
Artificial Neural Networks for
Microwave Detection

by

Ahmed Ashoor

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Ahmed Ashoor 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Microwave detection techniques based on the theory of perturbation of cavity resonators
are commonly used to measure the permittivity and permeability of objects of dielectric
and ferrite materials at microwave frequencies. When a small object is introduced into a
microwave cavity resonator, the resonant frequency is perturbed. Since it is possible to
measure the change in frequency with high accuracy, this provides a valuable method for
measuring the electric and magnetic properties of the object. Likewise, these microwave
resonators can be used as sensors for sorting dielectric objects.

Techniques based upon this principle are in common use for measuring the dielectric
and magnetic properties of materials at microwave frequencies for variety of applications.
This thesis presents an approach of using Artificial Neural Networks to detect material
change in a rectangular cavity. The method is based on the theory of the perturbation
of cavity resonators where a change in the resonant frequencies of the cavity is directly
proportional to the dielectric constant of the inserted objects. A rectangular cavity test
fixture was built and excited with a monopole antenna. The cavity was filled with different
materials, and the reflection coefficient of each material was measured over a wide range
of frequencies.

An intelligent systems approach using an artificial neural network (ANN) methodology
was implemented for the automatic material change detection. To develop an automatic
detection model, a multi-layer perceptron (MLP) was designed with one hidden layer and
gradient descent back-propagation (BP) learning algorithm was used for the ANN training.
The network training process was performed in an off-line mode, and after the training
process was accomplished, the model was able to learn the rules without knowing any
algorithm for automatic detection.
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Chapter 1

Motivation and Overview

1.1 Introduction

In a wide variety of applications from security to material characterization, the main task
is to identify a small perturbation to the material inside a given region. Fields of physics,
engineering, material science, and even biology and medicine have greatly benefited from
microwave measurement techniques based on cavity perturbation theory [2, 3, 4, 5, 6, 7].

In security applications, for instance, the perturbation can be a hidden gun, concealed
narcotics, rotten food or even impurity in the chemical composition of certain substance.
Thus, to detect such a change, the detection can be performed using near-field or far-field
sensors in an open region. In such methods, the scattered field is analyzed, thus limiting
the application since if a material to be detected is shielded by a different object, detection
becomes difficult.

The method that is proposed here works based on change in the resonant frequencies
of a cavity that contains the material under test. Unlike the detection modalities based
on the scattered field, here the whole region of the cavity is covered by the resonator and
microwave field penetrates inside the whole material.

1.2 Intelligent Systems

An intelligent system is composed of a knowledge base, an inference engine, a working
memory, a user interface and an explanation based subsystems [8]. There are several in-
telligent systems approaches that are widely used. Such approaches include but are not
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limited to rule based reasoning, fuzzy logics, artificial neural networks, genetic algorithms,
case based reasoning. Intelligent systems approaches have been practised in various appli-
cations for many decades but recently have received a considerable amount of attention in
microwave applications [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

It was demonstrated in [19, 20] that an intelligent system is able to learn the rules with-
out the need to know any algorithms. However, it is an absolute necessity to improve the
networks by improving its structure in order to build an accurate intelligent system. There-
fore, applying better selections of normalization procedure, signal/data pre-processing, and
training the network with an accurate data can lead to having a more accurate system in
terms of learning to obtain desired results.

In recent years, Artificial Neural Network (ANN) has been recognized as one of the
most powerful techniques for modelling highly complex systems. ANN is an information
processing system, which can learn from observation and then generalize an arbitrary
multidimensional non-linear input-output relationship [21]. The ability of the ANN mod-
els to detect non-linear relationships between parameters is due to their unique training
method and structure. Thus, ANN models have been utilized in many area of engineering
and scientific applications such as remote sensing, communication, power systems, energy
systems, biometric, controls, robotics, pattern recognition, weather forecasting, medicine,
manufacturing, optimization and social/psychological sciences, etc.

On the other hand, there are some potential limitations associate with ANN. ANNs
are in a sense the ultimate ’black boxes’, and the final output of it is a trained network
that provides no equations or coefficients defining a relationship beyond it’s own internal
mathematics. Thus the ability of systems to behave intelligently as well as to learn does
not increase by simply using many interacting computing units. This is because intelligent
behaviour depends heavily on the algorithmic of the particular architecture. Thus with
any approach, intelligent neural network architectures require much engineering work. This
engineering work cannot be essentially reduced by using only connectionist approaches.

Despite the fact that Artificial Neural Network has been studied for many years and
applied to other fields, the application of ANN is relatively new to electromagnetics [22].
The work in [22] also demonstrates that errors reported when using these Neural Net-
work models are well within acceptable limits, which clearly suggests that artificial Neural
Networks can be used for modeling in other fields, such as electromagnetics.

Some related work in the field of electromagnetics includes the work that was done
by Stankovic et al. in [23]. In this work, Neural Network techniques were used to model
microwave properties of a raised dielectric slab in a cylindrical cavity. Existing partial
knowledge about the resonant frequency behaviour of the loaded cavity is incorporated
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in the model using a knowledge-based network. Also, ANN with the use of microwave
means in the medical filed was done by M. El-Shenawee [24]. Interpreting Artificial Neural
Networks for Microwave Detection of Breast Cancer, El-Shenawee, M. In this work, a
simplied model of the breast containing a tumor was used to determine the scattering of
electromagnetic waves in the microwave band. Then the obtained data was used to train
and test a ANN in order to predict whether a tumor is present or not.

In addition, Penaranda Foix F. L. in [25] presented a practical expression for frequency
deviation due to the insertion of a dielectric material in a cylindrical cavity. This technique
is often used to measure the permittivity of the inserted material, which is similar to the
material change classification problem. Similarly, Farahani A. V. in [26] presented a finite-
difference time-domain calculation of cavity resonant frequencies in the case of non-uniform
internal magnetic field distributions. In [27], Hill presented a comprehensive theoretical
analysis of cavity resonance in his book Electromagnetic Fields in Cavities: Deterministic
and Statistical Theories. Raveendranath U. in [28] also presented a perturbation technique
for measuring complex permeability of ferrite materials. A rectangular waveguide cavity
was used in [28] to measure the magnetic properties of ferrite materials.

One more application of Neural Networks in the field of electromagnetics was done by
Ma J. F. in [29]. He addressed the problem of detecting low-dielectric constant cavities
buried deep in lossy ground by using finite-difference time-domain methods in conjunction
with Neural Networks for extrapolation and object identification. According to [29], it
was found that the Neural Network approach was good at approximating the relationship
between the field scattered by the object and its depth.

1.3 Research Objective and Overview

The main purpose of this research work was to develop an automatic method that could
assist developing a detection system by electromagnetic means.

In this thesis, a change in resonant frequencies technique has been employed to measure
the small change in resonant frequencies for different materials using a rectangular cavity
and monopole antenna. The effect of any change in the material inside a cavity will be
analyzed. Then presenting a solution to what I call ”the cavity material change classifica-
tion technique”, i.e. the problem of classifying material changes in a cavity. The broader
aims of this work focus on the analysis of rectangular cavities excited by only one type of
antenna. A Neural Network classification method is applied to a set of experimental data
where the goal of the classifier is to distinguish between different material perturbations
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using the changes in the resonant frequencies of the cavity. The Neural Network classifier
is required because small changes in the location of the resonant frequencies may not be
apparent to the human eye but could be detected using a classifier like the Neural Network.

The Artificial Neural Network is not the only possible choice of classification method,
and the proper selection of classification method is very important. The non-linear nature
of the proposed problem and because of the fact that the distributions of classes are
unknown, linear classifiers or Bayesian classifiers are hard to use. Therefore Neural Network
classifiers, Fuzzy classifiers and Nearest Neighbour classifiers are excellent candidates. In
this thesis, a Neural Network classifier is used because of its flexibility and generality in
situations where less information is available about the nature of the problem.

In this thesis, a Neural Network classifier is applied to the selected resonant frequencies
of the experimental data to classify small changes in the resonant frequencies. These
changes in resonant frequencies may be noticeable for identical objects and may not be
noticeable when testing different objects. Thus the purpose of building a neural network
model is to distinguish between these changes and then assign them the right class. In
the used Neural Networks, multi-layer perceptron neural networks (MLP) feedforward was
considered. The number of the hidden layer was determined during the ANN training
process. The back-propagation (BP) learning algorithm was used for training process
in an off-line mode. The performance of the designed networks was evaluated by the test
database in terms of Recognition Rate (RR), i.e. ratio of the number of input data correctly
classified to the total number of inputs and a specific error rate. Several advantages that
multilayer feedforward with backpropagation learning algorithm has above other NN types.
One advantage is that it can be used as a classifier as well as a pattern recognition which
will serve the propose on this thesis. Also, its incremental learning algorithm where at any
stage during the training process, training can be stopped and the network would still serve
as a model of function being learned. Not only that but also it can be used in developing
empirical models based on experimental knowledge and gives reasonable accuracy even if
the given data is noisy or incomplete. Finally, its hidden layers perform feature extraction
on the presented patterns at the input layer. All these advantages serve the classification
purpose of this thesis.

1.4 Thesis Organization

Chapter 2 presents brief theoretical background on cavity perturbation theory in electro-
magnetics. A general discussion of cavity perturbation is also presented in this chapter.
In Chapter 3, Artificial Neural Networks is discussed in general. Various neural network
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structures and learning algorithms are presented. The focus of this Chapter 3 is mostly
on previously developed methods and algorithms. Chapter 4 presents the experimental
setup for the proposed detection problem. Development and analysis of the ANN model
is presented. Finally, in Chapter 5, a summary of the thesis is presented, highlighting the
contributions of the proposed detection technique using ANN model. Further research and
some suggestions for future research are presented in this chapter as well.
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Chapter 2

Background

2.1 Microwave Principles

The microwave spectrum ranges from 300 MHz to 300 GHz with wavelengths ranges from
1 meter to 1 mm [30]. Microwaves can deeply penetrate into dielectric and composite
materials. This interaction called material energy interaction. The loss factor associated
with dielectric materials and the frequency at which the experiment is conducted are the
two main factors affecting the material energy interaction. The key advantages given to
the microwave techniques are that they are considered as a non contact technology where
no need for a couplant and high power [30].

Measurement of complex permittivity and permeability of dielectric and magnetic ma-
terial plays an important role in microwave technology. Several techniques such as cavity
perturbation [31], open-ended coaxial probes [32], free space [33], waveguide transmission
line [34] and dispersive fourier transform spectrometer [35] have all been developed for
material permittivity and permeability measurement. Nevertheless, the cavity perturba-
tion method has a reputation as one of most simple and accurate techniques for measuring
dielectric and magnetic properties of material.

2.2 Cavity Perturbation Theory

The earliest treatment of cavity perturbation theory was introduced by Bethe and Schwinger
[31]. In many applications, cavity resonators are modified by making small changes in their
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shape, or by introducing small pieces of dielectric material. By measuring the shift in the
resonant frequency, the material’s dielectric constant can be determined.

In some cases, one can exactly calculate the change of the cavity’s response, but more
often approximations must be used. The cavity perturbation method provides a formalism
for this by first assuming that the eigen-modes of the fields in the cavity are unchanged
from those of the unperturbed cavity which is similar to the first order perturbation theory
in quantum mechanics.

Furthermore, since the majority of the microwave energy is concentrated in the cavity,
the fields distribution inside the cavity will not be disturbed significantly by the tip-sample
interaction. Thus the cavity perturbation theory is a good approach for calculating the
frequency shift caused by changes in the dielectric environment. With this theory, one
can relate the resonant frequency shift of the cavity to a change in the permittivity ∆ε,
or permeability ∆µ in the volume occupied by sample. This suggests that change in the
resonant frequencies of a cavity could be used to identify material change.

To demonstrate this change in the resonant frequencies, an air filled rectangular cavity
with a resonant mode at frequency ω0 is considered. If the dielectric constant inside a
region ∆τ is changed to εr then change in the resonant frequency is given by the following
[36]:

∆ω

ω0

= −
∫ ∫ ∫

(∆ε ~E · ~E∗
0 + ∆µ ~H · ~H∗

0 )dτ∫ ∫ ∫
(ε ~E · ~E∗

0 + µ ~H · ~H∗
0 )dτ

(2.1)

where ~E0 and ~H0 are the unperturbed electric and magnetic fields, respectively, ~E and
~H are the perturbed electric and magnetic fields inside ∆τ in the presence of the dielectric
material, respectively, and ∆ε and ∆µ are the changes in the electric permittivity and
magnetic permeability in the material due to the perturbation, respectively. Taking ∆ε
and ∆µ to be small and approximating ~E = (1/εr) ~E0, we have the following [36]:

∆ω

ω0

≈ −
∫ ∫ ∫

∆τ
(εr − 1) ~E · ~E∗

0dτ

2
∫ ∫ ∫

ε| ~E0|2dτ
(2.2)

A rectangular cavity is only considered with a thin dielectric slab positioned along one
of the sides of the cavity. This consideration gives the following [36]:

∆ω

ω0

≈ −(εr − 1)

2εr

ω̄τe
ω̄e

(2.3)
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where ω̄τe and ω̄e are the stored electric energies in ∆τ and the entire cavity, respectively
(both are calculated in the absence of the dielectric media). Therefore, the percentage of
change in the resonant frequency is proportional to the dielectric constant of the inserted
material. The factor ω̄τe/ω̄e however, depends on the size of the dielectric slab. If the
dielectric slab is small compared to the wavelength, a change in its size will change all
the frequency shifts of all resonant modes by the same factor. Nevertheless, since the
dielectric constant of most materials changes with frequency, a change in material of the
slab will have different effects on different resonant frequencies. This allows the possibility
of defining the material of a small slab using changes in the resonant frequencies.

The ratio ω̄τe/ω̄e also depends on the position of the dielectric slab relative to the electric
field pattern inside the cavity. This ratio is maximized when the object is placed in the
location of maximum electric field strength and is zero when the object is placed at an
electric field null. Since the electric field pattern changes for different modes, it may also
be possible to define the position of the object using change in resonant frequencies.

The above discussion explains the overall picture of the conducting experiment. This
can be used in many applications from security to material characterization where the
main task is to identify a small perturbation to the material inside a given region. The
perturbation can be a hidden gun, concealed narcotics, rotten food or even impurity in the
chemical composition of certain substance. Whereas in the medical field, for instance, this
method can be used to detect tumor in breast cancer.

In this thesis, this method is used to detect material change in a rectangular cavity
with the use of Neural Networks. It is based on the theoretical knowledge that a change in
the resonant frequencies of the cavity is directly proportional to the dielectric constant of
the inserted material. A rectangular cavity test fixture was constructed and excited with
a monopole antenna and the reflection coefficient measured over a range of frequencies.
Different materials were inserted into the cavity including metal, water, wood and air.
The experimental setup will be discussed in great details in chapter 4.
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Chapter 3

Artificial Neural Networks

3.1 Introduction

The nervous system [37] is composed of millions of interconnected nerve cells where each
one performs a specific task. Since the interconnections between those cells are complex,
the outcome of these multi simple task’s accomplishments is the execution of a bigger more
complicated task. In a similar manner, Artificial Neural Networks (ANNs) are composed
of a large number of interconnecting neurons. The essence of ANNs are in the mimicking
of how the nervous system in the human processes information.

In 1940, the first neural networks computing model was introduced by McCulloch an
Pitts, and since then the evolution of this field has been began. Connectionist systems,
parallel distributed systems, or adaptive systems are other names in which the neural
networks have been called. Neural networks can be simply stated as a processing technique,
mainly based on mimicking the human brain in which massive interconnected layers process
information simultaneously and adapt over the course of multiple runs. Thus a neural
network attempts to generalize form a known data to new unknown data. Table 3.1 shows
the common terms used in reference to neural networks and their analogous on brain
expressions.

Interest in the artificial neural networks subsided between years 1950 to 1980 due to
lack of hardware capability which was needed to endorse a learning machine. In 1982, a
paper was presented by John Hopfield to the National Academy of Sciences which moti-
vated researchers to revisit their interests in the field. His paper presented the benefits of
using bidirectional interconnects instead of the traditional unidirectional networks. At that
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ANN Terminology Brin Equivalent
Node Neuron

Interconnect Synapse
Weight Simulation

Table 3.1: Terminology and Analogies of Artificial Neural Networks

time, the hardware had developed to the point where neural networks could be utilized in
practical and more efficient ways.

Artificial Neural Networks (ANNs) have been used in a wide variety of application.
ANNs are excellent tools for approximating any given function of single or multi-variable
inputs and outputs. Due to the flexibility inherent in ANNs’ configurability, they can be
used in many decision making processes. Pattern recognition and numerical classifications
are ones of those typical applications that use ANNs [38]-[39].

3.1.1 How the Human Brain Learns

Artificial Neural Networks success at system modelling for highly complex physical pro-
cesses can be attributed to the original architecture on which they are based, the human
brain. At present, brain function is not fully understood. A brain neuron collects signals
from other neurons of the Central Nervous System (CNS), through structures called den-
drites as shown in Figure 3.1. The neuron sends out spikes of electrical activity through a
long thin strand called an axon. This axon splits into thousands of branches. At the end
of a branch, a structure called a synapse converts the activity from the axon into electrical
effects that may excite or inhibit activity in the connected neurons.

When a neuron receives an excitatory input that is sufficiently large compared with its
inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by
changing the effectiveness of the synapses so that the influence of one neuron on another
changes [1].

The structure of the human brain neuron is the template for artificial learning. However,
lack of knowledge leads to approximations and assumptions of the general architecture of
an artificial neural network. The knowledge of neurons is incomplete and computing power
is limited so models are often idealisations of real networks of neurons. Figure 3.2) is a
typical representation of a scalar product neuron.
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Figure 3.1: Structure of human neuron [1].

3.2 Structure of Artificial Neural Networks

An artificial neural network is comprised of an input layer, number of hidden layers and
output layer. The main responsibility of the input layer is to receive the external measure-
ments ’data’ and propagate it forwards to the hidden layer or layers. In each layer there
are number of nodes called neurons, and each neuron is capable of communicating with
its neighbours through weights and is capable of changing its present state depending on
the signal it receives. Figure 3.2 shows a scalar product of one artificial neuron. There
are more than one neuron in the network, and neurons can simultaneously change state
while maintaining the global state or purpose of the network. The neurons are connected
to each other in layers with the first layer being the input layer and the final layer being
the output. Whatever is in between those two layers are called the hidden layers. The ob-
jective of a neural network is, for a given set of inputs, to give a set of desired or expected
outputs. The weights or what it is called synaptic weights are updated using a certain
learning algorithm until the error between the actual output of the neural network and the
desired output is reduced to an acceptable level which will be depending on the function
being approximated.
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Figure 3.2: A typical scalar product of an artificial neuron

The number of hidden layers is not restricted in to a certain number. However, Kol-
mogorov’s Mapping Neural Network has proven that one hidden layer capability perfor-
mance with proper configuration is identical to multiple hidden layers [40]. An activation
function is presented at each node in the hidden layer in which manipulating the output
that is passed to the next layer. An activation function is also presented at the output
layer to limit the output under certain utilization. One more important parametric struc-
ture of the network is the number of nodes being included in the hidden layer or layers.
The number of these nodes affects the accuracy of the results to some degree. It is usu-
ally beneficial to have a large number of hidden nodes while serving extremely complex
networks. Determining the suitable number of nodes is not an easy task, but typically
it is determined by repeat testing the network until getting the desired one. However, a
trade-off is involving, the more complex the network is, the longer training time is required.
Training effort exponentially increases as the number of layer increases which will increase
the computation required for training. Not only that but also it may negatively impact in
the results. Thus the use of more than three hidden layers is rare in most systems.

3.3 Type of Activation Functions

The artificial neuron like the biological neuron described in Figure 3.1 is a processing
element. An output for this artificial neuron is calculated by multiplying its inputs by a
weight vector. The results are then added together and an activation function is applied
to the sum. The activation function is a function used to transform the activation level
of a unit or rather a neuron into an output signal. Typically, activation functions have a
squashing effect; they contain the output within a range.
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Figure 3.3: Linear activation function

3.3.1 Linear Activation Function

There are many activation functions that can be applied to neural networks; three main
activation functions are dealt with in this project [41]. The first is the linear transform
function which is shown in Figure 3.3, or pure-line function. It is defined as follows

f(x) = x (3.1)

Neurons of this type are used as linear approximators on the function being approxi-
mated.

3.3.2 Non-Linear Activation Function

There are several types of non-linear activation functions; the two most common are the
log-sigmoid transfer function and the tan-sigmoid transfer function. Plots of these differ-
entiable, non-linear activation functions are illustrated in Figures 3.4 and 3.5. They are
commonly used in networks that are trained with back-propagation.

The first sigmoid activation function which is called logistic activation function is shown
in Figure 3.4 and defined as follows

logsig(x) =
1

1− exp(β(x))
(3.2)

13



Figure 3.4: Log sigmoid activation function

The value of β can be changed in which it changes the shape of the sigmoid. As β tends
toward infinity it behaves more and more like a hard-limiter where the slope of the sigmoid
is zero. In the case when the slope is not zero, the output range is squeezed between 0 and
1.

The second mentioned activation function is called tan-sigmoid activation function.
Unlike log-sigmoid activation function, this function squeezes the output between -1 and
1. Tan-sigmoid activation function is shown in Figure 3.5 and defined as follows

tansig(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(3.3)

During the initial testing, different activation functions were tested. The activation
function which is used then in this thesis is the Tan-sigmoid function. The Tan-sigmoid
function is used in both the hidden and output layers of the built network. It shows a
reasonable accuracy with the non-linear proposed problem comparing to other functions.

3.4 ANNs Topologies

ANN can be typically classified into two group of topologies based on connection patterns
between their units and data propagation between them. These include feedback neural
networks and feed-forward neural networks.
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Figure 3.5: Tan-sigmoid activation function

Feedback neural networks: This type of network has feedback connections i.e. cycles
or loops are present within this type of network. In such networks, data flows from input
to output units or vice-versa. Feedback occurs in a dynamical system when the output of
an element in the system influences its particular input, which give rises to one or more
closed paths for signal transmission around the system [42]. They are also referred to as the
recurrent networks. Kohonen networks, and Hopfield networks are examples of feedback
neural networks.

Feed-forward neural networks: In this type of network, the data usually flows from
input to output units in feedforward fashion. This is one of the simplest ANN where the
information moves in only one direction from input to hidden (if present) to output nodes.

There is not any kind of cycles or loops within this type of network. Perceptron and
Adaline are the classical examples of this kind of network. This research work uses the
feed-forward networks.

3.5 ANN Learning Algorithms

After defining the structure of the ANNs and its topology, a training algorithm must be
chosen to train the network. ANN can be trained in various ways depending upon the
network structure and learning process. The basic learning rules include: error-correction
learning, memory-based learning, Hebbian learning, competitive learning, and Boltzmann
learning. However, all these learning methods applied for training ANN can be classified
into two main classes:
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Supervised learning: This type of learning process is same as learning with a teacher.
In this, each output pattern is provided with its desired response for its corresponding input
pattern. During the learning process, the system gradually adjusts with its environment by
adjusting its network parameters. Error-correction learning, reinforcement learning, and
stochastic learning are some of the types of supervised learning. For this type of learning
process error convergence is very important. Then the error has to be minimized between
the desired response and the actual response of the network. Usually, supervised learning
process is carried out off-line. ANN training applied for this research work uses supervised
learning process.

Unsupervised learning: This type of learning is similar to learning without a teacher.
It is also called a self-organisation map, i.e. it self-organises data presented to it and
detects their emergent collective properties. Hebbian learning, and competitive learning
are examples of unsupervised learning. This type of learning is usually carried out in online
mode.

3.6 Multi-Layer Perceptrons

There is a wide variety of ANNs, but the most commonly used NN type is the Multi-
Layer Perceptron (MLP), alternatively called feedforward neural network. The most com-
monly learning algorithm that is used within the feedforward MLP is called error back-
propagation.

The MLP with back-propagation algorithm is generally characterized by the presence
of an input layer, one or more hidden layers, and an output layer as shown in Figure 3.6.
The input signal propagates through the network in a forward direction, on a layer-by-
layer basis [42]. MLP have been successfully applied to solve various diverse and complex
problems [42] by using a supervised learning process.

Finally, a set of outputs are produced as the actual response of the network. This gen-
erates a difference (error) between the output of the network and the desired output. The
synaptic weights of all networks are all fixed during the forward pass. Similarly, during the
backward pass, error signal is computed and it propagates backward through the network.
Finally, the synaptic weights are all adjusted in accordance with an error-correction rule.
This is how this particular algorithm received its name from ’back-propagation’.

Training time can range from seconds to days depending on the problem domain, the
amount and representation of data, and the implementation of the network. Once trained,
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Figure 3.6: General multilayers feedforward network.

however, neural networks are orders of magnitude faster when it comes to evaluating new
examples.

3.7 BackPropagation Learning Algorithm

Backpropagation which, more descriptively, can be called back-error propagation, is the
most widely used supervised learning algorithm in neural computing [43]. A backpropaga-
tion network is very easy to implement, and it includes one or more hidden layers with its
input and output layers. This type of network is considered feedforward because there are
no interconnections between the output of a processing element and the input of a node in
the same layer or in a preceding layer. Externally provided correct patterns are compared
with the neural networks output during (supervised) training, and feedback or precisely
a back propagate is used to adjust the neurons connecting weights until the network has
categorized all the training patterns as correctly as desired. The error tolerance must be
set in advance .

Starting with the output layer, errors between the actual and desired outputs are used
to correct the weights for the connections to the previous layer (see Figure 3.7).

The learning algorithm includes the following procedures:

1. Initialize weights with random values and set other parameters.

2. Read in the input vector and the desired output.
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Figure 3.7: Backpropagation of errors for a single neuron

3. Compute the actual output via the calculations, working forward through the layers.

4. Compute the error.

5. Change the weights by working backward from the output layer through the hidden
layers.

This procedure is repeated for the entire set of input vectors until the desired output
and the actual output agree within some predetermined tolerance. Given the calculation
requirements for one iteration, a large network can take a very long time to train; therefore,
in one variation, a set of cases are run forward and an aggregated error is fed backward
to speed up learning. Sometimes, depending on the initial random weights and network
parameters, the network does not converge to a satisfactory performance level.When this
is the case, new random weights must be generated, and the network parameters, or even
its structure, may have to be modified before another attempt is made.

3.8 Determination of the Network Layers and Ele-

ments

Although ANN can be designed and trained in various ways, there are several issues that
must be resolved first during the training process. These issues include the following [44]:

1. Determining the correct number of hidden layers.

2. Determining the correct number of neurons in each hidden layer.

3. Finding a globally optimal solution that avoids local minima.
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4. Converging to an optimal solution in a reasonable period of time.

5. Validating the neural network to test for over-fitting.

3.8.1 Number of Hidden Layers

Once the desired output is achieved, the weights between the nodes are locked, and the
network is considered trained at this stage. Then the network is capable to receive a new
unseen data that will pass through the trained network and be classified based on it. This
step is called the testing stage where the network is able to generalize the training to the
new unseen data and correctly making accurate predictions or classifications. The number
of hidden layers is selected such that the comparison with prestructured networks would
be of apples to apples. The prestructured networks have a single hidden layer, so the fully
connected networks to compete with them must have the same type of resource allocation
in the form of hidden layers. (More than one hidden layer in multilayer perceptrons is
believed to help discriminate among multiple classification criteria to be learned.)

3.8.2 Number of Hidden-Layer Elements

The number of elements per hidden layer (sometimes called network size) is determined
through an experimental procedure called k-fold cross-validation [29]. In this method,
the generalization performance of any particular instantiation (a network with a certain
number of hidden-layer elements) is compared with the performances of various other
instantiations. (The only difference distinguishing all the network instantiations is the
number of elements in one hidden layer; all other parameters are kept constant for this
experiment.) The question arises as to which two network sizes ought to be compared first,
and how much should network size be altered for subsequent comparisons.

3.9 Feature selection

Feature selection (also known as subset selection) is a process commonly used in machine
learning, wherein a subset of the features available from the data is selected for application
of a learning algorithm. The best subset contains the least number of dimensions that most
contribute to accuracy; the remaining and unimportant dimensions were disregarded. This
is an important stage of pre-processing and is one of the two ways of avoiding the curse of
dimensionality (the other is feature extraction). In general, there are two main approaches:
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1. Forward selection: Starting with no variables and including them one by one, at
each step encompassing the one that decreases the error the most, until any further
insertion does not significantly decrease the error.

2. Backward selection: Starting with all the variables and removing them one by one,
at each step removing the one that decreases the error the most (or increases it only
slightly), until further removal increases the error significantly

Feature selection is the problem of choosing a small subset of features ideally necessary
and sufficient to perform the classification task, from a larger set of candidate features.
Feature selection has long been one of the most important topics in pattern recognition and
it is also an important issue in supervised learning. If one could select a subset of variables,
one could reduce the size of the data used to training a supervised method, the amount of
data to process, the training time, and possibly increase the generalization performance.

In the case of NNs, direct estimation methods are preferred because of the computa-
tional complexity of training an NN. Inside this category we can perform another classifi-
cation: methods based on the analysis of the training set [45].

There are many different methods to define feature selection on a trained neural net-
work. Some of them are specifically based on the analysis of a trained feedforward network
and the others are general methods which have the ability of doing feature selection in all
kinds of trained networks.

For example, according to the definition of relevance of an input unit Si, one input Ii
is considered more important if its relevance Si is larger. Also relevance sij of a weight wij
connected between the input unit and the hidden unit is defined. The relation between si
and sij is in equation 3.4, where Nh is the number of hidden units.

si =
Nh∑
i=1

sij (3.4)

The criteria for defining weight relevance are varied. Some of them are based on direct
weight magnitude. As an example, the criterion proposed by Belue [46] is in equation 3.5.

sij = (wij)
2 (3.5)

Other criteria of weight relevance, introduced by Tekto [47] , is based on an estimation
of the change in the MSE (Mean Square Error), when setting the weigh to 0.
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Another proposed method by Utans [48] focuses on the MSE, and calculates its incre-
ment when substituting an input for its mean value. One input is considered more relevant
if the increment of MSE is higher.

3.10 Types of Cross-Validation

There are two variants of cross-validation, known as Holdout Cross-Validation and Multi-
fold (k-Fold) Cross-Validation.

The experimental design for the present research uses k-fold cross-validation for param-
eter estimation (designing the network, also called model selection) and a single holdout
for performance estimation (evaluating the designed network, or model assessment).

3.10.1 Holdout Cross-Validation

In Holdout Cross-Validation, the available data are divided into three subsets: the estima-
tion subset, the validation subset, and the test set. The first two are collectively known as
the development data set (also called design data in this document); the estimation subset
is commonly called the training set; and the test set is alternately known as the holdout
set or the out-of-sample test set.

3.10.2 k-Fold Cross-Validation

In k-Fold Cross-Validation, there is still a design set and a test set, but the design set
is divided into k equal subsets. Each of the k subsets (folds) is set aside as a temporary
validation set while training is conducted using the other k1 subsets. Thus, k separate
trainings take place, with significant overlap in training data but no overlap in validation
data. The performance estimate is given from the average of the k validation results.

3.10.3 The Overall Holdout

For the validity of the comparison of generalization estimates for the prestructured and
fully connected networks (the comparison that is central to this dissertation), an additional
holdout set is needed. These data are set aside prior to any training of neural network,
and are in addition to any holdout set discussed in the standard techniques of Holdout
Cross-Validation and k-Fold Cross-Validation.
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3.11 Over-fitting

Learning is not that easy, one has to experiment with choosing the model, architecture
and layers. There are many parameters that may cause oscillation in addition to the many
training sessions that might be needed which may lead to something called over-fitting.
Over-fitting occurs when the error on the training set is driven to a very small value but
when new data is presented to the network the error is large. In that case, the network
has memorised the training examples but has learned not to generalise to new situations.
If over-fitting were to occur early stopping could be implemented. In this thesis, the over-
fitting has been considered, and the final built model is tested and no over-fitting has
occurred .
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Chapter 4

Experimental Setup and Results

4.1 Experimental Setup

A rectangular cavity resonator was built with dimensions of 19×28×60 cm to conduct the
experiment and to test whether or not the obtained resonant frequencies of the rectangular
cavity could serve as a detection technique to identify and detect any material changes
within the cavity.

Figure 4.1: Experimental Setup

Also, a monopole antenna was placed near the center of the top face of the rectangular
cavity as shown in Fig. 4.1.
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Figure 4.2: Experimental Setup

The source of microwave signal and the scattering parameters measurement equipment
is an Agilent Vector Network Analyzer (VNA).

In order to find the resonant frequencies, the cavity was excited by the monopole
antenna. Then the reflection coefficient S11 was measured over a wide range of frequencies
3 MHz to 2 GHz. The reflection coefficients had been obtained for the different objects
inserted inside the cavity. These objects including metallic boxes (each of size 2×3×5 cm),
wooden boxes (each of size 2×5×38 cm), water containers (each of size 4×7×10 cm), and
boxes of dry corn (each of size 4× 7× 10 cm) are used in the experiment. Figures 4.2 and
4.2 illustrate the conducted experiment Three experimental stages has been conducted.
These stages are as follows:

1. First Stage:

The main purpose of this stage is to study the effect of changing the position of
different objects as a whole on the resonant frequency. In this stage, the four objects
(Corn, metal, water, and wood) are inserted into the empty container (one at a
time) and the reflection coefficients S11 for each object are recorded. This procedure
is repeated for each object in different random places inside the cavity. Then the
resonant frequencies are used for the classification problem. Figures 4.3, 4.4, 4.5, 4.6,
4.7, 4.8, 4.9 and 4.10 are samples of the obtained resonant frequencies of each object.

2. Second Stage:
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Figure 4.3: S11 of Cavity filled with Corn Boxes

Figure 4.4: S11 of Cavity filled with Corn Boxes

Unlike the first stage which presents the effect of changing the position of the whole
object inserted in different positions for different materials, the main purpose in this
stage is to distinguish between changes in resonant frequencies due to the change in
the position of the boxes and the materials inserted in the cavity. In this stage, a
metal sheet of size 9× 5× 3 cm is inserted in many different places in the cavity and
the resonant frequencies are measured. Then the same procedure is repeated for the
corn, water, empty boxes (one at a time). Figures 4.11, 4.12, 4.13, 4.14, 4.15, and
4.16 are samples of the obtained resonant frequencies of each object
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Figure 4.5: S11 of Cavity filled with Corn Boxes

Figure 4.6: S11 of Cavity filled with Metal

3. Third Stage:

In this stage a comparison between four different cases was conducted. These cases
are: the cavity full of boxes of corn, the cavity with 1/4 of the corn boxes taken out,
3/4 corn filled cavity with a metal sheet in a random place, and a the 3/4 corn filled
cavity with 1/4 boxes of water at a random place. Sample of the obtained resonant
frequencies are shown in figures 4.17, 4.18, 4.19, 4.20, and 4.21
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Figure 4.7: S11 of Cavity filled with Water Boxes

Figure 4.8: S11 of Cavity filled with Water Boxes

4.2 Pre-Processing Algorithm and Feature Selections

A pre-processing algorithm was applied to the obtained experimental data before using
them as input to the Neural Network. This pre-process is required in order to autonomously
detect the resonant frequencies of the reflection and eliminate the noisy data. The pre-
processing algorithms are important because the effectiveness of the Neural Network is
contingent on the proper selection of a characteristic set of data of small dimensionality
[49].
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Figure 4.9: S11 of Cavity filled with Wood Sheets

Figure 4.10: S11 of Cavity filled with Wood Sheets

In this work, the Peak Interpolation with Sigma Filter algorithm is used. This algorithm
prepares the Neural Network input by performing the following steps:

1. In the step the data is half-sampled by selecting the maximum value of each data pair.
Mathematically, S11,1(fj) = max(S11,0(f2j), S11,0(f2j+1)) where j = 0, 1, 2, ..., (J −
1)/2.
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Figure 4.11: S11 of Cavity filled with Metal Sheets

Figure 4.12: S11 of Cavity filled with Metal Sheets

2. Zero out values lower than the absolute average of the data set. Mathematically,
a = 2/(J − 1) ×

∑(J−1)/2
j=0 |S11,1(fj)|. Then S11,2(fj) = S11,1(fj) < a ? 0.0 : S11,1(fj)

where j = 0, 1, 2, ..., (J − 1)/2.

3. Select the peak values of each section in the data set, where a section is defined as
the domain enclosed by two zero values with no zero within the domain.

4. At the location of each M peaks pm, n = 0, 1, 2, ...,M−1 on the frequency axis, place
an exponential function of the form gn(fj) = S11,3(fj) × exp [−k1(|m− j|+ k2)] for
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Figure 4.13: S11 of Cavity filled with Corn Sheets

Figure 4.14: S11 of Cavity filled with Corn Sheets

some constants ki and find the summation of all gn across each j = 0, 1, 2, ..., (J−1)/2.

5. Apply a sigma filter sufficiently until data jitter has dissipated.

6. Select the resonant frequencies by locating the local maximum by comparing subse-
quent data samples.

In terms of notation, the reflection parameter data are S11,i(fj) where j = 0, 1, 2, ..., n−
1, where fj is the frequency at sample j and S11,i is the reflection parameter after step i.
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Figure 4.15: S11 of Cavity filled with Water Sheets

Figure 4.16: S11 of Cavity filled with Water Sheets

The following figures (Figures 4.26, 4.24, 4.25, and 4.23) are shown the selected fre-
quency points for some of samples after applying the filter algorithm.

After applying the above filter algorithm, a sequential forward and backward selection
were then applied to the data obtained from the filter. This algorithm beside the filter one
eliminate a lot of the noise in the experimental data.
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Figure 4.17: S11 of Cavity filled with 3/4 Corn Boxes and 1/4 empty

Figure 4.18: S11 of Cavity filled with 3/4Corn Boxes and 1/4 empty

4.3 Neural Networks Analysis

After selecting the most impacting features, a Neural Networks classifier was then applied
to the selected resonant frequencies of the experimental data from the previous section
in order to detect small changes in the resonant frequencies. The feed-forward neural
network was used and trained through the back-propagation with the gradient descent
learning algorithm. In order to select the number of internal nodes and the right activation
function, many tests were conducted. The convergence and classification rate of the neural
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Figure 4.19: S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Metal

Figure 4.20: S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Metal

network while varying these parameters are obtained thus an optimal choice was made.

The overall accuracy of the built neural network models is not as sufficient as needed.
This is because of the limited number of samples for each object which will also have a
great impact on validating the models. Also, another preprocessing and more advanced
feature selections techniques may consider in the future work in order to get more accurate
models.

The following are the neural networks specifications and results for the three proposed
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Figure 4.21: S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Water

Figure 4.22: S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Water

stages:

1. First Stage: Table 1 summarizes the Neural Network specifications for the this
stage while table 1 shows the obtained results.

Figure shows the confusion matrix which shows the percentages of correct and in-
correct classifications. Correct classifications are the green squares on the matrices
diagonal. Incorrect classifications form the red squares. If the network has learned to
classify properly, the percentages in the red squares should be very small, indicating
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Number of hidden layers 1
Number of neurons in the input layer 6

Number of neurons in the hidden layer 10
Number of neurons in the output layer 2

Hidden Layer Activation Functions Tan-Sigmoid
Output Layer Activation Functions Tan-Sigmoid

Learning Rate 0.06
Momentum Rate 0.8

Maximum Number of Epochs 10000
Mean Squared Error goal 0.04

Table 4.1: First Stage: Neural Networks Specification

Percentage Correct Classification on training dataset 73.75%
Percentage Incorrect Classification on training dataset 26.25%

Percentage Correct Classification on testing dataset 75%
Percentage Incorrect Classification on testing dataset 25%

The Mean Recognized of Training Data 80
Mean Train Accuracy 100%

The Mean Recognized of Testing Data 20
Mean Test Accuracy 100%

Table 4.2: First Stage: Neural Networks Results
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Figure 4.23: Peaks Selected of S11 of Cavity filled with Water Sheets

Figure 4.24: Peaks Selected of S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Metal

few miss-classifications. Figures 4.27 and 4.36 show the confusion matrices of the
training and testing dataset obtained in this stage.

Another measure of how well the neural network has fit data is the receiver operating
characteristic (ROC) plot. This shows how the false positive and true positive rates
relate as the thresholding of outputs is varied from 0 to 1. The farther left and up
the line is, the fewer false positives need to be accepted in order to get a high true
positive rate. The best classifiers will have a line going from the bottom left corner,
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Figure 4.25: Peaks Selected of S11 of Cavity filled with 3/4 Corn Boxes and 1/4 Water

Figure 4.26: Peaks Selected of S11 of Cavity filled with Metal Sheets

to the top left corner, to the top right corner, or close to that.

Figures 4.27 and 4.30 show the ROC plots of the training and testing dataset obtained
in this stage

2. Second Stage Table 2 summarizes the Neural Network specifications for the this
stage while table 2 shows the obtained results.

Figures 4.31 and 4.32 show the confusion matrices of the training and testing dataset
obtained in this stage
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Number of hidden layers 1
Number of neurons in the input layer 6

Number of neurons in the hidden layer 20
Number of neurons in the output layer 2

Hidden Layer Activation Functions Tan-Sigmoid
Output Layer Activation Functions Tan-Sigmoid

Learning Rate 0.06
Momentum Rate 0.6

Maximum Number of Epochs 10000
Mean Squared Error goal 0.04

Table 4.3: Second Stage: Neural Networks Specification

Percentage Correct Classification-training dataset 81.067961%
Percentage Incorrect Classification-training dataset 18.932039%

Percentage Correct Classification-testing dataset 84.067961%
Percentage Incorrect Classification-testing dataset 15.932039%

The Mean Recognized of Training Data 408
Mean Train Accuracy 99.0291%

The Mean Recognized of Testing Data 102
Mean Test Accuracy 99.0291%

Table 4.4: Second Stage: Neural Networks Results
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Figure 4.27: First Stage: Confusion Matrix of Training Dataset

Figure 4.28: First Stage: Confusion Matrix of Testing Dataset
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Figure 4.29: First Stage: ROC of Training Dataset

Figure 4.30: First Stage: ROC of Testing Dataset

Figures 4.33 and 4.34 show the ROC plots of the training and testing dataset obtained
in this stage.
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Figure 4.31: Second Stage: Confusion Matrix of Training Dataset

Figure 4.32: Second Stage: Confusion Matrix of Testing Dataset
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Figure 4.33: Second Stage: ROC Matrix of Training Dataset

Figure 4.34: Second Stage: ROC Matrix of Testing Dataset
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Number of hidden layers 1
Number of neurons in the input layer 6

Number of neurons in the hidden layer 10
Number of neurons in the output layer 2

Hidden Layer Activation Functions Tan-Sigmoid
Output Layer Activation Functions Tan-Sigmoid

Learning Rate 0.04
Momentum Rate 0.6

Maximum Number of Epochs 10000
Mean Squared Error goal 0.04

Table 4.5: Third Stage: Neural Networks Specification

Percentage Correct Classification on training dataset 75%
Percentage Incorrect Classification on training dataset 25%

Percentage Correct Classification on testing dataset 78%
Percentage Incorrect Classification on testing dataset 32%

The Mean Recognized of Training Data 80
Mean Train Accuracy 100%

The Mean Recognized of Testing Data 20
Mean Test Accuracy 100%

Table 4.6: Third Stage: Neural Networks Results

3. Third Stage:

Table 3 summarizes the Neural Network specifications for the this stage while table
3 shows the obtained results.

Figures 4.35 and ?? show the confusion matrices of the training and testing dataset
obtained in this stage.

Figures 4.35 and 4.38 show the ROC plots of the training and testing dataset obtained
in this stage
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Figure 4.35: Third Stage: Confusion Matrix of Training Dataset

Figure 4.36: Third Stage: Confusion Matrix of Testing Dataset
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Figure 4.37: Third Stage: ROC of Training Dataset

Figure 4.38: Third Stage: ROC of Testing Dataset
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Chapter 5

Conclusion and Future Work
Directions

This thesis has examined the rectangular cavity perturbation technique as it used for
materials detection with the use of Artificial Neural Networks. The proposed method to
determine a change in the material composition of a cavity resonator was able to classify
different changes in the cavity material using changes in the resonant frequencies of the
cavity and applying a Neural Network classifier. The performance of this method was
experimentally tested for different material changes inside the cavity. The advantage of
this method over other commonly used methods is in its ability to detect changes even
when the material to be detected is not in the line of sight of the radiation source.

The 100% classification rate from human intervention suggests that future work should
include optimization of the preprocessing algorithms and applying different implementa-
tions of Neural Networks. Other future work will include applying these techniques to more
complex cavities, incorporating partial knowledge of the resonant frequency behaviour of
the system into the model, and applying the same technique using two or more antennas in
different locations around the cavity. Also, use multiple classifiers technique as a decision
maker instead of only using one classifier. Future work could also include application to
the biomedical field; for example, the detection of cancerous tissues.
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