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Abstract

A main problem in machine learning is to predict the response variables of a test set given

the training data and its corresponding response variables. A predictive model can perform

satisfactorily only if the training data is an appropriate representative of the test data. This

intuition is reflected in the assumption that the training data and the test data are drawn

from the same underlying distribution. However, the assumption may not be correct in

many applications for various reasons. For example, gathering training data from the test

population might not be easily possible, due to its expense or rareness. Or, factors like

time, place, weather, etc can cause the difference in the distributions.

I propose a method based on kernel distribution embedding and Hilbert Schmidt Inde-

pendence Criteria (HSIC) to address this problem. The proposed method explores a new

representation of the data in a new feature space with two properties: (i) the distributions

of the training and the test data sets are as close as possible in the new feature space,

(ii) the important structural information of the data is preserved. The algorithm can re-

duce the dimensionality of the data while it preserves the aforementioned properties and

therefore it can be seen as a dimensionality reduction method as well. Our method has a

closed-form solution and the experimental results on various data sets show that it works

well in practice.
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Chapter 1

Introduction

In the realm of machine learning, a model is trained to predict the response variables of a

test data set. The training procedure is usually based on minimizing a loss function over

all samples of a training data set and their corresponding response variables. However,

learning achieves its purpose only when the training data set is a suitable representative

of the test data set; otherwise the method learns unrelated information, and therefore the

efficiency of the prediction is not satisfactory.

In conventional predictive models, the intuition that the training data is a suitable rep-

resentative of the test data is reflected in the assumption that the underlying distributions

of the training and test data sets are identical. But this assumption is not always valid.

As an example, Figure 1.1 shows artificial samples that belong to a binary classification

problem with non-similar probability distributions for the training and test data sets. It

shows the training samples are not good representatives of the test data set.

Different reasons may cause the underlying probability distributions of the training and

test data sets to be different. The reason might be in the difficulty or uncontrollability in

gathering data. For example, having samples in the training data set from the test data
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Figure 1.1: Probability distributions of training and test data sets in a binary classification

problem.

set distribution might not be possible as it costs a lot or because of its unavailability at the

moment. In other cases, the process of gathering training data might involve a selection

process, i.e., the training data samples are selected based on a parameter which might

cause the difference in the probability distributions of the training and test data sets1.

Therefore, for various reasons, the training and test data set domains need to be adapted

before any further predictive analysis.

In last decades, attention has been focused on domain adaptation problem in machine

1A typical example is that of credit scoring: the training data set consists of only customers who have

requested for a loan and their request has been accepted (the customers whose requests have been rejected

are not included in the training data set).
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learning [1, 2]. It is now widely used in diverse fields [2, 3]. Some examples in which a

domain adaptation algorithm helps improving the efficiency of a predictive model are:

• The problem of generating a predictive model for a certain cancer diagnosis. Avail-

able data sets are usually from older populations who are more likely to have the

cancer and are willing to be monitored; however the test data set population is not

necessarily from the same age group.

• Analysis of web data volumes that are increasing daily. Obviously, the distribution of

customers’ feedback for a new shoe in Amazon is different from reviewers’ feedback

for a book (because people use different terminology to express similar concepts for

different objects.). However, it might be desirable to classify data into the positive

and the negative feedbacks for the new shoe product with a model trained based

on the feedbacks for books. Achieving this goal is accomplished by transferring the

learned information from book reviews in an intelligent way.

• Studying the effect of new developed drugs on human body. The test data set response

variables might not be accessible due to ethical concerns. Or, although the response

variables to the previously tested drugs or similar drugs on other species can be

available, the training data set might not include the effect of a new or a risky drug

on humans. So in spite of having numerous samples in the training data set, its

distribution might differ from that of a new untested drug data for various reasons

like difference in the probability distributions of the people who are prescribed for

different drugs.

• The biased procedure of collecting data in a web survey. The training data set includes

people who have access to the internet while the test data set is for example, all

citizens of a country. So gathering the data from on-line questionnaires makes the

training distribution inclined to a specific group of people.

3



• Data might only be valid for a period of time. For example, the attitude about a

book, author, music, etc. can change over time. So, if the test data set is gathered

after the time when the training data is valid, the training data set will not be a

good representative of the test data set.

In this thesis, I propose a new domain adaptation method and test its performance on toy

and real data sets. The remainder of this chapter describes the notation and the overview

of the existing methods.

1.1 Notation

Let X denote a random variable (i.e. input variables in the original feature space) and

Y denote its corresponding response variables (i.e. output variables like class labels).

P (X ,Y) is the underlying joint probability distributions of X and Y . In domain adaptation

problems, the probability distributions of the training and test data sets (source and target

domains respectively) are different. Ptr(X ,Y) and Pts(X ,Y) denote the underlying true

joint probability distributions of the training and test data sets respectively. Ptr(X ),

Ptr(Y), Pts(X ) and Pts(Y) denote the true marginal probability distributions of X and

Y in the training and test data sets. Similarly, Ptr(X|Y) and Pts(X|Y) are used to show

the true conditional probability distributions in the two domains.

The bold lower case alphabet is used to refer to a vector like a specific observation of a

variable. P (x,y) where x ∈ X and y ∈ Y , shows the joint probability of a sample x and

its corresponding label (response variable) y. It is equal to P (X = x,Y = y).

x is a d-dimensional sample. Xtr and Xts denote the matrices of the training and test

data set samples of size d × ntr and d × nts respectively. ntr and nts are the numbers of

the samples in the training and test data sets respectively. Xd×n = [XtrXts] is a matrix of

n, d−dimensional samples where n = ntr + nts.

4



1.2 Overview

Predictive models learn a function, f(x), which will be used for predicting the response

variables. The function is estimated to have a predefined loss function minimized. The

most frequently used loss functions include:

1. Logistic loss function

llog(f(x),y) = log(1 + exp(−yf(x)) (1.2.1)

2. Hinge loss function

lhinge(f(x),y) = max(0, 1− yf(x)) (1.2.2)

3. Exponential loss function

lexp(f(x),y) = exp(−yf(x)) (1.2.3)

4. Squared loss function, it is one of the favourites that is frequently used:

lsquared(f(x),y) = (y− f(x))2 (1.2.4)

The training classification error of a predictive model is the minimized loss function over

all the training samples in the training step:

εtr =

∫ ∫
l(f(x),y)ptr(x,y)dxdy, (1.2.5)

It is desired to have the minimum classification error, ε, which is the loss over the test data

set. It is defined as:

ε =

∫ ∫
l(f(x),y)pts(x,y)dxdy. (1.2.6)

If the training and the test data sets do not share the same probability distribution, min-

imizing the objective function in Equation 1.2.5 will not, in general, yield the minimum

loss over the test data set in Equation 1.2.6.
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Depending on the initial assumptions, a domain adaptation problem gets different

names [4]. ”Covariate shift” [5, 6] and ”class imbalance” [7] are two examples with different

initial assumptions:

• Covariate shift- Decomposing the joint probability distributions of the training and

test data sets as

ptr(X ,Y) = ptr(X )ptr(Y|X )

pts(X ,Y) = pts(X )pts(Y|X ),

the problem fits into the so called ”covariate shift” [5], if ptr(Y|X ) = pts(Y|X ) and

ptr(X ) 6= pts(X ). It assumes all the difference between the joint probability distribu-

tions of the training and test data sets is due to the difference between their marginal

probability distributions.

• Class imbalance- Decomposing the joint probability distributions of the training and

test data sets as

ptr(X ,Y) = ptr(Y)ptr(X|Y)

pts(X ,Y) = pts(Y)pts(X|Y),

the problem fits into the so called ”class imbalance” [8, 9], if ptr(X|Y) = pts(X|Y)

and ptr(Y) 6= pts(Y). It assumes all the difference between the joint probability

distributions of the training and test data sets is due to the difference between the

marginal probability distributions:

ptr(Y) 6= pts(Y). (1.2.7)

Comparing different problems with different settings, there are also closely relevant

but not equivalent problems that have been studied extensively including semi-supervised

learning [10, 11] and multi-task learning [12, 13].
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In semi-supervised learning, regardless of traditional learning methods, both the unla-

beled data and the labeled data are utilized to improve the performance of the classifier.

Domain adaptation is similar to a semi-supervised problem in the sense that ignoring the

difference between the training and the test data set domains, a semi-supervised problem

remains if the labeled samples of the training data set are treated as the labeled data

and the unlabeled samples of the test data set are treated as the unlabeled data of the

semi-supervised learning [14].

In multi-task learning, instead of having different joint probability distributions for

the training and test data sets, there are M various response variables. So, there are M

different joint probability distributions {P (X ,Yk)}Mk=1 for learning M tasks [12, 13, 15, 16].

Multi-task learning and domain adaptation problems are very similar to each other in the

sense that both deal with different probability distributions. Domain adaptation can be

transformed to a special case of multi-task learning where the training domain and the

test domain are treated as two tasks and they do have the same class labels. Indeed,

some of the proposed algorithms for domain adaptation are basically multi-task learning

algorithms [17].

Although domain adaptation has been studied under different names [4] e.g. covariate

shift [5], class imbalance [7], semi-supervised learning [11, 18, 19], multi-task learning

[13, 15, 16] and sample selection bias [20, 21], all these methods usually tackle the problem

by two approaches: re-weighting source instances or changing the representation space

[4] which are explained in Sections 1.2.1 and 1.2.2. The other approaches are mentioned

briefly in Section 1.2.3.

1.2.1 Re-weighting source instances

Considering a domain adaptation problem, the goal is to have an optimal model, f ∗(x)

which minimizes the expected loss function over the samples of the test data set defined in

7



Equation 1.2.6. However, the optimal model is estimated based on Equation 1.2.5 over the

samples of the training data set. In order to solve the issue of the difference between the

probability distributions of the training and test data sets; weights, wtr(x,y), are assigned

to the pre-defined loss function in Equation 1.2.5. A modified loss function over the training

data set is then minimized [2, 22]. The objective function is rewritten as

f ∗(x) = arg min
f∈F

∫ ∫
wtr(x,y)Ptr(x,y)l(f(x),y)dxdy, (1.2.8)

where each instance weight, wtr(x,y), is defined to be

wtr(x,y) =
Pts(x,y)

Ptr(x,y)
, (1.2.9)

for each sample of (x,y) ∈ (Xtr,Ytr). Therefore, the objective function is equal to

f ∗(x) = arg min
f∈F

∫ ∫
Pts(x,y)

Ptr(x,y)
Ptr(x,y)l(f(x),y)dxdy

= arg min
f∈F

∫ ∫
Pts(x,y)l(f(x),y)dxdy (1.2.10)

It shows minimizing the weighted loss function over the training data samples is the same

as minimizing the loss function over the test data samples as Equation 1.2.6. To estimate

the weights, wtr(x,y), it is not required to calculate the joint probability distributions

of the training and test data sets separately. It only needs to have an approximation of
Pts(x,y)
Ptr(x,y)

.

For example, in class imbalance setting, this ratio is simplified to

Pts(x,y)

Ptr(x,y)
=

Pts(y)

Ptr(y)

Pts(x|y)

Ptr(x|y)
(1.2.11)

=
Pts(y)

Ptr(y)
, (1.2.12)

since the conditional probability distributions of the training and test data sets are assumed

to be identical [8, 9]. Therefore, the problem is broken down to estimating Pts(y)
Ptr(y)

instead

8



of Pts(x,y)
Ptr(x,y)

. The solution of this problem depends on whether the marginal test probability

distributions are known a priori [8] or there is no prior knowledge about that [9, 23, 24].

Covariate shift setting is another example, this ratio is simplified differently based on

the assumption that Pts(y|x) = Ptr(y|x) and Ptr(x) 6= Pts(x) [5, 23, 24]:

Pts(x,y)

Ptr(x,y)
=

Pts(x)

Ptr(x)

Pts(y|x)

Ptr(y|x)
(1.2.13)

=
Pts(x)

Ptr(x)
(1.2.14)

To estimate Pts(x)
Ptr(x)

, different methods have been suggested: Shimodaira proposed a

method based on a non-parametric kernel density estimation [5], Zadrozny transformed

the problem into a new one in which for each instance it is needed to specify if it is from

the training data set or the test data set[21], and Huang et. al transformed the problem

into a kernel mean matching problem in a reproducing Hilbert space [2].

In the cases where there are no assumption on the similarity of Ptr(x|y) and Pts(x|y)

or Ptr(y|x) and Ptr(y|x), the problem is handled differently. For example, Jiang et. al have

suggested a supervised method in which the ”misleading” samples are removed to make

the joint distribution of the training and test data sets similar to each other [25].

1.2.2 Changing the representation space

In this approach, the data is mapped into a new feature space. Regardless of the di-

mensionality of the new representation of data which might be in a higher [26] or lower

dimensional space [27, 28], the probability distributions of the training data and that of

the test data in the new feature space are more similar.

Putting it into mathematics, let Ψ : X → Z, map the data into a new space called Z.

9



The probability distribution of z ∈ Z is

P (z) =
∑

x∈X ,g(x)=z

P (x). (1.2.15)

therefore the joint probability distribution of z and y is:

P (z,y) =
∑

x∈X ,g(x)=z

P (x,y). (1.2.16)

It is desired to find a new representation of data in which the probability distributions

of the training and test data sets are more similar. The closeness of two probability distri-

butions is estimated based on the distance between corresponding distributions. However

the new representation of data must be capable of keeping the valuable information hidden

in the data (needed for any further analysis).

This approach has been studied extensively. For example, Satpal et. al proposed a

feature selection algorithm where the features are chosen based on minimizing the distance

function between Ptr(Z,Y) and Pts(Z,Y) [29]. Blitzer et. al proposed a structural corre-

spondence learning (SCL) algorithm that takes advantage of the unlabeled test data for

finding a low rank representation of the data with Ptr(Z,Y) = Pts(Z,Y) [28].

1.2.3 Others

The other approaches for tackling domain adaptation problems are combined models for

which a mixture of models is learned to improve the performance and efficiency of the

algorithm. There exist numerous algorithms that work based on this approach. Daume III

et al. proposed a method which basically learns three components utilizing the response

variables of both the training and test data sets. One of the components is shared between

the training and test data sets and the other two are specified to the training and test

data sets separately [30]. Storkey et al. also suggested a method which assumes only the

10



response variables of the training data set is accessible. It considers a more general mixture

of models based on expectation maximization (EM) [31]. Dai et. al proposed a method that

uses an algorithm called AdaBoost to address the domain adaptation problem [32]. There

are also some work based on Bayesian Priors. For example, Li and Bilmes [33] suggested

a general Bayesian divergence prior framework that can be instantiate for a variety of

classifiers.

1.3 Contribution

There are common drawbacks among all the mentioned methods: (i) approximation of the

underlying distributions makes solving the problem hard in high dimensional data sets,

and (ii) some domain adaptation techniques are applicable only to restricted predictive

models.

In this thesis, I propose a method that overcomes the above drawbacks based on kernel

distribution embedding and Hilbert Schmidt Independence Criterion (HSIC). The proposed

algorithm finds a new representation of the data in a new feature space such that the

underlying probability distributions of the embedded training and test data sets are as

close as possible and the important structural information of the data is also preserved for

any further predictive analysis. These two constraints make a single optimization problem

which has a closed-form solution. The algorithm has a good performance when the data

is mapped to a lower dimensional space. So it can be used a dimensionality reduction

technique as well.

11



1.4 Outline

This thesis is organized as follows: In Chapter 2, I briefly explain Hilbert-Schmidt Indepen-

dence Criterion (HSIC), Maximum Mean Discrepancy(MMD) and then I will continue to

explain my algorithm. The experimental results and conclusions are presented in Chapters

3 and 4 respectively.
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Chapter 2

Adapting Component Analysis

2.1 Introduction

A predictive model problem includes the training samples, their corresponding response

variables, if accessible, and the test samples. The goal is to find the response variables of the

test samples. The probability distributions of the training and test data sets are generally

assumed to be the same in most of the predictive models. However, the training and the

test data sets may not be governed by the same probability distribution and the predictor

models assumption may be violated. This problem has been called domain adaptation and

it should be solved before any further predictive analysis.

We reviewed two main approaches in literature for solving a domain adaptation prob-

lem: (i) re-weighting the source instances and (ii) changing the representation space. How-

ever, these approaches have some drawbacks. In the first approach, re-weighting the source

instances, it is typically required to approximate at least one probability distribution which

itself can be problematic in high-dimensional data. In the second approach, changing the

representation space, the algorithm is either restricted to linear transformations, or even

13



if it covers the non-linear cases, it is not practically efficient in a high dimensional data.

That is because of their iterative nature which makes solving corresponding optimization

problems computationally intensive and time consuming.

In this chapter, a domain adaptation algorithm is proposed, based on the second ap-

proach, that is changing the representation space. This algorithm overcomes the aforemen-

tioned drawbacks which exist in the mentioned algorithms: First, in the proposed method,

there is no need for approximating any probability distribution which has been a problem

in re-weighting the source instances approach. Second, there is no linearity constraint or

assumption for solving the problem and the algorithm finds a new representation of the

data without solving any iterative optimization problem. Indeed, our proposed algorithm

has a closed-form solution. Moreover, the algorithm finds an appropriate representation of

the data in a new feature space of a lower dimension. Therefore, having the dimensionality

of the new representation smaller than its original space, the algorithm can be considered

as a dimensionality reduction method.

Our proposed domain adaptation algorithm explores a new representation of the data

in a new feature space satisfying the following properties: (i) it makes the probability

distributions of the training and test data sets in the new feature space as close as possible.

(ii) it does not disturb the meaningful and important features of the original data set.

In order to achieve these two properties, we first need to have a definition and an

estimate of the distance between two probability distributions. The distance is formu-

lated based on Hilbert-Schmidt independence criteria and Maximum Mean Discrepancy

(MMD) which are explained in more details in Section 2.2. Our algorithm called, UnSu-

pervised Adopting Component Analysis (US-ACA), is introduced in Section 2.3. It forms

the foundation of its semi-supervised version introduced in the same section. We will show

while US-ACA does not use any information about the labels or response variables of the

data, Semi-Supervised ACA (SS-ACA) utilizes the available response variables data and
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therefore its performance is improved significantly.

2.2 Preliminaries

I first review Hilbert-Schmidt Independence Criteria (HSIC) and the Maximum Mean

Discrepancy (MMD). These are needed for establishing and justifying our algorithm.

2.2.1 Hilbert-Schmidt Independence Criterion

Hilbert-Schmidt Independence Criterion is a measure of dependency between two random

variables. HSIC is based on the fact that if X and Y are two random variables, then these

two random variables are independent if and only if any continuous function of them are

uncorrelated. The correlation of the two random variables is formulated as their covariance.

Assume F and G be the separable Reproducing Kernel Hilbert Space (RKHS) of real-valued

functions from X and Y to R with universal kernels K(., .) and L(., .) respectively [34].

The covariance between f(x) and g(x) is

cov(f(x), g(x)) = Ex,y[f(x)g(y)]− Ex[f(x)]Ey[g(y)] (2.2.1)

where E denotes the expected value and f and g, are two functions in F and G respectively.

It is shown that there exist a unique cross-covariance operator CXY : G → F that maps

the elements of G to the elements of F such that

〈f, CXYg〉 = cov(f(x), g(y)),∀f ∈ F ,∀g ∈ G. (2.2.2)

HSIC is defined to be the squared of the Hilbert-Schmidt norm of the cross-covariance

operator

HSIC(PXY ,F ,G) := ‖CXY‖2
HS (2.2.3)
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where ‖.‖2
HS denotes the squared of Hilbert-Schmidt norm and PXY is the joint probability

distribution of random variables X and Y [34]. It can be shown that the iff ‖CXY‖2
HS = 0,

the two random variables X and Y are independent as long as their RKHSs are universal.

The cross-covariance operator is

CXY := Ex,y[(Φ(x)− µx)⊗ (Ψ(y)− µy)] (2.2.4)

where µ is the mean, Φ and Ψ, are the feature maps of F and G respectively and ⊗ is the

tensor product. HSIC is expressed in terms of kernel functions:

HSIC(PX ,Y ,F ,G) = Ex,x′,y,y′ [K(x,x′)L(y,y′)]

+ Ex,x′ [K(x,x′)]Ey,y′ [L(y,y′)]

− 2Ex,y[Ex′ [(x,x′)]Ey′ [L(y,y′)]] (2.2.5)

where Ex,x′,y,y′ is expectation over (x,y) and (x′,y′) such that (x,y) and (x′,y′) are

random variables taken independently from PXY from Z := {(x1,y1), . . . , (xn,yn)} ⊆ XY
(i.e. the set of n observations). Estimating HSIC should be practical with a finite number

of samples to make it possible to measure the dependency between a finite number of

observations. An empirical estimation of HSIC is:

HSIC(Z,F ,G) := (n− 1)−2tr(KHLH) (2.2.6)

where H, K and L ∈ Rn×n, Kij := K(xi,xj), Lij := L(yi,yj), H is the centering matrix

that is defined to be H := I− n−1eeT , and e is a vector of ones. If one of the kernels, let’s

say L is already centralized, then we have HLH = L and the formula will be simplified to

tr(KL) [34]. HSIC is a measure of dependency so, the larger the trace of the multiplication

of their corresponding kernels, tr(KL), the more the dependency between two random

variables, X and Y .
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2.2.2 Maximum Mean Discrepancy

Let’s assume X is the collection of two clusters {X(1)
i }

n1
i=1 and {X(2)

i }
n2
i=1 such that their

empirical distributions are defined as

π̂kP̂k =
1

n

n∑
i=1

α
(k)
i δxi (2.2.7)

where δ is the Dirac function, k ∈ {1, 2} (on the case of two clusters) denotes the cluster

label, α
(k)
i is a binary indicator variable taking 1 for xi ∈ k, and

π̂k =
1

n

n∑
i=1

α
(k)
i . (2.2.8)

Therefore

P̂ = π̂1P̂1 + π̂2P̂2,

where ∀i ∈ {1, 2}, P̂i is the probability distribution of cluster i and π̂i is the probability of

having a sample from ith cluster.

The Maximum Mean Discrepancy (MMD) [35] between the two sets of data with prob-

ability distributions P̂1 and P̂2 is a metric representative of the distance between the means

of those distributions and it has been defined as

MMD(P̂1, P̂2) = ‖µx[P̂1]− µy[P̂2]‖H (2.2.9)

= sup
g∈F ,‖g‖H≤1

(Ex∼P̂1
g(x)− Ey∼P̂2

g(y)),

where Ex∼P [Φ(x)] is the expectation value of the function Φ(x) (where the samples are

drawn from probability distribution P ) . It means the mean of a distribution is defined as

µx[P ] := Ex∼P [Φ(x)], (2.2.10)

where Φ is the embedding that Φ : X → F ,x 7→ K(x, .). For all possible g, it has been

shown that the further apart the P̂1 and P̂2, the larger the MMD.
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It has been also shown by Jegelka et al [35] that MMD can be expressed in terms of

the dependency between two sets of variables:

π̂1π̂2‖µ[P̂1]− µ[P̂2]‖2
H =

π̂2

n2π̂1

(α(1))TKα(1) +
π̂1

n2π̂2

(α(2))TKα(2) − 2

n2
(α(1))TKα(2)

= −HSIC(P, α(1))− const = tr(KL)− const, (2.2.11)

where K is the kernel matrix of the data and L is a matrix whose its entries are defined as

lij =


1
n

√
n1

n
α

(1)
i = α

(1)
j

1
n

√
n2

n
α

(2)
i = α

(2)
j

0 otherwise.

, (2.2.12)

based on binary class labels. Maximizing MMD will maximize the dependency between

the data distribution and the cluster assignments.

2.3 Adapting Component Analysis

As discussed in Section 1.2, the main challenge of domain adaptation problem is that of

the non-similarity of the probability distributions of the training and test data sets, i.e.

Ptr(X ,Y) and Pts(X ,Y). Our proposed method is based on the assumption that having

Ptr(Y|X ) = Pts(Y|X ), there exists a new representation of the data, Φ, such that the

probability distributions of the training and test data sets are similar:

Ptr(Φ) ≈ Pts(Φ), (2.3.1)

where Φ is defined to be

Ψ : X→ Φ, (2.3.2)

such that

Φ := [ΦtrΦts]. (2.3.3)
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Φtr and Φts denote the training and test data sets in the new representation space. Once

the appropriate representation is found, we can apply further predictive algorithms to the

samples in the new feature space where the joint probability distribution of the training

data set and that of the test data set are no longer far apart.

The construction of domain adaptation methods are different. These methods are cate-

gorized into unsupervised, semi-supervised, and supervised ones. An unsupervised method

is defined as having only the features from training and test data sets for learning. A

semi-supervised method has the training and test data sets and also the response variables

of the training data set for learning. In supervised algorithms, the response variables of a

few test samples are also available. Therefore, the learning procedure benefit from them

on top of the training and test data sets, and the response variables of the training data

set [17].

Here, we first propose, an unsupervised domain adaptation algorithm. We will call

it UnSupervised Adapting Component Analysis (US-ACA). The algorithm exploits only

the training and test data sets to find a new representation of the data, Φ, which makes

the probability distributions of the training and test data sets as close as possible. Then,

we will generalize the algorithm into a semi-supervised domain adaptation algorithm, in

which the response variables of the training data set are also exploited to strengthen the

US-ACA and this will be called Semi-Supervised ACA (SS-ACA).

The new representation, Φ, in both unsupervised and semi-supervised versions has two

properties: 1- the distance between the training and test data set distributions, Φtr and

Φts, is minimized and 2- Φ preserves the important structural properties of X. The first

property should be satisfied since it is assumed that in the new representation space, the

probability distributions are no longer far apart and the second property is essential to

have a reasonable performance in any further predictive analysis.
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2.3.1 Minimizing The Distance Between P (Φtr) and P (Φts)

Assuming Φ is the new representation of data in a new feature space, the distance between

the training and test data set probability distributions, P (Φtr) and P (Φts), can be measured

based on MMD which was introduced in Section 2.2.2 [35]:

Distance(P (Φtr), P (Φts) = ‖E[Φtr]− E[Φts]‖2
H. (2.3.4)

It can also be written as:

πtrπtsMMD(P (Φtr), P (Φts)) = πtrπts‖µ[P (Φtr)]− µ[P (Φts)]‖H (2.3.5)

= tr(HLMHLφ)− C (2.3.6)

where LΦ = ΦTΦ. LM is a kernel of the new representation of the data. LM is the kernel

similar to Equation 2.2.12 where the first cluster includes the training samples and the

second cluster consists of the samples of the test data set:

LM =

 α1ntr×ntr 0ntr×nts

0nts×ntr β1nts×nts

 (2.3.7)

where 0 and 1 are the matrices of all zeros and ones with specified dimensions respectively,

and α and β are defined as

α =
1

n

√
ntr
n

(2.3.8)

β =
1

n

√
nts
n
. (2.3.9)

2.3.2 Preserving the Properties of X

Although it seems that crucial criterion for solving domain adaptation problem is to make

the distance between distributions of the training and the test data sets as small as possible,
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this criterion by itself may not be adequate. This is because the new representation should

not lose any important and critical information in data for the future predictive analysis.

Figure 2.1 depicts the training and the test data set samples of a binary classification

problem. It is obvious that their corresponding joint probability distributions are different.

Figure 2.2 shows a new representation of the data that is just estimated based on minimiz-

ing the distance between the joint probability distribution of the training data set and that

of the test data set. The data is completely mixed and it looses its informative geometry.

Therefore, beside minimizing the distance between the aforementioned probability distri-

butions, the new representation should also preserve the important data features that are

needed for any post analysis.

A measure is needed for evaluating the second property. It seems the dependency

of the original data and its new representation can be a measure that shows how well

the structure and important features for predicting the response variables are preserved.

As we mentioned, Hilbert-Schmidt independence criteria is a measure for estimating the

dependency between two random variables:
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Figure 2.1: The training and test data set samples in the original space.
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Figure 2.2: The representation of the training and test data set samples in the new feature

space.

HSIC(X,Φ) = (n− 1)−2tr(HKxHLΦ), (2.3.10)

where LΦ is a kernel over Φ, for example ΦTΦ, and Kx is a valid kernel on the original

data. The choice of the kernel implies the structure that is desired to be preserved. For

example one can choose Isomap kernel:

K =
1

2
HD2H, (2.3.11)

where D is the geodesic distance matrix and H is the centring matrix that was defined

before in Section 2.2.1. Choosing Isomap kernel will keep the geodesic distance of the data

while a linear kernel preserve the Euclidean distance of the data. A list of some common

kernels are summarized in Table 2.3.2.

2.3.3 Unsupervised-ACA

To incorporate the two properties, minimizing the distance between P (Φtr) and P (Φts) and

preserving the structural properties of X , we propose an unsupervised domain adaptation
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Table 2.1: Kernel Functions K(x,y)

Kernel Type Mathematical Function Parameters

Linear xTy + c c

Polynomial (αxTy + c)d α, c

Gaussian exp(−‖x−y‖
2

2σ2 ) σ

Exponential exp(−‖x−y‖
2σ2 ) σ

Laplacian exp(−‖x−y‖
σ

) σ

Sigmoid tanh(αxyT + c) α, c

Power −‖x− y‖d -

Log − log(‖x− y‖d + 1) -

ANOVA Σn
k=1 exp(−σ(xk − yk)2)d σ, k

Rational Quadratic 1− ‖x−y‖2
‖x−y‖2+c

c

Multi-quadratic
√
‖x− y‖2 + c2 c

Inverse Multi-quadratic 1√
‖x−y‖2+c2

c

Spline Πd
i=11 + xiyi + xiyi min(xi,yi) −
−xi+yi

2
min(xi,yi)

2 + min(xi,yi)
3

3

B-Spline Πd
i=1B2n+1(xi − yi) -

algorithm based on the measures defined in the previous Sections 2.3.1 and 2.3.2. The

objective function of the proposed algorithm is defined as

maximize tr(HKxHLΦ)
tr(HLMHLΦ)

. (2.3.12)

The numerator is the measure for estimating the dependency between the samples in the

original space and their corresponding representations. Maximizing this measure, will

preserve the structure of the data as much as possible. The new representation will keep

the structural information of the original data depending on the kernel, Kx. The simplest

and most natural kernel is linear kernel. The linear kernel keeps the pairwise Euclidean
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distance globally, but one may choose another kernel as well. The denominator is the

measure for the distance between the probability distributions of the training data set and

that of the test data set. Minimizing this measure or equivalently, maximizing the inverse

of it, makes this distance as small as possible.

Rewriting the optimization problem in terms of Φ we have

maximize tr(HKxHΦT Φ)
tr(HLMHΦT Φ)

= tr(ΦHKxHΦT )
tr(ΦHLMHΦT )

. (2.3.13)

The objective function in Equation 2.3.12 is invariant with respect to any scaling of Φ, so

Φ can be chosen such that the denominator tr(ΦHLMHΦT ) is equal to one:

maximize tr(ΦHKxHΦT )

subject to tr(ΦHLMHΦT ) = 1.
(2.3.14)

It turns out that the optimization problem is an instance of Rayleigh quotient and finding

the optimal Φ is straight forward as it has a closed-form solution. This corresponds to

an eigenvector estimation problem with ΦT as a matrix of eigenvectors of K−1
x LM . The

number of selected eigenvectors d′ ≤ d is the dimensionality of the data in the new feature

space. If d′ is chosen to be less than d, Φ represents the data X in a lower dimensional

space, which means our method not only handles domain adaptation problems but also can

be used as a dimensionality reduction method. The algorithm is described in Algorithm 1

by using Matlab notations. For example, [U V] := eigs(S, dim, ’LR’) estimates the first

′dim′ large eigenvalues of S and their corresponding eigenvectors.

2.3.4 Semi-Supervised ACA

Exploiting the response variables of the training data set (which could sometimes be easily

accessible) is a valuable information that can improve the efficiency of the algorithm. The

unsupervised algorithm, US-ACA, described in the previous section does not utilize the
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Algorithm 1 Unsupervised ACA

1: Xd×n ← [Xd×ntr
tr Xd×nts

ts ]

2: Kx ← A kernel on X. e.g. Linear kernel

3: LM ← The MMD kernel on two clusters of the training and test data sets

4: H← I− n−1eeT

5: dim← The desired output dimensionality

6: S := (HKxH)−1(HLMH)

7: [U V] := eigs(S, dim, ’LR’)

8: Φtr := U(1 : ntr, : ).

9: Φts := U(ntr + 1 : end, :)

10: Φ = [Φtr Φts]

11: return Φ

available labels or response variables of the training data set. Using information of the

response variables could be advantageous in finding a new representation of data that is

more appropriate for the following predictive analysis. The predictive analysis can be a

classification problem or regression which are basically predicting the response variables.

Our Semi-supervised ACA is proposed as a variation of US-ACA that takes advantage of the

response variables. This algorithm finds an appropriate representation of the data without

adding extra complexity to US-ACA algorithm. Since the algorithm is semi-supervised, it

is called Semi-Supervised ACA (SS-ACA).

SS-ACA similar to US-ACA aims to reduce the distance between training and test

data set probability distributions while preserving the structural properties of the data

set. However, one does not need to keep the whole structure of the data unchanged. We

only need to keep the informative features for predicting the response variables. Some of

the structural properties or hidden features of the data may not be important for predict-

ing a certain response variable while they may be very important for another one. For
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example, imagine we have different photos of men with beard and glasses. The task A is to

categorize them based on having or not having beard and the task B is to categorize them

based on having or not having glasses. In task A the features relevant to having glasses

are not relevant, but in task B, they are completely relevant. So, it is wise to consider the

target which might be a discrete label in classification problem or a continues variable in

regression, for finding the important structure or hidden features of the data. Therefore,

instead of finding a new representation which preserves the data structure in the unsu-

pervised ACA, we would like to find a new representation which preserves structure and

important features of the data relevant to the following predictive model in a supervised

manner.

Based on US-ACA, minimizing tr(ΦHLMHΦT ) moves the training and the test data

sets probability distributions toward each other while maximizing tr(ΦHKXHΦT ) is the

objective function that keeps the structure of the data. Rewriting KX based on linear

kernel, we have

KX = XTX =

 XT
tr

XT
ts

 [Xtr Xts]

=

 XT
trXtr XT

trXts

XT
tsXtr XT

tsXts


=

 KXtrXtr KXtrXts

KXtsXtr KXtsXts

 , (2.3.15)

where KXtrXtr and KXtsXts involve the information of the structure of training and test

data sets receptively. These two sub-matrices are important for the learning or training

of the predictive model (which is the main goal ) and they should be preserved. But the

relative structure of the training data set and the test data set need not to be necessarily

fixed. This can help us modifying the structure of the data in a supervised manner with

the known response variables of the training data set. So the matrix KX can be changed
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to K̂X where K̂X is constructed based on the data and the known response variables. For

example, KXtsXtr is initially representing the correlation of the training data set and the

test data set samples. But if two samples of the training data set are highly correlated

based on their response variables, then they should not be different from a test data set

sample perspective. So the sub-matrices of KXtsXtr and KXtrXts can be smoothed by a

process which reduces the variation of the data in unrelated dimensions while it keeps the

variance of the data along the directions which contain important information relevant to

predicting the response variables. Therefore, those two sub-matrices, KXtsXtr and KXtrXts

are substituted with the following matrices:

K̂XtrXts = KYtrKXtrXts (2.3.16)

K̂XtsXtr = KXtsXtrKYtr , (2.3.17)

where KYtr is a kernel on the response variables of the training data set Xtr which

represents the similarity between the labels of the training data set samples and its main

role is to even out the difference between similar samples. Based on this formulation, the

sample of the training data set, xi is changed to the weighted mean of its similar samples.

The weight is proportional to the similarity of sample xi and xj (that is the (i, j)th entry

of the kernel KYtr). This makes the variance of similar samples smaller. Therefore, KX is

changed to K̂X which is rewritten as

K̂x =

 KXtrXtr K̂XtrXts

K̂XtsXtr KXtsXts

 (2.3.18)

The steps of the semi-supervised algorithm is summarized in Algorithm 2. Matlab notations

are used for simplicity.
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Algorithm 2 Semi-Supervised ACA

1: Xd×n ← [Xd×ntr
tr Xd×nts

ts ]

2: LM ← The MMD kernel on two clusters of the training and test data sets

3: K̂XtsXtr ← KXtsXtr(KYtr)

4: K̂XtrXts ← (KYtr)KXtrXts

5: KXtrXtr ← A kernel on Xtr. e.g. Linear kernel

6: KXtsXts ← A kernel on Xts. e.g. Linear kernel

7: K̂X ←

 KXtrXtr K̂XtrXts

K̂XtsXtr KXtsXts


8: S := (HK̂XH)

−1
(HLMH)

9: [U V] := eigs(S, dim, ’LR’)

10: Φtr := U(1 : ntr, : ).

11: Φts := U(ntr + 1 : end, :)

12: Φ = [Φtr Φts]

13: return Φ
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Chapter 3

Experimental Result

Domain adaptation problem has been studied extensively in the past decades and several

methods have been developed. As described in the previous chapter, one of our proposed

algorithms, US-ACA, is unsupervised, while the other one, SS-ACA, is a semi-supervised

algorithm which takes advantage of the response variables of the training data set. In this

chapter, US-ACA and SS-ACA are compared with semi-supervised algorithms, CODA [36]

and MMDE [37].

MMDE has been developed as an unsupervised and semi-supervised algorithm but

our algorithms are compared with its semi-supervised version. MMDE basically learns a

kernel of the embedded data based on four constraints/objectives simultaneously: (i) the

distance between the source domain (training data set) probability distribution and that

of the target domain (test data set) is minimized, (ii) the pairwise distance of the data

samples is preserved locally (The choice of keeping pairwise distance of some samples differ

in unsupervised and semi-supervised versions.), (iii) the embedded data is centered, and

(iv) the variance of the data is maximized. The optimization problem has been written as

SemiDefinite Program (SDP). After obtaining the kernel, Principle Component Analysis

(PCA) is applied to the kernel to get the new low-dimensional representation of the data.
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The classifier is learned based on the new representation of the data to predict the labels

of the source domain (test data set) [37].

CODA learns a target predictor by maintaining and growing the source domain (train-

ing data set) (i.e. iteratively adding target (test data set) features and samples that are

confident according to the current algorithm.) In each iteration two adapted logistic re-

gression classifiers have been trained based on two mutually exclusive views where the

co-training is effective. Then the samples with exactly one confident classifier, are moved

to the source domain. These samples are classified correctly and have the potential to

improve the classifier in next iterations [36].

In general, the performance of an unsupervised algorithm will rarely beat the perfor-

mance of a supervised algorithm. However, to have a better overview, their results are

presented together. It will be shown that US-ACA, as an unsupervised algorithm, im-

proves the performance of the algorithm, although it is not significant. Also, SS-ACA as

a supervised algorithm has a better performance with respect to CODA and MMDE. The

proposed algorithms can also be considered as a dimension reduction technique since they

reach the highest efficiency in lower dimensions and the related results are depicted later.

3.1 The kernel on the response variables

In the objective function defined by Equation 2.3.12, KX and LM are assumed to be known.

Then the kernel KX has been changed to K̂X in SS-ACA. K̂X =

 KXtrXtr K̂XtrXts

K̂XtsXtr KXtsXts


where K̂XtsXtr = KXtsXtr(KYtr) and K̂XtrXts = (KYtr)KXtrXts . KYtr represents the simi-

larity of the response variables of the training data set and can be constructed in various

forms. Without loss of generality, we assume that our data is categorized into c classes or

c unique labels such that ∀i, yi ∈ {1, .., c}. We choose a kernel of the form KYtr = BBT ,
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where B is defined as:

B = [b1, ...,bc], (3.1.1)

such that bi is 1√
ni

and ni is the number of samples in class i. For example if there are five

data points such that the first two data points are in class 1 and the last three data points

are in class 2, then B and KYtr can be formed as follows:

B :=



1√
2

0

1√
2

0

0 1√
3

0 1√
3

0 1√
3


,KYtr =



1
2

1
2

0 0 0

1
2

1
2

0 0 0

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

1
3

1
3


. (3.1.2)

Multiplication of the kernel, KYtr , with KXtsXtr and KXtrXts is basically substituting

each sample of the training data set by the weighted mean of its corresponding similar

samples which makes the variation of the data along similar samples smaller.

3.2 Toy Classification Example

We first test our algorithm on a toy example. The training data set consists of 100 samples

of the two dimensional data drawn from a multivariate normal distribution in which the

mean is µtr = (−1, 3) and the covariance matrix is σtr =

 2 0.25

0.25 1

. The training

data set is categorized in two classes. The samples whose first feature values are smaller

than −1 belong to the first class, and the ones that their first feature values are larger

than −1 belong to the second class. The test data set consists of 200 samples from a

different multivariate normal distribution whose distributional properties are µts = (2, 1)

and σts =

 1 0.5

0.5 3

. The test data set is also categorized in two classes based on their
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Figure 3.1: (a) 2-dimensional data in the original space. Circles, ◦, and crosses, × are two

classes of the training data set and diamonds,�, and stars, ∗, are two classes of the test

data set. (b) The new representation of the data in new feature space based on US-ACA

and (c) The new representation of the data in new feature space based on SS-ACA
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Table 3.1: The error rate of the SVM on the original data and on the modified data of

US-ACA and SS-ACA

Algorithms Error rate

Original–SVM 41%

US-ACA –SVM 5.5%

SS-ACA –SVM 2.5%

first features. A sample belongs to the first class if its first feature is smaller than 2, and

it belongs to the second class if it is larger than 2. The values −1 and 2 are the means of

the training and test data set distributions along the first feature space.

Figure 3.1-a demonstrates the data in the original feature space without any changes

and Figures 3.1-b and 3.1-c are the embedded data where US-ACA and SS-ACA algorithms

are applied respectively. As it can be seen, the distance between the embedded training

and test data set distributions is reduced. Consequently, the new training data samples

are better representatives of the test data set. Applying the algorithms and getting the

embedded data, we can classify them using SVM [38] or any other classifier. As shown in

the Table 3.2, SVM can classify the data with 41% error rate for the original data. By

applying US-ACA and SS-ACA to the original data, the error rate is decreased to 5.5%

and 2.5% for this particular sample of data.

The proposed algorithms are also compared with MMDE and CODA on the toy exam-

ple. US-ACA, SS-ACA is applied to the data and 1-NN has been used as a classifier. The

classifier error rate in each cases is depicted in Figure 3.2. The error rate is the mean of the

number of misclassified samples. To evaluate the efficiency of these methods, we have also

classified the original data without any changes using 1-NN and estimate its corresponding

error rate as the baseline. As It is shown in Figure 3.2, US-ACA and SS-ACA provide

33



Basline ACA SS-ACA CODA
0

10

20

30

40

50

60

Different Algorithms

%
E

rr
or

 R
at

e

Basline ACA SS-ACA CODA
0

10

20

30

40

50

60

Different Algorithms

%
E

rr
or

 R
at

e

Figure 3.2: The error rate comparison for different algorithms and the baseline on a toy

example

significant improvement in the error rate of the classification process.

3.3 Real world data sets

In this section, we test the proposed methods on different real world data sets varying from

images to text and biological data.

The First data set which is a collection of images, is MNIST handwritten digits [39].

This data set consists of 8-bit gray scale images of the digits between ”0” and ”9”. The

domain adaptation problem is defined as distinguishing two different digits of the test data

set (e.g. 3 and 4) while the algorithm is trained for distinguishing two other digits (e.g.

1 and 2). To test the algorithms using MNIST data set, we generate different data sets
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Table 3.2: Different data set generated from MNIST database

Name Training set Test set

Digits(1) 1, 2 3, 4

Digits(2) 1, 2 7, 8

Digits(4) 9, 0 6, 8

Digits(7) 8, 4 2, 3

Digits(3) 3, 5 2, 6

Digits(5) 3, 8 1, 5

Digits(6) 7, 6 0, 9

called Digits(1) to Digits(7) which are shown in Table 3.2. The training data set digits

in each data set is showing the two digits that the algorithm is learned to classify them,

while the goal is to classify the digits of the test data set. These data sets are randomly

chosen among all possible cases. The number of the training and test samples are 300 and

500 respectively. The size of the training and test data sets are fixed for all of the data

sets in Table 3.2. We have compared the error rate on the data sets defined in Table 3.2

for different algorithms and the baseline in Figure 3.3. The numbers (1) to (7) in Figure

3.3 stands for the Digits(1) to Digits(7) data sets respectively.

The dimensionality of the output data in US-ACA and SS-ACA is set to 2. For in-

stance, the new representation of the data of Digits(1) in 2-dimensional space is depicted

in Figure 3.4(a) and (b) based on US-ACA and SS-ACA. To make a fair comparison, the

dimensionality of the output features is 2 and it is constant through all experiments in this

section. It is shown in Figure 3.3 that SS-ACA outperforms in comparison with the other

algorithms. We observe that in the case of SS-ACA, the error rate is on average decreased

to 10% approximately which is considerably less than the error rate of CODA and MMDE.

Notice that US-ACA is an unsupervised algorithm and does not consider the information
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Figure 3.3: The error rate comparison for different algorithms and baseline on the data

sets generated from MNIST data base. (1) to (7) on the X-axis stands for Digits(1) to

Digits(7) respectively

of the response variables of the training data set. Therefore, it is not expected to have a

performance as good as the algorithms which are taking advantage of the training data set

response variables. However, the result of US-ACA is reasonable with respect to the other

methods.

The second data, the 20 Newsgroups data set, consists of about 20,000 newsgroup text

documents, categorized almost evenly across 20 different newsgroups based on their sub-

jects. Some newsgroups can use common words and are related to each other (e.g.newsgroups

of IBM hardware and Mac hardware are similar topics), while the others can use differ-
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Figure 3.4: (a) The 2-dimensional representation of Digits(1) data set based on US-ACA.

(b) The 2-dimensional representation of the same data based on SS-ACA. Circles, ◦, and

crosses, × are two classes of the training data set. Diamonds,�, and stars, ∗, are two classes

of the test data set after applying 1-NN.

ent language (e.g newsgroup about Ads for sale and a religious topic newsgroup are not

similar). This data set is recategorized into four groups based on similar topics. The new
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version is binary occurrence of the data for 100 words across 16242 posting [40]. In order

to have a domain adaptation problem, we generate three data sets from this new version

of the 20newsgroups data in which the data is categorized in 4 groups. ”Newsgroup1”

data set consists of 1000 randomly selected postings from groups 1 and 2 as the training

data set, and 2000 randomly selected postings from groups 3 and 4 as the test data set.

Similarly, ”Newsgroup2” and ”Newsgroup3” data sets have the same number of postings

randomly selected from groups 1, 3 and 1, 4 in their training data set and 2, 4 and 2, 3 in

their test data set respectively. In each of the artificially generated data set, the task is

to classify the postings of the test data set while the algorithm is learned based on the

training data set.
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Figure 3.5: The error rate comparison for different algorithms in three data sets. 1, 2 and 3

on the X-axis stands for Newsgroup1, Newsgroup2 and Newsgroup3 data sets respectively.
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We compare our proposed methods, US-ACA and SS-ACA with MMDE and CODA

on the Newsgroup1, Newsgroup2 and Newsgroup3 data sets. Their corresponding error

rates are compared with baseline in Figure 3.5. The error rate is the average error over

10 trials where in each trial the samples are randomly chosen from the original data set.

As it is depicted in Figure 3.5, the error rate has been decreased from almost 50% to

approximately 25% − 30% based on SS-ACA. SS-ACA outperforms the other methods

except in the second database which is Newsgroup2. For Newsgroup2 the CODA has a

slightly better error rate, and that could be partly because the 2-dimensional representation

of the data is not appropriate in this case or, because CODA is initially designed to solve

domain adaptation problem in text. That is because CODA focused on domain adaptation

problems that are characterised by missing features, and this is often the case in natural

language processing. However, our algorithm is not developed for a specific type of data.

To test the performance of the proposed algorithms on different types of data sets, we

run a set of classification experiments on several UCI data sets [41] in which they are biased

artificially. To make an artificial biased data set, the data is randomly divided in to the

training and test data sets. Then an additional variable, si, for each sample of training data

set is defined [21, 14]. si is set to depend only on one of the sample features, therefore, the

biasing procedure is called, simple bias [6]. This additional variable determines whether

the corresponding sample is contributing in the biased training data set or not. It means

if si = 1, then the ith sample is included in the biased training data set, otherwise it is

excluded. There is also a parameter called Biasing Ratio. It determines the percentage of

the samples with si = 1 that are included in or the percentage of the samples with si = 0

that are excluded from the training data set. The Biasing Ratio is 100%, if all the samples

with si = 1 are in and all the samples with si = 0 are out of the training data set.

The Breast Cancer dataset from the UCI Archive [41] is a biological data set. The

data includes 699 examples from 2 classes: benign (positive label) and malignant (negative

label). This is a binary classification problem from 9 initial features.
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The performance of the US-ACA and SS-ACA are compared with the baseline, MMDE

and CODA in Figure 3.6. The X-axis is the feature number that the additional variable

si depends on it. We repeat the experiment with different Biasing Ratios equal to 70%,

80% and 90%. All the results are depicted in left column of Figure 3.6. As can be seen,

SS-ACA has better performance with respect to the other methods.

Another parameter for showing the efficiency of a method is Normalized Improvement

(NI) which quantifies how much algorithm A outperforms with respect to the algorithm

B. This parameter is estimated as

NI =
|ErrorA − ErrorB|

ErrorA
. (3.3.1)

On the right column of Figure 3.6 the Normalized Improvement of SS-ACA with respect to

the baseline is shown. As can be seen after adapting the domains of training and test data

sets, the performance is improved approximately up to 50% with respect to the baseline

in some features.

Wine, German Credit, India diabetes and Ionosphere are the other data sets from UCI

archive [41] where their biasing process is as explained above, and their biasing ratio is 80%.

The number of training and test data set samples, the biased feature and also the number

of classes in each data set is depicted in Table 3.3. The error rate of different methods

on these data sets are also available on Table 3.3. It shows that SS-ACA outperforms the

other methods in these data sets as well.

As it is mentioned earlier, SS-ACA can also be used as a dimension reduction technique.

We run the SS-ACA algorithm on different data sets. For Digits(1), Digits(2) and Digits(3)

data sets, the error rates versus the output dimension which varies from 1 to 784 is depicted

in Figure 3.7(a). 784 is the dimensionality of the data in original space. The error rate for

Wine data set is depicted in Figure 3.7(b). In this data set, although variation of dimension

does not change the efficiency, the algorithm keeps its performance in low dimensions. The
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Table 3.3: Test result on various data sets by different methods. 1-nearest neighbour has

been used for classification.

Data set (ntr, nts) Dim. #Feature Classes Baseline SS-ACA MMDE CODA

Wine (47,156) 13 8 3 39.44% 30.99% 48.26% 31.98%

German Credit (213,600) 24 9 2 41.50% 30.06% 40.62% 32.48%

India diabetes (92,568) 8 3 2 42.13% 38.01% 40.71% 40.35%

Ionosphere (64,201) 32 8 2 24.61% 22.29% 26.71% 20.50%

changes of the error rate along different dimensions of the Newsgroup2 is also demonstrated

in Figure 3.7(c). The error rate is minimum when the dimension of the data is about 15-25

in this case. As can be seen the algorithm has a good performance in low dimensions. So it

can be considered as a dimension reduction technique as well. The appropriate dimension

in each data set can be calculated by cross validation.

The running time of the proposed method is less than MMDE and CODA. The MMDE

optimization problem is modeled as a semidefinite program and CODA is an iterative

method that both consume a lot of time. However, the proposed methods has a closed-

form solution and it is faster than MMDE and CODA.
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Figure 3.6: (a), (c) and (e) are the error rate comparison in different algorithms on Breast

Cancer data set with Biasing Ratio of 70%, 80% and 90% respectively. The X-axis is

showing the features which the biasing process is based on. (b), (d) and (e) are the

Normalized Improvement of SS-ACA with respect to the baselines of (a), (c) and (e)

respectively. The bars from left to right correspond to Basline, US-ACA, SS-ACA, MMDE

and CODA.
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Figure 3.7: (a) The error rate changes of SS-ACA vs. different dimensions on Digits(1),

Digits(2) and Digits(3) data sets. (b) The error rate changes of SS-ACA vs. different di-

mensions on Wine data set. (c) The error rate changes of SS-ACA vs. different dimensions

on Newsgroup2 data set.
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Chapter 4

Conclusion

We have presented two domain adaptation algorithms in which the data samples are trans-

ferred to a new feature space. The new representation of the data is explored such that

the training and the test data sets in the new feature space are as close as possible while

the important structural information of the data is preserved. In order to solve this prob-

lem and satisfy the aforementioned properties, we have defined an optimization problem

such that its solution is known to be eigenvectors of a given matrix. Our experimental

results show that the algorithm performs well in practice and has a good efficiency in lower

dimensions, so it can be used as a dimensionality reduction technique.

To keep the important structure of the data, we have used a specified kernel over

the data which is modified to involve the information of the response variables of the

training data beside taking advantage of the data itself. The proposed kernel is useful

for classification, but an immediate future direction can be investigating other appropriate

kernels that can utilize the response variable information beside the structural information

of the data (such that the algorithm is applicable for any predictive model tasks).

One of the advantages of the proposed method is that the objective function of our
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optimization problem is independent of the classifier. It implies any classifier can be

used for classifying the new representation of the data after applying SS-ACA. However

the performance of the classifiers can be improved, if we could develop an optimization

problem that simultaneously minimizes the error rate of a predictive model in addition to

satisfying our current objective functions.
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