energy cost by shuĨingoffunder-
utilizedequipment, andprovides a cost-effective growth strategy to expand thedatacenter.Toenable
Ěexibility, venders have started selling container datacenters, which house up to a couple thousand
servers in a standard Ǌǈ–ǌǈ’ shipping container. Containers provide Ěexibility—it is easy to grow a
datacenter by deploying new containers.

Resilient

Failures are common in large datacenters. ĉe network should therefore be able to withstand mul-
tiple port/switch failures, and failures should have minimal impact on the network. A recent study
found that half of all DCN failures involve four or more devices [ǍǍ]; therefore, traditional ǉ+ǉ re-
dundancy is not enough in the datacenter, because more than a single failover path is needed.

As a numerical example, consider a situation where a row of ǉǊǈǈ servers is partitioned from
the network, which results in $ǋ million worth of serversǍ being disconnected until the failure is
resolved. ĉis may take under an hour (Ǒǐƻ of the time) or over ǉǈ days (ǈ.ǈǑƻ of the time) [ǍǍ].
If it takes ǉǈ days to bring this row of servers back online, then the datacenter operator would lose
at least $ǊǏ,ǈǈǈ in lost server time (assuming a three year amortization period for the servers). A
resilient network lowers the cost of failures, because it prevents servers from being disconnected as
a result of a network failure.

Beyond physical resiliency, in seĨings where multiple tenants share a switching fabric, the net-
work should be resilient to malicious users that launch DoS aĨacks. At the same time, the network
should not punish legitimate users with network-intensive workloads. Both can be achieved if the
network provides isolation. ĉerefore, a resilient cloud DCN architecture provides performance
isolation between tenants.

ǌAs an example, James Hamilton said that Amazon adds compute capacity to their datacenters every day [ǎǋ]
ǍAssuming a commodity price of $Ǌ,Ǎǈǈ per server. High-end servers can cost more than double this.
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Amortized Cost Component Sub-components
∼ǌǍƻ Servers CPU, memory, storage systems
∼ǊǍƻ Infrastructure Power distribution and cooling
∼ǉǍƻ Power draw Electrical utility costs
∼ǉǍƻ Network Links, transit, equipment

Table ǉ.ǉ: Cost breakdown the components of a datacenter. ĉese numbers are taken from [ǍǏ].

Manageable

Large-scale DCNs have thousands of network devices. ĉis scale makes them difficult to manage,
especially if devices have to bemanually conėgured.Manualmanagement of such a network is error-
prone and expensive [ǍǏ]. Instead, the network should be easy to manage and switches should sup-
port “plug-and-play” functionality. ĉerefore, an ideal DCN is self-managed and does not require
anymanual conėguration. Amanageable network can reduce operation costs, as it allows cloud dat-
acenter owners to employ fewer employees.

Cost-effective

Adatacenter network shouldminimize capital and operational costs.Network equipment is respon-
sible for slightly under ǉǍƻ of the capital cost of a typical datacenter (from [ǍǏ]; see Table ǉ.ǉ).

Capital costs: is themoney spent on infrastructure and equipment.ĉismoney goes to buildings,
servers, network equipment, power distribution and cooling infrastructure.

Operational costs: are incurred while operating the datacenter. Here, the most expensive costs
come from power draw and management.

ǉ.ǌ Contributions

We make three major contributions in this dissertation:

• We introduce the datacenter network upgrade and expansion problem and design and imple-
ment an optimization framework, called LEGUPǎ, that designs network topology upgrades for

ǎShort for legacy datacenter network upgrade framework.
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legacy datacenter networks. We show that, for our test scenarios, it is twice as effective at de-
signing high-bandwidth networks than previous approaches.

• We propose a framework, named REWIRE, that uses optimization to design unstructured data-
center networks. We explore the design space of unstructured topologies, and we ėnd that un-
structurednetworks haveup to anorder ofmagnitudemorebisectionbandwidth thannetworks
designed by previous approaches, including those found by LEGUP.

• We analyze the overheads of Ěow management in the datacenter, and ėnd that such function-
ality has high implementation overheads. We propose two low-overhead datacenter traffic en-
gineering frameworks: Mahout and DevoFlow. Both solutions use a centralized controller to
dynamically orchestrate the paths taken by elephant Ěows. ĉey differ, however, on how to de-
tect elephant Ěows. Mahout uses the end-hosts for this task, while DevoFlow is an entirely in-
network solution. Both frameworks can increase aggregate throughput up to ǍǍƻ depending
on the workload, while sending up to two orders of magnitude fewer control messages than a
naive OpenFlow-based implementation.

Together, these contributions signiėcantly reduce the cost of operating a datacenter network.
ĉe graph theory and algorithms behind LEGUP and REWIRE enable the physical network infras-
tructure to be agile, scalable, Ěexible, resilient, and cost-effective.Our Ěowmanagement frameworks
Mahout and DevoFlow help with the management of the non-standard network designs found by
these frameworks, and helpmaximize agility by increasing network performance.We describe these
results in Chapters ǋ–ǎ. ĉey were originally published as references [ǋǌ, ǋǍ, ǋǎ, ǋǏ, ǋǐ]. However,
before introducing these results, we survey the work others have published on datacenter networks
in Chapter Ǌ to help clarify where our work ėts in the taxonomy of DCN research.

ǉǉ



Chapter 2

Related work

ǉǊ



We can divide the DCN design space in a layered hierarchy as shown in Figure Ǌ.ǉ. Most DCN ar-
chitecture proposals affectmultiple layers in this hierarchy. For example, architectures like VLǊ [ǍǍ]
and BCube [ǍǑ] propose novel solutions for topology design, addressing, routing and load balanc-
ing. Because aDCN is under control of a single entity, widespread changes like this are acceptable in
a DCN architecture. ĉis is in contrast to the Internet at large, where modiėcations to even a single
layer are extremely difficult.

We now motivate the DCN design problem by describing their workloads. ĉen, we describe
the related work for the layers in the taxonomy that are related to the results presented in this disser-
tation. ĉat is, we describe the related work on topology design, load balancing, and conėguration.
We end this chapter by providing an overviewof theOpenFlowprotocol, becausewe base our traffic
engineering solutions in Chapters Ǎ and ǎ on OpenFlow.

Ǌ.ǉ Workloads in datacenter networks

To motivate the design of DCN topologies, we survey measurement studies of DCN workloads.
Overall, DCN workloads exhibit a high degree of variance. In a Ǌǌ hour time period, there is gener-
ally at least an order ofmagnitude difference between the peak andminimum load in theDCN[ǎǎ].
ĉe network needs enough capacity to handle the peak load, and it should permit increases in ca-
pacity to meet future demand. As a result, DCNs tend to be lightly utilized on average [ǎǊ]. Addi-
tionally, under-provisioned networks constrain job placement schedulers. Such networks do not
have enough bandwidth to quickly move jobs to idle servers. As a result, there have been many
recent proposals for high-bandwidth DCNs, and especially for networks with full bisection band-
width [ǉǈ, ǋǋ, ǍǍ, ǍǑ, ǎǈ, ǉǊǋ].

DCN traffic is unpredictable over short time periods. Few detailed studies of datacenter traffic
have been published; however, the studies to date indicate that DCNs can exhibit highly variable
traffic [ǉǏ, ǉǐ, ǍǍ, Ǐǎ], that is, the traffic matrix (TM) in a DCN shiěs frequently and its overall
volume (i.e., the sum of its entries) changes dramatically in short time periods.

In Chapters Ǎ and ǎ, we consider centralized Ěow management. Such a routing controller in
a DCN needs to respond to traffic Ěuctuations quickly and effectively. A study by Kandula et al.
found that the median inter-Ěow arrival time of a Ěows in a ǉǍǈǈ-server datacenter was 105 Ěows
per second [Ǐǎ], so a centralized scheduler must route ǉǈǈ Ěows every millisecond.
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Figure Ǌ.ǉ: Taxonomy of datacenter network solutions. Our contributions are shown in bold type-
face.
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Figure Ǌ.Ǌ: A ǉ+ǉ redundant tree.

Ǌ.Ǌ Topology design

ĉestudyof interconnectionnetwork topologies dates back to telephone switchingnetworks,where
the goal was to interconnect telephone circuits. A variety of topologies have been proposed over the
years. Generally, these constructions aim to interconnect hundreds of thousands of endpoints with
high bisection bandwidth. For example, the following constructions have beenproposed:Clos [ǋǈ],
Beneš [ǉǎ], deBruijn [ǉǈǏ], ĚaĨenedbuĨerĚy [Ǐǐ],HyperX [Ǐ], hypercube [ǉǊǋ],DCell [ǎǈ], and
BCube [ǍǑ].ĉe general theme of work in this area is to “scale-out”, that is, usemultiple commodity
switches in place of a single high-end switch. ĉe goal of this design paĨern is to reduce the cost of
the network, since commodity switches are inexpensive.

ĉe traditional DCN topology is a 1+1 redundant tree. It consists of two disjoint trees, and thus
provides a primary as well as a backup path between each pair of servers. ĉe leaves of the trees are
called top-of-rack (ToR) switches, which connect to Ǌǈ–ǐǈ servers per rack. A typical ToR switch
has ǌǐ ǉ Gbps and Ǌ–ǌ ǉǈ Gbps ports. It uses its ǉ Gbps ports to aĨach to servers, and uses its ǉǈ
Gbpsports to connect to twoaggregation switches. Each aggregation switch connects toToRswitches
and “up” to two core switches. A ǉ+ǉ redundant tree is shown in Figure Ǌ.Ǌ. ĉe core switches con-
nect the switching fabric to border routers for Internet connectivity. In this dissertation, we deal
only with intra-datacenter communication, and so we ignore the border routers in our analysis. Al-
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Figure Ǌ.ǋ: At leě is a ǋ-stage, unfoldedClos network. At right is a folded l-stageClos network. Each
IO switch is a subnetwork with l − 2 stages.

though widely deployed, especially in enterprise networks, this architecture has two major draw-
backs—poor reliability and insufficient bisectionbandwidth—besidesmanyotherminor problems,
as detailed by Greenberg et al. [ǍǍ, ǍǏ].

Although researchers agree that the ǉ+ǉ tree is inadequate, determining the idealDCN topology
is still a open research challenge.ĉe ideal topology depends not only on the expectedworkload, but
also the cost structure of switches and cables. Both of these quantities change rapidly over time.ĉe
leading candidate, however, is the the Clos network [ǋǈ], which was proposed in ǉǑǍǌ by Charles
Clos to wire telephone switching networks. ĉe HyperX topology is interesting from a theoretical
perspective because it generalizes the hypercube and ĚaĨened buĨerĚy networks [Ǐ]. Several other
novel topology constructions have been proposed for the design of DCNs [ǍǍ, ǉǈ, ǍǑ, ǎǈ, ǉǊǋ, ǐǌ].
We describe these topologies below.

2.2.1 Clos network and the fat-tree

ĉe Clos network [ǋǈ] and its fat-tree conėguration [ǐǌ] have been proposed as DCN topologies
by Al-Fares et al. [ǉǈ] and Greenberg et al. [ǍǍ]. ĉe beneėts of a Clos topology are that all paths
between ToR pairs have the same length and it is inexpensive to build using commodity switches.
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Figure Ǌ.ǌ: A Ǌ-dimensional HyperX topology with I ≡ (5, 3).

In addition, the Clos topology structure is well-suited to randomized load balancing, where the path
selected for a Ěow is selected randomly.

Mathematically, a ǋ-stage Clos network [ǋǈ], denoted by C(n,m, r), is an interconnection net-
work where nodes are partitioned into stages. ĉe goal of the network is to interconnect inlets and
outlets. ĉe Clos network has three stages as shown in Figure Ǌ.Ǌ.ǉ. ĉe ėrst stage is called the in-
put switches; it consists of r switches, each with n inlets and m uplinks. ĉe radix of a switch is the
number of ports it has. ĉe radix of each input switch must be at least n + m. ĉe second stage
is called the core. Switches in the core do not connect to any inlets or outlets; instead, there are m

core switches, each with radix 2r. Each core switch connects to each input and output switch. ĉe
third stage consists of the output switches. ĉere are r output switches, each with n outlets and m

downlinks. We refer to the links from a stage to a higher stage as uplinks and the links from a stage
to a lower stage as downlinks.

A folded Clos network places input and output layers top of each other, which we use throughout
this dissertation. In a folded Clos network, the input and output switches are the same devices, so
we refer to them as input/output (IO) switches. Because IO switches do not directly aĨach to each
other, the Clos network is called an indirect network.

ĉe recursive nature of Clos network means that we can limit our study to ǋ-stage Clos net-
works. An l-stage Clos network is recursively composed of ǋ-stage Clos networks. In an l-stage Clos
network, each input and output switch is replaced by an (l − 2)-stage network. An example of a
recursive, folded Clos topology is shown in Figure Ǌ.ǋ(b).
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2.2.2 HyperX

HyperX [Ǐ] is a direct-connect topology, that is, IO switches connect to other IO switches.ĉis differs
from the Clos network, where ToR switches only connect to aggregation switches—not to each
other. HyperX is designed to take advantage of high radix switches (i.e., switches with hundreds of
ports), and it generalizes bothHypercubes and ĚaĨened buĨerĚy networks, whichmakes it Ěexible.
Mudigonda et al. have compared the cost of building a HyperX network against the cost to build a
Clos network [ǐǑ].ĉey found that the two topologies have similar costs, and the lowest-cost option
depends on the size of the datacenter and the cost of switches and links.

AHyperXnetwork is constructedas follows.EachHyperX IOswitch connects toT inlets/outlets.
ĉe switches are arranged in anL-dimensional integer laĨice. Each dimension k containsSk points.
ĉen, each switch is identiėed by a coordinate vector in this space, I ≡ (I1, . . . , IL) where 0 ≤
Ik < Sk for each k = 1, . . . , L. Switches in each dimension form a clique.We show a 5× 3 HyperX
topology in Fig. Ǌ.ǌ.

HyperX has some support for heterogeneous link rates. All links in dimension i have rate Ki,
and so the link rates are described by K ≡ K1, . . . , KL. HyperX also supports some level of switch
radix heterogeneity because of its support for heterogeneous link rates; however, one cannot have
arbitrarily heterogeneous switches—their port speeds and radices are prescribed by the topology.

2.2.3 DCell

ĉeDCell [ǎǈ] topology aims to interconnect a huge number of servers, up to a couplemillion, with
lowradix switches (for example, switcheswithǐports).ĉeDCell construction is recursive.DCell(0)

is deėnedasn servers connected to ann-port switch.ADCell(k) is constructed fromn+1DCell(k−
1) networks.When each subnetwork is treated as a single logical node,DCell(k) forms a clique, that
is, each logical node (a subnetwork) has a single edge to each other logical node. ĉese links are re-
alized physically as follows. Assign each server an ID: < sk, . . . , s0 > where si is the level-ID of the
server or subnetwork si. A level-ID is an ordering on the servers (for a DCell(0) network) or the
logical subnetworks of aDCell(k).ĉen, at level i, connections are added between servers such that
a level-i link connects to a different DCell(i − 1), but within the same DCell(i).

A DCell topology typically has twice the bisection bandwidth than a tree, but is unclear how
well it performs or much it costs compared to other topologies. In particular, the DCell topology
does not provide as much bisection bandwidth as a Clos network.
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Figure Ǌ.Ǎ: A BCube(ǉ) construction with n = 4.

2.2.4 BCube

BCube [ǍǑ] is a DCN architecture targeted at datacenters with up to a few thousand servers. ĉis
architecture uses a novel topology, called the BCube topology. An example is shown in Figure Ǌ.Ǎ.
ĉe BCube topology is a recursive construction. A BCube(0) is n servers connecting to an n-port
switch. ABCube(k) is construction fromnBCube(k−1)networks andnn-port switches. Switches
in the BCube topology only connect to servers, and servers only connect to switches, so BCube is an
indirect topology. ĉe switches act as dumb crossbars, and servers relay traffic for each other. ĉis
construction providesmultiple edge-disjoint end-to-end paths between each server. One side effect
is that paths between end-hosts in a BCube network have varying lengths.

ĉis design point of BCube was selected because ǌǈ ě shipping containers make excellent hous-
ing for about ǉǈǈǈ–ǋǈǈǈ servers. A number of commercial container datacenters are available on
the market today, for example, Sun’s Modular Datacenter [ǉǉǉ], HP’s POD [ǎǑ], and IBM’s mod-
ular datacenter [Ǐǋ]. Because it is common to combine multiple modular datacenters to form a
larger datacenter, the authors later extended BCube to network a few dozen container datacenters
together [ǉǊǋ]. ĉe BCube design point makes many practical issues easier, for example, cabling is
less an issue in a 40 × 10 × 10 ě box.

2.2.5 MDCube

MDCube [ǉǊǋ] extends BCube to interconnect multiple containers. It uses BCube as the intra-
container architecture andMDCube as an inter-container architecture.MDCube interconnects the
containers with a generalized hypercube topology.

ĉeMDCube architecture is interesting for a number of reasons. First, it interconnects contain-
ers using ǉǈ Gbps ports on BCube’s commodity switches. Such switches (with ǌǐ ǉ Gbps ports and
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ǌ ǉǈ Gbps ports) are commodity switches today, and an estimated street price for such a switch is
$Ǎ,ǈǈǈǉ. MDCube connects the ǉǈ Gb ports in a hypercube topology. Second, MDCube’s design
creates clusters of ǉǈǈǈ–ǋǈǈǈ servers with a very high capacity network interconnected by a net-
work with less bandwidth. ĉis is similar to slimming a fat-tree [ǑǑ]. Such a provisioning scheme is
beneėcial because very few jobs need more than a ǉǈǈǈ servers [ǉǊǍ].

2.2.6 Heterogeneous topology constructions

ĉe only construction we are aware of that can connect a heterogeneous set of switches while guar-
anteeing optimality is that of Rasala andWilfong [ǉǈǍ], who gave a strictly nonblockingǊ construc-
tion for networks with heterogeneous IO switches.ĉis trafficmodel is not applicable to datacenter
networks becauseDCNs are packet switched and buffers prevent “blocking”. In their approach, each
Ěow has a unit rate, but Ěows can be rearranged across crossbars. ĉis model is generalized by the
primary trafficmodel used in this dissertation—the hose model (details were given in Section ǉ.ǋ).
Another limitation of their work is that their topology constructions only connect IO switch sets
with two types of switches and they do not support heterogeneous switch port speeds.

Ǌ.ǋ Load balancing

To provide high bisection bandwidth with commodity switches, DCN topologies provide a mul-
tiplicity of end-to-end paths. ĉis brings about a challenge: how should Ěows be scheduled across
these multiple paths?

2.3.1 Oblivious load balancing

One load balancing approach is to assign each Ěow randomly to a path.ĉis zero-overhead approach
is known as oblivious routing or randomized routing. ĉe path taken by a Ěow from node i to node j

is randomly selected from a probability distribution over all i to j paths. Kodialam et al. have shown
ǉĉere is, however, a premium for the the ǉǈ Gbps ports. A ǌǐ-port ǉ Gbps switch costs a mere $ǉ,Ǎǈǈ on the

street as of this writing.
ǊA network with n inputs and n outputs is strictly nonblocking if it can setup any n calls independent of the call

arrival order. ĉis differs from a network which is rearrangeably nonblocking, which can supports n call setups if all
calls can be rearranged (i.e., re-routed through the network) when a new call setup is requested.
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that oblivious routing can achieve at least Ǎǈƻ of the optimal dynamic routing in the worst-case for
any topology [ǐǉ].ĉeir model, however, assumes that all end-to-end Ěows can be fractionally split
across multiple paths. ĉis type of multipath routing is not possible on today’s switching hardware.
Even if it is possible, it may cause out of order delivery problems and interfere with TCP’s conges-
tion control mechanisms. In fact, it has been shown that oblivious routing performs poorly on a
fat-tree topology when the traffic mix contains many elephant Ěows. Al-Fares et al. found their Ěow
scheduler, Hedera [Ǒ], can increase throughput ǉǉǋƻ compared to oblivious routing by performing
dynamic Ěow scheduling.

ĉroughout this dissertation, we assume the multipath form of oblivious routing. ĉis is one of
many models studied in the oblivious routing literature. For example, the celebrated “VPN ĉeo-
rem” of Goyal et al. assumes single-path routing [Ǎǌ]. See [ǊǍ] for more details.

2.3.2 Reactive Ěow scheduling

Hedera [Ǒ] introduces a centralized controller that dynamically schedules Ěows to maximize their
aggregate throughput. ĉe controller periodically pulls Ěow statistics from each switch, which it
uses to identify the set of elephant Ěows (that is, Ěows which could use more than ǉǈƻ of server
network interface card (NIC) bandwidth if they were not constrained by the network). Such Ěows
are identiėed using an iterative demand estimation algorithm that uses statistics on all Ěows as input.
An optimized routing of elephant Ěows is found using simulated annealing.ĉe controller modiėes
forwarding table entries at the switches to re-route all elephant Ěows on optimized paths. ĉere are
two critical problemswithHedera’s architecture. First, they rely onOpenFlow switches.We [ǐǎ,ǋǐ]
pointed out that OpenFlow does not scale well, and is ill-suited for current datacenters. Second,
their reactive mechanism requires timely statistics to be effective. Hedera’s evaluation assumed that
DCN Ěow sizes follow a Pareto distribution, which is not the case in practice—DCN Ěow sizes
actually follow a power law according to recentmeasurements [Ǐǎ].We found that Hedera’s control
loop needs to be faster than Ǎǈǈms to achieve near-optimal resultsǋ. Achieving such a short control
loop is not currently possible: it takes too long to pull the statistics from switches and to update the
forwarding tables.

ǋĉis number was found using Ěow-level simulations of a ǉǎǈǈ-server datacenter.
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2.3.3 Online scheduling

Another approach to Ěow scheduling is to use an online scheduler, that is, the path for each Ěow is
selected when the Ěow is started. An example of online scheduling is to greedily route a Ěow along
the path with least congestion. A challenge here is to process each Ěow quickly. Flows arrive very
quickly in a datacenter with thousands of end-hosts andmany Ěows are latency-sensitive. For exam-
ple, Ěow installation using the NOX OpenFlow controllerǌ can take up to ǉǈ ms [ǉǉǌ]. Recall that,
partition-aggregate jobs have deadlines of ǉǈ–ǉǈǈms [ǉǉ], so a ǉǈms Ěow setup delay can consume
the entire time budget. ĉerefore, online scheduling is not suitable for latency-sensitive Ěows.

2.3.4 End-host-based load balancing

An alternative approach is to expose all end-to-end paths to end-hosts, and then adaptively ėnd the
best path for a Ěow.ĉat is, if an end-host s needs to send a Ěow to end-host t, then s is aware of the
available paths (by any mechanism) and so s selects a path at random from the available options. If
the selected path does not provide enough bandwidth, then s can probe the other available paths,
and adapt the Ěow’s routing to place it on the highest-throughput path.

ĉe BCube architecture [ǍǑ] uses this form of load balancing. End-hosts can compute the avail-
able end-to-end paths, because they are encoded in the addressing scheme. Each server is addressed
by a label of the form < l, sk−1, . . . , s0 > where 0 ≤ l ≤ k is the level of the switch and sj ∈
[0, n−1] for j ∈ [0, k−1]. For serversA andB, theHamming distance of their addresses indicates
the length of the shortest paths between them, and the maximum shortest path distance between
two servers is k + 1.

Another architecture that utilizes end-hosts for load balancing is SPAIN [ǐǐ]. SPAIN provides
multipath routing over arbitrary topologies by dividing the network into a set of spanning trees.ĉe
set of spanning trees is selectedby an algorithm, and eachone is implementedby aVLAN.End-hosts
then perform adaptive routing over the VLANs.

ǌOpenFlow is described in Section Ǌ.Ǎ.ĉenetwork “operating system”NOX is an open-source, extensibleOpen-
Flow controller. It is available for download at http://www.noxrepo.org/.

ǊǊ
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Ǌ.ǌ Conėguration

Conėguring a largeDCN is expensive and error-prone.ĉere has been some recentwork to simplify
this process, which we now describe.

2.4.1 Automatic assignment of addresses

ĉe scale of DCNs forces the use of compact routing schemes, which is usually implemented by
encoding locality and topology information into the addresses of switches and servers (e.g., [ǎǈ,ǍǑ,
Ǒǈ, ǍǍ]). ĉis creates a management challenge: how to automatically conėgure network addresses?

Chen et al. [ǊǏ] proposedDAC: a generic and automaticDatacenter AddressConėguration sys-
tem. DAC automates the assignment of IDs to network devices. It begins with a network blueprint
which speciėes the logical ID (e.g., IP addresses in many architectures encode locality information)
of switches and servers. DAC then automatically learns devices IDs (e.g.,MACaddresses), and then
ėnds a mapping of logical to device IDs.ĉis mapping is found bymodeling the problem as a graph
isomorphism problem. ĉe graph isomorphism problem is not known to be in P or NP, but is be-
lieved to be a computationally challenging problem.ĉerefore, Chen et al. propose some heuristics
to speed the graph isomorphism search.

An interesting side effect of Chen et al.’s design of DAC is that it can programmatically identify
mis-wirings.ĉis is a real problem in todaysDCNsbecause thousands of wires are installed by hand.
Unfortunately, in their approach, all servers and switches must be shut off and then turned back on
in order for DAC to learn the device IDs. ĉis limitation means that their solution is likely to be of
limited use, since production datacenters can rarely turn off all equipment.

2.4.2 Reducing cabling complexity

Cabling is a major issue in datacenter networks. For instance, consider the architecture proposed by
Al-Fares et al. [ǉǈ]. ĉey suggest building a non-oversubscribed DCN for ǊǏK servers using com-
modity ǌǐ-port ǉGbE switches. ĉis network provides ǊǏ.ǎǌǐ Tb/s of bisection bandwidth. When
one considers only the cost of the switches, this network seems like a bargain at $ǌ.ǋ millionǍ; how-
ever, it is nearly impossible to build because it would require ǉ,ǉǊǐ separate cable bundles [ǌǐ]. Each

ǍǊǐǐǈ switches, each for $ǉ,Ǎǈǈ.
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bundle is manually routed and installed. Farrington et al. calculate that this would require ǊǊǎ,ǑǏǊ
m of cable, which weighs in at over Ǒ,Ǎǈǈ kg [ǌǐ]. If each link costs $Ǎǈ to install (which is reason-
able based on published link prices [ǐǑ]). ĉis means that this network costs over $ǉǉ million to
wire—or ǏǊƻ of the cost of the network is cabling.

To solve the cabling problem, Farrington et al. [ǌǐ] argue that the ideal DCN topology has all
ToR switches connected to a single nonblocking switch.ĉey realize this by designing a switch with
ǋ,ǌǍǎ-ports running at ǉǈ Gbps using merchant silicon ASICs (i.e., very low cost ASICs) as their
basic building block. Today, ASICs containing Ǌǌ-ports at ǉǈ Gbps can be purchased for as liĨle as
$ǌǉǈ. Now, this ASIC is not a fully featured switch—it is only the data-plane and lacks a control-
plane. Farrington et al. arrange these ASICs as a fat-tree to build their switch architecture.ĉey ėnd
this network architecture costs ǍǊƻ less than a comparable fat-tree built from commodity switches.
ĉe big reduction in costs comes from cabling: Farrington et al.’s design uses only Ǒǎ long, cum-
bersome cables, as compared to the ǎ,ǑǉǊ such cables used in the fat-tree built from commodity
switches.

Another approach to reducing cabling complexity is to build the network with high bandwidth
links. For example, VLǊ uses ǉGbNICs on the servers, and ǉǈGb links in the switching fabric [ǍǍ].
Since a single ǉǈ Gb link aggregates ten gigabit links without any oversubscription, the switching
fabric can be built with an order of magnitude fewer links. ĉe drawback of this approach is that
high bandwidth links are typically more expensive than slower links.

Ǌ.Ǎ OpenFlow

OpenFlow [ǐǍ] is a protocol that aims to separate a network’s data-plane from its control-plane. Its
goal is to open traditionally closed designs of commercial switches to enable network innovation.
OpenFlow has been the basis for many recent research papers (e.g., [ǐ, ǎǌ, ǐǋ, ǑǍ, ǉǈǑ, Ǌǋ, Ǒǌ, ǉǉǍ]),
as well as for hardware implementations and research prototypes from vendors such as HP, NEC,
Arista, and Toroki.

OpenFlow switches form the network’s data-plane, and the control-plane is implemented as
a distributed system running on commodity servers. A switch’s data-plane maintains a Ěow table
where each entry contains a paĨern to match and the actions to perform on a packet that matches
that entry. OpenFlow deėnes a protocol for communication between the controller and an Open-
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Flow switch to add and remove entries from the Ěow table of the switch and to query statistics of
the Ěows. In OpenFlow, the control-plane is centralized, unlike traditional networking, which uses
a distributed control-plane, with the data-plane and control-planes operating on the same hardware.
Upon receiving a packet, if anOpenFlow switch does not have an entry in the Ěow table or TCAMǎ

that matches the packet, the switch encapsulates and forwards the packet to the controller over a
secure connection.ĉe controller responds backwith a Ěow table entry and the original packet.ĉe
switch then installs the entry into its Ěow table and forwards the packet according to the actions
speciėed in the entry. ĉe Ěow table entries expire aěer a set amount of time, typically ǎǈ seconds.
OpenFlow switches maintain statistics for each entry in their Ěow table. ĉese statistics include a
packet counter, byte counter, and duration. ĉe OpenFlow ǉ.ǈ speciėcation [ǋ] (the only widely
implemented version of OpenFlow currently) deėnes matching over ǉǊ ėelds of packet header.ĉe
speciėcation deėnes several actions including forwarding on a single physical port, forwarding on
multiple ports, forwarding to the controller, drop, queue (to a speciėed queue), and defaulting to
traditional switching. To support such Ěexibility, current commercial switch implementations of
OpenFlow use TCAMs to store the Ěow table.

ǎTCAM is an acronym for ternary content-addressable memory and is a type of high-performance memory that
supports lookups containing “don’t care” or wildcard characters.
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Chapter 3

LEGUP: Designing Heterogeneous,
Tree-like Datacenter Networks
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ǋ.ǉ Introduction

As described in the previous chapter, most current datacenter networks use ǉ+ǉ redundancy in a
three-level tree topology. ĉis approach cannot provide full agility. ĉis reduces server utilization,
because servers cannot be assigned to services rapidly enough. ĉat is, a server is assigned to a spe-
ciėc service, and it is underutilized if load on that service is not high enough. Recent work has ad-
dressed this problem by providing enormous bisection bandwidth for up to hundreds of thousands
of servers [ǍǍ, ǉǈ, ǍǑ, ǎǈ, ǉǊǋ, ǋǋ]. ĉis allows services to be assigned to servers dynamically. How-
ever, these architectures use topologies that assume identical switches, each with a prescribed num-
ber of ports. ĉerefore, adopting these solutions in a legacy datacenter oěen comes at the cost of
replacing nearly all switches in the network and rewiring it. ĉis is wasteful and usually infeasible
due to sunk capital costs, downtime, and a slow time to market.

In this chapter, we present LEGUP, an optimization framework to help operators increase net-
work agility and reliability without needing to throw out their existing network devices. However,
this results in the creationof heterogeneousdatacenter network topologies,whichhavenot been suf-
ėciently studied in the past.ĉerefore, we ėrst develop the theoretical foundations of heterogeneous
Clos networks, that is, we generalize the Clos network [ǋǈ] to allow support for multiple link rates
and switcheswith differing port counts.Our topology is provably optimal in that it uses theminimal
amount of link capacity to feasibly route all hose TMs. Previous work has only considered hetero-
geneous interconnection networks under a different traffic model [ǉǈǍ], which is not applicable to
datacenter networks, as discussed in Section Ǌ.Ǌ.ǎ. To our knowledge our topology construction is
the ėrst topology that achieves optimality under the hose traffic model while supporting switches
with heterogeneous rates and numbers of ports.

We then present an optimization framework, called LEGUP, to design network upgrades and
expansions for existingdatacenters. LEGUPėndsnetworks that are realizable in ahighly constrained
datacenter.ĉese networksmaximize performance by implementing a heterogeneousClos network
from both existing and new switches. Supporting heterogeneous switches allows LEGUP to design
upgrades with signiėcantly more agility than existing techniques for the same dollar cost, which
includes the cost of new switches and the cost of rewiring the network.

Our key contributions in this chapter are:

• Development of theory to construct optimal heterogeneous Clos topologies (§ǋ.ǌ).
• ĉeLEGUP tool to design datacenter network upgrades and expansions (§ǋ.ǋ). LEGUP reuses
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existing networking equipment when possible, minimizes rewiring costs, and selects the loca-
tion of new equipment.

• We evaluate LEGUP by using it to ėnd network upgrades for a Ǐ,ǎǈǈ server datacenter based
on the University ofWaterloo’s School of Computer Science datacenter (§ǋ.ǎ). LEGUP ėnds a
network upgrade with nearly three times more bisection bandwidth for the same dollar cost as
a fat-tree or traditional scale-up upgrades. LEGUP outperforms a fat-tree upgrade even when
LEGUP spends half as much money. We also ėnd that when adding servers to a datacenter in
an iterative fashion, the network found by LEGUP has ǊǎǍƻ more bisection bandwidth than a
similarly upgraded fat-tree aěer the number of servers is doubled.

Before describing these results, we deėne the problem (§ǋ.Ǌ). We end this chapter with a dis-
cussion of this work (§ǋ.Ǐ).

ǋ.Ǌ Deėning the Problem

Designing a datacenter network is a major undertaking. ĉe solution space is enormous due to the
hugenumberof variables, and an ideal networkmaximizesmanyobjectives simultaneously.Our goal
is to automate the task of designing the best network possible given a operator’s budget and amodel
of their datacenter. Ideally, a user of our system need only hire staff to wire the DCN according to
the system’s output. For the remainder of this section, we describe the datacenter environment and
state our assumptions.

3.2.1 Workload assumptions

ĉroughout this chapter, we assume that an ideal DCN has full agility, as described in Section ǉ.ǋ.
Recall that a network with full agility can feasibly route all hose TMs, which are denoted by T .

ĉroughout this chapter and the next, we ėnd it more convenient to deal with the ToR-to-ToR
traffic matrix, which aggregates the servers connected to a ToR switch into a single entry. ĉrough-
out, we use symmetric ingress and egress rates, andwedenote the ingress/egress rate of aToR switch
i by r(i). ĉis is called the rate of the switch.

Finally, we are primarily concerned with the design of high-performance networks, rather than
the operation of these networks.ĉerefore, we assume that the routing and load-balancing schemes
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canmake full use of a network’s available bandwidth, regardless of the TM. In practice, this assump-
tion does not hold, since load-balancingmechanisms are not perfect; however, there are several pro-
posals that provide nearly optimal DCN load-balancing. We defer a detailed discussion of these so-
lutions until Section ǋ.Ǐ.

3.2.2 Switches, links and end-hosts

Mostdatacenters today runoncommodityoff the shelf (COTS) servers and switches,which reduces
costs.ĉere aremany such switches to choose from, eachwith different features.We allow operators
to deėne the speciėcations of switches available to add to their datacenter.ĉese speciėcationsmust
include the number of ports and their forwarding rates for each switch type. ĉey can also include
input details about line cards for modular switches. Operators can also specify a processing delay for
each switch, which indicates the amount of time it takes the switch to forward a packet when it has
no other load. ĉis is used to estimate the end-to-end delay over a proposed path.

Links can be optical or copper and can use incompatible connector types. Currently, we do not
model the difference in link medium or connectors; instead, we assume that all ǉ Gb ports use the
same connector and all ǉǈ Gb ports use the same connector and that a ǉǈ Gb port can also operate
at ǉ Gb. Copper links can pose a problem because they are limited to runs of less than Ǎ–ǉǈm when
operating at ǉǈ Gbps [ǐǑ]. It would not be difficult to check for link medium and connector types;
however, we do not currently do so.

We assume that the datacenter operator has full control over end-hosts. ĉat is, they can install
custom multipath routing protocols, like Multipath TCP [ǉǈǋ] and SPAIN [ǐǐ], on all end-hosts.
ĉis assumption does not hold in cloud seĨings where customers can run their own OS installa-
tions. Here, the cloud provider could release a set of OS images that have the required end-host
modiėcations installed. Or, the provider could integrate the changes into their hypervisor.

3.2.3 DCNperformance: what’s important to applications?

ĉe two most important characteristics of DCN performance are high end-to-end bandwidth and
low latency. Because of this, it is important to build a network with high agility, so that the network
performs well for all TMs. High agility also keeps end-to-end latencies across the network low, be-
cause links will be lightly loaded, and hence queuing delays will beminimal.Minimizing end-to-end
latency is important for interactivedatacenter jobs, such as search andother partition-aggregate jobs,
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where up to hundreds of worker servers perform jobs for a service. As previously described, mini-
mizing latency is critical for this type of service because responses from workers that arrive aěer a
deadline are not included in the ėnal results.

3.2.4 Costmodel

Estimating the cost of implementing a proposed DCN design is very challenging. ĉere are two
major obstacles to overcome: (ǉ) determining prices of switches—street prices are oěen a fraction
of retail prices and can be difficult to obtain. Further, vendors offer discounts for bulk purchases,
so the price of a switch oěen decreases with volume. And, (Ǌ) it is difficult to estimate the cost of
cabling a DCN. Bundling cables together in long runs also reduces the cost of wiring long-distance
links [ǉǈǊ, ǐǑ], though we are not aware of any algorithms to compute the cost of such a wiring.
Additionally, it may bemore expensive to wire irregular topologies compared to regular topologies;
however, we do not have any data on this, so we assume per link cost, regardless of the topology.

For tractability, we assume ėxed prices for switches. ĉat is, the price of each switch is ėxed
and does not change based on volume. For cabling, we divide cable lengths into different categories
(short, medium and long) and charge for a cable based on its length category.ĉis assumptions can
be liěed without any signiėcant changes to our approach.

3.2.5 Placing equipment in a datacenter

A datacenter is a highly constrained environment in terms of equipment placement. We now de-
scribe the constraints that must be considered when adding equipment to a datacenter challenging.

First, to add equipment to a datacenter, theremust be enough space to house it.Most equipment
in the datacenter is positioned in large metal racks. A standard rack is ǈ.ǎ m wide, Ǌ m tall by ǉ m
deep and is partitioned into ǌǊ rack units (denoted by U). A typical server occupies ǉ–ǊU. A small,
ToR switch occupies ǉU, and large, high-end switches can occupy up to ǊǉU. ĉerefore, to add a
switch to a datacenter, there must be enough free, contiguous rack units to hold it.

Datacenter equipment creates a signiėcant amountof heat,whichmustbedissipatedbya cooling
system. Accurately modeling a datacenter cooling system is challenging [ǎǎ].ĉerefore, we assume
a simple datacenter thermal model. In our model, the operator can please a thermal limit on each
rack.ĉis is an upper bound on the amount of heat that rack’s contents may generate. As long as the
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equipment in all racks does not generate heat beyond the given limits, thenwe assume thedatacenter
can be effectively cooled.

ǋ.ǋ LEGUPOverview

LEGUP guides operators when upgrading or expanding their datacenter network. To achieve this
goal, LEGUP solves a network design optimization problem that maximizes performance subject
to a budget and the datacenter’s physical constraints. We deėne DCN performance more precisely
next (§ǋ.ǋ.ǉ), and then give details about the inputs, constraints, and outputs of LEGUP (§ǋ.ǋ.Ǌ).
We end this section by giving an overview of the optimization algorithm used by LEGUP (§ǋ.ǋ.ǋ).

3.3.1 Optimization goals

LEGUP designs upgrades to maximize network performance, which we deėne it to be a weighted,
linear combination of agility, Ěexibility, and reliability. Let the normalized values of thesemetrics be
denoted pa, pf , and pr for agility, Ěexibility, and reliability respectively.ĉen, our objective function
is:

maximize: αapa + αfpf + αrpr

where αa, αf , and αr are weighting constants. Precise deėnitions of each metric follows.

Agilitymeasures a network’s ability to handle any trafficmatrix possible under the hosemodel, and
is precisely deėned in Section ǉ.ǋ. Recall that a network’s agility is the greatest constant pa, such that
all TMs in pa · T can be feasibly routed, where T is the set of hose TMs for the network.

Recall the example given earlier: consider a network consisting of two switches, each aĨached to
ǌǐ servers at ǉGbps and a single ǉǈGbps port that connects the switches.ĉe agility of this network
is 10/48. And, if we have n servers aĨached to the ėrst switch and m aĨached to the second, then
we have the agility of the network is 10/min{n,m}.

Flexibility measures the number of servers that can be aĨached to the network without reducing
agility beyond a given threshold. We say that a δ aĨachment point is an unused port such that at-
taching a ǉ unit (in this paper, this is ǉ Gbps) uplink device to this port does not decrease the net-
work’s agility to less than δ.ĉen, a network is (pf , δ)-Ěexible if it has pf distinct δ aĨachment points
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when the aĨachment points are ėlled according to some rule (e.g., by greedily assigning devices to
the aĨachment point that lowers agility the minimal amount). As an example, again consider our
two switch network, except now assume all ǌǐ of each switch’s ǉ Gbps ports are free. If we take
δ = 0.5, then the Ěexibility of this network is ǎǐ, achieved by aĨaching ǌǐ servers to one switch
and Ǌǈ to the other. If we aĨach an additional server to the second switch, then the agility drops to
10/min{21, 48}which is less than 0.5.

Reliability is the number of link or switch failures needed to partition the ToR switches, which we
denote by pr.ĉismodel corresponds to the failure of a switch or port or a cable cut. As an example,
the complete graph on n vertices has a reliability of n − 1 because every edge neighboring a vertex
must be removed in order to partition the complete graph.ĉeworst case reliability is that of a tree:
removing a single node or edge partitions it.

We believe these metrics capture the most relevant features of the network for applications and
operators. Applications are primarily interested in high-bandwidth and low-latency service. A net-
work with high agility provides such service, because (ǉ) it provides a large amount of end-to-end
bandwidth in all possible network loads and (Ǌ) links in the network are likely to be lightly loaded
most of the time, which keeps queueing delays short. A network with high Ěexibility has room to
grow: more servers can be added without impacting application performance too much and more
capacity can easily added by placing more links between existing switches. Finally, reliability is im-
portant in achieving high uptime, and so is of primary importance to operators due to the high cost
of downtime.

ĉese threemetricsmeasuredistinct aspectsof anetwork.Agility and reliability are related—increased
reliability can increase agility because of the additional end-to-end paths—however, two networks
can have the same agility with completely different reliability metrics since link speeds can vary by
orders ofmagnitude. Similarly, high agility is a prerequisite to high Ěexibility, but switches alsomust
have unused ports for a network to be Ěexible.

Tooptimizenetworkperformance,weneed tobe able to compute eachof thesemetrics.Wehave
deėned them so that they are computable in polynomial-time, andwewill describe how to compute
each later when describing LEGUP’s details in Section ǋ.Ǎ.
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3.3.2 Inputs, Constraints, andOutputs

As input, we require a budget, a list of available switch types and line cards, and a datacenter model.
ĉe budget is themaximum amount of amoney that can be spent in the upgrade, and therefore acts
as a constraint in the optimization procedure. ĉe available switches are the details and prices of
switches that can be purchased. Relevant details for a switch include its ports and their speeds, line
card slots (if a modular switch), power consumption, rack units, and thermal output. Details of a
line card are its ports, price, and a list of interoperable switches.

Providing a model of the existing datacenter is optional, and even when provided, can include
liĨle to complete detail about the datacenter. A complete model includes the full details of the net-
work, the physical arrangement of racks, the contents of each rack, and the power and thermal char-
acteristics of equipment in the racks. Additionally, thermal and power constraints can be included
in this description, for example: the equipment in each rack cannot drawmore than ǉǈ kWof power.
Details of the existing network includes information about its switches and their locations. ĉere-
fore, the per rack physical constrains that wemodel are thermal, power, and free rack units. If details
of the existing switches are provided, they will be considered for use in the upgraded network. We
have designed LEGUP to ėnd a solution, if one exists, that meets the physical constraints given and
will use cables in a cost-effective manner.

As output, LEGUP gives a detailed blueprint of the upgraded network. ĉis includes the opti-
mized topology and the new switches and line cards needed to realize the topology. If a datacenter
model was included in the input, we also include in the output the rack where each aggregation
switch should be placed.

3.3.3 ĉe LEGUP optimization algorithm

We now give a high level overview of the algorithm employed by LEGUP. Recall that the opti-
mization problem solved by LEGUP maximizes the sum of agility, reliability, and Ěexibility. ĉat
is, LEGUP’s objective function is:

maximize: αapa + αfpf + αrpr

where pa, pf , and pr is a network’s agility, Ěexibility, and reliability respectively. ĉis is a difficult
optimization problem and is made harder by the large number of constraints.

ǋǋ



Required input:
Existing DCN &

switch types

Optional input:
Physical DC details

Output:
DCN design & 
physical layout

Branch and Bound Enumeration

Bounding 
function Feasibility check

Physical mapping
of aggregation switches

Core switch
selection

Figure ǋ.ǉ: ĉe LEGUP optimization algorithm.

We limit the search spacebyconstrainingLEGUPtoonlydesign tree-likenetworks. Such topolo-
gies are desirable in the datacenter regardless because many DCN load balancing, routing, and ad-
dressing solutions require a tree-like network, e.g., [Ǒǈ, ǍǍ, ǉǈ]. However, the theory of heteroge-
neous tree-like topologies has not been previously developed. ĉerefore, we develop the theory of
heterogeneous Clos networks, which are tree-like networks, in the next section. ĉe reasoning be-
hind this decision is that that a traditional ǉ+ǉ redundant DCN topology is already a Clos network
instance (albeit a ǉ+ǉ redundant topology is a Clos instance that does not have the agility and re-
liability typically associated with Clos networks). Despite adding heterogeneous switches, DCN
addressing and routing solutions can be used on our topologies with no orminormodiėcations; we
discuss this further in Section ǋ.Ǐ.

Our current implementation of LEGUP does not design the ToR switches. Instead, we assume
that the set of ToRs and their hose rates are given as input. ĉe algorithm then upgrades the ag-
gregation and core levels of the network. Given a set of aggregation switches, the optimal set of core
switches is restricted in a heterogeneousClos network, so LEGUP explores the space of aggregation
switches using the branch and bound optimization algorithm.

Branch and bound is a general optimization algorithm that ėnds an optimal solution by enumer-
ating the problem space; however, it achieves efficiency by bounding, and therefore not enumerat-
ing, large portions of the problems space that cannot contain an optimal solution. Here, we deėne
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the space of solutions to be the set of all possible arrangements of aggregate switches. ĉis differs
from a standard branch and bound implementation because we enumerate over only the aggrega-
tion switches, so wemust introduce additional steps to ėnd a set of core switches. Figure ǋ.ǉ depicts
the process. Because of this modiėcation, we cannot guarantee the optimality of solutions found by
LEGUP.

In our context, the problem space is all possible sets of aggregation switches given the available
switch types given as input. A candidate solution, denoted by S, is a set of aggregation switches. ĉe
space of all candidate solutions is called the solution tree. Each node in the solution tree is labeled
by the set of aggregation switches it represents. ĉe root’s label is empty. A node has a child for
each switch type. ĉe label of a child node is the label of its parent plus the switch type the child
represents. Or more precisely, let S = {s1, . . . , sk} be a candidate solution where s1, . . . , sk are
aggregation switches. ĉen, the children of S in the solution tree are the candidate solutions with
labels {S ′|S ′ = S ∪ {s}, ∀s ∈ A}, where A is the set of switch types given as input. We say a
solution is a complete solution when its aggregation switches have enough ports to connect the ToR
switches with a spanning tree.

A complete solution only describes the set of aggregation switches in the network and does not
account for the core switches nor the physical layout of the network. Given a complete solution, we
ėnd the min-cost placement of a solution’s aggregation switches to racks (full details of LEGUP’s
handling of complete solutions are given later in §ǋ.Ǎ) and thenėnd themin-cost set of core switches
to connect the aggregation switches to. Once this is complete, we add the cost of the core and phys-
ical mapping into the cost of the solution to determine if it is still feasible, that is, we check to make
sure it is not over-budget. Additionally, we check tomake sure no physical constraints (e.g., thermal
and power draw) are violated in the physicalmapping phase. Unlike standard branch and bound, we
continue to branch complete solutions because a solution is complete here whenever it can connect
all the ToR switches; however, addingmore aggregation switches to a complete solution will always
improve its performance (but may violate some constraints).

Before checking for feasibility; however, a candidate solution is bounded to check if it, or any
of its children, can be an optimal solution. A candidate is bounded by ėnding the maximal agility,
Ěexibility, and reliability possible for any solution in its subtree. A candidate solution with a lower
performance bound than the optimal complete solution is trimmed, that is, it is not branched be-
cause its subtree cannot possibly contain an optimal solution. We delay the details of our particular
bounding function until Section ǋ.Ǎ.ǉ.
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3.3.4 Why naive solutions aren’t enough

To motivate our design of LEGUP, we brieĚy address the need for algorithms more sophisticated
than standard heuristics. We identify three key weaknesses of existing heuristics that LEGUP ad-
dresses:

ǉ. Simple heuristics typically don’t take physical constraints into account, and thereforemight not
return a feasible solution. LEGUP ėnds a feasible solution if one exists.

Ǌ. Algorithms that greedily add switches with the minimum bandwidth to price ratio will always
reuse existing switches. ĉis might not be the optimal network conėguration. LEGUP only
reuses switches when it’s beneėcial to do so.

ǋ. Cabling and switch costs need to be accounted for. We are unaware of any simple algorithms
that take both these costs into account.

Our implementation of LEGUP’s branch and bound algorithm uses depth-ėrst search of the solu-
tion tree. When branching a solution tree node, we order the children so that they are sorted by
bandwidth to price ratio. As a result, the ėrst solutions explored by the branch and bound are the
solutions that a greedy algorithm considers. We have found this to increase the number of trimmed
subtrees dramatically since the ėrst complete solutions tend to have good, though not optimal, per-
formance.

ǋ.ǌ ĉeory of Heterogeneous Clos Networks

We now describe the heterogeneous Clos topology, which generalizes the Clos topology [ǋǈ] to
support the use of heterogeneous link rates and differing numbers and rates of ports on switches.
We show in this section that our topology can optimally (in terms of link capacity used) connect
edge switches with heterogeneous ports and bandwidth demands.

Speciėcally, we show that our topology needs only as much link capacity as any other indirect
network that can feasibly route all hose TMs. An indirect network is a network where nodes with
positive rate (i.e., r(i) > 0) never directly connect to other nodes with positive rate, that is, nodes
connect to each other indirectly through switches. A result due toZhang-Shen andMcKeown [ǉǊǏ]
states that an indirect network with node rates r(1), . . . , r(n) can feasibly route all hose TMs only
if the sum of link capacities in the network is at least

∑
1≤i≤n 2 r(i). We say that any topology that
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Figure ǋ.Ǌ: An l-stage Clos network. Each IO node here is a subnetwork with l − 2 stages. In (b),
each logical edge represents m physical links and the logical root represents m switches, each with
r ports.

matches this lower bound is optimal. Our topology matches this bound without requiring homoge-
nous switches and is the ėrst to do so to our knowledge.

ĉis result is developed in Section ǋ.ǌ.Ǌ. First, however, we brieĚy review the standard, homoge-
nous Clos network.

3.4.1 ĉeClos network

Recall that a ǋ-stage Clos network [ǋǈ] is denoted by C(n,m, r). Full details are given in Section
Ǌ.Ǌ.ǉ.ĉroughout this chapter, we deal with foldedClos networks as shown in Figure ǋ.Ǌ(a).We call
the switches in the middle stage the core switches and switches in the ėrst/third stage as IO switches.
We refer to the links from a stage to a higher stage as uplinks and the links from a stage to a lower
stage as downlinks.

ĉe recursive nature of Clos’s topology (and our heterogeneous Clos topology) means that we
only have to describe ǋ-stage networks, because an l-stage Clos network is recursively composed of
ǋ-stage Clos networks. In an l-stage Clos network, each input and output switch is replaced by an
(l − 2)-stage network. An example is shown in Figure ǋ.Ǌ(a). As such, we always construct ǋ-stage
networks in this section, but our results can be generalized to an l-stage Clos networks in a straight-
forward manner. (Indeed, we will use the generalization to Ǎ-stage heterogeneous Clos networks
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for LEGUP because we want it to design ǋ-level networks (i.e., networks with core, aggregation and
edge layers).)

3.4.2 Constructing heterogeneous Clos networks

Wenow describe the heterogeneous Clos network construction.ĉis construction relies on the no-
tion of a logical topology, which encodes all relevant information of a network in a space-efficient rep-
resentation. A logical topology can represent multiple network physical realizations—each of which
is a unique way to physically build the network.ĉerefore, we separate logical topology design from
the problem of ėnding a physical realization of a logical topology. First, however, we describe the
logical topology of a traditional, homogenous Clos network.

ĉroughout, we assume that the IO nodes are given and that our goal is to aĨach them to a set of
core switches in an optimal conėguration (i.e., the network uses theminimal link capacity necessary
and sufficient to feasibly route all hose TMs). When focusing on logical topology design, we make
the assumption that a logical node canbe realizedusing the sameamountof switching capacity as the
logical topology.We then showhow to liě this assumptionwhen discussing the physical realizations
of a logical topology.

AClos network’s logical topology

ĉe logical topology of a Clos network is a compact representation of the network, as shown in
Figure ǋ.Ǌ(b). For a Clos network C(n,m, r), its logical topology T is the network where the core
switches are collapsed into a single logical node, denoted by x. ĉat is, x represents the aggregated
switching capacity of the m core nodes. We have that T is a tree. Let x be the root of the tree, and
x’s children be the IO nodes 1, . . . , r. A logical edge between x and an IO node i has capacity equal
to m, which is denoted by c(x, i) = m. Each IO node i has n children, which are servers in our
scenario. ĉerefore, we assign a rate r(i) to each IO node. ĉese rates form the hose traffic model
for this network, which are denoted by T (r(1), . . . , r(n)) or just T when the context is clear.

To havemaximal agility (or equivalently in order to feasibly route all hose TMs), a Clos network
must havem = r(i) for all IO nodes i.ĉe network uses 2nm link capacity. Note that this is Ǌ times
nm, because we account of the bandwidth in each direction. As the sum of hose rate is

∑n
i=1 m =

nm, we have that the Clos topology is optimal by the lower bound of Zhang-Shen and McKeown
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[ǉǊǏ]. We now show how to build optimal networks when presented with a heterogeneous set of
IO nodes.
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Figure ǋ.ǋ: ĉree optimal logical topologies for the given IO nodes. ĉe numbers in the IO nodes
indicate the rate of each node.We have shown one optimal edge capacity assignment for each topol-
ogy; however, Figures (b) and (c) each have many optimal edge capacity assignments that are not
shown.

Heterogeneous logical topology design

Wenowgeneralize the logical topology to support heterogeneous IOnodes.ĉat is, we now assume
that each IO node i has an arbitrary rate r(i). We let each IO node i have a rate, denoted by r(i),
which is its hose rate (e.g., in a homogeneous network, the rate of each IO node is n because each
inlet has a unit rate). Each logical edge (i, x) between an IO node i and logical root x has a capacity
c(i, x), which is the sum of physical link rates that (i, x) represents.

We assume that the logical topology of a heterogeneousClos network forms a forest of trees.ĉe
leaves of these trees are IO nodes and each root node represents a set of core switches. We denote
the IO nodes by I = {1, . . . , k} and the root nodes by x1, . . . , xl. ĉe logical topology design
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problem is to ėnd a suitable set of root nodes, the neighbors of each root node, and the capacity of
the edges between IO nodes and root nodes. In the next section, we will show how to ėnd the set of
core switches each logical root node represents.

Our ėrst result characterizes the number of trees that can be in an optimal logical forest for a het-
erogeneous Clos network with IO nodes I . ĉe following lemma describes the number of allowed
logical root nodes and their children given the the rates r(1), . . . , r(k) of the IO nodes.

Lemmaǉ. LetT be a logical topologywith IOnodes I = {1, . . . , k}, and letx1, . . . , xl be the root nodes
of T . LetXp denote the set of IO nodes neighboring root node xp such thatX1 = I andX1 ⊃ · · · ⊃ Xl.
Whenever all edges of T have positive capacity, we have that T feasibly routes all hose TMs optimally if,
for all xp, such that 2 ≤ p ≤ l,

r(i) >
∑

j∈Xp−1−Xp

r(j) for all i ∈ Xp (ǋ.ǉ)

and |Xl − Xl−1| ≥ 2.

Proof. Suppose there is some logical topology T that has a root node x such that there is a node
i ∈ Xl′ , where l′ is a root node neighboring i with c(i, xl′) > 0 and for which Equation ǋ.ǉ does
not hold. Consider how much capacity the edges (i, x1), . . . , (i, xl′−1) must have since T can serve
all hose TMs: there must be at least min{r(i),

∑
j∈X1−Xl′

r(j)} capacity to these nodes otherwise
there is a hose TM that T cannot feasibly route. By assumption, r(i) ≤

∑
j∈X1−Xl′

r(j), so r(i)

is the minimal here. In a logical topology with optimal edge capacity, each IO node has at most
r(i) of uplink capacity. However, here, we have that i has r(i) + c(i, xl′) > r(i) uplink capacity,
contradicting the optimality of T .

Suppose that |Xl − Xl−1| = 1. Here, T is non-optimal since the root node xl has only a single
neighbor, so it cannot route traffic to any other IO nodes. ĉerefore, it should not have positive
capacity, since all traffic will need to be routed through x1, . . . , xl−1 anyhow.

Examples of the use of Lemma ǉ are shown in Figure ǋ.ǋ. It’s important to note that this lemma
identiėes the available logical forests for a set I of IO nodes, but it does not determine the capacities
of each logical edge, i.e., it determines the “shape” of the network, but not the capacity of the links.
We will give a result that characterizes the set of optimal edge capacity assignments shortly.

First, however, we note that the following results are implied by this lemma:
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• whenever r(1) = · · · = r(k), the optimal logical topology is a tree, that is, the logical topology
has a single root node, and

• no maĨer the rates of each IO node, a logical topology that is a tree can be optimal, that is, a
logical topology can always use fewer root nodes than it’s allowed by Lemma ǉ and be optimal.

Our next result shows how capacity can be optimally assigned to the logical edges to feasibly
route all hose TMs. ĉe intuition underlying this theorem is that the root xp and its children (the
IO nodes) form a disjoint spanning tree. We provision the spanning tree rooted at x1 ėrst, and then
move to the next root node’s spanning tree. Every unit of capacity that is provisioned to x1 is a unit
that does not have to be routed through x2, . . . , xl, so we subtract the previously allocated capacity
from the edges to x2, . . . , xl.

ĉeorem Ǌ. Let T , x1, . . . , xl, X1, . . . , Xl, and I be as in Lemma ȕ, and let X0 = ∅ and Xl+1 = ∅.
We have that T can feasibly route all hose TMs using optimal capacity if and only if

c(i, xp) =


∑

j∈Xp−Xp+1
r(j) if i ∈ Xp+1,

r(i) −
∑

j∈I−Xp
r(j) otherwise

for all 1 ≤ p ≤ l and all i ∈ I .

Proof. Suppose that T can feasibly route all hose TMs and that Equation ǋ.Ǌ holds for all edges
except (i, xp). Let l′ be the maximum root node such that i ∈ Xl′ . Because T can feasibly route all
hose TMs, we have: ∑

u∈[l′]

c(i, xu) =
∑

q∈[l′−1]

∑
j∈Xq−Xq+1

r(j)

+ r(i) −
∑

j∈X1−Xl′

r(j) (ǋ.Ǌ)

=
∑

j∈X1−Xl′

r(j) + r(i) −
∑

j∈X1−Xl′

r(j) (ǋ.ǋ)

= r(i) (ǋ.ǌ)

So, ∑
q∈[l′−1]

∑
j∈Xq−Xq+1

r(j) =
∑

j∈X1−Xl′

r(j) (ǋ.Ǎ)
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whenever T can feasibly route all hose TM with minimal edge capacity. However, here, we ėnd a
contradiction in both possible cases.
Whenever i ∈ Xp+1, so c(i, xp) <

∑
j∈Xp−1−Xp

r(j), the leě hand side of Equation ǋ.Ǎ is less than
the right hand side. And otherwise, c(i, xp) < r(i) −

∑
j∈X1−Xp

r(j), in which case, we cannot
make the reduction from Equation ǋ.ǋ to Equation ǋ.ǌ.

To show sufficiency, suppose that Equation ǋ.Ǌ holds for all edges ofT .We construct amultipath
routing that feasibly routes any hose TMDij . Let i, j ∈ I be IO nodes such that r(i) ≤ r(j) and let
l′ be the max root node where i, j ∈ Xl′ . When sending to j, let i split its traffic across root nodes
x1, . . . , xl′ such that Dij/c(i, xp) traffic is routed through xp, for 1 ≤ p ≤ l′, and then xp forwards
this traffic to j on its single edge to j. For any hose TM D, the max traffic i can send is r(i), so the
max traffic i places on edge (i, xp) is r(i)/c(i, xp). Since Equation ǋ.Ǌ holds for all edges, we have
that ∑

u∈[l′]

c(i, xu) = r(i)

as established in Equations ǋ.Ǌ–ǋ.ǌ above. ĉerefore, i can send traffic at rate up to r(i) and never
overload a link. Similarly, i cannot overload a link while receiving traffic, because it cannot receive
more than r(i) traffic at once.

Examples of logical edge capacity assignments are shown in Figure ǋ.ǋ. In this ėgure, we give a
single assignment of edge capacities, however, for the topologies in Figures ǋ.ǋ(b) and ǋ.ǋ(c) there
are many more optimal assignments. For example, in Figure ǋ.ǋ(c), the two nodes with r(i) = 64

could have c(i, x3) = 23 as long as c(i, x2) = 33 and the logical topology would remain optimal.
Following ĉeorem Ǌ, we can ėnd all other optimal capacity assignments. ĉe theorem shows how
to distribute the necessary link capacity across logical edges in such a way that all hose TMs can be
feasibly routed.

Physically realizing a logical topology

We now show how to ėnd a physical realization of a logical topology. Here, we are given a logical
topology, and we want to ėnd a set of switches that realizes each logical root node.

Each IO node has a set of uplink ports, whichmay havemultiple speeds. To simplify our presen-
tation, we separate IO nodes with multiple uplink port speeds into separate switches, so that each
IO node has a single uplink port speed. ĉis does not lead to a loss of generality because we can
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x1
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(a) Physical realization

x2

4 4 16 16 64 64rate =

x1

. . .

1 Gb
2 Gb
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8 switches

(b) Physical realization

x2

4 4 16 16 64 64

x1

. . .

x3

. . .

1 Gb
2 Gb
4 Gb

8 switches 24 switches

(c) Physical realization

Figure ǋ.ǌ: Examples of physical realizations of the logical topologies shown in Figure ǋ.ǋ. Here,
the thickness and color of each link indicates its capacity, which is shown in the legend next to each
network.

recombine the separated switches later. So, each IO node i has a single uplink port speed, denoted
by p(i). We assume that an IO node i has at least ⌈r(i)/p(i)⌉ ports; otherwise, no realization that
can feasibly route all hose TMs exists because any IO node where this property does not hold will
be a boĨleneck.

Let x be a logical root node with a set I(x) of IO nodes as its children. We use X to denote the
set of switches that make up logical node x. Let m(i) = ⌈c(i, x)/p(i)⌉, where c(i, x) is the capacity
of the logical edge (i, x) as before. Here, m(i) is the number of physical uplinks i has to x. We use
P (r) to denote the set of all switches of I with p(i) = r, and I(x) denotes the set of IO nodes
neighboring root x.

Now, we determine how many switches comprise the logical root node X and how many ports
each of these switch needs. Let mmin = minj∈I(x){m(j)}. ĉe core switches that realize x and
the IO nodes I(x) form a complete bipartite graph, so we have |X| ≤ mmin. ĉat is, X cannot
containmore switches thanmmin, because otherwise would not be able to form a complete bipartite
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subgraph between x and I(x). Each core switch in X must have at least mmin · |P (r)| ports with
speed r, for each port speed r, and each i ∈ I(x) has ⌈m(i)/mmin⌉ uplinks to each switch inX .ĉe
following shows this topology is optimal.

ĉeorem ǋ. A physical realizationG constructed as described above of a logical tree T with root node x

and IO nodes I with c(i, x)minimized according toĉeorem Ȗ can feasibly route all hose TMs.
Further, if c(i, x) and m(i) are evenly divisible by p(i) and mmin respectively for all i ∈ I , then the

amount of link capacity used by this physical realization matches the lower bound on link capacity for any
indirect network that can feasibly route all hose TMs.

Proof. To show that G can feasibly route all hose TMs, byĉeorem Ǌ, it’s enough to show that there
is a routing which distributes r(i)/c(i, x) traffic over the physical links of the logical edges (i, x)

and (x, i) without overloading any physical links. When i sends traffic to x, let each physical uplink
carry p(i)/c(i, x) fraction of the traffic, nomaĨer the destination, and then the receiving core switch
forwards the traffic to its destination. ĉen any traffic matrix can be handle as long as i never sends
more than:

r(i) ·
∑
v∈X

p(i)/c(i, x)⌈m(i)/mmin⌉ =

r(i) · |X|
(⌈c(i, x)

m(i)

⌉
/c(i, x) · ⌈m(i)/mmin⌉

)
=

r(i) · mmin
(
1/mmin

)
=

= r(i)

traffic, which i will never exceed in a hose TM. By a similar argument, there is enough link capacity
from the physical switches in X to i.

An optimal construction has a total link capacity of 2
∑

i∈I r(i). To see that the construction
above matches this bound when c(i, x) and m(i) are evenly divisible by p(i) and mmin respectively
for all i ∈ I , consider the above equations. In this case, each i ∈ I has r(i) uplink capacity and r(i)

downlink capacity. Summing this over all switches in I shows our construction is optimal.

In the proof of ĉeorem ǋ, we explicitly construct an optimal oblivious routing of all hose TMs
for a heterogeneousClos network.ĉis implies that static routing can extract the full bisection band-
width from a heterogeneous Clos network for any TM as long as our assumption of spliĨable Ěows
holds. In practice, Ěows cannot be split, so we return to this in Section ǋ.Ǐ when discussing opera-
tional issues.
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ǋ.Ǎ LEGUPDetails

We now describe the details of LEGUP’s optimization algorithm. Recall that this algorithm solves a
maximization problem by performing a branch and bound search of the space of possible aggrega-
tion switch sets. In this section,we focus on the handling of complete solutions, that is, the candidate
solutions with enough aggregation ports to connect all ToR switches with at least a spanning tree.

Given a complete solution S = {s1, . . . , sk}, where each si represents an aggregation switch,
LEGUP does the following. (Each step is explained just below.)

ǉ. Bounds the performance of S (§ǋ.Ǎ.ǉ).
Ǌ. If S’s bound is lower than the best complete solution found so far, S is trimmed and it is not

branched.
Otherwise, the feasibility of S is determined by:

• selecting a min-cost set of core switches (§ǋ.Ǎ.Ǌ); and
• ėnding a physical mapping of the aggregation switches to the datacenter’s racks (§ǋ.Ǎ.ǋ).

ǋ. If S is determined infeasible (due to a budget or physical model constraint violation), then it is
trimmed.
Otherwise, the performance of S is computed (§ǋ.Ǎ.ǌ), the best complete solution is updated,
and S is branched.

Stepǉ is used to trim the solution tree. It ėnds anupperboundof theperformanceof any solution
in S’s sub-tree (i.e., the solutions deėned by S ∪ A for some set of switches A). If the upper bound
for any solution in S’s sub-tree is less than the performance of the current best complete solution,
then we determine the optimal solution is not in S’s sub-tree and so we trim the search tree of this
sub-tree (as shown in Step Ǌ).

Because a complete solution in our case is a set of aggregation switches, we need to ėnd a set
of core switches (assuming we are designing ǋ-stage networks, which is in the case in this chapter).
Additionally, we need to ėnd a placement of the aggregation switches on the datacenter Ěoor. Both
a min-cost set of core switches and a placement of aggregation switches are found in Step Ǌ.

Finally, ifS is feasible, then it needs to be branched.ĉat is, we need to compute its performance,
and then visit its children in the search tree, that is, S needs to be branched. ĉis is done in Step ǋ.

We use αa, αf , and αr to denote the weights of performance metrics agility, Ěexibility, and reli-
ability respectively. ĉen, the overall performance of a solution S is p(S) = paαa + pfαf + prαr
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where pa, pf , and pr have been normalized by theirmaximal values.We showhow to ėnd thesemax-
imal values in (§ǋ.Ǎ.ǌ). ĉroughout, whenever we use one of these values, we assume it has been
normalized.

3.5.1 Bounding a candidate solution

Ourbounding functionestimates eachperformancemetric individually and then returns theweighted
sumof the estimates. Because it is used to trim solutions andwearemaximizingperformance, itmust
overestimate the best possible solution in the candidate solution’s subtree. Given a complete solu-
tion S, we denote the bounds of S for agility, Ěexibility, and reliability by ba, bf , and br respectively.
Given a candidate solution S, we bound each metric of S as follows.

Agility and Ěexibility are coupled, so we bound them simultaneously, i.e., we bound αaba + αfbf .
We begin by ėnding the maximal agility the remaining budget allows. ĉat is, let bmax

a denote the
maximal agility any network constructed with S and the remaining budget can have. We ėnd bmax

a

by ėrst greedily adding the switchwith the highest sumof port speeds to cost ratio of all the available
switch types toS until the cost ofS is over-budget (note that this procedure alwaysmakes use of any
existing switches that are not included inS as they have no cost). Because ba and bf can overestimate
the performance of any solution that is a descendant of S in the search tree, we do not worry about
actually being able to realize the topology, so we aggregate the bandwidth of switches in S, and we
use r(S) to denote their aggregate bandwidth, i.e., the sum of their port speeds.

We combine each level of switches into single logical nodes, that is, we create a logical topol-
ogy with a single core node, single aggregation node, and single ToR node, which form a path ToR
to aggregation to core. We ėnd bmax

a by determining the maximum possible agility of this logical
topology. Let r(ToR), r(aggr) and r(core) be the sum of port speeds of the logical aggregation and
core nodes respectively. Fromĉeorem Ǌ, to maximizes bmax

a , we have that r(aggr) = 2/3 r(S) and
r(core) = 1/3 r(S). Moreover, we have

ba = min
{

r(core)
r(ToR)

,
1/2 r(aggr)

r(ToR)

}
.

We now ėnd a lower bound on bf , which we denote by bmin
f . We have bmin

f = 1/2r(aggr) −
r(ToR). ĉat is, bmin

f is equal to the amount of spare bandwidth the aggregation and core nodes can
handle without decreasing agility.
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Algorithm 1 Bound agility and Ěexibility.

Input: r(core), r(aggr), r(ToR), bmax
a , and bmin

f

Output: ba, bf

begin
ba = bmax

a

bf = bmin
f

r(cToR) = 0
until the following does not increase αaba + αfbf do

if r(cToR) < r(ToR) then
r(core) = r(core) + 1
r(aggr) = r(aggr) − 2
r(cToR) = r(cToR) + 1

else
r(aggr) = r(aggr) − 1
r(ToR) = r(ToR) + 1

bf = bf + 1
ba = min{1, r(core)

r(ToR) ,
1/2r(aggr)

r(ToR) }
end

Becauseweare jointly optimizing agility andĚexibility,weneed tomaximize theirweighted sum,
i.e., we should maximize αaba + αfbf , so we need a procedure to maximize this sum. ĉis proce-
dure is shown in Algorithm ǉ. ĉere, r(cToR) is the rate of devices aĨached to the core node. ĉe
algorithm aĨaches ǉ unit of capacity at a time to the best location possible. If r(cToR) < r(ToR)

the best location to aĨach a device is the core because doing so decreases agility less than aĨach-
ing the device to the aggregation node. We repeat this process until αaba + αfbf hits a maximal
point, which is guaranteed to be globally optimal because it is the sum of two linear functions (i.e.,
for a ėxedS and budget, the combination ofαaba andαfbf does not have any localmaximal points).

Reliability is bounded by two observations that upper bound S’s reliability. We have that br is at
most:

• ǉ/Ǌ the number of ports on any s ∈ S; and
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• the number of open ports (i.e., the ports not connected to a link) on any ToR switch.

We therefore set br to the maximum of these two values.

3.5.2 Finding a set of core switches

To ėnd the min-cost core switches, we need to solve two sub-problems: ėnding an optimal logi-
cal topology (§ǋ.Ǎ.Ǌ), and then ėnding the min-cost switches that physically realize that topology
(§ǋ.Ǎ.Ǌ).

Selecting a logical topology

Wenow showhow to select a logical topology. Using our terminology fromSection ǋ.ǌ, the aggrega-
tion switches are the IOnodes. Recall that there aremultiple optimal logical topologies that connect
a set of IO nodes, so we need to use the one with a maximal performance to cost ratio. We observe,
however, that a logical topology with k logical core nodes can always be made to have k − 1 logical
core nodes by stacking switches, that is, by combining multiple switches with l ports in total into a
single switch with at least l ports. Moreover, if no physical realization of a logical topology with k

core nodes exists, then there is no physical realization of a logical topology with k − 1 core nodes.
ĉerefore, we always maximize the number of logical core nodes in accordance with Lemma ǉ. We
set the capacities of each logical edge such that they are minimized according to ĉeorem Ǌ.

It is important to note that we do not require switches to be stacked, but merely allow it. It can
reduce costs (e.g., a ǌǐ port switch generally costs less than two Ǌǌ port switches), but in some cases
higher radix switches cost more than several lower radix switches, so we only stack core switches
when it makes sense from a cost perspective as we show in the next section.

Realizing the logical topology

Once we have a logical topology for a candidate solution S, we need to realize each logical node.
ĉe ėrst issue is to determine the ports each aggregation switches should use to connect to ToR
switches and what ones should connect to core switches. Here, ǉ/Ǌ of the switch’s ports should be
used as uplinks and the other half should be used as downlinks. We ėnd aggregation switch down
ports (i.e., the ports that connect to ToR switches) by iterating through the ToR switches. At each
ToR switch,we select one of its free ports to use as an uplink by selecting its free portwith the highest
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speed such that there is a switch inS with an open port at the same speed or greater.Whenmultiple
such switches in S exist, we connect this ToR switch to the s ∈ S with the most free capacity. We
repeat this procedure until either ǉ/Ǌ the capacity of each switch in S has been assigned to a ToR
switch or until the uplink rate of each ToR switch is equal to its hose traffic rate.

Byĉeoremǋ, the aggregation switches and logical topologydictate thenumberof core switches
and the number and speeds of ports for each core switch. A core candidate solution is therefore in-
feasible if one of the logical nodes cannot be realized because no switch has enough ports of each
rate required (e.g., the aggregation switchesmay dictate that each core switch has ǉǌǍ ǉǈGbps ports
when the largest available switchhas only ǉǌǌ suchports)ǉ. Assuming that realizing the logical topol-
ogyF is feasible, letx1, . . . , xl beF ’s logical root nodes.ĉe switches that realize eachxi aredictated
by Xi, the aggregation switches that are xi’s children, so we realize each xi with the min-cost switch
that satisėes its port requirements. ĉis switch assignment is easily found by comparing each xi’s
requirements to the available switch types.

We can, however, potentially lower the cost of the core switches by stacking several switches into
one physical switch, e.g., ifxi needs to be realized by ėve Ǌǌ-port switches, it can also be realized by a
single ǉǊǈ-port switch, potentially at a lower cost.ĉis switch stacking problem can be reduced to a
generalized cost, variable-sized bin packing problem, which can be approximated by an asymptotic
polynomial-time approximation scheme [ǌǌ]; however, their algorithm is complicated and still toǈ
slow for our purposes since itmust be executed for every complete solution. Instead,we use thewell-
known best-ėt heuristic [ǏǍ] to stack core switches, which is known to perform well in practice.

Two issues arise when we stack core switches. First, it is possible to turn a feasible solution in-
feasible, e.g., aěer stacking switches, the resulting solution may violate a physical constraint, such
as there may not be a rack that has enough free slots for the larger switch. Second, stacking core
switches can decrease our reliability metric. ĉerefore, we save the original set of core switches. If
either of these cases occurs, we revert back to the original set of core switches, and then continue.

ǉIt is possible to create higher port-count switches by embedding an additional ǋ-stage Clos network that acts
as a single switch—as an example, six ǉǌǌ-port switches can be arranged in a ǋ-stage Clos network to act as a Ǌǐǐ-
port switch. We do not support such conėgurations because it (ǉ) complicates the algorithm, (Ǌ) can result it a
network where the paths between twoToR switches have different lengths and (ǋ) seems unlikely to achieve any cost
reduction.
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Algorithm 2Mapping aggregation switches to racks.

Preprocessing
Input: datacenter model
Output: lists of racks

begin
for each rack do

ėnd the sizes of its contiguous free rack units, and
the distance to the k nearest ToR switches

Separate the racks into lists R[u] such that the largest
contiguous free rack units of racks in R[u] is u

Sort each list in increasing order of distance to k ToR switches
end

Mapping
Input: datacenter model M and S

Output:map S → racks

begin
// Phase I
for each switch x ∈ S do

for each aggregation switch y ∈ M do
ėnd the closeness of x and y

S′ = ∅
for y ∈ M do

Map the closest x ∈ S to y

S′ = S′ ∪ {x}
// Phase II
for each switch x ∈ S − S′ do

Map x to the ėrst rack in r ∈ R[x.U ] such that no per rack constraints are violated
Update r’s largest contiguous rack units, and move it to

the appropriate list
end
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3.5.3 Mapping aggregation switches to racks and ToR switches

Now that we have determined the set of switches that comprise the aggregation and core levels, we
need to place them into racks and connect each ToR switch to aggregation switches. We say that a
placement of each aggregation and core switch in a rack is amapping of these switches. We assume
that the core switches can be centrally located and that ToR switches are already placed, so we are
only concerned with aggregation switches in this section.

Our mapping algorithm takes as input a set of aggregation switches, here this is S, and the dat-
acenter model. If no model is given, then this stage is skipped. If a network blueprint is given but
no datacenter model, then the mapping assigns each link a unit cost if it is new or modiėed. ĉe
mapping’s goal is tominimize the cost of the physical layout of these aggregation switches subject to
the rack, thermal, and power constraints of the datacenter model; here, cost is the length of cables
needed to connect theToR switches to aggregation switches. Even using anEuclidean geometry set-
ting andwithout our additional constraints, this problem isNP-hard as it can be reduced to a Steiner
forest problem variant, see, for example [Ǐǈ]. Additional complications here are that the datacen-
ter model may already have aggregation switches in place and we would like to use the ManhaĨan
distance instead of the Euclidean.

We use a two-phase best-ėt heuristic for mapping.ĉe ėrst phase matches aggregation switches
to existing switches in the datacenter model, and the second stage ėnds a best-ėt for all aggregation
switches not placed in the ėrst phase. To speed up the algorithm, we do some preprocessing. ĉe
preprocessing and mapping algorithm details are given in Algorithm Ǌ.

Phase I of our mapping algorithm aĨempts to replace existing aggregation switches in the dat-
acenter model with a close switch in S. We deėne closeness as follows for two switches s1 and s2.
We have closeness(s1, s2) = 0 if s1 does not have as many ports as s2 for any speed, when ports
are allowed to operate at any speed less than their line speed, and closeness(s1, s2) = 1 if s1 has
at least as many ports as s2 for all speeds, again allowing s1’s ports to operate at less than their max
speed (e.g., the closeness of a Ǌǌ-port ǉǈ Gbps switch and a Ǌǌ-port ǉ Gbps switch is ǉ).

3.5.4 Computing the performance of a solution

We now address how to compute each of our performance metrics.
Agility can be computed in O(n) time, where n is the number of ToR switches in the input

network. Because we have constructed the network in accordance with Lemma ǉ, a node iwith rate

Ǎǉ



r(i) must have at least r(i) of uplink bandwidth to feasibly route all hose TMs (i.e., for agility to
be ǉ). Speciėcally, if the uplink bandwidth of all i’s uplink ports sums to u, then we have that the
network’s agility is at most u/r(i). We can therefore determine the upper bound on agility imposed
at each ToR and aggregation switch to ėnd the network’s agility. Note, however, that this method to
compute agility does not work unless the network’s logical topology follows Lemma ǉ. For general
networks, a linear programming procedure can compute agility as we show in the next chapter.

In general, reliability can be determined using a standard min-cut algorithm. A heterogeneous
Closnetwork’s reliability is boundedby thenumberof uplinks fromaToRto its aggregation switches
and an aggregation switches to its core switches as observed earlier, so we can compute it in linear
time, which is faster than any algorithms we are aware of to compute the min-cut of an arbitrary
network.

Computing Ěexibility depends on the rule speciėed for aĨaching new devices to the network.
In our implementation, we greedily aĨach devices to the open port that reduces agility the least.
Computing Ěexibility is done by repeating this process until no more unit bandwidth devices can
be aĨached without reducing agility below δ.

Finding the maximal value of each metric: We need to scale each of our performance metrics to
a [ǈ,ǉ] range to compare them. We limit the agility of any network to ǉǊ. We normalize Ěexibility
and reliability by ėnding the maximal value of each metric given the budget and using this for nor-
malization. ĉese upper bounds are found applying our bounding function (§ǋ.Ǎ.ǉ) on an empty
candidate solution with same budget and set of switch types.ĉis upper bounds the agility, Ěexibil-
ity, and reliability of any network that can be constructed given the operator-speciėed budget and
cost model, and hence gives us maximal values of each metric.

ǋ.ǎ Evaluation

We now evaluate LEGUP by designing networks under several scenarios. We compare it to other
methods of constructing datacenter networks. We describe the datacenter used for evaluation ėrst
(§ǋ.ǎ.ǉ), and then describe alternative upgrade approaches (§ǋ.ǎ.Ǌ). Finally, we study the perfor-

ǊIf the agility of a network is greater than ǉ, then that network can feasibly route each of its hose TMs with a
maximum link utilization of less than ǉ.
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Figure ǋ.Ǎ: Layout of the SCS datacenter. Arrows show the direction of airĚow

mance of these approaches with two scenarios: upgrading our datacenter (§ǋ.ǎ.ǋ) and expanding it
(§ǋ.ǎ.ǌ).

3.6.1 Input

Datacenter model: To test LEGUP on an existing datacenter, we have modeled the University of
Waterloo’s School ofComputer Science (SCS)datacenter.ĉe servers in this roomrun services such
as web, email, and backup servers, andmany are used as computemachines by faculty and students.
To make the upgrade problem more like that in a larger datacenter, we have increased the number
of racks in the datacenter by a factor of ten and assume that each rack is full. We scaled the network
proportionally, keeping the characteristics of the network invariant (such as connectivity between
levels of the network’s tree-like topology). Our analysis of the SCS datacenter is based on this scaled
version. We note that the SCS datacenter network is sufficient for the needs of the school currently,
and there are no plans to upgrade it. Despite this, we believe our model is interesting because it is
loosely based on a real-world datacenter with real constraints.

ĉe scaled-upSCSdatacenter has three rows.ĉese consist of ǊǈǍ racks,whichwe assumehouse
a total of Ǐǎǈǈ servers, ǉǑǈToR switches, six aggregation switches, and two core routers.ĉese racks
are arranged into three rows. Row ǉ has ǐǍ racks and rows Ǌ & ǋ each have ǎǈ racks. ĉe rows are
arranged as shown in Figure ǋ.Ǎ.

ĉe SCS datacenter has grown organically over time and has never had a clean slate overhaul. As
a result, the SCS datacenter is a typical small datacenter with problems such as the following:
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ToR switches
Hose uplink rate Uplinks (ǉ, ǉǈ Gbps) No. switches

Ǌǐ ǐ, Ǌ Ǎǈ
ǌǈ ǐ, ǌ ǐǈ
ǐ ǐ, ǈ ǌǈ
Ǌ Ǌ, ǈ Ǌǈ

Aggregation switches
Line cards Line card slots No. switches

ǋx Ǌǌ ǉ Gbps, ǉx Ǌ ǉǈ Gbps ǎ ǉ
ǌx ǌ ǉǈ Gbps ǎ Ǒ

Table ǋ.ǉ: Existing switches in the scaled-up SCS datacenter model.

HeterogeneousToRand aggregation switches:Switches have a long lifespan in the datacenter, so the
ToR switches are not uniform. Aggregation switches are all HP Ǎǌǈǈ series switches, though they
do not have identical line cards. We list the details of the datacenter’s existing switches in Table ǋ.ǉ.

Poor air handling:ĉe datacenter has a single chiller and it’s located at the end of the rows. Ad-
ditionally, the hot and cold aisles are not isolated, resulting in less effective cooling. Because of this,
hot-running equipment cannot be concentrated at the far end of the rows where it will not receive
much cool air from the chiller.Wemodel this by linearly decreasing the allowed amount of heat gen-
erated per rack as the racks move away from the chiller. We do not have thermal measurements for
all our input switches, so we approximate the thermal output of a switch by its power consumption.
ĉerefore, row ǉ (the row with ǐǍ racks) can support up to ǉǐ kW of equipment and the last rack
in this row can support only ǉǊ kW; the ith rack in this row can then support equipment drawing
12 + 6/i kW of power. ĉe ėrst rack in the other two rows can support up to ǊǊ kW of equipment
and the last rack on these row supports up to ǉǊ kW of equipment. ĉe thermal constraint of racks
between is again linearly scaled.

ĉe datacenter’s current network is arranged as a tree; each ToR switch has a single uplink to an
aggregation switch and each aggregation switch has two uplinks to the core routers. We would like
to modify the network so that only outbound traffic passes through the core routers. ĉerefore, all
network upgradesmust be three-levels, that is, they need to replace these routers with core switches.
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Switchmodel Ports WaĨs Price ($)
Generic Ǌǌ ǉ Gbps ǉǈǈ ǊǍǈ

ǌǐ ǉ Gbps ǉǍǈ ǉ,Ǎǈǈ
ǌǐ ǉ Gbps, ǌ ǉǈ Gbps ǊǋǍ Ǎ,ǈǈǈ

Ǌǌ ǉǈ Gbps ǋǈǈ ǎ,ǈǈǈ
ǌǐ ǉǈ Gbps ǎǈǈ ǉǈ,ǈǈǈ
ǉǌǌ ǉǈ Gbps Ǎǈǈǈ ǏǍ,ǈǈǈ

HP Ǎǌǈǎzl chassis n/a ǉǎǎ Ǌ,ǊǑǑ
HP line card Ǌǌ ǉ Gbps ǉǎǈ Ǌ,ǎǎǑ
HP line card ǌ ǉǈ Gbps ǌǐ ǋ,Ǐǈǈ

Table ǋ.Ǌ: Switches used as input in our evaluation. Prices are street and power draw estimates are
based on a typical switch of the type for the generic models or manufacturers estimates, except for
the HP Ǎǌǈǈ line cards, which are estimates based on the waĨs used per port on the other switches.

Switch and cabling prices: ĉe switches available for use by the upgrade approaches are shown
in Table ǋ.Ǌ. Unless otherwise mentioned, we assume that installing or moving links to or from an
aggregation switch costs $Ǎǈ and that links fromToR switches to servers are free to move. Based on
our discussions with the datacenter operators, we believe this is a conservative estimate based on
link prices and the man-hours needed to install a cable in an existing datacenter. ĉough LEGUP
supports charging for a cable based on its length, we do not use this functionality because we are
unable to estimate the lengths of cables used by the fat-tree upgrade approach.

3.6.2 Alternative upgrade approaches

Toevaluate the solutions foundbyLEGUP,weconsider twoalternativenetworkupgradeapproaches.
ĉeėrstmethod, is the traditional scale-upmethod.ĉis approachmodels themethod our datacen-
ter operators currently use to upgrade the network.ĉey upgrade line cards in ourmodular switches
as their budget allows by purchasing the line card with the least cost to rate ratio. As they run out
of line card slots in the switches, they purchase more of the same switches, and ėll them with addi-
tional line cards. In our upgrade and expansion scenarios, we want the DCN to have three levels of
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switches, so we need to add core switches to our network. To do this, we use the Ǌǌ-port ǉǈ Gbps
switches, and only use ǉǈ Gbps links between aggregation switches and the core.

ĉe second approach we consider is to build a generalized fat-tree using ǉ (or occasionally ǉǈ)
Gbps links following the DCN architecture of Al-Fares et al. [ǉǈ] and VLǊ [ǍǍ]. Here, we reuse
existing ToR switches.We do not explicitly build the fat-tree. Instead, we bound themaximal agility
possible by a ǋ-stage fat-tree given the cost model and budget. ĉis means that we are comparing
LEGUP against an optimistic assessment of a fat-tree’s performance.

For both these approaches we do not take the physical constraints of the datacenter into ac-
count. ĉerefore, it may not always be possible to construct the networks found this way. In con-
trast, LEGUP takes the physical constraints (in our case thermal and rack space) into account, and
so it is at a disadvantage.

3.6.3 Upgrading the datacenter

We ėrst consider upgrading the SCS datacenter to maximize its performance. For this scenario, we
set the weights of each performance metric to be ǉ and δ = 0.1. We selected this value of δ because
all methods design an upgrade with agility at least 0.1 for all budgets considered. Since we have that
δ is less than the agility, it is possible for all methods to design networks with some pf > 0.

ĉe performance achieved by our three upgrade approaches for various budgets is shown in Fig-
ure ǋ.ǎ. As the chart shows, for all budgets, LEGUP ėnds an upgrade with higher agility and Ěexibil-
ity than the the scale-up or fat-tree approaches. Moreover, LEGUP always ėnds a network upgrade
withmore agility and Ěexibility than the other two approaches evenwhenLEGUP’s budget is half as
much as their budgets. Because the maximal reliability is two (as limited by the ToR switches with
only two uplink ports), all upgrades were able to achieve this for all budgets.

Interestingly, the scale-up approach oěen outperforms the fat-tree.ĉis is largely due to the high
number of cables in the fat-tree, each ofwhich costs $Ǎǈ to install here. For example, with a budget of
$ǉǈǈK, the fat-tree approach canonly spend roughly$ǋǈ,ǈǈǈon switches because$Ǐǈ,ǈǈǈ is needed
for cabling. By taking advantage of ǉǈ Gbps links, LEGUP and the scale-up approach need an order
of magnitude fewer cables, and both approaches reduce cabling costs further by aĨempting to leave
existing switches connected to the same ToR switches.

To investigate the impact of link costs,weperformeda sensitivity analysis.We repeated the above
experiment as we varied the cost to install a link. We ėxed the prices of switches to be the same as
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Figure ǋ.ǎ: Performance of the upgrade approaches for various budgets. Here, we have αa = αf =

αr = 1 and δ = 0.10.

before and set the budget to $ǊǈǈK. We compare LEGUP to a fat-tree constructed with ǉ Gb or ǉǈ
Gb links now because of our observation that link costs can be amajority of a network’s cost. Again,
we set αa = αf = αr = 1.0 for this scenario.

ĉe results of this sensitivity analysis are shown inFigure ǋ.Ǐ. As expected, the agility for each ap-
proach decreases as link costs increase.However, the performance of the solutions foundbyLEGUP
can increase as link costs increase, because our Ěexibilitymetric does not depend on the cost of links.
ĉis is because of our normalization procedure for Ěexibility. ĉe normalized Ěexibility metric is
relative based on the inputs, and so its value depends on the cost of links. ĉerefore, we cannot ac-
curately compare the Ěexibility of networks found by LEGUP when links cost $ǉǈǈ with networks
found with link costs of $Ǎǈ. We can only compare the Ěexibility of two networks designed under
the same cost model. We view this artifact as a weakness in our deėnition of Ěexibility and we plan
to address it in future work.
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Figure ǋ.Ǐ: Performance of a fat-tree built with ǉ Gbps or ǉǈ Gbps links compared to LEGUP with
a budget of $ǊǈǈK and various link costs. ĉroughout, the prices of switches are ėxed, and the cost
to install a link is varied from Ǎ–ǉǈǈ dollars.

We see that LEGUP signiėcantly outperforms the fat-tree networks under all link costs. Overall,
LEGUP’s networks have ǍǊ–ǍǍƻ more agility than the ǉǈ Gb fat-tree, and the ǉǈ Gb fat-tree per-
forms beĨer than the ǉ Gb fat-tree, even when links are very inexpensive. ĉe ǉǈ fat-tree has ǋǍǈƻ
more agility than the ǉ Gb fat-tree when links cost $ǉǈǈ and ǎǈƻ more agility when links cost $Ǎ.
We found that the ǉ Gb fat-tree used ǉǈ–ǎǐƻ of its budget on links and that the ǉǈ Gb fat-tree used
ǉ.Ǎ–Ǌǌƻ of its budget on links.

3.6.4 Expanding the datacenter

We now consider expanding a datacenter network to accommodate additional servers as they are
added over time. Again, we use the SCS datacenter as a starting point, and we add ǉǊǈǈ servers to it
at a time and ėnd a network for the expanded datacenter. Each expansion has a budget of $ǋǈǈ,ǈǈǈ,
and uses the network found in the previous iteration as input.ĉis budget was selected because it is
ǉǈƻ of the cost of the servers, assuming a price of $ǊǍǈǈ per server; this cost is in line with recent
cost breakdowns for servers compared to the network [ǎǎ, ǍǏ]. We do not take the racks’ thermal
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Figure ǋ.ǐ: Agility as additional racks of servers are added to the datacenter. Each point is found by
increasing agility as much as possible given a budget of $ǋǈǈ,ǈǈǈ and the previous iteration as the
existing network.

or constraints into account here because, in reality, the SCS datacenter Ěoor does not have enough
room for ǉǊǈǈ more servers. For LEGUP, we set αa = 1, αf = 5, αr = 1 and δ = 0.10. We arrived
at these seĨings through experimentation.We found that when we set αf to less than Ǌ, then agility
of the later iterations was lower than when αf = 5 because the solutions found by LEGUP in this
case did not plan for growth and thus did not do as well aěer a few expansion iterations. Because
LEGUP assumes that servers connect to a ToR switches, we use ǋǈ switches with ǌǐ ǉ Gbps and ǌ
ǉǈGbps ports as ToR switches for each ǉǊǈǈ server expansion. Doing so uses $ǉǍǈ,ǈǈǈ of LEGUP’s
budget each iteration.

ĉe results of our expansion scenario are shown in Figure ǋ.ǐ. LEGUP signiėcantly outperforms
the fat-treeupgrades.ĉe fat-tree approachexperiences adrop in agilitywhen thenetworkwithǊǌǈǈ
additional servers is expanded by another ǉǊǈǈ servers because the aggregation and core switches
of the +Ǌǌǈǈ server network are all Ǌǌ-port switches. To accommodate the additional ǉǊǈǈ servers
without lowering agility even further, its core switches need to be replacedby ǌǐ-port switches. Aěer

ǍǑ



this change the amount of agility gained with each addition is less than previously because the ǌǐ-
port switches are not as good a value as the Ǌǌ-port switches. LEGUP experiences a similar drop in
agility; however, the effect is less pronounced.

ǋ.Ǐ Discussion

Lacking a theoretical foundation to model and analyze heterogeneous tree-like topologies, a data-
centermanagerhas twooptions toupgrade their network: (ǉ)performanexpensive forkliěupgrade,
or (Ǌ) add additional switches to their network using best practices or other rules of thumb.ĉis sec-
ond approachwould likely either result in a topologywith sub-optimal agility for themoney because
link capacity would not be able to be used optimally. So, even without LEGUP, our theory of het-
erogeneous Clos networks is useful because it describes topologies that can extract maximal agility
fromavailable link capacity, which is useful to guide the addition of switches.Moreover, LEGUPcan
be used to optimize even homogeneous networks by ėnding a good rack slots to place new switches.

So far, we have not addressed operational issues that arise when heterogeneity is added to a
DCN. We address them now:

Conėguration: We have not accounted for the cost of reconėguring a DCN aěer modifying its
topology. Reconėguration could be expensive and error-prone, especially if it is performed man-
ually. We expect that this will become less of a issue as datacenter management solutions improve.
For instance, PortLand [Ǒǈ] provides “plug-and-play” functionality for DCN switches and NOX
can be used to centrally manage a DCN [ǉǉǌ]. Both of these solutions can support heterogeneous
Clos topologies with minor modiėcations.

Routing and loadbalancing: In Section ǋ.ǌ, we assumed ideal load balancing.ĉis is not achievable
in practice because it requires support for spliĨing individual Ěows across multiple paths. Never-
theless, close to optimal load balancing on our topologies can be achieved, however. For example,
Mudigonda et al.’s SPAIN [ǐǐ] performsmultipath load balancing on arbitrary topologies. Based on
their results, we believe SPAINcan extract close to the full bisection bandwidth fromour topologies.
A second approach is to use oblivious routing, where the path for an i-j packet is randomly selected
from a probability distribution over all i-j paths. Oblivious routing has been shown to performwell
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on Clos networks [ǍǍ], and it can achieve optimal load balancing on our topologies as well (as im-
plied by our results in Section ǋ.ǌ, in particular we explicitly construct this routing in the proof of
ĉeorem ǋ); however, further work is needed to implement and evaluate it on heterogeneous net-
works.
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Chapter 4

REWIRE: Designing Unstructured
Datacenter Networks

ǎǊ



ǌ.ǉ Introduction

As previously described, organizations have deployed a considerable amount of datacenter infras-
tructure in recent years.Much of this growth, however, has come from the expansion and upgrading
of existing facilities. For example, a recent survey found that nearly Ǌ/ǋs of datacenter operators
in the U.S. have added datacenter capacity in the past ǉǊ–Ǌǌ months and ǋǎƻ plan on adding ca-
pacity in Ǌǈǉǉ [ǌǉ]. Large datacenter operators such as Amazon and Google report that they add
computing power to their datacenters every day [ǎǋ]. As described in Chapter Ǌ, previous DCN
architectures are not Ěexible enough to support the cost-effective addition of servers.

While LEGUP improves the process, operators still have liĨle guidance when planning and ex-
ecuting a datacenter expansion. Designing a new or updated network is a challenging optimization
problem that needs to minimize multiple objectives while meeting many constraints. Most physi-
cal data centers designs are unique, so expansions and upgrades must be custom designed for each
datacenter (see, e.g., industry white papers [ǉǉǑ]). ĉe optimization challenge is to maximize net-
work performance (which includes bisection bandwidth, end-to-end latency and reliability) while
minimizing costs and satisfying a large number of constraints.

WeproposeREWIRE, a optimization framework to design new, upgraded and expandedDCNs.
Unlike previous solutions, REWIRE does not place restrictions on the space of topologies consid-
ered. Instead, it considers the the space of all topologies feasible under a user-speciėed datacenter
model, and designs networks that simultaneously maximize agility and minimize end-to-end laten-
cies.We ėnd that arbitrary DCN topologies have signiėcant performance beneėts compared to pre-
viously considered regular topologies. When designing greenėeld (i.e., new) datacenter networks,
REWIRE’s networks have at least Ǎǈǈƻ more bisection bandwidth than a fat-tree constructed with
the same budget. REWIRE also signiėcantly outperforms other approaches (included LEGUP)
when designing DCN upgrades and expansions.ĉe use of unstructured topologies in the datacen-
ter does create operational and management concerns since most DCN architectures are topology-
dependent. However, recent proposals support routing and load balancing on arbitrary DCNs, so
this is not a major barrier to adoption. We discuss this further in Sec. ǌ.ǌ.

Unlike LEGUP (Chapter ǋ), we now seek a general DCN design framework—one that accepts
any network as input and returns arbitrary topologies. ĉis is a challenging optimization problem
because of the huge search space.ĉerefore, REWIRE’s network design procedure uses local search
to explore the space of all feasible network topologies. ĉis procedure needs to compute the per-
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formance of each candidate topology, which involves computing the topology’s agility. We are not
aware of any previous polynomial-time algorithm to compute the agility (as deėned in Section ǉ.ǋ)
of an arbitrary network; however, we show that computing agility is equivalent to solving a linear
program (LP) described by Kodialam et al. to compute an optimal oblivious routing of the hose
TMs [ǐǉ,ǐǈ]. Unfortunately, this LP has O(n4) variables and constraints, where n is the number of
switches in the network, so it is expensive to ėnd even for small networks. To speed this process, we
implement an (1+ ϵ)-approximation algorithm to compute this LP [ǐǊ].We further speed the run-
time of this approximation algorithm implementing its boĨleneck operation—an all-pairs shortest-
path computation—on the GPU using NVIDIA’s CUDA framework [Ǒǐ]. Our implementation
is Ǌ–Ǌǋx faster than a high-performance CPU implementation. Additionally, we utilize a heuristic
based on the spectral gap of a graph, which is the difference between the smallest two eigenvalues of
a graph’s adjacencymatrix. We ėnd that the spectral gap of a graph is a useful heuristic for candidate
selection, especially when designing greenėeld (newly constructed) DCNs.

ĉe model of a DCN used by REWIRE is the same as LEGUP, and this model is described in
Section ǋ.Ǌ.

ǌ.Ǌ REWIREAlgorithm

Wenowdescribe theREWIRE framework.ĉeREWIREalgorithmperforms local search, so it starts
with a candidate solution, which is a network design that does not violate any constraints. It explores
the search space of all candidate solutions by moving from one candidate to another by modifying
local properties of the solution until a near-optimal solution is found. ĉis local search only opti-
mizes the network’s wiring—it does not add switches to the network.ĉerefore, we end this section
by describing how to extend our approach to add new switches to the network as well.

4.2.1 Optimization problem formulation

REWIRE’s goal is toėndanetworkwithmaximalperformance, subject tonumerousoperator-speciėed
constraints.
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Optimization objective

REWIRE designs networks to jointly maximize agility while minimizing the worst-case latency be-
tween ToR switches, that is, given the ėxed scalars α and β, our objective function is:

maximize: α · bw(G) − β · latency(G)

where bw(G) and latency(G) are deėned as follows:

• Agility: is denoted bw(G) for a network G = (V,E). Recall that the agility of a network de-
pends on the rate, r(i), of a node i, which we deėne as the peak amount of traffic v can initiate
or receive at once. For example, a server v with a ǉ Gbps NIC has r(v) =ǉ Gbps. For simpliė-
cation, we aggregate the bandwidth from all servers aĨached to a ToR switch s at that switch,
that is, we let the rate r(i) of a ToR switch i be the sum of the rates of servers directly connected
to the switch (e.g., a ToR switch connected to ǌǈ servers, each with a ǉ Gbps NIC, has a rate of
ǌǈGbps). Let the bandwidth of a link e be denoted by w(e). ĉe agility of a network G is then:

bw(G) = min
S⊆V

∑
e∈δ(S) w(e)

min{
∑

i∈S r(v),
∑

i∈S r(v)}

where δ(S) is the set of edges with one endpoint in S and another in S = V − S.

• Worst-case latency: is deėned as the worst-case shortest-path latency between any pair of ToR
switches in the network, where the latency of a path is the sum of queuing, processing, and
transmission delays of switches on the path. We assume that the queuing delay at any port in
the network is constant because we have no knowledge of network congestion while designing
the network.

Both of thesemetrics have been considered in the design ofDCNtopologies, e.g., [ǍǍ,ǐǑ].How-
ever, as far as we know, no previous algorithms could compute the agility of an arbitrary network
in polynomial-time. ĉerefore, we propose such an algorithm by combining previous theoretical
results in Sec. ǌ.Ǌ.Ǌ.

Operator-speciėed constraints

REWIRE incorporates a wide range of constraints into its optimization procedure. ĉe constraints
support by REWIRE are similar to LEGUP; however, we review them here as well. Any constraints
placed on the network by REWIRE are provided by the datacenter operator, and are:
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• Budget.ĉe maximum amount of money the operator will spend on the network.

• Existing network topology and speciėcations. To perform an upgrade or expansion, we need the
existing topology. If designing a greenėeld network, then REWIRE needs a set of ToR switches
givenas the existingnetworkbecauseour currentdesigndoesnot aĨach servers toToRswitches.
ĉis input needs to include speciėcations for all network devices. For switches this includes
their neighbors in the network and relevant details such as the number of free ports of each link
rate. Our implementation does not support different link types (e.g., copper vs. optical links);
however, it would be easy to extend it so that links include the type of connectors on the ends.

• Link prices and speciėcations. We need a price estimate for labor and parts for each link length
category.

• Available switch prices and speciėcations (optional). If one would like to add new switches to the
network,REWIREneeds as input the prices and speciėcations of a few switches available on the
market. Speciėcations include number and speeds of ports, peak power consumption, thermal
output and the number of rack slots the switch occupies.

• Datacenter model (optional).Consists of the following:

– Physical layout of racks;

– Description of each rack’s contents (e.g. switches, servers, PDUs, number of free slots);

– Per rack heat constraints; and/or

– Per rack power constraints.

ĉe datacenter model places constraints on individual racks. We use these constraints to, for
example, restrict the placement of new switches to racks with enough free slots.

• Reliability requirements (optional).ĉis places a constraint on the number of links in themin-cut
of the network.ĉat is, this is the minimum number of link removals necessary to partition the
network into two connected components.

4.2.2 Local Search Approach

REWIRE uses simulated annealing (SA) [ǏǑ] to search through candidate solutions. SA is a meta-
heuristic that aĨempts to ėnd a globally optimal solution of a given function in a large search space.
We denote the search space by S . ĉis is the set of all network topologies limited by the operator-
deėned constraints. Each topology S ∈ S is a candidate solution.
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Our algorithm also uses the following variables:

• A real valued energy function E(S) deėned ∀S ∈ S as E(S) =−α ∗ bw(S) + β ∗ latency(S).

• ĉeneighboring solutionsofS, denotedbyN(S).WedeėneN(S) tobe the set of all connected
networks such that a link has been added or removed from S.

• An initial temperatureTSTART. For each run,weėnd this using amethoddue toKirkpatrick [ǏǑ].

• A decreasing function T (k) : Z+ → R called the cooling schedule, where T (k) is the tempera-
ture during the kth set of I Metropolis iterations. We chose T (k) = TSTART ∗ 0.93k, but note
there is extensive theory behind choosing cooling schedules [ǑǏ, ǉǊǐ].

• A constant I , which the number of inner Metropolis iterations to be preformed (explained be-
low). As I → ∞, SA ėnds a guaranteed optimal solution, but the algorithm runtime is unfeasi-
ble for very large values of I [ǉǑ]. For our purposes, we set I to ǉǈǈǈ. ĉis value was found by
experimentation.

• An initial state S0 ∈ S . ĉe selection of an initial candidate solution is described below in
Section ǌ.Ǌ.Ǌ.

ĉe goal of SA is to ėnd the solution that minimizes E. To ėnd this network, we perform I

Metropolis iterations K times as follows, starting at TSTART. Suppose that S is the candidate solu-
tion under consideration by an iteration. ĉen, the following actions are performed for neighbor
selection:

ǉ. We choose random nodes i and j from the nodes of S. We select a random value R ∈ {0, 1}.
Ǌ. If R = 1, we aĨempt to generate S ′ by adding a ǉǈ Gbps link between i, j in S subject to the

port and budget constraints. If this addition fails, we aĨempt to add a ǉ Gbps link. If either
addition is successful, the move is accepted and otherwise rejected. Otherwise, if R = 0, we
generate S ′ by aĨempting to remove a link of random speed between i and j (if one exists),
subject to the connectivity constraint. If the link removal fails we reject the move. Otherwise, if
E(s′) = E(s), the move is accepted unconditionally. If E(S ′) > E(S) the move is accepted
with probability e

−(E(S′)−E(s)
T , known as theMetropolis criterion. SA avoids geĨing caught in local

maxima by sometimes taking suboptimal moves. ĉe Metropolis criterion controls this risk as
a function of temperature: the limit of the criterion is ǉ as t → ∞ and ǈ as T → 0. When T is
high badmoves are likely to be accepted, but when T is close to 0, badmoves are accepted with
very low probability.
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Aěer I Metropolis iterations are preformed, the temperature is decreased according to the cooling
schedule. ĉe process is repeated K times, where K is the smallest integer such that T (k) < 0.05.

ĉe SA procedure needs to compute the energy function for each candidate solution. Since we
have that E(S) = −α ∗ bw(S) + β ∗ latency(S), we need to compute the agility of S to ėnd its
performance. In the next section, we describe how to ėnd this in polynomial time.

Evaluating a candidate solution

Our deėnition of performance is the weighted sum of agility and latency, so we now describe how
to compute each metric.

Agility: recall that agility is deėnedon theminimal cut of all cuts of a graph.ĉis is too expensive
to compute directly on arbitrary graphs because a graph canhave exponentiallymany cuts.However,
we now show that the problem of ėnding a network’s cut bandwidth can be reduced to a maximal
Ěow problem under the hose constraints.

Two-phase routing, proposed by Lakshman et al. [ǐǊ], is an oblivious routing scheme, meaning
that it ėnds a randomized routing thatminimizes themaximum link utilization for any trafficmatrix
in a polyhedronof trafficmatrices. Two-phase routing divides routing into twophases.During phase
one, eachnode forwards anαi fractionof its ingress traffic tonode i.During stage two, nodes forward
traffic they received during phase one on to its ėnal destination.We say thatα1, . . . , αn are the load-
balancing parameters of a graph G = (V,E).ĉe optimal values of the αi values depends on G and
the set of hose TMs T (r(1), . . . , r(n)) for V = 1, . . . , n. Note also that two-phase routing assume
that Ěows are spliĨable (i.e., an s-t Ěow can be routed on multiple paths).

Before describing how to compute a two-phase routing, we show that ėnding the load-balancing
parameters of a network is equivalent to ėnding the cut bandwidth of a network. We denote a cut
of G by (S, S), where S and S are connected components of G and S = V − S. Let c(S, S) be the
capacity of all edges with one endpoint in S and the other in S. ĉe following theorem shows how
to compute agility of a graph given α1, . . . , αn.

ĉeorem ǌ (Curtis and López-Ortiz [ǋǏ]). A network G = (V, E) with node rates r(1), . . . , r(n)

and load-balancing parametersα1, . . . , αn can feasibly route all hose TMsT (r(1), . . . , r(n)) using two-
phase routing if and only if, for all cuts (S, S) ofG,

c(S, S) ≥
∑
i∈S

αi ·
∑
i∈S

r(i) +
∑
i∈S

αi ·
∑
i∈S

r(i)

ǎǐ



where S = V − S .

Proof. Necessity is not difficult to show by way of contradiction. We omit the details here; see, e.g.,
[Ǒǉ] for a proof that necessity holds for any multicommodity Ěow.

To see sufficiency, let us ėrst deėne themulticommodity Ěowproblemsolvedby two-phase rout-
ing. Viewed as a multicommodity Ěow problem, the two-phase routing problem is a set of 2

(
n
2

)
=

n(n − 1) commodities, speciėed as follows.

W = {((s, i), αirs)} ∀s, i ∈ V Stage ǉ

∪ {((i, t), αirt)} ∀i, t ∈ V Stage Ǌ

Sincewehave captured all Ěowsbetweennodes, it’s clear that the two-phase routing routingproblem
with load balancing parametersα1, . . . , αn admits a solution if and only if themulticommodity Ěow
W has a feasible solution.

Assume that all cuts (S, S)ofGhave capacity at least c(S, S) ≥
∑

i∈S αi ·
∑

i∈S r(i)+
∑

i∈S αi ·∑
i∈S r(i). To see that G can serve all hose TMs, we will show that there exists a feasible solution to

the multicommodity Ěow problemW . We need to specify the rate of a commodity, so let r(k) = r

for a commodity k = (s, t, r). We denote the set of i’s incoming links by N−(i) and its outgoing
links by N+(i).

A directed graph is called capacity balanced if, for all i ∈ V , N+(i) + demand(i) = N−(i) +

supply(i), where demand(i) is the sum of commodity rates with i as the target and supply(i) is the
sum of commodity rates where i is the source. Nagamochi and Ibaraki [ǑǊ, Ǒǋ] have shown that a
feasible solution to amulticommodity Ěow problemW exists on a capacity balanced network if, for
all its cuts (S, S), c(S) ≥

∑
k∈WS

r(k), whereWS = {(s, t, r) ∈ W : s ∈ S and t ∈ S}.
Because we We assume

∑
k∈WS

r(k) =
∑

i∈S αi ·
∑

i∈S r(i) +
∑

i∈S αi ·
∑

i∈S r(i) for the
multicommodity Ěow W . ĉen, if G is a capacity balanced network, then a feasible solution to W
exists. Consider an arbitrary i ∈ V . we have N+(i) = N−(i) by deėnition, since G is bidirectional.
In a hose TM D, we have

∑
j∈V,j ̸=i Dij = ri and

∑
j∈V,j ̸=i Dji = ri, so supply(i) = demand(i).

ĉerefore, G is a capacity balanced network, and so a feasible solution toW exists.

ĉis theorem shows that amulti-commodity Ěow version of the famousmax-Ěow,min-cut theo-
rem[ǋǉ]holds for networks using two-phase routingunder thehosemodel. And the theoremshows
that any network that can feasibly route all hose TMs has a cut bandwidth of at least ǉ.
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We now show the computation of α1, . . . , αn using the results of Lakshman et al., who proved
that the αi values can be found with linear programming (LP) [ǐǊ]. We use the following notation.
Let f be a network Ěow in the optimization sense. We use fk to denote Ěow k where s(k) and is the
origin and t(k) is the destination of the Ěow.ĉen let fk(i, j) be the amount of Ěow placed on edge
(i, j) by Ěow fk. We denote the outgoing edges from node i by δ+(i) its incoming edges by δ−(i).
ĉe capacity of an edge (i, j) is denoted by c(i, j).

Optimal two-phase routing LP:

min µ

Subject to:∑
w∈δ−(y)

fk(w, y) =
∑

z∈δ+(y)

fk(y, z) ∀y ̸= s(k), t(k) ∀k (ǌ.ǉ)

K∑
k=1

fk(i, j) ≤ µ · c(i, j) (ǌ.Ǌ)∑
j∈δ+(i)

fk(i, j) = αs(k)r(i) + αt(k)r(i) (ǌ.ǋ)

i = s(k), ∀k∑
i

αi = 1 (ǌ.ǌ)

ĉeir LP canbe computed in polynomial-timeusing anLP solver; however, it is computationally
expensive because it has O(n4) constraints and O(n4) variables. In our initial testing, we found that
computing this LP for a network with Ǌǈǈ nodes and ǌǈǈ (directed) edges needs more than ǊǊGB
of memory using IBM’s CPLEX solver [ǏǊ]. Even with only Ǎǈ node networks, this LP takes up to
several seconds to compute. Because REWIRE’s local search approach needs to evaluate thousands
of candidate solutions, this LP is not fast enough for our purposes.

To solve these issues, we implemented an approximation algorithm due to Kodialam et al. [ǐǊ]
to compute α1, . . . , αn in polynomial-time.ĉis algorithm ėnds a solution guaranteed to be within
an (1 + ϵ) factor of optimal. ĉe algorithm follows an approach developed by Garg and Koene-
mann [Ǎǈ]. It augments each node i’s value αi iteratively. At each iteration, the algorithm computes
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a weight w(e) for each edge e ∈ E and then pushes Ěow to i along the shortest-paths to i based
on these weights. ĉe boĨleneck operation in this algorithm is computing the shortest-path from
each node to each other node given the weights w(e). ĉis operation needs to perform an all-pairs
shortest-path (APSP) computation. ĉe best running times we are aware of for an APSP algorithm
is O(n3) (deterministic) [ǋǉ] and O(n2) (probabilistic) [ǉǈǉ]. Because this operation is the bot-
tleneck, we implemented an APSP solver on a graphics processing unit (GPU). Used this way, the
GPU is a powerful, inexpensive co-processor with hundreds of cores.

We implemented a recursive version of the Floyd-Warshall algorithm for our APSP function
using CUDA [Ǌǉ,Ǒǐ].ĉe algorithm uses generalizedmatrix multiplication (GEMM) as an under-
lying primitive. GEMM exhibits a high degree of data parallelism and we can signiėcant speedups
by exploiting this aĨribute. Finally, we perform a parallel reduction to ėnd the maximal path in the
distance matrix. Parallel reduction is an efficient algorithm for computing associative operators in
parallel. It uses Θ(n) threads to compute a tree of partial results in parallel. ĉe number of steps is
bounded by the depth of the tree which is Θ(logn) [ǎǐ, ǎǍ].

Latency: we compute latency(G) by solving an APSP problem on G = (V, E). We set this
problemup tomodel the expected amount of time it takes to process packets in network equipment.
We associate with each edge e ∈ E a weight w(i, j). ĉis represents the expected time to forward
packets on that link. We deėne w(i, j) of an edge (i, j) to be the sum of queuing delays, forwarding
time and processing delay at (i, j)’s endpoints. We now have that latency(G) is then the maximum
shortest-path between any pair of ToRs for (G,w).

In our model, we assume that the processing delay of each switch is speciėed by the operator.
To estimate queuing delays, we assume that the forwarding time is ǉǍǈǈ Bytes divided by the link
rate (ǉ or ǉǈ Gbps) and that each packet is queued behind two other packets at each switch on its
path. Our assumption of uniform queuing delays is not realistic but necessary: since we assume no
knowledge of the network load, we cannot accurately determine queuing delays.

Initial candidate selection

Due to the large search space, ėnding optimized solutions with simulated annealing takes an infea-
sible amount of time for large networks, especially when there is signiėcant room for improvement
in the network. ĉerefore, we added the ability to seed REWIRE’s simulated annealing procedure
with a candidate solution. To ėnd a seed candidate, we use a heuristic based on the spectral gap of a
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graph. Before we deėne the spectral gap of a graph, we need to introduce a few terms. We consider
the matrix L, deėned as follows for a graph G = (V, E):

L(i, j) =


d(i) if i = j,

−1 if i and j are adjacent,

0 otherwise.
ĉe Laplacian of G = (V, E) is the matrix:

L(i, j) =


1 if i = j and d(i) ̸= 0,

− 1√
d(i)d(j)

if i and j are adjacent,

0 otherwise.
ĉe eigenvalues ofL are said to the be spectrum of G, and we denote them by λ0 ≤ · · · ≤ λn−1.

It can be shown that λ0 = 0 [Ǌǐ] for a proof. We say that λ1 is the spectral gap of G.

Intuitively, a graph with a “large” spectral gap will be regular (we omit a precise deėnition of
large here—see any text book for details [Ǌǐ]) and the lengths of all shortest-paths between node
pairs are expected to be similar. Maximizing a network’s spectral gap is not a new objective function
in the network design literature (e.g., [ǌǊ, ǉǉǋ]).

ĉis is not surprising, since As an example, the following lemma shows how the spectral gap
correlates with the diameter of a graph.

Lemma Ǎ ( [Ǌǐ] ). Let G be a graph with diameter D ≥ 4, and let K denote the maximum degree of
any vertex ofG. ĉen

λ1 ≤ 1 − 2

√
k − 1

k
(1 − 2

D
) +

2

D

ĉat is, a graph with a large spectral gap has a low diameter.

We thereforemodifyREWIRE tooptionally performa two stage simulated annealingprocedure.
In stage ǉ, its objective function is to maximize the spectral gap. ĉe result from stage ǉ is used to
seed stage Ǌ, where its objective function is tomaximize agility andminimize latency.ĉisway, stage
Ǌ starts with a good solution and can converge quicker. When this two stage procedure is used, we
say REWIRE is in hotstart mode.

Note that a network with a maximal spectral gap of all candidate solutions does not necessarily
mean that the network will also have high agility. ĉe spectral gap metric does not take the hose
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constraints into account, so it is not directly optimizing for agility. Instead, it creates networks that
are well-connected, which tend to have high agility (see [ǋǏ] for details), but that is not necessarily
the case, especially for heterogeneous networks.

4.2.3 Adding switches to the network

REWIRE’s simulatedannealingproceduredoesnot consider addingnewswitches to thenetwork—it
only optimizes the wiring of a given set of switches. To ėnd network designs with new switches, we
run REWIRE on the input network plus a set of new switches that are not aĨached to any other
switch. REWIRE aĨaches the new switches to the existing network randomly, and then begins its
simulated annealing procedure.

While simple, this approach does not scale well. If an operator has input speciėcations for k

new switch types, then we need to run REWIRE k! times to consider all possible combinations of
switch types.Webelieve this couldbe improvedby applyingheuristics to select a set of newswitches;
however, we leave investigation of such heuristics to future work.

ǌ.ǋ Evaluation

Wenowpresentour evaluationofREWIRE.First,wedescribe the inputs used in the evaluation, then
the approaches used for comparison with REWIRE. Finally, we present our results using REWIRE
to design greenėeld, upgraded and expanded networks.

4.3.1 Inputs

Existing networks

To evaluate REWIRE’s ability to design upgrades and expansions of existing networks, we use a
scaled-upmodel of theUniversity ofWaterloo’s School ofComputer Sciencemachine roomnetwork
(denoted by SCS network) as input. ĉis model is similar to the model we used in the previous
chapter. ĉe SCS network has ǉǑ ToR, Ǌ aggregation and Ǌ core routers. Each ToR connects to a
single aggregation switch with a ǉ or ǉǈ Gbps link and both aggregation switches connect to both
core switches with ǉǈ Gbps links. ĉe network is composed of a heterogeneous set of switches as
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ToR switches
Hose uplink rate Uplinks (ǉ, ǉǈ Gbps) No. switches

Ǌǐ ǐ, Ǌ Ǎ
ǌǈ ǐ, ǌ ǐ
ǐ ǐ, ǈ ǌ
Ǌ Ǌ, ǈ Ǌ

Aggregation switches
Line cards Line card slots No. switches

ǋx Ǌǌ ǉ Gbps, ǉx Ǌ ǉǈ Gbps ǎ ǉ
ǌx ǌ ǉǈ Gbps ǎ ǉ

Table ǌ.ǉ: Existing switches in the SCS datacenter model.

described in Table ǌ.ǉ. To scale the network up, we assume that each ToR switch is aĨached to a full
rack of ǌǈ servers, and we assume the hose uplink rates of each ToR switch as described in the table.

To predict the cost of a network design, REWIRE needs the distance between each ToR switch
pair. We do not have this data for the SCS network. ĉerefore, we label each switch with a unique
label from 1, . . . , n.ĉe distance between switches i and j is then |i− j|.ĉe distance from i to the
nearest ǊǍƻ of switches is categorized as “short”, the distance to the next Ǎǈƻ is “medium” and then
distance to the ėnal ǊǍƻ is “long”.We use these distance categories to estimate the price of adding a
link between two switches.

Switches and cabling

We separate the costs of adding a cable into the cost of the cable itself and the cost to install it.
Mudigonda et al. report that list prices for ǉǈ Gb cables are between $ǌǍ–ǑǍ for ǉm cables and
$ǉǈǈ–ǌǈǈ for ǉǈmcables depending on the type of cable (copper or optical and its connector types)
[ǐǑ]. Optical cables are more expensive than copper cables, but they are available in longer lengths.
To obtain a reasonable estimate of cabling costs without creating too much complexity, we divide
cable runs into three groups: short, medium and long lengths. ĉe costs we use are shown in Table
ǌ.Ǌ. We also charge an installation fee for each length group (also shown in the table). Whenever an
existing cable is moved, we charge the appropriate installation fee given the cable’s length.

Table ǌ.ǋ shows the costs we assume to buy various switches.
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Rate Short ($) Medium ($) Long ($)
Cable costs

ǉ Gbps Ǎ ǉǈ Ǌǈ
ǉǈ Gbps Ǎǈ ǉǈǈ Ǌǈǈ

Installation and re-wiring costs
ǉǈ Ǌǈ Ǎǈ

Table ǌ.Ǌ: Prices of cables and the cost to install or move cables.

Ports WaĨs Price ($)
Ǌǌ ǉ Gbps ǉǈǈ ǊǍǈ
ǌǐ ǉ Gbps ǉǍǈ ǉ,Ǎǈǈ

ǌǐ ǉ Gbps, ǌ ǉǈ Gbps ǊǋǍ Ǎ,ǈǈǈ
Ǌǌ ǉǈ Gbps ǋǈǈ ǎ,ǈǈǈ
ǌǐ ǉǈ Gbps ǎǈǈ ǉǈ,ǈǈǈ

Table ǌ.ǋ: Switches used as input in our evaluation (prices are the same as in Section ǋ.ǎ). Prices
are representative of street prices and power draw estimates are based on a typical switch of the type
according to manufacturers’ estimates.

4.3.2 Comparison approaches

We compare REWIRE against the following DCN design solutions.

Fat-tree:was proposed by Leiserson [ǐǌ], and is a k-ary multi-rooted tree.ĉis is a speciėc form
of theClos topology [ǋǈ].We assume a ǋ-level fat-tree topology and that all switches in the network
must be homogeneous. Building an optimal fat-tree for a set of servers given switch speciėcations is
NP-hard [ǐǑ], so we upper bound the performance that a fat-tree network with a speciėed budget
could achieve. To do this, we compute the number of ports the fat-tree needs, and bound the cost
of switches by the min-cost port of a given rate (e.g., a ǉ Gb port costs at least $ǊǍǈ/Ǌǌ and a ǉǈ Gb
port costs at least $ǉǈK/ǌǐ). To estimate the cost of cabling, we assume that server to ToR links are
free, and that ToR to aggregation switches are medium length and aggregation to core links are long
length.
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Greedy algorithm: we implemented a greedy heuristic to determine if REWIRE’s more sophisti-
cated local search approach is necessary. ĉe algorithm iterates over all pairs of switches as follows.
First, it computes the change in agility and latency that would result from adding a ǉ Gbps and ǉǈ
Gbps between every pair of switches and stores the result. At the end of each iteration, the algorithm
adds the link that increases the network’s performance the most. If no link changes the agility or la-
tency during an iteration then a random link is added. ĉis iteration continues until the budget is
exhaustedor no links canbe addedbecause all ports are full.Note that this algorithmdoes not rewire
the initial input—it only adds links to the network until the budget is exhausted.ĉis algorithmper-
forms O(n2) agility computations at each iteration, and hence does not scale to graphs with more
than ∼ǌǈ nodes. ĉerefore, we do not compare against the greedy algorithm for any network with
more than ǌǈ nodes.

LEGUP: as described in Chapter ǋ.

Random graph: Singla et al. proposed a DCN architecture Jellyėsh, which is based on random
graph topologies [ǉǉǈ].Randomgraphshavenice connectivity properties, and they showed that it is
less expensive to build a randomgraph than a fat-treemuchof the time.To estimate the performance
a random graph can achieve with a speciėed budget, we determine the expected radix of each ToR
switch given number of links one can install with the budget.ĉen, we compute the expected agility
and diameter of the network following Singla et al.’s approach. Note that we use the expected agility
and diameter, rather than explicitly constructing these networks.

4.3.3 REWIRE seĨings

REWIRE can operate in several different modes. ĉese are:

• Spectral gapmode: sets REWIRE’s objective function tomaximize the spectral gap of its output.

• CPLEXor approximation: sets themethodREWIREuses to compute the agility of a network. In
CPLEXmode,REWIREuses IBM’sCPLEX solver [ǏǊ] to compute the agility exactly;whereas
in approximation mode, REWIRE ėnds the agility of a candidate solution using the FPTAS
previously described.

• Hotstart: this mode ėnds a candidate solution in spectral gap mode, which is used as a seed
solution to stage Ǌ, where the objective function is changed to our standard deėnition of per-
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formance.

When describing the results from a scenario, we note what mode REWIRE was in.
Finally, REWIRE uses a local search algorithm, so it may not always ėnd an optimal answer,

especially if it is not given enough time to run. For all experiments in this paper, we let REWIRE run
for ǏǊ hours.ĉis timewas derived experimentally. It was typically not enough time for REWIRE to
converge to an optimal answer, so wemake no claim that our results here are the best that REWIRE
can obtain.

4.3.4 Greenėeld networks

Webegin by evaluating the effectiveness of REWIRE at designing greenėeld, that is, new,DCNs. For
this scenario, the input to REWIRE is a set of ToR switches (with no links between them). We use
REWIRE in approximation mode. Initially, ToR switches are each aĨached to servers, but no other
switches. ĉe total cost of the network is the cost of these ToR switches plus the wiring budget. We
experimented with two types of ToR switches. First, we set all ToR switches have ǌǐ ǉ Gbps ports,
where Ǌǌ ports aĨach to servers and the other Ǌǌ are leě open.ĉen, we set all ToR switches to have
ǌǐ ǉ Gbps ports and ǌ ǉǈ Gbps; each ToR switch aĨaches to ǌǈ servers with ǉ Gbps ports. For both
experiments, we built networks to connect ǋǊǈǈ servers.

We compare against the fat-tree, LEGUP, and random topology approaches. ĉe results are
shown in Figure ǌ.ǉ. In the chart, the bars show normalized agility (higher is beĨer and a network
with full agility has a normalized agility of ǉ). ĉe table below the bars indicates the diameter (the
worst-case hop count betweenToR switches) of the network.Wedonot compare against the greedy
heuristic for these experiments because it is not fast enough for networks with more than ǌǈ nodes.

REWIRE signiėcantly outperforms the other approaches for nearly all budgets. ĉe random
network has more agility than REWIRE’s network when the budget is $Ǎ,ǈǈǈ; however, REWIRE’s
solution has less latency (this network has a diameter one hop less than the expected random net-
work’s).Weweighted agility and latency equally in this experiment, so REWIRE preferred the solu-
tion with less bandwidth, but also less latency. ĉis illustrates the Ěexibility of REWIRE.

In this scenario, LEGUP outperforms the fat-tree. Depending on the budget and ToR assump-
tions, LEGUP’s networks have Ǎǈ–ǉǈǈƻ more agility than a same-cost fat-tree.

We also re-ran the REWIRE experiments using its spectral gap mode. We found that the solu-
tions with a maximal spectral gap had the same performance as the solutions found by REWIRE in
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Figure ǌ.ǉ: Results of designing greenėeld networks for ǋǊǈǈ servers using a fat-tree, random graph
and REWIRE for two ToR switch types. ĉe results on the leě used ToR switches with ǌǐ ǉ Gbps
ports and the results on the right used ToR switches with ǌǐ ǉ Gbps ports and ǌ ǉǈ Gbps. Missing
bars for the random graph indicate that the network is expected to be disconnected. A network with
agility ǉ has full agility, and a network with diameter ǉ is fully connected.
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Figure ǌ.Ǌ: Results of upgrading the SCS topology with different budgets and algorithms.

approximation mode. ĉis implies that the spectral gap is good metric when designing greenėeld
data centers because it seems tomaximize agility and it ėnds networks with very regular topologies,
which may reduce the cost of wiring the network.

4.3.5 Upgrading

We now evaluate REWIRE’s ability to ėnd upgrades to existing DCNs. To begin, we compared
REWIRE to a fat-tree and our greedy algorithm on the SCS network for several budgets. ĉe re-
sults are shown in Figure ǌ.Ǌ.

REWIRE signiėcantly outperforms the fat-tree—its networks have ǉǊǈ–Ǎǋǈƻmore agility than
a fat-tree constructedwith the samebudget, andwithbudgets over$ǍK,REWIRE’s network alsohas
a shorter diameter (by ǉ hop) than a fat-tree. REWIRE also outperforms the greedy algorithm for all
budgets, though the greedy algorithm performs nearly as well when the budget is $ǍK ormore.ĉis
indicates that a greedy approach performs very well in some seĨings; however, we have generally
observed that the greedy algorithm does not perform well when it has a small budget or the input
is very constrained and has few open ports. For example, when the budget is $Ǌ,Ǎǈǈ, REWIRE’s
network has ǋǍǈƻ more agility than the network found by the greedy algorithm.
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Figure ǌ.ǋ: Results of upgrading the SCS topologywith different REWIREmodes and two budgets.

Next, we compared the various modes of REWIRE for two budgets as shown in Figure ǌ.ǋ. We
observe that the spectral gap and hotstart modes performs poorly when the budget is $Ǌ,Ǎǈǈ. ĉis
is likely due to the properties of the spectral gap, which tries to make the network more regular.
Because the budget is not large enough to re-wire the network in this regular fashion, optimizing
the network’s spectral gap creates a candidate solutionwith poor agility.ĉis problemdoes not arise
when the budget is large enough (as in the case when the budget is $ǉǈK), because there is enough
money to re-wire the network into this regular structure.

4.3.6 Expanding

Wenow examine the performance of the algorithms as we expand the datacenter over time by incre-
mentally adding new servers. We tested two expansion scenarios here.

First, we expanded theSCSdatacenter by addingǉǎǈ servers at a time, untilwehave added a total
of ǎǌǈ servers to the datacenter. ĉe results are shown in Figure ǌ.ǌ. For REWIRE and the greedy
algorithm, we used ToR switches with ǌǐ ǉ Gbps and ǌ ǉǈ Gbps ports, so each ToR aĨaches to ǌǈ
servers. For the ǉGb fat-tree, we usedToR switches with Ǌǌ ǉGbps ports.ĉe budgets shown in the
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Figure ǌ.ǌ: Results of iteratively expanding the SCS datacenter.

ėgure are the budgets for cabling and aggregation and core switches. ĉat is, the budgets shown do
not take into account the price of ToR switches.

We found that REWIRE outperforms the fat-tree, the greedy algorithm, and LEGUP in this sce-
nario. ĉe fat-tree is not able to improve the agility of the expanded network beyond the agility of
the initial SCSDCN, whereas the greedy algorithm, LEGUP, and REWIRE do.ĉis scenario shows
the limitations of the greedy algorithm. Aěer four expansions, REWIRE’s network has nearly twice
asmuch agility as the greedy algorithm’s network, andLEGUP, despite its topology restrictions, also
outperforms the greedy algorithm aěer the second iteration.

Next, we evaluatedREWIRE’s performancewhen constructing, and then expanding a greenėeld
datacenter. In these experiments, we built the initial DCN with a budget of $ǌǈK using LEGUP,
REWIRE, or a fat-tree with ǉ or ǉǈ Gb links. ĉis initial datacenter contained ǉǎǈǈ servers. ĉen,
we iteratively expanded this datacenter by adding ǌǈǈ servers at a time. For each expansion, the
algorithms were given a total budget of $ǎǈK (this includes the cost of ToR switches). ĉe results
are shown in Figure ǌ.Ǎ.

Again, REWIRE performed beĨer than either fat-tree conėguration and LEGUP. Its initial net-
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Figure ǌ.Ǎ: Results of iteratively expanding a greenėeld network.

ǐǊ



work hasmore agility than the networks designed by the other approaches, and itmaintains this lead
as the datacenter is iteratively expanded.

4.3.7 Quantitative results

Time is a boĨleneck in our network design algorithm.When using a single CPU core, it can take up
to twoweeks to convergewhen the input contains Ǌǈǈ switches. To speed this up, we implemented a
GPU-based all-pairs shortest-path (APSP) solver. As the APSP computation is the boĨleneck oper-
ation in REWIRE’s operation, we found that doubling the speed of the APSP computations nearly
halves REWIRE’s total runtime. In summary, we found our GPU-based APSP implementation is
Ǌǐ–Ǌǌǌx faster than a naive implementation [ǋǉ]. As the network size increases, larger speedups are
possible.

ǌ.ǌ Operating anUnstructuredDCN

Because of their performance beneėts, we advocate the adoption of non-regular topologies in the
datacenter. Doing so, however, raises architecture issues. In particular, we need an architecture that
provides addressing, routing, load-balancing and cost-effectivemanagement on unstructuredDCN
topologies if they are to be of practical use. We now show how previous work can perform these
functions.

Addressing and routing: have been the focus of much recent work due to the difficulty of scaling
traditional, distributed control-plane protocols to connect more than a couple thousand servers.
Protocols such as SEAĈLE [ǏǏ] and TRILL [ǉǉǎ] provide scalable LǊ functionality on arbitrary
topologies, but do not provide multipath routing, which is needed to fully utilize dense networks.
Another option is SPAIN, an architecture formultipath routing on arbitrary topologies [ǐǐ]. SPAIN
performs source-routing and uses VLANs to partition the network into many spanning trees.

Load-balancing: our algorithms assume that a network’s bandwidth can be fully exploited by the
load-balancingmechanism.ĉis assumption is not valid when using single-path protocols like span-
ning tree; however, near-optimal load-balancing can be achieved on arbitrary topologies by using
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Multipath TCP [ǉǈǋ] or SPAIN [ǐǐ]. Multipath TCP exposes multiple end-to-end paths to end-
hosts, and they independently aĨempt to maximize their bandwidth by performing adaptive load
balancing across these paths. ĉis approach can achieve ǉǈǈƻ utilization on a fat-tree [ǉǈǋ]. Multi-
path TCP has not yet been evaluated on arbitrary topologies; however, its performance on regular
topologies indicates it will be able to fully utilize arbitrary topologies as well. SPAIN [ǐǐ] performs
reactive load balancing at the end-hosts over the various VLANs exposed to each end-host. It has
been shown that SPAIN can fully utilize HyperX, FatTree and BCube topologies. Because it per-
forms well on this range of regular topologies, we believe it will also perform well on the topologies
REWIRE designs.

Based on the evaluations of SPAINandMultipathTCP,webelieve that these protocolswould be
able to fully utilize REWIRE’s topologies. Alternatively, centralized Ěow controllers like Hedera [ǐ]
andMahout [ǋǌ] could bemodiėed to provide near-optimal load-balancing on arbitrary topologies.

Management and conėguration:managing a DCN with an irregular topology may be more costly
and require more expertise than a vendor-speciėed DCN architecture. In particular, addressing is
more difficult to conėgure an irregular topology, because we cannot encode topologic locality in
the logical ID of a switch (typically a switch’s logical ID is its topology-imposed address or label).

To mitigate this issue, we suggest conėguring the network using Chen et al.’s generic and au-
tomatic datacenter address conėguration system (DAC) [ǊǏ]. An interesting beneėt of DAC’s de-
sign is that it can automatically identify mis-wirings. ĉis operation is especially useful for us be-
cause wiring an arbitrary topologymay bemore difficult than a regular, tree-like topology. Soěware-
deėned networking, such as implemented by OpenFlow, is also a promising solution for arbitrary
DCN management (see [ǉǉǌ] and Chapter ǎ). We believe these solutions can solve many of the
management problems that may arise from the introduction of irregular topologies in the datacen-
ter, and we leave further investigation to future work.

ǌ.Ǎ Discussion

ĉe (1+ϵ)-approximation algorithmwe implemented to compute the agility of a network is numer-
ically unstable. At each iteration of its operation, it performs an all-pairs shortest-path computation.
To do this, it needs to compare increasingly minute numbers at each successive iteration. We found
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it returns incorrect shortest-paths trees aěer enough iterations because these comparisons aremade
on numbers less than 10−40. Because of this numerical instability, we could not run the approxima-
tion algorithm on inputs larger than Ǌǈǈ nodes and Ǌǈǈ edges. Nor could we run it with very small
values of ϵ because the algorithm performs more iterations as ϵ decreases.

We did not explicitly consider designing upgrades or expansions that can be executedwithmini-
mal disruption to an existingDCN.However, it is possible to disable REWIRE’s support formoving
existing network links. Another approach is to modify the cost constraints (e.g., moving a link costs
ėve times more than adding a new one) so that rare, signiėcantly beneėcial re-wirings are permissi-
ble.
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Chapter 5

Datacenter Network Traffic
Engineering with Mahout
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Ǎ.ǉ Introduction

As previously noted, datacenter switching fabrics need huge amounts of bisection bandwidth to en-
able the transfer of huge quantities of data between thousands of servers. For example,Hadoop [ǎǉ]
performs an all-to-all transfer of up to petabytes of ėles during the shuffle phase of a MapReduce
job [ǋǑ]. Further, to beĨer consolidate employee desktop and other computation needs, enterprises
are leveraging virtualized datacenter frameworks (e.g., using VMWare [ǉǊǈ] and Xen [ǉǊǌ, ǉǍ]),
where timely migration of virtual machines requires high throughput network.

Designing datacenter networks using redundant topologies such as LEGUP’s heterogeneous
Clos, REWIRE’s unstructured topologies, or a fat-tree [ǋǈ, ǉǈ] builds a network with sufficient bi-
section bandwidth. However, traffic engineering is necessary to fully utilize the available bandwidth
in such topologies [ǐ]. A key challenge to traffic engineering here is that the Ěows come and go too
quickly in a datacenter to compute a route for each individually; for example, Kandula et al. report
ǉǈǈK Ěow arrivals a second in a ǉ,Ǎǈǈ server cluster [Ǐǎ].

For effective utilization of the datacenter fabric, we need to detect elephant Ěows—Ěows that
transfer signiėcant amount of data—and dynamically orchestrate their paths. Datacenter measure-
ment studies show that a large fraction of datacenter traffic is carried in a small fraction of Ěows
[ǍǍ,Ǐǎ].ĉese studies report that ǑǈƻofDCNĚows carry less thanǉMBofdata andmore thanǑǈƻ
of bytes transferred are in Ěows greater than ǉǈǈ MB. Hash-based Ěow forwarding techniques such
as equal-cost multi-path (ECMP) routing [ǎǏ] works well only for large numbers of short (ormice)
Ěows and no elephant Ěows. For example, Al-Fares et al.’s Hedera shows that dynamically schedul-
ing elephant Ěows effectively can yield as much as ǉǉǋƻ higher aggregate throughput compared to
ECMP for some DCN workloads [ǐ].

Existing elephant Ěow detection methods have limitations that make them unsuitable for dat-
acenter networks. ĉese proposals use one of three techniques to identify elephants: (ǉ) periodic
polling of statistics from switches, (Ǌ) streaming techniques like sampling or window-based algo-
rithms, or (ǋ) application-levelmodiėcations (full details of each approach are given in Section Ǎ.Ǌ).
We have not seen support forQuality of Service (QoS) solutions take hold, which implies thatmod-
ifying applications is probably an unacceptable solution.We show that the other two approaches fall
short in the datacenter seĨing due to high monitoring overheads, signiėcant switch resource con-
sumption, or long detection times.

In this Chapter, we assert that the right place for elephant Ěow detection is at the end-hosts.
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To achieve this, we describe Mahout, a low-overhead yet effective traffic management system that
uses end-host-based elephant detection. Mahout’s design follows the increasingly popular simple-
switch/smart-controller model (as in OpenFlow [Ǎ]), and so our system is similar to NOX [ǉǉǌ],
Hedera [ǐ], and DevoFlow (Chapter ǎ).

Mahout augments this basic design by taking advantage of computational power of datacenter
end-hosts. It has lowoverhead, as itmonitors and detects elephant Ěows at end-hosts via a shim layer
in the OS, rather thanmonitoring at the switches in the network. Mahout does timely management
of elephant Ěows through an in-band signaling mechanism between the shim layer at the end-hosts
and the network controller. At the switches, any Ěow not signaled as an elephant is routed using a
randomized load balancing scheme, such as ECMP. ĉerefore, only elephant Ěows are monitored
and scheduled by the central controller. ĉe combination of end-host elephant detection and in-
band signaling eliminates the need for per-Ěow monitoring in the switches, and hence incurs low
overhead and requires few switch resources.

We demonstrate the beneėts of Mahout using an analytical evaluation, simulations, and a pro-
totype implementation. We have implemented the end-host shim on Linux, which implements our
elephant Ěow detection algorithm. We have also built a Mahout controller, for seĨing up switches
with default entries and for processing the tagged packets from the end-hosts. Our analytical evalu-
ation shows thatMahout offers one to two orders of magnitude of reduction in the number of Ěows
processed by the controller and in switch resource requirements, compared to Hedera and similar
approaches.Our simulations show thatMahout can achieve considerable throughput improvements
compared to randomized load balancing techniques, while incurring an order of magnitude lower
overhead than Hedera. Finally, experiments with our prototype indicate that our approach can de-
tect elephant Ěows at least an order of magnitude sooner than network-based approaches.

ĉe key contributions this chapter are: (ǉ) a novel end-host basedmechanism for detecting ele-
phant Ěows in §Ǎ.ǋ, (Ǌ) design of a centralized datacenter traffic management system that has low
overhead yet is effective (§Ǎ.ǋ), and (ǋ) simulation and prototype experiments demonstrating the
beneėts of the proposed design in §Ǎ.ǌ–Ǎ.Ǎ.
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Ǎ.Ǌ Background

We now describe the relevant background not covered in Chapter Ǌ on datacenter networks and
elephant Ěow detection.

5.2.1 Datacenter traffic

ĉeheterogeneousmix of applications running in datacenters produces Ěows that are generally sen-
sitive to either latency or throughput. Latency-sensitive Ěows are usually generated by network pro-
tocols (such as ARP andDNS) and interactive applications.ĉey typically transfer up to a few kilo-
bytes. On the other hand, throughput-sensitive Ěows, created by, e.g., MapReduce, scientiėc com-
puting, and virtual machine migration, transfer up to gigabytes. ĉis traffic mix implies that a dat-
acenter network needs to deliver high bisection bandwidth for throughput-sensitive Ěows without
introducing setup delay on latency-sensitive Ěows.

5.2.2 Identifying elephant Ěows

ĉemixof latency- and throughput-sensitiveĚows in thedatacentersmeans that effectiveĚowschedul-
ing needs to balance visibility and overhead—a one size ėts all approach is not sufficient in this
seĨing. To achieve this balance, elephant Ěows must be identiėed so that they are the only Ěows
touched by the controller. ĉe following are the previously considered mechanisms for identifying
elephant Ěows:

• Application-based classiėcation:ĉis approach requires that applications identify Ěows they cre-
ate as a mice or elephant Ěow. ĉis solution accurately and immediately identiėes elephant
Ěows. ĉis is a common assumption for a plethora of research work in network QoS where fo-
cus is to give higher priority to latency and throughput-sensitive Ěows such as voice and video
applications [Ǌǈ].However, this solution is impractical for trafficmanagement in datacenters as
each and every application must be modiėed to support it. If all applications are not modiėed,
an alternative technique will still be needed to identify elephant Ěows initiated by unmodiėed
applications.

A related approach is to classify Ěows based on which application is initiating them. ĉis
classiėes Ěows using stochastic machine learning techniques [ǉǈǎ] or matching packet header
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ėelds (such as TCP port numbers). While this approach might be suitable for enterprise net-
work management, it is unsuitable for datacenter network management because of the enor-
mous amount of traffic in the datacenter and the difficulty in obtaining Ěow traces to train the
classiėcation algorithms.

• Collect per-Ěow statistics: In this approach, Ěows are monitored by edge switches. Flow statistics
are pulled from edge switches by the controller at regular intervals and are used to classify ele-
phant Ěows. Hedera [ǐ] and Helios [ǌǏ] are examples of systems that use such a mechanism.
However, this approach does not scale to large networks. First, this consumes signiėcant switch
resources: a Ěow table entry for each Ěow monitored at a switch. We’ll show in Section Ǎ.ǌ that
this requires considerable number of Ěow table entries. Second, bandwidth between switches
and the controller is limited, so much so that transferring statistics becomes the boĨleneck in
trafficmanagement indatacenter network.As a result, theĚowstatistics cannotbequickly trans-
ferred to the controller, resulting in prolonged sub-par routings.

• Sampling: Instead ofmonitoring each Ěow in the network, in this approach, a controller samples
packets from all ports of the switches using switch sampling features such as sFlow [ǌ]. Only a
small fraction of packets are sampled (typically, ǉ in ǉǈǈǈ) at the switches and only headers of
the packets are transferred to the controller. ĉe controller analyzes the samples and identiėes
a Ěow as an elephant aěer it has seen sufficient number of samples from the Ěow. However, this
approach can not reliably detect an elephant Ěow before it has carried more than ǉǈK packets,
or roughly ǉǍ MB [ǐǏ]. Additionally, sampling has high overhead, since the controller must
process each sampled packet.

Ǎ.ǋ Our Solution:Mahout

Mahout’s architecture is shown in Figure Ǎ.ǉ. InMahout, a shim layer at each end-hostmonitors the
Ěows originating from that host.When this layer detects an elephant Ěow, itmarks subsequent pack-
ets of that Ěowusing an in-band signalingmechanism.ĉe switches in the network are conėgured to
forward these marked packets to the Mahout controller.ĉis simple approach allows the controller
to detect elephant Ěows without placing burden on switches or using network bandwidth. ĉe Ma-
hout controller then manages only the elephant Ěows, to maintain a globally optimal arrangement
of them.
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Figure Ǎ.ǉ: Mahout architecture.

Below, we describe Mahout’s end-host shim layer for detecting elephant Ěows, our in-band sig-
naling method to inform the controller about elephant Ěows, and the Mahout network controller.

5.3.1 Detecting Elephant Flows

An end-host based implementation for detecting elephant Ěows is beĨer than in-network monitor-
ing/sampling based methods, particularly in datacenters, because: (ǉ) ĉe network behavior of a
Ěow is affected by how rapidly the end-point applications are generating data for the Ěow. Unlike in-
network monitoring, the application’s behavior is not biased by congestion in the network. (Ǌ) It is
possible to augment the end-host OS.ĉis is because datacenters usually are a single administrative
domain and end-hosts run uniform soěware. (ǋ)Mahout’s elephant detection mechanism has very
liĨle overhead (it is implemented with two if statements) on commodity servers. In contrast, us-
ing an in-network mechanism to do ėne-grained Ěow monitoring (such as OpenFlow’s stat-pulling
mechanism) can be infeasible, even on an edge switch, and even more so on a core switch, espe-
cially on commodity hardware. For example, assume that ǋǊ servers are connected to a rack switch.
If each server generates Ǌǈ new Ěows per second, with a default Ěow timeout period of ǎǈ seconds,
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Figure Ǎ.Ǌ: Amount of data observed in the TCP buffers vs. data observed at the network layer for a
Ěow.

an edge-switch needs to maintain and monitor ǋǐǌǈǈ Ěow entries. ĉis number is infeasible in any
of the hardware switch implementations of OpenFlow that we are aware of.

A key idea of the Mahout system is to monitor end-host socket buffers, and thus determine ele-
phant Ěows before in-network monitoring systems. We demonstrate the rationale for this approach
with a micro-benchmark: an Ĝp transfer of a Ǎǈ MB ėle from a host ǉ to host Ǌ, connected via two
switches all with ǉ Gbps links.

In Figure Ǎ.Ǌ, we show the cumulative amount of data observed on the network, and in the TCP
buffer, as time progresses.ĉe time axis starts when the application ėrst provides data to the kernel.
From the graph, one can observe that the application ėlls theTCPbuffers at a ratemuch higher than
the observed network rate. If the threshold for considering a Ěow as an elephant is ǉǈǈKB (Figure
Ǌ. of [ǍǍ] shows that more than ǐǍƻ of Ěows are less than ǉǈǈKB), we see that Mahout’s end-host
shim layer can detect a Ěow to be an elephant ǋx sooner than in-networkmonitoring. In this experi-
ment there were no other active Ěows on the network. In further experimental results, presented in
Section Ǎ.Ǎ, we observe an order of magnitude faster detection when there are other Ěows.

Mahout uses a shim layer in the end-hosts to monitor the socket buffers. When a socket buffer
crosses a chosen threshold, the shim layer classiėes the Ěow as an elephant. ĉis simple approach
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Algorithm 3 Pseudocode for end-host shim layer
ǉ: When sending a packet
Ǌ: if number of bytes in buffer≥ thresholdelephant then
ǋ: / * Elephant Ěow */
ǌ: if last-tagged-time - now()≥Ttagperiod then
Ǎ: / * Set the differentiated services (DS) ėeld to tag as elephant Ěow */
ǎ: set DS = ǈǈǈǈǉǉǈǈ
Ǐ: last-tagged-time = now()
ǐ: end if
Ǒ: end if

is implemented by two if statements, as shown in Algorithm ǋ. It ensures that Ěows that are bot-
tlenecked at the application layer and not in the network layer. ĉis approach does not necessarily
classify long-livedĚows as elephants; instead, it identiėes Ěows that areboĨleneckedby thenetwork.
ĉe intuition is that Ěows that are boĨlenecked by the application need no special management in
the network. In contrast, if an application is generating data for a Ěow faster than the Ěow’s achieved
network throughput, the socket buffer will ėll up, and henceMahout will detect this an an elephant
Ěow.

5.3.2 In-band Signaling

Once Mahout’s shim layer has detected an elephant Ěow, it needs to signal this to the network con-
troller. We do this indirectly, by marking the packets in a way that is easily and efficiently detected
by OpenFlow switches, and then the switches divert the marked packets to the network controller.
To avoid inundating the controller with too many packets of the same Ěow, the end-host shim layer
marks the packets of an elephant Ěow only once every Ttagperiod seconds (we use ǉ second in our
prototype).

To mark a packet, we repurpose the Differentiated Services Field (DS Field) [Ǒǎ] in the IPvǌ
header.ĉis ėeldwas originally called the IPType-of-Service (IPToS) byte.ĉeėrst ǎ bits of theDS
Field, called Differentiated Services Code Point (DSCP), deėne the per-hop behavior of a packet.
ĉecurrentOpenFlowspeciėcation [ǋ] allowsmatchingonDSCPbits, andmost commercial switch
implementations of OpenFlow support this feature in hardware; hence, we use the DS Field for
signaling between the end-host shim layer and the network controller. Currently, the code point
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Figure Ǎ.ǋ: An example Ěow table setup at a switch by the Mahout controller.

space corresponding to xxxx11 (x denotes a wild-card bit) is reserved for experimental or local us-
age [Ǐǉ], and we leverage this space. When an end-host detects an elephant Ěow, it sets the DSCP
bits to 000011 in the packets belonging to that Ěow.

Algorithm ǋ shows pseudocode for the end-host shim layer function that is executed when a
TCP packet is being sent.

5.3.3 Mahout Controller

At each rack switch, the Mahout controller initially conėgures two default OpenFlow Ěow table
entries: (i) an entry to send a copy of packets with the DSCP bits set to 000011 to the controller
and (ii) the lowest-priority entry to switch packets using NORMAL forwarding action. We set up
switches to perform ECMP forwarding by default in the NORMAL operation mode. Figure Ǎ.ǋ
shows the two default entries at the boĨom. In this ėgure, an entry has a higher priority over (is
matched before) entries drawn below that entry.

When a Ěow starts, it matches the lowest-priority (NORMAL) rule, so its packets are forwarded
using ECMP. When an end-host classiėes a Ěow as an elephant and marks a packet of that Ěow, the
packet marked with DSCP 000011 matches the other default rule, and the rack switch forwards it
to the Mahout controller. ĉe controller then computes the best path for this elephant, and installs
a Ěow-speciėc forwarding table entry in the switches along this path.
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In Figure Ǎ.ǋ, we show a few example entries for the elephant Ěows. Note that these entries are
installed with higher priority than Mahout’s two default rules; hence, the packets corresponding
to these elephant Ěows are switched using the actions of these Ěow-speciėc entries rather than the
actions of the default entries. Also, the DS ėeld is set to wildcard for these elephant Ěow entries, so
that once the Ěow-speciėc rule is installed, any tagged packets from the end-hosts are not forwarded
to the controller.

Once an elephant Ěow is reported to the Mahout controller, it needs to be placed on the best
available path. We deėne the best path for a Ěow from s to t as the least congested of all paths from s

to t. ĉe least congested s-t path is found by enumerating over all such paths.

To manage the elephant Ěows, Mahout regularly pulls statistics on the elephant Ěows and link
utilizations from the switches, and uses these statistics to optimize the elephant Ěows’ routes. ĉis
is done with the increasing ėrst ėt algorithm given in Algorithm ǌ. Correa andGoemans introduced
this algorithmandproved that it ėnds routings thathave atmost aǉǈƻhigher linkutilization than the
optimal routing [ǋǊ].While we cannot guarantee this bound because we re-route only the elephant
Ěows, we expect this algorithm to perform well because of these theoretical results.

5.3.4 Discussion

DSCP bits In Mahout, the end-host shim layer uses the DSCP bits of the DS ėeld in IP header
for signaling elephant Ěows. However, there may be some datacenters where DSCP may be needed
for other uses, such as for prioritization among different types of Ěows (voice, video, and data) or
for prioritization among different customers. In such scenarios, we plan to use VLANPriority Code
Point (PCP) [Ǌ] bits for in-band signaling. OpenFlow supports matching on these bits too. As it is
unlikely that both of these code point ėelds (PCP andDSCP) to be in use simultaneously, we expect
one of these two options to be unused for most DCNs.

VirtualizedDatacenter In a virtualized datacenter, a single server will host multiple guest virtual
machines, each possibly running a different operating system. In such a scenario, we have two op-
tions. First, we could implement our elephant Ěow detection algorithm in the virtual switch in the
hypervisor. ĉis solution is ideal; however, it requires us to be able to modify the hypervisor. Sec-
ond, the Mahout shim could be deployed in each of the guest virtual machines. Note that the host
operating systemwill not have visibility into the socket buffers of a guest virtual machine. However,
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Algorithm 4 Offline increasing ėrst ėt
ǉ: sort(F); reverse(F) /* F: set of elephant Ěows */
Ǌ: for f ∈ F do
ǋ: for l ∈ f .path do
ǌ: l.load = l.load - f .rate
Ǎ: end for
ǎ: end for
Ǐ: for f ∈ F do
ǐ: best paths[f].congest =∞
Ǒ: /*Pst: set of all s-t paths */
ǉǈ: for path∈ Pst do
ǉǉ: congest = (f.rate + path.load) / path.bandwidth
ǉǊ: if congest < best path.congest then
ǉǋ: best paths[f] = path
ǉǌ: best paths[f].congest = congest
ǉǍ: end if
ǉǎ: end for
ǉǏ: end for
ǉǐ: return best paths

in cloud computing infrastructures such as Amazon ECǊ [ǉǊ], typically the infrastructure provider
makes available a few preconėgured OS versions, which include the paravirtualization drivers to
work with the provider’s hypervisor. ĉus, we believe that it is feasible to deploy the Mahout shim
layer in virtualized datacenters, too.

ElephantĚowthreshold Choosing too lowavalue forthresholdelephant inAlgorithmǋcancause
many Ěows to be recognized as elephants, and hence cause the rack switches to forward too many
packets to the controller. When there are many elephant Ěows, to avoid the controller overload, we
couldprovide ameans for the controller to signal the end-hosts to increase the threshold value.How-
ever, this would require a out-of-band control mechanism. An alternative is to use multiple DSCP
values to denote different levels of thresholds. For example, xxxx11 can be designated to denote
that a Ěow has more than ǉǈǈ KB data, xxx111 to denote more than ǉMB, xx1111 to denote more
than ǉǈMB, and so on.ĉe controller can then change the default entry corresponding to the tagged
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packets (second from boĨom in the Figure Ǎ.ǋ) to select higher thresholds, based on the load at the
controller. Further study is needed to explore these approaches.

Ǎ.ǌ Analytical Evaluation

In this section,we analyze the expectedoverheadof detecting elephant ĚowswithMahout,with Ěow
sampling, andbymaintainingper-Ěowstatistics (such asHedera).We set up an analytical framework
to evaluate the number of switch table entries and control messages used by each method. We eval-
uate each method using an example datacenter, and show that Mahout is the only solution that can
scale to support large datacenters.

Flow sampling identiėes elephants by sampling an expected ǉ out of k packets. Once it has seen
enough packets from the same Ěow, then the Ěow is classiėed as an elephant.ĉe number of packets
needed to classify an elephant does not affect our analysis in this section, so we ignore it for now.
Hedera [ǐ] uses periodic polling for elephant Ěow detection. Every t seconds, theHedera controller
pulls the per-Ěow statistics from each switch. In order to estimate the true rate of a Ěow (i.e., the rate
of the Ěow if its rate is only constrained by its endpoints’ NICs and not by any link in the network),
the statistics for every Ěow in the network must be collected. Pulling statistics for all Ěows using
OpenFlow requires seĨing up a Ěow table entry for every Ěow, so each Ěow must be sent to the
controller before it can be started, so we include this cost in our analysis.

We consider a million end-host network for the following analysis. Here, an end-host could be
a physical machine or a virtual machine. Our notation and and the assumed values are shown in the
Table Ǎ.ǉ.

Hedera [8]:As table entries need to bemaintained for all Ěows, the number of Ěow table entries
needed at each rack switch isT ·F ·D. In our example, this translates to32·20·60 = 38, 400 entries at
each rack switch. We are not aware of any existing switch with OpenFlow support that can support
this many entries in the Ěow table in the hardware—for example, HP ProCurve Ǎǌǈǈzl switches
support up to ǉ.ǏK OpenFlow entries per linecard. It is unlikely that any switch in the near future
will support so many table entries given the expense of high-speed memory.

ĉe Hedera controller needs to handle N · F Ěow setups per second, or more than Ǌǈ million
requests per second in our example. A single NOX controller can handle only ǋǈ,ǈǈǈ requests per
second [ǉǉǌ]; hence one needs ǎǎǏ controllers to just handle the Ěow setup load, assuming that the
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Parameter Description Value
N Num. of end-hosts 220 (ǉM)
T Num. of end-hosts per rack switch ǋǊ
S Num. of rack switches 215 (ǋǊK)
F Avg. new Ěows per second per end-host Ǌǈ [ǉǉǌ]
D Avg. duration of a Ěow in the Ěow table ǎǈ seconds
c Size of counters in bytes Ǌǌ [ǋ]

rstat Rate of gathering statistics ǉ-per-second
p Num. of bytes in a packet ǉǍǈǈ
fm Fraction of mice ǈ.ǑǑ
fe Fraction of elephants ǈ.ǈǉ

rsample Rate of sampling ǉ-in-ǉǈǈǈ
hsample Size of packet sample (bytes) ǎǈ

Table Ǎ.ǉ: Parameters and typical values for the analytical evaluation

load can be perfectly distributed.
ĉe rate at which the controller needs to process the statistics packets is

=
c · T · F · D

p
· S · rstat

In our example, this implies (24 · 38400)/1500 · 215 · 1 ≈ 20.1M control packets per second.
Assuming that NOX controller can handle these packets at the rate it can handle the Ěow setup
requests (ǋǈ,ǈǈǈ per second), this translates to needing ǎǏǈ controllers just to process these packets.
Or, ifweconsideronlyonecontroller, then the statistics canbegatheredonlyonceeveryǎǏǈ seconds
(≈ 11 minutes).

Sampling: Sampling incurs the messaging overhead of taking samples, and then installs Ěow
table entries when an elephant is detected. ĉe rate at which the controller needs to process the
sampled packets is

= throughput · rsample ·
bytes per sample

p

We assume that each sample contains only a ǎǈ byte header and that headers can be combined
into ǉǍǈǈ byte packets, so there are ǊǍ samples permessage to the controller.ĉe aggregate through-
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put of a datacenter network changes frequently, but if ǉǈƻ of the hosts are sending traffic, the ag-
gregate throughput (in Gbps) is 0.10 · N . We then ėnd the messaging overhead of sampling to be
around ǍǍǈKmessages per second, or if we bundle samples into packets (i.e., ǊǍ samples ėt in a ǉǍǈǈ
byte packet), then this drops to ǊǊK messages per second.

At ėrst blush, this messaging overhead does not seem like too much overhead; however, as the
network utilization increases, the messaging overhead can reach ǋ.ǏǍ million (or ǉǍǈK if there are
ǊǍ samples per packet) packets per second. ĉerefore, sampling incurs the highest overhead when
load balancing is most needed. Decreasing the sampling rate reduces this overhead but adversely
impacts the effects of Ěow scheduling since not all elephants are detected.

We expect the number of elephants identiėed by sampling to be similar toMahout, so we do not
analyze the Ěow table entry overhead of sampling separately.

Mahout: Because elephant Ěow detection is done at the end-host, switches contain Ěow table
entries for elephant Ěows only. Also, statistics are only gathered for the elephant Ěows. So, the num-
ber of Ěow entries per rack switch in Mahout is T · F · D · fe = 384 entries. ĉe number of Ěow
setups that the Mahout controller needs to handle is N · F · fe, which is about ǊǈǈK requests per
second, which needs Ǐ controllers. Also, the number of packets per second that need to be processed
for gathering statistics is a fe fraction of the same in case of Hedera. ĉus Ǐ controllers are needed
for gathering statistics at the rate of once per second, or the statistics can be gathered by a single
controller at the rate of once every Ǐ seconds.

Ǎ.Ǎ Experiments

5.5.1 Simulations

Ourgoal is to compare theperformance andoverheadsofMahout against the competing approaches
described in the previous section. To do so, we implemented a Ěow-level, event-based simulator that
can scale to a few thousand end-hosts connected using Clos topology [ǋǈ]. We now describe this
simulator and our evaluation of Mahout with it.
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Methodology

We simulate a datacenter network bymodeling the behavior of Ěows.ĉe network topology ismod-
eled as a capacitated, directed graph and forms a three-level Clos topology. All simulations here are
of a ǉ,ǎǈǈ server datacenter network. ĉe network has an agility of ǈ.Ǌǈ, which means that it has
ǋǊǈ Gb of bisection bandwidth. All servers have ǉ Gbps NICs and links have ǉ Gbps capacity. Our
simulation is event-based, so there is no discrete clock—instead, the timing of events is accurate to
Ěoating-point precision. Input to the simulator is a ėle listing the start time, bytes, and endpoints of
a set of Ěows (our workloads are described below).When a Ěow starts or completes, the rate of each
Ěow is recomputed.

Wemodel theOpenFlow protocol only by accounting for the delay when a switch sets up a Ěow
table entry for a Ěow. When this occurs, the switch sends the Ěow to the OpenFlow controller by
placing it in its OpenFlow queues. ĉis queue has ǉǈ Mbps of bandwidth (this number was mea-
sured from anOpenFlow switch [ǐǎ]).ĉis queue has inėnite capacity, so ourmodel optimistically
estimates the delay between a switch and the OpenFlow controller since a real system drops arriv-
ing packets if one of these queues is full, resulting in TCP timeouts. Moreover, we assume that there
is no other overhead when seĨing up a Ěow, so the OpenFlow controller deals with the Ěow and
installs Ěow table entries instantly.

We simulate threedifferent schedulers: (ǉ) anoffline scheduler that periodically pulls Ěow statis-
tics from the switches, (Ǌ) a scheduler that behaves like theMahout scheduler, but uses sampling to
detect elephant Ěows, and (ǋ) the Mahout scheduler as described in Sec. Ǎ.ǋ.ǋ.

ĉe stat-pulling controller behaves like Hedera [ǐ] and Helios [ǌǏ]. Here, the controller pulls
Ěow statistics fromeach switch at regular intervals.ĉe statistics from a Ěow table entry are Ǌǌ bytes,
so the amount of time to transfer the statistics from a switch to the controller is proportional to the
number of Ěow table entries at the switch.When transferring statistics, we assume that the CPU-to-
controller rate is the boĨleneck, not the network orOpenFlow controller itself. Once the controller
has statistics for all Ěows, it computes a new routing for elephant Ěows and reassigns paths instantly.
In practice, computing this routing and inserting updated Ěow table entries into the switches will
take up to hundreds ofmilliseconds.We allow this to be done instantaneously to ėnd the theoretical
best achievable results using anoffline approach.ĉeglobal re-routingof Ěows is computedusing the
increasing best ėt algorithm described in Algorithm ǌ. ĉis algorithm is simpler than the simulated
annealing employed by Hedera; however, we expect the results to be similar, since this heuristic is
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likely to be as good as any other (as discussed in Sec. Ǎ.ǋ.ǋ)

As we are doing Ěow-level simulations, sampling packets is not straightforward since there are
no packets to sample from. Instead, we sample from Ěows by determining the amount of time it will
take for k packets to traverse a link, given its rate, and then sample from the Ěows on the link by
weighting each Ěow by its rate. To simulate packet sampling, we begin by calculating the amount
of time it will take for s packets to traverse a link given the rate of Ěows on that link, where 1/s is
the sampling rate and each packet is assumed to be ǉǍǈǈbytes. We ėnd the time this occurs, and at
that time, we sample from the Ěows traverse the link, weighting each Ěow by its rate. For example, if
there are three Ěows on a link with rates r1, r2, and r3, then we sample from Ěow i with probability
(r1 +r2 +r3)/ri. We found, however, that performing this sampling took too longwhen the sample
rate was high (e.g., ǉ out of ǉǈǈ packets) because it requires over ǉ.ǌ million samples per second,
and each sample takes time proportional to the number of Ěows on the link to obtain. ĉerefore,
we did not perform sampling directly, and instead, precomputed the distribution of times needed
to correctly identify a Ěow as an elephant for different sampling rates by performing the sampling
on a single switch while running our traffic workload (described just below). So, when a new Ěow is
started, we draw a time from this distribution, and if the Ěow is still active aěer that amount of time,
we label it as an elephant.

Workloads We simulate background trafficmodeled on recentmeasurements [Ǐǎ] and add traffic
modeled on MapReduce traffic to stress the network. We assume that the MapReduce job has just
gone into its shuffle phase. In this phase, each end-host transfers ǉǊǐ MB to each other host. Each
end-host opens a connection to at most ėve other end-hosts simultaneously (as done by default
in Hadoop’s implementation of MapReduce). Once one of these connections completes, the host
opens a connection to another end-host, repeating this until it has transferred its ǉǊǐMBėle to each
other end-host. ĉe order of these outgoing connections is randomized for each end-host. For all
simulations described here, we used ǊǍǈ randomly selected end-hosts in the shuffle load.ĉe reduce
phase shuffle begins three minutes aěer the background traffic is started to allow the background
traffic to reach a steady state, and measurements shown here are taken for ėve minutes aěer the
reduce phase began.

We added background traffic following the macroscopic Ěow measurements collected by Kan-
dula et al. [ǍǍ, Ǐǎ] to the traffic mix because datacenters run a heterogeneous mix of services simul-
taneously. ĉey give the fraction of correspondents a server has within its rack and outside of its
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Figure Ǎ.ǌ: ĉroughput results for the schedulers with various parameters. Error bars on all charts
show ǑǍƻ conėdence intervals.

rack over a ten second interval.We follow this distribution to decide howmany inter- and intra-rack
Ěows a server starts over ten seconds; however, they do not give a more detailed breakdown of Ěow
destinations than this, so we assume that the selection of a destination host is uniformly random
across the source server’s rack or the remaining racks for an intra- or inter-rack Ěow respectively.We
select the number of bytes in a Ěow following the distribution of Ěow sizes in their measurements
as well. Before starting the shuffle job, we simulate this background traffic for three minutes. ĉe
simulation ends whenever the last shuffle job Ěow completes.

Metrics To measure the performance of each scheduler, we tracked the aggregate throughput of
all Ěows. ĉis the the sum of rates of all Ěows in the network. We measure overhead as before in
Section Ǎ.ǌ, i.e., by counting the number of control messages and the number of Ěow table entries at
each switch. All numbers shown here are averaged from ten runs.
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Figure Ǎ.Ǎ: Number of packets sent to controller by various schedulers. Here, we bundled samples
together into a single packet (there are ǊǍ samples per packet)—each bundle of samples counts as
a single controller message.

Results

ĉe per-second aggregate throughput for the various scheduling methods is shown in Figure Ǎ.ǌ.
We compare these schedulers to static load balancing with equal-cost multipath (ECMP), which
uniformly randomizes the outgoing Ěows across a set of ports [ǐ]. We used three different elephant
thresholds for Mahout: ǉǊǐ KB, ǉ MB, and ǉǈǈ MB, and Ěows carrying at least this threshold of
bytes were classiėed as an elephant aěer sending Ǌ, Ǌǈ, or Ǌǈǈǈ packets respectively. As expected,
controlling elephant Ěows extracts more bisection bandwidth from the network—Mahout extracts
ǉǎƻmore bisection bandwidth from the network than ECMP and the other schedulers obtain sim-
ilar results depending on their parameters.

Hedera’s results found that Ěow scheduling gives a much larger improvement over ECMP than
our results (up to ǉǉǋƻ on some workloads) [ǐ]. ĉis is due to the differences in workloads. Our
workload is based on measurements [Ǐǎ], whereas their workloads are synthetic. We have repeated
our simulationsusing someof theirworkloads andėnd similar results: the schedulers improve through-
put by more than ǉǈǈƻ compared to ECMP on their workloads.
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FigureǍ.ǎ:Average andmaximumnumberof Ěow table entries at each switchusedby the schedulers.

We examine the overhead versus performance tradeoff by counting the maximum number of
Ěow table entries per rack switch and the number of messages to the controller. ĉese results are
shown in Figures Ǎ.Ǎ and Ǎ.ǎ

Mahout has the least overhead of any scheduling approach considered. Pulling statistics requires
toomany Ěow table entries per switch and sends toomany packets to the controller to scale to large
datacenters; here, the stat-pulling scheduler used nearly ǐǈǈ Ěow table entries per rack switch on av-
erage nomaĨer how frequently the statistics were pulled.ĉis is more than seven times the number
of entries usedby the sampling andMahout controllers, andmakes the offline scheduler infeasible in
larger datacenters because the Ěow tables will not be able to support such a large number of entries.
Also, when pulling stats every ǉ sec., the controller receives ǉǈx more messages than when using
Mahout with an elephant threshold of ǉǈǈ MB.

ĉese simulations indicate that, for ourworkload, the valueofthresholdelephant affects the over-
head of theMahout controller, but does not havemuch of an impact on performance (up to a point:
when we set this threshold to ǉ GB (not shown on the charts), theMahout scheduler performed no
beĨer than ECMP). ĉe number of packets to the Mahout controller goes from ǋǊǐ per sec. when
the elephant threshold is ǉǊǐKB toǊǉǌper sec.when the threshold is ǉǈǈMB, indicating that tuning
it can reduce controller overhead by more than Ǎǈƻ without affecting the scheduler’s performance.
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Even so, we suggest making this threshold as small as possible to save memory at the end-hosts and
for quicker elephant Ěow detection (see the experiments on our prototype in the next section). We
believe a threshold of Ǌǈǈ–Ǎǈǈ KB is best for most workloads.

5.5.2 Prototype&Microbenchmarks

We have implemented a prototype of the Mahout system; however, this work was primarily per-
formed byWonho Kim, so we omit the details here.ĉey are published in reference [ǋǌ].ĉe shim
layer is implemented as a kernel module inserted between the TCP/IP stack and device driver, and
the controller is built on NOX [ǉǉǌ]. We evaluated our prototype, and overall, we showed that it
correctly classiėes elephant Ěows in under Ǌ ms, while it takes a Hedera-like controller at least ǉǐǈ
ms to detect elephant Ěows.
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Chapter 6

Traffic Engineering with DevoFlow
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ǎ.ǉ Introduction

In the previous chapter, we showed how end-hosts could be leveraged to lower the overheads in-
volved with traffic engineering in the datacenter. We now evaluate the effectiveness of using De-
voFlow [ǋǐ], an alternative approach to DCN traffic engineering. DevoFlow is a Ěow-based net-
working framework for cost-effective, scalable Ěow management that does not require end-host
modiėcations.

Flow-based networking is based on a separation between the network’s control-plane and its
data-plane.ĉecontrol-plane is implementedas adistributed systemrunningoncommodity servers.
ĉis controller orchestrates network Ěows by managing the state of switch Ěow tables. ĉis model
is very Ěexible, since soěware controllers can be quickly updated, unlike vertically integrated net-
work devices.ĉis approach to networking is called soĜware-deėned networking (SDN), because the
behavior of the network is deėned by soěware.

ĉe OpenFlow protocol [ǋ, ǐǍ] is a widely-deployed implementation of SDN. It uses a central-
ized controller thatmakes decisions on a per-Ěowbasis.ĉismodel supports ėne-grained, Ěow-level
control of Ethernet switches. Such control is desirable because it enables (ǉ) correct enforcement of
Ěexible policies without carefully craěing switch-by-switch conėgurations, (Ǌ) visibility of all Ěows,
allowing for near-optimal management of network traffic, and (ǋ) simple and future-proof switch
design.

DevoFlow[ǋǐ] switch implementationmechanisms tohelp scaleSDNapplications. In this chap-
ter, we demonstrate that high-performance Ěow management requires devolving control of most
Ěows back to the switches, while the controller maintains control over only targeted elephant Ěows.
DevoFlow is allows aggressive use of wild-carded OpenFlow rules—thus reducing the number of
switch-controller interactions and the number of TCAM entries—through new mechanisms to ef-
ėciently detect elephant Ěows. DevoFlow also introduces mechanisms to allow switches to make
local routing decisions, independent of the controller.

We evaluate the effectiveness of DevoFlow.ĉrough simulations we ėnd that it can load-balance
datacenter traffic as well as ėne-grained solutions, but with far less overhead: DevoFlow uses ǉǈ–Ǎǋ
times fewer Ěow table entries at an average switch, and uses ǉǈ–ǌǊ times fewer control messages.
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DevoFlow overview

Our goal in designing DevoFlow is to enable cost-effective, scalable Ěow management. Our design
principles are:

• Keep Ěows in the data-plane as much as possible. Involving the control-plane in all Ěow setups
creates too many overheads in the controller, network, and switches.

• Maintain enough visibility over network Ěows for effective centralized Ěowmanagement, but oth-
erwise provide only aggregated Ěow statistics.

• Simplify the design and implementation of fast switcheswhile retaining network programmability.

DevoFlow aĨempts to resolve two dilemmas — a control dilemma:

• Invoking the OpenFlow controller on every Ěow setup provides good start-of-Ěow visibility,
but puts toomuch load on the control plane and adds toomuch setup delay to latency-sensitive
traffic, and

• Aggressive use of OpenFlow Ěow-match wildcards or hash-based routing (such as equal-cost
multipath (ECMP) routing) reduces control-plane load, but prevents the controller from ef-
fectively managing traffic.

and a statistics-gathering dilemma:

• Collecting OpenFlow counters on lots of Ěows, via the pull-based Read-State mechanism, can
create too much control-plane load, and

• Aggregating counters overmultiple Ěows via thewild-cardmechanismmayundermine the con-
troller’s ability to manage speciėc elephant Ěows.

We resolve these two dilemmas by pushing responsibility over most Ěows to switches and adding
efficient statistics collectionmechanisms to identify signiėcant Ěows, which are the only Ěowsman-
aged by the central controller. ĉis is described in Section ǎ.ǋ.ǋ.

Our work here derives from a long line of related work that aims to allow operators to spec-
ify high-level policies at a logically centralized controller, which are then enforced across the net-
work without the headache of manually craěing switch-by-switch conėgurations [ǊǊ, Ǌǌ, Ǎǎ, Ǎǐ].
ĉis separation between forwarding rules and policy allows for innovative and promising network
management solutions such as NOX [Ǎǐ, ǉǉǌ] and other proposals [ǎǌ, ǑǍ, ǉǊǉ], but these solu-
tions may not be realizable on many networks because the Ěow-based networking platform they
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are built on—OpenFlow—is not scalable. We made this observation in the previous chapter, and
it has been made by others as well. However, other research has focused on scaling the controller,
e.g., Onix [ǐǋ], Maestro [Ǌǋ], and a devolved controller design [ǉǉǊ]. We ėnd that the controller
can present a scalability problem, but that switches may be a greater scalability boĨleneck. Remov-
ing this boĨleneck requires minimal changes: slightly more functionality in switch ASICs andmore
efficient statistics-collection mechanisms.

Note that this chapter presents work that was performed while the author was an intern at HP
Labs, PaloAlto.ĉisworkwas collaborativewith several others, so the results are sketchedhere,with
detailedpresentationonly of the resultswhere this dissertation’s authorwas theprimary contributor.
ĉe full version of this work can be found as reference [ǋǐ].

ǎ.Ǌ OpenFlowOverheads

Flow-basednetworking involves the control-planemore frequently than traditional networking, and
therefore the bandwidth and latency of communication between a switch and the central controller
is a potential performance boĨleneck. ĉe latency imposed on traffic to the controller can be on
the order of several milliseconds for DCNs and a full RĈ for WANs. Flow-based network imposes
overheads on switch implementation, which can be broken down into implementation-imposed
and implementation-speciėc overheads.We sketch the overheads ofOpenFlow here.ĉe interested
reader can ėnd the full details in reference [ǋǐ]. To explore them,we experimentedwithHP’sOpen-
Flow implementation on theHPProCurve Ǎǌǈǎ zl switch [ǉ].ĉis switch is designedwith a central
CPU formanagement functions and anASICon each line card.ĉe implementation-imposed over-
heads of OpenFlow can be summarized as follows.

• Flow setupoverheads:ĉebandwidth between the data- and control-planes of a switch and its
controller has ėnite capacity. ĉis can limit the rate of Ěow setups—the best implementations
we know of can set up only a few hundred Ěows per second. To estimate the Ěow setup rate
of the ProCurve Ǎǌǈǎ zl, we aĨached two servers to the switch and opened a connection from
one server to the other as soon as the previous connection was established. We found that the
switch completes roughly ǊǏǍ Ěow setups per second. ĉis number is in line with what others
have reported [ǉǈǑ].

However, this rate is insufficient for Ěow setup in a high-performance network.ĉemedian
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inter-arrival time for Ěows at datacenter server is less than ǋǈms [Ǐǎ], so we expect a rack of ǌǈ
servers to initiate approximately ǉǋǈǈ Ěows per second—far too many to send each Ěow to the
controller.

• Gathering Ěow statistics:Global Ěow schedulers need timely access to statistics. If a few, long-
lived Ěows constitute the majority of bytes transferred, then a scheduler need only collect Ěow
statistics every several seconds; however, this is not the case in high-performance networks,
where even the longest-lived Ěows last only a few seconds [Ǐǎ]. Overall, based on the expected
andmeasuredworkloadsofDCNs,we found thatOpenFlow’s current statistics-gatheringmech-
anisms are not scalable.

ĉis is primarily because OpenFlow provides pull-based statistics, where counters for each
Ěows are collected from the switches by the controller. ĉis type of Ěow statistics can be used
for Ěow scheduling if they canbe collected frequently enough.ĉeevaluationof oneĚow sched-
uler, Hedera [ǐ], indicates that a Ǎ sec. control loop (the time to pull statistics from all access
switches, compute a re-routing of elephant Ěows, and then update Ěow table entries where nec-
essary) is fast enough for near-optimal load balancing on a fat-tree topology; however, their
workload is based on Ěow lengths following a Pareto distribution. Recentmeasurement studies
have shown datacenter Ěow sizes do not follow a Pareto distribution [ǉǏ,ǍǍ]. Using a workload
with Ěow lengths following the distribution of Ěow sizes measured in [ǍǍ], we ėnd that a Ǎ sec.
statistics-gathering interval can improve utilization only ǉ–Ǎƻ over randomized routing with
ECMP (details are in §ǎ.ǌ). ĉis is conėrmed by Raiciu et al., who found that the Hedera con-
trol loop needs to be less than Ǎǈǈms to perform beĨer than ECMP on their workload [ǉǈǌ].

• Switch state size: A limited number of Ěow entries can be supported in hardware. ĉe Ǎǌǈǎ zl
switch hardware can support about ǉǍǈǈ OpenFlow rules, whereas the switch can support up
to ǎǌǈǈǈ forwarding entries for standard Ethernet switching.One reason for this wide disparity
is that OpenFlow rules are stored in a TCAM, necessary to support OpenFlow’s wildcarding
mechanism, and TCAM entries are an expensive resource, whereas Ethernet forwarding uses
a simple hash lookup in a standard memory. It is certainly possible to increase the number of
TCAM entries, but only at the expense of space, power, and money.

Because OpenFlow rules are per-Ěow, rather than per-destination, each directly-connected
host will typically require an order of magnitudemore rules. Use of wildcards could reduce this
ratio, but this is oěen undesirable as it reduces the ability to implement Ěow-level policies (such
as multipathing) and Ěow-level visibility.
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• Controller overheads: Involving the controller in all Ěows creates a potential scalability prob-
lem: any given controller instance can support only a limited number of Ěow setups per second.
For example, Tavakoli et al. [ǉǉǌ] report that one NOX controller can handle “at least ǋǈK new
Ěow installs per secondwhile maintaining a sub-ǉǈms Ěow install time ...ĉe controller’s CPU
is the boĨleneck.” Kandula et al. [Ǐǎ] found that ǉǈǈK Ěows arrive every second on a ǉǍǈǈ-
server cluster, implying a need for multiple OpenFlow controllers.

Recently, researchers have proposed more scalable OpenFlow controllers. Maestro [Ǌǋ] is
amulti-threaded controller that can install about twice asmany Ěows per second asNOX,with-
out introducing additional latency. Others have worked on distributed implementations of the
OpenFlowcontroller (also valuable for fault tolerance)ĉese includeHyperFlow(Tootoonchian
andGanjali [ǉǉǍ]) andOnix (Koponen et al. [ǐǋ]).ĉese distributed controllers can only sup-
port global visibility of rare events such as link-state changes, and not of frequent events such as
Ěow arrivals. As such, they are not yet suitable for applications, such as Hedera [ǐ], which need
a global view of Ěow statistics.

ǎ.ǋ DevoFlow

We now sketch the design of DevoFlow, which avoids the overheads described above by introduc-
ing mechanisms for efficient devolved control (§ǎ.ǋ.ǉ) and statistics collection (§ǎ.ǋ.Ǌ). ĉen, we
end this section by discussing how to use DevoFlow to reduce use of the control-plane in traffic
engineering (§ǎ.ǋ.ǋ).

6.3.1 Mechanisms for devolving control

We introduce two new mechanisms for devolving control to a switch, rule cloning and local actions.

Rule cloning: Under standard OpenFlow, all packets matching a rule are treated as a single Ěow, so
the controller is not invoked for each microĚow arrival, where a microĚow is an end-to-end stream
that is uniquely identiėed by source IP address, destination IP address, transport protocol (such as
TCP), source port number, and destination port number. To gain greater visibility over each mi-
croĚow, rule cloning duplicates a wildcard rule for a microĚow, and insert a copy into the exact
match Ěow table, with the relevant details of themicroĚow ėlled out.ĉis allows counters to be col-
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lected on each microĚow matching the wildcard rule.

Local actions:CertainĚow-setupdecisionsmight requiredecisions intermediatebetween theheavy-
weight “invoke the controller” and the lightweight “forward via this speciėc port” choices offered by
standard OpenFlow. In DevoFlow, we envision rules augmented with a small set of possible “lo-
cal routing actions” that a switch can take without paying the costs of invoking the controller. If a
switch does not support an action, it defaults to invoking the controller, so as to preserve the desired
semantics.

Examples of local actions include multipath support and rapid re-routing:

• Multipath support gives the switch a choice of several output ports for a wildcard forwarding
rule. ĉe switch can then select, randomly from a probability distribution or round-robin, be-
tween these ports on eachmicroĚow arrival. Note that the output port for a microĚow remains
ėxed for the duration of that microĚow.ĉis keeps the microĚow’s packets on the same path to
prevent out of order packet delivery.

ĉis functionality is similar to equal-cost multipath (ECMP) routing; however, multipath
wildcard rules provide more Ěexibility. ECMP (ǉ) uniformly selects an output port uniformly
at random and (Ǌ) requires that the cost of the multiple forwarding paths to be equal, so it load
balances traffic poorly on irregular topologies. As an example, consider a topology with two
equal-cost links between s and t, but the ėrst link forwards at ǉ Gbps whereas the second has
ǉǈ Gbps capacity. ECMP splits Ěows evenly across these paths, which is clearly not ideal since
one path has ǉǈ times more bandwidth than the other.

DevoFlow solves this problem by allowing a clonable wildcard rule to select an output port
for amicroĚowaccording to someprobability distribution.ĉis allows implementation of obliv-
ious routing (see, e.g., [ǌǍ,ǐǉ]), where amicroĚow follows any of the available end-to-end paths
according to a probability distribution. Oblivious routing would be optimal for our previous
example, where it would route 10/11th of the microĚows for t on the ǉǈ Gbps link and 1/11th

of them on the ǉ Gbps link.

• Rapid re-routing allows switches to specify fallback rules if an output port fails.
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6.3.2 Efficient statistics collection

DevoFlow provides three different ways to improve the efficiency ofOpenFlow statistics collection.

Sampling: the sFlow protocol [ǌ] allows a switch to report the headers of randomly chosen packets
to amonitoring node—which could be theOpenFlow controller.ĉis imposes almost no extra load
on the network because only packet headers are sent to the monitoring node.

Triggers and reports: allows the controller to place push-based triggers on counters. When the
counter reaches a speciėed threshold, a report is sent to the controller.

Approximate counters: canbemaintained for allmicroĚows thatmatch awildcard forwarding table
rule. Such counters maintain approximate, space-efficient statistics for all microĚows forwarded by
this rule. Approximate counters can be implemented using streaming algorithms [ǌǎ,ǍǊ,Ǎǋ], which
are generally simple, use very liĨle memory, and identify the Ěows transferring the most bytes with
high accuracy. For example, Golab et al.’s algorithm [Ǎǋ] correctly classiėes ǐǈ–ǑǑƻof the Ěows that
transfer more than a threshold k of bytes. Implementing approximate counters in the ASIC is more
difficult thanDevoFlow’s othermechanisms; however, theyprovide amore timely and accurate view
of the network and can keep statistics on microĚows without creating a table entry per microĚow.

6.3.3 UsingDevoFlow for Ěow scheduling

All existingOpenFlow applications work unmodiėedwith the introduction of DevoFlow; however,
DevoFlow enables scalable implementation of these solutions by reducing the number of Ěows that
interact with the control-plane. Scalability relies on a ėnding a good deėnition of “signiėcant Ěows”
in a particular domain. ĉese Ěows should represent a small fraction of the total Ěows, but should
be sufficient to achieve the desired results. As an example, we show how to schedule Ěows for traffic
engineering with DevoFlow.

Flow scheduling does not scale well if the scheduler relies on visibility over all Ěows, as is done
in Hedera [ǐ] because maintaining this visibility via the network is too costly, as discussed in §ǎ.Ǌ
showed. Instead, we maintain visibility only over elephant Ěows, which is all that a system such as
Hedera actually needs. While Hedera deėnes an elephant as a Ěow using at least ǉǈƻ of a NIC’s
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bandwidth, we deėne one as a Ěow that has transferred at least a threshold number of bytes X . A
reasonable value for X is ǉ–ǉǈMB.

Our solution starts by initially routing incoming Ěows using DevoFlow’s multipath wildcard
rules; this avoids involving the control-plane in Ěow setup. We then detect elephant Ěows as they
reach X bytes transferred.We can do this using using any combination of DevoFlow’s statistics col-
lectionmechanisms. For example,we canplace triggers onĚow table entries,which generate a report
for a Ěow aěer it has transferred X bytes; We could also use sampling or approximate counters; we
evaluate each approach in §ǎ.ǌ.

Once a Ěow is classiėed as an elephant, the detecting switch or the sampling framework reports
it to the DevoFlow controller. ĉe controller ėnds the least congested path between the Ěow’s end-
points, and re-routes the Ěow by inserting table entries for the Ěow at switches on this path.

ĉe new route can be chosen, for example, by the decreasing best-ėt bin packing algorithm of
Correa and Goemans [ǋǊ]. ĉe algorithm’s inputs are the network topology, link utilizations, and
the rates and endpoints of the elephant Ěows. Its output is a routing of all elephant Ěows. Correa and
Goemans proved that their algorithms ėnds routings with link utilizations at most ǉǈƻ higher than
the optimal routing, under a traffic model where all Ěows can be rearranged. We cannot guarantee
this bound, because we only rearrange elephant Ěows; however, their theoretical results indicates
their algorithm will perform as well as any other heuristic for Ěow scheduling.

Finally, we note that this architecture uses only edge switches to encapsulate new Ěows to send
to the central controller. ĉe controller programs core and aggregation switches reactively to Ěow
setups from the edge switches. ĉerefore, the only overhead imposed is cost of installing Ěow table
entries at the the core and aggregation switches—no overheads are imposed for statistics-gathering.

ǎ.ǌ Evaluation

In this section, we present our simulated evaluation of DevoFlow.We show that it achieves the same
performance as ėne-grained, OpenFlow-based Ěow scheduler, but with far less overhead.
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Algorithm 5 — Flow rate computation.

Input: set of Ěows F and a set of portsP
Output: a rate r(f) of each Ěow f ∈ F

begin
Initialize: Fa = ∅; ∀f, r(f) = 0
Deėne: P .used() =

∑
f∈Fa∩P r(f)

Deėne: P .unassigned Ěows() = P − (P ∩ Fa)
whileP ̸= ∅ do

SortP in ascending order, where the sort key
for P is (P .rate−P .used())/|P .unassigned Ěows()|

P = P .pop front()
for each f ∈ P .unassigned Ěows() do

r(f) = (P.rate − P.used())/|P .unassigned Ěows()|
Fa = Fa ∪ {f}

end

6.4.1 Simulationmethodology

To evaluate DevoFlow on a large-scale network, we implemented a Ěow-level datacenter network
simulator. ĉis Ěuid model captures the overheads generated by each Ěow and the coarse-grained
behavior of Ěows in thenetwork.ĉesimulator is event-based, andwhenever a Ěow is started, ended,
or re-routed, the rate of all Ěows is recomputed using the algorithm shown in Algorithm Ǎ. ĉis
algorithm works by assigning a rate to Ěows traversing the most-congested port, and then iterating
to the next most-congested port until all Ěows have been assigned a rate.

We represent the network topologywith a capacitated, directed graph. For these simulations, we
used two topologies: a three-level Clos topology [ǋǈ] and a two-dimensionalHyperX topology [Ǐ].
In both topologies, all links were ǉ Gbps, and Ǌǈ servers were aĨached to each access switch. ĉe
Clos topology has ǐǈ access switches (each with ǐ uplinks), ǐǈ aggregation switches, and ǐ core
switches. ĉe HyperX topology is two-dimensional and forms a 9 × 9 grid, and so has ǐǉ access
switches, each aĨached to ǉǎ other switches. Since the Clos network has ǐ core switches, it is ǉ:Ǌ.Ǎ
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oversubscribed; that is, its bisection bandwidth is ǎǌǈ Gbps. bandwidth. ĉe HyperX topology is
ǉ:ǌ oversubscribed and thus has ǌǈǍ Gbps of bisection bandwidth.

ĉe Clos network has ǉǎǈǈ servers and the HyperX network has ǉǎǊǈ. We sized our networks
this way for two reasons: ėrst, so that the Clos and HyperX networks would have nearly the same
number of servers. Second, ourworkload is basedon themeasurements ofKandula et al. [Ǐǎ],which
are froma cluster of ǉǍǈǈ servers.We are not sure how to scale theirmeasurements up tomuch larger
data centers, so we kept the number of servers close to the number measured in their study.

We simulate the behavior of OpenFlow at switches by modeling (ǉ) switch Ěow tables, and (Ǌ)
the limited data-plane to control-plane bandwidth. Switch Ěow tables can contain both exact-match
and wildcard table entries. For all simulations, table entries expire aěer ǉǈ seconds. When a Ěow
arrives that does not much a table entry, the header of its ėrst packet is placed in the switch’s data-
plane to control-plane queue. ĉe service rate for this queue follows our measurements described
in Section ǎ.Ǌ, so it services packets at ǉǏMbps. ĉis queue has ėnite length, and when it is full, any
arriving Ěow that does not match a table entry is dropped. We experimented with different lengths
for this queue, and we found that when it holds ǉǈǈǈ packets, no Ěow setups were dropped. When
we set its limit to ǉǈǈ, we found that fewer than ǈ.ǈǉƻ of Ěow setups were dropped in theworst case.
For all results shown in this paper, we set the length of this queue to ǉǈǈ; we restart rejected Ěows
aěer a simulated TCP timeout of ǋǈǈ ms.

Finally, becausewe are interested inmodeling switch overheads, we do not simulate a boĨleneck
at the OpenFlow controller; the simulated OpenFlow controller processes all Ěows instantly. Also,
whenever the OpenFlow controller re-routes a Ěow, it installs the Ěow-table entries without any
latency.

Workloads

We consider two workloads in our simulations: (ǉ) a MapReduce job that has just gone into its
shuffle stage, and (Ǌ) a workload based on measurements, by Kandula et al. at Microsoě Research
(MSR) [Ǐǎ], of a ǉǍǈǈ-server cluster.

ĉeMapReduce-style traffic ismodeled by randomly selectingn servers to be part of the reduce-
phase shuffle. Each of these servers transfers ǉǊǐ MB to each other server, by maintaining connec-
tions to k other servers at once. Each server randomizes the order it connects to the other servers,
keepingk connections openuntil it has sent its payload. Allmeasurementswepresent for this shuffle
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Figure ǎ.ǉ:ĉroughput achievedby the schedulers for the shuffleworkloadwithn = 800 andk = 5.
OpenFlow-imposed overheads are not modeled in these simulations. All error bars in this paper
show ǑǍƻ conėdence intervals for ǉǈ runs.

workload are for a one-minute period that starts ǉǈ sec. aěer the shuffle begins.

In our MSR workload, we generated Ěows based on the distributions of Ěow inter-arrival times
and Ěow sizes in [Ǐǎ]. We aĨempted to reverse-engineer their actual workload from only two dis-
tributions in their paper. In particular, we did not model dependence between sets of servers. We
pick the destination of a Ěow by ėrst determining whether the Ěow is to be an inter- or intra-rack
Ěow, and then selecting a destination uniformly at random between the possible servers. For these
simulations, we generated Ěows for four minutes, and present measurements from the last minute.

Additionally, we simulated a workload that combines theMSR and shuffle workloads, by gener-
ating Ěows according to both workloads simultaneously. We generated three minutes of MSR Ěows
before starting the shuffle. We present measurements for the ėrst minute aěer the shuffle began.

Schedulers

We compare static routing with ECMP to Ěow scheduling with several schedulers.
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ĉeDevoFlow scheduler: behaves as described in Sec. ǎ.ǋ, and collects statistics using either sam-
pling or threshold triggers on multipath wildcard rules. ĉe scheduler might re-reroute a Ěow aěer
it has classiėed the Ěow as an elephant. New Ěows, before they become elephant Ěows, are routed
using ECMP regardless of the mechanism to detect elephant Ěows. When the controller discovers
an elephant Ěow, it installs Ěow-table entries at the switches on the least-congested path between
the Ěow’s endpoints. We model queueing of a Ěow between the data-plane and control-plane be-
fore it reaches the controller; however, we assume instantaneous computation at the controller and
Ěow-table installations.

For elephant detection, we evaluate both sampling and triggers.

Our Ěow-level simulation does not simulate actual packets, which makes modeling of packet
sampling non-trivial. In our approach:

ǉ. We estimate the distribution of packets sent by a Ěow before it can be classiėed, with less than
a ǉǈƻ false-positive rate, as an elephant Ěow, using the approach described by Mori et al. [ǐǏ].

Ǌ. Once a Ěow begins, we use that distribution to select how many packets it will transfer before
being classiėed as an elephant; we assume that all packets are ǉǍǈǈ bytes. We then create an
event to report the Ěow to the controller once it has transferred this number of packets.

Finally, we assume that the switch bundles ǊǍ packet headers into a single report packet before send-
ing the samples to the controller; this reduces the packet traffic without adding signiėcant delay.
Bundling packets this way adds latency to the arrival of samples at the controller. For our simula-
tions, we did not impose a time-out this delay. We bundled samples from all ports on a switch, so
when a ǉ Gbps port is the only active port (and assuming it’s fully loaded), this bundling could add
up to ǉǎ sec. of delay until a sample reaches the controller, when the sample rate is ǉ/ǉǈǈǈ packets.

Fine-grained control using statistics pulling: simulates using OpenFlow in active mode. Every Ěow
is set up at the central controller and the controller regularly pulls statistics, which it uses to schedule
Ěows so as tomaximize throughput. As with theDevoFlow scheduler, we route elephant Ěows using
Correa and Goeman’s bin-packing algorithm [ǋǊ]. Here, we use Hedera’s deėnition of an elephant
Ěow: one with a demand is at least ǉǈƻ of the NIC rate [ǐ]. ĉe rate of each Ěow is found using
AlgorithmǍon an ideal network; that is, each access switchhas an inėnite-capacity uplink to a single,
non-blocking core switch. ĉis allows us to estimate the demand of each Ěow when Ěow rates are
constrained only by server NICs and not by the switching fabric.

Following the OpenFlow standard, each Ěow table entry provides ǐǐ bytes of statistics [ǋ]. We
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collect statistics only from the access switches. ĉe ASIC transfers statistics to the controller at ǉǏ
Mbps, via ǉǍǈǈ-byte packets. ĉe controller applies the bin-packing algorithm immediately upon
receiving a statistics report, and instantaneous installs a globally optimized routing for all Ěows.

Wildcard routing: performs multipath load balancing possible using only wildcard table entries.
ĉis controller reactively installs wildcard rules to create a unique spanning tree per destination:
all Ěows destined to a server are routed along a spanning tree. When a Ěow is set up, the controller
computes the least-congested path from the switch that registered the Ěow to the Ěow’s destination’s
spanning tree, and installs the rules along this path.We simulated wildcard routing only on the Clos
topology, because we are still developing the spanning tree algorithm for HyperX networks.

Valiant loadbalancing (VLB): balances trafficby routingeachĚowthroughan intermediate switch
chosen uniformly at random; that switch then routes the Ěow on the shortest path to its destina-
tion [ǉǉǏ]. On a Clos topology, ECMP implements VLB.

Distributed greedy routing: routes each Ěow by ėrst greedily selecting the least-congested next-
hop from the access switch, and then using shortest-path routing.We simulate this distributed rout-
ing scheme only on HyperX networks.

6.4.2 Performance

Webegin by assessing the performance of the schedulers, using the aggregate throughput of all Ěows
in the network as our metric. Figure ǎ.ǉ shows the performance of the schedulers under various set-
tings, on a shuffleworkloadwithn = 800 servers and k = 5 simultaneous connections/server.ĉis
simulation did not model the OpenFlow-imposed overheads; for example, the ǉǈǈms pull-based
scheduler obtains all Ěow statistics every ǉǈǈms, regardless of the switch load.

We see that DevoFlow can improve throughput compared to ECMP by up to ǋǊƻ on the Clos
network and up to ǍǍƻ on the HyperX network. ĉe scheduler with the best performance on both
networks is the pull-based scheduler when it re-routes Ěows every ǉǈǈ ms. ĉis is not entirely sur-
prising, since this scheduler also has the highest overhead. Interestingly, VLB did not perform any
beĨer than ECMP on the HyperX network.

To study the effect of theworkloadon these results, we tried several values forn andk in the shuf-
Ěe workload and we varied the fraction of traffic that remained within a rack on theMSRworkload.
ĉese results are shown in Figure ǎ.Ǌ for the Clos topology and Figure ǎ.ǋ for the HyperX network.
Overall, we found that Ěow scheduling improves throughput for the shuffle workloads, even when
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the network has far more bisection bandwidth than the job demands.
For instance, with n = 200 servers, the maximum demand is Ǌǈǈ Gbps. Even though the Clos

network has ǎǌǈ Gbps of bisection bandwidth, we ėnd that DevoFlow can increase performance of
this shuffle by ǊǑƻover ECMP.We also observe that therewas liĨle difference in performancewhen
we varied k.

Flow scheduling did not improve the throughput of the MSR workload. For this workload, re-
gardless of the mix of inter- and intra-rack traffic, we found that ECMP achieves Ǒǈƻ of the optimal
throughputǉ for this workload, so there is liĨle room for improvement by scheduling Ěows.We sus-
pect that a beĨermodel than our reverse-engineered distributions of theMSRworkloadwould yield
different results.

Because of this limitation, we simulated a combination of the MSR workload with a shuffle job.
Here, we see improvements in throughput due to Ěow scheduling; however, the gains are less than
when the shuffle job is ran in isolation.

6.4.3 Overheads

We used the MSR workload to evaluate the overhead of each approach because, even though we
do not model the dependence between servers, we believe it gives a good indication of the rate of
Ěow initiation. Figure ǎ.ǌ shows, for each scheduler, the rate of packets sent to the controller while
simulating the MSR workload.

Load at the controller should scale proportionally to the number of servers in the datacenter.
ĉerefore, when using an OpenFlow-style pull-based scheduler that collects stats every ǉǈǈms, in a
large datacenter with ǉǎǈK servers, wewould expect a load of about Ǌ.ǑMpackets/sec., based on ex-
trapolation fromFigure ǎ.ǌ.ĉiswoulddrop toǏǏǍKpackets/sec. if stats are pulledonceper second.
We are not aware of any OpenFlow controller that can handle this message rate; for example, NOX
can process ǋǈK Ěow setups per second [ǉǉǌ]. A distributed controller might be able to handle this
load (whichwould require up to ǑǐNOXcontrollers, assuming they canbeperfectly distributed and
that statistics are pulled every ǉǈǈ ms), but it might be difficult to coordinate so many controllers.

Figure ǎ.Ǎ shows the number of Ěow table entries at any given access switch, for theMSRwork-
load and various schedulers. For these simulations, we timed out the table entries aěer ǉǈ sec. As ex-
pected,DevoFlowdoes not requiremany table entries, since it uses a singlewildcard rule for allmice

ǉWe found the optimal throughput by aĨaching all servers to a single non-blocking switch.
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Ěows, and stores only exact-match entries for elephant Ěows. ĉis does, however, assume support
for the multipath routing wildcard rules of DevoFlow. If rule cloning were used instead, DevoFlow
would use the same number of table entries as the pull-basedOpenFlow scheduler because it would
clone a rule for each Ěow. ĉe pull-based scheduler uses an order of magnitude more table entries,
on average, than DevoFlow.

We estimated the amount bandwidth required between a switch’s data-plane and control-plane
when statistics are collected with a pull-based mechanism. Figure ǎ.ǎ shows the bandwidth needed
so that the ǑǍth and ǑǑth percentile Ěow setup latencies on the MSR workload are less than Ǌms.
Here, we assume that the only latency incurred is in the queue between the switch’s data-plane and
control-plane; we ignore any latency added by communicationwith the controller.ĉat is, the ėgure
shows the service rate needed for this queue, in order tomaintain a waiting time of less than Ǌms in
the ǑǍth and ǑǑth percentiles.ĉedata to control-plane bandwidth sufficient for Ěow setup is directly
proportional to this deadline, so a tighter deadline of ǉ ms needs twice as much bandwidth tomeet.

ĉe scale on the right of the chart normalizes the required data-to-control-plane bandwidth to a
switch’s total forwarding rate (which in our case is Ǌǐ Gbps, because each ToR switch has Ǌǐ gigabit
ports). For ėne-grained (ǉǈǈ ms) Ěow management using OpenFlow, this bandwidth requirement
would be up to ǈ.Ǐƻ of its total forwarding rate. Assuming that the amount of control-plane band-
width needed scales with the forwarding rate, a ǉǌǌ-port ǉǈ Gbps switch needs just over ǉǈ Gbps
of control-plane bandwidth to support ėne-grained Ěow management. We do not believe it is cost-
effective to provide so much bandwidth, so DevoFlow’s statistics-collection mechanisms are the
beĨer option because they are handled entirely within the data-plane.
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Figure ǎ.Ǌ: Aggregate throughput of the schedulers on theClos network for differentworkloads. For
the MSR plus shuffle workloads, ǏǍƻ of the MSR workload-generated Ěows are inter-rack.
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Figure ǎ.ǋ: Aggregate throughput of the schedulers on theHyperX network for different workloads.
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Figure ǎ.ǌ:ĉe number of packet arrivals per second at the controller using the different schedulers
on the MSR workload.

Figure ǎ.Ǎ:ĉe average andmaximumnumber of Ěow table entries at an access switch for the sched-
ulers using the MSR workload.
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Figure ǎ.ǎ: ĉe control-plane bandwidth needed to pull statistics at various rates so that Ěow setup
latency is less than Ǌms in the ǑǍth and ǑǑth percentiles. Error bars are too small to be seen.
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Conclusions

Large-scale datacenters are now an integral part of the Internet. ĉey host services that billions of
people depend on in their daily lives, power the world’s ėnancial markets, and store our collective
human history. ĉis new “computer” is different than previous computer architectures. Because it
uses distributed nodes for computation and storage, the network is needed to share state and data
between these nodes.

In this dissertation, we showed that the network topology can make a signiėcant impact on the
cost of a datacenter.We found theory and algorithms to help operators design cost-effective, hetero-
geneous topologies.Weproposed the heterogeneousClos topology and found an algorithm to com-
pute agility on arbitrary topologies. We designed, implemented, and evaluated two datacenter de-
sign frameworks: LEGUP and REWIRE. By generalizing the deėnition of a Clos network, LEGUP
can reduce the cost of DCN upgrades and expansions by a factor of Ǌ. And by using unstructured
topologies, REWIRE is able to designDCNswith only ǉǈƻof the cost of previous solutions in some
scenarios. Because capital expenditure is the bulk of the cost of a DCN, these tools make it possible
to signiėcantly reduce the cost of operating a datacenter network.

To achieve these results, REWIRE relies on unstructured networks, rather than the topology-
constrainednetworksmost existingdatacenter use.REWIREdemonstrates that arbitrary topologies
can boost DCN performance while reducing network equipment expenditure. Traditionally DCN
design has restricted the topology to only a few classes of topologies, because it is difficult to operate
an arbitrary topology in a high-performance environment. ĉese difficulties have been mitigated
by recent work [ǊǏ, ǐǐ, ǉǈǋ], so it may be time to move away from highly regular DCN topologies
because of the performance beneėts arbitrary topologies offer.

We also showed that dynamic load balancing can improve the performance of a DCN. Even
though a Clos topology is well-suited to randomized load balancing, we found that the aggregate
throughput of some workloads can be increased ǌǈƻ by dynamically scheduling Ěows. However,
dynamic load balancing is challenging in DCNs, because of their scale and workloads. ĉerefore, it
is important to identify and manage elephant Ěows to keep the load balancing problem tractable.
ĉe previous approaches for elephant Ěow detection are based onmonitoring the behavior of Ěows
in the network and hence incur long detection times, high switch resource usage, or high control
bandwidth and processing overhead. In contrast, we proposed and evaluated a low-overhead end-
host-based mechanism for elephant Ěow detection. Our datacenter traffic management system Ma-
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hout is based on this idea, and as a result, it incurs an order of magnitude lower controller overhead
than other approaches. Finally, we demonstrated that DevoFlow can also reduce the overheads of
DCNtrafficengineeringby at least anorder ofmagnitudewithout adversely impactingperformance.
UnlikeMahout, the DevoFlow approach does not need tomodify end-hosts, because it adds mech-
anisms to switches to lower the overheads of centralize Ěow management.

While we have addressed several challenges in this dissertation, several challenges remain open.
Broadly, we believe that the most important DCN challenges are to: (ǉ) Design and implement
an agile, scalable, Ěexible, resilient, and manageable network for future datacenters. (Ǌ) Accurately
model datacenter capex and opex. Cabling andmanagement seem to be the big unknowns here. (ǋ)
Understand the requirements of and design inter-datacenter networks.

More speciėcally, the following are steps that could be taken to extend the results of this disser-
tation.

Datacenter design

• Fullyunderstanddatacenterdesignandexpansion.Developaholistic viewofdatacenter growth.
ĉis should incorporate the cost of servers, electricity, network, and storage. Ideally, the model
should incorporate trends in device prices.

• Introduce an accurate cost model for links. For example, our cost model did not take into ac-
count “bundling” of links, where a group of links is bundled together, reducing the cost of in-
stalling any single link in the bundle.

• Design an optimization framework to design any Clos network conėguration. Such a frame-
work would extendMudigonda et al.’s framework that ėnds ǋ-level, homogeneous Clos topolo-
gies [ǐǑ]. More generally, we believe it would be interesting to incorporate output topology
constraints into REWIRE’s optimization algorithm. ĉis would allow operators to constrain
REWIRE’s output to a family of topologies (e.g., Clos, fat-tree , BCube or HyperX).

• Improve the deėnition of network Ěexibility used by LEGUP. ĉe current deėnition is expen-
sive to compute and it is unclear if our metric accurately captures Ěexibility.

• Improve the deėnition of network reliability used by LEGUP andREWIRE. Ideally, thismetric
should capture the agility of the network aěer a failure.

• Determine the gap between optimal and LEGUP’s results as a network is incrementally ex-
panded. Further, the gap between LEGUP and the optimal network constructed with the same
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budget is unknown.

• Find a connection between the expansion properties (such as its spectral gap) of a network and
its bisection bandwidth or agility.

• Extend REWIRE’s simulated annealing algorithm so that it can design topologies from a class
of topologies (for example, any BCube topology).

• Improve REWIRE so that is is scalable and less computationally expensive. One idea to speed
computation is to implement dynamic all-pairs shortest-path (APSP) algorithms (such as [ǌǑ,
ǌǈ], which speed up APSP computations performed on a graph with dynamic edge weights.

DCNmanagement

• Even on a regular topology such as a Clos network, debugging network problems is extremely
difficult. Ideally, a solution to this challenge is not dependent on topology.

• Determine the performance gains from dynamic Ěow scheduling with real DCN workloads.
WithMahout andDevoFlow,we reverse-engineered aworkload frompublishedmeasurements.

• Build other applications on top of DevoFlow. For example, it may be possible to perform, scal-
ablequalityof service (QoS),multicast, routing-as-a-service [Ǌǎ], networkvirtualization [ǉǈǑ],
and energy-aware routing [ǎǌ] with DevoFlow.

ĉese are just a few of the open challenges that remain to fully understand datacenter networks.
Datacenter-scale computing is still in its infancy, andmuchwork remains tomake this newcomputer
easier and less expensive to build, operate, and manage.
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