
Query Optimization in Dynamic
Environments

by

Amr El-Helw

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Amr El-Helw 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Most modern applications deal with very large amounts of data. Having to deal with
such huge amounts of data is in itself a challenge. This challenge is complicated even more
by the fact that, in many cases, this data is constantly changing and evolving. For instance,
relational databases that handle the data of day-to-day transactional applications often have
tables with very high data change rates. It is not uncommon to even have temporary or
volatile tables that get created from scratch and completely dropped over the course of one
query workload.

This dissertation focuses on optimizing structured queries over dynamic and constantly
changing data sets. Our work address this issue, and some of the challenges related to it.

We address the issue of database statistics becoming stale and inaccurate due to con-
stantly changing data. We introduce ways to automatically analyze the existing statistics
and recommend and collect the necessary statistics to optimize a single query or a query
workload.

We introduce a mechanism to automate the recommendation and collection of statistical
views for a given query workload. We also compare two methods of using these statistical
views in selectivity estimation. We evaluate our methods and techniques with experimental
studies using prototypes that we built into commercial database systems.

iii

Acknowledgements

My sincerest gratitude goes to my advisor, Prof. Ihab Ilyas for his guidance, support,
and encouragement over the course of my doctoral studies. Prof. Ilyas kept on challenging
me, encouraging me, and pushing me to go above and beyond every challenge that I have
faced, overall teaching me to become a better researcher.

I am extremely thankful to my thesis committee members, Prof. Tamer Ozsu, Prof.
Ken Salem, Dr. Lukasz Golab, and Dr. Glenn Paulley. Being able to discuss my research
with such an outstanding group of researchers is a great honour.

I would also like to express my gratitude to Calisto Zuzarte for his contributions and
help with my research. The discussions I had with him were always very insightful and
helped guide me to the right track.

Last but not least, I would like to thank my parents for their ongoing and endless love
and support, without which this dissertation would not have been possible. They were
always there for me during the hard times, and always managed to help me whenever I was
frustrated with my research.

iv

Table of Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Collecting Just-in-Time Statistics . 3

1.2 Recommending Statistical Views . 5

1.3 Challenges . 8

1.4 Contributions and Dissertation Outline . 9

1.4.1 Collecting and Maintaining Just-in-Time Statistics 9

1.4.2 Recommending Statistical Views 10

1.4.3 Dissertation Outline . 11

v

2 Background and Related Work 12

2.1 Automated Collection of Statistics . 12

2.1.1 Reactive Approaches . 13

2.1.2 Proactive Approaches . 15

2.2 Materialized Views . 16

2.2.1 View Recommendation . 17

2.2.2 View Exploitation . 19

2.3 Statistical Views . 21

2.3.1 Statistics on Query Expressions 21

2.3.2 Sample Views . 23

2.3.3 Collecting Statistics on Statviews 25

2.3.4 Statistical vs. Materialized Views 26

2.4 The Principle of Maximum Entropy . 29

3 Collecting and Maintaining Just-in-Time Statistics 31

3.1 Query-Specific Statistics . 31

3.2 JITS Framework . 33

3.2.1 System Architecture . 34

3.2.2 Data Structures . 35

3.2.3 Query Analysis . 36

vi

3.2.4 Sensitivity Analysis . 38

3.2.5 Updating the QSS Archive . 44

3.2.6 JITS Applicability . 46

3.3 Experimental Evaluation . 47

3.3.1 JITS for a Single Query . 47

3.3.2 JITS for a Workload . 49

3.3.3 Tuning the Sensitivity Analysis 52

3.4 Conclusions . 53

4 Recommending Statistical Views 55

4.1 Problem Definition and System Overview 56

4.1.1 Key Insights . 56

4.1.2 StatAdvisor Framework . 62

4.2 Plan-Based Candidate Enumeration . 64

4.2.1 Candidate Enumeration for a Query 64

4.2.2 Candidate Enumeration for a Workload 67

4.3 Benefit Estimation and Statview Selection 70

4.3.1 Benefit for a Single Query . 71

4.3.2 Benefit for a Workload . 72

4.3.3 Statview-Group Selection . 73

vii

4.4 Dependency on Database Engine . 75

4.5 Experimental Evaluation . 76

4.5.1 Setup . 76

4.5.2 Candidate Enumeration . 77

4.5.3 Overall Workload Performance 80

4.5.4 Comparison with Previous Work 84

4.6 Conclusions . 85

5 Exploiting Statviews for Selectivity Estimation 87

5.1 Notations and Problem Definition . 88

5.2 Estimation using Conditional Selectivity 89

5.2.1 Enumerating and Pruning Decompositions 92

5.2.2 Accuracy Estimation . 93

5.2.3 Selecting the Best Estimate . 98

5.3 Estimation using Maximum Entropy . 100

5.3.1 Formal Definition . 101

5.3.2 The Constrained Optimization Problem 102

5.3.3 Computing the Selectivity Estimate 106

5.4 Statview Matching Conditions . 107

5.4.1 Matching for the Conditional Selectivity Approach 108

viii

5.4.2 Matching for the Maximum Entropy Approach 110

5.5 Integration with the PostgreSQL Optimizer 111

5.6 Experimental Evaluation . 112

5.6.1 Setup . 112

5.6.2 Statview Matching Overhead . 114

5.6.3 Workload Performance . 114

5.6.4 Estimation Accuracy . 116

5.7 Conclusions . 117

6 Conclusions and Future Work 119

6.1 Conclusions . 119

6.2 Future Work . 120

6.2.1 Enhancing the Just-in-Time Statistics Functionality 120

6.2.2 Recommending “Generalized” Statviews 121

6.2.3 Statview Matching for Complex Query Expressions 122

Bibliography 128

ix

List of Figures

2.1 View matching . 20

2.2 View benefit . 27

3.1 Database statistics . 33

3.2 JITS architecture . 34

3.3 Sample histogram . 42

3.4 Histogram update . 45

3.5 JITS benefit . 50

3.6 Individual query performance . 51

3.7 Sensitivity analysis threshold . 52

4.1 Effect of statview-groups . 59

4.2 StatAdvisor architecture . 62

4.3 Important statviews . 65

4.4 Candidate enumeration . 66

x

4.5 Important statviews . 78

4.6 Convergence of candidate enumeration . 79

4.7 Execution plans for TPC-DS query 7 . 81

4.8 Workload performance . 83

4.9 SITadvisor vs. StatAdvisor . 85

5.1 Probability space for |T | = 6 and N = {1, 2, 3} 104

5.2 Maximum entropy solution . 105

5.3 Average matching overhead . 114

5.4 Workload Performance . 115

5.5 Absolute estimation error . 117

xi

List of Tables

3.1 Statistics usage history . 36

3.2 Table sizes . 47

3.3 Compilation and execution times (in seconds) 48

4.1 SITadvisor vs. StatAdvisor . 84

5.1 Computing environment for the experiments 113

xii

Chapter 1

Introduction

Most modern applications deal with enormous amounts of data. Having to deal with such
huge amounts of data is in itself a challenge. What makes this challenge even more com-
plicated is that in many cases, this data is constantly changing and evolving. For example,
relational databases that handle the data of day-to-day transactional applications often have
tables with very high data change rates. It is not uncommon to even have temporary or
volatile tables that get created from scratch and completely dropped over the course of one
query workload. The constant change in data poses many challenges to how queries on this
data are handled. We focus on optimizing structured queries over dynamic and constantly
changing data sets.

Outdated Database Statistics. In relational databases, cost-based optimizers rely on a
cost model to choose the best possible execution plan for a given query. The optimizer enu-
merates different execution plans, using different access paths, join orders, join methods
and optimizations. The optimizer estimates the cost of these execution plans and chooses
the plan with the least estimated cost. The accuracy of cost estimates is the main factor
that affects the quality of the selected query execution plan. Cost estimates depend mainly
on cardinality estimations of various sub-plans (intermediate results) generated during op-
timization. These cardinality estimates are computed using database statistics, which are

1

metadata maintained by the system that describe the underlying data. These statistics in-
clude the number of rows in a table, the number of distinct values in a column, the most
frequent values in a column, and the distribution of data values (usually stored as a his-
togram).

With fast changing data, the stored statistics often become stale quickly as a result of
data updates. Statistics are not incrementally updated during data manipulation because
such incremental maintenance is prohibitively expensive. Traditional systems try to ad-
dress this problem by periodically updating the stored statistics. This, however, is not par-
ticularly useful for tables with high data change rates, or temporary tables that get created
and dropped during a workload. The presence of outdated statistics causes the optimizer to
inaccurately estimate the costs of the operators in a query plan, which results in choosing a
suboptimal plan. We discuss this issue in detail in Section 1.1.

Reducing Estimation Errors. Another challenge that faces the optimizer is how the
database statistics are used in cardinality and cost estimation. In order to compute car-
dinality estimates of intermediate result sets from these statistics, query optimizers often
employ some simplifying assumptions about the data and queries. For example, optimizers
often assume that data is uniformly distributed over a given column (unless a histogram
is available), and that query predicates are independent. However, these assumptions are
usually incorrect, causing cardinality estimates to be off by orders of magnitude, leading to
suboptimal execution plans.

In addition, it is often difficult for the optimizer to use the traditional statistics to es-
timate the cardinality and cost of query expressions that include complex constructs. Ex-
amples include predicates with arbitrary expressions on multiple columns and aggregate
functions. It is not uncommon to use a guess or magic number as the selectivity estimate
of the predicates that have these constructs [26].

Example 1.1. Consider the following query Q1:

2

SELECT ∗ FROM Car, Owner

WHERE Car.OwnerID = Owner.ID

AND Owner.Sal = 3000

AND Owner.Age = 30

AND Car.Price∗(1-Car.Discount) < 5000

To estimate the output cardinality of this query, the optimizer has to estimate the output
cardinality of each table after applying the local predicates, then estimate the output car-
dinality of the join operator. To estimate the cardinality of the Owner table, the optimizer
estimates the selectivity of each of the two predicates Owner.Sal = 3000 and Owner.Age =
30 from the number of distinct values (and possibly the frequent values) in the columns Sal
and Age, respectively. The combined selectivity of the two predicates is often estimated as-
suming independence. The independence assumption can be relaxed if a two-dimensional
histogram on Age and Sal is available (in which case, the uniformity assumption is em-
ployed to some extent to interpolate values within histogram buckets). Estimating the se-
lectivity of a predicate involving an expression like (Price∗(1-Discount)<5000) is usually
hard using base table statistics, and most optimizers obtain a selectivity estimate for such
predicates using some predefined magic number [26]. The estimation errors in both tables
are further magnified as a result of the join predicate [36]. Reducing these estimation errors
is the focus of Section 1.2.

This chapter starts by motivating the need for collecting just-in-time statistics in Sec-
tion 1.1, and statistical views in Section 1.2.In Section 1.3 we list the challenges raised
when attempting to address these research problems. We summarize our contributions and
present the outline of this dissertation in Section 1.4.

1.1 Collecting Just-in-Time Statistics

As mentioned in the introduction, stored database statistics suffer from two main problems,
which are a result of decoupling statistics collection and query processing: (a) the statistics

3

collection module has no knowledge of the queries posed to the system, which is why only
general statistics are usually collected and stored, and why simplifying assumptions have
to be made to be able to use these statistics; and (b) the stored statistics become outdated
as a result of data updates. These two problems often result in estimation errors that can be
orders of magnitude in size, and which in turn affect the quality of the selected execution
plan.

It can be argued that if a query workload is known beforehand, then it is possible to
analyze the whole workload, and collect all the needed statistics (including combined pred-
icate selectivities, and histograms of skewed columns) at the beginning, thus ensuring that
statistics are up-to-date and capture all correlations and non-uniform distributions. This
approach only works for read-only workloads, or workloads with minor data updates. For
workloads that include major data updates, the statistics collected at the beginning will
quickly become outdated, and the staleness problem will surface once again.

In some cases, this can be detected and rectified using query feedback, by monitoring
actual cardinality values during query execution, detecting the estimation errors, and react-
ing to those errors. This may involve re-optimizing the running query [37, 43], adjusting
stored statistics to compensate for these errors in future queries [5, 50], or keeping multi-
ple query plans and using the cardinalities monitored at run time to choose among these
plans [11]. However, in some scenarios, query feedback may not be as useful. Examples
include:

• Queries on tables with high data change rates

• Temporary tables that get created and dropped during a workload

• Ad hoc queries that are unlikely to be repeated

In all of these cases, query feedback fails to solve the problem of inaccurate statistics
because of its learning curve. For tables with high data change rates, by the time the
system adjusts to the errors in the statistics, the data is likely to have changed, and the

4

discovered adjustment is rendered useless. For temporary tables, the system is likely to
have no statistics about them at all. Ad hoc queries are also problematic since the system
might not have encountered them before, and thus has no idea how to compensate for the
errors in their selectivities. Moreover, any information learned from such queries is useless
as those queries might never be encountered again.

A brute-force approach to get accurate cost estimation would be to collect statistics on
all data sources, and all the possible combinations of predicates in a given query before op-
timization. However, the problem with this approach is that (1) it is non-trivial to enumerate
all statistics needed by the optimizer; (2) collecting all needed statistics for each query can
be prohibitively expensive; and (3) it is hard to determine the most crucial statistics for the
optimization process.

In our work, we propose an efficient approach to proactively determine, collect, and
materialize Just-in-Time Statistics (JITS) for the currently optimized query. In contrast to
earlier attempts, our approach employs a lightweight sensitivity analysis based on the query
structure, the existing statistics and the data activity to identify the crucial statistics. The
collected statistics are materialized and incrementally updated for future reuse.

1.2 Recommending Statistical Views

The inability to accurately estimate the output cardinality of complex query expressions
triggered the idea of collecting statistics on views [26], also known as SITs – statistics on
intermediate tables (or SQEs – statistics on query expressions) [13, 14]. In this dissertation,
we use the term statistical views (or statviews), which can be defined as follows:

Definition 1.1. A statview is a view definition (SQL query) augmented with statistics col-
lected on the result of executing this view, without the actual data.

The statistics that can be collected on a statview are the same as those that can be col-
lected on a base table, e.g., the number of tuples in the statview, the number of distinct val-
ues in each column, the highest and lowest values in each column, and optionally, column

5

group statistics, histograms and frequent values on some or all of its columns. Statviews
make it possible to estimate the cardinality of some complex sub-expressions that otherwise
would have to be guessed or estimated using unrealistic assumptions.

As seen in Example 1.1, cardinality estimation from base table statistics introduces
several sources of errors, including the assumptions of independence and uniformity and
the use of magic numbers to estimate the selectivity of predicates involving arithmetic
expressions. However, given the query Q1 from example 1.1, assume that we have the
following statviews:

v1: SELECT ∗ FROM Owner WHERE Sal=3000 AND Age=30

v2: SELECT ∗ FROM Car WHERE Price∗(1-Discount)<5000

Collecting statistics on these statviews gives us accurate information about the number
of rows in each view, thus reducing the estimation error considerably.

In the case of a read-only query workload that is known in advance (as opposed to
ad hoc queries), it might be better to analyze the whole workload at once instead of using
JITS with every query, in order to avoid the overhead of doing repeated work, and to exploit
similarities between queries.

Example 1.2. Assume that there is a workload that contains the query Q1 from Exam-
ple 1.1, as well as the following query Q2:

SELECT ∗ FROM Car, Owner

WHERE Car.OwnerID = Owner.ID

AND Owner.city = ‘Toronto’

AND Car.Price∗(1-Car.Discount) > 4000

Note that both queries have predicates that include the expression Price ∗ (1-Discount).
And even though the statview v2 above provides accurate information for Q1, it does not
help with estimating the selectivity of the predicate in Q2. Instead of creating another
statview for the second query, it might be better to create the following statview:

6

v3: SELECT Price∗(1-Discount) as dprice FROM Car

Collecting a histogram on the dprice column in v3 can provide accurate estimates for both
queries.

In addition to exploiting similarities between queries, analyzing the whole workload can
be performed as an offline process, to determine which statviews to create. These statviews
can then be created once, and used every time that workload is executed. To the best of our
knowledge, little work has been done to automate the process of deciding which statistical
views to create given a SQL workload [13]. In addition, previous work did not study the
interaction of multiple statviews when presented together to the query optimizer. In our
work, we focus on recommending the most beneficial statviews for a workload, taking into
account the interaction between statviews and their effect on query plans.

Statviews fall under the category of multivariate statistics (MVS) together with multi-
dimensional histograms [45] and column-group statistics [34]. As shown in the earlier
examples, these statistics provide more accurate selectivity estimates for groups of predi-
cates, eliminating the need for the independence assumption. For a query with predicates
p1, p2, ..., pn, the optimizer has access to the following selectivity estimates:

• The individual selectivities s1, s2, ..., sn can be estimated from base table statistics.

• A limited collection of joint selectivities, such as s1,2, s3,5, and s2,3,4 can be estimated
using available statviews.

Using these statistics, the independence assumption is then employed to “fill in the
gaps” in the incomplete information, e.g., the unknown selectivity s1,2,3 can be estimated
as s1,2 ∗ s3. This introduces a new problem: there may be multiple, non-equivalent ways of
estimating the selectivity for a given set of predicates.

Example 1.3. Consider a query with the conjunctive predicates p1 ∧ p2 ∧ p3. Base table
statistics provide the optimizer with the selectivities s1, s2 and s3 of p1, p2 and p3 respec-
tively. Suppose that there are statview that provide the selectivities s1,2 and s1,3 of p1 ∧ p2

7

and p1 ∧ p3 respectively. Using the available statistics and the independence assumption,
the optimizer can estimate the combined selectivity of p1∧p2∧p3 as either s1,2,3 = s1,2∗s3,
or s1,2,3 = s1,3 ∗ s2.

Any query plan that applies p1 and p2 first (e.g. using index ANDing) is likely to use the
first estimate, while any plan that applies p1 and p3 first is likely to use the second estimate.
This would result in an inconsistency if the two estimates are not equal, which is usually
the case. Furthermore, there are potentially other choices, such as s1 ∗ s2 ∗ s3 or, if s2,3
is known, s2,3 ∗ s1. The choice of which estimate to use arbitrarily biases the optimizer
toward choosing one plan over the other. Even worse, if the optimizer does not use the
same estimate every time it is required, then different plans will be costed inconsistently,
leading to incorrect comparisons and unreliable plan choices.

In our work, we implemented two methods of exploiting statviews in query optimiza-
tion based on the work in [14] and [42]. The first method analyzes all possible ways of
computing a selectivity estimate, and uses the one that gives the most accurate estimate.
The second method relies on the principle of maximum entropy [31] to make use of all the
available information while computing the estimate.

1.3 Challenges

There are multiple challenges associated with database statistics and query optimization.
In this work, we focus on exploring the following challenges:

• Determining needed statistics. Determining which statistics are required to optimize
a given query has to take several factors into account. These factors include the
query structure (predicates and other constructs), what statistics are available, how
old they are, how much the data has changed since these statistics were collected,
how accurate the estimates obtained from these statistics can be, etc. Answering all

8

these questions becomes an even greater challenge if it has to be accomplished on-
the-fly during query processing, since it has to be done in a lightweight manner that
does not introduce too much overhead.

• Finding beneficial statviews. Deciding which statistical views are beneficial for a
given query workload is not trivial. The effect of statviews (or statistics in general)
cannot be simulated without using the traditional simplifying assumptions. Statviews
also often interact with each other, and it is sometimes necessary to study them in
groups rather than individually. In addition, the effect, or estimated benefit, of a
statview cannot be determined by merely comparing the estimated cost of executing
the workload with and without the statview present. The benefit of statviews has to
take into account the special characteristics of statviews and how they are used in
cardinality and cost estimation.

• Exploiting statviews in selectivity estimation. Once statviews are created, the opti-
mizer needs to be able to “match” them with parts of any query that is being pro-
cessed. If a match is successful, then the optimizer can use the statistics provided
by the matched statview in estimating the output cardinality of the matched part of
the query. Statview matching is different from traditional view matching (used with
materialized views) because of how each type of views is used.

1.4 Contributions and Dissertation Outline

We present a summary of our contributions, and give the organization of the remainder of
this dissertation.

1.4.1 Collecting and Maintaining Just-in-Time Statistics

We propose an efficient approach to proactively determine, collect, and materialize Just-
in-Time Statistics (JITS) for a given query during query processing. Our key contributions
are the following:

9

• We define the concept of query-specific statistics (QSS), as opposed to general statis-
tics (Section 3.1).

• We introduce a novel lightweight sensitivity analysis technique based on the query
structure, the existing statistics and the data activity to identify the crucial statistics
(Sections 3.2.3 and 3.2.4).

• We present a mechanism for materializing and incrementally updating the collected
partial statistics for future reuse. Our approach integrates these partial statistics in a
reusable form by maintaining maximum-entropy-based structures (Section 3.2.5).

1.4.2 Recommending Statistical Views

We present StatAdvisor, a system to automatically recommend statistical views (statviews)
that are most beneficial for a particular SQL workload. Our key contributions are the
following:

• We study the way statviews work, and present various key insights about their effect
on query performance (Section 4.1).

• We introduce a novel iterative plan-based candidate enumeration algorithm based on
the unique characteristics of statviews. The algorithm considers the possible depen-
dency between multiple statviews in terms of their effect on the chosen execution
plan (Section 4.2).

• We propose a benefit metric that takes into account the characteristics and effect of
statviews. The system amortizes the benefit of the candidate statviews across the
whole workload in order to get the final recommendations (Section 4.3).

• We demonstrate two different techniques to exploit statviews in query optimization.
The first approach uses the most promising statviews (the ones thought to be the
most accurate) to estimate a selectivity value, while the second approach incorporates
information from all available and relevant statviews (Chapter 5).

10

1.4.3 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 gives an overview
of related work from the literature. Chapter 3 describes our proposed framework for col-
lecting and maintaining just-in-time statistics during query processing. Chapter 4 presents
our proposed processing techniques recommending statistical views for a given SQL query
workload. Chapter 5 presents the method we use for using statviews in cardinality esti-
mation during query optimization. Finally, Chapter 6 gives our conclusions, discusses the
limitations of our proposal, and lists a number of directions for future work.

11

Chapter 2

Background and Related Work

In this chapter, we review related work from the literature of query optimization, including
automated collection of statistics (Section 2.1), materialized views (Section 2.2), and sta-
tistical views (Section 2.3). We also outline the principle of maximum entropy, which is
relevant to our work, in Section 2.4.

2.1 Automated Collection of Statistics

Traditionally, it was the job of the user (or the database administrator) to determine which
database statistics to collect and maintain. This type of labor-intensive activity has been a
major component of the total ownership cost for a DBMS. Database designers have there-
fore expanded major efforts over the past decade to develop methods for automated statis-
tics configuration and collection, that is, methods for the system to automatically decide
which statistics to maintain, and when to collect and refresh these statistics. The decisions
that need to be made include: the attribute sets on which to maintain joint statistics (also
known as multivariate statistics or MVS), the number of frequent values, histogram bucket
frequencies, the choice of bucket boundaries for histograms, etc. There have also been ef-

12

forts to make the statistics collection process more dynamic, gathering information during
query execution so that the execution plan can be modified on the fly.

Most of the published work regarding the optimizer’s dependence on statistics only
addresses the problem of stale or outdated database statistics and their effect on query
optimization. The problem of deciding which statistics to collect has not been thoroughly
explored. The approaches that tackle the statistics aspect of cost-based optimization can be
categorized mainly as being either reactive or proactive.

Reactive approaches are based on monitoring a query during execution, and reacting
to observed errors between the initial estimates and the actual values from the query feed-
back. In contrast, proactive approaches try to predict, identify and possibly solve potential
problems by doing additional work before query execution.

2.1.1 Reactive Approaches

The idea behind all of the reactive approaches is to piggyback the gathering of information
on top of query execution, and exploit the information obtained from the query feedback
for the benefit of future queries.

Adjusting Statistics

The initial version of the Learning Optimizer (LEO) in IBM DB2 [50] monitored actual
cardinality values along the edges of the query plan. These values were compared to the es-
timates used by the optimizer. The error is used as a correction factor for the optimizer’s se-
lectivity estimates (to be used by future queries). However, the LEO approach has evolved
into a method for automated statistics configuration. As each predicate is evaluated during
query execution, a query feedback record, which contains the predicate’s actual selectivity
and the optimizer’s selectivity estimate, is created. These query feedback records are stored
into the query feedback warehouse (QFW), and later used for a variety of statistics-related
tasks.

13

A slightly different approach [5] uses the monitored error to trigger statistics collection
if the error exceeds a certain threshold. However, the current query still suffers from in-
correct estimates. The problem is further magnified in systems with long-running ad hoc
unrelated queries, in which case the adjustment in statistics is unlikely to be used by future
queries.

The notion of using query feedback to update the existing statistics has received con-
siderable attention. STHoles [15] introduced a novel data structure – a histogram whose
buckets can have holes. This histogram gets updated whenever information from query
feedback is available. The ISOMER method [49] builds on that approach, but uses the
principle of maximum entropy to approximate the true data distribution by the simplest
distribution that is consistent with all the currently valid feedback without any further as-
sumptions. Similar approaches for piggybacking statistics collection with query execution
are discussed in [6, 12, 55]. More details on the principle of maximum entropy are given
in Section 2.4.

Query Re-optimization

A different reactive approach reacts to observed estimation errors by re-optimizing the
current query as it is being processed. The approach proposed in [37] inserts statistics-
collection operators at different points in the query execution plan. The purpose of these
operators is to monitor the actual cardinality and compare it to the optimizer’s estimate. If
the estimation error exceeds a certain threshold, the system decides that the current exe-
cution plan is suboptimal. In that case, the system tries to optimize the execution, either
by changing the resource allocation or by finding a new execution plan based on the newly
observed statistics and re-executing the query using the new plan.

In Progressive OPtimization (POP) [43], the optimizer chooses a plan based on the
existing statistics. The optimizer then calculates a validity range for the cardinality at
each intermediate result, that is, the range of values in which the current plan is still the
optimal one. In addition, statistics collection operators are inserted in a manner similar to
the approach in [37]. During query execution, actual values are monitored. If an actual

14

cardinality value is outside the validity range of the corresponding operator, the optimizer
decides that the current plan is not optimal anymore, and the query is re-optimized.

However, it is hard to monitor actual cardinalities during query execution and use them
for possible re-optimization without blocking the execution pipeline. Furthermore, the
decision to re-optimize raises a question of whether to reuse the partial results that have
been obtained already or to start execution from the beginning with the new plan. Changing
the execution plan adaptively during query execution has also been the focus in [9], even
though this change comes as a response to fluctuations in resource availability, rather than
to estimation errors.

2.1.2 Proactive Approaches

Babu et al. [11] proposed an approach that is partly proactive but mostly reactive. This
approach is based on the possible error in the cardinalities at every edge of the query plan.
At each operator, the system computes the possible range of values for the input relation(s)
to this operator, getting a bounding box. The system maintains three alternative “switch-
able” sub-plans for each operator; ones that are optimal at the lowest, middle, and highest
points in the bounding box. During execution, the approach is reactive; the system detects
the actual cardinality and chooses one of these sub-plans accordingly if the value is inside
the bounding box; otherwise, it re-optimizes the query. The main problem is that the three
maintained sub-plans do not necessarily cover the whole spectrum of possible sub-plans,
i.e., there could be other plans that are better than the selected three plans for a particu-
lar input cardinality value. Furthermore, this approach depends on the ability to produce
meaningful intervals around cardinality estimates, which is a hard problem by itself.

To the best of our knowledge, the only work that addresses the issue of choosing which
statistics to collect before query execution is the MNSA (Magic Number Sensitivity Anal-
ysis) approach proposed in [18]. It includes a technique to perform sensitivity analysis in
order to decide which statistics to collect so that the optimizer will have enough information
to optimize that query. The idea is to check whether the currently available set of statistics

15

is sufficient or not. If not, then collect the most important statistic, and then repeat the check
again until the available statistics are sufficient. The decision of whether the current set of
statistics is sufficient or not is taken by invoking the optimizer twice. In the first invocation,
all unknown selectivities are set to a very small value ε > 0. In the second invocation,
all unknown selectivities are set to a large value 1 − ε. If the estimated costs of the two
generated plans are within t% of each other (for a predefined value of t), the current set of
statistics is said to be sufficient. If not, the system identifies the most important statistic by
calling the optimizer again to get an execution plan based on the current set of statistics,
then comparing the estimated costs of the operators in the plan, assuming that expensive
operators are associated with important statistics.

However, this approach has several shortcomings. It requires multiple calls to the opti-
mizer for every statistic, which can be very time-consuming especially for complex queries.
In addition, although this approach can be particularly useful if most of the tables involved
in the query have up-to-date statistics, it would not be as useful if most of the statistics
are outdated. This is because it decides the importance of statistics based on the estimated
operator costs in the execution tree that is already built using inaccurate information.

2.2 Materialized Views

In an RDBMS, a view is a virtual table representing the result of a database query. When-
ever an ordinary view’s data is queried or updated, the DBMS converts these operations
into queries or updates against the underlying base tables. A materialized view takes a dif-
ferent approach in which the query result is physically stored as a concrete table that may
be refreshed from the original base tables from time to time. If a user issues a query over
a materialized view, its results can be directly returned instead of having to be recomputed
from the base tables, which helps speed up query execution. Furthermore, if the user poses
a query over base tables, with similar predicates to what is used in a materialized view, the
optimizer can choose to use the materialized view instead of the base table, thus potentially
avoiding to redo complex computations. This enables much more efficient access, at the

16

cost of some data being potentially out-of-date. In addition, materialized views are treated
just like base tables. Anything that can be done to a base table can be done to a materialized
view, most importantly building indexes on any column, enabling drastic speedups in query
execution time.

Building and maintaining query performance enhancers, such as database indexes and
materialized views has been extensively studied. Query processing time can be improved
by orders of magnitude through judicious use of materialized views. In order to make full
use of materialized views, it is required to address three issues [28]:

• View design: determining which views to materialize

• View exploitation: using the views to speed up query processing

• View maintenance: efficiently updating the views when the base tables are updated

In this section, we focus on the first two issues since they are the most relevant to our
work. We outline the recent work in both directions in the next two subsections.

2.2.1 View Recommendation

A considerable amount of work has been done to automate the process of recommending
which indexes or materialized views to construct. The Design Advisor in IBM DB2 [51, 56]
analyzes a given workload. For each query in the workload, the advisor builds a list of
candidate views and indexes. These candidates are generated using some heuristic rules
based on the structure of the query. In order to estimate the benefit of each candidate to
the query under consideration, the advisor simulates the existence of all the candidates
(by creating entries in the system catalog without creating the actual views, in addition to
estimating statistics about these candidates using basic cardinality estimation techniques).
The advisor then calls the query optimizer for the given query. The optimizer chooses
the best execution plan for the query taking into consideration all the virtual candidates.

17

The chosen plan might include some of those candidates. Those candidates are assigned
a benefit score (based on the saving in the estimated execution time) and a cost (based on
their size). Candidates that are not in the chosen plan are pruned. This process is repeated
for every query in the workload, and the benefit scores of the candidates are aggregated
across all queries. Finally, a knapsack algorithm is used to select among all the candidates
to achieve the maximum benefit while satisfying the space constraints.

A slightly different approach is used in Microsoft SQL Server [2, 8]. First the system
finds the “interesting table subsets”, that is, sets of tables that are involved in multiple
queries and/or queries of estimated high execution cost. To find these sets, the system uses
a scoring mechanism, where each subset of the tables in each query is assigned a score.
This score is directly proportional to the estimated cost of the query, as well as the sizes of
the tables involved. If a subset occurs in more than one query in the workload, the score
of that subset is aggregated. Interesting table subsets are those subsets whose score across
the whole workload exceeds a predefined threshold. Once those sets are identified, for
each such set in each query, the system generates some candidate views and indexes. The
optimizer is then used in a way similar to that in [51, 56] to get the query-level recommen-
dations, and to compute the benefit of each candidate. Subsequently, the system attempts
to generate more candidate views by merging similar views that are recommended for dif-
ferent queries. A given pair of views (referred to as the parent views) are used to generate
a new view (called the merged view) if these conditions are met: (a) all queries that can be
answered using either of the parent views should be answerable using the merged view, and
(b) the cost of answering these queries using the merged view should not be significantly
higher than the cost of answering the queries using the parent views. Finally, a greedy
algorithm is used to determine the final workload-level recommendations based on the es-
timated benefit and cost of each candidate. Generating merged views that can be used by
multiple queries has also been an ongoing research problem [39].

18

2.2.2 View Exploitation

Using materialized views to enhance query performance is mainly based on view matching
(or query matching). View matching is performed on the internal query representation (e.g.
the Query Graph Model - QGM [32]) before plan enumeration. In such models, the query
is usually represented as a tree with nodes (often referred to as query blocks) representing
base tables, selections, joins, and aggregations, and edges representing data flow. Each
block specifies what attributes are produced, and what predicates (if any) are used to filter
the outputs. This representation is different from execution plans, since it does not show
the join order, join methods, or physical operators to be used.

Example 2.1. Consider the database tables: Owner (oid, name, country) and Car (cid,
make, model, year, owner id). Also consider the query:

SELECT model FROM Car, Owner

WHERE oid = owner id

AND country = ‘Canada’

AND make = ‘Toyota’

AND year = 2000

Figure 2.1(a) shows the tree representation of this query. Block b1 represents the selec-
tion on the Owner table, b2 represents the selection on the Car table, and b3 represents the
join.

Since views are also based on queries, they are also represented in the same way. In
view matching, the optimizer tries to match a query block with any of the existing materi-
alized views. If a successful match is found, then another query tree is created, using the
view instead of the base table(s), and the optimizer is allowed to enumerate plans for both
trees, and choose among them based on the estimated cost. A major challenge is being able
to efficiently check the query for matching with the existing views. The problem becomes
even more challenging as the number of materialized views in the system increases, and as
queries get more complex (with sub-queries, and arbitrary expressions).

View matching is based on coverage or subsumption; a materialized view is considered
an exact match to a certain query block if the view produces the same tuples and attributes

19

oid

country=‘Canada’

owner_id, model

make=‘Toyota’

and year=2000

model

oid = owner_id

Owner Car

b1 b2

b3

(a) Query tree representation

owner_id, make, model

year=2000

Car

v

(b) Representation of v

oid

country=‘Canada’

model

oid = owner_id

Owner

b1

b3

owner_id, model

make=‘Toyota’

v

b2’

(c) Modified query

Figure 2.1: View matching

that are produced by that block [54]. In case of non-exact matches, where the view produces
more tuples and/or attributes than the query block, a compensation block is added to output
only the desired tuples and attributes. This compensation is usually in the form of applying
additional predicates, projections, and/or aggregate functions to get only the desired results.

Example 2.2. Given the tables and query in Example 2.1, assume that there exists a mate-
rialized view v defined as: v = SELECT owner id, make, model FROM Car WHERE

year=2000 . Figure 2.1(b) depicts the tree representation of v. This view can be used in
place of the car table for the purpose of the given query, since it covers the tuples and at-
tributes needed by the query. However, a compensation predicate (block b′2 in Figure 2.1(c))
needs to be added.

The view matching problem has received considerable attention. Zaharioudakis et al.
[54] proposed a solution to the problem based on the Query Graph Model (QGM) [32]
used in IBM DB2. Their solution exploits the QGM structure to match multi-block queries
with multi-block views, including arbitrary aggregate functions and arithmetic expressions.
The approach considers different cases for exact and non-exact matches, and computes the
compensation expression in each case.

Goldstein and Larson also addressed the same problem in [28]. Their view matching
algorithm handles views with selections, projections, joins and a final group-by (SPJG).
For each view, the algorithm considers equivalence among columns (as implied by equality

20

predicates), and uses this information to test whether or not the view contains all the rows
needed by the query. The work in [28] also addresses the performance issues caused by the
large number of materialized views in the system. To overcome this problem, the approach
includes an indexing mechanism that quickly narrows the search down to a small set of
candidate views on which view matching is applied.

2.3 Statistical Views

Most query optimizers use a cost model to choose the best query execution plan. The qual-
ity of the selected plan depends mainly on the accuracy of the cost estimates computed by
the optimizer, which in turn depend on the cardinality estimates of intermediate results.
Traditionally, database systems only maintain statistics on base tables and their attributes.
The optimizer has to make some simplifying assumptions in order to estimate the cardi-
nality of an intermediate query expression using the base table statistics. The assumptions
made are often unrealistic. Examples of these assumptions include predicate independence
and data uniformity. As seen in the introduction (Example 1.1), the simplifying assump-
tions made by the optimizer can cause the cardinality estimates (and cost estimates) to be
off by orders of magnitude, which often results in the optimizer choosing a sub-optimal
execution plan.

This problem inspired the idea of maintaining statistics not only on base tables, but also
on intermediate query expressions. In the following subsections, we outline two different
approaches for computing statistics on intermediate results (query expressions).

2.3.1 Statistics on Query Expressions

Bruno and Chaudhuri [13, 14] introduced SITs (statistics on intermediate tables), also
known as SQEs (statistics on query expressions). In their work, a SIT is a statistic (usually
a histogram) over a column in the result of a query expression. A SIT can be seen as a spe-
cial case of a statview, which has a single output column. The work in [13, 14] extended

21

traditional optimizers to exploit statistics built on expressions corresponding to intermedi-
ate nodes of query plans. SITs are similar to materialized views, except that the result of
the view is not materialized, but only used for statistics collection and then discarded. Only
the statistics are maintained by the system. The major challenges of this approach are: (a)
determining for which of the many sub-expressions of an SQL workload the system should
collect SITs, and (b) ensuring that the query optimizer is able to exploit SITs if they exist
for some sub-expression of a given query.

To determine which SITs to collect, the approach in [13] can be viewed as three main
steps:

1. Finding “interesting” predicates in a given query

2. Determine the generating query for each SIT

3. Aggregating query-level recommendations into workload-level recommendations

To find the interesting predicates in a query, the work in [13] builds on the MNSA
technique [18]. For each filter predicate, the system tries to determine the sensitivity of
the query cost to this predicate. This is accomplished by using two estimation techniques
Min and Max, which make extreme assumptions about the distribution of values in the
attribute involved in the predicate. The two estimation techniques yield two sets of cardi-
nality estimates. The optimizer is called twice (once for each set of estimates) returning
two execution plans with two estimated execution costs. The difference between the esti-
mated costs is interpreted as the sensitivity of the query to this particular attribute; If the
estimated cost difference is small, building a SIT for the attribute in question will have little
effect on the query.

To determine the generating query for a SIT, the Min and Max estimation techniques
are used to propagate the extreme assumptions from the predicate in question to the whole
query result. A score is assigned to each partial join (candidate SIT) based on how much it
contributes to the uncertainty in the final result. Scores are also multiplied by the difference
in estimated cost, so that SITs used in more expensive queries would be deemed more

22

beneficial. The scores are then aggregated across the workload (for SITs that are used
by multiple queries), and a greedy selection algorithm is used to select the SITs with the
maximum scores that can fit within a space constraint.

The approach in [13] suffers from several shortcomings: Predicates are considered one
at a time, assuming independence, which does not solve problems arising from correlation
of predicates. Also, comparing the costs computed using different sets of statistics (using
Min and Max) is not indicative of importance: A large cost difference can be the result
of just the different statistics, even though the execution plan did not change. In addition,
for each filtering predicate in the query, the query is optimized twice, which can be very
expensive. Last but not least, SITs are recommended one at a time, not considering possible
dependencies between them. In real situations, the availability of one statistic might not be
beneficial unless another particular statistic also exists.

During query evaluation, the work in [13] uses standard view matching techniques to
match the existing SITs with all subexpressions of a given query, in order to decide which
views to use for estimating the cardinalities of these expressions. The authors extend that
approach in [14] by introducing the concept of Conditional Selectivity, which enables the
optimizer to match the query with several SITs at the same time, which would have been
missed using the traditional query matching techniques. More details about the conditional
selectivity concept is given in Chapter 5.

2.3.2 Sample Views

Larson et al. [38] proposed using Sample Views for cardinality estimation. Sample views
are also similar in concept to materialized views except that they contain only a random
sample of the view result. Given a query that is being optimized, view matching techniques
are used to determine which sample views can be used, and probe queries are issued against
these views to compute the required cardinality estimates. To ensure that the accessed
records from the view are truly a random sample, a method called sequential sampling is
used. When creating the view, an additional column, called RAND , is added to the view.

23

For each tuple in the view, the RAND attribute is assigned a random value drawn from
a uniform distribution in the range [0, MAXRAND], where MAXRAND is a relatively small
integer value (maximum 1000). The sample is then stored in sorted order on the RAND

column. Thus rows with the same RAND value are clustered together. For a particular value
of the RAND attribute, the group of tuples with that value can be seen as a random sample.
When issuing probe queries against the sample, the rows are scanned sequentially until
the end of a cluster (when the RAND value changes). The set of rows scanned is a valid
random sample. Sequential sampling only processes enough rows to compute a sufficiently
accurate estimate (with guarantees on the standard error).

To maintain the samples, query feedback is used to report back the actual values of the
estimates computed from the views. If the feedback shows that a certain view has become
stale (the reported value differs from the computed estimate by more than a predefined
error threshold), then a refresh request is triggered for this particular view, after which
the view enters a “refresh pending” mode. In this mode, it can still be used for query
optimization, but the optimizer is aware that estimates obtained from that view may not be
accurate. When the load on the system allows, the sample is dropped, and a new sample
is recollected. For some views, there might be insufficient feedback, due to the following
reasons:

• View is not used during query optimization

• Expression estimated by the view does not appear in the final plan

• Expression appears in the final plan, but it does not have a valid count (e.g. because
of early termination)

In these cases, there is not enough information to determine whether a view needs to
be refreshed. Therefore, in order to safeguard against stale views, the system (or DBA) can
either issue a forced update, or some artificially generated and specifically tailored guard
queries just to get feedback for these particular views.

24

2.3.3 Collecting Statistics on Statviews

The simplest approach to collect statistics on a statview is to execute the statview’s query,
materialize the results, collect statistics on the results, then drop the query’s results. This
approach is not efficient, especially when there are multiple statviews, many of which
involve the same tables.

A better approach is to create and maintain random samples of the base tables. Suppose
there are two statviews v1 = σp1(A) and v2 = σp2(A), where p1 and p2 are arbitrary
combinations of predicates on table A. To collect statistics on these statviews, the sample
of table A is scanned only once, and each tuple is checked against the predicates p1 and p2.

Unfortunately, base table samples cannot be used for statviews with multiple joined
tables, since joining the base table samples does not yield a random sample of the join
[7, 17, 44]. To overcome this problem, join synopses [7] can be used. The join synopsis
for table A is built as follows [10]:

1. Create a uniform random sample of A.

2. For every table B such that A has a foreign key to B, join the sample of A with the
full table B.

3. Repeat Step 2 recursively, i.e., for each table B from Step 2, follow all its foreign
keys.

Now suppose there is a statview on a group of tables that are all joined using foreign
key joins. Join synopses can be used to collect statistics on this statview as follows:

1. Determine the root table R in the set of joined tables. This table is the one that has
foreign keys to other tables, but with no foreign keys to it from other tables.

2. Scan the join synopsis of R, and check the scanned tuples against the selection pred-
icate(s) in the statview.

25

The join synopsis of table R can be used to collect the statistics on any statview on a set
of tables whose root table is R. Note that join synopses can only be used with non-cyclic
joins involving foreign keys.

2.3.4 Statistical vs. Materialized Views

Statistical views are similar in concept to materialized views except that materialized views
contain pre-computed data, while statistical views are used only for cardinality estima-
tion, not for query evaluation. Exploiting materialized or statistical views is based on view
matching. The optimizer tries to match (part of) the query in question with one or more
of the existing views. Matching is usually performed using the internal representation of
the SQL query, which is different from one DBMS to another. If a match is found, the
matched view can be used to improve the performance of that query, by reusing the result
of the view (in the case of materialized views), or by improving the cost estimates, and thus
getting a better execution plan (in the case of statviews).

However, the techniques used to recommend materialized views cannot be directly
adopted to recommend statviews, due to multiple fundamental differences. We mention
two of these differences here:

(1) The Benefit of a View

The difference in how to evaluate the benefit of statviews and materialized views is best
illustrated by the following example:

Example 2.3. Figure 2.2(a) depicts the logical tree of a query Q, where p1 and p2 are some
selection predicates on tables A and B, respectively. Suppose that two views v1 and v2 are
defined, as shown in Figures 2.2(b) and 2.2(c). If v1 and v2 are materialized views, v2 is
more beneficial than v1, since v2 is matched with the whole query, and can be used directly
to provide the results without any further processing, while v1 matches only the circled part
ofQ and thus requires additional processing to obtain the results ofQ. In contrast, if v1 and

26

(a) Query Q

A

σp1

(b) View v1

B

σp2

A

σp1

(c) View v2

Figure 2.2: View benefit

v2 are statviews, then v1 provides an accurate cardinality estimate of the selection, allowing
the optimizer to choose the appropriate join method, while v2 provides only statistics about
the top operator ofQ, which generally does not help the optimizer1. Therefore, in this case,
v1 is more beneficial than v2.

This example shows that the benefits of materialized views and statviews are evaluated
differently. Hence, the benefit metrics used for materialized views cannot be used for
statviews. In Section 4.3, we propose a benefit metric that reflects the way statviews are
used.

(2) View Matching

Materialized view matching is based on subsumption; a materialized view is considered
an exact match of a certain part of the query if the view produces the same tuples that are
produced by that part of the query [54]. In case of non-exact matches (where the view
produces more tuples than the query), a compensation operation is applied on the view
to extract only the desired tuples. This compensation is usually in the form of applying
additional predicates, joins, and/or aggregate functions to get only the desired results. The
work in [54] describes the cases and conditions required for materialized view matching.

1Usually, input cardinalities are used for costing and planning an operation. However, some operations
can be better planned knowing the output cardinality as well.

27

In the case of statviews, if a statview matches part of the query, the statview statistics
can be used by the optimizer to accurately determine the output cardinality of this sub-
query. However, the matching conditions in the case of statviews can be more relaxed than
in materialized views.

Example 2.4. Consider the following query Q and views v1, v2 and v3:

Q: SELECT R.e, S.c, S.f, v1: SELECT DISTINCT R.e,

AVG(R.d) FROM R, S, T S.c, S.f FROM R, S, T

WHERE R.a = S.a WHERE R.a = S.a

AND S.b = T.b AND S.b = T.b

GROUP BY R.e, S.c, S.f

v2: SELECT R.e, S.c, v3: SELECT R.e, S.c, S.f

AVG(R.d) FROM R, S, T FROM R, S

WHERE R.a = S.a WHERE R.a = S.a

AND S.b = T.b

GROUP BY R.e, S.c

Suppose that v1, v2 and v3 are materialized views. v1 cannot be matched with Q, since
it does not contain the data needed to compute AVG(R.d). v2 cannot be matched with Q,
since the view is only grouped by two columns, thus losing information which cannot be
retrieved using any compensation. Even though v3 matches the sub-expression involving
tables R and S, it cannot be matched with Q, since the SELECT clause of v3 does not
include S.b, which is needed later on for joining the view with table T .

Now suppose that v1, v2 and v3 are statviews. v1 can provide the number of tuples pro-
duced as a result of the GROUP BY operation in Q, which is the same as the number of
distinct combinations of the values in the three grouping columns. v2 can give the number
of groups (i.e. number of distinct values) based on the column group (R.e, S.c). Ideally,
this information can still be useful while optimizing Q, especially if the number of dis-
tinct values in column S.f is also available (from base table statistics or another statview).

28

The concept of using partial information and assuming independence or uniformity unless
otherwise known has been used in [22, 49]. v3 can provide the exact output cardinality of
joining R and S. Thus the three statviews should be considered beneficial matches during
query optimization. However, note that whether these statviews are considered successful
matches or not could differ from one database system to another, depending on the match-
ing capabilities of the system, and how it utilizes statviews in query optimization. We
discuss this further in Section 4.4.

The aforementioned differences between statviews and materialized views, as well as
other special properties that we discuss in Section 4.1, warrant the development of a dedi-
cated advisor that takes these special characteristics into account.

2.4 The Principle of Maximum Entropy

The maximum entropy (ME) principle [31] models all that is known and assumes nothing
about the unknown. It is a method for analyzing the available information in order to
determine a unique epistemic probability distribution. Given a probability distribution q =
(q1, q2, ..., qn),

∑n
i=1 qi = 1, Information Theory [48] defines a measure of uncertainty

called entropy:

H(q) = H(q1, ..., qn) = −
∑
i

qi · log(qi) (2.1)

Each value qi may be seen as the probability of the ith outcome of a probabilistic ex-
periment or the probability of the ith possible value taken on by a finite discrete random
variable. As already mentioned, the entropy can be viewed as the uncertainty resulting
from such probability distribution. Keeping this in mind, entropy has some interesting
properties [31]:

29

1. If q has only one component which is different from zero (i.e., equal to 1) then
H(q) = 0. This makes sense, as there is no uncertainty if there is only one pos-
sible outcome.

2. H(q1, ..., qn) ≤ H(1/n, ..., 1/n), with equality if and only if qi = l/n, i = 1, ..., n.
This simply means that the entropy (or uncertainty) is maximized if all possible out-
comes are equally likely. Thus, of all possible probability distributions, a uniform
distribution yields the highest entropy.

3. For s random variables with arbitrary finite range, H(X1, ..., Xs) ≤ H(X1) + ... +

H(Xs), with equality if and only if X1, ..., Xs are globally independent. This means
that entropy of multiple random variables is maximized if these variables are inde-
pendent.

The ME principle prescribes selection of the unique probability distribution that maxi-
mizes the entropy function H(q) and is consistent with respect to the known information.
Entropy maximization without any additional information uses the single constraint that
the sum of all probabilities is equal to one.

Consider the above properties in the context of query optimization. If the optimizer
does not use multi-variate statistics (MVS), then it actually estimates the selectivities of
conjunctive queries according to the ME principle: the optimizer assumes uniformity when
no information about column distributions is available, and it assumes independence be-
cause it does not know about any correlations.

By integrating the more general concept of maximum entropy into the optimizer’s se-
lectivity model, we thereby generalize the concepts of uniformity and independence. This
enables the optimizer to take advantage of all available information in a consistent way,
avoiding inappropriate bias towards any given set of selectivity estimates.

30

Chapter 3

Collecting and Maintaining Just-in-Time
Statistics

In this chapter, we describe the techniques we proposed in [22] to proactively determine,
collect, and materialize Just-in-Time Statistics (JITS) during query processing. We start by
defining what we refer to as Query-Specific Statistics in Section 3.1. We discuss the details
of our JITS framework in Section 3.2. We present our experimental study in Section 3.3
and summarize this chapter in Section 3.4.

3.1 Query-Specific Statistics

As mentioned in the Introduction (Chapter 1), cost-based query optimizers often make
some unrealistic assumptions while using general database statistics for cardinality and
cost estimation. These assumptions (e.g. independence and data uniformity) often do not
hold, and usually yield high estimation errors. This raises the need for Query-Specific
Statistics (QSS), which take into consideration the predicates and the values used in a par-
ticular query. QSS allow the optimizer to accurately estimate the cost of different execution
(sub)plans, while making fewer assumptions on the underlying data.

31

Example 3.1. Consider the following query:
SELECT E.name

FROM Employee E, Company C

WHERE E.compid = C.id

AND C.name = ‘Microsoft’

AND E.salary > $100k

AND E.age < 30

A possible QSS for this query is the combined selectivity of the two predicates salary >
$100k and age < 30, which would allow the optimizer to accurately estimate the number
of satisfying tuples, based on which it can choose the best access path for theEmployee ta-
ble, and the best join method. However, since most systems do not maintain such statistics,
the optimizer has to rely on general single-column statistics to compute these estimates.
Even with the existence of histograms on the age and salary columns, the optimizer usu-
ally assumes uniformity within each histogram bucket. Furthermore, since it is impossible
to maintain multi-dimensional histograms for all possible combinations of columns, the
optimizer may assume independence to compute the joint selectivity of the two predicates.
These assumptions often lead to large errors in cardinality and cost estimation. The problem
is further magnified with more complex queries that involve large numbers of predicates
and joins [36].

Note that predicate selectivities, in addition to being query-specific, can also be plan-
specific; the selectivity of a particular predicate can be useful for costing a certain plan but
useless for costing another plan that evaluates the same query.

Example 3.2. Consider a query that contains a join of 3 tables A, B, and C. In one pos-
sible plan, the join order is (A ./ B) ./ C. This plan needs the selectivity of the join
predicate of A ./ B. Another plan with a different join order A ./ (B ./ C) would need
the selectivity of the join predicate of B ./ C. Hence, in general, collecting all needed
statistics would involve collecting the selectivity of all possible join predicates and other
plan-specific statistics, which can be prohibitively expensive.

As shown in Figure 3.1, QSS can be viewed as a compromise between: (1) general
statistics currently collected by query optimizers, where multiple unrealistic assumptions

32

• Combined selectivity of

multiple predicates

• Join selectivity of different

table combinations

Base statistics

on tables and

columns

Examples

HighLow
Collection

Cost

HighLowAccuracy

Some plan(s) on a

particular query

Most

Queries

Usability

Plan-Specific

Statistics

Query-Specific

Statistics (QSS)

General

Statistics

Figure 3.1: Database statistics

are made to generate the required statistics for cost estimation; and (2) plan-specific statis-
tics that can be directly used in cost estimation, eliminating the need for assumptions but
suffering from prohibitively expensive collection cost. QSS takes the middle ground be-
tween the two types of statistics in terms of usability, accuracy and collection cost.

A system that collects and exploits QSS in query optimization needs to address the fol-
lowing issues: (1) which QSS to collect among a large number of possible candidates; and
(2) how to efficiently materialize the collected QSS for later reuse. Section 3.2 describes
the JITS framework, and how it tackles these issues.

3.2 JITS Framework

In this section, we describe JITS, a system for proactively collecting query-specific statis-
tics during query compilation. We give the overall architecture of JITS, describe the struc-
ture of the QSS archive, and give details of our implementation of the various modules.

33

3.2.1 System Architecture

Figure 3.2 depicts the architecture of JITS. Entities in dotted lines already exist in current
query engines, while entities in solid lines are new JITS modules.

Query

Analysis
Query

Recommended

Statistics

Sensitivity

Analysis

QSS Profile

Statistics

Collection

QSS

Archive

Catalog

Plan

Generation

& Costing

QSSStatistics

Migration

Catalog

Stats

1

2

3

offline

Plan costFake stats

Previously

collected stats QSS

O
P
T
IM
IZ
E
R

Figure 3.2: JITS architecture

The Query Analysis module analyzes the query structure, after parsing and rewriting, to
determine all relevant statistics, and generates a list of candidate statistics. The Sensitivity
Analysis module processes the candidate statistics to decide the most crucial statistics to
collect. Our implementation examines the query, existing statistics, as well as the history
of data activity (e.g., frequency of updates and deletes on a particular table). In general, the
sensitivity analysis module can use any more sophisticated technique, e.g., by incorporating
the planning module to determine the sensitivity of the query to a particular statistic [18].
The output of the sensitivity analysis is the set of statistics that needs to be collected. We

34

refer to this set as the QSS profile. The Statistics Collection module collects the required
statistics, and uses them to update the QSS archive. The Plan Generation and Costing mod-
ule uses the information in the QSS archive and the system catalog to select an execution
plan. The information in the QSS archive can be used to periodically update the system
catalog using the Statistics Migration module.

3.2.2 Data Structures

The JITS framework maintains and uses the following data structures:

QSS archive: This is a repository of adaptive single- and multi-dimensional histograms.
Categorical and character data types can be represented as numerical values using a map-
ping function to allow for interpolation. We elaborate on the details of the histograms and
their update strategy in Section 3.2.5.

UDI counter: For each base table, we maintain a counter that encapsulates the number of
updates, deletions and insertions that took place since the last statistics collection on this
table. We use the UDI counter as an indication of the change in the data. This is used by
the sensitivity analysis module (Section 3.2.4).

StatHistory: The query optimizer can usually estimate the selectivity of conjuncts of
predicates such as sel(p1 ∧ p2 ∧ p3 ∧ p4) by using partial selectivities such as sel(p1),
sel(p2 ∧ p3), and sel(p2 ∧ p3 ∧ p4) [42]. We maintain a history of the usage of statis-
tics in selectivity estimation. This history can be used to evaluate the effectiveness of the
optimizer’s assumptions in estimating combined selectivities from partial statistics. Each
StatHistory entry corresponds to the optimizer using a particular set of statistics to esti-
mate the selectivity of a group P of conjunctive predicates. Each entry is of the form
(T, colgrp, statlist, count, errorfactor), where:

• T is the table to which the predicate group P belongs

• colgrp are the columns in the predicate group P

35

Table 3.1: Statistics usage history
T colgrp statlist count errorfactor
T1 (a, b, c) {(a, b), (c)} 5 0.4
T1 (a, b, c) {(a), (b, c)} 2 0.7
T1 (a, b, c) {(a, b, c)} 10 0.98
T1 (a, b, d) {(a, b), (d)} 4 0.8

• statlist is a set of statistics that were used to estimate the selectivity of P

• count is the number of times that the statistics in statlist have been used to estimate
the selectivity of P

• errorfactor is the ratio between the estimated selectivity and the actual selectivity
of P

The errorfactor value is usually provided by a feedback system that monitors the ac-
tual selectivities and compares them to the optimizer’s estimates (e.g., LEO [50]). Table
3.1 gives a sample of the stored StatHistory. The first entry states that the selectivity of
a predicate group involving columns a, b, and c in table T1 (e.g., a=5 AND b>10 AND
c<100) has been estimated using combined statistics on columns a and b and statistics on
column c, and that this scenario has happened 5 times. The ratio between the estimated se-
lectivity and the actual monitored selectivity is 0.4 (average over all 5 occurrences). Note
that StatHistory does not store the predicate groups themselves, but only the columns ref-
erenced in these predicates. For example, the first entry in Table 3.1 refers to all instances
where statistics on (a, b) and statistics on c have been used to estimate the combined selec-
tivity of a predicate group referencing columns a, b and c.

3.2.3 Query Analysis

The Query Analysis module determines which statistics are relevant to the query, regardless
of whether or not they should be collected. These statistics can be classified as: (1) table

36

Algorithm 3.1 Query analysis
1: function QUERYANALYSIS(Q)
2: PG← φ

3: B ← set of query blocks in Q
4: for all b ∈ B do
5: P ← set of predicates in b
6: T ← set of tables involved in b
7: for all t ∈ T do
8: Pt ← {p|p ∈ P , p is local on t}
9: PG← PG ∪ {Pt}

10: end for
11: end for
12: return PG
13: end function

statistics (e.g., number of rows), which are needed for every table involved in the query,
and (2) column statistics, which basically include the selectivities of predicates or groups
of predicates. Since table statistics are usually collected and maintained by most systems,
we focus on statistics related to single predicates and predicate groups.

The query analysis (Algorithm 3.1) takes as input a query Q and returns the set PG
of candidate predicate groups on which statistics are needed in order to optimize Q. Each
element in PG is a group of predicates that appear in the query. The algorithm analyzes the
query by examining its internal structure after parsing and rewrite. Since the aim of QSS
is to be directly used by the optimizer, the algorithm collects predicate groups per query
block (SPJ block), since most optimizers perform intra-block optimization. For every query
block b, the algorithm finds all the predicates belonging to the same table, and adds these
predicates (as a group Pt) to final candidate list PG.

37

Example 3.3. Consider the following query:
SELECT *

FROM A, B

WHERE A.a1 = B.b1

AND A.a2 < 10

AND (A.a3 = 5 OR A.a3 = 7)

AND B.b2 > 20

AND not EXISTS (

SELECT * FROM A as AA, C WHERE AA.a1 = C.c1

AND AA.a2 > 0 AND AA.a4 = A.a4)

This query contains two query blocks, corresponding to the main query and the sub-
query. While processing the outer block, the algorithm finds the following predicate groups:

• A.a2 < 10 and (A.a3 = 5 or A.a3 = 7) (corresponding to table A)

• B.b2 > 20 (corresponding to table B)

The inner query block produces the following predicate group:

• AA.a2 > 0 (corresponding to table A)

These three predicate groups are the candidate QSS for this query.

3.2.4 Sensitivity Analysis

Statistics collection during query compilation is an expensive process. Collecting all statis-
tics recommended by the query analysis module is not always necessary. Therefore, it is
crucial to decide which statistics are necessary to collect.

38

Algorithm 3.2 Sensitivity analysis
1: procedure SENSITIVITYANALYSIS(Q,PG)
2: T ← set of tables involved in Q
3: for all t ∈ T do
4: PGt ← {g|g ∈ PG, g is local on t}
5: if ShouldCollectStats(t, PGt) then
6: Mark t for statistics collection
7: for all g ∈ PGt do
8: if ShouldMaterialize(g) then
9: Mark g for materialization

10: end if
11: end for
12: end if
13: end for
14: end procedure

The sensitivity analysis (Algorithm 3.2) takes as input the query Q and the list of pred-
icate groups recommended by the query analysis module. The algorithm makes use of two
other subroutines that are explained in detail in the following sections: ShouldCollectStats
and ShouldMaterialize. The subroutine ShouldCollectStats(t, PGt) (Algorithm 3.3)
determines if statistics should be collected on a table t based on the candidate statistics
PGt. Ideally, the sensitivity analysis evaluates the “importance” of each candidate statis-
tic. We adopt a simplification heuristic that decides on all the statistics PGt of a table as a
single unit. The rationale is that most of the cost of collecting the statistics is in the sam-
pling process. Once a table is sampled, it is relatively cheap to collect the selectivities of
all predicate groups that belong to this table.

In some cases, some of the collected statistics might not be useful for future queries, and
storing them would be a waste of space, especially if they involve creating new QSS his-
tograms (more details on updating the QSS histograms are given in Section 3.2.5). There-
fore, to meet space constraints, it is important to decide which statistics are more likely to
be useful in the future. The subroutine ShouldMaterialize(g) (Algorithm 3.4) determines

39

if a certain predicate group g should be materialized. The details of the two subroutines are
explained next.

1. Determining Crucial Statistics to Collect

Deciding whether or not to collect statistics on a particular table is mainly based on evalu-
ating two metrics:

• s1 reflects the accuracy of currently existing statistics on this table; and

• s2 reflects the data activity on the table.

Each of the two metrics can be viewed as a value ranging from 0 to 1; where 0 means
that no statistics collection is needed and 1 meaning that statistics must be collected. The
“importance” of a particular statistic can be computed as a function of s1 and s2.

Computing these scores is described in Algorithm 3.3. To compute s1 based on a par-
ticular predicate group g, the algorithm fetches all the StatHistory entries that refer to this
group (line 3). For example, if this group is (a=5 AND b>10 AND c<100), and the history
is as shown in Table 3.1, then H will have all the entries which have the colgrp (a, b, c),
i.e. the first 3 entries. For each entry h ∈ H , the algorithm calculates the accuracy (acc) of
using statlist to estimate the selectivity of g. The accuracy depends on the errorfactor
value in that entry, as well as the accuracy of each of the statistics in statlist (line 7). We
show how to calculate the accuracy in case of histograms later in this section. MaxAcc rep-
resents the maximum accuracy that can be achieved if the selectivity of g estimated using
the currently available statistics (lines 8-10). As a result, the metric s1 can be calculated as
s1 = 1−MacAcc (line 12). The second metric, s2, can be calculated as the ratio between
the UDI and the table cardinality (line 13).

The total score of the table is computed as an aggregate function of the two metric
values (e.g., a weighted sum). One way to use the aggregated score is to use a threshold
of statistic importance; if the value of the total score exceeds a threshold smax, statistics

40

Algorithm 3.3 Is a particular table important?
1: function SHOULDCOLLECTSTATS(t, PG)
2: for all g ∈ PG do
3: H ← {h|h ∈ StatHistory;h.T = t, h.colgrp = columns(g)}
4: MaxAcc← 0

5: for all h ∈ H do
6: n← |h.statlist|
7: acc← h.errorfactor ∗

∏n
i=1 accuracy(h.statlist[i], g)

8: if acc > MaxAcc then
9: MaxAcc← acc

10: end if
11: end for
12: s1 ← (1−MaxAcc)

13: s2 ← min(UDI(t)/cardinality(t), 1)

14: score← f(s1, s2)

15: if score ≥ smax then
16: return TRUE
17: end if
18: end for
19: return FALSE
20: end function

must be collected on this table. As smax approaches 1, no QSS are collected during com-
pilation (same as traditional query processing). As smax decreases, the system becomes
more aggressive and tends to collect more statistics. If smax = 0, all candidate QSS are
collected. In our implemented prototype, the aggregate function is the average of the two
scores. Section 3.3.3 elaborates on the effect of changing the value of smax on the system
performance.

The computation of the accuracy score acc (line 7 in Algorithm 3.3) depends on cal-
culating the accuracy of the underlying statistics relative to the predicate group at hand.
Since we store the QSS as histograms (cf. Section 3.2.2), we now show how to compute

41

B
5

B
4

B
3

B
2

B
1

0 10 30 34 42 50

Figure 3.3: Sample histogram

the accuracy of a particular histogram in estimating the selectivity of a given predicate. The
accuracy of a histogram with respect to a predicate (group) is a value in the range [0,1].

Consider a one-dimensional histogram on column a. A histogram has n bucketsB1, B2,

..., Bn. Bucket Bi lies between the boundaries bi−1 and bi. Now consider a predicate
a > value whose selectivity needs to be estimated from this histogram. The accuracy of
the estimate depends on the following factors:

Distance from bucket boundaries If value ≈ bi for some i, then estimating the selectiv-
ity is very accurate. As value gets further from any boundary, the accuracy of the
estimate decreases, since interpolation is needed within the bucket.

Bucket width The accuracy further decreases if value lies within a wide bucket.

To calculate the accuracy for a one-dimensional histogram, we follow these steps:

1. Locate the bucket that contains value. Let this bucket be Bj with boundaries bj−1
and bj .

2. Let d1 = value− bj−1 and d2 = bj − value

3. Let u = min(d1,d2)
max(d1,d2)

∗ bj−bj−1

bn−b0

4. accuracy = 1− u

Example 3.4. Consider the 5-bucket histogram in Figure 3.3. Given the steps outlined
above, the accuracy of this histogram with respect to a predicate a > 20 is 0.6, while the
accuracy of the same histogram with respect to a different predicate a < 31 is 0.97.

42

Algorithm 3.4 Is a statistic useful for other queries?
1: function SHOULDMATERIALIZE(g)
2: if histogram exists on g then
3: Return TRUE
4: end if
5: F ←

∑
h∈StatHistory h.count

6: H ← {h|h ∈ StatHistory; columns(g) ∈ h.statlist}
7: score←

∑
h∈H(h.errorfactor ∗ h.count/F)

8: if score ≥ smax then
9: return TRUE

10: else
11: return FALSE
12: end if
13: end function

For multi-dimensional histograms, we use a simple method where the overall accuracy
can be computed as the product of the accuracy in each dimension.

2. Which Statistics to Materialize?

Once a table is sampled, the selectivities of all the candidate predicate groups given by
the query analysis are computed and are used to optimize the query. However, we must
decide which of these statistics to store in the QSS archive. We only need to store statistics
that are potentially useful for future queries. JITS estimates the usefulness of materializing
given statistics by monitoring how useful they were for previous queries. The usefulness
score of a statistic depends on the number of times this particular statistic has been used in
selectivity estimation, and the accuracy of the estimates it produces.

Algorithm 3.4 lists all history entries that have the statistic in question as one of their
statlist elements. For example, if the statistic in question is the predicate group (a=5 AND
b>10), and the history is as shown in Table 3.1, then H will have all entries whose statlist

43

contains the group (a, b), i.e. the first and fourth entries. The statistic is given a score
that represents how beneficial it was for computing needed estimates. The algorithm uses
a weighted average of errorfactor to compute this score. If this score exceeds a certain
threshold, it is considered useful, and is marked for materialization.

3.2.5 Updating the QSS Archive

Due to efficiency concerns, the statistics collected during query processing are not used to
update the QSS archive as soon as they are obtained. Instead, the statistics are collected in
a temporary buffer, and used in batches to update the QSS archive during periods of light
load. Each entry in the buffer is in the form (pg, count, t), where pg is a group of conjunc-
tive predicates, count is the number of rows that satisfy these predicates as collected by
JITS, and t is a timestamp indicating collection time of this entry. Each predicate in pg is
in the form (exp relop C), where exp can be any expression involving table columns and
relop is a relational operator.

Updating the QSS histograms has to be performed such that each histogram is consis-
tent with respect to the statistics stored in the buffer. The buffer is not cleared after the
update process. An entry is only removed from the buffer when it has to be pruned to
satisfy space constraints. The update process is based on the maximum entropy principle
(cf. Section 2.4). We extended the technique in [49] to update the histograms by finding
a distribution that satisfies the knowledge gained by the new statistics without assuming
any further knowledge of the data, i.e., assuming uniformity unless more information is
known. In the current prototype we limit exp to a column name. The value C has to be a
constant value in order to be used for updating the histograms. For instance, for columns a
and b, the predicate (a < b + 10) cannot be used to update the histogram using maximum
entropy1. The histograms in the QSS can represent data of most data types. Non-numeric
data types, e.g. categorical and character types, can be represented as numerical values
using a mapping function.

1Such predicates can still be stored in the buffer (or used to create statistical views as outlined in Chap-
ter 4), and possibly reused for later queries.

44

7

7 43

13

20

10

20

10

50

20

100

100 100

100

50

50

50 20

20 40 0

0 0

60

60

a

a a

b

b b

(a) (b)

(c)

4

10 40

16

20

10

100

50 20 40 0

60

a

b

(d)

Figure 3.4: Histogram update

Example 3.5. Consider a 2-dimensional histogram on attributes a and b. The values of a
range from 0 to 50 and the values of b range from 0 to 100. The total number of tuples is
100. Initially the histogram has just one bucket, as shown in Figure 3.4(a). Now consider
a query with the predicates (a > 20 AND b > 60). After sampling, the system finds that
20 tuples satisfy this predicate group. This information is used directly to optimize the
query. However, from the same sample we can determine the number of tuples that satisfy
each of the 2 predicates individually (assume the number of tuples that satisfy a > 20 and
b > 60 is 70 and 30, respectively). This new information is used to update the histogram
as in Figure 3.4(b). Assume another query that has the predicate (a > 40), and assume
there are 14 tuples satisfying this predicate. One possible way of incorporating this new
information is the histogram shown in Figure 3.4(c), which is still consistent with all the

45

previously collected information. However, this histogram makes some assumptions about
the distribution and the correlation between a and b, since the distribution of b for a > 40

is now different from the distribution of b for 20 < a < 40.

Using the maximum entropy principle, and since no further information is known, we
assume that a and b are independent, and we assume uniformity within the buckets in the
last histogram. As a result, the newly inserted boundary splits the buckets as shown in
Figure 3.4(d). It can be seen that the 20:50 ratio in Figure 3.4(b) is still maintained on both
sides of the newly inserted boundary. Furthermore, the 56:14 (or 4:1) ratio of the tuples
satisfying 20 < a < 40 to the tuples satisfying a > 40 is also maintained whether b is
above or below 60, which signifies the independence assumption.

As the system collects more statistics, storage space becomes an issue, especially since
a single column can be involved in multiple histograms, each of which can be arbitrarily
large. To avoid this problem, we keep a limit on the size of QSS to maintain. In case
the dedicated space is full, and more statistics have to be materialized, we remove the
buffer entries with the oldest timestamps, then rebuild any histograms that incorporated the
deleted entries.

3.2.6 JITS Applicability

It is worth mentioning that JITS is more useful for complex, long-running queries such
as those used in OLAP and Decision Support Systems. Such queries usually include a
relatively large number of joined tables, aggregate functions, and predicates, which means
more alternative plans to choose from. The long running time of these queries justifies
spending time on statistics collection to guarantee the optimizer’s access to recent accurate
statistics, thus bringing down the total response time of the query. On the other hand,
simple OLTP queries usually do not involve a large number of tables, and their running
time is usually very short. For this reason, they might not benefit much from using the
approach presented in this chapter. In fact, using such architecture can increase the time
of query processing if all the queries are very simple. This is further illustrated in our
experimental study.

46

Table 3.2: Table sizes
Table No. of Tuples
CAR 1,430,798
OWNER 1,000,000
DEMOGRAPHICS 1,000,000
ACCIDENTS 4,289,980

3.3 Experimental Evaluation

We implemented the prototype within DB2 [1]. The dataset that we used contains four
relations: CAR, OWNER, DEMOGRAPHICS , and ACCIDENTS . Several primary-key-to-
foreign-key relationships exist between the tables, as well as a number of correlations be-
tween attributes, such as Make and Model . Table 3.2 shows the number of tuples in each
of the four tables.

The prototype uses the Query Graph Model (QGM) [32] to analyze the query structure.
For statistics collection, the prototype invokes the RUNSTATS tool with the appropriate
parameters. Based on earlier work [5, 34, 46], the best sample size sufficient to give ac-
curate statistics of a database table is independent of the table size, and thus can be scaled
to large tables. To collect specific predicate selectivities, we had to construct and invoke
sampling queries on-the-fly.

As a future extension, techniques such as the work described in [52] can be employed
to reduce the time used for sampling by making use of the existing catalog statistics.

3.3.1 JITS for a Single Query

To evaluate the benefit of our model, we issued a query given different scenarios. The query
used for this experiment is:

47

SELECT o.name, driver, damage

FROM car c, accidents a, demographics d, owner o

WHERE d.ownerid = o.id

AND a.carid = c.id

AND c.ownerid = o.id

AND make = ’Toyota’ AND model = ’Camry’

AND city = ’Ottawa’ AND country = ’CA’

AND salary > 5000

This query was issued in 4 different scenarios:

1. No initial statistics (a) with JITS disabled, and (b) with JITS enabled

2. With Initial basic and distribution statistics on all tables (a) with JITS disabled, and
(b) with JITS enabled

Table 3.3 shows the compilation, execution, and total times of the query under the
different cases. The times shown are in seconds. Note that the total time is slightly larger
than the sum of the compilation and execution times because it also includes the fetch time,
which is the same in all cases.

Table 3.3: Compilation and execution times (in seconds)
Case # Compilation Execution Total

1-a 0.098 138.756 138.855
1-b 11.864 101.681 113.547
2-a 0.073 104.912 104.986
2-b 3.698 101.323 105.023

In the first 2 cases, no statistics are known initially. When JITS is enabled (case 1-
b), some overhead is encountered for collecting statistics. However, the execution time
decreases significantly. The decrease in execution time is almost 27% and the overall gain
is around 18% reduction in total query time. In the existence of all recent general statistics,

48

JITS might not outperform the traditional model for a single query. The reason is that the
saving in the execution time can be outweighed by the JITS overhead. However, once we
consider a sequence of queries in a workload, the overhead is amortized by reusing the
statistics in the QSS archive. We show the workload effect in Section 3.3.2.

3.3.2 JITS for a Workload

This experiment demonstrates the performance of JITS as opposed to traditional query
processing. We observed the performance of the system using a workload of 840 queries,
including data updates to simulate a real-world operational database. Each query in the
workload involves one to five joined tables, and several selection predicates, some of which
are correlated. Some of the queries also include aggregate functions and grouping. An ex-
ample query is:

SELECT city, COUNT(*)

FROM owner o, car c

WHERE c.ownerid = o.id

AND c.make = ’Honda’ AND c.model = ’Civic’

GROUP BY city

The workload was executed in four settings:

1. JITS disabled, having no initial statistics

2. JITS disabled, having general (basic and distribution) statistics about all tables and
columns

3. JITS disabled, having general (basic and distribution) statistics about all tables and
columns in addition to workload statistics (i.e., all column groups that occur in all
the queries)

4. JITS enabled, having no initial statistics

49

255.75 47.68
21.96

32.49

0

5

10

15

20

No Stats General

Stats

Wo rkload

Stats

JITS

T
o

ta
l

E
la

p
s

e
d

 T
im

e
 (

s
e

c
)

Figure 3.5: JITS benefit

In Setting (3), we assumed knowledge of the whole workload in advance. The set of
“workload statistics” available in this setting are the QSS that would be recommended by
JITS for all the queries in the workload. We had all these statistics collected and available to
the optimizer before running the workload. Figure 3.5 shows a box plot (a graph depicting
the smallest observation, lower quartile, median, upper quartile and largest observation) of
the elapsed time of the workload queries in the four settings. Having general statistics only
results in a significant benefit compared to having no statistics at all. However, if workload
information is available, it can be analyzed and all the needed statistics can be collected
beforehand, which improves the overall performance. However, due to data updates, these
statistics soon become stale, and the estimation error increases.

With JITS enabled, the system samples the data to get the actual selectivities of the
predicates in the query. The benefit of having these very accurate values outweighs the
sampling overhead. In addition, the data updates have no effect on the accuracy of the
collected statistics, since the system detects the staleness of these statistics, and recollects
them when needed, which justifies the performance gain of setting (4) over setting (3).

50

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Time with Workload Stats (sec)

T
im
e
 w
it
h
 J
IT
S
 (
s
e
c
)

Degradation

Improvement

(a) Workload stats vs. JITS

0

10

20

30

40

50

0 10 20 30 40 50

Time with General Stats (sec)

T
im

e
 w
it
h
 J
IT
S
 (
s
e
c
)

Degradation

Improvement

(b) General stats vs. JITS

Figure 3.6: Individual query performance

Figure 3.6(a) shows a scatter chart of the elapsed times of individual queries when JITS
is enabled (with no prior statistics) versus when JITS is disabled (having workload statistics
to start with). Some of the queries suffer from the overhead of collecting statistics when
JITS is enabled. We observed that most of these queries are in or near the beginning of the
workload, where the collected workload statistics are still valid. As the data gets updated,
the workload statistics become stale, and the benefits of JITS become evident. In addition,
queries that have very short execution times (bottom left corner of the chart) often do not
benefit from JITS, since the overhead in optimization time is not justified.

In the majority of the systems, where prior workload knowledge is not available, only
general statistics can be collected initially. Figure 3.6(b) depicts JITS versus having general
statistics. Almost all of the queries have a significant improvement, while only a few ones
lie in the degradation region.

51

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.5 0.7 0.9 1

s
max value

A
v
e

ra
g

e
 E

la
p

s
e

d
 T

im
e

 (
s
e

c
)

Avg. Execution Time

Avg. Compilation Time

Figure 3.7: Sensitivity analysis threshold

3.3.3 Tuning the Sensitivity Analysis

As mentioned in Section 3.2, the sensitivity analysis module determines whether or not to
collect certain statistics. Each statistic is given an overall score based on individual scoring
factors. A statistic is to be collected if its overall score exceeds a certain threshold smax.

We used the same workload used in Section 3.3.2. Figure 3.7 shows the average elapsed
time per query for smax = 0, 0.1, 0.5, 0.7, 0.9, and 1. At smax = 0, all possible statistics are
always collected, i.e., there is no actual sensitivity analysis. This explains the very large
compilation time. The compilation time decreases as smax increases since fewer statistics
are collected. At smax = 1, no statistics are ever collected (similar to traditional query pro-
cessing). Note that if there is no sensitivity analysis (smax = 0), our system performs worse
than traditional query processing (smax = 1) because of the added overhead. Increasing
smax from 0 to 0.5 decreases the average compilation time significantly while the average
execution time is not affected, which means that there has been useless statistics collection
at the lower values of smax. At smax = 0.7, there is an increase in the average execution
time, outweighed by the decrease in the average compilation time. This means that setting

52

smax = 0.7 might be a better choice if we have a workload. However, smax = 0.5 would
be better for a single query (where the system collects the minimum amount of statistics to
achieve the least possible execution time).

3.4 Conclusions

This chapter presents an efficient approach to proactively determine, collect, and material-
ize Just-in-Time Statistics (JITS) during query processing. In contrast to similar research
efforts, the work presented here: (1) employs a lightweight sensitivity analysis based on
the query structure, the existing statistics and the data activity to identify the crucial statis-
tics; and (2) materializes and incrementally updates the collected partial statistics for future
reuse. Since the statistics cover partial (possibly overlapping) regions of the data space, our
technique integrates these partial statistics in a reusable form by maintaining maximum-
entropy-based structures. Our proposed framework can easily be extended to employ more
sophisticated sensitivity analysis techniques. We demonstrated our approach and evaluated
its benefits through an extensive experimental study.

Collecting Just-in-Time Statistics guarantees that the optimizer has access to statistics
that are recent and truly representative of the underlying data, including any possible corre-
lations. The presence of these statistics minimizes the effect of the optimizer’s uniformity
and independence assumptions, and significantly reduces cost estimation error. Using this
approach is more useful for complex ad-hoc long-running queries such as the ones used
in OLAP and Decision Support Systems since investing some time to collect statistics sig-
nificantly reduces the total query response time. Even in the case of known workloads
(as opposed to ad-hoc queries), data updates can cause stored statistics to be stale quickly.
JITS detects such cases, and updates the stored statistics to ensure they reflect the underly-
ing data.

Lessons Learned. Based on the study and the experiments presented in this chapter, we
make the following high level observations:

53

• For short-running queries, if general statistics are available and recent, enabling JITS
may in fact hurt the performance, since the overhead associated with JITS does not
result in significant savings in execution time.

• Query-specific statistics provide better estimate accuracy than general statistics, even
if the QSS get out of date. This was evident when having workload statistics caused
a significant performance improvement over having just general statistics.

• JITS is useful for single ad-hoc queries as well as workloads that include data up-
dates.

54

Chapter 4

Recommending Statistical Views

In Chapter 3, we presented a technique to quickly determine and collect the necessary
statistics to optimize a given single query. However, if a whole read-only workload is
known in advance, using JITS for every query is not the best approach, since it means lots of
repeated work, and potentially sampling multiple times to collect very similar information.
For example, one query requires the selectivity of predicate (x < 100) while another query
requires the selectivity of predicate (x < 150). For such workloads, it might be better to
analyze the whole workload at once and exploit similarities between queries. Since such
workload is known in advance, it is possible to perform this analysis offline and not as part
of query processing. In addition, instead of only recommending predicate groups, it would
be more beneficial to create and maintain more complex specific statistics that can capture
correlations between multiple tables as well as non-uniform data distributions, and that can
cause the optimizer to choose different execution plans as a result of more accurate cost
estimates.

In this chapter, we describe the work we proposed in [23] to automatically recom-
mend statistical views (statviews) for a given SQL workload. We define the problem of
recommending statviews, and outline the architecture of the StatAdvisor framework in
Section 4.1. We describe our novel plan-based candidate enumeration technique in Sec-
tion 4.2. Section 4.3 introduces our benefit metric, which is later used to select the final

55

recommendations. The dependency of the StatAdvisor on the database engine is discussed
in Section 4.4. We demonstrate our experimental results in Section 4.5, and summarize this
chapter in Section 4.6.

4.1 Problem Definition and System Overview

LetW = {Q1, Q2, ..., Qn} be a workload, whereQi is an SQL query. Let cmax be a defined
constraint (e.g. the maximum number of statviews that can be maintained in the system, or
the maximum size of the materialized statistics). The problem of recommending statviews
is defined as follows: Find a set of statviews that minimizes the execution time of W while
satisfying the constraint cmax.

4.1.1 Key Insights

In this section we present a set of observations that are instrumental to our approach.

Observation 4.1. Statviews (or statistics in general) have a direct effect on execution cost
only when they cause the optimizer to choose a different (better) execution plan.

A tangible benefit of statviews is the improvement in query performance. This improve-
ment only occurs if the query optimizer chooses a different (hopefully better) execution
plan based on the new statistics. Unfortunately, reducing errors in estimating the cost of
(some) query predicates does not guarantee changing the current plan to a different one.

Example 4.1. Consider a queryQ. WhenQ is optimized given only the base table statistics
in the catalog, the optimizer chooses plan P , and estimates the execution cost to beE0. Now
suppose statview v1 is created and statistics on it are collected. OptimizingQ given the new
statview yields the same plan P but with estimated cost E1 < E0. Now consider a different
scenario where a different statview v2 is created. Given the statistics on v2, optimizing Q
yields a different plan P ′ with estimated cost E2 > E0. In the case of v1, even though the

56

estimated cost E1 is less than the estimated cost E0 obtained without v1, it is evident that
v1 has no effect on the chosen execution plan, and hence the actual cost of executing Q is
the same with and without v1. The difference in the estimated costs is merely because these
estimates are computed from different sets of statistics. In the case of v2, the optimizer
choose a different plan, which will have a different execution cost. Thus v2 does indeed
have an effect on the execution cost of Q.

We consider a set of statviews beneficial only if their availability causes a plan change.
Therefore, it is necessary to study the effect of specific statistics on the change in the
execution plan, and not merely compare the cost estimates obtained with and without the
statviews. The use of plan change as a measure of statistics relevance has been previously
used in [18] in the context of reducing a set of statistics to a necessary subset that has the
same overall effect on choosing an execution plan.

Observation 4.2. It is hard to estimate the effectiveness of statistics on workload perfor-
mance without actually collecting the statistics.

When recommending auxiliary database structures, one of the most essential tasks is
to estimate the effectiveness (or benefit) of a particular structure (e.g., an index or a ma-
terialized view) to query performance. This is usually accomplished by simulating the
existence of these structures, and estimating their properties using the available statistics.
The cost of the query is estimated with and without the structure, and the benefit is the
difference between the two cost estimates. These cost estimates are comparable, since they
are both computed assuming correctness of the available statistics (which are the same in
both cases), and using the same assumptions employed by the optimizer.

In the StatAdvisor, the structures under investigation are the statistics themselves. In
contrast to indexes or materialized views, we cannot simulate the existence of statistics.
If there was a method to estimate the value of a particular statistic without employing
unrealistic assumptions, then such method would have been used to obtain more accurate
statistics in the first place. Another possibility is estimating the extreme values of a statistic,
estimating the cost of the query using both extremes, then computing the benefit as the

57

difference between the two cost estimates (as done in [13]). However, the benefit of a
statistic should not be based on the difference between query costs in extreme conditions,
but rather on the difference between the plans generated with and without the statistic
(Observation 4.1). We explain in Section 4.3 how the benefit of a statview is estimated in
StatAdvisor.

Observation 4.3. Statviews achieve their effectiveness in groups.

Given a query workload, it is often the case that we cannot recommend all the ben-
eficial statviews for all the queries (due to some constraint, as mentioned in the problem
definition). Traditionally, a benefit score is assigned to each statview in isolation, and each
statview might or might not be part of the final recommendations. The problem here is
that, in many cases, a query benefits only if a certain set of statistics are all present, but
not if one or more of them are missing. Therefore, recommending only a subset of these
statviews might not introduce any benefit.

Example 4.2. Consider the query plan at the top left corner of Figure 4.1. This is a plan
obtained when no statviews are available. The values in parentheses represent the estimated
cardinality at each operator in the plan. The circled sub-expressions represent two candi-
date statviews. Collecting only one of the two statviews results in changing the cardinality
estimate of the corresponding sub-expression and all its parents, but does not cause a plan
change. However, collecting both statviews causes the optimizer to choose a different plan.

In the extreme case, collecting a subset of the required statviews can cause the optimizer
to choose an execution plan that is worse that the initial plan obtained using only base table
statistics. Here the original plan may have been obtained by chance when “two wrongs
made a right”. Previous efforts for automated selection of statistics (e.g. [13, 18]) picked
one statistic at a time, assuming independence between statistics. However, the authors
recognized this as a limitation in their respective approaches.

Based on this observation, we introduce the concept of statview-groups. Once we iden-
tify the set of beneficial statviews for a given query, we treat these statviews as a single unit
(called a statview-group). A benefit score is computed and is assigned to each statview-
group as a whole, as opposed to individual statviews (more details in Section 4.3).

58

(7200)

A

(100000)

B

(50000)

C

σ
1

(155.58)

(77.79)

(155.58)

(20)

D

σ
2

(4)

(31.12)

(7200)

A

(100000)

B

(50000)

C

σ
1

(886)

(443)

(886)

(20)

D

σ
2

(7.13)

(315.98)

(7200)

A
(100000)

B

(50000)

C

σ
1

(886)

(443)

(1440)

(20)

D

σ
2

(4)

(177.2)

(7200)

A

(100000)

B

(50000)

C

σ
1

(155.58)

(77.79)

(155.58)

(20)

D

σ
2

(7.13)

(55.49)

Both statviews

Figure 4.1: Effect of statview-groups

Observation 4.4. It is expensive to collect all statviews needed to find the optimal plan.

Before elaborating on this observation, we need to define the following terms:

Definition 4.1. Accurate Cost Estimate:
Consider a query plan P . The accurate cost estimate of P , denoted by cPacc, is the estimated
cost of P if the cardinality at each operator in P is estimated without any simplifying
assumptions (e.g. independence, uniformity or inclusion).

Definition 4.2. Overestimation and Underestimation:
Let c be the estimated cost of P while employing an arbitrary number of assumptions. The

59

cost of P is said to be overestimated if c is greater than cPacc. Similarly, the cost of P is said
to be underestimated if c is less than cPacc.

For a given query, there are two reasons why the optimizer might pick a bad (expensive)
execution plan: Either (a) the cost of the selected (bad) plan is underestimated, making it
seem cheaper than it actually is, and hence more attractive for the optimizer, or (b) the cost
of an unselected (good) plan is overestimated, making it less attractive for the optimizer.
Either of these reasons (or both) can lead to the optimizer choosing a sub-optimal plan.
In order to guarantee getting the optimal plan, statviews that correspond to the following
subexpressions are relevant and should be available:

1. Subexpressions that appear in any plan chosen by the optimizer whose cost is under-
estimated

2. Subexpressions that appear in any plan whose cost is overestimated, and that will be
chosen by the optimizer when corrected

The first set of statviews rectifies the problem where a suboptimal plan is chosen by
the optimizer because its cost is underestimated. Whenever a plan P1 is chosen by the
optimizer, collecting statistics on expressions that appear in P1 will correct the estimated
cost of this plan, but it might also cause the optimizer to choose a different plan P2, whose
cost is still underestimated and is less than the currently accurate cost of P1. Therefore,
getting the set of statviews that correct all plans with underestimated costs requires repeat-
ing this process until a stable state is reached (no new plan is chosen). The second set of
statviews rectify the problem where the actual optimal plan is not chosen because its cost
is overestimated, leading the optimizer to favor another plan.

Determining the first set of statviews is feasible. The plans in question are those re-
turned by the optimizer. We only need to collect the statviews that appear in each plan
returned by the optimizer, then re-optimize until no new plan is returned. This is the
main idea behind our candidate enumeration technique in Section 4.2.1. The second set
of statviews is more challenging. Plans with overestimated costs are not returned by the

60

optimizer. Finding these plans is only possible if we search the whole plan space of the
given query. This plan space can be significantly large, making it expensive to search for
such plans.

However, the number of plans with overestimated costs can be reduced by examining
the query structure and the data (as opposed to specific plans), and collecting statistics on
objects that exhibit certain characteristics, e.g.:

• Attributes with highly skewed distributions that appear in the query predicates

• Arithmetic expressions and user-defined functions that appear in the query predi-
cates, e.g., the expression Price∗(1-Discount)<5000 in Example 1.1 (page 2)

• Significant mismatch in the range of values in the join attributes of two relations

Candidate statviews can be generated based on these objects during an initial analysis of the
query structure before the optimizer is invoked to obtain an execution plan. Recommending
statviews based solely on analyzing the query structure is the technique used by current
approaches [13]. Our plan-based approach is novel in the way it uses the generated plans
to eliminate the possibility of choosing any plans with underestimated costs, in addition to
using query analysis to reduce the space of overestimated plans.

If we only determine the first set of statviews, we guarantee that the cost of the plan
chosen by the optimizer is accurate and not underestimated. This chosen plan might not be
optimal, but at least there will be no surprises in its execution cost. Plans with this property
are often called predictable plans. A related line of work is concerned with the trade-off
between optimal and predictable plans [10].

Based on this observation, instead of collecting enough statviews to find the opti-
mal plan, we opt for the more relaxed (and less expensive) objective: collecting enough
statviews to guarantee getting a predictable plan. The technique we use to achieve this
objective is explained in more detail in Section 4.2.1.

61

SQL
Workload

Query
Optimizer

Catalog

Candidate statviews

Statviews

Query

Plan

Cost

New
statviews

Plan Analysis

Statistics Collection

Benefit Estimation and
Statview-group Selection

C
a

n
d

id
a
te

 R
e

p
o

s
ito

ry

(s
ta

tv
ie

w
s
 +

 g
ro

u
p
s
)

Final
Recommendations

Statview-
groups

Costing call

Figure 4.2: StatAdvisor architecture

4.1.2 StatAdvisor Framework

We adopt a benefit-cost analysis to recommend the most beneficial statviews (subject to the
constraint cmax). This approach is similar in concept to most database design advisors [8,
51, 56]. However, the computation of the benefit estimates takes into account the special
characteristics of statviews and their effect on query performance.

Figure 4.2 depicts the general framework of the StatAdvisor. The system takes as input
a workload of SQL queries, and outputs a set of recommended statviews. The Plan Analy-
sis module is responsible for finding the candidate beneficial statviews for each query in the
workload. This is achieved by invoking the optimizer for each query in the workload and
analyzing the returned execution plan (Section 4.2). The candidate statviews are stored in

62

Algorithm 4.1 StatAdvisor
1: function STATADVISOR(W, cmax)
2: (V,G)← PlanAnalysis(W)

3: while V 6= φ do
4: CollectStatviews(V)

5: (V,G)← PlanAnalysis(W)

6: end while
7: EstimateBenefit(G)

8: R← StatviewGroupSelection(G, cmax)

9: return R
10: end function

the Candidate Repository, grouped into statview-groups (based on which queries generated
them). The Statistics Collection module takes a list of candidate statviews, creates and col-
lects statistics on these statviews, and stores the collected statistics in the system catalog,
to be used by the query optimizer. The Benefit Estimation and Statview-group Selection
module assigns a benefit score to each statview-group, based on the plan change in its cor-
responding query, then chooses a subset of the candidate statview-groups that maximizes
the benefit while satisfying the predefined constraint (Section 4.3).

Algorithm 4.1 gives a high-level overview of our approach. The algorithm starts by
analyzing the workload W , and obtaining the set of candidate statviews V , partitioned into
a set of statview-groups G (line 2). Subsequently, the algorithm performs a number of
iterations while V is not empty (lines 3-6). In each iteration, the statistics on the statviews
in V are collected and added to the catalog, then the plan analysis module is re-invoked.
Finally, a benefit score is assigned to each statview-group, and the algorithm selects the
groups with the maximum benefit that satisfy the constraint cmax, compiling them into the
recommendation set R.

63

4.2 Plan-Based Candidate Enumeration

In this section, we discuss our approach for finding the candidate statviews that can cause
a plan change in the given queries. First we describe the technique for a single query in
Section 4.2.1, then we extend it to process the whole workload in Section 4.2.2.

4.2.1 Candidate Enumeration for a Query

Given a query Q, let P0 denote the plan chosen by the optimizer in the absence of any
statviews. Due to cardinality estimation errors, the estimated cost of P0 is likely to be
inaccurate, which means that P0 might not be a good choice for executingQ. As mentioned
in Observation 4.4, our objective is to ensure that the cost of the chosen plan is accurately
estimated, in which case the chosen plan is predictable. To achieve this, we need to have
accurate cardinality estimates for all the sub-expressions that appear in P0. Each of these
sub-expressions corresponds to a statview. Collecting all the statviews that appear in P0

gives a better estimation of the cost of P0. In most cases however, collecting all statviews
is unnecessary and extremely expensive. Hence, we define important statviews as follows:

Definition 4.3. Given a query plan P , the important statviews in P are statviews that cor-
respond to logical expressions in P that involve one or two tables, along with the corre-
sponding selection predicates.

Example 4.3. Figure 4.3 depicts a query execution plan. The marked expressions, refer-
encing one or two base tables, constitute the important statviews for this plan.

In our experiments (Section 4.5.2), we found that collecting only the important statviews
provides enough accuracy, and collecting any more statviews increases the running time of
the StatAdvisor without introducing significant benefit.

After collecting the important statviews in P0, we re-optimize the query. There are two
possible scenarios: the optimizer might choose the same plan, or it might choose a different

64

A

B

C

D

σpB

σpD

E

σpC
HSJOIN

HSJOIN

NLJOIN

NLJOIN

Figure 4.3: Important statviews

one due to changes in cost estimates. If the optimizer chooses the same plan, the collected
statviews were not necessary, since they caused no plan change (cf. Observation 4.1). On
the other hand, if the optimizer chooses a different plan, this might be due to underesti-
mating the cost of the new plan, which penalizes the old plan for having a more accurate
cost estimate. Therefore, we need to repeat the process for the new plan P1. The process
is repeated until either: (1) we reach a plan that has been encountered before (since all the
important statviews of that plan would have already been collected, and its cost would be
accurately estimated), or (2) the important statviews of the current plan have already been
collected.

Example 4.4. Consider the plan P0 in Figure 4.4(a). According to Definition 4.3, the
important statviews for this plan are:

v1: σpB(B)

v2: σpC (C)

v3: σpD(D)

65

A

D

B

C

E

σpD

σpB

σpC

HSJOIN

HSJOIN

HSJOIN

HSJOIN

A

B

C

D

σpB

σpD

E

σpCHSJOIN

HSJOIN

NLJOIN

NLJOIN

A

D

B

C

E

σpD

σpB

σpC

HSJOIN

HSJOIN

HSJOIN

HSJOIN

(a) P0 (b) P1 (c) P2

Figure 4.4: Candidate enumeration

v4: A ./ σpB(B)

After collecting these statviews in P0 and re-optimizing, the obtained plan is P1 (Fig-
ure 4.4(b)). The important statviews for this plan are:

v3: σpD(D)

v1: σpB(B)

v2: σpC (C)

v5: A ./ σpD(D)

The first 3 statviews have already appeared in the previous plan and have already been
collected. Only the last statview v5 is new. After collecting this statview and re-optimizing,
the plan obtained (P2) is the same as P1, thus the algorithm terminates.

66

The set of all statviews collected so far are the candidate statviews for the query, since
they are necessary to reach the final plan. As mentioned in Observation 4.3, all the candi-
date statviews for the query are treated as a single unit (statview-group) from now on, since
they are all needed to achieve the objective.

This technique guarantees that the costs of all plans that have been chosen at some point
are accurately estimated, and the last chosen plan P is indeed the best one among them.
Let P ′ denote a plan that has never been chosen by the optimizer. P ′ could be any of the
following:

1. The cost of P ′ is accurately estimated, thus it is indeed worse than P (since P is
favored by the optimizer over P ′)

2. The cost of P ′ is underestimated, thus it is still worse than P (since the estimated
cost of P ′ is already greater than that of P)

3. The cost of P ′ is overestimated, which means it could possibly be better than P .
However, as discussed in Observation 4.4, finding P ′ requires searching the whole
plans space.

Using this technique, we will miss getting the optimal plan if its cost has been overes-
timated by the optimizer, due to overestimating the cardinality of a certain sub-expression
whose cardinality has not been collected (cf. Observation 4.4).

4.2.2 Candidate Enumeration for a Workload

The naı̈ve approach to obtain the candidates for the whole workload is to repeat the tech-
nique described in Section 4.2.1 for each query separately. The problem with this simple
approach is that the technique includes actual collection of statistics, and repeating it for
each query will result in accessing the same data pages multiple times. This can become a

67

performance issue because of the repeated I/O operations on the same disk pages. To over-
come this problem, we process all the queries in the workload in parallel, and employ batch
statview collection; statviews that involve the same set of tables are collected simultane-
ously from the same table sample or join synopsis [7], thus causing the respective sample or
join synopsis to be read from disk only once. Algorithm 4.2 gives our approach to produce
the candidates with respect to the whole workload W of n queries. Algorithm 4.2 provides
the details of lines 2-6 in Algorithm 4.1. For each query Qi, the algorithm returns Vi, a
statview-group containing the candidate statviews for Qi.

The algorithm starts with an initialization step (lines 3-5). For each query Qi, a flag
finishedi is set to false (indicating that processing Qi is not finished), Qi is optimized
producing plan Pi,0, and the important statviews in that plan are determined (V Ti). The
iterative part of the algorithm is in lines 6-21. In each iteration, the set V is the union of all
V Ti for the queries that are still being processed (i.e. V is the set of all newly discovered
statviews). V is partitioned into disjoint sets U1, ..., Um, such that the statviews in Uj are all
on the same table(s) but most likely with different selection predicates. For each set Uj , a
sample or a join synopsis is obtained (depending on how many tables are involved) and all
statviews in Uj are collected simultaneously. Note that if the required sample already exists
(from previous iterations), there is no need for it to be recreated. The tuples in the sample
are scanned only once, and checked against the selection predicates in each statview. If a
tuple satisfies the selection predicate of statview v ∈ Uj , this tuple takes part in computing
the statistics on v. After all the statviews are collected, the queries are re-optimized, and
the obtained plans are examined. If a query produces a plan that has been seen before,
or a different plan whose important statviews have already been collected, processing is
stopped for that query (as in Section 4.2.1). Only the remaining queries are entered into the
next iteration. Processing stops when no queries are left.

Suppose we have an oracle that can tell us all the statviews that we need for each
query. If that was the case, we would group all statviews that have the same set of tables
(from all queries), and collect them simultaneously from the corresponding sample, thus
only touching that sample once. However, since such oracle does not exist, we need to
perform multiple iterations, potentially collecting information from the same sample more

68

Algorithm 4.2 Candidate enumeration
1: function CANDIDATEENUMERATION(W)
2: Assume that W = {Q1, Q2, ...Qn}
3: Let Vi ← φ and finishedi ← false for i = 1→ n

4: for all Qi ∈ W : Pi,0 ← Optimize(Qi), V Ti ← FindImportantStatviews(Pi,0)

5: k ← 1

6: while ∃i s.t. finishedi = false do
7: V = {

⋃
i V Ti|finishedi = false}

8: {U1, U2, ..., Um} ← Partition(V)

9: Get a sample (or join synopsis), and collect all statviews in Uj for j = 1→ m

10: for all Qi ∈ W s.t. finishedi = false do
11: Pi,k ← Optimize(Qi)

12: if Pi,k = Pi,l for some l < k then
13: finishedi ← true

14: else (new plan)
15: Vi ← Vi ∪ V Ti
16: V Ti ← FindImportantStatviews(Pi,k)− Vi
17: if (V Ti = φ) then finishedi ← true

18: end if
19: end for
20: k ← k + 1

21: end while
22: return V1, V2, ...Vn
23: end function

69

than once. Our experiments show that most queries require 1-3 iterations before termina-
tion. The convergence of the algorithm is addressed in detail in our experimental evaluation
(Section 4.5.2). We observed that the running time of the algorithm grows linearly with the
number of queries in the workload as well as with the number of tables referenced in these
queries.

For a given query, our candidate enumeration algorithm finds the set of statviews that
are guaranteed to make the optimizer choose an execution plan with an accurately estimated
cost. However, the statviews in the produced statview-group might be more than what is
actually needed to get the final predictable plan. As a result, it is possible to reduce the
statview-group to the minimal set of necessary statviews that give the same result. This can
be accomplished using a similar concept to the shrinking set algorithm presented in [18];
which takes as input a set of statistics, and gives a subset of this set that has the same
overall effect. The algorithm starts with the whole set, and checks whether the removal of
any statview from the set would change the produced plan. A statview whose removal does
not affect the produced plan is not necessary and can be safely discarded. The algorithm
repeats until no more statviews can be removed.

4.3 Benefit Estimation and Statview Selection

As mentioned in Section 4.1, the objective is to choose the statviews that have the maximum
benefit (minimize the workload execution time) while satisfying the cost constraint. As a
result, we need to define a benefit metric for statview-groups that captures the saving in the
execution time. In Section 4.3.1, we define the benefit of a statview-group to a particular
query, and in Section 4.3.2, we extend that definition to the whole workload. Section 4.3.3
presents our selection algorithm that exploits these benefit estimates.

70

4.3.1 Benefit for a Single Query

The most accurate and intuitive metric for measuring the benefit of a statview-group V to a
queryQ is the reduction in the execution cost ofQ as a result of using V in the optimization.
Let P0 be the plan chosen by the optimizer when no statviews are present, and let PV be
the plan chosen when V exists. The benefit B(V,Q) can be expressed as:

B(V,Q) = ActCost(Q,P0)− ActCost(Q,PV) (4.1)

where ActCost(Q,P) is the actual execution cost of Q using plan P . B(V,Q) represents
the saving in the execution cost. Note that the difference in costs is primarily due to the
change of execution plans triggered by the presence of more accurate statistics (statviews)
in V . If the statistics provided by V are not significant enough to cause a plan change,
then P0 = PV , and B(V,Q) = 0. Computing B(V,Q) requires compiling and executing
Q twice (with and without V present), to get the actual execution cost in each case. This is
infeasible for a large workload with complex queries.

To avoid having to execute the query twice, a possible approach is to use the estimated
cost of the query instead of the actual cost. This is based on the assumption that the es-
timated cost is monotonic in the actual execution cost. For a given query plan P and a
statview-group V , let EstCost(P, V) denote the estimated cost of P in the presence of
V . The monotonicity assumption between the estimated and actual execution cost implies
that given a query Q, two plans P1 and P2, and a statview-group V , if EstCost(P1, V) >

EstCost(P2, V), then ActCost(Q,P1) > ActCost(Q,P2). However, benefit estimation
using the estimated costs is not straightforward. In other words, we cannot use the differ-
ence in estimated cost with and without the statviews. This is because the estimated cost
without the statviews is computed based on inaccurate statistics, hence it is not compara-
ble to the estimated cost with the statviews (as they are computed using different sets of
statistics). To illustrate this problem, consider the following example.

Example 4.5. The optimizer is invoked without statviews and the output is plan P0 with
estimated cost c0 = 100. The optimizer is invoked once again, with the statviews present,

71

and it produces plan PV with estimated cost cV = 150. At first glance, this might indicate
that the presence of the statviews harmed the query. However, in reality, it is important
to examine the chosen plans themselves, and not just the estimated execution cost. In the
second invocation of the optimizer (with V present), the estimated cost of PV is clearly
lower than that of P0 (since PV was favored by the optimizer over P0). Therefore, we can
only compare the plan costs estimated with the same set of statistics.

Based on this observation, we can compute an approximate benefit as follows:

B′(V,Q) = EstCost(P0, V)− EstCost(PV , V) (4.2)

Computing B′ requires only optimizing Q twice; the first time to obtain P0, and the
second time to obtain PV as well as the cost of both plans. This eliminates the need to
execute Q while providing an approximate benefit score for V . Note that, in our solution,
the plans and their respective costs are already obtained as part of the candidate enumera-
tion process, so we need only one additional call to the optimizer’s costing functions to get
EstCost(P0, V). Again, if the optimizer chooses the same plan both times, then P0 = PV ,
and B′(V,Q) = 0.

4.3.2 Benefit for a Workload

Given the benefit of statview-groups to individual queries, it is easy to compute the benefit
of these statview-groups to the whole workload. Consider a statview-group V . Let WV ⊂
W be the set of queries that generated V (i.e. V has been separately generated by each
query in WV). The benefit of V to the workload W can be computed by summing the
benefits of V to each query in WV , or more formally:

B(V,W) =
∑
Q∈WV

B′(V,Q) (4.3)

72

The benefit of V for each individual query is independent from the other queries, there-
fore they can be safely added. From this point on, we shall writeB(V,W) simply asB(V).
Note that this formula may actually underestimate the benefit of some statview groups. For
example, if statview group V1 is recommended by query Q1, and statview group V2 ⊂ V1

is recommended by query Q2, then based on our formula, the benefit of V1 only consid-
ers its effect on Q1, even though collecting V1 actually benefits both queries. This can be
easily incorporated in the formula by changing it to consider all queries that recommended
subsets of V . However, our experimental evaluation was performed with the above benefit
calculation.

4.3.3 Statview-Group Selection

At this point, we have a set of statview-groups G = {V1, ..., Vn} where n is less than or
equal to the number of queries in the workload. For a given statview-group Vi, B(Vi) and
C(Vi, R) denote the benefit and cost of Vi respectively. The cost can be computed differ-
ently depending on the database system and the computing environment. For example:

• In systems where the main concern is storage space, the cost can represent the space
needed to store the statview and its statistics. Since the statistics are actually collected
as part of the enumeration phase, it is not hard to determine how much space they
occupy.

• If the main concern is query optimization speed, then the fewer statviews maintained
by the system, the better (since fewer statviews are considered for matching). In
this case, the cost of all statviews is the same (can be set to 1). Note that even if
all statviews have the same cost, the cost of statview-groups is different, since the
number of statviews in each group is arbitrary.

Note that C(Vi, R) is also a function of the recommendation list R, since the statview-
group Vi might contain some statviews that have already been added to R, and do not
introduce any extra cost.

73

Algorithm 4.3 Statview group selection
1: function STATVIEWGROUPSELECTION(G, cmax)
2: c← 0, R← φ

3: while (|G| > 0 ∧ c < cmax) do
4: Vbest ← null

5: Bbest ← 0

6: for all V ∈ G do
7: if (B(V) > Bbest ∧ C(V,R) ≤ cmax − c) then
8: Vbest ← V

9: Bbest ← B(V)

10: end if
11: end for
12: if (Vbest 6= null) then
13: c← c+ C(Vbest, R)

14: G← G− Vbest
15: R← R ∪ Vbest
16: else
17: Break
18: end if
19: end while
20: return R
21: end function

This problem is a generalization of the 0/1 knapsack problem, where the cost of an
item is not constant, but depends on the items chosen. The exact solution is exponential.
However, we can use the same greedy algorithms used for knapsack, but taking care to
dynamically modify items’ costs based on the items chosen so far.

In our implementation, we use the greedy solution given in Algorithm 4.3. The algo-
rithm takes as input the set of candidate statview-groups G = {V1, ..., Vn}, as well as the
user-defined constraint on the maximum cost (cmax). The output of this module is the set
R of final recommendations, where R ⊆ V1 ∪ ... ∪ Vn.

74

The algorithm is iterative. At each iteration, the algorithm tries to find the statview-
group with the maximum benefit that can still fit within the constraint. If such statview-
group is found, its contents are added to the recommendation list R. The algorithm has a
polynomial running time in the number of candidate statview-groups (which is less than or
equal to the number of queries in the workload).

Note that the cost constraint cmax can be viewed as a budget allocated for statviews. In
many cases, it is possible not to set any particular constraint, in which case, the system will
recommend all statview groups with a positive benefit.

4.4 Dependency on Database Engine

The implementation details and some algorithms of StatAdvisor depend on the underlying
database engine. This is because currently the way statviews are defined and utilized is not
standard across DBMSs. Specifically, the engine-dependent module of StatAdvisor is the
plan analysis module. All the remaining modules are independent of the database engine
and how statviews are used.

The plan analysis module is affected by the statview matching and utilization capabil-
ities of the database engine. In the extreme case, if the database engine does not support
statview matching, then the execution plans will never change no matter what statviews are
created, and the plan analysis module will not produce any candidates. For an engine that
supports statview matching, the plan analysis module must be aware of how the matching
is performed in order to come up with the candidate statviews. The criteria that have to be
considered include:

• Whether or not the matching has to be exact (the statview has to be strictly equivalent
to the sub-expression being matched)

• For non-exact matching, what differences can exist while still resulting in a success-
ful match (e.g., partial set of predicates, different output columns)

75

• Whether or not multiple partial selectivities can be obtained from several statviews
to estimate the selectivity of one sub-expression

• What statistics on the statviews can be used by the optimizer (e.g., only the number
of tuples in the statview, histograms on statview columns, etc.)

As seen in Section 2.3.4, statview matching is different from materialized view match-
ing. Producing candidates that are not matchable means that the optimizer will not have
access to any usable new statistics, and will choose the same plan. We discuss statview
matching in more detail and outline our statview matching technique in Chapter 5.

4.5 Experimental Evaluation

In this section, we present experimental results of an implementation of the StatAdvisor in
DB2 [1].

4.5.1 Setup

Data: We carried out our experiments on two different data sets. The first data set, DS1, is
a TPC-DS [4] data set with scale factor 1. The second data set, DS2, is a synthetic database
with six relations CAR, OWNER, DEMOGRAPHICS, ACCIDENTS, LOCATION , and TIME
. The size of this data set is 1 GB. Several primary-key-to-foreign-key relationships exist
between the tables. Each table is composed of four to eight attributes. Some attributes
are uniformly distributed and others are more skewed. A number of correlations between
attributes, such as Make and Model , are inherent in the attribute definitions.

Workloads: We used two workloads for our experiments. The first workload, W1, consists
of 23 queries from the TPC-DS benchmark (queries 3, 7, 9, 12, 13, 15, 19, 20, 26, 42, 43,
44, 48, 52, 55, 62, 75, 76, 82, 84, 91, 98 and 99). These queries were selected because they

76

do not contain subqueries1. However, the selected queries include various constructs, e.g.
arithmetic expressions, functions, equi-joins, range joins, equality and range filtering pred-
icates, conjuncts and disjuncts. Each query consists of three to seven joined tables. The
second workload, W2, corresponds to the second data set (DS2), and contains 100 synthet-
ically generated SPJG queries. Each query joins one to five tables, and several selection
predicates, some of which are correlated. Some of the queries also include aggregate func-
tions and grouping. An example query is:

SELECT city, COUNT(*)

FROM owner o, car c

WHERE c.ownerid = o.id

AND c.make = ’Honda’ AND c.model = ’Civic’

GROUP BY city

4.5.2 Candidate Enumeration

As mentioned in Section 4.2.1, given a particular query plan, the plan analysis module
determines the important statviews for this plan. Assume that we let the StatAdvisor collect
all statviews in the given plan that include up to t tables. Figure 4.5(a) depicts the running
times of the StatAdvisor for different values of t, when it is invoked for workload W1, as
well as the running times of W1 given the obtained recommendations for each value of t.
The StatAdvisor running time increases almost linearly with t. On the other hand, the major
performance improvement for the workload occurs at t = 2, i.e. when the system collects
statviews with up to 2 joined tables. As t increases further, there is slight improvement,
but it is outweighed by the increase in the running time of the StatAdvisor. If the workload
is executed more than once, it becomes even more evident that the best performance is
achieved at t = 2. This is mainly a result of the schema of the data. Since both databases

1At the time of performing these experiments, DB2 does not match statviews with queries that include
subqueries. However, StatAdvisor can generally recommend statviews that correspond on any query expres-
sion, including subqueries.

77

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

Max no. of tables in a statview

R
u
n
n
in

g
 t
im

e
 (
s
e
c
)

StatAdvisor running time Workload running time

(a)

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7

Max no. of tables in a statview

T
o
ta

l
ru

n
n
in

g
 t
im

e
 (
s
e
c
)

s=1 s=2 s=3 s=4 s=5

(b)

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

Max no. of tables in a statview

R
u
n
n
in
g
 t
im
e
 (
s
e
c
)

StatAdvisor running time Workload running time

(c)

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5

Max no. of tables in a statview

T
o
ta
l
ru
n
n
in
g
 t
im
e
 (
s
e
c
)

s=1 s=2 s=3 s=4 s=5

(d)

Figure 4.5: Important statviews

were based on a star-schema, having views over 2 tables where one of these table is the fact
table is sufficient to capture most data correlations.

Generally, the total running time = (StatAdvisor running time + s * workload execution
time), where s is the number of executions of the workload. Figure 4.5(b) depicts the total
running time against the maximum number of tables in a statview (t), for different values
of s. The best performance for most values of s occurs at t = 2. Figures 4.5(c) and 4.5(d)
depict the corresponding results for the second workload W2, in which the same effect
can be seen. Based on these results, we decided to limit the important statviews to those
with one or two joined tables, along with their selection predicates, since including more

78

0

5

10

15

20

25

1 2 3 4

Iteration number

N
u
m
b
e
r
o
f
q
u
e
ri
e
s

all views important views

(a) Workload W1

0

20

40

60

80

100

1 2 3 4

Iteration number

N
u
m
b
e
r
o
f
q
u
e
ri
e
s

all views important views

(b) Workload W2

Figure 4.6: Convergence of candidate enumeration

statviews increases the overhead without introducing significant benefit.

Figure 4.6 shows the convergence of the candidate enumeration algorithm when (1) all
statviews in a plan are collected, and (2) only the important statviews in a plan (cf. Def-
inition 4.3) are collected. The x-axis represents the various iterations, and the y-axis rep-
resents the number of queries being processed in each iteration. Figures 4.6(a) and 4.6(b)
correspond to workloads W1 and W2, respectively. When all statviews are collected, the
algorithm terminates after 4 iterations, whereas it terminates after 2 or 3 iterations when
only the important statviews are collected. The reason behind this behavior is as follows:

Consider a query Q. At the kth iteration, the algorithm is processing the plan Pk.
Assume that we collect only the important statviews, and that re-optimizing the query still
results in the same plan Pk. Let Cimp(Pk) be the estimated cost of Pk using the important
statviews. In an alternative scenario, assume that we collect all statviews in Pk. LetCall(Pk)
be the estimated cost of Pk in this case. Since the important statviews capture most of the
estimation error, the estimated cost should not change drastically by collecting all statviews.
Therefore Cimp(Pk) and Call(Pk) are usually very close. However, even though they are
close, Call(Pk) can be slightly higher than Cimp(Pk). In this case, another plan Pk+1 whose
estimated cost C(Pk+1) < Call(Pk), will be chosen by the optimizer, leading to more
iterations.

79

Note that since Pk+1 was not chosen in the first scenario, this means that Cimp(Pk) <
C(Pk+1). In other words Cimp(Pk) < C(Pk+1) < Call(Pk). And since Cimp(Pk) and
Call(Pk) are very close, the estimated cost of Pk+1 cannot be significantly less than that of
Pk. Therefore, even though a different plan is chosen, the performance gain is negligible.

4.5.3 Overall Workload Performance

The test workloads are executed in the following settings:

1. Statistics are available on all base tables and their attributes, including table cardi-
nalities, number of distinct values in each column, etc. This represents the common
case in most database systems.

2. Statistics are available on base tables and their attributes, plus statistics on the statviews
recommended by the StatAdvisor for this particular workload.

The StatAdvisor recommended 35 statviews for workload W1, and 50 statviews for W2.
We did not provide a cost contraint, so the system recommended all statview groups that
had a positive benefit. Generally, the recommended statviews can be categorized into two
main types:

Statviews on single tables: These eliminate the errors in single-table expressions. Such
errors usually arise from correlation between predicates on the same table.

Statviews on two joined tables: When local predicates are applied to one or two tables,
the distribution of the results is usually very skewed. It is hard to estimate the size
of joining these two result sets, and the estimation error is usually very large. Thus,
having statviews on joined pairs of tables eliminates these errors.

80

(2880140)

Store_Sales

(73049)

Date_Dim

(300)

Promotion

(1920800)

Customer_

Demographics

σ
1

σ
3

(18000)

Item

σ
2

(205.036)

(205.036)

(14352.6)

(14400.7)

(365.245)

(300)

(0.0142857)

(a) Without statviews

σ
3

(2880140)

Store_Sales

(1920800)

Customer_

Demographics

(27440)

(39409)

(73049)

Date_Dim

σ
1

(366)

(6273.49)

(300)

Promotion

σ
2

(300)

(6252.65)(18000)

Item

(6252.65)

(b) With statviews

Figure 4.7: Execution plans for TPC-DS query 7

Example 4.6. Consider the following query:

SELECT i item id, ss quantity, ss list price, ss coupon amt, ss sales price

FROM Store Sales, Customer Demographics, Date Dim, Item, Promotion

WHERE ss sold date sk = d date sk AND ss item sk = i item sk

AND ss cdemo sk = cd demo sk AND ss promo sk = p promo sk

AND cd gender = ‘M’

AND cd marital status = ‘S’

AND cd education status = ‘College’

AND (p channel email = ‘N’ OR p channel event = ‘N’)

AND d year = 2000

This is an example of a query that benefited from the recommended statviews in W1.
The query includes three filtering predicates on the Customer Demographics table, one
predicate on the Date Dim table, and two disjunctive predicates on the Promotion table.

81

Figure 4.7(a) shows the plan chosen for this query with no statviews in the system. The
values in parentheses represent the estimated cardinality at each operator in the plan. The
recommended statviews based on this query are:

v1: SELECT d date sk FROM Date Dim WHERE d year = 2000

v2: SELECT p promo sk FROM Promotion WHERE p channel email = ‘N’ OR

p channel event = ‘N’

v3: SELECT cd demo sk FROM Customer Demographics WHERE cd gender = ‘M’

AND cd marital status = ‘S’ AND cd education status = ‘College’

v4: SELECT ss item sk, ss cdemo sk, ss promo sk FROM Store Sales, Date Dim

WHERE ss sold date sk = d date sk AND d year = 2000

Figure 4.7(b) shows the plan chosen for this query after creating the statviews. Note the
large estimation error in the expression corresponding to v3 (due to the correlation between
the 3 predicates on Customer Demographics). Also, the expression corresponding to v4
had a large estimation error resulting from applying the selection predicate on Date Dim),
which results in having skewed data, then joining this data with Store Sales). However, the
expression corresponding to v4 does not appear in the final plan (the actual cardinality of
this expression is 553,476). Collecting v4 provides an accurate estimate for this expression,
improving the query execution time from 610 to 106 seconds (5.5 times faster).

Figure 4.8(a) is a box plot (a graph depicting the smallest observation, lower quartile,
median, upper quartile and largest observation) of the execution time of the queries of
W1 in the two settings. Figure 4.8(b) shows a scatter plot of the elapsed times of the
individual queries of W1, where the x-axis represents the time in the first setting, and the
y-axis represents the time in the second setting. Some queries lie in the degradation region,
since the presence of base table statistics is often sufficient to get accurate estimates, and
the presence of statviews only introduces extra overhead. However, for most queries, the
overhead introduced by the statviews is outweighed by the gain in performance as a result
of better statistics, and hence, a better execution plan. Figures 4.8(c) and 4.8(d) represent

82

0

100

200

300

400

500

600

700

Base table

stats

Statviews

Q
u
e
ry
 e
x
e
c
u
ti
o
n
 t
im
e
 (
s
e
c
)

(a)

0

200

400

600

800

0 200 400 600 800

Base table stats only

B
a
s
e
 t
a
b
le
 s
ta
ts
 +
 s
ta
tv
ie
w
s

Improvement

Degradation

(b)

0

20

40

60

80

100

120

140

160

180

Base table

stats

Statviews

Q
u
e
ry
 e
x
e
c
u
ti
o
n
 t
im
e
 (
s
e
c
)

(c)

0

50

100

150

200

0 50 100 150 200

Base table stats only

B
a
s
e
 t
a
b
le
 s
ta
ts
 +
 s
ta
tv
ie
w
s

Improvement

Degradation

(d)

Figure 4.8: Workload performance

83

Table 4.1: SITadvisor vs. StatAdvisor
SITadvisor StatAdvisor

Advising + Collection time 4045 sec 5309 sec
No. of statviews 102 50
Workload running time 5701 sec 3876 sec

the corresponding results forW2. As can be seen, the introduction of statviews significantly
improves the performance of the system.

4.5.4 Comparison with Previous Work

For this experiment, we implemented the statistics selection algorithm given in [13]. We
shall refer to this implementation as SITadvisor. We invoked both our StatAdvisor and
SITadvisor for the workload W2, with no limitations on the number or size of the recom-
mended statviews. We then executed the workload given each set of recommendations and
recorded the execution time for each query in both cases. We were unable to test SITad-
visor with the workload W1 because the queries in W1 involve constructs like arithmetic
expressions, range joins, and disjuncts, while SITadvisor only supports queries with con-
juncts of predicates, equi-joins, and selection predicates on table columns (not on arbitrary
arithmetic expressions).

Table 4.1 gives a summary of the differences between SITadvisor and StatAdvisor. Note
that SITadvisor does not collect statistics, so we added the collection time of its recom-
mended statistics to make the comparison with StatAdvisor possible. StatAdvisor takes
longer to run, since it collects more statistics than it needs to determine whether or not
there is a plan change. However, it produces almost 50% fewer statviews than SITadvisor.
The workload performs 32% better given the StatAdvisor recommendations than it does
given the SITadvisor recommendations.

Figure 4.9 shows the individual execution times of each query in the workload in the two
cases. The x-axis is the execution time given the SITadvisor recommendations while the y-

84

0

30

60

90

120

150

180

0 30 60 90 120 150 180

SITadvisor recommendations

S
ta
tA
d
v
is
o
r
re
c
o
m
m
e
n
d
a
ti
o
n
s

Improvement

Degradation

Figure 4.9: SITadvisor vs. StatAdvisor

axis is the execution time given the StatAdvisor recommendations. Most queries run faster
with the StatAdvisor recommendations, since SITadvisor assumes predicate independence
and does not recognize statview-groups.

4.6 Conclusions

This chapter outlines StatAdvisor, our framework for automatic recommendation of statisti-
cal views for a given SQL workload. The StatAdvisor addresses the special characteristics
of statistical views with respect to view matching and benefit estimation, and introduces
a novel plan-based candidate enumeration method, and a benefit-based analysis to deter-
mine the most useful statistical views. Our work also considers the possible dependency
between multiple statviews in terms of their effect on the chosen execution plan. The sys-
tem amortizes the benefit of the candidate statviews across the whole workload in order
to get the final recommendations. We presented the basic concepts and insights on which
our approach is based. We also outlined the architecture, and key features of StatAdvisor,
and demonstrated its validity and benefits through an extensive experimental study using a

85

prototype that we built in the IBM DB2 database system.

Lessons Learned. Based on the study and the experiments presented in this chapter, we
make the following high level observations:

• Collecting statistics on statviews gives the optimizer more accurate cardinality es-
timates at various points in the query plan, thus allowing the optimizer to estimate
more accurate costs and consequently make better decisions in choosing execution
plans.

• Choosing the correct statviews is crucial, since having too many statviews increases
optimization time and administration overhead to collect statistics.

• For data warehousing schemas, statviews that reference one or two tables are suffi-
cient to capture the correlations between the table attributes.

• Taking into account the dependencies between statviews and analyzing the plans
produced by the optimizer produces better statview recommendations.

86

Chapter 5

Exploiting Statviews for Selectivity
Estimation

In Chapter 4 we presented our approach to recommend statistical views or statviews for
a given SQL workload. As outlined in the introduction (Section 1.2), the presence of
statviews introduces the problem of having multiple, potentially non-equivalent ways of
estimating the selectivity of a given set of predicates. Choosing one way over another
arbitrarily biases the optimizer toward choosing one plan over the other. In addition, if
different estimates are used every time it is required, then different plans will be costed
inconsistently, leading to incorrect comparisons and unreliable plan choices.

In this chapter, we discuss our implementation of two methods of exploiting statviews
in query optimization based on the work in [14] and [42]. The first method analyzes all pos-
sible ways of computing a selectivity estimate, and uses the one that has the minimum es-
timated error. The second method relies on the principle of maximum entropy to make use
of all the available information while computing the estimate. We adapted the two methods
to work in the context of statviews, and implemented them inside the PostgreSQL [3] query
optimizer.

First, we define the problem and outline the notations we use in Section 5.1. We then
proceed to explain the theory behind the two approaches we used, namely the conditional

87

selectivity approach [14] in Section 5.2, and the maximum entropy approach [42] in Sec-
tion 5.3. We discuss the view matching conditions in Section 5.4, and the integration with
the optimizer in Section 5.5. We demonstrate our experimental results in Section 5.6, and
summarize this chapter in Section 5.7.

5.1 Notations and Problem Definition

In this section, we start by establishing formal definitions for selectivity, database statis-
tics, and statviews, then we present the problem statement. For the set of tables R =

{R1, ..., Rn}, let R× refer to the Cartesian product R1 × ... × Rn. Also, for a set of pred-
icates P , let tables(P) denote the set of tables referenced by the predicates in P , and
attr(P) denote the set of attributes referenced in those predicates.

Definition 5.1. (SELECTIVITY) For a set of tables R and a set of predicates P over R×,
the selectivity SelR(P) denotes the fraction of tuples in R× that simultaneously satisfy all
the predicates in P . In general, each predicate in P can also be a disjunction of predicates.

Base table statistics are usually available on the attribute level. If statistics are available
for attribute a1 of table R1, these statistics can be used to estimate the selectivity SelR1(P)

if tables(P) = {R1} and attr(P) = {a1}.

Definition 5.2. (STATVIEWS) Let R = {R1, ..., Rn} be a set of tables, P = {p1, ..., pm}
be a set of predicates over R×, and A = {a1, ..., ak} be a subset of the attributes in
R×. A statview v can be expressed as: v = SVR(A|P) if v is defined as the query
πa1,...,ak(σp1∧...∧pm(R1 × ...×Rn)).

Example 5.1. Let v be a statview defined by the query SELECT a, b FROM R WHERE c

< 100 AND d=2 . Using our notation, we can say that v = SVR(a, b|c < 100 ∧ d = 2).

To simplify the presentation throughout this chapter, we use “P,Q” to denote “P ∪Q”
and “p,Q” to denote “{p} ∪Q”, where p is a predicate and P and Q are sets of predicates.

88

Problem Statement

Given an SPJ query expression σp1∧...∧pm(R1 × ... × Rn), the required task is to estimate
SelR(p1, ..., pm), the fraction of tuples in R1 × ... × Rn that simultaneously satisfy all the
predicates p1, ..., pm. The selectivity estimate should be computed given multiple base table
statistics and statviews that can partially contribute to that estimate.

This problem definition applies to any SPJ query expression. This could be a whole
query, or a sub-expression of a query. Each sub-expression would have a subset of the
predicates and the relations of the query, and its required selectivity would be based on
those subsets.

In our work, we implemented two methods to estimate the selectivity of a group of
conjunctive predicates given statviews that partially covers that group. The two methods are
based on the work in [14] and [42], and are discussed in Sections 5.2 and 5.3 respectively.

5.2 Estimation using Conditional Selectivity

The work in [14] introduces the concept of conditional selectivity, which allows expressing
the selectivity of a given SPJ query in many different but equivalent ways.

Definition 5.3. Given a set of tables R, and two sets of predicates P = {p1, ..., pj} and
Q = {q1, ..., qk} over R×, the conditional selectivity SelR(P |Q) is defined as the fraction
of tuples in σq1∧...∧qk(R×) that simultaneously satisfy all predicates in P . In other words:

SelR(P |Q) =
|σp1∧...∧pj(σq1∧...∧qk(R×))|

|σq1∧...∧qk(R×)|
(5.1)

If Q = φ, then SelR(P |Q) falls back to the original definition of selectivity SelR(P).

The work in [14] refers to SITs (statistics on intermediate tables), each of which is a
histogram. To be consistent with our own terminology, our more general statview v =

89

SVR(A|P) can be viewed as a group of SITs, one for every attribute in A. A given SIT
(or histogram) Ha on attribute a ∈ A can be used to estimate the selectivity SelR(q|P ′) for
any predicate q where attr(q) = a and P ′ ⊇ P . Information about the statview itself, e.g.
|v| is not used in this approach.

Example 5.2. Consider a statview v = SVR1(a, b|c < 100). This statview provides the
two histograms Ha and Hb. The histogram Ha, for instance, can be used to estimate the
selectivity SelR1(a > 5|c < 100). The same histogram can also be used to estimate
the selectivity SelR1(a > 5|c < 100 ∧ d = 2) by assuming independence between the
predicates a > 5 and d = 2.

To achieve the objective described in Section 5.1, a key property of conditional selectiv-
ity is atomic decomposition, which uses the notion of conditional probability to represent a
selectivity value as the product of two conditional selectivity values.

Property 5.1. (ATOMIC DECOMPOSITION) Given a set of tables R and sets of predi-
cates P and Q:

SelR(P,Q) = SelR(P |Q) · SelR(Q) (5.2)

This property holds for arbitrary sets of predicates and tables, without relying on any
simplifying assumptions. An atomic decomposition divides the problem of estimating
SelR(P,Q) into two sub-problems (estimating SelR(P |Q) and SelR(Q)). The decom-
position property is essential to develop a framework for exploiting statviews. Statviews
can be used to estimate the first factor SelR(P |Q), as in Example 5.2. In turn, if Q con-
sists of a single predicate we can use standard estimation techniques to estimate the second
factor SelR(Q), or otherwise recursively apply another atomic decomposition to SelR(Q).

By repeatedly applying atomic decompositions, a given selectivity estimate may result
in a very large number of alternative expressions. These expressions can be referred to as
decompositions of the original selectivity value. A decomposition of a given selectivity
value is then an expression of the form S1 · ... · Sk, where each Si = SelRi

(Pi|Qi) and
Qk = φ.

90

Example 5.3. Consider the selectivity estimate SelR1(a > 5 ∧ c < 100 ∧ d = 2). The
following are some of the possible decompositions of this estimate:

• SelR1(a > 5|c < 100 ∧ d = 2) · SelR1(c < 100|d = 2) · SelR1(d = 2)

• SelR1(a > 5|c < 100 ∧ d = 2) · SelR1(d = 2|c < 100) · SelR1(c < 100)

• SelR1(d = 2|a > 5 ∧ c < 100) · SelR1(a > 5|c < 100) · SelR1(c < 100)

If each factor SelRi
(Pi|Qi) is calculated accurately, then every possible decomposition

of SelR(P) evaluates to the same value. However, in reality, only a small number of
statviews are available, besides the base table statistics. It follows that, depending on the
available statistics, the optimizer has to perform some approximations, interpolations, and
employ some independence and/or uniformity assumptions, causing some decompositions
to be more accurate than others.

Suppose that each decomposition of a selectivity value SelR(P) is assigned a measure
of how accurately the decomposition can be estimated using the current set of available
statistics. Then the problem statement in Section 5.1 can be redefined as the following op-
timization problem: it is required to obtain the “most accurate” decomposition of SelR(P)
for the given set of available statistics (see Section 5.2.2 for the definition of accuracy).

In principle, this problem can be approached as follows:

1. Exhaustively enumerate all possible decompositions of SelR(P).

2. Estimate the accuracy of each decomposition.

3. Return the most accurate one.

However, this approach is prohibitively expensive given the large space of possible
decompositions, which means that it is necessary to prune this space. In Section 5.2.1,
we discuss the approach proposed in [14] for enumerating and pruning this search space

91

by leveraging some properties of conditional selectivity values. Section 5.2.2 outlines two
methods to estimate the accuracy of a given decomposition. Finally, Section 5.2.3 presents
the dynamic programming algorithm used in our prototype that returns the most accurate
decomposition for a given selectivity estimate.

5.2.1 Enumerating and Pruning Decompositions

This section introduces the notion of “separability” of a decomposition. The separability
property can be seen as an indicator of independence that allows simplifying a selectivity
value whenever certain properties hold, and can further reduce the search space without
missing any relevant decompositions.

Definition 5.4. SelR(P |Q) is said to be separable (with Q possibly empty) if there exist
non-empty sets X1 and X2 such that P ∪Q = X1 ∪X2 and tables(X1)∩ tables(X2) = φ.
In this case, it is said that X1 and X2 separate SelR(P |Q).

This definition means that a selectivity estimate SelR(P |Q) is separable if all the pred-
icates in P and Q can be split into two sets of predicates X1 and X2, where the tables ref-
erences by these two sets do not overlap. The most intuitive example is when σP∧Q(R×)
combines some tables in R by using Cartesian products, with no join predicates. Note
that even if the original query does not use any Cartesian product, after applying atomic
decompositions some factors might become separable.

Example 5.4. Consider the non-separable expression Sel{R,S}(R.a < 10, S.b > 5, R.x =

S.y). After applying an atomic decomposition, we get Sel{R,S}(R.x = S.y|R.a < 10, S.b >

5) · Sel{R,S}(R.a < 10, S.b > 5), whose second factor is separable.

Property 5.2. (SEPARABLE DECOMPOSITION) [14]. Suppose that {P1, P2} and {Q1, Q2}
are partitions of P and Q , and X1 = P1 ∪Q1 and X2 = P2 ∪Q2 separate SelR(P |Q). Let
R1 = tables(X1) andR2 = tables(X2). Then:

SelR(P |Q) = SelR1(P1|Q1) · SelR2(P2|Q2) (5.3)

92

Example 5.5. Since {T.b = 5} and {R.x = S.y, S.a < 10} separate s = Sel{R,S,T}(T.b =

5, S.a < 10|R.x = S.y), we can rewrite s as s = Sel{R,S}(S.a < 10|R.x = S.y) ·
Sel{T}(T.b > 5). Here, both resulting factors are no longer separable.

The separable decomposition property is a formal way of describing independence be-
tween predicates. The work in [14] makes the assumption that if a selectivity estimate is
separable, then computing it as a product of its factors does not affect its accuracy. This
has a direct implication on the search space. Using this assumption, it is safe to prune any
decompositions that include factors that are separable, without missing the most accurate
decomposition.

Generally, there is always a unique decomposition of SelR(P) into non-separable fac-
tors of the form SelRi

(Pi). That is, if we start with SelR(P) and repeatedly apply separa-
ble decompositions until no single resulting factor is separable, we always obtain the same
non-separable decomposition of SelR(P). This decomposition is referred to in [14] as the
standard decomposition of SelR(P).

5.2.2 Accuracy Estimation

This section discusses the notion of error, which measures the (estimated) accuracy of a
decomposition for given statistics.

Definition 5.5. Let s = SelR(p1, ..., pn) be a selectivity value, and S = S1 · ... · Sk be a
decomposition of s, where Si = SelRi

(Pi|Qi). If we use the available statistics to estimate
Si, then error(Si) measures the estimated accuracy in computing Si. The value error(Si)
is a positive real number, where smaller values represent better accuracy. The (estimated)
overall error for S = S1 · ... · Sk is given by an aggregate function E(e1, ..., en), where
ei = error(Si).

In order to follow the principle of optimality, the aggregate function E has to be mono-
tonic. That is, if xi ≤ x′i for all i, it follows that E(x1, ..., xn) ≤ E(x′1, ..., x

′
n). Monotonic-

ity is a reasonable property for functions measuring overall accuracy [16, 24, 25]: if each

93

error e′i is at least as high as ei, then the overall error E(e′1, ..., e
′
n) should be at least as high

as E(e1, ..., en). This allows a dynamic programming approach to find the most accurate
decomposition of SelR(P) by trying all atomic decompositions SelR(P) = SelR(P1|P2) ·
SelR(P2), recursively obtaining the most accurate decomposition of SelR(P2), and com-
bining the partial results.

Note that there are no guarantees on the accuracy of the error estimates given by the
error function error(Si). It is impossible to have an accurate error value without having
the actual selectivity values, as explained in Observation 4.2 (Chapter 4). If there is a way
to obtain accurate error values, then these error values can be combined with the estimated
selectivity values to obtain more accurate results in the first place. But since this is not
the case, then we have to be aware that the error function is merely a coarse indicator
of accuracy, and cannot be used for any other purpose. However, the “coarseness” of this
function can vary depending on how the error function is defined, as shown in the following
subsections.

This coarseness is usually also related to the efficiency and ease of evaluating the error
function. Functions that give more accurate results tend to be more computationally expen-
sive. When choosing an error function, it is important to choose an efficient one since it
is expected to be invoked repeatedly for all enumerated decompositions. Very accurate but
inefficient error functions are not useful, since the overall optimization time would increase
and therefore exploiting statviews would become less attractive.

In the next two subsections, we describe two different error functions that vary in terms
of efficiency and accuracy: The first simple error function nInd is introduced in [13], and
the second error function Diff is adopted in [14].

1. Number of Independence Assumptions (nInd)

The first error function nInd (adapted from [13]) is simple and intuitive. This function
focuses on the error that occurs when the optimizer assumes independence while estimating

94

the selectivity of a group of conjunctive predicates. nInd captures this by counting the
number of independence assumptions made by the optimizer.

Suppose that the selectivity value to be estimated is S = SelR1(P1|Q1)·...·SelRn(Pn|Qn).
Assume that each factor SelRi

(Pi|Qi) is estimated using a statview SVRi
(A′i|Q′i), where

Q′i ⊆ Qi and A′i ⊇ attr(Pi). In this case, the error in estimating S can be defined as the
total number of independence assumptions in the estimation. In other words:

nInd(S1, ..., Sn) =
n∑
i=1

|Pi| · |Qi −Q′i| (5.4)

where each term above represents the fact that Pi andQi−Q′i are assumed to be independent
with respect to Qi, and therefore the number of independence assumptions is given by
|Pi| · |Qi − Q′i|. For instance, given a statview SVR(p|q1), the error nInd(SelR(p|q1, q2))
is equal to 1 (i.e., one independence assumption). It is easy to see that nInd is monotonic
(according to Definition 5.5, ei = |Pi| · |Qi −Q′i| and E is the sum operator).

The main advantage of nInd is that it is very simple and very easy (and efficient) to com-
pute. However, it suffers from the fact that it is a syntactic indication of independence and
does not rely on actual correlation measures. Thus it results in very rough error estimates.

2. Difference of Distributions (Diff)

Due to the coarseness of the nInd metric, many alternatives often result in the same nInd
value, and ties need to be broken arbitrarily. This behavior is problematic when there are
two or more available statviews that can be used to estimate a selectivity value, and while
they result in the same “syntactic” nInd score, the actual benefit (accuracy) of using each
one of them is drastically different, as illustrated in the following example:

95

Example 5.6. Consider the following query:
SELECT ∗ FROM R, S, T

WHERE R.s = S.s

AND S.t = T.t

AND S.a < 10

where both joins are defined between primary and foreign keys. Also consider the follow-
ing decomposition factor that needs to be estimated: S1 = Sel{R,S,T}(S.a < 10|R.s =

S.s, S.t = T.t). Suppose that the only candidates to approximate S1 are:

• v1 = SV{R,S}(S.a|R.s = S.s), and

• v2 = SV{S,T}(S.a|S.t = T.t)

If nInd is used, both statviews would result in the same error value of 1, so in general each
alternative would be arbitrarily chosen. However, v1 is a much better choice than v2. In
fact, since S ./S.t=T.t T is a foreign-key join, the distribution of S.a over the result of
S ./S.t=T.t T is exactly the same as the distribution of S.a over base table S. Therefore,
S ./S.t=T.t T is actually independent of S.a < 10, and v2 provides no benefit over the base
table statistics over table S.

The Diff error function [14] overcomes this problem by taking into account the distri-
bution of the required columns in the statviews and how different they are from those in
the base tables. In order to be able to compute the Diff value, additional metadata needs
to be maintained for each statview. For a statview v = SVR(a1, ..., an|Q), a single value
diff i ∈ [0, 1] has to be maintained for every column ai in v, that measures the discrepancy
between the distribution of ai in the statview and that of ai in the base tables it originates
from. In particular, diff i = 0 when the two distributions are the same, and diff i grows
up to 1 when such distributions are very different. Generally, there are multiple possible
distributions for which diff i = 1, but only one for which diff i = 0.

Consider v = SVR(a1, ..., an|Q), and suppose that column ai originates from base table
Ri ∈ R. The value diff i is defined as follows1:

1A similar metric, µcount, is proposed in [27] to compare two histogram distributions.

96

diff i =
1

2
·
∑

x∈dom(a)

(
|f(Ri, x)|
|Ri|

− |f(v, x)|
|v|

)
(5.5)

where f(Ri, x) and f(v, x) are the frequencies of value x in base table Ri and statview v

respectively. The value diff i measures the deviation of frequencies between the base table
and the statview distributions. The diff i values need to be updated every time the statistics
on v are updated, so there is no overhead at runtime.

Using diff values, the Diff error function provides a less syntactic notion of indepen-
dence. Suppose that the selectivity value to be estimated is S = SelR1(P1|Q1) · ... ·
SelRn(Pn|Qn), and assume that each factor SelRi

(Pi|Qi) is estimated using a histogram
over column ai (associated with value diff i) in statview SVRi

(A′i|Q′i), where Q′i ⊆ Qi and
ai ⊆ A′i. The overall error value of estimated S can be computed as:

Diff (S1, ..., Sn) =
n∑
i=1

|Pi| · (1− diff i) (5.6)

The term (1 − diff i) above represents the degree of independence when estimating Si
using the statistics over column ai in a statview. This term replaces the “syntactic” value
|Qi − Q′i| of nInd. In Example 5.6, v2 would result in a diff value of 0 since it effectively
contributes the same as a base table statistics over column a, which results in the error
function being equal to 1 (the maximum possible value). In contrast, the more different the
distributions of S.a on S and on v1, the more likely that v1 includes dependencies between
S.a and {R.s = S.s, S.t = T.t}, which results in a lower overall error value.

Diff is just a heuristic ranking function and has some natural limitations. For example,
it uses a single number (diff i) to summarize the amount of divergence between two dis-
tributions. In addition, it only supports predicates on columns from base tables, and not
predicates with arbitrary expressions (since these arbitrary expressions do not exist in base
tables, and hence do not have distributions that can be compared to those in the statviews).
Also, as pointed out earlier, using Diff requires extra overhead during statistics collection,
since the diff values need to be updated.

97

5.2.3 Selecting the Best Estimate

In this section, we outline a dynamic programming algorithm that obtains the most accu-
rate estimation of SelR(P) for a given error function. The algorithm relies on the error
function being monotonic, and avoids considering decompositions with separable factors
(see Sections 5.2.1 and 5.2.2).

The function getSelectivity is shown in Algorithm 5.1. It uses an in-memory look-up
table to store the selectivity and error values for previously encountered predicate groups,
to avoid repeating computations unnecessarily. Taking as input a set of tables R and a
set of conjunctive predicates P on R×, the first step (lines 2-3), is to test whether the de-
sired selectivity value was previously calculated, and if so the algorithm returns it using
a lookup in the memo table. Otherwise, lines 5-8 handle the case in which SelR(P) is
separable. Lines 5-6 obtain the standard decomposition of SelR(P) and recursively call
getSelectivity for each factor SelRi

(Pi). Then, lines 7-8 combine the partial results. Oth-
erwise (if SelR(P) is non-separable), lines 10-20 evaluate all atomic decompositions of
SelR(P) = SelR(P

′|Q) · SelR(Q). For that purpose, line 12 recursively obtains the most
accurate estimation (and the corresponding error) for SelR(Q) and line 13 locally obtains
the best statview v to estimate SelR(P ′|Q) among the set of available statviews. If no
statviews are available for estimating SelR(P ′|Q), the algorithm sets errorp|Q = ∞ and
continues with the next atomic decomposition. Lines 14-17 keep track of the most accurate
decomposition for SelR(P), and after exploring all atomic decompositions, lines 19-20
obtain the most accurate estimation for SelR(P). In all cases, before returning SelR(P)
and its associated error in line 23, getSelectivity stores these values in the memo table. Note
that a side effect of invoking getSelectivity(R, P) is getting the most accurate selectivity es-
timation for every sub-query σP ′(R×) with P ′ ⊆ P . In Section 5.5 we exploit these “free”
selectivity estimates when integrating getSelectivity with existing optimizers.

Note that, in line 13, the algorithm attempts to find the best statview v to estimate
SelR(P

′|Q). This is accomplished in two steps:

1. Finding all statviews that are relevant to the current selectivity estimate SelR(P ′|Q).

98

Algorithm 5.1 Selecting the most accurate selectivity estimate
1: function GETSELECTIVITY(R, P)
2: if SelR(P) was already calculated then
3: (SelR(P), errorP)← memo lookup(P)
4: else if SelR(P) is separable then
5: SelR1(P1) · ... · SelRn(Pn)← standardDecomposition(SelR(P))

6: (SPi
, errorPi

)← getSelectivity(Ri, Pi), i = 1..n

7: SP ← SP1 · ... · SPn

8: errorP ← Emerge(errorP1 , ..., errorPn)

9: else // non-separable
10: errorP ←∞; vbest ← null

11: for all P ′ ⊆ P,Q = P −P ′ do // atomic decomposition SelR(P ′|Q) ·SelR(Q)
12: (SQ, errorQ)← getSelectivity(R, Q)
13: (v, errorP ′|Q)← best statview and error for SelR(P ′|Q)
14: if Emerge(errorP ′|Q, errorQ) ≤ errorP then
15: errorP ← Emerge(errorP ′|Q, errorQ)

16: vbest ← v

17: end if
18: end for
19: SP ′|Q ← estimation of SelR(P ′|Q) using vbest
20: SP ← SP ′|Q · SQ
21: end if
22: memo insert(P, SP , errorP)
23: return (SP , errorP)

24: end function

99

This is the view matching part of exploiting statviews, and the matching conditions
are described in more detail in Section 5.4.

2. Computing the error function based on each of these statviews, and returning the one
with the least estimated error.

Algorithm getSelectivity(R, P) returns the most accurate estimation of SelR(P) for
a given definition of error among all non-separable decompositions.

5.3 Estimation using Maximum Entropy

The conditional selectivity approach estimates a selectivity value by considering the dif-
ferent possible ways of estimating such value (different compositions), and estimates the
resulting error in each case, then picks the most accurate estimate (the one with the least
estimated error value. Although this approach guarantees consistency in estimation, it still
has some shortcomings: First, the estimated error might not be accurate itself, and might
lead the optimizer to choose a decomposition that is not the most accurate. Second, by
using only one decomposition, the optimizer only incorporates knowledge from a subset of
the available statviews. Possibly ignoring some knowledge can bias the optimizer towards
choosing one particular plan over another.

In general, an optimizer will often be drawn towards those plans about which it knows
the least, because using the independence assumption makes these plans seem cheaper
due to underestimation. This problem is often referred to as “fleeing from knowledge to
ignorance” [42].

In this section, we present a different approach, inspired by the work in [42]. This
approach exploits and combines all of the available statistics (base table statistics as well
as statviews) in a principled, consistent, and unbiased manner to estimate the selectivity
of a set of predicates. The technique is based on the principle of maximum entropy (ME)

100

(cf. Section 2.4), which provides the “simplest” possible selectivity estimate that is con-
sistent with all of the available information. In the absence of detailed knowledge, the ME
approach reduces to standard uniformity and independence assumptions. This approach
avoids the problems of inconsistent plan comparisons and the flight from knowledge to
ignorance.

For this approach, a statview v = SVR(A|P) provides the following statistics:

• The number of rows |v| can be used to estimate the selectivity SelR(P) (given that
|R×| can be easily computed).

• Statistics on every attribute a ∈ A can be used to estimate the selectivity SelR(q, P)
for any predicate q where attr(q) = a.

Example 5.7. Consider the statview v = SVT (a, b|c < 10, d = 2), with histograms over
the columns a and b. This statview can be used to compute the following selectivities:

• SelT (c < 10, d = 2) can be estimated as |v|/|T |.

• SelT (a > 3, c < 10, d = 2) can be estimated by obtaining the number of tuples that
satisfy a > 3 from the histogram on a, and dividing it by |T |. The same applies if the
first predicate is replaced by any other predicate on a or b.

The following subsections discuss the details of this approach. Section 5.3.1 redefines
the selectivity estimation problem in a way that can be approached using the maximum
entropy principle. Section 5.3.2 defines the constrained optimization problem and how it
can be used in this approach. Finally, Section 5.3.3 presents our high-level algorithm that
puts together all the concepts used in this approach.

5.3.1 Formal Definition

In this section, we formalize the problem of selectivity estimation for conjunctive predi-
cates, given partial statistics, and define some useful terminology. Let P = {p1, ..., pn} be

101

a set of predicates, and let N = {1, ..., n}. For any X ⊆ N , let pX denote the conjunction
∧i∈Xpi. For example, if X = {1, 3, 6} then pX denotes p1∧ p3∧ p6. Any given assignment
of X corresponds to a subset of the predicates in P . Let sX be the combined selectivity of
pX for a given X . For |X| = 1 (single predicates), the histograms and column statistics
available on base tables are sufficient to estimate sX . For |X| > 1, the multi-variate statis-
tics (MVS) may be stored in the system catalog either as multidimensional histograms,
index statistics, or some other form of column-group statistics or statviews. In practice,
sX is not known for all possible predicate combinations due to the exponential number of
combinations of columns that can be used to define the MVS.

The powerset of N , denoted by 2N , is the set of all possible assignments of X , i.e.
all possible predicate combinations. Let T ⊂ 2N be the set of predicate combinations for
which sX is known2. Then the selectivity estimation problem is to compute sX for X ∈ 2N

given T .

A key aspect of this approach is that the query optimizer should avoid any additional
assumptions about the unknown selectivities while simultaneously exploiting all existing
knowledge in order to avoid unjustified bias towards any particular solution. Applying
the maximum entropy principle to selectivity estimation means that, given several selec-
tivities of simple predicates and conjuncts, the optimizer should choose the most uni-
form/independent selectivity model consistent with all of this knowledge.

5.3.2 The Constrained Optimization Problem

In this section, we describe the technique used in [42] to solve the selectivity estimation
problem. For a predicate p, let p1 indicate the predicate p itself, and p0 indicate the negation
of p, i.e. p1 = p and p0 = ¬p. An atom is a term in disjunctive normal form (DNF) over
the space of n predicates, i.e., a term of the form pb11 ∧ ... ∧ pbnn for bi ∈ {0, 1}. We denote
this atom by the vector b = (b1, ..., bn) ∈ {0, 1}n. As a further abbreviation, we sometimes
omit the parentheses and commas when denoting a specific atom.

2Note that the empty set φ is part of T , as sφ = 1 when applying no predicates.

102

Example 5.8. Given P = {p1, p2, p3} with |P | = 3, the string 100 denotes the vector
(1, 0, 0) and thus the atom p1 ∧ ¬p2 ∧ ¬p3.

For a predicate group pX , X ∈ 2N , let C(X) denote the set of components of X , i.e,
the set of all atoms contributing to pX . Formally,
C(X) = {b ∈ {0, 1}n|∀i ∈ X : bi = 1} and
C(φ) = {0, 1}n

Example 5.9. Given P = {p1, p2, p3}, for X = {1}, the predicate group p1 (having a
single predicate in this case), can be expressed as:
p1 = (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ p3) ∨ (p1 ∧ p2 ∧ p3).
Thus, we can write: C({1}) = {100, 110, 101, 111}. Similarly, for X = {1, 2}, we have
p1,2 = (p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3). Thus, we can write: C({1, 2}) = {110, 111}.

Additionally, for a set T ⊆ 2N of known predicate combinations, and for an atom b, let
P (b, T) denote the set of allX ∈ T such that pX has b as an atom in its DNF representation,
i.e., P (b, T) = {X ∈ T |∀i ∈ X : bi = 1} ∪ {φ}.

Example 5.10. Using the same set P from the previous two examples, suppose that T =

{{1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, φ}. For the atom b = 011, this atom is a component of
the predicate groups p3, p2,3, and pφ. Hence, we obtain the set P (b, T) = {{3}, {2, 3}, φ}.

Let xb denote the selectivity of an atom b, with xb ≥ 0. Given sX for X ∈ T , we want
to compute sX for X /∈ T according to the maximum entropy principle. To achieve this
objective, we must solve the following constrained optimization problem [42]:

Definition 5.6. (CONSTRAINED OPTIMIZATION PROBLEM) Given the |T | constraints:

∀X ∈ T,
∑

b∈C(X)

xb = sX (5.7)

it is required to maximize the entropy, i.e. minimize
∑

b∈{0,1}n xb · log(xb)

103

p1 ^ p2 ^ p3

111

p1 ^ ¬p2 ^ ¬p3

100
p1 ^ p2 ^ ¬p3

110

p1 ^ ¬p2 ^ p3

101

¬p1 ^ p2 ^ ¬p3

010

¬p1 ^ p2 ^ p3

011

¬p1 ^ ¬p2 ^ p3

001

¬p1 ^ ¬p2 ^ ¬p3

000

s1 = 0.1
s2 = 0.2

s3 = 0.25

Known combinations:
p1 ^ p2: s1,2 = 0.05
p1 ^ p3: s1,3 = 0.03

Figure 5.1: Probability space for |T | = 6 and N = {1, 2, 3}

The given constraints are the known selectivities, and the solution is a probability dis-
tribution with the maximum value of uncertainty (entropy), subject to the constraints. One
of the included constraints is sφ =

∑
b∈{0,1}n xb = 1, which asserts that the combined

selectivity of all atoms is 1. The above problem analytically can be solved analytically
only in simple cases with a small number of unknowns. In general, a numerical method is
required.

Example 5.11. Figure 5.1 shows the probability space for the predicate space created by
N = {1, 2, 3} and the knowledge set T = {{1}, {2}, {3}, {1, 2}, {1, 3}, φ} with the selec-
tivities s1 = 0.1, s2 = 0.2, s3 = 0.25, s1,2 = 0.05, s1,3 = 0.03, and sφ = 1.

This example results in the following six constraints:

104

x100
0.035

p1

x110
0.035

x111
0.015 x101

0.015

x011
0.03667

x010
0.11333

x001
0.18333

x000
0.56667

p2

p3

Figure 5.2: Maximum entropy solution

s1 = x100 + x110 + x101 + x111 = 0.1
s2 = x010 + x011 + x110 + x111 = 0.2
s3 = x001 + x011 + x101 + x111 = 0.25
s1,2 = x110 + x111 = 0.05
s1,3 = x101 + x111 = 0.03
sφ =

∑
b∈{0,1}3 xb = 1

The task of selectivity estimation is now to compute a solution for all atoms xb, b ∈
{0, 1}3 that maximizes the entropy function: −

∑
b∈{0,1}n xb ·log(xb) and satisfies the above

six constraints. Once this is achieved, it would be possible to compute all si, i ∈ 2{1,2,3},
from the xb using Equation 5.7.

Figure 5.2 gives the results obtained when solving this constrained optimization prob-
lem. For example, in this solution, we obtain the selectivity estimate s1,2,3 = x111 = 0.015

and s2,3 = x111 + x011 = 0.05167.

105

The problem now is solving the system of simultaneous equations to obtain the atoms
xb, in a way that maximizes the entropy. As mentioned earlier, solving these equations
analytically is only possible when there is a small number of unknowns. We use the algo-
rithm proposed in [42] to compute this result efficiently for an arbitrary number n of simple
predicates P and an arbitrary set T of constraints.

This method uses a variant of the iterative scaling algorithm [21] to efficiently obtain an
approximate maximum entropy solution. This is achieved by using Lagrange multipliers to
obtain a system of optimality equations. The algorithm them iteratively refines those mul-
tipliers until they converge to their final values. We do not list the details of the algorithm
since it is not key to our work, but the full details can be found in [42].

5.3.3 Computing the Selectivity Estimate

Our algorithm to compute the selectivity estimate is given by Algorithm 5.2. The function
getSelectivityME takes as inputs the set of predicates P and the set of tablesR, and returns
the selectivity value SelR(P).

The function first checks to see if there exists a statview (or base table statistic) that
can give the required estimate directly, in which case, it would just use that statview to
estimate the required selectivity and return it (lines 2-6). If no such statview is found, the
function then proceeds to determine which combinations of the predicates in P have known
selectivities. To accomplish this, it iterates over all possible subsets of P . For each subset
P ′, the algorithm attempts to locate a statview (or base table statistic) that can produce the
estimate SelR(P ′) (line 9). If such an estimate can be computed, then the set X is formed
based on the predicates in P ′ (line 12). For example, if P ′ = {p1, p4}, and SelR(P

′)

can be directly estimated from a statview, then X = {1, 4}. The set X and the estimated
selectivity value for P ′ are then added to the set of constraints T (line 13). As a final
step, the empty set φ and its selectivity of 1 are also added to T , then the iterative scaling
algorithm is called (lines 16-17). The iterative scaling algorithm returns an array x. Each
element in this array is the selectivity of an atom xb. Finally, the required selectivity of P
is the selectivity of the atom x111...1 (where all predicates are present).

106

Algorithm 5.2 Selectivity estimation using maximum entropy
1: function GETSELECTIVITYME(R, P)

Assume that P = {p1, p2, ..., pn}
2: v ← statview that can directly give SelR(P)
3: if (v 6= null) then
4: S ← estimation of SelR(P) using v
5: return S
6: end if
7: T ← {}
8: for all P ′ ⊂ P do
9: v ← statview that can directly give SelR(P ′)

10: if (v 6= null) then
11: sX ← estimation of SelR(P ′) using v
12: X ← {i|pi ∈ P ′}
13: T.add(X, sX)

14: end if
15: end for
16: T.add(φ, 1)

17: x← iterativeScaling(T, |P |)
18: S = x111...1

19: return S
20: end function

Note that finding a statview that can provide a particular estimate, e.g. lines 2 and 9, is
achieved using view matching, which is discussed in Section 5.4.

5.4 Statview Matching Conditions

As seen in Algorithms 5.1 and 5.2, at some point it is required to find a statview (or
statviews) that can be used to provide a particular estimate. This task is known as view

107

matching, and is similar to the view matching techniques used with materialized views.
(cf. Section 2.2.2). However, as previously noted in Section 2.3.4, the view matching con-
ditions that are used for materialized views are not suitable to be used with statviews. As
a result, in the section, we discuss the view matching that we use for view matching in our
work. We list the matching conditions, as well as any limitations that are imposed by the
conditional selectivity and the maximum entropy approaches.

5.4.1 Matching for the Conditional Selectivity Approach

For the conditional selectivity approach, a statview v = SVT (A|P ′) is considered a suc-
cessful match to obtain the selectivity estimate SelR(P |Q) if all the following conditions
are met:

1. The table sets R and T must have the same tables. However, it is also acceptable if
there are extra tables in either of them as long as they do not change the distribution
of the data (e.g. using a foreign key to primary key join).

2. The predicates in P ′ must be a subset of (or equal to) those in Q. The independence
assumption is made for the remaining predicates, affecting the resulting estimated
error value.

3. All attributes involved in the predicates P must belong to one of the histograms
defined on v. This is important to be able to use that histogram to estimate the
required selectivity. Since the prototype does not support multi-dimensional his-
tograms, |attr(P)| must be equal to 1, and attr(P) ⊂ A.

The required selectivity is estimated using the standard estimation techniques. Since
it is a conditional selectivity value, it is computed relative to the number of tuples in the
statview, not relative to the original base tables. Hence, the optimizer does not need any
information about the original base tables other than what is included with the statview.

108

Example 5.12. Consider the selectivity estimate Sel{R,S}(R.y = 5|R.s = S.s, R.x < 10).
The following statviews would both be considered successful matches:

• v1 = SV{R}(R.y,R.z|R.x < 10) is a good match since the missing table S does not
affect the distribution of R.y (foreign key join).

• v2 = SV{R,S}(R.y, S.a|R.s = S.s, R.x < 10) is a good match since the predicates
match exactly, and R.y is in the statview’s output columns.

The following statviews would not match the given selectivity estimate:

• v3 = SV{R}(R.z|R.x < 10) cannot be used since R.y is not one of the output
columns of v3.

• v4 = SV{R,S}(R.y, S.a|R.s = S.s, R.z = 2) cannot be used since it has an extra
predicate R.z = 2.

Using the conditional selectivity approach, there are some limitations on what statviews
can be defined, and what query expressions can be matched. These limitations include the
following:

• When using the Diff error function, the set A can only have single columns and
not arbitrary arithmetic expressions, since the Diff function cannot be defined over
arbitrary expressions. This is not an issue with the nInd error function, since it only
considers the number of independence assumptions without looking at the predicate
structure or the output expressions of the statview.

• As noted earlier, the predicate set P must contain predicates that reference only one
attribute, since the prototype does not support multi-dimensional histograms. How-
ever, this is an implementation limitation. If the system supports multi-dimensional
histograms, then P can have predicates on multiple attributes. A possible alternative
is to allow P to have predicates on multiple attributes as long as attr(P) ⊂ A. In

109

this case, the selectivity of each predicate can be estimated from its corresponding
histogram, and then they can be combined assuming independence. This would have
an effect on the associated error function.

5.4.2 Matching for the Maximum Entropy Approach

Using the maximum entropy approach, a statview v = SVT (A|P ′) is considered a suc-
cessful match to obtain the selectivity estimate SelR(P) if all the following conditions are
met:

1. The table sets R and T must have the same tables. However, it is also acceptable if
there are extra tables in either of them as long as they do not change the distribution
of the data (e.g. using a foreign key to primary key join).

2. The predicates in the view definition must be a subset of, or equal to, the predicates
in the required selectivity estimate, i.e. P ′ ⊆ P

3. If P ′ ⊂ P (not equal), then all attributes involved in the predicates P − P ′ must
belong to one of the histograms defined on v, for the same reason as in the conditional
selectivity approach.

If the two predicate groups P and P ′ are identical, then the selectivity SelR(P) can
be computed as |v|/|R×|. The numerator is among the statistics stored with v, while the
denominator is the product of the cardinalities of the tables inR, which are easily obtained
from the system catalog. However, for the case where P ′ is not equal to P , assume that
P ′ − P is the predicate a relop value, where a ∈ A. The number of tuples satisfying this
predicate can be obtained from the histogram on attribute a (one of the histograms associ-
ated with statview v), then divided by the same denominator |R×| to obtain the selectivity
SelR(P).

110

Example 5.13. Consider the selectivity estimate Sel{R,S}(R.s = S.s, R.y = 5, R.x < 10).
The statviews v1 = SV{R,S}(R.y, S.a|R.s = S.s, R.x < 10) would be a successful match
since the statview’s predicates are a subset of the predicates in the selectivity estimate, and
the remaining predicate R.y = 5 involves only one column, which is in the output columns
of v1. The following statviews would not match the given selectivity estimate:

• v2 = SV{R,S}(R.z, S.a|R.s = S.s, R.x < 10) cannot be used since R.y is not one of
the output columns of v2.

• v3 = SV{R,S}(R.y, S.a|R.s = S.s, R.z = 2) cannot be used since it has an extra
predicate R.z = 2.

This approach also suffers from the same limitation of not having the support for multi-
dimensional histograms. Which means that, in our implementation, the predicates in P−P ′

must reference only one attribute in order to be able to estimate their selectivity. This
limitation is not inherent to the approach itself, and can be overcome if the system supports
multi-dimensional histograms.

5.5 Integration with the PostgreSQL Optimizer

The existing PostgreSQL [3] optimizer computes cardinality and cost estimates during plan
enumeration and costing. The optimizer distinguishes between cardinality estimates of
base relation and those of join expressions. However, both types of estimates are computed
using the same estimation routines. When costing a plan that involves a set of conjunctive
predicates P = p1 ∧ ... ∧ pn, the optimizer calls the estimation module for every predicate
pi ∈ P , using available base table statistics to estimate the selectivity of pi, then combines
these selectivities assuming independence.

Our new estimation modules that take into account the existing statviews were straight-
forward to integrate into the PostgreSQL optimizer. For our prototype implementation, we

111

extended the selectivity estimation functionality as follows: Given an SPJ query expression
for which the optimizer needs to obtain a selectivity estimate, the optimizer invokes either
the getSelectivity (algorithm 5.1) or getSelectivityME (Algorithm 5.2) functions, depending
on which method is being used, and passes the set of tables and predicates involved in the
required query expression. These functions try to compute the required estimate by finding
the relevant statviews and using their respective techniques on these statviews, if any. Note
that if no statview cover the required expression, both techniques fall back to estimation
using only the base table statistics.

Our extensions to the estimation module enable the optimizer to use all available statis-
tics in a consistent way, for all plans in the plan space. This improved knowledge results
in better query plans and improved query execution times, as shown experimentally in the
next section.

5.6 Experimental Evaluation

In this section, we present experimental results of our implementation of the two techniques
outlined in this chapter.

5.6.1 Setup

Computing environment: All our experiments were conducted on a SunFire X4100 server
(see Table 5.1). We implemented our prototype in C inside the PostgreSQL [3] database
system.

Data: We carried out our experiments on a synthetic database with six relations CAR,

OWNER, DEMOGRAPHICS, ACCIDENTS, LOCATION , and TIME . The size of this data set
is 1 GB. Several primary-key-to-foreign-key relationships exist between the tables. Each
table is composed of four to eight attributes. Some attributes are uniformly distributed,

112

Table 5.1: Computing environment for the experiments
CPU Two dual-core AMD Opteron 280 CPUs
RAM 8 GB
Disk Two 72 GB disks, in RAID-0 configuration
Operating System OpenSuSE Linux 10.1

whereas others are skewed. A number of correlations between attributes, such as Make
and Model, are inherent in the attribute definitions.

Queries: We used a workload that contains 80 synthetically generated SPJG queries. Each
query consists of one to five joined tables, and several selection predicates, some of which
are correlated. Some of the queries also include aggregate functions and grouping. An
example query is:

SELECT city, COUNT(*)

FROM owner o, car c

WHERE c.ownerid = o.id

AND c.make = ’Honda’ AND c.model = ’Civic’

GROUP BY city

Statviews: We used our StatAdvisor framework (Chapter 4) to recommend statviews for
the given workload, without imposing any restrictions on the number or the size of the
statviews that we can maintain. The StatAdvisor recommended 99 statviews.

Selectivity estimation: We implemented both the conditional selectivity (CS) (Section 5.2)
and the maximum entropy (ME) (Section 5.3) approaches for selectivity estimation. For the
conditional selectivity approach, we implemented both the nInd and the Diff error estima-
tion techniques (Section 5.2.2).

113

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 o
ve
rh
ea
d
 (
se
c)

No. of available statviews

Conditional Selectivity Maximum Entropy

Figure 5.3: Average matching overhead

5.6.2 Statview Matching Overhead

Attempting to use statviews in selectivity estimation creates some additional overhead as
a result of the complicated computations as well as view matching. The amount of view
matching overhead increases with the number of available statviews in the system, since the
optimizer attempts to match all these statviews against every query expression for which it
requires a selectivity estimate.

Figure 5.3 depicts the average overhead (over all queries in the workload) for both the
conditional selectivity and the maximum entropy approaches, for different number of avail-
able statviews. As expected, the overhead increases linearly with the number of available
statviews. The overhead in the case of the conditional selectivity approach is greater than
that in the case of the maximum entropy approach because the conditional selectivity ap-
proach attempts to decompose each query expression into factors and recursively estimate
the selectivity of these factors, which means attempting to match these factors against all
the available statviews as well.

5.6.3 Workload Performance

The test workload is executed in the following settings:

114

0

100

200

300

400

500

600

0 100 200 300 400 500 600

C
o
n
d
it
io
n
al
 S
el
e
ct
iv
it
y
(n
In
d
)

No statviews

Improvement

Degradation

(a)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

C
o
n
d
it
io
n
al
 S
e
le
ct
iv
it
y
(D
if
f)

No statviews

Improvement

Degradation

(b)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

M
ax
im

u
m
 E
n
tr
o
p
y

No statviews

Improvement

Degradation

(c)

0

100

200

300

400

500

600

0 100 200 300 400 500 600

M
a

x
im

u
m

 E
n

tr
o

p
y

Conditional Selectivity (Diff)

Better with ME

Better with CS

(d)

Figure 5.4: Workload Performance

No Statviews The optimizer estimates selectivities using only statistics on base tables and
their attributes, including table cardinalities, number of distinct values in each col-
umn, etc.

Conditional Selectivity (nInd) The optimizer has access to all statviews, and used the CS
approach with the nInd error function to estimate selectivities.

Conditional Selectivity (Diff) The optimizer uses the CS approach with the Diff error
function, with all statviews available.

Maximum Entropy The optimizer uses the ME approach for selectivity estimation, again

115

with all statviews available.

Figure 5.4(a) depicts a comparison between the workload performance in the first two
settings. Each point represents a single query, with the x-axis representing the execution
time of the query when no statviews are used, and the y-axis representing the execution time
in the CS-nInd setting. It can be seen that most queries benefit when statviews are used in
selectivity estimation, since they provide more accurate estimates, helping the optimizer to
choose a more efficient execution plan. Similarly, Figures 5.4(b) and 5.4(c) compare the
”no statviews” setting to the CS-Diff and the ME settings, respectively, showing similar
results.

Figure 5.4(d) compares the query performance in the CS (with the Diff error function)
and the ME settings. The figure shows that the two approaches are comparable, since some
queries benefit more from the CS approach while others benefit from the ME approach.

5.6.4 Estimation Accuracy

In this section we demonstrate the improvement in selectivity estimation accuracy result-
ing from using statviews. For each query expression encountered during optimization and
present in the final execution plan, we record the estimated cardinality and the actual cardi-
nality monitored during query execution. We compute the absolute estimation error as the
difference between the estimated and actual cardinality (number of rows).

Figure 5.5(a) shows the improvement in selectivity estimation when using the condi-
tional selectivity approach. Each point corresponds to a query expression, with the x-axis
being the absolute estimation error when no statviews are used, and the y-axis being the
absolute estimation error when the CS approach is used. While some expressions have the
same estimation error in both cases (the points lying on the 45-degree line), most expres-
sions have their error reduced significantly by the exploitation of statviews. The same is
shown for the maximum entropy approach in Figure 5.5(b).

116

0

2

4

6

8

10

12

0 2 4 6 8 10 12

C
o
n
d
it
io
n
al
 S
el
e
ct
iv
it
y

(x
1
0
5
 r
o
w
s)

No statviews (x105 rows)

Improvement

Degradation

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

M
ax
im

u
m
 E
n
tr
o
p
y

(x
1
0
5
 r
o
w
s)

No statviews (x105 rows)

Improvement

Degradation

(b)

Figure 5.5: Absolute estimation error

5.7 Conclusions

This chapter outlines our implementation of two approaches for exploiting statviews in
query optimizations. The conditional selectivity [14] approach analyzes all possible ways
of computing a selectivity estimate, and uses the one that has the minimum estimated er-
ror, while the maximum entropy approach [42] makes use of all the available information
while computing the estimate, without making further assumptions about the data. We im-
plemented the two methods inside the PostgreSQL [3] query optimizer and demonstrated
their effectiveness with an extensive experimental study.

Lessons Learned. Based on the study and the experiments presented in this chapter, we
make the following high level observations:

• Both implemented approaches are comparable in performance, although the condi-
tional selectivity is slightly more expensive dues to its recursive nature. Their effect
on workload performance is also similar.

• Statview matching can be computationally expensive, and its cost increases with the
number of statviews available in the system. Therefore, it is important not to create
too many statviews. Tools such as our StatAdvisor can help recommend the most
beneficial statviews for a given workload.

117

• Both approaches are limited regarding the query expressions whose selectivity they
can estimate. Both approach work only for SPJ query expressions, and are not
straightforward to extend to aggregations or sub-queries for example. In addition,
predicates with arbitrary arithmetic expressions can pose a challenge to both ap-
proaches. These types of query expressions need further investigation.

118

Chapter 6

Conclusions and Future Work

In this chapter we conclude this dissertation, and present future research directions.

6.1 Conclusions

This dissertation presents our work on query optimization in dynamic environments. Our
study tackles the topics of recommending and collecting database statistics, either on the
fly during query processing, or as an offline process in the form of statviews. In addition,
we also address the research topic of exploiting statviews for selectivity estimation.

We introduced an efficient approach to proactively determine, collect, and material-
ize Just-in-Time Statistics (JITS) during query processing. In contrast to similar research
efforts, our approach employs a lightweight sensitivity analysis based on the query struc-
ture, the existing statistics and the data activity to identify the crucial statistics. The ap-
proach also materializes and incrementally updates the collected partial statistics for future
reuse. Our technique integrates these partial statistics in a reusable form by maintaining
maximum-entropy-based structures.

119

We proposed StatAdvisor, a framework for automatic recommendation of statistical
views for a given SQL workload. The StatAdvisor addresses the special characteristics of
statistical views with respect to view matching and benefit estimation, and introduces a
novel plan-based candidate enumeration method, and a benefit-based analysis to determine
the most useful statistical views. Our work also considers the possible dependency between
multiple statviews in terms of their effect on the chosen execution plan.

Finally, we also implemented a prototype for exploiting statviews in query optimiza-
tions, using both the conditional selectivity and maximum entropy approaches, applying
those methods in the context of statviews.

6.2 Future Work

Possible future extension for our work include investigating new techniques to improve
our just-in-time statistics functionality, extending statview exploitation to support arbitrary
query expressions rather than only SPJ query expressions, and extending our statview rec-
ommendation framework to generate statviews that can benefit multiple queries, thus re-
ducing the number of statviews in the system. In the following sub-sections, we give a high
level overview on each of these extensions.

6.2.1 Enhancing the Just-in-Time Statistics Functionality

When collecting just-in-time statistics, we perform a lightweight sensitivity analysis to de-
termine which statistics need to be collected. The used analysis is based on a history of
statistics usage in cardinality estimation. It would be interesting to consider a more sophis-
ticated sensitivity analysis that takes into account previously collected QSS and whether
or not they caused the optimizer to choose a different plan. This would naturally result in
increased overhead for the JITS module, so it would be necessary to study the cases where
this would be beneficial.

120

It would also be interesting to investigate methods to further reduce the time spent on
statistics collection during query processing. A possible way to achieve this is to infer
missing statistics based on the existing ones (both in the catalog and in the QSS archive).
by integrating catalog statistics with sampled data, and/or inferring some of the absent
statistics. Inferred statistics can be associated with a confidence score, and this score can
be used by the optimizer to decide whether it can rely on these inferred statistics or it is
necessary to spend more time to collect more statistics.

6.2.2 Recommending “Generalized” Statviews

In our StatAdvisor framework, we determine the statviews that would benefit a partic-
ular query and recommend them together as a statview group. There are cases where
similar, but not identical, statviews are recommended for separate queries. For example,
one query may benefit from having a statview v1 = Select salary from employee

where state=’NY’ and salary < 100k , while another query may benefit from hav-
ing the statview v2 = Select salary from employee where state=’NY’ and

salary < 150k . In this particular case, maintaining only v2 and having a histogram
on the salary column would suffice, since v2 “covers” v1.

Consider another case with the same statview v1 above, but with v2 = Select salary

from employee where state=’NY’ and salary > 150k . In this case, both statview
are not overlapping. It would be useful to generate a “merged” view v = Select salary

from employee where state=’NY’ . Maintaining this single view with a histogram
on the Salary column would provide accurate statistics for both queries. Similar work for
finding merged materialized views has been done in [8].

Maintaining one statview instead of multiple statviews saves on the space needed to
store the statistics as well as the time required for statview matching during query opti-
mization.

121

6.2.3 Statview Matching for Complex Query Expressions

In Chapter 5, we explored two techniques to exploit statviews in selectivity estimation.
However, both techniques can only be applied for estimating the selectivity of SPJ query
expressions. It would be interesting to investigate possible ways to extend these methods,
or find new methods that can be applied to other types of query expressions and/or opera-
tors. Examples for such expressions include aggregations, grouping, outer joins, and nested
queries.

Being able to support arbitrary and complex query expressions greatly would increase
the usefulness and applicability of statviews, which in turn would help reduce estimation
errors in a variety of queries that are used in analytical applications and decision support
systems.

122

Bibliography

[1] DB2 for Linux, UNIX and Windows, http://www.ibm.com/software/data/db2/9. 47,
76

[2] Microsoft SQL Server, http://www.microsoft.com/sql. 18

[3] PostgreSQL, http://www.postgresql.org/. 87, 111, 112, 117

[4] TPC-DS Benchmark, http://www.tpc.org/tpcds. 76

[5] Ashraf Aboulnaga, Peter J. Haas, Mokhtar Kandil, Sam Lightstone, Guy M. Lohman,
Volker Markl, Ivan Popivanov, and Vijayshankar Raman. Automated Statistics Col-
lection in DB2 UDB. In VLDB, pages 1146–1157, 2004. 4, 14, 47

[6] Mohammed Abouzour, Ivan T. Bowman, Peter Bumbulis, David DeHaan, Anil K.
Goel, Anisoara Nica, G. N. Paulley, and John Smirnios. Database Self-Management:
Taming the Monster. IEEE Data Eng. Bull., 34(4):3–11, 2011. 14

[7] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
Join Synopses for Approximate Query Answering. In SIGMOD, pages 275–286,
1999. 25, 68

[8] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated Selection of
Materialized Views and Indexes in SQL Databases. In VLDB, pages 496–505, 2000.
18, 62, 121

123

[9] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Pro-
cessing. In SIGMOD, pages 261–272, 2000. 15

[10] Brian Babcock and Surajit Chaudhuri. Towards a Robust Query Optimizer: A Princi-
pled and Practical Approach. In SIGMOD, pages 119–130, 2005. 25, 61

[11] Shivnath Babu, Pedro Bizarro, and David DeWitt. Proactive Re-optimization. In
SIGMOD, pages 107–118, 2005. 4, 15

[12] Ivan T. Bowman, Peter Bumbulis, Dan Farrar, Anil K. Goel, Brendan Lucier, Anisoara
Nica, G. N. Paulley, John Smirnios, and Matthew Young-Lai. SQL Anywhere: A
Holistic Approach to Database Self-management. In ICDE Workshops, pages 414–
423, 2007. 14

[13] Nicolas Bruno and Surajit Chaudhuri. Exploiting Statistics on Query Expressions for
Optimization. In SIGMOD, pages 263–274, 2002. 5, 7, 21, 22, 23, 58, 61, 84, 94

[14] Nicolas Bruno and Surajit Chaudhuri. Conditional Selectivity for Statistics on Query
Expressions. In SIGMOD, pages 311–322, 2004. 5, 8, 21, 23, 87, 88, 89, 91, 92, 93,
94, 96, 117

[15] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: A Multidimensional
Workload-Aware Histogram. SIGMOD Rec., 30(2):211–222, 2001. 14

[16] Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating Top-k Queries over
Web-Accessible Databases. In ICDE, pages 369–380, 2002. 93

[17] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On Random Sampling
over Joins. In SIGMOD, pages 263–274, 1999. 25

[18] Surajit Chaudhuri and Vivek Narasayya. Automating Statistics Management for
Query Optimizers. IEEE Transactions on Knowledge and Data Engineering, 13(1):7–
20, 2001. 15, 22, 34, 57, 58, 70

[19] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive Queries. In
PODS, pages 59–70, 1993.

124

[20] Francis C. Chu, Joseph Y. Halpern, and Johannes Gehrke. Least Expected Cost Query
Optimization: What Can We Expect? In PODS, pages 293–302, 2002.

[21] John N. Darroch and Douglas Ratcliff. Generalized Iterative Scaling for Log-Linear
Models. In The Annals of Mathematical Statistics, volume 43, pages 1470–1480,
1972. 106

[22] Amr El-Helw, Ihab F. Ilyas, Wing Lau, Volker Markl, and Calisto Zuzarte. Collecting
and Maintaining Just-in-Time Statistics. In ICDE, pages 516–525, 2007. 29, 31

[23] Amr El-Helw, Ihab F. Ilyas, and Calisto Zuzarte. StatAdvisor: Recommending Sta-
tistical Views. PVLDB, 2(2):1306–1317, 2009. 55

[24] Ronald Fagin. Fuzzy Queries in Multimedia Database Systems. In PODS, pages
1–10, 1998. 93

[25] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for
Middleware. In PODS, pages 102–113, 2001. 93

[26] César A. Galindo-Legaria, Milind Joshi, Florian Waas, and Ming-Chuan Wu. Statis-
tics on Views. In VLDB, pages 952–962, 2003. 2, 3, 5

[27] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast Incremental Mainte-
nance of Approximate Histograms. In VLDB, pages 466–475, 1997. 96

[28] Jonathan Goldstein and Per-Åke Larson. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. In SIGMOD, 2001. 17, 20, 21

[29] Goetz Graefe. The Cascades Framework for Query Optimization. IEEE Data Eng.
Bull., 18(3):19–29, 1995.

[30] Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensi-
bility and Efficient Search. In ICDE, pages 209–218, 1993.

[31] Silviu Guiasu and Abe Shenitzer. The Principle of Maximum Entropy. The Mathe-
matical Intelligencer, 7(1):42–48, 1985. 8, 29

125

[32] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh.
Extensible Query Processing in Starburst. In SIGMOD, pages 377–388, 1989. 19, 20,
47

[33] Peter J. Haas and Joseph M. Hellerstein. Ripple Joins for Online Aggregation. In
SIGMOD, pages 287–298, 1999.

[34] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. CORDS:
Automatic Discovery of Correlations and Soft Functional Dependencies. In SIG-
MOD, pages 647–658, 2004. 7, 47

[35] Ihab F. Ilyas, Jun Rao, Guy Lohman, Dengfeng Gao, and Eileen Lin. Estimating
Compilation Time of a Query Optimizer. In SIGMOD, pages 373–384, 2003.

[36] Yannis E. Ioannidis and Stavros Christodoulakis. On the Propagation of Errors in the
Size of Join Results. In SIGMOD, pages 268–277, 1991. 3, 32

[37] Navin Kabra and David J. DeWitt. Efficient Mid-query Re-optimization of Sub-
optimal Query Execution Plans. In SIGMOD, pages 106–117, 1998. 4, 14

[38] Per-Åke Larson, Wolfgang Lehner, Jingren Zhou, and Peter Zabback. Cardinality
Estimation Using Sample Views with Quality Assurance. In SIGMOD, pages 175–
186, 2007. 23

[39] Wolfgang Lehner, Roberta Cochrane, Hamid Pirahesh, and Markos Zaharioudakis.
fAST Refresh using Mass Query Optimization. In ICDE, pages 391–398, 2001. 18

[40] Sam Lightstone, Guy M. Lohman, and Daniel C. Zilio. Toward Autonomic Comput-
ing with DB2 Universal Database. SIGMOD Record, 31(3):55–61, 2002.

[41] M. O. Lorenz. Methods of Measuring the Concentration of Wealth. Publications of
the American Statistical Association, 1905.

[42] Volker Markl, Nimrod Megiddo, Marcel Kutsch, Tam Minh Tran, Peter J. Haas, and
Utkarsh Srivastava. Consistently Estimating the Selectivity of Conjuncts of Predi-
cates. In VLDB, pages 373–384, 2005. 8, 35, 87, 88, 89, 100, 102, 103, 106, 117

126

[43] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh,
and Miso Cilimdzic. Robust Query Processing through Progressive Optimization. In
ACM SIGMOD, pages 659–670, 2004. 4, 14

[44] Frank Olken and Doron Rotem. Simple Random Sampling from Relational
Databases. In VLDB, pages 160–169, 1986. 25

[45] Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without the At-
tribute Value Independence Assumption. In VLDB, pages 486–495, 1997. 7

[46] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita. Im-
proved Histograms for Selectivity Estimation of Range Predicates. In SIGMOD,
pages 294–305, 1996. 47

[47] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie,
and Thomas G. Price. Access Path Selection in a Relational Database Management
System. In SIGMOD, pages 23–34, 1979.

[48] Claude E Shannon. A Mathematical Theory of Communication. Bell System Techni-
cal Journal, 27:379–423 and 623–656, July and October 1948. 29

[49] Utkarsh Srivastava, Peter J. Haas, Volker Markl, Marcel Kutsch, and Tam Minh Tran.
ISOMER: Consistent Histogram Construction Using Query Feedback. In ICDE,
2006. 14, 29, 44

[50] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO - DB2’s
LEarning Optimizer. In VLDB, pages 19–28, 2001. 4, 13, 36

[51] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan Skelley.
DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. In
ICDE, pages 101–110, 2000. 17, 18, 62

[52] Xiaohui Yu, Nick Koudas, and Calisto Zuzarte. HASE: A Hybrid Approach to Selec-
tivity Estimation for Conjunctive Predicates. In EDBT, pages 460–477, 2006. 47

127

[53] Xiaohui Yu, Calisto Zuzarte, and Kenneth C. Sevcik. Towards Estimating the Number
of Distinct Value Combinations for a Set of Attributes. In CIKM, pages 656–663,
2005.

[54] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and Mon-
ica Urata. Answering Complex SQL Queries using Automatic Summary Tables. In
SIGMOD, pages 105–116, 2000. 20, 27

[55] Qiang Zhu, Brian Dunkel, Wing Lau, Suyun Chen, and Berni Schiefer. Piggyback
Statistics Collection for Query Optimization: Towards a Self-Maintaining Database
Management System. Comput. J., 47(2):221–244, 2004. 14

[56] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. DB2 Design Advisor: Integrated Automatic
Physical Database Design. In VLDB, pages 1087–1097, 2004. 17, 18, 62

128

	List of Figures
	List of Tables
	Introduction
	Collecting Just-in-Time Statistics
	Recommending Statistical Views
	Challenges
	Contributions and Dissertation Outline
	Collecting and Maintaining Just-in-Time Statistics
	Recommending Statistical Views
	Dissertation Outline

	Background and Related Work
	Automated Collection of Statistics
	Reactive Approaches
	Proactive Approaches

	Materialized Views
	View Recommendation
	View Exploitation

	Statistical Views
	Statistics on Query Expressions
	Sample Views
	Collecting Statistics on Statviews
	Statistical vs. Materialized Views

	The Principle of Maximum Entropy

	Collecting and Maintaining Just-in-Time Statistics
	Query-Specific Statistics
	JITS Framework
	System Architecture
	Data Structures
	Query Analysis
	Sensitivity Analysis
	Updating the QSS Archive
	JITS Applicability

	Experimental Evaluation
	JITS for a Single Query
	JITS for a Workload
	Tuning the Sensitivity Analysis

	Conclusions

	Recommending Statistical Views
	Problem Definition and System Overview
	Key Insights
	StatAdvisor Framework

	Plan-Based Candidate Enumeration
	Candidate Enumeration for a Query
	Candidate Enumeration for a Workload

	Benefit Estimation and Statview Selection
	Benefit for a Single Query
	Benefit for a Workload
	Statview-Group Selection

	Dependency on Database Engine
	Experimental Evaluation
	Setup
	Candidate Enumeration
	Overall Workload Performance
	Comparison with Previous Work

	Conclusions

	Exploiting Statviews for Selectivity Estimation
	Notations and Problem Definition
	Estimation using Conditional Selectivity
	Enumerating and Pruning Decompositions
	Accuracy Estimation
	Selecting the Best Estimate

	Estimation using Maximum Entropy
	Formal Definition
	The Constrained Optimization Problem
	Computing the Selectivity Estimate

	Statview Matching Conditions
	Matching for the Conditional Selectivity Approach
	Matching for the Maximum Entropy Approach

	Integration with the PostgreSQL Optimizer
	Experimental Evaluation
	Setup
	Statview Matching Overhead
	Workload Performance
	Estimation Accuracy

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Enhancing the Just-in-Time Statistics Functionality
	Recommending ``Generalized'' Statviews
	Statview Matching for Complex Query Expressions

	Bibliography

