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Abstract

This thesis investigates the portfolio optimization problem using Value-at-Risk (VaR) as

a risk measure, when m sample scenarios are given. Minimizing VaR of a portfolio is com-

putationally difficult: it is non-convex, non-smooth, and has many local minima. Recently

Gaivoronski and Pflug [9] define a quantile-based smoothed VaR function to approximate

the original VaR; this smoothed VaR function is then minimized to obtain the minimal

VaR portfolio. Unfortunately this method suffers two problems. Firstly, computational

cost of minimization is high since each function evaluation requires O(m3) work, where m

is the number of scenarios. Secondly, it is difficult to determine the smooth parameter. We

propose a new gradual non-convexation penalty method which can efficiently solve a VaR

minimization problem. We first introduce an auxiliary variable and formulate the VaR

minimization problem as an optimization problem with a probabilistic constraint, which

involves a sum of step functions. A continuously differentiable piecewise quadratic function

is used to approximate the step function. An exact penalty method is used to solve the

constrained optimization problem. In an attempt to reach the global minimizer, we also

use a gradual non-convexation process with the initial problem close to a convex problem.

The solution of the kth optimization problem is used as the starting point of the k + 1th

problem. As the indexing parameter increases, the problem becomes more non-convex.

Our new method has three advantages. Firstly, our formulation is structurally simpler.

Secondly, our method is computationally more efficient since each function evaluation re-

quires O(m) work. Thirdly, we use a gradual non-convexation process in an attempt to

track the global minimum; this also avoids the difficulty in choosing the smooth param-

eter. Both historical and synthetic data are used to test our VaR minimization method.

We compare our method with both Uryasev and Rockafellar’s CVaR minimization method

and Gaivoronski and Pflug’s quantile-based smoothed VaR method in terms of VaR, CPU
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time, and efficient frontiers. We show that our gradual non-convexation penalty method

yields better minimal VaR portfolio than the other two methods. In addition, we show

that the proposed gradual non-convexation penalty method is computationally much more

efficient than Gaivoronski and Pflug’s quantile-based smoothed VaR method, especially

when the number of scenarios is large.
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Chapter 1

Introduction

1.1 Motivation

Risk is one of the fundamental concerns in a financial market. It measures the uncertainty

of profit or loss in a financial market. Risk management is the activity to identify, assess,

control, and allocate risk. The phenomenal growth in trading activities since the late 1960s

and the rapid advance in the state of information technology have made great contributions

to the fast development of risk management in the financial field [7].

Risk assessment is at the core of modern risk management [6]. In order to assess the

risk, we need a mathematical tool to quantify risk. Risk measure is a mapping from the

uncertainty of the financial market to a real number. Standard deviation is a classical and

widely used risk measure. It measures the deviations from the mean value. It is used by

Markowitz in his famous Portfolio Selection Theory [12] to measure the risk of a portfolio.

It is also used in the capital asset pricing model (CAPM) [18] and in the option pricing

theory [3]. Standard deviation is very important and useful. Standard deviation and mean
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can fully describe a probability distribution function if it is a normal distribution. However,

if the probability distribution function is not a normal distribution, more parameters, such

as skewness and kurtosis, are needed to describe the distribution [15].

Value at Risk (VaR) is another very important and widely used risk measure in a fi-

nancial market. It represents the maximum possible loss with a certain confidence level

within a time horizon. Different from standard deviation, VaR can be used for any proba-

bility distribution functions and it only concerns the downside risk. The need to aggregate

different risks in the financial institution as a whole gave rise to the notion of VaR in the

1970s and 1980s. It is now a standard benchmark for a firm-wide measure of risk [8]. The

well known RiskMetrics system developed by JP Morgan uses VaR to measure risk over the

whole institution. Amendment to the Capital Accord to Incorporate Market Risks specifies

that banks using an internal model should compute VaR as a quantitative standard [14].

Down believes that VaR has some significant attractive properties over traditional risk

measures: it provides a common consistent measure of risk across different positions and

risk factors; it represents risk in a probabilistic way and it is expressed in the simplest and

the most easily understood unit of measure [7].

Conditional Value at Risk (CVaR) is a risk measure that is closely related to VaR. It

measures the expected value of the loss that exceeds VaR for a specified confidence level.

It also measures the downside risk. Instead of using one single loss to represent risk, CVaR

takes all the tail distribution into consideration. CVaR is generally regarded as a better

risk measure than VaR. CVaR is coherent while VaR is not sub-additive and therefore, not

a coherent measure of risk.

Portfolio optimization yields the positions of financial instruments of a portfolio to

achieve some objectives such as maximizing mean return and minimizing risk. Markowitz’s

Portfolio Selection Theory [12] is the pioneer work in this field. He uses standard deviation
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as a risk measure. More recently, risk measures such as VaR and CVaR are used as a

substitution for standard deviation in the portfolio optimization problem. Although CVaR

has a better property in terms of coherency than VaR, VaR optimization problem is still

very popular both in industry and research for four reasons. Firstly, VaR is widely used

and has become an industrial standard. Secondly, VaR is conceptually very simple and

easy to understand. Thirdly, no risk measure is dominant over all the other risk measures.

Investors who want to control VaR cannot achieve the goal by optimizing CVaR or other

risk measures of a portfolio. Fourthly, in the research area, we have already had some

accurate and efficient algorithms to find an optimal CVaR portfolio [19]. However, no

VaR optimization algorithm that is both accurate and efficient has been found. Moreover,

Sarykalin et al. [17] claim that VaR may be better for optimizing portfolios when good

models for tails are not available. VaR disregards the hardest to measure events. CVaR may

not perform well out of sample when portfolio optimization is run with poorly constructed

set of scenarios. Historical data may not give right predictions of future tail events because

of mean-reverting characteristics of assets. High returns typically are followed by low

returns; hence, CVaR based on history may be quite misleading in risk estimation.

In this thesis, we focus on the portfolio optimization problem using VaR as a risk mea-

sure when a finite number of scenarios are given. Minimizing VaR of a portfolio is computa-

tionally complex and more difficult than some other portfolio optimization problems such

as mean-variance optimization. VaR minimization problem is non-convex, non-smooth,

and has many local minima under a finite number of scenarios. A lot of effort has been

made to find an efficient minimizing VaR algorithm. Uryasev and Rockafellar [19] propose

an efficient algorithm that uses linear programming technique to minimize CVaR of a port-

folio and at the same time obtains the corresponding VaR. They claim that this algorithm

also yields a low VaR since VaR is always smaller than CVaR. Subsequently, Larsen et al.
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[11] propose two heuristic algorithms for VaR optimization that take advantage of efficient

CVaR optimization method. The main idea is to start with the minimal CVaR portfolio

using an approach proposed by Uryasev and Rockafellar [19] and systematically reduce

VaR by solving a series of CVaR optimization problems that are obtained by constraining

and discarding scenarios that correspond to large losses. More Recently, Gaivoronski and

Pflug [9] propose a quantile-based smoothed VaR method. They reformulate VaR as a

quantile of the portfolio loss and use a quantile-based smoothed VaR function (QBSVaR)

to replace the original VaR function in the VaR minimization problem. This function fil-

ters out the irregularity of the original VaR function. They optimize the quantile-based

smoothed VaR function to obtain an optimal VaR portfolio. In addition, Wozabal [20] for-

mulate VaR optimization problem as a difference of convex (D.C.) program and apply the

difference of convex algorithm, a generic approximate solution technique for unconstrained

D.C. problems, to solve the problem. They also mention that the computational time of

the difference of convex algorithm becomes prohibitively long for large data sets. However,

among all the proposed methods, we do not see any algorithms that are simple, efficient

and accurate. This motivates us to devote our research to the VaR optimization problem.

1.2 Thesis Contributions

In this thesis, we first present a formulation of VaR minimization problem and show the

computational difficulty in solving the VaR minimization problem. We also discuss the ad-

vantages and disadvantages of two VaR minimization methods, Uryasev and Rockafellar’s

CVaR minimization method [19] and Gaivoronski and Pflug’s quantile-based smoothed

VaR (QBSVaR) minimization method [9], respectively. We choose these two methods for

comparison because the former is a classical and simple approach for VaR and CVaR min-
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imization problem and the latter uses a smooth technique, which is similar to that is used

in our new method.

The CVaR minimization method [19] is an efficient method to solve CVaR minimization

problem. However, a minimal CVaR portfolio does not necessarily have a minimal VaR,

even though the VaR of a portfolio is always smaller than the CVaR of a portfolio. Gaivo-

ronski and Pflug’s quantile-based smoothed VaR (QBSVaR) minimization method [9] uses

a smooth approximation function to replace the VaR function in the VaR minimization

problem. Their approach is based on the definition that VaR is a quantile of the portfolio

losses. This method is complex since it needs to enumerate all possible combinations of

choosing k indices from m numbers. A smooth parameter, ε, is used to control how ac-

curate the approximation is. However, it is very difficult to choose the smooth parameter

and it usually depends on the data. Another drawback of this smooth method is the com-

putational complexity. This method takes O(m3) time to evaluate the objective function

of the optimization problem in addition to evaluating each loss function of the portfolio

where m is the number of scenarios.

We propose a new gradual non-convexation penalty (GNCP) method for the VaR min-

imization problem. We introduce an auxiliary variable α and define VaRβ as the minimum

α value which satisfies the constraint that the probability of loss greater than α cannot

exceed 1− β. The probabilistic constraint is written as a sum of step functions. We use a

piecewise quadratic smooth function to approximate the step function and formulate the

VaR minimization problem as an optimization problem with nonlinear constraint which

is solved by an exact penalty method. Our new method is conceptually simpler than the

quantile-based smoothed VaR method [9]. The computational complexity of our method

is also much better than the quantile-based smoothed VaR method [9]. Our method takes

O(m) work for function evaluation while the quantile-based smoothed VaR method [9]
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takes O(m3) work. Furthermore, our method uses a gradual non-convexation process in

an attempt to track the global minimizer. This process is indexed by a parameter ρ, which

controls how accurate the approximation is. We gradually increase the parameter and solve

the VaR minimization problem by solving a sequence of nonlinearly constrained optimiza-

tion problems using an exact penalty method. This avoids the difficulty in choosing the

smooth parameter.

Computational results are presented to compare the performance between our VaR

minimization method and the other two methods in terms of accuracy and time efficiency.

Both historical and synthetic data are used in the computational investigations. We show

that our new VaR minimization method yields better optimal VaR values for both historical

and synthetic data. The efficient frontier of our GNCP method dominates that of the

QBSVaR method. In addition, our proposed method is computationally more efficient

especially when the number of scenarios, m, is large. The CPU time for our GNCP

method is less than linear with respect to m while that for the QBSVaR method is more

than quadratic with respect to m.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 defines the VaR optimization problem we

want to solve in this thesis. We first introduce the classic Mean-Variance portfolio opti-

mization model. Then we provide the formal definition of VaR and CVaR and formulate

the VaR optimization model. We also give a simple example to illustrate the computational

difficulty in solving the VaR optimization problem.

Chapter 3 reviews Uryasev and Rockafellar’s CVaR optimization method [19]. We show

how CVaR optimization problem can be formulated as a linear programming problem
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which can be solved very efficiently. We also discuss the potential problems in using a

CVaR optimal portfolio as a VaR optimal portfolio.

Chapter 4 reviews Gaivoronski and Pflug’s quantile-based smoothed VaR (QBSVaR)

optimization method [9]. We show how the VaR function can be approximated by a

smoothed function. Potential problems of the QBSVaR optimization method are also

discussed in this chapter.

Chapter 5 proposes our new gradual non-convexation penalty (GNCP) method for

the VaR optimization problem. We compare the smooth technique we use with that of

quantile-based smoothed VaR (QBSVaR) method [9]. We also analyze the computational

cost of our method.

Chapter 6 compares our gradual non-convexation penalty method with the CVaR op-

timization method [19] and the quantile-based smoothed VaR method [9] in terms of the

VaR value achieved and CPU time. We also compare the efficient frontiers obtained from

our method with that obtained from the quantile-based smoothed VaR method [9].

Chapter 7 concludes the main contributions we made in this thesis and gives some

suggestions for future work.
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Chapter 2

Problem Formulation

2.1 Portfolio Optimization

Modern portfolio theory was first introduced by Markowitz in 1952 [12]. The theory is

used to solve the asset selection problem. In this formulation, an optimal portfolio is

determined to maximize the expected return of the portfolio for a given level of portfolio

risk, or equivalently to minimize the portfolio risk for a given level of expected return.

Markowitz assumes that asset returns are jointly normal and defines the risk as variance

or standard deviation of the return.

Suppose we are given a finite set of assets, i = 1, 2, . . . , n, we want to determine the

percentage holding for each asset such that the portfolio meets objectives on return and

risk. We can follow Markowitz’s theory to form the portfolio, i.e., determine the position
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of each asset, using the following formulation:

min
x

xTQx

s.t. E(xT r) ≥ R
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(2.1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the position of each asset in the portfolio, Q is

an n × n covariance matrix of the asset returns, R is a target level of expected return,

E(xT r) = xTE(r) is the expected return of the portfolio. The constraint xi ≥ 0 means

asset position can only be non-negative, i.e., no short selling is allowed.

Problem (2.1) is commonly referred to as the Mean-Variance optimization problem. It

has become a classical problem in modern portfolio optimization. Many variations have

been proposed based on the Mean-Variance optimization model. Equivalently, this problem

can be expressed as follows:

max
x

E(xT r)

s.t. xTQx ≤ R̄
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(2.2)

where R̄ is a target level of risk. Both (2.1) and (2.2) are convex quadratic programming

problems. Efficient optimization methods are available to solve these problems.

Conceptually, the Mean-Variance model is very simple. It only needs the expected

value and the covariance matrix of the asset returns. However, this model assumes that

the return distribution is jointly normal. Usually this assumption is not satisfied in practice.
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Even if the underlying return distribution is normal distribution, we can only obtain the

sample mean and sample covariance matrix, which are estimations of the true asset mean

returns and the true covariance matrix of the returns respectively. The estimation error

may give us poor optimal portfolios. Moreover, the return distribution may be skewed and

risk cannot be quantified by variance or standard deviation of the return. Considering that

VaR and CVaR are risk measures that are suitable for any distribution functions, they can

be a good alternative for these situations.

2.2 VaR and CVaR Definitions

2.2.1 VaR Definition

Value at Risk (VaR) is a way to measure the risk of a portfolio. Given a confidence level

β, VaRβ of a portfolio is the loss of the portfolio such that with β confidence (e.g. 95%),

the portfolio loss will not exceed this value.

Let L be a random loss with probability density function p(L), then the VaR definition

can be expressed as follows:

VaRβ(L) = min{α ∈ R :

∫
L≤α

p(L) dL ≥ β}. (2.3)

In this thesis, the negative of return, denoted by f(x, r) = −xT r, is referred to as loss,

where x = (x1, x2, . . . , xn)T ∈ Rn represents the position of each asset in a portfolio and

r = (r1, r2, . . . , rn)T ∈ Rn is a random vector representing the asset returns.

In the context of portfolio optimization, VaR is a function of asset position x. For a

fixed vector x, the portfolio loss f(x, r) is a random variable in R. VaRβ is the value for

f(x, r) such that with probability β ∈ (0, 1), f(x, r) does not exceed VaRβ. Suppose that
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the probability density function of r is p(r). Then the probability of f(x, r) not exceeding

a threshold α can be written as

ψ(x, α) =

∫
f(x,r)≤α

p(r) dr (2.4)

and VaRβ, denoted by αβ(x), is given by the following equation:

αβ(x) = min{α ∈ R : ψ(x, α) ≥ β}. (2.5)

2.2.2 CVaR Definition

Conditional Value at Risk (CVaR) is a risk measure that is closely related to VaR. For

a fixed vector x representing asset positions, CVaRβ is the conditional expectation of the

portfolio loss that exceeds VaRβ. Following the notation in section 2.2.1, CVaRβ, denoted

by φβ(x), can be written as

φβ(x) = (1− β)−1

∫
f(x,r)≥αβ(x)

f(x, r)p(r) dr. (2.6)

Figure 2.1 illustrates the definition of VaR and CVaR. The shaded area has 1−β of the

total area under the probability density function. The loss corresponding to the left bound

of the shaded area is VaRβ. The expected value of the portfolio loss in the shaded area is

CVaRβ. From the definition and the figure, it is easy to see that for any fixed position x

and confidence level β, VaRβ is always no greater than CVaRβ, i.e., φβ(x) ≥ αβ(x).

2.2.3 Coherent Risk Measure

A risk measure can be treated as a mapping from portfolio return, which is a random

variable, to a real number. Let G be the set of all possible portfolio returns. A risk
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Figure 2.1: Definition of VaR and CVaR

measure ρ : G → R is called a coherent risk measure if it satisfies the following four

properties [2]:

1. Translation invariance: for all X ∈ G and all α ∈ R+, ρ(X + α) = ρ(X) + α.

2. Subadditivity: for all X1 and X2 ∈ G, ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

3. Positivity homogeneity: for all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X).

4. Monotonicity: for all X and Y ∈ G such that X ≤ Y , ρ(Y ) ≤ ρ(X).

Pflug [16] shows that CVaR satisfies all the four properties and therefore, it is a coherent

risk measure. However, VaR only satisfies properties of translation invariance, positivity

homogeneity, and monotonicity. It does not satisfy the property of subadditivity and hence

it is not a coherent risk measure.
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Although CVaR has better property in terms of coherency than VaR, VaR is still

very popular both in industry and research. The problem of the choice between VaR

and CVaR, especially in financial risk management, has been quite popular in academic

literature. Reasons affecting the choice between VaR and CVaR are based on the differences

in mathematical properties, stability of statistical estimation, simplicity of optimization

procedures, acceptance by regulators, etc [17]. Sarykalin et al. [17] claim that VaR also

has better property than CVaR such as stability of estimation procedures. Because VaR

disregards the tail, it is not affected by very high tail losses, which are usually difficult to

measure.

2.3 VaR Minimization Problem

In Markowitz’s Mean-Variance optimization model, variance is used as a risk measure.

Some variations of the model can be made by replacing variance with other risk measures.

As mentioned above, VaR is a risk measure. It can be used as a substitution for variance.

Replacing variance with VaR in model (2.1) gives us a Mean-VaR optimization model.

Suppose that we are given a finite set of assets, i = 1, 2, . . . , n, and each asset i has m

sample returns r
(1)
i , r

(2)
i , . . . , r

(m)
i . We want to form a portfolio, i.e., determine the position

of each asset x = (x1, x2, . . . , xn)T ∈ Rn, such that VaRβ of the portfolio loss is minimized

for a target level of expected return R. This problem can be formulated using equation

13



(2.7) below,

min
x

VaRβ(−xT r)

s.t. E(xT r) ≥ R
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(2.7)

In contrast to the Mean-Variance optimization problem (2.1), Mean-VaR optimization

problem (2.7) is very difficult to solve. The objective function is non-smooth, non-convex,

and has many local minima. The main contribution of this thesis is that we propose an

efficient method to solve Mean-VaR optimization problem. For ease of exposition, we first

focus on the difficult part of the problem and we omit, for now, the first constraint on the

return in problem (2.7). This gives us the following VaR minimization problem:

min
x

VaRβ(−xT r)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(2.8)

We now use a very simple example to show how difficult it is to solve problem (2.8).

We use 1,000 daily returns of two stocks, AA and AXP, in Dow Jones stock index from

September 4th, 1991 to August 17th, 1995. We want to form a two-asset portfolio that

minimizes VaR0.95 of the portfolio. The weight of each asset in the portfolio is written as

x = (x1, x2)T = (w, 1− w)T , w ∈ [0, 1].

Figure 2.2 shows the VaR0.95 and CVaR0.95 of the portfolio with respect to w. We can

see that the VaR function is non-smooth, non-convex, and has many local minima. The

VaR optimization problem is generally sensitive to the starting point. Different starting

point may yield different local minimizer. However, the CVaR function is convex, smooth
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Figure 2.2: VaR0.95 and CVaR0.95 with respect to asset 1 position for a two-asset portfolio

and has only one local minimum, which is also a global minimum. This makes it easy

to optimize. Meanwhile, we also see that the VaR function and the CVaR function do

not achieve global minimum at the same value of w. This simple example shows that

minimizing VaR of a portfolio is computationally challenging. In practice, we can have

hundreds and thousands of assets and therefore the problem of minimizing VaR is much

more complex than this example.
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Chapter 3

CVaR Minimization

Uryasev and Rockafellar [19] propose an efficient CVaR optimization method. Their focus

is, however, on minimizing Conditional Value at Risk (CVaR). In addition, they believe

that their algorithm also yields a good approximation of a solution for minimizing VaR since

they believe that portfolios with low CVaR typically have low VaR as well. In this chapter,

we briefly present the CVaR minimization method [19]. We also discuss advantages and

disadvantages in using this method to obtain an optimal VaR portfolio. In Chapter 6 we

will compare VaR given by the CVaR minimization method with the optimal VaR from

our algorithm.

3.1 CVaR Minimization

Similar to a Mean-VaR optimization problem (2.7), a Mean-CVaR optimization problem

is also a variation of Mean-Variance optimization problem (2.1), obtained by replacing
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variance with the CVaR risk measure. It can be formulated as follows:

min
x

CVaRβ(−xT r)

s.t. E(xT r) ≥ R
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.1)

Since we first want to focus on the VaR minimization problem (2.8), which does not

take the constraint on expected portfolio return into consideration, we also omit the first

constraint in problem (3.1) for now and consider first the following CVaR minimization

problem:

min
x

CVaRβ(−xT r)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.2)

3.2 Solving CVaR Minimization Problems

Uryasev and Rockafellar [19] propose an efficient method to solve CVaR minimization

problem (3.2). The key to their method is to define an auxiliary function Fβ on X × R,

where X ⊆ Rn is a feasible region of asset positions. The definition of Fβ is shown in the

equation below.

Fβ(x, α) = α + (1− β)−1

∫
r∈Rn

[f(x, r)− α]+p(r) dr (3.3)

[t]+ =

t if t > 0

0 if t ≤ 0

(3.4)
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Uryasev and Rockafellar show that (see Uryasev and Rockafellar [19], Theorem 1 and

Theorem 2), under the assumption that the probability density function p(r) does not have

jumps, Fβ(x, α) is convex and continuously differentiable as a function of α. CVaRβ of the

loss associated with any x ∈ X can be determined from the formula

φβ(x) = min
α∈R

Fβ(x, α). (3.5)

The set consisting of the values of α for which the minimum is attained, namely

Aβ(x) = argmin
α∈R

Fβ(x, α), (3.6)

is a nonempty, closed, bounded interval (possibly a single point), and the VaRβ of the loss

is given by

αβ(x) = left endpoint of Aβ(x). (3.7)

In particular, one always has

αβ(x) ∈ argmin
α∈R

Fβ(x, α) and φβ(x) = Fβ(x, αβ(x)). (3.8)

Minimizing the CVaRβ of the loss associated with x over all x ∈ X is equivalent to

minimizing Fβ(x, α) over all (x, α) ∈ X× R, i.e.,

min
x∈X

φβ(x) ≡ min
(x,α)∈X×R

Fβ(x, α). (3.9)

Moreover a pair (x∗, α∗) achieves the minimum on the right-hand side of (3.9) if and only

if x∗ achieves the minimum on the left-hand side and α∗ ∈ Aβ(x∗).

Computationally, the integral in definition (3.3) can be approximated by sampling the

probability distribution of r according to its density function p(r). If we have m historical

returns of n assets, we can treat them as the sample returns from the return distribution.
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Denote the sample returns as r(1), r(2), . . . , r(m), the approximation to Fβ(x, α) can be

written as

F̃β(x, α) = α +
1

m(1− β)

m∑
k=1

[f(x, r(k))− α]+. (3.10)

Then the CVaR minimization problem (3.2) can be approximated by

min
x,α

α + 1
m(1−β)

m∑
k=1

[−xT r(k) − α]+

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.11)

Problem (3.11) can be reduced to a linear programming problem by using auxiliary

variables zk, k = 1, 2, . . . ,m:

min
x,α,z

α + 1
m(1−β)

m∑
k=1

zk

s.t. zk ≥ 0 k = 1, 2, . . . ,m

xT r(k) + α + zk ≥ 0 k = 1, 2, . . . ,m
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.12)

Many optimization software packages, e.g., MOSEK and CPLEX, can be used to solve

problem (3.12) efficiently.

Alexander et al. [1] propose another computationally efficient method for solving prob-

lem (3.11). They replace the piecewise linear function [t]+ in equation (3.11) with a continu-

ously differentiable piecewise quadratic approximation function τδ(t). For a given resolution
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parameter δ > 0,

τδ(t) =


t if t ≥ δ

t2

4δ
+ 1

2
t+ 1

4
δ if − δ ≤ t ≤ δ

0 if t ≤ −δ

. (3.13)

Then the CVaR minimization problem (3.11) can be rewritten as following:

min
x,α

α + 1
m(1−β)

m∑
k=1

τδ(−xT r(k) − α)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.14)

The advantage of this method is that the dimension of problem (3.14) is O(n) instead of

O(m+ n) as in problem (3.12).

3.3 Problems with Minimization VaR via Minimizing

CVaR

The CVaR minimization method [19] is a very accurate and efficient method for the CVaR

optimization problem. Considering the fact that VaRβ is always smaller than CVaRβ for

any fixed vector x and β, Uryasev and Rockafellar [19] claim that the optimal CVaR

portfolio also has a small VaR value and therefore, the portfolio formed using this method

is a good approximation for VaR minimization problem (2.8). Moreover, they show that

if the loss associated with each x is normally distributed, as holds when r is normally

distributed, and β ≥ 0.5, the optimal solution for the CVaR minimization problem (3.1) is

also optimal for the VaR minimization problem (2.7) and the Mean-Variance optimization

problem (2.1) as well (see Uryasev and Rockafellar [19], Proposition).
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However, the problem of using this method to obtain an optimal VaR portfolio is that

the probability density function p(r) may not be normal. Moreover, in practice, we may

want to solve VaR optimization problems based on sample directly. Even if the probability

density function p(r) is normal, the sample returns may differ greatly from the underlying

distribution when the sample size, m, is small. In this case, the minimal CVaRβ portfolio

is not necessarily a minimal VaRβ portfolio. A method that minimizes VaR directly may

yield better results. In Chapter 6, we will compare VaR provided by the optimal CVaR

portfolio with that given by our GNCP VaR minimization method proposed in Chapter

5. We will see that the optimal CVaR portfolios can be significantly suboptimal VaR

portfolios.
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Chapter 4

A Smoothing Method for Minimizing

VaR

More recently, Gaivoronski and Pflug [9] propose a quantile-based smoothed VaR (QB-

SVaR) method for VaR optimization problem (2.8). When a finite set of scenarios are

given, VaR can be expressed as a k-quantile loss for an integer k. Using this, the VaR

function is represented as a weighted combination of the portfolio loss,
∑m

i=1 c̃i(−xT r(i)),

in which the i-th coefficient, c̃i, is an indicator of whether the i-th loss scenario, −xT r(i),

is the k-quantile loss. Specifically, the i-th indicator coefficient is determined by checking

whether there exists a subset of exactly k losses, excluding the i-th loss, such that all these

losses do not exceed the i-th loss. This combinatorial search leads to a function whose

evaluation has an exponential computational complexity in the number of scenarios, when

no smoothing heuristics is applied. They apply a smooth technique on the indicator func-

tion and obtain a quantile-based smoothed VaR function, which is an approximation to

the original VaR function. Different from the VaR function, the quantile-based smoothed
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VaR function is twice continuously differentiable. Therefore it is much easier to solve the

quantile-based smoothed VaR minimization problem than to solve the original VaR min-

imization problem. However, this method is not computationally efficient. Although the

smooth technique on the indicator function reduces the time for combinatorial search from

exponential time to cubic time, O(m3), where m is the number of scenarios, the cubic

computational complexity for function evaluation is still unsatisfactory.

4.1 Quantile-Based Smoothed VaR Approximation

From the simple example in section 2.3, we can see that although the VaR function with

respect to the portfolio positions is non-smooth, non-convex, non-differentiable, and has

many local minima, it still has some patterns. Specifically, we can regard the VaR function

as a superposition of two components. One is the global component that represents the

macrostructure of the VaR function. The other is the local component, introduced by step

function in the quantile definition, that is responsible for the small irregularity of the VaR

function. The key idea of the quantile-based smoothed VaR function is to extract the

global component of the VaR function and filter out the local component.

Gaivoronski and Pflug [9] first express the VaR function as a linear combination of all

the sample losses with the coefficients being the sum of some indicator functions. In fact,

this expression is exactly the β quantile of the portfolio loss, where β is the confidence level

for VaR. Then they rewrite the indicator function as the product of step functions. After

that, they use a smooth function to replace the step function in the formulation of the

VaR function and get an approximation of the original VaR function. This approximation

function is smooth and twice continuously differentiable and we refer it as a quantile-based

smoothed VaR (QBSVaR) function.
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We now describe their approach in details, following Gaivoronski and Pflug’s notation.

Let us use the function M[k:m](u
1, u2, . . . , um) to denote the k-th smallest value among

u1, u2, . . . , um. Suppose we have a finite number of sample returns r(1), r(2), . . . , r(m). For

any fixed vector x that represents the asset positions, the VaRβ of the portfolio can be

written as

VaRβ = M[bβmc:m](−xT r(1),−xT r(2), . . . ,−xT r(m)). (4.1)

The VaR definition they use is slightly different from our definition. According to our

VaR definition (2.5), bβmc should be dβme in equation (4.1). In our computational inves-

tigations, we always choose an integer value for βm and therefore, there is no difference

between the two definitions.

Let us denote the loss of the portfolio corresponding to the i-th sample return fi(x) =

−xT r(i). For a given integer k, 0 ≤ k ≤ m− 1, and vector x, we define the function

G(k,x) = fj(x), j = j(x) (4.2)

such that j satisfies the following two conditions:

1. Inequality fj(x) ≤ fi(x) is satisfied for at least k functions fi(x), i 6= j.

2. Inequality fj(x) ≥ fi(x) is satisfied for at least m− k − 1 functions fi(x), i 6= j.

The definition of G(k,x) shows that for a finite collection of functions fi(x), i =

1, 2, . . . ,m, G(k,x) always equals to the function fj(x) such that there are at least k

functions that are greater than or equal to it and at least m − k − 1 functions that are

smaller than or equal to it, i.e., G(k,x) is the k-th largest loss. Hence, the VaRβ definition

in equation (4.1) can be written as

VaRβ = M[bβmc:m](−xT r(1),−xT r(2), . . . ,−xT r(m)) = G(m− bβmc,x). (4.3)
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In fact, the function G(m− bβmc,x) express VaRβ as the β quantile of the portfolio loss.

Consequently, the VaR optimization problem (2.8) can be written as

min
x

G(m− bβmc,x)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(4.4)

The next step is to find an approximation function, Gε(k,x), of the VaR function

G(k,x) such that

1. Gε(k,x) is twice continuously differentiable with respect to x for all ε > 0.

2. Gε(k,x)→ G(k,x) as ε→ 0.

The function Gε(k,x) is a smooth approximation of the original quantile-based VaR func-

tion G(k,x), and therefore we refer it as the quantile-based smoothed VaR (QBSVaR)

function of the portfolio.

Gaivoronski and Pflug [9] first use a linear combination of the loss functions fi(x)

to represent G(k,x) with all the coefficients being a function of x. And then they use

some smooth functions to approximate the coefficients and obtain the QBSVaR function

Gε(k,x). Before we give the expressions for the coefficients and the QBSVaR function, we

introduce some notations that are used in [9]:

• M i: the set of all integers from 1 to m except i, i.e., M i = {1, 2, . . . ,m}\{i}

• Λi
k: an arbitrary subset of M i which contains exactly k elements

• X(Λi
k): a subset of Rn associated with the set Λi

k such that

X(Λi
k) = {x : fi(x) ≤ fj(x) for j ∈ Λi

k, fi(x) ≥ fj(x) for j ∈M i\Λi
k}
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• Θk
i : the family of all different sets Λi

k

Gaivoronski and Pflug [9] show that (see Gaivoronski and Pflug [9], Lemma 1) the VaR

function G(k,x) can be expressed using the following form:

G(k,x) =
1

C(x)

m∑
i=1

ci(x)fi(x) (4.5)

where

C(x) =
m∑
i=1

ci(x) (4.6)

ci(x) =
∑

Λik∈Θik

IX(Λik)(x) (4.7)

IX(Λik)(x) =
∏
j∈Λik

I−
(
fi(x)− fj(x)

) ∏
j∈M i\Λik

I−
(
fj(x)− fi(x)

)
(4.8)

I−(z) =

1 if z ≤ 0

0 if z > 0

. (4.9)

The indicator function IX(Λik)(x) in equation (4.8) equals to 1 only if the index set Λi
k is

chosen such that all the losses corresponding to the indices in the set are no less than fi(x)

and all the losses corresponding to the indices not in the set are no greater than fi(x).

This means fi(x) is the k-th largest loss among all the losses. Hence ci(x) > 0 only when

the i-th loss fi(x) is VaRβ of the portfolio.

Although the loss function fi(x) = −xT r(i) is a linear function (thus twice continuously

differentiable), the indicator function IX(Λik)(x) in equation (4.8) is not continuous and this

makes the VaR function G(k,x) not continuously differentiable. Gaivoronski and Pflug

[9] use the following statement to get the QBSVaR function Gε(k,x) (see Gaivoronski and

Pflug [9], Theorem 2). Let ϕε(z) be a function defined for z ∈ R and ε ≥ 0 such that
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1. ϕε(z) is twice continuously differentiable for ε > 0

2. ϕε(z)→ 1 as ε→ 0 for any fixed z ≤ 0

3. ϕε(z)→ 0 as ε→ 0 for any fixed z > 0

4. ϕε(z) ≥ 0 for all ε ≥ 0, z and ϕε(z) ≥ χ0 for some χ0 > 0 and all ε ≥ 0, z ≤ 0.

Then the function Gε(k,x) defined below,

Gε(k,x) =
1

Cε(x)

m∑
i=1

cεi(x)fi(x), (4.10)

where

Cε(x) =
m∑
i=1

cεi(x), (4.11)

cεi(x) =
∑

Λik∈Θik

∏
j∈Λik

ϕε
(
fi(x)− fj(x)

) ∏
j∈M i\Λik

ϕε
(
fj(x)− fi(x)

)
, (4.12)

is twice continuously differentiable for all ε > 0, assuming {fi(x)} are twice continuously

differentiable. In addition, Gε(k,x)→ G(k,x) as ε→ 0 for any fixed x.

Gaivoronski and Pflug [9] choose the following cubic spline function for ϕε(z):

ϕε(z) =



1 if z ≤ 0

1− 16
3ε3
z3 if 0 ≤ z ≤ ε

4

5
6

+ 2
ε
z − 8

ε2
z2 + 16

3ε3
z3 if ε

4
≤ z ≤ 3ε

4

16
3
− 16

ε
z + 16

ε2
z2 − 16

3ε3
z3 if 3ε

4
≤ z ≤ ε

0 if z ≥ ε

. (4.13)

As ε→ 0, ϕε(z) will approach to the step indicator function I−(z) in equation (4.9).
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Figure 4.1: Plots of I−(z) and ϕε(z), ε = 1, 0.1, 0.01, 0.001

.

Figure 4.1 shows plots of I−(z) and ϕε(z) when ε = 1, 0.1, 0.01, 0.001. The solid line

is the plot of I−(z). The thin dash-dot line at the top is ϕε(z) when ε = 1. The dashed

line below it is ϕε(z) when ε = 0.1. The thick dash-dot line is ϕε(z) when ε = 0.01. The

dotted line is ϕε(z) when ε = 0.001. The smooth function ϕε(z) only differs from the step

indicator function I−(z) in the interval [0, ε]. We see that as ε becomes smaller, this gap

will be smaller.

The key idea of the QBSVaR function Gε(k,x) is to rewrite the indicator function IX(Λik)

as a product of some step indicator functions I−(z), and then use a smooth function ϕε(z)

to approximate the step indicator function I−(z). Equation (4.12) shows that in order to

compute cεi(x), we need to enumerate all the possible combinations of choosing k indices

from m numbers. Thus computational cost grows exponentially. Gaivoronski and Pflug [9]

show that the computational cost can be reduced if we choose the smooth function ϕε(z)
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according to equation (4.13). We will present this analysis in section 4.2.

The parameter ε in the QBSVaR function plays an important role. The QBSVaR

function Gε(k,x) is defined such that Gε(k,x) → G(k,x) as ε → 0. Meanwhile it is

easy to verify that Gε(k,x) → 1
m

∑m
i=1 fi(x) as ε → ∞ which is the average loss of the

portfolio and is twice continuously differentiable. Hence the choice of the parameter ε

determines how accurate and how smooth the approximation is. If the value of ε is large,

the corresponding QBSVaR function is smoother and easy to optimize. Unfortunately, the

approximation loses a lot of information of the original VaR function. On the other hand,

if ε is small, the approximation is very accurate while the VaR minimization problem is

difficult to solve with many local minimizers. The choice of ε is a tradeoff between difficulty

and accuracy.

4.2 A Quantile-Based Smoothed VaR Minimization

Method

Replacing VaRβ with the quantile-based smoothed VaR function Gε(m − bβmc,x) in e-

quation (2.8), we have the following quantile-based smoothed VaR minimization problem:

min
x

Gε(m− bβmc,x)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(4.14)

Computationally, the QBSVaR minimization method [9] consists of the following three

steps:
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Step 1 Construct a QBSVaR function Gε(m−bβmc,x) that extracts the global component

of the VaR function. Use the QBSVaR function to formulate the VaR optimization

problem as equation (4.14).

Step 2 Solve the smooth approximation problem (4.14) by some standard software for

nonlinear programming problems.

Step 3 Postprocess the computed solution obtained in Step 2.

One of the key parts of the QBSVaR minimization method [9] is Step 1. Gaivoronski

and Pflug [9] mention that general approximation techniques, such as spline approximation

can be used for the QBSVaR function. However, the problem is that those approximations

may not be efficient in computational time, since it grows fast with n, the dimension of

the portfolio. Considering that we need to evaluate the QBSVaR function many times in

the procedure of optimization, these methods are impractical. As mentioned in section

4.1, the computational cost is still large to compute the coefficients cεi(x) as we need to

enumerate all the possible combinations of choosing k indices fromm numbers. Gaivoronski

and Pflug [9] show that (see Gaivoronski and Pflug [9], Lemma 3 and Theorem 5) if the

function ϕε(z) is chosen according to equation (4.13), the approximation function Gε(k,x)

can be equivalently expressed as follows:

Gε(k,x) =
1

Cε(x)

∑
{i:|G(k,x)−fi(x)|≤ε}

cεi(x)fi(x). (4.15)

This means only a few coefficients cεi(x) need to be computed for each fixed vector x. This

reduces the time it needs to compute the approximation function Gε(k,x). Furthermore,

they provide an algorithm for which the number of additional arithmetic operations, NG,

necessary for computation of Gε(k,x) for any fixed k, ε and x can be estimated as follows:

NG ≤ (1 + sm)m3 (4.16)
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where m is the number of functions fi(x), sm → 0 as m → ∞, sm ≤ 15 and sm does

not depend on the dimension of vector x. Although it is a great progress compared to

exponential time, it is still cubic in m for just one function evaluation.

For Step 2, Gaivoronski and Pflug [9] use fmincon subroutine from MATLAB Opti-

mization Toolbox to solve the nonlinear quantile-based smoothed VaR optimization prob-

lem (4.14). This subroutine uses an iterative method to solve a constrained nonlinear

optimization problem. For each iteration, the computational cost consists of three parts.

The first part is function evaluation, including evaluating the objective function and the

constraints. For problem (4.14) the constraint is linear and the time for this part main-

ly depends on the time for objective function evaluation, which is O(m3) in addition to

evaluating each loss function. The second part is gradient and hessian evaluation. Since

the objective function is complex, it is not easy to give an analytic form for the gradient

and the hessian of the objective function Gε(k,x). The fmincon subroutine uses finite

difference to approximate the gradient and calculates the hessian by a dense quasi-Newton

approximation. The time complexity is O(nm3). The third part is to solve an n-by-n

linear system of equation, which takes O(n3) time. In practice, the number of samples m

is usually greater than the number of assets n. Therefore, the computational time for each

iteration is O(nm3).

The solution we obtain from Step 2 is a local minimizer of the QBSVaR function. Step 3

in the QBSVaR minimization method [9] tries to make further improvement on the solution

obtained from Step 2 as follows. Let us denote xSVaR the optimal solution obtained from

Step 2. Gaivoronski and Pflug [9] propose to solve the following optimization problem for
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Step 3:

min
x

fj(x)

s.t. fi(x)− fj(x) ≤ 0, i ∈ Λ

fi(x)− fj(x) ≥ 0, i /∈ Λ
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(4.17)

where j is the index such that VaRβ = fj(xSVaR), Λ is an arbitrary set of bβmc indices i

that satisfy fi(xSVaR) ≤ fj(xSVaR). This linear programming program fixes the index that

achieves VaRβ and the indices below and over the VaRβ value and optimizes the quantile

function. Gaivoronski and Pflug [9] believe that the improvement of VaR is relatively small

using this method and therefore the postprocessing procedure is optional.

4.3 Problems with the Quantile-Based Smothed VaR

Minimization Method

The quantile-based smoothed VaR minimization method [9] is a reasonable approximation

method for the VaR minimization problem (2.8). However, this method has three problems.

The first problem of the QBSVaR minimization method [9] is the computational time

complexity. Gaivoronski and Pflug [9] show that the computational time complexity to

evaluate the approximation function Gε(k,x) is O(m3) where m is the number of return

samples, plus the time to evaluate the loss functions fi(x), i = 1, 2, . . . ,m. As we mentioned

in section 4.2, we need to evaluate Gε(k,x) many times for the optimization procedure.

This is costly even if the the time for each function evaluation is O(m3). Especially when

the number of scenarios, m, is large, the computational time complexity is unsatisfying.
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Our new VaR minimization method, which will be proposed in Chapter 5, has much better

performance in terms of efficiency than the QBSVaR minimization method [9]. In Chapter

6, we will also present the results that compare the CPU time of the QBSVaR minimization

method and our new VaR minimization method on both historical and synthetic data sets.

The second problem of the QBSVaR minimization method [9] is that it is difficult

to compute the first and the second order derivatives of the objective function. When

solving an optimization problem, the gradient and the hessian of the objective function

are often needed. Optimization solvers usually compute the gradient and the hessian by

using some numeric methods such as finite difference. If the analytic forms of the gradient

and the hessian of the QBSVaR function are provided, the optimization problem can be

solved more efficiently and accurately. Gaivoronski and Pflug [9] do not take advantage

of the analytic forms of the gradient and the hessian of the QBSVaR function in their

QBSVaR minimization method. In fact, although the QBSVaR function Gε(k,x) is twice

continuously differentiable, the analytic form of the gradient and the hessian are very

complicated since the coefficient cεi(x) is the sum of a few products of m − 1 functions

ϕε(z). Therefore, the fmincon subroutine needs to numerically approximate the gradient

and the hessian of the objective function. The complexity of function evaluation makes

gradient and hessian evaluation difficult and potentially unnecessarily expensive.

The third problem of the QBSVaR minimization method is the difficulty in choosing

the parameter ε. As we mentioned previously, the choice of the parameter ε determines

how accurate the approximation is and how difficult it is to solve the optimization problem.

It is a tradeoff between accuracy and difficulty. Gaivoronski and Pflug [9] do not give any

suggestion on how to choose the parameter ε. In practice, the choice of parameter depends

on the data set that we use and it is usually hard to determine whether the value of the

parameter is a good choice for the data set. As the size of the problem increases, the choice
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for the parameter becomes even more difficult since the VaR function is higher dimensional

and has more local minima. On one hand, the parameter, ε, should be large enough to

make the optimization problem easy to solve. However, on the other hand, large ε means

losing much information of the VaR function. And also the effect of reducing the time to

evaluate the QBSVaR function Gε(k,x) induced by equation (4.15) is less prominent. The

conflict becomes intensive for large scale problems.
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Chapter 5

A Gradual Non-Convexation Penalty

Method for Minimizing VaR

In this chapter, we propose a new method for the VaR minimization problem (2.8). Similar

to Gaivoronski and Pflug [9], we also use a smooth function to approximate the step func-

tion in our formulation. However, the difference is that we introduce an auxiliary variable

α and express the VaRβ of a portfolio as the minimum loss value α such that the probabil-

ity of a loss exceeding α is no greater than (1− β). Hence, the VaR definition becomes a

probabilistic constraint of an optimization problem. This avoids combinatorial complexity

in using quantile as a definition of VaR. A gradual non-convexation optimization process

is introduced to facilitate tracking the global minimizer. The computational complexity

of function and constraint evaluation for this method is O(m), where m is the number of

scenarios. This technique is similar to Coleman et al. [5] for the index tracking problem of

finding a portfolio that minimizes a chosen measure of the index tracking error. We now

apply this technique to the VaR minimization problem (2.8).
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5.1 An Equivalent VaR Optimization Formulation

Let I+(z) denote a step indicator function defined by the following equation:

I+(z) =

1 if z > 0

0 otherwise

. (5.1)

Suppose we are given n assets, each of which has m sample returns. Let r(i) ∈ Rn denote

the i-th sample return of assets in the portfolio, 1 ≤ i ≤ m. Let x = (x1, x2, . . . , xn)T ∈ Rn

denote the percentage positions of the assets in a portfolio. Then the VaR optimization

problem (2.8) can be formulated as follows:

min
x,α

α

s.t.
m∑
i=1

I+(−xT r(i) − α) ≤ (1− β)m

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(5.2)

In the optimization problem (5.2), the objective function α ∈ R is an auxiliary variable.

If the i-th loss, −xT r(i), is greater than α, the step function I+(−xT r(i) − α) equals 1,

otherwise, it equals 0. Therefore the left-hand side of the first constraint in problem

(5.2), the probabilistic constraint, is the number of sample losses that are greater than α.

This constraint means the number of sample losses that are greater than α cannot exceed

(1 − β)m. Hence, the minimum α value satisfying the probability constraint yields VaRβ

of a portfolio.

Theorem 1. Under the assumption that βm is an integer, optimization problem (4.4) and

optimization problem (5.2) are equivalent in the sense that they give the same minimum

VaRβ of the portfolio.
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Proof. First, as we mentioned before, the VaR definition of Gaivoronski and Pflug [9]

is slightly different from our VaR definition. The two definitions are equivalent when

bβmc = dβme, i.e., βm is an integer. In our proof, we assume that βm is an integer.

Let fi(x) = −xT r(i), i = 1, 2, . . . ,m be m losses of the portfolio in increasing order,

fi(x) ≤ fi+1(x). We need to prove that for any fixed vector x ∈ Rn such that
∑n

i=1 xi = 1

and xi ≥ 0, i = 1, 2, . . . , n, the optimal solution α∗ for problem (5.2) is equal to the β

quantile of the portfolio, i.e., α∗ = fβm(x).

Let ᾱ = fβm(x). We first show that (ᾱ,x) is a feasible solution for problem (5.2). Let j

be the smallest index such that fj(x) > ᾱ. Since fi(x) is in increasing order, j ≥ βm+ 1.

Then m− (j− 1) ≤ m− βm. There are m− (j− 1) losses that are greater than ᾱ. Hence,∑m
i=1 Λ+(−xT r(i)−ᾱ) = m−(j−1) ≤ m−βm = (1−β)m, i.e., the probabilistic constraint

in equation (5.2) is satisfied and (ᾱ,x) is a feasible solution for problem (5.2).

Secondly, for any α < ᾱ, we need to show that (α,x) is not feasible. Let l be the largest

index such that fl(x) ≤ α. Then l ≤ βm− 1. There are m− l losses that are greater than

α. Hence
∑m

i=1 Λ+(−xT r(i) − α) = m − l ≥ m + 1 − βm > (1 − β)m. The probabilistic

constraint in equation (5.2) does not hold and (α,x) is not feasible.

Therefore, for any fixed feasible vector x, (α∗,x) is an optimal solution for problem

(5.2) where α∗ = fβm(x), i.e. problem (4.4) and problem (5.2) are equivalent.

Compared to the quantile-based VaR optimization problem (4.4), our VaR optimization

formulation (5.2) is much simpler. Both the objective function and the constraint can be

evaluated in linear time rather than cubic time. However, the first constraint is a summa-

tion of m step functions, which are non-smooth and non-convex. Hence the optimization

problem (5.2) is still difficult to solve. Similar to the QBSVaR method [9], we want to use
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Figure 5.1: Plots of hλ(z) and I+(z), λ = 4× 106

.

a smooth function to approximate the step function and make it easier to solve problem

(5.2). We will explain our method in detail in section 5.2.

5.2 A Smoothed Approximation Function

First, we know that the step function I+(z) is not continuous at z = 0. We use the following

continuous function hλ(z) to approximate the step function I+(z):

hλ(z) =


1 if z > 1√

λ

λz2 if 0 < z ≤ 1√
λ

0 if z ≤ 0

. (5.3)

Figure 5.1 shows plots of I+(z) and hλ(z) respectively. The thick line is the plot of

the step function I+(z). The thin line is plot of the approximation function hλ(z) when
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λ = 4×106. We can see that hλ(z) is equal to I+(z) outside the interval [0, 1√
λ
]. While inside

the interval, we use a quadratic function which is equal to 0 at z = 0 and is equal to 1 at

z = 1√
λ

to approximate I+(z). Hence for any fixed parameter λ ∈ R+, the function hλ(z) is

continuous for any z ∈ R. The functions hλ(z) and I+(z) only differ in the interval [0, 1√
λ
].

In order to be a good approximation for I+(z), the parameter, λ, should be sufficiently

large.

The function hλ(z) is continuous but not differentiable at z = 1√
λ
. Hence it is still not

suitable for typical optimization software. We now define a new function gλ(z; ρ), indexed

by a parameter ρ > 0, to approximate hλ(z) as follows:

gλ(z; ρ) =



1 if z ≥ γ

1− ρ
2
(z − γ)2 if κ ≤ z ≤ γ

λz2 if 0 ≤ z ≤ κ

0 if z ≤ 0

(5.4)

where

γ =

√
2

ρ
+

1

λ
, κ =

1

λγ
, (5.5)

ρ > 0 is a parameter of the approximation. The function gλ(z; ρ) is a piecewise quadrat-

ic function. Inside each interval, (−∞, 0), (0, κ), (κ, γ), and (γ,∞), gλ(z; ρ) is differ-

entiable. Let g′+(z; ρ) and g′−(z; ρ) denote the right and the left limit of the function

g(z; ρ) respectively. When z = 0, g′+(0; ρ) = 2λz|z=0 = 0 = g′−(0; ρ). When z = γ,

g′−(γ; ρ) = −ρ(z − γ)|z=γ = 0 = g′+(γ; ρ). When z = κ, g′−(κ; ρ) = 2λz|z=κ = 2λκ = 2
γ
,

g′+(κ; ρ) = −ρ(z − γ)|z=κ = −ρ(κ − γ) = − 2
γ2− 1

λ

( 1
λγ
− γ) = 2

γ
, hence g′−(κ; ρ) = g′+(κ; ρ).

We have shown that at the endpoints of the interval, z = 0, z = κ, and z = γ, gλ(z; ρ) is

also differentiable and the derivative is continuous. Therefore, for any fixed ρ ∈ R+, the

function gλ(z; ρ) is continuously differentiable at any point z ∈ R.
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Figure 5.2: Plots of hλ(z) and gλ(z; ρ), λ = 4× 106, ρ = 0.01, 1, 100, 10000

.

A function f : Rn → R is called quasiconvex (or unimodal) if its domain and all its

sublevel sets

Sζ = {z ∈ dom f |f(z) ≤ ζ},

for ζ ∈ R, are convex (Boyd and Vandenberghe [4]). For a fixed ρ ∈ R+, the function

gλ(z; ρ) is a real value function on R. Since gλ(z; ρ) is non-decreasing, each sublevel sets

of it is an interval, i.e., a convex set. Therefore, gλ(z; ρ) is a quasiconvex function for any

fixed ρ ∈ R+.

Figure 5.2 shows plots of hλ(z) and gλ(z; ρ) with λ = 4×106 and ρ = 0.01, 1, 100, 10000

respectively. The thin dash-dot line at the bottom is gλ(z; 0.01). The dashed line above it is

gλ(z, 1). The thick dash-dot line in the middle is gλ(z; 100). The dotted line is gλ(z; 10000).

The solid line at the top is hλ(z). We can see that as ρ→∞, gλ(z; ρ) approaches to hλ(z).

In Figure 5.2, gλ(z; 10000) is very close to hλ(z) and they only differ in a very small interval

40



[κ, γ] to the right of z = 0. Actually, it is easy to verify that κ→ 0 and γ → +∞ as ρ→ 0,

κ → 1√
λ

and γ → 1√
λ

as ρ → +∞. This means that when ρ is very small, the interval

[κ, γ] occupies almost the whole range of R+ and gλ(z; ρ) is close to a linear function in

this interval. When the value of ρ increases, the length of the interval [κ, γ] will shrink to

zero and gλ(z; ρ) will approach to hλ(z).

Using gλ(z; ρ) to replace I+(z) in problem (5.2), we get the following optimization

problem which is an approximation of the VaR minimization problem (2.8).

min
x,α

α

s.t. Hλ(x; ρ) ≤ (1− β)
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n,

(5.6)

where

Hλ(x; ρ) =
1

m

m∑
i=1

gλ(−xT r(i) − α; ρ). (5.7)

When the parameter ρ is small, problem (5.6) is similar to a linear programming problem

and thus close to a convex optimization problem. As we gradually increase ρ, problem (5.6)

gradually becomes non-convex. The optimal α when ρ is sufficiently large gives optimal

VaRβ of a portfolio. In the next section, we will show how to solve this problem.

5.3 Solving Optimization Problems

5.3.1 Exact Penalty Methods

An exact penalty method can be used to solve a constrained optimization problem. The

key idea of a penalty function method is to eliminate a constraint by penalizing constraint
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violation in the objective function appropriately. For example, the nonlinearly constrained

problem (5.6) can be solved using the following exact penalty method:

min
x∈Ω,α

α + µ ·max (Hλ (x; ρ)− (1− β), 0) (5.8)

where Ω = {x ∈ Rn|
n∑
i=1

xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}.

The parameter, µ, in problem (5.8) is an exact penalty parameter corresponding to

the probabilistic constraint in problem (5.6). It should be sufficiently large. When the

probabilistic constraint in problem (5.6) is satisfied, the penalty term does not have any

impact on the objective function in problem (5.8). On the other hand, if the constraint is

not satisfied, the penalty term µ ·max (Hλ (x; ρ)− (1− β) , 0) is large and this makes the

objective function of problem (5.8) large. A suitable choice of the penalty parameter is

problem dependent in general. It can be adaptively determined as follows. We first pick a

reasonable large value of the parameter µ and obtain the corresponding optimal solution

x∗. Then we check whether the nonlinear constraint Hλ(x
∗; ρ) ≤ (1− β) holds. If it does,

the optimal solution x∗ of problem (5.8) is also an optimal solution of problem (5.6). If

the constraint does not hold, we need to increase the value of µ and solve problem (5.8)

again. We repeat the above procedure until we find an optimal solution of problem (5.8)

such that the nonlinear constraint holds.

5.3.2 A Gradual Non-Convexation Penalty Method

Section 5.3.1 describes a way to solve the optimization problem (5.6) for a fixed value of

ρ. The parameter ρ in the definition of gλ(z; ρ) has similar effect as the parameter ε in

the QBSVaR method [9]. It controls how smooth and how accurate the approximation

functions is. If ρ is small, the approximation function gλ(z; ρ) is very smooth and the
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optimization problem (5.6) is easy to solve while the approximation is not accurate. If ρ is

large, the approximation function is more accurate while the corresponding optimization

problem (5.6) is difficult to solve. From the analysis in section 4.3, we see that it is

hard to pick a suitable value for the smoothing parameter ε in the QBSVaR method [9].

Our smoothing function has the same problem to choose the the value of the parameter

ρ. In order to avoid this problem, we gradually increase the value of ρ. Initially, ρ is

very small; we get an optimal solution for problem (5.6) using the exact penalty method.

Then we increase the value of ρ and use the optimal solution from the previous step as a

starting point to solve the problem (5.6) again. We repeat this process until the interval

[κ, γ] is small enough and there is no loss −xT r(i) such that z = −xT r(i) − α falls in

this interval. For a sufficiently small ρ > 0, the optimization problem (5.6) is close to a

convex programming problem. As we gradually increase ρ, the optimization problem (5.6)

gradually becomes non-convex. We call this a gradual non-convexation penalty (GNCP)

method for minimizing VaR. Algorithm 5.1 describes this computational process in details.

In our subsequent computations, we choose λ = 4×106, α0 = 0 and x0 = 1
n
(1, 1, . . . , 1)T .

According to the condition, the length of the interval [κ, γ] is small enough and there is no

z = −xT r(i) − α in this interval when the algorithm terminates. This means the current

optimal solution is also optimal for the optimization problem that uses hλ(z) instead of

gλ(z; ρ) as a substitution of Λ+(z) in equation (5.2) since gλ(z; ρ) and hλ(z) only differ in

the interval [κ, γ]. Therefore this algorithm gives a good approximation solution for the

original VaR minimization problem (2.8). In our subsequent computations, ρ is usually

around 108 ∼ 109 when the algorithm terminates.

On the surface, it seems that our gradual non-convexation method is computationally

complex since it needs to solve a sequence of optimization problems. Actually, this is

not the case. Initially, the optimization problem (5.6) is close to a convex programming
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Algorithm 5.1: Gradual Non-Convexation Penalty Method for Minimizing VaR

Input: m sample returns for n assets, r(i) ∈ Rn, i = 1, 2, . . . ,m; starting point

(α0,x0)

Output: A computed solution x for problem (2.8)

begin

Choose a large value for λ ;

k ←− 0 ;

ρk ←− 1× 10−5 ;

χ←− {i| − xTk r(i) − αk ∈ [κ, γ], i = 1, 2, . . . ,m} ;

while χ is not empty or |γ − κ| > 1× 10−4 do

k ←− k + 1 ;

ρk ←− 10ρk−1 ;

solve problem (5.6) using the exact penalty method (5.8) with ρ = ρk and

starting point (αk−1,xk−1) to obtain the computed solution (αk,xk) ;

end

return xk ;

end
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problem and can be solved efficiently. A global optimal solution is likely computed for

this problem. As the parameter ρ increases, the optimization problem (5.6) becomes more

non-convex and our exact penalty method may only find a local minimum. However, since

the consecutive problems are similar due to the fact that ρ is updated gradually, it is likely

that our starting point is close to a local minimum and only a few iterations are needed

for the optimization procedure to get a local minimum if we use the optimal solution for

the previous iteration as a starting point. Moreover, this local minimum is likely close to a

global minimum. Therefore, this algorithm does not take excessive number of optimization

iterations even though it needs to solve a sequence of optimization problems.

We now use a simple example to illustrate our gradual non-convexation penalty (GNCP)

method for minimizing VaR. We use the same 1000 historical samples of the two stock allo-

cation example in section 2.3. Let us consider the functionHλ(x; ρ) = 1
m

∑m
i=1 gλ(−xT r(i) − α; ρ)

on the left-hand side of the probabilistic constraint in problem (5.6). Note that in the

penalty problem (5.8), the penalty term µ · max (Hλ (x; ρ)− (1− β) , 0) is the main non-

convex challenging component in the objective function. We want to show how the function

Hλ(x; ρ) changes as the parameter ρ approaches to infinity.

First, we fix α = 0.02 and draw plots of Hλ(x; ρ) with respect to x1, the first weight of

the asset positions x = [x1, 1− x1]T . Figure 5.3 shows plots for different values of ρ. The

thick dashed line at the bottom is Hλ(x; 101). It is almost a straight line. The thin dashed

line above it is Hλ(x; 103). It is smooth and appears to be convex. The thick dash-dot line

in the middle is Hλ(x; 104). It becomes more non-convex and has some local minima. The

thin dash-dot line is Hλ(x; 105). The dotted line is Hλ(x; 107). These two functions have

more local minima. We also plot the original function Ho(x) = 1
m

∑m
i=1 I+(−xT r(i) − α).

It is the solid line at the top in Figure 5.3. We can see that Hλ(x; 107) is very close to the

original function Ho(x). As Figure 5.3 illustrates, Ho(x) function is a global convex curve
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Figure 5.3: Plots of Ho(x) and its approximations Hλ(x; ρ) with respect to asset1 position

of a two asset portfolio, λ = 4× 106, α = 0.02, ρ = 101, 103, 104, 105, 107

.

superimposed with many small variations which create multiple local minimizers. The

global minimizer is in a neighborhood of the minimizer of this global convex curve. When

ρ is small, the function Hλ(x) approximates Ho(x) in a global perspective. Meanwhile,

the optimization problem is easy to solve and we are likely to get a global minimum. As

ρ increases, the function becomes non-convex and is hard to solve. While the computed

solution from the previous iteration is a good starting point to obtain a local minimum,

which is likely a global minimum for the next optimization problem with ρk+1.
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Figure 5.4: Plots of Ho(x) and its approximations Hλ(x; ρ) with respect to α of a two asset

portfolio, λ = 4× 106, x = [0.2, 0.8]T , ρ = 101, 103, 104, 105, 107

.

We also illustrate dependence relationship of the function Hλ(x; ρ) with respective to

α. We fix the asset position at x = [0.2, 0.8]T and draw plots of Hλ(x; ρ) with respect to

α for different values of ρ. Figure 5.4 shows plots for ρ = 101, 103, 104, 105, and 107 and

the one for the original function Ho(x) respectively from bottom to top. We have similar

observations as Figure 5.3. As ρ increases, Hλ(x; ρ) as a function of α will approach to a

non-smooth function.

We note that the function Hλ(x; ρ) changes with respect to both asset positions x and

α simultaneously. However, these two figures give us an intuitive idea how our proposed

algorithm works and why it yields a good approximation for minimizing VaR.
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Now we come back to Mean-VaR optimization problem (2.7). This optimization prob-

lem has one more linear constraint compared to optimization problem (2.8). The linear

constraint can be easily integrated into the optimization problem (2.7) by an optimization

solver with little increase in computational complexity. Hence, our gradual non-convexation

penalty method can also be applied to problem (2.7).

5.4 Comparisons with the QBSVaR Method [9]

Our GNCP method has three advantages over the QBSVaR method [9]. Firstly, our method

is computationally more efficient. As mentioned in section 4.3, the QBSVaR method [9]

takes O(m3) extra time to evaluate the approximation function Gε(k,x). However, for our

method, we only need to evaluate the function, gλ(z; ρ), m times and compute summation

after we evaluate each loss function fi(x) = −xT r(i). It takes only O(m) work to evaluate

the function Hλ(x; ρ) = 1
m

∑m
i=1 gλ(−xT r(i)−α; ρ). This is a significant advantage over the

QBSVaR method [9].

Secondly, our method attempts to track the global minimizer via a gradual non-convex

process. In the QBSVaR method [9], the parameter ε is quite difficult to choose and the val-

ue of ε determines how good the approximation is. In our method, however, the smoothing

parameter ρ is gradually increased until the approximation function is sufficiently accu-

rate. We do not need to choose a specific value for ρ. Moreover, the time needed to solve

a sequence of optimization problems using our exact penalty method does not increase

excessively since we always have a good starting point for each optimization problem.

Last but not least, our method is not sensitive to the starting point for optimization.

For optimization problems that have many local minima, the starting point can have a

major effect on the result of the optimization. Different starting points may yield different
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local minima. It is not easy to choose a good starting point for optimization problems in the

QBSVaR method [9]. However, our method solves a nearly convex programming problem

at the beginning, which has only global minimum and is not sensitive to the starting point

for optimization. Even though the following optimization problems are non-convex and

may be sensitive to their starting points, our method is robust and, as a whole, is not

sensitive to the starting point.

49



Chapter 6

Computational Comparisons

In this chapter, we present computational results to compare our gradual non-convexation

penalty (GNCP) method of minimizing VaR with the CVaR minimization method [19] and

the quantile-based smoothed VaR (QBSVaR) method [9]. We compare the results in terms

of the computed VaR of the optimal portfolio, the CPU time, and the efficient frontiers.

Both historical and synthetic data are used for the computational comparisons. All the

tests are done on a 2.91GHz PC that has an AMD Athlon 64 X2 Dual CPU and 3.25 GB

RAM.

6.1 Comparisons on Historical Data

In this section, we present the computational comparisons on the historical data. We

compare the computed VaR of our GNCP method with that of the CVaR minimization

method [19] and the QBSVaR method [9] respectively. We also test the effect of the

starting point of our GNCP method. The historical data set, denoted as DS1, contains 10
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year historical daily returns (2513 smaples) of 30 stocks in Dow Jones stock index from

September 4th, 1991 to September 4th 2001. The names of 30 stocks are listed in Table

A.1 in Appendix A.

6.1.1 Suboptimality of VaR from CVaR Minimization

In this section, we compare the VaR from computed portfolio using our GNCP method

with that of using CVaR minimization method [19] introduced in Chapter 3. We use the

historical data set DS1 for this investigation. For each method, we first compute the optimal

asset positions x∗ using the optimization method. Then we compute the corresponding

portfolio loss −x∗T r(i), i = 1, 2, . . . ,m, and the VaRβ and CVaRβ of the portfolio based

on the loss samples. We use the VaR computed by GNCP method as the benchmark and

compare relative difference of VaR computed by CVaR minimization method [19] against

it. Specifically we report

RDC
V aR =

VaRminCVaR − VaRGNCP

|VaRGNCP|
100%. (6.1)

Similarly, we report the relative difference of CVaR computed by CVaR minimization

method [19] against that computed by our GNCP method.

RDCV aR =
CVaRminCVaR − CVaRGNCP

|CVaRGNCP|
100% (6.2)

Table 6.1 shows the VaR of the optimal portfolio computed by GNCP method and CVaR

minimization method [19] respectively, and the relative difference for different number of

assets, n, and different number of sample returns, m, with β = 95%. A positive number

indicates degradation of minimizing CVaR method over GNCP method. Table 6.2 shows

the CVaR of the optimal portfolio computed by each method and the relative difference for
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m n
VaR

RDC
V aR

GNCP min CVaR

300 10 0.01061 0.011869 11.87%

300 20 0.0087491 0.011251 28.60%

300 30 0.0074684 0.0089423 19.75%

500 10 0.010772 0.010822 4.64%

500 20 0.0087856 0.010155 15.59%

500 30 0.0075459 0.0088468 17.24%

1000 10 0.010478 0.011192 6.81%

1000 20 0.0089188 0.0097212 9.00%

1000 30 0.0075692 0.0085919 13.51%

2000 10 0.013762 0.014524 5.54%

2000 20 0.012347 0.012703 2.88%

2000 30 0.01039 0.011651 12.14%

Table 6.1: VaR and relative difference of minimizing VaR and minimizing CVaR portfolio,

β = 95%

different number of assets, n, and different number of sample returns, m, with β = 95%. We

also report the results for β = 90% in Appendix B. We can see that our VaR minimization

method always yields smaller VaR of the portfolio. The VaR obtained using our GNCP

method is on average more than 10% better than that obtained using CVaR minimization

method [19]. The relative difference ranges from 2.88% to 28.60%. On the other hand,

the negative relative difference RDCV aR in Table 6.2 shows that the CVaR of the CVaR

minimization method [19] is smaller than that of the VaR minimization method. We can
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m n
CVaR

RDCV aR
GNCP min CVaR

300 10 0.019276 0.017353 -1.44%

300 20 0.017606 0.015874 -9.84%

300 30 0.01436 0.012492 -13.01%

500 10 0.0172 0.016303 -5.22%

500 20 0.015132 0.01451 -4.11%

500 30 0.013938 0.011812 -15.25%

1000 10 0.016429 0.016049 -2.31%

1000 20 0.014818 0.014445 -2.52%

1000 30 0.01325 0.01219 -8.00%

2000 10 0.021632 0.021229 -1.86%

2000 20 0.01991 0.019211 -3.51%

2000 30 0.018082 0.017156 -5.12%

Table 6.2: CVaR and relative difference of minimizing VaR and minimizing CVaR portfolio,

β = 95%

also see that the CVaR obtained using our GNCP method is less than 5% worse than that

obtained using the CVaR minimization method in half of the cases. This may be due to

the fact that CVaR function is flatter than the VaR function.

Figure 6.1 shows the VaR0.95 using a rolling window for both VaR minimization method

and CVaR minimization method. We use n = 30 assets in data set DS1 and set the window

size m = 300. We first run the optimization algorithm on the first m returns of the assets.

Then we move the test window one step forward and run the optimization algorithm on
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Figure 6.1: Rolling window test for VaR of minimizing VaR and minimizing CVaR, β =

95%, m = 300,n = 30,sp = 50

.

the sample returns in the window. The step size sp is set to be 50. We continue moving

the window until it reaches the end of the returns in the data set. The star in Figure 6.1

represents the VaR of the optimal CVaR portfolio. The circle represents the VaR of the

optimal VaR portfolio. The figure shows that for each test, the VaR minimization method

yields smaller VaR than the CVaR minimization portfolio. We also test on returns with

different number of assets, n, different window size, m, and different confidence level, β.

The results are all similar.

The above test results verify that CVaR optimal portfolio does not necessarily gives us

minimal VaR portfolio. These are sound evidence for the need to develop a VaR minimiza-

tion method that minimizes VaR directly rather than minimizing CVaR.
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6.1.2 Effect of Initial Points for GNCP

In section 5.4, we mention that our gradual non-convexation penalty method is not sensitive

to the initial point of the optimization algorithm. In this section, we want to test the

impact of the initial point on our VaR minimization method. Different from the QBSVaR

method [9], the initial point of our GNCP method has one more variable, α, in addition

to the the variables for the asset positions, x. We fix α = 0 and try two different initial

points on the asset position x0 and compare the VaR we obtain from our GNCP method

using the historical data set DS1. The first initial point ( 1
n
) is an equal weight portfolio

x0 = 1
n
× ones(n, 1). The second initial point (x∗CVaR) is the optimal CVaR portfolio we

obtain from the CVaR minimization method [19].

Table 6.3 shows VaR0.95 and VaR0.9 for different number of assets, n, and different

number of returns, m. We can see that the VaR of the portfolio corresponding to two

initial points have no significant difference. The results show that our GNCP method is

not sensitive to the initial point. Starting our algorithm from an optimal CVaR portfolio

does not give us portfolio with better optimal VaR. For all the remaining computational

investigations, we will use the equal weight initial point for our VaR minimization method.

6.1.3 Comparison Between GNCP and QBSVaR

In this section, we compare our gradual non-convexation penalty (GNCP) method with

the quantile-based smoothed VaR (QBSVaR) method [9] in terms of computed VaR on the

historical data set DS1. We compute the VaR of the minimal VaR portfolio for different

number of assets, n, and different number of returns, m. In order to access numerically the

improvement obtained using our GNCP method, we report the relative difference defined
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m n
VaR0.95 VaR0.9

1
n

x∗CVaR
1
n

x∗CVaR

300 10 0.01061 0.010958 0.0079865 0.0082694

300 20 0.0087491 0.0087733 0.0072237 0.0073217

300 30 0.0074684 0.0074303 0.0051924 0.0053269

500 10 0.010772 0.010086 0.0078666 0.0078336

500 20 0.0087856 0.0090869 0.0072434 0.0080066

500 30 0.0075459 0.0080684 0.0056612 0.0058597

1000 10 0.010478 0.010247 0.0076282 0.0075285

1000 20 0.0089188 0.0087112 0.0071986 0.0068093

1000 30 0.0075692 0.0076763 0.0056484 0.0056494

2000 10 0.013762 0.013913 0.010026 0.0099563

2000 20 0.012347 0.011696 0.0086397 0.0086409

2000 30 0.01039 0.01044 0.0075813 0.0076355

Table 6.3: Effect of starting points for GNCP method

as follows:

RDQ
V aR =

VaRQBSVaR − VaRGNCP

|VaRGNCP|
100%. (6.3)

Positive relative difference indicates degradation of QBSVaR method over GNCP method.

Table 6.4 shows VaR0.95 and the relative difference for different number of assets, n,

and different number of sample returns, m. For QBSVaR method [9], we report results

for four different values, 0.01, 0.001, 0.0001, and 0.00001, for the smooth parameter ε. We

also report VaR0.90 and the relative difference on data set DS1 in Table C.1 in Appendix

C. We have the following observations from the test results.
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m n VaRGNCP

RDQ
V aR

ε = 0.01 ε = 0.001 ε = 0.0001 ε = 0.00001

300 10 0.01061 24.27% 6.66% 8.03% 7.82%

300 20 0.0087491 24.45% 6.17% 4.17% 8.43%

300 30 0.0074684 35.96% 15.11% 12.83% 17.78%

500 10 0.010772 4.91% 0.05% -5.70% 1.58%

500 20 0.0087856 13.06% 6.27% 2.77% 2.63%

500 30 0.0075459 20.71% 13.47% 10.24% 12.28%

1000 10 0.010478 9.76% 13.56% 3.22% 3.99%

1000 20 0.0089188 9.24% 14.65% 4.61% 7.45%

1000 30 0.0075692 18.93% 21.03% 14.17% 19.47%

2000 10 0.013762 7.06% 5.27% 4.56% 4.40%

2000 20 0.012347 4.73% 4.41% 10.26% 8.16%

2000 30 0.01039 10.31% 11.31% 12.27% 9.96%

Table 6.4: VaR of minimizing VaR portfolio using GNCP method and the relative difference

compared to the QBSVaR method on historical data, β = 95%

1. The smooth parameter, ε, of the QBSVaR method [9] is very difficult to choose.

Typically, a smaller ε tends to yield better VaR of the portfolio. However, when ε

is very small, e.g., ε = 0.0001 for data set DS1, decreasing ε does not necessarily

produce better VaR of the VaR optimal portfolio.

2. Compared with the QBSVaR method [9], our GNCP method yield smaller VaR of the

VaR optimal portfolio with the exception of one entry m = 500, n = 10, ε = 0.0001.

On average, the VaR obtained using our GNCP method is 5∼10% better than that
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obtained using QBSVaR with the maximum improvement 35.96%. We also note that

when the number of assets, n, is large (n = 30), the VaR obtained using our GNCP

method is significantly better than that obtained using the QBSVaR method [9].

In conclusion, our GNCP method usually yields optimal VaR portfolio with smaller

VaR compared to the QBSVaR method [9]. The test results also show the difficulty in

choosing the smooth parameter, ε, in the QBSVaR method [9]. Our GNCP method avoids

the procedure to choose smooth parameter. This is also a great advantage of our method.

6.2 Comparisons on Synthetic Data

For this section, we present the computational comparisons on a synthetic data set. This

synthetic data set has more sample returns and more assets. We compare the computed

VaR of our GNCP method with that of QBSVaR method [9]. We also compare the CPU

time of the two methods.

6.2.1 Synthetic Data Set

The data set we use in this section, denoted as DS2, is a synthetic data set, generated

from multivariate jump models with random model parameters. This data set contains

M = 100000 returns of N = 1000 assets. The return of each asset follows a Merton’s jump

model [13]. We use this large data set to compare computational efficiency of GNCP and

QBSVaR.

In order to generate the synthetic data set, we first want to generate a covariance matrix

for the asset returns. Suppose the off-diagonal elements of the sample covariance matrix of
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data set DS1, Σo, have expected value d and standard deviation
√
v. The diagonal elements

of Σo have expected value d̄. We want to generate an N × N covariance matrix Σ such

that it has the same expected value and standard deviation of the off-diagonal elements

as Σo, where N = 1000. Hirschberger et al. [10] show that it is very difficult to generate a

valid covariance matrix by randomly guessing such that the distributional characteristics

(i.e., expected return and standard deviation) of the diagonal and off-diagonal elements

are specified. They propose a procedure to generate such a covariance matrix.

Let lij, i = 1, 2, . . . , N , j = 1, 2, . . . , m̂, be independent random variables identically

distributed with some probability distribution that has mean d̂ and standard deviation v̂.

Then the off-diagonal elements σij, i, j = 1, 2, . . . , N , i 6= j, in LLT have expected value

d ≥ 0, variance v ≥ 0 and the diagonal elements σii, i = 1, 2, . . . , N have expected value

d̄ ≥ 0 if and only if

d̂ =

√
d

m̂
(6.4)

v̂ = −d̂2 +

√
d̂4 +

v

m̂
(6.5)

m̂ =
d̄2 − d2

v
(6.6)

(see Hirschberger et al. [10], Theorem 1 and 2). We follow the procedure in [10], which is

described in Algorithm 6.1, to generate the covariance matrix, Σ, with size 1000×1000 for

the synthetic data set DS2.

After we generate a covariance matrix, we use the jump diffusion model [13] to generate

the synthetic returns. A single asset price that has jumps and can be expressed as follows:

dSt
St

= (µ− kλJ)dt+ σdWt + (J − 1)dΠt (6.7)

where µ is the mean return of the asset, Wt is the Wiener process, σ2 is the variance of the

asset, λJ > 0 is the jump intensity, J is a random variable of jump amplitude with log J
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Algorithm 6.1: Generating Covariance Matrix with Specified Distributional Char-

acteristics
Input: N : the size of the covariance matrix to be generated;

d: the expected value of the off-diagonal elements in the covariance matrix;
√
v: the standard deviation of the off-diagonal elements in the covariance matrix;

d̄: the expected value of the diagonal elements in the covariance matrix.

Output: A covariance matrix ΣN×N such that the expected value of the off-diagonal

elements is e and the standard deviation of the off-diagonal elements is v.

begin

m̂←− d̄2−d2
v

;

Round m̂ up or down to the nearest positive integer greater than 2 ;

d̂←−
√

d
m̂

;

v̂ ←− −d̂2 +
√
d̂4 + v

m̂
;

Generate a matrix QN×m̂, each element qij is independent and follows a standard

normal distribution ;

Generate a matrix LN×m̂, such that lij = d̂+
√
v̂qij, i = 1, 2, . . . , N ,

j = 1, 2, . . . , m̂ ;

Σ←− LLT ;

return Σ ;

end

normally distributed with a constant mean µJ and a constant variance σ2
J , k = E[J − 1],

Πt is a Poisson counting process with

dΠt =

1 with probability λJdt

0 with probability 1− λJdt

. (6.8)
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For our synthetic data, we need to generate M returns for N asset prices. Let St ∈ RN

be a vector representing N asset prices. We rewrite equation (6.7) as the following vector

equation:
dSt
St

= (µ− kλJ)dt+ L · dWt + (J− 1)dΠt. (6.9)

All the vector multiplication and division in equation (6.9) are element-wise multiplication

and division. The vector µ is the mean return for N assets. L is an N × N matrix such

that LLT = Σ. J is a random vector of jump amplitude and each element of it is log

normally distributed.

To generate random instance portfolio optimization problem, we randomly generate the

mean return µ and the covariance matrix Σ. Each element of the mean return vector µ

is independently drawn from a normal distribution with the mean and standard deviation

equal to the mean and standard deviation of the mean returns of the assets in DS1. The

way to generate Σ is specified above. We also set different jump parameters for each asset.

µJ is a number drawing from a uniform distribution in the interval [−1.12,−0.72]. σJ is a

number drawing from a uniform distribution in the interval [0.325, 0.525]. λJ is a number

drawing from a uniform distribution in the interval [0.1, 0.2].

For each asset, we simulate M = 100000 prices using equation (6.9) and compute the

returns using formula ret = ST−S0

S0
, where ST is the underlying price after a time period

T = 1 year and S0 is the initial price. Figure 6.2 shows a return distribution of an asset in

DS2, we can see that there is a bump on the left of the return distribution, representing a

significant probability of unusually large losses.
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Figure 6.2: Return distribution of an asset in DS2

.

6.2.2 Comparing Computed VaR

In this section, we compare our gradual non-convexation penalty (GNCP) method with

the quantile-based smoothed VaR (QBSVaR) method [9] in terms of computed VaR on

the synthetic data set DS2. Similar to section 6.1.3, we compute the VaR of the minimal

VaR portfolio for different number of assets, n, and different number of returns, m. We

also compute the relative difference (6.3) of the VaR obtained using our GNCP method

compared to that obtained using the QBSVaR method.

Table 6.5 shows the VaR obtained using the GNCP method and the relative difference

with β = 95%. We choose ε = 0.001 for the smooth parameter of the QBSVaR method

[9]. We do not report the relative difference when m = 30000 or m = 100000 since it takes

more than 3 days to obtain the VaR optimal portfolio using the QBSVaR method. We will

discuss the comparison for CPU time in section 6.2.3. We only report the cases when m is

greater than n since this is usually the case in practice. We also report the computational
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m
n = 30 n = 50 n = 100

VaRGNCP RDQ
V aR VaRGNCP RDQ

V aR VaRGNCP RDQ
V aR

300 0.066506 10.48% 0.059168 -29.25% 0.020184 33.05%

1000 0.086351 4.16% 0.070866 0.68% 0.045326 16.14%

3000 0.094539 -0.36% 0.076082 6.29% 0.056926 16.04%

10000 0.094991 2.77% 0.081098 3.93% 0.069305 4.01%

30000 0.098859 - 0.085857 - 0.069741 -

100000 0.099429 - 0.084841 - 0.073519 -

Table 6.5: VaR of minimizing VaR portfolio using GNCP method and the relative difference

compared to the QBSVaR method on synthetic data, β = 95%, ε = 0.001

m n VaRGNCP

RDQ
V aR

ε = 0.01 ε = 0.001 ε = 0.0001

1000 500 0.014584 91.15% 198.20 % 220.87%

2000 500 0.026121 51.27% 82.58% 107.37%

2000 1000 0.034729 55.02% 16.37% 55.43%

5000 500 0.033475 90.65% 56.36% 85.08%

5000 1000 0.040264 - 24.30% 18.71%

Table 6.6: VaR of minimizing VaR portfolio using GNCP method and the relative difference

compared to the QBSVaR method on synthetic data when n is large, β = 95%

results when n is large in Table 6.6. The negative relative difference in Table 6.5 means

the VaR obtained using the QBSVaR method [9] is smaller than that obtained using our

GNCP method. However, this only occurs for two cases and one of them is very close to
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zero (-0.36%). For the case that the relative difference is positive, the relative difference is

much more significant when n is large (most of the relative differences are more than 50%

when n = 500 or n = 1000 in Table 6.6) for the synthetic data set DS2 compared to that

for the historical data set DS1. This may be due to the fact that DS2 deviates further

from normal distribution. Moreover, the test results in Table 6.6 also show that the choice

of the smooth parameter, ε, of the QBSVaR method depends on the data set. For the

synthetic data set DS2, the VaR corresponding to ε = 0.001 is usually smaller than that

corresponding to ε = 0.0001 while for the historical data set DS1, this is not the case.

6.2.3 Comparisons in Computational Efficiency

In this section, we compare CPU time for our GNCP method and the QBSVaR method

[9]. We measure the CPU time to compute optimal VaR portfolio for different number of

assets, n, and different number of returns, m. We also measure the CPU time to evaluate

the smoothed probabilistic constraint Hλ(x; ρ) of our GNCP method and the QBSVaR

function Gε(k,x) of the QBSVaR method [9] for different number of returns, m. Data set

DS2 is used for this test since we need to see the running time of both methods as the

problem size becomes large. We implement the two methods using Matlab. This may not

be a proper programming language to measure the CPU time of the algorithm precisely

since Matlab can do vector operations very efficiently. However, it is enough to compare

the running time of two methods.

Figure 6.3 shows the CPU time (in seconds) to evaluate the smoothed probabilistic

constraint Hλ(x; ρ) of our GNCP method and the QBSVaR function Gε(k,x) of the QB-

SVaR method [9] for different number of returns, m, when n = 100 and β = 95%. We fix

x = 1
n
×ones(n, 1) for both functions. For the smoothed probabilistic constraint, we choose
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Figure 6.3: CPU time for function evaluation, n = 100, β = 95%, ε = 0.001

.

α = 0.01, λ = 4× 106, and ρ = 100. For the QBSVaR function, we choose ε = 0.001.

The star in Figure 6.3 represents the CPU time to evaluate Gε(k,x) while the circle

represents the CPU time to evaluate Hλ(x; ρ). We can see that the CPU time to evaluate

Hλ(x; ρ) grows very slowly with respect to the number of samples, m. It is linear (with

very small slope) with respect to m. However, the CPU time to evaluate Gε(k,x) grows

much faster than that to evaluate Hλ(x; ρ). More precise analysis shows that the CPU

time is close to a cubic with respect to m. Figure 6.3 illustrates another main advantage of

our GNCP method: it takes significantly less time to evaluate the objective and constraint

functions and therefore, this method is computationally more efficient.

Table 6.7 reports the CPU time (in minutes) for both methods on the synthetic data

set DS2 with β = 95%. For the QBSVaR method [9], we choose ε = 0.01 for the smooth

parameter. We do not report the CPU time for QBSVaR method when m = 30000 or
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CPU Time (Minutes)

m
n = 30 n = 50 n = 100

GNCP QBSVaR RT GNCP QBSVaR RT GNCP QBSVaR RT

300 0.19 1.83 9.64 0.18 3.05 16.76 0.30 6.22 20.72

1000 0.22 9.41 42.99 0.32 15.83 49.07 0.66 32.34 49.19

3000 0.53 56.04 104.92 0.76 95.70 126.67 1.40 190.10 135.37

10000 1.14 506.38 442.84 1.93 865.88 448.95 3.35 1789.40 534.26

30000 3.05 - - 4.94 - - 11.20 - -

100000 9.82 - - 16.54 - - 34.41 - -

Table 6.7: CPU time of running GNCP method and QBSVaR method on synthetic data

and relative time, β = 95%, ε = 0.001

m = 100000 since it takes more than 3 days to obtain the VaR optimal portfolio using

QBSVaR method. We also report the CPU time when n is large in Table C.2 in Appendix

C. We compute the relative time (RT ), which is defined in equation (6.10), to provide a

more clear comparison between the two methods.

RT =
TimeQBSV aR
TimeGNCP

(6.10)

We make following observations based on Table 6.7 and Table C.2.

1. For the QBSVaR method [9], the smaller the smooth parameter, ε, is, the less time

it takes to solve the VaR minimization problem (2.8). According to equation (4.15),

when ε is small, the number of losses that satisfies the constraint |G(k,x)−fi(x)| ≤ ε

is small and this reduces the time to evaluate the QBSVaR function Gε(k,x).
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2. Our GNCP method takes less CPU time to solve the VaR minimization problem (2.8)

than the QBSVaR method [9]. The relative time RT is more than 40 when m ≥ 1000

and n is small. This means our GNCP method solves the VaR minimization problem

(2.8) over 40 times faster than the QBSVaR method [9].

3. For a fixed number of assets, n, the CPU time of our GNCP method grows much

slower than the speed of m increases, i.e., the CPU time is less than linear with

respect to m. However, the CPU time of the QBSVaR method [9] grows much

faster (faster than quadratic) with respect to m. This observation demonstrates the

most significant merit of our GNCP method: the time for function and constraint

evaluation is much less compared to the QBSVaR method.

4. For a fixed number of returns, m, the CPU time of the QBSVaR method [9] grows

linearly with respect to n. When n is small, the CPU time of our GNCP method

also grows linearly with respect to n. However, when n becomes large, the CPU time

of our GNCP method grows a little faster. The advantage of our GNCP method is

that the time for function evaluation is linear with respect to m. When m is small

and n is large, the time for solving the linear system in the optimization procedure

dominates the total running time and therefore the advantage of our GNCP method

is less prominent. However, in practice, the number of returns , m, is usually much

larger than the number of assets, n. Taking both m and n into consideration, the

CPU time of the QBSVaR method grows faster as the problem size becomes larger.

To conclude, the choice of the smooth parameter, ε, in the QBSVaR method [9] not only

determines how accurate the optimal solution is, but also has an impact on the running

time of the method. Our GNCP method is much more efficient than the QBSVaR method

[9] in terms of running time, especially when the number of returns, m, is large.
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6.3 Efficient Frontiers

In practice, in addition to minimum VaR portfolio, we want to consider a VaR frontier.

For different levels of expected return target R, we can solve problem (2.7) and obtain the

corresponding VaR of the optimal portfolios. Then we draw the plot of the (VaR, Return)

pair in the VaR-Return plane. This gives us an efficient frontier.

We determine the range of the possible return target [Rmin, Rmax] as follows. We solve

the maximum return optimization problem (6.11) to get the maximum possible return

target Rmax. Then we solve the VaR minimization problem (2.8) and set the corresponding

expected return as the minimum possible return target Rmin.

max
x

E(xT r)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(6.11)

Figure 6.4 shows the VaR-Return efficient frontier of the samples for the historical data

set DS1 with m = 500, n = 10 and β = 95%. Figure 6.5 shows the VaR-Return efficient

frontier of the samples for the synthetic data set DS2 with m = 500, n = 10 and β = 95%.

The solid line is the efficient frontier we obtain by using our GNCP method. The dotted

line is the efficient frontier we obtain by using the QBSVaR method [9]. We also tested

different number of assets and different number of returns. The results are similar.

From Figure 6.4 and Figure 6.5, we can see that the efficient frontier corresponding

to our GNCP method dominates that corresponding to the QBSVaR method [9]. For a

fixed return R, the VaR we obtain using our GNCP method is smaller than that we obtain

using the QBSVaR method [9]. This proves that our GNDP method not only yields better

VaR portfolio than the QBSVaR method [9] for problem (2.8), but also yields better VaR
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Figure 6.4: Efficient frontier in the VaR-Return plane on historical data, m = 500, n = 10,

β = 95%

.

portfolio for problem (2.7). We can also see that the efficient frontier obtained using the

GNCP method is better at the left end point than the right end point especially for the

historical data in Figure 6.4. This is reasonable since the right end point corresponds

to the maximum return portfolio. However, for the synthetic data in Figure 6.5, the VaR

obtained using our GNCP method is also better than that obtained using QBSVaR method

when the expected return target is very large.

The efficient frontier for Return vs VaR is not very smooth in Figure 6.4 and Figure 6.5.

Some of the points are not Pareto optimal. Similar result can also be found in Gaivoronski

and Pflug [9]. The reason for this is that the optimal solution we get for problem (2.7)

is an approximation solution. Figure 6.6 shows the VaR-Return efficient frontier of the

samples for the historical data set DS1 with m = 1000, n = 20 and β = 95%. We see that

the efficient frontier will be smoother as the number of samples increases.
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Figure 6.5: Efficient frontier in the VaR-Return plane on synthetic data, m = 500, n = 10,

β = 95%

.

Figure 6.6: Efficient frontier in the VaR-Return plane on historical data, m = 1000, n = 20,

β = 95%

.
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Chapter 7

Conclusions

7.1 Conclusion

The VaR minimization problem is computationally difficult to solve. Given discrete sam-

ples, VaR function is non-convex, non-smooth, and has many local minima. The CVaR

minimization method [19] is an efficient method to solve CVaR minimization problem.

However, a minimal CVaR portfolio does not necessarily have a minimal VaR, even though

the VaR of a portfolio is always smaller than the CVaR of a portfolio. We confirm that our

GNCP VaR minimization method always yields smaller VaR than the CVaR minimization

method for the same VaR minimization problem on a small historical data set.

Gaivoronski and Pflug [9] propose a quantile-based smoothed VaR (QBSVaR) method

that minimizes a quantile-baed smoothed VaR function, which is an approximation of

the VaR function. They also provide the evidence that their QBSVaR method is better

than the CVaR minimization method [19] when being used to obtain an optimal VaR

portfolio. Their approach is based on the definition that VaR is a quantile of the portfolio
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losses. They reformulate the quantile as a linear combination of the loss functions with

the coefficients being some indicator functions that can be written as the product of step

functions. They approximate the quantile by replacing the step function with a smooth

approximation function. Their approach is complex since they need to enumerate all

possible combinations of choosing k indices from m numbers. A smooth parameter, ε, is

introduced to control how accurate the approximation is. Usually a smaller value of ε

makes the approximation more accurate but the the optimization problem has more local

minima and is more difficult to solve. On the other hand, a larger value of ε makes the

approximation crude while the optimization problem has less local minima. The difficulty

in choosing the smooth parameter, ε, is one of the main problem of this smooth method.

Another drawback of this smooth method is the computational complexity. This method

takes O(m3) time to evaluate the objective function of the optimization problem in addition

to evaluating each loss function of the portfolio where m is the number of samples. In

addition, optimization methods typically require gradient and hessian evaluations. This

makes it practically impossible to solve a problem when the number of samples is large.

We propose a gradual non-convexation penalty (GNCP) method for the VaR mini-

mization problem. We introduce an auxiliary variable α and define VaRβ as the minimum

α value which satisfies the constraint that the probability of loss greater than α cannot

exceed 1− β. The probabilistic constraint is written as a sum of step indicator functions.

Similar to the QBSVaR method [9], we use a piecewise quadratic function to approximate

the step indicator function. The approximate optimization problem is solved by using

an exact penalty method. In addition, we use a gradual non-convexation process in an

attempt to reach a global minimizer. This process is indexed by a parameter ρ, which

controls how accurate the approximation is. When the parameter, ρ, is small, the approx-

imation is close to a convex problem and the optimization problem is easy to solve. It
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captures the global characteristic of the function. As the parameter goes to infinity, the

approximation approaches to the original VaR minimization problem while the approxi-

mation itself becomes difficult to solve. We gradually increase the parameter and solve

the original VaR minimization problem by solving a sequence of nonlinearly constrained

optimization problems using an exact penalty method. This does not significantly increase

the total computational time since the optimal solution for each step is a good initial point

for the next one and it typically takes a small number of optimization iterations to solve

the optimization problem for each indexing parameter. We also show that our new method

takes only O(m) extra time to evaluate the objective function of the optimization problem

This is a drastic improvement compared to the QBSVaR method [9], which takes O(m3)

time for function evaluation.

Both historical and synthetic data are used to evaluate performance of our GNCP

method and the QBSVaR method [9]. Our computational results demonstrate that the

GNCP method yields significantly better VaR for the VaR minimization problem than the

QBSVaR method [9] most of the time. The computed results for our GNCP method are

5∼10% better on average for historical data and even better for synthetic data when the

number of assets, n, is large. The efficient frontier of our GNCP method dominates that

of the QBSVaR method. We also show that it is hard to choose a smooth parameter, ε,

for the QBSVaR method. Tests on large size problems numerically show that our GNCP

method is much more computationally efficient than the QBSVaR method [9] especially

when the number of samples, m is large. The CPU time for our GNCP method is less than

linear with respect to m while that for the QBSVaR method is more than quadratic with

respect to m.
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7.2 Possible Future Work

In this thesis, we use a continuous and differentiable function gλ(z; ρ) to replace the con-

tinuous function hλ(z) for the step function I+(z). However, this function is not twice

continuously differentiable. For an optimization solver, the problem may be solved faster

and the optimal solution may be more accurate if the objective function or the constrain-

t function is twice continuously differentiable. A function similar to the approximation

function ϕε(z) in the QBSVaR method [9] may be a good alternative to gλ(z; ρ).

We have shown that the gradual non-convexatoin penalty method can be used to solve

the optimization problem with a probability constraint very efficiently. We can apply this

technique to other challenging optimization problems with a probability constraint.
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Appendix A

Stocks in Data Set 1

1 AA 11 HD 21 MMM

2 AXP 12 HON 22 MO

3 BA 13 HWP 23 MRK

4 C 14 IBM 24 MSFT

5 CAT 15 INTC 25 PG

6 DD 16 IP 26 SBC

7 DIS 17 JNJ 27 T

8 EK 18 JPM 28 UTX

9 GE 19 KO 29 WMT

10 GM 20 MCD 30 XOM

Table A.1: Stocks in data set 1
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Appendix B

More Results on Suboptimality of

VaR from CVaR Minimization
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m n
VaR

RDC
V aR

GNCP min CVaR

300 10 0.0079865 0.0092844 16.25%

300 20 0.0072237 0.0088394 22.37%

300 30 0.0051924 0.0069731 34.29%

500 10 0.0078666 0.008292 5.41%

500 20 0.0072434 0.0081669 12.75%

500 30 0.0056612 0.006902 21.92%

1000 10 0.0076282 0.0085471 12.05%

1000 20 0.0071986 0.0074057 2.88%

1000 30 0.0056484 0.0065554 16.06%

2000 10 0.010026 0.010508 4.81%

2000 20 0.0086397 0.0091924 6.40%

2000 30 0.0075813 0.0081635 7.68%

Table B.1: VaR and relative difference of minimizing VaR and minimizing CVaR portfolio,

β = 90%
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m n
CVaR

RDCV aR
GNCP min CVaR

300 10 0.019276 0.017353 -1.44%

300 10 0.015253 0.014073 -7.74%

300 20 0.013687 0.012864 -6.01%

300 30 0.012526 0.010227 -18.35%

500 10 0.013545 0.013004 -3.99%

500 20 0.012991 0.01166 -10.25%

500 30 0.011573 0.0098052 -15.28%

1000 10 0.013552 0.012935 -4.55%

1000 20 0.011957 0.011421 -4.48%

1000 30 0.010473 0.0098365 -6.08%

2000 10 0.01777 0.016789 -5.52%

2000 20 0.015717 0.014987 -4.64%

2000 30 0.014327 0.013473 -5.96%

Table B.2: CVaR and relative difference of minimizing VaR and minimizing CVaR portfo-

lio, β = 90%
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Appendix C

More Results on Comparison

Between GNCP and QBSVaR
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m n VaRGNCP

RDQ
V aR

ε = 0.01 ε = 0.001 ε = 0.0001 ε = 0.00001

300 10 0.0079865 17.45% 19.39% 4.17% 8.56%

300 20 0.0072237 18.54% 9.79% 3.92% 11.94%

300 30 0.0051924 54.74% 28.17% 14.92% 29.28%

500 10 0.0078666 11.05% 3.41% 2.08% 2.49%

500 20 0.0072434 13.15% -1.98% 5.16% 6.59%

500 30 0.0056612 25.58% 9.30% 7.53% 4.64%

1000 10 0.0076282 10.54% 5.53% 3.52% 8.84%

1000 20 0.0071986 2.45% 1.29% 1.76% 0.45%

1000 30 0.0056484 16.77% 10.68% 10.55% 10.20%

2000 10 0.010026 6.81% 3.20% 4.81% 3.32%

2000 20 0.0086397 6.22% 2.11% 6.28% 7.44%

2000 30 0.0075813 9.50% 9.91% 9.72% 8.96%

Table C.1: VaR of minimizing VaR portfolio using GNCP method and the relative differ-

ence compared to the QBSVaR method on historical data, β = 90%
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m n

CPU Time (Minutes)

RT, ε = 0.001
GNCP

QBSVaR

ε = 0.01 ε = 0.001 ε = 0.0001

1000 500 8.41 293.23 163.53 140.34 19.46

2000 500 10.25 1225.59 483.75 418.31 47.18

2000 1000 51.70 2369.37 986.47 847.74 19.08

5000 500 17.04 11218.49 2396.22 2086.44 140.61

5000 1000 73.61 - 4217.67 4854.85 57.30

Table C.2: CPU time of running GNCP method and QBSVaR method on synthetic data

and relative time when n is large, β = 95%
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