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Abstract

Modelling and forecasting the progress of corrosion and other degradation phenomena

in engineering systems is an important element of reliability management programs. Be-

cause of the random nature of the degradation process, probabilistic models are mostly

employed. Parameters of the probabilistic models are estimated using degradation data

from in-service inspections. The estimated model parameters are then used for predicting

future degradation growth or failure time of the components.

In the nuclear power plants, usually small samples of degradation data are collected using

non-destructive examination (NDE) tools, which are not perfect in detecting degradation

flaws and they also add random noise when measuring the size of the detected flaws.

Ignoring these inspection uncertainties in the estimation of the degradation model would

result in biased estimates and subsequently erroneous predictions of future degradation.

The main objective of the thesis is to develop methods for the accurate estimation of

stochastic degradation models using uncertain inspection data. Three typical stochastic

models are considered, namely, the random degradation rate model, the gamma process

model and the Poisson process model. The random rate model and the gamma process

model are used to model the flaw growth, and the Poisson process model is used to model

the flaw generation. Likelihood functions of the three stochastic models from noisy and

incomplete inspection data are derived.

The thesis also investigates Bayesian inference of the stochastic degradation models. The

most notable advantage of Bayesian inference over classical point estimates is its ability to

incorporate background information in the estimation process, which is especially useful

when inspection data are scarce.

It is shown in the thesis that likelihood evaluation of the stochastic models using uncertain

inspection data is a computationally challenging task as it often involves calculation of

high dimensional integrals or large number of convolutions. The thesis develops efficient

numerical methods to overcome this difficulty. For example, for the maximum likelihood

estimation of the gamma process model, the Genz’s transform and quasi-Monte Carlo

simulation are adopted. The Markov Chain Monte Carlo simulation with sizing errors
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as auxiliary variables is utilized in the Poisson flaw generation model. The approximate

Bayesian computation (ABC) is explored for the Bayesian inference of the gamma process

model subject to sizing error.

The practical applications of the proposed models are illustrated through the analysis

of degradation data collected from nuclear power plant systems. These examples confirm

the importance of consideration of inspection uncertainties in probabilistic analysis of

degradation data.
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1C H A P T E R

Introduction

1.1 Engineering background

Infrastructure and other large engineering systems, such as the road and highway networks,

mass transport systems, power plants and electrical grids, are preconditions for a modern

industrial society. Reliable and efficient operation of these systems is crucial to both daily

lives of individuals and the prosperity and progress of the whole society. An important

characteristic of these engineering systems is that they often consist of vast number of

structures and components, which are likely to experience various degradation as service

time increases.

Take the Canadian designed nuclear power plants (CANDU) as an example. As illustrated

in Figure 1.1, a CANDU nuclear power plant consists of a number of subsystems, including

the reactor core, the heat transport system (e.g. feeder pipes and steam generators), the

electric generator turbine and other safety systems. The reactor core contains several

hundreds pressure tubes, called fuel channels, where the nuclear fuel is stored and the

fission reaction takes place. Heavy water coolant flows over the fuel channels and carries the

heat produced by the fission reaction to the steam generators via feeder pipes. The steam

generator consists of large number (3000-4000) of thin-wall tubes in which the heat in the

hot coolant is transferred to the secondary side to produce pressurized steam. The steam

then drives the turbine and produces electricity.
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1.1 engineering background 2

Figure 1.1 Layout of a CANDU nuclear power plant (from http://canteach.candu.org)

As can be seen, many of the nuclear power plant components work under extreme

conditions of high temperature and high pressure, and therefore are likely to suffer from

various types of degradation mechanisms. For instance, the fuel channels in CANDU

reactors are known to be vulnerable to degradation mechanisms such as deformation and

the delayed hydride cracking. The feeder pipes are found to experience flow-accelerated

corrosion (FAC) and steam generator (SG) tubes are susceptible to corrosion and fretting

wear. Degradation of the components in the nuclear power plant can deteriorate the

efficiency of electricity generation, harm the structural integrity of the plant and may even

cause severe failures including leakage of radioactive materials.

In general, degradation phenomena create localized changes in the geometry of the

component, which are referred as flaws in this study. For example, common flaws that can

be found in a nuclear power plant include pits caused by pitting corrosion, cracks caused by

fatigue and localized wall thickness loss in feeder pipes by FAC.A component is said to reach

its end of life and should not continue to service when the extent of the degradation, such as

the number or the dimension of the flaws, is found to be beyond some given threshold (but

not necessarily with a physical failure).
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To ensure the reliability and performance, degradation of the structures and components

needs to be properly managed. Heavily degraded components need to be correctly identified

and replaced before reaching its end of life. In nuclear power industry, this is done through

periodic in-service inspection (ISI) and maintenance activities. Every two or three years,

inspections of the nuclear plant are carried out using non-destructive examination (NDE)

probes. The extent of the degradation is then assessed using the inspection data and

other relevant information, and heavily degraded components are repaired or removed

from service. In order to lower the cost while keeping the required reliability level, many

inspection and maintenance strategies are developed, in the aim of helping to determine

the maximum acceptable degradation level, scope of the inspections, optimal inspection

intervals, etc.

1.2 Maintenance decisions under uncertainties

1.2.1 Probabilistic approach

One of the main concerns in the inspection/maintenance optimization is that decisions must

be made under various uncertainties. The uncertainties involved in a maintenance decision

making process can be roughly categorized as the aleatory uncertainties and the epistemic

uncertainties. The aleatory uncertainties mainly refer to the inherent randomness of the

degradation phenomena. Due to the existence of aleatory uncertainties, future degradation

or the failure time of a component cannot be predicted precisely. The epistemic uncertain-

ties, on the other hand, are not inherent properties of the degradation but represent the state

of lacking relevant information (Kiureghian and Ditlevsen, 2009). Two most important

epistemic uncertainties in degradation assessment are the inspection uncertainties and the

sampling uncertainties. The inspection uncertainties are the uncertainties introduced by

imperfect inspection tools, such as the random noise added to the flaw size measurement

or the inability in detecting small defects in the components. The sampling uncertainties

are the uncertainties brought in by the incomplete inspection due to the limited inspection

time or funds. Although the serviceability and failure time of a component depend only on

the aleatory uncertainties of the degradation, they are masked by epistemic uncertainties.
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Proper consideration of both the aleatory uncertainties and the epistemic uncertainties is

necessary for optimal maintenance decisions.

Probabilistic models have long been regarded as effective tools to handle randomness

and uncertainties. The most common probabilistic models used in practice are parametric

models, which are probabilistic models with finite number of parameters. In the parametric

modelling approach, aleatory uncertainties are represented by the probabilistic model itself

with parameters inferred from inspection data and other relevant information; whereas

epistemic uncertainties are summarized as the uncertainty associated with the estimates of

the parameters (i.e., the parameter uncertainty). Since all models are only approximations

of real world phenomena, the use of parametric models inevitably introduces an additional

uncertainty, namely the model uncertainty, to the degradation assessment and prediction.

Model selection and validation are also necessary, so that the selected models can be applied

with confidence.

The basic procedures of typical degradation assessment and system maintenance activ-

ities using probabilistic modelling approach are illustrated in Figure 1.2. The first step is

to select an appropriate probabilistic model for the degradation process based on inspec-

tion data, past experience or laboratory studies. Then, parameters of the selected model

are estimated from inspection data and other relevant information. From the estimated

parameters, predictions regarding the degradation of the components are obtained, based

on which optimal maintenance decisions, such as when to perform the next inspection or

whether a deteriorating component should be replaced, are made. The data collected from

the scheduled maintenance activities are then used for further validation and calibration of

the probabilistic model.

1.2.2 Stochastic models for degradation

The aleatory uncertainties of a degradation process can be characterized using various types

of probabilistic models. Traditionally, the lifetime distribution model is used, in which the

uncertainty of the degradation is described from the perspective of the uncertain failure

time of the component. The lifetime distribution model is commonly applied in age-based

maintenance strategies, where a component is replaced when its operation time reaches
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Probablistic modelling Parameter inference

Prediction
Optimal maintenance

planning

Implentation of the

maintenance plan

Inspection data and

other information

Figure 1.2 Procedures of a typical maintenance cycle using probabilistic modeling approach

certain threshold. When the inspection and replacement cost is prohibitively high, such as

in the case of a nuclear power plant, age-based maintenance strategies are usually inefficient

as inspection and replacement of a component are irrespective of its actual condition of

degradation. In such cases, condition-based maintenance strategies are often employed,

which require direct modelling of the degradation progress.

However, direct probabilistic modelling of the degradation process can be rather com-

plicated. Generally speaking, the uncertainties in a degradation process can be classified

into the unit-varying uncertainty and the time-varying uncertainty (Yuan, 2007). The

unit-varying uncertainty, also called the sample uncertainty, characterizes the random ef-

fects of degradation across a group of components; whereas the time-varying uncertainty

characterizes the temporal variation of the degradation process over time. Complex func-

tional or probabilistic structures are often observed regarding both the unit-varying and

time-varying uncertainties. Compared to some classical parametric models, such as the

regression-based models, stochastic models are in general more flexible in modelling these

complex structures of degradation process. For this reason, the use of stochastic models in

degradation assessment and prediction has become increasingly popular in recent years.

1.2.3 Challenges imposed by inspection uncertainties

Due to the complexity of many stochastic models, accurate estimation of the model param-

eters is often not straightforward. Much effort has been spent in the past on developing

formal estimation methods for various stochastic models from inspection data. However,
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most of these methods use data collected in laboratory testings, in which the detection and

measurement of the flaws are fairly accurate. Investigations on parameter estimation of

stochastic models from uncertain field measurement are still very limited.

As mentioned earlier, inspection uncertainties are the uncertainties introduced by im-

perfect inspection tools, such as the random noise in flaw size measurement or inability

in detecting small flaws in the components. There are two major challenges imposed by

the inspection uncertainties on the parameter estimation of stochastic degradation mod-

els. Firstly, the inspection uncertainties may mask specific features of the true degradation

process. For instance, due to the random sizing error, the measurement of a monotonically

increasing degradation may show some extent of non-monotonicity, or the measured value

of independent degradation growths may become correlated. Correct formulation of the

stochastic models using the uncertain inspection data is not easy. Secondly, even if the

stochastic models with inspection uncertainties are correctly formulated, they often turn

out to be much more complicated than the original models. Specific numerical methods

need to be developed for efficient parameter estimation of the stochastic models subject to

inspection uncertainties.

1.3 Research Objectives

As illustrated in Figure 1.2, a complete optimal maintenance cycle has a number of aspects,

including model selection and validation, parameter estimation, degradation prediction

and optimal maintenance planning, etc. Each of these aspects contains a rich content

for further discussions. In this thesis, we focus on the aspect of model formulation and

parameter estimation. In particular, we will investigate problems arising from the likelihood

deriviation and parameter estimation of stochastic models using uncertain field data. Most

of the discussions in the thesis are presented with the in-service inspection of nuclear power

plants as the engineering background. Some major problems addressed in the thesis are:

❧ What are the common inspection uncertainties in the field data and how can they be

properly quantified?
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❧ How should the likelihood functions of the stochastic degradation models be formu-

lated using uncertain field data containing different types of inspection uncertainties?

Three typical stochastic models, the random rate model, the gamma process model

and the Poisson process model, are considered.

❧ How can one estimate the model parameters efficiently using uncertain inspection

data? This includes both estimating the value of the parameters and quantifying the

associated parameter uncertainty. In this thesis, maximum likelihood (ML) estimation

and Bayesian inference are used. Advanced numerical methods are developed to

overcome the computational difficulties in the estimation.

❧ Applications. Some practical examples from the in-service inspection of nuclear power

plants are analyzed to demonstrate the use of the proposed methods.

To better focus on our main objective of likelihood formulation and parameter estima-

tion, a simplified, data-driven modelling approach is adopted. Exploratory variables of

the degradation, such as temperature or pressure of the working environment, are not in-

cluded in the analysis. But the methods developed for the simplified models can be applied

similarly to those more realistic stochastic models if necessary.

1.4 Organization

The thesis is organized as follows.

Chapter 2 presents a brief introduction of inspection uncertainties. Two different types

of inspection uncertainties, probability of detection (PoD) and sizing error, are introduced.

Probabilistic models for the two inspection uncertainties are introduced and their effects

on degradation modelling are discussed.

Chapter 3 introduces three common stochastic degradation models, the random rate

model, the gamma process model and the Poisson process model, among which the random

rate model and the gamma process model are used to model the flaw growth, and the

Poisson process model is used to model the flaw generation. Definitions, properties, and

likelihood functions given accurate inspection data of the three models are discussed.
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In Chapter 4, parameter estimation of the random rate model and the gamma process

model using uncertain inspection data is discussed. The difference between the random

rate model and the gamma process model is that the former one models the unit-varying

uncertainty of flaw growth and the latter models the time-varying uncertainty. Likelihood

functions given inspection data with sizing error are derived for both models. A numerical

method using Genz’s transform and quasi-Monte Carlo simulation is developed to overcome

the computational difficulty in the ML estimation of the gamma process model.

Chapter 5 discusses the parameter estimation of the Poisson flaw generation model. In

the chapter, first a simple flaw generation problem is investigated in which the size of the

flaws are assumed to be irrelevant. The results are then generalized to a complete model

considering both PoD and sizing error. It is found that the likelihood function of the

complete model is numerically intractable for ML estimation using large data-sets. This

computational difficulty is resolved later in Chapter 7 using a simulation-based Bayesian

method.

Chapter 6 discusses the application of Bayesian inference in degradation modelling.

Using the Bayesian method, information other than the inspection data can be included in

the analysis. The use of Bayesian inference also provides a more natural way to present the

parameter uncertainty associated with an estimate. The application of Bayesian inference

in degradation assessment are then illustrated through two practical examples.

Chapter 7 investigates the computational aspect of Bayesian inference. Using some re-

cently developed simulation techniques, Bayesian estimate of complicated stochastic mod-

els, such as the flaw generation model in Chapter 5, can be obtained. The application of these

advanced Bayesian methods also provide an accurate quantification of the parameter un-

certainty, which is not discussed in the ML analysis (Chapter 4 and 5) due to computational

difficulties.

Finally, summary and recommendations for future research are given in Chapter 8.



2C H A P T E R

Inspection Uncertainties

2.1 Introduction

Periodic inspections of degradation are important to the reliability and efficiency of large

engineering systems. For nuclear power plants, such inspections are usually conducted

using non-destructive examination (NDE) probes, which are able to detect and measure

the extent of degradation without affecting the future serviceability of the components.

Common NDE probes used in the NPP in-service inspection include the eddy current

bobbin probe (ET-probe), X-probe and ultrasonic probe (UT-probe). For example, the

UT-probe measures the pipe wall thickness by sending pulses of ultrasonic energy into the

component and then measuring the time delay of the returning echo pulse. The thickness

of the pipe wall is then calculated by multiplying the measured time delay by the speed

of sound in the steel and the structural integrity of the pipe wall is retained during the

measurement (EPRI, 2009).

In addition to the ability of retaining the future serviceability of the components under

inspection, NDE probes are also less expensive and usually take much less time to implement

compared to other destructive examination methods, such as metallogiraphic examinations.

However, along with the advantages, NDE inspections are usually not as accurate as the

destructive examination methods. The inspection uncertainties of the NDE inspections

have two aspects: (1) the ability of flaw detection, and (2) the accuracy of flaw sizing.

9
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Because the inspection uncertainties are usually random in nature, they are specified

using probabilistic models. The ability of flaw detection can be characterized in terms

of probability of detection (PoD), which is defined as the probability that the inspection

probe will detect a flaw of certain type and dimension. The accuracy of flaw sizing can be

quantified using the true-versus-measured values of structural quantities of interest, such

as the length and the depth of degradation (EPRI, 2006a).

Due to the existence of inspection uncertainties, the number of detected flaws and their

measured size from an NDE inspection are different from the actual degradation. This

uncertainty in inspection data can have adverse impacts on the quality of degradation

assessment and also add extra difficulties to the degradation modelling and parameter

estimation. In the remainder of this chapter, probabilistic models of PoD and sizing

error are discussed. Performances of some typical NDE probes used in NPP in-service

are presented. Following that, the effects of the NDE inspection uncertainties on the

probabilistic modelling of degradation are discussed briefly through examples. Summary

of the chapter is given in the end.

2.2 Inspection uncertainty models

2.2.1 Probability of detection (PoD)

The ability of flaw detection of an NDE probe can be affected by many factors, such as flaw

type, flaw size, variability in material properties, environmental noise, personnel training,

just to name a few. Repeated inspections of the same component therefore do not necessarily

give consistent results in flaw detection, which is the major reason why the ability of flaw

detection needs to be quantified statistically.

Among all the factors affecting the PoD performance of an NDE probe, the flaw type and

flaw size are two most important ones, not only because they tend to have greater impact

than other factors do, but also because they are directly related to the reliability of the

component under inspection. For this reason, PoD of an NDE probe is usually described as

a function of the flaw size for each specific type of flaws. As one might expect, flaws with

larger sizes are easier to be detected. Typical PoD functions thus start from zero when the
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flaw size is very small and becomes closer to 1 as the flaw size increases. A commonly used

PoD function for many NDE probes is the log-logistic function which is defined as (EPRI,

2006a)

PoD(x) = 1

1 + e−(a+b log x)
, (2.2.1)

where x is the flaw size, a and b are constants that need to be estimated from test data of the

NDE probe. Cumulative density functions of normal or log-normal random variables are

also used as PoD functions in some applications. Figure 2.1 illustrates the PoD performance

of two different NDE probes used for steam generator tubing inspection in log-logistic

functions. The flaw size in the PoD function is given as percentage of through wall thickness

(% tw) of the tubes (EPRI, 2006b).
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Figure 2.1 Log-logistic PoD of two NDE probes

In practice, the flaw detection data of NDE probes are recorded in one of the two following

formats: the signal-response data and the hit-miss data. The signal-response data record

the value of the actual readings from the inspection probe, such as the peak voltage of an

ET-probe or the pulse delay time of an UT-probe. A detection threshold is then defined for

the NDE readings by appropriately balancing the probability of detection and probability

of false positive due to the background noise. Any reading greater than the threshold is

considered as a indication of a flaw. PoD for flaws of certain size is then calculated as
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the probability that the associated NDE readings of these flaws greater than the detection

threshold, as illustrated in Figure 2.2. For detailed description of methodologies on devel-

oping PoD models based on signal response data, refer to HSE (2006) and Gandossi and

Annis (2010).
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Figure 2.2 Illustration of the signal-response data from NDE inspection

In the hit-miss data, the result of an inspection is simply recorded as 0 or 1, indicating

a detection or non-detection of a flaw. A simple method to estimate the PoD model

parameters from the hit-miss data is the binomial modelling method (Gandossi and Annis,

2010). The main idea of the binomial modelling method is to group the flaws into intervals

of flaw size (for example every 10% tw) and the PoD of each group is calculated as the

ratio of detection within that group. Then, a curve fitting is conducted to produce the PoD

function corresponding to the data (Figure 2.3).

The problem of the binomial modelling method is that: increasing the range of the size

intervals to include a greater number of flaws will improve the accuracy in the detection ratio

calculation, but this at the same time leads to fewer intervals and thus a poorer resolution in

flaw size. Choosing a more narrow size range improves the size resolution, but at a cost of the

accuracy in calculating the detection ratio (Gandossi and Annis, 2010). Statistical methods

using maximum likelihood (ML) estimation or generalized linear regression are developed
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for the calibration of the PoD model parameters. These methods are now recommended

over the binomial modelling method because they are more accurate and are able to give

the associated confidence intervals of the parameters. A good overview of these advanced

methods is given by Gandossi and Annis (2010).
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Figure 2.3 Illustrative plot of the hit-miss data and binomial method

For many degradation phenomena in nuclear power plants, a lowest acceptable PoD has

been defined to ensure that the probability of missing large flaws is fairly small during any

inspection. For example, for steam generator tube inspection, U.S. NRC (United States

Nuclear Regulatory Commission) has defined the acceptable PoD performance as PoD

>95% for flaws of size >75% tw and PoD >90% for flaws size >40% (as in shown Table

2.1). NDE probes that do not meet the requirement should not be used in the in-service

inspection of nuclear power plants.

2.2.2 Sizing error

To characterize the sizing performance of an NDE probe, measured flaw sizes by the NDE

probe are compared with the known sizes of the machined flaws in laboratory settings, or

compared with the results from destructive metallographic examinations. A very effective

way to present the measured-versus-true values from an NDE inspection is the scatter plot
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Flaw depth (% tw) Acceptable PoD

0 0.15

20 0.30

40 0.90

75 0.95

100 0.95

Table 2.1 Acceptable PoD performance for steam generator tubing inspection (Kurtz et al.,

1996)

(dots in Figure 2.4). Usually, testing data in the scatter plot are analyzed statistically, mostly

using the linear regression model, in which the sizing errors are regarded as normally

distributed random variables.

Denote the actual size of a flaw as x. Due to the random sizing error, the measurement

of the flaw is a random variable and is denoted as Y . Then the following linear regression

model can be established as (Kurtz et al., 1996)

Y = c1 + c2x + E, (2.2.2)

where c1 and c2 are regression constants, and E is the normally distributed random error

with mean 0 and standard deviation (SD) σE and is assumed to be independent from the

true flaw size x. Using laboratory testing data, the regression equation (2.2.2) can be fitted

using the standard least squares method, as illustrated by the solid line in Figure 2.4.

If the inspection is perfect, one has c1 =0, c2 =1 and σE =0. A non-zero c1 in equation

(2.2.2) is called the offset error. The offset error will cause non-zero NDE readings when

there is actually no flaw existence. The difference between c2 and 1 is called the multiplier

error, which means that the NDE reading changes either faster or slower than the actual

flaw size does. The offset error and multiplier error are also called the systematic errors in

general. The error due to E is called the random error and its magnitude is quantified by its

standard deviation σE.

Unlike the random error, the systematic errors can be largely eliminated by calibration

using test data of the NDE probe. After proper calibration, the only error left is the random

error and the measurement of the NDE probe now can be characterized in the following
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Figure 2.4 Regression method for determining the sizing performance of an NDE probe

simpler form as

Y = x + E. (2.2.3)

Given equation (2.2.3), the measurement of a particular flaw by the NDE probe is normally

distributed with mean as the actual flaw size and SD σE. Such calibration can simplify the

degradation modelling when there is sizing error.

Sizing errors of typical NDE probes used in the in-service inspections of nuclear power

plants are usually quite large due to the limits of the current techniques. For example, the

standard deviation of the sizing error of the standard ET-probe in SG tubing inspection

can be as large as 17% tw. The standard error of the more advanced X-probe is 6% tw,

which is still pretty significant compared to the common repair limit of 40% tw in SG tube

inspection.

2.3 Effects of uncertain inspection data

The NDE probes basically act like an uncertain filter when inspecting the flaws in the

components. Because the PoD function of the probe is always less than 1, the probe can

only detect part of the total flaws and the probability of missing smaller flaws is greater than
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that of missing larger ones. On the other hand, due to the random sizing error, the reported

flaw sizes by the inspection probes are also not accurate.

Consider the following example of the NDE inspection of flaws in SG tubes. The PoD of

the inspection probe is assumed to be a log-logistic function with parameters a= −8 and

b= −3 (i.e., the good probe in Figure 2.1). The sizing error of the probe is assumed to be

normally distributed with mean zero and SD 6% tw. Figure 2.5 shows a simulated data-set

using the above inspection uncertainty settings. The total number of the simulated flaws is

400 and the number of detected flaws is 301. As can be observed from Figure 2.5, the NDE

inspection underestimates number of flaws especially smaller ones, and also adds additional

dispersion to the flaw size distribution.
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Figure 2.5 Illustration of uncertain inspection data from an NDE probe

The disparities between the measured degradation and the actual degradation as il-

lustrated in Figure 2.5 can have profound implications on the probabilistic modelling of

degradation. In the next, the effects of uncertain inspection data are discussed and the

difficulties imposed by inspection uncertainties on degradation modelling are explained

through two simple examples.
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Example 1: effect of sizing error

First consider the following example. Suppose the size of the flaws in a structure is modelled

as a random variable following some distribution with PDF fX(x; θ), where θ is the parame-

ter. To determine the value of parameter θ , inspections of the flaw sizes are conducted. If the

inspection probes are perfect, i.e., with no sizing error or PoD, the value of the parameters

can be obtained easily using standard statistical methods such as method of moments or

ML method. For example, if it is found that there are n flaws in the structure and their

flaw sizes are x1, x2, · · · , xn, the ML estimate of the model parameter θ can be calculated by

maximizing the following model likelihood function

L(θ
∣

∣x1, x2, · · · , xn) =
n
∏

i=1

fX(xi; θ)

Now suppose the inspection probe has a normally distributed sizing error with mean

zero and SD σE (assuming PoD is not an issue). The measured flaw size Y is then the sum

of the true flaw size X and the random sizing error E, i.e., Y =X+E. If the sizing error

is independent of the true flaw size, PDF of the measured flaw size can be obtained by

calculating the following convolution

fY (y; µ, σ) =
∫ ∞

−∞
fX(y−e; µ, σ)φ(e; 0, σE)de, (2.3.1)

where φ(e; 0, σE) is the PDF of the normal sizing error. ML estimate of θ from n measured

flaw size y1, y2, · · · , yn, can then be obtained by maximizing the following product

L(θ
∣

∣ y1, y2, · · · , yn) =
n
∏

i=1

fY (yi; θ)

=
n
∏

i=1

∫ ∞

−∞
fX(yi −e; θ)φ(e; 0, σE)de.

(2.3.2)

Note that equation (2.3.2) does not have a closed form expression and has to be evalu-

ated numerically. Compared to the likelihood without sizing error, it can be clearly seen

that sizing error in the inspection data adds significant computational complexity to the

probabilistic modelling of flaw size distribution.
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Example 2: effect of sizing error and PoD

Let us now consider a slightly complicated case in which both sizing error and PoD are

involved. The model is specified as follows:

❧ The number of flaws N in a component is assumed to follow some discrete distribution

with PMF fN (n; λ), λ the parameter.

❧ The flaw size is a random variable with PDF fX(x; θ), where θ is the parameter.

❧ The number of flaws and the flaw size are considered to be independent.

❧ The sizing error of the inspection probe is normally distributed with mean 0 and SD

σE. To be simple, assume the PoD of the probe is a constant p < 1.

When there are no inspection uncertainties, the parameters can be estimated similarly

using the maximum likelihood method as in the previous example. For instance, if there

are n flaws with size x1, x2, · · · , xn, the model parameters can be estimated by maximizing

the following product

L(λ, θ
∣

∣x1, x2, · · · , xn) = fN (n; λ) ·
n
∏

i=1

fX(xi; θ).

However, when the inspection is conducted using an uncertain probe with both sizing

error and PoD, probabilistic modelling of the inspection data becomes more complicated.

As already shown in figure 2.5, both the number of detected flaws and their measured flaw

size are inaccurate. Since the PoD is a constant p, given the total number of flaws N =n, the

number of detected flaws, denoted in D, is a binomial distribution of n trials with success

probability p. Using theorem of total probability, the unconditional PMF of the number of

detected flaws is given as

fD(d; λ) =
∞
∑

n=d

fBino(d; n, p)fN (n; λ),

where fBino(d; n, p) is the PMF of a binomial distribution with n trials and success probabil-

ity p.

From the previous sizing error example, distribution of the measured size of the detected

flaws is the convolution of the true flaw size distribution and the sizing error and is given
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as equation (2.3.1). Since the flaw number and flaw size are independent, given d detected

flaws with measured size y1, y2, · · · , yd , the model likelihood function is

L(θ
∣

∣ y1, y2, · · · , yd) = fD(d; λ)

n
∏

i=1

fY (yi; θ)

=
∞
∑

n=d

fBino(d; n, p)fN (n; λ)

d
∏

i=1

∫ ∞

−∞
fX(yi −e; θ)φ(e; 0, σE)de,

which is much more complicated than the original likelihood function without inspection

uncertainties.

Remarks

The above two examples are simple static models for degradation, in which the dynamics

of flaw growth and flaw generation are not included. Yet, the additional modelling and esti-

mation difficulties from inspection uncertainties are clearly exposed. For stochastic models

considering the flaw growth and flaw generation, dealing with the inspection uncertainties

can be more technically challenging, as will be shown in following chapters of the thesis.

2.4 Summary

In this chapter, two common inspection uncertainties, probability of detection (PoD) and

sizing error, are introduced. Probabilistic models of the two inspection uncertainties and

their calibration are discussed briefly.

A short discussion on the effects of the inspection uncertainties on degradation modelling

is also presented in the chapter. Due to the existence of inspection uncertainties, the number

of detected flaws and their measured sizes do not reflect the actual extent of the degradation

accurately. The uncertain inspection data can have adverse impacts on the quality of

degradation assessment and add extra difficulties to degradation modelling and parameter

estimation.
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Stochastic Degradation Models

3.1 Introduction

3.1.1 Classical models and the stochastic models

Before discussing the stochastic models, we would like to first to examine some classical

probabilistic degradation models.

Generally speaking, probabilistic degradation models can be divided into two broad

categories: the flaw growth model and the flaw generation model. Traditionally, regression

models are used the main probabilistic models for flaw growth. In regression models,

the growth of a flaw is divided into two separate parts. First, a deterministic regression

function is used to model the average growth path. Then, additional error terms, or more

precisely speaking, the residual terms, are added to the regression function to account for

the randomness in the flaw growth. The choice of the regression function is typically based

on past experiences or expert judgment. In many cases, the regression function is simply

chosen as a linear function of time. Parameter estimation of the regression models is usually

performed using the least squares method or various maximum likelihood (ML) methods,

depending on the assumed error structure of the model (Weisberg, 2005).

Although regression models are relatively easier to use for engineers, they do have impor-

tant limitations. In addition to some common modelling difficulties such as the normality

and the homoscedasticity requirement for the residual terms, the two most prominent short-

20
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comings of the regression models are as follows. First, repeated measurements, although

from the same flaw and therefore often dependent, are treated as independent observations

in classical regression models (Yuan, 2007). Second, as reported by Pandey et al. (2006),

regression methods cannot simulate the temporal uncertainties that are observed in many

degradation phenomena. Although the first shortcoming regarding the repeated measure-

ments can be partly fixed by applying the more advanced mixed-effects regression (Jiang,

2007), both the regression and the mixed-effects regression cannot handle temporal un-

certainties in a proper manner. Therefore, regression models should not be applied when

significant temporal variations in flaw growth are observed.

Compared to the flaw growth modelling, the full probabilistic modelling of flaw genera-

tion is usually more complicated, as it can involve both the number and the size of the flaws.

A simplified strategy is to only model the maximum size of all the flaws in the component

using extreme value analysis. For example, Gumbel distribution and other generalized ex-

treme value (GEV) distributions have been widely used in predicting the maximum flaw size

for pitting and other localized corrosion in various areas since 1950’s (Gumbel and Lieblein,

1954; Aziz, 1956; Eldredge, 1957). Statistical analysis of the maximum flaw size based on

extreme value theory are also reported in recent years using more advanced models. For

example, Scarf et al. (1992) developed a method for estimating the extreme value distri-

bution of the maximum pit depths using multiple deepest pit depth in one measurement

area, rather than using only the maximum one. Martinsek (2003) developed an advanced

statistical model which is able to include the correlation between neighboring flaws based on

the extreme value theory and the beta auto-regression method. The extreme value method

is also included in an ASTM (American Society for Testing and Materials) standard as a

standard tool for the statistical analysis of various corrosion data (ASTM, 2010).

The extreme value analyses are effective in many cases. But they can only be used to

predict the maximum flaw size. Detailed information on the total number of flaws and

the associated flaw size distribution cannot be obtained. Furthermore, the static nature of

the extreme value method limits its use in the analysis of the time-dependent probabilistic

aspects of the degradation (Shibata, 1996).
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To avoid some of the inherent limitations of these classical probabilistic models, stochastic

based models are later introduced as alternative modelling tools for both flaw growth or

flaw generation. Unlike the classical models, the stochastic models try to imitate the flaw

growth path and flaw generation directly by using a collection of random variables indexed

by time. Complex covariance structures of the flaw growth and flaw generation over time

and across the population can thus be established using various stochastic models that are

available in current statistical literature.

Early applications of the stochastic degradation models are mostly found in the fatigue

of metal and other composite materials. For example, Birnbaum and Saunders (1958)

investigated the fatigue damage of structures under dynamic loads using the renewal process

model. Paris et al. (1961) utilized a non-linear general path model, known as the Paris-

Erdogan law, to express the fatigue crack growth over time. Lately, applications of the

stochastic models are extended to degradation phenomena from a much broader range of

areas, such as bridge deck deterioration (Madanat et al., 1995; Madanat and Ibrahim, 1995),

water pipe deterioration (Micevski et al., 2002), rock rubble displacement (Van Noortwijk

et al., 1995), etc. Applications of the stochastic models in degradation related to nuclear

power plants are also seen frequently. For example, the gamma process model is often

used to model the flow accelerated corrosion (FAC) in feeder pipes in nuclear power plants

(Yuan et al., 2008; Pandey et al., 2011; Cheng and Pandey, 2011). Camacho (2006) used a

cumulative damage model with exponentially distributed annual increments to model the

fretting wear of SG tubes in a nuclear power plant. Yuan et al. (2009) used a Poisson process

model to predict the pitting flaws in SG tubes.

3.1.2 Organization

Due to the extremely rich content of the stochastic models, we are not going to cover all

the related aspects in this chapter. Rather, we choose to introduce three typical stochastic

models, namely, the random rate model, the gamma process model and the Poisson process

model, among which the random rate model and the gamma process model are used to

model the flaw growth, and the Poisson process model is for modelling the flaw generation.

The remainder of this chapter is organized as follows. First, some basic concepts related



3.2 stochastic models in general 23

to the stochastic process are introduced. After that, definitions and properties of three

stochastic models mentioned above are introduced. Parameter estimation of the model

parameters given accurate measurements are derived. A summary of the chapter is given in

the end.

3.2 Stochastic models in general

Unlike the classical probabilistic models, the stochastic models try to model the flaw growth

and flaw generation directly using stochastic processes. A stochastic process, in short, is

a family of random variables depending on an index set (Prabhu, 2007). We will use the

notation {X(t) : t ∈ T} to represent a stochastic process, where T is the index set, X(t) is

the actual distribution of the process at t. For the sake of conciseness, X(t) is also used to

indicate a stochastic process when it makes no confusion.

In degradation modelling, the index set T is normally taken as time. The set of the

values taken by X(t) is called the sample space of the process (Prabhu, 2007). Stochastic

processes with two different types of sample spaces are mostly considered. To model the

flaw size growth, such as crack length or volumetric wall thickness loss, X(t) is usually taken

as a positive real number. Examples of this types of stochastic models are the random rate

model and the gamma process model. To model the number of new generated flaws in a

component, such as number of pits in an SG tube, the sample space is taken as the natural

number set [0, 1, 2, · · · ]. Examples of this types of stochastic processes are Poisson process

and other general counting processes.

In practical applications, sometimes it is convenient to assume that the degradation

starts from zero, i.e., X(0)=0. If a process X(t) does not start from zero, a new process

Y(t)=X(t)−X(0) can always be defined, such that Y(0)=0. Therefore, there is no loss of

generality by making such a simplification.

Suppose the degradation of a group of components follows a stochastic process {X(t) :
t ∈ T} with index set T the time. The degradation path of each individual component

is then a deterministic function of time generated by the stochastic process. Let Xk(t),

k=1, 2, · · · , n, be the degradation paths of n components from the group. Xk(t) are called
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realizations of the stochastic process X(t). The random nature of the stochastic process is

reflected in the fact that each realization of the process is generated separately and it is very

unlikely to have two identical realizations from the same stochastic process. Following is a

brief introduction of some basic concepts of the stochastic process based on Xie (2006).

Probability distribution functions

A stochastic process can be characterized using a series of probability distribution functions.

For example, the first-order cumulative distribution function (CDF) of a stochastic process

{X(t) : t ∈ T} at time t is defined as

F1(x, t) = P {X(t)6x}.

Consider the example of the flaw growth of n components. Suppose at time t, the flaw size

in k1 out of n components is less than x. If n is sufficiently large, the first-order CDF of

stochastic process X(t) can be approximated by

F1(x, t) ≈ k1

n
.

The second-order CDF of the process of value x1 and x2 at time t1 and t2 is defined as the

probability that X(t1)6x1 and X(t2)6x2 both hold, i.e.,

F2(x1, t1; x2, t2) = P {X(t1)6x1, X(t2)6x2}.

If the size of k12 out n flaws is smaller that x1 at time t1 and smaller than x2 at time t2, then

F2(x1, t1; x2, t2) ≈
k12

n
.

Similarly, the CDF of a stochastic process of order s, s=1, 2, · · · , is defined as

Fs(x1, t1; x2, t2; · · · ; xs, ts) = P {X(t1)6x1, X(t2)6x2, · · · , X(ts)6xs}.
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The corresponding PDF of order s is then the derivation of the corresponding CDF functions

(if they exist):

fs(x1, t1; x2, t2; · · · ; xs, ts) = ∂nFn(x1, t1; x2, t2; · · · ; xs, ts)

∂x1∂x2 · · · ∂xs

.

A stochastic process is said to be completely described if its probability distribution

functions of all orders are given. However, in practice it is often unnecessary to specify

the probability distributions of all orders. Many common stochastic process models can

be more clearly defined using their other specific properties, from which the probability

distribution function of any order can be easily derived.

Mean and variance

In degradation assessment, it is important to know what is the average degradation in

the component population as well as how far individual components are away from the

average, i.e., the mean and variance of the degradation. Since at any time point, the value

of a stochastic process is a random variable, the mean and variance of the process can be

naturally defined as functions of time t, with their values at t being the mean and variance

of random variable X(t), respectively. Let the mean and variance of a stochastic process be

m(t) and σ 2(t). One has

m(t) = E[X(t)] =
∫

�X

x f1(x, t)dx,

σ 2(t) = Var[X(t)] =
∫

�X

x2 f1(x, t)dx − m2(t),

where �X is the sample space of the stochastic process and f1(x, t) is its 1st-order PDF. The

square root of σ 2(t), i.e., σ(t), is called the standard deviation of the process and is also

used for quantifying the dispersion of a stochastic process over time.

Stochastic Processes with stationary and independent increments

A special category of stochastic processes that are used extensively in degradation modelling

is the process with stationary and independent increments. A stochastic process X(t) is

said to have stationary and independent increments if it has the following two properties

(Prabhu, 2007):
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❧ For any 06 t1 6 · · · 6 tn, random variables

X(t1)−X(0), X(t2)−X(t1), · · · , X(tn)−X(tn−1),

are independent.

❧ For any t >0 and τ >0, distribution of increment X(t+τ)−X(t) depends only on the

time difference τ .

Suppose X(t) is a stochastic process with stationary and independent increments and

X(0)=0. One has

X(t+τ) = X(t) + X∗(τ ), (3.2.1)

where X∗(τ ) has the same distribution as X(τ ) and is independent of X(t).

If the mean of the stochastic process m(t) exists,

m(t+τ) = m(t) + m(τ ). (3.2.2)

The only bounded solution of equation (3.2.2) is known to be m(t)=µt, where µ is the

expected degradation growth during unit time, i.e. µ=E[X(1)] (Prabhu, 2007).

Similarly, calculating the variances of both sides in equation (3.2.1) gives

σ 2(t+τ) = σ 2(t) + σ 2(τ ).

If the variance of the stochastic process exists and is finite, one has Var[X(t)]=σ 2t, where

σ 2 =Var[X(1)]. Thus, for stochastic processes with stationary and independent increments

E[X(t)] = µt, Var[X(t)] = σ 2t.

The coefficient of variation (COV) of the process,defined as COV[X(t)]=
√

Var[X(t)]/E[X(t)],
is

COV[X(t)] =
σ

µ
√

t
. (3.2.3)

Equation (3.2.3) implies that the sample paths of stochastic processes with stationary and

independent increments will become relatively closer to the average as time increases,

because its COV decreases over time.
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Time transform of stochastic processes

Due to the mathematical tractability of stochastic processes with stationary and indepen-

dent increments, they are widely used to model various types of degradation phenomena.

Examples of stochastic processes with stationary and independent increments include the

gamma process and Poisson process, both of which will be discussed in the next. However,

an obvious limitation of these stochastic processes is that they can only model degradation

phenomena that grow linearly over time. It is known that the propagation of some degra-

dation phenomena, such as the fatigue crack growth, accelerates as the components ages

(Bogdanoff and Kozin, 1985). In order to model the non-linear degradation, the following

time transform of the stochastic processes can be applied.

Suppose X(τ ) is a stochastic process with stationary and independent increments. The

mean of X(τ ) is mX(τ )=µτ . Let τ = s(t), where s(t) is a non-linear function of the real

time t. Substituting τ = s(t) into the stochastic process X(t) gives a new process Y(t),

Y(t)=X(τ )=X (s(t)). The mean of Y(t), denoted as mY (t), is given as

mY (t) = mX(s(t)) = µs(t).

Y(t) is then a stochastic process with non-linear average µs(t). In practice, the functional

form of s(t) can be determined either by laboratory research or by curve fitting using actual

measured flaw growth. A popular choice of s(t) is the exponential family where s(t)=αtβ

with α and β to be some constants. Figure 3.1 shows an example of the time transform of a

stochastic process using transform function s(t)=2t2.

3.3 Random variable model

A random variable model (also referred as the general path model) is a stochastic process

model that describes the flaw growth in a group of components using a deterministic

function with random parameter and can be described using the following equation

X(t) = g(t; 2),
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Figure 3.1 Time transform of a stochastic process

where g is a deterministic function of time t and random variable 2 is the parameter.

The flaw growth of an individual component is then given by a deterministic function

g(t; θk), with its parameter θk a sample drawn from random variable 2. Once 2 is given,

the distribution of the process at any time t, X(t), can be calculated using transformation

techniques for functions of random variables (Ang and Tang, 1975).

The random variable model is a very special case of the stochastic models and is widely

applied to model various corrosion and wear phenomena (Fenyvesi et al., 2004; EPRI, 2006a;

Huyse and van Roodselaar, 2010). In the random variable model, only sample uncertainty

of the degradation is considered. Once the component is specified, its flaw growth is a

deterministic function in which no temporal uncertainty is involved. The motivation of

the random variable model comes from practice. For example, in the case of fretting wear

degradation of SG tubes, as the working conditions, such as temperature and pressure,

usually do not change, the flaw growth rate at a specific location is found to be quite stable.

However, variations in the degradation rate can still be observed across the fleet of the SG

tubes due to individual differences from imperfect manufacturing process or other sources

(EPRI, 2009). This randomness in the individual differences across population is exactly

what the random variable model tries to capture.
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In this thesis, we mainly consider the following simple case of the random variable model

called the random rate model, in which g is a linear function. Many other more complicated

random variable models can be transformed into a linear random rate model using the time

transform mentioned earlier. Without loss of generality, we assume the process starts from

zero. One has

X(t) = Rt. (3.3.1)

Suppose equation (3.3.1) is used to model the flaw growth in a group of components. At

time t, the degradation of the components is distributed as Rt. We call R the population flaw

growth rate, or simply the population rate. On the other hand, for a specific ith component,

its flaw growth path xi(t) is a deterministic function of time t: xi(t)=rit, where ri is the

component specific rate and is a fixed number sampled from the population rate R. Figure

3.2 shows several sample flaw growth paths from a typical random rate model.
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Figure 3.2 Sample paths from a random rate model

It is clear that for a group of components whose degradation follows the random rate

model given by equation (3.3.1), the mean and variance of degradation for the population

are

E[X(t)] = tE[R], Var[X(t)] = t2Var[R].
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The COV of the degradation is
√

Var[R]/E[R] and is a constant.

If inspection data are perfect, parameter estimation of the random rate model, and

random variable model in general, is straightforward. Since the degradation growth of each

component in the population is a deterministic function of known form, its component

specific parameters can be calculated from a finite number of inspection results. A statistical

fitting of random variable 2 using method of moments (MoM) or ML estimation can

then be conducted using the collection of individual growth rates. However, when large

inspection uncertainties are presented, parameter estimation of the random rate model is

much more complicated since in such cases the component specific rate cannot be obtained

precisely. Parameter estimation of random rate model considering inspection uncertainties

will be discussed in details in the next chapter.

3.4 Gamma process model

The gamma process model is a stochastic process model which belongs to a broader category

of degradation model called the cumulative damage model. The basic assumption of the

cumulative damage model is that the degradation of a component is caused by a series of

independent but random small damages. Suppose X(t) is the total growth of a flaw within

time interval [0, t]. [0, t] is discretized into k sub-intervals as 06 t1 6 t2 6 · · · 6 tk. Denote

the flaw growth within each sub-interval as Xi, i =1, 2, · · · , k. In the cumulative damage

model, Xi are regarded as independent random variables, and the total flaw growth X(t) is

the sum of all Xi, i.e.,

X(t) = X1 + X2 + · · · + Xk. (3.4.1)

The PDF of X(t) is then the convolution of the density functions of all Xi. Normally,

evaluation of such convolution is difficult. However, when Xi is gamma distributed with

properly chosen parameters, calculation of the convolution can be avoided, making the

model much more practical in engineering applications.
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3.4.1 Definition

Denote the gamma distributed random variable X with shape parameter a>0 and scale

parameter b>0 as

X ∼ Ga(a, b).

The PDF of X is

fX(x) = fGa(x; a, b) = (x/b)a−1

bŴ(a)
exp(−x/b), for x >0,

where Ŵ(a)=
∫∞

0 ta−1e−tdt is the gamma function. Figure 3.3 shows density functions of

several gamma random variables with different parameters. As can be seen from the figure,

gamma distribution is a very flexible distribution that is able offer a good fit to different

types of data-sets.
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Figure 3.3 Probability density functions of gamma random variables with different parameters

An important property of the gamma distribution is that the sum of two indepen-

dent gamma random variables with the same scale parameter b is still gamma distributed.

Suppose X1 and X2 are two independent gamma random variables, X1 ∼ Ga(a1, b) and

X2 ∼ Ga(a2, b). The sum of X1 and X2 is then a gamma random variable with shape
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parameter a1+a2 and scale parameter b, i.e., X1+X2 ∼ Ga(a1+a2b). Therefore, if Xi,

i =1, 2, · · · , k, in equation (3.4.1) are all gamma distributed with the same scale parameter,

the total degradation X(t) is also gamma distributed and its parameters can be obtained

directly without conducting the time-consuming convolutions.

Utilizing the above property of the gamma distribution, the gamma process model is

defined as follows: a continuous-time stochastic process {X(t); t >0} with sample space

[0, +∞) is called a gamma process with shape parameter α and scale parameter β (α, β >0)

if (Singpurwalla, 1997):

❧ At time 0, X(0)=0.

❧ For any 06 t1 6 · · · 6 tn, the random variables

X(t1)−X(0), X(t2)−X(t1), · · · , X(tn)−X(tn−1),

are independent.

❧ For any t >0 and τ >0, X(t+τ)−X(t) is gamma distributed with shape parameter ατ

and scale parameter β, i.e.,

X(t+τ)−X(t) ∼ Ga(x; ατ , β).

From the definition, it is can be concluded that gamma process is a monotonically in-

creasing stochastic process with independent gamma distributed increments, and possesses

all the general properties of the stochastic processes with stationary and independent in-

crements, such as the linear mean and decreasing COV over time. The monotonically

increasing property of the gamma process makes it ideal for modelling gradual damage

that monotonically accumulates over time (Abdel-Hameed, 1975). Together with its other

advantages, such as flexibility and mathematical tractability, gamma process has gained

much interest in recent years and has been successfully applied in modelling a wide range

of degradation phenomena, including wear, corrosion, erosion, and creep of materials (van

Noortwijk, 2009).
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Using the properties of the stochastic process with stationary and independent incre-

ments, the mean and variance of the gamma process are given as

E[X(t)] = αβt, Var[X(t)] = αβ2t.

The coefficient of variation (COV) of X(t) is

COV[X(t)] =
E[X(t)]

Var−1/2[X(t)]
= 1√

αt
.

Let µ=αβ and ν=1/
√

α, one has E[X(t)]=µt, COV[X(t)]=ν/
√

t. µ is called the average

rate of the gamma process model and ν is the COV. µ and ν are sometimes used as an

alternative set of the model parameters. The PDF of X(t) in terms of µ and ν is given as

fX(t) = fGa

(

x; t/ν2, µν2)

=
[

x/(µν2)
]t/ν2−1

µν2Ŵ(t/ν2)
exp

[

−x/(µν2)
]

.

Compared to the random rate model, the gamma process model is qualitatively different

in the following two aspects: (1) in the random rate model, the flaw growth rate for a specific

component; while in the gamma process model the flaw growth is modelled as the sum of

a sequence of small independent random damages and thus the rate changes continually

over time; (2) in the random rate model, flaw growth rates for different components vary

across the population; whereas in the gamma process model, the future flaw growths of

different component follow same distributions, regardless of their current flaw sizes. In

short, random rate model and gamma process model are two extremes. The former one

tries to capture the sample differences across the population while assuming there are no

temporary uncertainties. And the latter one models the temporary uncertainties well but

assumes the population is homogeneous in terms of future flaw growth distribution.

3.4.2 Simulation

Computer simulation of stochastic processes provides an effective way to numerically val-

idate theories and methods developed for the stochastic models. A common approach
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to simulate the sample paths of gamma process is to make use of its property of the in-

dependent and stationary gamma increments. To generate a sample path of a gamma

process with parameter α and β from time 0 to t, the time is divided into n small intervals:

0< t1< t2< · · · < tn = t. Then, a random increment for each time interval is generated in-

dependently from a gamma distribution with shape parameter α1t and scale parameter β,

where 1t is the length of the corresponding time interval of the flaw growth. By adding

up all the successive increments an approximate sample path of the gamma process can be

obtained up to time t. When n is sufficiently large, this approximation can be very good

(Yuan, 2007).

Figure 3.4 shows simulated sample paths of a gamma process with parameters α=2 and

β =1. Comparing Figure 3.2 and 3.4, the distinct characteristics of the random rate model

and the gamma process model are clearly presented.
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Figure 3.4 Simulated sample paths of a gamma process model

3.4.3 Parameter estimation

In practice, it is usually impossible to monitor the degradation process continuously. Rather,

inspections are conducted at limited number of time instances. Suppose the flaw growth

of a group of n components follows a gamma process with shape parameter α and scale
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parameter β. For the ith component, at initial time ti0, the flaw size is xi0. The component is

then inspected mi times at ti1, ti2, · · · , timi
. The measurement of the flaws is assumed to be

perfect. Denote the actual flaw size of the ith component at time tij as xij. Let 1tij = tij −ti, j−1

and 1xij =xij −xi, j−1, j=1, 2, · · · , mi. 1xij is then the flaw growth of the ith component

over time interval 1tij.

For the sake of conciseness, the flaw growths of the ith component are written in vector

form as 1xi ={1xi1, 1xi2, · · · , 1ximi
}. From the definition of the gamma process, 1xi is

a realization of some random vector 1Xi, where its elements, 1Xij, are independent and

gamma distributed random variables. The PDF of 1Xij is

f1Xij
(1xij; α, β) =

(1xij/β)
α1tij−1

βŴ(α1tij)
exp(−1xij/β).

Since 1Xij are independent, the likelihood function of α and β given flaw growths of the ith

component 1xi is simply the product of the probability density of each 1xij, i.e.,

L(α, β
∣

∣1xi) =
mi
∏

j = 2

f1Xij
(α, β

∣

∣1xij) =
mi
∏

j = 2

(1xij/β)
α1tij −1

βŴ(α1tij)
exp(−1xij/β).

When the degradation of each component is considered to be independent of others

in the group, the likelihood function of the model parameters, given data from all the n

components, can be written as the product of the likelihood for each individual component,

i.e.,

L(α, β|1x1, 1x2, · · · , 1xn) =
n
∏

i=1

Li(α, β|1xi). (3.4.2)

Maximizing equation (3.4.2) gives the maximum likelihood estimation of the gamma pro-

cess parameters α and β. The maximizing process is usually conducted numerically, using

multivariate optimization algorithms, such as conjugate gradient algorithms or the simplex

algorithm (Rao and Rao, 2009).
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3.5 Poisson process model

In previous sections, the random rate model and the gamma process model are introduced.

Both of these two models are defined on continuous sample spaces and are appropriate for

modelling the flaw growth. In order to model the flaw generation, counting process models

can be used, which are stochastic processes that count the number of occurrences over

time. Therefore, sample space of a counting process is defined on the natural number set.

Examples of counting processes include pure birth process, Bernoulli process and Poisson

process. In this section, the Poisson process model is introduced, which is one of the most

important counting process for the stochastic modelling of degradation.

3.5.1 Definition

Denote the Poisson distributed random variable X with parameter λ>0 as

X ∼ Pois(λ).

Here λ is also called the Poisson rate of the distribution. The probability mass function

(PMF) of X is

fX(x) = fPois(x; λ) = λx

x! exp(−λ), λ > 0 and x =0, 1, 2, · · · .

Figure 3.5 shows the PMF of several Poisson random variables with different λ. Similar

to the gamma distribution, the summation of two independent Poisson random variable

with rate λ1 and λ2 is still a Poisson random variable, with rate λ1+λ2. In addition, for

the Poisson distribution, the converse of the above property, commonly known as Raikov’s

theorem, also holds, which is stated as: if the sum of two independent random variables

is Poisson distributed, so is each of these two independent random variables (Gupta et al.,

2010).

Based on the Poisson distribution, Poisson process is defined as follows: a continuous-

time stochastic process, X(t), t >0, is called a homogeneous Poisson process with rate λ, if

it has the following properties (Prabhu, 2007):
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Figure 3.5 Probability mass functions of Poisson random variables with different parameters

❧ At time 0, X(0)=0.

❧ For any 06 t1 6 t2 6 · · · 6 tn, random variables

X(t1)−X(0), X(t2)−X(t1), · · · , X(tn)−X(tn−1)

are independent.

❧ The number of occurrences between t and t+τ , X(t+τ)−X(t), is Poisson distributed

with rate λτ , for any t >0 and τ >0, i.e.,

X(t+τ)−X(t) ∼ Pois(λτ).

From the definition, Poisson process is a stochastic process with stationary and indepen-

dent increments. The mean and variance of Poisson process are

E[X(t)] = λt, Var[X(t)] = λt.

The COV of the process is

COV[X(t)] =
1

√
λt

.

Obviously, parameter λ is simply the average number of occurrences per unit time.
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3.5.2 Properties

Inter-arrival time distribution

The kth waiting time of a Poisson process, denoted as Tk, k=0, 1, · · · , is defined as the

time of the kth occurrence of the process. Obviously, T0 =0. The difference between two

successive waiting times, Tk and Tk−1, is called the inter-arrival time of the process and

denoted as 1Tk, 1Tk =Tk −Tk−1.

From the definition of Poisson process, CDF of first interval-arrival time 1T1 is

F1T1
(t) = 1 − P (1T1 >t) = 1 − P (T1−T0 >t) = 1 − P (T1 >t)

= 1 − P {X(t)=0} = 1 − exp(−λt).

Thus, 1T1 is exponentially distributed with rate λ. To determine the distribution of 1T2,

move the time origin of the Poisson process to T1. The resulted process is then an identical

Poisson process as the original one. 1T2 is therefore also an exponentially distributed

random variable with the same rate parameter λ. In general, it can be shown that the

inter-arrival time of the Poisson process, 1T1, 1T2, · · · , are all independent and identically

distributed (i.i.d.) random variables following exponential distribution with rate λ (Prabhu,

2007).

The property of i.i.d. inter-arrival time makes the computer simulation of the Poisson

process very easy. One only needs to drawn a series of inter-arrival times from i.i.d.

exponential distributions to simulate a sample path of a Poisson process. Figure 3.6 presents

several sample paths of a Poisson process with λ=1 using this simulation method.

Superposition and splitting

The superposition of Poisson process states that the sum of several independent Poisson

process is still a Poisson process and its rate is the summation of the rates of each individual

Poisson process. Suppose {Xi(t), t >0}, i =1, 2, · · · , r, are r independent Poisson processes

with rates λ1, λ2, · · · , λr . Let X(t)=
∑r

i=1 Xi(t). From the superposition property, X(t) is

a Poisson process with rate λ=
∑r

i=1 λi (Prabhu, 2007).

The splitting property of Poisson process is the inverse of the superposition property. Let

X(t) be a Poisson process with rate λ. Suppose the occurrences generated by X(t) are split
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Figure 3.6 Simulated sample paths of a Poisson process model

randomly into k categories and the probability that an occurrence falls into the ith category

is pi,
∑k

i=1 pi =1. Let Xi(t) be the number of occurrences in the ith category at time t. The

splitting property then states that Xi(t) are independent Poisson processes and the rate of

Xi(t) is simply piλ, i =1, 2, · · · , k (Prabhu, 2007).

3.5.3 Parameter estimation

The derivation of the likelihood function of the Poisson process model is very similar to

that of the gamma process model, since both are stochastic processes with stationary and

independent increments. Suppose the number of flaws in a component follows a Poisson

process with rate λ. At time t0, the number of flaws is x0. The component is then inspected

for n times at t1, t2, · · · , tn, t0< t1< t2 · · · < tn. The corresponding number of flaws at time ti

is xi. In addition, we assume the inspection is perfect. Let 1ti = ti −ti−1 and 1xi =xi −xi−1.

1xi is then the number of new generated flaws during time interval 1ti.
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According to the definition of the Poisson process, 1xi are realizations of independent

Poisson distributed random variables 1Xi ∼ Pois(λ1ti). The PDF of 1Xi is

f1Xi
(1xi) = (λ1ti)

1xi

1xi!
exp(−λ1ti), i =1, 2, · · · , n.

Denote 1xi in vector form as 1x ={1x1, 1x2, · · · , 1xn}. Since random variables 1Xi,

from which 1xi are sampled, are independent, the likelihood function of the Poisson rate λ

given 1x can be written as the product of the density of each 1xi as

L(λ
∣

∣1x) =
n
∏

i = 1

f1Xi
(1xi) =

n
∏

i = 1

(λ1ti)
1xi

1xi!
exp

(

−λ1ti

)

. (3.5.1)

The corresponding log-likelihood function can be obtained by taking the logarithms of

both sides of equation (3.5.1) as

l(λ
∣

∣1x) = log L(α, β
∣

∣1x)

=
n
∑

i = 1

[

−λ1ti + 1xi log λ + 1xi log 1ti − log(1xi!)
]

= −λ

n
∑

i = 1

1ti + log λ ·
n
∑

i = 1

1xi +
n
∑

i = 1

[

1xi log 1ti − log(1xi!)
]

.

(3.5.2)

Maximum likelihood estimation can be obtained by differentiating equation (3.5.2) with

respect to λ and letting the derivative be zero:

∂ l

∂λ
= −

n
∑

i = 1

1ti + 1

λ

n
∑

i = 1

1xi = 0. (3.5.3)

Solving equation (3.5.3) gives the maximum likelihood estimate of λ as

λ =
∑n

i = 1 1xi
∑n

i = 1 1ti

,

which is simply the number of flaws generated per unit time.

3.6 Summary

Probabilistic modelling of degradation is important to reliable and efficient maintenance of

large engineering systems. Traditionally, probabilistic modelling of degradation are carried
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out using regression analysis and extreme value analysis. Although effective in many cases,

these traditional approaches have their inherent limitations. Stochastic based models are

therefore used as alternative modelling tools for some degradation phenomena.

This chapter introduces three common stochastic models, the random rate model, the

gamma process model and the Poisson process model. The random rate model and the

gamma process model are suitable for modelling flaw growth, and the Poisson process

model are usually used for modelling flaw generation. Definitions and some properties

of the three models are introduced. Likelihood functions of the models are also derived

under the assumption that the inspection data are accurate. The derived likelihood function

can then be used to estimate the model parameters when there are little or no inspection

uncertainties. However, if large inspection uncertainties are presented, likelihood func-

tion considering the inspection uncertainties should be used, which will be discussed in

following chapters.



4C H A P T E R

Estimation of Flaw Growth Model

4.1 Introduction

In the previous chapter, three typically stochastic models, namely, the random rate model,

the gamma process model and the Poisson process model, are introduced. Likelihood

functions of the models given accurate inspection data are derived, from which maximum

likelihood (ML) estimates of the model parameters can be obtained either analytically or

numerically. However, the assumption that the inspection data are accurate is usually un-

realistic. In many practical applications, such as the in-service inspection of nuclear power

plants, inspection uncertainties can be very significant, as discussed in Chapter 2. Large

inspection uncertainties can mark the features of the degradation data, making the ex-

ploratory analysis difficult, and often lead to biased parameter estimates of the probabilistic

models (Carroll, 2006).

As mentioned earlier, there are two types of degradation models: the flaw growth model

and the flaw generation model. In this chapter, parameter estimation of the first category,

the flaw growth model, is discussed. In particular, we will discuss the estimation of two

specific flaw growth models, the random rate model and the gamma process model, using

noisy inspection data with large sizing errors. Probability of detection is not considered in

this chapter, as the analyses are based on repeated measurements from existing flaws.

42
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The problem of noisy measurement in the estimation of classical regression models have

been discussed extensively in the literature, as summarized by Fuller (1987) for linear regres-

sion models and Carroll (2006) for non-linear regression models. However, investigations

of this problem in the settings of stochastic models remain limited. In practical applications,

approximate methods are still widely used. For example, it is very common to first delete all

the negative measured flaw growth from data since they are physically impossible, and then

estimate the model parameters as if there is no sizing error (Camacho, 2006; EPRI, 2006a,

2009). For safety considerations, most of the approximate methods, especially those used

for safety critical systems, are formulated in a way such that conservative estimates of the

parameters are obtained. The problem of the approximate methods is that the extent of the

conservativeness in the estimation can hardly be quantified and overly conservative esti-

mates are common. Better statistical methods for the stochastic modelling of flaw growth

are needed.

One of the most statistically sound methods for the parameter estimation of probabilistic

models is the likelihood-based method. Denote the actual flaw growth as X(t) and the

measured flaw size at time t as Y(t). Y(t) is then the sum of the true flaw size X(t) and the

associated measurement error E(t), i.e.,

Y(t) = X(t) + E(t)

Obviously, Y(t) and X(t) share the same set of model parameters. Therefore, parameters

of the actual degradation model X(t) can be estimated from the likelihood function of the

measured flaw size Y(t). This likelihood approach was originally developed for regression

models, as discussed in details by Carroll (2006). The same approach was first applied

in stochastic modelling of degradation by Whitmore (1995) for the parameter estimation

of a Wiener diffusion process from observations with normal sizing errors, and a closed

form estimate of the model parameters was obtained. Later, following the same idea,

Kallen and van Noortwijk (2005) derived the likelihood function of the gamma process

model subjected to normally distributed sizing errors, though effective method for the

numerical evaluation of the likelihood function is not given. In this chapter, we will also use



4.2 random rate model with sizing error 44

this likelihood approach to develop the maximum likelihood estimates of stochastic flaw

growth models using noisy field measurement.

The remainder of the chapter is organized as follows. Section 4.2 focuses on the parameter

estimation of the random rate model subject to sizing error. Random rate models with both

exact and uncertain initial conditions are investigated. A numerical simulation and a

practical case study are presented to illustrate the effectiveness of the proposed method.

Section 4.3 discusses the gamma process model with normally distributed sizing error.

Based on the previous work by Kallen and van Noortwijk (2005), the complete form of the

model likelihood function is derived. In order to overcome the computational difficulties in

the ML estimation, a novel numerical method using the Genz’s transform (Genz, 1992) and

quasi-Monte Carlo (QMC) simulation is proposed. A case study on the flow-accelerated

corrosion (FAC) is presented using the proposed method. Summary of the chapter is given

in the last section.

4.2 Random rate model with sizing error

4.2.1 Problem statement

A very common assumption regarding the flaw growth in a group of components is that

the flaw growth is linear over time and the growth rates (slopes of the flaw growth) of the

components are constants following some probability distribution. As discussed in Section

3.3, this linear growth assumption is exactly the motivation of the random rate model, in

which only sample uncertainty is considered and the temporal uncertainty is assumed to be

minimal and therefore ignored.

If the flaw inspection is perfect, parameter estimation of the random rate model is easy.

Suppose the flaw growth in a group of n components can be described using the following

random rate model

X(t) = Rt,

where R is flaw rate distribution for the component population. The PDF of R is fR(r; θ),

where θ is parameter. The inspections of an ith component in the group are carried
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out at times ti1, ti2, · · · , timi
, and the corresponding actual flaw sizes are xi1, xi2, · · · , ximi

,

respectively. From previous discussions, it follows the actual flaw growth rate of the ith

component, ri, can be determined from any two inspections as

ri = xi2 − xi1

ti2 − ti1
= xi3 − xi2

ti3 − ti2
= · · · =

ximi
− xi,mi−1

timi
− ti,mi−1

.

The growth rate distribution R of the population can then be obtained by fitting the collec-

tion of all the component specific rates ri, i =1, 2, · · · , n, using some appropriate probability

distributions.

In reality, however, the inspection probe invariably adds random noise to the actual flaw

size, such that the measurement of xij has to be conceptually treated as a random variable

Yij,

Yij = xij + Eij,

where Eij is the sizing error of Yij. For simplicity, Eij are assumed to be independent and

normally distributed with mean 0 and some known SD σE. Any specific measured size yij of

this flaw at time tij is a realization from distribution Yij. Suppose a series of measurements

of the ith flaw were taken as yi1, yi2, · · · , yimi
, at times ti1, ti2, · · · , timi

, respectively, as shown

in Figure 4.1 in relation to the true flaw growth path. The measured growth rate r̃ij over any

inspection interval [ti, j−1, tij] can be calculated as

r̃i2 = yi2 − yi1

ti2 − ti1
, r̃i3 = yi3 − yi2

ti3 − ti2
, ..., r̃imi

=
yimi

− yi,mi−1

timi
− ti,mi−1

It is clear that the measured flaw growth rates, r̃ij, are not equal to the actual rate ri, and

r̃ij are likely to fluctuate due to effect of random sizing error. Furthermore, the measured

rates can also be negative, even though the underlying growth rate is always positive. The

departure between the measured and actual rate will increase with the increase in variability

associated with the sizing error Eij.

The challenge is thus clear: how do we estimate the population flaw growth rate distribu-

tion R when the component specific rate cannot be obtained accurately. This population rate
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Figure 4.1 Illustration of an actual and measured linear degradation growth path for a specific

component

distribution can be subsequently used in the reliability analysis of uninspected components,

which are susceptible to the same degradation as the inspected components.

4.2.2 Current methods

The problem of estimating the flaw growth rate from noisy measurement has been discussed

extensively in many areas under the random rate assumption (explicitly or implicitly),

especially in the corrosion and wear assessment (Fenyvesi et al., 2004; EPRI, 2006a; Huyse

and van Roodselaar, 2010), and various methods have been developed. A review on some of

these methods are presented in the next. These methods are divided into three categories:

method of moments, simulation method, and regression method, among which the first two

are applicable when there are only two repeated measurements.

Method of moments

The method of moments is popularly used in the engineering literature due to its analytical

and computational simplicity (Nessim et al.,2008; Huyse and van Roodselaar,2010; Fenyvesi

et al., 2004). While applying this method, the user should be clear about the nature of
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degradation model being random rate or random process with independent increment. An

ambiguity about this aspect would lead to incorrect results, as discussed below.

Suppose that two random samples of measured flaw sizes are available from inspection

done at two separate times t1 and t2. While conducting inspection at t2, it is not necessary

to keep track of the flaws found and measured at t1. Denote the actual flaw size distribution

of the components at time t1 and t2 as X1 and X2. From the random rate assumption, the

mean and SD of X1 and X2 are

µXi
= µRti and σXi

= σRti, i =1, 2.

Since the sizing error are assumed to be normally distributed with mean 0 and SD σE, the

mean and variance of the corresponding measured flaw size, Y1 and Y2, can be given as

µYi
= µXi

and σ 2
Yi

= σ 2
Xi

+ σ 2
E , i =1, 2.

In the method of moments, the flaw growth rate is then regarded as a difference between

actual flaw sizes, X2 and X1, divided by the time interval t2−t1. This estimate of the growth

rate is denoted as Z to distinguish it from the actual growth rate R. One has

Z = X2−X1

t2−t1
. (4.2.1)

The mean and variance of Z are given as

µZ = (µX2−µX1)/(t2−t1) = (µY 2−µY 1)/(t2−t1)

σ 2
Z = (σ 2

X2+σ 2
X1)/(t2−t1)

2 = (σ 2
Y 2+σ 2

Y 1−2σ 2
E)/(t2−t1)

2.

The parameters of the assumed rate distribution Z can then be evaluated by method of

moments using the sample mean and sample variance of the measured flaw size Y1 and Y2.

However, it can be shown that the random variable Z is not equivalent to R by comparing

the mean and SD of these two variables. To do this, mean and SD of X2 and X1, in terms of

µR and σR, are substituted in equation (4.2.1), which leads to

µZ = µR and σZ = σR

√

t2
2 +t2

1

(t2−t1)
or σZ = kRσR (kR >1 for t2 >t1). (4.2.2)
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Since µZ =µR, the mean of growth rate is correctly estimated as an unbiased quantity, but

the estimated SD of Z turns out to an incorrect number. From equation (4.2.2), σZ will

always be greater than the true value of σR, and depending on the inspection times, t1 and

t2, it can be several times larger than σR. For example, if t1 =5 and t2 =10, then σZ =2.33σR.

The reason for this anomaly is an implicit assumption of X1 and X2 as two independent

random variable as implied by equation (4.2.1), which they are not.

This anomaly continues in the prediction of flaw size at a future time t3, which is typically

based on the following relation

X3 = X2 + Z(t3 − t2), (4.2.3)

where X2 and Z are implicitly assumed to be independent.

From equation (4.2.3), the mean of X3 can be correctly obtained as

µX3 =µX2+µZ(t3−t2)=µRt3. (4.2.4)

However, the SD of X3 turns out to be much different from the correct value. In fact, the

independence assumption of X2 and Z in equation (4.2.3) is not only in conflict with the

assumption of the random rate model, but also inconsistent with equation (4.2.1) from

which Z is obtained, as obviously Z is correlated with X2 according to equation (4.2.1).

To show the difference between the predictions by the method of moment and the true

underlying random rate model, let’s denote the standard deviation obtained from equation

(4.2.4) as σ̂3 to distinguish it from the correct value σX3 = σRt3. One has

(σ̂3)
2 = σ 2

X2 + σ 2
Z (t3 − t2)

2

= σ 2
R t2

2 + σ 2
R(t3 − t2)

2 t2
2 +t2

1

(t2−t1)
2
.

(4.2.5)

Define the error factor of σ̂3 as k3 = σ̂3/σX3 = σ̂3/(σR t3), such that

k3 = 1

t3

√

t2
2 + (t3 − t2)

2
t2

2 +t2
1

(t2−t1)
2
.

Depending on the values of t1, t2 and t3, k3 can be greater than or less than or equal to one.

To illustrate the error given by equation (4.2.5), consider a special case in which the time
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interval between inspections and prediction is equal, i.e., (t2−t1)=(t3−t2)=d, and t1 is

increased from 1 to 25. Figure 4.2 shows that the error associated with varies from -15% to

+20% for various combinations of t1 and d.
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Figure 4.2 An illustration of error associated with the SD of flaw size predicted at a future time

t3 by the method of moments

In summary, the application of the method of moments in the literature is fraught with

conceptual inconsistencies, as explained above. It is shown from the example that statistical

inference without carefully specifying the underlying probabilistic model is likely to result

in erroneous predictions.

Simulation method

In the context of wear of steam generator tubes in nuclear plants, a simulation based method

was proposed to estimate the growth rate from noisy data (EPRI, 2006a). This method can

be used only with flaw size data collected over two consecutive inspections.

Suppose a group of n components are inspected at time t1 and t2. The actual flaw size of

the ith component at time t1 and t2 are xi1 and xi2, and the measured flaw sizes are yi1 and

yi2. From the assumptions of the random rate model, it can be shown that the measured
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rate of the component, r̃i, is related to its actual rate ri in the following manner

r̃i = yi2 − yi1

t2 − t1
= xi2 − xi1

t2 − t1
+ ei2 − ei1

t2 − t1
= ri + ei2 − ei1

t2 − t1
, (4.2.6)

where eij =yij −xij, j=1, 2, are the associated sizing errors.

A log-normal distribution is then assumed for the actual growth rate and an unbiased

normal distribution with SD σE is assumed for the sizing error. The first step of the

simulation method is to compute the measured growth rates from the actual measurements.

The mean of the actual rate µR is then equal to the sample mean of the measured rates, since

the sizing error is unbiased.

The SD of the actual rate σR is estimated from a simulation-based approach. Assuming a

value of σR, random samples of actual flaw growth rates are simulated from the log-normal

distribution. Similarly, samples of sizing errors are simulated from the assumed normal

distribution. These simulated values are then added as per equation (4.2.6) to obtain a

simulated sample of measured rates. The cumulative distribution function (CDF) of the

simulated measured rates is then visually compared with that obtained from the actual

measurements. The value of σR is iteratively modified and simulations are repeated, until

the simulated rate resembles the actual data.

This approach lacks a sound statistical foundation, since the comparison between simu-

lated and actual rate is not based on a statistical test of goodness-of-fit. Also, flaw size data

available from more than two inspections cannot be utilized, which is a waste of inspection

data.

Regression method

Although with sizing error presented in data, the accurate values of the component spe-

cific rates cannot be known, they can indeed be estimated using the regression method,

provided that there are sufficient number of repeated inspections. Suppose the flaw in the

ith component in the population is measured as yij at multiple times tij. Then, a linear

regression model, yij =βi0+βi1tij +ǫi, can be fitted using the ordinary least-square (OLS)

method. Here ǫi is the random error of the regression. The slope of regression, βi1, can

be interpreted as estimated the degradation growth rate of the ith component. The growth
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rate distribution of the population can then be obtained by performing a statistical fitting

on the estimated slopes from all the inspected components.

The problem of this linear regression approach is that sufficiently large number of com-

ponent specific measurements are required to estimate regression coefficients with high

confidence. If a component is expected to be inspected only 3-4 times over its service life,

then data are not sufficient for the regression analysis.

In some studies, it is therefore suggested to pool the flaw size measurements of all the

components into a single data-set and fitting an OLS regression model. However this is

conceptually incorrect. The reason is that it assumes that flaw growth rate is same for all the

components, which contradicts the basic assumption of the random rate model that the rate

is a random variable across the population. The correct way to analyze pooled data is to use

the linear mixed effect (LME) regression model, which treats the regression coefficients as

random variables as

y = B0 + B1t + ǫ,

where B=[B0, B1] is a multivariate normal random variable. For the ith component, the

model is given as yij =bi0+bi1tij +ǫi , in which yij is the measured flaw size of the component

at time tij, bi0 and bi1 are realizations of the joint distribution of B0 and B1.

Although LME regression is a feasible approach in theory, its practical application is

often limited because the slope coefficient in the model, B1, is required to be normally

distributed, which may not be realistic in many cases. One way of applying the LME

regression to flaw growth with non-normal rate distribution is to construct a transform

of the flaw growth rate distribution to a normal distribution, as did by Lu and Meeker

(1993). However, construction of such transform and the subsequent parameter estimate

are usually extremely tedious, making the method not practical to engineers.

In summary, regression methods are currently the most sophisticated methods for esti-

mating the flaw growth rate distribution from noisy measurement. However, both the linear

regression and the mixed effect regression have their limitations, as explained above.
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4.2.3 Proposed method

In this section, based on the simple idea that the measured value of the flaw size is the com-

bined result of the underlying degradation model and the random sizing error, likelihood

function of the random rate model given data with random sizing error is derived, from

which ML estimate of model parameters can be obtained. The proposed method accounts

the sizing error with a sound statistical basis and is able to handle flaw growth rate of ar-

bitrary distributions. Two scenarios are considered: (1) initial degradation is zero, and (2)

initial degradation is only known with uncertainty.

Zero Initial degradation

In many situations, the initial condition of the component is known exactly. For example,

in some cases of wear degradation, there is no incubation time for the wear initiation.

Therefore, if the components are degradation free when they are installed, the initial wear

of the components are precisely known as zero.

Under the assumption of zero initial degradation, the actual flaw size of the ith component

at its jth inspection at time tij is given as

xij = ritij.

Here ri is the flaw growth rate of this specific component and is a sample of the population

rate distribution fR(r; θ). Due to the random sizing error, measurement of xij is a random

variable, denoted as Yij. Any specific measured value of the flaw size in the inspection,

denoted as yij, is then an observation of random variable Yij. From previous discussions,

one has

Yij = xij + Eij = ritij + Eij,

where Eij is the independent normal sizing error with mean zero and SD σE. For a specified

ith component, ri and tij are fixed numbers, such that Yij are independent normal random
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variables with mean ritij and SD σE. The PDF of Yij is

fYij
(yij; ri) = φ(yij; ritij, σ

2
E)

= 1
√

2πσ 2
E

exp

[

−
(yij −ritij)

2

2σ 2
E

]

,

where φ(x; µ, σ 2) is the PDF of normal random variable with mean µ and SD σ .

Denote the distribution of all the mi measured flaw size of the ith component in vector

form as Yi ={Yi1, Yi2, · · · , Yimi
}. Since Yij are independent random variables, the joint PDF

of Yi is given as the product of the PDF of each Yij, i.e.,

fYi
(yi; ri) =

mi
∏

j=1

fYij
(yij; ri)

=
mi
∏

i=1

1
√

2πσ 2
E

exp

[

−
(y−ritij)

2

2σ 2
E

]

.

(4.2.7)

Since SD of the sizing error σE is known, the only parameter left for Yi is the component

specific rate ri. Notice that ri itself is a sample of the population rate distribution fR(r; θ).

Therefore, the measured flaw size of the component, Yi, actually follows a two-stage hi-

erarchical model, with the component specific rate ri be the low-level parameter and the

population rate parameter θ be the hyper-parameter. Using theorem of total probability, the

marginal likelihood of the hyper-parameter θ given inspection data of the ith component,

yi, is

Li(θ
∣

∣ yi) =
∫ ∞

0
fYi

(yi; ri)fR(ri; θ)dri

=
∫ ∞

0

mi
∏

i=1

1
√

2πσ 2
E

exp

[

−
(y − ritij)

2

2σ 2
E

]

fR(ri; θ)dri.

The likelihood of θ for a group of n components can be written as a product of the likelihood

functions for the individual component and is given in following equation

L(θ
∣

∣y1, y2, · · · , yn) =
n
∏

i=1

Li(θ
∣

∣yi). (4.2.8)
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The product can be written, because growth rate in each component is assumed to be

independent of the other component.

Finally, a point estimate of parameters θ can be obtained by maximizing equation (4.2.8).

Numerical evaluation of the likelihood function can be conducted using the classical

quadrature rules as discussed in Davis and Rabinowitz (2007); and the maximum likeli-

hood estimation can be obtained using the simplex method (Nelder and Mead, 1965) which

does not require calculating the derivatives of the objective function.

Uncertain initial degradation

We have discussed the random rate model with sizing errors under the assumption that the

initial degradation of components is known precisely as zero. However, in some other cases,

the initial condition of the component may not be known exactly. An example of such case

is the degradation of the wall thickness corrosion of SG tubes. The wall thickness loss of

the SG tube is obtained by comparing the measured wall thickness at inspection times with

the nominal wall thickness. Due to the imperfect manufacturing process, the initial wall

thickness of the tubes is not a fixed number, but rather a random quantity following some

distribution. The difference between the actual initial wall thickness and the nominal wall

thickness can then be treated as the initial degradation for practical purposes.

Suppose the initial degradation of a group of n components is a random variable denoted

as A. To be simple, here A is assumed to be normally distributed with zero mean and SD σA,

but it can be any arbitrary distribution. For a specific ith component, its initial degradation

ai is a realization of A. The actual degradation of the ith component, xij, at its jth inspection

is then

xij = ai + ritij,

where ri is the component specific degradation rate and tij is the time of the jth inspection.

Similar to the case of zero initial degradation, the measured value of xij is a random variable,

denoted as Yij. Yij is given as

Yij = ai + ritij + Eij,
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where Eij are i.i.d. sizing errors.

Because ai, ri and tij are all fixed numbers for the specific ith component, Yij are indepen-

dent normal random variables with mean ai +ritij and SD σE. The PDF of Yij is

fYij
(yij; ai, ri) = φ(yij; ai +ritij, σ

2
E)

= 1
√

2πσ 2
E

exp

[

−
(yij −ai −ritij)

2

2σ 2
E

]

.
(4.2.9)

Denote all mi measured flaw sizes of the ith component as Yi ={Yi1, Yi2, · · · , Yimi
}.

Because Yij are independent random variables, from equation (4.2.9), the joint PDF of Yi is

fYi
(yi; ai, ri) =

mi
∏

j=1

fYij
(yij; ai, ri)

=
mi
∏

j=1

φ(yij; ai +ritij, σ
2
E)

=
mi
∏

j=1

1
√

2πσ 2
E

exp

[

−
(yij −ai −ritij)

2

2σ 2
E

]

.

(4.2.10)

Following the concept of hierarchical modelling, it can be seen that Yi are normally

distributed random variables with parameter ai and ri; while ai and ri are samples from

random variables A and R, respectively. Suppose the initial wall thickness distribution A and

the population flaw growth rate R are independent. Using the theorem of total probability,

the marginal likelihood function of the model parameter θ given the inspection data of an

ith component is

Li(θ
∣

∣ yi) =
∫ ∞

0

∫ ∞

−∞
fYi

(yi; ai, ri)φ(ai; 0, σA) fR(ri; θ)dadri

=
∫ ∞

0

∫ ∞

−∞

mi
∏

i=1

1
√

2πσ 2
E

exp

[

−
(y−ritij)

2

2σ 2
E

]

φ(ai; 0, σA) fR(ri; θ)dadri.

The likelihood of θ for a group of n components can be written as a product of the likelihood

functions for the individual component and is given in following equation

L(θ
∣

∣y1, y2, · · · , yn) =
n
∏

i=1

Li(θ
∣

∣yi),
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from which the maximum likelihood estimation can be obtained using the quadratic rules

for integration and the simplex method for the maximization.

4.2.4 Numerical validation

The accuracy of the proposed MLE method is illustrated through a simulation-based exam-

ple. Consider a group of 100 components under degradation. At time 0, all the components

are in good condition. The flaw growth rate of the components is modelled as a log-normal

distribution with PDF

fR(r; µ, σ) = 1

rσ
√

2π
exp

{

− (ln r− ln µ)2

2σ 2

}

, for r >0, (4.2.11)

where µ= −1 and σ =0.5 are the log-scale and shape parameters. The mean and SD of

growth rate are 0.42 and 0.22 mm/year, respectively. The 95th percentile of the growth rate,

often used as an upper bound rate, is calculated as 0.84 mm/year.

Suppose two inspections of the flaw sizes are conducted at time 2 and 4 years. The sizing

error of the inspection is assumed to be normally distributed with mean zero and some

standard deviation. Monte Carlo simulation method is used to quantify the bias and root

mean squared error (RMSE) of the predicted mean and 95th percentile of the growth rate

from simulated inspection data. The simulation involves following steps:

❧ A sample of 100 growth rates is simulated from the log-normal distribution. The true

flaw sizes at inspection time are then calculated as xi(t)=rit, where ri is the simulated

rate of the ith component.

❧ Simulate two values of sizing error from the normal distribution for flaw measurement.

The measured flaw sizes are then obtained by adding the sizing errors to the simulated

true flaw sizes. In total, the sample consists of 200 measurements, 2 measurements for

each of the 100 flaws.

❧ The simulated flaw measurements are then analyzed using the proposed method and

the estimated mean and 95th percentile of the growth rate distribution are calculated.

For the purpose of comparison, the simulated data are also analyzed using the linear

regression method discussed previously. First, the growth rate of each flaw is calculated
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Proposed method

SD of

error

Estimated Mean
Estimated

95th percentile

Bias RMSE Bias RMSE

0.1 mm -0.06% 5.5% -0.48% 7.1%

0.5 mm -0.15% 6.5% -0.84% 8.3%

1.0 mm 0.22% 8.5% -2.2% 12%

1.5 mm 0.21% 11% -3.6% 20%

Regression method

SD of

error

Estimated Mean
Estimated

95th percentile

Bias RMSE Bias RMSE

0.1 mm -0.06% 5.8% 0.14% 7.2%

0.5 mm -0.20% 6.8% 9.2% 12%

1.0 mm 0.27% 9.0% 32% 34%

1.5 mm 0.27% 12% 61% 62%

Table 4.1 Bias and RMSE of the estimated mean and 95th percentile of the growth rate by the

proposed method and the regression method

from linear regression analysis. Then, parameters of the growth rate distribution are

obtained using method of moments from the regressed component flaw growth rates.

The simulation was carried out for various SD of sizing error (σE) ranging from 0.1

mm to 1.5 mm. For each value of σE, the procedures are repeated for 500 times, and the

corresponding bias and RMSE of the mean and 95th percentile of the estimated flaw growth

rate by the two methods are calculated. For ease of comparison, the obtained bias and

RMSE of the estimations are normalized with respect to the true average rate 0.42 mm/year.

The results of the simulation are presented in Table 4.1.

It is shown in Table 4.1 that the proposed method and the linear regression method both

give fairly accurate estimates for the mean growth rate. However, when the level of sizing

error increases, the linear regression method tends to overestimate the right percentile of

the flaw growth rate; whereas the estimate by the proposed approach remains unbiased.

The RMSE performance of the proposed approach is also significantly better that the linear
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regression method when sizing error is large. The RMSE of the 95th percentile by the

proposed approach is about 1/3 of that by the linear regression method when SD of sizing

error is greater than 1.0 mm. Overall, the proposed maximum likelihood method shows

good statistical accuracy for the parameter estimation of the random rate model even when

data contain significant sizing errors.

4.2.5 Example: fretting wear of SG tubes

Background

A practical example regarding the fretting wear of the steam generator (SG) tubes in a

nuclear power plant is presented. Fretting wear is a wear damage in SG tubes caused by the

flow-induced vibration and is usually found at the tube-to-support locations. In order to

examine the extent of the wear damage in a nuclear power plant, two inspection campaigns

were conducted in year 2005 and 2007. The inspection time is transformed to the equivalent

operating time at the plants full capacity, or simply the effective full power year (EFPY), as

17.08 and 18.4 EFPY for the two inspections, respectively. Among all the tubes, 81 tubes

were inspected only once either in 2005 or in 2007, and another 26 tubes were inspected in

both years. The data-set consists of minimum wall thickness of each tube obtained from ET

probes. The sizing error of the wall thickness measurement is a normal distribution with

zero mean and SD σE =0.25 mm. Due to the imperfect manufacturing process, the initial

wall thickness of the SG tubes is random and is assumed as a normal random variable with

mean 6.5 mm (the nominal wall thickness) and SD of 0.15 mm. For ease of the analysis, the

difference between the nominal initial wall thickness and the actual initial wall thickness of

the SG tubes is treated as the initial wall wear A. Obviously, A is a normal random variable

with mean µA =0 and SD σA =0.15 mm.

Parameter estimation

As the tubes were inspected only for once or twice, it is impractical examine whether there is

significant temporal uncertainty in the degradation. We simply assume that the fretting wear

follows the linear random rate model. Log-normal distribution with log-scale parameter µ
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and shape parameter σ is assumed as the population rate distribution R. The PDF of the

log-normal distribution can be found at equation (4.2.11).

Using the proposed method, ML estimates of the wear rate distribution are obtained. The

estimated wear rate distribution is then compared with the result obtained using the linear

regression method and the histogram of the measured wear rate, which is calculated as the

difference between the nominal initial wall thickness and the last measured value divided

by time. The results are given in Table 4.2 and Figure 4.3. From the results, the estimated

average wear rates by both the proposed method and the linear regression method are close

to the average measured rate. However, the estimated COV of the wear rate by the proposed

method is smaller than the result by the linear regression and the COV of the measured rate.

This is because the latter two did not consider the effects of sizing error and uncertainty of

the initial wall thickness properly.

Method Estimated parameters mean (mm/EFPY) COV

Proposed MLE µ= − 2.31, σ =0.165 0.10 0.166

Linear regression µ= − 2.36, σ =0.247 0.098 0.251

Measured rate N.A. 0.097 0.236

Table 4.2 Estimated parameters of the wear rate distribution by the proposed method and the

regression method

Time to failure analysis

From the estimated parameters, predictions regarding the future wall thickness loss or time

to failure distribution of uninspected tubes can be obtained.

For a randomly selected tube from the uninspected population, its wall thickness loss at

time t is a random variable, denoted as X(t),

X(t) = A + Rt,

where A is the distribution of the initial wear (i.e., difference between the nominal wall

thickness and the actual initial value), and R is the estimated wear rate distribution. Since

the initial wall thickness loss A and wear rate R are independent, CDF of X(t) is given as the
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Figure 4.3 Estimated rate distribution compared with histogram of the measured rate

following convolution

FX(t)(x) =
∫ ∞

0
FA(x−rt) fR(r)dr,

where FA is CDF of initial degradation A.

Suppose the maximum tolerable wall thickness loss with respect to the nominal initial

wall thickness is xcr. Tubes with wear greater than xcr are considered to be failed units and

should be replaced by new ones. The CDF of the failure time T of the uninspected tubes

can then be calculated from FX(t)(x) using the following relation

FT(t) = P [T 6 t] = P [X(t)>xcr]

= 1 − FX(t)(xcr),

The PDF of T can also be obtained by taking the derivatives of the corresponding CDF

analytically or numerically.

The predicted wall thickness loss X(t) and the remaining lifetime distribution T can be

then used as input for the life cycle management of the SG tubes. Suppose in our case, the

maximum acceptable wall thickness loss is xcr =3 mm. PDF of the failure time distribution

of the uninspected tubes are then calculated using parameters estimated from the proposed
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method and the regression method, as plotted in Figure 4.4. The mean, SD and the 5%

percentile of the time to failure distribution are also calculated as 30.4 EFPY, 5.5 EFPY and

22.7 EFPY using the proposed MLE, and 32.5 EFPY, 8.3 EFPY and 20.9 EFPY using the

regression method. The predicted failure time by the linear regression has a larger SD and

smaller 5% percentile. These differences will affect the optimal inspection and replacement

planning of the SG tubes.
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Figure 4.4 Failure time distribution of uninspected SG tubes by proposed method and linear

regression

4.2.6 Remarks

In this section, an accurate ML method is developed for estimating flaw growth rate of

arbitrary distribution from noisy measurements using the random rate model. This esti-

mated growth rate distribution can then be used for reliability analysis of the uninspected

components that suffer from the same degradation mechanism, as illustrated by the fretting

wear example above.

For a more refined management of the degrading components, similar analysis should

be conducted for each of the inspected components. However, due to the large sizing error

and often limited number of repeated measurements, point estimate the component specific



4.3 gamma process model with sizing error 62

rate cannot be obtained with high confidence. A better approach for the component specific

analysis is to use Bayesian analysis, which is able to incorporate information from the flaw

growth measurement of the component population. The component specific analysis of the

random rate model will be discussed later in Chapter 6 when Bayesian method is introduced.

4.3 Gamma process model with sizing error

4.3.1 Problem statement

We now consider the likelihood formulation and parameter estimation of the gamma pro-

cess model subject to normally distributed sizing errors. Unlike the random rate model, the

gamma process model focuses on modelling the temporal fluctuation of the degradation

process, while assuming that future flaw growths of different components follow the same

gamma distribution.

When the flaw inspection is perfect, likelihood formulation of the gamma process model

is simple. As discussed in Chapter 3, in the gamma process model, flaw growths over

non-overlapped time intervals are independent random variables. Therefore, the model

likelihood function is simply the product of the density functions of all flaw growth mea-

surements. However, when the flaw measurement contains random sizing errors, this

independence does not hold for the measured flaw growths anymore, despite the fact that

the sizing errors themselves are usually assumed to be independent.

For example, suppose the flaw growths of a component over two adjacent time inter-

vals 1t1 = t2−t1 and 1t2 = t3−t2 are given as 1X1 and 1X2. In gamma process model,

1X1 and 1X2 are two independent and gamma distributed random variables. When the

flaw growths are measured using an uncertain inspection probe, random sizing errors are

added to the data. Assume the sizing error at time ti is Ei. Ei ∼ N(0, σ 2
E) and are inde-

pendent. The corresponding measured flaw growths of 1X1 and 1X2 can then be given

as 1Y1 =1X1+E2−E1 and 1Y2 =1X2+E3−E2. Since 1Y1 and 1Y2 both contain term

E2, they are correlated. In fact, the covariance of 1Y1 and 1Y2 (cov(1Y1, 1Y2)) can be
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calculated as

cov(1Y1, 1Y2) = cov(1X1+E2−E1, 1X2+E3−E2)

= cov(1X1−E1, 1X2+E3−E2) + cov(E2, 1X2+E3−E2)

= 0 − cov(E2, E2) = −σ 2
E 6= 0.

(4.3.1)

In this case, the likelihood function of the model should not be written as the product of the

density functions of 1Y1 and 1Y2. Instead, the joint PDF of 1Y1 and 1Y2 has to be used.

The correlation between the measured flaw growths makes the likelihood formulation

and parameter estimation of the gamma process model much more difficult. Currently,

approximate methods are mostly used. A common practice is to first delete the negative

measured growths in the data and then estimating as if there is no sizing error (Camacho,

2006). Formal statistical analysis of gamma process model with sizing error included is

still very limited. Kallen and van Noortwijk (2005) first gave the likelihood function of the

gamma process model subjected to normally distributed sizing errors as a multidimensional

integral. A crude Monte Carlo simulation is suggested for the numerical evaluation of the

likelihood function. However, due to the computational difficulties of the crude Monte

Carlo method, they assumed that the COV of the gamma process model is known and only

estimated the average flaw growth rate.

In the next, following the work by Kallen and van Noortwijk (2005), the complete form

of the likelihood function of the gamma process model with normally distributed sizing

error is derived. To overcome the computational difficulty in the likelihood evaluation,

a novel method combining the Genz’s transform and quasi-Monte Carlo simulation is

proposed. The effectiveness of the proposed numerical method is examined using Monte

Carlo simulation. A practical case study on the flow-accelerated corrosion of SG tubes is

presented.

4.3.2 Likelihood formulation

Suppose the degradation of a group of n components follows a gamma process model

starting from zero and with shape parameter α and scale parameter β. The ith component

is then inspected for mi +1 times at time ti0, ti1, ti2, · · · , timi
. Using similar notations as in
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the previous sections, denote the true degradation of the ith component at time tij as xij and

the measured value of xij as yij. One has

yij = xij + eij, i =1, 2, · · · , n, j=0, 1, 2, · · · , mi,

where eij are the sizing errors associated with xij, and are realizations of i.i.d. normal

random variables Eij with mean zero and SD σE.

Let 1tij = tij −ti, j−1, 1xij =xij −xi, j−1, 1yij =yij −yi, j−1 and 1eij =eij −ei, j−1. 1xij are

then the flaw growths during non-overlapped time intervals 1tij, 1yij are the measured

values of 1xij, and 1eij are the associated error of 1yij. For sake of conciseness, let 1xi,

1ei and 1yi be the vectors consisting of all 1xij,1eij and 1yij, j=1, 2, · · · , mi, respectively.

Obviously, one has 1yi =1xi +1ei

First, from previous discussions in Section 3.4.3, the actual degradation growth 1xi is a

sample from random vector 1Xi ={1Xi1, · · · , 1Ximi
}, whose elements 1Xij are indepen-

dent and gamma distributed with shape parameter α1tij and scale parameter β. The joint

PDF of 1Xi is

f1Xi
(1xi) =

mi
∏

i = 1

f1Xij
(1xij) =

mi
∏

j = 1

(1xij/β)
α1tij−1

βŴ(α1tij)
exp (−1xij/β).

Now let us consider the probability density of 1ei. Clearly, 1ei is a realization of some

random vector 1Ei ={1Ei1, · · · , 1Eimi
}, where 1Eij =Eij −Ei, j−1, j=1, · · · , mi. Since Eij

are i.i.d. normal random variables with SD σE, 1Eij are also normal random variables. The

mean and SD of 1Eij can be calculated as 0 and
√

2σE, respectively. However, only non-

adjacent elements of 1Ei are independent. Adjacent elements, such as 1Ei, j−1 and 1Eij, are

correlated and their covariance can be calculated as cov(1Ei, j−1, 1Eij)= −σ 2
E using steps

similar to equation (4.3.1). Thus, 1Ei is a multivariate normal random vector. The mean of
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1Ei is {0, 0, · · · , 0}1×mi
. The covariance matrix of 1Ei, is a tridiagonal matrix given by

61Ei
= 2σ 2

E





















1 −1/2 0 · · · 0

−1/2 1 −1/2 · · · 0

0 −1/2 1 · · · 0
... · · · ...

0 0 0 · · · 1





















mi×mi

.

The joint PDF of 1Ei is

f1Ei
(1ei) = 1

(2π)mi/2|61Ei
|

exp

(

− 1

2
1ei6

−1
1Ei

1eT
i

)

, (4.3.2)

where |61Ei
| is the determinate of 61Ei

.

Because the measured degradation growth 1yi =1xi +1ei, it is thus clear that 1yi is a

sample from random vector 1Yi ={1Yi1, 1Yi2, · · · , Yimi
}, and

1Yi = 1Xi + 1Ei.

Because 1Xi and 1Ei are independent, the joint PDF of 1Yi, which is at the same time

the likelihood function of the model parameters given measured flaw growth 1yi, is as the

following convolution

Li(α, β|1yi) = f1Yi
(1yi) =

∫

D
f1Xi

(1yi −1ei) f1Ei
(1ei)d1ei1· · ·1deimi

=
∫ 1yimi

−∞
· · ·
∫ 1yi1

−∞

mi
∏

j=1

f1Xi
(1yi −1ei) f1Ei

(1ei1, · · · , 1eimi
)d1ei1· · ·1deimi

,

(4.3.3)

where the region of integration D is defined by 1yij −1eij >0, j=1, 2, · · · , mi.

The likelihood function, given measured flaw growth from a population of n components,

can then be written as the product of the likelihood for each individual components as

L(α, β
∣

∣1y1, 1y2, · · · , 1yi) =
n
∏

i=1

Li(α, β
∣

∣1yi). (4.3.4)
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4.3.3 Numerical evaluation of the likelihood

Crude Monte Carlo method

Equation (4.3.3) is a multi-dimension integral without closed form solutions and has to

be evaluated numerically. For multi-dimension integrals, Monte Carlo method is generally

preferable because its convergence rate O(N−1/2) is independent of the integration dimen-

sion s, compared to the convergence rate O(N−k/s) of the classical grid-based quadrature

for an order k method (Caflisch, 1998).

Define the following function of 1yi and 1ei as

g(1yi, 1ei) =







f1Xi
(1yi − 1ei), 1yi > 1ei,

0, 1yi 61ei.

Likelihood function (4.3.3) can be rewritten as

f1Yi
(1yi) =

∫

D
g(1yi, 1ei)f1Ei

(1ei)d1ei1 · · · 1deimi

=
∫

Rmi

g(1yi, 1ei)f1Ei
(1ei)d1ei1 · · · 1deimi

= E
[

g(1yi, 1Ei)
]

,

(4.3.5)

where E
[

g(1yi, 1Ei)
]

is the expectation of g(1yi, 1Ei).

Equation (4.3.5) can be calculated using Monte Carlo method by generating sample

points of 1Ei using the following steps:

❧ Generate N sets of independent and normally distributed sizing errors with mean zero

and SD of σE as {e
(k)

i0 , e
(k)

i1 , · · · , e
(k)

imi
}, k=1, 2, · · · , N .

❧ Calculate the corresponding sizing error differences 1e
(k)

ij =e
(k)

ij −e
(k)

i,j−1, j=1, 2, · · · , mi.

❧ Let 1e
(k)

i ={1e
(k)

i1 , 1e
(k)

i2 , · · · , 1e
(k)

imi
}. 1e

(k)

i , k=1, 2, · · · , N , are N sets of samples of

random vector 1Ei.

❧ Equation (4.3.5) can then be approximately represented by the average of g(1yi, 1e
(k)

i )

as

f1Yi
(1yi) ≈ 1

N

N
∑

k=1

g(1yi, 1e
(k)

i ),
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where 1yi ={1yi2, 1yi3, · · · , 1yimi
} is the measured flaw growth of the ith compo-

nent.

This method is suggested by Kallen and van Noortwijk (2005). Due to the computational

difficulty of the method, they reduced the number of parameters of the gamma process

model to one by fixing the coefficient of variation (COV) of the annual flaw growth and

only estimate the average annual growth. We name this method as the crude Monte Carlo

method.

The crude Monte Carlo method suffers from two important faults which would dete-

riorate its computational efficiency significantly, especially when used for ML estimation.

Firstly, for components with several negative measured growths due to sizing error, only a

small portion of the generated samples falls into the effective integration region D, where

g(1yi, 1ei) has non-zero values. To grantee the accuracy of Monte Carlo simulation, more

samples are required for such components. Secondly, the random nature of the Monte Carlo

method leads to an unsmooth likelihood surface of the parameters α and β, which makes

the convergence of the maximizing process difficult.

Proposed method

To overcome these deficiencies, an alternative method using the Genz’s transform Genz

(1992) and quasi-Monte Carlo (QMC) simulation is proposed for the ML estimation of the

gamma process model. The method is described in details as follows.

(1) Genz’s transform

Genz’s transform is a sequence of transforms proposed by (Genz, 1992) for the numerical

evaluation of multivariate normal probabilities. The main idea of Genz’s transform is to

covert the original multivariate normal integration into an integral over a unit hyper-cube

but with a somewhat more complicated integrand.

Since the likelihood function of the gamma process model given by equation (4.3.3) has

a multivariate normal density function as part of its integrand, Genz’s transform can be

applied similarly. After conducting the transform, the original likelihood function (4.3.3) is
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converted into the following integral as

f1Yi
(1yi) =

∫ 1

0
· · ·
∫ 1

0
p(s)ds, (4.3.6)

where s = {s2, s3, · · · , smi
} is the transformed variable of integration, p(s) is the new inte-

grand function calculated from the original integrand and be derived using the procedures

given in Appendix A.1.

Sampling from the hyper-cubic region in integral (4.3.6) is equivalent to sampling di-

rectly in the effective integration region of the original likelihood function. Therefore, the

transform reduces the required number of samples by not sampling from the ineffective

integration region. Depending on the standard deviation of the sizing error, the number of

repeated inspections, and the actual measured degradation growth, the number of samples

required after applying the Genz’s transform can ranges from less than 10% to about half of

that required by an equivalent crude Monte Carlo integration.

(2) Quasi-Monte Carlo simulation

To further improve the computational efficiency, quasi-Monte Carlo (QMC) simulation

can be used as a drop-in replacement of the Monte Carlo simulation for the numerical

integration. Instead of drawing random (or pseudo-random) samples, QMC simulation

uses carefully constructed deterministic sequences, called low discrepancy sequences (LDS),

which are able to fill the integration region with better uniformity than a random sequence

(Niederreiter, 1992). Common low discrepancy sequences used in QMC method include

Halton sequence (Halton, 1964) and Sobol sequence (Sobol, 1967). Figure 4.5 shows the

comparison between a Halton sequence and a random sequence over a unit region. It can be

observed from the figure that the Halton sequence covers the region with better uniformly;

whereas the random sequence shows gaps and clustering of points. For a general review on

the construction of LDS, refer to Niederreiter (1992).

It is found that QMC simulation may outperform the Monte Carlo simulation in terms

of convergence rate and required number of samples for having certain accuracy for a

wide range of numerical problems (Niederreiter, 1992). The use of QMC simulation in

the numerical integration of multivariate normal probabilities together with the Genz’s

transform was investigated by Beckers and Haegemans (1992) and showed to have better
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Halton sequence random sequence

Figure 4.5 Comparison between the Halton sequence and random sequence

performance than using Monte Carlo simulation in high dimension cases. The combination

of QMC and Genz’s transform can be similarly applied to the numerical integration of the

likelihood function of gamma process subject to normal sizing errors. As will be illustrated

in a numerical example in the next, using the Genz’s transform and QMC, the number of

samples needed for having certain accuracy in the likelihood evaluation can be reduced by

more than an order of magnitude compared to the crude Monte Carlo method. The detailed

steps of the likelihood evaluation using Genz’s transform and QMC are given as follows:

❧ Transform the original likelihood function (4.3.3) into equation (4.3.6) using Genz’s

transform.

❧ Construct an LDS of dimension mi and length N over the unit-hyper cubic. Denote

the constructed LDS as s
(k)

i ={s
(N)

i2 , s
(k)

i3 , · · · , s
(k)

imi
}, k=1, 2, · · · , N .

❧ Likelihood function Li(α, β
∣

∣1yi) can then be approximated by the following sum as

f1Yi
(1yi) ≈ 1

N

N
∑

k=2

p(s
(j)
i ),

where p(s
(j)
i ) is the integrand of equation (4.3.6). Functional form of p(s

(j)
i ) is obtained

using the procedures described in the Appendix A.1.
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4.3.4 Comparison of computational efficiency

A numerical example with a small data-set is presented here to show the effectiveness of the

proposed method. The data consist of the inspection data of the remaining wall thickness

of 5 pipes in a steam generator as listed in Table 4.3. The pipes were inspected at most

for 7 times, indicating the overall likelihood is a product of a number of integrals up to

6 dimensions. The time index for the wall thickness measurements is converted into the

equivalent operating time at the plants full capacity, i.e., the effective full power year or EFPY.

The standard deviation of sizing error is assumed to be 0.05 mm. Two comparisons between

the crude Monte Carlo method and the proposed method are conducted: (1) the accuracy

of likelihood evaluation with a given number of samples, and (2) the overall efficiency of

maximum likelihood estimation.

Inspection time (EFPY)

0 5.16 6.78 7.91 10.2 11.5 14.3

Pipe 1 6 5.74 5.56 5.48 5.31 5.19 4.90

Pipe 2 5.68 5.39 5.27

Pipe 3 5.9 5.74 5.55 5.48 5.19 4.89

Pipe 4 5.70 5.3 5.25

Pipe 5 5.8 5.74 5.57 5.47 5.28 5.18 4.94

Table 4.3 Measured wall thickness (in mm) of a group of pipes in a nuclear plant

Accuracy of likelihood evaluation

To examine the accuracy of the crude Monte Carlo method and the proposed method,

the log-likelihood function of the 5 pipes is evaluated with parameters α=4.8, β =0.015

(where the likelihood is close to the maximum) using both methods. Different number of

samples, from 104 to 106, are used in the calculation and the results are compared to the

reference value 25.47, which is calculated by the crude Monte Carlo method using very large

sample size (N =108). For the crude Monte Carlo method, for each number of samples,

the calculation is repeated for 200 times and the standard error of the results is recorded.

For the proposed method, Halton sequence is used. Because of the deterministic nature of
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QMC, the likelihood evaluation using the same number of samples is always a fixed number.

The error of the proposed method is thus compared with the standard error of the crude

Monte Carlo method with the same number of samples.

The result of the simulation is presented in Figure 4.6. As can be observed from the

figure, the proposed method already gives an accurate result at N =105 while the crude

Monte Carlo result still shows significant variability at N =106. The proposed method

shows better performance than the crude Monte Carlo over an order of magnitude in terms

of required number of samples for having certain accuracy.
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Figure 4.6 Comparison of the accuracy of likelihood evaluation using the crude Monte Carlo

method and the proposed method

Overall efficiency of maximum likelihood estimation

By using the proposed method, the number of required samples for the likelihood evaluation

can be reduced significantly. But this comes at a price of calculating a more computationally

expensive integrand p(s). For example, with both 105 samples, the numerical evaluation of

the likelihood of the 5 pipes at parameters α=4.8 and β =0.015 using the proposed method

takes about 9 seconds; whereas the crude Monte Carlo method only takes about 1 second

(CPU: Intel E2700).
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However, if one’s objective is to find the ML estimate of the model parameters, the

numerical efficiency of the proposed method can be much better comparing to its efficiency

in a single likelihood evaluation. There are two reasons. First, when conducting the ML

estimation, the likelihood function needs to be evaluated repeatedly with respect to different

values of model parameters. Because of the deterministic nature of the QMC method, the

generated samples in each evaluation are identical. Therefore, much of the time consuming

Genz’s transform only needs to be conducted once in the first likelihood evaluation and the

results can be stored for later use. Subsequent evaluations of the likelihood thus take about

the same time as the crude Monte Carlo method with same number of samples. Secondly,

unlike the crude Monte Carlo method, QMC gives a smooth likelihood surface because

of the deterministic nature of LDS, making it easier for the maximization algorithm to

converge.

ML estimation of parameters α and β given the measured data of the 5 pipes in Table 1

is conducted using both the proposed method and the crude Monte Carlo method. To have

similar accuracy for both methods, the number of samples used in the proposed method is

chosen as 105, and the number of samples for the crude Monte Carlo method is 106. Initial

values of the maximization for both methods are α=1 and β =1. The result and the time

taken for the ML maximization are listed in Table 4.4.

4.3.5 Example: flow-accelerated corrosion of feeder pipes

Background

A case regarding the flow-accelerated corrosion (FAC) of feeder pipes in a nuclear power

plant is presented here to illustrate the use of the proposed method with a larger practical

data-set. The data-set contains wall thickness measurements of feeder pipes of a nuclear

power plant during the period of ten years from 1999 to 2009. Because there are no reliable

data on the initial wall thickness of these pipes, only pipes with more than one inspection

are considered. In total, there are 50 feeder pipes in the data-set, with 26 pipes inspected

twice, 13 inspected thrice, and the rest 11 inspected four or five times. The sizing error of

the inspection probes is assumed to be normally distributed with mean 0 and SD of 0.05

mm. The first inspection conducted in 1999 is at EFPY of 5.16 and the last inspection in
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Proposed method Crude Monte Carlo

Number of

Samples
105 106

Initial value α = 1, β = 1

1st likelihood

evaluation
9.4 seconds 12.1 seconds

Subsequent

evaluations

Average time:

0.8 seconds

Average time:

11 seconds

Total number

of evaluations
26 34

Total time
9.4 + 25 × 0.8

= 29.4 seconds

34 × 11

= 374 seconds

ML estimate α = 4.77, β = 0.0155 α = 4.71, β = 0.0157

Table 4.4 ML estimation using the proposed method and the crude Monte Carlo method (CPU:

Intel E2700)

2009 is at 14.3 EFPY. Figure 4.7 shows the wall thinning path of several typical feeders in

the data-set, from which significant temporal variations can be observed. Therefore, the

gamma process model is applied.

The objective of this case study is: (1) to apply the proposed method for ML estimation

of the gamma process model; (2) to compare the differences between the ML estimations

using the likelihood function with and without considering sizing errors.

Parameter estimation

Two maximum likelihood methods are applied for the analysis of the wall thickness data.

The first method is to use the likelihood function (4.3.4) which considers the effects of the

sizing errors. In the second method, one first deletes all the negative measured growth and

then analyzes the remaining data using likelihood function (3.4.2) derived previously in

Chapter 3, which does not consider sizing error. In total, there are 87 measured growths, 4

of which are negative and are deleted in the second method.
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Figure 4.7 Variation of measured wall thickness of some feeder pipe over time

Numerical evaluation of the likelihood function with sizing error is conducted using the

proposed method with Genz’s transform and QMC simulation with sample size N =2×105.

The first evaluation of the likelihood function with sizing error takes about 3 minutes

and the following evaluations each takes about 15 seconds using a desktop computer. The

likelihood function without sizing error is given in analytic form and therefore its numerical

evaluation is straightforward.

Simplex algorithm (Rao and Rao, 2009) is used to find the maximum value of the like-

lihood, which does not require the derivative of the likelihood functions. With properly

selected initial value of the parameters, number of likelihood evaluations needed in the

maximization process is typically less than 50. Therefore, the whole ML estimation using

the proposed method can be finished in less than 20 minutes.

The results of the parameter estimation using the two likelihood functions are listed in

Table 4.5. From the results, it can be observed that the two maximum likelihood methods

give similar estimations on the average thinning rate, with only 3% difference between the

two; whereas the estimated COV of the annual thinning using likelihood without sizing

error is about 29% higher that the estimation using the accurate likelihood function.
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Method Estimated parameters Annual wall thinning

Likelihood with α=4.89 mean: µ=0.071, COV: ν =0.45

sizing error β =0.015 95th upper bound: 0.13

Likelihood without α=2.93 mean: µ=0.073, COV: ν =0.58

sizing error β = 0.025 95th upper bound: 0.16

Table 4.5 ML estimate of the model parameters using likelihood function with and without

considering the sizing errors

Goodness of fitting

To examine the goodness of fitting of the estimated parameters, one would like to compare

the fitted model with the actual data. Because the recorded data by inspection probe contain

random sizing errors, it is not appropriate to conduct this comparison directly. Instead, the

random sizing error should be added to predicted thinning from the fitted model. Denote

the predicted wall thinning of the pipes during time interval [t, t+τ ] from the fitted model

as XG(τ ). According the definition of the gamma process, XG(τ ) is gamma random variable

with shape parameter ατ and scale parameter β, where α and β are the fitted model

parameters. The predicted measured value of XG(τ ), denoted as XMG(τ ), is given as follows

XMG(τ ) = XG(τ ) + E2 − E1,

where E1 and E2 are the normally distributed sizing errors at the beginning and the end of

the time interval. Upper and lower bound of XMG(τ ) can then be used to compare with the

actual NDE measured growth to test the goodness of the estimated parameters.

Figure 4.8 plots the 5% and 95% bound of XMG(τ ) from both method. It is shown that

4 out of total 87 measured data points is beyond the 95% upper bound calculated with

likelihood function considering sizing error. The ratio is 4.6%, which matches the chosen

upper bound well. On the contrary, only 1 measured data point is beyond the 95% upper

bound calculated using the parameters calculated without consider sizing error and the

ratio is 1.1%.
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Figure 4.8 5% and 95% percentile of the measured thinning since first inspection by fitted

models versus actual readings

Time to failure analysis

In the gamma process model, since the flaw growth of the components is independent of

the current degradation and follows the same distribution across the population, the future

flaw size and the failure time distribution can be obtained similarly for both inspected and

uninspected components.

In our example of feeder thinning, suppose the measured wall thickness of a feeder at

time tm is ym. A practical estimation of the remaining wall thickness at a future time t,

denoted as X(t), can be given as

X(t) = ym−E−1X(t−tm),

where E ∼ N(0, σ 2
E) is the random variable for sizing error, 1X(t−tm) is the predicted flaw

growth between time tm and t and is a gamma random variable with parameter α(t−tm)

and β. Since the flaw growth 1X(t−tm) and sizing error E are independent, CDF of X(t) is
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given

FX(t)(x) = P (ym−E−1X(t−tm)6x)

= P (E+X(t−tm)>ym − x)

= 1 −
∫ ∞

−∞
FGa(ym−x−e; α(t−tm), β)φ(e; 0, σ 2

E)de.

Given the minimum wall thickness requirement as xcr, CDF of the failure time distribu-

tion of the component is

FT(t) = P (T 6 t) = P
(

X(t)6xcr

)

= FX(t)(x).
(4.3.7)

From the estimated model parameters, CDF of the predicted failure time of all the feeders

can be calculated. Take one feeder from the data-set as an example. The latest inspection of

the feeder is at 11.5 EFPY and the measured wall thickness is 4.15 mm. The minimum wall

thickness requirement of the feeders is given as xcr =3.1 mm. CDF of the predicted failure

time distributions using the estimated parameters considering and not considering sizing

error are calculated and plotted in Figure 4.9. If considering the sizing error, the mean, SD

and the 5% percentile of the time to failure distribution are 25.9 EFPY, 1.8 EFPY and 23.0

EFPY, respectively. If not considering the sizing error, the corresponding predictions are

26.0 EFPY, 2.4 EFPY and 22.3 EFPY.

4.4 Summary

In this chapter, estimation of flaw growth models from noisy measurement is discussed.

Two specific models, the random rate model and the gamma process model, are considered.

For the random rate model, first some current methods, including method of moments,

simulation method and regression method, are reviewed and their limitations are sum-

marized. After that, likelihood function of the random rate model is derived for noisy

measurements in the setting of a two-stage hierarchical model. ML estimate of the model

parameters can then be obtained using well established numerical methods. The proposed

ML method is more accurate than the current methods, and can handle repeated inspection
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Figure 4.9 Time to failure distribution of a selected feeder with latest measured wall thickness

4.15 mm at 11.5 EFPY

data, arbitrary rate distribution and uncertain initial degradation in a statistically sound

manner.

For the gamma process model, following the work by Kallen and van Noortwijk (2005),

the complete form of the likelihood function given measurements with normally distributed

sizing error is derived. A novel numerical method combining the Genz’s transform and

quasi-Monte Carlo method is proposed to overcome the computational difficulties in the

likelihood evaluation. It is shown from a simulation study that the proposed method is

able to improve the numerical efficiency of the crude Monte Carlo method by an order of

magnitude.



5C H A P T E R

Estimation of Flaw Generation Model

5.1 Introduction

5.1.1 Literature review

This chapter discusses parameter estimation of flaw generation model using uncertain

inspection data. The flaw generation models are often used to predict the initiation of

localized corrosion in a steel structure, or the generation of new cracks on a concrete

surface. Predicting the occurrence of defective individuals among a large group of identical

components can also be regarded as an application of flaw generation models.

Stochastic models have long been used to model various flaw generation processes. One

of the most widely used stochastic process for modelling flaw generation is the Poisson

process, as can be seen at Hong (1999); van Noortwijk and Klatter (1999); Nicolai et al.

(2007); Valor et al. (2007). However, most of these applications use data obtained from

well-controlled laboratory testings, where the detection and measurement of the flaws are

fairly accurate. Investigations on the parameter estimation of stochastic flaw generation

model using uncertain field data are still limited.

An important fact about the stochastic modelling of flaw generation with uncertain

inspection data is that when the flaw detection is not perfect, statistical inferences regarding

the flaw generation and the flaw size are often closely interrelated even if the generation

process and flaw size themselves are assumed to be independent. This is because when PoD

79



5.1 introduction 80

is involved, the detection of the flaws depends on the distribution of the flaw size; while

at the same time the flaw size distribution itself cannot be precisely determined due to the

sizing error and the undetected flaws. Because of the complexity of the problem, many

approximate methods are developed. For example, Rodriguez (1989) considered the issue

of PoD by dividing the detected flaws into a number of groups according to the flaw size.

Then, the actual number of flaws for each group is calculated as the number of detected

flaws in each group divided by the averaged PoD of that group. The effect of sizing error

is not included in Rodriguez’s analysis. Datla et al. (2008) worked around the issue of PoD

and sizing error by considering only larger flaws on which the inspection uncertainties have

relatively little impact.

Only a handful papers, including Yuan et al. (2009) and Kuniewski and van Noortwijk

(2009), that considered the inspection uncertainties in the estimation of flaw generation

model in a formal manner. Yuan et al. (2009) developed a stochastic model for the pitting

flaws in the steam generator tubes using field data. In their model, the pitting initiation is

simulated using a non-homogeneous Poisson process and the pit depth is considered to be

stable (i.e., flaw size does not change over time) and follows a Weibull distribution. Both PoD

and sizing error are considered. Kuniewski and van Noortwijk (2009) developed a general

stochastic model for localized degradation from a single inspection. In Kuniewski and

van Noortwijk’s model, the flaw initiation is simulated using a non-homogeneous Poisson

process; whereas the flaw growth is modelled using a stationary gamma process. However,

only PoD is included in their analysis and flaw sizing is considered to be accurate.

It is worth noting that when repeated inspections are presented, accurate stochastic mod-

elling of the flaw generation can be affected greatly by the inspection tools and maintenance

strategies. For example, it is often the case that the detected flaws are not tracked across

repeated inspections, or a previously detected flaw may not be detected in subsequent in-

spections, or certain detected flaws are required to be repaired or eliminated before the next

inspection. Specific considerations of these factors must be taken when analyzing the flaw

generation data. In the Poisson flaw generation model by Yuan et al. (2009), the difficulties

regarding the repeated inspections are avoided by assuming that the inspection probe is able

to report only new generated flaws in each inspection. With this assumption, previously
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detected and undetected flaws are both excluded from the analysis of future inspections,

and repeated inspections are therefore simplified to a series independent single inspections.

5.1.2 “Repair-on-detection” strategy

In this chapter, we consider the flaw generation problem with repeated inspections using

the Poisson process model, under the so-called “repair-on-detection” maintenance strategy

that is commonly employed in many safety-critical systems. The “repair-on-detection”

maintenance strategy simply says that all the detected flaws should be repaired or eliminated

before continuing the operation of the system (EPRI, 2006a). Therefore, previously detected

flaws need not to be considered in subsequent inspections. The difference between the

“repair-on-detection” strategy and the assumption that the probe is able to report only new

generated flaws (Yuan et al., 2009) is that, by the latter assumption, previously undetected

flaws are always ignored; whereas under the “repair-on-detection” strategy, the undetected

flaws left from previous inspections may still be detected in future and therefore should be

taken into account in the analysis.

5.1.3 Organization

The chapter is organized as follows. First, in Section 5.2, a simplified version of the Poisson

flaw generation model is formulated, where the flaw size is irrelevant and the PoD is a

constant. Likelihood function of the simplified model is derived and the accuracy of the

likelihood function is validated by a numerical simulation. Based on the results of the

simplified model, the complete flaw generation model under “repair-on-detection” strategy

is investigated in Section 5.3. Likelihood function of repeated inspection data contaminated

with both PoD and sizing error are derived, which turns out to be a very complicate function

with a large number of convolution calculations. Computational issue and approximated

likelihood functions are discussed. A numerical simulation is conducted and the accuracy

of the complete likelihood and approximate likelihood functions is examined. Finally,

summary of the chapter is given in the end as Section 5.4.
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5.2 Poisson process model with PoD

In this section, we first consider a simplified version of the Poisson flaw generation model

in which the size of the flaw is irrelevant. That is to say that: (1) probability of detection

is assumed to be a constant regardless the flaw size; (2) only the number of flaws is of our

concern.

5.2.1 Problem statement

Suppose the flaw initiation in a structure follows a homogeneous Poisson process with an

unknown rate λ. At time zero, there are no flaws. In total, n inspections are performed at

times t1, t2, · · · , tn, to determine the number of flaws in the structure. PoD of the inspection

probe is a constant p regardless the flaw size. The“repair-on-detection”strategy is employed.

Thus, all the detected flaws are repaired or removed immediately after the inspection so that

no flaws will be detected twice.

Denote the number of actual flaws in the structure at the ith inspection as mi and the

number of detected flaws in mi as di. According to the random nature of the Poisson process,

mi and di are both realizations of some random variables, denoted as Mi and Di, respectively.

For the convenience of discussion, Mi and Di are also used to indicate the collection of all

flaws and the detected flaws at the ith inspection, respectively. For example, when saying

that a flaw is in Di, it means that this specific flaw is one of the Di detected flaws in the ith

inspection. Our objective is to derive the joint distribution of D={D1, D2, · · · , Dn}, from

which the ML estimate of the Poisson rate λ can be obtained.

The derivation of the model likelihood is divided into three steps:

❧ Derive the likelihood function for the first inspection. Since at time zero there is no

flaw in the structure, the likelihood given the first inspection data does not need to

consider previously undetected flaws. This step is given in Section 5.2.2.

❧ Derive the likelihood function for subsequent inspections. The major difficulty for

the subsequent inspections is how to handle the previously undetected flaws properly.

In our derivation, this is done by dividing actual number of flaws in the structure at

the ith inspection, Mi, into i subsets: M1i, M2i, · · · , Mii, where Mji is the set of flaws



5.2 poisson process model with pod 83

that initiated during time interval (tj−1, tj] but remain undetected before time the ith

inspection at ti. This step is described in Section 5.2.3

❧ According to the splitting property of Poisson process, it can be shown that flaw de-

tection data at different inspections are independent. Therefore, the overall model

likelihood function is the product of the likelihood of each single inspection. A sim-

ulation study on the bias and RMSE of the ML estimate using the obtained likelihood

function is presented in Section 5.2.4, which validates the accuracy of the derived

likelihood function.

5.2.2 First inspection

Let t0 =0 and 1ti = ti −ti−1, i =1, 2, · · · , n. 1ti are then the time intervals between succes-

sive inspections. We start from the 1st inspection at time t1. From the definition of Poisson

process, the actual number of flaws at time t1, M1, is a Poisson distributed random variable

with rate λ1t1, i.e.,

M1 ∼ Pois(λ1t1).

For a random selected flaw in M1, it will either be detected in the first inspection with

probability p, or left as undetected with probability 1−p. According to the splitting property

of Poisson process, the number of detected flaws in the first inspection, D1, is a Poisson

random variable with rate pλ1t1 and is independent of M1, i.e.,

D1 ∼ Pois(pλ1t1).

The likelihood function of λ given number of detection D1 =d1 is then the probability mass

function (PMF) of D1 and is given as

L(λ
∣

∣d1) = fD1
(d1) = (pλ1t1)

d1

d1!
exp(−pλ1t1).

5.2.3 Repeated inspections

We now consider the repeated inspections for the flaw generation process. Suppose at the

2nd inspection at time t2, there are in total M2 flaws. Since all the detected flaws in the 1st
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inspection were eliminated, flaws in M2 can only come from two sources: the undetected

flaws in the 1st inspection and the new generated flaws during time t1 and t2. Denote the

former category as M12 and the latter as M22. An illustrative plot of the number of detected

and undetected flaws in the 1st and 2nd inspections is given in Figure 5.1.
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Figure 5.1 Illustration of number of detected and undetected flaws in the 1st and 2nd inspections

Since M12 are the undetected flaws in the first inspection, according to the Poisson

splitting property, M12 is a Poisson distributed random variable with rate (1−p)λ1t1 and is

independent of D1. From the definition of Poisson process, M22 is Poisson distributed with

rate λ1t2 as is independent of M1, D1 and M12. Therefore, the total number of flaws at time

t2, M2, which is the sum of M12 and M22, is Poisson distributed with rate (1−p)λ1t1+λ1t2,

i.e.,

M2 ∼ Pois(λ1t2+(1−p)λ1t1) (5.2.1)

The number of detected flaws in the second inspection, D2, is then a Poisson random

variable given as

D2 ∼ Pois(pλ1t2+p(1−p)λ1t1).

Obviously, D2 and D1 are independent.

In general, flaws at the ith inspection, Mi, can be divided into i independent categories as

M1i, M2i, · · · , Mii, where Mji, j=1, 2, · · · , i, stands for the flaws that initiated during time

interval (tj−1, tj] but remain undetected before the ith inspection at time ti. Since flaws in Mji
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remain undetected after a total of i−j independent inspections with PoD p, using Poisson

splitting property, Mji is a Poisson distributed with rate λ(1−p)i−j. The total number of

flaws Mi, as the sum of all Mji is therefore Poisson distributed as

Mi ∼ Pois



λ

i
∑

j=1

(1−p)i−j1tj



 .

The number of detected flaws in Mi, i.e., Di, is Poisson distributed as

Di ∼ Pois



pλ

i
∑

j=1

(1−p)i−j1tj



 .

The PMF of Di is

fDi
(di; λ) = (λi)

di

di!
exp(−λi),

where λi = pλ

(

∑i
j=1(1−p)i−j1tj

)

. Denote the number of detected flaws in all the inspec-

tions in the vector form as d={d1, d2, · · · , dn}. According to the properties of Poisson

process, Di are all independent, and the likelihood function of the Poisson rate λ given d is

the following product

L(λ
∣

∣d) =
n
∏

i=1

fDi
(di; λ). (5.2.2)

5.2.4 Numerical validation

A Monte Carlo simulation of the flaw generation and detection is conducted in order to nu-

merically validate the likelihood function derived above. In the simulation, the actual num-

ber of flaws are generated using a homogeneous Poisson process with rate λ=2 flaws/year.

Three inspections are performed to the generated data at 4, 8 and 12 years using an imagi-

nary inspection probe with a constant PoD p. After each inspection, all detected flaws are

removed from the data-set to simulate the “repair-on-detection” maintenance strategy. ML

estimation of the Poisson rate is then obtained by maximizing likelihood function (5.2.2)

using the generated inspection data. The above procedures are repeated for 500 times and

the bias and RMSE of the estimated λ are examined.
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Parameter estimation using the generated inspection data is also conducted using an

approximate method similar to the method used byYuan et al.(2009), in which all previously

undetected flaws are ignored. In the approximate method, the detected flaws in the ith

inspection, Di, are assumed to come only from the new generated Mii flaws, which is

Poisson distributed with rate λ1ti. Therefore, in the approximate method, Di is a Poisson

random variable with rate pλ1ti. The approximate likelihood function of λ is given as

L(λ
∣

∣d) =
n
∏

i=1

(pλ1ti)
di

di!
exp(−pλ1ti),

The simulation is carried out for different values of PoD p, ranging from 0.1 to 1. The

bias and RMSE of the ML estimation using both likelihood functions are obtained and the

results are plotted in Figure 5.2 and 5.3, respectively. From the results, it can be seen that the

likelihood function we derived gives unbiased estimates of the Poisson rate λ for any value

of PoD; whereas the approximate method over-estimates λ. The difference between the two

estimates becomes insignificant only when PoD of the inspection probe is over 0.9.
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Figure 5.2 Bias of the estimated flaw generation rate using the accurate likelihood function and

the approximate likelihood function
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Figure 5.3 RMSE of the estimated flaw generation rate using the accurate likelihood function

and the approximate likelihood function

5.3 Poisson process model with PoD and sizing error

5.3.1 Problem statement

In this section, based on the results of the simplified model discussed in the previous section,

a complete Poisson flaw generation model with both PoD and sizing error investigated, still

using the “repair-on-detection” maintenance strategy. In the complete model, the flaw

generation is still assumed to follow a homogeneous Poisson process with rate λ. The

flaw size, on the other hand, is assumed to be stable and follows some positively defined

probability distribution fX(x; θ), where θ is the distribution parameter and is often omitted

in the derivation for the sake of conciseness. In addition, the flaw size and flaw generation

are considered to be independent.

Suppose at time t0 =0, there are no flaws presented. The inspections of the flaws are

conducted at time t1, t2, · · · , tn. PoD of the inspection probe is a function of the flaw

size and is denoted as p(x). The sizing error of the inspection probe, E, is assumed to be

independent and normally distributed with mean zero and SD σE. To be simple, we also

assume that PoD and sizing error are two separate properties of the inspection probe. That
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is in the inspection the probe first detects certain flaws and then reports its measured flaw

size.

In the inspection, both the number of detected flaws and their measured sizes are re-

ported. Denote the inspection result in the ith inspection as yi ={y1, y2, · · · , ydi
}, where di

is the total number detected flaws in the ith inspection. Obviously, di, yij are all realizations

of their corresponding random variables, denoted as Di and Yij. The objective is to derive

the joint distribution functions of all Di and Yij, from which the parameters of the flaw

generation and flaw size can be estimated.

The discussion is divided into the following 5 steps:

❧ First, a basic problem of flaw detection and measurement for a group of flaws with

some known size distribution is investigated. The average probability of detection and

the size distributions of the detected and undetected flaws are obtained. The results

then serve as basic blocks for the following likelihood derivations. This step is given in

Section 5.3.2.

❧ Derive the likelihood function for the 1st inspection. As there are no flaws at time zero,

this step is relatively easy, as described in Section 5.3.3.

❧ Derive the likelihood function for the 2nd inspection. Similarly to the previous

simplified model, the actual flaws at the 2nd inspection can be separated into two

subsets: the undetected flaws left from the 1st inspection and the new generated flaws.

Numbers and flaw size distributions of the detected and undetected flaws from the two

subsets are obtained. This step is described in details in Section 5.3.4.

❧ The likelihood function for the second inspection is generalized to all subsequent

inspections. The overall likelihood is then the product of the likelihood functions of

all the inspections. This step is given in Section 5.3.5.

❧ The computational issue and approximate likelihood functions of the model are dis-

cussed. A simulation study is presented and the ML estimates using the accurate

likelihood and the approximate likelihood functions are compared. These are pre-

sented in Section 5.3.6 and Section 5.3.7.
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5.3.2 Flaw inspection considering PoD and sizing error

Before starting to analyze the Poisson flaw generation model, let us first consider the follow-

ing basic problem. Suppose there are in total m flaws in a structure. The flaw size X follows

a probability distribution with PDF fX(x). An inspection of the flaws is conducted using

an uncertain probe. The PoD of the probe is given as p(x), where x is the actual flaw size.

The sizing error of the inspection probe, E, is a normal random variable with mean zero

and SD σE. Our objective is to determine the average probability of detection and the size

distributions of the detected and undetected flaws.

First, consider the average PoD for flaws with size distribution X, which is defined the

probability of detecting a random selected flaw with size distribution X. Clearly, when the

PoD function p(x) is given, this probability depends only on the distribution of flaw size X

and therefore can be written as PX . Using the total probability theorem, PX is given as the

following integral

PX =
∫ ∞

0
p(x) fX(x)dx. (5.3.1)

Let the detection of a flaw be event I , the actual size distribution (error-free size) of the

detected flaws can then be written as the following conditional probability as fX|I(x). Using

Bayesian theorem, fX|I(x) is

fX|I(x) =
P (I|x) fX(x)

∫∞
0 P (I|x) fX(x)dx

=
1

PX

p(x) fX(x),

where P (I|x) is the probability of detecting flaws with actual size x, which is exactly how the

PoD function p(x) is defined. For ease of presentation, denote the actual size of the detected

flaws from flaws with size distribution X as DX. The PDF of DX is then given as

f
DX(x) = fX|I(x|I) =

1

PX

p(x) fX(x).

Similarly, let actual size distribution of the undetected flaws be UX. PDF of UX is

f
UX(x) = fX|Ī(x) =

(

1−p(x)
)

fX(x)
∫∞

0

(

1−p(x)
)

fX(x)dx
=

1

1 − PX

(

1−p(x)
)

fX(x). (5.3.2)
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Since the sizing error E is independent of the actual size x, PDF of the measured size of

the detected flaws, Y , can be written in the following convolution as

fY (y) =
∫ ∞

−∞
f
DX(y−e) fE(e)de = 1

PX

∫ ∞

−∞
p(y−e) fX(y−e) fE(e)de,

where fE(e) is the distribution of sizing error E.

5.3.3 First inspection

Let t0 =0 and 1ti = ti −ti−1, i =1, 2, · · · , n. 1ti are the time intervals between successive

inspections. We first consider the inspection at time t1. According to the model assumptions,

at the first inspection time t1, the actual number of flaws, M1, is a Poisson random variable

with rate λ1t1. Since at time zero there are no flaws, the actual flaws size distribution for

M1, denoted as fX1
(x), is the same as the size distribution of new generated flaws, fX(x; θ).

From equation (5.3.1), for a randomly selected flaw in M1, its probability of being detected

can be written as PX(θ)=
∫∞

0 p(x) fX(x; θ)dx. Using the Poisson splitting property, the

number of detected flaws in M1, denoted as D1, is independent of M1 and is Poisson

distributed with rate PX(θ)λ1t1, i.e.,

D1 ∼ Pois
(

PX(θ)λ1t1

)

.

The PMF of D1 is

fD1
(d1; λ, θ) =

(

PX(θ)λ1t1

)d1

d1!
exp

(

−PX(θ)λ1t1

)

. (5.3.3)

The distribution of the actual size of flaws in D1 is given as

f
DX1

(x; θ) =
1

PX(θ)
p(x) fX(x; θ). (5.3.4)

The measured size of flaws in D1, denoted as Y1, is then given by the following convolution

as

fY1
(y; θ) =

∫ ∞

−∞
f
DX1

(y−e; θ) fE(e)de =
1

PX(θ)

∫ ∞

−∞
p(y−e) fX(y−e; θ) fE(e)de. (5.3.5)
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From equation (5.3.3) and (5.3.5), it is clear that for a given inspection probe, the number

of detected flaws D1 in the 1st inspection is affected by both the Poisson rate λ of the flaw

generation and the parameter θ of the flaw size distribution; whereas the measured size

distribution of the detected flaws is only affected by θ .

Since the flaw generation and the flaw size are independent, the likelihood function of the

model parameter λ and θ can be given as

L1(λ, θ |y1) = fD1
(d1; λ, θ)

d1
∏

j=1

fY1
(y1j; θ), (5.3.6)

where y1 ={y11, y12, · · · , y1d1
} are the measured sizes of the d1 detected flaws in the first

inspection, fD1
and fY1

are the PMF or PDF of the number of detected flaws and their

measured size given by equation (5.3.3) and (5.3.5), respectively.

When no flaws are detected, i.e., d1 =0 and y1 is an empty set, a special case equation

(5.3.6) is given as

L1(λ, θ
∣

∣d1 =0) = fD1
(0; λ, θ) = exp

(

PX(θ)λ1t1

)

.

5.3.4 Second inspection

We can now consider the second inspection at time t2. Similar to the previous simple case

with only PoD, we denote the actual flaws at time t2 as M2. M2 can be separated into two

independent categories: the undetected flaws left from the first inspection, denoted as M12,

and the new generated flaws between time t1 and t2, denoted as M22. The derivation of the

likelihood then utilizes the independence of M12 and M22. An illustration of the number

and size distribution of the detected and undetected flaws in the first few inspections is

given in Figure 5.4.

Number and size distribution of flaws in M12 and M22

Flaws in M12 are the undetected flaws from the first inspection. From previous discussions,

the probability of detecting a randomly selected flaw in the first inspection is PX(θ), or

simply written as PX by omitting parameter θ . According to the Poisson splitting property,

the number of undetected flaws in the 1st inspection, M12, is Poisson distributed with rate
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Figure 5.4 Illustration of number and size of the detected and undetected flaws in the first 3 inspections
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(1−PX)λ1t1 and is independent of D1. The size distribution of the flaws in M12, denoted

as fX12
(x), is f

UX(x) given by equation (5.3.2).

Flaws in M22 are the new generated flaws between time t1 and t2. Therefore, M22 is Poisson

distributed with rate λ1t2 and is independent of M1 and D2. The size distribution of flaws

in M22, fX22
(x) is equal to fX(x).

Number of the detected flaws

Let D12 and D22 be the detected flaws from M12 and M22, respectively. The total number of

detection in the 2nd inspection is D2 =D12+D22.

From the above discussion, the size distributions of M12 and M22 are f
UX(x) and fX(x).

Thus, the probability of detecting a randomly selected flaw from M12 and M22 are P
UX

and PX , respectively. Since M12 and M22 are independent Poisson random variables with

rate (1−PX)λ1t1 and λ1t2, using the Poisson splitting property, D12 and D22 are also

independent and Poisson distributed. And one has

D12 ∼ Pois
(

P
UX(1−PX)λ1t1

)

,

D22 ∼ Pois(PXλ1t2).

The total number of detected flaws in the second inspection, D2, is then a Poisson random

variable given as

D2 = D12 + D22 ∼ Pois
(

P
UX(1−PX)λ1t1 + PXλ1t2

)

. (5.3.7)

Size distribution of the detected flaws

Since M12 and M22 are independent Poisson random variables with rate
(

1−PX

)

λ1t1 and

λ1t2, according to the properties of the Poisson distribution, for a randomly selected flaw

from M2 =M12 + M22, the probability that it is from M12 (or M22) is equal to the Poisson

rate of M12 (or M22) divided by the Poisson rate of M2.
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Using the theorem of total probability, the size distribution of a randomly selected flaw

in M2 is given as

fX2
(x) =

(1 − PX)λ1t1

(1 − PX)λ1t1 + λ1t2
fX12

(x) +
λ1t2

(1 − PX)λ1t1 + λ1t2
fX22

(x)

= (1 − PX)1t1

(1 − PX)1t1 + 1t2
f
UX(x) + 1t2

(1 − PX)1t1 + 1t2
fX(x).

(5.3.8)

Likelihood function

From the discussions in Section 5.3.2, PDF of the actual size of the detected flaws in M2, i.e.,

D2, is

f
DX2

(x) =
1

PX2

p(x) fX2
(x),

where PX2
=
∫∞

0 p(x)fX2
(x)dx and fX2

(x) is given by equation (5.3.8).

PDF of the measured size of the flaws in D2 is then the convolution of f
DX2

(x) and the

sizing error distribution fE(e) given as

fY2
(y) =

∫ ∞

−∞
f
DX2

(y−e) fE(e)de. (5.3.9)

The likelihood function of the model parameters given measured flaws in second inspection,

y2 ={y21, y22, · · · , y2d2
}

L2(λ, θ
∣

∣ y2) = fD2
(d2)

d2
∏

j=1

fY2
(y2j), (5.3.10)

where fD2
(d2) is the PMF of the Poisson random variable D2 and can be given from equation

(5.3.7), fY2
(y) is the PDF of Y2 given by equation (5.3.9). Here parameters λ and θ in fD2

(d2)

and fY2
(y) are omitted for sake of conciseness. A special case of equation (5.3.10) when

d2 =0 is given as

L2(λ, θ
∣

∣d2 =0) = fD2
(0) = exp

(

P
UX

(

1−PX

)

λ1t1 + PXλ1t2

)

.
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5.3.5 Overall likelihood function

In general, in the ith inspection at time ti, the actual number of flaws Mi can be separated into

i independent categories as M1i, M2i, · · · , Mii, where Mji are flaws that initiated during time

interval (tj−1, tj] but remain undetected before the ith inspection at time ti (or equivalently,

remain undetected after the (i−1)th inspection). In particular, Mii are the new generated

flaws during time (ti−1, ti]. Obviously, Mii is Poisson distributed with rate λ1ti and the

actual size of the flaws in Mii is distributed with PDF fX(x).

When j < i, Mji consists of flaws that are generated during time (tj−1, tj] but remain

undetected before the ith inspection. Clearly, Mji is a subset of Mjj which represents all the

flaws that are generated during time interval (tj−1, tj]. After the jth inspection at time tj, the

undetected flaws in Mj j are left as Mj, j+1. From previous discussions in Section 5.3.4, the

number and the actual size of flaws in Mj, j+1 are given as

Mj, j+1 ∼ Pois
(

(1−PX)λ1tj

)

,

fXj, j+1
(x) = f

UX(x),

where fXj, j+1
(x) is the PDF of the actual size of the flaws in Mj, j+1.

Following the convention for the subscript of M, the flaws that were initiated during

time interval (tj−1, tj] but remained undetected before the (j+2)th inspection are dented as

Mj, j+2. Obviously, Mj, j+2 is actually the undetected flaws left from Mj, j+1 in the (j+1)th

inspection. Therefore, one has

Mj, j+2 ∼ Pois
(

(1−P
UX)(1−PX)λ1tj

)

,

fXj, j+2
(x) = f

UUX(x) = f
U2X(x),

where f
UUX(x)= f

U2X(x) are the size distribution of the remaining undetected flaws after

two inspections, from flaws originally with a size distribution fX(x), and can be calculated

recursively from equation (5.3.2).

Continuing the above procedures, it can be inferred that Mji is a Poisson random variable

given as

Mji ∼ Pois(λji),
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where λji =λ1tj

∏i−j
k=1(1−P

Uk−1X), j=1, 2, · · · , i−1. The size distribution of the flaws in

Mji is

fXji
(x) = f

U i−jX(x).

To be consistent in notations, let f
U0X(x)= fX(x) and the Poisson rate of Mii be λii,

λii =λ1ti. The total number of flaws at the ith inspection,Mi,as the sum of M1i, M2i, · · · , Mii,

is therefore a Poisson random variable given as

Mi =
i
∑

j=1

Mji ∼ Pois





i
∑

j=1

λji



 .

Let λi =
∑i

j=1 λji, Mi is a Poisson random variable with rate λi. Using theorem of total

probability, the actual size of flaw in Mi is distributed as

fXi
(x) =

i
∑

j=1

λji
∑i

j=1 λji

fXji
(x) =

i
∑

j=1

λji

λi

f
U i−jX(x). (5.3.11)

From the previous discussions in Section 5.3.2, the number of detected flaws in the ith

inspection, denoted as Di, is then Poisson distributed as

Di ∼ Pois(PXi
λi),

where PXi
=
∫∞

0 p(x)fXi
(x)dx is the average PoD of flaws in Mi. The actual size of the

detected flaws in Mi is distributed as

f
DXi

(y) = 1

PXi

p(x)fXi
(x).

The corresponding measured size distribution of the detected flaws is

fYi
(y) =

∫ ∞

−∞
f
DXi

(y − e)fE(e)de.
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The likelihood function of the model parameters given measured flaws in the ith inspec-

tion, yi ={yi1, yi2, · · · , yidi
}, is

Li(λ, θ
∣

∣yi) = fDi
(di)

di
∏

j=1

fYi
(yij),

where parameters λ and θ are omitted in fDi
(di) and fYi

(yij). A special case of the likelihood

for no flaw detection is

Li(λ, θ
∣

∣di =0) = fDi
(0).

Since the detected flaws in each inspection are independent, the overall likelihood func-

tion is simply the product of all Li, i.e.,

L(λ, θ
∣

∣y1, y2, · · · , yn) =
n
∏

i=1

Li(λ, θ
∣

∣yi). (5.3.12)

5.3.6 Computational difficulties and approximate likelihood

The derivation of likelihood function (5.3.12) clearly shows the complexity of the stochastic

modelling of flaw generation subject to both PoD and sizing error. Two types of numer-

ical integrals need to be calculated when evaluating the likelihood function: the average

probability of detection, and the measured flaw size distribution.

From the derivation of equation (5.3.12), it can be observed that, in order to evaluate

the model likelihood function from n repeated inspections, only the following n aver-

age PoD need to be calculated, regardless the number of total detected flaws. They are

PX , P
UX , · · · , P

Un−1X . Therefore, the computational burden brought in by calculating aver-

age PoD is not very significant, since the number of repeated inspections is usually quite

limited.

However, for each single detected flaw, calculation of its measured flaw size distribution

fYi
(yij) has to the conducted, which is a convolution over infinite region. For example, for

a data-set consisting of 100 detected flaws, which is not a very large data-set for repeated

inspections over years, 100 convolution calculations are required for each evaluation of

the model likelihood, and this can be extremely time-consuming since the actual size
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distribution of the detected flaws f
DXi

(x) is already very complicated. Therefore, directly

ML estimation using equation (5.3.12) can be only conducted for small data-sets. To

avoid calculating the convolution in fYi
(yij), advanced Bayesian simulation using Markov

Chain Monte Carlo (MCMC) and auxiliary variable method can be applied, which will be

discussed in Chapters 7.

An obvious fact about the flaw detection is that after several inspections, the undetected

portion of a group of flaws will decrease quickly and the size of the remaining flaws also

tends to be smaller. Therefore, to simply the analysis, approximate likelihood can be

obtained, by neglecting the remaining undetected flaws after their kth inspection. We call

this approximation the kth order approximate of likelihood function (5.3.12). For example,

in the 2nd order approximation, when deriving the likelihood of the ith inspection, one

only considers Mii and Mi−1,i and assume all other Mji, j=1, 2, · · · , i−2, to be zero. In

particular, the 1st order approximate of (5.3.12) is same as the one used by Yuan et al.

(2009), in which only the new generated flaws since last inspection are considered.

5.3.7 Numerical validation

A numerical simulation is presented to validate the likelihood function derived in this

section. In the simulation, the flaw initiation is simulated using a homogeneous Poisson

process with rate λ=2. The size of the generated flaws is considered to be stable and follows

a log-normal distribution with log-scale µ=3.5 and shape parameter σ =0.4 (average size

35.9 with standard deviation 14.9). Four inspections of the generated flaws are conducted at

time 4, 8, 12, and 16 years, respectively, using an uncertain probe with PoD p(x) and normal

sizing error E ∼ N(0, σ 2
E). All the detected flaws in each inspection are removed from the

simulated flaws to mimic the “repair-on-detection” maintenance strategy. The measured

size of the detected flaws are generated by adding the actual size with a generated normal

sizing error. The number of the detected flaws and their measured sizes then form the

generated data-set. Detailed procedures for generating the data-set is given in the Appendix

A.2.

Two inspection probes are assumed in the simulation. Probe 1 has a better performance

in probability of detection. The PoD function of Probe 1 is a log-logistic function given by
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equation (2.2.1), with parameters a= −8 and b=3. Probe 2 has a relatively inferior PoD

performance with PoD curve given as a log-logistic function with parameters a= −10 and

b=3. Standard deviation of the sizing errors of both inspection probes are both assumed

to be σE =6. Figure 5.5 shows the PDF of the assumed flaw size distribution and the PoD

functions of both inspection probes.
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Figure 5.5 Flaw size distribution (solid line) and PoD curves of the two inspection probes

(dashed lines)

ML estimates of the Poisson rate λ of flaw generation and the parameters of flaw size

distribution are calculated by maximizing likelihood function (5.3.12) using the generated

data-sets from the two inspection probes. The data simulation and ML estimation are

repeated for 500 times. Bias and RMSE of the estimates are examined. The results are

also compared with the estimates using kth order approximate of the likelihood function

(5.3.12) to illustrate the effects of the approximation. The results are presented in Table 5.1.

From the results, it can be shown that the complete likelihood function (5.3.12) correctly

gives unbiased estimates of both the Poisson rate λ and the parameters of flaw size dis-

tribution. The approximated likelihood functions also give fairly good estimates on the

parameters of the flaw size distribution. However, approximated likelihood functions tend

to over-estimate the flaw generation rate, because they do not handle previously undetected
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For Probe 1 (with good PoD)

Accurate

likelihood

3rd order

approx.

2nd order

approx.

1st order

approx.

λ
Bias

RMSE

-0.002

0.35

0.003

0.37

0.018

0.38

0.166

0.44

µ
Bias

RMSE

0.006

0.089

-0.005

0.089

-0.014

0.093

-0.047

0.106

σ
Bias

RMSE

-0.002

0.070

-0.007

0.075

-0.002

0.074

-0.002

0.080

For Probe 2 (with poor PoD)

Accurate

likelihood

3rd order

approx.

2nd order

approx.

1st order

approx.

λ
Bias

RMSE

0.019

0.44

0.072

0.46

0.23

0.58

0.94

1.22

µ
Bias

RMSE

0.001

0.11

-0.012

0.12

-0.030

0.14

-0.090

0.18

σ
Bias

RMSE

-0.018

0.085

-0.008

0.089

-0.009

0.089

-0.006

0.090

Table 5.1 Bias and RMSE of estimated model parameters using the accurate likelihood and

approximate likelihood functions (true value: λ=2, µ=3.5, σ =0.4)

flaws properly. The accuracy of the approximate likelihood functions becomes better as the

order of approximation increases (i.e., more previously undetected flaws are considered)

and the PoD performance of the probe improves.

For Probe 1 which has a better PoD performance, the bias of the estimates of λ from the 1st

order approximate likelihood function is about 8% of the true value, and the bias obtained

using the 2nd order approximate likelihood is less than 1%. The 2nd order approximation

already gives very good estimation of λ. For Probe 2, the bias of the estimated λ using the

1st order, 2nd order, and 3rd order likelihood are 47%, 12% and 3.5% of the true value of λ,

respectively. To have an reasonably accurate estimate of the flaw generation rate using data

from Probe 2, the 3rd order approximation should be used.
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5.4 Summary

In this chapter, parameter estimation of the Poisson flaw generation model using noisy and

incomplete inspection data from repeated inspections is investigated under the “repair-on-

detection” assumption.

First, likelihood function of a simple flaw generation problem considering only PoD is

derived. The major difficulty in formulating the model likelihood function comes from

the undetected flaws of previous inspections, which need to be accounted carefully when

analyzing subsequent inspections.

Based on the results of the simple problem, the complete Poisson flaw generation model is

investigated. Both PoD and sizing error are included in the model. Although PoD and sizing

error are assumed to be two separated characteristics of the inspection probe, they are found

to be closely interrelated in the parameter estimation, and the complete likelihood function

turns out to be very complicated. The computational issue and the approximate likelihood

functions are discussed briefly. The calculation of the convolution for the measured flaw

size distribution is identified as the major computational difficulty. This computational

difficulty can be resolved using Markov chain Monte Carlo simulation method, which will

be discussed later in Chapter 7.



6C H A P T E R

Bayesian Inference for Degradation Mod-
els

This chapter introduces Bayesian parameter inference in the context of degradation mod-

elling. We start with a brief discussion on the differences between the classical and Bayesian

parameter inference. The concept of subjective probability is introduced, based on which

Bayesian method is formulated. Although being conceptually different, the procedure of

Bayesian inference can be regarded as a natural generalization of the classical maximum

likelihood method by incorporating the prior distribution in the estimation process. Infor-

mative and non-informative prior distributions for Bayesian inference are discussed. Two

practical applications are presented to illustrate the use of Bayesian inference in degradation

assessment.

6.1 Classical and Bayesian parameter inference

Classical parameter inference

In previous chapters, parameter estimation of stochastic models for flaw growth and flaw

generation using uncertain inspection data is discussed. Likelihood functions of stochastic

models given error contaminated data are derived, from which ML estimates of the model

parameters are obtained.

102
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The ML method we discussed before is based on the classical statistical inference, in

which the model parameters are assumed to be fixed (but unknown) constants. Estimation

of the model parameters in the classical statistical inference is then regarded as a formal

process that yields numerical estimates of the unknown parameters from observed sam-

ples (Benjamin and Cornell, 1970). Since the observations are random samples from the

probabilistic model, the result of the parameter estimation process, as a function of the

observations, is also random and is called an estimator of the model parameters defined by

this specific estimation process. The actual estimate of the parameters from some specific

observed data is then a realization of the estimator.

To better explain the classical approach of parameter inference, consider the following

example. Suppose X is a normal random variable with mean µ and known SD of 1. In

order to estimate the value of µ, n random samples, X1, X2, · · · , Xn, are drawn from random

variable X independently. The corresponding sample mean X̄ = 1
n

∑n
i=1 Xi is then an esti-

mator of the unknown parameter µ. For a particular observed data-set x1, x2, · · · , xn, the

corresponding realization of the sample mean X̄, denoted as x̄ = 1
n

∑n
i=1 xi, is the estimate

of µ from data-set x1, x2, · · · , xn, using the sample mean estimator.

The goodness of a parameter estimation method can be quantified using the distribution

of its corresponding estimators. For example, with the help of some simple statistical

calculation, the sample mean estimator X̄ in the above example is found to be normally

distributed with mean µ and SD 1/
√

n. Therefore, when the estimation process (drawing

n random samples and calculating the sample mean) is repeated, the expected value of the

estimates is equal to the true value of µ, indicating that this sample mean estimation is

unbiased. Furthermore, as the sample size n increases, SD of the estimator becomes smaller,

which means the estimates from larger data-sets are more likely to be close to the true value

of µ than estimates from small data-sets.

In general, the distribution of the estimators cannot be obtained analytically, except for

some simple cases. For many parameter estimation methods, especially complicated ones,

Monte Carlo simulation is needed in order to validate the goodness of the estimation, as we

did in previous chapters for the validation of our proposed ML methods.
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The uncertainty associated with an estimate of the model parameter from some specific

observed data-set is expressed in terms of confidence intervals in classic parameter infer-

ence. A confidence interval (CI) is an observational interval (i.e., a function of the observed

data) over which the true value of the parameter may lie (Ang and Tang, 1975). Take the

above sample mean estimation of normal random variable as an example. Since the estima-

tor X̄ from n random samples is a normal random variable with mean µ and SD 1/
√

n, one

has

P
[

X̄ − 1.96/
√

n6µ6 X̄ + 1.96
√

n
]

= 0.95. (6.1.1)

From equation (6.1.1), given n observations, x1, x2, · · · , xn, there is a 95% percent chance

that interval [x̄ − 1.96/
√

n, x̄ + 1.96/
√

n] contains the true value of the parameter µ, where

x̄ =
∑n

i=1 xi. [x̄ − 1.96/
√

n, x̄ + 1.96/
√

n] is called a 95% confidence interval associated

with the estimate x̄ and can be used to quantify the parameter uncertainty associated with

the estimate x̄.

In the degradation assessment of nuclear power plants, the parameter uncertainty asso-

ciated with an estimate is usually quite significant, due to the small sample size and the large

inspection uncertainties. A proper consideration of parameter uncertainty is important to

the safety of the plant operation. If the parameter uncertainty is found to be very large,

the prediction of degradation will be unreliable. In such cases, additional data collection

or more conservative predictions (say predictions using the upper bound of the 95% CI

instead of the point estimate of the parameter) are needed, both of which could be very

costly.

To improve the quality of the parameter estimation and reduce the parameter uncertainty,

information from sources other than the inspection data, such as plant design, expert

judgment and/or past operation experiences of similar plants, should be utilized, especially

when inspection data are scarce. However, with the classical approach, there is no formal

way for combining such information in the parameter estimation process.

Another difficulty regarding the parameter uncertainty in the classical approach is that

constructing confidence intervals for estimates of complex statistical models is usually

not easy. For the ML estimation, numerically expensive manipulations of the likelihood

function are often needed. For example, to determine the asymptotic confidence interval
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of a ML estimate, the second derivative of the likelihood function needs to be evaluated

(Benjamin and Cornell, 1970), which is computationally prohibitive for models such as the

gamma process model with sizing error that we discussed before.

Bayesian parameter inference

Bayesian inference is a conceptually different method for the parameter estimation, that

is based on the subjective interpretation of probability. In the subjective interpretation,

probability is regarded as a mathematical expression of our degree of belief with respect to

a certain proposition (Box and Tiao, 1992). For example, one may conclude, from all the

available information, that the chance of having heads when tossing a coin is somewhere

between 30% and 70%, with any value in between being equally possible. From a Bayesian

perspective, this actually assigns a uniform distribution over interval [30%, 70%] to the

chance of having heads in the experiment, despite the fact that the actual chance is a fixed

number.

It has been shown that in order to avoid inconsistency, probability, as a subjective degree

of belief, is both necessary and sufficient to follow the classical probability calculus (Lindley,

1965; Savage, 1972). For instance, the degree of belief about a certain event is always 1, and

the degree of belief on event A being true is always smaller than the belief on event B being

true, given A ⊂ B.

With the subjective interpretation of probability, our degree of belief regarding certain

propositions can be updated formally as new information becomes available, through Bayes’

theorem. Suppose A and B are two propositions. In Bayesian statistics, P (A) and P (B)

are, respectively, our degree of believes on that A and B are true, based on our background

knowledge M, where M is usually omitted. The conditional probability P (A
∣

∣B) is then

interpreted as the updated degree of belief of A being true when we know that B is true.

Using Bayes’ theorem, the updated degree of belief is given as

P (A
∣

∣B) =
P (B

∣

∣A)P (A)

P (B)
,

P (A) is then called the prior probability of A given the background knowledge M. P (A
∣

∣B)

is called the posterior probability of A given B.
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Using the concept of subjective probability and Bayes’ theorem, Bayesian inference of

model parameters can be formulated as follows. Suppose the PDF of the observation X

from a probabilistic model is given as fX(x; θ) with θ as the unknown parameter. First, a

prior distribution on values of θ , denoted as π(θ), is assigned based on the background

information. Bayesian inference of θ given an actual observation x is then simply the

posterior distribution of θ given x, or π(θ
∣

∣x). According to Bayes’ theorem, one has

π(θ
∣

∣x) = fX(x; θ)π(θ)
∫

fX(x; θ)π(θ)dθ
= CL(θ

∣

∣x)π(θ), (6.1.2)

where C =
[∫

fX(x; θ)π(θ)dθ
]−1

is the normalization constant, L(θ
∣

∣x)= fX(x; θ) is the

same likelihood function that is used in ML analysis. L(θ
∣

∣x) is written in such form only to

indicate that it is a function not of actual observation x but of the model parameter θ .

Compared to the classical parameter inference, Bayesian inference is able to incorporate

information from sources other than the observed data in a formal way through Bayes’

theorem and the prior distribution. The subjective interpretation in Bayesian inference also

provides a more natural way for expressing the parameter uncertainty of the estimation

using the posterior distribution of the parameter.

In the following sections of this chapter, Bayesian inference is discussed through some

relatively simple examples, to illustrate its application in degradation assessment. Discus-

sions on the computational aspects of Bayesian inference of some more complicated models

are left for the next chapter.

6.2 Prior distribution

A complete Bayesian inference includes two parts. The first part is the likelihood function

L(θ
∣

∣x), which represents the chosen probabilistic model and the information from observed

data. The likelihood formulation of stochastic models has been discussed extensively in

previous chapters. The second part, which is not seen in the ML analysis, is the prior

distribution π(θ), which represents all other information that is known or assumed about

the model parameter θ other than observed data. The prior information can be any

relevant information regarding the model parameters, such as engineering design data,

expert judgment, data from other similar systems, or even lack of information.
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In Bayesian inference, the prior distribution does not necessarily needs to be a proper

distribution function, as long as the resulted posterior distribution is proper. A prior

distribution π(θ) is called an improper prior if
∫

2

π(θ)dθ = ∞,

where the integration region is the admissible range of θ . A typical example of the improper

prior the uniform prior over an infinite region such as (−∞, ∞) or [0, ∞).

Prior distributions used in Bayesian inference can be divided in two categories: the non-

informative prior and the informative prior. The non-informative prior, also called the

prior of ignorance, applies when there is relatively little subjective information compared to

the observed data; and therefore, the posterior distribution is “dominated” by the likelihood

function (Box and Tiao, 1992). On the other hand, the informative prior contains enough

information that is comparable to the information from the observational data and the

posterior distribution is affected heavily by both the prior distribution and the likelihood

function. Further discussions on the prior distribution are presented in the next.

6.2.1 Non-informative prior

As pointed out by Box and Tiao (1992), an analyst may never in be a state of complete

ignorance and the statement of non-informative can only mean relative to the information

provided by the observed data. Therefore, in practice, the term non-informative should be

interpreted as “not very informative”.

Uniform prior

The simplest non-informative prior for Bayesian inference is uniform prior over the possible

region of the parameter. The use of the uniform distribution is based on the “principle of

indifference”, that all the possible values of the parameter are of the same weight. From

equation (6.1.2), it is clear that if the uniform prior is applied, the posterior distribution is

equal to the likelihood function up to a constant factor. Therefore, ML estimation of the

model can be obtained by simply finding the value of the parameter where the maximum

posterior distribution is reached.
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The uniform prior is usually not invariant under parameter transformation. For example,

suppose the prior distribution for the standard deviation σ of a normal random variable is

assumed to be uniformly distributed over [0, ∞), i.e.,

π(σ) ∝ 1, σ >0.

Its variance σ 2 is then distributed as

π(σ 2) ∝ 1 ·
∣

∣

∣

∣

d
√

σ

dσ

∣

∣

∣

∣

= 1

2(σ 2)1/4
.

That is more weight is assigned to smaller values for the variance in the prior.

Although the fact that uniform prior is not invariant under reparameterization may cause

theoretical difficulties, it is widely used in practice due to its extreme simplicity.

Jeffreys prior

Jeffreys prior is a particular non-informative prior distribution proposed by Jeffreys (1961).

Suppose θ ={θ1, θ2, · · · , θ} is the n-dimension parameter of a probabilistic model fX(x; θ).

The Jeffreys non-informative prior is defined as

π(θ) ∝ [det(I (θ))]1/2 , (6.2.1)

where I(θ) is the Fisher’s information matrix and det(I(θ)) is the determinant of I(θ). I(θ)

is a n×n matrix with the following elements:

Iij(θ) = E

[

∂ log fX(X; θ)

∂θi

∂ log fX(X; θ)

∂θj

]

i, j=1, 2, · · · , n,

provided that the second-order partial derivatives of log fX(X; θ) exist.

A key feature of the Jeffreys prior is that it is invariant under reparameterization. Take the

one-dimension case as an example. Let θ be the one-dimension parameter of probabilistic

model fX(x; θ). From equation (6.2.1), the Jeffreys prior for parameter θ is

π(θ) =

√

√

√

√E

[

(

d log fX(x; θ)

dθ

)2
]

.
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Suppose φ=g(θ) is an 1-1 reparameterization of θ . The equivalent prior in parameter φ

can be calculated as

p(φ) = π(θ)

∣

∣

∣

∣

dθ

dφ

∣

∣

∣

∣

∝

√

√

√

√E

[

(

d log fX(x; θ)

dθ

)2
]

(

dθ

dφ

)

=

√

√

√

√E

[

(

d log fX(x; θ)

dθ

dθ

dφ

)2
]

=
√

E

[(

d log fX(x; g−1(φ))

dφ

)]

.

Thus, p(φ) is the Jeffreys prior for φ.

Besides the uniform prior and Jeffreys prior, many other non-informative priors with

different characteristics have also been developed. For example, Jaynes (1968) proposed a

non-informative prior by maximizing its Shannon entropy. Bernardo (1979) proposed a

non-informative by maximizing the expected Kullback-Leibler divergence of the posterior

distribution with respect to the prior. For detailed discussions on various non-informative

priors, one may refer to Kass and Wasserman (1996).

6.2.2 Informative prior

When substantial prior information is available, informative prior distribution should be

used. An informative prior is a prior distribution that express specific and definite informa-

tion regarding the parameters of a probabilistic model.

In some cases, the prior information is provided in the form of probability distribution

and can be readily used in Bayesian inference. An example of such case is the component

specific analysis in the random rate model. Since the flaw growth rate of a specific com-

ponent is a constant sampled from the population rate distribution, it is natural to take

the population rate distribution as the prior distribution. The growth rate estimation of

each single component is then the posterior distribution updated from the population rate

distribution using the component specific flaw size measurements. This case will be further

discussed later in Section 6.4 as an example of practical application of Bayesian inference in

degradation assessment.

However, in many other cases, the prior information is often provided in imprecise

forms, such as personal experiences or expert judgments. For example, a piping engineer
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may suggest that the wall thinning of a pipe is around 0.5 mm per year. It is often not

feasible to ask an engineering to assess the probability density function of this thinning rate.

Instead, the use of simple discrete density is suggested. The range of the degradation rate

may be divided into four intervals: below 0.2 mm per year, between 0.2 mm and 0.4 mm per

year, between 0.4 mm and 0.6 mm per year and above 0.6 mm per year. An engineer is then

asked to assess a probability for each interval. The assessment from the engineer can then

be fitted using an appropriate distribution function. Figure 6.1 shows a possible assessment

of the probabilities from an engineer and the corresponding log-normal fit.
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Figure 6.1 Discrete prior from an engineer and the corresponding log-normal fit

6.3 Example I: predicting probability of feeder cracking

An example of survival analysis of feeder cracking is presented here to illustrate the ability

of Bayesian inference to incorporate additional judgmental information when there are little

observed data. The problem is to predict the probability of cracking of feeders at a nuclear

power plant given that 178 feeders are inspected and no cracks are found.
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Likelihood Function

This is a binomial sampling problem. Denote the probability of feeder cracking as

θ , 0<θ<1. Given θ , PMF of finding x cracks in n feeders is given by

f (x; θ) =
(

n

x

)

θx(1 − θ)n−x, x =0, 1, · · · , n.

With inspection result as 0 cracks found in 178 feeders, the likelihood function is

L(θ
∣

∣x =0) =
(

178

0

)

θ0(1 − θ)178−0 = (1 − θ)178. (6.3.1)

From equation (6.3.1), it is obvious that the maximum likelihood estimate of θ is 0. This

result cannot be used directly for meaningful degradation assessment since it simply says

there will be no cracks in future, which is inconsistent with the fact that cracks have been

previously observed in other plants.

Prior distribution

Given the model likelihood function, the next task in Bayesian inference is to choose a

proper prior distribution based on the information available. According to a previous

inspection in a similar plant, no cracks were found in the 97 inspected feeders. Therefore,

one may expect the mean of the cracking frequency to be less than 1/97. In addition, from

engineering experiences the probability of feeder cracking is not likely to be greater than

10%, and the COV is believed to be around 50%. The fact that cracks have been found in

other nuclear power plants indicates that a peak value at 0 for the probability of cracking

may not be appropriate. Considering all these factors, a general beta distribution defined

on [0, 0.1] with mean 1/97 and COV 0.5 is chosen to be the prior distribution.

A random variable 2 is said to follow a general beta distribution Gbeta(α, β, p1, p2) if its

probability density function is

f (θ) = A(θ−p1)
α−1(p2−θ)β−1,

where p1 6θ 6p2, A is the normalization constant and is given by

A =
[

B(α, β)(p2−p1)
α+β−1]−1

,
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where B(α, β)=
∫ 1

0 tα−1(1−t)β−1dt is the Beta function with parameters α and β. General

beta distribution can be transformed to the regular beta distribution by changing the

variable θ to x =(θ−p1)/(p2−p1).

The mean of general beta distribution is

E[2] = (p2−p1)
α

α+β
+ p1.

Substituting p1 =0, p2 =0.1, and E[2]=1/97 yields

1

97
= 0.1α

α+β
. (6.3.2)

The COV of general beta distribution is

COV[2] = (p2−p1)
√

αβ

E[2](α+β)
√

α+β+1
.

Similarly, one gets
1

2
= 97

√
αβ

10(α+β)
√

α+β+1
. (6.3.3)

Solving equations (6.3.2) and (6.3.3) gives the parameters of the prior distribution as

α=3.48, β =30.3. The prior distribution is therefore given as

π(θ) = A · θ2.48(0.1 − θ)29.3.

Posterior Distribution

Posterior distribution is then simply the product of the likelihood function and the prior

distribution with a normalization constant c

π(θ
∣

∣x =0) = c · L(θ
∣

∣x =0)π(θ)

= c · θα−1(0.1 − θ)β−1(1 − θ)178.

Given α=3.48 and β =30.3, c can be easily calculated from numerical integration. The

posterior distribution is then given by

π(θ
∣

∣x =0) = 1.458×1038 · θ2.48(1 − θ)29.3(1 − θ)178.

Figure 6.2 shows the prior and posterior distributions. The posterior mean of cracking

frequency can be calculated as 0.69% with 95% upper bound 1.55%. These numbers can

then be used in the inspection and maintenance planning of the feeder fleet of the plant.
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Figure 6.2 Prior and posterior distribution of the probability of feeder cracking

6.4 Example II: component specific analysis for random
rate model

In previous Section 4.2, random rate model with sizing error is discussed and the ML es-

timate of the model parameters is obtained. The estimated model parameters can then be

used to predict the flaw growth or failure time distribution of the uninspected components

in the population. However, for a more refined degradation assessment, it is also important

to predict the flaw growth and failure time distribution for each single inspected compo-

nents, so that severe degraded components can be correctly identified and disposed through

inspection and maintenance.

Unlike estimating the population flaw growth rate where the number of inspected com-

ponents usually ranges from a few dozen to over hundred, providing enough data for ML

analysis, the number of repeated inspections for a specific component is typically 3-4 times

in the in-service inspection of nuclear power plants. With such a small data-set, the classical

point estimate of the component specific rate cannot be given with high confidence. To have

a better estimate, Bayesian method is employed.
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6.4.1 Analysis

Zero initial degradation

First consider the random rate model with zero initial degradation. According to the model

assumption, the flaw size of a specific ith component in the population at time t is given as

xi(t) = rit,

where ri is the flaw growth rate of the component. As discussed previously, ri is a constant

sampled from the population rate distribution R with PDF fR(r).

In Bayesian inference, estimate of the unknown constant ri is treated as a random variable,

denoted as Ri. Since ri is a sample of the population rate distribution R, its prior distribution

can be naturally taken the PDF of R. Therefore, the distribution of Ri, fRi
(ri), is equivalent

to the population rate distribution, conditioned on the component specific measurements,

yi ={yi1, yi2, · · · , yimi
}, i.e., Ri =R

∣

∣yi. Using Bayes’ theorem, fRi
(ri) can be obtained as

fRi
(ri) = fR|Yi

(ri

∣

∣yi) = C1fYi
(yi; ri) fR(ri),

where C1 =
[

∫∞
0 fYi

(yi; ri)fR(ri)dri

]−1
is the normalization constant, fYi

(yi; ri) is the joint

PDF of the component specific measurements given growth rate ri and is given by equation

(4.2.7).

Given Ri, the corresponding Bayesian estimate of future flaw size xi(t), as a random

variable Xi(t), is

Xi(t) = Rit.

The CDF of Xi(t) is given as

FXi(t)(x) = P [Xi(t)6x] = P [Ri 6x/t]

= FRi
(x/t).

(6.4.1)
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Uncertain initial degradation

For the random rate model with uncertain initial degradation, the flaw size of the ith

component at time t is

xi(t) = ai + rit,

where ai is the initial degradation of the component, ri is the component specific flaw

growth rate. Similar to the case of zero initial degradation, the Bayesian estimates of ai

and ri are probability distributions updated from the initial degradation distribution A and

the population rate distribution R using the component specific measurements. Denote the

estimation of ai and ri as Ai and Ri, respectively. From equation (4.2.10), the joint PDF of

Ai and Ri is given as

fARi
(ai, ri) = C2fYi

(yi; ai, ri) fR(ri)φ(ai; 0, σA), (6.4.2)

where C2 =
[

∫∞
0

∫∞
−∞ fYi

(yi; ai, ri) fR(ri)φ(ai; 0, σA)daidri

]−1
is the normalization con-

stant, fYi
(yi; ai, ri) is the PDF of the component specific measurements given by equa-

tion (4.2.10), and φ(ai; 0, σA) is the assumed normal distribution of initial degradation of

the components. Marginal distribution of the component specific initial degradation and

flaw growth rate can be obtained by integrating equation (6.4.2) with respect to ai and ri

respectively as (assuming R is defined on [0, ∞) and A is defined on (−∞, ∞))

fAi
(ai) =

∫ ∞

0
fAi ,Ri

(ai, ri)dri.

fRi
(ri) =

∫ ∞

−∞
fAi ,Ri

(ai, ri)dai, (6.4.3)

Denote the Bayesian prediction of the component’s flaw size at time t as Xi(t). One has

Xi(t) = Ai + Rit,

Given the joint posterior distribution of Ai and Ri, fARi
(ai, ri), PDF of Xi(t) is

fXi(t)(x) =
∫ ∞

0
fARi

(x − rit, ri)dri. (6.4.4)
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Component specific failure time

From the distribution of Xi(t), the failure time distribution for each specific component can

be obtained. Suppose the maximum acceptable flaw size is xcr. The CDF of the failure time

of the ith component, Ti, is then

FTi
(t) = P [Ti 6 t] = P [Xi(t)>xcr]

= 1 − FXi(t)(xcr),

where FXi(t)(x) is the CDF of Xi(t) and can be calculate numerically from equation (6.4.1) or

(6.4.4) for the case of zero initial degradation and uncertain initial degradation, respectively.

The PDF of Ti can also be obtained correspondingly from numerical differentiation.

It is important to note that in a full Bayesian analysis, the parameters of the population rate

distribution also need to be treated as random variables and their distributions should be

estimated from some given prior distribution and the measurement data of all the inspected

components using Bayes’ theorem. However, when the inspection data are sufficiently large

for the ML analysis, one may replace the Bayesian posterior of population rate parameter

with a point estimate to simplify the component specific analysis. This type of mixed

analysis method is called the empirical Bayesian method as the prior distribution used in

the component specific analysis is estimated from empirical data using classical statistical

method (Casella, 1985).

6.4.2 Application to the fretting wear of SG tubes

We would like revisit the fretting wear of SG tubes discussed in Section 4.2.5 and analyze

the component specific wear rate of the inspected tubes using Bayesian method. The wear

rate distribution of the component population is given as the estimated log-normal distri-

bution in Section 4.2.5. The log-scale parameter of the population wear rate distribution

is µ= −2.31 and shape parameter is σ =0.165. The initial wall thickness is assumed to be

normally distributed with mean 6.5 mm and SD of 0.15 mm.

Two specific tubes, denoted as Tube A and B, are selected for the analysis. Measurements

of the two tubes are listed in Table 6.1. The measured wear rates of the tubes are calculated

as the difference between the nominal initial wall thickness and the last measured value
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divided by time. As can be seen from the table, Tube A has a small measured rate of 0.046

mm/EFPY and Tube B has a larger measured rate of 0.144 mm/EFPY.

Nominal initial

thickness

17.08

EFPY

18.4

EFPY
Measured rate

Tube A 6.5 mm 5.39 mm N.A. 0.046 mm/EFPY

Tube B 6.5 mm 3.94 mm 3.85 mm 0.144 mm/EFPY

Table 6.1 Measurements of the two selected tubes from the SG tube wear data

From equation (6.4.3), the component specific rates of the two tubes are calculated. The

results are presented in Figure 6.3 along with the population rate distribution (the prior).

The averages of the estimated thinning rate of Tube A and B are 0.85 mm/EFPY and 0.13

mm/EFPY, respectively. The 95th percentiles of the thinning rate of the two tubes are 0.10

mm/EFPY and 0.15 mm/EFPY. It is found that the estimated rate of Tube A using Bayesian

method is significantly higher than its measured rate. This is because the measured rate of

Tube A is at the far left tail of the population rate distribution, and therefore it is very likely

that the small measured rate is caused by sizing error or initial uncertainty of wall thickness.

Bayesian estimation considered this possibility properly.
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Figure 6.3 Estimated thinning rate distributions of Tube A and B using Bayesian method
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Suppose the maximum acceptable wall thickness loss with respect to the nominal initial

value is xcr =3.0 mm. The failure time distributions for Tube A and B are calculated and

plotted in Figure 6.4, along with the failure time distribution of the tube population for

comparison. The mean, SD and 5% lower percentile of the failure time for Tube A and B are

42.8 EFPY, 5.0 EFPY, 35.4 EFPY, and 25.8 EFPY, 1.8 EFPY, 22.9 EFPY, respectively. As Tube

B is already close to its end of life, the SD of its failure time estimate is significantly smaller

than that of Tube A. These results from the tube specific analyses can then be used for more

refined life cycle management of the SG tubes. For example, replacement of Tube B should

be planned in near term as its end of life is imminent.
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Figure 6.4 Estimated failure time distribution of Tube A and B compared with the failure time

of the population

6.5 Summary

This chapter discusses the use of Bayesian inference in degradation modelling. Unlike

the classical parameter inference, where the main objective is to find a point estimate of

the unknown parameter, in Bayesian inference, model parameters themselves are treated
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as random variables and their distributions are updated from prior distributions through

Bayes’ theorem as inspection data become available.

The most notable advantage of Bayesian inference over classical methods is its ability to

incorporate background information in the estimation process. This ability is important

for improved degradation assessment, especially when inspection data are scarce. Another

advantage of Bayesian inference is that its way of presenting parameter uncertainty is more

natural than the classical confidence interval method. Two practical examples, predicting

the probability of feeder cracking and the component specific analysis for the random rate

model, are then presented to demonstrate the application of Bayesian inference to practical

degradation problems.



7C H A P T E R

Simulation-based Bayesian Computation

7.1 Introduction

This chapter discusses the computational aspects of Bayesian inference for complex stochas-

tic models. Recall that the basic form of Bayesian inference is

π(θ
∣

∣x) = fX(x; θ)π(θ)
∫

fX(x; θ)π(θ)dθ
= CL(θ

∣

∣x)π(θ), (7.1.1)

where L(x
∣

∣θ) is the same likelihood function used in ML analysis, C =
[∫

fX(x)π(θ)dθ
]−1

is the normalization constant. The objective of Bayesian inference is then to infer the

posterior distribution π(θ
∣

∣x), or alternatively, statistics such as mean and SD, of π(θ
∣

∣x).

Only for some simple probabilistic models and specially selected priors, analytic solutions

of the posterior exist. For most other models, the Bayesian posterior has to be evaluated

numerically.

Direct numerical evaluation of the Bayesian posterior using equation (7.1.1), however, can

be quite difficult. First, for some models, such as the gamma process model and the Poisson

model with inspection uncertainties, numerical evaluation of the likelihood function is

extremely difficult, which makes direct calculation of posterior distribution impractical. In

other cases, even if the likelihood function itself is relative easy to evaluate, calculation of

the normalization constant C, which is an integral over the entire admissible region of the

model parameter, can still be a time consuming step, especially when the parameter θ is of

high dimension.

120
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The computational difficulty has been a major obstacle to the application of Bayesian

inference until recent years when various advanced Monte Carlo methods were developed.

Instead of calculating the posterior density numerically, Monte Carlo simulation aims to

draw random samples that follow the posterior distribution. These samples are then re-

garded as a representation of the posterior distribution of the model parameters and can be

used in subsequent tasks of the probabilistic degradation assessment.

In this chapter, two particular simulation techniques, the Markov chain Monte Carlo

(MCMC) and the approximate Bayesian computation (ABC), are introduced. By incorpo-

rating MCMC and ABC with some other methods, such as the auxiliary variable method or

the smoothed bootstrapping, new algorithms are proposed for Bayesian inference of com-

plicated stochastic models like the Poisson process model and the gamma process model

subject to inspection uncertainties. Practical examples are presented to demonstrate the

effectiveness of the proposed methods.

7.2 Markov chain Monte Carlo

7.2.1 Introduction

Drawing random samples from posterior distribution is the key step of simulation-based

Bayesian inference. Numerous simulation techniques have been developed for generating

random samples from uniform distribution and other common probability distributions.

However, in Bayesian inference, the posterior distribution can be very non-standard. In

such cases, conventional simulation methods, such as the inverse transform sampling, are

not applicable.

One way to generate random samples from complicated distributions is the Markov

chain Monte Carlo (MCMC) simulation, which is a general simulation technique based on

drawing samples iteratively from a Markov chain with target distribution as its stationary

distribution. The concepts of Markov chain and its stationary distribution are further

explained below.

A random sequence, {X0, X1, X2, · · · }, is called a Markov chain if at each step t, the state

of next step Xt+1 depends only on the current state Xt and is conditionally independent of
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the history of the chain {X0, X1, · · · Xt−1} (Roberts, 1996). Mathematically, that is

P (Xt+1

∣

∣Xt , Xt−1, · · · , X0) = P (Xt+1

∣

∣Xt).

The conditional probability P (Xt+1

∣

∣Xt) is called the transition kernel of the Markov chain.

A Markov chain is said to be time-homogeneous, if its transition kernel P (Xt+1

∣

∣Xt) is

independent of t. An important feature of the time-homogeneous Markov chain is that the

points in the chain will gradually“forget” its initial state and converge to a unique stationary

distribution that does not depend on t or initial state X0. In other words, after a sufficiently

long “burn-in” step, new points generated by the time-homogeneous Markov chain are

dependent samples with the same marginal distribution as the stationary distribution.

Strict mathematical theory for the existence and uniqueness of the stationary distribution

of Markov chain can be found at Roberts (1996) and Tierney (1996).

Thus, after, say m burn-in steps, points {Xm+1, Xm+2, · · · , Xn} in the Markov chain can be

regarded as dependent random samples with the marginal distribution being approximately

the stationary distribution. If the Markov chain is constructed in such a way that its

stationary distribution is the same as the Bayesian posterior, these samples can be used for

certain Bayesian analysis, such as calculating the posterior mean and standard deviation.

A number of algorithms have been developed for constructing Markov chains with sta-

tionary distributions as any given target distribution. In the next, two most common

MCMC algorithms, namely, the Gibbs sampler and Metropolis-Hasting (M-H) algorithm,

are introduced. Based on the M-H algorithm and a simulation technique called the aux-

iliary variable method, MCMC simulation for Bayesian inference of the Poisson process

model with inspection uncertainties is proposed. A numerical example is presented as an

illustration of the proposed method.

7.2.2 Gibbs sampler

In order to have a better understanding of the MCMC simulation, we first introduce Gibbs

sampler (Geman and Geman, 1984), which is one of the simplest algorithms to construct a

Markov chain with stationary distribution as a given target distribution.
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Gibbs sample is suitable when drawing samples from the conditional distribution of a

multivariate random variable is easier than drawing samples from its joint distribution.

Consider the simple bivariate case. Suppose X =(X1, X2) is a bivariate random vector

with X1 and X2 as its two elements. The joint distribution of X is π(x1, x2). Denote the

conditional distribution of X1 given X2 and X2 given X1 as π(x1

∣

∣x2) and π(x2

∣

∣x1), re-

spectively. When drawing samples from conditional distribution π(x1

∣

∣x2) and π(x2

∣

∣x1) is

easier than sampling directly from π(x1, x2), the Gibbs sampler can be applied, as described

in Algorithm 1.

Algorithm 1 Gibbs sampler

1: Select an initial point x(0) = (x
(0)
1 , x

(0)
2 ).

2: Given the tth sample x(t) = (x
(t)
1 , x

(t)
2 ), generate the next sample recursively according to the

following conditional distributions

x
(t+1)
1 ∼ π(x

(t)
1

∣

∣x
(t)
2 )

x
(t+1)
2 ∼ π(x

(t+1)
2

∣

∣x
(t+1)
1 ).

3: Stop when required number of samples are generated.

It can be shown that every iteration in Gibbs sampler leaves the joint distribution invari-

ant. That is to say, if x(t) follows the stationary distribution of the Markov chain, so does

x(t+1). Denote the transition kernel of the Gibbs sampler in Algorithm 1 as p(x(t+1)
∣

∣x(t)).

One has

p(x(t+1)
∣

∣x(t)) = π(x
(t+1)
2

∣

∣x
(t+1)
1 )π(x

(t+1)
1

∣

∣x
(t)
2 ).

Suppose the joint distribution of x(t) is the target distribution π(x1, x2). Then the joint

distribution of x(t+1) is given as

fX(t+1)(x
(t+1)
1 , x

(t+1)
2 ) =

∫

p(x(t+1)
∣

∣x(t))π(x
(t)
1 , x

(t)
2 )dx

(t)
1 dx

(t)
2

=
∫

π(x
(t+1)
2

∣

∣x
(t+1)
1 )π(x

(t+1)
1

∣

∣x
(t)
2 )dx

(t)
2

= π(x
(t+1)
2

∣

∣x
(t+1)
1 )π1(x

(t+1)
1 ) = π(x

(t+1)
1 , x

(t+1)
2 ),

where π1(x1)=
∫

π(x1, x2)dx2 is the marginal distribution of X1.
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In the next, an example of Gibbs sampler is presented to illustrate the implementation of

the method. Consider a bivariate normal random vector X =(X1, X2) with mean zero and

covariance matrix 6 as

6 =





1 ρ

ρ 1





where ρ=0.8. The conditional distribution of X1 and X2 is then given by

X2

∣

∣X1 ∼ N
(

ρx1, (1−ρ2)
)

X1

∣

∣X2 ∼ N
(

ρx2, (1−ρ2)
)

.
(7.2.1)

Starting from some initial point (x
(0)
1 , x

(0)
2 ), a Markov sequence can be generated from the

conditional distribution (7.2.1) using Gibbs sampler. As the iteration steps increase, the

sequence gradually “forgets” its initial state (x
(0)
1 , x

(0)
2 ) and converges to the target distribu-

tion, as shown in Figure 7.1 where the first 20 steps starting from two different initial points

are plotted. As can be seen from figure, the sequence quickly converges to the area where

higher target density locates.
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Figure 7.1 First 20 steps of the Gibbs sampler from two different initial points

Gibbs sampler is very effective when the conditional distributions are known and easy

to draw samples from. However, for many practical problems, sampling from conditional
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distributions is also not very easy. In those cases, Metropolis-Hastings algorithm can be

used.

7.2.3 Metropolis-Hastings algorithm

Metropolis-Hastings (M-H) algorithm is a general method for constructing Markov chains

targeting any arbitrary probability distribution using a prescribed transition rule. For draw-

ing samples x(t) from distribution π(x) using the M-H algorithm, a proposal distribution

function T(y
∣

∣x) and an acceptance-rejection rule are needed. The basic procedures of the

M-H algorithm are given in algorithm 2 (Gilks et al., 1996b).

Algorithm 2 M-H algorithm

1: Select an initial point x(0).

2: Given x(t), draw a sample y from the proposal distribution T(y
∣

∣x(t)).

3: The next point in the chain is given by

x(t+1) =
{

y, if U 6 r(x(t), y),

xt , otherwise,

where

r(x, y) = min

{

1,
π(y)T(x

∣

∣y))

π(x)T(y
∣

∣x)

}

is the rejection function.

4: Stop when required number of samples are generated.

It is worth noting that in M-H algorithm the proposal function T(y
∣

∣x) can be chosen as

any distribution and the stationary distribution of the Markov sequence will remain π(x).

However, the proposal function does affect the rate of the convergence greatly. To conduct

the M-H algorithm efficiently, an appropriate proposal function is crucial. For simple target

distributions, the independent proposal function, i.e., T(y
∣

∣x(t))=T(y), can be used. When

T(y) is a good approximation of the target distribution π(x), M-H algorithm usually works

well (Tierney, 1994; Gilks et al., 1996b). Another common choice of the proposal function

is the normal distribution N(y; x(t), 6), with mean x(t) and a properly tuned covariance
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matrix 6. For further discussion on the choice of proposal functions, refer to Tierney

(1994); Gilks et al. (1996a); Rosenthal (2009).

From the procedures of the M-H algorithm, it can be seen that the target function π(x)

in M-H algorithm does not need not to be a normalized probability density function. That

is to say, one does not need to evaluate the normalization constant C in equation (7.1.1),

which simplifies the computation of Bayesian inference.

To illustrate the use of the M-H algorithm, a simple Gaussian example is presented.

Suppose X is a standard normal random variable, i.e., X ∼ N(0, 12). Instead of using

traditional independent sampling technique, the M-H algorithm is used. The proposal

distribution is chosen as T(y
∣

∣x) ∼ N(x, 0.62). Figure 7.2 shows a Markov sequence

generated by the M-H algorithm and the corresponding histogram after 500 burn-in steps.

It can seen that the result matches the theoretical density function very well.
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Figure 7.2 Sequence of x generated by M-H algorithm and the corresponding histogram after

500 burn-in steps
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7.2.4 Application to the Poisson flaw generation model

In Chapter 5, stochastic modelling of flaw generation using the Poisson process model is

discussed. When considering both sizing error and probability of detection (PoD), the

likelihood function of the model parameters, i.e., equation (5.3.12) given in Section 5.3,

becomes very complicated. Numerical evaluation of the model likelihood is difficult for

large data-sets because of the convolution calculations involved. In this section, an MCMC

simulation using the M-H algorithm and method of auxiliary variables is proposed. Using

the proposed method, Bayesian inference of the Poisson flaw generation model can be

conducted without doing the time-consuming convolutions.

Likelihood function

Recall that in Section 5.3, the likelihood function of the Poisson flaw generation are derived

as

L(λ, θ
∣

∣y1, y2, · · · , yn) =
n
∏

i=1

Li(λ, θ
∣

∣yi) =
n
∏

i=1



fDi
(di)

di
∏

j=1

fYi
(yij)



 ,

where λ is the Poisson rate of the flaw generation, θ is the parameter of the flaw size

distribution, and yi ={yi1, yi2, · · · , yidi
} are the measured size of the di detected flaws in the

ith inspection. Due to the random sizing error, PDF of the measured flaw size Yi is the

convolution of the actual flaw size distribution and the random sizing error, i.e.,

fYi
(y) =

∫ ∞

−∞
f
DXi

(y−e) fE(e)de, (7.2.2)

where f
DXi

(x) is the actual size distribution of detected flaws in the ith inspection and is

given by equation (5.3.11), fE(e) is the PDF of the sizing error. As discussed previously

in Section 5.3.6, convolution (7.2.2) is the major computational difficulty in the likelihood

evaluation.

Sizing error as auxiliary variables

Suppose the sizing error of the flaw measurement in the ith inspection is known as

ei ={ei1, ei2, · · · , eidi
}, i =1, 2, · · · , n. The model likelihood function can then be formu-
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lated without having any convolutions as

L(λ, θ
∣

∣y1, y2, · · · , yn, e1, e2, · · · , en)

=
n
∏

i=1

Li(λ, θ
∣

∣yi, ei) =
n
∏

i=1



fDi
(di)

i
∏

j=1

fXi
(yij −eij)



 .
(7.2.3)

In reality, of course, sizing errors associated with the inspection data are not known and

therefore equation (7.2.3) cannot be used directly for the parameter estimation.

However, when looking into equation (7.2.3) from a different perspective, sizing errors ei

can also be regarded as a set of hidden parameters of the flaw generation model. When so

regarded, equation (7.2.3) is rewritten in the following form as

L(λ, θ ,e1, e2, · · · , en

∣

∣y1, y2, · · · , yn)

=
n
∏

i=1

Li(λ, θ
∣

∣yi, ei) =
n
∏

i=1



fDi
(di)

i
∏

j=1

fXi
(yij −eij)



 ,
(7.2.4)

where ei are introduced as the auxiliary variables of the model. Obviously, the prior

distribution of ei is the density function of the sizing error of the inspection probe. Now,

if the joint posterior distribution of λ, θ and ei can be obtained, posterior distribution of λ

and θ is then simply the marginal distribution of the joint posterior excluding the auxiliary

variables ei. This method is called the method of auxiliary variables (Besag and Green,

1993).

The M-H algorithm is then applied to the Bayesian inference of the flaw generation model

with ei as auxiliary variables. Univariate normal proposal functions are used for parameter

λ and θ , respectively, with properly tuned standard deviation. For the auxiliary variable ei,

the sizing error distribution of the inspection probe is applied as the independent proposal

function. For ease of presentation, let s={λ, θ , e1, e2, · · · , en} and L(s) be equation (7.2.4).

Given the prior distribution π(λ, θ), Markov chain Monte Carlo simulation of the Poisson

flaw generation can be conducted using the procedures described in Algorithm 3.

Numerical example

An example using generated data is presented to illustrate the use of MCMC simulation and

auxiliary variable method in the estimation of the Poisson flaw generation model. Suppose
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Algorithm 3 M-H algorithm for Poisson flaw generation

1: Select an initial point λ(0), θ (0) and e
(0)

i for parameters λ and θ , and the auxiliary variables ei,

respectively. Denote the initial point as s(0) ={λ(0), θ (0), e
(0)
1 , · · · , e(0)

n }.

2: Given the tth point s(t) ={λ(t), θ (t), e
(t)
1 , · · · , e(t)

n }, draw new samples λ∗ and θ∗ from the pro-

posal distribution T(λ, θ
∣

∣λ(t), θ (t)) and new samples of the sizing errors e∗
i from the sizing

error distribution. Let s∗ ={λ∗, θ∗, e∗
1 , · · · , e∗

n}.

3: Generate a random number u that is uniformly distributed in between 0 and 1.

4: The next point of the Markov chain is given as

s(t+1) =
{

s∗, if u6 r(s(t), s),

st , otherwise,

where

r(s, s∗) = min

{

1,
L(s∗)π(λ∗, θ∗)T(λ, θ

∣

∣λ∗, θ∗)

L(s)π(λ, θ)T(λ∗, θ∗
∣

∣λ, θ)

}

is the rejection function.

5: Stop when required number of samples are generated.

the flaw generation in a structure follows a homogeneous Poisson process with rate λ. The

flaw size is log-normal distributed with parameter log-scale µ and shape parameter σ . The

At time zero, there are no flaws in the structure. In total, 4 inspections are conducted at 4,

8, 12 and 16 years. After each inspection, all detected flaws are eliminated. The PoD of the

inspection probe is given as the log-logistic function with parameters a= −10 and b=3

(i.e., the PoD function of the poor probe in Figure 2.1). The sizing error of the inspection

probe is assumed to be normally distributed with mean zero and SD 6.

A simulated data-set including the number of detected flaws and their measured sizes are

generated using the procedures described in the Appendix A.2. The true values of the model

parameters are given as λ=10, µ=3.5 and σ =0.4. A summary of the generated data-set

is presented in Figure 7.3. The data are then used to estimate the model parameters using

MCMC simulation and the auxiliary variable method.

With a set of initial value λ0 =16, µ0 =2.5 and σ0 =1.5, MCMC simulation is performed

with 2×104 iterations using Algorithm 3. Since no convolutions are involved, the calculation
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Figure 7.3 A summary of the generated flaw detection and measurement data

can be done very fast. The simulated sequences and their histograms (after 5000 burn-in

steps) are plotted in Figure 7.4. From the simulated sequences, mean, SD and percentiles

of the estimated parameters can be obtained easily, as given in Table 7.1. It is shown

from the results that after a short burn-in stage, the MCMC sequence quickly converges

to the stationary distribution with good mixing. The posterior parameters samples cover

reasonable ranges near the true value of the parameters from which the data are generated,

thus validate the correctness of the method. The estimated posterior distribution can then

be used to predict the number of new flaws and their corresponding flaw sizes at the next

inspection time.

Parameters True value
Estimate

Mean SD 95th percentile

λ 10 10.6 1.2 12.8

µ 3.5 3.36 0.07 3.47

σ 0.4 0.54 0.05 0.63

Table 7.1 Mean, SD and the 95th percentile of the estimated λ, µ and σ , compared with the

true values
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Figure 7.4 Simulated sequence of λ, µ and σ and their histograms (after 5000 burn-in steps)

7.3 Approximate Bayesian computation

7.3.1 Introduction

In the last section, MCMC simulation with auxiliary variable method is proposed for

Bayesian inference of the Poisson flaw generation model subject to PoD and sizing error. By

treating the sizing errors as auxiliary variables or hidden parameters, the time-consuming

convolution in the model likelihood are avoided. In order to conduct the proposed MCMC

method successfully, it is important to have an appropriate proposal function for the auxil-

iary variables. In the Poisson flaw generation model, since the sizing error are all indepen-
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dent normal random variables, an independent normal proposal function performs well,

as shown in the numerical example we presented. However, for the gamma process model

with sizing error, as discussed in Section 4.3, the error term associated with the flaw size

increments are correlated, which makes it difficult to find an appropriate proposal function

that guarantees a quick convergence of the MCMC simulation. An alternative simulation

method, called the approximate Bayesian computation (ABC), is applied.

Approximate Bayesian computation, also known as likelihood-free Bayesian inference,

has been considered as a powerful approach in recent years for the parameter inference

of complicated probabilistic models, where the likelihood functions are computationally

intractable or too expensive to evaluate. The basic idea of ABC method is to replace

the difficult numerical evaluation of the model likelihood by a comparison between the

simulated data-sets and the actual observed data-set. If the simulated data-sets using

certain values of the parameters are on average “closer” to the observed data-set, these

values are conceived more likely to be the true values of the parameters.

ABC method was first applied in population genetics by Tavare et al. (1997) in its basic

form as a rejection Monte Carlo sampler. Since then, various extensions of the method

have been developed and applications are mainly found in fields such as bioinformatics,

population genetics, ecology (Marin et al., 2011).

Suppose the joint distribution density of the observational data x from a statistical model

is given as fX(x; θ), where θ is the model parameter. Here θ can be a vector if the model

has more than one parameter. Given a set of observed data xobs and the prior distribution

π(θ), the aim of Bayesian inference is to infer the posterior distribution π(θ |xobs) ∝
fX(xobs; θ)π(θ). For many models, the direct evaluation of the model PDF fX(x; θ) could

be extremely time consuming while the simulation of the data is relatively easy (e.g., the

gamma process model with sizing errors). In such circumstances, ABC method can be

applied, which has the following basic form as Algorithm 4 (Tavare et al., 1997).

It can be shown that output from the above basic ABC algorithm are samples from

distribution π(θ
∣

∣d(xobs, xsim)<ǫ) (Toni et al., 2009). When ǫ is sufficiently small, the

basic ABC method is able to produce a good approximation of samples from posterior

distribution π(θ
∣

∣xobs). The disadvantages of the basic form of ABC are two-fold. First,
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Algorithm 4 Basic ABC algorithm

1: Generate a candidate value of parameters θsim from prior distribution π(θ).

2: Generate a data-set xsim with parameter θsim using model PDF fX(x; θ).

3: Compare the difference between the simulated data-set xsim and the observed data xobs using a

distance function d(xobs, xsim). If the distance is less than a small given tolerance limit ǫ, accept

θsim; otherwise reject.

4: Repeat steps 1-3 until enough number of samples of the parameters are accepted.

it is often difficult to define a suitable distance function, which is crucial to the success

of the algorithm. In many applications with large data-sets, a summary statistics of the

data S(x) is often used and the distance function is defined on S(x) as d
(

S(xobs, xsim)
)

.

Nevertheless, finding an appropriate summary statistic is still not an easy task. Second,

there is no established rule for the choice of the tolerance threshold ǫ. A small ǫ gives

better approximation of the posterior distribution but at the price of lower acceptance

rate thus longer computation time. To improve the acceptance rate for smaller threshold,

other advanced simulation techniques, such as Markov chain Monte Carlo (MCMC) and

sequential Monte Carlo (SMC), are proposed to be integrated with the basic ABC algorithm

(Marjoram et al., 2003; Sisson et al., 2007).

Wilkinson (2008) proposed an alternative ABC algorithm which gives exact posterior

samples when observations contain independent error terms. Denote the true value of the

model output as X and the observation as Y, Y=X+E, where E is the error term and is

independent of X. The probability density functions of X and E are fX(x; θ) and fE(e),

respectively. Given prior distribution of parameter vector π(θ) and the observation yobs,

Wilkinson (2008) proved that Algorithm 5 gives samples following exactly the posterior

distribution π(θ
∣

∣yobs) without explicitly calculating the PDF of Y.

In step 3 of Algorithm 5,c is a normalization constant chosen to guarantee that c fE(yobs−xsim)

defines a proper probability (i.e., defined between 0 and 1). One can take c =1/max[ fE(e)],
so that the maximum possible acceptance rate can be achieved. A interesting feature of the

Wilkinson’s algorithm is that its efficiency improves when the error term is larger, since a

more dispersed fE(e) will result in a higher acceptance rate in the simulation.
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Algorithm 5 Wilkinson’s ABC algorithm

1: Generate a candidate value θsim from prior distribution π(θ).

2: Generate an error-free data-set xsim with parameter θsim using true model PDF fX(x; θ).

3: Accept θsim with probability cfE(yobs−xsim).

4: Repeat steps 1-3 until enough number of samples are accepted.

Wilkinson’s ABC algorithm was proposed mainly to understand the tolerance threshold

in the basic ABC algorithm. From Wilkinson’s perspective, the rejection step in the basic

ABC method is equivalent to using the following acceptance probability

c fE(xobs−xsim) =







1 if d(S(xobs), S(xsim))6ǫ,

0 otherwise.
(7.3.1)

That is the same as saying that the basic ABC algorithm gives the exact inference for the

model that assumes an additional independent error term uniformly distributed on the

region defined by the 0-1 cut-off in equation (7.3.1) (Wilkinson, 2008).

7.3.2 Sequential Bayesian updating using ABC

Direct use of Wilkinson’s ABC in practical problems, however, remains very limited, despite

its clear advantage of being able to give exact posterior samples. One possible reason is that

in many problems, especially in bioinformatics and population genetics where ABC was

originally developed, the error term is difficult to quantify, which confounds the implemen-

tation of the method. Another reason is that the acceptance rate of Wilkinson’s method for

large data-set can be very small, making it impractical for many problems.

In the stochastic modelling of degradation growth, these difficulties of Wilkinson’s al-

gorithm can somehow be avoided. Firstly, distribution of the measurement error of the

NDE inspection can be obtained in laboratory experiments by carefully analyzing the

measurements from the NDE probes with exact results from destructive metallographic

examinations. Secondly, although the inspection data as a whole can consist of hundreds of

data points, the number of repeated inspections for each single component is usually limited

to 3 or 4 times. Using sequential Bayesian update, parameter inference given a large data-set
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can be divided into a series of similar Bayesian update on smaller scales, thus improving the

overall acceptance rate of the Wilkinson’s ABC.

The idea of sequential Bayesian update is very simple. Suppose the degradation data

are from a group of n components. If the degradation of each component is considered

to be independent, the posterior distribution of the model parameters can be calculated

by applying the Bayesian theorem recursively. That is, in each step only data from one

component are used for Bayesian update, and the posterior obtained is then used as the

prior distribution for the next update. In the next, technical details of the sequential

Bayesian updating using ABC method are discussed, using the gamma process model with

sizing error as an example.

Statistical data cloning

An important characteristic of ABC method is that both prior and posterior distributions

are represented using samples instead of probability density functions. After each update in

ABC, only a small portion of the prior samples are accepted as the posterior samples. There-

fore, without generating new samples in each step, meaningful sequential Bayesian update

can only be conducted for a few steps. The simulation techniques used for generating new

samples from existing samples are sometimes referred as statistical data cloning techniques

(Shakhnarovich et al., 2001).

One of the most widely used statistical data cloning techniques is the smoothed boot-

strapping method (El-Nouty and Guillou, 2000), which is a method based on the non-

parametric kernel density estimation of the existing samples. First consider the univariate

case. Suppose si, i =1, 2, · · · , N , are N existing samples following some unknown distribu-

tion f (s). The non-parametric kernel density estimation of f (s), denoted as f̂ (s), is given as

(Silverman, 1986)

f̂ (s) = 1

Nh

N
∑

i=1

K

(

s−si

h

)

, (7.3.2)

where K(·) is the kernel function and h is the kernel bandwidth. The kernel function is taken

such that f̂ (s) is a proper density function. Usually one would take a symmetric probability

density function as the kernel function, though any probability distribution functions can
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be used. The kernel bandwidth h is a parameter which controls the smoothness of the kernel

density estimation. When the number of samples N is large, kernel density estimation f̂ (s)

is able to approximate the true density f (s) very accurately.

For multivariate case, the most common kernel is the product kernel, which is simply

the product of same univariate kernels corresponding to each dimension. Suppose the data

points are in d dimension, the product kernel is given as

f̂ (s) = 1

Nh1h2 · · · hd

N
∑

i=1







d
∏

j=1

K

(

sj −sij

hj

)







, (7.3.3)

where s={s1, s2, · · · , sd} is a d dimension vector, si ={si1, si2, · · · , sid}, i = 1, 2, · · · , N , are

the N existing data points of dimension d, K(·) is a univariate kernel function, and hj is the

bandwidth for the jth dimension. It has been shown that, at least in two dimensional cases

and when the distribution is uni-modal, product kernel is appropriate (Wand and Jones,

1993).

If one only wants to sample from the kernel estimate f̂ (s), there is no need to evaluate

equation (7.3.2) or equation (7.3.3). Suppose the existing N samples of dimension d are

given as si ={si1, si2, · · · , sid}, i =1, 2, · · · , N . New samples following the kernel estimation of

these samples, f̂ (s), can be drawn directly from kernel function K(·), given K(·) is a proper

distribution function, as described in Algorithm 6. This method of generating new samples

from kernel estimates of existing samples is called the smoothed bootstrapping.

Algorithm 6 Data cloning using smoothed bootstrapping

1: Determine an appropriate kernel K(u) and bandwidths for each dimension h1, h2, · · ·, hd .

2: Randomly choose a sample si ={si1, si2, · · · , sid} from the given data-set {s1, s2, · · · , sN }.

3: Draw a new sample s={s1, s2, · · · , sd}, where sj are samples drawn from distribution K

(

s−sij

hj

)

,

j =1, 2, · · · , d. s is then a sample from the kernel estimation of the original samples.

4: Repeat steps 2 and 3 until enough samples of s are generated.
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Sequential ABC updating

Using the data cloning technique introduced above, sequential Bayesian updating using

ABC simulation can be conducted. We will illustrate the method through the gamma

process model. The Wilkinson’s ABC method is used so that the sizing error in the data can

be properly handled without performing the tedious calculations of the model likelihood.

From discussions in Section 4.3, in a gamma process model with normal sizing error, the

error of the observed degradation growth of the ith component, 1ei, is a sample from a

multivariate normal random variable with mean zero and covariance matrix

61Ei
= 2σ 2

E





















1 −1/2 0 · · · 0

−1/2 1 −1/2 · · · 0

0 −1/2 1 · · · 0
... · · · ...

0 0 0 · · · 1





















mi×mi ,

where mi is the number of elements in 1yi. Denote the parameter of the gamma process

model as θ . θ can be either the shape and scale parameters {α, β} or the mean and COV of

the degradation {µ, ν}, with the latter pair recommended, because the posteriors of α and β

are usually highly correlated. Combining the smoothed bootstrap method with Wilkinson’s

ABC method, the sequential ABC update for the gamma process model with sizing errors

can be formulated as Algorithm 7.

The above sequential ABC method improves the overall efficiency of the Wilkinson’s ABC

method greatly by dividing the inference of a large data-set from a group of components

into a series of Bayesian updates with smaller data-sets each from a single component.

In addition, as the series updates continue, the prior distribution for each step (i.e., the

posterior from last update) in general becomes closer to the final posterior, improving the

acceptance rate in most cases. However, this feature of sequential updating becomes a

major drawback when the number of components is large (for example, over 100 individual

components). The reason is that as the number of sequential updates accumulates, the

posterior samples tend to be concentrated in a small region where high posterior density

is taken. If one of the remaining components happens to be an outlier and has a very
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Algorithm 7 Sequential ABC using statistical data cloning

1: Set component index i =0 (meaning this is the prior). Generate N samples of parameter

vector θ from prior distribution π(θ). Denote these prior samples of the parameters as

{θ (0)
1 , θ (0)

2 , · · · , θ (0)
N }.

2: Increase i by 1.

3: For the ith component, generate a new sample of parameter θ
(i) from parameter samples

{θ (i−1)
1 , θ (i−1)

2 , · · · , θ (i−1)
N } updated from the (i−1)th component using the smoothed bootstrap

method.

4: Simulate a set of true growth of the ith component 1xi from the gamma process model using

parameter θ
(i) generated in step 3.

5: Accept θ
(i) with probability f1Ei

(1yi −1xi), where f1Ei
is the multivariate normal density of

the incremental sizing error and is given by equation (4.3.2). θ
(i) is then a posterior sample of

after Bayesian updating of the ith component.

6: Repeat steps 3-6 until N samples of parameters θ
(i) are generated. Denote these samples as

{θ (i)
1 , θ (i)

2 , · · · , θ (i)
N }.

7: If i<n, go to step 2 and perform the Bayesian update for the next component. Otherwise, go to

the step 8.

8: After updating all the n component, samples {θ (n)
1 , θ (n)

2 , · · · , θ (n)
N } are then the posterior samples

of the model parameters.

dissimilar likelihood from the previously updated posterior, the sequential update can be

“stuck” at this particular component for a very long time because of the low acceptance

rate. Thus, for data-sets containing a large number of individual components, an alternative

sequential update scheme using weighted samples (Smith and Gelfand, 1992) is proposed.

The method is described in Algorithm 8.

In the sequential ABC updating with weighted samples, instead of drawing new samples

in each step, the weights of the initial samples are updated sequentially. In each update,

by choosing a more spread prior distribution πi(θ), the issue of mismatch between prior

distribution and likelihood function can be alleviated. However, the evaluation of the kernel

density estimation is very time-consuming, compared to the data cloning. For example, if

the kernel density estimation is calculated from N samples {θ (i)
1 , θ (i)

2 , · · · , θ (i)
N } and one
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Algorithm 8 Sequential ABC with weighted samples

1: Set the component index i =0. Generate M samples of parameter vector θ from prior distri-

bution π(θ). Denote this samples as {θ1, θ2, · · · , θM}. For each θ j, j =1, 2, · · · , M, assign an

initial weight w
(0)

j =1/M.

2: Increase i by 1.

3: Generate N posterior samples for the ith component from an arbitrarily selected prior πi(θ)

and its component specific measured growth 1yi, using Wilkinson’s ABC method. Denote

these posterior samples as {θ (i)
1 , θ (i)

2 , · · · , θ (i)
N }.

4: Calculate the kernel density estimation of {θ (i)
1 , θ (i)

2 , · · · , θ (i)
N } , denoted as f̂i(θ). The likelihood

function given the measured growth of the ith component is given as Li(θ)= f̂i(θ)/πi(θ).

5: Update the weight of initial M samples of θ using equation w
(i)
j =w

(i−1)

j L(θ j), j =1, 2, · · · , M.

Normalize w
(i)
j such that

∑N
j=1 w

(i)
j =1.

6: If i<n, go to step 2 and perform the Bayesian update on the weight for the next component.

Otherwise, go to step 7.

7: Samples {θ1, θ2, · · · , θM} along with the updated weight {w
(n)
1 , w

(n)
2 , · · · , w

(n)
M } are then the

weighted samples of the posterior distribution. The unweighted posterior sample can

then be obtained simply by repeatedly sampling θ from discrete distribution P (θ i)=w
(n)

i ,

i =1, 2, · · · , M, (Smith and Gelfand, 1992).

needs to evaluate this density estimation at M points {θ1, θ2, · · · , θM}, the kernel function

K(·) will have to be evaluated for M×N times, i.e., the computation complexity of the

algorithm is O(M×N). If normal product kernel is used, the computational complexity

can be reduced to O(M+N) by applying the so called fast Gaussian transform (FGT)

technique (Greengard and Sun, 1998). Nevertheless, the kernel density estimation is still a

very computationally intensive step compared to the data cloning approach. Therefore, it

is recommended to try the sequential update method with data cloning first, with a smaller

N . If it is found that there are indeed outliers in the data-set, ABC method with weighted

samples can then be applied.
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7.3.3 Implementation

The proposed sequential ABC methods are implemented in C++. We use {µ, ν} as the set of

parameters for the gamma process model, because numerical examples show that µ and ν

are less correlated than α and β are, which makes {µ, ν} more suitable for the product kernel.

In addition, if the uninformative prior is used, the joint posterior of µ and ν is similar to the

uncorrelated bivariate normal distribution, which further improves the performance. An

example of the posterior samples of {µ, ν} and {α, β} inferred from the same data-set can

be found in Figure 7.5 and 7.6 in Section 7.3.4.

It is known that the choice of the kernel function is much less important to the quality of

the kernel density estimation than the choice the bandwidth value (Silverman,1986). For the

sake of simplicity, the normal kernel function is chosen. The use of normal kernel function

also makes it possible to apply the fast Gaussian transform (FGT) to speed up the density

estimation when using the weighted sample approach. The FGT in our implementation

utilizes the FIGTree library developed by Morariu et al. (2008).

The choice of bandwidth is an important factor to successful kernel estimations and many

advanced methods have been developed for determining the optimal kernel bandwidth. A

brief survey of these methods can be reached at Jones et al. (1996). In our problem of

Bayesian inference of the gamma process model, it is found that the following rule-of-

thumb bandwidth (Scott, 1992) already gives satisfying results if µ and ν are used as the

model parameters

hj = σj

[

4

(d+2)N

]1/(d+4)

j=1, 2, · · · , d, (7.3.4)

where d the dimension, N is the number of data points, σj is the sample SD of the data-set

in the jth dimension.

The number of parameter samples generated for each component, N , in the two proposed

sequential ABC methods controls the accuracy of the data cloning and the kernel density

estimation. In the case of the gamma process model, where there are only two parameters,

N = 104 ∼ 105 is already sufficiently large to produce very accurate kernel density results

without introducing too much computational burden. The number of generated samples

from prior distribution, M, in the weighted sample method controls the number of points
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where posterior densities will be evaluated (i.e., resolution of the posterior evaluation). The

only requirement for M is to have enough points in the region where high posterior density

takes.

7.3.4 Application to the flow-accelerated corrosion of feeder
pipes

We would like to revisit the problem of flow-accelerated corrosion (FAC) of feeder pipes

which was previously discussed in Section 4.3.5, using the proposed sequential ABC method.

Prior distribution and posterior samples

In the ABC Bayesian simulation, mean µ and COV ν are used as the parameters of the

gamma process model. For sake of simplicity, the uniform prior over a large rectangular

region: µ ∈ (0, 0.4) and ν ∈ (0, 2). Considering the ML estimates of µ=0.071 and ν=0.45,

this uniform prior should be able to cover all reasonable values for µ and ν.

First, the sequential ABC simulation using data cloning is tested using sample size N =104.

The sequential Bayesian update is successfully conducted for the first 41 feeders out the total

50 feeders, with computational time for each feeder only a few seconds. However, Bayesian

update stayed at the 42th feeder for a very long time (over 30 minutes) due to the small

acceptance rate.

ABC method with weighted samples is then applied, using N =105 initial samples of

parameters and M =2×105 samples for kernel density calculation. Gaussian product kernel

and FGT are used for numerical evaluation of the kernel density. The kernel bandwidth is

selected using equation (7.3.4). The overall calculation takes a little more than 40 minutes

to finish (CPU: Intel E2700).

Figure 7.5 plots the posterior samples and the marginal histograms of µ and ν. Posterior

samples of α and β can be calculated easily using the relation: α=1/ν2 and β =µ/ν.

Posterior samples of α and β, and their corresponding marginal histograms are plotted in

Figure 7.6. An obvious finding from Figure 7.6 is the large correlation between the posterior

α and β.



7.3 approximate bayesian computation 142

0.05 0.06 0.07 0.08
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µ

0.05 0.06 0.07 0.08 0.09
0

50

100

150

µ

0.2 0.4 0.6 0.8
0

2

4

6

ν

ν

P
D

F
P

D
F

Figure 7.5 Posterior samples and marginal histograms of parameters µ and ν
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Figure 7.6 Posterior samples and marginal histograms of parameters α and β

From the posterior samples, mean and COV of the estimated parameters are obtained.

The results are listed in Table 7.2 along with the results from ML estimation. Table 7.2 shows

that the posterior mean of µ and ν from ABC simulation is very close to the ML estimate.

This is expected since the uniform prior distribution is used. The COV of the estimated
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parameters from Bayesian inference indicates the relative parameter uncertainty of the

estimation, which is not provided by ML estimation. Since α and β are highly correlated,

only COV of µ and ν are checked. From the table, COV of µ is very small (than 5%)

and COV of ν is about 4 times larger. This indicates that the parameter uncertainty of the

average flaw growth rate µ is small, but the uncertainty of the estimated COV (dispersion

of the annual growth) is significant.

α β µ ν

Bayesian inference

using ABC

Mean: 5.00

COV: 0.38

Mean: 0.016

COV: 0.33

Mean: 0.71

COV: 0.044

Mean: 0.47

COV: 0.166

MLE 4.89 0.015 0.071 0.45

Table 7.2 Mean and COV of the estimated parameters using Bayesian inference, compared to

the MLE results

Time to failure analysis

According to previous discussions in Section 4.3.5, failure time of a specific component

in the gamma process model is a random variable whose distribution depends on its

current degradation and the model parameters α and β. In classical point estimation, this

distribution can be calculated using equation (4.3.7) in Section 4.3.5. In Bayesian inference,

the model parameters α and β themselves are also treated as random variables, which causes

additional difficulties in presenting the result of failure time analysis.

One approach for easing this difficulty is to integrate out the model parameters with

respect to their posterior distributions and then present the marginal distribution of the

failure time. However, this method does not provide a clear distinction between the intrinsic

uncertainty of the degradation growth described by the stochastic model, and the parameter

uncertainty (i.e., confidence of the estimation) described by the posterior distribution. A

better way is to use the probabilistic percentile (Pandey et al., 2010) which is explained

below.

Denote CDF of the failure time distribution of a component as FT(t; α, β), where α and

β are random variables with joint distribution π(α, β). For a specific value of α and β, its

lower pth percentile, Tp, can be calculated using the inverse CDF as Tp =F−1
T (p; α, β), which
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is a function of α and β. Since α and β are random variables, Tp is also a random variable,

whose distribution can be calculated accordingly. To present the intrinsic uncertainty of

degradation and the parameter uncertainty of the inference simultaneously, the probabilistic

percentile Tp|q can be used which is defined as the qth percentile of Tp. In Tp|q, p represents

the percentile regarding the intrinsic uncertainty of degradation and q is the percentile

regarding the parameter uncertainty. For example, the replacement time of a safety critical

feeder can be determined by T0.05|0.05, which means that there is 5% probability that the

actual failure time is earlier the chosen replacement time, and the chance that this judgment

is incorrect due to limited information is 5%. An illustration of the probabilistic percentile

is given in Figure 7.7.

Failure time T

P
D

F

Distribution of Tp

Tp|q

Failure time T

Figure 7.7 An illustration of the probabilistic percentile

Take the same feeder as in Section 4.3.5 (latest inspection at 11.5 EFPY with measured

wall thickness 4.15 mm). Using posterior samples of α and β, samples of its 5% percentile of

failure time T0.05 can be calculated and the corresponding histogram is plotted in Figure 7.8.

From the histogram, different probabilistic percentile of the failure time can be obtained.

The results can then be used for the improved life cycle management of the feeder pipes.
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Figure 7.8 Histogram of the 5% percentile of the failure time of a selected feeder

7.4 Summary

Direct numerical evaluation of Bayesian posterior is usually very difficult, as it requires

additional numerical integration and large number of likelihood evaluations. To avoid

the computational difficulties, Monte Carlo simulation methods are commonly employed.

Instead of calculating the value of posterior densities, Monte Carlo simulation tries to draw

random samples from the posterior distribution and then use the posterior samples for

subsequent probabilistic assessment.

In this chapter, two specific Monte Carlo simulation techniques, the Markov chain Monte

Carlo method (MCMC) and the approximate Bayesian computation (ABC), are discussed.

Based on MCMC and ABC, new algorithms for Bayesian inference of complicated stochastic

degradation models, the Poisson flaw generation model with PoD and sizing error and the

gamma process with sizing error, are developed. Using the proposed methods, parameter

uncertainty of the estimates of these complicated stochastic models, which is not discussed

in previous chapters due to numerical difficulties, can be obtained.
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Conclusions and Recommendations

8.1 Summary of results

This thesis discusses various issues arising from the parameter estimation of stochastic

degradation models using uncertain inspection data. We start with the introduction of two

typical inspection uncertainties, the probability of detection (PoD) and the sizing error.

Probabilistic models of these two inspection uncertainties and their effects on degradation

modelling are discussed briefly. Then, in Chapter 3, three common stochastic models for

flaw growth and flaw generation, including the random rate model, the gamma process

model and the Poisson process model, are introduced. Their definitions, properties and

likelihood functions given accurate inspection data are presented.

Following that, Chapter 4 discusses the estimation of flaw growth from noisy inspection

data. The random rate model and the gamma process model are considered. For the

random rate model, an ML estimate of the model parameter is derived in the setting of a

two-stage hierarchical model. The proposed ML method can be applied to random rate

model with both zero initial degradation and uncertain initial degradation. For the gamma

process model, the complete likelihood function given data with normally distributed sizing

error are derived. An efficient numerical method using the Genz’s transform and quasi-

Monte Carlo simulation is developed for the ML estimation of the parameters. Chapter 5

discusses the estimation of Poisson flaw generation model, under the “repair-on-detection”

146
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maintenance strategy. A simple case with only PoD included and a complete case consid-

ering both PoD and sizing error are discussed. It is found that the likelihood function for

the complete case is very complicated and direct ML estimation of the model parameters

is only possible for small data-sets. This computational difficulty is resolved later using an

MCMC simulation method in Chapter 7.

Chapter 6 discusses the application of Bayesian inference to stochastic degradation mod-

els. The most important advantage of Bayesian inference is its ability to incorporate sub-

jective information other than inspection data in the parameter estimation process. In

addition, Bayesian method also provides a more natural way for presenting the parameter

uncertainty associated with an estimate. Applications of Bayesian inference in degradation

assessment are then illustrated through two practical examples. Chapter 7 investigates the

computational aspects of Bayesian inference. Two simulation methods, the Markov chain

Monte Carlo method (MCMC) and the approximate Bayesian computation (ABC), are in-

troduced. Based on MCMC and ABC, new algorithms are developed for Bayesian inference

of complicated stochastic models, such as the Poisson flaw generation model and the gamma

process model subject to inspection uncertainties. Using Bayesian method, parameter un-

certainty of the estimates, which is not discussed in previous chapters due to computational

difficulties, is obtained.

Some key research contribution of the thesis are as follows:

❧ A statistically sound method is developed for the estimation of the random rate model

from noisy measurement. The proposed method is able to handle arbitrary rate

distributions and repeated inspection data properly, and can be applied to analyze flaw

growth data with either zero or uncertain initial degradation

❧ An effective numerical method using Genz’s transform and quasi-Monte Carlo simu-

lation is developed for the ML estimate of the gamma process model using data with

normally distributed sizing errors.

❧ Under the“repair-on-detection” maintenance strategy, likelihood function of the Pois-

son flaw generation model given data from repeated inspections with both PoD and
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sizing error is firstly derived. An MCMC simulation using auxiliary variable method

is developed for efficient parameter estimation of the model.

❧ First introduces the approximate Bayesian computation (ABC) to the estimation of

stochastic degradation models. Using a proposed sequential ABC updating method,

Bayesian inference of the gamma process model with sizing error can now be con-

ducted efficiently.

8.2 Recommendations for future research

This thesis mainly discusses likelihood formulation and parameter estimation of stochastic

degradation models using data with large inspection uncertainties. To better focus on

the main objective, some simplifications are made. For example, the stochastic models

discussed in the thesis do not consider the effect of exploratory variables (e.g. pressure

or temperature) on the degradation. Another example is that the sizing errors in this

study are all assumed to be normally distributed, which may not be realistic in some cases.

Generalization of the methods developed in the thesis to more realistic stochastic models

should be investigated in future.

In the stochastic modelling of flaw generation, dealing with the repeated inspections

is a major difficulty for the likelihood formulation, as many details, such as whether the

flaws are being tracked across inspections, or whether a previously undetected flaw will be

detected in the next inspection, need to be considered. In this thesis, a relatively simple

case is considered by assuming the “repair-on-detection” maintenance strategy, in which

all previously detected flaws are removed or repaired. The stochastic modelling of flaw

generation in various other inspection and maintenance strategies remains open.

Another promising work based on the results of this study is the model selection and

validation using uncertain field data. Due to the large inspection uncertainties, specific

features of degradation process can be heavily masked in field degradation data. Model se-

lection and validation are thus difficult, especially when the model parameters are estimated

using approximate methods. With the accurate ML and Bayesian estimates developed in the

thesis, it is now possible to apply some sophisticated methods, such as the likelihood ratio
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test, methods based on Akaike information criterion (AIC), or Bayesian factor method, to

the model selection and validation using uncertain field data.
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AA P P E N D I X

A.1 Genz’s transform

Likelihood function of the gamma process model subject to normally distributed sizing

error can be transformed into an integral over a hyper-cubic region using a series of

transforms proposed by Genz (1992). Take the 2-dimension case as an example. Without

causing confusion, we omit the symbol 1 and the subscript i in the equations. The likelihood

function is then written

fY(y) =
∫

D
fX(y − e)fE(e)de

=
∫ y2

−∞

∫ y1

−∞
fX1

(y1 − e1)fX2
(y2 − e2)fE(e1, e2)de1de2,

(A.1.1)

where X1 and X2 are independent and gamma distributed random variables. Here the

model parameters α and β in fX1
and fX2

are omitted, y ={y1, y2}T is the measured growth

with sizing errors and e={e1, e2}T is the sizing error associated with y. Let E={E1, E2}T be

the joint distribution for the sizing error e. The mean of E is zero and its covariance matrix

is

6E = 2σ 2
E





1 −1/2

−1/2 1



 .

The likelihood function is then given as

fY(y) =
∫ y2

−∞

∫ y1

−∞
fX1

(y1 − e1)fX2
(y2 − e2)

1

2π
√

|6E|
exp

(

−e6−1
E eT

)

de1de2.
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Then Genz’s transform can be conducted using following steps

❧ Calculate the Cholesky decomposition of 6E, i.e., find a lower triangular matrix C such

that 6Ei
=CCT . This can be done easily using routines provided in many numerical

packages. For the 2-dimension case, C is calculated as

C =
√

2σE





1 0

−0.5 0.86



 .

❧ Apply the first transform e=pCT to equation (A.1.1), where p={p1, p2}T is a 2-

dimension vector. Expanding e=pCT gives e1 =
√

2σEp1 and e2 =
√

2σE(−0.5p1+0.86p2).

Also according to the definition of Cholesky decomposition, one has

e6−1
E eT = pCT CT −1

C−1CpT = ppT .

Thus, after applying the first transform, the equation (A.1.1) becomes

fY(y) =
∫ a2

−∞

∫ a1

−∞
fX1

(y1−
√

2σEp1)fX2

(

y2 −
√

2σE(0.5p1−0.86p2)

)

1

2π
√

|6E|
exp

(

−1

2
ppT

) ∣

∣

∣

∣

∂e

∂p

∣

∣

∣

∣

dp1dp2

=
∫ a2

−∞

∫ a1

−∞
fX1

(y1−
√

2σEp1)fX2

(

y2 −
√

2σE(0.5p1−0.86p2)

)

1

2π |C| exp

(

−1

2
(p2

1 + p2
2)

)

|C|dp1dp2

= 1

2π

∫ a2

−∞

∫ a1

−∞
m(p1, p2)dp1dp2,

(A.1.2)

where m(p1, p2) is a function of p1 and p2 given by

m(p1, p2) = fX1
(y1−

√
2σEp1)fX2

(

y2−
√

2σE(0.5p1−0.86p2)

)

exp

(

− 1

2
(p2

1+p2
2)

)

,

a ={a1, a2} is the integration upper bound and is a function of p1 and p2. a can be

obtained by letting the two integration regions e6y and p6a identical. Because C is

a triangular matrix, a be calculated recursively starting from a1. The result is given as

a1 =y1/(
√

2σE) and a2 =(y2+0.5p1)/(0.86
√

2σE).
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❧ The next step is to apply transform pi =8−1(qi), i =1, 2, to equation (A.1.2), where

8−1(qi) is the inverse cumulative density function of the standard normal distribution,

i.e., 8(qi)= 1√
2π

∫ qi
−∞ exp(−u2/2)du. After applying inserting pi =8−1(qi), equation

(A.1.2) becomes

fY(y) = 1

2π

∫ b2

0

∫ b1

0
m
[

8−1(q1), 8−1(q2)
]

d8−1(q1)d8−1(q2)

=
∫ b2

0

∫ b1

0
n(q1, q2)dq1dq2,

(A.1.3)

where n(q1, q2)=
1

2π
m
[

8−1(q1), 8−1(q2)
]

8−1′
(q1)8

−1′
(q2), b1 and b2 are the inte-

gration upper bound given as (note that b2 is a function of q1)

b1 = 8(a1) = 8(y1)

b2 = 8(a2) = 8((y2 + 0.5p1)/(0.86
√

2σE))

= 8((y2 + 0.58−1(q1))/(0.86
√

2σE)).

❧ Finally, let qi =bisi, i =1, 2. Since b2 is a function of q1, it is needed to express b2 in

terms of s1 and s2, so that the integral after transform can be evaluated. From relation

q1 =b1s1, one has

b2 = 8((y2+0.58−1(q1))/(0.86
√

2σE))

= 8((y2+0.58−1(b1s1))/(0.86
√

2σE))

= 8((y2+0.58−1(8(y1)s1))/(0.86
√

2σE)).

Equation (A.1.3) is then transformed into an integral over a unit region as

fY(y) =
∫ 1

0

∫ 1

0
n(b1s1, b2s2)b1b2ds1ds2,

where b1 =8(y1) and b2 =8((y2+0.58−1(8(y1)s1))/(0.86
√

2σE)).

Using the above Genz’s transform, the original likelihood function, which is an integral

over an infinite region, is converted into an equivalent integral over a unit rectangular.

Denote the converted integrand as p(s1, s2), p(s1, s2) = n(b1s1, b2s2)b1b2. To evaluate

equation A.1 using QMC simulation, one first generates a 2-dimension LDS of s1 and s2,
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denoted as {s
(1)
1 , s

(2)
1 , · · · , s

(N)
1 } and {s

(1)
2 , s

(2)
2 , · · · , s

(N)
2 }, over the unit integration region.

Equation A.1 can then be calculated as the following average as

fY(y) ≈ 1

N

N
∑

i=1

p(s
(i)
1 , s

(i)
2 ).

When conducting the maximum likelihood estimation of the model, equation A.1 needs

to be calculated repeatedly with respect to different values of model parameters α and β. As

can be observed from the above procedures, the converted integrand after Genz’s transform

is very complicated and involves large number of numerically expensive calculations such

as the inverse normal CDF 8−1 and its derivative 8−1′
. Since in QMC simulation the

generated sequences are identical for each evaluation, much of these difficult calculations

only need to be conducted once and the results can be stored for later use.

A.2 Simulating flaw generation data

Suppose the flaw initiation in a component follows a homogeneous Poisson process with

rate λ. The flaw sizes are assumed to be i.i.d. distributed with PDF fX(x; θ). The flaws are

considered to be stable. That is the flaw size does not grow with time. n inspections are

conducted at time t1, t2, · · · , tn using inspection probe with PoD p(x) and sizing error with

PDF fE(e). After each inspection, all the detected flaws are removed to mimic a “repair-

on-detection” maintenance strategy. The number of detected flaws and their measured flaw

sizes can be simulated using the following procedures iteratively.

❧ At time t0 =0, there are no flaws in the component.

❧ Suppose at the (i−1)th inspection at time ti−1, there are si−1 flaws left after the repair

with true flaw size {u
(i−1)
1 , u

(i−1)
2 , · · · , u(i−1)

si−1
}.

❧ Simulate ki new generated flaws with size {x
(i)
1 , x

(i)
2 , · · · , x

(i)
ki

}, where ki is a sample from

Poisson random variable with rate λ(ti −ti−1), {x
(i)
1 , x

(i)
2 , · · · , x

(i)
ki

} are samples drawn

from PDF fX(x; θ). Then, {u
(i−1)
1 , u

(i−1)
2 , · · · , u(i−1)

si−1
, x

(i)
1 , x

(i)
2 , · · · , x

(i)
ki

} are the size of

the flaws before the ith inspection.

❧ For each flaw in {u
(i−1)
1 , u

(i−1)
2 , · · · , u(i−1)

si−1
, x

(i)
1 , x

(i)
2 , · · · , x

(i)
ki

}, simulate a random num-

ber q from uniform distribution on 0 and 1 U(0, 1). If q6p(x), where x is its size,
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the flaw is regarded as detected. Otherwise, the flaw is not detected. Denote the

detected flaws as {d
(i)
1 , d2, · · · , d(i)

ri
} and the undetected flaws as {u

(i)
1 , u

(i)
2 , · · · , u(i)

si
}.

ri +si = si−1+ki. {u
(i)
1 , x

(i)
2 , · · · , u(i)

si
} are then the undetected flaws in the ith inspec-

tion.

❧ For the ri detected flaws, simulate ri sizing errors from fE(e) as {e
(i)
1 , e

(i)
2 , · · · , e(i)

ri
}. The

measured flaw sizes are then y
(i)
j =d

(i)
j +e

(i)
j . ri and {y

(i)
1 , y

(i)
2 , · · · , y(i)

ri
} are then the

simulated number and size of the detected flaws in the ith inspection.


