
	
  
	
  

 
	
  
	
  

Natural and anthropogenic controls of 
landslides on Vancouver Island 

 
 
 

by 
 

 
 

Jason Goetz 
 
 
 
 
 

A thesis  
presented to the University of Waterloo  

in fulfilment of the 
thesis requirement for the degree of  

Master of Science  
in  

Geography 
 
 
 

Waterloo, Ontario, Canada, 2012 
 
 

©Jason Goetz 2012 
 
 

  



ii 
	
  

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis including 

any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

  



iii 
	
  

Abstract 
Empirically-based models of landslide distribution and susceptibility are currently the most 

commonly used approach for mapping probabilities of landslide initiation and analyzing their 

association with natural and anthropogenic environmental factors. In general, these models 

statistically estimate susceptibility based on the predisposition of an area to experience a 

landslide given a range of environmental factors, which may include land use, topography, 

hydrology and other spatial attributes. Novel statistical approaches include the generalized 

additive model (GAM), a non-parametric regression technique, which is used in this study to 

explore the relationship of landslide initiation to topography, rainfall and forest land cover and 

logging roads on Vancouver Island, British Columbia. 

The analysis is centered on an inventory of 639 landslides of winter 2006/07. Data sources 

representing potentially relevant environmental conditions of landslide initiation are based on: 

terrain analysis derived from a 20-m CDED digital elevation model; forest land cover classified 

from Landsat TM scenes for the summer before the 2006 rainy season; geostatistically 

interpolated antecedent rainfall patterns representing different temporal scales of rainfall (a 

major storm, winter and annual rainfall); and the main lithological units of surface geology.  

In order to assess the incremental effect of these data sources to predict landslide 

susceptibility, predictive performances of models based on GAMs are compared using spatial 

cross-validation estimates of the area under the ROC curve (AUROC), and variable selection 

frequencies are used to determine the prevalence of non-parametric associations to landslides.  

In addition to topographic variables, forest land cover (e.g., deforestation),  and  logging 

roads showed a strong association with landslide initiation, followed by rainfall patterns and the 

very general lithological classification as less important controls of landscape-scale landslide 

activity in this area. Annual rainfall patterns are found not to contribute significantly to model 

prediction improvement and may lead to model overfitting. Comparisons to generalized linear 

models (i.e., logistic regression) indicate that GAMs are significantly better for modeling 

landslide susceptibility. 

Overall, based on the model predictions, the most susceptible 4% of the study area had 29 

times higher density of landslide initiation points than the least susceptible 73% of the study area 

(0.156 versus 0.005 landslides/km2).  
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Chapter 1  
Introduction 

 

Recent advances in statistical classification methodology have led to innovative approaches 

for the predictive modeling of landslide susceptibility. These advancements allow us to utilize 

more flexible modeling techniques to improve predictive mapping of landslide initiation, which 

can lead to better risk and hazard analysis, reducing the significant negative effects of landslides 

to transportation and communication infrastructure and, most importantly, human lives. 

In general, a landslide can be defined as “the movement of a mass of rock, debris, or earth 

downslope” (Cruden, 1991). The term ‘susceptibility’ is applied to maps that estimate the 

likelihood of landslide initiation (Dai et al., 2002). Susceptibility of an area to landslides is 

analyzed by determining the spatial probability of slope failure for a range of destabilizing 

factors (Guzzetti et al., 2006). 

There is a wide range of methods used for landslide susceptibility mapping. Traditionally, 

landside hazards were mapped using geomorphological information that was mainly descriptive. 

This approach is very subjective to the geomorphologists’ interpretation of the landscape. In 

addition, the reliability of these descriptive based models has been poorly documented. Thus, it 

is difficult to evaluate the quality of these maps (Guzzetti et al., 1999).  

With the advent of geographical information systems (GIS), susceptibility analysis focused 

more on the use of deterministic approaches that applied physically-based models, such as 

SHALSTAB and SINMAP, with topographic information (Montgomery and Dietrich, 1994; 

Pack et al., 1998; Meisina and Scarabelli, 2007). This approach is seen as being more sufficient 

than traditional descriptive models because its quantitative approach for investigation of 

instability factors that influence landslides. However, some disadvantages of physically-based 

models are that they can be too simplistic; the required geotechnical investigation is expensive; 

and the geotechnical data may have high spatial variability (Carrara, 1993; Guzzetti et al., 1999). 
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Common today is the application of statistically-based models for landslide susceptibility 

mapping (Chung and Fabbri, 1999; Guzzetti et al., 2006; Frattini et al., 2010; Sterlacchini et al., 

2011; Goetz et al., 2011; Blahut et al., 2010). In general, these models statistically estimate 

susceptibility based on the predisposition of an area to experience a landslide given range of 

environmental factors, which may include land use, topography, hydrology and any other related 

spatial attributes.  

 

1.1 Overview 

As the field of geomatics continues to expand, so does the availability of high quality 

geospatial data. High-resolution digital elevation models (DEM), satellite imagery and many 

other forms of spatial data have become more and more accessible for researchers and the 

general public in Canada. Therefore, a door is opened that provides geomatics researchers with 

the ability to employ new methods and data to solve old problems. 

Regarding landslide research, high-resolution DEMs can be utilized for terrain analysis 

enabling the application of sophisticated landslide modeling approaches. Relationships between 

landslides and controlling factors can also be investigated with customized land cover 

classification using now readily available satellite imagery. In addition, access to primary data, 

such as weather records, allows for researchers to cater available data to their own research needs 

instead of relying on the availability of ‘ready-made’ spatial-data products. 

This study utilizes accessible spatial data and novel statistical classification methods to 

explore empirical relationships of landslides to controlling factors on Vancouver Island. A 

generalized additive model (GAM) is used to observe if there are any non-linear relationships 

related to the controlling factors of landslides. In addition a GAM is used to produce a landslide 

susceptibility map for Vancouver Island. Generalized linear models (GLM) are also used in the 

analysis to provide a reference for model performance for the GAM. Logistic regression, which 

is a form of a GLM, has been the most common statistical approach for modeling landslide 

susceptibility (Brenning, 2005). 
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1.2 Goal and objectives 

The purpose of this study is to explore natural and anthropogenic controls influencing 

landslide initiation at a regional scale for Vancouver Island, British Columbia, Canada. The 

exploration of natural controls includes topographic, lithologic and climatic factors. Possible 

anthropogenic controls that are explored include forest land cover, which has be shaped by a 

long history of forest harvesting, and the influence of the presence of logging roads on landslide 

initiation. In addition the incremental effects of natural and anthropogenic causes are explored to 

contribute to building more comprehensive knowledge of landslide initiation on Vancouver 

Island. 

The goal of this study is to use comprehensive knowledge gained from the assessment of 

landslide controls to create a landslide susceptibility model for all of Vancouver Island using 

novel statistical classification techniques. The primary objectives to obtain the goal for this 

research are, 

 

• Acquire and process all necessary spatial data 

• Validate the quality of spatial data  

• Apply statistical modeling techniques to produce a landslide susceptibility model 

• Utilize the landslide susceptibility model to explore in detail the relationship of 

environmental controls to landslides 

 

The acquisition and processing of spatial data for modeling of landslide susceptibility 

requires the application and collaboration of research conducted in fields outside of landslide 

modeling. Some novel techniques of validation of the quality of spatial data and model 

performance are used to reduce inherent uncertainties in this spatial analysis. In order to explore 

the controlling factors related to landslide initiation, an adequate model of landslide 

susceptibility must be produced.  
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1.3 Motivation of research 

This study is expected to have a strong impact for the improvement of landslide hazard and 

risk modeling in Canada. One of the principles of this study is to present a geomatic analysis of 

landslide susceptibility in a form that is interpretable and transparent; thus, allowing it to be 

properly communicated to those interesting in applying these methods for spatial planning 

purposes. Consequently, the research findings will contribute to Canadian government research 

and development to reduce landslide hazards while forming collaborative bonds between 

government and academic institutions. 

 

1.4 Structure of thesis 

This thesis presents a landslide susceptibility model for Vancouver Island after first 

presenting research context to GAM and GLM susceptibility modeling, important controlling 

factors of landslides, and background knowledge regarding the methods used for the analysis 

(Chapter 2); a description of the physical geography of Vancouver Island relating to landslide 

initiation (Chapter 3); a detailed explanation of the various methods used to process or obtain 

spatial data relevant to the landslide susceptibility analysis; as well the details of susceptibility 

modeling using GAMs and GLMs (Chapter 4). The results are presented in Chapter 5, which is 

followed by a discussion on quality of spatial data, geomorphological interpretations and 

limitations (Chapter 6), and the main conclusions (Chapter 7). 
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Chapter 2  
Research context 

 

2.1 Landslides 

In general, landslides are the result of progressive deterioration of slope material by natural 

geological processes, such as weathering and erosion, over a long period of time (Terlien, 1998). 

The initiation of landslides depends on the stability of slope material. A slope is stable when the 

shear stress is less than the shear strength of the slope material. If the shear stress exceeds the 

shear strength a slope becomes unstable and a landslides occurs (Ritter et al., 2002). A triggering 

mechanism may be required to cause the immediate initialization of slope movement. Common 

landslide triggers around the globe include earthquakes, heavy rainfall, rapid snowmelt, volcanic 

activity, glacial activity and human activity (Sidle and Ochiai, 2006). Other (environmental) 

factors related to landslide initiation include vegetation cover, lithology, soil type and 

topography (Kaldova and Rosenfeld, 1998). 

The most common landslide classification system used is developed by Varnes (1978). This 

scheme categorizes landslide type based on the type of slope movement (falls, topples, slides, 

spreads, flows, and complex) and the type of material (bedrock, coarse soil or fine soil; Table 

2.1). Details regarding the specific landslides used in this study (debris flow and debris slides) 

are discussed in more detail in Section 3.4. 
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Table 2.1. Landslide types - an abbreviated version of classification of slope movement types (After Varnes, 1978) 

	
  

Type of movement 
Type of material 
Bedrock Engineering soils 

Coarse Fine 
Falls Rock fall Debris fall Earth fall 
Topples Rock topple Debris topple Earth topple 
Slides Rotational Rock slump Debris slump Earth slump 

Translational Rock block slide; rock 
slide 

Debris block slide; 
debris slide 

Earth block slide; 
earth slide 

Lateral spreads Rock spread Debris spread Earth spread 
Flows Rock flow (deep 

creep) 
Debris flow (soil 
creep) 

Earth flow (soil creep) 

Complex slope movements   Combinations of two or more types of movement 
 

2.2 Rainfall influence on landslides 

Rainfall is a hydrological triggering mechanism that can decrease slope stability. The factors 

that generally control landslide initiation from rainfall are seepage (intensity, duration and 

infiltration of rainfall), moisture content and antecedent rainfall (Crosta, 1998). Typically, the 

influence of rainfall on landslides is explored by determining rainfall threshold for initiation 

(Glade, 2000; Aleotti, 2004; Giannecchini, 2006; Guzzetti et al., 2007). Although rainfall is 

triggering factor of landslides, it has been used as variable for landslide prediction using 

integrated empirical approaches (Chang and Chiang, 2009). 

Landslides related to hydrological triggering factors are caused by an increase in pore-water 

pressure on the failure surface, which decreases shear strength and induced slope failure. An 

increase in pore-water pressure is usually directly related to percolated rainfall. Indirect increase 

in pore-water pressure is caused by perched water tables, an accumulation of water at the soil 

bedrock contact or an impermeable soil layer (Terlien, 1998; Sidle and Ochiai, 2006). In general, 

landslides that are directly triggered by percolating rainfall are referred to as shallow slides, 

which have a maximum depths of 2 m (Terlien, 1998). Shallow soils are generally more 

susceptible to landslides because infiltrating water can reach an impermeable layer more quickly 

than deeper soils (Sammori et al., 1993; Sidle and Ochiai, 2006).  
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Since rainfall is a main trigger of landslides, the spatial distribution of slope failure must 

reflect, to some extent, the pattern of rainfall. Therefore, knowledge of rainfall patterns is critical 

for the understanding of landslide distribution.  

 

2.2.1 Mountain topography and rainfall patterns 

Due to its high spatial and temporal variability, rainfall is one of the most difficult 

meteorological parameters to measure (Kidd, 2001). Many studies have attempted to interpolate 

rainfall; however, the high variability of rainfall makes it extremely challenging to create a single 

best method. Determining the most appropriate approach for a particular application depends on 

the local rainfall characteristics and the time and spatial scale of the analysis (Grimes and Pardo-

Igúzquiza, 2010). Measurement of rainfall in mountain areas is particularly challenging, 

especially when trying to estimate extreme rainfall amounts (Krajewski and Smith, 2002). 

Estimation of rainfall in mountains is difficult because of low-density rain gauge networks that 

are not always useful for delineating rainfall boundaries in complex terrain. 

To examine rainfall distribution in mountain areas it is important to differentiate from flat 

lands because of the different physical processes involved (Grimes and Pardo-Igúzquiza, 2010). 

A common (arbitrary) definition of mountains in North America differentiates between hills and 

mountains if the relief is greater than 600m; this altitudinal change is enough to create different 

climate conditions and vegetation cover (Thompson, 1964). In general, altitudinal change or 

elevation is the most common variable to estimate rainfall (Guan et al., 2005); however, the 

effect of altitude on the vertical distribution of rainfall in mountain areas varies depending on the 

geographic location (Basist et al., 1994). 

The influence of topography on rainfall patterns in mountain areas has been statistically 

analyzed by Basist et al. (1994). They used a simple linear regression equation to examine the 

relationship of topographic variables (hillslope, elevation, and orientation to prevailing wind) to 

mean annual precipitation for study areas that represent different mountain climates across the 

world. Their analysis found that in some locations the influence of elevation, relating to the 

orographic effect, had a negative correlation to precipitation. In those cases, it is believed that 

other topographic features, such as fjords, can have an important role in the process of 

precipitation. Additionally, Basist et al. (1994) found that the most important topographic factor 
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relating to the spatial distribution of precipitation is the exposure of a mountain slope to 

prevailing winds. Daly et al. (1994) also examined the influence of elevation on precipitation and 

noted that the precipitation-elevation relationship is not simply linear, but may have a log-linear 

or exponential relationship in different situations. Further observations found the importance of 

aspect and elevation and their influence on incoming radiation, which also affects precipitation 

distribution, can vary throughout seasons (Guan et al., 2005; Barry, 2008). 

 

2.2.2 Rainfall interpolation 

In geostatistics, rainfall is a common example of a regionalized variable. In general, rainfall 

amount has a strong correlation over short distances (<10 km) that decreases gradually as 

distance increase (Grimes and Pardo-Igúzquiza, 2010). Although rainfall is a regionalized 

variable, there are some difficulties in interpolation using geostatistics. Some of the difficulties 

are related to rainfall data being heteroskedastic – the variance increases as a function of rainfall 

amount; the spatial structure of rainfall depends highly on variable weather type and geography; 

and the typical measurement locations of rain gauge data can be insufficient because the 

observation locations are usually determined by accessibility (Grimes and Pardo-Igúzquiza, 

2010). Although these difficulties exists, studies show that when rainfall estimates are based on a 

low density rain gauge network, geostatistical interpolation performs better than non-

geostatistical techniques that do not consider a pattern of spatial dependence, such as the 

Thiessen polygon and inverse square distance methods (Creutin and Obled, 1987; Goovaerts, 

2000). 

There are many different geostatistical techniques that have been used for rainfall 

interpolation (Krajewski, 1987; Goovaerts, 2000; Guan et al., 2005; Haberlandt, 2007; Grimes 

and Pardo-Igúzquiza, 2010). The main technique for interpolating rainfall with only rain gauge 

data is ordinary kriging. However, ordinary kriging does not always provide sufficient results 

because it is only based on the values and locations of rain gauge data. Therefore, multivariate 

geostatistical techniques are more commonly used, and have been found to perform better 

(Goovaerts, 2000; Haberlandt, 2007). 

The fundamental objective in geostatistics is to interpolate unknown values of a regionalized 

variable based on the concept of spatial autocorrelation. In order to understand the spatial 
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autocorrelation of a variable a semivariogram analysis must be performed. In terms of rainfall, 

semivariogram analysis is particularly challenging because rainfall events can differ in 

characteristics such as weather type, intensity, duration, and spatial cover. Thus, it is suggested 

that a semivariogram should be created based solely on observations related to a specific rainfall 

event. Additionally, the range determining the correlation pattern of rainfall in mountains is 

expected to be much shorter than for lowland plains. Therefore, it may be useful to construct a 

semivariogram for geographical sub-regions that represent different topographic areas, such as 

lowland plains, hills and mountains (Grimes and Pardo-Igúzquiza, 2010). Anisotropy is another 

issue to consider for semivariogram analysis because rainfall events usually directionally 

dependent. However, a study by Haberlandt (2007) found that when using radar as a secondary 

variable for prediction of rainfall using rain gauge data, there was no significant difference in 

interpolation performance between isotropic and anisotropic semivariograms. It should also be 

mentioned that there are numerous methods available for estimating the parameters of a 

semivariogram model such as general least squares, ordinary least squares, maximum likelihood, 

and Bayesian analysis. In terms of rainfall interpolation, none of the methods appear to enhance 

performance over another (Grimes and Pardo-Igúzquiza, 2010). 

 

2.3 Landslides and forest harvesting activities 

In general, landslide initiation increases in areas with forest harvesting activities (Swanston 

and Swanson, 1976; Wu and Mckinnell, 1979; Greenway, 1987; Montgomery et al., 2000; 

Jakob, 2000; Guthrie, 2002; Rickli and Graf, 2009; Goetz et al., 2011). The main activities that 

impact slope stability are deforestation and construction of roads (logging roads; Table 2.2).  

Forests can influence slope stability through evapotranspiration and root cohesion (Sidle et 

al., 2006). Evapotranspiration alters the soil moisture regime by reducing the amount of water 

reaching the soil (Greenway, 1987). Also, interception of precipitation by tree canopies can 

promote evaporation and reduce the amount of water infiltrating into the soil below (Greenway, 

1987). In terms of root cohesion, roots may penetrate through the soil mantle to anchor in 

bedrock; this effect has a greater influence on slope stability for shallow soils than deeper soils 

(Wu and Mckinnell, 1979; Greenway, 1987).  



10 
	
  

Table 2.2. Impacts of engineering activities on factors that influence slope stability in steep forest lands of the 

Pacific Northwest (Altered from Swantson and Swanson, 1976) 

 

 Engineering activities a  
Factors Deforestation Logging Roads 
I. Hydrological influences   

A. Water movement by 
vegetation 

Reduce evapotranspiration (-) Eliminate evapotranspiration (-) 

B. Surface and subsurface 
water movement 

Alter snowmelt hydrology (- or +) 
 
Alter concentrations of unstable debris 

in channels (-) 
Reduce infiltration by ground surface 

disturbance (-) 

Alter snowmelt hydrology (- or +) 
Alter surface drainage network (-) 
Intercept subsurface water at roadcuts (-) 
Alter concentration of unstable debris in 

channels (-) 
Reduce infiltration by roadbed (-) 

II. Physical influences   
A. Vegetation   

1. Roots Reduced rooting strength (-) Eliminate rooting strength (-) 
2. Bole and crown Reduced medium for transfer of wind 

stress to soil mantle (+) 
Eliminate medium for transfer of wind 

stress to soil mantle (+) 
B. Slope   

• Slope angle  Increase slope angle at cut and fill slopes 
(-) 

Eliminate mass of vegetation on slope (+) 
• Mass on slope Reduce mass of vegetation on slope (+) Eliminate mass of vegetation on slope (+) 

Cut and fill construction redistributes mass 
of soil and rock on slope (- or +) 

 
C. Soil properties  Reduce compaction and apparent cohesion 

of soil used as road fill (-) 
a Influence that usually increases slope stability denoted by (+); influence that usually decreases stability denoted by 

(-) 
 

Forest harvesting activities can change the physical structure of soil by increasing bulk 

density and compaction, and decreasing organic matter content (Huang et al., 1996; Merino et 

al., 1998). The chance of landslide initiation can vary depending on the forest type, forest age 

and diameter of trees; smaller diameter trees and younger forests have been found to have higher 

chance for landslide initiation (Lee and Min, 2001). Furthermore, clear-cutting, which was the 

only logging technique used in British Columbia until 1997 (Jakob, 2000), destroys the 

stabilizing influence of vegetation cover and alters the hydrological regime (Swanston and 

Swanson, 1976). Evidence of this relationship has been explored by studying root area ratios, the 

proportion of cross-sectional area to soil cross-sectional area. As expected, the proportion of 
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roots is much lower in clear-cuts and industrial forests (Schmidt et al., 2001). As a result, the 

strength contributed by the root for stability of hillslopes is less in logged areas (Wu and 

Mckinnell, 1979; Schmidt et al., 2001). 

In terms of temporal initiation of landslides in forest harvested areas, it has been found there 

is a time lag from clear-cutting to an increase in landslide frequency. This lag time for increase in 

landslide frequency has been found to be as long as a few to a dozen years (Swanston and 

Swanson, 1976; Wu and Mckinnell, 1979; Sidle et al., 2006). 

Logging roads can form an imbalance of the strength-stress relationship on a ‘natural’ 

hillslope by cut and fill activities and poor construction fills, which lead to alteration of surface 

and subsurface water flow (Swanston and Swanson, 1976). The causes of these roadside failures 

were attributed to the lack of full bench road construction and inadequate drainage. The logging 

roads either do not have sufficient cross drains and ditches or are inactive and have not been re-

planted (Swanston and Swanson, 1976; Schwab, 1983). 

Full bench roads are constructed typically for slopes that have an inclination that is greater 

than 60°. The excavated material is either pushed to the downslope location of the road or hauled 

away. The main problem with pushing the material to the downslope side is leaving it 

unconsolidated and unstable. Typically, a road constructing practice referred to as endhauling is 

used to maintain slope stability, which refers to the removal of excavated material to an approved 

waste area (BC Ministry of Forests, 2002). 

 

2.4 Land cover classification 

The contribution of forest stand characteristics, which may be related to forestry activities, 

to the initiation of landslides can be explored using land cover classification maps (Lee and Min, 

2001; Goetz et al., 2011). Land cover can be defined as the spatial characterization of natural and 

anthropogenic features on Earth’s surface using remote sensing imagery. Thus in general, land 

cover maps can be used to summarize some of the biophysical and anthropogenic controls on 

landslides. Schmidt et al. (2001) suggests that utilizing remote-sensing information, such as 

mapping canopy structure, can be used as a proxy for characterizing the amount and spatial 

variation of root cohesion for areas that are susceptible to landslides.  
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There exists a variety of methods for land cover classification. In general, these methods can 

be categorized into two approaches: supervised and unsupervised classification. Supervised 

classification relies on a priori knowledge of cover types, which is used for labeling samples 

associated with land cover classes for use in a classification technique. In contrast, unsupervised 

classification does not require prior information about cover types; usually, spectral clusters are 

formed and labeled by cover type after applying a classifier (Cihlar, 2000). Commonly used 

supervised approaches include maximum likelihood classification (MLC; Defries and 

Townshend, 1994; Stefanov et al., 2001; Rogan et al., 2002; Cingolani et al., 2004), k-nearest-

neighbor classification (KNN; Franco-Lopez et al., 2001; Haapanen et al., 2004; Gjertsen, 2007), 

artificial neuron networks (ANN; Atkinson and Tatnall, 1997; Pal and Mather, 2003) and 

decision tree classifiers (DT; Friedl and Brodley, 1997; Rogan et al., 2002; Pal and Mather, 

2003). The most commonly used unsupervised approach is the clustering algorithm known as 

ISODATA (Sader and Winne, 1992; Cohen et al., 1998; Wilson and Sader, 2002; Barnett, 2004).  

The standard method when performing supervised image classification for remote sensing is 

MLC (Arbia et al., 1999; Pal and Mather, 2003). MLC is often not much different, in terms of 

performance, than methods such as decision tree classifiers and artificial neural networks for 

land cover classification (Pal and Mather, 2003). The choice of which approach to use is based 

on previous knowledge of the study area. In general, if the desired land cover classes are already 

known and there is good knowledge of the where they will occur, in terms of sampling, a 

supervised method is preferred. An unsupervised method is appropriately applied when mapping 

a large area that is relatively unknown (Cihlar, 2000).  

In performing a classification it is important to consider the number of land cover classes. 

Typically, the accuracy related to the classification can decrease as the number of classes 

increases (Cohen et al., 1995).  

Past studies have been able to characterize the general age of a forest based on spectral 

information from a thematic mapper (TM) tassel cap (TC) transformation (Cohen and Spies, 

1992; Cohen et al., 1995, 1998). Specifically, the TC transformation can be used to estimate 

forest cover types (e.g. open canopy forest, or closed forest) using Landsat TM imagery (Cohen 

et al., 1995). 

The TC is an orthogonal transformation of original Landsat data that creates three new 

components: brightness, greenness, and wetness (Crist et al., 1986). Different forest conditions 
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can be classified based on spectral response related to brightness, greenness and wetness. In 

mountainous regions, the greenness and wetness are highly sensitive to changes in topography; 

however, the TC transformation can still capture most of the spectral variability required to 

distinguish between cover types (Cohen and Spies, 1992; Cohen et al., 1995).  

Cohen et al. (1995) describe how the TC transformation can be used to classify forest 

conditions into exposed surface (or recently logged forest), open canopy forest, semi-open 

canopy forest and closed canopy forest. This study focused on forests located in the Pacific 

Northwest region of the United States (just south of Vancouver Island). The majority of spectral 

variation to distinguish between forest conditions can be captured with brightness and greenness 

(Cohen and Spies, 1992). A severely disturbed forest stand (e.g., clear-cut) has, relatively, the 

lowest wetness, greenness, and the highest brightness values. Semi-open forest (increasing green 

vegetation), captures higher wetness and greenness values. Closed forest stands are associated 

with the highest greenness, relatively high wetness and moderate brightness values. 

 

2.5 Landslide susceptibility with GAMs and GLMs 

Empirical techniques for landslide susceptibility modeling, such as logistic regression 

analysis, can provide insight regarding the presence or absence of a response variable (e.g., 

landslide initiation) to changing predictor variable values (e.g., environmental factors). Since the 

predictor variables for landslide initiation can be represented spatially, it is possible to predict the 

spatial distribution of landslide susceptibility. Logistic regression, a generalized linear model 

(GLM), is a method for prediction of a binary response variable (e.g., the presence or absences of 

landslides) by utilizing the logit transformation (more detail in Section 4.5.1). Logistic regression 

has been found to perform more adequately than machine-learning models, such as support 

vector machines and tree classifiers, which are more likely to overfit to the data (Brenning, 

2005). However, GLMs lack the ability to properly represent non-linear effects that are known to 

exist in many environmental geomorphological analyses (Phillips, 2003; Brenning et al., 2007; 

Brenning, 2009; Goetz et al., 2011). Only recently have these nonlinear effects been modeled 

using nonlinear regression techniques, such as generalized additive models (GAM), for 

geomorphological distribution models in complex terrain (Brenning, 2009) and landslide 
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susceptibility models (Goetz et al., 2011; Park and Chi, 2008). A GAM is an extension of a GLM 

that can represent covariates as linear or non-linear (Hastie and Tibshirani, 1986). 

The relationships of the landslides with the environmental factors can be drawn with 

inference by assessing the relative contributions each factor has for explaining landslide 

initiation. The primary purpose of using a GAM or GLM is to learn more about the processes 

causing landslides by creating a model that describes the dependence of landslides on the 

environmental factors. The subsequent knowledge gained can be used to better predict landslide 

susceptibility using a set of environmental factors (Hastie and Tibshirani, 1990).  

 

2.5.1 Uncertainty 

It is very well understood that the quality of the data used for modeling will be reflected in 

the final product, as the computer axiom states, “garbage in, garbage out”. Data quality is a term 

that can be used to describe the general capacity of data to assist in an analysis. Key components 

of data quality are uncertainty and suitability.  Relating to physical geography, uncertainty can be 

defined as, “an expression of our inability to resolve a unique, causal, world either in principle or 

in practice” (Brown, 2004). This definition can be directed to attempts, by scientists, to model 

the world around; specifically, uncertainty is used to describe what we do not know. Suitability 

is the ability of data to be adequately applied to a specific problem. For example, data created for 

one purpose may not be appropriate for applying to another. 

There are many elements of uncertainty. Rowe (1994) describes these elements in terms of 

temporal, structural, metrical and translational uncertainties. Temporal uncertainty is related to 

likelihood of a future event occurring; we may understand a probability of a future event, but 

how confident can we be in our prediction (Rowe, 1994)? Structural uncertainty is related to 

what and how many parameters or variables are selected to model a situation and its 

complexities (Rowe, 1994). Metrical uncertainty is related to the accuracy and precision of 

measurements of values of variables or parameter attributes (Rowe, 1994). Translational 

uncertainty is a combination of the other uncertainties, which relates to the ability to explain the 

uncertainties and how they are interpreted (Rowe, 1994).  

These concepts can be applied to geographical models, including modeling of landslide 

susceptibility, to better identify, understand and describe the range of model uncertainties in an 
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attempt to reduce translational uncertainty; as a result, decision-makers may more confidently 

apply a supporting model. 

 

2.5.2 Spatial data 

Spatial data collected for predictive modeling of landslides contains information that 

characterizes the general conditions influencing initiation of an event (Chung and Fabbri, 1999). 

Van Westen et al. (2005) suggests that the spatial data required for landslide susceptibility, 

hazard and risk assessment can be subdivided into the following groups: landslide inventory 

data, environmental factors, triggering factors, and elements at risk. Since this is a landslide 

susceptibility modeling study, it will focus on the environmental factors and triggering factors of 

landslides.  

A landslide inventory is a collection of spatial and temporal information corresponding to 

individual classes of landslides. Typically, a landslide hazard study should begin by making a 

landslide inventory (van Westen et al., 2008). Issues regarding data quality can be summarized 

by topics of scale, accuracy and precision and temporal relevance. In terms of scale, aerial and 

satellite image interpretation is the most common technique for mapping landslides (Tribe and 

Lier, 2004). High-resolution optical images (e.g., Landsat TM/ETM+, SPOT) are useful for 

mapping many large landslides. However, investigation of a single landslide event should rely on 

very high-resolution imagery (e.g., QuickBird, IKONOS). However, the high costs of very high-

resolution imagery may considerably limit the use, particularly for multi-temporal analysis (van 

Westen et al., 2008). 

In spatial databases, the accuracy and precision of locating and defining the boundaries of 

landslides is critical for the further investigation of landslide hazards. The uncertainty in the 

mapping of landslides may be related to the expertise of the image interpreter or surveyor and a 

lack of sufficient historical data, such as precise location, time and classification of a landslide 

(Carrara, 1993; van Westen et al., 2008). Issues regarding time and location can be overcome by 

acquiring imagery most recent to the event under study. Otherwise, it is possible that some 

landslides may be missed because changing environmental factors, such as land-use (Carrara, 

2008); some researchers have relied on further field investigation and interviews with local 

residents to improve the reliability of landslide information (Carrara et al., 2003).  
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The temporal relevance of the landslide inventory is very important for modeling 

susceptibility. In general, most landslide susceptibility models are based on an approach that 

relies on precedent conditions to characterize areas susceptible to landslides. However, there is 

high temporal and spatial uncertainty associated with these methods when applied outside of the 

precedent conditions used to establish the model. As a result, it is common that landslide hazard 

assessment is not based on precedent conditions, but on theoretically determined causative 

factors (Dai and Lee, 2002). Further complicating this issue is that it can be difficult to obtain a 

temporal database of landslides. To obtain this data, one must map landslides after a particular 

triggering event (Guzzetti et al., 1999). Therefore, a researcher is often left to analyze 

susceptibility using a landslide inventory where the dates of the slides are only roughly 

understood, which makes it difficult to draw confident conclusion regarding the conditions that 

initiated the slides. 

Exploring the spatial relationship of environmental factors to landslide locations can be used 

to assess landslide susceptibility. In an empirical model, the environmental factors are usually 

represented by spatial variables of a model. Triggering factors are also important for 

understanding where landslides will occur. A susceptibility model can integrate triggering factors 

into its analysis by representing them as independent spatial variables. For example, the 

influence of precipitation on sliding may be explored by examining maps of average annual 

rainfall. The accuracy and precision of spatial data for landslide factors is just as important as the 

landslide inventory. Often, not enough attention is given in landslide literature to describe the 

sources of error and uncertainties related to data acquisition and manipulation (Guzzetti et al., 

1999). 

Another issue with environment factors is the classic statistical problem of finding a close 

association between variables without a process-based relationship (Gritzner et al., 2001), since 

trying to capture all the variables involved in complex geomorphological processes can be very 

difficult and time consuming. In practice, it may be favorable to accept the associations between 

variables in return for prediction improvement. This is especially important in statistical 

modeling, where there is flexibility in the input data to provide variables representing, or serving 

as proxies for, observed factors that influence sliding. 

The temporal variation of landslide factors is a major limitation in landslide susceptibility 

modeling. As discussed above for landslide inventory data, predictive landslide models assume 
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that landslides in the future will occur under the present or past relationships used in an analysis. 

For factors such as bedrock lithology, structure and morphology, these assumptions may be 

correct. However, temporally variable data, such as land-use and precipitation patterns, are much 

more difficult to apply  these stationary assumptions (Dai et al., 2002). Furthermore, strong 

assumptions that the conditions are stationary, as opposed to allowing for temporal variability, 

may lead to erroneous predictions (Guzzetti et al., 1999).  

Training and validation of landslide susceptibility models depends on the quality of 

inventory data and the established relationships to environmental factors and triggering factors 

(Dai et al., 2002). Thus, it is important that the spatial data issues are transparently discussed. 

 

2.5.3  Model assessment 

Assessment of predictive models can be simply understood as a quality assessment of model 

performance. Without some sort of assessment of model performance, the susceptibility model is 

practically useless for decision-makers (Chung and Fabbri, 2003). The quality of a susceptibility 

model can be assessed in terms of the reliability, robustness, degree of fitting, and prediction 

skill (Guzzetti et al., 2006). The prediction skill can be determined by using a suitable 

performance measure and estimation method. In order to assess the reliability and robustness of a 

model further methods of evaluation are required and will be discussed below. 

The performance of landslide susceptibility models depends on inputs, especially the 

landslide inventory. The spatial pattern of susceptibility maps can vary depending on the 

different inventories (Blahut et al., 2010). Thus, an evaluation method should be selected to 

account for the possible variability in results relating to the selection of training and test data. 

Holdout method, random subsampling, k-fold cross-validation, and bootstrap are common 

methods for producing estimations of error (Brenning, 2005; Hand, 1997).  

The holdout method is the simplest of the error estimation techniques. This method 

randomly partitions the data set into a test set and training set; usually, the training set consists of 

two-thirds of the data set. The training set is used to build the model, while the test set is set 

aside to estimate the accuracy.  
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Random subsampling is simply the holdout method for repeated k times. The overall 

estimation of model performance is based on the average of the error estimates calculated for the 

repetitions.  

In order to utilize the entire data set for training and testing the model, the modeling 

technique can be evaluated using k-fold cross validation. This method divides the data set 

randomly into k subsets of equal size. The model is trained using k – 1 subsets and tested on the 

remaining subset. This process is repeated while rotating the position of the test set k times. 

The bootstrap is resampling-based method that can utilize an entire data set. The bootstrap 

method is a non-parametric estimation of error that draws independent samples with replacement 

from available data. It can be repeated k times and the overall error estimations can be measured 

as the median of error estimates from each repetition. In addition, the repeated resampling can be 

used to provide estimates of variability in performances. 

A fundamental problem with typical model validation sampling methods, which rely on 

spatially random selection of samples for test and training sets, is the lack of the ability to use a 

landslide distribution sample for modeling and apply it for the general distribution of landslides 

in an area (Brenning, 2005). This problem arises if the samples from the training and test set are 

only separated by small distances. Consequently, the error estimates may be overoptimistic due 

to the spatial dependencies between the two sets. Brenning (2005) proposed that this issue can be 

overcome by using a spatial cross validation method, where the training and test sets are 

spatially partitioned. This approach has been applied successfully in Brenning et al. (n.d.) where 

it is confirmed that simple spatial random samples produced overoptimistic error estimates. 

Guidelines for acceptable model performance are a subject matter that is seldom looked at in 

landslide susceptibility modeling literature. Guzzetti et al. (2006) attempted to explain the 

requirements for acceptable model performance. They suggest that an overall degree of model fit 

greater than 75% is ‘acceptable’ and 80% is ‘very satisfactory’. In their case, degree of model fit 

is defined by the percentage of correctly classified landslides (true positives). If the model fit is 

greater than 90% then the degree of model fit becomes questionable; the model predictions may 

be too specific to the original landslide inventory, which may be a case of over-fitting. 

The proposed guidelines for model performance by Guzzetti et al. (2006) may be 

appropriate for hard-classifiers that simply predict the presences or absence of landslide 

initiation. However, many predictive modeling techniques, such as GLMs and GAMs, predict the 
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probability of a landslide event to occur (Brenning, 2005). The performance of these 

probabilistic methods can be estimated by measuring the sensitivities and specificities of specific 

probabilities to predict landslide initiation (Brenning, 2005).A receiver-operating characteristic 

curve (ROC) can be used to represent the estimates of sensitivities and specificities (Zweig and 

Campbell, 1993). ROCs are a plot of sensitivity (y-axis) and specificity (x-axis). In terms of 

landslide analysis, sensitivity is the percentage of correctly classified landslide points and 

specificity is the percentage of correctly classified non-landslide points. The overall model 

performance can be determined by calculating the area under the ROC curve (AUROC), which is 

a method that does not depend on the spatial density of landslides. In addition to the AUROC, 

sensitivity at high specificity can be calculated to assess the ability of a model to predict 

landslide initiation with detail. In general, the area delineated as unsafe or unstable should be 

small to reflect the typical low density of landslides (Goetz et al., 2011). 

 

2.6 Summary 

Modern landslide susceptibility analysis investigates the predisposition of landslides to 

occur based on controlling environmental factors. These relationships can be modelled using 

novel statistical techniques, such as the GAM, that allow for modeling of nonlinear relationships. 

There are many inherent uncertainties associated with geospatial analysis using multiple 

data sources. Appropriate model assessment is vital for communicating these model uncertainties 

to improve confidence in interpretation of model results. 

Rainfall and land cover, related to forest harvesting, are important control on landslide 

initiation. There are a variety of methods that can be used for model patterns of rainfall. 

However, geostatistical techniques are shown to produce the most promising results. Land cover 

classification is a long studied topic with many available methods that usually perform similar. 

One such method, MLC, is a standard approach that has been proven to produce regular adequate 

results.  

Data acquisition and processing of important landslide controls and incorporating them into 

landslide susceptibility modeling can be used to explore, enhance and confirm existing 

knowledge of processes leading to landslides. 
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Chapter 3  
Physical Geography of Vancouver Island 

 

3.1 Physiography and geology 

Vancouver Island (31 788 km2) is located off the west coast mainland of British Columbia, 

Canada. The west coast of the island is defined by its fjord landscape, while the central valley 

contains many “finger lakes” formed from deep glacial scouring. Most of Vancouver Island is 

made up of a mountain range referred to as the Vancouver Island Ranges, which are a sub-range 

of the Insular Mountains that run along the Pacific Coast and include the Queen Charlotte 

Mountains. The Vancouver Island Ranges have peaks of approximately 1000 m to 2200 m above 

sea level. The island landscape has been heavily modified during Pleistocene glaciation (Muller, 

1977). 

The lithology of the landscape can be generalized into formations of igneous (intrusive and 

volcanic), metamorphic and sedimentary rock (Figure 3.1). Central Vancouver Island is occupied 

by volcanic and intrusive rocks that follow the Vancouver Island Ranges (Muller, 1977). 

Sedimentary rocks are found mainly along the coastal Nanaimo lowlands located along south-

eastern coastline. This area, the Nanaimo formation, is made up of undivided sedimentary rocks. 

Other sedimentary rocks, such as limestone deposits, can also be found in the Quatsino formation 

that runs parallel to the Vancouver Island Ranges from north of the Holberg Inlet to Nootka 

Sound. 

The general slope stability characteristics can be characterized by lithologic rock classes. 

The intrusive rocks on Vancouver Island typically support the steep slopes of the Insular 

Mountains. They are coarse grained and made up of durable minerals (quartz, feldspars) that are 

relatively resistant to weathering, but still subject to mechanical breakdown. Slope stability is 

controlled by lines of weakness. The most unstable areas are major joints or faults that are 
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adjacent to gullies or valleys (Pike et al., 2010). Typically, mass movement on these slopes 

results in coarse, bulky colluvial slopes. The volcanic rocks, such as basalts, are finer grained. 

This rock class is highly subject to mechanical weathering, such as freeze-thaw, because water 

can easily infiltrate into the rock joints. Also, the minerals in basalts are particularly susceptible 

to chemical weathering. Landslides may occur on layered volcanic sequences that have a layer of 

severely weathered rock material or clay residues (Pike et al., 2010). Metamorphic rocks can be 

extremely resistant to weathering, while sedimentary rocks are subject to solution by acidic 

water; as a result, karst formations that are common on central and northern Vancouver Island, 

are subject to collapse, which can form steep depressions in the landscape (Pike et al., 2010). 

 

 
Figure 3.1. Surface geology map of Vancouver Island (Data from Massey et al., 2005) 
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3.2 Climate 

The west coast of Vancouver Island has some of the highest annual precipitation amounts in 

Canada (McKenney et al., 2006). The pattern of rainfall is typical of coastal mountain ranges 

located on the Pacific Ocean. The mean annual precipitation ranges from 800-1200 mm along 

the east coast (mountain shadow) and increases towards the west coast (windward side) to more 

than 3000 mm (Figure 3.2; McKenney et al., 2006).  Precipitation on Vancouver Island is most 

abundant from early autumn to midwinter. During this period the prevailing wind is from the 

south-southwest (Basist et al., 1994). 

 

 
Figure 3.2. The mean total annual precipitation  from 1971 to 2000 (McKenney et al., 2006; altered from Natural 

Resources Canada, 2012) 

 

In general, patterns of rainfall are controlled by land surface type, topography, surrounding 

oceans, large-scale circulations and thermodynamic conditions. The El Niño Southern 

Oscillation (ENSO) influence patterns of rainfall occurring in British Columbia. ENSO is a 

climatic pattern in the tropical Pacific Ocean that occurs every 2-7 years, and lasts from 12-15 

months (Biggs, 2003). The El Niño period, which is associated with ENSO, causes warming of 

sea-surface temperature in the eastern tropical Pacific Ocean. The consequent moist tropical air 

that collects over the western United States causes British Columbia to experience warmer air 
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and greater rainfall. In contrast, the other period of ENSO, La Niña, is related to much cooler air 

temperature and less rainfall in British Columbia (Biggs, 2003). 

 

3.3 Biogeoclimatic zones 

Biogeoclimatic zones, which have been developed by the British Columbia Ministry of 

Forests, are useful for summarizing geographical areas that have similar climate, soil and 

vegetation characteristics (Meidinger and Pojar, 1991). Vancouver Island is comprised of 4 of 

these zones: Coastal Western Hemlock, Mountain Hemlock, Coastal Douglas-fir, and Alpine 

Tundra (Figure 3.3). 

 

 
Figure 3.3. Biogeoclimatic zones of Vancouver Island (altered from British Columbia Ministry of Forests, 2012) 
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Vancouver Island is predominantly covered by the Coastal Western Hemlock (CWH) zone 

(Figure 3.3). This zone is prevalent from sea level to elevations from 900 m (windward slopes) to 

1050 m (leeward slopes; Figure 3.4; Meidinger and Pojar, 1991). The average monthly 

temperature of 8°C ranges from 5.2°C to 10.5°C. Mean annual precipitation ranges from 1000 

mm to <4400 mm. The amount of precipitation occurring as snowfall can be as little as 15% in 

southern regions (Meidinger and Pojar, 1991). The most common tree species in this zone is the 

western hemlock, but also includes Douglas-fir and amabilis fir, which can be found at upper 

elevations (Meidinger and Pojar, 1991; Krajina, 1969). It is common to find red alder wide 

spread in disturbed sites (e.g. logged areas) in the CWH zone (Meidinger and Pojar, 1991).  

 

	
  
 

Figure 3.4. Pattern of vegetation across Vancouver Island (altered from Krajina, 1969) 

 

The Mountain Hemlock (MH) zone, which is found at elevations between 900 m to 1800 m 

a.s.l., is located on the Insular Mountains of Vancouver Island above the CWH zone (Figure 3.3). 

The mean annual temperature ranges from 0°C to 5°C. The mean annual precipitation, which can 
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occur 20% to 70% as snowfall, varies from 1700 mm to 5000 mm (Meidinger and Pojar, 1991). 

The forest cover of the MH zone is predominately comprised of mountain hemlock, amabilis fir 

and yellow cedar. At higher elevations forest cover thins out because of a shorter growing 

season, increased duration of snow, and cooler temperatures (Meidinger and Pojar, 1991). 

The Alpine Tundra (AT) zone is located along the highest mountain peaks of the Insular 

Mountains on Vancouver Island at elevations above 1650 m (Meidinger and Pojar, 1991). This is 

the coldest zone, with mean annual temperature from -4°C to 0°C. The mean annual precipitation 

of 700 mm to 3000 mm typically occurs as snowfall (Meidinger and Pojar, 1991). This zone is 

predominately treeless. 

The Coastal Douglas-fir (CDF) zone is located in the rainshadow along a small segment of 

the southeast Vancouver Island adjacent to the Strait of Georgia (Figure 3.3 and Figure 3.4). This 

zone occurs mostly below 150 m a.s.l. (Meidinger and Pojar, 1991). It is the warmest zone with a 

mean annual temperature form 9.2°C to 10.5°C. The mean annual precipitation ranges from 647 

mm to 1263 mm and predominately occurs as rainfall (Meidinger and Pojar, 1991). The CDF 

zone has experienced heavy logging during the early 20th Century, with old growth forests 

remaining only in parks (Meidinger and Pojar, 1991). The most common tree species is Douglas-

fir; however, the tree cover type varies significantly across the zone, which is believed to be 

related to human disturbances (Meidinger and Pojar, 1991).  

 

3.4 Common landslide types 

On Vancouver Island, the most common triggering mechanism is precipitation and snow 

melt. Also, seismic activity has been known to cause landslides in this area (Hodgson, Ernest, 

1946; Mathews, 1979; Rogers, 1980; VanDine and Evans, 1992). 

The most common landslide types on Vancouver Island are debris slide and debris flows. In 

general, flows can be defined as a landslide that consists of individual movement of particles 

with a moving mass (Dikau et al., 1996). Debris flows usually occur on slopes that are made up 

of a thin layer of unconsolidated material. Thus, flows are composed of an assortment of fine 

material (sand, silt, and clay), coarse material (gravel and boulders), and organic material that is 

mobilized into a slurry moving down slope. The movement of a flow generally follow the path of 
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an existing channel or gully, where deposition from previous events may be picked up as an 

addition to the current flow of material (Dikau et al., 1996).  

Slides refer to movement of material along an identifiable shear surface (Dikau et al., 1996). 

They are grouped by type of movement as rotational or translational. Rotational slides have a 

somewhat rotational movement along an axis parallel to the ground surface. The sliding 

(slumping) occurs along a concavely upward failure surface (Varnes, 1978). In contrast, 

translational slides are more or less a planar failure that is influenced by discontinuities such as 

faults, bedding planes, thrusts and deposits (Dikau et al., 1996).  

Debris slides on Vancouver Island are typically shallow, occur on steep slopes and move 

rapidly. Initiation, which is responsive to rainfall, of debris slides occurs typically in concave 

hollows or seepage zones: an area of hillslope where seepage is concentrated. These are both 

areas where hydrostatic pressure may increase. Debris slides usually occur in till, colluvium and 

fluvially deposited sediments; also they can occur in Folisols (upland organic soils), which are 

typically located in the north and central coast of Vancouver Island (Pike et al., 2010). Debris 

flows on Vancouver Island are predominately triggered by an initial failure of a debris slide, 

which can occur on the gully sidewall or headwall (Brayshaw and Hassan, 2009). Also, debris 

flow initiation is much more likely to occur in steep channels than low gradient channels 

(Brayshaw and Hassan, 2009). In general, the amount of collected sediment in a channel relates 

to the size of slope failure required to initiate a flow; small slope failures can trigger debris flows 

in channels with little sediment collection, and large slope failures are required to initiate debris 

flows in channels with greater sediment collection. As a result of this relationship, it seems to be 

easier for debris flows to be triggered after a debris flow event that leaves little in-channel 

sediment collection (Brayshaw and Hassan, 2009). However, since the frequency of the debris 

flow events is increased in channels with low sediment collection, the magnitude of the event 

also decreases. 

 

3.5 Forest harvesting 

Vancouver Island has a history of landslides relating to forest harvesting activities 

(Rollerson, 1992; Rollerson et al., 1998; Jakob, 2000; Guthrie, 2002; Guthrie and Evans 2004; 

Chatwin; 2005, Guthrie, 2005). Logging roads appear to have a greater influence on landslide 
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activity than clear-cutting (Swanston and Swanson, 1976; Guthrie, 2002; Schwab, 1983). Guthrie 

(2002) examined the impact of logging roads and deforestation on landslide density (landslides 

per unit area) of three watersheds on Vancouver Island: Macktush Creek, Artlish River and 

Nahwitti River. It was found that in general logging activities substantially increased the number 

of landslides that occurred. Some watersheds experienced up to 16 times more landslides 

following forest harvesting. Logging roads have been found to increase landslide density up to 

94 times compared to ‘naturally’ forested areas (Guthrie, 2002). Jakob (2000) found in the 

Clayqout Sound that 49% of the landslides were related to logging activities. In particular, it was 

found that more areas are affected by landslides in logged areas because of larger landslide 

densities – not larger landslides. In comparison, an earlier study had similar findings in Rennell 

Sound on Queen Charlotte Island, British Columbia, which is located just northwest of 

Vancouver Island (Schwab, 1983). Following a large rain storm in Rennell Sound, Schwab 

(1983) investigated factors, other than rainfall, that contributed to landslides on the island. It was 

found that the frequency of landslides per unit area is less in forested areas, greater in clear-cut 

areas, and the greatest near logging roads; however, it was noted that newly constructed roads 

had a reduction in landslide initiation. 

 

3.6 Mapping landslide susceptibility 

Forestry management policy and practices in British Columbia have been established to 

reduce associated increases in landslide activity (Chatwin, 2005). Thus, there is a need to provide 

landslide hazard information for forest practices (Schwab and Geertsema, 2008). Typically in 

British Columbia, areas that were more prone to landslides were mapped using a heuristic 

approach based on the knowledge of professional geoscientists (Chatwin, 2005).  This approach 

relied on the British Columbia Terrain Classification System, which categorizes units of terrain 

that have similar slope, surficial material and slope morphology (e.g., curvature; Howes and 

Kenk, 1997; Schwab and Geertsema, 2008). The quality of this classification is limited by the 

subjectivity involved in the drawing of terrain unit boundaries (Rollerson et al., 1998). 

Furthermore, some of these maps assigned susceptibility to landslides based only on a qualitative 

description of landslide activity in each terrain unit (Chatwin, 2005). More recently the terrain 

mapping approach has been modified to classify landslide susceptibility using quantitative 
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methods that define landslide susceptibility based on the presence and density of landslides in 

each terrain unit (Rollerson et al., 2002; Chatwin, 2005; Guthrie, 2005).  

Statistical methods for modeling landslide susceptibility on Vancouver Island have also been 

studied (Chung et al, 2001; Goetz et al, 2011). Chung et al. (2001) applied a Bayesian probability 

method using topographic attributes derived from a digital elevation model, surface geology, and 

biogeoclimatic zones. Goetz et al. (2011) investigated enhancing landslide susceptibility 

modeling by integrating physically-based landslide models, with a GAM that utilized terrain 

attribute information and land use characteristics related to forest harvesting. Both studies 

highlighted the ability to improve the detail of landslide prediction by using statistical methods 

that classify susceptibility for individual cells in a raster dataset. 

 

3.7 Summary 

The landscape of Vancouver Island is dominated by mountains and lithology predominately 

composed of intrusives and volcanics. Annual precipitation can vary from 800-1200 mm on the 

leeward side of the Insular Mountains to >3000 mm on the windward side. Precipitation is most 

abundant from mid-autumn to early winter, which is related to winds coming from the south-

southeast direction. The most common tree species is western hemlock. The treeline is around 

1650 m a.s.l. 

Debris slides and debris flows are the most common type of landslide occurring on 

Vancouver Island. Initiation of these landslides is typically associated to rainfall. In addition, 

difference in mechanical slope failure can be partially attributed to different lithology classes. 

Also, the impacts of the forestry and logging activities on landslide initiation have been well 

documented. Past studies show freshly-cut forest and logging roads are associated with a higher 

frequency of landslide initiation on the island.  

Landslide susceptibility maps have been applied for the management of forest practices in 

British Columbia to reduce the associated impacts on landslide activity. A variety of methods 

have been applied to predict landslide susceptibility, which include qualitative as well as 

quantitative approaches.  
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Chapter 4  
Methods 

 

4.1 Landslide inventory 

A landslide inventory of 639 debris flow and debris slides polygons mapped for landslides 

that occurred in the winter of 2006-2007 was provided by the British Columbia Ministry of 

Environment. The majority of these slides have been cited as occurring during a storm on 15 

November, 2006 (Guthrie et al., 2010b).  

These landsides were mapped from 5 m spatial resolution SPOT satellite imagery by using 

an automated change detection method comparing scenes from the summer (May to September) 

of 2006 to the summer of 2007, which is the season when landslides are least frequent (Guthrie 

et al., 2010b). Some errors in building this inventory using change detection include positional 

shift and alignment errors, shadows and cloud cover associated to the SPOT imagery (Guthrie et 

al., 2010b). 

Initiation points digitized from the landslide polygons were used for the subsequent 

landslide susceptibility analysis (Figure 4.1). The location of an initiation point was digitized 

where the main scarp may be expected. These initiation points were used to approximate the 

environmental conditions that led to slope failure.  
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Figure 4.1. 2006-2007 landslides (debris slides and debris flows) on Vancouver Island 

 

4.2 Rainfall interpolation 

The purpose of the rainfall interpolation is to explore the relationship between locations of 

landslide initiation to patterns of rainfall. The influence of rainfall on 2006-2007 landslides was 

investigated by comparing rainfall interpolation for different temporal scales: two weeks of 

rainfall leading up to an extreme weather event within the temporal scale of the landslide 

inventory (two weeks); the winter months pertaining to estimated temporal span of the slides 

(winter); and the annual rainfall for 2006 (annual). The months included for winter rainfall were 

October 2006 to February 2007; March is not included because many weather stations across 

Vancouver Island were shutdown indefinitely that month. The association of rainfall with 

landslide initiation for these time periods were compared to determine which temporal scale 
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provides the ‘best’ information for prediction of landslide susceptibility given this landslide 

inventory. 

 

4.2.1 Weather station data 

Weather station data was compiled from different sources in order to have sufficient 

coverage of records of rainfall accumulation across Vancouver Island. The data was provided by 

government sources: Environment Canada, BC Ministry of Transportation and BC Ministry of 

Forest, Lands, and Natural Resource Operations. The National Climate Data and Information 

Archive of Environment Canada is available freely online and houses daily and monthly rainfall 

accumulation values (Environment Canada, 2011). The BC Ministry of Transportation provides 

hourly rainfall accumulation for stations that are mainly adjacent to major highways; it is also 

available freely online (BC Ministry of Transportation and Infrastructure, 2011). The Wildfire 

Management Branch of BC Ministry of Forests, Lands, and Natural Resource Operations 

provided hourly rainfall data (BC Wildfire Management Branch, 2011).  

Altogether, 53 stations across Vancouver Island were used as a basis for the rainfall 

interpolation (Figure 4.2). These stations range in elevation from 0 m to 580 m above sea level.  

Since some of the rainfall data had gaps in data, a threshold for accepting a weather station for 

interpolation was decided. The threshold for removing a station was if 3 or more days were 

missing (weeks), or 3 or more months were missing (winter and annual). Consequently the 

stations that were not included in analysis were: two weeks – Menzies Camp; winter – Mesachie 

DL and Saanichton CDA; annual – Mesachie DL, Saanichton CDA, TS Effinghanm, TS San 

Juan, and TS Naka Creek. 

The data from the BC government was available in hourly rainfall and Environment Canada 

data was available for daily amounts. Thus, these data sets were aggregated into weekly and 

monthly rainfall by calculating the sum of rainfall for a given period.  
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Figure 4.2. Map of weather stations and related associations used for interpolation of rainfall: BC Ministry of 

Transportation; BC Ministry of Transportation and BC Ministry of Forest, Lands, and Natural Resource Operations; 

and Environment Canada. 

	
  

4.2.2 Storm analysis 

The rainfall event chosen for this study was an extreme storm that occurred around 

November 15, 2006. Southwestern Vancouver Island was hit the hardest in terms of high rainfall 

intensity and accumulation that resulted in major flooding and landslides. This storm exceeded 

the Rainfall Frequency Atlas of Canada 100-year return period daily rainfall records for 

Vancouver Island  (Forest Practices Board, 2009).  It has been found that there was an increase 

in landslide activity following the large rainstorm event (Forest Practices Board, 2009). A 

detailed analysis of this weather event and the related landslides has also been completed by 

Guthrie et al. (2010). The highest recorded daily rainfall for this event was 126.4 mm at Port 
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Alberni. An analysis of maximum daily rainfall for weather stations across Vancouver Island 

from 2004 to 2007 confirms the November 2006 event as having the highest amount of rainfall 

in that period. Maximum daily rainfall amounts were examined using the Canadian Daily 

Climate Data (CDCD; Environment Canada, 2011), which is compiled and distributed freely 

online by the Meteorological Service of Canada of Environment Canada. It is also important to 

note there was an El Niño phase from July 2006 to February 2007, which would typically result 

in greater expected rainfall for that season. 

	
  

4.2.3 Digital elevation model and scale analysis 

Elevation data, which was used only for the analysis of rainfall interpolation, was derived 

from a mosaicked 3" (approx. 80 m spatial resolution) DEM that was provided by Canadian 

Digital Elevation Data (CDED). Tiles of this CDED DEM can be obtained online from GeoBase, 

which is initiated by federal, provincial and territorial governments of Canada to provide easy 

access to geospatial information (GeoBase, 2011).  

The association between elevation and rainfall is most apparent at spatial scales from 5 km 

to 10 km (Daly et al., 2008). This scale generally captures the effects of air movements around 

topographic obstacles (Daly et al., 1994; Funk and Michaelsen, 2004; Sharples et al., 2005). The 

spatial scale for the interpolation of rainfall in this study follows the same methods used by Daly 

et al. (2008) – an 800 m resolution DEM is up-scaled from the 80 m CDED and filtered with a 

Gaussian method using a circular neighbourhood having a 7 km radius. The correlation between 

rainfall and elevation at different resolutions was explored to ensure that an appropriate DEM 

was selected for rainfall interpolation. The resolutions of DEMs explored were 80 m, 800 m, 

1000 m and 5000 m. The DEMs coarser than 80 m resolutions were scaled up using a Gaussian 

method. Spearman’s correlation coefficient was used to measure the variation of correlations of 

different filter radius (1 km to 10 km) to rainfall accumulation during the 2006 November storm.  

 

4.2.4 Geostatistical interpolation 

An analysis comparing a variety of geostatistical interpolation methods was completed to 

determine an approach for interpolating rainfall for Vancouver Island for each temporal scale. 
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Ordinary kriging (OK), universal kriging (UK), and ordinary cokriging (OCK) were compared. 

In the models for UK and OCK elevation was used as an additional variable to rainfall amount. 

Thus, OK was the only univariate method and acts as a base for comparison of model 

performance. Since all of the above methods require a semivariogram model to represent spatial 

autocorrelation, experimental semivariograms were created and fitted with the appropriate 

semivariogram model for each method.  

The spatial variation in spatial structures can be represented by the semivariogram, which is 

a measure of dissimilarity between observations. An experimental semivariogram  𝛾(ℎ) is formed 

by using the function in the form (Goovaerts, 1997): 

 

 𝛾 ℎ =
1

2|𝑁!|
𝑧 𝑢! − 𝑧 𝑢!

!

!,! ∈!!

, (1) 

 

where 𝑁! denotes the set of pairs of observations 𝑖, 𝑗 separated by the vector ℎ, and 𝑧(𝑢) is a 

corresponding realization of a random variable  𝑍(𝑢) (rainfall accumulation) for point 𝑢 in the 

domain under study.  

OK is a linear estimator, meaning it uses a linear combination of neighbouring values 

(Goovaerts, 1997): 

 

 𝑍OK∗ 𝑢! = 𝜆!OK𝑍(𝑢!)
!

!!!

, (2) 

 

where 𝜆!OK represents the calculated weights for OK. 𝑍 has been observed at 𝑛 locations 

(𝑢!,… ,𝑢!) in the study domain; 𝑍 is a random field with a constant, but unknown mean  𝑚; the 

semivariogram 𝛾 of 𝑍 is known; and the semivariogram is stationary: the mean and variance do 

not change in time or space. 

Since in some situations the stationary condition is violated (e.g. mean rainfall depends on 

elevation), non-stationary methods such as UK are used in this analysis. UK uses a spatial linear 

model in the form (Goovaerts, 1997),  
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 𝑍UK 𝑢 =   b𝑻f 𝑢 + 𝑒 𝑢 = 𝑏!𝑓! 𝑢 + 𝑒(𝑢)
!

!!!

, (3) 

 

where 𝑒(𝑢) is the residual from the drift that is spatially dependent with zero mean, b𝑻f 𝑢  is a 

deterministic trend. UK does require the secondary variable 𝑓! 𝑢  to be collocated with a 

significant number of data points. This method does not require estimation of cross-

semivariograms or regression analysis of the variables (Ahmed and De Marsily, 1987). Also, 

universal kriging is generally less sensitive than OK to the semivariogram fitting approach and 

produces smaller absolute errors (Haberlandt, 2007). The usefulness of the secondary variables 

depends on the correlation to the regionalized variable, rainfall (Ahmed and De Marsily, 1987). 

OCK is multivariate extension of OK (Goovaerts, 1997), 

  

𝑍OCK∗ 𝑢 = 𝜆!!
!"# 𝑢

!!(!)

!!!!

𝑍! 𝑢!! + 𝜆!!
!"# 𝑢

!!(!)

!!!!

𝑍! 𝑢!!  (4) 

 

where the primary data (rain gauge) weights 𝜆!!
!"# are constrained to sum to one and the 

secondary data (elevation) weights 𝜆!!
!"# are constrained to sum to zero (Goovaerts, 1997). An 

advantage of cokriging is that it requires fewer assumptions than other multivariate methods such 

as UK (Ahmed and De Marsily, 1987). In addition, it has been found to produce adequate results 

when spatial correlation is present and if the there is a high correlation between the collocated 

variables (Ahmed and De Marsily, 1987). Like UK, OCK also requires a significant number of 

common data points (Ahmed and De Marsily, 1987).  

Since there were only 53 weather stations, global interpolation, which is the use of all 

observations for predicting  𝑢!, was used for all of geostatistical methods. The parameters 

(nugget, sill and range) of the semivariogram were estimated by iteratively reweighted least 

squares (Goovaerts, 1997). More detailed information regarding the theory behind the 

geostatistical methods used can be found in Goovaerts (1997). 
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4.2.5 Performance assessment 

The performance assessment of the rainfall interpolations was based on comparison of the 

root-mean-square-error (RMSE) and mean bias using a leave-one-out cross-validation. The bias 

is a measure of accuracy between observed and predicted values. The RMSE is a general 

measure for the precision of a model. The model with the lowest RMSE and bias was selected 

for interpolation of the rainfall variable used in the subsequent landslide susceptibility modeling 

analysis. The forms of the performance measures are, 

 

 bias =
1
𝑛 𝑍∗ 𝑢! − 𝑍 𝑢!

!

!!!

, (5) 

and 

 RMSE =
1
𝑛 𝑍∗ 𝑢! − 𝑍 𝑢! !

!

!!!

. (6) 

 

	
  

4.2.6 Selection of associated rainfall temporal scale 

A backward-and-forward stepwise variable selection, based on the Akaike Information 

Criterion (AIC), was used to select one of the rainfall variables (two weeks, winter or annual) 

that improves the goodness-of-fit of a GAM model including additional variables representing 

topography, lithology and land cover (See Section 4.5 for more detail); each rainfall variable was 

used in the model in a linear and nonlinear form. Thus, the resulting model should provide some 

empirical evidence regarding which rainfall scale was most associated to the set of landslides and 

provide possible insights into linear or nonlinear relationship that rainfall may have to landslides. 

The temporal scale that was selected using this method was used for a subsequent analysis of the 

relationship of rainfall to other environmental factors. 
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4.3 Land cover classification 

The purpose of the land cover classification was to explore the regional relationship of 

landslide initiation to different forest cover types. This classification was meant to represent 

general forest conditions related to disturbances from forest harvesting activities.  

4.3.1 Landsat TM data and land cover 

Landsat data has been popular for forest classification and other thematic classification for 

over 30 years (Cohen and Goward, 2004). The spatial resolution (30 m), spectral resolution and 

the availability of images for all year round make is suitable for classification of land cover for 

regional mapping of landslide susceptibility.  

Six Landsat TM images acquired from 6 July 2006 to 27 July 2006 were used in this study. 

Before classification, the images were transformed into brightness, greenness, and wetness of the 

TM TC transformation (Crist et al., 1986). The equations for TC are as follows, 

 

Brightness = 0.3037 TM! + 0.2793 TM! +

0.4743 TM! + 0.5585 TM! +

0.5082 TM! + 0.1863 TM!   

(7) 

 

Greenness = 0.2848 TM! + 0.2435 TM! +

0.5436 TM! + 0.7243 TM! +

0.0840 TM! + 0.1800 TM!   

(8) 

 

Wetness = 0.1509 TM! + 0.1973 TM! +

0.3279 TM! + 0.3406 TM! +

0.7112 TM! + 0.4572 TM!   

(9) 

 

where TMB refers to the corresponding Landsat TM spectral band.  

The Landsat data was downloaded for free from the United States Geological Survey 

(USGS) Global Visualization Viewer (USGS, 2011). All of the scenes used in this classification 

were georeferenced by USGS.  
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4.3.2 Maximum likelihood classifier 

The algorithm used for classification of land cover was the maximum likelihood classifier 

(MLC; Jensen, 2005). MLC is based on a  probability density function that is calculated from a 

training sample; thus, the classes are characterized by mean and (co)variance estimation 

(Atkinson and Tatnall, 1997). This method assumes that the distribution of class samples is a 

Gaussian (normal) distribution. A pixel is assigned a class based on which it has the highest 

probability to belong to. Without prior probability information, an unknown measurement vector 

X is assigned a class j if, and only if (Swain and Davis, 1978; Jensen, 2005),  

 

 𝑝! ≥ 𝑝!   for all  𝑘  and  𝑗  out  1,  2,  …  𝑛  possible  classes     (10) 

 

and,  

 

 𝑝! =
!
!
ln 𝑉! −

!
!
𝑋 −𝑀!

!𝑉!!! 𝑋 −𝑀! , (11) 

 

where Mi is the mean measurement vector for class j and Vj is the covariance matrix of class j for 

multiple bands (i.e., TC transformations) of remote sensing data l through m. 

In this study, each Landsat scene was classified using independent training data from other 

scenes. The training data was comprised of 100 (interpreted) samples per each desired class. 

Prior to picking the samples, clouds and cloud shadows were masked. The main land cover 

classes used in this study were associated with a variety of forest stand conditions: exposed 

ground, open canopy, semi-open canopy forest, and closed-canopy forest. In addition, classes for 

snow and ice, and water were classified; the non-forest classes represent areas that were masked 

out of the analysis. The class descriptions are shown in Table 4.1.  

Since forest harvesting has and continues to happen on Vancouver Island, the general forest 

covers were meant to implicitly relate forest activities. The classification was not specific enough 

to only represent ‘logging forests’. However, the general characteristics of these forest types can 

be used to relate to forestry practices and investigate the relationships to landslides. The decision 

to base this analysis on different forest class types was based on conclusions made by Schmidt et 
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al. (2001) that it is necessary to use a refined classification of vegetation to explore the possible 

associations between landslides and vegetation. The decision of which classes should be used in 

this study area to represent a variety of forest stand conditions, which may also related to forest 

activities, was based on the work of Cohen et al. (1995); in that study, different forest stand 

structures are classified for a Pacific coast study area that has similar forest conditions as 

Vancouver Island: forests dominated by Western hemlock and Douglas fir.  

 
Table 4.1. Description of land cover classes 

 

Classes General description Relationship to forest harvesting 

Forest cover   

Exposed ground Recently disturbed forest area or rock outcrop 

characterized by exposed surface 

material/bedrock 

Typical condition of a location that has been 

logged in the time period of the Landsat scene 

May contain recently planted seedlings 

Open forest A ‘young’ forest dominated by shrubs and saplings 

Recent recovery from a disturbance (e.g., logging) 

Beginning stages of forest recovery after recent 

logging 

Covered by tree saplings and poles 

Semi-open forest Forest with a partially opened canopy and exposed 

understory 

Later stage of forest recovery 

Covered by tree poles and some sawtimber 

Closed forest Relatively the most developed ‘old’ forest with 

closed canopy 

Fully recovered forest after logging or forest that 

has not been logged 

Majority of forest cover by sawtimber trees  

Masked   

Water All open water - 

Snow and ice Area characterize by year-long surface cover of 

snow/ice 

- 

Agriculture Area representing all types of agricultural fields - 

Urban Commercial and residential areas - 

 

4.3.3 Masking, mosaicking and resampling 

A manually digitized snow mask was used to prevent the misclassification of snow and 

exposed ground land cover (Figure 4.3). Although snow detected in the summer months is 

typically associated with the snowline at higher elevations, the mask is manually digitized 
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because the elevation of snow presence varies across mountain peaks. Thus, the MLC was 

implemented twice on the same training data in masked areas: once with all of the land cover 

classes, and another without training samples for snow cover. Next, the MLC with snow cover is 

cropped using the snow mask and used to replace values of the MLC without snow cover. As a 

result, snow is only classified at high elevations (about >1000 m. a.s.l.) associated with the 

(semi-) permanent snowline. 

Agricultural and urban areas were also masked, which were predominant below 200 m a.s.l. 

These were masked by extracting agriculture and urban classes from the Circa 2000 Land Cover 

for Agricultural Regions of Canada, which is land cover classification product produced by 

Agriculture and Agri-food Canada (AAFC) using Landsat imagery. This data was available for 

free online from the GeoConnections – Discovery Portal (GeoConnections, 2011). 

	
  
Figure 4.3. Map illustrating the mosaic and snow mask of the land cover classification using Landsat TM scenes. 

The labels represent the path (P), row (R) and acquisition date for each scene. 
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Since each Landsat scene was individually classified using MLC, a mosaic of classified 

scenes was assembled to represent land cover coherently for all of Vancouver Island (Figure 

4.3). The decision of where to cut scenes was based on the ability to remove cloud covered areas 

from the final classification map. 

The spatial resolution of the mosaicked scene was resampled before including land cover in 

the following landslide susceptibility analysis. A nearest-neighborhood resampling method was 

used to transform the spatial resolution from 30 m to 20 m, the latter being the same spatial 

resolution of the grids used in the susceptibility analysis. 

	
  

4.3.4 Accuracy assessment 

The accuracy of the land cover classification focuses on highlighting the performance of the 

forest cover types and the masked out features (urban, agriculture, snow and ice, water) of the 

resampled-mosaicked land cover map that was used in the landslide susceptibility analysis. A 

reference data set was assembled by random sampling 100 points across the classified area, 

which allows for a 95% confidence level with a 10% confidence interval of the performance 

results. These points were independently interpreted using the same Landsat TM imagery used 

for the classification. The reference data set was then compared to the classified map values in a 

confusion matrix: a cross-tabulation of classes observed in the reference data and predicted in the 

classification. The measures used for estimating classification accuracy were derived from the 

confusion matrix; these were the overall accuracy and the kappa (κ) coefficient (Foody, 2002).  

The overall accuracy is a summary of the total agreement (or disagreement) measured by the 

proportion of the total number of assigned classes that are correct (Foody, 2002). 

Cohen’s κ coefficient was used to test the similarity between the reference observations and 

the classification. The κ coefficient ranges between -1 and +1, where -1 indicates perfect 

disagreement, +1 indicates perfect agreement and 0 indicates that there is no relationship. The 

calculation of κ is in the form, 

 

 𝜅 =   
𝑝! − 𝑝!
1− 𝑝!

 (12) 
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where 𝑝!is proportion of cases that are in agreement and 𝑝! is the proportion of agreement that is 

expected by chance (Foody, 2004).  

	
  

4.4 Logging roads 

The Euclidean distance from logging roads was calculated to explore the relationship these 

roads have to landslide initiation. Only distances from roads up to 100 m, which was the 

maximum distance assumed to have an influence on landslides, were explored. This data was 

obtained from the British Columbia Digital Road Atlas (BCDRA). Through visual inspection, it 

was determined that logging roads are best represented as road surface attributes for “loose” and 

“rough” surfaces in the BCDRA data set. It was important to differentiate the road surface type 

because paved roads and logging roads have different construction standards. 

	
  

4.5 Landslide susceptibility modeling 

The landslide susceptibility models constructed were based on a total of 9 natural and 

anthropogenic controls as independent predictor variables (Table 4.2). These included 5 

topographic factors (slope, catchment area, plan curvature, profile curvature, and elevation), 2 

anthropogenic factors (land cover and distance-to-roads), 1 climatic factor (two weeks, winter or 

annual rainfall) and 1 geologic factor (lithology). In this study the following GAM and GLM 

models for predicting landslides were explored; a GAM and GLM using variables for rainfall, 

land cover and logging, topography and geology (RLTG-GAM and RLTG-GLM); a GAM and 

GLM using the previous mentioned variables with the exception of rainfall (LTG-GAM and 

LTG-GLM). 

The topographic factors were derived from a 0.75" (~20 m) resolution CDED DEM using 

the open-source SAGA GIS (Conrad, 2006). The statistical modeling of the landslide 

susceptibility models were implemented using R, open-source statistical software (R 

Development Core Team, 2011). SAGA GIS was utilized in the R environment with the RSAGA 

package (Brenning, 2008). The factors for rainfall, land cover and logging roads (distance-to-

road) were based on the methods previously discussed in Sections 4.2, 4.3 and 4.4. The lithology 

classes (metamorphic, intrusive, volcanic and sedimentary) used for the geology factor were 
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from the Digital Geology Map of British Columbia (2005). All of the data sets were transformed 

into raster form with a spatial resolution of 20 m. 

 
Table 4.2. Summary of landslide susceptibility models and variables 

	
  
Model name Prediction model Variables 
RLTG-GAM 
 
RLTG-GLM 

Generalized additive model 
 
Generalized linear model 

(logistic regression) 

Rainfall: annual, winter or two weeks rainfall 
Logging related: land cover and distance-to-road 
Topographic: slope, catchment area, plan curvature, 

profile curvature, and elevation  
Geologic: lithology 

LTG-GAM 
 
LTG-GLM 

Generalized additive model 
 
Generalized linear model 

(logistic regression) 

Logging related: land cover and distance-to-road 
Topographic: slope, catchment area, plan curvature, 

profile curvature, and elevation  
Geologic: lithology 

 

4.5.1 Generalized additive models 

A GAM was used to construct a susceptibility model for this region. A GAM is an extension 

of generalized linear models (GLM) that can represent covariates as linearly or nonlinearly. The 

common approach for modeling binary response variables in a GLM is logistic regression, which 

models the logit of a response probability in the form, 

 

 ln
𝑃 𝑋

1− 𝑃 𝑋 = 𝛽! + 𝛽!𝑋! +⋯+ 𝛽!𝑋! (13) 

 

where 𝑃 𝑋 = Prob 𝑌 = 1|  𝑋 ,  𝑋!,𝑋!,… ,𝑋! are the covariates, 𝛽!,𝛽!,… ,𝛽! are the regression 

coefficients and 𝛽!  is the intercept. The logit model ensures that the proportions 𝑃 𝑋  will fall 

between 0 and 1. The main assumption in this model is that the estimation of the response is only 

linearly dependent on the predictor variables (Hastie and Tibshirani, 1990).  

In contrast, a GAM can include non-parametric (or linear) covariates by replacing the 

general linear term 𝛽! + 𝛽!𝑋! +⋯+ 𝛽!𝑋! with the additive  relationship, 
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 ln
𝑃 𝑋

1− 𝑃 𝑋 = 𝛽! + 𝑓! 𝑋! +⋯+ 𝑓! 𝑋!  (14) 

 

where 𝑓! 𝑋!  is an arbitrary function defined by the data. The term additive describes a model as 

being the sum of its terms (Hastie and Tibshirani, 1990). The advantage of the function term is 

that the model can be fitted to the data without rigid assumptions regarding the dependence on 

the response. Thus, a smoothing function 𝑠! 𝑋!  can be used to estimate 𝑓! 𝑋!  using flexible 

specifications of the dependence of the response on the covariates (Wood, 2006). A variety of 

smoothing functions are explained in detail by Hastie and Tibshirani (1990). For this study, cubic 

smoothing splines were used to estimate the dependence of the mean response on the predictors 

for the estimation of GAM (Hastie and Tibshirani, 1990). The degrees of freedom, which 

describes the flexibility of a smoother to fit to the data, was set to 2. Any statistical comparison 

of GLMs and GAMs was completed by using ANOVA based on the χ2 (chi) test statistic. 

Akaikes’s information criterion (AIC) was used as measure of “goodness of fit” calculated 

using a model’s log-likelihood,,  

 

 𝐴𝐼𝐶 =   −2×log-likelihood + 2 𝑝 + 1   (15) 

 

where 𝑝 is the number of predictor variables in the model (Crawley, 2007). AIC penalizes 

models that have a larger number of predictor variables with 2 𝑝 + 1 . When comparing models, 

a better fit is represented by a lower AIC.  

The AIC was applied to automatically determine the best fit of parameters for the models 

(Crawley, 2007). This was implemented in this study by using a combined back-and-forward 

variable selection method, where each form of a variable (linear or nonlinear) was implemented 

in the model and only the form that contributes to a lower AIC were selected for the final model 

fit. 

 

4.5.2 Model assessment 

As proposed by Brenning (2005), spatial cross validation was implemented for the 

estimation of model performance. The spatial cross validation method used in this study is 
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similar to k-fold cross-validation, but instead of dividing data set into k random subsets of equal 

size, the data set is divided into k spatial subsets (Figure 4.4). In this study, the partitioning into 

subsets was performed by using k-means: a simple unsupervised clustering algorithm. Spatial 

cross validation was repeated 25 times with each of repetition drawing spatial partitions 

independently from the other replications to test the AUROC and the sensitivity of each model at 

a high specificity level of 90%. 

 

	
  
 

Figure 4.4. Comparison of partitioning of data set using 5-fold (non-spatial) cross-validation (A) to 5-fold spatial 

cross-validation (B).  

 

4.5.3 Assessing variable importance and nonlinearity 

Although all the variables for the susceptibility models were pre-selected, the decision to 

incorporate a predictor variable as either linear or nonlinear was automated using the stepwise-

variable selection. By recording the frequency of nonlinear occurrence in the 25-repeated 5-fold 

spatial cross-validation, the prevalence of nonlinear variables was observed. 

Observing the relative importance of predictor variables was measured in this study by 

systematically forming a GAM with all predictor variables except one. The associated AUROC 
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based for each model was tested and trained using the entire study area. This approach was 

applied for all of the variables. Thus, 8 different models were formed, each with only one 

predictor variable excluded. The relative importance of a predictor variable was then determined 

by measuring the difference in model performance from RTLG-GAM (a model with all predictor 

variables). 

 

4.6 Additional model exploratory analysis 

An additional exploratory analysis was included in this study to further investigate 

relationships between landslide initiation and some of the predictor variables. In particular, the 

relationships of land cover and lithology to influence the susceptibility of different values of 

annual rainfall and slope was explored.  

These relationships were summarized using conditional density plots that compared the 

probability characteristics of rainfall/slope to landslide initiation for individual classes of land 

cover/lithology. In addition, the interaction terms between these variables to predict landslide 

susceptibility were investigated. Several extensions of the LTG-GLM were modeled to represent 

combinations of predictor variables as interactions terms. The interactions that were explored 

include land cover to rainfall, land cover to slope, lithology to rainfall, and lithology to slope. A 

LTG-GLM, with no interaction terms, was used as the basis for model comparison. The AIC and 

AUROC (for the entire study area) of these models were measured and compared to observe how 

the interactions may change model performance.  

Also, the relationship of distance-to-road to predict landslide initiation for different slope 

angles was explored. The purpose of this investigation was to illustrate the potential for landslide 

susceptibility models to provide supportive information to assist in road planning through 

landslide prone areas. The behaviour of slope and distance-to-road to influence susceptibility 

was isolated using the RLTG-GAM fitted to a range of values for slope (0-60°) and distance-to-

road (0-100 m). The remaining variables were fitted as constant values. Thus, a RLTG-GAM 

was predicted using the following constant values; elevation (600 m), profile curvature (-0.001), 

plan curvature (-0.002), catchment area (10000 m), annual rainfall (2000 m), land cover (closed 

forest), and lithology (intrusive). The RLTG-GAM was used to calculate predicted probabilities 

of landslide initiation for corresponding slope and distance-to-road values. 
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4.7 Summary 

The analysis of landslide susceptibility was first conducted by preparing and processing data 

for topographic, anthropogenic, climatic and geologic factors. Topographic factors (slope, 

catchment area, plan curvature, profile curvature and elevation) are processed from a DEM. Land 

cover, which partially represents anthropogenic factors, was produced by applying a supervised 

MLC classification of Landsat TM for scenes from 2006. Another anthropogenic factor, 

distance-to-road, was calculated using the Euclidean distance from road. A climatic factor for 

rainfall was formed by applying different geostatistical methods (OK, UK, and OCK) to rainfall 

weather station data across Vancouver Island and interpolating rainfall for different temporal 

scales (two weeks, winter, annual). The ‘best’ performing geostatistical method was used to 

compare which temporal scale of rainfall pattern was most closely related to the distribution of 

landslides. This was determined using and stepwise-variable-selection method. Lithology was 

used as a geologic factor, which was classified by volcanic, sedimentary, intrusive and 

metamorphic rocks. 

After data processing, the environmental factors were used as predictor variables for 

statistical classification of landslide susceptibility using GAMs and GLMs. The subsequent 

susceptibility models were analyzed using repeated spatial-cross validation that records AUROC 

and sensitivity at 90% specificity. For simplification, these methods applied for RLTG-GAM are 

summarized in a flowchart shown in Figure 4.5.  

An additional exploratory analysis was conducted to investigate possible interaction terms 

between rainfall, slope, lithology and land cover. These were examined by using conditional 

density plots and model extension of the LTG-GLM that included interaction terms. Also, the 

relationship of distance-to-road and slope to predict landslide susceptibility was explored by 

fitting RLTG-GAM with predetermined values for model variables. 
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Figure 4.5. Flowchart summary of methods for landslide susceptibility modeling of RLTG-GAM. 
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Chapter 5  
Results 

 

5.1  Rainfall interpolation 

The interpolation of rainfall at different temporal scales (two weeks, winter and annual) 

using geostatistical methods (OK, UK and OCK) was based on approximately 53 stations (see 

section 4.2.1 for removed stations). The observed station values indicate that the winter of 2006-

2007 had a maximum rainfall of 5025 mm, which was greater than the maximum annual rainfall 

for 2006 (4050 mm; Table. 5.1). However, annual rainfall had a higher median (2050 mm) than 

winter rainfall (1332 mm). Only, stations during the two weeks of rainfall, related to the 

November 2006 storm, observed values of no rainfall.  

The correlation between the smoothed DEM, used as an additional variable for interpolation 

in OK and OCK, and rainfall amount was greatest in the two weeks rainfall period (0.51), and 

least for annual rainfall (0.21).  The stations were located at relatively low elevations. The 

median station elevation was 73 m and the maximum was 715 m (Table. 5.1). 

 
Table 5.1. Summary statistics of observed rainfall and elevation associated with weather stations 

	
  
Rainfall 
Period 

Median Mean 
(std. dev.) 

Minimum Maximum Correlation 
with elevation 

Two weeks 
(mm) 

333 387 (228) 0 1451 0.51 

Winter (mm) 1332 1555 (814) 627 5025 0.32 
Annual (mm) 2050 2104 (154) 717 4050 0.21 
      
Elevation*(m) 73 134 (182) 1 715  

*Elevation derived from a smoothed DEM with a ~7 km radius described in Section 4.2.3 
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5.1.1 Correlation of DEM resolution and rainfall 

Examination of the relationship between DEM spatial resolution and rainfall revealed that 

the correlation of an 800 m DEM was least impacted by the use of different filter sizes to 

generalize topographic features (Figure 5.1). The values used for this comparison were based on 

rainfall from 2006-November storm (two weeks) and measured using Spearman’s correlation 

coefficient ρSp. 

 
Figure 5.1. Correlations of DEMs with different spatial resolution to rainfall accumulation occuring during the 

November 2006 storm. Note that a radius of 0 km implies no filter. 

 

The strongest correlation was associated with a DEM having a 1000 m resolution and a filter 

radius of 9 km (ρSp = 0.58). The weakest correlation to rainfall was found using a 5000 m DEM 

with a filter radius of 10 km (ρSp = 0.26). The 800 m DEMs had the least amount of variation in 

correlation related to filter size (ρSp range: 0.49 to 0.50). Thus, the performance of rainfall 

interpolation does not rely heavily on the filter radius while using an 800 m DEM. 

 



51 
	
  

5.1.2 Semivariogram models of rainfall at different temporal scales 

The experimental semivariograms (Figure 5.2 and Figure 5.3) computed for each temporal 

and geostatistical method (OK, UK and OCK) demonstrated the differences in model structures. 

There estimated semivariance nuggets were very small for interpolation of rainfall using OK and 

UK. OCK had a negative nugget for all temporal scales related to the fitting of the co-

regionalization semivariogram for elevation and rainfall.   

The range of spatial autocorrelation of rainfall increases with length of temporal scale. The 

longest ranges (157 km to 337 km) were associated to annual rainfall, and followed by winter 

rainfall (97 km to 124 km). The smallest temporal scale, two weeks, had the shortest ranges (75 

km to 85 km). 

 

	
  
 

Figure 5.2. Experimental semivariograms and fitted models for geostatistical interpolation using OK and UK. 
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Figure 5.3. Experimental semivariograms for co-regionalization of rainfall and elevation using OCK. 

 

5.1.3 Rainfall distribution 

The maps of rainfall interpolation clearly show differences in rainfall distribution related to 

the geostatistical method used. In particular, interpolation using UK illustrated a strong and 

direct relationship of rainfall to elevation (Figure 5.6); this was visually apparent by the strong 

similarity the rainfall pattern to an elevation model. The rainfall patterns of OCK (Figure 5.4) 

and OK (Figure 5.5) appear to be more generalized, especially OK, which only relies on rainfall 

values for interpolation.   
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Figure 5.4. Geostatistical interpolation of rainfall using OCK 
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Figure 5.5. Geostatistical interpolation of rainfall with OK 
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Figure 5.6. Geostatistical interpolation of rainfall with UK 
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5.1.4 Interpolation performance 

Overall, OCK with elevation as co-variable was the strongest performer for all temporal 

scales (Table 5.1). In terms of two weeks interpolation, OCK had the lowest bias (3.4 mm) and 

UK (9.6 mm) had the highest. The RMSE of two weeks was lowest for OCK (131.1 mm) and 

highest for OK (170 mm). In terms of winter rainfall, OK had the lowest bias (16.8 mm) and UK 

had the highest bias (18.8 mm). The RMSE for winter was lowest for OCK (463 mm) and 

highest for OK (559.1 mm). In terms of annual rainfall, OCK again had the lowest bias (-4.0 

mm) and UK had the highest (-11.6 mm). The RMSE for annual rainfall was lowest for OCK 

(541.4 mm) and highest for UK (561.4 mm). The positive bias for all values in two weeks and 

winter interpolation indicate that rainfall amounts were consistently overestimated with each 

method. In contrast, the negative bias associated with annual rainfall interpolation indicates that 

rainfall was slightly underestimated. 

In general, as the time period for rainfall observations increased, the performance of the 

geostatistical methods decreased. This was measured by comparing the mean RMSE for each 

time period prediction (OK, UK and OCK) to the standard deviation of observed rainfall for 

similarity, which indicates a model’s ability to preserve the observed variance (Table 5.1 and 

Table 5.2). The two weeks interpolation shared the most similar mean RMSE to the standard 

deviation (RMSEmean/Std. dev. = 150/228 mm), followed by winter (523/814 mm) and annual 

rainfall (550/154 mm). 

 
Table 5.2. Leave-one-out cross-validation results for geostatistical interpolation of rainfall at different temporal 

scales 

 

 Two weeks  Winter  Annual 
Model RMSE 

(mm) 
Bias 

(mm) 
 RMSE 

(mm) 
Bias 

(mm) 
 RMSE 

(mm) 
Bias 

(mm) 
OCK 131.1 3.4  463.0 17.0  541.4 -4.0 
UK 149.7 9.6  546.7 18.8  561.4 -11.6 
OK 170.0 7.2  559.1 16.8  547.7 -5.4 
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5.1.5 Temporal relationship of rainfall to landslide initiation 

Since OCK had the overall strongest performance for interpolation of rainfall, it was used 

for the subsequent comparison of which temporal scale provides the ‘best’ information for 

prediction of landslide susceptibility. 

Based on the automatic variable-selection method, annual rainfall was selected as the 

temporal scale that was most related to this set of landslides in terms of contribution to model fit 

in RLTG-GAM. 

 

5.2 Land cover classification 

The land cover classification was used to categorize forest into classes that reflect the 

impacts of logging on Vancouver Island (Figure 5.7). The most common land cover was closed 

forest (56% of the study area), followed by semi-open forest (19%), open forest (14%) and 

exposed ground (6%). The masked area, which represented the area of Vancouver Island that 

was outside of the landslide susceptibility model domain, had the least amount of area covered 

(4%). 

    
Table 5.3. Confusion matrix for land cover classification. The records that are highlighted are agreements between 

reference data and the classification prediction.  

 

 Reference data 

C
la

ss
ifi

ca
tio

n 
pr

ed
ic

tio
n 

Class 
Exposed 
ground Open 

Semi- 
open Closed Masked Total 

Exposed ground 3 0 0 0 3 6 
Open 0 3 1 2 1 7 
Semi-open 0 1 12 6 0 19 
Closed 0 0 3 61 1 65 
Masked 0 0 0 0 3 3 
Total 3 4 16 69 8 100 

 

The accuracy of the land cover classification was based on a confusion matrix constructed of 

100 randomly sampled points that were separate from the class training set (Table 5.3). The 

overall accuracy was 82% (±7% at a 95% confidence interval) with a κ coefficient of 0.65. 
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Figure 5.7. 2006 land cover classification map of Vancouver Island from Landsat TM satellite imagery. 

 

The most confusion between reference data and classification prediction was between semi-

open forest and closed forest (Table 5.3). Exposed ground had the least confusion; however it 

should be noted that in some cases a road may be wide enough to be detected from the Landsat 

imagery (Figure 5.8), thus resulting in an exposed ground classification, which does not 

necessarily represent an area of recent deforestation. 

Visually speaking, the classification appeared to adequately capture the different forest 

conditions represented as classes (Figure 5.8). A comparison of the classification to a Landsat 

image in false colour (red: TM band 4, blue: TM band 3, green: TM band 2) show dark red areas 

represent closed forest, light red represents semi-open forest, bright red to pail red-blue represent 

open forest, and pale blue-green were areas of exposed ground (Figure 5.8). 

 



59 
	
  

 
Figure 5.8. Visual comparison of false colour composite Landsat image (A) to land cover classification map (B); the 

area of interest is of the Hitwatchas Mountain and Nahmit Bay, Vancouver Island. 

 

5.3 Landslide susceptibility  

5.3.1 Exploratory analysis of predictor variables 

An analysis comparing environmental factors of landslide and non-landslide samples was 

divided by exploration of continuous and categorical predictor variables. For continuous 

predictor variables (topography, rainfall and distance to logging roads) descriptive statistics 

highlighting the difference in continuous-predictor variables of landslide and non-landslide 

samples are shown in Table 5.4. The Wilcoxon Rank sum test was used to test for difference in 

AUROC values between samples. All the differences in values of the continuous predictor 

variables between landslide points and non-landslide points were statistically significant at the 

5% level based on Wilcoxon rank sum test, most of the nominal p-values being <0.001 except 

for distance-to-road with p-value of 0.003. 

The AUROC values were calculated using two error estimation techniques, testing on the 

entire study area and spatial cross-validation. The strongest single predictor of landslide 

initiation was slope (AUROC > 70%), followed by catchment area, rainfall (AUROC > 65%), 

plan curvature, and elevation (AUROC > 60%). The weakest single predictors were distance-to-

road and profile curvature (AUROC < 60%). 
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Table 5.4. Descriptive statistics for predictor variables used for modeling landslide susceptibility 

 

Predictor Variable 
Median 

(std. dev.) 
Median  

(std. dev.) 

Wilcoxon 
rank sum 

test  
(p-value) 

AUROC (%) 
study area 

AUROC (%) 
SP-CV  

(std. dev.) 
Topography      
Elevation (m) 585 (270) 432 (366) <0.001 62.7 62.4 (1.1) 
Slope (degree) 32 (10) 18 (13) <0.001 75.5 75.3 (1.3) 
Planar curvature -0.002 (0.013) 0.000 (0.006) <0.001 64.9 65.1 (0.7) 
Profile curvature -0.001 (0.009) 0.000 (0.005) <0.001 59.4 59.5 (1.1) 
Catchment area (log10) 3.91 (0.61) 3.58 (0.55) <0.001 69.7 69.7 (1.3) 
Rainfall      
Two weeks (mm) 482 (185) 418 (191) <0.001 67.1 68.1 (1.6) 
Winter (mm) 2114 (550) 1770 (687) <0.001 65.9 66.8 (2.5) 
Annual (mm) 2775 (340) 2548 (503) <0.001 65.9 65.4 (2.3) 
Logging roads      
Distance-to-road (max. 100 m) 20 (29) 40 (26) 0.003 52.5 52.6 (1.2) 
 

Examination of correlations between predictor variable using Spearman’s rank correlation 

coefficient (ρSp) revealed that only a strong inter-correlation exists between winter rainfall and 

two weeks rainfall (ρSp = 0.88; Table 5.5). All other correlations between variables were weaker 

with |ρSp|<0.59. 

 
Table 5.5. Correlation matrix of predictor variables using Spearman’s correlation coefficient 

 

 

Distance-
to-road 

Annual 
rainfall 

Plan 
curvature 

Profile 
curvature Elevation Slope 

Catchment 
area (log10) 

Winter 
rainfall 

Annual rainfall 0.089 - - - - - - - 
Plan curvature 0.004 -0.091 - - - - - - 
Profile curvature 0.016 -0.098 0.499 - - - - - 
Elevation 0.075 0.211 -0.181 -0.067 - - - - 
Slope 0.155 0.362 -0.126 -0.083 0.493 - - - 
Catchment area 
(log10) 

-0.040 0.169 -0.581 -0.342 0.178 0.134 - - 

Winter rainfall -0.005 0.58 -0.074 -0.066 0.112 0.360 0.133 - 
Two weeks 
rainfall -0.083 0.388 -0.114 -0.082 0.271 0.350 0.218 0.877 
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The sample difference between landslide and non-landslide points related to categorical 

predictor variables (land cover and lithology) was explored by examining the percentage of 

points that fall within each predictor variable class and by calculating the odds ratio for 

individual classes compared to remaining classes (Table 5.6). The highest odds ratio for 

landslides to occur were open forest (OR = 1.98), followed by semi-open forest (1.18) and 

exposed ground (1.17). Closed forest canopy had the smallest odds ratio (0.66) compared to the 

other forest based classes. The higher chance of landslides in open forest was also demonstrated 

by the higher percentage of landslides that occur in this class (25.7%) compared to samples of 

non-landslide areas (15.9%). 

The lithology showed the highest odds ratio of landslide initiation associated with intrusive 

rocks (1.34), followed by metamorphic rocks (1.10) and then closely by volcanic rocks types 

(0.98). The odds ratio of landslide occurring in sedimentary rocks was the smallest (0.46). The 

difference between landslide and non-landslide point samples related to percentage of occurrence 

in each lithology class was more difficult to discern then using odds ratio; the percentage 

difference only varied by a maximum 7%. 

 
Table 5.6. Summary of categorical predictor variables used for modeling landslide susceptibility 

 

Predictor Variable 

Landslide 

points (%) 

Non-landslide 

points (%) Odds ratio 

Land cover class    
Exposed ground 5.6 4.9 1.17 
Open 25.7 14.9 1.98 
Semi-open 23.6 20.8 1.18 
Closed 44.8 54.9 0.66 
Masked (Urban, Agri., Clouds) 0.3 4.5 0.07 

Lithology class    
Intrusive 61.8 54.8 1.34 
Metamorphic 3.4 3.1 1.10 
Volcanic 27.9 28.3 0.98 
Sedimentary 6.9 13.8 0.46 

 

Insights into the ability of continuous predictor variables to characterize landslide initiation 

are shown using conditional density plots. These plots are created for variables representing 
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topography, rainfall and distance-to-road and represent the estimated probability of values of 

these variables to causes landslides (Figure 5.9). 

	
  
	
  
Figure 5.9. Conditional density plots for susceptibility of landslide to occur or not by topographic variables (slope, 

elevation, plan curvature, profile curvature), rainfall variables and distance-to-road.  

 

General characteristics of topographic conditions that may lead to landslide initiation were 

estimated for elevation, slope, plan curvature, profile curvature and catchment area (log10). In 

terms of elevation, landslides had a higher probability (Prob. ~0.5 to~ 0.6) to occur at heights of 

250 m to 1250 m. Slope showed a strong linear increase in probability of landslides from 0° to 
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25°, where the probability (~0.75) of slope failure levels off. The probability of slope failure for 

profile and plan curvature was generally highest (~0.8) for concave curvature (represented by 

negative values), levels off around a curvature of 0 (~0.4), and slightly increased for convex 

curvatures (~0.6). By considering both plan and profile curvature as concave, it was apparent that 

gullies or channels have the highest estimated probability to landslide initiation. Catchment area 

had a general positive linear trend to related to the estimated probability of landslides to occur, 

with high estimated probabilities (~0.8 to 0.9) peaking at catchment sizes from 10 000 m2 to 

300 000 m2. 

Regarding rainfall, in general wetter conditions result in higher estimated probabilities of 

landslide initiation, which peak at an estimated probability of 0.6. Landslides related to annual 

rainfall tend to increase probability gradually as rainfall increases and peaks at around 2500 mm 

to 3000 mm. Winter and two weeks rainfall both had sharp increases in estimated probabilities at 

relatively lower rainfall amounts. The influence of winter rainfall on landslides appears to level 

off at about 1500 mm; two weeks rainfall had a similar plateau at 400 mm, but was not as 

apparent as winter rainfall. Also notable, winter and two weeks rainfall had a sharp drop in 

estimated probability at relatively high rainfall amounts, 3500 mm and 1000 mm respectively.  

The influence of logging roads to landslide initiation is represented by the variable distance-

to-road. The conditional density plot shows that the estimated probability of landslide initiation 

increases with shorter distances to the roads. The decline in probability of landslide initiation 

levels off at around 50 m from a road. 

 

	
  
Figure 5.10. Spine plots of land cover and lithology class to landslide initiation. The width of the bar columns 

represent the proportion of samples available to estimate the probability 
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The ability of land cover and lithology to characterize landslide susceptibility was illustrated 

using spine plots (Figure 5.10), which plot the estimate probability of each category/class to 

initiate landslides.  The spine plot for land cover shows that probability of landslide initiation 

was greatest in open forest canopy (prob.~0.6), followed by exposed ground and semi-open 

forest canopy (~0.5). Closed forest had the lowest estimated probability (~0.4) of the forest cover 

types. It should be noted that the small spine plot column width of exposed soil may indicate low 

confidence in its estimation. 

The lithology classes, volcanic, intrusive and metamorphic were very similar (prob.~0.5), 

while sedimentary rock types had the lowest estimated probability (~0.35). Again, there were a 

low number of samples for the metamorphic lithology class, which may had led to low 

confidence in its estimation. 

 

5.3.2 Performance results 

The performance results of the spatial cross-validation estimation show that all of the GAMs 

outperform the GLMs (Figure 5.11, Table 5.7). The difference between the GAMs and GLMs 

are found to be statistically significant (p-value<0.001) using Wilcoxon signed rank sum test for 

pairwise model comparison. Also, the incorporation of annual rainfall as a predictor variable 

only marginally improved spatial cross-validation AUROC estimations compared to models 

using only the remaining environmental factors (land cover, logging roads, topographic and 

lithologic). Also, there is no statistical difference between RTLG-GAM with LTG-GAM 

(AUROC = 83.46% and 83.34%) and RLTG-GLM with LTG-GLM (81.82% and 81.18%). 

 
Table 5.7. Median (and the interquartile range - IQR) of model performance for GAM and GLM models estimated 

using spatial cross-validation. 

 

 SPCV   Study area  

Model AUROC % 
(IQR) 

Sensitivity % at 90% 
specificity (IQR)  AUROC % Sensitivity % at 

90% specificity  
RLTG-GAM 83.46 (8.59) 52.72 (0.15)  85.61 51.96 
LTG-GAM 83.34 (6.64) 52.67 (0.16)  85.16 51.88 
RLTG-GLM 81.82 (6.53) 52.65 (0.2.4)  82.82 43.96 
LTG-GLM 81.18 (5.34) 52.63 (0.24)  82.56 45.05 
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The larger range of AUROC values for RLTG-GAM and RLTG-GLM compared to LTG-

GAM and LTG-GLM indicated that there was more variation in performance results when 

rainfall was incorporated as a predictor variable (Figure 5.11A). Therefore, models with rainfall 

may be overfitting to the training sample. In particular, it appears as if RLTG-GLM had the 

worst case of overfitting with AUROC values ranging from 66% to 90%. Also, there was a 

general skewness in the distribution of AUROC results, with the exception of LTG-GLM, 

towards higher AUROC values.  

	
  

	
  
	
  
Figure 5.11. Box-and-whisker plots of landslide susceptibility model performances for AUROC (A) and sensitivity 

at 90% specificity (B). 

 

Model comparison using the entire data for training and testing resulted in a slight 

overestimation of model performance compared to median performance using spatial cross-

validation. This ROC curve illustrated that the general shape of the curve for GAMs and GLMs 

were respectively similar (Figure 5.12). The GAMs had higher sensitivity performance values 

when specificity is generally high, compared to the GLMs.  

The sensitivity results using spatial cross-valdiation show little variation among GLMs and 

GAMs with or without a rainfall predictor variable (Table 5.7). However, the box-and-whisker 

plot of spatiatl cross-valiation results of sensitivity at 90% specificity show that the GAMs 

slightly outpeform the GLMs (Figure 5.11B); the Wilcoxon signed rank sum tests show that the 

only statistically significant difference in sensivity performance was between the GAMs and 

A	
   B	
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GLMs (p-value<0.001). Futhermore, the range of performance results were smaller for GAMs 

than GLMs.  
	
  

	
  
Figure 5.12. ROC curve for landslide susceptibility models (GAM and GLM) trained using a sample of the entire 

study area. 

 

5.3.3 Susceptibility map 

The landslide susceptibility model’s capability to discriminate stable and unstable areas can 

best be appreciated by the examining the percentage of landslide initiation points falling in areas 

with very high (≥0.8) and low (<0.5) predicted probabilities of landslide initiation (Table 5.8). In 

terms of levels of susceptibility across the island, 73% of the study area was predicted to have a 

probability of <0.5 to landslide initiation, which contains 20% of the landslide initiation points in 

the landslide inventory. The highest probabilities (≥0.8) were predicted for 4% of the study area, 

which contains 33% of the landslide initiation points. The presence of landslide initiation points 

per square kilometer was 0.156 and 0.005 for high (≥0.8) and low (<0.5) predicted probabilities. 

Visually, the LTG-GAM map illustrates the strong relationship of landslide susceptibility 

with the topographic variables and logging roads (Figure 5.13). In particular, debris flow 

channels, which can be characterized as gullies having steep slopes and convex plan curvature, 

are features that were easily identifiable in the susceptibility map by the highest predicted 
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probabilities (prob. ≥0.9). Logging roads through intensely forested areas were predicted to have 

high probabilities, which indicate their importance for landslide initiation prediction (insert map 

of Figure 5.13). This relationship was most apparent in locations that had a high density of 

winding logging roads on steep slopes.  

In general, locations of low susceptibility (prob. <0.3) were associated with mountain crests 

and valleys (Figure 5.13).  

	
  
Figure 5.13. Landslide susceptibility map for LTG-GAM. Probability values closer to 0 represent low susceptibility 

and values closer to 1 represent high susceptibility to landslide initiation. 

 

 

 

 

 



68 
	
  

Table 5.8. Summary of landslide susceptibility classes in terms of percentage of study area and the percentage of 

landslide initiation points that fall within each class in Figure 5.13 (LTG-GAM). 

 

Predicted 
probability 

Area cover 
(%) 

Cumulative 
area (%) 

Landslides 
(%) 

Cumulative 
landslide 

(%) 
0.0 - 0.1 34.0 100 0.8 100 
0.1 - 0.2 12.5 66.0 1.9 99.2 
0.2 - 0.3 9.1 53.6 1.6 97.3 
0.3 - 0.4 8.5 44.4 4.7 95.8 
0.4 - 0.5 8.8 35.9 10.6 91.1 
0.5 - 0.6 9.0 27.2 10.5 80.4 
0.6 - 0.7 8.2 18.2 16.9 70.0 
0.7 - 0.8 5.8 10 19.9 53.1 
0.8 - 0.9 3.1 4.2 19.2 33.2 
0.9 – 1.0 1.1 1.1 13.9 13.9 

 

5.3.4 Nonlinearity and variable importance 

All of the variables, except catchment area, are included in the majority of model repetitions 

as nonlinear (Table 5.9). In particular, slope, distance-to-road, elevation and plan curvature were 

included in the GAMs as nonlinear for all repetitions. Annual rainfall and profile curvature were 

included in approximately 80% of the repetitions as nonlinear. 

The confidence in nonlinear transformations, using a spline function, was related to 

sampling distribution of landslide points for a given predictor variable. In most cases, the 

confidence of the spline function for non-parametric smoothing was much weaker at the tail ends 

of a plot distribution (Figure 5.14). In terms of categorical variables, exposed ground had the 

least confidence in model transformation relative to other forest based land cover classes. 

Additionally, metamorphic and sedimentary rocks had the lowest confidence for lithology 

classes. Exposed ground, metamorphic and intrusive classes had the lowest number of landslide 

samples compared to their other associated classes (Table 5.5).  

The differences in model predictions related to categorical variable was explored in more 

detail by examining the odds ratios derived from the estimated model coefficients in RLTG-

GAM. As a result, it was found that forest land cover classes with lower tree canopy cover had 

higher levels of susceptibility to landslide initiation (Figure 5.14). The most stable class, closed  
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Figure 5.14. Transformation of predictor variables in the generalized additive model for RLTG-GAM that utilize the 

entire study area as a training sample. A spline function for non-parametric smoothing of the variable, s(variable), 

indicates a nonlinear transformation. The dotted lines represent confidence bands.  

 
 

 



70 
	
  

forest, was used as a reference to compare odds ratios (OR) to determine relative levels of 

susceptibility within land cover. The most susceptible land cover class was open forest with odds 

of landslide initiation occurring 2.13 times as large as the odds for landslide initiation in a closed 

forest. Semi-open forest had 1.80 times the odds compared to closed forest, and exposed ground 

had the lowest odds with 1.39 times the odds of landslide initiation occurring in closed forest. 

 
Table 5.9. Variable selection frequencies and percentage of nonlinear occurrences for GAM models from 25-

repeated 5-fold spatial-cross validation 

 

 Nonlinear occurrence (%) 
Variable RLTG-GAM LTG-GAM 
Slope 100 100 
Distance-to-road 100 100 
Elevation 100 100 
Plan curvature 100 100 
Annual rainfall 83 - 
Profile curvature 82 83 
Catchment area (log10) 33 46 

 

The lowest level of susceptibility in lithology classes was associated with volcanic rocks. Its 

OR, also derived from RLTG-GAM, was 0.90 compared with intrusive rock (the most abundant 

lithology class), which implies the landslide initiation was less likely to occur in volcanic rocks 

than intrusive rocks. Metamorphic and sedimentary rocks were most likely to have occurrence of 

landslide initiation, with respective odds 1.52 and 1.41 times as large as the odds for landslide 

initiation in intrusive rocks. 

The relative importance of each predictor variable was explored by systematically testing the 

AUROC performance of RLTG-GAM with one variable removed at a time. Overall, all of the 

predictor variables contributed to positive increases in AUROC performance (Figure 5.15). 

Slope is the largest contributor to AUROC performance (+4.5%), followed by catchment 

area (log10; +0.97%), land cover (+0.90%), distance-to-road (+0.83%) and elevation (+0.80%). 

Annual rainfall (+0.45%), plan curvature (+0.20%) and profile curvature (+0.10%) had a much 

smaller contribution. However, the rock classes for lithological units contributed by far the least 

to AUROC performance (+0.01%) in an additive model.  
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Figure 5.15. The percent of AUROC model improvement is based on a comparison of a model that includes all of 

the predictor variables (RLTG-GAM). 

 

5.4 Exploring interactions related to landslide initiation 

5.4.1 Land cover interactions with rainfall and slope 

Some of the relationships between environmental factors and landslide initiation may be 

better represented as interaction terms in landslide susceptibility models. Examining model 

extensions of LTG-GLM with interaction terms showed that landslide initiation had different 

associations to rainfall in each land cover class (Figure 5.16). Land cover with little vegetation 

(e.g., exposed ground/freshly logged) had its highest estimated probability for failure with lower 

rainfall amounts (1700 mm to 2200 mm). Areas that have had at least a couple of years to 

recover after harvesting (open-forest) had higher estimated probability for failure with higher 

rainfall amounts (2200 mm to 3400 mm). Semi-open forest had generally the same distribution 

of probability to failure as open forest; however the LTG-GLM model results indicated that the 

odds of landslide initiation in open forest was about 2 times larger than semi-open forest (Figure 

5.16). The estimated probabilities to failure for closed forest were highest near the greatest 

rainfall amounts (2800 mm to 3400 mm), but were in general lower than exposed ground and 

open forest. 
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Figure 5.16. Conditional density plots of annual rainfall amount for a given land cover class to initiate landslides 

 

	
  
Figure 5.17.  Delta logit plot comparing the interactions between annual rainfall and land cover. These values were 

predicted under otherwise equal conditions using interaction terms in an extension of LTG-GAM. 
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A comparison of difference in logit values for interaction terms in LTG-GLM showed that 

open, semi-open and closed forest cover lead to higher susceptibility as the amount of rainfall 

increased (Figure 5.17). Also, greater rainfall amounts resulted in open forest becoming more 

susceptible to landslide initiation then semi-open forest and closed forest, in particular around 

2500 mm of annual rainfall. The relationship of rainfall with increasing susceptibility in semi-

open forest and closed forest was generally the same; however, closed forests had relatively 

lower susceptibility.  

In terms of slope, the conditional density plots illustrated slightly different interactions 

between land cover and landslide initiation (Figure 5.18). It appears that estimated probabilities 

of failure were generally highest for steep slope angles in open forest. Failure of slope in exposed 

ground seems to be more likely at lower slope angles (15° to 35°), and failure in semi-open 

forest appears to be more likely at steeper slopes (25° to 45°). The estimated probability of 

failure of closed forest was generally similar to semi-open forest, with the exception that the 

highest estimated probabilities for failure were at the steepest slopes (50° to 65°). 

Exploring interaction terms between slope and land cover (Figure 5.19) show the 

susceptibility of land cover on slope angle was relatively the same, with odd ratios from 1-1.2, 

for open forest and semi-open forest at slopes less than 30°. As the slope angle increased (<30°) 

open and semi-open forest maintained a somewhat similar susceptibility with the odds of 

landslide initiation being 1.5 times more in open forest than semi-open forest. Landslide 

initiation in closed forest was consistently less than open forest with odds that ranged from 1.8-

2.5 times less than landslide initiation occurring in open forest. Exposed ground had the highest 

susceptibility of all land cover classes to a slope angle of approximately 25°. The initial odds for 

exposed ground at a slope of 10° was at least 2.1 times larger than the odds of landslide initiation 

occurring all other land cover classes. 
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Figure 5.18. Conditional density plots of slope angle for a given land cover class to initiate landslides 

 

 
Figure 5.19. Delta logit plot comparing the interactions between slope and land cover. These values were predicted 

under otherwise equal conditions using interaction terms in an extension of LTG-GAM. 
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5.4.2 Lithology interactions with rainfall and slope 

The conditional density plots in Figure 5.20 indicate some distinct differences in rainfall 

conditions for given lithology leading to landslide initiation. In particular, there was a threshold 

for volcanic rocks, where the probabilities of landslides increase sharply around 2000 mm and 

peaks at about 3000 mm (prob. 0.8). Below this threshold, the probability of landslides was very 

low (0.1 to 0.0). Sedimentary rocks had generally higher probability of landslides for annual 

rainfall from 2250 mm to 3250 mm (0.6 to 0.8). Intrusive rocks had a similar relationship to 

rainfall and landslides as sedimentary rock. Metamorphic rocks had the highest probabilities (0.4 

to 0.6) for landslides at the lowest amounts of rainfall from 1500 mm to 2000 mm.  

	
  
 

Figure 5.20. Conditional density plots of annual rainfall for a given lithology class to initiate landslides 

 

The interactions between annual rainfall and lithology shown in Figure 5.21 illustrate that 

intrusive, volcanic and sedimentary had a positive relationship of landslide susceptibility, which 

increased with higher amounts of rainfall. In contrast, metamorphic rocks illustrated a negative 



76 
	
  

relationship of landslide susceptibility and annual rainfall. This negative relationship can be 

related to more landslides occurring in areas of lower annual rainfall. Landslide susceptibility 

related volcanic rocks only become present after 2250 mm of annual rainfall.  

 

 
Figure 5.21. Delta logit plot comparing the interactions between annual rainfall and lithology. These values were 

predicted under otherwise equal conditions using interaction terms in an extension of LTG-GAM. 

 

In terms of slope and lithology, the conditional density plots (Figure 5.22) for intrusive and 

volcanic rock were similar, which may indicate that hillslope angles leading to landslides were 

alike. Sedimentary rock had a distinct positive linear relationship of slope and probability of 

landslide initiation. Metamorphic rock and slope had a threshold for a sharp increase in 

landslides after approximately 15° slope angle. Also, metamorphic rock had the highest 

probabilities of failure (> 0.8) for slope angles greater than 40°. 

The interaction between slope and landslide susceptibility was positive for all lithology rock 

classes (Figure 5.23). Intrusive, sedimentary and volcanic rocks demonstrate shared a very 

similar relationship, illustrating that there was not much difference in the influence of slope for 

these lithology classes (6.8). However, there was a distinct difference in relationship regarding 

slope of failure in metamorphic rock. At around 20° slope, metamorphic rock was more 

susceptible to landslide initiation than the other classes; at a slope of 40° the odds difference 

increased to being 3.3 times larger than the odds of landslide initiation occurring in the other 

classes. 
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Figure 5.22. Conditional density plot of slope for a given lithology class to initiate landslides 

 

 
Figure 5.23. Delta logit plot comparing the interactions between slope and lithology. These values were predicted 

under otherwise equal conditions using interaction terms in an extension of LTG-GAM. 

-2.00 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

0 10 20 30 40 50 60 

lo
gi

t 

Slope (degrees) 

Intrusive (ref.) 

Metamorphic 

Sedimentary 

Volcanic 



78 
	
  

 

5.4.3 Interactions and model performance 

In all cases, the inclusion of an interaction term in a GLM slightly improved model fit and 

performance over the null model (LTG-GLM; Table 5.10). The interaction of rainfall and land 

cover provided the most model improvement, followed by the interaction of rainfall and 

lithology. Interactions between slope and land cover/lithology also improved the landslide 

susceptibility model, but not to the same extent as rainfall. The interaction between slope and 

land cover resulted in better model performance than the interaction between slope and lithology.  
 

Table 5.10. Comparison of rainfall and slope interactions to land cover and lithology. 

	
  
GLM Model AIC AUROC 
LTG-GLM 1291.21 83.44 
Rain: land cover 1283.44 83.94 
Rain: rock class 1283.53 83.89 
Slope: land cover 1290.47 83.73 
Slope: lithology 1294.07 83.51 

 

5.4.4 Distance-to-road and slope 

A plot of predicted probability of landslide initiation to slope and distance-to-road 

demonstrates several non-linear relationships (Figure 5.24). The probability of landslide 

susceptibility related to distance-to-road leveled off at distance of approximately 60 m. The odds 

of landslide initiation at 60 m distance were 4 times larger than the odds of landslide initiation 

occurring at a distance of 0 m from a logging road. Furthermore, slope appears to have had a 

stronger impact on increasing susceptibility as the distance-to-road decreased.  
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Figure 5.24. The probability of slope failure for a given distance-to-road and slope angle 

 

5.5 Summary 

Rainfall interpolation using OCK was found as the best geostatistical method for all 

temporal scales in this study. The automatic stepwise-variable-selection procedure determined 

annual rainfall to best reflect the distribution of landslides in this study. The accuracy of the land 

cover classification was 82%. Closed forest was the most abundant forest class. 

The inclusion of rainfall as a predictor variable only marginally enhanced the performance 

of landslide susceptibility models. There was no statistical difference between a GAM using 

rainfall and not. However, overall the GAMs performed significantly better than the GLMs in 

terms of AUROC.  

Examining the relative contribution of each predictor variable showed that slope, catchment 

area, land cover, distance-to-road, and elevation contributed the most to improve landslide 

susceptibility model performance. The land cover class that was most susceptible to landslide 

initiation was open forest followed by exposed ground, semi-open forest and closed forest. A 

threshold for landslide susceptibility from distance-to-road was found to be 60 m; at this distance 

the odds of landslide initiation occurring were 4 times less than the odds of landslide initiation at 

0 m distance from logging roads. 
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Modeled interactions illustrated the impact of annual rainfall conditions on landslide 

initiation for a given land cover classes. Exposed ground was the most susceptible land cover 

class to landslide initiation at lower annual rainfall amounts; it was also the most susceptible land 

cover class to landslide initiation at gentle slopes. At rainfall amounts greater than 2500 mm 

open forest was the most susceptible to landslide initiation. Closed forest remained the least 

susceptible land cover class for all annual rainfall conditions. 

The interactions between annual rainfall and lithology illustrated that metamorphic rock was 

the most susceptible lithology class to landslide initiation at lower annual rainfall amounts. 

Metamorphic rock was also much more susceptible to landslide initiation for lower slope angles. 

Based on the model predictions, the most susceptible 4% of the study area had 29 times 

higher density of landslide initiation points than the least susceptible 73% of the study area 

(0.156 versus 0.005 landslides/km2). 
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Chapter 6  
Discussion 

 

6.1 Interpolating mountain rainfall 

The general pattern of rainfall across Vancouver Island was best represented by the 

geostatistical interpolation methods using OCK and OK. The general pattern of annual rainfall 

amount was higher in the western portion of the island, which represents the windward side of 

the Vancouver Island Ranges. In contrast, interpolated rainfall amounts on the leeward side were 

much lower. Rainfall patterns in all maps also show drier conditions in lowlands located north 

and south on the island. 

Strong variations in spatial-temporal patterns of rainfall were found in OK, UK and OCK 

maps. The pattern of annual rainfall illustrates higher amounts of rainfall occurring in the 

northern area of the Vancouver Island Ranges, particularly adjacent to the northeast portion of 

the mountain ranges. The winter rainfall pattern had the wettest areas divided in the northwest 

and southwest portions of the ranges, with a zone of less wetness in the centre of the island. 

Rainfall patterns related to the 2006 November storm were concentrated in the southern part of 

the mountain ranges, with a pocket of high rainfall around the Tahsis village weather station 

located in the northwest. 

The general pattern of 2006 annual rainfall interpolated with OCK is fairly similar to average 

precipitation on Vancouver Island. The OCK rainfall on the windward side of the insular 

mountains was 2500-3500 mm; the mean annual precipitation for this west is >3000 mm 

(McKenney et al., 2006). On the leeward side, OCK rainfall was 750-2000 mm; the mean annual 

precipitation for the east is 800-1200 mm (McKenney et al., 2006). 

For this study, cokriging yields the best rainfall interpolation for all temporal scales: two 

weeks of rainfall associated with an extreme storm in 2006, winter rainfall for 2006-2007, and 
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2006 annual rainfall. OCK with elevation as a co-variable usually obtained the smallest 

prediction errors, which was also the case in a study of rainfall interpolation by Goovaerts 

(1999). The OCK maps of rainfall show less detail than then UK. The UK maps are more 

detailed because the interpolation of rainfall is greatly influenced by the pattern of the DEM 

(Goovaerts, 2000). Perhaps, the smoothing of the interpolation in OCK, related to the 

combination of the cross-semivariograms, provided better results in that rainfall is more 

generalized than UK, but less generalized than OK; the UK values may have been too 

heterogeneous to capture the regional pattern of rainfall in this area. Furthermore, the 

interpolation of cokriging, which uses a linear combination of rainfall observations elevation, 

allows for flexible fitting  (Goovaerts, 1999). In contrast, UK relies on an elevation trend for 

interpolation of rainfall.  

The most difficult problem with the interpolation of rainfall in the mountainous terrain of 

Vancouver Island is the distribution and number of point observations. The small number of 

stations (53) covering the ~32 000 km2, is a low number to adequately represent the scale and 

variability of rainfall occurring in a mountain area; about 62% of the weather stations were 

located near a coast. Additionally in terms of characterizing landslide susceptibility with rainfall, 

it is important to have a rain gauge network that captures the climatic conditions where 

landslides are occurring. Thus, the elevation range and spatial distribution of the rain gauge 

network should be somewhat similar to that of the landslides under analysis. Furthermore, the 

removal of some stations in the analysis may have had a strong impact on rainfall patterns. Thus, 

the relationship of landslides to rainfall may also be affected by the weather stations available for 

interpolation, especially in areas where rainfall is particularly heterogeneous.  

 

6.2 Land cover accuracy assessment 

The overall accuracy of 82% can be considered ‘very satisfactory’ for classification of land 

cover. The test sample will always affect the measure of accuracy performance of a classifier. 

The quality of test samples is controlled by availability of adequate ground reference data, such 

as images with higher spatial resolution or on site observations that correspond with the time of 

the images used for classification. In addition, an rigorous sampling strategy is required to 

produce a statistically valid analysis (Congalton and Green, 1999). Due to time constraints, this 
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study used a simple random sample of 100 points across the study area. Although, this approach 

is generally unbiased, other techniques (e.g. stratified random sampling) can be implemented to 

ensure that the proportions of each class in the final classification map are properly represented 

in the test sampling (Congalton and Green, 1999). Since the training and test samples are both 

collected through interpretation of the Landsat TM imagery, it would be more effective to use an 

assessment approach that utilizes all training samples, such as repeated k-fold cross-validation or 

even better, repeated spatial cross-validation (Brenning et al., n.d.). 

 

6.3 Geomorphological interpretation of models 

In this study, rainfall as a predictor variable did not contribute significantly to predictive 

improvement for landslide susceptibility modelling. Different rainfall temporal scales were 

investigated to determine if the relationship to landslide initiation is stronger at a particular 

temporal scale. By analysing this relationship for an extreme storm occurring in November 2006 

(two weeks), the winter 2006-2007 rainfall and the 2006 annual rainfall, it was determined that 

annual rainfall had the strongest relationship to this set of landslides, which had little impact on 

model performance. Annual rainfall amount only increased the likelihood of landslide initiation 

after 2275 mm.  

 

 
Figure 6.1. Odds of 2006 annual rainfall (mm) amounts for landslide initiation to occur for RLTG-GAM under 

otherwise equal conditions. 
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Also, the odds only increased to a maximum of 1.7 at 3150 mm (Figure 6.1). This seems to be 

related the general regional pattern of annual rainfall and the distribution of landslides. 

Essentially, the pattern of 2006 annual rainfall characterized the regional topographic pattern of 

rugged mountains in the west and smoother flatlands in the southeast and north locations of 

Vancouver Island (Figure 6.2). 

 

 
Figure 6.2. The amount of 2006 annual rainfall associate to the landslide initiation points. The rainfall values were 

interpolated using OCK. The box-and-whisker plot shows the range of annual rainfall values for associated with the 

landslide initiation points. 

 

Furthermore, the inclusion of rainfall as a predictor variable may increase uncertainty in 

model predictions. The IQR of AUROC values calculated using repeated spatial cross-validation 

for a GAM (or GLM) is much wider in a model including rainfall in its predictions (Figure 
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5.11A). These results are an indication that annual rainfall may contribute random error into a 

susceptibility model that leads to overfitting. 

The majority of the landslides in this analysis occurred during the winter rainy season of 

2006-2007. By classifying the forest land cover before the rainy season using scenes from the 

summer of 2006, this study was able to capture the forest preconditions of landslides. As a result, 

it was possible to gain insights into the probability of landslides to occur in a given forest 

condition. In general, forest classes with less forest canopy cover were more likely of have the 

occurrence of landslide initiation. However, exposed ground, which represents recently logged 

forest, did not have the highest odds for slope failure. Open forest land cover, which represents 

forest areas with recent growth of vegetation after logging, was found as having the highest odds 

ratio compared to closed forest (OR = 2.13) for landslide initiation. This empirically supports 

previous findings that there is a lag period between logging areas and an increased proneness to 

landslides (Swanston and Swanson, 1976; Wu and Mckinnell, 1979; Sidle et al., 2006). 

Lithology classes for sedimentary, volcanic, intrusive and metamorphic have been observed 

to have different characteristics of slope stability in British Columbia (Guthrie, 2005; Sterling 

and Slaymaker, 2007; Pike et al., 2010). However, the relationship of landslide initiation to these 

lithology classes in this study was not very strong. Previous landslide research of areas along the 

coast of British Columbia had found similar results (Rollerson et al., 1998). In this study, 

lithology provided the least model improvement in terms of AUROC when individual variables 

were compared. Also, the odds ratio only slightly varied among different lithology classes. It has 

been found on Vancouver Island that rock groups within lithology classes have different 

relationships to landslide activity (Guthrie, 2005). Therefore, the relationship of landslide to 

lithology for more detailed classes should be examined to see if specific rock types may improve 

model predictions of landslide initiation. 

The modeled interactions showed that different land cover conditions can influence the 

amount of rainfall and the friction angle required for slope failure. Hydrological and mechanical 

conditions of soil are strongly influenced by vegetation cover (Sidle and Ochiai, 2006). In this 

regional study, the amount of annual rainfall related to landslides was found to vary depending 

on the general density of vegetation cover. In general, vegetation is the main control for the 

amount and timing of rainfall reaching the soil (Sidle and Ochiai, 2006). In coniferous forests, 

such as the ones predominant across Vancouver Island, interception of rainfall is of particular 
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significance. For dense coniferous canopies, interception has been observed to capture 30-50% 

of annual precipitation (Dingman, 1994). Furthermore, evapotranspiration in temperate climates 

is typically lowest for exposed soil and increases with rates that are 5-10 times higher in forests 

(Jones, 1997).  

For this study, the susceptibility of slope angle to landslide initiation was related also related 

to the density of vegetation cover. In general, landslide initiation occurred on steeper slopes for 

more densely cover forests. Vegetation roots contribute to the overall soil shear strength and 

have been observed to be more important for slope stability than evapotranspiration (Greenway, 

1987; Sidle and Ochiai, 2006). In general, roots can provide mechanical strength by anchoring 

the lower soil mantle to a more stable substrate (Greenway, 1987). Forest harvesting that leads to 

destruction of forest understory drastically increases landslide occurrence (Dhakal and Sidle, 

2003). Also, tree roots may be most important for slope stability during high intensity rainstorms 

or snowmelt; thus, the deterioration of tree roots increases the susceptibility to landslide 

initiation during such events (Sidle, 1992).  Therefore, land cover representing forest density can 

act as an important surrogate for unknown soil conditions associated to landslide initiation for 

large regional studies. 

Overall, the model improving quality of the interactions highlights the interconnectivity 

between rainfall, slope, land cover and lithology. This interconnectivity can be expected in a 

complex geomorphic process, such as landslides, where combinations of environmental factors 

are involved. Furthermore, the unique rainfall and slope conditions for land cover and lithology 

indicate that the relationship to landslide initiation is not completely an additive effect. Thus, the 

impact of rainfall and slope angle on landslides has some dependence on land cover and/or 

lithology. 

A visual comparison of the GAM using land cover, distance to logging roads, lithology, and 

topographic attributes for predictor variables (LTG-GAM) to previous studies, which applied 

susceptibility models to watersheds on Vancouver Island, show landslide susceptibility is much 

higher in gullies in this study. The models by Chung et al. (2002) and Goetz et al. (2011) 

predicted the susceptibility to debris slide initiation for Tsitika and Klanawa river watershed, 

respectively. In these previous models and the models used in this study, slope was the strongest 

factor for determining areas of high susceptibility. The best performing models in Goetz et al. 

(2011) show logged areas having higher levels of landslide susceptibility. Goetz et al. (2011) 



87 
	
  

also included distance to logging roads as a predictor variable. In comparison, areas in this 

current study adjacent to logging roads appeared to have higher levels of susceptibility, as 

indicated by areas with higher predicted probabilities (Figure 5.13).  

The models used in this current study predicted debris slides as well as debris flows, which 

suggest why the gullies are shown as having a high susceptibility compared to the previous 

studies. Since it appears that gullies represent areas of higher susceptibility, the models created in 

this study may be favoring the prediction of debris flows more than debris slides. Therefore, it 

would be recommended to explore landslide susceptibility models individually by landslide type 

to determine if the differences in predictions are significant for this study area. 

Generally speaking, a geomorphic process such as a landslide can have nonlinear 

relationships to environmental factors (Phillips, 2003; Goetz et al., 2011). The predominant 

selection of nonlinear forms of predictor variables in the landslide susceptibility models indicates 

the strong prevalence of nonlinear relationships between environmental factors and landslide 

initiation. In particular, the relationship to landslide initiation was selected as nonlinear for slope, 

elevation, plan curvature and distance-to-road in all model repetitions. Also, other variables, such 

as annual rainfall and profile curvature were for the majority selected as nonlinear. Only 

catchment area (log10) demonstrated a consistent linear relationship to landslides (Table 5.8). 

This predominant selection of predictor variables as nonlinear provides further empirical 

evidence for the presence of nonlinearities in the relationship of environmental factors to 

landslides (Goetz et al., 2011).These results strengthen the argument for the use of the GAM to 

capture complex geomorphic processes that are difficult to represent in a linear form. Especially, 

since the GAM can have a flexible variable selection process that allows for the selection of 

linear and nonlinear relationships. Overall, the present results suggest that the GAM cannot 

perform significantly worse than a GLM, which is consistent with similar finding of pervious 

geomorphological studies (Brenning, 2009; Goetz et al., 2011). 

Nonlinearity may become more prevalent in variables when performing larger regional 

analysis. Goetz et al., (2011) completed a study of landslide susceptibility modeling in the 

Klanawa River watershed on the southwestern coast of Vancouver Island. Part of this study 

explored the ability to enhance susceptibility prediction using a GAM. It was determined that 

there was no statistically significant difference between using a GAM or a GLM; the GAM 

performed only marginally better than the GLM. In this (current) study, differing results are 
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found. The Vancouver Island results indicate that the GAM performs significantly better than the 

GLM. One of the key differences between this regional study of Vancouver Island and the study 

of the Klanawa River watershed is the scale of analysis. The total size of the Klanawa watershed 

is 610 km2, which is a small fraction of the ~32000 km2 area of Vancouver Island. With larger 

scale comes greater heterogeneity in values of environmental factors that affect landslides. For 

example, rainfall, vegetation cover/type, lithology, will differ across the island. However, to be 

sure of this relationship, it would be recommended to do a scale comparison using the same 

landslide inventory and environmental factors.  

 

6.6 Limitations of statistical approach 

Statistical models are now the most common method for landslide susceptibility modeling. 

However, these empirical methods may have a cloud of uncertainty in terms of process-related 

physical meaning. Models based on a stepwise-variable-selection process may further increase 

the difficultly to interpret or provide physical meaning to model results (Guzzetti et al., 1999). In 

general, statistical models only provide an implicit explanation of the physical processes 

involved (Carrara, 1993). Meaning that the variables may be highly correlated, which is typical 

of geomorphological studies, and that only a general prior decision is made on what variables 

may be important. The consequent model may lack physical meaning because the statistical 

model attempts to broaden the factors and generalize the group of landslide types (Guzzetti et al., 

1999). Therefore, it is important to conduct separate analyse for known factors that influence a 

different spatial distribution of landslide events.  
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Chapter 7  
Summary and conclusions 

 

The purpose of this study was to explore natural and anthropogenic controls influencing 

landslide initiation at a regional scale for Vancouver Island. The relationship of environmental 

factors, such as topography, lithology, rainfall and land cover, to landslide initiation was 

explored using logistic regression and generalized additive models. 

This study was the first of its kind to analyze the relationship of land cover and annual 

rainfall to landslide initiation at a large regional scale on Vancouver Island. Geostatistical 

techniques (OK, UK, and OCK) were used to interpolate mountain rainfall for temporal dates 

corresponding to the landslide inventory. Land cover was classified from Landsat TM images to 

represent different forest canopy densities, which were used as a proxy vegetation condition 

related to forestry activities. 

A landslide susceptibility map based on data for land cover, logging roads, lithology and 

topography predicted the probability of landslide initiation to occur. In this map, the presences of 

landslide initiation points per square kilometer were 0.156 and 0.005 for high (≥0.8) and low 

(<0.5) predicted probabilities. The most susceptible 4% of the study area predicted 33% of the 

landslide initiation points. Similarly, the least susceptible 73% of study the area predicted 20% of 

the landslide initiation points. Thus, there is a trade-off between having smaller areas classified 

as highly susceptible to landslide initiation, and the general predictive ability to detect more 

landslides.  

Annual rainfall may not be necessary for building landslide susceptibility models in this 

study area. This research has shown that annual rainfall did not significantly improve model 

prediction performance.  

The ability to model non-linear relationships for landslide susceptibility using a GAM 

provided significant improvements over the common method of using a GLM. This finding is 
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different from a comparison of another study conducted in a much smaller area on Vancouver 

Island, where there was no significant difference in predictive performance. It is hypothesized 

that non-linear relationships between predictor variables and landslide initiation are more 

apparent; however, a detailed analysis comparing GLM and GAMs with the same set of 

landslides at different regional scales should be conducted to confidently confirm this 

relationship. 

Through exploring statistical interaction terms using GLMs, gainful insights into the 

relationships between rainfall, slope, land cover and lithology have been made. In terms of land 

cover, it has been empirically shown that logging areas (exposed ground) have higher landslide 

susceptibility at lower slope angle than other forest cover types. In addition, these logged areas 

are also more prone to landslides occurring with relatively lower annual rainfall amount than the 

other forest classes. For example, a closed forest canopy, representing old-growth forest, is more 

prone to landslides when annual rainfall amount is much higher 

The successful modeling of the relationship between logging roads and landslide 

susceptibility opens a door to new methods for road planning on hillslopes in landslide prone 

areas. After an adequate model has been produced, such as the LTG-GAM, the inputs can be 

modified to form scenarios of landslide susceptibility. Thus, the location of a planned road can 

be drawn into to the road inventory and updated in the susceptibility model. The subsequent 

result will show predicted impacts of a planned road to increase the susceptibility of landslides. 

A significant outcome of this analysis is the development of an adequate method for regional 

landslide susceptibility modeling for predicting areas of debris flow and debris slides on 

Vancouver Island. In particular, the methods used in this study may be able to assist forest 

development in British Columbia for areas of unstable terrain by providing maps of landslide 

susceptibility that predict smaller percentage of highly hazardous areas. The flexibility of the 

models presented in this research allow for application of these methods for other areas prone to 

landslide initiation. In particular, the open availability of national coverage of DEMs (for 

topographic controls), Landsat imagery (for land cover classification), road inventories and 

geologic information across Canada suggest that production of a national scale susceptibility 

map is highly feasible. 
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Appendix A 

List of Acronyms 

AUROC – Area under the receiver operating characteristic curve 

CDED – Canadian Digital Elevation Data 

DEM – Digital elevation model 

GAM – Generalized additive model 

GLM – Generalized linear model 

GIS – geographical information system 

LTG – Land cover and logging roads, topographic and geologic (lithology) 

MLC – Maximum likelihood classifier 

OCK – Ordinary co-kriging 

OK – Ordinary kriging 

UK – Universal kriging 

RLTG – Rainfall, land cover and logging roads, topographic and geologic (lithology) 
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Appendix B 

List of rock types associated to lithology classes 

 
Table B.1. Summary of lithology on Vancouver Island 

	
  
Lithology class Rock Type 
Metamorphic  
 Greenstone, greenschist 

 Lower amphibolite/kyanite grade 

 Othrogneiss 
Sedimentary  

 
Chert, siliceous agrillite, 
siliciclastic 

 Coarse clastic 

 Conglomoerate, coarse clastic 

 Limestone bioherm/reef 

 Limestone, marble, calcareous 

 Limestone, slate, siltstone, argillite 

 
Mudstone, siltstone, shale fine 
clastic 

 Undivided 
Intrusive  
 Dioritic 

 Diabase, basaltic 

 Feldspar porphyritic 

 Gabboic to dicritic 

 Grandoioritic 

 Quartz dioritic 

 Undivided 
Volcanic  
 Basaltic 

 Bimodal 

 Calc-alkaline 

 Volcaniclastic 

 Undivided 
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Appendix C 

Geostatistical parameters  

 
Table C.1. Summary of parameters for geostatistical models interpolating rainfall 

	
  
Period Model Nugget Sill Range Fit 
Two 
weeks 

OK 0 68472 74622 Spherical 

 UK 0 40026 85519 Spherical 
 OCK     
 Rain-

elevation 
-3305 44640 74623 Spherical 

 Rain 2522 68472 74623 Spherical 
 Elevation 4332 35581 74623 Spherical 
      
Winter OK 0 899635 97423 Spherical 
 UK 0 710943 124084 Spherical 
 OCK     
 Rain-

elevation 
-6917 141385 97423 Spherical 

 Rain 5838 899634 97423 Spherical 
 Elevation 8195 41770 97423 Spherical 
      
Annual OK 100086 604490 147430 Spherical 
 UK 148866 1013751 337417 Spherical 
 OCK     
 Rain-

elevation 
-17884 62274 147430 Spherical 

 Rain 100086 604490 147430 Spherical 
 Elevation 6455 27202 147430 Spherical 
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Appendix D 

GLM model fit summary 

D.1 RLTG-GLM 

Table D.1. Summary of model fit for RLTG-GLM (null) 

 
Predictor variables Estimate Std. Error z value Pr(>|z|) 

 (Intercept) -7.421 0.785 -9.45 0.0000 *** 
Slope 0.093 0.008 12.33 0.0000 *** 
Profile curvature -13.070 11.354 -1.15 0.2497 

 Plan curvature -21.308 10.278 -2.07 0.0382 * 
Elevation -0.001 0.000 -2.46 0.0137 * 
Catchment area (log10) 1.071 0.157 6.81 0.0000 *** 
Distance-to-road -0.011 0.002 -4.56 0.0000 *** 
Land cover-exp. 0.162 0.326 0.50 0.6187 

 Land cover-open 0.720 0.188 3.83 0.0001 *** 
Land cover-urb./agr. -2.123 0.916 -2.32 0.0205 * 
Land cover-sem-open 0.531 0.179 2.97 0.0030 ** 
Annual rainfall 0.001 0.000 3.59 0.0003 *** 
Geology-metamorphic 0.330 0.403 0.82 0.4124 

 Geology-sedimentary 0.303 0.263 1.15 0.2490 
 Geology-volcanic -0.081 0.163 -0.50 0.6201 
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D.2 RLTG-GLM with rainfall and land cover interaction 

Table D.2. Summary of model fit for rain: land cover GLM 

	
  
Predictor variables Estimate Std. Error z value Pr(>|z|) 

 (Intercept) -7.432 0.927 -8.02 0.0000 *** 
Slope 0.095 0.008 12.35 0.0000 *** 
Profile curvature -13.520 11.398 -1.19 0.2355 

 Plan curvature -19.400 10.384 -1.87 0.0617 . 
Elevation -0.001 0.000 -2.35 0.0190 * 
Catchment area (log10) 1.081 0.159 6.81 0.0000 *** 
Distance-to-road -0.011 0.002 -4.57 0.0000 *** 
Land cover-exp. 6.181 1.927 3.21 0.0013 ** 
Land cover-open -1.942 1.391 -1.40 0.1626 

 Land cover-urb./agr. 1.727 4.057 0.43 0.6703 
 Land cover-sem-open 0.881 1.104 0.80 0.4245 
 Annual rainfall 0.001 0.000 2.49 0.0126 * 

Geology-metamorphic 0.293 0.407 0.72 0.4720 
 Geology-sedimentary 0.266 0.265 1.00 0.3159 
 Geology-volcanic -0.093 0.165 -0.57 0.5718 
 Land cover-exp.: rainfall -0.002 0.001 -3.12 0.0018 ** 

Land cover-open: rainfall 0.001 0.001 1.93 0.0532 . 
Land cover-urb./agr.: 
rainfall -0.002 0.002 -0.92 0.3559 

 Land cover-sem-open: 
rainfall 0.000 0.000 -0.32 0.7492 
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D.3 RLTG-GLM with slope and land cover interaction 

Table D.3. Summary of model fit for slope: land cover GLM 

 

Predictor variables Estimate Std. Error z value Pr(>|z|) 
 (Intercept) -7.559 0.806 -9.38 0.0000 *** 

Slope 0.098 0.010 10.02 0.0000 *** 
Profile curvature -13.600 11.243 -1.21 0.2264 

 Plan curvature -21.657 10.303 -2.10 0.0356 * 
Elevation -0.001 0.000 -2.45 0.0141 * 
Catchment area (log10) 1.068 0.157 6.80 0.0000 *** 
Distance-to-road -0.011 0.002 -4.56 0.0000 *** 
Land cover-exp. 1.966 0.723 2.72 0.0066 ** 
Land cover-open 0.577 0.522 1.11 0.2684 

 Land cover-urb./agr. -0.203 1.575 -0.13 0.8973 
 Land cover-sem-open 0.606 0.459 1.32 0.1870 
 Annual rainfall 0.001 0.000 3.58 0.0003 *** 

Geology-metamorphic 0.321 0.407 0.79 0.4299 
 Geology-sedimentary 0.296 0.264 1.12 0.2628 
 Geology-volcanic -0.081 0.164 -0.49 0.6207 
 Land cover-exp.: slope -0.059 0.022 -2.73 0.0063 ** 

Land cover-open: slope 0.005 0.017 0.31 0.7581 
 Land cover-urb./agr.: slope -0.059 0.046 -1.28 0.2013 
 Land cover-sem-open: slope -0.002 0.017 -0.12 0.9071 
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D.4 RLTG-GLM with rain and lithology interaction 

Table D.4. Summary of model fit for rain: lithology GLM 

 
Predictor variables Estimate Std. Error z value Pr(>|z|) 

 (Intercept) -6.748 0.847 -7.97 0.0000 *** 
Slope 0.094 0.008 12.35 0.0000 *** 
Profile curvature -12.595 11.346 -1.11 0.2670 

 Plan curvature -21.793 10.255 -2.13 0.0336 * 
Elevation -0.001 0.000 -2.33 0.0199 * 
Catchment area (log10) 1.072 0.158 6.78 0.0000 *** 
Distance-to-road -0.011 0.002 -4.45 0.0000 *** 
Land cover-exp. 0.137 0.324 0.42 0.6722 

 Land cover-open 0.724 0.189 3.82 0.0001 *** 
Land cover-urb./agr. -2.159 0.919 -2.35 0.0189 * 
Land cover-sem-open 0.528 0.181 2.92 0.0035 * 
Annual rainfall 0.000 0.000 1.73 0.0841 

 Geology-metamorphic 3.678 2.217 1.66 0.0971 . 
Geology-sedimentary -0.800 1.394 -0.57 0.5658 . 
Geology-volcanic -4.424 1.507 -2.94 0.0033 ** 
Geology-metamorphic: rainfall -0.001 0.001 -1.57 0.1172 

 Geology-sedimentary: rainfall 0.000 0.001 0.78 0.4359 
 Geology-volcanic: rainfall 0.002 0.001 2.91 0.0037 ** 
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D.5 RLTG-GLM with slope and lithology interaction 

Table D.5. Summary of model fit for slope: lithology GLM 

	
  
Predictor variables Estimate Std. Error z value Pr(>|z|) 

 (Intercept) -7.363 0.800 -9.21 0.0000 *** 
Slope 0.088 0.009 9.57 0.0000 *** 
Profile curvature -13.630 11.402 -1.20 0.2319 

 Plan curvature -20.715 10.259 -2.02 0.0435 * 
Elevation -0.001 0.000 -2.39 0.0170 * 
Catchment area (log10) 1.077 0.158 6.82 0.0000 *** 
Distance-to-road -0.011 0.002 -4.55 0.0000 *** 
Land cover-exp. 0.169 0.326 0.52 0.6047 

 Land cover-open 0.720 0.189 3.81 0.0001 *** 
Land cover-urb./agr. -2.103 0.902 -2.33 0.0198 * 
Land cover-sem-open 0.529 0.179 2.95 0.0031 ** 
Annual rainfall 0.001 0.000 3.69 0.0002 *** 
Geology-metamorphic -1.321 1.176 -1.12 0.2612 

 Geology-sedimentary 0.247 0.608 0.41 0.6852 
 Geology-volcanic -0.376 0.426 -0.88 0.3775 
 Geology-metamorphic: slope 0.065 0.042 1.53 0.1272 
 Geology-sedimentary: slope 0.001 0.025 0.05 0.9637 
 Geology-volcanic: slope 0.011 0.014 0.74 0.4619 
 	
  

	
   	
  



99 
	
  

Appendix E 

Landslide susceptibility map example 

	
  
 

Figure E.0.1. Example landslide susceptibility map created using LTG-GAM for the Klanawa River watershed, 

Vancouver Island, British Columbia, Canada.  
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