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Abstract 

Urban land cover classification has always been crucial due to its ability to link many 

elements of human and physical environments. Timely, accurate, and detailed knowledge of 

the urban land cover information derived from remote sensing data is increasingly required 

among a wide variety of communities. This surge of interest has been predominately driven 

by the recent innovations in data, technologies, and theories in urban remote sensing. The 

development of light detection and ranging (LiDAR) systems, especially incorporated with 

high-resolution camera component, has shown great potential for urban classification. 

However, the performance of traditional and widely used classification methods is limited in 

this context, due to image interpretation complexity. On the other hand, random forests (RF), 

a newly developed machine learning algorithm, is receiving considerable attention in the 

field of image classification and pattern recognition. Several studies have shown the 

advantages of RF in land cover classification. However, few have focused on urban areas by 

fusion of LiDAR data and aerial images. 

 

The performance of the RF based feature selection and classification methods for urban areas 

was explored and compared to other popular feature selection approach and classifiers. 

Evaluation was based on several criteria: classification accuracy, impact of different training 

sample size, and computational speed. LiDAR data and aerial imagery with 0.5-m resolution 

were used to classify four land categories in the study area located in the City of Niagara 

Falls (ON, Canada). The results clearly demonstrate that the use of RF improved the 

classification performance in terms of accuracy and speed. Support vector machines (SVM) 

based and RF based classifiers showed similar accuracies. However, RF based classifiers 

were much quicker than SVM based methods. Based on the results from this work, it can be 

concluded that the RF based method holds great potential for recent and future urban land 

cover classification problem with LiDAR data and aerial images. 
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Chapter 1 

Introduction 

 

This chapter introduces and establishes the field of this study. Section 1.1 presents the 

motivations of this study by summarizing relevant previous methods in the field of urban land 

cover classification and identifying a research gap in random forests (RF) based classification 

using LiDAR data and aerial imagery. Section 1.2 states the objectives of this study to fill the 

research gap. Last, the organization of this thesis is given in Section 1.3. 

 

1.1 Motivations 

 

Urban land cover information has always been crucial due to its ability to link many elements of 

human and physical environments. Timely, accurate, and detailed knowledge of the urban land 

cover information derived from remotely sensed data is increasingly required among a wide 

variety of communities, such as urban and regional planners (Mittelbach and Schneider,  2005; 

Santana, 2007; Bhatta, 2010), urban morphology scientists (Lo, 2007; Batty, 2008; Schneider and 

Woodcock, 2008), environmental scientists (Stefanov and Netzband, 2005; Hepinstall et al., 

2008), and global change researchers (Small, 2005; Turner et al., 2007; Grimm et al., 2008).This 

surge of interest has been predominantly driven by the recent innovations in data, technologies, 

and theories in urban remote sensing. (Weng and Quattrochi, 2007; Yang, 2011b; Zhong and 

Zhang, 2012). 
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Traditionally, land cover maps are derived by field surveys with GPS (global positioning 

system) receivers or by manual human interpretation on hard-copy maps or aerial photographs. 

Both methods are expensive and time-consuming. In addition, urban object extraction from 

image data faces three major challenges. First, perspective occlusions may result in insufficient 

information. Second, weak image features may be extracted because the building boundaries 

have low contrast. The third challenge is that, if an image feature does not correspond to an 

object feature, ambiguity in the reconstruction procedure can result (Chen et al., 2008).      

The concentration of LiDAR (light detection and ranging) technology has been a 

substantial increase over recent years because of the rising popularity and availability of the 

LiDAR data and systems, which obtain dense point measurements using three-dimensional 

coordinates more directly than traditional surveying and mapping systems, e.g., photogrammetric 

systems (Shan and Sampath, 2005; Mongus and Zalik, 2012). The principle behind LiDAR 

remote sensing is the measurement of the distance from the sensor to a reflecting surface, based 

on the TOF (time-of-flight) measurement of an emitted laser pulse (Wehr and Lohr, 1999). Since 

the laser pulse can be distended while traveling through the air and reflected by roof, tree, 

ground, etc., multiple returns of a pulse with different elevation information can be generated. 

LiDAR systems also record the energy of the returned pulse - the intensity, which is related to 

the reflective properties of the targets. In this thesis, the term “LiDAR” prefers to airborne 

discrete-return LiDAR technology, other types of LiDAR (e.g., full waveform LiDAR) will not 

be discussed here. 
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During the last decade, airborne LiDAR has become a well-established technology for 

urban land cover classification due to: (1) rapid and cost-effective acquisition of topographic 

information at high spatial resolution over complex surfaces where in situ measurements are 

challenging to acquire (Goodwin et al., 2009), (2) fewer requirements for data pre-processing 

(Meng et al., 2009), and (3) no negative effects caused by weather conditions, such as cast 

shadow (Rottensteiner and Clode, 2009).  Therefore, LiDAR data has been widely used in a lot 

of research on urban object classification and extraction (Clode et al., 2007; Dorninger and 

Pfeifer, 2008; Lee et al., 2008; Weng, 2011). 

Considering the great capability of fusing dense laser scanned points with other data 

sources, various data fusion methods have been used for urban feature extraction, such as high-

resolution aerial or satellite imagery (Huber  et al., 2003; Sohn and Dowman, 2007), two-

dimensional geographic information system (2D GIS) data (Schwalbe, 2005), and ground plans 

(Vosselman, 2001). The availability of voluminous and high dimensional multisource data, 

especially in the complex urban environment, poses challenge to information extraction and 

classification (Sithole and Vosselman, 2003). A dedicated method is required for effective object 

classification. Due to the complex structure of urban areas, an urban object of a given land cover 

class (e.g., a single rooftop) may include pixels with heterogeneous reflectance values at a fine 

scale (Kontoes et al., 2000). However, the performance of traditional and widely-used statistical 

classification methods is limited in this context (Thomas et al., 2003; Chen et al., 2004; 

Khoshelham et al., 2010). On the other hand, the state of the art machine learning algorithms, 
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such as support vector machines (SVM) and RF, are receiving considerable attention in the field 

of image classification and pattern recognition.  

Given the Hughes phenomenon (Hughes, 1968) which refers that an increasing number of 

features may decrease the classification accuracy, a larger number of training samples are 

required for supervised classification of fusion data to retain the accuracy. However, larger 

training size may increase the computational complexity. It is also not easy to obtain in the urban 

scenes. To solve this problem, two solutions are suggested. One is to develop an advanced 

classifier with superior classification ability based on small training sample size in high 

dimensional space. The other is to decrease the number of features using feature selection 

methods. RF based method is beneficial to solve this problem because of its ability to function as 

a superior classifier and also as a feature selection tool (Yu et al., 2011). Several studies have 

shown the advantages of RF in land cover classification (Benediktsson and Sveinsson, 2004; 

Chan and Paelinckx, 2008; Waske and Braun, 2009; Stumpf and Kerle, 2011). However, very 

little research has focused on urban areas by fusion of LiDAR data and aerial imagery. 
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1.2 Objectives of the Study 

 

The overall goal of this study is to explore machine learning techniques for classifying an urban 

scene (Niagara Falls, ON) using airborne LiDAR data along with aerial imagery. The main 

objectives of this study are: 

 To investigate the performance of RF based classifier for airborne discrete-return LiDAR 

data and aerial imagery, 

 To evaluate the ability of RF as a feature selection tool for urban land cover 

classification, 

 To compare the classification results obtained using the RF based classifier with those 

obtained using other well-known classifiers. 

An effective and operational scheme is expected to extract desired information from LiDAR data 

and aerial imagery in an urban environment for use in further applications, such as three-

dimensional (3D) city modeling and solar potential assessment of buildings. 
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1.3 Organization of the Thesis 

 

The thesis is organized into five additional chapters. 

 

Chapter 2 reviews literature on urban land cover classification in the field of remote sensing. It 

describes a variety of land cover classification methods in urban areas, especially using LiDAR 

data and aerial imagery. A literature review on feature selection methods for land cover 

classification is also provided. 

 

Chapter 3 introduces two the state-of-the-art classifiers which are mentioned in previous 

chapters: SVM based and RF based classifiers. Their theoretical background and development 

are stated. It provides the advantages and limitations of using each classifier. It also defines the 

parameter selection criteria to achieve the best possible outcome. 

 

Chapter 4 presents in detail the urban land cover classification schemes including those based on 

SVM and RF. It first describes the study area and datasets used in this study. Then, all the input 

feature vectors derived from the datasets are listed followed by the training and reference data 

collected from the study area. Last, the experimental procedures and evaluation methods for 

feature selection and classification are explained.  
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Chapter 5 presents and discusses all the classification results derived from the classification 

schemes presented in Chapter 4. First, a comparison of two feature selection methods which are 

based on principal component analysis (PCA) and RF is provided. Furthermore, it provides the 

quantitative and qualitative assessment of all the classification schemes including those via MLC, 

SVM, and RF based classifiers with and without feature selection using different training sample 

sizes. Last, the computation time of the SVM based and RF based classifiers is presented. 

 

Chapter 6 presents the findings and conclusions derived from the results of this study. Further 

suggestions to overcome the remaining challenges are also provided. 
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Chapter 2 

Land Cover Classification Methods: An Overview 

 

This chapter provides an overview of land cover classification approaches, especially for urban 

areas by integration of LiDAR data and aerial imagery. Section 2.1 presents different land cover 

classification methods in the field of remote sensing. Section 2.2 reviews feature selection 

techniques, as well as the comparison methods of different techniques. Finally, Section 2.3 

provides a summary of this chapter. 

 

2.1 Classification Methods in Land Cover Classification 

 

Over the past decades, considerable research has been conducted for improving land cover 

classification performance in three major areas: (1) development and use of advanced 

classification methods; (2) use of multiple features of remotely sensed data, including texture 

features and integration of different sensor data; (3) and reduction of the data redundancy (Lu 

and Weng, 2007; Lu et al., 2007, Gutiérrez et al., 2010). Therefore, the foci of this chapter are 

the use of a suitable classifier as well as proper feature extraction and selection approach.  

 

In general, land cover classification approaches can be grouped as supervised and 

unsupervised, or parametric and nonparametric, or pixel-based and object-based, or hard and soft 
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classification. This section groups classification methods as object-based, unsupervised pixel-

based, supervised pixel-based, and knowledge-based classification. A brief description of each 

category is provided in the following subsection. 

 

2.1.1 Object-based Classification Techniques 

 

An object-based classification (OBC) consists of two major steps. First, image segmentation 

merges pixels into objects. In this step, the scale of segmentation determines the occurrence or 

absence of an object class; and the size of an object influents a classification result. Then 

classification is conducted based on the objects, not an individual pixel. OBC method has proven 

to be able to provide good performance for multiple sources of data (Herold et al., 2003; 

Geneletti and Gorte, 2003; Benz et al., 2004; Gitas et al., 2004; Walter, 2004). 

Zhu and Troy (2008) applied an object-based classification approach for analyzing and 

characterizing the urban landscape structure at the parcel level using high-resolution digital aerial 

imagery (0.6 m pixel size) and LiDAR data. A three-level hierarchical network was built to 

classify different classes at different levels. Hussain et al. (2011) performed an object-based one-

class-at-a-time land cover classification using 0.5 m resolution GeoEye-1imagery and LiDAR 

data over the City of Port-au-Prince. They concluded that fusing optical imagery and LiDAR data 

produced adequate classification results in densely populated urban areas. Meng et al. (2012) 

proposed an object-oriented approach to detect residential buildings from LiDAR and aerial 

photographs for advanced urban land-use analysis. Although OBC methods have advantages on 
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urban land cover classification with multispectral remote sensing data (Blaschke, 2010), image 

segmentation in the first stage of OBC methods can group pixels from different classes into one 

class, resulting in a decreased classification accuracy (Wang et al., 2004). In addition, prior 

knowledge on the study areas is required in OBC methods to iteratively search for the optimal 

segmentation parameters which are crucial to the final classification results. 

2.1.2 Unsupervised Pixel-based Classification Techniques 

 

Unsupervised classification methods have been implemented in several studies on land cover 

classification (Shah et al., 2004; Jiang et al., 2004; Koltunov and Ben-Dor, 2001; Koltunov and 

Ben-Dor, 2004). No prior definitions of the classes or training data are used in this type of 

classifers (Duda and Canty, 2002). All the feature inputs are classified into a number of clusters 

based on the statistical information intrinsic in remotely sensed data, and then the clusters are 

labeled and merged into meaningful land cover types by analyst. The most commonly used 

unsupervised classifier is the iterative self-organizing data analysis (ISODATA) (Hall and Ball, 

1965) and K-means clustering algorithm (MacQueen, 1967). An unsupervised clustering method 

was used for automatically extracting buildings from LiDAR data (Hao et al., 2009). In another 

study, Bartels and Wei (2010) separated object and ground points in LiDAR data using a 

threshold-free unsupervised classification algorithm called Skewness Balancing. Based on 

unsupervised stepwise cluster analysis, Kim et al. (2011) classified individual tree genera using 

airborne LiDAR data. However, unsupervised classifiers require the selection of proper 

thresholds for determining different land cover types. Its performance mainly relies on the 
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analyst or the following classifiers to merge clusters into final land cover types. Moreover, other 

knowledge about remotely sensed data is difficult to incorporate into unsupervised classifier to 

further improve the results (Jain et al., 2000). 

 

2.1.3 Supervised Pixel-based Classification Techniques 

 

Adapting machine learning methods from pattern recognition and computer vision is a trend in 

the field of land cover classification in urban areas (Rottensteiner, 2010; Vatsavai et al., 2011). 

Machine learning is a branch of artificial intelligence and generally concerned with the design 

and development of methods that allow computers to optimize their performance at tasks by 

learning from the experience (Mitchell, 1997). In the field of remote sensing, the major part of 

machine learning algorithms is aiming for a supervised classification which often used in land 

cover classifications. It provides a simple classification scheme that correctly and quickly 

extracts objects from complex landscape by learning from training samples. 

Classifiers that use Bayes’ theorem are one of the traditional technologies in pattern 

classification. Bayesian classifiers assume specific probability density functions for each class to 

compute the a-posteriori probabilities. The MLC approach, which is based on the Bayesian 

framework, is one of the most popular supervised classifier in the field of remote sensing for land 

cover classification (Bartels and Wei, 2006; Vastsavai et al., 2011). The a-posteriori probabilities 

are calculated using the probability density function for each class and the a-priori probabilities 

which refer to the probability that each class occurs in the dataset. Then a pixel is assigned to the 
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class with the highest a-posteriori probability based on the maximum a posterior rule (MAP) 

which is a simplified case of the Bayes rules. MLC is based on a Gaussian distribution model 

estimated from the training data. In this way, the probability density function for each class can 

be generated by the mean value and the covariance matrix. However, the performance of the 

MLC approach could be not very effective and superior, due to the need of more computations 

per pixel, and poor results accuracy especially when the number of training samples is limited. 

Neural networks (NN) have been evaluated in many remote sensing applications for the 

classification of hyperspectral (Ratle et al., 2010), SAR (Bruzzone et al., 2004), high-resolution 

image (Del Frate et al., 2007), multispectral (Dixon and Candade, 2008), and multisource 

datasets (Koetz et al., 2008). Previous studies have shown that their results are better than or at 

least as equal as conventional classifiers such as MLC and spectral angle mapper (SAM) 

(Petropoulos et al., 2010). A neural network is, according to Haykin (1999), a massively parallel 

distributed processor made up of simple processing units, which has a natural propensity for 

storing experiential knowledge and making it available for use. No a priori assumption of 

statistical distribution of the data is required in NN. Among different proposed neural network 

algorithms, the most widely-used approaches for land cover classification are error 

backpropagation multi-layer perceptrons (MLP) networks (Murthy et al., 2003; Estep et al., 

2004; Verbeke et al., 2004; Fuller, 2005), radial basis function (RBF) networks (Foody, 2004a; 

Keramitsoglou et al., 2005), adaptive resonance theory (ART) networks (Muchoney and Strahler, 

2002; Pellizzeri et al., 2003; Liu et al., 2004), and self-organizing maps (SOM) networks (Kurnaz 

et al., 2005; Filippi and Jensen, 2006). However, the NN classifier may not be practical in some 
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remote sensing applications, due to its complex computational structure and requirement of large 

number of reliable training data (Mas and Flores, 2008). Another limitation of NN is that there is 

no exact solution for optimal parameter selection (Stathakis, 2009). It is difficult to choose the 

optimal number of hidden layers and hidden nodes for neutral network construction. 

Decision trees (DT) have also been used for extracting land cover information from remote 

sensing data in a variety of research (Hansen et al., 1996; Friedl and Brodley, 1997; DeFries and 

Chan, 2000; Pal and Mather, 2003; Wang and Li, 2008). In a DT, each node denotes a test on an 

attribute value, each branch represents an outcome of the test, and tree leaves represent classes or 

class distributions (Han and Kamber, 2001). In contrast to NN, DT can achieve easily 

interpretable rules and fast computation process, as well as an embedded ability for feature 

selection (Wang and Li, 2008). Wu et al. (2009) applied decision tree classifier to discriminate 

among urban land use types by fusion of LiDAR data and imagery along with relevant GIS 

datasets. In another study (García-Gutiérrez et al., 2011), a DT approach was employed for 

automatic land cover/ land use classification using LiDAR data. The results showed that DT 

classifier obtained better accuracy compare to NN classifier. Hofle et al. (2012) discriminated 

urban vegetation using full-waveform LiDAR data based on DT technique. For future work, the 

authors suggested improve the accuracy by using a feature selection prior to the DT 

classification. However, the decision tree can over-fit the training data. Another limitation is that 

tree pruning is usually required to remove the least reliable lower branches caused by noise or 

outliers in training data (Alexander et al., 2011). 
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Although SVM is a relatively recent development in the context of remote sensing, it has 

been used successfully in many land cover classification studies (Huang, 2002; Foody and 

Mathur, 2004; Melgani and Bruzzone, 2004; Pal and Mather, 2005; Pal and Mather, 2006; 

Waske and Benediktsson, 2007; Rabe et al., 2010; Luo et al., 2010; Bilgin et al., 2011; Li et al., 

2011; Longepe et al., 2011; Zhang et al., 2012; Li et al., 2012). In previous studies, SVM based 

classifiers performed more accurately than other classifiers or at least equally well. Because of its 

promising performance, researchers have been interested to incorporate SVM into existing 

classification schemes. In Moustakidis et al. (2012), an SVM based fuzzy decision tree was built 

for land cover classification of high spatial resolution hyper/multi-spectral images over urban and 

natural forest areas. In other studies, object-oriented and SVM classification were combined to 

separate different class information from multi-source image data or vast 3D LiDAR point clouds 

(Li et al., 2007; Zhan and Yu, 2011). The results showed SVM based classification providing 

high testing accuracies and low computational and storage demands, because SVM only 

considers support vectors close to the class boundary instead of whole training set.  

For multi-class land cover classification over urban scenes, SVM approach has been 

applied on a variety of remote sensed data, such as hyperspectral imagery (Camps-Valls and 

Bruzzone, 2005; Zhang et al., 2012), full-waveform LiDAR  (Mallet et al., 2008), and airborne 

LiDAR data (Secord and Zakhor, 2007; Samadzadegan et al., 2010a). Mallet et al. (2011) used 

SVM, with a feature selection step, to classify a full-waveform LiDAR data of an urban scene 

into three categories: building, vegetation, and ground. SVM achieved high testing accuracies in 

this study, underlining the high efficiency of SVM to discriminate complex urban landscape.  
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Lodha et al. (2006) classified airborne LiDAR data into four categories: building, tree, 

road, and grass using a SVM based classifier. With features of heigh, height variation, normal 

variation, and RGB, the classification results were proved stable and robust. In another study, a 

framework of urban change detection using satellite imagery and LiDAR data were presented 

(Malpica and Alonso, 2010), based on the SVM classification results. All the remote sensing data 

was resampled to 1 m resolution, and then the SVM based classifier successfully separated high 

vegetation and buildings. Features derived from grey level co-occurrence matrix (GLCM) 

method were introduced in Samadzadegan et al. (2010b) for LiDAR data classification using 

SVM. The urban areas were classified into building, tree, and ground with high accuracy. In 

other experiments, SVM was used for separating urban ground from other objects using LiDAR 

data and aerial imagery (Sarma and Yuan, 2009; Salah and Trinder, 2010).  

Although SVM classifiers are effective and accurate in several studies, their parameters are still 

time-consuming and not easy to define (Waske et al., 2009c). Therefore, RF, a simple and fast 

classifier, was proposed and investigated in present study. 

Multiple classifier system (MCS), also known as classifier ensemble, is to combine 

different classifier methods or variants of the same classifier approach. One of the latter type of 

MSCs, RF, a tree-based ensemble classifier introduced by Breiman (2001), has more recently 

been applied in a wide range of contexts. There have been several studies that focus on RF in the 

context of pattern recognition from remote sensing data, such as hyperspectral data (Ham et al., 

2005), multisource remote sensing and geographic data (Gislason et al., 2006), SAR and optical 
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image (Waske and van der Linden, 2008), and multidate polarimetric synthetic aperture radar 

(Loosvelt et al., 2012). 

According to Pal (2005), RF had excellent performance in the classification of 

multispectral data, comparable to SVM in terms of accuracy and training time, but it requires 

fewer parameters and the parameters are easier to define by user. Rodríguez-Galiano et al. (2012) 

used RF classifier to map the complex Mediterranean land cover types by incorporating 

multitemporal Landsat TM imagery and digital terrain model variables. RF based classifiers 

showed superior performance compared with common classification methods, such as a simple 

decision tree, in a high dimensional feature space. When reducing the training sample size and 

increasing noise, RF is still robust in terms of overall accuracy. In another study, two different 

satellite sensors, IKONOS and QuickBird, were combined to test different pansharpening 

methods for urban area classification (Sveinsson et al., 2012). SVM and RF were used for 

classification. The results showed the RF classifier produced higher accuracies than the SVM 

method in almost every experiment. 

 Another approach to fused very high resolution (VHR) remote sensing imagery and 

LiDAR-derived digital surface models (DSM) was proposed for object-oriented landslides 

mapping using RF (Stumpf and Kerle, 2011). Yu et al. (2011) used the RF method to predict 

individual tree attributes based on both physical and statistical features derived from airborne 

LiDAR point cloud.  The author concluded that RF technique is stable and reliable according to 

the experiment results. To classify urban scenes into four classes: building, vegetation, natural 

ground, and artificial ground, Chehata et al. (2009) applied RF with different features extracted 
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from full-waveform LiDAR and image data. It showed that RF classifier performed better than 

SVM by achieving higher classification accuracy and improving training and test computing 

time. However, very little research was focusing on urban land cover mapping by RF methods 

using airborne discrete LiDAR data and aerial imagery. 

2.1.4 Knowledge-based Classification Technique 

 

The knowledge-based classification (KBC) approach has increasingly been attractive in the 

field of land cover classification because of its ability of accommodating multi-source data 

(Kontoes and Rokos, 1996; Hung and Ridd, 2002; Thomas et al., 2003; Schmidt et al., 2004; 

Wentz et al., 2008; Ran et al., 2012). A KBC can consist of unsupervised and/or supervised 

classification methods. As a rule-based classification, generation of the rules is crucial. 

According to Hodgson et al. (2003), three common methods were proposed for building the rules 

in KBC methods. The first approach is explicitly eliciting knowledge and rules from experts and 

then refining the rules; the second one is implicitly extracting variables and rules using cognitive 

methods; and the last one is empirically generating rules from observed data and automatic 

induction methods.  

However, the processing time of KBC rule generation is not satisfactory in certain 

applications. For example, the total classification time requirement by integration of LiDAR data 

and imagery is 9 hours when using KBC methods in Hodgson et al. (2003). It is much longer 

than 1.7 hours using unsupervised ISODATA classification and 0.3 hours using supervised 

maximum likelihood classifier (MLC). Using aerial imagery with LiDAR data, Huang et al. 
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(2008) developed a knowledge-based classification system (KBCS) to classify urban features 

into four categories: building, tree, grass, and road. Using a three-level-height classification rule-

based method, different objects were extracted from low-, mid-, and high-height levels based on 

15 rules associated with 18 numerical thresholds and 7 logical thresholds. The authors stated that 

the KBCS method receive higher accuracy than MLC and object-based classification. However, 

a common criticism of knowledge-based classification is that many thresholds involved and need 

to be assigned by human. In the experiment of Huang et al. (2008), only 2 thresholds were 

calculated by automatic optimum threshold selection method, the rest 23 thresholds (including 16 

numerical and 7 logical thresholds) were input by user. The process of selecting thresholds is 

time-consuming and complicated. Also, the user is required to have sufficient experience and 

knowledge about urban-features extraction from remotely sensed data. Similar limitations were 

also found in Germaine and Hung (2011) where KBS methods were used to delineate impervious 

surface from multispectral imagery and LiDAR data. 
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2.2 Feature Selection Methods 

 

In general, feature selection is defined as the task to remove irrelevant and/or redundant features 

(Guyon et al., 2006). Analysis of remote sensing data has recently shown more challenges and 

difficulties due to its larger volumes with a higher resolution and more feature bands. To reduce 

data dimensionality and computational complexity, unsupervised and supervised feature 

selection has drawn widespread attention in the field of remote sensing (Mitra et al., 2002; Liu 

and Yu, 2005). One of the most popular unsupervised techniques for feature reduction is 

principal components analysis (PCA). According to Lu et al. (2007), the massive majority of the 

image information can be retained while reducing the dimensionality through the accumulative 

eigenvalues of around 99% from PCA.  

Several studies have proposed a variety of feature selection methods for SVM based 

classification (Frohlich et al., 2004; Chen and Lin, 2006; Chaelle and Keerthi, 2008). An 

evolutionary method, particle swarm optimization, was used for hyperspectral band selection to 

classify urban land cover (Yang et al., 2012). The results showed that this supervised feature 

selection method can greatly improve the SVM based classification accuracy, compared with 

other PCA methods. However, this feature selection approach requires the prior knowledge of the 

optimal number of features, which is not available in most cases. Huang and Wang (2006) 

proposed a generic algorithm (GA) based feature selection and parameters optimization approach 

for SVM classification. Nevertheless, the stochastic feature selection produced by GA may be 
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ineffective and time consuming facing high-dimensional remote sensing datasets (Stavrakoudis 

et al., 2012). 

The nature of RF allows providing feature importance rankings as the criteria of feature 

selection, which is useful for multi-/hyperspectral data classification where the band 

dimensionality is high. It is of importance to investigate the influence of each predictive feature 

in the classification model for selecting the best features (Gislason et al., 2004; Gislason et al., 

2006; Ghimire et al., 2010). Wang et al. (2009) applied a RF based feature selection for 

improving urban hyperspectral data classification. Martinuzzi et al. (2009) used RF based feature 

selection algorithm (varSelRF) and RF classifier to map snags and understory shrub species 

distribution from LiDAR data and inventory plots. The results showed agreement between the 

expectations from previous literature and the selected features with highest importance scores 

derived from RF. In another study (Ismail, 2009), HyMap data was utilised for detection and 

mapping of infested pine forests by varSelRF feature selection and RF classification. Overall the 

results showed the selected feature agreed the existing physiological knowledge. 

There are two ways to evaluate feature selection methods (Liu and Motoda, 2008). One is 

to compare the results before and after feature section, including the number of selected features. 

The other is to compare two feature selection algorithms for the same task. Lu et al. (2007) 

applied two feature reduction methods, principal component analysis (PCA) and decision 

boundary feature extraction (DBFE) (Lee and Landgrebe, 1993), to a hyperspectral image 

covered a complicated agriculture area. The results of PCA or DBFE were inputted to two 

classifiers: MLC or extraction and classification of homogenous objects (ECHO) (Ketting and 



 

21 

 

Landgrebe, 1976). After comparing the classification results of PCA-MLC and PCA-ECHO with 

DBFE-MLC and DBFE-ECHO, the authors concluded that DBFE was better than PCA as the 

feature reduction method, yielding higher classification accuracy. Li et al. (2008) evaluated three 

typical feature selection methods by the same task of land cover classification using MLC and 

SVM classifiers. The classification accuracy along with the number of selected features was used 

as evaluation criteria. In another study, Laliberte et al. (2012) conducted a comparison of three 

feature selection methods for object-based classification, Jeffreys-Matusita distance (JM) (Swain 

and Davis, 1978), classification tree analysis (CTA) (Steinberg and Colla, 1997), and feature 

space optimization (FSO) (Definiens, 2009). The assessment criteria were ease of use, ability to 

rank and/or reduce input features, and classification accuracies. The results showed that JM 

required multiple steps, CTA had potential for overfitting decision tree, and FSO contained 

unclear feature ranking. 
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2.3 Chapter Summary 

 

This chapter has presented an overview of the issues and methods of feature selection and 

classification for land cover mapping, especially for urban land cover classification using LiDAR 

data. To classify urban land cover types, a variety of classification methods has been reviewed. 

However, several major limitations have been found based on literature review: (1) some 

methods required prior knowledge on the study areas, (2) optimal parameters were difficult to 

find, (3) the processing time was not satisfactory, (4) many thresholds were involved and need to 

be assigned by human which was not user-friendly, (5) some methods entailed complex 

computational structure and required a large number of reliable training data, (6) classification 

methods such as DT had the over-fitting problem and required tree pruning after classification, 

(7) some of them showed poor accuracy performance. RF showed capability of solving all above 

obstacles, also embedded ability of feature selection. Up to now, there have been limited efforts 

to apply RF based classification method to LiDAR data fused with aerial imagery in urban areas. 

In the following chapters, feature selection and classification based on RF method is proposed for 

urban land cover classification from LiDAR data and aerial imagery. The results are also 

compared with other widely-used feature selection and classification methods. 
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Chapter 3 

Introduction to Support Vector Machines and Random 

Forests Classifiers 

 

In this chapter, a general guide to the concepts of SVM based and RF based classifiers are given. 

Section 3.1 provides the theoretical background and the development of SVM through different 

aspects. Section 3.2 describes the basic theories of building a random forest, and the parameter 

selection criteria. In the end, Section 3.3 summaries this chapter.   

 

3.1 Support Vector Machines Classifier 
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Figure 3.1 Support Vector Machine examples: (a) a linear binary SVM classifier, (b) a non-

separable classification example using soft-margin, (c) a complex original data space is 

projected into a simple feature space shown as (d) using a kernel. 

(Adapted: Yang, 2011a) 

 

Considering only the training samples which  are close to the class boundary, SVM has 

performed well in several multi-source data (including LiDAR data) classification problems, 

w 
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even with small training sets (Dalponte et al., 2008; Jones et al., 2010; Trinder and Salah, 2011). 

This section will first explain the principles at the core of the SVM classifier. Afterwards the 

parameter selection strategies and application software are also introduced. 

The original formulation of SVM was introduced in Vapnik (1979), and aims to construct 

an optimal separation hyperplane that discriminate the dataset into discrete predefined number of 

classes by using a training sample subset as the support vectors. In the learning step, a classifier 

with maximum margin which defined by support vectors is iteratively searched within a multi-

dimensional feature space to classify the training samples, and then to classify the test samples. 

Margin refers to the distance from the hyperplane to the samples closest to it on either side. The 

optimal separation hyperplane is the one that obtains the largest margin. An important 

generalization aspect of SVM is that the number of support vectors is frequently smaller than the 

size of available training samples. Unlike other classifiers, which directly deliver a class label as 

final output (e.g., decision tree) and calculate probabilities of class memberships (e.g., MLC); 

SVM provides distances of each input vector to the optimal hyperplane (Waske et al., 2009a). 

 

Figure 3.1(a) illustrates the simplest form of SVM, a linear binary classifier, which assign a 

given test sample a label from two class memberships: positive and negative. The training sample 

can be mathematically presented as ; where  is an input sample,  is the 

size of the training samples, and  is a class label:  if   and  
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if . The problem is eventually converted to find the parallel hyperplane described as 

(Burges, 1998): 

  for  (plus-plane) (3.1)  

  for  (minus-plane) (3.2)  

where  is the weight vector and  is the bias parameter. 

The Equations (3.1) and (3.2) can be combined and rewritten as 

 
 

(3.3)  

As illustrated in Figure 3.1(d),  is the normal projection of  onto the hyperplane ,  is the 

distance vector of to , and  is the normal vector of . Therefore,  can be expressed as 

(Duda et al., 2001) 

 

 

(3.4)  

 

Because , then 

 

 

(3.5)  
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The Equation (3.5) implies that   is equal to the distance vector from the origin to , so b is 

the key factor for the location of hyperplane. In order to find the maximum margin, the absolute 

value of  should be at least some value , then 

 

 

(3.6)  

To find a unique solution for maximum , the constraint   is imposed, and then the 

goal is defined as (Cortes and Vapnik, 1995) 

  subject to ,  (3.7)  

In solving this standard quadratic optimization problem, Equation (3.7) is converted to an 

unconstrained problem by means of Lagrange multipliers  as maximizing (Cristianini and 

Shawe-Taylor, 2000) 

 

 

(3.8)  

Subject to , and , . 

After solving for , the support vectors are obtained by selecting the set of  whose . 

Then  and  can be calculated based on (Alpaydin, 2004) 
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  , and  (3.9)  

respectively.            

So far, all the problems have been treated as linear classification task. To deal with the 

nonseparable cases as shown in Figure 3.1(b), Cortes and Vapnik (1995) introduced a soft 

margin method with a set of slack variables, , which measures the deviation from the 

margin. Then Equation (3.3) can be reformulated as  

 
 

(3.10)  

There are three possible situations: if ,  is correctly separated and classified; if 

,  is correctly labeled but lie in the margin; if ,  is misclassified. 

Similarly, Equation (3.8) is refined as  

 

 

(3.11)  

Subject to , and , ,  

where  is an error penalty factor which controls the trade-off  between the number of support 

vectors and the number of the non-separable samples.  

Boser et al. (1992) introduced a kernel trick to solve the non-linear classification problem. 

The complex problem in the data space is mapped to a new high-dimensional feature space 
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where a linear model would be created, as illustrated in Figures 3.1(c) and 3.1(d), using suitable 

nonlinear transformation functions. 

Only the kernels meet Mercer’s theorem (Mercer, 1909) can be used in SVM, the most 

common ones are linear, Gaussian radial-basis function (RBF), polynomial, and sigmoid kernels, 

and their mathematical representations are (Fletcher, 2009; Haykin, 1999) 

 Linear:  (3.12)  

 

 RBF:  (3.13)  

 

 Polynomia:  (3.14)  

 

 Sigmoid:  (3.15)  

 

where  is a sample in the original data space,  is an corresponding sample in the feature 

space, and  are user-defined kernel parameters.  

In general applications, including remote sensing data analysis, the RBF kernel is a widely 

used kernel function due to its higher performance and practical conveniences (Gómez-Chova et 

al., 2011). The linear kernel is only a special case of RBF (Keerthi and Lin, 2003), and the 

sigmoid kernel with certain parameters behaves like RBF (Lin and Lin, 2003). Furthermore, 

Compare to RBF, the polynomial kernel has higher model complexity and longer processing time 
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because it requires more hyperparameters. However, if the number of features is huge, the linear 

kernel may be the better choice (Hsu et al., 2010).  

SVM based classifier was originally invented to solve binary classification problems as 

described above. However, remote sensing applications usually need to discriminate among a 

broad range of land-cover or land-use classes. Thus two approaches have been developed for 

SVM multiclass classification (Weston and Watkins, 1999): 

 One-against-all method: it is probably the earliest used strategy for SVM multiclass 

classification problem, for example in Bottou et al. (1994). For an N-class problem, N 

binary classifications are constructed and trained to separate each class from all 

remaining classes. 

 

 One-against-one method: it was introduced by Knerr et al. (1990), and then first used on 

SVM by Friedman (1996) and Kreßel (1999). Each pair of classes is calculated as a 

binary classification problem. Finally, all N(N-1)/2 binary classification results are 

combined, and a majority voting is conducted to generate the final output. Each sample in 

the final output is labeled with the class having most votes. Instead of simple voting 

method, Wu et al. (2004) introduced pairwise coupling to obtain SVM multi-class 

classification decisions and found that it is more stable. This method is suitable for 

solving the classification problem with large amount of data. 
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Samadzadegan et al. (2010b) concludes that one-against-all derived higher accuracy, while 

one-against-one is much less time consuming. For dealing with larger dataset, one-against-one 

method is a better choice than the other. 

Because of its high performance and processing efficiency as mentioned above, RBF 

kernels are chose to serve in the implementation of SVM classification in this study. According 

to Equations (3.11) and (3.13), two parameters are needed to be specified by user: the penalty 

factor  and the width of the kernel function .  

The best  and   are not known beforehand for the current problem, thus a parameter 

selection has to be done. In this study, k-fold cross-validation is performed to find the pair of 

optimal parameters  from an infinite number of possible ones. This procedure is beneficial 

to prevent the overfitting problem (Hsu et al., 2010). First, the training dataset is divided into k 

subsets of equal size. Then each subset is tested using the classifier trained on the remaining k-1 

subsets. Consequently each subset in the training dataset is tested once, so the percentage of 

correctly classified samples is calculated at each time (k times in total) as the cross-validation 

accuracy (CVA) (Secord and Zakhor, 2007).  

A grid search is recommended to executed in parallel to pick the  with the highest 

CVA (Hsu et al., 2010). To reduce the computation time, the practical way is testing 

exponentially growing sequences of  values using a coarse grid first, e.g., , 

 multiplier as ,followed by a finer grid (multiplier as ) in the 



 

32 

 

neighborhood of best  which derived from the previous coarse grid search (Hsu et al., 

2010). Once  have selected, they are used to train the whole training dataset to determine 

the final classifier with the optimal hyperplane. 
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3.2 Random Forests Classifier 

 

As indicated in the above section, SVM approach is based on a relative complex decision 

boundary which is computed after transferring the original linear nonseparable samples into a 

higher dimensional feature space. In contrast, RF approach replies on different decision tree 

classifiers with many rather simple decision boundaries paralleling to the original feature axis. 

Feature space transformation is not needed in an RF classifier, so it could save much more 

computing time than a SVM classifier. Several studies have shown the advantages of RF in the 

field of land cover classification (Pal, 2005; Gislason et al., 2006; Smith, 2010; Zhu et al., 2011). 

In the rest of this section, three aspects of RF will be presented: the basic principles, the 

parameters determination and algorithm implementation tools. 

The RF classifier developed by Breiman (2001) is a combination of decision trees 

, where x is an input vector, and  denotes a random vector which is 

sampled independently but with the same distribution as the past  .  bootstrap 

samples are first drawn from the training data, and then an un-pruned classification and 

regression tree (CART) is grew from each bootstrap sample  where only one of M randomly 

selected features is chose for the split at each node of CART.  

Finally, classification output is created based on a majority vote of the predictions from all 

individually trained trees. The workflow is shown as Figure 3.2. 
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Figure 3.2 Random Forests classification workflow 

                                                                                                                  (Source: Guo et al., 2011) 

 

A bootstrap dataset is a set of randomly selected points which are drawn with replacement 

from the training dataset (Duda et al., 2001). To obtain the same size with the original training 

sample, a bootstrap dataset nearly always has duplication of individual points. While each tree in 

the forest is constructed using a different bootstrap dataset, about one-third of the points are left 

out of each bootstrap sample, called Out-of-Bag (OOB) data. On the average, each training point 

would be out-of-bag around 36% of the times. Thus, an estimate of the classification error rate 

can be derived based on the training data. The OOB samples are run down through the trees, and 
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count the times of incorrect classification which are then averaged by all the trees yielding the 

total OOB error rate. It is unbiased (Breiman, 2001) and can be used to plot the relationship 

between the OOB error and the number of trees. The number of trees should be enough while the 

error rate becomes stable (Horning, 2010). 

There are two additional indications that are produced from the RF: proximities analysis 

and variable importance. The former one measures the distance from one sample to others, which 

can be used as outlier detector (Joelsson et al., 2008). It based on the idea that similar samples 

should fall in the same terminal nodes more frequently than dissimilar ones (Liaw and Wiener, 

2002). The proximity measure also can be used to visualize the structure of high dimensional 

data (Breiman, 2003). Variable importance measures the importance of the predictor variables 

(features). To estimate a feature importance, the OOB samples are first run through the trees and 

count the votes for the correct classification. Then, the prediction accuracy is repeatedly obtained 

after randomly permuting all the values of this feature while all the other features stay the same. 

The importance score is the decrease of the correct class votes after the variable permutation, 

averaged over all the trees. The intuition is that a random variable permutation can simulates the 

absence of that variable from the forest (Guo et al., 2011). Thus the higher an average accuracy 

decrease is, the more important that feature is. Another index to measure importance is the Gini 

impurity which can be written as (Breiman et al., 1984) 

 Gini( ) =  (3.16)  

where  is the probability that the randomly selected pixel belongs to class . 
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By summing up the Gini impurity decreases for each variable in the random forest, it provides a 

fast way to measure variable importance which is usually consistent with the previous 

permutation method (Breiman, 2003). 

 

In a RF based classification, two parameters need to be specified by user: the size M of a 

random subset of features and the number of trees T. The selection of parameter M has influence 

on the final error rate. If M is increased, both the correlation between the trees and the strength 

(classification accuracy) of individual tree in the forest are increased. The error rate 

is proportional to the correlation, but inverse proportional to the strength (Joelsson et al., 2008). 

Usually, M is set to the square root of number of features (Gislason et al., 2006). Because RF is 

fast and not overfit, the number of trees T can be as many as possible. However, due to the 

memory limit of the machine, T is usually several hundred to thousand (Horning, 2010). 
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3.3 Chapter Summary 

 

This chapter presented the theoretical background of SVM and RF. Each technology was 

presented through two major phases: the basic principles and the parameters determination. SVM 

based classifier aims at the definition of an optimal separation hyperplane to separate different 

classes in a multi-dimensional feature space mapped by a kernel function such as RBF. The 

required parameter varies when adopting different kernel functions. The common methods used 

to find best parameters of SVM are grid search and cross validation. RF classifier, one of the 

classifier ensemble methods, offers an elegant fashion to build a strong classifier by combining a 

set of independent weak DTs. Usually, RF classifier only requires two parameters which are 

user-friendly defined. 
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Chapter 4 

Methodology 

 

In this chapter, the methodologies of this study are presented. Section 4.1 provides the 

information on the study area and datasets. Section 4.2 lists and explains all the input features 

derived from LiDAR and aerial imagery. Section 4.3 presents the methods to collect the training 

and reference data. Section 4.4 introduces the software packages and parameters used in this 

thesis for feature selection and urban land cover classification, followed by an introduction of 

evaluation methods in Section 4.5. Last, Section 4.6 presents the summary of this chapter.  

 

4.1 Overview of the Proposed Methodology 

 

A general overview of the methodology in this thesis is shown in Figure 4.1. First, proper 

features were extracted from LiDAR data and aerial imagery, organizing into three groups: 

LiDAR feature group, image feature group, and all feature group. Next, feature selection was 

applied to the previous generated feature groups based on PCA and RF techniques. Afterward, 

the supervised classification with different training sample size was performed on original 

features (derived from feature extraction step) and reduced features (derived from feature 

selection step), according to three classifiers: MLC, SVM, and RF. Finally, the study area was 

classified into four major urban land cover categories. The classification results were compared 

with reference data to evaluate the classification schemes.
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Figure 4.1 Overall workflow of this study
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4.2 Study Area and Datasets 

 

The City of Niagara Falls, in the Golden Horseshoe region of southern Ontario, is part of 

the Regional Municipality of Niagara, Canada’s 12th largest Census Metropolitan Area 

(CMA). It has a population of 82,184 inhabitants and population density of 392.1 per km² 

(Statistics Canada, 2007). In this thesis, an urban area of the City of Niagara Falls was 

selected as a test site (see Figure 4.2). The almost flat region contains a college school, a 

shopping plaza, and more than 300 residential and business buildings, according to the 

GIS building footprint data. Land cover components are typical of those in urban and 

suburban scenes, including houses with both flat and pitched rooftops, impervious 

concrete and asphalt surfaces such as parking lots, sidewalks, and roadways, and pervious 

vegetation surfaces such as trees and grass. The great variety of the land cover in the 

study area makes it ideal for this study. The desired map classes for this project are 

detailed in Table 4-1. Road includes road, parking lot, and street items such as car and 

traffic light. Grass includes green and dry grass. Tree includes coniferous and deciduous 

trees. 

 

Table 4-1 Land cover types in the study area 

Pervious 

Classes   

Impervious 

Classes 

Tree 

 

Building 

Grass   Road 
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The LiDAR data were acquired in 2004 by an Optech ALTM 3100 system. The 

airplane flew at an average height of 1,190 m above the mean sea level, with a DSS 301 

SN0039 camera on board for the 0.5m-resolution aerial photographs with RGB bands. 

The horizontal and vertical accuracies are 0.6m and 0.15m (1 sigma standard deviation), 

respectively.  The average point density and point spacing within the test site is about 4 

points/m
2
 and 0.5 m, respectively. The LiDAR dataset records both range (first- and last- 

returns) and intensity information of the laser pulse which are co-registered with the 

0.5m-resolution aerial photographs containing 803,439 pixels.  

A grey-scale orthotimage covering the study area was taken in the spring of 2006, 

with a 10cm resolution, is available to use in the reference data generation step. Several 

GIS vector dataset including building footprints and roads are also available. All the 

experiments were conducted on a consumer level laptop (Intel Core i7 2.67GHz CPU, 4G 

RAM, 64-bit Operating System). 
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(a) Location of the study area 

 
(b) Aerial image of the study area 

Figure 4.2. Study area 
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4.3 Feature Groups 

 

A set of feature vectors which is focused on discriminating between classes is crucial to 

land cover classification (Wang et al., 2009). For urban land-cover classification in this 

study, a total of 31 features were generated from LiDAR height information, reflection 

intensity sensor and aerial imagery, which are listed in Table 4-2. The features were 

grouped into image feature group, LiDAR feature group, and all feature group. 

 

Table 4-2 Feature groups used in this study 

Feature 
group 

Feature extraction methods Features 

Image 
feature 
group 

RGB bands Red, Green, Blue 

GLCM based features 

Red_Contrast, Red_Entropy, Red_Correlation, 
Green_Contrast, Green_Entropy, Green_Correlation, 
Blue_Contrast, Blue_Entropy, Blue_Correlation 

LiDAR 
feature 
group 

Height based features DSM, fr-lr, HVar, HDiff 

LiDAR intensity Intensity 

GLCM based features 
DSM_Contrast, DSM_Entropy, DSM_Correlation, 
Intensity_Contrast, Intensity_Entropy, Intensity_Correlation 

Eigenvalue based features 
Eigen1, Eigen2, Eigen3, Anisotropy, Planarity, Linearity, 
Sphericity 

All 
feature 
group 

LiDAR-TVI & LiDAR feature 
group & image feature 

group 

LiDAR-TVI, DSM, fr-lr, HVar, HDiff, Intensity, DSM_Contrast, 
DSM_Entropy, DSM_Correlation, Intensity_Contrast, 
Intensity_Entropy, Intensity_Correlation, Eigen1, Eigen2, 
Eigen3, Anisotropy, Planarity, Linearity, Sphericity, Red, 
Green, Blue, Red_Contrast, Red_Entropy, Red_Correlation, 
Green_Contrast, Green_Entropy, Green_Correlation, 
Blue_Contrast, Blue_Entropy, Blue_Correlation 
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 Height-based features 

The elevation image of first return pulses is generated to serve as a height value feature 

during the classification. It distinguishes elevated objects such as buildings and trees 

from others. In addition to DSM image, the height differences between first return and 

last return pulses of LiDAR points are rasterized as a feature layer. It has the capability to 

detect trees due to the penetrability of canopy (Rottensteiner and Clode, 2009). 

Height difference (HDiff) and height variance (HVar) were calculated to describe 

the local height variation. HDiff is the difference between maximum and minimum 

height value in a 3*3 neighborhood, while HVar is the variance of the height values in 

the same neighboring region. These two features have the potential to separate “rough” 

surface (e.g., trees) with other “smooth” objects, such as rooftops and grass (Huang et al., 

2011). 

 

 LiDAR reflection intensity  

Intensity, for most LiDAR systems, refers to the ratio of return pulse energy to 

transmitted pulse energy. It is affected by variable factors, such as roughness and 

orientation of object surface, variations in path length, laser beam divergence, structure 

and density of object, background saturation, and signal attenuation through the 

atmosphere (Starek et al., 2007). LiDAR intensity values have been calibrated and 

adjusted before delivery to reduce the variations and systematic errors derived by 

spherical loss, topographic and atmospheric effects. After calibration and correction, 
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intensity values show similarity in the homogeneous surface. Usually, standard deviation, 

median, and mean values of the homogeneous surface are used for evaluation of 

correction, along with the visual inspection (Hofle and Pfeifer, 2007; Oh, 2010). Intensity 

can be used to improve the land cover classification when it is difficult to distinguish 

different objects using only elevation information (Li et al., 2008). 

 

 RGB bands 

From aerial image, three separated feature layers, Red, Green, and Blue, are directly 

extracted. They represent the responses of all objects on the terrain surface to visible 

light. Usually, they preserve the corner and boundary information better than LiDAR data 

(Zhang, 2010). 

 

 GLCM-based features 

Textural features are derived from GLCM (Haralick et al., 1973). According to Hall-

Beyer (2008), GLCM texture features can be classified into three groups: contrast group, 

orderliness group, and descriptive statistics group. Selection of at least one feature from 

each group is suggested by Ozdemir and Karnieli (2011), because of the strongly 

correlation inside each group. Only three features (Contrast, Entropy, and Correlation) 

are selected to use in this research (Clausi, 2002). Contrast from contrast group refers to 

the amount of local variations; Entropy from orderliness group is a measure of the 
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amount of disorder; Correlation from descriptive statistics group measures the linear 

dependencies of grey levels (Haralick et al., 1973). 5 bands were used to generate 

GLCM-based texture features: Red, Green, Blue, Intensity, and DSM. All the GLCM-

based features were generated with a window of 33 pixels by the build-in ‘Co-

occurrence Measues’ function in ENVI. Each time, the texture values were put in the 

central pixel of the 33 window. At last, the values for the edge pixels of whole image 

were interpolated from the nearest texture values. 

 

 Eigenvalue-based LiDAR features 

This group of features describes the spatial local distribution of LiDAR points, which are 

able to detect corners, planes, volumes, and lines (Gross and Thoennessen, 2006): 

 

    
(4.1)  

 

 

 
(4.2)  

 

 

 
(4.3)  

 

 

 
(4.4)  
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where  are the eigenvalues computed from the variance-covariance matrix 

within the local region. These three eigenvalues are also used as features (Chehata et al., 

2009). 

 

 Image and LiDAR derived feature  

To discriminate vegetation types, NDVI (normalized difference vegetation index) 

calculated from the red and near-infrared (NIR) bands was widely adopted and applied to 

the remote sensing images. Deering et al. (1975) proposed the TVI (transformed 

vegetation index) to modify the NDVI from the Poisson distribution to the normal 

distribution, by adding 0.5 to the NDVI values and taking the square root of the results. 

However, the NIR band is not always available. Recently, LiDAR- TVI is introduced in 

Huang et al. (2008) for discrimination of grass and tree, especially performs well for 

grass. It is the square root of pseudo-NDVI which is calculated by replacing the NIR 

band with LiDAR Intensity (wavelength: 1064 nm) (Rottensteiner et al., 2005; García-

Gutiérrez et al., 2010). A constant of 0.5 was added to eliminate a negative value, and the 

constant varies with minimum pseudo-NDVI value:  

 

 

 

(4.5)  

Sufficient feature layers were generated and then used in the following classification 

procedures. 



 

48 

 

4.4 Training and Reference Data 

 

Both training and reference data are indispensable in the supervised classification 

schemes. Training samples, as input to yield a classification map, represent the spectral 

signatures of each class; and reference data is required to systematically compare with the 

classification results for further accuracy assessment. Training and reference data for the 

present study were collected from the study area in Section 3.1. Different selected 

sampling sizes and schemes are introduced in this section. 

There are many ways to collect ground truth information for supervised 

classification. For example: in situ information collection, on-screen selection of regions 

of interest (ROIs), and/or on-screen seeding of training data. In an ideal situation, the 

centroid coordinates of all the samples are measured using a global positioning system 

(GPS) receiver by visiting them in the field, and observations of ground information are 

very carefully conducted at the same time. Unfortunately, sometimes part of the locations 

may be inaccessible because of private land owners, extremely rugged terrain, or other 

regulations. And due to the lack of high-accuracy GPS equipment, i.e. real time 

kinematic (RTK) GPS receivers, this field-work method is not adopted in this thesis. To 

collect the ground truth samples for this research, 6500 pixels were randomly selected by 

“Create Random Points” tool in ArcGIS 10 with a minimum allowed distance of 1 m. 

Then, each location was investigated and labeled using higher-spatial-resolution remotely 

sensed data (10 cm resolution orthoimage) based on human visual interpretation. To 

reduce the effects of geometric misregistration, 8 pixels surrounding the reference pixel 
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were investigated, and then the class with the highest frequency of occurrence was 

assigned to the reference pixel (Jensen, 2005). 

An equalized random sampling was performed, guaranteeing that all classes are 

equally distributed in the training set. The required size of the training dataset is 

commonly estimated from either basic sampling theory or simple heuristics method 

(Foody and Mathur, 2006). The former is based on the assumption that the spectral 

response of a class follows a normal distribution, and the total number of pixels in a 

remote sensing image dataset is generally large. Thus, the training sample size, , could 

be determined as (Foody et al., 2006) 

 

 

(4.6)  

where  is the planning or estimated value for the population standard deviation of the 

distribution,  is the value of the  score at a specified level of confidence,  is the 

specified half-width of the confidence interval. 

Alternatively, simple heuristic method is often used to specify the training sample 

size as at least 10-30  per class, where  is the number of spectral wavebands or other 

discriminating features used in the classification (Foody, 2009). In this research, four 

class memberships are derived using multiple feature layers which will be explained in 

next section. To investigate the possible effect of the number of training samples on the 

classification accuracy, training data with different size were created, containing 250, 
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500, and 1000 training samples per class, respectively (from now on referred to as tr#250, 

tr#500, and tr#1000).  

All the training data were excluded to perform the error evaluation, in this way, 

biased accuracy assessment was avoided. To populate an error matrix and preform an 

accuracy assessment in this research, an independent reference dataset was available 

containing 2500 samples. Since multiple classes are involved in the classification, the 

reference sample size (N) is determined based on multinomial distribution equation 

(Tortora, 1978): 

 

 

(4.7)  

where is the percentage of the sample size in the th class which  occupies closest to 

50% of all the  classes over study area,   is the anticipated precision,  is determined 

from the (Chi-square) distribution table with 1 degree of freedom and , 

 ) is confidence interval.  

However, in present research the true proportion of any of the 4 classes is 

unknown. So the worst-case multinomial distribution algorithm was adopted to assume 

that one class occupies 50% of the test site, b=5%, confidence interval is set to 95%. 

According to Equation (4.7), at least 624 reference samples should be collected to 

populate an error matrix. In present study, the sample size was future extended to 2500. 
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4.5 Feature Selection and Classification 

 

PCA based feature reduction was applied in ENVI to retain around 99% accumulative 

eigenvalues for each multi-band image with different feature groups. At the RF based 

feature selection stage, the R package varSelRF was utilized to iteratively eliminate 20% 

of the least important features. The selected set of features is the one with the minimum 

OOB error rate. For each RF based feature selection, the package varSelRF was iterated 

10 times, and then the most frequent selected feature combinations were used in the 

following classification step. In total, 81 classification experiments were conducted in 

this study. Three feature groups (including image feature group, LiDAR feature group, 

and all feature group) were used as input to nine classification schemes (including MLC, 

SVM, RF, PCA-MLC, PCA-SVM, PCA-RF, RF-MLC, RF-SVM, and RF-RF), along 

with three training sample sizes (including tr#250, tr#500, and tr#1000). 

The one-against-one SVM classifications were implemented using imageSVM 

(Janz et al., 2007), which is an open-source IDL/ENVI plug-in for SVM classification 

and regression analysis of remotely sensed data with common formats. It is developed by 

the Geomatics Lab of Humboldt-Universität zu Berlin based on the widely accepted 

LIBSVM approach (Chang and Lin, 2011). For SVM classification, it comprises three 

steps: image scaling, automatic or user-defined parameterization based on training data, 

and classification of input image data. In the automatic parameterization setting, the RBF 

kernel parameter  and regularization parameter  are selected using grid search and 3-
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fold cross validation. First, a coarse grid search was applied within ( , 

 with a multiplier of , and then a finer grid with multiplier of  was 

built to find the final parameters in the neighborhood of best  which derived from 

the previous coarse grid search. Beside the final classification image, imageSVM also 

offers the probability image of each class as output based on Platt (2000) and Wu et al. 

(2004). The imageSVM program is more user-friendly than the build-in SVM program in 

ENVI, due to the availability of the function of automatic parameterization.  

In addition, the R ‘randomForest’ package was used to run RF classifications. The 

randomForest package for the R statistics language (R Development Core Team, 2009) is 

a common open source tool for full-featured implementation including feature 

importance calculation. It is an R interface to the Fortran programs by Breiman and 

Cutler (available at http://www.stat.berkeley.edu/users/breiman/). R supports a variety of 

geospatial data analysis packages for handling of GIS data and remote-sensing images, 

such as maptools (Lewin-Koh and Bivand, 2011) and sp (Pebesma and Bivand 2005; 

Bivand et al., 2008). For selecting the size M of a random subset of features for RF, the 

square root of number of features, half of it, and twice of it were used to generate a 

random forest, and the one produced the lower OOB error rate was picked. In this study, 

the OOB error rate did not change dramatically when using different M, and the square 

root of number of features was used. For selecting number of trees, different values were 
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tested, and the one showed effective and stable results was used. In this study, it showed 

that 1000 trees were enough for all the RF classifications. 

 

4.6 Evaluation Methods 

 

No classification is complete until a valid evaluation on its result map has been done 

(Foody, 2004b). On the one hand, map users need to know if the map quality is suitable 

for a particular purpose, and on the other hand map producers need to evaluate the 

mapping process and further improve it. To determine the accuracy of classification maps 

derived from the previous classifiers, error matrix (Congalton, 1981), was built for each 

map, and then overall accuracy, User’s accuracy, Producer’s accuracy were obtained 

followed by a Kappa analysis. After evaluation of individual classifier, several statistical 

based techniques were applied for comparison of the produced maps. Besides the 

statistical accuracy assessment methods, a visual interpretation was also applied for map 

evaluation. 

Error matrix, also known as confusion matrix, was utilized in this research for 

accuracy assessment of the classification results. Each column in the matrix indicates the 

reference data, while each row represents the predicted class (Congalton and Green, 

2009). The number of classification result in a certain category is related to the number of 

reference data in a particular category. All the diagonal numbers refer to the correctly 

classified pixels of different class. The major advantage of error matrix is the effective 
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representation of individual accuracies for each class along with commission errors and 

omission errors. A commission error occurred when a classified pixel is included in a 

category to which it does not belong. An omission error occurred when a classified pixel 

is excluded from a category to which it belongs. Beside plainly showing commission and 

omission errors, the  error matrix can be used to generate descriptive evaluations such as 

overall accuracy, Producer’s accuracy, and User’s accuracy.  

The overall accuracy is defined as the sum of the major diagonal divided by the 

total number of pixels in the error matrix (Congalton and Green, 2009). Producer’s and 

User’s accuracies introduced by Story and Congalton (1986) are two measures of 

omission and commission errors. For each row, the Producer’s accuracy is calculated by 

dividing the number of correctly classified pixels in that row by the total number of 

pixels in the row. User’s accuracy is similar, but it is computed as the percentage of the 

number of correctly classified pixels in each column to the total number of pixels in that 

column (Congalton and Green, 2009). Kappa analysis is another important technique in 

accuracy assessment, was first introduced to the remote sensing field by Congalton 

(1981). It derives a Khat (coefficient of agreement) which measures the accuracy 

between classification result and reference data using the major diagonal and the chance 

agreement. It can be represented as (Jensen, 2005) 

 

 

(4.8)  
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where  and  refer to row and column numbers of an error matrix, respectively.  is the 

number of samples assigned to one of  classes in the matrix. Khat > 0.8 represents 

strong agreement, 0.4 Khat 0.8 represents moderate agreement, Khat < 0.4 represents 

poor agreement (Landis and Koch, 1977). 

Khat measures how well the classification result agrees with the reference data for a 

single error matrix. While the significance of the difference in accuracy, , allows for a 

statistical comparison between two error matrices. With this test, it is possible to 

determine if two error matrices are significantly different. In another word, it provides a 

means for statistically comparing the performance of two classifiers. The significance 

value with two independent Khat values can be evaluated in terms of the normal curve 

deviate as (Congalton and Green, 2009) 

 

 

(4.9)  

and it can also test the significance of a single error matrix by: 

 

 

(4.10)  

where  and  denote independent Kappa coefficients of error matrix #1 and #2, 

respectively,  is standardized and normally distributed,  and  denote 
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the corresponding approximate large sample variance which are computed using the 

Delta method as (Congalton and Green, 2009) 

 
 

(4.11)  

where 

 

 

(4.12)  

 

 

(4.13)  

 

 

(4.14)  

and 

 

 

(4.15)  

Despite the wide use and publicity of the approach represented by Equation (4.12) 

in remote sensing, many studies have inappropriately undertaken the significance 

analysis with related samples which, however, should be independent ones as the 

assumption of the approach states (Foody, 2004b). Most commonly in the remote sensing 

studies on accuracy comparison of different classifiers, like the present research, the same 

test samples are used to populate the error metrics from which the Khat values are 

derived. Therefore, an alternative technique, as described in (Chan et al., 2003; 

Watanachaturaporn et al., 2008), was used in this thesis to evaluate the significance of 
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difference for related samples. It is a non-parametric McNemar’s test (Bradley, 1968; 

Agresti, 1996) based on the standardized normal statistic with a confidence interval of 

95%: 

 

 

(4.16)  

where  is the number of samples correctly classified by classifier  but misclassified 

by classifier  (see Table 4-5). 

Table 4-3 The definition of matrix elements used in Equations (4.16) and (4.17) 

Allocation 
Classification 2 

Correct Incorrect Σ 

Classification 1 
 

Correct ƒ11 ƒ12 
 

Incorrect ƒ21 ƒ22 
 

Σ 
   

 

A distribution with 1 degree of freedom can be inferred from Equation (4.16) with the 

square of  as (Agresti, 1996): 

 

 

(4.17)  

The statistical significance of difference is then tested by means of chi-squared 

distribution table with derived . The null hypothesis (H0) of this two-sided test is that 
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there is no significant difference between the performances of two classifiers, and it 

would be rejected if . 

 

4.7 Chapter Summary 

 

The methodologies from input data collection to output results evaluation have been 

stated in this chapter. First, the input features were generated from the LiDAR data and 

aerial imagery. Second, the training and reference samples were collected. Because 

training data selection was requisite as an initial step for further supervised feature 

selection and classification approaches, and reference data is to compare with the 

classification results. Third, different classification schemes based on MLC, SVM, and 

RF classifiers were performed with or without feature selection techniques including 

PCA and RF. Three different training sample sizes were also used to assess the effect of 

training data. Finally, both quantitative and qualitative evaluation methods were applied 

to the classification results. 
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Chapter 5 

Results and Discussion 

 

This chapter provides all the test results and discussions. Section 5.1 presents all the 

selected features from PCA based and RF based strategies. Section 5.2 reports the 

quantitative assessment results from four aspects: overall accuracy, kappa test, User’s and 

Producer’s accuracies, and Mcnemar test. The results from qualitative visual assessment 

are stated in Section 5.3, followed by a processing speed comparison in Section 5.4. 

Finally, Section 5.5 provides the summary of this chapter. 

 

5.1 Feature Selection Results 

 

The number of features generated using PCA method from image feature group is 8, from 

LiDAR feature group is 12, from all feature group is 20. The features selected with the 

RF methods are shown in Table 5-1. In this table, for each feature group with tr#250, 

tr#500, or tr#1000, the optimal features were selected by the RF based feature selection 

package ‘varSelRF’ with 20% iterative elimination. In most cases, RF based feature 

selection method provided lower number of features than PCA based method. Overall, 

the most frequent selected features were RGB, Eigen3, Fr-Lr, DSM, LiDAR-TVI, HDiff, 

and Contrast attributes from GLCM. 
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Table 5-1 Feature selection results from RF based method 

  

Image Feature Group LiDAR Feature Group All Feature Group 

tr#250 tr#500  tr#1000 tr#250 tr#500  tr#1000 tr#250 tr#500  tr#1000 

Red √ √ √             √    

Red_Contrast                          

Red_Entropy                            

Red_Correlation √ √ √             √    

Green √ √ √          √ √    

Green_Contrast √    √                   

Green_Entropy     √                   

Green_Correlation     √             √    

Blue √ √ √          √ √ √ 

Blue_Contrast     √             √    

Blue_Entropy                            

Blue_Correlation                            

DSM          √ √ √ √ √ √ 

DSM_Contrast                      √    

DSM_Entropy                      √    

DSM_Correlation          √ √ √ √ √ √ 

Intensity        √ √ √ √ √ √ 

Intensity_Contrast                      √    

Intensity_Entropy                            

Intensity_Correlation                            

Fr-Lr          √ √ √ √ √ √ 

HVar             √    √ √ √ 

HDiff          √ √ √ √ √ √ 

Eigen1                   √ √    

Eigen2                            

Eigen3             √ √ √ √ √ 

Anisotropy                            

Planarity                   √ √ √ 

Linearity                   √ √    

Sphericity                            

LiDAR-TVI                   √ √ √ 

Note: for each column, ‘√’ indicates the selected feature, ‘’ indicates the excluded feature. 
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5.2 Classification Accuracies 

 

5.2.1 Overall Accuracy Results 

 

Overall classification accuracies of each classifier with different training data sizes and 

feature groups are reported in Tables 5-2 to 5-4. These values indicate the percentage of 

total number of pixels correctly classified out of 2500 reference pixels.  

Table 5-2 shows the overall accuracies from image feature group classification. The 

highest overall accuracy in this table is 65.44% achieved by RF-SVM with 4000 training 

samples. Overall, SVM based and RF based classifiers outperformed than MLC. RF 

based feature selection achieved better classification than PCA based feature selection in 

most cases. On average, Overall accuracies derived from classification with feature 

selection were higher than those without feature selection. However, all these 

classification results in terms of overall accuracy were not good enough for land cover 

classification, considering the accuracy values only ranged from 28.76% to 65.44%. 

Table 5-3 lists the classification overall accuracies using LiDAR features. In this 

table, the highest overall classification accuracy (82.32%) was obtained with 4000 

training samples by RF classifier, followed by SVM and RF-RF with 4000 training 

samples (81.72%). The lowest accuracy in this table is 73.60% achieved by RF-MLC 

with 4000 samples. All experiment accuracies from LiDAR feature classification were 

much greater than those from image feature classification. The overall accuracy improved 
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by approximately 0.2% - 4% when using RF based feature selection method than PCA 

based method in most cases. In this table, all accuracies derived from SVM based and RF 

based classifications were higher than those from MLC based classification. 

Table 5-4 presents the classification overall accuracies based on all feature group. 

The lowest classification accuracy is 78.48% obtained by MLC with 1000 training 

samples. In contrast, RF with 4000 training samples achieved highest overall accuracy, 

88.00%. It demonstrates that all the supervised classification schemes in this study 

performed accurately and achieved satisfied overall accuracy by fusion of LiDAR data 

and aerial imagery. SVM and RF classifiers improved the overall accuracy by about 3% - 

5% than MLC classifiers. RF based feature selection resulted in up to 3.5% greater 

accuracy than PCA based feature selection. 

Generally, MLC, PCA-MLC, and RF-MLC were less accurate than other 

classifiers. RF and SVM gave significantly higher accuracies than MLC in all three level 

of training size. The overall accuracy results clearly showed the positive impact of the 

use of advanced machine learning algorithms like SVM and RF. The classifications after 

two feature selection methods were also compared in terms of overall accuracy. In 

general, RF-RFs always showed higher overall accuracies in comparison with PCA-RFs. 

Most RF-SVMs and RF-MLCs performed more accurate than PCA-SVMs and PCA-

MLCs, respectively. Therefore, on average, RF based feature selection methods offered 

more accurate classification results than PCA based feature selection methods in this 

study. 
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One of the goals of this experiment was to assess the effectiveness of the proposed 

classification schemes for a relative small training set (tr#250, tr#500, tr#1000) and the 

influence of different training sizes. Reorganizing the numbers in Tables 5-2 to 5-4 shows 

that the impact of training data size on algorithm overall accuracies. As expected, 

increases in training data size generally led to improved performances in most 

experiments. However, SVM based and RF based classification schemes performed more 

stably over different training sizes.  

 

 

Table 5-2 Classification overall accuracies using image feature group 
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Table 5-3 Classification overall accuracies using LiDAR feature group 

 

Table 5-4 Classification overall accuracies using all feature group 
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5.2.2 Kappa Test Results 

 

As explained in Section 4.5, the Khat values denote a measure of agreement between the 

remotely sensed classification and the reference data. Table 5-5 presents the results of the 

Kappa analysis on the individual error matrices derived from each classification scheme 

on each training size level. According to Landis and Koch (1977), all the MLC based 

classification schemes, including MLC, PCA-MLC, and RF-MLC, showed poor 

agreement in image feature group (see Table 5-5a). All of the Khat values derived from 

LiDAR feature group classification results showed moderate agreement (see Table 5-5b); 

however several SVM based and RF based classification schemes using all feature group 

showed strong agreement (see Table 5-5c). On average, the Khat values derived from RF 

and RF-RF were greater than other classifiers. Also in Table 5-5, the Z statistic discussed 

in Chapter 3 is provided. At the 95% confidence level, if the value of the Z statistic is 

greater than 1.96, the classification is significantly better than a random classification 

(Congalton and Green, 2009). The Z statistic values for all the supervised classifiers in 

Table 5-5 were more than 9, therefore, all the classifications were significantly better 

than random results. 
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Table 5-5 Individual error matrix kappa analysis results 

(a) Kappa Analysis based on image feature group 

 

Kappa 
Analysis 

Parameters 
MLC SVM RF 

PCA-
MLC 

PCA-
SVM 

PCA-
RF 

RF-
MLC 

RF-
SVM 

RF-
RF 

tr#250 
Khat 0.15 0.42 0.37 0.16 0.40 0.37 0.09 0.42 0.38 

Z Statistic 14.14 30.08 26.89 15.10 29.17 26.77 9.47 30.35 26.86 

tr#500 
Khat 0.18 0.44 0.41 0.21 0.43 0.41 0.13 0.43 0.42 

Z Statistic 16.65 31.84 29.40 19.51 31.32 29.40 15.33 31.28 29.80 

tr#1000 
Khat 0.26 0.46 0.44 0.28 0.46 0.43 0.27 0.48 0.47 

Z Statistic 21.68 33.46 30.99 24.15 32.83 31.35 23.99 35.15 33.37 

Note:  the Khat value highlighted by a box indicates poor agreement. 

           
(b) Kappa Analysis based on LiDAR feature group 

 

Kappa 
Analysis 

Parameters 
MLC SVM RF 

PCA-
MLC 

PCA-
SVM 

PCA-
RF 

RF-
MLC 

RF-
SVM 

RF-
RF 

tr#250 
Khat 0.63 0.72 0.72 0.66 0.72 0.71 0.69 0.71 0.71 

Z Statistic 50.21 62.79 62.84 54.81 63.96 61.21 58.05 62.06 61.59 

tr#500 
Khat 0.66 0.72 0.72 0.67 0.72 0.69 0.72 0.72 0.72 

Z Statistic 53.45 62.83 63.13 56.22 63.12 59.85 63.74 63.98 63.33 

tr#1000 
Khat 0.68 0.73 0.74 0.68 0.73 0.72 0.62 0.71 0.73 

Z Statistic 55.86 64.88 66.05 57.24 64.92 64.05 49.94 62.40 64.91 

           

           
(c) Kappa Analysis based on all feature group 

 

Kappa 
Analysis 

Parameters 
MLC SVM RF 

PCA-
MLC 

PCA-
SVM 

PCA-
RF 

RF-
MLC 

RF-
SVM 

RF-
RF 

tr#250 
Khat 0.68 0.79 0.78 0.70 0.79 0.74 0.75 0.80 0.79 

Z Statistic 56.78 77.02 75.04 60.79 75.80 66.64 67.10 77.60 76.49 

tr#500 
Khat 0.71 0.79 0.80 0.72 0.79 0.75 0.72 0.80 0.80 

Z Statistic 60.91 76.83 78.19 63.24 75.54 69.06 63.74 78.38 77.76 

tr#1000 
Khat 0.72 0.81 0.82 0.73 0.80 0.78 0.72 0.79 0.80 

Z Statistic 62.78 80.76 83.76 64.19 79.07 74.05 62.86 77.12 78.54 

Note:  the Khat value presented boldface shows strong agreement. 
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5.2.3 User’s and Producer’s Accuracy Results 

 

The User’s and Producer’s accuracies of individual land cover type were listed in Tables 

5-6 to 5-8. Table 5-6 provides User’s and Producer’s accuracies derived from different 

classification scheme based on image feature group. Most of the Producer’s accuracies of 

four land cover types were lower than 70%, the lowest value is only 2.83%, which were 

not adequate for land cover mapping. On all training sample sizes, MLC based 

classification schemes, including MLC, PCA-MLC, and RF-MLC, presented much 

stronger imbalance between different classes than other classification schemes. 

In Table 5-7, class-specific classification accuracies using LiDAR feature group are 

listed. The Producer’s accuracies of ‘building’ were ranged from 71.40% to 89.82%. The 

‘tree’ class attained the Producer’s accuracies ranged from 76.08% to 90.84%. The 

Producer’s accuracies of ‘grass’ were ranged from 60.85% to 85.38%. And the 

Producer’s accuracies of ‘road’ were ranged from 65.66% to 80.45%. On average, SVM 

classifiers improved the Producer’s accuracy of ‘building’ by about 2% - 10% compared 

to MLC classifiers; RF classifiers improved by about 2% - 12% compared to MLC 

classifiers.  

In Table 5-8, the User’s and Producer’s accuracies of classifications using all 

feature group are listed. The highest Producer’s accuracy of the “building” class was 

obtained by RF-MLC, SVM, and RF with tr#1000 (89.12%). The three highest 

Producer’s accuracies of “tree” were derived from MLC with tr#250 (92.88%) and PCA-
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MLC with tr#250 (92.62%), followed by RF with tr#500 and tr#1000 (92.37%). The 

highest Producer’s accuracy of “grass” was generated by RF-SVM with tr#1000 

(90.09%). The classification schemes performed relatively weaker on the “road” land 

cover type resulting in Producer’s accuracies between 74.64% (MLC with tr#250) and 

86.34% (RF-SVM with tr#250). These values are lower than those obtained for the other 

classes. SVM based classifications, including SVM, PCA-SVM, RF-SVM, were the best 

on classification of “building” and “road”, resulting in Producer’s accuracies between 

84.83% and 89.12%. In contrast, RF based classifications, including RF, PCA-RF, RF-

RF,  provided the highest Producer’s accuracies of “tree” and “grass” classes from 

84.91% to 92.37%. Therefore, SVM based classifications performed well for impervious 

surface while RF based classifications provided better results on pervious classes based 

on 27 experiments with all feature group.  

On average, the Producer’s accuracies achieved by SVM based and RF based 

classification schemes are much higher than those obtained by MLC based ones. Overall, 

SVM based and RF based classification schemes produced more balanced Producer’s and 

User’s accuracies than MLC based ones. When using MLC classifier to evaluate the 

feature selection methods, the RF based feature selection generated more improvement 

than PCA based feature selection method in terms of the Producer’s accuracy of each 

land cover type. In another words, RF-MLCs generated higher Producer’s accuracy than 

PCA-MLCs on each land cover type. Both RF and PCA based feature selection methods 

improved the MLC classification results.
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Table 5-6 Class-specific classification accuracies using image feature group 

  

 

Note: PA: Producer’s Accuracy, UA: User’s Accuracy. 

 Class-specific classification accuracies using image 
feature group and tr#250 (%) 

Class-specific classification accuracies using 
image feature group and tr#500 (%) 

Class-specific classification accuracies using 
image feature group and tr#1000 (%) 

 

PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA 

MLC SVM RF MLC SVM RF MLC SVM RF 

Building 35.44 25.28 58.42 42.47 52.46 39.19 61.93 27.51 61.58 47.56 54.91 42.70 54.04 33.73 59.12 50.07 55.09 44.41 

Tree 88.04 27.64 60.31 55.50 58.02 52.66 81.42 36.12 58.52 51.80 59.80 52.93 82.70 34.39 59.03 54.21 61.58 56.67 

Grass 11.79 33.33 61.32 43.92 63.21 38.40 20.75 52.38 66.98 43.29 62.26 41.51 13.68 34.52 69.81 44.18 65.09 46.31 

Road 21.89 77.54 61.28 81.77 57.51 79.79 14.72 78.95 61.74 82.63 61.51 81.09 35.85 85.13 66.19 82.42 64.91 80.52 

 
PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF 

Building 48.25 25.56 58.77 41.72 51.58 41.12 81.75 28.93 57.72 45.13 57.19 42.84 83.51 30.16 56.32 49.38 59.12 46.81 

Tree 83.46 31.54 58.02 52.53 49.11 49.87 68.70 47.20 58.27 55.31 54.96 52.94 65.90 49.43 55.47 56.92 52.16 52.03 

Grass 6.60 48.28 64.15 39.42 59.43 34.05 24.53 72.22 62.74 40.30 63.68 40.79 16.98 52.17 67.45 40.51 63.68 41.80 

Road 21.89 81.69 57.43 82.90 61.81 79.67 15.40 83.27 64.00 82.57 61.51 81.50 21.81 87.84 68.60 81.60 65.81 82.03 

 
RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF 

Building 43.16 20.87 57.72 45.13 57.02 40.98 83.16 26.66 58.25 46.30 57.54 44.63 31.58 42.06 63.51 51.13 60.00 46.72 

Tree 86.01 30.42 46.82 51.40 50.89 50.13 69.21 43.45 41.98 51.89 51.15 51.94 89.06 28.32 58.02 57.58 62.09 60.10 

Grass 2.83 25.00 68.40 40.62 54.25 37.83 3.77 33.33 71.23 42.30 65.09 40.95 9.91 24.42 66.04 45.16 67.92 47.21 

Road 9.74 69.35 65.21 81.82 60.30 79.58 3.92 72.22 68.45 81.86 63.70 81.08 48.98 86.53 68.38 83.43 65.66 82.31 
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Table 5-7 Class-specific classification accuracies using LiDAR feature group 

Class-specific classification accuracies using LiDAR 
feature group and tr#250 (%) 

Class-specific classification accuracies using 
LiDAR feature group and tr#500 (%) 

Class-specific classification accuracies using 
LiDAR feature group and tr#1000 (%) 

  

PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  

MLC SVM RF MLC SVM RF MLC SVM RF 

Building 71.40 71.65 81.93 86.00 83.33 81.90 75.79 71.05 83.68 81.82 83.68 82.67 82.81 65.46 85.09 83.19 84.56 83.83 

Tree 83.72 65.02 84.99 75.06 86.26 71.82 82.19 70.68 82.95 74.09 86.01 73.16 79.90 73.36 84.73 77.44 85.50 75.17 

Grass 60.85 47.25 84.91 44.44 82.55 47.43 70.28 50.51 82.08 45.79 82.08 46.40 70.28 60.82 83.02 45.71 82.08 48.60 

Road 77.51 89.07 78.57 94.04 77.74 95.46 77.81 90.44 78.79 95.17 78.04 95.21 77.58 92.95 79.17 95.19 80.45 95.18 

  PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF 

Building 78.60 72.14 84.91 85.06 83.33 80.92 85.44 68.21 83.68 83.10 82.63 80.65 86.67 65.87 85.96 82.49 84.74 81.59 

Tree 88.30 63.67 83.46 77.36 85.75 74.07 85.75 70.35 83.72 74.77 84.99 72.93 83.46 72.41 82.70 78.88 84.48 75.63 

Grass 71.23 50.67 82.55 44.76 79.72 44.13 76.89 49.54 82.08 45.31 83.02 43.24 70.75 57.03 82.55 45.22 84.43 45.66 

Road 73.81 94.40 79.25 94.09 76.98 94.88 71.25 96.52 78.87 94.83 75.40 95.05 74.64 95.65 79.55 95.21 78.11 96.10 

  RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF 

Building 84.74 68.90 82.46 80.76 82.81 82.81 86.14 70.95 83.86 84.60 82.98 83.72 89.82 55.90 83.33 82.61 83.16 83.01 

Tree 80.15 73.26 78.37 77.78 82.44 69.53 90.84 75.16 83.97 76.39 86.26 71.22 76.08 77.06 82.95 74.94 84.99 73.41 

Grass 72.17 53.13 84.91 44.78 83.96 47.09 85.38 59.34 85.38 43.83 82.55 47.30 75.00 54.83 84.43 44.53 83.96 48.24 

Road 77.36 94.82 79.85 94.46 77.89 95.03 75.47 97.28 78.49 95.41 78.34 95.32 65.66 96.03 78.04 95.04 79.77 95.66 
 

Note: PA: Producer’s Accuracy, UA: User’s Accuracy. 
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Table 5-8 Class-specific classification accuracies using all feature group 

 

Class-specific classification accuracies using all feature 
group and tr#250 (%) 

Class-specific classification accuracies using 
all feature group and tr#500 (%) 

Class-specific classification accuracies using 
all feature group and tr#1000 (%) 

  

PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  PA UA  

MLC SVM RF MLC SVM RF MLC SVM RF 

Building 75.96 70.29 86.67 84.73 85.61 84.28 81.75 69.66 87.54 83.72 87.37 85.13 88.95 66.71 89.12 85.38 89.12 86.69 

Tree 92.88 69.13 87.79 85.61 92.11 76.69 90.08 75.00 87.79 82.14 92.37 79.61 88.30 78.33 88.55 85.50 92.37 82.31 

Grass 82.55 59.32 87.74 57.23 87.74 60.78 82.55 62.50 87.74 58.49 88.21 61.51 80.19 66.41 87.74 59.81 89.15 64.07 

Road 74.64 93.21 85.58 95.37 83.25 96.50 76.91 94.44 84.83 96.40 84.15 96.54 75.77 96.45 86.11 96.12 86.04 96.77 

  PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF PCA-MLC PCA-SVM PCA-RF 

Building 81.05 70.64 86.49 84.42 84.21 78.43 86.84 69.04 86.32 84.68 84.91 78.96 87.89 69.20 88.25 84.68 85.61 80.79 

Tree 92.62 67.78 87.28 85.75 88.04 75.55 91.09 74.27 86.77 82.57 89.31 77.48 89.06 75.76 87.53 86.00 88.30 80.70 

Grass 81.13 63.00 87.74 55.52 87.26 53.62 82.55 65.54 87.26 56.40 84.91 57.32 82.55 64.58 87.74 58.31 87.74 60.59 

Road 75.55 96.62 85.06 95.43 79.17 96.68 75.55 96.81 85.13 95.76 81.13 95.98 76.45 97.12 85.96 95.96 84.08 96.12 

  RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF RF-MLC RF-SVM RF-RF 

Building 83.16 73.37 85.79 85.94 85.44 85.74 86.14 70.95 87.89 85.79 86.49 84.56 89.12 64.88 87.37 84.69 87.54 84.72 

Tree 90.08 74.53 88.04 82.58 91.60 76.43 90.84 75.16 89.82 82.09 92.11 78.70 78.12 79.33 87.53 82.10 89.57 80.18 

Grass 84.43 66.30 87.26 59.29 88.68 60.65 85.38 59.34 86.32 60.20 87.74 62.84 83.02 70.12 90.09 59.13 88.68 62.25 

Road 80.60 96.30 86.34 95.33 84.08 96.79 75.47 97.28 85.36 95.69 84.53 96.47 78.72 96.66 84.83 96.07 85.13 96.41 
 

Note: PA: Producer’s Accuracy, UA: User’s Accuracy.
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5.2.4 McNemar Test Comparison 

 

The classification results derived from different classification schemes were compared 

using the McNemar test with a 95% confidence interval in Tables 5-9 to 5-11. Table 5-9 

presents the  values derived from McNemar test on classification using image feature 

group. If value is larger than 3.84, two classifiers are significantly different. Table 5-10 

lists the McNemar test results derived from classification comparison based LiDAR 

feature group. In Table 5-11, the  values of McNemar test on classifications using all 

feature group are stated. 

In general, the McNemar test results showed that all the MLC classifiers provide 

significantly different results against the SVM and RF classifers. The differences of 

classification accuracies between SVM and RF were not statistically significant, since 

most  values from McNemar's test were less than 3.84. Thus, both SVM and RF 

perform equally well. Of the two, it is better to choose the cheaper, quicker, or more 

efficient classification scheme. After comparing classifiers with and without feature 

selection methods, it described that significant differences were occurred more with 

relatively larger training sample size (tr#1000) than smaller one (tr#250), especially for 

SVM and RF. All PCA-RFs showed significant differences against RF-RFs in all feature 

group. Overall, most PCA-MLCs and RF-SVMs were significantly different. While 

almost half PCA-SVMs derived significantly different results compared with RF-SVMs. 

It implied that it is worth choosing one of the feature selection methods with higher 

classification accuracy. 
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Table 5-9 McNemar test results with image feature group 

  tr#250 tr#500 tr#1000 

    Significant?   Significant?   Significant? 

MLC vs. SVM 359.69 Yes 339.61 Yes 220.54 Yes 

MLC vs. RF 279.50 Yes 307.04 Yes 190.04 Yes 

MLC vs. RF-MLC 41.64 Yes 23.12 Yes 9.00 Yes 

MLC vs. PCA-MLC 5.98 Yes 20.78 Yes 10.68 Yes 

RF-MLC vs. PCA-MLC 65.21 Yes 71.48 Yes 22.69 Yes 

SVM vs. RF 13.73 Yes 3.74 No 3.64 No 

SVM vs. RF-SVM 0.18 No 0.33 No 5.92 Yes 

SVM vs. PCA-SVM 9.59 Yes 0.01 No 0.03 No 

RF-SVM vs. PCA-SVM 5.90 Yes 0.49 No 6.47 Yes 

RF vs. RF-RF 0.58 No 0.44 No 8.08 Yes 

RF vs. PCA-RF 0.14 No 0.02 No 0.05 No 

RF-RF vs. PCA-RF 0.08 No 0.51 No 5.23 Yes 

 

 

Table 5-10 McNemar test results with LiDAR feature group 

  

tr#250 tr#500 tr#1000 

  Significant?   Significant?   Significant? 

MLC vs. SVM 44.24 Yes 24.33 Yes 20.38 Yes 

MLC vs. RF 45.43 Yes 26.16 Yes 29.21 Yes 

MLC vs. RF-MLC 20.63 Yes 3.24 No 43.60 Yes 

MLC vs. PCA-MLC 3.94 Yes 0.06 No 0.03 No 

RF-MLC vs. PCA-MLC 11.96 Yes 6.22 Yes 48.97 Yes 

SVM vs. RF 0.06 No 0.03 No 1.77 No 

SVM vs. RF-SVM 0.23 No 0.39 No 5.88 Yes 

SVM vs. PCA-SVM 2.47 No 0.24 No 0.01 No 

RF-SVM vs. PCA-SVM 2.44 No 0.10 No 6.16 Yes 

RF vs. RF-RF 1.04 No 0.03 No 1.92 No 

RF vs. PCA-RF 1.80 No 10.69 Yes 6.05 Yes 

RF-RF vs. PCA-RF 0.10 No 9.42 Yes 0.97 No 
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Table 5-11 McNemar test results with all feature group 

  

tr#250 tr#500 tr#1000 

  Significant?   Significant?   Significant? 

MLC vs. SVM 112.49 Yes 73.68 Yes 86.73 Yes 

MLC vs. RF 105.48 Yes 83.78 Yes 111.22 Yes 

MLC vs. RF-MLC 57.26 Yes 1.20 No 0.17 No 

MLC vs. PCA-MLC 7.73 Yes 1.35 No 0.92 No 

RF-MLC vs. PCA-MLC 30.72 Yes 0.00 No 0.15 No 

SVM vs. RF 2.47 No 0.57 No 2.39 No 

SVM vs. RF-SVM 0.27 No 2.45 No 5.73 Yes 

SVM vs. PCA-SVM 2.00 No 0.97 No 2.20 No 

RF-SVM vs. PCA-SVM 2.32 No 5.38 Yes 2.10 No 

RF vs. RF-RF 1.19 No 0.10 No 14.73 Yes 

RF vs. PCA-RF 31.36 Yes 30.45 Yes 27.98 Yes 

RF-RF vs. PCA-RF 35.84 Yes 27.85 Yes 4.70 Yes 

 

5.3 Visual Assessment 

 

This section is based on visual comparison of information content of the generated land 

cover maps. It is more a qualitative rather than a quantitative analysis in previous section. 

To illustrate the classification results, a series of land cover maps are presented in Figures 

5.1 to 5.9. Figure 5.1 shows the classified land cover images achieved by MLC using 

three feature groups (image, LiDAR, and all) and three training sample sizes (tr#250, 

tr#500, tr#1000). Figure 5.2 illustrates the classification results by SVM. Figure 5.3 

shows the classification results using RF. Figure 5.4 presents the classified image by 

PCA-MLC. Figure 5.5 presents the classification result images by RF-MLC. Figure 5.6 

illustrates the classification result images by PCA-SVM. Figure 5.7 shows the classified 

land cover images by RF-SVM. Figure 5.8 shows the classification result images by 
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PCA-RF. Figure 5.9 shows the classification result images by RF-RF. The original aerial 

imagery has shown below each figure to compare with the classification results. 

Generally speaking, the visual assessment supports the results of the statistical 

accuracy assessment in previous section. Image feature group generated most noisy 

maps. And the maps from LiDAR feature group showed the general structures of the 

study area, however, appear many errors on the edges along different land cover objects. 

This drawback is significantly reduced by the all feature group. Almost all areas can be 

assigned properly to a specific class using all feature group. Borders between different 

classes appear clearer and are easier to identify. However, some errors are still inherent, 

such as confusion between “building” and “tree”, due to the similarity between these 

classes within the feature space. The visible comparison of the classification result maps 

underlines the statistical assessment: the maps produced by SVM based and RF based 

classifications are more homogeneous over each land cover type than MLC based ones. 

Of all, all feature group result in the least noisy maps. 
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Figure 5.1  Classification maps achieved by MLC 
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Figure 5.2 Classification maps achieved by SVM 
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Figure 5.3 Classification maps achieved by RF 
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Figure 5.4 Classification maps achieved by PCA-MLC 
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Figure 5.5 Classification maps achieved by RF-MLC 
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Figure 5.6 Classification maps achieved by PCA-SVM 
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Figure 5.7 Classification maps achieved by RF-SVM 
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Figure 5.8 Classification maps achieved by PCA-RF 
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Figure 5.9 Classification maps achieved by RF-RF 
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5.4 Computation Time 

 

Beside classification accuracy, computing speed is also an important criterion for 

evaluating the performance of classification methods. It took a few seconds for training 

the MLC in all training size levels. In this section, only the computation time of SVM 

based and RF based classifications, including SVM, PCA-SVM, RF-SVM, RF, PCA-RF, 

and RF-RF, is presented and compared in Tables 5-12 to 5-14. Table 5-12 presents the 

total processing time of classifications based on image feature group. Table 5-13 shows 

the computation time of LiDAR feature group classifications. Table 5-14 compares the 

total computation time of all feature group classifications. 

Regarding the computing speed of SVMs, the total results for parameter selection 

and classification processing time are reported. When the training size was doubled, the 

increases of SVM processing time grew exponentially. When the training size was 

increased from tr#250 to tr#1000, the classification time was much longer. Of SVM, 

PCA-SVM, and RF-SVM, RF-SVM took shortest processing time while SVM took 

longest. In contrast to SVM processing time, the RF classifications were much quicker. 

Because instead to transfer feature space to a higher dimensional one, the RF classifier 

try to construct many simple decision boundaries which are parallel to the feature axis 

from several decision trees. On all training data sizes, feature reduction by RF and PCA 

reduced the processing time for the classification. Nevertheless, the reduced degrees are 

lower on PCA than that on RF. 
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Table 5-12 Total processing time based on image feature group 

 

 

Table 5-13 Total processing time based on LiDAR feature group 
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Table 5-14 Total processing time based on all feature group 
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5.5 Chapter Summary 

 

In this chapter, all the urban land cover classification schemes presented in Section 4.5 

have been investigated and compared in terms of accuracies, significance of difference, 

visible assessment, and computation time.  Of all classification schemes, the MLC based 

classifications (MLC, PCA-MLC, and RF-MLC) had lower accuracies than the other 

approaches. These observations were in general agreement with the qualitative visual 

assessment. SVM based and RF based classifiers showed similar accuracies. However, 

RF based classifiers were much quicker than SVM based classifiers. In those applications 

which need a simple and quick algorithm for urban land cover classification, RF or RF-

RF would be the best choice. Considering that the feature space is much smaller than the 

original one, we can overall assert that RF based feature selection is quite robust against 

the feature space dimensionality. When using a smaller number of features, the classifier 

structures can be simplified while presenting an equal classification performance. The 

assessment of the Producer’s and User’s accuracies underlined the general good 

performance of the proposed RF based feature selection and classification methods. 

Furthermore, results from RF based classifications showed a more positive balance 

between Producer’s and User’s accuracies of each class. 
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Chapter 6 

Conclusions and Recommendations 

 

This chapter presents the conclusion of this study, and the recommendations for future 

work. Section 6.1 gives the conclusion and implications of this thesis. Section 6.2 

provides several suggestions for further research. 

 

6.1 Conclusions 

 

This study aims at investigating the performance of RF based feature selection and 

classification for airborne LiDAR and aerial image in urban area. Three different training 

sample sizes were collected to assess the effects of feature selection and classification 

methods. On the one hand, RF was considered as a feature selection method and 

compared with PCA based feature selection method based on the classification accuracy 

of three different methods (MLC, SVM, and RF). On the other hand, RF was considered 

as a classification method, and compared with other classification methods (MLC and 

SVM). The results showed that RF based feature selection and classification methods 

achieved promising results in terms of classification accuracy, ease of use, and 

computation time. Furthermore, the results showed that the integration of LiDAR data 

and aerial image can be applied to characterize complex urban scenes and derive much 

more accurate results than single image or single LiDAR data. 
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In this study, RF was found to be superior to PCA in feature selection for urban 

land cover classification. The main reason is that PCA relies on the whole data statistics, 

unlike RF which only based on the training samples. PCA minimizes the mean square 

error for a given number of features; however it is more desirable to generate reduced 

number of features which are focused on discrimination between classes. By projecting 

the original data into a lower dimension, PCA is suitable to discriminate the classes 

which are having the largest inter-variance (Cheriyadat and Bruce, 2003). When the 

classes contain a small difference in mean value, however, the PCA-derived data with 

reduced dimensionality may not be proper for discriminating them and thus degrading 

overall classification accuracy. The superiority of RF to PCA is that it relies on feature 

importance scores which are derived from decision tree classifiers. Thus, RF has the 

ability to select features focusing on discrimination between classes. 

Of all three classification methods, SVM and RF based methods produced higher 

accuracies than MLC based methods. These observations generally agree with previous 

research where SVM and RF based classifications were found to be more accurate than 

conventional method like MLC, especially on small training size (Mantero et al., 2005; 

Ham et al., 2005). This is expected because, as discussed in Chapter 3, both SVM and RF 

are benefited from their advanced internal principles. Unlike MLC based on prior 

assumption made on data distribution, SVM adopt the structural risk minimization 

method to achieve minimum classification error on unseen data without a prior 

distribution assumption.  RF involves bootstrapped sampling of the original training data 

for each decision tree, which could increase data diversity and reduce impact of outliers 
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due to reuse of training data. Moreover, SVM based and RF based classifications 

produced more balanced Producer’s and User’s accuracies than MLC based ones. When 

increasing the training data size, the accuracies of classifiers were increased in most 

cases. However, SVM based and RF based classifications performed more stably over 

different training sizes than MLC based classification.  

Although SVM and RF based classifiers showed similar performance in terms of 

accuracy, the computation time of RF based classification is much shorter than SVM 

based classification. When the training size was doubled, the increases of SVM based 

computation time grew exponentially. In contrast, RF based classifiers took almost equal 

period over different training sample size. It implies that RF based classifiers are more 

effective and suitable to deal with large datasets than SVM. 

In summary, this research described an encouraging finding for using LiDAR data 

and aerial imagery to map diverse urban land covers located in the City of Niagara Falls 

based on RF methods. The research has evaluated the different feature selection and 

classification methods. Based on the results, RF based feature selection is suited for 

reducing the data dimensionality of complex urban land cover types in the study area 

meanwhile reserving discrimination of different classes. In addition, RF based 

classification is accurate, effective, and user-friendly for urban land cover classification, 

even with small training size. 
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6.2 Recommendations for Future Work 

 

This study also unveils some topics worth of further research efforts. The recommended 

future works are provided below to further improve the performance of RF based feature 

selection and classification methods. 

First, although SVM and RF classifiers showed no significant difference from 

McNemar test, it is still worth trying to build a multiple system classifier by joining them 

together due to their varied basic assumptions (Waske et al., 2009b). Taking advantage of 

SVM and RF classifiers, the MSC has the potential to produce more robust classification 

results.  

Second, all the classification results derived in this study used supervised pixel-

based classifiers. In the future research, OBC could be tested and compared with the 

classification results in this study to further assess the performance of RF based methods.  

Third, this study was applied to a relative flat urban area with no filtering of 

LiDAR data. However, it may be not appropriate for rough ground such as hilled areas. 

In the future research, digital terrain model (DTM) could be first generated from LiDAR 

data, and then used to produce nDSM (normalized DSM) by extracting DTM from DSM. 

In addition, multi-level classification system could be further built to classify different 

land cover type from different height level of nDSM. 

Fourth, besides providing general feature importance ranking for all land cover 

types, RF method is able to produce importance measurements on individual land cover 
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type. Therefore, it has the potential to perform feature selection for particular interested 

land cover type. 

Moreover, the proposed RF based method in this study mainly relies on the training 

data due to its nature of supervised algorithm. Thus, larger number of more accurate 

training samples could increase the performance of RF approaches. Guan et al. (2012) 

proposed a partially supervised method for hierarchal classification of urban land cover 

classification from LiDAR data and aerial imagery. In this study, a LiDAR-driven labeled 

image was used to generate larger training sample size with high-precision. In the future 

research, training data derived by partially supervised method will promote the capability 

of RF based feature selection and classification.  
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Appendix A 

Feature Images 

This appendix provides illustrations for all features used in this study (see Table 0-1). 

 

 

Figure 1 “Red” 
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Figure 2 “Green” 

 

 

Figure 3 “Blue” 
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Figure 4 “Red_Contrast” 

 

 

Figure 5 “Red_Entropy” 
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Figure 6 “Red_Correlation” 

 

 

Figure 7 “Green_Contrast” 
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Figure 8 “Green_Entropy” 

 

 

Figure 9 “Green_Correlation” 
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Figure 10 “Blue_Contrast” 

 

 

Figure 11 “Blue_Entropy” 
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Figure 12 “Blue_Correlation” 

 

 

Figure 13 “DSM” 
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Figure 14 “fr-lr” 

 

 

Figure 15 “HDiff” 
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Figure 16 “HVar” 

 

 

Figure 17 “LiDAR Intensity” 
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Figure 18 “DSM_Contrast” 

 

 

Figure 19 “DSM_Entropy” 
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Figure 20 “DSM_Correlation” 

 

 

Figure 21 “Intensity_Contrast” 
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Figure 22 “Intensity_Entropy” 

 

 

Figure 23 “Intensity_Correlation” 
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Figure 24 “Eigen1” 

 

 

Figure 25 “Eigen 2” 
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Figure 26 “Eigen3” 

 

 

Figure 27 “Anisotropy” 
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Figure 28 “Planarity” 

 

 

Figure 29 “Sphericity” 
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Figure 30 “Linearity” 

 

 

Figure 31 “LiDAR_TVI” 


