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Abstract

Motivated by Jones’ braid group representations constructed from spin models.
we define a Jones pair to be a pair of n X n matrices (4. B} such that the endo-
morphisms X4 and Ag form a representation of a braid group. When 4 and B are
type-1I matrices. we call (4. B) an invertible Jones pair. We develop the theory of
Jones pairs in this thesis.

Our aim is to study the connections among association schemes. spin models
and four-weight spin models using the viewpoint of Jones pairs. We use Nomura's
method to construct a pair of algebras from the matrices (4. B). which we call the
Nomura algebras of (4. B). These algebras become the central tool in this thesis.
We explore their properties in Chapters 2 and 3.

In Chapter 4. we introduce Jones pairs. Ve prove the equivalence of four-weight
spin models and invertible Jones pairs. We extend some existing concepts for four-
weight spin models to Jones pairs. In Chapter 5. we provide new proofs for some
well-known results on the Bose-Mesner algebras associated with spin models.

We document the main results of the thesis in Chapter 6. We prove that ev-
ery four-weight spin model comes from a symmetric spin model (up to odd-gauge
equivalence). We present four Bose-Mesner algebras associated to each four-weight
spin mode]. We study the relations among these algebras. In particular. we provide
a strategy to search for four-weight spin models. This strategy is analogous to the

method given by Bannai. Bannai and Jaeger for finding spin models.
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Chapter 1

Introduction

We first give an overview of this thesis. In Sections 1.2 and 1.3. we give the
background marterials on spin models and braids. Then we present a historical

overview of the research on the association schemes attached to spin models.

1.1 Overview

The purpose of this thesis is to introduce Jones pairs and to extend the existing
theory of association schemes attached to four-weight spin models.

We now define Jones pairs. Given two n x n matrices M and .N. their Schur

product M o .V is defined by
(Mo ‘\')l.J = "[I._}'\-l.j~

forall i.j =1.....n. If C is an n x n matrix, we define two endomorphisms of
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M,.(C) -\'C' and Ac. b_\'

Xe(M)=CM and Ac(M)=Co .

for any n x n matrix .M. We say that the pair of n x n matrices (4. B) is a Jones

pair if X4 and \p are invertible. and they satisfv

XiAgXy = AgX, \g. and
.\i.{ABT.Y_.t = ABT.\.AABT.

We will show in this thesis that Jones pairs give representations of braid groups.
Moreover. we will see that spin models and four-weight spin models belong to a
special class of Jones pairs. called the invertible Jones pairs. Consequently. we
obtain a representation of braid group from every four-weight spin model. This
fact was not known previously.

The connections between spin models and association schemes have been the
focus of existing research. We have alwayvs found association schemes intriguing.
mainly because of their connections to a vast number of combinatorial objects such
as distance regular graphs. codes and designs. It follows naturally that we are
interested in the results due to Jaeger {12} and Nomura (23] which say that every
spin model belongs to the Bose-Mesuer algebra of some association scheme. In
(12]. Jaeger asked for an intrinsic characterization of the association schemes whose
Bose-Mesner algebras contain a spin model and this is the question which motivates
the work in this thesis.

Nomura used the type-II condition of spin models to obtain the result mentioned
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above. We say an n x n matrix A satisfies the rype-II coudition if

Z Ar =4,n. forallij=1.....n

and it is called a type-II matrix. Spin models and the matrices in four-weight
spin models are examples of type-II matrices. In [23]. Nomura constructed a Bose-
Mesner algebra of some association scheme from each type-II matrix. This algebra
is called the Nomura algebra of the type-II matrix. He also showed that every spin
mode] belongs to its Nomura algebra. In Chapter 2. we generalize his construction
to a pair of algebras built from a pair of matrices (4. B). We also study the
properties of this pair of algebras. In this process. we find new and simpler proofs
of many known results on the Nomura algebras of type-II matrices and spin models.
We are now convinced that Jones pairs provide a natural setting for the study of
the problems related to spin models and four-weight spin models.

Relying on the fact that every spin model belongs to its Nomura algebra. Bannai.
Bannai and Jaeger 3] designed a strategy to search for spin models. However. the
matrices in a four-weight spin model do not belong to their Nomura algebras. So
Bannai. Bannai and Jaeger's method does not apply directly to four-weight spin
models. In Chapter 6. we provide a construction of an 4n x 4n symmetric spin
model from each n x n four-weight spin model. This construction generalizes a
construction due to Nomura in [22]. As a result. four-weight spin models are not
very different from symmetric spin models. Moreover. we design a strategy to find
four-weight spin models using this newly constructed 4n x 4n symmetric spin model.

In addition to the Nomura algebras obtained from the matrices in an n x n
four-weight spin models and the 4n x 4n symmetric spin model. we will construct

two more Nomura algebras from the four-weight spin model. In Chapter 6. we will
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see how these Nomura algebras are intricately related to each other.

1.2 Spin Models

Using a statistical mechanical model called a spin model. Jones [17] constructed
invariants of unoriented links in the form of partition functions. His definition
of a spin model is essentially a symmetric martrix that satisfies certain properties
such that its partition function is invariant under the Reidemeister moves of link
diagrams. The Potts model. which is a linear combination of the identity matrix
and the matrix of all ones. is the simplest spin model. From the Potts model. we
can obtain the infamous Jones polynomial.

In 1994. Kawagoe. Munemasa and Watatani [18] generalized the definition of
spin models by removing the symmetry condition. We adopt their definition in this
thesis: an n x n matrix W is a spin model if there exists a non-zero scalar a and

d = +\/n such that

(I) Fort=1.... .n.
‘{:J:z a

and

Zn: W, = Z W,, =da™".
=1 r=1

(II) Forall:.j=1.... .n.

W,
W,

=1
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where §,, equals one when : = j and zero otherwise.

(IIT) For all t.j.k=1.....n.

zn: {'Vk.:l".r.l _ d It'kx
W, W W

=1

They also showed that the partition functions give invariants of oriented links. So
far. we only know three infinite families of spin models. The first family is the
Potts models. The second one comes from finite Abelian groups. In {3]. Baunai.
Bannai and Jaeger built a spin model from each finite Abelian group. The third
family consists of the symmetric and the non-symmetric Hadamard spin models.
constructed by Jaeger and Nomura [21. 13].

It turns out that the tvpe-II condition for spin models is more important than
the other two conditions. In particular. the type-II condition of a spin model plays a
key role in Nomura's construction of the Bose-Mesner algebra containing it. More-
over. unitary tvpe-II matrices are important objects in the study of Von Neumann
algebras [16].

In 1995. Bannai and Bannai 2] gave a further generalization by defining the
four-weight spin models. In [13]. Jaeger normalized the partition function of a
four-weight spin model to give an invariant of oriented links. A four-weight spin

model is a 3-tuple (W7, W5, W3, W,: d) with ¢ = n and a non-zero scalar a satisfying

(I) Foralla=1.... .n.

(WEB)O.Q = a_l~ (W'l)a.a =a,
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and

n

S Woar= Loy (Wohea =da™".

r=1
n

Y Wiar= Tooi(Wi)ra =da.

r=1

(Il) Foralla.3=1.... .n.

(W1)a.3(W3)s.0 = 1. (W2)as(Wy)se = 1.
Y (WaaW3)es = dasn.

r=1

Z(I’V’.‘)O.I(u.~l):.3 = ‘sadn-

r=1

(ITI) For all . 3.y =1.... .n.

n

Y (Wiae(W)es(Wa)se = dWi)as(Walsa(Wa)s.s

r=1
n

Z(LVI ):.a( “'-l ):3.:( I'V-i ):.-7 = d( I'Vl ).’j.a( I‘V-{ )a.‘}( H“-l )3.‘? .

r=1

In the same paper. Bannai and Bannai listed sixteen equations that are equivalent
to the tvpe-IIl conditions of four-weight spin models. Having to decide which
equations are more suitable for a given problem complicates any analysis of four-
weight spin models. One advantage of Jones pairs is that they save us from having

to deal with these sixteen equations.
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1.3 Braids

Jones pairs are designed to give representations of braid groups. so braids are
naturally the topological object of interest here. In this section. we provide some
essential background of braids and braid groups.

A braid on m strands is a set of m disjoint arcs in 3-space joining m points on
a horizontal plane to m points on another horizontal plane directly below the first
m points. Given a braid. we form the closure of the braid by joining the m poiuts
on top to the m points at the bottom as illustrated in the following figure. It is

obvious that the closure of a braid is a link.

1

The following theorem due to Alexander [20] explains the connection between

braids and links.

Theorem 1.3.1 Any link is isotopic to the closure of some braid. d

When we stack two braids on m strands. we get a new braid. which we call the
product of the two braids. This operation is associative. If we define o, and o'
as shown in the figure below. then it is easy to see that any braid on m strands is
a product of 7,.... ,0,-1. Hence the inverse of a braid always exists. As a result.

we get a group structure on the set of braids on m strands.
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[94]

i i+l i i+l

>3 -

r M

o, a.l"
The braid group on m strands. Bp,. is generated by o,.... . g,,~; subject to the
following relations:
(a) Forall i — ;| > 2.
0,0, = 0,0,

(b) Forall:=1.... . m-=2,

0101410, = 0141010141

Given a spin model 11", Jones [17] built a representation of the braid group Bm,.
His construction uses the endomorphisms. Xjy- and Ay--i. of M,(C). He showed
that the trace of the element representing a braid equals the partition function
invariant evaluated at the closure of the braid. up to normalization.

In summary. given a spin model W', we can obtain the same link invariant either
using the partition function or the trace of a representation of the braid group.
However Jones pointed out a puzzling distinction between the two approaches.
which is that the type-II condition on W is needed for the first method. but not for
the second. This distinction motivates our definition of Jones pairs in Chapter 4.
In particular. we do not assume the tvpe-Il condition on the matrices in Jones
pairs. In the same chapter. we will generalize Jones' construction to four-weight

spin models.
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1.4 Association Schemes

In 1992. Jaeger [10] made the first connection between association schemes and
spin models. He showed that a spin model gives an evaluation of the Kauffmman
polvnomial if and only if it belongs to a triply-regular formally self-dual two-class
association scheme. Now two-class association schemes are equivalent to strongly
regular graphs. Moreover. a triply-regular two-class association scheme corresponds
to a strongly regular graph G with the property that the neighbourhoods of any
vertex in G and its complement induce strongly regular graphs. From this result.
we see strong combinatorial properties attached to spin models.

Four vears later. Jaeger [12] obtained the surprising result that every spin model
belongs to the Bose-Mesner algebra of a formally self-dual association scheme.

Jaeger's profound discoveries caught the interests of researchers in Algebraic
Combinatorics. They produced a series of results on spin models and association
schemes. Here. we document some other classical findings of this area.

Shortly after Jaeger announced that every spin model belongs to a formally
self-dual Bose-Mesner algebra. Nomura [23] came up with a substantially simpler
algebraic construction of a Bose-Mesner algebra from a spin model. In fact. Nomura
showed that each type-II matrix gives rise to a Bose-Mesner algebra. now known
as the Nomura algebra of the type-II matrix. Jaeger. Matsumoto and Nomura [14]
examined further the Nomura algebras of type-II matrices. and concluded that a
type-II matrix W belongs to its Nomura algebra if and only if it is a spin model up
to scalar multiplication.

In 1997. Bannai. Bannai and Jaeger [3] found a necessary condition for a for-
mally self-dual Bose-Mesner algebra to be the Nomura algebra of sonie spin model.

They showed that the matrix of eigenvalues of the Nomura algebra of a spin model
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must satisfy the modular invariance property. Unfortunately. we still do not have
any way to tell whether a Bose-Mesner algebra is the Nomura algebra of some
tvpe-1I matrix.

Much less is known about the connection between four-weight spin models and
association schemes. The only result we know is due to Bannai. Guo and Huang
[1. 9]. They proved that if (W,. W5 W5.1:d) is a four-weight spin model. then
the Nomura algebras of 1. ;. 13 and W coincide. and this algebra is formally

self-dual.

1.5 Directory

In this section. we provide a layout of this thesis.

Chapter 2 lays the groundwork for subsequent chapters. In Sections 2.1 and
2.2, we introduce the Nomura algebras of two matrices (.4. B) and the duality map.
In Section 2.3. we present a useful tool called the Exchange Lemma. These three
sections are joint work by Godsil. Munemasa and the author [6]. In Section 2.4.
we examine effects on the Nomura algebras of (A. B) when A and B are multiplied
by some monomial matrices. In Section 2.5. we show how the Nomura algebras of
(41 © A, By © B,) are related to the Nomura algebras of (4,. By) and {A;. By).
The findings in these two sections generalize similar results from Jaeger. Matsumoto
and Nomura [14].

Sections 3.1, 3.2 and 3.7 survey existing results about the type-II matrices and
their Nomura algebras. We present new proofs using the tools developed in Chap-
ter 2 and they are due to Godsil, Munemasa and the author. Sections 3.3 to 3.6
overview the standard theory of association schemes. In Section 3.8. we study the

properties of the Nomura algebras of two type-II matrices. These properties are
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used substantially in subsequent chapters. The results in this section are joint work
by Godsil. Munemasa and the author.

We introduce one-sided Jones pairs and Jones pairs in Chapter 4. Based on
Jones' construction. we build a braid group representation from a Jones pair. More
importantly. we show that invertible Jones pairs are equivalent to four-weight spin
models. In Sections 4.7 and 4.8. we extend Jaeger's notion of gauge equivalence
to one-sided Jones pairs. The results in this chapter are joint work by Godsil.
Munemasa and the author.

We examine spin models as Jones pairs in Chapter 3. In Section 3.2. we provide
Jaeger. Matsumoto and Nomura's derivation of the modular invariance equation.
In Section 3.3. we extend Curtin and Nomura's theorem to the strongly hvper-
self-duality of the Terwilliger algebra of the Nomura algebra of a spin model. In
Section 3.4. we provide a new and shorter proof of one direction of Jaeger's result
on spin models from two class association schemes. The last section contains our
new proof. using Jones pairs. to Jaeger and Nomura's construction of the symmetric
and non-symmetric Hadamard spin models.

Chapter 6 contains the main results of this thesis. In Section 6.1. we construct a
type-II matrix W from an invertible Jones pair (A. B). This type-II matrix gives a
formally dual pair of Bose-Mesner algebras. We determine the dimensions. the basis
of Schur idempotents and the basis of principal idempotents for these algebras. In
Section 6.2. we extend Nomura's construction [22] to build a pair of symmetric spin
models. V" and V", from each four-weight spin model. We design an algorithm to
exhaustively search for four-weight spin models. which is described in Section 6.3.
Sections 6.4 to 6.6 document our observation of the relations of the Nomura algebras
of 4, W,V and V". Section 6.7 documents what we know about the simplest class

of Jones pairs. Finally, we discuss several directions of future work.
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Nomura Algebras

In [23]. Nomura constructed n? vectors from a symmetric type-II matrix 4. He
then considered the set of all matrices for which these vectors are eigenvectors. and
showed that this set forms a Bose-Mesner algebra. This algebra is now called the
Nomura algebra of A. and denoted by ;. Nomura went further and proved that
if 4 is a spin model. then A belongs to its Nomura algebra. Thus Nomura algebras
play a significant role in the theory of spin models.

During our investigation of Jones pairs. Godsil generalized Nomura’s construc-
tion. Given a pair of matrices A and B. we consider the set of matrices of which

foralli.j=1.....n.
Ae, 0 Be,

are eigenvectors. We call this set of matrices the Nomura algebra of (4. B). and
denote it by N, g. In general. the Nomura algebra of (A. B) is not a Bose-Mesner
algebra. However it will become clear in subsequent chapters that .4 p is a powerful

tool in the study of Jones pairs.

12
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Sections 2.1 and 2.2 introduce the Nomura algebra of (4. B) and a special
function on Ay g called the duality map. The results in these two sections provide
technical background for Chapters 3 to 6. They also appear in the paper [6] by
Godsil. Munemasa and the author.

In Sections 2.4 and 2.3. we generalize several results due to Jaeger. Matsumoto
and Nomura in [14]. which are in turn extensions of Nomura's results on symmetric

tvpe-II matrices.

2.1 Nomura Algebra of Two Matrices

We introduce the Nomura algebras of a pair of n x n matrices (A. B). denoted by

N and '\"‘.'4.3- We study the properties of these algebras and a map
Q48 :Nap— Vip

called the duality map. In this section. we resist the temptation of adding dispens-
able conditions on 4 and B.
For any pair of n x n matrices 4 and B. their Schur product A o B is the

entry-wise product of A and B. Thatis. fort.j =1.... .n.
(-'1 © B)l._] = -'L.;Bn.,)-

The n x n matrix of all ones. denoted by J. is the identity with respect to the Schur

product. If all entries of 4 are non-zero. then the matrix A(~) with

1
AL = —
J Al’-.l
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satisfies 4 o A7) = J. We say that A is Schur invertible and A'~' is the Schur
inverse of A. Note that M,(C) forms a commutative algebra with respect to the
Schur product.

Let {e,.... .e,} denote the standard basis for C*. Given a pair of n x n matrices

A and B. we obtain the following set of n* vectors
{Ae;0Be,:i.j=1.... .n}.

The vector d¢; o Be; equals the Schur product of the i-th column of A with the
7 €9 P
Jj-th column of B. In most cases we encounter. these n* vectors are not distinct.
We define Vi g to be the set of n x n martrices for which Ade, o Be, is an

eigenvector. forall ey =1.... .n.

Lemma 2.1.1 Let A and B be n x n matrices. Then the set \ 4 g iz a vector space

which is closed under multiplication. and it contains the identity matruz.

Proof. Let M.N € \Nyp. For i.j = 1.... .n. there exist m,, and n,, such that

M Ae, 0 Be, = m,; A¢, 0 Be; and .V Ae, 0 Be, = n,; Ae, 0 Be,. Now,
(MN) Ae, o Be, = m,;n;; Ae¢; o Be,.

So we have M.V € V4 5. It is immediate that Ae, o Be; is an eigenvector for [. for

alli.j=1.....n.Sol € Ny5. |

We call V, g the Nomura algebra for the pair (A. B). Now for each matrix M in
N 1.8, we use @4 g(M) to denote the n x n matrix whose ij-entry is the eigenvalue

of M with respect to the eigenvector e, o Be;. That is.

M :16,' o BCJ = OA.B(—"[)LJ .-lE,' Qo BEJ.
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fori.j=1.....n. Wecall ©, g the duality map. We use \", 5 to denote the image
J . p 4.8 )
of .\"y g under @4 5. The following two lemmas tell us that .\"| 4 is an algebra with

respect to the Schur product.

Lemma 2.1.2 Let 4 and B be n x n matrices. Then for all M and N in \', 5.

we have
©48(MN)=0,45(M)o00, (V).
Proof. If M and N lie in .\'y. g then

(“'I‘\—) '461' e BEJ = O.".B("1)1.16.4.B(°\’)l.) AE, ° Bf)
= (64B(°‘[) ° O.’l.B('\-))l.} -'1E| o ij-

So the result follows. O

Lemma 2.1.3 Let A and B be n x n matrices. Then \\ g is a vector space in

M. (C) which is closed under the Schur product. and it contains .J.

Proof. It follows from Lemma 2.1.2 that .\”} g is closed under the Schur product.

Moreover. since [ de,c Be, =1 e, o Be,. we have © 4 5(/) = .]. O

The following standard result (Theorem 2.6.1 [3]) says that there is a basis of

Schur idempotents for N g.

Lemma 2.1.4 Let N C M, (C) be a vector space that is closed under the Schur
product. Assume further that J € N'. Then N has a basis of Schur idempotents.

Proof. Choose M to be a matrix in A~ with the maximal number of distinct uon-

d

zero entries. We can write M = ) _ a;4:. where a;.....ay are distinct and
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AL 44 are 0l-matrices that sum to J and satisfv 4, o 4, = 4,,.4,. Then the
A,’s are linearly independent. For any : = 1.... .d. the following product
< 1
II (M=o J)o.. (M=ai J)o(M—aumJ)o...(M=as)
J=1g#1 @ =9y

equals A4, and belongs to .\". So the dimension of .\" is no less than d.

Suppose .V € .\ is not a linear combination of A,.... .. 14. Let N = :le 3,8,
where 3,.... .3 are distinct and B,.....B; are 0l-matrices that are mutually
orthogonal with respect to the Schur product.

Since {B,.....Bx} # {Ai.... . A4} and .\ is closed under the Schur product.
{d,oeB,:t=1.....d j=1.... .k}

is a set of more than d Schur idempotents in .\". As a result. any linear combination

of the matrices in this set with distinct non-zero coefficients contradicrs the choice

of M. We conclude that {A;.... .. 14} spans V. O
For example. when A = [ and B = J. the set of eigenvectors is {¢;.... .€,}.
Therefore V34 g equals the set of n x n diagonal matrices. Since for i.j =1.... .n,

fejo Je, =¢,.

we get O (D) = DJ for any diagonal matrix D. The basis of Schur idempotents
of V] ; equals {e;17 : i = 1.... .n}. In this case, both algebras have dimension n.
We can say more about these algebras if we assume A is invertible and B is

Schur invertible. More importantly, we will see in Chapter 4 that these conditions
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hold when (A. B} is a Jones pair.

Theorem 2.1.5 Let 4 be an invertible matriz and let B be a Schur invertible
matriz. Then the duality map © 45 is an isomorphism from the algebra \'y g
(with respect to matriz multiplication) to ") g (with respect to the Schur product).

Moreover. \'y g is a commutative algebra.

Proof. For each r. the set of vectors
{de,0 Be,: for:=1.....n}

is linearly independent and hence it is a basis for C*. As a result. for every M in
i g. each column of © 4 g( M) contains all n eigenvalues of M. Now we conclude
that © 4 5(W) =0 ,45(.M’) if and only if M = M’. So the map O 45 i5 a bijection.

By Lemma 2.1.2. if M.V € .V, 5. then

©4B(MYN) = 0,5(M)00,45(N)
= 048(N)00,4p5(M)
= O48(NVM).

It follows that M N = NM._ forall M.V € \y 5. O

2.2 The Duality Map O, 3

We now define two types of endomorphisms of M,(C). They are used by Jones [17]
to construct braid group representations from spin models. More importantly for
us. Jones pairs are defined using these endomorphisms. so they show up everywhere

in this thesis.
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Let C be an n x n matrix. We define two endomorphisms of M, (C): N¢ and

Ac. as follows
Xc(M)=CM. Ac=Col.

Now X¢ is invertible if and only if C is invertible. Similarly. A 1s invertible if and

only if C is Schur invertible. If A is invertible and B is Schur invertible. we have
.\’_Il = ~\’A" . Aél = AB*"'

It is worth noting that Ag and A¢ commute for all n x n matrices B and C.
Moreover. if D is a diagonal matrix. then Xp = Ap;. Thus Xp and A¢ commure,

Let M and N be two n x n matrices. Then tr(M7TN) = sum(M o V) is a
non-degenerate bilinear form on M,(C). If ¥ is an endomorphism of M, (C). we
use YT to denote the adjoint of ¥ relative to this bilinear form. We call it the

transpose of Y. It is straightforward to verify that
XX =Xcr. AL=Ac

In Section 2.1. O, g(R) is defined as a store of eigenvalues of R € .\y 5. The
following theorem gives an equivalent definition of the duality map unsing the endo-
morphisms X, and Ag. This definition helps us identify when a matrix belongs to

Nip and it is used repeatedly in the rest of the thesis.

Theorem 2.2.1 Let A.B € M, (C). Then R € Ny and S = O, 5(R) if and
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only «f
XrAg X = A\, As. (2.1

Proof. Let E,, = e,-eJT be the nx n matrix with one in its ¢ j-entry and zero elsewhere.

The set {E,, :i.j =1.... .n}is a basis for M,(C). So (2.1) holds if and only if
-YRAB-\’A(Eu) = AB-\’AAS( Eu}-
for all /. j = 1.... .n. Now the left-hand side equals

NrAgXa(eieT) = R(BoA(ee]))
R (Be,o .-le,}ef.

and the right-hand side equals

-\a-\'A-Xs(c‘,f,T) = Bo(A(So 6‘6,7))
= S, (Be, cu-le,)ejr.

Both sides are equal if and only if
R (Be, o de,) = 5., (Be, 0 Ae,).

We conclude that the relation (2.1) holds if and only if § = ©4.5(R). a
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2.3 The Exchange Lemma
The Exchange Lemma results from the trivial idea that the set

{Ae,0Be, :i.j=1.....n}

does not change by swapping A and B. Therefore Ay g = \g.a. If S = O, 5 R

then
R Be,o Ae, = §,, Be, o He,.

which is the same as writing O 4(R) = ST and A\ , = .\'.ft.BT. As a result. we

have

AVAVAFIERVRAFRE
if and only if

XrAiXp = A4\ Ar.

The lemma below. called the Exchange Lemma. gives a more general form of the
above equivalence. It was first discovered by Munemasa during our investigation
of Jones pairs. This result is of much greater importance than it may first appear.

It is applied at numerous places in this thesis.

Lemma 2.3.1 If 4, B.C.Q.R.S € M,(C) then

-\’A Ag.x’c = AQ -\'RAS
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if and only if
XAAC.\'B = —\RXQAST

Proof. Pick any i.j € {1.... .n}. Applying both sides of the first relation to E,,

gives
A (Be, 0 Ce,)eJT =35,,(Qe,0 Re,)ef.

T

By multiplying each side by e,e; . we get

A (Ce;o Be,)el = (ST),. (Re; 0 Qe,)el
which is the same as
XiAcXB(E)) = ArXgAsr(E).

So the result follows. a

Using the Exchange Lemma. we obtain several equivalent forms of (2.1).

Corollary 2.3.2 If A is invertible and B is Schur invertible. then the followuny

are equivalent:
a. ReNipand S =0.45(R)
b. XgrAiXgr = AsrXgrd,
c. AprXg—Agr = XA -1 X

d. ABT.YB(—)TAR = .YsTAA-l.YAT
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Proof. By Theorem 2.2.1 and the Exchange Lemma to (2.1). Condition (a) holds

if and only if
.\’RA_.;.\’B = A_.\_\’BAsr.

Taking the transpose of both sides vields (b). So (a) and (b) are equivalent. More-

over we can write {2.1) as
Ag-XrAp = X3 A5\ -1,

Applying the Exchange Lemma gives (¢). Lastly. we obtain (d} by taking rhe
transpose of each side of (¢). As a result. Conditions (a). (¢) and (d} are equivalent.
O

Assuming all diagonal entries of 4 are non-zero. we use Corollary 2.3.2 (b) to get

an explicit formula of @4 5. All equivalent forms of Equation (2.1} give formulae
of ©4.8. We choose this particular one because we will use it in the proof of the

modular invariance equation in Section 3.2.

Lemma 2.3.3 Let A and B be n x n matrices. and let R€ Nyg. If A and Ao [

are invertible and B is Schur invertible. then
O.g(R) =B o((d0I) (4T o R)B).
Proof. Let § = ©,4.5(R). Applyving Corollary 2.3.2 (b) to . we get

BT (Ao (RT1)) =STo (BT (Ao 1)).
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By taking the transpose of each side. we have
So((AToI)B)= (AT o R)B.

Since AT o[ = Ao [ is a diagonal matrix. the left-hand side equals (Ao [)(S ¢ B).

Hence we get

S=B"o((4o1)7" (4T o R)B).

(]

2.4 Transformations of (A, B)

Two matrices 4 and C are monomiallyv equivalent if C = M AN, where M and .V
are products of permutation matrices and diagonal matrices. When A is a tvpe-II
matrix. Jaeger. Matsumoto and Nomura examined the the relation between the
Nomura algebras of the pairs (4. A7) and (C.C!)). (see Proposition 2 and 3 in
[14]). In this section. we extend their result to .\'y g for any pair of n x n matrices
(4. B).

As we will see in Sections 4.7 and 4.8. if (4,. B,) and (4,. B,) are guage equiv-
alent invertible Jones Pairs. then 4; and 4, are monomially equivalent. and so are
B, and B;. So the following lemmas tell us how the Nomura algebras of gauge-

equivalent invertible Jones pairs relate to each other.

Lemma 2.4.1 [f D. E and F are invertible diagonal n x n matrices. then

- - - )
-"\‘D.-lE.D‘lBF = -“\‘A,B* and .’\J DAE.D-'BF = '\(.-1.8'
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Proof. Since D (Bo C) = (DB o (). we have
(DAEe,)o (D™'BFe;) = (E)ii(F),, A€, o Be,
which implies the lemma. =
Lemma 2.4.2 If P.Q and R are n X n permutation matrices. then
Npagrar =P \NapP™'. and Npoper=0Q7"' \\gR.

Proof. Let M € \N; 5. Thenforalli.j=1.....n.

(PMP~') (PAQe, o PBREe,) PMP™'P (AQ¢, 0 BRe,)

P)M (AQe¢, 0 BRe,).

If Qe, = e, and Re, = e,/. we get

(PMP-') (PAQe; 0 PBRe,) = PM (Aey o Be,)

I

G)A,B(M)‘,J, {PAQe, o PBRe,).

So the first equality of the lemma follows. Moreover. @4 5( M), ., = (QT ©48(M)R),,.

and the second equality holds. d

2.5 Tensor Products

We use 2 to denote both the Kronecker product of two matrices and the tensor

product of two algebras. The next lemma generalizes Proposition 7 in [14]. due to
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Jaeger. Matsumotc and Nomura. In particular. we will use this lemma in Section 4.1

to show that the tensor product of two Jones pairs is also a Jones pair.

Lemma 2.5.1 Let 4, B; € M,,,(C) and A,. B € M, (C). If A,. 4, are wnvertble.
and B,. B, are Schur invertible. then

'NI,4[GA2,31382 = '\{'."‘[ .B[ 3 0‘\’.42.82'

and

IV — A ~ A\
N 4,942,898, — A A4,.By < R A7.8B2°

Proof. Since {e, Zep:i =1.....mand h = 1.....n} form a basis for C"". we

can write the eigenvectors for the matrices in V4, 54..8,28, s

(A1 2 A2)(e. T en)) o ((Br T By)le, 2 ex))
= (A16; T Azen) o (Bie; o Baex)

= (.'116,’ o BleJ) o (.'126}‘ Q Bgek).

for all i,j = 1.....m and h.k = 1.....n. This implies if M € .\ 5, and

N € N4, 8,. then M @ N € Ny 94,.8,08,- Consequently,

N.-h B, & N Az2.B2 - '\('-419-42-31-351'

Now A4; ® A, is invertible and B, © B, is Schur invertible. By Theorem 2.1.3. we

. , e : e
havefori = 1.2, dim Ny, 5, = dim Ny, g and dim N4 g4,.8,28, = dim N 54, 5 o8,
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[ -~ “1

. . . “ *r . 5
It is sufficient to show that \'} -, g cg, 20d .\ g T.\, p, have the same

dimension. If the Hermitian product of the two eigenvectors
(A1 & A2)(ei, Sen)) o ((B) S Ba)ley & en)).
and
(A1 T A)(es; T eny)) 0 (B & Ba)(ey, T €iy))

is non-zero. then they belong to the same eigenspace of M. for all M in V4, 5.4,.8,28,-

Thus

6'4‘3"‘?'81357("l)((ix-ht).(Jx k) T 9"“3"‘"81‘381('”)((t:-il:)-(.l:-kz))'
But the Hermitian product of those two eigenvectors equals
(.-116.l o Ble,l . Ale,», C 3161.‘,)(.4261,[ o) Bgekl . :heh, 0 Bgfk,).

and so the ({i;,hy),(J1,k1)) and ((i2. h2).(J2. k2)) entries of a Schur idempotent of
N4, 54,.8,08, €qual to one if and only if there exist a Schur idempotent F in V) 5

and a Schur idempotent G in N}, 5. such that
F‘ilv)l = R?u}? = 1' a‘nd Gh[-k[ = G’l;.kg = 1-

In other words. the set of matrices F, ® G,, for all Schur idempotents F, of
N}, p, and all Schur idempotents G, of N}, ., forms a basis of Schur idempotents

for N}, 04,.8.98,+ SO the result follows. a



Chapter 3

Type-II Matrices and Nomura
Algebras

Jaeger. Matsumoto and Nomura showed in [14] that the type-II condition of a spin
model is sufficient for the existence of a Bose-Mesner algebra containing the spin
model. Further. they proved that a type-II matrix belongs to its Nomura algebra
if and only if it is a spin model up to scalar multiplication. If a matrix satisfies the
type-II condition of a spin model. we call it a type-II matrix.

Since the type-II condition plays a crucial role in the connection of spin models
to Bose-Mesner algebras. we feel obliged to give a detailed treatment to type-II
matrices and their Nomura algebras, see Sections 3.1. 3.2 and 3.7. Most results
in these sections are originally due to Jaeger. Matsumoto and Nomura in [14].
However. we present new proofs. using the tools developed in the previous chapter.
given by Godsil. Munemasa and the author in {6]. Sections 3.3 to 3.6 consist of
the standard theory of Bose-Mesner algebras and association schenies. Section 3.3
examines the Nomura algebra of a pair of type-II matrices 4 and B. This section

gives the foundation for the theory of invertible Jones pairs in Chapters 4 and 6.

27
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The results in Section 3.8 also appear in [6].
3.1 Type-II Matrices
If an n x n Schur-invertible matrix A satisfies
A4 = nl (3.1)

we call it a tvpe-II matrix. In other words. A is a type-II matrix if and only if
At =ttt

or equivalently. for :.j = 1.... .n,

n
3}: .'1L-,’ -
=4 d — = ;,n.
E i g an g—l I, Jn

Note that Equation (3.1) is equivalent to the definition of type-II matrix in Sec-
tion 1.1. Also note that A is a type-II matrix if and only if AT is also type IL
Suppose A is a type-II matrix. If D| and D, are invertible diagonal matrices.

then
(DyAD) (D ADy) T = (D AD) (D~ AT D ) =l

Therefore D,.AD, is also a type-II matrix. Similarly. if P, and P, are permutation

matrices. then

(Pl-‘{PZ)(PlAP'Z)(_)T = (PLAP)(P,TACTPT) = nl,
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and P AP, is a type-II matrix. Note that 4. Py AP, and D, 4D, are monomially
equivalent. The relation between the Nomura algebras of two monomially equiva-

lent matrices is discussed in Section 2.4.

Example 3.1.1 We list all type-II matrices of orders two to five. up to monomially

equivalence. For details. please see [14] and [24].

1 1
a. n=2:
1 -1

(11 »

b.n=3: J. 1 1|.wherew isa cube root of unity.

\l.cl

(11 1 1
1 1 -1 -1
c.n=4 . for any non-zero complex number A.
1 -1 X =A
\l -1 =X A

d. n = 3: for n a fifth-root of unity.

1 n o 2 7
L 0t n 7
Lo gt
\! »* »* n* n)

and
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The Kronecker product of two type-II matrices is also tyvpe II. So there exist
infinitely many type-II matrices. Some significant examples are spin models and
four-weight spin models. Furthermore. if a matrix is unitaryv and all its entries are
roots of unity. then it is type II. These matrices are objects of interest in the theory

of Von Neumann algebras [16].

3.2 Nomura Algebras of a Type-II Matrix

Godsil [8] observed the following condition on .V, o) that is equivalent to A being

tvpe II.

Lemma 3.2.1 Let A be both Schur invertible and invertible. Then A is type II if
and only if J € Ny y-1. Moreover. © y~(J) =nl.

Proof. Assume J € .\, -,.. For each j =1.... .n. the set
{Ae;o Al e L e 0 Al e}

is a basis for C* consisting eigenvectors of J. Now Ae, 0 A{7}¢, equals 1. the vector
of all ones. which is the only eigenvector of J with non-zero eigenvalue. So we

conclude that
J Ae;o Ae, = 6, ,n de;o A e,

That is, forall i.j = 1.... .n.
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and A4 is type IL.

The converse is straightforward. !

Following existing conventions. we use .\ 4. .V and ©4 to stand for .\ ;-
A A

N - and @, 4 respectively.

Theorem 3.2.2 Let A be a type-Il matriz. If R € Ny then O4(R) € \yr and
©.4r(04(R)) = nRT.

Proof. Letting B = A~) in Corollary 2.3.2 (c). we have R € .\y and § = ©4(R) if

and only if
AN j-r = XA 44 X5,

which is the same as

Ay N1 AR = XA r Xy
Since A~! = n~' AT, we can rewrite the above as

nAr X o1 dp = XA, r X .
Applyving the Exchange Lemma. we get

Aot Xardpr = Xsd jor Xy,
By Theorem 2.2.1. we conclude that S belongs to N 4r and © 47(S) = nRT. a

Corollary 3.2.3 If 4 is a type-II matriz, then Ny = N v and Nz = V4. More-
over, R € N4 if and only if RT € N,.
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Proof. Applying Theorem 3.2.2 to the type-II matrix 4. we get A", C \';r. Since

AT is also type II. so .\"; C V. By Theorem 2.1.5.
dim Ay =dim\7. and dim.\'jr = dim.\ ;7.

As a result. we get Ny = V7 and Ay = .\,
The second part of the corollary follows from Theorem 3.2.2 and the fact that

I ¥ —
-'\I’_‘r - ¢\'.{- —

We deduce from Theorem 2.1.5 and this corollary that .\"; is a commurative
algebra (with respect to matrix multiplication) containing [ and .J which is closed
under the Schur product and the transpose. An algebra with all these properties is
called a Bose-Mesner algebra. We introduce the theory of Bose-Mesner algebras in

Section 3.3.

Theorem 3.2.4 If A is a type-II matriz. then both Ny and \"| are Bose-Mesner

algebras. O
Lemma 3.2.5 If A is a type-Il matriz and if R,. R, € N, then
Qa(RiR2) = O4(Ry) 0 O4(Ry)
and
O4(Ri o R;) =n™'0©.4(R)O4(Ry).

Proof. The first equation follows directly from Lemma 2.1.2. From the equality

Na = Nr. there exist S| and S, in V7 such that ©,7(S,) = R,. for i = 1.2.
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Then by Theorem 3.2.2

O4(RioRy) = 04(0,47(5)00,r(S5:))
= 04(0,41r(5.5:2))

= nSTST.

The second equation follows from Theorem 3.2.2 and the commutativity of Az,

O

We have shown that the duality map O, interchanges the Schur product and
the matrix multiplication. Moreover. the following lemma shows that O ; and the

transpose map cominute.

Lemma 3.2.6 Let A be a type-Il matriz. If R € N4, then ©,4(RY) = O,(R)".

Proof. Let S = ©4(R). By setting B = A~ in Corollary 2.3.2 (b). we get
.\'..‘l-n‘ A_.;.\'Rr = AST.\'A(-)TAA.
which can be rewritten as

.\'RTAA(-; -\’ = AA(-!-\’

(At-IT)7 (ALIT)

-1 Asr.
Since AT = n4-!, we have
.\’RTA_,{(—!.\’_.\ = A‘_;(—J.YAAsT.

So by Theorem 2.2.1. we get © 4(RT) = O 4(R)T. a



CHAPTER 3. TYPE-II MATRICES AND NOMURA ALGEBRAS 34

3.3 Association Schemes and Bose-Mesner Alge-
bras

A Bose-Mesner algebra is a finite dimensional vector space of n x n matrices that
is closed under the transpose. the Schur product and the matrix multiplication.
[t is commutative with respect to the matrix multiplication and it contains [ and
J. The Nomura algebras of type-II matrices are Bose-Mesner algebras. As we
see in this section. Bose-Mesner algebras are equivalent to association schemes.
Association schemes can be viewed as partitions of the complete graph on n vertices
into directed graphs that satisfv some regular conditions. Sections 3.4 to 3.6 serve
as an introduction to the theory of association schemes. For further information on
association schemes. please refer to [3].

In this thesis. we choose to give the definition of association schemes in terms

of matrices. An association scheme on n elements with d classes is a set of n x n

0l-matrices A = {4q.... .. 14} that satisfies the following conditions:
a. do=1
b. S, Ai=J
c. AT = A, for some i’ € {0.... .d}
d. There exist non-negative integers pr such that for all :.j =0.... .d.

d
Ad, =) b A

k=0

a

cAd, = AjAforallij=0.....d
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If AT = 4, for i = 0.....d. we say that A is a symmetric association scheme.
Let B be the span of {Ao.... .- 1;}. Condition (b) says that 4, ¢ 4, =4, ,4, for
all i.j = 1.....n. Hence B is closed under the Schur product. Conditions (d)
and (e) tell us that B is closed under and commutative with respect to the matrix
multiplication. Now the set {dq.... .. 14} is a basis of Schur idempotents for B.
With the first three conditions. we know that B is also closed under the transpose
and it contains [ and J. Consequently. we get a Bose-Mesner algebra of dimension
d + 1 for each association scheme with d classes.

Conversely, by Lemma 2.1.4. we know that any Bose-Mesner algebra of dimen-
sion m has a basis of Schur idempotents A4q.... .. 4,.—1. It is standard result that

the properties of a Bose-Mesner algebra enforce conditions (a) to (e) to hold for

3.4 Examples of Association Schemes

We list examples of association schemes that often appear in the context of spin
models and four-weight spin models.

The simplest example is the trivial scheme A = {I.J — I}. Its Bose-Mesner
algebra contains the Potts model.

This family of association schemes has the most number of classes possible. Let
X be a finite Abelian group and n = |X|. For each = € X. define the n x n

0l-matrix 4. by

( -’1: )z.y = Jy—:.: .

These n permutation matrices form an association scheme with n — 1 classes. called
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the Abelian group scheme of X. Bannai. Bannai and Jaeger showed in 3] that the
Bose-Mesner algebra of an Abelian group scheme always contains a spin model.
The last examples are two association schemes with four classes constructed

from a Hadamard matrix. Let H be an n x n Hadamard matrix. Then

rooo) foroo\ (J-1J-T 0o 0
oroofl (rooo|l |s-17-1 0o o0
00 7o0f fooor 0 0 J-I J-1I
00017/ \oorlo 0 0 J-I J-1I
0 0 &H A 0 0 A&
0o 0 S 4E 0 0 B 5
L+HT J=HT 0 J=HT L:HT 0
o i N 2LHT JHT g

form a symmetric association scheme on 4n elements with four classes.

Replacing the last two matrices above by

J+H J-H J-H J+H
o 0 T 5 N
0 0 J-H J+H 0 J+H J-H
2 2 2 2
_yT T T T
J 2H J+2H 0 0 J+2H J .)H 0 0
T _yT _yT T
L LA 0 0 L 4 0 0

we obtain a non-symmetric association scheme with four classes. In {13]. Jaeger and
Nomura constructed symmetric and non-symmetric Hadamard spin models. They

are contained in the Bose-Mesner algebras of the above schemes. respectively.
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3.5 Idempotents and Eigenvalues

Let B be a Bose-Mesner algebra of an association scheme swith d classes. Since the
matrices in B are normal and they commute with respect to the matrix multiplica-
tion. they are simultaneously diagonalizable. Therefore B has a basis { Ey. ... . E4}
such that E, is the orthogonal projection onto the i/-th common eigenspace of the

matrices in B. So we have

d
Y Ec=1. and EE,=4d,E.
k=0
forall i.j = 1.... .n. The E,’s are called the principal idempotents of the associa-
tion scheme.
By the definition of the principal idempotents. there exist complex numbers

ay .

pi(J)'s such that
AE, =p()E,.

forall i.j =0.... .d. The numbers p;(j)’s are the eigenvalues for the Schur idem-
potents. Define P to be the matrix whose ji-entry equals p,(j). We call P the
matrix of eigenvalues of the association scheme. Now. for each : = 0.... .d. we can

write
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/s

Similarly. if we let @ = nP~!. then for each : =0.... .d.
d
E. =n"! Z QJJAJ'
=0

Note that E, 0 4, = n7!Q,;4,. The entries of Q act like the eigenvalues of E, with
respect to the Schur product. Hence we name @ the matrix of dual eigenvalues of

the association scheme.

3.6 Dualities of Association Schemes

Bv Theorem 3.2.4. if A is a type-II matrix. then .V and .\yr are Bose-Mesner

algebras. Moreover. the map 04 : .\y — V7 satisfies

Qa4(MN) = 04(M)00,4(.V). and
Q4(MoN) = n7'O4(M)O4(N).

In general. a duality between two Bose-Mesner algebras B, and B; is an invert-

ible linear map ¥ : B, — B, that satisfies
F(MN)=F(M)o¥(V). and ¥(MoN)=n"1FIM)PLV).

We say that the B, and B; (or their corresponding association schemes) are formally
dual to each other. As we have seen in Section 3.2, Nomura's construction provide
an abundant source of formally dual pairs of association schemes.

When B, = B; and ¥*(M) = nMT. we say that B, is formally self-dual. In this
case, ¥ maps the basis of Schur idempotents of B, to its basis of principal idempo-

tents. [t is possible to order the Schur idempotents and the principal idempotents
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so that the matrix of eigenvalues P is the matrix of ¥ with respect to the basis of
Schur idempotents. If T is the matrix of the transpose with respect to the basis of
Schur idempotents. then we have P? = nT.

The duality map and the matrix of eigenvalues of the Nomura algebra of a spin
model are crucial in the derivation of the modular invariance equation. We present

this in Section 3.2.

3.7 Infinite Families of Type-II Matrices

We record four families of type-1I matrices in this section. Each of these type-II
matrices is monomially equivalent to some spin model.
The first example is the simplest family of tyvpe-II matrices. Let 4 = t/+(J—1)

for some non-zero scalar t. Then

AACT = I+ (J=-D)(tHTI+ (T =-1)

(=t =t + 2D+ (t+t7 =2+ n)]

Therefore A is tvpe Il if and only if t+¢~! —=2+n = 0. For each n > 2. the solutions
to the quadratic equation give two type-II matrices contained in the Bose-Mesner
algebra of the trivial scheme on n elements.

Now for any distinct : and j not equal to 1.

(Aeyo ATV, AeyodTe) = 24267 +n -3

= —n(t+1).
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which is non-zero when n # 4. That is. when n # 4. no two vectors from
(dey o AT eg). ... . (Aepo Al ey)

are orthogonal to each other. So. they all lie in the same eigenspace. Hence the
matrices in .\"y have at most two eigenspaces. one spanned by the n — 1 vectors
listed above and the other spanned by the vector Ae; o A7)e;. This implies that
all matrices in .\, have at most two distinct entries and therefore \” = span([..J).
By Corollary 3.2.3. we have .\, = A;r. But A is symmetric. so we conclude that
Ay = N'yr is the Bose-Mesner algebra of the trivial scheme.

When n = 4. we have A = —[+(J—1I) and it is shown in Section 3.3 of [14] that
4 is the Abelian group scheme for Z; x Z,. Finally. the Potts model is defined to
be u~!' 4 where u! = —t. and it is easy to see that A € \y.

The second example comes from finite Abelian groups. It is documented in
Section 3.1 of [14]. Let X be a finite Abelian group and let Ay denotes its Abelian
group scheme. For any r.y € X. we have A;d, = A:;,. Therefore the entries
of the matrix of eigenvalues satisfy P..P., = P.;4,. Thus each row of P is a
character of X which implies P is a tvpe-II matrix. It is shown in Section 3.1
of [14] that Np = Ay. However. in general. .Vp may not equal .\p and it may
not contain P. Further. if X is a cyclic group of order n. we define W to have
entries W, = «T=9? for some n-th root of unity «. Then W is svmmetric and
W € Nw = Ax. This matrix is a spin model.

An n x n {1.-1}-matrix H is called a Hadamard matrix if HHT = nl. Since
HT = H-)T_ Hadamard matrices form an infinite family of type-II matrices. Using
easy counting argument. when n > 12 and n = 4 mod 8. Ny is just the span of

{I1.J} (see Section 5.2 of [14]).
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In [13] and [21]. Jaeger and Nomura constructed two 4n x 4n spin models (hence
type-II matrices) from each n x n Hadamard matrix H. We will provide a new
proof that they are spin models in Section 3.5. For now. we focus on their type-II
property. Let A be an n x n Potts model. that is. A = —u3I + «u=}(J — [) with

(u? + u~%)® = n. For each € € {1. -1} and « being a fourth root of €. the matrix

A A «H -uH
A A -wH «H
ewHT —ewHT A 4
-ewHT eHT 4 4

W, =

is a type-II matrix.

The Bose-Mesner algebras of the symmetric and non-symnietric association
schemes in Section 3.4 contain W} and WT_,. respectively. In general. the No-
mura algebras of these type-II matrices are not equal to the Bose-Mesner algebras
of the four-class association schemes described in Section 3.4. For instance. when

n=4.u=—i and

1 -1 1 1

1 1 -1 1
H =

1 1 1 -1

-1 1 1 1

N, has dimension 16.
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3.8 Nomura Algebras of Two Type-1I Matrices

We examine the case where 4 and B are type-II matrices. and study the interactions
among the algebras Ay 5. N 5. .Va. Ny7. Np and Ngr. This section lays the

groundwork for Chapters 4 to 6.

Theorem 3.8.1 Let 4. B and C be n x n type-II matrices. If F € \yg and
G € .‘\"B(-)'C. then Fo G € .\f__{_c and

Qac(FoG)= n—leA.B(F) @B(—),c(G)-

Proof. Let F' = ©48(F) and G’ = Og- (G). Applying Corollary 2.3.2 (d) to
F' = 0,p5(F). we get

Apr Xt dr = X(pyr A X1,

which is equivalent to

AF.\’A-TA(A_”(-; == ‘\’(Bl-—)T)‘lAB("T'\’(F')T'
Since (A~1)”) = nAT. A-T = n='4) and BT = nB-!. the above equation
equals
AF.\’A(-)A,{T = .\’BAB—I.Y(FV)T. (32)

Similarly, applying Corollary 2.3.2 (d) to G’ = @g(-) ¢(G). we have

ACT.YC(-]TAG = _X’(GJ)TA(B(_))—l .\’B(—)T.
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which becomes
ACT .\’C(-)T —\G = .Y(GJ)T ABT.\’B-I .

Multiply the left-hand side of Equation (3.2) by Ae7.Xe-)r Mg and multiply its
right-hand side by X7 Agr.Xg-1. This gives

Acr Xt AAFr Y 40 A 1 = X6y dpr X1 XgAg1 X (1.
which simplifies to
At Nt Apea Xy Ayt = n 7 X (pigyr.
Hence
Aroc X -1 A a1 = Xede-1 Xpai(pgyr.
By Corollary 2.3.2 (c). we get
Oca(FoG) =n Y (F'G)T.
Therefore

Qic(FoG)=n"'F'G.

Lemma 3.2.6 is a special case of the next lemma.
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Lemma 3.8.2 Let A and B be n x n type-II matrices. If R € \'y g then
RT € Ny- g, and O, g (RT) =0, 5(R).
Proof. Let S = O, (R). By Corollary 2.3.2 (b). we have
Xgrd Xpr = AsrXprd,y
which can be rewritten as
Xprd ;- Xg-1 = A - Xp-tAyr.
Now BT = n~'B‘~) and using the Exchange Lemma. we obtain
Xardgo X - = Ag- X a1 As.

So the result follows by Theorem 2.2.1. ad

The next two theorems are easy consequences of Theorem 3.8.1. They describe

some interactions among the maps © 4 5. © 4 and Op.

Theorem 3.8.3 Let A and B be n x n type-Il matrices. If F e Ny. G € Nag
and H € N'g. then Fo G, and G o H belong to V4 5 and

©48(FoG) = n7'0,4(F) 0.45(G)
Q.48(Go H) = n~'0,5(G) Op(H)T.

Proof. The first equation results from applying Theorem 3.8.1 to the matrices
(4. A B).
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Applyving the same theorem to (A. B. B). we find that

©.48(GoH) = n_le.-l,B(G) GBI-I.B(H)
= n7'0.4.5(G) Os(H)".

because Og(H) = Og g-1(H) = Ogi-i g(H)T. O

Theorem 3.8.4 Let 4 and B be n x n type-II matrices. If F.G € \,5. then
FoGT e NyNAg and

OuFoGT) = n'@.45(F)BO.5(G)7
Op(FoGT) = n™'@45(F)T 0.45(G).

Proof. By Lemma 3.8.2. we know G7 belongs to N g1 = Ny gi-. By

applying Theorem 3.8.1 to the matrices (A. B. 4{7)). we get
04.4-1(FoGT) =n'0,45(F) Ogi-1_y=(GT).
Using Lemma 3.8.2 again. we see that
Opi-1.4-1(GT) = @5.4(G) = 0.4.8(G)".

Hence the first equation holds.

We now apply Theorem 3.8.1 to the matrices (B, A. B{~). and obtain

Os(FoG") = n7'@g.(F) Oy gi~(GT)
= n7'048(F)T ©45(G).
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~—
R

The following is an important consequence of Theorems 3.8.3 and 3.8.4. It
implies that if A"y g contains a Schur-invertible matrix. then V4 5. .\" 5. A4, A5,

47 and N'gr have the same dimension and .\ = Ap.

Theorem 3.8.5 Let A and B be n x n type-II matrices. If \"y g contains a Schur-
invertible matriz G and H = 0, 5(G). then

a. GoNy=Nygand Gl o N g=N\}.

o

. NyrH = VQB and .VA.BHT =.\N,r.

(2]

. .\"‘B = .\f‘,‘.
d. Ngr = H'N ;v H.

Proof. By Theorem 3.8.3. we have Go Ny C \y g and Go N5 C.\'y 5. Since G is
Schur invertible. the dimensions of .y and A'g are less than or equal to dim.\"; 5.
Similarly. Theorem 3.8.4 implies GT 0.V, g is a subset of N’y and As. The Schur-
invertibility of GT implies that the dimension of .Vy g is less than or equal to the
dimensions of A4 and AN'g. As a result. we have Ay = A3 = G7 o Ny 5 and
GoNy=N,s.

By the first equation of Theorem 3.8.3. we have Nyr A C A 5. Since we have
Ny =GoN, for any M € N, p. there exists M’ € Ny such that M = W' o G.

It follows from Theorem 3.8.3 that

Oa8(M) = 0.45(M oG)
= n-le_4(;"[')H

As a result. we have NV, g C N;r H and the first part of (b) follows.
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Similarly. the first part of Theorem 3.8.4 implies that A", gHT C \";r. Because
Ni=GT o N g, for all ¥V €.\,. there exists V' € A"y g such that N = V' o GT.

It follows from the first equation of Theorem 3.8.4 that

04(N) = 04N oG
= n7'@,5(N)HT.

So .V4r C .V, gHT and we have proved the rest of (b).
Using the same kind of argument. the second equations of Theorems 3.8.3 and

3.8.4 imply that A7} g = H\'gr and Npr = AT\, 5. respectively. Consequently.
Ngr=H'\N\g=H '\ rH.

a

Since .V is closed under the transpose. part (a) of this theorem tells us that if
V4.5 contains a symmetric Schur-invertible matrix. then .\, g is also closed under

the transpose.



Chapter 4

Jones Pairs

Given an n x n symmetric spin model 11", Jones [17] defined endomorphisms of
C* 2 C". Xy and A (-;. that provide a braid group representation. In Section 3.5
of the same paper. Jones questioned the necessity of the type-II condition on " for
the representation to give a link invariant. This question motivates us to consider
Jones’ braid group representation without assuming type-II condition. We extend
Jones’ idea to use endomorphisms X, and \g. where B may not equal A!~). Jones
pairs are defined in this process.

We devote this chapter to develop the theory of Jones pairs. We introduce
Jones pairs and a weaker version. called one-sided Jones pairs. in Sections 4.1 and
4.2. In Section 4.3. we discuss the braid group representations obtained from Jones
pairs. In the remaining sections. we focus on the effect of the invertibility of B
in a one-sided Jones pair (A. B). An important consequence is the equivalence of
invertible Jones pairs and four-weight spin models. In the last section. we reproduce
Jaeger’s results on gauge equivalence with weaker assumptions. Except for the three
corollaries in Section 4.3. due to the author. all results in this chapter are joint work

by Godsil. Munemasa and the author [6].

48
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4.1 One-Sided Jones Pairs

A pair of n X n matrices (A. B) is a one-sided Jones pair if both X'y and A are

invertible and they satisfy
XiAgY,y = A\, A5 (+.1)

Equivalent to the definition in Section 1.1. we say that the pair (4. B) is a Jones
pair if (4. B) and (A. BT) are one-sided Jones pairs.
By Theorem 2.2.1. an invertible matrix 4 and a Schur-invertible matrix B form

a one-sided Jones pair if and only if
A€ .‘\"‘4,5 and O,45(4)=8.

The pair (I.J) is an obvious example of one-sided Jones pair. It is in fact a Jones
pair because J is symmetric.
Using the eigenvector approach. if A is invertible and B is Schur-invertible. then

(A. B) is a one-sided Jones pair if and only if
A (Hde; 0 Be,) = B, ; (A¢, 0 Be,).
for all i.j = 1.... .n. The A-th entry of both sides equal

Z Ak.:-’lz.in.J = Bi,;-'lk.in._)- (42)

r=1
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Moreover. if (4. B) is a Jones pair. replacing B by B7 in Equation {4.2) gives

Z Ak..r-'lr.xBJ.: = B}.i-"lk.lBJ.k' (43)
r=1
Let W be a spin model with loop variable d. Then the type-III condition of 11
is

Z WieeWo, J Wi
W, W W

r=1

which is exactly Equation (4.2) with 4 = d~'1¥" and B = W~} Ay a result. all
spin models give one-sided Jones pairs.

Let (W7.W5 W3. W, d) be a four-weight spin model. Then its type-IIT condi-
tions are

n

Z(Wl)k.:(Wn)x..(Wnr,, = d(Wa)i,(Wea(Wilk, and

=0
n

Y (WD) ea(Wa)yr = AW (W)ea (W)

r=0

These equations are the same as Equations (4.2) and (4.3) with 4 = d~'W and
B = W}, respectively. So we obtain a Jones pair from every four-weight spin model.
In addition, we can build Jones pairs using Kronecker product. Suppose (4. B)

and (A'. B’) are one-sided Jones pairs. By Lemma 2.5.1. we have
A3 A e Niga B

From the proof of this lemma. we see that the eigenvectors can be written as
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(Ae, 0 Be,) = (A'ep o B'ex). It follows that
OQiza858(A T A)=0.58(4) 504 p(A)=B2B.

Hence (4 = A’. B = B’) is also a one-sided Jones pair. As a result. there exist
infinitely many one-sided Jones pairs.

Suppose (A.B) is a one-sided Jones pair. Fix any j € {l.....n}. define D,
to be the diagonal matrix with its ii-entry equals B;,. Then (D,J)sx = Bs, and

(D,J)ex = Be,. for all k =1.... .n. As a result. we get

A(depo(D,J)ex) = A(Aeno Be,)
= B, (deso Be))
= (D, )ak (Aenc (D,J)er)

and (A. D,J) is a one-sided Jones pair.

Now (I.J). (A.D,J) and (4 5 I.B T J) are the only known examples of one-
sided Jones pair with the second matrix being non-invertible. In Section 4.6. we see
that the Jones pairs with the second matrix invertible are equivalent to four-weight
spin models. As a result. we would be very excited to see any new example of

one-sided Jones pairs with the second matrix non-invertible.

4.2 Properties of One-Sided Jones Pairs
This section lists some useful properties of one-sided Jones pairs.

Lemma 4.2.1 If (A, B) is a one-sided Jones pair, then BTJ = tr(A)J. Further-

more, if (A, B) is a Jones pair, then the columns and the rows of B sum to tr(4).
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Proof. Since A is invertible and B is Schur invertible. the set

{Ae, 0 Be,. A€y o Be,.... .. de, o Be,}
is a basis of C*. for each r = 1.... .n. As a result. each column of B contains all

eigenvalues of 4 and BTJ = tr(4)J.
Similarly. if (4. B7) is also a one-sided Jones pair. then BJ = tr(4)J. So if

(A. B) is a Jones pair. then BTJ = BJ =tr(A)J. a

Lemma 4.2.2 Suppose (A. B) is a one-sided Jones pair. So is

a. (AT.B)
b, (A1, B
c. (D7VAD. B). for any invertible diagonal matriz D

d. (A.BP). for any permutation matriz P

3}

. (PAP~'.PBP™"). for any permutation matriz P
f. (AA,AB). for any non-zero complez number A
Proof.
a. Taking the transpose of both sides of (4.1). we get X ;v Ag X 7 = A X, 7 05.

b. Since X4~ = X -1 and Ag~' = Ag,. inverting both sides of (4.1) gives
_YA-lAB(-).\’A-l = AB(")-\’A-lAB(')-
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c. Note that for any diagonal matrix D. Xp = Ap; and XpAy = Ay Xp. So

Xp-14p A8 Xp-1ap = Xp-+ Xy(XpApXp-1)X4Xp
= Xp-1(XadsX4)\p
= Xp-ApX4ApXp
= Ap(Xp-1XaXp)ig
= Ap\p-14pds.

The third equality results from (4. B) being a one-sided Jones pair.

d. By Lemma 2.4.2. we have

AeNyp=Nigp

and

O.48p(A)=0,4p5(A)P = BP.

e. Using the same lemma with Q = R = P~!. we have
PAP™' € Npap-i pop-i
and

Op.ap-1.pap-+(PAP™') = PO, p(4)P~' = PBP™".

f. Replacing (4. B) by (AA. AB) is equivalent to multiplying both sides of (4.1)
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by A3,

—_—
C

If (A. B) is a one-sided Jones pair. then A is invertible and B is Schur invertible
and B = 0O,5(4). So Corollary 2.3.2 provides three equivalent forms of Equa-
tion (4.1). We give one more useful reformulation of Equation (4.1) below when A

is also Schur invertible and B is also invertible.

Lemma 4.2.3 If A and B are both invertible and Schur-invertible, then (A.B) is

a one-sided Jones pair if and only if
AL XAy = XpgAgrXp-.
Proof. Appiying the Exchange Lemma to Equation (4.1) vields
AVRVRCEMVRTATTS

Since both A(~! and B! exist. we get the relation in the lemma immediately. O

4.3 Braid Group Representations

Given a Jones pair (4. B). we demonstrate Jones' method of constructing braid
group representations from X4 and Ag. The braid group By, on m strands is

generated by 0y,... .0n-, satisfving

a. Foralli=1.... .m -2,

Oi0ip10i = 0i410i0i4). (4.4)
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b. Forall |i — j| > 2.

0,0 = 0}0,.
Let k = [Z] and let 1" denote the vector space C*. Given a pair of n x n
matrices (. B). we map the generators of B, to the endomorphisms ¢;.... .gm_)

of V"% as follows:

€r, S .S (Ae, ) T T

¢
C
o
-
x
|

G2h-1 (€r1 =

Gonl€r, &-..2€,) = Brpr, (e T2 €,)

When | — j| > 2. g, and g, act on different tensor factors of 173*. so theyv commute.
Note that gop—;. g1 and g3 have the same action on the h-th. 1-st and 2-nd tensor
factors of V2%, respectively. Similarly, the action of gz on the h-th and the (h+1)-
th tensor factors of V72 is the same as the action of g, on the first and second tensor
factors. Consequently. showing g19291 = 929192 and g2g3g2 = g3g293 is sufficient to

prove that (4.4) holds for all: =1.... .m — 2.

Lemma 4.3.1 The relation g,g29) = 929192 holds if and only if (A.B) is a one-

sided Jones pair.

Proof. We use the isomorphism o : V" 2 V" = M, (C) which maps ¢, T ¢, to e,eJT.

We get

o(gile: T€,)) = o(de;Te,)
= .—lege

= Xa(Ey)
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So we have X4 = og;0™!. Similarly.
o(g:le, T€,)) = B, ,eel = Ap(E,))
and Mg = og:0~!. Consequently.
oqig2g10”" = X4 X,
and
0gag1g20”" = Ag X \g.

So the result follows. d

Since By has only two generators. every one-sided Jones pair gives a represen-

tation of Bs.

Lemma 4.3.2 The relation g2g3g2 = gagags holds if and only if (4. BT) is a one-

sided Jones pair.

Proof. For any n x n matrix C. let Y¢ be the endomorphism of M, (C) defined as

Ye(M) = MCT. Using o as above. we have
o(gale: T €,)) =ole; = Ae,) = e.(.-le,]T = Yi(E,)

and hence Y = 0g3¢0~!. As a result. the relation g;g3g; = g3g293 holds if and only

if AgYadg = Y AgY,. We can write this equation as

(Bo (E,;AT))AT = Bo((Bo E,;)AT).
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for all i.j = 1.... .n. Taking the transpose of each side. we gert
A(BT o (AE,)) = BT o (A(BT o E,})).

which is equivalent to (4. B7) being a one-sided Jones pair. O

Corollary 4.3.3 Every Jones pair gives a representation of Bp,.

Suppose (A. B) is 2 Jones pair. Let g.....gm-1 be the representation of By,
described above. We proved in (6] that if A and B satisfy
Aol= A7 tol= —l-[. and (4.3)
vn
BJ= B“-J= nl

then for any h generated by gy.... .gm-2. We have

tr(hgm-1) = %tr(h)tr(.-l). and.

tr(hg,l,) = ! tr(h)er(4)7h

n

These conditions are sufficient for a Jones pair to give a link invariant in the form
of the trace of the endomorphisms generated by g,.... .gm-;. In the next section.

we will see that if B is invertible. then (4.5) holds.

4.4 Invertibility

By definition, if (A. B) is a one-sided Jones pair then A is invertible and B is Schur

invertible. We call (A. B) an invertible one-sided Jones pair if A=) and B~! also
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[}
(V2]

exist.

In this section. we show that for a one-sided Jones pair (4. B). the invertibility
of B implies the Schur-invertibility of A. In fact. assuming B is invertible is a more
stringent condition than one may expect at first. We prove that the invertibility of
B implies the type-II condition on both A and B: This will be used in Section 4.6
to justify our assertion that invertible Jones pairs and four-weight spin models are

equivalent concepts.

Theorem 4.4.1 Let (A. B) be a one-sided Jones pair. If B is invertible then both A
and B are type-II matrices. Moreover, A has constant diagonal and B hus constant

TOW SUMms.

Proof. Since A~! has the same eigenvectors as 4 and their eigenvalues with respect
to the same eigenvector are reciprocal to each other. we have ©,(47") = B'~\

Now applying Corollary 2.3.2 (b) to @ 45(A™!) = B(-). we get
-\’BTAA-\’A—T = AB(-DT.\'BTAA.
Evaluating this equation at [ yields

BT(404 ") = BUITo(BT (40 1))
= (BYToBT)(Ao )
= J(doI).

Since (A. B) is a one-side Jones pair. BTJ = tr(4)J. So

Ao A T=BTJAoI)=tr(A)" (Ao ).
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The sum of the i-th column of 4 ¢ A~7 equals

Y A A =1
k=1

The i-th column of tr(A)~'J(Ao ) sums to ntr(4)~'4;,. We have 4,, = n'tr(4)
and Aof = n'tr(A)I. Therefore Ao A~T = n='J and it follows that 4 is a type-II
matrix.

By Lemma 4.2.3. we have
Ao X4y = XgAgr\p-1.
Evaluating both sides at [ gives
Ao (4(Ao 1)) = B(BT e B™Y)
which leads to
B Y4 o 4) (Ao ) = BT o B7L.

and finally

tr(Ad)

n

B'J=BToB™"
The sum of the i-th row of BT o B~! equals

Z BiiB ')k =1.
k=1
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So we have tr(4) > _;_,(B7!).x = 1. or equivalently. BJ = tr(4)J. Consequently.

we get
BToB ' =n"lJ

which is equivalent to the type-II condition on B. =

Theorem 4.4.2 Let (A.B) be a Jones pair. If A is Schur invertible then B
invertible.

Proof. By Theorem 2.2.1. @ 45(A7") = B\~ is equivalent to
X4 ANy = A X, A5
Applyving the Exchange Lemma. we get
N-AaXp = A XgAgar.
Evaluating both sides at J yields
AN (Ao BJ)= Ao (B(B"T o J)).
Since (A. BT) is a one-sided Jones pair. we have BJ = tr(4)J. by Lemma 4.2.1. So
tr(4) A~ (4e J) = 10 (BB,
The left-hand side equals tr(4)[, so

BBYIT = tr(A) (A7) o 1)
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and since (A7) o N =Aol

B™' = ()" BT (40 1.
=

These two theorems tell us that if (4.B) is a Jones pair. then A is Schur
invertible if and only if B is invertible. In this case, both A and B are type-II

matrices with A o [ = tr(A)n~'I and BJ = tr{A)J = BT J. So the Jones pair

(e )

-

tr(4)” tr(d)

satisfies the conditions in (4.3). Thus it gives a link invariant.

If (4, B) is a one-sided Jones pair. then it follows immediately from the definition
of one-sided Jones pair that A € Ny 5. The following theorem investigates the
opposite direction. It extends Jaeger. Matsumoto and Nomura's result {14] which

says that if 4 € \'y then A is a spin model up to scalar multiplication.

Theorem 4.4.3 Let A and B be n x n type-II matrices. Suppose Aol = al and
BTJ = bJ for some non-zeroa.b€ C. If A € Ny g then (A.ab™'nB) is a one-sided

Jones pair.

Proof. Since A and A~! share the same set of eigenvectors. the matrix A belongs

to A4g if and only if A~! = n~' 4~ belongs to Ay 5. Using the formula of O 45
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in Lemma 2.3.3. we get

048(47Y) = BT o((Ae )N (ATon 4By

= %B“’ o((a~'1)JB)

= iB(‘) oJ

an

= _b_B(-).

an

Now an eigenvalue of A is the reciprocal of the eigenvalue of A~ with respect to

the same eigenvector. we conclude that

Hence

.\P,\A%B.\’A = Aﬂ_b".g.\’_.{A%B.

4.5 Nomura Algebras of Invertible Jones Pairs

If (4.B) is an invertible one-sided Jones pair. then A and B are type II. From
4 and B. we construct several Nomura algebras such as Ay, Ng. Ny N7,

et cetera. In this section. we investigate the relations among these algebras.

Theorem 4.5.1 Let (A. B) be an invertible one-sided Jones pair. Then

”~ - ”
.’\/‘.{ = .NAT = .‘V'B an.d J :1.5 = ‘V..:IT.B'
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Proof. Since 4 € A4 g is Schur invertible. by Theorem 3.8.3 (c). we have
-\’A = .'\'B.

By Lemma 4.2.2 (a). (A7.B) is also a one-sided Jones pair. Applying Theo-
rem 3.8.5 (c) on AT € \V r g leads to A3 = .\ ;1.

Since both (4. B) and (A7. B) are one-sided Jones pairs. we have
©4.5(4) = B =047 5(4").
We deduce from Theorem 3.8.5 (b) that
Nyg=\NyrB. and \Nirg=.\,B.

But Vy = Vyr and so .V} g = Vi 5. O

Note that Theorem 3.8.4 applied to (4. B) yields
O4(do ATy =n"'BBT.

which indicates that .\ is non-trivial in most cases.
In the rest of this section. we examine the relations among different Nomura

algebras and their duality maps constructed from an invertible Jones pair.

Theorem 4.5.2 Let (A. B) be an invertible Jones pair. Then
.\'.,4 = .\"_41' = .’V’B = .“V‘BT.

Moreover, the dualities © ;, O satisfy Op(F)T = B~'0Q,(F)B for all F € V.
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Proof. Since {A4.B) is an invertible one-sided Jones pair. the previous theorem
gives Vy = Ayr = \5. Similarly. since (4. BT) is also an invertible one-sided
Jones pair. we get Ay = \gr using Theorem 3.8.5 (c). So the first part of the

theorem holds. For any F € A’y = .\'g. Theorem 3.8.3 gives

O.p8(Fod) = n™'O4(F)B.
O.p(AoF) = n~'BOg(F)",

Hence we get @g(F)7 = B~! ©,4(F)B. C
Corollary 4.5.3 If (A. B) is an invertible Jones pair. then
Nigr=Nap and N pr =B '\ BT
Proof. Theorem 3.8.5 (2) applied to 4 in .\V; g and A in .\  gr gives
Nig=A0N,; =N, pr.

We now prove the second equality. Now both 4 and B are type-II matrices. by
Corollary 3.2.3. .V = Ayr and N = \Ngr. So the second part of Theorem 4.5.2

says that
Ngr = B~'N, 1 B.

But (A.B) is an invertible Jones pair. So using the same theorem. we have

Nyr = Ngr. Hence Nyr = B~'N rB. or equivalently BAyr = \ ;7 B. Applying
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Theorem 3.8.5 (b) to O, g(A) = B. we get
'\';‘:LB = .\'f‘__‘TB = B.\"AT.

Similarly. applying the same theorem to @, gr(.4) = B7 yvields

Il

Nyigr = NarB'

= B_‘.\‘-:LBBT.

a

We will need the following lemma in the computation in Chapter 3.

Lemma 4.5.4 If (1. B) is an invertible Jones pair and R € \'; g. then
9.45(R)B" = 0,57(R)B.
Proof. By Theorem 3.8.4. for any R in .\4 5. we have
O4(RoAT) =n"'0.45(R)B".
Since V35 = N, 7. R also belongs to .\'y gr. The same theorem tells us that
O4(RoAT)=n"'0,57(R)B.

Thus we have the equation in the lemma. a
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4.6 Four-Weight Spin Models

Bannai and Bannai {2] generalized spin models to four-weight spin models. and
showed that the partition functions of four-weight spin models provide invariants for
oriented links. In this section. we show that four-weight spin models are equivalent
to invertible Jones pairs.

As defined in Section 1.2. a four-weight spin modelis a 3-tuple (7. 115, 15 11 )

with d = +\/n satisfying

(a) There exists non-zero scalar a such that

Wiyol=al. Wiyol=a"'l
Wod = W1 J =da™'J, WJ =WTJ = dal

(b) The matrices W.W,. W3 and W are type Il and

Wy =W,97, W, =nw,-'T

(c)
Z ( "Vl )a.:( I'Vl )r,b( "V-l )c.: = d( H’.1 )a.b( H"J )c.a( ”’.4 )c,b~ (46 )
=1
Z ( 1'VI )x.a( l’Vl )b.x( I'Vl )t.c = d( I’Vl )b.a( I’V-l )a.c( u:t Jbc- (47)
r=1

Using Theorems 4.4.1 and 4.4.2. it is almost immediate that invertible Jones

pairs are the same as four-weight spin models.

Theorem 4.6.1 Let A. B € M, (C) and d* = n. Then the following are equivalent.
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a. (A. B) ts an invertible Jones pair.
b. (dA.nB7'.dA™'. B:d) is a four-weight spin model.

Proof. If (d4A.nB~'.dA~!. B:d) is a four-weight spin model. then as we have seen
in Section 4.1. (A. B) is a Jones pair where 4 and B are both type II.

Conversely. suppose (4. B) is an invertible Jones pair. By Theorem 4.4.1. both
A and B are type-II matrices. Moreover. A has constant diagonal and B has
constant row sum and column sum. Let W} = dd and W = B. Cousidering Equa-
tion (4.2) with k& = b. i = a. and j = c. we see that (4. B) is a one-sided Jones pair
if and only if Condition (4.7) holds. Similarly. using the same equation. (A”. BT) is
a one-sided Jones pair if and only if Condition (4.6) holds. By Lemma 4.2.2 (a). we

find that (A7. BT) is a one-sided Jones pair if and only if (4. BT) is also a one-sided

Jones pair. As a result. (d4.nB~'.dA~!. B:d) is a four-weight spin model. g

We will see in Theorem 5.1.3 that W' is a spin model if and only if (d~' 1" 117(=)T)
is an invertible Jones pair. Therefore it is equivalent to (F° W, 1 T =T g)
being a four-weight spin model.

In [2]|. Bannai and Bannai studied three types of four-weight spin models: Jones
type. pseudo-Jones type and Hadamard tvpe. They correspond respectively to the

following types of Jones pairs
a. (A.dAC)T), where A is a spin model.
b. (A.d4),
c. (A. B). where one of A. B is a Hadamard matrix.

Using n x n Hadamard matrices satisfving certain conditions. Yamada con-

2

structed n® x n? four-weight spin models of pseudo-Jones type and symmetric
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Hadamard type. Using tensor products. her construction gives infinite families
of four-weight spin models of both types. For details, see [26].
In [1]. Bannai extended work by Guo and proved that if (7. 15, 115. W . d) is

a four-weight spin model. then for : =1.... . 4.
.'le = ‘\/.“-‘ P— _’\{‘u‘."r.

Note that by Theorem 4.6.1. the pair (d~!W}, W) is an invertible Jones pair. As
shown in Theorem 4.5.1. we are able to obtain part of the above equations. assuming

a weaker condition on (d~'W7.W7). that is. it is a one-sided Jones pair.

4.7 Odd Gauge Equivalence

Two four-weight spin models (1. W5, W3, W; d) and (W7, W3, W3 Wi d) are gauge
equivalent if there exist an invertible diagonal matrix D. a permutation matrix P

and a non-zero scalar ¢ such that

W, =cDW D' W] =c"'DW;D"'.
W, =c'P WL W) = WP

Jaeger proved that gauge-equivalent spin models give the same invariant (see
Proposition 11 in [13]). In the same paper. he showed that W, = W), and W = W}
if and only if W] = DW,D~!' and W] = DW3D~! for some invertible diagonal
matrix D. In this case. we say that the two four-weight spin models are related by
an odd gauge transformation. He also proved that W] = W and W3 = 15 if and
only if W} = P~'W; and W] = W,P for some permutation matrix P. The two

four-weight spin models are said to be related by an even gauge transformation.
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In Sections 4.7 and 4.8. we extend Jaeger's result on gauge equivalence of four-
weight spin models to invertible one-sided Jones pairs. In particular. the last lemma
in this section allows us to consider only the invertible Jones pairs with their first
matrix svmmetric. This will simplify the computation in Chapter 6 immensely.

We say that the invertible one-sided Jones pairs (A. B) and (C. B) are odd gauge
equivalent if A = DC D', for some invertible diagonal matrix D. In the following.

we examine the odd gauge equivalence of one-sided invertible Jones pairs.

Lemma 4.7.1 Let A.C. M be Schur-invertible matrices. If X 4Ny = My X¢. then

there exists invertible diagonal matriz D such that

C'~'oA=DJD .

Proof. Since A; = X is the identity endomorphism of M, (C). we have

AN Ay =X Ay Xe.

Applying the Exchange Lemma. we obtain

AaX, Ayt = XAcXy

AcXy

which gives

Ac'(-)o.-tXJ = XMAM(-)T-
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Evaluating the left-hand side at E;, = e;€]. we get

(CoA)o(Jeel) = ((C) e d)e,01)e]

= (CHo .-l)eJeJT.

The right-hand side evaluated at E,, equals (M,,)™" M eleJT. Therefore the /j-entry
of C'7) o A equals (M;,)”'M,,. Soif D is the diagonal matrix with D,, = M,

then
ClodA=DJDN.

Corollary 4.7.2 If both (A.B) and (C.B) are invertible one-sided Jones pairs,
then A = DCD~! for some invertible diagonal matriz D.

Proof. By Lemma 4.2.3. we have
A X4A4 = XpAp7 X5 = Aeo XA
which gives
Xi4diecmr = A goci-1 Xen

Applying Lemma 4.7.1 with M = 40 C"), we get C") o A = DJD™! for some

invertible diagonal matrix D. Now

A=Co(DJDYY=D(CoJ)D™' = DCD™.



CHAPTER 4. JONES PAIRS 71
=

Combining this with Lemma 4.2.2 (c). we see that (4. B) and (C. B} are invert-
ible one-sided Jones pairs if and only if 4 = DCD~! for some invertible diagonal
matrix D.

By Lemma 4.2.2 (a). if (A. B) is an invertible one-sided Jones pair. then so
is (A7.B). Therefore there exists an invertible diagonal matrix D that satisfies
A = DATD-'. Since the diagonal entries of D are non-zero complex numbers.

there exists diagonal matrix D, satisfying D} = D. Then the matrix
Dl—l.-{Dl = D[.'{TD]-I = (Dl-l."Dl)T

is symmetric and (D, "' AD,. B) is odd gauge equivalent to (A. B). So we get the

following result. which generalizes Proposition 7 (ii) from Jaeger [13].

Lemma 4.7.3 Let (A, B) be an invertible one-sided Jones pair. Then there ezists
a symmetric matriz A’ such that the invertible one-sided Jones pair (A'. B) is odd

gauge equivalent to (A. B). O

4.8 Even Gauge Equivalence

We say that the invertible one-sided Jones pairs (4. B) and (A.C) are even gauge
equivalent if C = BP. for some permutation matrix P. Now we extend Jaeger's

result on even gauge equivalence to invertible one-sided Jones pairs.

Lemma 4.8.1 Let F,G, and M be invertible matrices. If Ap Xy = Xy g then

GF~! is a permutation matriz.
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Proof. Multiplying both sides by Ay = X;. we get

ArXyd; = XydgX)
with the Exchange Lemma.

AvXrd; = XydiXe
and

Ay = X A Xgp-i
Evaluating both sides at E,; vields
M, eiel = M(le;0 GF™'e))e].

Then for all: =1.... .n.

M, jei = (GF™),, Me,.

But M is invertible. So for each j. there exists a unique r such that Me, is a
scalar multiple of e,. That is. (GF™'),, is the only non-zero entry in the j-th
row of GF~'. Since M,, = (GF~!),,M,, # 0. we conclude that (GF™'),, = 1.

Therefore GF ™! is a permutation matrix. O

Corollary 4.8.2 If (4. B) and (A.C) are invertible one-sided Jones pairs, then

C = BP for some permutation matriz P.
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Proof. By Lemma 4.2.3. we have
XgAgrXg- = A, 0N = Xeder N
which gives
AcrXe-13 = Xe-1gAgT.

Applying Lemma 4.8.1 with F = C7. G = BT and M = C~'B. there exists a

permutation matrix P such that BTC~T = P which leads to C = BP. ad

Together with Lemma 4.2.2 (d). (4. B) and (4. C) are invertible one-sided Jones
pairs if and only if C = BP for some permutation matrix P.

If (A. B) is an invertible Jones pair. then both (4. B) and (4. BT) are invertible
one-sided Jones pairs. So there exists permutation matrix P such that BT = BP.

Now
B =(BTYT =(BP)' = PTBT = PTBP

and hence B and P commute. We focus on the case where P has order 2r — 1. Let

Q = Pr. Note that Q7 = P"~!. Then we get
(BQ)T = QTBT = P™"'BP = BQ.

Therefore (A. B) is even-gauge equivalent to (A4, BQ), where BQ is symmetric.
This is a proof of Proposition 10 (ii) in [13]. In summary. if (4. B) is an invertible
one-sided Jones pair with P = B~'B7 having odd order. then (4.B) is gauge

equivalent to some invertible one-sided Jones pair whose matrices are symmetric.



Chapter 5

Spin Models

In Section 6 of [12]. Jaeger proposed to study the properties of association schemes
that contain spin models. We use this chapter to survey some classical results in
this area. We first examine spin models from the point of view of Jones pairs. In
Section 5.2. we present the derivation of the modular invariance equation given
by Jaeger. Matsumoto. and Nomura in [14]. In Section 3.3. we provide a new
and shorter proof of Curtin and Nomura's result. which states that the Nomura
algebra of a spin model is strongly hyper-self-dual {7]. Section 5.4 contains a shorter
proof of Jaeger's characterization of two-class association schemes that contain spin
models. This was the first connection between spin models and association schemes
discovered [10]. In the last section. we give a new proof using Jones pairs of Jaeger
and Nomura's result on the svmmetric and non-symmetric Hadamard spin models

13].
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5.1 The Jones Pair (d-'W, W)

As mentioned in Section 1.2. Kawagoe. Munemasa and Watatani defined a spin

model with loop variable d = £+,/n to be an n x n matrix W’ that satisfies

(I) There exists some non-zero scalar a such that

Wol=al. and WJ=WTJ=da"'J

(IT) W is a type-1I matrix.

(IIT) For all i. j.k=1.... .n.

WU, Wi, .
alre g Pk 1
> W, W, (o-1)

r=1

An interesting example is the Higman-Sims model discovered by Jaeger [10].
The Higman-Sims graph is a strongly regular graph with parameters (100.22.0.6).
defined from the unique 3—(22.6. 1) design. Let 4, and A; be adjacency matrices of
the Higman-Sims graph and its complement respectively. If t satisfies t*+¢~% = -3,

then
W=(5t-3)+td +t7'4;

is a spin model. The Nomura algebra .V} equals the span of {/.A;. 4.} see [14].

In Section 4.1, we see that if W is a spin model with loop variable d then
(d*W.WIT) is a one-sided Jones pair. It turns out that W is a spin model if
and only if (d~'W. W-)T) is an invertible Jones pair. We will prove this statement

below.
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Lemma 5.1.1 Let W be a type-II matriz. Then (d'W. W) is q one-sided

Jones pair if and only if (d~'W.W(=}) is also a one-sided Jones pair.

Proof. We apply the Exchange Lemma to
Ng-tyr Ayt X1y = At Xg-nip Aot
to get
d ' N A Xy = A Xjpror Ay

Since W(=)T = nWW'~!, taking the inverse of each side gives

dXw Ao Xp-r = A Xip Ajpenr.
which equals

dA g X A = X Qo Xy

Since every step above is reversible. the converse is also true. O
If W is a spin model then it is also a type-II matrix. So the above lemma implies

that (d~'W.W)T) is an invertible Jones pair.

Lemma 5.1.2 If(d~'W,W()T) is an invertible Jones pair, then W is a spin model

with loop variable d.

Proof. By Lemma 4.4.1. the invertibility of W(-)T implies that W is a type-II

matrix and W o [ = al where a = tr(W)n~!. Applving Theorem 4.2.1 to the
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one-sided Jones pairs (d~'W. W (T) and (d~'1. W)} vields
W'J =daJ and WOE'TJ =dad.

respectively.
It follows from W' = n™'W(-IT that WTJ = WJ = da~'J. Lastly. using
Equation (4.2) on the one-sided Jones pair (d=*W. W (-)T) gives the type-III condi-

tion of spin models. a

Theorem 5.1.3 Let W be an n X n matriz. Then W is a spin model if and only

if (d-'W. W) 45 an invertible Jones pair. ad

In the following. we use the theory developed in the previous chapters to repro-
duce two existing results about spin models.
Lemma 5.1.1 together with Theorem 4.4.3. we have a proof of a result due to

Jaeger. Matsumoto and Nomura. Proposition 9 in [14].

Theorem 5.1.4 Suppose W is a type-II matriz. Then W € Ny if and only if WV’

i3 a spin model for some non-zero scalar c. O

We now prove Proposition 2 in {13] due to Jaeger and Nomura.

Theorem 5.1.5 If W is a spin model then there ezist a diagonal matriz D and a

permutation matriz P such that

WET oW = DJID™.
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and
"W = P
Proof. By Theorem 3.1.3. if W' is a spin model with loop variable d. then
(@ W W) (@ T W), (T (T e

are invertible one-sided Jones pairs. The first equation follows from applying Corol-
lary 4.7.2 to the first two invertible one-sided Jones pairs listed above. Applyving

Corollary 4.8.2 to the first and the third pairs above vields the second equality. O

Jaeger and Nomuar called the order of P the index of the spin model. In the
same paper. they also proved that any spin model of index two has to take the

following form

A 4 B -B

A 4 -B B
-BT BT ¢ ¢

BT -BT C C

where A and C are symmetric (Proposition 7 in [13]). As we will see in Section 5.3.
the construction of the non-symmetric Hadamard spin models is very similar to the

above form.
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5.2 Duality and Modular Invariance Equation

Let P be the matrix of eigenvalues for a formally self-dual Bose-Mesner algebra of
dimension m + 1. Let d = £\/n and D be a diagonal matrix with D,, = ¢, for

t=0.....m. We call the equation
(PD)* = tod*I

the modular invariance equation. We say that P satisfies the modular invariance
property if there exists a diagonal matrix D such that the modular invariance equa-
tion holds. Bannai. Bannai and Jaeger ([3]) first discovered that this property of P
is a necessary condition for a formally self-dual Bose-Mesner algebra to contain a
spin model. Using this equation. they provided a method to exhaustively search for
all spin models contained in a formally self-dual Bose-Mesner algebra. In Chapter 6.
we use this equation to design a search for four-weight spin models.

Suppose W is a spin model. Then (W.W (")) is an invertible Jones pair and
by Theorem 4.5.2. we know that Vi = Njpr. For all M € Ajyr. we have by

Lemma (4.5.4)

Oursyar(M) = Oy (MWW
= (Ogor pr(M)THWIWT,

Applying Lemma (4.3.4) again. the above becomes

Owr(M) = (O w(MWTWHTWw-w7T
= WIW(Ouo (M)W WT
= WTwewMW-'WT,



CHAPTER 5. SPIN MODELS

(9.4
[e=]

Now .\yr is commutative and it contains W'. W=7, and @y (M). So we have

Hence Ay is formally self-dual. By Lemma 2.3.3. the duality map O is expressed

explicitly as

(S]]
[Rv]

(M) = — Wo(wT () :
Ouw (M) = tr(ﬂ")“ o (W7o XMW =h, (

for all M € Ny
In the following. we present Jaeger. Matsumoto and Nomura's proof that the
modular invariance property is a necessary condition of .\ for 11”7 to be a spin

model.

Theorem 5.2.1 Suppose W is a spin model with loop variable d = =\/n and
{Aov... .- A} is the basis of Schur idempotents of Nyw. IfW = S ¢, AT then the

=0

the diagonal matriz D with D, = t, satisfies the modular invariance equation
(PD)J = todJI.

Proof. Let £ = {E,.....E,} be the basis of the principal idempotents of .V
such that Ow (E;) = 4; and Oy (4,) = nET. The matrix of eigenvalues P is the
matrix of Oy with respect to £. However. P is also the transition matrix from
A to £. Therefore the matrix of Oy with respect to 4 is P~'PP = P. Since
0%/(Ai) = nAT, we have P?* = nT where T represents the transpose map with
respect to A.

Suppose W = Y- t,AT. Since (d~'W,W(-)) is a one-sided Jones pair. we have
W) = Ow(d~'W) = d3 ", ¢t,E;. Now D is the matrix representing the map
M — WTo M with respect to A. Similarly T DT represents the map M — Wo M
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1
—

with respect to A. Moreover. the matrix dP~! DP represents the map M — M1\~

with respect to A. So Equation (3.2) holds if and only if
P =t;Y(TDT)dP ' DP)D.
Since P? = nT.we have TP~! = P7IT = n~!'P and

[ = t;'d(P~'T)D(TP~")DPD
= t;'d-3PDPDPD.

Hence (PD)? = tod°1.

5.3 Strongly Hyper-Self-Duality

(]

In this section. we extend a result due to Curtin and Nomura. (Theorem 3.3 in [7]).

Suppose A = {dq.... .. 14} is an association scheme with its Bose-Mesner alge-

bra denoted by B. The Terwilliger algebra of B can be defined as

Ts = {An. Xy - M € B}

Now consider the subspace S, of M,(C) spanned by {E,, : ¢

l.....n}. This

space is isomorphic to C*. For each endomorphism Y of M,(C). we use (}'), to

denote Y restricted to S,. The Terwilliger algebra of B with respect to p is defined

as

Ts.p = {(Asr)p, (Xm)p : M € B}.
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o0
[

A hyper-duality of Tg, is an automorphism ¥, that swaps the sets
{AM M e .‘V‘W} and {-\'M M€ .\.u'}.

and satisfies lI!f,((.\'_u)p) = (X,u)g for all M € B. Furthermore. Tg, is stronglv
hyper-self-dual if there exists a hyper-duality that can be expressed as a conjugation
of some invertible element of Tg,. That is. there exists some }" € Tg, such that
U, (Z)=Y"'ZY. forall Z € Ts,.

Theorem 3.5 of [7] states that if W is a spin model then Ty:, , is strongly hyper-
self-dual for all p = 1.... .n. In the following. we extend this result to 7y, by
showing that there exists .\ € Ty, such that the map ¥ : Z — \~'Z.\ interchanges
the sets { Ay : M € B} and {Xy : M € B}. and it satisfies ¥?(Xy) = X7, for all
Me Ny

Suppose W is a spin model. so @y (") = dW'(-). By Lemma 3.2.6.

Ouw(WT) = Ou(W)T = dWi-7,
Hence we have
_\’“,-T AH’(-)-X'H' - 'Au’("‘\"VAd‘Vl—]T-

We use .\ to denote this operator.

Lemma 5.3.1 Let W be a spin model.

a. If R1 € -'V'W,Wl') and 5; = eu'_w'(—)(Rl) th&ﬂ

.’\-14\’}21 A= Asl .
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b. If Ry € Nyyi-1 4y and S2 = Q- 1y (R2) then
AAG A = Xp,.
Proof. First we prove (a). Using .\ = d Ay - Xy Njyoir. we get
AR N = A =t A (Vr, Ay Vi ) Ao
since Oy (R,) = §;. applyving Theorem 2.2.1 gives

AVR A = At N A (A4 X A, ) Agyoir

Au'TAs, _\uw-)r
= As.

So part (a) holds.

Now we prove (b). Using .\ = Xy7Ay-) X, we get
AT ! As.., A= .\’w-l .SW.\’w-T Asg .\'u"r AW[_; -\’W .

Since W-T = n='W =),

1

-\-1-35:-\ = ;-Ybi’-l (AH'-\'H'(-! .ls, ).YWT ch—n .\'u'

1

i

= Xy-ipw.

;-\'w-x (XR, M Xy ) X1 Ajpro) Xiw



CHAPTER 5. SPIN MODELS

[#4]
o

Since both R, and W belong to .\jy-. they commute and W ~!' R,IV" = R,. Therefore

AP A5 = Xp,.

£l

Define an isomorphism ¥ of Ty, as
¥(Y) =AY

for all ¥ € Ty, . Note that ¥ is expressed as a conjugation of .\ in Ty,,.. Now we

show that ¥ acts as a hyper-duality for Ty,,..

Theorem 5.3.2 [f 1" is a spin model. then the map ¥ defined above unterchanges
the sets

{AM M e .'\i.w} and {.\’.\,1 M e .Vw}.

Moreover. it satisfies ¥3(Xyy) = \{} for all M € Nw.

Proof. Since Ay = Viyr. Lemma 35.3.1 says that ¥ interchanges the sets
(A : M ENW) and {Xy:M e N}
Now consider ¥?(Xp). It follows from Lemma 35.3.1 that
¥*(Xg) = ¥(de, ,oR) = Xr.

for some R’ satisfying O“,W;_;(R) = e;y[—].pV(R'). But 0”-1-)'“»(3') = @uf‘;yl-) (R’T)
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(v 7]
Qe

by Lemma 3.8.2. Since @y yy-- is an isomorphism. we have R = R'T and

U3 (Xg) = Xpr = X7

(]

5.4 Spin Models in Two-class Association Schemes

We give a new proof of one direction of Jaeger’s result about the triply-regularity
of two-class association schemes that contain a spin model {10]. His result was the
first indication that spin models have strong combinatorial properties.

Suppose A = {Aq.... .Aq} is an association scheme. It is triply-regular if for

all i, j. k.r.s.t € {0.1.... .d}. the cardinality of the set
{U.‘ : (-'h)w..t = ("l_])w.y = ("‘L‘)w.: = 1}

depends only on (i.J.k.r.s.t). where (A, );y = (As)r: = (At)y: = 1.
The following Lemma is a direct translation of Lemma 4 in Munemasa’s notes

[19] into the language of endomorphisms.

Lemma 5.4.1 [fforalli.j.k=0.... .d.
X424, X4, €span(Ay, Xg, Ay, irs.t =0.1.... .d)

then A is triply-regular.
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Proof. For each i. . k. the operator ‘\’.4.7'A-4; X, lies in the span of
AL X4,A4 st =01.... d} = {A-%-YA:AA,T crs t=0.1.... .d}.

So there exists scalars x(¢jk|rst) such that

d
Nyrdg, Nay = Y w(ijklrst) A, Xa, Ayr.
r.a.t=0

Consider the left-hand side.

-\'.4,TA.4J-\'.4,.[E:y) = .-{;T(.-l‘,fyo,-lke:)ez

= Z (.-l,T(.-l,ey o .-lke:))re:ez

= Z (Z(-"-:)w..r(-'l,y)w.y(-'lk)w.:) 6,65
= Z I{w S Awr = (AJ)w.y ={ Ak = l}lEry-

Consider
-l.-\.-o\'.-!,-\,.q{(E:y) = (-'ll)y.:(-'lrey ° .4.,6;)65
= Y (A)ey( Al Ay Ery.
So we get

d
I{lL HADwse = (-‘lj)w.y = (Ab)w.: = 1}! = Z K(ijklrSt)(-'{r):.y(-'ls)x.:(-‘lt)y.:

r.at=0
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and A is triply-regular.

Theorem 5.4.2 Suppose A = {I.4,. A2} is a two-class association scheme with
Bose-Mesner algebra B. If there ezists a spin model W = tof + t, A, + t2.ds with

t, # ta. then A is triply-reqular.

Proof. It is well known that all two-class association schemes are svmmetric. so

W =WT. Let 4; = [ and

S =span(A4, X4,y st =0.1.2).
Since {A4¢. 4;. 4} is 2 basis for B.

S =span(Ap XAy : F'.G'.H' € B).

If we can show that XpAg Xy € Sfor all F.G. H in B, then A is triply-regular by
Lemma 5.4.1.

Now the two sets {/.W.J} and {I.W(~) J} are bases for B. So it is sufficient
to show that for all FF. H € {I.W.J}and G € {I. W) . J}

XrAgXy €S
When H=1. Fe {I.W.J}and G € {I.W()_ J}, we get
XrAcX = Xrde = M) XFAG ES.

Secondly, when H = J. F € {I.W.J} and G € {I.W(-).J}. we can apply the



o
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Exchange Lemma to

XrAjXe = Xpg = Ay X,

and get

ACRAVAGE VA GAY,

which belongs to S because FG € B.
Thirdly. when H = W, we enumerate the cases where G = J. [ or I1""). When

H =W and G = J. we obtain for all F{/.W.J} that

Neds Xy = Xpw = A ) Xpwdj €5,

When H =I.G =1 and F € {I.W.J}. we apply the Exchange Lemma to

‘YFAWXI = -\'F—\u’ = AJXF‘AH',

and get

XA X = ArX A €5,

When H=W.G = W) and F = W, we get

X Ao X = dA o X Ayi-) € 5.

because (d~'W, W)} is a one-sided Jones pair. When H = W. G = W(~) and



CHAPTER 5. SPIN MODELS 89
F =1 0w(I)=J gives
XAy X = A= Xwldy e S
Lastly when H =W.G = W) and F = J.
Ouw(J) = Our(Ouw(l)) =nf
vields

Xy X = nAn'l-l-\'H'AI € S.

By Lemma 3.4.1. we conclude that A is triply-regular. Z

Suppose A = {/I.A,. A} is a triply-regular two-class association scheme. Let
G be the strongly regular graph whose adjacency matrix is 4,. The fact that A
is triply-regular implies that the neighborhoods of any vertex in G and its comple-
ments G induce strongly regular graphs. see [11]. In this case. we say that both
G and G are locally strongly regular. Now we have proved one direction of the

following result due to Jaeger. For the proof of the converse. please see [10].

Theorem 5.4.3 If G is a strongly regular graph and A, is its adjacency matriz.
then there ezist to,t,.t2 with t; # t; such that W =tol + ¢, 4, +t2(J — A1 =) s
a spin model if and only if both G and G are locally strongly reqular. c



CHAPTER 5. SPIN MODELS 90

5.5 Symmetric and Non-Symmetric Hadamard Spin

Models

In [15]. Jaeger and Nomura constructed two 4n X 4n spin models from an n x n
Hadamard matrix. They are called the symmetric and non-symmetric Hadamard
spin model. They are one of the three known infinite families of spin models that
do not result from tensor product. The other two families are the Potts model and
the spin models that come from finite Abelian groups. see Section 3.7. We present

a new proof of Jaeger and Nomura's result here.

Lemma 5.5.1 Let A.B.C € M, (C) and let W be the following 4n x 4n matriz
with ¢ = +1

4 4 B -B
A A -B B
eBT —eBT C C
-eBT ¢BT C C

Then W is a spin model with loop variable 2d with d = +.\/n if and only if the

following conditions hold:

a. B is a type II matrz:
b. A and C are symmetric spin models with loop variable d:
C. .YcAB(-;T.X’BT = dABl-)T-YBT'—\A(-)

d. -YCAB(-JT-YB(-)T = édABT.YBTAA(-)

Proof. The 4n x 4n matrix W is a spin model if and only if (d"'W.W(~)) is an

invertible one-sided Jones pairs. By construction. W is type II if and only if A. B
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and C are type II. The type-III condition is equivalent to
A . 2d . .
W WepoW e, = — WepoWl-le,, forh h=1.... .4n.
Wi
The eigenvector constructed from column ¢ and j of W withi.j =1.... .nis
Ae, 0 Al e,
Ae; 0 A,
BTe, 0 B-)7¢,
BTe, 0 B¢,
and the corresponding eigenvalue of W is 2d(4,,)”". Similarly. for i.j = 1.... .n.
the following lists all other eigenvectors for 11™:
Ae; 0 Al e, Be, o B7)e, —Be, o B-e,
Ae,o.-l["ej Be; o BT e, —Be, o B g,
—BTe, 0 B\-1T¢, Ce,0Cl e, Ce, 0 C7le,
—BTe.-OB("Te, Ce.-OC(")eJ Ce, o C!"e,
Ae; o B¢, Ae; o Bt-le, Be, o A7, Be, o A7,
~Ae, o Be; —Ae; 0 Be, —Be; o A7), —Be, 0 A7),

e BTe;0 Ce,

—e BTe; 0 Cl-lg;

with eigenvalues

respectively.

—e BTe; 0 Cl-)e,

€ BTe; 0 Cl-le,

e Ce;o BU)Te,

—e Ce, 0 B¢,

—e Ce, 0 B¢,

¢ Ce;0 B1-)Te,
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Multiplving the first eigenvector by W gives

A 4 B -B Ag; 0 A e, A (de, 0 A,
44 =B B || dacdte | _ | A(deodle
eBT —-eBT C C BTe; 0 B¢, C (B¢, 0 B\ T¢,)
—-eBT BT C C BTe, 0 BT, C (BTe, 0 B¢,

Ae, 0 A7 e,

2d Ae, 0 At le,
.-1,"} BTC, o B‘—)Tfj

BTe, 0 B\,

if and only if
.\',4.3.4(_).\',4 = dA_.{(—I-\’,-lA,.U-l
and

.\'CAB(_)T.\’BT = d.ﬁg(-]T.YBTAAl—I -
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Repeating the computation on other eigenvectors. the type-III condition on 11" is

equivalent to the following set of relations

-Y.J.A,.u-) -YA
XcAB(-n'.\'BT

-\’.-'.AB(-!-\'B
Xedpo Xe
_X'B AC( -) .\’BT

-\’BTABI-I-Y,-!
XgdgrXe
.\'BTAAl—I.\’B

= dN X4 g (5.3)
dA gt Xpr A o (5.4)
dAgi- Xp Ao, (5.5)
FAPRING PNL P (5.6)
ed N g Xadgio (5.7)
dA o XgrAgio) (5.8)
dA - X5 A gt (5.9)
edAgi-r Xe Agiair. (5.10)

Now (5.3) and (5.6) hold if and only if 4 and C are spin models with loop

variable d. If we take the transpose of each side of (5.8) and compare it with (3.3).

then we see that these two equations hold if and only if 4 is symmetric. Similarly.

(5.9) and (3.4) hold simultaneously if and only if C is symmetric.

It remains to show the equivalence of {3.4) and (3.3). and the equivalence of

(5.7). (5.10) and (d).

We can rewrite (5.3) as

.YBAc-(-).YB-l =

by taking the inverse of each side. we get

L

738Xadp0.

.YBAC‘YB-I = d.’)g.\’_.g—-l AB(-) .
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Taking the transpose of each side gives
Xg-1AcXpr =dAg- X, -1 7.

Now nM~T = M) for anv type II matrix M. After applyving the Exchange

Lemma. we get
Xg-1AprNe = dA o Xg-rAgr

and whence (c). which is identical to (3.4). holds.

By taking the inverse of each side of (5.7). we have

Np-1AcXgot = 3.\3.\',4-133.

Now apply the exchange lemma to get

€

.\'B—TAB-x -\'C = d

A Xgdgr.
By taking the transpose of each side and using the symmertry of 4 and C. we have
.\’C.AB(—H'.YB(-)T = EdABT.\’BTAA(-)

which equals to (d) and can be easily rewritten as (3.10). 4d

The following construction gives the symmetric Hadamard spin models de-
scribed in [15] and [22] when ¢ = 1. When € = —1. it gives the non-symmetric

Hadamard spin models. It is an easy consequence of Lemma 35.5.1.

Corollary 5.5.2 Let H be an nxn Hadamard matriz. Let A = —u*[+u~Y(J=1),
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with —u? — u~? = d. be the Potts model. For ¢ = £1 and « such that . = €. the

4n X 4n matriz

is a spin model.

Proof. We use the construction in Lemma 3.3.1 with B = wH and C = 4. The
matrix B is tvpe II. \Ngr = \yr is a Bose Mesner algebra and therefore contains

any linear combinations of [ and J. Since

Oar(A) = Oyr(—uI+u"\(J = 1))
= —u3J+u'nl—-utJ
= d(—u*T+u(J -1))
= dAC),

Condition (c) holds. Moreover. since BT = .*B'~)T. Condition (d) is equivalent to

Condition (c). As a result. Lemma 3.5.1 implies that W’ is a spin model. a



Chapter 6

Association Schemes

We present our main results in this thesis. In Sections 6.1 and 6.2. we construct
an 2n x 2n type-II matrix W' and a pair of 4n x 4n symmetric spin models. 1" and
V7. from each n x n invertible Jones pair (4. B). We exhibit the intricate relations
among the Nomura algebras of these matrices in Sections 6.4 to 6.6. In Section 6.3.
we design a strategy that allows us to find invertible Jones pairs. or equivalently
four-weight spin models. up to odd-gauge equivalence.

The constructions of the type-II matrix and the spin models provide three new
Bose-Mesner algebras attached to a four-weight spin model. In particular. we get
a formally dual pair of Bose-Mesner algebras from W and a formally self-dual
Bose-Mesner algebra from V. So our constructions extend the existing theory of
Bose-Mesner algebras associated with four-weight spin models. which only concerns
V4. In addition, these algebras form an interesting web of relations. So we do not
have just four Bose-Mesner algebras. we have a structured set of four Bose-Mesner
algebras.

Our construction of the pair of symmetric spin models generalizes Nomura's in

[22]. It places 4 and B(~) as submatrices of V" and V". Since both spin models and

96
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four-weight spin models are invertible Jones pairs. theyv become submatrices of a
pair of symmetric spin models four times their sizes. Hence if we can enumerate all
symmetric spin models. then we will have found all spin models and all four-weight
spin models. This observation leads us to the only known strategy of finding four-
weight spin models described in Section 6.3. and answers Bannai's request [1] for

such a method.

6.1 A Dual Pair of Association Schemes

Suppose 4 and B are n x n matrices and (4. B) is an invertible Jones pair. We will
use these matrices to define an 2n x 2n type-II matrix . Consequently. we get
two new Nomura algebras. V- and V7. associated to an invertible Jones pair. or
equivalently a four-weight spin model. In this section. we show that the dimension
of Ay is twice that of V. We also exhibit the basis of Schur idempotents of
ANy and the basis of principal idempotents of Ajyr. Understanding these algebras
allows us to see their connections to the other two Bose-Mesner algebras associated
with the same invertible Jones pair. in Sections 6.4 to 6.7.

Godsil constructed the 2n x 2n matrix W mentioned above and he hypothe-
sized correctly about the dimension of Ay. The author proved his conjecture and
we present this proof here. (Subsequently Godsil found a shorter proof. but this
assumed A is symmetric. and gives less information.)

Let (4. B) be an invertible Jones pair. Recall that by Theorem 4.5.2,
Na =Nyt = N = Npr.

Moreover. Theorem 3.8.5 tells us that N g, N} g and V4 have the same dimension.
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As discussed in Section 4.7. there exists an invertible diagonal matrix C such that

AT = C-2AC?. We define an 2n x 2n matrix W by

AT -47
W= ) (6.1)
B-\T¢ BTC

[t is easy to check that 1V is tvpe II. In the following. we show that
dim Ny = 2dim.V).

and we find bases for .\ and \jyr.

Lemma 6.1.1 We have

Jn 0 . In In .
€ N Ww. and e N WwT.
0 Ja In 1.

Proof. The eigenvectors for the matrices in .\ are

+ATe; 0 A-Te, +ATe, 0 A-Te,
B-)TCe, 0 BTC e, -g‘—- B-)Te, 0 BTe, .

2.2

Applying Lemma 3.2.1 to the type-II matrices AT and B(-)TC. we get

OAT(J) = 631—11‘(;(.}) =nl.



CHAPTER 6. ASSOCIATION SCHEMES 99

Sofori.yj=1.....n.

J 0 +ATe, 0 AITe, 5 +ATe; 0 AT,
= "'n .
0 J) \BUITCe 0 BTCe, "\ BITCe, 0 BTC,
As a result.
J 0 )
€.\
0 J

I I
n .
I I
Now the Schur idempotents of .Viy that sum to

)
£)
%)

and its image under Oy is

have the form

and the rest have the form
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We examine the two types of Schur idempotents below.

The following two lemmas analyze the Schur idempotents with zero diagonal

blocks.

0
Lemma 6.1.2 If(

H . -
HT € Ny. then H.H, € -'\"A.B'

Proof. Since

.'th':,' o .‘l(—)TCJ
B)TCe, 0 BTC-e,

is an eigenvector. there exists some matrix S such that

H, (B Ce, 0 BTC'IEJ) = 5, (ATe, 0 ATe )y,
HT (ATe,0 A77e,) = S, (BU)TCe, 0 BTCe,).

This is equivalent to

-YH,ABTC-“YB(—)TC = AA(-)T.\’ATAs. (62)

‘\'H-}. A.—U -) T.YAT

Agre-1 XgimireAs. (6.3)
Since B(-'T = nB-! Equation (6.2) can be rewritten as

Aar X Apre—t = Xar AsXnoic-1 5.
and applying the Exchange Lemma. we get

. 1., .
A, X rdcag = ;.\ATAC-IB.\S.
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Recall that C~! is a diagonal matrix. so A¢-1g equals AgXe-: and the above

equation becomes
. - 1., . .
Ay, Xy AgXea = ;.\ATAB.\C-L\S.
Taking the transpose of each side gives
. . 1. .
.\C-l AB-\A-&H; - ;.\57.\(‘—1 AB.\A.
Therefore
1. . .
;-\Csfc—lﬁa-\.q = A X1y,

and H, =n~'0,8(CSTC Y e .\ 5.

Equation (6.3) is equivalent to
Agi-ire Xprd g-r = Xpiare As X 1)1
Now replacing (AT)™! by n='A-) and applying the Exchange Lemma gives.
AprXgiredam = Xporedp-i4-1 Xs.
Taking the transpose of each side yields

td 1 - s
-5_.1(—)-\03(-1 l-\H:T = E‘\STAA(-!‘\CBI-D -
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Again. C is a diagonal matrix. so A - X¢ = XcA - and
. . 1. . .
-\CAA(—P-\B('-IAH:T = ;‘\ST‘XCAA‘""\B““
Consequently.
1 . » r
;-\C—istA.J.l-’-\Bt-' = -\.41---\Bt-13HJ~
and
1
H«;r = —®B|-|‘_4l—)(C_ISTC).
n

This is the same as

1
H, = ;@A(—)‘g(-;(C'lSTC)

= 20.5(CSC).

by Lemma 3.8.2. So H; € N 5. a

Now if F € N, . then by Theorem 3.8.5 (a). there exists a matrix H € .\

such that F = H o 4. Taking the transpose of each side. we have

FT = HTOAT
= HTo(C724AC?)
= C Y HT o A)C>

So C?FTC-? = HT o 4. Since HT € N4. we know that C*FTC-? € N, p by

Theorem 3.8.5 (a). If N4 has dimension r. the following lemma gives r Schur
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idempotents of .\

Lemma 6.1.3 Let {Fo.... . F._;} be the basis of the principal idempotents of \'y .
Then for k =0.....r — 1, the matriz

—_ 0 O.i8(F
- A.8(Fk) (6.4)
0.8(C2ETC-)T 0

is a Schur itdempotent of Ny and

N —

CFIC-' -CFfC-
—CFFC-' CFIC™

is a principal idempotent of Ny-r.

Proof. Let § = CFIC-*. It follows from the proof of the previous lemma that the

following two equations hold:

Xo,s(FodpTc-1 Xpimire = A a7 Xyrdns. (6.5)

Xo, p(crFTe-ntAar Xyt = Agre-i Xt dns. (6.6)

We conclude that F; € Ny

By Equations (6.3) and (6.6). we have

—_ ATe, 0 .-1(‘)Tej T AT, 0 A(”TeJ
Fi =n(CFIC™"),, .
B)TCe;0 BTC e, B)TCe 0 BTC e,
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Thus the image of ﬁ under Oy is

CFIC' -CFIc- )
n € .\' WT.
-CFIc-* CFICc-

Consider
ok 0 O..8(Fi) 004 p8(F)
kor = .
(0.45(C*FIC™)0045(C*FIC)" 0
for any .k =0.... .r — 1. By Lemma 2.1.2. we have

—_ 0 O.s(FiF1)
Flof = | | ) EW:19 3% '
.48 ((C*FIC)(C*FIC?) 0
Since Fi and F; are the principal idempotents of .V g. we have FiF; = d;yFy and
(C*FIC-2)(C*FTC?) = 6uC?FIC*. So Fr o Fy = SuFk. that is. Fo.... . Fioy
are the Schur idempotents of .\y-. Moreover. for any Schur idempotent M in .\’

the matrix 5Oy (M) is a principal idempotent of Njy-7. So the result follows. O

We conclude from Lemmas 6.1.2 and 6.1.3 that the matrices in (6.4) form »
Schur idempotents which span the subspace of .V} consisting matrices with n x n
zero diagonal blocks. Further. we see in the next corollary that 4 and B are encoded

in Nw and Ajyr.
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Corollary 6.1.4 We have

C'AC -C'AC .
€ Nyr.
-C'ACc CT'AC
Proof. Since 4 € Nyg and 4 = C?ATC-?%. we know that ©45(4) = B and
©.4.8(C*ATC?) = ©,45(A) = B. Hence B € .\, g and it follows from Lemma 6.1.3

that
0 B i
€.\
BT 0

Moreover its image under Oy equals

CATC™' -CcATCc! C'AC -C'AC
n =n
—CATC-! CATC! ~-C-'AC C'aAC
belongs to Vjyr. a

Lemma 6.1.5 All matrices in Ny with n x n zero off-diagonal blocks have the

QiM) 0
0 esM)T)’

form

for some M in N ;.



CHAPTER 6. ASSOCIATION SCHEMES 106

C, 0 .
€ Ny
0 G,

By examining the eigenvectors e, o I(~te,. we conclude that €, € \'yr and

Proof. Suppose

BT 0

(o) e)-Ca)lo )

which leads to BCs = C,B and C; = B~'C;B. Since C, € \;r. there exists
M € N, such that ©4(M) = C,. By Theorem 4.3.2. we have

. 0 . . .
Ca € Ngi-ite. By Corollary 6.1.4. ( ) € \w. Since .\ is commutative.

we have

C, = B'0,(M)B =0gM).

a

Since 4 and B are type II. applying Theorem 3.8.5 (a) to 4 € \yp give
Ao Ny = N,pg. Therefore the dimensions of V4.5 amd .\'y are both r. We see
below that the Schur idempotents of .\}y- with zero diagonal blocks can be expressed

in terms of matrices in V4.

Lemma 6.1.6 Let {E.... .E,_} be the basis of the principal idempotents of 4.
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Then for k =0.....r — 1, the matriz

. O .4(Ey) 0
Er =
0 Op(Ex)T

is a Schur idempotent of N . and
E{ E
Ef ET

Proof. Since O 47(O4(Ex)) = nEZ and

| —

is a principal idempotent of Niyr.

Opi-ir(O8(Ex)T) = Ogi-i1(Ogi-(Ex)) = nE].

we have
©.(Ex) 0 +47e, 0 4)7¢, (E +4Te, 0 AITe,
=n k)ja .
0 GB(Ek)T % B(‘]Te,‘ o BTGJ J % B[_)ng o BTE_,

Hence E; € Ny and

. ET ET
Ow(E:) =n r ol
ET E}
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Consider
.- O4(Ex) 0o O4(E, 0
ok - alEx) 0 ©4(Er) .
0 (@s(Ek) 0 Op(Ei))
for any k.l =0.....r — 1. Bv Lemma 2.1.2. we have

.. O, ELE 0
Eiof = A EvEy) .
0 @g(EkEl)T

Since Ex and E; are the principal idempotents of .Vy. we have ExE; = i Ei. So
EwoE = Jk,Ek. That is. E,.... . E’,_l are the Schur idempotents of .\y-. Moreover.
for any Schur idempotent M in .\ the matrix 3-Ou-( M) is a principal idempotent

of \Vyr. So the result follows. ad

Combining the Lemmas 6.1.3 and 6.1.6. we find the basis of Schur idempotents

for Vi and the basis of principal idempotents for Ay r.

Theorem 6.1.7 Suppose dim(.Ny) = dim(.NV1.8) = r. Let {Eo.....E._\} be the
basis of the principal idempotents of Ny. Let {Fo.....F,_;} be the basis of the

principal idempotents of Ny g. Then the set

O.4(E) 0 0 Qas(F)) . o
o osEy) \owsicrreyr o )TN

is the basis of Schur idempotents for N'y-. Further, the set

{1 (E,T E,T) 1 (CFJTC“ —CFJTC") . 1}
= . o= . )=0.....r—
2\ef ET) 2\-CFFc™' cCFfc™
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is the basis of principal idempotents for \Ny-r. Hence
dim Ay =dimAyr =2dim A,
0

In general .y is not equal to \y-r. We now examine the situation where these

two algebras coincide.

Lemma 6.1.8 [f Ny = .Viyr. then there ezists non-zero scalar a such that aB s

a spin model.

Proof. By Corollary 6.1.4. we have

~ 0 B .
B = E .\ wr.
BT 0
A CB\&)
wT = .
-4 CB*)

CB("le; 0 C'Be, B'-)e, o Be,
CB'"le; o C~'Be, B-)¢; 0 Be,

is an eigenvector of B. That is, B (B{~le; o Be,) = 3 (B'~)¢, o Be,). for some

Now

and

3 € C This is equivalent to B belongs to N'g-). which is identical to Ag. By

Theorem 5.1.4, there exists non-zero scalar a such that aB is a spin model. i
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This lemma tells us that if (4. B) is not gauge equivalent to (a~!'d~!B'~). aB)

for aB a spin model. then we do have a formally dual pair of Bose-Mesner algebras.

6.2 Nomura’s Extension

In this section. we build two 4n x 4n svmmetric spin models. 1" and 17, from an
invertible Jones pair. We show that they share the same formally self-dual Nomura
algebra. We obtain an explicit form of the matrices belonging to this algebra.

In Section 3 of [22]. Nomura constructed an 4n x 4n symmetric spin model
from a four-weight spin model whose matrices are symmetric. Our construction
is a generalization of Nomura's. which is motivated by the fact that Jones pairs
are equivalent to four-weight spin models. Moreover. our construction delivers the
fourth Bose-Mesner algebra associated with a four-weight spin model. It becomes
evident in Section 6.3 that this Bose-Mesner algebra is the ticket to our strategy of
finding four-weight spin models.

By Lemma 4.7.3 and the discussion prior to it. given any invertible Jones pair
(A. B). we can construct an invertible Jones pair (.4’. B) with A’ symmetric which
is odd-gauge equivalent to (A. B). From this new invertible Jones pair (A’. B). we
construct the 4n x 4n symmetric spin models 1" and 1”. So in the following results.
we can focus on only the invertible Jones pairs with their first matrix symmetric.

Suppose (A.B) is an invertible one-sided Jones pair with A symmetric. We
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define

dA —-di B B
-d4 d4 B BY
BUOT BT 44 —dA
BT BT —d4 dA

V=

It follows from the construction of V" together with A and B being type II that 1"
is a type-II matrix. For easier reading. we separate the columns and the rows into
four groups 1. 2. 3. and 4. For instance. the (1.2)-block of 1" equals —d.4 while
its (2. 4)-block equals B{-).

Fora.3€ {1.2.3.4}andi.j =1.... .n.weuse Y:f to denote the eigenvectors

we get from |". For example.
81 _ - (-
Y = Veg 0 Ve,

In the following, We show that V" is a spin model. Our plan is to find the explicit
block structure of the matrices in Ny-. After that. we will prove that 1" € Ny and
Ov(V) = (2d)~'V=), which imply that V' is a spin model with loop variable 2d.

In the following, we use Ji and [i denote the k x k matrix of all ones and the

k x k identity matrix. respectively.

Lemma 6.2.1 Let (A. B) be an invertible Jones pair with A symmetric. We have

Jo Jn 0 0

Jo Jn 0 0 .
(& Jan) = € Vv,

0o 0 J, Ja

0 0 J, Ja
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and

I, I, 0 0
I. I, 0 0 i
€ \Nyr.
0 0 I, I,
0 0 I, I,
Proof. Consider
Ag; 0 .-l(')e,
Ade, 0 Ae
1.1 i J
Y., =

B-Te, 0 BTe,

B(-)Te, 0 BTe,

Since @ 4(J,) = Og-ir(Jn) = nl,. we have (I 5 Jan) Y,l_'}l = 2nd,, Y}_'Jl and the
(1.1)-block of Oy (I, = J2,) equals 2nl,. Similarly. when a. J € {1.2}. we have

(L3 Jo) Y& = 206, YOO

for all i, =1.... .n. and the same holds for a.3 € {3.4}.

Consider

d .46,’ o BCJ
-d .'16,' o BEJ'
d-! B-)Te; 0 A-e,

Y.y =

We have ([, R J2,) Y,-I: = 0 and so the (1, 3)-block of Oy (23 Jo,) is the n x n zero

matrix. The same holds for Y73, Yo, Y&* Y2' Y32 Y and Y!?. Hence
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Ig o J‘),n € J\/"t’ and

:"N
:"N

2n

OV([Q < J2n)

3
B
o o©
SN o o©

o o
o o
N
a

and the lemma holds. 3

One consequence is that any Schur idempotent of A} has one of the following

two forms:

My N0 0 0 0 M N
P Q 0 0 0 0 P Q
0 0 M M| M N o0 o
0 0 P @ P, Q; 0 0

We need the next two lemmas to anatomize the Schur idempotents with zero

off-diagonal blocks.

Lemma 6.2.2 Let (A. B) be invertible Jones pair with A symmetric. If M € N,
then

04(M) = Ogr(B'MB).
Op-(M) = OB 'MB).

Proof. Let § = ©4(M). Then

Xard X4 = A4 X4As.
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Multiplying each sides by A gives
R GTZA P (Y0 WA IR PP T Wt

By Lemma 4.2.3. we have \ ;- X1) 4 = XgAgr.\g-i. Replacing M- X3\, by

XsAgrXg-1 on each side vields
Xy X5dprNpot = N5 dprXg-iAs.

The matrix B is type II. therefore B~! = n=!B{=)T and the above is equivalent to
Xg-1ygAgrXg-r = AgrXgi-irds.

So the first equation of the lemma follows.

Let ' = Og-( W) and
XuAsXgo = AgXg- A5
Multiplying both sides by A 4.
XarAsXgo Ay = AgXg-) Az,
By Corollary 2.3.2 (d) on O, gr(4) = BT. we get AgXg-1 A1 = XgA -1 Xar and

.\’),[.\’BAA—l _YAT = —YBAA" .YAT ASI.
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Since A is symmetric. we have nA4~! = 477 = 4(-) and
Nty d 40X = A0 XAy
So the second equation of the lemma holds. C

Lemma 6.2.3 Let (A. B) be an invertible Jones pair with 4 symmetric. If M lies

in N'yg and N lies in Ny gr. then the following are equivalent:
a. O48(M) =0g-ir 4-1(V).
b. O4(Mod)=0gr(Vod)T,
c. Ogi- a1 M) =04 g7(V).

Proof. First note that by Theorem 3.8.5 (a). we have NV gr = N 5 = 40\,
Since A is symmetric. .Vy g is closed under transpose. Therefore M7. VT also
belong to Ny 5 = NV, 57

Now the right-hand side of (a) equals © 4-) gi-ir(.V)T. After applving Lemma 3.5.2.

it becomes @ 4 gr(.VT)7. Multiplying each side of (a) by n~! BT gives
1 1
;Q{B(-“”BT = ;@A.BT(-VT)TBT-

which is equivalent to

1
=0.45(M) 0.45(4) = = (0,157(4)7 B4,57(NT)".

I~ I

Applying the first part of Theorem 3.8.4 to (A, B) and its second part to (4. BT).
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we have
O4(MoA)=0gr(40N)7T.

So (a) is equivalent to (b).

By Theorem 3.8.4. (b) can be rewritten as
1 rr_ 1 T T
;9.4.3(-4) QM) = o (@.487(N) O,457(4)) .
which is equal to
BO,g(MH)T = BO, gr(.V).
So
O5.4(M") = 0457(N).
By Lemma 3.8.2.
Opgi-) 4o (M) = O 4 g7(N).

Hence we have shown the equivalence of (b) and (c). a

Now we are ready to determine the structure of the matrices in .\ with zero

off-diagonal blocks.

Lemma 6.2.4 Let (A. B) be an invertible Jones pair with A symmetric. The set
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of matrices
F+R F-R 0 0
F-R F+R 0 0
0 0 B'FB+R, B'FB-R,
0 0 B-IFB—Rl B_IFB+R[
satisfying
€ Ny
€ Nuis.

987(‘4°R1)T = O4(AoR)

equals the subspace of N\ consisting matrices with 2n x 2n zero off-diagonal blocks.

Proof. Suppose

M, N, 0 0
P, 0 0
z=|H @ €N,
0 0 M, N,
0 0 P, Q,
Since
.'16,’ o .-1(_)61
Ae; 0 AF)e
1.1 2.2 i J
Yi,] = Yl.] =

B(‘)Te,- (] BTBJ‘

BT, o BTeJ



J—
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Z having Y,l"f and Yff as eigenvectors for all 1. j = 1.... .n implies

Oy M+ M) =04(P+ Q) =0Ogr(Ma+V2) =Ogr( P+ Q). (6.7)

From the first and the third equalities. we know that M, + V| = P, + Q, and
Mo+ Ny =P+ Q.
By the first equation of Lemma 6.2.2, the second equality in (6.7) holds if and

only if Mz + Ny = B~ My + N{)B. which is true if we let F = Y1, + \)).
Therefore both the (1.1)- and the (2.2)-blocks of ©y-(2) equal @ (M, - Ny). It

is an easy consequence that for i.j =1.... .n.
—de, 0 A e,
—de, 0 A )e
1.2 2.1 e ]
Y. =Y

B(-1Te, 0 BTe,

B(-)TE,' o BTEJ

are also eigenvectors of Z. and the (1.2)- and the (2.1)-blocks of ©-(Z) also equal
O.a(M + M)
Since M, + N; = B™Y( M, + N|)B. the second equation of Lemma 6.2.2 with

M = M, + N, implies the following

-\’(A\[|+.\'1}AB.\’B(-I = AB.\'B(-IA;.‘J.
Xoan+vgydaoXa = A0 XA,
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where §' = Qg (M + V) = O4(B~'(M; + \)B). Henceforalli.j =1.... .n.

B“’e; <} Be,
B'7e; o Be,
Aeg; 0 A("ej

Ae, 0 A )e,

3.3 44 _
Y, =Y =

and

B-e, o Be,

B¢, o Be

3.4 4.3 ' J
Yx’.] = Yz.] = _
—Ade, 0 A )e,

—Ae; 0 A e,

are eigenvectors of Z. We see that both the (3.3)- and the (4. 4)-blocks of G(Z)

are

Opi- (M + V) = Og( M, + V)T = B7'O (M, + \})B.

with the last equality implied by Theorem 4.5.2.

Consider

d Ae, o Be;

—d Aeg; o Be,
d~' B-)Te; 0 A-)e,
~d™' BT, 0 A,

1.3 _ 24 _
Y, ==Y =
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and

d .-16,‘ <] BCJ
—d Ae,- o BCJ
—dt B)Te 0 Al-e,

d=' B¢, 0 Al )e,

1.4 2.3
Yt = Y =

They are eigenvectors of Z if and only if the following hold:

M- N ==-P+0Q, € Nais.
My—-No=-Pr+Q; € Nypr =Ny,

Q.M —N) = Oger g1 (M= M)

If welet R = %(.‘[l - .V)) and R, = %(.-U»_' — \,) then by Lemma 6.2.3. the third

equation above is equivalent to
O4(A0R) =0Ogr(doR))T. (6.8)

So the (1.3)-. (2.4)-. (1.4)- and (2.3)-blocks of ©\(Z) equals O, g(M; — \}) =
20.4.8(R).

Now. consider

d-t B("e, o .-l")e,
—d~! Bt-le, 0 Ae,
d Aeg; 0 BTeJ
~d Ae; 0 BTeJ

s 42 _
Yi,] - —YI.J =
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and

d-! Bile, 0 A e,
—d-' Be, 0 Al
—d Ae; 0 BT,

d Ae;o BT,

41 _ s2 _
Yl.j - _Ya,_; =

They are eigenvectors of Z if and only if
Ogi-r - (M = V) = O, pr(M2 = V).

This equation holds because it is equivalent to Equation (6.8) by Lemma 6.2.3.
So these vectors are indeed eigenvectors of Z and the (3.1)-. (4.2)-. {4.1)- and

(3.2)-blocks of ©y(Z) equal
Ogi-i g1 (M — N} = 9.4I-F.B‘-‘('ZR)T = 26.4-B(RT)T'

If we let F = (.‘Il + .\'1). R = %(.‘[1 - .\-;) and R[ = %(-‘12 - .\.-_3). then the

L
2

result follows and

O.a(F) Q.4(F) ©.4.8(R) 0..8(R)
©.4(F) O.(F) 0..8(R) 0..8(R)
0.4.8(RT)T ©48(RT)T B7'O4(F)B B™'04(F)B
©48(RT)T ©.5(RT)T B™'04(F)B B™'0,4(F)B

Ov(Z) =2

a

Corollary 6.2.5 Let (A. B) be an invertible Jones pair with A symmetric. Suppose
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FelN,and Re Ny then

O.4(F) O4(F) 0..58(R) O.4.8(R)
O.4(F) O.4(F) ©.4.3(R) ©.4.8(R)
©.48(RT)T ©,5(RT)T B-'04(F)B B'©4(F)B
0.48(RT)T ©.8(RT)T B™'04F)B B~'04(F)B

€ \yr.

-
—

If A’y has dimension r. then Lemma 6.2.4 says that the subspace of .\ spanned
by the matrices with zero off-diagonal blocks has dimension 2r. Unfortunately. we
are not able to determine the dimension of the subspace of .\i- spanned by the
matrices with zero diagonal blocks. Lemma 6.2.8 describes the structure of this

subspace. We need the following two lemmas to prove Lemma 6.2.8.

Lemma 6.2.6 Let A and B be n x n type-II matrices. Assume further that A is
symmetric. If M € \", g then ©,48(RT) = nM if and only +f

Xy dgrXgi-or = Ao XaAr.
Proof. Since BT = nB~!. the equality above becomes
nA XA = X3 ArX3.
Applying the Exchange Lemma yields

nAyXadg = X4Ag Xk,
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Taking the transpose of each side. we get
nApXidy = XprdAp X,
and ©,45(RT) =nM. a

Lemma 6.2.7 Let A be a symmetric matriz. If (A. B) is an invertible one-sided

Jones pair and R € Ny p. then

O.8(R)T = B'0,5(R")BT
= BT ©,5(R")B™".

Proof. Since A is symmetric. Ny 5 = 4 o.\y is closed under transpose and RT

belongs to .V 5. Applying Theorem 3.8.4. we get
O4(RTo4)= %Q{B(RT}BT
and
©4(AoRT) = %B ©.a8(R).

Hence the first equality follows.

Similarly. applying the same theorem. we get

O.4(RT 0 A7) = -0, 5(RT)B'T
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and

O4(4- o RT) = %B‘-’ ©.5(R)T.

—_—
—

So the second equality holds.

Now we are ready to examine the matrices of .\\- with zero diagonal blocks.

Lemma 6.2.8 Suppose A is a symmetic matriz and (A. B) is an nvertible Jones

pair. Let S be the set of matrices

0 0 G+H G-H
0 0 G-H G+H
B-'GBT + H, B~'GBT - H, 0 0
B-'GBT-H, B'GBT+H, 0 0
satisfying
GeNyp

and there ezist n x n matrices S and S, such that

-\’A“‘ABI—)-\’HA_.\(-“\'B‘[ = Asz.\’g_ﬁ_.‘.\'HIAB.\’A
XprAaXpdgr Xy = A5, = Xaa1 Agor Ny, A - Xg-r.

Then S equals the subspace of Ny consisting matrices with 2n x 2n zero diagonal

blocks.
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Proof. Suppose

0 0 M N
0o 0 P
,_ L Q
My, N, 0 0
P Q2 0 0

There exists an n x n matrix R satisfving the following two equations if and only

eyl 22 yl2 21 .
if Y, .Y, .Y, and Y are eigenvectors of Z.

Xp+gAprXgi-ir = Xy 40, AprNgor = Ao N4dn. (6.9)

“:PQ-FQ;'AA["‘\’A = '\’~‘12+.\'2A.4l"‘\'-4 = ABT'-\'Bl-lTAR' (6.10)

By Lemma 6.2.6. Equation (6.9) implies P, + @, = M, + .\, = n~'0,g(RY).

Applying Corollary 2.3.2 (d). Equation (6.10) is equivalent to
©.48(R) =n(Mz+ No)T = n(Py +Q2)".

By Lemma 6.2.7. we conclude that

B~ (M, + N,)BT

My + N,
= BT(M, + N))B™".

Note that the (1.1)- and the (2.2)-blocks of Oy (Z) equal to R. while its (1.2)-

and (2.1)-blocks equal —R.
We know that M, + N, = O 4 p(n ' RT) lies in N, g and M2+ N, = B~ M, +

N )BT. Now by Corollary 4.5.3, M, + N, also belongs to ,'\!"Q.B,-. Let R, be the
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matrix such that M, + N, = @4 g7(n ' RT). By Lemma 6.2.6. this equation is

equivalent to
-\’-Uﬂ—-\':AB-\’B(—‘ = A-_“-u\',;ARI . (6.11 )
Applying the second equation of Lemma 6.2.7 to (4. BT). we get

O.p7(RI)T = BO,gr(R])BT
= nB(My+ N2)B7T

= n(.\[1 + -\'l)-
Applyving Corollary 2.3.2 (d). ©, gr(R,) = n(M; + V)T is equivalent to
Xy +n Do X4 = 35X A5, (6.12)

Equations (6.11) and (6.12) imply that Y:'f. Y:'J". Y:‘J" and Y:‘_‘J’ are eigenvec-
tors of Z. Moreover. the (3.3)- and the (4. 4)- blocks of ©1:(Z) equal R,. while its
(3.4)- and (4. 3)-blocks equal —R;.

Now Yi;’. Y,z.‘f. Y.l_'f and Y:"": are eigenvectors of Z if and only if there exists

an n x n matrix S such that

d™' Xy —v A0 Xgor = dApXads
dXrp-n, ABX 4

d™' A 4y Xpair s

which is equivalent to the first equation in the lemma if we let H = M; — .V, and
Hy, = M; — N;. The (1.3)- and the (2, 4) blocks of ©z(1') are S. while its (1, 4)-
and (2. 3)-blocks are —-S.
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Similarly. there exists an n x n matrix S; such that

d-\’.ll;-.\'l—\af-\':t = d—l-}_u—r-\’at-»—\:\
d-lXM-_.-.\',A,u-)xyt-) = d—\BTX.-lAsl

if and only if Y:}l. Y:‘Jz. Y?_f and Y:'Jl are eigenvectors of Z. The above equations
are equivalent to the second equation in the lemma. Hence the (3. 1)- and the (4. 2)
blocks of ©@z(V") are S;. while its (3.2)- and (4.1)-blocks are - 5.

The lemma follows after welet G = M+ N,. H =M, — N, and H, = M, - \,.

In addition. it is worth noting that

-R R -§ §
51 "51 Rl -Rl
-Sl 5[ “Rl Rl

Ov(2Z)

a

The lemma above describes the matrices in .V} with zero diagonal blocks. The
dimension of this subspace of .V is greater than or equal to the dimension of N, 5.
The matrix H, is determined by H. However. we do not understand the conditions
on H listed in the lemma. We only know that A\ has dimension at least three

times the dimension of \';.

Theorem 6.2.9 Suppose (A. B) is an invertible Jones pair with A symmetric. Let
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S be the set of matrices of the following form

F+R F-R G+H G-H
F-R F+R G-H G+H
B-'GBT + H, B"'‘GBT-H, B'FB+R, B'FB-R,
B~'GBT - H, B'GBT+H, B'‘FB-R, B™'FB+R,

where F € Ny. R € Nyp. G € N\ 5. H and H, satisfy the conditions in
Lemma 6.2.8 and R, such that

Opr(do R)T = 04(A0R).

Then the Nomura algebra Ny equals S. a

Theorem 6.2.10 Let A and B be type-II matrices. If A is symmetric. then the

in x 4n matriz

d4 -d4 B B
-d4 d4 B B©)
BT BT 44 —dA
BT BT 44 dA

V=

is @ symmetric spin model with loop variable 2d if and only if { A. B) is an invertible

Jones patr.

Proof. Suppose (A. B) is an invertible Jones pair. If welet FF = H = H, = 0,
R, = R=dA and G = B'") in Theorem 6.2.9, then we have 1" € \}-.
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Let

d1 —-di 0 0
; —-d4 di 0 0
) 0 0 di —dA

0 0 -di dA

and

0 0 B(-l B(-)
) 0 0 B Bt
B =

B(-)T p(-\T 0 0
BT pB(=IT 0 0

From the proof of Lemma 6.2.4. we know that

0 0

B B
< 0 0 B B
Ov(4) =2
BT BT 0 0
BT BT 0 0
Moreover. from the proof of Lemma 6.2.8. we have
d7'4) 414 0 0
. —d-tA) dmtA) 0 0
Ov(B)=2d
0 0 d-'A) gt 4
0 0 s At B e

So we have Oy (V) = 2dV{~) and (V,2dV'(~)} is therefore an invertible one-sided
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Jones pair. It follows from Lemmas 53.1.1 and 3.1.2 that 17 is in fact a spin model
with loop variable 2d.

Conversely. if (1.2dV") is an invertible Jones pair. then
VY = 241 (-lyts
1. = 1 9]

implies A (Ade, 0 Be,) = B, (Ae, 0 Be,). So (4. B) is an invertible one-sided Jones

pair. Furthermore.
VYY) =241y
1) il )

implies 4 (Ae,0 BTe,) = B, (de,oBTe,). So (A. BT) s also an invertible one-sided

Jones pair. Hence (4. B) is an invertible Jones pair. a

Theorem 6.2.11 Let (A. B) be an invertible Jones pair with A symmetric. Then

the matriz

d4  -d4 -B-) _B-)
o | mdd dd -BD -B©)
~-BOT _B-T 4y 44
~BST _BIT _ga4 dA

is @ symmetric spin model with loop variable —2d. Moreover, ©y. = Q.

I, 0
D=
0 —IZn

Proof. Let
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Note that V7 = DV’ D. By Lemma 2.4.1. we conclude that A} = \\-. By setting
F=H=H =0.R, =R =d4and G = —B") in Theorem 6.2.9. we have

V7 € Ny+. Moreover. by the proof of the previous theorem. we have

0 0 B B d-' 4" —d-t 4 0 0
) 0 0 B B —d-tA=) gt g-) 0 0
Ov(V") = 2d -2d
BT BT ¢ 0 0 0 P i Ut Y Lt (S
BT BT 0 0 0 0 Y e B L B A Ul
= -2V

Since D? = [,.

V'ep o (V')(_)ek = (DV D)eyo DV Dey
= (VD)E}, o V(')Dek

= +(V)ep o Ve,

forall h.k =1.....4n. So for any M € N\-. we have Oy (M)pi = O (M)pix. Asa
result. the two duality maps @y and Oy~ are identical. Further. " is a spin model

because



CHAPTER 6. ASSOCIATION SCHEMES 132

6.3 The Modular Invariance Equation

In [1}, Bannai asked for a strategy to find four-weight spin models. In this section.
we answer her question. In (3]. Bannai. Bannai and Jaeger used the modular
invariance equation to design a method that exhaustively searches for spin models.
Their design relies on the fact that a spin model always belongs to some formally
self-dual Bose-Mesner algebra. Since this is usually not the case for the matrices in
a four-weight spin model. their method does not apply directly.

Given an n x n invertible Jones pair (4. B). there exist two 4n x 41 spin models.
V" and V", with 4 and B!~ as their submatrices. So we can apply Bannai. Bannai
and Jaeger's method to formally self-dual Bose-Mesner algebras on 4n elements.
hoping to find a svmmetric spin model with the same structure as 1". From 1", we
retrieve A and B. The algorithm we outline at the end of this section is the only
known strategy to find four-weight spin models.

Suppose that (A.B) is an invertible Jones pair and that .Vy- is the Nomura
algebra constructed from this pair. We want to see how we can recover (A. B)
from this algebra. Let A = {do.....An} be the basis of Schur idempotents of
Nv. Let £ = {Eq.... .E,} be the basis of principal idempotents of Ny such that
Ov(E;) = 4, and Ov(A;) = nET. Let P be the matrix of eigenvalues with respect
to this ordering. So if T is the matrix representing the transpose map with respect
to A. then P? = nT. Note that the ordering of the matrices in £ and the matrix
of eigenvalues depend on the duality map Oy-.

From Lemma 6.2.1, we can always define two sets of indices Z..7 C {0.... .m}
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satisfving

Jo Ja 00 0 0 Ju J

Jo Ja 0 0 0 0 Ju Ja
Y AT = Y Al = (6.13)
el 0 0 Jn Jn €T Jn Jn 0 0

0 0 Jo Ja Jo Ja 00

SoZuJ ={0.....m}.
Suppose V' = 3\ otidAl. Then V' = ¥ 4,47 = 3 ¢, AT, Define two
(m + 1) x (m + 1) diagonal matrices Dy and Dy as

t, frel.
(Dr)is =
0 if:eJ
and
t, ifjeJ.
(D.'I)J-J = ’
0 ifjel.

By Theorem 5.2.1, since V' is a spin model with loop variable 2d. we get
(P(Dz + Dy))* = 8d°t0 I+

Similarly, since V' is a spin model with loop variable —2d and @y = O,-. we have
(P(Dz — Dg))® = =8d% Ims1.

Define D7 to be the diagonal matrix with its ii-entry equals to ¢! if i € I.
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and zero otherwise. Define D} similarly. Then the above two equations can be

rewritten as

(Dz + D7)P(Dr + Dy) = 8d°tq P~ (D7 + D7)P~".
(Dr — D7)P(D7z - Dy) = —8d%t, P'I(DE—D})P_l.

which are equivalent to

DiPDr+ DsPDy = 8¢, P-ID_.—,P. (6.14)
DiPDy +DysPDs = 8d°%tq P—IDI—P. {6.13)

So Equations (6.14) and (6.13) are necessary conditions on .\}- for the existence
of the invertible Jones pair (A.B) where A is svmmetric. By Lemma 6.2.1. the
matrix I; S Jan € Ny-. We say that Ny is the Bose-Mesner algebra of an imprimitive
association scheme. Note that it is possible for a formally self-dual Bose-Mesner
to have more than one duality map. each of which has a corresponding matrix of
eigenvalues.

Here is the strategy for constructing invertible Jones pairs:

a. Given a formally self-dual Bose-Mesner algebra on 4n elements that contains

I; £ Jop, define T and J as in Equation (6.13).
b. Enumerate its duality maps.
c. For each duality map. form the matrix of eigenvalues P.
d. Solve Equations (6.14)} and (6.13) for the ¢;'s.

e. For each solution, compute the matrix V' = Ziez t; AT + > sert J.-lf.
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f. Check if it has the same structure as the matrix described in Theorem 6.2.10.

If so. retrieve A and B.
g. Verifv if (A. B) is an invertible Jones pair.

If the formally self-dual Bose-Mesner algebra we start with is not the .\\- con-
structed from some invertible Jones pair (4. B). then we have three possibile out-

comes at each iteration:
Step (d): We have no solution at this step.

Step (f): We have a solution at Step (d). But the 4n x 4n matrix 1" constructed

does not have the desired structure.

Step (g): The 4n x 4n matrix 1" has the desired structure. but the pair (4. B)

retrieved is not an invertible Jones pair.

Note that any invertible Jones pair (A. B) with .4 symmetric could be found by
this method. It follows from Lemma 4.7.3 that this method does provide all invert-
ible Jones pairs up to odd-gauge equivalence. Although this method is admittedly

quite inefficient. it is all we have.

6.4 Quotients

Up to this point. we have four Bose-Mesner algebras constructed from an invertible
Jones pair (A. B) where A is symmetric. In this section and the next one. we
examine the relations among these algebras. We summarize them in a picture
at the end of the next section. They are interesting because the constructions

in Sections 6.1 and 6.2 are done independently. In particular. we have not been
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able to spot any connections or common features between these two constructions.
However their resulting Bose-Mesner algebras are closely related to each other.

When A4 is symmetric. we have 47 = -2 4%, So we let C = [ and define

AT AT
B(-\T pB=IT

==

-
2l

Il

Suppose B is the Bose-Mesner algebra of an association scheme on n elements.
Let # = (C,.... .C,) be a partition of {1.... .n}. Define the characteristic matrix
S of 7 to be the n x r matrix with

1 if: e Ck.
Sl.k =

0 otherwise.

We say 7 is equitable relative to B if and only if for all M € B. there exists matrix

By satisfying

.‘[S = SBM.

We call the r x r matrix Bys the quotient of M with respect to =. We name the

set { By : M € B} the quotient of B with respect to =.

Theorem 6.4.1 Fori = 1.... ,n, let C, = {i.n+i} and let = = (C,.... .C,).
If (A. B) is an invertible Jones pair with A symmetric. then \'y is the quotient of

Nyt with respect to .
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Proof. It follows from Theorem 6.1.7 that any matrix in .\jy can be expressed as
F F RT -RT
M = +
F F -RT RT
F+RT F-RT
F-RT F+RT

for some F € N’y and R € V4 5. The characteristic matrix of 7 is

and

2F
MS = ( ) = S(2F).
2F

So the quotient of Niyr with respect to 7 equals .V;. a

Although we are assuming A is symmetric throughout this section. the above

proof does not require this condition.

Theorem 6.4.2 For i = 1.....n.2n + 1.... .3n, let C, = {i.n + i} and let
7 = (Cre... .CnCong1.-.- .Can). If (A.B) is an invertible Jones pair with A

symmetric, then Ny is the quotient of Ny with respect to =.



CHAPTER 6. ASSOCIATION SCHEMES

Proof. The characteristic matrix of = is

;1;1
S o o

o o
;w

Let V' be a matrix in .\'\'. By Theorem 6.2.9. we have

F G

, F G F G

NS =2 =52 ).
B-'GBT B-'FB B-'GBT B-'FB
B-'GBT B-'FB

for some F € V4 and G € .V, 5.
Now F belongs to V4 which equals \;r. so there exists matrix M in .V such

that F = ©4(M). By Theorem 4.5.2. B-'FB = ©g(M)T. Since G € V).

there exists M; € N4pg such that G = ©,5(M;). By Lemma 6.2.7. we know

B-'GBT = @43(.‘[3’)1-

So the quotient of .V} with respect to = is

O4(M &) M
a( M) A.8(My) MEN, M €Ng Y.
Q. M)T BpM)T

which equals Ny according to Theorem 6.1.7.
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6.5 Induced Schemes

We now complete the picture of the relations of the association schemes obtained
from an invertible Jones pair.

Suppose 4 = {Hq.... .. 14} is an association scheme on n elements. Let Y be
a non-empty subset of {l.....n}. For any n x n matrix M. we use )y to denote
the |Y| x {Y'| matrix obtained from the rows and the columns of M indexed by the
elements in Y. We define Ay = {(Ao)y.....(da)r}. If Ay is also an association

scheme. we say it is an induced scheme of A.

Theorem 6.5.1 If(.A4. B) is an invertible Jones pair, then 'y is an induced scheme
Of.\/.l,y.
Proof. Let Y = {l.....n}. The result follows immediately from Theorem 6.1.7.

a

Theorem 6.5.2 Let A be an n x n symmetric matriz. If (A.B) is an invertible

Jones pair, then Nyt is an induced scheme of Ny.

Proof. Let Y = {l..... 2n}. Define (.Vy-)y to be the set {My : M € Ay}, By

Theorem 6.2.10, we have

. F+R F-R . .
(Nv)y = FeNsReNg ).
F-R F+R

By Theorem 6.1.7. Ny is spanned by

F F RT —RT
F F] \-prT RrT |
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for all F € A"y and R € Ny 5. Since A is svmmetric. both .\"; and .\"; g are closed

under the transpose. Therefore RT € Ay g and Nyt = (\V )y 0

The following diagram summarizes the relations among the four Bose-Mesuer

algebras obtained from an invertible Jones pair (A. B) where 4 is symmetric.

A

quotient induced scheme

N Nyr

induced scheme quotient

6.6 Subschemes

Now we give a stronger version of the two theorems in the previous section.

Godsil noticed that if we let I” = {2n + 1.... .4n}. then the set of 2n x 2n
matrices of V- induced by U™ also equals \y-r. From this observation. he spotted
a subscheme of V- which is a union of two copies of .\'y-r. This fact is stronger
than Theorem 6.5.2. It turns out that similar situation happens to .\jy-. which we
describe below.

Suppose B is the Bose-Mesner algebra of some association scheme A. If B' C B
is also a Bose-Mesner algebra, we call its corresponding association scheme the

subscheme of A.
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Lemma 6.6.1 Let U' = {2n +1.... .4n}. Then the set
S={M::MeNv}

equals Nyyr.

Proof. From Lemma 6.2.4. we see that S is the span of

B-'FB B-'FB R, -R . ]
. ZFG.\,;.:{ORLE.\BT .
B"'FB B-'FB -R, R,
Since Ay = Nyr = Ngr = V. we have B~'FB € \’y by Theorem 3.8.5 (d).

Moreover. part (a) of the same theorem implies that R; € .\ g. Consequently. by

Theorem 6.1.7. we conclude that S and .\ ;r are equal. =

Now we define S to be the set of 4n X 4n matrices having the form

F+R F-R 0 0
F-R F+R 0 0
0 0 B-'FB+R, B 'FB-R,
0 0 B-'FB-R, B'FB+R,

where F € Ny. R€ Ny p and Ogr(40o R,)T = O.4(A o R). We also define

0 0 J. Ja
- 0 0 Jn Jn
J=

Jo Jn 0 0

Jo Ja 0 0

Theorem 6.6.2 The space B spanned by the matrices in SU{J} is a Bose-Mesner
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algebra contained in \7-.

Proof. It is straightforward to show that this space is a commurative algebra
containing Iy, and Jy,. and it is also closed under the Schur product and transpose.

a

Note that if A’y has dimension r. then B’ has dimension 2r + 1.
Similarly. if we let U = {n + L..... 2n}. then .\'y equals the set of matrices
{My: : M € Nw}. Moreover. if Eg.... . E._ is the basis of principal idemporents

of A'4. then the following set is a subscheme of Ny with r classes:

e.-t(El) 0 . 0 Jn
.)T):z=0.....r-—l U (

0 Op(E; J, 0

6.7 Dimension Two

In this section. we look at the simplest kind of invertible Jones pairs.

We define the dimension of a Jones pair (A. B) to be the dimension of .\’ 5.
and we define the degree of (A. B) to be the number of distinct entries of B. If
B is invertible, then the degree of (A. B) is at least two. Moreover, the number
of distinct entries of B equals the number of eigenvalues of 4. and 4 € .\, 5.
Therefore the dimension of (4. B) is greater than or equal to its degree. In the

following, we consider invertible Jones pairs of dimension two.

Lemma 6.7.1 If (A.B) is an n x n invertible Jones pair of dimension two, then

B =a(J — N)+bN, where N is the incidence matriz of some symmetric design.

Proof. Let B =a(J — N) + bN for some 01-matrix .V and some non-zero scalars a
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0 B .
€ Ny
BT 0
o 0 v ]
N = € Ny.
NT o

Since .\l is closed under matrix multiplication. we have

. {NNT 0 ,
N = €\

and b. By Corollary 6.1.4.

which implies

0 NTN

By Theorem 6.1.7. we know that .V.NT belongs to .\y. Since V4 = dim.\y g have

dimension two. Ay equals to the span of {/.J}. Therefore we can write
NNT = MNJ =)+ kI

for some integers A and k. As a result, .V is the incidence matrix of a symmetric

(n.k.A)-design. ]

This lemma is a weaker version of Bannai and Sawano’s result [4]. They showed
that .V is the incidence matrix of a symmetric design whose derived design with
respect to any block is a quasi-symmetric design.

Later, Godsil showed that if 4 is an n x n symmetric matrix and {A. B) is an
invertible Jones pair of dimension two. then A comes from a regular two-graph. A

regular two-graph is a symmetric matrix M that satisfies the following conditions:
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(a) all diagonal entries of M are zero and all off-diagonal entries of M are equal to

+1. and
(b) M has quadratic minimal polynomial.
Now we give Godsil's argument.

Lemma 6.7.2 If A s an n x n symmetric matriz and (A. B) is an mvertible Jones

pair of dimension two. then A = cl + dM. where M is a regular two-graph.

Proof. By Theorem 3.8.5 (a). we have 40 4 € .\';. Since .\’ equals to the span of
{I.J}. there exist non-zero scalars a and b such that Ao A = al +b(J —I). Hence

we can write

A=cl +dM.

for some symmetric matrix M such that Mol =0and Mo M =.J - [. So the
off-diagonal entries of W equal to %1.

Moreover. since N4 g has dimension two. the minimal polynomial of A is quadratic.
As a result, M also has quadratic minimal polynomial. and so it is a regular two-

graph. O

When (4. B) is an n x n invertible Jones pair of dimension two. then B comes
from a symmetric design on r points. From such design. we can construct a bipartite
distance regular graph on 2n vertices with diameter three. Theorem 6.1.7 tells us
that Ay is the Bose-Mesner algebra of this graph. Furthermore. if 4 is symmetric.
then A comes from a regular two-graph M. By the same theorem. we see that .Viyr
is the Bose-Mesner algebra of the association scheme associated to M. For more

information on two-graphs, please see Seidel’s survey in {23].
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6.8 Unfinished Business

We believe Jones pairs are the natural way to view problems on spin models and
four-weight spin models. We hope to extend their existing theory using Jones pairs.
In a narrower scope. we feel that our results have great potential for extensions.
Now we propose several research problems.

Firstly. from Theorem 6.2.9. we know that the dimension of .\ is bounded

between 3r and 3r + n where r is the dimension of .\;. We conjecture that
dim.\y = 4r.

If we can determine the dimension of .\y-. then we can limit our search for four-
weight spin models to the formally self-dual Bose-Mesner algebras having the right
dimension. In order to prove this. we need to better understand the conditions in
Lemma 6.2.8 and the interactions among .\4. V4.5 and .V, 5.

Secondly. given an invertible Jones pair {A. B). we get a link invariant. But we
also get a link invariant from the 4n x 4n symmetric spin models constructed from
(A. B). It is natural to ask for the relations between these two link invariants.

Further. we want to investigate more thoroughly the two constructions described
in this chapter. In particular. we would like to understand why the resulting No-
mura algebras relate to each other in such interesting fashion. In addition. we
want to examine other known constructions for possible extensions. Nomura's con-
struction of the symmetric and non-symmetric Hadamard spin models. described
in Section 3.5. is a good candidate.

In Section 6.7, we have studied invertible Jones pairs of dimeunsion two. The
next open case is the invertible Jones pairs of dimension three. On the other hand.

Jaeger characterized the three-dimensional Bose-Mesner algebras that contain spin
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models. The characterization of symmetric Bose-Mesner algebras of dimension four
that contain spin models still remains open. This case corresponds to a special class
of invertible Jones pairs of dimension four. so any results on these Jones pairs may
help solving this open case.

Lastly. we have designed Jones pairs in an attempt to answer Jones’ question
in [17]. However we have not been able to answer his question yet. One obstacle
is that there are very few Jones pairs where the matrices are not tvpe II. Here we
ask for new examples of non-invertible Jones pairs that are not tensor products of

existing Jones pairs.
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