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Abstract

There is often freedom in choosing the location of actuators on systems governed by

partial differential equations. The actuator locations should be selected in order to optimize

the performance criterion of interest. The main focus of this thesis is to consider H∞-

performance with state-feedback. That is, both the controller and the actuator locations

are chosen to minimize the effect of disturbances on the output of a full-information plant.

Optimal H∞-disturbance attenuation as a function of actuator location is used as the

cost function. It is shown that the corresponding actuator location problem is well-posed.

In practice, approximations are used to determine the optimal actuator location. Condi-

tions for the convergence of optimal performance and the corresponding actuator location

to the exact performance and location are provided. Examples are provided to illustrate

that convergence may fail when these conditions are not satisfied.

Systems of large model order arise in a number of situations; including approximation

of partial differential equation models and power systems. The system descriptions are

sparse when given in descriptor form but not when converted to standard first-order form.

Numerical calculation of H∞-attenuation involves iteratively solving large H∞-algebraic

Riccati equations (H∞-AREs) given in the descriptor form. An iterative algorithm that

preserves the sparsity of the system description to calculate the solutions of large H∞-

AREs is proposed. It is shown that the performance of our proposed algorithm is similar

to a Schur method in many cases. However, on several examples, our algorithm is both

faster and more accurate than other methods.

The calculation of H∞-optimal actuator locations is an additional layer of optimization

over the calculation of optimal attenuation. An optimization algorithm to calculate H∞-

optimal actuator locations using a derivative-free method is proposed. The results are

illustrated using several examples motivated by partial differential equation models that

arise in control of vibration and diffusion.
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Chapter 1

Introduction

The location of an actuator has a tremendous impact on the performance of the controlled

system; e.g., [40, 117]. In aerospace engineering, the flight wings (Figure 1.1b) can be

mounted with piezoelectric actuators (square shaped white patches in Figure 1.1a) at

optimal locations to suppress the vibrations [93]. It was shown that the control system

performance shows significant improvement and at the same time the energy consumption

is minimized when the actuators are placed at optimal locations [6, 109]. On the other

hand, placing the actuator near a nodal point (or line) of a structure mode (a point where

the corresponding eigenfunction is zero) results in large force requirement to control this

mode [109]. Better performance of vibration control of cantilever plate [86], beam [124],

inflated torus [68], paraboloidal shell [132] and other flexible structures [60] is observed

when actuators are placed at optimal locations. Misplaced actuators can lead to lack of

controllability [80]. The amount of energy consumption is a concern in vibration control of

smart structures and in process control applications. In chemical processes, an integrated

feedback controller design and optimal actuator placement result in achieving the desired

performance with the use of minimal control energy [5]. Civil structures such as high rise

buildings and suspension bridges are designed to protect against earthquake excitation

through the placement of actuators at appropriate heights [1]. In acoustic problems, an

arbitrarily placed actuator can actually increase the sound field locally [46]. It is shown

in [100] that the achievable noise reduction in a duct (Figure 1.2) varies strongly with

1



Figure 1.1: Vibration control of flight wings [93, Fig. 1]: Better performance of vibration

control is achieved using piezo-electric actuators (square shaped white patches) placed at

optimal locations on the surface of wings. An experimental setup [93, Fig. 2] is shown

below.

(a) Experimental setup (b) Flight Wings

actuator location. The optimal placement of actuators is essential for effective control of

structural vibration and acoustic noise [116]. The actuators should therefore be located at

positions that optimize certain performance objectives.

In control systems, studies on optimal actuator placement began in the early 1980’s

[6]. These first studies concentrated on formulating an objective function based on specific

performance requirements. Since then, several cost functions for actuator placement have

been used; see the survey papers [49, 107, 128]. The location that corresponds to the

minimal cost is chosen as the optimal location for placing the actuator.

In systems modeled by partial differential equations, optimal location calculations are

performed on approximated problems, although the state space for the full model is infinite-

dimensional. Calculations of optimal actuator location using approximations must yield

reliable results for the full model. The theory that guarantees optimality of the cost and

existence of the optimal actuator location for these models has not been developed in its

entirety. In [62], it was shown that using the first n modes to find the actuator location

that maximizes the decay rate of the solution to the wave equation yields the worst location

2



Figure 1.2: Acoustic noise in a duct [96, Fig. 2]: A noise signal is produced by a loudspeaker

placed at one end of the duct. An actuator loudspeaker is mounted midway down the duct

to control the noise signal.

for the (n+1)th mode. Conditions that guarantee optimality of the actuator location with

a linear quadratic cost are developed in [97].

The aim of this thesis is to develop a mathematical framework for calculating optimal

actuator locations with an H∞ criterion. Both the controller and the actuator location

are chosen to minimize the effect of disturbances on the output of a full-information plant.

Optimal disturbance attenuation as a function of actuator location is used as the cost

function . First, the problem of using approximations to determine optimal actuator

location for H∞-control with state feedback is considered. Conditions under which H∞-

optimal actuator locations calculated using approximations converge to the exact optimal

locations for the original model are derived.

Several numerical issues are associated with the calculation of H∞-optimal actuator

location. Consider first the problem of calculating optimal H∞-attenuation at fixed actu-

ator location. Except for a few special classes of systems,e.g. [33], calculation of optimal

H∞-attenuation is accomplished by an iterative bisection method [113, 121, 122]. Multiple

solutions of a fixed attenuation problem are required in this bisection method. Each fixed-

attenation problem requires solution of a H∞-ARE. This H∞-ARE is similar to the one

3



arising in linear quadratic control problem except now the quadratic term is sign-indefinite

and this can make solution of the equation more difficult. H∞-AREs of large dimensions

arise when approximations are used on systems modeled by partial differential equations.

Often, for example, when finite element methods are used, the approximating systems are

naturally written in the descriptor form. A recursive algorithm [82] to calculate the solu-

tion of a H∞-ARE is extended to handle large regular descriptor systems. An improvement

of the bisection algorithm is suggested to accelerate the calculation of optimal attenuation.

Minimization of optimal H∞-attenuation over all actuator locations is an additional

layer of optimization. A difficulty with H∞-optimal actuator location problem is the lack

of gradient information. The directional direct-search method, which is a well-known

derivative-free method, is used in an algorithm to optimize the actuator locations based

on H∞-performance. A distributed parallel implementation of this algorithm is suggested

to accelerate the calculations, particularly for large-scale systems.

The outline of this thesis is as follows: In Chapter 2, some background literature on

optimal actuator location is reviewed. In Chapter 3, a thorough investigation of linear

quadratic optimal actuator location problem is presented. In Chapter 4, a framework for

calculating H∞-optimal actuator location is developed. Conditions under which the opti-

mal actuator location calculated using approximations yield reliable results are described

and illustrated with examples in this chapter. Some numerical methods to calculate H∞-

control is reviewed in Chapter 5. A recursive algorithm to calculate the solution of a

H∞-ARE is extended to large descriptor systems in Chapter 5. The extended algorithm

is compared against other methods using several examples modeled by partial differen-

tial equations and the results are summarized. A fast algorithm to calculate H∞-optimal

actuator location is developed in Chapter 6. This thesis is concluded in Chapter 7.
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Chapter 2

Background on Optimal Actuator

Location

In many control systems, the location of actuators can often be chosen. These locations

should be selected in order to optimize the performance criterion of interest. Researchers

have used a number of performance criteria to find the best possible location for placing the

actuator; see e.g., [49, 128]. The most commonly used criteria in the engineering literature

are (i) controllability criterion, (ii) linear quadratic control criterion, and (iii) H∞ control

criterion.

In this chapter, the background material related to the above strategies is reviewed. The

application of these criteria to calculate optimal actuator location in the recent literature

is described. The advantages and disadvantages of choosing such criteria are discussed.

Lastly, other objective functions which have been used are briefly described.

2.1 Problem Statement

Many optimal actuator location problems involve systems modelled by partial differential

equations. The state space of such systems is infinite-dimensional. Most often, researchers

5



in engineering have used an approximation scheme that leads to systems on finite dimen-

sions, Rn. This issue will be addressed in the next chapter. In this section, the optimal

actuator location problem is first formulated.

Consider the following linear time-invariant system in Rn,

dz

dt
= Az(t) +Bu(t), z(0) = z0 ∈ Rn (2.1.1)

where z(·) ∈ Rn denotes the state of the system, A ∈ Rn×n denotes the system dynamics

and u(·) ∈ Rm is the control applied to the system as a function of time. The effect of

control on the state of the system is described by the input matrix B ∈ Rn×m.

Consider the situation where there are m actuators with locations that could be varied

over some compact set (this will be justified later), call it Ω ⊂ Ra. Parametrize the actuator

locations by r and denote the dependence of the corresponding input matrix with respect

to the actuator location by B(r). Note that r is a vector of length m with components in

Ω so that r varies over a space denoted by Ωm. Based on the designer’s interest on the

choice of a desired performance measure, a suitable cost function µ(r) that depends on the

actuator location is formulated.

Definition 2.1.1. The optimal cost µ̂ over all possible locations is defined as,

µ̂ = inf
r∈Ωm

µ(r). (2.1.2)

Also, if it exists, the location r̂ ∈ Ωm that satisfies

r̂ = arg inf
r∈Ωm

µ(r) (2.1.3)

is called the optimal actuator location.

The fundamental issue of showing well-posedness of optimal actuator location problem

has not been addressed for many cost functions in the literature. In the rest of this chapter,

several formulations of the cost function µ(r) based on the three most popular strategies

used in diverse applications will be discussed.
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2.2 Controllability Criterion

The earliest of the three most commonly found strategies involves the use of controllability

criterion as a tool for setting up the actuator placement problem; see e.g., [6, 60].

Definition 2.2.1. The dynamical system (2.1.1) or pair (A,B(r)), r ∈ Ωm is said to be

controllable at the actuator location r if, for any initial state z(0) = z0 and any final state

zf , there exists an input u(·) such that the solution of (2.1.1) satisfies z(tf ) = zf in a finite

time tf > 0. Otherwise, the system or the pair (A,B(r)) is said to be uncontrollable at the

actuator location r.

Definition 2.2.2. The matrix A ∈ Rn×n is Hurwitz, if max1≤i≤n Re(λi(A)) < 0, where

λi(A) is the eigenvalue of A.

In placing the actuators it is desirable to minimize the control energy (Jc) required to

bring the system from an arbitrary initial state z0 to some final state zf in a finite time tf

subjected to (2.1.1). Consider the following minimization problem :

Min Jc =

∫ tf

0

uT (t)u(t)dt, (2.2.1)

where the superscript T denotes the matrix transpose. The solution to (2.2.1) is

u(r; t) = −BT (r)eA
T (tf−t)Wc(r; tf )

−1(eAtf z0 − zf ),

where

Wc(r; tf ) :=

∫ tf

0

eAtB(r)BT (r)eA
T tdt.

See e.g., [102] for details. For systems where A is Hurwitz, the infinite-horizon version of

the matrix Wc(r; tf ) is called the controllability Gramian, that is,

Wc(r) =

∫ ∞
0

eAtB(r)BT (r)eA
T tdt. (2.2.2)

The Gramian matrix is calculated by solving the Lyapunov equation,

AWc(r) +Wc(r)A+B(r)BT (r) = 0. (2.2.3)

7



The controllability Gramian provides a measure of controllability of the system depending

on the location of the actuator. A small eigenvalue of the controllability Gramian matrix

would lead to at least one mode requiring very high control effort. This implies that all

the eigenvalues of the controllability Gramian matrix should be as large as possible.

Theorem 2.2.3. (e.g., [102, Thm 2.5]) The pair (A,B) is controllable at r if and only if

Wc(r; tf ) is positive definite for all tf > 0.

It is evident from Theorem 2.2.3 that the Gramian matrix must be non-singular to

guarantee controllability of the system.

An objective function for calculating optimal actuator location was formulated in [60]

using the Gramian matrix as follows:

max
r∈Ωm

µ(r) =

(
n∑
i=1

λi

)
n

√√√√ n∏
i=1

(λi), (2.2.4)

where λi’s are the eigenvalues ofWc(r) for a given actuator location. The summation term

in (2.2.4) is the trace of the Gramian matrix. To ensure that all the eigenvalues of the

Gramian are high, the geometric mean of all the eigenvalues is included in the objective

function.

Several variants of the above objective function have been proposed in the past decade.

A standard deviation term, 1/σ(λi), was often included in the performance index (2.2.4)

as a product term, see e.g., [68, 116]. In [86], only the trace of the Gramian matrix was

used to find the optimal actuator location on flexible structures. The optimal locations of

multiple actuators calculated using (2.2.4) suppressed the vibrations in a plate [109].

Controllability Gramian based approach is an open-loop strategy. Calculation of opti-

mal actuator location does not simultaneously provide a controller. For example in [116],

the design of optimal control and the optimal actuator location were treated as two sep-

arate problems which is cumbersome. An adaptive feedforward controller was designed

in [109] after calculating the optimal actuator location. In the rest of this chapter, and

thesis, only closed-loop strategies for the calculation of optimal actuator locations with a

linear-quadratic or H∞-cost will be discussed.
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2.3 Linear Quadratic Control Criterion for Linear Sys-

tems

Linear quadratic control is a well-known closed-loop strategy for controller design that

minimizes energy of both the control signal and the measured signal. The control is

calculated by minimizing a quadratic cost function with penalty on both the state of the

system and the control input.

Consider the system (2.1.1) on Rn. The quadratic cost functional associated with a

particular control u(·) ∈ Rm over an infinite-time interval, for a given initial state z0 is

given by

J(z0, u(.)) =

∫ ∞
0

〈Cz(t), Cz(t)〉+ 〈u(t), Ru(t)〉dt (2.3.1)

subject to (2.1.1), where the matrices C ∈ Rp×n and R(> 0) ∈ Rm×m are weights for

the state and the control input respectively. The linear quadratic control problem is to

minimize the cost (2.3.1) over all possible controls or

min
u∈L2(0,∞;Rm)

J(z0, u). (2.3.2)

The control that achieves this minimum, uopt(·), is often called the linear quadratic optimal

control.

Definition 2.3.1. The pair (A,B) is stabilizable if there exists K ∈ Rm×n so that A−BK
is Hurwitz.

Definition 2.3.2. The pair (A,C) is detectable if there exists F ∈ Rn×p so that A − FC
is Hurwitz.

Theorem 2.3.3. (e.g., [102, Thm. 5.12, Thm. 5.16]) Let the system given by (2.1.1) be

stabilizable and let the pair (A,C) be detectable. Then the infinite-horizon optimization

problem (2.3.2) has a minimum for every given initial condition z0. Furthermore, there

exists a symmetric, non-negative matrix, P ∈ Rn×n, such that

min
u∈L2(0,∞;Rm)

J(z0, u) = J(z0, uopt) = z∗0Pz0, (2.3.3)
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where the optimal control uopt(·) is given by

uopt(·) = −R−1B∗Pz(·), (2.3.4)

and P is the unique nonnegative solution of the algebraic Riccati equation (ARE) given

by

A∗P + PA− PBR−1B∗P + C∗C = 0. (2.3.5)

The corresponding optimal state feedback, K = −R−1B∗P is stabilizing, that is A− BK
is Hurwitz.

Numerical methods of calculating solutions to the ARE will be discussed in Section 3.5.

Many researchers have chosen linear quadratic cost criteria to optimize the actuator

location, see e.g., [1, 46, 61, 80, 124]. The performance for a particular actuator location

r is dependent on the given initial state of the system z0 and the solution to ARE P (r).

That is, the linear quadratic cost at the actuator location r is

min
u∈L2(0,∞;Rm)

Jr(z0, u) = Jr(z0, uopt) = z∗0P (r)z0. (2.3.6)

Researchers have used a number of techniques in the past to remove this dependency on

the initial condition. Considering the worst possible initial condition ‖z0‖ = 1, an upper

bound on the cost (2.3.6) is the induced matrix norm on the solution to LQ-ARE,

max
‖z0‖=1

min
u∈L2(0,∞;Rm)

Jr(z0, u) = max
‖z0‖=1

〈z0, P (r)z0〉 = ‖P (r)‖. (2.3.7)

This objective function

µ(r) := ‖P (r)‖ (2.3.8)

was used for placing actuators on a simply supported beam with a moving mass [124]. If

the initial condition is random, with zero mean and unity variance, then the expected cost

is trace [P (r)], or ‖P (r)‖1 where ‖.‖1 indicates the trace norm. In [46], the cost function

µ(r) := ‖P (r)‖1 (2.3.9)

was minimized for finding the best locations to place actuators to reduce the interior noise in

an acoustic cavity. The trace norm of the solution to (2.3.5) was used in other applications,
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see e.g., [1, 80]. Another approach is to average the cost over a set of linearly independent

initial states [5]. The effect of a disturbance with fixed frequency content (for instance, a

single white noise disturbance) is considered in [98]. This leads to a H2 control problem

and if the spatial distribution of the disturbance is unknown, then the cost function (2.3.8)

is used to calculate the optimal actuator location.

Linear quadratic control is a popular choice, since the controller is designed simulta-

neously with the optimal actuator location. Including the effect of a specific disturbance

with fixed frequency content leads to a H2 control problem and the cost function is similar

to a linear quadratic cost [98].

2.4 H∞-Control Criterion

Noise in the environment and disturbances will influence the performance of the control

system. The disturbance is often unknown. In this section, placing the actuator at a

location using an H∞-criterion is considered. That is, both the controller and the actuator

locations are chosen to minimize the effect of disturbances on the output. A system with

the disturbance model is first described. Then, the standard and optimal H∞ control

problems are stated. Lastly, how this strategy is used to formulate the optimal actuator

location problem is discussed.

Consider the following system described on Rn,

ż(t) = Az(t) +Bu(t) +Dv(t), z(0) = z0 ∈ Rn

y(t) = Cz(t) +D12u(t), (2.4.1)

where z(·) denotes the state of the system (2.4.1), v(t) ∈ Rq is the exogenous input or

disturbance, y(t) ∈ Rp is the controlled output or cost. Here, A ∈ Rn×n, B ∈ Rn×m.

The matrices C ∈ Rp×n and D12 ∈ Rp×m describe the effect of the state and the control

input on the output respectively. The usual orthogonality hypotheses CTD12 = 0 and

DT
12D12 = I are assumed in order to simplify the subsequent equations. The full column

rank of matrix D12 ensures a non-singular map y on the control u. It is assumed that all
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states of the system are available for measurement. This system (2.4.1) is a special form

of the generalised plant configuration, known as the full information problem.

Let v̂(s) and ŷ(s) be the Laplace transforms of the exogenous input and the output

of the system respectively. The function Gyv(s) that describes the ratio of the output

ŷ(s) over the disturbance v̂(s) is called the transfer function of (2.4.1) from disturbance to

output. Minimizing the effect of all disturbances on the output is equivalent to minimizing

the size of the transfer function Gyv. The notation H∞ indicates the Hardy space of all

functions G(s) which are analytic in the right-half plane Re(s) > 0 and for which

sup
ω

lim
x↓0
|G(x+ jω)| <∞. (2.4.2)

The norm of a function in H∞ is

‖G‖∞ = sup
ω

lim
x↓0
|G(x+ jω)|. (2.4.3)

More generally, let | · | indicate the maximum singular value of a matrix. The space

H∞(Rm,Rp) consists of matrix-valued functions G : C+
0 7→ L(Rm,Rp) that have entries

that are analytic in the right-half plane and for which

‖G‖∞ = sup
ω

lim
x↓0
|G(x+ jω)| <∞. (2.4.4)

This space is sometimes written M(H∞) when no confusion will arise about dimensions.

By the Paley-Weiner Theorem, a system with input in Rm and output in Rp is L2-stable

if and only if the system transfer function G ∈ M(H∞). Furthermore, the H∞-norm of

the transfer function is the L2-gain of the system, which is the ratio of L2 norm of output

to input. The details of calculating H∞ norms are found in many standard texts, see e.g.,

[102, 133].

Let G be the transfer function of the system (2.4.1):

G(s) := C(sI − A)−1
[
B D

]
+
[
D12 0

]
. (2.4.5)

With state feedback control u(t) = −Kz(t), K ∈ Rm×n, the closed loop transfer function

from disturbance to output is

Gyv(s) = (C −D12K) (sI − (A−BK))−1D. (2.4.6)
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Definition 2.4.1. The controlled system will have input v (disturbance) and output y

(measurement). The fixed attenuation H∞ control problem for attenuation γ of (2.4.1) is

to construct a stabilizing controller with transfer function H so that the closed loop system

Gyv with û(s) = H(s)ẑ(s) is L2-stable and satisfies the bound

‖Gyv‖∞ < γ. (2.4.7)

Even for stabilizable systems, the fixed attenuation problem cannot be solved for every

attenuation γ since such a controller may not exist [43]. However, if it is solvable, as in

the case of linear quadratic control, the control law can be chosen to be constant state

feedback.

Consider the index

ρ(u, v; z0) = ‖y‖2
L2(0,∞;Rp) =

∫ ∞
0

‖Cz(t)‖2 + ‖D12u(t)‖2dt (2.4.8)

subject to (2.4.1). Consider the performance index

J(u, v; z0) = ρ(u, v; z0)− γ2‖v‖2
L2(0,∞;Rq) (2.4.9)

subject to (2.4.1) for some γ > 0. Calculating a controller that achieves the given H∞-

attenuation bound γ is equivalent to solving the quadratic differential game

max
v∈Rq

min
u∈Rm

J(u, v; z0) (2.4.10)

subject to (2.4.1), see [102] for details. The solution to the quadratic differential game

(2.4.10) is a saddle point since the optimal control law minimizes the cost function J where

as the worst-case disturbance maximizes it, unlike the linear quadratic control problem

where the optimal control law is a minimum, see [102] for details.

Theorem 2.4.2. (e.g., [102, Thm 8.8]) Assume that the pair (A,B) is stabilizable and

the pair (A,C) is detectable. There exists a stabilizing controller for the full information

problem (2.4.1) so that ‖Gyv‖∞ < γ if and only if there exists a symmetric, non-negative

solution denoted by P ≥ 0, that satisfies the H∞-ARE,

ATP + PA+ P

(
1

γ2
DDT −BBT

)
P + CTC = 0 (2.4.11)
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such that A+
(

1
γ2
DDT −BBT

)
P is Hurwitz. If so, one such control is given by,

u = −Kz, where K := BTP (2.4.12)

and also A−BBTP is Hurwitz.

With the stabilizing feedback K (2.4.12) the closed loop transfer function Gyv achieves

a H∞ norm less than γ. Hence, the disturbance propagation to output of the plant will

always be less than a factor of γ. Except for the quadratic term, the H∞-ARE (2.4.11)

is similar to the LQ-ARE (2.3.5). A review of existing numerical methods to calculate

the solution to H∞-ARE (2.4.11) will be presented in Section 5.2. The extension to the

more general case where an estimator must be constructed involves solving the dual Riccati

equation (e.g. [102]). The computational issues are identical to the full-information case.

A question that naturally arises is the existence of a state feedback control that mini-

mizes this attenuation level γ.

Definition 2.4.3. The optimal H∞-control problem for (2.4.1) with full-information is to

find

γ̂ = inf γ (2.4.13)

over all γ for which the fixed attenuation problem is solvable. The infimum γ̂ is called the

optimal H∞-attenuation.

Optimal H∞-attenuation is calculated using a bisection-type algorithm. The numerical

issues related with the calculation of optimal attenuation will be dealt with in Chapter 5.

Consider the full-information plant (2.4.1) except now the input matrix is a function of

the actuator location r, B(r). The location that minimizes the optimal H∞-disturbance

attenuation is chosen as the actuator location. The H∞-cost for a particular actuator

location r is γ̂(r). The value of γ̂(r) provides the best possible attenuation of the worst-

case disturbance for the system at the actuator location r. This cost function was used

for locating actuators in the vibration control of tensegrity structures [117]. The results in

[117] show that the displacement is less with H∞ performance than the H2 performance.

Another approach for placing actuators is to use the H∞-norm of the closed-loop system;

14



see [50] for details. This approach is adopted in [123] to place actuators on a plate.

An analytical expression to compute the upper bound on the H∞-norm of the controlled

system was used to optimize the actuator locations in [41, 125]. Using this analytical

approach, it was shown in [42] that the resulting optimal actuator location exhibits spatial

robustness. Calculation of optimal actuator locations with spatially varying disturbances

was addressed in [40]. In [63], the product of a frequency weighting term that represents

the design specification and the closed-loop transfer function was used for optimal actuator

placement.

The advantages of choosing optimal H∞-disturbance attenuation as a closed-loop strat-

egy for actuator placement are threefold; first, the effect of the worst case disturbance on

the output of the system is minimal; second, with optimal actuator location, the corre-

sponding optimal state feedback controller is simultaneously designed; third, the stability

of the closed loop is guaranteed.

2.5 Other Objective Functions

For space structure systems, a composite objective function that combines the calculation of

optimal location, mass of the actuator and the energy dissipated in the system was used in

[89]. Other design variables of the actuator such as length, mass, relative thickness, Young’s

modulus of elasticity, total control force of actuators were simultaneously optimized in [132].

In vibration control of smart tensegrity structures, design variables such as twist angle and

location of actuators were optimized in [117]. In the field of acoustics optimization, the

influence of mass effect of the actuators was also used to determine the optimal location

and shape of the actuators in [90].

Researchers have also used more than one optimization criteria to find the best place-

ment strategy. In vibration control of high-rise buildings structures, multiple objective

functions related to different optimization criteria were used, e.g., [118]. In [116], con-

trollability criteria and linear quadratic cost criteria were used to determine the optimal

location and optimal controller. In [117], both H∞ and H2 cost criteria were used for

actuator placement and their performances were compared.
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In this chapter, the three most popular optimization strategies that were used exten-

sively in engineering literature for actuator placement have been discussed. As already

noted, one drawback of controllability criterion is that this is an open-loop strategy. Also,

when the state space is infinite-dimensional, the system is not exactly controllable (e.g.,

[37, Thm. 4.1.5]) which complicates the use of such a criterion. In the following chapters,

linear quadratic and H∞-control criteria for placing actuators on the full partial differential

equation model will be discussed.
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Chapter 3

Linear Quadratic Optimal Actuator

Location

The linear quadratic control criterion for placement of actuators is quite popular among

researchers, see e.g., [1, 5, 46, 80]. In control of vibrations, diffusion and many other

applications where this problem is studied, the mathematical models are given by partial

differential equations; see the review article [79]. The state space for such systems is

infinite-dimensional. In practice, approximations are used in controller design and thus

in selection of the actuator locations. The optimal cost and the corresponding location

computed using the approximated problem may not be the same for the original problem.

In fact, the optimal cost and the corresponding location may not even exist for the full

partial differential equation. It is necessary to first formulate the optimal actuator location

problem with the full partial differential equation and show well-posedness of this problem.

Criteria for optimality of linear quadratic actuator locations for the full partial differential

equation model was obtained in [97]. In this chapter, the theory of linear quadratic control

on infinite dimensions is first described briefly. The well-posedness of the linear quadratic

optimal actuator location problem on a Hilbert space is shown next. Then, conditions on

an approximation scheme required for convergence of approximating controls to the control

for the original model are given. The convergence of optimal actuator locations is proven

next. Lastly, numerical methods used in literature to calculate optimal actuator locations
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by solving Riccati equations are reviewed.

3.1 Linear Quadratic Control on Infinite-Dimensional

Systems

Consider systems described by

dz

dt
= Az(t) +Bu(t), z(0) = z0 ∈ Z, (3.1.1)

where A with domain D(A) generates a C0-semigroup T (t) on a Hilbert space Z and B ∈
L(U,Z), where L(U,Z) indicates bounded linear operators from U to Z; see [37, 83, 108]

for details. The input space is a separable Hilbert space denoted by U . Let

U = L2(0,∞;U)

denote the space of all admissible inputs. The solution of (3.1.1) can be written

z(t) = T (t)z0 +

∫ t

0

T (t− s)Bu(s)ds. (3.1.2)

Example 3.1.1. Consider a metal bar of unit length heated along its length according to

∂w

∂t
(x, t) =

∂2w

∂x2
(x, t) + b(x)u(t), w(x, 0) = w0(x), (3.1.3)

∂w

∂x
(0, t) = 0 =

∂w

∂x
(1, t),

where w(x, t) represents the temperature at position x and time t with Neumann boundary

conditions, w0(x) is the initial temperature profile, u(t) is the heat source, and b(x) denotes

the variation of addition of heat along the bar. The parabolic system (3.1.3) can be

rewritten in the abstract form (3.1.1) by choosing Z = L2(0, 1) as the state space and

z(t) = {w(x, t), 0 ≤ x ≤ 1} as the state. Then (3.1.3) resembles (3.1.1) if the operators A

and B on Z are given as follows:

Ah =
d2h

dx2
with D(A) =

{
h ∈ H2(0, 1) | dh

dx
(0) = 0 =

dh

dx
(1)

}
, Bu = b(x)u, (3.1.4)
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where the function w0(·) ∈ L2(0, 1) is the initial state z0. The solution to (3.1.3) is given

by

w(x, t) =

∫ 1

0

g(t, x, y)w0(y) dy +

∫ t

0

∫ 1

0

g(t− s, x, y)b(y)u(s) dyds, (3.1.5)

where g(t, x, y) represents the Green’s function

g(t, x, y) = 1 +
∞∑
n=1

2e−n
2π2t cos(nπx) cos(nπy). (3.1.6)

The solution (3.1.5) can also be represented in the abstract form (3.1.2).

In finite dimensions T (t) is the matrix exponential eAt and the equation (3.1.2) is the fa-

miliar variation of constants formula. The well-known semigroup theory, e.g., [37, 83, 108],

is the generalization of eAt to unbounded operators A on abstract spaces and clarifies the

concept of solutions (3.1.2) on these spaces. Control problems that arise from partial

differential equations and delay differential equations (e.g. [37]) can be formulated mathe-

matically as ordinary differential equations on an infinite-dimensional abstract linear vector

space. These two special classes of infinite-dimensional systems motivate the usefulness of

developing a theory for linear infinite-dimensional systems.

Definition 3.1.2. A C0-semigroup, T (t), on Z is exponentially stable, if there exists pos-

itive constants, M and α such that

‖T (t)‖ ≤Me−αt, (3.1.7)

where ‖ · ‖ is the operator norm on L(Z,Z).

Consider the abstract formulation (3.1.1) on the Hilbert space Z. The linear-quadratic

controller design objective is to find a control u(·) that minimizes the cost functional

J(z0, u(·)) =

∫ ∞
0

〈Cz(t), Cz(t)〉+ 〈u(t), Ru(t)〉 dt, (3.1.8)

where R ∈ L(U,U) is a self-adjoint positive definite operator weighting the control, C ∈
L(Z, Y ) weights the state, and z(·) is determined by (3.1.2). This problem is very similar

to the one described in Section 2.3 except now the state space is infinite dimensional.
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Definition 3.1.3. The system (A,B) is said to be stabilizable if there exists K ∈ L(Z, U)

such that A−BK generates an exponentially stable semigroup.

Definition 3.1.4. The pair (A,C) is said to be detectable if there exists F ∈ L(Y,Z) such

that A− FC generates an exponentially stable semigroup.

Theorem 3.1.5. (e.g., [37, Thm 6.2.4, 6.2.7]) If the system (3.1.1) is stabilizable and

(A,C) is detectable, then the cost (3.1.8) has a minimum for every z0 ∈ Z. Furthermore,

there exists a self-adjoint non-negative operator Π ∈ L(Z) such that

min
u∈L2(0,∞;U)

J(u, z0) = 〈z0,Πz0〉. (3.1.9)

The operator Π is the unique non-negative solution to the Riccati operator equation,

〈Az1,Πz2〉+ 〈Πz1, Az2〉+ 〈Cz1, Cz2〉 − 〈B∗Πz1, R
−1B∗Πz2〉 = 0, (3.1.10)

for all z1, z2 ∈ D(A). Defining, K = R−1B∗Π, the corresponding optimal control is

u(t) = −Kz(t) and A−BK generates an exponentially stable semigroup.

Thus, as in finite-dimensions, the linear quadratic optimal control is given by a state

feedback. In the next section, the formulation of the LQ cost function for placing actuators

on systems described on an infinite-dimensional state space will be described.

3.2 Well-posedness of LQ-Optimal Actuator Location

Problem

Consider the situation of placing m actuators and parametrize the input operator B by the

actuator location r, B(r). For each r, there is a linear quadratic optimal control problem

(3.1.8) which is indicated by Jr(u, z0) with corresponding optimal cost 〈Π(r)z0, z0〉. A

scalar cost that depends only on the actuator location is needed. In this section, well-

posedness of the optimal actuator location problem on Z under different assumptions on

the initial condition is proven.
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First, the actuator location is chosen to minimize the response to the worst initial

condition, and the objective function to be minimized by the best actuator location is

given by,

max
z0∈Z,‖z0‖=1

min
u∈L2(0,∞;U)

Jr(u, z0) = ‖Π(r)‖. (3.2.1)

The performance for a particular r is µ(r) = ‖Π(r)‖ and the optimal performance is

µ̂ = inf
r∈Ωm

‖Π(r)‖. (3.2.2)

The following result shows that the optimal cost is continuous with respect to the actuator

location, provided that B(r) is a family of input operators that are compact and continuous

with respect to actuator location.

Theorem 3.2.1. [97, Thm. 2.6] Let B(r) ∈ L(U,Z) be a family of compact input opera-

tors such that for any r0 ∈ Ωm

lim
r→r0
‖B(r)−B(r0)‖ = 0.

If (A,B(r)) is stabilizable for all r ∈ Ωm and (A,C) is detectable, then the Riccati operators

Π(r) are continuous functions of r in the operator norm as follows:

lim
r→r0
‖Π(r)− Π(r0)‖ = 0,

and there exists an optimal actuator location r̂ such that

‖Π(r̂)‖ = inf
r∈Ωm

‖Π(r)‖ = µ̂.

The above theorem provides the conditions that are required for the existence of an

optimal actuator location.

Some technical definitions are necessary before discussing the second case.

Definition 3.2.2. [130] Let H1 and H2 be Hilbert spaces. An operator S ∈ L(H1, H2) is

said to be Hilbert-Schmidt if ∑
n∈N

‖Sen‖2 < +∞

for some orthonormal basis {en}n∈N.
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Every Hilbert-Schmidt operator is compact (e.g., [130, Thm. 6.10]). If S is a compact

operator, then the non-zero eigenvalues of |S| = (S∗S)
1
2 are called the singular values of S.

An alternative characterization of Hilbert-Schmidt operator is the following : an operator

S is Hilbert-Schmidt if and only if ∑
n∈N

(σn(S))2 < +∞,

where σn(S) is the nth singular value of the operator S ∈ L(H1, H2).

Definition 3.2.3. If the singular values of an operator S ∈ L(H1, H2) are summable, then

it is said to be a nuclear operator: ∑
n∈N

σn(S) < +∞.

Clearly, every nuclear operator is Hilbert-Schmidt since∑
n∈N

(σn(S))2 ≤

(∑
n∈N

σn(S)

)2

.

If the initial condition is random, with zero mean and unity variance, then the expected

cost is trace [Π(r)], or since Π is self-adjoint and non-negative on L(Z,Z), ‖Π(r)‖1, where

‖.‖1 indicates the nuclear norm:

‖Π(r)‖1 = trace [Π(r)] =
∑
n∈N

σn(Π(r)).

See [130] for details. The performance for a particular actuator location r is

µ(r) = ‖Π(r)‖1 (3.2.3)

and the optimal performance is

µ̂ = inf
r∈Ωm

‖Π(r)‖1. (3.2.4)

The difficulty with using the nuclear norm of Π as an objective function is that the operator

Π does not always have a finite nuclear norm and it may not even be a compact operator,

as the following examples show. It will be shown that compactness and nuclearity of Π are

required to show well-posedness of optimal actuator location problem and thus, convergence

of LQ optimal actuator location. The notation ∗ denotes the adjoint of an operator.
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Example 3.2.4. [37] Consider (3.1.1)-(3.1.8) with any A,B,C such that A∗ = −A and

C = B∗. Then Π = I is a solution to the ARE

A∗Π + ΠA− ΠBB∗Π + C∗C = 0. (3.2.5)

The identity operator is not compact on any infinite-dimensional Hilbert space.

Example 3.2.5. This example from [97] is a generalization of [30, Example 1]. Let Z =

R×X , where X is any infinite-dimensional Hilbert space and define the operators A,B,C

on Z by

A =

[
−1 0

0 −I

]
, B =

[
1

0

]
, C =

[√
3 0

0
√

2M

]
where M is a bounded operator on X . By direct computation it follows that

Π =

[
1 0

0 M2

]

is the solution to (3.2.5). This operator is not compact if M is not a compact operator; for

instance M = I. Also, if M is a compact operator, but not a Hilbert-Schmidt operator,

then Π is a compact operator, but not nuclear. This example is particularly interesting

because A generates an exponentially stable semigroup.

Theorem 3.2.6. [97, Thm. 2.9] Assume that the pair (A,B) is stabilizable and the pair

(A,C) is detectable and that B and C are compact operators. Then Π is a compact

operator.

If the input space U and output space Y are both finite-dimensional then Π is a nuclear

operator [36, Thm. 3.3]. Thus, Π has a finite nuclear norm. This implies that the nuclear

norm of the optimal cost is a continuous function of the actuator location.

Theorem 3.2.7. [97, Thm. 2.10] Let B(r) ∈ L(U,Z), r ∈ Ωm, be a family of input

operators such that for any r0 ∈ Ωm

lim
r→r0
‖B(r)−B(r0)‖ = 0.
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Assume that (A,B(r)) are all stabilizable and that (A,C) is detectable, where C ∈ L(Z, Y ).

If U and Y are finite-dimensional, then the corresponding Riccati operators Π(r) are con-

tinuous functions of r in the nuclear norm:

lim
r→r0
‖Π(r)− Π(r0)‖1 = 0,

and there exists an optimal actuator location r̂ such that

‖Π(r̂)‖1 = inf
r∈Ωm

‖Π(r)‖1 = µ̂.

Thus, the LQ optimal actuator location problem is well-posed with two different treat-

ments of the initial condition.

3.3 Approximating Solutions

The Riccati operator equation (3.1.10) can rarely be solved exactly. In practice, the control

is calculated using an approximation ΠN to Π. Most numerical schemes for approximating

systems governed by partial differential equations developed during the last fifty years

have focused on providing convergent and efficient simulations. However, many papers

have also appeared describing conditions under which approximating controls converge to

the control for the original infinite-dimensional system, see e.g., [12, 52, 83, 64] for details.

In this section, conditions on the approximation scheme under which the finite-dimensional

approximation ΠN converges to Π in some sense are given.

Let {ZN} be a family of finite dimensional subspaces of Z, and let PN be the orthogonal

projection of Z onto ZN . The space ZN is equipped with the norm inherited from Z.

Consider a sequence of operators AN ∈ L(ZN) that generate a C0 semigroup TN(t), BN ∈
L(U,ZN). This leads to a sequence of approximations

dz

dt
= ANz(t) +BNu(t), z(0) = zN0 = PNz0, (3.3.1)
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with cost functional,

JN(u(·), z0) =

∫ ∞
0

〈CNz(t), CNz(t)〉+ 〈u(t), Ru(t)〉 dt (3.3.2)

where CN = C |ZN . If (AN , BN) is stabilizable and (AN , CN) is detectable, then the cost

functional has the minimum cost 〈PNz0,Π
NPNz0〉, where ΠN is the unique non-negative

solution to the algebraic Riccati equation,

(AN)∗ΠN + ΠNAN − ΠNBNR−1(BN)∗ΠN + (CN)∗CN = 0 (3.3.3)

on the finite-dimensional space ZN .

The feedback control KN = R−1(BN)∗ΠN is used to control the original system (3.1.1).

Assumptions that guarantee that ΠN converges to Π in some sense are required in order

for the use of finite-dimensional approximations in designing a controller for the original

infinite-dimensional system to be valid. The following set of assumptions on the approxi-

mation scheme is standard in approximation of controllers for partial differential equations.

(A1) Convergence of semigroup and its adjoint: For each z ∈ Z

(i) ‖TN(t)PNz − T (t)z‖ → 0;

(ii) ‖(TN)∗(t)PNz − T ∗(t)z‖ → 0;

uniformly in t on bounded intervals.

(A2) Uniform exponential stabilizability and detectability:

(i) The family of pairs (AN , BN) is uniformly exponentially stabilizable; there exists

a uniformly bounded sequence of operators KN ∈ L(ZN , U) such that

‖e(AN−BNKN )tPNz‖ ≤M1e
−ω1t‖z‖ (3.3.4)

for some positive constants M1 ≥ 1 and ω1.

(ii) The family of pairs (AN , CN) is uniformly exponentially detectable; there exists

a uniformly bounded sequence of operators FN ∈ L(Y, ZN) such that

‖e(AN−FNCN )tPNz‖ ≤M2e
−ω2t‖z‖ (3.3.5)

for some positive constants M2 ≥ 1 and ω2.
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(A3) Convergence of operators B,C and their adjoints: For each z ∈ Z, u ∈ U, y ∈ Y ,

(i) ‖BNu−Bu‖ → 0 and ‖(BN)∗PNz −B∗z‖ → 0; (3.3.6)

(ii) ‖CNPNz − Cz‖ → 0 and ‖(CN)∗y − C∗y‖ → 0; (3.3.7)

Note that the Trotter-Kato Theorem [108, Chap. 3, Thm. 4.2] is an important equiv-

alent statement of (A1)(i), which is required for convergence of initial conditions. The

assumption (A1)(ii) is required for the strong convergence of the approximating feedback

operator. A counter-example may be found in [29]. Assumption (A1) implies that PNz → z

for all z ∈ Z.

Many approximation schemes, such as modal approximation, linear splines for the dif-

fusion problem and cubic splines for damped beam vibrations are uniformly stabilizable

(detectable), provided that the original system is stabilizable (detectable) [96], [99, Thm.

5.2, Thm. 5.3].

Theorem 3.3.1. [12, Thm. 6.9],[64, Thm 2.1, Cor 2.2] Assume that (A1)-(A3) are satisfied

and that (A,B) is stabilizable and (A,C) is detectable. Then for each N , the finite

dimensional ARE (3.3.3) has a unique non-negative solution ΠN with sup ‖ΠN‖ < ∞.

There exists constants M3 ≥ 1, ω3 > 0, independent of N , such that,

‖e(AN−BNR−1(BN )∗ΠN)t‖ ≤M3e
−ω3t. (3.3.8)

Furthermore, for all z ∈ Z,

lim
N→∞

‖ΠNPNz − Πz‖ = 0, (3.3.9)

and

lim
N→∞

‖KNPNz −Kz‖ = 0. (3.3.10)

The above result provides sufficient conditions for strong convergence of the approx-

imating Riccati operators. For large N performance arbitrarily close to the optimal is

obtained with KN . However, it was shown in [97, Example 3.2] that the strong con-

vergence of the Riccati operators is not sufficient to ensure that the optimal cost and a
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corresponding sequence of optimal actuator locations converge. Since the cost is the norm

(or trace norm) of the Riccati operator, uniform convergence (or trace norm convergence)

of the operators is required. That is,

lim
N→∞

‖ΠNPN − Π‖ = 0 ( or lim
N→∞

‖ΠNPN − Π‖1 = 0) (3.3.11)

is needed in order to use approximations in determining optimal actuator location.

Conditions for uniform convergence of the Riccati operators are provided below. Con-

ditions stronger than those used in Theorem 3.3.1 are needed.

Theorem 3.3.2. [97, Thm 3.3] Let assumptions (A1)-(A3) be satisfied. If B and C

are both compact operators, with lim
N→∞

‖BN − PNB‖ = 0 then the minimal non-negative

solution ΠN to (3.3.3) converges uniformly to the non-negative solution Π to (3.1.10).

The following theorem shows that if U and Y are finite-dimensional, then any ap-

proximation scheme that satisfies (A1)-(A3) will lead to uniform convergence of Riccati

operators in nuclear norm.

Theorem 3.3.3. [97, Thm. 3.8] Assume that (A,B) is stabilizable and (A,C) is de-

tectable, and that U and Y are finite-dimensional. Let (AN , BN , CN) be a sequence of

approximations to (A,B,C) that satisfy assumptions (A1)-(A2). Then

lim
N→∞

‖ΠNPN − Π‖1 = 0 (3.3.12)

Thus, assumptions on the approximation scheme that are required to establish uniform

convergence of Riccati operators have been described. Convergence of a sequence of LQ

optimal actuator locations for the approximations to the correct location for the full partial

differential equation model is described in the next section.

3.4 Convergence of LQ-Optimal Actuator Locations

Thus, the objective functions (3.2.1) and (3.2.3) for calculating the LQ-optimal actuator

locations are posed on the infinite-dimensional state space. But, the operator Riccati equa-

tion (3.1.10) can only be solved by an approximation scheme that satisfies the assumptions
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(A1)-(A3). For the sequence of approximating problems (AN , BN(r), CN) define analo-

gously to Jr, µ(r), and µ̂, the cost-functional JNr (u, z0), the cost for a particular location

µN(r) and the optimal cost µ̂N . Theorems 3.2.1 and 3.2.7 apply to these finite-dimensional

problems. Since the operators BN(r) and CN have finite rank, the performance measure

µN(r) is continuous with respect to actuator location r and the optimal performance µ̂N

is well-defined in both cases. Conditions under which approximations yield reliable results

for the calculation of LQ optimal actuator location are given in this section.

The following result shows that if ΠN converges to Π in operator norm at each actuator

location, then the sequence of optimal performance and corresponding optimal locations for

the approximations converge to the exact performance and corresponding optimal location.

Theorem 3.4.1. [97, Thm. 3.5] Assume that the input operators B(r) are compact and

such that for any r0 ∈ Ωm

lim
r→r0
‖B(r)−B(r0)‖ = 0.

Assume also that (A1)-(A3) are satisfied for each (AN , BN(r), CN) where BN = PNB and

that for each r

lim
n→∞

‖ΠN(r)− Π(r)‖ = 0.

Letting r̂ be an optimal actuator location for (A,B(r), C) with optimal cost µ̂ and defining

similarly r̂N , µ̂N , it follows that:

µ̂ = lim
N→∞

µ̂N , (3.4.1)

and also there exists a subsequence {r̂M} of {r̂N} such that

µ̂ = lim
M→∞

‖Π(r̂M)‖. (3.4.2)

The following result shows that if U and Y are finite-dimensional, then again any ap-

proximation scheme that satisfies (A1)-(A3) will lead to a convergent sequence of actuator

locations that are optimal in the nuclear norm.

Theorem 3.4.2. [97, Thm. 3.9] Assume a family of control systems (A,B(r), C) with

finite-dimensional input space U and finite-dimensional output space Y such that
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1. (A,B(r)) are stabilizable and (A,C) is detectable;

2. for any r0 ∈ Ωm, limr→r0 ‖B(r)−B(r0)‖ = 0.

Choose some approximation scheme such that assumptions (A1)-(A3) are satisfied for each

(A,B(r), C) with BN(r) = PNB(r), CN = C|ZN . Letting r̂ be an optimal actuator location

for (A,B(r), C) with optimal cost µ̂ and defining similarly r̂N , µ̂N , it follows that:

µ̂ = lim
N→∞

µ̂N , (3.4.3)

and also there exists a subsequence {r̂M} of {r̂N} such that

µ̂ = lim
M→∞

‖Π(r̂M)‖1. (3.4.4)

Thus, the approximations yield reliable results. A brief summary of numerical calcula-

tion of LQ-optimal actuator location is presented next.

3.5 Computation of LQ-Optimal Actuator Locations

Once the problem is formulated and a suitable approximation scheme found, there remain

several numerical issues associated with the calculation of LQ-optimal actuator locations.

Often approximating partial differential equations leads to systems of large model order

(3.3.1). Hence, calculating the LQ-cost functions (3.2.1), (3.2.3) require efficient numerical

methods for solving large LQ-AREs. First, a short description of the existing methods for

solving AREs is reviewed. Then, a survey of solving large LQ-AREs is presented. Finally,

some methods used to solve the resulting optimization problem are mentioned.

Solving Algebraic Riccati Equation

The algebraic Riccati equation,

A∗P + PA− PBR−1B∗P + C∗C = 0, (3.5.1)
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is nonlinear, but amenable to solution by methods which rely heavily on linear algebra and

the theory of matrices [81]. The existing methods of solving (3.5.1) are broadly classified

into two main categories: Hamiltonian methods and iterative methods.

The Hamiltonian methods are basically eigenvector decomposition techniques. The

associated Hamiltonian matrix for (3.5.1), denoted by H ∈ R2n×2n is,

H :=

[
A BR−1B∗

−C∗C −A∗

]
. (3.5.2)

Let H be diagonalizable and have the eigendecomposition:

V −1HV =

(
−Λ 0

0 Λ

)
,

where Λ = diag(λ1, . . . , λn) and λ1, . . . , λn are the n eigenvalues of H with positive real

parts. Let V be partitioned conformably:

V =

[
V11 V12

V21 V22

]

such that

(
V11

V12

)
is the matrix of eigenvectors corresponding to the stable eigenvalues. In

[114], LQ-AREs were solved by computing the stable invariant eigenspace of the associated

Hamiltonian matrix (3.5.2), that is P = V21V
−1

11 is the unique stabilizing solution of (3.5.1).

It is also called the eigenvector method in literature. The method is numerically unstable

when the space spanned by the eigenvectors of (3.5.2) is not full, that is, when (3.5.2) is

not diagonalizable. The numerical difficulties of the eigenvector method may be reduced if

H is transformed to an ordered real Schur form rather than using its eigendecomposition.

Let UTHU be an ordered real Schur matrix:

UTHU =

(
T11 T12

0 T22

)
,

where the eigenvalues of H with negative real parts are stacked in T11 and positive real

parts are stacked in T22. Let

U =

(
U11 U12

U21 U22

)

30



be a conformable partition of U . Then, the matrix P = U21U
−1
11 is the unique stabilizing

solution of (3.5.1). Such a technique was suggested in [84] where the eigenvector calculation

is replaced with the calculation of Schur vectors U . The Schur algorithm can be numerically

unstable if the matrices involved in the computation are poorly scaled. This difficulty can

be overcome by proper scaling [75]. Thus for all practical purposes, the Schur method

when combined with an appropriate scaling, is numerically stable. This method may not

be suitable for large systems due to limitations on the calculation of eigenvectors for large

non-symmetric matrices. A structure preserving method for computing the stable invariant

subspace of the matrix pencils H − λI, was suggested in [16]. An iterative projection onto

the block Krylov subspace by computing the orthonormal basis was proposed in [66, 67]. A

general framework to define new low-rank approximations obtained from stable invariant

subspaces of the Hamiltonian matrix associated with large-scale systems was introduced

in [3]. In [119], the matrix sign function of the corresponding Hamiltonian (3.5.2),

sgn(H) = T

[
−I 0

0 I

]
T−1

where T ∈ R2n×2n, was computed using a scaled Newton iteration (see for instance

[31, 39, 94]). Then, this method computes the stable invariant subspace using projectors

(I − sgn(H)) calculated with this sign function. A library of parallel routines was devel-

oped for solving LQ problems involving systems of dimensions up to O(104) in [21]. The

algorithms involve computing the sign-function of the corresponding Hamiltonian matrices

which provides projectors onto certain subspaces of the matrix.

Two common iterative methods are Chandrasekhar [69] and Newton-Kleinman itera-

tions [78]. In Chandrasekhar iterations, the Riccati equation is not itself solved directly.

A system of 2 differential equations

K̇(t) = −BTLT (t)L(t), K(0) = 0, (3.5.3)

L̇(t) = L(t)(A−BK(t)), L(0) = C, (3.5.4)

is solved for K ∈ Rm×n, L ∈ Rp×n [32, 69]. Chandrasekhar systems have been used by

many researchers, for e.g., [11, 25, 26, 28, 104, 120]. This technique is attractive due to its

significant savings in storage when the number of controls m and number of observations
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p is less than the number of the states n. This situation occurs in the approximation of

partial differential equations. The feedback operator is obtained as limt→−∞K(t) and the

convergence can be very slow [11]. A strategy for approximating long-time behaviour of

(3.5.4) was used in [25, 26]. If this approach is used alone, a very accurate algorithm must

be used [120]. This can lead to very large computation times for large system and/or a

stiff system.

The Newton-Kleinman iteration proposed in [78], has been a favourite technique among

researchers, for e.g., [10, 18, 39, 47, 103].This technique involves the following iterative

scheme,

ATnΠn + ΠnAn + CTC +KT
nRKn = 0,

Kn+1 := R−1BTΠn, (3.5.5)

An+1 := A−BKn+1.

The first equation in (3.5.5) is a Lyapunov equation which is linear in nature and easier

to solve than the ARE (3.5.1). This iterative method (3.5.5) produces a sequence of sym-

metric matrices that converges to the solution of the Riccati equation. The local quadratic

convergence of lim
n→∞

Πn = Π was shown with an initial stabilizing matrix Π0 in [78]. Follow-

ing the standard Newton-Kleinman iterative scheme (3.5.5), an exact line-search method

to improve the convergence of Riccati solutions was suggested in [14]. The solution of

Lyapunov equations obtained by computing the matrix sign function was suggested in

[18]. The solutions to the linear quadratic optimal control problem for infinite-dimensional

systems was calculated using this method [55].

Instead of the standard Newton-Kleinman form (3.5.5), a modified Newton-Kleinman

iteration was first suggested in [11]:

(A−BKi)
TXi +Xi(A−BKi) = −DT

i Di, i = 1, 2, . . . , (3.5.6)

where Xi = Πi−1−Πi, Ki+1 = Ki−R−1BTXi and Di = Ki−Ki−1. The resulting Lyapunov

equation is solved for Xi. In [11], the partial solution obtained by solving Chandrasekhar

equations is used as a stabilizing initial feedback for (3.5.6). Following (3.5.6), a Cholesky-

ADI algorithm (e.g., [88, 111]) was used in [103, 104] that exploits features such as sparsity,
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symmetry and the fact that the number of inputs and outputs are small when compared

to the order of the system in many applications. If an inexact Newton-Kleinman method

is applied to calculate the solution of the resulting Lyapunov equation in (3.5.6), then the

residuals accumulate at the end of each iteration making this implementation unstable; see

[47, Section 7] for details.

Optimization Techniques

For the LQ cost criteria, the cost function is a norm on the solution of the ARE. Despite

being the minimal non-negative solution, ‖Π(r)‖ is non-convex with respect to the actuator

location r. The computation of optimal actuator locations (2.1.2) is an additional layer of

optimization. The location that corresponds to the minimal cost µ̂ is chosen as the optimal

actuator location. A number of approaches have been used in literature to minimize the

cost function over all possible actuator locations.

Genetic algorithm, a heuristic based global search, is a favorite approach among engi-

neers; see for e.g., [1, 68, 80, 109]. Its most attractive feature is that it does not need

derivatives or any auxiliary information about the function to be optimized. This makes

its application relatively easy. Such an algorithm may fail to find the best location and

is typically slow, e.g., [38]. Other heuristic procedures include simulated annealing [63],

tabu search [77] and guided neighbourhood search [118]. Standard search algorithms like

sequential quadratic programming [7], interior point methods [40] and gradient based op-

timization [46] have also been employed.

The non-convex LQ optimal actuator location problem was converted into a convex

problem by reformulating it as a discrete optimization on RN with N discrete set of possible

actuator locations in [51]. Once the problem is written in the convex form, it was further

relaxed and solved using a linear 0 − 1 mixed program. It was shown that a gradient

based optimization algorithm is much faster and is more accurate than genetic algorithm

in determining the global solution to this reformulated convex problem in [38].

In this chapter, the LQ optimal actuator location problem for systems modeled by par-

tial differential equations has been studied. Conditions that guarantee reliable solutions for
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the calculation of LQ optimal actuator location using approximations have been described.

Computation of LQ optimal actuator location has been discussed.
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Chapter 4

H∞-Optimal Actuator Locations :

Theoretical Framework

Noise in the environment and disturbances have a significant impact on the performance

of the controlled system. In fact, the effect of disturbance can nullify the control authority

of an actuator at a location which is considered optimal using some other performance

criterion [42]. In this chapter and the rest of this thesis, optimal actuator locations using

H∞-performance with state feedback is considered. That is both, the controller and the

actuator locations are chosen to minimize the effect of disturbances on the output.

A theoretical framework for calculating H∞-optimal actuator locations is developed

in this chapter. First, the H∞ control problem on an infinite-dimensional state space is

described. Next, continuity of H∞-performance with respect to actuator locations and

hence, existence of H∞-optimal actuator locations are proved. Approximations to systems

modeled by partial differential equations are used in H∞ controller design and thus in

selection of the actuator location. The issues associated with the use of approximations

in determining optimal actuator locations have not been extensively investigated. An

approximation theory that shows convergence of H∞ cost for fixed actuator locations [65]

is described next. This leads to the main result: conditions under which H∞-optimal

actuator locations calculated using approximations converge to the exact optimal locations.

An example is provided to illustrate that convergence may fail when these conditions are
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not satisfied.

4.1 H∞-Control of Infinite-Dimensional Systems

Consider the system described on a Hilbert space Z by

dz

dt
= Az(t) +Bu(t) +Dv(t), t ≥ 0 z(0) = z0 ∈ Z (4.1.1)

where A with D(A) generates a C0-semigroup S(t) on Z. Here, B ∈ L(U,Z), D ∈ L(W,Z).

It is assumed that U and W are separable Hilbert spaces. The signal u(·) ∈ L2(0,∞;U)

is the control input and v(·) ∈ L2(0,∞;W ) is the exogenous disturbance. Write U =

L2(0,∞;U) and W = L2(0,∞;W ) to denote the space of all admissible controls and

disturbances respectively. For a separable Hilbert space Y , for C ∈ L(Z, Y ), R ∈ L(U,U),

where R is coercive, define the cost

y(t) =

[
Cz(t)

R
1
2u(t)

]
, (4.1.2)

and the index

ρ(u, v; z0) = ‖y‖2
L2(0,∞;Y ) =

∫ ∞
0

‖Cz(t)‖2 + ‖R
1
2u(t)‖2dt. (4.1.3)

Systems of the form (4.1.1)-(4.1.2) will often be abbreviated (A, [B D], C). The system

(4.1.1)-(4.1.2) is a special form of the generalised plant configuration, known as the full

information problem.

The definition for fixed attenuation H∞ control problem for (4.1.1) - (4.1.2) is similar to

finite-dimensional systems (Definition 2.4.1) except now the system is infinite-dimensional.

Definition 4.1.1. If there is a δ > 0 such that for each disturbance v ∈ W , there exists a

control u ∈ U with

ρ(u, v; 0) ≤ (γ2 − δ) ‖ v ‖2
W , (4.1.4)

then the system (4.1.1) with (4.1.2) is said to be stabilizable with attenuation γ.
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As in the finite-dimensional case, if the problem (4.1.1)-(4.1.2) is stabilizable with

attenuation γ then this attenuation can be achieved with state feedback.

Definition 4.1.2. The state feedback K ∈ L(Z, U) is said to be γ - admissible if it is

stabilizing and the linear feedback u(t) = −Kz(t) is such that the attenuation bound

(4.1.4) is achieved.

Theorem 4.1.3. [23, 76] Assume that (A,B) is stabilizable and (A,C) is detectable. For

γ > 0 the following are equivalent:

(1) there exists a γ-admissible state feedback;

(2) the system is stabilizable with attenuation γ;

(3) there exists a non-negative, self-adjoint operator Σ on Z satisfying the H∞-Riccati

operator equation,

(A∗Σ + ΣA− ΣBR−1B∗Σ +
1

γ2
ΣDD∗Σ + C∗C)z = 0 (4.1.5)

for all z ∈ D(A), and A−BR−1B∗Σ+ 1
γ2
DD∗Σ generates an exponentially stable semigroup

on Z. Moreover, in this case a γ-admissible state feedback is given by K = R−1B∗Σ.

A question that naturally arises is the existence of a state feedback K ∈ L(Z, U) that

minimizes this attenuation level γ.

Definition 4.1.4. The optimal H∞-control problem for (4.1.1)-(4.1.2) is to calculate

γ̂ = inf γ (4.1.6)

over all K ∈ L(Z, U) such that the system (4.1.1)-(4.1.2) is stabilizable with attenuation

γ. The infimum γ̂ is called the optimal H∞-disturbance attenuation.

4.2 Well-posedness of H∞-Optimal Actuator Location

on a Hilbert Space

Consider the situation of placing m actuators and parametrize the input operator with

respect to the actuator location by B(r). The location that minimizes the optimal H∞-

disturbance attenuation is chosen as the actuator location.
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Definition 4.2.1. The optimal H∞-cost µ over all possible locations is defined as,

µ = inf
r∈Ωm

γ̂(r) (4.2.1)

Also, if it exists, the location r̂ ∈ Ωm that satisfies,

r̂ = arg inf
r∈Ωm

γ̂(r) (4.2.2)

is the H∞-optimal actuator location.

The value γ̂(r) provides the best possible attenuation of the disturbance that has the

worst effect on the output.

Continuity of the H∞-performance γ̂(r) with respect to actuator location will be proved

under the following assumptions:

(C1) The family of input operators B(r) ∈ L(U,Z), r ∈ Ωm are continuous functions of r

in the operator norm, that is for any r0 ∈ Ωm,

lim
r→r0

‖ B(r)−B(r0) ‖= 0. (4.2.3)

(C2) The family of pairs (A,B(r)), r ∈ Ωm, are stabilizable and the pair (A,C) is de-

tectable.

(C3) The input operators B(r) and the disturbance operator D are compact. Also, Ωm is

compact.

Assumption (C2) implies that the operator Riccati equation for linear quadratic control

of the system at some location r0 ∈ Ωm,

〈Az1,Π(r0)z2〉+ 〈Π(r0)z1, Az2〉+ 〈Cz1, Cz2〉 − 〈B∗(r0)Π(r0)z1, R
−1B∗(r0)Π(r0)z2〉 = 0,

(4.2.4)

has the unique non-negative, self-adjoint solution Π(r0) for all z1, z2 ∈ D(A) (Theorem

3.1.5). Let S0(t) be the exponentially stable semigroup generated byA−B(r0)R−1B∗(r0)Π(r0).
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For any given disturbance v ∈ W , define L(r0) ∈ L(W ,L2(0,∞;Z)) by

(L(r0)v)(t) =

∫ ∞
t

S∗0(τ − t)Π(r0)Dv(τ)dτ. (4.2.5)

Define zr0(·) as the state of the system (A, [B(r0) D], C). Before presenting the continuity

result and its proof a technical lemma is stated below. The details may be found in [23]

or [76, Thm. 4.4].

Lemma 4.2.2. Assume that the assumption (C2) holds for the system at some location

r0 ∈ Ωm. Then for every v ∈ W , z0 ∈ Z,

ur0(t) = −R−1B∗(r0)[Π(r0)zr0(t) + (L(r0)v)(t)] (4.2.6)

minimizes ρr0(u, v; z0) over u ∈ U subject to (4.1.1)-(4.1.2) at the location r0.

Proof. For v ∈ W and z0 ∈ Z, the index at the location r0 is

ρr0(u, v; z0) =

∫ ∞
0

〈Czr0(t), Czr0(t)〉+ 〈u(t), Ru(t)〉 dt. (4.2.7)

where zr0(·) is the state of the system (A, [B(r0) D], C). For this system, substituting

(4.2.4) and (4.2.5) and rearranging, the equation (4.2.7) becomes

ρr0(u, v; z0) = 〈z0,Π(r0)z0〉+ 2〈z0, (L(r0)v)(0)〉

+

∫ ∞
0

2〈Dv(t), (L(r0)v)(t)〉dt−
∫ ∞

0

‖R−1B∗(r0)(L(r0)v)(t)‖2dt

+

∫ ∞
0

‖u(t) +R−1B∗(r0)Π(r0)zr0(t) +R−1B∗(r0)(L(r)v)(t)‖2dt.

The details may be found in [23] or [76, Thm. 4.4]. Clearly, the control (4.2.6) minimizes

ρr0(u, v; z0) over u ∈ U subject to (4.1.1)-(4.1.2) at the location r0.

Theorem 4.2.3. Let (A, [B(r) D], C) be a family of systems such that assumptions (C1)-

(C3) are satisfied. Assume that the system at r0 is stabilizable with attenuation γ(r0) and

K(r0) ∈ L(Z, U) is γ(r0)-admissible. There is δ > 0 such that for all ‖r − r0‖ < δ the

systems (A, [B(r) D], C) are stabilizable with attenuation γ(r0). Furthermore, a sequence

of state feedback operators K(r) ∈ L(Z, U) can be chosen that are γ(r0)-admissible at r

and also K(r) is continuous at r0.
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Proof. This is based on the approach in [65, Thm. 2.5]. Consider a sequence {r} that

converges to a point r0. The proof has several parts. First, it is shown that the system

at r is stabilizable with attenuation γ(r0) and a sequence of state feedback operators

K(r) ∈ L(Z, U) can be chosen that are γ(r0)-admissible at r. Then, it is proven that the

H∞-Riccati operator at r converges strongly to r0 and finally, it is shown that the sequence

of state feedback operators K(r) is continuous at r0.

Since the problem at r0 is stabilizable with attenuation γ(r0), it follows from Theorem

4.1.3 that the H∞-Riccati operator equation (4.1.5) for the system at r0 has a self-adjoint

non-negative solution Σ(r0) on Z. It can be written [23, 76]

Σ(r0)z = Π(r0)z +

∫ ∞
0

S∗0(t)Π(r0)Dvr0(t)dt, (4.2.8)

where vr0 ∈ W is the unique solution of

Q(r0)vr0(·)−D∗Π(r0)S0(·)z = 0 (4.2.9)

where

Q(r0) = γ2(r0)I −D∗L(r0)− L∗(r0)D + L∗(r0)B(r0)B∗(r0)L(r0) (4.2.10)

is both self-adjoint and coercive. The optimal control ur0 ∈ U is of feedback form:

ur0(t) = −R−1B∗(r0)Σ(r0)z(t). (4.2.11)

Choose K = R−1B∗(r0)Σ(r0) so that A−B(r0)K generates an exponentially stable semi-

group SK,r0(t) with bound Me−αt, where α > 0. Let δ be such that A− B(r)K generates

an exponentially stable semigroup with bound Me−
α
2
t for all ‖B(r) − B(r0)‖ < δ. There

is ε > 0 such that for all ‖r − r0‖ < ε , ‖B(r) − B(r0)‖ < δ. Thus, there is a sequence

of uniformly exponentially stabilizable systems (A,B(r)). It follows from Theorem 3.1.5

that at each r ∈ Ωm, the LQR Riccati equation has a non-negative, self-adjoint solution

Π(r) and A− B(r)R−1B∗(r)Π(r) generates an exponentially stable semigroup Sr(t). The

sequence (A,B(r)) with r → r0 satisfies the assumptions of Theorem 3.2.1 and hence

lim
r→r0
‖Π(r)− Π(r0)‖ = 0.
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Furthermore, the semigroups Sr(t) are uniformly exponentially stable: there exists M ≥ 1,

α > 0 such that ‖Sr(t)‖ ≤ Me−αt. Defining K̃(r0) := R−1B∗(r0)Π(r0) and K̃(r) :=

R−1B∗(r)Π(r) it follows that ‖K̃(r) − K̃(r0)‖ → 0 as r → r0. Since B(r)K̃(r) converges

in norm to B(r0)K̃(r0), the adjoint operators also converge and so

Sr(t)z → S0(t)z, S∗r (t)z → S∗0(t)z (4.2.12)

for all z ∈ Z, uniformly on bounded intervals of time. Since D is a compact operator,

‖S∗r (t)Π(r)D − S∗0(t)Π(r0)D‖ → 0 converges uniformly on bounded intervals of time. For

τ > 0 and p ∈ [1,∞),∫ ∞
0

‖S∗r (t)Π(r)D − S∗0(t)Π(r0)D‖pdt

≤
∫ τ

0

‖S∗r (t)Π(r)D − S∗0(t)Π(r0)D‖pdt

+

∫ ∞
τ

(‖S∗r (t)‖p‖Π(r)‖p + ‖S∗0(t)‖p‖Π(r0)‖p) ‖D‖pdt.

For all p ∈ [1,∞), it follows from (4.2.12) and uniform exponential stability of Sr(t)

that ∫ ∞
0

‖S∗r (t)Π(r)D − S∗0(t)Π(r0)D‖pdt→ 0 (4.2.13)

as r → r0. Define the linear operator L(r) on W for the problem at r that corresponds to

(4.2.5). It follows that

‖ ((L(r)− L(r0))v) (t)‖2 ≤
(∫ ∞

0

‖(S∗r (t)Π(r)− S∗0(t)Π(r0))D‖dt
)2

‖v‖2
W (4.2.14)

for any v ∈ W . It follows from (4.2.13) that

lim
r→r0
‖L(r)− L(r0)‖ = 0. (4.2.15)

From Lemma 4.2.2,

ur(t) = −R−1B∗(r)[Π(r)zr(t) + (L(r)v)(t)] (4.2.16)

41



minimizes ρr(u, v; z0) over u ∈ U subject to (4.1.1)-(4.1.2) at the location r, where zr(·) is

the state of (4.1.1)-(4.1.2) at r . Then, with initial condition z0 = 0,

zr(t) =

∫ t

0

Sr(t− s)
(
−B(r)R−1B∗(r)(L(r)v)(s) +Dv(s)

)
ds, (4.2.17)

zr0(t) =

∫ t

0

S0(t− s)
(
−B(r0)R−1B∗(r0)(L(r0)v)(s) +Dv(s)

)
ds. (4.2.18)

Since B(r), B(r0) and D are compact, it follows that

‖ zr − zr0 ‖2
L2(0,∞;Z) ≤ ε21 ‖ v ‖2

W , ‖ ur − ur0 ‖2
U ≤ ε22 ‖ v ‖2

W ,

where ε1, ε2 → 0 as r → r0. Since C ∈ L(Z, Y ) and R is coercive it follows that

| ρr(ur, v; 0)− ρr0(ur0 , v; 0) | ≤ ε2 ‖ v ‖2
W , (4.2.19)

where ε→ 0 as r → r0. Since the system at r0 is stabilizable with attenuation γ(r0) there

is δ1 > 0 so that

ρr0(ur0 , v; 0) ≤ (γ2(r0)− δ1)‖v‖2
W . (4.2.20)

Choosing ε sufficiently small, there is δ so that for all ‖r − r0‖ < δ, the system at r has

attenuation γ(r) where

γ(r) ≤ γ(r0). (4.2.21)

It follows from Theorem 4.1.3 that there exists a state feedback K(r) = R−1B∗(r)Σ(r)

which is γ(r0)-admissible at r, where Σ(r) is the self-adjoint non-negative solution (4.2.8)

to theH∞-Riccati operator equation (4.1.5) for the system at r. The disturbance vr(·) ∈ W
is the unique solution of (4.2.9) at r. Define the linear operator Q(r) ∈ W for the problem

at r with attenuation γ(r0) that corresponds to (4.2.10). Clearly,

‖Q(r)−Q(r0)‖ → 0 (4.2.22)

as r → r0. Also, (4.2.13) implies that∫ ∞
0

‖D∗Π(r)Sr(t)−D∗Π(r0)Sr0(t)‖2dt→ 0 (4.2.23)
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as r → r0. Therefore, the solution to (4.2.9) at r satisfies

‖vr‖W ≤M1‖z‖Z , (4.2.24)

for some constant M1. Note that

Q(r0)(vr − vr0) = (Q(r0)−Q(r))vr + (D∗Π(r)Sr(t)−D∗Π(r0)Sr0(t))z. (4.2.25)

It follows from (4.2.22)-(4.2.24) that vr converges strongly to vr0 in W as r → r0. It now

follows from (4.2.8) and (4.2.13) that

‖Σ(r)z − Σ(r0)z‖ → 0 (4.2.26)

as r → r0.

Thus,

‖K(r)−K(r0)‖ = ‖R−1B∗(r)Σ(r)−R−1B∗(r0)Σ(r0)‖
≤ ‖R−1‖‖(Σ(r)− Σ(r0))B(r)‖+ ‖R−1‖‖Σ(r0)‖‖B(r)−B(r0)‖.

Since B(r) is compact and Σ(r) converges strongly to Σ(r0), it follows from (C1) that K(r)

converges uniformly to K(r0).

Theorem 4.2.4. Consider a family of control systems (A, [B(r) D], C) such that the

assumptions (C1) - (C3) are satisfied. Then

lim
r→r0

γ̂(r) = γ̂(r0), (4.2.27)

where γ̂(r0) is the optimal disturbance attenuation at r0 and there exists an optimal actu-

ator location r̂ such that

γ̂(r̂) = inf
r∈Ωm

γ̂(r) = µ.

Proof. A similar argument may be found in [65, Thm. 2.8]. Consider any sequence {rn}
that converges to r0. Theorem 4.2.3 implies

lim sup
n→∞

γ̂(rn) ≤ γ̂(r0). (4.2.28)
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Because of (4.2.28), it is sufficient to show that

lim inf
n→∞

γ̂(rn) ≥ γ̂(r0). (4.2.29)

Assume that this statement is false. Then there is an δ > 0 such that for all n there is

p > n with γ̂(rp) ≤ γ̂(r0) − δ. In this way a subsequence {rp} of the sequence {rn} is

constructed with γ̂(rp) ≤ γ̂(r0)− δ. Thus, the system at rp is stabilizable with attenuation

γ̂(r0)− δ
2

and

ρrp(urp , v; 0) ≤
(
γ̂(r0)− δ

2

)2

‖v‖2
W (4.2.30)

where v ∈ W , urp(t) is defined by (4.2.16) at the location rp. Moreover, from (4.2.19)

|ρrp(urp , v; 0)− ρr0(ur0 , v; 0)| ≤ ε2 ‖v‖2
W , (4.2.31)

where ε → 0 as rp → r0 and ur0(t) is given by (4.2.6). Therefore, the problem at r0 is

stabilizable with attenuation γ̂(r0)− δ
2
. This contradicts the optimality of γ̂(r0) and thus

(4.2.29) holds. Hence (4.2.27) holds. This shows that γ̂(r) is a continuous function of r on

Ωm. Since Ωm is compact, an optimal actuator location exists.

4.3 Approximating Solutions

In practice, the operator equation (4.1.5) cannot be solved and the control is calculated

using an approximation. Let ZN be a family of finite-dimensional subspaces of Z and

PN the orthogonal projection of Z onto ZN . The space ZN is equipped with the norm

inherited from Z. Consider a sequence of operators AN ∈ L(ZN ,ZN), BN ∈ L(U,ZN),

DN ∈ L(W,ZN), and CN = C|ZN . The same assumptions (A1)-(A3) (Section 3.3) on the

approximation scheme as for the linear quadratic control problem are used except (A3), is

replaced by the following assumption that includes convergence of DN .

(A3’) Convergence of operators B,C and D: The approximating sequence of input and

disturbance operators converge in norm

lim
N→∞

‖BN −B‖ = 0, lim
N→∞

‖DN −D‖ = 0, (4.3.1)
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and for each z ∈ Z, y ∈ Y ,

‖CNPNz − Cz‖ → 0 and ‖(CN)∗y − C∗y‖ → 0.

Since the approximating spaces ZN are finite-dimensional, BN and DN are finite-rank

operators. Thus (4.3.1) holds only if the operators B and D are compact [130]. The

assumption (A3’) is automatically satisfied if the definitions BN = PNB,DN = PND and

CN = C|ZN are used.

Theorem 4.3.1. Assume that (A,B) is stabilizable and (A,C) is detectable, and (A1)-

(A2) and (A3’) hold. If the original system is stabilizable with attenuation γ, then so are

the approximating systems for sufficiently large N . For such N , the Riccati equation

(AN)∗ΣN + ΣNAN − ΣNBNR−1(BN)∗ΣN +
1

γ2
ΣNDN(DN)∗ΣN + (CN)∗CN = 0 (4.3.2)

has a non-negative, self-adjoint solution ΣN and ΣNPNz → Σz strongly in Z as N →∞.

Moreover, KN = R−1(BN)∗ΣN converges to K = R−1B∗Σ in norm. For N sufficiently

large, KN is γ-admissible for the original system.

Proof. This follows from [65, Thm. 2.5, Cor. 2.6] with the extension of BN = PNB and

DN = PND to more general approximations.

This implies that the corresponding finite-dimensional controls converge to that ob-

tained with the infinite-dimensional solution and yield a performance which is arbitrarily

close to the original model for the given fixed attenuation. Let {γ̂N} indicate the optimal

disturbance attenuation for the approximating problems.

Theorem 4.3.2. Assume that (A1)-(A2), (A3’) hold, (A,B) is stabilizable, and (A,C) is

detectable. Then

lim
N→∞

γ̂N = γ̂. (4.3.3)

Proof. This follows from Theorem 4.3.1 and [65, Thm. 2.8] with the extension of BN =

PNB and DN = PND to more general approximations.
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This implies that the optimal H∞-disturbance attenuation of the approximating sys-

tems converge to the correct value of the original model for fixed actuator locations. In

the next section, convergence of H∞-optimal actuator locations is proven.

4.4 Convergence of H∞-optimal actuator locations

For the sequence of approximating problems (AN , [BN(r) DN ], CN) parameterized by the

actuator location define, analogously to γ̂(r) and µ, γ̂N(r) and µN . Theorems 4.2.3 and

4.2.4 apply to these finite-dimensional problems. Since the operators BN(r) and DN have

finite rank, the H∞-performance γ̂N(r) is continuous with respect to r and the optimal

performance µN is well-defined. The optimal cost and the corresponding actuator locations

for the approximating problems converge to the exact cost and optimal actuator locations.

Any approximation method satisfying assumptions (A1)-(A2) and (A3’) will not only

guarantee convergence of optimal attenuation for fixed actuator locations but also will lead

to a convergent sequence of H∞-optimal actuator locations.

Theorem 4.4.1. Let (A, [B(r) D], C) be a family of control systems depending on actuator

location such that assumptions (C1) - (C3) are satisfied. Choose some approximation

scheme such that assumptions (A1) - (A2) are satisfied for each (AN , [BN(r) DN ], CN)

where BN = PNB,DN = PND,CN = C|ZN . Letting r̂ be an optimal actuator location

for (A, [B(r) D], C) with optimal cost µ and defining similarly r̂N , µN , it follows that

µ = lim
N→∞

µN ,

and there exists a subsequence {r̂M} of {r̂N} such that

µ = lim
M→∞

γ̂(r̂M).

Proof. A similar proof for the convergence of linear quadratic optimal actuator locations
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may be found in [97].

µN = inf
r∈Ωm

γ̂N(r)

≤ γ̂N(r̂)

= γ̂N(r̂)− γ̂(r̂) + γ̂(r̂)

= γ̂N(r̂)− γ̂(r̂) + µ.

Since lim
N→∞

γ̂N(r̂) = γ̂(r̂) (Theorem 4.3.2),

lim supµN ≤ µ. (4.4.1)

It remains only to show that

lim inf µN ≥ µ. (4.4.2)

To this end, choose a subsequence µM → lim inf µN , with corresponding actuator locations

r̂M . Since {r̂M} ⊂ Ωm, it has a convergent subsequence, also denoted by r̂M , with limit r.

Now,

‖BM(r̂M)−B(r)‖ = ‖PMB(r̂M)−B(r)‖
≤ ‖PMB(r̂M)− PMB(r)‖+ ‖PMB(r)−B(r)‖
≤ ‖PM‖‖B(r̂M)−B(r)‖+ ‖PMB(r)−B(r)‖.

Thus, ‖ BM(r̂M) − B(r) ‖→ 0. By assumption (A2)(i), there is a uniformly bounded

sequence KM
r ∈ L(Z, U) such that AM − BM(r)KM

r generate semigroups bounded by

M1e
−ω1t for some M1 ≥ 1, ω1 > 0. For some ε < ω1

M1‖KM
r ‖

, choose N large enough such that

‖ BM(r̂M)−BM(r) ‖< ε for M > N . Then for all M > N , AM−BM(r̂M)KM
r generates an

exponentially stable C0-semigroup with bound M1e
(−ω1+εM1‖KM

r ‖). Applying then Theorem

4.3.2 to the sequence (AM , [BM(r̂M) DM ], CM), it follows that γ̂M(r̂M)→ γ̂(r). Thus,

lim inf µN = lim
M→∞

µM

= lim
M→∞

γ̂M(r̂M)

= γ̂(r)

≥ µ.

(4.4.3)
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Thus, lim inf µN ≥ µ and so limµN = µ as required.

Since µ = limµN = lim inf µN , (4.4.3) implies that

µ = lim inf µN

= γ̂(r)

= lim
M→∞

γ̂(r̂M).

(4.4.4)

where the latter equality follows from continuity of H∞ performance with respect to ac-

tuator location (Theorem 4.2.4). Thus, as was to be shown, a sequence of approximating

actuator locations yield performance arbitrarily close to optimal.

This result shows that the problem of calculating an optimal actuator location for H∞-

cost using approximation yields reliable results. The following example illustrates this

result.

Example 4.4.2. Consider a simply supported Euler-Bernoulli beam and let w(x, t) denote

the deflection of the beam from its rigid body motion at time t and position x. The

deflection is controlled by applying a force u(t) around the point r with width ε. The

exogenous disturbance v(t) induces a distributed load d(x)v(t) where d(x) ∈ C(0, 1). If

the variables are normalized and a viscous damping with parameter ξ is included, the

following partial differential equation is obtained

∂2w

∂t2
+ ξ

∂w

∂t
+
∂4w

∂x4
= br(x)u(t) + d(x)v(t), t ≥ 0, 0 < x < 1, (4.4.5)

br(x) =

{
1
ε
, |r − x| < ε

2

0, |r − x| ≥ ε
2
.

The boundary conditions are

w(0, t) = 0, w′′(0, t) = 0, w(1, t) = 0, w′′(1, t) = 0. (4.4.6)

where ′ denotes a derivative with respect to space. In the computer simulations, the

parameters were set to ξ = 0.1, ε = 0.001. Let

H2(0, 1) = {w ∈ C1(0, 1) | w′(x) is absolutely continuous and w′′(x) ∈ L2(0, 1)}, (4.4.7)

48



Figure 4.1: Convergence of H∞-performance and corresponding optimal actuator location

for different approximations of the viscously damped beam with C = I, R = 1, d = b0.7.

The optimal H∞ cost µN and the corresponding actuator location r̂N are shown with

respect to different approximation size (number of eigenmodes N)
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Hs(0, 1) = {w ∈ H2(0, 1), w(0) = 0, w(1) = 0}, (4.4.8)

and define the state space Z = Hs(0, 1) × L2(0, 1) with state z(t) = (w(·, t), ∂
∂t
w(·, t)). A

state space formulation of the above partial differential equation problem is

d

dt
z(t) = Az(t) +B(r)u(t) +Dv(t), (4.4.9)

where

A =

[
0 I

− d4

dx4
−ξI

]
, B(r) =

[
0

br(·)

]
, D =

[
0

d(·)

]
, (4.4.10)

with domain

D(A) = {(φ, ψ) ∈ Hs(0, 1)×Hs(0, 1) with φ′′ ∈ Hs(0, 1)}.

It is well-known that A with domain D(A) generates an exponentially stable semigroup

on Z [37]. Since there is only one control, choose control weight R = 1. An obvious choice
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of measurement is C = I. Consider the disturbance d = b0.7 centered at r = 0.7 with

width ε = 0.001. Since only one pair of actuator and disturbance is used, both B(r) and

D are finite-rank operators, and hence compact. Therefore, the corresponding H∞-control

with full-information problem satisfies the assumptions of Theorem 4.2.4. Hence, the cost

γ̂(r) depends continuously on the actuator location and there exists an optimal actuator

location. Since a closed form solution to the partial differential equation problem is not

available, the optimal actuator location must be calculated using an approximation. Let

φi(x) indicate the eigenfunctions of ∂4w
∂x4

with boundary conditions (4.4.6). For any positive

integer N , define ZN to be the span of φi, i = 1...N . Choose ZN = ZN × ZN and define

PN to be the projection onto ZN . Define AN to be the Galerkin approximation to A,

BN := PNB and DN := PND. This approximation scheme satisfies all the assumptions

of Theorem 4.4.1 [99] and hence, convergence of the approximating optimal performance

and the actuator locations is obtained. This is illustrated in Figures 4.1a and 4.1b.

If D is not a compact operator then neither the optimal cost nor the corresponding

actuator locations for approximating problem may converge. Even optimal attenuation for

fixed actuator locations may not converge as shown in the following example.

Example 4.4.3. Consider the same example as before, except that now, the effect of worst

disturbance on the entire state is minimized and D = I is chosen in (4.4.9). Now D is

not a compact operator. As shown in Figures 4.2a and 4.2b, neither optimal cost nor the

optimal actuator location converges. In fact, the optimal attenuation does not converge

even at a fixed actuator location, say for example at r = 0.5, as the approximation size

increases. This is illustrated in Figure 4.3.

In the case of linear-quadratic optimal control, the actuator location is chosen to min-

imize ‖Π‖ or trace Π where Π is the solution to the LQ algebraic Riccati equation. Com-

pactness of the measurement operator C is required to guarantee optimality of LQ-optimal

actuator locations; see [97] for details. This is because uniform convergence of the LQ Ric-

cati operators is required to prove convergence of LQ-optimal actuator locations (Theorem

3.4.1). However, in the case ofH∞-performance strong convergence ofH∞-Riccati operator

is enough to ensure convergence of H∞-optimal actuator locations.
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Figure 4.2: Neither H∞-performance nor corresponding optimal actuator location converge

for different approximations of the viscously damped beam with C = I, R = 1, D = I
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(b) Optimal actuator location
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Figure 4.3: Performance γ̂ at actuator location r = 0.5 for different approximations of the

viscously damped beam with C = I, R = 1, D = I
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A theoretical framework for calculating optimal actuator locations using H∞ crite-

rion for the full partial differential equation model has been described in this chapter.
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Conditions that guarantee reliable calculation of H∞-optimal actuator location using ap-

proximations have been obtained.
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Chapter 5

Numerical Calculation of H∞-Control

for Large-Scale Systems

Systems of large model order arise in a number of situations; including approximation

of partial differential equation models. There is not a generally accepted algorithm that

is suitable for solving large H∞-algebraic Riccati equations. Furthermore, when finite-

elements are used, the approximation is naturally written in a regular descriptor form.

Many other important applications, such as electrical power systems and computer com-

munication systems, lead to large-scale systems in descriptor form. In this form, the

associated matrices are typically sparse and symmetric. The naive way of handling such

systems is to explicitly convert the descriptor form into the standard form. From a theoret-

ical point of view, this strategy solves the problem. On the other hand, from a numerical

perspective this approach destroys the sparsity of the problem and thus creates computa-

tional difficulties for large-scale applications. It is desirable to preserve the sparse structure

of the given descriptor form by avoiding explicit conversion into standard form.

In this chapter, a number of algorithms for computing a controller that achieves a

given H∞-attenuation are discussed. These algorithms are also used for the calculation of

optimal H∞-attenuation and a controller whose performance is close to the optimal. An

extension of a game-theoretic iterative algorithm [82] to solve the H∞-AREs for large reg-

ular descriptor systems is presented. A parallel implementation of the extended algorithm
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is briefly described. The proposed method is compared to other methods using several

examples arising in control of systems modeled by partial differential equations.

5.1 H∞-Control for Descriptor Systems on Rn

Consider the generalized linear system on Rn

Eż = Az +Bu+Dv, z(0) = z0 ∈ Rn, (5.1.1)

y = Cz +D12u, (5.1.2)

where the matrices A,B,C,D,D12 are as described in Section 2.4. It is assumed that the

mass matrix E ∈ Rn×n is non-singular, that is (5.1.1) is a regular descriptor system. Ap-

proximating partial differential equations with finite element methods yield large descriptor

systems where a mass matrix E is included in the description.

Definition 5.1.1. [54] The set of all matrices of the form A−λE with λ ∈ C is said to be

a matrix pencil. The eigenvalues of the pencil are elements of the set λ(A,E) defined by

λ(A,E) = {z ∈ C| det (A− zE) = 0}.

Definition 5.1.2. The matrix pair (A,E) is Hurwitz, if max1≤i≤n Re(λi) < 0, where

λi ∈ λ(A,E), i = 1, . . . , n are the eigenvalues of the pencil A− λE.

Definition 5.1.3. [94] Let (E,A,B) be a matrix triple as in (5.1.1). Then the descriptor

system (5.1.1) is stabilizable if there exists K ∈ Rm×n such that the matrix pair (A−BK,E)

is Hurwitz.

Definition 5.1.4. [94] Let (E,A,C) be a matrix triple as in (5.1.1)-(5.1.2). Then the

descriptor system (5.1.1)-(5.1.2) is detectable if there exists F ∈ Rn×p such that the matrix

pair (A− FC,E) is Hurwitz.

Definition 5.1.5. Let λ be an eigenvalue of the matrix pencil (A,E). Then, the mode λ

is said to be controllable (observable) for the matrix triple (E,A,B) ((E,A,C)) if zTB 6= 0

(Cz 6= 0) for all left (right) generalized eigenvectors of the matrix pair (A,E) associated

with λ, that is zTA = λzTE (Az = λEz) and 0 6= z ∈ Rn. Otherwise, the mode λ is said

to be uncontrollable (unobservable).
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Since E is non-singular the above definitions are equivalent to those for standard sys-

tems (AE−1, B, CE−1), see e.g. [102].

The definitions for fixed-attenuationH∞-control problem and optimalH∞ control prob-

lem for (5.1.1)-(5.1.2) are similar to the standard systems (Definitions 2.4.1 and 2.4.3)

except now Gyv is calculated without converting descriptor form into standard form. The

following theorem is a straight-forward generalization of the result for standard systems

(Theorem 2.4.2) to regular descriptor systems.

Theorem 5.1.6. Assume that the matrix triple (E,A,B) is stabilizable and (E,A,C) is

detectable. For some given attenuation γ > 0, the fixed-attenuation H∞-control problem

for (5.1.1)-(5.1.2) is solvable if and only if there exists a symmetric, non-negative solution

denoted by P ≥ 0, that satisfies the H∞-ARE

ATPE + ETPA− ETP (BBT − 1

γ2
DDT )PE + CTC = 0, (5.1.3)

such that the pair (A+ ( 1
γ2
DDT −BBT )PE,E) is Hurwitz. If so, one such control is

u = −Kz, where K := BTPE, (5.1.4)

and also the pair (A−BK,E) is Hurwitz.

Proof. Let x = Ez. The descriptor system (5.1.1)-(5.1.2) is converted into the standard

state space form

ẋ = AE−1x+Bu+Dv, x(0) := x0 = Ez0 (5.1.5)

y = CE−1x+D12u. (5.1.6)

Solving the H∞-control problem for the descriptor system (5.1.1)-(5.1.2) is equivalent to

solving it for the standard system (5.1.5)-(5.1.6). It follows from Theorem 2.4.2 that there

exists a stabilizing controller for (5.1.5)-(5.1.6) if and only if there exists a symmetric,

non-negative solution P ≥ 0, that satisfies

(AE−1)TP + P (AE−1)− P (BBT − 1

γ2
DDT )P + (CE−1)T (CE−1) = 0, (5.1.7)
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such that the matrix AE−1 + ( 1
γ2
DDT − BBT )P is Hurwitz and one such control is u =

−Kx, where K := BTP , and also the matrix AE−1−BK is Hurwitz. The result follows for

the descriptor system (5.1.1)-(5.1.2) when both the sides of equation (5.1.7) is multiplied

by ET on the left and E on the right.

Except for a few special classes of systems, e.g. [33], calculation of optimal H∞-

attenuation is accomplished by an iterative bisection method [113, 121, 122]. As γ ap-

proaches γ̂, the calculation of an accurate solution to the H∞-ARE often becomes difficult;

see Section 5.4 for details.

5.2 Review of Existing Numerical Methods

In this section, some numerical methods to calculate H∞-controllers for both fixed and

optimal attenuation are reviewed.

Invariant subspace of Hamiltonian

This approach for solving H∞-Riccati equations is identical to a popular approach for

solving LQ-AREs (see Section 3.5). The associated Hamiltonian matrix for the standard

system (2.4.1) for γ > 0 denoted by H ∈ R2n×2n is

H :=

[
A B̃R−1B̃T

−CTC −AT

]
, (5.2.1)

where

B̃ :=
[
D B

]
R :=

[
−γ2Iq 0

0 Im

]
. (5.2.2)

It is assumed that the pair (A,B) is stabilizable and the Hamiltonian matrix H does not

have eigenvalues on the imaginary axis. These assumptions guarantee one-to-one corre-

spondence between the stable invariant subspaces of H and the solutions to ARE (2.4.11)

[81]. Therefore, these assumptions are required for the accurate calculation of a unique

solution to (2.4.11).
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An algorithm for solving the Riccati equations by computing the stable invariant sub-

space spanned by Schur vectors (see Section 3.5) of the associated Hamiltonian matrix H

was proposed in [84]. However, the Schur algorithm can be numerically unstable if the

matrices involved in the computation are poorly scaled. This difficulty can be overcome

by proper scaling [75]. The Schur method when combined with an appropriate scaling, is

numerically stable.

This method was extended to descriptor systems (5.1.1)-(5.1.2) in [8], where the solution

of (5.1.3) is calculated by computing the stable invariant subspace spanned by Schur vectors

of the extended Hamiltonian matrix pencil H − λJ, λ ∈ C, H, J ∈ R(2n+m+q)×(2n+m+q),

where

H :=

 A 0 B̃

−CTC −AT 0

0 B̃T R

 , J :=

E 0 0

0 ET 0

0 0 0

 . (5.2.3)

This method as implemented in [22, 35] is good for small and medium scale linear quadratic

control problems but not suitable for most large-scale systems due to the difficulties in-

volved in calculating Schur vectors for large matrices.

The matrix sign function method introduced in [119] (see Section 3.5) can also be

used to solve AREs with a sign indefinite quadratic term. In this method, the matrix

sign function of the corresponding Hamiltonian (5.2.1) is first computed iteratively using

a scaled Newton iteration (see [31, 39, 94]). The sign function provides projectors onto

the stable invariant subspace of the corresponding Hamiltonian. The solution to H∞-ARE

(2.4.11) is calculated using these projectors.

The size of the matrices involved in these methods are twice the order n of the system.

The Schur method requires 240n3 floating point operations (flops) of which 25(2n3) flops

are required to reduce a 2n × 2n Hamiltonian matrix to its real Schur form and the rest

accounts for the computation of eigenvalues and solving a linear equation of order n.

The optimal H∞ attenuation is calculated using a bisection algorithm where a H∞-

ARE is solved for a fixed attenuation at every iteration using the above method. As γ

approaches the optimal attenuation, the eigenvalues of the corresponding Hamiltonian tend

to the imaginary axis. The rounding errors made while calculating eigenvalues may destroy
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the uniqueness of the stable invariant subspace causing the Riccati solver to fail (Example

5.6.2). In such case, the accuracy of the solution P to H∞-ARE (5.1.3) is determined by

calculating the normalized residual norm given by

NRN(P ) =
‖ATPE + ETPA− ETP (BBT − 1

γ2
DDT )PE + CTC‖F

‖CTC‖F
. (5.2.4)

where ‖.‖F is the Frobenius norm. Both Schur and matrix sign function methods rely on

calculating the stable-invariant subspaces. Problems can arise for cases when the Hamilto-

nian has eigenvalues near the imaginary axis (Example 5.6.1). This occurs for some lightly

damped second-order systems (Example 5.6.4).

An iterative method for the calculation of optimal attenuation of a general linear sys-

tem given in the standard state space form was suggested in [17]. This method uses an

embedding of the Hamiltonian matrices and avoids calculating explicit solutions to Riccati

equations. This methodology involves a structure-preserving method for extracting the

stable subspace of the embedded Hamiltonian, which is very expensive to calculate for

large matrices (1280n3 flops [16]). Additionally, the symplectic QR and CS decomposition

techniques employed in this method require 8n3 flops each. Thus, the overall complexity of

this algorithm is quite high. An algorithm to calculate the CS decomposition used in [17,

lemma 4.2] is neither described in this paper nor in the references. This iterative method

was later extended to descriptor systems in [91] but the H∞-optimal controller formulas for

descriptor systems are not given. Therefore, this method was not tested on the examples

below.

Convex method

A convex approach to calculate optimal H∞-attenuation for the standard systems without

using bisection, was proposed in [112]. The descriptor system given by (5.1.1)-(5.1.2)

should be converted to the standard form (2.4.1) before applying this method. The set of

all stabilizing controllers that guarantee a fixed attenuation is defined as a convex set on

a suitable parameter space. Additional assumptions such as full-rank of a certain matrix,

restriction on the dimension of the disturbance with respect to rank of the outputdesc
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matrix C and order of the system n are required to reformulate the calculation of optimal

attenuation as a convex problem. See [112, Thm. 3.4] for details.

Figure 5.1: Variation of µM as the order increases. Optimizer : µ∗(= 0.01) << µM
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Once the problem is reformulated, many standard routines may be used. A possibility is

to use the best approximation for the convex set following Kelley’s cutting plane technique

[92]. In this globally convergent technique, a convex problem is solved at each iteration. If

the solution does not belong to this convex set, then a separating hyperplane between that

point and the convex set is calculated. This technique shows exceedingly poor convergence

[92, 126]. Cutting plane techniques require calculation of eigenvalues and eigenvectors

which is expensive for large-scale systems.

A key hypothesis of this method is that the perturbations v should be rich in the sense

that

dim (v) ≥ n− rank (C).

However, the assumptions in this algorithm are not generally satisfied by control problems

where the model is a partial differential equation since the number of states is typically

much larger than the number of disturbances.
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Also, the complexity of the calculations is quite high. For large approximation order,

re-writing optimal H∞-attenuation as a convex problem on a suitable parameter space

results in O(n2) unknowns. At each iteration, the calculation of separating hyperplane

requires 59n3 flops. Since the number of unknown variables are n(n + 1)/2, the overall

complexity of solving the convex problem at each iteration is O(n6) flops. Consider the

eigenvalue approximation of heat diffusion problem on a one-dimensional rod of unit length

with an actuator placed at the centre, a disturbance collocated with the actuator and the

observation C =
√

1000I. Larger the numerical value of

µM = min{µ > 0 : det(V ∗V − µR)},

where

V := (D∗D)−1D∗
[
A −B

]
,R :=

[
CTC 0

0 DT
12D12

]
,

larger is the number of iterations required to achieve the best approximation to the convex

set using cutting-plane method and hence, this technique is slower. The width of the

optimization interval [0, µM ] explodes with the order of the approximation, see Figure 5.1.

The optimal attenuation for this problem is γ̂ = 1
µ∗

= 9.9. However, the value of µM was

much greater than the optimizer µ∗ = 0.01, even for systems of moderate size. Therefore,

the number of iterations required to find the best approximation for the convex set grew

exponentially with respect to the order of the system. Thus, it is difficult to extend this

method to problems of large model order.

Non-linear optimization

In [27], a public domain package forH∞-optimization, HIFOO, is introduced. The acronym

HIFOO stands for H∞ Fixed-Order Optimization. This method treats the H∞-norm of

the closed-loop system as a non-linear function with respect to the controller coefficients,

which are the vector components of state feedback K. This non-linear optimization-based

method neither solves Riccati equations nor Riccati inequalities. HIFOO does not have

any restrictions on plant nor controller such as nullity or full-rank conditions.
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Figure 5.2: Closed-loop attenuation achieved with the controller obtained from HIFOO for

γ = 10 for different orders of approximation of (4.4.5)
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HIFOO uses two phases: stabilization and performance optimization. In the stabi-

lization phase, HIFOO uses a quasi-Newton method (BFGS) to minimize the largest real

part of eigenvalues of the closed loop system matrix. In the performance optimization

phase, a local minimizer of the H∞-norm of the closed loop system matrix is found using

line-search methods, see [95, Appendix] for details. In both these stages, HIFOO uses a

hybrid algorithm for nonsmooth, nonconvex optimization (HANSO) based on the following

techniques: a quasi-Newton algorithm (BFGS) that provides a fast way to approximate

a local minimizer and other optimization techniques to verify the local optimality for the

best point found by BFGS. The complexity of using HIFOO is 2L × (93n3 + K × 28
3
n3))

where K denotes the number of iterations required for the convergence of BFGS algorithm

and L denotes the number of iterations required to achieve optimality.

Several benchmark examples were chosen from [85] and optimal H∞-controllers of low-

order were designed using HIFOO; see e.g., [58, 59] for details. Systems were either in

standard state space form or converted to standard state space form and the order of the

systems used was no greater than 240. In each phase, BFGS optimization algorithm is used
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extensively. HIFOO method is initiated with random starting points. Due to the inherent

randomness in both phases and the fact that HIFOO solves a non-convex optimization

problem, it may find a non-local minimum. If the calculated controller does not satisfy the

required performance, then it is recommended to invoke HIFOO again with the obtained

controller as an initial guess. For the fixed attenuation γ = 10, HIFOO is used to calculate

the H∞-controller on a simply supported beam model with viscous damping, see Example

4.4.2 for details. The HIFOO method failed to calculate the required controller even

when it was invoked repeatedly. Figure 5.2 shows that the attenuation of the closed-loop

system calculated with controllers for different modes did not converge to the required

performance. This is because HIFOO randomizes all the controller coefficients. However,

if the controller coefficients are constrained as

u(t) =
[
ones(m,n) zeros(m, q)

] [z(t)

v(t)

]
, (5.2.5)

where ones imply that these coefficients can be randomized and zeros imply that these

coefficients cannot be randomized and forced to be 0’s, then the performance of HIFOO

was satisfactory. In all our simulations, HIFOO method was used to synthesis a constant

state-feedback control, where the order of the required controller was fixed as 0, and the

constraint (5.2.5) was used while invoking this method.

HIFOO is primarily designed to synthesize output feedback controllers when the order

of the controller is fixed to be less than that of the open-loop plant. It is also capable

of calculating the optimal H2-controller with order fixed to be less than the given plant.

Also, HIFOO can be used to design fixed-order controllers for the optimization of complex

stability radius, stability margin and robust stability margin. The ability to handle multiple

plants with mixed H∞ and H2 optimization problems was added in HIFOO 3.0; see e.g.,

[9, 57] for details.

Game theoretic iterative method

A recursive algorithm that reduces aH∞-ARE to a series of LQ-AREs was proposed in [82].

This algorithm is motivated by the following game theoretic strategy. For γ = 1, consider
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the quadratic differential game (2.4.10) for the standard system subject to (2.4.1). It is

well-known that the optimal control law and the worst-case disturbance (a saddle point of

(2.4.10)) are uoptimal = −BTPz and vworst = DTPz where P ≥ 0 is the unique stabilizing

solution to (2.4.11); see e.g., [102, 134] for details.

Define, F : Rn×n 7→ Rn×n,

F (P ) = PA+ ATP − P (BBT −DDT )P + CTC. (5.2.6)

In this algorithm, the game theory index (2.4.10) is reduced to a series of linear

quadratic optimal control problems by guessing the disturbance (not the optimal but a

strategy) at every iteration. Starting with v0 := 0, suppose at the k-th iteration a trial

control law is given by uk = −BTPkz, where Pk is the solution sequence to LQ-AREs, then

update the disturbance to be vk := DTPkz in both (2.4.1) and (2.4.10). The index (2.4.10)

is reduced to a LQ control problem J(u, vk, z0). Provided certain solvability conditions

(discussed below) are satisfied, the resulting ARE

0 = Pk+1(A+DDTPk) + (A+DDTPk)
TPk+1 − Pk+1BB

TPk+1 + (CTC − PkDDTPk).

(5.2.7)

is solved and the control law uk+1 = −BTPk+1z is calculated. The disturbance is again

updated (vk+1 := DTPk+1z) and the process repeated. With every iteration, Pk → P ,

the control law approaches the best (optimal) control, and the disturbance approaches the

worst-disturbance; See [82, Section VI] for details.

Define Zk := Pk+1 − Pk or use Pk+1 = Pk + Zk, then (5.2.7) reduces to

0 = ZkAk + ATkZk − ZkBBTZk + F (Pk) (5.2.8)

where Ak := A+DDTPk −BBTPk. Thus, solving (5.2.7) for Pk+1 is equivalent to solving

(5.2.8) for Zk and updating Pk+1 as Pk + Zk. Necessary and sufficient conditions for the

existence of Zk are:

(Ak, B) is stabilizable and (F (Pk), Ak) has no unobservable modes on the imaginary axis.

(5.2.9)
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The solution sequence {Pk} is unique, monotonic, non-decreasing and converges to the

positive semi-definite stabilizing solution of (2.4.11) [82, Section III]. It was proved in [82]

that this algorithm has global convergence and the local convergence rate is quadratic.

Therefore, this algorithm has the same convergence rate as the Newton-Kleinman algo-

rithm.

The examples presented in [82] were in the standard state space form and the order

of the systems used was no greater than 100. A numerical method to solve the sequence

of intermediate LQ-AREs (5.2.8) is not specified in [82]. This set of intermediate LQ-

AREs can be solved by a number of methods, for example [31], [78], [84]. However, an

inexact Newton-Kleinman method [47] cannot be used to solve this sequence of LQ-AREs.

At every iteration the solution to a H∞-ARE is computed by solving for the increment

Pk+1−Pk in (5.2.8). This idea resembles the modified Newton-Kleinman iteration scheme

(3.5.6) [11, 104]. Results in [47, Section 7] show that application of inexact N-K on (3.5.6)

is unstable. Similarly, if the sequence (5.2.8) is not solved accurately, then the residu-

als add up cumulatively and this algorithm becomes unstable (see Section 5.6.1 and [82,

Appendix:Example 2]). Therefore, it is critical to calculate the solutions of intermediate

LQ-AREs accurately. If a Newton-Kleinman method is used to solve the intermediate

AREs (5.2.8), then a stabilizing feedback must be chosen at every intermediate step. A

numerical method to calculate this stabilizing feedback is not given in [82]. Also, a nu-

merical method to verify stabilizability of a matrix pair (5.2.9) in this algorithm is not

discussed in [82].

Complexity of the algorithm depends on the complexity of calculating the solutions to

the intermediate sequence of linear quadratic problems. If a Kleinman algorithm is used

to solve the intermediate LQ-AREs then this method reduces a sign-indefinite ARE to a

sequence of negative semi-definite AREs which are further reduced to solving a series of

Lyapunov equations; the complexity of solving Lyapunov equations is 32n3 and hence, the

overall complexity is O(n3) which depends on the number of outer iterations required to

achieve certain pre-specified tolerance, the number of Kleinman iterations and the number

of Lyapunov iterations.
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5.3 Numerical Solution of Large DescriptorH∞-Riccati

Equations

The optimal H∞-attenuation is calculated accurately with this method, which can be a

problem for methods which rely on calculating the invariant subspace of the Hamiltonian

[8, 31, 84, 119]; see Section 5.6.2 for details. Therefore, the game theoretic iterative method

was chosen to be extended to descriptor form and to systems of large model order.

In this section, an extension of the iterative method to large descriptor systems is

given. Our implementation exploits system properties such as sparsity and symmetry. An

improved bisection algorithm is described to calculate H∞-optimal attenuation. A parallel

implementation of this extension is also described.

The notation σmax(Y ) denotes the maximum singular value of a matrix Y .

The following technical result is a straightforward generalization of Lemma 1 in [82] for

descriptor systems to avoid the inversion of the mass matrix E.

Lemma 5.3.1. For the given descriptor system (5.1.1)-(5.1.2), define F̃ : Rn×n 7→ Rn×n

as

F̃ (P ) = ETPA+ ATPE − ETP (BBT − 1

γ2
DDT )PE + CTC. (5.3.1)

For P = P T , Z = ZT ∈ Rn×n then defining Ã := A+ ( 1
γ2
DDT −BBT )PE

F̃ (P + Z) = F̃ (P ) + ETZÃ+ ÃTZE − ETZ(BBT − 1

γ2
DDT )ZE, (5.3.2)

and if also

0 = ETZÃ+ ÃTZE − ETZBBTZE + F̃ (P ) (5.3.3)

then

F̃ (P + Z) =
1

γ2
ETZDDTZE, (5.3.4)

and

σmax[F̃ (P + Z)] = σmax(
1

γ
DTZE)2. (5.3.5)
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Proof. Using algebraic manipulations, (5.3.2) follows easily. Equations (5.3.4) and (5.3.5)

are simple consequences of (5.3.2) and (5.3.3).

The main result of [82], which immediately extends to descriptor systems, is formally

stated in the next theorem.

Theorem 5.3.2. Assume that the matrix triple (E,A,B) is stabilizable and the matrix

triple (E,A,C) has no unobservable modes on the imaginary axis and F̃ : Rn×n 7→ Rn×n

is defined as in (5.3.1). Suppose there exists a stabilizing solution P ≥ 0 for (5.1.3). Then

1. the matrix series {Zk} and {Pk} are defined for all k ≥ 0 recursively as follows:

P0 = 0 (5.3.6)

Ak = A+
1

γ2
DDTPkE −BBTPkE. (5.3.7)

Letting Zk ≥ 0 be the unique stabilizing solution of

0 = ETZkAk + ATZkE − ETZkBB
TZkE + F̃ (Pk), (5.3.8)

define

Pk+1 = Pk + Zk. (5.3.9)

2. the matrix series {Zk} and {Pk} have the following properties: For every k ≥ 0

(a) (E,A+ 1
γ2
DDTPkE,B) is stabilizable;

(b) F̃ (Pk+1) = 1
γ2
ETZkDD

TZkE (see (5.3.1));

(c) (E,A+ 1
γ2
DDTPkE −BBTPkE) is Hurwitz;

(d) P ≥ Pk+1 ≥ Pk ≥ 0.

3. the limit

P := lim
k→∞

Pk

exists with P ≥ 0. Furthermore, P is the unique stabilizing solution of H∞-ARE

(5.1.3).
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Proof. The proof is similar to the proof of Theorem 3 in [82] for descriptor systems (5.1.1)-

(5.1.2).

A useful condition to terminate the recursive iteration is given below.

Corollary 5.3.3. Assume that the matrix triple (E,A,B) is stabilizable and the matrix

triple (E,A,C) has no unobservable modes on the imaginary axis and let {Pk} and F̃ :

Rn×n 7→ Rn×n be defined as in Theorem 5.3.2. If there exists a k ≥ 0 such that (E,A +
1
γ2
DDTPkE,B) is not stabilizable, then there does not exist a stabilizing solution P ≥ 0

to F̃ (P ) = 0.

Proof. This is a direct consequence of 2.a in Theorem 5.3.2.

The algorithm given in [82, Section IV] is extended to descriptor systems (5.1.1)-(5.1.2)

below (Algorithm 1). The algorithm in [82] is recovered by substituting E = I and γ = 1.

Algorithm 1 Algorithm to calculate the solution to H∞-ARE (5.1.3).

Input : E,A,B,C,D,D12 as in (5.1.1)-(5.1.2), ε > 0, γ > 0.

Assumptions : The system (E,A,B) is stabilizable; (E,A,C) has no unobservable modes

on the imaginary axis.

Output : Solution P ≥ 0 of (5.1.3), if it exists. Feedback K = BTPE, if P exists.

Step 1: Let P0 = 0 and k = 0.

Step 2: Set Ak = A+ 1
γ2
DDTPkE −BBTPkE.

Step 3: Construct the unique real symmetric stabilizing solution Zk ≥ 0 which satisfies

0 = ETZkAk + ATkZkE − ETZkBB
TZkE + F̃ (Pk). (5.3.10)

Step 4: Set Pk+1 = Pk + Zk.

Step 5: If σmax( 1
γ
DTZkE)2 < ε, then set P = Pk+1 and stop. Otherwise, go to step 6.

Step 6: If (E,A + 1
γ2
DDTPk+1E,B) is stabilizable, then let k = k + 1 and go to step 2.

Otherwise, solution of (5.1.3) P ≥ 0 does not exist.

The rate of convergence proved in [82, Section V] for standard systems extends to large-

scale descriptor systems. The local rate of convergence for Algorithm 1 is quadratic for

descriptor systems and is formally stated below.
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Theorem 5.3.4. Assume that the matrix triple (E,A,B) is stabilizable and the matrix

triple (E,A,C) has no unobservable modes on the imaginary axis and let {Pk} and F̃ :

Rn×n 7→ Rn×n be defined as in Theorem 5.3.2. Suppose there exists a stabilizing solution

P ≥ 0 for (5.1.3). Then there exists a ε > 0 such that the rate of convergence of the series

Pk is quadratic in the region ‖Pk − P‖ < ε.

Proof. This follows from the proof of Theorem 5 in [82, Section V].

Properties such as uniqueness and monotonicity of solutions to H∞-AREs for standard

systems are preserved for descriptor systems using this algorithm.

Algorithm 1 can be used for large-scale systems. The two main issues are solution of the

intermediate LQ-AREs (step 3) and checking stabilizability (step 6). A special algorithm

to calculate the solutions to intermediate descriptor LQ-AREs in step 3 is described next.

5.3.1 Solution of Large Descriptor LQ-Riccati Equations

Several numerical methods to calculate solutions to large LQ-AREs have been discussed in

Section 3.5. The Newton-Kleinman method (3.5.5) suggested in [78] is very popular among

researchers, for e.g., [55, 110], since the rate of convergence of this method is quadratic.

Here, the LQ-ARE (5.3.10) is solved using a variant of Newton-Kleinman method which

is implemented in [110]. The toolbox [110] employs the low-rank Cholesky factor Newton

method to calculate the solution of large LQ-AREs for generalized systems without re-

writing in the standard form.

At each step, a generalized low-rank Cholesky ADI solver (see [110, Section 3.1]) is

used to compute the solution of large Lyapunov equations. An efficient implementation

that uses the Sherman-Morrison-Woodbury (SMW) formula for iteratively solving shifted

systems of linear equations is employed here. The stopping criteria for solving the Lyapunov

equations is chosen as the smallness of the ADI iterate solution. The stopping criteria for

the Kleinman method is the smallness of the relative change in the feedback matrix.

Kleinman iterative schemes require a stabilizing feedback to initiate the algorithm.

A stabilizing feedback for the system (E,A + 1
γ2
DDTPkE − BBTPkE,B) is required.
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Note that (E,A + 1
γ2
DDTPkE,B) is stabilizable, if and only if (E,A + 1

γ2
DDTPkE −

BBTPkE,B) is stabilizable. A numerical method to calculate the stabilizing feedback F

for (E,A+ 1
γ2
DDTPkE,B) will be discussed below. The formula employed here to calculate

the stabilizing feedback F̃ for (E,A+ 1
γ2
DDTPkE −BBTPkE,B) is

F̃ = F −BTPkE. (5.3.11)

Thus, Step 3 of Algorithm 1 has now been extended to handle descriptor systems of large

model order.

5.3.2 Stabilizability of descriptor systems

Another critical step of Algorithm 1 in handling large systems is the verification of stabi-

lizability of (E,A+ 1
γ2
DDTPkE,B) in step 6. Explicit inversion of E should be avoided in

order to prevent a possible loss of accuracy when the condition number of E is large. In

our implementation, stabilizability is verified using Algorithm 2 which is a minor change

of the algorithm in [129]. The algorithm presented in [129, Algorithm RSDS] is recovered

if Steps 6.1 and 6.3 are omitted.

This algorithm separates the stable and unstable parts of the spectrum using orthogonal

similarity transformations. The orthogonal factors in Step 6.2 of Algorithm 2 are calculated

by a QZ algorithm [54], which is a generalization of the QR algorithm. In particular, the

orthogonal matrices Q and Z are obtained by first reducing the matrix pencil A − λE to

the generalised Schur form and then reordering the diagonal blocks.

Systems obtained by approximating partial differential equations typically have a few

unstable modes. A stabilizing feedback for the unstable part is calculated by solving a

low-order Lyapunov equation [35]. Stabilizability of the system is verified by checking the

controllability of the low-order anti-stable part. Furthermore, a stabilizing feedback F for

the complete system (E,A+ 1
γ2
DDTPkE,B) is constructed using the feedback calculated

for the anti-stable modes in Step 6.5 of Algorithm 2. Thus, Algorithm 1 has now been

extended to handle descriptor systems of large model order. In our implementation of this

extended algorithm, inverting the mass matrix E is avoided.
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Algorithm 2 Algorithm to verify the stabilizability in step 6 of Algorithm 1.

Input : A,E ∈ Rn×n and B ∈ Rn×m.

Output : if (E,A,B) is stabilizable then F ∈ Rm×n such that (E,A + BF ) is stable,

otherwise, no solution.

Step 6.1 : If (E,A) is stable, F = 0. stop else go to Step 6.2.

Step 6.2 : Reduce the pair (E,A) by an orthogonal similarity transformation, to the ordered

generalized real Schur form (GRSF)

QEZ =

[
E11 E12

0 E22

]
, QAZ =

[
A11 A12

0 A22

]
,

where Q and Z are orthogonal matrices such that (E11, A11) corresponds to the stable

spectrum and (E22, A22) corresponds to the unstable spectrum. Compute QB = [BT
1 , B

T
2 ]T

partitioned conformally with the above matrices.

Step 6.3: If (E22, A22, B2) is controllable, then (A,B) is stabilizable, go to Step 6.4, else,

no solution. STOP.

Step 6.4: Solve the Lyapunov equation

A22Y E
T
22 + E22Y A

T
22 − 2B2B

T
2 = 0

Step 6.5 : Compute F2 = −BT
2 (Y ET

22)−1; then, F = [0, F2]ZT .
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Complexity of the algorithm

The complexity of all the existing methods described in Section 5.2 is O(n3) flops except

the convex method which requires O(n6) flops. The overall complexity of our extended

algorithm is O(n3). Solving the generalized Lyapunov equations in our implementation of

the N-K method for solving the LQ-AREs is cheaper than 32n3 flops as discussed below.

In this implementation [110], a low-rank Cholesky factor-ADI iteration is used to solve the

generalised Lyapunov equations with 20 shift parameters. The calculation of LU factors of

systems shifted by these parameters require 40
3
n3 flops. These factors are stored and used

cyclically to solve the Lyapunov equation which involves O(40n2) flops at every LRCF-

ADI iteration. Additionally, only 4
3
n3 and 8n3 flops are required for the calculation of LU

factors of the system in Step 2 and maximum singular value in Step 5 of Algorithm 1.

5.4 Calculation of optimal H∞-attenuation

Optimal attenuation is calculated using a bisection method. An improved bisection algo-

rithm (Algorithm 3) is used to calculate optimal H∞ attenuation, where the upper and

lower bounds are first estimated. This improvement is based on the observation that the

actual attenuation of (5.1.1)-(5.1.2) achieved with the controller calculated for some fixed

attenuation is very close to the optimal H∞-attenuation. The upper bound is updated

with the achieved closed-loop attenuation. Then, the solvability of a H∞-ARE with 95%

of this updated upper bound is used as a criterion to estimate the lower bound on optimal

attenuation. If a solution to this H∞-ARE exists then the upper bound is re-assigned, else

this is set as the lower bound. This fine-tuning is repeated if necessary to obtain a lower

bound. A standard bisection algorithm is then applied with these tight bounds and opti-

mal attenuation is calculated up to the specified accuracy (δγ̂). This modified algorithm

converged within a few iterations.

In the case of large-scale descriptor systems, optimal attenuation is calculated using

Algorithm 3, where Algorithm 1 is used to solve the fixed attenuation problem in Steps

1, 4 and 6. A significant amount of time and computational resources are consumed in

Steps 4 and 6 of Algorithm 3, particularly when γ is close to the optimal value. In the case
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Algorithm 3 An improved bisection algorithm

Input : A,B,C,D,D12, E, γH , δγ̂

Assumption : The system (E,A,B) is stabilizable and (E,A,C) is detectable.

Output : K, γ̂

Step 1: Calculate the controller KγH for the H∞-attenuation problem with γH .

Step 2: Update γH with the closed-loop attenuation of (5.1.1)-(5.1.2) achieved with KγH .

Step 3: Define γ := 0.95× γH .

Step 4: If the solution to the H∞-attenuation problem for γ exists then update γH = γ

and go to Step 3, else γL := γ.

Step 5: Calculate γ := 1
2
(γH + γL).

Step 6: Solve the H∞-attenuation problem for γ calculated in Step 5. If there exists a

controller K, that achieves γ-attenuation then, γH = γ, else γL = γ.

Step 7: If ‖γH − γL‖ < δγ̂ then γ̂ = γ and STOP, else go to Step 5.

where γ < γ̂, a significantly longer time is generally required for Algorithm 1 to determine

that a solution does not exist compared to the case where it does (γ > γ̂). This is because

when γ < γ̂, several outer iterations are performed in Algorithm 1 before reaching the

terminating condition, that is the failure of the stabilizability condition in Step 6. Such a

situation happens only when the controllability condition in Step 6.3 of Algorithm 2 fails.

This condition is met only when the corresponding controllability matrix (of order 1) loses

its numerical rank. However, the solution series {Pk} begins to diverge much before the

uncontrollability condition is reached. It is recommended to keep a check on the growth

of the residual,

σmax(F̃ (Pk)) 6> 1/ε, (5.4.1)

and terminate Algorithm 1 when (5.4.1) fails. Implementing this change speeds up the

computation of optimal attenuation for large-scale descriptor systems.
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5.5 Parallel Implementation

A parallel implementation of Algorithm 1 which is used in the calculation of H∞ optimal

attenuation in Chapter 6 is discussed here for the sake of completeness. The numerical algo-

rithms required to solve large H∞-AREs are decomposed into basic matrix computations,

such as solving linear systems, matrix products, LU factorization and eigenvalue computa-

tion. Efficient implementations of these operations exist in modern linear-algebra libraries

for parallel distributed-memory computers. The underlying computational libraries, com-

munication routines, and the target architecture determine the performance. The form

of parallelization used here is called data parallelization. Data parallelization consists of

three basic steps: first, break the set of input data into smaller sets; then, perform compu-

tation on each of the smaller sets in parallel and lastly, combine computation results from

previous step to get the final solution.

A ScaLAPACK parallel library [24] is used here, which is a freely available package

that implements parallel extensions of many of the kernels in [4] using a message passing

paradigm. ScaLAPACK is based on BLACS for communication and can be ported to any

(serial and) parallel architecture with an implementation of the MPI or PVM libraries [56].

The sub-library PBLAS (Parallelized Basic Linear Algebra Subprograms) performs basic

vector and matrix operations in parallel.

Most of the computations are performed using ScaLAPACK routines. A standard

Newton-Kleinman method is used to solve (5.3.10) using [24]. As each iteration step

of the Newton procedure requires the solution of a linear matrix equation, solvers for

Lyapunov equations are also included. A generalization to the low-rank Cholesky factor

ADI iteration method [104] is used without converting the descriptor form into the standard

form. Optimal set of ADI parameters are calculated using [44], which is implemented

using [45] since this step is not time-consuming. A set of generalized eigenvalues was

computed using [4], since the accurate computation of eigenvalues closer to imaginary axis

becomes an issue in [24]. The ScaLAPACK routines used in solving H∞-AREs and some

basic matrix operations performed using PBLAS routines are listed in Table 5.1. The

calculation of orthogonal similarity transformations in Algorithm 2 is implemented using

[4]. A stabilizing feedback is calculated (Algorithm 2) by solving a low-order generalized
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Table 5.1: ScaLAPACK routines used in the parallel implementation of Algorithm 1 are

listed below.

Routine name Description

pdgeadd General matrix addition C = βC + αA, where α and β are

scaling factors. Matrix A is transposed before addition

pdgemm General matrix multiplication C = βC+αAB, where α and β

are scaling factors. Matrices A, B or both can be transposed

before multiplication

pdgehrd and pdlahqr Hessenberg reduction an computation of eigenvalues

pdgesvd Computation of singular values

pdgetrf LU factorization

pdgetrs Solution of system of equations using the LU factorization

obtained from pdgetrf

pdgesv Solution of system of equations

pdlange Frobenius norm of a matrix

Lyapunov equation using SG03AD from SLICOT[20].

A logical grid of np = pr× pc processors is used to compute the solution of a H∞-ARE.

This set of np processors form a process grid. All matrices are partitioned into nb×nb blocks

and these blocks are distributed among the np processors cyclically. Distributing matrices

on the process grid is the programmer’s responsibility. There are ScaLAPACK kernels that

perform this data distribution, starting with a matrix contained in the memory of a single

process. Once matrices are distributed on the process grid, a program that implements

Algorithm 1 using ScaLAPACK routines are run on this grid. All processes in this grid

run through each step of the same program, but on different data. But since matrices

are distributed across these processes, whenever a matrix operation (say, for instance,

LU factorization) is encountered, the processes synchronize with each other at that point

in order to perform the matrix operation. This is where parallelization using the single

program multiple data paradigm comes into effect. During this operation, the processors

communicate among each other, if required. In the end, the different blocks of the solution
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to a H∞-ARE resides in different processors and is retrieved from all the processors via

communication. Thus, all np processors in one process grid work together to solve a H∞-

ARE.

Furthermore, for the calculation of optimal H∞-attenuation, multiple (ng) process grids

work together by solving multiple (ng) H∞-AREs simultaneously. That is, instead of the

regular sequential bisection-type algorithm, optimal attenuation is calculated by dividing

(γL, γH) into (ng+1) sub-intervals. This speeds up the convergence of optimal attenuation;

see [131] for details.

5.6 Examples

In this section, some problems that were used to compare the solvers are described. Sys-

tems motivated by partial differential equation models: vibrations on a simply supported

beam, cantilevered plate and diffusion on an irregular 2D geometry are used. The perfor-

mance of all solvers are compared based on the following criteria: (a) achieved closed-loop

attenuation, (b) time taken to calculate the H∞ controller and (c) normalized residual

norm of the calculated Riccati solution that indicates the accuracy of the computed solu-

tion. All simulations are performed using Matlab 7.11 (R2010b) on a Sun x4600 with 8

opteron 8218 CPU’s (2.6 GHz) and 32 GB RAM.

Example 5.6.1 (Series of integrators). The first test problem has appeared in [82] as

example 3. Consider a system of n integrators connected in series given in the standard

state space form. A feedback controller has to be applied at the nth system. This problem

has earlier appeared in [84] as example 6. Choose the matrices E = I21, A ∈ R21×21, B ∈
R21×1, D ∈ R21×1, C ∈ R22×21 as follows:
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A =



0 1 0 . . . 0
. . . . . . © ...

...
. . . . . . 0

© . . . 1

0 . . . 0


, B =


0
...

0

0

1

 , D =


0
...

0

0.01

0

 , C =



1 0 0 . . . 0

0 0
. . . © ...

...
. . . . . . 0

© . . . 0

0 . . . 0

0 . . . 0


.

The difficulty in this example lies in the fact that the norm of the solution to LQ-ARE

calculated using Schur method (2.4× 109) is very large, when the condition number of the

corresponding Hamiltonian is 1.

Example 5.6.2 (Simply supported beam). Consider a simply supported Euler-Bernoulli

beam with viscous damping presented in Example 4.4.2. By choosing moment and velocity

as state components, the system (4.4.5)-(4.4.6) re-written as an abstract Cauchy problem

is well-posed on the state space Z = L2(0, 1)× L2(0, 1) [37]. The state space formulation

of (4.4.5)-(4.4.6) is
d

dt
z(t) = Az(t) +Bu(t) +Dv(t), (5.6.1)

where

A =

[
0 d2

dx2

− d2

dx2
−ξI

]
, B =

[
0

b0.5(·)

]
, D =

[
0

d(·)

]
, (5.6.2)

with domain

D(A) = {(φ, ψ) ∈ Hs(0, 1)×Hs(0, 1) | ψ′′ ∈ Hs(0, 1)},

where Hs(0, 1) is defined in Example 4.4.2. Since a closed form solution to the partial

differential equation problem is not available, H∞-controllers must be calculated using an

approximation. Let φi(x) indicate the eigenfunctions of ∂4w
∂x4

with boundary conditions

(4.4.6). For any positive integer N , define ZN to be the span of φi, i = 1...N . Choose

ZN = ZN ×ZN and define PN to be the projection onto ZN . Conditioning of the matrices

arising in the approximations to this PDE are better with this realization than with the

standard first-order realization of position and velocity as shown in Figure 5.3. The original
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Figure 5.3: Conditioning of the beam problem with the first-order standard state space

realization of position and velocity is compared against the energy-based realization of

moment and velocity
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problem is exponentially stable; see [96, 99] for details. Approximating problems that

correspond to the first 50 eigenmodes are used in comparing the performance ofH∞ solvers,

where the finite-dimensional matrices are

[A] =

[
0 ΛN

−ΛN −ξI

]
, [B] =

[
0

bN

]
, [D] =

[
0

dN

]
, [C] = IN , where

[bN ]i =
√

2

∫ 1

0

b0.5(x)φi(x)dx, i = 1, . . . , N,

[dN ]i = 10
√

2

∫ 1

0

b0.5(x)φi(x)dx, i = 1, . . . , N,

and ΛN is the diagonal matrix with ith entry (iπ)2. The order of the systems is twice the

number of eigenmodes.

Example 5.6.3 (Diffusion on an irregular plate). Consider the heat diffusion problem on

a two-dimensional plane with the irregular geometry Ω in Figure 5.4. Assume Dirichlet
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Figure 5.4: Irregular geometry : With origin referenced at bottom left corner, a 4×4 units

square where a circle of radius 0.4 units centered at (3, 1) removed is considered as the

domain Ω

 

boundary conditions at the edges of the geometry ∂Ω. Let z(x, y, t) denote the heat

distribution at the point (x, y) ∈ Ω at time t. The heat distribution is controlled by

applying a heat source (square-sized actuator patch) u(t). The exogenous disturbance v(t)

induces a distributed load d(x, y)v(t) where d(x, y) ∈ C(Ω). If the variables are normalized,

then the equations obtained are

∂z

∂t
(x, y, t) =

∂2z

∂x2
+
∂2z

∂y2
+ b(x, y)u(t) + d(x, y)v(t), on Ω

z(x, y, ·) = 0 on ∂Ω,

y(t) =

∫
Ω

b(x, y)z(x, y, t) dΩ,

(5.6.3)

where b is a function in C(Ω). Here

b(x, y) =

{
1
2ε
, |x− rx| < ε and |y − ry| < ε

0, otherwise,
.
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It is assumed that d(x, y) = 100b(x, y). A square-shaped actuator with half-width ε = 0.2

is placed at the center of the square, that is (rx, ry) = (2, 2). Average temperature is

measured at the same spot where the actuator is placed. A state space formulation of

(5.6.3) on Z = L2(Ω) is

dz

dt
= Az(t) +Bu(t) +Dv(t), (5.6.4)

y(t) = Cz(t) +D12u(t)

where

Ah := ∇ · (∇h), Bu := b(x, y)u, Dv := 100 b(x, y)v, Cz :=

∫
Ω

b(x, y)z(t) dΩ,

with domain

D(A) = {h ∈ H2(Ω) | h = 0 on ∂Ω},

where z(·) is the temperature profile w(x, y, ·). Since there is only one control, choose

control weight D12 = 1. A finite element method [2] with linear splines {φi} as the basis

for the finite-dimensional subspace H1
0
N

is used for approximating (5.6.3). This yields a

finite-dimensional system in descriptor form (5.1.1)-(5.1.2) with the system matrices are

given by

[E]ij =

∫
Ω

φiφj dΩ, [A]ij =

∫
Ω

∇φi∇φj dΩ,

[B]j =

∫
Ω

b(x, y)φj dΩ, where i, j = 1, . . . , N,

Here, C = BT , D = 100B are used. The original problem is both stabilizable and detectable

and so are the approximating problems; see e.g. [96] for details. Eigenvalues of this system

lie on the negative real line as shown in Figure 5.5.

Example 5.6.4 (Cantilever plate). Consider a Euler-Bernoulli cantilever plate with Kelvin-

Voigt damping of dimensions 0.5m× 0.5m× 2mm clamped at one end and free to vibrate

at the other end. The partial differential equation model that describes the transverse

79



Figure 5.5: Spectrum of cantilever plate (order - 1100) and diffusion problem (order - 1077)

(a) Spectrum
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(b) Spectrum near imaginary axis
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displacement of the plate may be found in [13]. The disturbance is located at the same

spot as the collocated actuator/sensor pair. Since there is only one control, choose control

weight D12 = 1. Three different approximations generated using ANSYS with 64, 100 and

225 elements, where an actuator/sensor pair is placed on 25th, 50th and 105th elements

respectively, are considered. The order of these 3 approximations are 720, 1100 and 2400

respectively. The dimensions of the actuator/sensor pair used is identical to the dimensions

of a single element. The standard cubic B-spline approximation [106] of this second-order

model leads to

Mẅ + (CvI + CdK)ẇ +Kw = Bu+Dv,

y = Cx

where Kelvin-Voigt damping with Cv = 1× 10−6, Cd = 1× 10−2 is considered. Here, M is

the mass matrix, and K is the stiffness matrix. Also, C = BT , D = 1000B are used. This

is re-formulated in the descriptor state space form (5.1.1)-(5.1.2)

E =

[
I 0

0 M

]
, and A =

[
0 K

1
2

−K 1
2 −CvI − CdK

]
.
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Table 5.2: Spectral radius of residue of the solution to (5.1.3), σmax(F̃ (P )), calculated

using different methods

Name of the H∞ solver Spectral radius of residue

Schur method 1.69× 103

Matrix sign function method 3.16× 102

Iterative method with Schur

method to solve (5.3.10) 2.0× 103

Iterative method with Kleinman

algorithm to solve (5.3.10) 1.4× 10−4

Eigenvalues of the cantilever plate problem lie on a sector in the negative-half of the

complex plane (see Figure 5.5). The condition number of these approximated systems

vary in the range of 8.5× 1013− 3× 1014, which is much larger than the diffusion problem.

5.6.1 H∞-Attenuation

Performance of different solvers for the calculation of H∞-disturbance attenuation on both

medium-scale standard systems and large-scale descriptor systems are compared in this

section.

Medium-scale systems

Consider the system of n integrators (Example 5.6.1). Let F̃ be defined as in (5.3.1). The

H∞-disturbance attenuation problem on this problem with γ = 1 is solved using Schur

method [35] and matrix sign function method [31, 39]. The accuracy of any solution to

(5.1.3) is determined by the size of the spectral radius of its residue. As shown in Table 5.2,

the spectral radius is much larger than 0 for both Schur and matrix sign function methods.

A pair of conjugate eigenvalues are on the imaginary axis for this problem. Thus, both

Schur and matrix sign function methods suffer accuracy issues in calculating the stable

invariant subspace of the corresponding Hamiltonian.
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Game theoretic iterative method [82] is used on this example, where the sequence of

intermediate LQ-AREs is solved using both a Schur method and a Kleinman method.

The corresponding spectral radius of the residue of the solution obtained using these 2

methods are shown in Table 5.2. Clearly, the Schur method does not work well on this

example, likely because the LQ-ARE obtained in the first iteration of game theoretic

iterative method was not solved accurately using a Schur method. Since the game theoretic

iterative method is analogous to the modified Newton-Kleinman method [11], the residuals

add up cumulatively at the end of each outer iteration (σmax(F̃ (P4)) = 2.0× 103); see [47,

Section 7] for details. However, when a Newton-Kleinman method is used to solve the LQ-

AREs that appear in step 3 of algorithm presented in [82] then this method remains stable

(σmax(F̃ (P3)) = 1.4× 10−4). With this implementation, an accurate solution was achieved

within 3 iterations on this example. The convex method cannot be used here, since the

hypothesis of [112, Thm. 3.4] does not hold. The non-linear optimization based HIFOO

method does not find a stabilizing controller even when it was invoked with an initial

controller calculated using the game theoretic iterative method. This example illustrates

that the game theoretic iterative method with Kleinman method to solve the intermediate

LQ-ARE produces an accurate solution when the standard methods fail.

Consider the finite-dimensional approximations of simply supported beam (Example

5.6.2). The game theoretic iterative method presented in [82] is implemented using Schur

method to solve the intermediate series of LQ-AREs on this problem. The sequence of

LQ-AREs obtained in this problem is solved accurately by Schur method, and thus, this

implementation works. The stabilizability condition is verified using a Hautus criterion

(e.g. [134, Page 50]). All solvers performed well on this problem for calculating the fixed

attenuation H∞-controller for γ = 10, which is close to the optimal attenuation γ̂ = 9.95.

The closed-loop plant with controllers calculated by all methods are stable and achieved the

specified attenuation. However, the convex method is extremely slow when compared to

the other methods even for systems of order as small as n ≤ 20; see Figure 5.6. Therefore,

the convex method was not used for systems with n > 20. The HIFOO method is slower

than the game theoretic iterative method. Since HIFOO is invoked with random initial

controller, the computation time is different for different runs.

As shown in Figure 5.7, both Schur and iterative methods are highly accurate in solving
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Figure 5.6: Computation time of all solvers on different approximations of the simply

supported beam (Example 5.6.2) for the fixed attenuation problem γ = 10. ITERATIVE

denotes the game-theoretic iterative method.
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Figure 5.7: Numerical accuracy of Schur, game-theoretic iterative and convex methods

on different approximations of the simply supported beam (Example 5.6.2) for the fixed-

attenuation problem γ = 10

0 20 40 60 80 100

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Order

N
or

m
al

iz
ed

 R
es

id
ue

 o
f H

−i
nf

 A
R

E

 

 

SCHUR
ITERATIVE
CONVEX

83



H∞-ARE. Although the convex method is less accurate than other methods because it

solves the Riccati inequality instead of the Riccati equation, it is still consistent. Since

the HIFOO method does not rely on solving Riccati equations, the numerical accuracy

of this method cannot be assessed. Thus, all methods can be used for calculating H∞-

control for fixed attenuation problems for the beam with n ≤ 100, although the Schur and

game-theoretic methods are the fastest.

Large-scale descriptor systems

Figure 5.8: Numerical accuracy of Schur and iterative methods on different approximations

of the 2D diffusion problem (Example 5.6.3) for the fixed attenuation γ = 7. ITERATIVE

denotes the extended game-theoretic iterative method.
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Consider the finite-dimensional approximations of diffusion systems (Example 5.6.3).

The H∞- controllers for the fixed attenuation γ = 7 obtained from Schur, extended game-

theoretic iterative (Algorithm 1) and HIFOO methods stabilized the closed loop system

and achieved the specified attenuation. The HIFOO method is very slow for large systems.

Beyond n > 2000, HIFOO method did not produce a result after running for 12 days.

Hence, HIFOO method is not used for n > 2000. Both Schur and our extended iterative

methods are numerically accurate in solving H∞-AREs for fixed attenuation as seen in
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Figure 5.9: Computation time of Schur, extended iterative and HIFOO methods on differ-

ent approximations of the 2D diffusion problem (Example 5.6.3) for the fixed attenuation

γ = 7
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Figure 5.8. Performance of the Schur method on this problem is good. However, as shown

in Figure 5.9, our implementation of the iterative method is slightly faster than the Schur

method.

The Schur method failed to accurately isolate the stable invariant subspace of the cor-

responding Hamiltonian on the approximated cantilever plate model described in Example

5.6.4. This is likely because, even with the reformulation of the state space, this second-

order model is not as well-conditioned as the diffusion model. However, our proposed

implementation of the iterative method calculated the solution of H∞-ARE reaching a

limiting accuracy of ε = 1× 10−12 for the fixed attenuation problem. Table 5.3 illustrates

that the iterative method is much faster than the HIFOO method on the first 2 approxi-

mated systems. For the third system, HIFOO method didn’t produce a result even after

12 days. The controllers calculated by both methods stabilize the closed-loop system and

the H∞-norm achieves the specified attenuation.
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Table 5.3: Elapsed time of Iterative method and HIFOO method for the calculation of H∞
controller on cantilever plate described in Example 5.6.4

System Fixed Iterative HIFOO

order attn. Time Time

720 4 40 mins 6hrs 12 mins

1100 2.5 1 hr 42 mins 11 hrs 22 mins

2400 1.5 11 hrs 58 mins >12 days

5.6.2 Optimal Attenuation

OptimalH∞-attenuation was calculated using the improved bisection algorithm (Algorithm

3) where each fixed attenuation problem is solved using both Schur and iterative method in

[82] on medium-scale systems. Schur, HIFOO and the modified game-theoretic algorithm

are compared.

Medium-scale systems

Both Schur and matrix sign function methods failed to calculate the optimalH∞-attenuation

(γ̂ = 0.5594) accurately on Example 5.6.1. The game theoretic iterative method using

Kleinman iteration to solve the intermediate LQ-ARE worked on this problem and the

optimal H∞-attenuation was calculated accurately up to 4 decimal digits and the resulting

residue had the spectral radius 1.51×10−4. The convex method cannot be used here, since

the perturbation richness assumption does not hold. The non-linear optimization based

HIFOO method failed to calculate the optimal attenuation even when it was invoked with

the initial controller calculated using game theoretic iterative method.

The optimal H∞-attenuation γ̂ = 9.95 computed using all methods was accurate up to

2 decimal digits on different approximations of the beam (Example 5.6.2). The closed-loop

plant with optimal H∞-controllers are stable for all methods. The optimal H∞-control

calculated by both Schur and iterative methods achieved the optimal H∞-attenuation.

The H∞-controllers calculated by non-linear optimization and convex methods achieved

a performance close to optimal. However, as seen in Figure 5.10, the Schur method is
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Figure 5.10: Numerical accuracy of Schur and iterative methods on different approxi-

mations of simply supported beam (Example 5.6.2) for calculating optimal attenuation

(δγ̂ = 0.001)
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numerically less accurate in solving H∞-AREs for calculating optimal attenuation, while

the iterative method is highly accurate even for a lower tolerance(δγ̂ = 1× 10−3).

Large-scale descriptor systems

In the case of diffusion (Example 5.6.3), with γH = 10, δ = 0.01, the optimal H∞-

attenuation, γ̂ = 5.77, calculated using all methods was accurate up to 2 decimal digits.

The optimal attenuation converged for different approximations. The H∞-controllers ob-

tained from all methods stabilize the closed loop system and achieved an attenuation close

to the optimal. It is clear from Figure 5.11 that both the extended game theoretic algo-

rithm and Schur method are numerically accurate in solving H∞-AREs in the calculation

of optimal attenuation. Numerical accuracy of the HIFOO solver cannot be determined,

since it does not calculate the solution to the H∞-ARE. Figure 5.12 shows that the ex-

tended iterative method is quicker than the Schur method for large systems. The HIFOO

method is slow for large-scale systems and therefore, it is not used beyond n > 2000.

Results for calculating optimal attentuation with the plate are shown in Table 5.4. The
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Figure 5.11: Numerical accuracy of Schur and iterative methods on different approxima-

tions of the 2D diffusion problem (Example 5.6.3) for calculating optimal attenuation
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Figure 5.12: Computation time for calculating optimal attenuation of Schur and iterative

method on very large approximations of diffusion problem (Example 5.6.3)
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HIFOO method did not produce a result on the system n = 2400 even after 12 days. The

Schur method failed to compute optimal attenuation on the approximated plate model. It

cannot accurately isolate the stable invariant subspace of the corresponding Hamiltonian

pencil even for γ > γ̂. This is likely because the conditioning of the matrices, even when the
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Table 5.4: Computation time of Iterative method and HIFOO method for the calculation

of optimal attenuation on cantilever plate (Example 5.6.4)

Order Optimal Iterative HIFOO

system attn. Time Time

720 3.712 8 hrs 21 mins 9 hrs 30 mins

1100 2.3757 11 hrs 53 mins 14 hrs 5 mins

2400 1.0558 1 day 19 hrs >12 days

energy realization is used, is not as good as the diffusion problem. However, our proposed

method calculated the optimal attenuation within a tolerance of δγ̂ = 0.01 and a limiting

accuracy of ε = 1× 10−12 for solving the H∞-AREs.

5.7 Conclusion

In this chapter, the game-theoretic iterative algorithm is extended to calculate solutions to

large H∞-AREs for descriptor systems. This algorithm is compared to a number of other

algorithms for the calculation of fixed and optimal H∞ attenuation using examples arising

in control of partial differential equations. All methods were satisfactory for the beam and

diffusion problems, although the speed of the Schur and iterative algorithms was better

than the others. The extended game-theoretic iterative method was faster than all the

other methods for large problems. Also, in the beam example, the residuals in the Riccati

equation when using the Schur method for optimal attenuation indicate that this method

is less accurate for this type of problem. The Schur method did not work well for the plate

for even fixed attenuation. Both problems are likely due to the fact that the eigenvalues

of the plate and beam models contain significant imaginary components. This leads to a

Hamiltonian with eigenvalues close to the imaginary axis, particularly for attenuation close

to optimal.

Although either the Schur or the game-theoretic iterative algorithm can be used for

many problems, the iterative algorithm is a better choice for problems where the Hamil-

tonian may have eigenvalues near the imaginary axis. This difficulty typically arises in
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optimal attenuation and in second-order systems such as plate vibrations.
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Chapter 6

Calculation of H∞-Optimal Actuator

Locations

Several numerical issues are key to the calculation of H∞-optimal actuator locations: the

computation of optimal attenuation for the full partial differential equation model at a

location, and the issue of minimizing the optimal attenuation over all possible locations for

the original model. The issue of calculating optimal attenuation at a point was discussed in

Chapter 5. A derivative-free optimization algorithm for calculating H∞-optimal actuator

locations is described in this chapter. One difficulty with H∞-optimal actuator location

problem is the lack of gradient information. The use of a derivative-free method will

be justified. The directional direct-search method, which is a well-known derivative-free

optimization algorithm, is used in an algorithm to optimize the actuator locations based

on H∞-cost. Several advantages of the directional-direct search method are exploited. A

multi-level parallel implementation of calculating H∞ optimal actuator locations for large-

scale systems is described. The effectiveness of our proposed algorithm is illustrated using

several examples motivated by partial differential equation models.
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6.1 Derivative-Free Optimization

Even with use of an improved bisection algorithm (Algorithm 3) calculation of optimal

attenuation at a point requires multiple solutions of a fixed attenuation problem and solving

each H∞-ARE requires O(n3) flops. The computation of H∞-optimal actuator locations,

defined by (4.2.1)-(4.2.2), is an additional layer of optimization over the calculation of

optimal attenuation, defined by (2.4.13). It is therefore important to find an efficient

method for calculating optimal actuator location.

Figure 6.1: Variation of H∞-cost function with respect to actuator location over the length

of a viscously damped beam (Example 4.4.2) with d = b0.7, C = I approximated with 5

eigenmodes
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Consider the problem of calculating optimal actuator location for H∞-cost on a simply

supported beam with viscous damping (Example 4.4.2). Figure 6.1 indicates that H∞-

cost function with respect to actuator location on this problem is non-convex and non-

differentiable. Even if the cost could be shown to be differentiable for a sub-class of

problems, the derivative calculation would likely be time-consuming. We therefore used a

derivative-free method [34].
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Among many derivative-free methods a few of the popular ones include Nelder-Mead

method [105], derivative-free trust-region method [115], line-search methods based on sim-

plex derivatives [74]. Global convergence to stationary points of such methods involved

restrictive conditions on the objective function; see [34, Theorems 8.4, 9.3, 10.13] for de-

tails. Such assumptions may not be satisfied for the objective function of our interest,

γ̂(r).

Directional direct-search method is a derivative-free method that samples the objective

function at finite number of points and searches for a better function value at each iteration.

The decisions are made based on function values without any explicit or implicit derivative

approximation. There are several advantages to this method for the calculation of H∞-

optimal actuator location. One is that the function evaluations may be done in parallel,

which speeds up convergence in a multi-processor architecture. Another advantage is that

a simpler, so-called surrogate model (discussed below) may be used, which considerably

improves performance for this problem. A detailed description of directional direct-search

algorithm may be found in [34, Chapter 7]. Here we only describe briefly the main points

and the use of the surrogate model. Some basic properties of positive spanning sets and

bases are reviewed first.

6.1.1 Positive Spanning Sets and Positive Bases

Definition 6.1.1. [34] The positive span of a set of vectors [e1, . . . , er] in Rn is the convex

cone

{e ∈ Rn : e = α1e1 + . . .+ αrer, αi ≥ 0, i = 1, . . . r}.

Definition 6.1.2. [34] A set of vectors in Rn whose positive span is Rn is a positive

spanning set.

Definition 6.1.3. [34] The set [e1, . . . , er] is said to be positively dependant if one of

the vectors is in the convex cone positively spanned by the remaining vectors, that is, if

one of the vectors is a positive combination of the others; otherwise, the set is positively

independent.
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Definition 6.1.4. [34] A positive basis in Rn is a positively independent set whose positive

span is Rn.

The following result indicates that a positive spanning set for Rn contains at least n+1

vectors.

Theorem 6.1.5. [34, Thm 2.2] If [e1, . . . , er] spans Rn positively, then it contains a subset

with r − 1 elements that spans Rn.

Definition 6.1.6. [34] The direction d is said to be a descent direction for f at the point

x ∈ Rn if there exists an α̃ such that for all α ∈ (0, α̃],

f(x+ αd) < f(x).

The following result is important in derivative-free optimization techniques based on

direct-search methods.

Theorem 6.1.7. [34, Thm 2.3] Let [e1, . . . , er], with ei 6= 0 for all i ∈ {1, . . . , r}, span Rn.

Then [e1, . . . , er] spans Rn positively if and only if for every non-zero vector w ∈ Rn, there

exists an index i in {1, . . . , r} for which wT ei > 0.

Thus, there must always exist a direction of descent in a positive basis. That is, there

is at least one direction in a positive basis that makes an acute angle with the negative

gradient. The idea of a positive basis is key for this derivative-free method.

6.1.2 Directional Direct-Search Method

Consider any current iterate rk and a current value for the step size parameter αk. The

goal of the iteration k is to determine a new point rk+1 such that γ̂(rk+1) < γ̂(rk). The

process of finding a new iterate is described in two phases (search step and poll step). The

search step consists of evaluating the objective function at a finite number of points. The

search step and the current iteration are declared successful if a new point rk+1 is found

such that γ̂(rk+1) < γ̂(rk). If the iteration is successful, then the poll step is skipped and
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the algorithm proceeds with the next iteration. The poll step is a local search around the

current iterate, exploring a set of points

Pk = {rk + αkd : d ∈ Dk},

defined by the step size αk and a positive basis Dk. The points rk + αkd ∈ Pk are called

the poll points. The poll step and the current iteration is declared successful if a new

point rk + αkdk is found such that γ̂(rk + αkdk) < γ̂(rk) for some dk ∈ Dk. In this case,

rk+1 := rk+αkdk. If the poll step fails to produce a point in Pk where the objective function

is lower than γ̂(rk), then both the poll step and the iteration are declared unsuccessful.

The step size parameter αk is decreased if the iteration is unsuccessful, and unchanged

if the iteration is successful. The algorithm continues with the next iteration untill αk

reaches the limiting tolerance ε.

Convergence of this method to first-order stationary points is obtained under various

assumptions [34, Sections 7.3 - 7.7]. For minimizing theH∞-cost function γ̂(r) with respect

to actuator location, a sufficient decrease condition

γ̂(rk+1) < γ̂(rk)− g(αk) (6.1.1)

is imposed on the acceptance of new points, both in the search step and the poll step,

where g : R+ 7→ R+ is a forcing function, and this guarantees convergence to a first-order

stationary point; see [34, Thm. 7.12] for details.

A significant advantage of directional direct-search method is that this algorithm is

parallelizable. Function evaluations at different points are independant of each other and

can be done simultaneously on parallel machines. Alternatively, when individual function

evaluations are expensive, the speed of direct-search method can easily be improved many-

fold by suitably ordering the points chosen in search and poll steps before starting to

evaluate the function. This strategy reduces the number of function evaluations.

6.1.3 Surrogate Model

Optimal attenuation γ̂ at each point rk is calculated using a bisection-type algorithm.

Even with use of an improved bisection algorithm (Algorithm 3) multiple solutions of a
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Algorithm 4 Calculation of H∞-optimal actuator locations

Input : Choose a starting point r0 ∈ Ωm. Calculate the optimal attenuation at r0, γ̂(r0).

Parameters : Choose α0 > 0, 0 < β1 ≤ β2 < 1, pk ∈ Z+ and ε > 0. Choose a forcing

function g : R+ 7→ R+; for example g(α) = α2. Let D be a set of positive bases.

Surrogate model : At a new location r, use γ(r) := γ̂(rk) and solve the fixed attenuation

H∞ control problem. Then, define the surrogate model

smk(r) :=

{
‖Gyv(K, r)‖∞ if solution exists,

∞, otherwise.

For k = 0, 1, 2, . . . until αk < ε

Step 1(Search step) : (a) Evaluate smk(.) at points Rk = {r1
k, . . . , r

pk
k }.

(b) Order Rk: smk(r
1
k) ≤ . . . ≤ smk(r

pk
k ). If smk(r) = ∞ for some r ∈ Rk, then r is

removed from Rk.

(c) If Rk is not empty, then start evaluating γ̂(r), r ∈ Rk, in this order until a point r is

found such that γ̂(r) < γ̂(rk)− g(αk).

(d) If such a point r is found, then set rk+1 := r, declare the iteration and search step

succesful, and go to Step 3. If such a point r is not found or Rk is empty, then declare

search step as unsuccessful and go to Step 2.

Step 2(Poll step) : (a) Choose a positive basis Dk ∈ D.

(b) Order the poll set Pk = {rk + αkd : d ∈ Dk} by evaluating smk(·) at points in Pk.

(c) Evaluate γ̂(·) at the poll points in this order.

(d) If a poll point rk + αkdk is found such that γ̂(rk + αkdk) < γ̂(rk) − g(αk), then stop.

Set rk+1 := rk + αkdk, and declare the iteration and poll step to be successful. Otherwise,

declare the iteration (and the poll step) unsuccessful. Set rk+1 := rk.

Step 3(Model calibration) :- Set γ(r) := γ̂(rk+1) and update the definition of smk+1(·)
accordingly.

Step 4(Step size update) :- If the iteration was successful, then maintain the step size

parameter: αk+1 = αk. Otherwise decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].
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fixed attenuation problem are required. Since each solution requires solution of a Riccati

equation, this is very time-consuming. However, the actual attenuation achieved by a given

controller (for some attenuation γ) is generally quite close to the optimal attenuation. (See

Table 6.1). Furthermore, the optimal attenuation is a continuous function of the actuator

location (Theorem 4.2.4).

Table 6.1: Comparison of optimal attenuation and actual attenuation achieved at different

actuator locations on the 2D diffusion problem (Example 6.2.5) with a coarse mesh (size

= 0.625)

Location (r) γ(r) ‖Gyv(K, r)‖∞ γ̂(r)

(3.24, 2.14) 18.8483 14.3323 12.1604

(2.92, 3.30) 10.7992 10.7535 10.3666

(3.13, 2.94) 10.277 10.2726 10.1585

(3.15, 2.98) 10.1219 10.1216 10.1153

We therefore define a surrogate model, sm as follows. Let Gyv(K, r) indicate the closed

loop transfer function with K a given state feedback controller and r an actuator location.

For any r, the fixed attenuation γ(r) := γ̂(rk) is used and

sm(r) := ‖Gyv(K, r)‖∞. (6.1.2)

If the attenuation γ(r) is not achieved at r then sm(r) :=∞. Since the optimal attenuation

is a continuous function of r, the optimal attenuation at points near rk will be close to

γ̂(rk). This strategy works efficiently at points further away from the neighborhood of

rk as well since if the attenuation γ̂(rk) is not achieved at r, the optimal cost cannot be

achieved at r. Evaluation of the surrogate model requires the solution of one H∞-ARE

and the closed-loop H∞-norm, if the γ-attenuation is achievable. This requires much less

computation time than evaluating optimal attenuation γ̂(r).

6.1.4 Parallel Implementation

Approximation of partial differential equations yield systems of large model order. Even

with the use of the surrogate model in Algorithm 4, function evaluation at a point (that is,

calculating H∞-optimal attenuation at a particular actuator location) is time-consuming.
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The bottleneck is solving multiple large H∞-AREs. In Section 5.5, a parallel imple-

mentation of Algorithm 1 to solve large H∞-AREs is briefly discussed. This involves

partitioning matrices into several blocks and distributing the matrices cyclically among np

processes. This set of np processors form a process grid and work together to solve a H∞-

ARE. For the calculation of optimal H∞-attenuation at a fixed actuator location, multiple

(ng) process grids work together by solving multiple (ng) H∞-AREs simultaneously.

In the implementation of Algorithm 4, calculation of the surrogate model on different

locations is performed simultaneously on the same set of multiple ng subgrids. In both

search and poll steps, surrogate model evaluations at different locations are performed in

parallel.

6.2 Examples

Several examples motivated by partial differential equation models, vibrations on a simply

supported beam (Example 4.4.2) and diffusion on an irregular geometry in 2D (Example

5.6.3), are examined to illustrate the algorithm.

In the implementation of Algorithm 4, evaluation of the surrogate model at different

locations is carried out simultaneously on parallel processors which speeds up the calcula-

tions. The percentage savings in CPU time with the inclusion of the surrogate model to

directional direct-search method is calculated as

#γ̂(·) without sm(·)−#γ̂(·) with sm(·)
#γ̂(·) with sm(·)

× 100. (6.2.1)

Also, the choice of our surrogate model is close to the true function (see Table 6.1), and

therefore, at most only one function evaluation is carried out in the search and poll steps

in each iteration. Thus, several expensive function evaluations are avoided because of the

inclusion of a surrogate model.

The beam problem (Section 6.2.1) was simulated using Matlab 7.11 (R2010b) on a

Sun x4600 with 8 opteron 8218 CPU’s (2.6 GHz) and 32 GB RAM. An improved bisection

algorithm (Algorithm 3) is used to calculate the H∞-optimal attenuation for fixed actuator
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locations. For systems of moderate size (Section 6.2.1), the iterative method proposed in

[82] is used to solve the fixed attenuation H∞-control problem. A Schur method [84] is

used to solve the intermediate sequence of linear quadratic control problems. A Hautus

test (for eg. [134, pg. 50]) is used to verify stabilizability in step 6 of algorithm presented

in [82]. A set of 4 search points and 2 poll points are chosen in each iteration of Algorithm

4. The surrogate model is evaluated simultaneously on 4 parallel threads at these points.

The forcing function g(α) = α2 is used for these systems.

The diffusion problem was simulated using GSL libraries in C with SCALAPACK

routines on a HP Proliant SL165z G7 server with 320 nodes, where each node contains

12-core AMD opteron 6174 CPU’s(2.2 Ghz) and 32 GB RAM. On the diffusion problem

(Section 6.2.2), an extended iterative method (Algorithm 1) that is suitable for large-scale

descriptor systems such as this was used to solve H∞ Riccati equations. A 2× 2 processor

grid is used and the matrices are distributed among different processors to solve large H∞
Riccati equations in parallel using ScaLAPACK routines. Here, 8 points are chosen in both

search and poll steps in each iteration of Algorithm 4. The surrogate model on 8 locations

are evaluated simultaneously on 8 such processor grids. Thus, in all, 32 processors were

used for the calculation of optimal actuator location for large-scale systems. The forcing

function g(α) = 0.01×α3 and the tolerance ε = 0.05 are used in the directional direct-search

algorithm.

6.2.1 Simply supported beam with Kelvin-Voigt damping

Example 6.2.1. Consider a simply supported Euler-Bernoulli beam presented in Example

4.4.2 with Kelvin-Voigt damping:

∂2w

∂t2
+ Cv

∂w

∂t
+ Cd

∂5w

∂x4∂t
+
∂4w

∂x4
= br(x)u(t) + d(x)v(t), t ≥ 0, 0 < x < 1, (6.2.2)

In computer simulations, the parameters were set to Cv = 0.1, Cd = 0.0001. By choosing

moment and velocity as state components (z(t) = ( ∂2

∂x2
w(·, t), ∂

∂t
w(·, t))), the system (6.2.2)-

(4.4.6) is well-posed on the state space Z = L2(0, 1)× L2(0, 1) [37]; see Example 5.6.2 for

details. An obvious choice of measurement is equal weights on all states C = I. The
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approximation scheme in Example 4.4.2 is used here, since it satisfies all the assumptions

of Theorem 4.2.4 and Theorem 4.4.1; see [99] for details.

Figure 6.2: Variation of H∞-cost with respect to actuator location on the length of the

beam (6.2.2) with d = b0.7, C = I approximated with 15 eigenmodes
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Consider the problem of finding the optimal location of an actuator on (6.2.2) with

a disturbance d = b0.7 centered at x = 0.7 of width ε = 0.001. Since there is only one

control, choose control weight R = 1. Figure 6.2 shows that the H∞-cost is not convex

over the length of the beam with N = 15 eigenmodes. As shown in Figure 6.3, the optimal

cost and the corresponding actuator location for different approximations (N = 1, . . . 15

eigenmodes) converge to µ = 0.9976 and the corresponding optimal actuator location is

r̂ = 0.7. If the actuator was placed instead at r = 0.65, then the H∞-cost increases to

γ̂(r) = 1.1613; a degradation of 16.4%.

Example 6.2.2. Consider the problem of finding an optimal location of an actuator for

(6.2.2) now with 2 disturbances d1 = 10 × b0.25, d2 = 10 × b0.75, centered at x = 0.25 and

x = 0.75 respectively with width ε = 0.001. Since there is only one control, choose control

weight R = 1. It is natural to think that the optimal actuator location might fall at the
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Figure 6.3: Convergence of optimal performance and corresponding H∞-optimal actuator

location on a simply supported beam with d = b0.7 (Example 6.2.1)
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(b) Optimal actuator location
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Figure 6.4: Variation of H∞-cost with respect to actuator location on (6.2.2) with 2 dis-

turbances placed at x = 0.25 and x = 0.75 (Example 6.2.2)
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Figure 6.5: Convergence of optimal performance and corresponding H∞-optimal actuator

location on a simply supported beam with 2 disturbances located at x = 0.25 and x = 0.75

(Example 6.2.2)
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center x = 0.5 since the 2 disturbances are symmetrical with respect to the center of the

beam. Figure 6.4 shows the H∞ cost function for N = 15 eigenmodes over the length of

the beam. As shown in Figure 6.5, the H∞-optimal cost and the corresponding actuator

location calculated for different approximations converge to µ = 14.0 and the optimal

actuator location r̂ = 0.75. The H∞-optimal actuator location for this problem falls on

either of the two disturbance locations. The optimal attenuation at r = 0.5 is γ̂(r) = 110

and the percentage error in performance at this location is 686%. This indicates that center

of the beam is a poor choice to place the actuator.

Example 6.2.3. Now consider placing two actuators on the simply supported beam: d1 =

10× b0.25, d2 = 10× b0.75, centered at x = 0.25 and x = 0.75 respectively, each with width

ε = 0.001. Since there are two controls, choose control weight R = I2×2. The parameters

used for this problem are same as the above examples except here the number of poll

points used is 4 instead of 2. Figure 6.6 shows the H∞ cost function for N = 5 eigenmodes

when the locations of both actuators are varied over the length of the beam. As shown
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Figure 6.6: Variation ofH∞-cost with respect to the locations of two actuators on the beam

with 2 disturbances placed at x = 0.25 and x = 0.75 approximated with 5 eigenmodes

(Example 6.2.3)

in Figure 6.7, the H∞-optimal cost and the corresponding actuator locations for different

approximations N = 1, . . . 15 calculated using our Algorithm 4 converge to µ = 9.9 and

the optimal actuator locations are r̂1 = 0.25, r̂2 = 0.75. As expected, the H∞-optimal

actuator locations for this problem falls on the two disturbance locations. Instead, if the

actuators are placed at r1 = 0.3, r2 = 0.6, then the H∞-performance is γ̂(r1, r2) = 16. The

degradation in performance is 61.6%.

Example 6.2.4. Now consider placing two actuators on the simply supported beam where

the 2 disturbances are not symmetric, that is, d1 = 10 × b0.4, d2 = 10 × b0.9, centered at

x = 0.4 and x = 0.9 respectively, each with width ε = 0.001. Since there are two controls,

choose control weight R = I. The H∞-optimal cost for different approximations converged

to µ = 8.5 (Figure 6.9a). As shown in Example 6.2.3, one might expect that the optimal

locations would be the same spots as that of the disturbances. Figure 6.8 shows that there

are multiple local minima on this problem. However, they are not at disturbance locations.

As shown in Figure 6.9b, the optimal actuator locations are r̂1 = 0.58 and r̂2 = 0.23 which
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Figure 6.7: Convergence of optimal cost and corresponding H∞-optimal actuator locations

of 2 actuators on a simply supported beam with 2 disturbances (Example 6.2.3)
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Figure 6.8: Variation of H∞-cost with respect to the locations of two actuators (on X

and Y axes) on the beam with d1 = 10 b0.4, d2 = 10 b0.9, C = I, approximated with 5

eigenmodes (Example 6.2.4)
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Figure 6.9: Convergence of H∞-performance and corresponding optimal actuator location

for different approximations of the K-V damped beam with d1 = 10 b0.4, d2 = 10 b0.9, C = I

(Example 6.2.4)
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are not near the disturbances. If, instead of placing the actuators at the optimal location,

the actuators are collocated with the disturbances, that is r1 = 0.4 and r2 = 0.9, then the

H∞-performance is γ̂(r1, r2) = 10. The degradation in performance is 17.5%.

Table 6.2 shows the improvement in computation time caused by use of the surrogate

model in Algorithm 4.

6.2.2 Diffusion on 2D

Example 6.2.5. Consider the heat diffusion problem in Example 5.6.3. Now, consider

variable diffusivity coefficient κ(x, y) (Figure 6.10) on the irregular geometry Ω (Figure

5.4). Let the exogenous disturbance v(t) induce a uniform load on the geometry. The

average temperature of the whole domain is measured. The approximation method used in

Example 5.6.3 is used for the calculation of optimal actuator location. The original problem

is both stabilizable and detectable and so are the approximating problems; see [96]. This
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Table 6.2: Performance of Algorithm 4 on simply supported beam (Example 6.2.1) for 2

different approximations. The savings in computation time over an algorithm that doesn’t

use the surrogate model is shown.

Property N = 1 N = 15

Order 2 30

# iterations in Algorithm 4 26 8

Overall time taken by Algorithm 4 141.7 secs 41.63 secs

# γ̂(·) evaluations 26 1

# sm(·) evaluations 153 48

% savings in CPU time 192% 2300%

Figure 6.10: Diffusivity coefficient κ(x, y) = 3(3− x)2e−(2−x)2−(2−y)2) + 0.01
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Figure 6.11: Optimal H∞-cost of diffusion problem (Example 6.2.5) over different approx-

imations
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approximation scheme satisfies all the assumptions of Theorem 4.2.4 and Theorem 4.4.1;

see [99] for details. The optimal H∞-cost calculated over Ω using Algorithm 4 on different

approximation sizes converged µ = 15 as shown in Figure 6.11. The corresponding H∞-

optimal actuator location converged to r̂ = (3.1, 3.35). If the actuator was placed instead

at r = (1.5, 3), then the H∞-cost increases to γ̂(r) = 28 which is almost twice the optimal

H∞ cost. In this problem, optimal actuator location is not the center of the geometry due

to the irregularity in the domain and the variable diffusivity coefficient.

Evaluation of γ̂(·) is highly expensive since the order of the approximating system can

be high. Table 6.3 shows that the use of a surrogate model considerably improves the

speed of the algorithm.

Example 6.2.6. Now consider a different disturbance. Let the effect of disturbance be

concentrated in a region of high diffusivity (a square patch centered at (2, 1.5) with half-

width 0.2). The optimal actuator location is (2.2, 3.1), which is in a region of low-diffusivity.

If instead, the disturbance is in a low-diffusivity region, a square patch centered at (3, 3)
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Table 6.3: Performance of Algorithm 4 on Example 6.2.5 for different approximations.

The savings in computation time over an algorithm that doesn’t use the surrogate model

is shown.

Property Coarse Fine

Order 200 700

# iterations in Algorithm 4 15 4

Overall time taken by Algorithm 4 1 hr 10 mins 5 hrs 50 mins

# γ̂(·) evaluations 10 1

# sm(·) evaluations 208 64

% savings in CPU time 940% 3100%

with half-width 0.2, then the optimal actuator location falls close to the same location as

the disturbance as shown in Figure 6.12. This suggests that in diffusion problems, the

actuator should be placed in a region of low diffusivity, but further investigation is needed.

Example 6.2.7. Suppose now there are 2 disturbances contained within square patches

centered at (0.5, 0.5) and (0.5, 3), each with half-width 0.2. Consider the problem of placing

2 actuators. The control weight R = I is chosen. Since 2 actuators are to be placed

16 combinations of poll directions are considered. Our algorithm calculated the optimal

locations as r̂1 = (0.52, 0.48) and r̂2 = (1.8, 3.13) and the optimal cost converged to

µ = 9.22. One of the actuators is close to the disturbance that is in a region of low

diffusivity. The optimal location for the other actuator is far from the other disturbance as

shown in Figure 6.13. If the actuators are placed at the same location as the disturbances

r1 = (0.5, 0.5), r2 = (0.5, 3) then the H∞-cost increases to γ̂(r1, r2) = 10.02; a degradation

of 8.6%. Thus, optimal actuator placement depends on the shape of the domain, location

of the disturbance(s) and diffusivity.

An algorithm for calculating H∞-optimal actuator locations has been described and

illustrated with several examples arising from partial differential equation models. Use of

a surrogate model considerably improves the speed of the algorithm. Examples indicate

that performance is strongly dependent on actuator location, and the optimal locations
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Figure 6.12: When disturbance is concentrated in a region of high diffusivity (D1 in figure),

optimal actuator location falls at a region of low diffusivity (A1 in figure). When distur-

bance is concentrated in a region of low diffusivity, optimal actuator location collocates

(D&A in figure).
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do not always agree with intuition, which supports the use of an algorithm for optimal

actuator location.
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Figure 6.13: When 2 disturbances are concentrated at (0.5, 0.5) (D1 in figure) and (0.5, 3)

(D2 in figure) respectively, then one actuator collocates (A1 in figure) but the other doesnt

(A2 in figure)
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Chapter 7

Conclusion and Future Research

The central focus of this thesis has been the development of a mathematical framework for

calculating optimal actuator locations in the context of H∞ control with state feedback.

The H∞-cost at a particular actuator location is the optimal H∞-disturbance attenuation

at that location. This cost is the best attenuation of the worst-case disturbance [117].

In Section 4.2, it was shown that under certain weak conditions the H∞-cost function is

continuous with respect to actuator location, and thus, the H∞-optimal actuator loca-

tion problem is well-posed. Both the control operator B and the disturbance operator D

must be compact. In contrast to the LQ-optimal actuator location problem, there is no

restriction on the measurement operator C. In many control systems modeled by par-

tial differential equations, approximations are used in H∞ controller design and thus in

selection of the actuator location. It was established that the assumptions on the approx-

imation scheme required for H∞ controller design also lead to a convergent sequence of

H∞-optimal actuator locations. In Section 4.4, examples have been provided to illustrate

that convergence may fail when the assumptions are not satisfied.

Several numerical issues are associated with the calculation of H∞-optimal actuator lo-

cations. Consider the standard problem of calculation of optimal attenuation, with a fixed

actuator location. Some existing numerical methods (for instance [31, 57, 84, 82, 112])

to calculate optimal attenuation were reviewed in Section 5.2. An extension of the game

theoretic iterative method to large-scale descriptor systems that arise in approximation of
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partial differential equations has been developed (Section 5.3). An improved bisection al-

gorithm to calculate optimal attenuation has been suggested in Section 5.4. A distributed

parallel implementation of solving large H∞-Riccati equations on a multi-processor archi-

tecture was described in Section 5.5. Using several examples motivated by partial differ-

ential equations, it was showed that the performance of our extended algorithm is similar

to Schur method [84] in many cases. However, on several examples, the extended iterative

method was both faster and more accurate than the Schur method and other methods

(Section 5.6).

The calculation of H∞-optimal actuator locations is difficult due to the lack of gradient

information. Directional direct-search, which is a popular derivative-free method, is used

for minimizing optimal attenuation over all actuator locations. Several advantages of this

method for calculating H∞-optimal actuator locations have been exploited to speed up the

convergence. An algorithm for calculating H∞-optimal actuator locations is described in

Section 6.1.

The H∞ optimal actuator location algorithm was used on several examples arising from

partial differential equation models in Section 6.2. It was shown that the use of a surrogate

model considerably improves the speed of the algorithm. Performance is strongly depen-

dent on actuator location, and the optimal locations do not always agree with intuition,

which supports the use of an algorithm for optimal actuator location.

This thesis has only been concerned with the optimal actuator location problem. Op-

timal sensor location problem is dual to this problem, since the design of an estimator is

dual to the design of a state-feedback controller [102]. If the actuator and sensor location

problems are treated separately, then all the results in this thesis extend immediately to

H∞ optimal sensor location problem, which would involve calculating the solution of a

dual H∞-algebraic Riccati equation.

The control operators for a class of boundary control systems are often unbounded.

In the case of linear quadratic optimal actuator location problem, it was shown that the

compactness assumption on control operators can often be weakened if the underlying

semigroup is analytic [83]. This suggests that the results in this thesis might possibly

extend to the case when B is not compact by considering analytic semigroups.
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An interesting extension would be to consider output feedback. In many practical

applications, all the states are not available for measurement. In the case of linear-quadratic

criterion, an estimator is designed first by solving the dual Riccati operator equation and

then, a state-feedback controller is designed [37]. Several challenges are involved in the

calculation of LQ optimal actuator location using output feedback.

In the case of H∞ control with output feedback, the two H∞ Riccati operator equations

are coupled. This coupling makes the problem complicated and challenging. For fixed

actuator locations, conditions under which approximations yield reliable results are given

in [101]. The problem of using approximations to determine optimal actuator locations for

H∞-control with output feedback is open.

The problem of calculating the optimal number of actuators and sensors for the full

partial differential equation model is open.

Future research includes considering the effect of modelling errors, uncertain spatial

location of the disturbance and comparing the effect of different cost functions, such as H2

and H∞, on optimal actuator location.
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