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Abstract 

Fatigue failures of driveline and suspensions components for ground vehicles under 

multiaxial loading conditions are common, since most those components are subjected to 

complex multiaxial loadings in service. In addition to the multiaxial loadings, many of those 

components contain notches and geometrical irregularities where the fatigue failure often 

occurs due to stress concentrations. Therefore, the origins of the multiaxiality can be related 

to various combinations of external loadings and notch geometries. 

A computational fatigue analysis methodology has been proposed here for performing 

multiaxial fatigue life prediction for notched components using analytical and numerical 

methods. The proposed multiaxial fatigue analysis methodology consists of an elastic-plastic 

stress/strain model and a multiaxial fatigue damage parameter. The multiaxial stress-strain 

notch analysis method originally proposed by Buczynski and Glinka is adapted to develop 

the elastic-plastic stress/strain model to compute local stress-strain responses using linear 

elastic FE results of notched components.  An original multiaxial fatigue damage parameter 

based on the maximum fatigue damage plane is proposed to predict the fatigue life for 

notched components under multiaxial loadings. 

Results of the proposed multiaxial fatigue analysis methodology are compared to sets 

of experimental data published in the literature to verify the prediction capability of the 

elastic-plastic stress/strain model and the multiaxial fatigue damage parameter. Based on the 

comparison between calculated results and experimental data, it is found that the multiaxial 

elastic-plastic stress/strain model correlates well with experimental strain data for SAE 1070 

steel notched shafts subjected to several non-proportional load paths. The proposed 
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multiaxial fatigue damage parameter, when applied to the uniaxial loading to account for the 

mean stress effect on fatigue life, is found to correlate very well with four sets of 

experimental uniaxial mean stress fatigue data.  In the case of multiaxial loadings, the 

proposed multiaxial fatigue damage parameter provides very good correlation with 

experimental fatigue data of thin-walled tube specimens of 1045 steel and Inconel 718. In 

addition, the proposed fatigue damage parameter is found to correlate reasonably well with 

experimental fatigue data of SAE 1045 steel notched shafts subjected to proportional and 

non-proportional loadings. 

The proposed multiaxial fatigue analysis methodology enables rapid durability 

evaluation for notched components design. The effect of changes in material, geometry and 

loads on the fatigue life can then be assessed in a short time frame.  The proposed multiaxial 

fatigue analysis methodology provides more efficient and appropriate analysis methods 

preferable to very expensive experimental durability tests and more complex and time 

consuming life prediction methods using non-linear FE stress-strain analysis. 
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Chapter 1                                                                                           

Introduction and Research Objectives 

Most driveline and suspensions components, such as axles and shafts for ground 

vehicles, are subjected to combined cyclic tension, bending and torsional loads during 

operations in service. These complex cyclic loadings are defined as multiaxial loadings, 

where principal stresses rotate and change non-proportionally their magnitudes during a 

loading cycle. In addition, many of machine components contain notches and geometrical 

irregularities because of design requirements. These geometric discontinuities cause 

significant stress concentrations. Multiaxial loading paths produce complex stress and 

strain states near notches and can cause a fatigue failure even without any evident large-

scale plastic deformation. Unfortunately, the combination of multiaxial loading paths and 

complex geometries of mechanical components is unavoidable in practice and 

experiments performing durability test are often not feasible because of time and cost 

considerations. Therefore, analytical and numerical methods are an indispensable 

approach to conduct fatigue and durability analyses for notched components design 

process.   

  Due to the fact that notch regions are under the effect of multiaxial stress state, 

the fatigue strength and durability estimations of notched components subjected to 

multiaxial loading paths require detail knowledge of stresses and strains in such regions. 

Although Finite Element Analysis (FEA) using commercial software tools can be used to 

determine notch tip stresses in the elastic and elastic-plastic state induced by short 

loading histories (a few cycles), such methods are still impractical in the case of long load 

histories experienced by real machine components. Cyclic loading histories experienced 
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by notched components in driveline and suspension systems may contain from thousands 

to millions of cycles. Therefore, an incremental elastic-plastic finite element analysis for 

long loading histories would require impractically long computation times and excessive 

data storage. For these reasons, more efficient and simpler methods of elastic-plastic 

stress-strain analysis and fatigue life estimations are necessary for notched bodies 

subjected to lengthy cyclic load histories.  

The main goal of the research scope of this thesis develops and validates an 

integrated multiaxial fatigue analysis methodology. The computational methodology 

developed here focuses on the multiaxial elastic-plastic stress/strain analysis and fatigue 

life predictions for notched bodies subjected to proportional and non-proportional loading 

histories. More specifically, the following research objectives were undertaken: 

 To create finite element model(s) to compute linear elastic stress histories for 

notched specimens under multiaxial loading paths. 

 To develop an algorithm and computer program for the implementation of the 

multiaxial stress/strain analysis in notches by integrating the Garud cyclic 

plasticity model with the multiaxial Neuber rule. The linear elastic stress data 

from the FE model is used as input to this computer program. 

 To develop and validate a multiaxial fatigue damage parameter based on a 

critical plane approach to estimate fatigue life of notched components. 

 To develop a general algorithm for the numerical implementation of the 

integrated multiaxial fatigue analysis for notched components. 
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In order to accomplish these objectives, an integrated multiaxial fatigue analysis 

methodology has been proposed. The proposed analysis methodology is composed of: 

 An elastic-plastic stress/strain model for computing the material stress-strain 

response of notched components under multiaxial loadings. 

 A multiaxial fatigue damage parameter to estimate fatigue life. 

The elastic-plastic stress/strain model consist of two parts namely the cyclic 

plasticity model and the multiaxial Neuber notch correction rule to compute the actual 

elastic-plastic stress-strain response at notches using the FE linear elastic stress data. The 

computed elastic-plastic stress-strain responses are subsequently used as input to the 

proposed multiaxial fatigue damage parameter to estimate the fatigue life.  

A general computational process, shown in Figure 1-1, is proposed to implement 

the multiaxial fatigue analysis methodology. The following procedure summarizes the 

three main computation steps necessary for carrying the methodoloy.   

I. Multiaxial elastic-plastic stress-strain analysis 

 Calculate elastic-plastic stress-strain histories at the critical notch location 

using the input linear elastic stress histories obtained from the linear 

elastic FE analysis (Multiaxial elastic-plastic stress-strain analysis in 

Figure 1-1). 

II. Multiaxial fatigue analysis 

 Transform the stress and strain time history to potential candidate planes 

(Stress-strain tensor rotation in Figure 1-1).  
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 Calculate fatigue damage on each potential critical plane using the 

proposed fatigue damage parameter (Fatigue damage parameter in    

Figure 1-1).  

 Determine the critical plane experiencing the maximum fatigue damage 

and predict the fatigue life on that plane (Fatigue life prediction in     

Figure 1-1). 

III. Fatigue damage map 

 Plot the fatigue damage on the FE model to obtain the damage map 

(Damage contour of FE model in Figure 1-1). 

A schematic representation of these computation steps mentioned above is shown 

in Figure 1-1. This dissertation is structured as follows: Existing literature in the area of 

cyclic plasticity, notch correction methods, and multiaxial fatigue damage parameters is 

reviewed in Chapter 2. The literature review is followed by a detailed description of the 

elastic-plastic stress-strain analysis method for notched bodies subjected to multiaxial 

cyclic load paths in Chapter 3. Chapter 4 describes the proposed multiaxial fatigue 

damage parameter and the implementation of the integrated multiaxial fatigue analysis 

procedure by incorporating the elastic-plastic stress/strain model and multiaxial fatigue 

damage parameter. Chapter 5 presents case studies for validation of the elastic-plastic 

stress/strain model and the multiaxial fatigue damage parameter. Chapter 6 contains 

concluding remarks and recommendations for future research activities. 
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Figure 1-1: Computational flow chart of the integrated multiaxial fatigue analysis  
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Chapter 2                                                                                                

Literature Review 

Fatigue failure is considered to be the most common type of failure mode 

experienced by most engineering components. Many mechanical components contain 

geometric discontinuities and stress concentrations which cannot be avoided in practice. 

Fatigue cracks in most cases occur at or near notch roots, therefore notches have been 

considered as one of the most important problems in the design of machine components. 

Fatigue life prediction for notched components experiencing cyclic loadings has long 

been subject of research in many different industries, particularly in the automotive 

industry. In addition, most of mechanical notched components are subjected to 

biaxial/multiaxial loadings such as combinations of bending and torsion or tension and 

torsion in services. Fatigue life prediction for notched components based on the local 

strain approach and equivalent stress/strain criteria has shown limited success in case of 

relatively simple load cases e.g. uniaxial and proportional loadings [1]. However, no 

successful fatigue life prediction methodology has been developed, which accurately 

account for the complex nature of material behavior and multiaxial stress state in notches 

under complex non-proportional loadings. As a result, the design of notched components, 

particularly for those under complex multiaxial loadings has been based on the use of 

conservative factors of safety, expensive prototype testing, and experience. There is 

growing need for a reliable and efficient multiaxial fatigue prediction methodology for 

notched components in order to satisfy the increasing demand in design requirements in 

terms of weight savings, cost reductions and life expectancies. In order to model the 

fatigue failure of notched components under the multiaxial cyclic loadings, it is essential 
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to provide a good understanding of how external loads relate to the state of stress and 

strain at the critical location, material constitutive behavior, multiaxial damage parameter 

and cumulative damage. In this section, an attempt has been made to review stress-strain 

analysis using material constitutive behavior, coupling of stress-strain analysis with notch 

correction method, multiaxial fatigue damage parameters and cumulative damage rule. 

The effort to develop more reliable and efficient multiaxial fatigue life evaluation 

procedure for notched components must begin with a review of stress-strain analysis at 

notch roots and multiaxial fatigue life prediction methods. 

2.1 Stress Strain Plasticity Modelling 

Most components are designed never to exceed the yield stress. However, local 

plastic deformations are common in stress concentration areas under cyclic loadings. 

Even though the material behavior in the net section area is in the elastic range, the 

stress-strain response at the notch area may often show elastic-plastic behavior.  

Therefore, a cyclic plastic model coupled with the notch correction method is required to 

determine the elastic-plastic material behavior at the notch area.  

The Ramberg-Osgood equation originally proposed [2] as a monotonic stress-

strain relation, is commonly used to represent a uniaxial stress-strain model for cyclic 

loadings. The response of material subjected to cyclic loadings typically takes the form of 

stress-strain hysteresis loops, shown in Figure 2-1 for several different strain amplitudes. 

The line O-A-B-C, which passes through the tips of the loops, is the cyclic stress-strain 

curve.  
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Massing [3] hypothesized that the stabilized hysteresis loop curves may be 

approximated by doubling the cyclic stress-strain curve. Therefore, the stresses and 

strains for the unloading part of the load history, such as C-H-F in Figure 2-1, can be 

determined using Eq. (2.2). 
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When the multiaxial loading induces elastic deformation, relations between 

stresses and strains are determined based on Hooke’s Law as follows 

 ijkkijij
EG




 
2

1
 (2.3) 

Where ij , ij , G , E ,  and ij  are the strain tensor, stress tensor, shear module, 

Young’s module, Poisson’s ratio and Kronecker’s delta respectively. Stresses are 

computed from any set of strains independent of the strain history. 

However, when the cyclic multiaxial loading induces the local plastic deformation 

on components due to presence of notches and geometric discontinues, stresses and 

strains during cyclic plastic deformation are dependent on the previous loading history, 

and an incremental plasticity model is required for proper stress and strain analyses of 

plastically deformed locations. The cyclic plasticity modelling is employed to model the 

stress/strain response of a material subject to a known load path. 

Unlike the uniaxial cycle stress-strain curve, the multiaxial stress-strain state 

during cyclic plastic deformation requires a cyclic plasticity model to model multiaxial 
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stress-strain behavior of a material. These cyclic plasticity models are employed in 

incremental form. An appropriate cyclic plasticity model includes three major 

components, yield function, flow rule and hardening rule respectively. A yield function 

describes a region for elastic and plastic material behavior, a flow rule defines relations 

between stresses and increments of plastic strain, and a hardening rule describes how the 

yield function changes during the course of plastic deformation. 

In several past decades, many plasticity models have been developed modelling 

the material behavior using different levels of complexity from simple to complicated 

solutions. Modelling complex material behaviour such as cyclic hardening/softening, 

ratcheting, and non-proportional hardening requires extensive material testing to 

determine material constants required for the modelling of complex material behaviours. 

It is intended in this research to focus on a plasticity model for its simplicity and 

efficiency to model the material stress-strain responses with a reasonable accuracy. Such 

a plasticity model is considered to be suitable for multiaxial fatigue analysis in the ground 

vehicle industry. 

2.1.1 Yield Function 

An important subject in plasticity is the concept of yield surface. For the perfect plastic 

materials, the yield surface does not change after yielding. In contrast, for most materials, 

this surface changes for the values of stress beyond the initial yield point according to a 

hardening rule. The criterion for initiation of plastic deformation in uniaxial loading is 

when the axial load reaches the yield stress point, y . The material yield is the stress 

point where a material starts to deform plastically. In a multiaxial stress state, a yield 

criterion describes how each stress component contributes to yielding. In other words, the 
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yield criterion describes how a multiaxial state of stress combines to create an equivalent 

stress that induce to the plastic deformation. Thus the multiaxial state of stress can be 

represented by the equivalent stress as a scalar value. The yield surface concept is used to 

describe a yield function. The yield function represented by 9 dimensional hypersurface 

in stress spaces and each stress component in the stress tensor corresponds to a 

dimension. If  
ijf  is the loading function and y  is a yield function depending on 

previous stress and strain history of the material, yielding occurs as  
ijf   becomes 

equal to y , and the yield function is defined as follows 

     0 yijij fF   (2.4) 

Three different loading conditions may occur for stress state on the yield surface. These 

loading conditions for the yield surface can be illustrated as follows.  

 Elastic Loading: the stress state that is within the hyper surface or its direction is 

toward inside of the surface is elastic loading/unloading (Figure 2-2(a))  

 Plastic Loading: the stress state on the boundary with its direction toward outside 

of the hyper surface is plastic loading (Figure 2-2 (b))  

 Neutral Loading: the stress state on the boundary with its direction tangent to the 

hyper surface is neutral loading (Figure 2-2 (c))  

There are two popular yield functions for ductile metals, Tresca and von Mises Criterion. 

Tresca criterion is defined as:  

   0minmax  yijF   (2.5) 
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Where max  and min maximum and minimum are principal stresses, and y is the yield 

strength.  

The von Mises criterion is the most popular for isotropic materials. The von Mises 

criterion states that material yielding starts when the distortion energy for the multiaxial 

stress state is equal to the distortion energy at yield in simple tension, and the von Mises 

criterion for a complex stress state is defined as: 

          0
2

1 2

13

2

32

2

21  yijF   (2.6) 

The von Mises criterion can be described in deviatoric stress space as  

 0
2

3 2









yijij SS   (2.7) 

For a general stress state, preference is usually given to von Mises criterion because it  

has a continuous and smooth shape in stress space. 

2.1.2 Flow Rule 

Another important component of the cyclic plasticity modelling is the flow rule. 

The flow rule represents the relationship between stresses and plastic strains during 

plastic deformation. For elastic-plastic loading, total strain tensor is the sum of elastic 

strain determined by Hooke’s law and plastic strain governed by the flow rule. Hencky 

[4] proposed a relationship between total plastic strains and stresses. Assuming small 

strains, stress- the plastic strain relation proposed by Hencky can be written as  

 ij

p

ij S   (2.8) 
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where   is a scalar valued function depending on the equivalent stress (e.g. Mises 

equivalent stress), eq , which may be regarded as a function of an equivalent total plastic 

strain, 
p

eq , defined as  

 
p

ij

p

ij

p

eq 
3

2
  (2.9) 

Experiments have shown that Hencky’s equations are not consistent for all stress states 

and the stress is path dependent for non-proportional loading. However, Hencky’s 

equations estimate unique state of stress for a given plastic strain, i.e. path independent. 

Therefore, they can be used for proportional loading, but are not suitable for non-

proportional loading. The flow rule defines the relationship between stresses and plastic 

strain increments. The form of this relation, which uses the plastic strain increment, 

proposed by Prandtl [5] for plane strain and by Reuss [6] for an arbitrary state of strain in 

the following form  

 ij

p

ij Sdd    (2.10) 

where d  is a factor of proportionality, which can be found using plastic work 

increments. 

Drucker [7] later derived a more explicit form of the rule from thermodynamic 

considerations. The flow rule based on the normality postulate by Drucker implies that 

increment of plastic strain is in normal direction to the yield surface during plastic 

deformation. The flow rule can be described as  

 
ij

p

ij

F
dd






  (2.11) 
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Where 
p

ijd  is the plastic strain increment tensor, ij  is the stress tensor, F  is yield 

function, and d  is a scalar valued function.  

The flow rule can be written in a more general form as  

  klklijp

t

p

ij dnn
E

d 
1

  (2.12) 

Where p

tE  is the multiaxial representation of the plastic modulus and 
ijn  are the 

components of the unit normal to the yield surface and are defined as 
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
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

ijij
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ij

S

F

S

F

S

F

n  (2.13) 

Based on consistency condition, upon unloading from stress above yield point, the initial 

behavior of the metal is always elastic, and during the plastic loading, yield surface 

follows the stress in stress space.  As a result, the stress always remains on the yield 

surface. This is illustrated in Figure 2-3. Consistency condition leads to a basis for 

determining the movement of yield surface center in the hardening rule.  

2.1.3 Hardening Rule  

This dissertation is intended to review only major hardening models since more 

complex hardening models for ratcheting, transient hardening and nonlinear hardening 

are beyond the scope of this study.  

A hardening rule, another important component for the plasticity modelling, 

describes how yield surfaces change during the course of plastic deformation. Based on 
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the consistency, the yield surface follows the stress during plastic loading. There are the 

three possible alternatives to explain the evolution of the yield surface.  

 Yield surface expands with plastic loading, isotropic hardening. 

 Yield surface translates without any expansion with plastic loading, kinematic 

hardening. 

 Yield surface expands and translates with plastic loading, combined isotropic-

kinematic hardening rules. 

Isotropic hardening developed by Hill [8] describes the expansion of the yield surface 

during plastic deformation. In other words, the yield surface grows, however the center of 

the yield surface remains fixed.  Such behavior for the uniaxial stress-strain curve is 

plotted in deviatoric stress space in Figure 2-4. 

The yield surface for the isotropic hardening can be represented as 

   0
2

3 2
 kSSF yijij   (2.14) 

Where ijS  is the deviatoric stress tensor and  ky  is the current size of the yield surface 

as a function of k . The flow rule associated with the yield surface for the isotropic 

hardening can be described 

 
e

ijp

ij

S
dd




2

3
  (2.15) 

Where ijije SS
2

3
  is the von Mises equivalent surface. 
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Isotropic hardening is capable of handling proportional and non-proportional loadings. 

However, if unloading and reverse loading is included, then the isotropic hardening rule 

is not able to model reverse yielding appropriately and hence is not useful in cyclic 

plasticity. The isotropic hardening rule is mainly used for the application of metal 

forming because of its ability to describe material behavior for large strain. The isotropic 

hardening rule can also be used with kinematic hardening for modelling cyclic plasticity. 

In kinematic hardening, the yield surface is allowed to translate in stress space 

with no change in size or shape. Kinematic hardening for uniaxial stress-strain curve is 

shown in Figure 2-5. If a specimen is uniaxialy loaded beyond the yield stress, and then is 

unloaded and reloaded in uniaxial compression, the new yield stress in compression will 

be smaller than the original one. This is known as Bauschinger effect [9], as shown in 

Figure 2-5. Prager [10] was the first to introduce kinematic hardening. Based on the 

Prager’s rule to satisfy consistency condition, yield surface has to move without any 

expansion to follow stress point in the stress space. He postulated that the center of the 

yield surface moves in the direction of the plastic increment: 

 
p

ijij dcda   (2.16) 

Where ijda  is the movement of the center of the yield surface, which has been also 

referred to as back stress, and c  is a scalar constant determined from consistency 

condition. 

For Prager’s model, the yield surface for the kinematic hardening can be represented as 

    0
2

3 2
 yoijijijij aSaSF   (2.17) 



 

  

 

16 

The flow rule associated with the yield surface can be described as 

 
 

yo

ijijp

ij

aS
dd







2

3
 (2.18) 

and the hardening rule is as  

 
p

ijij dcda   (2.19) 

One of the disadvantages of the Prager model was its application to only bilinear stress-

strain curve. Mroz [11] defined a field of plastic moduli in stress space for better 

approximation of the stress-strain curve and generalization of the plastic modulus in 

multiaxial case. Each surface is represented by its center coordinates, k

ija  , a yield stress, 

k

yo  and a plastic modulus, )(kp

tE . If the von Mises criterion is used to represent the 

surface, the yield surface is defined as 

      0
2

3
,

2
 k

yo
k
ijij

k
ijijijij

k aSaSaSF   (2.20) 

Figure 2-6 shows how these fields are defined and related to the stress-strain curve. For a 

virgin material this distribution is isotropic. When a stress point meets a stress surface, 

this surface will be activated. By increasing the load, the active surface and all of the 

previously activated surfaces (inner surfaces) move together, until unloading occurs. The 

plastic modulus takes on a value equal to that of the largest surface in contact with the 

stress point. Figure 2-7 (b)-(d) shows the evolution of the stress surfaces for a sequence 

of two loading paths, Figure 2-7 (a). Garud [12] showed a possibility of intersecting yield 

surfaces for Mroz model under certain loading, therefore he modified Mroz model to 

prevent such intersection. Movement of the surfaces in Garud’s model is dependent on 

the stress direction. Chu [13] proposed an infinite surface model that does not require a 



 

  

 

17 

discrete number of surfaces. Chu’s model only requires position and radius for the current 

active surface, thus eliminating the storage requirements of the multi surface discrete 

model for numerical solution of the cyclic plasticity model. 

 Two surfaces plasticity model initially was proposed by Krieg [14], and Dafalias 

and Popov [15] to reduce the multi surface model to two surfaces, the yield surface and 

limit surface. Two surfaces plasticity models were developed to improve computational 

efficiency by reducing the storage requirement of the multi surface models. Two surfaces 

models were later modified by Philips [16], Tseng and Lee [17].  

Armstrong and Frederick [18] proposed a nonlinear kinematic model by 

considering the strain memory effect by a recovery term. Armstrong and Frederick 

specified the movement of the yield surface in deviatoric stress space by the nonlinear 

hardening rule.  

 dpaCdCda ij

p

ijij 21
3

2
   (2.21) 

Where dp  is the equivalent plastic strain rate, and 
1C  and 2C are material constant 

determined from uniaxial tests. 

Chaboche [19,20] made significant contributions to Armstrong-Frederick model 

by decomposing the backstress into several parts, each of which independently obeys the 

Armstrong-Frederick hardening rule.  

 NkdpadCda k
ijk

p
ijk

k
ij ,...1

3

2
   (2.22) 
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Where 
p

ijd , dp  and 
k
ijda  are increments of the plastic strain tensor, the equivalent 

plastic strain and the k
th

 term of the increment of the back stress. kC  and k  are 

material constants which can be defined using the material’s cyclic stress-strain curve. 

Many other researchers, like Bower [21], Ohno [22], Voyijadis [23], Jiang and 

Kurath [24], and Chen et al [25] have since added various features to the original 

Armstrong-Frederick model. Many of plasticity models mentioned above require a large 

number of material constants and complex subroutine for calculating strain increments, 

thus making them impractical for application in the ground vehicle industry. 

2.1.4 Garud Cyclic Plasticity Model  

Most cyclic plasticity models that have been reviewed previously are based on a 

concept of translating yield surface. The differences in the plasticity models generally are 

based on the translation rule which governs the movement of the yield surface. However, 

the Mroz and Garud cyclic plasticity models are relatively simpler to implement in 

comparison to other models. The Mroz multi surface model has a disadvantage of the 

possibility of intersection between stress surfaces during non-proportional loading. This 

intersection causes computational problems. Garud proposed [12] an improved 

translation rule that prevents any intersections of plasticity surfaces. Therefore, the Garud 

model is presented in detail for purpose of numerical implementation associated with the 

incremental stress-strain notch analysis in Chapter 3. 

Garud suggested that the movement of the stress surface depends not only on the 

current state of stress but also on the direction of stress increment. Garud postulated that 

increases in stress induce the evolution of plastic deformation, and the surfaces are 
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subject to translation, keeping constant shape and size without rotation in the stress space. 

The assumed direction of movement provides locations of the current state of stress on 

the surface at the new location, and eliminates the possibility of intersection between 

adjacent surfaces. The principle idea of the Garud translation rule is demonstrated in the 

following steps. 

It is assumed that an applied torsion-tension load results in the current stress state 

settled at the point   and the two yield surfaces F1 and F2 with corresponding yield 

limits RF1 and RF2 have been moved in the stress space, so that their centers have been 

located to the points 1F  and 2F as it has been arbitrarily assumed and illustrated in 

Figure 2-8. 

Based on the applied load path that the current stress increment induces the plastic strain 

increment, and it is forwarded outside the surface F1. According to the consistency 

condition the yield surface must follow the stress state evolution and the updated stress 

state:   must satisfy the updated yield function: 0R),(F 1F1  . 

Taking into account the assumption that during the plastic strain evolution the yield 

surface with a fixed size RF1 translates without rotation in the stress space, the 

consistency condition is satisfied by the condition as the surface centered at the point 

  corresponding to the updated stress state: 

 0)]()[( 11  FRF   (2.23) 

Thus, the translation rule of the yield surface must be defined. 
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The details of the yield surface translation rule according to Garud’s proposition are 

discussed in the following. The translation is associated with the applied load path which 

generates a plastic strain evolution.  

In order to translate the yield surface according to the Garud rule, the following steps 

should be performed: 

a) Extend the line of action of the stress increment to intersect the external non-active 

yield surface F2 at the point 
2

1A , as it is presented in Figure 2-9. 

In the index notation the following equation describes the present step: 

 2F

2F

ijijij Rx   (2.24) 

where the unknown coordinates of the point A
2

1 are expressed as: 

 ijij

A

ij x
2
1   (2.25) 

Which, developed according to index i=2,3 and j=2,3 can be given as follows: 
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 (2.26) 

It can be easily obtained that the scalar factor x comes out as the solution 

 
A2

B
x


  (2.27) 

of the square equation 

 0CBxAx2   (2.28) 

where  

 AC4B2   (2.29) 
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 (2.30) 

b) Connect point A1 and the center 2F  of the yield surface F2. Draw through the center 

1F of the surface F1 a line parallel to the line (A1 , 
F2

) to find point AG on the yield 

surface F1 , as it is shown in Figure 2-10. 

The two operations are described in the index notation in the following form: 
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 (2.31) 

c) Connect the conjugate points 
1A  and GA  to find the direction of translation of the yield 

surface F1, as shown in Figure 2-11: 

 
AG

ij

A

ijijG AA   1

1 )(  (2.32) 

d) Translate the surface F1 from point 
F1

 to (
F1

)’ in the direction of the vector ( GAA1 ) 

till the stress increment  is found on the translated surface, as presented in Figure 2-12. 

In the terms of index notation the following equation can be defined: 

 1F

1F

ij

1F

ijijij R  (2.33) 

in which the components 1F

ij of the translation vector are expressed: 

 )(y AG

ij

1A

ij

1F

ij   (2.34) 

Thus, the updated coordinates of the center of the yield surface F1 are given as 
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 1F

ij

1F

ij

1F

ij )(   (2.35) 

or  
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ij   (2.36) 

Assuming the following substitutions: 
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the initial equation 
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ij
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ijijij R  (2.38) 

 

can be replaced by 

1F
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ijij Ry 
 

which developed according to index i=2,3 and j=2,3 is presented as 
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Due to algebraic transformations, the scalar factor y governing the magnitude of the 

translation vector is obtained as the solution: 

  
A2

B
y


  (2.40) 

of the square equation: 

  0CByAy2   (2.41) 

where  and the coefficients A, B, and C are defined in accordance to: 
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 AC4B2   (2.42) 
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2.1.5 Notch Correction  

Engineering components generally have stress concentrations such as notches, 

holes, fillets, shoulders, etc. due to their geometrical and functional constraints. Notches 

and stress concentrations have been of interest for many years, as these locations act to 

initiate fatigue crack and cause component failure. Early researches focused primarily on 

determining theoretical stress concentration factors using either elasticity theory or 

photoelastic analysis. Peterson [26] has compiled theoretical stress concentration factors 

for various geometries into one book. Stowell [27], Hardrath and Ohman [28] 

investigated stress concentrations in the plastic range. The most well known 

approximation formula that relates the theoretical stress concentration factor to the 

product of the elasto-plastic stress and strain concentration factors was originally 

proposed by Neuber [29]. Neuber studied a semi-infinite prismatic notched body obeying 

a nonlinear stress and strain law. He proposed that the product of the stress and strain at 

the notch tip in any arbitrary notched geometry in a prismatic body is not dependent on 

material’s nonlinear parameters, but can be related to material’s elastic parameters and 

the far field boundary conditions. Neuber’s rule for uniaxial loading is  

 eSK t

aa 2
  (2.44) 
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Where a  and a  are the elasto-plastic notch tip stress and strain, S  and e  are the 

nominal section stress and strain, and tK  is the elastic stress concentration factor. 

Alternatively, Neuber’s rule can be written in the form: 

  
eeaa    (2.45) 

Where SKt

e   and eKt

e   are fictitious elastic strain and stress. Eq. (2.45) states 

that the total strain energy density at the notch tip is equal to the fictitious strain energy 

density as if a material hypothetically remained elastic. A graphical representation of 

Neuber’s rule is shown in Figure 2-13 

 Topper et al. [30] extended validation of Neuber’s rule to several notch 

geometries subjected to uniaxial cyclic loading. Their results showed that Neuber’s rule 

for cyclic loading was in good agreement with experimental results for notched 

aluminum alloy sheets. 

 Molski and Glinka [31] proposed that the equivalent strain energy density (ESED) 

method as an alternative to Neuber’s rule. They postulated that the strain energy density 

at a notch equals that if the body were to hypothetically remain elastic. The authors 

showed [31] that the ESED method provided good agreement with experiment for several 

notched specimens subjected to monotonic loading. The ESED method can be written in 

terms of stresses and strains as 

 

a

aaee d




0

2

1
 (2.46) 

Glinka [32] later extended the ESED method to address notched bodies subjected to 

cyclic loading. A graphical representation of the ESED method is shown in Figure 2-14. 
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 As the local strain-life approach was extended to multiaxial loading using 

multiaxial fatigue damage parameters, these damage parameters require multiaxial strains 

and stresses to be determined at notch areas. Since nonlinear finite element analysis is too 

costly to compute multiaxial stresses and strains for a long load history, simple uniaxial 

notch stress and strain approximation techniques were extended to states of multiaxial 

stress and strain. Hoffmann and Seeger [33,34] proposed a method for multiaxial 

proportional loading by applying an equivalent form of Neuber’s rule as   

 
e

eq

e

eq

a

eq

a

eq    (2.47) 

Where 
a

eq  and 
a

eq  are the notch tip elastic-plastic equivalent stress and strain 

respectively, and  
e

eq  and 
e

eq are those which would be obtained if the material 

remained elastic. They assumed that the ratio of minimum principal strain components at 

the notch tip remain constant during loading. 

 The generalization of both the ESED method and Neuber’s rule for proportional 

multiaxial loading for notched bodies was suggested by Moftakhar [35]. Numerical and 

experimental studies conducted by Moftakhar and Glinka [36] showed that the 

generalized ESED method and Neuber’s rule provide an upper and a lower bounds of the 

actual strains. Their study concluded that Neuber’s rule tend to overestimate the notch tip 

elastic-plastic strains and stresses and the ESED method tends to underestimate notch tip 

inelastic strains and stresses 

 Hoffman et al. [37] presented a method to estimate notch root stresses and strains 

for bodies subjected to non-proportional loading. In their method, the multiaxial loads are 

first separated and notch root strain histories are calculated for the loads independently by 
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following the same solution procedure as for proportional loading. Compatibility iteration 

is then used to account for interaction between strain components that result from non-

proportional loading. Their calculations compared well with finite element analysis. 

 Barkey [38] and Barkey et al. [39] later proposed a method to estimate multiaxial 

notch strains in notched bars subject to cyclic proportional and non-proportional loading, 

using the concept of a structural yield surface. The structural yield surface describes the 

relationship between nominal stresses and notch strains. The hardening parameter is 

found by using the uniaxial form of the ESED method as the basis of nominal load to 

notch plastic strain curve. Their results showed good agreement with experimental non-

proportional tension-torsion tests for a notched steel bar. However, the method does not 

account for elastic coupling at the notch between any two nominal stresses. 

Köttgen et al. [40] extended Barkey’s approach by incorporating the notch effect 

into the constitutive relation. They first obtained pseudo stress history by assuming 

elastic material behavior. The yield criterion and the flow rule were determined using 

elastic stress history and the hardening parameter was determined using pseudo stress and 

local plastic strain curve obtained from a uniaxial simplified rule. The resulting elastic-

plastic strain increments were then fed back into the flow rule to calculate notch stresses. 

Köttgen et al. reported correlation of their method with elasto-plastic finite element 

analysis for various geometries and applied loads. 

  Singh et al. [41] extended the ESED and Neuber's methods to estimate the notch 

root stresses and strains for monotonic non-proportional loading. The approach is an 

incremental generalization of the ESED method and Neuber's rule. In generalizing the 

ESED method, Singh et al. suggested that for a given increment of external load, the 
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corresponding increment of the strain energy density at the notch tip in a elastic-plastic 

body is equal to the increment of strain energy density if the body were to remain elastic. 

Singh et al. generalized Neuber's rule in a similar way by assuming that an increment of 

total strain energy density is exactly same as the increment of the fictitious total strain 

energy. 

2.2 Fatigue Damage Mechanism  

A better understanding of the damage mechanism associated with fatigue failure 

is considered to be essential step to develop an accurate fatigue damage model.  Fatigue 

damage is characterized by the crack nucleation and growth. The mechanism for the 

crack nucleation and growth is briefly described below. A schematic illustration for a 

crack formation on the surface of a ductile metal is shown in Figure 2-15. In these 

examples, the applied tensile stress is vertical and the resulting shear stress is at 045 . 

Cyclic plastic shear strains eventually cause the nucleation of the slip band shown as one 

of the fine lines in Figure 2-15. 

Grains that crystallographic slip planes are favorably oriented with respect to the applied 

shear stress will be the first to form a slip band. Since each grain has a different preferred 

slip plane, they will plastically deform at different applied stresses. At low stresses, only 

a few grains have favorable orientation and only a few slip bands form. At high stresses, 

a large number of slip bands form. During repeated cyclic loads, these slip bands grow 

and form into a single dominant crack 

Polycrystallic metals have a complex nucleation process that is influenced by 

grain boundaries, precipitates and impurities. The intrusion-extrusion model shown in 

Figure 2-15 is useful to describe the nucleation process. Slip bands are formed as a result 
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of dislocation movement within individual grains. Cyclic shear stresses cause the 

dislocation to move. Plastic deformation result in a permanent offset in adjacent atomic 

planes. Repeated plastic deformation eventually leads to the formation of a slip band. 

Some slip bands that come out of the surface of material are called extrusions and 

intrusion go into the surface. Fatigue crack nucleation is essentially a surface 

phenomenon. 

Fracture mechanics crack modes are shown in Figure 2-16 to illustrate how a 

crack is loaded. Tension loads produce Mode I and a torsion loading of a surface crack 

produces both Mode II and Mode III. Mode II is an in-plane shear loading and is found 

on the surface.  Mode III is an out-of-plane shear loading and is found on at the 

maximum crack depth. Mode II causes the crack to growth along the surface and Mode 

III loading causes the crack to grow into the surface in torsion loading.  

Understanding of crack formation on the surface is the first important aspect of 

fatigue.  Surface crack length is not as important as crack depth. A cross section of a 

polycrystallic material loaded in cyclic tension is shown in Figure 2-17. A crack first 

starts in an individual surface grain and then grows into next one. Note that the 

orientation of the grain in the second and third grain is slightly different than the first one 

because of random orientations of grains within a material. However, the overall growth 

path is still along the planes of maximum shear stress (Mode II). Finally, the crack will 

grow large enough and turn to grow perpendicular to the tensile stress axis. At this point, 

the crack is sufficiently large to generate its own plasticity and will grow in a planar 

manner through grains. This is a Mode I crack. This transition is governed by the material 
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microstructure and the type of loading. Torsional loading favors Stage I shear growth. 

Low ductility materials have predominantly Stage II growth.  

Brown and Miller [51] suggested that shear cracks can grow in one of two ways, 

illustrated by Case A and Case B in Figure 2-20. Case A cracks grow along the free 

surface in a direction parallel to the length of the crack and Case B cracks grow into the 

surface from the crack depth. 

2.3 Multiaxial Fatigue Damage Parameters  

Fatigue failure of engineering components under multiaxial loading conditions is 

a common, since most engineering components are subjected to multiaxial load histories 

in service and the origins of multiaxiality generally result from the external loading, 

geometry or residual stresses. Multiaxial fatigue estimation is a very complex task in 

comparison to simple load cases, which are more or less satisfactorily solved by widely 

used uniaxial methods. Different from the uniaxial fatigue problem, the multiaxial fatigue 

problem involves complex stress and strain states, load histories and fatigue damage 

parameters relating the fatigue life. In recent decades, a large number of studies have 

been done to develop multiaxial fatigue damage criteria. Several reviews and comparison 

of existing multiaxial fatigue damage parameters can be found elsewhere [42,43,44]. 

Although numerous multiaxial fatigue damage parameters have been proposed during the 

past decades to predict the fatigue failure under multiaxial loading conditions, most of 

them are limited to specific materials and load cases and there is no universally accepted 

multiaxial fatigue damage parameter yet. In general, most of the multiaxial fatigue 

damage parameters can be divided into three categories as stress-based, strain-based and 

energy-based damage parameters.   Some of these multiaxial fatigue damage parameters 
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are reviewed in this section to provide better understanding of the multiaxial fatigue 

problem and identify shortcomings and good features of those existing fatigue damage 

parameters.    

2.3.1 Stress-Based Fatigue Damage Parameters  

The stress-based damage parameter is generally used for infinite and/or high cycle 

fatigue where the plastic strains are small. Many investigators attempted to correlate the 

multiaxial fatigue data using classical static yield theories. Three most popular yield 

theories are the maximum principal stress theory, maximum shear stress theory and the 

octahedral shear stress theory. The maximum principal stress theory may be expressed as 

 1  eq  (2.48) 

The maximum shear stress theory may be expressed as 
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31 






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eq
 (2.49) 

The octahedral stress theory or von Mises theory may be expressed as 

       2
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2

1
  eq  (2.50) 

The static yield theories are valid for proportional loading; however these theories do not 

work for the non-proportional loading.   

Sinus [45, 46] reviewed much of the experimental data for combined bending and 

torsion loading and proposed that a linear combination of the octahedral shear stress and 

the mean hydrostatic stress as a  fatigue damage criterion. His resulting fatigue damage 

criterion can be expressed as 
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   





h

oct 3
2

 (2.51) 

In case of combined alternating axial and shear stress, the fatigue damage parameter 

results in a series of concentric ellipses. Sine’s formulation is defined only in case of 

proportional loading and has an advantage of easily being solved for complex stress 

states.  

Findley [47] proposed that the linear form of normal stress and shear stress on a 

specific plane as a fatigue damage criterion.  

 fk n 











max2



 (2.52) 

This specific plane is defined as a critical plane within a material subject to a maximum 

value of a damage criterion. Where f  and k  are material coefficients. Findley identifies 

a critical plane for fatigue crack initiation and growth that is dependent on both 

alternating shear stress and maximum normal stress. This criterion is effective for 

combination of proportional bending and torsion loadings under the same ratio of normal 

to shear stress amplitudes ( mmaa   ). According to Findley, the orientation of the 

critical plane in case of zero mean stress values depend on the direction of the maximum 

principal stress, 
1   and material coefficient, k. Findley noticed that k value is small for 

ductile materials and the direction of the critical plane for these materials approaches to 

the direction of maximum shear stress. A high k value is characteristic for brittle 

materials and the critical plane position is then close to the position of the maximum 

principal stress direction. In case of mean stresses different from zero, the position of the 

critical plane depends not only on the direction of the maximum principal stress, 1   and 
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k value, but also on variable and static stresses. When mean stresses from bending and 

torsion are high in comparison with variable stresses, the critical plane approaches the 

plane of the maximum principal stress. The Findley criterion often is applied for the case 

of finite high cycle fatigue regime.  

McDiarmid [48] analyzed available high cycle fatigue data and proposed a 

damage criterion based on the maximum shear stress amplitude, 2max   and normal 

stress, max,n  on the critical plane. The critical plane in this criterion is the plane of the 

maximum shear stress range.  

 1
22

max,

,

max 





uts

n

BAt 


 (2.53) 

This criterion distinguished case A and case B fatigue cracks. The distinction consists of 

applying different the shear fatigue strengths denoted as BAt ,2  for case A and case B 

cracking. This model is similar to Findley’s model with some differences. McDiarmid’s 

model considers both A and B type cracking modes. Case A cracking mode propagates 

the cracks along the free surface and case B cracking mode grow the cracks that penetrate 

into the material. Findley’s material coefficient is replaced by the quantity, utsBAt 2, . 

The critical plane is defined as the plane with the maximum shear stress amplitude and 

not the plane on which the damage criterion is maximized.  

Dang Van [49] proposed an endurance limit criterion based on the concept of 

micro-stresses within a critical volume of the material. This model was developed on the 

basis of observation that fatigue crack nucleation is a local process and begins in grains 

that have undergone plastic deformation. As a result of plastic deformation, intracrystal-
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line slip bands are formed in grains, which begin the crack process. Dang Van suggested 

that because cracks usually nucleate in intracrystal slip bands, the microscopic shear 

stress on the grain must be an important damage parameter. The second important 

parameter is the microscopic hydrostatic stress, which influences crack opening process. 

These two proposed fatigue parameters are involved in a linear function.  

     btat    (2.54) 

Where  t  and  t  are instantaneous microscopic shear stress and hydrostatic stress, 

and a and b are constants. These constants are determined from material test at two 

different stress states. The microscopic stresses and strains within critical grains are 

different from the macroscopic stresses and strains commonly used for fatigue analysis. 

The microscopic shear stress,  t  is computed from the microscopic principal stresses 

according to Tresca maximum shear stress theory.  

       ttt 31
2

1
   (2.55) 

The microscopic principal stresses,  t1 ,  t3  are calculated from the microscopic 

stress tensor,  tij . This tensor is calculated as the sum of macroscopic stress tensor, 

 tij  and deviatric parts of the stabilized residual stress tensor, 
*dev .  

     * devtt ijij   (2.56) 

The criterion can be expressed as combination of the microscopic shear stress,  t  and 

hydrostatic stress,  t  as shown in Figure 2-18. A loading path that remains within the 

two bounding failure lines is expected to have infinite life, whereas any path that extends 

outside the damage line will have failure because the microscopic plastic strain occurs. 
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The Dang Van criterion is intended to be used as a method of predicting the endurance 

limit under complex loadings.  However, it can be used in long finite life regime with 

different values of constants a and b for different fatigue life ranges. 

The Findley, McDiarmid and Dang Van fatigue damage criteria can be described 

as critical plane approaches since they consider the fatigue damage as accumulating on a 

specific plane(s) within a material. In case of constant amplitude proportional loading, 

there is no significant difference among any of these shear stress-based criteria. The Dang 

Van and McDiarmid fatigue damage criteria have been developed more recently for 

situations involving complex non-proportional loading. The Dang Van fatigue damage 

criterion appears complex, but is easy to compute and have gained widespread 

acceptance for more complex loadings. Findley’s criterion is reasonably accurate and 

simple and is gaining acceptance even for complex loading cases. However, there is no 

universal criterion based on stresses, and the successful application of a particular stress 

criterion, in a large degree, depends on experimentally established material coefficients. 

The most promising stress-based fatigue criteria seem to be those which can be used 

under the general type of loading, i.e. the multiaxial random loading. Unfortunately, only 

a few stress criteria were experimentally verified under such loading. The fatigue damage 

criteria based on stresses are not able to take into account the effects of the cyclic 

hardening or softening. If the fatigue tests are performed under stress controlled 

conditions, the effects of the cyclic hardening and softening is visible only in strain 

history, which is not taken into account in the stress-based fatigue damage criteria. 
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In Table 2-1, the stress-based fatigue damage parameters are listed and a 

comparison summary is given to provide better understanding their prediction 

capabilities.  

 

Table 2-1: Comparison summary of stress-based fatigue damage parameters 

Fatigue Damage Parameter 
Mathematical 

Model 
Prediction Capability 

Mean Stress 

Effects 

Maximum principal stress 1  eq
 Cyclic, proportional No 

Maximum shear stress 
22

31 








eq  Cyclic, proportional No 

Equivalent stress 
),,( 321   feq

 
Cyclic, proportional No 

Sinus [45,46]   





h

oct 3
2

 Cyclic, proportional No 

Findley [47] fk n 











max2


  Cyclic, proportional No 

McDiarmid [48] 1
22

max,

,

max 





uts

n

BAt 

  
Cyclic, proportional 

Cyclic, non-proportional 
Yes 

Dang Van [49]     btat    Random, proportional Yes 

 

2.3.2 Strain-Based Fatigue Damage Parameters 

Strain-based fatigue damage criteria for multiaxial fatigue are associated with low 

cycle fatigue where significant plasticity may occur. Like stress-based criteria, the first 

strain-based criteria for multiaxial fatigue were formulated on the basis of static yield 

criteria. The most popular strain-based yield criteria are: criterion of maximum normal 

strain, criterion of maximum shear strain and criterion of maximum octahedral shear 

strain.  
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According to the maximum normal strain criterion, the maximum normal strain is 

responsible for material fatigue failure. This criterion may be expressed as 

 1  eq  (2.57) 

In this case, the critical plane is the plane of maximum normal strain range. 

The maximum shear strain criterion may be expressed as 

 
2

31 
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
 eq

 (2.58) 

According to this assumption, the critical plane is the plane of maximum shear strain 

range. 

The octahedral strain theory or von Mises theory may be expressed as 
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and the critical plane is the octahedral plane. 

Yokobori et al. [50] in 1965 showed that the equivalent strain did not correlate the data 

from tension and torsion tests as shown in Figure 2-19 for 1035 steel. On the basis of 

plastic octahedral shear strain, torsion loading is less damaging than tension. 

Equivalent strain approaches do not explain the observed nucleation and propagation of 

fatigue cracks on specific planes of material being tested. Equivalent strain criteria may 

prove successful for proportional loadings and certain materials, however is unsuitable 

for the case of non-proportional loadings. 

Strain-based critical plane fatigue damage parameters have evolved from 

experimental observation of the nucleation and growth of cracks during loadings. Fatigue 

life usually will be governed by crack growth along either shear planes or tensile planes 
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depending the material, stress states and strain amplitude. A critical plane fatigue damage 

parameter will include dominant damage parameters governing either type of crack 

growth. 

Brown and Miller [51] proposed a damage criterion for multiaxial fatigue, which 

assumes that fatigue life is generally a non-linear function of the strain state. Analogous 

to the shear and normal stress proposed by Findley for high cycle fatigue, Brown and 

Miller suggested that both the cyclic shear and normal strain on the plane of the 

maximum shear must be considered as the damage parameter. Brown and Miller 

reviewed much of the available multiaxial low cycle fatigue literature with particular 

emphasis on the formation and early growth of cracks and suggested the terms Case A 

and Case B cracks as shown in Figure 2-20. 

Brown and Miller proposed separate criterion for each type of cracking. 

Case A: 

j
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
=constant (2.60) 

Where g, h and j are constants used to fit the ellipse of the   plane. The value of j ranged 

from 1 for brittle materials to 2 for ductile materials. 

Later, Kandil, Brown and Miller [52] proposed a simplified formulation for Case A 

cracks. 
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Where 


  is the equivalent shear strain range and S is a material-dependent coefficient 

that represents the influence of the normal strain and is determined by correlating axial 

and torsion fatigue data. Here, max  is the maximum shear strain range,  and n is the 

normal strain range on the plane experiencing the maximum shear strain range, max . 

The fatigue damage parameter can be formulated using uniaxial fatigue parameters as 
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Wang and Brown [53] added a mean stress term using Morrow’s mean stress approach by 

subtracting the mean stress from the fatigue strength coefficient in the following form. 
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 (2.63) 

It should be noted that the mean stress on the maximum shear range plane is one-half of 

the axial mean stress.  

Socie et al. [54] observing fatigue fractures reached a conclusion similar to those 

by Brown and Miller [51] that the normal strain, n  on the plane of maximum shear 

strain accelerates the fatigue damage process through crack opening. The crack opening 

reduces the friction forces between irregularly shaped slip planes. Hence, the mean 

normal stress, meann,  on the plane of maximum shear strain was included in the 

following damage model. 
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On the basis of fatigue tests related to different materials, Fatemi and Socie [55] 

noticed that Brown and Miller fatigue damage parameter based on only strain values does 

not include additional material hardening occurring under non-proportional loading. In 

order to take into account this effect, they suggested that the normal strain term in the 

critical plane should be replaced with the maximum normal stress value, max,n . The 

conceptual basis is shown schematically in Figure 2-21. 

The following fatigue damage parameter may be interpreted as the maximum shear 

strain amplitude corrected by the maximum normal stress to quantify fatigue damage. For 

uniaxial strain-life properties, the fatigue damage parameter is given as  
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The fatigue damage parameter based on the shear strain-life properties takes the form of  
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The fatigue damage parameter includes the mean stress effects through the maximum 

value of normal stress on the critical plane. 

As many other fatigue damage parameters, the damage parameter proposed by 

Brown et al. is not able to take into account strain path dependent hardening. The Fatemi-

Socie damage parameters accounts for the non-proportional hardening and mean stress 

effects through the normal stress term. The Brown-Miller and Fatemi-Socie fatigue 

damage parameters have been developed primary using materials for which the dominant 
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failure is shear crack nucleation and growth i.e. Mode II and Mode III fracture modes 

dominates.  

A summary of the strain-based fatigue damage parameters is presented in Table 2-2. 

Table 2-2: Comparison summary of strain-based fatigue damage parameters 

Fatigue Damage Parameter 
Mathematical 

Model 
Prediction Capability 

Mean Stress 

Effects 

Maximum normal strain 1  eq  Cyclic, proportional No 

Maximum shear strain 
2

31 



 eq

 Cyclic, proportional No 

Octahedral shear strain ),,( 321   feq
 Cyclic, proportional No 

Brown and Miller [51] 

j

n

j

hg
















  
 

Cyclic, proportional 

Cyclic, non-proportional 
No 

Kandil, Brown and Miller 

[52] nS 









22

max  

Cyclic, proportional 

Cyclic, non-proportional 
No 

Wang and Brown[53] 
nS 










22

max  

Cyclic, proportional 

Cyclic, non-proportional 
Yes 

Socie et al. [54] 
E

meannn ,max

22








 
Cyclic, proportional 

Cyclic, non-proportional 
Yes 

Fatemi and Socie [55] 
















y

n
n



 max,max 1
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Cyclic, proportional 

Cyclic, non-proportional 
Yes 

 

2.3.3 Energy-Based Fatigue Damage Parameter  

Several multiaxial fatigue damage parameters based on strain energy have been 

developed. These energy-based parameters came from the basis that strain energy per 

cycle may be considered as a measure of fatigue damage and the fatigue resistance of a 
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material may be characterized in terms of its capacity to absorb and dissipate the strain 

energy.   

Smith and co-authors [56] proposed a fatigue damage parameter, SWT, described 

as stress and strain product, a max  for fatigue life prediction. The SWT parameter was 

originally developed as a correction for mean stresses in uniaxial loading situations. The 

critical plane form of the SWT parameter was proposed by Socie [54] for proportional 

and non-proportional loadings of materials that fail primarily due to Mode I tensile 

cracking. The SWT parameter for multiaxial loading is based on principal strain range, 

1  and maximum stress on the principal strain range plane, max,n . 
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1max, 


  (2.67) 

The non-proportional hardening and mean stress effects for multiaxial loading are 

incorporated through the stress term in this model. 

Liu [57] proposed an energy-based fatigue damage parameter to estimate fatigue 

life based on virtual strain energy (VSE). The VSE parameter can be considered as a 

critical plane based because the work quantities are defined for specific planes within the 

material. The parameters of virtual strain energy are associated with two different modes 

of fatigue cracks: a mode for tensile failure, 
IW  and a mode for shear failure, the IIW  

with the shear failure mode being divided into two crack types, Type A and Type B.  

Failure is expected to occur on the plane in the material having maximum VSE quantity. 

The IW  parameter is the sum of normal strain energy density,  
maxnn    and the 
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shear strain energy,     in the plane of the maximum normal strain energy density. 

The 
IW  parameter is used to predict fatigue life according to Mode I fracture. 

    
maxnnIW  
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
 (2.68) 

The 
IIW  parameter is the sum of the maximum shear strain energy density,  

max
 

and the normal strain energy density,  nn    in the plane of the maximum shear strain 

energy density. The 
IIW  parameter is used to predict fatigue life according to Mode II 

fracture. According to Mode II cracking, the 
IIW  parameter is designated AIIW ,   and 

BIIW , for Case A and Case B cracks. 
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The VSE parameters are essentially energy-based critical plane models and physically 

associated with two different modes of fatigue fracture.   

Chu et al. [58] proposed a fatigue damage parameter to combine shear and normal 

strain work. They replaced the stress ranges with maximum stresses in order to include 

mean stress effects.   
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The fatigue damage parameter is based on the maximum value of *W  rather than being 

defined on the plane of maximum normal and shear strain. The physical basis of this 
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model attempts to average the contribution of tensile and shears strain work. In tension, 

Mode I cracking occurs on 00  planes and Mode II cracking on 045  planes. Cracks 

usually begin in Mode II and turn to Mode I, giving an average crack direction of 22.5
o
. 

Glinka et al. [59,60] proposed an energy parameter of total strain energy density, 

expressed by stresses and strains on the critical plane.  
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* nnW
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  (2.71) 

This came from the Brown-Miller damage parameter [51] that fatigue life, fN  is a 

function of normal and shear strains on the critical plane. Authors applied shear and 

normal strain energy density instead of shear and normal strains. In order to take into 

account the mean stress effects, authors have modified the above fatigue damage 

parameter as follows 
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 (2.72) 

In this fatigue damage parameter, normal mean stresses will assist in the opening of a 

crack and shear mean stresses will help to overcome sliding friction by deforming 

asperities on the crack surface.  

 Pan et al. [61] noticed that the influence of the strain energy in the shear 

direction,   22    on the fatigue life is different than the influence of strain energy 

calculated on the normal direction,   22 nn   . For this reason, they proposed to 

modify the Glinka damage parameter by applying two coefficients determined by 

experiments. 
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* nnkkW
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


  (2.73) 

Where the coefficient are equal to ffk ''

1   and ffk ''

2  . The damage 

parameter in Eq. (2.73) was used to correlate the fatigue experimental fatigue life, fN .  

Chen et al.[62] proposed two fatigue damage parameters: the first one for 

materials dominated by Mode I crack, and the second one for materials dominated by 

Mode II crack. Both parameters assume the influence of normal and shear stresses and 

strains on the critical plane. For materials characterized by Mode I crack, the critical 

plane is the plane of maximum normal strain range, max,n .   
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For materials characterized with Mode II crack, the critical plane is the plane of 

maximum shear strain range, max .   
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Varhani-Farahani [63] proposed a fatigue damage parameter as the summation of 

the normal, nn    and shear,  2maxmax    strain energy density ranges calculated on 

the critical plane of maximum shear at the time instant when Mohr’s circles of stresses 

and strains are the largest during a cycle. Energies of normal and shear strains are 

weighted through material fatigue coefficients. The proposed fatigue damage can be 

applied only for cyclic loading and plane stress state 
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This fatigue damage parameter does not take into account the fact those positions of 

principal axes of stresses and strains do not coincide in case of elastic-plastic strain state.  

Jahed and Varhani-Farahani [64] proposed an energy-based fatigue damage 

parameter. The proposed damage parameter is based on axial and shear stress and strain 

components responsible for cracking modes of failure dominantly Case A and Case B. 

Two fatigue values based on axial and shear energy are determined which corresponding 

the lower and upper fatigue limits. 

    CAf
B

AeA NENEE ''   (2.77) 

    Cs

Tf
Bs

TeT NWNWE ''   (2.78) 

Where 
AE  and 

TE  are the total energy (plastic and elastic) values due to pure tensile 

and pure torsional loading. Energy-based fatigue properties are calculated from energy-

life curves.  

For a component experiencing Case A cracking, where shear cracks grow along surface, 

crack growth is very slow, while the life of such component under Case B cracking where 

shear cracks growing into the surface is much smaller. The upper and lower limits of 

fatigue life coincide with these proposed models.  Jahed and Varhani-Farahani suggested 

that real fatigue life must fall between these two limits, a method incorporating both 

bounds of axial and torsional loadings may be expressed by integrating these limits as 
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This energy parameter is based on the cracking mechanism and the amount of dissipated 

strain energy during fatigue loading cycles. 
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A comparison summary of the energy-based fatigue damage parameters is given in Table 

2-3 to compare their prediction capabilities.  

Table 2-3: Comparison summary of energy-based fatigue damage parameters 

Fatigue Damage 

Parameter 
Mathematical Model Prediction Capability 

Mean Stress 

Effects 

Socie [54] 1max,  n  
Cyclic, proportional 

Cyclic, non-proportional 
Yes 

Liu [57] 

    
maxnnIW

   
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Glinka et al. [59,60] 
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Pan et al.[61] 
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2.4 Cumulative Damage  

The linear damage rule proposed by Palmgren [65]-Miner [66] can be used to 

account for accumulated damage. The liner damage rule does not require any additional 

material constant to define it and it can be expressed as a 

 ...
2

2

1

1 
fffi

i

N

n

N

n

N

n
D  (2.80) 

Where in  is the number of cycles at a given stress or strain amplitude and fiN  is the 

number cycles to failure associated with the same stress and strain amplitude. 

Although there have been many objections to assumptions of the linear damage rule, it 

still remains as the most widely used cumulative damage rule due to its simplicity. 

Sequence and interaction of loads may have significant effects on the fatigue life. The 

rate of damage accumulation may be a function of the load amplitude such that at low 

load levels, most of the life is involved in the crack initiation, while at high load levels 

most of the life is spent in crack growth. The linear damage rule does not account for load 

amplitude dependence of load sequence effects which are usually encountered in the 

variable amplitude loadings experienced by the driveline and suspension components. 

High amplitude cycles followed by low amplitude cycles are usually more damaging than 

low amplitude cycles followed by high amplitude cycles, even for materials without 

constitutive behavior sensitivity to load sequence. In order to overcome deficiencies 

associated with the linear damage rule, many nonlinear damage rules have been proposed 

Since sequence and interaction of loads are not accounted for by the linear 

damage rule, a nonlinear damage accumulation rule is used to account for these effects. 

Markoy and Starkey [67] proposed an exponential form of a linear damage rule as: 
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 (2.81) 

Where i  is based on the load level to take into account effects of sequence for 

loadings. 

In multiaxial fatigue, variation of load path can also affect fatigue life. For example, 

torsion followed by tension has been found to be more damaging than tension followed 

by torsion [68,69]. This phenomenon has been explained by torsion cycles nucleating 

small cracks on planes where subsequent tensile cycles can lead to their growth, while 

tensile cycles do not nucleate cracks on planes which can grow by torsion cycles. 

2.4.1 Critical Plane-Based Fatigue Damage Parameters  

Many multiaxial fatigue damage parameters have been proposed, but 

unfortunately, no general agreement has been reached on the best method or approach to 

multiaxial fatigue. However, as it has been supported by recent studies [76,77,90],  the 

critical plane concept is considered as one of the most successful approach in predicting 

multiaxial fatigue life due to their reasonable accuracy and predicting the potential crack 

plane orientation. The critical plane based fatigue damage parameters postulate that only 

shear and normal stresses and strains in these planes contribute the crack initiation and 

propagation. Various critical plane models such as stress-based (the Findley), strain-

based (the Brown-Miller and the Fatemi-Socie) and energy-based (the Chu and the 

Glinka) damage parameters, which have been briefly reviewed before are discussed in 

great detail in this section to identify their capabilities and shortcomings in their 

applications of predicting fatigue life under multiaxial loading. In this study, these fatigue 

damage parameters for the discussion have been selected due to their general 
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representation of the stress-based, the strain-based and the energy-based damage 

parameters.   This discussion will lead to development of a proposed multiaxial fatigue 

damage parameter in Chapter 4 by combining good features from those models. The 

proposed multiaxial damage model is presented in Chapter 4. 

Based on physical observation of initial fatigue crack observation in steel and 

aluminum, Findley [47] proposed a linear combination of normal stress acting on shear 

stress plane. According to Findley, the critical plane is the plane of orientation theta 

maximizing the Findley damage parameter, Eq. (2.52). The Findley damage parameter is 

often applied for the case of high cycle fatigue regime where the plastic deformation is 

negligible and loading is proportional. This damage parameter does not contain any strain 

terms, and therefore does not consider the cyclic plastic deformation, thus is not 

applicable to low cycle fatigue. The Findley damage parameter also requires a material 

fitting coefficient, k for the influence of the normal stress on the maximum shear stress 

plane.  

 Many strain-based multiaxial fatigue damage parameters have been proposed. The 

Brown-Miller and Fatemi-Socie damage parameters are considered to be the two most 

popular fatigue damage parameters in the critical plane method. However both damage 

parameters have their weaknesses and limitations in the application of multiaxial life 

prediction. These strain-based critical plane damage parameters state that that the fatigue 

damage parameter requires at least two terms to provide satisfactory life prediction under 

the multiaxial loadings. These fatigue damage parameters consider the maximum shear 

strain range as a primary damage parameter and normal stresses or strains acting on the 

critical plane as a secondary damage parameter. Brown-Miller [51] proposed the normal 
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strain as the secondary parameter, Eq. (2.61) whereas Fatemi-Socie [55] suggested the 

normal stress as the secondary damage parameter, Eq. (2.65). In these models, S and k 

material fitting constants which require cyclic torsional testing are used to account for the 

sensitivity of the normal strain and normal stress on the maximum shear strain range on 

the critical plane. The requirement for the additional material testing determines that 

these material constants are not considered to be practical and efficient approach for the 

application of multiaxial fatigue life prediction. The Brown-Miller and Fatemi-Socie 

damage parameters are determined on the plane of the maximum shear strain, however, 

in case of in-phase loading, the Brown-Miller and the Fatemi-Socie damage parameters 

reach their maximum on not the plane of the maximum shear strain, but on the different 

plane as shown in Figure 2-22. If the normal strain in Brown-Miller damage parameter 

and the maximum normal stress in the Fatemi-Socie damage parameter has an effects on 

the maximum shear plane to assist in accelerating a crack, the effects of normal strain and 

stress should be present in all planes experiencing shear strain, rather than only on the 

plane of the maximum shear strain . Figure 2-22 shows that the maximum fatigue damage 

occurs on the plane near the plane of the maximum shear strain rather than the maximum 

shear plane due to higher normal strain and stress quantities for both the Brown-Miller 

and Fatemi-Socie damage parameters. However, in case of out-of-phase loading, the 

plane experiencing the maximum fatigue damage is exactly same as the maximum shear 

strain plane (Figure 2-22).  Fatigue cracks for many materials for in-phase and 90
o 

out-of-

phase loadings were found to be around maximum shear plane [70]. This conclusion 

supports the argument that the critical plane should be a plane experiencing the maximum 

fatigue damage, not necessarily the maximum shear strain-stress plane. Although the 
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Brown-Miller damage parameter can apply to both low and high cycle fatigue, the fatigue 

damage parameter cannot show constitutive behavior of the material such as effects of 

the non-proportional cyclic hardening due to missing the stress term in the damage 

parameter.  The Brown-Miller damage parameter does not take into account effects of the 

mean stress because the model is only based on strain terms. Both the non-proportional 

and mean stress can have significant effects on multiaxial fatigue life. Unlike the Brown-

Miller damage parameter, the Fatemi-Socie damage parameter has an ability to capture 

effects of the non-proportional hardening through the maximum normal stress in the 

damage parameter. The Fatemi-Socie damage parameter also takes into account the 

effects of the mean stress on the critical plane through the maximum normal stress, which 

is a sum of alternating and mean stress components. These strain-based critical planes 

models have been found to be applicable to both proportional and non-proportional 

loading conditions [1,71,76,77].    

The energy-based fatigue damage parameters contain both strain and stress terms 

in the form of strain energy in the critical plane. Chu et al. [58] proposed a fatigue 

damage parameter Eq.(2.70) to combine shear and normal strain work. They replaced the 

stress ranges with maximum stresses in order to include mean stress effects.   

The Chu damage parameter is based on the maximum value of the strain energy rather 

than being defined on the plane of maximum normal and shear strain. The physical basis 

of this model attempts to average the contribution of tensile and shears strain work. 

Glinka et al. [59,60] proposed an energy parameter, Eq.(2.71) of total strain energy 

density. This energy parameter is expressed by stresses and strains on the critical plane of 

the maximum shear strain. Glinka et al.  applied shear and normal strain energy density 



 

  

 

52 

instead of total strain energy. Later the Glinka damage parameter was modified by 

including the maximum shear stress and normal stress to take into account the mean 

stress effects, Eq. (2.72) In the Glinka damage parameter, normal stresses will assist in 

the opening of a crack and shear stresses will help to overcome sliding friction by 

deforming asperities on the crack surface. 

Both the Chu and the Glinka damage parameters can be applicable to low and high cycle 

fatigue regimes as well as the proportional and non-proportional loading conditions 

because of both strains and stress components defining the damage parameter. 

In consideration of strengths of the stress-based and strain-based and energy-

based multiaxial fatigue damage parameters previously discussed, some of important 

features from these damage parameters can be summarized as: the multiaxial fatigue 

damage parameter should take into account that tensile mean stress is detrimental to 

fatigue life whereas the compressive mean stress is beneficial. A good multiaxial fatigue 

damage parameter should be applicable to wide range of loading conditions, i.e. 

proportional and non-proportional loading and low and high cycle fatigue regimes. 

Strengths and shortcomings of the stress-based, the strain-based and energy-based fatigue 

damage parameters discussed above lead a proposed multiaxial fatigue damage 

parameter, which integrates all these important features required for a successful fatigue 

damage parameter in Chapter 4. 
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Figure 2-1: The stabilized hysteresis loops and the cyclic stress -strain curve  
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 Figure 2-2: States of loading on yield surface [72] 

 

 

Figure 2-3: Consistency condition for the evolution of yield surfaces for a sequence 

of two loading paths [72] 

 

Figure 2-4: Isotropic hardening model [72] 
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Figure 2-5: Kinematic hardening model [72] 

 

 

 

 

Figure 2-6: Piecewise linearization of the material p

2222   curve and the 

corresponding field of plastic moduli 
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Figure 2-7: Yield surface movement in the Mroz model [72] 

 

 

Figure 2-8: Assumed initial state of the Garud model  
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Figure 2-9: Extension of the line of the stress increment  (the Garud model) 

 

 

Figure 2-10: The geometrical illustration of the step (b) (the Garud model) 
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Figure 2-11: Connect the points A1 and AG (the Garud model) 

 

Figure 2-12: Translation of the yield surface F1 (the Garud model) 
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Figure 2-13: Neuber’s rule principle 

 

Figure 2-14: Equivalent strain energy density (ESED) method  
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Figure 2-15: Formation of slip bands [73] 

 

 

Figure 2-16: Crack propagation modes [73] 
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Figure 2-17: Stage I and Stage II crack growth processes [73] 

 

 

Figure 2-18: Dang Van Criterion [73] 
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Figure 2-19: Plastic octahedral shear strain – life curve [73] 

 

 

 

Figure 2-20: Case A and Case B crack growth [73] 
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Figure 2-21: Physical basis for Fatemi and Socie model [73] 
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Figure 2-22: Brown-Miller (BM) and Fatemi-Socie (FS) Damage Parameters on 

various planes for (a) in-phase loading and (b) o90 out-of-phase loading 
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Chapter 3                                                                                           

Modelling of Elasto-plastic Stress and Strain in Notches under 

Multiaxial Cyclic Loading 

Predicting fatigue life of notched components requires detail knowledge of 

stresses and strains in critical notched locations. Notch root stresses and strains are 

dependent on the notch geometry, material properties and the loading history applied to 

the body. Engineers/designers need to know local stress and strain responses for the 

applied load history in order to appropriately design and size components to satisfy 

desired fatigue life. The local stress and strain at the critical location can be determined 

by three different methods. First method: performing tests and measuring strain data at 

the notch area by placing strain gauges. Measured strain data from testing can be used as 

an input to the cyclic plasticity model to compute local stresses and strains. However, 

placing strain gauges at the critical location is most often not possible due to space 

constraints of the notch geometry and time and cost associated with testing is too 

expensive. Second method: finite element modelling of the notched component and 

performing incremental elastic-plastic nonlinear finite element analysis to determine the 

local stress and strain history. However, this method is not practical in terms of 

computational time and a hard disk space for a long load history, which often the 

components are subjected to. Third method: the notch correction method can be 

combined with the cyclic plasticity model to compute the local stress and strain history 

from the pseudo elastic stress and strain at the notch area. Coupling the notch correction 

method and the cyclic plasticity to compute the local stresses and strains at critical 

locations in components provides a great advantage over tests and elastic-plastic finite 
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element analyses due to its simplicity, computational efficiency, low cost and reasonable 

accuracy. The multiaxial elasto-plastic stress-strain notch analysis method was previously 

proposed by Buczynski and Glinka [74] has been modified , improved and  extended to 

such a level of sophistication that it can be used for stress-strain analysis for notched 

components using linear elastic FE stress results (pseudo elastic stresses). The method is 

based on the incremental relationships, which relate the elastic and elastic-plastic strain 

energy densities at the notch root and the material stress-strain behavior, simulated by the 

Garud cyclic plasticity model. The original algorithm used in the method has been 

modified to allow synchronization of elastic input and elasto-plastic output in context of 

material memory effects, thus ensuring closed hysteresis loops (analogy of cycle counting 

in case of  uniaxial stress state) for non-proportional loadings. The structure of original 

computer algorithm was based on single point stress-strain calculation, therefore the 

original algorithm have been modified to allow stress-strain calculations for many nodal 

points which define critical notch areas of the FE model.  The original computer program 

codes written in Fortran 77 have also been converted to Fortran 90 in order to increase 

computational efficiency of the program for practical engineering applications.   

The stress state near the notch region is in most cases multiaxial in nature. The 

multiaxial Neuber notch correction rule and the Garud cyclic plasticity model can be 

combined to provide a complete set of governing equations to solve all unknown notch 

stress and strain components. In order to implement equations defined in this chapter for 

a notched component subjected to multiaxial loading paths, a general computation 

algorithm has been developed. A flow chart for the algorithm implementing the stress and 

strain analysis for notched components subjected to the multiaxial loading paths is shown 
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in Figure 3-1. The notch correction describes the relationship between nominal loads 

(pseudo elastic stresses and strains) and the actual elasto-plastic stresses and strains at the 

notch tip. The cyclic plasticity provides constitutive equations relating stresses and 

strains. This chapter discusses how to combine the Neuber notch correction rule and The 

Garud cyclic plasticity model for numerical computation of the notch stress and strain 

components from given pseudo elastic stress-strain histories.  

3.1 Linear Elastic Stress-Strain Histories 

FE models are used often to analyze engineering components. A linear elastic 

FEA can be used to calculate linear elastic stresses/strains for a notched component. Once 

the elastic stresses/strains are known, the elasto-plastic stress-strain analysis (combined 

the multiaxial notch correction and the cyclic plasticity) can be used to compute actual 

elastic-plastic stress and strain responses at notch areas. The linear elastic FEA assumes 

that there is a linear relationship between the applied external load and stress/strain 

results. Axle and shaft components often experience combined bending and torsion loads. 

Let us consider a notched shaft shown in Figure 3-2, which has two applied load 

histories, namely bending and torque. The FEA is performed to calculate unit-load linear 

elastic stress results for each applied load. The elastic stress tensor at each node from the 

linear elastic FEA is multiplied by the corresponding load history to compute a time 

history of elastically-calculated stress tensor. If the elastic stress tensor at a node is 
pe

ij  

for a unit load of p , the time history of elastic stress tensor, 
)(tPe

ij  for the load history, 

)(tP  can be calculated as  

 
pe

ij

tPe

ij tP  )(
)(
  (3.1) 
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If the elastic stress tensor at the same node is 
qe

ij  for a unit load of q ,   the time history 

of elastic stress tensor, 
)(tQe

ij  for the load history, )(tQ  can be calculated as 

 
qe

ij

tQe

ij tQ  )(
)(
  (3.2) 

Time histories of elastic stress tensor 
)(tPe

ij  and 
)(tQe

ij for the same node are then 

superimposed to obtain the resultant time history of elastic stress tensor for both load 

histories, )(tP  and )(tQ applied simultaneously. 

 
Qe

ij

Pe

ij

e

ij    (3.3) 

Figure 3-3 shows a schematic representation of the implementation procedure for the 

algorithm. Since fatigue crack initiation is formed on the surface of a component, nodal 

stress components for surface nodes at critical notch areas are used for the fatigue life 

prediction.  A macro routine written in ANSYS Parametric Design Language (APDL) is 

used to compute elastic stress results for surface nodes for the each unit load. Unit-load 

elastic stress results from the FEA and corresponding time histories for the each unit load 

are used as input to a computer program to calculate combined time histories of elastic 

stress tensor at critical notch areas.  

 If components of a stress tensor change proportionally during the loading, the 

loading is called proportional. When the applied load results in the change of the 

principal stress directions and the ratio of the principal stresses, the loading is called non-

proportional.  As can be seen in Figure 3-4, in case of the proportional (in-phase) loading, 

the size of Mohr’s circle changes during cycle loading, but the direction of principal 

stresses remains fixed, whereas for non-proportional (out-of-phase) loading, direction of 
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principle stresses rotates in time (Figure 3-6).  The maximum shear stress range, max
 

on the maximum shear plane and the maximum normal stress range, 
max,n  on the 

maximum normal plane are shown for proportional and non-proportional cyclic loadings 

in these figures. When plastic yielding takes place at the notch tip, then the stress path at 

the notch tip region is usually non-proportional regardless whether the external loading is 

proportional or not. Non-proportional loading/stress paths are usually defined by 

increments of load/stress components and therefore, stress-strain calculations have to be 

carried out in incremental form. Time histories of elastic stresses are transformed to 

increments of elastic stresses. A schematic representation of elastic stress increments 

used as input to the stress-strain notch analysis model is shown in Figure 3-8. 

For the case of general multiaxial loading applied to a notched body, the state of 

stress near the notch tip is tri-axial. However, the stress state at the notch tip is bi-axial 

because of the notch-tip stress for a free surface as shown in Figure 3-9.  Since 

equilibrium of the infinitesimal element at the notch tip must be maintained, i.e. 

ee

3223    and
ee

3223   , there are three non-zero stress components and four non-zero 

strain components.  
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  (3.4) 

Seven fictitious linear elastic stress and strain components ),( e

ij

e

ij   are obtained from the 

linear elastic FE solution, however the actual elastic-plastic stress and strain components 

),( a

ij

a

ij   at the notch tip are unknown. Therefore, a set of seven independent equations is 
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required for the calculation of actual elastic-plastic stress and strain components at the 

notch tip. The multiaxial Neuber notch correction rule and the Garud cyclic plasticity 

model are integrated to provide required seven equations to solve for all unknown stress 

and strain components. The cyclic plasticity provides four equations and the notch 

correction rule provides remaining three equations. 

3.2 Constitutive Governing Equations  

Under applied cyclic loadings, stress-strain responses at critical regions (notches) 

often show a transient response, but stabilize over a number of cycles. For non-

proportional load histories, an incremental plasticity analysis is required to estimate the 

material’s stress-strain response. A number of incremental plasticity models 

[11,12,13,18,19,20,24] have been developed to estimate constitutive material behavior 

and some of those models are sophisticated to include the transient hardening responses. 

However, these complex models require significant material testing to characterize model 

parameters and are not appropriate for practical engineering use. Furthermore, for the 

multiaxial fatigue analysis, the transient nature of deformation behavior is not as critical 

as the behavior of cyclically stabilized material behavior. Therefore, a relatively simple 

Garud hardening model is used to deal with proportional and non-proportional multiaxial 

loadings.   

The cyclic plasticity model provides a set of governing equations to relate stress 

and strain components. Since the fatigue cracks most often initiate on the surface of a 

component, governing equations are presented for stress/strain state on the free 

component surface. Governing equations are presented in deviatoric space based on a 
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rate-independent, homogenous and isotropic material because it is easier to formulate the 

equations using deviatoric stress and strain quantities. 

In elastic loadings, the deformation process is reversible and when the applied 

load is removed from the body, the deformed body returns to its original state. There is a 

direct relationship between stress and strain, and relations between stress and strain 

tensors are determined by Hooke’s law, Eq. (2.3).  

The generalized Hooke’s law in an incremental form is represented as: 

 ijijij

e

ij d
E

v
d

E

v
d  




1
 (3.5) 

When the body is deformed beyond the material’s yield limit, permanent and 

plastic deformation occurs and the deformation process becomes irreversible. When the 

applied load is removed from the body, the permanent deformation remains in the body. 

Based on the plasticity theory, the stress and strain state is dependent on the loading path. 

As discussed in Chapter 2, there are three main elements required in order to model 

constitutive behavior of the material: a yield criterion, which defines a boundary between 

elastic and elastic-plastic stress state, a flow rule , which describes relationship between 

stress and strain increments, and a hardening rule, which describes how yield function 

changes during the plastic deformation. The von Mises yield criterion has been the most 

popular criterion for modelling of the material constitutive behavior. Since it is widely 

accepted that hydrostatic stresses do not influence yielding, the yield function, Eq. (2.12) 

for the isotropic hardening can be described as a uniformly and symmetrically expansion 

of the yield surface in all directions during plastic loading. The yield function, Eq. (2.15) 

for the kinematic hardening can be represented as a translation of the yield surface 
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without any expansion during plastic loading. The yield surface for the kinematic 

hardening maintains its shape and size. 

The flow rule, Eq.(2.11)  defines the relationship between stress and plastic strain 

increments. The flow rule, based on the normality postulate by Drucker [7] implies that 

the increment of plastic strain is in the normal direction to the yield surface during plastic 

deformation. The flow rule associated with the yield surface for the isotropic hardening 

can be described by Eq.(2.13)  and the flow rule associated with the yield surface for the 

kinematic hardening can be described by Eq.(2.16). 

For elastic-plastic loading, total strain tensor is the sum of elastic strain 

determined by Hooke’s law and plastic strain determined by the flow rule.  

The elastic and plastic strain can be added to obtain the total strain. 

 
p

ij

e

ijij    (3.6) 

Similarly, the elastic and plastic strain increment can be added to obtain the total strain 

increment. 

 
p

ij

e

ijij ddd    (3.7) 

Substituting Eqs. (3.5) and (2.11) into Eq. (3.7) yields a general form of the total 

elastic-plastic strain increment. The generalized constitutive elasto-plastic stress-strain 

relationships are derived from the uniaxial stress-stress curve by using principles of the 

theory of elasticity and plasticity. 
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In the case of proportional stress path, the Hencky total deformation of plasticity 

equations can be used for stress-strain analysis. 

    
2

31 a

ija

eq

pa

eq

ij

a

kk
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ij S
E

v

E

v








  (3.9) 

The normality flow rule, also called The Prandtl-Reuss relation is considered one of the 

most frequently used model in the incremental plasticity. The total strain increment, Eq. 

(3.8) can be expressed in the form of the Prandtl-Reuss strain-stress relationship: 
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The notch tip deviatoric stresses of the hypothetical linear-elastic body are determined as: 

   
3

1
ij

e
kk

e
ij

e
ijS    (3.11) 

The elastic deviatoric strain and stress increments can be calculated from the Hooke law. 
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  (3.12) 

The actual deviatoric stress components in the notch tip can analogously be defined as: 

   
3

1
ij

a
kk

a
ij

a
ijS    (3.13) 

The incremental deviatoric stress-strain relations based on the associated the Prandtl-

Reuss flow rule can be subsequently written as: 
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where: 
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This relation assumes that the plastic strain increments at any instant of loading are 

proportional to the deviatoric stress components. The relation between the equivalent 

plastic strain increment and the equivalent stress increment in the uniaxial stress-strain 

curve can be used to determine the multiaxial incremental stress-strain relation Eq. 

(3.15). 
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eqpa

eq
E





  (3.15) 

Where pa

eq  is the equivalent plastic strain increment, a

eq is the equivalent stress 

increment and 
p

TE  is the current value of the generalized plastic modules.  

The function,  a

eq

pa

eq f   , is identical to the plastic strain – stress relationship 

obtained experimentally from uniaxial tension test. The plastic strain – stress relationship 

can be expressed according to the uniaxial Ramberg-Osgood equation. 

  
,

' npK    (3.16) 

Where the constants K
’
 and n

’
 are determined by uniaxial tensile test. 

The analytical expression of the generalized plastic modules 
p

TE  can be derived using the 

Ramberg-Osgood equation. 
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Where pE is the slope of the uniaxial stress-plastic strain curve (or the uniaxial plastic 

modulus). 

The uniaxial stress-strain curve is divided into a desirable number of stress fields (Figure 

3-10). Each stress surface defines regions with constant plastic modulus in the stress 

space. Figure 3-10 shows a graphic interpretation of generalizations of the p
eqeq  

curve in the stress space and stress fields of constant plastic modules. 

In case of stress and strain state on the free surface of the notch, Eq.(3.14), material 

constitutive equations are given in terms of deviatoric stresses. 
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 (3.18) 

Four notch strain increments ( ae11 , ae22 , ae33 , ae23 ) and three notch stress increments 

( a
22 ,  a

33 , )23
a  in  Eq. (3.18) form seven unknowns to be solved. Four deviatoric 

stress increments ( aS11 , aS22 , aS33 ,
aS23 )  in Eq. (3.18)  are functions of three notch 

stress increments ( a
22 ,  a

33 , )23
a . 

3.3 Coupling Constitutive Equations and Neuber Notch Correction Relation 

The main goal of this section is to show how to combine a cyclic plasticity model 

and notch correction method to determine a set of governing equations to compute the 

notch stress and strain components. The cyclic plasticity model provides four governing 
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equations, Eq. (3.18) by establishing a relation between the stress and strain at notch root 

and the notch correction relation provides three additional equations by relating the 

pseudo-elastic and the actual elastic-plastic strains and stresses at the notch root.  

The load is usually represented by the nominal stress being proportional to the 

remote loading for notched bodies. In the case of notched bodies in a plane stress or plane 

strain state, the relationship between the elastic notch tip stresses-strains and the actual 

elastic-plastic notch tip stresses-strains in the localized plastic zone is often approximated 

by the Neuber rule [29] or the Equivalent Strain Energy Density (ESED) equation [31]. It 

was shown [36,41] that both methods can also be extended for multiaxial proportional 

and non-proportional modes of loading. Similar approaches were proposed by Hoffman 

and Seeger [33] and Barkey et al. [39]. All methods consist of two parts namely the 

constitutive equations and the notch correction relating the pseudo linear elastic stress-

strain state ),( 2222

ee   at the notch tip with the actual elastic-plastic stress-strain response 

),( 2222

aa  as shown in Figure 3-11. 

The Neuber rule [29] for proportional loading, where the Hencky stress-strain 

relationships are applicable, can be written for the uniaxial and multiaxial stress state in 

the form of equations (3.19) and (3.20) respectively. 

 
aaee

22222222    (3.19) 
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The Neuber rule states that the total strain energy (sum of the strain energy and the 

complimentary strain energy density) at the notch tip equals to the hypothetical elastic 

strain energy, represented by the rectangles A and B in Figure 2-13. 
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The ESED method [31] represents the equality between the strain energy density at the 

notch tip of a linear elastic body and the notch tip strain energy density of a geometrically 

identical elastic-plastic body subjected to the same load. Figure 2-14 graphically shows 

the equality of the area under the linear-elastic curve and the area under the actual elastic-

plastic 
aa

2222    material curve. The strain energy density equations for the uniaxial and 

multiaxial stress state can be written Eq. (3.21) and Eq. (3.22) respectively: 

  
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The strain energy density equality Eqs. (3.20) and (3.22), relating the pseudo-elastic and 

the actual elastic-plastic notch strains and stresses at the notch tip, has been widely used 

as a good approximation method, but additional conditions are required for the complete 

solution of a multiaxial stress state problem. However, those conditions have been the 

subject of controversy. Hoffman and Seeger [33] assumed that the ratio of the actual 

principal strains at the notch tip is to be equal to the ratio of the fictitious elastic principal 

strain components while Barkey et al. [39] suggested using the ratio of principal stresses. 

Moftakhar [35] found that the accuracy of the stress or strain ratio based analysis 

depended on the degree of constraint at the notch tip. Therefore, Moftakhar el.al. 

proposed [36] to use the ratios of strain energy density contributed by each pair of 

corresponding stress and strain components. Singh et.al. [41] confirmed later that the 

additional energy equations provide a good accuracy when used in an incremental form. 

Because the ratios of strain energy density increments seem to be less dependent on the 
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geometry and constraint conditions at the notch tip than the ratios of stresses or strains 

the analyst is not forced to make any arbitrary decisions about the constraint while using 

these equations. It was also found that the conflict between the plasticity model 

(normality rule) and strain energy density equations at some specific ratios of stress 

components may cause singularity for set of seven equations. Such a conflict can be 

avoided if the principal idea of Neuber is implemented in the incremental form. It should 

be noted that the original Neuber rule (3.19)  was derived for bodies in pure shear stress 

state. It means that the Neuber equation states the equivalence of only distortional strain 

energies. In order to formulate the set of necessary equations for a multiaxial analysis of 

elastic-plastic stresses and strains at the notch tip, the equality of increments of the total 

distortional strain energy density should be used.  

Buczynski and Glinka [74] proposed, analogously to the original Neuber rule, to 

use the equivalence of increments of the total distortional strain energy density 

contributed by each pair of associated stress and strain components, i.e., 
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 (3.23) 

The equalities of strain energy increments for each set of corresponding hypothetical 

elastic and actual elastic-plastic strains and stress increments at the notch tip can be 

shown graphically in Figure 3-12. The area of dotted rectangles represents the total strain 

energy increment of the hypothetical elastic notch tip input stresses while the area of the 

hatched rectangles represents the total strain energy density of the actual elastic-plastic 

material response at the notch tip. 
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Consequently, a combination of four equations from the elastic–plastic constitutive 

equation (3.18) and three equations from the equivalence of increments of the total 

distortional strain energy density, Eq. (3.23) yields the required set of seven independent 

equations necessary to completely define elastic–plastic notch-tip strain and stress 

responses for a notched component subjected to multiaxial non-proportional cyclic loads. 

The final set of equations written as a set of seven simultaneous equations, Eq. (3.24) 

from which all unknown deviatoric strain, a

ije  and stress, a

ijS  increments can be 

calculated, based on the linear hypothetical elastic notch tip stress history, i.e., increments 

e
ij  and e

ije  are known from the linear-elastic analysis.  
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 (3.24) 

Since the equations set, Eq. (3.24) is non-linear, solution of the equations requires an 

iterative approach.  For each increment of the external load, represented by the 

increments of pseudo-elastic deviatoric stresses, 
e
ijS , the deviatoric elastic-plastic notch 

tip strain and stress increments, 
a
ije  and 

a
ijS ,

 
are computed from Eq. (3.24). The 
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calculated deviatoric stress increments, 
a
ijS ,

 
can subsequently be converted into the 

actual stress increments, 
a
ij  using Eq. (3.25). 
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The deviatoric and the actual stress components Sij
a
 and ij

a
 at the end of given load 

increment are determined from Eqs. (3.26) and (3.27). 
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where: n denotes the load increment number. 

The actual strain increments, ij
a
, can finally be determined from Eq. (3.10). 

 

Before the solution of plasticity equations, loading/unloading conditions must be 

checked. At the beginning of initial loading cycle, it is assumed that all strains/stresses 

are elastic and notch tip stress-strain response is equal to known elastic solution, Eq. 

(3.28)  

 
e

ij

a

ij

e

ij

a

ij








 (3.28) 

When the elastic loading reached the initial yield surface, subsequent load increment may 

result in elastic unloading, tangential (neutral) loading and elastic plastic (active) loading. 
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The mode of loading is determined based on loading criterion. When the stress increment 

moves inward from the yield surface, elastic unloading will take place i.e. the inner 

product of tensors dS , SF  satisfies the condition Eq. (3.29): 

 0



ij

ij

dS
S

F
 (3.29) 

If the stress increment is tangential to the yield surface, the neutral loading will occur i.e. 

the inner product of tensors dS , SF   satisfies the condition Eq. (3.30): 

 0



ij

ij

dS
S

F
 (3.30) 

Since the computer implementation of the neutral loading is virtually impossible to 

determine, this loading criterion is regarded as an elastic unloading. The relevant 

constitutive relations for the elastic unloading and tangential loading are described based 

on Hook’s law, Eq. (3.7). 

When the current state of stress increments moves out from the yield surface, the elastic-

plastic loading will take place, i.e. the inner product of tensors dS , SF   satisfies the 

condition Eq. (3.31): 

 0



ij

ij

dS
S

F
 (3.31) 

The elastic-plastic loading condition states that the projection of the stress increment onto 

the normal of the yield surface must be greater than zero. The relevant constitutive 

relations for the elastic-plastic loading are described based on Hook’s law and Prandtl-

Reuss equations, Eq. (3.15). 
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Substituting the yield surface equation (3.6) for kinematic hardening into these loading 

criteria, the loading mode criterion, LC  in terms of finite increments can be written for 

the purpose of numerical implementation as follows: 

 





3,2

3,2

)(
j

i

e

ij

n

ij

a

ijSLC   (3.32) 

The loading mode criterion, LC  for the incremental Neuber’s method states that if elastic 

unloading or the elastic-plastic loading takes place as.  

 
LoadingPlasticElasticLC

UnloadingElasticLC





0

0
 (3.33) 

The coupled constitutive governing and Neuber incremental equations discussed 

before are related with the Garud cyclic plasticity model to compute the actual notch tip 

stress-strain response of a notched component subjected to proportional and non-

proportional multiaxial cyclic loading. After the notch stress increments are determined, 

the translation of the yield surface is updated by employing the multi-surface hardening 

the model proposed by Garud. The mathematics reflecting the yield surface translation 

process by the Garud model can be found in Section 2.1.4 in detail and will not be 

discussed again here. 

In summary, calculation of elasto-plastic stress and strain histories in notch areas 

using pseudo-elastic stress history from the FE solution is based on two step calculation. 

The first calculation is simultaneous solution of the equation set, Eq. (3.24) defined by 

the incremental constitutive governing equations and the incremental Neuber notch 

correction equation for the increments of elasto-plastic notch strains and stresses. The 
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second calculation is to update yield surfaces based on the Garud cyclic plasticity model 

and then stress and strain tensors. 

3.4 Computer Implementation     

In order to implement equations defined in this chapter for a notched component 

subjected to a history of multiaxial cyclic loads, a general algorithm has been developed. 

The flow chart of the algorithm is shown in Figure 3-1. The algorithm starts with the 

linear elastic FEA results of a notch component for unit loads (a macro written in APDL 

is used to output linear elastic solution for each unit load). In next step, two separate 

computer programs written in Fortran 90 are used performing the elastic-plastic stress-

strain analysis; the first computer is used to superimpose linear elastic stress histories at 

notch region of the FE model subjected to multiaxial loads, and the second computer 

program is used to implement the notch stress and strain analysis using increments of 

linear elastic stress histories (output from the first program).  

For the implementation of first program, the linear elastic FE results for each unit 

load are multiplied by the corresponding load history to compute elastic stress history for 

that applied load history and then the elastic stress histories for all applied load histories 

are superimposed to obtain the combined time histories of linear elastic stresses in 

accordance with Eqs. (3.1) to (3.2).  The resultant elastic stress history for each node at 

the critical notch region is divided into small increments of stresses for numerical 

implementation of elastic-plastic stress-strain analysis (Figure 3-8). 

The second program computes the actual elastic-plastic stress and strain responses 

at notch areas. The computer flow chart of the second program is shown through Figure 

3-13 to Figure 3-15. In the beginning of the program, loading criterion conditions must be 
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checked. The yield surfaces are initially centered at the origin (no loading) and all 

stresses are assumed to be elastic, the stress-strain solution is determined by Eq. (3.7). 

When the elastic loading reached the initial yield surface, unloading criterion, Eq. (3.33) 

is used to determine elastic unloading/tangential loading and elastic-plastic loading 

during state of stress increment. If the elastic-plastic loading takes place, the actual 

elastic-plastic strain and stress increments are calculated using Eq. (3.24). A set of seven 

equations (three notch correction equations from Neuber’s rule and four constitutive 

equations are solved simultaneously to determine the actual elastic-plastic strain and 

stress increments. Then active surfaces are translated according to Eqs. (2.24)-(2.43).  If 

stresses exceed the outer yield surface as governed by Eqs. (2.38)-(2.39), the stress 

increment is bi-sectioned, and then stresses are updated to the point where new stress 

state lies on the yield surface. The current state of active surface is also updated. The 

elastic-plastic stress-strain calculation is repeated for the remaining portion of stress 

increments. If the stresses after the load increment remain on the current active yield 

surface, the stresses are updated and the active surface and any interior surfaces are 

translated. The procedure is repeated until the last elastic stress increment is reached. 

The crucial part of the actual stress-strain calculation is based on the cyclic 

plasticity model. The cyclic plasticity model enables the, 
a
eq

a
eq   , relationship to be 

established providing the actual plastic modulus for given stress/load increment, i . In 

other words, the plasticity model determines which piece of the stress-strain curve 

(Figure 2-6) has to be utilized during given stress increment. Two or more tangent yield 

surfaces translate together as rigid bodies and the largest moving surface indicates which 

linear piece of the constitutive relationship should be used for a given stress increment. 
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The slope of the actual element of the stress-strain curve defines the plastic modulus, 

p
eqeq   / , necessary for the determination of parameter, d , in the constitutive 

equation (3.13). The plasticity models are described in most publications, as algorithms 

for calculating strain increments that result from given series of stress increments or vice 

versa.  In the case of the notch analysis neither stresses nor strains are directly inputted 

into the plasticity model. The input is given in the form of the total deviatoric strain 

energy density increments and both the deviatoric strain and stress increments are to be 

found simultaneously by solving Eq. (3.24). Therefore, the plasticity model is needed 

only to indicate which work-hardening surface will be active during current load 

increment, which subsequently determines the instantaneous value of the parameter d. 

In order to find the elastic-plastic deviatoric stress and strain increment 
a
ij  and 

a
ije

from the equation set Eq. (3.24), the value of parameter d is determined first based on 

the current configuration of plasticity surfaces. After calculating the stress increments, 

a
ij , the plasticity surfaces are translated as shown in Figure 2-12. The process is 

repeated for each subsequent increment of the “elastic” input,
e
ij . The cyclic plasticity 

model assumes a stable material response such that no transient hardening effects of the 

non-proportional hardening are taken into account.  
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Figure 3-1: Algorithm for Notch Stress and Strain Analysis  
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Figure 3-2: A notched shaft with applied loads histories )(tP  and )(tQ  

 

 

Figure 3-3: Superimposing FEA elastic stress results from two load histories  
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Figure 3-4: Stress history of in-phase loading  

 

 

Figure 3-5: Mohr’s circle stress response of in-phase loading  
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Figure 3-6: Stress history of 90
o
 out-of-phase loading 

 

 

Figure 3-7: Mohr’s circle stress response of 90
o
 out-of-phase loading 
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Figure 3-8: The input elastic stress increments of the stress-time history 

 

Figure 3-9: Stress state at a notch tip  
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Figure 3-10: A graphical representation of fields of constant plastic modules and the 

multilinear material curve 

 

 

Figure 3-11: Stress states in geometrically identical elastic and elastic-plastic bodies 

subjected to identical boundary  
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Figure 3-12: Graphical representation of the incremental Neuber rule 
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Figure 3-13: Computer flowchart of the notch elastic-plastic stress/strain analysis 

procedure 
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Figure 3-14: Computer flowchart of the notch elastic-plastic stress/strain analysis 

procedure  
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Figure 3-15: Computer flowchart of the notch elastic-plastic stress/strain analysis 

procedure 
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Chapter 4                                                                                               

Multiaxial Fatigue Damage Parameter 

The successful design of notched components subjected to complex multiaxial 

loadings requires that effective methods be available, which can accurately estimate the 

fatigue life of those components under complex states of stresses. This chapter covers 

methods for computational implementation of the proposed multiaxial fatigue damage 

parameter from known stress-strain histories. Computing actual stress and strain 

responses at notches from pseudo elastic stress histories (linear-elastic FE stress histories) 

is discussed in the previous chapter. It is well known that the local stress-strain state 

controls the fatigue strength and the local strain approach has been well adapted as a 

practical engineering method in durability assessment of automotive components.  In past 

few decades, a significant number of multiaxial fatigue damage parameters have been 

developed [43,47,51,52,58,] However, critical plane-based damage parameters have 

gained general popularity due to their reasonably accurate life prediction capabilities. 

These fatigue damage parameters postulate that cracks initiate and grow on preferred 

planes consistent with the physical observation. Most of the critical plane-based fatigue 

damage parameters are given in the form of stress and strain components or a 

combination of stresses and strains associated with the critical plane. However, these 

fatigue damage parameters have limitations taking into account mean stress effects, non-

proportional hardening, and requirement for additional material constants to charaterize 

the fatigue damage.  In order to overcome the shortcomings of the existing critical plane-

based fatigue damage parameters, a multiaxial fatigue damage parameter based on the 

critical plane concept that considers the specific plane(s) experiencing the maximum 
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fatigue damage is proposed. The proposed multiaxial fatigue damage parameter is used to 

predict fatigue lives for notched components under a wide variety of proportional and 

non-proportional multiaxial loadings.  

Experimental fatigue data has shown that local strain fatigue analysis using 

measured strains from notched components provides good correlation even though the 

effect of stress gradient is ignored. This suggests that the stress gradient has no 

significant effect on the fatigue life to crack initiation, but significant effect on the crack 

growth. Fatigue life prediction based on crack initiation has become a common design 

criterion in automotive industry and fatigue crack initiation usually starts on the surface 

of a component. Therefore, the proposed multiaxial fatigue analysis methodology is 

performed on surface nodes at critical notch locations of the FE model. The proposed 

multiaxial fatigue damage parameter uses the actual elasto-plastic stress-strain histories 

for surface nodes in notch area to predict fatigue crack initiation. 

The last section of this chapter presents a numerical implementation of the proposed 

multiaxial fatigue analysis methodology.  

4.1 Stress and Strain State on the Critical Plane 

To evaluate fatigue damage caused by applied loads on an arbitrary plane, the 

local stress and strain components acting on that plane must be known.  The fatigue 

damage parameter on a plane can be expressed in terms of stress and strain quantities as a 

function of the plane orientation. Critical plane approaches are generally based on either 

the maximum shear plane or the maximum principal plane failure mode [51,55,80]. In the 

proposed fatigue damage parameter, stress and strain components on potential planes are 

determined using the coordinate transformation matrix with respect to plane orientation. 
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The fatigue damage is evaluated all potential planes and fatigue failure is assumed to 

occur on the critical plane with the largest amount of fatigue damage.  

The variation of strain and stress components on material planes for a thin-walled 

specimen subjected to in-phase and o90 out-of -phase loading are presented below to 

provide a better understanding of characteristics of fatigue damage on various planes. 

Since most of the multiaxial fatigue testing is conducted using a thin-walled specimen 

under tension and torsion (Figure 4-1), a closed-form solution to express strain and stress 

components on the material plane(s) is given in Eqs.(4.7) and (4.8) for the thin-walled 

specimen subjected to combined tension and torsion loadings. The closed-form solution 

of shear and normal strain and stress components on various material planes is based on 

the assumption that applied axial and shear strain/stress histories are in sinusoidal form.  

The strain tensor for thin-walled specimen subjected to combined tension and 

torsional loads under the strain-controlled loading conditions is expressed as: 

 


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
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021

021

 (4.1) 

Where x  and xy  are applied axial and shear strain histories.  

The incremental plasticity model is used to compute components of the stress tensor from 

applied strain histories that are determined experimentally.   

The state of stress tensor for the thin-walled specimen shown in Figure 4-1 is expressed 

as: 
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








000

00

0

xy

xyx

ij 



  (4.2) 

Where x  and xy  are resulting axial and shear stress histories.  

The normal and shear strain on an arbitrary plane with angle   relative to the specimen 

axis is expressed as: 

    





 2sin
2

2cos
22

xyyxyx






  (4.3) 

    



 2cos

2
2sin

22

xyyx



  (4.4) 

Where xeffy    

If the applied strain time history is sinusoidal, the critical plane can be determined using 

an analytical method. 

  tax  sin  (4.5) 

      tt aaxy sinsin  (4.6) 

Where a  and a  are applied axial and shear strain amplitudes, respectively.   is the 

phase angle between the axial and shear strains, and   is the ratio between the shear and 

axial strains.  

Substituting Eqs .(4.6) and (4.5) into Eqs. (4.4) and (4.3), the following equations can be 

obtained for the normal and shear strain for any plane. 

                   


  teffeff
a sin2sinsin2sincos2cos11

2

22
 

 (4.7) 
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                    teffa sin2cossin2coscos2sin1
22

 

 (4.8) 

Where 
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 (4.10) 

Once normal and shear stress responses are computed from the applied strain histories 

using the incremental plasticity model, normal and shear stresses on the critical plane are 

determined using a similar approach.  

Normal and shear stresses on an arbitrary plane with angle   relative to the specimen 

axis are expressed as: 

    


 2sin2cos
22

xy

yxyx






  (4.11) 

    


 2cos2sin
2

xy

yx



  (4.12) 

Where 0y  

  tax  sin  (4.13) 

    taxy sin  (4.14) 

Where a  and a  are axial and shear stress amplitudes, respectively. Phi ( ) is the phase 

angle between the axial and shear stress.  
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Substituting normal and shear stress terms from Eqs. (4.13) and (4.14) into Eqs. (4.11) 

and (4.12), normal and shear stresses can be obtained on a plane of interest as follows: 

             


 







 taa
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22

2

2

(4.15) 

   

                  
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 (4.16) 

  Where: 
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In case of proportional loading (i.e. in-phase loading,  Figure 4-2a), the variation 

of shear and normal stress and strain ranges on various planes with respect to plane angle 

are shown in Figure 4-2a. As seen from this figure that while the maximum normal strain 

and stress ranges are maximum, shear strain and stress ranges are zero on the same plane. 

This explains why shear components do not contribute to the fatigue damage on the 

maximum principal stress/strain plane for the tensile-type failure. However, when shear 

strain and stress ranges reach maximum, there are non-zero normal stress and strain 

components on the plane.  
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In case of non-proportional loading (i.e. o90 out-of-phase loading, Figure 4-2b), the 

variation of shear and normal stress and strain ranges on various planes with respect to 

plane angle are shown in Figure 4-2b. This figure shows that shear strains and stresses 

have high values on the plane of the maximum shear strain, but normal strains and 

stresses have reasonable high values. Therefore, the contribution of both strain and stress 

terms should be taken into account when formulating a fatigue damage parameter on the 

critical plane. 

However, when stress and strain states are more complex i.e., not continuous 

mathematical forms, shear and normal stress/strain histories are computed in various 

potential planes with predefined interval plane angle. The critical plane is determined as a 

plane experiencing the maximum amount of fatigue damage, e.g. when the shear strain 

range is maximized. In order to compute the fatigue damage parameter on a particular 

plane, stress and strain components need to be expressed on the local coordinate system 

of that plane.  Stress and strain components are a function of time and plane angle. The 

magnitude of strain and stress components and the shape of hysteresis loops are changed 

as a function of plane angle as shown in Figure 4-3 and Figure 4-4. Therefore, the critical 

plane is unknown and must be searched by analyzing all potential candidate planes. The 

general variation of strain and stress components on various planes as a function of phase 

angle, i.e. delay angle between the applied tension and torsion loadings are shown in 

Figure 4-5. 

Since the fatigue life prediction is calculated on the free surface of the notched 

body and stresses and strains usually get their extreme values on the free surface, the 

critical plane should be searched on potential planes of the free surface. Therefore, the 
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transformation of stress and strain tensors is computed on planes of the free surface. The 

coordinate system, x-y-z on the surface of notched body is shown in Figure 4-6. Figure 

4-7 shows two rotations required to transform the stress and strain tensors from the global 

coordinate system, x-y-z to the local coordinate system, x
’
-y

’
-z

’
. The local coordinate 

system, x
’
-y

’
-z

’
 is fixed to the plane of interest. The plane of interest is reached by first 

rotating x-y plane clockwise about z axis by an angle of    and then second clockwise 

the rotation about x axis by an angle of . Therefore, the free surface can be identified by 

deg0   and the plane is perpendicular to the free surface has deg90 . 

The rotation matrix for the rotation of   and the rotation of    are given respectively as: 
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A general transformation matrix to define   rotations is defined as: 
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The transformation matrix, a  defines the rotation about x axis first and the z axis later. 

The stress and strain tensor on a specific plane can be determined as  
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T

ijij aa  '  (4.22) 

 

T

ijij aa   '  (4.23) 

Where ij  and ij  are given stress and strain tensors time histories and '

ij  and '

ij  are 

corresponding stress and strain tensor time histories transformed to any potential plane, 

and Ta  is the transpose of the transformation matrix, a . The stress, ij  and strain, ij  

state on the surface of the notched body are given as 
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The stress state on the free surface is the plane stress as shown in Figure 4-8. A graphical 

representation of searched planes for the rotation of   about x axis on the plane  090  

perpendicular to the free surface is shown in Figure 4-9.  The stress and strain tensors can 

be computed on any candidate planes represented by the x
’
-y

’
-z

’
 coordinate system using 

Eqs. (4.22) and (4.23). The number of planes on which the fatigue damage is calculated is 

reduced by taking advantage of plane stress state on the component surface. For the free 

surface, there are only four possible damage plane systems [75,76]. For tensile loading, 

the plane experiencing the maximum damage must be located on the plane  090 . For 

shear loading, the plane experiencing the maximum damage must be located on the plane

 045 . For combined loadings, the damage is calculated with 045 and  

00 1800 to  in increments of 05  and 090 and  00 1800 to  in increments of 05 . 
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However, Chu [77] indicated that the most critical plane for multiaxial loadings is always 

perpendicular to the free surface  090 . Therefore, only planes with 090 and   

varying from 00  to 0180  should be searched. Only when the hoop stress component,  

33  becomes significantly large or when the shear stress becomes small, the critical plane 

deviates from such a perpendicular plane. Then the search for the critical plane should 

consider all combination of potential planes with angles of   and . The value of 05  is 

chosen as increment angle value due to fact that the fatigue damage calculated on 

potential planes with smaller increment value(s) provides very close results.  

Once normal and shear strains and stress components are calculated on all possible 

failure planes, then, the proposed fatigue damage parameter can be evaluated on each 

plane to determine the critical plane experiencing the maximum fatigue damage i.e. when 

the fatigue damage parameter is maximized. 

4.2 Proposed Fatigue Damage Parameter 

A multiaxial fatigue damage parameter, which quantifies the fatigue damage as a 

function of certain stress and strain variables such as normal strain, maximum stress and 

etc., relates a certain amount of the fatigue damage to fatigue life. 

In general, a successful multiaxial fatigue damage parameter should include 

following important features.  

 Simple, efficient and applicable to a variety of fatigue loading conditions 

e.g., uniaxial loadings and multiaxial loadings including proportional and 

non-proportional loading. 

  Applicable to low and high cycle fatigue regimes. 
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 Includes mean stress effects in the fatigue damage parameter.  

 Reflects the constitutive behavior of material and the non-proportional 

hardening. 

 Physically correct from the continuum mechanics viewpoint. 

 Defined without using any additional material coefficient. 

 Load path dependent. 

 Predicts the failure plane(s) and damage mechanism including tensile and 

shear failure modes. 

In consideration of these important features desired for a successful fatigue 

damage parameter and shortcomings of the stress-based, the strain-based and energy-

based damage parameters discussed in Chapter 2, an original multiaxial fatigue damage 

parameter incorporating most of these important features has been proposed for 

predicting multiaxial fatigue life. The critical plane of this proposed fatigue damage 

parameter considers a plane experiencing the maximum fatigue damage as a critical plane 

rather than the maximum shear or normal strains plane. 

The proposed fatigue damage parameter in the form of generalized strain energy, which 

includes the shear and normal strain energy terms on a critical plane, can be expressed in 

Eq.(4.26).  
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The fatigue damage parameter in the form of the generalized strain energy includes the 

sum of elastic shear strain energy  2max

e  , plastic shear strain energy  22 p  , 

elastic normal strain energy  2max,

e

nn    and plastic normal strain energy

 22 e

nn    terms.   This generalized strain energy based damage parameter accounts 

for effects of the mean stress and the non-proportional hardening through the elastic 

strain energy terms  2max

e   and   2max,

e

nn    by including the maximum shear 

stress, max  and maximum normal stress, max,n  components. Contrary to the strain based 

fatigue damage parameters, the proposed strain energy parameter, *

genW  is acceptable 

from the continuum mechanics viewpoint that energy components are mathematically 

consistent and can be added algebraically. The fatigue damage parameter in the form of 

the generalized strain energy can be related to the mechanical energy input to the 

material. The shear strain energy terms reflect the initiation and growth of cracks, and the 

normal strain energy terms accelerate the crack growth. Similar to the Chu parameter, the 

proposed generalized strain energy parameter is based on a plane with the maximum 

value of the damage parameter i.e. the average contribution from tensile and shear energy 

terms rather than the plane of maximum normal or shear strains. It other words, it takes 

an average direction of Mode II which initiates a crack and Mode I which grows micro-

crack as the crack orientation. 

The shear strain energy terms in Eq. (4.26) can be normalized with the shear stress 

amplitude, 2  and the normal strain energy terms in Eq. (4.26) can also be normalized 

with the normal stress amplitude, 2n  to transform the generalized strain energy 

parameter, Eq. (4.26) to the form of generalized strain amplitude, Eq.(4.27)  
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The proposed multiaxial fatigue damage parameter in the form of generalized strain 

amplitude can be written as: 
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Based on Basquin’s equation [78] the shear stress amplitude, 2  and the normal stress 

amplitude, 2n  for uniaxial stress state, can be expressed as: 
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In the case of 12 fN , the shear and normal stress amplitude, Eq.(4.28)  can be given: 
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Substituting the shear and normal stresses from Eq.(4.29) into Eq.(4.27), the multiaxial 

fatigue damage parameter based on the generalized strain amplitude can be expressed as: 
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This proposed multiaxial fatigue damage parameter is based on the assumption 

that all stress and strain components on the critical plane which experience the maximum 

damage should contribute the fatigue damage. Only the elastic shear and normal strain 

amplitudes are to be corrected by the corresponding maximum shear and normal stresses. 

The interpretation of the proposed fatigue damage parameter, Eq. (4.30) can be explained 

as the plastic normal strain, 2p

n  opening the crack, reducing the friction between 
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crack surfaces while the plastic shear strain, 2p   induces the dislocation movement 

along slip planes, causing nucleation of cracks. On the other hand the corrected elastic 

normal strain, 
2'

max,
e

n

f

n 



 
on the critical plane assists in opening the crack and thus 

accelerates the growth and the corrected elastic shear strain, 
2'

max
e

f





 
overcomes any 

sliding friction between crack surfaces. The proposed fatigue damage parameter is 

capable of predicting the effect of the mean stress, the path dependency of the stress 

response and the non-proportional hardening through incorporation of the maximum 

normal stress,
 max,n  and maximum shear stress,

 max  components. The maximum 

normal stress is introduced as the normal stress correction factor, 
f

n

'

max,




  and the 

maximum shear stress is introduced as the shear stress correction factor, 
f

'

max




 in the 

proposed fatigue damage parameter, Eq.(4.27). These normal and shear stress correction 

factors, 








f

n

'

max,




 and  









f
'

max




 can reflect the fatigue damage reduction, which is caused 

by the tensile mean stress and the additional cyclic hardening. It should be also noticed 

that these stress correction factors are not constant, but varying as a function of the 

maximum normal and shear stresses. Unlike the Findley, the Brown-Miller, Fatemi-Socie 

and the Glinka damage parameters, the proposed multiaxial fatigue damage parameter do 

not include any material fitting constants, which requires additional material testing. The 

usage of material constants in the fatigue damage parameter is inconvenient for 

evaluating fatigue life for general engineering applications.  The proposed fatigue 
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damage parameter shows in Figure 4-10 that a wider range of planes around the critical 

plane subjected to a high percentage of fatigue damage cause the activation of more slip 

systems. Higher values of damage distribution over a wider range of planes around the 

critical plane result in higher probability of crack initiation and growth, and shorter lives 

as compared to the Brown-Miller [51] and Fatemi-Socie [55] parameters.  

The shear strain and normal strain amplitudes using the uniaxial material fatigue 

properties can be expressed as: 
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In case of full reverse loading (R=-1), the maximum shear and normal strains using 

uniaxial material properties can be estimated as: 
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Substituting the shear and normal strains from Eq. (4.31) and the maximum shear and 

normal stresses from Eq.(4.32) into equation (4.30), the multiaxial fatigue damage 

parameter can be written in terms of the uniaxial fatigue properties as: 
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The proposed multiaxial fatigue damage parameter, Eq.(4.33), can be simplified as: 
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The proposed fatigue damage parameter, Eq.(4.34) can be criticized for the lack of 

physical correctness from the continuum mechanics viewpoint. This is because of 

difficulties concerning the physical meaning of the fatigue damage parameter, being the 

algebraic sum of the shear and normal strain terms acting on the plane.  

The proposed fatigue damage parameter(s) can be differentiated from the existing 

damage parameters discussed in Chapter 2 that it includes all stress and strain 

components on the critical plane. In addition, it can be expressed as both the generalized 

strain amplitude and the generalized strain energy thus combining all good features from 

the stress-based, strain-based and the energy-based critical plane parameters. The 

proposed fatigue damage parameter in the form of the generalized strain amplitude is 

adapted for numerical implementation of the multiaxial fatigue analysis. 

In case of the uniaxial fatigue, it is well known that the mean stress has significant 

effects on the high cycle fatigue regime where the elastic strain dominates. In contrast, 

there are little or no mean stress effects in the low cycle fatigue region. However, the 
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Morrow mean stress correction parameter [79] indirectly suggests that the mean stress 

changes the relation between the plastic and elastic strain amplitude while the SWT 

parameter [80] tends to underestimate the fatigue life in the low cycle fatigue resulting in 

author’ opinion from the correction of the both elastic and plastic strain terms and the 

SWT parameter is also non-conservative in the presence of compressive mean stresses. 

Therefore, Ince and Glinka [81] suggested that the multiaxial fatigue damage parameter 

in the original form of generalized strain amplitude, Eq.(4.27) can be applied to a uniaxial 

loading as a mean stress correction parameter in order to avoid inconsistencies mentioned 

above. The multiaxial fatigue damage parameter, Eq.(4.27) can take the following form 

in case of the uniaxial loading: 
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Where 
2'

max

e

f





 
 is the corrected elastic strain amplitude accounting mean stress effect 

and 
2

p
 is the plastic strain amplitude.   

The physical interpretation of this proposed mean stress correction parameter in Eq. 

Eq.(4.35) reflects that the mean stresses will have relatively less effect in the presence of 

large plastic strain. Ince and Glinka [81] reported that the proposed uniaxial mean stress 

correction parameter, Eq.(4.35)  provides noticeable improvements to both the Morrow 

and the SWT parameters in predicting fatigue lives for the published mean stress fatigue 

data. 

The key characteristic of the proposed parameter(s) is that the multiaxial fatigue 

damage parameter can be applied to both the multiaxial and uniaxial fatigue loading 
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conditions as the generalized strain amplitude in Eq. (4.30) and Eq.(4.35) respectively, 

thus providing a consistent approach for its application to multiaxial and uniaxial fatigue 

problems.  

4.3 Numerical Implementation of the Multiaxial Fatigue Damage Parameter 

A general computational methodology for multiaxial fatigue life analysis is shown 

in Figure 1-1 and a more detailed outline for algorithms of the computational procedure is 

presented in Figure 4-11. Once actual strain and stress responses at notch areas are 

determined, the proposed multiaxial fatigue damage parameter can be used to estimate 

the fatigue life. Since the critical plane is defined as the plane experiencing the maximum 

fatigue damage, the fatigue damage parameter is computed for all potential planes using 

the actual strain and stress histories rotated on those planes. Since the critical plane is not 

known before the analysis, the fatigue damage parameter on all potential planes is 

computed in order to determine the critical plane experiencing the maximum fatigue 

damage. The fatigue damage associated with each candidate plane is calculated using the 

following steps. 

a) Rotation matrix, a , which defines a candidate plane, is determined using Eq. 

(4.24). 

b) History of stress and strain tensors is transformed on the candidate plane 

represented by ii  ,
 
angles using Eq.(4.25) and Eq.(4.26). 

c) Once strain and stress variables  max,max ,,, nn   of the fatigue damage 

parameter are determined, the fatigue damage parameter is calculated using Eq.(4.30).  

d) Fatigue life corresponding to the magnitude of this damage parameter is estimated 

using the Newton-Raphson iterative approach. 
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e) Fatigue damage associated with the candidate planes are computed for all stress 

and strain cycles. 

f) Total fatigue damage for all candidate planes is calculated by summing up fatigue 

damage increments using a linear accumulation rule. The plane experiencing the 

maximum fatigue damage is identified by crcr  ,
 
angles. 

g) Determine the fatigue life of the notched component on the maximum fatigue 

damage plane. 

h) Plot the damage map of the FE model to visualize the fatigue damage contour. 

 An iterative approach is used to solve the fatigue damage parameter-life equation. The 

algorithm starts by guessing the life, and then an iterative solution using the Newton-

Raphson method is implemented by computing a new guess for the life. The iteration is 

repeated until convergence criterion (calculated solution error is reached to acceptable 

level). The iteration loop is repeated until the fatigue life is computed for all surface 

nodes at notch areas of the FE model. The procedure steps for the iterative algorithm 

using the Newton-Raphson are shown in Figure 4-12.  

The procedure steps given here are implemented in a computer program written in 

MATLAB for the multiaxial fatigue analysis for notched components subjected to the 

multiaxial loadings. Implementation of the proposed multiaxial fatigue analysis 

methodology, which incorporates the proposed fatigue damage parameter based on the 

generalized strain amplitude and the elastic-plastic stress-train model is suitable for the 

design evaluation of notched components used in general engineering applications, 

especially ground vehicles. This proposed methodology provides more efficient and 
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appropriate analysis approach preferable to more complex and time consuming life 

prediction methods using non-linear stress-strain analysis.  

 

 

 

Figure 4-1: Tubular test specimen stress state and plane orientation  
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Figure 4-2: Normal and shear strain and stress ranges on various planes for (a) in-

phase loading and (b) o90 out-of-phase loading  
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Figure 4-3: Normal and shear strain-stress ranges on various planes for o45 out-of-

phase loading  

 

 

Figure 4-4: Normal and shear strain-stress hysteresis loops on various planes for 

o45 out-of-phase loading  
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Figure 4-5: Variations of normal and shear stress/strain ranges on various planes as 

a function of phase angle   
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Figure 4-6: FE notched body local coordinate system 

 

 

Figure 4-7: Plane rotations (a)   rotation about z axis (a)   rotation about x axis  
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Figure 4-8: Stress state on the free surface 

 

 

 

Figure 4-9: A graphical representation of stress tensor rotation on the free 

component surface 
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Figure 4-10: Proposed damage parameter in comparison of Fatemi-Socie  and 

Brown-Miller for (a) in-phase loading and (b) o90 out-of-phase loading 
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Figure 4-11: Algorithm for computing fatigue life under multiaxial loading 
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Figure 4-12: Algorithm for Newton-Raphson iterative solution of proposed damage 

parameter  
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Chapter 5                                                                                                  

Case Studies 

The proposed multiaxial fatigue analysis methodology has been implemented in 

computer programs making it suitable for use in the design evaluation of engineering 

components. The proposed multiaxial fatigue analysis methodology has been presented in 

previous chapters and is now applied to case studies in this chapter to correlate to various 

sets of experimental data.  The multiaxial fatigue analysis methodology consists of the 

analytical elastic-plastic stress/strain model to perform the elastic-plastic stresses/strains 

analysis of notched bodies using FE linear elastic stress results and the proposed 

multiaxial fatigue damage parameter to predict the life of those notched bodies under the 

multiaxial loadings. The elastic-plastic stress/strain model and the multiaxial fatigue 

damage parameter have been previously presented in Chapter 3 and Chapter 4 

respectively. In this chapter, numerical results obtained from the elastic-plastic 

stress/strain model and the multiaxial fatigue damage parameter are compared with 

various sets of the published experimental data to assess their prediction capabilities. The 

experimental strain data of SAE 1070 steel notched shaft [38] under various non-

proportional load paths are compared to results of the elastic-plastic stress/strain model 

for calculations of actual elastic-plastic strains at the notch root. The proposed multiaxial 

fatigue damage parameter is successfully applied to the uniaxial loading as the mean 

stress correction parameter. The proposed stress correction parameter shows accurate 

predictions with experimental mean stress fatigue data for ASTM A723 steel [82], 

Incoloy 901 superalloy [83], 7075-T561 aluminum alloy [84] and 1045 HRC 55 steel 

[85]. In order to assess the prediction accuracy of the proposed multiaxial fatigue damage 
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parameter, predicted fatigue lives by the multiaxial fatigue damage parameter are 

correlated with the experimental data of the thin-walled tubular specimens machined 

from 1045 HR steel [86] and Inconel 718 [87] alloy subjected to the proportional (in-

phase) and non-proportional (out-of-phase) loadings. Since the SAE notched shaft 

represents a realistic engineering component with its typical notch geometry and has a 

complex stress-strain state, experimental data of the SAE 1045 notched shaft [88] is used 

to verify predicting accuracies of the elastic-plastic stress/strain model and the multiaxial 

fatigue damage parameter and the robustness of the multiaxial fatigue analysis 

methodology for notched components. The measured strain data for the SAE 1045 

notched shaft is compared to stress-strain responses obtained from the elastic-plastic 

stress/strain model. The experimental fatigue data is compared to predicted fatigue lives 

by the multiaxial fatigue damage parameter. 

5.1 Comparison of the Elastic-Plastic Stress and Strain Model with Experimental 

Data of SAE 1070 Steel Notched-Bar 

In this section, calculated elastic-plastic notch strains and stresses obtained from 

the elastic-plastic stress-strain  model are compared to the experimental strain and stress 

data of SAE 1070 Steel Notched-Bar for six different non-proportional load paths [38]. 

Pseudo elastic stress histories for each load path were calculated using linear elastic FE 

stress results. Calculated elastic stress histories are then used as input to the analytical 

elastic-plastic stress/strain model to compute actual elastic-plastic strains and stresses at 

the critical notch area. 

 Barkey [38] performed experiments on circumferential notched-shafts subjected 

to various non-proportional load paths. The notched shafts were subjected to cyclic 
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tension and torsional load histories under conditions of load controls by using Instron and 

MTS tension-torsion biaxial test frames. Strain gauges were mounted on the notch root 

for strain measurements.  The experimented notch shafts were a cylindrical bar with a 

circumferential notch similar to that one shown in Figure 5-1. Each cylindrical specimen 

was machined from SAE 1070 steel stack to the proper geometry, then heat treated to 

give uniform material properties.  The actual radius of the cylindrical specimen was 

R=25.4 mm and notch dimensions of the cylindrical specimen were /t = 1 and R/t = 2. 

The FEA and experimental stress concentration factors are listed in Table 5-1. These 

stress concentration factors are relatively mild and would exist on typical notched 

components such as those found in many ground vehicle applications. The ratio of the 

measured notch tip hoop stress to the axial stress under tensile axial loading was 33
e
 

/22
e
 = 0.184. The FE model and strain state for the analyzed notch-bar is shown in 

Figure 5-2.  

The material for the notched bar was SAE 1070 steel with a cyclic stress-strain 

curve approximated by the Ramberg- Osgood relation (Eq. (2.1)). The material properties 

were given as: E = 210 GPa,  = 0.3, SY = 242 MPa, n’=0.199, and K’ = 1736 MPa. The 

cyclic stress-strain curve was discretized into several linear segments shown in Figure 5-3 

for the implementation of the Garud cyclic plasticity model.  

Pseudo-elastic notch stresses, 22
e
 - 23

e
, for clockwise and counter-clockwise 

box-shaped cyclic stress paths are shown in Figure 5-4 and Figure 5-6 respectively. The 

clockwise/counter-clockwise box-shaped load paths were repeated more than hundred 

cycles while recording the strains at the notch tip. The box path indicates a high degree of 

non-proportionality loading. This load path was designed to show regions that axial and 
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shear responses are uncoupled (elastic response) and where they are coupled (elastic-

plastic response). Therefore, the box-shaped load path provides a critical test for the 

proposed stress-strain model for notch tip strain and stress calculations.  The maximum 

nominal tensile and torsion stresses were n = 296 MPa and n = 193 MPa respectively.  

The corresponding pseudo-elastic notch stresses were 22
e
 = 417.3 MPa and 23

e
 = 221.9 

MPa respectively. Comparison of the measured and calculated notch strain responses for 

the clockwise and counter clockwise box-shaped load paths are shown in Figure 5-5 and 

Figure 5-7 respectively. It can be noted that the agreement between the calculated and 

measured strain responses are qualitatively and quantitatively good. It can be also seen 

from Figure 5-5 and Figure 5-7 that the proposed elastic-plastic stress/strain  model 

predicts the elastic unloading at each corner of the box (the axial and shear strain are 

uncoupled) and followed by the elastic-plastic response to the next corner (the axial and 

shear strain are coupled).   

Several non-proportional cyclic loading paths during, which ratios of the 

frequency of applied loads were unequal, were applied to the notched-bar specimen. The 

maximum nominal stresses were n = 296 MPa and n = 193 MPa. Non-proportional load 

paths from unequal frequencies of applied loads are a common type of loadings 

experienced by many machine components. Four of those load paths at unequal 

frequencies of tensile to torsional load paths in the ratio of 3:1, 5:1, 1:3, and 1:5 are 

analyzed here. Three cycles of tensile load were applied in same time period as one cycle 

of torsional load (Figure 5-8). Five cycles of tensile load were applied in same time 

period as one cycle of torsional load (Figure 5-10). Three cycles of torsional load were 

applied in same time period as one cycle of tensile load (Figure 5-12). Five cycles of 
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torsional load were applied in same time period as one cycle of tensile load (Figure 5-14). 

Axial and shear strain histories obtained from  the model and experiments are plotted in 

Figure 5-9 , Figure 5-11, Figure 5-13 and Figure 5-15 for the tensile to torsional 

frequency ratios of 3:1, 5:1,1:3 and 1:5 respectively. As seen from these figures that 

strain responses computed by the elastic-plastic stress/strain model agree well with 

experiment strain data in terms of the general trend and numerical strain values. 

5.2 Comparison of Proposed Uniaxial Mean Stress Correction Parameter with 

Experimental Data of Incoloy 901 super alloy, ASTM A723 steel, 7075-T561 

aluminum alloy and 1045 HRC 55 steel 

Four sets of experimental fatigue data from the literature [82,83,84,85] have been 

chosen for the purpose of prediction assessment of the proposed fatigue damage 

parameter for its application to uniaxial loading. Fatigue data sets are given at various 

means stresses for Incoloy 901 super alloy, ASTM A723 steel, 7075-T561 aluminum 

alloy and 1045 HRC 55 steel. Monotonic and fatigue properties of these materials at zero 

mean stress are also given Table 5-2. The tensile mean stress effect is predominantly 

studied in this study, because this is the most important range of practical applications. 

Strain ranges as well as the mean stress and the maximum stress were obtained from 

experimental half-life stress-strain hysteresis loops. 

The capability and accuracy of the proposed mean stress correction parameter is 

compared to the Morrow and the SWT parameter using these experimental mean stress 

fatigue data sets, since the Morrow and the SWT parameters are most popular mean 

stress correction methods in engineering applications. 
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Figure 5-16(a) shows the Morrow parameter gives reasonable fatigue life 

predictions for the fatigue data at 1R  and 01.0R  strain ratios for Incoloy 901 super 

alloy.  A relatively poor correlation of the Morrow parameter at 33.0R  strain ratio can 

be seen in Figure 5-16(a) and the Morrow parameter overestimates fatigue lives for 

33.0R  strain ratio particularly in the fatigue life region of 10
4
-10

6
 cycles. The SWT 

parameter provides good correlation for all given strain ratios ( 1R , 01.0R  and 

33.0R ) in Figure 5-16(b) even though the fatigue life predicted by the SWT parameter 

is slightly conservative. The proposed fatigue damage parameter shows an excellent 

correlation with the fatigue data at all three strain ratios in Figure 5-16 (c) as the 

experimental data collapse very close the fatigue damage parameter vs. fatigue life line. 

The results shown in Figure 5-17(a) present reasonable correlations resulted from 

the Morrow parameter for fatigue data at 1R  and 0.0R  strain ratios for 7075-T561 

aluminum alloy. However, the non-conservative life predictions by the Morrow 

parameter are clearly seen for 500max  MPa and 600max  MPa mean stress fatigue 

data in Figure 5-17(a). The experimental fatigue data of 7075-T561 aluminum alloy was 

generated under stress control load conditions at 500max  MPa and 600max  MPa 

mean stress. It has been widely accepted that the SWT parameter is particularly good for 

aluminum alloys. This study also indicates that a fairly good correlation between the 

SWT model and the mean stress fatigue data for 7075-T561 aluminum can be obtained as 

seen in Figure 5-17(b). Similarly to the SWT parameter, the proposed fatigue damage 

parameter provides good correlations for all mean stress fatigue data in Figure 5-17(c). 

However, it is not clear whether the proposed fatigue damage parameter is more accurate 

in the case of 7075-T651 aluminum alloy than the SWT model. 
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The results shown in Figure 5-18(a) indicate that Morrow parameter seems to 

overestimate the fatigue lives greater than 10
4
 cycles for fatigue data at 0.0R , 50.0R  

and 75.0R  strain ratios. As seen from Figure 5-18(b), The SWT parameter indicates 

slightly conservative predictions by underestimating fatigue lives in the range of 10
3
 and 

10
5
 cycles. The excellent fatigue life predictions by the proposed fatigue damage 

parameter for all three strain ratios ( 0.0R , 50.0R  and 75.0R  strain ratios) can be 

clearly seen in Figure 5-18 (c). 

As reported by Wehner and Fatemi [85],  predictions made by the Morrow 

parameter are non-conservative for tensile mean stress data at 0.0R , 50.0R  and 

75.0R  strain ratios for 1045 HRC 55 steel as shown in Figure 5-19(a). Similarly to the 

conclusion reached by Wehner and Fatemi [85], the SWT parameter correlated well with 

the mean stress fatigue data as shown in Figure 5-19(b). The proposed parameter shows 

similarly good predictions as the SWT parameter for 1045 HRC 55 steel in Figure 

5-19(c). Similarity of the prediction trends makes it difficult to distinguish the prediction 

capabilities between the SWT parameter and the proposed fatigue damage parameter for 

1045 HRC 55 steel. 

5.3 Comparison of Proposed Multiaxial Fatigue Damage Parameter with 

Experimental Data of 1045 HR Steel and Incoloy 718 Tubular Specimens Data 

The experimental multiaxial fatigue data for 1045 [86] steel and Inconel 718 [87] 

under in-phase and out-of-phase loading provides baseline fatigue data to verify 

predicting accuracy of the proposed multiaxial fatigue damage parameter. The fatigue 

data for 1045 steel and Inconel 718 were obtained using thin-walled tube specimens 

subjected to proportional (in-phase) and non-proportional (out-of-phase)  tensions-torsion 
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loadings. The thin-walled specimen has a relatively simple stress-strain state in 

comparison to a notched specimen, therefore the proposed fatigue damage parameter (Eq. 

(4.29)) can independently be assessed in terms of its relation to life cycles, and prediction 

errors induced by estimating the complex stress-strain state at the critical notch area can 

be excluded from the proposed fatigue damage parameter. Cyclic and fatigue properties 

of these materials are listed in Table 5-3. 

Fatemi [86] investigated fatigue behavior of thin-walled tubular specimens 

subject to biaxial in-phase and out-of-phase tension-torsion constant amplitude loading 

under strain control conditions. The out-of-phase tension-torsion tests were performed 

with axial and shear strain paths with a 90 deg phase difference. Thin-walled tubular 

specimens were prepared from 1045 HR steel in the normalized conditions. Test 

specimens with 25.4 mm inside diameter and 2.54 mm wall thickness and 210 mm long 

with the gauge length of 33 mm shown in Figure 5-20 were used for all biaxial fatigue 

tests.  

Cyclic and fatigue properties of this steel are listed in Table 5-3. The specimens 

were tested under various loading conditions defined by the ratio of applied shear strain 

range, 23 to the applied normal strain range, 22.  These components were measured in 

the plane normal to the axis of the specimen (Figure 5-21). The strain ratios used in the 

experiments were: 23 /22 =0 (pure tension), 0.5, 1.0, 2.0 and  (pure shear). 

Simultaneously, the applied torque, T and the axial force, P were also measured to 

determine determining the corresponding shear stress range, 23 and normal stress 

range, 22  as below. 
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Where avR  is average radius of thin-walled tubular specimen and t  is the wall 

thickness of the specimen. 

Because of the relatively thin wall, the stress gradient through the thickness in 

neglected and it was also assumed that there were only two non-zero stress components 

acting in the specimen’s cross section, i.e. 
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Although many more critical plane-based multiaxial fatigue damage parameters 

have been developed, the Brown-Miller and the Fatemi-Socie parameters are considered 

to be the most popular multiaxial fatigue damage parameters for general engineering 

applications. Therefore, predicted fatigue lives by the proposed fatigue damage parameter 

are compared to fatigue lives estimated by the Brown-Miller and the Fatemi-Socie 

parameters. Predicted fatigue lives from all three fatigue damage parameters versus 

experimental lives for 1045 HR thin-walled tubular specimens are shown in Figure 5-22.  

As seen from Figure 5-22, all three fatigue damage parameters provide a reasonable 

correlation within a factor of 3 for in-phase and out-of-phase loading. However, the 

results shown in same figure indicate that Brown-Miller and the Fatemi-Socie parameters 

seem to slightly overestimate the fatigue lives greater than 10
5
 cycles for out-of-phase 

loading. The proposed fatigue damage parameter tends to show slightly conservative 
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predictions for in-phase loading. Figure 5-23 shows that the fatigue life predictions by the 

proposed fatigue damage parameter are in good agreement with both in-phase and out-of-

phase experimental data of 1045 HR. 

The second set of experimental data considered for the validation of the multiaxial 

fatigue damage parameter is that of Koch [87] studied thin-walled tubular specimens 

made of Inconel 718, a nickel based super alloy. The tubular specimens, which were 

similar to that shown in Figure 5-24 were machined from a section of forged ring with 

2.05mm wall thickness, 25 mm internal diameter, 210mm in length and 33 mm gauge 

length. The cyclic and fatigue properties of tested Inconel 718 specimens are given in 

Table 5-3. MTS tension-torsion test frame was utilized to conduct strain-controlled 

biaxial tests. 

The specimens were tested under tension, torsion and simultaneous tension and 

torsion with various proportional and non-proportional strain paths. Each test was 

conducted by maintaining a constant ratio of applied shear to normal strain range. The 

ratio of strain range was controlled from zero (pure tension strain path) to infinite (pure 

shear strain path). The fatigue life, Nf was defined as the number of cycles to initiate and 

grow 1 mm long surface crack. 

As it can be seen from Figure 5-25, under both in-phase and out-of-phase 

loadings, the predicted lives by the Brown-Miller and the Fatemi-Socie parameters are 

satisfactory within a fatigue life factor of three, however both the Brown-Miller and the 

Fatemi-Socie parameters tend to give somewhat non-conservative life predictions. As 

clearly seen in Figure 5-26, the proposed fatigue damage parameter correlates very well 

with experimental fatigue data for both proportional and non-proportional loadings.   
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The proposed fatigue damage parameter is found to show moderate improvements 

to the Brown-Miller and the Fatemi-Socie parameters for the experimental fatigue data of 

1045 steel and Inconel 718 thin-walled tube specimens tested under in-phase and out-of-

phase loading conditions. 

5.4 Comparison of Proposed Multiaxial Fatigue Damage Parameter with 

Experimental Data of SAE 1045 Notched-Shaft Data 

The accurate fatigue life prediction of a notched component depends on the detail 

stress/strain analysis and the good fatigue damage parameter. In this section, prediction 

capability of the proposed multiaxial fatigue analysis methodology which includes the 

simplified elastic-plastic stress/strain model for performing elastic-plastic stresses-strain 

analysis at notch areas and the proposed multiaxial fatigue damage parameter for 

estimating fatigue life of notched bodies is assessed using test data of SAE 1045 notched-

shaft [88].  

In the 1980’s, members of the Society of Automotive Engineers (SAE) Design 

and Evaluation Committee created a cooperative testing program to provide experimental 

data for assessment of existing multiaxial fatigue design procedures and to stimulate 

research and development of improved multiaxial analysis  methods. Kurath et al. [88] 

summarized the data collected as the part of committee’s test program. 

The committee chose simple notched shafts as test samples made from 1045 steel 

in hot-rolled in normalized condition to simulate an engineering component. Each shaft, 

future referred to as the SAE shaft, was tested in several labs. However, several different 

conflicting results and material properties were published [88].  The discrepancies in 

detection, definition of crack initiations and testing techniques among the several labs 
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should account for differences in test results. A complete list of test data generated by 

various labs is given in Table 5-4 and Table 5-5. The SAE shaft specimen, 410 mm long 

and 40 mm diameter with the gauge length of 100 mm is shown in Figure 5-27. Each 

specimen contained shoulder radii of 5 mm. The shaft specimen was designed to initiate 

crack on the shoulder radius and fatigue life is defined as number of cycles, Nf required 

to grow a length of 1 mm crack on the surface. All specimens were tested in load control, 

under fully reversed constant amplitude bending, torsion and combination of bending and 

torsion loadings (in-phase and 90
o
 out-of-phase).  The ratio of the torsion to bending load 

was kept constant during each test. Over the experimental program the ratio of the torsion 

to bending moment Mt/ Mb ranged from zero to infinity. Strains at the notch root were 

measured by strain gauges and applied bending moment and torque values and cycles to 

crack initiation were recorded.  The strain-life, cyclic stress-strain properties 

approximated by the Ramberg- Osgood relation and the monotonic material properties 

are listed in Table 5-3.  

The geometry of the SAE notched shaft was modeled in ANSYS finite element 

code and then meshed using 3-D hexagonal (brick) solid elements and the area near the 

notch root was carefully refined as shown in Figure 5-28 to increase the accuracy of the 

elastic stress-strain results. The FE model contains 34275 nodes and 31968 elements. 

Boundary and loading conditions are shown in Figure 5-29. Two separate load cases: one 

with 1000 Nm bending load and no torsion load and other one with 1000 Nm torsion load 

and no bending load were applied at 150 mm distance from the notch root to the FEA 

model. The strain, ij and stress ij tensors for the FE model is based on the cylindrical 

coordinate system which is defined as: y axis is the primary bending axis, z axis is the 
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tangent to the notch surface and x axis is perpendicular to the notch. The coordinate 

system, x-y-z defined for the finite element model is interchangeably used as 1-2-3 

coordinate system for the stress and strain tensors.  

The stress concentrations for the SAE shaft are well known. Klann’s boundary 

element analysis results, published by Leese and Socie [88], have been corroborated by 

3D FEA.  An elastic FEA with two load cases determines the largest elastic stress 

components, thus the stress concentrations for bending and torsion loads were defined as 

KP = 1.55 and KT = 1.29 respectively. Based on strain measurements on the test 

specimen, the stress concentrations in bending and torsion are KP = 1.57 and KT = 1.25 

respectively.  

Both sets of linear elastic results (elastic stresses) for selected elements (nodal 

stresses on the critical surface area) were read and converted (using a computer program) 

to a format readable by the elastic-plastic stress/strain model. Linear elastic stress results 

from two load cases (bending and torsion) were combined with actual bending and 

torsion loading histories using the principle of superposition to obtain increments of 

pseudo elastic stress histories. The torque Mt induced the ‘linear elastic’ shear stress 23
e
 

at the notch tip and the bending load Mb induced the normal stress 22
e
 and hoop stress 

33
e
. The increments of hypothetical ‘elastic” stress components 23

e
, 22

e
 and 33

e
 were 

used as input for the analytical elastic-plastic stress/strain model.  

The accurate stress and strain response in the critical region of the notched shaft is 

a key factor in the fatigue life prediction. The elastic-plastic stress/strain model using 

linear elastic FE stress results as an input has been employed to calculate the notch root 

stress and strain histories at the critical area of the SAE notched shaft subjected to 
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bending-torsion proportional and non-proportional loadings. A comparison of calculated 

strains from the analytical stress-strain model and measured strains from the experiment 

for bending and torsion load cases are shown in Figure 5-30 and Figure 5-31.  The 

elastic-plastic FE computed notch strains, which were reported by Fash [89] are also 

included in these Figures for a general comparison. Computed strains from both the 

elastic-plastic stress/strain model and the non-linear FE analysis show good correlation 

with measured notch strain data except two shear strain points generated by the larger 

torsional loading (Figure 5-31).  The deviation for these points is considered to be caused 

by test data scatter.  The computed strains by the elastic-plastic stress/strain model 

provide better correlation with the measured strains than the FE computed strains. 

However, inaccuracies in the finite element modelling due to difficulties of achieving 

fine mesh  (coarse element mesh because of computation limitation) in a couple of 

decades ago may result in inaccurate FE computed strains.     

Experimental fatigue lives, NE given in Table 5-4  for in-phase and Table 5-5 for 

out-of phase loading are compared to predicted fatigue lives, NP, using the Brown-Miller, 

Fatemi–Socie and proposed fatigue damage parameters. Fatigue lives estimated by the 

Brown-Miller, the Fatemi–Socie and the proposed fatigue damage parameters are shown 

in Figure 5-34. As seen from this figure, the Brown-Miller parameter tends to give non-

conservative life predictions for cycles smaller than 10
4
 cycles. On the other hand, both 

the proposed and the Fatemi-Socie parameters tend to show conservative predictions in 

high cycle regime for in-phase loading. The overestimation of fatigue life by the Brown-

Miller parameter can be attributed to the less fatigue damage on the maximum shear 

plane as shown Figure 5-33. As seen from this figure, the Brown-Miller parameter for in-
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phase loading (the bending load, Mb=1300 Nm and the torsion load, Mt=1400 Nm) 

reaches its maximum value not on the maximum shear strain planes of Φ=25
o
 and Φ 

=115
o
 (Figure 5-32), but on the different plane. The Fatemi-Socie parameter predicts 

higher fatigue damage on the maximum shear strain plane for the same in-phase loading. 

Fatigue lives estimated by the proposed fatigue damage parameter fall between the 

Brown-Miller and the Fatemi-Socie parameters (Figure 5-34). Thus, the proposed 

multiaxial fatigue damage parameter based on the maximum damage plane provides 

more accurate fatigue predictions in comparison of the Brown-Miller and the Fatemi-

Socie parameters. 

The life predictions for out-of-phase loading are shown in Figure 5-35. Fatigue 

damage variations for out-of-phase loading (the bending load, Mb=1295 Nm and the 

torsion load, Mt=1710 Nm) on various planes are shown in Figure 5-36. As seen from 

Figure 5-35, the maximum shear plane for this loading is identified as a plane of Φ=95
o
, 

and both the Brown-Miller and Fatemi-Socie parameters predict less  fatigue damage on 

the maximum shear plane (Figure 5-36). Therefore, these fatigue damage parameters 

yield non-conservative life predictions for out-of-phase loadings in comparison with the 

proposed damage parameter as shown in Figure 5-37.  On the other hand, the proposed 

fatigue damage parameter estimates greater fatigue damage on the maximum damage 

plane for the same out-of-phase loading condition and as a result, it shows the better 

correlation with experimental lives.  

As can be seen from Figure 5-38, in case of both in-phase and out-of-phase 

loadings, correlations of the proposed fatigue damage parameter with experimental 

fatigue data are within a factor of 3 except a couple points in low and high cycle fatigue 
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regimes. The proposed fatigue damage parameter clearly provides the best correlations as 

compared to the Brown-Miller and the Fatemi-Socie parameters.  Dan et. al. [90] 

analyzed the SAE shaft and suggested similar conclusion that the critical plane-based 

fatigue damage parameters in which critical plane is defined as plane experiencing the 

maximum damage provide better life estimates than the same critical plane-based fatigue 

damage parameters in which the critical plane is defined as the maximum shear strain 

plane.  

The multiaxial fatigue analysis incorporating the elastic-plastic stress/strain model 

and the proposed multiaxial fatigue damage parameter yields satisfactory fatigue life 

predictions for the SAE notched shaft subjected to bending-torsion proportional and non-

proportional loadings. While simple and inexpensive elastic stress histories (linear elastic 

results of the FE analysis) are used to compute notch root elastic-plastic stress and strain 

histories, the proposed fatigue damage parameter provides reasonably accurate fatigue 

life predictions. The proposed multiaxial fatigue analysis methodology demonstrates 

satisfactory accuracy and reasonable reliability in the multiaxial fatigue assessment of 

notched components. In addition, the proposed fatigue damage parameter has been 

applied to the uniaxial loading as the mean stress correction parameter and shows very 

good correlation with the mean stress fatigue data. Furthermore, the multiaxial fatigue 

analysis methodology includes the APDL macro for plotting fatigue damage contour for 

the critical notch area to visualize the fatigue damage map. The damage contour around 

notch areas for the SAE shaft under in-phase loadings (the bending load, Mb=1400 Nm 

and the torsion load, Mt=0 Nm, and the bending load, Mb=1150 Nm and the torsion load, 

Mt=2700 Nm) are shown in Figure 5-39 and Figure 5-40 respectively. 
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Table 5-1: FEA and Experimental Stress Concentration Factors of SAE 1070 

Notched-Bar 

 22
e
/n 33

e
/n 23

e
/n 

FEA 1.42 0.30 1.15 

Experiment 1.41
 

0.26 1.15 

 

 

Table 5-2: Monotonic, Cyclic and Fatigue properties of solid specimens for uniaxial 

mean stress test 

Monotonic properties 
Incoloy 

901 [83] 

7075-T651 

[84] 

ASTM 

A723 [82] 

SAE  

1045HRC 

[85] 

Yield strength, y  958 MPa 501 MPa 1170 MPa 1713 MPa 

Ultimate strength, u  1200 MPa 561 MPa 1262 MPa 2165 MPa 

Modulus of elasticity, E  202 GPa 71.7 GPa 200 GPa 205 GPa 

Strength coefficient, K  1615 MPa - 1483 MPa 3088 MPa 

Strain hardening exponent, n  0.101 - 0.037 0.092 

Reduction in area, RA  15 % 29.1 % 50 % 38 % 

Cyclic and fatigue properties     

Fatigue strength coefficient, f
'  1977 MPa 1576 MPa 2123 MPa 3372 MPa 

Fatigue strength exponent, b  -0.1228 -0.1609 -0.110 -0.103 

Fatigue ductility coefficient, f
'  0.125 0.1575 0.49 0.038 

Fatigue ductility exponent, c  -0.6478 -0.6842 -0.783 -0.47 

Cyclic strength coefficient, 
'K  1566 MPa 747 MPa 1581 MPa 3082 MPa 

Cyclic strain hardening exponent, 

'n  
0.09 0.0597 0.071 0.075 

 

 



 

  

 

141 

  

Table 5-3: Monotonic, Cyclic and Fatigue properties of tubular specimens 

Material     1045[86] Inconel 718[87] 

Monotonic material 

properties 

E (MPa) 205000 208500 

 0.29 0.3 

ysσ (MPa) 380 1160 

Cyclic stress-strain curve 
K

'
(MPa) 1258

 
1530 

n
'
 0.208

 
0.073 

Strain-life curve 

fσ (MPa) 980 1640 

b -0.11 -0.060 

fε  0.20
 

2.67 

c -0.43 -0.82 
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Table 5-4: SAE 1045 notched shaft, in-phase test 

Bending 

moment, 

Mb 

(Nm) 

Torsion 

moment, 

Mt (Nm) 

Mt/Mb 
Life cycle, Nf 

IL IL JD BC RN AOS 

1400 0 0.00 4,494,000 

     1460 0 0.00 

     

430,000 

1475 0 0.00 

  

464,000 

  

230,000 

1708 0 0.00 

     

163,800 

1730 0 0.00 60,000 49,200 

  

30,000 130,000 

1875 0 0.00 

  

41,360 55,000 

  2586 0 0.00 

     

14,000 

2600 0 0.00 3,000 

 

8,111 

  

7,930 

2800 0 0.00 

  

2,571 

   1680 900 0.54 

  

84,950 

   1680 960 0.57 

   

30,000 

  2325 1350 0.58 2,810 3,000 

    1250 800 0.64 

    

325,000 

 1550 1090 0.70 80,000 97,500 

    1250 880 0.70 600,000 

     1720 1350 0.78 17,070 212,450 

    1150 1090 0.95 2,294,000 2,381,000 

    920 880 0.96 3,473,000 

     2000 2100 1.05 

  

5,998 

   1300 1400 1.08 

  

84,680 

   1850 2100 1.14 6,700 

   

4,780 

 1850 2550 1.38 2,200 

     1220 1710 1.40 72,000 

 

107,500 

 

60,800 

 990 1390 1.40 933,000 

   

350,000 

 1355 2550 1.88 5,500 

     725 1390 1.92 200,000 

     845 1800 2.13 

  

259,900 

   1250 2700 2.16 

  

6,402 

   1150 2700 2.35 3,000 

     780 2180 2.79 70,000 70,680 

    840 2700 3.21 100,000 9,000 

    570 2180 3.82 76,100 99,560 

    460 1760 3.83 3,027,000 2,350,000 

    80 2534 31.68 

      0 1500 
  

1,515,000 

   0 1700 
  

2,324,000 

   0 2000  1,584,000 

   

750,000 

 0 2400  75,700 

  

65,000 

  0 3000  7,000   4,057       

IL - University of Illinois, JD - Jonn & Co., BC - Battelle Columbus Lab., RN - Rexnord Corp.,    

AOS - A. O. Smith Corp. 
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Table 5-5: SAE 1045 notched shaft, out of-phase test 

Bending 

moment, 

Mb 

(Nm) 

Torsion 

moment, 

Mt (Nm) 

Mt/Mb 
Life cycle, Nf 

IL IL JD BC RN AOS 

2300 1325 0.58 

  

17,720 

   1850 2100 1.14 

  

12,660 

   1800 2100 1.17 

  

21,600 

   1698 2242 1.32 

   

6,725 

  1295 1710 1.32 

   

25,580 

  1220 1710 1.40 

  

157,500 

   1220 1710 1.40 

  

173,300 

   985 1400 1.42 

  

1000000 

   1150 2700 2.35 

  

10,600 

   770 2180 2.83 

  

151,900 

   IL - University of Illinois, JD - Jonn & Co., BC - Battelle Columbus Lab., RN - Rexnord Corp.,  

AOS - A. O. Smith Corp. 
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Figure 5-1: Geometry and stress state of SAE 1070 steel notched-shaft 

 

 

Figure 5-2: FEA model and strain state for SAE 1070 steel notched specimen 
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Figure 5-3: Discretization of SAE 1070 cyclic stress-strain curve 
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Figure 5-4: Box cyclic stress/load path - clockwise  

 

Figure 5-5: Experimental and calculated strain paths in the notch tip induced by the 

box input loading path - clockwise  
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Figure 5-6: Box cyclic stress/load path – counter clockwise  

 

 

Figure 5-7: Experimental and calculated strain paths in the notch tip induced by the 

box input loading path – counter clockwise  
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Figure 5-8: Unequal frequency (ratio 3:1) tension-torsion stress/loading path  

 

 

Figure 5-9: Experimental and calculated strain paths in the notch tip induced by the 

unequal frequency (ratio 3:1) tension-torsion input loading path    
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Figure 5-10: Unequal frequency (ratio 5:1) tension-torsion stress/loading path  

 

 

Figure 5-11: Experimental and calculated strain paths in the notch tip induced by 

the unequal frequency (ratio 5:1) tension-torsion input loading path   
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Figure 5-12: Unequal frequency (ratio 1:3) tension-torsion stress/loading path  

 

 

Figure 5-13: Experimental and calculated strain paths in the notch tip induced by 

the unequal frequency (ratio 1:3) tension-torsion input loading path     
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Figure 5-14: Unequal frequency (ratio 1:5) tension-torsion stress/loading path  

 

 

Figure 5-15: Experimental and calculated strain paths in the notch tip induced by 

the unequal frequency (ratio 1:5) tension-torsion input loading path  
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Figure 5-16: Comparison of Morrow parameter (a),  SWT parameter (b) and 

Proposed fatigue damage parameter (c) for various strain ratios with experimental 

fatigue data of Incoloy 901 
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Figure 5-17: Comparison of Morrow parameter (a),  SWT parameter (b) and 

Proposed fatigue damage parameter (c) for various strain ratios with experimental 

fatigue data of 7075-T651 
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Figure 5-18: Comparison of Morrow parameter (a),  SWT parameter (b) and 

Proposed fatigue damage parameter (c) for various strain ratios with experimental 

fatigue data of ASTM A723 
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Figure 5-19: Comparison of Morrow parameter (a),  SWT parameter (b) and 

Proposed fatigue damage parameter (c) for various strain ratios with experimental 

fatigue data of 1045 HRC55 

 

 

 

Figure 5-20: Geometry and dimensions of 1045 HR tubular specimens [86]. All 

dimensions in mm 
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Figure 5-21: System of coordinate for the tubular specimen and the applied stress 

components ij 

 

 

 

Figure 5-22: Comparison of Proposed Damage Parameter (DP), Fatemi-Socie (FS) 

and Brown-Miller (BM) parameter with experimental fatigue data of 1045 steel 
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Figure 5-23: Comparison of Proposed Damage Parameter with in-phase and out-of-

phase experimental fatigue data of 1045 steel 

 

 

 

Figure 5-24: Geometry and dimensions of Inconel 718 tubular specimens [87]. All 

dimensions in mm 
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Figure 5-25: Comparison of Proposed Damage Parameter (DP), Fatemi-Socie (FS) 

and Brown-Miller (BM) parameter with experimental fatigue data of Inconel 718 

 

Figure 5-26: Comparison of Proposed Damage Parameter with in-phase and out-of-

phase experimental fatigue data of Inconel 718 
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Figure 5-27: Geometry and dimensions of the SAE shaft [88], all dimensions in mm 

 

 

 

Figure 5-28: FEA model of the SAE shaft and refined mesh at notch region  
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Figure 5-29: Boundary conditions and applied combined loads (bending and 

torsion) on the SAE shaft FEA model  

 

 

 

Figure 5-30: Comparison of computed and measured notch root strains on the SAE 

shaft for bending loading  
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Figure 5-31: Comparison of computed and measured notch root strains on the SAE 

shaft for torsion loading  

 

Figure 5-32: Stress and strain ranges with plane angle for the SAE shaft under in-

phase loading (Mb=1300 Nm and Mt=1400 Nm) 
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Figure 5-33: Variations of fatigue damage parameters with plane angle for the SAE 

shaft under in-phase loading (Mb=1300 Nm and Mt=1400 Nm) 

 

Figure 5-34: Comparison of Proposed Damage Parameter (DP), Fatemi-Socie (FS) 

and Brown-Miller (BM) parameter with in-phase experimental fatigue data of the 

SAE shaft 
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Figure 5-35: Variations of stress and strain ranges with plane angle for the SAE 

shaft under out-of-phase loading (Mb=1295 Nm, Mt=1710 Nm) 

 

Figure 5-36: Variations of fatigue damage parameters with plane angle for the SAE 

shaft under out-of-phase loading (Mb=1295 Nm and Mt=1710 Nm) 
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Figure 5-37: Comparison of Proposed Damage Parameter (DP), Fatemi-Socie (FS) 

and Brown-Miller (BM) parameter with out-of-phase experimental fatigue data of 

the SAE shaft 

 

Figure 5-38: Comparison of Proposed Damage Parameter with experimental fatigue 

data of the SAE shaft under in-phase and out-of-phase loading 
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Figure 5-39:  Damage contour around notch for SAE shaft under Mb=1400 Nm and 

Mt=0 Nm in-phase loading 

 

Figure 5-40:  Damage contour around notch for SAE shaft under Mb=1150 Nm and 

Mt=2700 Nm in-phase loading 
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Chapter 6                                                                                                 

Conclusions and Future Recommendations 

Understanding of multiaxial fatigue problem is essential for the reliability 

assessment and the design against fatigue failure for mechanical components under 

realistic service conditions. Durability evaluation of vehicle suspension and driveline 

components based on experimental assessments is expensive and time-consuming. 

Therefore, analytical and numerical methods become an essential approach to conduct 

fatigue and durability analyses. The main objective of this research is to develop and 

validate a multiaxial fatigue analysis methodology for mechanical notched components 

subject to complex multiaxial loadings.  

The proposed multiaxial fatigue analysis methodology for performing multiaxial 

fatigue life prediction for notched components has been developed and implemented in 

computer program(s). The multiaxial fatigue analysis methodology incorporates the 

elastic-plastic stress/strain model and the proposed multiaxial fatigue damage parameter. 

The elastic-plastic stress/strain model, which was originally proposed by Buczynski and 

Glinka [74], is used to compute elastic-plastic stress-strain responses from linear-elastic 

FE results for notch areas. The elastic-plastic stress/strain model is based on the Garud 

cyclic plasticity model integrated with the multiaxial Neuber correction rule. Chapter 3 

presented the procedure for integrating the Neuber multiaxial notch correction rule and 

the Garud cyclic plasticity for numerical implementation of the notch stress and strain 

analysis from the pseudo elastic stress-strain histories (linear elastic FE results). The 

development and implementation of the proposed multiaxial fatigue damage parameter 

based on the maximum damage plane to predict the fatigue life for mechanical 
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components under the multiaxial loadings were discussed in Chapter 4. The proposed 

multiaxial fatigue damage parameter, which establishes the relation between the fatigue 

damage parameter and the fatigue life, includes all stress and strain components on the 

maximum damage plane in the formulation of the fatigue damage parameter. The 

multiaxial fatigue damage parameter was defined as the generalized strain amplitude on 

the maximum damage plane. The numerical implementation of the proposed multiaxial 

fatigue analysis methodology was also presented in Chapter 4. 

The fatigue damage can be used as a design criterion and concept designs can be 

analytically assessed such that the predicted fatigue life of the component(s) can satisfy 

and/or exceed the expected service life. This capability allows design of components to 

be evaluated and optimized for the service life in the early design phase. The proposed 

multiaxial fatigue analysis methodology including the elastic-plastic stress/strain model, 

the multiaxial fatigue damage parameter, algorithms and procedures discussed in this 

study is efficient, robust and reasonably accurate to be used as a design tool for notched 

components in ground vehicles.   

6.1 Conclusions 

  Application and validation of the multiaxial fatigue analysis methodology were 

presented by comparing computed results of the multiaxial fatigue analysis methodology 

to the experimental data in Chapter 5. The accuracy of local stress and strain histories is 

essential for the accurate fatigue life prediction. Therefore, the elastic-plastic stress/strain 

model was validated against the experimental results of SAE 1070 steel notched shaft 

obtained by Barkey. Based on the comparison between the experimental and computed 

strain histories for the several non-proportional load paths, the elastic-plastic stress/strain 
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model predicted notch strains with reasonable accuracy using linear-elastic FE stress 

histories. 

The proposed multiaxial fatigue damage parameter has been applied to the 

uniaxial loading to account for mean stress effects on fatigue life. Four sets of 

experimental fatigue data for Incoloy 901 super alloy, ASTM A723 steel, 7075-T561 

aluminum alloy and 1045 HRC 55 steel were used to investigate the prediction 

capabilities of the proposed fatigue damage parameter for mean stress correction.  The 

proposed mean stress correction parameter was found to be superior over both the SWT 

and the Morrow parameter for Incoloy 901 super alloy and ASTM A723 steel. Both the 

proposed and SWT fatigue damage parameters provided equally good correlation with 

experimental data for 7075-T561 aluminum alloy and 1045 HRC 55 steel. 

In case of multiaxial loadings, the prediction capability of the proposed multiaxial 

fatigue damage parameter was evaluated by comparing fatigue lives predicted by the 

proposed damage parameter with experimental data of the thin-walled tubular specimens 

machined from 1045 HR steel and Inconel 718 alloy subjected to the proportional (in-

phase) and non-proportional (out-of-phase) loadings in Chapter 5. The proposed fatigue 

damage parameter was found to provide very good correlation with experimental fatigue 

data of 1045 steel and Inconel 718 thin-walled tube specimens under proportional and 

non-proportional loadings. 

Since SAE notched shaft specimens represent complex stress-strain state of 

realistic engineering components, experimental data of the SAE 1045 notched shaft were 

used to verify the prediction capability of both the elastic-plastic stress/strain model and 

the proposed multiaxial fatigue damage parameter for notched components. The 
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experimental fatigue data of the SAE 1045 notched shaft under proportional and non-

proportional loadings were compared to results of the analytical elastic-plastic 

stress/strain model for notch strains and the proposed fatigue damage parameter for 

fatigue lives. Computed strain histories at the notch root obtained from the elastic-plastic 

stress/strain model correlated well with experimental strain data of the SAE 1045 notched 

shaft. The proposed multiaxial fatigue damage parameter based on the generalized strain 

amplitude on the maximum damage plane satisfactorily correlated experimental fatigue 

data of the SAE shaft under proportional and non-proportional loadings specified in 

Chapter 5. In addition, the proposed fatigue damage parameter provided noticeable 

improvements to both the Brown-Miller and the Fatemi-Socie parameters in predicting 

fatigue lives for the SAE shaft under the proportional and non-proportional loadings. 

6.2 Summary of Contributions 

Main contributions of this thesis are summarized below: 

 Development and numerical implementation of the multiaxial fatigue analysis 

methodology for notched components.  

 Development of a macro using APDL and a computer program written in 

Fortran 90 to calculate linear elastic stress histories at critical notch areas for 

notched components under multiaxial load histories. 

 Improvement of the multiaxial elastic-plastic stress-strain model (previously 

developed by Buczynski and Glinka [91]) to such a level of sophistication that 

it can be used for the elastic-plastic stress-strain analysis for notched 

components using linear-elastic FE stress histories. The paper describing the 
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improved multiaxial elastic-plastic stress-strain model has been accepted at 

International Conference on Fatigue Damage of Structural Materials IX, 

Hyannis, USA, 2012 [92]. 

 Development and validation of an original multiaxial fatigue damage 

parameter based on a critical plane approach to estimate fatigue life of 

notched components under the multiaxial loading. The paper analyzing the 

proposed multiaxial fatigue damage parameter has been accepted at 

International Conference on Fatigue Damage of Structural Materials IX, 

Hyannis, USA, 2012[93]. 

 Successful application of the multiaxial fatigue damage parameter to the 

uniaxial loading as a mean stress correction parameter. The paper showing 

prediction capabilities of the proposed mean stress correction parameter was 

published by Ince and Glinka [81]. 

6.3 Recommendations for Future Work 

The proposed multiaxial fatigue analysis methodology for elastic-plastic stress 

and strain calculations and multiaxial fatigue life predictions at notches appears to be a 

relatively accurate and promising method for general engineering applications, 

specifically in the ground vehicle industry. However, additional experimental data 

including discriminating loading paths should be used to further assess prediction 

capabilities of the proposed multiaxial fatigue analysis methodology and verify its 

robustness. It has been shown that the proposed fatigue damage parameter is also 

successfully applied to the uniaxial loading as mean stress correction parameter. 

Application of the proposed multiaxial fatigue damage parameter to account for mean 
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stress effects for notched components under multiaxial loadings should also be 

investigated in future. 

The proposed fatigue analysis methodology presented in this study represented a 

general approach for the fatigue damage assessment of notched components under 

constant amplitude multiaxial loadings. However, most of engineering components are 

subjected to variable amplitude multiaxial loadings. In order to apply the proposed 

multiaxial fatigue damage parameter to variable amplitude load histories, a cycle 

counting method is required to identify loading cycles and associate individual cycle to 

the fatigue damage. Banantine and Socie [75], Wang and Brown [94] and Langlais [95] 

cycle counting methods are some of known proposals for the multiaxial cycle counting 

method for the critical plane application. However, these cycle counting methods are 

derived from the extension of uniaxial cycle counting method and no multiaxial cycle 

counting method has been yet proven to work well for all types of loading conditions. 

Therefore, attempts should be made as a future research study to develop a 

comprehensive cycle counting method thus extending the proposed fatigue assessment 

methodology to include an effective multiaxial cycle count method. The proposed 

multiaxial fatigue analysis methodology can then be applied to fatigue life prediction for 

more general variable amplitude load histories. Better understanding of all elements of 

variable amplitude multiaxial fatigue life predictions such as load amplitude and load 

path dependence of load sequence effects and their associations with cumulative damage 

rules(a linear or non-linear cumulative damage rules) is a important research topic for 

future research study in the multiaxial fatigue analysis.  

 



 

  

 

176 

References 
 

[1]   Tipton, S.M. and Nelson, D.V., Advances in Multiaxial Fatigue Life Prediction for 

Components with Stress Concentrations, International Journal of Fatigue, Vol. 19, 

No. 6, pp. 503-515, 1997. 

 

[2] Ramberg, W., and Osgood, W. R, Description of stress-strain curves by three 

parameters, Technical Note No. 902, National Advisory Committee For 

Aeronautics, 1943, Washington DC 

 

[3] Massing G., Proceeding 2nd International Congress on Applied Mechanics, Zurich, 

Switzerland, 1926. 

 

[4] Hencky, H., Zur Theorie plastischer Deformationen. Z. Angew.Math. Mech., Vol. 

4, pp.323–334, 1924. 

 

[5] Prandtl, W., Spannungsverteilung in Plastischen Kerpern, Proceedings of the First 

International Congress on Applied Mechancis, pp. 43, 1924. 

 

[6] Reuss, E., Beruecksichtigung der elastischen Formaenderungen in der Zeit- schrift 

fur Angewandte Mathematik und Mechanik, Vol. 10, pp. 266-274. 

 

[7] Drucker, D.C., A More Fundamental Approach to Plastic Stress-Strain Relation, 

Proceedings of the Frist U.S. Congress of Applied Mechanics, ASME,  pp. 487-

491, 1952. 

   

[8] Hill, R., The Mathematical Theory of Plasticity, Oxford University of Press, 1950.  

 

[9] Bauschinger, J., Miitt. Mech.-Tech., vol. 13, Lab Munchen, 1886.  

 

 



 

  

 

177 

 

 

 

[10] Prager, W., A New Method of Analyzing Stresses and Strains in Work- 

Hardening Plastic Solids, Journal of Applied mechanics, Vol.23, pp. 493-496, 

1956. 

 

[11]  Mroz, Z., 1967, On the description of anisotropic workhardening, Journal of the 

Mechanics and Physics of Solids, Vol. 15, pp. 163-175. 

 

[12] Garud, Y.S., A New Approach to the Evaluation of Fatigue under Multiaxial 

Loadings, Journal of Engineering Materials and Technology, Vol. 103, pp. 118- 

125,1981. 

  

[13] Chu, C. C., A Three-Dimensional Model of Anisotropic Hardening in Metals and 

Its Application to the Sheet Metal Forming, Journal of Mechanics and Physics of 

Solids, Vol. 32, No. 3, pp. 197-212, 1984. 

 

[14] Krieg, R. D., A Practical Two Surface Plasticity Theory, Journal of Applied 

Mechanics, pp. 641-646, 1975. 

  

[15] Dafalias, Y. F., and Popov, E.P., A Model of Nonlinearly Hardening Materials for 

Complex Loading, Acta Mechanica, Vol.21, No. 2-3, pp. 173-192, 1975. 

  

[16] Philips, A., Tang, J. L., Riccuitti and M., Some New Observation on Yield 

Surfaces, Acta Mechanica, vol. 20, pp. 23-39, 1974.  

 

[17] Tseng, N.T., and Lee, G.C., “Simple Plasticity Model of the Two-Surface Type”, 

Journal of Engineering Mechanics, Vol.109, No.3, pp. 795-810, 1983. 

  

 



 

  

 

178 

 

[18] Amstrong, P. J., Frederick, C. O., A Mathematical Representation of the Multiaxial 

Bauschinger Effect, Tech. Rep. RD/B/N 731, Central Electricity Generating Board, 

1966.  

 

[19] Chaboche, J. L., Time-Independent Constitutive Theories for Cyclic Plasticity, 

International Journal of Plasticity, Vol. 2, No.2, pp. 149-188, 1986. 

  

[20] Chaboche, J.L., and Nouailhas, D., Constitutive Modelling of Ratcheting Effects, 

Part I: Experimental Facts and Properties of the Classical Models , Journal of 

Engineering Materials and Technology, Vol. 111, pp. 384-392, 1989. 

  

[21] Bower, A.F., Cyclic Hardening Properties of Hard-Drawn Copper and Rail 

Steel, Journal of Mechanics and Physics of Solids, Vol.37, No.4, pp.455-470, 1989. 

  

[22] Ohno, N., and Wang, J.D.,  Two Equivalent Forms of Nonlinear Kinematic 

Hardening: Application to Non- Isothermal Plasticity” International Journal of 

Plasticity, Vol. 7, pp. 637-650, 1991. 

  

[23] Voyiadjis, G. Z., and Kattan, P. I., A Generalized Eulirian Two-Surface Plasticity 

Model for Finite Strain, Acta Mechanica, Vol. 81, pp. 143-162, 1990. 

 

[24] Jiang, Y., and Kurath, P., “A Theoretical Evaluation of Plasticity Hardening 

Algorithms for Nonproportional Loading”, Acta Mechanica, Vol.118, pp. 213-234, 

1996. 

  

[25] Chen, X., Gao, Q., and Sun, X. F., Low Cycle Fatigue under Non-proportional 

Loading, Fatigue and Facture of Engineering Materials and Structures, Vol. 19, no. 

7, pp. 839-854, 1996. 

 

 



 

  

 

179 

 

[26] Peterson, R.E., Stress Concentration Factors, John Wiley & Sons, New York, 

1977. 

  

[27] Stowell, E.Z., Stress and Strain Concentration at a Circular Hole in an Infinite 

Plate, NACA Technical Report 2073, 1950. 

  

[28] Hardrath, H.F., Ohman, H., A Study of Elastic Plastic Stress Concentration 

factors due to Notches and Fillets in Flat Plate, NACA Technical Report 2566, 

1951. 

  

[29] Neuber, H.,  Theory of Stress Concentration for Shear Strained Prismatic 

Bodies with Arbitrary Stress–Strain Law, Journal of Appl. Mechanics, Vol. 28, pp. 

544-550, 1961. 

  

[30] Topper, T.H., Wetzel, R.M., and Morrow, J.D., Neuber’s Rule Applied to 

Fatigue of Notched Specimens, Journal of Materials, Vol. 1, pp. 200-209, 1969. 

  

[31] Molski, K., Glinka, G., A Method of Elastic-Plastic Stress and Strain 

Calculation at a Notch Root, Materials Science and Engineering, Vol. 50, pp. 93- 

100, 1981. 

  

[32] Glinka, G., Energy Density Approach to Calculation of Inelastic strain–stress 

near notches and cracks, Engineering Fracture Mechanics, Vol. 22, pp.485–508, 

1985. 

  

[33] Hoffmann, M., Seeger, T., A Generalized Method for Estimating Multiaxial 

Elastic–Plastic Notch Stresses and Strains, Part I: Theory, Journal of Engineering 

Materials and Technology, Vol. 107, pp. 250-254, 1985. 

  

 



 

  

 

180 

 

[34] Hoffmann, M., Seeger, T., Stress–Strain Analysis and Life Predictions of a 

Notched Shaft under Multiaxial Loading, Multiaxial Fatigue: Analysis and 

Experiments AE-14, G.E. Leese, D.Socie Eds., Society of Automotive Engineers, 

Warrendale, PA, pp. 81–101, 1989. 

  

[35] Moftakhar, A. A., Calculation of Time Independent and Time-Dependent Strains 

and Stresses in Notches, Ph. D. Dissertation, University of Waterloo, Department 

of Mechanical  Engineering, Waterloo, Ontario, Canada, 1994.  

 

[36] Moftakhar, A., Buczynski, A. and Glinka, G., Calculation of Elasto-Plastic Strains     

and Stresses in Notches under Multiaxial Loading, International Journal of 

Fracture, Vol.70, pp. 357-373, 1995.  

 

[37] Hoffmann, M., Amstutz, H., and Seeger, T., Local Strain Approach in Non- 

Proportional Loadings, K. Kussmaul, D. McDiarmid, and D. Socie Eds., Fatigue 

under Biaxial and Multiaxial Loadings - ESIS 10, London, pp. 357-376, 1991. 

  

[38] Barkey, M.E., Calculation of Notch Strains under Multiaxial Nominal 

Loading, Ph. D. Dissertation, University of Illinois at Urbana-Champaign, 1993. 

  

[39] Barkey, M.E., Socie, D.F. and Hsia, K.J., A Yield Surface Approach to the 

Estimation  of Notch Strains for Proportional and Non-proportional Cyclic 

Loading, ASME Journal of Engineering Materials and Technology, Vol. 116, pp. 

173-180, 1994. 

  

[40] Koettgen, V.B., Schoen, M., and Seeger, T., Application of Multiaxial Load- 

Notch Strain Approximation Procedure to Autofrettage of Pressurized Components, 

Advances in Multiaxial Fatigue, ASTM STP 1191, D.L. McDowell and R.Ellis, 

Eds., American Society for Testing and Materials, Philadelphia, pp. 375-396, 1993. 

 



 

  

 

181 

 

 

[41] Singh, M.N.K., Notch Tip Stress-Strain Analysis in Bodies Subjected to Non-   

Proportional Cyclic Loads, Ph.D. Dissertation, Dept. Mech. Eng., University of 

Waterloo, Ontario, Canada, 1998. 

  

[42] Karolczuk, A. and Macha, E., A review of critical plane orientations in multiaxial 

fatigue failure criteria of metallic materials , International Journal of Fracture , 

Vol.134, pp. 267-304, 1995. 

 

[43] Liu, Y. and S. Mahadevan, An unified multiaxial fatigue damage model for isotropic 

and anisotropic materials. International Journal of Fatigue, Vol. 29, pp.347-359, 

2007. 

 

[44]  Li, B., L. Reis and M. de Freitas,  Comparative study of multiaxial damage models 

for ductile structural steels and brittle materials, International Journal of Fatigue, 

Vol. 31,  pp.1895-1906, 2009. 

 

[45]  Sines, G., Behavior of Metals under Complex Static and Alternating Stresses in 

Metal Fatigue, G. Sines and J.L. Waisman, eds., McGraw-Hill, New York, pp. 145-

169, 1959. 

 

[46]  Sines, G., Failure of Materials under Combined Repeated Stresses with 

Superimposed Static Stresses, Tech. Note 3495, National Advisory Committee for 

Aeronautics, Washington, DC, 69 pp, 1955. 

 

[47] Findley, W.N., A, Theory for Effect of Mean Stress on Fatigue of Metals under 

Combined Torsion and Axial Load or Bending, J. Eng. Ind., 301–306, 1959. 

 

 



 

  

 

182 

 

[48] McDiarmid, D.L., A Shear Stress Based Critical-Plane Criterion of Multiaxial 

Fatigue Failure for Design and Life Prediction, Fatigue and Fracture of Engineering 

Materials and Structures, Vol. 17, No. 12, pp. 1495-1485, 1994. 

 

[49] Dang Van, K., Macro-Micro Approach in High-Cycle Multiaxial Fatigue, In 

Advances in Multiaxial Fatigue, (Edited By Mcdowell, D.L. And Ellis, R.), 

American Society for Testing and Materials STP 1191, Philadelphia, pp. 120-130, 

1993. 

 

[50]  Yokobori, Y., Yamanouchi, H., Yamamoto, S., Low Cycle Fatigue of Thin-Walled 

Hollow Cylinder Specimens of Mild Steel in Uniaxial and Torsional Tests at 

Constant Amplitude, International of Fracture Mechanics, Vol.1, pp. 3-13, 1956. 

 

[51] Brown, M.W., Miller, K.J. A Theory For Fatigue Failure under Multiaxial Stress–

Strain Conditions, Proceedings of the Institute of Mechanical Engineers Vol. 187, 

1973, pp. 745-755, 1973. 

 

[52] Kandil, F.A., and Brown M.W., and Miller, K.J., Biaxial Low Cycle Fatigue 

Fracture of 316 Stainless Steel at Elevated Temperatures, Book 280, The Metals 

Society, London, pp. 203-210, 1982. 

 

[53] Wang, C.H., Brown, M.W., A Path-Independent Parameter for Fatigue under 

Proportional and Nonproportional Loading, Fatigue and Fracture of Engineering 

Materials and Structures, Vol. 16, No. 12, pp. 1285-1298, 1993. 

 

[54] Socie, D.F., Waill, L.A. and Dittmer, D.F., Biaxial Fatigue Of Inconel 718 Including 

Mean Stress Effects, I Multiaxial Fatigue (edited by Miller, K.J. and Brown, 

M.W.), ASTM STP 853, Philadelphia, 463–481, 1985. 

 

 



 

  

 

183 

 

[55] Fatemi, A., Socie, D.F., A Critical Plane Approach to Multiaxial Fatigue Damage 

Including Out-of-Phase Loading, Fatigue and Fracture of Engineering Materials 

and Structures, Vol. 11, No. 3, pp. 149-166, 1988. 

 

[56] Smith, K.N., Watson, P. and Topper, T.H., A stress-strain function for the fatigue of 

materials, Journal of Materials, pp. 767-778, 1970. 

 

[57] Liu, K.C., A Method Based On Virtual Strain-Energy Parameters for Multiaxial 

Fatigue Life Reduction,   Advances in Multiaxial Fatigue (edited by McDowell, 

D.L. and Ellis, R.),  ASTM STP 1191, PA, pp. 67-84, 1993. 

 

[58] Chu, C.C., Conle, F.A., Bonnen, J.F., Multiaxial Stress-Strain Modelling and 

Fatigue Life Prediction of SAE Axle Shafts, Advances in Multiaxial Fatigue (edited 

by McDowell, D.L. and Ellis, R.),  ASTM STP 1191, PA, pp. 37-54, 1993. 

 

[59] Glinka, G., Shen, G. and Plumtree. A., A Multiaxial Fatigue Strain Energy Density 

Parameter Related to The Critical Fracture Plane, Fatigue of Engineering Materials 

and Structures, Vol.18, pp.37–46, 1995. 

 

[60] Glinka, G., Shen, G. and Plumtree. A., Mean Stress Effects in Multiaxial Fatigue, 

Fatigue of Engineering Materials and Structures, Vol.18, pp.755–764, 1995. 

 

[61]  Pan, W., Hung, C., Chen, L., Fatigue Life Estimation under Multiaxial Loadings, 

International Journal of Fatigue,  Vol. 21, pp. 3-10, 1997. 

 

[62] Chen, X., Xu, S., Huang, D., A Critical Plane-Strain Energy Density Criterion for 

Multiaxial Low-Cycle Fatigue Life Under Non-Proportional Loading, Fatigue of 

Engineering Materials And Structures, Vol. 22, pp. 679-686. 

 

 



 

  

 

184 

 

[63]  Varvani-Farahani, A., A New Energy-Critical Plane Parameter for Fatigue Life 

Assessment of Various Metallic Materials Subjected to In-Phase And Out-of-Phase 

Multiaxial Fatigue Loading Conditions, International Journal of Fatigue, Vol. 22, 

pp. 295–305, 2000. 

 

[64]  Jahed H.,  and Varhani-Farahani, A., Upper and Lower Fatigue Limits Model Using 

Energy-based Fatigue Properties, Vol. 28, pp. 467-473, 2005.  

 

[65] Palmgren, A., Durability of ball bearings, ZVDI, Vol. 68, No. 14, Germany, pp.339-

341,1924.  

 

[66] Miner, M. A., Cumulative damage in fatigue, Journal of Applied Mechanics,Vol. 12, 

ASME Trans., Vol. 67, pp. A159-A164, 1945. 

 

[67] Marco, S. M. and Starkey, W. L., A concept of fatigue damage, ASME Transaction, 

Vol. 76, No. 4, pp. 627-632, 1954. 

 

[68] Robillard, M. and Cailletaud, G., Directionally Defined Damage in Multiaxial Low 

Cycle Fatigue: Experimental Evidence and Tentative Modelling, European 

Structural Integrity Society, ESIS Publication 10, Mechanical Engineering 

Publications, London, pp. 103-130, 1991.  

 

[69] Harada, S. and Endo, T., On the Validity of Miner’s Rule Under Sequential 

Loading of Rotating Bending and Cyclic Torsion, European Structural Integrity 

Society, ESIS Publication 10, Mechanical Engineering Publications, London, pp. 

161-178, 1991.  

 

 



 

  

 

185 

 

[70] Shamsaie, N., Fatemi, A. and Socie, D.F.,  Multiaxial fatigue evaluation using 

discriminating strain paths, International Journal of Fatigue,  Vol. 33, pp. 597-609, 

2011. 

 

[71] Kallmeyer, A.R., Krgo, A., Kurath, P., Evaluation of Multiaxial Fatigue Life 

Prediction Methodologies for Ti-6Al-4V, Journal of Engineering Materials and 

Technology, Vol. 124, pp. 229-237, 2002 

 

[72] Jahed H., Lectures Notes of Linear and Non-Linear Stress Analysis, University of 

Waterloo, 2009. 

  

[73] Socie, D.F., Marquis, G.B., Multiaxial Fatigue, Society of Automotive Engineers, 

Warrendale PA, 2000. 

 

[74] Buczynski, A.,  and Glinka, G., Elastic-plastic Stress-Strain Analysis of Notches 

under Non-Proportional Loading Paths, in Proceedings of the International 

Conference on Progress in Mechanical Behaviour of Materials (ICM8), Victoria, 

May 16-21, 1999, eds. F. Ellyin and J.W. Provan, vol. III, pp. 1124-1130, 1999. 

 

[75] Bannantine, J. A. and Socie, D. F., A variable amplitude multiaxial fatigue life 

prediction model, Fatigue under Biaxial and Multiaxial Loading, European 

Structural Integrity Society, ESIS Publication 10, Mechanical Engineering 

Publications, London, pp. 35-51, 1995. 

 

[76] Shamsaie, N. and  Fatemi, A., Multiaxial fatigue: An overview and some 

approximation models for life estimation, International Journal of Fatigue,  Vol. 33, 

pp. 548-558, 2011. 

 

 



 

  

 

186 

 

[77] Chu C.C, Fatigue Damage Calculation Using the Critical Plane Approach, Journal of 

Engineering Materials and Technology, Vol. 117, pp.41-49, 1995. 

 

[78]  Basquin O.H., The exponential law of endurance tests, Am. Soc. Testing Mater 

Proc. 10,pp. 625–30, 1910. 

 

[79] Socie, D. F. and Morrow J.D., Review of Contemporary Approaches to Fatigue 

Damage Analysis, Risk and Failure Analysis for Improved Performance and 

Reliability J. J. Burke and V. Weiss, eds., Plenum Pub. Corp. New York, NY,       

pp. 141-194, 1980. 

 

[80] Smith, K.N., Watson, P. and Topper, T.H., A stress-strain function for the fatigue of 

materials, Journal of Materials 5, pp.767-778, 1970. 

 

[81] Ince, A. and Glinka, G., A modification of Morrow and Smith-Watson-Topper mean 

stress correction models, Fatigue of Engineering Materials and Structures Vol.34, 

pp.854–867, 2011. 

 

[82] Koh, S.K. and Stephens, R.I., Mean stress effects on low cycle fatigue for a high 

strength steel,  Fatigue of Engineering Materials and Structures 14, pp.413-428, 

1991. 

 

[83] Fang, D. and Berkovits, A., Mean stress models for low cycle fatigue of a nickel-

based superalloy, International Journal of Fatigue 16, pp.429-437, 1994. 

 

[84] Zhao, T. and Jiang, Y., Fatigue of 7075-T651 aluminum alloy. International Journal 

of Fatigue 30, pp.834-849, 2008. 

 

 



 

  

 

187 

 

[85] Wehner, T. and Fatemi, A., Effects of mean stress fatigue behavior of a hardened 

carbon steel, International Journal of Fatigue 13(3), pp.241-248, 1991. 

 

[86]  Fatemi, A., Fatigue and Deformation under Proportional and Nonproportional 

Biaxial Loading, Ph. D. Dissertation, University of Iowa, Iowa, 1985. 

 

[87] Koch, J.L., Proportional and Nonproportional Biaxial Fatigue of Inconel 718, 

Report No. 121, University of Illinois, Urbana-Champaign, 1985. 

  

[88] Kurath, P. S., Downing, D. and Galliart, D., Summary of non-hardened notched 

shaft rounded robin program. In: Multiaxial Fatigue, Analysis and Experiments 

(Edited by G. E. Leese and D. Socie), SAE, AE-14, pp. 13-32, 1989. 

   

[89] Fash, J.W., An evaluation of damage development during multiaxial fatigue of 

smooth and notched specimens, Report No. 123, University of Illinois, Urbana-

Champaign, 1985. 

  

[90] Das, J., and Sivakumar, S.M., An evaluation of multiaxial fatigue life assessment 

methods for engineering components, International Journal of Pressure Vessels and 

Piping, Vol. 76, pp.741–746, 1999. 

 

[91] Buczynski, A., and Glinka, G., Elastic-plastic Stress-Strain Analysis of Notches 

under Non-Proportional Loading Paths, in Proceedings of the International 

Conference on Progress in Mechanical Behaviour of Materials (ICM8), Victoria, 

May 16-21, 1999, eds. F. Ellyin and J.W. Provan, vol. III, pp. 1124-1130, 1999. 

 

[92] Ince, A., and Glinka, G., Computational Modelling of Multiaxial Elasto-plastic 

Stress-strain Analysis for Notched Components under Non-proportional Loading, 

 



 

  

 

188 

 

International Conference on Fatigue Damage of Structural Materials IX, Hyannis, 

MA, USA, 2012. 

  

[93] Ince, A., and Glinka, G., A Critical Plane Damage Parameter for Multiaxial Fatigue 

Life under Proportional and Non-proportional Loadings, International Conference 

on Fatigue Damage of Structural Materials IX, Hyannis, MA, USA, 2012. 

 

[94] Wang, C. H. and Brown, M. W., Life prediction techniques for variable amplitude 

multiaxial fatigue-part 1: theories, Journal of Engineering Materials and 

Technology, Vol. 118, pp. 367-370, 1996. 

 

[95] Langlais, T. E., Vogel, J. H., and Chase, T. R., Multiaxial cycle counting for critical 

plane methods, International Journal of Fatigue, Vol.25, pp. 641-647, 2003. 


