Reducing the Cost of Operating a

Datacenter Network

by

Andrew R. Curtis

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science
Waterloo, Ontario, Canada, 2012

Some rights reserved.

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Un-

ported License. For details of thislicense, see http://creativecommons.org/licenses/by-nc-sa/
3.0/.

ii

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Abstract

Datacenters are a significant capital expense for many enterprises. Yet, they are difficult to manage and are
hard to design and maintain. The initial design of a datacenter network tends to follow vendor guidelines,
but subsequent upgrades and expansions to it are mostly ad hoc, with equipment being upgraded piece-
meal after its amortization period runs out and equipment acquisition is tied to budget cycles rather than
changes in workload. These networks are also brittle and inflexible. They tend to be manually managed,
and cannot perform dynamic traffic engineering.

The high-level goal of this dissertation is to reduce the total cost of owning a datacenter by improving
its network. To achieve this, we make the following contributions. First, we develop an automated, theo-
retically well-founded approach to planning cost-effective datacenter upgrades and expansions. Second,
we propose a scalable traffic management framework for datacenter networks. Together, we show that

these contributions can significantly reduce the cost of operating a datacenter network.

To design cost-effective network topologies, especially as the network expands over time, updated
equipment must coexist with legacy equipment, which makes the network heterogeneous. However,
heterogeneous high-performance network designs are not well understood. Our first step, therefore, is
to develop the theory of heterogeneous Clos topologies. Using our theory, we propose an optimization
framework, called LEGUP, which designs a heterogeneous Clos network to implement in a new or legacy
datacenter. Although effective, LEGUP imposes a certain amount of structure on the network. To deal
with situations when this is infeasible, our second contribution is a framework, called REWIRE, which
using optimization to design unstructured DCN topologies. Our results indicate that these unstructured

topologies have up to 100-500% more bisection bandwidth than a fat-tree for the same dollar cost.

Our third contribution is two frameworks for datacenter network traffic engineering. Because of the
multiplicity of end-to-end paths in DCN fabrics, such as Clos networks and the topologies designed by
REWIRE, careful traffic engineering is needed to maximize throughput. This requires timely detection
of elephant flows—flows that carry large amount of data—and management of those flows. Previously
proposed approaches incur high monitoring overheads, consume significant switch resources, or have
long detection times. We make two proposals for elephant flow detection. First, in the Mahout frame-
work, we suggest that such flows be detected by observing the end hosts’ socket buffers, which provide
efficient visibility of flow behavior. Second, in the DevoFlow framework, we add efficient stats-collection
mechanisms to network switches. Using simulations and experiments, we show that these frameworks
reduce traffic engineering overheads by at least an order of magnitude while still providing near-optimal

performance.

iii

Acknowledgements

First and foremost, I thank my advisers S. Keshav and Alex Lopez-Ortiz. Their advice and guidance
over the years has shaped me into the researcher I am today. Their lessons will forever change the
way I think and act. This dissertation could not have been written without their mentorship. I espe-
cially appreciate Keshav’s detailed comments on all my work. This feedback has greatly improved my
research. I thank Alex for his guidance bridging the gap between theory and systems, for pushing me
to understand networks from both theoretical and systems perspectives. Chapters 3 and 4 describe

work done in collaboration with Alex and Keshav.

Praveen Yalagandula at HP Labs, Palo Alto, also mentored me during much of this research.
Many others at HP Labs also played a role in this thesis, including: Jeff Mogul, Jean Tourrilhes,
Puneet Sharma, and Sujata Banerjee. This group of people taught me how to find research problems
in practical, operational issues. Crucially to this dissertation, they helped me understand how real
datacenters operate. Chapter 6 presents work I did in collaboration with this group. Chapter 5 was
also written during my time at HP Labs. It presents the results of a collaboration between Praveen

Yalagandula, Wonho Kim, and myself.

Others have played arole in this research as well. lam indebted to Tommy Carpenter and Mustafa
Elsheikh, who also collaborated on the results described in Chapter 4. I appreciate the many discus-
sions on this work I've had with others, especially other graduate students at Waterloo. I am espe-
cially grateful to my fellow students in the ISS4E group for beneficial discussions and comments.

I thank my committee members Ant Rowstron, Jochen Koenemann, Ken Salem, and Bernard
Wong. These people pushed me to improve this dissertation by clarifying details and developing a
deeper understanding of the theory behind network design and routing.

I thank Bryan Shader for introducing me to research during my undergraduate studies. T had not
considered attending graduate school before my experience conducting research under his guidance.
This opportunity put me on the path to this dissertation.

Finally, I thank my partner Bryanne Myers for her continued support over the years. Thanks for
helping me through this journey!

The results that make up this dissertation have been previously published. Chapter 3 was originally
published as reference [36]. Chapter 4 was published as [35]. Chapter 5 was published as [34]. And,
chapter 6 was published as [38].

iv

Table of Contents

List of Tables
List of Figures
1 Introduction
1.1 Introduction
1.2 Datacenter Applications
1.2.1 Interactive applications . . .
1.2.2 Batchjobs
1.2.3 Distributed file systems . . .
1.3 Datacenter Network Goals
1.4 Contributions
2 Related work
2.1 Workloads in datacenter networks . .
2.2 Topologydesign
2.2.1 Clos network and the fat-tree
222 HyperX
223 DCell
224 BCube
2.2.§ MDCube

ix

©

- R SN

10

2.2.6 Heterogeneous topology constructions

2.3 Loadbalancing.
2.3.1 Obliviousloadbalancing,
2.3.2 Reactiveflowscheduling
2.3.3 Onlinescheduling
2.3.4 End-host-basedloadbalancing,
2.4 Configuration
2.4.1 Automatic assignment ofaddresses L L
2.4.2 Reducing cabling complexity,
2.5 OpenFlow e

LEGUP: Designing Heterogeneous, Tree-like Datacenter Networks

3.1 Introduction e e
3.2 DefiningtheProblem,
3.2.1 Workloadassumptions L Lo Lo L
3.2.2 Switches, linksandend-hosts
3.2.3 DCN performance: what’s important to applications?
3.2.4 Costmodel e
3.2.5 Placingequipmentinadatacenter
3.3 LEGUP Overview i e e e e e e e e e e e e
3.3.1 Optimizationgoals o
3.3.2 Inputs, Constraints, and Outputs
3.3.3 The LEGUP optimization algorithm
3.3.4 Whynaive solutionsarentenough
3.4 Theory of Heterogeneous Clos Networks
3.4.1 TheClosnetwork
3.4.2 Constructing heterogeneous Closnetworks
3.5 LEGUPDetails e e

Vi

29

3.5.1 Boundingacandidatesolution 46

3.5.2 Findingasetofcoreswitches 48
3.5.3 Mapping aggregation switches to racks and ToR switches 51
3.5.4 Computing the performance ofasolution 51
3.6 Evaluation e e e e 52
3.6.1 Input 53
3.6.2 Alternative upgradeapproaches 55
3.6.3 Upgradingthedatacenter 56
3.6.4 Expandingthedatacenter 58
3.7 Discussion e e e e e e 60
REWIRE: Designing Unstructured Datacenter Networks 62
4.1 Introduction e e 63
42 REWIREAlgorithm 64
4.2.1 Optimization problem formulation 64
4.2.2 Local SearchApproach 66
4.2.3 Addingswitchestothenetwork 73
4.3 EBvaluation e 73
43.1 Inputs. 73
4.3.2 Comparisonapproaches oL 75
433 REWIREsettings. 76
4.3.4 Greenfieldnetworks 77
43.5 Upgrading 79
43.6 Expanding 80
4.3.7 Quantitativeresults 83
4.4 Operatingan Unstructured DCN 83
4.5 Discussion e e e e e e e e e e e e e 84

vii

s Datacenter Network Traffic Engineering with Mahout 86

5.1 Introduction oL e e e e e e 87

s2 Background 89
5.2.1 Datacentertraffic e 89

s.2.2 Identifyingelephantflows L., 89

5.3 OurSolution: Mahout. e 90
5.3.1 Detecting ElephantFlows 91

§.3.2 In-bandSignaling. L o o oo 93

5.3.3 MahoutController 94

5.3.4 Discussion e e e e e e e e 95

5.4 Analytical Evaluation 97

s.s Experiments 99
5.5.1 Simulations e 99

5.5.2 Prototype & Microbenchmarks 10§

6 Traffic Engineering with DevoFlow 106
6.1 Introduction e e 107

6.2 OpenFlowOverheads 109

6.3 DevoFlow e e 111
6.3.1 Mechanisms for devolvingcontrol 0 ... 111

6.3.2 Efficientstatisticscollection 113

6.3.3 Using DevoFlow for flowscheduling 113

6.4 EBvaluation e e e 114
6.4.1 Simulationmethodology 115

6.4.2 Performance e 119

6.4.3 Overheads e 120

» Conclusions 126
References 130

viii

List of Tables

3.2

4.1
4.2
4.3

Cost breakdown the components of a datacenter. These numbers are taken from [57]. 10

Existing switches in the scaled-up SCS datacentermodel. 54

Switches used as input in our evaluation. Prices are street and power draw estimates
are based on a typical switch of the type for the generic models or manufacturers

estimates, except for the HP 5400 line cards, which are estimates based on the watts

used per port on the otherswitches. 55
Existing switches in the SCS datacentermodel. 74
Prices of cables and the cost to install ormove cables. 75

Switches used as input in our evaluation (prices are the same as in Section 3.6).
Prices are representative of street prices and power draw estimates are based on a

typical switch of the type according to manufacturers’ estimates. 75

Parameters and typical values for the analytical evaluation 98

ix

List of Figures

2.3

2.4
2.5

3.2

33

3.4

3.5
3.6

Taxonomy of datacenter network solutions. Our contributions are shown in bold

typeface. 14
Ai1+i1redundanttree. e e 15

Atleftis a 3-stage, unfolded Clos network. At right is a folded [-stage Clos network.

Each IO switch is a subnetwork with [— 2stages. 16
A 2-dimensional HyperX topologywith / = (5,3). 17
ABCube(1) constructionwithn =4. 19
The LEGUP optimization algorithm. 34

An [-stage Clos network. Each IO node here is a subnetwork with [— 2 stages. In
(b), each logical edge represents m physical links and the logical root represents m

switches,eachwithrports. o 37

Three optimal logical topologies for the given 10 nodes. The numbers in the 10
nodes indicate the rate of each node. We have shown one optimal edge capacity as-
signment for each topology; however, Figures (b) and (c) each have many optimal

edge capacity assignments thatarenotshown. 39

Examples of physical realizations of the logical topologies shown in Figure 3.3.
Here, the thickness and color of each link indicates its capacity, which is shown

inthelegend nexttoeachnetwork. 43
Layout of the SCS datacenter. Arrows show the direction of airflow 53

Performance of the upgrade approaches for various budgets. Here, we have o, =

af=0a,=1andd=0.10. o 57

3.7

3.8

4.2
4.3

4.4
4.5

5.1
5.2

53
5-4

S-S

5.6

Performance of a fat-tree built with 1 Gbps or 10 Gbps links compared to LEGUP
with a budget of $200K and various link costs. Throughout, the prices of switches

are fixed, and the cost to install a link is varied from s—10o0dollars.

Agility as additional racks of servers are added to the datacenter. Each point is
found by increasing agility as much as possible given a budget of $300,000 and

the previous iteration as the existingnetwork.

Results of designing greenfield networks for 3200 servers using a fat-tree, random
graph and REWIRE for two ToR switch types. The results on the left used ToR
switches with 48 1 Gbps ports and the results on the right used ToR switches with
48 1 Gbps ports and 4 10 Gbps. Missing bars for the random graph indicate that
the network s expected to be disconnected. A network with agility 1 has full agility,
and a network with diameter 1 is fully connected.
Results of upgrading the SCS topology with different budgets and algorithms.
Results of upgrading the SCS topology with different REWIRE modes and two
budgets.
Results of iteratively expanding the SCS datacenter.

Results of iteratively expanding a greenfield network.

Mahout architecture. e

Amount of data observed in the TCP buffers vs. data observed at the network layer

foraflow..
An example flow table setup at a switch by the Mahout controller.

Throughput results for the schedulers with various parameters. Error bars on all

charts show 95% confidenceintervals.

Number of packets sent to controller by various schedulers. Here, we bundled sam-
ples together into a single packet (there are 25 samples per packet)—each bundle

of samples counts as a single controllermessage.

Average and maximum number of flow table entries at each switch used by the

schedulers.

xi

58

78
79

81
82

92
94

102

6.2

6.3

6.4

6.5

6.6

Throughput achieved by the schedulers for the shuffle workload with n = 800 and
k = 5. OpenFlow-imposed overheads are not modeled in these simulations. All

error bars in this paper show 95% confidence intervals for 1oruns.

Aggregate throughput of the schedulers on the Clos network for different work-
loads. For the MSR plus shuffle workloads, 75% of the MSR workload-generated

flows areinter-rack. e e

Aggregate throughput of the schedulers on the HyperX network for different work-

The number of packet arrivals per second at the controller using the different sched-
ulersonthe MSRworkload. L

The average and maximum number of flow table entries at an access switch for the
schedulers using the MSRworkload.

The control-plane bandwidth needed to pull statistics at various rates so that flow
setup latency is less than 2ms in the 95™ and 99™ percentiles. Error bars are too

smalltobeseen. e

xii

Chapter 1

Introduction

1.1 Introduction

The scale of today’s datacenters is unprecedented. Large datacenters contain §0,000-250,000 servers
and consume up to 60 MW of power. Applications running on these datacenters operate at massive
scale by distributing their workloads across the many available servers. For example, distributed file
systems such as Google File System (GFS) [51] and Hadoop Distributed File System (HDFS) [61]
provide efficient, scalable, and reliable access to data and applications like MapReduce [39] and
Dryad [74] allow one to distribute computation across thousands of servers. Because these systems
are distributed, they all rely on the network. However, network architectures have previously not

been designed to interconnect hundreds of thousands of high-performance hosts.

First-generation datacenter network (DCN) architectures were based primarily on enterprise
network architectures. These proved to be inadequate for large-scale datacenters, because of scaling
and performanceissues [55]. ADCN must connect hundreds of thousands of end-hosts and provide
up to petabits of bisection bandwidth* between them. Guidelines from equipment vendors, such as
Cisco [29], arrange the DCN topology as a 1+1 redundant tree*. Doing so results in underprovi-
sioned networks—Microsoft researchers [55] have found links with a 1:240 oversubscription ratio
in their datacenters! Such high levels of oversubscription are appropriate for enterprise networks,
but not for high-performance networks like DCNs. Oversubscribed links limit server utilization be-
cause they restrict service agility—the ability to assign any server to any service [57]. Underprovi-
sioned networks also are a bottleneck in modern distributed applications such as MapReduce [39],

Dryad [74], partition-aggregate applications such as search [11], and scientific computing.

Because of these high-performance demands, researchers have proposed DCN architectures,
that provide up to full bisection bandwidth and can scale to hundreds of thousands of servers, e.g.,
[10,33,55,59, 60, 123]. They achieve this by using high-performance topology constructions and
custom addressing, routing, and load-balancing schemes. For example, VL2 [55] requires a Clos
topology, CamCube [33] requires a 3D torus topology, and BCube [59] requires a BCube topol-
ogy. (Details are in Chapter 2.) The topologies used by these DCN architectures are prescriptive

' A bisection of a network is a partition of its nodes into disjoint sets of equal size, say (S, S’). This is also called
a cut. The bandwidth across this cut is the sum of link bandwidths for links with one endpoint in .S and the other in
S’. A network where the bandwidth of all bisections is equal to half the number of servers is said to have full bisection
bandwidth.

*A 1+1 redundant tree is a topology that consists of two identical, disjoint trees. The second tree provides connec-
tivity in the event of a single failure

constructions, that is, the topology is defined by a small set of inputs, typically the switch radix (i.e.,
the number of ports per switches) and a number of recursive levels. Additionally, the load balancing
schemes used by some of these architectures (such as VL2’s randomized load balancing, which ran-
domly selects a path for a flow), are not effective for some workloads. For example, Al-Fares et al. [8]
found that dynamic load balancing can improve aggregate throughput up to 100% versus VL2’s ran-

domized load balancing for some workloads on a fat-tree topology.

Because these architectures rely on custom topologies, they are best suited for “greenfield”, or
new, datacenters. Even if a DCN was built for a specific architecture, it can be challenging to expand
orupgrade these networks since they are regular, prescribed constructions. Therefore, we investigate
new DCN topologies—ones that support heterogeneous switch radices and link rates. To support
heterogeneous switch types, we developed the theory of heterogeneous Clos networks, which gen-
eralizes the Clos network. To automate the design of these topologies, we developed an optimiza-
tion framework called LEGUP (Chapter 3). Because the heterogeneous Clos network still imposes
structure on the topology, we then initiated the study of unstructured DCN topologies. We present
our optimization framework for unstructured DCN design, called REWIRE, in Chapter 4. Overall,
we find that unstructured networks can significantly outperform networks that are based on regular

topology constructions.

A DCN needs a large bisection bandwidth to increase service agility, but it also needs load bal-
ancing to enable the use of the full bisection bandwidth. Because DCN topologies contain numer-
ous end-to-end paths for each pair of endpoints, traffic engineering can often improve the aggregate
throughput by dynamically pinning flows to paths. In prior work, Al-Fares et al. proposed a system
for dynamic DCN traffic engineering called Hedera [8]. They showed that Hedera can improve net-
work performance significantly; however, their approach relies on OpenFlow [85], which has scal-
ingissues as summarized in Section 6.2. Therefore, we study low-overhead DCN traffic engineering.
We study the problem from two angles. First, we introduce a traffic engineering framework, named
Mahout, that uses a low-overhead shim in the end-host’s network stack to classify elephant flows,
which are long-lived, high-throughput flows. These elephant flows are then dynamically monitored
and routed by a centralized controller. Mahout is described in Chapter 5. Finally, we evaluate the
effectiveness of using DevoFlow [86, 38], a modification of the OpenFlow framework that reduces

OpenFlow’s overheads. These results are described in Chapter 6.
LEGUP and REWIRE significantly reduce datacenter capital expenses. Recent estimates peg the

capital cost of networking equipment—switches, routers and load balancers—at 5—15% of the total

monthly budget of a typical datacenter [57, 62]. Therefore, reducing network capital expenditure
can significantly reduce a datacenter’s total cost of ownership. For example, REWIRE can save up to

$3 million per year in a typical datacenter with 50K servers.

Further, increasing datacenter service agility allows for a higher peak server utilization. Ifa 50K-
server datacenter has a peak server utilization of 40% and this could be improved to 80% by providing
better load balancing in the network or upgrading it, then the datacenter operator could cut the
number of servers they deploy in half. As servers represent 45-60% of the datacenter’s overall cost,

reducing their expense is crucial to overall cost reduction.

Before discussing related work in the next chapter, we describe (1) typical datacenter applica-

tions, (2) the characteristics of an ideal DCN, and (3) the contributions of this dissertation.

1.2 Datacenter Applications

To understand the requirements of a datacenter network, we first need to understand the load appli-
cations place on the network. Applications in the datacenter broadly fall into two categories: inter-

active or batch. Both are typically built on top of a distributed file system, which we describe below.

1.2.1 Interactive applications

Interactive application need fast response times to keep users engaged. Examples of interactive ap-
plications include: search, web, games, and messaging. Adding 100s of milliseconds of latency to
response times has been shown to decrease website usage [108]; therefore, interactive datacenter

applications need to respond to queries as quickly as possible.

To minimize response times, it is common for computation-heavy applications (such as search)
to use a partition-aggregate computation model. Under this model, computation is partitioned across
many end-hosts (up to thousands of servers), and then their responses are aggregated by a few ma-
chines. To satisfy end-user SLAs, a typical queryresolved by a partition-aggregate computation must
be answered within a deadline of 200 ms or less [11]. To achieve this, an aggregator partitions the
query and assigns a task to each worker. Each worker is given a deadline of 10—100 ms to complete
their task. If a deadline is missed, the aggregator ignores that response, lowering the quality of the

result3.

3Partition-aggregate workloads cause another problem: incast, a form of congestion collapse that occurs when

Other common interactive applications include web and data-transfer services. Both are well-
suited to distributed implementations. Because modern web services are typically implemented
with a tiered architecture, they create intra-datacenter network traffic as well as egress traffic that
leaves the datacenter. These egress flows tend to consist of mostly “mice” flows, that is, very short-
lived flows, and have few “elephant” or long-lived flows [14]. Data-transfer services, such as video
and music streaming services, tend to create elephant flows; however, it is often acceptable for these
flows to have have a relatively low throughput. This happens if, for example, the bit rate of an au-
dio file is 128 Kb/s. In this case, the file only needs to be sent at 128 Kb/s since the user listens in

real-time to the audio.

1.2.2 Batchjobs

Many datacenter applications are batch jobs. That is, their results are not needed within a strict time
limit. For example, an application that analyzes log files to learn user behavior characteristics is a
batch job, because its results are not immediately needed by a user. A few other types of batch jobs

include:

e Analytics

Analyzing user behavior

Machine learning

Data mining

Natural language processing

Log analysis

Image analysis

The use of distributed, data-flow computation frameworks (such as [39, 74, 126]) make it easy to

implement these types of jobs at huge scale.

For example, frameworks that implement MapReduce [39] require that developers implement
a “map” function and a “reduce” function. When the job is executed, the MapReduce system divides
the input across workers and executes the map function in parallel. Once complete, the results of

the map phase are sent to all the reduce-phase workers, where the reduce function is executed in

many workers reply simultaneously to an aggregator. This behavior has prompted the study of DCN-specific TCP

variants [11,118,122]

parallel. Doing so puts a highload on the network, and if the network does not have enough bisection
bandwidth, it can be a bottleneck in a job’s run-time [13]. In general, batch jobs can create huge

amounts of network traffic, because they may process terabytes, or more, of data.

1.2.3 Distributed file systems

To provide high availability and scalability, storage in the datacenter is often provided by a dis-
tributed file system (DFS), which allows any server to access the data stored at any other server
in a transparent, scalable way. Google has described their proprietary DFS, called the Google file
system [51], and the Hadoop distributed file system (HDFS) [6] is a popular open source imple-

mentation.

Because a DFS allows servers to access remote data, this type of file system can heavily utilize
the network if applications do not take data locality into account when making scheduling decisions.
Additionally, a DFS can place load on the network when replicating data. Typical DES implementa-
tions maintain at least three copies of each data block, so if one of these copies fails, the DES creates

another replicate.

1.3 Datacenter Network Goals

An ideal DCN should be agile, scalable, flexible, resilient, manageable and cost-effective. We now

describe each of these traits in detail.

Agile

The switching fabric is never the limiting factor in the transmission rate between end-hosts in an
ideal DCN. The end-hosts’ network interface cards (NICs) are the only limitation on transmission
rates in such a network. Therefore, we would like to define network agility so that it measures a
network’s ability to handle any possible workload. A network with full agility can handle any traffic

matrix feasible under the server NIC rates. A more precise definition is given shortly.

At first blush, this goal sounds extreme. However, it is motivated by the available DCN measure-
ment studies. From them, we know that DCN workloads exhibit a high degree of variance [76, 18,

55,17]. In a 24 hour time period, there can be an order of magnitude difference between the peak

and minimum load in the DCN [66]. The network needs enough capacity to handle the peak load,
and it needs to be flexible enough to cope with future workloads. DCN traffic is also unpredictable
over short periods [76, 17]. Full details of DCN traffic are given in Section 2.1.

To precisely define network agility, we need to introduce a couple of terms. A network can fea-
sibly route a traffic matrix (TM) if there exists a routing of the traffic demands such that no link’s
utilization is greater than 1. Note that we assume multipath routing, which means that the traffic
from node s to node ¢ can be split across multiple paths. Mathematically, if the NIC rate of server ¢
is given by 7(7), then a hose TM 7" has:

D iy <r(i) and Yty < r(i)

jEV jev
where V is the set of all servers and ¢, is the ¢-j entry in the TM T". The set of all hose TMs is known
as the set of hose traffic matrices and this model is known as the hose model [43]. The hose traffic
matrices form a polyhedron, and we denote them by 7. Now, we can define a network with full

agility as one that can feasibly route all hose traffic matrices.

Some networks may only be able to route a scaled version of the worst-case TM. Therefore, the
agility of a network G is the maximal value A such that A - 7" can be feasibly routed for all T € 7,
where 7 is the hose traffic matrices for G. An ideal network in our setting has A > 1, meaning that
it can feasibly route all hose TMs without over-utilizing any link. The hose model was introduced in
the context of provisioning virtual private networks and the intuition is that each node has set ingress
and egress rates, but we do not have any additional insight as to the amount of traffic one node will
send another, so the network should be designed to feasibly route any possible traffic matrix possible

given the nodes’ ingress/egress rates [55].

Defining agility in terms of cuts. A result of this dissertation is to prove that agility can be equiv-
alently described in terms of network cuts. This is a generalization of bisection bandwidth [100]. A
bisection of a network is a segmentation of the network into two parts, say S and S, such that each
set contains the same number of nodes. The capacity of a bisection is the available link bandwidth
across the bisection (i.e., the sum of link rates for links with one endpoint in S and the other in .S).
Then, the bisection bandwidth of a network is the worst-case capacity of any bisection of the net-
work’s nodes. Note that this definition does not account for node rates, because it only depends on
the link bandwidth, not the amount of traffic that may be sent across those links. Because of this

limitation, bisection bandwidth is not a good metric for networks with heterogeneous node rates.

We generalize this notion to measure the worst-case bandwidth across any cut and to account
for node rates. A cut is a partition of a network’s nodes into two sets, denoted by S and S. A network’s
normalized cut bandwidth is then the worst-case bandwidth across any network divided by the max-
imum amount of flow that may cross that cut, and is denoted by bw((G). Let the bandwidth of a link
e be denoted by w(e). Then, the normalized cut bandwidth of a network G = (V, E'), where V isits

nodes and F is its links and we assume G is connected, is:

2665(5) w(e)

B gnglg min{} ;. 7(v), > iz 7(v)}

where §(.S) is the set of edges with one endpoint in S and another in S = V — S. We always

bw(G)

deal with the normalized version of cut bandwidth in this dissertation, because it takes into account

heterogeneous node rates.

A result of this dissertation is to show the equivalence of normalized cut bandwidth and agility.
This is proved in Theorem 4, which shows that there is a form of a min-cut, max-flow theorem that

exists for the hose traffic model.

As an example of agility, consider a network consisting of two switches, each attached to 48
servers at 1 Gbps and a single 10 Gbps port that connects the switches. The agility of this network is
10/48. More generally, if we have n servers attached to the first switch and m attached to the second,
then we have the agility of the network is 10/ min{n, m}. Here, we divide by the minimum of the
two values because the hose TMs do not allow any server to send or receive more than 1 Gbps of traf-
fic, that is, even if there are 48 servers attached to one switch and 1 server attached to the other, the
maximum receiving rate of lone server is 1 Gbps so no more than that will ever cross the connecting

10 Gbps link.

Scalable

The network should not be the limiting factor in determining the number of servers deployed in a
datacenter. An ideal DCN architecture and topology should enable connection of up to hundreds

of thousands of servers.

Flexible

Most datacenters grow and evolve over time*. The network should be flexible enough to accommo-
date this. At short time scales, servers may be turned on or off to match variable workloads. As a re-
sult, virtual machines (VMs) need to transparently migrate across servers [1 S] Over longer time pe-
riods, an operator may need to add or remove servers and other IT equipment. The network should

permit this constant evolution.

Flexibility reduces costs because it improves agility, can reduce energy cost by shutting off under-
utilized equipment, and provides a cost-effective growth strategy to expand the datacenter. To enable
flexibility, venders have started selling container datacenters, which house up to a couple thousand
servers in a standard 20-40’ shipping container. Containers provide flexibility—it is easy to grow a

datacenter by deploying new containers.

Resilient

Failures are common in large datacenters. The network should therefore be able to withstand mul-
tiple port/switch failures, and failures should have minimal impact on the network. A recent study
found that half of all DCN failures involve four or more devices [55]; therefore, traditional 1+1 re-

dundancy is not enough in the datacenter, because more than a single failover path is needed.

As a numerical example, consider a situation where a row of 1200 servers is partitioned from
the network, which results in $3 million worth of servers® being disconnected until the failure is
resolved. This may take under an hour (98% of the time) or over 10 days (0.09% of the time) [55].
If it takes 10 days to bring this row of servers back online, then the datacenter operator would lose
at least $27,000 in lost server time (assuming a three year amortization period for the servers). A
resilient network lowers the cost of failures, because it prevents servers from being disconnected as

a result of a network failure.

Beyond physical resiliency, in settings where multiple tenants share a switching fabric, the net-
work should be resilient to malicious users that launch DoS attacks. At the same time, the network
should not punish legitimate users with network-intensive workloads. Both can be achieved if the
network provides isolation. Therefore, a resilient cloud DCN architecture provides performance

isolation between tenants.

4As an example, James Hamilton said that Amazon adds compute capacity to their datacenters every day [63]
$ Assuming a commodity price of $2,500 per server. High-end servers can cost more than double this.

Amortized Cost | Component | Sub-components
~45% Servers CPU, memory, storage systems
~25% Infrastructure | Power distribution and cooling
~15% Power draw | Electrical utility costs
~15% Network Links, transit, equipment

Table 1.1: Cost breakdown the components of a datacenter. These numbers are taken from [57].

Manageable

Large-scale DCNs have thousands of network devices. This scale makes them difficult to manage,
especially if devices have to be manually configured. Manual management of such a network is error-
prone and expensive [57]. Instead, the network should be easy to manage and switches should sup-
port “plug-and-play” functionality. Therefore, an ideal DCN is self-managed and does not require
any manual configuration. A manageable network can reduce operation costs, as it allows cloud dat-

acenter owners to employ fewer employees.

Cost-effective

A datacenter network should minimize capital and operational costs. Network equipment is respon-

sible for slightly under 15% of the capital cost of a typical datacenter (from [57]; see Table 1.1).

Capital costs: is the money spent on infrastructure and equipment. This money goes to buildings,

servers, network equipment, power distribution and cooling infrastructure.

Operational costs: are incurred while operating the datacenter. Here, the most expensive costs

come from power draw and management.

1.4 Contributions

We make three major contributions in this dissertation:

e We introduce the datacenter network upgrade and expansion problem and design and imple-

ment an optimization framework, called LEGUP®, that designs network topology upgrades for

¢Short for legacy datacenter network upgrade framework.

10

legacy datacenter networks. We show that, for our test scenarios, it is twice as effective at de-

signing high-bandwidth networks than previous approaches.

e We propose a framework, named REWIRE, that uses optimization to design unstructured data-
center networks. We explore the design space of unstructured topologies, and we find that un-
structured networks have up to an order of magnitude more bisection bandwidth than networks

designed by previous approaches, including those found by LEGUP.

e We analyze the overheads of flow management in the datacenter, and find that such function-
ality has high implementation overheads. We propose two low-overhead datacenter traffic en-
gineering frameworks: Mahout and DevoFlow. Both solutions use a centralized controller to
dynamically orchestrate the paths taken by elephant flows. They differ, however, on how to de-
tect elephant flows. Mahout uses the end-hosts for this task, while DevoFlow is an entirely in-
network solution. Both frameworks can increase aggregate throughput up to 55% depending
on the workload, while sending up to two orders of magnitude fewer control messages than a

naive OpenFlow-based implementation.

Together, these contributions significantly reduce the cost of operating a datacenter network.
The graph theory and algorithms behind LEGUP and REWIRE enable the physical network infras-
tructure to be agile, scalable, flexible, resilient, and cost-effective. Our flow management frameworks
Mahout and DevoFlow help with the management of the non-standard network designs found by
these frameworks, and help maximize agility by increasing network performance. We describe these
results in Chapters 3-6. They were originally published as references [34, 35, 36, 37, 38]. However,
before introducing these results, we survey the work others have published on datacenter networks

in Chapter 2 to help clarify where our work fits in the taxonomy of DCN research.

11

Chapter 2

Related work

We can divide the DCN design space in a layered hierarchy as shown in Figure 2.1. Most DCN ar-
chitecture proposals affect multiple layers in this hierarchy. For example, architectures like VL2 [55]
and BCube [59] propose novel solutions for topology design, addressing, routing and load balanc-
ing. Because a DCN is under control of a single entity, widespread changes like this are acceptable in
a DCN architecture. This is in contrast to the Internet at large, where modifications to even a single

layer are extremely difhicult.

We now motivate the DCN design problem by describing their workloads. Then, we describe
the related work for the layers in the taxonomy that are related to the results presented in this disser-
tation. That is, we describe the related work on topology design, load balancing, and configuration.
We end this chapter by providing an overview of the OpenFlow protocol, because we base our traffic

engineering solutions in Chapters 5 and 6 on OpenFlow.

2.1 Workloads in datacenter networks

To motivate the design of DCN topologies, we survey measurement studies of DCN workloads.
Overall, DCN workloads exhibit a high degree of variance. In a 24 hour time period, there is gener-
ally at least an order of magnitude difference between the peak and minimum load in the DCN [66].
The network needs enough capacity to handle the peak load, and it should permit increases in ca-
pacity to meet future demand. As a result, DCNs tend to be lightly utilized on average [62]. Addi-
tionally, under-provisioned networks constrain job placement schedulers. Such networks do not
have enough bandwidth to quickly move jobs to idle servers. As a result, there have been many
recent proposals for high-bandwidth DCNs, and especially for networks with full bisection band-
width [10,33,55,59,60,123].

DCN traffic is unpredictable over short time periods. Few detailed studies of datacenter traffic
have been published; however, the studies to date indicate that DCNs can exhibit highly variable
traffic [17, 18, 55, 76], that is, the traffic matrix (TM) in a DCN shifts frequently and its overall
volume (i.e., the sum of its entries) changes dramatically in short time periods.

In Chapters s and 6, we consider centralized flow management. Such a routing controller in
a DCN needs to respond to traffic fluctuations quickly and effectively. A study by Kandula et al.
found that the median inter-flow arrival time of a flows in a 1500-server datacenter was 10° flows

per second [76], so a centralized scheduler must route 100 flows every millisecond.

13

Energy-efficiency

Configuration

Load balancing

Multipath TCP
Transport
DIFANE
‘ SEATTLE
/‘\\‘V,
Routing Z\\ Portland
Al-Fares et al.
Addressing
CamCube
Topology design

Figure 2.1: Taxonomy of datacenter network solutions. Our contributions are shown in bold type-

face.

14

ToR

Servers

Figure 2.2: A 1+1 redundant tree.

2.2 Topology design

The study of interconnection network topologies dates back to telephone switching networks, where
the goal was to interconnect telephone circuits. A variety of topologies have been proposed over the
years. Generally, these constructions aim to interconnect hundreds of thousands of endpoints with
high bisection bandwidth. For example, the following constructions have been proposed: Clos [30],
Benes [16], de Bruijn [107], flattened butterfly [78], HyperX [7], hypercube [123], DCell [60], and
BCube [59]. The general theme of work in this area is to “scale-out”, that is, use multiple commodity
switches in place of a single high-end switch. The goal of this design pattern is to reduce the cost of

the network, since commodity switches are inexpensive.

The traditional DCN topology is a 1+1 redundant tree. It consists of two disjoint trees, and thus
provides a primary as well as a backup path between each pair of servers. The leaves of the trees are
called top-of-rack (ToR) switches, which connect to 20-80 servers per rack. A typical ToR switch
has 48 1 Gbps and 2—4 10 Gbps ports. It uses its 1 Gbps ports to attach to servers, and uses its 10
Gbps ports to connect to two aggregation switches. Each aggregation switch connects to ToR switches
and “up” to two core switches. A 1+1 redundant tree is shown in Figure 2.2. The core switches con-
nect the switching fabric to border routers for Internet connectivity. In this dissertation, we deal

only with intra-datacenter communication, and so we ignore the border routers in our analysis. Al-

15

1 n nr

1 e r output switches
m m
core
1 m
r r
1 ... m core switches r r
r r
m /10 switches
m m 1 r
1 r input switches (-2)stage | - | (I-2)stage

1 \n / nr 1/ \n / \nr

Figure 2.3: Atleftis a 3-stage, unfolded Clos network. At right is a folded I-stage Clos network. Each
IO switch is a subnetwork with [— 2 stages.

though widely deployed, especially in enterprise networks, this architecture has two major draw-
backs—poor reliability and insufficient bisection bandwidth—besides many other minor problems,

as detailed by Greenberg et al. [55,57].

Although researchers agree that the 1+1 tree is inadequate, determining the ideal DCN topology
is still a open research challenge. The ideal topology depends not only on the expected workload, but
also the cost structure of switches and cables. Both of these quantities change rapidly over time. The
leading candidate, however, is the the Clos network [30], which was proposed in 1954 by Charles
Clos to wire telephone switching networks. The HyperX topology is interesting from a theoretical
perspective because it generalizes the hypercube and flattened butterfly networks [7]. Several other
novel topology constructions have been proposed for the design of DCNs |55, 10, 59, 60, 123, 84].
We describe these topologies below.

2.2.1 Clos network and the fat-tree

The Clos network [30] and its fat-tree configuration [84] have been proposed as DCN topologies
by Al-Fares et al. [10] and Greenberg et al. [55]. The benefits of a Clos topology are that all paths

between ToR pairs have the same length and it is inexpensive to build using commodity switches.

16

P
R P
%%/—%’\}

Figure 2.4: A 2-dimensional HyperX topology with I = (5, 3).

In addition, the Clos topology structure is well-suited to randomized load balancing, where the path

selected for a flow is selected randomly.

Mathematically, a 3-stage Clos network [30], denoted by C'(n, m, 1), is an interconnection net-
work where nodes are partitioned into stages. The goal of the network is to interconnect inlets and
outlets. The Clos network has three stages as shown in Figure 2.2.1. The first stage is called the in-
put switches; it consists of r switches, each with 7 inlets and m uplinks. The radix of a switch is the
number of ports it has. The radix of each input switch must be at least n + m. The second stage
is called the core. Switches in the core do not connect to any inlets or outlets; instead, there are m
core switches, each with radix 27. Each core switch connects to each input and output switch. The
third stage consists of the output switches. There are r output switches, each with n outlets and m
downlinks. We refer to the links from a stage to a higher stage as uplinks and the links from a stage

to a lower stage as downlinks.

A folded Clos network places input and output layers top of each other, which we use throughout
this dissertation. In a folded Clos network, the input and output switches are the same devices, so
we refer to them as input/output (I0) switches. Because 1O switches do not directly attach to each

other, the Clos network is called an indirect network.

The recursive nature of Clos network means that we can limit our study to 3-stage Clos net-
works. An [-stage Clos network is recursively composed of 3-stage Clos networks. In an [-stage Clos
network, each input and output switch is replaced by an (I — 2)-stage network. An example of a

recursive, folded Clos topology is shown in Figure 2.3(b).

17

2.2.2 HyperX

HyperX [7] is a direct-connect topology, that is, IO switches connect to other 10 switches. This differs
from the Clos network, where ToR switches only connect to aggregation switches—not to each
other. HyperX is designed to take advantage of high radix switches (i.e., switches with hundreds of
ports), and it generalizes both Hypercubes and flattened butterfly networks, which makes it flexible.
Mudigonda et al. have compared the cost of building a HyperX network against the cost to build a
Clos network [89]. They found that the two topologies have similar costs, and the lowest-cost option

depends on the size of the datacenter and the cost of switches and links.

AHyperX networkis constructed as follows. Each HyperX IO switch connects to 7" inlets/outlets.
The switches are arranged in an L-dimensional integer lattice. Each dimension % contains S}, points.
Then, each switch is identified by a coordinate vector in this space, I = ([y,..., ;) where 0 <
I, < Spforeachk =1,..., L. Switches in each dimension form a clique. We show a 5 x 3 HyperX
topology in Fig. 2.4.

HyperX has some support for heterogeneous link rates. All links in dimension 7 have rate K,
and so the link rates are described by K = K, ..., K. HyperX also supports some level of switch
radix heterogeneity because of its support for heterogeneous link rates; however, one cannot have

arbitrarily heterogeneous switches—their port speeds and radices are prescribed by the topology.

2.2.3 DCell

The DCell [60] topology aims to interconnect a huge number of servers, up to a couple million, with
low radix switches (for example, switches with 8 ports). The DCell construction is recursive.DCell(0)
is defined as n servers connected to an n-port switch. ADCell(k) is constructed from n+1 DCell(k—
1) networks. When each subnetwork is treated as a single logical node, DCell(%) forms a clique, that
is, each logical node (a subnetwork) has a single edge to each other logical node. These links are re-
alized physically as follows. Assign each server an ID: < s, ..., 5o > where s; is the level-ID of the
server or subnetwork s;. A level-ID is an ordering on the servers (for a DCell(0) network) or the
logical subnetworks of a DCell(k). Then, atlevel 7, connections are added between servers such that
alevel-i link connects to a different DCell(i — 1), but within the same DCell(3).

A DCell topology typically has twice the bisection bandwidth than a tree, but is unclear how
well it performs or much it costs compared to other topologies. In particular, the DCell topology

does not provide as much bisection bandwidth as a Clos network.

18

Figure 2.5: A BCube(1) construction with n = 4.

2.2.4 BCube

BCube [59] is a DCN architecture targeted at datacenters with up to a few thousand servers. This
architecture uses a novel topology, called the BCube topology. An example is shown in Figure 2.s.
The BCube topology is a recursive construction. A BCube(0) is n servers connecting to an n-port
switch. A BCube(k) is construction from n BCube(k — 1) networks and n n-port switches. Switches
in the BCube topology only connect to servers, and servers only connect to switches, so BCube is an
indirect topology. The switches act as dumb crossbars, and servers relay trafhic for each other. This
construction provides multiple edge-disjoint end-to-end paths between each server. One side effect

is that paths between end-hosts in a BCube network have varying lengths.

This design point of BCube was selected because 40 ft shipping containers make excellent hous-
ing for about 1000-3000 servers. A number of commercial container datacenters are available on
the market today, for example, Sun’s Modular Datacenter [111], HP’s POD [69], and IBM’s mod-
ular datacenter [73]. Because it is common to combine multiple modular datacenters to form a
larger datacenter, the authors later extended BCube to network a few dozen container datacenters
together [123]. The BCube design point makes many practical issues easier, for example, cabling is
less an issue ina 40 x 10 x 10 ft box.

2.2.5 MDCube

MDCube [123] extends BCube to interconnect multiple containers. It uses BCube as the intra-
container architecture and MDCube as an inter-container architecture. MD Cube interconnects the

containers with a generalized hypercube topology.

The MD Cube architecture is interesting for a number of reasons. First, it interconnects contain-

ers using 10 Gbps ports on BCube’s commodity switches. Such switches (with 48 1 Gbps ports and

19

4 10 Gbps ports) are commodity switches today, and an estimated street price for such a switch is
$5,000". MDCube connects the 10 Gb ports in a hypercube topology. Second, MDCube’s design
creates clusters of 1000—3000 servers with a very high capacity network interconnected by a net-
work with less bandwidth. This is similar to slimming a fat-tree [99]. Such a provisioning scheme is

beneficial because very few jobs need more than a 1000 servers [125].

2.2.6 Heterogeneous topology constructions

The only construction we are aware of that can connect a heterogeneous set of switches while guar-
anteeing optimality is that of Rasala and Wilfong [105], who gave a strictly nonblocking® construc-
tion for networks with heterogeneous IO switches. This traffic model is not applicable to datacenter
networks because DCNs are packet switched and bufters prevent “blocking” In their approach, each
flow has a unit rate, but flows can be rearranged across crossbars. This model is generalized by the
primary traffic model used in this dissertation—the hose model (details were given in Section 1.3).
Another limitation of their work is that their topology constructions only connect IO switch sets

with two types of switches and they do not support heterogeneous switch port speeds.

2.3 Load balancing

To provide high bisection bandwidth with commodity switches, DCN topologies provide a mul-
tiplicity of end-to-end paths. This brings about a challenge: how should flows be scheduled across
these multiple paths?

2.3.1 Oblivious load balancing

One load balancing approach is to assign each flow randomly to a path. This zero-overhead approach
is known as oblivious routing or randomized routing. The path taken by a flow from node i to node j

is randomly selected from a probability distribution over all 7 to j paths. Kodialam et al. have shown

*There is, however, a premium for the the 10 Gbps ports. A 48-port 1 Gbps switch costs a mere $1,500 on the

street as of this writing.
*A network with n inputs and n outputs is strictly nonblocking if it can setup any n calls independent of the call

arrival order. This differs from a network which is rearrangeably nonblocking, which can supports n call setups if all

calls can be rearranged (i.e., re-routed through the network) when a new call setup is requested.

20

that oblivious routing can achieve at least 50% of the optimal dynamic routing in the worst-case for
any topology [81]. Their model, however, assumes that all end-to-end flows can be fractionally split
across multiple paths. This type of multipath routing is not possible on today’s switching hardware.
Even if it is possible, it may cause out of order delivery problems and interfere with TCP’s conges-
tion control mechanisms. In fact, it has been shown that oblivious routing performs poorly on a
fat-tree topology when the traffic mix contains many elephant flows. Al-Fares et al. found their flow
scheduler, Hedera [9], can increase throughput 113% compared to oblivious routing by performing

dynamic flow scheduling.

Throughout this dissertation, we assume the multipath form of oblivious routing. This is one of
many models studied in the oblivious routing literature. For example, the celebrated “VPN Theo-

rem” of Goyal et al. assumes single-path routing [54]. See [25] for more details.

2.3.2 Reactive flow scheduling

Hedera [9] introduces a centralized controller that dynamically schedules flows to maximize their
aggregate throughput. The controller periodically pulls flow statistics from each switch, which it
uses to identify the set of elephant flows (that is, flows which could use more than 10% of server
network interface card (NIC) bandwidth if they were not constrained by the network). Such flows
are identified using an iterative demand estimation algorithm that uses statistics on all flows as input.
An optimized routing of elephant flows is found using simulated annealing. The controller modifies
forwarding table entries at the switches to re-route all elephant flows on optimized paths. There are
two critical problems with Hedera’s architecture. First, they rely on OpenFlow switches. We [86,38]
pointed out that OpenFlow does not scale well, and is ill-suited for current datacenters. Second,
their reactive mechanism requires timely statistics to be effective. Hedera’s evaluation assumed that
DCN flow sizes follow a Pareto distribution, which is not the case in practice—DCN flow sizes
actually follow a power law according to recent measurements [76]. We found that Hedera’s control
loop needs to be faster than 500 ms to achieve near-optimal results®. Achieving such a short control
loop is not currently possible: it takes too long to pull the statistics from switches and to update the

forwarding tables.

3This number was found using flow-level simulations of a 1600-server datacenter.

21

2.3.3 Online scheduling

Another approach to flow scheduling is to use an online scheduler, that is, the path for each flow is
selected when the flow is started. An example of online scheduling is to greedily route a flow along
the path with least congestion. A challenge here is to process each flow quickly. Flows arrive very
quickly in a datacenter with thousands of end-hosts and many flows are latency-sensitive. For exam-
ple, flow installation using the NOX OpenFlow controller* can take up to 10 ms [114]. Recall that,
partition-aggregate jobs have deadlines of 10~100ms [11], s0 a 10 ms flow setup delay can consume

the entire time budget. Therefore, online scheduling is not suitable for latency-sensitive flows.

2.3.4 End-host-based load balancing

An alternative approach is to expose all end-to-end paths to end-hosts, and then adaptively find the
best path for a flow. That is, if an end-host s needs to send a flow to end-host ¢, then s is aware of the
available paths (by any mechanism) and so s selects a path at random from the available options. If
the selected path does not provide enough bandwidth, then s can probe the other available paths,
and adapt the flow’s routing to place it on the highest-throughput path.

The BCube architecture [59] uses this form of load balancing. End-hosts can compute the avail-
able end-to-end paths, because they are encoded in the addressing scheme. Each server is addressed
by a label of the form < [,s4_1,...,50 > where 0 < [< Fk is the level of the switch and s; €
[0,n—1]forj € [0, k — 1]. For servers A and B, the Hamming distance of their addresses indicates
the length of the shortest paths between them, and the maximum shortest path distance between
two serversis k + 1.

Another architecture that utilizes end-hosts for load balancing is SPAIN [88]. SPAIN provides
multipath routing over arbitrary topologies by dividing the network into a set of spanning trees. The
set of spanning trees is selected by an algorithm, and each one is implemented by a VLAN. End-hosts
then perform adaptive routing over the VLANS.

*OpenFlow is described in Section 2. 5. The network “operating system” NOX is an open-source, extensible Open-
Flow controller. It is available for download at http://www.noxrepo.org/.

22

http://www.noxrepo.org/

2.4 Configuration

Configuring alarge DCN is expensive and error-prone. There has been some recent work to simplify

this process, which we now describe.

2.4.1 Automatic assignment of addresses

The scale of DCNs forces the use of compact routing schemes, which is usually implemented by
encoding locality and topology information into the addresses of switches and servers (e.g., [60, 59,

90,55]). This creates a management challenge: how to automatically configure network addresses?

Chenetal. [27] proposed DAC: a generic and automatic Datacenter Address Configuration sys-
tem. DAC automates the assignment of IDs to network devices. It begins with a network blueprint
which specifies the logical ID (e.g., IP addresses in many architectures encode locality information)
of switches and servers. DAC then automatically learns devices IDs (e.g,, MAC addresses), and then
finds a mapping of logical to device IDs. This mapping is found by modeling the problem as a graph
isomorphism problem. The graph isomorphism problem is not known to be in P or NP, but is be-
lieved to be a computationally challenging problem. Therefore, Chen et al. propose some heuristics

to speed the graph isomorphism search.

An interesting side effect of Chen et al’s design of DAC is that it can programmatically identify
mis-wirings. This is a real problem in todays DCNs because thousands of wires are installed by hand.
Unfortunately, in their approach, all servers and switches must be shut oft and then turned back on
in order for DAC to learn the device IDs. This limitation means that their solution is likely to be of

limited use, since production datacenters can rarely turn off all equipment.

2.4.2 Reducing cabling complexity

Cabling is a major issue in datacenter networks. For instance, consider the architecture proposed by
Al-Fares et al. [10]. They suggest building a non-oversubscribed DCN for 27K servers using com-
modity 48-port 1GbE switches. This network provides 27.648 Tb/s of bisection bandwidth. When
one considers only the cost of the switches, this network seems like a bargain at $4.3 million®; how-

ever, it is nearly impossible to build because it would require 1,128 separate cable bundles [48]. Each

52,880 switches, each for $1,500.

23

bundle is manually routed and installed. Farrington et al. calculate that this would require 226,972
m of cable, which weighs in at over 9,500 kg [48]. If each link costs $50 to install (which is reason-
able based on published link prices [89]). This means that this network costs over $11 million to

wire—or 72% of the cost of the network is cabling.

To solve the cabling problem, Farrington et al. [48] argue that the ideal DCN topology has all
ToR switches connected to a single nonblocking switch. They realize this by designing a switch with
3,456-ports running at 10 Gbps using merchant silicon ASICs (i.e., very low cost ASICs) as their
basic building block. Today, ASICs containing 24-ports at 10 Gbps can be purchased for as little as
$410. Now, this ASIC is not a fully featured switch—it is only the data-plane and lacks a control-
plane. Farrington et al. arrange these ASICs as a fat-tree to build their switch architecture. They find
this network architecture costs 52% less than a comparable fat-tree built from commodity switches.
The big reduction in costs comes from cabling: Farrington et al’s design uses only 96 long, cum-
bersome cables, as compared to the 6,912 such cables used in the fat-tree built from commodity

switches.

Another approach to reducing cabling complexity is to build the network with high bandwidth
links. For example, VL2 uses 1 Gb NICs on the servers, and 10 Gb links in the switching fabric [55].
Since a single 10 Gb link aggregates ten gigabit links without any oversubscription, the switching
fabric can be built with an order of magnitude fewer links. The drawback of this approach is that

high bandwidth links are typically more expensive than slower links.

2.5 OpenFlow

OpenFlow [85] is a protocol that aims to separate a network’s data-plane from its control-plane. Its
goal is to open traditionally closed designs of commercial switches to enable network innovation.
OpenFlow has been the basis for many recent research papers (e.g., [8, 64, 83,95,109,23,94,115]),
as well as for hardware implementations and research prototypes from vendors such as HP, NEC,
Arista, and Toroki.

OpenFlow switches form the network’s data-plane, and the control-plane is implemented as
a distributed system running on commodity servers. A switch’s data-plane maintains a flow table
where each entry contains a pattern to match and the actions to perform on a packet that matches

that entry. OpenFlow defines a protocol for communication between the controller and an Open-

24

Flow switch to add and remove entries from the flow table of the switch and to query statistics of
the flows. In OpenFlow, the control-plane is centralized, unlike traditional networking, which uses
adistributed control-plane, with the data-plane and control-planes operating on the same hardware.
Upon receiving a packet, if an OpenFlow switch does not have an entry in the flow table or TCAM®
that matches the packet, the switch encapsulates and forwards the packet to the controller over a
secure connection. The controller responds back with a flow table entry and the original packet. The
switch then installs the entry into its flow table and forwards the packet according to the actions
specified in the entry. The flow table entries expire after a set amount of time, typically 60 seconds.
OpenFlow switches maintain statistics for each entry in their flow table. These statistics include a
packet counter, byte counter, and duration. The OpenFlow 1.0 specification [3] (the only widely
implemented version of OpenFlow currently) defines matching over 12 fields of packet header. The
specification defines several actions including forwarding on a single physical port, forwarding on
multiple ports, forwarding to the controller, drop, queue (to a specified queue), and defaulting to
traditional switching. To support such flexibility, current commercial switch implementations of
OpenFlow use TCAMs to store the flow table.

STCAM is an acronym for ternary content-addressable memory and is a type of high-performance memory that
supports lookups containing “don’t care” or wildcard characters.

25

Chapter 3

LEGUP: Designing Heterogeneous,
Tree-like Datacenter Networks

3.1 Introduction

As described in the previous chapter, most current datacenter networks use 1+1 redundancy in a
three-level tree topology. This approach cannot provide full agility. This reduces server utilization,
because servers cannot be assigned to services rapidly enough. That is, a server is assigned to a spe-
cific service, and it is underutilized if load on that service is not high enough. Recent work has ad-
dressed this problem by providing enormous bisection bandwidth for up to hundreds of thousands
of servers 55, 10, 59, 60, 123, 33]. This allows services to be assigned to servers dynamically. How-
ever, these architectures use topologies that assume identical switches, each with a prescribed num-
ber of ports. Therefore, adopting these solutions in a legacy datacenter often comes at the cost of
replacing nearly all switches in the network and rewiring it. This is wasteful and usually infeasible

due to sunk capital costs, downtime, and a slow time to market.

In this chapter, we present LEGUP, an optimization framework to help operators increase net-
work agility and reliability without needing to throw out their existing network devices. However,
this results in the creation of heterogeneous datacenter network topologies, which have not been suf-
ficiently studied in the past. Therefore, we first develop the theoretical foundations of heterogeneous
Clos networks, that is, we generalize the Clos network [30] to allow support for multiple link rates
and switches with differing port counts. Our topology is provably optimal in that it uses the minimal
amount of link capacity to feasibly route all hose TMs. Previous work has only considered hetero-
geneous interconnection networks under a different traffic model [105], which is not applicable to
datacenter networks, as discussed in Section 2.2.6. To our knowledge our topology construction is
the first topology that achieves optimality under the hose traffic model while supporting switches

with heterogeneous rates and numbers of ports.

We then present an optimization framework, called LEGUP, to design network upgrades and
expansions for existing datacenters. LEGUP finds networks that are realizable in a highly constrained
datacenter. These networks maximize performance by implementing a heterogeneous Clos network
from both existing and new switches. Supporting heterogeneous switches allows LEGUP to design
upgrades with significantly more agility than existing techniques for the same dollar cost, which

includes the cost of new switches and the cost of rewiring the network.

Our key contributions in this chapter are:

e Development of theory to construct optimal heterogeneous Clos topologies (§3.4).

e The LEGUP tool to design datacenter network upgrades and expansions (§3.3). LEGUP reuses

27

existing networking equipment when possible, minimizes rewiring costs, and selects the loca-

tion of new equipment.

e We evaluate LEGUP by using it to find network upgrades for a 7,600 server datacenter based
on the University of Waterloo’s School of Computer Science datacenter (§3.6). LEGUP finds a
network upgrade with nearly three times more bisection bandwidth for the same dollar cost as
a fat-tree or traditional scale-up upgrades. LEGUP outperforms a fat-tree upgrade even when
LEGUP spends half as much money. We also find that when adding servers to a datacenter in
an iterative fashion, the network found by LEGUP has 265% more bisection bandwidth than a

similarly upgraded fat-tree after the number of servers is doubled.

Before describing these results, we define the problem (§3.2). We end this chapter with a dis-
cussion of this work (§3.7).

3.2 Defining the Problem

Designing a datacenter network is a major undertaking. The solution space is enormous due to the
huge number of variables, and an ideal network maximizes many objectives simultaneously. Our goal
is to automate the task of designing the best network possible given a operator’s budget and a model
of their datacenter. Ideally, a user of our system need only hire staff to wire the DCN according to
the system’s output. For the remainder of this section, we describe the datacenter environment and

state our assumptions.

3.2.1 Workload assumptions

Throughout this chapter, we assume that an ideal DCN has full agility, as described in Section 1.3.
Recall that a network with full agility can feasibly route all hose TMs, which are denoted by 7.

Throughout this chapter and the next, we find it more convenient to deal with the ToR-to-ToR
traffic matrix, which aggregates the servers connected to a ToR switch into a single entry. Through-
out, we use symmetric ingress and egress rates, and we denote the ingress/egress rate of a ToR switch
i by r(). This is called the rate of the switch.

Finally, we are primarily concerned with the design of high-performance networks, rather than

the operation of these networks. Therefore, we assume that the routing and load-balancing schemes

28

can make full use of a network’s available bandwidth, regardless of the TM. In practice, this assump-
tion does not hold, since load-balancing mechanisms are not perfect; however, there are several pro-
posals that provide nearly optimal DCN load-balancing. We defer a detailed discussion of these so-

lutions until Section 3.7.

3.2.2 Switches, links and end-hosts

Most datacenters today run on commodity off the shelf (COTS) servers and switches, which reduces
costs. There are many such switches to choose from, each with different features. We allow operators
to define the specifications of switches available to add to their datacenter. These specifications must
include the number of ports and their forwarding rates for each switch type. They can also include
input details about line cards for modular switches. Operators can also specify a processing delay for
each switch, which indicates the amount of time it takes the switch to forward a packet when it has

no other load. This is used to estimate the end-to-end delay over a proposed path.

Links can be optical or copper and can use incompatible connector types. Currently, we do not
model the difference in link medium or connectors; instead, we assume that all 1 Gb ports use the
same connector and all 10 Gb ports use the same connector and that a 10 Gb port can also operate
at 1 Gb. Copper links can pose a problem because they are limited to runs of less than s—10m when
operating at 10 Gbps [89]. It would not be difficult to check for link medium and connector types;

however, we do not currently do so.

We assume that the datacenter operator has full control over end-hosts. That is, they can install
custom multipath routing protocols, like Multipath TCP [103] and SPAIN [88], on all end-hosts.
This assumption does not hold in cloud settings where customers can run their own OS installa-
tions. Here, the cloud provider could release a set of OS images that have the required end-host

modifications installed. Or, the provider could integrate the changes into their hypervisor.

3.2.3 DCN performance: what’s important to applications?

The two most important characteristics of DCN performance are high end-to-end bandwidth and
low latency. Because of this, it is important to build a network with high agility, so that the network
performs well for all TMs. High agility also keeps end-to-end latencies across the network low, be-
cause links will be lightly loaded, and hence queuing delays will be minimal. Minimizing end-to-end

latency is important for interactive datacenter jobs, such as search and other partition-aggregate jobs,

29

where up to hundreds of worker servers perform jobs for a service. As previously described, mini-
mizing latency is critical for this type of service because responses from workers that arrive after a

deadline are not included in the final results.

3.2.4 Costmodel

Estimating the cost of implementing a proposed DCN design is very challenging. There are two
major obstacles to overcome: (1) determining prices of switches—street prices are often a fraction
of retail prices and can be difficult to obtain. Further, vendors offer discounts for bulk purchases,
so the price of a switch often decreases with volume. And, (2) it is difficult to estimate the cost of
cabling a DCN. Bundling cables together in long runs also reduces the cost of wiring long-distance
links [102, 89], though we are not aware of any algorithms to compute the cost of such a wiring.
Additionally, it may be more expensive to wire irregular topologies compared to regular topologies;

however, we do not have any data on this, so we assume per link cost, regardless of the topology.

For tractability, we assume fixed prices for switches. That is, the price of each switch is fixed
and does not change based on volume. For cabling, we divide cable lengths into different categories
(short, medium and long) and charge for a cable based on its length category. This assumptions can

be lifted without any significant changes to our approach.

3.2.5 Placing equipment in a datacenter

A datacenter is a highly constrained environment in terms of equipment placement. We now de-

scribe the constraints that must be considered when adding equipment to a datacenter challenging.

First, to add equipment to a datacenter, there must be enough space to house it. Most equipment
in the datacenter is positioned in large metal racks. A standard rack is 0.6 m wide, 2 m tall by 1 m
deep and is partitioned into 42 rack units (denoted by U). A typical server occupies 1-2U. A small,
ToR switch occupies 1U, and large, high-end switches can occupy up to 21U. Therefore, to add a
switch to a datacenter, there must be enough free, contiguous rack units to hold it.

Datacenter equipment creates a significant amount of heat, which must be dissipated by a cooling
system. Accurately modeling a datacenter cooling system is challenging [66]. Therefore, we assume
a simple datacenter thermal model. In our model, the operator can please a thermal limit on each

rack. This is an upper bound on the amount of heat that rack’s contents may generate. As long as the

30

equipment in all racks does not generate heat beyond the given limits, then we assume the datacenter

can be effectively cooled.

3.3 LEGUP Overview

LEGUP guides operators when upgrading or expanding their datacenter network. To achieve this
goal, LEGUP solves a network design optimization problem that maximizes performance subject
to a budget and the datacenter’s physical constraints. We define DCN performance more precisely
next (§3.3.1), and then give details about the inputs, constraints, and outputs of LEGUP (§3.3.2).
We end this section by giving an overview of the optimization algorithm used by LEGUP (§3.3.3).

3.3.1 Optimization goals

LEGUP designs upgrades to maximize network performance, which we define it to be a weighted,
linear combination of agility, flexibility, and reliability. Let the normalized values of these metrics be
denoted p,, py, and p, for agility, flexibility, and reliability respectively. Then, our objective function
is:

maximize: ,p, + afpy + Py

where oy, oy, and «, are weighting constants. Precise definitions of each metric follows.

Agility measures a network’s ability to handle any traffic matrix possible under the hose model, and
is precisely defined in Section 1.3. Recall that a network’s agility is the greatest constant p,, such that
all TMs in p,, - 7 can be feasibly routed, where 7 is the set of hose TM:s for the network.

Recall the example given earlier: consider a network consisting of two switches, each attached to
48 servers at 1 Gbps and a single 10 Gbps port that connects the switches. The agility of this network
is 10/48. And, if we have n servers attached to the first switch and m attached to the second, then
we have the agility of the network is 10/ min{n, m}.

Flexibility measures the number of servers that can be attached to the network without reducing
agility beyond a given threshold. We say that a § attachment point is an unused port such that at-
taching a 1 unit (in this paper, this is 1 Gbps) uplink device to this port does not decrease the net-
work’s agility to less than 0. Then, a networkis (py,)-flexible if it has p distinct § attachment points

31

when the attachment points are filled according to some rule (e.g., by greedily assigning devices to
the attachment point that lowers agility the minimal amount). As an example, again consider our
two switch network, except now assume all 48 of each switch’s 1 Gbps ports are free. If we take
0 = 0.5, then the flexibility of this network is 68, achieved by attaching 48 servers to one switch

and 20 to the other. If we attach an additional server to the second switch, then the agility drops to
10/ min{21, 48} which is less than 0.5.

Reliability is the number of link or switch failures needed to partition the ToR switches, which we
denote by p,. This model corresponds to the failure of a switch or port or a cable cut. As an example,
the complete graph on n vertices has a reliability of n — 1 because every edge neighboring a vertex
must be removed in order to partition the complete graph. The worst case reliability is that of a tree:

removing a single node or edge partitions it.

We believe these metrics capture the most relevant features of the network for applications and
operators. Applications are primarily interested in high-bandwidth and low-latency service. A net-
work with high agility provides such service, because (1) it provides a large amount of end-to-end
bandwidth in all possible network loads and (2) links in the network are likely to be lightly loaded
most of the time, which keeps queueing delays short. A network with high flexibility has room to
grow: more servers can be added without impacting application performance too much and more
capacity can easily added by placing more links between existing switches. Finally, reliability is im-
portant in achieving high uptime, and so is of primary importance to operators due to the high cost

of downtime.

These three metrics measure distinct aspects of a network. Agility and reliability are related—increased
reliability can increase agility because of the additional end-to-end paths—however, two networks
can have the same agility with completely different reliability metrics since link speeds can vary by
orders of magnitude. Similarly, high agility is a prerequisite to high flexibility, but switches also must

have unused ports for a network to be flexible.

To optimize network performance, we need to be able to compute each of these metrics. We have
defined them so that they are computable in polynomial-time, and we will describe how to compute

each later when describing LEGUP’s details in Section 3.5.

32

3.3.2 Inputs, Constraints, and Outputs

As input, we require a budget, a list of available switch types and line cards, and a datacenter model.
The budget is the maximum amount of a money that can be spent in the upgrade, and therefore acts
as a constraint in the optimization procedure. The available switches are the details and prices of
switches that can be purchased. Relevant details for a switch include its ports and their speeds, line
card slots (if a modular switch), power consumption, rack units, and thermal output. Details of a

line card are its ports, price, and a list of interoperable switches.

Providing a model of the existing datacenter is optional, and even when provided, can include
little to complete detail about the datacenter. A complete model includes the full details of the net-
work, the physical arrangement of racks, the contents of each rack, and the power and thermal char-
acteristics of equipment in the racks. Additionally, thermal and power constraints can be included
in this description, for example: the equipment in each rack cannot draw more than 10 kW of power.
Details of the existing network includes information about its switches and their locations. There-
fore, the per rack physical constrains that we model are thermal, power, and free rack units. If details
of the existing switches are provided, they will be considered for use in the upgraded network. We
have designed LEGUP to find a solution, if one exists, that meets the physical constraints given and

will use cables in a cost-effective manner.

As output, LEGUP gives a detailed blueprint of the upgraded network. This includes the opti-
mized topology and the new switches and line cards needed to realize the topology. If a datacenter
model was included in the input, we also include in the output the rack where each aggregation

switch should be placed.

3.3.3 'The LEGUP optimization algorithm

We now give a high level overview of the algorithm employed by LEGUP. Recall that the opti-
mization problem solved by LEGUP maximizes the sum of agility, reliability, and flexibility. That
is, LEGUP’s objective function is:

maximize: a,pq + afpr + Q. py

where p,, pr, and p, is a network’s agility, flexibility, and reliability respectively. This is a difficult

optimization problem and is made harder by the large number of constraints.

33

Branch and Bound Enumeration

v_1 v 1

Required input: Boundin
Existing DCN & [> J

switch types

P . Feasibility check
unction Output:

%7 [ﬁ —[> DCN design &
physical layout

Optional input: Physical mapping
Physical DC details [: of aggregation switches
Core switch
selection

Figure 3.1: The LEGUP optimization algorithm.

We limit the search space by constraining LEGUP to only design tree-like networks. Such topolo-
gies are desirable in the datacenter regardless because many DCN load balancing, routing, and ad-
dressing solutions require a tree-like network, e.g., [90, 55, 10]. However, the theory of heteroge-
neous tree-like topologies has not been previously developed. Therefore, we develop the theory of
heterogeneous Clos networks, which are tree-like networks, in the next section. The reasoning be-
hind this decision is that that a traditional 1+1 redundant DCN topology is already a Clos network
instance (albeit a 1+1 redundant topology is a Clos instance that does not have the agility and re-
liability typically associated with Clos networks). Despite adding heterogeneous switches, DCN
addressing and routing solutions can be used on our topologies with no or minor modifications; we

discuss this further in Section 3.7.

Our current implementation of LEGUP does not design the ToR switches. Instead, we assume
that the set of ToRs and their hose rates are given as input. The algorithm then upgrades the ag-
gregation and core levels of the network. Given a set of aggregation switches, the optimal set of core
switches is restricted in a heterogeneous Clos network, so LEGUP explores the space of aggregation

switches using the branch and bound optimization algorithm.

Branch and bound is a general optimization algorithm that finds an optimal solution by enumer-
ating the problem space; however, it achieves efficiency by bounding, and therefore not enumerat-

ing, large portions of the problems space that cannot contain an optimal solution. Here, we define

34

the space of solutions to be the set of all possible arrangements of aggregate switches. This differs
from a standard branch and bound implementation because we enumerate over only the aggrega-
tion switches, so we must introduce additional steps to find a set of core switches. Figure 3.1 depicts
the process. Because of this modification, we cannot guarantee the optimality of solutions found by
LEGUP.

In our context, the problem space is all possible sets of aggregation switches given the available
switch types given as input. A candidate solution, denoted by S, is a set of aggregation switches. The
space of all candidate solutions is called the solution tree. Each node in the solution tree is labeled
by the set of aggregation switches it represents. The root’s label is empty. A node has a child for
each switch type. The label of a child node is the label of its parent plus the switch type the child
represents. Or more precisely, let S = {si,..., sz} be a candidate solution where s, ..., s are
aggregation switches. Then, the children of S in the solution tree are the candidate solutions with
labels {S']S" = S U {s}, Vs € A}, where A is the set of switch types given as input. We say a
solution is a complete solution when its aggregation switches have enough ports to connect the ToR

switches with a spanning tree.

A complete solution only describes the set of aggregation switches in the network and does not
account for the core switches nor the physical layout of the network. Given a complete solution, we
find the min-cost placement of a solution’s aggregation switches to racks (full details of LEGUP’s
handling of complete solutions are given laterin §3.5) and then find the min-cost set of core switches
to connect the aggregation switches to. Once this is complete, we add the cost of the core and phys-
ical mapping into the cost of the solution to determine if it is still feasible, that is, we check to make
sure it is not over-budget. Additionally, we check to make sure no physical constraints (e.g., thermal
and power draw) are violated in the physical mapping phase. Unlike standard branch and bound, we
continue to branch complete solutions because a solution is complete here whenever it can connect
all the ToR switches; however, adding more aggregation switches to a complete solution will always

improve its performance (but may violate some constraints).

Before checking for feasibility; however, a candidate solution is bounded to check if it, or any
of its children, can be an optimal solution. A candidate is bounded by finding the maximal agility,
flexibility, and reliability possible for any solution in its subtree. A candidate solution with a lower
performance bound than the optimal complete solution is trimmed, that is, it is not branched be-
cause its subtree cannot possibly contain an optimal solution. We delay the details of our particular

bounding function until Section 3.5.1.

35

3.3.4 Why naive solutions aren’t enough

To motivate our design of LEGUP, we briefly address the need for algorithms more sophisticated
than standard heuristics. We identify three key weaknesses of existing heuristics that LEGUP ad-

dresses:

1. Simple heuristics typically don’t take physical constraints into account, and therefore might not

return a feasible solution. LEGUP finds a feasible solution if one exists.

2. Algorithms that greedily add switches with the minimum bandwidth to price ratio will always
reuse existing switches. This might not be the optimal network configuration. LEGUP only

reuses switches when it’s beneficial to do so.

3. Cabling and switch costs need to be accounted for. We are unaware of any simple algorithms

that take both these costs into account.

Our implementation of LEGUP’s branch and bound algorithm uses depth-first search of the solu-
tion tree. When branching a solution tree node, we order the children so that they are sorted by
bandwidth to price ratio. As a result, the first solutions explored by the branch and bound are the
solutions that a greedy algorithm considers. We have found this to increase the number of trimmed
subtrees dramatically since the first complete solutions tend to have good, though not optimal, per-

formance.

3.4 ‘Theory of Heterogeneous Clos Networks

We now describe the heterogeneous Clos topology, which generalizes the Clos topology [30] to
support the use of heterogeneous link rates and differing numbers and rates of ports on switches.
We show in this section that our topology can optimally (in terms of link capacity used) connect

edge switches with heterogeneous ports and bandwidth demands.

Specifically, we show that our topology needs only as much link capacity as any other indirect
network that can feasibly route all hose TMs. An indirect network is a network where nodes with
positive rate (i.e, 7(i) > 0) never directly connect to other nodes with positive rate, that is, nodes
connect to each other indirectly through switches. A result due to Zhang-Shen and McKeown [127]
states that an indirect network with node rates (1), ..., r(n) can feasibly route all hose TMs only
if the sum of link capacities in the network is at least) ;. 27(¢). We say that any topology that

36

core

1

ce m
r r
m m
m /|0 switches
1 r 1 r
(I-2) stage T (I-2) stage (I-2) stage T (I-2) stage

1/ \n / 1/ \n / \nr

nr

(a) Physical realization (b) Logical topology

Figure 3.2: An [-stage Clos network. Each 10 node here is a subnetwork with [— 2 stages. In (b),
each logical edge represents m physical links and the logical root represents m switches, each with

T ports.

matches this lower bound is optimal. Our topology matches this bound without requiring homoge-

nous switches and is the first to do so to our knowledge.

This result is developed in Section 3.4.2. First, however, we briefly review the standard, homoge-

nous Clos network.

3.4.1 'The Clos network

Recall that a 3-stage Clos network [30] is denoted by C'(n, m, r'). Full details are given in Section
2.2.1. Throughout this chapter, we deal with folded Clos networks as shown in Figure 3.2(a). We call
the switches in the middle stage the core switches and switches in the first/third stage as IO switches.
We refer to the links from a stage to a higher stage as uplinks and the links from a stage to a lower

stage as downlinks.

The recursive nature of Clos’s topology (and our heterogeneous Clos topology) means that we
only have to describe 3-stage networks, because an [-stage Clos network is recursively composed of
3-stage Clos networks. In an [-stage Clos network, each input and output switch is replaced by an
(I — 2)-stage network. An example is shown in Figure 3.2(a). As such, we always construct 3-stage
networks in this section, but our results can be generalized to an [-stage Clos networks in a straight-

forward manner. (Indeed, we will use the generalization to s-stage heterogeneous Clos networks

37

for LEGUP because we want it to design 3-level networks (i.e., networks with core, aggregation and

edge layers).)

3.4.2 Constructing heterogeneous Clos networks

We now describe the heterogeneous Clos network construction. This construction relies on the no-
tion of a logical topology, which encodes all relevant information of a network in a space-efficient rep-
resentation. A logical topology can represent multiple network physical realizations—each of which
is a unique way to physically build the network. Therefore, we separate logical topology design from
the problem of finding a physical realization of a logical topology. First, however, we describe the

logical topology of a traditional, homogenous Clos network.

Throughout, we assume that the IO nodes are given and that our goal is to attach them to a set of
core switches in an optimal configuration (i.e., the network uses the minimal link capacity necessary
and sufficient to feasibly route all hose TMs). When focusing on logical topology design, we make
the assumption that alogical node can be realized using the same amount of switching capacity as the
logical topology. We then show how to lift this assumption when discussing the physical realizations

of alogical topology.

A Clos network’s logical topology

The logical topology of a Clos network is a compact representation of the network, as shown in
Figure 3.2(b). For a Clos network C'(n, m, 1), its logical topology T is the network where the core
switches are collapsed into a single logical node, denoted by z. That is, x represents the aggregated
switching capacity of the m core nodes. We have that 7’ is a tree. Let « be the root of the tree, and
2’s children be the IO nodes 1, . . ., 7. Alogical edge between = and an IO node ¢ has capacity equal
to m, which is denoted by ¢(z,7) = m. Each IO node i has n children, which are servers in our
scenario. Therefore, we assign a rate 7(7) to each IO node. These rates form the hose traffic model

for this network, which are denoted by 7 ((1), ..., r(n)) orjust 7 when the context is clear.

To have maximal agility (or equivalently in order to feasibly route all hose TMs), a Clos network
must have m = (i) for all IO nodes . The network uses 2nm link capacity. Note that this is 2 times
nm, because we account of the bandwidth in each direction. As the sum of hose rateis > | | m =

nm, we have that the Clos topology is optimal by the lower bound of Zhang-Shen and McKeown

38

[127]. We now show how to build optimal networks when presented with a heterogeneous set of
IO nodes.

()) (o)

8 &,
8 56\ 56
4 4/ 16/ 16| 64\ 64 4/ 4 g 8
rate = | 4 4 16 16 64 64 4 4 16 16 64 64
(a) Logical topology (b) Logical topology
o \4 3232 |\,

8. 8 8 88
(c) Logical topology

Figure 3.3: Three optimal logical topologies for the given IO nodes. The numbers in the IO nodes
indicate the rate of each node. We have shown one optimal edge capacity assignment for each topol-
ogy; however, Figures (b) and (c) each have many optimal edge capacity assignments that are not

shown.

Heterogeneous logical topology design

We now generalize the logical topology to support heterogeneous 10 nodes. That is, we now assume
that each IO node i has an arbitrary rate (7). We let each IO node i have a rate, denoted by (i),
which is its hose rate (e.g., in a homogeneous network, the rate of each IO node is n because each
inlet has a unit rate). Each logical edge (4, =) between an IO node i and logical root z has a capacity
¢(1, x), which is the sum of physical link rates that (¢, x) represents.

We assume that the logical topology of a heterogeneous Clos network forms a forest of trees. The
leaves of these trees are IO nodes and each root node represents a set of core switches. We denote

the IO nodes by I = {1,...,k} and the root nodes by x1, ..., x;. The logical topology design

39

problem is to find a suitable set of root nodes, the neighbors of each root node, and the capacity of
the edges between 10 nodes and root nodes. In the next section, we will show how to find the set of

core switches each logical root node represents.

Our first result characterizes the number of trees that can be in an optimal logical forest for a het-
erogeneous Clos network with IO nodes /. The following lemma describes the number of allowed

logical root nodes and their children given the the rates (1), ..., 7(k) of the IO nodes.

Lemma 1. Let T be alogical topology withIO nodes I = {1,... k}, andletxy, ..., x; betherootnodes
of T'. Let X,, denote the set of 10 nodes neighboring root node x,, such that X, = I and X; D --- D X.
Whenever all edges of T have positive capacity, we have that T feasibly routes all hose TMs optimally if,
forall z,, such that2 < p <],

ri)> > r(j) foralli € X, (3.1)

JEXp—1—Xp
and |Xl - lell Z 2.

Proof. Suppose there is some logical topology 1" that has a root node x such that there is a node
i € Xy, where ! is a root node neighboring ¢ with ¢(7, ;) > 0 and for which Equation 3.1 does
not hold. Consider how much capacity the edges (¢, 1), . . ., (%, zy_1) must have since 7" can serve
all hose TMs: there must be at least min{r (i), > c v, _x, 7(J)} capacity to these nodes otherwise
there is a hose TM that T" cannot feasibly route. By assumption, (i) < >-;cv, _x, 7(j), so r(i)
is the minimal here. In a logical topology with optimal edge capacity, each IO node has at most
7 (i) of uplink capacity. However, here, we have that i has r(i) + ¢(i, zy) > 7(i) uplink capacity,
contradicting the optimality of 7'.

Suppose that | X; — X;_1| = 1. Here, 7" is non-optimal since the root node z; has only a single
neighbor, so it cannot route traffic to any other IO nodes. Therefore, it should not have positive

capacity, since all traffic will need to be routed through 1, .. ., 2;_; anyhow.]

Examples of the use of Lemma 1 are shown in Figure 3.3. It’s important to note that this lemma
identifies the available logical forests for a set / of IO nodes, but it does not determine the capacities
of each logical edge, i.e,, it determines the “shape” of the network, but not the capacity of the links.

We will give a result that characterizes the set of optimal edge capacity assignments shortly.

First, however, we note that the following results are implied by this lemma:

40

e wheneverr(1) = - -- = r(k), the optimal logical topology is a tree, that is, the logical topology
has a single root node, and

e no matter the rates of each IO node, a logical topology that is a tree can be optimal, that is, a

logical topology can always use fewer root nodes than it’s allowed by Lemma 1 and be optimal.

Our next result shows how capacity can be optimally assigned to the logical edges to feasibly
route all hose TMs. The intuition underlying this theorem is that the root x,, and its children (the
10 nodes) form a disjoint spanning tree. We provision the spanning tree rooted at x; first, and then
move to the next root node’s spanning tree. Every unit of capacity that is provisioned to x is a unit
that does not have to be routed through x5, . . ., 2, so we subtract the previously allocated capacity

from the edges to xo, . . ., ;.

Theorem 2. Let T, xq,...,x;, X1,...,X;, and I be as in Lemma 1, and let Xy = () and X; ., = 0.
We have that T' can feasibly route all hose TMs using optimal capacity if and only if

c(i,xy) = ZjeXP_XP+1 r(7) ifi € Xpi1,
Y (i) — Z]-GI,XP r(j) otherwise

foralll <p<landallie I.

Proof. Suppose that 7" can feasibly route all hose TMs and that Equation 3.2 holds for all edges
except (4, x,). Let I’ be the maximum root node such that i € X.. Because 7" can feasibly route all
hose TMs, we have:

Zc(z’,xu) = Z Z r

uell’] ge[l'—1] jeXq—Xq+1
+r()— Y r(j) (3.2)
jeEX1—X,
= D r@H+r@ - > @) (3:3)
jeEX1—X, jeX1—X,
= r(i) (3.4)

2. 2 >, 1) (3:5)

qe l’ l}jEXq Xq+1 jGleXl/

41

whenever T’ can feasibly route all hose TM with minimal edge capacity. However, here, we find a
contradiction in both possible cases.

Wheneveri € X;,11,50 ¢(i,2,) <> cx, ,_x, 7(J), theleft hand side of Equation 3.5 is less than
the right hand side. And otherwise, c(i, z,) < r(i) — > ;c,_y, 7(J), in which case, we cannot

make the reduction from Equation 3.3 to Equation 3.4.

To show sufficiency, suppose that Equation 3.2 holds for all edges of I". We construct a multipath
routing that feasibly routes any hose TM D, ;. Let i, j € I be IO nodes such that (i) < r(j) andlet
I’ be the max root node where 4, j € X;. When sending to j, let ¢ split its traffic across root nodes
x1,...,zp suchthat D;;/c(i, x,) traffic is routed through z,, for 1 < p < I, and then x,, forwards
this traffic to j on its single edge to j. For any hose TM D, the max traffic ¢ can send is 7 (), so the
max traffic ¢ places on edge (i, x,) is 7(¢) /c(i, ;). Since Equation 3.2 holds for all edges, we have

that

> i, z) = r(i)

u€ll’]
as established in Equations 3.2-3.4 above. Therefore, i can send traffic at rate up to (i) and never
overload a link. Similarly, 7 cannot overload a link while receiving traffic, because it cannot receive

more than 7(7) traffic at once. []

Examples of logical edge capacity assignments are shown in Figure 3.3. In this figure, we give a
single assignment of edge capacities, however, for the topologies in Figures 3.3(b) and 3.3(c) there
are many more optimal assignments. For example, in Figure 3.3(c), the two nodes with (i) = 64
could have c(i, z3) = 23 aslong as ¢(i, x2) = 33 and the logical topology would remain optimal.
Following Theorem 2, we can find all other optimal capacity assignments. The theorem shows how
to distribute the necessary link capacity across logical edges in such a way that all hose TMs can be

feasibly routed.

Physically realizing a logical topology

We now show how to find a physical realization of a logical topology. Here, we are given a logical
topology, and we want to find a set of switches that realizes each logical root node.

Each IO node has a set of uplink ports, which may have multiple speeds. To simplify our presen-
tation, we separate IO nodes with multiple uplink port speeds into separate switches, so that each

IO node has a single uplink port speed. This does not lead to a loss of generality because we can

42

(b) Physical realization
*3
24 switche;
OO~ 100

1 Gb

2Gb
=== 4 Gb

(c) Physical realization

Figure 3.4: Examples of physical realizations of the logical topologies shown in Figure 3.3. Here,
the thickness and color of each link indicates its capacity, which is shown in the legend next to each

network.

recombine the separated switches later. So, each IO node i has a single uplink port speed, denoted
by p(i). We assume that an IO node i has at least [7(i)/p(i)] ports; otherwise, no realization that
can feasibly route all hose TMs exists because any IO node where this property does not hold will
be a bottleneck.

Let x be alogical root node with a set /() of IO nodes as its children. We use X to denote the
set of switches that make up logical node x. Let m (i) = [c(i, z)/p(i)], where c(i,) is the capacity
of the logical edge (7, x) as before. Here, m(7) is the number of physical uplinks ¢ has to 2. We use
P(r) to denote the set of all switches of / with p(i) = r, and I(x) denotes the set of IO nodes

neighboring root z.

Now, we determine how many switches comprise the logical root node X and how many ports
each of these switch needs. Let mpi, = minjes(,){m(j)}. The core switches that realize 2 and
the IO nodes I(z) form a complete bipartite graph, so we have | X| < my,. That is, X cannot
contain more switches than 1., because otherwise would not be able to form a complete bipartite

43

subgraph between z and /(). Each core switch in X must have at least My, - |P(r)| ports with
speed 1, for each port speed r, and each ¢ € () has [m(7) /Mimin | uplinks to each switch in X. The
following shows this topology is optimal.

Theorem 3. A physical realization G constructed as described above of a logical tree T with root node x
and 10 nodes I with c(i,) minimized according to Theorem 2 can feasibly route all hose TMs.

Further, if c(i, x) and m(i) are evenly divisible by p(i) and muyy, respectively for all i € I, then the
amount of link capacity used by this physical realization matches the lower bound on link capacity for any
indirect network that can feasibly route all hose TMs.

Proof. To show that GG can feasibly route all hose TMs, by Theorem 2, it’s enough to show that there
is a routing which distributes (i) /c(i,) traffic over the physical links of the logical edges (7, z)
and (z, 7) without overloading any physical links. When 7 sends traffic to z, let each physical uplink
carry p(4)/c(i, x) fraction of the traffic, no matter the destination, and then the receiving core switch
forwards the traffic to its destination. Then any traffic matrix can be handle as long as 7 never sends
more than:

r(i) - Y p(@)/e(i, @) [m(i) /mumin] =

veEX
c(i, x) . .
iy 1€02) - Tm(i) min]) =
T(Z) : mmin(l/mmin) =
= (i)

traffic, which ¢ will never exceed in a hose TM. By a similar argument, there is enough link capacity

r(@) - 1x(]

from the physical switches in X to 1.

An optimal construction has a total link capacity of 2 ., 7(i). To see that the construction
above matches this bound when ¢(i, x) and m(i) are evenly divisible by p(7) and My, respectively
foralli € I, consider the above equations. In this case, each i € I has (i) uplink capacity and r(7)

downlink capacity. Summing this over all switches in / shows our construction is optimal. L

In the proof of Theorem 3, we explicitly construct an optimal oblivious routing of all hose TMs
for aheterogeneous Clos network. This implies that static routing can extract the full bisection band-
width from a heterogeneous Clos network for any TM as long as our assumption of splittable flows
holds. In practice, flows cannot be split, so we return to this in Section 3.7 when discussing opera-

tional issues.

44

3.5 LEGUP Details

We now describe the details of LEGUP’s optimization algorithm. Recall that this algorithm solves a
maximization problem by performing a branch and bound search of the space of possible aggrega-
tion switch sets. In this section, we focus on the handling of complete solutions, that is, the candidate
solutions with enough aggregation ports to connect all ToR switches with at least a spanning tree.

Given a complete solution S = {si, ..., s;}, where each s; represents an aggregation switch,
LEGUP does the following. (Each step is explained just below.)

1. Bounds the performance of S (§3.5.1).

2. If S’s bound is lower than the best complete solution found so far, S is trimmed and it is not
branched.
Otherwise, the feasibility of S is determined by:

e selecting a min-cost set of core switches (§3.5.2); and
e finding a physical mapping of the aggregation switches to the datacenter’s racks (§3.5.3).

3. If Sis determined infeasible (due to a budget or physical model constraint violation), then it is
trimmed.
Otherwise, the performance of S is computed (§3.5.4), the best complete solution is updated,
and S is branched.

Step 1is used to trim the solution tree. It finds an upper bound of the performance of any solution
in S’s sub-tree (i.e., the solutions defined by S U A for some set of switches A). If the upper bound
for any solution in S’s sub-tree is less than the performance of the current best complete solution,
then we determine the optimal solution is not in S’s sub-tree and so we trim the search tree of this
sub-tree (as shown in Step 2).

Because a complete solution in our case is a set of aggregation switches, we need to find a set
of core switches (assuming we are designing 3-stage networks, which is in the case in this chapter).
Additionally, we need to find a placement of the aggregation switches on the datacenter floor. Both
a min-cost set of core switches and a placement of aggregation switches are found in Step 2.

Finally, if S'is feasible, then it needs to be branched. That is, we need to compute its performance,
and then visit its children in the search tree, that is, S needs to be branched. This is done in Step 3.

We use o, o, and a, to denote the weights of performance metrics agility, flexibility, and reli-

ability respectively. Then, the overall performance of a solution S'is p(S) = p,a, + pray + pra,

45

where p,, p¢, and p, have been normalized by their maximal values. We show how to find these max-
imal values in (§3.5.4). Throughout, whenever we use one of these values, we assume it has been

normalized.

3.5.1 Bounding a candidate solution

Ourbounding function estimates each performance metric individually and then returns the weighted
sum of the estimates. Because it is used to trim solutions and we are maximizing performance, it must
overestimate the best possible solution in the candidate solution’s subtree. Given a complete solu-
tion S, we denote the bounds of S for agility, flexibility, and reliability by b,, b¢, and b, respectively.

Given a candidate solution S, we bound each metric of S as follows.

Agility and flexibility are coupled, so we bound them simultaneously, i.e., we bound o, b, + asby.
We begin by finding the maximal agility the remaining budget allows. That is, let b]'** denote the
maximal agility any network constructed with S and the remaining budget can have. We find 0]"**
by first greedily adding the switch with the highest sum of port speeds to cost ratio of all the available
switch types to S until the cost of S is over-budget (note that this procedure always makes use of any
existing switches that are not included in S as they have no cost). Because b, and b; can overestimate
the performance of any solution that is a descendant of S in the search tree, we do not worry about
actually being able to realize the topology, so we aggregate the bandwidth of switches in .S, and we
use 7(.5) to denote their aggregate bandwidth, i.e., the sum of their port speeds.

We combine each level of switches into single logical nodes, that is, we create a logical topol-
ogy with a single core node, single aggregation node, and single ToR node, which form a path ToR
to aggregation to core. We find 0)'** by determining the maximum possible agility of this logical
topology. Let 7(ToR), 7(aggr) and r(core) be the sum of port speeds of the logical aggregation and
core nodes respectively. From Theorem 2, to maximizes b]'**, we have that r(aggr) = 2/37(S) and
r(core) = 1/3r(S). Moreover, we have

. [r(core) 1/27(aggr)
be = min {T(TOR)’ r(ToR) } '

We now find a lower bound on by, which we denote by b7". We have b7 = 1/2r(aggr) —
r(ToR). That is, b7 is equal to the amount of spare bandwidth the aggregation and core nodes can
handle without decreasing agility.

46

Algorithm 1 Bound agility and flexibility.

Input: r(core), r(aggr), r(ToR), b7*, and b’}‘i“
Output: by, by

begin
by = bmex
by = bain
r(cToR) =0
until the following does not increase b + by do
if 7(cToR) < r(ToR) then
r(core) = r(core) + 1
r(aggr) = (aggr) — 2
r(cToR) = r(cToR) + 1
else
r(aggr) = r(aggr) — 1
r(ToR) = r(ToR) + 1
bf = bf +1

b = min{1, 52} 1/2raser))

end

Because we are jointly optimizing agility and flexibility, we need to maximize their weighted sum,

i.e., we should maximize a,b, + a by, so we need a procedure to maximize this sum. This proce-

dure is shown in Algorithm 1. There, r(cToR) is the rate of devices attached to the core node. The

algorithm attaches 1 unit of capacity at a time to the best location possible. If (cToR) < r(ToR)

the best location to attach a device is the core because doing so decreases agility less than attach-

ing the device to the aggregation node. We repeat this process until b, + o by hits a maximal

point, which is guaranteed to be globally optimal because it is the sum of two linear functions (i.e.,

forafixed S and budget, the combination of a,b, and av b does not have any local maximal points).

Reliability is bounded by two observations that upper bound S’s reliability. We have that b, is at

most:

e 1/2 the number of ports on any s € S; and

47

e the number of open ports (i.e., the ports not connected to a link) on any ToR switch.

We therefore set b, to the maximum of these two values.

3.5.2 Finding a set of core switches

To find the min-cost core switches, we need to solve two sub-problems: finding an optimal logi-

cal topology (§3.5.2), and then finding the min-cost switches that physically realize that topology

(§3.5.2).

Selecting a logical topology

We now show how to select alogical topology. Using our terminology from Section 3.4, the aggrega-
tion switches are the IO nodes. Recall that there are multiple optimal logical topologies that connect
a set of IO nodes, so we need to use the one with a maximal performance to cost ratio. We observe,
however, that a logical topology with k logical core nodes can always be made to have k£ — 1 logical
core nodes by stacking switches, that is, by combining multiple switches with [ports in total into a
single switch with at least [ports. Moreover, if no physical realization of a logical topology with k
core nodes exists, then there is no physical realization of a logical topology with &£ — 1 core nodes.
Therefore, we always maximize the number of logical core nodes in accordance with Lemma 1. We

set the capacities of each logical edge such that they are minimized according to Theorem 2.

It is important to note that we do not require switches to be stacked, but merely allow it. It can
reduce costs (e.g., a 48 port switch generally costs less than two 24 port switches), but in some cases
higher radix switches cost more than several lower radix switches, so we only stack core switches

when it makes sense from a cost perspective as we show in the next section.

Realizing the logical topology

Once we have a logical topology for a candidate solution .S, we need to realize each logical node.
The first issue is to determine the ports each aggregation switches should use to connect to ToR
switches and what ones should connect to core switches. Here, 1/2 of the switch’s ports should be
used as uplinks and the other half should be used as downlinks. We find aggregation switch down
ports (i.e., the ports that connect to ToR switches) by iterating through the ToR switches. At each

ToR switch, we select one ofits free ports to use as an uplink by selecting its free port with the highest

48

speed such that there is a switch in S with an open port at the same speed or greater. When multiple
such switches in S exist, we connect this ToR switch to the s € S with the most free capacity. We
repeat this procedure until either 1/2 the capacity of each switch in S has been assigned to a ToR

switch or until the uplink rate of each ToR switch is equal to its hose traffic rate.

By Theorem 3, the aggregation switches and logical topology dictate the number of core switches
and the number and speeds of ports for each core switch. A core candidate solution is therefore in-
feasible if one of the logical nodes cannot be realized because no switch has enough ports of each
rate required (e.g., the aggregation switches may dictate that each core switch has 145 10 Gbps ports
when the largest available switch has only 144 such ports)*. Assuming that realizing the logical topol-
ogy I'isfeasible,letz, . .., x; be F’slogical root nodes. The switches that realize each x; are dictated
by X, the aggregation switches that are x;’s children, so we realize each x; with the min-cost switch
that satisfies its port requirements. This switch assignment is easily found by comparing each z;’s

requirements to the available switch types.

We can, however, potentially lower the cost of the core switches by stacking several switches into
one physical switch, e.g., if ; needs to be realized by five 24-port switches, it can also be realized by a
single 120-port switch, potentially at a lower cost. This switch stacking problem can be reduced to a
generalized cost, variable-sized bin packing problem, which can be approximated by an asymptotic
polynomial-time approximation scheme [44]; however, their algorithm is complicated and still too
slow for our purposes since it must be executed for every complete solution. Instead, we use the well-

known best-fit heuristic [75] to stack core switches, which is known to perform well in practice.

Two issues arise when we stack core switches. First, it is possible to turn a feasible solution in-
teasible, e.g., after stacking switches, the resulting solution may violate a physical constraint, such
as there may not be a rack that has enough free slots for the larger switch. Second, stacking core
switches can decrease our reliability metric. Therefore, we save the original set of core switches. If

either of these cases occurs, we revert back to the original set of core switches, and then continue.

'It is possible to create higher port-count switches by embedding an additional 3-stage Clos network that acts
asa single switch—as an example, SiX 144-port switches can be arranged in a 3-stage Clos network to act as a 2.88-
port switch. We do not support such configurations because it (1) complicates the algorithm, (2) can result it a
network where the paths between two ToR switches have different lengths and (3) seems unlikely to achieve any cost
reduction.

49

Algorithm 2 Mapping aggregation switches to racks.

Preprocessing
Input: datacenter model

Output: lists of racks

begin
for each rack do
find the sizes of its contiguous free rack units, and

the distance to the k nearest ToR switches

Separate the racks into lists R[u] such that the largest

contiguous free rack units of racks in R[u] is u

Sort each list in increasing order of distance to k& ToR switches

end

Mapping
Input: datacenter model M and S
Output: map S — racks

begin
// Phase I
for each switch z € S do
for each aggregation switch y € M do
find the closeness of z and y
S =1
fory € M do
Map the closestz € Stoy
S =58"U{x}
// Phase II
for each switchz € S — 5" do
Map 2 to the first rack in 7 € R[z.U] such that no per rack constraints are violated
Update 7’s largest contiguous rack units, and move it to
the appropriate list

end

50

3.5.3 Mapping aggregation switches to racks and ToR switches

Now that we have determined the set of switches that comprise the aggregation and core levels, we
need to place them into racks and connect each ToR switch to aggregation switches. We say that a
placement of each aggregation and core switch in a rack is a mapping of these switches. We assume
that the core switches can be centrally located and that ToR switches are already placed, so we are

only concerned with aggregation switches in this section.

Our mapping algorithm takes as input a set of aggregation switches, here this is S, and the dat-
acenter model. If no model is given, then this stage is skipped. If a network blueprint is given but
no datacenter model, then the mapping assigns each link a unit cost if it is new or modified. The
mapping’s goal is to minimize the cost of the physical layout of these aggregation switches subject to
the rack, thermal, and power constraints of the datacenter model; here, cost is the length of cables
needed to connect the ToR switches to aggregation switches. Even using an Euclidean geometry set-
ting and without our additional constraints, this problem is NP-hard as it can be reduced to a Steiner
forest problem variant, see, for example [70]. Additional complications here are that the datacen-
ter model may already have aggregation switches in place and we would like to use the Manhattan
distance instead of the Euclidean.

We use a two-phase best-fit heuristic for mapping. The first phase matches aggregation switches
to existing switches in the datacenter model, and the second stage finds a best-fit for all aggregation
switches not placed in the first phase. To speed up the algorithm, we do some preprocessing. The
preprocessing and mapping algorithm details are given in Algorithm 2.

Phase I of our mapping algorithm attempts to replace existing aggregation switches in the dat-
acenter model with a close switch in S. We define closeness as follows for two switches s; and s,.
We have closeness(si, s2) = 0if s; does not have as many ports as s, for any speed, when ports
are allowed to operate at any speed less than their line speed, and closeness(si, so) = 1if s has
at least as many ports as s, for all speeds, again allowing s;’s ports to operate at less than their max

speed (e.g., the closeness of a 24-port 10 Gbps switch and a 24-port 1 Gbps switch is 1).

3.5.4 Computing the performance of a solution

We now address how to compute each of our performance metrics.

Agility can be computed in O(n) time, where n is the number of ToR switches in the input

network. Because we have constructed the network in accordance with Lemma 1, a node ¢ with rate

51

7(i) must have at least 7(7) of uplink bandwidth to feasibly route all hose TMs (i.e., for agility to
be 1). Specifically, if the uplink bandwidth of all #’s uplink ports sums to u, then we have that the
network’s agility is at most u /7 (7). We can therefore determine the upper bound on agility imposed
at each ToR and aggregation switch to find the network’s agility. Note, however, that this method to
compute agility does not work unless the network’s logical topology follows Lemma 1. For general

networks, a linear programming procedure can compute agility as we show in the next chapter.

In general, reliability can be determined using a standard min-cut algorithm. A heterogeneous
Clos network’s reliability is bounded by the number of uplinks from a ToR to its aggregation switches
and an aggregation switches to its core switches as observed earlier, so we can compute it in linear
time, which is faster than any algorithms we are aware of to compute the min-cut of an arbitrary

network.

Computing flexibility depends on the rule specified for attaching new devices to the network.
In our implementation, we greedily attach devices to the open port that reduces agility the least.
Computing flexibility is done by repeating this process until no more unit bandwidth devices can

be attached without reducing agility below 9.

Finding the maximal value of each metric: We need to scale each of our performance metrics to
a [0,1] range to compare them. We limit the agility of any network to 1*. We normalize flexibility
and reliability by finding the maximal value of each metric given the budget and using this for nor-
malization. These upper bounds are found applying our bounding function (§3.5.1) on an empty
candidate solution with same budget and set of switch types. This upper bounds the agility, flexibil-
ity, and reliability of any network that can be constructed given the operator-specified budget and

cost model, and hence gives us maximal values of each metric.

3.6 Evaluation

We now evaluate LEGUP by designing networks under several scenarios. We compare it to other
methods of constructing datacenter networks. We describe the datacenter used for evaluation first

(§3.6.1), and then describe alternative upgrade approaches (§3.6.2). Finally, we study the perfor-

*If the agility of a network is greater than 1, then that network can feasibly route each of its hose TMs with a

maximum link utilization of less than 1.

52

85 racks f

Cold/hot aisle ‘

—_ 60 racks f
b Cold aisle |
=z
Y 60 racks * airflow
—>
Hot aisle |

Figure 3.5: Layout of the SCS datacenter. Arrows show the direction of airflow

mance of these approaches with two scenarios: upgrading our datacenter (§3.6.3) and expanding it

(83.6.4).

3.6.1 Input

Datacenter model: To test LEGUP on an existing datacenter, we have modeled the University of
Waterloo’s School of Computer Science (SCS) datacenter. The servers in this room run services such
as web, email, and backup servers, and many are used as compute machines by faculty and students.
To make the upgrade problem more like that in a larger datacenter, we have increased the number
of racks in the datacenter by a factor of ten and assume that each rack is full. We scaled the network
proportionally, keeping the characteristics of the network invariant (such as connectivity between
levels of the network’s tree-like topology). Our analysis of the SCS datacenter is based on this scaled
version. We note that the SCS datacenter network is sufficient for the needs of the school currently,
and there are no plans to upgrade it. Despite this, we believe our model is interesting because it is
loosely based on a real-world datacenter with real constraints.

The scaled-up SCS datacenter has three rows. These consist of 205 racks, which we assume house
atotal of 7600 servers, 190 ToR switches, six aggregation switches, and two core routers. These racks
are arranged into three rows. Row 1 has 85 racks and rows 2 & 3 each have 60 racks. The rows are
arranged as shown in Figure 3.5.

The SCS datacenter has grown organically over time and has never had a clean slate overhaul. As

aresult, the SCS datacenter is a typical small datacenter with problems such as the following:

53

ToR switches

Hose uplink rate | Uplinks (1, 10 Gbps) | No. switches
28 8,2 50
40 8,4 8o
8 8,0 40
2 2,0 20
Aggregation switches
Line cards Line card slots | No. switches
3x24 1 Gbps, 1x2 10 Gbps 6 1
4x 4 10 Gbps 6 9

Table 3.1: Existing switches in the scaled-up SCS datacenter model.

Heterogeneous ToR and aggregation switches: Switches have alonglifespan in the datacenter, so the
ToR switches are not uniform. Aggregation switches are all HP 5400 series switches, though they

do not have identical line cards. We list the details of the datacenter’s existing switches in Table 3.1.

Poor air handling: The datacenter has a single chiller and it’s located at the end of the rows. Ad-
ditionally, the hot and cold aisles are not isolated, resulting in less effective cooling. Because of this,
hot-running equipment cannot be concentrated at the far end of the rows where it will not receive
much cool air from the chiller. We model this by linearly decreasing the allowed amount of heat gen-
erated per rack as the racks move away from the chiller. We do not have thermal measurements for
all our input switches, so we approximate the thermal output of a switch by its power consumption.
Therefore, row 1 (the row with 85 racks) can support up to 18 kW of equipment and the last rack
in this row can support only 12 kW; the i* rack in this row can then support equipment drawing
12 4 6/1 kW of power. The first rack in the other two rows can support up to 22 kW of equipment
and the last rack on these row supports up to 12 kW of equipment. The thermal constraint of racks

between is again linearly scaled.

The datacenter’s current network is arranged as a tree; each ToR switch has a single uplink to an
aggregation switch and each aggregation switch has two uplinks to the core routers. We would like
to modify the network so that only outbound traffic passes through the core routers. Therefore, all

network upgrades must be three-levels, that is, they need to replace these routers with core switches.

54

Switch model Ports Watts | Price ($)

Generic 24 1 Gbps 100 250
48 1 Gbps 150 1,500
48 1 Gbps, 4 10 Gbps | 235 5,000
24 10 Gbps 300 6,000
48 10 Gbps 600 10,000
144 10 Gbps 5000 75,000
HP 5406zl chassis n/a 166 2,299
HP line card 24 1 Gbps 160 2,669
HP line card 4 10 Gbps 48 3,700

Table 3.2: Switches used as input in our evaluation. Prices are street and power draw estimates are
based on a typical switch of the type for the generic models or manufacturers estimates, except for

the HP 5400 line cards, which are estimates based on the watts used per port on the other switches.

Switch and cabling prices: The switches available for use by the upgrade approaches are shown
in Table 3.2. Unless otherwise mentioned, we assume that installing or moving links to or from an
aggregation switch costs $50 and that links from ToR switches to servers are free to move. Based on
our discussions with the datacenter operators, we believe this is a conservative estimate based on
link prices and the man-hours needed to install a cable in an existing datacenter. Though LEGUP
supports charging for a cable based on its length, we do not use this functionality because we are
unable to estimate the lengths of cables used by the fat-tree upgrade approach.

3.6.2 Alternative upgrade approaches

To evaluate the solutions found by LEGUP, we consider two alternative network upgrade approaches.
The first method, is the traditional scale-up method. This approach models the method our datacen-
ter operators currently use to upgrade the network. They upgrade line cards in our modular switches
as their budget allows by purchasing the line card with the least cost to rate ratio. As they run out
of line card slots in the switches, they purchase more of the same switches, and fill them with addi-

tional line cards. In our upgrade and expansion scenarios, we want the DCN to have three levels of

55

switches, so we need to add core switches to our network. To do this, we use the 24-port 10 Gbps

switches, and only use 10 Gbps links between aggregation switches and the core.

The second approach we consider is to build a generalized fat-tree using 1 (or occasionally 10)
Gbps links following the DCN architecture of Al-Fares et al. [10] and VL2 [55]. Here, we reuse
existing ToR switches. We do not explicitly build the fat-tree. Instead, we bound the maximal agility
possible by a 3-stage fat-tree given the cost model and budget. This means that we are comparing

LEGUP against an optimistic assessment of a fat-tree’s performance.

For both these approaches we do not take the physical constraints of the datacenter into ac-
count. Therefore, it may not always be possible to construct the networks found this way. In con-
trast, LEGUP takes the physical constraints (in our case thermal and rack space) into account, and

so it is at a disadvantage.

3.6.3 Upgrading the datacenter

We first consider upgrading the SCS datacenter to maximize its performance. For this scenario, we
set the weights of each performance metric to be 1 and § = 0.1. We selected this value of) because
all methods design an upgrade with agility atleast 0.1 for all budgets considered. Since we have that
0 is less than the agility, it is possible for all methods to design networks with some p; > 0.

The performance achieved by our three upgrade approaches for various budgets is shown in Fig-
ure 3.6. As the chart shows, for all budgets, LEGUP finds an upgrade with higher agility and flexibil-
ity than the the scale-up or fat-tree approaches. Moreover, LEGUP always finds a network upgrade
with more agility and flexibility than the other two approaches even when LEGUP’s budget is half as
much as their budgets. Because the maximal reliability is two (as limited by the ToR switches with
only two uplink ports), all upgrades were able to achieve this for all budgets.

Interestingly, the scale-up approach often outperforms the fat-tree. This is largely due to the high
number of cables in the fat-tree, each of which costs $50 to install here. For example, with a budget of
$100K, the fat-tree approach can only spend roughly $30,000 on switches because $70,000 is needed
for cabling. By taking advantage of 10 Gbps links, LEGUP and the scale-up approach need an order
of magnitude fewer cables, and both approaches reduce cabling costs further by attempting to leave

existing switches connected to the same ToR switches.

To investigate the impact of link costs, we performed a sensitivity analysis. We repeated the above

experiment as we varied the cost to install a link. We fixed the prices of switches to be the same as

56

Comparison of upgrades approaches

3=
] O Flexibility B -
] B Agility
,] M Reliability
q’ , || —
o
e
m -
£
2]
()
o 14
Od
> SN R R
\@03,‘\‘}@%& \Qj\}i’ée%(go \ef\)i,’ée%@ \Qj\}i &@%00
%(? @V BN %(;b F N “)@ &N
Budget: 100K 200K 500K 1000K

Figure 3.6: Performance of the upgrade approaches for various budgets. Here, we have o, = oy =
o, = land 9 = 0.10.

before and set the budget to $200K. We compare LEGUP to a fat-tree constructed with 1 Gb or 10
Gb links now because of our observation that link costs can be a majority of a network’s cost. Again,

we set o, = ay = o, = 1.0 for this scenario.

The results of this sensitivity analysis are shown in Figure 3.7. As expected, the agility for each ap-
proach decreases as link costs increase. However, the performance of the solutions found by LEGUP
can increase as link costs increase, because our flexibility metric does not depend on the cost of links.
This is because of our normalization procedure for flexibility. The normalized flexibility metric is
relative based on the inputs, and so its value depends on the cost of links. Therefore, we cannot ac-
curately compare the flexibility of networks found by LEGUP when links cost $100 with networks
found with link costs of $50. We can only compare the flexibility of two networks designed under
the same cost model. We view this artifact as a weakness in our definition of flexibility and we plan

to address it in future work.

57

w

BReliability BAgility BFlexibility

1.5

Performance
o N
o w - N [0,]
Fat-tree 1 Gb -j
Fat-tree 10 Gb -:D
tecur [T |
Fat-tree 1 Gb -]
tecur [T |
Fat-tree 1 Gb -]
Fat-tree 10 Gb -:I
Lecup [T
Fat-tree 1 Gb -:|
Fat-tree 10 Gb -:I
ecur T]

Fat-tree 10 Gb

Link cost=$5 $10 $50 $100

Figure 3.7: Performance of a fat-tree built with 1 Gbps or 10 Gbps links compared to LEGUP with
a budget of $200K and various link costs. Throughout, the prices of switches are fixed, and the cost
to install a link is varied from s—100 dollars.

We see that LEGUP significantly outperforms the fat-tree networks under all link costs. Overall,
LEGUP’s networks have 52-55% more agility than the 10 Gb fat-tree, and the 10 Gb fat-tree per-
forms better than the 1 Gb fat-tree, even when links are very inexpensive. The 10 fat-tree has 350%
more agility than the 1 Gb fat-tree when links cost $100 and 60% more agility when links cost $5.
We found that the 1 Gb fat-tree used 10-68% of its budget on links and that the 10 Gb fat-tree used
1.5-24% of its budget on links.

3.6.4 Expanding the datacenter

We now consider expanding a datacenter network to accommodate additional servers as they are
added over time. Again, we use the SCS datacenter as a starting point, and we add 1200 servers to it
at a time and find a network for the expanded datacenter. Each expansion has a budget of $300,000,
and uses the network found in the previous iteration as input. This budget was selected because it is
10% of the cost of the servers, assuming a price of $2500 per server; this cost is in line with recent

cost breakdowns for servers compared to the network [66, 57]. We do not take the racks’ thermal

58

Agility as the data center is expanded

1.0

LEGUP

0l ® Fat-tree
> 0.6
£ 0.4

) [[
|

0.0

T T T T T
Q Q Q Q Q Q
Q Q Q Q Q Q
N ,LD‘ ,,)b N S ,\’L

Number of additional servers

Q

Figure 3.8: Agility as additional racks of servers are added to the datacenter. Each point is found by
increasing agility as much as possible given a budget of $300,000 and the previous iteration as the

existing network.

or constraints into account here because, in reality, the SCS datacenter floor does not have enough
room for 1200 more servers. For LEGUP, we set o, = 1,y = 5, . = 1and 6 = 0.10. We arrived
at these settings through experimentation. We found that when we set o5 to less than 2, then agility
of the later iterations was lower than when oy = 5 because the solutions found by LEGUP in this
case did not plan for growth and thus did not do as well after a few expansion iterations. Because
LEGUP assumes that servers connect to a ToR switches, we use 30 switches with 48 1 Gbps and 4
10 Gbps ports as ToR switches for each 1200 server expansion. Doing so uses $150,000 of LEGUP’s

budget each iteration.

The results of our expansion scenario are shown in Figure 3.8. LEGUP significantly outperforms
the fat-tree upgrades. The fat-tree approach experiences a drop in agility when the network with 2400
additional servers is expanded by another 1200 servers because the aggregation and core switches
of the +2400 server network are all 24-port switches. To accommodate the additional 1200 servers

without lowering agility even further, its core switches need to be replaced by 48-port switches. After

59

this change the amount of agility gained with each addition is less than previously because the 48-
port switches are not as good a value as the 24-port switches. LEGUP experiences a similar drop in

agility; however, the effect is less pronounced.

3.7 Discussion

Lacking a theoretical foundation to model and analyze heterogeneous tree-like topologies, a data-
center manager has two options to upgrade their network: (1) perform an expensive forklift upgrade,
or (2) add additional switches to their network using best practices or other rules of thumb. This sec-
ond approach would likely either result in a topology with sub-optimal agility for the money because
link capacity would not be able to be used optimally. So, even without LEGUP, our theory of het-
erogeneous Clos networks is useful because it describes topologies that can extract maximal agility
from available link capacity, which is useful to guide the addition of switches. Moreover, LEGUP can

be used to optimize even homogeneous networks by finding a good rack slots to place new switches.

So far, we have not addressed operational issues that arise when heterogeneity is added to a
DCN. We address them now:

Configuration: We have not accounted for the cost of reconfiguring a DCN after modifying its
topology. Reconfiguration could be expensive and error-prone, especially if it is performed man-
ually. We expect that this will become less of a issue as datacenter management solutions improve.
For instance, PortLand [90] provides “plug-and-play” functionality for DCN switches and NOX
can be used to centrally manage a DCN [114]. Both of these solutions can support heterogeneous

Clos topologies with minor modifications.

Routing and load balancing: In Section 3.4, we assumed ideal load balancing. This is not achievable
in practice because it requires support for splitting individual flows across multiple paths. Never-
theless, close to optimal load balancing on our topologies can be achieved, however. For example,
Mudigonda et al’s SPAIN [88] performs multipath load balancing on arbitrary topologies. Based on
their results, we believe SPAIN can extract close to the full bisection bandwidth from our topologies.
A second approach is to use oblivious routing, where the path for an i-j packet is randomly selected

from a probability distribution over all i-j paths. Oblivious routing has been shown to perform well

60

on Clos networks [55], and it can achieve optimal load balancing on our topologies as well (as im-
plied by our results in Section 3.4, in particular we explicitly construct this routing in the proof of

Theorem 3); however, further work is needed to implement and evaluate it on heterogeneous net-

works.

61

Chapter 4

REWIRE: Designing Unstructured
Datacenter Networks

4.1 Introduction

As previously described, organizations have deployed a considerable amount of datacenter infras-
tructure in recent years. Much of this growth, however, has come from the expansion and upgrading
of existing facilities. For example, a recent survey found that nearly 2/3s of datacenter operators
in the U.S. have added datacenter capacity in the past 12—24 months and 36% plan on adding ca-
pacity in 2011 [41]. Large datacenter operators such as Amazon and Google report that they add
computing power to their datacenters every day [63]. As described in Chapter 2, previous DCN

architectures are not flexible enough to support the cost-effective addition of servers.

While LEGUP improves the process, operators still have little guidance when planning and ex-
ecuting a datacenter expansion. Designing a new or updated network is a challenging optimization
problem that needs to minimize multiple objectives while meeting many constraints. Most physi-
cal data centers designs are unique, so expansions and upgrades must be custom designed for each
datacenter (see, e.g., industry white papers [119]). The optimization challenge is to maximize net-
work performance (which includes bisection bandwidth, end-to-end latency and reliability) while

minimizing costs and satisfying a large number of constraints.

We propose REWIRE, a optimization framework to design new, upgraded and expanded DCNE.
Unlike previous solutions, REWIRE does not place restrictions on the space of topologies consid-
ered. Instead, it considers the the space of all topologies feasible under a user-specified datacenter
model, and designs networks that simultaneously maximize agility and minimize end-to-end laten-
cies. We find that arbitrary DCN topologies have significant performance benefits compared to pre-
viously considered regular topologies. When designing greenfield (i.e.,, new) datacenter networks,
REWIRE’s networks have at least 500% more bisection bandwidth than a fat-tree constructed with
the same budget. REWIRE also significantly outperforms other approaches (included LEGUP)
when designing DCN upgrades and expansions. The use of unstructured topologies in the datacen-
ter does create operational and management concerns since most DCN architectures are topology-
dependent. However, recent proposals support routing and load balancing on arbitrary DCNSs, so
this is not a major barrier to adoption. We discuss this further in Sec. 4.4.

Unlike LEGUP (Chapter 3), we now seek a general DCN design framework—one that accepts
any network as input and returns arbitrary topologies. This is a challenging optimization problem
because of the huge search space. Therefore, REWIRE'’s network design procedure uses local search

to explore the space of all feasible network topologies. This procedure needs to compute the per-

63

formance of each candidate topology, which involves computing the topology’s agility. We are not
aware of any previous polynomial-time algorithm to compute the agility (as defined in Section 1.3)
of an arbitrary network; however, we show that computing agility is equivalent to solving a linear
program (LP) described by Kodialam et al. to compute an optimal oblivious routing of the hose
TMs [81, 80]. Unfortunately, this LP has O(n*) variables and constraints, where n is the number of
switches in the network, so it is expensive to find even for small networks. To speed this process, we
implement an (1 + ¢)-approximation algorithm to compute this LP [82]. We further speed the run-
time of this approximation algorithm implementing its bottleneck operation—an all-pairs shortest-
path computation—on the GPU using NVIDIA's CUDA framework [98]. Our implementation
is 2—23x faster than a high-performance CPU implementation. Additionally, we utilize a heuristic
based on the spectral gap of a graph, which is the difference between the smallest two eigenvalues of
a graph’s adjacency matrix. We find that the spectral gap of a graph is a useful heuristic for candidate
selection, especially when designing greenfield (newly constructed) DCNs.

The model of a DCN used by REWIRE is the same as LEGUP, and this model is described in

Section 3.2.

4.2 REWIRE Algorithm

We now describe the REWIRE framework. The REWIRE algorithm performs local search, so it starts
with a candidate solution, which is a network design that does not violate any constraints. It explores
the search space of all candidate solutions by moving from one candidate to another by modifying
local properties of the solution until a near-optimal solution is found. This local search only opti-
mizes the network’s wiring—it does not add switches to the network. Therefore, we end this section

by describing how to extend our approach to add new switches to the network as well.

4.2.1 Optimization problem formulation

REWIRE’s goal is to find a network with maximal performance, subject to numerous operator-specified

constraints.

64

Optimization objective

REWIRE designs networks to jointly maximize agility while minimizing the worst-case latency be-

tween ToR switches, that is, given the fixed scalars a and 3, our objective function is:
maximize «-bw(G) — (- latency(G)
where bw(() and latency(G) are defined as follows:
o Agility: is denoted bw(G) for a network G = (V, E). Recall that the agility of a network de-

pends on the rate, (i), of a node i, which we define as the peak amount of traffic v can initiate
or receive at once. For example, a server v with a 1 Gbps NIC has (v) =1 Gbps. For simplifi-
cation, we aggregate the bandwidth from all servers attached to a ToR switch s at that switch,
that is, we let the rate r(7) of a ToR switch i be the sum of the rates of servers directly connected
to the switch (e.g., a ToR switch connected to 40 servers, each with a 1 Gbps NIC, has a rate of
40Gbps). Let the bandwidth of a link e be denoted by w(e). The agility of a network G is then:

- D eces(s) W(e)
bw(G) = SCV min{) ;¢ 7(v), > icg7(v)}

where §(9) is the set of edges with one endpoint in S and anotherin S = V — S.

e Worst-case latency: is defined as the worst-case shortest-path latency between any pair of ToR
switches in the network, where the latency of a path is the sum of queuing, processing, and
transmission delays of switches on the path. We assume that the queuing delay at any port in
the network is constant because we have no knowledge of network congestion while designing

the network.

Both of these metrics have been considered in the design of DCN topologies, e.g., [55,89]. How-
ever, as far as we know, no previous algorithms could compute the agility of an arbitrary network
in polynomial-time. Therefore, we propose such an algorithm by combining previous theoretical

results in Sec. 4.2.2.

Operator-specified constraints

REWIRE incorporates a wide range of constraints into its optimization procedure. The constraints
support by REWIRE are similar to LEGUP; however, we review them here as well. Any constraints
placed on the network by REWIRE are provided by the datacenter operator, and are:

65

o Budget. The maximum amount of money the operator will spend on the network.

o Existing network topology and specifications. To perform an upgrade or expansion, we need the
existing topology. If designing a greenfield network, then REWIRE needs a set of ToR switches
given as the existing network because our current design does not attach servers to ToR switches.
This input needs to include specifications for all network devices. For switches this includes
their neighbors in the network and relevant details such as the number of free ports of each link
rate. Our implementation does not support different link types (e.g., copper vs. optical links);

however, it would be easy to extend it so that links include the type of connectors on the ends.
o Link prices and specifications. We need a price estimate for labor and parts for each link length
category.

e Available switch prices and specifications (optional). If one would like to add new switches to the
network, REWIRE needs as input the prices and specifications of a few switches available on the
market. Specifications include number and speeds of ports, peak power consumption, thermal

output and the number of rack slots the switch occupies.
e Datacenter model (optional). Consists of the following:
— Physical layout of racks;

— Description of each rack’s contents (e.g. switches, servers, PDUs, number of free slots);

Per rack heat constraints; and/or
— Per rack power constraints.

The datacenter model places constraints on individual racks. We use these constraints to, for

example, restrict the placement of new switches to racks with enough free slots.

e Reliability requirements (optional). This places a constraint on the number of links in the min-cut
of the network. That is, this is the minimum number of link removals necessary to partition the

network into two connected components.

4.2.2 Local Search Approach

REWIRE uses simulated annealing (SA) [79] to search through candidate solutions. SA is a meta-
heuristic that attempts to find a globally optimal solution of a given function in a large search space.
We denote the search space by S. This is the set of all network topologies limited by the operator-
defined constraints. Each topology S € S is a candidate solution.

66

Our algorithm also uses the following variables:

A real valued energy function E'(S) defined VS € S as E(S) = —a * bw(S) + [* latency(S5).
The neighboring solutions of S, denoted by NV (.S). We define V(S to be the set of all connected
networks such that a link has been added or removed from S.

Aninitial temperature Tgrarr. For each run, we find this using a method due to Kirkpatrick [79].
A decreasing function 7'(k) : ZT — R called the cooling schedule, where T'(k) is the tempera-
ture during the kth set of I Metropolis iterations. We chose T'(k) = Tsrart * 0.93*, but note

there is extensive theory behind choosing cooling schedules [97, 128].

A constant I, which the number of inner Metropolis iterations to be preformed (explained be-
low). As I — 00, SA finds a guaranteed optimal solution, but the algorithm runtime is unfeasi-
ble for very large values of I [19]. For our purposes, we set I to 1000. This value was found by

experimentation.

An initial state S; € S. The selection of an initial candidate solution is described below in

Section 4.2.2.

The goal of SA is to find the solution that minimizes . To find this network, we perform /

Metropolis iterations K times as follows, starting at Tsrarr. Suppose that S is the candidate solu-

tion under consideration by an iteration. Then, the following actions are performed for neighbor

selection:

1.

2.

We choose random nodes ¢ and j from the nodes of S. We select a random value R € {0, 1}.

If R = 1, we attempt to generate S’ by adding a 10 Gbps link between ¢, j in S subject to the
port and budget constraints. If this addition fails, we attempt to add a 1 Gbps link. If either
addition is successful, the move is accepted and otherwise rejected. Otherwise, if R = 0, we
generate S’ by attempting to remove a link of random speed between 7 and j (if one exists),
subject to the connectivity constraint. If the link removal fails we reject the move. Otherwise, if
E(s") = E(s), the move is accepted unconditionally. If £(S’) > FE/(S) the move is accepted
with probability e BB , known as the Metropolis criterion. SA avoids getting caught inlocal
maxima by sometimes taking suboptimal moves. The Metropolis criterion controls this risk as
a function of temperature: the limit of the criterionis 1 ast — coandoas7" — 0. When 7' is
high bad moves are likely to be accepted, but when 7" is close to 0, bad moves are accepted with

very low probability.

67

After I Metropolis iterations are preformed, the temperature is decreased according to the cooling
schedule. The process is repeated K times, where /K is the smallest integer such that 7'(k) < 0.05.

The SA procedure needs to compute the energy function for each candidate solution. Since we
have that £(S) = —a * bw(S) + 3 * latency(S), we need to compute the agility of S to find its

performance. In the next section, we describe how to find this in polynomial time.

Evaluating a candidate solution

Our definition of performance is the weighted sum of agility and latency, so we now describe how

to compute each metric.

Agility: recall that agility is defined on the minimal cut of all cuts of a graph. This is too expensive
to compute directly on arbitrary graphs because a graph can have exponentially many cuts. However,
we now show that the problem of finding a network’s cut bandwidth can be reduced to a maximal

flow problem under the hose constraints.

Two-phase routing, proposed by Lakshman et al. [82], is an oblivious routing scheme, meaning
that it finds a randomized routing that minimizes the maximum link utilization for any traffic matrix
in a polyhedron of traffic matrices. Two-phase routing divides routing into two phases. During phase
one, each node forwards an «; fraction ofits ingress traffic to node 7. During stage two, nodes forward
traffic they received during phase one on to its final destination. We say that a1, . . . , o, are the load-
balancing parameters of a graph G = (V, E). The optimal values of the «; values depends on G and
the set of hose TMs 7 (r(1),...,r(n)) for V = 1,..., n. Note also that two-phase routing assume
that flows are splittable (i.e., an s-¢ flow can be routed on multiple paths).

Before describing how to compute a two-phase routing, we show that finding the load-balancing
parameters of a network is equivalent to finding the cut bandwidth of a network. We denote a cut
of G by (S, S), where S and S are connected components of G and S = V — S. Let ¢(S, S) be the
capacity of all edges with one endpoint in S and the other in S. The following theorem shows how

to compute agility of a graph given oy, . . ., av,.

Theorem 4 (Curtis and Lépez-Ortiz [37]). A network G = (V, E)) with node rates r(1), ..., r(n)
and load-balancing parameters oy, . . ., ov, can feasibly route all hose TMs 7T (r(1), . .., r(n)) using two-
phase routing if and only if, for all cuts (S, S) of G,

c(S,S) > Zai-Zr(i) —i—Zai-Zr(i)

icS €S €S icS

68

where S =V — S.

Proof. Necessity is not difficult to show by way of contradiction. We omit the details here; see, e.g,,

[91] for a proof that necessity holds for any multicommodity flow.

To see sufficiency, let us first define the multicommodity flow problem solved by two-phase rout-
ing. Viewed as a multicommodity flow problem, the two-phase routing problem is a set of 2(}) =

n(n — 1) commodities, specified as follows.

W ={((s,i),ur5)} Vs,i eV Stage1
U{((¢,t),a;m)} Vi, t €V Stagea

Since we have captured all flows between nodes, it’s clear that the two-phase routing routing problem
with load balancing parameters oy, . . ., o, admits a solution if and only if the multicommodity flow
W has a feasible solution.

Assume thatall cuts (5, S) of G have capacityatleast¢(S, S) > Y. g > .o 7(1)+D 05 -
> icg (7). To see that G can serve all hose TMs, we will show that there exists a feasible solution to
the multicommodity flow problem V. We need to specify the rate of a commodity, so let (k) = r
for a commodity & = (s,t,r). We denote the set of 7’s incoming links by N~ (¢) and its outgoing
links by N* (7).

A directed graph is called capacity balanced if, for alli € V, N*(i) + demand(:) = N~ (i) +
supply(i), where demand (%) is the sum of commodity rates with ¢ as the target and supply(¢) is the
sum of commodity rates where i is the source. Nagamochi and Ibaraki [92, 93] have shown that a

teasible solution to a multicommodity flow problem WV exists on a capacity balanced network if, for
allits cuts (S, S), ¢(S) > ZkeWS r(k), where Ws = {(s,t,7) € W :s € Sandt € S}.

Because we We assume » ;) 7(k) = > i cgai- D icqm(i) + D icq i - D g 7(d) for the
multicommodity flow W. Then, if G is a capacity balanced network, then a feasible solution to W
exists. Consider an arbitrary i € V. we have N (i) = N~ (i) by definition, since G is bidirectional.
Inahose TM D, we have 3y, Dij = riand 3y, Dji = 14y s0 supply(i) = demand(i).
Therefore, G is a capacity balanced network, and so a feasible solution to W exists. [

This theorem shows that a multi-commodity flow version of the famous max-flow, min-cut theo-
rem [3 1] holds for networks using two-phase routing under the hose model. And the theorem shows

that any network that can feasibly route all hose TMs has a cut bandwidth of at least 1.

69

We now show the computation of oy, . . ., o, using the results of Lakshman et al., who proved
that the «; values can be found with linear programming (LP) [82]. We use the following notation.
Let f be a network flow in the optimization sense. We use f, to denote flow k where s(k) and is the
origin and ¢(k) is the destination of the flow. Then let f;(, j) be the amount of flow placed on edge
(i,7) by flow fi. We denote the outgoing edges from node i by 67 (7) its incoming edges by 6~ ().
The capacity of an edge (i, j) is denoted by ¢(3, j).

Optimal two-phase routing LP:

min
Subject to:
52 Ju(w,y) ;)fk y,2) Vy # s(k), (k) Vk (4.1)
ka i) < - cli,) (4.2)
Z: ety §) = asyr(i) + cageyr (@) (4.3)
J; i(;(k),Vk

Z a; =1 (4.4)

Their LP can be computed in polynomial-time using an LP solver; however, it is computationally
expensive because it has O(n?) constraints and O(n*) variables. In our initial testing, we found that
computing this LP for a network with 200 nodes and 400 (directed) edges needs more than 22GB
of memory using IBM’s CPLEX solver [72]. Even with only 50 node networks, this LP takes up to
several seconds to compute. Because REWIRE’s local search approach needs to evaluate thousands

of candidate solutions, this LP is not fast enough for our purposes.

To solve these issues, we implemented an approximation algorithm due to Kodialam et al. [82]
to compute oy, . . . , oy, in polynomial-time. This algorithm finds a solution guaranteed to be within
an (1 + ¢) factor of optimal. The algorithm follows an approach developed by Garg and Koene-

mann [50]. It augments each node ’s value ; iteratively. At each iteration, the algorithm computes

70

a weight w(e) for each edge ¢ € E and then pushes flow to ¢ along the shortest-paths to ¢ based
on these weights. The bottleneck operation in this algorithm is computing the shortest-path from
each node to each other node given the weights w(e). This operation needs to perform an all-pairs
shortest-path (APSP) computation. The best running times we are aware of for an APSP algorithm
is O(n?) (deterministic) [31] and O(n?) (probabilistic) [101]. Because this operation is the bot-
tleneck, we implemented an APSP solver on a graphics processing unit (GPU). Used this way, the

GPU is a powerful, inexpensive co-processor with hundreds of cores.

We implemented a recursive version of the Floyd-Warshall algorithm for our APSP function
using CUDA [21,98]. The algorithm uses generalized matrix multiplication (GEMM) as an under-
lying primitive. GEMM exhibits a high degree of data parallelism and we can significant speedups
by exploiting this attribute. Finally, we perform a parallel reduction to find the maximal path in the
distance matrix. Parallel reduction is an efficient algorithm for computing associative operators in
parallel. It uses ©(n) threads to compute a tree of partial results in parallel. The number of steps is

bounded by the depth of the tree which is ©(logn) [68, 65].
Latency: we compute latency(G) by solving an APSP problem on G = (V, E). We set this

problem up to model the expected amount of time it takes to process packets in network equipment.
We associate with each edge e € E a weight w(3, 7). This represents the expected time to forward
packets on that link. We define w(¢, j) of an edge (3, j) to be the sum of queuing delays, forwarding
time and processing delay at (7, j)’s endpoints. We now have that latency(G) is then the maximum

shortest-path between any pair of ToRs for (G, w).

In our model, we assume that the processing delay of each switch is specified by the operator.
To estimate queuing delays, we assume that the forwarding time is 1500 Bytes divided by the link
rate (1 or 10 Gbps) and that each packet is queued behind two other packets at each switch on its
path. Our assumption of uniform queuing delays is not realistic but necessary: since we assume no

knowledge of the network load, we cannot accurately determine queuing delays.

Initial candidate selection

Due to the large search space, finding optimized solutions with simulated annealing takes an infea-
sible amount of time for large networks, especially when there is significant room for improvement
in the network. Therefore, we added the ability to seed REWIRE'’s simulated annealing procedure

with a candidate solution. To find a seed candidate, we use a heuristic based on the spectral gap of a

71

graph. Before we define the spectral gap of a graph, we need to introduce a few terms. We consider

the matrix L, defined as follows for a graph G = (V. E):

(i) ifi = j,
L(i,j) = § —1 ifiand j are adjacent,
0 otherwise.
The Laplacian of G = (V, E) is the matrix:
1 ifi =jandd(i) # 0,
L(i,7) =] — \/m if i and j are adjacent,
0 otherwise.

The eigenvalues of £ are said to the be spectrum of (G, and we denote themby A\ < --- < \,,_;.
It can be shown that Ay = 0 [28] for a proof. We say that)\, is the spectral gap of G.

Intuitively, a graph with a “large” spectral gap will be regular (we omit a precise definition of
large here—see any text book for details [28]) and the lengths of all shortest-paths between node
pairs are expected to be similar. Maximizing a network’s spectral gap is not a new objective function

in the network design literature (e.g., [42,113]).

This is not surprising, since As an example, the following lemma shows how the spectral gap

correlates with the diameter of a graph.

Lemma s ([28]). Let G be a graph with diameter D > 4, and let K denote the maximum degree of
any vertex of G. Then

E—1 2 2
A I

M<1-2

That is, a graph with a large spectral gap has a low diameter.
We therefore modify REWIRE to optionally perform a two stage simulated annealing procedure.

In stage 1, its objective function is to maximize the spectral gap. The result from stage 1 is used to
seed stage 2, where its objective function is to maximize agility and minimize latency. This way, stage
2 starts with a good solution and can converge quicker. When this two stage procedure is used, we
say REWIRE is in hotstart mode.

Note that a network with a maximal spectral gap of all candidate solutions does not necessarily

mean that the network will also have high agility. The spectral gap metric does not take the hose

72

constraints into account, so it is not directly optimizing for agility. Instead, it creates networks that
are well-connected, which tend to have high agility (see [37] for details), but that is not necessarily

the case, especially for heterogeneous networks.

4.2.3 Adding switches to the network

REWIRE’s simulated annealing procedure does not consider adding new switches to the network—it
only optimizes the wiring of a given set of switches. To find network designs with new switches, we
run REWIRE on the input network plus a set of new switches that are not attached to any other
switch. REWIRE attaches the new switches to the existing network randomly, and then begins its

simulated annealing procedure.

While simple, this approach does not scale well. If an operator has input specifications for &
new switch types, then we need to run REWIRE £! times to consider all possible combinations of
switch types. We believe this could be improved by applying heuristics to select a set of new switches;

however, we leave investigation of such heuristics to future work.

4.3 Evaluation

We now present our evaluation of REWIRE. First, we describe the inputs used in the evaluation, then
the approaches used for comparison with REWIRE. Finally, we present our results using REWIRE
to design greenfield, upgraded and expanded networks.

4.3.1 Inputs
Existing networks

To evaluate REWIRE's ability to design upgrades and expansions of existing networks, we use a
scaled-up model of the University of Waterloo’s School of Computer Science machine room network
(denoted by SCS network) as input. This model is similar to the model we used in the previous
chapter. The SCS network has 19 ToR, 2 aggregation and 2 core routers. Each ToR connects to a
single aggregation switch with a 1 or 10 Gbps link and both aggregation switches connect to both

core switches with 10 Gbps links. The network is composed of a heterogeneous set of switches as

73

ToR switches

Hose uplink rate | Uplinks (1, 10 Gbps) | No. switches
28 8,2 5
40 8,4 8
8 8,0 4
2 2,0 2

Aggregation switches

Line cards Line card slots | No. switches
3x24 1 Gbps, 1x2 10 Gbps 6 1
4x 4 10 Gbps 6 1

Table 4.1: Existing switches in the SCS datacenter model.

described in Table 4.1. To scale the network up, we assume that each ToR switch is attached to a full

rack of 40 servers, and we assume the hose uplink rates of each ToR switch as described in the table.

To predict the cost of a network design, REWIRE needs the distance between each ToR switch
pair. We do not have this data for the SCS network. Therefore, we label each switch with a unique
label from 1, . .., n. The distance between switches i and j is then |i — j|. The distance from i to the
nearest 25% of switches is categorized as “short”, the distance to the next 50% is “medium” and then
distance to the final 25% is “long”. We use these distance categories to estimate the price of adding a

link between two switches.

Switches and cabling

We separate the costs of adding a cable into the cost of the cable itself and the cost to install it.
Mudigonda et al. report that list prices for 10 Gb cables are between $45-95 for 1m cables and
$100-400 for 10m cables depending on the type of cable (copper or optical and its connector types)
[89]. Optical cables are more expensive than copper cables, but they are available in longer lengths.
To obtain a reasonable estimate of cabling costs without creating too much complexity, we divide
cable runs into three groups: short, medium and long lengths. The costs we use are shown in Table
4.2. We also charge an installation fee for each length group (also shown in the table). Whenever an

existing cable is moved, we charge the appropriate installation fee given the cable’s length.

Table 4.3 shows the costs we assume to buy various switches.

74

Rate ‘ Short ($) ‘ Medium ($) ‘ Long ($)

Cable costs
1 Gbps 5 10 20
10 Gbps 50 100 200

Installation and re-wiring costs

10 20 50

Table 4.2: Prices of cables and the cost to install or move cables.

Ports Watts | Price ($)
24 1 Gbps 100 250
48 1 Gbps 150 1,500
48 1 Gbps, 4 10 Gbps | 235 5,000
24 10 Gbps 300 6,000
48 10 Gbps 600 10,000

Table 4.3: Switches used as input in our evaluation (prices are the same as in Section 3.6). Prices
are representative of street prices and power draw estimates are based on a typical switch of the type

according to manufacturers’ estimates.

4.3.2 Comparison approaches

We compare REWIRE against the following DCN design solutions.

Fat-tree: was proposed by Leiserson [84], and is a k-ary multi-rooted tree. This is a specific form
of the Clos topology [30]. We assume a 3-level fat-tree topology and that all switches in the network
must be homogeneous. Building an optimal fat-tree for a set of servers given switch specifications is
NP-hard [89], so we upper bound the performance that a fat-tree network with a specified budget
could achieve. To do this, we compute the number of ports the fat-tree needs, and bound the cost
of switches by the min-cost port of a given rate (e.g., a 1 Gb port costs at least $250/24 and a 10 Gb
port costs at least $10K/48). To estimate the cost of cabling, we assume that server to ToR links are
free, and that ToR to aggregation switches are medium length and aggregation to core links are long

length.

75

Greedy algorithm: we implemented a greedy heuristic to determine if REWIRE’s more sophisti-
cated local search approach is necessary. The algorithm iterates over all pairs of switches as follows.
First, it computes the change in agility and latency that would result from adding a 1 Gbps and 10
Gbps between every pair of switches and stores the result. At the end of each iteration, the algorithm
adds the link that increases the network’s performance the most. If no link changes the agility or la-
tency during an iteration then a random link is added. This iteration continues until the budget is
exhausted or no links can be added because all ports are full. Note that this algorithm does not rewire
the initial input—it only adds links to the network until the budget is exhausted. This algorithm per-
forms O(n?) agility computations at each iteration, and hence does not scale to graphs with more
than ~40 nodes. Therefore, we do not compare against the greedy algorithm for any network with

more than 40 nodes.
LEGUP: as described in Chapter 3.

Random graph: Singla et al. proposed a DCN architecture Jellyfish, which is based on random
graph topologies [110]. Random graphs have nice connectivity properties, and they showed that it is
less expensive to build a random graph than a fat-tree much of the time. To estimate the performance
a random graph can achieve with a specified budget, we determine the expected radix of each ToR
switch given number of links one can install with the budget. Then, we compute the expected agility
and diameter of the network following Singla et al’s approach. Note that we use the expected agility
and diameter, rather than explicitly constructing these networks.

4.3.3 REWIRE settings

REWIRE can operate in several different modes. These are:

o Spectral gap mode: sets REWIRE's objective function to maximize the spectral gap ofits output.

o CPLEX or approximation: sets the method REWIRE uses to compute the agility of a network. In
CPLEX mode, REWIRE uses IBM’s CPLEX solver [72] to compute the agility exactly; whereas
in approximation mode, REWIRE finds the agility of a candidate solution using the FPTAS
previously described.

e Hotstart: this mode finds a candidate solution in spectral gap mode, which is used as a seed

solution to stage 2, where the objective function is changed to our standard definition of per-

76

formance.

When describing the results from a scenario, we note what mode REWIRE was in.

Finally, REWIRE uses a local search algorithm, so it may not always find an optimal answer,
especially if it is not given enough time to run. For all experiments in this paper, we let REWIRE run
for 72 hours. This time was derived experimentally. It was typically not enough time for REWIRE to
converge to an optimal answer, so we make no claim that our results here are the best that REWIRE

can obtain.

4.3.4 Greenfield networks

We begin by evaluating the effectiveness of REWIRE at designing greenfield, that is, new, DCNs. For
this scenario, the input to REWIRE is a set of ToR switches (with no links between them). We use
REWIRE in approximation mode. Initially, ToR switches are each attached to servers, but no other
switches. The total cost of the network is the cost of these ToR switches plus the wiring budget. We
experimented with two types of ToR switches. First, we set all ToR switches have 48 1 Gbps ports,
where 24 ports attach to servers and the other 24 are left open. Then, we set all ToR switches to have
48 1 Gbps ports and 4 10 Gbps; each ToR switch attaches to 40 servers with 1 Gbps ports. For both

experiments, we built networks to connect 3200 servers.

We compare against the fat-tree, LEGUP, and random topology approaches. The results are
shown in Figure 4.1. In the chart, the bars show normalized agility (higher is better and a network
with full agility has a normalized agility of 1). The table below the bars indicates the diameter (the
worst-case hop count between ToR switches) of the network. We do not compare against the greedy
heuristic for these experiments because it is not fast enough for networks with more than 40 nodes.

REWIRE significantly outperforms the other approaches for nearly all budgets. The random
network has more agility than REWIRE’s network when the budget is $5,000; however, REWIRE’s
solution has less latency (this network has a diameter one hop less than the expected random net-
work’s). We weighted agility and latency equally in this experiment, so REWIRE preferred the solu-
tion with less bandwidth, but also less latency. This illustrates the flexibility of REWIRE.

In this scenario, LEGUP outperforms the fat-tree. Depending on the budget and ToR assump-
tions, LEGUP’s networks have 50—100% more agility than a same-cost fat-tree.

We also re-ran the REWIRE experiments using its spectral gap mode. We found that the solu-

tions with a maximal spectral gap had the same performance as the solutions found by REWIRE in

77

0.4

0.3
an
%’
<
0.2
0.1
Diameter: 4 0 4 43 4 3 43 4 3 4 2 4 4 3 4 4 2 4 3 4 2
(O] o w [O] o w () o w [O] o w [O] o w (O] o w [0 o w
9%80_: egaﬂ_: 9%80_: egag 92%80_: eggg 2%80_:
O = o) = O = O = O = O = O =
""CLU -i—':u_l 4-'C|_u 1-'Cu_| ""CLLl ""CLIJ HCLL]
fE1E CSg-E Sg-E Sf-F £ Sg-0F SF-F

Budget = $125/rack $250/rack $500/rack $1000/rack $250/rack $500/rack $1000/rack
ToR switches with 48 1 Gb ports 48 1 Gb +4 10 Gb ports

Figure 4.1: Results of designing greenfield networks for 3200 servers using a fat-tree, random graph
and REWIRE for two ToR switch types. The results on the left used ToR switches with 48 1 Gbps
ports and the results on the right used ToR switches with 48 1 Gbps ports and 4 10 Gbps. Missing
bars for the random graph indicate that the network is expected to be disconnected. A network with

agility 1 has full agility, and a network with diameter 1 is fully connected.

78

0.5

0.4
2
%’0.3
<
0.2
0.1
Diameter: 4 4 4 4 4 4 4 4 3 3 4 3 3
5 §3H gIH gIHE s
o 5 9 = 5 9 = 5 90 = 5 9 =
£ Lo = Lo = Lo = Lo =
fFog Fofg Fog Fop
Budget= $1250 $2500 $5000 $10,000

Figure 4.2: Results of upgrading the SCS topology with different budgets and algorithms.

approximation mode. This implies that the spectral gap is good metric when designing greenfield
data centers because it seems to maximize agility and it finds networks with very regular topologies,
which may reduce the cost of wiring the network.

4.3.5 Upgrading

We now evaluate REWIRE's ability to find upgrades to existing DCNs. To begin, we compared
REWIRE to a fat-tree and our greedy algorithm on the SCS network for several budgets. The re-
sults are shown in Figure 4.2.

REWIRE significantly outperforms the fat-tree—its networks have 120-530% more agility than
afat-tree constructed with the same budget, and with budgets over $s K, REWIRE’s network also has
ashorter diameter (by 1 hop) than a fat-tree. REWIRE also outperforms the greedy algorithm for all
budgets, though the greedy algorithm performs nearly as well when the budget is $5K or more. This
indicates that a greedy approach performs very well in some settings; however, we have generally
observed that the greedy algorithm does not perform well when it has a small budget or the input
is very constrained and has few open ports. For example, when the budget is $2,500, REWIRE’s
network has 350% more agility than the network found by the greedy algorithm.

79

0.4
P
= 0.3
[®)
<
0.2
0.1
Diameter: 4 6 6 6 4 4 3 3 3 3 3
5 $ 5535 &85 5%
< © & 2 g g °© % 2 g g
8é+ 8><+
n £ X n 2 X
o w o uw
2 7 2 7
< 0o < 5
Budget=$2500 $10,000

Figure 4.3: Results of upgrading the SCS topology with different REWIRE modes and two budgets.

Next, we compared the various modes of REWIRE for two budgets as shown in Figure 4.3. We
observe that the spectral gap and hotstart modes performs poorly when the budget is $2,500. This
is likely due to the properties of the spectral gap, which tries to make the network more regular.
Because the budget is not large enough to re-wire the network in this regular fashion, optimizing
the network’s spectral gap creates a candidate solution with poor agility. This problem does not arise
when the budget is large enough (as in the case when the budget is $10K), because there is enough
money to re-wire the network into this regular structure.

4.3.6 Expanding

We now examine the performance of the algorithms as we expand the datacenter over time by incre-

mentally adding new servers. We tested two expansion scenarios here.

First, we expanded the SCS datacenter by adding 160 servers at a time, until we have added a total
of 640 servers to the datacenter. The results are shown in Figure 4.4. For REWIRE and the greedy
algorithm, we used ToR switches with 48 1 Gbps and 4 10 Gbps ports, so each ToR attaches to 40
servers. For the 1 Gb fat-tree, we used ToR switches with 24 1 Gbps ports. The budgets shown in the

8o

0.05

0.04

0.03

Agility

0.02

0.01

0
Diameter:

LEGUP | N

Original | &
Fat-tree 1Gb | &
GREEDY | W
LEGUP | »
REWIRE | w
Fat-tree 1Gb | &
GREEDY | w
LEGUP | &
REWIRE | W
Fat-tree 1Gb | &
GREEDY | no
LEGUP | »
REWIRE | w
Fat-tree 1Gb | »
GREEDY | w
REWIRE | N

(=]

160 320 480
Cumulative number of servers added

o))
D
[=]

Figure 4.4: Results of iteratively expanding the SCS datacenter.

figure are the budgets for cabling and aggregation and core switches. That is, the budgets shown do

not take into account the price of ToR switches.

We found that REWIRE outperforms the fat-tree, the greedy algorithm, and LEGUP in this sce-
nario. The fat-tree is not able to improve the agility of the expanded network beyond the agility of
the initial SCS DCN, whereas the greedy algorithm, LEGUP, and REWIRE do. This scenario shows
the limitations of the greedy algorithm. After four expansions, REWIRE’s network has nearly twice
as much agility as the greedy algorithm’s network, and LEGUP, despite its topology restrictions, also
outperforms the greedy algorithm after the second iteration.

Next, we evaluated REWIRE's performance when constructing, and then expanding a greenfield
datacenter. In these experiments, we built the initial DCN with a budget of $40K using LEGUP,
REWIRE, or a fat-tree with 1 or 10 Gb links. This initial datacenter contained 1600 servers. Then,
we iteratively expanded this datacenter by adding 400 servers at a time. For each expansion, the
algorithms were given a total budget of $60K (this includes the cost of ToR switches). The results

are shown in Figure 4.5.

Again, REWIRE performed better than either fat-tree configuration and LEGUP. Its initial net-

81

n o
N A
S o

Aiby

wn
-
o

0

1

0.

0.05

0

Diameter:

4 443 4443 4443 4442

4 44 3

JHIMIY
dnod1

aD01 9211184
qo 9a1-1e4

JHIMIY
dno31

ao01 9an-1e4
gD 9an-1e4

FdIM3d
dN531

Q901 3343-1e4
o1 9a.1-1e4

JHIMIY
dnod1

ao01 2311384
ao| 9a1-1e4

JHIMIY
dnoaT

go01 93.11-1e4
CLYEENSLY

(=}
(=]
N
(a0}

2000 2400 2800
Total servers in data center

1600

Figure 4.5: Results of iteratively expanding a greenfield network.

82

work has more agility than the networks designed by the other approaches, and it maintains this lead

as the datacenter is iteratively expanded.

4.3.7 Quantitative results

Time is a bottleneck in our network design algorithm. When using a single CPU core, it can take up
to two weeks to converge when the input contains 200 switches. To speed this up, we implemented a
GPU-based all-pairs shortest-path (APSP) solver. As the APSP computation is the bottleneck oper-
ation in REWIRE’s operation, we found that doubling the speed of the APSP computations nearly
halves REWIRE’s total runtime. In summary, we found our GPU-based APSP implementation is
28-244x faster than a naive implementation [31]. As the network size increases, larger speedups are

possible.

4.4 Operating an Unstructured DCN

Because of their performance benefits, we advocate the adoption of non-regular topologies in the
datacenter. Doing so, however, raises architecture issues. In particular, we need an architecture that
provides addressing, routing, load-balancing and cost-effective management on unstructured DCN
topologies if they are to be of practical use. We now show how previous work can perform these

functions.

Addressing and routing: have been the focus of much recent work due to the difficulty of scaling
traditional, distributed control-plane protocols to connect more than a couple thousand servers.
Protocols such as SEATTLE [77] and TRILL [116] provide scalable L2 functionality on arbitrary
topologies, but do not provide multipath routing, which is needed to fully utilize dense networks.
Another option is SPAIN, an architecture for multipath routing on arbitrary topologies [88]. SPAIN

performs source-routing and uses VLANSs to partition the network into many spanning trees.

Load-balancing: our algorithms assume that a network’s bandwidth can be fully exploited by the
load-balancing mechanism. This assumption is not valid when using single-path protocols like span-

ning tree; however, near-optimal load-balancing can be achieved on arbitrary topologies by using

83

Multipath TCP [103] or SPAIN [88]. Multipath TCP exposes multiple end-to-end paths to end-
hosts, and they independently attempt to maximize their bandwidth by performing adaptive load
balancing across these paths. This approach can achieve 100% utilization on a fat-tree [103]. Multi-
path TCP has not yet been evaluated on arbitrary topologies; however, its performance on regular
topologies indicates it will be able to fully utilize arbitrary topologies as well. SPAIN [88] performs
reactive load balancing at the end-hosts over the various VLANs exposed to each end-host. It has
been shown that SPAIN can fully utilize HyperX, FatTree and BCube topologies. Because it per-
forms well on this range of regular topologies, we believe it will also perform well on the topologies
REWIRE designs.

Based on the evaluations of SPAIN and Multipath TCP, we believe that these protocols would be
able to fully utilize REWIRE’s topologies. Alternatively, centralized flow controllers like Hedera [8]
and Mahout [34] could be modified to provide near-optimal load-balancing on arbitrary topologies.

Management and configuration: managing a DCN with an irregular topology may be more costly
and require more expertise than a vendor-specified DCN architecture. In particular, addressing is
more difficult to configure an irregular topology, because we cannot encode topologic locality in

the logical ID of a switch (typically a switch’s logical ID is its topology-imposed address or label).

To mitigate this issue, we suggest configuring the network using Chen et al’s generic and au-
tomatic datacenter address configuration system (DAC) [27]. An interesting benefit of DAC’s de-
sign is that it can automatically identify mis-wirings. This operation is especially useful for us be-
cause wiring an arbitrary topology may be more difficult than a regular, tree-like topology. Software-
defined networking, such as implemented by OpenFlow, is also a promising solution for arbitrary
DCN management (see [114] and Chapter 6). We believe these solutions can solve many of the
management problems that may arise from the introduction of irregular topologies in the datacen-

ter, and we leave further investigation to future work.

4.5 Discussion
The (14 €)-approximation algorithm we implemented to compute the agility of a network is numer-

ically unstable. At each iteration of its operation, it performs an all-pairs shortest-path computation.

To do this, it needs to compare increasingly minute numbers at each successive iteration. We found

84

it returns incorrect shortest-paths trees after enough iterations because these comparisons are made
on numbers less than 1074°, Because of this numerical instability, we could not run the approxima-
tion algorithm on inputs larger than 200 nodes and 200 edges. Nor could we run it with very small

values of € because the algorithm performs more iterations as € decreases.

We did not explicitly consider designing upgrades or expansions that can be executed with mini-
mal disruption to an existing DCN. However, it is possible to disable REWIRE'’s support for moving
existing network links. Another approach is to modify the cost constraints (e.g., moving a link costs
five times more than adding a new one) so that rare, significantly beneficial re-wirings are permissi-

ble.

85

Chapter5

Datacenter Network Traffic
Engineering with Mahout

86

5.1 Introduction

As previously noted, datacenter switching fabrics need huge amounts of bisection bandwidth to en-
able the transfer of huge quantities of data between thousands of servers. For example, Hadoop [61]
performs an all-to-all transfer of up to petabytes of files during the shuffle phase of a MapReduce
job [39]. Further, to better consolidate employee desktop and other computation needs, enterprises
are leveraging virtualized datacenter frameworks (e.g., using VMWare [120] and Xen [124, 15]),

where timely migration of virtual machines requires high throughput network.

Designing datacenter networks using redundant topologies such as LEGUP’s heterogeneous
Clos, REWIRE's unstructured topologies, or a fat-tree [30, 10] builds a network with sufficient bi-
section bandwidth. However, traffic engineering is necessary to fully utilize the available bandwidth
in such topologies [8]. A key challenge to traffic engineering here is that the flows come and go too
quickly in a datacenter to compute a route for each individually; for example, Kandula et al. report

100K flow arrivals a second in a 1,500 server cluster [76].

For effective utilization of the datacenter fabric, we need to detect elephant flows—flows that
transfer significant amount of data—and dynamically orchestrate their paths. Datacenter measure-
ment studies show that a large fraction of datacenter traffic is carried in a small fraction of flows
[55,76]. These studies report that 90% of DCN flows carry less than 1 MB of data and more than 90%
of bytes transferred are in flows greater than 100 MB. Hash-based flow forwarding techniques such
as equal-cost multi-path (ECMP) routing [67] works well only for large numbers of short (or mice)
flows and no elephant flows. For example, Al-Fares et als Hedera shows that dynamically schedul-
ing elephant flows effectively can yield as much as 113% higher aggregate throughput compared to
ECMP for some DCN workloads [8].

Existing elephant flow detection methods have limitations that make them unsuitable for dat-
acenter networks. These proposals use one of three techniques to identify elephants: (1) periodic
polling of statistics from switches, (2) streaming techniques like sampling or window-based algo-
rithms, or (3) application-level modifications (full details of each approach are given in Section 5.2).
We have not seen support for Quality of Service (QoS) solutions take hold, which implies that mod-
ifying applications is probably an unacceptable solution. We show that the other two approaches fall
short in the datacenter setting due to high monitoring overheads, significant switch resource con-

sumption, or long detection times.

In this Chapter, we assert that the right place for elephant flow detection is at the end-hosts.

87

To achieve this, we describe Mahout, a low-overhead yet effective traffic management system that
uses end-host-based elephant detection. Mahout’s design follows the increasingly popular simple-
switch/smart-controller model (as in OpenFlow [5]), and so our system is similar to NOX [114],
Hedera [8], and DevoFlow (Chapter 6).

Mahout augments this basic design by taking advantage of computational power of datacenter
end-hosts. It haslow overhead, as it monitors and detects elephant flows at end-hosts via a shim layer
in the OS, rather than monitoring at the switches in the network. Mahout does timely management
of elephant flows through an in-band signaling mechanism between the shim layer at the end-hosts
and the network controller. At the switches, any flow not signaled as an elephant is routed using a
randomized load balancing scheme, such as ECMP. Therefore, only elephant flows are monitored
and scheduled by the central controller. The combination of end-host elephant detection and in-
band signaling eliminates the need for per-flow monitoring in the switches, and hence incurs low

overhead and requires few switch resources.

We demonstrate the benefits of Mahout using an analytical evaluation, simulations, and a pro-
totype implementation. We have implemented the end-host shim on Linux, which implements our
elephant flow detection algorithm. We have also built a Mahout controller, for setting up switches
with default entries and for processing the tagged packets from the end-hosts. Our analytical evalu-
ation shows that Mahout offers one to two orders of magnitude of reduction in the number of flows
processed by the controller and in switch resource requirements, compared to Hedera and similar
approaches. Our simulations show that Mahout can achieve considerable throughput improvements
compared to randomized load balancing techniques, while incurring an order of magnitude lower
overhead than Hedera. Finally, experiments with our prototype indicate that our approach can de-
tect elephant flows at least an order of magnitude sooner than network-based approaches.

The key contributions this chapter are: (1) a novel end-host based mechanism for detecting ele-
phant flows in §5.3, (2) design of a centralized datacenter traffic management system that has low
overhead yet is effective (§5.3), and (3) simulation and prototype experiments demonstrating the

benefits of the proposed design in §5.4-5.5.

88

5.2 Background

We now describe the relevant background not covered in Chapter 2 on datacenter networks and

elephant flow detection.

5.2.1 Datacenter traffic

The heterogeneous mix of applications running in datacenters produces flows that are generally sen-
sitive to either latency or throughput. Latency-sensitive flows are usually generated by network pro-
tocols (such as ARP and DNS) and interactive applications. They typically transfer up to a few kilo-
bytes. On the other hand, throughput-sensitive flows, created by, e.g., MapReduce, scientific com-
puting, and virtual machine migration, transfer up to gigabytes. This traffic mix implies that a dat-
acenter network needs to deliver high bisection bandwidth for throughput-sensitive flows without

introducing setup delay on latency-sensitive flows.

5.2.2 Identifying elephant flows

The mix of latency- and throughput-sensitive flows in the datacenters means that effective flow schedul-
ing needs to balance visibility and overhead—a one size fits all approach is not sufficient in this
setting. To achieve this balance, elephant flows must be identified so that they are the only flows
touched by the controller. The following are the previously considered mechanisms for identifying

elephant flows:

o Application-based classification: This approach requires that applications identify flows they cre-
ate as a mice or elephant flow. This solution accurately and immediately identifies elephant
flows. This is a common assumption for a plethora of research work in network QoS where fo-
cus is to give higher priority to latency and throughput-sensitive flows such as voice and video
applications [20]. However, this solution is impractical for traffic management in datacenters as
each and every application must be modified to support it. If all applications are not modified,
an alternative technique will still be needed to identify elephant flows initiated by unmodified
applications.

A related approach is to classify flows based on which application is initiating them. This
classifies flows using stochastic machine learning techniques [106] or matching packet header

89

fields (such as TCP port numbers). While this approach might be suitable for enterprise net-
work management, it is unsuitable for datacenter network management because of the enor-
mous amount of traffic in the datacenter and the difficulty in obtaining flow traces to train the

classification algorithms.

Collect per-flow statistics: In this approach, flows are monitored by edge switches. Flow statistics
are pulled from edge switches by the controller at regular intervals and are used to classify ele-
phant flows. Hedera [8] and Helios [47] are examples of systems that use such a mechanism.
However, this approach does not scale to large networks. First, this consumes significant switch
resources: a flow table entry for each flow monitored at a switch. We’ll show in Section 5.4 that
this requires considerable number of flow table entries. Second, bandwidth between switches
and the controller is limited, so much so that transferring statistics becomes the bottleneck in
trafic management in datacenter network. As a result, the flow statistics cannot be quickly trans-

ferred to the controller, resulting in prolonged sub-par routings.

Sampling: Instead of monitoring each flow in the network, in this approach, a controller samples
packets from all ports of the switches using switch sampling features such as sFlow [4]. Only a
small fraction of packets are sampled (typically, 1 in 1000) at the switches and only headers of
the packets are transferred to the controller. The controller analyzes the samples and identifies
a flow as an elephant after it has seen sufficient number of samples from the flow. However, this
approach can not reliably detect an elephant flow before it has carried more than 10K packets,
or roughly 15 MB [87]. Additionally, sampling has high overhead, since the controller must

process each sampled packet.

Our Solution: Mahout

Mahout’s architecture is shown in Figure 5.1.In Mahout, a shim layer at each end-host monitors the

flows originating from that host. When this layer detects an elephant flow, it marks subsequent pack-

ets of that flow using an in-band signaling mechanism. The switches in the network are configured to

forward these marked packets to the Mahout controller. This simple approach allows the controller

to detect elephant flows without placing burden on switches or using network bandwidth. The Ma-

hout controller then manages only the elephant flows, to maintain a globally optimal arrangement
of them.

90

Central controller

| | | | | | |:| Core switches

| | | [| | | | | | | | | | | Aggregation switches

ToR switches

End-host

Applications

(O

Racks of servers | Mahout shim |

Figure 5.1: Mahout architecture.

Below, we describe Mahout’s end-host shim layer for detecting elephant flows, our in-band sig-

naling method to inform the controller about elephant flows, and the Mahout network controller.

5.3.1 Detecting Elephant Flows

An end-host based implementation for detecting elephant flows is better than in-network monitor-
ing/sampling based methods, particularly in datacenters, because: (1) The network behavior of a
flow is affected by how rapidly the end-point applications are generating data for the flow. Unlike in-
network monitoring, the application’s behavior is not biased by congestion in the network. (2) Itis
possible to augment the end-host OS. This is because datacenters usually are a single administrative
domain and end-hosts run uniform software. (3) Mahout’s elephant detection mechanism has very
little overhead (it is implemented with two if statements) on commodity servers. In contrast, us-
ing an in-network mechanism to do fine-grained flow monitoring (such as OpenFlow’s stat-pulling
mechanism) can be infeasible, even on an edge switch, and even more so on a core switch, espe-
cially on commodity hardware. For example, assume that 32 servers are connected to a rack switch.

If each server generates 20 new flows per second, with a default flow timeout period of 60 seconds,

91

100 - b
80 b
g
g 60 b
0
8
& 40 [.
20 TCP Buffer
Sent Data
0 | | | | | | |
0 100 200 300 400 500 600 700 800

Time (us)

Figure 5.2: Amount of data observed in the TCP buffers vs. data observed at the network layer for a

flow.

an edge-switch needs to maintain and monitor 38400 flow entries. This number is infeasible in any

of the hardware switch implementations of OpenFlow that we are aware of.

A key idea of the Mahout system is to monitor end-host socket buffers, and thus determine ele-
phant flows before in-network monitoring systems. We demonstrate the rationale for this approach
with a micro-benchmark: an ftp transfer of a 50 MB file from a host 1 to host 2, connected via two
switches all with 1 Gbps links.

In Figure 5.2, we show the cumulative amount of data observed on the network, and in the TCP
bufter, as time progresses. The time axis starts when the application first provides data to the kernel.
From the graph, one can observe that the application fills the TCP buffers at a rate much higher than
the observed network rate. If the threshold for considering a flow as an elephant is 100KB (Figure
2. of [55] shows that more than 85% of flows are less than 100KB), we see that Mahout’s end-host
shim layer can detect a flow to be an elephant 3x sooner than in-network monitoring. In this experi-
ment there were no other active flows on the network. In further experimental results, presented in

Section 5.5, we observe an order of magnitude faster detection when there are other flows.

Mahout uses a shim layer in the end-hosts to monitor the socket bufters. When a socket buffer

crosses a chosen threshold, the shim layer classifies the flow as an elephant. This simple approach

92

Algorithm 3 Pseudocode for end-host shim layer

1: When sending a packet

2: if number of bytes in buffer > thresholdcjcpnan: then
3 / * Elephant flow */

4: if last-tagged-time - now() > Ty4gperiod then

3 / * Set the differentiated services (DS) field to tag as elephant flow */
6: set DS = oooo1100

7 last-tagged-time = now/()

8 end if

9: endif

is implemented by two if statements, as shown in Algorithm 3. It ensures that flows that are bot-
tlenecked at the application layer and not in the network layer. This approach does not necessarily
classify long-lived flows as elephants; instead, it identifies flows that are bottlenecked by the network.
The intuition is that flows that are bottlenecked by the application need no special management in
the network. In contrast, if an application is generating data for a flow faster than the flow’s achieved
network throughput, the socket buffer will fill up, and hence Mahout will detect this an an elephant
flow.

5.3.2 In-band Signaling

Once Mahout’s shim layer has detected an elephant flow, it needs to signal this to the network con-
troller. We do this indirectly, by marking the packets in a way that is easily and efhiciently detected
by OpenFlow switches, and then the switches divert the marked packets to the network controller.
To avoid inundating the controller with too many packets of the same flow, the end-host shim layer
marks the packets of an elephant flow only once every T}, perioa Seconds (we use 1 second in our
prototype).

To mark a packet, we repurpose the Differentiated Services Field (DS Field) [96] in the IPv4
header. This field was originally called the IP Type-of-Service (IPToS) byte. The first 6 bits of the DS
Field, called Differentiated Services Code Point (DSCP), define the per-hop behavior of a packet.
The current OpenFlow specification [3] allows matching on DSCP bits, and most commercial switch
implementations of OpenFlow support this feature in hardware; hence, we use the DS Field for

signaling between the end-host shim layer and the network controller. Currently, the code point

93

. IMPL.
Bit lengths DEP. 48 48 16 12 3 32 32 8 6 16 16

Packet fields INGRESS ETH VLAN TCPIUDP | TCPIUDP
to match pORT |ETHSRC|ETHDST(_or | VLANID |0 ooy IPSRC [IPDST [IPPROT | IP ToS SRC DST ACTIONS
o 2 01AB..8F | 30CD.9E | 0806 XX XX 10.0.0.1 | 10.0.0.4 6 XXXXXX 80 2490 Forward to port 4

Flow entries

for detected —| 1° BEOF..03 [04DE.CF| 0806 XX XX 10.0.1.10 | 10.0.1.40 6 XXXXXX | 3450 3451 Forward to port 3
elephant flows >

Default rules] XX XX XX XX XX XX XX XX XX 000011 XX XX Send to Controller
at the lowest NORMAL routing

ioti Tl XX XX XX XX XX XX XX XX XX XXXXXX XX XX
priotity (ECMP)

Figure 5.3: An example flow table setup at a switch by the Mahout controller.

space corresponding to zzzx 11 (x denotes a wild-card bit) is reserved for experimental or local us-
age [71], and we leverage this space. When an end-host detects an elephant flow it sets the DSCP
bits to 000011 in the packets belonging to that flow.

Algorithm 3 shows pseudocode for the end-host shim layer function that is executed when a

TCP packet is being sent.

5.3.3 Mahout Controller

At each rack switch, the Mahout controller initially configures two default OpenFlow flow table
entries: (i) an entry to send a copy of packets with the DSCP bits set to 000011 to the controller
and (ii) the lowest-priority entry to switch packets using NORMAL forwarding action. We set up
switches to perform ECMP forwarding by default in the NORMAL operation mode. Figure 5.3
shows the two default entries at the bottom. In this figure, an entry has a higher priority over (is
matched before) entries drawn below that entry.

When a flow starts, it matches the lowest-priority (NORMAL) rule, so its packets are forwarded
using ECMP. When an end-host classifies a flow as an elephant and marks a packet of that flow, the
packet marked with DSCP 000011 matches the other default rule, and the rack switch forwards it
to the Mahout controller. The controller then computes the best path for this elephant, and installs

a flow-specific forwarding table entry in the switches along this path.

94

In Figure 5.3, we show a few example entries for the elephant flows. Note that these entries are
installed with higher priority than Mahout’s two default rules; hence, the packets corresponding
to these elephant flows are switched using the actions of these flow-specific entries rather than the
actions of the default entries. Also, the DS field is set to wildcard for these elephant flow entries, so
that once the flow-specific rule is installed, any tagged packets from the end-hosts are not forwarded

to the controller.

Once an elephant flow is reported to the Mahout controller, it needs to be placed on the best
available path. We define the best path for a flow from s to ¢ as the least congested of all paths from s
to ¢. The least congested s-t path is found by enumerating over all such paths.

To manage the elephant flows, Mahout regularly pulls statistics on the elephant flows and link
utilizations from the switches, and uses these statistics to optimize the elephant flows’ routes. This
is done with the increasing first fit algorithm given in Algorithm 4. Correa and Goemans introduced
this algorithm and proved that it finds routings that have at most a 10% higher link utilization than the
optimal routing [32]. While we cannot guarantee this bound because we re-route only the elephant

flows, we expect this algorithm to perform well because of these theoretical results.

5.3.4 Discussion

DSCP bits In Mahout, the end-host shim layer uses the DSCP bits of the DS field in IP header
for signaling elephant flows. However, there may be some datacenters where DSCP may be needed
for other uses, such as for prioritization among different types of flows (voice, video, and data) or
for prioritization among different customers. In such scenarios, we plan to use VLAN Priority Code
Point (PCP) [2] bits for in-band signaling. OpenFlow supports matching on these bits too. As it is
unlikely that both of these code point fields (PCP and DSCP) to be in use simultaneously, we expect

one of these two options to be unused for most DCN.

Virtualized Datacenter In a virtualized datacenter, a single server will host multiple guest virtual
machines, each possibly running a different operating system. In such a scenario, we have two op-
tions. First, we could implement our elephant flow detection algorithm in the virtual switch in the
hypervisor. This solution is ideal; however, it requires us to be able to modify the hypervisor. Sec-
ond, the Mahout shim could be deployed in each of the guest virtual machines. Note that the host

operating system will not have visibility into the socket buffers of a guest virtual machine. However,

95

Algorithm 4 Offline increasing first fit
1: sort(F); reverse(F) /* F: set of elephant flows */
2: for f € F'do

3: forl € f.pathdo

4: lload = l.load - f.rate

s: end for

6: end for

7: for f € F'do

8: best_paths[f].congest = co

9: /¥ Pg:setofall s-t paths */
10: for path € Py do
11: congest = (frate + path.load) / path.bandwidth
12: if congest < best_path.congest then
13: best_paths[f] = path
14: best_paths|[f].congest = congest
15: end if

16: end for
17: end for

18: return best_paths

in cloud computing infrastructures such as Amazon EC2 [12], typically the infrastructure provider
makes available a few preconfigured OS versions, which include the paravirtualization drivers to
work with the provider’s hypervisor. Thus, we believe that it is feasible to deploy the Mahout shim

layer in virtualized datacenters, too.

Elephant flow threshold Choosingtoolow avalue for thresholdejephan: in Algorithm 3 can cause
many flows to be recognized as elephants, and hence cause the rack switches to forward too many
packets to the controller. When there are many elephant flows, to avoid the controller overload, we
could provide a means for the controller to signal the end-hosts to increase the threshold value. How-
ever, this would require a out-of-band control mechanism. An alternative is to use multiple DSCP
values to denote different levels of thresholds. For example, xzzz11 can be designated to denote
that a flow has more than 100 KB data, zz2111 to denote more than 1 MB, 221111 to denote more
than 10 MB, and so on. The controller can then change the default entry corresponding to the tagged

96

packets (second from bottom in the Figure 5.3) to select higher thresholds, based on the load at the

controller. Further study is needed to explore these approaches.

5.4 Analytical Evaluation

In this section, we analyze the expected overhead of detecting elephant flows with Mahout, with flow
sampling, and by maintaining per-flow statistics (such as Hedera). We set up an analytical framework
to evaluate the number of switch table entries and control messages used by each method. We eval-
uate each method using an example datacenter, and show that Mahout is the only solution that can

scale to support large datacenters.

Flow sampling identifies elephants by sampling an expected 1 out of k packets. Once it has seen
enough packets from the same flow, then the flow is classified as an elephant. The number of packets
needed to classify an elephant does not affect our analysis in this section, so we ignore it for now.
Hedera [8] uses periodic polling for elephant flow detection. Every ¢ seconds, the Hedera controller
pulls the per-flow statistics from each switch. In order to estimate the true rate of a flow (i.e., the rate
of the flow if its rate is only constrained by its endpoints’ NICs and not by any link in the network),
the statistics for every flow in the network must be collected. Pulling statistics for all flows using
OpenFlow requires setting up a flow table entry for every flow, so each flow must be sent to the

controller before it can be started, so we include this cost in our analysis.

We consider a million end-host network for the following analysis. Here, an end-host could be

a physical machine or a virtual machine. Our notation and and the assumed values are shown in the
Table 5.1.

Hedera [8]: As table entries need to be maintained for all flows, the number of flow table entries
needed at each rack switchis 7"- F'- D.In our example, this translates to 32-20-60 = 38, 400 entries at
each rack switch. We are not aware of any existing switch with OpenFlow support that can support
this many entries in the flow table in the hardware—for example, HP ProCurve 5400zl switches
support up to 1.7K OpenFlow entries per linecard. It is unlikely that any switch in the near future

will support so many table entries given the expense of high-speed memory.

The Hedera controller needs to handle N - F' flow setups per second, or more than 20 million
requests per second in our example. A single NOX controller can handle only 30,000 requests per

second [114]; hence one needs 667 controllers to just handle the flow setup load, assuming that the

97

Parameter Description Value
N Num. of end-hosts 220 (1M)
T Num. of end-hosts per rack switch 32
S Num. of rack switches 215 (32K)
F Avg. new flows per second per end-host | 20 [114]
D Avg. duration of a flow in the flow table | 60 seconds
c Size of counters in bytes 24 3]
Tstat Rate of gathering statistics 1-per-second
D Num. of bytes in a packet 1500
fm Fraction of mice 0.99
fe Fraction of elephants 0.01
T sample Rate of sampling 1-in-1000
Rsample Size of packet sample (bytes) 60

Table 5.1: Parameters and typical values for the analytical evaluation

load can be perfectly distributed.
The rate at which the controller needs to process the statistics packets is

-T-F-D
= C—'S'rstat
p

In our example, this implies (24 - 38400) /1500 - 2'° - 1 ~ 20.1M control packets per second.
Assuming that NOX controller can handle these packets at the rate it can handle the flow setup
requests (30,000 per second), this translates to needing 670 controllers just to process these packets.
Or, if we consider only one controller, then the statistics can be gathered only once every 670 seconds
(=~ 11 minutes).

Sampling: Sampling incurs the messaging overhead of taking samples, and then installs flow
table entries when an elephant is detected. The rate at which the controller needs to process the
sampled packets is

bytes per sample
p

= throughput - 7s4mpie -

We assume that each sample contains only a 6o byte header and that headers can be combined

into 1500 byte packets, so there are 2 § samples per message to the controller. The aggregate through-

98

put of a datacenter network changes frequently, but if 10% of the hosts are sending traffic, the ag-
gregate throughput (in Gbps) is 0.10 - N. We then find the messaging overhead of sampling to be
around s 50K messages per second, or if we bundle samples into packets (i.e., 25 samples fitina 1500

byte packet), then this drops to 22K messages per second.

At first blush, this messaging overhead does not seem like too much overhead; however, as the
network utilization increases, the messaging overhead can reach 3.75 million (or 150K if there are
25 samples per packet) packets per second. Therefore, sampling incurs the highest overhead when
load balancing is most needed. Decreasing the sampling rate reduces this overhead but adversely

impacts the effects of flow scheduling since not all elephants are detected.

We expect the number of elephants identified by sampling to be similar to Mahout, so we do not

analyze the flow table entry overhead of sampling separately.

Mahout: Because elephant flow detection is done at the end-host, switches contain flow table
entries for elephant flows only. Also, statistics are only gathered for the elephant flows. So, the num-
ber of flow entries per rack switch in Mahoutis 7' - [- D - f, = 384 entries. The number of flow
setups that the Mahout controller needs to handle is N - F' - f,, which is about 200K requests per
second, which needs 7 controllers. Also, the number of packets per second that need to be processed
for gathering statistics is a f. fraction of the same in case of Hedera. Thus 7 controllers are needed
for gathering statistics at the rate of once per second, or the statistics can be gathered by a single

controller at the rate of once every 7 seconds.

5.5 Experiments

5.5.1 Simulations

Our goalis to compare the performance and overheads of Mahout against the competing approaches
described in the previous section. To do so, we implemented a flow-level, event-based simulator that
can scale to a few thousand end-hosts connected using Clos topology [30]. We now describe this

simulator and our evaluation of Mahout with it.

99

Methodology

We simulate a datacenter network by modeling the behavior of flows. The network topology is mod-
eled as a capacitated, directed graph and forms a three-level Clos topology. All simulations here are
of a 1,600 server datacenter network. The network has an agility of 0.20, which means that it has
320 Gb of bisection bandwidth. All servers have 1 Gbps NICs and links have 1 Gbps capacity. Our
simulation is event-based, so there is no discrete clock—instead, the timing of events is accurate to
floating-point precision. Input to the simulator is a file listing the start time, bytes, and endpoints of
a set of flows (our workloads are described below). When a flow starts or completes, the rate of each

flow is recomputed.

We model the OpenFlow protocol only by accounting for the delay when a switch sets up a flow
table entry for a flow. When this occurs, the switch sends the flow to the OpenFlow controller by
placing it in its OpenFlow queues. This queue has 10 Mbps of bandwidth (this number was mea-
sured from an OpenFlow switch [86]). This queue has infinite capacity, so our model optimistically
estimates the delay between a switch and the OpenFlow controller since a real system drops arriv-
ing packets if one of these queues is full, resulting in TCP timeouts. Moreover, we assume that there
is no other overhead when setting up a flow, so the OpenFlow controller deals with the flow and

installs flow table entries instantly.

We simulate three different schedulers: (1) an offline scheduler that periodically pulls flow statis-
tics from the switches, (2) a scheduler that behaves like the Mahout scheduler, but uses sampling to
detect elephant flows, and (3) the Mahout scheduler as described in Sec. 5.3.3.

The stat-pulling controller behaves like Hedera [8] and Helios [47]. Here, the controller pulls
flow statistics from each switch at regular intervals. The statistics from a flow table entry are 24 bytes,
so the amount of time to transfer the statistics from a switch to the controller is proportional to the
number of flow table entries at the switch. When transferring statistics, we assume that the CPU-to-
controller rate is the bottleneck, not the network or OpenFlow controller itself. Once the controller
has statistics for all flows, it computes a new routing for elephant flows and reassigns paths instantly.
In practice, computing this routing and inserting updated flow table entries into the switches will
take up to hundreds of milliseconds. We allow this to be done instantaneously to find the theoretical
best achievable results using an offline approach. The global re-routing of flows is computed using the
increasing best fit algorithm described in Algorithm 4. This algorithm is simpler than the simulated

annealing employed by Hedera; however, we expect the results to be similar, since this heuristic is

100

likely to be as good as any other (as discussed in Sec. 5.3.3)

As we are doing flow-level simulations, sampling packets is not straightforward since there are
no packets to sample from. Instead, we sample from flows by determining the amount of time it will
take for k packets to traverse a link, given its rate, and then sample from the flows on the link by
weighting each flow by its rate. To simulate packet sampling, we begin by calculating the amount
of time it will take for s packets to traverse a link given the rate of flows on that link, where 1/s is
the sampling rate and each packet is assumed to be 1500bytes. We find the time this occurs, and at
that time, we sample from the flows traverse the link, weighting each flow by its rate. For example, if
there are three flows on a link with rates ry, 2, and 73, then we sample from flow ¢ with probability
(r1+ 72 +13)/1;. We found, however, that performing this sampling took too long when the sample
rate was high (e.g., 1 out of 100 packets) because it requires over 1.4 million samples per second,
and each sample takes time proportional to the number of flows on the link to obtain. Therefore,
we did not perform sampling directly, and instead, precomputed the distribution of times needed
to correctly identify a flow as an elephant for different sampling rates by performing the sampling
on a single switch while running our traffic workload (described just below). So, when a new flow is
started, we draw a time from this distribution, and if the flow is still active after that amount of time,

we label it as an elephant.

Workloads We simulate background traffic modeled on recent measurements [76] and add traffic
modeled on MapReduce traffic to stress the network. We assume that the MapReduce job has just
gone into its shuffle phase. In this phase, each end-host transfers 128 MB to each other host. Each
end-host opens a connection to at most five other end-hosts simultaneously (as done by default
in Hadoop’s implementation of MapReduce). Once one of these connections completes, the host
opens a connection to another end-host, repeating this until it has transferred its 128 MB file to each
other end-host. The order of these outgoing connections is randomized for each end-host. For all
simulations described here, we used 2 50 randomly selected end-hosts in the shuffle load. The reduce
phase shuffle begins three minutes after the background trafhic is started to allow the background
traffic to reach a steady state, and measurements shown here are taken for five minutes after the

reduce phase began.

We added background traffic following the macroscopic flow measurements collected by Kan-
dula etal. [55,76] to the traffic mix because datacenters run a heterogeneous mix of services simul-

taneously. They give the fraction of correspondents a server has within its rack and outside of its

101

N
(%2
o

— — o
o

—

o) 2}
= =
— S
S
-

Mahout (threshold) Sampling (frac. Pulling (s)
packets)

1/100 [
1/1000
1/10000 IR

ECMP

Aggregate throughput (Gbps)
= =)
(O o w o
o © &6 o o
128¢e [

Figure 5.4: Throughput results for the schedulers with various parameters. Error bars on all charts

show 95% confidence intervals.

rack over a ten second interval. We follow this distribution to decide how many inter- and intra-rack
flows a server starts over ten seconds; however, they do not give a more detailed breakdown of flow
destinations than this, so we assume that the selection of a destination host is uniformly random
across the source server’s rack or the remaining racks for an intra- or inter-rack flow respectively. We
select the number of bytes in a flow following the distribution of flow sizes in their measurements
as well. Before starting the shuffle job, we simulate this background traffic for three minutes. The

simulation ends whenever the last shuftle job flow completes.

Metrics To measure the performance of each scheduler, we tracked the aggregate throughput of
all flows. This the the sum of rates of all flows in the network. We measure overhead as before in
Section 5.4, i.e., by counting the number of control messages and the number of flow table entries at

each switch. All numbers shown here are averaged from ten runs.

102

1000000

100000
10000
1000
100 -
H
:

10

Control messages per second

1/1000

1/1000 0.1

1000 | 1/100

Threshold (Mb) Sampling (frac. packets) Pulling (s)

Figure 5.5: Number of packets sent to controller by various schedulers. Here, we bundled samples
together into a single packet (there are 25 samples per packet)—each bundle of samples counts as

a single controller message.

Results

The per-second aggregate throughput for the various scheduling methods is shown in Figure s.4.
We compare these schedulers to static load balancing with equal-cost multipath (ECMP), which
uniformly randomizes the outgoing flows across a set of ports [8]. We used three different elephant
thresholds for Mahout: 128 KB, 1 MB, and 100 MB, and flows carrying at least this threshold of
bytes were classified as an elephant after sending 2, 20, or 2000 packets respectively. As expected,
controlling elephant flows extracts more bisection bandwidth from the network—Mahout extracts
16% more bisection bandwidth from the network than ECMP and the other schedulers obtain sim-

ilar results depending on their parameters.

Hedera’s results found that flow scheduling gives a much larger improvement over ECMP than
our results (up to 113% on some workloads) [8]. This is due to the differences in workloads. Our
workload is based on measurements [76], whereas their workloads are synthetic. We have repeated
our simulations using some of their workloads and find similar results: the schedulers improve through-

put by more than 100% compared to ECMP on their workloads.

103

2000
1800
1600
1400
1200
1000

800

600

400
200 - . . .
0

1000 | 1/100 1/1000 1/10000, 0.1 1 10

Table entries per switch

Sampling (frac. packets) Pulling (s)

‘ Threshold (Mb)

Avg table entries M Max table entries

Figure 5.6: Average and maximum number of flow table entries at each switch used by the schedulers.

We examine the overhead versus performance tradeoff by counting the maximum number of
flow table entries per rack switch and the number of messages to the controller. These results are

shown in Figures 5.5 and 5.6

Mahout has the least overhead of any scheduling approach considered. Pulling statistics requires
too many flow table entries per switch and sends too many packets to the controller to scale to large
datacenters; here, the stat-pulling scheduler used nearly 800 flow table entries per rack switch on av-
erage no matter how frequently the statistics were pulled. This is more than seven times the number
of entries used by the sampling and Mahout controllers, and makes the offline scheduler infeasible in
larger datacenters because the flow tables will not be able to support such a large number of entries.
Also, when pulling stats every 1 sec., the controller receives 10x more messages than when using
Mahout with an elephant threshold of 100 MB.

These simulations indicate that, for our workload, the value of thresholdejcpnan: affects the over-
head of the Mahout controller, but does not have much of an impact on performance (up to a point:
when we set this threshold to 1 GB (not shown on the charts), the Mahout scheduler performed no
better than ECMP). The number of packets to the Mahout controller goes from 328 per sec. when
the elephant threshold is 128 KB to 214 per sec. when the threshold is 100 MB, indicating that tuning

it can reduce controller overhead by more than 50% without affecting the scheduler’s performance.

104

Even so, we suggest making this threshold as small as possible to save memory at the end-hosts and
for quicker elephant flow detection (see the experiments on our prototype in the next section). We

believe a threshold of 200—500 KB is best for most workloads.

5.5.2 Prototype & Microbenchmarks

We have implemented a prototype of the Mahout system; however, this work was primarily per-
formed by Wonho Kim, so we omit the details here. They are published in reference [34]. The shim
layer is implemented as a kernel module inserted between the TCP/IP stack and device driver, and
the controller is built on NOX [114]. We evaluated our prototype, and overall, we showed that it
correctly classifies elephant flows in under 2 ms, while it takes a Hedera-like controller at least 180

ms to detect elephant flows.

105

Chapter 6

Traffic Engineering with DevoFlow

6.1 Introduction

In the previous chapter, we showed how end-hosts could be leveraged to lower the overheads in-
volved with traffic engineering in the datacenter. We now evaluate the effectiveness of using De-
voFlow [38], an alternative approach to DCN traffic engineering. DevoFlow is a flow-based net-
working framework for cost-effective, scalable flow management that does not require end-host

modifications.

Flow-based networking is based on a separation between the network’s control-plane and its
data-plane. The control-plane isimplemented as a distributed system running on commodity servers.
This controller orchestrates network flows by managing the state of switch flow tables. This model
is very flexible, since software controllers can be quickly updated, unlike vertically integrated net-
work devices. This approach to networking is called software-defined networking (SDN), because the

behavior of the network is defined by software.

The OpenFlow protocol [3, 85] is a widely-deployed implementation of SDN. It uses a central-
ized controller that makes decisions on a per-flow basis. This model supports fine-grained, flow-level
control of Ethernet switches. Such control is desirable because it enables (1) correct enforcement of
flexible policies without carefully crafting switch-by-switch configurations, (2) visibility of all flows,
allowing for near-optimal management of network traffic, and (3) simple and future-proof switch

design.

DevoFlow [38] switch implementation mechanisms to help scale SDN applications. In this chap-
ter, we demonstrate that high-performance flow management requires devolving control of most
flows back to the switches, while the controller maintains control over only targeted elephant flows.
DevoFlow is allows aggressive use of wild-carded OpenFlow rules—thus reducing the number of
switch-controller interactions and the number of TCAM entries—through new mechanisms to ef-
ficiently detect elephant flows. DevoFlow also introduces mechanisms to allow switches to make

local routing decisions, independent of the controller.

We evaluate the effectiveness of DevoFlow. Through simulations we find that it can load-balance
datacenter traffic as well as fine-grained solutions, but with far less overhead: DevoFlow uses 10-53

times fewer flow table entries at an average switch, and uses 10—42 times fewer control messages.

107

DevoFlow overview

Our goal in designing DevoFlow is to enable cost-effective, scalable flow management. Our design

principles are:

o Keep flows in the data-plane as much as possible. Involving the control-plane in all flow setups

creates too many overheads in the controller, network, and switches.

o Maintain enough visibility over network flows for effective centralized flow management, but oth-

erwise provide only aggregated flow statistics.

o Simplify the design and implementation of fast switches while retaining network programmability.
DevoFlow attempts to resolve two dilemmas — a control dilemma:

e Invoking the OpenFlow controller on every flow setup provides good start-of-flow visibility,
but puts too much load on the control plane and adds too much setup delay to latency-sensitive
traffic, and

e Aggressive use of OpenFlow flow-match wildcards or hash-based routing (such as equal-cost
multipath (ECMP) routing) reduces control-plane load, but prevents the controller from ef-

fectively managing traffic.
and a statistics-gathering dilemma:

o Collecting OpenFlow counters on lots of flows, via the pull-based Read-State mechanism, can

create too much control-plane load, and

o Aggregating counters over multiple flows via the wild-card mechanism may undermine the con-

troller’s ability to manage specific elephant flows.

We resolve these two dilemmas by pushing responsibility over most flows to switches and adding
efficient statistics collection mechanisms to identify significant flows, which are the only flows man-

aged by the central controller. This is described in Section 6.3.3.

Our work here derives from a long line of related work that aims to allow operators to spec-
ify high-level policies at a logically centralized controller, which are then enforced across the net-
work without the headache of manually crafting switch-by-switch configurations [22, 24, 56, 58].
This separation between forwarding rules and policy allows for innovative and promising network
management solutions such as NOX [58, 114] and other proposals [64, 95, 121], but these solu-

tions may not be realizable on many networks because the flow-based networking platform they

108

are built on—OpenFlow—is not scalable. We made this observation in the previous chapter, and
it has been made by others as well. However, other research has focused on scaling the controller,
e.g., Onix [83], Maestro [23], and a devolved controller design [112]. We find that the controller
can present a scalability problem, but that switches may be a greater scalability bottleneck. Remov-
ing this bottleneck requires minimal changes: slightly more functionality in switch ASICs and more

efficient statistics-collection mechanisms.

Note that this chapter presents work that was performed while the author was an intern at HP
Labs, Palo Alto. This work was collaborative with several others, so the results are sketched here, with
detailed presentation only of the results where this dissertation’s author was the primary contributor.

The full version of this work can be found as reference [38].

6.2 OpenFlow Overheads

Flow-based networking involves the control-plane more frequently than traditional networking, and
therefore the bandwidth and latency of communication between a switch and the central controller
is a potential performance bottleneck. The latency imposed on traffic to the controller can be on
the order of several milliseconds for DCNs and a full RTT for WANs. Flow-based network imposes
overheads on switch implementation, which can be broken down into implementation-imposed
and implementation-specific overheads. We sketch the overheads of OpenFlow here. The interested
reader can find the full details in reference [38]. To explore them, we experimented with HP’s Open-
Flow implementation on the HP ProCurve 5406 zl switch [1]. This switch is designed with a central
CPU for management functions and an ASIC on each line card. The implementation-imposed over-

heads of OpenFlow can be summarized as follows.

o Flow setup overheads: The bandwidth between the data- and control-planes of a switch and its
controller has finite capacity. This can limit the rate of flow setups—the best implementations
we know of can set up only a few hundred flows per second. To estimate the flow setup rate
of the ProCurve 5406 zl, we attached two servers to the switch and opened a connection from
one server to the other as soon as the previous connection was established. We found that the
switch completes roughly 275 flow setups per second. This number is in line with what others
have reported [109].

However, this rate is insufficient for flow setup in a high-performance network. The median

109

inter-arrival time for flows at datacenter server is less than 30 ms [76], so we expect a rack of 40
servers to initiate approximately 1300 flows per second—far too many to send each flow to the

controller.

Gathering flow statistics: Global flow schedulers need timely access to statistics. If a few, long-
lived flows constitute the majority of bytes transferred, then a scheduler need only collect flow
statistics every several seconds; however, this is not the case in high-performance networks,
where even the longest-lived flows last only a few seconds [76]. Overall, based on the expected
and measured workloads of DCNs, we found that OpenFlow’s current statistics-gathering mech-
anisms are not scalable.

This is primarily because OpenFlow provides pull-based statistics, where counters for each
flows are collected from the switches by the controller. This type of flow statistics can be used
for flow scheduling if they can be collected frequently enough. The evaluation of one flow sched-
uler, Hedera [8], indicates that a 5 sec. control loop (the time to pull statistics from all access
switches, compute a re-routing of elephant flows, and then update flow table entries where nec-
essary) is fast enough for near-optimal load balancing on a fat-tree topology; however, their
workload is based on flow lengths following a Pareto distribution. Recent measurement studies
have shown datacenter flow sizes do not follow a Pareto distribution [17, 55]. Using a workload
with flow lengths following the distribution of flow sizes measured in [55], we find that a 5 sec.
statistics-gathering interval can improve utilization only 1—5% over randomized routing with
ECMP (details are in §6.4). This is confirmed by Raiciu et al., who found that the Hedera con-
trol loop needs to be less than sooms to perform better than ECMP on their workload [104].

Switch state size: A limited number of flow entries can be supported in hardware. The 5406 zI
switch hardware can support about 1500 OpenFlow rules, whereas the switch can support up
to 64000 forwarding entries for standard Ethernet switching. One reason for this wide disparity
is that OpenFlow rules are stored in a TCAM, necessary to support OpenFlow’s wildcarding
mechanism, and TCAM entries are an expensive resource, whereas Ethernet forwarding uses
a simple hash lookup in a standard memory. It is certainly possible to increase the number of
TCAM entries, but only at the expense of space, power, and money.

Because OpenFlow rules are per-flow, rather than per-destination, each directly-connected
host will typically require an order of magnitude more rules. Use of wildcards could reduce this
ratio, but this is often undesirable as it reduces the ability to implement flow-level policies (such

as multipathing) and flow-level visibility.

o Controller overheads: Involving the controller in all flows creates a potential scalability prob-
lem: any given controller instance can support only a limited number of flow setups per second.
For example, Tavakoli et al. [114] report that one NOX controller can handle “at least 30K new
flow installs per second while maintaining a sub-10 ms flow install time ... The controller’s CPU
is the bottleneck.” Kandula et al. [76] found that 100K flows arrive every second on a 1500-
server cluster, implying a need for multiple OpenFlow controllers.

Recently, researchers have proposed more scalable OpenFlow controllers. Maestro [23] is
amulti-threaded controller that can install about twice as many flows per second as NOX, with-
out introducing additional latency. Others have worked on distributed implementations of the
OpenFlow controller (also valuable for fault tolerance) These include HyperFlow (Tootoonchian
and Ganjali [115]) and Onix (Koponen et al. [83]). These distributed controllers can only sup-
port global visibility of rare events such as link-state changes, and not of frequent events such as
flow arrivals. As such, they are not yet suitable for applications, such as Hedera [8], which need

a global view of flow statistics.

6.3 DevoFlow

We now sketch the design of DevoFlow, which avoids the overheads described above by introduc-
ing mechanisms for efficient devolved control (§6.3.1) and statistics collection (§6.3.2). Then, we

end this section by discussing how to use DevoFlow to reduce use of the control-plane in traffic

engineering (§6.3.3).

6.3.1 Mechanisms for devolving control

We introduce two new mechanisms for devolving control to a switch, rule cloning and local actions.

Rule cloning: Under standard OpenFlow, all packets matching a rule are treated as a single flow, so
the controller is not invoked for each microflow arrival, where a microflow is an end-to-end stream
that is uniquely identified by source IP address, destination IP address, transport protocol (such as
TCP), source port number, and destination port number. To gain greater visibility over each mi-
croflow, rule cloning duplicates a wildcard rule for a microflow, and insert a copy into the exact

match flow table, with the relevant details of the microflow filled out. This allows counters to be col-

lected on each microflow matching the wildcard rule.

Local actions: Certain flow-setup decisions might require decisions intermediate between the heavy-
weight “invoke the controller” and the lightweight “forward via this specific port” choices offered by
standard OpenFlow. In DevoFlow, we envision rules augmented with a small set of possible “lo-
cal routing actions” that a switch can take without paying the costs of invoking the controller. If a
switch does not support an action, it defaults to invoking the controller, so as to preserve the desired

semantics.

Examples of local actions include multipath support and rapid re-routing:

e Multipath support gives the switch a choice of several output ports for a wildcard forwarding
rule. The switch can then select, randomly from a probability distribution or round-robin, be-
tween these ports on each microflow arrival. Note that the output port for a microflow remains
fixed for the duration of that microflow. This keeps the microflow’s packets on the same path to
prevent out of order packet delivery.

This functionality is similar to equal-cost multipath (ECMP) routing; however, multipath
wildcard rules provide more flexibility. ECMP (1) uniformly selects an output port uniformly
at random and (2) requires that the cost of the multiple forwarding paths to be equal, so it load
balances traffic poorly on irregular topologies. As an example, consider a topology with two
equal-cost links between s and ¢, but the first link forwards at 1 Gbps whereas the second has
10 Gbps capacity. ECMP splits flows evenly across these paths, which is clearly not ideal since
one path has 10 times more bandwidth than the other.

DevoFlow solves this problem by allowing a clonable wildcard rule to select an output port
for a microflow according to some probability distribution. This allows implementation of obliv-
ious routing (see, e.g., [45,81]), where a microflow follows any of the available end-to-end paths
according to a probability distribution. Oblivious routing would be optimal for our previous
example, where it would route 10/11%" of the microflows for ¢ on the 10 Gbps link and 1/11*
of them on the 1 Gbps link.

e Rapid re-routing allows switches to specify fallback rules if an output port fails.

6.3.2 Efficient statistics collection

DevoFlow provides three different ways to improve the efficiency of OpenFlow statistics collection.

Sampling: the sFlow protocol [4] allows a switch to report the headers of randomly chosen packets
to a monitoring node—which could be the OpenFlow controller. This imposes almost no extraload

on the network because only packet headers are sent to the monitoring node.

Triggers and reports: allows the controller to place push-based triggers on counters. When the

counter reaches a specified threshold, a report is sent to the controller.

Approximate counters: can be maintained for all microflows that match a wildcard forwarding table
rule. Such counters maintain approximate, space-efficient statistics for all microflows forwarded by
this rule. Approximate counters can be implemented using streaming algorithms [46, 52,53], which
are generally simple, use very little memory, and identify the flows transferring the most bytes with
high accuracy. For example, Golab et al’s algorithm [53] correctly classifies 80-99% of the flows that
transfer more than a threshold % of bytes. Implementing approximate counters in the ASIC is more
difficult than DevoFlow’s other mechanisms; however, they provide a more timely and accurate view

of the network and can keep statistics on microflows without creating a table entry per microflow.

6.3.3 Using DevoFlow for flow scheduling

All existing OpenFlow applications work unmodified with the introduction of DevoFlow; however,
DevoFlow enables scalable implementation of these solutions by reducing the number of flows that
interact with the control-plane. Scalability relies on a finding a good definition of “significant flows”
in a particular domain. These flows should represent a small fraction of the total flows, but should
be sufficient to achieve the desired results. As an example, we show how to schedule flows for traffic

engineering with DevoFlow.

Flow scheduling does not scale well if the scheduler relies on visibility over all flows, as is done
in Hedera [8] because maintaining this visibility via the network is too costly, as discussed in §6.2
showed. Instead, we maintain visibility only over elephant flows, which is all that a system such as

Hedera actually needs. While Hedera defines an elephant as a flow using at least 10% of a NIC’s

113

bandwidth, we define one as a flow that has transferred at least a threshold number of bytes X. A

reasonable value for X is 1—-10MB.

Our solution starts by initially routing incoming flows using DevoFlow’s multipath wildcard
rules; this avoids involving the control-plane in flow setup. We then detect elephant flows as they
reach X bytes transferred. We can do this using using any combination of DevoFlow’s statistics col-
lection mechanisms. For example, we can place triggers on flow table entries, which generate a report
for a flow after it has transferred X bytes; We could also use sampling or approximate counters; we

evaluate each approach in §6.4.

Once a flow is classified as an elephant, the detecting switch or the sampling framework reports
it to the DevoFlow controller. The controller finds the least congested path between the flow’s end-

points, and re-routes the flow by inserting table entries for the flow at switches on this path.

The new route can be chosen, for example, by the decreasing best-fit bin packing algorithm of
Correa and Goemans [32]. The algorithm’s inputs are the network topology, link utilizations, and
the rates and endpoints of the elephant flows. Its output is a routing of all elephant flows. Correa and
Goemans proved that their algorithms finds routings with link utilizations at most 10% higher than
the optimal routing, under a traffic model where all flows can be rearranged. We cannot guarantee
this bound, because we only rearrange elephant flows; however, their theoretical results indicates

their algorithm will perform as well as any other heuristic for flow scheduling.

Finally, we note that this architecture uses only edge switches to encapsulate new flows to send
to the central controller. The controller programs core and aggregation switches reactively to flow
setups from the edge switches. Therefore, the only overhead imposed is cost of installing flow table

entries at the the core and aggregation switches—no overheads are imposed for statistics-gathering.

6.4 Evaluation

In this section, we present our simulated evaluation of DevoFlow. We show that it achieves the same

performance as fine-grained, OpenFlow-based flow scheduler, but with far less overhead.

114

Algorithm 5 — Flow rate computation.

Input: set of flows I and a set of ports P
Output: arate r(f) of each flow f € F'

begin
Initialize: F,, = 0;Vf,r(f) =0
Define: Pused() = > e np 7 (f)
Define: P.unassigned flows() = P — (P N F,)
while P # () do
Sort P in ascending order, where the sort key
for P is (P.rate— P.used())/| P.unassigned flows()|
P = P.pop_front()
for each f € P.unassigned_flows() do
r(f) = (P.rate — P.used())/|P.unassigned_flows()|
Fo=F,U{f}

end

6.4.1 Simulation methodology

To evaluate DevoFlow on a large-scale network, we implemented a flow-level datacenter network
simulator. This fluid model captures the overheads generated by each flow and the coarse-grained
behavior of flows in the network. The simulator is event-based, and whenever a flow is started, ended,
or re-routed, the rate of all flows is recomputed using the algorithm shown in Algorithm s. This
algorithm works by assigning a rate to flows traversing the most-congested port, and then iterating

to the next most-congested port until all flows have been assigned a rate.

We represent the network topology with a capacitated, directed graph. For these simulations, we
used two topologies: a three-level Clos topology [30] and a two-dimensional HyperX topology [7].
In both topologies, all links were 1 Gbps, and 20 servers were attached to each access switch. The
Clos topology has 8o access switches (each with 8 uplinks), 8o aggregation switches, and 8 core
switches. The HyperX topology is two-dimensional and forms a 9 x 9 grid, and so has 81 access

switches, each attached to 16 other switches. Since the Clos network has 8 core switches, it is 1:2.5

115

oversubscribed; that is, its bisection bandwidth is 640 Gbps. bandwidth. The HyperX topology is
1:4 oversubscribed and thus has 405 Gbps of bisection bandwidth.

The Clos network has 1600 servers and the HyperX network has 1620. We sized our networks
this way for two reasons: first, so that the Clos and HyperX networks would have nearly the same
number of servers. Second, our workload is based on the measurements of Kandula et al. [76], which
are from a cluster of 1500 servers. We are not sure how to scale their measurements up to much larger

data centers, so we kept the number of servers close to the number measured in their study.

We simulate the behavior of OpenFlow at switches by modeling (1) switch flow tables, and (2)
the limited data-plane to control-plane bandwidth. Switch flow tables can contain both exact-match
and wildcard table entries. For all simulations, table entries expire after 10 seconds. When a flow
arrives that does not much a table entry, the header of its first packet is placed in the switch’s data-
plane to control-plane queue. The service rate for this queue follows our measurements described
in Section 6.2, so it services packets at 17Mbps. This queue has finite length, and when it is full, any
arriving flow that does not match a table entry is dropped. We experimented with different lengths
for this queue, and we found that when it holds 1000 packets, no flow setups were dropped. When
we set its limit to 100, we found that fewer than 0.01% of flow setups were dropped in the worst case.
For all results shown in this paper, we set the length of this queue to 100; we restart rejected flows

after a simulated TCP timeout of 300 ms.

Finally, because we are interested in modeling switch overheads, we do not simulate a bottleneck
at the OpenFlow controller; the simulated OpenFlow controller processes all flows instantly. Also,
whenever the OpenFlow controller re-routes a flow, it installs the flow-table entries without any

latency.

Workloads

We consider two workloads in our simulations: (1) a MapReduce job that has just gone into its
shuffle stage, and (2) a workload based on measurements, by Kandula et al. at Microsoft Research

(MSR) [76], of a 1500-server cluster.
The MapReduce-style traffic is modeled by randomly selecting n servers to be part of the reduce-

phase shuffle. Each of these servers transfers 128 MB to each other server, by maintaining connec-
tions to k other servers at once. Each server randomizes the order it connects to the other servers,

keeping k connections open until it has sent its payload. All measurements we present for this shuffle

116

600

500 +—— " HyperX ®Clos
400

300 -
200 -
100

Aggregate Throughput (Gbps)

Distributed

Wildcard Pull-based Sampling Threshold

Figure 6.1: Throughput achieved by the schedulers for the shuffle workload withn = 800 and k£ = 5.
OpenFlow-imposed overheads are not modeled in these simulations. All error bars in this paper

show 95% confidence intervals for 10 runs.

workload are for a one-minute period that starts 10 sec. after the shuffle begins.

In our MSR workload, we generated flows based on the distributions of flow inter-arrival times
and flow sizes in [76]. We attempted to reverse-engineer their actual workload from only two dis-
tributions in their paper. In particular, we did not model dependence between sets of servers. We
pick the destination of a flow by first determining whether the flow is to be an inter- or intra-rack
flow, and then selecting a destination uniformly at random between the possible servers. For these

simulations, we generated flows for four minutes, and present measurements from the last minute.

Additionally, we simulated a workload that combines the MSR and shuftle workloads, by gener-
ating flows according to both workloads simultaneously. We generated three minutes of MSR flows

before starting the shuftle. We present measurements for the first minute after the shuffle began.

Schedulers

We compare static routing with ECMP to flow scheduling with several schedulers.

117

The DevoFlow scheduler: behaves as described in Sec. 6.3, and collects statistics using either sam-
pling or threshold triggers on multipath wildcard rules. The scheduler might re-reroute a flow after
it has classified the flow as an elephant. New flows, before they become elephant flows, are routed
using ECMP regardless of the mechanism to detect elephant flows. When the controller discovers
an elephant flow, it installs flow-table entries at the switches on the least-congested path between
the flow’s endpoints. We model queueing of a flow between the data-plane and control-plane be-
fore it reaches the controller; however, we assume instantaneous computation at the controller and

flow-table installations.
For elephant detection, we evaluate both sampling and triggers.

Our flow-level simulation does not simulate actual packets, which makes modeling of packet

sampling non-trivial. In our approach:

1. We estimate the distribution of packets sent by a flow before it can be classified, with less than

a 10% false-positive rate, as an elephant flow, using the approach described by Mori et al. [87].

2. Once a flow begins, we use that distribution to select how many packets it will transfer before
being classified as an elephant; we assume that all packets are 1500 bytes. We then create an

event to report the flow to the controller once it has transferred this number of packets.

Finally, we assume that the switch bundles 2§ packet headers into a single report packet before send-
ing the samples to the controller; this reduces the packet traffic without adding significant delay.
Bundling packets this way adds latency to the arrival of samples at the controller. For our simula-
tions, we did not impose a time-out this delay. We bundled samples from all ports on a switch, so
when a 1 Gbps port is the only active port (and assuming it’s fully loaded), this bundling could add

up to 16 sec. of delay until a sample reaches the controller, when the sample rate is 1/1000 packets.

Fine-grained control using statistics pulling: simulates using OpenFlow in active mode. Every flow
is set up at the central controller and the controller regularly pulls statistics, which it uses to schedule
flows so as to maximize throughput. As with the DevoFlow scheduler, we route elephant flows using
Correa and Goeman’s bin-packing algorithm [32]. Here, we use Hedera’s definition of an elephant
flow: one with a demand is at least 10% of the NIC rate [8]. The rate of each flow is found using
Algorithm 5 on an ideal network; thatis, each access switch has an infinite-capacity uplink to a single,
non-blocking core switch. This allows us to estimate the demand of each flow when flow rates are

constrained only by server NICs and not by the switching fabric.
Following the OpenFlow standard, each flow table entry provides 88 bytes of statistics [3]. We

118

collect statistics only from the access switches. The ASIC transfers statistics to the controller at 17
Mbps, via 1500-byte packets. The controller applies the bin-packing algorithm immediately upon

receiving a statistics report, and instantaneous installs a globally optimized routing for all flows.

Wildcard routing: performs multipath load balancing possible using only wildcard table entries.
This controller reactively installs wildcard rules to create a unique spanning tree per destination:
all flows destined to a server are routed along a spanning tree. When a flow is set up, the controller
computes the least-congested path from the switch that registered the flow to the flow’s destination’s
spanning tree, and installs the rules along this path. We simulated wildcard routing only on the Clos

topology, because we are still developing the spanning tree algorithm for HyperX networks.

Valiant load balancing (VLB): balances traffic by routing each flow through an intermediate switch
chosen uniformly at random; that switch then routes the flow on the shortest path to its destina-
tion [117]. On a Clos topology, ECMP implements VLB.

Distributed greedy routing: routes each flow by first greedily selecting the least-congested next-
hop from the access switch, and then using shortest-path routing. We simulate this distributed rout-

ing scheme only on HyperX networks.

6.4.2 Performance

We begin by assessing the performance of the schedulers, using the aggregate throughput of all flows
in the network as our metric. Figure 6.1 shows the performance of the schedulers under various set-
tings, on a shuffle workload with n = 800 servers and k = 5 simultaneous connections/server. This
simulation did not model the OpenFlow-imposed overheads; for example, the 10oms pull-based

scheduler obtains all flow statistics every 10oms, regardless of the switch load.

We see that DevoFlow can improve throughput compared to ECMP by up to 32% on the Clos
network and up to 55% on the HyperX network. The scheduler with the best performance on both
networks is the pull-based scheduler when it re-routes flows every 100 ms. This is not entirely sur-
prising, since this scheduler also has the highest overhead. Interestingly, VLB did not perform any
better than ECMP on the HyperX network.

To study the effect of the workload on these results, we tried several values for n and k in the shuf-
fle workload and we varied the fraction of traffic that remained within a rack on the MSR workload.
These results are shown in Figure 6.2 for the Clos topology and Figure 6.3 for the HyperX network.

Overall, we found that flow scheduling improves throughput for the shuffle workloads, even when

119

the network has far more bisection bandwidth than the job demands.

For instance, with n = 200 servers, the maximum demand is 200 Gbps. Even though the Clos
network has 640 Gbps of bisection bandwidth, we find that DevoFlow can increase performance of
this shuffle by 29% over ECMP. We also observe that there waslittle difference in performance when

we varied k.

Flow scheduling did not improve the throughput of the MSR workload. For this workload, re-
gardless of the mix of inter- and intra-rack traffic, we found that ECMP achieves 90% of the optimal
throughput* for this workload, so there is little room for improvement by scheduling flows. We sus-
pect that a better model than our reverse-engineered distributions of the MSR workload would yield

different results.

Because of this limitation, we simulated a combination of the MSR workload with a shuftle job.
Here, we see improvements in throughput due to flow scheduling; however, the gains are less than

when the shufle job is ran in isolation.

6.4.3 Overheads

We used the MSR workload to evaluate the overhead of each approach because, even though we
do not model the dependence between servers, we believe it gives a good indication of the rate of
flow initiation. Figure 6.4 shows, for each scheduler, the rate of packets sent to the controller while
simulating the MSR workload.

Load at the controller should scale proportionally to the number of servers in the datacenter.
Therefore, when using an OpenFlow-style pull-based scheduler that collects stats every 10oms, in a
large datacenter with 160K servers, we would expect aload of about 2.9M packets/sec., based on ex-
trapolation from Figure 6.4. This would drop to 775K packets/sec. if stats are pulled once per second.
We are not aware of any OpenFlow controller that can handle this message rate; for example, NOX
can process 30K flow setups per second [114]. A distributed controller might be able to handle this
load (which would require up to 98 NOX controllers, assuming they can be perfectly distributed and

that statistics are pulled every 100 ms), but it might be difficult to coordinate so many controllers.

Figure 6.5 shows the number of flow table entries at any given access switch, for the MSR work-
load and various schedulers. For these simulations, we timed out the table entries after 10 sec. As ex-

pected, DevoFlow does not require many table entries, since it uses a single wildcard rule for all mice

*We found the optimal throughput by attaching all servers to a single non-blocking switch.

120

flows, and stores only exact-match entries for elephant flows. This does, however, assume support
for the multipath routing wildcard rules of DevoFlow. If rule cloning were used instead, DevoFlow
would use the same number of table entries as the pull-based OpenFlow scheduler because it would
clone a rule for each flow. The pull-based scheduler uses an order of magnitude more table entries,

on average, than DevoFlow.

We estimated the amount bandwidth required between a switch’s data-plane and control-plane
when statistics are collected with a pull-based mechanism. Figure 6.6 shows the bandwidth needed
so that the 95™ and got® percentile flow setup latencies on the MSR workload are less than 2ms.
Here, we assume that the only latency incurred is in the queue between the switch’s data-plane and
control-plane; we ignore any latency added by communication with the controller. That is, the figure
shows the service rate needed for this queue, in order to maintain a waiting time of less than 2 ms in
the 95 and 99™ percentiles. The data to control-plane bandwidth sufficient for flow setup is directly

proportional to this deadline, so a tighter deadline of 1 ms needs twice as much bandwidth to meet.

The scale on the right of the chart normalizes the required data-to-control-plane bandwidth to a
switch’s total forwarding rate (which in our case is 28 Gbps, because each ToR switch has 28 gigabit
ports). For fine-grained (100 ms) flow management using OpenFlow, this bandwidth requirement
would be up to 0.7% of its total forwarding rate. Assuming that the amount of control-plane band-
width needed scales with the forwarding rate, a 144-port 10 Gbps switch needs just over 10 Gbps
of control-plane bandwidth to support fine-grained flow management. We do not believe it is cost-
effective to provide so much bandwidth, so DevoFlow’s statistics-collection mechanisms are the

better option because they are handled entirely within the data-plane.

121

g
. 33
G o
~ + 1
o <
wv
=
53
. 33
&<
~ + 1
o <
wv
=
)
. 33
%N
X~ + 1
o« ©
(%)
=
x
| 23
- o
e
WE
§.E
B4
§U
H Ng
=t
g
] SE
o
L I
x
H
o
o
0
i
n c
H I e
= g
H 2
G
H I
H
o
[
x
H
(=3
o
bl
wn [=4
I o
= €
' 2
G
1l
1
o
L 1
<
1
o
(=
o
n c
1 I 5
o ()
S o =~ €
w < = i 2
wn S 2 =
[
o =
E%,go
a38%8%
=3 =g -
U§3ru_r: 1 I
w a n - ~
u LI ‘
L)
1 |
o O O O 9O 9O o
i=3 o o o o
O 1n T MM N~

(sdgo) indybnouy] 21e63166y

Figure 6.2: Aggregate throughput of the schedulers on the Clos network for different workloads. For
the MSR plus shuftle workloads, 75% of the MSR workload-generated flows are inter-rack.

122

008 =u

oL=X

00 =u

0oz=u

‘BNYS +DBI-I3IUI %G/ HSW | ‘BNYS + 4DBI-133U1 %S/ HSW | ‘BUINYS + HDI-193U1 %S/ HSW

sjpel-13ul
%SL "4SW

sjpel-193ul
%ST "4SW

00Z=U ‘3lynys

gL PloYsaIyL
0001L/1 Budwes 5
s paseq-(ind
painquisig
9\ m
dwo3

ool
00¢
00€
0o¥
00S
009

(sdgo) indybnouy s1e62166y

Aggregate throughput of the schedulers on the HyperX network for different workloads.
123

Figure 6.3

30000 22451

g
TO: 25000 .MSR,ZS%?nter—rack)
c b MSR, 75% inter-rack
S 20000 +
8 :
o 15000 +
¢ r
< 10000 | 7758 7,123
£ i -m 4871 =
< 5000 ¢
8 - 504 483 446 709 71 432 181 74
> 0 = = = = —
i} wv wv w W o o o [aa] m 2]
= = — 2

5 g "ls|g|8 & 2|8

— ~ — — —
- =
Wildcard Pull-based Sampling Threshold
OpenFlow schedulers DevoFlow schedulers

Figure 6.4: The number of packet arrivals per second at the controller using the different schedulers
on the MSR workload.

Avg - MSR, 25% inter-rack
B Max - MSR, 25% inter-rack
Avg - MSR, 75% inter-rack
¥ Max - MSR, 75% inter-rack

No.flow table entries

Threshold

Pull-based

Wildcard

OpenFlow schedulers DevoFlow schedulers

Sampling

Figure 6.5: The average and maximum number of flow table entries at an access switch for the sched-
ulers using the MSR workload.

124

250 T 0.9 <
k5 [: £3T
o] . 08 T:
Y - =&=95th percentile =5
£ 2007 99th percentile "+ 0.7 S &
=] L] © Q
& r06 52
2 5 150 : £2
] é - 05 T 501
e] oL
sZ [to04 22
27100 ¢ : 28
< 103 %53
° 1 €
g 5 [02 8%
S fol &8

0 T T T T T 0

0.1 0.5 1 10 30 Never
Stat-pulling rate

Figure 6.6: The control-plane bandwidth needed to pull statistics at various rates so that flow setup

latency is less than 2ms in the 95 and 99" percentiles. Error bars are too small to be seen.

125

Chapter 7

Conclusions

Conclusions

Large-scale datacenters are now an integral part of the Internet. They host services that billions of
people depend on in their daily lives, power the world’s financial markets, and store our collective
human history. This new “computer” is different than previous computer architectures. Because it
uses distributed nodes for computation and storage, the network is needed to share state and data

between these nodes.

In this dissertation, we showed that the network topology can make a significant impact on the
cost of a datacenter. We found theory and algorithms to help operators design cost-effective, hetero-
geneous topologies. We proposed the heterogeneous Clos topology and found an algorithm to com-
pute agility on arbitrary topologies. We designed, implemented, and evaluated two datacenter de-
sign frameworks: LEGUP and REWIRE. By generalizing the definition of a Clos network, LEGUP
can reduce the cost of DCN upgrades and expansions by a factor of 2. And by using unstructured
topologies, REWIRE is able to design DCNs with only 10% of the cost of previous solutions in some
scenarios. Because capital expenditure is the bulk of the cost of a DCN, these tools make it possible

to significantly reduce the cost of operating a datacenter network.

To achieve these results, REWIRE relies on unstructured networks, rather than the topology-
constrained networks most existing datacenter use. REWIRE demonstrates that arbitrary topologies
can boost DCN performance while reducing network equipment expenditure. Traditionally DCN
design has restricted the topology to only a few classes of topologies, because it is difficult to operate
an arbitrary topology in a high-performance environment. These difficulties have been mitigated
by recent work [27, 88, 103], so it may be time to move away from highly regular DCN topologies

because of the performance benefits arbitrary topologies offer.

We also showed that dynamic load balancing can improve the performance of a DCN. Even
though a Clos topology is well-suited to randomized load balancing, we found that the aggregate
throughput of some workloads can be increased 40% by dynamically scheduling flows. However,
dynamic load balancing is challenging in DCNs, because of their scale and workloads. Therefore, it
is important to identify and manage elephant flows to keep the load balancing problem tractable.
The previous approaches for elephant flow detection are based on monitoring the behavior of flows
in the network and hence incur long detection times, high switch resource usage, or high control
bandwidth and processing overhead. In contrast, we proposed and evaluated a low-overhead end-

host-based mechanism for elephant flow detection. Our datacenter traffic management system Ma-

127

hout is based on this idea, and as a result, it incurs an order of magnitude lower controller overhead
than other approaches. Finally, we demonstrated that DevoFlow can also reduce the overheads of
DCN traffic engineering by at least an order of magnitude without adversely impacting performance.
Unlike Mahout, the DevoFlow approach does not need to modify end-hosts, because it adds mech-

anisms to switches to lower the overheads of centralize flow management.

While we have addressed several challenges in this dissertation, several challenges remain open.
Broadly, we believe that the most important DCN challenges are to: (1) Design and implement
an agile, scalable, flexible, resilient, and manageable network for future datacenters. (2) Accurately
model datacenter capex and opex. Cabling and management seem to be the big unknowns here. (3)

Understand the requirements of and design inter-datacenter networks.

More specifically, the following are steps that could be taken to extend the results of this disser-

tation.

Datacenter design

o Fullyunderstand datacenter design and expansion. Develop a holistic view of datacenter growth.
This should incorporate the cost of servers, electricity, network, and storage. Ideally, the model

should incorporate trends in device prices.

o Introduce an accurate cost model for links. For example, our cost model did not take into ac-
count “bundling” of links, where a group of links is bundled together, reducing the cost of in-

stalling any single link in the bundle.

e Design an optimization framework to design any Clos network configuration. Such a frame-
work would extend Mudigonda et al’s framework that finds 3-level, homogeneous Clos topolo-
gies [89]. More generally, we believe it would be interesting to incorporate output topology
constraints into REWIRE'’s optimization algorithm. This would allow operators to constrain
REWIRE's output to a family of topologies (e.g., Clos, fat-tree , BCube or HyperX).

e Improve the definition of network flexibility used by LEGUP. The current definition is expen-

sive to compute and it is unclear if our metric accurately captures flexibility.

e Improve the definition of network reliability used by LEGUP and REWIRE. Ideally, this metric
should capture the agility of the network after a failure.

e Determine the gap between optimal and LEGUP’s results as a network is incrementally ex-

panded. Further, the gap between LEGUP and the optimal network constructed with the same

128

budget is unknown.

e Find a connection between the expansion properties (such as its spectral gap) of a network and
its bisection bandwidth or agility.

e Extend REWIRE’s simulated annealing algorithm so that it can design topologies from a class
of topologies (for example, any BCube topology).

e Improve REWIRE so that is is scalable and less computationally expensive. One idea to speed
computation is to implement dynamic all-pairs shortest-path (APSP) algorithms (such as [49,
40], which speed up APSP computations performed on a graph with dynamic edge weights.

DCN management

e Even on a regular topology such as a Clos network, debugging network problems is extremely
difficult. Ideally, a solution to this challenge is not dependent on topology.

e Determine the performance gains from dynamic flow scheduling with real DCN workloads.
With Mahout and DevoFlow, we reverse-engineered a workload from published measurements.

o Build other applications on top of DevoFlow. For example, it may be possible to perform, scal-
able quality of service (QoS), multicast, routing-as-a-service [26], network virtualization [109],

and energy-aware routing [64] with DevoFlow.

These are just a few of the open challenges that remain to fully understand datacenter networks.
Datacenter-scale computing is still in its infancy, and much work remains to make this new computer

easier and less expensive to build, operate, and manage.

129

References

[6]
[7]

[8]

HP ProCurve 5400 zl switch series. http://h17007 .wwwl.hp.com/us/en/products/
switches/HP_E5400_z1_Switch_Series/index.aspx.

IEEE Std. 802.1Q-200s5, Virtual Bridged Local Area Networks.

OpenFlow Switch Specification, Version 1.0.0. http://www.openflowswitch.org/
documents/openflow-spec-v1.0.0.pdf.

sFlow. http://www.sflow.org/.
The OpenFlow Switch Consortium. http://www.openflowswitch.org/.
The Hadoop Distributed File System. IEEE, 2010.

Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S. Schreiber. Hyperx:
topology, routing, and packaging of efficient large-scale networks. In Proceedings of the Con-
ference on High Performance Computing Networking, Storage and Analysis (SC '09), 2009.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic
Flow Scheduling for Data Center Networks. In NSDI, 2010.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic

flow scheduling for data center networks. In NSDI, 2010.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data
center network architecture. In Proceedings of the ACM SIGCOMM 2008 conference on Data
communication, SIGCOMM ’08, pages 63—74, New York, NY, USA, 2008. ACM.

130

http://h17007.www1.hp.com/us/en/products/switches/HP_E5400_zl_Switch_Series/index.aspx
http://h17007.www1.hp.com/us/en/products/switches/HP_E5400_zl_Switch_Series/index.aspx
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflowswitch.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflowswitch.org/

[11]

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Dctcp: Efficient packet transport for the commoditized data center. In SIG-
COMM,; 2010.

http://aws.amazon.com/ec2/.

Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu, Bikas
Saha, and Edward Harris. Reining in the outliers in map-reduce clusters using mantri. In
OSDI, 2010.

Martin F. Arlitt and Carey L. Williamson. Web server workload characterization: the search
for invariants. In SIGMETRICS, 1996.

Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP, pages 164-177,

2003.

V. E. Benes. Mathematical Theory of Connecting Networks and Telephone Traffics. Academic
Press, 1965.

T. Benson, Aditya Akella, and David Maltz. Network traffic characteristics of data centers in
the wild. In IMC, 2010.

Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Understanding data
center traffic characteristics. In Proceedings of the 1st ACM workshop on Research on enterprise
networking (WREN), 2009.

Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical Science, 8(1):10-15,

1993.

R. Braden, D. Clark, and S. Shenker. Integrated service in the internet architecture: an

overview. Technical report, IETF, Network Working Group, June 1994.

[21] Aydin Bulug, John R. Gilbert, and Ceren Budak. Solving path problems on the GPU. Parallel

Comput., 36:241-253, June 2010.

131

[22]

Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and Ja-
cobus van der Merwe. Design and implementation of a routing control platform. In NSDI,

2005.

Zheng Cai, Alan L. Cox, and T. S. Eugene Ng. Maestro: A System for Scalable OpenFlow
Control. Tech. Rep. TR10-08, Rice University, 2010.

Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: taking control of the enterprise. In SIGCOMM, pages 1—12, Aug. 2007.

Chandra Chekuri. Routing and network design with robustness to changing or uncertain
traffic demands. SIGACT News, 38(3):106-129, September 2007.

Chao-Chih Chen, Lihua Yuan, Albert Greenberg, Chen-Nee Chuah, and Prasant Mohapatra.
Routing-as-a-service (RaaS): A framework for tenant-directed route control in data center.
In INFOCOM, 2011.

Kai Chen, Chuanxiong Guo, Haitao Wu, Jing Yuan, Zhengqian Feng, Yan Chen, Songwu Lu,
and Wenfei Wu. Generic and automatic address configuration for data center networks. In
SIGCOMM, 2010.

Fan R. K. Chung. Spectral Graph Theory. 1994.

Cisco. Cisco data center network architecture and solutions overview. White paper, 2006.

Available online (19 pages).

Charles Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(5):406-424, 1953.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

[32] José R. Correa and Michel X. Goemans. Improved bounds on nonblocking 3-stage clos net-

[33]

works. SIAM J. Comput., 37(3):870-894, 2007.

Paolo Costa, Austin Donnelly, Greg O’Shea, and Antony Rowstron. CamCube: A key-based
data center. Technical report, Microsoft Research, MSR TR-2010-74, 2010.

132

[34] A.R.Curtis, W.Kim, and P. Yalagandula. Mahout: Low-overhead datacenter traffic manage-

ment using end-host-based elephant detection. In INFOCOM, 2011.

[35] Andrew R. Curtis, Tommy Carpenter, Mustafa Elsheikh, Alejandro Lépez-Ortiz, and S. Ke-

shav. Rewire: An optimization-based framework for data center network design. In INFO-
COM, 2012.

[36] Andrew R. Curtis, S. Keshav, and Alejandro Lopez-Ortiz. LEGUP: Using heterogeneity to

reduce the cost of data center network upgrades. In CONEXT, 2010.

[37] AndrewR. Curtis and Alejandro Lépez-Ortiz. Capacity provisioning a Valiant load-balanced

network. In INFOCOM, 2009.

[38] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma,

and Sujata Banerjee. DevoFlow: scaling flow management for high-performance networks.
In SIGCOMM, 2011.

[39] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clus-

[40]

[41]

ters. In OSDI, 2004.

Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. . ACM, 51(6):968-992, November 2004.

Digital Reality Trust. what is driving the US market? White paper, 2011. Available online at
http://knowledge.digitalrealtytrust.com/.

Luca Donetti, Franco Neri, and Miguel A. Munoz. Optimal network topologies: Expanders,
cages, ramanujan graphs, entangled networks and all that. Journal of Statistical Mechanics:

Theory and Experiment, 8, 2006.

N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der
Merive. A flexible model for resource management in virtual private networks. In SIG-
COMM, 1999.

Leah Epstein and Asaf Levin. An APTAS for generalized cost variable-sized bin packing.
SIAM J. Comput., 38(1):411-428, 2008.

133

http://knowledge.digitalrealtytrust.com/

[45] Thomas Erlebach and Maurice Riiegg. Optimal bandwidth reservation in hose-model VPNs
with multi-path routing. In IEEE INFOCOM, 2004.

[46] Cristian Estan and George Varghese. New directions in traffic measurement and accounting.
In SIGCOMM, 2002.

[47] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: A Hy-
brid Electrical/ Optical Switch Architecture for Modular Data Centers. In SIGCOMM, 2010.

[48] Nathan Farrington, Erik Rubow, and Amin Vahdat. Data Center Switch Architecture in the
Age of Merchant Silicon. In IEEE Hot Interconnects, New York, August 2009.

[49] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic algo-

rithms for maintaining shortest paths trees. J. Algorithms, 34(2):251-281, February 2000.

[s0] Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicommodity

flow and other fractional packing problems. In FOCS, 1998.

[51] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proceed-
ings of the nineteenth ACM symposium on Operating systems principles, SOSP "03, pages 29—43,
New York, NY, USA, 2003. ACM.

[52] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics for improving
approximate query answers. In SIGMOD, 1998.

[53] Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro Lopez-Ortiz, and J. Ian Munro.

Identifying frequent items in sliding windows over on-line packet streams. In IMC, 2003.
[54] Navin Goyal, Neil Olver, and F B. Shepherd. The vpn conjecture is true. In STOC, 2008.

[55] A.Greenberg,]. R. Hamilton, N. Jain, S. Kandula, C. Kimand P. Lahiri, D. Maltz, P. Patel, and
S. Sengupta. VL2: a scalable and flexible data center network. In SIGCOMM, 2009.

[56] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geof-
frey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4d approach to network control
and management. SIGCOMM CCR, 35:41—54, Oct. 2005.

134

[57]

(58]

[61]
[62]

Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen Patel. The cost
of a cloud: research problems in data center networks. Computer Communication Review,

39(1):68—73, 20009.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, MartA-n Casado, Nick McKeown,
and Scott Shenker. NOX: Towards an Operating System for Networks. In SIGCOMM CCR,
July 2008.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian,
Yongguang Zhang, and Songwu Lu. BCube: a high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu. Dcell:
a scalable and fault-tolerant network structure for data centers. In SIGCOMM, 2008.

Hadoop MapReduce. http://hadoop.apache.org/mapreduce/.

James R. Hamilton. Data center networks are in my way. Presented at the Standford Clean
Slate CTO Summit, 2009.

[63] James R. Hamilton. Cloud computing is driving infrastructure innovation. Presented at

[64]

Amazon Technology Open House Keynote, 2011.

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma,

Sujata Banerjee, and Nick McKeown. Elastictree: saving energy in data center networks. In
NSDI, 2010.

W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29:1170-1183, December 1986.

Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009.

C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992 (Informational),

November 200o0.

Daniel Horn. Stream Reduction Operations for GPGPU Applications, volume 2, chapter 36.

2005.

135

[69]

HP POD. http://h18000.wwwl.hp.com/products/servers/solutions/
datacentersolutions/pod/.

F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):55-89, 1992.
IANA DSCP registry. http://www.iana.org/assignments/dscp-registry.

IBM. IBM ILOG CPLEX Optimizer. http://www-01.1ibm.com/software/integration/

optimization/cplex-optimizer/.

IBM Scalable modular data center. http://www-935.1ibm.com/services/us/index.wss/
offering/its/al1025610.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In EuroSys, 2007.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case per-

formance bounds for simple one-dimensional packing algorithms. SIAM J. on Comput.,

3(4):2909-325, 1974.

S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The nature of datacenter traffic: Mea-
surements & analysis. In IMC, 2009.

Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in seattle: a scalable eth-
ernet architecture for large enterprises. In SIGCOMM, 2008.

[78] John Kim, William J. Dally, and Dennis Abts. Flattened butterfly: a cost-efficient topology

for high-radix networks. SIGARCH Comput. Archit. News, 35(2), 2007.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598) :671-680, 1983.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Efficient and robust routing of highly variable
traffic. In Third Workshop on Hot Topics in Networks (HotNets-II1), 2004.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Maximum throughput routing of traffic in
the hose model. In Infocom, 2006.

http://h18000.www1.hp.com/products/servers/solutions/datacentersolutions/pod/
http://h18000.www1.hp.com/products/servers/solutions/datacentersolutions/pod/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-935.ibm.com/services/us/index.wss/offering/its/a1025610
http://www-935.ibm.com/services/us/index.wss/offering/its/a1025610

[82]

[83]

Murali Kodialam, T. V. Lakshman, James B. Orlin, and Sudipta Sengupta. Oblivious rout-
ing of highly variable traffic in service overlays and IP backbones. IEEE/ACM Trans. Netw.,

17:459—472, April 2009.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min
Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker.

Onix: a distributed control platform for large-scale production networks. In OSDI, 2010.

Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.

IEEE Trans. Comput., 34(10):892—901, 1985.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation in Campus
Networks. ACM CCR, 2008.

[86] Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, Andrew R. Curtis,

[87]

and Sujata Banerjee. Devoflow: Cost-effective flow management for high performance en-

terprise networks. In HotNets, 2010.

Tatsuya Mori, Masato Uchida, Ryoichi Kawahara, Jianping Pan, and Shigeki Goto. Identi-
tying elephant flows through periodically sampled packets. In Proc. IMC, pages 115—120,

Taormina, Oct. 2004.

[88] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, and Jeffrey C. Mogul.

SPAIN: COTS data-center ethernet for multipathing over arbitrary topologies. In NSDI,

2010.

[89] Jayaram Mudigonda, Praveen Yalagandula, and Jeffrey C. Mogul. Taming the flying ca-

ble monster: A topology design and optimization framework for data-center networks. In
USENIX ATC, 2011.

Radhika N. Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri,
Sivasankar Radhakrishnan, and Vikram Subram. Portland: A scalable fault-tolerant layer 2
data center network fabric. In SIGCOMM, 2009.

H. Nagamochi. Studies on Multicommodity Flows in Directed Networks. PhD thesis, Depart-
ment of Applied Mathematics and Physics, Kyoto University, 1988.

137

[92]

[94]

[100]

[101]

[102]

Hiroshi Nagamochi and Toshihide Ibaraki. Max-flow min-cut theorem for the multicom-
modity flows in certain planar directed networks. Electronics and Communications in Japan,

Part 3,72(3):58-71, 1989.

Hiroshi Nagamochi and Toshihide Ibaraki. On max-flow min-cut and integral flow properties
for multicommodity flows in directed networks. Information Processing Letters, 31:279—-28s5,

1989.

Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKeown.
Implementing an OpenFlow switch on the NetFPGA platform. In Proc. ANCS, pages 1—9,

2008.

Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance: Dynamic
Access Control for Enterprise Networks. In Proc. WREN, pages 11—18, Aug. 2009.

K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard), December 1998.

Y. Nourani and B. Andresen. A comparison of simulated annealing cooling strategies. Journal

of Physics A: Mathematical and General, pages 83738385, 1998.
NVIDIA. NVIDIA CUDA. http://www.nvidia.com/object/cuda_home_new.html.

Sabine R. Ohring, Maximilian Ibel, Sajal K. Das, and Mohan J. Kumar. On generalized fat
trees. In Proceedings of the 9th International Symposium on Parallel Processing, IPPS 95, pages
37—, Washington, DC, USA, 1995. IEEE Computer Society.

David A. Patterson and John L. Hennessy. Computer Organization and Design, Fourth Edition,
Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th

edition, 2008.

Yuval Peres, Dmitry Sotnikov, Benny Sudakov, and Uri Zwick. All-pairs shortest paths in
o(n?) time with high probability. In FOCS '10, 2010.

Lucian Popa, Sylvia Ratnasamy, Gianluca Iannaccone, Arvind Krishnamurthy, and Ion Sto-

ica. A cost comparison of data center network architectures. In CONEXT, 2010.

138

http://www.nvidia.com/object/cuda_home_new.html

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving dat-
acenter performance and robustness with multipath tcp. In SIGCOMM, 2011.

C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M. Handley. Data center
networking with multipath tcp. In Hotnets, 2010.

April Rasala and Gordon Wilfong. Strictly non-blocking wdm cross-connects for heteroge-

neous networks. In STOC, 200o0.

Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-of-service
mapping for QoS: A statistical signature-based approach to IP traffic classification. In IMC,

pages 135-148, 2004.

M. R. Samatham and D. K. Pradhan. The de bruijn multiprocessor network: A versatile par-
allel processing and sorting network for vlsi. IEEE Trans. Comput., 38:567—581, April 1989.

Eric Schurman and Jake Brutlag. The user and business impact of server delays, additional
bytes, and HITP chunking in web search. Presentation at the O’Reilly Velocity Web Perfor-

mance and Operations Conference, 2009.

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick McK-
eown, and Guru Parulkar. Can the production network be the testbed? In OSDI, 2010.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish: Networking

data centers randomly. In NSDI, 2012.
Sun’s Modular Datacenter. http://www.sun.com/service/sunmd/.

Adrian S.-W. Tam, Kang Xi, and H. Jonathan Chao. Use of Devolved Controllers in Data
Center Networks. In INFOCOM Workshop on Cloud Computing, 2011.

Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott Shenker, and Walter
Willinger. Network topology generators: degree-based vs. structural. In SIGCOMM, 2002.

Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Applying NOX to
the datacenter. In HotNets, 2009.

139

http://www.sun.com/service/sunmd/

[115]

Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed Control Plane for Open-
Flow. In Proc. INM/WREN, San Jose, CA, Apr. 2010.

[116] J. Touch and R. Perlman. Transparent Interconnection of Lots of Links (TRILL): Problem

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

and Applicability Statement. RFC 5556 (Informational), May 2009.

L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In STOC,

1981.

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. Andersen, GregoryR.
Ganger, Garth A. Gibson, and Brian Mueller. Safe and effective fine-grained tcp retransmis-
sions for datacenter communication. In Proceedings of the ACM SIGCOMM 2009 conference
on Data communication, SIGCOMM o9, pages 303—3 14, New York, NY, USA, 2009. ACM.

Adam Vierra. Case study: NetRiver rethinks data center infrastructure design. Focus Maga-

zine, August 2010. Available online at http://bit.1ly/0S4pCu.
VMware. http://www.vmware. com.

Richard Wang, Dana Butnariu, and Jennifer Rexford. Openflow-based server load balancing
gone wild. In Hot-ICE, 2011.

Haitao Wu, Zhengian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP: Incast con-
gestion control for TCP in data center networks. In CONEXT, 2010.

Haitao Wu, Guohan Lu, Dan Li, Chuanxiong Guo, and Yongguang Zhang. MDCube: a high

performance network structure for modular data center interconnection. In CoONEXT, 2009.
Xen. http://www.xen.org.

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and
Ion Stoica. Delay scheduling: a simple technique for achieving locality and fairness in cluster

scheduling. In EuroSys, 2010.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
NSDI, 2012.

140

http://bit.ly/oS4pCu
http://www.vmware.com
http://www.xen.org

[127] R.Zhang-Shen and N. McKeown. Designing a predictable internet backbone with Valiant
load-balancing. In Thirteenth International Workshop on Quality of Service (IWQoS '0S), 2005.

[128] Albert Y. Zomaya and Rick Kazman. Algorithms and theory of computation handbook.
chapter Simulated annealing techniques, pages 33-33. Chapman & Hall/CRC, 2010.

141

	List of Tables
	List of Figures
	Introduction
	Introduction
	Datacenter Applications
	Interactive applications
	Batch jobs
	Distributed file systems

	Datacenter Network Goals
	Contributions

	Related work
	Workloads in datacenter networks
	Topology design
	Clos network and the fat-tree
	HyperX
	DCell
	BCube
	MDCube
	Heterogeneous topology constructions

	Load balancing
	Oblivious load balancing
	Reactive flow scheduling
	Online scheduling
	End-host-based load balancing

	Configuration
	Automatic assignment of addresses
	Reducing cabling complexity

	OpenFlow

	LEGUP: Designing Heterogeneous, Tree-like Datacenter Networks
	Introduction
	Defining the Problem
	Workload assumptions
	Switches, links and end-hosts
	DCN performance: what's important to applications?
	Cost model
	Placing equipment in a datacenter

	LEGUP Overview
	Optimization goals
	Inputs, Constraints, and Outputs
	The LEGUP optimization algorithm
	Why naive solutions aren't enough

	Theory of Heterogeneous Clos Networks
	The Clos network
	Constructing heterogeneous Clos networks

	LEGUP Details
	Bounding a candidate solution
	Finding a set of core switches
	Mapping aggregation switches to racks and ToR switches
	Computing the performance of a solution

	Evaluation
	Input
	Alternative upgrade approaches
	Upgrading the datacenter
	Expanding the datacenter

	Discussion

	REWIRE: Designing Unstructured Datacenter Networks
	Introduction
	REWIRE Algorithm
	Optimization problem formulation
	Local Search Approach
	Adding switches to the network

	Evaluation
	Inputs
	Comparison approaches
	REWIRE settings
	Greenfield networks
	Upgrading
	Expanding
	Quantitative results

	Operating an Unstructured DCN
	Discussion

	Datacenter Network Traffic Engineering with Mahout
	Introduction
	Background
	Datacenter traffic
	Identifying elephant flows

	Our Solution: Mahout
	Detecting Elephant Flows
	In-band Signaling
	Mahout Controller
	Discussion

	Analytical Evaluation
	Experiments
	Simulations
	Prototype & Microbenchmarks

	Traffic Engineering with DevoFlow
	Introduction
	OpenFlow Overheads
	DevoFlow
	Mechanisms for devolving control
	Efficient statistics collection
	Using DevoFlow for flow scheduling

	Evaluation
	Simulation methodology
	Performance
	Overheads

	Conclusions
	References

