
Analyzing Quantum Cryptographic

Protocols Using Optimization

Techniques

by

Jamie Sikora

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2012

c© Jamie Sikora 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis concerns the analysis of the unconditional security of quantum cryptographic

protocols using convex optimization techniques. It is divided into the study of coin-flipping

and oblivious transfer. We first examine a family of coin-flipping protocols. Almost all of

the handful of explicitly described coin-flipping protocols are based on bit-commitment. To

explore the possibility of finding explicit optimal or near-optimal protocols, we focus on a

class which generalizes such protocols. We call these BCCF-protocols, for bit-commitment

based coin-flipping. We use the semidefinite programming (SDP) formulation of cheating

strategies along the lines of Kitaev to analyze the structure of the protocols.

In the first part of the thesis, we show how these semidefinite programs can be used

to simplify the analysis of the protocol. In particular, we show that a particular set of

cheating strategies contains an optimal strategy. This reduces the problem to optimizing a

linear combination of fidelity functions over a polytope which has several benefits. First, it

allows one to model cheating probabilities using a simpler class of optimization problems

known as second-order cone programs (SOCPs). Second, it helps with the construction of

point games due to Kitaev as described in Mochon’s work. Point games were developed to

give a new perspective for studying quantum protocols. In some sense, the notion of point

games is dual to the notion of protocols.

There has been increased research activity in optimization concerning generalizing the-

ory and algorithms for linear programming to much wider classes of optimization problems

such as semidefinite programming. For example, semidefinite programming provides a

tool for potentially improving results based on linear programming or investigating old

problems that have eluded analysis by linear programming. In this sense, the history of

semidefinite programming is very similar to the history of quantum computation. Quan-

tum computing gives a generalized model of computation to tackle new and old problems,

improving on and generalizing older classical techniques. Indeed, there are striking dif-

ferences between linear programming and semidefinite programming as there are between

classical and quantum computation. In this thesis, we strengthen this analogy by studying

a family of classical coin-flipping protocols based on classical bit-commitment. Cheating

strategies for these “classical BCCF-protocols” can be formulated as linear programs (LPs)

which are closely related to the semidefinite programs for the quantum version. In fact,

we can construct point games for the classical protocols as well using the analysis for the

iii

quantum case. The intricate relationship between the semidefinite programming quantum

protocol analysis and the linear programming classical protocol analysis is depicted in the

figure below.

Figure 1: Relationship between classical and quantum BCCF-protocols and their point

games. F.R. denotes “feasible region.”

Using point games, we prove that every classical BCCF-protocol allows exactly one

of the parties to entirely determine the outcome. Also, we rederive Kitaev’s lower bound

to show that only “classical” protocols can saturate Kitaev’s analysis. Moreover, if the

product of Alice and Bob’s optimal cheating probabilities is 1/2, then at least one party

can cheat with probability 1.

The second part concerns the design of an algorithm to search for BCCF-protocols

with small bias. Most coin-flipping protocols with more than three rounds have eluded

direct analysis. To better understand the properties of optimal BCCF-protocols with four

or more rounds, we turn to computational experiments. We design a computational opti-

mization approach to search for the best protocol based on the semidefinite programming

formulations of cheating strategies. We create a protocol filter using cheating strategies,

some of which build upon known strategies and others are based on convex optimization

and linear algebra. The protocol filter efficiently eliminates candidate protocols with too

iv

high a bias. Using this protocol filter and symmetry arguments, we perform searches in a

matter of days that would have otherwise taken millions of years. Our experiments checked

1016 four and six round BCCF-protocols and suggest that the optimal bias is 1/4.

The third part examines the relationship between oblivious transfer, bit-commitment,

and coin-flipping. We consider oblivious transfer which succeeds with probability 1 when

the two parties are honest and construct a simple protocol with security provably better

than any classical protocol. We also derive a lower bound by constructing a bit-commitment

protocol from an oblivious transfer protocol. Known lower bounds for bit-commitment then

lead to a constant lower bound on the bias of oblivious transfer. Finally, we show that

it is possible to use Kitaev’s semidefinite programming formulation of cheating strategies

to obtain optimal lower bounds on a “forcing” variant of oblivious transfer related to

coin-flipping.

v

Acknowledgements

First, I thank my supervisors, Ashwin Nayak and Levent Tunçel, for their advice and

support over the last several years. They are both outstanding supervisors and I am very

lucky to have been given the opportunity to learn from them. I also thank my thesis

committee – Andrew Childs, Peter Høyer, Michele Mosca, and John Watrous – for their

helpful comments and suggestions. Finally, I thank my family for their encouragement,

and my wife, Caitlin, for her endless support.

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 An overview of the use of optimization techniques in quantum literature . . 3

1.3 A brief history of quantum cryptography 6

1.3.1 Contributions . 14

1.4 Mathematical preliminaries and notation 16

1.4.1 Linear algebra . 16

1.4.2 Convex analysis . 18

1.4.3 Quantum information . 20

1.4.4 Semidefinite programming . 25

1.4.5 Quantum protocols . 31

1.4.6 The Kitaev coin-flipping protocol formalism 36

1.4.7 Technical lemmas . 44

2 Coin-flipping protocols based on bit-commitment 49

2.1 A family of quantum coin-flipping protocols 50

2.1.1 Quantum cheating strategy formulations 53

2.1.2 Reduced formulations of quantum strategies 57

2.1.3 An SDP proof for why qubit messages are sufficient 68

2.1.4 SOCP formulations of quantum strategies 70

2.1.5 Point games for BCCF-protocols 74

2.1.6 Describing BCCF-point games using basic moves 77

2.2 A related family of classical coin-flipping protocols 86

vii

2.2.1 Classical cheating strategy formulations 87

2.2.2 Point games for classical BCCF-protocols and security analysis . . . 90

2.2.3 Extreme points of the cheating polytopes 97

2.3 Using classical protocols to lower bound the quantum bias 98

2.3.1 A better lower bound on a special case 103

3 A computational search for BCCF-protocols with small bias 106

3.1 The protocol filter . 107

3.1.1 Cheating Alice . 108

3.1.2 Cheating Bob . 118

3.2 Protocol symmetry . 126

3.2.1 Symmetry in local permutations . 127

3.2.2 Symmetry between probability vectors 128

3.3 The search algorithm . 129

3.3.1 A protocol with bias 1/4 . 130

3.3.2 Making a finite mesh . 134

3.3.3 The refined algorithm . 134

3.4 Numerical results . 135

3.4.1 Four-round search . 135

3.4.2 Six-round search . 147

3.4.3 Random offset . 155

4 A protocol and lower bounds for quantum oblivious transfer 158

4.1 An oblivious transfer protocol with bias 1/4 159

4.2 A lower bound on any oblivious transfer protocol 162

4.3 Proof of the Learning-In-Sequence Lemma 165

4.4 Forcing oblivious transfer . 168

4.4.1 Extending Kitaev’s lower bound for strong coin-flipping 169

4.4.2 A protocol with optimal forcing bias 171

5 Concluding remarks 173

Bibliography 177

viii

Chapter 1

Introduction

This thesis is comprised of the work I have done on quantum coin-flipping and quantum

oblivious transfer. My work on quantum coin-flipping, the content of Chapter 2 and

Chapter 3, was done with my supervisors Ashwin Nayak and Levent Tunçel and my work

on quantum oblivious transfer was done with Iordanis Kerenidis and André Chailloux.

We start with an overview of the problems and proof techniques examined in this thesis

and a brief history of quantum cryptography. We then provide the necessary background

on linear algebra, quantum information, semidefinite programming, formal definitions of

cryptographic primitives, and quantum protocols in Section 1.4.

1.1 Overview

In this thesis, we use optimization techniques to give a detailed analysis of a family of quan-

tum bit-commitment based coin-flipping protocols, which we call BCCF-protocols. After

defining the protocols, we formulate cheating strategies for both parties as semidefinite

programs (abbreviated as SDP, discussed in Subsection 1.4.4). These SDPs fully represent

cheating in the protocol, that is, there is a direct connection between feasible solutions of

the SDP and cheating strategies in the protocol. Moreover, the objective function is the

success probability of the corresponding cheating strategy. This transforms the problem of

analyzing cheating in the coin-flipping protocol into analyzing optimization problems.

Duality theory is the backbone of semidefinite programming and can often provide a

1

new perspective. This is the case with the cheating SDPs of coin-flipping protocols as

Kitaev used the duals of the cheating SDPs to derive the first constant lower bound on the

bias of coin-flipping protocols. Moreover, he used these dual SDPs and other notions from

convex analysis to construct “point games.” We similarly use dual SDPs to construct a

family of point games and show their correspondence with BCCF-protocols. This illustrates

Kitaev’s ideas of how protocols and “point games” are dual notions.

We then repeat the same analysis for a family of “classical” BCCF-protocols. Since

these rely on classical messages and calculations, we are able to model cheating strategies as

linear programs. It turns out that the linear programs for the classical cheating strategies

and the semidefinite programs for the quantum strategies are very closely related. In

fact, there are close connections not only between the cheating strategy formulations, but

throughout the whole process of constructing the point games, as illustrated in the figure

below.

Figure 1.1: Quantum-classical connections between protocols and point games.

This figure illustrates the fact that the generalization of classical to quantum informa-

tion is analogous to the generalization of linear programming to semidefinite programming.

Using point games, we prove that at least one party can cheat perfectly in every classical

BCCF-protocol and that this result extends to the quantum case. Further analysis shows

2

that exactly one party can cheat perfectly. We then rederive Kitaev’s lower bound to prove

that if this lower bound is saturated, then the cheating probabilities are the same as in the

corresponding classical protocol. This proves that there are no BCCF-protocols with bias

ε = 1/
√

2− 1/2.

Unfortunately, finding closed-form expressions for the optimal values of these SDPs

is a very difficult problem. We therefore study the structure of the SDPs to design a

search algorithm to find the best choice of protocol parameters to minimize cheating.

In terms of optimization theory, we are seeking data for which these SDPs have small

optimal values. By restricting the feasible region of the cheating SDPs, we reveal hidden

convex structure leading to “near-optimal solutions.” These near-optimal solutions are in

fact near-optimal cheating strategies whose success probabilities approximate the optimal

cheating probabilities. This helps to reveal some structure in these highly interactive

protocols which generalizes the analysis in previous work. By exploiting these near-optimal

cheating strategies, we are able to search over 1016 protocols to approximate the best

parameters that minimize cheating. Without these strategies and other heuristics, this

search would take millions of years.

Concerning the analysis of oblivious transfer, we first make connections between it

and bit-commitment. Using known protocols and lower bounds for bit-commitment, we

construct a protocol and derive lower bounds for oblivious transfer. We then make the

connection between a “forcing” variant of oblivious transfer and coin-flipping. In particular,

we show how similar cheating SDPs are involved and can be used to derive bounds on the

bias.

1.2 An overview of the use of optimization techniques

in quantum literature

Semidefinite programming gained popularity in the 1990s after Goemans and Williamson

discovered how to use semidefinite programming to significantly improve the worst-case

approximation ratio of heuristic algorithms for the MAX-CUT problem [GW95]. This

further illustrated the use of semidefinite programming as a theoretical tool for analyzing

important problems in combinatorics and other areas of mathematics and computer science.

3

We give a quick glimpse of some of the areas of quantum computation that have benefited

from using SDPs and related topics from optimization theory.

Quantum information

One of the oldest uses of convex optimization techniques in quantum information is

finding optimal measurements [Hol73b, YKL75], see also [Hel69, EMV03]. The first two

papers predate the advent of semidefinite programming by over a decade, making this

result quite remarkable. The ideas in these papers have many applications, from the hid-

den subgroup problem [Ip03, BCvD05, BCvD06] to quantum cryptography (see [Amb01],

[KN04], [CKS10], [CK11], etc). In fact, discriminating between two quantum states is one

of the central themes in this thesis.

Some related problems are unambiguous state discrimination [ESH04], distinguishing

between convex sets of states [GW05], quantum channel discrimination [Sac05, PW09],

and quantum strategy discrimination [Gut09, Gut10].

Another central theme in this thesis is the “closeness” of two quantum states or proba-

bility vectors as measured by the fidelity function (see Section 1.4.3). Along with studying

norms useful for quantum channel discrimination, Watrous [Wat09] analyzed the fidelity

function using semidefinite programming and showed that Uhlmann’s and Alberti’s char-

acterizations of the fidelity function are “dual” to each other. We provide a similar analysis

for the fidelity function over probability vectors in Subsection 1.4.7.

Computational complexity theory

Computational complexity theory is the study of classifying how difficult certain prob-

lems are to solve. It turns out that algorithms to approximate the optimal values of

semidefinite programs have been incredibly useful in the study of quantum computational

complexity theory, see [KW00] for an early example. In recent work, the matrix multiplica-

tive weights update method for approximating the optimal value of an SDP was used by

Jain, Ji, Upadhyay, and Watrous [JJUW11] to prove that the complexity class known as

QIP (for quantum interactive proof systems) is equivalent to the complexity class known

as PSPACE (problems that can be decided using a polynomial amount of space).

4

Also, using product theorems for semidefinite programming and other convex opti-

mization problems, one can show that certain complexity classes admit perfect parallel

repetition [MS07, Gut09, GSU11]. Roughly speaking, perfect parallel repetition is when

two games are played simultaneously, then one cannot entangle strategies such to increase

the maximum probability of winning both games. This can be used to improve the error

bounds in the proof systems.

Query complexity

Query complexity is the study of determining how many queries are needed to ascertain

a value of a certain black-box function f , such as the XOR of n bits. Duality theory of

semidefinite programming has been used to show that many quantum adversary methods

are equivalent [SS06]. The proof relies on showing that the adversary methods considered

are equivalent to either the semidefinite version of minimax, or another semidefinite pro-

gram that turns out to be its dual. Showing that the optimal values of these two SDPs

are equal yields the result.

Recently, it has been shown by Reichardt [Rei09] that the query complexity of a Boolean

function can be captured by the general adversary bound, and this bound is given by the

optimal value of an SDP. This SDP can be modified to yield a norm used in the study

of state conversion [LMR+11]. Semidefinite programming appears in numerous papers on

query complexity, see for example [BSS03, HLS07, LR11] and the references therein.

Linear optical quantum gates

A task that was thought impossible was to perform a two-qubit entangling gate in a

photonic quantum computer. Indeed, a DiVincenzo criterion [DiV00] is that one needs two-

qubit entangling gates to perform circuit-based quantum computation. Knill, Laflamme,

and Milburn discovered a way to perform a two-qubit entangling gate using the non-linear

sign shift gate (NLS gate), which in turn can be used to implement a controlled-Z gate. The

NLS gate cannot be perfectly implemented using quantum mechanics, however it can be

implemented in a probabilistic way using post-selection. The proposal of Knill, Laflamme,

and Milburn implements this gate with probability 1/4.

5

The theory of convex optimization can be applied to finding the maximum success prob-

ability of implementing such gates under certain restrictions, as shown by Eisert [Eis05].

That is, by fixing several parameters, the problem becomes a convex optimization prob-

lem. What is different from many other optimization problems in quantum literature is

that those in Eisert’s paper are second-order cone programs (discussed in Subsection 1.4.4),

although these were treated as SDPs. This paper is one of the few instances of a second-

order cone program arising in a quantum setting.

Cryptography

We now give a brief overview of how SDPs and convex analysis have been used to

tackle similar problems to those in this thesis. Firstly, Kitaev formalized a way to study

the cheating strategies of quantum coin-flipping protocols using semidefinite programming.

Using this, he developed point games which also use other ideas from convex analysis such

as analyzing the cone of operator monotone functions and the duality of convex sets (see

Subsection 1.4.2). We give an overview of Kitaev’s ideas in Subsection 1.4.6.

Using SDP formulations of cheating strategies, Mochon studied a few different families

of weak coin-flipping protocols [Moc04, Moc05]. He studied protocols based on public-

coins, which are similar to the bit-commitment based protocols in this thesis. He was

able to find optimal primal and dual solutions to the cheating SDPs, which for the first

time gave a description of optimal cheating strategies for such highly interactive protocols.

Then, using the convexity of optimal parameters, he was able to show a lower bound on

the bias of the entire family of protocols (which could be approached as the number of

messages grows large).

The goal in Chapters 2 and 3 is to analyze a family of quantum coin-flipping protocols

using SDP techniques in the same manner as Mochon did for his family of protocols.

1.3 A brief history of quantum cryptography

Quantum cryptography dates back to the work of Wiesner in his seminal paper “Conju-

gate coding” [Wie83]. Written around 1970, the concepts were so new that it took until

1983 to get published. Among other things, this paper provides “a means for transmit-

6

ting two messages either but not both of which may be received,” which Wiesner called

multiplexing. This task now goes by the name 1-out-of-2 oblivious transfer which is one

of the cryptographic primitives examined in this thesis. His idea was for the sender, call

her Alice, to use a light pipe as the communication channel and have messages encoded as

certain polarizations. Then the receiver, call him Bob, would measure the messages as he

received them in a way that depends on the message he wants to receive. This approach is

secure in practice (assuming the limitations of current technology) but, as Wiesner pointed

out, is insecure in principle since an all-powerful Bob could decode both messages. This

work was the beginning of quantum cryptography.

After hearing about Wiesner’s work, Bennett and Brassard used similar ideas to those

in Wiesner’s paper to present a quantum key distribution scheme which is unconditionally

secure, or information theoretically secure, against an eavesdropper [BB84], (see also [LC99,

PS00, May01]). That is, a computationally unbounded eavesdropper can obtain very little

information about the key. This is opposed to the security analyses based on computational

assumptions such as the hardness of factoring or finding discrete logarithms. In 1984, many

classical protocols for oblivious transfer and coin-flipping were based on, e.g., the hardness

of factoring. However, many of these cryptosystems turn out to be vulnerable to quantum

attacks using Shor’s algorithm [Sho94]. This makes the unconditional security which can

be promised by quantum mechanics more attractive since it does not rely on yet unproven

computational conjectures.

In Bennett and Brassard’s key distribution scheme, they also use messages being po-

larizations of light in such a way that if an eavesdropper tampered with the message, then

Alice and Bob would be alerted and could abort the protocol. In the same paper, they

present a coin-flipping protocol that follows in the same manner as their key distribution

scheme. Roughly speaking, coin-flipping is the cryptographic task of two mistrustful parties

generating a random bit over a communication channel. Much like Wiesner’s multiplexing

protocol, Bennett and Brassard’s coin-flipping protocol is secure in practice, however in-

secure in principle. The work presented in these two seminal papers opened up many new

problems in quantum cryptography such as authentication [BG89], the bounded storage

model [DFSS08], and the problems addressed in this thesis. In particular, we are inter-

ested in finding the attainable levels of information theoretic security of coin-flipping and

oblivious transfer protocols.

7

Quantum coin-flipping and quantum bit-commitment

Coin-flipping was introduced by Blum [Blu81] as a way for two parties to “flip a coin

by telephone.” Consider the scenario where Alice and Bob are settling a divorce and need

to decide who keeps the TV. They decide to settle this over the telephone, as they despise

seeing each other, in the following way: Alice flips a coin and only if Bob is able to guess

the value can he have the TV. The problem here is that Alice can cheat by telling Bob

that his guess is wrong, even if it is not. Ideally, we would like a method such that neither

Alice nor Bob can control the outcome. Unfortunately, this is impossible using classical

information (assuming Alice and Bob are computationally all-powerful) since game theory

tells us that at least one of them has a strategy that ensures a certain win. This motivates

the use of quantum information when designing coin-flipping protocols.

Quantum coin-flipping is interesting for several reasons. Firstly, it is important in quan-

tum cryptography being a task known as a primitive. Primitives are simple cryptographic

tasks which are used as building blocks for larger, more elaborate protocols. For this

reason, it is important to understand the attainable levels of security of such primitives,

since it could affect the security of the larger protocol. Secondly, it is interesting from a

general quantum computational standpoint: If we start with Alice and Bob sharing no

entanglement, then how could they create an EPR (Einstein-Podolsky-Rosen) state shared

between them if Alice and Bob suspect the other of cheating? Cheating can be viewed as

trying to bias the amplitudes of the supposed EPR state, and we wish to design protocols

such that the resulting state is as close to maximally entangled as possible.

To discuss the security of a coin-flipping protocol, we define the bias, denoted as ε, as

the maximum of:

• Pr[Alice can force Bob to accept a desired outcome (without Bob aborting)]− 1/2,

• Pr[Bob can force Alice to accept a desired outcome (without Alice aborting)]− 1/2.

Aharonov, Ta-Shma, Vazirani, and Yao [ATVY00] first showed the existence of a coin-

flipping protocol with bias ε = 0.4143 < 1/2 proving that quantum information can guar-

antee a level of security provably better than any classical protocol. Roughly speaking, the

protocol proceeds as follows:

8

• Alice chooses a ∈ {0, 1} uniformly at random and encodes it into a quantum state.

Alice sends this state to Bob.

• Bob then responds to Alice with a guess for the value of a.

• Alice then sends a and a description of the quantum state to Bob. He measures to

check if the state received is in the state claimed by Alice. If so, Bob’s guess being

right or wrong determines the outcome of the protocol.

If Alice wants to cheat, then she must avoid detection by Bob and if Bob wants to cheat,

then he must be able to learn the value of a early. By choosing the encoding quantum states

in a smart way, it can be the case that neither Alice nor Bob can completely control the

outcome, even if they are not computationally bounded. Ambainis [Amb01] and Spekkens

and Rudolph [SR01] showed better choices of states such that the bias lowers to ε = 1/4,

see also [NS03], [KN04]. As for lower bounds, Lo and Chau [LC97], showed that ideal

coin-flipping is impossible, i.e., a bias of ε = 0 is impossible. In 2002, Kitaev [Kit02] used

a formulation of cheating strategies as semidefinite programs to prove that the product

of Alice and Bob’s cheating probabilities is at least 1/2, showing that the bias satisfies

ε ≥ 1/
√

2− 1/2 ≈ 0.207 for every protocol. Another proof of this lower bound was given

by Gutoski and Watrous [GW07] using a different representation of quantum strategies.

The problem of finding the optimal bias was resolved by Chailloux and Kerenidis [CK09]

who showed the existence of protocols with bias ε < 1/
√

2 − 1/2 + δ for any δ > 0.

The protocols they present rely only on classical messages and a related primitive known

as quantum weak coin-flipping.

The version of coin-flipping discussed thus far is called strong coin-flipping. Weak coin-

flipping is when Alice and Bob desire opposing outcomes and therefore we can view this

primitive as having a winner and a loser. This primitive is well-suited for situations when

Alice and Bob favour opposite outcomes, such as playing a game or settling a divorce.

As for security, we can define the bias, denoted εWCF, in the same way, except Alice and

Bob would only try to force specific outcomes. From this definition, weak coin-flipping

protocols could have smaller biases than strong coin-flipping protocols. Indeed, Spekkens

and Rudolph [SR02] presented a simple protocol for weak coin-flipping which has bias

εWCF = 1/
√

2 − 1/2 ≈ 0.207 already matching Kitaev’s lower bound for strong coin-

flipping. Mochon [Moc04, Moc05] improved on the ideas in [SR02] to find protocols with

9

biases of εWCF = 0.192 and approaching εWCF = 1/6, respectively. One of the reasons

these protocols are able to surpass Kitaev’s lower bound is that they have stronger cheat

detection steps: only the “winner” gets tested for cheating. The best known lower bound

for weak coin-flipping is by Ambainis [Amb01] who showed that a protocol with bias εWCF

must use Ω(log log(1/εWCF)) rounds of communication. Then, in a breakthrough result,

Mochon [Moc07] showed the existence of weak coin-flipping protocols with bias εWCF < δ

for any δ > 0 using a development of Kitaev’s called point games.

Point games were developed by Kitaev as a new perspective for studying coin-flipping

protocols. Roughly speaking, a point game is a sequence

p0 → p1 → · · · → pn,

where each pi is a probability distribution over finitely many points in R2
+. Using his SDP

formulation of cheating strategies in coin-flipping protocols, Kitaev found rules determining

valid moves (or transitions) from pi to pi+1 (more on this in Section 1.4.6). Let P ∗B,1 be the

optimal probability Bob can force honest Alice to accept outcome 1 and let P ∗A,0 be the

optimal probability Alice can force honest Bob to accept outcome 0. Then for any protocol

and for any δ > 0, there exists a point game satisfying:

• p0 has two points (0, 1) and (1, 0), each having probability 1/2,

• pn has one point (P ∗B,1 + δ, P ∗A,0 + δ),

• pi → pi+1 is a “valid move,” for i ∈ {0, 1, . . . , n− 1}.

What is surprising is that the converse is also true. If there is a point game of the form:

• p0 has two points (0, 1) and (1, 0), each having probability 1/2,

• pn has one point (ζB, ζA),

• pi → pi+1 is a “valid move,” for i ∈ {0, 1, . . . , n− 1},

then for any δ > 0, there exists a weak coin-flipping protocol with P ∗B,1 ≤ ζB +δ and P ∗A,0 ≤
ζA +δ. Using this new machinery, Mochon [Moc07] was able to prove the existence of point

games with final point being arbitrarily close to (1/2, 1/2) proving the existence of weak

10

coin-flipping protocols with arbitrarily small bias. However, the reverse mapping from some

point games to the description of a protocol is very difficult. No one has conducted this

mapping for Mochon’s optimal point game. The problem remains of explicitly constructing

such optimal weak coin-flipping protocols and, therefore, any protocols that rely on them,

such as optimal protocols for strong coin-flipping and bit-commitment.

Bit-commitment is a cryptographic primitive closely related to coin-flipping. Roughly

speaking, bit-commitment is the task of Alice sending an encoding of a random bit a to

Bob such that:

• The encoding ‘hides’ the value of a from Bob, and ‘binds’ Alice to the value a,

• Alice can reveal a and Bob can then check that the revealed bit is consistent with

the encoding.

We can also define the bias of a bit-commitment protocol, denoted εBC, as the maximum

of:

• Pr[Bob can infer a from the encoding without Alice aborting]− 1/2,

• 1

2

∑
c∈{0,1}

Pr[Alice reveals a = c without Bob aborting]− 1/2.

The history of quantum bit-commitment is closely related to quantum coin-flipping with

the first example being the coin-flipping protocol in [BB84]. Moreover, most of the strong

coin-flipping protocols previously mentioned are bit-commitment protocols with an added

message from Bob who sends Alice his guess of a before Alice reveals it; the coin-flip

being the correctness of Bob’s guess. In this case, the bias of the bit-commitment protocol

is the same as the bias of the coin-flipping protocol. This is the form of the protocols

in [BB84, ATVY00, Amb01, SR01, KN04]. Mayers [May97] and Lo, Chau [LC97] proved

that quantum bit-commitment protocols with εBC = 0 do not exist by showing that if

Bob can infer no information about a before Alice reveals it, then Alice can cheat with

probability 1. There has been some controversy over this no-go theorem, with some saying

it is not entirely general. Some claim to be able to create bit-commitment protocols by

circumventing some of the assumptions used. For example, one assumption is that Alice

and Bob both have a complete description of the protocol before it starts. However, this is

11

a widely accepted concept known as “Kerckhoffs’s principle” [Ker83] which is also assumed

in this thesis.

The result of the no-go theorem can be improved using Kitaev’s lower bound for strong

coin-flipping which, using the coin-flipping protocol construction above, shows that the

bias can be no lower than that of strong coin-flipping. Recently, this has been improved by

Chailloux and Kerenidis [CK11] who showed that εBC ≥ 0.239 for every bit-commitment

protocol. They show this bound is tight by presenting a protocol with bias εBC < 0.239+δ

for any choice of δ > 0. Again, these protocols rely on optimal weak coin-flipping protocols

as subroutines.

In this thesis, we construct coin-flipping protocols using bit-commitment in a way

similar to the construction in [NS03]. Instead of adding the extra message from Bob before

Alice reveals the value of a, we are going to blend two bit-commitment protocols in the

following way. Alice chooses a bit a and encodes it in a quantum state. Bob chooses a bit

b and encodes it in a quantum state. They each take turns revealing parts of their states

to each other. Once the states are completely revealed, they reveal a and b to each other

and they output a ⊕ b if cheating is not detected. Nayak and Shor showed that in every

protocol of this form, one party can cheat with probability at least 9/16. Although this

is not as strong as the implicit cheating strategy from Kitaev’s lower bound, it showed an

explicit cheating strategy for this class of protocols.

Quantum oblivious transfer

Oblivious transfer, abbreviated OT, is the cryptographic primitive where Alice sends

to Bob one of two bits but is oblivious to the bit received. Wiesner first proposed obliv-

ious transfer as multiplexing, although the cryptographic significance was not known at

the time. The first use of the term ‘oblivious transfer’ was by Rabin [Rab81] while dis-

cussing how to exchange secrets. This form of oblivious transfer is different than Wiesner’s

multiplexing and accomplished the following task:

• Alice has one bit x she wishes to transfer to Bob,

• With probability 1/2, Bob receives the bit x, and with probability 1/2, he receives

indicating the message was lost,

12

• Alice does not learn if x or # is received.

This is often referred to as “Rabin OT.” Another version of oblivious transfer was proposed

by Even, Goldreich, and Lempel in [EGL85] which accomplished the following task:

• Alice has two bits x0 and x1 she wishes to transfer to Bob,

• With probability 1/2, Bob receives the bit x0, and with probability 1/2, he receives

x1,

• Alice does not learn which bit is received.

This version is called “1-out-of-2 OT” and is an interactive version of Wiesner’s multi-

plexing. It was shown by Crépeau [Cré87] that these two forms of oblivious transfer are

equivalent. More specifically, he showed that with a perfect 1-out-of-2 OT channel, one

can implement a perfect Rabin OT channel and with access to perfect Rabin OT channels,

one can implement a 1-out-of-2 OT channel (with an exponentially small probability of

failure). In this thesis, we only consider 1-out-of-2 OT and refer to it as just oblivious

transfer or OT (with a formal definition of OT given in Subsection 1.4.5).

The history of OT is less straightforward than quantum coin-flipping or quantum bit-

commitment due to varying names, definitions, and security requirements. For example, we

can have different definitions concerning the probability Bob receives the correct message

or the objectives of cheating Alice or Bob. OT is a very important cryptographic task

since it is universal for secure function evaluation [Kil88] (where Alice and Bob compute

a function without revealing extra information about their respective inputs). This being

the case, we need to worry about how one defines the security of an OT protocol when

designing larger, more elaborate cryptographic systems that rely on this security. It has

been proven by Lo [Lo97] that ideal oblivious transfer is impossible, even with quantum

information. Since every OT protocol is imperfect, one needs to settle for some definition

of security which could vary by situation.

Bennett, Brassard, Breidbard, and Wiesner [BBBW83] presented an early example of

quantum oblivious transfer. They provide a way that Alice can encode her two bits x0 and

x1 into a pure qubit state such that Bob can measure and learn either bit with probability

cos2(π/8). In fact, since only one qubit of information is transmitted, Bob cannot learn

13

both bits due to information bounds [Hol73a, Nay99]. It turns out that Bob cannot obtain

any information about the XOR of the two bits since the density matrices for the two cases

are identical.

There has been work done on quantifying the amount of ‘information’ which is leaked

in OT protocols, i.e., how much information Bob can get about Alice’s inputs or how

much information Alice can get from Bob’s inputs. For example, Salvail, Schaffner, and

Sotakova [SSS09] define a quantity called information leakage and show that oblivious

transfer has constant leakage. In other work, Jain, Radhakrishnan, and Sen [JRS09] showed

that for the Set Membership Problem, which can be thought of as 1-out-of-n oblivious

transfer, if Bob reveals at most k bits of information about his input, then Alice must

reveal at least n/2O(k) bits of information about her input. Oblivious transfer has also

been studied in other settings such as the bounded-storage model [DFSS08] and the noisy-

storage model [Sch10] which each provide a high level of security.

We now discuss the notion of security considered in this thesis. We define the bias,

denoted εOT, as the maximum of the two quantities:

• Pr[Alice can guess Bob’s input b ∈ {0, 1} without Bob aborting]− 1/2,

• Pr[Bob can guess Alice’s bits (x0, x1) without Alice aborting]− 1/2,

where Bob’s input b is the index of the bit he wants to learn. We assume that Bob gets

the correct value of xb with probability 1, when both parties are honest, and therefore

we have εOT ∈ (0, 1/2] for every protocol. Note that Bob may try to cheat to learn any

function of (x0, x1) and then a different definition of bias would be needed. However, in this

thesis, we are mostly concerned with lower bounding the bias so this definition is the most

appropriate. The goal is now the same as in coin-flipping and bit-commitment which is to

determine the smallest attainable bias. Note that the lower bounds discussed previously are

in terms of information and do not directly translate into learning probabilities. Therefore,

using this definition of bias for oblivious transfer protocols is a new measure of security we

adopt for this thesis for which we give the first lower and upper bounds.

1.3.1 Contributions

Here we discuss the contributions and layout of the thesis.

14

Chapter 2

We define a family of coin-flipping protocols based on bit-commitment, which we call

BCCF-protocols. Using SDP formulations of cheating strategies, we analyze the structure

of optimal cheating strategies of Alice and Bob. In particular, we reduce the SDPs to a

much simpler structure involving the optimization of fidelity functions over a polytope.

Using this reduced problem, we are able to prove a bound on the dimension of messages

and also to characterize optimal dual solutions to develop point games.

We then study a family of classical BCCF-protocols and show how they are related to

the quantum version. Using this relationship, we also develop “classical point games” and

use them to prove that every classical BCCF-protocol has bias ε = 1/2. In fact, we are

able to conclude that exactly one party can cheat with probability 1 which also extends to

the quantum case.

In Subsection 2.3, we adapt Kitaev’s lower bound for BCCF-protocols and prove a

theorem which roughly states that only “classical protocols” can saturate Kitaev’s analysis.

That is, if the product of Alice and Bob’s optimal cheating probabilities equals 1/2, then

one of them can cheat with probability 1. This rules out the possibility of BCCF-protocols

with bias ε = 1/
√

2− 1/2.

Chapter 3

In this chapter, we search over the parameters defining a BCCF-protocol to seek one

with the smallest bias. In Subsection 3.1, we lower bound the optimal cheating probabili-

ties by finding feasible solutions to the cheating SDPs. By restricting the feasible regions,

we reveal hidden convex structure behind some “near-optimal strategies.” We use these

strategies to filter out protocols with high bias. In Subsection 3.2, we examine the sym-

metry in the protocol parameters to reduce the number of protocols in the search. In

Subsection 3.3, we develop the search algorithm by showing how the mesh is created and

presenting a decent protocol which provides a cut-off point for the bias. We present our

numerical findings for four round and six round searches in Subsection 3.4. We conclude

with the conjecture that the minimal bias attainable by a BCCF-protocol is ε = 1/4.

15

Chapter 4

The topic of Chapter 4 is oblivious transfer. We present in Subsection 4.1 a simple pro-

tocol for oblivious transfer that has bias εOT = 1/4 which is related to the bit-commitment

protocol in [KN04]. To prove a lower bound on the bias, we construct a bit-commitment

protocol using oblivious transfer and relate the corresponding cheating probabilities in Sub-

section 4.2. We then present (and prove in Section 4.3) a Learning-In-Sequence Lemma

which provides a way for Bob to sequentially learn Alice’s two input bits x0 and x1. Using

this lemma and known lower bounds for quantum bit-commitment [CK11], we prove that

the bias for every OT protocol satisfies εOT ≥ 0.0852. We conclude this chapter by study-

ing a forcing variant of oblivious transfer in Subsection 4.4 which generalizes coin-flipping.

We show how to formulate cheating strategies as SDPs which are used to derive optimal

lower bounds on the bias.

1.4 Mathematical preliminaries and notation

In this section, we establish the notation and the necessary background for this thesis.

1.4.1 Linear algebra

For a finite set A, we denote by RA, RA
+, ProbA, and CA the set of real vectors, nonnegative

real vectors, probability vectors, and complex vectors, respectively, each indexed by A. We

use Rn, Rn
+, Probn, and Cn for the special case when A = {1, . . . , n}. We denote by ΣA

and ΣA
+ the set of Hermitian matrices and positive semidefinite matrices, respectively, each

with columns and rows indexed by A. For vectors x and y, the notation x ≥ y denotes

that x − y has nonnegative entries, x > y denotes that x − y has positive entries, and

for matrices X and Y , the notation X � Y denotes that X − Y is positive semidefinite,

and X � Y denotes X − Y is positive definite when the underlying spaces are clear from

context. When we say that a matrix is positive semidefinite or positive definite, it is

assumed to be Hermitian which implies that ΣA
+ ⊂ ΣA.

16

Suppose we define

X :=

[
A B

B> C

]
,

where C is positive definite. Then X � 0 if and only if S := A−BC−1B> � 0. We call S

the Schur complement.

The Kronecker product of two matrices X and Y , denoted X ⊗ Y , is defined as

X ⊗ Y :=


X1,1 Y X1,2 Y · · · X1,n Y

X2,1 Y X2,2 Y · · · X2,n Y
...

...
. . .

...

Xn,1 Y Xn,2 Y · · · Xn,n Y

 .
Note that X ⊗ Y ∈ ΣA×B

+ when X ∈ ΣA
+ and Y ∈ ΣB

+ and Tr(X ⊗ Y) = Tr(X) · Tr(Y)

when X and Y are square.

For a vector x ∈ CA, we define supp(x) to be the set of indices of A where x is nonzero.

We define x−1 to be the element-wise inverse, when x > 0, and
√
x to be the element-wise

square root when x ≥ 0. The element-wise square root of a probability vector yields a

unit vector (in the Euclidean norm). This operation, in some sense, is a conversion of a

probability vector to a quantum state.

The Schatten 1-norm, or trace norm, of a matrix X is defined as

‖X‖1 := Tr(
√
X∗X),

where X∗ is the adjoint of X and
√
X denotes the square root of a positive semidefinite

matrix X, i.e., the positive semidefinite matrix Y such that Y 2 = X. Note that the 1-norm

of a matrix is the sum of its singular values. We also define the 1-norm of a vector p ∈ CA

as

‖x‖1 :=
∑
x∈A

|px|.

We use the notation ā to denote the complement of a bit a with respect to 0 and 1 and

a⊕ b to denote the XOR of the bits a and b. We use Zn2 to denote the set of n-bit binary

strings.

For a vector p ∈ RA, we denote by Diag(p) ∈ ΣA the diagonal matrix with p on the

diagonal. For a matrix X ∈ ΣA, we denote by diag(X) ∈ RA the vector on the diagonal of

X.

17

For a matrix X, we denote by Null(X) the nullspace of X, by det(X) the determinant

of X, and by λmax(X) the largest eigenvalue of X. We denote by 〈X, Y 〉 the standard

inner product of matrices acting on the same space given by Tr(X∗Y).

1.4.2 Convex analysis

A convex combination of finitely many vectors x1, . . . , xn is any vector of the form
∑n

i=1 λixi,

when λ1, . . . , λn ∈ [0, 1] satisfy
∑n

i=1 λi = 1. The convex hull of a set C is the set of convex

combinations of elements of C, denoted conv(C). A set C is convex if C = conv(C).

A convex function f : Rn → R ∪ {∞} is one that satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for all x, y ∈ Rn, λ ∈ [0, 1].

A convex function is strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y), for all x 6= y, x, y ∈ Rn, λ ∈ (0, 1).

We say that a convex function is proper if f(x) < +∞ for some x ∈ Rn. The epigraph of

a function f is the set

epi(f) := {(x, t) : f(x) ≤ t}

which are the points above the graph of the function. A function is convex if and only if

its epigraph is a convex set.

A function f : Rn → R ∪ {−∞} is (strictly) concave if −f is (strictly) convex, and

proper when f(x) > −∞ for some x ∈ Rn. The hypograph of a function f is the set

hypo(f) := {(x, t) : f(x) ≥ t}

which are the points below the graph of the function. A function is concave if and only if

its hypograph is a convex set.

Let f1, . . . , fn : Rn → R ∪ {∞} be proper, convex functions. We define the convex

hull of {f1, . . . , fn}, denoted conv{f1, . . . , fn}, as the greatest convex function f such that

f(x) ≤ f1(x), . . . , fn(x) for every x ∈ Rn. Equivalently, we can define this in terms of the

epigraph

conv{f1, . . . , fn}(x) := inf {t : (x, t) ∈ conv(∪ni=1epi(fi))} .

18

We can similarly define the concave hull of {f1, . . . , fn}, denoted conc{f1, . . . , fn}, as

conc {f1, . . . , fn} := −conv {−f1, . . . ,−fn}

when f1, . . . , fn : Rn → R∪{−∞} are proper, concave functions. That is, the concave hull

is the least concave function f such that f(x) ≥ f1(x), . . . , fn(x) for every x ∈ Rn, or

conc{f1, . . . , fn}(x) := sup {t : (x, t) ∈ conv(∪ni=1hypo(fi))} .

A convex optimization problem or convex program is one of the form

inf
x∈C

f(x),

where f is a convex function and C is a convex set. Alternatively, one could maximize a

concave function over a convex set. See Subsection 1.4.4 for the types of convex programs

examined in this thesis.

A set C ⊆ Rn is closed if it contains every limit point of sequences within C. In a

complex Euclidean space, a set is compact if and only if it is closed and bounded.

We call a convex set K a cone if λK ⊆ K, for all λ > 0. This thesis concerns the

optimization of linear functions over closed, convex cones, see Subsection 1.4.4. Given a

set C ⊆ Rn, its dual cone, denoted C∗, is defined as

C∗ := {x ∈ Rn : 〈x, y〉 ≥ 0, for all y ∈ C} .

One can check that the dual cone is always a closed, convex cone. Also, we have that

C1 ⊆ C2 implies C∗1 ⊇ C∗2 and the converse holds if C1 and C2 are closed convex cones.

A function f : Σn → Σm is said to be operator monotone if

f(X) � f(Y) when X � Y.

The set of operator monotone functions is a convex cone.

A function f : Rn → R is said to be positively homogeneous if

f(λx) = λf(x), for all λ > 0.

A polyhedron is the solution set of a system of finitely many linear inequalities (or

equalities). A polytope is a bounded polyhedron.

19

1.4.3 Quantum information

In this subsection, we give a brief introduction to quantum information. For a more

thorough treatment of the subject, we refer the reader to [NC00].

Quantum states

Quantum states are a description of the state of a physical system, such as the spin of

an electron. In the simplest case, such a state is a unit vector in a finite-dimensional

Hilbert space (which is a complex Euclidean space). For example, the following vectors

are quantum states in C2

|0〉 :=

[
1

0

]
, |1〉 :=

[
0

1

]
, |+〉 :=

1√
2

[
1

1

]
, |−〉 :=

1√
2

[
1

−1

]
.

These are examples of quantum bits or qubits. The first two are standard basis vectors and

can be thought of as the logical states of a standard computer. In general, a qubit can be

written as

|ψ〉 := α0 |0〉+ α1 |1〉,

where α0, α1 ∈ C satisfy |α0|2 + |α1|2 = 1. This condition ensures that |ψ〉 has norm equal

to 1.

Notice that |+〉 = 1√
2
|0〉 + 1√

2
|1〉 and |−〉 = 1√

2
|0〉 − 1√

2
|1〉. These states are said to

be in a superposition of the states |0〉 and |1〉 and hold properties of being in both states

at the same time. This is in part what gives quantum computers the power to efficiently

tackle hard problems such as factoring [Sho94].

In general, a system may be in one of several superpositions according to some proba-

bility distribution. Suppose a quantum system is in such a state drawn from the ensemble

of states (|ψ0〉, |ψ1〉, . . . , |ψn〉) with respective probabilities (p0, p1, . . . , pn). This quantum

state may be described more succinctly as a density matrix, defined as

n∑
i=0

pi |ψi〉〈ψi|,

where 〈ψ| := |ψ〉∗ is the adjoint. (We define 〈ψ|φ〉 := 〈|φ〉, |ψ〉〉 to be the inner product.)

Notice that the matrix above is positive semidefinite and has unit trace. Moreover, any

20

positive semidefinite matrix with unit trace can be written in the above form using its

spectral decomposition.

Two different probability distributions over superpositions may have the same density

matrix. For example, density matrices do not record “phase information,” i.e., the density

matrix of the state |ψ〉 is the same as that of −|ψ〉. However, two ensembles with the same

density matrix behave identically under all allowed physical operations. Therefore, there

is no loss in working with density matrices.

A quantum superposition given by the vector |ψ〉 can be thought of as the rank 1

density matrix |ψ〉〈ψ| and we call it a pure state. States with a density matrix of rank 2

or more are said to be mixed.

Quantum operations

Suppose U is a unitary operator acting on CA and |ψ〉 ∈ CA is a quantum state. If we

apply U to |ψ〉 then the resulting quantum state is U |ψ〉 ∈ CA. Note this is a well-defined

quantum state since unitary operators preserve the norm. Also, every unitary operation is

a valid quantum operation.

Suppose we are given a state drawn from the ensemble (|ψ0〉, |ψ1〉, . . . , |ψn〉) with respec-

tive probabilities (p0, p1, . . . , pn). If we apply the unitary U to the state, it is equivalent to

saying the state is given to us from the ensemble (U |ψ0〉, U |ψ1〉, . . . , U |ψn〉) with the same

probabilities. We can write the new density matrix as

n∑
i=0

pi U |ψi〉〈ψi|U∗ = U

(
n∑
i=0

pi |ψi〉〈ψi|

)
U∗,

where U∗ is the adjoint of U . Thus, if we are given a density matrix ρ and apply the

unitary U , then UρU∗ is the density matrix of the new quantum state. Indeed, this matrix

is still positive semidefinite with unit trace.

Quantum measurement

A quantum measurement is a means of extracting classical information from a quantum

state. This is represented by a set of positive semidefinite operators {Π1, . . . ,Πn} satisfying∑n
i=1 Πi = I. This set of operators is called a positive operator valued measure or a POVM.

21

If we have a density matrix ρ and we apply the measurement {Π1, . . . ,Πn}, we obtain out-

come “i” with probability 〈Πi, ρ〉. The definitions of density matrices and measurements

establish this as a well-defined probability distribution over the indices. After a measure-

ment, the state collapses to one that is consistent with the outcome. For example, if each

Πi is a projection, then on outcome i, the state becomes ΠiρΠi (normalized). Therefore,

sometimes only a limited amount of classical information may be extracted from a given

quantum state. For example, if we apply the measurement {Π0 := |0〉〈0|,Π1 := |1〉〈1|} to

the state |+〉〈+|, we obtain the outcome:{
“0” with probability 〈Π0, |+〉〈+|〉 = 1/2,

“1” with probability 〈Π1, |+〉〈+|〉 = 1/2.

Multiple quantum systems

Suppose we are given two quantum systems that are independently in states |ψ1〉 ∈ CA1

and |ψ2〉 ∈ CA2 . The combined state is |ψ1〉 ⊗ |ψ2〉 ∈ CA1 ⊗ CA2 = CA1×A2 . Note that

the Kronecker product has the property that ‖x⊗ y‖2 = ‖x‖2 ‖y‖2 so the unit norm is

preserved. Although we can compose two vectors to get a larger vector, it is not always

possible to decompose a larger vector into two smaller vectors in this way. Consider the

following state |Φ+〉 :=
1√
2

[1, 0, 0, 1]>. This vector cannot be expressed as |ψ1〉 ⊗ |ψ2〉 for

any choice of |ψ1〉, |ψ2〉 ∈ C2. A vector that cannot be expressed as a Kronecker product

of two smaller vectors is said to be entangled.

If two disjoint quantum systems are independently in states given by density matrices

ρ1 ∈ ΣA1
+ and ρ2 ∈ ΣA2

+ , then the joint state of the combined system is given by the density

matrix ρ1⊗ ρ2 ∈ ΣA1×A2
+ . We make use of the properties that Kronecker products preserve

positive semidefiniteness and Tr(ρ1 ⊗ ρ2) = Tr(ρ1) · Tr(ρ2). In this representation, it is

not always possible to write a density matrix ρ ∈ ΣA1×A2
+ as ρ1 ⊗ ρ2 where ρ1 ∈ ΣA1

+ and

ρ2 ∈ ΣA2
+ . However, there is a way to describe the “part” of the state which is in A1 using

the notion of partial trace.

22

Partial trace over quantum states and marginal probability vectors

The partial trace over A1 is the unique linear transformation TrA1 : ΣA1×A2 → ΣA2 ,

which satisfies

TrA1(ρ1 ⊗ ρ2) = Tr(ρ1) · ρ2,

for all ρ1 ∈ ΣA1 and ρ2 ∈ ΣA2 . More precisely, given any matrix X ∈ ΣA1×A2
+ , we define

TrA1 as

TrA1(X) :=
∑
x1∈A1

(
e∗x1
⊗ IA2

)
X (ex1 ⊗ IA2) ,

where {ex1 : x1 ∈ A1} is the standard basis for CA1 . In fact, the definition is independent

of the choice of basis, so long as it is orthonormal. Note that the partial trace is positive,

i.e., TrA1(X) ∈ ΣA2
+ when X ∈ ΣA1×A2

+ , and also trace-preserving. This ensures that the

new matrix is a well-defined density matrix.

Consider the scenario where two parties, Alice and Bob, hold parts of a quantum system

which are jointly in some state ρ, i.e., they share a quantum state ρ over CA×B. Then the

partial trace of ρ over one space represents that quantum state over the remaining space.

For example, TrA(ρ) is the density matrix representing Bob’s half of the state and TrB(ρ)

represents Alice’s half.

Suppose we are given the density matrix ρ ∈ ΣA
+. We call the pure state |ψ〉 ∈ CA×B

a purification of ρ if TrB|ψ〉〈ψ| = ρ. Note that a purification exists if |B| ≥ |A|, and is

in general not unique. An important property of purifications of the same state is that

if TrB|ψ〉〈ψ| = TrB|φ〉〈φ| for two pure states |ψ〉 and |φ〉, then there exists a unitary U

acting on CB alone such that |ψ〉 = (IA ⊗ U) |φ〉.
The partial trace operation is the quantum analogue of calculating marginal probability

distributions. Consider a probability vector p ∈ ProbA×B. We define the partial trace over

A element-wise as

[TrA(p)]y =
∑
x∈A

px,y,

for each y ∈ B. Equivalently, we can write

TrA(p) :=
(
e>A ⊗ IB

)
p,

where eA ∈ CA is the vector of all ones. We see that this gives the marginal probability

distribution of p over B. Alternatively, one may view probability vectors as diagonal

23

positive semidefinite matrices with unit trace. Then, taking the partial trace (as defined

for quantum states) corresponds exactly to the computation of marginal distributions.

Distance measures for quantum states and probability vectors

The different notions of distance between quantum states and probability vectors are

very important in quantum cryptography. Here, we discuss two distance measures and

show how they are related.

We define the fidelity of two nonnegative vectors p, q ∈ RA
+ as

F(p, q) :=

(∑
x∈A

√
px
√
qx

)2

and the fidelity of two positive semidefinite matrices ρ and σ as

F(ρ, σ) :=
∥∥√ρ√σ∥∥2

1
.

Both definitions of the fidelity are symmetric, positively homogeneous in both arguments,

and concave. Notice F(ρ, σ) ≥ 0 with equality if and only if 〈ρ, σ〉 = 0 and, if ρ and σ are

quantum states, F(ρ, σ) ≤ 1 with equality if and only if ρ = σ. An analogous statement

can be made for fidelity of probability vectors.

Another distance measure is the trace distance. We define the trace distance between

two probability vectors p and q (also called the variational distance), denoted ∆(p, q), as

∆(p, q) :=
1

2
‖p− q‖1 .

We similarly define the trace distance between two quantum states ρ and σ as

∆(ρ, σ) :=
1

2
‖ρ− σ‖1 .

Notice ∆(ρ, σ) ≥ 0 with equality if and only if ρ = σ and ∆(ρ, σ) ≤ 1 with equality if and

only if 〈ρ, σ〉 = 0. The analogous statement can be made for the trace distance between

probability vectors.

We now discuss two important notions in quantum cryptography. The first is how easily

two states can be distinguished from each other. For example, if Alice gives to Bob one of

24

two states ρ or σ chosen uniformly at random, then Bob can measure to learn whether he

has been given ρ or σ with maximum probability

1

2
+

1

4
‖ρ− σ‖1 =

1

2
+

1

2
∆(ρ, σ),

proven by Helstrom [Hel69]. The second notion is quantum steering. Suppose Alice has

given to Bob the B part of |φ〉 ∈ CA×B. Suppose she wants to send CA in such a way to

convince Bob that a different state was sent, say |ψ〉 ∈ CA×B. Her most general strategy

is to apply a quantum operation on CA before sending it to Bob. Using Uhlmann’s The-

orem [Uhl76], it can be shown that if Bob measures with the POVM {|ψ〉〈ψ|, I− |ψ〉〈ψ|},
Alice can convince him that the state was |ψ〉 with maximum probability

F(TrA|ψ〉〈ψ|,TrA|φ〉〈φ|).

The trace distance and fidelity are closely related. The following Fuchs-van de Graaf

inequalities [FvdG99] illustrate this relationship

1−
√

F(ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F(ρ, σ),

for all quantum states ρ and σ. The analogous statement holds for probability vectors.

1.4.4 Semidefinite programming

A natural model of optimization when studying quantum information is semidefinite pro-

gramming. A semidefinite program, abbreviated SDP, is an optimization problem of the

form
(P) sup 〈C,X〉

subject to A(X) = b,

X ∈ Σn
+,

whereA : Σn → Rm is linear, C ∈ Σn, and b ∈ Rm. In this subsection, we give the necessary

theory and tools that are used in this thesis concerning semidefinite programming. We

begin with some definitions. In (P) above, we call A(X) = b and X ∈ Σn
+ the constraints,

any solution of the constraints is said to be feasible, and the set of feasible solutions is

the feasible region. We call 〈C,X〉 the objective function and any feasible solution X̄ has

the corresponding objective function value 〈C, X̄〉. If there exists feasible X̄ such that

25

〈C, X̄〉 ≥ 〈C,X〉 for all feasible X, then X̄ is said to be an optimal solution and 〈C, X̄〉
to be the optimal objective value. Note that we need to use “sup” in the definition since

SDPs with finite optimal objective values exist having no optimal solutions.

We can write the dual of (P) as

(D) inf 〈b, y〉
subject to A∗(y)− S = C,

S ∈ Σn
+,

where A∗ is the adjoint of A. We refer to (P) as the primal problem and to (D) as its dual.

The usefulness of defining the dual in this way is apparent in the following lemmas.

Lemma 1.4.1 (Weak duality). For every X̄ feasible for (P) and (ȳ, S̄) feasible for (D),

we have

〈b, ȳ〉 − 〈C, X̄〉 = 〈X̄, S̄〉 ≥ 0.

We call the minimum value of 〈X̄, S̄〉 over feasible solutions the duality gap.

Using weak duality, we can prove bounds on the optimal objective value of (P) and

(D), i.e., the objective function value of any primal feasible solution yields a lower bound

on (D) and the objective function value of any dual feasible solution yields an upper bound

on (P).

We say that a primal feasible solution X̄ is strictly feasible if X̄ � 0 and a dual feasible

solution (ȳ, S̄) is strictly feasible if S̄ � 0. Sometimes these are also called Slater points.

Under mild conditions, we have that the optimal objective values of (P) and (D) coin-

cide. In this case, we say that the primal and dual have zero duality gap.

Lemma 1.4.2 (Strong duality for (P)). If the objective function of (P) is bounded from

above on the set of feasible solutions and there exists a strictly feasible solution, then (D)

has an optimal solution and there is zero duality gap.

Since the dual of the dual is the primal problem, we get the following lemma.

Lemma 1.4.3 (Strong duality for (D)). If the objective function of (D) is bounded from

below on the set of feasible solutions and there exists a strictly feasible solution, then (P)

has an optimal solution and there is zero duality gap.

26

Another notion in convex optimization is complementary slackness. In the SDP above,

notice that if X̄ is an optimal solution for (P) and (ȳ, S̄) an optimal solution for (D), then

〈X̄, S̄〉 = 0 if there is zero duality gap. This means that X̄ is orthogonal to S̄. Similarly, if

X̄ is a feasible solution for (P) and (ȳ, S̄) a feasible solution for (D) and 〈X̄, S̄〉 = 0, then

both feasible solutions are optimal in their respective problems by weak duality. We refer

to the condition 〈X,S〉 = 0 as complementary slackness.

Semidefinite programming has a powerful and rich duality theory and the interested

reader is referred to [WSV00, Tun10] and the references therein.

Taking the duals of SDPs with multiple variables

The SDPs encountered in this thesis are a bit more involved than the standard form

above. Most of the times when dual SDPs appear in papers, the construction of the dual

is omitted since the calculations are quite tedious. There are many duals that appear in

this thesis, so to explain their derivations, we develop the dual of the SDP below which

captures a common structure.

Consider the SDP

(P’) sup 〈Ck, Xk〉
subject to A1(X1) = B,

Aj(Xj) = Dj(Xj−1), for all j ∈ {2, . . . , k} ,
Xi ∈ Σni

+ , for all i ∈ {1, . . . , k} ,

where Ck and B are Hermitian and A1, . . . ,Ak,D2, . . . ,Dk are Hermiticity preserving. To

take the dual of (P’), we put it into the form of (P) above. Define

X :=
k∑
i=1

|i〉〈i| ⊗Xi and C := |k〉〈k| ⊗ Ck and b := (vec(B), 0, . . . , 0)>,

where vec(B) is a column vector containing exactly the elements of B (we could think of

vec as stacking the columns). Technically, we need b to be a real vector, but this is not an

issue since we can double the dimension and keep the real and imaginary parts separate.

27

By defining

A(X) :=


vec(A1(X1))

vec(A2(X2))− vec(D2(X1))
...

vec(Ak(Xk))− vec(Dk(Xk−1))

 ,
we see that we get an SDP in the form previously discussed. Taking its dual yields

inf 〈b, y〉
subject to A∗(y)− S = C,

S ∈ Σn1+···+nk
+ .

Note that the off-diagonal entries of C, X, and S do not factor into any constraint or

either objective function. Thus, we can assume they are set to 0, but they effectively do

not matter.

Let y = (y1, . . . , yk)
> and let Yi be the matrix such that vec(Yi) = yi (we can assume it

is Hermitian). We can write the dual objective function as

〈b, y〉 = 〈vec(B), y1〉 = 〈B, Y1〉.

We can now solve for A∗(y) from

〈A∗(y), X〉 = 〈y,A(X)〉
= 〈y1, vec(A1(X1))〉+ 〈y2, vec(A2(X2))− vec(D2(X1))〉

+ · · · + 〈yk, vec(Ak(Xk))− vec(Dk(Xk−1))〉
= 〈A∗1(Y1)−D∗2(Y2), X1〉+ 〈A∗2(Y2)−D∗2(Y3), X2〉+ · · ·+ 〈A∗k(Yk), Xk〉.

We can write the dual of (P’) as

(D’) inf 〈B, Y1〉
subject to A∗1(Y1) � D∗2(Y2),

A∗2(Y2) � D∗3(Y3),
...

A∗k(Yk) � Ck.

28

Complementary slackness in this case is

〈Xi,A∗i (Yi)−D∗i+1(Yi+1)〉 = 0, for all i ∈ {1, . . . , k − 1} , and 〈Xk,A∗(Yk)− Ck〉 = 0.

The SDPs in this thesis are mostly of this form. Some modifications are used later,

such as replacing some of the positive semidefiniteness constraints with nonnegative vector

constraints. Instead of rederiving this from scratch, we can simply modify the above dual.

For example, if we replace the constraint Xi ∈ Σni
+ with xi ∈ Rni

+ , then all we must do is

replace the “�” with an “≥” in the i’th dual constraint. The simplest way to keep track of

this is to view the complementary slackness conditions. If x is a vector, then the constraint

(which appears in the inner product) also needs to be a vector inequality. We review Rn
+

constraints below in the part about linear programming.

Second-order cone programming

The second-order cone (or Lorentz cone) is defined as

SOCn :=
{

(x, t) ∈ Rn : x ∈ Rn−1, t ≥ ‖x‖2

}
.

A second-order cone program, denoted SOCP, is an optimization problem of the form

(P) sup 〈c, (x1, . . . , xk)〉
subject to A(x1, . . . , xk) = b,

xi ∈ SOCni , for all i ∈ {1, . . . , k},

where A is an m × (
∑k

i=1 nk) matrix, b ∈ Rm, and k is finite. An SOCP also has a dual

which can be written as

(D) inf 〈b, y〉
subject to A>y − (s1, . . . , sk) = c,

si ∈ SOCni , for all i ∈ {1, . . . , k} .

Note that weak duality and strong duality also hold for SOCPs for the properly modified

definition of strictly feasible.

There is a related cone called the rotated second-order cone, defined as

RSOCn :=
{

(a, b, x) ∈ Rn : a, b ∈ R+, x ∈ Rn−2, 2ab ≥ ‖x‖2
2

}
.

29

We can optimize over the rotated second-order cone using second-order cone programming

because (x, t) ∈ SOCn if and only if (t/2, t, x) ∈ RSOCn+1 and (a, b, x) ∈ RSOCn if and

only if (a+ b, x, a, b) ∈ SOCn+1. Indeed, in some optimization literature, one refers to any

cone linearly isomorphic to SOCn as a second-order cone, such as RSOCn+1 above. For

this reason, we still call it a second-order cone program if SOC is replaced by RSOC, or

any other second-order cone.

Indeed, both second-order cone constraints can be cast as positive semidefinite con-

straints:

t ≥ ‖x‖2 ⇐⇒

[
t x>

x t I

]
� 0 and a, b ≥ 0, 2ab ≥ ‖x‖2

2 ⇐⇒

[
2a x>

x b I

]
� 0.

This proves that second-order cone programming is a special case of semidefinite program-

ming. However, there are some differences between semidefinite programs and second-order

cone programs. One is that the algorithms for solving second-order cone programs can be

more efficient and robust than those for solving semidefinite programs. We refer the inter-

ested reader to [Stu99, Stu02, Mit03, AG03] and the references therein.

Linear programming

A linear program, denoted LP, can be written as

(P) max 〈c, x〉
subject to Ax = b,

x ∈ Rn
+,

where A is an m× n matrix, c ∈ Rn and b ∈ Rm.

Linear programming is a special case of both second-order cone programming and

semidefinite programming. This can be seen by casting a nonnegativity constraint t ≥ 0 as

the SOC constraint (0, t) ∈ SOC2. Associated with every linear program is its dual which

is defined as
(D) min 〈b, y〉

subject to A>y − s = c,

s ∈ Rn
+.

30

Note that in this special case, we do not require strict feasibility to guarantee strong duality.

If a feasible linear program is bounded, then it and its dual attain an optimal solution and

the optimal values always coincide.

1.4.5 Quantum protocols

In this thesis, we consider two-party quantum communication protocols in the style of

Yao [Yao93]. We concentrate on a class of communication protocols relevant to coin-

flipping, bit-commitment and oblivious transfer. In such protocols, two parties Alice and

Bob hold some quantum state; the states with each party are initialized to a fixed pure

state. The initial joint state is therefore unentangled across Alice and Bob (otherwise, Alice

and Bob could perform some tasks, such as coin-flipping, trivially). The two parties then

communicate in turns. Suppose it is Alice’s turn. Alice performs a unitary transformation

on her state and then sends part of her state to Bob. Sending part of the state does not

change the overall superposition, it merely changes ownership, i.e., who has control over

that part of the state. This allows Bob to apply his next unitary transformation on the

state under his control. At the end of the protocol, each player performs a measurement

and, if applicable, announces the outcome.

Formally, the players Alice and Bob, hold some state, which initially factors into a

tensor product CA0 ⊗ CB0 of Hilbert spaces. The state corresponding to CA0 is in Alice’s

possession, and the state corresponding to CB0 is in Bob’s possession. When the protocol

starts, CA0 is initialized to some pure state |ψA,0〉 and CB0 is initialized to |ψB,0〉, both

of which are determined by the protocol. The communication consists of m ≥ 1 rounds

of exchanging messages. Either party may start. In the i’th round, i ≥ 1, suppose it is

Alice’s turn. Suppose the state space just before the round factors as CAi−1 ⊗CBi−1 . Alice

applies a unitary operator UA,i to CAi−1 . Then, Alice “sends” part of the state to Bob.

Formally, the space CAi−1 factors as CAi ⊗ CMi , where CMi denotes the state space for

the i’th message. Consequently, CBi = CMi ⊗ CBi−1 . In the next round, Bob may thus

apply a unitary operation to the part of the state previously in Alice’s control.

At the end of the m rounds, Alice and Bob measure the states in their possession

according to some measurement. The outcomes of these measurements represent their

outputs. We emphasize that there are no measurements until all rounds of communication

31

are completed. A protocol with intermediate measurements may be transformed into this

form by appealing to standard techniques [BV97].

We are interested in the probabilities of the different outcomes when either party

“cheats.” Suppose Alice and Bob have agreed upon a protocol, i.e., a set of rules for

the state initialization, communication, quantum operations, and measurements. What if

Alice or Bob do not follow protocol? Suppose Alice is dishonest and would like to achieve

some specific goal, e.g., forcing Bob to output “0” in a coin-flipping protocol. She may

use a different space for her private operations, so that her space CA′i may be much larger

than CAi . She may create any initial state she wants. During the communication, the only

restriction is that she send a state of the correct dimension, e.g., if the protocol requires

a message with three qubits in the first message, then Alice sends three qubits. Between

messages, she may apply any quantum operation she wants on the state in her possession.

At the end of the protocol, she may use a different measurement of her choice. For example,

she may simply output “0” if this is her desired outcome (which corresponds to a trivial

measurement). The rules that Alice chooses to follow instead of the protocol constitute a

cheating strategy.

We would like to quantify the extent to which a dishonest party can cheat while the

other is honest, so we focus on runs of the protocol in which at most one party is dishonest.

We analyze in this thesis the maximum probability with which Alice (or Bob) can cheat

in terms of a “bias,” i.e., the advantage over the honest probability that a cheating party

can achieve.

Formal definitions of primitives

Here we give formal definitions of the primitives considered in this thesis.

Definition 1.4.4 (Strong coin-flipping). A strong coin-flipping protocol with bias ε is

a protocol with output c ∈ {0, 1, abort}, satisfying:

• Alice and Bob start uncorrelated,

• if Alice and Bob are honest, then they never abort and they output the same uniformly

random bit c ∈ {0, 1},

32

• P ∗A,c is the maximum probability dishonest Alice can force honest Bob to accept out-

come c ∈ {0, 1},

• P ∗B,c is the maximum probability dishonest Bob can force honest Alice to accept out-

come c ∈ {0, 1},

• ε := max{P ∗B,0, P ∗B,1, P ∗A,0, P ∗A,1} − 1/2.

The idea is to design protocols which protect honest parties from cheating parties and

there are no security guarantees when both parties are dishonest.

Definition 1.4.5 (Weak coin-flipping). A weak coin-flipping protocol with bias εWCF is

a protocol with output c ∈ {0, 1}, satisfying:

• Alice and Bob start uncorrelated,

• if Alice and Bob are honest, they output the same uniformly random bit c,

• P ∗A,0 is the maximum probability dishonest Alice can force honest Bob to accept out-

come 0,

• P ∗B,1 is the maximum probability dishonest Bob can force honest Alice to accept out-

come 1,

• εWCF := max{P ∗B,1, P ∗A,0} − 1/2.

We can assume neither party aborts in a WCF protocol. If, for instance, Alice detects

Bob has cheated then she may declare herself the winner, i.e., the outcome is c = 0. This

is not the case in strong coin-flipping since there is no sense of “winning.”

Definition 1.4.6 (Bit-commitment). A bit-commitment protocol with bias εBC is a

protocol with a commit phase and a reveal phase, satisfying:

• Alice and Bob start uncorrelated,

• in the commit phase, Alice interacts with Bob in order to commit to a random bit a,

33

• in the reveal phase, Alice interacts with Bob in order to reveal a. Bob decides to

accept or reject depending on the revealed value of a and his final state. We say that

Alice successfully reveals a if Bob accepts the revealed value,

• if Alice and Bob are both honest then Alice always successfully reveals the bit a which

she has committed,

• Alice’s maximum cheating probability is

P ∗A,BC = sup
1

2

∑
c∈{0,1}

Pr[Alice successfully reveals a = c],

• Bob’s maximum cheating probability is

P ∗B,BC = sup Pr[Bob guesses a after the commit phase without Alice aborting],

• εBC := max{P ∗B,BC, P
∗
A,BC} − 1/2,

where the suprema are taken over all cheating strategies of the party indicated.

We see that we can use a bit-commitment protocol to create a coin-flipping protocol.

In between the commit phase and reveal phase, Bob announces his guess for Alice’s bit

a. Then the bias of the coin-flipping protocol equals that of the bit-commitment protocol.

Note that the protocols in this thesis are not of this form.

Definition 1.4.7 (Oblivious transfer (OT)). An oblivious transfer protocol, denoted

OT, with bias εOT is a protocol with inputs, satisfying:

• Alice and Bob start uncorrelated,

• Alice inputs two uniformly random bits (x0, x1) and Bob inputs a uniformly random

index b ∈ {0, 1},

• when Alice and Bob are honest they never abort, Bob learns xb perfectly, Bob gets no

information about xb̄, and Alice gets no information about b,

• P ∗A,OT is the maximum probability dishonest Alice can learn b without Bob aborting,

34

• P ∗B,OT is the maximum probability dishonest Bob can learn (x0, x1) without Alice abort-

ing,

• εOT = max{P ∗B,OT, P
∗
A,OT} − 1/2.

When a party cheats, we only refer to the probability by which they can learn the

desired values without the other party aborting. For example, when Bob cheats, we do not

require that he learns either bit with probability 1.

Note that there could be some ambiguity about how a party cheats if the inputs are not

chosen randomly, i.e., if Bob chooses b however he wants, then what does it mean for Alice

to learn b with some probability? If Bob can freely choose his input, a suitable definition

of Alice’s cheating probability is

max
c∈{0,1}

{Pr[Alice learns b|Bob chooses input b = c]} . (1.1)

Since we are mainly concerned with lower bounds, we assume Bob and Alice choose their

inputs randomly since, for example, P ∗A,OT is a lower bound on (1.1). On the other hand,

suppose we have a protocol where Bob and Alice have specific values they want to input.

Then this is easily remedied by adding the extra messages at the end of the protocol

specifying whether the randomly chosen inputs were the ones desired. For example, suppose

b = 0, but Bob really wanted b = 1. Then he can tell Alice, “my value of b is wrong.”

Then Bob can switch the value of b and Alice can switch her two bits x0 and x1. We can

do a similar thing for Alice. Thus, having the inputs chosen randomly is not an issue when

designing protocols with this definition of the bias.

Definition 1.4.8 (Forcing oblivious transfer (Forcing-OT)). A k-out-of-n forcing obliv-

ious transfer protocol, denoted as Forcing-OT(n,k), with forcing bias εFOT, is a protocol

satisfying:

• Alice and Bob start uncorrelated,

• Alice and Bob have no inputs,

• Alice outputs n random bits x := (x1, . . . , xn),

• Bob outputs a random k-index set b and bit string xb consisting of xi for i ∈ b,

35

• P ∗A,(b,xb) := sup{Pr[Alice can force Bob to output (b, xb)]} =
εA(

n
k

)
· 2k

,

• P ∗B,x := sup{Pr[Bob can force Alice to output x]} =
εB

2n
,

• εFOT = max{εA, εB},

where the suprema are taken over all cheating strategies of the party indicated.

The main difference between this primitive and the standard definition of oblivious

transfer is the definition of security. Here, we design protocols to protect against a dishonest

party being able to force a desired value as the output of the other party. Standard

oblivious transfer protocols are designed to protect against a dishonest party learning the

other party’s input. Notice that in coin-flipping, we can design protocols to protect against

a dishonest party forcing a desired outcome, but both parties learn the outcome perfectly

when they are honest.

This primitive is a generalization of coin-flipping since we can cast the problem of coin-

flipping as a 1-out-of-1 forcing oblivious transfer protocol. Of course, in Forcing-OT(1,1),

Alice always knows Bob’s index set so the forcing bias is the only interesting notion of

security in this case.

We define the bias εFOT as a multiplicative factor instead of additive, since the honest

probabilities can be much different and in this case this definition makes more sense. To

relate this bias to the one previously mentioned in coin-flipping, we have that coin-flipping

protocols with bias εFOT ≤
√

2 + δ exist for any δ > 0, see [CK09].

1.4.6 The Kitaev coin-flipping protocol formalism

Kitaev developed point games from his SDP formulation of cheating strategies for coin-

flipping protocols. Here, we review this construction.

Coin-flipping protocols

We give a setting for a coin-flipping protocol which is equivalent to the general setting

described earlier. This setting has a space devoted for messages and each message has the

36

same dimension. This is done for convenience as it makes the analysis in this subsection

(and at the end of Chapter 4) simpler.

A coin-flipping protocol can be described by the following parameters:

• The number of messages, denoted here as m. We can assume m is even,

• three Hilbert spaces: Alice’s private space CA, a message space CM , and Bob’s private

space CB,

• a set of unitaries {UA,1, UA,3, . . . , UA,m−1} acting on CA×M . These correspond to

Alice’s messages to Bob,

• a set of unitaries {UB,2, UB,4, . . . , UB,m} acting on CM×B. These correspond to Bob’s

messages to Alice,

• a projective measurement for Alice {ΠA,0,ΠA,1,ΠA,abort} ⊂ ΣA
+ determining Alice’s

protocol outcome,

• a projective measurement for Bob {ΠB,0,ΠB,1,ΠB,abort} ⊂ ΣB
+ determining Bob’s

protocol outcome.

The protocol proceeds as follows. Alice initializes the space CA to |ψA,0〉 and Bob

initializes CM×B to |ψM,0〉M |ψB,0〉B and sends CM to Alice. Then Alice applies her first

unitary UA,1 and sends CM to Bob. Then he applies his first unitary UB,2 and returns

CM to Alice. They repeat this until Bob applies his last unitary UB,n. Then they both

measure their private spaces to get the outcome of the protocol. This process is depicted

in Figure 1.2.

The protocol parameters must satisfy the requirements that

1. Alice and Bob do not abort when both are honest.

2. They output the same bit when they are honest, and that bit is randomly generated.

If we let |ψ〉 ∈ CA×M×B be the state at the end of the protocol when Alice and Bob are

honest, both requirements are satisfied when

〈ΠA,0 ⊗ IM ⊗ ΠB,0, |ψ〉〈ψ|〉 = 〈ΠA,1 ⊗ IM ⊗ ΠB,1, |ψ〉〈ψ|〉 =
1

2
. (1.2)

37

Figure 1.2: Four-message coin-flipping protocol setting.

38

Cheating SDPs

We can calculate the extent cheating Bob can force honest Alice to output a fixed

desired outcome, say c ∈ {0, 1}, by solving the following SDP:

P ∗B,c = max 〈ΠA,c, ρA,n〉
subject to ρA,0 = |ψA,0〉〈ψA,0|,

ρA,i = ρA,i−1, for all i even,

TrM ρ̃A,i = ρA,i, for all i even,

ρA,i = TrM
[
UA,iρ̃A,i−1U

∗
A,i

]
, for all i odd,

ρA,i ∈ ΣA
+, for all i,

ρ̃A,i ∈ ΣA×M
+ , for all i even.

The variables describe the parts of the quantum state under Alice’s control during different

times in the protocol as depicted in Figure 1.3. The constraints model how much cheating

Bob can change the current state of the protocol in each message and the objective function

is the probability Alice accepts outcome c ∈ {0, 1} by measuring the state she has at the

end of the protocol.

We get a very similar SDP for cheating Alice by switching the projections and inter-

changing the “odd” constraints with the “even” ones:

P ∗A,c = max 〈ΠB,c, ρB,n〉
subject to ρB,0 = |ψB,0〉〈ψB,0|,

ρB,i = ρB,i−1, for all i odd,

TrM ρ̃B,i = ρB,i, for all i odd,

ρB,i = TrM
[
UB,iρ̃B,i−1U

∗
B,i

]
, for all i even,

ρB,i ∈ ΣB
+, for all i,

ρ̃B,i ∈ ΣM×B
+ , for all i odd.

The variables for a cheating Alice are also depicted in Figure 1.3. These SDPs are referred

to as Alice and Bob’s cheating SDPs.

39

Figure 1.3: Context of primal variables in a four-message coin-flipping protocol.

40

The duals of the above SDPs are as follows:

inf 〈ZA,0, |ψA,0〉〈ψA,0|〉
subject to ZA,i−1 ⊗ IM � U∗A,i(ZA,i ⊗ IM)UA,i, for all i odd,

ZA,i−1 = ZA,i, for all i even,

ZA,n = ΠA,c,

and

inf 〈ZB,0, |ψB,0〉〈ψB,0|〉
subject to ZB,i−1 ⊗ IM � U∗B,i(ZB,i ⊗ IM)UB,i, for all i even,

ZB,i−1 = ZB,i, for all i odd,

ZB,n = ΠB,c.

Kitaev’s lower bound for strong coin-flipping

We can derive a lower bound on the bias of any strong coin-flipping protocol by exam-

ining feasible dual solutions. Since the dual SDPs have strictly feasible solutions and the

objective function is bounded on the feasible region, there is zero duality gap. Therefore,

for any δ > 0, we can find feasible dual solutions (ZB,0, . . . , ZB,n) and (ZA,0, . . . , ZA,n), such

that

P ∗A,0 + δ > 〈ZB,0, |ψB,0〉〈ψB,0|〉 and P ∗B,0 + δ > 〈ZA,0, |ψA,0〉〈ψA,0|〉.

Therefore, we have(
P ∗B,0 + δ

) (
P ∗A,0 + δ

)
> 〈ZB,0, |ψB,0〉〈ψB,0|〉〈ZA,0, |ψA,0〉〈ψA,0|〉
= 〈ZA,0 ⊗ IM ⊗ ZB,0, |ψB,0〉〈ψB,0| ⊗ |ψM,0〉〈ψM,0| ⊗ |ψA,0〉〈ψA,0|〉
= 〈ZA,0 ⊗ IM ⊗ ZB,0, |ψ0〉〈ψ0|〉,

where we define |ψi〉 to be the state after Bob applies UB,i in an honest run of the protocol,

for i ∈ {1, . . . , n}. From the dual constraints, we have

〈ZA,i ⊗ IM ⊗ ZB,i, |ψi〉〈ψi|〉 ≥ 〈U∗A,i+1(ZA,i+1 ⊗ IM)UA,i+1 ⊗ ZB,i, |ψi〉〈ψi|〉
= 〈ZA,i+1 ⊗ IM ⊗ ZB,i, UA,i+1|ψi〉〈ψi|U∗A,i+1〉
≥ 〈ZA,i+1 ⊗ U∗B,i+1(IM ⊗ ZB,i+1)UB,i+1, UA,i+1|ψi〉〈ψi|U∗A,i+1〉
= 〈ZA,i+1 ⊗ IM ⊗ ZB,i+1, |ψi+1〉〈ψi+1|〉,

41

for all i ∈ {1, . . . , n}. We can compute

〈ZA,n ⊗ IM ⊗ ZB,n, |ψn〉〈ψn|〉 = 〈ΠA,0 ⊗ IM ⊗ ΠB,0, |ψn〉〈ψn|〉 = 1/2,

from condition (1.2). Taking the limit as δ → 0, we get

P ∗B,0P
∗
A,0 ≥

1

2
=⇒ max

{
P ∗B,0, P

∗
A,0

}
≥ 1√

2
=⇒ ε ≥ 1√

2
− 1

2
.

This lower bound was later reproven by Gutoski and Watrous [GW07] using a different

representation of quantum strategies.

Notice that we can reproduce the proof above using dual feasible solutions for Bob

cheating towards 1 and Alice cheating towards 0. In this case, we get the final condition

〈ZA,n ⊗ IM ⊗ ZB,n, |ψn〉〈ψn|〉 = 〈ΠA,0 ⊗ IM ⊗ ΠB,1, |ψn〉〈ψn|〉 = 0.

This gives a trivial bound on the product of the cheating probabilities. However, Kitaev

used this to create point games. We refer the reader to [Moc07] for the full details of the

construction of general point games as the details are not needed for this thesis. However,

we discuss the construction of point games for specific protocols (which we later apply to

the family of protocols in Chapter 2).

Point games

Let eig(Z) denote the set of eigenvalues for an operator Z and let Π
[λ]
Z denote the

projection onto the eigenspace of Z corresponding to eigenvalue λ ∈ eig(Z). For a quantum

state σ ∈ Σn
+, and X, Y ∈ Σn

+, denote by Prob(X, Y, σ) : R2 → R+ the function

Prob(X, Y, σ) :=
∑

λ∈eig(X)

∑
µ∈eig(Y)

〈Π[λ]
X ⊗ Π

[µ]
Y , σ〉 [λ, µ] ,

where we use the notation [λ, µ] : R2 → R to denote the function that takes value 1 on

input (λ, µ) and 0 otherwise. Note this function has finite support. Using this definition,

we can create a point game from feasible dual variables as follows

pn−i := Prob(ZB,i, ZA,i,TrM |ψi〉〈ψi|),

42

where |ψi〉 ∈ CA×M×B is the state after Bob applies UB,i in an honest run of the protocol.

Consider the dual SDPs for weak coin-flipping, i.e., Bob trying to force outcome 1 and

Alice trying to force outcome 0. Then any dual feasible solution yields a point game. We

can calculate p0 = 1
2

[0, 1] + 1
2

[1, 0], which acts as the starting point of the point game.

Notice for any δ > 0, there exists a large constant Λ such that

ZA,0(δ) := (〈ψA,0|ZA,0|ψA,0〉+ δ) |ψA,0〉〈ψA,0|+ Λ (I− |ψA,0〉〈ψA,0|) � ZA,0,

which can be proved using the Schur complement after writing ZA,0 in a basis containing

|ψA,0〉. Notice (ZA,0(δ), ZA,1, . . . , ZA,n) is feasible if (ZA,0, ZA,1, . . . , ZA,n) is feasible and has

the same objective function value as δ → 0. If we replace ZA,0 with ZA,0(δ), and replace

ZB,0 with the properly modified definition of ZB,0(δ), we get that the final point is

pn = 1 [ZA,0 + δ, ZB,0 + δ] .

By strong duality, we see that we can choose the dual feasible solutions such that this final

point gets arbitrarily close to
[
P ∗B,0, P

∗
A,0

]
.

A point game p0 → p1 → · · · → pn with final point (ζB, ζA) can be defined independent

of protocols. Define [x] : R → R to be the function that takes value 1 on input x and

equals 0, otherwise. Then p0 → p1 → · · · → pn is a point game if each pi is a function

with finite support, p0 = 1
2

[0, 1] + 1
2

[1, 0], pn = 1 [ζB, ζA], and the moves (or transitions)

pi → pi+1 have one of the following forms

• pi =
∑
a∈A

pi,a [xa, y]→ pi+1 =
∑
b∈B

pi+1,b [zb, y] (called a horizontal move),

• pi =
∑
a∈A

pi,a [y, xa]→ pi+1 =
∑
b∈B

pi+1,b [y, zb] (called a vertical move),

where
∑
a∈A

pi,a =
∑
b∈B

pi+1,b (conservation of probability) and

∑
b∈B

pi+1,b[zb]−
∑
a∈A

pi,a[xa] ∈ OMF∗,

where OMF is the cone of operator monotone functions. The purpose of the second condi-

tion is beyond the scope of this thesis, but it is used to prove that if there is a point game

43

with final point (ζB, ζA), then there exists a coin-flipping protocol with P ∗B,1 ≤ ζB + δ and

P ∗A,0 ≤ ζA + δ, for any δ > 0 [Moc07]. Mochon proved that there exists a point game with

final point (1/2 + δ, 1/2 + δ), for any δ > 0, proving the existence of weak coin-flipping

protocols with arbitrarily small bias.

1.4.7 Technical lemmas

In this part, we present a few lemmas which are helpful during the analysis in this thesis.

Subspace Lemma

This first lemma is useful when developing the point games for the family of protocols

discussed in the next chapter. It is used to simplify dual constraints.

Lemma 1.4.9 (Subspace Lemma). For a vector |ψ〉 ∈ Cn, a set S ⊆ Σn, and a continuous,

monotonically nondecreasing function F , we have

inf
X,Y ∈Σn

{F (〈ψ|X|ψ〉) : X � Y, Y ∈ S} = inf
X,Y ∈Σn

{F (〈ψ|X|ψ〉) : 〈ψ|X|ψ〉 ≥ 〈ψ|Y |ψ〉, Y ∈ S}.

Proof. The proof follows by noticing that for any X ∈ ΣA, and any δ > 0, there is a

positive constant Λ such that

X(δ) := (〈ψ|X|ψ〉+ δ) |ψ〉〈ψ|+ Λ (I− |ψ〉〈ψ|) � X,

as noted in Subsection 1.4.6. Thus, we can assume X has |ψ〉 as an eigenvector and we are

only concerned with minimizing X on the subspace spanned by |ψ〉〈ψ|. Suppose X � Y ,

we see this implies

〈ψ|X|ψ〉 ≥ 〈ψ|Y |ψ〉. (1.3)

This is also a sufficient condition since any X that satisfies (1.3), we have for all δ > 0,

there is a Λ, such that X(δ) � Y (by the same argument showing X(δ) � X).

This lemma can be generalized. We can use this lemma whenever the constraint on X

is satisfied by replacing it with X(δ) for δ > 0. The most complicated constraints that

arise later in this thesis are of the form∑
x∈A

Wx,y ⊗ |x〉〈x| ⊗ IB � C,

44

where Wx,y are the variables and the objective function is continuous and nondecreasing

on 〈φ|Wx,y|φ〉. We see that a necessary condition is∑
x∈A

〈φ|Wx,y|φ〉 · |x〉〈x| ⊗ IB � (〈φ| ⊗ IA ⊗ IB)C (|φ〉 ⊗ IA ⊗ IB).

By using a properly modified definition for Wx,y(δ), we have that this condition is also

sufficient. The idea is to increase the eigenvalues on subspaces that do not affect the

objective function.

SDP characterization of the fidelity of probability vectors

We characterize the fidelity of probability vectors using semidefinite programming. Note

that this is very closely related to the analysis of the fidelity function of quantum states

in [Wat09]. However, the primal SDP is slightly different and the details of the proofs are

useful later in this thesis.

Lemma 1.4.10. For any p, q ∈ RA
+, we have

F(p, q) = max{〈X,√p√p>〉 : diag(X) = q, X ∈ ΣA
+}.

Proof. Notice that X̄ :=
√
q
√
q> is a feasible solution to the SDP with objective function

value F(p, q). All that remains to show is that it is an optimal solution. If p = 0, then we

are done, so assume p 6= 0. The dual can be written as

inf{〈y, q〉 : Diag(y) � √p√p>, y ∈ RA}.

Define y, as a function of ε > 0, entry-wise as

ya(ε) :=


(
√

F(p, q) + ε)
√
pa√
qa

if pa, qa > 0,

(
√

F(p,q)+ε)‖p‖1
ε

if qa = 0,

ε if pa = 0, qa > 0.

We can check that 〈y(ε), q〉 → F(p, q) as ε → 0, so it suffices to show that y(ε) is dual

feasible for all ε > 0. To show this, we use the following trick. For any y > 0,

Diag(y) � √p√p> ⇐⇒ IA � Diag(y)−1/2√p√p>Diag(y)−1/2

⇐⇒ 1 ≥ √p>Diag(y)−1√p
⇐⇒ 1 ≥

∑
a∈A

pa
ya
,

45

noting Diag(y)−1/2√p√p>Diag(y)−1/2 is rank 1 so the largest eigenvalue is equal to its

trace. From this, we can check that y(ε) is feasible for all sufficiently small ε > 0.

The proof above shows that

inf{〈y, q〉 : Diag(y) � √p√p>, y ∈ RA} = inf{〈y, q〉 : 〈y−1, p〉 ≤ 1, y > 0}
= inf

y>0
{〈y, q〉〈y−1, p〉},

which is the classical version of Alberti’s Theorem [Alb83], which states that

F(ρ, σ) = inf
X�0
〈X, ρ〉〈X−1, σ〉,

for any quantum states ρ and σ.

From the proof of Lemma 1.4.10, we see that we can apply the same trick to the

inequality

Diag(y)⊗ IA � |ψ〉〈ψ| (y > 0)

to get the equivalent condition

1 ≥ 〈ψ|Diag(y)−1 ⊗ IA|ψ〉,

which works for any |ψ〉 ∈ CA×A. In particular, we have the following lemma.

Lemma 1.4.11. For any p ∈ RA
+, we have that

{y > 0 : Diag(y) � √p√p>} = {y > 0 : Diag(y)⊗ IA � |ψ〉〈ψ|},

where |ψ〉 :=
∑

a∈A
√
pa |a〉|a〉.

Using Lemma 1.4.10, we can prove fidelity is concave.

Lemma 1.4.12. The classical fidelity function is concave on the nonnegative orthant.

Proof. Let p1, p2 be two nonnegative vectors and λ ∈ [0, 1]. We know from Lemma 1.4.10

that Xi =
√
pi
√
pi
> is an optimal solution to

max{〈Xi,
√
q
√
q>〉 : diag(Xi) = pi, Xi � 0},

46

for i ∈ {1, 2}. Define X̄ := λX1 + (1− λ)X2. Then we have

F(λp1 + (1− λ)p2, q) = max{〈X,√q√q>〉 : diag(X) = λp1 + (1− λ)p2, X � 0}
≥ 〈X̄,√q√q>〉 since X̄ is feasible

= λF(p1, q) + (1− λ) F(p2, q),

proving it is concave.

Note, we can also prove it is concave by showing the Hessian is negative semidefinite on

the interior of the nonnegative orthant. Since it is not negative definite, we know fidelity

is not strictly concave. For example, choose

λ :=
1

2
, p1 :=

 1

0

0

 , p2 :=

 0

1

0

 , and q :=

 0

0

1

 .
Then

0 = F(λp1 + (1− λ)p2, q) 6> λF(p1, q) + (1− λ) F(p2, q) = 0.

The concavity of the fidelity function of quantum states can be proved using Uhlmann’s

Theorem [Uhl76], which states that

F(ρ, σ) = max
A,|ψ〉,|φ〉

|〈ψ|φ〉|2,

where TrA|ψ〉〈ψ| = ρ and TrA|φ〉〈φ| = σ.

Largest eigenvalue and trace distance characterizations

Lemma 1.4.13. For η, τ ∈ R and p, q ∈ Probn, we have

λmax

(
η
√
p
√
p> + τ

√
q
√
q>
)

=
1

2

(
η + τ +

√
(η − τ)2 + 4ητ F(p, q)

)
.

Proof. Since we can write F(p, q) =
(√

p>
√
q
)2

, we can apply a unitary to both
√
p and

√
q and both sides of the equality we want to prove are unaffected. Choose a unitary U

such that

U
√
p = [1, 0, 0, . . . , 0]> and U

√
q = [sin θ, cos θ, 0, . . . , 0]>,

47

for some θ ∈ [0, 2π). Then we can write F(p, q) = sin2 θ. Let λ2 be the second largest

eigenvalue of η
√
p
√
p> + τ

√
q
√
q>, or equivalently, of ηU

√
p
√
p>U∗ + τU

√
q
√
q>U∗. Then

λmax + λ2 = Tr(η
√
p
√
p> + τ

√
q
√
q>) = η + τ

and, by taking the determinant of the only nonzero block, we get

λmax · λ2 = ητ cos2 θ = ητ(1− F(p, q))

implying λmax = 1
2

(
η + τ +

√
(η − τ)2 + 4ητF(p, q)

)
, as desired.

Note that Lemma 1.4.13 shows that switching the roles of η and τ does not affect the

largest eigenvalue.

Lemma 1.4.14. For β0, β1 ∈ ProbB, we have∑
y∈B

max
a∈{0,1}

{βa,y} = 1 + ∆(β0, β1).

Proof. Notice that ∑
y∈B

max
a∈{0,1}

{βa,y}+
∑
y∈B

min
a∈{0,1}

{βa,y} = 2

and ∑
y∈B

max
a∈{0,1}

{βa,y} −
∑
y∈B

min
a∈{0,1}

{βa,y} = 2∆(β0, β1).

Putting it together, we have

2 + 2∆(β0, β1) = 2
∑
y∈B

max
a∈{0,1}

{βa,y} ,

as desired.

48

Chapter 2

Coin-flipping protocols based on

bit-commitment

The content of this chapter is based on my work with Ashwin Nayak and Levent Tunçel.

We now turn our attention to analyzing a family of quantum coin-flipping protocols

which are based on bit-commitment. This type of protocol was first considered in [NS03] as

a way to blend two bit-commitment protocols together to create a strong coin-flipping pro-

tocol. This style of protocol is also similar to the weak coin-flipping protocols in [Moc05]

which are analyzed using semidefinite programming. Like the analysis in [Moc05], this

chapter is concerned with gaining a better understanding of a family of coin-flipping pro-

tocols by studying their cheating SDPs.

The structure of this chapter is as follows:

• Section 2.1: We describe a family of coin-flipping protocols based on bit-commitment.

We call these BCCF-protocols.

• Section 2.1.1: We formulate the cheating strategies as SDPs.

• Section 2.1.2: We prove that we can simplify the SDPs by considering specific strate-

gies for each party. This results in the cheating probabilities being a maximum of a

linear combination of fidelity functions over probability vectors constrained to be in

a certain polytope. We call these problems the reduced SDPs or reduced problems.

49

• Section 2.1.3: We show an immediate consequence of examining the reduced SDPs,

that we can assume each message consists of one qubit.

• Section 2.1.4: We show the simple nature of the reduced SDPs by modelling them as

SOCPs. That is, we can characterize the bias using a simpler class of optimization

problems.

• Section 2.1.5: Using the reduced SDPs and their duals, we develop the point games

corresponding to BCCF-protocols. We give a protocol-independent definition of

“BCCF-point games” and use it to define “BCCF-point game pairs” which is an

analog for strong coin-flipping. This leads to a relationship between the cheating

probabilities in BCCF-protocols and the “final points” of BCCF-point game pairs.

• Section 2.2: This section describes a family of “classical BCCF-protocols.” Using LP

formulations of cheating strategies, we develop their point games. Throughout the

process, we see how closely connected these protocols and point games are to their

quantum counterparts, and how the analysis is very similar. We use the point games

to (re)prove these classical protocols have bias ε = 1/2.

• Section 2.3: We present modified versions of Kitaev’s lower bounds for BCCF-

protocols that arise from the reduced cheating SDPs. We then show that if the

lower bounds are saturated, then the protocol is “classical” in a sense described

later. This rules out the possibility of quantum BCCF-protocols attaining a bias of

ε = 1/
√

2− 1/2 and shows a deeper connection to the classical version.

2.1 A family of quantum coin-flipping protocols

We now describe a family of protocols where Alice and Bob each choose a random bit and

commit to their respective bits by exchanging quantum states. Then they reveal their bits,

and send the remaining part of their quantum states for cheat detection purposes. Each

party checks the received state against the state claimed and, if both parties accept the

revealed values, the outcome of the protocol is the XOR of the committed bits.

The difficulty in designing a good protocol is in deciding how Alice and Bob should

commit their bits to each other. If Alice or Bob leak too much information too early, then

50

the other party has more information to form a cheating strategy. Thus, we try to maintain

a balance between the two parties so as to minimize the bias they can achieve by cheating.

Consider the following Cartesian product of finite sets A = A1×· · ·×An corresponding

to Alice’s first n messages, and α0, α1 ∈ ProbA. Define the following two quantum states

|ψa〉 :=
∑
x∈A

√
αa,x |xx〉 ∈ CA×A′ for a ∈ {0, 1} ,

where A′ is a copy of A. The reason we define the state over CA and a copy is because

in the protocol, Alice sends states in CA while retaining copies in CA′ until the end of the

protocol. Since Alice chooses a ∈ {0, 1} uniformly at random, we can represent her initial

state as

|ψ〉 :=
∑

a∈{0,1}

1√
2
|aa〉 ⊗ |ψa〉 ∈ CA0×A′0×A×A′ ,

where A0 = A′0 = {0, 1}. This yields the space CA0×A′0 to hold two copies of Alice’s bit

a ∈ {0, 1}.
We now describe the setting for Bob’s messages. Consider the following Cartesian

product of finite sets B = B1 × · · · ×Bn corresponding to Bob’s first n messages to Alice,

and β0, β1 ∈ ProbB. Define the following two quantum states

|φb〉 :=
∑
y∈B

√
βb,y |yy〉 ∈ CB×B′ for b ∈ {0, 1} ,

where B′ is a copy of B. Since Bob chooses b ∈ {0, 1} uniformly at random, we can

represent his initial state as

|φ〉 :=
∑

b∈{0,1}

1√
2
|bb〉 ⊗ |φb〉 ∈ CB0×B′0×B×B′ ,

where B0 = B′0 = {0, 1}. The space CB0×B′0 holds two copies of Bob’s bit b ∈ {0, 1}. We

now describe the steps of the protocol.

Protocol 2.1.1 (BCCF-protocol).

(i) Alice prepares the state |ψ〉 and Bob prepares the state |φ〉, as described above.

(ii) For i from 1 to n: Alice sends CAi to Bob who replies with CBi.

51

(iii) Alice fully reveals her bit by sending CA′0. She also sends CA′ which Bob uses to check

if she was honest. Bob then reveals his bit by sending CB′0. He also sends CB′ which

Alice uses to check if he was honest.

(iv) Alice applies the measurement {ΠA,0,ΠA,1,ΠA,abort} ⊂ Σ
A0×B′0×B×B′
+ , where

ΠA,0 :=
∑

b∈{0,1}

|b〉〈b| ⊗ |b〉〈b| ⊗ |φb〉〈φb|,

ΠA,1 :=
∑

b∈{0,1}

|b̄〉〈b̄| ⊗ |b〉〈b| ⊗ |φb〉〈φb|, and

ΠA,abort := I− ΠA,0 − ΠA,1.

Bob applies the measurement {ΠB,0,ΠB,1,ΠB,abort} ⊂ Σ
B0×A′0×A×A′
+ , where

ΠB,0 :=
∑

a∈{0,1}

|a〉〈a| ⊗ |a〉〈a| ⊗ |ψa〉〈ψa|,

ΠB,1 :=
∑

a∈{0,1}

|ā〉〈ā| ⊗ |a〉〈a| ⊗ |ψa〉〈ψa|, and

ΠB,abort := I− ΠB,0 − ΠB,1.

A six-round BCCF-protocol is depicted in Figure 2.1. Note that the measurements

check two things. First, it checks whether the outcome, a⊕b, is 0 or 1. The first two terms

determine this, i.e., whether a = b or if a 6= b. Second, it checks whether the other party

was honest. For example, if Alice’s measurement projects onto a space where b = 0 and

Bob’s messages are not equal to |φ0〉, then Alice could detect Bob has cheated and abort.

BCCF-protocols are parameterized by A, B, and four probability vectors α0, α1, β0,

β1. It is a difficult problem to solve for the best choices of these parameters. Indeed, we do

not even have an upper bound on the sizes of A or B in an optimal protocol. However, we

can solve for the bias of a protocol once these parameters are fixed using the optimization

techniques in the next subsection.

We note here how this protocol fits the form discussed in Subsection 1.4.6. One dif-

ference is that we “send” the space, rather than swap the state with the message space

(to have it swapped into the other parties’ private space). Another difference is that the

messages in BCCF-protocols could have varying dimension. These types of messages can

easily be cast in the form in Subsection 1.4.6, although the extra information clutters the

underlying problem.

52

Figure 2.1: Six-round BCCF-protocol. Alice’s actions in red, Bob’s actions in blue.

2.1.1 Quantum cheating strategy formulations

We can formulate strategies for cheating Bob and cheating Alice as semidefinite programs

in the same manner as Kitaev [Kit02]. The extent to which Bob can cheat is captured by

the following lemma.

Lemma 2.1.2. Bob’s optimal cheating probability for forcing honest Alice to accept the

outcome c ∈ {0, 1} is given by the optimal objective value of the following semidefinite

program:

P ∗B,c = sup 〈 ρF ,ΠA,c 〉
subject to TrB1(ρ1) = TrA1|ψ〉〈ψ|,

TrBj(ρj) = TrAj(ρj−1), ∀j ∈ {2, . . . , n},
TrB′×B′0(ρF) = TrA′×A′0(ρn),

ρj ∈ Σ
A0×A′0×B1×···×Bj×Aj+1×···×An×A′
+ , ∀j ∈ {1, . . . , n},

ρF ∈ Σ
A0×B′0×B×B′
+ .

53

The actions of a cheating Bob and the variables in the SDP above are depicted in

Figure 2.2 below. Note that the data defining this SDP is real and thus we can restrict

ourselves to real matrix variables without loss of generality. This is because the real part

of any complex feasible solution is also feasible and has the same objective function value.

Figure 2.2: Bob cheating in a six-round BCCF-protocol. Alice’s actions in red, Bob’s

actions in blue.

Proof. The variables are the density matrices under Alice’s control after each of Bob’s

messages. The partial trace is trace-preserving, so any feasible solution satisfies

Tr(ρF) = Tr(ρn) = · · · = Tr(ρ1) = Tr|ψ〉〈ψ| = 1.

Since ρ1, . . . , ρn, ρF are constrained to be positive semidefinite, they are valid quantum

states.

Bob sends CB1 to Alice replacing CA1 which was sent to Bob. Thus, ρ1, the density

matrix Alice has after Bob’s first message, satisfies

TrB1(ρ1) = TrA1|ψ〉〈ψ|.

54

Similarly, for each j ∈ {2, . . . , n}, we have the constraint

TrBj(ρj) = TrAj(ρj−1),

for each ρj after Bob’s j’th message, and

TrB′×B′0(ρF) = TrA′×A′0(ρn),

for ρF being the state Alice has at the end of the protocol. She then measures ρF and

accepts c with probability 〈ρF ,ΠA,c〉.
These constraints are necessary conditions on the states under Alice’s control. We now

show that every feasible solution to the above problem yields a valid cheating strategy for

Bob with success probability equal to the objective function value of the feasible solution.

He can find such a strategy by maintaining a purification of each density matrix under

Alice’s control. For example, suppose the protocol starts in the state |ψ〉⊗ |φ′〉, where Bob

creates |φ′〉 ∈ CK := CB0×B′0×B×B′×K′ and CK′ is extra space Bob uses to cheat. Consider

|τ〉 ∈ CA0×A′0×A×A′×K a purification of ρ1 and |η〉 := |ψ〉 ⊗ |φ′〉, a purification of |ψ〉. Since

TrB1(ρ1) = TrA1|ψ〉〈ψ|, we have

TrA1×K |τ〉〈τ | = TrB1(ρ1) = TrA1|ψ〉〈ψ| = TrA1×K |η〉〈η|.

Thus, there exists a unitary U which acts on CA1×K which maps |τ〉 to |η〉. If Bob applies

this unitary after Alice’s first message and sends CB1 back then he creates ρ1 under Alice’s

control. The same argument can be applied to the remaining constraints.

The states corresponding to an honest Bob yield a feasible solution. Attainment of an

optimal solution follows from continuity of the objective function and from the feasible

region being nonempty and compact. An optimal solution yields an optimal cheating

strategy.

In a similar fashion, we formulate cheating strategies for Alice in the lemma below.

Lemma 2.1.3. Alice’s optimal cheating probability for forcing honest Bob to accept the

outcome c ∈ {0, 1} is given by the optimal objective value of the following semidefinite

55

program:

P ∗A,c = sup 〈σF ,ΠB,c ⊗ IB′0×B′〉
subject to TrA1(σ1) = |φ〉〈φ|,

TrAj(σj) = TrBj−1
(σj−1), ∀j ∈ {2, . . . , n} ,

TrA′×A′0(σF) = TrBn(σn),

σj ∈ Σ
B0×B′0×A1×···×Aj×Bj×···×Bn×B′
+ , ∀j ∈ {1, . . . , n},

σF ∈ Σ
B0×B′0×A′0×A×A′×B′
+ .

The actions of a cheating Alice and the variables in the SDP above are depicted in

Figure 2.3. Again, we can restrict ourselves to real matrices without loss of generality.

Figure 2.3: Alice cheating in a six-round BCCF-protocol. Alice’s actions in red, Bob’s

actions in blue.

Proof. The proof for this is almost exactly the same as the case for cheating Bob. We let

the variables be the states in Bob’s control after each of Alice’s messages. There are two

key differences. One is that Alice sends the first message and Bob sends the last, explaining

the slightly different constraints. Secondly, Bob measures only the CB0×A′0×A×A′ part of his

56

state after Alice’s last message, i.e., he measures the state described by TrB′0×B′(σF). Note

that the adjoint of the partial trace can be written as Tr∗A(Y) = Y ⊗ IA, which is evident

from the definition. Therefore, we can write

〈TrB′0×B′(σF),ΠB,c〉 = 〈σF ,ΠB,c ⊗ IB′0×B′〉,

which explains the objective function.

We refer to these SDPs as Bob’s and Alice’s cheating SDPs, respectively. Analyzing

and solving these SDPs numerically get increasingly difficult and time consuming as n

increases since the dimensions of the positive semidefinite variables increase exponentially

with the number of qubits in the communication. We make use of the reductions described

in the next subsection.

2.1.2 Reduced formulations of quantum strategies

We now prove that the cheating SDPs can have a certain, restricted form while retaining

the same optimal objective function value. That is, we cut down the feasible region to

something that is much cleaner and illustrates the simple communication of the protocol.

The main technique used in proving that we do not cut off any optimal solutions comes

from duality theory of semidefinite programming. We generalize the following idea. If we

wish to prove that a certain feasible solution is optimal for the primal problem, it suffices

to exhibit a dual solution with the same objective function value. Here, we claim that

a restricted feasible region contains an optimal solution. Let p∗1 be the optimal value of

the original SDP, p∗2 be the optimal value of the restricted SDP, and let d∗1 and d∗2 be the

optimal values of the respective dual problems and assume all of them are finite. We want

to show that p∗1 = p∗2. Suppose the restricted problem and its dual have zero duality gap

(which can be guaranteed if restricting the feasible region does not cut off all the strictly

feasible points). Then if we can prove that d∗1 ≤ d∗2, we have

p∗1 ≤ d∗1 ≤ d∗2 = p∗2 ≤ p∗1,

proving p∗1 = p∗2 as desired. To show d∗1 ≤ d∗2, it suffices to find a restriction of the dual of

the original SDP to get to a problem equivalent to the dual of the restricted SDP. This is

depicted in Figure 2.4.

57

Figure 2.4: There exist optimal solutions in certain restrictions of the feasible regions of

the cheating SDPs.

Cheating Bob

Let xi denote an element of Ai and let yi denote an element of Bi, for each i ∈ {1, . . . , n}.
We now restrict the feasible region of Bob’s cheating SDPs by defining the following primal

feasible solution. Intuitively, Bob creates a state similar to his honest state, but the am-

plitudes are being changed during each message according to all of the previously revealed

messages. The solution is given below

ρ̄j :=
∑
x1

· · ·
∑
xj

|x1, . . . , xj〉〈x1, . . . , xj| ⊗ |ψx1,...,xj〉〈ψx1,...,xj | ⊗Diag(pj),

for j ∈ {1, . . . , n}, and

ρ̄F :=
∑

a∈{0,1}

|aa〉〈aa| ⊗ |ψ′a〉〈ψ′a|,

where pj ∈ RA1×B1×···×Aj×Bj
+ is a variable,

|ψx1,...,xj〉 :=
1√
2

∑
xj+1

· · ·
∑
xn

∑
a∈{0,1}

√
αa,x |aa〉|xj+1, . . . , xn〉|xj+1, . . . , xn〉,

58

and

|ψ′a〉 :=
∑
y∈B

√
1

2

∑
x∈A

αa,x[pn]x,y |yy〉, ∀a ∈ {0, 1}.

The new objective function for forcing outcome 0 becomes

〈ρ̄F ,ΠA,0〉 =
1

2

∑
a∈{0,1}

F
(
(αa ⊗ IA)>pn, βa

)
and the variables (p1, . . . , pn) belong to a polytope which we refer to as Bob’s cheating

polytope, defined below.

Definition 2.1.4. We define Bob’s cheating polytope, denoted PB, as the set of vectors

(p1, p2, . . . , pn) satisfying

TrB1(p1) = eA1 ,

TrB2(p2) = p1 ⊗ eA2 ,
...

TrBn(pn) = pn−1 ⊗ eAn ,
pj ∈ RA1×B1×···×Aj×Bj

+ , for all j ∈ {1, . . . , n},

where eAj denotes the vector of all ones in the corresponding space CAj .

Since we have restricted the feasible region of a maximization SDP, we have proved

that

P ∗B,0 ≥ max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>pn, βa

)
: (p1, . . . , pn) ∈ PB

 .

By changing the value of ρ̄F ∈ Σ
A0×B′0×B×B′
+ above to

ρ̄F =
∑

a∈{0,1}

|aā〉〈aā| ⊗ |ψ′a〉〈ψ′a|,

we get

P ∗B,1 ≥ max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>pn, βā

)
: (p1, . . . , pn) ∈ PB

 .

This swaps Bob’s choice of commitment reveal in the last message.

We now argue that the above inequalities hold with equality.

59

Theorem 2.1.5 (Bob’s reduced problems). For the BCCF-protocol defined by the param-

eters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB, we have

P ∗B,0 = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>pn, βa

)
: (p1, . . . , pn) ∈ PB


and

P ∗B,1 = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>pn, βā

)
: (p1, . . . , pn) ∈ PB

 .

Note that we sometimes refer to this reduced problem as Bob’s reduced SDP. This

implies we have replaced the fidelity with its SDP characterization from Subsection 1.4.7.

We do the same for cheating Alice, to come.

Proof. We begin by proving this for the case of P ∗B,0. Consider the dual of Bob’s cheating

SDP below:

P ∗B,0 = inf 〈W1,TrA1 |ψ〉〈ψ|〉
subject to Wj ⊗ IBj � Wj+1 ⊗ IAj+1

,

for all j ∈ {1, . . . , n− 1} ,
Wn ⊗ IBn � Wn+1 ⊗ IA′ ⊗ IA′0 ,

Wn+1 ⊗ IB′ ⊗ IB′0 � ΠA,0,

Wj ∈ ΣA0×A′0×B1×···×Bj−1×Aj+1×···×An×A′ ,

for all j ∈ {1, . . . , n},
Wn+1 ∈ ΣA0×B.

We now define a restriction of the following form:

Wj :=
∑
x1

∑
y1

· · ·
∑
yj−1

∑
xj

|x1, y1, . . . , yj−1, xj〉〈x1, y1, . . . , yj−1, xj| ⊗Wj,x1,y1,...,yj−1,xj ,

for j ∈ {1, . . . , n}, and

Wn+1 :=
∑

a∈{0,1}

|a〉〈a| ⊗Diag(va).

60

Under this restriction, we have the following problem:

d∗2 = inf
∑
x1

〈W1,x1 , |ψx1〉〈ψx1|〉

subject to Wj,x1,y1,...,yj−1,xj �
∑
xj+1

|xj+1〉〈xj+1| ⊗ IAj+1
⊗Wj+1,x1,y1,...,yj ,xj+1

,

for all j ∈ {1, . . . , n− 1} ,
(x1, . . . , xj) ∈ A1 × · · · × Aj,
(y1, . . . , yj) ∈ B1 × · · · ×Bj,

Wn,x1,y1,...,yn−1,xn �
∑

a∈{0,1}

va,y |a〉〈a| ⊗ IA′0 ,

Diag(va) �
√
βa
√
βa
>
, for all a ∈ {0, 1},

where the last constraint was obtained using Lemma 1.4.11. The last constraint changes

to Diag(va) �
√
βā
√
βā
>
, for all a ∈ {0, 1}, if Bob is cheating towards 1 and the rest of the

proof follows similarly in this case. Note that this shows d∗2 ≥ P ∗B,0.

Since the objective function only depends on W1,x1 in the subspace |ψx1〉〈ψx1|, we apply

the Subspace Lemma (Lemma 1.4.9) to the first constraint and replace it with

〈ψx1|W1,x1|ψx1〉 ≥ 〈ψx1|
∑
x2

|x2〉〈x2| ⊗ IA2 ⊗W2,x1,y1,x2|ψx1〉

=
∑
x2

〈ψx1,x2|W2,x1,y1,x2|ψx1,x2〉.

Examining the next constraint, we need to choose W2,x1,y1,x2 to satisfy

W2,x1,y1,x2 �
∑
x3

|x3〉〈x3| ⊗ IA3 ⊗W3,x1,y2,x2,y2,x3 .

Since the objective function value only depends on 〈ψx1,x2 |W2,x1,y1,x2|ψx1,x2〉, we can repeat

the same argument and replace the constraint by

〈ψx1,x2|W2,x1,y1,x2|ψx1,x2〉 ≥
∑
x3

〈ψx1,x2,x3|W3,x1,y2,x2,y2,x3|ψx1,x2,x3〉.

Continuing in this fashion, we can replace each constraint to get the following problem

61

with the same optimal objective value:

inf
∑
x1

〈W1,x1 , |ψx1〉〈ψx1|〉

s.t. 〈ψx1,...,xj |Wj,x1,y1,...,yj−1,xj |ψx1,...,xj〉 ≥
∑
xj+1

〈ψx1,...,xj+1
|Wj+1,x1,y1,...,yj ,xj+1

|ψx1,...,xj+1
〉

for all j ∈ {1, . . . , n− 1} ,
(x1, . . . , xj+1) ∈ A1 × · · · × Aj+1,

(y1, . . . , yj) ∈ B1 × · · · ×Bj,

〈ψx|Wn,x1,y1,...,yn−1,xn|ψx〉 ≥
∑

a∈{0,1}

αa,x va,y, for all x ∈ A, y ∈ B,

Diag(va) �
√
βa
√
βa
>
, for all a ∈ {0, 1}.

Define

wj,x1,y1,...,yj−1,xj := 〈ψx1,...,xj |Wj,x1,y1,...,yj−1,xj |ψx1,...,xj〉,

for all j ∈ {1, . . . , n− 1} , (x1, . . . , xj+1) ∈ A1 × · · · ×Aj+1, (y1, . . . , yj) ∈ B1 × · · · ×Bj, to

get the problem

d∗2 = inf
∑
x1

w1,x1

subject to wj,x1,y1,...,yj−1,xj ≥
∑
xj+1

wj+1,x1,y1,...,yj ,xj+1
,

for all j ∈ {1, . . . , n− 1} ,
(x1, . . . , xj+1) ∈ A1 × · · · × Aj+1,

(y1, . . . , yj) ∈ B1 × · · · ×Bj,

wn,x1,y1,...,yn−1,xn ≥
∑

a∈{0,1}

1

2
αa,x va,y, for all x ∈ A, y ∈ B, a ∈ {0, 1},

Diag(va) �
√
βa
√
βa
>
,∀a ∈ {0, 1}.

This problem has a strictly feasible solution and the objective function is bounded from

below on the feasible region, thus strong duality holds and there is zero duality gap. The

dual of this problem is

d∗2 = max
(p1,...,pn)∈PB

ρ0,ρ1∈ΣB+

 ∑
a∈{0,1}

1

2
〈ρa,

√
βa
√
βa
>
〉 : diag(ρa) = (αa ⊗ IB)>pn, ∀a ∈ {0, 1}

 ,

which is equivalent to the reduced problem by Lemma 1.4.10. Therefore, we have P ∗B,0 = d∗2,

as desired.

62

Cheating Alice

We now restrict the feasible region of Alice’s cheating SDPs by defining the following primal

feasible solution. Intuitively, this strategy is similar to that of cheating Bob. The solution

is given below

σ̄j :=
∑
y1

· · ·
∑
yj−1

|y1, . . . , yj−1〉〈y1, . . . , yj−1| ⊗ |φy1,...,yj−1
〉〈φy1,...,yj−1

| ⊗Diag(sj),

for j ∈ {2, . . . , n}, and

σ̄F :=
∑
a∈A′0

∑
y∈B

|a〉〈a| ⊗ |y〉〈y| ⊗ |φy〉〈φy| ⊗ |φ′a,y〉〈φ′a,y|,

where sj ∈ RA1×B1×···×Bj−1×Aj
+ and s ∈ RA′0×A×B

+ are variables,

|φy1,...,yj−1
〉 :=

1√
2

∑
yj

· · ·
∑
yn

∑
b∈{0,1}

√
βb,y |bb〉|yj, . . . , yn〉|yj, . . . , yn〉,

and

|φ′a,y〉 :=
∑
x∈A

√
sa,y,x |xx〉, ∀y ∈ B, a ∈ {0, 1}.

With this restriction, we can write the new objective function for forcing outcome 0 as

〈σ̄F ,ΠB,0 ⊗ IB′0×B′〉 =
1

2

∑
a∈A′0

∑
y∈B′

βa,y F(s(a,y), αa),

where s(a,y) ∈ CA is defined as the restriction of s with a and y fixed. We can define it

element-wise as [s(a,y)]x := sa,y,x. The new objective function for forcing outcome 1 is

〈σ̄F ,ΠB,1 ⊗ IB′0×B′〉 =
1

2

∑
a∈A′0

∑
y∈B′

βā,y F(s(a,y), αa).

The variables (s1, . . . , sn, s) belong to a polytope which we refer to as Alice’s cheating

polytope, defined below.

63

Definition 2.1.6. We define Alice’s cheating polytope, denoted PA, as the set of vectors

(s1, s2, . . . , sn, s) satisfying

TrA1(s1) = 1,

TrA2(s2) = s1 ⊗ eB1 ,
...

TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,
s1 ∈ RA1

+ ,

sj ∈ RA1×B1×···×Bj−1×Aj
+ , for all j ∈ {2, . . . , n},

s ∈ RA×B×A′0
+ ,

where eBj is the vector of all ones in the corresponding space CBj .

We have proved

P ∗A,0 ≥ max

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA


and

P ∗A,1 ≥ max

1

2

∑
a∈{0,1}

∑
y∈B

βā,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 .

The following theorem shows that the above inequalities hold with equality.

Theorem 2.1.7 (Alice’s reduced problems). For the BCCF-protocol defined by the param-

eters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB, we have

P ∗A,0 = max

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA


and

P ∗A,1 = max

1

2

∑
a∈{0,1}

∑
y∈B

βā,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 .

64

Proof. Consider the dual to Alice’s cheating SDP for forcing outcome 0, below:

P ∗A,0 = inf 〈Z1, |φ〉〈φ|〉
subject to Zj ⊗ IAj � Zj+1 ⊗ IBj ,

for all j ∈ {1, . . . , n} ,
Zn+1 ⊗ IA′ ⊗ IA′0 � ΠB,0 ⊗ IB′0 ⊗ IB′ ,

Zj ∈ ΣB0×B′0×A1×···×Aj−1×Bj×···×Bn×B′ ,

for all j ∈ {1, . . . , n, n+ 1}.

Consider the following restriction:

Zj+1 :=
∑
x1

∑
y1

· · ·
∑
xj

∑
yj

|x1, y1, . . . , xj, yj〉〈x1, y1, . . . , xj, yj| ⊗ Zj+1,x1,y1,...,xj ,yj ,

for j ∈ {1, . . . , n}. Substituting this into the constraints, we get the following new problem

d∗2 = inf 〈Z1, |φ〉〈φ|〉
subject to Z1 �

∑
y1

|y1〉〈y1| ⊗ IB1 ⊗ Z2,x1,y1 ,

Zj,x1,y1,...,xj−1,yj−1
�

∑
yj

|yj〉〈yj| ⊗ IBj ⊗ Zj+1,x1,y1,...,xj ,yj ,

for all j ∈ {2, . . . , n},
(x1, . . . , xj) ∈ A1 × · · · × Aj,
(y1, . . . , yj) ∈ B1 × · · · ×Bj,∑

x∈A

Zn+1,x,y ⊗ |x〉〈x| ⊗ IA′ � |a〉〈a| ⊗ IB′0 ⊗ |ψa〉〈ψa|, ∀a ∈ {0, 1}, y ∈ B.

This shows that d∗2 ≥ P ∗A,0. Applying the Subspace Lemma (Lemma 1.4.9) recursively, as

in the case for cheating Bob, we get the following problem with the same optimal objective

value

inf 〈Z1, |φ〉〈φ|〉
s.t. 〈φy1,...,yj−1

|Zj,x1,y1,...,xj−1,yj−1
|φy1,...,yj−1

〉 ≥
∑
yj

〈φy1,...,yj |Zj+1,x1,y1,...,xj ,yj |φy1,...,yj〉,

for all j ∈ {1, . . . , n},
(x1, . . . , xj) ∈ A1 × · · · × Aj,
(y1, . . . , yj) ∈ B1 × · · · ×Bj,∑

x∈A

〈φy|Zn+1,x,y|φy〉 |x〉〈x| ⊗ IA′ � 1
2
βa,y |ψa〉〈ψa|, for all a ∈ {0, 1}, y ∈ B.

65

Defining

zj+1,x1,y1,...,xj ,yj := 〈φy1,...,yj |Zj+1,x1,y1,...,xj ,yj |φy1,...,yj〉,

for j ∈ {1, . . . , n}, (x1, . . . , xj) ∈ A1 × · · · × Aj, and (y1, . . . , yj) ∈ B1 × · · · ×Bj, and

Diag(z
(y)
n+1) :=

∑
x∈A

〈φy|Zn+1,x,y|φy〉 |x〉〈x|,

for y ∈ B, we get the following problem:

d∗2 = inf z1

subject to zj,x1,y1,...,xj−1,yj−1
≥

∑
yj∈Bj

zj+1,x1,y1,...,xj ,yj ,

for all j ∈ {1, . . . , n},
(x1, . . . , xj) ∈ A1 × · · · × Aj,
(y1, . . . , yj) ∈ B1 × · · · ×Bj,

Diag(z
(y)
n+1) � 1

2
βa,y
√
αa
√
αa
>, for all y ∈ B, a ∈ {0, 1}.

This problem has a strictly feasible solution and the objective function is bounded from

below on the feasible region, thus it and its dual have zero duality gap. The dual of this

problem is

max
(s1,...,sn,s)∈PA

σa,y∈ΣA+

1

2

∑
a∈{0,1}

∑
y∈B

βa,y〈σa,y,
√
αa
√
αa
>〉 : diag(σa,y) = s(a,y), ∀a ∈ {0, 1}, y ∈ B


which is equivalent to Alice’s reduced problem for forcing outcome 0 by Lemma 1.4.10 and

has optimal objective value d∗2. Therefore, we have P ∗A,0 = d∗2 as desired.

The case for forcing outcome 1 is almost the exact same, except every occurrence of αa

is replaced with αā. The dual thus becomes

max
(s1,...,sn,s)∈PA

σa,y∈ΣA+

1

2

∑
a∈{0,1}

∑
y∈B

βa,y〈σa,y,
√
αā
√
αā
>〉 : diag(σa,y) = s(a,y), ∀a ∈ {0, 1}, y ∈ B

 .

Since the last constraint is symmetric in a, we can replace s(a,y) with s(ā,y) (and σa,y with

σā,y) and the optimal objective value does not change. We can write it as

max
(s1,...,sn,s)∈PA

σa,y∈ΣA+

1

2

∑
a∈{0,1}

∑
y∈B

βā,y〈σa,y,
√
αa
√
αa
>〉 : diag(σa,y) = s(a,y), ∀a ∈ {0, 1}, y ∈ B

 ,

66

as desired.

We note here that we can get similar reductions if Alice chooses a with a non-uniform

probability distribution and similarly for Bob. It only changes the 1/2 multiplicative factor

in the reduced problems to something that depends on a and the proofs are nearly identical.

We can also prove these two theorems using the primal SDPs alone. These proofs rely

on the fact that for any x ∈ CA, the set

{λxx∗ : λ > 0}

is an extreme ray of the cone of positive semidefinite matrices. That is, if X1, X2 ∈ ΣA
+

satisfy X1 + X2 = λxx∗, for some λ > 0, then X1 = λ1 xx
∗ and X2 = λ2 xx

∗ for some

λ1, λ2 ≥ 0, satisfying λ1 + λ2 = λ.

The structure of certain optimal solutions shown in this subsection was an observation

after numerically solving some of the cheating SDPs from the last subsection. We note that

there are some similarities between the reduced problems above and the optimal solutions of

the cheating SDPs for the weak coin-flipping protocols in [Moc05]. The protocols Mochon

considers in [Moc05] also give rise to “reduced problems” being the maximization of fidelity

functions over a polytope. However, the analysis is much cleaner in Mochon’s work since

the objective function only involves a single fidelity function as opposed to the linear

combination of fidelity functions that arise in BCCF-protocols. This difference is due

to the fact that weak coin-flipping protocols often allow a stronger cheat detection step

than those for strong coin-flipping. Having a single fidelity function allowed Mochon to

construct an optimal solution using a dynamic programming approach. The structure of

the objective functions in the reduced problems above for BCCF-protocols does not reveal

an obvious way to solve it using dynamic programming, making this family of protocols

harder to analyze.

A succinct way to write the duals of the reduced cheating problems

In this part, we present a simple form for the duals of the reduced cheating SDPs. We

show that we only need to consider the variables in the positive semidefiniteness constraints,

since the linear inequalities reveal how to optimally assign the rest of the variables.

67

Sometimes it is easier to work with the succinct form developed in this section because

handling many dual variables can overcomplicate simple ideas.

Consider Bob’s reduced cheating SDP, below, using the SDP characterization for fidelity

P ∗B,0 = max
(p1,...,pn)∈PB

ρ0,ρ1∈ΣB+

 ∑
a∈{0,1}

1

2
〈ρa,

√
βa
√
βa
>
〉 : diag(ρa) = (αa ⊗ IB)>pn, ∀a ∈ {0, 1}

 .

The dual is

inf TrA1(w1)

subject to w1 ⊗ eB1 ≥ TrA2(w2),

w2 ⊗ eB2 ≥ TrA3(w3),
...

wn ⊗ eBn ≥ 1
2

∑
a∈{0,1} αa ⊗ va,

Diag(va) �
√
βa
√
βa
>
, for all a ∈ {0, 1}.

Let us examine the first constraint w1 ⊗ eB1 ≥ TrA2(w2). This is equivalent to saying

w1,x1 ≥
∑

x2
w2,x1,y1,x2 for all x1 ∈ A1, y1 ∈ B1. Once we fix a value for w2, an optimal

choice of w1 is w1,x1 = maxy1

∑
x2
w2,x1,y1,x2 . Using this idea, we can rewrite Bob’s dual as

inf
Diag(va)�

√
βa
√
βa
>

{∑
x1

max
y1

∑
x2

max
y2

· · ·
∑
xn

max
yn

∑
a

1

2
αa,xva,y

}

and Alice’s as

inf
Diag(z

(y)
n+1)� 1

2
βa,y
√
αa
√
αa
>

{
max
x1

∑
y1

· · ·max
xn

∑
yn

zn+1,x,y

}
,

each for forcing outcome 0. We can switch β0 with β1 to get the succinct forms for forcing

outcome 1.

Sometimes these forms for the duals are convenient, as seen in the next subsection.

2.1.3 An SDP proof for why qubit messages are sufficient

In this subsection, we show how the succinct representation of the duals helps us prove

a novel result, that we can bound the dimension of the messages in a BCCF-protocol.

68

However, the analysis in the rest of the thesis is general and does not assume this result

unless otherwise stated.

We use the reduced cheating SDPs to prove that we can assume Ai = Bi = {0, 1}, that

is, each message is a single qubit. More specifically, we show that for any BCCF-protocol,

there exists another BCCF-protocol with qubit messages where the bias is no larger. We

prove it for Alice’s messages as the proof for Bob’s messages is nearly identical.

Suppose we have a protocol defined by

A = A1 × · · ·An, B = B1 × · · · ×Bn, α0, α1 ∈ ProbA, β0, β1 ∈ ProbB.

Suppose Alice’s i’th message has large dimension, that is, |Ai| > 2. We define a new

protocol by replacing Ai with A′i×A′′i , where Ai ⊆ A′i×A′′i . Notice that α0 and α1 can be

viewed as probability distributions over A1 × · · ·Ai−1 × A′i × A′′i × Ai+1 × · · · × An in the

obvious way. We also add a “dummy” message from Bob by adding Bd in between Bi and

Bi+1. This dummy message needs to be independent of the protocol, so we can suppose

Bob sends |0〉. This effectively replaces βb with β′b := βb ⊗ [1, 0]>d , for each b ∈ {0, 1}. If

Alice and Bob cannot cheat more in this new protocol, then we can repeat these arguments

to show that all of Alice’s messages are qubit messages by inductively breaking up the CAi

spaces.

Bob’s cheating probabilities do not increase

We now show that Bob cannot use the extra message to cheat more in the new protocol.

We show this by constructing a dual feasible solution.

In the original protocol, cheating Bob can force outcome 0 with maximum probability

given by the optimal objective value of the following problem

inf
Diag(va)�

√
βa
√
βa
>

{∑
x1

max
y1

∑
x2

max
y2

· · ·
∑
xn

max
yn

∑
a

1

2
αa,xva,y

}
.

In the new protocol, cheating Bob can force outcome 0 with maximum probability given

by the optimal objective value of the following problem

inf
Diag(ṽa)�

√
β′a
√
β′a
>

∑
x1

max
y1

∑
x2

max
y2

· · ·
∑
x′i∈A′i

max
yd∈Bd

∑
x′′i ∈A′′i

· · ·
∑
xn

max
yn

∑
a

1

2
αa,xṽa,y′

 .

69

For any (v0, v1) feasible in the first problem, we can define a solution feasible in the sec-

ond problem (ṽ0, ṽ1) :=
(
v0 ⊗ [1, 0]>d , v1 ⊗ [1, 0]>d

)
with the same objective function value.

Notice the same argument holds if we switch β0 with β1 and β′0 with β′1, i.e., if Bob wants

outcome 1. Since these are minimization problems, Bob can cheat no more in the new

protocol.

Alice’s cheating probabilities do not increase

We now show that Alice cannot use her extra message to cheat more in the new protocol.

To show this, we repeat the same argument as in the case for cheating Bob.

In the original protocol, cheating Alice can force outcome 0 with maximum probability

given by the optimal objective value of the following problem

inf
Diag(z

(y)
n+1)� 1

2
βa,y
√
αa
√
αa
>

{
max
x1

∑
y1

· · ·max
xn

∑
yn

zn+1,x,y

}
.

In the new protocol, cheating Alice can force outcome 0 with maximum probability

given by the optimal objective value of the following problem

inf
Diag(z̃

(y)
n+1)� 1

2
β′a,y
√
αa
√
αa
>

{
max
x1

∑
y1

· · ·max
x′i∈A′i

∑
yd∈Bd

max
x′′i ∈A′′i

· · ·max
xn

∑
yn

z̃n+1,x,y

}
.

For any zn+1 feasible in the first problem, we can define a solution feasible in the second

problem z̃n+1 := zn+1 ⊗ [1, 0]>d with the same objective function value. Notice the same

argument holds if we switch β0 with β1 and β′0 with β′1, i.e., if Alice wants outcome 1. Since

these are minimization problems, Alice can cheat no more in the new protocol.

2.1.4 SOCP formulations of quantum strategies

We show that the reduced SDPs can be modelled using a simpler class of optimization

problems. We give details in this subsection and explain the significance to solving these

problems numerically.

70

We start by first explaining how to model fidelity as an SOCP. Suppose we are given

the problem

max{
√

F(p, q) : q ∈ Rn
+ ∩ S} = max

{
n∑
i=1

√
pi ti : t2i ≤ qi, ∀i ∈ {1, . . . , n}, q ∈ Rn

+ ∩ S

}
,

where p ∈ Rn
+ and S ⊆ Rn. We can replace t2i ≤ qi with the equivalent constraint

(1/2, qi, ti) ∈ RSOC3, for all i ∈ {1, . . . , n}. Therefore, we can maximize the fidelity using

n rotated second-order cone constraints.

For the same reason, we can use second-order cone programming to solve a problem of

the form

max

{
m∑
j=1

aj

√
F(pj, qj) : (q1, . . . , qm) ∈ Rmn

+ ∩ S ′
}
,

where a ∈ Rm
+ and S ′ ⊆ Rmn. However, this does not apply directly to the reduced problems

in Subsection 2.1.2 since we need to optimize over a linear combination of fidelities and

f(x) = x2 is not a concave function. For example, Alice’s reduced problem is of the form

max

{
m∑
j=1

aj F(pj, qj) : (q1, . . . , qm) ∈ Rmn
+ ∩ S ′

}
.

The root of this problem arises from the fact that the fidelity function, which is concave, is

a composition of a concave function with a convex function, thus we cannot break it into

these two steps. Even though the above analysis does not work to capture the reduced

cheating SDPs as SOCPs, it does have a desirable property that it only uses O(n) second-

order cone constraints and perhaps this formulation will be useful for future applications.

We now explain how to model the reduced problems as SOCPs directly.

Lemma 2.1.8. For p, q ∈ Rn
+, we have

F(p, q) = max

{
1√
2

n∑
i,j=1

√
pipj ti,j : (qi, qj, ti,j) ∈ RSOC3, for all i, j ∈ {1, . . . , n}

}
.

Proof. For every i, j ∈ {1, , . . . , n}, we have (qi, qj, ti,j) ∈ RSOC3 if and only if qi, qj ≥ 0,

and 2qiqj ≥ t2i,j. Thus, ti,j =
√

2qiqj is optimal with objective function value

1√
2

n∑
i,j=1

√
2pipjqiqj = F(p, q),

71

as desired.

This lemma provides an SOCP representation for the hypograph of the fidelity function.

Recall that the hypograph of a concave function is a convex set. Also, the dimension of

the hypograph of F(·, q) : Rn
+ → R is equal to n (assuming q > 0). Since the hypograph

is O(n)-dimensional and convex, there exists a self-concordant barrier function for the

set with complexity parameter O(n), shown by Nesterov and Nemirovski [NN94]. This

allows the derivation of interior-point methods for the underlying convex optimization

problem which use O(
√
n log(1/ε)) iterations, where ε is an accuracy parameter. The

above lemma uses Ω(n2) second-order cone constraints and the usual treatment of these

“cone constraints” with optimal self-concordant barrier functions lead to interior-point

methods with an iteration complexity bound of O(n log(1/ε)). It is conceivable that there

exist better convex representations of the hypograph of the fidelity function than the one

we provided in Lemma 2.1.8.

Finding efficient SOCP formulations of the fidelity

We use the analysis of the fidelity function in Subsection 1.4.7 to develop an SOCP

formulation of the fidelity function using O(n) SOC constraints as opposed to the Ω(n2)

above. Note that this SOCP characterization is through a dual problem and does not

characterize the hypograph of the fidelity function.

Lemma 2.1.9. For p, q ∈ Rn
+, we have

F(p, q) = inf{〈v, p〉 : 〈ξ, q〉 ≤ 1, (vi, ξi,
√

2) ∈ RSOC3, for all i ∈ {1, . . . , n}}.

Proof. Using Lemma 1.4.10, we have

F(p, q) = max{〈ρ,√q√q>〉 : diag(ρ) = p, ρ � 0}
= inf{〈v, p〉 : Diag(v) � √q√q>}
= inf{〈v, p〉 : 〈v−1, q〉 ≤ 1, v > 0}.

Notice that

(vi, ξi,
√

2) ∈ RSOC3 ⇐⇒ ξi, vi > 0, 2ξivi ≥ 2 ⇐⇒ ξi, vi > 0, ξi ≥
1

vi
.

72

Since we can relax ξi =
1

vi
to ξi ≥

1

vi
, the result follows.

Note, we can write the RSOC constraint above as

(v, ξ,
√

2) ∈ RSOC3 ⇐⇒

[
ξ 1

1 v

]
� 0.

We can similarly formulate the fidelity of the quantum states ρ and σ using the following

SDP version of Alberti’s Theorem [Alb83]

F(ρ, σ) = inf

{
〈X, ρ〉 : 〈R, σ〉 ≤ 1,

[
X I

I R

]
� 0

}
.

Note that the identity matrices on the off-diagonal blocks force X and R to be invertible.

We can now calculate the bias of a BCCF-protocol using second-order cone program-

ming as shown in the following corollary.

Corollary 2.1.10. For the BCCF-protocol defined by the parameters α0, α1 ∈ ProbA and

β0, β1 ∈ ProbB, we have

P ∗B,0 = inf
〈ξa,βa〉≤1

(ξa,y ,va,y ,
√

2)∈RSOC3

{∑
x1

max
y1

∑
x2

max
y2

· · ·
∑
xn

max
yn

∑
a

1

2
αa,xva,y

}
,

P ∗B,1 = inf
〈ξa,βā〉≤1

(ξa,y ,va,y ,
√

2)∈RSOC3

{∑
x1

max
y1

∑
x2

max
y2

· · ·
∑
xn

max
yn

∑
a

1

2
αa,xva,y

}
,

P ∗A,0 = inf
βa,y

2
〈µ(y),αa〉≤1

(µx,y ,zn+1,x,y ,
√

2)∈RSOC3

{
max
x1

∑
y1

· · ·max
xn

∑
yn

zn+1,x,y

}
,

P ∗A,1 = inf
βā,y

2
〈µ(y),αa〉≤1

(µx,y ,zn+1,x,y ,
√

2)∈RSOC3

{
max
x1

∑
y1

· · ·max
xn

∑
yn

zn+1,x,y

}
.

73

2.1.5 Point games for BCCF-protocols

In this subsection, we develop the point games corresponding to BCCF-protocols providing

us with a new perspective for studying them. In theory, one can use them to prove protocols

with a certain bias exist. In Section 2.2, we use them to lower bound the bias of “classical

BCCF-protocols.”

We start by examining Kitaev’s lower bound involving the quantities P ∗B,1 and P ∗A,0.

Since we are concerned with strong coin-flipping, the choice of Bob desiring outcome 1 and

Alice desiring outcome 0 for this part is somewhat arbitrary. However, this way we can

compare them to point games for other classes of weak coin-flipping protocols (see [Moc07]).

We later show that we lose no generality in choosing these two values, as we consider all

four values simultaneously by viewing the point games in pairs (more on this later).

For any δ > 0, we can choose (W1, . . . ,Wn+1) feasible in the dual of Bob’s cheating

SDP and (Z1, . . . , Zn+1) feasible in the dual of Alice’s cheating SDP such that(
P ∗B,1 + δ

) (
P ∗A,0 + δ

)
> 〈W1 ⊗ Z1,TrA1|ξ1〉〈ξ1|〉
≥ 〈W1 ⊗ Z2,TrB1|ξ′1〉〈ξ′1|〉
≥ 〈W2 ⊗ Z2,TrA2|ξ2〉〈ξ2|〉
≥ 〈W2 ⊗ Z3,TrB2|ξ′2〉〈ξ′2|〉
...

≥ 〈Wn+1 ⊗ Zn+1,TrA′0×A′|ξn+1〉〈ξn+1|〉
≥ 〈Wn+1 ⊗ ΠB,0,TrB′0×B′ |ξ

′
n+1〉〈ξ′n+1|〉

≥ 〈ΠA,1 ⊗ ΠB,0, |ξn+2〉〈ξn+2|〉
= 0,

where |ξj〉 and |ξ′j〉 are equal to |ψ〉|φ〉 with the spaces permuted accordingly. Note that

these are dual variables from the original cheating SDPs, not the reduced version. The

dual variables for the reduced version are scaled eigenvalues of the corresponding dual

variables above. However, we do reconstruct Kitaev’s proof above using the reduced SDPs

in Section 2.3.

74

Recall for a quantum state σ, we denote by Prob(X, Y, σ) the function

Prob(X, Y, σ) :=
∑

λ∈eig(X)

∑
µ∈eig(Y)

〈Π[λ]
X ⊗ Π

[µ]
Y , σ〉 [λ, µ] ,

where [λ, µ] : R2 → R denotes the function that takes value 1 on input (λ, µ) and 0

otherwise. We create a point game as follows:

p0 := Prob(ΠA,1 ⊗ ΠB,0, |ξn+2〉〈ξn+2|),
p′1 := Prob(Wn+1 ⊗ ΠB,0,TrB′0×B′ |ξ

′
n+1〉〈ξ′n+1|),

p1 := Prob(Wn+1 ⊗ Zn+1,TrA′0×A′|ξ
′
n+1〉〈ξ′n+1|),

p′(n+2)−j := Prob(Wj ⊗ Zj+1,TrBj |ξ′j〉〈ξ′j|), for all j ∈ {1, . . . , n},
p(n+2)−j := Prob(Wj ⊗ Zj,TrAj |ξj〉〈ξj|), for all j ∈ {1, . . . , n},

noting that the i’th point corresponds to the i’th last message in the protocol. The reason

we define point games this way is so that they always have the same starting state and it

is shown later that the final point captures the two objective function values of the two

dual feasible solutions. The reverse time order ensures that we always start with the same

p0 and aim to get a desirable last point, instead of the other way around.

This gives rise to the point game moves (or transitions):

p0 → p′1 → p1 → · · · → p′j → pj → · · · → p′n+1 → pn+1,

which we give context to in the next subsection.

First, we calculate Prob(Wj, Zj,TrAj |ξj〉〈ξj|), for j ∈ {1, . . . , n}.

Definition 2.1.11. For a string z ∈ {0, 1}∗, we define p(z) as the probability of string z

being revealed during an honest run of a fixed BCCF-protocol.

Note we have p(x1, . . . , xj) = 〈ψx1,...,xj |ψx1,...,xj〉, for all (x1, . . . , xj) ∈ A1×· · ·×Aj, and

p(y1, . . . , yj) = 〈ψy1,...,yj |ψy1,...,yj〉, for all (y1, . . . , yj) ∈ B1 × · · · ×Bj, for j ∈ {1, . . . , n}.
From the proof of the reduced problems, we can assume an optimal choice of Wj has

eigenvalues
wj,x1,y1,...,yj−1,xj

p(x1,...,xj)
, where wj is the corresponding variable in the dual of Bob’s

reduced cheating SDP. Note that p(x1, . . . , xj) = 0 implies wj,x1,y1,...,yj−1,xj = 0, so we do

not need to worry about this case (nor the division by 0). The same argument holds in the

75

following cases whenever there is an issue of dividing by 0. The positive eigenvalues have

respective eigenspaces

Π
[x1,y1,...,yj−1,xj]
Wj

:= |x1, y1, . . . , yj−1, xj〉〈x1, y1, . . . , yj−1, xj| ⊗ |ψ̃x1,...,xj〉〈ψ̃x1,...,xj |,

where |ψ̃x1,...,xj〉 is |ψx1,...,xj〉 normalized. The other eigenvalues do not contribute to the

points (this can be verified since these eigenvalues already contribute to probabilities adding

to 1). Similarly, an optimal choice of Zj has eigenvalues
zj,x1,y1,...,xj−1,yj−1

p(y1,...,yj−1)
, where zj is

the corresponding variable in the dual of Alice’s reduced cheating SDP, with respective

eigenspaces

Π
[x1,y1,...,xj−1,yj−1]
Zj

:= |x1, y1, . . . , xj−1, yj−1〉〈x1, y1, . . . , xj−1, yj−1| ⊗ |φ̃y1,...,yj−1
〉〈φ̃y1,...,yj−1

|,

where, again, |φ̃y1,...,yj−1
〉 is |φy1,...,yj−1

〉 normalized.

From these eigenspaces, we can compute

〈Π[x′1,y
′
1,...,y

′
j−1,x

′
j]

Wj
⊗ Π

[x1,y1,...,xj−1,yj−1]
Zj

,TrAj |ξj〉〈ξj|〉
= δx1,x′1

· · · δxj−1,x′j−1
δy1,y′1

· · · δyj−1,y′j−1
p(x1, y1, . . . , yj−1, xj).

Thus, we have the point

p(n+2)−j := Prob(Wj ⊗ Zj,TrAj |ξj〉〈ξj|)

=
∑
x1

∑
y1

· · ·
∑
yj−1

∑
xj

p(x1, y1, . . . , yj−1, xj)

[
wj,x1,y1,...,yj−1,xj

p(x1, . . . , xj)
,
zj,x1,y1,...,xj−1,yj−1

p(y1, . . . , yj−1)

]
.

We can similarly calculate

p′(n+2)−j := Prob(Wj, Zj+1,TrBj |ξ′j〉〈ξ′j|)

=
∑
x1

∑
y1

· · ·
∑
yj

∑
xj

p(x1, y1, . . . , xj, yj)

[
wj,x1,y1,...,yj−1,xj

p(x1, . . . , xj)
,
zj+1,x1,y1,...,xj ,yj

p(y1, . . . , yj)

]
.

The first three points are different from above, they concern the last few messages in

the protocol. Nonetheless, the process is the same and we can calculate them to be

p1 =
∑

a∈{0,1}

∑
x∈A

∑
y∈B

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]
,

p′1 =
∑

b∈{0,1}

∑
y∈B

1

2
p(y, b̄) [vb,y, 0] +

∑
b,y

1

2
p(y, b) [vb,y, 1] ,

p0 =
1

2
[1, 0] +

1

2
[0, 1] ,

76

noting zn+1,x,y > 0 when p(y) > 0.

We call any point game for a BCCF-protocol a BCCF-point game. In the next subsec-

tion, we describe rules for moving from one point to the next in any BCCF-point game

yielding a protocol independent definition.

2.1.6 Describing BCCF-point games using basic moves

Below are some basic point moves (or transitions) as Mochon describes them in [Moc07].

Definition 2.1.12 (Basic moves).

• Point raising

q [w, z]→ q [w, z′] , (z ≤ z′),

• Point merging

q1 [w, z1] + q2 [w, z2]→ (q1 + q2)

[
w,
q1z1 + q2z2

q1 + q2

]
,

• Point splitting

(q1 + q2)

w, q1 + q2(
q1
z1

)
+
(
q2
z2

)
→ q1 [w, z1] + q2 [w, z2] , (z1, z2 6= 0).

An example of point splitting and point raising can be seen in Figure 2.5 and examples

of point mergings can be seen in Figures 2.6 and 2.7. Using a slight abuse of the definition

of point splitting, if we perform a point split then raise the points, we still refer to this as a

point split (for reasons that will be clear later). Also, we can merge or split on more than

two points by repeating the process two points at a time.

These are moves in the second coordinate (keeping the first coordinate fixed) called

vertical moves, and we similarly define horizontal moves acting on the first coordinate

(keeping the second coordinate fixed).

Mochon gives a rough interpretation of these moves in [Moc07]. We can think of point

raising as receiving a message, point merging as generating a message, and point splitting as

77

checking a message via quantum measurement. These interpretations apply to the family of

weak coin-flipping protocols in [Moc05], and we show they also apply to BCCF-protocols.

Below are some special cases of these moves which are useful when describing BCCF-

point games.

• Probability splitting

(q1 + q2)[z, w]→ q1[z, w] + q2[z, w],

• Probability merging

q1[z, w] + q2[z, w]→ (q1 + q2)[z, w],

• Aligning

q1[z1, w] + q2[z2, w]→ q1[max {z1, z2} , w] + q2[max {z1, z2} , w].

Probability splitting is the special case of point splitting where the resulting points have

the same value and probability merging is the special case of point merging where all the

points have the same value. Aligning is just raising two points to the maximum of the two

(usually so a merge can be performed on the other coordinate).

We now show that each move in a BCCF-point game can be described using basic

moves. Consider the first transition:

1

2
[1, 0] +

1

2
[0, 1]→

∑
b∈{0,1}

∑
y∈B

1

2
p(y, b̄) [vb,y, 0] +

∑
b∈{0,1}

∑
y∈B

1

2
p(y, b) [vb,y, 1] ,

which can be described in two steps. First,

1

2
[0, 1]→

∑
b∈{0,1}

∑
y∈B

1

2
p(y, b) [vb,y, 1] ,

is just probability splitting followed by point raising (in the first coordinate). The step

1

2
[1, 0]→

∑
b∈{0,1}

∑
y∈B

1

2
p(y, b̄) [vb,y, 0] ,

is a point splitting. To see this, we have the dual constraint

Diag(va) �
√
βā
√
βā
>
, for all a ∈ {0, 1}.

78

We have seen that this is equivalent to the condition∑
y∈B

βā,y
va,y
≤ 1,

when va > 0, which is the condition for a point split. Technically, a point split would have

this inequality satisfied with equality, but we can always raise the points such that we get

an inequality. As explained earlier, we just call this a point split.

We can interpret the point raise as Alice accepting Bob’s last message b, and the point

split as Alice checking Bob’s state at the end of the protocol using her measurement. Note

that these are the last two actions of a BCCF-protocol.

We can do something similar for the second transition below∑
b∈{0,1}

∑
y∈B

1

2
p(y, b̄) [vb,y, 0] +

∑
b∈{0,1}

∑
y∈B

1

2
p(y, b) [vb,y, 1]

→
∑

a∈{0,1}

∑
x∈A

∑
y∈B

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]
.

To get this, for every b ∈ {0, 1}, y ∈ supp(βb), we point split

[vb,y, 1]→
∑
x∈A

αb,x

[
vb,y,

2zn+1,x,y

βb,y

]
.

This is a valid point split since we have the dual constraint

Diag

(
2z

(y)
n+1

βb,y

)
�
√
αb
√
αb
>
, for all b ∈ {0, 1}, y ∈ supp(βb).

The points at this stage can be seen in Figure 2.5 for the special case of a four-round

BCCF-protocol with |A| = |B| = 2 (noting that p(y, b) = 1
2
βb,y).

For the other points, we perform the probability splitting:∑
b∈{0,1}

∑
y∈B

1

2
p(y, b̄) [vb,y, 0]→

∑
b∈{0,1}

∑
y∈B

∑
x∈A

1

2
p(y, b̄)αb,x [vb,y, 0] ,

yielding the current state∑
b∈{0,1}

∑
y∈B

∑
x∈A

1

2
αb,x

(
p(y, b̄) [vb,y, 0] + p(y, b)

[
vb,y,

2zn+1,x,y

βb,y

])
.

79

Figure 2.5: Left: Point splitting [1, 0] and point raising [0, 1]. Right: Four point splittings.

(Point labels omitted for clarity.)

Merging the part in the brackets yields∑
b∈{0,1}

∑
y∈B

∑
x∈A

1

2
αb,xp(y)

[
vb,y,

zn+1,x,y

p(y)

]
=
∑

a∈{0,1}

∑
y∈B

∑
x∈A

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]
,

where the quantity on the right just relabelled b as a. The transitions here were point

splitting, point merging, and point raising (from the dual constraint on zx,y, we can think

of it as being a maximum over a, corresponding to a raise). These correspond to Bob

checking Alice, Bob generating b, and Bob receiving a, respectively.

Fortunately, the rest of the transitions are straightforward. To explain the transition∑
a∈{0,1}

∑
y∈B

∑
x∈A

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]

→
∑
y∈B

∑
x∈A

p(x, y)

[
wn,x1,y1,...,yn−1,xn

p(x)
,
zn+1,x,y

p(y)

]
,

80

all we do is merge a, then align yn ∈ Bn in the first coordinate. To see why this is valid,

we have the dual constraint

wn,x1,y1,...,yn−1,xn ≥
∑

a∈{0,1}

1

2
αa,x va,y =

∑
a∈{0,1}

p(x, a) va,y.

This corresponds to Alice generating a and receiving Bob’s message yn ∈ Bn. This is

depicted in Figure 2.6, below.

Figure 2.6: Left: Eight point merges (vertical). Right: Four point merges (horizontal).

(Point labels omitted for clarity.)

We show one more transition and the rest follow similarly. To show the transition∑
y∈B

∑
x∈A

p(x, y)

[
wn,x1,y1,...,yn−1,xn

p(x)
,
zn+1,x,y

p(y)

]
→

∑
y1

· · ·
∑
yn−1

∑
x∈A

p(x1, y1, . . . , yn−1, xn)

[
wn,x1,y1,...,yn−1,xn

p(x)
,
zn,x1,y1,...,xn−1,yn−1

p(y1, . . . , yn−1)

]
,

we merge on yn ∈ Bn then align xn ∈ An in the second coordinate. The dual constraint

corresponding to this is

zn,x1,y1,...,xn−1,yn−1 ≥
∑
yn

zn+1,x,y.

81

We can continue in this fashion until we get to the last point∑
x1

p(x1)

[
w1,x1

p(x1)
, z1

]
,

where z1 is Alice’s dual objective function value. If we merge on x1, we get Bob’s dual

objective function value in the first coordinate[∑
x1

w1,x1 , z1

]
.

Therefore, if (w1, . . . , wn, v0, v1) is feasible for the dual of Bob’s reduced cheating SDP and

(z1, . . . , zn, zn+1) is feasible for the dual of Alice’s reduced cheating SDP, then the final

point of the point game is comprised of the two dual objective function values, as seen in

Figure 2.7, below.

Figure 2.7: Left: Two point merges (vertical). Right: Last point merge (horizontal).

(Point labels omitted for clarity.)

We summarize this entire process as a list of basic moves on the following page.

82

Point Game 2.1.13 (BCCF-point game with final point [ζB, ζA] from basic moves).

1

2
[1, 0] +

1

2
[0, 1]

→
∑

a∈{0,1}

1

4
[1, 0] +

∑
a∈{0,1}

∑
y∈B

1

4
βa,y [0, 1] prob. splitting

→
∑

a∈{0,1}

∑
y∈B

1

4
βā,y [va,y, 0] +

∑
a∈{0,1}

∑
y∈B

1

4
βa,y [0, 1] point splitting

→
∑

a∈{0,1}

∑
y∈B

1

4
βā,y [va,y, 0] +

∑
a∈{0,1}

∑
y∈B

1

4
βa,y [va,y, 1] point raises

→
∑

a∈{0,1}

∑
y∈B

1

4
βā,y [va,y, 0] +

∑
a∈{0,1}

∑
y∈B

∑
x∈A

1

4
βa,yαa,x

[
va,y,

2zn+1,x,y

βa,y

]
point splitting

→
∑

a∈{0,1}

∑
y∈B

∑
x∈A

(
1

4
βā,yαa,x [va,y, 0] +

1

4
βa,yαa,x

[
va,y,

2zn+1,x,y

βa,y

])
prob. splitting

=
∑

a∈{0,1}

∑
y∈B

∑
x∈A

1

4
αa,x

(
βā,y [va,y, 0] + βa,y

[
va,y,

2zn+1,x,y

βa,y

])

→
∑

a∈{0,1}

∑
y∈B

∑
x∈A

1

4
αa,x

 ∑
b∈{0,1}

βb,y

[va,y, zn+1,x,y

p(y)

]
merges

=
∑

a∈{0,1}

∑
y∈B

∑
x∈A

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]
→

∑
y∈B

∑
x∈A

p(x, y)

[
wn,x1,y1,...,yn−1,xn

p(x)
,
zn+1,x,y

p(y)

]
merge a,

then align yn

→
∑

y1,...,yn−1

∑
x∈A

p(x, y1, . . . , yn−1)

[
wn,x1,y1,...,yn−1,xn

p(x)
,
zn,x1,y1,...,xn−1,yn−1

p(y1, . . . , yn−1)

]
merge yn,

then align xn
...

→
∑
x1

p(x1)

[
w1,x1

p(x1)
, ζA

]
merge y1,

then align x1

→ 1 [ζB, ζA] merge x1.

83

Therefore, an optimal assignment of variables in the duals of the reduced cheating

SDPs corresponds to a minimal choice of ζB and ζA. We now argue that these duals attain

an optimal solution. Since the optimal objective values are bounded above by 1, we can

upper bound the values on all of the variables in the duals accordingly (it can be shown

that va,y ≤ 2|A|, for all a ∈ {0, 1}, y ∈ B and the rest of the variables in the four duals are

bounded above by 1). Also, they are bounded below by 0 from the positive semidefiniteness

constraints. Since we are optimizing a continuous function over a compact set, we have

that an optimal solution exists.

From the point game above, we see that the only freedom is in how we choose the point

splits, the rest of the points are determined from the merges and aligns. We have seen this

idea before, in the succinct form of the duals of the reduced SDPs in Subsection 2.1.2. In

each of the succinct forms of these duals, the only freedom is in how we choose to satisfy

the last constraints. Once these variables were fixed, there was an obvious way to choose

an optimal assignment of the rest of the variables. Coincidentally, the last constraints in

each dual correspond to the point splits in the point game.

This brings us to the following protocol independent definition of BCCF-point games.

Definition 2.1.14 (BCCF-point game (protocol independent definition)). A BCCF-point

game defined on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB, with final point [ζB, ζA],

is any point game of the form

p0 :=
1

2
[1, 0] +

1

2
[0, 1]→ p1 → p2 → · · · → pm := [ζB, ζA] ,

where the transitions are exactly the basic moves as described in Point Game 2.1.13.

As mentioned above, one only has the freedom to choose how the points are split at the

beginning, the rest of the points are determined. Thus, every choice of point splitting yields

a potentially different point game (keeping α0, α1 ∈ ProbA and β0, β1 ∈ ProbB fixed). A

BCCF-point game is defined on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB which

are the same parameters that uniquely define a BCCF-protocol. However, there could be

many point games corresponding to these same parameters. The analogous concept for

BCCF-protocols is that there could be many cheating strategies for the same protocol. Of

course, there is an optimal cheating strategy just as there is an optimal BCCF-point game.

84

The above definition is protocol independent since we have defined starting points, an

ending point, and a description of how to move the points around. Indeed, the “rules”

for the point moves correspond exactly to dual feasible solutions with objective function

values being the two coordinates of the final point. This yields the following lemma which

is the application of weak and strong duality in the language of protocols and point games.

Lemma 2.1.15. Suppose [ζB, ζA] is the final point of a BCCF-point game defined on the

parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB. Then

P ∗B,1 ≤ ζB and P ∗A,0 ≤ ζA,

where P ∗B,1 and P ∗A,0 are the optimal cheating probabilities for Bob forcing 1 and Alice forcing

0, respectively, in the corresponding BCCF-protocol. Moreover, there exists a BCCF-point

game with final point
[
P ∗B,1, P

∗
A,0

]
.

In this thesis, we are concerned with bounding the bias of strong coin-flipping protocols,

and therefore would like to bound all four cheating probabilities. Recall that Alice and

Bob’s two cheating probabilities are swapped when β0 and β1 are swapped. This motivates

the following definition.

Definition 2.1.16 (BCCF-point game pair). Suppose we have a BCCF-point game defined

on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB with final point [ζB,0, ζA,1]. Also,

suppose we have another BCCF-point game defined by the parameters α0, α1 ∈ ProbA and

β′0 = β1, β
′
1 = β0 ∈ ProbB with final point [ζB,1, ζA,0]. We call the two point games a BCCF-

point game pair, defined by the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB, with final

point [ζB,0, ζB,1, ζA,0, ζA,1].

It is worth commenting that BCCF-point game pairs are defined over certain parameters

even though one of the point games in the pair is defined over swapped parameters.

Using Lemma 2.1.15, we have the following theorem.

Theorem 2.1.17. Suppose [ζB,0, ζB,1, ζA,0, ζA,1] is the final point of a BCCF-point game

pair defined on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB. Then

P ∗B,0 ≤ ζB,0, P ∗B,1 ≤ ζB,1, P ∗A,0 ≤ ζA,0, and P ∗A,1 ≤ ζA,1,

85

where P ∗B,0, P ∗B,1, P ∗A,0, P ∗A,1 are the optimal cheating probabilities for the corresponding

BCCF-protocol. Moreover, there exists a BCCF-point game pair with final point

[P ∗B,0, P
∗
B,1, P

∗
A,0, P

∗
A,1].

2.2 A related family of classical coin-flipping proto-

cols

In this section, we describe a family of classical protocols which is the classical counterpart

to quantum BCCF-protocols. That is, we choose messages according to the underlying

probability distributions (instead of in a superposition) and we have a modified cheat

detection step at the end of the protocol.

Consider the following Cartesian product of finite sets A = A1 × · · · × An which are

used for Alice’s first n messages to Bob. Suppose we are given two probability vectors

α0, α1 ∈ ProbA. Define A0 := {0, 1} for Alice’s committed bit and A′0 to be a copy.

Consider the following Cartesian product of finite sets B = B1×· · ·×Bn which are used

for Bob’s first n messages. Suppose we are given two probability vectors β0, β1 ∈ ProbB.

Define B0 := {0, 1} for Bob’s committed bit and B′0 to be a copy.

We now describe the communication of the protocol.

Protocol 2.2.1 (Classical BCCF-protocol).

• Alice chooses a ∈ A0 uniformly at random and samples x ∈ A with probability αa,x.

• Bob chooses b ∈ B0 uniformly at random and samples y ∈ B with probability βa,y.

• For i from 1 to n: Alice sends xi ∈ Ai to Bob who replies with yi ∈ Bi.

• Alice fully reveals her bit by sending a ∈ A0 to Bob. If x 6∈ supp(αa), Bob aborts.

• Bob fully reveals his bit by sending b ∈ B0 to Alice. If y 6∈ supp(βb), Alice aborts.

• The outcome of the protocol is a⊕ b, if no one aborts.

The rest of this section illustrates the connections between this classical protocol and

the quantum version.

86

2.2.1 Classical cheating strategy formulations

We can similarly formulate optimal cheating strategies as optimization problems. In this

case, we use linear programming. Recall Bob’s cheating polytope, denoted PB, is the set

of vectors (p1, p2, . . . , pn) satisfying

TrB1(p1) = eA1 ,

TrB2(p2) = p1 ⊗ eA2 ,
...

TrBn(pn) = pn−1 ⊗ eAn ,
pj ∈ RA1×B1×···×Aj×Bj

+ , for all j ∈ {1, . . . , n},

where eAj denotes the vector of all ones in the corresponding space CAj . Alice’s cheating

polytope, denoted PA, is the set of vectors (s1, s2, . . . , sn, s) satisfying

TrA1(s1) = 1,

TrA2(s2) = s1 ⊗ eB1 ,
...

TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,
s1 ∈ RA1

+ ,

sj ∈ RA1×B1×···×Bj−1×Aj
+ , for all j ∈ {2, . . . , n},

s ∈ RA×B×A′0
+ ,

where eBj is the vector of all ones in the corresponding space CBj .

We use these to characterize classical cheating strategies in the lemma below.

Lemma 2.2.2. The four optimal cheating probabilities in the classical protocol are given

by the optimal objective values of the following linear programs:

P ∗B,0 = max

1

2

∑
a∈A′0

∑
y∈supp(βa)

∑
x∈A

αa,x pn,x,y : (p1, . . . , pn) ∈ PB

 ,

P ∗B,1 = max

1

2

∑
a∈A′0

∑
y∈supp(βā)

∑
x∈A

αa,x pn,x,y : (p1, . . . , pn) ∈ PB

 ,

87

P ∗A,0 = max

1

2

∑
a∈A′0

∑
y∈B

∑
x∈supp(αa)

βa,ysa,x,y : (s1, . . . , sn, s) ∈ PA

 ,

P ∗A,1 = max

1

2

∑
a∈A′0

∑
y∈B

∑
x∈supp(αā)

βa,ysa,x,y : (s1, . . . , sn, s) ∈ PA

 .

Proof. We shall prove this for the case of cheating Bob as the case for cheating Alice is

almost identical. By examining Alice’s cheat detection, we see that if we switch the roles

of β0 and β1 then we also switch P ∗B,0 and P ∗B,1, so we only need to prove the P ∗B,0 case.

After receiving the first message from Alice, Bob must choose a message to send. He

can do this probabilistically by choosing y1 ∈ B1 with probability p1,x1,y1 , yielding the first

constraint in Bob’s cheating polytope. Notice that his message can depend on Alice’s first

message. We can similarly argue that the probabilities with which he chooses the rest

of his messages are captured by the rest of the constraints in the cheating polytope with

the exception of the last message. For the last message, we assume that Bob replies with

b = a, where a ∈ A0 was Alice’s last message, if he desires outcome 0 and b = ā otherwise.

Therefore, this decision is deterministic and is not represented by the cheating polytope.

All that remains is to explain the objective function. Since Bob chooses his last message

deterministically, the quantity 1
2
αa,x pn,x,y is the probability that Alice reveals (x, a) and

Bob reveals (y, a). If he reveals y when βa,y = 0, he gets caught cheating, otherwise, his

choice of b is accepted. Therefore the objective function captures the total probability

Alice accepts an outcome of 0.

These are very similar to the quantum cheating probabilities except for the nonlinearity

in the objective functions. For example, in the quantum setting, cheating Alice’s objective

function is
1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa)

and for the classical setting, it is

1

2

∑
a∈{0,1}

∑
y∈B

βa,y 〈s(a,y), esupp(αa)〉,

88

where esupp(αa) is the 0, 1 vector taking value 1 only on the support of αa. We have a

similar observation for Bob. What is surprising is that we can capture the communication

for both settings with the same respective cheating polytopes.

To better understand this connection, we can write the objective function of Alice’s

reduced cheating SDP as

1

2

∑
a∈{0,1}

∑
y∈B

βa,y 〈
√
s(a,y)

√
s(a,y)

>
,
√
αa
√
αa
>〉.

Then the objective function for Alice’s LP can be recovered if we replace
√
αa
√
αa
> with

Diag(esupp(αa)). Suppose we define a new projection

ΠB,0 :=
∑

a∈{0,1}

|a〉〈a| ⊗ |a〉〈a| ⊗Diag(esupp(αa))⊗ IB′ .

A quick check shows that we can repeat the entire proof of the reduced cheating problems

with this new projection if we also replace each occurrence of
√
αa
√
αa
> with Diag(esupp(αa)).

Similar statements can be made if we redefine the other projections as

ΠB,1 :=
∑

a∈{0,1}

|ā〉〈ā| ⊗ |a〉〈a| ⊗Diag(esupp(αa))⊗ IB′ ,

ΠA,0 :=
∑

a∈{0,1}

|a〉〈a| ⊗ |a〉〈a| ⊗Diag(esupp(βa))⊗ IA′ ,

ΠA,1 :=
∑

a∈{0,1}

|ā〉〈ā| ⊗ |a〉〈a| ⊗Diag(esupp(βa))⊗ IA′ .

This proves two things. First, it proves that if we weaken the quantum cheat detec-

tion, we recover the optimal cheating probabilities for the corresponding classical protocol.

Second, it gives us a recipe for developing the point games. Notice that the eigenvalues of

the dual variables are the same as in the quantum case, it is just that we have the stronger

constraints:

Diag(va) � Diag(esupp(βā)) compared to Diag(va) �
√
βā
√
βā
>
,

Diag(z
(y)
n+1) � 1

2
βa,yDiag(esupp(αa)) compared to Diag(z

(y)
n+1) � 1

2
βa,y
√
αa
√
αa
>.

89

Any solution of the constraints on the left satisfies the respective constraint on the right

since

Diag(esupp(βā)) �
√
βā
√
βā
>

and
1

2
βa,yDiag(esupp(αa)) �

1

2
βa,y
√
αa
√
αa
>
.

Since the feasible region is smaller in the classical case, we get that the optimal objective

value cannot be less than the quantum case. This makes sense since the classical protocol

has a weaker cheat detection step and we could have larger cheating probabilities. We

can think of the classical case having more general strategies since the cheat detection

step in the quantum version rules out certain strategies from being optimal. In this sense,

the classical primal feasible regions are larger and the classical dual feasible regions are

smaller. This is similar to the relationship between the duality of convex sets. We have

that C1 ⊆ C2 implies C∗1 ⊇ C∗2 and the converse holds if C1 and C2 are closed convex cones.

This relationship is depicted in Figure 2.8, below.

Figure 2.8: Relationship between primal and dual feasible regions. Roughly speaking,

duality reverses containment.

2.2.2 Point games for classical BCCF-protocols and security anal-

ysis

In this subsection, we develop the classical analog to the quantum BCCF-point games.

Using these “classical point games,” we prove that at least one party can cheat with

90

probability 1 in any classical BCCF-protocol. A closer analysis shows that both cannot

cheat with probability 1, which holds true for quantum BCCF-protocols as well.

Since point games are defined in terms of dual SDPs, we use the above embedding of

the classical cheating LPs into SDPs to construct classical BCCF-point games. Due to the

similarities, very little about the quantum BCCF-point games needs to be changed to attain

classical BCCF-point games; we only need to change the definitions of Alice and Bob’s

projections. Of course, the dual solutions may be different due to the stronger constraints

for the classical version. The only differences are in the first few points (corresponding to

the last few steps in Kitaev’s proof that involve the projections). A quick calculation shows

that these points are the same as well. The reason for this is because, in Bob’s projections,

we replace |ψa〉〈ψa| with Diag(esupp(αa))⊗ IA′ , but they have the same inner product with

the honest state of the protocol

〈|ψa〉〈ψa|, |ψa〉〈ψa|〉 = 〈|ψa〉〈ψa|,Diag(esupp(αa))⊗ IA′〉 = 1.

A similar argument holds for Alice’s projections as well.

Thus, the only difference between the classical point games are the values of the points,

which are derived from slightly different dual constraints. Let us examine the point splits.

In the quantum case, these are derived from the constraints

Diag(va) �
√
βā
√
βā
>

and Diag(z
(y)
n+1) � 1

2
βa,y
√
αa
√
αa
>
, ∀a ∈ {0, 1}, y ∈ B.

In the classical case, the corresponding constraints are

Diag(ṽa) � Diag(esupp(βā)) and Diag(z̃
(y)
n+1) � 1

2
βa,yDiag(esupp(αa)), ∀a ∈ {0, 1}, y ∈ B.

It is easy to see that ṽa = esupp(βā) and

z̃n+1,x,y =


1
2
β0,y if x ∈ supp(α0) \ supp(α1),

1
2
β1,y if x ∈ supp(α1) \ supp(α0),

1
2

maxa∈{0,1}{βa,y} if x ∈ supp(α0) ∩ supp(α1),

0 otherwise,

are optimal assignments of these variables. Recall the two point splittings:

1

2
[1, 0]→

∑
b∈{0,1}

∑
y∈B

1

4
βā,y [ṽa,y, 0] and [va,y, 1]→

∑
x∈A

αa,x

[
va,y,

2z̃n+1,x,y

βa,y

]
.

91

We see that these are probability splittings in this case (with possibly a point raise in the

case of x ∈ supp(α0) ∩ supp(α1)). These probability splittings are in contrast to the point

splittings in the quantum case. The rest of the constraints are the same as in the quantum

case and correspond to point merging, probability merging, and aligning. Therefore, the

only difference between quantum BCCF-point games and the classical version is that non-

trivial point splittings are allowed in the quantum version. Therefore, we get the following

definition.

Definition 2.2.3 (Classical BCCF-point game (protocol independent definition)). A clas-

sical BCCF-point game defined on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB,

with final point [ζB, ζA], is a quantum BCCF-point game defined by the same parameters

and having the same final point but the point splittings are trivial (i.e., they are probability

splittings).

Using this definition, we define classical BCCF-point game pairs analogously to the

quantum version.

To complete the picture, we now present the classical version of Theorem 2.1.17.

Theorem 2.2.4. Suppose [ζB,0, ζB,1, ζA,0, ζA,1] is the final point of a classical BCCF-point

game pair defined on the parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB. Then

P ∗B,0 ≤ ζB,0, P ∗B,1 ≤ ζB,1, P ∗A,0 ≤ ζA,0, and P ∗A,1 ≤ ζA,1,

where P ∗B,0, P ∗B,1, P ∗A,0, P ∗A,1 are the optimal cheating probabilities for the corresponding

classical BCCF-protocol. Moreover, there exists a classical BCCF-point game pair with

final point

[P ∗B,0, P
∗
B,1, P

∗
A,0, P

∗
A,1].

Figure 2.9 (on the next page) depicts the intricate connections between quantum and

classical BCCF-protocols and their point games.

Security analysis of classical BCCF-protocols

We start by giving an alternative proof that these classical protocols have bias ε = 1/2

using the language of point games.

92

Figure 2.9: Quantum and classical BCCF-protocol crystal structure.

Lemma 2.2.5. Suppose we have the following point game

p0 :=
1

2
[0, 1] +

1

2
[1, 0]→ p1 → · · · → pm−1 → pm := [ζB, ζA] ,

where each move is either point raising, point merging, probability merging, or probability

splitting. Then ζB ≥ 1 or ζA ≥ 1.

Proof. Suppose for a contradiction that ζB, ζA < 1 and let i ∈ {1, . . . ,m} be the smallest

index such that pi has a point of the form [ζB,i, ζA,i] with ζB,i, ζA,i < 1. Now, since pi−1 has

no such points, [ζB,i, ζA,i] could not have been generated from a point raise, a probability

merge, nor a probability split. Thus, pi−1 → pi must be a point merge and suppose without

loss of generality it acted on the first coordinate. Then pi−1 has two points q1 [ζ1, ζA,i] and

q2 [ζ2, ζA,i] with
q1 ζ1 + q2 ζ2

q1 + q2

= ζB,i < 1 =⇒ ζ1 < 1 or ζ2 < 1,

a contradiction to the minimality of i.

Using the above lemma and Theorem 2.2.4, we have the following corollary.

Corollary 2.2.6. Every classical BCCF-protocol has bias ε = 1/2.

93

There are two special cases of classical protocols we consider in greater detail. Recall

the points in the point game (before merging on a in the first coordinate)∑
a∈{0,1}

∑
y∈B

∑
x∈A

p(x, y, a)

[
va,y,

zn+1,x,y

p(y)

]
. (2.1)

The first case we consider is when α0, α1, β0, β1 > 0. Then we can set va,y = 1 for all

a ∈ {0, 1}, y ∈ B and zn+1,x,y = 1
2

maxa∈{0,1} βa,y for all a ∈ {0, 1}, x ∈ A, y ∈ B. After the

merges and aligns, we have the final point being[
1,
∑
y∈B

max
a∈{0,1}

1

2
βa,y

]
=

[
1,

1

2
+

1

2
∆(β0, β1)

]
,

using Lemma 1.4.14. We can see that this is a BCCF-point game with an optimal assign-

ment of dual variables. Thus, Bob can cheat towards 1 perfectly and Alice can force 0 with

probability 1
2

+ 1
2
∆(β0, β1) as seen in Figure 2.10, below.

Figure 2.10: Classical BCCF-point game corresponding to a BCCF-protocol favouring

cheating Bob.

94

These two quantities are invariant under switching β0 and β1, thus P ∗B,0 = P ∗B,1 = 1

and P ∗A,0 = P ∗A,1 = 1
2

+ 1
2
∆(β0, β1). The corresponding optimal cheating strategies in the

classical BCCF-protocol are obvious by noticing the cheat detection step does nothing

when the vectors have full support. Bob can send anything during the first n messages

and then return b = a. Alice can send a corresponding to her best guess of b from her

information about y ∈ B, i.e., she can cheat with the probability she can infer b from

y ∈ B. An interesting observation is that since an optimal solution for the (classical) dual

LPs is feasible in the (quantum) dual SDPs, we have that P ∗A,0, P
∗
A,1 ≤ 1

2
+ 1

2
∆(β0, β1) for

every quantum BCCF-protocol as well. This can be interpreted as follows. Suppose we

change the order of the messages in the BCCF-protocol in Alice’s favour, so that Bob’s

first n messages are sent first, followed by all of Alice’s messages, then finally Bob’s last

message. Then Alice’s new cheating probability would be 1
2

+ 1
2
∆(β0, β1) and would be

an obvious upper bound on the amount she can cheat in the original protocol (since she

gets information about b sooner than intended). This argument works for the classical and

quantum versions.

It may seem that classical protocols favour a cheating Bob, but this is not always the

case. Consider the case when β0 ⊥ β1 and α0, α1 > 0. Then we have zn+1,x,y

p(y)
= 1 for

all y ∈ supp(β0) ∪ supp(β1), thus the second coordinate equals 1 for all points in (2.1),

and remains that way until the end of the point game. This proves Alice can cheat with

probability 1, which is obvious since Bob’s first message fully reveals b and she can always

pass the cheat detection step. The extent to which Bob can cheat depends on the choice

of α0 and α1 and can be calculated as∑
x1

max
a

∑
x2

· · ·
∑
xn

1

2
αa,x =

1

2
+

1

2
∆ (TrA2×···×An(α0),TrA2×···×An(α1)) ,

using Lemma 1.4.14. This is a distance measure between the two marginal distributions

over Alice’s first message x1. This point game is depicted in Figure 2.11, on the next page.

Bob can cheat with this probability since he can choose b equal to his best guess for a

from his information about x1. Once his first message is sent, he must keep his choice of

b or he will be caught cheating with certainty. These cheating probabilities do not depend

95

Figure 2.11: Classical BCCF-point game corresponding to a BCCF-protocol favouring

cheating Alice.

on β0 or β1, so we have P ∗A,0 = P ∗A,1 = 1 and

P ∗B,0 = P ∗B,1 =
1

2
+

1

2
∆ (TrA2×···×An(α0),TrA2×···×An(α1)) .

Therefore, a classical BCCF-protocol could favour either party. This raises the question:

Can we find a BCCF-protocol such that both parties can perfectly control the outcome?

We now argue that no such classical, and hence no such quantum, BCCF-protocol exists.

Assume for a contradiction that this is the case. Then we must have

1 = P ∗A,0 ≤
1

2
+

1

2
∆(β0, β1) ≤ 1

which implies β0 ⊥ β1. The only way for Bob to cheat with probability 1 is to have complete

information about a after Alice’s first message, implying TrA2×···×An(α0) ⊥ TrA2×···×An(α1).

This can only be the case when α0 ⊥ α1 and in this case, we have argued before that Alice

96

must stick to her choice of a after her first message. Since she has no information about b

before the start of the protocol, she can only cheat with probability 1/2, a contradiction.

We have proved the following theorem.

Theorem 2.2.7. In any quantum BCCF-protocol, at most one party can cheat with prob-

ability 1. In any classical BCCF-protocol, exactly one party can cheat with probability

1.

2.2.3 Extreme points of the cheating polytopes

This subsection examines the extreme points of Alice and Bob’s cheating polytopes which

appear in both the quantum and classical cheating strategy formulations. We show that

deterministic strategies correspond to the extreme points of the cheating polytopes. One

can argue this directly from the properties of the protocol. However, we give a strictly

algebraic proof based on the properties of the cheating polytopes.

Definition 2.2.8. An extreme point of a convex set C is a point x ∈ C such that if

x = λy + (1− λ)z, for λ ∈ (0, 1), y 6= z, then y 6∈ C or z 6∈ C.

We start with a well-known fact.

Fact 2.2.9. Suppose x̃ ∈ {x ≥ 0 : Γx = b}. Then x̃ is an extreme point of {x ≥ 0 : Γx = b}
if and only if there does not exist nonzero u ∈ Null(Γ) with supp(u) ⊆ supp(x̃).

Lemma 2.2.10. Suppose (p1, . . . , pn) ∈ PB and (s1, . . . , sn, s) ∈ PA. Then the vectors are

extreme points of the respective polytopes if and only if they are Boolean, i.e., all of their

entries are 0 or 1.

Proof. We prove it for Bob’s cheating polytope as the proof for Alice’s is nearly identi-

cal. Suppose (p1, . . . , pn) ∈ PB is Boolean, we show it is an extreme point. Let Bob’s

polytope PB be represented by the linear system Γ(p1, . . . , pn) = b, (p1, . . . , pn) ≥ 0.

Let (u1, . . . , un) ∈ Null(Γ) satisfy supp(u1, . . . , un) ⊆ supp(p1, . . . , pn). We argue that

(u1, . . . , un) must be the zero vector. The constraint on p1 is
∑

y1
p1,x1,y1 = 1 for all

x1 ∈ A1. Therefore, since p1 is Boolean, there is exactly one value of y1 for every x1

such that p1,x1,y1 = 1. These are the only entries of u1 that can be nonzero, but since

97

(u1, . . . , un) ∈ Null(Γ) we must have that entry equal to 0. We can repeat this argument

to get ui = 0 for all i ∈ {1, . . . , n}. Therefore, (p1, . . . , pn) is an extreme point.

Conversely, suppose (p1, . . . , pn) ∈ PB is not Boolean. Let i be the smallest index where

pi is not Boolean. If i > 1, define uj := 0 for j ∈ {1, . . . , i− 1}. Let (x̂1, ŷ1, . . . , x̂i, ŷi) be an

index such that pi,x̂1,ŷ1,...,x̂i,ŷi ∈ (0, 1). From the constraints, we must have another ŷ′i such

that pi,x̂1,ŷ1,...,x̂i,ŷ′i
∈ (0, 1) as well (since they must add to 1). Now define ui,x̂1,ŷ1,...,x̂i,ŷi := t,

for some t 6= 0, and ui,x̂1,ŷ1,...,x̂i,ŷ′i
:= −t, and the rest of the entries of ui to be 0. We define

ui+1 to be equal to pi+1, but we scale each entry such that

TrBi+1
(ui+1) = ui ⊗ eAi+1

.

We inductively define uj in this way for all j ∈ {i+ 1, . . . , n}. Therefore, since we

scaled (p1, . . . , pn) to get (u1, . . . , un), we have supp(u1, . . . , un) ⊆ supp(p1, . . . , pn) and

(u1, . . . , un) ∈ Null(Γ) implying (p1, . . . , pn) cannot be an extreme point.

We see that extreme points of the cheating polytopes correspond to the strategies where

Alice and Bob choose their next bit deterministically depending on the bits revealed.

Corollary 2.2.11. In a classical BCCF-protocol, Alice and Bob each have an optimal

cheating strategy which is deterministic.

Proof. In a linear program whose feasible region does not contain lines, if there exists

an optimal solution then there exists an optimal solution which is an extreme point of

the feasible region. The result follows since the feasible region is nonempty and compact

implying the existence of an optimal solution.

2.3 Using classical protocols to lower bound the quan-

tum bias

In this section, we prove that no quantum BCCF-protocol can have bias ε = 1/
√

2− 1/2.

More specifically, we prove that only protocols that share optimal cheating probabilities

with their classical counterpart can saturate Kitaev’s lower bound on the product of the

cheating probabilities. This shows yet another connection between quantum and classical

BCCF-protocols.

98

We start with rederiving Kitaev’s lower bound using the reduced SDPs. The dual of

Bob’s reduced SDP can be written as

inf TrA1(w1)

subject to w1 ⊗ eB1 ≥ TrA2(w2),

w2 ⊗ eB2 ≥ TrA3(w3),
...

wn ⊗ eBn ≥ 1
2

∑
a∈{0,1} αa ⊗ va,

Diag(va) �
√
βa
√
βa
>
, for all a ∈ {0, 1},

for cheating towards 0, and the dual of Alice’s reduced SDP can be written as

inf z1

subject to z1 · eA1 ≥ TrB1(z2),

z2 ⊗ eA2 ≥ TrB2(z3),
...

zn ⊗ eAn ≥ TrBn(zn+1),

Diag(z
(y)
n+1) � 1

2
βa,y,
√
αa
√
αa
>, for all a ∈ {0, 1}, y ∈ B,

for cheating towards 0. We rederive Kitaev’s lower bound using these duals as follows. We

start with

P ∗B,0P
∗
A,0 = TrA1(w1) z1

= 〈TrA1(w1), z1〉
= 〈w1, z1 ⊗ eA1〉
≥ 〈w1,TrB1(z2)〉
= 〈w1 ⊗ eB1 , z2〉
≥ 〈TrA2(w2), z2〉
...

≥ 〈wn ⊗ eBn , zn+1〉.

We look at the quantity 〈wn ⊗ eBn , zn+1〉 separately since the following analysis is slightly

different. We use the inequality

wn ⊗ eBn ≥
1

2

∑
a∈{0,1}

αa ⊗ va

99

and decompose

zn+1 =
∑
y∈B

z
(y)
n+1 ⊗ ey

to get

〈wn ⊗ eBn , zn+1〉 ≥
1

2

∑
a∈{0,1}

〈αa ⊗ va, z(y)
n+1 ⊗ ey〉

=
1

2

∑
a∈{0,1}

∑
y∈B

〈αa, z(y)
n+1〉〈va, ey〉

=
1

2

∑
a∈{0,1}

∑
y∈B

〈
√
αa
√
αa
>
,Diag(z

(y)
n+1)〉〈Diag(va), eye

>
y 〉

≥ 1

2

∑
a∈{0,1}

∑
y∈B

〈
√
αa
√
αa
>
,
1

2
βa,y
√
αa
√
αa
>〉〈Diag(va), eye

>
y 〉

=
1

4

∑
a∈{0,1}

〈Diag(va),Diag(βa)〉

=
1

4

∑
a∈{0,1}

〈Diag(va),
√
βa
√
βa
>
〉

≥ 1

4

∑
a∈{0,1}

〈
√
βa
√
βa
>
,
√
βa
√
βa
>
〉

=
1

2
.

Therefore, we get Kitaev’s lower bound P ∗A,0P
∗
B,0 ≥ 1/2 implying that P ∗A,0 ≥ 1/

√
2 or

P ∗B,0 ≥ 1/
√

2. Note this was later reproven by Gutoski and Watrous (for general coin-

flipping protocols) using a different representation of cheating strategies in [GW07].

We get the inequality P ∗A,1P
∗
B,1 ≥ 1/2 by switching β0 with β1 in the proof above (and

the dual variables accordingly). Using these two lower bounds, we show that it is impossible

to have a quantum BCCF-protocol with bias ε = 1/
√

2− 1/2 by proving Kitaev’s bounds

can only be saturated with protocols where one party can cheat perfectly. More specifically,

we show that if there exists four dual solutions that saturate both of Kitaev’s bounds

P ∗A,0P
∗
B,0 ≥ 1/2 and P ∗A,1P

∗
B,1 ≥ 1/2,

then all four of the dual solutions must be in the restricted part of the feasible regions

defined by the classical dual LPs, depicted in Figure 2.12.

100

Figure 2.12: The four “quantum” dual feasible regions and the four “classical” dual feasible

regions. If Kitaev’s lower bounds are saturated by a quantum BCCF-protocol, then the

four optimal dual solutions are in the smaller “classical” feasible regions.

Theorem 2.3.1. Suppose a quantum BCCF-protocol satisfies

P ∗A,0 P
∗
B,0 =

1

2
and P ∗A,1 P

∗
B,1 =

1

2
.

Then the cheating probabilities are the same as in the corresponding classical protocol.

Proof. We look at Kitaev’s proof above, and note that if it were saturated, then every

inequality must hold with equality. Therefore, we get that

Diag(va) �
√
βa
√
βa
>

(2.2)

has no slack on the subspace spanned by
√
βa
√
βa
>

, i.e.,

〈Diag(va)−
√
βa
√
βa
>
,
√
βa
√
βa
>
〉 = 0 ⇐⇒ 〈Diag(va),

√
βa
√
βa
>
〉 = 1, (2.3)

101

for both a ∈ {0, 1}. Consider va = esupp(βa), this satisfies the constraint (2.2) and satisfies

the condition (2.3). We show this choice is unique (on supp(βa)). Consider the optimization

problems

inf
{
〈Diag(va),

√
βa
√
βa
>
〉 : Diag(va) �

√
βa
√
βa
>}

= inf

 ∑
y∈supp(βa)

va,yβa,y :
∑

y∈supp(βa)

βa,y
va,y
≤ 1, va,y > 0

 .

Obviously va = esupp(βa) is an optimal solution since 1 is a lower bound on the optimal

objective value. Suppose there are two optimal solutions v′ and v′′. Then 1
2
v′ + 1

2
v′′ has

the same objective value, but satisfies the constraint∑
y∈supp(βa)

βa,y
va,y
≤ 1

with strict inequality since the function
∑

y∈supp(βa)
βa,y
va,y

is strictly convex. Thus, we can

scale 1
2
v′ + 1

2
v′′ to get a better objective function value, a contradiction. Therefore, if

Kitaev’s bound is saturated, we must have va,y = 1 for all a ∈ {0, 1}, y ∈ supp(βa).

We argue the same about Alice’s dual variables z
(y)
n+1. If the Kitaev inequalities are

saturated, we have

〈
√
αa
√
αa
>
,Diag(z

(y)
n+1)− 1

2
βa,y
√
αa
√
αa
>〉 = 0 ⇐⇒ 〈

√
αa
√
αa
>
,Diag(z

(y)
n+1)〉 =

1

2
βa,y,

for all a, y such that va,y > 0, i.e., for all y ∈ supp(βa).

Similar to the arguments above, we need [z
(y)
n+1]x = 1

2
βa,y for a ∈ {0, 1}, x ∈ supp(αa),

and y ∈ supp(βa).

To summarize, if we have Kitaev’s bounds saturated, then the optimal dual solutions

satisfy

Diag(va) � Diag(esupp(βa)) and Diag(z
(y)
n+1) � 1

2
βa,y Diag(esupp(αa)),∀a ∈ {0, 1}, y ∈ B,

which are exactly the constraints in the dual LPs for the classical version. Therefore, the

protocol must have the property that relaxing the cheat detection steps in ΠA,0 and ΠB,0

(obtaining the classical cheat detection) preserves the two cheating probabilities. We can

102

repeat the same argument with Alice and Bob cheating towards 1 and get the two corre-

sponding classical cheating probabilities. Therefore, we have all four cheating probabilities

are equal to those of the corresponding classical protocol, as desired.

Since every classical protocol allows one party to cheat perfectly, we have the following

result.

Corollary 2.3.2. ε = 1/
√

2− 1/2 is impossible for any BCCF-protocol.

The proof of Theorem 2.3.1 gives necessary conditions on classical protocols that sat-

urate Kitaev’s bound. Note from the condition on z
(y)
n+1, we have

[zn+1]x,y =
1

2
βa,y when βa,y, αa,x > 0.

In the case when α0, α1, β0, β1 > 0, then β0 must equal β1. This makes sense since Bob

can easily cheat with probability 1, but if β0 6= β1, then Alice could cheat with probability

greater than 1/2. In the case when α0 ⊥ α1, the condition above tells us nothing, but

it is easy to see that Alice fully reveals a in the first message, thus she can cheat with

probability 1/2 and Bob can cheat with probability 1.

2.3.1 A better lower bound on a special case

We prove that there are no BCCF-protocols with bias less than ε = 1/4 for the special case

when A = B = {0, 1}. This is the simplest non-trivial BCCF-protocol where Alice and

Bob each have two messages; the first message is a qubit, and the second message reveals

their committed bit.

We make use of the strengthened Fuchs-van de Graaf inequality

1− F(ρ0, ρ1) ≤ ∆(ρ0, ρ1),

when ρ0, ρ1 are qubit states (see [SR01]).

Let

β0 = [r, 1− r]> and β1 = [1− t, t]>,

where r ≥ 1 − t (we can switch β0 and β1 if this is not the case and the bias remains

unchanged).

103

We present a fact here which is proved as part of two more general theorems (Theo-

rem 3.1.2 and Theorem 3.1.9) in Chapter 3. This fact presents lower bounds on the extent

Alice and Bob can cheat. Note that the result of this subsection is independent of Chaper 3.

Fact 2.3.3. For any four-round BCCF-protocol, we have

• P ∗B,0 ≥ 1
2

+ 1
2
∆(α0, α1),

• P ∗B,0 ≥ 1
2

+ 1
2

√
F(β0, β1),

• P ∗A,0 ≥ 1
2
λmax

(
r
√
α0
√
α0
> + t

√
α1
√
α1
>
)

= 1
4

(
r + t+

√
(r − t)2 + 4rtF(α0, α1)

)
,

where r and t are as above.

Suppose Bob can cheat with probability at most 3/4. Then

1

2
+

1

2

√
F(β0, β1) ≤ 3

4
=⇒ 2∆(β0, β1) ≥ 1 =⇒ r + t ≥ 3

2
=⇒ r, t ≥ 1

2
.

Another consequence is

1

2
+

1

2

√
F(β0, β1) ≤ 3/4 =⇒

√
r(1− t) +

√
t(1− r) ≤ 1

2

which can be used to bound t as

t ≥ f(r) :=
r

2
+

1

4
+
√

3r(1− r).

Since Bob can cheat with probability at most 3/4, we also have that

1

2
+

1

2
∆(α0, α1) ≤ 3

4
=⇒ F(α0, α1) ≥ 1

2
.

Using these inequalities, Alice can cheat with probability

P ∗A,0 ≥
1

2
λmax

(
r
√
α0

√
α0
>

+ t
√
α1

√
α1
>
)

=
1

4

(
r + t+

√
(r − t)2 + 4rtF(α0, α1)

)
≥ 1

4

(
r + t+

√
r2 + t2

)
(since F(α0, α1) ≥ 1/2)

≥ 1

4

(
r + f(r) +

√
r2 + f(r)2

)
(since t ≥ f(r))

≥ 3/4 (minimized at r = 1 on the interval [1/2, 1]).

104

Therefore, one of Alice or Bob can cheat with probability at least 3/4 in this case.

Note that all three of the lower bounds in Fact 2.3.3 could be less than Kitaev’s bound

1/
√

2 ≈ 0.707 when |A| and |B| are larger than 2. Therefore, we cannot get an interesting

lower bound using Fact 2.3.3 even if we could strengthen the Fuchs-van de Graaf inequalities

for higher dimensional states.

105

Chapter 3

A computational search for

BCCF-protocols with small bias

The content of this chapter is based on my work with Ashwin Nayak and Levent Tunçel.

In the previous chapter, we defined a family of coin-flipping protocols and proved a lower

bound on the bias. In this chapter, we are concerned with finding the best upper bound.

Upper bounds are achieved by exhibiting a protocol with a proof of its bias. With highly

interactive protocols, it is a difficult task to simply point out a protocol that performs well.

Instead, we have designed an algorithm to search for protocols with small bias over the

parameters α0, α1 ∈ ProbA and β0, β1 ∈ ProbB.

We start with a simple idea: We create a finite mesh over the parameters and, for each

point in the mesh, calculate the four cheating probabilities then the bias. However, it is

not hard to be convinced that this task grows very expensive as the mesh becomes finer.

We therefore introduce heuristics to decrease the number of protocols needed to be tested

and also to decrease the time it takes to test each protocol. This process is broken into

the following steps.

• Section 3.1: We examine feasible cheating strategies for Alice and Bob by studying

the reduced cheating SDPs. By restricting the feasible region in certain ways, we

reveal certain cheating strategies. The set of strategies we obtain creates a protocol

filter. The protocol filter is used to quickly eliminate protocols with high bias from

106

the search.

• Section 3.2: We study the symmetry of the parameters defining BCCF-protocols

and show how certain permutations of the indices preserve the bias. This drastically

reduces the number of protocols needed to be checked.

• Section 3.3: We describe how the mesh is generated and exhibit a protocol with bias

ε = 1/4. We give two proofs of the bias of this protocol, one quantum and one using

the cheating SDPs. This gives a bias cut-off point. We then describe the algorithm

using these ideas and those developed in the previous two sections.

• Section 3.4: We present the numerical results of several searches. We present the

results in tables indicating how well each strategy in the filter performed and how

many protocols made it all the way through the filter. We also test the algorithm by

randomly offsetting the mesh. We conclude with the conjecture that ε = 1/4 is the

smallest attainable bias for BCCF-protocols.

3.1 The protocol filter

In this section, we describe ways to approximate the optimal cheating probabilities by

finding feasible solutions to Alice and Bob’s reduced cheating SDPs. Why do we care

about feasible solutions that may not be optimal? The algorithm tests many protocols

so the idea is to have simple checks to see whether a protocol is a good candidate for

being optimal. For example, suppose we have the success probability of a certain cheating

strategy for, say, Bob. Then for a given set of parameters, if this strategy succeeds with

high probability, then we can rule out these parameters as being a good candidate and

save the time it would have taken to solve the SDPs (or SOCPs).

We illustrate this idea using Kitaev’s lower bound below.

Theorem 3.1.1 ([Kit02, GW07]). For any coin-flipping protocol, we have

P ∗A,0P
∗
B,0 ≥

1

2
and P ∗A,1P

∗
B,1 ≥

1

2
.

107

Suppose that we compute and find P ∗A,0 ≈ 1/2, that is, the protocol is very secure

concerning Alice cheating towards 0. Then, from Kitaev’s bound, we know that P ∗B,0 ≈ 1

and the protocol is very insecure concerning cheating Bob. Therefore, we do not need to

solve for P ∗B,0 since we know this protocol has large bias.

The remainder of this section is divided into cheating Alice and cheating Bob. We

discuss cheating strategies for each and for the special cases of four-round and six-round

protocols.

3.1.1 Cheating Alice

We now present a theorem which captures some of Alice’s cheating strategies.

Theorem 3.1.2. For any BCCF-protocol, we can bound Alice’s optimal cheating probabil-

ity as follows:

P ∗A,0 ≥
1

2

∑
y∈B

conca∈{0,1} {βa,yF(·, αa)} (v) (3.1)

≥ 1

2
λmax

(
η
√
α0

√
α0
>

+ τ
√
α1

√
α1
>
)

(3.2)

≥
(

1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
, (3.3)

where

η :=
∑
y∈B:

β0,y≥β1,y

β0,y and τ :=
∑
y∈B:

β0,y<β1,y

β1,y,

and
√
v is the normalized, nonnegative principal eigenvector of η

√
α0
√
α0
> + τ

√
α1
√
α1
>.

We call (3.1) Alice’s improved eigenstrategy, (3.2) her eigenstrategy, and (3.3) her three-

round strategy.

Furthermore, in a six-round protocol, we have

P ∗A,0 ≥
1

2
λmax

(
η′
√

TrA2(α0)
√

TrA2(α0)
>

+ τ ′
√

TrA2(α1)
√

TrA2(α1)
>)

(3.4)

≥
(

1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
, (3.5)

108

where

η′ :=
∑
y1∈B1:

[TrB2
(β0)]y1≥[TrB2

(β1)]y1

[TrB2(β0)]y1 and τ ′ :=
∑
y1∈B1:

[TrB2
(β0)]y1<[TrB2

(β1)]y1

[TrB2(β1)]y1 .

We call (3.4) Alice’s six-round eigenstrategy and (3.5) her measuring strategy. We get

bounds for P ∗A,1 when we switch the roles of β0 and β1 above.

Note that only the improved eigenstrategy is affected by switching β0 and β1 (as long

as we are willing to accept a slight modification to how we break ties in the definitions of

η, η′, τ, and τ ′).

We now briefly describe the strategies that yield the corresponding cheating probabili-

ties in Theorem 3.1.2.

Figure 3.1: Alice cheating in a four-round BCCF-protocol.

Her three-round strategy is to send σ1 as if it were a standard three-round protocol,

measure Bob’s message to try to learn b, and reply with a deterministically, depending on

her desired outcome. Her eigenstrategy is the same as her three-round strategy, except the

first message is optimized. The improved eigenstrategy has the same first message as her

eigenstrategy, but the last message is optimized. These strategies work for the general case

as well, were Alice treats her first n messages like the first one in a four-round protocol.

109

Figure 3.2: Alice cheating in a six-round BCCF-protocol.

The six-round version is depicted above. Her six-round eigenstrategy is the same as

the four-round version, except she tries to learn b from the first message, and only her

first message is optimized. Her measuring strategy is the same as her three-round strategy

in the four-round version, she sends the first message as in a three-round protocol then

measures Bob’s first message to try to learn b.

Developing Alice’s strategies

Recall Alice’s reduced SDP

P ∗A,0 = max

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) : (s1, . . . , sn, s) ∈ PA

 ,

110

where PA is the set of vectors (s1, s2, . . . , sn, s) satisfying

TrA1(s1) = 1,

TrA2(s2) = s1 ⊗ eB1 ,
...

TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,
s1 ∈ RA1

+ ,

sj ∈ RA1×B1×···×Bj−1×Aj
+ , for all j ∈ {2, . . . , n},

s ∈ RA×B×A′0
+ .

To get a feasible solution, suppose Alice guesses b before she reveals a in the following

way. If Bob reveals y ∈ B, then Alice guesses b = 0 if β0,y ≥ β1,y and b = 1 if β0,y < β1,y.

Let Alice’s guess be denoted by f(y), so

f(y) = arg max
a
{βa,y} ∈ {0, 1},

and we set f(y) = 0 in the case of a tie. We have chosen a way to satisfy the last

constraint in Alice’s cheating polytope, but we can choose how Alice sends her first n

messages s1, . . . , sn. We make one more restriction, we set sn = d⊗ eB and optimize over

d ∈ RA
+. We can easily satisfy the rest of the constraints given any d by choosing each

variable as the corresponding marginal probability distribution.

Under these restrictions, we have that Alice’s reduced problem can be written as

max
d∈ProbA

{
1

2

∑
y∈B

βf(y),yF(d, αf(y))

}
= max

d∈ProbA

{η
2

F(d, α0) +
τ

2
F(d, α1)

}
.

We can simplify this using the following lemma.

Lemma 3.1.3. For nonnegative vectors {z1, . . . , zm} ⊂ Rn
+, we have that

max

{
m∑
i=1

F(p, zi) : p ∈ Probn

}
= λmax

(
m∑
i=1

√
zi
√
zi
>

)
,

where λmax denotes the largest eigenvalue. Furthermore, an optimal solution is the entry-

wise square of the normalized, nonnegative principal eigenvector.

111

Proof. Since
∑m

i=1 F(p, zi) =
∑m

i=1〈
√
p
√
p>,
√
zi
√
zi
>〉 =

√
p>
(∑m

i=1

√
zi
√
zi
>
)√

p,

where
√
· is the entry-wise square root, the maximization problem reduces to

max

{
√
p>
(

m∑
i=1

√
zi
√
zi
>

)
√
p : p ∈ Probn

}
.

If the nonnegativity constraint were not present, the optimal value would be attained by set-

ting
√
p to be a normalized principal eigenvector of

∑m
i=1

√
zi
√
zi
>. Because

∑m
i=1

√
zi
√
zi
>

has nonnegative entries, we know there exists a nonnegative principal eigenvector by the

Perron-Frobenius Theorem. Since this does not violate the nonnegativity constraint in

the problem, this value for p is an optimal solution yielding an optimal objective value of

λmax

(∑m
i=1

√
zi
√
zi
>
)

.

Using this lemma, Alice can cheat with probability

1

2
λmax

(
η
√
α0

√
α0
>

+ τ
√
α1

√
α1
>
)
,

which we call Alice’s eigenstrategy.

Since 1
2
(η + τ) =

∑
y maxa

{
1
2
βa,y
}

, we have

1

2
λmax

(
η
√
α0

√
α0
>

+ τ
√
α1

√
α1
>
)

=
1

4

(
η + τ +

√
(η − τ)2 + 4ητ F(α0, α1)

)
≥ 1

4

(
η + τ +

√
(η − τ)2F(α0, α1) + 4ητ F(α0, α1)

)
=

1

4

((
1 +

√
F(α0, α1)

)
(η + τ)

)
=

(
1

2
+

1

2

√
F(α0, α1)

)(
1

2
+

1

2
∆(β0, β1)

)
,

using Lemma 1.4.14 and Lemma 1.4.13.

This lower bound has a natural interpretation. This is the strategy where Alice ignores

all of Bob’s messages until CBn is sent. Then she measures the state in CB to learn b

with probability 1
2

+ 1
2
∆(β0, β1). She then tries to get past Bob’s cheat detection and can

do so with probability 1
2

+ 1
2

√
F(α0, α1). We call this Alice’s three-round strategy since

it combines optimal strategies for three-round protocols [Amb01, NS03, KN04]. It makes

sense that this is a lower bound on the success probability of Alice’s eigenstrategy since

112

her eigenstrategy is optimized after the same restriction present in three-round strategy

(choosing b from the most likely choice from knowledge of y).

We can also examine how Alice can choose her last message optimally supposing she has

already sent her first n messages. I.e., suppose we fix some s1, . . . , sn satisfying the first n

constraints of her cheating polytope and we want to optimize over s satisfying TrA′0(s) = c,

where c := sn⊗ eBn is now constant. In this case, the only constraint is TrA′0(s) = c which

can be written as
∑

a∈{0,1} s
(a,y) = c, for each y ∈ B, where again, s(a,y) is the restriction

of s with a and y fixed. Now we get the following optimization problem

max 1
2

∑
a∈{0,1}

∑
y∈B βa,yF(s(a,y), αa)

subject to
∑

a∈{0,1} s
(a,y) = c, for all y ∈ B,
s(a,y) ∈ RA

+.

If we rewrite this as

max 1
2

∑
y∈B

∑
a∈{0,1} F(s(a,y), βa,yαa)

subject to
∑

a∈{0,1} s
(a,y) = c, for all y ∈ B,
s(a,y) ∈ RA

+,

we see that this is a separable problem over y ∈ B. That is, for each fixed ỹ ∈ B, we need

to solve the optimization problem

Gỹ(c) := max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ∈ RA
+, ∀a ∈ {0, 1}

 .

This optimization problem has a special structure.

Definition 3.1.4. The infimal convolution of the convex functions f1, f2, . . . , fn, where

f1, . . . , fn : Rn → R ∪ {∞}, is

(f1 � f2 � · · · � fn)(d) := inf
x∈Rn

{
n∑
i=1

fi(xi) :
n∑
i=1

xi = d

}
.

We do not need to worry about the nonnegativity constraints on the variables since we

can define the convex function −F(p, q) = +∞ if p or q is not nonnegative. Note for every

p ∈ Rn
+, that −F(p, ·) is a proper, convex function, i.e., it is convex and −F(p, q) < +∞ for

113

some q ∈ Rn
+. Using these properties and the fact that −F(p, ·) is positively homogeneous,

we show a way to express Gỹ.

Recall that for proper, convex functions f1, . . . , fn : Rn → R∪{∞} we define the convex

hull of {f1, . . . , fn} as the greatest convex function f such that f(x) ≤ f1(x), . . . , fn(x) for

every x ∈ Rn. To write down explicitly what the convex hull is, we use the following

definition.

Definition 3.1.5. We define the right scalar multiplication of a function f as

(fλ)(x) =


λf(λ−1x) for λ > 0,

0 for λ = 0, x = 0,

+∞ for λ = 0, x 6= 0.

Thus, (fλ) = f for all λ > 0 if and only if f is positively homogeneous.

Theorem 3.1.6 (Rockafellar, [Roc70, page 38]). Let f1, . . . , fn : Rn → R∪{∞} be proper,

convex functions. Then we have

conv {f1, . . . , fn} (d) = inf
λ∈Probn

{((f1λ1) � (f2λ2) � · · · � (fnλn))(d)} .

We now present a theorem which helps capture Alice’s cheating probability.

Theorem 3.1.7. Suppose f1, . . . , fn : Rn → R ∪ {∞} are positively homogenous, proper,

convex functions and fi(0) = 0, for all i ∈ {1, . . . , n}. Then

conv {f1, . . . , fn} = f1 � f2 � · · · � fn.

Proof. From the results above, it suffices to prove that we can assume λ > 0 in Theo-

rem 3.1.6. Now suppose λi = 0 for i in index set I, positive otherwise. Since we are

minimizing over x, we need xi = 0 for i ∈ I, otherwise (fi0)(xi) = +∞. Then we have

((f1λ1) � · · · � (fnλn))(d) = inf
x∈Rn

{∑
i∈I

(fi0)(xi) +
∑
i 6∈I

fi(xi) :
∑
i∈I

xi +
∑
i 6∈I

xi = d

}

= inf
x∈Rn

{∑
i 6∈I

fi(xi) :
∑
i 6∈I

xi = d

}

≥ inf
x∈Rn

{
n∑
i=1

fi(xi) :
n∑
i=1

xi = d

}
= (f1 � f2 � · · · � fn)(d),

114

which can be attained by choosing λ > 0, since each fi is positively homogenous.

We have

Gỹ(c) = max

1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ∈ RA
+, ∀a ∈ {0, 1}


= −min

−1

2

∑
a∈{0,1}

F(s(a,ỹ), βa,ỹαa) :
∑

a∈{0,1}

s(a,ỹ) = c, s(a,ỹ) ∈ RA
+, ∀a ∈ {0, 1}


= −

(
−1

2
F(·, β0,ỹα0)

)
�

(
−1

2
F(·, β1,ỹα1)

)
(c)

= −conv

{
−1

2
β0,ỹF(·, α0),

−1

2
β1,ỹF(·, α1)

}
(c)

= conc

{
1

2
β0,ỹF(·, α0),

1

2
β1,ỹF(·, α1)

}
(c).

Thus, we can write Alice’s optimization problem as

P ∗A,0 = max
c

∑
y∈B

conc

{
1

2
β0,yF(·, α0),

1

2
β1,yF(·, α1)

}
(c),

where c ranges over all feasible choices of the first n messages. Note the special case of

n = 1, then this is simply c ∈ ProbA1 = ProbA. Alice’s improved eigenstrategy is when

Alice chooses c according to her eigenstrategy, yet reveals a optimally as above.

This may seem like an optimal solution since we are optimizing over the first n messages,

then optimizing over the last message, but we are not optimizing over them simultaneously.

However, this is a very good approximation of the optimal solution as seen in the numerical

tests in Subsection 3.4.

Alice cheating in the six-round version

We want to maximize the objective function
1

2

∑
a∈{0,1}

∑
y1∈B1

∑
y2∈B2

βa,y1y2F(s(a,y1y2), αa)

115

over (s1, s2, s) satisfying:

TrA1(s1) = 1,

TrA2(s2) = s1 ⊗ eB1 ,

TrA′0(s) = s2 ⊗ eB2 ,

s1 ∈ RA1
+ ,

s2 ∈ RA1×B1×A2
+ ,

s ∈ RA1×A2×B1×B2×A′0
+ .

We suppose that Alice chooses her commitment a based on the most likely choice of b

after seeing y1 ∈ B1 from Bob’s first message. Let f ′(y1) = arg maxa∈A′0 {[TrB2(βa)]y1} and

0 in the case of a tie. The last constraint can be written as
∑

a∈A′0
s(a,y1y2) = s

(y1)
2 , for

all y1 ∈ B1, where s
(y1)
2 is the projection of s2 with the index y1 fixed. Alice’s choice of

commitment is equivalent to setting s(a,y1,y2) = s
(y1)
2 , if a = f ′(y1), and 0 otherwise. Now we

set s
(y1)
2 = s0

2, if 0 = f ′(y1), and s
(y1)
2 = s1

2, if 1 = f ′(y1), where we optimize s0
2, s

1
2 ∈ RA1×A2

+ .

s0
2 and s1

2 are the second messages which only depend on her first message and the inferred

value of b from y1.

The new objective function can be written as

1

2

∑
a∈A′0

∑
y1∈B1,y2∈B2

βa,y1y2F(s(a,y1y2), αa) =
1

2

∑
y1∈B1

[∑
y2∈B2

βf ′(y1),y1y2

]
F(s

f ′(y1)
2 , αf ′(y1))

=
η′

2
F(s0

2, α0) +
τ ′

2
F(s1

2, α1).

Since the only constraints remaining are TrA2(s0
2) = s1 = TrA2(s1

2), we now optimize over

each choice of s0
2 and s1

2 separately using the following lemma.

Lemma 3.1.8. For α ∈ RA1×A2
+ and c ∈ RA1

+ , we have

max
{

F(p, α) : TrA2(p) = c, p ∈ RA1×A2
+

}
≥ F(c,TrA2(α)).

The inequality can be shown to hold with equality by Uhlmann’s theorem. However,

we prove the inequality by exhibiting a feasible solution which is also useful for the analysis

of cheating Bob.

116

Proof. For each x1 ∈ A1, x2 ∈ A2, define px1,x2 as

px1,x2 :=


cx1

αx1,x2

[TrA2(α)]x1

if [TrA2(α)]x1 > 0,

cx1

1

|A2|
if [TrA2(α)]x1 = 0.

Then we have p ≥ 0 is feasible since [TrA2(p)]x1 = cx1 and it has objective function value

F(p, α) =

 ∑
x1,x2:

αx1,x2>0

√
px1,x2

√
αx1,x2


2

=

 ∑
x1,x2:

αx1,x2>0

√
cx1

αx1,x2

[TrA2(α)]x1

√
αx1,x2


2

=

(∑
x1

√
cx1

√
[TrA2(α)]x1

)2

,

= F(c,TrA2(α)),

as desired.

Using Lemma 3.1.8, we can write Alice’s problem as

max
c∈ProbA1

η′

2
F(c,TrA2(α0)) +

τ ′

2
F(c,TrA2(α1))

which has optimal objective value

1

2
λmax

(
η′
√

TrA2(α0)
√

TrA2(α0)
>

+ τ ′
√

TrA2(α1)
√

TrA2(α1)
>)

.

This can be lower bounded by(
1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
which is the success probability of the strategy where Alice measures the first message to

learn b early and then tries to change the value of a. She can learn b with probability

117

1
2

+ 1
2
∆(TrB2(β0),TrB2(β1)). She can successfully change the value of a with probability

1
2

+ 1
2

√
F(TrA2(α0),TrA2(α1)). Thus, she can cheat with probability at least(

1

2
+

1

2

√
F(TrA2(α0),TrA2(α1))

)(
1

2
+

1

2
∆(TrB2(β0),TrB2(β1))

)
.

3.1.2 Cheating Bob

We now present a theorem capturing some of Bob’s cheating strategies.

Theorem 3.1.9. For any BCCF-protocol, we can bound Bob’s optimal cheating probabili-

ties as follows:

P ∗B,0 ≥
1

2
+

1

2

√
F(β0, β1) (3.1)

and

P ∗B,0 ≥
1

2
+

1

2
∆(TrA2×···×An(α0),TrA2×···×An(α1)). (3.2)

We call (3.1) Bob’s ignoring strategy and (3.2) his measuring strategy.

In a four-round protocol, we have

P ∗B,0 ≥
1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,x(vx), βa

)
(3.3)

≥ 1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>

 (3.4)

≥ 1

2
+

1

2
∆(α0, α1),

1

2
+

1

2

√
F(β0, β1),

where vx is the entry-wise square of the normalized, nonnegative principal eigenvector of∑
a∈{0,1}

αa,x
√
βa
√
βa
>
.

We call (3.3) Bob’s eigenstrategy and (3.4) his eigenstrategy lower bound.

118

In a six-round protocol, we have

P ∗B,0 ≥
1

2

∑
a∈A′0

F

(∑
x∈A

αa,xp̃2
(x), βa

)
(3.5)

≥ 1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
>

+ ω
√

TrB2(β1)
√

TrB2(β1)
>)

(3.6)

≥
(

1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
, (3.7)

where

κ =
∑
x∈A:

α0,x≥α1,x

α0,x, ω =
∑
x∈A:

α0,x<α1,x

α1,x, g(x) = arg max
a
{αa,x} ,

[p̃2
(x)]y1, y2 :=


cy1

βg(x),y1,y2

[TrB2(βg(x))]y1

if [TrB2(βg(x))]y1 > 0,

cy1

1

|B2|
if [TrB2(βg(x))]y1 = 0,

and c is the entry-wise square of the normalized, nonnegative principal eigenvector of

κ
√

TrB2(β0)
√

TrB2(β0)
>

+ ω
√

TrB2(β1)
√

TrB2(β1)
>
.

We call (3.5) Bob’s six-round eigenstrategy, (3.6) his six-round eigenstrategy lower bound,

and (3.7) his three-round strategy. Furthermore, if |Ai| = |Bi|, for all i ∈ {1, . . . , n}, then

P ∗B,0 ≥
1

2

∑
a∈{0,1}

F(αa, βa), (3.8)

which we call Bob’s returning strategy. We can lower bound P ∗B,1 as well if we switch the

roles of β0 and β1 above.

Note that the only strategies that are affected by switching β0 and β1 are the eigen-

strategies and the returning strategy.

We now briefly describe the strategies that yield the corresponding cheating probabili-

ties in Theorem 3.1.9.

119

Figure 3.3: Bob cheating in a four-round BCCF-protocol.

His ignoring strategy is to ignore all of Alice’s messages until a is revealed, then try to

change his value of b. His measuring strategy is to measure Alice’s first message and choose

b according to his best guess for a. His returning strategy is to send Alice’s messages right

back to her. For the four-round eigenstrategy, Bob’s first message is a principal eigenvector

depending on Alice’s first message.

For the six-round version (figure on the next page), his three-round strategy is to send

his first message as in a three-round protocol, measure Alice’s second message to obtain a

guess for a, then try to change the value of b. His six-round eigenstrategy is the same as

his three-round strategy, except the first message is optimized in a way described later in

this section.

Developing Bob’s strategies

Bob’s returning strategy is to send Alice’s messages right back to her (if the dimensions

agree). If α0 = β0 and α1 = β1, then this strategy allows Bob to win perfectly if he wants

outcome 0 since if a = 0 and Alice sends |ψ0〉, then Bob replies with b = a and the state

to be checked is |ψ0〉 = |φ0〉. To evaluate the success probability of this strategy for any

choice of parameters, it is easier to use the original cheating SDP as opposed to the reduced

120

Figure 3.4: Bob cheating in a six-round BCCF-protocol.

cheating SDP. This cheating strategy corresponds to the feasible solution

ρ̄1 = ρ̄2 = · · · = ρ̄n = ρ̄F = |ψ〉〈ψ|

which has success probability

〈ρ̄F ,ΠA,0〉 = 〈|ψ〉〈ψ|,ΠA,0〉 =
1

2

∑
a∈{0,1}

F(αa, βa).

This is clearly optimal when α0 = β0 and α1 = β1.

Recall Bob’s reduced problem below

P ∗B,0 = max

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>pn, βa

)
: (p1, . . . , pn) ∈ PB

 ,

121

where PB is the set of vectors (p1, p2, . . . , pn) satisfying

TrB1(p1) = eA1 ,

TrB2(p2) = p1 ⊗ eA2 ,
...

TrBn(pn) = pn−1 ⊗ eAn ,
pj ∈ RA1×B1×···×Aj×Bj

+ , for all j ∈ {1, . . . , n}.

There is a strategy for Bob that works for any n and is very important in the search

algorithm. This is the strategy where Bob ignores all of Alice’s messages and tries to

choose b after learning a from Alice. By ignoring Alice’s messages, he is effectively setting

pn = eA ⊗ d, for some d ∈ ProbB, which we optimize. Under this restriction, he can cheat

with probability

max
d∈ProbB

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IB)>(eA ⊗ d), βa

)
= max

d∈ProbB

1

2

∑
a∈{0,1}

F (d, βa)

=
1

2
λmax

(√
β0

√
β0

>
+
√
β1

√
β1

>)
=

1

2
+

1

2

√
F(β0, β1),

using Lemma 3.1.3 and Lemma 1.4.13. The reason this strategy is important is that it is

relatively cheap to compute, only depends on half of the parameters, and performs quite

well under these circumstances. We call this Bob’s ignoring strategy.

Another strategy for Bob is to measure Alice’s first message, choose b accordingly,

then follow the rest of the protocol honestly. This is called Bob’s measuring strategy and

succeeds with probability

1

2
+

1

2
∆(TrA2×···×An (α0) ,TrA2×···×An (α1)),

when n ≥ 2. We discuss the case of n = 1, i.e. four-round protocols, separately.

Bob cheating in the four-round version

In four-round protocols, some cheating strategies exist that do not work for protocols

with more rounds. One reason is because Bob has all of Alice’s CA space before he must

122

send any messages. We show that Bob can use this to his advantage. One example is Bob’s

measuring strategy can simply be written as

1

2
+

1

2
∆(α0, α1).

Similar to cheating Alice, we can develop an eigenstrategy for Bob. For the special case

of four-round protocols, notice that Bob’s cheating polytope contains only the constraints

TrB(p1) = eA and p1 ∈ RA×B
+ . This can be rewritten as p

(x)
1 ∈ ProbB for all x ∈ A. Also,

F
(
(αa ⊗ IB)>p1, βa

)
can be written as F

(∑
x∈A αa,xp

(x)
1 , βa

)
. Thus, we can rewrite Bob’s

reduced problem as

P ∗B,0 = max

1

2

∑
a∈{0,1}

F

(∑
x∈A

αa,xp
(x)
1 , βa

)
: p

(x)
1 ∈ ProbB, for all x ∈ A

 .

Since fidelity is concave, we have that F
(∑

x∈A αa,xp
(x)
1 , βa

)
≥
∑

x∈A αa,xF(p
(x)
1 , βa). There-

fore, Bob’s optimal cheating probability is bounded below by

max

1

2

∑
x∈A

∑
a∈{0,1}

αa,xF(p
(x)
1 , βa) : p

(x)
1 ∈ ProbB, for all x ∈ A


which separates over x ∈ A. That is, we can choose each p

(x)
1 ∈ ProbB separately to

maximize ∑
a∈{0,1}

αa,xF(p
(x)
1 , βa).

Lemma 3.1.3 shows that each subproblem has an optimal objective value of

1

2
λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>

 .

Thus, we know that

P ∗B,0 ≥
1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>

 .

123

Since we are using the concavity of the objective function to bound it, we are getting

a loose bound. Notice that solving the smaller separated problems yields a solution which

is feasible for the original problem. Therefore, we can substitute this into the original

objective function to get a better lower bound on Bob’s optimal cheating probability. We

call this Bob’s eigenstrategy.

Since eigenvalues are expensive to compute, we can bound this quantity by

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>

 ≥ min
β0,β1∈ProbB

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>


=

1

2

∑
x∈A

max
a∈{0,1}

{αa,x}

=
1

2
+

1

2
∆(α0, α1),

where the last equality follows from Lemma 1.4.14.

Since f(X) = λmax(X) is subadditive, i.e., λmax(X1) + λmax(X2) ≥ λmax(X1 + X2), we

have that

1

2

∑
x∈A

λmax

 ∑
a∈{0,1}

αa,x
√
βa
√
βa
>

 ≥ 1

2
λmax

∑
x∈A

∑
a∈{0,1}

αa,x
√
βa
√
βa
>


=

1

2
λmax

 ∑
a∈{0,1}

√
βa
√
βa
>


=

1

2
+

1

2

√
F(β0, β1),

using Lemma 1.4.13. Therefore, Bob’s eigenstrategy lower bound performs better than

both his measuring strategy and ignoring strategy.

Bob cheating in the six-round version

We want to maximize the objective function
1

2

∑
a∈{0,1}

F((αa⊗IB1×B2)>p2, βa) over (p1, p2)

124

satisfying:

TrB1(p1) = eA1 ,

TrB2(p2) = p1 ⊗ eA2 ,

p1 ∈ RA1×B1
+ ,

p2 ∈ RA1×B1×A2×B2
+ .

Like the four-round version, we can lower bound the objective function as

1

2

∑
a∈A′0

F

(∑
x∈A

αa,xp
(x)
2 , βa

)
≥ 1

2

∑
x∈A

∑
a∈A′0

F(p
(x)
2 , αa,xβa).

We make the restriction p
(x1)
1 = c, for all x1 ∈ A1, for a fixed value of c which we optimize

later. We now analyze the subproblem

max

∑
a∈A′0

F(p
(x)
2 , αa,xβa) : TrB2(p

(x)
2) = c, p

(x)
2 ∈ RB

+


using the following lemma.

Lemma 3.1.10. For β0, β1 ∈ RB1×B2
+ and c ∈ RB1

+ , we have

max

 ∑
a∈{0,1}

F(p, βa) : TrB2(p) = c, p ∈ RB1×B2
+

 ≥ F(c,TrB2(βã)),

for any ã ∈ {0, 1}.

Proof. Just fix a value for a then choose p ∈ arg max
{

F(p, βa) : TrB2(p) = c, p ∈ RB1×B2
+

}
.

The result follows since F(p, βā) ≥ 0 and by Lemma 3.1.8.

We now apply Lemma 3.1.10 to lower bound Alice’s problem as∑
a∈A′0

F(p
(x)
2 , αa,xβa) ≥ αg(x),x F(c,TrB2(βg(x))),

where g(x) := arg maxa∈A′0 {αa,x}, and 0 in the case of a tie.

125

Substituting this into the subproblem, we have

P ∗B,0 ≥ max
c∈ProbB1

1

2

∑
x∈A

αg(x),x F(c,TrB2(βg(x)))

= max
c∈ProbB1

κ

2
F(c,TrB2(β0)) +

ω

2
F(c,TrB2(β1))

=
1

2
λmax

(
κ
√

TrB2(β0)
√

TrB2(β0)
>

+ ω
√

TrB2(β1)
√

TrB2(β1)
>)

(3.6)

≥
(

1

2
+

1

2
∆(α0, α1)

)(
1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)
, (3.7)

by the same arguments used for cheating Alice. We call (3.6) Bob’s six-round eigenstrategy

lower bound. The quantity (3.7) corresponds to the strategy where Bob measures Alice’s

second message to try to learn a early, then tries to change the value of b. He can learn

a after Alice’s second message with probability 1
2

+ 1
2
∆(α0, α1). He can change the value

of b with probability 1
2

+ 1
2

√
F(TrB2(β0),TrB2(β1)). Thus, he can cheat with probability at

least (
1

2
+

1

2

√
F(TrB2(β0),TrB2(β1))

)(
1

2
+

1

2
∆(α0, α1)

)
.

We call this Bob’s three-round strategy.

Although we used many bounds in developing the quantity (3.6), such as the lower

bound in Lemma 3.1.10, we can recover some of the losses by generating the correspond-

ing feasible solution and computing its objective function value for the original objective

function. For example, we can calculate c as the entry-wise square of the normalized,

nonnegative principal eigenvector of

κ
√

TrB2(β0)
√

TrB2(β0)
>

+ ω
√

TrB2(β1)
√

TrB2(β1)
>
,

then calculate p
(x)
2 for each value of x from the construction of the feasible solution in the

proof of Lemma 3.1.8. We call this Bob’s six-round eigenstrategy.

3.2 Protocol symmetry

In this section, we discuss symmetry in BCCF-protocols. Symmetry is very important in

computational optimization since it can greatly reduce the time for computations. For

BCCF-protocols, we show that there is much symmetry in the parameters.

126

3.2.1 Symmetry in local permutations

We show that if we permute the elements of Ai, or Bi, for some fixed i ∈ {1, . . . , n}, then

this does not change the bias of the protocol. We first show that cheating Bob is unaffected.

Cheating Bob: Bob’s reduced problems are to maximize 1
2

∑
a∈A′0

F
(
(αa ⊗ IB)>pn, βa

)
,

for forcing outcome 0, and 1
2

∑
a∈A′0

F
(
(αa ⊗ IB)>pn, βā

)
, for forcing outcome 1, over the

polytope PB defined as the set of all vectors (p1, p2, . . . , pn) satisfying

TrB1(p1) = eA1 ,

TrB2(p2) = p1 ⊗ eA2 ,
...

TrBn(pn) = pn−1 ⊗ eAn ,
pj ∈ RA1×B1×···×Aj×Bj

+ , for all j ∈ {1, . . . , n}.

Suppose we are given a new protocol where the elements of Ai have been permuted,

for some i ∈ {1, . . . , n} (and likewise the entries of αa for a ∈ {0, 1}). We can write the

entries of (αa ⊗ IB)>pn as

[(αa ⊗ IB)>pn]y =
∑
x∈A

αa,xpn,x,y,

for each y ∈ B. If we permute the entries in pn corresponding to Ai (and likewise for every

variable in the polytope) we get the same objective function value. Thus, dishonest Bob

cannot cheat more or less than the original protocol.

Now suppose we are given a new protocol where the elements of Bi have been permuted

for some i ∈ {1, . . . , n}. We can write

F
(
(αa ⊗ IB)>pn, βa

)
=
(√

(αa ⊗ IB)>pn
>√

βa

)2

.

If we permute the entries in pn corresponding to Bi (and likewise for every variable in the

polytope) we get the same objective function value. A similar argument holds for P ∗B,1. In

both cases, Bob’s two cheating probabilities are unaffected.

127

Cheating Alice: To show the bias remains unchanged, we still need to check that cheat-

ing Alice is unaffected by these permutations. Alice’s reduced problems are to maximize

the objective function 1
2

∑
a∈A′0

∑
y∈B βa,y F(s(a,y), αa) for outcome 0, and to maximize

1
2

∑
a∈A′0

∑
y∈B βā,y F(s(a,y), αa) for outcome 1, over the set of all vectors (s1, s2, . . . , sn, s)

satisfying

TrA1(s1) = 1,

TrA2(s2) = s1 ⊗ eB1 ,
...

TrAn(sn) = sn−1 ⊗ eBn−1 ,

TrA′0(s) = sn ⊗ eBn ,
sj ∈ RA1×B1×···×Bj−1×Aj

+ , for all j ∈ {1, . . . , n},
s ∈ RA×B×A′0

+ .

By examining the above problem, we see that the same arguments that apply to cheating

Bob also apply to cheating Alice. We can simply permute any feasible solution to account

for any permutation in Ai or Bi.

Note that these arguments only hold for “local” permutations, i.e., if we permute the

elements between Cartesian products in A1 × · · · × An the bias may change.

3.2.2 Symmetry between probability vectors

We now show a different kind of symmetry in the protocols. Recall the four objective

functions below

P ∗B,0 =
1

2

∑
a∈A′0

F
(
(αa ⊗ IB)>pn, βa

)
and P ∗B,1 =

1

2

∑
a∈A′0

F
(
(αa ⊗ IB)>pn, βā

)
for Bob and

P ∗A,0 =
1

2

∑
y∈B

∑
a∈{0,1}

βa,yF(s(a,y), αa) and P ∗A,1 =
1

2

∑
y∈B

∑
a∈{0,1}

βā,yF(s(a,y), αa)

for Alice. We argue that the four quantities above are not effected if we switch β0 and β1

and simultaneously switch α0 and α1. This is obvious for cheating Bob, but it requires

explanation for cheating Alice. The only constraints involving s(a,y) can be written as∑
a∈A′0

s(a,y) = s(y1,...,yn−1)
n ,

128

for all y = (y1, . . . , yn−1, yn) ∈ B. Since this constraint is symmetric about a, the result

follows.

We have shown that switching the roles of β0 and β1 switches P ∗A,0 and P ∗A,1 and also

switches P ∗B,0 and P ∗B,1. With these symmetries, we can effectively switch the roles of α0

and α1 and the roles of β0 and β1 independently and the bias is unaffected.

How we apply the symmetry in the four and six-round versions

Since we are able to switch the roles of α0 and α1, we can assume α0 has the largest

entry out of α0 and α1 and similarly that β0 has the largest entry out of β0 and β1.

In the four-round version, since we can permute the elements of A = A1, we can also

assume α0 has entries that are non-decreasing. This allows us to upper bound all the

entries of α0 and α1 by the last entry in α0. We can do this simultaneously for β0 and β1.

In the six-round version, we need to be careful when applying the symmetry arguments,

we cannot permute all of the entries in α0. The symmetry only applies to local permuta-

tions so we can only partially order them. We can order A2 such that the entries α0,x̃1x2

do not decrease for one particular index x̃1 ∈ A1. It is convenient to choose the index

corresponding to the largest entry. Then we can order the last block of entries in α0 such

that they do not decrease. Note that the last entry in α0 is now the largest among all the

entries in α0 and α1. We can do this simultaneously for β0 and β1.

3.3 The search algorithm

In this section, we describe an algorithm for finding BCCF-protocols with small bias. We

start with the following search algorithm prototype.

129

Pseudo-algorithm for finding BCCF-protocols with small bias

For each choice of α0, α1, β0, and β1 (modulo the symmetry):

• Use the protocol filter to test if the protocol has large bias.

• Solve the necessary SDPs (or SOCPs) characterizing the bias.

• If the protocol has small bias: stop and output the protocol parameters.

We now discuss a few key steps to speed up the search and how to iterate over the param-

eters.

3.3.1 A protocol with bias 1/4

We now present a protocol and give two proofs of its bias. This acts as a cut-off point

for a “small bias.” We can extend the three-round protocol in [KN04] to a four-round

BCCF-protocol by defining

A = {0, 1, 2} , B = {0, 1} , α0 =
1

2
[1, 0, 1]> , α1 =

1

2
[0, 1, 1]> , β0 = [1, 0]> , β1 = [0, 1]> .

Notice that β0 ⊥ β1, so b is completely revealed in Bob’s first message. We now show that

the bias of this protocol is ε = 1/4.

A quantum proof

We examine the most general cheating strategies of Alice and Bob.

Cheating Alice: We see that Bob’s first message completely reveals his committed bit.

Therefore, Alice must choose her first message, call it σ ∈ ΣA
+, such that when she learns b

after Bob’s message, she can fool him into thinking that she chose a = b at the beginning

of the protocol (if she wants outcome 0). If σ ∈ ΣA
+ was sent in the first message, and b is

revealed, then the success probability is

F(σ,TrB|ψb〉〈ψb|) = F(σ,Diag(αb)),

130

where |ψb〉 := 1√
2
|bb〉+ 1√

2
|22〉 ∈ C3 ⊗ C3, as discussed in Subsection 1.4.3. Therefore, the

optimal success probability is

max
σ

∑
b∈{0,1}

1

2
F(σ,Diag(αb)),

where σ ∈ ΣA
+ is a density matrix. Define the following quantum channel

Ξ(X) := Diag(diag(X)).

Since the fidelity does not decrease after applying a quantum channel to both inputs, we

have

max
σ

∑
b∈{0,1}

1

2
F(σ,Diag(αb)) ≤ max

σ

∑
b∈{0,1}

1

2
F(Ξ(σ),Ξ(Diag(αb))

= max
c∈ProbA

∑
b∈{0,1}

1

2
F(c, αb)

=
1

2
λmax

(√
α0

√
α0
>

+
√
α1

√
α1
>
)

=
1

2
+

1

2

√
F(α0, α1)

=
3

4
,

using Lemmas 3.1.3 and 1.4.13. This upper bound can be achieved by choosing σ to be

diagonal. This is independent of whether she wants outcome 0 or 1, thus P ∗A,0 = P ∗A,1 = 3/4.

Cheating Bob: If Bob wants to cheat, he must infer the value of a from Alice’s first

message since β0 ⊥ β1 which binds him to a value of b from his first message. Thus, he

can cheat with probability given by

1

2
+

1

2
∆(α0, α1) = 3/4,

as discussed in Subsection 1.4.3. Therefore, P ∗B,0 = P ∗B,1 = 3/4 as well, proving ε = 1/4 for

this protocol.

131

An SDP proof

Numerically solving for the cheating probabilities for this protocol shows that

P ∗A,0 = P ∗A,1 = P ∗B,0 = P ∗B,1 = 3/4.

However, when it comes to proving the bias of a protocol, one should take numerical

findings such as these as supporting evidence only. Thus, we prove these are the optimal

values of the four cheating SDPs by presenting feasible primal and dual solutions with

matching objective function values. Note, sometimes it suffices to just prove an upper

bound. In these cases, one could just find feasible solutions for the dual SDPs.

Cheating Alice: We can adapt the quantum proof (or the output from numerical tests)

to find a feasible primal solution to Alice’s reduced cheating SDP for forcing outcome 0.

Define

(s1, s
(0,0), s(0,1), s(1,0), s(1,1)) := (c, c, 0, 0, c), where c :=

 1/6

1/6

2/3

 ∈ ProbA.

We have (s1, s) ∈ PA with objective function value

1

2

∑
a∈{0,1}

∑
y∈B

βa,y F(s(a,y), αa) =
1

2
F(c, α0) +

1

2
F(c, α1) = 3/4.

Therefore, P ∗A,0 ≥ 3/4. Alice’s dual SDP for forcing outcome 0 is

inf TrA(w)

subject to w ⊗ eB ≥ 1

2

 1/2

0

1/2

⊗ v0 +
1

2

 0

1/2

1/2

⊗ v1,

Diag(v0) �

[
1 0

0 0

]
,

Diag(v1) �

[
0 0

0 1

]
,

132

which has the feasible solution

(v0, v1, w) =

[1

0

]
,

[
0

1

]
,

 1/4

1/4

1/4




with corresponding objective function value 3/4. Thus, P ∗A,0 ≤ 3/4 proving P ∗A,0 = 3/4.

By switching

v0 ←→ v1, s(0,0) ←→ s(0,1), and s(1,0) ←→ s(1,1),

we get primal and dual feasible solutions for Alice forcing outcome 1, both having objective

function value 3/4. Therefore, we have P ∗A,1 = 3/4, as well.

Cheating Bob: We now repeat the process for cheating Bob. Define p ∈ RA×B
+ as

p := [1, 0, 0, 1, 1/2, 1/2]> ∈ PB,

which has objective function value

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IA)>p, βa

)
=

1

2
[(α0 ⊗ IA)>p]0 + [(α1 ⊗ IA)>p]1 = 3/4

for forcing outcome 0. By defining

p := [0, 1, 1, 0, 1/2, 1/2]> ∈ PB,

we get

1

2

∑
a∈{0,1}

F
(
(αa ⊗ IA)>p, βā

)
=

1

2
[(α0 ⊗ IA)>p]1 + [(α1 ⊗ IA)>p]0 = 3/4

for forcing outcome 1. This proves P ∗B,0, P
∗
B,1 ≥ 3/4. The dual for forcing outcome 0 is

inf z1

subject to z1 · eA ≥ z
(0)
2 + z

(1)
2

Diag(z
(0)
2) � 1

2

 1/2 0 1/2

0 0 0

1/2 0 1/2

 ,
Diag(z

(1)
2) � 1

2

 0 0 0

0 1/2 1/2

0 1/2 1/2

 .
133

We see that this has the feasible solution

(z1, z
(0)
2 , z

(1)
2) :=

3

4
,

 3/4

0

3/8

 ,
 0

3/4

3/8




with objective function value 3/4. By switching z
(0)
2 ←→ z

(1)
2 , we get a feasible dual solution

for Bob forcing outcome 1, with objective function value 3/4. Thus, P ∗B,0, P
∗
B,1 ≤ 3/4,

proving P ∗B,0, P
∗
B,1 = 3/4 as desired.

Note that the SDP proof is longer in this case (in part because we reproduced the

SDPs and their duals). However, it has the advantage of working for protocols with many

rounds. Proving upper bounds on cheating is a very difficult task and this is where the

duality of semidefinite programming becomes a very useful tool.

3.3.2 Making a finite mesh

We can only search a finite number of protocols so we create a finite approximation of an

uncountably infinite set using a mesh. We fix a dimension d and a precision p ∈ (0, 1)

and range over entries in α0, α1, β0, and β1 in increments of p keeping them as probability

vectors. For example, in the four-round version, the values of α0,0 range over

{0, p, 2p, . . . , 1− p, 1} .

Note we only consider p = 1/p′ for some positive integer p′ so that we use the endpoints

of the intervals. For values of α0,1, we range over

{0, p, 2p, . . . , 1− α0,0},

and so forth. Note that by creating the mesh in this way, it is very easy to exploit the

symmetry discussed in Section 3.2. We show numerically that this symmetry helps by

dramatically reducing the number of protocols needed to be tested. This is important

since there are
(
d+p′−1
p′

)4
protocols to test (before symmetry).

3.3.3 The refined algorithm

Using these ideas, we can further refine the algorithm.

134

Search algorithm for finding BCCF-protocols with small bias

For each protocol in the finite mesh (modulo the symmetry):

• Use the protocol filter to test if the protocol has bias ε ≥ 1/4.

If so, move on to the next protocol.

• Solve the necessary SDPs (or SOCPs).

If any have optimal value 3/4 or larger (or 2/3 or less) move on

to the next protocol.

Else, output the protocol parameters and bias ε < 1/4.

Suppose for example that P ∗A,0 ≤ 2/3. Then P ∗B,0 ≥ 3/4 from Kitaev’s bound so we move

on to the next protocol.

We test the search algorithm for the cases of four and six-round protocols and for

certain dimensions and mesh precisions in the following section.

3.4 Numerical results

Computational Platform. Programs were ran on Matlab, Version 7.12.0.635, on an

SGI XE C1103 with 2x 3.2 GHz 4-core Intel X5672 x86 CPUs processor, and 10 GB

memory, running Linux.

Semidefinite programs were solved using SeDuMi 1.3, a program for solving semidefinite

programs in Matlab [Stu99, Stu02].

3.4.1 Four-round search

We list the filter cheating strategies in the tables below and give an estimate of how long

the success probability for each strategy takes to compute (averaging over 1000 randomly

generated α0, α1, β0, β1). We then give tables detailing how well the filter performs for

four-round protocols for dimension d ∈ {2, . . . , 9} and for various values of precision p.

135

Note that for the cheating probability cut-off, we use 0.7499 instead of 0.75. This is

because many cheating strategies in the filter succeed with probability exactly 0.75 and

the filter would let these boundary cases through which slows down the search.

Notice the two strategies F1 and F2 are special because they only involve two of the

four probability distributions. Preliminary tests show that first generating β0 and β1 and

checking with F1 is much faster than first generating α0 and α1 and checking with F2, even

though F2 is much faster to compute. If we were to calculate F2 first, we would have to

calculate F1 for every choice of (α0, α0, β0, β1) that F2 did not filter out, roughly squaring

the number of F1 computations. For this reason, it is better to have the cheaper strategy

second.

We can also justify the placement of P ∗A,0 before P ∗B,0 or P ∗B,1. The strategies F8 and

F9 performed very well in preliminary tests and the cheating probabilities are very close

to P ∗B,0 and P ∗B,1. Thus, if a protocol gets through the F8 and F9 filter strategies, then it

is likely that P ∗B,0 and P ∗B,1 will also be less than 0.7499. This is why we place P ∗A,0 first.

Note that we solve for P ∗B,0, P ∗B,1, P ∗A,0, and P ∗A,1 using the SDP formulation of the reduced

problems. Preliminary tests show that SeDuMi ran into numerical issues while solving the

SOCPs. Fortunately, the filter works so well that few SDPs are needed to be solved.

136

T
ab

le
3.

1:
R

u
n
n
in

g
ti

m
es

fo
r

fi
lt

er
st

ra
te

gi
es

fo
r

a
fo

u
r-

ro
u
n
d

p
ro

to
co

l
w

h
en

d
=

5
(1

of
2)

S
u
cc

es
s

P
ro

b
ab

il
it

y
C

om
p
.

T
im

e
(s

)
C

o
d
e

1 2
+

1 2

√ F
(β

0
,β

1
)

0.
00

00
34

42
9

F
1

1 2
+

1 2
∆

(α
0
,α

1
)

0.
00

00
04

64
0

F
2

(1 2
+

1 2

√ F
(α

0
,α

1
)) (1 2

+
1 2
∆

(β
0
,β

1
))

0.
00

00
25

98
0

F
3

1 2

∑ a
∈
{0
,1
}

F
(α

a
,β

a
)

0.
00

00
23

76
7

F
4

1 2

∑ a
∈
{0
,1
}

F
(α

a
,β

ā
)

0.
00

00
18

01
9

F
5

1 2
λ

m
a
x

  
∑

y
:β

0
,y
≥
β

1
,y

β
0
,y

 √
α

0
√
α

0
>

+

 
∑

y
:β

0
,y
<
β

1
,y

β
1
,y

 √
α

1
√
α

1
>

 
0.

00
00

36
61

3
F

6

(√
v

is
th

e
p
ri

n
ci

p
al

ei
ge

n
ve

ct
or

)

1 2

∑ x
∈
A
λ

m
a
x

(∑ a
∈
{0
,1
}
α
a
,x

√
β
a

√
β
a
>
)

0.
00

00
73

01
0

F
7

(√
v x

is
th

e
p
ri

n
ci

p
al

ei
ge

n
ve

ct
or

fo
r

ea
ch

x
∈
A

)

1 2

∑ a
∈
{0
,1
}

F
(∑ x

∈
A
α
a
,x

(v
x
),
β
a

)
0.

00
06

97
61

1
F

8

1 2

∑ a
∈
{0
,1
}

F
(∑ x

∈
A
α
a
,x

(v
x
),
β
ā

)
0.

00
05

32
95

4
F

9

137

T
ab

le
3.

2:
R

u
n
n
in

g
ti

m
es

fo
r

fi
lt

er
st

ra
te

gi
es

fo
r

a
fo

u
r-

ro
u
n
d

p
ro

to
co

l
w

h
en

d
=

5
(2

of
2)

S
u
cc

es
s

P
ro

b
ab

il
it

y
C

om
p
.

T
im

e
(s

)
C

o
d
e

∑ y
∈
B

co
n
c
{ 1 2
β

0
,y

F
(·,
α

0
),

1 2
β

1
,y

F
(·,
α

1
)} (v

)
0.

12
29

71
20

5
F

10

∑ y
∈
B

co
n
c
{ 1 2
β

1
,y

F
(·,
α

0
),

1 2
β

0
,y

F
(·,
α

1
)} (v

)
0.

12
33

75
67

8
F

11

P
∗ A
,0

0.
14

98
14

37
3

S
D

P
A

0

1

2P
∗ A
,0

0.
00

00
00

94
7

F
12

P
∗ B
,0

0.
07

08
46

37
8

S
D

P
B

0

P
∗ A
,1

0.
14

91
76

11
7

S
D

P
A

1

1

2P
∗ A
,1

0.
00

00
00

76
0

F
13

P
∗ B
,1

0.
07

04
79

44
9

S
D

P
B

1

138

T
ab

le
3.

3:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
2

d
=

2
p

=
1/

50
0

p
=

1/
10

00
p

=
1/

12
50

p
=

1/
15

00
p

=
1/

20
00

P
ro

to
co

ls
6.

30
e+

10
1.

00
e+

12
2.

44
e+

12
5.

07
e+

12
1.

60
e+

13

S
y
m

m
et

ry
3,

96
9,

12
6,

00
1

63
,0

01
,5

02
,0

01
15

3,
56

6,
79

9,
37

6
31

8,
09

7,
12

8,
00

1
1,

00
4,

00
6,

00
4,

00
1

F
1

96
,7

06
,5

35
1,

49
9,

47
9,

97
4

3,
63

6,
60

9,
28

0
7,

50
6,

28
9,

30
9

23
,6

07
,1

43
,5

60

F
2

72
,3

36
,8

75
1,

12
3,

11
2,

00
0

2,
72

4,
55

2,
32

0
5,

62
4,

71
6,

12
5

17
,6

93
,5

60
,0

00

F
3

5
27

50
67

12
4

F
4

0
0

0
0

0

F
5

0
0

0
0

0

F
6

0
0

0
0

0

F
7

0
0

0
0

0

F
8

0
0

0
0

0

139

T
ab

le
3.

4:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
3

d
=

3
p

=
1/

5
p

=
1/

10
p

=
1/

20
p

=
1/

30
p

=
1/

50

P
ro

to
co

ls
1.

94
e+

05
1.

89
e+

07
2.

84
e+

09
6.

05
e+

10
3.

09
e+

12

S
y
m

m
et

ry
4,

35
6

27
2,

48
4

29
,4

30
,6

25
55

,4
36

,7
02

5
25

,4
75

,9
90

,5
44

F
1

1,
25

4
37

,5
84

2,
17

5,
42

5
30

,9
85

,2
20

1,
02

0,
08

0,
29

2

F
2

66
5

19
,6

56
1,

30
0,

04
2

19
,3

66
,2

56
66

2,
15

8,
72

8

F
3

49
47

0
22

,2
82

22
5,

09
8

4,
41

4,
99

4

F
4

29
26

1
11

,6
67

11
0,

93
1

2,
02

8,
51

8

F
5

28
25

8
11

,4
95

10
9,

51
5

2,
00

9,
14

1

F
6

28
24

1
10

,4
05

96
,4

64
1,

76
5,

11
4

F
7

0
3

54
14

8
1,

15
8

F
8

0
0

0
0

0

140

T
ab

le
3.

5:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
4

d
=

4
p

=
1/

10
p

=
1/

12
p

=
1/

16
p

=
1/

20
1/

24
1/

30

P
ro

to
co

ls
6.

69
e+

09
4.

28
e+

10
8.

81
e+

11
9.

83
e+

12
7.

31
e+

13
8.

86
e+

14

S
y
m

m
et

ry
13

,4
98

,2
76

74
,1

66
,5

44
1,

15
4,

64
0,

40
0

10
,3

34
,5

52
,2

81
69

,9
27

,4
55

,8
44

73
6,

48
6,

64
3,

34
4

F
1

2,
43

2,
18

8
12

,6
16

,5
80

14
6,

11
4,

00
0

93
4,

85
6,

16
4

5,
91

6,
00

6,
93

6
49

,7
98

,9
33

,2
64

F
2

1,
03

6,
03

0
5,

61
6,

81
0

71
,2

46
,7

00
48

9,
28

2,
37

6
3,

17
0,

62
6,

95
6

27
,7

60
,1

30
,9

76

F
3

66
,6

23
30

2,
54

7
3,

18
5,

89
5

19
,6

70
,6

42
10

1,
70

3,
66

7
73

8,
28

4,
52

2

F
4

46
,7

34
20

9,
74

7
2,

06
1,

86
8

12
,0

00
,1

87
59

,5
03

,8
95

40
6,

96
3,

11
2

F
5

46
,5

31
20

8,
96

1
2,

05
4,

89
1

11
,9

62
,1

04
59

,3
53

,3
74

40
6,

09
9,

63
7

F
6

42
,5

91
19

8,
19

2
1,

88
6,

78
2

11
,0

04
,1

25
54

,7
02

,0
75

36
7,

84
7,

30
4

F
7

32
9

75
6

3,
43

9
17

,1
44

55
,9

29
19

0,
69

9

F
8

0
0

0
0

0
0

141

T
ab

le
3.

6:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
5

d
=

5
p

=
1/

5
p

=
1/

8
p

=
1/

10
p

=
1/

12

P
ro

to
co

ls
2.

52
e+

08
6.

00
e+

10
1.

00
e+

12
1.

09
e+

13

S
y
m

m
et

ry
24

0,
10

0
29

,5
39

,2
25

28
4,

52
9,

42
4

2,
48

5,
91

9,
88

1

F
1

10
5,

84
0

9,
46

7,
77

0
66

,2
57

,5
04

56
7,

54
4,

99
7

F
2

37
,5

84
2,

68
7,

90
6

22
,7

74
,5

44
20

3,
98

3,
36

0

F
3

8,
56

1
24

1,
42

0
2,

44
0,

76
5

17
,7

94
,6

55

F
4

7,
42

3
20

1,
56

9
1,

93
7,

29
8

13
,6

82
,0

59

F
5

7,
41

7
20

0,
96

5
1,

93
3,

83
3

13
,6

65
,0

87

F
6

7,
41

7
18

9,
14

4
1,

79
0,

14
4

13
,1

17
,1

65

F
7

0
14

15
10

,7
90

43
,4

59

F
8

0
0

0
0

142

T
ab

le
3.

7:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
6

d
=

6
p

=
1/

7
p

=
1/

8
p

=
1/

9
p
=

1/
10

p
=

1/
11

p
=

1/
12

P
ro

to
co

ls
3.

93
e+

11
2.

74
e+

12
1.

60
e+

13
8.

13
e+

13
3.

64
e+

14
1.

46
e+

15

S
y
m

m
et

ry
53

,1
44

,1
00

26
5,

95
0,

86
4

1,
02

1,
82

5,
15

6
3,

53
4,

30
2,

50
0

12
,5

77
,3

98
,2

01
46

,1
07

,2
55

,0
76

F
1

25
,0

70
,3

10
10

7,
58

3,
87

6
38

7,
45

9,
88

6
1,

03
4,

78
6,

70
0

3,
60

5,
81

4,
64

8
13

,3
70

,5
58

,5
68

F
2

7,
27

6,
92

4
23

,2
94

,0
07

12
3,

24
6,

32
8

28
7,

25
1,

21
8

1,
33

0,
22

4,
69

6
3,

84
1,

06
3,

84
8

F
3

1,
74

4,
03

8
2,

81
1,

37
4

25
,1

14
,4

51
42

,5
03

,2
08

25
8,

45
5,

91
6

46
8,

21
8,

32
4

F
4

1,
55

1,
52

2
2,

52
6,

90
0

21
,6

82
,0

87
36

,6
28

,5
17

21
4,

82
3,

64
2

39
0,

84
6,

15
8

F
5

1,
55

0,
61

7
2,

52
4,

05
2

21
,6

66
,4

37
36

,5
94

,6
82

21
4,

69
8,

07
2

39
0,

64
9,

93
1

F
6

1,
45

1,
03

8
2,

41
9,

47
4

20
,5

98
,7

49
34

,1
17

,9
86

20
3,

60
5,

43
3

37
7,

89
9,

94
6

F
7

9,
16

9
13

,9
76

57
,7

20
17

4,
11

8
52

6,
07

7
1,

15
3,

86
4

F
8

0
0

0
0

0
0

143

T
ab

le
3.

8:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
7

d
=

7
p

=
1/

5
p
=

1/
6

p
=

1/
7

p
=

1/
8

p
=

1/
9

p
=

1/
10

P
ro

to
co

ls
4.

55
e+

10
7.

28
e+

11
8.

67
e+

12
8.

13
e+

13
6.

27
e+

14
4.

11
e+

15

S
y
m

m
et

ry
3,

70
9,

47
6

46
,9

63
,6

09
28

9,
37

4,
12

1
1,

73
0,

64
3,

20
1

7,
40

2,
02

1,
22

5
30

,4
90

,3
98

,2
25

F
1

2,
27

0,
75

4
26

,9
52

,8
49

16
1,

11
1,

18
1

84
1,

29
7,

02
3

3,
45

6,
45

6,
12

5
10

,9
15

,7
07

,4
95

F
2

49
5,

18
0

3,
15

4,
26

6
36

,3
30

,7
56

13
6,

78
8,

37
2

85
1,

50
9,

12
5

2,
41

9,
94

0,
74

3

F
3

14
9,

80
6

36
9,

43
4

10
,2

77
,6

99
20

,4
69

,5
35

21
6,

14
8,

26
9

44
9,

46
4,

96
7

F
4

14
2,

25
5

35
1,

29
0

9,
58

3,
74

7
19

,2
00

,6
70

19
7,

25
0,

33
0

40
9,

36
6,

49
4

F
5

14
2,

24
1

35
1,

21
9

9,
58

2,
21

5
19

,1
94

,6
92

19
7,

21
4,

45
4

40
9,

18
5,

88
5

F
6

14
2,

24
1

35
1,

21
9

9,
03

4,
72

8
18

,7
34

,0
72

18
7,

97
7,

58
9

38
3,

40
2,

06
4

F
7

0
0

60
,1

55
91

,7
87

51
2,

17
1

1,
80

4,
38

2

F
8

0
0

0
0

0
0

144

T
ab

le
3.

9:
T

h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
8

d
=

8
p

=
1/

4
p

=
1/

5
p

=
1/

6
p

=
1/

7
p

=
1/

8
p

=
1/

9

P
ro

to
co

ls
1.

18
e+

10
3.

93
e+

11
8.

67
e+

12
1.

38
e+

14
1.

71
e+

15
1.

71
e+

16

S
y
m

m
et

ry
1,

57
2,

51
6

11
,5

32
,8

16
17

9,
34

5,
66

4
1,

29
3,

69
7,

02
4

9,
01

8,
16

1,
29

6
42

,3
52

,4
05

,2
09

F
1

1,
05

4,
61

4
7,

79
7,

21
6

11
5,

13
1,

02
4

81
4,

85
5,

04
0

5,
05

0,
85

0,
26

8
23

,0
61

,8
17

,6
17

F
2

60
,5

52
1,

35
6,

93
6

9,
76

6,
19

2
14

2,
86

2,
43

0
60

6,
59

7,
73

5
4,

41
7,

66
8,

74
2

F
3

0
43

1,
95

6
1,

25
4,

42
0

44
,4

57
,2

39
10

6,
85

1,
42

0
1,

27
6,

49
9,

49
6

F
4

0
41

7,
75

9
1,

21
3,

72
8

42
,5

41
,7

02
10

2,
71

9,
85

1
1,

20
4,

23
8,

27
3

F
5

0
41

7,
74

1
1,

21
3,

62
9

42
,5

39
,4

30
10

2,
71

0,
13

9
1,

20
4,

17
3,

24
4

F
6

0
41

7,
74

1
1,

21
3,

62
9

40
,4

25
,2

72
10

1,
06

1,
70

6
1,

15
1,

09
7,

96
5

F
7

0
0

0
27

7,
22

5
45

2,
79

2
3,

19
4,

34
6

F
8

0
0

0
0

0
0

145

T
ab

le
3.

10
:

T
h
e

n
u
m

b
er

of
fo

u
r-

ro
u
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
9

d
=

9
p

=
1/

3
p

=
1/

4
p

=
1/

5
p

=
1/

6
p

=
1/

7
p

=
1/

8

P
ro

to
co

ls
7.

41
e+

08
6.

00
e+

10
2.

74
e+

12
8.

13
e+

13
1.

71
e+

15
2.

74
e+

16

S
y
m

m
et

ry
16

4,
02

5
3,

74
4,

22
5

32
,0

69
,5

69
59

4,
43

3,
16

1
4,

95
7,

14
5,

64
9

39
,8

08
,6

29
,4

41

F
1

13
1,

62
5

2,
66

6,
43

0
23

,3
48

,5
49

41
4,

16
0,

04
7

3,
42

3,
68

1,
18

9
24

,8
51

,3
38

,1
55

F
2

14
,3

00
11

5,
75

2
3,

27
3,

66
2

26
,0

75
,0

45
47

0,
02

8,
58

2
2,

21
6,

08
2,

56
0

F
3

2,
70

0
0

1,
06

5,
27

1
3,

48
4,

09
2

15
3,

93
2,

94
6

43
2,

75
4,

97
6

F
4

2,
63

9
0

1,
04

1,
33

9
3,

40
5,

53
2

14
9,

52
3,

48
7

42
1,

90
3,

50
0

F
5

2,
63

9
0

1,
04

1,
31

7
3,

40
5,

40
3

14
9,

52
0,

36
1

42
1,

88
9,

26
0

F
6

2,
63

9
0

1,
04

1,
31

7
3,

40
5,

40
3

14
2,

91
6,

56
5

41
6,

86
9,

32
7

F
7

0
0

0
0

1,
05

3,
22

2
1,

80
9,

80
0

F
8

0
0

0
0

0
0

146

Four-round search observations

The first observation is that we were able to search larger spaces than if we used the

SDP formulations alone. For example, suppose we took the 2.74 × 1016 protocols from

the d = 9, p = 1/8 search and checked to see if any of these had bias less than 0.7499 by

solving only the reduced SDPs. Since each SDP takes at least 0.08 seconds to solve, this

search would take at least 69 million years to finish. By applying the techniques in this

chapter, we are able to run this search in a matter of days.

We see that symmetry helped to dramatically reduce the number of protocols needed

to be tested. In the largest search, we were able to cut down the 2.74 × 1016 protocols

down to 3.98× 1010.

F1 and F2 perform very well, together cutting down the number of protocols by a factor

of about 10. F3, being the first strategy to rely on all four probability vectors, performs

very well by reducing the number of protocols by another factor of 10. F4, F5, and F6

do not perform well with F5, being the same as F4 but with β0 swapped with β1, cutting

down the number of protocols by a very small amount. F7 and F8 perform so well that no

SDPs were needed to be solved. This suggests that

min
α0,α1,β0,β1∈Prob9

max {F1, . . . ,F8} = 3/4.

From Theorem 3.1.9, we see that Bob’s eigenstrategy, F8, has the highest cheating prob-

ability among Bob’s four-round strategies with the exception of possibly the returning

strategies F4 and F5. Alice’s eigenstrategy, F6, performs better than her three-round

strategy F3. Therefore, it seems that the F8 and F6 strategies suffice to prove that the

bias of any four-round BCCF-protocol is at least 1/4.

3.4.2 Six-round search

We list the filter cheating strategies in the table below and give an estimate of how long

the success probability for each strategy takes to compute (averaging over 1000 randomly

generated α0, α1, β0, β1). We then give tables of how well the filter performs for six-round

protocols with d ∈ {2, 3} and p ranging up to 1/14 (depending on d).

147

T
ab

le
3.

11
:

R
u
n
n
in

g
ti

m
es

fo
r

fi
lt

er
st

ra
te

gi
es

in
a

si
x
-r

ou
n
d

p
ro

to
co

l
fo

r
d

=
3

(1
of

2)

S
u
cc

es
s

P
ro

b
ab

il
it

y
C

om
p
.

T
im

e
(s

)
C

o
d
e

1 2
+

1 2

√ F
(β

0
,β

1
)

0.
00

00
29

07
1

G
1

1 2
+

1 2
∆

(T
r A

2
(α

0
),

T
r A

2
(α

1
))

0.
00

00
03

98
3

G
2

1 2
λ

m
a
x

(κ
√ T

r A
2
(β

0
)√ T

r A
2
(β

0
)>

+
ω
√ T

r A
2
(β

1
)√ T

r A
2
(β

1
)>
)

0.
00

00
13

01
0

G
3

w
h
er

e
κ

:=
∑ x

:α
0
,x
≥
α

1
,x
α

0
,x

an
d
ω

:=
∑ x

:α
0
,x
<
α

1
,x
α

1
,x

(1 2
+

1 2

√ F
(T

r A
2
(α

0
),

T
r A

2
(α

1
))
) (1 2

+
1 2
∆

(T
r B

2
(β

0
),

T
r B

2
(β

1
))
)

0.
00

00
22

50
1

G
4

1 2
λ

m
a
x

  
∑

y
:β

0
,y
≥
β

1
,y

β
0
,y

 √
α

0
√
α

0
>

+

 
∑

y
:β

0
,y
<
β

1
,y

β
1
,y

 √
α

1
√
α

1
>

 
0.

00
00

40
92

8
G

5

1 2
λ

m
a
x

(η
′√ T

r A
2
(α

0
)√ T

r A
2
(α

0
)>

+
τ
′√ T

r A
2
(α

1
)√ T

r A
2
(α

1
)>
)

0.
00

00
36

90
8

G
6

w
h
er

e
η
′
:=
∑ y

1
∈
B

1
:[
T

r B
2
(β

0
)]
y
1
≥

[T
r B

2
(β

1
)]
y
1
[T

r B
2
(β

0
)]
y
1
,

an
d
τ
′
:=
∑ y

1
∈
B

1
:[
T

r B
2
(β

0
)]
y
1
<

[T
r B

2
(β

1
)]
y
1
[T

r B
2
(β

1
)]
y
1

148

T
ab

le
3.

12
:

R
u
n
n
in

g
ti

m
es

fo
r

fi
lt

er
st

ra
te

gi
es

in
a

si
x
-r

ou
n
d

p
ro

to
co

l
fo

r
d

=
3

(2
of

2)

S
u
cc

es
s

P
ro

b
ab

il
it

y
C

om
p
.

T
im

e
(s

)
C

o
d
e

1 2

∑ a
∈
A
′ 0

F
(∑ x

∈
A
α
a
,x
p̃ 2

(x
) ,
β
a

)
0.

00
25

48
53

5
G

7

1 2

∑ a
∈
A
′ 0

F
(∑ x

∈
A
α
a
,x
p̃ 2

(x
) ,
β
ā

)
0.

00
23

63
59

6
G

8

w
h
er

e
p̃ 2

(x
)

is
as

d
efi

n
ed

in
T

h
eo

re
m

3.
1.

9

∑ y
∈
B

co
n
c
{ 1 2
β

0
,y

F
(·,
α

0
),

1 2
β

1
,y

F
(·,
α

1
)} (v

)
0.

23
21

72
15

6
G

9

∑ y
∈
B

co
n
c
{ 1 2
β

1
,y

F
(·,
α

0
),

1 2
β

0
,y

F
(·,
α

1
)} (v

)
0.

22
91

31
16

7
G

10

P
∗ B
,0

0.
10

16
31

76
6

S
D

P
B

0

1

2P
∗ B
,0

0.
00

00
00

65
5

G
11

P
∗ A
,0

0.
25

07
14

76
6

S
D

P
A

0

P
∗ B
,1

0.
10

14
28

43
8

S
D

P
B

1

1

2P
∗ B
,1

0.
00

00
00

71
0

G
12

P
∗ A
,1

0.
24

58
36

33
4

S
D

P
A

1

149

Again, we have to choose which strategy to put first, G1 or G2. Preliminary tests

show that placing G1 first is much faster, similar to the four-round case. Even though G5

takes longer to compute than G6, tests show that is better to have G5 first. We calculate

SDPB0 before SDPA0 since G9 and G10 are close approximations of SDPA0 and SDPA1,

respectively.

We note here a few omissions that are present in the four-round tests. First, we have

removed the two returning strategies, F4 and F5. These did not perform well in the four-

round tests and preliminary tests show that they did not perform well in the six-round

tests either. Also, we do not have all the lower bounds for the eigenstrategies. Preliminary

tests show that the lower bounds omitted take just as long or longer to compute than

the corresponding upper bound, thus we just use the upper bounds in the filter. Also,

the marginal probabilities take approximately 5.49 × 10−6 seconds to compute which is

negligible compared to the other times. Thus, we need not be concerned whether the

strategies rely on the full probability vectors or their marginals.

150

T
ab

le
3.

13
:

T
h
e

n
u
m

b
er

of
si

x
-r

ou
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
2

d
=

2
p

=
1/

3
p

=
1/

4
p

=
1/

5
p

=
1/

6
p

=
1/

7
p

=
1/

8

P
ro

to
co

ls
16

0,
00

0
1,

50
0,

62
5

9,
83

4,
49

6
49

,7
87

,1
36

20
7,

36
0,

00
0

7.
41

e+
08

S
y
m

m
et

ry
6,

40
0

59
,0

49
28

0,
90

0
1,

51
7,

82
4

5,
68

3,
45

6
19

,7
13

,6
00

G
1

3,
20

0
20

,4
12

82
,6

80
38

9,
31

2
1,

39
7,

02
4

4,
11

5,
88

0

G
2

2,
32

0
12

,5
16

67
,5

48
27

2,
39

2
1,

11
2,

22
8

3,
05

7,
24

6

G
3

1,
72

5
9,

62
7

52
,4

24
22

3,
03

4
89

9,
45

0
2,

52
6,

71
2

G
4

71
4

4,
20

6
27

,9
65

10
5,

05
0

43
0,

45
4

1,
24

0,
10

6

G
5

21
0

68
4

7,
74

3
20

,3
73

11
2,

43
5

22
8,

27
4

G
6

21
0

68
4

7,
74

3
20

,3
73

11
0,

40
1

22
8,

27
4

G
7

30
48

1,
28

5
1,

85
6

10
,9

79
17

,8
31

G
8

0
0

22
6

0
1,

90
7

1,
32

0

G
9

0
0

22
6

0
1,

90
1

1,
21

2

G
10

0
0

22
6

0
1,

90
1

1,
21

2

S
D

P
B

0
0

0
0

0
0

0

151

T
ab

le
3.

14
:

T
h
e

n
u
m

b
er

of
si

x
-r

ou
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
2

d
=

2
p

=
1/

9
p

=
1/

10
p

=
1/

11
p

=
1/

12
p

=
1/

13
p

=
1/

14

P
ro

to
co

ls
2.

34
e+

09
6.

69
e+

09
1.

75
e+

10
4.

28
e+

10
9.

83
e+

10
2.

13
e+

11

S
y
m

m
et

ry
58

,2
47

,4
24

15
5,

27
6,

52
1

40
1,

08
0,

72
9

97
3,

50
2,

40
1

2,
05

2,
18

0,
60

1
4,

63
2,

16
3,

60
0

G
1

11
,0

20
,6

08
23

,8
62

,8
15

60
,7

61
,9

18
14

0,
15

4,
89

2
24

0,
82

0,
11

6
55

5,
64

1,
84

0

G
2

8,
94

4,
13

6
18

,7
17

,2
10

50
,3

37
,0

94
11

0,
27

4,
10

8
20

4,
52

2,
46

8
44

4,
53

7,
96

4

G
3

7,
33

5,
61

7
15

,5
03

,3
08

41
,4

47
,6

68
93

,2
22

,2
86

16
7,

71
7,

63
7

38
0,

23
8,

43
5

G
4

3,
47

7,
09

3
8,

53
4,

32
6

20
,5

03
,5

50
45

,8
88

,1
92

91
,9

91
,0

55
18

5,
97

1,
77

0

G
5

69
6,

60
1

1,
36

7,
11

5
3,

43
5,

39
0

6,
57

7,
91

7
12

,4
25

,0
39

23
,2

10
,9

79

G
6

68
8,

61
3

1,
36

7,
11

5
3,

43
5,

39
0

6,
57

7,
91

7
12

,2
58

,1
17

23
,0

97
,7

13

G
7

57
,5

98
87

,3
03

23
2,

38
2

35
5,

05
7

67
8,

38
4

1,
05

1,
33

9

G
8

9,
11

6
9,

69
9

31
,8

12
45

,6
25

85
,3

33
13

0,
76

5

G
9

7,
66

9
7,

37
5

19
,8

74
35

,2
04

56
,2

67
10

3,
59

8

G
10

7,
65

7
7,

16
6

19
,5

92
34

,0
64

54
,3

98
99

,1
26

S
D

P
B

0
0

0
8

4
64

20

G
11

0
0

8
4

64
20

S
D

P
A

0
0

0
0

0
0

0

152

T
ab

le
3.

15
:

T
h
e

n
u
m

b
er

of
si

x
-r

ou
n
d

p
ro

to
co

ls
th

at
ge

t
th

ro
u
gh

ea
ch

st
ra

te
gy

in
th

e
fi
lt

er
fo

r
d

=
3

d
=

3
p

=
1/

1
p

=
1/

2
p

=
1/

3
p

=
1/

4

P
ro

to
co

ls
6,

56
1

4,
10

0,
62

5
74

1,
20

0,
62

5
60

,0
37

,2
50

,6
25

S
y
m

m
et

ry
81

68
,1

21
6,

39
5,

84
1

27
9,

32
4,

36
9

G
1

72
42

,2
82

5,
22

2,
38

5
18

0,
50

0,
40

0

G
2

24
8,

74
8

3,
32

4,
65

0
86

,1
51

,6
00

G
3

20
5,

64
3

1,
95

8,
07

0
58

,0
38

,6
67

G
4

2
16

1
71

4,
39

3
30

,7
73

,9
18

G
5

0
0

46
4,

53
8

15
,3

10
,1

16

G
6

0
0

46
4,

53
8

15
,3

10
,1

16

G
7

0
0

31
0,

51
8

6,
55

7,
00

7

G
8

0
0

26
,4

60
0

G
9

0
0

26
,4

60
0

G
10

0
0

26
,4

60
0

S
D

P
B

0
0

0
0

0

153

Six-round observations

We find again that the symmetry arguments cut down the number of protocols signifi-

cantly, this time by a factor of roughly 100. Note that in the four-round case it was a factor

of 10, 000 (for the d = 9 case). This can be explained by the weaker index symmetry in the

six-round version. G1 and G2 cut down the number of protocols by a factor of 10 similar

to the four-round case. G5 also performed well, but after this G6 was not much help. G7

and G8 cut down the number of protocols by a factor of 10 each in the d = 2 case, but

not as much in the d = 3 case. The next notable strategy was G10, being the swapped

version of G9, which performed very poorly. It seems that the swapped strategies do not

help much in the filters, that is, there is not much discrepancy between cheating towards

0 or 1. SDPB0 almost filtered out the rest of the protocols, relying on SDPA0 to stop the

rest. The implicit strategy from Kitaev’s bound, G11, did not perform well after SDPB0,

unfortunately we need SDPB0 to be computed first. Again, we notice that no protocols

with bias less than 0.7499 were found.

Another observation is the performance of G9 and G10, the eigenstrategies for Alice.

For low-precision tests, we notice that they hardly filter out any protocols, if any at all. In

these strategies, we compute a value on the concave hull

conc

{
1

2
β0,y F(·, α0),

1

2
β1,y F(·, α1)

}
,

for every value of y. In the eigenstrategy, we are approximating the concave hull with

whichever of the two has the larger constant. When we choose these constants according

to a rough mesh, e.g., p = 1/3 or p = 1/4, the one with the larger constant is a very good

approximation of the concave hull. Thus, we need finer precisions to bring out the power

of this strategy in the filter.

Since in the four and six-round tests, we did not find any protocols with bias less than

0.7499, we have the following conjecture.

Conjecture 3.4.1. The minimum bias of BCCF-protocols is ε = 1/4.

154

3.4.3 Random offset

Since the six-round searches take a long time, we need another way to test more protocols.

We could increase the mesh precision, but this increases the search time dramatically. To

test more protocols, we offset all of the values in the search by some random factor δ > 0.

For example, the entries of α0, α1, β0, and β1 have been selected from the set

{0, p, 2p, . . . , 1− p, 1} .

With an offset parameter δ ∈ (0, p/2), we use the range

{δ, δ + p, δ + 2p, . . . , δ + 1− p} .

Note that this destroys the index symmetry. The simplest way to see this is to consider

the two-dimensional probability distributions created in this way. They are{[
δ

1− δ

]
,

[
δ + p

1− δ − p

]
,

[
δ + 2p

1− δ − 2p

]
, . . . ,

[
δ + 1− p
p− δ

]}
.

We see that the set of first entries is not the same as the set of second entries when δ > 0.

We arbitrarily choose the last entry in each vector to be such that the entries add to 1.

Also, since we are generating all four of the probability distributions in the same manner,

we can still apply the symmetry arguments to suppose α0 has the largest entry out of both

α0 and α1 and simultaneously β0 has the largest entry out of both β0 and β1.

The tables below show how well each strategy in the filter performs in the worst case

and average case over 100 random choices of offset parameter δ ∈ [0, 1/100].

155

Table 3.16: The percentage of protocols that get stopped by each strategy in the worst

case over 100 random instances of offset parameter δ

d = 2 p = 1/3 p = 1/4 p = 1/5 p = 1/6

G1 71.87 % 82.35 % 84.06 % 86.63 %

G2 17.18 % 29.80 % 15.80 % 24.15 %

G3 8.17 % 10.73 % 13.46 % 12.12 %

G4 51.45 % 49.68 % 53.99 % 48.44 %

G5 70.00 % 83.29 % 78.02 % 82.96 %

G6 0 % 0 % 0 % 0 %

G7 79.16 % 92.43 % 87.46 % 94.39 %

G8 100.00 % 100.00 % 43.83 % 100.00 %

G9 − − 0 % −
G10 − − 0 % −

SDPB0 − − 100.00 % −

Table 3.17: The percentage of protocols that get stopped by each strategy in the average

case over 100 random instances of offset parameter δ

d = 2 p = 1/3 p = 1/4 p = 1/5 p = 1/6

G1 85.51 % 86.65 % 88.82 % 90.69 %

G2 17.18 % 29.80 % 15.80 % 24.15 %

G3 10.95 % 13.50 % 14.56 % 12.36 %

G4 62.14 % 51.73 % 55.39 % 53.25 %

G5 70.00 % 86.83 % 92.23 % 94.12 %

G6 0 % 0 % 0 % 0 %

G7 99.04 % 98.91 % 95.75 % 99.13 %

156

Random offset observations

We see that G6 performs very poorly on these tests. We need a finer mesh to see

the effects of G6 in the filter. Also, G1 performs generally better as the filter precision

increases and, as the previous tables suggest, it should stay at roughly 90%. We see that

G5 and G7 perform very well. G8 performs well most of the time, except in the worst case

the percentage was quite low in the p = 1/5 column. No protocols with bias ε < 0.7499

were found, with only SDPB0 needed to be solved of the four SDPs. This supports the

conjecture that ε = 1/4 is the smallest attainable bias for BCCF-protocols.

157

Chapter 4

A protocol and lower bounds for

quantum oblivious transfer

The content of this chapter is based on my work with André Chailloux and Iordanis Kereni-

dis in [CKS10].

In the last two chapters, we have been examining coin-flipping protocols based on bit-

commitment. As we have seen, bit-commitment and coin-flipping are very closely related

primitives. It turns out that some of the knowledge about bit-commitment can be applied

to oblivious transfer as discussed in this chapter. This chapter is organized as follows.

• Section 4.1: We show a two-message protocol for oblivious transfer which has bias

εOT = 1/4. This protocol is similar to the bit-commitment protocol in [KN04] (which

was used for strong coin-flipping). We notice that this maintains the same bias as

the bit-commitment protocol, however this is a coincidence since there is no known

way to reduce bit-commitment to oblivious transfer in a way that preserves the bias.

• Section 4.2: We study a reduction from oblivious transfer to bit-commitment and

show how the cheating probabilities are related to each other. We then present

a Learning-In-Sequence Lemma which roughly states: If there are is a projective

measurement to learn the value of x0 with probability p from an encoding ρx0,x1 and

another projective measurement to learn the value of x1 with probability q, then

158

there is a measurement to learn both x0 and x1 with probability a(2a − 1)2, where

a := p+q
2

. Using this lemma and lower bounds for bit-commitment [CK11], we obtain

the lower bound on the bias εOT ≥ 0.0852 for any oblivious transfer protocol.

• Section 4.3: We prove the Learning-In-Sequence Lemma.

• Section 4.4: We conclude with studying forcing oblivious transfer which is a variant

of oblivious transfer and a generalization of coin-flipping. Using SDP formulations of

cheating strategies, we prove optimal lower bounds on the bias. This analysis illus-

trates the variety of security notions in quantum cryptography and relates oblivious

transfer with the analysis in earlier parts of the thesis.

4.1 An oblivious transfer protocol with bias 1/4

The protocol starts with the same starting states as the bit-commitment protocol in [KN04].

This helps Bob conceal the value of b from Alice. In addition, both these states have the

property that under the action of changing a local phase, the image and preimage become

orthogonal. We use this property to encode Alice’s message into a local phase. The protocol

is given below.

Protocol 4.1.1 (An OT protocol with bias 1/4).

(i) Bob randomly chooses b ∈ {0, 1} and sends Alice the CA part of the following two-

qutrit state

|φb〉 :=
1√
2
|bb〉+

1√
2
|22〉 ∈ CA×B,

where A = B = {0, 1, 2}.

(ii) Alice randomly chooses x0, x1 ∈ {0, 1} and applies the following unitary Ux0,x1 to CA:

|0〉 → (−1)x0|0〉, |1〉 → (−1)x1|1〉, |2〉 → |2〉.

(iii) Alice returns CA to Bob. Bob now has the two-qutrit state

(−1)xb√
2
|bb〉+

1√
2
|22〉 ∈ CA×B.

159

(iv) Bob performs the measurement {Π0 := |φb〉〈φb|, Π1 := I− Π0} on the state.

(v) If the outcome is “ 0” then xb = 0. If the outcome is “ 1” then xb = 1.

Note that if he sends half of the state 1√
2
|00〉+ 1√

2
|11〉 in the first message, then he can

learn x0 ⊕ x1 perfectly (although he does not learn either x0 or x1). Thus, this protocol is

not secure if we want to stop Bob from learning x0 ⊕ x1.

We now show that it is impossible for Bob to perfectly learn both x0 and x1 and also

that his bit is not completely revealed to a cheating Alice.

Theorem 4.1.2. In the protocol described above, we have P ∗A,OT = P ∗B,OT = 3/4.

Proof. We analyze the cheating probabilities of Alice and Bob.

Cheating Alice: Let σb := TrB|φb〉〈φb| denote the reduced states Alice may receive

in the first message. An optimal strategy for Alice to learn b is to perform the optimal

measurement to distinguish between σ0 and σ1. In this case, she succeeds with probability

1

2
+

1

2
∆(σ0, σ1) =

3

4
.

Alice’s optimal measurement is, in fact, a measurement in the computational basis. If she

gets outcome “0” or “1” then she knows b with certainty. If she gets outcome “2” then she

randomly guesses. Note that Bob never aborts.

Cheating Bob: Bob wants to learn both bits (x0, x1). We now describe a general strat-

egy for Bob:

• Bob creates |ψ〉 :=
∑

i∈A αi|i〉A|ξi〉B′ ∈ CA×B′ , where CB′ is a space used by Bob to

cheat. He sends the CA part to Alice. The |ξi〉 states need not be orthogonal but∑
i∈A |αi|2 = 1.

• Alice applies Ux0,x1 on CA and sends it back to Bob. He now has the state

|ψx0,x1〉 :=
∑
i∈A

αi(−1)xi|i〉|ξi〉,

where x2 := 0.

160

At the end of the protocol, Bob applies a four-outcome measurement on |ψx0,x1〉 to obtain

his guess for (x0, x1).

From this strategy, we create another strategy with the same cheating probability where

Bob sends a pure state. We define this strategy as follows:

• Bob creates |ψ′〉 :=
∑

i∈A αi|i〉A ∈ CA and sends the whole state to Alice.

• Alice applies Ux0,x1 on CA and sends it back to Bob. He now has the state

|ψ′x0,x1
〉 :=

∑
i∈A

αi(−1)xi |i〉 ∈ CA.

• Bob applies the unitary U : |i〉|0〉 → |i〉|ξi〉 to |ψ′x0,x1
〉|0〉 and obtains |ψx0,x1〉.

To determine (x0, x1), Bob applies the same measurement as in the original strategy.

Clearly both strategies have the same success probability. When Bob uses the second

strategy, Alice and Bob are unentangled after the first message and Alice sends back a

qutrit to Bob. Since Bob has an encoding of two randomly chosen bits in a qutrit state,

we have

Pr[Bob correctly guesses (x0, x1)] ≤ 3/4

from information bounds (see [Nay99]).

Note that there is a strategy for Bob to learn both bits (x0, x1) with probability 3/4.

Suppose he creates the state

|ψ〉 :=
1√
3
|0〉+

1√
3
|1〉+

1√
3
|2〉

and sends it to Alice. The state Bob has after Alice’s message is

1√
3

(−1)x0|0〉+
1√
3

(−1)x1|1〉+
1√
3
|2〉.

Then, Bob performs a projective measurement in the four-dimensional basis

{|Ψx0,x1〉 : x0, x1 ∈ {0, 1}},

where

|Ψx0,x1〉 :=
1

2
(−1)x0|0〉+

1

2
(−1)x1|1〉+

1

2
|2〉+

1

2
(−1)x0⊕x1|3〉.

161

The probability that Bob guesses the two bits x0 and x1 correctly is∑
x0,x1

1

4
Pr[Bob guesses (x0, x1)] =

∑
x0,x1

1

4
|〈Ψx0,x1|ψx0,x1〉|2 =

3

4
.

Note that Alice never aborts.

4.2 A lower bound on any oblivious transfer protocol

In this section, we prove that the bias of any OT protocol is bounded below by a con-

stant. We start from an OT protocol and show how to construct a bit-commitment

protocol. Then, we prove a relationship between the cheating probabilities of the bit-

commitment protocol and those for OT. Lastly, we use the lower bound for quantum

bit-commitment [CK11] (reproduced as Proposition 4.2.4) to derive a lower bound on the

bias of any OT protocol.

We create a bit-commitment protocol from an OT protocol as follows.

Protocol 4.2.1 (Bit-commitment protocol via OT).

(i) Commit phase: We invert the roles of Alice and Bob so that Bob is the one who

commits. He wants to commit to a bit a. Alice and Bob perform the OT protocol

such that Alice has (x0, x1) and Bob has (b, xb). Bob sends c := a⊕ b to Alice.

(ii) Reveal phase: Bob reveals (b, xb) to Alice. If (b, xb) from Bob is consistent with Alice’s

bits, then Alice accepts c⊕ b = a. Otherwise, Alice aborts.

Note that the OT outputs could be generated from within the OT protocol for this

construction and the following arguments to work.

We now analyze how much Alice and Bob can cheat in the bit-commitment protocol

and compare these quantities to those of OT. Our goal is to show the following proposition.

Proposition 4.2.2. For the protocol above, we have

P ∗A,OT = P ∗A,BC and P ∗B,OT ≥ f(P ∗B,BC) where f(x) = x(2x− 1)2.

Proof. Let ¬⊥BC
A (resp. ¬⊥BC

B) denote the event “Alice (resp. Bob) does not abort during

the entire bit-commitment protocol.” Let ¬⊥OT
A (resp. ¬⊥OT

B) denote the event “Alice

(resp. Bob) does not abort during the OT subroutine.”

162

Cheating Alice: Since Alice knows c := a ⊕ b, the probability of Alice guessing a in

the bit-commitment protocol is the same as the probability of her guessing b in the OT

protocol. Therefore P ∗A,OT = P ∗A,BC.

Cheating Bob: By definition, we have

P ∗B,OT = sup{Pr[(Bob guesses (x0, x1)) ∧ ¬⊥OT
A]}

= sup{Pr[¬⊥OT
A] · Pr[(Bob guesses (x0, x1))|¬⊥OT

A]},

where the suprema are taken over all strategies for Bob. If Bob wants to reveal 0 in the

bit-commitment protocol (a similar argument works if he wants to reveal 1), then first,

Alice must not abort in the OT protocol and second, Bob must send b = c as well as the

correct xc such that Alice does not abort in the last round of the bit-commitment protocol.

This is equivalent to saying that Bob succeeds if he guesses xc and Alice does not abort in

the OT protocol. Since Bob randomly chooses which bit he wants to reveal, we can write

the probability of Bob cheating as

max

{
1

2
Pr[(Bob guesses x0) ∧ ¬⊥OT

A] +
1

2
Pr[(Bob guesses x1) ∧ ¬⊥OT

A]

}
= max

{
Pr[¬⊥OT

A]·(
1

2
Pr[(Bob guesses x0)|¬⊥OT

A] +
1

2
Pr[(Bob guesses x1)|¬⊥OT

A]

)}
.

Notice that we use “max” instead of “sup” above. This is because an optimal strategy

exists for every bit-commitment protocol. To see this, we can construct a coin-flipping

protocol from any bit-commitment protocol and an optimal strategy always exists for a

coin-flipping protocol. This is a consequence of strong duality in the semidefinite pro-

gramming formulation of coin-flipping cheating strategies, see the SDPs and their duals in

Subsection 1.4.6.

Let us now fix Bob’s optimal cheating strategy in the bit-commitment protocol. For

this strategy, let

p := Pr[(Bob guesses x0)|¬⊥OT
A], q := Pr[(Bob guesses x1)|¬⊥OT

A], and a :=
p+ q

2
.

We use the following lemma to relate P ∗B,BC and P ∗B,OT which we prove in Subsec-

tion 4.3.1.

163

Lemma 4.2.3 (Learning-In-Sequence Lemma). Let p, q ∈ [1/2, 1] and suppose Alice and

Bob share a joint pure state. Suppose Alice performs on her space a projective measurement

M = {Mx0,x1}x0,x1∈{0,1} to determine the value of (x0, x1). Suppose there is a projective

measurement P = {P0, P1} on Bob’s space that allows him to guess bit x0 with probability

p and a projective measurement Q = {Q0, Q1} on his space that allows him to guess bit

x1 with probability q. Then, there exists a measurement on Bob’s space that allows him to

guess (x0, x1) with probability at least a(2a− 1)2 where a = p+q
2

.

Note that we can assume Alice determines x0 and x1 at the end of the OT protocol even

if she has inputs. She can instead input |+〉 states, run the protocol with the appropriate

controlled operations, then measure them at the end in the computational basis to obtain

random values for x0 and x1. However, the result applies to the case where the outputs

are generated from within the protocol as well.

We now construct a cheating strategy for Bob for the OT protocol: Run the optimal

bit-commitment strategy and look at Bob’s state after the commit phase conditioned on

Alice not aborting. Note that this event happens with nonzero probability in the optimal

bit-commitment strategy since otherwise the success probability would be 0. The optimal

bit-commitment strategy gives measurements that allow Bob to guess x0 with probability p

and x1 with probability q. Bob uses these measurements and the procedure of Lemma 4.2.3

to guess (x0, x1). Let m be the probability he guesses (x0, x1) using this strategy. From

Lemma 4.2.3, we have that m ≥ a(2a− 1)2. By definition of P ∗B,OT and P ∗B,BC, we have:

m = Pr[(Bob guesses (x0, x1))|¬⊥OT
A] ≤

P ∗B,OT

Pr[¬⊥OT
A]

and a =
P ∗B,BC

Pr[¬⊥OT
A]

.

This gives us

P ∗B,OT

Pr[¬⊥OT
A]
≥

P ∗B,BC

Pr[¬⊥OT
A]

(
2

P ∗B,BC

Pr[¬⊥OT
A]
− 1

)2

=⇒ P ∗B,OT ≥ P ∗B,BC

(
2P ∗B,BC − 1

)2
,

where the implication holds since P ∗B,BC ≥ 1/2.

We make use of the following lower bound for quantum bit-commitment.

164

Proposition 4.2.4 ([CK11]). For any quantum bit-commitment protocol, there is a pa-

rameter t ∈ [0, 1] such that

P ∗A,BC ≥
(

1−
(

1− 1√
2

)
t

)2

and P ∗B,BC ≥
1

2
+
t

2
.

Using Proposition 4.2.2 and the lower bound for quantum bit-commitment above, we

can show the following lower bound on oblivious transfer.

Theorem 4.2.5. In any quantum oblivious transfer protocol, at least one party can cheat

with probability 0.5852.

Proof. From Proposition 4.2.2, we have P ∗A,BC = P ∗A,OT and P ∗B,OT ≥ f(P ∗B,BC) (where

f(x) = x(2x − 1)2). From the bit-commitment lower bound, we know there exists a

parameter t ∈ [0, 1] such that

P ∗B,BC ≥
(

1−
(

1− 1√
2

)
t

)2

≥ 1

2
and P ∗A,BC ≥

1

2
+
t

2
≥ 1

2
,

noting that we have reversed the roles of Alice and Bob in the bit-commitment protocol.

From Proposition 4.2.4, we know there exists a parameter t ∈ [0, 1] such that

P ∗B,OT ≥ f

((
1−

(
1− 1√

2

)
t

)2
)

and P ∗A,OT ≥
1

2
+
t

2
,

since f is nondecreasing on the interval [1/2, 1]. We get a lower bound on the maximum

of P ∗A,OT and P ∗B,OT by equating the lower bounds above and solving for t ≈ 0.1705 (t is

a solution of a degree six polynomial). At this value of t, we have P ∗A,OT, P
∗
B,OT ≈ 0.5852,

yielding the desired bound.

4.3 Proof of the Learning-In-Sequence Lemma

In this section, we prove the Learning-In-Sequence Lemma which is reproduced below.

Lemma 4.3.1 (Learning-In-Sequence Lemma). Let p, q ∈ [1/2, 1] and suppose Alice

and Bob share a joint pure state. Suppose Alice performs on her space a projective mea-

surement M = {Mx0,x1}x0,x1∈{0,1}to determine the values of (x0, x1). Suppose there is a

165

projective measurement P = {P0, P1} on Bob’s space that allows him to guess bit x0 with

probability p and a projective measurement Q = {Q0, Q1} on his space that allows him

to guess bit x1 with probability q. Then, there exists a measurement on Bob’s space that

allows him to guess (x0, x1) with probability at least a(2a− 1)2 where a = p+q
2

.

Before giving a proof, we start with a few technical lemmas.

Lemma 4.3.2. Let |X〉 be a pure state, Q a projection, and |Y 〉 a pure state such that

Q|Y 〉 = |Y 〉. Then we have

‖Q|X〉‖2
2 ≥ |〈X|Y 〉|2.

Proof. Using Cauchy-Schwarz, we have

|〈X|Y 〉|2 = |〈X|Q|Y 〉|2 ≤ ‖Q|X〉‖2
2 ‖|Y 〉‖

2
2 = ‖Q|X〉‖2

2 ,

as desired.

Lemma 4.3.3. Suppose θ, θ′ ∈ [0, π/4]. If |〈ψ|φ〉| ≥ cos(θ) and |〈φ|ξ〉| ≥ cos(θ′), then

|〈ψ|ξ〉| ≥ cos(θ + θ′).

Proof. Define the angle between two pure states |ψ〉 and |φ〉 as A(ψ, φ) := arccos |〈ψ|φ〉|.
This is a metric (see [NC00] page 413). Thus, we have

arccos |〈ψ|ξ〉| = A(ψ, ξ) ≤ A(ψ, φ) + A(φ, ξ) = arccos |〈ψ|φ〉|+ arccos |〈φ|ξ〉| ≤ θ + θ′.

Taking the cosine of both sides yields the result.

Lemma 4.3.4. Let θ, θ′ ∈ [0, π/4]. Then

cos(θ + θ′) ≥ cos2(θ) + cos2(θ′)− 1.

Proof. Without loss of generality, suppose that θ ≥ θ′. Consider the function

f(θ) = cos(θ + θ′)− cos2(θ) + sin2(θ′)

for fixed θ′. Taking its derivative, we get

f ′(θ) = − sin(θ + θ′) + sin(2θ)

which is nonnegative for θ ∈ [θ′, π/4]. Since f(θ′) = 0, we conclude that f(θ) ≥ 0 for

θ ∈ [θ′, π/4], which gives the desired result.

166

We combine these lemmas to prove the following lemma.

Lemma 4.3.5. Let |ψ〉 be a pure state and let {C, I−C} and {D, I−D} be two projective

measurements such that

cos(θ) := ‖C|ψ〉‖2 ≥
1√
2

and cos(θ′) := ‖D|ψ〉‖2 ≥
1√
2
.

Then we have

‖DC|ψ〉‖2
2 ≥ cos2(θ) cos2(θ + θ′).

Proof. Define the following states

|X〉 :=
C|ψ〉
‖C|ψ〉‖2

, |X ′〉 :=
(I − C)|ψ〉
‖(I − C)|ψ〉‖2

, |Y 〉 :=
D|ψ〉
‖D|ψ〉‖2

, |Y ′〉 :=
(I −D)|ψ〉
‖(I −D)|ψ〉‖2

,

which are well-defined (otherwise, if any of the denominators are 0, then the result holds

trivially). We can write

|ψ〉 = cos(θ)|X〉+ sin(θ)|X ′〉 and |ψ〉 = cos(θ′)|Y 〉+ sin(θ′)|Y ′〉

yielding

‖DC|ψ〉‖2
2 = cos2(θ) ‖D|X〉‖2

2

≥ cos2(θ)|〈Y |X〉|2 using Lemma 4.3.2

≥ cos2(θ) cos2(θ + θ′) using Lemma 4.3.3,

as desired.

We now prove Lemma 4.3.1.

Proof. Let |Ω〉 ∈ CA×B be the joint pure state shared by Alice and Bob, where CA is the

space controlled by Alice and CB is the space controlled by Bob.

Let M = {Mx0,x1}x0,x1∈{0,1} be Alice’s projective measurement on CA to determine her

bits x0, x1. Let P = {P0, P1} be Bob’s projective measurement that allows him to guess

x0 with probability p = cos2(θ) and Q = {Q0, Q1} be Bob’s projective measurement that

167

allows him to guess x1 with probability q = cos2(θ′). These measurements are on CB only.

Recall that a = p+q
2

= cos2(θ)+cos2(θ′)
2

. We consider the following projections on CA×B:

C =
∑
x0,x1

Mx0,x1 ⊗ Px0 and D =
∑
x0,x1

Mx0,x1 ⊗Qx1 .

C (resp. D) is the projection on the subspace where Bob guesses correctly the first bit

(resp. the second bit) after applying P (resp. Q).

A strategy for Bob to learn both bits is simple: Apply the two measurements P and Q

one after the other, where the first one is chosen uniformly at random. The measurement

operator on the subspace where Bob guesses (x0, x1) when applying P then Q is

E =
∑
x0,x1

Mx0,x1 ⊗Qx1Px0 = DC.

Similarly, the measurement operator on the subspace where Bob guesses (x0, x1) when

applying Q then P is

F =
∑
x0,x1

Mx0,x1 ⊗ Px0Qx1 = CD.

With this strategy, Bob can guess both bits with probability

1

2

(
||E|Ω〉||22 + ||F |Ω〉||22

)
=

1

2

(
||DC|Ω〉||22 + ||CD|Ω〉||22

)
≥ 1

2

(
cos2(θ) + cos2(θ′)

)
cos2(θ + θ′) using Lemma 4.3.5

≥ 1

2

(
cos2(θ) + cos2(θ′)

) (
cos2(θ) + cos2(θ′)− 1

)2
using Lemma 4.3.4

= a(2a− 1)2.

Note that we can use Lemma 4.3.5 since Bob’s optimal measurements to guess x0 and x1

each succeed with probability at least 1/2.

4.4 Forcing oblivious transfer

Here we discuss a variant of oblivious transfer which is a generalization of coin-flipping. Like

coin-flipping, it can be analyzed using Kitaev’s semidefinite programming formulation of

168

cheating strategies. Although this primitive is not as interesting as the standard definition

of OT from a cryptographic standpoint, it helps illustrate the different security notions in

quantum cryptography. In addition, it shows how OT can be analyzed using the techniques

from earlier chapters.

We reproduce the definition of forcing oblivious transfer below.

Definition 4.4.1 (Forcing oblivious transfer (Forcing-OT)). A k-out-of-n forcing obliv-

ious transfer protocol, denoted as Forcing-OT(n,k), with forcing bias εFOT, is a protocol

satisfying:

• Alice and Bob start uncorrelated,

• Alice and Bob have no inputs,

• Alice outputs n random bits x := (x1, . . . , xn),

• Bob outputs a random k-index set b and bit string xb consisting of xi for i ∈ b,

• P ∗A,(b,xb) := sup{Pr[Alice can force Bob to output (b, xb)]} =
εA(

n
k

)
· 2k

,

• P ∗B,x := sup{Pr[Bob can force Alice to output x]} =
εB

2n
,

• εFOT = max{εA, εB},

where the suprema are taken over all cheating strategies of the party indicated.

Note that we are interested in how much each party can force a desired output, as

in coin-flipping. In the language of Forcing-OT, strong coin-flipping is a Forcing-OT(1,1)

protocol. This is in contrast to the standard definition of oblivious transfer studied in the

first part of this chapter, where the goal was to learn inputs.

4.4.1 Extending Kitaev’s lower bound for strong coin-flipping

We now extend Kitaev’s formalism from the setting of coin-flipping to the more general

setting of Forcing-OT(n,k). Very little modifications are needed to the coin-flipping setting

described in Subsection 1.4.6, we can still use the setting for the spaces and unitaries.

169

However, we need different projections since the outputs of the protocol are different in

the case of Forcing-OT. We can suppose Alice has projections

{ΠA,abort} ∪ {ΠA,x : x ∈ Zn2} ⊂ ΣA
+

and Bob has the projections

{ΠB,abort} ∪
{

ΠB,(b,xb) : b a k-element subset of n indices, xb ∈ Zk2
}
⊂ ΣB

+.

If we let |ψ〉 ∈ CA×M×B be the state at the end of the protocol when Alice and Bob are

honest, the requirements of a Forcing-OT(n,k) protocol are satisfied when

〈ΠA,x ⊗ IM ⊗ ΠB,(b,xb), |ψ〉〈ψ|〉 =
1(
n
k

)
2n

for all consistent (x, b, xb).

Similar to coin-flipping, we can capture cheating strategies as semidefinite programs.

Bob can force honest Alice to output a specific x ∈ Zn2 with maximum probability equal

to the optimal value of the following semidefinite program

P ∗B,x = max 〈ΠA,x, ρA,n〉
subject to ρA,0 = |ψA,0〉〈ψA,0|,

ρA,i = ρA,i−1, for all i even,

TrM ρ̃A,i = ρA,i, for all i even,

ρA,i = TrM
[
UA,iρ̃A,i−1U

∗
A,i

]
, for all i odd,

ρA,i ∈ ΣA
+, for all i,

ρ̃A,i ∈ ΣA×M
+ , for all i even.

Similarly, Alice can force honest Bob to output a specific (b, xb) with maximum probability

equal to the optimal value of the following semidefinite program

P ∗A,(b,xb) = max 〈ΠB,(b,xb), ρB,n〉
subject to ρB,0 = |ψB,0〉〈ψB,0|,

ρB,i = ρB,i−1, for all i odd,

TrM ρ̃B,i = ρB,i, for all i odd,

ρB,i = TrM
[
UB,iρ̃B,i−1U

∗
B,i

]
, for all i even,

ρB,i ∈ ΣB
+, for all i,

ρ̃B,i ∈ ΣM×B
+ , for all i odd.

Using Kitaev’s proof for coin-flipping, we get the following theorem.

170

Theorem 4.4.2. In any Forcing-OT(n,k) protocol, for consistent (x, b, xb), we have

P ∗B,x P
∗
A,(b,xb)

≥ Pr[Alice honestly outputs x and Bob honestly outputs (b, xb)] =
1(
n
k

)
2n
.

In particular, the forcing bias satisfies εFOT ≥ 2k/2.

The only difference in the proof is that the honest outcome probabilities are different.

From the last line of Kitaev’s proof, we get

P ∗B,x · P ∗A,(b,xb) ≥ 〈ΠA,x ⊗ IM ⊗ ΠB,(b,xb), |ψ〉〈ψ|〉 =
1(
n
k

)
2n
,

as desired.

4.4.2 A protocol with optimal forcing bias

First, consider the following protocol which achieves the bound in Theorem 4.4.2 but is

asymmetric. Alice sends n random bits to Bob who then outputs b, a random k-index subset

of n indices, and xb. In this protocol, Bob can force a desired outcome with probability
1

2n
and Alice can force a desired outcome with probability 1

(nk)
. Thus, the product of the

cheating probabilities is optimal, that is it achieves the lower bound in Theorem 4.4.2,

however the protocol is asymmetric. This can be easily remedied using coin-flipping. We

present an optimal protocol below.

Protocol 4.4.3 (An optimal Forcing-OT(n,k) protocol with forcing bias 2k/2).

(i) Bob randomly chooses a k-index set b and sends b to Alice.

(ii) Alice and Bob generate each bit in xb using a strong coin-flipping protocol where

neither party can force the outcome with probability greater than 1√
2

+ δ, for some

small constant δ > 0.

(iii) Alice randomly chooses her bits not in b.

Theorem 4.4.4. For any γ > 0, we can choose a δ > 0 such that the Forcing-OT(n,k)

protocol above satisfies

P ∗A,(b,xb) ≤
2k/2(1 + γ)(

n
k

)
· 2k

and P ∗B,x ≤
2k/2(1 + γ)

2n
.

171

The bias satisfies εFOT ≤ 2k/2(1 + γ).

Proof. Fix γ > 0 and a coin-flipping parameter δ > 0 sufficiently small enough so that(
1√
2

+ δ
)k
≤ 2k/2(1+γ)

2k
. This sets an upper bound on the probability of forcing a k bit string

using k coin-flipping protocols each with a maximum cheating probability of 1√
2

+ δ. We

now analyze each party cheating. Alice has no control over the index set but she can try

to force a particular bit string for xb. Her maximum cheating probability is

P ∗A,(b,xb) ≤
1(
n
k

) · (1√
2

+ δ

)k
≤ 1(

n
k

) · 2k/2(1 + γ)

2k
=

2k/2(1 + γ)(
n
k

)
2k

.

Bob has no control over Alice’s n − k remaining bits, so he can cheat with maximum

probability

P ∗B,x ≤
1

2n−k
·
(

1√
2

+ δ

)k
≤ 1

2n−k
· 2k/2(1 + γ)

2k
=

2k/2(1 + γ)

2n
.

For the special case of Forcing-OT(1,2), we have the following corollary.

Corollary 4.4.5 (Optimal Forcing-OT(1,2)). For any γ > 0, there exists a protocol for

Forcing-OT(1,2) where each party has honest outcome probabilities of 1/4 and neither party

can cheat with probability greater than 1√
8

+ γ ≈ 0.3535 + γ.

We remark that this protocol is completely classical with the exception of the quantum

coin-flipping subroutines. This is similar to the optimal strong coin-flipping protocol in

[CK09] designed using classical messages and quantum weak coin-flipping subroutines.

172

Chapter 5

Concluding remarks

In this thesis, we analyzed two primitives using convex optimization techniques. In Chap-

ters 2 and 3, we studied a family of coin-flipping protocols which are based on quantum

bit-commitment and Chapter 4 involved the analysis of oblivious transfer using ideas from

bit-commitment and coin-flipping. Below, we summarize the ideas and concepts used in

this thesis and some open questions that arise.

Coin-flipping

We studied the security of quantum (and classical) coin-flipping protocols based on

bit-commitment utilizing SDP formulations of cheating strategies. These SDPs allowed us

to use concepts from convex optimization to further our understanding of the security of

such protocols. In particular, using a reduction of the SDPs and duality theory, we were

able to develop a family of point games corresponding to the protocols.

We constructed the classical counterpart to the quantum protocols and showed how the

analysis is very similar to the quantum version due to the similarities between the cheating

strategy formulations. Figure 5.1 (on the next page) summarizes the connections between

the classical and quantum protocols. Using these connections, we were able to show that

a bias of ε = 1/
√

2 − 1/2 is impossible for BCCF-protocols using a modified version of

Kitaev’s lower bound.

173

Figure 5.1: Classical/quantum BCCF-protocol relationship.

Finding optimal cheating strategies for protocols with multiple rounds of communica-

tion turns out to be a very difficult problem. To further our understanding of the structure

of optimal protocols, we designed a search algorithm that seeks protocols with small bias.

Using cheating strategies that arise from studying the cheating SDPs, we designed a proto-

col filter to eliminate protocols with high bias from the search. Using the protocol filter and

other heuristics, we checked 1016 protocols for optimality, a task that would take millions

of years without using the optimization techniques developed in this thesis. We conclude

with the conjecture that the smallest attainable bias for BCCF-protocols is ε = 1/4.

Coin-flipping open questions

An open problem is to find the optimal cheating strategies for a general n-round BCCF-

protocol. This can be accomplished by finding closed-form optimal solutions to the cheating

SDPs or the reduced cheating SDPs. Very few highly interactive protocols, such as BCCF-

protocols, have descriptions of optimal cheating strategies and therefore having such for

this family of protocols would be very interesting.

A related open problem is to find an explicit construction of optimal protocols for weak

174

coin-flipping, strong coin-flipping, or bit-commitment. We can accomplish all three of these

tasks by finding a construction of optimal weak coin-flipping protocols, so this would be

very rewarding. Technically, such a construction is implicit in [Moc07], however it involves

many reductions and is quite complicated. As for strong coin-flipping, it seems that we

may need to look further than BCCF-protocols to find a way to construct an optimal

protocol.

Oblivious transfer

We described a new protocol for oblivious transfer such that Alice can learn Bob’s index

with maximum probability 3/4 and Bob can learn Alice’s input with maximum probability

3/4. As for lower bounds, we use a construction of bit-commitment from oblivious transfer

and related the corresponding cheating strategies. We then exhibited a cheating strategy

for Bob using a Learning-In-Sequence Lemma which is a way for Bob to sequentially learn

Alice’s two input bits. Using this strategy and known bounds for bit-commitment, we

derived a lower bound on the bias of any oblivious transfer protocol.

To relate oblivious transfer to the analysis of Chapters 2 and 3, we studied a “forc-

ing” variant of oblivious transfer. This primitive allows for SDP formulations of cheating

strategies in the same way as coin-flipping. As in the case of coin-flipping, these SDPs led

to optimal lower bounds for the bias.

Oblivious transfer open questions

An open problem is to formulate cheating strategies for oblivious transfer as semidefinite

programs in a way that gives a nontrivial lower bound on the bias. The difficulty is that

in oblivious transfer, the cheating goal is to learn the other party’s input (as opposed to

the goal in coin-flipping which is to force an outcome). This subtle difference makes the

task much more challenging. If it were possible, it would be interesting to see if a point

game analog can be made for oblivious transfer.

Solving for the optimal bias of oblivious transfer protocols is still an open problem.

The lower bound we obtained for the bias originally relied on Kitaev’s bound for strong

coin-flipping, but then we used the stronger bound for bit-commitment to get a better

175

result. Perhaps it is possible to find a different reduction between oblivious transfer and

another well-understood primitive to give an improved lower bound on the bias or a better

protocol.

176

Bibliography

[ABDR04] A. Ambainis, H. Buhrman, Y. Dodis, and H. Rohrig. Multiparty quantum coin

flipping. In Proceedings of the 19th IEEE Annual Conference on Computational

Complexity, pages 250–259, 2004.

[AG03] F. Alizadeh and D. Goldfarb. Second-order cone programming. Math. Pro-

gram., 95:3–51, 2003.

[Alb83] P. Alberti. A note on the transition probability over C∗-algebras. Letters in

Mathematical Physics, 7(1):25–32, 1983.

[Amb01] A. Ambainis. A new protocol and lower bounds for quantum coin flipping.

In Proceedings of 33rd Annual ACM Symposium on the Theory of Computing,

pages 134 – 142, 2001.

[Amb02] A. Ambainis. Lower bound for a class of weak quantum coin flipping protocols.

Available as arXiv.org e-Print quant-ph/0204063, 2002.

[ATVY00] D. Aharonov, A. Ta-Shma, U. Vazirani, and A. Yao. Quantum bit escrow. In

Proceedings of 32nd Annual ACM Symposium on the Theory of Computing,

pages 705–714, 2000.

[BB84] C. Bennett and G. Brassard. Quantum cryptography: Public key distribution

and coin tossing. In Proceedings of the IEEE International Conference on

Computers, Systems, and Signal Processing, pages 175–179, 1984.

177

[BBBW83] C. Bennett, G. Brassard, S. Breidbard, and S. Wiesner. Quantum cryptogra-

phy, or unforgeable subway tokens. In Advances in Cryptology CRYPTO 1982,

pages 267–275, 1983.

[BCvD05] D. Bacon, A. Childs, and W. van Dam. From optimal measurement to efficient

quantum algorithms for the hidden subgroup problem over semidirect product

groups. In Proceedings of 46th IEEE Symposium on Foundations of Computer

Science, pages 469–478, 2005.

[BCvD06] D. Bacon, A. Childs, and W. van Dam. Optimal measurements for the dihe-

dral hidden subgroup problem. In Chicago Journal of Theoretical Computer

Science, article 2, 2006.

[BG89] M. Bellare and S. Goldwasser. New paradigms for digital signatures and mes-

sage authentication based on non-interactive zero knowledge proofs. In Ad-

vances in Cryptology CRYPTO 1989, pages 194–211, 1989.

[Blu81] M. Blum. Coin flipping by telephone. In Advances in Cryptology CRYPTO

1981, pages 11–15, 1981.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-

definite programming. In IEEE Conference on Computational Complexity,

pages 179–193, 2003.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. Special issue on

Quantum Computation of the Siam Journal of Computing, 26(5):1411–1473,

1997.

[CK09] A. Chailloux and I. Kerenidis. Optimal quantum strong coin flipping. In

Proceedings of 50th IEEE Symposium on Foundations of Computer Science,

pages 527–533, 2009.

[CK11] A. Chailloux and I. Kerenidis. Optimal bounds for quantum bit commitment.

In Proceedings of 52nd IEEE Symposium on Foundations of Computer Science,

pages 354–362, 2011.

178

[CKS10] A. Chailloux, I. Kerenidis, and J. Sikora. Lower bounds for quantum oblivious

transfer. In Proceedings of IARCS Annual Conference on Foundations of Soft-

ware Technology and Theoretical Computer Science, volume 8, pages 157–168,

2010.

[Cré87] C. Crépeau. Equivalence between two flavours of oblivious transfers. In Ad-

vances in Cryptology CRYPTO 1987, pages 350–354, 1987.

[DFSS08] I. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded

quantum-storage model. SIAM Journal of Computing, 37(6):1865–1890, 2008.

[DiV00] D. DiVincenzo. The physical implementation of quantum computation.

Fortschr. Phys., 48:771–783, 2000.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing

contracts. Communications of the ACM, 28(6):637–647, 1985.

[Eis05] J. Eisert. Optimizing linear optics quantum gates. Phys. Rev. Lett., 95:040502,

2005.

[EMV03] Y. Eldar, A. Megretski, and G. Verghese. Designing optimal quantum detectors

via semidefinite programming. IEEE Transactions on Information Theory,

49:1007–1012, 2003.

[ESH04] Y. Eldar, M. Stojnic, and B. Hassibi. Optimal quantum detectors for unam-

biguous detection of mixed states. Phys. Rev. A, 69(6):062318, 2004.

[FvdG99] C. Fuchs and J. van de Graaf. Cryptographic distinguishability measures

for quantum mechanical states. IEEE Transactions on Information Theory,

45:1216–1227, 1999.

[GSU11] S. Gharibian, J. Sikora, and S. Upadhyay. QMA variants with polynomially

many provers. Available as arXiv.org e-Print quant-ph/1108.0617, 2011.

[Gut09] G. Gutoski. Quantum strategies and local operations. PhD Thesis, University

of Waterloo, 2009. Available at arXiv.org e-Print quant-ph/1003.0038.

179

[Gut10] G. Gutoski. On a measure of distance for quantum strategies. Available as

arXiv.org e-Print quant-ph/1008.4636, 2010.

[GW95] M. Goemans and D. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal

of the ACM, pages 1115–1145, 1995.

[GW05] G. Gutoski and J. Watrous. Quantum interactive proofs with competing

provers. Lecture Notes in Computer Science, 3404:605–616, 2005.

[GW07] G. Gutoski and J. Watrous. Toward a general theory of quantum games. In

Proceedings of the 39th ACM Symposium on Theory of Computing, pages 565–

574, 2007.

[Hel69] C. Helstrom. Quantum detection and estimation theory. Journal of Statistical

Physics, 1(2):231–252, 1969.

[HLS07] P. Høyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger.

In Proceedings of 39th Annual ACM Symposium on the Theory of Computing,

pages 526–535, 2007.

[Hol73a] A. Holevo. Some estimates of the information transmitted by quantum com-

munication channels. Problemy Peredachi Informatsii, 9:3–11, 1973.

[Hol73b] A. Holevo. Statistical decisions in quantum theory. Journal of Multivariate

Analysis, 3:337–394, 1973.

[Ip03] L. Ip. Shor’s algorithm is optimal. Manuscript, 2003.

[JJUW11] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP = PSPACE. Journal of

ACM, 58(6), Article no. 30, 2011.

[JRS09] R. Jain, J. Radhakrishnan, and P. Sen. A new information-theoretic property

about quantum states with an application to privacy in quantum communica-

tion. Journal of ACM, 56(6), Article no. 33, 2009.

180

[Ker83] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,

9:5–38, 1883.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the

20th Annual ACM Symposium on Theory of Computing, pages 20–31, 1988.

[Kit02] A. Kitaev. Quantum coin-flipping. Presentation at the 6th Workshop on

Quantum Information Processing (QIP 2003), 2002.

[KN04] I. Kerenidis and A. Nayak. Weak coin flipping with small bias. Inf. Process.

Lett., 89(3):131–135, 2004.

[KW00] A. Kitaev and J. Watrous. Parallelization, amplification, and exponential time

simulation of quantum interactive proof systems. In Proceedings of the 32nd

ACM Symposium on Theory of Computing, pages 608–617, 2000.

[LC97] H.-K. Lo and H. Chau. Why quantum bit commitment and ideal quantum

coin tossing are impossible. Physica D: Nonlinear Phenomena, 120:177–194,

1997.

[LC99] H.-K. Lo and H. Chau. Unconditional security of quantum key distribution

over arbitrarily long distances. SCIENCE, 283:2050–2056, 1999.

[LMR+11] T. Lee, R. Mittal, B. Reichardt, R. Spalek, and M. Szegedy. Quantum com-

plexity of state conversion. In Proceedings of 52nd IEEE Symposium on Foun-

dations of Computer Science, pages 344–353, 2011.

[Lo97] H.-K. Lo. Insecurity of quantum secure computations. Phys. Rev. A,

56(2):1154–1162, 1997.

[LR11] T. Lee and J. Roland. A strong direct product theorem for quantum query

complexity. Available as arXiv.org e-Print quant-ph/1104.4468, 2011.

[May97] D. Mayers. Unconditionally secure quantum bit commitment is impossible.

Phys. Rev. Lett., 78(17):3414–3417, 1997.

181

[May01] D. Mayers. Unconditional security in quantum cryptography. Journal of the

ACM, 48(3):351–406, 2001.

[Mit03] H. Mittelmann. An independent benchmarking of SDP and SOCP solvers.

Computational semidefinite and second order cone programming: the state of

the art. Math. Program., 95(2 Ser. B):407–430, 2003.

[Moc04] C. Mochon. Quantum weak coin-flipping with bias of 0.192. In Proceedings of

the 45th Annual IEEE Symposium on Foundations of Computer Science, pages

2–11, 2004.

[Moc05] C. Mochon. A large family of quantum weak coin-flipping protocols. Phys.

Rev. A, 72(2):022341, 2005.

[Moc07] C. Mochon. Quantum weak coin flipping with arbitrarily small bias. Available

as arXiv.org e-Print quant-ph/0711.4114, 2007.

[MS07] R. Mittal and M. Szegedy. Product rules in semidefinite programming. Lecture

Notes in Computer Science, 4639:435–445, 2007.

[Nay99] A. Nayak. Optimal lower bounds for quantum automata and random access

codes. In Proceedings of 40th IEEE Symposium on Foundations of Computer

Science, pages 369–376, 1999.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2000.

[NN94] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in Convex

Programming: Theory and Applications, SIAM. Philadelphia, 1994.

[NS03] A. Nayak and P. Shor. On bit-commitment based quantum coin flipping. Phys.

Rev. A, 67(1):012304, 2003.

[PS00] J. Preskill and P. Shor. Simple proof of security of the BB84 quantum key

distribution protocol. Phys. Rev. Lett., 85(2):441–444, 2000.

182

[PW09] M. Piani and J. Watrous. All entangled states are useful for channel discrimi-

nation. Phys. Rev. Lett., 102(25):250501, 2009.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. In Technical Report

TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[Rei09] B. Reichardt. Span programs and quantum query complexity: The general

adversary bound is nearly tight for every boolean function. In Proceedings of

50th IEEE Symposium on Foundations of Computer Science, pages 544–551,

2009.

[Sac05] M. Sacchi. Optimal discrimination of quantum operations. Phys. Rev. A,

71(6):062340, 2005.

[Sch10] C. Schaffner. Simple protocols for oblivious transfer and secure identification

in the noisy-quantum-storage model. Phys. Rev. A, 82:032308, 2010.

[Sho94] P. Shor. Algorithms for quantum computation: Discrete logarithms and fac-

toring. In Proceedings of 35th IEEE Symposium on Foundations of Computer

Science, pages 124–134, 1994.

[SR01] R. Spekkens and T. Rudolph. Degrees of concealment and bindingness in

quantum bit commitment protocols. Phys. Rev. A, 65:012310, 2001.

[SR02] R. Spekkens and T. Rudolph. Quantum protocol for cheat-sensitive weak coin

flipping. Phys. Rev. Lett., 89(22):1–4, 2002.

[SS06] R. Spalek and M. Szegedy. All quantum adversary methods are equivalent.

Theory of Computing, 2(1):1–18, 2006.

[SSS09] L. Salvail, C. Schaffner, and M. Sotáková. On the power of two-party quantum

cryptography. In International Conference on the Theory and Application of

Cryptology and Information Security - ASIACRYPT 2009, pages 70–87, 2009.

[Stu99] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones. Optimization Methods and Software, 11:625–653, 1999.

183

[Stu02] J. Sturm. Implementation of interior point methods for mixed semidefinite and

second order cone optimization problems. Optimization Methods and Software,

17(6):1105–1154, 2002.

[Tun10] L. Tunçel. Polyhedral and Semidefinite Programming Methods in Combinatorial

Optimization, volume FIM/27. Fields Institute Monograph Series, AMS, 2010.

[Uhl76] A. Uhlmann. The “transition probability” in the state space of a *-algebra.

Reports on Mathematical Physics, 9(2):273–279, 1976.

[Wat09] J. Watrous. Semidefinite programs for completely bounded norms. Theory of

Computing, 5:217–238, 2009.

[Wie83] S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidef-

inite Programming. Kluwer Academic Publishers, 2000.

[Yao93] A. Yao. Quantum circuit complexity. In Proceedings of the 34th Annual IEEE

Symposium on Foundations of Computer Science, pages 352–361, 1993.

[YKL75] H. Yuen, R. Kennedy, and M. Lax. Optimum testing of multiple hypotheses in

quantum detection theory. IEEE Transactions on Information Theory, 21:125–

134, 1975.

184

	Introduction
	Overview
	An overview of the use of optimization techniques in quantum literature
	A brief history of quantum cryptography
	Contributions

	Mathematical preliminaries and notation
	Linear algebra
	Convex analysis
	Quantum information
	Semidefinite programming
	Quantum protocols
	The Kitaev coin-flipping protocol formalism
	Technical lemmas

	Coin-flipping protocols based on bit-commitment
	A family of quantum coin-flipping protocols
	Quantum cheating strategy formulations
	Reduced formulations of quantum strategies
	An SDP proof for why qubit messages are sufficient
	SOCP formulations of quantum strategies
	Point games for BCCF-protocols
	Describing BCCF-point games using basic moves

	A related family of classical coin-flipping protocols
	Classical cheating strategy formulations
	Point games for classical BCCF-protocols and security analysis
	Extreme points of the cheating polytopes

	Using classical protocols to lower bound the quantum bias
	A better lower bound on a special case

	A computational search for BCCF-protocols with small bias
	The protocol filter
	Cheating Alice
	Cheating Bob

	Protocol symmetry
	Symmetry in local permutations
	Symmetry between probability vectors

	The search algorithm
	A protocol with bias 1/4
	Making a finite mesh
	The refined algorithm

	Numerical results
	Four-round search
	Six-round search
	Random offset

	A protocol and lower bounds for quantum oblivious transfer
	An oblivious transfer protocol with bias 1/4
	A lower bound on any oblivious transfer protocol
	Proof of the Learning-In-Sequence Lemma
	Forcing oblivious transfer
	Extending Kitaev's lower bound for strong coin-flipping
	A protocol with optimal forcing bias

	Concluding remarks
	Bibliography

