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Abstract

The following thesis is divided into two main chapters. In Chapter 2 we study isometric represen-
tations of product systems of correspondences over the semigroup Nk which are minimal dilations
of finite dimensional, fully coisometric representations. We show the existence of a unique minimal
cyclic coinvariant subspace for all such representations. The compression of the representation to
this subspace is shown to be a complete unitary invariant. For a certain class of graph algebras
the nonself-adjoint wot-closed algebra generated by these representations is shown to contain
the projection onto the minimal cyclic coinvariant subspace. This class includes free semigroup
algebras. This result extends to a class of higher-rank graph algebras which includes higher-rank
graphs with a single vertex.

In chapter 3 we move onto semicrossed product algebras. Let S be the semigroup S =
∑⊕k

i=1 Si,
where for each i ∈ I, Si is a countable subsemigroup of the additive semigroup R+ containing 0. We
consider representations of S as contractions {Ts}s∈S on a Hilbert space with the Nica-covariance
property: T ∗s Tt = TtT

∗
s whenever t ∧ s = 0. We show that all such representations have a unique

minimal isometric Nica-covariant dilation.

This result is used to help analyse the nonself-adjoint semicrossed product algebras formed from
Nica-covariant representations of the action of S on an operator algebra A by completely contractive
endomorphisms. We conclude by calculating the C∗-envelope of the isometric nonself-adjoint
semicrossed product algebra (in the sense of Kakariadis and Katsoulis).
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Chapter 1

Introduction

The following thesis is based on two papers I wrote whilst a student at the University of Waterloo.
Chapter 2 consists of [28]. This work was developed throughout 2009 and the first half of 2010. It
was published in January 2011 in the Journal of Functional Analysis. Chapter 3 can be found in
[29]. This work was carried out in 2011 and is currently submitted for peer review.

Chapter 2 makes no reference to Chapter 3 and, in turn, Chapter 3 makes no reference to
Chapter 2. This has lead to an admittedly disjointed thesis with a rather vague title. That is not
to say that there is no connection between the two projects. On the contrary, both papers deal
with the trials and tribulations of working with representations and operator algebras graded by
semigroups other than the nonnegative integers. In this introduction I will present the work from
the prespective of multivariate dilation theory as well as give some more of the motivation for the
work, other than that contained in the individual chapters.

In 1953 Béla Szőkefalvi-Nagy [70] proved that every contraction on a Hilbert space has a
unique minimal isometric dilation. That is, if T is a bounded linear operator on a Hilbert space
H of operator norm no more than 1, then there is an isometry V on a Hilbert space K ⊇ H such
that with respect to the decomposition K = H⊕H⊥ the isometry V has the form

V =

[
T 0
∗ ∗

]
,

so that
Proj(H)V n|H = Tn.

An isometric dilation V of T is called minimal if K is the smallest space containing H which is
reducing for V . Sz.-Nagy’s theorem also says that all minimal isometric dilations are unitarily
equivalent, i.e. there is a unique minimal isometric dilation. Sz.-Nagy’s theorem has had a large
impact on operator theory ever since.
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From another perspective, Sz.-Nagy’s theorem tells us about representations of semigroups.
Every representation of the nonnegative integers by contractive (isometric) operators is uniquely
determined by a single contraction (isometry). Sz.-Nagy’s theorem translates as the statement:
Every contractive representation of the nonnegative integers can be dilated to a unique minimal
isometric representation. There are many classes of operator algebras which have a natural grading
by the nonnegative integers, thus Sz.-Nagy’s theorem (or generalisations of it) is widely applicable.

Two examples of algebras that are discussed in this thesis which have representations graded
by the nonnegative integers are semicrossed products of C∗-algebras by the nonnegative integers
and graph algebras. Thus both lend themselves to a generalisation of Sz.-Nagy’s theorem. In fact,
the study of both can be united in the study of C∗-correspondences and Paul Muhly and Baruch
Solel’s generalisation of Sz.-Nagy’s theorem [48] applies to both classes of algebras.

There are however other algebras where a grading by the nonnegative integers does not readily
apply, such as semicrossed products by other semigroups and higher-rank graph algebras. In these
instances dilation theory for representations of other semigroups is needed. The problem of when
and how contractive representations of semigroups have isometric dilations is a problem central to
this thesis.

It was shown by Tsuyoshi Andô [1] in 1963 that every contractive representation of Z2
+ has

an isometric dilation. In this case, however, we no longer have any guarantee of uniqueness of
minimal isometric dilations. Things get worse in the case of Z3

+, where Stephen Parrott [52] and
Nicolas Varopoulos [73] have provided examples of contractive representations which do not have
isometric dilations. These counter-examples are challenging and humbling for operator theorists.
If we are dealing with an algebra which does not fit into a framework where Sz.-Nagy’s theorem
applies, how can we relate contractive and isometric representations? How can we relate the
different algebras formed by these representations?

All is not lost. Parrott and Varopoulos warn us that we must proceed with caution, but they
do not tell us that we can not proceed. There are a number of dilation theorems which apply to
semigroups other than the nonnegative integers. I will highlight here two such results that are
relevant to this thesis.

Any contractive representation of Zk+ is uniquely determined by k commuting contractions, and
k commuting contractions define a contractive representation of Zk+. As Parrott and Varopoulos
have shown, when k > 2 we can not necessarily dilate k commuting contractions T1, . . . , Tk to k
commuting isometries V1, . . . , Vk. If, however we put extra conditions on our contractions there
are circumstances when we can dilate.

Theorem 1. Let T1, . . . , Tk be k commuting coisometries. Then there are k commuting isometries
V1, . . . , Vk on a Hilbert space K ⊇ H which dilate T1, . . . , Tk, i.e.

Proj(H)p(V1, . . . , Vk)|H = p(T1, . . . , Tk)

2



for any polynomial p in k commuting variables.

Further, all minimal dilations are unitarily equivalent (i.e. there is a unique minimal dilation),
and V1, . . . , Vk are unitary when minimal.

Theorem 1, and it’s generalisation to representations of product systems due to Orr Shalit
[61], is a key factor in the analysis in Chapter 2. Without the fact that we have a unique
minimal isometric dilation we would not be able to begin an in depth study of finitely correlated
representations. As stated here in Theorem 1, the condition that our contractive representation
must be made of coisometries is very strong. When this result is applied to representations of
product systems the requirement that the representation is coisometric is a lot less restrictive.
For example, a coisometry on a finite dimensional space must also be an isometry; a coisometric
representation of a C∗-correspondences on a finite dimensional space need not be isometric. Thus
speaking of minimal isometric dilations of finite dimensional coisometric representations makes
sense.

The following corollary is also important.

Corollary 1. Let T1, . . . , Tk be k commuting coisometries and let V1, . . . , Vk be their unique
minimal isometric dilation. Then the unitary V1V2 . . . Vk is the unique minimal isometric dilation
of T1T2 . . . Tk in the sense of Sz.-Nagy.

Corollary 1 relates the isometric dilation of the k coisometries T1, . . . , Tk with the isometric
dilation of the single coisometry T1 . . . Tk. This allows one to move between the multivariate
case of representations of Zk+ and the more familiar single variable case of representations of Z+.
Corollary 1 is a simplification of Theorem 2.3.12. In Chapter 2 we study representations over Z+

first, then we pass to Zk+ using this theorem.

It may be helpful to the reader to explain some of the thought processes that went into writing
Chapter 2. As presented here the structure is: single variable case; multivariate case; examples.
Most would agree that this is the most logical way to present the material but it is the reverse
order of how it was discovered.

Ken Davidson, David Kribs and Miron Shpigel [17] studied finitely correlated free semigroup
algebras in 2001. These are the wot-closed unital algebras generated by a row-isometry [S1, . . . , Sn]
which is the minimal isometric dilation of a row-contraction [A1, . . . , An] on a finite dimensional
space (here Arthur Frazho [27], John Bunce [9] and Gelu Popescu’s [57] generalisation of Sz.-Nagy’s
theorem to row-contractions applies). The study of commuting row-isometries (in the guise of
representations of single vertex 2-graphs) is the natural multivariate analogue of studying single
row-isometries. Inspired by work by Ken Davidson, David Kribs, Stephen Power and Dilian
Yang, particularly the papers [20, 19], I was curious to see to what extent the work of Davidson,
Kribs and Shpigel on finitely correlated representations could be translated to this multivariate
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case. Armed with Baruch Solel’s [68] and Ken Davidson, Stephen Power and Dilian Yang’s [20]
generalisation of Andô’s theorem and my discovery of a row-contractive version of Corollary 1 the
main results of Chapter 2 were proved in this setting first.

Theorems are all well and good, but they do not amount to much without interesting examples.
Examples in this setting exist and several are given in section 2.4.2, but they are not easy to
come by and I failed to find a broad class outside of the atomic representations already studied
by Davidson, Power and Yang [19]. Thus, one motivation for generalising my results was to
encompass more examples, particularly graphs with more than one vertex. Moving to the full
generality of product systems of C∗-correspondences was inspired by Baruch Solel [68, 69] and
Orr Shalit’s [61, 62] success in generalising multivariate dilation theorems to this setting. This
was justified early on by my success in translating Corollary 1 into the language of product system
dilations.

The final part written was section 2.2. The earlier versions of Corollary 1 allowed me to use
the results of Davidson, Kribs and Shpigel directly. In the new setting of C∗-correspondences
there had been no work done on finitely correlated representations, so all of that needed to be
completed in order to pass to the product system case.

In Chapter 3 we deal with semicrossed product algebras. Here too dilations are of vital
importance. The following theorem, which is proved for some more general semigroups in
Theorems 3.2.4 and 3.2.5, is the key dilation result in Chapter 3.

Theorem 2 (Brehmer 1961 [8]). Let T1, . . . , Tk be commuting contractions on a Hilbert space H
which satisfy T ∗i Tj = TjT

∗
i when i 6= j. Then there are k commuting isometries V1, . . . , Vk on a

Hilbert space K ⊇ H which dilate T1, . . . , Tk, i.e.

Proj(H)p(V1, . . . , Vk)|H = p(T1, . . . , Tk)

for any polynomial p in k commuting variables.

Further, if K is chosen to be minimal then there is a unique dilation V1, . . . , Vk satisfying
V ∗i Vj = VjV

∗
i when i 6= j (up to unitary equivalence).

The condition that V ∗i Vj = VjV
∗
i when i 6= j is known as doubly commuting or Nica-covariant.

This condition is not merely imposed to fit in with dilation theory; it arises naturally by itself.
The condition of Nica-covariance arose in the study of semigroup crossed-product C∗-algebras,
beginning with Alexandru Nica [51]. A main motivation for why this type of representation
has been studied is that the most natural isometric representation of many semigroups has this
property: the left regular representation.

In the C∗-algebra literature, actions of many semigroups of endomorphisms on a C∗-algebras
have been studied. In the nonself-adjoint literature there has been some study of semicrossed
products by semigroups other that the nonnegative integers, e.g. by Benton Duncan [24] and
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Kuen-Shan Ling and Paul Muhly [44], but there has been considerably less than in the C∗-algebra
cases. Inspired by reading papers by Marcelo Laca, Gerard Murphy, Alexandru Nica, Iain Raeburn
and others (see e.g. [41, 42, 50, 51]) Chapter 3 is a modest attempt at broadening the classes of
semigroups dealt with in the nonself-adjoint literature.

Chapters 2 and 3 come with their own introductions which motivate the study therein and
try to place the work in context with the wider literature. Behind the scenes the problems of
multivariate dilation theory underpin much of the work. It can be easy to get lost in the auxiliary
problems and notation of product systems and covariant representations, but one has to be always
mindful of Varopoulos and Parrott’s examples. Further, it is often worthwhile and helpful to
consider what theorems say in the simplest case of representing a semigroup by contractions
without all of the extra structure.

5



Chapter 2

Finitely correlated representations of
product systems of
C∗-correspondences over Nk

2.1 Introduction

A C∗-correspondence over a C∗-algebra A is a Hilbert bimodule with an A-valued inner product.
The C∗-algebras of representations of C∗-correspondences were first studied by Pimsner [56]. In a
series of papers beginning with [48], Muhly and Solel studied representations of C∗-correspondences
and their algebras. Remarkably they managed to achieve many results from single operator theory
in this very general setting. In [48] they include a dilation theorem which supersedes the classical
Sz.-Nagy [70] dilation theorem for contractions and the Frazho-Bunce-Popescu [27, 9, 57] dilation
theorem for row-contractions. In [49] a Wold decomposition is presented as well as a Beurling-type
theorem.

Product systems of C∗-correspondences over the semigroup R+ were introduced by Arveson
in [5]. The study of product systems over discrete semigroups began with Fowler’s work in [26],
where the generalised Cuntz-Pimsner algebra associated to a product system was introduced. In
recent years there have been several papers considering product systems of C∗-correspondences
over discrete semigroups, e.g. [61, 62, 64, 65, 68, 69]. There has been work on dilation results for
representations of product systems generalizing dilation results for commuting contractions. For
example, Solel [68] shows the existence of a dilation for contractive representations of product
systems over N2. This result is analogous to the well-known Ando’s theorem for two commuting
contractions [1]. Solel [69] gives necessary and sufficient conditions for a contractive representation
of a product system over Nk to have what is known as a regular dilation. This result is analogous

6



to a theorem of Brehmer [8]. Skalski and Zacharias [65] have presented a Wold decomposition for
representations of product systems over Nk.

The generalised Cuntz-Pimsner C∗-algebras associated to product systems over the semigroup
Nk are not in general GCR, i.e. they can be NGCR. A theorem due to Glimm [30, Theorem 2] tells
us that NGCR C∗-algebras do not have smooth duals, i.e. there is no countable family of Borel
functions on the space of unitary equivalence classes of irreducible representations which separates
points. It follows that trying to classify all irreducible representations up to unitary equivalence of
a generalised Cuntz-Pimsner algebra would be a fruitless task. However, in this chapter we find a
complete unitary invariant for a certain class of representations: finitely correlated representations.

An isometric representation of a product system of C∗-correspondences is finitely correlated if
it is the minimal isometric dilation of a finite dimensional representation. We show the existence
of a unique minimal cyclic coinvariant subspace for finitely correlated, isometric, fully coisometric
representations of product systems over the semigroup Nk. The compression of the representation
to this minimal subspace will be the complete unitary invariant. This result generalises the
work of Davidson, Kribs and Shpigel [17] for the minimal isometric dilation [S1, . . . , Sn] of a
finite dimensional row-contraction. Indeed, studying row-contractions is equivalent to studying
representations of the C∗-correspondence Cn over the C∗-algebra C. In [17], it is shown that
the projection onto the minimal coinvariant subspace is contained in the wot-closed algebra
generated by the Si’s. This is an important invariant for free semigroup algebras [16]. We are
able to establish this in a number of interesting special cases.

Finitely correlated representations were first introduced by Bratteli and Jorgensen [6] via
finitely correlated states on On. When ω is a finitely correlated state on On, the GNS construction
on ω will give a representation π of On with the property that [π(s1), . . . , π(sn)] is a finitely
correlated row isometry, where s1, . . . , sn are pairwise orthogonal isometries generating On. This
relates [17] with [6]. Similarly, following the work of Skalski and Zacharias [66], we will define what
it means for a state on the Cuntz-Pimsner algebra OΛ for finite k-graph Λ to be finitely correlated.
Finitely correlated states will give rise to finitely correlated representations of the product system
associated to Λ.

In [18] Davidson and Pitts classified atomic representations of On, which include as a special
case the permutation representations studied by Bratteli and Jorgensen [7]. If s1, . . . , sn are
pairwise orthogonal isometries which generate On then a representation π of On on a Hilbert
space H is atomic if there is an orthonormal basis for H which is permuted by each π(si) up to
multiplication by scalars in T ∪ {0}. There exist finitely correlated atomic representations of On
[18]. Atomic representations have been a used in the study of other objects. In [15] Davidson and
Katsoulis show that the C∗-envelope of An×ϕZ+ is On×ϕZ, where An is the noncommutative disc
algebra. Finitely correlated atomic representations of On are used as a tool to get to this result,
see [15, Theorem 4.4]. For a general C∗-correspondence or product system of C∗-correspondences
it is not clear what it could mean for a representation to be atomic. Thus the finitely correlated
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representations presented in this chapter are possibly the nearest analogy to finitely correlated
atomic representations. In [19, 22] atomic representations of single vertex k-graphs have been
classified.

In section 2 we study finitely correlated representations of C∗-correspondences. To this end we
follow the same program of attack as [17]. Many of the proofs follow the same line of argument
as the corresponding proofs in [17]. When this is the case it is remarked upon. Lemma 2.2.12
corresponds to [17, Lemma 4.1], and is the key technical tool to our analysis in this section.
It should be noted that Lemma 2.2.12 does not just generalise [17, Lemma 4.1], but the proof
presented here greatly simplifies the argument in [17]. The main results of this section are
summarised in Theorem 2.2.27 and Corollary 2.2.28.

Every graph can be associated with a C∗-correspondence. Thus results on representations
of C∗-correspondences also apply to graph algebras. In Section 2.4.1 we apply our results to
nonself-adjoint graph algebras. The study of nonself-adjoint graph algebras has received attention
in several papers in recent years, e.g. [10, 32, 34, 37, 38, 67]. We strengthen our results from
Section 2.2 for the case of an algebra of a finite graph with the strong double-cycle property, i.e.
for finite graphs where every vertex has a path to a vertex which lies on two distinct minimal
cycles. We show that the nonself-adjoint wot-closed algebra generated by a finitely correlated,
isometric, fully coisometric representation of such a graph contains the projection onto its unique
minimal cyclic coinvariant subspace. Aided by the work of Kribs and Power [37] and Muhly and
Solel [49] on the algebras of directed graphs we use the same method of proof as in [17] to prove
this result. This includes the case studied in [17].

In Section 2.3 we prove the prove the main results of this chapter (Theorem 2.3.19 and Corollary
2.3.21) by generalising the results of section 2 to product systems of C∗-correspondences over Nk.
Our main tool in this section is Theorem 2.3.12. A representation of a product system of C∗-
correspondences provides a representation for each C∗-correspondence in the product system. An
isometric dilation of a contractive representation of a product system of C∗-correspondences gives
an isometric dilation of each of the representations of the individual C∗-correspondences. Theorem
2.3.12 tells us that if we have a minimal isometric dilation of a fully coisometric representation
of a product system over Nk, then the dilations of the corresponding representations of certain
individual C∗-correspondences in the product system will also be minimal. This allows us to deduce
the existence of a unique minimal cyclic coinvariant subspace for finitely correlated, isometric, fully
coisometric representations of product systems from the C∗-correspondence case. In fact, we will
show in Theorem 2.3.19 that the unique minimal cyclic coinvariant subspace for a representation
of a product system will be the same unique minimal cyclic coinvariant subspace for a certain
C∗-correspondence.

Higher-rank graph algebras were introduced by Kumjian and Pask in [40]. A k-graph is,
roughly speaking, a set of vertices with k sets of directed edges (k colours), together with a
commutation rule between paths of different colours. In the last decade there has been a lot of
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study on the C∗-algebras generated by representations of higher-rank graphs. In more recent
years there has been some study on their nonself-adjoint counterparts, see e.g. [39, 58]. The case
of algebras of higher-rank graphs with a single vertex has proved to be rather interesting. Their
study was begun by Kribs and Power [39]. Further study has been carried out by Davidson, Power
and Yang [58, 20, 19, 21, 22, 74].

A k-graph can be associated with a product system of C∗-correspondences over the discrete
semigroup Nk. Thus results on product systems of C∗-correspondences over Nk apply to higher-
rank graph algebras. In Section 2.4.2 we remark that since certain 1-graphs contained in a
k-graph Λ share the same unique minimal cyclic coinvariant subspace for a finitely correlated
representation, if Λ contains a 1-graph with the strong double-cycle property, then the wot-closed
algebra generated by a finitely correlated, isometric, fully coisometric representation will contain
the projection onto its minimal cyclic coinvariant subspace. A k-graph with only one vertex
satisfies this condition.

In [17] the case of non-fully coisometric, finitely correlated row isometries are also studied.
The case of finitely correlated representations of product systems of C∗-correspondences which
are not fully coisometric are not studied in this thesis. The reason for this is because, unlike
the Frazho-Bunce-Popescu dilation used in [17], dilations of representations of product systems
need not be unique if they are not fully coisometric. See section 2.3.2 for a discussion of dilation
theorems for representations of product systems of C∗-correspondences over Nk.

2.2 C∗-Correspondences

2.2.1 Preliminaries and Notation

Most of the background on C∗-correspondences needed in this thesis can be found in the works of
Muhly and Solel [48, 49]. Provided here is a brief summary of the necessary definitions.

Let E be a right module over a C∗-algebra A. An A-valued inner product on E is a map
〈·, ·〉 : E ×E → A which is conjugate linear in the first variable, linear in the second variable and
satisfies

1. 〈ξ, ηa〉 = 〈ξ, η〉a

2. 〈ξ, η〉∗ = 〈η, ξ〉 and

3. 〈ξ, ξ〉 ≥ 0 where 〈ξ, ξ〉 = 0 if and only if ξ = 0,

for ξ, η ∈ E and a ∈ A. We can define a norm on E by setting ‖ξ‖ = ‖〈ξ, ξ〉‖
1
2 . If E is complete

with respect to this norm then it is called a Hilbert C∗-module. We denote by L(E) the space of
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all adjointable bounded linear functions from E to E, i.e. the bounded operators on E with a
(necessarily unique) adjoint with respect to the inner product on E. The adjointable operators on
a Hilbert C∗-module form a C∗-algebra. For ξ, η ∈ E define ξη∗ ∈ L(E) by

ξη∗(ζ) = ξ〈ζ, η〉

for each ζ ∈ E. Denote by K(E) the closed linear span of {ξη∗ : ξ, η ∈ E}. The space K(E) forms
a C∗-subalgebra of L(E) referred to as the compact operators on E. More on Hilbert C∗-modules
can be found in [43].

If there is a homomorphism ϕ from A to L(E), then the Hilbert C∗-module E, together
with the left action on E defined by ϕ, is a C∗-correspondence over A. If E and F are two
C∗-correspondences over A we will write ϕE and ϕF to describe the left action of A on E and F
respectively. With that said, when there is little chance of confusion we will write aξ in place of
ϕ(a)ξ.

Suppose E and F are two C∗-correspondences over a C∗-algebra A. We define the following
A-valued inner product on the algebraic tensor product E ⊗A F , of E and F : for ξ1, ξ2 in E and
η1, η2 in F we let

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, ϕF (〈ξ1, ξ2〉)η2〉.

Taking the Hausdorff completion of E⊗AF with respect to this inner product gives us the interior
tensor product of E and F denoted E ⊗ F . This is the only tensor product of C∗-correspondences
that we will use in this thesis so we will omit the word “interior” and merely say we are taking the
tensor product of C∗-correspondences. When taking the tensor product of a C∗-correspondence E
with itself we will write E2 in place of E ⊗E, and similarly we will write En in place of the n-fold
tensor product of E with itself. We will also set E0 = A.

The Fock space F(E) is defined to be the C∗-correspondence

F(E) =
∑⊕

n≥0

En.

The left action of A on F(E) is denote by ϕ∞ and defined by

ϕ∞(a)ξ1 ⊗ . . .⊗ ξn = (aξ1)⊗ . . .⊗ ξn.

We define creation operators Tξ in L(F(E)) for ξ ∈ E by

Tξ(ξ1 ⊗ . . .⊗ ξn) = ξ ⊗ ξ1 ⊗ . . .⊗ ξn ∈ En+1

for ξ1 ⊗ . . .⊗ ξn ∈ En. The norm closed algebra in L(F(E)) generated by

{Tξ, ϕ∞(a) : ξ ∈ E, a ∈ A}
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is denoted by T+(E) and called the tensor algebra over E. The C∗-algebra generated by T+(E) is
denoted T (E) and called the Toeplitz algebra over E.

A completely contractive covariant representation (A, σ) of a C∗-correspondence E over A
on a Hilbert space H is a completely contractive linear map A from E to B(H) and a unital,
non-degenerate representation σ of A on H which satisfy the following covariant property:

A(aξb) = σ(a)A(ξ)σ(b)

for a, b ∈ A and ξ ∈ E. We will abbreviate completely contractive covariant representation to
merely representation, as these will be the only representations of C∗-correspondences we will
consider. A representation (A, σ) is called isometric if it satisfies

A(ξ)∗A(η) = σ(〈ξ, η〉).

Why this is called isometric will become clear presently.

If σ is a representation of A on a Hilbert space H and E is a C∗-correspondence over A, then
we can form a Hilbert space E⊗σH by taking the algebraic tensor product of E and H and taking
the Hausdorff completion with respect to the inner product defined by

〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉)h2〉

for ξ1, ξ2 ∈ E and h1, h2 ∈ H. We will write E ⊗H in place of E ⊗σ H when it is understood
which representation we are talking about. We can induce σ to a representation σE of L(E) on
E ⊗H. This is defined by

σE(T )(ξ ⊗ h) = (Tξ)⊗ h

for T ∈ L(E), ξ ∈ E and h ∈ H. In particular we can induce σ to σF(E). We define an isometric
representation (V, ρ) of E on F(E)⊗H by

ρ(a) = σF(E) ◦ ϕ∞(a)

for each a ∈ A and
V (ξ) = σF(E)(Tξ)

for each ξ ∈ E. We call (V, ρ) the representation of E induced by σ.

If (A, σ) is a representation of E on H, then we define the operator Ã from E ⊗σ H to H by

Ã(ξ ⊗ h) = A(ξ)h.

This operator was introduced by Muhly and Solel in [48], where they show that Ã is a contraction.
Furthermore, they show that Ã is an isometry if and only if (A, σ) is an isometric representation.
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A representation is called fully coisometric when Ã is a coisometry. We write Ãn for the operator
from En ⊗σ H to H defined by

Ãn(ξ1 ⊗ . . .⊗ ξn ⊗ h) = A(ξ1) . . . A(ξn)h.

Note also that σ(a)Ã = ÃσE(ϕ(a)).

If σ is a representation of A on H and X is in the commutant of σ(A), then we can define a
bounded operator I ⊗X on E ⊗H by

(I ⊗X)(ξ ⊗ h) = ξ ⊗Xh.

It is readily verifiable that I ⊗X is a bounded operator and that ‖I ⊗X‖ ≤ ‖X‖. In particular if
M is a subspace of H with PM ∈ σ(A)′ then I ⊗ PM is a projection in B(E ⊗H). Thus E ⊗H
decomposes into a direct sum E ⊗H = (E ⊗M)⊕ (E ⊗M⊥).

Let (S, ρ) be a representation of a C∗-correspondence E on a Hilbert space H. We denote by
I be the identity in B(H). We call the weak-operator topology closed algebra

S = Alg{I, S(ξ), ρ(a) : ξ ∈ E, a ∈ A}wot

the unital wot-closed algebra generated by the representation (S, ρ).

2.2.2 Minimal Isometric Dilations

Definition 2.2.1. Let E be a C∗-correspondence over a C∗-algebra A and let (A, σ) be a
representation of E on a Hilbert space V . A representation (S, ρ) of E on H is a dilation of (A, σ)
if V ⊆ H and

1. V reduces ρ and ρ(a)|V = σ(a) for all a ∈ A.

2. V⊥ is invariant under S(ξ) for all ξ ∈ E

3. PVS(ξ)|V = A(ξ) for all ξ ∈ E.

A dilation (S, ρ) of (A, σ) is an isometric dilation if (S, ρ) is an isometric representation. A dilation
(S, ρ) of (A, σ) on H is called minimal if H is the smallest reducing subspace for Alg{σ(a), S(ξ)}
which contains V.

Theorem 2.2.2 (Muhly and Solel [48]). If (A, σ) is a contractive representation of a C∗-
correspondence E on a Hilbert space V, then (A, σ) has an isometric dilation (S, ρ). Further, we
can choose (S, ρ) to be minimal; and the minimal isometric dilation of (A, σ) is unique up to a
unitary equivalence which fixes V.
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The following lemma uses a standard argument in dilation theory.

Lemma 2.2.3. If (A, σ) is a representation of a C∗-correspondence E on a Hilbert space V and
(S, ρ) is its minimal isometric dilation on H, then (S, ρ) is fully coisometric if and only if (A, σ)
is fully coisometric.

Proof. Clearly, if S̃S̃∗ = IH then for v ∈ V , ÃÃ∗v = PV S̃S̃
∗v = PVv = v, and so Ã is a coisometry.

Conversely, suppose that Ã is a coisometry. Let M = (I − S̃S̃∗)H. It is not hard to see
that M is a S∗-invariant subspace, where S is the unital wot-closed algebra generated by the
representation (S, ρ). Also since ÃÃ∗ = IV we have that PV S̃S̃

∗|V = IV , henceM is a S∗-invariant
space orthogonal to V . But, since our dilation is minimal the only S∗-invariant subspace orthogonal
to V is the zero space. Therefore M = {0}.

The following two results have been proved in [17] for the case when E = Cn (where 2 ≤ n ≤ ∞)
and A = C. We follow much the same line of proof as found there.

Lemma 2.2.4. Let (A, σ) be a representation of a C∗-correspondence E on a Hilbert space V,
and let (S, ρ) be the unique minimal isometric dilation of (A, σ) on a Hilbert space H. Let
W = (V + S̃(E ⊗ V))	 V. Then W is a ρ-reducing subspace and V⊥ is isometrically isomorphic
to F(E)⊗W. Furthermore, the representation of E obtained by restricting (S, ρ) to V⊥ is the
representation induced by ρ(·)|W .

Proof. First note that W is ρ-reducing. This follows since V is ρ-reducing and hence so is V⊥ and
ρ(a)S(ξ)V = S(aξ)V for each a ∈ A and ξ ∈ E.

The subspace V⊥ is invariant under S(ξ) for each ξ ∈ E. So for any n and ξ1, . . . , ξn ∈ E,
the space S(ξ1) . . . S(ξn)W is orthogonal to V. It follows that if n ≥ 1, then S(ξ1) . . . S(ξn)W is
orthogonal to S(ξ)V for all ξ ∈ E. Therefore S(ξ1) . . . S(ξn)W is orthogonal to V + S̃(E ⊗ V),
which contains W.

Also note that if η1, . . . , ηm are in E, with m < n and w1 and w2 in W then

〈S(ξ1) . . . S(ξn)w1, S(η1) . . . S(ηm)w2〉
= 〈ρ(〈η1 ⊗ . . .⊗ ηm, ξ1 ⊗ . . .⊗ ξm〉)S(ξm+1) . . . S(ξn)w1, w2〉 = 0.

By minimality we have that

V⊥ =
∑⊕

n≥0

∑
ξ1,...,ξn∈E

S(ξ1) . . . S(ξn)W

=
∑⊕

n≥0

S̃n(En ⊗W)

' F(E)⊗W.

13



Remark 2.2.5. When (A, σ) is a fully coisometric representation of a C∗-correspondence E on
a Hilbert space V, we have that V = S̃S̃∗V = S̃Ã∗V ⊆ S̃(E ⊗ V). Hence, when (A, σ) is fully
coisometric the space W in Lemma 2.2.4 is simply W = S̃(E ⊗ V)	 V.

Lemma 2.2.6. Let (A, σ) be a representation of a C∗-correspondence E on a Hilbert space V,
and let (S, ρ) be the unique minimal isometric dilation of (A, σ) on a Hilbert space H. Let A
be the wot-closed unital algebra generated by (A, σ) and let S be the wot-closed unital algebra
generated by (S, ρ). Suppose V1 is an A∗-invariant subspace of V. Then H1 = S[V1] reduces S.

If V1 and V2 are orthogonal A∗-invariant subspaces, then Hj = S[Vj ] for j = 1, 2 are mutually
orthogonal.

If V = V1 ⊕ V2, then H = H1 ⊕H2 and Hj ∩ V = Vj for j = 1, 2.

Proof. Note that for any a ∈ A, ρ(a)V1 = σ(a)V1 ⊆ V1. Also for any ξ ∈ E, S(ξ)∗V1 = A(ξ)∗V1 ⊆
V1. Hence V1 is S∗-invariant. Now H1 is spanned by vectors of the form S(ξ1) . . . S(ξn)v, where
ξ1, . . . , ξn ∈ E and v ∈ V1. If n ≥ 2 then for any ξ ∈ E,

S(ξ)∗S(ξ1) . . . S(ξn)v = S(〈ξ, ξ1〉ξ2) . . . S(ξn)v ∈ H1.

If n = 1 we have S(ξ)∗S(ξ1)v = ρ(〈ξ, ξ1〉)v = σ(〈ξ, ξ1〉)v ∈ H1. Hence H1 reduces S.

Now suppose V1 and V2 are orthogonal A∗-invariant subspaces. Take v1 ∈ V1, v2 ∈ V2 and
ξ1, . . . , ξn, η1, . . . , ηm be in E. Suppose n ≥ m then

〈S(ξ1) . . . S(ξn)v1, S(η1) . . . S(ηm)v2〉
= 〈v1, S(ξn)∗ . . . S(ξm+1)∗ρ(〈ξm, ηm〉 . . . 〈ξ1, η1〉)v2〉 = 0.

It follows that H1 and H2 are orthogonal.

If V = V1 ⊕ V2 then, since H1 contains V1 and is orthogonal to V2, H1 ∩ V = V1. Finally,
H1 ⊕ H2 is an S-reducing subspace containing V, so it is all of H by the minimality of the
dilation.

Given an isometric representation (S, ρ) of a C∗-correspondence E on H with corresponding
unital wot-closed algebra S which is the minimal isometric dilation of a representation (A, σ) on
V ⊆ H, Lemma 2.2.6 shows that S∗-invariant subspaces of V give rise to S-reducing subspaces
of H. In Corollary 2.2.8 we give a weak converse of this: that S-reducing subspaces in H are
uniquely determined by their projections onto V. This follows from the following more general
result.

Lemma 2.2.7. Let (A, σ) be a representation of a C∗-correspondence E on a Hilbert space V,
and let (S, ρ) be the unique minimal isometric dilation of (A, σ) on a Hilbert space H. Let S
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be the unital wot-closed algebra generated by (S, ρ). Suppose B is a normal operator in B(H)
such that the range of B is contained in V⊥ and B is in C∗(S(E), ρ(A))′, the commutant of the
C∗-algebra generated by S(E) and ρ(A). Then B = 0.

Proof. Suppose that B is non-zero. Take any δ such that 0 < δ < ‖B‖ and let Dδ be the open
disc of radius δ about 0. Let Q be the spectral projection Q = EB(spec(B)\Dδ), where spec(B)
denotes the spectrum of B. Then Q ∈W ∗(B) ⊆ C∗(S(E), ρ(A))′ and QH is orthogonal to V. In
particular QH is a non-zero S∗-invariant space orthogonal to V . But no such space can exist since
our dilation is minimal.

Corollary 2.2.8. Suppose M and N are two S-reducing subspaces of H and the compressions of
PM and PN to V are equal, i.e. PVPMPV = PVPNPV . Then M = N .

Proof. Let M and N be two S-reducing subspaces with PVPMPV = PVPNPV . Elements of the
form S(ξ1) . . . S(ξn)v, with v ∈ V and ξ1, . . . , ξn ∈ E, span a dense subset of H and

(PM − PN )S(ξ1) . . . S(ξn)v = S(ξ1) . . . S(ξn)(PM − PN )v

= S(ξ1) . . . S(ξn)PV⊥(PM − PN )v ∈ V⊥.

It follows that the range of PM − PN lies in V⊥. Hence, by Lemma 2.2.7 PM − PN = 0 and
M = N .

2.2.3 Finitely Correlated Representations

Definition 2.2.9. An isometric representation (S, ρ) of a C∗-correspondence E on a Hilbert space
H is called finitely correlated if (S, ρ) is the minimal isometric dilation of a representation (A, σ)
on a non-zero finite dimensional Hilbert space V ⊆ H.

In particular, if S is the unital wot-closed algebra generated by (S, ρ), then (S, ρ) is finitely
correlated if there is a finite dimensional S∗-invariant subspace V of H such that (S, ρ) is the
minimal isometric dilation of the representation (PVS(·)|V , ρ(·)|V).

Remark 2.2.10. It should be noted that not all C∗-algebras can be represented non-trivially
on a finite dimensional Hilbert spaces, e.g. if A is a properly infinite C∗-algebra then there are
no non-zero finite dimensional representations of A since A contains isometries with pairwise
orthogonal ranges. Likewise, any simple infinite dimensional C∗-algebra has no finite dimensional
representations.

In this section we are concerned with finitely correlated fully coisometric representations. If
we assume that a C∗-correspondence E over a C∗-algebra A has a fully coisometric representation
then we are assuming that there are non-zero representations of A on finite-dimensional Hilbert
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spaces. Under this assumption there are still a wide range of C∗-correspondences which can be
studied, e.g. the following example and the C∗-correspondences associated to graphs in section
2.4.

Example 2.2.11. The case when A = C and E = Cn has been studied previously in [17]. A
representation of E on a finite dimensional space V is simply a row-contraction A = [A1, . . . , An]
from V(n) to V. The representation is fully-coisometric when A is defect free, i.e.

n∑
i=1

AiA
∗
i = IV .

The dilation of A will be the Frazho-Bunce-Popescu dilation of A to a row-isometry S = [S1, . . . , Sn].
The dilation S will be defect free as A is. These representations can alternatively be viewed as
representations of a graph with 1 vertex and n edges, see §2.4.1.

Let (S, ρ) be a fully coisometric, finitely correlated representation on H of the C∗-correspond-
ence E over the C∗-algebra A, and let S be the unital wot-closed algebra generated by (S, ρ). A
key tool in the analysis in [17] is that every non-zero S∗-invariant subspace of H has non-trivial
intersection with V ([17, Lemma 4.1]), for the case A = C and E = Cn. The main idea of the
proof is that, because the representation is fully coisometric and the unit ball in V is compact, one
can “pull back” any non-zero element of H with elements in S∗ to V, without the norm going to
zero. However, the proof in [17] that the norm does not go to zero is quite complicated. We prove
the analogous result for more general C∗-correspondences than those studied in [17] below. The
proof presented below simplifies the approach in [17] by “pulling back” not in H but in F(E)⊗H,
making use of Muhly and Solel’s ˜operators.

Lemma 2.2.12. Let (S, ρ) be a finitely correlated, fully coisometric representation of a C∗-
correspondence E on H. Let S be the unital wot-closed algebra generated by (S, ρ) and let V be
a finite dimensional S∗-invariant subspace of H such that (S, ρ) is the minimal isometric dilation
of the representation (PVS(·)|V , ρ(·)|V).

If M is a non-zero, S∗-invariant subspace of H, then the subspace M∩V is non-trivial.

Proof. Let µ = ‖PVPM‖. If µ = 1 then for each n there is a unit vector hn ∈ M such that
‖PV⊥hn‖ < 1

n . Let vn = PVhn. We have that (vn)n is a sequence in the unit ball of V therefore it
has a convergent subsequence (vni)ni . Let v0 be the limit of (vni)ni . We have then that

‖hni − v0‖ ≤ ‖hni − vni‖+ ‖vni − v0‖ → 0,

as ni →∞ and so the subsequence (hni)ni converges to v0. Therefore v0 is a non-zero vector in
M∩V. Thus showing that µ = 1 will prove the lemma.
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Let h be a unit vector inM. Since our dilation is minimal there is a sequence (kn)n converging
to h where each kn is of the form

kn =

Nn∑
i=1

S(ξn,i,1) . . . S(ξn,i,wn,i)vn,i

with ξn,i,j ∈ E and vn,i ∈ V. Without loss of generality we can assume that ‖kn‖ = 1 for each n.

If we let Mn = max{wn,i : 1 ≤ i ≤ Nn} for each n, then for any ξ1, . . . , ξMn ∈ E we have

S(ξ1)∗ . . . S(ξMn)∗kn ∈ V.

It follows that S̃∗Mn
kn ∈ EMn ⊗ V. Note that S̃Mn is a coisometry so ‖S̃∗Mn

kn‖ = 1. We also have

that S̃∗Mn
h ∈ EMn ⊗M and ‖S̃∗Mn

h‖ = 1.

Let un = S̃∗Mn
kn and hn = S̃∗Mn

h. We have that

‖un − hn‖ → 0

as n→ 0. If µ < 1 we can choose ε > 0 such that 1− ε ≥ µ and take n large enough so that

‖hn − un‖2 = ‖hn‖2 + ‖un‖2 − 2Re〈hn, un〉 < 2ε.

It follows that

1− ε < Re〈hn, un〉
≤ ‖(IEMn

⊗ PV)hn‖‖un‖,

with last inequality being the Cauchy-Schwarz inequality. So our choice of ε tells us that
µ < ‖(IEMn

⊗ PVPM)‖ ≤ ‖PVPM‖. This is a contradiction. Thus µ = 1.

Proposition 2.2.13. Let (A, σ) be a representation of a C∗-correspondence E on a finite di-
mensional Hilbert space V, and let (S, ρ) be the unique minimal isometric dilation of (A, σ) on a
Hilbert space H. Let A be the unital algebra generated by the representation (A, σ) and let S be
the unital wot-closed algebra generated by (S, ρ).

If V1 is an A∗-invariant subspace of V and H1 = S[V1]. Then H1 ∩ V = A[V1].

Proof. If w ∈ V 	 A[V1] then A∗w is an A∗-invariant space orthogonal to V1, hence by Lemma
2.2.6 S[A∗w] ⊆ H⊥1 . Therefore H1 ∩ V ⊆ A[V1].

If w ∈ H⊥1 ∩ V then for any A ∈ A and v ∈ V1 then we have that 0 = 〈A∗w, v〉 = 〈w,Av〉.
Hence A[V1] ⊆ H1 ∩ V.
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Corollary 2.2.14. If M is a S-reducing subspace then M = S[M∩V].

Proof. M is a S-reducing subspace and, by Lemma 2.2.6, S[M∩V] is a S-reducing subspace.
Hence M	 S[M∩ V] is S-reducing. If M	 S[M∩ V] is non-zero then by Lemma 2.2.12,
M	S[M∩V] has non-zero intersection with V. This yields a contradiction as the intersection
will be orthogonal to M∩V.

Corollary 2.2.15. If A = B(V) then every S∗-invariant subspace of H contains V.

Proof. Suppose M is a non-zero S-reducing subspace. Then M∩V is a non-zero S∗-invariant,
and hence A∗-invariant, subspace of V. Hence M∩V = V.

Corollary 2.2.16. If V1 and V2 are minimal A∗-invariant subspaces of V such that S[V1] = S[V2],
then V1 = V2.

Proof. Let H′ = S[V1] = S[V2]. Define representations (B, σ1) and (C, σ2) of E on V1 and V2

respectively by
B(ξ) = PV1A(ξ)|V1 and C(ξ) = PV2A(ξ)|V2

for all ξ ∈ E, and
σi(a) = σ(a)|Vi

for all a ∈ A, i = 1, 2. The representations (B, σ1) and (C, σ2) share a unique minimal isometric
dilation (S(·)|H′ , σ(·)|H′). By Corollary 2.2.15, any S∗-invariant subspace of H′ contains both V1

and V2. In particular V1 ⊆ V2 and V2 ⊆ V1. Hence V1 = V2.

Definition 2.2.17. Let E be a C∗-correspondence over a C∗-algebra A. When (A, σ) is a
representation of E on H, we denote by ΦA the completely positive map from σ(A)′ to σ(A)′

defined by
ΦA(X) = Ã(I ⊗X)Ã∗

for every X in σA(A)′.

Remark 2.2.18. For any a ∈ A and X ∈ σ(A)′ we have

σ(a)ΦA(X) = σ(a)Ã(I ⊗X)Ã∗ = ÃσE(a)(I ⊗X)Ã∗

= Ã(I ⊗X)σE(a)Ã∗ = Ã(I ⊗X)Ã∗σ(a).

So ΦA maps from σ(A)′ to σ(A)′ as claimed.
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In [49] isometric representations that are not necessarily fully coisometric are studied. It is
shown there that the corresponding ΦA function for an isometric representation (A, σ) will be
an endomorphism of σ(A)′. It is also shown that the fixed point set of ΦA is the commutant of
A, where A is the algebra generated by the representation. In our setting, when (A, σ) is a finite
dimensional, fully coisometric representation on a Hilbert space V, we get that the commutant of
A is fixed by ΦA (Lemma 2.2.19). Later, in Lemma 2.2.26, when we compress (A, σ) to a certain
A∗-invariant subspace V̂ ⊆ V , we will get that the fixed point set of the corresponding ΦÂ map for

the compressed representation (Â, σ̂) := (PV̂A(·)|V̂ , σ(·)|V̂), is the commutant of the compression

of A to V̂.

The map ΦA is a generalisation of the map Φ introduced in Section 4 of [17]. Indeed Lemma
2.2.20 and Lemma 2.2.21 are direct analogues of [17, Lemma 5.10] and [17, Lemma 5.11] respectively.
We follow the same line of proof as in [17] when proving these results.

Lemma 2.2.19. Let (A, σ) be a fully coisometric representation of a C∗-correspondence E over
a C∗-algebra A on a finite dimensional Hilbert space V. Let A be the unital algebra generated by
the representation (A, σ) and let ΦA be the map from σ(A)′ to σ(A)′ defined in Definition 2.2.17.

Then if X is in the commutant of A, X is a fixed point of ΦA.

Proof. Suppose that X ∈ A′. Then for any ξ ∈ E and v ∈ V we have

XÃ(ξ ⊗ v) = XA(ξ)v = A(ξ)Xv

= Ã(ξ ⊗Xv) = Ã(I ⊗X)(ξ ⊗ v).

Hence XÃ = Ã(I ⊗X). Multiplying on the right by Ã∗ gives X = ΦA(X).

Lemma 2.2.20. Let (A, σ) be a fully coisometric representation of a C∗-correspondence E over
a C∗-algebra A on a finite dimensional Hilbert space V. Let A be the unital algebra generated by
the representation (A, σ) and let ΦA be the map from σ(A)′ to σ(A)′ defined in Definition 2.2.17.

Suppose there is an X ∈ σ(A)′ which is non-scalar and ΦA(X) = X. Then V has two pairwise
orthogonal minimal A∗-invariant subspaces.

Proof. Since ΦA is unital and self-adjoint there is a positive, non-scalar X ∈ σ(A)′ such that
ΦA(X) = X. Assume ‖X‖ = 1. Note that, as X ∈ σ(A)′, the eigenspaces of X are invariant
under σ(A). Let µ be the smallest eigenvalue of X and letM = ker(X − I) and N = ker(X −µI).
Take any non-zero x ∈M.

‖x‖2 = 〈ΦA(X)x, x〉 = 〈(I ⊗X)Ã∗x, Ã∗x〉
≤ 〈Ã∗x, Ã∗x〉 = ‖x‖2.
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From this we must have (I ⊗X)Ã∗x = Ã∗x and hence Ã∗x ∈ E ⊗M.

Note that if x, y are eigenvectors for X for different eigenvalues then

〈ξ ⊗ x, η ⊗ y〉 = 〈x, σ(〈ξ, η〉)y〉 = 0,

for any ξ, η ∈ E. Hence if we take any non-zero x ∈ M and let y be any eigenvector of X
orthogonal to M we get

〈A(ξ)∗x, y〉 = 〈Ã∗x, ξ ⊗ y〉 = 0

for any ξ ∈ E. Hence M is A∗-invariant. The same argument works for N , as both M and N
are eigenspaces for extremal values in the spectrum of X. As M and N are distinct eigenspaces
for a self-adjoint operator, they are orthogonal. Since V is a finite dimensional, there exists a
space {0} 6=M′ ⊆M of minimal dimension which is A∗-invariant and a space {0} 6= N ′ ⊆ N of
minimal dimension which is A∗-invariant.

Lemma 2.2.21. Let (A, σ) be a fully coisometric representation of a C∗-correspondence E over
a C∗-algebra A on a finite dimensional Hilbert space V. Let A be the unital algebra generated by
the representation (A, σ) and let ΦA be the map from σ(A)′ to σ(A)′ defined in Definition 2.2.17.

Suppose V = V1 ⊕ V2 where both V1 and V2 are minimal A∗-invariant subspaces. Further
suppose the representation (A, σ) decomposes into (B, σ1)⊕ (C, σ2) with respect to V1 ⊕ V2 with
B(V1) = Alg{B(ξ), σ1(a) : ξ ∈ E, a ∈ A} and B(V2) = Alg{C(ξ), σ2(a) : ξ ∈ E, a ∈ A}.

If there exists X ∈ σ(A)′ such that

1. ΦA(X) = X and

2. X21 := PV2XPV1 6= 0

then there is a unitary W such that

C(ξ) = W ∗B(ξ)W

and
σ2(a) = W ∗σ1(a)W

for all ξ ∈ E and a ∈ A. Moreover the fixed point set of ΦA consists of all matrices of the form[ a11IV1 a12W ∗

a21W a22IV2

]
.

Proof. We can assume that X = X∗ and ‖X21‖ = 1 as ΦA is self-adjoint. We denote by B̃ and C̃
the usual maps from E ⊗ V1 and E ⊗ V2 respectively. Let M = {x ∈ V1 : ‖X21v‖ = ‖v‖}. As V is

20



finite dimensional, M is non-empty. Note that for any v ∈M we have X∗21X21v = v. It follows
that M is a subspace of V1. Thus if v ∈M and a ∈ A we have

‖X21σ(a)v‖2 = 〈X21σ(a)v,X21σ(a)v〉 = 〈X∗21X21v, σ(a∗a)v〉 = ‖σ(a)v‖2.

So M reduces σ(A). This tells us that E ⊗M and E ⊗ (V1 	M) are orthogonal spaces.

Now take any v in M. Since ΦA(X) = X, we have that

X21v = C̃(I ⊗X21)B̃∗v.

This implies that ‖(I ⊗X21)B̃∗v‖ = ‖B̃∗v‖ = ‖v‖. Thus B̃∗v ∈ E ⊗M for all v ∈M. Take any
ξ ∈ E, v ∈M and w ∈ V1 	M.

〈B(ξ)∗v, w〉 = 〈B̃∗v, ξ ⊗ w〉 = 0.

Thus B(ξ)∗v ∈M. We conclude that M is A∗-invariant. Hence, by the minimality of V1, M is
all of V1. Therefore X21 is an isometry from V1 to V2. Let W = X21 ∈ B(V1,V2). For v ∈ V1

‖v‖ = ‖Wv‖ = ‖C̃(I ⊗W )B̃∗v‖ ≤ ‖(I ⊗W )B̃∗v‖ ≤ ‖v‖.

Hence C̃ is an isometry from Ran(I ⊗W )B̃∗ to the RanW = V2. C̃ is a contraction and so must
be zero on the orthogonal complement of Ran(I ⊗W )B̃∗. It follows that C̃∗ is an isometry from
V2 to Ran(I ⊗W )B̃∗. Hence C̃∗W = (I ⊗W )B̃∗. From this it follows that C(ξ)∗ = WB(ξ)∗W ∗

for all ξ ∈ E. Since W is also in the commutant of σ(A) it is the desired unitary.

Suppose Y ∈ B(V1,V2) and
[

0 0
Y 0

]
is fixed by ΦA, then

Y = C̃(I ⊗ Y )B̃∗ = WB̃(I ⊗W ∗)(I ⊗ Y )B̃∗ = WB̃(I ⊗W ∗Y )B̃∗.

It follows from Lemma 2.2.20 that W ∗Y is a scalar and so Y is a scalar multiple of W . A similar
argument works for the other coordinates.

By Proposition 2.2.13, if V ′ is an A∗-invariant subspace of V such that A[V ′] = V (i.e. V ′ is
cyclic for A) then S[V ′] = H. Hence the minimal isometric dilation of the completely contractive
representation (PV ′A(·)|V ′ , σ(·)|V ′) is (S, ρ).

Definition 2.2.22. Suppose A is an algebra acting on a Hilbert space V, and that V ′ is an
A∗-invariant subspace of V which is cyclic for A. If V ′ has no proper A∗-invariant subspaces which
are cyclic for A then we say that V ′ is a minimal cyclic coinvariant subspace (for A) of V.

When (A, σ) is representation of a C∗-correspondence on a Hilbert space V and A is the unital
wot-closed algebra generated by (A, σ), we call a minimal cyclic coinvariant subspace for A a
minimal cyclic coinvariant subspace for (A, σ).
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The following proof is due to Ken Davidson.

Lemma 2.2.23. Let V be a finite dimensional Hilbert space. Suppose A ⊆ B(V) is an algebra and
that V is a minimal cyclic coinvariant space for A. Then A is a C∗-algebra.

Proof. Suppose L is an A∗-invariant subspace such that V 	L is not A∗-invariant. Let M = A[L].
Then L (M andM ( V . So V	M is a non-zero A∗-invariant subspace such that V	M ( V	L.
We have that L ⊕ (V 	M) is an A∗-invariant subspace and A[L ⊕ (V 	M)] = V. Hence, by our
assumption that V is a minimal cyclic coinvariant space, V = L⊕ (V 	M). This is a contradiction.
Hence if L is an A∗-invariant subspace then V 	 L must also be A∗-invariant. Since V is finite
dimensional, it follows that A is a C∗-algebra.

Lemma 2.2.24. Let (A, σ) be a fully coisometric representation of a C∗-correspondence E on
a finite dimensional Hilbert space V, and let (S, ρ) be the unique minimal isometric dilation of
(A, σ) on a Hilbert space H. Let A be the unital algebra generated by the representation (A, σ) and
let S be the unital wot-closed algebra generated by (S, ρ).

If V1,V2, . . . ,Vk is a maximal set of pairwise orthogonal minimal A∗-invariant spaces of V
then V̂ = V1 ⊕ . . .⊕ Vk is the unique minimal cyclic coinvariant subspace of V.

Proof. Firstly, S[V̂] is a S-reducing subspace by Lemma 2.2.6. If S[V̂] is not all of H then its
orthogonal complement in H, M, is also a S-reducing space. By Lemma 2.2.12 M∩ V is a
non-zero A∗-invariant space orthogonal to each Vj for 1 ≤ j ≤ k. This contradicts the maximality
of our choice of V1, . . . ,Vk. Hence, by Proposition 2.2.13, V̂ is A-cyclic. Since each Vj is a minimal
A∗-invariant space and since the S-reducing spaces S[Vj ] are orthogonal by Lemma 2.2.6 it follows
that V̂ is indeed a minimal cyclic coinvariant subspace of V.

Now suppose that W is an A∗-invariant subspace of V such that S[W] = H, i.e. A[W] = V.
Let Hj = S[Vj ] for each j. We have that Hj ⊆ S[W] for each j and hence Hj ∩W is non-zero.
But each Hj is irreducible by Corollary 2.2.15 and hence Vj is the unique minimal S∗-invariant
subspace of Hj by Corollary 2.2.16. It follows that Vj is contained in Hj ∩W for each j. Therefore
V̂ ⊆ W.

Remark 2.2.25. In [17], Lemma 2.2.23 is proved for the case when A is the unital algebra
generated by a finite dimensional, fully coisometric representation (A, σ) of the C∗-correspondence
Cn over C ([17, Part of Theorem 5.13]). The proof uses analysis of ΦA and the fact that V̂ is a
direct sum of minimal A∗-invariant subspaces. We note that the proof presented here shows that
the result is in fact just a general result about cyclic, coinvariant subspaces in finite-dimensions,
independent of any deeper analysis.
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However, that the minimal cyclic coinvariant space is unique is not a general result in finite
dimensional linear algebra. For example, the algebra

C =

{[
λ 0

γ − λ γ

]
: λ, γ ∈ C

}
in B(C2) has both {(x, 0) : x ∈ C} and {(x, x) : x ∈ C} as minimal cyclic coinvariant spaces.

While it is shown that the minimal cyclic coinvariant space V̂ in Lemma 2.2.24 is unique, the
decomposition of V̂ into a direct sum of minimal coinvariant subspaces is not necessarily unique.
For example, suppose A∗ has two 1-dimensional invariant, orthogonal subspaces V1 and V2 and
that the representation (PV1A(·)|V , σ(·)|V1) is unitarily equivalent to (PV2A(·)|V , σ(·)|V2). Let U
be the unitary defining the equivalence. Take a unit vector v1 ∈ V1 and let v2 = Uv1. Then
V ′1 = span{v1 + v2} and V ′2 = span{v1 − v2} are orthogonal, A∗-invariant subspaces and

V1 ⊕ V2 = V ′1 ⊕ V ′2.

We follow the argument given in [17, Theorem 5.13] for the following result. This serves as a
converse to Lemma 2.2.19.

Lemma 2.2.26. Let (A, σ) be a fully coisometric representation of a C∗-correspondence E over
a C∗-algebra A. Let A be the unital algebra generated by the representation (A, σ) and let ΦA be
the map from σ(A)′ to σ(A)′ defined in Definition 2.2.17.

Suppose V = V̂, where V̂ = V1 ⊕ . . .⊕ Vk is as in Lemma 2.2.24. Then the fixed point set of
ΦA is equal to the commutant of A.

Proof. We have already shown in Lemma 2.2.19 that if X ∈ A′ then ΦA(X) = X. Take X ∈ σ(A)′

such that ΦA(X) = X. Suppose that X is non-scalar. If there is no unitary between Vk and Vl
intertwining A then, by Lemma 2.2.21, PVkXPVl = 0. On the other hand, if Wk,l is an intertwining
unitary from Vk to Vl then Lemma 2.2.21 tells us that PVkXPVl = xklWk,l for some scalar xkl,
and hence PVkXPVl is in A′. It follows that X ∈ A′.

The following theorem summarises our main results.

Theorem 2.2.27. Suppose E is a C∗-correspondence over a C∗-algebra A. Let (A, σ) be a fully
coisometric, finite dimensional representation of E on a Hilbert space V, and let (S, ρ) be the
minimal isometric dilation of (A, σ) on H. Let A be the unital algebra generated by (A, σ) and S
be the unital wot-closed algebra generated by (S, ρ).

If

V̂ =

n∑⊕

j=1

Vj
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is a maximal direct sum of minimal, orthogonal A∗-invariant subspaces of V, then V̂ is the unique
minimal A∗-invariant subspace such that S[V̂] = H. Further

H =

n∑⊕

j=1

Hj

where Hj = S[Vj ].

The representation (PV̂⊥S(·)|V̂⊥ , ρ(·)|V̂⊥) is an induced representation and S∗|V̂ is a C∗-algebra.

We now show that the compression to the minimal cyclic coinvariant space for a finitely
correlated, fully coisometric representation is a complete unitary invariant.

Corollary 2.2.28. Suppose (S, σ) and (T, τ) are finitely correlated, isometric, fully coisometric
representations of a C∗-correspondence E on HS and HT respectively. Let VS be the unique
minimal cyclic coinvariant subspace for (S, σ) and let VT be the unique minimal cyclic subspace
for (T, τ).

Then (S, σ) and (T, τ) are unitarily equivalent if and only if the finite dimensional representa-
tions (PVSS(·)|VS , σ(·)|VS ) and (PVT T (·)|VT , τ(·)|VT ) are unitarily equivalent.

Proof. Suppose (S, σ) and (T, τ) are unitarily equivalent. Let U be the unitary from HS to HT
intertwining (S, σ) and (T, τ). It follows that UVS is invariant under T (·)∗ and is cyclic, hence
VT ⊆ UVS . Similarly VS ⊆ U∗VT . It follows that UVS = VT and (PVSS(·)|VS , σ(·)|VS ) and
(PVT T (·)|VT , τ(·)|VT ) are unitarily equivalent.

Conversely, suppose that (PVSS(·)|VS , σ(·)|VS ) and (PVT T (·)|VT , τ(·)|VT ) are unitarily equivalent.
Then, by the uniqueness of the minimal isometric dilation, (S, σ) and (T, τ) are unitarily equivalent.

2.3 Product Systems of C∗-correspondences over Nk

We will now extend our results to product systems of C∗-correspondences. This is the analogue of
multivariate operator theory, and so relies on a more sophisticated dilation theory. The key to our
analysis will be a trick to reduce to the consideration of a certain C∗-correspondence contained
inside our product system (Theorem 2.3.12).

2.3.1 Preliminaries and Notation

The following description of product systems of C∗-correspondences over Nk follows that of [26]
and [69]. Let A be a unital C∗-algebra. A semigroup E is a product system of C∗-correspondences
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over Nk if there is a semigroup homomorphism p : E → Nk such that E(n) := p−1(n) is a
C∗-correspondence over A and the map (ξ, η) ∈ E(n) × E(m) → ξη ∈ E(n + m) extends to
an isomorphism tn,m from E(n)⊗ E(m) onto E(n + m). By E(0) we mean the C∗-algebra A.
Letting e1, e2, . . . , ek be the standard generating set of Nk, we write Ei for the C∗-correspondence
p−1(ei). We identify E(n) with En1

1 ⊗ . . .⊗E
nk
k when n = (n1, . . . , nk). It follows that ti,j := tei,ej

is an isomorphism from Ei ⊗Ej to Ej ⊗Ei, for i ≤ j and tj,i = t−1
i,j for i ≤ j. We write ti,i for the

identity on E2
i . We will often suppress the isomorphism and write E(n)⊗ E(m) = E(n + m).

If, for each i, (A(i), σ) is a representation of Ei on a Hilbert space H and we have the following
commutation relation

Ã(i)(IEi ⊗ Ã(j)) = Ã(j)(IEj ⊗ Ã(i))(ti,j ⊗ IH)

then (A(1), . . . , A(k), σ) is a (completely contractive covariant) representation of E on H. A repre-
sentation (A(1), . . . , A(k), σ) is said to be isometric (resp. fully coisometric) if each representation
(A(i), σ) is isometric (resp. fully coisometric).

For n = (n1, . . . , nk) ∈ Nk we define a map Ãn from E(n)⊗H to H by

Ãn = Ã(1)
n1

(IEn1
1
⊗ Ã(2)

n2
) . . . (IEn1

1
⊗ . . .⊗ I

E
nk−1
k−1

⊗ Ã(k)
nk

)

We define a representation (An, σ) of the C∗-correspondence E(n) by letting

An(ξ)h = Ãn(ξ ⊗ h)

for each ξ ∈ E(n) and h ∈ H.

A representation (A(1), . . . , A(k), σ) of E is said to be doubly commuting if it satisfies

Ã(j)∗Ã(i) = (IEj ⊗ Ã(i))(ti,j ⊗ IH)(IEi ⊗ Ã(j)∗).

It has been shown in [26] and [69] that the doubly commuting condition is equivalent to what is
known as Nica covariance [51]. It is easy to check that an isometric, fully coisometric representation
is doubly commuting.

Note that if (A(1), . . . , A(k), σ) is an isometric representation, then for n = (n1, . . . , nk),
m = (m1, . . . ,mk) ∈ Nk we have

Ã∗mÃn = IE(n−(n−m)+) ⊗ Ã∗(n−m)−
Ã(n−m)+

where (n−m)+ is equal to ni −mi in the ith coordinate if ni ≥ mi and zero in the ith coordinate
otherwise, and (n−m)− ∈ Nk satisfies n−m = (n−m)+ − (n−m)−.

We define the Fock space F(E) of a product space of C∗-correspondences by

F(E) =
∑⊕

n∈Nk

E(n).
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For more details on the construction see [26]. For each n and ξ ∈ E(n) define the creation operator
Tξ : F(E)→ F(E) by

Tξ(η) = ξ ⊗ η

for each η ∈ F(E). The C∗-algebra in L(F(E)) generated by the creation operators is called the
Toeplitz algebra associated to E and denoted T (E). A product system (E,A) is said to have the
normal ordering property if

T (E) = span{L(ξ)L(η)∗ : ξ, η ∈ ∪n∈NkE(n)}.

Let (S(1), . . . , S(k), ρ) be a representation of a product system (E,A) on a Hilbert space H.
We denote by I be the identity in B(H). We call the weak-operator topology closed algebra

S = Alg{I, S(i)(ξi), ρ(a) : a ∈ A, ξi ∈ Ei for 1 ≤ i≤ k}wot

the unital wot-closed algebra generated by the representation (S(1), . . . , S(k), ρ).

2.3.2 Minimal Isometric Dilations

Definition 2.3.1. Let (E,A) be a product system over Nk and let (A(1), . . . , A(k), σ) be a
representation of E on V. A representation (S(1), . . . , S(k), ρ) on a Hilbert space H is a dila-
tion of (A(1), . . . , A(k), σ) if H contains V and, for each i, (S(i), ρ) dilates (A(i), σ). A dilation
(S(1), . . . , S(k), ρ) of (A(1), . . . , A(k), σ) is an isometric dilation if (S(1), . . . , S(k), ρ) is an isometric
representation. A dilation (S(1), . . . , S(k), ρ) of (A(1), . . . , A(k), σ) on H is minimal if H is the
smallest reducing subspace for Alg{ S(i)(ξi), ρ(a) : a ∈ A, ξi ∈ Ei for 1 ≤ i ≤ k} which contains
V.

Given an arbitrary representation of a product system (E,A) over Nk it is not always possible
to find an isometric dilation. Indeed, if k ≥ 3 and A = E = C, then a representation of E is
simply k commuting contractions A1, . . . , Ak. It is known that there are examples of commuting
contractions which can not be dilated to commuting isometries, see e.g. [52]. With that said,
there are a number of dilation theorems for product systems of C∗-correspondences. We will now
review a number of these dilations results that will be useful. The subsequent remarks may help
clarify some of the distinctions.

Theorem 2.3.2 (Solel [68]). Let (E,A) be a product system of C∗-correspondences over N2. Then
any representation of E has an isometric dilation.

Definition 2.3.3. Let (A(1), . . . , A(k), σ) be a representation of a product system (E,A) on H.
For each n ∈ Zk we define A(n) to be

A(n) = Ã∗n−Ãn+ .
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Let (S(1), . . . , S(k), ρ) be an isometric dilation of (A(1), . . . , A(k), σ). If for each n ∈ Zk, the
representation (S(1), . . . , S(k), ρ) satisfies

(IE(n+) ⊗ PH)S(n)|E(n+)⊗H = A(n)

then (S(1), . . . , S(k), ρ) is a regular isometric dilation of (A(1), . . . , A(k), σ).

Theorem 2.3.4 (Solel [69]). Let (E,A) be a product system of C∗-correspondences over Nk and let
(A(1), . . . , A(k), σ) be a representation of E. If (A(1), . . . , A(k), σ) satisfies the additional condition
that, for every v ⊆ {1, . . . , k}∑

u⊆v
(−1)|u|(Ie(v)−e(u) ⊗ Ã∗e(u)Ãe(u)) ≥ 0, (2.1)

where e(u) ∈ Nk is 1 in the ith coordinate if i ∈ u and zero in the ith coordinate otherwise, then it
has a unique minimal regular isometric dilation.

Theorem 2.3.5 (Solel [69]). Let (E,A) be a product system of C∗-correspondences over Nk
and let (A(1), . . . , A(k), σ) be a doubly commuting representation of E. Then the representa-
tion (A(1), . . . , A(k), σ) will satisfy (2.1). Further, the minimal regular isometric dilation of
(A(1), . . . , A(k), σ) will be doubly commuting.

Theorem 2.3.6 (Shalit [61]). Let (E,A) be a product system of C∗-correspondences over Nk
and let (A(1), . . . , A(k), σ) be a fully coisometric representation of E. Then the representation
(A(1), . . . , A(k), σ) has a minimal isometric dilation which is fully coisometric.

Definition 2.3.7. Let (E,A) be product system of C∗-correspondences over Nk. For a represen-
tation (A(1), . . . , A(k), σ) of E on a Hilbert space H define the defect operator for s ∈ (0, 1)

∆s =
∑
n∈Nk

n≤(1,1,...,1)

(−s2)(|n|)Ã(n)Ã(n)∗,

where |n| = n1 + . . .+ nk when n = (n1, n2, . . . , nk).

The representation (A(1), . . . , A(k), σ) is said to satisfy the Popescu condition if there is a
t ∈ (0, 1) such that ∆s is positive for all s ∈ (t, 1).

Theorem 2.3.8 (Skalski [64]). Let (E,A) be a product system of C∗-correspondences over
Nk having the normal ordering property. Let (A(1), . . . , A(k), σ) be a representation of E. If
(A(1), . . . , A(k), σ) satisfies the Popescu condition then it has an isometric dilation.

Remark 2.3.9 (Remarks on Theorems 2.3.2, 2.3.4, 2.3.6 and 2.3.8). The dilation given in Theorem
2.3.2 is not necessarily unique. Examples of representations which do not dilate uniquely are given
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by Davidson, Power and Yang in [20]. They also provide an alternative proof of Theorem 2.3.2 for
the case that A = C and Ei = Cni for i = 1, 2. Further it is proved that in this setting a minimal
isometric dilation of a fully coisometric representation is fully coisometric and unique.

A fully coisometric representation does not necessarily satisfy (2.1). For example if T1 = T2 =
S∗, where S is a unilateral shift on a separable Hilbert space, then the commuting coisometries
T1 and T2 do not satisfy (2.1). The atomic representations of single vertex k-graphs studied in
[19, 22] do satisfy (2.1) since they are doubly commuting. For another example of a non-doubly
commuting, fully coisometric representation see Example 2.4.18.

An alternative proof of Theorem 2.3.4 was given by Shalit in [62]. The method of proof in [62]
and [61] is to construct a semigroup of commuting contractions from a contractive representation.
The result is then deduced from dilation results for semigroups of commuting contractions.

Skalski and Zacharias [65] show that if (A(1), . . . , A(k), σ) is a doubly commuting representation
of E then its minimal isometric dilation is fully coisometric if and only if (A(1), . . . , A(k), σ) is fully
coisometric. We will show in Lemma 2.3.10 that a minimal, isometric dilation of a representation
(A(1), . . . , A(k), σ) is fully coisometric if and only if (A(1), . . . , A(k), σ) is fully coisometric, without
the assumption that (A(1), . . . , A(k), σ) is doubly commuting.

It is noted in [64] that if a representation (A(1), . . . , A(k), σ) is doubly commuting or coisometric
then it will satisfy the Popescu condition. Theorem 2.3.8 is a more general version of a dilation
theorem for k-graphs proved by Skalski and Zacharias in [66]. We will look more closely at k-graphs
in section 2.4.

The following result is just a higher-rank version of Lemma 2.2.3 and follows much the same
argument.

Lemma 2.3.10. Let (A(1), . . . , A(k), σ) be a representation of a product system E on a Hilbert
space V with a minimal isometric dilation (S(1), . . . , S(k), ρ) on a Hilbert space H. Then dilation
(S(1), . . . , S(k), ρ) is fully coisometric if and only if (A(1), . . . , A(k), σ) is fully coisometric.

Proof. That (A(1), . . . , A(k), σ) is fully coisometric when (S(1), . . . , S(k), ρ) is follows the same
argument as in Lemma 2.2.3.

Conversely, assume that (A(1), . . . , A(k), σ) is fully coisometric. We will show that S̃ := S̃1 is a
coisometry. That S̃i is a coisometry, for 2 ≤ i ≤ k, follows similarly. Note that S̃ is an isometry
and so S̃S̃∗ is a projection on H. Let M = (I − S̃S̃∗)H. Take any x ∈M and y ∈ H. We have

〈S(ξ1)∗x, S(ξ2)y〉 = 〈x, S̃(ξ1 ⊗ S(ξ2)y)〉 = 0
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for all ξ1, ξ2 ∈ E1. For 2 ≤ i ≤ k we have

〈S(i)(η)∗x, S(ξ)y〉 = 〈x, S(i)(η)S(ξ)y〉
= 〈x, S̃(i)(IEi ⊗ S̃)(η ⊗ ξ ⊗ y)〉
= 〈x, S̃(IE ⊗ S̃(i)) ◦ (t⊗ IH)(η ⊗ ξ ⊗ y)〉
= 0

for all ξ ∈ E and η ∈ Ei (where t = t1,i). It follows that M is S∗-invariant, where S is the
unital wot-closed algebra generated by (S(1), . . . , S(k), ρ). The rest of the proof follows the same
argument as Lemma 2.2.3.

Lemma 2.3.11. Let (A(1), . . . , A(k), σ) be a fully coisometric representation of a product system
E. Then the minimal isometric dilation of (A(1), . . . , A(k), σ) is unique up to unitary equivalence.

Proof. Since (A(1), . . . , A(k), σ) is fully coisometric it can be dilated by Theorem 2.3.6. It follows
from [64, Theorem 2.7] that all doubly commuting, minimal, isometric dilations of a representation
(A(1), . . . , A(k), σ) are unitarily equivalent. By Lemma 2.3.10, if (A(1), . . . , A(k), σ) is a fully
coisometric representation then all minimal, isometric dilations are also fully coisometric, and
hence they are doubly commuting. It follows that the minimal isometric dilation is unique up to
unitary equivalence.

We now prove a key technical tool. We show that taking the minimal isometric dilation of a fully
coisometric representation (A(1), . . . , A(k), σ) gives rise to the minimal isometric representation
of the representation (An, σ) when n ≥ (1, . . . , 1). This allows us, in Lemma 2.3.18, to prove
the analogous result of Lemma 2.2.12 for product systems. In fact, Theorem 2.3.12 allows us
to deduce Lemma 2.3.18 from Lemma 2.2.12. Lemma 2.3.18 will play an important role in our
analysis, just as Lemma 2.2.12 did in the study of the C∗-correspondence case.

Theorem 2.3.12. Let (A(1), . . . , A(k), σ) be a fully coisometric representation of a product system
of C∗-correspondences E on a Hilbert space V with minimal isometric dilation (S(1), . . . , S(k), ρ)
on a Hilbert space H. If n = (n1, n2, . . . , nk) ∈ Nk satisfies ni 6= 0 for 1 ≤ i ≤ k then the
C∗-correspondence representation (Sn, ρ) of E(n) is the (unique) minimal isometric dilation of
(An, σ).

Proof. It is clear that (Sn, ρ) is an isometric dilation of (An, σ) for any n ∈ Nk. It remains to
show that the dilation is minimal when ni 6= 0 for each i.

For any n ∈ Nk we define Hn to be the space mapped out by (Sn, σ), i.e.

Hn = V +
∨
m∈Z
m≥0

S̃nm(E(n)m ⊗ V).
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Claim (1). If m,n ∈ Nk and m ≤ n, then Hm ⊆ Hn.

Let p = n−m. Take any v ∈ V and ξ ∈ E(m) then

S̃m(ξ ⊗ v) = S̃m(IE(m) ⊗ S̃p)(IE(m) ⊗ S̃∗p)(ξ ⊗ v)

∈ S̃n(E(n)⊗ V).

That the range of S̃lm is contained in the range of S̃ln for positive integers l follows by a similar
argument.

Claim (2). If m,n ∈ Nk and n = lm for some positive integer l, then Hm = Hn.

We know from the first claim that Hm ⊆ Hn. The reverse inclusion follows from the fact that
S̃n is isomorphic to

S̃m(IE(m) ⊗ S̃m) . . . (IE(m)p−1 ⊗ S̃m).

Claim (3). If m,n ∈ Nk such that ni,mi 6= 0 for 1 ≤ i ≤ k, then Hm = Hn.

Choose an integer l such that lm ≥ n. Then, by the previous two claims, Hn ⊆ Hlm = Hm.
The reverse inclusion follows similarly.

Now, since (S(1), . . . , S(k), ρ) is a minimal dilation, we have that H =
∨

n∈Nk Hn. However, if
we fix n ∈ Nk such that ni 6= 0 for each i, then the previous three claims tell us that Hm ⊆ Hn

for every m ∈ Nk. Hence H = Hn and so (Sn, ρ) is the minimal isometric dilation of (An, σ).

Remark 2.3.13. The condition in Theorem 2.3.12 that n ≥ (1, 1, . . . , 1) is necessary to guarantee
that (Sn, ρ) is the minimal isometric dilation of (An, σ). For example, let H be a separable Hilbert
space with orthonormal basis {en : n ≥ 0}. Define commuting isometries T1 and T2 on H by

T1en = e2n and

T2en = e3n.

Then T ∗1 and T ∗2 are commuting coisometries. Let U1 and U2 be the minimal commuting unitaries
dilating T ∗1 and T ∗2 . Note that commuting unitaries are necessarily doubly commuting. We have
that for any n, k ≥ 0

〈U1e3, U
k
2 en〉 = 〈e3, U

k
2 e2n〉 = 〈e3, T

∗k
2 e2n〉 = 0,

and so U2 is not the minimal isometric dilation of T ∗2 .

In some cases of fully coisometric, atomic representations of single vertex k-graphs, however, it
is not necessary for n ≥ (1, . . . , 1) for Theorem 2.3.12 to be satisfied. See Example 2.4.15 and
Proposition 2.4.16.
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We now prove a higher rank version of Lemma 2.2.6.

Lemma 2.3.14. Let (A(1), . . . , A(k), σ) be a representation of a product system E on a Hilbert
space V with a minimal isometric dilation (S(1), . . . , S(k), ρ) on a Hilbert space H. Let A and S be
the unital wot-closed algebra generated by (A(1), . . . , A(k), σ) and (S(1), . . . , S(k), ρ) respectively.
Further, suppose that the representation (S(1), . . . , S(k), ρ) is doubly commuting. Then if V1 is an
A∗-invariant subspace of V, H1 = S[V1] reduces S.

If V1 and V2 are orthogonal A∗-invariant subspaces the Hj = S[Vj ] for j = 1, 2 are mutually
orthogonal.

If V = V1 ⊕ V2, then H = H1 ⊕H2 and Hj ∩ V = Vj for j = 1, 2.

Proof. We will prove the first part of the theorem. The remaining parts follow in a similar manner
as in Lemma 2.2.6.

First, V1 is A∗-invariant, and so V1 is S∗-invariant. Elements of the form S̃n(η ⊗ v), with
n ∈ Nk, η ∈ E(n) and v ∈ V1, span a dense subset of H1. Take n = (n1, . . . , nk) ∈ Nk and
i ∈ {1, . . . , k}. Then for any ξ ∈ Ei, η ∈ E(n), v ∈ V1, w ∈ S[V1]⊥, if ni 6= 0 then

〈S(i)(ξ)∗S̃n(η ⊗ v), w〉 = 〈 ˜S(i)
∗
S̃n(η ⊗ v), ξ ⊗ w〉

= 〈IEi ⊗ S̃n−ei(η ⊗ v), ξ ⊗ w〉
= 0,

and so S(i)(ξ)∗S̃n(η ⊗ v) ∈ H1. If ni = 0 then, since our dilation is doubly commuting,

〈S(i)(ξ)∗S̃n(η ⊗ v), w〉 = 〈 ˜S(i)
∗
S̃n(η ⊗ v), ξ ⊗ w〉

= 〈(IEi ⊗ S̃n)(t⊗ IH)(IE(n) ⊗ ˜S(i)
∗
)(η ⊗ v), ξ ⊗ w〉

= 〈(IEi ⊗ S̃n)(t⊗ IH)(IE(n) ⊗ Ã(i)
∗
)(η ⊗ v), ξ ⊗ w〉

= 0

and so again S(i)(ξ)∗S̃n(η ⊗ v) ∈ H1. Thus H1 is S-reducing.

Remark 2.3.15. It is natural to ask if there is a higher rank analogue of Lemma 2.2.4. If
(A(1), . . . , A(k), σ) is a representation of E on V with a minimal isometric dilation (S(1), . . . , S(k), ρ)
on H, is the restriction of (S(1), . . . , S(k), ρ) to V⊥ an induced representation? The answer is no.
From [26] it is known that induced representations are doubly commuting. Looking at the atomic
representations studied in [19] and [22], or looking at Example 2.4.15, we see that the restriction
to V⊥ is not, in general, doubly commuting.
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2.3.3 Finitely Correlated Representations

Definition 2.3.16. An isometric representation (S(1), . . . , S(k), ρ) of a product system E on a
Hilbert space H is called finitely correlated if (S(1), . . . , S(k), ρ) is the minimal isometric dilation
of a representation (A(1), . . . , A(k), σ) on a non-zero finite dimensional Hilbert space V ⊆ H.

In particular, if S is the unital wot-closed algebra generated by (S(1), . . . , S(k), ρ), then
(S(1), . . . , S(k), ρ) is finitely correlated if there is a finite dimensional S∗-invariant subspace V of
H such that (S(1), . . . , S(k), ρ) is the minimal isometric dilation of the compressed representation
(PVS

(1)(·)|V , . . . , PVS(k)(·)|V , ρ(·)|V).

Remark 2.3.17. In this section we are concerned with finitely correlated fully coisometric
representations of product systems. Let (E,A) be a product system of C∗-correspondences over
Nk. As in the C∗-correspondence case, assuming existence of a finitely correlated fully coisometric
representation of E puts restrictions on the C∗-algebra A. See Remark 2.2.10. The class of product
systems of C∗-algebras which exhibit finitely correlated representations includes the k-graphs
studied in §2.4.

A class of finitely correlated representations of k-graphs have been studied in [19] (2-graphs)
and [22] (k-graphs). These papers consider finitely correlated atomic representations of k-graphs.
These representations are both isometric and fully coisometric. Atomic representations are an
example of partially isometric representations, i.e. they are representations defined by row-
contractions of partial isometries. Atomic representations of k-graphs are looked at more closely
in section 2.4.2. As in the rank 1 case above, the existence of a unique minimal generating space is
shown. We will now prove the existence of such a space for a general finitely correlated, isometric,
fully coisometric representation of a product system of C∗-correspondences over Nk. We begin
with a higher rank version of Lemma 2.2.12.

Lemma 2.3.18. Let (S(1), . . . , S(k), ρ) be a finitely correlated, fully coisometric representa-
tion of a product system E on a Hilbert space H. Let S be the unital wot-closed algebra
generated by (S(1), . . . , S(k), ρ). Let V be a finite dimensional S∗-invariant subspace of H
such that (S(1), . . . , S(k), ρ) is the minimal isometric dilation of the compressed representation
(PVS

(1)(·)|V , . . . , PVS(k)(·)|V , ρ(·)|V).

Then if M is a non-zero, S∗-invariant subspace of H, the subspace M∩V is non-trivial.

Proof. Take any n = (n1, . . . , nk) ∈ Nk with ni 6= 0 for 1 ≤ i ≤ k. By Theorem 2.3.12, (Sn, ρ) is
the unique minimal isometric dilation of (An, σ). The subspace M is S∗-invariant and so for any
ξ ∈ E(n), Sn(ξ)∗M⊆M. Let Sn be the unital wot-closed algebra generated by Sn(E(n)) and
ρ(A). It follows thatM is invariant under S∗n. Hence, by Lemma 2.2.12,M∩V is non-trivial.
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Theorem 2.3.19. Let (A(1), . . . , A(k), σ) be a fully coisometric representation of a product system
E on a finite dimensional Hilbert space V, and let (S(1), . . . , S(k), ρ) be the unique minimal
isometric dilation of (A(1), . . . , A(k), σ) on a Hilbert space H. Let A be the unital algebra generated
by the representation (A(1), . . . , A(k), σ) and let S be the unital wot-closed algebra generated by
(S(1), . . . , S(k), ρ).

If V1,V2, . . . ,Vk is a maximal set of pairwise orthogonal minimal A∗-invariant spaces of V then
V̂ = V1⊕ . . .⊕Vk is the unique minimal cyclic coinvariant subspace of V and S∗|V̂ is a C∗-algebra.

Further, if Wm is the unique, minimal cyclic space for the C∗-correspondence representation
(Sm, ρ), where m = (m1,m2, . . . ,mk) (with mi 6= 0 for 1 ≤ i ≤ k), then Wm = V̂.

Proof. Using Lemma 2.3.14 and Lemma 2.3.18, that S[V̂] = H follows the same argument as in
the C∗-correspondence case. That S∗|V̂ is a C∗-algebra follows by Lemma 2.2.23.

Let m = (m1,m2, . . . ,mk) ∈ Nk where mi 6= 0 for 1 ≤ i ≤ k. Let Am be the unital algebra
generated by the representation (Am, σ) and let W be the unique minimal cyclic coinvariant
space for Am. By Theorem 2.3.12 and since W is unique, W is contained in any minimal cyclic
coinvariant space for A. In particular W ⊆ V̂. Note also that A[W] = V since Am[W] = V and
Am ⊆ A. We will show W is A∗-invariant.

Define the subspace U ′ ⊆ V by

U ′ =
∑

ξ∈E(m−ek)

Sm−ek(ξ)∗W.

Note that, by the commutation relations

S̃m−ek(IE(m−ek) ⊗ S̃m) = S̃m(IE(m) ⊗ S̃m−ek)(t⊗ IH)

where t is the isomorphism t : E(m− ek)⊗ E(m)→ E(m)⊗ E(m− ek).

So, if we take vectors w ∈ W, v ∈ V 	 U ′ and η ∈ E(m) and ξ ∈ E(m− ek) then

〈Sm(η)∗Sm−ek(ξ)∗w, v〉 = 〈(IE(m−ek) ⊗ S̃∗m)S̃∗m−ekw, ξ ⊗ η ⊗ v〉
= 〈(IE(m) ⊗ S̃∗m−ek)S̃∗mw, (t⊗ IH)(ξ ⊗ η ⊗ v〉
= 〈S̃∗mw, (IE(m) ⊗ S̃m−ek)(t⊗ IH)(ξ ⊗ η ⊗ v〉.

Note that S̃∗mw ∈ E(m)⊗W, (IE(m) ⊗ S̃m−ek)(t⊗ IH)(ξ ⊗ η ⊗ v) is in the space

E(m)⊗ S̃m−ek(E(m− ek)⊗ (V 	 U ′)),

and W and U ′ are both σ reducing subspaces. It follows that

〈Sm(η)∗Sm−ek(ξ)∗w, v〉 = 0,
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and so U ′ is A∗m-invariant. By Lemma 2.2.12, U ′ has non-trivial intersection with W. Let
U =W ∩ U ′.

Suppose U 6=W. A similar argument to above will show that∑
ξ∈Ek

S(k)(ξ)∗(W 	U)

has non-trivial intersection with W. Choose w1, . . . , wn ∈ W 	 U and ζ1, . . . , ζn ∈ Ek such that∑n
i=1 S

(k)(ζi)
∗wi is a non-zero vector in W. Since (A(1), . . . , A(k), σ) is fully coisometric we can

choose η ∈ E(m− ek) such that

w := Sm−ek(η)∗
n∑
i=1

S(k)(ζi)
∗wi

is non-zero. Now w is in W and hence w is in U ∩ (W 	U). This contradiction shows that we
must have U =W . By construction of U ′, we have that for any u ∈ U ′ and ξ ∈ Ek, S(k)(ξ)∗u is in
W. Hence W is invariant under A∗k, where Aj is the unital algebra generated by (A(j), σ). We
can similarly show that W is A∗j -invariant for 1 ≤ j ≤ k − 1, and so W is A∗-invariant. Therefore

W = V̂, and thus V̂ is unique.

Remark 2.3.20. Take a non-zero m ∈ Nk with m 6≥ (1, . . . , 1). Let U be the minimal cyclic
coinvariant subspace for the representation (Am, σ) of the C∗-correspondence E(m) and V̂ be
the minimal cyclic coinvariant subspace for the representation of the product system, as in
Theorem 2.3.19. We necessarily have that U ⊆ V̂. However given an arbitrary finitely correlated
representation we can not say whether U = V̂ or U ( V̂ . For the case when k = 2 and m = (0, 1),
Example 2.4.15 satisfies U = V̂ and Example 2.4.17 satisfies U ( V̂.

We again conclude that the compression to the unique minimal cyclic subspace for a finitely
correlated, fully coisometric representation is a complete unitary invariant.

Corollary 2.3.21. Suppose (S(1), . . . , S(k), σ) and (T (1), . . . , T (k), τ) are finitely correlated, fully
coisometric representations of a product system (E,A) on HS and HT respectively. Let VS be the
unique minimal cyclic coinvariant subspace for the representation (S(1), . . . , S(k), σ) and let VT be
the unique minimal cyclic subspace for the representation (T (1), . . . , T (k), τ).

Then (S(1), . . . , S(k), σ) and (T (1), . . . , T (k), τ) are unitarily equivalent if and only if the fi-
nite dimensional fully coisometric representations (PVSS

(1)(·)|VS , . . . , PVSS(k)(·)|VS , σ(·)|VS ) and
(PVT T

(1)(·)|VT , . . . , PVT T (k)(·)|VT , τ(·)|VT ) are unitarily equivalent.
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2.4 Higher Rank Graph Algebras

2.4.1 Graph Algebras

Let G be a directed graph with a countable number of vertices V(G) and a countable number of
edges E(G). If e ∈ E(G) is an edge from a vertex v to a vertex w then we say that v is the source
of e, denoted s(e), and that w is the range of e, denoted r(e). A vertex x is called a source if
there is no edge e with r(e) = x. A path of length k in G is a finite collection of edges ekek−1 . . . e1

such that r(ei) = s(ei+1) for 1 ≤ i ≤ k − 1. A cycle is a path ekek−1 . . . e1 with s(e1) = r(ek).
If x = s(e1) and y = r(ek) then we say that ekek−1 . . . e1 is a path from x to y. A graph G is
transitive if, for any vertices x, y ∈ V(G), there is a path from x to y. A graph is strongly transitive
if it is transitive and it is neither a single cycle nor a graph with one vertex and no edges.

As described in [60, 64, 49] a graph can be described by a C∗-correspondence. We follow the
construction of [60] as presented in [64]. Note that in the case of a finite graph this construction
is the same as that given in [49].

Let A = C0(V(G)) be the C∗-algebra of all functions on V(G) vanishing at infinity. Let E(G)
be the set of functions ξ : E(G)→ C which satisfy for each v ∈ V(G)

ξv :=
∑

e∈E(G)
s(e)=v

|ξ(e)|2 <∞

and the function v → ξv vanishes at infinity. Define an A-valued inner product on E(G) by

〈ξ, η〉(v) =
∑

e∈E(G)
s(e)=v

ξ(e)η(e),

for ξ, η ∈ E(G). Define a left action of A on E(G) by

(aξ)(e) = a(r(e))ξ(e)

and a right action by
(ξa)(e) = ξ(e)a(s(e))

for ξ ∈ E(G), a ∈ A and e ∈ E(G). These make E(G) into a C∗-correspondence over A. We
identify the vertex v ∈ V(G) with function δv ∈ A which sends v to 1 and all other vertices to 0.
Similarly, we identify an edge e ∈ E(G) with the function δe ∈ E(G) which sends e to 1 and all
other edges to 0.

For a good introduction to graph algebras see [59]. We remark that representations of E(G)
coincide with completely contractive representations of G and that the dilation theorem for
contractive representations of graphs in [34] and [10] is implied by Theorem 2.2.2.
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Denote by LG the wot-closed algebra generated by

{Tξ, ϕ∞(a) : ξ ∈ E, a ∈ A}

acting on the space HG := F(E(G)). The algebra LG is known as a free semigroupoid algebra, see
[37]. When G has a single vertex and n edges then LG is a free semigroup algebra, more commonly
denoted Ln.

Finite dimensional representations of graphs are plentiful. Indeed Davidson and Katsoulis
show that the finite dimensional representations of a graph G separate points in LG, [10]. Thus
finitely correlated, isometric representations are also plentiful. Provided in [10] is an algorithm
for creating finite dimensional representations. Below is a method for creating finite dimensional,
fully coisometric representations. A similar example can be found in [34].

Example 2.4.1. Let G be a finite graph with no sources. Let V(G) = {v1, . . . , vn}. Let
E(G)i = {e ∈ E(G) : r(e) = vi} = {ei1, ei2, . . . , eiCi}, where Ci is the number of elements in E(G)i.
Let A and E(G) be as described above. Let H be a finite dimensional Hilbert space and let
K = H1⊕ . . .⊕Hn, where Hi = H for each i. We will define a representation (A, σ) of E(G) on K.

For each vertex vi let Ti = [Ti1, . . . , TiCi ] be a defect free row-contraction on Hi, i.e.

Ci∑
j=1

TijT
∗
ij = IHi .

Suppose eij ∈ E(G)i with s(eij) = vl. Define A(eij) ∈ B(K) = Mn(B(H)) by (A(eij))i,l = Ti,j and
(A(eij))k,m = 0 when (k,m) 6= (i, l). We define a representation σ of A on K by σ(vi) = PHi =: Pvi
for 1 ≤ i ≤ n. Thus ∑

e∈E(G)

A(e)A(e)∗ = IK

and
Pr(e)A(e)Ps(e) = A(e).

It follows that (A, σ) is a finite dimensional, fully coisometric representation of E(G), see [10],
[34]. This method readily extends to any graph containing a finite subgraph with no sources.

Strong Double-Cycle Property

We now strengthen our results from section 2.2 for the special case of C∗-correspondences defined
by finite graphs with the strong double-cycle property.

Definition 2.4.2. A vertex in G is said to lie on a double-cycle if it lies on two, distinct, minimal
cycles. We say that G has the strong double-cycle property if for every vertex x in G there is a
path from x to a vertex lying on a double-cycle.
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Example 2.4.3. When n ≥ 2, a single vertex graph with n edges has the strong double-cycle
property. This is the case studied in [17].

Example 2.4.4. If each connected component of G is strongly transitive, then G has the strong
double-cycle property.

The following result is proved in [49] and [37] for finite graphs with the strong double-cycle
property, and in [18] for when LG = Ln is a free semigroup algebra.

Theorem 2.4.5. Suppose G is a finite graph with the strong double-cycle property and ϕ is a
weak-∗ continuous linear functional on LG with ‖f‖ < 1. Then there are vectors ξ and ζ in HG,
with ‖ξ‖, ‖ζ‖ < 1, such that ϕ(A) = 〈Aξ, ζ〉 for all A in LG.

We fix such a graph G with a finitely correlated fully coisometric representation (S, ρ) of E(G)
on a Hilbert space H. Let U be the unique minimal cyclic coinvariant subspace for (S, ρ) and let
(A, σ) be the compression of (S, ρ) to U , so that (S, ρ) is the unique minimal dilation of (A, σ). Let
A be the unital algebra generated by (A, σ) and let S be the unital wot-closed algebra generated
by (S, ρ). By Theorem 2.2.27, U = U1⊕ . . .⊕Un is a direct sum of minimal A∗-invariant subspaces
and A is a C∗-algebra. For each j let Hj = S[Uj ]. Let d = dimU and let {f1, . . . , fd} form an
orthonormal basis of U . We now follow the methods in [17] in order to give a full description of S.
In particular, we will show that S contains the projection onto U .

For 1 ≤ i ≤ n, let qi be the compression of A to Ui, i.e. qi(A) = PUiAPUi = B(Ui). Choose a
minimal set H ⊆ {1, . . . , n} such that

∑⊕
h∈H qh is faithful. The minimal ideal ker

∑⊕
h∈H\{h0} qh is

isomorphic to B(Uh0). This kernel can be supported on more than one of the Ui’s. We let Hh ⊆ H
be the set of indices i where Ui is supported on ker

∑⊕
g∈H\{h} qg. For each h ∈ H let mh be the

number of elements in Hh. If we let Wh =
∑⊕

i∈Hh
Ui, then U =

∑⊕
h∈HWh. For each j ∈ Hh there

is a spatial, algebra isomorphism σj of B(Uh) onto B(Uj) such that

A|Wh
=

{∑⊕

j∈Hh

σj(X) : X ∈ B(Uh)

}
.

For each h ∈ H let Ph be the projection onto Wh. For each h ∈ H the projection Ph lies in the
centre of A.

A closer look at Lemma 2.2.4 tells us that for each ξ ∈ E and a ∈ A

S(ξ) =

[
A(ξ) 0

Xξ T
(α)
ξ

]
, ρ(a) =

[
σ(a) 0

0 ρ(a)|V⊥

]
where α = dimW, with W = (U + S̃(E ⊗ U))	 U as in Lemma 2.2.4. Hence

S =

[
A 0

∗ L(α)
G

]
.
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We denote by B the wot-closed operator algebra on H spanned by B(H)PU and 0U ⊕L(α)
G .

The following three proofs follow the arguments of [17, Lemma 4.4], [17, Lemma 5.14] and [17,
Corollary 5.3] respectively.

Lemma 2.4.6. Every weak-∗ continuous functional on B is given by a trace class operator of
rank at most d+ 1, where d = dimU .

Hence the wot and weak-∗ topologies coincide on B and S.

Proof. Let ϕ be a weak-∗ continuous functional on B. If B ∈ B then ϕ(B) is determined by
ϕ(BPU) and ϕ(BPU⊥). By the Riesz Representation Theorem there are vectors y1, . . . , yd ∈ U
such that

ϕ(BPU ) =

d∑
i=1

〈Bfi, yi〉.

By Theorem 2.4.5 there are vectors ξ, ζ ∈ U⊥ such that ϕ(A) = 〈Aξ, ζ〉 for all A ∈ L(α)
G . Hence

ϕ(B) =

d∑
i=1

〈Bfi, yi〉+ 〈Bξ, ζ〉,

and ϕ is trace-class of rank at most d+ 1.

Lemma 2.4.7. For h ∈ H, let Ph denote the minimal central projections of A as above. Then Ph
lies in S. Hence PU is in S.

Proof. Fix a minimal central projection P of A. Let ϕ be a non-zero weak-∗ continuous functional
on B which is zero on S. We will show that ϕ(P ) = 0. It follows immediately that P ∈ S.

By Lemma 2.4.6 there are vectors x, y ∈ H(d+1) such that ϕ(A) = 〈A(d+1)x, y〉 for all A ∈ B.
Let M = S∗(d+1)[y]. Since ϕ is zero on S it follows that x is orthogonal to M. Let M0 =
M ∩ U (d+1). By Lemma 2.2.12, M0 is non-zero. The subspace M0 is invariant under the
C∗-algebra A(d+1) and hence M0 is the range of a projection Q in the commutant of A(d+1).

We decompose U (d+1) into the following spaces

P (d+1)QU (d+1) ⊕ P⊥(d+1)QU (d+1) ⊕ P (d+1)Q⊥U (d+1) ⊕ P⊥(d+1)Q⊥U (d+1)

=:Mpq ⊕Mp⊥q ⊕Mpq⊥ ⊕Mp⊥q⊥ .

Note that, as Q and P (d+1) are projections in the commutant of A(d+1), the four spaces Mij are
A(d+1)-reducing. Also M0 =Mpq ⊕Mp⊥q. Letting Hij = S[Mij ] we see that H decomposes into

H = Hpq ⊕Hp⊥q ⊕Hpq⊥ ⊕Hp⊥q⊥ .

38



It follows that y ∈ Hpq ⊕Hp⊥q = S[M0] and so P
(d+1)
U y ∈M0. The projection PU dominates P

and so P (d+1)y ∈M0. Hence

ϕ(P ) = 〈P (d+1)x, y〉 = 〈x, P (d+1)y〉 = 0.

Lemma 2.4.8. The algebra SPU '
∑⊕

h∈H(B(Hh)Ph)(mh), where mh = |Hh|.

Proof. First suppose that A = B(U), i.e. U is a minimal A∗-invariant subspace. By Lemma 2.4.7,
the projection PU is in S. Hence SPU = B(U) is in S. In particular, for any v ∈ U the rank 1
operator vv∗ is in S. Note also that S[v] = H for any non-zero v ∈ U . Hence for any x ∈ H there
are operators Tk in S such that Tkv converges to x. Hence Tkvv

∗ is in S. Hence xv∗ is in S for
all x ∈ H and v ∈ U . Therefore B(H)PU is in S.

Returning to the general case, note that there is a unitary equivalence between
∑⊕

j∈Hh
Hj and

Hh ⊗ C(mh). Lemma 2.4.7 tells us that PWh
' P

(mh)
h lies in S for each h ∈ H. From the first

paragraph it now follows that SPU decomposes as
∑⊕

h∈H(B(Hh)Ph)(mh).

Combining Lemma 2.4.7 and Lemma 2.4.8 with Theorem 2.2.27 we get the following theorem.
When G is a single vertex graph with 2 or more edges, Theorem 2.4.9 is the same as [17, Theorem
5.15].

Theorem 2.4.9. Let G be a finite graph with the strong double cycle property. Let (A, σ) be fully
coisometric, finite dimensional representation of G on a Hilbert space U . Let (S, ρ) be the unique
minimal isometric dilation of (A, σ) to a Hilbert space K. Let A = Alg{A(ξ), σ(a) : ξ ∈ E, a ∈ A}
and S = Alg{S(ξ), ρ(a) : ξ ∈ E, a ∈ A}wot

If

Û =

n∑⊕

j=1

Uj

is a maximal direct sum of minimal A∗-invariant subspaces of U then Û is the unique minimal
A∗-invariant subspace such that S[Û ] = H. The compression Â of A to Û is a C∗-algebra. Writing

Û as
∑⊕

h∈H U
(mh)
h , where Uh has dimension dh and multiplicity mh then

Â =
∑⊕

h∈H
Mdh ⊗ Cmh .

Let Ph be the projection onto Uh. Then the dilation acts on the space

K =
∑⊕

h∈H
K(mh)
h = Û ⊕ H(α)

G
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where Kh = Uh ⊕H
(αh)
h , αh = dim((S̃(E(G)⊗ Uh)	 Uh) and

α =
∑
h∈H

αhmh.

The algebra S decomposes as

S '
∑⊕

h∈H
(B(Hh)Ph)(mh) + (0Û ⊕ L

(α)
G ).

2.4.2 Higher Rank Graph Algebras

Definition 2.4.10. A k-graph (Λ, d) consists of a countable small category Λ, together with
a degree functor d from Λ to Nk, satisfying the factorization property: for every λ ∈ Λ and
m,n ∈ Nk with d(λ) = m + n, there are unique elements µ, ν ∈ Λ such that λ = µν and d(µ) = m
and d(ν) = n. For each n ∈ Nk let Λn = d−1(n). Each k-graph (Λ, d) has a source map s : Λ→ Λ0

and a range map r : Λ→ Λ0.

A k-graph Λ is said to be finitely aligned if for each λ, µ ∈ Λ the set

{ν ∈ Λ : there exists α, β ∈ Λ such that ν = λα = µβ, d(ν) = d(λ) ∨ d(µ)},

is finite.

A 1-graph (Λ, d) is simply a graph with vertices Λ0 and edges Λ1. A k-graph can be visualized
as a multi-coloured graph with vertices Λ0 and Λei representing a different coloured set of edges
for each i.

As in the 1-graph case, a k-graph can be associated with a product system of C∗-correspondences
over Nk. Briefly, define a C∗-algebra A by Λ0, in the same manner that we used the vertices of a
1-graph to define a C∗-algebra. For 1 ≤ i ≤ k define a C∗-correspondence Ei over A by Λei in the
same manner that we defined a C∗-correspondence using the edges of a 1-graph. The factorisation
rule of (Λ, d) will define the isomorphisms ti,j : Ei ⊗ Ej → Ej ⊗ Ei, and this in turn will define a
product system of C∗-correspondences (E(Λ),A) over Nk, see [60] or [64] for the details. In [60] it
is shown that Toeplitz Λ-families of contractions coincide with isometric representations of E(Λ).
In [64] it is shown that Λ-contractions coincide with representations of E(Λ). Thus there is a 1− 1
correspondence between representations of the k-graph (Λ, d) and representations of (E(Λ),A).

When Λ is finitely aligned then E(Λ) will satisfy the normal ordering condition. Hence Theorem
2.3.8 can be applied to finitely aligned k-graphs. This is the dilation theorem originally proved in
[66].

Let Λ be a k-graph with no sources and with Λ0 finite. In [66, Theorem 4.7] it is shown that
there is a 1 − 1 correspondence between states ω on the Cuntz-Pimsner algebra OΛ and (the
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unitary equivalence classes of) triples (V,Ω, (S(1), . . . , S(k), ρ)) where V is a Hilbert space, Ω ∈ V
is norm 1 vector, (S(1), . . . , S(k), ρ) is an isometric representation of E(Λ), and V = S∗Ω (where
S is the algebra generated by (S(1), . . . , S(k), ρ)). It is noted in [66] that (S(1), . . . , S(k), ρ) is the
minimal isometric dilation of the compression of (S(1), . . . , S(k), ρ) to V. Given this result, it is
natural to define what it means for a state on OΛ to be finitely correlated as follows:

Definition 2.4.11. A state ω on the C∗-algebra OΛ is finitely correlated if its corresponding

triple (Vω,Ωω, (S
(1)
ω , . . . , S

(k)
ω , ρω)) has the property that Vω is finite dimensional.

When ω is a finitely correlated state on the Cuntz-Pimsner algebra OΛ with corresponding

triple (Vω,Ωω, (S
(1)
ω , . . . , S

(k)
ω , ρω)), the representation (S

(1)
ω , . . . , S

(k)
ω , ρω) will be finitely correlated.

When Λ is a 1-graph with a single vertex and n edges, OΛ is the Cuntz algebra On and the above
definition coincides with the definition of finitely correlated states in [6].

Theorem 2.3.19 and Theorem 2.4.9 together give us the following result.

Proposition 2.4.12. Let (Λ, d) be a k-graph. Suppose there is an n = (n1, . . . , nk) ∈ Nk with
ni 6= 0 for 1 ≤ i ≤ k, such that the 1-graph with vertices Λ0 and edges defined by Λn has the strong
double-cycle property. Let (S(1), . . . , S(k), ρ) be a finitely correlated, isometric, fully coisometric
representation of E(Λ) generating a wot-closed algebra S. Then S contains the projection onto
its minimal cyclic coinvariant subspace.

Graphs With a Single Vertex

Suppose (Λ, d) is a k-graph where Λ0 is a singleton and Λei is finite for 1 ≤ i ≤ k. Let

Λei = {e(i)
l : 1 ≤ l ≤ mi}, where mi is the number of elements in Λei . Let Smi×mj be the set of

permutations on the set of tuples {(a, b) : 1 ≤ a ≤ mi, 1 ≤ b ≤ mj}. By the factorisation property,
for each pair i, j with 1 ≤ i < j ≤ k there is a permutation θij ∈ Smi×mj such that

e
(i)
l e

(j)
m = e

(j)
m′e

(i)
l′

when θij(l,m) = (l′,m′). Let θ = {θij : 1 ≤ i < j ≤ k}. The k-graph Λ can be described as being
a unital semigroup F+

θ , where F+
θ is the semigroup

〈e(i)
l : e

(i)
l e

(j)
m = e

(j)
m′e

(i)
l′ when θij(l,m) = (l′,m′)〉.

That is, for each i, e
(1)
i , . . . , e

(mi)
i form a copy of the free semigroup F+

mi
and, when i 6= j and i < j,

a commutation relation between the ei’s and the ej ’s is defined by the permutation θij . Note that
if we are given arbitrary permutations θij ∈ Smi×mj for 1 ≤ i < j ≤ k we cannot necessarily form
a cancellative semigroup F+

θ . However, if k = 2 and θ ∈ Sm1×m2 is any permutation, F+
θ will form

a cancellative semigroup, and hence a 2-graph on a single vertex.
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Let (E(F+
θ ),A) be the product system of C∗-correspondences defined by a k-graph on a single

vertex F+
θ . It is not hard to see that A = C and that Ei = Cmi for 1 ≤ i ≤ m. Let (A(1), . . . , A(k), σ)

be a representation of (E(F+
θ ),A) on a Hilbert space H and define A

(i)
l = A(i)(e

(i)
l ). For each i we

have that
A(i) = [A

(i)
1 , . . . , A(i)

mi
]

is a row-contraction. A representation (A(1), . . . , A(k), σ) is fully coisometric when

mi∑
j=1

A
(i)
j A

(i)∗
j = IH, (2.2)

for 1 ≤ i ≤ k i.e. when each row-contraction is defect free. A representation is isometric when

[A
(i)
1 , . . . , A

(i)
mi ] is a row-isometry for 1 ≤ i ≤ k.

Conversely, if [A
(i)
1 , . . . , A

(i)
mi ] are k row-contractions which satisfy for 1 ≤ i < j ≤ k

A
(i)
l A

(j)
m = A

(j)
m′A

(i)
l′

when θij(l,m) = (l′,m′), then they define a representation of the k-graph F+
θ .

The k-graph F+
θ is finite and so it is finitely aligned. Thus, by either Theorem 2.3.6 or Theorem

2.3.8 together with Lemma 2.3.11, all fully coisometric representations of F+
θ have a unique minimal

isometric, coisometric dilation.

Let F+ be the unital free semigroup with m1m2 . . .mk generators

{e(1)
l1
e

(2)
l2
. . . e

(k)
lk

: 1 ≤ lj ≤ mj}.

This corresponds to the graph with 1-vertex and C∗-correspondence E(1, 1, . . . , 1). If m1 . . .mk 6= 1,
i.e. if F+ 6∼= Z≥0, then it is clear that F+ has the strong double-cycle property. Thus by Proposition

2.4.12, if [S
(i)
1 , . . . , S

(i)
mi ] are defect free row-isometries defining a finitely correlated representation

of F+
θ , then the wot-closed algebra they generate contains the projection onto the minimal cyclic

coinvariant subspace.

Definition 2.4.13. Let [A
(i)
1 , . . . , A

(i)
mi ], for 1 ≤ i ≤ k, define a representation of F+

θ on a Hilbert

space H. The representation is atomic if each A
(i)
l is a partial isometry and there is an orthonormal

basis {ξn : n ≥ 1} of H which is permuted, up to scalars, by each partial isometry, i.e. A
(i)
l ξn = αξm

for some m and some α ∈ T ∪ {0}.

Atomic representations of k-graphs on a single vertex were studied by Davidson, Power and
Yang for 2-graphs [19] and by Davidson and Yang for k-graphs [22]. There the existence of the
minimal cyclic coinvariant subspace is shown. The minimal cyclic coinvariant subspace for a finitely
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correlated, isometric, fully coisometric atomic representation is exhibited by a group construction.
That is, a finitely correlated, isometric, fully coisometric atomic representation is shown to be
a dilation of a certain representation on B(`2(G)) where G is a group with k generators. The
following theorem shows that finitely correlated atomic representations are plentiful.

Theorem 2.4.14 (Davidson, Power and Yang [19, 22]). There are irreducible finite dimensional
defect free atomic representations of F+

θ of arbitrarily large dimension.

Example 2.4.15. Let F+
θ be the two graph where θ ∈ S2×2 is the permutation defined by the

cycle ((1, 1), (2, 2)). Let V be a 4 dimensional vector space with orthonormal basis {ζ1, ζ2, ζ3, ζ4}.
We define a fully coisometric, atomic representation of F+

θ on V by row-contractions [A1, A2] and
[B1, B2], where

A1ζ1 = ζ2 A1ζ3 = ζ4 A1ζi = 0 for i = 2, 4

A2ζ2 = ζ1 A2ζ4 = ζ3 A1ζi = 0 for i = 1, 3

B1ζ2 = ζ3 B1ζ4 = ζ1 B1ζi = 0 for i = 1, 3

B2ζ1 = ζ4 B2ζ3 = ζ2 B1ζi = 0 for i = 2, 4.

Let [S1, S2] and [T1, T2] define the unique minimal isometric dilation of this representation. The
representation defined by [S1, S2] and [T1, T2] will also be atomic [20]. Clearly V is the minimal
cyclic coinvariant subspace for this representation. For u,w ∈ F+

2 , where u = i1 . . . il and
w = ji . . . jm, we write SuTw for

Si1 . . . SilTj1 . . . Tjm .

The set {SuTwζi : u,w ∈ F+
2 , i = 1, 2, 3, 4} will form an orthonormal basis of H. Since the

representation is atomic and fully coisometric each of these basis vectors will be in the range of
exactly one Si and exactly one Tj . It follows that [S1, . . . , Sn] is the minimal isometric Frazho-
Bunce-Popescu dilation of the row-contraction [A1, . . . , An]. That is, in this case, it is not necessary
to have m ≥ (1, 1) in order for the conclusion of Theorem 2.3.12 to be satisfied. As we will
see in Proposition 2.4.16, this is true of all finitely correlated atomic representations of periodic
single-vertex 2-graphs. Recall, by Remark 2.3.13, that in general we do need the condition that
m ≥ (1, 1) for Theorem 2.3.12 to hold.

We also have that the minimal cyclic coinvariant subspace for [S1, . . . , Sn] is all of V. Thus,
again, it is not necessary to have m ≥ (1, 1) for the conclusion of Theorem 2.3.19 to be satisfied.
This is also a general fact about atomic representations. Again, recall that we do require that
m ≥ (1, 1) in the general case. See Remark 2.3.20 and the following example.

The following lemma applies specifically to periodic 2-graphs. We refer to [21] for further
details on periodic 2-graphs. We recall that F+

θ with θ ∈ Sm×n is (a,−b) periodic when there is a
bijection

γ : ma −→ nb
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such that eufv = fγ(u)eγ−1(v), where ma is the set of words in F+
m of length a and nb is the set of

words in F+
n of length b.

Proposition 2.4.16. Let F+
θ be a periodic 2-graph where θ ∈ Sm×n with 2 ≤ m ≤ n. Let

S = [S1, . . . , Sm] and T = [T1, . . . , Tn] be defect-free row-isometries on H defining a finitely
correlated, atomic representation of F+

θ . Let V be the minimal cyclic coinvariant subspace for
the representation and let A and B be the compressions of S and T to V respectively. Then the
minimal isometric dilation of A is S and the minimal isometric dilation of B is T .

Proof. Let Z = {ζ1, . . . , ζk} be an orthonormal basis for V on which A and B act atomically. Take
any ζl ∈ Z and w ∈ F+

n . We will show that there is a v ∈ F+
m and a basis vector ζ ∈ Z such that

Svζ = µTwζl for some scalar µ. This will show that the minimal isometric dilation of A is S. A
similar argument will show that the minimal isometric dilation of B is T .

Since F+
θ is periodic we can find a, b large enough, a bijection γ : ma → nb, u ∈ F+

m, v ∈ F+
n ,

ζ ∈ Z and λ ∈ T such that

TvSuζ = λζl and TwTvSu = Sγ−1(wv)Tγ(u).

We claim that Tγ(u)ζ is in V. This will complete the proof.

In order to show that Tγ(u)ζ ∈ V note that we can find some w′ ∈ F+
θ so that Tw′Suζ ∈ V and

|w′| = |w|+ |v| = b, since Suζ ∈ V by choice of u. But Tw′Suζ = Sγ−1(w′)Tγ(u)ζ. It follows that
Tγ(u)ζ lies in V.

There are examples of finite dimensional, fully coisometric representations which are not
partially isometric.

Example 2.4.17. Let θ ∈ S2×2 be the permutation defined by θ(1, 1) = (1, 2), θ(1, 2) = (1, 1),
θ(2, 1) = (2, 2) and θ(2, 2) = (2, 1), and let F+

θ be the single vertex 2-graph defined by θ. Let
[a1, a2] be a defect free row-contraction on a finite dimensional Hilbert space V and [b1, b2] be a
defect free row-contraction on a finite dimensional Hilbert spaceW . We will define a representation
of F+

θ on V ⊗W(2). Define

A1 = a1 ⊗
[

0 IW
IW 0

]
A2 = a2 ⊗

[
0 IW
IW 0

]
B1 = IV ⊗

[
b1 0
0 b2

]
B2 = IV ⊗

[
b2 0
0 b1

]
.

Then [A1, A2] and [B1, B2] define a finite dimensional, fully coisometric representation of F+
θ .
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Let V =W = C2 and let

a1 =

[
1 0
0 1√

2

]
a2 =

[
0 0
1
2

1
2

]
b1 =

[
0 1
1 0

]
b2 =

[
0 0
0 0

]
.

Construct [A1, A2] and [B1, B2] as above. Let U be the minimal cyclic coinvariant subspace for
the row-contraction [A1, A2]. A calculation shows that

U = span{e1, e3, e5, e7},

where {e1, . . . , e8} is the standard orthonormal basis for C8. However, we have that B∗1e1 = e2 6∈ U ,
and so U is not the minimal cyclic coinvariant subspace for the representation of F+

θ defined by
[A1, A2] and [B1, B2]. In fact, the minimal cyclic coinvariant subspace for this representation is all
of C8. This example shows that atomic representations are special in not needing m ≥ (1, 1) in
order to satisfy Theorem 2.3.19. It is not true of all representations single vertex 2-graphs.

The construction above works because the permutation θ is very simple. Precisely, if we fix
i, θ satisfies θ(i, j) = θ(i, j′), i.e. i is not changed. Similar constructions of fully coisometric
representations of 2-graphs will work for any 2-graph defined by a permutation satisfying this
condition. These representations will be doubly commuting.

A general method of constructing finite dimensional, fully coisometric representations of
2-graphs which are not partially isometric has proved hard to find. We give below an example of
finite dimensional, fully coisometric representation of a 2-graph which is not doubly commuting.

Example 2.4.18. Let [A1, A2] and [B1, B2, B3] be row-contractions on C3 with

A1 =

0 0 0
0 0 0
1
2

1
2 0

 A2 =

1 0 0
0 1 0
0 0 1√

2


and

B1 =

1
2

1
2 0

1
2

1
2 0

0 0 0

 B2 =

 1
2

1
2 0

−1
2 −1

2 0
0 0 1√

2

 B3 =

0 0 0
0 0 0
1
2

1
2 0

 .
Then [A1, A2] and [B1, B2, B3] define a fully coisometric representation of F+

θ on C3 where θ ∈ S2×3

is the cycle
((1, 1), (2, 3), (1, 2), (1, 3)).

This fully coisometric representation is not doubly commuting.

It is not hard to see that the minimal cyclic coinvariant space for this representation is
C2 = span{e1, e2}, where {e1, e2, e3} is the standard orthonormal basis for C3.
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Chapter 3

Nonself-adjoint semicrossed products
by abelian semigroups

3.1 Introduction

The study of nonself-adjoint semicrossed products began with Arveson [2]. They were further
studied by McAsey, Muhly and Saito [45]. In both cases the algebras were described concretely.
Peters [55] described the nonself-adjoint semicrossed products as universal algebras for covariant
representations. In recent years, Davidson and Katsoulis have shown nonself-adjoint semicrossed
products have proven to be a particularly interesting and tractable class of operator algebras
[11, 13, 12, 15, 14]. In particular, nonself-adjoint semicrossed product algebras have been shown
to be a class where the C∗-envelope is often calculable.

The C∗-envelope of an operator algebra A was introduced by Arveson [3, 4] as a non-
commutative analogue of Shilov boundaries. The existence of the C∗-envelope was first discovered
by Hamana [31]. Dritschel and McCullough [23] have since provided an alternative proof of the
existence of the C∗-envelope. The viewpoint of Dritschel and McCullough has allowed for the
explicit calculation of the C∗-envelope of many operator algebras. In particular, for nonself-adjoint
semicrossed products the C∗-envelopes have been studied in [13, 35, 36, 24, 25].

In this chapter we study the nonself-adjoint semicrossed product algebras by semigroups of the
form S =

∑⊕k
i=1 Si, where for each i ∈ I we have Si is a countable subsemigroup of the additive

semigroup R+ containing 0. Our algebras will be universal for Nica-covariant representations,
i.e. those representations {Ts}s∈S satisfying T ∗s Tt = TtT

∗
s when s ∧ t = 0. Semicrossed product

algebras associated to Nica-covariant representations have been widely studied in the C∗-algebra
literature [51, 42, 26].
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The chapter is divided into three sections. In section 2 Nica-covariant representations are
studied independent from dynamical systems. The results of this section may be of interest, even
to those not concerned with nonself-adjoint semicrossed products. We show that contractive
Nica-covariant representations can be dilated to isometric Nica-covariant representations. This
result is well-known for the case of the semigroup Zk+, see e.g. [72]. The proof of the existence
of an isometric dilation presented here relies on the use of a generalisation of the Schur Product
Theorem, and so provides an alternative proof to what is usually presented for Zk+.

In section 3 nonself-adjoint semicrossed product algebras are introduced. In section 3.1 we
extend our dilation result from section 2 to representations of semicrossed products of C∗-algebras.
This result allows us to conclude strong results comparing the different types of semicrossed
product algebras. For example, Corollary 3.3.7, tells us that, in the case of a semicrossed product
of a C∗-algebra, the universal algebra for completely isometric Nica-covariant representations is
the same as the universal algebra for completely contractive Nica-covariant representations. If we
were to work with completely isometric and completely contractive semicrossed algebras without
imposing the condition of Nica-covariance on our semigroup representations, then an example due
to Varopoulos [73] would show that the analogy of Corollary 3.3.7 would fail in this setting.

In the section 3.2 we consider the C∗-envelope of the isometric semicrossed product algebras.
In Theorem 3.3.15 we calculate the C∗-envelope of the isometric semicrossed product as

C∗env(AN×isoα S) ∼= C∗env(A)×α G,

where G is the group generated by S. This result generalises a recent result of Kakariadis and
Katsoulis [36], where they worked with the semigroup S = Z+.

When A is a C∗-algebra the Nica-covariance requirement on our representations allows us
to view the semicrossed product algebra AN×α S as a tensor algebra for a product system of
C∗-correspondences over S. Thus, from this viewpoint we unite a recent result of Duncan and
Peters [25] on the C∗-envelope of a tensor algebra associated with a dynamical system and the
results of Kakariadis and Katsoulis on the C∗-envelope of the isometric semicrossed product for a
dynamical system.

3.2 Nica-covariant representations

Let S be the semigroup S =
∑⊕

i∈I Si, where for each i ∈ I we have Si is a subsemigroup in the
additive semigroup R+ containing 0. We further assume throughout that S is the positive cone of
the group G it generates. Denote by ∧ and ∨ the join and meet operations on the lattice group G.
In section 3 we will be looking at the case when S is countable. However, we will not need to
assume that S is countable in this section.
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Definition 3.2.1. A representation T : S → B(H) of S by contractions {Ts}s∈S on a Hilbert
space H is Nica-covariant when we have the following relation: if s ∈ Si and t ∈ Sj where i 6= j
then T ∗s Tt = TtT

∗
s .

3.2.1 Isometric Dilations

We wish to show that every Nica-covariant contractive representation of S can be dilated to an
isometric representation. Further, we will show that there is a unique minimal isometric dilation
which is Nica-covariant. This result is well known in the discrete S = Zk+ case. If each Si is
commensurable, i.e. if for all s1, . . . , sn ∈ Si there exists s0 ∈ Si and k1, . . . , kn ∈ N such that
si = kis0, then these results have been described by Shalit [63]. We do not impose the condition
of commensurability.

The key method to show the existence of the dilation is to use a generalisation of the Schur
Product Theorem. To show that there is a minimal Nica-covariant isometric dilation we follow
arguments similar to those of Solel [69].

Definition 3.2.2. Let A = [Ai,j ]1≤i,j≤m and B = [Bi,j ]1≤i,j≤m be two matrices of operators
where each Ai,j and Bi,j is a bounded operator on a Hilbert space H. The operator-valued Schur
product of A and B is defined by A�B := [Ai,jBi,j ]1≤i,j≤m.

In the above definition, if H is 1-dimensional then the operation � is simply the classical Schur
product (or entry-wise product). In the following theorem we will generalise the Schur Product
Theorem, which says that the Schur product of two positive matrices is positive. See e.g. [53,
Chapter 3].

Theorem 3.2.3. Let A and B be two C∗-algebras in B(H) such that A ⊆ B′. Let A = [Ai,j ]1≤i,j≤m
and B = [Bi,j ]1≤i,j≤m be operator matrices with all Ai,j ∈ A and Bi,j ∈ B. If A ≥ 0 and B ≥ 0
then A�B ≥ 0.

Proof. Let Ã = A⊗ Im and B̃ = [Bi,j ⊗ Im]1≤i,j≤m. Hence Ã and B̃ are of the form

Ã =


A 0 . . . 0
0 A . . . 0
...

. . .
...

0 0 . . . A
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and

B̃ =



B1,1 0 . . . 0 . . . B1,m 0 . . . 0
0 B1,1 . . . 0 . . . 0 B1,m . . . 0
...

. . .
...

...
. . .

...
0 0 . . . B1,1 . . . 0 0 . . . B1,m
...

...
...

Bm,1 0 . . . 0 . . . Bm,m 0 . . . 0
0 Bm,1 . . . 0 . . . 0 Bm,m . . . 0
...

. . .
...

...
. . .

...
0 0 . . . Bm,1 . . . 0 0 . . . Bm,m


It follows that Ã and B̃ are positive commuting operators. Hence ÃB̃ is positive.

For each 1 ≤ k ≤ m, let Pk be the projection onto the (m(k − 1) + k)th copy of H in H(m2),
and let P =

∑m
k=1 Pk. Define R : H(m) →H(m2) by Rh = P (h⊗m). Hence R is an isometry and

for

h =


h1

h2
...
hm

 ∈ H(m)

we have

Rh =



h1

0
...
0
h2

0
...
0
hm


,

with m zeroes between hi and hi+1, 1 ≤ i < m. It follows that R∗(ÃB̃)R = A�B. Thus, A�B is
positive.

Let T be a Nica-covariant contractive representation of S on H. We extend T to a map on all of
G in the following way. Any element g ∈ G can be written uniquely as g = g+−g− where g−, g+ ∈ S
and g− ∧ g+ = 0. Thus we extend T to G by setting Tg = T ∗g−Tg+ = Tg+T

∗
g− . A well-known

theorem of Sz.-Nagy says that T has an isometric dilation if and only if for s1, . . . , sn ∈ S the

49



operator matrix [Tsj−si ]1≤i,j≤n is positive (see e.g. [71, Theorem 7.1]). We will need to look more
closely at the proof of this later.

In the case when is S is a subsemigroup of R+ it has been proved by Mlak [46] that a contractive
representation T has an isometric dilation. In the following theorem we will rely on the fact that
the representation T restricted to Si has an isometric dilation for each i. Then an invocation of
Theorem 3.2.3 will give us our result.

Theorem 3.2.4. Let T be a Nica-covariant contractive representation of the semigroup S =∑⊕
i∈I Si, where each Si is subsemigroup of R+ containing 0. Then T has an isometric dilation.

Proof. Take s1, . . . , sn in S. By [71, Theorem 7.1] it suffices to show that the operator matrix

[Tsj−si ]1≤i,j≤n is positive. Each sj is of the form sj =
∑

i∈I s
(i)
j , where s

(i)
j is in Si. We can choose

a finite subset F ⊆ I such that sj =
∑

i∈F s
(i)
j for j = 1, . . . , n. Since F is finite we can and will

relabel F by {1, . . . , k} for some k. Denote by T (j) the restriction of T to Sj .

By the Nica-covariance property

Tsj−si = T
(1)

s
(1)
j −s

(1)
i

. . . T
(k)

s
(k)
j −s

(k)
i

.

Thus, we can factor the operator matrix [Tsj−si ] as

[Tsj−si ]i,j =

[
T

(1)

s
(1)
j −s

(1)
i

. . . T
(k)

s
(k)
j −s

(k)
i

]
i,j

=

[
T

(1)

s
(1)
j −s

(1)
i

]
i,j

� . . .�

[
T

(k)

s
(k)
j −s

(k)
i

]
i,j

.

Since
[
T

(l)

s
(l)
j −s

(l)
i

]
i,j

is a positive matrix for 1 ≤ l ≤ k [46] and since the representation is Nica-

covariant, it follows by Theorem 3.2.3 that [Tsj−si ]i,j is positive.

In the above we made use of [71, Theorem 7.1] to guarantee the existence of a dilation. We
will now pay closer attention to how the dilation there is constructed. Then, following similar
arguments of [69], we will show that there is a unique minimal Nica-covariant isometric dilation.

Theorem 3.2.5. Let T be a Nica-covariant contractive representation of the semigroup S =∑⊕
i∈I Si, where each Si is subsemigroup of R+ containing 0. Then T has a minimal isometric

dilation which is Nica-covariant. Further, this dilation is unique.
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Proof. We first sketch the details of the construction of an isometric dilation. Let H be the space
on which the representation T acts. Let K0 denote the space of all finitely non-zero functions
f : S → H. For f, g ∈ K0 we define

〈f, g〉 =
∑
s,t∈S
〈Tt−sf(t), g(s)〉.

By Theorem 3.2.4 this defines a positive semidefinite sesquilinear form on K0. Let

N = {f ∈ K0 : 〈f, f〉 = 0}
= {f ∈ K0 : 〈f, g〉 = 0 for all g ∈ K0},

and set K = K0/N , where the closure is taken with respect to the norm induced by 〈·, ·〉. We
isometrically embed H in K by the map h 7→ ĥ, where ĥ(s) = δ0(s)h, where δ0(s) = 1 if s = 0 and
0 otherwise.

Now define maps Vs on K0 by (Vsf)(t) = f(t − s) if t − s ∈ S and (Vsf)(t) = 0 otherwise.
Note that for f ∈ K0 and u ∈ S we have

〈Vuf, Vuf〉 =
∑
s,t

〈Tt−sf(t− u), f(s− u)〉

=
∑
s,t≥u
〈Tt−sf(t− u), f(s− u)〉

=
∑
s,t≥0

〈T(t+u)−(s+u)f(t), f(s)〉

=
∑
s,t

〈Tt−sf(t), f(s)〉 = 〈f, f〉.

Hence each Vu is isometric on K0 and leaves N invariant. It follows that we can extend Vu to an
isometry on K and we have that {Vs}s∈S is an isometric representation of S.

Further, note that for g ∈ G and h, k ∈ H we have

〈Vgĥ, k̂〉 = 〈V ∗g−Vg+ ĥ, k̂〉 = 〈Vg+ ĥ, Vg− k̂〉

=
∑
s,t∈S
〈Tt−sĥ(t− g+), k̂(s− g−)〉

= 〈Tg+−g−h, k〉 = 〈Tgh, k〉.

Thus we have PHVg|H = Tg for all g ∈ G. In particular {Vs}s∈S is an isometric dilation of {Ts}s∈S .
It is easily seen to be a minimal isometric dilation. Dilations with the property that PHVg|H = Tg
are called regular dilations. We want to show that this dilation is Nica-covariant.
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Next we will show that if we have s ∈ Si and µ ∈ S such that s∧µ = 0 then V ∗s Vµ|H = VµV
∗
s |H.

Take s, µ as described, ν ∈ S and h, k ∈ H. By the minimality of the dilation it suffices to show
that

〈V ∗s Vµĥ, Vν k̂〉 = 〈VµV ∗s ĥ, Vν k̂〉.

We calculate

〈V ∗s Vµĥ, Vν k̂〉 = 〈V ∗ν V ∗s Vµĥ, k̂〉
= 〈V ∗(µ−ν−s)−V(µ−ν−s)+ ĥ, k̂〉

= 〈T ∗(µ−ν−s)−T(µ−ν−s)+ ĥ, k̂〉.

Note that, by our choice of s and µ we have that (µ−ν−s)+ = (µ−ν)+ and (µ−ν−s)− = s+(µ−ν)−.
Also s ∧ (µ− ν)+ = 0. Thus

〈V ∗s Vµĥ, Vν k̂〉 = 〈T ∗(µ−ν−s)−T(µ−ν−s)+ ĥ, k̂〉

= 〈T ∗s+(µ−ν)−
T(µ−ν)+ ĥ, k̂〉

= 〈T ∗(µ−ν)−
T(µ−ν)+T

∗
s ĥ, k̂〉

= 〈PHV ∗(µ−ν)−
V(µ−ν)+PHV

∗
s ĥ, k̂〉

= 〈V ∗(µ−ν)−
V(µ−ν)+V

∗
s ĥ, k̂〉 = 〈VµV ∗s ĥ, Vν k̂〉.

This tells us that the representation V has the Nica-covariant property when restricted to H. We
will now extend this to all of K.

By the minimality of the representation V it suffices to show that for s ∈ Si, t ∈ Sj where
i 6= j, µ, ν ∈ S and h, k ∈ H that

〈V ∗s VtVµĥ, Vν k̂〉 = 〈VtV ∗s Vµĥ, Vν k̂〉.

The right-hand side of the above is

〈VtV ∗s Vµĥ, Vν k̂〉 = 〈V ∗ν VtV ∗s Vµĥ, k̂〉
= 〈V ∗ν VtV ∗(µ−s)−V(µ−s)+ ĥ, k̂〉

= 〈V ∗ν VtV(µ−s)+V
∗

(µ−s)− ĥ, k̂〉.

Note that t+ (µ− s)+ = (t+ µ− s)+ and (µ− s)− = (t+ µ− s)−, hence we have

〈VtV ∗s Vµĥ, Vν k̂〉 = 〈V ∗ν V ∗(t+µ−s)−V(t+µ−s)+ ĥ, k̂〉

= 〈V ∗ν+(t+µ−s)−V(t+µ−s)+ ĥ, k̂〉

= 〈V ∗(t+µ−ν−s)−V(t+µ−ν−s)+ ĥ, k̂〉,
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with the last equality coming from the fact that

((t+ µ− s)+ − (t+ µ− s)− − ν)− = (t+ µ− s− ν)−

and
((t+ µ− s)+ − (t+ µ− s)− − ν)+ = (t+ µ− s− ν)+.

Hence

〈VtV ∗s Vµĥ, Vν k̂〉 = 〈V ∗(t+µ−ν−s)−V(t+µ−ν−s)+ ĥ, k̂〉

= 〈V ∗ν V ∗s VtVµĥ, k̂〉
= 〈V ∗s VtVµĥ, Vν k̂〉.

It follows that V is Nica-covariant.

To show that the dilation is unique we follow a standard argument. Suppose V and W are
two minimal isometric Nica-covariant dilations of T on K1 and K2 respectively. Take h1, h2 ∈ H
and ν, µ ∈ S. Then

〈Vµh1, Vνh2〉 = 〈V ∗ν Vµh1, h2〉
= 〈V ∗(µ−ν)−

V(µ−ν)+h1, h2〉

= 〈Tµ−νh1, h2〉.

Similarly 〈Wµh1,Wνh2〉 = 〈Tµ−νh1, h2〉. Thus the map U : Vνh 7→Wνh extends to a unitary from
K1 to K2 which fixes H, and the two dilations V and W are unitarily equivalent.

3.3 Semicrossed product algebras

Throughout let S be the semigroup S =
∑⊕k

i=1 Si where each Si is a countable subsemigroup of R+

containing 0. Further we suppose that S is the positive cone of the group G generated by S.

Definition 3.3.1. Let A be a unital operator algebra. If α = {αs : s ∈ S} is a family of
completely isometric unital endomorphisms of A forming an action of S on A then we call the
triple (A,S, α) a semigroup dynamical system.

Definition 3.3.2. Let (A,S, α) be a semigroup dynamical system. An isometric (contractive)
Nica-covariant representation of (A,S, α) on a Hilbert space H consists of a pair (σ, V ) where
σ is a completely contractive representation σ : A → B(H) and V = {Vs}s∈S is an isometric
(contractive) Nica-covariant representation of S on H such that

σ(A)Vs = Vsσ(αs(A))

for all A ∈ A and s ∈ S.
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We will be interested in two nonself-adjoint semicrossed product algebras associated to a
semigroup dynamical system (A,S, α). We define AN×α S to be the universal algebra for all
contractive Nica-covariant representations of (A,S, α) and AN×isoα S to be the universal algebra
for all isometric Nica-covariant representations of (A,S, α).

The algebras A×isoα Z+ were introduced by Kakariadis and Katsoulis [36] and have proven to
be a more tractable class of algebras than A×α Z. While in general one expects AN×α S and
AN×isoα S to be different there are times when the two algebras coincide. For example, when
A = An is the noncommutative disc algebra and S = Z+ it follows from [13] that

An ×isoα Z+
∼= An ×α Z+.

Further examples of when the semicrossed product and the isometric semicrossed product are the
same for the case S = Z+ can be found in [14, Section 12]. When A is a unital C∗-algebra we will
see (Corollary 3.3.7) that

AN×isoα S ∼= AN×α S.

Let P(A,S) be the algebra of all formal polynomials p of the form

p =
n∑
i=1

VsiAsi

where s1, . . . , sn are in S, with multiplication defined by AVs = Vsα(A). If (σ, T ) is a contractive
Nica-covariant representation of (A,S, α) then we can define a representation σ× T of P(A,S) by

(σ × T )

(
n∑
i=1

VsiAsi

)
=

n∑
i=1

Tsiσ(Asi).

We define two norms on P(A,S) as follows. For p ∈ P(A,S) let

‖p‖ = sup
(σ,T ) contractive

Nica-covariant

{
‖(σ × T )(p)‖

}
and

‖p‖iso = sup
(σ,V ) isometric
Nica-covariant

{
‖(σ × V )(p)‖

}
.

We can realise our semicrossed product algebras as

AN×α S = P(A,S)
‖·‖

and
AN×isoα S = P(A,S)

‖·‖iso
.
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If (B,G, β) is a dynamical system where β is an action of the group G on the C∗-algebra B
by automorphisms there is an adjoint operation on P(B,G) given by (VgB)∗ := V−gβ−1

g (B∗). If
(π, U) is covariant representation of (B,G, β), then {Us}s∈S is necessarily a family of commuting
unitaries, and hence {Us}s∈S is automatically Nica-covariant.

Example 3.3.3. Let (A,S, α) be a semigroup dynamical system. Let σ be a completely contractive
representation of A on a Hilbert space H. Define a completely contractive representation σ̃ of A
on H⊗ `2(S) by

σ̃(A)(hs)s∈S = (σ(αs(A))hs)s∈S

for all A ∈ A and (hs)s∈S ∈ H ⊗ `2(S).

For each s ∈ S define an operator Ws on H⊗ `2(S) by

Ws(h)t = (h)s+t,

where h ∈ H and (h)s ∈ H ⊗ `2(S) is the vector with h in the sth position and 0 everywhere else.
Then (σ̃,W ) is an isometric Nica-covariant representation of (A,S, α).

Note that in the case where each αs is an automorphism on A then we can extend this idea to
give a Nica-covariant representation (σ̂, U) on H⊗ `2(G) where each Us is unitary.

Definition 3.3.4. The isometric Nica-covariant representation (σ̃,W ) constructed above is called
an induced representation of (A,S, α).

3.3.1 Dilations of Nica-covariant representations

We now consider some dilation results for Nica-covariant representations of a semigroup dynamical
system (A,S, α) in the case when A is a C∗-algebra.

In the case that S = Zk+ the following theorem is a special case of a theorem of Solel’s [69,
Theorem 3.1] which deals with representations of product systems of C∗-correspondences. The
result has also been shown by Ling and Muhly [44] for the case S = Zk+ and α is an action on A
by automorphisms.

Theorem 3.3.5. Let S =
∑⊕

i∈I Si where each Si is a countable subsemigroup of R+ containing
0 and let (A,S, α) be a semigroup dynamical system where A is a unital C∗-algebra. Let (σ, T )
be a contractive Nica-covariant representation of (A,S, α) on H. Then there is an isometric
Nica-covariant representation (π, V ) of (A,S, α) on K ⊇ H such that

1. π(A)|H = σ(A) for all A ∈ A

2. PHVs|H = Ts for all s ∈ S.
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Further K is minimal in the sense that K =
∨
s∈S VsH.

Proof. Let K0, K and N be as in the proof of Theorem 3.2.5. For each A ∈ A we define π0(A) on
K0 by

(π0(A)f)(s) = σ(αs(A))f(s),

for each f ∈ K0 and s ∈ S. Note that, for A ∈ A and t, s ∈ S we have

Tt−sσ(αt(A)) = T(t−s)+T
∗
(t−s)−σ(αt(A))

= T(t−s)+σ(αt+(t−s)−(A))T ∗(t−s)−

= σ(αt+(t−s)−−(t−s)+(A))T ∗(t−s)−T(t−s)+

= σ(αs(A))Tt−s.

It follows that, if f ∈ N and g ∈ K0 then for each A ∈ A,

〈π0(A)f, g〉 =
∑
s,t

〈Tt−sσ(αt(A))f(t), g(s)〉

=
∑
s,t

〈Tt−sf(t), σ(αs(A
∗))g(s)〉 = 0,

we thus can extend π0 to a representation π

π : A → B(K).

It is easy to check that (π, V ) form a Nica-covariant representation with the desired properties.

Remark 3.3.6. In the case when S =
∑⊕

i∈I Si where each Si is a subsemigroup of R+ containing
0 and each Si has the extra condition of being commensurable then the statement of Theorem
3.3.5 is a special case of [62, Theorem 4.2]. However, in the proof there, the only place where the
commensurable condition is used is in ensuring that contractive Nica-covariant representation of S
has minimal Nica-covariant isometric dilation. As Theorem 3.2.4 and Theorem 3.2.5 provide the
existence of minimal Nica-covariant isometric dilations in the case when each Si is not necessarily
commensurable the proof given in [62] provides an alternate proof of Theorem 3.3.5.

Corollary 3.3.7. Let S =
∑⊕k

i=1 Si where each Si is a countable subsemigroup of R+ containing
0 and let (A,S, α) be a semigroup dynamical system where A is a unital C∗-algebra. Then the
norms ‖ · ‖ and ‖ · ‖iso on P(A,S) are the same. Hence

AN×isoα S = AN×α S.
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Proof. Take any p ∈ P(A,S). Since an isometric Nica-covariant representation is itself contractive
it follows that ‖p‖iso ≤ ‖p‖. Now take a contractive Nica-covariant representation (σ, T ) on a
Hilbert space H. Let (π, V ) be the minimal isometric Nica-covariant dilation of (σ, T ). Then

‖(σ × T )(p)‖ = ‖PH(π × V )(p)PH‖ ≤ ‖(π × V )(p)‖.

Hence ‖p‖ ≤ ‖p‖iso.

Remark 3.3.8. Let (A,S, α) be a semigroup dynamical system. If A is a C∗-algebra then (A,S, α)
can be used to describe a product system of C∗-correspondences over S. Fowler constructs a
concrete C∗-algebra which is universal for Nica-covariant completely contractive representations
of this product system [26]. It was observed by Solel [69] that the nonself-adjoint Banach algebra
formed by the left regular representation of the product system is universal for Nica-covariant
completely contractive representations (while Solel was working in Zk+ the same reasoning works
for countable S). Thus AN×α S can also be realised as the concrete tensor algebra in the sense of
Solel, see [69, Corollary 3.17].

Further, if σ is a faithful representation of A it follows that the induced representation (σ̃,W )
is a completely isometric representation of AN×α S.

The following theorem can be proved by a standard argument in dynamical systems using
direct limits of C∗-algebras. As stated below, the result is a special case of [41, Theorem 2.1] and
[50, Section 2].

Theorem 3.3.9. Let (A,S, α) be a semigroup dynamical system where A is a C∗-algebra and
each αs is injective. Then there exists a C∗-dynamical system (B,G, β) where each βs is an
automorphism, unique up to isomorphism, together with an embedding i : A → B such that

1. βs ◦ i = i ◦ αs, i.e. β dilates α

2.
⋃
s∈S β

−1
s (i(A)) is dense in B, i.e. B is minimal.

Definition 3.3.10. Let (A,S, α) and (B,G, β) be as in Theorem 3.3.9, then we call (B,G, β) the
minimal automorphic dilation of (A,S, α).

The minimal automorphic dilation of a dynamical system is frequently utilised in the literature.
Group crossed product C∗-algebras have a long history and are well understood objects. Thus it
is beneficial if one can relate a semicrossed algebra to a crossed product algebra, often the crossed
product algebra of the minimal automorphic dilation. We will see in Theorem 3.3.15 that the
minimal automorphic dilation plays an important role when calculating the C∗-envelope of crossed
product algebras. First we will show now that AN×α S sits nicely inside B ×β G. In the case
where S = Z+ the following has been shown by Kakariadis and Katsoulis [36] and Peters [55].
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Theorem 3.3.11. Let (A,S, α) be a semigroup dynamical system where A is a C∗-algebra and
each αs is injective. Let (B,G, β) be the minimal automorphic dilation of (A,S, α). The AN×α S
is completely isometrically isomorphic to a subalgebra of B ×β G.

Further, AN×isoα S generates B ×β G as a C∗-algebra.

Proof. Let σ be a faithful representation of A on H. Then the induced representation σ̃ ×W is a
completely isometric representation of AN×α S, by Remark 3.3.8. We will embed this completely
isometric copy of AN×α S into a completely isometric representation of B×β G by suitably dilating
the representation (σ̃,W ).

Let i be the embedding of A into B as in Theorem 3.3.9. The representation σ also defines a
faithful representation of i(A), which we will also denote by σ. We can thus find a representation
π of B on K ⊇ H such that π(A)|H = σ(i(A)) for all A ∈ A, see e.g. [54, Proposition 4.1.8]. We
thus have an induced representation π̂×U of B×β G. Restricting π to A we see that (π̂ ◦ i)×U is
a completely isometric representation of AN×α S, since σ̃ ×W is. Further note that π̂ is faithful
on
⋃
s∈S β

−1
s (A). By the construction of B, π̂ is also faithful representation of B. Now, by [54,

Theorem 7.7.5], σ̃ ×W is a faithful representation of B ×β G. Hence AN×α S sits completely
isometrically inside B ×β G.

That AN×α S generates B ×β G as a C∗-algebra follows immediately after considering the
algebra Alg{P(A,S), (P(A,S))∗} inside P(B,G).

3.3.2 C∗-Envelopes

Our goal in this subsection is to calculate the C∗-envelope of AN×isoα S in the case when α is a
family of completely isometric automorphisms on a unital operator algebra A.

If C is a C∗-algebra which completely isometrically contains A such that C = C∗(A) then we
call C a C∗-cover of A. If A is a C∗-algebra, Theorem 3.3.11 says that B ×β G is a C∗-cover of
AN×isoα S when (B,G, β) is the minimal automorphic dilation of (A,S, α).

Definition 3.3.12. Let A be an operator algebra and let C be a C∗-cover of A. Let α define an
action of S on C by faithful ∗-endomorphisms which leave A invariant. We define the relative
semicrossed product AN×C,α S to be the subalgebra of C N×α S generated by the natural copy of
A inside C N×α S and the universal isometries {Vs}s∈S .

The idea of a relative semicrossed product was introduced by Kakariadis and Katsoulis [36]
when studying semicrossed products by the semigroup Z+. The key idea is to realise the universal
algebra AN×isoα S as a relative semicrossed algebra. This allows a concrete place in which to try
and discover the C∗-envelope.
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The proof of the following proposition follows the same reasoning as the proof of [36, Proposition
2.3]. It is an application of Dritschel and McCullough’s [23] result that any representation can
be dilated to a maximal representation and Muhly and Solel’s [47] result that any maximal
representation extends to a ∗-representation of any C∗-cover.

It is also important to note that if α is an action of S on an operator algebra A by completely
isometric automorphisms which extend to completely isometric automorphisms of a C∗-cover C
of A, then each αs necessarily leaves the Shilov boundary ideal J of A in C invariant, see e.g.
[14, Proposition 10.6]. We will write {α̇s}s∈S for the automorphisms on A/J induced by the
automorphisms {αs}s∈S on A.

Proposition 3.3.13. Let A be an operator algebra and let C be a C∗-cover of A. Let α be an
action of S on C by automorphisms that restrict to automorphisms of A. Let J be the Shilov
boundary ideal of A in C. Then the relative semicrossed products AN×C,α S and A/J N×C/J ,α̇ S
are completely isometrically isomorphic.

Let (C,S, α) be a semigroup dynamical system where C is a C∗-algebra and each αs is an
automorphism on C. Then it is immediate that the minimal automorphic dilation of (C,S, α) is
simply (C,G, α). If we view G as being a discrete group then G has a compact dual Ĝ. Recall that
for every character γ in Ĝ we can define an automorphism τγ on P(C,G) by

τγ

(
n∑
i=1

VsiAsi

)
=

n∑
i=1

γ(si)VsiAsi .

The automorphism τγ extends to an automorphism of C ×α G with C as its fixed-point set [54,
Proposition 7.8.3.]. We call τγ a gauge automorphism. The gauge automorphisms restrict to
automorphisms of C N×α S.

Lemma 3.3.14. Let A be a unital operator algebra. Let C be a C∗-cover of A and let J be the
Shilov boundary ideal of A in C. Let α be an action of S on C by automorphisms which restrict to
completely isometric automorphisms of A. Then

C∗env(AN×C,α S) ∼= C∗env(A)×α̇ G.

Proof. By the preceding proposition it suffices to show that

C∗env(A/J N×C/J ,α̇ S) ∼= C/J ×α̇ G.

The algebra A/J N×C/J ,α̇ S embeds completely isometrically into C/J ×α̇ G and generates it
as a C∗-algebra. Let I be the Shilov boundary ideal of A/J N×C/J ,α̇ S in C/J ×α̇ G. Suppose
that I 6= {0}.
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The ideal I is invariant under automorphisms of C/J ×α̇ G and hence by the gauge automor-
phisms of C/J ×α̇ G. Therefore I has non-trivial intersection with the fixed points of the gauge
automorphisms, i.e. I ∩ C/J 6= {0}. But I ∩ C/J is a boundary ideal for A in C/J . Hence
I = {0}. This proves the result.

We can now prove the main result of this section. This theorem generalises the result of
Kakariadis and Katsoulis [36] from the semigroup Z+ to our more general semigroups S =

∑⊕k
i=1 Si.

From another viewpoint, in the case when A is a C∗-algebra and AN×isoα S ∼= AN×α S we have
that the C∗-envelope of an associated tensor algebra is a crossed product algebra, by Remark
3.3.8 and Corollary 3.3.7. This was shown for abelian C∗-algebras by Duncan and Peters [25].

By [14, Proposition 10.1] the group Aut(A) of completely isometric automorphisms on the unital
operator algebra A is isomorphic to the group of completely isometric automorphisms on C∗env(A)
which leave A invariant. Thus, if {αs}s∈S a family of completely isometric automorphisms defining
an action of S on A, then they can be extended to a family completely isometric automorphisms
defining an action of S on C∗env(A).

Theorem 3.3.15. Let A be a unital operator algebra. Let α be an action of S on A by completely
isometric automorphisms. Denote also by α the extension of this action to C∗env(A). Then

C∗env(AN×isoα S) ∼= C∗env(A)×α G.

Proof. We will show that AN×isoα S is isomorphic to a relative semicrossed product. The result
will then follow by Lemma 3.3.14.

Let {Vs}s∈S be the universal isometries in AN×isoα S acting on a Hilbert space H. For each
s ∈ S let Hs = H and define maps Vs,t when s ≤ t

Vs,t : Hs → Ht

by Vs,t = Vt−s. Let K be the Hilbert space inductive limit of the directed system (Hs)s∈S .

For each A ∈ A the commutative diagram

H Vs−−−−→ H

A

y α−1
s (A)

y
H Vs−−−−→ H

defines an operator π(A) on K. Thus we have a completely isometric representation π : A → B(K).

Now for each s, t ∈ S define operator U st : Hs → Hs by U st = Vt. Passing to the direct limit
we get a family of commuting unitaries {Us}s∈S on K satisfying

π(A)Us = Usπ(αs(A)).
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The unitaries {Us}s∈S thus define ∗-automorphisms of C := C∗(π(A)) extending α. Thus

AN×isoα S ∼= AN×C,α S.

The result now follows by Lemma 3.3.14.
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