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Abstract 

Concern over the occurrence of micropollutants in drinking water and their health effects is 

increasing. Therefore, there is a growing interest in understanding micropollutant removal during 

drinking water treatment. Ozonation and advanced oxidation processes (AOPs) have been found to be 

effective in the degradation of many micropollutants. Ozonation involves reactions with both 

molecular ozone (direct pathway) and hydroxyl radicals (indirect pathway), while hydroxyl radicals 

are the main oxidants in advanced oxidation processes. Reaction rate constants of micropollutants 

with molecular ozone (kO3) and hydroxyl radicals (kOH) are indicators of their reactivity and are 

therefore useful in assessing their removal efficiency in ozonation and AOPs. However, to date, only 

a limited number of rate constants are available for micropollutants, especially emerging 

micropollutants such as endocrine disrupting chemicals (EDCs) and pharmaceuticals. Quantitative 

structure-property relationships (QSPR) are therefore desirable for predicting rate constants of 

numerous untested micropollutants without experimentation. The overall objective of this thesis was 

to develop predictive QSPR models which correlate the rate constants of a wide range of structural 

diverse micropollutants to their structural characteristics.  

To ensure the wide applicability of the QSPR models, the training set compound selection is 

critical and a group of heterogeneous compounds which are structurally representative of many others 

is preferred. A systematic compound selection approach which involves principal component analysis 

(PCA) and D-optimal onion design was applied for the first time in water treatment research. As a 

result, 22 micropollutants with diverse structures were selected as representatives from a large pool of 

micropollutants of interest (182 compounds). In addition, 12 molecular descriptors were identified 

which link relevant structural features to the removal mechanisms of oxidation processes.  

The kO3 and kOH values of the 22 selected micropollutants were then determined experimentally in 

bench-scale reactors at neutral pH using high performance liquid chromatography equipped with a 

photodiode array detector (HPLC-PDA). Three methods, competition kinetics, compound monitoring, 

and ozone monitoring were used for kO3 measurement, and competition kinetics was used for kOH 

measurement. As expected, kO3 values span a wide range from 10
-2

 to 10
7
 M

-1
 s

-1
 because of the 

selective nature of molecular ozone. The general trends of micropollutant reactivity with ozone can be 

explained by the micropollutant structures and the electrophilic nature of ozone reactions. The kOH 

values range from 10
8
 to 10

10
 M

-1
 s

-1
 because hydroxyl radicals are relatively non-selective in their 
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reactions. For the majority of these micropollutants kO3 and kOH values were not reported prior to this 

study. Thus they provide valuable information for modeling and designing of ozonation and AOP 

treatment. 

QSPR models for kO3 and kOH prediction were then developed with special attention to model 

validation, applicability domain and mechanistic interpretation. With the experimentally determined 

rate constants, QSPR models were developed for predicting kO3 values using the selected 22 

micropollutants as the training set and the 12 identified descriptors as model variables. As a result, 

two QSPR models were developed using piecewise linear regression (PLR) both showing an excellent 

goodness-of-fit. Model 1 was governed by average molecular weight and number of phenolic 

functional groups, and Model 2 was dominated by two principal components extracted from the 

descriptor matrix. The models were then validated using an external validation set collected from the 

literature, showing good predictive power of both models. Prior to applying these models to unknown 

micropollutants they need to be classified as high-reactive (logkO3 > 2 M
-1 

s
-1

) or low-reactive (logkO3 

 2 M
-1 

s
-1

), so that the appropriate submodel of the PLR can be applied. A classification function 

using linear discriminant analysis (LDA) was therefore developed which worked very well for both 

training and validation sets. With the help of additional compounds collected from the literature, and 

DRAGON molecular descriptors, a QSPR model for kOH prediction in the aqueous phase was 

developed using multiple linear regression. As a result, 7 DRAGON descriptors were found to be 

significant in modeling kOH, which related kOH of micropollutants to their electronegativity, 

polarizability, presence of double bonds and H-bond acceptors. The model fitted the training set very 

well and showed great predictive power as assessed by the external validation set. In addition, the 

model is applicable to a wide range of micropollutants. The model’s applicability domain was defined 

using a leverage approach.  

The main contributions of this thesis lie in the successful development of QSPR models for kO3 

and kOH value prediction which, for the first time, can be used for a wide range of structurally diverse 

micropollutants. In addition, all QSPR models were externally validated to verify their predictive 

power, and the applicability domains were defined so that the applicability of the models to new 

compounds can be determined.  

Finally, the applicability of the model to natural water was explored by combining the QSPR 

models with the established Rct concept which predicts micropollutant removals during ozone 

treatment of natural water but requires kinetic data as input. Results show that the kinetic data from 
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the QSPR model predictions worked well in the Rct model providing reliable estimations for most of 

the selected micropollutants. This approach can therefore be used in water treatment for initial 

assessment and estimation of ozonation efficiency.  
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Chapter 1 

Introduction 

1.1 Micropollutants and Water Treatment 

There has been growing concern about the occurrence of micropollutants in the aquatic environment 

in recent years. The term micropollutants (or microcontaminants) is used since the concentrations of 

these contaminants in the aquatic environment are in most cases in the range of ng/L up to g/L. 

Pharmaceuticals and personal care products (PPCPs), endocrine disrupting chemicals (EDCs) and 

pesticides are groups of micropollutants which have been detected in surface water (Heberer 2002; 

Kolpin et al., 2002) and even in finished drinking water (Snyder et al., 2007; Benotti et al., 2009; 

Huerta-Fontela et al., 2011; Loos et al., 2007).  

The occurrence of micropollutants such as PPCPs and EDCs can pose a serious problem to the 

safety of drinking water (Fent et al., 2006). For example, exposures to EDCs may disturb hormonal 

regulation and the normal endocrine system, and affect hormonal balance and reproduction in humans 

and wildlife (Colborn et al., 1993). For most of the PPCPs, their potential impact on the environment 

and public health is highly unknown (Kümmerer 2001; Stackelberg et al., 2004). The primary 

concern of PPCPs is the potential chronic health effects associated with long term exposure in trace 

concentration (Snyder 2008). Furthermore, the large number of micropollutants that are present in 

surface water as a complex mixture can produce combined effects (Cleuvers 2004; Thorpe et al., 

2003). Based on the precautionary principle, these micropollutants should be removed or at least 

minimized in drinking water. 

Therefore, the efficiency of drinking water treatment processes for the removal of micropollutants 

from drinking water has been of concern to water utilities and environmental agencies. These 

micropollutants create unique challenges to water treatment because of the number of compounds 

detected and the diversity and complexity of their physicochemical properties. Not surprisingly, a 

wide range of such compounds are not readily removed by conventional water treatment processes 

such as coagulation/flocculation/sedimentation, dual-media gravity filtration, and chlorination 

(Westerhoff et al., 2005; Stackelberg et al., 2004, Bundy et al., 2007). However, recent studies have 

shown that ozonation and advanced oxidation processes (AOPs), adsorption on granular and 

powdered activated carbon, reverse osmosis and nanofiltration were effective technologies for 

removing micropollutants from drinking water (von Gunten 2003; Ternes et al., 2002, 2003; Snyder 

et al., 2007).  
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Due to their high oxidation potential, ozonation and AOPs have been widely used in water and 

wastewater treatment for the oxidation of a wide range of organic compounds. Ozone reacts with 

organic contaminants through two pathways, direct reaction with molecular ozone, and indirect 

reaction with hydroxyl radicals produced by ozone decomposition. Molecular ozone reactions are 

selective to organic molecules having double bonds, activated aromatic systems, and deprotonated 

amines (von Gunten 2003). In contrast, the hydroxyl radical is a relatively non-selective, highly 

reactive oxidant. For ozone-resisting compounds, AOPs can be applied for their degradation. AOPs 

combine chemical agents and auxiliary energy sources to accelerate the generation of hydroxyl 

radicals (Ikehata et al., 2006). Examples of AOPs include O3/H2O2, O3/UV, UV/H2O2, Fenton 

(Fe
2+

/H2O2), and γ-radiolysis.  

To investigate the removal efficiency of various organic micropollutants during ozonation and 

AOPs in natural waters, it is necessary to obtain kinetic data (i.e., the reaction rate constants of 

micropollutants with ozone and hydroxyl radicals). Rate constants are needed to predict the extent to 

which contaminants are eliminated from water. Kinetic data are providing therefore important 

information for designing and optimizing treatment processes. If rate constants are low unsatisfactory 

removals may be achieved and additional treatment steps or a different treatment technology may be 

required. In addition, some models have been developed to describe the removal efficiency of 

contaminants in natural water matrices incorporating rate constants, e.g., Rct model for ozonation 

(Elovitz and von Gunten 1999) and ROH,UV model for UV/H2O2 AOP (Rosenfeldt and Linden 2007). 

Although kinetic data are available for a large number of chemicals for their reactions with ozone and 

hydroxyl radicals (Hoigné and Bader 1983a; Buxton et al., 1988), due to the complexity of the 

analytical methods and the high cost of determining rate constants experimentally, there is still a data 

gap especially for emerging micropollutants. 

1.2 QSPR Approach 

It is impractical to determine the rate constants of all the micropollutants of interest with ozone and 

hydroxyl radicals. Therefore, it is highly desirable to develop a reliable model to predict the rate 

constants of numerous micropollutants. Quantitative Structure-Property Relationships (QSPR) has 

been widely used as a modeling tool to develop relationships between the properties (e.g., pKa) of 

micropollutants and their structural characteristics. Therefore the properties of unstudied 

contaminants can be predicted without experimentation (Dunn et al., 1989; Eriksson and Johansson 

1996; Eriksson et al., 2003). The QSPR approach has been widely applied in pharmaceutical and 
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environmental chemistry, and in environmental toxicology. Most recently, an increasing number of 

papers utilizing QSPR applications in water treatment have been published (Metivier-Pignon et al., 

2007; Yangali-Quintanilla et al., 2010). QSPR models can relate the compound physico-chemical 

characteristics to their properties (e.g. removal, adsorption, transport, rejection, etc.) in water 

treatment processes, providing improved knowledge on different removal mechanisms and 

interactions between organic compounds and physical/chemical treatment processes. 

To date, only a small number of studies have been published focusing on predicting the reaction 

rate constants of micropollutants with ozone (Gurol and Nekoulnalnl 1984; Benitez et al., 2007; Hu et 

al., 2000) and hydroxyl radicals (Kusic et al., 2009). However, the existing models are based on 

groups of structural similar compounds, and only applicable to a small range of chemicals. In addition, 

the existing models were built without proper external validation; therefore, the predictive power of 

the models is in question. A reliable QSPR model which can be applied to various, structural diverse 

chemicals and predict the rate constants with reasonable error is currently not available.  

1.3 Objectives and Overview of the Thesis 

The overall objective of this thesis is therefore to develop reliable QSPR models which correlate 

ozone and hydroxyl radical reaction rate constants of a wide range of structural diverse 

micropollutants to their structural characteristics. These models are then used to predict the rate 

constants of untested micropollutants without experimentation. Furthermore, the goal is to predict the 

percent removal of micropollutants in natural waters by ozonation and AOPs by combining the 

predicted rate constants with the existing Rct and ROH,UV models.   

Several key elements are essential in QSPR model development which will determine the 

predictive power of the model. Key elements are the selection of training set compounds, the 

selection of the molecular descriptors, statistical methods for model development, and model 

validation (Eriksson et al., 2003). To reach the overall goal, this research was divided into several 

phases with the following sub-objectives: 

 Phase one: Selection of structural representative compounds. The objective of this phase is to 

select a small number of representative compounds from a large pool of structurally diverse 

micropollutants so that they will cover the entire chemical collection systematically in a well-

balanced manner. The selected compounds will serve as a training set for QSPR model 

development.  
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 Phase two: Determination of rate constants. The objective is to determine the ozone and 

hydroxyl radical rate constants of the selected micropollutants (from phase one) in bench-

scale experiments.  

 Phase three: QSPR model development and validation. The objective is to establish QSPR 

models for rate constant prediction by using the previously experimentally determined rate 

constants as the training set (from phase two), and to validate the models using existing data 

collected from the literature.  

 Phase four: Model application in natural water. The objective is to explore the application of 

the developed QSPR models (from phase three) by using the predicted rate constants together 

with Rct and/or ROH,UV models to predict micropollutant removals in natural water.   

1.4 Thesis Structure 

The thesis consists of eight Chapters that were written in journal article format. Four out of five key 

Chapters (Chapters 3–6) are based on papers that have been published or are ready for submission to 

peer-reviewed journals. Chapter 2 will be edited further and will be submitted after the completion of 

the thesis. The structure of the thesis is shown in Figure 1.1. 
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Figure 1.1 Thesis structure 

 

  

Chapter 1: Introduce the research problem and the motivation for the research. 

State the objectives of thesis. Provide an overview of the thesis.  

Chapter 2: Review the concept of QSPR modeling and methods for model 

development. Review existing studies applying QSPR in ozonation and AOPs. 

Chapter 3: Define a compound pool with a large number of micropollutants of 

interest. Apply a statistical approach to select a small group of structural 

representative compounds, setting the stage for the following kinetics studies. 

Chapter 4: Conduct experimental studies to determine the kinetic data of the 

selected compounds (from Chapter 3) with ozone and UV/H2O2 AOP. 

Chapter 5: Develop QSPR models for 

predicting the rate constants of 

micropollutants in the reaction with 

ozone. 

Chapter 6: Develop QSPR models for 

predicting the rate constants of 

micropollutants in the reaction with 

hydroxyl radicals. 

Chapter 7: Apply the developed QSPR models to predict the percentage removal 

of micropollutants in natural waters by combining them with existing models. 

Chapter 8: Summarize results and draw conclusions of the thesis. List the 

contributions to knowledge, and recommendations for future research. 
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Chapter 2 

Quantitative Structure-Property Relationships (QSPR) Applications 

in Modeling the Properties of Micropollutants in Ozonation and 

Advanced Oxidation Processes (AOPs): A Review 

This Chapter is based on a review paper which will be submitted to a journal for publication.  

This Chapter is a literature review of QSPR applications in water treatment studies, specifically to 

predict the rate constant of micropollutants in ozonation and advanced oxidation processes. This 

Chapter mainly consists of two parts: (1) the key elements of QSPR model development are reviewed, 

including selection of training set, selection of molecular descriptors, statistical methods for modeling, 

model evaluation, model validation, and applicability domain; (2) the QSPR studies in modeling the 

rate constant of micropollutants in ozonation and advanced oxidation processes are reviewed. In 

addition, knowledge gaps and research needs are identified.  

 

Outline: QSPR models have shown great predictive power for modeling environmental processes, 

drug design, and predicting the physico-chemical and biological properties of compounds. However, 

applications of the QSPR approach in water treatment are rare but increasing. QSPR can be used as a 

predictive tool to assess the removal of numerous contaminants during water treatment processes, 

especially those emerging contaminants where the experimental data are currently unavailable. In this 

review, first of all, the general scheme of a QSPR model is introduced and the main components of 

QSPR modeling are identified, namely the selection of training set, selection of molecular descriptors, 

statistical methods for modeling, model evaluation and validation, and applicability domain. 

Following, the commonly used statistical methods of each main component are reviewed. The 

existing QSPR studies in modeling the rate constant of micropollutants in ozonation and advanced 

oxidation processes are then reviewed. Finally, discussions on knowledge gaps and research needs are 

presented.    

 

Keywords: EDCs, PPCPs, ozone, hydroxyl radical, rate constant  

 



 

7 

2.1 Introduction 

Concerns about the occurrence of organic micropollutants in source waters for drinking water supply 

are increasing (Fent et al., 2006; Heberer 2002). Diverse groups of these micropollutants including 

pharmaceuticals and personal care products (PPCPs) (e.g., antibiotics, anticonvulsants, contrast media 

agents, and sunscreen agents), endocrine disrupting chemicals (EDCs) (e.g. natural and synthetic 

estrogens), insecticides, herbicide, and many others have been detected at very low concentrations 

(ng/L – µg/L). These micropollutants may enter the aquatic environment via agricultural and urban 

runoff, landfill leachates, municipal sewage, industrial effluent, waste disposal, etc., and will 

eventually reach drinking water supplies. Hence, some have also been detected in finished drinking 

water (Benotti et al., 2009; Snyder 2008; Huerta-Fontela et al., 2011). Thus, there is a growing 

interest in understanding the removal efficiency of micropollutants during drinking water treatment 

processes.  

Recent studies have shown that advanced technologies such as ozonation, advanced oxidation 

processes (AOPs), adsorption on activated carbon, reverse osmosis, and nanofiltration were effective 

in removing most micropollutants from drinking water (Westerhoff et al., 2005; Snyder et al., 2007). 

To assess the removal efficiency of micropollutants during these technologies, it is convenient and 

cost-effective to develop quantitative structure-property relationships (QSPR) models and apply them 

to micropollutants for which experimental studies have not been performed (Eriksson et al., 2003; 

Eriksson and Johansson 1996). QSPRs have been widely used in the pharmaceutical industry for drug 

design, toxicity prediction, and regulatory decisions (e.g., US EPA uses QSPR predicted values for 

some regulatory purposes (Cronin et al., 2003)). QSPR can also be used as a modeling tool to 

correlate the physico-chemical characteristics of micropollutants and their properties (e.g. reaction 

rate constants, removal, adsorption, rejection, etc.) in water treatment processes, thus providing 

improved knowledge on removal mechanisms for organic compounds in treatment processes.  

QSPR applications in drinking water treatment studies are increasing. A number of studies have 

been published focusing on predicting the reaction rate constants of organic compounds in oxidation 

processes such as ozonation and advanced oxidation processes (Jiang et al., 2010; Kusic et al., 2009), 

the equilibrium adsorption constants on activated carbon (Metivier-Pignon et al., 2007), and the 

rejection during membrane filtration (Kusic et al., 2009; Metivier-Pignon et al., 2007; Yangali-

Quintanilla et al., 2010). However, a comprehensive review on QSPR applications in water treatment 
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is not available. The scope of the following review is limited to oxidation processes in water 

treatment such as ozonation and AOPs as this is relevant to this thesis.  

Oxidation processes such as ozonation and AOPs are effective technologies in degrading 

micropollutants from drinking water (von Gunten 2003; Ternes et al., 2002; 2003; Westerhoff et al., 

2005; Snyder et al., 2007). However, during ozonation and AOPs micropollutants are not completely 

mineralized. Instead, micropollutants are transformed into a multitude of degradation by-products, 

and the toxicity of most by-products is unknown. During ozonation, oxidation occurs via molecular 

ozone and hydroxyl radicals, which are produced through ozone decomposition in natural waters. 

Processes which involve the formation of highly reactive hydroxyl radicals are generally referred to 

as AOPs (e.g., O3/H2O2, UV/H2O2). Oxidation efficiencies of micropollutants are characterized by 

chemical reaction kinetics where the reactivity of compounds during ozonation and AOPs can be 

measured by their reaction rate constants with molecular ozone and with hydroxyl radicals. Generally, 

rate constants are experimentally determined in pure water under laboratory conditions. In natural 

waters, it is impossible to assess the removal efficiency using rate constants alone. Models such as Rct 

model for ozone (Elovitz and von Gunten 1999) and ROH,UV model for UV/H2O2 (Rosenfeldt and 

Linden 2007) have been developed to describe the removal efficiency of contaminants in natural 

waters incorporating standard reaction rate constants. These reaction rate constants are available for 

many organic contaminants (von Gunten 2003; Buxton et al., 1988; NIST 2002) but they are still 

limited for emerging micropollutants. Therefore, QSPR models have been developed to correlate the 

compound structure to its rate constant, and then used to predict the reaction rate constants of new 

compounds (e.g., Kusic et al., 2009). 

The objective of this review is to provide an in-depth overview of QSPR applications for 

predicting rate constants of micropollutants during ozonation and AOPs. Elements of QSPR model 

development are presented first, and followed by a critical review of QSPR applications in ozonation 

and AOPs. Discussions on research needs and suggestions for QSPR applications in water treatment 

are also provided. 

2.2 QSPR Model Development 

2.2.1 General Approach of QSPR 

QSPR models are mathematical relationships between the physico-chemical characteristics of 

compounds and their properties. The fundamental assumption of QSPR is that properties of a 



 

9 

compound can be related to its structural and physico-chemical features. A general QSPR modeling 

scheme is shown in Figure 2.1, QSPR model development starts with a compound pool which 

includes all the compounds of interest. A group of structural similar compounds (e.g., aromatic 

compounds) is usually defined as the compound pool. However, the applicability of those models is 

therefore limited to compounds with similar characteristics. It is still a challenge to include a large 

number of structural diverse compounds in a single QSPR model, as different mechanisms can be 

dominant for different sub-groups of compounds in the compound pool. Next, the compound pool is 

split into the training set and validation set. The molecular descriptors are then selected and calculated 

by software or searched in databases. Molecular descriptors with clear physico-chemical meanings 

which may be able to explain the underlying mechanisms of the property to be predicted are 

preferred. The properties to be predicted are usually determined by laboratory analysis for the training 

and validation set compounds. The QSPR models can then be developed using various modeling 

techniques which find mathematical relationships between the molecular descriptors and the 

properties to be predicted. Once validated, the model can be used for prediction of untested 

compounds. Without the proper validation, the predictive power of the developed QSPR model 

remains unknown. In addition, the applicability domain of the QSPR model should be defined. 

Predictions for compounds outside of the domain cannot be used without great caution.  
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Figure 2.1 The general processes of QSPR model development 

Several key elements are essential in the process of QSPR model development, including 

selection of training set, selection of molecular descriptors, statistical methods for model 

development, model validation, and determination of the applicability domain. The quality and 

predictive power of QSPR models depend on the proper applications of all the elements. As shown in 

Table 2.1, various statistical methods have been used for each element of QSPR modeling, and these 

methods are discussed briefly in the following sections. 

 

Table 2.1 Statistical methods reviewed for each element of QSPR modeling 

QSPR Modeling 

Element 

Methods Reviewed 

Training set selection Random selection, sorted property sampling, k-means clustering, statistical 

molecular design 

Descriptor selection Subjective selection based on mechanistic knowledge, statistical criteria of 

correlations, statistical test and diagnostics, forward/backward/stepwise 

algorithm, variable importance in the projection, genetic algorithm. 

Modeling techniques Multiple linear regression, partial least square regression, principal 

Compound pool 

Training set 

Molecular descriptors 

(calculated or from data bases) 

Property to be predicted 

(experimental determined) 

Validation set 

QSPR model using modeling 

methods e.g., (MLR, PLS) 

Model validation 

Prediction in defined 

applicability domain 
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component regression, artificial neural networks 

Model validation internal cross-validation, external validation 

Applicability domain Range based method, distance based method  

 

2.2.2 Selection of Training Set 

The training set is the compound set which is used to develop QSPR models, and the validation set 

(i.e., test set) is the external compound set used to test the predictive power of the developed models. 

QSPR models are built on the common features of the training set compounds, and the models use 

these features to predict the property of unknown, new compounds. Therefore, a new compound 

which has very little in common with the training set compounds will unlikely be predicted very well 

(Guha and Jurs 2005). The representativeness of the training set has a direct impact on the predictive 

accuracy and confidence for unknown compounds. The selection of a suitable training set is therefore 

an important step in QSPR analysis since the resulting model depends on the data quality of the 

training set and the applicability domain of the model is defined by the size and the diversity of the 

training set (Leonard and Roy 2006). QSPR model will likely fail to predict chemicals which are 

outside their applicability domain even if the model fits the training set perfectly.  

There are several possible approaches for the selection of training set (and validation set). One 

approach is random selection where the available compound pool is randomly divided into training 

set and validation set (Oberg 2005). Another approach is sorted property sampling which is based on 

ranking of property to be predicted. In this method compounds are sorted according to the magnitude 

of the property to be predicted, and for example every other compound is selected for the training set, 

and the remaining compounds will be used as the validation set (Leonard and Roy 2006). These 

methods are simple and straight forward. The weakness of these methods is that they cannot 

guarantee that the selected training and validation set compounds represent the entire descriptor space 

of the original dataset (Golbraikh and Tropsha 2002a).  

As an alternative, certain statistical techniques can be applied for compound selection to ensure 

the representativeness of the training set compounds. Cluster analysis is a group of statistical methods 

which assign compounds to clusters so that similar compounds are grouped together. Among many 

clustering methods, the k-means clustering method is commonly used in QSPR studies for training set 

selection (Burden et al., 2000). This method classifies all compounds into k sub-groups (clusters) so 

to minimize the within-cluster sum of squares. Compounds within each cluster are then split into 
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training set and validation set. In this method, all chemical classes will be well represented in training 

and validation set. K-means clustering shows better result than random selection in many ways and 

has been recommended as a reliable method (Leonard and Roy 2006). However, it can be difficult to 

determine the number of clusters and an inappropriate choice of k may yield poor results. In addition, 

the performance of the method depends on the initial partition, and it is difficult to compare the 

quality of clusters produced by different initial partitions.  

Statistical molecular design is one of the most commonly used method for training set selection. 

This approach differs from the above methods that only a small number of representative compounds 

will be selected from the pool. This approach is particular useful when the data of property to be 

predicted are not available yet, which is often the case when dealing with emerging contaminants.  In 

this method representative training set compounds are selected by experimental design methods such 

as fractional factorial design (Wold et al., 2004), D-optimal design (De Aguiar et al., 1995), D-

optimal onion design (Olsson et al., 2004). The initial data matrix containing all compounds in the 

pool and their molecular descriptors are first analyzed by principal component analysis (PCA). As a 

result, a few informative latent variables, principal components (PCs) are derived to explain the main 

variation of the original data matrix. The obtained PCs are limited in number and mathematically 

independent, therefore ideal for experimental design. Representative training set compounds are then 

selected by applying experimental design methods (e.g., Knekta et al., 2004; Papa et al., 2007). This 

method results in a small number of informative and representative compounds, in which all major 

structural and chemical characteristics are well represented in a well-balanced manner (Eriksson et 

al., 2003; Eriksson et al., 2006).  

 

2.2.3 Selection of Molecular Descriptors 

Molecular descriptors are numerical values that characterize the properties of molecules such as 

physico-chemical properties, and structural features. Molecular descriptors can be determined 

experimentally or they can be calculated by software. Experimentally determined physico-chemical 

descriptors have historically been widely used; however, their availability is restricted because their 

measurement is time-consuming and expensive, and they are usually not available for many emerging 

contaminants. Therefore, the application of calculated descriptors is readily increasing with the help 

of modern computational techniques and chemistry software packages. Studies on the comparison 

between physico-chemical and calculated molecular descriptors have shown that they contain similar 
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information and calculated descriptors are suitable to use for developing models (e.g. Andersson et 

al., 2000). A good collection and review of molecular descriptors can be found in Todeschini and 

Consonni (2000). Nowadays, computer programs can calculate over a thousand descriptors which 

cover a wide variety of descriptor classes. Several most commonly used software packages are 

DRAGON (Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, 

Italy), HyperChem (Hypercube, Inc.), ChemOffice (ChembridgeSoft), etc.   

The selection of descriptor variables from the many available molecular descriptors is a crucial 

step in QSPR model development (Andersen and Bro 2010). It is always desirable to build an 

adequate model with as few variables as possible, and those descriptors with clear physico-chemical 

meanings are preferred. Excluding redundant, irrelevant variables may not only improve the statistical 

properties of the model especially its predictive ability, but also make the model interpretation easier. 

In addition, including highly correlated descriptors violates the underlying assumptions of some 

modeling techniques (e.g. multiple linear regression). In such a case, the model will be ill-conditioned 

and the calculated regression coefficients will be unstable and uninterpretable, for example, 

coefficients with the wrong sign may be found or the coefficients are much larger than expected 

(Eriksson et al., 2003).  

Researchers can either start with as many descriptors as possible or they can start with a smaller 

set of preselected descriptors considered to be important based on available mechanistic knowledge. 

Either way, when developing a model a small set of relevant descriptors will be selected by statistical 

techniques from the initial descriptor sets while unrelevant descriptors will be eliminated. Prior to the 

variable selection, constant descriptors should be removed.  

When an initial, statistically valid model is developed, some model parameters or diagnostic test 

can be applied to test the significance of the regression coefficients or loadings of the descriptors. It is 

possible to improve the model by removing descriptors with relatively low loadings or low standard 

regression coefficients. For example, in multiple linear regression, non-significant variables can be 

identified by using the student t-test or the associated p-value. Some modeling techniques are 

combined with a variable selection feature, such as forward, backward or stepwise algorithms. For 

example in forward multiple linear regression, the modeling process starts without any descriptors in 

the model, then the descriptors are tested one by one, and individual variables are added to the model 

if they are statistically significant. The procedure terminates when no variable meets the inclusion 

criterion, or when the available improvement falls below some critical value (Andre et al., 2003).  
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Variable importance in the projection (VIP) is a measure of how much a variable contributes to 

both the dependent variable (i.e., property to be predicted) and independent variables (i.e., descriptors) 

and can be used for descriptor selection in projection method such as principal component analysis 

(PCA) and partial least squares regression (PLS) (Wold et al., 2001).  
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                                                   (2.1) 

Where Wjf is the weight value for descriptor j in component (latent variable) f, SSYf is the sum of 

squares of explained variance for the component f and J the number of descriptors, SSYtotal is the total 

sum of squares of the dependent variables, and F is the total number of components. A variable with a 

VIP value smaller than one indicates a non-important variable. However, it is not as simple as 

removing all variables below one since useful information may be excluded. It is therefore 

recommended to remove a few variables with the lowest VIP values and check if the model is 

improved or not. This approach is repeated until no further improvements can be achieved (Andre et 

al., 2003).     

A genetic algorithm (GA) is an optimization algorithm which utilizes the concepts of the 

Darwinian evolution of species in the biological world (Leardi et al., 1992). One application of GA in 

QSPR modeling is to find optimal subsets of descriptors that can be used to build predictive models. 

GA is a very effective tool with many advantages compared to other variable selection methods (Xu 

and Zhang 2001). The general approach of GA is to create different subsets of descriptors and 

evaluate their performance. The first step of the GA is to initialize the first generation of descriptor 

subsets and corresponding models. A number of descriptor subsets of similar size are randomly 

generated and each descriptor subset is then used to build a model (e.g. by multiple linear regression). 

The models are then ranked based on the fitness of individual compounds. Best models are selected as 

“parents” for reproduction of the next generation. A next generation is formed by different kinds of 

combination of randomly selected subset descriptors such as reproduction, mutation and crossover. 

The least-fit models are replaced by newly generated models. Therefore the average fitness of the 

next generation models has increased because only the best from the previous generation are selected 

for reproduction. The whole process is repeated until no more improvement is found or a fixed 

number of generations (e.g., 1000) are reached. At the end, the top ranked descriptor subsets can be 

used as the optimal subset of descriptors. The combination of GA and multiple linear regression 
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analysis has been used for prediction of rate constants for hydroxyl radical degradation of aromatic 

pollutants in a water matrix (Kusic et al., 2009). 

 

2.2.4 Statistical Methods for Model Development 

The most common statistical methods used to develop QSPR models are linear methods such as 

multiple linear regression (MLR), principal component regression (PCR), and partial least squares 

regression (PLS). MLR is usually preferred because it produces apparently easily interpretable 

models. However, MLR cannot analyze data with correlated descriptors, and is unable to handle 

multiple responses in the same model (Box and Draper 1987). In contrast, multivariate techniques 

such as partial least squares regression (PLS) can handle collinear variables and can model several 

responses simultaneously (Eriksson and Johansson 1996). Artificial neural networks (ANN) method 

is one of the most used non-linear modeling tools. It can model complex relationships between inputs 

and outputs or it finds patterns in data sets (Yangali-Quintanilla et al., 2009).  

2.2.4.1 Multiple Linear Regression (MLR) 

MLR is among the most widely used modeling methods in QSPR studies. MLR models a 

dependent variable (property to be predicted), y, as a linear combination of p independent variables 

(molecular descriptors) by determining the regression coefficients to each molecular descriptor. The 

coefficients are chosen to minimize the squares of the errors between the predicted and the observed 

property. 

exbxbxbby PP  ...2211
                                         (2.2) 

Where b1, b2, … bp are regression coefficients and b is the constant, x1, x2, … xp are molecular 

descriptors, y is the property to be predicted, and e represents the residuals. The equation can be 

written in the matrix form: 

EXBY                                                                 (2.3) 

Where Y is the matrix of property, X is the matrix of molecular descriptors, B is the matrix of 

regression coefficients, and E represents the matrix of residuals.  

MLR assumes that the relationship between variables is linear and that the predictor variables are 

mathematically independent (orthogonal). In practice, the linear assumption can virtually never be 
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confirmed. Researches may have to consider either transforming the variables or applying non-linear 

models if necessary. If the data set shows multicollinearity among the molecular descriptors, the 

model will be ill-conditioned and the calculated regression coefficients will be unstable and 

uninterpretable (Eriksson et al., 2003). Tolerance or variance inflation factor (VIF) can be used to 

detect the presence of multicollinearity in a model (Roy and Roy 2009).  

21 jRtolerance                                                                (2.4) 

21

11

jRtolerance
VIF


                                                    (2.5) 

Where   
  is the coefficient of determination of a regression of descriptor j on all the other 

descriptors. If the tolerance value is less than a preset cut-off value (e.g., 0.1) or the VIF is higher than 

a cut-off value (e.g., 10), a multicollinearity problem exist in the descriptor set. MLR is satisfactory 

applied in QSPR studies if the main problem of the multicollinearity among variables is solved. 

Another limitation is that MLR requires a higher number of input data than the number of predictor 

variables, which refers to a large compounds-to-descriptors ratio in QSPR modeling. It has been 

recommended that the ratio should be at least 5 (Topliss and Edwards 1979). 

2.2.4.2 Principle Component Regression (PCR) 

Another regression-based method is PCR. In PCR, a principal component analysis (PCA) is first 

conducted to evaluate the original data matrix (descriptors) and a few principal components (PCs) are 

extracted. The PCs are orthogonal (mathematical independent) and able to explain most of the main 

variation in the original data matrix. Eriksson et al., (2006) identified PCA as the most suitable 

technique for variables reduction and generation of orthogonal latent variables. A reduced set of 

variables such as the generated PCs is much easier to analyze and interpret. As a common procedure 

to avoid the influence of the unit of variables, data for PCA are usually pre-processed by means of 

mean-centering and scaling to unit variance. As a result, the mean values of all the variables for each 

observation are equal to zero (Eriksson et al., 2006). PCA then decomposes the X-matrix (descriptors) 

into the product of two matrices, the score matrix T and the loading matrix P’, plus a residuals matrix 

E. The product of score matrix and loading matrix TP’ is used to model the initial data matrix X 

(Wold et al., 1987). The number of principal components (i.e., the number of columns in score matrix 

and the number of rows in loading matrix), is determined by cross-validation.  
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ETPX  '                                                                  (2.6) 

In the next step, the first few significant principal components are used as predictor variables in a 

MLR with the dependent variables. Because the principal components are mathematically 

independent, multicollinearity among original variables is no longer a problem as it is in MLR.   

bPCbPCbPCby qq  ...2211                                         (2.7) 

Where y is the property to be predicted, b1, b2, … bq are regression coefficients and b is the 

constant, PC1, PC2, … PCq are principal components extracted by PCA, and q is the number of 

significant principal component. The regression model can be found by using the usual MLR 

algorithm, and same statistical parameters as used in MLR can be applied to assess the quality of 

models. 

2.2.4.3 Partial Least Squares Regression (PLS) 

PLS is a recently developed regression method, which can be viewed as a generalization of 

multiple linear regression (Eriksson et al., 2006). PLS is a projection method which finds new 

variables (latent variables) which are linear combinations of the original variables and orthogonal, 

and also well correlated to the dependent variable(s). The dependent variable(s) can be a single 

property (e.g. rate constant) or multiple responses (e.g. toxicity determined in several testing 

systems). PLS is similar to PCA, but PCA works with an X matrix while PLS works with two 

matrices, X and Y, respectively. In other words, the difference between PCR and PLS is that PLS 

finds the latent variables and the regression coefficients at the same time. PLS projects the matrix X 

into a lower-dimensional hyper-plane, and several latent variables are introduced to describe the 

positions of the projected data. Latent variables are used to correlate the values of Y and X. If the 

response matrix Y contains multiple responses, Y will be summarized by another projected lower-

dimensional hyper-plane. The number of significant dimensions in PLS is determined using cross-

validation. Models will be set up between latent variables of X and Y.  

ETBY                                                                 (2.8) 

Where T is the matrix containing the scores of the extracted latent variables, (T = XF, where F is 

the matrix of the loadings of the original variables in the principal component scores, and X is the 

matrix of mean-centered molecular descriptors) B is the matrix of the PLS regression coefficients, and 
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E is the unexplained variance in Y. The PLS regression model can be presented in terms of the 

original molecular descriptors. 

EXQY                                                                 (2.9) 

Where Q = FB is the matrix of regression coefficient for original descriptors. In addition, the 

original mean-centered descriptors can also be expressed by the latent variables. 

KTPX                                                                (2.10) 

Where P is the loading matrix, and K is the unexplained part of X.  A detailed tutorial of PLS 

method with some good examples can be found in the literature (Wold et al., 2001). Unlike MLR, 

PLS works well when data are strongly correlated since the extracted latent variables are orthogonal 

and limited in number. 

 

2.2.4.4 Artificial Neural Networks (ANN) 

As one of the most commonly used non-linear method for QSPR modeling, ANN is a prediction 

method inspired by the biological nervous systems. ANN contains at least three layers: input, hidden 

and output layers (Roy and Roy 2009). The multi-layer perceptron (MLP) is one of the most 

commonly used models of neural networks. Basically a MLP consists of a network of several neurons 

assembled in layers, and the neurons of a specific layer are generally all connected to the neurons of 

the following layer. Each neuron is able to linearly combine its input values to an output by means of 

a certain transfer function. Each input of the neuron has an adaptive weight specifying the importance 

of the input. The weights are adjusted during a supervised training phase, and the differences between 

estimated and expected results (output) are calculated. The optimized weights are obtained by 

minimization of the error between estimated and expected values during the training phase. MLP 

neural networks contain a single input layer, which are formed by the molecular descriptors, one or 

more hidden layers (usually only one hidden layer to avoid over-fitting), which process the 

descriptors into internal representations and an output layer utilizing the internal representation to 

produce the final prediction. The advantage of ANN is that this method is adaptive and can learn from 

the data without any human interference. The drawback is the lack of model transparency. ANN is 

labeled as a “black box” approach to modeling the relationships between structure and property, 
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because it provides little information on the relative influence of the descriptors in the predictive 

process, making it difficult to understand the underlying mechanisms (Yang et al., 2005). 

 

2.2.5 Model Evaluation 

A few parameters such as the squared multiple correlation coefficient (R
2
), adjusted R

2
, and 

variance ratio (F) are used to judge the statistical qualities of the equations. R
2
 is defined as 
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Where yi and     are observed and calculated property values, respectively, while    is the mean of 

the observed property. R
2
 is a measure of how much of the variation in the data set is explained by the 

regression model. R
2
 ranges from 0 to 1, the closer the value of R

2
 to 1, the better the variations 

among the observed data are explaind by the regression model. The value of R
2
 depends on the 

number of compounds (n) and number of descriptors (p), therefore another statistical parameter can 

be used, called adjusted R
2
 (    

 ).  
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Adjusted R
2
 shows similar information as R

2
 but adjusted by the number of compounds and 

number of descriptors. Because of the inflation of R
2
 with the number of independent variables, 

adjusted R
2
 is a more appropriate and meaningful parameter to compare models with different 

numbers of independent variables. 

The dispersion of the observed dependent variable about the regression line (surface) can be 

assessed by the value of the standard error of estimate s. Larger value of s means worse statistical fit 

of the model. 
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The statistical significance of a regression equation can be assessed by means of the Fisher (F) 

statistic. A regression model is considered to be statistically significant if the F value is greater than a 
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tabulated value for the chosen level of significance (typically 95% level) and the corresponding 

degrees of freedom. 
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2.2.6 QSPR Model Validation 

In order to assess the model and test the predictive power, QSPR models must be validated, 

preferably by an external data set (validation set) which was not included in model calibration 

(Eriksson et al., 2006). Internal validation and external validation are two commonly applied methods 

for model validation.  

When the training set is sufficiently large, the internal validation process also known as cross-

validation, is applicable. It is used to assess the predictivity in addition to the robustness of the model 

(stability of QSPR model parameters). Cross-validation is performed by using leave-one-out or leave-

many-out procedure. Leave-one-out cross-validation tends to overestimate the predictive capacity and 

leave-many-out is preferred (Golbraikh and Tropsha 2002b). The process can be describe as follows: 

Leave one or more compounds out of the training set and use the remaining compounds to develop 

the model; use the model to predict the left-out compound(s); calculate the predictive residual error 

sum of squares (PRESS) value; repeat the processes above until all compounds have been left out 

once and only once; calculated the overall PRESS and total sum of squares (SST), providing a cross-

validated Q
2
.                                          
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Where yi is observed dependent variable,       is calculated dependent variable from a model 

developed without that data point,    is the mean value of training set compound. Many authors (e.g., 

Tropsha et al., 2003) consider Q
2
 greater than 0.5 as an indicator of the robust model robustness with 

sufficient predictive ability.  

However, when the number of compounds in the training set is not sufficient enough, especially 

when the training set is selected by experimental design, then the internal validation is unlikely to 
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provide a reliable measure of the model’s predictive power. In addition, a recent study indicated that 

even high values of Q
2
 from an internal validation may not be a suitable indicator (Golbraikh and 

Tropsha 2002b). External validation is therefore the only way to establish reliable QSPR models 

(Golbraikh et al., 2003; Cronin and Schultz 2003; Hawkins et al., 2003). In external validation, the 

predicted and observed values of a sufficiently large external validation set of compounds that were 

not used in the model development are compared. The predictive R
2
 (     

 ) which measures the truly 

predictive capacity of a model for new compounds (validation set), can be calculated using the 

following equation: 
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Where:              and             are predicted and observed values of validation set compounds; 

           is the mean value of training set compounds.  

 

2.2.7 Applicability Domain 

QSPR models are developed using a limited number of training set compounds with limited structural 

characteristics. It is unlikely these the models can be applied to every chemical. The applicability 

domain defines the scope of a QSPR model in which it is appropriate to make predictions for new 

compounds. Predictions should be made within this applicability domain by interpolation and not by 

extrapolation. QSPR model will likely fail to predict compounds outside the applicability domain. 

The multivariate space occupied by the training set compounds is the basis for defining the 

applicability domain. The simplest method is range based; for example, use the ranges of the 

descriptors which define an n-dimensional hyper-rectangle. However, such approach may cover lots 

of empty space if data are not uniformly distributed (Jaworska et al., 2005). Distance based methods 

are commonly used (Eriksson et al., 2003; Tropsha et al., 2003). For example, leverage is used to 

measure the distance of a compound to the centroid of the model. A validation compound with a high 

leverage (i.e., structurally distant from the training compounds) will likely not be predicted reliably, 

as a result of substantial extrapolation of the model. A leverage value of 3 is often taken as a critical 

value which represents 3 standard deviations from the mean (Eriksson et al., 2003). To visualize the 
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applicability domain of a QSPR model, Williams plot (standardized cross-validated residuals vs. 

leverage values) can be used (Kusic et al., 2009; Wang et al., 2009). 

 

2.3 QSPR Models in Ozonation and AOPs 

The QSPR approach has been applied in water treatment to predict the kinetics of compounds in 

their reaction with molecular ozone and hydroxyl radicals and only rarely to assess the removal 

efficiency of these processes for organic contaminants in natural waters. Most of the studies focused 

on predicting second-order rate constants (e.g., Kusic et al., 2009). However, it is worth mentioning 

that Lei and Snyder (2007) applied the QSPR technique to predict percentage removals of organic 

contaminants by ozone and free chlorine in natural water. Their QSPR model for ozonation provides 

a useful prescreening tool to preliminary evaluate removal of organic contaminants. However, the 

degradation of organic compounds depends not only on kinetics but also on the water matrix, pH, 

flow rate, ozone dose, etc., this removal model is therefore case-specific, and it is not possible to 

apply it elsewhere. Only a small number of QSPR studies have been published, but various modeling 

approaches and techniques have been applied such as the linear free energy relationship approach 

(Haag and Yao 1992), the group contribution method (Minakata et al., 2009), as well as linear and 

non-linear regression methods. In addition, a number of molecular descriptors have been identified as 

suitable for descripting the physico-chemical characteristics of compounds relevant for compound 

reactivity during ozonation and AOPs. In the following sections, the existing QSPR studies on 

reactivity of compound in ozonation and AOPs are reviewed. First of all, the concept of the rate 

constant is introduced, followed by a discussion of relevant molecular descriptors, and the modeling 

techniques used in oxidation studies are reviewed at the end of this section.  

  

2.3.1 Properties to be Predicted: Rate Constant  

Before applying the QSPR approach, the endpoint of the modeling needs to be specified. The 

reaction rate constant represents a suitable endpoint in the process of correlating the reactivity of a 

compound to its structure and has been used as such. The reactivity of compounds varies with their 

structures; therefore pH can play a role for dissociating compounds. 
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For a non-dissociating compound, the reaction rate constant of compound P with oxidant ozone 

and hydroxyl radicals are determined by the equations below, respectively. Where kO3-P is the second-

order rate constant for the reaction with ozone, and kOH-P is the second-order rate constant for the 

reaction with hydroxyl radicals.  
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For dissociating compound, the overall rate constant is pH dependent because the neutral and 

ionic species of the compound can have different reaction rates with the oxidants. At a certain pH, the 

rate constant is shown by the equation below (assume one ionic species), where kapp,p is the apparent 

rate constant at certain pH; k1, k2 are the specific rate constants for neutral and ionic species, 

respectively; 1, 2 are the ionization fraction for neutral and ionic species, respectively (1 and 2 

can be calculated from the dissociation constant pKa and the specific pH of the solution).    
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QSPR models have been developed to correlate the absolute rate constant (Gurol and Nekouinaini 

1984; Hoigné and Bader 1983b) and apparent rate constant around pH 7 (Jiang et al., 2010; Hu et al., 

2000) with the structural descriptors of organic contaminants.  

 

2.3.2 Molecular Descriptors Suitable for QSPR Modeling 

To develop a significant correlation between the property to be predicted and chemical structure, 

it is crucial to employ appropriate descriptors, whether they are theoretical, empirical or experimental. 

Descriptors reflecting simple molecular properties that can provide insight into the property to be 

predicted are preferred. It is not the objective of this review to give a complete overview of all 
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possible descriptors, only those descriptors that have been widely used and are suitable for QSPR 

studies on oxidation processes are reviewed here.   

Functional Groups or Substructures. Ozone attack is selective to compounds with double 

bonds, activated aromatic systems, and deprotonated amines (von Gunten 2003), therefore molecular 

descriptors describing the presence of these functional groups could potentially be used in QSPR 

studies, for example, number of double bonds, number of deprotonated amines.  

Aromatic systems can be activated by electron donor substituents (e.g. -OH, -OCH3, -NH2), while 

they are being deactivated by electron withdrawing groups (e.g. -Cl, -NO2, etc.).  Thus the presence 

of a phenolic group (Ar-OH), methoxybenzene (Ar-OCH3), or aminobenzene (Ar-NH2) could be used 

as molecular descriptors for aromatic compounds. Another type of descriptor for aromatic systems is 

the Hammett constant. It is a measure of the electron withdrawing or donating abilities of the 

substituents on benzene (positive values for electron-withdrawing substituents and negative values for 

electron-donating substituents). Hammett constants have become the most common descriptors in 

predicting the effect of substituent on reactivity of aromatic system (Canonica and Tratnyek 2003). 

Extensive reviews of Hammett constants and related substituent properties are available in the 

literature (Brown and Okamoto 1958; Hansch et al., 1991; Hansch and Leo 1995; Hansch and Gao 

1997).  

In addition, in a recent kinetics study on antibacterial compounds (Dodd et al., 2006), some 

substructures reactive to ozone attack have been identified and the corresponding reaction rate 

constants were reported. These reactive substructures may potentially be used as indicator variables 

for modeling purpose.  

Quantum Chemical Descriptors. Quantum chemistry provides a description of the electronic 

properties of molecules and their interactions. Quantum chemical descriptors can describe many 

aspects of molecular electronic properties such as atomic charge, molecular orbital energy, electron 

density, polarizability, and dipole moment, etc. An extensive review of quantum chemistry 

descriptors in QSPR studies has been published (Karelson et al., 1996). Quantum chemical 

descriptors can be calculated by various software using semi-empirical methods.   

Recent QSPR studies have employed quantum chemical descriptors alone or in combination with 

conventional descriptors (Kusic et al., 2009). Quantum chemical descriptors such as energy of the 

highest occupied molecular orbital (HOMO), and energy of the lowest unoccupied molecular orbital 
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(LUMO) are becoming increasingly favored as molecular descriptors as they are related to the energy 

of oxidation (and reduction) reactions (Canonica and Tratnyek 2003). HOMO energy can also be 

described as a measure of the tendency that a molecule will be attacked by electrophiles, and LUMO 

energy as a measure of the tendency that a molecule will be attacked by nucleophiles. HOMO energy 

is related to the ionization potential, and LUMO energy is related to the electron affinity. The 

difference in energy between the HOMO and LUMO, i.e. the HOMO-LUMO gap is a measure of the 

stability of molecule. A large HOMO-LUMO gap suggests low reactivity in chemical reactions and 

high stability (Gramatica et al., 2003). HOMO has been found important in modeling the hydroxyl 

radicals rate constant of aromatic pollutants in water (Kusic et al., 2009) and in modeling the ozone 

rate constant of a few pesticides in water (Hu et al., 2000).  

Empirical descriptors. In addition, the unsaturation index which related to the presence of 

reactive functional groups has been used for QSPR modeling of the tropospheric degradation of 

ozone (Gramatica et al., 2003). Polarizability, molecular weight and average molecular weight were 

also found important in predicting the hydroxyl radical rate constants of aromatic compounds in water 

(Kusic et al., 2009).  

2.3.3 QSPR Modeling Techniques Used in Oxidation Studies 

Several modeling techniques have been applied to build QSPR models for oxidation processes, 

including linear methods such as Hammett-type linear free energy relationships, group contribution 

method, multiple linear regression, partial least squares regression and nonlinear artificial neural 

networks.  

2.3.3.1 Hammett-type Linear Free Energy Relationships 

The Hammett equation, originally developed by Hammett in 1937 (Hammett 1937), describes a 

linear free energy relationship for reaction rate constants of substituted benzene derivatives and 

benzoic acids. Hammett-type relationships where descriptor variables are substituent constants of 

various types have become the most common type of QSPR in predicting the effect of substituent on 

reactivity (Canonica and Tratnyek 2003). The general form of the Hammett equation may be written 

as 

  0loglog kkS                                                   (2.21) 
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where kS and k0 are the rate constants for the substituted and the unsubstituted reference 

compounds (e.g. benzene), , the substituent constant, is a measure of the electron withdrawing or 

donating abilities of the substituent (positive values for electron-withdrawing substituents and 

negative for electron-donating substituents); , the slope, is a measure of the sensitivity of the 

reaction rate to substituent effects. The larger the slope, the more sensitive the reaction to the 

electronic effects of the substituents; If  = 0, the reaction is insensitive to electronic effects. 

Electrophilic reactions such as ozonation and hydroxyl radical reactions are indicated by a negative 

Hammett slope, which indicates that the reaction is favored by electron-donating groups ( > 0) and 

disfavored by electron-withdrawing groups ( < 0). This equation describes a linear correlation 

between the logarithm of the reaction rate constants for substituted compounds and the constant for 

the corresponding substituents.  

Hammett-type relationships have been proven to be useful in predicting the reaction rate 

constants of substituted aromatics with various oxidants, such as ozone (Gurol and Nekouinaini 1984; 

Hoigné and Bader 1983a; Benitez et al., 2007) and hydroxyl radicals (Hansch and Gao 1997; Haag 

and Yao 1992; Peres et al., 2010; Einschlag et al., 2003; Zimbron and Reardon 2005) (as shown in 

Table 2.2). About half of the models show a good fit (i.e., high R
2
 value) whereas the fit for the other 

half is relatively poor (i.e., low R
2
 value). It is also worth to mention that the models with good fit 

using structural similar compounds and models with poor fit using structural diverse compounds. For 

example, although statistically significant, a relative poor model with low r
2
 value was developed by 

Haag and Yao (1992) because of the structural diversity of the compound set or the high variability of 

the rate constants. Good QSPR models obtained for a set of structure similar compounds, for example, 

only one substituent varied at a fixed position (Hansch and Gao 1997). As shown in Table 2.2, all the 

equations indicate negative slope, the reaction constant , which are expected for both ozonation and 

hydroxyl radical reactions where the reactions are favored by increased electron density at the 

aromatic ring. The magnitude of the slope is a measure of how susceptible a reaction is to the 

electronic characteristics of the substituent. The small absolute values of  for hydroxyl radical 

reactions (0.14 – 0.60) reflect the low sensitivity (selectivity) of hydroxyl radical reactions towards 

substituents at the aromatic ring; whereas the large absolute values for ozone (2.81 – 8.0) indicate that 

the reaction of ozone with aromatic compounds is highly selective.  

Table 2.2 Hammett-type relationship for hydroxyl radical and ozone reactions in the aqueous phase 
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Correlation R
2
 n Compound types Reference 

Reactions with hydroxyl radicals 

log(kOH) = 9.829 – 0.318 0.595 25 Xn-C6H6-n Haag and Yao 1992 

log(kOH) = 8.58 – 0.21
+ 0.88 12 X-C6H5 Hansch and Gao 1997 

log(kOH) = 8.70 – 0.27
+
 0.98 9 X-C6H5-COOH Hansch and Gao 1997 

log(kOH) = 9.96 – 0.60 0.986* 8 Xn-C6H5-n-NO2 Einschlag et al., 2003 

log(kOH) = 10.0 – 0.15 0.54 24 Cln-C6H6-n Zimbron and Reardon 2005 

log(kOH) = 10.0 – 0.14
+
 0.50 24 Cln-C6H6-n Zimbron and Reardon 2005 

log(kOH) = 9.5 – 0.28 0.62* 10 Xn-C6H4-n-OH-COOH Peres et al., 2010 

Reactions with ozone 

log(kO3) = a – 8.0 NA 9 (CH3)n-C6H5-n-OH Gurol and Nekoulnalnl 

1983 

log(kO3) = a – 3.1
+
 NA 7 Xn-C6H6-n Hoigné and Bader 1983a 

log(kO3) = a – 2.81 0.988 3 Xn- C6H5-n-C3H7ON2 Benitez et al., 2007 

log(kO3) = 8.9 – 2.4
+
 0.96 13 Xn-C6H5-n-OH 

(anionic species) 

Suarez et al., 2007 

log(kO3) = 3.4 – 3.4
+
 0.94 7 Xn-C6H5-n-OH 

(neutral species) 

Suarez et al., 2007 

*R
2
 was calculated from r values, a is constant which is not specified in the reference,  is the 

Hammett’s constant (Hansch et al., 1991), and 
+ 

is the modified Hammett’s constant (Brown and 

Okamoto 1958).  

The advantage of Hammett-type relationship is that  values are additive for multiple 

substituents. Therefore, it is possible to correlate a variety of substituted aromatics by calculating 

substituent effects from a limited set of  values. However, Hammett-type relationships are only 

applicable to substituted aromatics with known substituent constants; they cannot be applied to other 

non-aromatic compounds. Only a limited number of sigma constants is currently available, which 

makes it impossible to explore new compounds with more complex substituents. Overall, it seems 

impossible to apply Hammett-type relationship to determine the reactivity of structural diverse 

compounds beyond simple substituted aromatic compounds. In addition, none of the published 

studies validated the Hammett-type relationships with an external data set, nor did they determine an 
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applicability domain. This limits the applicability of these relationships to new compounds as the 

predictive ability of these models is unknown.  

2.3.3.2 Group Contribution Method 

The Group contribution method was originally developed to predict hydroxyl radical rate 

constants in the gaseous phase (Atkinson 1987; Atkinson 1988). In this group/fragment contribution 

methodology, the total estimated rate constant is the summation of all applicable reaction pathways, 

such as H-atom abstraction from aliphatic bonds, hydroxyl radical addition to olefinic and acetylenic 

bonds, and aromatic rings, hydroxyl radical reaction with nitrogen, sulfur and phosphorus atom-

containing substructure, etc. A table of substituents (or groups) and the corresponding factors 

(coefficients) were given for each pathway (Kwok and Atkinson 1995; Atkinson 2000). The group 

contribution method has been proven to be robust and is widely used for predicting gaseous phase 

reaction rates. For example, it has been used as an estimation method in U.S. EPA software AOPWIN 

which can predict the atmospheric hydroxyl radical and ozone rate constants.  

However, before applying the group contribution methods to aqueous phase rate constants, the 

differences in the reaction mechanisms between gaseous phase and aqueous phase need to be 

considered  For example, the hydrogen bond and polarity of water molecules will play a role in the 

aqueous phase Monod and coworkers modified and applied Atkinson’s group contribution 

methodology to predict the hydroxyl radical constants of aliphatic organic compounds in the aqueous 

phase (Monod et al., 2005; Monod and Doussin 2008). Monod and coworkers focused on the 

oxygenated aliphatic compounds in which the H-atom abstraction is the dominant mechanism. 

Similarly to Atkinson’s method, this method calculated the overall rate constant of a compound as a 

summation of the partial rate constants of each reactive site (elementary reaction). There were group 

rate constants which represented the reaction mechanisms and substituent factors which took into 

account the field and resonance effects of the neighboring groups (-position). In addition, the next-

nearest neighboring (-position) effects were also considered by introducing G parameters. With the 

additional G parameters, a better agreement between calculated and experimental data was obtained 

(Monod and Doussin 2008). In this study, a group of 72 aliphatic compounds (including alkanes, 

alcohols, organic acids, bases and polyfunctional compounds containing at least two of these 

functions) which relevant to atmospheric chemistry, and 7 function groups were investigated. As a 

result, 60% of the estimated values were found within the range of 80% of the experimental values. 

The correlation (R
2
) between the estimated and experimental logkOH was 0.89. Compared to other 
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estimation methods (the correlations between the aqueous phase reactivity and the bond dissociation 

energy, the correlations between gas- and aqueous-phase reactivity, and the neural network) of the 

rate constant (kOH) in aqueous phase, the author claimed that the group contribution method is the 

most easy to used method and gave the best performance (Monad and Doussin 2008). However, the 

model was not externally validated, and this method is only applicable to compounds where H-atom 

abstraction mechanism is dominant.  

In a recent work by Minakata et al., (2009), other mechanisms were also discussed such as OH 

addition to alkenes and aromatic compounds, OH interaction with nitrogen-, sulfur-, or phosphorus-

atom-containing compounds. Therefore, the aqueous phase hydroxyl radical constants can be applied 

to compounds with a wide range of functional groups. The resulting group contribution model 

included 66 group rate constants and 80 group contribution factors, which characterize the effect of 

the chemical structure groups and the neighboring functional groups. In this study, 310 compounds 

with literature-reported kOH values were used as training set and another 124 compounds were used to 

validate the model. As a result, the estimated values of 83% (257 compounds) of the training set 

compounds and 62% (77 compounds) of the validation set compounds were within 0.5-2 times of the 

experimental values. In addition, Minakata et al., (2009) also applied this method to predict 11 

emerging aromatic compounds and compared the predicted values with experimental ones, and found 

that the difference were in an acceptable range.  

Overall the group contribution method is only applicable to a small group of compounds with 

specific structure, i.e., aliphatic organic compounds. The group contribution method is reasonably 

reliable when applied to compounds similar to those used as training set. However, extrapolation to 

chemical structures significantly different from those in the experimental database may result in 

significant estimation error.  

2.3.3.3 Regression Methods 

Multiple Linear Regression. MLR has been applied to model the rate constants of 

micropollutants in the reaction with ozone (Hu et al., 2000) and hydroxyl radicals (Kusic et al., 2009; 

Wang et al., 2009) in the aqueous phase.  

Hu et al., (2000) determined the apparent rate constants (at pH 7.5) of 24 pesticides (including 4 

phenolic-, 8 organonitrogen-, 8 phenoxyalkylacitic-, and 4 heterocyclic N-pesticides) in the reaction 

with ozone, and found a good correlation (R
2
 = 0.84) between logarithm rate constants of all the 
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pesticides studied and their HOMO energy (one parameter QSPR model). Even better correlations 

with HOMO energy (R
2
 > 0.9) can be found in separate groups except phenoxyalkylacitic pesticides. 

Phenoxyalkylacitic pesticides can be modeled accurately by a two-parameter QSPR model using 

absolute electronegativity and HOMO energy (R
2
 = 0.97). However, without external validation, the 

predictive power of the model remains unknown.  

A well designed QSPR study was developed for the aqueous-phase hydroxyl radical reaction rate 

constants of 55 phenols, alkanes and alcohols using stepwise MLR with a R
2
 = 0.905 (Wang et al., 

2009). The model was internally validated (Q
2
 = 0.806) by the leave-many-out technique and 

externally validated (Q
2
 = 0.922) using an external validation set, and the applicability domain was 

also analyzed by a Williams plot. Four out of fifteen quantum chemical descriptors were found to be 

the governing descriptors using stepwise MLR; they were the HOMO energy, average net atomic 

charges on hydrogen atoms, molecular surface area, and dipole moment. The model obtained was 

applicable to phenols, alkanes and alcohols but not applicable to complex structures. A poor model 

(R
2
 = 0.365) was developed when various classes of chemicals were included in the previous model 

(Wang et al., 2009). Another satisfactory study for predicting the aqueous-phase hydroxyl radical rate 

constants was conducted by Kusic et al., 2009. In that study, the QSPR models were developed with 

78 aromatic compounds using MLR combined with a variable selection genetic algorithm (GA). The 

combination of GA-MLR approach was used to find the best few descriptors from a large number of 

original descriptors. As a result, the logarithm of rate constants was correlated to HOMO energy and 

several other descriptors relating to molecular polarizability. 

Partial Least Squares Regression. In a recent paper (Jiang et al., 2010), the rate constants of 

ozone with 39 aromatic compounds were determined, and a QSPR model (R
2
 = 0.791, standard 

deviation = 0.126) was developed using PLS regression. Quantum chemical descriptors LUMO 

energy, the most positive partial charge on a hydrogen atom (qH
+
), and thermodynamic descriptor 

Connolly molecular area were found important. The QSPR model showed that the main contribution 

to degradation was the Connolly molecular area. However, no external validation was applied, and 

the experimental data reported are questionable as the ozonation of aromatic compounds was found to 

be zero-order. In addition, the chemical structure was linked to the pseudo-rate constants which were 

ozone exposure dependent, but according to the information provided in the reference ozone 

concentration was not measured.  
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Artificial Neural Networks. An artificial neural network, the multi-layer perceptron (MLP), was 

used to relate the functional groups of the molecule and the rate constant of the molecule reacting 

with hydroxyl radicals in the aqueous phase (Dutot et al., 2003). A large group of 209 compounds 

from the review of Buxton et al., (1988) were used in this study, and the initial compound set was 

divided into three different groups for model development and evaluation of the prediction capability: 

the training, test and validation set. The training and test set were used to optimize the parameters of 

the neural regression, and the validation set was used to assess the performance of model prediction. 

The molecular descriptors used in this study were 17 functional groups. It was found that the standard 

error of prediction was 0.24 for logkOH with a data range from 8.22 – 10.37 (logkOH). In a predicted vs. 

experimental data analysis using the validation set (not included in the model training), the R
2
 was 

found to be significant (R
2
 = 0.81) showing a good predictive power. The author claimed that ANN 

performs better than linear regression methods because of the parsimony of ANN.   

2.4 Knowledge Gaps and Research Needs 

Important elements of QSPR development were reviewed, including selection of the training set, 

selection of descriptors, various modeling techniques, model evaluation and validation, and 

applicability domain. Existing QSPR studies developing models for oxidation process in water 

treatment namely ozonation and AOPs were also reviewed.  A number of studies are available for 

modeling reaction rates with hydroxyl radicals whereas there are much fewer for reactions with 

molecular ozone. Based on this review knowledge gap and research needs were identified as follows:   

 Most studies used a group of structurally relative homogeneous compounds as the training set. 

The similarity of the compounds generally ensures fairly high predictive power of the 

developed QSPR models. However, the applicability of these QSPR models is limited to a 

small range of compounds which are structural similar to the training set compounds. For 

example, the model developed by Kusic et al., (2009) is only applicable to aromatic 

compounds. It still remains a challenge to develop QSPR models which are widely applicable 

to many structural diverse compounds, mainly because various mechanisms may be involved 

in a large and diverse compound pool. 

 The existing QSPR studies predicting the rate constant of compounds mostly focus on 

conventional contaminants with higher concentrations in aqueous phase compared to many of 

the emerging micropollutants. The interests in these micropollutants especially EDCs, and 
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PPCPs are increasing. Therefore predictive models applicable to these newer micropollutants 

are needed.  

 Successful application of the QSPR approach in model development for water treatment 

processes involves several key elements as discussed above. Extensive statistical knowledge 

is needed and misuse or missing one or more key elements can lead to incorrect or poor 

models. In most of the existing studies, external validation and definition of applicability 

domain are not included. Therefore it is not possible to know the predictive power of the 

model and whether or not the predictions are applicable and valid.  

 Molecular descriptor sets should ideally be related to the mechanisms of the various treatment 

technologies for which models are to be developed. Further research is needed to identify sets 

of descriptors which can well describe the structural characteristics related to oxidation, as 

well as other treatment processes such as adsorption and membrane filtration. Descriptors 

with clear meanings which are easy to explain are preferred.  

 The pH-dependence of the rate constants for dissociating-compounds has not often been 

modeled. Ideally, separate models should be developed for predicting rate constants of 

neutral species and ionic species. Then, the overall rate constant can be calculated for any 

specified pH. However, models for ionic compounds seem not be available in the literature, 

and suitable descriptors to describe the charged status of ionic compounds have not been 

identified. To make it more complex, some compounds may involve two or more ionic 

species (more than one pKa). For drinking water studies, the pH range of water is typically 

around 6-8. A model which can estimate the overall rate constant of dissociating-compounds 

is therefore needed.       

Experimental data can never be replaced completely with QSPR predictions; however, obtaining 

experimental kinetic data for the large number of existing micropollutants would take years with high 

costs. Therefore, QSPR can be used as a valuable modeling tool for the initial evaluation of the 

effectiveness of a water treatment process for micropollutants of interest. Results obtained from valid 

QSPR models can be used; to estimate the removal of micropollutants in drinking water treatment 

processes; to guide the selection of treatment process for target compounds and guide the design of a 

testing strategy; to improve the evaluation and understanding of existing data; and to provide 

mechanistic explanations of physico-chemical treatment processes.   
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Chapter 3 

Selection of Representative Emerging Micropollutants for Drinking 

Water Treatment Studies: A Systematic Approach 

This Chapter is based on a paper of the same title has been published in Science of the Total 

Environment in January 2012 (Jin and Sigrid, 2012, 414, 653-663). 

This article focuses on several tasks: (1) identify suitable molecular descriptors which link the 

structural characteristics of micropollutants to mechanisms of water treatment processes; (2) develop 

a systematic approach to select structural representative micropollutants for water treatment studies; 

(3) select a set of representative compound for oxidation processes studies. The kinetics of selected 

micropollutants in ozonation and advanced oxidation process UV/H2O2 will be studied in detail and 

rate constant will be determined (Chapter 4). Furthermore, QSPR models will be built for predicting 

the rate constant of micropollutants in the reactions with ozone (Chapter 5) and hydroxyl radicals 

(Chapter 6).     

 

Outline: Micropollutants remain of concern in drinking water, and there is a broad interest in the 

ability of different treatment processes to remove these compounds. To gain a better understanding of 

treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to 

select a small set of representative micropollutants for experimental studies. Unlike other approaches 

to-date, in this research micropollutants were systematically selected based solely on their physico-

chemical and structural properties that are important in individual water treatment processes. This 

was accomplished by linking underlying principles of treatment processes such as 

coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to 

compound characteristics and corresponding molecular descriptors. A systematic statistical approach 

not commonly used in water treatment was then applied to a compound pool of 182 micropollutants 

(identified from the literature) and their relevant calculated molecular descriptors. Principal 

component analysis (PCA) was used to summarize the information residing in this large dataset. D-

optimal onion design was then applied to the PCA results to select structurally representative 

compounds that could be used in experimental treatment studies. To demonstrate the applicability and 

flexibility of this selection approach, two sets of 22 representative micropollutants are presented. 

Compounds in the first set are representative when studying a range of water treatment processes 

(coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas 
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the second set shows representative compounds for ozonation and advanced oxidation studies. 

Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-

chemical properties and cover a large spectrum of applications. The systematic compound selection 

approach presented here can also be adjusted to fit individual research needs with respect to type of 

micropollutants, treatment processes and number of compounds selected.   

 

Keywords: molecular descriptors relevant in water treatment processes, principal component 

analysis, D-optimal onion design, representative and structurally diverse compounds, customizing 

selection approach 
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3.1 Introduction 

Emerging micropollutants such as endocrine disrupting chemicals (EDCs) and pharmaceuticals and 

personal care products (PPCPs) are of environmental and public concern (Daughton and Ternes 

1999). They enter the aquatic environment continuously through wastewater discharge, agricultural 

runoff, and municipal landfill leachates. Not surprisingly they have therefore been detected in surface 

water, groundwater (Kolpin et al., 2002), and also in finished drinking water at very low 

concentrations (Snyder 2008; Benotti et al., 2009; Huerta-Fontela et al., 2011; Loos et al., 2007). It is 

expected that larger numbers of micropollutants in higher concentrations may be detected in the 

future as water reuse becomes more prevalent. Of primary health concern is the potential chronic 

health effects associated with long term exposure to multiple micropollutants at trace concentrations 

(Snyder 2008). Hence, there is a growing interest in understanding the removal of these 

micropollutants during drinking water treatment. Conventional processes have been shown to be 

largely ineffective for emerging micropollutants (e.g. Stackelberg et al., 2004; Westerhoff et al., 

2005), while various advanced treatment technologies such as ozonation and advanced oxidation 

processes (AOPs), activated carbon adsorption, reverse osmosis and nanofiltration are effective 

(Westerhoff et al., 2005; Snyder et al., 2007).  

To assess the removal of micropollutants during drinking water treatment processes, it is usually 

necessary from a practical perspective to select a relatively small set of micropollutants for 

experimental study. Selection criteria commonly used are: occurrence (Pereira et al., 2007), 

production volume and extent of usage (Wu et al., 2007), suggested monitoring lists from authorities 

(Shemer et al., 2006) and known health effects (Rosenfeldt and Linden, 2004). Some studies even 

consider several criteria simultaneously, e.g. Snyder et al., (2007) considered occurrence, structural 

diversity and analytical methods together. Such approaches provide improved knowledge on water 

treatment processes for the selected micropollutants. However, these findings may not necessarily be 

applicable to other micropollutants which then need to be studied in turn. Although thorough, this 

‘one at a time’ approach is not cost-effective. Further, it is simply not possible to assess all of the 

numerous contaminants currently in use or detected in water. To gain an overall understanding of the 

removal of numerous, structurally diverse micropollutants with an efficient level of experimental 

study, it is highly desirable to select a relatively small set of representative compounds from a large 

pool of micropollutants of interest. However, a well-defined compound selection method for water 

treatment studies is currently not available.  
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The challenge is to select micropollutants which are representative of others with respect to their 

behavior (e.g. removal, reaction rate constant, adsorbability, rejection, etc.) during water treatment, 

which applies physical, chemical and biological processes to remove contaminants. Therefore, the 

physico-chemical and structural properties of contaminants play an important role in their removals. 

Structurally similar compounds are expected to behave similarly in water treatment processes, based 

on the underlying theory of quantitative structure-property relationships (QSPR) (e.g. Lei and Snyder 

2007; Kusic et al., 2009; Magnuson and Speth 2005; Yangali-Quintanilla et al., 2010). Thus, it is not 

desirable to select a group of relatively homogenous contaminants for water treatment studies as their 

behavior is expected to be similar. On the contrary, a structurally diverse set of contaminants which 

covers a wide spectrum of physico-chemical properties is more desirable since these will be 

representative of a larger pool of contaminants. A statistical process which combines principal 

component analysis (PCA) and experimental design has been developed to select structural 

representative compounds for QSPR studies (Eriksson and Johansson 1996; Knekta et al., 2004; Papa 

et al., 2007; Jin et al., 2009). In those studies, a large number of available molecular descriptors were 

used for selecting structurally diverse and representative compounds. However, not all of these 

numerous descriptors and therefore properties are important in water treatment processes and hence, 

differences in these descriptors may not necessarily lead to differences in compound behavior in 

treatment processes. It follows that a statistical approach needs to be developed that is suitable for 

water treatment studies. This can be accomplished by linking structural characteristics of 

micropollutants to the removal mechanisms of treatment processes by identifying relevant 

properties/descriptors, which simultaneously reduces the number of descriptors employed in the 

selection process.  

The objective of this study was therefore to develop a procedure to systematically select 

representative micropollutants for water treatment studies that reflect the structural diversity of 

micropollutants, while taking into account the underlying removal mechanisms of the treatment 

processes. The approach was based on both an improved statistical approach (Eriksson and Johansson 

1996) and the knowledge that certain physico-chemical properties and structural functionalities of 

micropollutants are relevant to certain water treatment processes. As a result a large pool of 

micropollutants was characterized, and from this representative micropollutants for future 

investigations were identified. Conducting experimental treatment studies on these selected 

micropollutants will improve the overall understanding of contaminant removal in water treatment 

processes in a cost-effective manner. 
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3.2 Approach and Background 

3.2.1 Overall Approach 

 

Figure 3.1 Approach to the selection of structurally representative compounds; N:  number of 

compounds in the pool, K:  number of molecular descriptors, A: number of principal components 

derived, n:  number of selected compounds from the initial pool N. 

The statistical approach which has to-date mostly been used in other fields (Knekta et al., 2004; Papa 

et al., 2007) is summarized in Figure 3.1. First, an initial compound pool which included a large 

number of heterogeneous micropollutants of environmental concern was defined (see section 3.2.2). 

Then, the original selection approach was modified by identifying a set of molecular descriptors, 

which explained the underlying removal mechanisms of various water treatment processes (details in 

the results in section 3.3.1). These descriptors were calculated for each compound (see section 3.2.3). 

As a result, a multivariate dataset, the chemical domain, consisting of 182 compounds and their 
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molecular descriptors was created. PCA was applied to characterize the information contained in this 

very large dataset and principal components (PCs) were extracted (see section 3.2.4). These PCs were 

limited in number and mathematically independent from each other, which was ideal for statistical 

experimental design. A small set of representative compounds was then selected by applying a D-

optimal onion design (Eriksson et al., 2004) instead of D-optimal design which was employed in the 

original selection approach (Eriksson and Johansson 1996), to the PCs (see section 3.2.5). D-optimal 

onion design is more flexible and provides a more controlled coverage of the chemical domain 

compared to D-optimal design. 

Overall, this systematic approach (Figure 3.1) ensured that only a few, representative yet 

structurally diverse compounds were selected which were evenly distributed over the entire chemical 

domain. To illustrate the applicability and flexibility of this approach, two sets of compounds were 

identified. The first set (Compound set 1) serves for experimental screening/treatment studies 

investigating a wide range of water treatment techniques (Treatment set 1: coagulation/flocculation, 

oxidation, activated carbon adsorption, and membrane filtration). The second set (Compound set 2) is 

representative for oxidation studies investigating ozonation and advanced oxidation processes 

(Treatment set 2). 

3.2.2 Compound Pool 

The compound pool can be defined in such a way that it fits the researcher’s special interest and 

needs. For example, Papa et al., (2007) defined a pool with 92 antibiotics. On the other hand, Knekta 

et al., (2004) defined their pool using a potential hazardous contaminant list including 397 

heterogeneous compounds since they aimed for a large range of structural diverse compounds and 

had no interest in a special compound group. The compound pool defines the boundary and 

applicability of the selection, i.e. the selected compounds are representative for compounds within the 

pool.  

In this study, the intention was to select micropollutants for water treatment studies. Therefore 

micropollutants were included in the pool based mainly on two criteria: Occurrence in water and 

wastewater (1997 - 2008), and availability of kinetics or removal studies investigating water and 

wastewater treatment processes. Toxicity was not used as a criterion as available toxicity data are 

limited for many micropollutants, especially for emerging contaminants such as personal care 

products and potential endocrine disrupting chemicals, their impact is largely unknown (e.g., 

Kümmerer 2001; Stackelberg et al., 2004). Furthermore, available toxicity data have mostly been 
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established at concentrations much higher than those reported in the aquatic environment. However, 

the potential health and environmental impact of micropollutants was partly considered in this paper 

because some of the occurrence studies used in establishing the compound pool were based on 

contaminants with known or potential health effects (e.g., Kolpin et al., 2002; Loraine and Pettigrove 

2006). Overall 182 micropollutants were identified from the literature for the inclusion in the 

compound pool. Altogether 25 micropollutants (e.g., atrazine, trifluralin, dicamba) in this compound 

pool are regulated in Canada and/or the U.S. (Appendix A. Table A.1). Furthermore, 11 

micropollutants are included in the Third Contaminant Candidate List (CCL3, US EPA) meaning that 

these compounds may require regulation due to potential health effects (Appendix A. Table A.1). The 

size of the contaminant pool was relative small compared to the fact that numerous contaminants are 

produced and consumed, and may subsequently be discharged into receiving waters. However, 

micropollutants in this pool were very heterogeneous in structure and included a number of chemical 

classes (e.g. phenols, PAHs, alkanes, halogenated aromatic compounds, organophosphorus 

compounds, etc.) thus covering a wide spectrum of physico-chemical properties. Most of the 

commonly found micropollutants are likely to fall within this spectrum. As shown in Table 3.1, 182 

micropollutants in the pool covered a wide range of properties, e.g. their molecular weights (MW) 

ranged from 94.12 (phenol, no.115) to 777.12 g/mol (iomeprol, no.111), estimated logKow values 

ranged from -2.52 (iomeprol, no.111) to 7.07 (di(2-ethylhexyl)phthalate, no.165) and the number of 

isolated double bonds (nDB) ranged from 0 (e.g. hexachlorobenzene, no.118) to 7 (sultamicillin, 

no.6). A few compounds in this compound pool are similar in structure (e.g. -HCH/-HCH, p,p’-

DDD/p,p’-DDT) but it is highly unlikely that the selection approach used here would select both 

compounds from a given compound pair. 
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Table 3.1 Diversity in properties of compounds pool (n = 182) compared to selected compound sets. 

 Compound pool Set 1
a 

Set 2
b 

 max. min. median range* % range
# 

% range
# 

logKow 7.07 -2.52 2.57 5.49 99 116 

logS (mol/L) -0.18 -8.31 -3.71 3.91 88 124 

logD 8.03 -7.55 1.6 6.55 95 124 

MW 777.12 94.12 278.38 226.64 89 94 

AMW 23.73 5.51 7.81 6.09 136 111 

nDB 7 0 1 3 130 100 

nAB 24 0 6 12 118 100 

nArOH 3 0 0 1 100 100 

nN 2 0 0 1 100 100 

Ui 4.64 0 3.17 2.41 95 88 

HOMO (eV) -7.019 -11.730 -9.125 1.507 105 99 

LUMO (eV) 1.003 -2.099 -0.318 1.507 125 99 

GAP (eV) 11.841 6.504 8.887 1.917 142 123 

P 56.53 9.74 29.27 23.71 86 114 

PSA (Å
2
) 217.78 0 52.60 132.23 108 84 

DM (debye) 10.27 0 2.93 5.83 104 83 

L (Å) 23.4781 7.7760 13.4231 6.6224 83 88 

W (Å) 14.8367 6.3506 9.1308 3.6992 87 157 

RLW 2.8258 1.0154 1.4212 0.6579 76 93 

HA 4.92 0 0.92 2.00 106 99 

HD  2.97 0 0.46 1.41 101 153 

Df(10
-6

 cm
2
/s) 9.66 3.08 4.59 6.41 97 97 

For abbreviations of properties see Table 3.2. *Range between 10 percentile and 90 percentile. 

#
Percent represents the property range of the selected compounds set (10-90 percentile, n = 22) 

divided by the property range of the pool (10-90 percentile, n = 182). 
a 
Selected compounds for a 

range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption,  

membrane filtration); 
b
 Selected compounds for oxidation processes. 

 

3.2.3 Calculation of Molecular Descriptors 

To keep data processing manageable and to simplify interpretation of results, the number of 

descriptors employed in the selection process was minimized while retaining the important 

information. Note that large numbers of molecular descriptors can be generated though using 

software packages (e.g. over one thousand descriptors can be calculated by the DRAGON software). 



 

41 

However, 22 molecular descriptors (physico-chemical properties) which are relevant to treatment 

processes, were identified (section 3.3.1) in this study.  

In some instances, physico-chemical properties can either be determined experimentally or by 

software calculated descriptors. Although experimentally determined data may be preferable, they are 

not available for many emerging micropollutants and the experimental processes to obtain these data 

are time-consuming and expensive. In addition, experimental data may be available from several 

sources, and in some cases these may differ. On the other hand, software packages can calculate 

numerous descriptors quickly, and they can be applied to large numbers of compounds including 

untested compounds. However, researchers have to exercise caution in that unreliable data may be 

provided if the target compounds are outside the applicability range of the software. In this study, 

calculated descriptors were favored because of the limited availability of experimental data. 

Andersson et al. (2000) found that calculated descriptors representing physico-chemical properties 

correlated well with the experimental data.  

To calculate the identified descriptors, first of all, the structure of each compound was obtained 

from the online database ChemIDplus Advanced, United States National Library of Medicine 

(http://chem.sis.nlm.nih.gov/chemidplus/). For dissociable compounds, Marvin predictive tool 

(ChemAxon, http://www.chemaxon.com/marvin/sketch/index.jsp) was used to predict pKa values and 

to determine the dominant species between pH 5.5 and 8.5. If the dominant species was charged then 

the corresponding neutral structure was modified accordingly by ChemDraw (ChemOffice 2006, 

ChembridgeSoft). Software E-DRAGON (VCCLAB, Virtual Computational Chemistry Laboratory, 

http://www.vcclab.org, 2005), Molecular Modeling Pro Plus (MMP+ 6.25, ChemSW, Inc.), Marvin 

(ChemAxon, Inc.), and HyperChem (HyperChem 7.5, Hypercube, Inc.) were used for calculations 

(Appendix A. Table A.2). The input for these programs was either the molecular structure or the 

Simplified Molecular Input Line Entry System (SMILES) code both obtained from the ChemIdplus 

Advanced database. Then the calculated molecular weight was compared with the value reported in 

the ChemIdplus Advanced database. Only those compounds passing this validation were included. 

Quantum-chemical descriptors (HOMO and LUMO) were estimated using software package 

HyperChem (HyperChem 7.5, Hypercube, Inc.). The initial 3D structure of each compound was built 

by HyperChem. The molecular mechanics (MM+) force field was applied to optimize the 

conformation of each compound. The conformations with minimal energy were found using the semi-

empirical AM1 method and the Polak-Ribiere algorithm, with a convergence limit of 0.01 kcal/mol 
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and a maximum number of calculation cycles set at 10 000. The overall resulting multivariate data 

matrix (compound  descriptors) is shown in Appendix A. Table A.3. Molecular descriptors are 

explained in detail elsewhere (Todeschini and Consonni 2000). 

3.2.4 Principal Component Analysis (PCA) 

The 182 micropollutants in the pool and their 22 calculated molecular descriptors formed a large, 

multivariate dataset (e.g. 182  22 data matrix). Statistical experimental design methods provide a 

methodology to choose representative compounds from this pool (Eriksson et al., 2004), but they are 

only applicable to datasets with few variables which are independent from each other. With a 

multitude of compounds and descriptors in the chemical domain, it is likely that many of them will be 

correlated resulting in multicollinearity and multivariance of descriptors. To achieve dimensionality 

reduction and generate latent orthogonal (i.e. mathematically independent) variables, several 

techniques are available such as PCA, Factor Analysis, and Linear Discriminant Analysis. Eriksson et 

al. (2006) identified PCA as the most suitable technique for this purpose, and it has since been 

applied successfully in a number of studies (e.g. Knekta et al., 2004; Papa et al., 2007; Harju et al., 

2002). PCA reduces an original large data set to a small set of latent variables (PCs) that still contains 

most of the variation (i.e. information) of the original data set. A reduced set is much easier to analyze 

and interpret; more importantly, the PCs are mathematically independent, which is ideal for 

experimental design. Therefore, the combination of PCA and experimental design provides a 

powerful tool for representative compound selection (Eriksson et al., 2006). In this study, numerical 

ranges of individual descriptors differed considerably and prior to PCA, all descriptors were mean-

centered and scaled to unit variance. Some descriptors were log transformed to reduce skewness 

while obtaining an approximately normal distribution. The number of PCs was determined by cross-

validation. Results are visually displayed by score plots (i.e. projecting compounds in relation to PC 

values, Figure 3.2a and Figure 3.3a) and loading plots (i.e. projecting descriptors in relation to PC 

values, Figure 3.2b and Figure 3.3b). Software SIMCA-P (Version 11.5, Umetrics, Sweden) was used 

for PCA. 

3.2.5 D-optimal Onion Design 

Statistical experimental design methods are tools for choosing representative and diverse compounds 

(Eriksson et al., 2004). Classical design methods such as fractional factorial and central composite 

designs (Box and Draper 1987) are commonly used when factors (e.g., time and temperature) are 
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independent and can be continuously varied in a regular design region (e.g. selecting experimental 

conditions for treatment processes). However, molecular descriptors and the resulting PCs are 

inherent to a particular compound. They are therefore not controllable and as a result they form an 

irregular design region (property space). D-optimal design is more favorable in such situations 

because the selected compounds are distributed in such a way that they span a maximum volume in 

the property space. D-optimal onion design is an extension of D-optimal design, which splits the 

property space into several layers with a separate D-optimal design in each layer to achieve efficient 

and controlled coverage of the entire space (Eriksson et al., 2004). In addition, it is very flexible 

because the number of layers and the regression model targeted within each layer can be altered, thus 

controlling the degree of coverage while balancing it with the number of compounds selected. This 

makes D-optimal onion design superior to other techniques such as the fractional factorial design, 

grid and cell based design, and space-filling design (Eriksson et al., 2006) and it was therefore 

applied in this study. In this study, software MODDE (Version 8.0, Umetrics, Sweden) was used for 

D-optimal onion design. 

3.3 Results and Discussion 

3.3.1 Identification of Molecular Descriptors for Individual Treatment Processes 

The most important modification to the original compound selection approach (Eriksson and 

Johansson 1996) was the targeted selection of molecular descriptors. Removal efficiencies in drinking 

water treatment depend to a large extent on the properties of the micropollutants as has been shown 

for many processes. It is therefore important to identify molecular descriptors which represent the 

properties important in individual treatment processes and include them in the compound selection 

process (Figure 3.1). Factors such as water quality and operational parameters are important when 

assessing removals for specific water sources but were not considered here as they are not pertinent 

for compound selection.  Properties relevant in individual treatment processes can differ substantially 

(see below) and the discussion below provides justification for the inclusion of certain descriptors for 

individual treatment processes. 

Only those descriptors with clear physical meanings which link back to properties identified as 

being relevant for a particular treatment process in the literature were included in this study. 

Descriptors such as molecular connectivity indices and topological descriptors are unlikely to provide 

interpretable insights into removal mechanisms and were therefore not included. In addition, the 
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selected descriptors should be applicable to the wide range of structural diverse compounds included 

in this study.  Descriptors should not be restricted to a specific compound group. Detailed reasoning 

for the inclusion or rejection of properties/descriptors into Table 3.2 is provided below for individual 

water treatment processes. 

Table 3.2 Selected molecular descriptors for water treatment processes.  

Treatment Processes Removal Mechanisms Molecular Descriptors 

Coagulation/flocculation
1
 Hydrophobic 

Interactions 

logKow, water solubility (logS) 

Ozonation and AOPs
1,2

 Functional groups number of conjugated double bonds (nDB), 

number of isolated double bonds (nAB), 

number of primary and secondary amines 

(nN), number of phenolic group (nArOH) 

 Energy of reaction HOMO*, LUMO*, HOMO-LUMO gap 

(GAP), polarizability (P) 

 Empirical QSPR models molecular weight (MW) and average 

molecular weight (AMW), unsaturation 

index (Ui), diffusivity (Df) 

Adsorption processes
1
 Van der Waals 

interactions 

MW, molecular length (L) and width (W), 

length-width ratio (RLW) 

 Hydrophobic interaction logKow, logS, logD  

 Electrostatic interaction Polarizability  

 Hydrogen bonding 

 

Mass transfer 

Hydrogen bond acceptor (HA) and donor 

(HD)  

Diffusivity (Df) 

Membrane filtration
1
 Size exclusion 

  

MW, molecular length (L) and width (W), 

length-width ratio (RLW)  

 Electrostatic repulsion Polarizability, polar surface area (PSA), 

dipole moment (DM) 

 Adsorption  logKow, logS, logD 

*HOMO:  highest occupied molecular orbital energy, LUMO: lowest unoccupied molecular orbital 

energy. 
1
 Treatment set 1, includes coagulation/flocculation, oxidation, activated carbon adsorption, 

and membrane filtration. 
2
 Treatment set 2 includes oxidation processes (ozonation and AOPs). 

3.3.1.1 Coagulation/Flocculation 

Coagulation/flocculation is typically used for suspended solids removal in conventional drinking 

water treatment plants preceding rapid filtration. Coagulation/flocculation alone has been shown to be 

ineffective in removing especially polar micropollutants (Ternes et al., 2002; Adams et al., 2002). 

However, removal may occur if the compounds partition onto particulates or onto precipitated flocs 

through hydrophobic interactions. Compounds with a high hydrophobicity as indicated by a high 
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octanol-water partitioning coefficient (logKow) value tend to partition onto the solid phase. Westerhoff 

et al., (2005) confirmed that logKow could be a good indicator. In addition, water solubility is 

inversely related to the hydrophobic property of a chemical. Thus, logKow and water solubility were 

included. 

3.3.1.2 Oxidation Processes 

Ozonation and advanced oxidation processes (AOPs) are effective in degrading micropollutants in 

drinking water (e.g., Huber et al., 2003; Crosina et al., 2006). Ozone is also applied for other 

treatment objectives such as disinfection or taste and odor control. During ozonation, oxidation occurs 

by molecular ozone (O3) and hydroxyl radicals (OH), which are produced through ozone 

decomposition in natural waters. Processes which involve the formation of highly reactive OH are 

generally referred to as AOPs (e.g. O3/H2O2, UV/H2O2).  

Oxidation efficiencies of pollutants are characterized by chemical reaction kinetics. The second-

order rate constants for oxidation of micropollutants by O3 cover a range of more than 9 orders of 

magnitude. O3 selectively attacks organic compounds with a high electron density that is with 

functional groups such as double bonds, activated aromatic systems, and deprotonated amines (von 

Gunten, 2003). Carbamazepine, for example, containing a double bond showed a high reactivity (kO3 

= 3 × 10
5
 M

-1
s

-1
) with ozone (Huber et al., 2003). Activation of aromatic systems by electron donor 

groups (e.g., -OH) leads to increased rate constants, while electron withdrawing groups (e.g. -Cl, -

NO2, etc.) cause slower rate constants. Thus, benzene itself is relatively unreactive (kO3 = 2 M
-1

s
-1

) 

(Hoigné and Bader 1983a) while compounds with phenolic structures are highly reactive, e.g., 17-

ethinylestradiol (kO3 = 7 × 10
9
 M

-1
s

-1
) (Huber et al., 2003). The amino group is only reactive in its 

deprotonated, neutral form and almost non-reactive in its protonated form (Benner and Ternes, 2009). 

Hence, the apparent rate constant is pH dependent. Molecular descriptors identified for the oxidation 

by molecular ozone were therefore: the number of isolated/conjugated double bonds, the number of 

primary and secondary amines, and the number of phenolic groups. In addition, the unsaturation 

index was included which related to the presence of reactive functional groups, as has been reported 

for QSPR modeling of the tropospheric degradation of ozone (Gramatica et al., 2003).  

In contrast, OH reacts non-selectively with micropollutants which is reflected by near diffusion-

controlled second-order rate constants (10
8
 - 10

10
 M

-1
s

-1
). Thus the diffusivity of compounds was 

included. Polarizability, molecular weight and average molecular weight were included as they were 
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found important and validated in predicting the hydroxyl radical rate constants of aromatic 

compounds in water (Kusic et al., 2009). Quantum-chemical descriptors such as the highest occupied 

molecular orbital energy (HOMO), the lowest unoccupied molecular orbital energy (LUMO), and the 

HOMO-LUMO energy gap (GAP) were also included since they are widely used in predicting the 

reactivity of compounds in ozonation and hydroxyl radical reactions (Gramatica et al., 2003). These 

parameters are directly related to the energy of the reaction. HOMO can be approximated with the 

negative ionization potential and LUMO with the negative electron affinity. A large GAP implies 

great kinetic stability and low chemical reactivity. 

3.3.1.3 Activated Carbon Adsorption 

Activated carbon adsorption is frequently used to remove organic micropollutants from contaminated 

water sources by granular activated carbon adsorbers or by powdered activated carbon addition. 

Factors affecting overall treatment efficiency are adsorption capacity, kinetics and 

competition/preloading of natural organic matter.  However, equilibrium adsorption capacity of an 

adsorbent often serves as a starting point for process design, and hence, various models have been 

developed to predict these. An example is linear solvation energy relationships (LSERs) (Luehrs et 

al., 1996), in which molar volume, polarizability, hydrogen-bonding acceptor and donor were 

identified as important parameters. In addition, QSPR models have been proposed correlating 

adsorption (Brasquet et al., 1997; Magnuson and Speth, 2005) to the chemical structure of the 

adsorbate. Molecular connectivity indices which do not have a clear physical meaning were often 

used in such QSPR models. But since they do not aid in the phenomenological understanding of the 

adsorption mechanisms, they were not included here. Generally, adsorption depends on the properties 

of the activated carbon sorbent and the properties of the adsorbate. Van der Waals forces, 

hydrophobic interactions, electrostatic interactions, and hydrogen bonding are driving mechanisms. 

Van der Waals forces are related to molecular size which can be approximated by molecular weight. 

The size of the adsorbate also determines its access to the internal pores and therefore the available 

surface area for adsorption. In this case molecular size can be described by molecular weight but also 

molecular length, width and length-width ratio. LogKow was chosen to represent hydrophobic 

interactions (Magnuson and Speth, 2005) as hydrophobic compounds tend to leave the bulk solution 

more easily to attach to the adsorptions sites. However, Yu et al., (2008) reported that at ng/L 

concentrations the compound with the highest logKow had the lowest adsorptivity on virgin carbon. 

Once the carbon was preloaded the adsorptivities followed the expected pattern (Yu et al., 2009a). 
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Electrostatic interactions are best described by polarizability as this encodes information about the 

charge distribution in molecules (Magnuson and Speth 2005). Hydrogen bonding between water and 

the adsorbate decreases the adsorbate’s affinity for the activated carbon, thus hydrogen bond 

acceptor/donor parameters are also important (Crittenden et al., 1999). Mass transfer of the adsorbate 

to the adsorption site is another important factor to be considered. At ng/L concentrations this process 

is dominated by film diffusion through the boundary layer (Yu et al., 2009b). Compound diffusivity 

is an important term when determining film diffusion coefficients and is therefore included.  

3.3.1.4 Membrane Filtration 

Membrane filtration such as reverse osmosis (RO) and tight nanofiltration (NF) can achieve high 

removals of organic compounds (e.g. Makdissy et al., 2007). Rejection is a complex process driven 

by steric, hydrophobic and charge interactions which are influenced by membrane properties and 

solute structure (Bellona et al., 2004). Main transport mechanisms are convection and diffusion (Kim 

et al., 2007). Especially small, non-polar compounds have been reported to be able to diffuse across 

even dense membranes (Comerton et al., 2008). Higher logKow values favor this behavior through 

initial adsorption onto the membrane surface and logKow was therefore included (Yangali-Quintanilla 

et al., 2010; Bellona et al., 2004; Comerton et al., 2008). However, steric exclusion in which solutes 

larger than the membrane molecular weight cut-off (MWCO) are rejected remains the dominant 

mechanism for many compound-membrane combinations (Yangali-Quintanilla et al., 2010; Van der 

Bruggen et al., 1999). Molecular weight is often used but does not provide any information on the 

geometry of a molecule. Molecular size descriptors such as molecular length and width, and length-

width ratio have been shown to be better predictors (Yangali-Quintanilla et al., 2010; Van der 

Bruggen et al., 1999) with clear physical meanings and were therefore included. Negatively charged 

compounds are electrostatic repelled by the negatively charged membrane surface, and at least partial 

rejection can be achieved even at molecular weights below the MWCO of the membrane (Van der 

Bruggen et al., 1999). Polarizability which describes the electronic aspects of the whole molecule, 

polar surface area, and dipole moment were identified as indirect descriptors for electrostatic 

repulsion.   

3.3.2 The pH Effect 

The original statistical approach employed in QSPR studies (Eriksson and Johansson, 1996) almost 

exclusively focuses on neutral molecules. However, this study considered the effect of pH on the 
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molecular structure and hence, on the numerical value of the molecular descriptors. Depending on 

their pKa values charged species can be dominant at natural water pH values. As a result, not only 

compound properties, but also their behavior during treatment can change substantially affecting 

removals. LogKow values are specific to neutral species and do not consider any dissociation, whereas 

the distribution coefficient (logD) values are indicative of the pH dependent hydrophobicity of an 

ionizable compound. Polarizability and polar surface area are also affected by pH for ionizable 

compounds. In addition, molecular length and width are changed when compounds adjust to new 

structures by optimizing their geometry after losing or adding a proton. Therefore, the dominant 

species of all compounds at pH values typical for water treatment (pH 5.5 - 8.5) were determined 

first, prior to calculating their descriptors.      

3.3.3 Compounds Selection Using PCA and D-optimal Onion Design 

3.3.3.1 Compounds Selection for Treatment Set 1 

Treatment set 1 included coagulation/flocculation, oxidation, activated carbon adsorption, and 

membrane filtration. PCA was applied to the multivariate dataset containing all 182 compounds and 

all 22 descriptors from Table 3.2 (i.e. descriptors for all treatment processes). This resulted in a five-

dimensional model which explained cumulatively 78.2% (PC1-5: 31.2%, 16.0%, 14.2%, 9.9% and 

6.9%) of the systematic variation in this dataset.  

The score plot (Figure 3.2a) provides a summary of the chemical and structural variation among 

the 182 micropollutants. Compounds with similar properties are located close to each other forming 

clusters, e.g. HCH isomers (α-HCH, β-HCH, γ-HCH, and δ-HCH, no.147-150), DDT and its 

metabolites (p,p’-DDD, o,p’-DDT, p,p’-DDT, and p,p’-DDE, no.153-156), tetracycline antibiotics 

(chlortetracycline, doxycycline, oxytetracycline, and tetracycline, no.28-31), cytostatica and X-ray 

contrast media (iomeprol, and iopamidol, no.111-112), and quinolone antibiotics (ciprofloxacin, 

enoxacin, enrofloxacin, levofloxacin, lomefloxacin, norfloxacin, and ofloxacin, no.9-15). Compounds 

within these groups are expected to behave similarly during treatment studies and hence, one 

compound from each of these groupings should be well representative of the others in their group. 

The molecular descriptors are presented in the loading plot (Figure 3.2b). It is correlated to the score 

plot and indicates how descriptors are related to each other. By examining the loading values of each 

PC, it is possible to understand the contributions of the original descriptors to each PC. PC1 is 

strongly positively related to diffusivity, and inversely related to polar surface area, polarizability and 
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molecular weight. Thus, for example, cytostatica and X-ray contrast media which are largest in 

molecular weight and polar surface area are located at the far left of PC1. PC2 is strongly influenced 

by water solubility, and negatively related to logKow, logD and molecular weight. Therefore 

hydrophobic compounds such as DDT and its metabolites with their high logKow and logD values are 

located on the negative side of PC2. It is interesting that phthalates (butylbenzyl phthalate, di(2-

ethylhexyl) phthalate, di-n-butyl phthalate, diethyl phthalate, and dimethyl phthalate, no.164 - 168) do 

not form a cluster although they have a common base structure. Instead they spread out in an almost 

vertical line starting from the central bottom. The significant properties that make them spread are 

logKow (as well as related logD and water solubility) and molecular weight. Among these phthalates, 

logKow values varied from 7.07 for di(2-ethylhexyl)phthalate (no.165) located at the bottom to 1.96 

for dimethylphthalate (no.168) located in the center of the plot. A similar trend was also observed for 

polycyclic aromatic hydrocarbons (PAHs).  The driving forces that make them spread vertically are 

again logKow and molecular weight. Benzo[a]pyrene (no.158) with its high molecular weight (252.32 

g/mol) and low logKow (6.39) is located at the bottom, while naphthalene (no.160) with its smaller 

molecular weight (128.18 g/mol) and much lower logKow (3.33) is at the top. Being located at the 

center of the loading plot, variables such as HOMO, length-width ratio, and number of phenolic 

groups contributed minimally to PC1 and PC2. PC3 and PC4 capture significantly less information 

than PC1 and PC2, but they were still important for characterizing the overall chemical domain. PC3 

versus PC4 score and loading plots are shown in Appendix A. Figure A.1. 

To select representative micropollutants the D-optimal onion design was applied to the score 

plots of PC1-4. PC5 was excluded to limit overall complexity. The chemical domain was divided into 

3 layers and a linear model was used in each layer. As a result, 22 compounds were selected (Table 

3.3, Figure 3.2a) which are evenly distributed throughout the chemical space including one central 

point. D-optimal design allows for replacing of compounds with similar PC score values and 

structures. The original compound selection was in some instances modified considering information 

on commercial availability, analytical methods or existing studies. Regulated compounds were 

preferably selected wherever possible. Some compounds were replaced due to limited commercial 

availability and two others were included as they have been studied in detail (Table 3.3). The selected 

compounds (Table 3.1) displayed a wide spectrum of structural and physico-chemical properties (e.g. 

molecular weights ranged from 94.12 (phenol, no.115) to 777.12 g/mol (iomeprol, no.111), estimated 

logKow values ranged from -2.52 (iomeprol, no.111) to 7.07 (di(2-ethylhexyl)phthalate, no.165) and in 

spite of their small number (n = 22), they provide good coverage of the original range of properties. 
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Selected compounds included antibiotics, prescription and nonprescription drugs, pesticides, 

industrially relevant compounds and hormones. Their structures are available in Appendix A. Figure 

A.3.  
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Figure 3.2 PCA analysis of chemical domain (182 compounds  22 descriptors) covering all 

treatment processes listed in Table 3.2 (a) Score plot of PC1 and PC2 (showing micropollutant 

positions in relation to PC1 and PC2). D-optimal onion design applied (3 layers) for compound 

selection of treatment set 1. Black triangles: compounds not selected, blue circles: selected 

compounds, red dot: center compound, blue boxes: compounds selected to replace similar 

compounds; (b) Loading plot of PC1 and PC2 (showing the contributions of each descriptor to PC1 

and PC2). For abbreviations see Table 3.2. 



 

52 
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Figure 3.3 PCA analysis of chemical domain (182 compounds  12 descriptors) covering oxidation 

processes listed in Table 3.2. (a) Score plot of PC1 and PC2 (showing micropollutant positions in 

relation to PC1 and PC2). D-optimal design applied (3 layers) for compound selection of treatment 

set 2. Black triangles: compounds not selected, blue circles: selected compounds, red dot: center 

compound, blue boxes: compounds selected to replace similar compounds; (b) Loading plot of PC1 

and PC2 (showing the contributions of each descriptor to PC1 and PC2). For abbreviations see Table 

3.2.    

3.3.3.2 Compounds Selection for Treatment Set 2 

Treatment set 2 includes oxidation processes i.e. ozonation and AOPs. PCA was applied to the 

multivariate dataset using only the 12 descriptors identified for oxidation processes (Table 3.2). For 

example logKow, logD and water solubility are not included. The resulting three-dimensional model 

explained 69.6% (PC1-3: 31.7%, 23.2%, and 14.7%) of the variation in the data. The loading plot 

(Figure 3.3b) shows HOMO, number of isolated double bonds and unsaturation index clustered 

together with high PC values whereas low PC values were observed for these descriptors identified 

for treatment set 1 (Figure 3.2b). This is fitting since unsaturation index and isolated double bonds are 

specific for the reactivity with molecular ozone and HOMO is related to the reactivity of a compound. 

In addition GAP, which describes compound reactivity, has a much higher PC value in the oxidation 

loading plot (Figure 3.3b) compared to that of set 1 (Figure 3.2b). For most of the other descriptors, 

positions on the loading plots are inversed but of similar magnitude. For example, diffusivity, 

polarizability and molecular weight influence PC1 and PC2 substantially in both plots. Polarizability 

and molecular weight are also located closely together in both cases.  

In the score plot (Figure 3.3a), structurally similar compounds were again grouped together and 

diverse compounds were far apart. Compared to the score plot of treatment set 1 (Figure 3.2a) there 

were some similarities but also differences. Generally, compound positions were inversed due to the 

inverse behavior of many descriptors in the loading plots. The score plot of treatment set 1 (Figure 

3.2a) has several clusters at high PC values which are mirrored in the oxidation (treatment set 2) score 

plot (Figure 3.3a) at lower PC values, e.g. HCH isomers are located in the upper left corner instead of 

the lower right. Tetracyclines, cytostatica and X-ray contrast media behaved in the same manner. 

They are all heavily influenced by molecular weight and polarizability which are of similar weight in 

both loading plots but in inverse directions. Interesting trends were found for phthalates and PAHs. 

Unlike in Figure 3.2a, phthalates are scattered in the central part of the score plot, mainly because the 
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previous dominant descriptor logKow was excluded. Their positions were now strongly influenced by 

molecular weight and polarizability, both important for PC1. PAHs were found to be distributed 

horizontally at the bottom of the score plot. Similarly, because of the exclusion of logKow, molecular 

weight and number of aromatic double bonds (nAB) became the influential descriptors of PC1 for the 

PAHs determining the positions of individual PAHs. Benzo[a]pyrene (no.158) with the highest 

molecular weight (252.32 g/mol) and high nAB (24) is at the far right, while naphthalene (no.160), 

the PAH with the lowest values for molecular weight (128.18 g/mol) and nAB (11), is at the far left. 

Score and loading plots for PC2 versus PC3 are shown in Appendix A. Figure A.2.  

D-optimal onion design was then applied to the PCs and 22 representative compounds were 

identified (Table 3.3, and Appendix A. Figure A.4). Again, selected compounds span a wide range of 

properties and applications (Table 3.1) covering the range of properties of the original micropollutant 

pool well. 

The selected micropollutants are all heterogeneous in structure to each other as indicated by the 

Tanimoto coefficients. These coefficients are commonly used as a tool to determine the similarity (or 

dissimilarity) of a compound pair. If a Tanimoto coefficient is higher than 0.85 then compounds are 

considered similar (Matter 1997). In this study, the Tanimoto coefficients of all the compound pairs 

of the selected compound sets 1 and 2 were calculated using a free web service tool ChemMine 

(http://chemmine.ucr.edu) in which the algorithm is based on the maximum common substructure 

(Cao et al., 2008). As shown in the Appendix A. Tables A.4 and A.5, all compounds in the two sets 

are dissimilar to each other (Tanimoto coefficient < 0.85). 

  

http://chemmine.ucr.edu/
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Table 3.3 Representative micropollutants selected by D-optimal onion design  

Treatment set 1 

(coagulation/flocculation, oxidation, activated 

carbon adsorption, and membrane filtration) 

Treatment set 2 

(oxidation processes) 

 

No. in 

Chemical 

Domain 

Compound Name Layer in D-

optimal 

Onion 

Design 

No. in 

Chemical  

Domain 

Compound Name Layer in D-

optimal 

Onion 

Design 

 

10 Enoxacin 1 4 Methicillin 1  

48 Primidone 1 35 Triclosan 1  

69 Carazolol 1 87 Gemfibrozil 1  

85 Bezafibrate 1 88 Clofibric acid 1  

100 Celestolide 1 151 Dicofol 1  

122 Atrazine* (no.129, 

Prometone 
a
) 

1 171 Equilenin 1  

167 Diethylphthalate 1 93 Butylated hydroxyanisole 2  

1 Amoxicillin 2 124 Dicamba* 2  

32 Carbadox 2 132 Trifluralin* 2  

108 Hydrocinnamic acid 2 164 Butylbenzylphthalate 2  

132 Trifluralin* (no.164, 

Butylbenzyl phthalate 
a
) 

2 165 Di(2-ethylhexyl)phthalate  2  

135 α-Endosulfan 2 181 Testosterone 2  

173 17α-Ethinylestradiol 
c 

(no.175, Mestranol 
b
) 

2 31 Tetracycline (no.81, 

Epirubicin 
b
) 

3  

31 Tetracycline (no. 30, 

Oxytetracycline 
b
) 

3 50 Metformin 3  

76 Azathioprine 3 63 Fenoterol 3  

111 Iomeprol (no.84, 

Methotrexate 
b
) 

3 111 Iomeprol 3  

115 Phenol 
c 
(no.114, 4-Methyl 

phenol) 

3 115 Phenol 3  

149 -HCH 3 116 Tris(chloroethyl)phosphate  3  

162 Pyrene 3 118 Hexachlorobenzene 3  

165 Di(2-ethylhexyl)phthalate 3 158 Benzo[a]pyrene* 3  

182 Androsterone 3 170 Tri(2-

butoxyethyl)phosphate 

3  

59 Ketoprofen  

(no.40, Hydrocodone 
b
) 

center 144 Methoxychlor* (No.74, 

Sotalol 
a, b

) 

center  

Compounds in brackets were replaced with similar compounds on the left. * Regulated compounds in 

Guidelines for Canadian Drinking Waterloo Quality (2008). 
a
 Compounds were replaced with 

regulated compounds; 
b
 Compounds were replaced due to limited commercial availability; and 

c
 

compounds were included as they have been studied in detail.  
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3.4 Relevance of Representative Micropollutants Lists and Applicability of 

Selection Approach 

One of the key features of the selection process is that compound properties important for the water 

treatment processes under investigation were incorporated in the selection process. Hence, the 

selected representative compound set 1 (Table 3.3) can be used in experimental drinking water 

treatment studies screening all treatment processes listed in Table 3.1. These experimental results are 

particularly suited to assess treatability. However, if different micropollutants than the ones included 

in the original compound pool are of interest then the selection can be modified as described later in 

this section. 

The representative compounds set 2 (Table 3.3) is tailored to ozone and AOPs studies as only 

descriptors identified as relevant for these processes have been used in the selection process. 

Compound set 2 may serve as a training set to develop QSPR models correlating compound structure 

to rate constants for reactions with O3 and ∙OH. Once validated, these models can be used to predict 

other untested compounds as long as the untested compounds reside within the chemical domain. 

These models would be valuable for screening compound behavior and assessing suitability of 

oxidation processes.  

It should be pointed out though that both lists are not suitable for water quality surveys since a 

survey aims to provide information on occurrence and not treatability. 

Analytical methods are available for all of the  selected compounds in set 1 and set 2 since one of 

the selection criteria for inclusion in the original compound pool was that they are either detected in 

water at trace concentration or studied in depth (e.g. Kolpin et al., 2002; Snyder 2008; Westerhoff et 

al., 2005; Benotti et al., 2009b). Realistically, more than one method will have to be employed for 

either list due to the diversity of the compounds. As with any study targeting these trace contaminants 

complex sample preparation methods and advanced instrumentation such as GC-MS and HPLC-MS 

will be required. However, the time and effort spent on these experimental studies are well worth it 

since the selected compounds are well representative of many others and an overall understanding of 

their behavior during treatment can be obtained. Thanks to the flexibility of the overall selection 

approach, in particular the D-optimal onion design, difficult to analyze compounds may be excluded 

or replaced as has been described in the latter part of section 3.3.1.  
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The selection approach presented here is flexible and it can be tailored to fit individual needs. 

Individual steps of the overall approach (indicated by I, II or III in Figure 3.1) can be customized.  

First of all, if other classes of micropollutants are targeted than the ones in this paper then the 

compound pool can be tailored by only including the compounds of interest (I in Figure 3.1). 

Secondly, individual treatment processes or a combination of treatment processes (e.g. adsorption-

membrane filtration) can be selected to fit ones needs as long as the relevant descriptors are identified 

(II in Figure 3.1). As the knowledge of treatment processes grows the list of molecular descriptors can 

be modified. Third, the number of compounds selected for experimentation can either be reduced or 

increased by adjusting the number of layers in the D-optimal onion design (III in Figure 3.1).  

It should be noted that the lists of selected compounds presented here (i.e. set 1 and set 2) are 

examples to show the applicability and flexibility of the selection approach. To recommend 

representative compounds to the water industry for specific purposes or for particular research 

projects, many factors need to be considered and the compound selection may have to be customized 

as described above to fulfill the needs of a particular project. 

3.5 Summary and Conclusions 

Micropollutants such as EDCs and PPCPs may pose a risk to drinking water consumers. To assess the 

effectiveness of water treatment processes, it is necessary to select a small group of representative 

micropollutants for experimental treatment studies. Unlike others to-date, this study proposes a 

systematic selection approach which identifies representative micropollutants solely based on their 

physico-chemical and structural properties relevant in individual water treatment processes. Results 

are summarized as follows. 

 Physico-chemical properties (i.e. molecular descriptors) of micropollutants determine to a 

large extent their removal from drinking water. A set of 22 molecular descriptors which are 

relevant to the removal mechanisms of individual treatment processes (i.e. 

coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration) 

was identified. Only descriptors with clear physical meanings were included.  

 A systematic statistical approach combining principal component analysis and experimental 

design was modified and applied to a pool of heterogeneous micropollutants and their 

molecular descriptors. Principal component analysis summarized the variation in this original 

multivariate dataset and extracted latent variables, the principal components. D-optimal onion 
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design was applied to these principal components to select structural representative 

compounds.   

 To demonstrate the applicability of the selection approach, it was applied to a pool of 182 

micropollutants and two sets of 22 representative micropollutants were selected. The first set 

is suitable for experimentally studying a range of water treatment processes 

(coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration) 

whereas the second set can be used for studying oxidation processes. The small number of 

selected micropollutants (22 out of 182) provided very good coverage over the entire property 

space and thus represented the original micropollutant pool well.  

 Maximum information on treatability of compounds with very diverse structures can be 

obtained with a minimum amount of experimental study when using the selected compounds, 

therefore making treatment studies more cost effective.  

 The selection approach presented here is flexible and can be customized to fit individual 

needs by for example reducing the number of compounds, applying it to other processes such 

as adsorption and/or membrane filtration, or studying other classes of micropollutants by re-

defining the compound pool. 
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Chapter 4 

Kinetics of Selected Micropollutants in Ozonation and Advanced 

Oxidation Processes (UV/H2O2) 

This Chapter is based on a paper of the same title was submitted to Water Research in April 2012. 

This article focuses on the determination of the reaction rate constants of selected micropollutants 

in their reaction with ozone and hydroxyl radicals. Micropollutants included in this study were 

selected as representative compounds from a large initial compound pool (Chapter 3). The 

experimental data obtained in this study were later used for model development in Chapters 5 and 6. 

 

Outline: Second-order reaction rate constants of micropollutants with ozone (kO3) and hydroxyl 

radicals (kOH) are essential for evaluating their removal efficiencies from water during ozonation and 

advanced oxidation processes. But kinetic data are lacking for many of the newer micropollutants. 

Twenty-four micropollutants with very diverse structures and applications including endocrine 

disrupting chemicals, pharmaceuticals, and personal care products were selected, and their kO3 and 

kOH values were determined using batch-scale reactors. Three different methods were used to 

determine kO3 values whereas competition kinetics method was applied for measuring kOH values. 

Reactions with ozone were highly selective as indicated by kO3 values ranging from 10
-2

 to 10
7
 M

-1 
s

-1
. 

The general trend of ozone reactivity can be explained by micropollutant structures in conjunction 

with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with 

hydroxyl radicals as shown by their high kOH values (10
8
 to 10

10
 M

-1 
s

-1
) even though they were 

structurally very diverse. For compounds with a low reactivity towards ozone, hydroxyl radicals 

based treatment such as O3/H2O2 or UV/H2O2 is a viable alternative. This study contributed to filling 

the data gap pertaining kinetic data of organic micropollutants while confirming results reported in 

the literature where available. 

 

Keywords: ozone, hydroxyl radicals, rate constants kO3 and kOH, water treatment   
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4.1 Introduction 

Studies have documented a great variety of micropollutants including endocrine disrupting chemicals 

(EDCs) and pharmaceuticals and personal care products (PPCPs) in surface water and groundwater 

(Ternes 1998; Kolpin et al., 2002). Concerns about their effects on the environment and human health 

are increasing. Many of these micropollutants cannot be completely removed by drinking water 

treatment processes, and they can therefore be detected in finished drinking water (Benotti et al., 

2009).  

Although insufficient removals of many micropollutants from drinking water by conventional 

treatment processes have been observed, advanced technologies have shown great abilities to 

degrade/remove many of these micropollutants. In particular, ozonation and hydroxyl radicals based 

advanced oxidation processes (AOPs) are effective means for degrading micropollutants during 

drinking water treatment (Ikehata et al., 2006). However, the major disadvantage of toxic by-products 

and incomplete mineralization has to be considered (von Gunten 2003). During ozonation the 

oxidation occurs through direct reactions with molecular ozone and indirect reactions with hydroxyl 

radicals which are produced by ozone decomposition. While molecular ozone selectively attacks 

organic compounds with high electron density functional groups such as double bonds, activated 

aromatic systems, and deprotonated amines, hydroxyl radicals react non-selectively with organic 

contaminants (von Gunten 2003). During AOPs micropollutants are degraded mainly by hydroxyl 

radicals which can be generated by various combinations of reactants such as UV/H2O2, O3/H2O2, 

Fenton/photo-Fenton, UV/TiO2, etc.  

In order to evaluate the potential for removing micropollutants by ozonation or AOPs, kinetic 

data are needed to predict to what extent micropollutants will be degraded after a specified duration 

of treatment (e.g., ozone dose). Based on this initial assessment treatment processes can be optimized 

in pilot studies, or if current settings fail to reach a satisfactory removal alternative treatment 

processes may be considered. In addition, models have been developed to describe the removal 

efficiency of micropollutants in natural waters incorporating reaction rate constants, e.g., Rct model 

for ozonation (Elovitz and von Gunten 1999) and ROH,UV model for UV/H2O2 AOP (Rosenfeldt and 

Linden 2007). Although kinetic data are available for a large number of chemicals for the reactions 

with ozone and hydroxyl radicals (Hoigné and Bader 1983a; Buxton et al., 1988), due to the 

complexity of analytical methods and the high cost of experimentation, there is still a data gap 

especially for emerging micropollutants.  



 

61 

Clofibric acid (4) Gemfibrozil

(1)

Metformin

Iomeprol

Dicamba

Tris(chloroethyl) 
phosphate

Sulfamethoxazole

pyrene

(6)

(5)

(8)

(7)

(2)

(3)

Dicofol

Equilenin

Benzo[a]pyrene

Methoxychlor Trifluralin

Di(2-ethylhexyl) phthalate

Tri(2-butoxyethyl)
phosphate

Butylated hydroxyanisole

Butylbenzyl phthalate

Methicillin

Hexachlorobenzene

Fenoterol

Tetracycline

Triclosan

Phenol

17alpha-Ethinylestradiol

 

Figure 4.1. Structure of the selected 24 micropollutants at neutral pH. Micropollutants are divided 

into 8 groups based on their chemical structures: (1) phenolic compounds; (2) anisole derivatives; (3) 
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aniline and amine derivatives; (4) phenoxyalkanoic acid derivatives; (5) polycyclic aromatic 

hydrocarbons; (6) phthalates; (7) halo-substituted aromatics; (8) organophosphorus compounds. The 

common structural features for compounds in the same group were highlighted in red color. 

The objective of this study was therefore to determine second-order reaction rate constants of 

twenty-four selected micropollutants (as shown in Figure 4.1) for the reaction with ozone (kO3) and 

with hydroxyl radicals (kOH), and therefore to assess the potential of ozonation and AOPs to degrade 

micropollutants with very diverse structures. Twenty-two of the micropollutants were selected using a 

statistical approach (principal component analysis followed by D-optimal onion design) from a 

compound pool containing 182 structurally diverse compounds. The selection process is based on 

linking the structural characteristics of micropollutants to the removal mechanisms of oxidation 

process such as ozonation and AOP. The 22 selected compounds were considered as structural 

representatives and better understandings can be gained by studying them in detail (Jin and Peldszus, 

2012). In addition, two micropollutants (pyrene and sulfamethoxazole) were also studied for 

reference purposes. The determination of the rate constants was carried out in bench-scale 

experiments in pure aqueous solutions, and where available results were compared with literature 

data. The reactivity of the studied micropollutants was then linked to their structural characteristics.     

   

4.2 Materials and Methods 

4.2.1 Standards and Reagents 

Standard chemicals were purchased from Sigma-Aldrich (Oakville, ON), and Toronto Research 

Chemicals (North York, ON) of the highest purity available (>97%). Stock solutions of these 

compounds were made by dissolving the individual compounds into ultrapure water (Millipore). 

Compounds with extreme low water solubility (e.g., hexachlorobenzene) were dissolved into 

methanol or acetonitrile first, and then a very small volume of the stock solutions was added into 

ultrapure water to reach the desired concentrations for the experiment. Indigo blue and para-

chlorobenzoic acid (pCBA) were of the highest grade commercially available (99%). All other 

chemicals and solvents used were reagent grade and used without further purification.  
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4.2.2 Analytical Methods 

Aqueous ozone concentrations were determined by UV absorbance at 258nm ( = 3000 M
-1

cm
-1

) 

when there was no interference present in the reaction solution, otherwise the standard indigo 

colorimetric method (Eaton et al., 2005) was used. All micropollutants were analyzed by a high-

performance liquid chromatography (HPLC) system (Waters 600E system controller, Waters 717 plus 

autosampler, Waters 996 photodiode array detector, and Empower 2 chromatography data software). 

The column used was a Zorbax SB-C18 column (3.5 µm, 4.6 × 150 mm) (Agilent). Eluents consisted 

of 10 mM phosphoric acid buffer and methanol or acetonitrile. Varied eluent ratios were used 

depending on the compounds analyzed (as shown in Appendix B Table B.1). The injected sample 

volumes ranged from 20 to 50 L depending on concentrations analyzed and quantification limits.  

4.2.3 Determination of Rate Constant for the Micropollutants with Ozone 

Ozone gas was generated using a water-cooled corona discharge generator (Ozotec Type ‘S’, 

model 2, Hankin Atlas ozone system, Canada) from oxygen feed gas (oxygen > 99%).  Aqueous 

ozone stock solutions were prepared by continuously bubbling gas phase ozone produced by the 

ozone generator into ultrapure water (for a minimum of 1 h) chilled in an ice-water bath. The 

concentrations of the ozone stock solutions ranged from 15-20 mg/L. The pH was adjusted to a value 

of 7 (± 0.1) in all experiments by adding orthophosphate buffers.  

Three different methods were used in this study to determine the kO3, namely the competition 

kinetics method, the compound monitoring method, and the ozone monitoring method. The 

appropriate experimental method was selected based on the expect reactivity of the target compound 

towards ozone. The competition kinetics method is convenient to use because ozone decay does not 

need to be monitored. However, it is only applicable to fast reacting compounds (kO3 > 1000 M
-1

s
-1

). 

Phenol is commonly used as the reference compound (Deborde et al., 2005), and pH control is 

important since the kO3 of phenol varies greatly with pH (kneutral,O3 = 1.310
3
 M

-1
s

-1
 and kanion,O3 = 

1.310
9
 M

-1
s

-1
, pKa = 9.9). The compound monitoring method is used for slow reacting compounds 

(kO3 < 1000 M
-1

s
-1

) in which the decrease of the compound in presence of ozone (at least 10-fold 

excess) is monitored together with the ozone decay (Hoigné and Bader 1983b). This method is not 

applicable to fast reacting compound because the compound would be exhausted in a very short 

period of time before consecutive samples could be taken. Both methods require an analytical method 

to determine the remaining concentration of the compounds involved and the reference compound in 
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the case of the competition method. This typically involves the use of analytical instrumentation such 

as HPLC or GC-MS. If the instrumentation or a suitable analytical method is not available, an 

alternative indirect way to determine the rate constant of slow reacting compounds is the ozone 

monitoring method. Instead of monitoring the concentration of a compound, this method monitors the 

concentration of ozone as a function of time in the presence of the target compound (in excess) (Yao 

and Haag 1991).  

Competition kinetics (for fast reacting compounds, kO3 > 1000 M
-1

s
-1

). The target compound and 

a reference compound (phenol) with a similar reaction rate constant to the target compound were 

added to a series of 25 mL flask at the same initial concentrations (1-10 M). This solution was 

buffered at pH 7 (± 0.1) using phosphate buffer, and contained tert-butyl alcohol (10 mM) as a 

hydroxyl radicals scavenger. The experiments were carried out at 20-22C. Seven under-

stoichiometric concentrations of the ozone stock solution were injected into individual solutions of 

the reaction mixture. The solutions in the serum vials were vigorously stirred to guarantee the even 

distribution of ozone during ozone injection. One minute after each injection, a 1 mL sample was 

withdrawn and samples were analyzed by HPLC. The experiment was repeated two to three times for 

each compound. The Equation 4.1 was used to calculate the rate constant. 
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Where kO3,R and kO3,P are rate constant of the reference compound (R) and target compound (P), 

respectively. [R]0 and [P]0 represent the concentrations of the reference and target compound before 

adding the ozone solution, respectively. [R] and [P] represent the remaining concentration of the 

reference and target compound after the ozone reaction, respectively. By plotting ln([R]/[R]0) versus 

ln([P]/[P]0), the ratio of kO3,P and kO3,R which was represented by the slope of the straight line can be 

determined. Then the rate constant of the target compound can be calculated since the rate constant of 

the reference compound is already known. 

Phenol was selected as the reference compound. The apparent second-order rate constant of 

phenol at pH 7 was calculated (1.810
6
 M

-1
s

-1
 at pH = 7) based on the literature data using Equation 

4.2.  
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With kO3,phenol = 1.3  10
3
 M

-1
s

-1
, kO3,phenolate = 1.4  10

9
 M

-1
s

-1
, and pKa = 9.9 (Hoigné and Bader 

1983b). 

Compound monitoring method (for slow reacting compounds, kO3 < 1000 M
-1

s
-1

). The second-

order rate constants were determined by following the decrease of the compound in the presence of 

ozone in at least a 10-fold excess. The experiments were carried out in 500 mL glass bottles at 20-22 

C and pH 7 (± 0.1), and containing tert-butyl alcohol (10 mM) as a hydroxyl radicals scavenger. An 

aliquot of the ozone stock solution was injected with a syringe to start the reaction. The initial ozone 

concentrations ranged from 15-300 M depending on the expected reactivity of the compound 

towards ozone. Several 1 mL samples (at least 6 samples) were withdrawn with a dispenser system 

into HPLC vials, which contained fresh sodium sulfite solution (25 mM) to quench residual ozone. 

The total reaction time varied from a few minutes to several hours. Ozone decomposition had to be 

taken into account for experiments which were run for more than a few minutes. In these cases, the 

ozone exposure was determined by withdrawing additional samples for ozone analysis. The 

concentrations of the micropollutant were then plotted versus the ozone exposure. The rate constant 

was determined by the slope of the plot according to Equation 4.3.  
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Ozone monitoring method (Yao and Haag 1991). This method involved monitoring the 

concentration of ozone as a function of time in the presence of at least a 5-fold excess of the organic 

compound. For compounds with negligible UV absorbance at 258 nm and water solubility higher 

than 200 μM, the reactions were initiated by injecting ozone stock solution into a 10-cm cuvette 

containing the compound, pH buffer (pH 70.1) and hydroxyl radicals scavenger (tert-butyl alcohol, 

10 mM). The ozone concentration was monitored by a spectrophotometer at the single wavelength of 

258 nm. The concentration of ozone as a function of time was measured by the indigo method for 

compounds where the UV absorbance of the compound interfered with the spectrophotometric 

determination of ozone at 258nm. 
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Figure 4.2 Determination of rate constant with ozone using three different methods. (a) competition 

kinetics method: phenol was the reference compound; (b) compound monitoring method: 

methoxychlor; (c) ozone monitoring method: the pseudo-first order rate of ozone decay (k’) was 

measured at pH = 7, TBEP represents tris(2-butoxyethyl) phosphate, TCEP represents tris(2-

chloroethyl) phosphate. 
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Figure 4.3 Determination of rate constant with hydroxyl radicals using competition kinetics method. 

 

4.2.4 Determination of Rate Constant for the Micropollutants with Hydroxyl Radical 

The competition kinetics method was used in the present study to determine the kOH. Hydroxyl 

radicals were generated by UV/H2O2. It is preferable to apply the UV/H2O2 method to compounds 

which have low susceptibility to UV photolysis. An alternative to generate hydroxyl radicals is pulse 

radiolysis which decomposes water molecules without affecting the compounds being studied. It was 

found that the hydroxyl radical rate constants determined by UV/H2O2 and pulse radiolysis were in 

good agreement (Elovitz et al., 2008).  

Experiments with UV/H2O2 were performed under a collimated beam apparatus (Calgon Carbon 

Corp, Pittsburgh, PA) equipped with a 1 kW medium pressure (MP) mercury lamp (ozone-free, 

Hanovia #6806A441, Union, NJ) which emits a broadband spectrum from 200 to 600 nm. UV fluence 

(mJ/cm
2
) was calculated as the average irradiance multiplied by the exposure time. The average UV 

irradiance in the test water was determined from the incident irradiance, UV absorbance, and sample 

depth using a spreadsheet program developed by Bolton and Linden (2003). A UV radiometer (IL 
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1700, SED 240 detector, International Light, Peabody, MA) was used to measure incident irradiance 

(mW/cm
2
) at the surface of the test water. The radiometer was calibrated at 2 nm intervals in the 

range of 200 to 400 nm. The UV absorbance (200 – 300 nm) of the test water was measured in a UV-

visible spectrophotometer (HP 8453, Agilent Technologies, Santa Clara, CA). The exposure time 

(seconds) was determined by dividing the desired UV fluence (up to 100 mJ/cm2) by the average 

UV irradiance. For the MP UV source, the fluence was calculated as the total UV output in the 

200 – 300 nm range. 

All experiments were performed in ultrapure purified water at room temperature (20-22C) and 

the pH was buffered to 7 (± 0.1) using 5 mM phosphate buffer. The competition kinetics method was 

used to determine the second-order rate constants for the reaction with hydroxyl radicals. The probe 

compound para-chlorobenzoic acid (pCBA) was used as the reference compound with a known rate 

constant of kOH = 5  10
9
 M

-1
s

-1
 (Buxton et al., 1988). The pKa of pCBA is 3.98 (Park et al., 2004) 

and at pH 7 pCBA is in its protonated form. The exposures were performed under the collimated 

beam apparatus, with spiked solutions (100 ml) containing equal concentrations (1 M) of target 

compound and reference compound, which were placed in Pyrex crystallizing dishes (7.6 cm 

diameter, Fisher Scientific, Ottawa, ON) containing a small stir bar to provide constant mixing. 

Before and after exposing the spiked samples to UV irradiation, a calibrated radiometer was placed 

under the UV source at the same height as the water level in the Pyrex dish, to take incident 

irradiance measurements. Hydroxyl radicals were generated by photolysis of H2O2. 10 mg/L of 

hydrogen peroxide were added. The hydrogen peroxide residual were determined using the I3
-
 method 

(Klassen et al. 1994). After exposure, catalase (4 g/L) was used to quench the residual H2O2 to stop 

the reaction. 

Samples were repeatedly irradiated (n  2) for constant time intervals. Samples were withdrawn 

at preset irradiation intervals (at least 5) and then analyzed by HPLC. The second order rate constants 

were calculated based on the Equation 4.4. 
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where kOH,R and kOH,P are hydroxyl radical rate constants for the reference (R) and target 

compound (P), respectively. Control experiments without H2O2 addition were performed to determine 

if the compounds undergo direct photolysis. If the compounds undergo significant direct photolysis, 
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the contribution from direct photolysis has to be considered in the calculations using the formula 

introduced by Shemer et al., (2006) and Elovitz et al., (2008). 
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Where k’P, k’R are the overall observed time-based pseudo-first-order rate constant for the 

degradation of target and reference compound using UV/H2O2, respectively. The terms k’d,P, k’d,R are 

the pseudo-first-order direct photolysis rate constant using UV alone for the target and reference 

compound, respectively. The (E’avg(H2O2)/E’avg(w/o H2O2)) term in Equation 4.5 is a ratio of the average 

irradiance with H2O2 (E’avg(H2O2)) and the average irradiance without H2O2 (E’avg(w/o H2O2)). 

 

4.3 Results and Discussion 

Measured kO3 and kOH values for the selected 24 micropollutants are shown in Table 4.1 . For 

most of these compounds kinetic data were not available and hence, the data presented here aid in 

filling a data gap pertaining to micropollutants relevant to the water industry. For some compounds 

rate constants have recently become available in the literature and results reported here confirmed the 

published data. 

Examples of experimental results for kO3 and kOH determinations are shown in Figure 4.2 and 

Figure 4.3, respectively. Initially, several compounds with known rate constants were tested to 

validate the experimental methods for rate constant determination. For example, the validity of the 

compound monitoring method was tested by determining kO3 of phenol, and the result (1.110
3 
M

-1
s

-1 

at pH 2) was in good agreement with the reported value of 1.310
3 
M

-1
s

-1
 at pH 2 (Hoigné and Bader 

1983a). The ozone monitoring method was tested by measuring kO3 of trichloroethylene (13±0.3 M
-1

s
-

1
), which was comparable to the reported kO3 values for trichloroethylene of 15±2 M

-1
s

-1
 by Yao and 

Haag (1991) and of 17±4 M
-1

s
-1

 by Hoigné and Bader (1983a). The competition kinetics method was 

tested by measuring kO3 of 17-ethinylestradiol (1.810
6
 M

-1
s

-1
 at pH 7) and kOH of phenol (6.110

9
 

M
-1

s
-1

), and again results were consistent with the literature as shown in Table 4.1  (Buxton et al., 

1988; Huber et al., 2003). 
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The 24 micropollutants studied here cover a wide range of applications and usage, including 

various pharmaceutical classes (e.g., antibiotics, lipid regulators and X-ray contrast media), 

disinfectants, pesticides and herbicides, fire retardants, natural and synthetic hormones, phthalates, etc. 

Up to now, kinetics for the reactions with ozone and hydroxyl radicals have not been investigated for 

many of these selected micropollutants. Furthermore, these compounds were selected from 182 

micropollutants by a systematic statistical approach (Jin and Peldszus 2011) and they are therefore 

structurally representatives of many other similar micropollutants. Structural characteristics are very 

diverse (Figure 4.1) ranging from very large halogenated compounds (i.e. iomeprol MW = 777 g/mol) 

to small, nitrogen containing compounds (i.e. metformin MW = 129 g/mol). Hence, it is expected that 

their rate constants, especially kO3, will cover a fairly large range because of the selective nature of 

ozone. This was confirmed by the measured ozone rate constants, kO3, which ranged from <0.01 

(hexachlorobenzene) to 110
7
 M

-1
s

-1
 (equilenin), and standard deviations for repeated measurements 

(n  2) were all within 20% of the mean, except for benzo(a)pyrene (37%). Hydroxyl radical rate 

constants, kOH ranged from 10
8
~10

10
 M

-1
s

-1
, and repeat measurements (n  2) were very consistent.  

This fairly narrow range of hydroxyl radical rate constants was expected since the hydroxyl radicals 

are very reactive, relatively non-selective oxidant.  

Rate constants determined in this study were compared with those from the literature where 

available, and most of the measured rate constants were very close and thus confirming previously 

reported values (Table 4.1). For some cases, similar results were obtained albeit different 

experimental methods were employed. For example, similar kO3 results were obtained for pyrene and 

benzo(a)pyrene, even though competition kinetics was used in this study and the compound 

monitoring method was used in the reference (Butkovic et al., 1983). In addition, similar results were 

found in the determination of kOH for tetracycline, even though UV/H2O2 was used to generate 

hydroxyl radicals in this study, but the -radiolysis technique was applied by Dodd et al. (2006). In 

the case of sulfamethoxazole, different results were obtained when different reference compounds 

were used for competition kinetics. The kO3 of sulfamethoxazole obtained in this study was 

determined with phenol as a reference compound and it was close to the value reported by Huber et 

al., (2003) who also used phenol as a reference. However, Dodd et al. (2006) using cinnamic acid as 

reference reported a kO3 value which was one magnitude lower.  

For dissociating compounds rate constants, in particular kO3, are pH dependent (Hoigné and Bader 

1983b). Instead of determining the specific rate constant of each species involved, the apparent rate 
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constants at pH 7 were determined in this study as these are more relevant in drinking water practice. 

Over half of the studied compounds (13 out of 24 compounds) are dissociating compounds. At pH 7 

either the protonated form or deprotonated form will be prevalent for almost all of these compounds 

(except triclosan and fenoterol) because their pKa values differ from pH 7 by at least 2 units (Table 

4.1). The pH values in natural water often ranges from 6-8 and it follows that for most of these 

compounds rate constants determined at pH 7 are sufficient for preliminary assessment or modeling 

of compound reactivity under water treatment conditions. 

In the following paragraphs, the relationship between the reactivity of micropollutants as 

described by their experimentally determined rate constants and their structural features will be 

discussed. For ease of discussion, the 24 micropollutants are divided into 8 sub-groups based on their 

structure, for example as phenolic compounds, anisole derivatives, aniline derivatives, etc. (as shown 

in Figure 4.1).  

For aromatic systems, electron-donating substituents (such as –OH, –NH2, –OCH3, –CH3) 

activate the benzene ring towards electrophilic attack such as molecular ozone and hydroxyl radicals, 

and electron-withdrawing substituents (such as –NO2, –CN, –X) deactivate the benzene ring (von 

Gunten 2003). Therefore, in general, phenolic compounds (-OH), anisole derivatives (-OCH3), and 

aniline derivatives (-NH2) are expected to be of higher reactivity whereas halo-substituted compounds 

are expected to be of low reactivity. It will become apparent that reaction rates are influenced by a 

combination of structural features where some will have a stronger influence than others.  

Phenolic Compounds. Phenols are aromatic systems activated by an electron-donating 

substituent (–OH). Phenol is a dissociating compound with an acid dissociation constant of pKa = 9.9, 

and the ionic form (kO3,phenolate = 1.4  10
9
 M

-1
s

-1
) is much more reactive than the neutral form (kO3,phenol 

= 1.3  10
3
 M

-1
s

-1
) (Hoigné and Bader 1983b). As a consequence phenol is much more reactive 

towards ozone at high pH values. As shown in Figure 4.4, all compounds with phenolic moiety show 

high reactivity towards ozone at pH 7, including equilenin, butylated hydroxyanisole, fenoterol, 

tetracycline, triclosan, phenol, and 17-ethinylestradiol with kO3 values ranging from 1.810
6
 M

-1
s

-1
 

to 1.010
7
 M

-1
s

-1
. The pKa values of these compounds ranged from 8.1 (triclosan) to 10.6 (butylated 

hydroxyanisole) and their rate constants are therefore expected to increase by several orders of 

magnitude when the phenolic group dissociates at higher pH values. However, with the exception of 

triclosan this increased reactivity with ozone at high pH values will likely not be relevant for drinking 

water treatment scenarios as pH values would have to be increased well beyond what is typically 
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encountered in natural waters. The kO3 values of tetracycline and 17-ethinylestradiol determined in 

this study were very close to the reported values. But approximately one order difference in 

magnitude was observed in kO3 values for triclosan which may be due to the different methods 

employed. In this study the kO3 value of triclosan was measured at pH 7 by the competition kinetics 

method, while Suarez et al. (2007) monitored the loss of triclosan in presence of excess ozone using a 

continuous-flow quenched-reaction monitoring system. With this methodology they determined 

elementary rate constant of all possible species (Suarez et al., 2007) which were used to calculate the 

kO3 value at pH 7 given in Table 4.1. 

Equilenin shows the highest reactivity toward ozone and hydroxyl radicals as demonstrated by its 

high kO3 and kOH values. Both equilenin and 17-ethinylestradiol are estrogenic steroid hormone 

compounds with similar structures and pKa values. But equilenin is likely more reactive because of 

the fused pair of benzene rings (i.e. naphthalene moiety) which makes it more reactive towards an 

electrophilic attack than a single benzene ring. The kOH of 17-ethinylestradiol determined in this 

study is about half of the reported value by Huber et al. (2003) although the determination methods 

were basically the same. However, a factor of two is often considered a reasonable variation in terms 

of the absolute values of second-order rate constant of organic compounds in the reaction with OH 

radials (Elovitz et al., 2008). Haag and Yao (1992) also considered a factor of two as an acceptable 

range for the purpose of estimating rate constants during treatment processes.  
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Figure 4.4 Experimentally determined kO3 and kOH values of the selected phenolic compounds at pH 

7: EQ is equilenin, BHA is butylated hydroxyanisole, FNT is Fenoterol, TET is tetracycline, TRC is 

Triclosan, PH is phenol, and EE2 is 17-ethinylestradiol. The kO3 of phenol was from literature 

(Hoigné and Bader 1983b). 

Anisole Derivatives. The methoxy group (-OCH3) has electron donating properties and 

substitutions on a benzene ring with methoxy groups, especially on the ortho and para positions, 

increase therefore the electron density which favors electrophilic attack by ozone. As a result, the 

reactivity of anisole towards ozone (290 M
-1

s
-1

) is over one hundred times higher than the reactivity 

of benzene (2 M
-1

s
-1

) (Hoigné and Bader 1983a). Anisole derivatives such as methicillin, 

methoxychlor, and dicamba were investigated in the present study (Figure 4.5). Methicillin is a -

lactam antibiotic of the penicillin class. Methicillin shows the highest reactivity towards ozone among 

the three compounds, probably because of the absence of chlorine substitution which is a strong 

electron-withdrawing group. In contrast, dicamba is very resistant to ozone attack due to two chlorine 

substitutions on the benzene ring which decreases the electron density. The reactivity of 

methoxychlor falls in between methicillin and dicamba, probably because the chlorine groups are not 

directly substituted on the benzene ring, which softens the electron withdrawing effect of chlorine. It 
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should be noted that kO3 for the compounds with a phenolic substituent (Figure 4.4) were all higher 

than those measured for the anisole derivatives which is consistent with stronger electron donating 

properties of the –OH group. All of the anisole derivative compounds studied showed high reactivity 

toward hydroxyl radicals and thus can be efficiently degraded by hydroxyl radicals dominated 

treatment processes (Figure 4.5).  

 

Figure 4.5 Experimentally determined kO3 and kOH values of the selected anisole derivatives at pH 7. 

Aniline and Amine Derivatives. Aniline (aminobenzene, Ar-NH2) also represents an activated 

aromatic system, which can explain the high reactively observed for sulfamethoxazole (~10
6
 M

-1
s

-1
). 

Sulfonamide antibiotics such as sulfamethoxazole, sulfapyridine, and sulfisoxazole have a common 

core chemical structure (p-aminobenzene sulfonamide) (Ikehata et al., 2006) in which amino 

substitution plays a key role. Dodd et al. (2006) identified several substructures (moieties) of 

molecules which are key sites for the ozone attack, and he reported kO3 values of those substructures. 

The kO3 value of the aminobenzene sulfonamide substructure was given as 4.710
4
 M

-1
s

-1
. While the 

amino groups substituted to a pyrimidine structure instead of benzene ring, the moiety is also reactive 

(1.310
6
 M

-1
s

-1
 by Dodd et al., 2006). Another aniline derivative studied here was trifluralin, a very 

widely used herbicide. Trifluralin shows a moderate reactivity toward ozone (1.910
3
 M

-1
s

-1
 in this 
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study), probably because of the highly electron-withdrawing substitution groups –NO2 and –CF3. 

Metformin (1,1-dimethylbiguanide) is commonly used an oral antihyperglycaemic drugs, i.e. in the 

control of diabetes. Metformin with its amine substituents shows very low reactivity toward ozone 

(1.2 M
-1

s
-1

 at pH 7). It is known that the amino group is only reactive in its deprotonated, neutral form 

and almost non-reactive in its protonated form (Munoz and von Sonntag 2000). The deprotonated 

secondary and tertiary amines are reactive with ozone with a rate constant of around 10
6
 M

-1
s

-1
, while 

primary amines react more slowly (Munoz and von Sonntag 2000). As shown in Figure 4.1, 

metformin is protonated at neutral pH which explains the low reactivity toward ozone.  

Phenoxyalkanoic Acid Derivatives. The fibrate lipid regulators clofibric acid and gemfibrozil 

are phenoxyalkanoic acid derivatives, which are used as pharmaceuticals to accelerate the clearance 

of lipoproteins. These lipid regulator compounds have been detected in the aquatic environment 

(Kolpin et al., 2002). As indicated by its kO3 of 4.910
5
 M

-1
s

-1
 at pH 7, gemfibrozil is more reactive 

toward ozone than clofibric acid, (kO3 = 5.0 10
3
 M

-1
s

-1 
at pH 7, in Table 4.1 ). Clofibric acid is less 

reactive probably because of the presence of chlorine on the aromatic ring. In addition, the electron-

donating methyl substitution (-CH3) increases the electron density of gemfibrozil, making it more 

susceptible to reactions with molecular ozone than clofibric acid. This is supported by a study on 

ozonation of wastewater where clofibric acid was shown to be relatively resistant to ozone treatment 

(Huber et al., 2005). It follows that advanced oxidation is more suitable for the degradation of such 

compounds, as their reactivity with hydroxyl radicals is very high as is apparent form their high kOH 

values (Table 4.1). 

Polycyclic Aromatic Hydrocarbons (PAHs). Two PAHs were measured in the present study, 

namely pyrene (four rings, 3.610
4
 M

-1
s

-1
) and benzo(a)pyrene (five rings, 7.510

3
 M

-1
s

-1
) and these 

data were in good agreement with a previous study (Butkovic et al., 1983). Note that for PAHs pH is 

expected to have a negligible influence on kO3 and this was confirmed by measuring kO3 at pH values 

ranging from 1 to 7 (Butkovic et al., 1983). Hence, values form different studies should be 

comparable even when differing pH values were used. When evaluating kO3 values from this study 

together with kO3 values determined by others it becomes apparent that an increase in rate constants is 

observed with an increasing number of rings i.e. benzene (1 ring, 2 M
-1

s
-1

 at pH 2 (Hoigné and Bader, 

1983a)), naphthalene (2 rings, 310
3
 M

-1
s

-1
 at pH 2 (Hoigné and Bader, 1983a)), phenanthrene (3 

rings,  1.5710
4
 M

-1
s

-1
 at pH 2 (Butkovic et al., 1983)) and  pyrene (4 rings, 3.610

4
 M

-1
s

-1
;  this 

study). A drop was observed though for benzo(a)pyrene with 5 rings, (7.510
3
 M

-1
s

-1
;  this study). 
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These increased kO3 values are due to the fused aromatic systems which have a substantially higher 

electron density than benzene alone. This in turn favors electrophilic attack by molecular ozone and 

hence, the rate constants of the fused aromatic systems are more than one thousand times faster than 

that of benzene.  

 

Figure 4.6 Experimentally determined kO3 and kOH values of the selected micropollutants including 

phthalates (BBP and DEHP), halogen-substituted aromatics (iomeprol, dicofol, and HCB), and 

organophosphorus compounds (TBEP and TCEP) at pH 7. BBP is butylbenzyl phthalate, DEHP is 

di(2-ethylhexyl) phthalate, TBEP is tris(2-butoxyethyl) phosphate, and TCEP is tris(2-chloroethyl) 

phosphate. The kOH of TBEP and TCEP were from the literature (Watts and Linden 2009). 

 

Phthalates. Two phthalate compounds butylbenzyl phthalate (BBP) and di(2-ethylhexyl) 

phthalate (DEHP) were measured in the present study (Figure 4.6). Molecular ozone reacts with 

aromatic compounds by electrophilic aromatic substitution. Low kO3 values of phthalate are expected 

since the strong electron-withdrawing substitutions decrease the electron density of the aromatic rings 

and therefore lower their reactivity. Some kO3 values of other phthalates are also available, such as 

dimethyl phthalate (DMP) and diethyl phthalate (DEP) which both show very low reactivity toward 
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ozone (Yao and Haag 1991). But despite their low ozone reactivity, phthalates measured in this study 

i.e. BBP and DEHP are quite reactive toward hydroxyl radicals, with kOH values of 4.010
9
 M

-1
s

-1
 and 

3.410
8
 M

-1
s

-1
, respectively. As a comparison, DMP and DEP show similar reactivity with hydroxyl 

radicals as their rate constants are reported as 4.010
9
 M

-1
s

-1
 (Haag and Yao 1992). Therefore, 

phthalates cannot be effectively removed by ozonation, but can be efficiently degraded during 

advanced oxidation processes since high kOH values were observed (Figure 4.6). This figure includes 

three groups of micropollutants with low reactivity towards ozone. 

Halogen-substituted Aromatics. The chlorine substituted compounds dicofol and 

hexachlorobenzene (HCB) have been used as herbicides/insecticides, and both show very low 

reactivity towards molecular ozone as indicated by small kO3 values. This low reactivity can be 

explained by the electron-withdrawing Cl groups on the benzene ring, which decrease the electron 

density of the ring and hence decrease their susceptibility to an electrophilic attack by molecular 

ozone. With six Cl substitutions on the benzene ring, HCB shows no reactivity toward ozone under 

the experimental conditions employed i.e. a detectable decrease of the HCB concentration could not 

be observed even after long exposure times to excess ozone. The kO3 of HCB is therefore reported as 

< 0.01 M
-1

s
-1

. Similarly, dicofol showed no reactivity although it has fewer Cl substitutions on the 

aromatic ring compared to HCB. The degradation of these compounds can be improved by applying 

advanced oxidation processes as their kOH are in the range of 10
8
~10

9
 M

-1
s

-1
 found in the present study. 

Roche and Prados (1995) also found HCBs resistant to ozone but surprisingly more than half of HCB 

remained after treatment with O3/H2O2 in their study. For dicofol and dicamba, however, addition of 

H2O2 into ozone enhanced the oxidation and nearly complete conversion was observed (Ikehata and 

El-Din 2005).  

X-Ray contrast media compounds such as triiodinated benzene derivatives iomeprol and 

iopamidol are used to improve the visibility of internal body structure by X-ray imaging technologies. 

These compounds are highly hydrophilic and persistent in the aquatic environment, and have been 

detected in surface water and raw drinking water (Ikehata et al., 2006). Iomeprol is resistant to 

ozonation because of the triiodinated substitution structure. As shown in Table 4.1, the kO3 of 

iomeprol is very small (< 0.1 M
-1

s
-1

). A similar value was also reported by Huber et al. (2003). 

Iopamidol has almost the same chemical structure, and hence, shows a similar rate constant with a kO3 

< 0.8 M
-1

s
-1

 (Huber et al., 2005).  
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Organophosphorus Compounds. Certain organophosphorus compounds are employed as flame 

retardants and plasticizer in a large variety of consumer products, and a number of studies became 

available over the last decade. The chlorinated ester tris(2-chloroethyl) phosphate (TCEP)  is a flame 

retardant plasticizer, whereas the non-chlorinated ester tris(2-butoxyethyl) phosphate (TBEP) is 

widely used as a plasticizer in rubber and plastics. Ozone is very effective in eliminating many 

micropollutants, but fails to remove ozone refractory compounds (kO3 < 10 M
-1

s
-1

) such as organic 

phosphates. In this study the kO3 of TCEP and TBEP were measured by the ozone monitoring method. 

As saturated aliphatic compounds, the ozone rate constants of TCEP and TBEP were found to be very 

low (0.8 and 4.6 M
-1

s
-1

, respectively). TBEP is somewhat more reactive than TCEP due to the non-

chlorinated alkyl chain structure. Similar low rate constants (< 2 M
-1

s
-1

) were also reported for other 

organic phosphate compound such as tri-n-butyl phosphate (TnBP) and tris(2-chloroisopropyl) 

phosphate (TCPP) (Pablo Pocostales et al., 2010). Therefore, ozonation is not an effective treatment 

process for organic phosphate degradation. However, advanced oxidation processes show good 

potential to effectively remove such compounds by, for example, UV/H2O2 (Watts and Linden, 2009). 

The kOH of TBEP was determined to be 1.0310
10

 M
-1

s
-1

 and TCEP was 5.6010
8
 M

-1
s

-1
 (Watts and 

Linden 2009). A significant reduction in the TBEP concentration was observed in model surface 

water treated with UV/H2O2 at neutral pH after up to 1000 mJ/cm
2
 UV exposure, but little to no 

TCEP degradation was observed. A significant increase of initial H2O2 is required to reach a 

substantial TCEP degradation (Watts and Linden 2009).  

Implications of Oxidation Kinetics during Water Treatment. The rate constants of twenty-

four micropollutants encompassing diverse chemical structures were determined for the reaction with 

ozone and hydroxyl radicals. Oxidation by molecular ozone is selective for compounds with activated 

aromatics moiety such as phenolic compounds, anisole derivatives, aniline derivatives and PAHs. 

More than half of these micropollutants showed high-reactivity toward ozone with rate constants over 

100 M
-1

s
-1

, which represents a half-life time of less than 5 minutes for a 1 mg/L ozone exposure. 

These micropollutants are expected to be largely degraded in water by ozonation. In the contrast, 

ozone will be ineffective for compounds with smaller kO3 values. Alternatively, advanced oxidation 

can effectively remove all the micropollutants studied because of the relatively non-selective nature 

of the hydroxyl radicals (kOH = 10
8
 ~ 10

10
 M

-1 
s

-1
).  



 

80 

4.4 Conclusions 

Second-order rate constants for the reaction of twenty-four structural diverse micropollutants 

with ozone and hydroxyl radicals were measured at pH 7 and 20-22ºC. Competition kinetics, 

compound monitoring, and ozone monitoring methods were used for kO3 measurement; 

competition kinetics was used for kOH measurement; the degradation of micropollutants was 

monitored by a HPLC with PDA detector. In view of the results we may conclude the following: 

 The kO3 values determined in this study ranged from 10
-2

 to 10
7
 M

-1
 s

-1
. For the majority of 

the compounds these values were not known yet thus providing valuable, basic information 

for modeling and design of ozonation and AOPs treatment.  

 The general trend of micropollutant reactivity with ozone can be explained by the 

micropollutant structures and the electrophilic nature of ozone reactions. In general, 

compounds with activated aromatic rings including phenolic compounds, anisole derivatives, 

and aniline derivatives show high reactivity (~10
4
 to 10

7
 M

-1
 s

-1
) toward ozone except 

dicamba and methoxychlor. Phenoxyalkanoic acid derivatives and polycyclic aromatic 

hydrocarbons show moderate reactivity (~10
3
 to 10

5
 M

-1 
s

-1
). Compounds with deactivated 

aromatic rings such as phthalate and halo-substituted compounds show moderate to very low 

reactivity (~10
-2

 to 1.4 M
-1

 s
-1

) toward ozone. Saturated aliphatic compounds such as 

organophosphorus compounds have a very low reactivity (< 10 M
-1 

s
-1

) towards ozone as well.  

 The kOH values determined in this study ranged from 10
8
 to 10

10
 M

-1
 s

-1
 indicating that all 

selected micropollutants are highly reactive toward hydroxyl radicals, since hydroxyl radicals 

are relatively non-selective.  

 For compounds with low reactivity toward ozone, ozonation treatment could be insufficient 

for removing them from drinking water, therefore hydroxyl radicals based treatment 

techniques such as O3/H2O2 or UV/H2O2 are recommended. 
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Table 4.1 The kO3 and kOH determined for 24 selected micropollutants at pH 7 and room temperature (20-22 ºC). 

Compounds pKa 
kO3 (M

-1
s

-1
) kOH (10

9
 M

-1
s

-1
) 

Method Measured Reference Measured Reference 

Equilenin 9.8 
a
 CK 1.0(0.1)10

7
  173  

Butylated 

hydroxyanisole 

10.6 
a
 CK 3.3(0.2)10

6
  7.40.2  

Fenoterol 8.6 
a
 CK 2.8(0.1)10

6
  3.90.1  

Tetracycline 3.3, 

7.7, 

9.7 
b
 

CK 2.5(0.2)10
6
 1.910

6
 (Dodd et al., 2006) 8.20.9 7.71.2 (Dodd et al., 2006) 

6.30.1 (Jeong et al., 2010) 

Triclosan 8.1 
c
 CK 2.5(0.1)10

6
 3.810

7
 (Suarez et al., 2007) 6.00.5 5.40.3 (Latch et al., 2005) 

Phenol 9.9 
c
  ND 1.810

6 
(Hoigné and Bader, 1983b) 6.10.1 6.6 (Buxton et al., 1988) 

17-Ethinylestradiol 10.4 
c
 CK 1.8(0.02)10

6
 1.610

6
 (Deborde et al., 2005) 4.90.2 9.8 (Huber et al., 2003) 

Methoxychlor NA CM 250(24) 27080 (Yao and Haag, 1991) 3.90.9  

Dicamba 2.0 
c
 CM <0.1  3.50.1  

Methicillin 2.8 
c
 CK 3.9(0.9)10

4
  100.2  

Metformin 10.3 
a
 OM 1.2(0.2)  ND  

Sulfamethoxazole 5.7 
c
 CK 2.0(0.1)10

6
 5.510

5
 (Dodd et al., 2006) 

2.510
6
 (Huber et al., 2003) 

ND 8.50.3 (Mezyk et al., 2007) 

Trifluralin NA CK 1.9(0.3)10
3
  1.30.1  

Gemfibrozil 4.4 
a
 CK 4.9(0.9)10

5
  7.10.3 10.00.60 (Razavi et al., 2009) 

Clofibric acid 3.4 
a
 CK 5.0(1.0)10

3
  5.20.4 6.980.12 (Razavi et al., 2009) 

Benzo(a)pyrene NA CK 7.5(2.8)10
3
 6.210

3
 (Butkovic et al., 1983) 0.940.4  

pyrene NA CK 3.6(0.4)10
4
 3.9(0.5)10

4
 (Butkovic et al., 1983) 1.40.2  

Butylbenzyl 

phthalate 

NA CM 1.4(0.2)  4.00.3  

Di(2-ethylhexyl) 

phthalate 

NA CM <0.1  0.340.02  
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Iomeprol NA CM <0.1 <0.8 (Huber et al., 2003) 2.50.5 2.030.13 (Cooper et al., 2010) 

Dicofol NA CM <0.1  3.70.5  

Hexachlorobenzene NA CM <0.01  0.240.12  

Tris(2-butoxyethyl) 

phosphate 

NA OM 4.6(0.9)  ND 10.33.8 (Watts and Linden, 2009) 

Tris(2-chloroethyl) 

phosphate 

NA OM 0.8(0.2)  ND 0.560.02 (Watts and Linden, 2009) 

a
 estimated by Marvin software; 

b
 from Dodd et al., 2003; 

c
 obtained by searching from the ChemIDplus online database. CK: competition kinetics. CM: 

compound monitoring method. OM: ozone monitoring method. NA: not applicable. ND: not determined.  
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Chapter 5 

Modeling Ozone Reaction Rate Constants of Micropollutants Using 

Quantitative Structure–Property Relationships 

This Chapter is based on a paper of the same title was submitted to Environmental Science and 

Technology in April 2012. 

This article focuses on developing quantitative structure-property relationship models for 

predicting the rate constants of diverse micropollutants in the reaction with molecular ozone. The 

training set compounds were selected as representatives from a large compound pool (Chapter 3), and 

their rate constants were determined in experimental analysis (Chapter 4). In addition, a set of 

micropollutants collected from literature were used as validation set for model validation.  

     

Outline: Quantitative structure-property relationship (QSPR) models were developed to predict 

the second-order rate constants of micropollutants with ozone (kO3) from their structural 

characteristics. The models were developed using 12 molecular descriptors for 22 pre-selected 

structural diverse micropollutants, and then validated with an external data set. Piecewise linear 

regression (PLR) with a pre-defined breakpoint (logkO3 = 2.00 M
-1 

s
-1

) provided the best results since 

reactions of low-reactive (sub-model logkO3(<2)) and high-reactive micropollutants (sub-model 

logkO3(≥2)) are governed differently. A classification function was developed using linear 

discriminant analysis (LDA) classifying micropollutants into high-reactive or low-reactive 

compounds before predicting logkO3 through the appropriate PLR sub-model. Overall, the PLR-LDA 

approach was able to predict the ozone rate constants of structural diverse micropollutants with a high 

certainty as indicated by      
  = 0.858 for Model 1 (governed by logAMW and nArOH) and by      

  

= 0.865 for Model 2 (governed by t2 and t3). The applicability of the models to new micropollutants 

can be determined by Williams plots as has been demonstrated for the validation set. The predicted 

logkO3 values are indicative for the reactivity of micropollutant in ozonation. They can also be used 

when experimentally determined logkO3 values are not available for estimating micropollutant 

degradation by ozonation in natural waters with existing ozonation models.  
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Keywords: water treatment, piecewise linear regression, classification, linear discriminant 

analysis, model validation.  
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5.1 Introduction 

Organic micropollutants such as endocrine disrupting chemicals (EDCs) and pharmaceuticals and 

personal care products (PPCPs) have been detected in surface water (Kolpin et al., 2002) and even in 

finished drinking water (Benotti et al., 2009; Huerta-Fontela et al., 2011). Hence, there has been 

growing interest in determining removal efficiencies of drinking water treatment processes for these 

micropollutants, with recent studies showing that ozonation can be very effective in their degradation 

(von Gunten 2003; Westerhoff et al., 2005).  

Substantial removals can be achieved during ozonation, as oxidation of micropollutants occurs 

via molecular ozone (kO3) and hydroxyl radicals (kOH) produced by ozone decomposition (von Gunten 

2003). Ozonation efficiency in natural waters can be predicted through the Rct model which 

incorporates kO3 and kOH (Elovitz and von Gunten 1999). Knowledge of these rate constants is 

therefore essential for assessing micropollutants reactivity and for Rct model predictions. This paper 

focuses on kO3 whereas a companion paper deals with kOH (Chapter 6). Although kO3 data are available 

for numerous micropollutants (von Gunten 2003; Hoigné and Bader 1983a; 1983b), there is a gap for 

emerging micropollutants such as EDCs and PPCPs. As it is impractical to experimentally determine 

kO3 for all micropollutants, predictive models for kO3 are of interest. One approach is to develop 

quantitative structure-property relationship (QSPR) models where the property to be predicted (i.e. 

kO3) is correlated to chemical characteristics (i.e., molecular descriptors) using a group of 

experimentally studied micropollutants. The established model can then be applied to predict kO3 for 

untested compounds without experimentation (Eriksson et al., 2003).  

To date, only few QSPR studies have been published focusing on predicting kO3 of organic 

compounds in the aqueous phase (Benitez et al., 2007; Hu et al., 2000). Existing models are typically 

based on groups of structural similar compounds and often lack external validation, leading to poorly 

defined predictive power and limited applicability. 

The objective of this study was therefore to develop a reliable QSPR model linking structural 

features to kO3 which is predictive for a wide range of structurally diverse micropollutants. This builds 

upon previous work (Jin and Peldszus 2012) using molecular descriptors selected based on current 

mechanistic knowledge, and a set of structurally diverse compounds selected by means of principal 

component analysis (PCA) and D-optimal onion design. For these compounds kO3 values were 

experimentally determined at neutral pH (Chapter 4). In this paper, these experimentally studied 

compounds were used as training set for developing QSPR models, and an external compound set 
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from the literature was used for model validation. The developed models were able to reliably predict 

kO3 for structurally diverse micropollutants and therefore may be used to screen organic 

micropollutants for their treatability with molecular ozone. 

5.2 QSPR Model Development 

The success of any QSPR model depends on the accuracy of the input data, the selection of the 

molecular descriptors, the statistical techniques used to develop the model, and its validation (Tropsha 

et al., 2003).  

5.2.1 Data Sets 

The training set consisted of 22 micropollutants which were pre-selected from a large compound 

pool by a statistical approach that incorporated chemical characteristics relevant in ozone removal 

mechanisms (Jin and Peldszus 2012). Their kO3 values were then determined experimentally at pH 7 

and room temperature (Chapter 4). Model validation used a second data set containing 33 

micropollutants selected from the literature. The reaction rate constants for both sets (Appendix C 

Table C.1) are expressed in logarithm form (logkO3), and cover similar ranges (training set: -2.00 to 

7.00; validation set: -1.40 to 6.43). Both data sets were comprised of compounds with a wide range of 

structural properties and very diverse applications (e.g. pharmaceutically active compounds, 

hormones, EDCs, pesticides, flame retardants, etc. (Appendix C Figures C.1 and C.2).     

5.2.2 Molecular Descriptors and Data Preparation 

The 12 molecular descriptors for all compounds in both data sets are given in Appendix C Table 

C.1. To achieve an approximate normal distribution, molecular weight (MW), average molecular 

weight (AMW ) and diffusivity (Df) were log transformed. The discrete variables number of double 

bonds (nDB), number of aromatic bonds (nAB), number of phenolic groups (nArOH), and number of 

primary and secondary amines (nN) were converted into categorical variables with two levels 

(dichotomous) by coding which assigned values “1” and “0” to represent their presence and absence, 

respectively. 
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5.2.3 Statistical Analysis 

QSPR models were developed using the training set, and then validated externally using the 

validation set. Four methods were tested to develop quantitative models: (1) step-wise multiple linear 

regression (MLR), (2) principal component regression (PCR), (3) partial least squares (PLS) 

regression, and (4) piecewise linear regression together with linear discriminant analysis (PLR-LDA). 

These statistical analyses used the software SIMCA-P (Umetrics), IBM SPSS (IBM Corp.), and 

STATISTICA (StatSoft. Inc.).  

Briefly (details provided in Appendix C), MLR can work well if the molecular descriptors are 

independent from each other. PCR and PLS are projection based methods in which latent variables 

are extracted and then used as independent variables, reducing the impact of multicollinearity among 

the original variables. PLR works well with data showing piecewise linear features such as switching 

slopes at breakpoints. Local sub-models are determined using linear regression after meaningful 

breakpoints distinguishing between the local trends have been defined. Before applying PLR models 

for predictions it is necessary to determine the group membership of any new compound and forward 

stepwise LDA (Worth and Cronin 2003) was used to generate a classification function. The tolerance 

parameter (proportion of variance that is unique to the respective variable) was set as the default 

value (0.01) for minimum acceptable tolerance. Wilk’s  and the Mahalanobis distance were used to 

test the quality of the discriminant functions derived.  

5.2.4 Model Validation and Accuracy 

Statistical parameters such as correlation coefficient (R
2
), and adjusted R

2
 (    

 ) (details see 

Appendix C) indicate how well the model fits the training set but they are not a measure of the 

models predictive capability. Hence, internal and external validations were applied to test the 

predictive power (Eriksson et al., 2006) of the developed QSPR models. The internal validation 

approach using a leave-one-out procedure provides a cross-validated Q
2
.  
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Where PRESS: predictive residual error sum of squares; SST: total sum of squares; yi: observed 

dependent variable;      : calculated dependent variable from a model developed without that data 
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point;   :  mean value of training set compound. The external validation provides a predictive R
2
 

(     
 ), which is a measure of the predictive capacity for any new compounds. 
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Where:              and             are predicted and observed values of validation set compounds; 

           is the mean value of training set compounds.  

The root mean squared of errors for the training set (RMSE) and root mean squared of errors for 

the validation set (RMSEP) which summarize the overall error of the model were also calculated as 

indicators of the accuracy of the proposed models.  
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Where n is the number of training set compounds and next is the number of validation set 

compounds.  
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5.3 Results and Discussion 

5.3.1 Preliminary Analysis by Stepwise MLR, PLS and PCR 
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Figure 5.1 Plot of predicted logkO3 vs. observed logkO3. Comparison of the results obtained by (a) 

PLR using molecular descriptors logAMW and nArOH; (b) PLR using principal components t2 and t3. 

Several initial QSPR models (MLS, PLS, and PLR) were developed with a training set of 22 

experimentally studied compounds and 12 descriptors. These were then validated with a separate 

validation set of 33 compounds selected from the literature. Initially, forward stepwise MLR was used 

to establish a preliminary QSPR model and to identify statistically significant molecular descriptors 

from the original group. The following MLR model was obtained.   

nArOHAMWkO 711.4log818.5863.6log 3                                    (5.5) 

ntraining =  22, R
2
 = 0.681, 

2
adjR  = 0.647, Q

2
 = 0.590, F(2,19) = 20.27 (p < 0.0001), RMSE = 1.763  

nvalidation = 33, 
2
predR  = 0.338, RMSEP = 2.170  

Only two variables, average molecular weight in logarithm scale (logAMW) and number of 

phenolic groups (nArOH) were found to be significant. Phenolic groups are reactive with ozone and 

the positive coefficient indicates that rate constants increase with increasing nArOH. The negative 

coefficient of logAMW points to a decrease in rate constants with increasing logAMW. This decrease 

in reactivity may be linked to electron-withdrawing halogens which are present in higher proportions 
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in compounds with increased logAMW. Also, nArOH and logAMW are not highly correlated as the 

correlation coefficient is only -0.28 (Appendix C Table C.2). Note that number of aromatic bonds 

(nAB) would have been the next variable, but nAB (t-test, p = 0.092) was not significant at the 0.05 

significance level. This initial model does not fit the training set data very well as shown by the 

relative low R
2
 and large error (    

  = 0.647, RMSE = 1.763). Further, when comparing the predicted 

to the measured rate constants (Appendix C Figure C.3) many compounds are either over- or 

underestimated. Two strategies were employed to test model validity. First, leave-one-out cross 

validation (Q
2
 = 0.618) indicated a relatively robust model since values greater than 0.5 are 

considered a criterion for robustness (Fan et al., 2001), although some disagree (Golbraikh and 

Tropsha 2002b). Second, external validation was performed using the validation set. The low 

predictive R
2
 and large error (     

  = 0.338, RMSEP = 2.170) indicate very poor predictive ability.  

Next, an alternate model was developed by PLS regression starting with all 12 molecular 

descriptors. Descriptors with smaller coefficients were removed from the PLS regression, until there 

was no further improvement in Q
2
 value. The following equation was obtained with only 3 molecular 

descriptors remaining. 

nArOHnABAMWkO 010.4390.2log574.7658.6log 3                          (5.6) 

ntraining = 22, R
2
 = 0.728, 

2
adjR  = 0.683, Q

2 
= 0.662, F(3,18) = 16.10 (p < 0.0001), RMSE = 1.626 

nvalidation = 33, 
2
predR  = 0.306, RMSEP = 2.222 

In this case,     
  and its internal validation Q

2
 were both slightly better than for the MLR model. 

Compared to MLR, the variable nAB is included in the equation with a positive coefficient meaning 

that increased presence of aromatic double bonds will increase reactivity. But again the predictive 

ability (     
  = 0.306, RMSEP = 2.222) with the validation set was poor and the observed and 

predicted values of logkO3 showed severe over- and under-prediction (Appendix C Figure C.4).  

Since the performance of these models proved to be insufficient, a PCR model was considered. 

Before regression, the X-matrix (22 training set compounds  12 molecular descriptors) was analyzed 

by PCA, resulting in the extraction of three significant principal components (PCs), explaining 75.9% 

(35.6% by PC1, 25.8 by PC2, and 14.5% by PC3) of the variance. Loading and score plots are 

provided in Appendix C Figures C.5 and C.6. Next, with the extracted PCs as independent variables 

and using stepwise MLR the following was obtained.  
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323 878.0033.1906.2log ttkO                                               (5.7) 

ntraining = 22, R
2
 = 0.455, 

2
adjR  = 0.398, Q

2
 = 0.298, F(2,19) = 7.924 (p = 0.001), RMSE = 2.305 

nvalidation = 33, 
2
predR  = 0.100, RMSEP = 2.530 

Where t2, t3 represent PC2 and PC3, respectively. Although PC1 could explain 35.6% of the 

variation in the X-matrix, it was found to be insignificant. This is not surprising since PC1 is 

dominated by variables such as unsaturation index (Ui) and HOMO-LUMO gap (GaP) (Appendix C 

Figure C.5) which were insignificant in the previous models. The important variables nArOH and 

logAMW are mainly coded into PC2 and PC3, respectively. The resulting PCR model could only 

explain 45.5% variation with large prediction error (RMSE = 2.305) and low Q
2
 (0.368), so it is not 

surprising that it failed to predict the validation set (     
 

 
= 0.100, RMSEP = 2.530). The predicted 

versus measured logkO3 values were plotted in Appendix C Figure C.7. 

 

 



 

 93 

 

Figure 5.2 3D plot of QSPR models, (a) Model 1: PLR with nArOH and logAMW; (b) Model 2: PLR 

with t2 and t3.   

5.3.2 Reassessment Using PLR-LDA Approach 

5.3.2.1 Modeling of the Rate Constants Using PLR 

As discussed, QSPR models developed by stepwise MLR, PLS and PCR showed poor to 

moderate fitting of the data and they failed to adequately predict the external validation set. This also 

confirms that external validation is essential in assessing the predictive power of QSPR models, and 

that internal validation alone is not sufficient to ensure the QSPR models have predictive power 

(Golbraikh and Tropsha 2002a). However, in plots of predicted versus observed values (Appendix C 

Figures C.3 and C.4) it can be noted that most of the compounds with low observed rate constants are 

overestimated and many compounds with high observed rate constants are underestimated. This 

indicates a breakpoint, differentiating compounds with high and low rate constants, and suggests that 

different mechanisms may be predominant. For example, the reactivity towards ozone may be 

governed by different molecular properties for low-reactive and high-reactive compounds; or by 

certain ozone-reactive functional groups which are present in high-reactive compounds and absent in 

low-reactive compounds. In such situations, it is possible to fit piecewise linear regression (PLR) 
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models which separate the data into several groups (two groups in this study), followed by fitting a 

linear sub-model to each.  

The challenge of applying PLR is to find a meaningful breakpoint which splits the dataset into 

subsets. In complex cases, quasi-Newton algorithms can be used to search for a breakpoint or 

multiple breakpoints (Molina et al., 2008). Here, a clear distinction between under- and 

overestimation is apparent at logkO3 = 2.00 (kO3 = 100 M
-1

s
-1

) which in water treatment practice 

represents 5 minutes half-life time at 1 mg/L of ozone exposure (Appendix C Figures C.3 and C.4). 

Using a breakpoint at logkO3 = 2.00 creates two subclasses: logkO3  2.00 (i.e., kO3  100 M
-1

s
-1

) are 

classified as high-reactive compounds (labeled as “1”), and those with a logkO3 < 2.00 (i.e., kO3 < 100 

M
-1

s
-1

) are classified as low-reactive compounds (labeled as “-1”). 

Next, two PLR models were developed each using a different set of molecular descriptors. Model 

1 includes logAMW and nArOH, the descriptors selected by the stepwise MLR algorithm. Model 2 

uses the two significant principal components (t2 and t3) identified by PCR. Each model consists of 

two linear regression sub-models, one describing the rate constant of high-reactive compounds, 

designated by logkO3( 2), and the other describing those for low-reactive compounds, designated by 

logkO3(< 2). 

Model 1 was established using logAMW and nArOH: 

nArOHAMWk

AMWk

O

O

382.2log171.4747.7)2(log

log876.2327.2)2(log

3

3




                              (5.8) 

ntraining = 22, R
2
 = 0.964, 

2
adjR  = 0.960, F(2,19) = 257.3 (p < 0.00001), RMSE = 0.589 

nvalidation = 33, 
2
predR  = 0.858, RMSEP = 0.978 

Note that the nArOH parameter is missing in the first equation, simply because none of the slow 

reacting compounds in this group contain a phenolic group. The statistical parameters above 

correspond to the regression obtained by the combination of both sub-models, i.e., the statistical 

parameters were obtained by fitting the observed values to those predicted by both pieces of the 

model. 

Model 2 was obtained using principal components: 
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323

323

158.1486.0612.4)2(log

311.0097.0534.0)2(log

ttk

ttk

O

O




                                      (5.9) 

ntraining = 22, R
2
 = 0.929, 

2
adjR

 
= 0.922, F(2,19) = 137.4 (p < 0.00001), RMSE = 0.830 

nvalidation = 33, 
2
predR

 
= 0.865, RMSEP = 1.057 

Both models are very good in terms of fit (    
 

 
> 0.92) and external validation (     

 

 
> 0.84) i.e. 

excellent predictive ability. The observed logkO3 versus predicted logkO3 are shown in Figure 5.1. The 

PLR Model 1 with logAMW and nArOH fits the training set slightly better than Model 2 with 

principal components t2 and t3 in terms of the     
 

 
value, but Model 2 has a slightly higher predictive 

ability in terms of the      
 . Figure 5.2 shows the 3-dimensional PLR models where the models are 

fit to 2 dimensional planes. It clearly shows the change in slope for low-reactive and high-reactive 

compounds, indicating that different mechanisms may be dominant for different groups of 

compounds.  

Model 2 with principal components t2 and t3 was considered better than Model 1 with logAMW 

and nArOH. First, the primary objective of QSPR modeling is to predict the rate constants of new 

compounds, therefore models with better predictive power are preferred. Second, Model 2 combines 

partial contributions from several molecular descriptors thus considering multiple molecular 

properties. Last, Model 1 is strongly influenced by phenolic groups and may overemphasize their 

importance. High-reactive compounds cluster in two groups as a function of the number of phenolic 

groups in Model 1 (Figure 5.1a). In the absence of phenolic groups a near vertical trend was found for 

high-reactive compounds (i.e. at a predicted logkO3 value of approximate 4) when plotting observed 

vs. predicted logkO3 values, because of the small variation of logAMW. However, compounds without 

a phenolic group can still be very reactive, as for example, carbamazepine due to the presence of 

double bonds (logkO3 = 5.48 (Huber et al., 2003)), where its rate constant was predicted with a larger 

error by Model 1 (predicted logkO3 = 4.01) than by Model 2 (predicted logkO3 = 5.04).  

5.3.2.2 Classification Using LDA 

To carry out the prediction using PLR models for new compounds, it is necessary to classify them 

into either high-reactive or low-reactive compounds as this determines which of the sub-models 

should be applied.  
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The group membership of a compound was determined by a Canonical discriminant function. If 

this function gives a value of Class  0 the compound was classified as high-reactive (logkO3  2.00), 

and if Class < 0 it was classified as a low-reactive compound (logkO3 < 2.00). A pool of molecular 

descriptors containing a multitude of descriptors calculated by DRAGON (Milano Chemometrics and 

QSAR Research Group, University of Milano-Bicocca, Milan, Italy) was used to obtain the 

classification function by step-wise linear LDA. The Canonical discriminant function found is given 

below:  

vGATSvGATS

pMATSmATSAXClass

379.1260.4

612.2392.1121.5098.28




                  (5.10) 

ntraining =  22, Canonical R = 0.91, Wilks’  = 0.17, F(5,16) = 15.6 (p < 0.0001), D
2
 = 18.33. 

Where X1A: average connectivity index chi-1; ATS3m: Broto-Moreau autocorrelation of a 

topological structure - lag 3/weighted by atomic masses; MATS6p: Moran autocorrelation - lag 

6/weighted by atomic polarizabilities; GATS2v: Geary autocorrelation - lag2/ weighted by atomic van 

der Waals volumes; GATS3v: Geary autocorrelation - lag 3/weighted by atomic van der Waals 

volumes. Detailed explanations of these descriptors can be found elsewhere (Todeschini and 

Consonni 2000). 

The classification function correctly grouped the training set into either high- or low-reactive 

compounds (Table 5.1), having a Wilks’  of 0.17 indicating very good discrimination. The fairly 

large value of the squared Mahalanobis distance between the two group centroids (D
2
 = 18.33) 

indicates significant separation. Further, the canonical correlation R of 0.91 (normal range: 0 to 1), 

measuring the association between the groups and the given discriminant function, indicates a high 

correlation. Subsequently the discriminant function was applied to the external validation set, 

correctly classifying 89.5% (17/19) of the high-reactive compounds and 85.7% (12/14) of the low-

reactive compounds (Table 5.1).  
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Table 5.1 Classification Results 

 Actual group membership Predicted group membership 

  Total  

Count 

 -1 (low-reactive) 

Count       (%) 

1 (high-reactive) 

Count     (%) 

Training Set -1 (low-reactive)   9  9             (100) 0               (0) 

 1  (high-reactive) 13  0                 (0) 13         (100) 

Validation Set -1 (low-reactive) 14   12             (85.7) 2 
a 
          (14.3) 

 1 (high-reactive) 19  2 
b
             (10.5) 17           (89.5) 

a
 wrong cases for -1 group (low-reactive) are diazepam and propachlor; 

b
 wrong cases for +1 group 

(high-reactive) are carbamazepine and trimethoprim. The calculation details can be found in 

Appendix C Table C. 3.   

5.3.2.3 Applicability Domain 

The applicability domain is the chemical space defined by the properties of the training set. 

Predictions for new compounds falling within this space are expected to be reliable since their 

properties are close to those used to establish the PLR model. Several methods are available for 

defining the applicability domain of QSPR models (Netzeva et al., 2005). The most common method 

is to determine the leverage of each compound (hi = xi
T
(X

T
X)

-1
xi, where xi is the descriptor vector of 

the considered compound, and X is the descriptor matrix, and then plot standardized residuals versus 

leverages for each compound, i.e. Williams plot. The applicability domain is established by a squared 

area within ±3 standard deviations and a leverage threshold h* (h* = 3p/n, where p is the number of 

model variables plus one, and n the number of training set compounds). Thus, compounds with 

standardized residuals > 3 standard deviation units and hi > leverage threshold h* are considered as 

outliers. However, a high leverage training set compound with small residual is not necessary an 

outlier (Gramatica et al., 2004). 

As shown in the Williams plots (Figure 5.3), all training set compounds are inside the square area 

for Model 1 and Model 2, except for triclosan in Model 1. Its highest average molecular weight 

(AMW = 12.06) places it far from the centroid of the descriptor space. However, its residual is 

relatively small (2.02), thus it stabilizes the model and makes the model more precise. There are no 

outliers for the training set of the QSPR models. However, in the validation set 2 compounds 

(bromoxynil and sulfamethoxazole) were identified outside of the applicability domain for Model 1 
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(high-reactive group), and 3 compounds (bromoxynil, lincomycin, and metoprolol) were identified 

for Model 2 (high-reactive group). Bromoxynil is structurally anomalous because of its bromine 

substitution, and lincomycin is the only one without an aromatic structure in the high-reactive group 

(Appendix C Figure C.2). In Model 2, the leverage values of bromoxynil and lincomycin exceed h* 

but standardized residuals remain acceptable. This indicates that even at high leverage values, 

predictions for these compounds fell within the model’s expected uncertainty range. While this 

demonstrates the model’s applicability to a wide range of structurally diverse compounds, predictions 

for compounds falling outside the applicability domain should be used with caution. 
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Figure 5.3 Williams plot showing the application domain of QSPR models, (a) Model 1; and (b) 

Model 2. 

 

5.3.3 The PLR-LDA Models in Ozonation Practice 

The PLR-LDA models are useful to water treatment engineers, researchers and regulators to 

predict the reactivity of micropollutants, and determine their remaining concentration after ozone 

exposure. Further, when pre-screening suitable water treatment technologies for degradation of a 

particular micropollutant, it may be sufficient to simply apply the classification function to assess 

whether ozonation is appropriate.  

The application of the PLR-LDA QSPR models for predicting a new compound’s ozone rate 

constant is described in Appendix C Figure C.8. When applying these (or any other) models, the user 

should be aware of the associated errors, which include the classification and model prediction errors. 

If the classification function fails to correctly identify a compound as high-reactive or low-reactive, 

then a large prediction error would be expected. This will only be the case for a small fraction of the 

compounds however, and with identification of chemical substructures favoured by ozone attack (e.g., 
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activated aromatics system, double bond) classification error can be minimized. The error associated 

with model predictions, assessed by RMSEP, is close to one for both models. This value is acceptable 

considering the models were developed using compounds with very diverse structures and are 

therefore applicable to many different compounds.  

One of the limitations of the developed models is the uncertainty for dissociating compounds with 

a dissociation constant (pKa) around 7. For dissociating compounds, kO3 is pH-dependent and the 

normal approach is to predict the specific kO3 for the neutral and ionic species separately, then 

calculate the apparent kO3 at the desired pH based on the pKa (Canonica and Tratnyek 2003). 

However, QSPR models successful for predicting kO3 of ionic species have not been reported to-date. 

In this study, an approximation was used to estimate the apparent kO3 at pH 7 which is relevant in 

drinking water treatment. The dominant species at pH 7 were used for calculating molecular 

descriptors, i.e. either the neutral or the ionic form, and the experimentally determined apparent kO3 

values at pH 7 were used as dependent variables. This approach assumes that the contributions from 

non-dominating species are minimal, which holds true if the pKa differs by at least one unit from 7. 

As shown in Appendix C Table C.1, none of the micropollutants in the training set and only 5 out of 

33 in the validation set have pKa values close to 7 (lincomycin, sulfamethoxazole, amoxicillin, 

trimethoprim, and enrofloxacin). But predicted values were close to reported values for these 

compounds (except sulfamethoxazole predicted by Model 1). Nevertheless, caution needs to be 

exercised in the interpretation of predicted kO3 values for compounds with a pKa close to 7.  
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Chapter 6 

QSPR Modeling for the Hydroxyl Radical Reaction Rate Constants 

of Organic Micropollutants in Aqueous Phase 

This Chapter is in paper format which will be revised accordingly and submitted to a peer reviewed 

journal. 

This Chapter focuses on developing quantitative structure-property relationship models for 

predicting the rate constants of diverse micropollutants in their reaction with hydroxyl radicals. 

Initially, QSPR models were developed with the 22 training set compounds selected from a large 

compound pool and 12 molecular descriptors as described in Chapter 3. Their hydroxyl radical rate 

constants were determined by experimental analysis (Chapter 4). However, an unsatisfactory QSPR 

model was obtained (Appendix D). Therefore, the modeling approach was revised to a conventional 

QSPR approach using a large number of compounds (collected from the literature) and a large 

number of DRAGON descriptors from which the best subset descriptors were selected. A satisfactory 

empirical predictive QSPR model was developed and externally validated. Together with the QSPR 

model for the reaction with molecular ozone (Chapter 5), we were able to predict both oxidation 

pathways (direct oxidation with molecular ozone, and indirect oxidation with hydroxyl radicals), and 

assess the percent removal of various contaminants in natural water during ozonation (Chapter 7). 

     

Outline: Quantitative structure-property relationship (QSPR) models which predict hydroxyl 

radical rate constants (kOH) in the aqueous phase for a wide range of micropollutants especially EDCs 

and PPCPs are needed to assess the removal efficiencies of advanced oxidation processes. QSPR 

models for the prediction of kOH were developed with special attention to model validation, 

applicability domain and mechanistic interpretation. In this study, 118 compounds including those 

experimentally determined by the author and literature data were collected and randomly divided into 

the training set (n = 89) and the validation set (n = 29). The QSPR model was calibrated using the 

training set and multiple linear regression (forward selection) was applied. Seven DRAGON 

descriptors were found to be important in predicting the kOH values which related to the 

electronegativity, polarizability, and double bonds, etc. The model fits the training set very well as 

indicated by the high R
2
 value (    

  = 0.823) and the low prediction error RMSE (0.204). A high Q
2
 

(0.773) was obtained indicating good robustness and good internal predictivity. The model was then 
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externally validated with the validation set showing good predictive power (     
  = 0.772). The 

applicability domain of this model was then assessed using the Williams plot and two outlier 

compounds were identified. The QSPR model was then further improved by removing these two 

outlier compounds form the original model. Overall, the developed QSPR model provides a valuable 

tool for assessing the removal efficiency of micropollutants by AOPs.   

 

Keywords: molecular descriptors, reaction rate constant, external validation, applicability 

domain, outlier detection 
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6.1 Introduction 

Micropollutants such as endocrine disrupting chemicals (EDCs) and pharmaceutical and personal care 

products (PPCPs) create unique challenges to water treatment because of the number of compounds 

detected and the diversity and complexity of their physico-chemical properties. The efficiency of 

drinking water treatment processes for the removal of micropollutants from drinking water has been 

of concern to water utilities and environmental agencies. Advanced oxidation processes (AOPs) such 

as O3/H2O2, UV/H2O2, UV/TiO2 produce a highly reactive oxidant, the hydroxyl radical, which reacts 

rapidly with most organic micropollutants and leads to their degradation (Huber et al., 2003). To 

investigate the removal efficiency of various organic micropollutants during AOPs in natural waters, 

it is necessary to obtain the reaction rate constants of micropollutants for their reaction with hydroxyl 

radicals (kOH). Rate constants are valuable when predicting the extent to which the original 

contaminants are eliminated from water, and they are therefore important for designing and 

optimizing treatment processes. Although kinetic data are available for a large number of chemicals 

for their reactions with hydroxyl radicals (Buxton et al., 1988), there is still a data gap especially for 

emerging micropollutants such as EDCs and PPCPs. 

Due to the complexity of the analytical methods and the high cost associated with the 

determination of reaction rate constants, it is highly desirable and cost-effective to develop a reliable 

model to predict the rate constants of numerous micropollutants. Quantitative structure-property 

relationships (QSPR) have been widely used as a modeling tool to develop relationships between the 

properties (e.g., pKa) of chemicals and their structural characteristics (Eriksson et al., 2003). QSPR 

models can relate the physico-chemical characteristics of compounds to their properties relevant in 

water treatment processes (e.g., removal, adsorption, and rejection), providing improved knowledge 

on removal mechanisms and interactions between organic compounds and physical/chemical 

treatment processes.  

To date, only a small number of QSPR studies have been published focusing on predicting the 

reaction rate constants of organic compounds with hydroxyl radicals in the aqueous phase, but the 

applicability of these models is limited. For example, a QSPR model was developed using linear 

regression to predict kOH of aromatic compounds in the aqueous phase (Kusic et al., 2009), but this 

model is not applicable to non-aromatic compounds. Neural networks were applied to correlate 

functional groups and the kOH values of a great variety of organic compounds (Dutot et al., 2003). 

However, compounds used as training set were mostly conventional, small micropollutants using data 
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from Buxton et al., (1988), and only a few micropollutants especially EDCs, PPCPs, or pesticides 

were utilized in model development. The group contribution method has also been used to predict 

aqueous phase kOH values for compounds with a wide range of functional groups (Monod and 

Doussin 2008; Minakata et al., 2009). However, certain assumptions such as availability of data for 

all possible functional groups and additivity of rate constants limit the use of the group contribution 

method (Minakata et al., 2009).  

The objective of this study was therefore to develop a robust, validated QSPR model for 

predicting the aqueous phase kOH of a wide range of micropollutants. A large number of 

micropollutants with diverse structures including many EDCs and PPCPs were collected for model 

development. The data set was then split into training and validation sets, and the training set was 

used to calibrate the model which was then externally validated using the validation set. In addition, 

the applicability domain of the model was defined by a leverage approach so that the applicability of 

the model to a new, unknown compound can be determined. This overall approach ensured that the 

developed models were applicable to micropollutants with diverse structures and a wide range of kOH, 

and they will therefore be helpful in assessing the efficiency of AOPs technologies with respect to the 

degradation of micropollutants. 

 

6.2 Materials and Methods 

6.2.1 Data Set 

A total of 118 micropollutants were used for developing the QSPR models in this study, in which 

kOH values of 22 micropollutants were determined experimentally in a previous study using 

competition kinetics (Chapter 4), and the other 96 micropollutants were collected from the literature. 

Micropollutants included in this study were very heterogeneous in structure and included a number of 

chemical classes (e.g., phenols, polycyclic aromatic hydrocarbons, alkanes, halogenated aromatic 

compounds, organophosphorus compounds, etc.) thus covering a wide spectrum of physico-chemical 

properties. A list of the micropollutants included and their kOH values are provided in Table 6.1. The 

kOH values range from 5.4×10
7
 (M

-1
 s

-1
) to 1.7×10

10
 (M

-1
 s

-1
). The total compound set was divided into 

a training set and a validation set through property sampling as described in Leonard and Roy (2006). 

This was accomplished by ordering the micropollutants according to their descending kOH values, 

taking every fourth compound from the set to be used as the validation set, and the remaining 
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compounds used as the training set. As a result, about 25% of the total data set was used for the 

validation set (n = 89 for the training set, and n = 29 for the validation set).  

A large number of different molecular descriptors were calculated using DRAGON software, and 

these were then used as independent variables for modeling. The chemical name or registration 

number was used to search the SMILES code of the chemical structure from the ChemIDplus 

Advanced online database (United States National Library of Medicine). The SMILES code of the 

chemical structure was then used as input for the software DRAGON (Milano Chemometrics and 

QSAR Research Group, University of Milano-Bicocca, Milan, Italy) to generate the molecular 

descriptors. As a result, 951 descriptors including constitutional descriptors, topological descriptors, 

connectivity indices, information indices, 2D autocorrelations, eigenvalue-based indices, 3D MoRSE 

descriptors, WHIM descriptors, molecular properties, functional group counts, and atom-centered 

fragments, etc. were calculated. A list of the DRAGON descriptors is available (Todeschini et al., 

2005). Most of these descriptors are reviewed in a textbook by Todeschini and Consonni (2000). The 

correctness of the SMILES code was then validated by comparison of the molecular weights reported 

in the databases with those calculated by the software. To minimize the redundant information, 

descriptors with constant values among micropollutants (n = 142, mostly functional group count 

descriptors) were removed, and descriptors found to be pairwise correlated by greater than 95% (n = 

110) were excluded.  

6.2.2 QSPR Modeling 

Multiple linear regression (MLR) was used in this study to identify a linear relationship between 

kOH and a set of molecular descriptors. MLR is among the most widely used modeling methods in 

QSPR studies, which models a dependent variable (property to be predicted) as a linear combination 

of independent variables (molecular descriptors) with regression coefficients.  

iippiii xxxy   ...
22110                                       (6.1) 

Where 1, 2, … p are regression coefficients and 0 is a constant, xi1, xi2, … xip are molecular 

descriptors of the i’th compound, yi is the property to be predicted, and i represents the residuals.  

As there are a large number of DRAGON descriptors, the forward selection method was used to 

screen the descriptors. The modeling process starts without any descriptors in the model; the 

descriptors are then tested one by one to find the descriptor that achieves the best fit, i.e., the largest 
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R
2
 value when added to the model. This descriptor is then added to the model. The procedure 

continues to find the second descriptor to be added to the model in the same manner, and so on. This 

procedure terminates when no variable meets the inclusion criterion, or when the available 

improvement falls below some critical value (Andre et al., 2003).  

Data analysis and modeling were carried out using the software NCSS 2007 (NCSS, Kaysville, 

Utah, US). Before modeling, kOH was transformed to its decadic logarithm (logkOH). The discrete 

molecular descriptors, such as the functional groups counts, and atom-centered fragments were 

converted to categorical variable with two categories (“0” represents absence and “1” represents 

presence). The other descriptors were used with no transformation. 

6.2.3 Model Evaluation 

The model was not only evaluated by the goodness-of-fit to the training set, but also verified with 

respect to its internal and external predictive performance (Tropsha et al., 2003; Gramatica 2007). 

The model fit was assessed using the adjusted coefficient of determination (    
 ). The internal 

predictivity of QSPR models was assessed by the leave-one-out cross-validated correlation coefficient 

(Q
2
). For the external predictivity, the external validation      

  parameter was calculated.  
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Where R
2
 is the coefficient of determination, n is the number of training set compounds, and p is 

the number of descriptors involved in the model; Q
2
 is calculated using the training set, where yi is the 

measured logkOH values, iŷ  is the predicted logkOH values, y  is the mean value of training set 

compounds, iiy /ˆ  is the predicted value of the response calculated excluding the i
th
 compound from 
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the model computation;      
  is calculated with the validation set, but try is the mean value of the 

training set compounds. 

The root mean squared of errors for the training set (RMSE) and root mean squared of errors for 

the validation set (RMSEP), which summarize the overall error of the model, were also calculated as 

indicators of the accuracy of the proposed models (Gramatica and Papa 2005).  
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The variance inflation factor (VIF) is a measure of multicollinearity. A VIF of 10 or more 

indicates that multicollinearity is a problem in the data set (Roy and Roy 2009). 

21

1

jR
VIF


                                                                   (6.7) 

Where   
 

 
is the unadjusted R

2
 when the j

th 
variable is regressed against all the other variables in 

the model.  

The applicability domain is the chemical space defined by the properties of the training set. 

Predictions for new compounds falling within this space are expected to be reliable since their 

properties are close to those used to establish the model. The applicability domain of the QSPR model 

is visualized by plotting the standardized residuals versus the leverage (Kusic et al., 2009). Leverage 

indicates the compound’s distance from the centroid of compound space. The leverage of a compound 

is defined as: 

  i
TT

ii xXXxh
1

                                                             (6.8) 

Where xi is the descriptor vector of the considered compound and X is the descriptor matrix 

derived from the training set descriptor values. The warning leverage (h*) is defined as: 

nph /3* 
                                                              (6.9) 
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Where n is the number of training set compounds, and p is the number of descriptors in the model 

plus one. 

6.3 Results and Discussion 

6.3.1 QSPR Modeling and Validation 

A preliminary analysis was conducted with a data of 22 selected micropollutants (kOH values were 

determined experimentally in Chapter 4) and 12 selected molecular descriptors (details are shown in 

Appendix D). It was found that the model developed with these selected micropollutants and 

descriptors failed to develop a satisfactory predictive QSPR model, and additional compounds and 

better molecular descriptors were needed to improve the QSPR model. Therefore, in this study, a 

conventional QSPR approach with a large number of compounds (118 micropollutants collected from 

literature including those experimental determined micropollutants shown in Chapter 4) and many 

new descriptors (951 DRAGON descriptors) was applied. The best subset of descriptors which can 

capture the structural features related to the hydroxyl radical reactions was selected by forward MLR. 

In this study, the prior knowledge in the descriptor selection was not considered therefore an 

empirical model was developed.  

As a result of the MLR (forward selection), the following 7-variable model with the highest R
2
 

value (Model 1: Equation 6.10) was established. 

pMormMATSVindex

nHAccRXCHnDBMekOH

27427.02362.0563.0

310.02625.0160.0.5647-215.17log




      (6.10) 

ntraining = 89, R
2
 = 0.837,     

  = 0.823, Q
2
 = 0.773, F(7, 81) = 59.435 (p < 0.0001), RMSE = 0.204 

nvalidation = 29,      
  = 0.772, RMSEP = 0.329 

where Me is the mean atomic Sanderson electronegativity, nDB is the number of double bonds, 

nCH2RX is the number of CH2RX (primary alkyl halides) functional group, nHAcc is the number of 

acceptor atoms for H-bonds (N, O, F), MATS2m is the Moran autocorrelation of lag 2 weighted by 

mass, Vindex is the Balaban V index, and Mor27p is signal 27/weighted by polarizability. The 

detailed explanation of these descriptors can be found elsewhere (Todeschini and Consonni 2000). 

The mechanistic interpretation of these descriptors will be discussed further in section 6.3.3.  
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Table 6.1 Compounds used for the QSPR modeling. 

No. Compound kOH (M
-1

s
-1

) Me nDB nCH2RX nHAcc Vindex MATS2m Mor27p Reference 

1 Bezafibrate 8.0010
9
 1.01 2 0 5 0.225 -0.048 -0.192 1 

2 DEET 4.9510
9
 0.98 1 0 2 0.471 0.199 -0.192 2 

3 Atenolol 7.0510
9
 1 1 0 5 0.328 -0.13 -0.056 3 

4 Metoprolol* 8.3910
9
 0.99 0 0 4 0.322 -0.191 -0.038 3 

5 Propranolol 1.0710
10

 0.99 0 0 3 0.277 -0.154 -0.152 3 

6 Penicillin G 7.9710
9
 1.02 3 0 6 0.237 -0.127 -0.127 4 

7 Penicillin V 8.7610
9
 1.02 3 0 7 0.222 -0.16 -0.172 4 

8 Amoxicillin* 6.9410
9
 1.02 3 0 8 0.235 -0.139 0.087 4 

9 Levofloxacin 7.6010
9
 1.02 3 0 8 0.242 -0.061 -0.099 5 

10 Lomefloxacin* 8.0410
9
 1.03 3 0 8 0.278 -0.071 -0.12 5 

11 Norfloxacin 6.6110
9
 1.02 3 0 7 0.274 -0.036 -0.195 5 

12 Orbifloxacin 6.9410
9
 1.03 3 0 9 0.242 -0.101 0.003 5 

13 Flumequine 8.2610
9
 1.03 3 0 5 0.328 0.015 -0.136 5 

14 Marbofloxacin 9.0310
9
 1.03 3 0 9 0.242 -0.042 -0.251 5 

15 Danofloxacin 6.1510
9
 1.02 3 0 7 0.203 -0.034 -0.108 5 

16 Enrofloxacin 7.9510
9
 1.01 3 0 7 0.22 -0.051 -0.08 5 

17 Sulfamethazine 8.3010
9
 1.02 2 0 6 0.312 -0.117 -0.33 6 

18 Sulfamethizole* 7.9010
9
 1.03 2 0 6 0.32 -0.185 -0.209 6 
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19 Sulfamethoxazole 8.5010
9
 1.03 2 0 6 0.32 -0.162 -0.406 6 

20 Sulfamerazine 7.8010
9
 1.02 2 0 6 0.313 -0.128 -0.382 6 

21 Bisphenol A 6.9010
9
 0.99 0 0 2 0.338 -0.041 -0.251 7 

22 Iohexol 3.2110
9
 1.03 3 0 12 0.449 -0.055 -0.083 8 

23 Iopromide 3.3410
9
 1.03 3 0 11 0.436 -0.058 0.164 8 

24 Iopamidol 3.4210
9
 1.03 3 0 11 0.451 -0.058 0.161 8 

25 2,3,5-Triiodbenzoic acid 9.7010
9
 1.03 1 0 2 0.558 -0.145 -0.433 8 

26 3-Acetamino benzoic acid 5.4010
9
 1.03 2 0 4 0.46 0.192 -0.232 8 

27 Chlortetracycline 5.2010
9
 1.03 5 0 10 0.259 -0.025 0.132 8 

28 Oxytetracycline 5.6310
9
 1.03 5 0 11 0.266 -0.056 0.097 8 

29 Doxycycline 7.5810
9
 1.03 5 0 10 0.262 -0.031 0.008 8 

30 Trimethoprim 8.3410
9
 1.01 0 0 7 0.308 -0.009 -0.366 8 

31 Atrazine 3.1710
9
 1.01 0 0 5 0.451 0.034 0.108 8 

32 Diclofenac* 9.2910
9
 1.02 1 0 3 0.322 -0.069 -0.444 8 

33 Ibuprofen 5.9710
9
 0.99 1 0 2 0.416 0.356 0.038 8 

34 Naproxen 7.5310
9
 1.01 1 0 3 0.328 0.198 -0.133 8 

35 2,6-Dinitrotoluene  1.5010
9
 1.07 4 0 4 0.532 0.228 -0.202 9 

36 2,4-Dinitrotoluene* 1.4010
9
 1.07 4 0 4 0.512 0.228 -0.208 9 

37 EPTC 4.8010
9
 0.98 1 0 2 0.764 0.053 0.18 9 

38 Prometon 2.8010
9
 1 0 0 6 0.442 0.581 0.092 9 

39 Linuron 6.4010
9
 1.04 1 0 4 0.424 -0.13 -0.215 9 
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40 Diuron 7.4010
9
 1.02 1 0 3 0.44 -0.109 -0.179 9 

41 Cyclonite 1.1010
9
 1.12 6 0 9 0.498 0.582 -0.044 9 

42 Molinate 6.9010
9
 0.99 1 0 2 0.468 0.067 0.171 9 

43 Nitrobenzene 3.9010
9
 1.04 2 0 2 0.558 0.242 -0.242 9 

44 Terbacil* 7.4010
9
 1.02 3 0 4 0.572 -0.058 0.403 9 

45 Chlortoluron 6.9010
9
 1.01 1 0 3 0.44 -0.05 -0.224 10 

46 Isoproturon* 7.9010
9
 0.99 1 0 3 0.407 0.572 -0.115 10 

47 Dibromomethane 9.0010
7
 1.05 0 0 0 2.042 0.5 0.078 11 

48 Dichloromethane 9.0010
7
 1.08 0 0 0 2.042 0.5 0.018 11 

49 Trichloromethane* 5.4010
7
 1.15 0 0 0 1.592 0.333 0.063 11 

50 Tribromomethane* 1.3010
8
 1.09 0 0 0 1.592 0.333 0.174 11 

51 1,1,2-Trichloroethane 1.3010
8
 1.08 0 1 0 1.106 -0.583 0.139 11 

52 1,2-Dichloropropane* 3.8010
8
 1.02 0 1 0 1.106 -0.583 0.16 11 

53 1,2-Dibromo-3-chloropropane* 3.2010
8
 1.03 0 2 0 0.955 -0.543 0.043 11 

54 2-Bromoethanol 3.5010
8
 1.02 0 1 1 1.089 -0.388 0.01 11 

55 1,1,1-Trichloro-2-methyl-2-propanol* 2.7010
8
 1.05 0 0 1 1.201 0.42 0.21 11 

56 Aldicarb 8.1010
9
 1.01 2 0 4 0.682 -0.249 0.296 11 

57 Dalapon 7.3010
7
 1.09 1 0 2 1.159 -0.121 0.205 11 

58 Lindane 5.8010
8
 1.07 0 0 0 0.605 -0.333 0.545 11 

59 belta-Cyclocitral 7.4210
9
 0.98 2 0 1 0.607 0.031 0.295 12 

60 Geosmin 7.8010
9
 0.97 0 0 1 0.484 -0.064 0.569 12 
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61 3-Hexen-1-ol* 7.4510
9
 0.98 1 0 1 0.666 -0.067 0.066 12 

62 belta-ionone* 7.7910
9
 0.97 2 0 1 0.489 -0.031 0.706 12 

63 2-Isopropyl-3-methoxypyrazine 4.9110
9
 1 0 0 3 0.547 0.037 0.093 12 

64 2,6-Nonadienal 1.0510
10

 0.98 3 0 1 0.552 -0.028 0.135 12 

65 1-Penten-3-one 4.7110
9
 0.99 2 0 1 0.955 -0.28 0.016 12 

66 2,6-Di-tert-butyl-4-methylpenol* 3.2010
9
 0.97 0 0 1 0.544 -0.015 0.386 12 

67 2,4,6-Tribromoanisole 3.7410
9
 1.03 0 0 1 0.568 -0.184 -0.331 12 

68 2,4,6-Trichloroanisole* 5.1010
9
 1.05 0 0 1 0.568 -0.202 -0.055 12 

69 Carbamazepine 8.8010
9
 1 2 0 3 0.327 0.468 0.118 13 

70 Diazepam* 7.2010
9
 1 2 0 3 0.3 -0.029 -0.314 13 

71 Azithromycin 2.9010
9
 1 1 0 14 0.26 -0.114 0.383 14 

72 Tylosin 8.2010
9
 1.01 5 0 18 0.174 -0.099 0.639 14 

73 Ciprofloxacin 4.1010
9
 1.02 3 0 7 0.236 -0.05 -0.127 14 

74 Lincomycin 8.5010
9
 1.01 1 0 8 0.301 0.03 0.381 14 

75 Cephalexin 8.5010
9
 1.02 4 0 7 0.237 -0.029 0.18 14 

76 Amikacin 7.2010
9
 1.03 1 0 18 0.235 -0.244 0.415 14 

77 Roxithromycin* 5.4010
9
 1.01 2 0 17 0.253 -0.088 0.753 14 

78 Acetochlor* 6.3010
9
 1 1 1 3 0.482 0.005 -0.254 15 

79 Propachlor* 4.6010
9
 1 1 1 2 0.498 -0.006 -0.16 15 

80 Metolachlor* 6.7010
9
 1 1 1 3 0.498 0.003 -0.152 15 

81 Butachlor 7.4010
9
 0.99 1 1 3 0.442 0.005 -0.165 15 
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82 Acebutolol 4.6010
9
 1 2 0 6 0.356 -0.17 0.029 15 

83 Metoprolol 7.3010
9
 0.99 0 0 4 0.322 -0.191 -0.04 15 

84 Tris(2-butoxyethyl) phosphate 1.0310
10

 1 1 0 7 0.559 -0.175 0.283 16 

85 Tributyl phosphate 6.4010
9
 0.99 1 0 4 0.668 -0.184 0.437 16 

86 Tris(2-chloroethyl) phosphate 5.6010
8
 1.05 1 3 4 0.734 -0.337 0.082 16 

87 Tris(2-chloroisopropyl) phosphate 1.9810
8
 1.03 1 3 4 0.798 -0.189 0.361 16 

88 17belta-Estradiol* 1.4110
10

 0.98 0 0 2 0.261 -0.012 0.171 17 

89 Parathion 9.7010
9
 1.03 3 0 5 0.405 -0.071 -0.397 16 

90 4-Chloro-3,5-dinitrobenzoic acid 3.3010
8
 1.12 5 0 6 0.517 -0.064 -0.081 18 

91 1-Chloro-2,4-dinitrobenzene 8.2010
8
 1.11 4 0 4 0.512 -0.087 -0.161 18 

92 1,3-Dinitrobenzene  1.1010
9
 1.09 4 0 4 0.504 0.189 -0.212 18 

93 2,4-Dinitrophenol 2.3010
9
 1.1 4 0 5 0.512 0.078 -0.222 18 

94 3-Nitrophenol 5.0010
9
 1.06 2 0 3 0.544 0.054 -0.251 18 

95 2-Nitrophenol  5.9010
9
 1.06 2 0 3 0.57 0.054 -0.256 18 

96 4-Nitrophenol 6.2010
9
 1.06 2 0 3 0.525 0.054 -0.244 18 

97 3-Nitrotoluene 8.2010
9
 1.02 2 0 2 0.544 0.266 -0.226 18 

98 4-Nitrotoluene* 8.6010
9
 1.02 2 0 2 0.525 0.266 -0.237 18 

99 Equilenin* 1.7010
10

 0.99 1 0 2 0.261 -0.012 -0.081 19 

100 Butylated hydroxyanisole 7.4010
9
 0.99 0 0 2 0.532 -0.067 0.033 19 

101 Fenoterol* 3.9010
9
 1.01 0 0 5 0.248 -0.138 -0.287 19 

102 Tetracycline 8.2010
9
 1.03 5 0 10 0.26 -0.05 0.163 19 



 

 114 

103 Triclosan 6.0010
9
 1.04 0 0 2 0.318 -0.117 -0.331 19 

104 Phenol 6.1010
9
 1 0 0 1 0.643 -0.125 -0.277 19 

105 17alpha-Ethinylestradiol 4.9010
9
 0.98 0 0 2 0.254 -0.038 0.171 19 

106 Gemfibrozil 7.1010
9
 0.99 1 0 3 0.361 0.152 0.041 19 

107 Methicillin* 1.0010
10

 1.03 3 0 8 0.25 -0.144 -0.168 19 

108 Benzo[a]pyrene* 9.4010
8
 0.98 0 0 0 0.251 1 -0.226 19 

109 Clofibric acid 5.2010
9
 1.02 1 0 3 0.451 -0.09 -0.067 19 

110 Trifluralin 1.3010
9
 1.06 4 0 8 0.499 0.424 -0.079 19 

111 Methoxychlor 3.9010
9
 1.02 0 0 2 0.319 0.602 -0.355 19 

112 Butylbenzyl phthalate* 4.0010
9
 1 2 0 4 0.267 0.271 -0.308 19 

113 Iomeprol 2.5010
9
 1.03 3 0 11 0.442 -0.058 0.117 19 

114 Dicamba 3.5010
9
 1.06 1 0 3 0.562 -0.121 -0.091 19 

115 Dicofol 3.7010
9
 1.04 0 0 1 0.363 0.279 -0.343 19 

116 Di(2-ethylhexyl) phthalate* 3.4010
8
 0.99 2 0 4 0.348 0.304 0.407 19 

117 Hexachlorobenzene* 2.4010
8
 1.13 0 0 0 0.605 -0.333 0.038 19 

118 Pyrene 1.4010
9
 0.98 0 0 0 0.314 1 0 19 

* Validation set compounds (n = 29).  

Reference: (1) Razavi et al., 2009; (2) Song et al., 2009; (3) Song et al., 2008a; (4) Song et al., 2008b; (5) Santoke et al., 2009; (6) Mezyk et al., 

2007; (7) Peller et al., 2009; (8) Cooper et al., 2010; (9) Elovitz et al., 2008; (10) Benitez et al., 2007; (11) Haag and Yao 1992; (12) Peter and von 

Gunten 2007; (13) Huber et al., 2003; (14) Dodd et al., 2006; (15) Benner et al., 2008; (16) Watts and Linden 2009; (17) Rosenfeldt and Linden 

2004; (18) Einschlag et al., 2003; (19) Chapter 4. 
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Model 1 fits the training set compounds well as shown by the high adjusted R
2
 value (    

  = 

0.823), and the prediction error represented by RMSE (0.204) is small. In addition, Q
2 
is 0.773 

indicating good robustness and internal predictivity, and the high predictive R
2
 (     

  = 0.772) and 

relative small error (RMSEP = 0.329) indicates good external predictivity. All seven descriptors are 

statistically significant at the 0.95 confidence level. The MLR method assumes that the molecular 

descriptors are independent from each other. Multicollinearity occurs when two or more descriptors 

are highly correlated and it is difficult to reliably estimate their individual regression coefficients 

(Eriksson et al., 2003). MLR can be applied in QSPR studies if multicollinearity among variables is 

small.  To detect the multicollinearity, the pairwise correlation and variance inflation factor (VIF) 

were calculated. First of all, no high correlation pairs are found (Table 6.2). However, the pairwise 

correlation among two descriptors is limiting in general. It is possible though that a linear dependence 

exists among three or more descriptors. VIF can be used to detect and quantify the correlation among 

a descriptor and all the remaining descriptors in the model (Roy and Roy, 2009). A VIF of 1 for a 

specific descriptor means that there is no correlation between this descriptor and the remaining 

descriptors, and a VIF exceeding 10 is a sign of serious multicollinearity. As shown in Table 6.3, the 

VIF of all the selected descriptors are very small (close to 1) i.e., much smaller than the cut-off value 

of 10, indicating that multicollinearity is not an issue in this descriptor set.  

 

Table 6.2 Correlations of selected molecular descriptors. 

  Me nDB nCH2RX nHAcc Vindex MATS2m Mor27p 

Me 1 

      nDB 0.171 1 

     nCH2RX 0.073 -0.086 1 

    nHAcc -0.129 0.469 -0.129 1 

   Vindex 0.300 -0.262 0.281 -0.507 1 

  MATS2m -0.036 -0.192 -0.294 -0.345 0.055 1 

 Mor27p -0.195 0.015 0.120 -0.140 0.149 -0.176 1 
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Table 6.3 Model properties of the selected molecular descriptors. 

Descriptor Std. coefficient Prob. level VIF Correlation to logkOH 

Me -0.490 <0.0001 1.33 -0.56 

nDB 0.137 0.0129 1.44 0.27 

nCH2RX -0.285 <0.0001 1.23 -0.42 

nHAcc 0.154 0.0155 1.93 0.59 

Vindex -0.344 <0.0001 1.61 -0.73 

MATS2m -0.186 0.0007 1.40 -0.15 

Mor27p -0.200 0.0001 1.21 -0.18 

 

The predicted vs. the measured logkOH values are shown in Figure 6.1(a). It shows that model 1 

works well for most of the training set compounds as the predicted values are very close to the 

measured values. However, the kOH of compound #57 (Dalapon) is substantially over predicted and 

appears to be an outlier. This was confirmed by the outlier analysis in section 6.3.2. 

It is very common in data analysis and statistical modeling applications that a small proportion of 

observations are far from the rest of the data. Such data or even a single outlier can distort the 

regression results by pulling the least square fit too much in their direction, thereby impacting the 

regression coefficients, and limiting the ability to understand the data. Therefore, Model 1 can be 

further improved by removing compound #57. The new model is shown in Equation 6.11 (Model 2). 

The     
  value increases to 0.846 and RMSE decreases to 0.178. More importantly, the predictive 

power is substantially improved (     
  value increases from 0.772 to 0.858, and RMSEP drops from 

0.329 to 0.255). For all compounds, the predicted logkOH values are very close to the experimentally 

measured logkOH and no other outliers are apparent in Figure 6.1(b). 

pMormMATSVindex

nHAccRXCHnDBMekOH

27362.02363.0460.0

401.02679.0159.0.9326-451.16log




         (6.11) 

ntraining = 88, R
2
 = 0.859,     

  = 0.846, Q
2
 = 0.804, F(7,80) = 69.384 (p < 0.0001), RMSE = 0.178 

nvalidation = 28,      
  = 0.858 , RMSEP = 0.255 
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Figure 6.1 A plot of predicted logkOH values vs. measured logkOH (a) Model 1, (b) Model 2 (outliers 

removed: #57 Dalapon in the training set, and #116 DEHP in the validation set). 
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The models are then validated both internally and externally. The leave-one-out cross-validation 

method was used for internal validation. For Model 1, the Q
2
 value is high (0.773) indicating the good 

robustness and internal predictivity of the model. When applying this model to an external validation 

set, the      
  value (0.772) is high as well indicating very good predictive power of the model, and 

the prediction error for the validation set (RMSEP = 0.329) is small. However, an outlier compound 

#116 (DEHP) is also found in the validation set which is far away from the regression line (as shown 

in Figure 6.1(a)). Model 2 is obtained by removing outlier compounds from training set (#57) and 

validation set (#116). As a result, the internal validation Q
2
 value is increased to 0.804, the external 

validation      
  value is increased to 0.858, and RMSEP is reduced to 0.255. These statistical values 

indicate that model 2 is an excellent model for predicting kOH values.   

 

6.3.2 Applicability Domain and Outliers Detection  

A Williams plot is drawn to show the applicability domain of Model 1 (Figure 6.2). The 

applicability domain is established by a squared area within ±3 standard deviations of the 

standardized residual and a leverage threshold h*. A value of 3 for a standardized residual is 

commonly used as a cut-off value for acceptable predictions and compounds with standardized 

residuals > 3 standard deviation units are considered outliers (Gramatica and Papa 2005). In terms of 

leverage, a compound with hi > h* diverges in structure from most compounds in the training set and 

seriously influences the regression performance. But a compound with a high leverage value is not 

necessarily an outlier because its standardized residual may be small. First, the leverage value of 8 

training set compounds are higher than the leverage threshold (h* = 0.27) indicating influencing 

structural features. However, these compounds in the training set fit the model well, thus they 

stabilize the model and make it more precise. Five validation set compounds were far from the 

centroid of the descriptor space (hi > h*), they are trichloromethane (#49), 1,2-dichloropropane (#52), 

1,2-dibromo-3-chloropropane (#53), acetochlor (#78), and hexachlorobenzene (#117), but the model 

still shows good predictivity for these compounds. However, predictions of compounds with high 

leverage values should be used with great caution. Second, the analysis of the applicability domain 

confirms the presence of outliers. Compounds #57 (Dalapon) in the training set and #116 (DEHP) in 

the validation set are identified as outliers (> 3 standard deviation). As shown in Model 2, after 



 

 119 

removing the two outliers, model performance is improved as was shown by internal and external 

validation. 

 

Figure 6.2 Williams plot of the entire data set for model 1 (h* = 0.27). 

 

6.3.3 Mechanistic Implications of the Descriptors in the QSPR model 

As shown in Table 6.3, the mean atomic Sanderson electronegativity (Me) descriptor is the main 

contributor to the logkOH because of the highest standardized coefficient, and this descriptor is 

negatively correlated to logkOH. Electronegativity is the tendency or power of an atom (or a functional 

group) to attract electrons. The greater the electronegativity of an atom the greater is its desire to 

withhold its electrons (i.e. less likely to donate its electrons). For a molecule with a high mean 

electronegativity, a very high energy is required to remove the electrons thereby making the hydroxyl 

radical induced electron transfer difficult (Sanderson 1983). In addition, electronegativity is related to 

the average of the highest occupied molecular orbital energy (HOMO) and the lowest unoccupied 

molecular orbital energy (LUMO) (Zhan et al., 2003). Quantum-chemical descriptors such as HOMO 

and LUMO have been used in predicting the reactivity of compounds in ozonation and hydroxyl 

radical reactions (Gramatica et al., 2004). In a similar study (Kusic et al., 2009) the main contribution 
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to the hydroxyl degradation rate is given by the HOMO energy parameter. However, HOMO and 

LUMO energy descriptors are not used in this study because they were found not to be significant in 

the preliminary analysis (Appendix D).  

Descriptors Mor27p, MATS2m, and Vindex are related to the topological structure of a molecule. 

The 3D-MoRSE descriptors Mor27p is weighted by atomic polarizability. This descriptor is highly 

sensitive to the 3-dimensional molecular structure and polarizability. It is known that polarizability is 

related to chemical reactivity of a molecule. Hence, the polarizability weighting descriptor Mor27p 

confirms the significance of molecular polarity and polarizability for reactivity. MATS2m is a 2D 

autocorrelation descriptor weighted by molecular mass, giving information on the distribution of 

molecular mass along the topological structure. Similarly, molecular weight was found important in 

predicting the hydroxyl radical rate constants of aromatic compounds in water (Kusic et al., 2009).  

The discrete descriptors nDB (number of double bonds) and nHAcc (number of acceptor atoms 

for H-bonds) have positive indices, while all other descriptors have negative indices. The positive 

coefficient of nDB can be explained by hydroxyl radical addition to double bonds. The functional 

group nHAcc can positively affect the H-atom abstraction during hydroxyl radical reaction by 

withdrawing electrons from the C-H bond. The functional group descriptor nCH2RX represents alkyl 

halide (primary) substructures. The halogens (Cl, Br, and I) are electron withdrawing groups, making 

the C atom electrophilic and prone to attack by nucleophiles. They are therefore less likely to be 

attacked by hydroxyl radicals which are excellent electrophiles. This explains the negative coefficient 

of nCH2RX.  

The model developed in this study is applicable to a wide range of micropollutants with diverse 

structures, and can be used to provide reliable estimation of kOH for many micropollutants when 

experimental data are not available. It is therefore useful for the water industry when assessing the 

removal efficiency of unknown micropollutants during AOPs, i.e. screening micropollutants of 

interest, and providing an estimate of AOP feasibility. In addition, this model can provide input to the 

Rct model (Elovitz and von Gunten 1999) which together with a QSPR model for kO3 prediction 

(Chapter 5) can be used to assess the removal of micropollutants in natural water during ozonation 

treatment. When dealing with the prediction for unknown compounds, first, users are expected to 

check if the compounds fall into the applicability domain by calculating the leverage. Predictions 

made for compounds outside of the applicability domain should be used with great caution. The 
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second step is to calculate the molecular descriptors by using the DRAGON software. And finally, 

calculate the logkOH using the developed QSPR model.     

 

6.4 Conclusions 

The kOH values in the aqueous phase are important for assessing the removal efficiency of 

micropollutants during advanced oxidation processes. A QSPR model for the prediction of aqueous 

phase kOH values was successfully developed in this study. A data set including 118 micropollutants 

with diverse structures were collected from the literature and divided into the training set (n = 89) and 

validation set (n = 29). Multiple linear regression was then used to develop a QSPR model based on 

the training set. The model was then externally validated with the validation set. The leverage 

approach (Williams plot) was used to determine the applicability domain of the QSPR model and to 

identify outliers in the training set and validation set. The developed QSPR model provides a valuable 

tool for the prediction of kOH values of a wide range of micropollutants.  

1. A seven-variable model was developed using the training set. The main contribution to the 

rate constant was obtained from the mean atomic Sanderson electronegativity descriptor Me. 

In addition, model descriptors were also related to polarizability, double bonds, H-bond 

acceptors, etc., which can be explained by the H-atom abstraction and OH-addition 

mechanisms of the radical reaction. 

2. The performance of the QSPR model was assessed in terms of goodness-of-fit, robustness 

and predictivity (using a validation set). The model fitted the training set very well as seen in 

the adjusted R
2
 = 0.823; the cross validated Q

2
 = 0.773 and      

  = 0.772, all indicating good 

robustness and predictivity.    

3. One outlier compound was identified in the training set (Dalapon) and one in the validation 

set (DEHP). By removing these two outliers, the QSPR model was further improved as 

indicated by higher     
  (0.846), Q

2
 (0.804), and      

  (0.858), and lower RMSE (0.178) 

and RMSEP (0.255).  
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Chapter 7 QSPR Models Application in Natural Waters for 

Assessing Removals of Micropollutants during Ozonation  

The Rct model developed by Elovitz and von Gunten (1999) can be used to predict the percentage 

removal of micropollutants from natural water during ozonation if the kO3 and kOH of the target 

micropollutants are known. This chapter will focus on the application of QSPR models developed in 

Chapter 5 (for kO3) and Chapter 6 (for kOH) under natural water conditions by assessing the removal 

efficiency of micropollutants during ozonation using the Rct model developed by Elovitz and von 

Gunten (1999). The predicted kO3 and kOH by QSPR models were used as input for the Rct model to 

predict the removal, and then predicted removal values were compared with reported values.   

 

Outline: QSPR models developed previously can be used to estimate the rate constants kO3 and 

kOH of untested micropollutants, and the Rct model developed by Elovitz and von Gunten (1999) can 

be used to assess the removal efficiency of micropollutants during ozonation if that their rate 

constants are known. Therefore, the combination of QSPR and Rct models are useful in the evaluation 

of the removal efficiency of untested micropollutants from natural water by ozonation. To 

demonstrate the applicability of this approach, sixteen micropollutants were collected from reported 

ozonation studies using a number of different water sources and known Rct values. The kO3 and kOH of 

these collected micropollutants were estimated by QSPR models, and the predicted percentage 

removals were calculated based on reported Rct values. These estimated removals were then compared 

with the reported values which were determined experimentally. The methods to increase the removal 

were discussed based on a case study for geosmin, a taste and odour compound. In addition, the 

sources of error of the prediction were also discussed. The results show that the combination of Rct 

with QSPR models can provide reliable estimations for most of the selected micropollutants and can 

be used as a tool for initial assessment and estimation of ozonation system. 

 

Keywords: ozone, hydroxyl radical, rate constant, percentage removal, QSPR model, Rct model. 

 

  



 

 123 

7.1 Introduction 

Ozonation is commonly applied in drinking water treatment for disinfection, oxidation, taste and 

odor control, and color removal. Molecular ozone is unstable in water and decomposes gradually into 

hydroxyl radicals. Molecular ozone reacts selectively with micropollutants with functional groups 

such as amines, phenols and double bonds, while hydroxyl radicals react less selectively and more 

rapidly with various micropollutants. Therefore, ozone (direct oxidation) and hydroxyl radicals 

(indirect oxidation) pathways have to be considered simultaneously when assessing the overall effect 

of ozonation on micropollutants (von Gunten 2003).  

Concentrations of ozone and hydroxyl radicals are needed to estimate the overall effect of 

ozonation. Ozone can be easily monitored via the Indigo method or a spectrophotometer (Eaton et al., 

2005). In contrast, hydroxyl radicals are very difficult to measure directly because of their high 

reactivity and their very low steady-state concentrations in water. Therefore Rct, which is defined as 

the ratio of hydroxyl radical exposure (i.e., oxidant concentration integrated over the reaction time) to 

the molecular ozone exposure during the ozonation process (Equation 7.1), was developed as an 

indirect way to measure hydroxyl radicals (Elovitz and von Gunten, 1999). For a given water source, 

Rct can be experimentally determined by monitoring the decrease of a probe compound, pCBA (para-

chlorobenzoic acid), during ozonation (Equation 7.2) which reacts rapidly with hydroxyl radicals 

(kOH,pCBA = 510
9
 M

-1
s

-1
) but very slowly with molecular ozone (kO3,pCBA = 0.15 M

-1
s

-1
).  

dtO

dtOH
Rct
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
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                   (7.2) 

Where kOH,pCBA is the second-order rate constant of pCBA with hydroxyl radicals, [pCBA]0 and 

[pCBA]t is the initial concentration and the remaining concentration at time t, respectively.   

After an initial phase (seconds), the Rct value remains constant for the rest of the ozonation 

process (Buffle et al., 2006). In natural waters, Rct values were reported in the range of 10
-10

 – 10
-7

, 

depending on the water matrix (Elovitz et al., 2000). Generally, Rct values increase with enhanced 

hydroxyl radical formation from ozone decomposition at increased pH and temperature; and Rct 

values decrease with increases in hydroxyl radical scavengers such as bicarbonate ions (i.e., increased 

alkalinity) (Elovitz et al., 2000). The Rct value for a given water source is relatively easy to determine 
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experimentally but difficult to predict. However, a model was developed to predict Rct of surface 

water using a few water quality parameters (DOC, pH, UV254, the ratio of UV210 over UV254) and 

treatment condition (H2O2/O3 mass ratio). A very high coefficient of correlation (R
2
 = 0.92) was 

obtained, and the predictivity was validated for MIB oxidation which closely matched the published 

data (Vincent et al., 2010). However, the error associated with the Rct prediction was very large for 

waters with low pH (5.6) and high pH values (8.1), and the temperature effect on Rct was not 

considered in this model. 

For any given water source, after the Rct value has been determined, the removal efficiency of 

micropollutants as a function of ozone exposure can be assessed as long as their kO3 and kOH values 

are known (Equation 7.3).  

    









dtOkRkdtOkdtOHk

P

P
OctOHOOH

t ][][][
][

][
ln 3333

0

           (7.3) 

However for many emerging micropollutants, especially endocrine disrupting chemicals (EDCs) 

and pharmaceuticals and personal care products (PPCPs), the reaction rate constants kO3 and kOH are 

not available. In addition, the experimental determination of these rate constants is time consuming 

and expensive. QSPR models are therefore very useful to predict the rate constants of a large number 

of untested compounds based on their structural features. QSPR models on kO3 and kOH, for a wide 

range of micropollutants with diverse structures, were developed in Chapters 5 and  6, respectively. 

Combining the QSPR models with the Rct model, it is possible to assess the removal efficiency of 

untested micropollutants during ozonation in a particular natural water provided it’s Rct value is 

known.  

The objective of this Chapter is therefore to explore the applicability of the developed QSPR 

models in combination with the Rct models for the assessment of the removals of micropollutants 

during ozonation. Information with respect to target micropollutant removals, Rct values of given 

water, and ozone exposures were collected from the literature. The predicted removals of these 

micropollutants obtained by using the QSPR models and reported Rct values, were then compared 

with their reported removals.  
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7.2 Materials and Methods  

7.2.1 Data Set 

Micropollutants used in this study were collected from the literature and included taste and odour 

compounds, acetamide herbicides, phenyl-urea herbicides, fuel additives, and pesticides. Their 

experimentally determined kO3 and kOH values, as well as the Rct values of the water sources are 

summarized in Table Appendix E.1.  

7.2.2 Rate Constant Prediction by QSPR Models 

QSPR models used for predicting the kO3 and kOH were developed in Chapter 5 and Chapter 6, 

respectively. The model based on average molecular weight and phenolic functional group (Equation 

5.8) was used for kO3 prediction, and Equation 6.10 was used for kOH predictions. The prediction error 

and the 95% confidence interval for the predictions on new compounds (i.e., prediction interval) were 

calculated by Equations 7.4 and 7.5, respectively (Table 7.1).  

  pppred xXXxMSEs
1

''1


                                                (7.4) 

  pppni xXXxMSEty
1

1,2/ ''1ˆ


                                             (7.5) 

Where MSE is the mean squared error of the training set compounds; X is the descriptor matrix of 

the training set; and xp is the descriptors vector for the new compound;     is the predicted rate 

constant in log scale; tα/2,n-p-1 is the two-sided student’s t-distribution with (n-p-1) degrees of freedom 

at 100(1-α) percent confidence level, where n is the number of training set compounds and p is the 

number of descriptors involved in the model (Neter et al., 1983). The prediction interval takes into 

account both the error from the fitted model and the error associated with the new compound. 

7.2.3 Calculation of the Ozone Exposure 

The ozone exposure (integration of the ozone residual concentration over time) is also needed for 

predicting the removal of micropollutants. Ozone exposure was reported in Peter and von Gunten 

(2007). However, this is not the case for the other studies. Instead, ozone exposure can be calculated 

with the reported ozone decomposition rate (Appendix E.1).  
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The ozone decomposition in natural waters usually involves two phases, a fast initial decrease of 

ozone (in the order of seconds), and a second phase in the order of minutes to hours which can be 

modeled with first-order kinetics (Equation 7.6).  

kt
O

O t 










03

3

][

][
ln                                                         (7.6) 

Where t is the contact time (s), k is the decomposition rate (s
-1

), [O3]0 and [O3]t are the initial 

ozone concentration and the remaining concentration at time t, respectively. The ozone exposure is 

calculated by integrating the ozone residual concentration over time (Equation 7.7). The calculated 

ozone exposure values are shown in Appendix E.1.  

 kte
k

O
dtO  1

][
][ 03

3                                                       (7.7) 

The reactor hydraulics is important for delivering a certain ozone dose, but we are not providing 

any details on reactor hydraulics in this study. 

7.2.4 Calculation of the Percentage Removal 

The percentage removal (%R) of a micropollutant P is calculated using the Rct concept (Equation 

7.8).  

   
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







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R OctOH ][exp1100

][

][
1100% 33

0

                     (7.8) 

The prediction errors in kO3 and kOH directly impact the calculation of %R. To assess the error 

involved in the calculation of %R, the interval associated with the %R calculation is therefore 

calculated using the prediction interval associated with the kO3 and kOH (Table 7.1). 
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Table 7.1 The calculation results of predicted rate constant, percentage removal, prediction error, and prediction interval.  

No. Compound 
kO3  kOH  %R 

logkO3 spred PI h  logkOH spred PI h  %R Interval 

1 2,6-Nonadienal
 
 4.58 0.77 (2.96, 6.19) 0.49  9.91 0.22 (9.48, 10.35) 0.053  100 (99, 100) 

2 1-Penten-3-one 4.50 0.75 (2.92, 6.07) 0.42  9.75 0.23 (9.53, 10.20) 0.127  100 (98, 100) 

3 Belta-cyclocitral  4.61 0.78 (2.98, 6.25) 0.53  9.79 0.22 (9.57, 10.23) 0.067  100 (99, 100) 

4 Isoproturon   4.43 0.74 (2.88, 5.97) 0.36  9.88 0.22 (9.65, 10.33) 0.110  100 (61, 100) 

5 Chlortoluron  4.01 0.69 2.57, 5.44) 0.17  10.14 0.23 (9.91, 10.60) 0.169  100 (70, 100) 

6 
2-Isopropyl-3- 

methoxypyrazine  
-0.03 0.69 (-1.48, 1.42) 0.20  9.60 0.22 (9.38, 10.04) 0.073  55 (38, 90) 

7 Diuron  
 

-0.51 0.67 (-1.91, 0.88) 0.11  10.02 0.23 (9.80, 10.47) 0.114  74 (55, 98) 

8 Atrazine  
 

-0.22 0.68 (-1.64, 1.20) 0.15  9.57 0.22 (9.35, 10.01) 0.075  66 (47, 96) 

9 Butachlor  -0.04 0.69 (-1.49, 1.41) 0.20  9.36 0.24 (9.12, 9.84) 0.276  27 (16, 66) 

10 Acetochlor  -0.12 0.69 (-1.55, 1.31) 0.17  9.23 0.24 (8.99, 9.71) 0.262  20 (12, 56) 

11 Linuron  
 

-0.54 0.67 (-1.94, 0.85) 0.11  9.85 0.22 (9.63, 10.29) 0.079  59 (42, 92) 

12 Propachlor  -0.20 0.68 (-1.62, 1.22) 0.15  9.19 0.24 (8.95, 9.67) 0.258  19 (11, 52) 

13 2-Methylisoborneol  0.25 0.73 (-1.27, 1.78) 0.32  9.83 0.22 (9.61, 10.28) 0.089  75 (56, 98) 

14 MTBE  
 

0.34 0.74 (-1.21, 1.90) 0.38  9.49 0.24 (9.25, 9.96) 0.219  25 (13, 90) 

15 Geosmin  0.27 0.73 (-1.26, 1.79) 0.33  9.60 0.24 (9.36, 10.07) 0.232  28 (17, 69) 

16 2,4,6-Tribromoanisole  
 

-1.51 0.76 (-3.09, 0.08) 0.43  9.62 0.22 (9.40, 10.07) 0.096  57 (39, 90) 

logkO3 and logkOH values were calculated by QSPR models (Equation 5.8 and Equation 6.10, respectively), prediction error (spred) and 95% 

prediction interval (PI) were done by Equations 7.4 and 7.5, respectively, h is the leverage value.  
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7.3 Results and Discussion 

Once the Rct value for a given natural water source has been determined using the probe 

compound pCBA, and kO3 and kOH are known, the removal of a micropollutant P can be modeled and 

predicted (Equation 7.8). The theoretical relationship between the percentage removal and the rate 

constants kO3 and kOH is shown in Figure 7.1. The percentage removal increases with increasing kO3 

and kOH values. The ozone rate constant has a more pronounced effect on the percentage removal than 

the hydroxyl radical rate constant because ozone pathway is more important than the hydroxyl radical 

pathway when kO3 is larger than kOHRct, and vice versa. Considering the fact that kOH values are mostly 

in the range of 10
8
-10

10
 M

-1
 s

-1
 and Rct ranges from 10

-10
-10

-7
, the product of kOH and Rct is usually less 

than 100. Therefore, the percentage removals are low for ozone-resistant compounds, and high 

percentage removals can be achieved for ozone-reactive (>100 M
-1

 s
-1

) compounds. For example, 

over 80% removal can be achieved for a compound with kO3 = 100 M
-1

s
-1

, only 20-30% removal can 

be achieved for a compound with kO3 = 10 M
-1

s
-1

. In addition, it can be found that the percentage 

removal also increases with the increasing Rct and ozone exposure (Equation 7.8). Therefore, for a 

particular micropollutant (i.e. kO3 and kOH are constant), higher removal can be achieved by increasing 

ozone exposure (higher concentration, longer contact time, or both) or by switching to AOPs (Rct 

increases). For example, adding H2O2 into ozone (O3/H2O2 AOP) increases the hydroxyl radicals 

production, thereby increasing the Rct. According to Vincent et al. (2001), the logarithm scale Rct is 

linearly related to the H2O2/O3 mass ratio.      

 



 

 129 

 

Figure 7.1 The theoretical relationship between the percent removal (%R) and the rate constants (kO3 

and kOH). Assume the Rct value is 10
-8

 and the ozone exposure is 0.02 Ms.  

A group of micropollutants with reported percentage removals, Rct values, and ozone exposure 

were collected from the literature (Table 7.1). Rct values were in the range of 10
-9

 – 10
-7

, and most 

commonly in the order of 10
-8

. Their kO3 values were in the range of 0.02 – 8.7×10
5
 M

-1
s

-1
 and kOH in 

the range of 1.9×10
9
 – 8.95×10

9
 M

-1
s

-1
.  

Before predicting rate constants, first, the leverage values of all the selected micropollutants were 

calculated. All of the compounds fall into the applicability domain of QSPR models, except that the 

leverage value of butachlor (0.276) is higher than the warning leverage (h* = 0.270) of the kOH model 

indicating that the predicted kOH of butachlor should be used with caution. Secondly, the kO3 and kOH 

values of these micropollutants were predicted using the developed QSPR models (details in Chapters 

5 and 6). As shown in Figure 7.2(a), the predicted kO3 values by QSPR models are fairly close to the 

experimentally determined values for most of the micropollutants. However, a few micropollutants 

scattered away from the regression line such as chlortoluron (#5) and 2-isopropyl-3-methoxypyrazine 

(#6). As shown in Figure 7.2(b), nearly all the QSPR model predicted kOH values are close to their 

measured kOH except for three compounds, butachlor (#9), acetochlor (#10), and propachlor (#12) 
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which were slightly underestimated. However, the differences between predicted and actual values 

are relative small.  
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Figure 7.2 Predicted second-order rate constants vs. their experimental determined values, (a) ozone 

rate constants, (b) hydroxyl radical rate constants. The numbers of micropollutants are shown in 

Table 7.1. 

The percentage removals of these micropollutants were then calculated (Table 7.1) and plotted 

against the observed removals (Figure 7.3). Most of the micropollutants were found close to the 

theoretical line indicating that the predictions of the percentage removal of these compounds agree 

well with the experimental data. However, three compounds (acetochlor, propachlor, and butachlor) 

were underestimated because of the error associated with their kOH predictions. Overall, the results 

show that the developed QSPR models can provide reliable estimation of the kO3 and kOH. Although 

the selected micropollutants are structurally diverse; the combination of Rct with QSPR models 

provides a possible approach to estimate the percentage removals before experimentation.  

 

Figure 7.3 Predicted percentage removal vs. measured percentage removal.  

Actions can be taken if the removals of micropollutants do not reach the treatment goal. For 

compounds with low removals, a few options are available to improve their removal: increasing the 

ozone exposure (not feasible for compounds with extremely low reactivity), adding H2O2 which 

accelerates hydroxyl radicals generation and thereby increasing Rct, or considering other treatment 
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processes. For example, one of the taste and odour compounds, geosmin, shows low removal at about 

35% (Figure 7.3) under the conditions given in the literature (Peter and von Gunten 2007). Its 

removal can theoretically be improved to over 80% if the ozone exposure increases from 0.004 to 

0.02 Ms, or the Rct increases from 2×10
-8

 to 10
-7 

(Figure 7.4).  
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Figure 7.4 Predicted percentage removal of geosmin in the relationship with (a) ozone exposure, (b) 

Rct values. The measured percentage removal was obtained from Peter and von Gunten (2007), and 

the prediction curve was obtained using the QSPR model predicted kO3 and kOH of geosmin.  

When applying the approach for prediction, the uncertainty of the prediction should be kept in 

mind. The overall uncertainty of the prediction is determined by the extent of all possible errors. 

These errors can be associated with, but are not limited to, the rate constant prediction, measurement 

of Rct and ozone concentration, etc. Neumann et al. (2009) discussed the uncertainty associated with 

applying the Rct model in pilot-scale reactors in detail and found that the source of uncertainty for 

predicting the removal of micropollutants largely depends on their reactivity, i.e. rate constants. For 

ozone-resistant micropollutants (for example, kO3 < 10 M
-1

s
-1

), Rct is the most influential factor which 

can explain most of the variance, whereas for micropollutants reacting fast with ozone (for example, 

kO3 > 100 mM
-1

s
-1

), kO3 and reactor hydraulics are important sources of uncertainty. In this study, 

three compounds (acetochlor, propachlor, and butachlor) show relatively large errors when predicting 

their removals (Figure 7.3). They are all ozone-resistant compounds as indicated by their low kO3 

values. Therefore, the direct pathway (i.e. oxidation with molecular ozone) is less important than the 

hydroxyl radical pathway. Thus the error in predicting kOH is largely reflected in the removal 

estimation. On the other hand, chlortoluron is a fast-reacting compound and its predicted logkO3 

differed by 1.4 from the measured logkO3.This explains the difference between measured (70%) and 

predicted removal (99.8%).  

Overall, the combination of Rct with QSPR models is useful for estimating the removal efficiency 

of unknown micropollutants in natural water by ozonation treatment. It can be used as a tool for 

initial estimation and assessment for a given treatment goal. Water treatment professionals can apply 

this tool to determine conditions required to achieve a certain treatment goal i.e. a certain % removal 

of micropollutants during ozonation. First of all, the Rct value of a given water source can be 

determined by monitoring the probe compound pCBA. Second, identify the micropollutants of 

interest, e.g., certain toxic compounds which are commonly found in the given water source based on 

previous knowledge or experience, or a group of representative compounds for screening purposes. 

Third, the kO3 and kOH of compounds of interest can be estimated by the QSPR models. And finally, 

estimate the percent removal at a given level of ozone exposure using the Rct model. These results 

will be useful in determining further course of action i.e. if ozonation is in principle a viable option 
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and should be followed up on, or if alternative treatment technologies including AOPs should be 

considered.  

 

7.4 Conclusions 

The Rct model developed by Elovitz and von Gunten (1999) is useful in assessing the removal 

efficiency of micropollutants in natural water during ozonation. But the model input parameters kO3 

and kOH of the target micropollutants are not available for many emerging micropollutants, such as 

EDCs and PPCPs. With the QSPR models developed in this thesis which can provide estimations of 

kO3 and kOH for untested micropollutants, Rct model can be used for estimating the removal efficiency 

of many micropollutants, even though their rate constants are unknown.  Sixteen micropollutants 

were collected from reported studies in natural waters as well as reported Rct values. Their kO3 and kOH 

were estimated by the QSPR models, and the predictive removal were then calculated and compared 

with the experimentally determined removals. The following conclusions can be drawn. 

1. The QSPR models can provide reliable estimations on kO3 and kOH for most of the selected 

micropollutants as the predicted rate constant are close to the experimentally determined 

values. Relative large errors were observed on kO3 of chlortoluron and 2-isopropyl-3-

methoxypyrazine, and kOH of butachlor, acetochlor, and propachlor. 

2. A case study was conducted on geosmin which was not well removed under the conditions 

given in the literature. It was found that geosmin removal can theoretically be improved to 

over 80% if the ozone exposure increases from 0.004 to 0.02 Ms, or the Rct increases from 

2×10
-8

 to 10
-7

. 

3. The kO3 prediction is the main source of error for ozone-reactive compounds, and kOH for 

ozone-resistant compounds.    

4. The combination of the published Rct model with QSPR models developed in this thesis for 

kO3 and kOH prediction provides a valuable approach for estimating the removal efficiency of 

many micropollutants, even though their rate constants are unknown.   
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Chapter 8 

Summary, Conclusions and Recommendations 

8.1 Summary of the Thesis 

The overall goal of this research was to develop reliable QSPR models which link the rate constants 

of a wide range of micropollutants in their reaction with ozone and hydroxyl radicals to their 

structural characteristics. The rate constants of numerous untested micropollutants can then be 

predicted without experimentation. Furthermore, the secondary objective was to assess the removal 

efficiency of ozonation and advanced oxidation processes. The percentage removal of micropollutants 

in natural waters during ozonation and AOPs can be estimated by combining the predicted rate 

constants with the existing models such as Rct and ROH,UV. 

To develop QSPR models and explore their applications in natural waters, this research consisted 

of five major phases. The first phase included a literature review of the QSPR methodology and 

existing QSPR applications in ozonation and advanced oxidation processes (Chapter 2). In the first 

part of the literature review, the key elements of QSPR model development were reviewed, including 

selection of training set, selection of molecular descriptors, statistical methods for modeling, model 

evaluation, model validation, and applicability domain. The second part of the literature review 

focused on QSPR studies modeling rate constants of micropollutants in ozonation and advanced 

oxidation processes. Finally, knowledge gaps and research needs were identified and discussed.  

The second phase put forth a systematic statistical approach for the selection of representative 

compounds from a large compound pool (Chapter 3). First, this approach identified and collected a 

pool of micropollutants based on reported occurrence in water and wastewater, and availability of 

treatment studies. Second, suitable molecular descriptors which link the structural characteristics of 

micropollutants to mechanisms of water treatment processes were identified. A relative small set of 

structural representative micropollutants (22 micropollutants) were then selected using principal 

component analysis and experimental design. Selected compounds cover the entire chemical domain 

in a well-balanced and efficient manner. The selected compounds served as training set for 

subsequent QSPR model development (Chapter 5).  

The third phase of this research involved extensive laboratory analysis to determine the rate 

constants of the selected micropollutants (selected in Chapter 3) in their reactions with ozone and 

hydroxyl radicals (Chapter 4). Three methods (compound monitoring, ozone monitoring, and 
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competition kinetics) were used to determine the ozone rate constants, and competition kinetics was 

used to measure the hydroxyl radical rate constants. The results were in good agreement with 

literature data where available. The experimentally determined rate constants were used as model 

input for QSPR model development (Chapter 5 and 6).  

 The fourth phase included the development and validation of QSPR models for predicting the 

ozone rate constants (Chapter 5), and hydroxyl radical rate constants (Chapter 6). For the ozone rate 

constant QSPR models, the experimentally determined rate constants (from Chapter 4) were used as 

the training set; models were developed using piecewise linear regression, and the models were 

externally validated using data collected from the literature. For the hydroxyl radical rate constants 

QSPR models, experimental data and literature data were pooled together and then divided into 

training set and validation set. DRAGON descriptors were used to describe the chemical structure of 

the compounds. A very good model was developed using multiple linear regression.      

The last phase of this research included an example of QSPR model (developed in this research) 

applications in natural water to assess the removal efficiency of micropollutants during ozonation 

(Chapter 7). Combined with the existing Rct model, QSPR model predictions were shown to be 

suitable for providing an initial assessment of the removal efficiency of untested compounds during 

real-world treatment. 

This research project was more complex than expected, and challenge were numerous and 

difficult to overcome. A few challenges throughout the development of the QSPR models were: 

1. It is a challenge to develop QSPR models widely applicable to many structural diverse 

compounds. Most studies used a group of structurally relative homogeneous compounds as 

the training set. The similarity of the compounds generally ensures fairly high predictive 

power of the developed QSPR models. However, the applicability of these QSPR models is 

limited to a small range of compounds which are structural similar to the training set 

compounds. Training set selection is therefore very important because it determines the 

applicability of the QSPR model. A set of heterogeneous compounds with diverse structures 

is preferred when the goal of the QSPR model is to predict a wide range of compounds. To 

ensure the training set compounds were heterogeneous and limited in number, a systematic 

selection approach was modified and applied in this research (Chapter 3).     
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2. It is still a challenge to address both the non-dissociating compounds and dissociating 

compounds in a single QSPR model for rate constant prediction. Neutral and ionic species 

can react differently with oxidants such as ozone. Therefore, existing models mainly focus on 

the neutral species. This research is the first attempt to use the predominant species at neutral 

pH for the calculation of molecular descriptors, therefore expanding the applicability of 

QSPR models to dissociating compounds.  

3. Selection and calculation of molecular descriptors were challenging. Numerous molecular 

descriptor were available, however, a set of descriptors with clear physical meanings which 

can aid in the interpretation of the mechanisms of the various treatment technologies, were 

not available. This thesis successfully identified a list of 12 descriptors which can relate the 

structural features to treatment mechanisms. Furthermore, many software packages (free or 

commercial) are available but have limitations. A number of software packages have to be 

used to calculate all the descriptors of interest.   

4. The laboratory analysis was more complex than expected. Determination of the rate constants 

of 22 representative micropollutants was challenging and time-consuming. Several different 

methods had to be used to determine the ozone rate constants. Instrument methods (HPLC-

PDA) had to be developed for all the micropollutants investigated. The quality of the analysis 

had to be carefully controlled to obtain reliable data. As a consequence the laboratory 

analysis took longer than expected. 

5. Development of QSPR models involved advanced knowledge of statistical modeling 

techniques. Misuse or missing one or more key elements for QSPR modeling can lead to 

incorrect or poor models with low predictive power. The original plan was to use partial least 

squares (PLS) regression to build QSPR models, however, models developed with PLS 

regressions were not statistically satisfactory. Various modeling techniques were tested and 

compared with each other. Piecewise linear regression and multiple linear regression were 

finally applied to develop models for predicting ozone rate constants and hydroxyl radical 

rate constants, respectively.    
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8.2 Summary of Findings and Conclusions 

A systematic selection approach (Chapter 3) which identifies representative micropollutants 

solely based on their physico-chemical and structural properties relevant in individual water treatment 

processes was modified and applied and the following conclusions can be drawn: 

1. Physico-chemical properties (i.e. molecular descriptors) of micropollutants determine to a 

large extent their removal from drinking water. A set of 22 molecular descriptors which are 

relevant to the removal mechanisms of individual treatment processes (i.e. 

coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration) 

was identified. Only descriptors with clear physical meanings were included.  

2. A systematic statistical approach combining principal component analysis and experimental 

design was modified and applied to a pool of heterogeneous micropollutants and their 

molecular descriptors. Principal component analysis summarized the variation in this original 

multivariate dataset and extracted latent variables, the principal components. D-optimal onion 

design was applied to these principal components to select structural representative 

compounds.   

3. To demonstrate the applicability of the selection approach, it was applied to a pool of 182 

micropollutants and two sets of 22 representative micropollutants were selected. The first set 

is suitable for experimental studies of a range of water treatment processes 

(coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration) 

whereas the second set can be used for studying oxidation processes. The small number of 

selected micropollutants (22 out of 182) provided very good coverage over the entire property 

space and thus represented the original micropollutant pool well.  

4. Maximum information on treatability of compounds with very diverse structures can be 

obtained with a minimum amount of experimental study when using the selected compounds, 

therefore making treatment studies more cost effective.  

5. The selection approach presented here is flexible and can be customized to fit individual 

needs by for example reducing the number of compounds, applying it to other processes such 

as adsorption and/or membrane filtration, or studying other classes of micropollutants by re-

defining the compound pool. 
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In Chapter 4, laboratory analysis was conducted to determine the rate constants of selected 

micropollutants in the reaction with ozone and hydroxyl radicals, from which we can make the 

following conclusions: 

1. Three different methods had to be used to determine kO3 (at pH 7 and 20-22ºC) because of the 

wide range of rate constants and the limitations of each method. The competition kinetics 

method was satisfactory to determine kOH values (at pH 7 and 20-22ºC) of all selected 

micropollutants in which the hydroxyl radicals were produced by UV/H2O2 since kOH values 

varied over a comparatively small range. 

2. For the majority of the micropollutants investigated kO3 and kOH were not reported. Data 

provided herein are thus filling this data gap, and provide valuable information for modeling 

and design of ozonation and AOP treatment. 

3. The kO3 values determined in this study ranged from 10
-2

 to 10
7
 M

-1
 s

-1
. In general, 

compounds with activated aromatic rings such as a phenolic moiety, anisole, or aniline 

moiety show high reactivity (~10
4
 to 10

7
 M

-1
 s

-1
) toward ozone with the exception of the 

chlorine substituted compound dicamba (~10
-2

 M
-1

 s
-1

). Polycyclic aromatic hydrocarbons 

show moderate reactivity (~10
3
 to 10

4
 M

-1 
s

-1
) and compounds with deactivated aromatic rings 

such as phthalate, organochlorine compounds, and X-ray contrast media show moderate to 

very low reactivity (~10
-2

 to 10
2
 M

-1
 s

-1
) toward ozone. Saturated aliphatic compound such as 

organophosphorus compounds have a low reactivity (<10 M
-1

s
-1

) towards ozone as well. The 

general trend of micropollutant reactivity with ozone can be explained by the micropollutant 

structures and the electrophilic nature of ozone reactions. 

4. All compounds are highly reactive toward hydroxyl radicals as shown by their high kOH 

values confirming that the hydroxyl radicals are relatively non-selective oxidants.  

5. For compounds with low reactivity toward ozone, ozonation treatment could be insufficient 

for removing them from drinking water, therefore hydroxyl radicals based treatment 

techniques such as O3/H2O2 or UV/H2O2 are recommended. 

QSPR models for predicting the rate constants of micropollutants in the reaction with ozone were 

developed in Chapter 5. We can draw the following conclusions: 

1. QSPR models were developed with a set of 22 selected representative micropollutants as the 

training set, and a set of pre-selected molecular descriptors. Preliminary modeling with 
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stepwise MLR, partial least squares (PLS) regression, and principal component regression 

(PCR) failed to develop satisfactory models. 

2. With a pre-defined breakpoint (logkO3 = 2.00 M
-1 

s
-1

), the models developed by piecewise 

linear regression (PLR) show significant better results (R
2
 > 0.9). In addition, the piecewise 

linear regression models were externally validated using data (n = 33) collected from 

literature, indicating good predictive power as shown by their high predictive R
2
 (> 0.8). 

3. A linear discriminant analysis (LDA) was carried out to classify the compounds into one of 

the two groups, high-reactive and low-reactive compounds. The resulting discriminant 

function shows great classification ability in both training set and validation set. With this 

function, new compounds can be easily classified into one of the two defined groups, and 

then predicted by the PLR models accordingly.  

4. The applicability domains of the models were defined using the Williams plot approach based 

on leverage, so that the applicability of the models can be determined for new compounds. 

Predictions made for compounds outside of the applicability domain should be used with 

great caution.  

5. Overall, the PLR-LDA approach provides the means to model the ozone rate constants of 

various, structural diverse compounds. The predicted kO3 is an indication of compound 

reactivity and therefore provides an initial assessment whether a compound can be treated 

with ozone at all.  When combining the predicted kO3 with the Rct model the percentage 

removal of these compounds in natural water can be assessed for varying ozonation 

conditions. 

QSPR models for predicting the rate constants of micropollutants in the reaction with hydroxyl 

radicals were developed in Chapter 6, from which we can make the following conclusions: 

1. A seven-variable model was developed using the training set. The main contribution to the 

rate constant was obtained from the mean atomic Sanderson electronegativity descriptor Me. 

In addition, model descriptors were also related to polarizability, double bonds, H-bond 

acceptors, etc. The importance of these descriptors can be explained by the H-atom 

abstraction and OH-addition mechanisms of the radical reaction. 

2. The performance of the QSPR model was assessed by goodness-of-fit, robustness and 

predictivity (using validation set). The model fitted the training set very well as seen in the 
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adjusted R
2
 = 0.823; the cross validated Q

2
 = 0.773 and predictive R

2
 = 0.772, all indicating 

good robustness and predictivity.    

3. Outlier compounds were identified, one in the training set (Dalapon) and one in the validation 

set (DEHP). By removing the two outliers, the QSPR model was further improved as 

indicated by higher adjusted R
2
 (0.846), Q

2
 (0.804), and predictive R

2
 (0.858).  

The combination of the Rct model with QSPR models to predict kO3 and kOH values provides a 

possible approach for assessing the removal efficiency of many micropollutants, even though their 

rate constants are unknown. The applicability of this combination was explored in Chapter 7. We can 

draw the following conclusions: 

1. The QSPR models can provide reliable estimations on kO3 and kOH for most of the 16 selected 

micropollutants as the predicted rate constant are close to the experimentally determined 

values. Relative large errors were observed on kO3 of chlortoluron and 2-isopropyl-3-

methoxypyrazine, and kOH of butachlor, acetochlor, and propachlor. 

2. A case study was conducted on geosmin which was not well removed under the condition 

given in the literature. It is found that its removal can theoretically be improved to over 80% 

if the ozone exposure increases from 0.004 to 0.02 Ms, or the Rct increases from 2×10
-8

 to 10
-

7
. 

3. The kO3 prediction is the main source of error for ozone-reactive compounds, and kOH for 

ozone-resistant compounds.    

4. The combination of the published Rct model with QSPR models developed in this thesis for 

kO3 and kOH prediction provides a valuable approach for estimating the removal efficiency of 

many micropollutants, even though their rate constants are unknown.   

 

8.3 Future Directions and Implications for the Water Treatment Community 

This research developed a systematic compound selection approach for water treatment screening 

studies. It is useful to identify a small group of compounds representing a large compound pool for 

the ease of the laboratory analysis and modeling, especially for emerging contaminants as it is 

impossible to experimentally study all of these contaminants. The future directions for this approach 

could be: 
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 Select representative compounds set for other treatment processes such as activate carbon 

adsorption, membrane filtration, biofiltration, etc. In addition, verify the representativeness of 

the selected compounds by conducting pilot-scale and full-scale studies. The ultimate goal is 

to recommend a representative compound lists to the water industry and obtain wide 

recognition.  

 To aid in regulatory decisions. For example, US EPA is now reviewing the Contaminant 

Candidate List 3, from which contaminants may be identified for regulation based on 

grouping compounds. The selection approach introduced here can be adapted to identify 

similarity and dissimilarity among those contaminants, by grouping or clustering and 

identifying indicator compounds (e.g. worse case scenarios).  

 The identified molecular descriptor set can be further improved as more knowledge becomes 

available. Better descriptors are needed to describe the electron status of the compounds 

especially for dissociating compounds.  

This research developed QSPR models for predicting the rate constant of micropollutants in the 

reaction with ozone and hydroxyl radicals. The future direction for the QSPR modeling application 

for the water treatment could be: 

 Improve the model application of pH-dependent property predictions. Ideally, a model which 

can be used at the entire pH range encountered in natural water is needed.  

 Verify the applicability of the model by applying it together with the Rct model in pilot scale 

and full-scale experiments.  

 Assess the removal efficiency of micropollutants in UV/H2O2 AOP in natural water by 

combining the QSPR models with the ROH,UV model. 

 Develop QSPR models for other oxidation and related processes in water treatment, e.g., 

chlorination, UV photolysis. Further, develop QSPR models for other water treatment 

processes such as activated carbon adsorption and membrane filtration.  
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Appendix A 

Supplementary Material for Chapter 3  

Selection of Representative Emerging Micropollutants for Drinking Water 

Treatment Studies: A Systematic Approach 

 

Diffusivity Calculations  

Liquid phase diffusivity of organic compound in water can be estimated by the formula below 

(Gnielinski, 1979), in which Vb can be estimated using the Tyn and Calus method (Reid et al., 1977). 

Vc values are calculated by Molecular Modeling Pro Plus (MMP+) software (ChemSW Inc.) applying 

the Joback and Reid (1987) method. 

589.014.1

5-1026.13

bl V
Df




                                                          (A.1) 

048.1
285.0 cb VV                                                          (A.2) 

Where:  

Df the diffusivity of organic compound in water (cm
2
/s) 

l the viscosity of water (centipoise), w = 1.003 centipoise = 1.003×10
-3

 Pas (20C) 

Vb the molar volume at the boiling point temperature (cm
3
/mol) 

Vc the critical volume (cm
3
/mol) 
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Figure A.1 PCA analysis for treatment set 1 (coagulation/flocculation, oxidation, activated carbon 

adsorption, and membrane filtration). (a) Score plot of principle component three (PC3) and four 

(PC4). D-optimal onion design applied (3 layers) for compound selection. Black triangles represent 

compounds not selected, blue circles represent selected compounds, the red dot represents the center 

compound and purple boxes represent compounds selected to replace similar compounds; (b) Loading 

plot of PC3 and PC4. The meaning of the abbreviations can be found in the main manuscript Table 

3.2. 
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Figure A.2 PCA analysis for treatment set 2 (oxidation processes). (a) Score plot of principle 

component two (PC2) and three (PC3). D-optimal onion design applied (3 layers) for training set 

selection. Black triangles represent compounds not selected, blue circles represent selected 

compounds, the red dot represents the center compound and purple boxes represent compounds 

selected to replace similar compounds; (b) Loading plot of PC2 and PC3. The meaning of the 

abbreviations can be found in the main manuscript Table 3.2. 
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Figure A.3 Structures of micropollutants selected for water treatment set 1 (coagulation/flocculation, oxidation, 

activated carbon adsorption, and membrane filtration). 
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Figure A.4 Structures of micropollutants selected for water treatment set 2 (oxidation processes).
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Table A.1 Micropollutants included in this study and their occurrence in water (n = 182). 

No. Compound CASRN 
a
 MW Use/origin Environmental occurrence Reference 

Veterinary and Human Antibiotics (n = 36)  

1 Amoxicillin 61336-70-7 365.40 -lactam Max. in STP 
b
 effluents: 0.12 g/L  Andreozzi et al., 2004 

2 Cloxacillin 61-72-3 435.88 -lactam Not detected in STP effluents Hirsch et al., 1999 

3 Dicloxacillin 3116-76-5 470.33 -lactam Not detected in STP effluents Hirsch et al., 1999 

4 Methicillin 61-32-5 380.41 -lactam Not detected in STP effluents Hirsch et al., 1999 

5 Penicillin G 61-33-6 334.39 -lactam Not detected in STP effluents Hirsch et al., 1999 

6 Sultamicillin 76497-13-7 594.65 -lactam Not detected in STP effluents Cokgor et al., 2004 

7 Clindamycin 18323-44-9 424.98 Macrolide Max. in surface waters: 1.1 g/L Batt et al., 2005 

8 Lincomycin 154-21-2 406.54 Macrolide Max. in surface waters: 0.73 g/L Kolpin et al., 2002 

9 Ciprofloxacin 85721-33-1 331.35 Quinolone Max. in surface waters: 0.03 g/L  Kolpin et al., 2002 

10 Enoxacin 74011-58-8 320.32 Quinolone Max. in STP effluents: 0.03 g/L  Andreozzi et al., 2003 

11 Enrofloxacin 93106-60-6 359.40 Quinolone STP effluents: 0.10 g/L  Batt et al., 2005 

12 Levofloxacin 100986-85-4 361.37 Quinolone Detected in STP effluents  Yasojima et al., 2006 

13 Lomefloxacin 98079-51-7 351.35 Quinolone Max. in STP effluents: 0.32 g/L  Andreozzi et al., 2003 

14 Norfloxacin 70458-96-7 319.33 Quinolone Max. in surface waters: 0.12 g/L  Kolpin et al., 2002 

15 Ofloxacin 83380-47-6 361.37 Quinolone Max. in STP effluents: 0.2 g/L  Nakata et al., 2005 

16 Sulfacetamide 144-80-9 214.24 Sulfonamide Max. in STP effluents: 0.151 g/L  Miao et al., 2004 

17 Sulfachlorpyridazine 80-32-0 284.72 Sulfonamide Not detected in STP effluents Adams et al., 2002 

18 Sulfadiazine 68-35-9 250.27 Sulfonamide Max. in STP effluents: 0.019 g/L  Miao et al., 2004 

19 Sulfadimethoxine 122-11-2 310.33 Sulfonamide Max. in surface waters: 0.06 g/L  Kolpin et al., 2002 

20 Sulfamerazine 127-79-7 264.30 Sulfonamide Detected in STP effluents  Heberer 2002 

21 Sulfamethazine 57-68-1 277.34 Sulfonamide Max. in surface waters: 0.22 g/L  Kolpin et al., 2002 

22 Sulfamethoxazole 723-46-6 253.28 Sulfonamide Max. in surface waters: 1.9 g/L  Kolpin et al., 2002 

23 Sulfamethizole 144-82-1 270.32 Sulfonamide Max. in surface waters: 0.13 g/L  Kolpin et al., 2002 

24 Sulfamoxole 729-99-7 267.30 Sulfonamide Not detected in STP effluents Adams et al., 2002 

25 Sulfapyridine 144-83-2 249.29 Sulfonamide Max. in STP effluents: 0.228 g/L  Miao et al., 2004 

26 Sulfathiazole 72-14-0 255.31 Sulfonamide Not detected in STP effluents Adams et al., 2002 

27 Sulfisoxazole 127-69-5 267.30 Sulfonamide Max. in STP effluents: 0.034 g/L  Miao et al., 2004 
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No. Compound CASRN 
a
 MW Use/origin Environmental occurrence Ref. 

28 Chlortetracycline 57-62-5 478.89 Tetracycline Max. in surface waters: 0.69 g/L  Kolpin et al., 2002 

29 Doxycycline 564-25-0 462.46 Tetracycline Not detected in STP effluents Miao et al., 2004 

30 Oxytetracycline 79-57-2 460.44 Tetracycline Max. in surface waters: 0.34 g/L  Kolpin et al., 2002 

31 Tetracycline 60-54-8 444.44 Tetracycline Max. in surface waters: 0.11 g/L  Kolpin et al., 2002 

32 Carbadox 6804-07-5 262.22 Others Not detected in STP effluents Adams et al., 2002 

33 Chloramphenicol 56-75-7 323.13 Others Max. in surface waters: 0.06 g/L  

Max. in STP effluents: 0.56 g/L  

Ternes et al., 2003 

34 Spectinomycin 1695-77-8 332.25 Others Not detected in STP effluents Adams et al., 2002 

35 Triclosan 3380-34-5 289.55 Others Max. in surface waters: 2.3 g/L  Kolpin et al., 2002 

36 Trimethoprim 738-70-5 290.32 Others Max. in surface waters: 0.71 g/L  Kolpin et al., 2002 

Prescription and Nonprescription Drugs (n = 53) 

37 Acetaminophen 103-90-2 151.16 Analgesic Max. in surface waters: 10 g/L  Kolpin et al., 2002 

38 Acetylsalicylic acid 50-78-2 180.16 Analgesic Max. in surface waters: 0.34 g/L  

Max. in STP effluents: 1.5 g/L  

Ternes 1998 

39 Codeine 76-57-3 299.37 Analgesic Max. in surface waters: 1.0 g/L  Kolpin et al., 2002 

40 Hydrocodone 125-29-1 299.37 Analgesic Detected in STP effluents  Heberer 2002 

41 Phenazone 60-80-0 188.23 Analgesic Max. in surface waters: 0.95 g/L  

Max STP effluents: 0.41 g/L  

Ternes 1998 

42 Cimetidine 51481-61-9 252.34 Antacid Max. in surface waters: 0.58 g/L  Kolpin et al., 2002 

43 Ranitidine 66357-35-5 314.40 Antacid Max. in surface waters: 0.01 g/L  Kolpin et al., 2002 

44 Buspirone 36505-84-7 385.51 Anti-anxiety agent Not detected in STP effluents Calza et al., 2004 

45 Diazepam 439-14-5 284.74 Anti-anxiety agent Max. in STP effluents: 0.04 g/L  Ternes 1998 

46 Warfarin 81-81-2 308.33 Anticoagulant Not detected in STP effluents Kolpin et al., 2002 

47 Carbamazepine 298-46-4 236.27 Anticonvulsant Max. in surface waters: 1.1 g/L  

Max. in STP effluents: 6.3 g/L  

Ternes 1998 

48 Primidone 125-33-7 218.25 Anticonvulsant Not detected in STP effluents Ternes et al., 2002 

49 Fluoxetine 54910-89-3 309.33 Antidepressant Max. in surface waters: 0.012 g/L  Kolpin et al., 2002 

50 Metformin 657-24-9 129.16 Anti-diabetic  Max. in surface waters: 0.15 g/L  Kolpin et al., 2002 

51 Diphenhydramine 58-73-1 255.36 Antihistamine Detected in raw water samples  Stackelberg et al., 2004 

52 Diltiazem 42399-41-7 414.52 Antihypertensive Max. in surface waters: 0.049 g/L  Kolpin et al., 2002 
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53 Enalaprilat 76420-72-9 348.40 Antihypertensive  

metabolite 
Max. in surface waters: 0.046 g/L Kolpin et al., 2002 

54 Aminopyrine 58-15-1 231.30 Anti-inflammatory Max. in STP effluents: 0.43 g/L  Andreozzi et al., 2003 

55 Fenoprofen 31879-05-7 242.27 Anti-inflammatory Max. in STP effluents: 0.28 g/L  Andreozzi et al., 2003 

56 Flurbiprofen 5104-49-4 244.26 Anti-inflammatory Max. in STP effluents: 0.34 g/L  Andreozzi et al., 2003 

57 Ibuprofen 15687-27-1 206.28 Anti-inflammatory Max. in surface waters: 1.0 g/L  Kolpin et al., 2002 

58 Indomethacin 53-86-1 357.79 Anti-inflammatory STP effluents: 0.10 g/L  Ternes et al., 2003 

59 Ketoprofen 22071-15-4 254.28 Anti-inflammatory Max. in surface waters: 0.12 g/L  

Max STP effluents: 0.38 g/L  

Ternes 1998 

60 Naproxen 22204-53-1 230.26 Anti-inflammatory Max. in surface waters: 0.39 g/L  

Max. in STP effluents: 0.52 g/L  

Ternes 1998 

61 Crotamiton 483-63-6 203.28 Antipruritic  Max. in STP effluent: 0.365 g/L  Nakada et al., 2006 

62 Clenbuterol 37148-27-9 277.19 2-sympathomimetics Max. in surface waters: 0.050 g/L  

Max. in STP effluents: 0.08 g/L  

Ternes 1998 

63 Fenoterol 13392-18-2 312.41 2-sympathomimetics Max. in surface waters: 0.061 g/L  

Max. in STP effluents: 0.060 g/L  

Ternes 1998 

64 Salbutamol 18559-94-9 239.31 2-sympathomimetics Max. in surface waters: 0.035 g/L  

Max. in STP effluents: 0.17 g/L  

Ternes 1998 

65 Terbutaline 23031-25-6 225.29 2-sympathomimetics Max. in STP effluents: 0.12 g/L  Ternes 1998 

66 Atenolol 29122-68-7 266.34 -blocker STP effluents: 0.36 g/L  Ternes et al., 2003 

67 Betaxolol 63659-18-7 307.43 -blocker Max. in surface waters: 0.028 g/L  

Max. in STP effluents: 0.19 g/L  

Ternes 1998 

68 Bisoprolol 66722-44-9 325.45 -blocker Max. in surface waters: 2.9 g/L  

Max. in STP effluents: 0.37 g/L  

Ternes 1998 

69 Carazolol 57775-29-8 298.38 -blocker Max. in surface waters: 0.11 g/L  

Max. in STP effluents: 0.12 g/L  

Ternes 1998 

70 Celiprolol 56980-93-9 379.50 -blocker STP effluents: 0.28 g/L  Ternes et al., 2003 

71 Metoprolol 37350-58-6 267.37 -blocker Max. in surface waters: 2.2 g/L  

Max. in STP effluents: 2.2 g/L  

Ternes 1998 

72 Nadolol 42200-33-9 309.40 -blocker Max STP effluents: 0.06 g/L  Ternes 1998 
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73 Propranolol 525-66-6 259.34 -blocker Max. in surface waters: 0.59 g/L  

Max. in STP effluents: 0.29 g/L  

Ternes 1998 

74 Sotalol 3930-20-9 272.36 -blocker STP effluents: 1.32 g/L  Ternes et al., 2003 

75 Timolol 26839-75-8 316.42 -blocker Max. in surface waters: 0.01 g/L  

Max. in STP effluents: 0.07 g/L  

Ternes 1998 

76 Azathioprine 446-86-6 277.26 Cytostatic drug Not detected in STP effluents Rey et al., 1999 

77 Cyclophosphamide 50-18-0 261.09 Cytostatic drug Max. in STP effluent: 0.020 g/L  Ternes, 1998 

78 Cytarabine 147-94-4 243.22 Cytostatic drug Not detected in STP effluents Rey et al., 1999 

79 Daunorubicin 20830-81-3 527.53 Cytostatic drug Not detected in STP effluents Castegnaro et al, 1997 

80 Doxorubicin 23214-92-8 543.53 Cytostatic drug Not detected in STP effluents Castegnaro et al, 1997 

81 Epirubicin 56420-45-2 543.53 Cytostatic drug Not detected in STP effluents Castegnaro et al, 1997 

82 Idarubicin 58957-92-9 497.50 Cytostatic drug Not detected in STP effluents Castegnaro et al, 1997 

83 Ifosfamid 3778-73-2 261.09 Cytostatic drug Max. in STP effluent: 2.9 g/L  Ternes 1998 

84 Methotrexate 59-05-2 454.44 Cytostatic drug Not detected in STP effluents Rey et al., 1999 

85 Bezafibrate 41859-67-0 361.82 Lipid regulator Max. in surface waters: 3.1 g/L  

Max. in STP effluent: 4.6 g/L  

Ternes 1998 

86 Fenofibrate 49562-28-9 360.84 Lipid regulator Max. in STP effluents: 0.03 g/L  Ternes 1998 

87 Gemfibrozil 25812-30-0 250.34 Lipid regulator Max. in surface waters: 0.79 g/L  Kolpin et al., 2002 

88 Clofibric acid 882-09-7 214.65 Metabolites of lipid regulator Max. in surface waters: 0.55 g/L  

Max. in STP effluent: 1.6 g/L  

Ternes 1998 

89 Fenofibric acid 42017-89-0 318.84 Metabolites of lipid regulator Max. in surface waters: 0.28 g/L  

Max. in STP effluent: 1.2 g/L  

Ternes 1998 

Personal Care Products (n = 23) 

90 2,6-Di-tert-butyl-p-benzoquinone 719-22-2 220.31  Antioxidant Max. in surface waters: 0.46 g/L  Kolpin et al., 2002 

91 2,6-Di-tert- 

butylphenol 

128-39-2 206.33  Antioxidant Max. in surface waters: 0.11 g/L  Kolpin et al., 2002 

92 Butylated hydroxy toluene 128-37-0 220.35  Antioxidant Max. in surface waters: 0.1 g/L  Kolpin et al., 2002 

93 Butylated hydroxyanisole^ 25013-16-5 180.25  Antioxidant Max. in surface waters: 0.2 g/L  Kolpin et al., 2002 

94 1,7- 

Dimethylxanthine 

611-59-6 180.17  Caffeine metabolite Max. in surface waters: 3.1 g/L  Kolpin et al., 2002 

95 1,4- 106-46-7 147.00  Deodorizer Max. in surface waters: 4.3 g/L  Kolpin et al., 2002 
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#
 

96 4-Nonylphenol 104-40-5 220.35  Detergent metabolite Max. in surface waters: 40 g/L  Kolpin et al., 2002 

97 4-tert-Butylphenol 98-54-4 150.22  Detergent metabolite Max. in surface waters: 0.13 g/L  Brossa et al., 2005 

98 4-tert-Octylphenol 140-66-9 206.33  Detergent metabolite Max. in surface waters: 0.19 g/L  Brossa et al., 2005 

99 Acetophenone 98-86-2 120.15  Fragrance Max. in surface waters: 0.41 g/L  Kolpin et al., 2002 

100 Celestolide 13171-00-1 244.38  Musk fragrance Max. in surface waters: 0.008 g/L  Winkler et al., 1998 

101 Galaxolide 1222-05-5 258.40  Musk fragrance Max. in surface waters: 0.152 g/L  Winkler et al., 1998 

102 Musk ketone 81-14-1 294.31  Musk fragrance Max. in surface waters: 0.010 g/L  Winkler et al., 1998 

103 Tonalide 21145-77-7 258.40  Musk fragrance Max. in surface waters: 0.088 g/L  Winkler et al., 1998 

104 Cotinine 486-56-6 176.22  Nicotine metabolite Max. in surface waters: 0.90 g/L  Kolpin et al., 2002 

105 Caffeine 58-08-2 194.19  Stimulant Max. in surface waters: 6.0 g/L  Kolpin et al., 2002 

106 Salicyclic acid 69-72-7 138.12  Stimulant Max. in surface waters: 4.1 g/L  

Max. in STP effluents: 0.14 g/L  

Ternes 1998 

107 Benzophenone 119-61-9 182.22  Sunscreen Reclaimed wastewater: 0.993 g/L  Loraine et al., 2006 

108 Hydrocinnamic acid 501-52-0 150.18  Sunscreen Max. in raw drinking water: 20.3 g/L  Loraine et al., 2006 

109 Octyl  

methoxycinnamate 

5466-77-3 290.40  Sunscreen Max. in raw drinking water: 5.61 g/L  Loraine et al., 2006 

110 Oxybenzone 131-57-7 228.25  Sunscreen Reclaimed wastewater: 0.84 g/L  Loraine et al., 2006 

111 Iomeprol 78649-41-9 777.09  X-ray contrast media STP effluents: 2.3 g/L  Ternes et al., 2003 

112 Iopamidol 62883-00-5 777.09  X-ray contrast media Max. in STP effluents: 15 g/L  Ternes et al., 2000 

Other Wastewater-Related Compounds (n = 59) 

113 5-Methyl-1H-benzotriazole 136-85-6 133.15  Anticorrosive Max. in surface waters: 2.4 g/L  Kolpin et al., 2002 

114 4-Methyl phenol 106-44-5 108.14  Disinfectant Max. in surface waters: 0.54 g/L  Kolpin et al., 2002 

115 Phenol 108-95-2 94.11  Disinfectant Max. in surface waters: 1.3 g/L  Kolpin et al., 2002 

116 Tris(chloroethyl) 

phosphate 

115-96-8 285.49  Fire retardant Max. in surface waters: 0.54 g/L  Kolpin et al., 2002 

117 Tris(1,3-dichloroisopropyl) 

phosphate 

13674-87-8 430.91  Fire retardant Max. in surface waters: 0.16 g/L  Kolpin et al., 2002 

118 Hexachlorobenzene
#
 118-74-1 284.78  Fungicide Max. in surface waters: 0.14 g/L  Brossa et al., 2005 

119 Thiabendazole 148-79-8 201.25  Fungicide Detected in raw water samples  Stackelberg et al., 2004 

120 2,4-Dichloro-phenoxyacetic acid*
#
 94-75-7 221.04 Herbicide Max. in surface waters: 2.67 g/L  Grover et al., 1997 
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121 Acetochlor^ 34256-82-1 269.771 Herbicide Max. in surface waters: 0.0015 g/L  Xue et al., 2006 

122 Atrazine*
#
 1912-24-9 215.69  Herbicide Max. in surface waters: 0.16 g/L  Brossa et al., 2005 

123 Bromoxynil* 1689-84-5 276.915 Herbicide Max. in surface waters: 0.33 g/L  Grover et al., 1997 

124 Dicamba* 1918-00-9 221.04 Herbicide Max. in surface waters: 11.2 g/L  Grover et al., 1997 

125 Diuron*^ 330-54-1 233.10  Herbicide Max. in surface waters: 0.06 g/L  Brossa et al., 2005 

126 MCPA*  94-74-6 200.621 Herbicide Max. in surface waters: 1.97 g/L  Grover et al., 1997 

127 Metolachlor*^ 51218-45-2 283.797 Herbicide Max. in surface waters: 0.027 g/L  Xue et al., 2006 

128 Pentachlorophenol*
#
 87-86-5 266.34  Herbicide Max. in surface waters: 0.03 g/L  Brossa et al., 2005 

129 Prometone 1610-18-0 225.29  Herbicide Max. in finished water: 0.096 g/L  Stackelberg et al., 2004 

130 Simazine*
#
 122-34-9 201.66  Herbicide Max. in surface waters: 0.016 g/L  Loos et al., 2007 

131 Triallate 2303-17-5 304.662 Herbicide Max. in surface waters: 0.87 g/L  Grover et al., 1997 

132 Trifluralin* 1582-09-8 335.282 Herbicide Max. in surface waters: 0.11 g/L  Grover et al., 1997 

133 Alachlor
#
 15972-60-8 269.771 Insecticide Max. in surface waters: 0.0057 g/L  Xue et al., 2006 

134 Aldrin* 309-00-2 364.91  Insecticide Max. in surface waters: 0.11 g/L  Brossa et al., 2005 

135 -Endosulfan 959-98-8 406.92  Insecticide Max. in surface waters: 1.60 g/L  Brossa et al., 2005 

136 Carbaryl* 63-25-2 201.22  Insecticide Max. in surface waters: 0.1 g/L  Kolpin et al., 2002 

137 Carbazole 86-74-8 167.21  Insecticide Detected in raw water samples  Stackelberg et al., 2004 

138 Chlorpyrifos* 2921-88-2 350.58  Insecticide Max. in surface waters: 0.31 g/L  Kolpin et al., 2002 

139 -Chlordane
#
 5103-71-9 409.78  Insecticide Max. in surface waters: 0.1 g/L  Kolpin et al., 2002 

140 Deltamethrin 52918-63-5 505.205 Insecticide Max. in surface waters: 0.0063 g/L  Xue et al., 2006 

141 Diazinon* 333-41-5 304.34  Insecticide Max. in surface waters: 0.35 g/L  Kolpin et al., 2002 

142 Dieldrin* 60-57-1 380.91  Insecticide Max. in surface waters: 0.21 g/L  Kolpin et al., 2002 

143 Heptachlor
#
 76-44-8 373.321 Insecticide Max. in surface waters: 0.0085 g/L  Xue et al., 2006 

144 Methoxychlor*
#
 72-43-5 345.652 Insecticide Max. in surface waters: 0.022 g/L  Xue et al., 2006 

145 Methyl parathion 298-00-0 263.20  Insecticide Max. in surface waters: 0.01 g/L  Kolpin et al., 2002 

146 N,N- 

diethyltoluamide 

134-62-3 191.27  Insecticide Max. in surface waters: 1.1 g/L  Kolpin et al., 2002 

147 -HCH 319-84-6 290.831 Pesticide Max. in surface waters: 0.018 g/L  Xue et al., 2006 

148 -HCH 319-85-7 290.831 Pesticide Max. in surface waters: 0.061 g/L  Xue et al., 2006 

149 γ-HCH
#
 58-89-9 290.831 Pesticide Max. in surface waters: 0.12 g/L  Xue et al., 2006 

150 δ-HCH 319-86-8 290.831 Pesticide Max. in surface waters: 0.0046 g/L  Xue et al., 2006 
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151 Dicofol 115-32-2 370.49 Pesticide Max. in surface waters: 0.0026 g/L  Xue et al., 2006 

152 Nitrofen 1836-75-5 284.098 Pesticide Max. in surface waters: 0.0023 g/L  Xue et al., 2006 

153 p,p'-DDD 72-54-8 320.045 Pesticide Max. in surface waters: 0.0021 g/L  Xue et al., 2006 

154 o,p'-DDT 789-02-6 354.49 Pesticide Max. in surface waters: 0.161 g/L  Xue et al., 2006 

155 p,p'-DDT 50-29-3 354.49 Pesticide Max. in surface waters: 0.030 g/L  Xue et al., 2006 

156 p,p'-DDE  72-55-9 318.03  Breakdown product of DDT Max. in surface waters: 0.06 g/L  Brossa et al., 2005 

157 Anthracene 120-12-7 178.23  PAH Max. in surface waters: 0.11 g/L  Kolpin et al., 2002 

158 Benzo[a]pyrene*
#
 50-32-8 252.31  PAH Max. in surface waters: 0.24 g/L  Kolpin et al., 2002 

159 Fluoranthene 206-44-0 202.26  PAH Max. in surface waters: 1.2 g/L  Kolpin et al., 2002 

160 Naphthalene 91-20-3 128.17  PAH Max. in surface waters: 0.08 g/L  Kolpin et al., 2002 

161 Phenanthrene 85-01-8 178.23  PAH Max. in surface waters: 0.53 g/L  Kolpin et al., 2002 

162 Pyrene 129-00-0 202.26  PAH Max. in surface waters: 0.84 g/L  Kolpin et al., 2002 

163 Bisphenol A 80-05-7 228.29  Plasticizer Max. in surface waters: 12 g/L  Kolpin et al., 2002 

164 Butylbenzyl  

phthalate 

85-68-7 312.365 Plasticizer Max. in STP effluent: 0.29 g/L  Vethaak et al., 2005 

165 Di (2-ethylhexyl) phthalate
#
 117-81-7 390.562 Plasticizer Max. in STP effluent: 2.4 g/L  Vethaak et al., 2005 

166 Di-n-butyl  

phthalate 

84-74-2 278.347 Plasticizer Max. in STP effluent: 0.84 g/L  Vethaak et al., 2005 

167 Diethyl phthalate 84-66-2 222.24  Plasticizer Max. in surface waters: 0.42 g/L  Kolpin et al., 2002 

168 Dimethyl  

phthalate 

131-11-3 194.187 Plasticizer Max. in STP effluent: 0.32 g/L  Vethaak et al., 2005 

169 Triphenyl  

phosphate 

115-86-6 326.29  Plasticizer Max. in surface waters: 0.22 g/L  Kolpin et al., 2002 

170 Tris 

(2-butoxyethyl) phosphate 

78-51-3 398.48  Plasticizer Max. in surface waters: 6.7 g/L  Kolpin et al., 2002 

Steroids and Hormones (n = 12) 

171 Equilenin^ 517-09-9 266.34  Estrogen replacement Max. in surface waters: 0.278 g/L  Kolpin et al., 2002 

172 Equilin^ 474-86-2 268.35  Estrogen replacement Max. in surface waters: 0.147 g/L  Kolpin et al., 2002 

173 17-Ethinylestradiol^ 57-63-6 296.41  Ovulation inhibitor Max. in surface waters: 0.831 g/L  Kolpin et al., 2002 

174 19-Norethisterone^ 68-22-4 298.42  Ovulation inhibitor Max. in surface waters: 0.872 g/L  Kolpin et al., 2002 
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175 Mestranol^ 72-33-3 310.44  Ovulation inhibitor Max. in surface waters: 0.407 g/L  Kolpin et al., 2002 

176 17-Estradiol^ 57-91-0 272.39  Reproductive hormone Max. in surface waters: 0.074 g/L  Kolpin et al., 2002 

177 17-Estradiol^ 50-28-2 272.39  Reproductive hormone Max. in surface waters: 0.2 g/L  Kolpin et al., 2002 

178 Estriol^ 50-27-1 288.39  Reproductive hormone Max. in surface waters: 0.051 g/L  Kolpin et al., 2002 

179 Estrone^ 53-16-7 270.37  Reproductive hormone Max. in surface waters: 0.112 g/L  Kolpin et al., 2002 

180 Progesterone 57-83-0 314.47  Reproductive hormone Max. in surface waters: 0.199 g/L  Kolpin et al., 2002 

181 Testosterone 58-22-0 288.43  Reproductive hormone Max. in surface waters: 0.214 g/L  Kolpin et al., 2002 

182 Androsterone 53-41-8 290.44  Urinary steroid Max. in surface waters: 0.214 g/L  Kolpin et al., 2002 
a
 Chemical Abstracts Service Registry Number. 

b
 STP represents sewage treatment plant. * Contaminants regulated by Guidelines for Canadian Drinking 

Water Quality (Health Canada). 
#
 Contaminants regulated by National Primary Drinking Water Regulations (US EPA). ^ Contaminants suggested by the 

Third Contaminant Candidate List (CCL3, US EPA).  
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Table A.2 Selected molecular descriptors and their calculation methods.  

Abbreviations Molecular Descriptors Calculation Method 

MW Molecular weight (g/mol) E-Dragon 

AMW Average molecular weight (g/mol) E-Dragon 

nDB Number of double bonds E-Dragon 

nAB Number of aromatic bonds E-Dragon 

nN 
a
 Number of primary and secondary amines E-Dragon 

nArOH Number of phenolic group (aromatic hydroxyls) E-Dragon 

Ui Unsaturation index E-Dragon 

logKow Log octanol-water partition coefficient  E-Dragon 

logS Log water solubility (mol/L) E-Dragon 

logD Log distribution coefficient at pH = 7 Marvin 

P Polarizability at pH = 7 Marvin 

PSA Polar surface area at pH = 7 (Å
2
) Marvin 

L Molecular length (Å) MMP+ 

W Molecular width (Å) MMP+ 

RLW Ratio of molecular length and width MMP+ 

HA Hydrogen bond acceptor MMP+ 

HD Hydrogen bond donor MMP+ 

Df 
b
 Diffusivity (cm

2
/s) MMP+ 

HOMO The energy of highest occupied molecular orbital (eV) HyperChem 

LUMO The energy of lowest unoccupied molecular orbital (eV) HyperChem 

GAP HOMO-LUMO energy gap (eV) HyperChem 

DM Dipole moment (debye) HyperChem 
a
 nN is the sum of the numbers of primary and secondary amines. 

b 
Diffusivity was calculated from 

the critical volume (Vc) of the organic compound using formulas provided by Gnielinski (1978) and 

Reid et al., (1977); The critical volume was calculated with the MMP+ software. Quantum-

mechanical parameters (HOMO, LUMO, and GAP) and dipole moments were estimated for neutral 

species. All the other calculations are based on the major species present at a drinking water pH range 

of 5.5~8.5. For HyperChem calculations, the AM1 method was used for geometry optimization.  
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Table A.3 Molecular descriptor values for all compounds in the pool (n = 182).   

Comp. logKow logS logD MW AMW nDB nAB nArOH nN Ui HOMO 

1 -0.9 -3.3 -3.8 365.5 8.31 3 6 1 1 3.32 -9.329 

2 2.63 -3.9 -1.2 434.9 9.45 3 11 0 0 3.91 -9.373 

3 3.43 -4.2 -0.6 469.4 10.2 3 11 0 0 3.91 -9.124 

4 1.42 -2.8 -2.7 379.5 8.43 3 6 0 0 3.32 -9.242 

5 1.57 -3 -2.3 333.4 8.34 3 6 0 0 3.32 -9.295 

6 1.55 -3.3 -1 594.7 8.5 7 6 0 1 3.81 -9.111 

7 1.76 -2.1 0.38 425.1 7.08 1 0 0 0 1 -8.907 

8 0.5 -1.1 -1.3 406.6 6.67 1 0 0 0 1 -8.594 

9 0.2 -3.9 -1.4 331.4 7.89 3 6 0 1 3.32 -8.818 

10 0.21 -3.4 -1.7 320.4 8.01 3 6 0 1 3.32 -8.987 

11 2 -2.7 0.88 358.4 7.63 3 6 0 0 3.32 -8.799 

12 1.12 -2.4 0.07 360.4 8.01 3 6 0 0 3.32 -8.827 

13 0.99 -4 -1.1 351.4 7.99 3 6 0 1 3.32 -8.943 

14 0.57 -3.8 -1.5 319.4 7.79 3 6 0 1 3.32 -8.808 

15 1.12 -2.4 0.07 360.4 8.01 3 6 0 0 3.32 -8.817 

16 -0.4 -1.5 -1.2 213.3 9.27 3 6 0 1 3.32 -9.172 

17 0.97 -3.3 0.41 284.8 10.55 2 12 0 1 3.91 -9.403 

18 0.25 -2.6 0.13 250.3 9.27 2 12 0 1 3.91 -9.18 

19 1.08 -3.1 0.97 310.4 8.87 2 12 0 1 3.91 -9.074 

20 0.44 -2.9 0.26 264.3 8.81 2 12 0 1 3.91 -9.168 

21 0.43 -3.1 0.39 278.4 8.44 2 12 0 1 3.91 -9.141 

22 0.8 -2.1 0.14 252.3 9.34 2 11 0 1 3.81 -9.134 

23 0.13 -2.3 -0.6 269.4 10.36 2 11 0 1 3.81 -9.151 

24 1.04 -3 0.25 267.3 8.62 2 11 0 1 3.81 -8.793 

25 0.84 -3 1 249.3 8.9 2 12 0 1 3.91 -9.098 

26 0.63 -2.1 0.18 254.3 10.6 2 11 0 1 3.81 -9.084 

27 0.82 -2.5 -0.1 266.3 8.88 2 11 0 1 3.81 -9.096 

28 -0 -4.2 -6 477.9 8.69 5 6 1 0 3.59 -9.186 

29 0.01 -4 -6.3 443.5 8.06 5 6 1 0 3.59 -9.273 

30 -0.2 -3.7 -7.6 459.5 8.2 5 6 1 0 3.59 -9.492 

31 -0.3 -3.8 -6.4 443.5 8.06 5 6 1 0 3.59 -9.191 

32 0.04 -3.2 -0.7 262.3 9.04 4 11 0 0 4 -8.485 

33 1.15 -2.9 0.88 323.2 10.1 3 6 0 0 3.32 -10.39 

34 0.31 -2.2 -3.9 334.4 6.82 1 0 0 2 1 -9.425 

35 5.53 -4.7 4.9 289.5 12.06 0 12 1 0 3.7 -8.768 

36 1.26 -2.7 0.92 290.4 7.45 0 12 0 2 3.7 -8.736 

37 0.51 -1.6 0.91 151.2 7.56 1 6 1 0 3 -8.462 

38 1.23 -1.7 -2 179.2 8.96 2 6 0 0 3.17 -8.136 
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Comp. logKow logS logD MW AMW nDB nAB nArOH nN Ui HOMO 

39 0.23 -4.8 -0.8 300.4 6.83 1 6 0 0 3 -8.471 

40 0.19 -5.3 0.35 300.4 6.83 1 6 0 0 3 -8.555 

41 1.18 -0.6 1.22 188.3 7.24 2 6 0 0 3.17 -9.013 

42 0.44 -3.2 -0.3 252.4 7.65 1 5 0 2 3 -8.817 

43 -1.6 -4.4 -0.1 315.5 7.17 3 5 0 2 3.17 -9.008 

44 0.42 -3.7 1.06 386.6 6.44 2 6 0 0 3.17 -8.795 

45 2.63 -4.4 3.08 284.8 8.63 2 12 0 0 3.91 -9.246 

46 3.04 -4.1 1.99 307.3 8.09 3 12 0 0 4 -9.284 

47 2.1 -3.2 2.77 236.3 7.88 2 12 0 0 3.91 -8.611 

48 0.62 -2.3 1.12 218.3 7.28 2 6 0 0 3.17 -9.658 

49 2.44 -6 1.5 310.4 7.57 0 12 0 1 3.7 -9.508 

50 -0.9 -0.3 -5.7 131.2 5.96 2 0 0 2 1.59 -9.014 

51 -1 -6.5 1.79 256.4 6.25 0 12 0 0 3.7 -9.203 

52 -0.7 -6.2 1.53 415.6 7.42 2 12 0 0 3.91 -7.938 

53 1.14 -4.3 -4.1 347.4 7.24 3 6 0 1 3.32 -9.217 

54 0.94 -1 1.15 231.3 6.8 2 6 0 0 3.17 -8.355 

55 3.6 -3.8 0.73 241.3 7.78 1 12 0 0 3.81 -8.994 

56 3.79 -4.4 1.37 243.3 8.11 1 12 0 0 3.81 -9.208 

57 3.76 -4 1.71 205.3 6.42 1 6 0 0 3 -9.657 

58 4 -5 0.49 356.8 8.92 2 16 0 0 4.25 -8.694 

59 3.04 -4.3 0.64 253.3 7.92 2 12 0 0 3.91 -9.777 

60 3.43 -4 0.25 229.3 7.64 1 11 0 0 3.7 -8.651 

61 2.7 -2.8 3.09 203.3 6.35 2 6 0 0 3.17 -9.077 

62 0.02 -4.6 -0.2 278.2 7.73 0 6 0 2 2.81 -8.759 

63 -0.7 -4.4 -0.1 304.4 6.92 0 12 3 1 3.7 -8.844 

64 -2.2 -2.9 -1.7 240.4 6.16 0 6 1 1 2.81 -9.27 

65 -1.4 -2.7 -1.2 226.3 6.29 0 6 2 1 2.81 -9.164 

66 -1.5 -3.7 -2.1 267.4 6.37 1 6 0 1 3 -9.189 

67 1.66 -5.4 -0 308.5 5.93 0 6 0 1 2.81 -8.916 

68 1.58 -4.8 -0.4 326.5 5.94 0 6 0 1 2.81 -8.871 

69 1.03 -5.6 0.15 299.4 6.65 0 15 0 1 4 -8.489 

70 1.11 -4.3 -1.1 380.6 6.24 2 6 0 1 3.17 -8.74 

71 0.44 -4.3 -0.8 268.4 5.96 0 6 0 1 2.81 -8.917 

72 -1 -3.3 -1.8 310.5 6.21 0 6 0 1 2.81 -9.415 

73 0.31 -5.1 0.02 260.4 6.35 0 11 0 1 3.59 -8.522 

74 -1.2 -3.7 -2.5 273.4 7.01 2 6 0 1 3.17 -9.239 

75 -0.2 -3.4 -1.3 317.5 6.9 0 5 0 1 2.59 -8.721 

76 0.84 -2.4 1.16 277.3 10.67 2 15 0 0 4.17 -8.912 

77 0.76 -1.2 0.1 261.1 9 1 0 0 0 1 -10.61 
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Comp. logKow logS logD MW AMW nDB nAB nArOH nN Ui HOMO 

78 -2.2 -0.7 -2.8 243.3 8.11 3 0 0 1 2 -9.379 

79 0.15 -3.4 2.32 528.6 7.77 3 12 2 1 4 -9.084 

80 -0.1 -3.2 1.5 544.6 7.89 3 12 2 1 4 -7.331 

81 -0.1 -3.2 1.5 544.6 7.89 3 12 2 1 4 -8.993 

82 0.12 -3.4 0.29 498.6 7.79 3 12 2 1 4 -9.178 

83 0.57 -1.2 0.1 261.1 9 1 0 0 0 1 -10.42 

84 0.77 -3.2 -3.4 452.5 8.54 3 17 0 2 4.39 -8.931 

85 4.17 -5.5 0.97 360.8 8.2 2 12 0 0 3.91 -9.482 

86 4.86 -5.7 5.28 360.9 7.84 2 12 0 0 3.91 -9.775 

87 4.21 -4.4 1.85 249.4 6.39 1 6 0 0 3 -9.122 

88 3.05 -2.7 -0.4 213.7 8.9 1 6 0 0 3 -9.461 

89 4 -5.1 0.98 317.8 8.83 2 12 0 0 3.91 -9.638 

90 3.79 -3.3 3.88 220.3 6.12 4 0 0 0 2.32 -10.42 

91 4.9 -3.8 4.76 206.4 5.58 0 6 1 0 2.81 -8.831 

92 5.25 -4.2 5.27 220.4 5.51 0 6 1 0 2.81 -8.657 

93 3.25 -2.3 3.06 180.3 6.22 0 6 1 0 2.81 -8.527 

94 -0.6 -1.3 -0.6 180.2 8.58 2 5 0 0 3 -9.125 

95 3.46 -3 3.18 147 12.25 0 6 0 0 2.81 -9.523 

96 6.09 -5.3 5.74 220.4 5.51 0 6 1 0 2.81 -8.858 

97 3.47 -2.4 3.21 150.2 6.01 0 6 1 0 2.81 -8.898 

98 5.29 -3.9 4.69 206.4 5.58 0 6 1 0 2.81 -8.885 

99 1.65 -2 1.53 120.2 7.07 1 6 0 0 3 -9.915 

100 5.53 -5.4 4.67 244.4 5.82 1 6 0 0 3 -9.202 

101 5.52 -5.5 4.72 258.4 5.74 0 6 0 0 2.81 -9.013 

102 3.28 -4.8 3.98 294.3 7.55 5 6 0 0 3.59 -10.25 

103 5.7 -5.6 4.96 258.4 5.74 1 6 0 0 3 -9.213 

104 0.39 -0.2 0.21 176.2 7.05 1 6 0 0 3 -9.678 

105 -0.2 -1.3 -0.6 194.2 8.09 2 5 0 0 3 -8.964 

106 1.01 -0.6 -1.5 137.1 9.14 1 6 1 0 3 -9.461 

107 3.03 -3.7 3.43 182.2 7.59 1 12 0 0 3.81 -9.849 

108 1.99 -1.9 -0.2 149.2 7.46 1 6 0 0 3 -9.523 

109 5.62 -5.8 5.38 290.4 6.18 2 6 0 0 3.17 -8.949 

110 3.35 -3.3 3.55 228.3 7.87 1 12 1 0 3.81 -9.274 

111 -2.5 -3.1 -1.5 777.1 14.66 3 6 0 0 3.32 -8.863 

112 -2.3 -3 -2 777.1 14.66 3 6 0 0 3.32 -8.101 

113 1.6 -1.2 1.81 133.2 7.83 0 10 0 0 3.46 -9.22 

114 1.95 -0.7 2.18 108.2 6.76 0 6 1 0 2.81 -8.88 

115 1.39 -0.3 1.67 94.12 7.24 0 6 1 0 2.81 -9.115 

116 1.36 -1.6 2.11 285.5 10.98 1 0 0 0 1 -11.52 
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Comp. logKow logS logD MW AMW nDB nAB nArOH nN Ui HOMO 

117 3.26 -3.7 4.28 430.9 12.31 1 0 0 0 1 -11.37 

118 5.7 -6.2 5.6 284.8 23.73 0 6 0 0 2.81 -9.912 

119 2.47 -3.2 2.24 201.3 9.58 0 15 0 0 4 -8.652 

120 2.69 -2.7 -0.9 220 12.22 1 6 0 0 3 -9.352 

121 3.17 -3 3.5 269.8 7.1 1 6 0 0 3 -9.34 

122 2.7 -3.9 2.2 215.7 7.7 0 6 0 2 2.81 -9.422 

123 2.86 -3.7 1.39 275.9 21.22 0 6 1 0 3 -9.778 

124 2.68 -2.9 -0.8 220 12.22 1 6 0 0 3 -9.553 

125 2.92 -3.2 2.53 233.1 9.71 1 6 0 0 3 -8.849 

126 2.16 -2.4 -0.9 199.6 9.51 1 6 0 0 3 -9.17 

127 3.37 -3.4 3.45 283.8 6.92 1 6 0 0 3 -8.536 

128 4.75 -4.8 2.95 265.3 22.11 0 6 1 0 2.81 -9.574 

129 2.8 -3.7 2.23 225.3 6.44 0 6 0 2 2.81 -9.386 

130 2.48 -3.2 1.78 201.7 8.07 0 6 0 2 2.81 -9.355 

131 4.41 -4.6 3.8 304.7 9.52 2 0 0 0 1.59 -9.241 

132 5.09 -5.8 4.6 335.3 8.6 4 6 0 0 3.46 -9.984 

133 3.02 -3.1 3.59 269.8 7.1 1 6 0 0 3 -7.019 

134 5.9 -6.7 4.73 364.9 14.03 2 0 0 0 1.59 -9.606 

135 4.32 -3.2 2.6 406.9 16.28 2 0 0 0 1.59 -10.08 

136 2.45 -3.3 2.46 201.2 7.74 1 11 0 0 3.7 -8.538 

137 3.69 -3.4 3.09 167.2 7.6 0 15 0 0 4 -8.341 

138 5.15 -5.4 4.78 350.6 12.09 1 6 0 0 3 -9.88 

139 6.02 -6.8 5.27 409.8 17.07 1 0 0 0 1 -10.06 

140 6.13 -5.6 5.74 505.2 10.75 2 12 0 0 4 -9.125 

141 4.45 -3.9 4.19 304.4 7.61 1 6 0 0 3 -10.02 

142 4.98 -6.3 3.95 380.9 14.11 1 0 0 0 1 -9.937 

143 5.83 -6.5 4.78 373.3 16.97 2 0 0 0 1.59 -10.02 

144 5.12 -6.8 4.93 345.7 9.6 0 12 0 0 3.7 -8.973 

145 2.97 -3.7 2.6 263.2 10.12 3 6 0 0 3.32 -10.42 

146 2.1 -2.1 2.5 191.3 6.17 1 6 0 0 3 -9.285 

147 3.94 -4.7 4.35 290.8 16.16 0 0 0 0 0 -11.03 

148 3.94 -4.7 4.35 290.8 16.16 0 0 0 0 0 -11.73 

149 3.94 -4.7 4.35 290.8 16.16 0 0 0 0 0 -11.04 

150 3.94 -4.7 4.35 290.8 16.16 0 0 0 0 0 -11.57 

151 5.59 -6.6 5.56 370.5 12.78 0 12 0 0 3.7 -9.742 

152 4.88 -5.5 4.62 284.1 11.36 2 12 0 0 3.91 -9.467 

153 6.15 -7.5 6.11 320 11.43 0 12 0 0 3.7 -9.543 

154 6.6 -8.1 6.46 354.5 12.66 0 12 0 0 3.7 -9.58 

155 6.29 -8 6.46 354.5 12.66 0 12 0 0 3.7 -9.587 
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Comp. logKow logS logD MW AMW nDB nAB nArOH nN Ui HOMO 

156 6.22 -6.6 6.11 318 12.23 1 12 0 0 3.81 -9.038 

157 4.56 -5.6 3.95 178.2 7.43 0 16 0 0 4.09 -8.123 

158 6.39 -8.3 5.27 252.3 7.89 0 24 0 0 4.64 -7.922 

159 5.04 -6.3 4.28 202.3 7.78 0 19 0 0 4.32 -8.63 

160 3.33 -3.3 2.96 128.2 7.12 0 11 0 0 3.59 -8.711 

161 4.55 -5.7 3.95 178.2 7.43 0 16 0 0 4.09 -8.617 

162 5.19 -6.9 4.28 202.3 7.78 0 19 0 0 4.32 -8.132 

163 3.81 -3.4 4.04 228.3 6.92 0 12 2 0 3.7 -8.829 

164 4.54 -5 5.03 312.4 7.26 2 12 0 0 3.91 -7.49 

165 7.07 -6.6 8.03 390.6 5.92 2 6 0 0 3.17 -9.339 

166 4.53 -4.7 4.63 278.4 6.63 2 6 0 0 3.17 -7.664 

167 2.6 -2.8 2.69 222.3 7.41 2 6 0 0 3.17 -7.714 

168 1.96 -2.3 1.98 194.2 8.09 2 6 0 0 3.17 -7.774 

169 4.16 -4 5.09 326.3 8.59 1 18 0 0 4.32 -9.433 

170 3.31 -3.3 3.94 398.5 6.13 1 0 0 0 1 -10.57 

171 4.32 -4.7 4.3 266.4 7.01 1 11 1 0 3.7 -8.566 

172 3.8 -4.3 3.9 268.4 6.71 2 6 1 0 3.17 -8.874 

173 3.63 -4.6 3.81 296.4 6.44 0 6 1 0 3 -8.833 

174 2.72 -4.7 3.13 298.5 6.22 2 0 0 0 2 -10.03 

175 3.89 -4.9 3.96 310.5 6.34 0 6 0 0 3 -8.743 

176 3.57 -4.1 3.75 272.4 6.19 0 6 1 0 2.81 -8.815 

177 3.57 -4.1 3.75 272.4 6.19 0 6 1 0 2.81 -8.839 

178 2.54 -3.4 2.67 288.4 6.41 0 6 1 0 2.81 -8.858 

179 4.03 -4.8 4.31 270.4 6.44 1 6 1 0 3 -8.893 

180 3.58 -4.8 4.15 314.5 5.93 3 0 0 0 2 -10.05 

181 2.99 -3.9 3.37 288.5 5.89 2 0 0 0 1.59 -10.03 

182 3.71 -4.7 3.77 290.5 5.7 1 0 0 0 1 -10.09 

Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

1 35.8 163 4.45 14.61 10.16 1.44 2.4 1.53 4.31×10
-6

 9.24 -0.094 

2 41.3 141 5.74 14.30 11.73 1.22 2.1 0.45 3.75×10
-6

 9.09 -0.282 

3 43.3 141 3.05 16.78 11.96 1.40 2.1 0.41 3.64×10
-6

 7.98 -1.149 

4 37.2 133 3.56 12.04 10.53 1.14 2.2 0.41 4.00×10
-6

 9.07 -0.173 

5 33 115 4.74 16.11 8.59 1.88 2 0.48 4.26×10
-6

 9.23 -0.067 

6 56.5 218 3.78 18.18 9.80 1.85 3 0.96 3.08×10
-6

 7.7 -1.415 

7 42.7 129 2.77 15.22 11.30 1.35 2.4 1.25 3.59×10
-6

 9.2 0.2908 

8 41.4 149 4.02 17.01 11.22 1.52 2.7 1.58 3.65×10
-6

 9.08 0.4844 

9 32.9 80.3 9.13 14.66 10.65 1.38 1.5 0.48 4.38×10
-6

 8.15 -0.669 

10 31.3 93.2 7.64 13.53 9.57 1.41 1.6 0.44 4.45×10
-6

 8.14 -0.85 

11 36.6 66.9 9.27 16.17 10.75 1.50 1.7 0.13 4.10×10
-6

 8.14 -0.657 
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Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

12 35.8 76.2 7.42 14.99 10.22 1.47 1.8 0.084 4.20×10
-6

 8.08 -0.75 

13 34.3 80.3 6.15 15.36 10.39 1.48 1.5 0.44 4.19×10
-6

 8.09 -0.858 

14 31.7 80.3 9.04 14.32 10.29 1.39 1.5 0.48 4.42×10
-6

 8.14 -0.667 

15 35.5 76.2 8.86 13.64 10.03 1.36 1.8 0.084 4.20×10
-6

 8.09 -0.728 

16 20.3 94.8 6.08 12.23 7.24 1.69 1.8 0.64 5.50×10
-6

 8.68 -0.495 

17 26.4 104 10.3 14.93 8.08 1.85 1.1 1.05 4.78×10
-6

 8.72 -0.678 

18 24.3 104 7.2 13.36 8.42 1.59 1.4 1.12 5.00×10
-6

 8.68 -0.505 

19 29.4 122 7.92 15.41 10.24 1.51 1.5 1.01 4.42×10
-6

 8.65 -0.429 

20 26.1 104 7.39 13.58 8.61 1.58 1.4 1.06 4.75×10
-6

 8.69 -0.479 

21 27.8 104 7.38 14.55 10.03 1.45 1.4 1.01 4.54×10
-6

 8.7 -0.443 

22 24.6 104 6.53 14.05 8.22 1.71 1.7 0.68 5.02×10
-6

 8.66 -0.475 

23 24.7 132 6.93 14.01 7.30 1.92 1.6 0.64 4.94×10
-6

 8.41 -0.737 

24 25.6 104 7.48 13.76 7.66 1.80 1.2 0.97 4.78×10
-6

 8.12 -0.676 

25 25.5 93.5 6.49 13.54 8.68 1.56 1.2 1.13 4.96×10
-6

 8.71 -0.384 

26 24.2 119 6.34 13.41 8.53 1.57 1.7 0.73 5.18×10
-6

 8.49 -0.591 

27 26.4 104 6.45 13.76 8.10 1.70 1.7 0.64 4.78×10
-6

 8.45 -0.648 

28 45.5 188 1.85 14.67 10.12 1.45 4.5 1.97 3.62×10
-6

 8.24 -0.95 

29 42 188 6.64 16.69 10.41 1.60 4.4 1.96 3.71×10
-6

 8.45 -0.825 

30 43.7 209 3.98 15.90 11.25 1.41 4.9 2.34 3.68×10
-6

 8.65 -0.845 

31 43.5 188 7.41 15.18 11.36 1.34 4.5 2.01 3.72×10
-6

 8.24 -0.956 

32 25.2 102 3.66 15.73 8.09 1.95 0.9 0.59 5.12×10
-6

 6.96 -1.522 

33 27.8 115 4.58 14.73 8.76 1.68 1.5 1.12 4.51×10
-6

 9.11 -1.285 

34 33.5 139 2.53 13.81 10.29 1.34 2.1 1.76 4.32×10
-6

 9.6 0.1777 

35 27.2 29.5 1.97 14.21 8.33 1.71 0.5 0.63 5.22×10
-6

 8.23 -0.54 

36 30 107 2.17 13.98 10.55 1.32 1.7 1.12 4.44×10
-6

 8.73 -0.007 

37 15.8 49.3 4.55 11.26 6.61 1.70 0.9 0.82 7.01×10
-6

 8.75 0.2836 

38 16.5 66.4 1.55 10.34 8.31 1.24 1.4 0.15 6.11×10
-6

 7.18 -0.957 

39 32.6 43.1 2.97 12.58 9.26 1.36 0.8 0.7 4.40×10
-6

 8.87 0.4019 

40 32.6 40 3.86 12.96 10.07 1.29 0.6 0.27 4.39×10
-6

 8.82 0.2664 

41 20.9 23.6 4.45 11.68 7.82 1.49 0.2 0.23 5.88×10
-6

 8.88 -0.134 

42 25.9 114 9.44 12.41 9.68 1.28 1.4 0.83 4.58×10
-6

 8.89 0.0738 

43 34.6 113 8.8 15.21 8.79 1.73 0.8 0.88 4.13×10
-6

 8.71 -0.297 

44 43.9 70.8 3.35 19.55 8.99 2.18 0.9 0.33 3.71×10
-6

 8.93 0.1302 

45 30.4 32.7 3.14 12.51 10.63 1.18 0.5 0.32 4.59×10
-6

 8.64 -0.605 

46 31.4 66.4 3.62 14.21 10.65 1.33 1.4 0.34 4.47×10
-6

 8.26 -1.021 

47 27 46.3 3.53 12.07 9.02 1.34 0.7 0.87 5.07×10
-6

 8.15 -0.458 

48 23.1 58.2 3.41 10.96 8.91 1.23 1 0.71 5.24×10
-6

 9.82 0.1614 

49 30.8 25.8 4.62 12.82 10.25 1.25 0.3 0.69 4.26×10
-6

 9.35 -0.157 

50 14 92.5 0.35 9.74 6.87 1.42 1.5 2.97 7.20×10
-6

 10 1.003 
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Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

51 30.4 13.7 1.99 13.43 9.44 1.42 0.2 0.56 4.46×10
-6

 9.48 0.2809 

52 43.8 85.6 7.29 18.24 12.39 1.47 0.7 0.49 3.62×10
-6

 7.36 -0.576 

53 35.1 117 5.11 16.12 10.21 1.58 2.6 0.68 3.96×10
-6

 9.74 0.5183 

54 25.7 26.8 3.83 12.59 8.61 1.46 0.4 0.19 5.12×10
-6

 8.32 -0.036 

55 25.7 49.4 2.18 14.23 7.26 1.96 1.2 0.34 4.87×10
-6

 9 0.0051 

56 24.8 40.1 3.21 13.68 7.22 1.89 1.1 0.3 4.87×10
-6

 8.69 -0.514 

57 23.3 40.1 4.97 12.96 7.50 1.73 1.1 0.15 5.00×10
-6

 9.56 -0.097 

58 36.1 71.4 2.51 16.74 10.15 1.65 1.5 0.27 4.04×10
-6

 8.08 -0.616 

59 26.4 57.2 2.84 11.66 9.27 1.26 1.4 0.34 4.69×10
-6

 9.27 -0.508 

60 24.4 49.4 2.51 13.80 7.55 1.83 1.3 0.23 4.99×10
-6

 8.25 -0.402 

61 24.1 20.3 3.34 12.77 9.14 1.40 0.3 0.22 5.03×10
-6

 9.36 0.2815 

62 28.7 62.9 2.77 12.74 9.50 1.34 1 1.3 4.60×10
-6

 8.65 -0.114 

63 32.1 97.5 2.92 16.00 9.26 1.73 1.8 2.19 4.79×10
-6

 8.94 0.0913 

64 26.7 77.3 2.78 13.54 8.48 1.60 1.5 1.62 4.94×10
-6

 9.34 0.0687 

65 25 77.3 1.48 11.52 8.51 1.35 1.4 1.64 5.50×10
-6

 9.23 0.062 

66 30.5 89.2 4.57 17.11 8.32 2.06 1.3 1.33 4.45×10
-6

 9.27 0.0786 

67 36.7 55.3 2.4 14.77 10.59 1.39 0.7 0.84 3.96×10
-6

 9.33 0.4149 

68 39.1 64.5 1.26 19.77 9.72 2.04 0.9 0.84 3.83×10
-6

 9.33 0.4545 

69 34.4 61.9 0.96 12.99 10.03 1.30 0.8 1.23 4.15×10
-6

 8.22 -0.269 

70 43.4 95.5 5.45 18.59 10.02 1.85 1.4 1.09 3.53×10
-6

 8.66 -0.078 

71 32.2 55.3 2.45 18.03 7.92 2.28 0.7 0.84 4.31×10
-6

 9.33 0.413 

72 35.4 86.5 3.34 17.07 9.88 1.73 1.4 1.47 4.09×10
-6

 9.62 0.2034 

73 30.5 46.1 1.22 14.32 9.25 1.55 0.6 0.95 4.44×10
-6

 8.22 -0.306 

74 29.8 91.4 5.08 14.56 9.18 1.59 1 1.21 4.44×10
-6

 8.49 -0.751 

75 33.6 113 2.73 12.69 9.81 1.29 1.3 0.69 4.30×10
-6

 8.43 -0.292 

76 25.5 143 8.53 9.99 9.67 1.03 0.9 0.46 4.96×10
-6

 7.1 -1.808 

77 23.7 51.4 0 11.35 9.53 1.19 2 0.23 5.70×10
-6

 11.4 0.7485 

78 21.5 129 5.17 12.38 8.72 1.42 2.3 1.57 5.57×10
-6

 9.21 -0.169 

79 54.8 187 5.76 16.54 14.19 1.17 3.1 2.13 3.40×10
-6

 7.7 -1.384 

80 55.7 208 6.7 16.65 13.55 1.23 3.6 2.5 3.37×10
-6

 6.69 -0.637 

81 55.8 208 2.59 17.71 14.08 1.26 3.6 2.5 3.37×10
-6

 7.64 -1.358 

82 51.2 178 4.87 16.11 13.43 1.20 2.9 2.16 3.53×10
-6

 7.48 -1.702 

83 23.7 51.4 5.38 11.19 10.46 1.07 2 0.23 5.70×10
-6

 11.1 0.6645 

84 44.8 216 4.41 22.84 9.17 2.49 4.5 1.46 3.46×10
-6

 8.13 -0.798 

85 36.7 78.5 3.89 15.60 10.93 1.43 1.8 0.56 3.88×10
-6

 9.06 -0.42 

86 38.3 52.6 4.78 16.72 9.86 1.70 0.7 0.31 3.84×10
-6

 9.04 -0.737 

87 28.7 49.4 0.7 14.66 8.33 1.76 1.3 0.11 4.47×10
-6

 9.42 0.2973 

88 20.3 49.4 2.83 12.05 7.35 1.64 1.3 0.15 5.52×10
-6

 9.34 -0.126 

89 31.8 66.4 2.67 16.38 8.27 1.98 1.5 0.31 4.28×10
-6

 8.9 -0.739 
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Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

90 25.2 34.1 2.18 11.44 8.82 1.30 0.5 0.083 4.78×10
-6

 9.08 -1.341 

91 25.2 20.2 1.39 11.88 7.99 1.49 0.4 0.5 5.05×10
-6

 9.31 0.4837 

92 27.3 20.2 1.43 11.57 9.40 1.23 0.4 0.47 4.80×10
-6

 9.17 0.5152 

93 20.8 29.5 0.4 11.76 7.64 1.54 0.6 0.51 5.85×10
-6

 8.87 0.3455 

94 16.1 67.2 3.91 9.76 8.15 1.20 0.9 0.34 6.60×10
-6

 8.74 -0.385 

95 14.2 0 1.4×10
-5

 9.80 6.35 1.54 0 0.15 7.30×10
-6

 9.31 -0.216 

96 27.5 20.2 1.37 18.61 6.59 2.83 0.4 0.54 4.71×10
-6

 9.31 0.4505 

97 18.3 20.2 1.37 10.25 7.39 1.39 0.4 0.54 6.44×10
-6

 9.37 0.4671 

98 25.6 20.2 1.35 11.94 8.59 1.39 0.4 0.54 5.05×10
-6

 9.36 0.4742 

99 14.1 17.1 2.85 9.41 6.68 1.41 0.2 0.19 7.06×10
-6

 9.56 -0.358 

100 29.7 17.1 3.16 11.64 10.49 1.11 0.2 0.077 4.37×10
-6

 9.12 -0.086 

101 31.5 9.23 1.72 12.41 8.87 1.40 0.2 0.077 4.28×10
-6

 9.42 0.4027 

102 28.7 109 2.17 11.94 9.63 1.24 0.2 0 4.24×10
-6

 8.9 -1.348 

103 31.6 17.1 3.17 12.68 10.01 1.27 0.2 0.077 4.20×10
-6

 9.06 -0.15 

104 19.1 33.2 2.22 10.65 7.80 1.36 0.5 0.18 5.96×10
-6

 9.47 -0.204 

105 17.9 58.4 3.57 9.77 8.86 1.10 0.7 0.057 6.28×10
-6

 8.62 -0.349 

106 12.6 60.4 2.21 8.53 7.05 1.21 1.5 0.54 8.03×10
-6

 8.87 -0.59 

107 22 17.1 2.58 11.60 7.92 1.47 0.2 0.37 5.61×10
-6

 9.22 -0.627 

108 15.4 40.1 1.68 10.97 6.51 1.68 1.1 0.18 6.33×10
-6

 9.84 0.3178 

109 34.7 35.5 2.37 19.49 8.67 2.25 0.4 0.23 4.01×10
-6

 8.33 -0.619 

110 24 46.5 2.89 13.96 7.90 1.77 0.8 0.7 5.37×10
-6

 8.79 -0.481 

111 55.3 180 6.12 14.79 13.33 1.11 4.3 2.21 3.25×10
-6

 7.6 -1.259 

112 54.4 188 8.95 15.26 13.44 1.14 4.5 2.49 3.23×10
-6

 6.53 -1.575 

113 13.6 41.6 3.77 9.29 7.01 1.32 0.2 0.43 6.87×10
-6

 8.9 -0.324 

114 11.9 20.2 1.31 9.01 6.83 1.32 0.4 0.54 8.44×10
-6

 9.31 0.4264 

115 9.74 20.2 1.23 7.78 6.71 1.16 0.4 0.58 9.66×10
-6

 9.51 0.3978 

116 24.4 54.6 2.11 13.38 9.97 1.34 1.9 0 5.78×10
-6

 11.4 -0.101 

117 34.4 54.6 1.52 13.48 11.43 1.18 2.1 0 4.39×10
-6

 11.2 -0.183 

118 21.8 0 1.4×10
-2

 9.84 9.00 1.09 0 0 5.58×10
-6

 8.87 -1.041 

119 21 69.8 4.77 11.94 7.50 1.59 0.6 0.53 5.79×10
-6

 7.85 -0.803 

120 18.9 49.4 3.23 11.18 7.39 1.51 1.3 0.12 5.86×10
-6

 9.04 -0.312 

121 28.8 29.5 3.75 11.95 11.51 1.04 0.5 0.11 4.46×10
-6

 9.55 0.2142 

122 22.3 62.7 3.67 13.60 8.40 1.62 1 0.51 5.12×10
-6

 9.47 0.0452 

123 18.1 46.9 2.31 9.71 8.86 1.10 1 0.081 6.50×10
-6

 8.89 -0.888 

124 18.6 49.4 2.17 9.97 8.73 1.14 1.2 0.077 5.86×10
-6

 8.88 -0.671 

125 22.2 32.3 4.77 13.16 7.98 1.65 0.6 0.4 5.38×10
-6

 8.77 -0.074 

126 18.8 49.4 0.29 12.55 7.78 1.61 1.3 0.12 5.81×10
-6

 9.15 -0.021 

127 30.4 29.5 2.55 12.51 11.43 1.09 0.5 0.11 4.30×10
-6

 8.66 0.1265 

128 20.1 23.1 1.24 9.83 9.03 1.09 0.9 0 6.17×10
-6

 8.6 -0.977 
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Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

129 25 72 1.76 12.55 9.43 1.33 1.1 0.51 4.78×10
-6

 9.72 0.3339 

130 20.6 62.7 3.01 12.45 9.56 1.30 1 0.51 5.38×10
-6

 9.46 0.1073 

131 28.4 45.6 2.83 14.21 9.39 1.51 0.3 0 4.50×10
-6

 8.69 -0.548 

132 28.8 94.9 3.86 13.17 10.76 1.22 0.3 0.084 4.21×10
-6

 8.45 -1.53 

133 28.7 29.5 2.28 11.50 10.25 1.12 0.5 0.11 4.46×10
-6

 6.5 -0.515 

134 30.8 0 2.92 10.63 8.90 1.19 0.2 0.052 4.49×10
-6

 9.34 -0.269 

135 31.9 54.7 3.75 12.71 8.49 1.50 0.2 0 4.37×10
-6

 9.53 -0.547 

136 21.1 38.3 2.56 11.46 9.15 1.25 0.6 0.52 5.42×10
-6

 8.25 -0.29 

137 18.8 15.8 1.2 10.78 7.12 1.51 0.3 0.57 5.95×10
-6

 8.23 -0.108 

138 30.5 82.5 6.71 13.69 9.80 1.40 1.3 0.041 4.89×10
-6

 8.12 -1.757 

139 32.6 0 1.12 11.03 9.36 1.18 0.2 0 4.38×10
-6

 9.53 -0.529 

140 44.3 59.3 3.61 17.97 9.93 1.81 0.6 0.39 3.53×10
-6

 8.79 -0.332 

141 31.4 95.4 4.53 13.92 9.59 1.45 1.4 0.043 4.63×10
-6

 8.43 -1.593 

142 31.6 12.5 2.31 10.94 8.93 1.23 0.3 0 4.47×10
-6

 9.52 -0.415 

143 29.6 0 1.79 11.41 9.84 1.16 0.2 0.054 4.60×10
-6

 9.56 -0.461 

144 34 18.5 2.9 14.81 9.52 1.56 0.3 0.31 4.21×10
-6

 8.75 -0.222 

145 22.9 115 3.44 13.34 8.30 1.61 1.1 0.16 5.83×10
-6

 8.32 -2.099 

146 22.1 20.3 3.13 12.11 8.73 1.39 0.3 0.15 5.21×10
-6

 9.22 -0.068 

147 23.3 0 1.71 10.04 9.26 1.08 0.3 0 5.37×10
-6

 10.9 -0.154 

148 23.6 0 0 9.38 9.23 1.02 0.3 0 5.37×10
-6

 11.8 0.1114 

149 23.1 0 2.4 9.81 8.81 1.11 0.3 0 5.37×10
-6

 10.9 -0.15 

150 23.4 0 1.8 9.86 9.06 1.09 0.3 0 5.37×10
-6

 11.7 0.0928 

151 33.1 20.2 2 12.44 11.97 1.04 0.5 0.69 4.32×10
-6

 9.18 -0.561 

152 26 55.1 4.61 14.63 9.26 1.58 0.1 0.28 4.90×10
-6

 8.18 -1.286 

153 30.3 0 0.59 13.42 10.63 1.26 0.1 0.3 4.51×10
-6

 9.22 -0.325 

154 32 0 2.03 12.76 10.43 1.22 0 0.3 4.36×10
-6

 9.12 -0.461 

155 32.4 0 1.08 14.13 9.93 1.42 0 0.3 4.36×10
-6

 9.07 -0.517 

156 30.8 0 0.18 13.61 9.22 1.48 0 0.31 4.53×10
-6

 7.9 -1.137 

157 20.6 0 0 11.53 8.10 1.42 0 0.38 5.60×10
-6

 7.28 -0.84 

158 29.1 0 0.04 13.43 8.97 1.50 0 0.46 4.59×10
-6

 6.81 -1.111 

159 23.2 0 0.24 10.87 9.12 1.19 0 0.38 5.23×10
-6

 7.7 -0.929 

160 14.6 0 1.2×10
-4

 9.21 7.54 1.22 0 0.3 6.76×10
-6

 8.45 -0.265 

161 20.4 0 0.02 11.29 7.58 1.49 0 0.38 5.60×10
-6

 8.21 -0.408 

162 22.9 0 8.7×10
-4

 11.21 8.80 1.27 0 0.38 5.23×10
-6

 7.24 -0.889 

163 25.3 40.5 2.11 12.16 8.88 1.37 0.9 1.09 5.45×10
-6

 9.23 0.3972 

164 33.8 52.6 3.8 13.90 11.02 1.26 0.6 0.34 4.06×10
-6

 6.97 -0.517 

165 46.1 52.6 5.31 15.76 13.78 1.14 0.6 0.15 3.29×10
-6

 9.24 -0.102 

166 31.4 52.6 4.22 12.77 9.57 1.33 0.6 0.15 4.23×10
-6

 7.05 -0.616 

167 23.2 52.6 4.11 11.87 8.97 1.32 0.6 0.15 5.07×10
-6

 7.05 -0.662 
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Comp. P PSA DM L W RLW HA HD Df GAP LUMO 

168 19 52.6 2.84 10.40 8.67 1.20 0.6 0.15 5.70×10
-6

 7.07 -0.703 

169 32.6 54.6 2.57 14.65 10.62 1.38 1.6 0.56 4.73×10
-6

 9.15 -0.288 

170 46.4 82.3 2.63 23.48 14.84 1.58 2.2 0 3.66×10
-6

 11 0.4338 

171 29.9 37.3 3.05 13.92 8.04 1.73 0.6 0.59 4.71×10
-6

 8.15 -0.421 

172 30.5 37.3 2.94 13.48 8.57 1.57 0.7 0.54 4.66×10
-6

 9.18 0.3089 

173 34.3 40.5 1.31 14.14 9.13 1.55 1.1 1.02 4.32×10
-6

 9.23 0.4017 

174 34.6 37.3 2.64 15.94 9.23 1.73 0.9 0.55 4.12×10
-6

 10 -0.025 

175 36.6 29.5 1.5 16.40 9.51 1.72 0.8 0.62 4.01×10
-6

 9.22 0.472 

176 31.8 40.5 1.28 12.72 8.53 1.49 0.9 0.84 4.57×10
-6

 9.23 0.4189 

177 31.8 40.5 1.17 13.49 7.95 1.70 0.9 0.84 4.57×10
-6

 9.24 0.3972 

178 32.8 60.7 0.57 13.67 8.88 1.54 1.3 1.17 4.51×10
-6

 9.24 0.3791 

179 31.1 37.3 3.37 12.62 8.75 1.44 0.6 0.51 4.61×10
-6

 9.24 0.3441 

180 37.1 34.1 2.16 15.22 8.45 1.80 0.5 0.039 3.91×10
-6

 10 -0.022 

181 33.9 37.3 2.7 14.27 8.28 1.72 0.7 0.37 4.17×10
-6

 10 -0.008 

182 34.5 37.3 3.22 13.52 8.70 1.55 0.6 0.33 4.14×10
-6

 11.1 0.9798 
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Table A.4 Tanimoto coefficients for water treatment set 1. 

Compound No. 1 10 31 32 48 59 69 76 85 100 108 111 115 122 132 135 149 162 165 167 173 182 

Amoxicillin 1 1 

                     Enoxacin 10 0.20 1 

                    Tetracycline 31 0.18 0.22 1 

                   Carbadox 32 0.16 0.17 0.13 1 

                  Primidone 48 0.37 0.26 0.26 0.21 1 

                 Ketoprofen 59 0.26 0.31 0.37 0.19 0.40 1 

                Carazolol 69 0.21 0.29 0.25 0.21 0.27 0.37 1 

               Azathioprine 76 0.16 0.17 0.08 0.15 0.13 0.09 0.14 1 

              Bezafibrate 85 0.32 0.23 0.16 0.16 0.32 0.22 0.27 0.10 1 

             Celestolide 100 0.23 0.24 0.28 0.19 0.42 0.48 0.25 0.09 0.23 1 

            Hydrocinnamic acid 108 0.29 0.42 0.26 0.25 0.50 0.50 0.32 0.16 0.29 0.38 1 

           Iomeprol 111 0.24 0.23 0.19 0.16 0.27 0.22 0.20 0.11 0.27 0.23 0.20 1 

          Phenol 115 0.29 0.20 0.21 0.30 0.35 0.30 0.32 0.13 0.28 0.32 0.50 0.19 1 

         Atrazine 122 0.15 0.32 0.12 0.10 0.20 0.10 0.16 0.22 0.11 0.10 0.14 0.10 0.11 1 

        Trifluralin 132 0.17 0.31 0.17 0.27 0.22 0.20 0.25 0.24 0.23 0.21 0.26 0.23 0.25 0.12 1 

       Alpha-Endosulfan 135 0.16 0.20 0.21 0.12 0.25 0.23 0.21 0.09 0.16 0.23 0.30 0.11 0.18 0.10 0.14 1 

      Gamma-HCH 149 0.10 0.14 0.13 0.09 0.17 0.16 0.11 0.06 0.10 0.16 0.21 0.07 0.09 0.10 0.08 0.32 1 

     Pyrene 162 0.24 0.30 0.26 0.21 0.33 0.52 0.41 0.09 0.24 0.42 0.42 0.21 0.35 0.11 0.22 0.21 0.17 1 

    DEHP 165 0.18 0.16 0.17 0.15 0.22 0.24 0.28 0.07 0.18 0.24 0.22 0.16 0.21 0.08 0.16 0.18 0.12 0.22 1 

   DEP 167 0.24 0.22 0.20 0.21 0.33 0.35 0.36 0.09 0.24 0.36 0.35 0.21 0.35 0.11 0.22 0.21 0.13 0.33 0.57 1 

  EE2 173 0.22 0.20 0.45 0.16 0.32 0.29 0.21 0.07 0.22 0.34 0.33 0.14 0.28 0.08 0.17 0.22 0.26 0.28 0.21 0.21 1 

 Androsterone 182 0.13 0.14 0.34 0.07 0.24 0.15 0.12 0.05 0.11 0.29 0.19 0.08 0.10 0.08 0.07 0.22 0.26 0.14 0.17 0.14 0.50 1 

The calculations of Tanimoto Coefficient are based on the maximum common substructure (MCS) developed by Cao et al., (2008). A free web tool ChemMine 

was used for the calculation (http://chemmine.ucr.edu/iframe/similarity). 

 

http://chemmine.ucr.edu/iframe/similarity
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Table A.5 Tanimoto coefficients for water treatment set 2. 

Compound No. 4 31 35 50 63 87 88 93 111 115 116 118 124 132 144 151 158 164 165 170 171 181 

Methicillin 4 1 

                     Tetracycline 31 0.19 1 

                    Triclosan 35 0.31 0.16 1 

                   Metformin 50 0.12 0.11 0.04 1 

                  Fenoterol 63 0.26 0.21 0.21 0.1 1 

                 Gemfibrozil 87 0.24 0.19 0.35 0.04 0.24 1 

                Clofibric acid 88 0.23 0.18 0.48 0.05 0.23 0.39 1 

               BHA 93 0.24 0.28 0.36 0.05 0.32 0.35 0.42 1 

              Iomeprol 111 0.22 0.19 0.14 0.11 0.28 0.17 0.15 0.19 1 

             Phenol 115 0.24 0.21 0.41 0.07 0.29 0.39 0.5 0.54 0.19 1 

            TCEP 116 0.08 0.07 0.11 0.05 0.09 0.10 0.12 0.13 0.07 0.17 1 

           HCB 118 0.17 0.15 0.38 0.05 0.20 0.25 0.37 0.32 0.16 0.46 0.13 1 

          Dicamba 124 0.31 0.21 0.36 0.05 0.28 0.35 0.42 0.44 0.22 0.54 0.17 0.47 1 

         Trifluralin 132 0.18 0.17 0.18 0.14 0.18 0.21 0.19 0.24 0.23 0.25 0.06 0.21 0.24 1 

        Methoxychlor 144 0.19 0.32 0.27 0.03 0.29 0.26 0.30 0.36 0.16 0.33 0.09 0.22 0.31 0.19 1 

       Dicofol 151 0.17 0.33 0.23 0.04 0.26 0.23 0.26 0.38 0.16 0.29 0.13 0.28 0.32 0.19 0.71 1 

      Benzo(a)pyrene 158 0.17 0.29 0.19 0.04 0.22 0.27 0.21 0.32 0.19 0.29 0.06 0.23 0.27 0.19 0.19 0.38 1 

     BBP 164 0.18 0.17 0.38 0.03 0.21 0.37 0.28 0.29 0.17 0.25 0.09 0.21 0.33 0.18 0.19 0.23 0.23 1 

    DEHP 165 0.16 0.17 0.22 0.03 0.18 0.35 0.24 0.24 0.16 0.21 0.08 0.18 0.28 0.16 0.17 0.20 0.20 0.59 1 

   TBEP 170 0.10 0.09 0.13 0.03 0.09 0.19 0.18 0.15 0.08 0.10 0.38 0.06 0.11 0.07 0.09 0.10 0.10 0.17 0.15 1 

  Equilenin 171 0.17 0.39 0.23 0.01 0.29 0.27 0.26 0.38 0.19 0.35 0.10 0.23 0.27 0.19 0.32 0.33 0.48 0.23 0.20 0.10 1 

 Testosterone 181 0.13 0.35 0.11 0.03 0.2 0.23 0.15 0.27 0.12 0.14 0.08 0.12 0.15 0.12 0.21 0.22 0.22 0.14 0.20 0.11 0.40 1 

The calculations of Tanimoto Coefficient are based on the maximum common substructure (MCS) developed by Cao et al., (2008). A free web tool ChemMine 

was used for the calculation (http://chemmine.ucr.edu/iframe/similarity). 

http://chemmine.ucr.edu/iframe/similarity
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Appendix B 

Supplementary Material for Chapter 4 

Table B.1 HPLC methods 

Compound Mobile phase Flow Quantitation MDL (µM) 

17-Ethinylestradiol 70% A: 30% B 1 ml/min 220 nm 0.047 

Benzo(a)pyrene 95% A: 5% B 1 ml/min 294 nm 0.007 

Butylated 

hydroxyanisole 

70% A: 30% B  1 ml/min 226 nm 0.023 

Butylbenzyl phthalate 85% A: 15% B 1 ml/min 220 nm 0.16 

Clofibric acid 70% A: 30% B 1 ml/min 224 nm 0.04 

Di(2-ethylhexyl) 

phthalate 

95% A: 5% B 1 ml/min 220 nm 0.12 

Dicamba 55% A: 45% B 1 ml/min 220 nm 0.02 

Dicofol 90% A: 10% B 1 ml/min 229 nm 0.026 

Equilenin 70% A: 30% B 1 ml/min 229 nm 0.05 

Fenoterol 20% A: 80% B 1 ml/min 220 nm 0.03 

Gemfibrozil 90% A: 10% B 1 ml/min 220 nm 0.07 

Hexachlorobenzene 95% A: 5% B 1 ml/min 216 nm 0.053 

Methicillin 55% A: 45% B 1 ml/min 210 nm 0.057 

Methoxychlor 90% A: 10% B 1 ml/min 226 nm 0.063 

Phenol 55% A: 45% B 1 ml/min 270 nm 0.12 

Pyrene 95% A: 5% B 1 ml/min 239 nm 0.008 

Sulfamethoxazole 35% A: 65% B 1 ml/min 268 nm 0.04 

Tetracycline 30% A: 70% B 1 ml/min 270 nm 0.067 

Triclosan 85% A: 15% B 1 ml/min 220 nm 0.06 

Trifluralin 85% A: 15% B 1 ml/min 273 nm 0.10 

pCBA 70% A: 30% B 1 ml/min 238 nm 0.037 

A: Methanol, B: 10 mM H3PO4 buffer (pH = 2). MDL: method detection limit. 
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Appendix C 

Supplementary Material for Chapter 5 

Modeling Ozone Reaction Rate Constants of Micropollutants Using 

Quantitative Structure–Property Relationships 

 

Statistical Methods 

1. Multiple Linear Regression (MLR) 

MLR method is among the most widely used modeling methods in QSPR studies, which models a 

dependent variable (property to be predicted) as a linear combination of independent variables 

(molecular descriptors) with the regression coefficients.  

iippiii xxxy   ...
22110                                       (C.1) 

Where 1, 2, … p are regression coefficients and 0 is the constant, xi1, xi2, … xip are molecular 

descriptors of the i’th compound, yi is the property to be predicted, and i represents the residuals. 

Least squares method which finds the smallest possible residual sum of square (sum of squared 

differences between the true y values and expected y values calculated by the model) may be used to 

calculate the regression coefficients and constant. When the property and molecular descriptors are 

standardized to have means of zero and standard deviation of one, the equation can be written in the 

matrix form: 

EXBY                                                             (C.2) 

Where Y is the matrix of property, X is the matrix of molecular descriptors, B is the matrix of 

regression coefficients, and E represents the matrix of residuals.  

A few parameters such as the squared multiple correlation coefficient (R
2
), adjusted R

2
, and 

variance ratio (F) are used to judge the statistical qualities of the equations. R
2
 is defined as 
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Where yi and     are observed and calculated property values, respectively, while    is the mean of 

the observed property. R
2
 is a measure of how well a regression model fits a data set. R

2
 ranges from 0 

to 1, the closer the value of R
2
 to 1, the better the regression model describe the observed data. The 

value of R
2
 depends on the number of compounds (n) and number of descriptors (p), therefore another 

statistical parameter can be used, called adjusted R
2
 (    

 ).  
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pn
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RRadj                                               (C.4) 

Adjusted R
2
 shows similar information as R

2
 but adjusted by the number of compounds and 

number of descriptors. Because of the inflation of R
2
 with the number of independent variables, 

adjusted R
2
 is a more appropriate and meaningful parameter to compare models with different 

numbers of independent variables. 

The dispersion of the observed dependent variable about the regression line (surface) can be 

assessed by the value of the standard error of estimate s. Larger value of s means worse statistical fit 

of the model and less reliability of the prediction. 
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The statistical significance of a regression equation can be assessed by means of the Fisher (F) 

statistic. A regression model is considered to be statistically significant if the F value is greater than a 

tabulated value for the chosen level of significance (typically 95% level) and the corresponding 

degrees of freedom. 
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MLR assumes the linear relationships between molecular descriptors and the property to be 

predicted, and the molecular descriptors are mathematically independent. In practice, if the data set 

shows multicollinearity among the predictor variables, the model will be ill-conditioned and the 

calculated regression coefficients will be unstable and uninterpretable, for example, coefficients with 

the wrong sign may be found or the coefficients are much larger than expected (Eriksson et al., 2003). 
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MLR is satisfactory applied in QSPR studies if the main problem of the multicollinearity among 

variables is solved.  

 

2. Principal Component Regression (PCR) 

Another regression-based method is PCR. The first step of conducting PCR is principal component 

analysis (PCA). PCA is used to summarize the information residing in the initial multivariate data 

(compounds and their descriptors). PCA results in several new variables, known as latent variables or 

principal components (PCs), which capture the major pattern of the initial dataset. By using PCA, the 

information of data can be represented by a few PCs and can be displayed graphically (Jackson 1991). 

Eriksson et al. (2006) identified PCA as the most suitable technique for dimensionality reduction and 

generation of orthogonal latent variables, and it has been applied successfully in a number of studies 

(e.g. Knekta et al., 2004; Papa et al., 2007; Harju et al., 2002; Kitti et al., 2003). A reduced set of 

variable is much easier to analyze and interpret. As a common procedure to avoid the influence of the 

unit of variables, data for PCA are usually pre-processed by means of mean-centering and scaling to 

unit variance. PCA then decomposes the X-matrix into the product of two matrices, the score matrix T 

and the loading matrix P, plus a residuals matrix E. The product of score matrix and loading matrix 

TP’ is used to model the initial data matrix X (Wold et al., 1987).  

ETPX  '                                                             (C.7) 

The number of principal components (i.e., the number of columns in score matrix and the number 

of rows in loading matrix), is determined by cross-validation. In the next step, the first few significant 

principal components are used as predictor variables in a MLR. Because the principal components are 

mathematically independent, multicollinearity among original variables is no longer a problem as it is 

in MLR.  

  qq PCPCPCy ...22110                                (C.8) 

Where y is the property to be predicted, 1, 2, … q are regression coefficients and 0 is the 

constant, PC1, PC2, … PCq are principal components extracted by PCA, q is the number of significant 

principal component, and  represents the residuals. The regression model can be found by using the 
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usual MLR algorithm, and same statistical parameters as used in MLR can be applied to assess the 

quality of models.  

3. Partial Least Squares Regression (PLS) 

PLS is a recently developed regression methods, which can be seen as a generalization of multiple 

linear regression (Eriksson et al., 2006). PLS is a projection method which finds new variables (latent 

variables) which are linear combinations of the original variables and orthogonal, and also well 

correlated to the dependent variable(s). The dependent variable(s) can be a single property (e.g. rate 

constant) or multiple responses (e.g. toxicity determined in several testing systems). Similar with 

PCA method, but PCA works with X matrix while PLS works with two matrices, X and Y, 

respectively. In other words, the difference between PCR and PLS is that PLS finds the latent 

variables and the regression coefficients at the same time. The PLS projects the matrix X into a lower-

dimensional hyper-plane which is a good summary of X, and several latent variables are introduced to 

describe the positions of projected data. Latent variables are used to correlate the values of Y. If 

response matrix Y contains multiple responses, Y will be summarized by another projected lower-

dimensional hyper-plane. The number of significant dimensions in PLS is determined with cross-

validation. Models will be set up between latent variables of X and Y.  

ETBY                                                                 (C.9) 

Where T is the matrix containing the scores of the extracted latent variables, (T = XF, where F is 

the matrix of the loadings of the original variables in the principal component scores, and X is the 

matrix of mean-centered molecular descriptors) B is the matrix of the PLS regression coefficients, and 

E is the unexplained variance in Y. The PLS regression model can be presented in terms of the 

original molecular descriptors. 

EXQY                                                               (C.10) 

Where Q = FB is the matrix of regression coefficient for original descriptors. In addition, the 

original mean-centered descriptors can also be expressed by the latent variables. 

KTPX  '                                                                (C.11) 

Where P is the loading matrix, and K is the unexplained part of X.  A detailed tutorial of PLS 

method with some good examples can be found in literature (Wold et al., 2001). Unlike MLR, PLS 
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can work well when data are strongly correlated since the extracted latent variables are orthogonal 

and limited in number. 

A commonly used procedure to build PLS models is cross-validation. Cross-validation is a 

statistical tool for assessing the predictive ability of a model. It is obtained by removing one (leave-

one-out) or many (leave-many-out) chemicals from the dataset, developing the models on the 

remaining chemicals and using that to predict the activity of the chemicals removed. All the 

chemicals will be removed in turn once and only once (Eriksson et al., 2003). Predicted residual error 

sum of squares (PRESS) can be calculated for that model.  

  
2

/ˆ iii yyPRESS                                                       (C.12) 

Note that this equation looks similar to the residual sum of squares given in MLR but different. 

Here the       is the calculated dependent variable from a model developed without that data point. 

Cross-validation ensures the resulting model contains the optimum number of components, and the 

model is built based on the ability to predict the data rather than to fit the data.  

  

4. Piecewise Linear Regression (PLR) 

Piecewise linear regression is similar to the MLR method. Instead of fitting an overall equation, PLR 

separates the compound set into two or more groups and fits submodel in each group. The advantage 

of PLR over MLR is that it can approximate the nonlinear phenomena of the data into local linearity. 

In addition, PLR is a simple enough modeling method comparing to nonlinear techniques. From a 

practical and scientific point-of-view, it is always desirable to develop the simplest model which has a 

satisfactory predictive power. However, the challenging problem of applying PLR is to find a 

meaningful breakpoint which splits the dataset into two or more subsets. In complex cases where it is 

difficult to find the breakpoint, quasi-Newton algorithm can be used to search the breakpoint or 

multiple breakpoints (Molina et al., 2008). In the case of two pieces model where both the intercept 

and slope switches, the PLR equation can be written in the following form. 

     CyxbxbxbbCyxbxbxbby pppp  222212120121211110 ......ˆ    (C.13) 

Where bij is the coefficient of j’th molecular descriptor for the i’th submodel. The expressions (y 

 C) and (y > C) are logical conditions that equal to 0 if the condition is false and to 1 if true. 
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5. Linear Discriminant Analysis (LDA) 

LDA is a typical statistical method for developing classification models which classify the data into 

two of more pre-defined categories or groups, and can be used to predict the group membership of 

new observations (Worth and Cronin 2003). In QSPR study, for scientific or regulatory purpose, 

chemicals may be classified into categories according to the kinds of toxicity they exhibit, toxic 

mechanisms (i.e., mode of action) (Spycher et al., 2004), reactivity to certain reactant, etc. LDA 

provides a convenient means of labeling compounds, for example, a compound could be labeled as 

toxic or non-toxic, negative or positive, reactive or non-reactive according to analytical systems 

applied. In situations such as several different mechanisms dominant the entire data set and/or the 

variation of data is too large, which makes it difficult to develop reasonable quantitative prediction 

models, modelers may have to apply classification methods to divide data into groups. In addition, 

because of the limitation of instrument or analytical technique, compounds with responses lower than 

detection limit are marked such as “not detected”, “no effect”, “not toxic”, etc., it is difficult to 

include these compounds into the data set to build quantitative relationships. 

In the simplest type of LDA, i.e., two-group case, a linear discriminant function (LDF) can be 

obtained to maximize the distance between the means of the calculated values of the function in the 

two groups. 

bxbxbxbLDF pp  ...2211                                           (C.14) 

where b is a constant, and b1, b2, … bp are the regression coefficient for p variables. Once the 

discriminant function is finalized, the classification function can be derived to determine the group 

membership of each compound by calculating the classification scores for each compound for each 

group, by applying the formula: 

ipipiii cxwxwxwS  ...2211
                                        (C.15) 

where the subscript i denotes the respective group, the subscripts 1, 2, ..., p denote the p variables, 

ci is a constant for the i'th group, wij is the weight for the j'th variable in the computation of the 

classification score for the i'th group, xj is the observed value for the respective case for the j'th 

variable, Si is the resultant classification score. 
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To test the overall statistical significance of the discrimination the parameter Wilks’ is used. 

Wilks’ ranges from 0 to 1, with 0 meaning perfect discrimination and 1 meaning all groups means 

are the same. 

   TWWilks det/det'                                                     (C.16) 

Where det(W) is the within-groups variance/covariance matrix, and det(T) is the total 

variance/covariance matrix. The significance of Wilks’ can be tested using Fisher F test. In addition, 

the significance of each variable added to the model can be assessed by partial Wilks’. 

To calculate the probability that a given compound belongs to a given group, the Mahalanobis 

distance is used. This is the distance of the compound from the group centroid in the 

multidimensional space defined by the molecular descriptors. The group centroid is the point in the 

multivariate space with coordinates equal to the means of all variables. A compound is classified to 

the group to which it has the smallest distance. 
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Table C. 1 Data set used in the QSPR modeling. 

No. Compound (ref.) pKa MW AMW nDB nAB nArOH nN Ui HOMO LUMO GaP P logDf logkO3 

Training Set 

1 Equilenin 9.8 266.36 7.01 1 11 1 0 3.7 -8.57 -0.42 8.15 29.93 -5.33 7.00 

2 Butylated hydroxyanisole 10.6 180.27 6.22 0 6 1 0 2.807 -8.53 0.35 8.87 20.76 -5.23 6.52 

3 Fenoterol 8.6 304.4 6.92 0 12 3 1 3.7 -8.84 0.09 8.94 32.13 -5.32 6.45 

4 Tetracycline 9.7 443.47 8.06 5 6 1 0 3.585 -9.19 -0.96 8.24 43.46 -5.43 6.40 

5 Triclosan 8.1 289.54 12.06 0 12 1 0 3.7 -8.77 -0.54 8.23 27.16 -5.28 6.40 

6 Phenol 9.9 94.12 7.24 0 6 1 0 2.807 -9.12 0.40 9.51 9.74 -5.02 6.26 

7 17α-Ethinylestradiol 10.4 296.44 6.44 0 6 1 0 3 -8.83 0.40 9.23 34.26 -5.36 6.26 

8 Gemfibrozil 4.4 249.36 6.39 1 6 0 0 3 -9.12 0.30 9.42 28.67 -5.35 5.69 

9 Methicillin 2.8 379.45 8.43 3 6 0 0 3.322 -9.24 -0.17 9.07 37.24 -5.40 4.59 

10 Benzo[a]pyrene NA 252.32 7.89 0 24 0 0 4.644 -7.92 -1.11 6.81 29.1 -5.34 3.88 

11 Clofibric acid 3.4 213.65 8.9 1 6 0 0 3 -9.46 -0.13 9.34 20.34 -5.26 3.70 

12 Trifluralin NA 335.32 8.6 4 6 0 0 3.459 -9.98 -1.53 8.45 28.76 -5.38 3.28 

13 Methoxychlor NA 345.66 9.6 0 12 0 0 3.7 -8.97 -0.22 8.75 34.02 -5.38 2.40 

14 Tri(2-butoxyethyl)phosphate NA 398.54 6.13 1 0 0 0 1 -10.57 0.43 11.00 46.42 -5.44 0.66 

15 Butylbenzyl phthalate NA 312.39 7.26 2 12 0 0 3.907 -7.49 -0.52 6.97 33.82 -5.39 0.15 

16 Metformin 10.3 131.22 5.96 2 0 0 2 1.585 -9.01 1.00 10.02 14 -5.14 0.08 

17 Tris(chloroethyl)phosphate NA 285.5 10.98 1 0 0 0 1 -11.52 -0.10 11.42 24.4 -5.24 -0.10 

18 Iomeprol NA 777.12 14.66 3 6 0 0 3.322 -8.86 -1.26 7.60 55.3 -5.49 -0.70 

19 Dicamba 2.0 220.03 12.22 1 6 0 0 3 -9.55 -0.67 8.88 18.58 -5.23 -1.00 

20 Dicofol NA 370.48 12.78 0 12 0 0 3.7 -9.74 -0.56 9.18 33.09 -5.36 -1.00 

21 Di(2-ethylhexyl)phthalate NA 390.62 5.92 2 6 0 0 3.17 -9.34 -0.10 9.24 46.06 -5.48 -1.00 

22 Hexachlorobenzene NA 284.76 23.73 0 6 0 0 2.807 -9.91 -1.04 8.87 21.75 -5.25 -2.00 

Validation Set 

23 Bisphenol A 
a
 9.8 228.31 6.92 0 12 2 0 3.7 -8.83 0.40 9.23 25.3 -5.26 6.43 

24 Sulfamethoxazole 6.2 252.3 9.34 2 11 0 1 3.807 -9.13 -0.47 8.66 24.58 -5.30 6.30 

25 Estrone 
a
 10.3 270.4 6.44 1 6 1 0 3 -8.89 0.34 9.24 31.12 -5.34 6.26 
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26 17beta-Estradiol 
a
 10.3 272.42 6.19 0 6 1 0 2.807 -8.84 0.40 9.24 31.76 -5.34 6.23 

27 Estriol
 a
 10.3 288.42 6.41 0 6 1 0 2.807 -8.86 0.38 9.24 32.83 -5.35 6.22 

28 Amoxicillin
 b
 7.4 365.45 8.31 3 6 1 1 3.322 -9.33 -0.09 9.24 35.84 -5.37 6.18 

29 4-Nonylphenol 
a
 10.3 220.39 5.51 0 6 1 0 2.807 -8.86 0.45 9.31 27.49 -5.33 6.15 

30 Lincomycin
 c
 8 406.61 6.67 1 0 0 0 1 -8.59 0.48 9.08 41.44 -5.44 5.83 

31 Carbamazepine
 d

 NA 236.29 7.88 2 12 0 0 3.907 -8.61 -0.46 8.15 26.95 -5.30 5.48 

32 Trimethoprim 
e
 7.2 290.36 7.45 0 12 0 2 3.7 -8.74 -0.01 8.73 30.04 -5.35 5.43 

33 Naproxen 
b
 4.2 229.27 7.64 1 11 0 0 3.7 -8.65 -0.40 8.25 24.41 -5.30 5.41 

34 Enrofloxacin
 c
 6.7 358.43 7.63 3 6 0 0 3.322 -8.80 -0.66 8.14 36.56 -5.39 5.18 

35 Pyrene NA 202.26 7.78 0 19 0 0 4.322 -8.13 -0.89 7.24 22.86 -5.28 4.56 

36 Ciprofloxacin
 c
 8.7 331.38 7.89 3 6 0 1 3.322 -8.82 -0.67 8.15 32.85 -5.36 4.28 

37 Phenant1ene
 f
 NA 178.24 7.43 0 16 0 0 4.087 -8.62 -0.41 8.21 20.43 -5.25 4.20 

38 Penicillin G 
c
 2.7 333.42 8.34 3 6 0 0 3.322 -9.30 -0.07 9.23 33.02 -5.37 3.68 

39 Metoprolol 
b
 NA 268.42 5.96 0 6 0 1 2.807 -8.92 0.41 9.33 32.19 -5.37 3.15 

40 Bromoxynil
 g
 3.9 275.9 21.22 0 6 1 0 3 -9.78 -0.89 8.89 18.1 -5.19 3.06 

41 Bezafibrate
 d
 3.8 360.84 8.2 2 12 0 0 3.907 -9.48 -0.42 9.06 36.74 -5.41 2.77 

42 Ibuprofen
 d
 4.9 205.3 6.42 1 6 0 0 3 -9.66 -0.10 9.56 23.27 -5.30 0.98 

43 Alachlor
 e
 NA 269.8 7.1 1 6 0 0 3 -7.02 -0.52 6.50 28.74 -5.35 0.58 

44 Diazepam 
d
 3.4 284.76 8.63 2 12 0 0 3.907 -9.25 -0.60 8.64 30.38 -5.34 -0.12 

45 Dimethyl phthalate
 e
 NA 194.2 8.09 2 6 0 0 3.17 -7.77 -0.70 7.07 19.01 -5.24 -0.70 

46 Diethylphthalate
 e
 NA 222.26 7.41 2 6 0 0 3.17 -7.71 -0.66 7.05 23.19 -5.29 -0.85 

47 Gamma-HCH
 e
 NA 290.82 16.16 0 0 0 0 0 -11.04 -0.15 10.89 23.09 -5.27 -1.40 

48 2,4-D
 e
 2.6 221.04 11.63 1 6 0 0 3 -9.35 -0.31 9.04 18.9 -5.23 0.36 

49 Atrazine
 e
 1.6 215.69 7.7 0 6 0 2 2.807 -9.42 0.05 9.47 22.3 -5.29 0.78 

50 Simazine
 e
 2.0 201.66 8.07 0 6 0 2 2.807 -9.36 0.11 9.46 20.6 -5.27 0.68 

51 Acetochlor
 h
 NA 269.8 7.1 1 6 0 0 3 -7.03 -1.58 5.45 29.12 -5.37 0.38 

52 Cyanazine
 i
 12.9 240.73 8.3 0 6 0 2 3 -9.03 0.037 9.06 23.96 -5.34 0.87 
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53 Iopromide
 d
 NA 791.15 14.13 3 6 0 0 3.322 -7.72 -1.81 5.91 55.03 -5.52 -0.10 

54 Metolachlor 
h
 NA 283.83 6.92 1 6 0 0 3 -8.19 -1.43 6.76 30.95 -5.39 0.04 

55 Propachlor 
h
 NA 211.71 7.56 1 6 0 0 3 -9.42 -0.78 8.65 22.97 -5.30 -0.05 

MW represents molecular weight, AMW is average molecular weight, nDB is number of conjugated double bonds, nAB is number of isolated 

double bonds, nArOH is number of phenolic group, nN is number of primary and secondary amines, Ui is unsaturation index, HOMO is highest 

occupied molecular orbital, LUMO is lowest unoccupied molecular orbital, GaP represents HOMO-LUMO gap, and P is polarizability, logDf is 

diffusivity in logarithm form.  

Literature cited: 
a
 Deborde et al., 2005; 

b
 Benitez et al., 2009; 

c
 Dodd et al., 2006; 

d
 Huber et al., 2003; 

e
 Yao and Haag 1991; 

f
 Butkovic et al., 

1983; 
g
 Cheme-Ayala et al., 2010; 

h
 Acero et al., 2003; 

i
 Benitez et al., 1994. Pyrene and Sulfamethoxazole are measured data. For some 

compounds, the apparent rate constant at pH = 7 were not reported, but were calculated using the elementary absolute rate constant of each species 

(k1, k2) as follows:  
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Table C. 2 Intercorrelation matrix. 

  logMW logAMW nDB nAB nArOH Ui HOMO LUMO GaP P logDf 

logMW 1.00 

          logAMW 0.29 1.00 

         nDB 0.25 -0.19 1.00 

        nAB 0.13 0.18 -0.33 1.00 

       nArOH -0.25 -0.28 -0.42 0.27 1.00 

      Ui 0.21 0.10 -0.33 0.86* 0.19 1.00 

     HOMO -0.11 -0.29 -0.25 0.56 0.31 0.71 1.00 

    LUMO -0.54 -0.62 -0.05 -0.46 0.21 -0.55 -0.04 1.00 

   GaP -0.24 -0.14 0.16 -0.71 -0.12 -0.88* -0.81 0.63 1.00 

  P 0.92* -0.02 0.27 0.08 -0.14 0.17 0.02 -0.31 -0.20 1.00 

 logDf -0.92* 0.03 -0.31 -0.18 0.26 -0.29 -0.07 0.40 0.29 -0.94* 1.00 

*Correlation coefficients higher than 0.85. It shows that logMW is highly correlated with P and logDf, and nAB is correlated with Ui, Ui is 

correlated with GaP. 
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Table C. 3 Classification results. 

No. Compound Group X1A ATS3m GATS2v MATS6p GATS3v Class  

Training Set 

1 Equilenin 1 0.42 3.74 0.59 -0.17 0.81 1.61 

2 Butylated hydroxyanisole 1 0.46 3.03 0.75 -0.11 0.99 1.51 

3 Fenoterol 1 0.45 3.51 0.91 0.27 0.95 2.70 

4 Tetracycline 1 0.42 4.49 0.8 -0.06 1.01 1.02 

5 Triclosan 1 0.45 3.75 1.09 -0.2 1.32 1.41 

6 Phenol 1 0.49 1.9 0.88 0 1.4 2.27 

7 17α-Ethinylestradiol 1 0.42 3.9 0.72 -0.12 0.88 1.89 

8 Gemfibrozil 1 0.46 3.34 0.68 1 1.42 2.18 

9 Methicillin 1 0.44 4.07 0.71 0.06 0.89 0.87 

10 Benzo[a]pyrene 1 0.41 3.71 0 1 0 3.39 

11 Clofibric acid 1 0.46 3.28 0.97 -0.25 0.92 1.87 

12 Trifluralin 1 0.46 3.83 0.68 0.67 1.05 1.20 

13 Methoxychlor 1 0.45 3.83 0.71 -0.01 0.69 1.04 

14 Tri(2-butoxyethyl)phosphate -1 0.51 3.67 0.8 -0.13 1.06 -2.17 

15 Butylbenzyl phthalate -1 0.47 3.59 0.67 -0.13 1.4 -1.21 

16 Metformin -1 0.51 2.34 0 0 1.8 -4.34 

17 Tris(chloroethyl)phosphate -1 0.51 3.48 0.46 0.03 1.68 -4.14 

18 Iomeprol -1 0.47 5.2 0.62 -0.17 0.85 -3.63 

19 Dicamba -1 0.47 3.58 0.58 0 1.04 -0.69 

20 Dicofol -1 0.44 4.18 0.94 -0.53 2 -1.52 

21 Di(2-ethylhexyl)phthalate -1 0.48 3.78 0.7 -0.18 1.45 -2.14 

22 Hexachlorobenzene -1 0.46 4.52 0 0 0 -2.80 

Validation Set 

23 Bisphenol A 1 0.44 3.34 0.7 -0.35 0.7 1.70 

24 Sulfamethoxazole 1 0.44 3.52 0.82 0.07 1.15 1.99 

25 Estrone 1 0.42 3.74 0.59 -0.17 0.81 1.61 

26 17beta-Estradiol 1 0.42 3.74 0.59 -0.17 0.81 1.61 

27 Estriol 1 0.42 3.84 0.61 -0.22 0.74 1.53 

28 Amoxicillin 1 0.43 3.99 0.69 0.12 0.75 1.81 

29 4-Nonylphenol 1 0.49 2.87 0.89 -0.04 1 1.09 

30 Lincomycin 1 0.45 4.12 1.04 0.03 0.84 1.82 

31 Carbamazepine * 1 0.44 3.58 0.37 -0.25 0.88 -0.39 

32 Trimethoprim * 1 0.46 3.67 0.77 -0.38 0.92 -0.07 

33 Naproxen 1 0.45 3.37 0.52 -0.29 0.75 0.35 

34 Enrofloxacin 1 0.43 3.99 0.86 -0.28 0.86 1.55 

35 Pyrene 1 0.42 3.43 0 1 0 3.43 
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36 Ciprofloxacin 1 0.43 3.91 0.85 -0.34 0.89 1.48 

37 Phenanthrene 1 0.43 3.14 0 1 0 3.48 

38 Penicillin G 1 0.43 3.83 0.61 0.14 0.71 1.87 

39 Metoprolol 1 0.48 3.21 1.04 -0.4 0.72 1.36 

40 Bromoxynil 1 0.47 4.01 0.62 1.87 1.48 1.85 

41 Bezafibrate 1 0.45 3.81 0.84 -0.42 0.99 0.27 

42 Ibuprofen -1 0.47 3.06 0.4 -0.18 0.85 -0.56 

43 Alachlor -1 0.48 3.6 0.45 -0.07 1.11 -2.10 

44 Diazepam * -1 0.44 3.78 0.7 0 0.84 1.35 

45 Dimethyl phthalate -1 0.48 3.19 0.51 -0.53 1.14 -2.06 

46 Diethylphthalate -1 0.48 3.27 0.75 -0.11 1.14 -0.22 

47 Gamma-HCH -1 0.46 4.52 0 0 0 -2.80 

48 2,4-D -1 0.47 3.37 0.77 -0.76 0.52 -0.06 

49 Atrazine -1 0.47 3.12 0.56 -0.11 1.39 -0.84 

50 Simazine -1 0.48 3.08 0.49 -0.06 1.43 -1.52 

51 Acetochlor -1 0.48 3.57 0.64 -0.02 1.15 -1.21 

52 Cyanazine -1 0.47 3.31 0.64 -0.19 1.30 -0.63 

53 Iopromide -1 0.47 5.20 0.62 -0.18 0.88 -3.57 

54 Metolachlor -1 0.48 3.65 0.73 -0.31 0.90 -0.92 

55 Propachlor * -1 0.48 3.27 0.93 0.06 1.19 1.06 

* Wrong cases for +1 group (high-reactive) are carbamazepine, and trimethoprim; Wrong cases for -1 

group (low-reactive) are diazepam, and propachlor. The class values are calculated using equation 

5.10. 
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Figure C. 1 Chemical structure of compounds (at pH = 7) in the training set. 
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Figure C. 2 Chemical structure of compounds (at pH = 7) in the validation set. 
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Figure C. 3 Plot of observed logkO3 vs. predicted logkO3 calculated by MLR model. 

 

Figure C. 4 Plot of observed logkO3 vs. predicted logkO3 calculated by PLS model. 
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Figure C. 5 Loading plot of the principal components extracted for PCR model (a) PC1 vs. PC2, (b) 

PC2 vs. PC3. 
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Figure C. 6 Score plot of the principal components extracted for PCR model (a) PC1 vs. PC2, (b) 

PC2 vs. PC3. 
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Figure C. 7 Plot of observed logkO3 vs. predicted logkO3 calculated by PCR model. 
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Figure C. 8 The processes of applying the model to predict kO3 of a new compound. 
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Appendix D QSPR Modeling of Hydroxyl Radical Rate Constants 

Using Selected Micropollutants and Molecular Descriptors 

Introduction 

Twenty-two micropollutants with diverse structures were selected as representative 

compounds from a compound pool of 182 micropollutants using a systematic statistical approach 

(principal component analysis followed by D-optimal onion design), and 12 molecular descriptors 

were identified to describe the structural features related to the reactivity in ozonation and 

advanced oxidation processes. The selected micropollutants and descriptors can be used to 

develop QSPR models because the selection is based on linking the compound properties to 

oxidation reaction (details shown in Chapter 3). The rate constants of these selected 

micropollutants in the reaction with ozone (kO3) and hydroxyl radical (kOH) were then 

experimentally determined at neutral pH (Chapter 4). QSPR models for kO3 were successfully 

developed using a piecewise linear regression – linear discrimination analysis (PLR-LDA) 

approach using the experimental data of the selected micropollutants, and then externally 

validated with a validation set including micropollutants collected from the literature (Chapter 5). 

Following the above studies, the objective of this study is to develop QSPR models for predicting 

kOH using the selected micropollutants and molecular descriptors.  

 

Materials and Methods 

Data set 

The training set included the selected 22 micropollutants and their kOH values which were 

experimentally determined previously (Chapter 4). However because of the unavailability of the 

instrument, kOH values of two micropollutants, tris(2-butoxyethyl) phosphate and tris(2-

chloroethyl) phosphate, were not determined. Instead, reliable literature data (Watts and Linden 

2009) were used for these two micropollutants. A validation set including 33 micropollutants 

(literature data) was used to validate the QSPR model externally (Table D.1).    

The selected 12 molecular descriptors were calculated using various software packages 

(details shown in Chapter 5). Before modeling, the rate constants kOH were converted to log scale, 

number of functional groups counts were converted to categorical variables with “1” representing 

presence, and “0” representing the absence of the functional group. Molecular weight (MW), 

average molecular weight (AMW), and diffusivity (Df) were converted to log scale. 
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Table D.1 Data set used for QSPR modeling.   

Micropollutant nDB nArOH Ui LUMO 
1
 logkOH 

2 
logkOH Reference 

Training Set 

17α-Ethinylestradiol 0 1 3 0.402 9.69 9.86 Chapter 4 

Benzo[a]pyrene 0 0 4.644 -1.111 8.97 9.15 Chapter 4 

Butylated hydroxyanisole 0 1 2.807 0.346 9.87 9.77 Chapter 4 

Butylbenzyl phthalate 1 0 3.907 -0.517 9.6 9.84 Chapter 4 

Clofibric acid 1 0 3 -0.126 9.72 9.80 Chapter 4 

Di(2-ethylhexyl) 

phthalate 

1 0 3.17 -0.102 8.53 NA Chapter 4 

Dicamba 1 0 3 -0.671 9.54 9.48 Chapter 4 

Dicofol 0 0 3.7 -0.561 9.57 9.18 Chapter 4 

Equilenin 1 1 3.7 -0.421 10.23 10.17 Chapter 4 

Fenoterol 0 1 3.7 0.0913 9.59 9.89 Chapter 4 

Gemfibrozil 1 0 3 0.297 9.85 10.04 Chapter 4 

Hexachlorobenzene 0 0 2.807 -1.041 8.38 8.64 Chapter 4 

Iomeprol 1 0 3.322 -1.259 9.4 9.24 Chapter 4 

Methicillin 1 0 3.322 -0.173 10 9.87 Chapter 4 

Methoxychlor 0 0 3.7 -0.222 9.59 9.38 Chapter 4 

Phenol 0 1 2.807 0.398 9.79 9.80 Chapter 4 

Pyrene 0 0 4.322 -0.889 9.15 9.18 Chapter 4 

Tris(2-butoxyethyl) 

phosphate 

1 0 1 0.434 10.01 9.52 Watts and Linden,  

2009 

Tris(2-chloroethyl)  

phosphate 

1 0 1 -0.101 8.75 9.21 Watts and Linden,  

2009 

Tetracycline 1 1 3.585 -0.956 9.91 9.83 Chapter 4 

Triclosan 0 1 3.7 -0.540 9.78 9.53 Chapter 4 

Trifluralin 1 0 3.459 -1.530 9.11 9.12 Chapter 4 

Validation Set 

17β-Estradiol 0 1 2.807 0.397 10.15 9.80 Rosenfeldt and  

Linden, 2004 

Acetochlor 1 0 3 0.214 9.80 9.99 Benner et al., 2008 

Amoxicillin 1 1 3.322 -0.0940 9.84 10.25 Song et al., 2008b 

Atenolol 1 0 3 0.0786 9.85 9.91 Song et al., 2008a 

Atrazine 0 0 2.807 0.0452 9.50 9.26 Cooper et al., 2010 

Bezafibrate 1 0 3.907 -0.420 9.90 9.90 Razavi et al., 2009 

Bisphenol A 0 1 3.7 0.397 9.84 10.07 Peller et al., 2009 

Carbamazepine 1 0 3.907 -0.458 9.94 9.88 Huber et al., 2003 

Chlortetracycline 1 1 3.585 -0.950 9.72 9.83 Cooper et al., 2010 

Ciprofloxacin 1 0 3.322 -0.669 9.61 9.58 Dodd et al., 2006 

DEET 1 0 3 -0.0684 9.69 9.83 Song et al., 2009 

Diazepam 1 0 3.907 -0.605 9.86 9.79 Huber et al., 2003 
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Diuron 1 0 3 -0.0743 9.87 9.83 Elovitz et al., 2008 

Doxycycline 1 1 3.585 -0.825 9.88 9.90 Cooper et al., 2010 

Enrofloxacin 1 0 3.322 -0.657 9.90 9.59 Santoke et al., 2009 

Gamma-HCH 0 0 0 -0.150 8.76 8.31 Haag and Yao 1992 

Ibuprofen 1 0 3 -0.0975 9.78 9.81 Cooper et al., 2010 

Iopamidol 1 0 3.322 -1.575 9.53 9.05 Cooper et al., 2010 

Levofloxacin 1 0 3.322 -0.750 9.88 9.53 Santoke et al., 2009 

Lincomycin 1 0 1 0.484 9.93 9.55 Dodd et al., 2006 

Lomefloxacin 1 0 3.322 -0.858 9.91 9.47 Santoke et al., 2009 

Metolachlor 1 0 3 0.127 9.83 9.94 Benner et al., 2008 

Metoprolol 0 0 2.807 0.413 9.86 9.48 Song et al., 2008a 

Naproxen 1 0 3.7 -0.402 9.88 9.85 Cooper et al., 2010 

Norfloxacin 1 0 3.322 -0.667 9.82 9.58 Santoke et al., 2009 

Oxytetracycline 1 1 3.585 -0.845 9.75 9.89 Cooper et al., 2010 

Penicillin G 1 0 3.322 -0.067 9.90 9.93 Song et al., 2008b 

Propranolol 0 0 3.585 -0.306 10.03 9.29 Song et al., 2008a 

Sulfamerazine 1 0 3.907 -0.479 9.89 9.86 Mezyk et al., 2007 

Sulfamethazine 1 0 3.907 -0.443 9.92 9.88 Mezyk et al., 2007 

Sulfamethizole 1 0 3.807 -0.737 9.90 9.68 Mezyk et al., 2007 

Sulfamethoxazole 1 0 3.807 -0.475 9.93 9.84 Mezyk et al., 2007 

Trimethoprim 0 0 3.7 -0.007 9.92 9.50 Cooper et al., 2010 
1
 measured logkOH values from Chapter 4 or collected from literature; 

2 
predicted logkOH values 

using Equation D.5 (Model 3)  

 

Modeling Method 

Multiple linear regression (MLR) is often used in QSPR to identify a linear relationship 

between a property to be predicted and a set of molecular descriptors. However, when some of 

the assumptions are invalid (e.g., occurrence of outliers, non-normality, multicollinearity), the 

ordinary least-square estimation can perform poorly (Ho and Naugher 2000). It is very common 

in data analysis and statistical modeling applications that a small proportion of observations are 

far from the rest of the data. Such data or even a single outlier can distort the regression results by 

pulling the least square fit too much in their direction thereby impacting the regression 

coefficients, and limiting our ability to understand the data.  

Alternatively, robust regression works with less restrictive assumptions and provides much 

better regression coefficient estimates when outliers are present in the data. The robust regression 

techniques fit a model that describes the information in the majority of the data (Hample et al., 

1986). It can be used to detect outliers and to provide reliable results in the presence of outliers. 
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One of the most common general methods of robust regression is M-estimation introduced by 

Huber (1964).  

The performance of the models are evaluated by R
2
,     

 , Q
2
,      

 , RMSE, and RMSEP 

(details shown in Chapter 5 and 6).The data analysis and modeling were carried out using the 

software NCSS 2007 (NCSS, Kaysville, Utah, US). The dependent variable, the rate constant for 

reaction with the hydroxyl radical (kOH), was transformed to its logarithm (logkOH). The discrete 

independent variables, such as the functional groups counts, and atom-centered fragments were 

converted to categorical variable with two categories (“0” represents absence and “1” represents 

presence).   

 

Applicability Domain and Outlier Identification 

The applicability domain is the chemical space defined by the properties of the training set. 

Predictions for new compounds falling within this space are expected to be reliable. One of the 

commonly used methods to determine the applicability domain of a QSPR model is to determine 

the leverage of each compound. Leverage indicates the compound’s distance from the centroid of 

X (where X is the descriptor matrix):  

   i
TT

ii xXXxh
1

                                                             (D.1) 

Where xi is the descriptor vector of the considered compound and X is the descriptor matrix 

derived from the training set descriptor values. The warning leverage (h*) is defined as: 

nph /3* 
                                                                (D.2) 

Where n is the number of training set compounds, and p is the number of descriptors in the 

model plus one. The leverage values are then plotted against standardized residuals for each 

compound, i.e. Williams plot. The applicability domain is established by a squared area within ±

3 standard deviations and a leverage threshold h*. Thus, compounds with standardized residuals > 

3 standard deviation units and hi > leverage threshold h* are considered as outliers. However, a 

high leverage training set compound with small residual is not necessarily an outlier, even though 

it has been excluded from the applicability domain (Gramatica et al., 2004). 

 

Results and Discussion 
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Multiple linear regression (forward) was used to analyze the data set. As a result, three 

molecular descriptors, LUMO energy (LUMO), number of double bonds (nDB), and number of 

phenolic group (nArOH) were found to be significant, as shown in Equation D.3 (Model 1).  

nDBnArOHLUMOkOH  315.0515.0239.0255.9log                 (D.3) 

ntraining = 22, R
2
 = 0.397,     

  = 0.297, Q
2
 = 0.174, F(3,18) = 3.951 (p = 0.025), RMSE = 0.372.   

However, a very low     
  value (0.297) indicated a very poor model fit, and a low Q

2
 value 

(0.174) indicating that the model was over-fitted and not robust. In addition, compounds 

hexachlorobenzene (HCB), tris(2-chloroethyl) phosphate (TCEP), and di(2-ethylhexyl) phthalate 

(DEHP) were far from the regression line indicating the presence of potential outliers (Figure 

D.1). In such situation, robust regression can be used to improve the estimation.  

 

Figure D.1 The predicted logkOH vs. the observed logkOH for Model 1.  

As a result of the robust regression, an additional descriptor (unsaturation index, Ui) was 

found to be significant, and the     
  was increased from 0.297 to 0.584, and RMSE decreased 

from 0.372 to 0.351, as shown in Equation D.4 (Model 2).  

UinDBnArOHLUMOkOH  303.0535.0394.0518.0333.8log       (D.4) 

ntraining = 22, R
2
 = 0.664,     

  = 0.585, Q
2
 = 0.081, F (4,17) = 8.403 (p = 0.0006), RMSE = 0.351  
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However, the cross-validated Q
2
 value of this model was very low (0.081) indicating the very 

low robustness of the model (i.e., the model was very much over-fitted as the random error was 

largely modeled instead of the real variation). In addition, the compound DEHP was still located 

far from the regression line in the plot of predicted logkOH against measured logkOH (as shown in 

Figure D.2), however, the prediction of HCB and TCEP was improved mainly because of the 

additional descriptor Ui. Overall, robust MLR was able to improve the model fit, but provide little 

help in improving the predictive power of the model.   

 

Figure D. 2 The predicted logkOH vs. the observed logkOH for the robust MLR model (Model 2). 

 

Next, the leverage approach (i.e., Williams plot) was used to establish the applicability 

domain and identify the outliers. As a result, the leverage of all the compounds was less than the 

warning leverage h* indicating that no compound is structurally anomalous among the training 

set. DEHP was identified as an outlier (Figure D.3) because of the large prediction error (> 3 

standard deviation). The errors associated with TCEP and HCB were less than 3 units of standard 

deviation and therefore these two compounds were not considered outliers.  
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Figure D.3 The William plot for the MLR model D.1. 

 

After removing the outlier compound DEHP, an MLR analysis was conducted on the 

remaining 21 compounds, as shown in Equation D.5 (Model 3). Similarly, four descriptors were 

found to be significant. Compared with Model 1 (with outlier), the     
  of the model was 

increased from 0.297 to 0.702, the cross-validated Q
2
 value was increased from 0.174 to 0.446, 

and the prediction error RMSE decreased from 0.372 to 0.230. When compared to Model 2 

(robust MLR model), Model 3 is also considered better because of higher     
 , higher Q

2
, and 

lower RMSE. However, the Q
2
 value is still lower than 0.5 which is considered an acceptable 

level (Fan et al., 2001) although some disagree (Golbraikh and Tropsha 2002b). 

UinDBnArOHLUMOkOH  299.0574.0335.0578.0398.8log     (D.5) 

ntraining = 21, R
2
 = 0.731,     

  = 0.663, Q
2
 = 0.440, F (4,16) = 10.85 (p = 0.0002), RMSE = 0.229 

nvalidation = 33,      
  = 0.368, RMSEP = 0.275 
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Figure D. 4 The predicted logkOH vs. the observed logkOH for the MLR Model 3. 

 

Finally Model 3 was then externally validated using 33 compounds (validation set) collected 

from the literature (Table D.1), but the      
  value is quite low (0.368) indicating low predictive 

power of this model (Figure D.4). Overall, QSPR models for kOH prediction were unsatisfactory. 

Especially since the primary purpose of QSPR modeling is to develop predictive models, the 

model developed in this study can hardly be used to predict kOH of new, unknown compounds due 

to the low      
 . Unlike ozone, hydroxyl radicals are relatively non-selective oxidants which 

were indicated by a very small range of kOH values, i.e., the kOH of different micropollutants are 

very close to each other. In such a situation, the random error associated with the rate constant 

can have a large impact over the variation of rate constant. It is likely that the selected 12 

descriptors are not sensitive enough to capture the structural features which related to hydroxyl 

radical reactions. In addition, it is likely that the model was not well trained with such a small 

training set. The model can be improved by increasing the number of compounds and finding 

better molecular descriptors.    

    

Conclusions 
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QSPR models for predicting hydroxyl radical rate constants were developed using 22 selected 

micropollutants and 12 molecular descriptors (details of the selection process were shown in 

Chapter 3).  

Model 1 developed by multiple linear regression showed poor fitting (low R
2
) to the training 

set because of the presence of outliers. Model 2 developed by robust regression showed better 

fitting (higher R
2
) but no improvement in predictivity (lower Q

2
). By removing the outlier DEHP, 

as identified by Williams plot, the best model (Model 3) was obtained (    
  = 0.663) but it was 

still not satisfactory (Q
2
 < 0.5). Furthermore, Model 3 was validated with an external data set 

showing poor predictive power (     
  = 0.368). In conclusion, additional compounds and better 

molecular descriptors are needed to improve the QSPR model for kOH prediction.  
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Appendix E Supplementary Material for Chapter 7  

Table E.1 Data set collected from literature and the calculation of ozone exposure.  

# Compound kO3 (M
-1

 s
-1

) kOH (M
-1

 s
-1

) %Removal Rct O3 dose (M) t (min) k (s
-1

) O3 exposure (Ms) 

1 2,6-Nonadienal
 a
 8.7×10

5
 8.95×10

9
 98 5×10

-8
    4×10

-3 #
 

2 1-Penten-3-one 
a
 5.9×10

4
 4.71×10

9
 98 5×10

-8
    4×10

-3 #
 

3 Belta-cyclocitral 
a
 3.9×10

3
 7.42×10

9
 98 5×10

-8
    4×10

-3 #
 

4 Isoproturon  
b
 2.2×10

3
 7.90×10

9
 87 2.6×10

-7
 3.0×10

-5
 10 6.1×10

-2
 4.9×10

-4 
* 

5 Chlortoluron 
b
 403.6 6.90×10

9
 70 2.6×10

-7
 3.0×10

-5
 10 6.1×10

-2
 4.9×10

-4 
* 

6 
2-Isopropyl-3- 

methoxypyrazine 
a
 

50.2 4.91×10
9
 76 5×10

-8
    4×10

-3 #
 

7 Diuron 
b
 16.6 6.60×10

9
 58 2.6×10

-7
 3.0×10

-5
 10 6.1×10

-2
 4.9×10

-4 
* 

8 Atrazine 
c
 6 3×10

9
 61 1.5×10

-8
 4.2×10

-5
 30 2.2×10

-3
 1.9×10

-2 
* 

9 Butachlor 
d
 5.32 7.40×10

9
 67 1.9×10

-8
 4.2×10

-5
 20 6.1×10

-3
 6.9×10

-3 
* 

10 Acetochlor 
d
 2.39 6.30×10

9
 60 1.9×10

-8
 4.2×10

-5
 20 6.1×10

-3
 6.9×10

-3 
* 

11 Linuron 
b
 1.8 5.90×10

9
 50 2.6×10

-7
 3.0×10

-5
 10 6.1×10

-2
 4.9×10

-4 
* 

12 Propachlor 
d
 1.24 4.60×10

9
 45 1.9×10

-8
 4.2×10

-5
 20 6.1×10

-3
 6.9×10

-3 
* 

13 2-Methylisoborneol 
a
 0.35 5.09×10

9
 59 5×10

-8
    4×10

-3 #
 

14 MTBE 
e
 0.14 1.90×10

9
 33 4×10

-9
 4.2×10

-5
 10 7.7×10

-4
 2.0×10

-2 
* 

15 Geosmin 
a
 0.1 7.80×10

9
 35 2×10

-8
    4×10

-3 #
 

16 2,4,6-Tribromoanisole 
a
 0.02 3.74×10

9
 60 5×10

-8
    4×10

-3 #
 

Reference and water sampling location: 
a 
Peter and von Gunten 2007, Lake Zurich, Swiss; 

b 
Benitez et al., 2007, reservoir “Peña del Aguila”, 

Spain; 
c 
Acero et al., 2000, River Seine, France; 

d 
Acero et al., 2003, Zujar and Orellana reservoirs, Spain; 

e 
Acero et al., 2001, Lake Murten, 

Swiss. t is the contact time (min) and k is the ozone decay rate constant (s
-1

), 
#
 Ozone exposure (integration of the ozone residual concentration 

over time) values were reported, * ozone exposure values were calculated by Equation 7.7. 

 



202 

References 

Acero, J. L., Benitez, F. J., Real, F. J., Maya, C. (2003) Oxidation of acetamide herbicides in natural 

waters by ozone and by the combination of ozone/hydrogen peroxide: Kinetics study and process 

modeling. Ind. Eng. Chem. Res. 42, 5762-5769. 

Acero, J. L., Stemmler, K., von Gunten, U. (2000) Degradation kinetics of atrazine and its 

degradation products with ozone and OH radicals: A predictive tool for drinking water treatment. 

Environ. Sci. Technol. 34, 591-597. 

Acero, J. L., von Gunten, U. (2001) Characterization of oxidation processes: Ozonation and the AOP 

O3/H2O2. J. Am. Water Works Assoc. 93, 90-100. 

Adams, C., Wang, Y., Loftin, K., Meyer, M. (2002) Removal of antibiotics from surface and distilled 

water in conventional water treatment processes. J. Environ. Eng. ASCE 128(3), 253-260.  

Andersen, C. M. and Bro, R. (2010) Variable selection in regression-a tutorial. J. Chemometr. 24(11-

12), 728-737.  

Andersson, P. M., Sjostrom, M., Wold, S., Lundstedt, T. (2000) Comparison between 

physicochemical and calculated molecular descriptors. J. Chemometr. 14(5-6), 629-642.  

Andreozzi, R., Raffaele, M., Nicklas, P. (2003) Pharmaceuticals in STP effluents and their solar 

photodegradation in aquatic environment. Chemosphere. 50, 1319-1330.  

Andreozzi, R., Caprio, V., Ciniglia, C., de Champdore, M., Lo Giudice, R., Marotta, R., Zuccato, E. 

(2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary 

assessment on algal toxicity of amoxicillin. Environ. Sci. Technol. 38, 6832-6838.  

Andre, C. D. S., Narula, S. C., Elian, S. N., Tavares, R. A. (2003) An overview of the variables 

selection methods for the minimum sum of absolute errors regression. Stat. Med. 22(13), 2101-

2111.  

Andresen, J. and Bester, K. (2006) Elimination of organophosphate ester flame retardants and 

plasticizers in drinking water purification. Water Res. 40(3), 621-629.  

Atkinson, R. (2000) Atmospheric oxidation. In Boethling, R. S., Mackay, D., eds, Handbook of 

Property Estimation Methods for Chemicals. Environmental and Health Sciences. CRC, Boca 

Raton, FL, USA.  



 

203 

 

Atkinson, R. (1988) Estimation of gas-phase hydroxyl radical rate constants for organic-chemicals. 

Environ. Toxicol. Chem. 7(6), 435-442.  

Atkinson, R. (1987) A structure-activity relationship for the estimation of rate constants for the gas-

phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 19(9), 799-828.  

Bader, H. and Hoigné, J. (1981) Determination of ozone in water by the indigo method. Water Res. 

15(4), 449-456.  

Batt, A.L., Aga, D.S. (2005) Simultaneous analysis of multiple classes of antibiotics by ion trap 

LC/MS. Anal. Chem. 77, 2940-2947.  

Bellona, C., Drewes, J. E., Xu, P., Amy, G. (2004) Factors affecting the rejection of organic solutes 

during NF/RO treatment - a literature review. Water Res. 38(12), 2795-2809.  

Benitez, F. J., Acero, J. L., Real, F. J., Roldan, G. (2009) Ozonation of pharmaceutical compounds: 

rate constants and elimination in various water matrices. Chemosphere 77, 53-59.  

Benitez, F. J., Beltran-Heredia, J., Gonzalez, T. (1994) Degradation by ozone and UV-radiation of the 

herbicide cyanazine. Ozone-Sci. Eng. 16, 213-234. 

Benitez, F. J., Real, F. J., Acero, J. L., Garcia, C. (2007) Kinetics of the transformation of phenyl-urea 

herbicides during ozonation of natural waters: Rate constants and model predictions. Water Res. 

41(18), 4073-4084.  

Benner, J., Salhi, E., Ternes, T., von Gunten, U. (2008) Ozonation of reverse osmosis concentrate: 

Kinetics and efficiency of beta blocker oxidation. Water Res. 42(12), 3003-3012.  

Benner, J., Ternes, T. A. (2009) Ozonation of metoprolol: elucidation of oxidation pathways and 

major oxidation products. Environ. Sci. Technol. 43(14), 5472-5480.  

Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., Snyder, S. A. (2009) 

Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. 

Technol. 43(3), 597-603.  

Bolton, J. and Linden, K. (2003) Standardization of methods for fluence (UV dose) determination in 

bench-scale UV experiments. J. Environ. Eng. -ASCE 129(3), 209-215.  



 

204 

 

Box, G. E. P. and Draper, N. R. (1987) Empirical Model-Building and Response Surfaces. Wiley, 

New York.  

Brasquet, C., Subrenat, E., LeCloirec, P. (1997) Selective adsorption on fibrous activated carbon of 

organics from aqueous solution: Correlation between adsorption and molecular structure. Water 

Sci. Technol. 35(7), 251-259. 

Brossa, L., Marce, R.A., Borrull, F., Pocurull, E. (2005) Occurrence of twenty-six endocrine-

disrupting compounds in environmental water samples from Catalonia, Spain. Environ. Toxicol. 

Chem. 24, 261-267.  

Brown, H. C., Okamoto, Y. (1958) Substituent constants for aromatic substitution. J. Am. Chem. Soc. 

80, 4979. 

Buffle, M. O., Schumacher, J., Salhi, E., Jekel, M., von Gunten, U. (2006) Measurement of the initial 

phase of ozone decomposition in water and wastewater by means of a continuous quench-flow 

system: Application to disinfection and pharmaceutical oxidation. Water Res. 40, 1884-1894. 

Bundy, M. M., Doucette, W. J., McNeill, L., Ericson, J. F. (2007) Removal of pharmaceuticals and 

related compounds by a bench-scale drinking water treatment system. J. Water Supply Res. 

Technol.-AQUA 56(2), 105-115.  

Burden, F. R., Ford, M. G., Whitley, D. C., Winkler, D. A. (2000) Use of automatic relevance 

determination in QSAR studies using Bayesian neural networks. J. Chem. Inf. Comput. Sci. 

40(6), 1423-1430.  

Burden, F. R. and Winkler, D. A. (1999) Robust QSAR models using Bayesian regularized neural 

networks. J. Med. Chem. 42(16), 3183-3187.  

Butkovic, V., Klasinc, L., Orhanovic, M., Turk, J., Gusten, H. (1983) Reaction-rates of polynuclear 

aromatic-hydrocarbons with ozone in water. Environ. Sci. Technol. 17(9), 546-548.  

Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B. (1988) Critical review of rate constants 

for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O
-
) in aqueous 

solution. J. Phys. Chem. Ref. Data 17(2), 513-886.  

Calza, P., Medana, C., Pazzi, M., Baiocchi, C., Pelizzetti, E. (2004) Photocatalytic transformations of 

sulphonamides on titanium dioxide. Appl. Catal. B-Environ. 53, 63-69.  



 

205 

 

Canonica, S. and Tratnyek, P. G. (2003) Quantitative structure-activity relationships for oxidation 

reactions of organic chemicals in water. Environ. Toxicol. Chem. 22(8), 1743-1754.  

Cao, Y., Jiang, T., Girke, T. (2008) A maximum common substructure-based algorithm for searching 

and predicting drug-like compounds. Bioinformatics 24, 366-374. 

Castegnaro, M., DeMeo, M., Laget, M., Michelon, J., Garren, L., Sportouch, M. H., Hansel, S. (1997) 

Chemical degradation of wastes of antineoplastic agents. 2. Six anthracyclines: idarubicin, 

doxorubicin, epirubicin, pirarubicin, aclarubicin, and daunorubicin. Int. Arch. Occup. Environ. 

Health. 70, 378-384.  

Cheme-Ayala, P., El-Din, M. G., Smith, D. W. (2010) Kinetics and mechanism of the degradation of 

two pesticides in aqueous solutions by ozonation. Chemosphere 78, 557-562.  

Cleuvers, M. (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, 

and acetylsalicylic acid. Ecotoxicol. Environ. Saf. 59(3), 309-315.  

Colborn, T., vom Saal, F. S., Soto, A. M. (1993) Development effects of endocrine-disrupting 

chemicals in wildlife and humans. Environ. Health Perspect. 101, 378-384.  

Cokgor, E. U., Alaton, I. A., Karahan, O., Dogruel, S., Orhon, D. (2004) Biological treatability of raw 

and ozonated penicillin formulation effluent. J. Hazard. Mater. 116, 159-166.  

Comerton, A. M., Andrews, R. C., Bagley, D. M., Hao, C. (2008) The rejection of endocrine 

disrupting and pharmaceutically active compounds by NF and RO membranes as a function of 

compound, a water matrix properties. J. Membr. Sci. 313(1-2), 323-335.  

Cooper, W. J., Snyder, S. A., Mezyk, S. P., Peller, J. R., Nickelsen, M. G. (2010) Reaction rates and 

mechanisms of advanced oxidation processes for water reuse. WateReuse Foundation Project 

Number: WRF-04-017. WateReuse Foundation, Alexandria, VA, USA.  

Crittenden, J. C., Sanongraj, S., Bulloch, J. L., Hand, D. W., Rogers, T. N., Speth, T. F., Ulmer, M. 

(1999) Correlation of aqueous-phase adsorption isotherms. Environ. Sci. Technol. 33(17), 2926-

2933.  

Cronin, M., Walker, J. D., Jaworska, J. S., Comber, M., Watts, C., Worth, A. P. (2003) Use of 

(Q)SARs in international decision-making frameworks to predict ecological effects and 

environmental fate of chemical substances. Environ. Health Perspect. 111, 1376-1390.  



 

206 

 

Cronin, M. T. D. and Schultz, T. W. (2003) Pitfalls in QSAR. J. Mol. Struc. Theochem 622(1-2), 39-

51.  

Crosina, Q., Peldszus, S., Huck, P. M. (2006) The degradation efficiency of select PPCPs using UV 

and UV/H2O2 - degradation kinetics and application to pretreated water. Proceedings of the 

AWWA Water Quality Technology Conference and Exposition (WQTC). Denver, Colorado, 

USA. 

Daughton, C. G., Ternes, T. A. (1999) Pharmaceuticals and personal care products in the 

environment: Agents of subtle change? Environ. Health Perspect. 107, 907-938.  

De Aguiar, P. F., Bourguignon, B., Khots, M. S., Massart, D. L., PhanThanLuu, R. (1995) D-optimal 

designs. Chemometr. Intellig. Lab. Syst. 30(2), 199-210.  

Deborde, M., Rabouan, S., Duguet, J. P., Legube, B. (2005) Kinetics of aqueous ozone-induced 

oxidation of some endocrine disruptors. Environ. Sci. Technol. 39(16), 6086-6092.  

Dodd, M. C., Buffle, M. O., von Gunten, U. (2006) Oxidation of antibacterial molecules by aqueous 

ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment. 

Environ. Sci. Technol. 40(6), 1969-1977.  

Dunn, W. J. (1989) Quantitative structure-activity relationships (QSAR). Chemometr. Intell. Lab. 

6(3), 181-190.  

Dutot, A. L., Rude, J., Aumont, B. (2003) Neural network method to estimate the aqueous rate 

constants for the OH reactions with organic compounds. Atmos. Environ. 37(2), 269-276.  

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E. (2005). Standard methods for the 

examination of water and wastewater. 21st Edition. American Public Health Association. U.S.  

Einschlag, F. S. G., Carlos, L., Capparelli, A. L. (2003) Competition kinetics using the UV/H2O2 

process: a structure reactivity correlation for the rate constants of hydroxyl radicals toward 

nitroaromatic compounds. Chemosphere 53(1), 1-7.  

Elovitz, M. S., Shemer, H., Peller, J. R., Vinodgopal, K., Sivaganesan, M., Linden, K. G. (2008) 

Hydroxyl radical rate constants: comparing UV/H2O2 and pulse radiolysis for environmental 

pollutants. J. Water Supply Res. T. 57(6), 391-401.  



 

207 

 

Elovitz, M. S. and von Gunten, U. (1999) Hydroxyl radical ozone ratios during ozonation processes. I 

The Rct concept. Ozone-Sci. Eng. 21(3), 239-260.  

Elovitz, M. S., von Gunten, U., Kaiser, H. P. (2000) Hydroxyl radical/ozone ratios during ozonation 

processes. II. The effect of temperature, pH, alkalinity and DOM properties. Ozone Sci. Eng. 22, 

123-150. 

Eriksson, L., Andersson, P. L., Johansson, E., Tysklind, M. (2006) Megavariate analysis of 

environmental QSAR data. Part I - A basic framework founded on principal component analysis 

(PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Divers. 10(2), 

169-186.  

Eriksson, L., Arnhold, T., Beck, B., Fox, T., Johansson, E., Kriegl, J. M. (2004) Onion design and its 

application to a pharmaceutical QSAR problem. J. Chemometr. 18(3-4), 188-202.  

Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., Gramatica, P. (2003) 

Methods for reliability and uncertainty assessment and for applicability evaluations of 

classification- and regression-based QSARs. Environ. Health Perspect. 111(10), 1361-1375.  

Eriksson, L. and Johansson, E. (1996) Multivariate design and modeling in QSAR. Chemometr. 

Intellig. Lab. Syst. 34(1), 1-19.  

Fan, Y.; Shi, L. M.; Kohn, K. W.; Pommier, Y.; Weinstein, J. N. (2001) Quantitative structure-

antitumor activity relationships of camptothecin analogues: Cluster analysis and genetic 

algorithm-based studies. J. Med. Chem. 44, 3254-3263.  

Fent, K., Weston, A. A., Caminada, D. (2006) Ecotoxicology of human pharmaceuticals. Aquat. 

Toxicol. 76(2), 122-159.  

Gnielinski, V. (1978) Gleichungen zur Berechnung des Warme und Stoffaustausches in 

durchstromten ruhenden Kugelschuttungen bei mittleren und grossen Pecletzahlen. Verf. Tech, 

12, 363-366.  

Gramatica, P. (2007) Minireview: Principles of QSAR models validation: Internal and external. 

QSAR Comb. Sci. 26, 694-701. 



 

208 

 

Gramatica, P., Pilutti, P., Papa, E. (2004) Validated QSAR prediction of OH tropospheric degradation 

of VOCs: Splitting into training-test sets and consensus modeling. J. Chem. Inf. Comp. Sci. 44, 

1794-1802. 

Gramtica, P., Papa, E. (2005) An update of the BCF QSAR model based on theoretical molecular 

descriptors. QSAR Comb. Sci. 24, 953-960. 

Gramatica, P., Pilutti, P., Papa, E. (2003) QSAR prediction of ozone tropospheric degradation. QSAR 

Comb. Sci. 22(3), 364-373.  

Golbraikh, A., Shen, M., Xiao, Z. Y., Xiao, Y. D., Lee, K. H., Tropsha, A. (2003) Rational selection 

of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. 

Des. 17(2), 241-253.  

Golbraikh, A. and Tropsha, A. (2002a) Predictive QSAR modeling based on diversity sampling of 

experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des. 16(5-6), 

357-369.  

Golbraikh, A. and Tropsha, A. (2002b) Beware of q
2
! J. Mol. Graph. Model. 20(4), 269-276.  

Grover, R., Waite, D. T., Cessna, A. J., Nicholaichuk, W., Irvin, D. G., Kerr, L. A., Best, K. (1997) 

Magnitude and persistence of herbicide residues in farm dugouts and ponds in the Canadian 

prairies. Environ. Toxicol. Chem. 16, 638-643.  

Guha, R. and Jurs, P. C. (2005) Determining the validity of a QSAR model - A classification 

approach. J. Chem. Inf. Model. 45(1), 65-73.  

Gurol, M. D. and Nekouinaini, S. (1984) Kinetic-behavior of ozone in aqueous-solutions of 

substituted phenols. Ind. Eng. Chem. Fund. 23(1), 54-60.  

Haag, W. R. and Yao, C. C. D. (1992) Rate constants for reaction of hydroxyl radicals with several 

drinking water contaminants. Environ. Sci. Technol. 26(5), 1005-1013.  

Hammett, L. P. (1937) The effect of structure upon the reactions of organic compounds benzene 

derivatives. J. Am. Chem. Soc. 59, 96-103.  

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (1986) Robust Statistics. The 

Approach based on Influence Functions. John Wiley and Sons, New York. 



 

209 

 

Hansch, C. and Leo, A. (1995) Exploring QSAR: fundamentals and application in chemistry and 

biology. American Chemical Society, Washington, DC.  

Hansch, C. and Gao, H. (1997) Comparative QSAR: Radical reactions of benzene derivatives in 

chemistry and biology. Chem. Rev. 97(8), 2995-3059.  

Hansch, C., Leo, A., Taft, R. W. (1991) A survey of Hammett substituent constants and resonance 

and field parameters. Chem. Rev. 91(2), 165-195.  

Harju, M., Andersson, P. L., Haglund, P., Tysklind, M. (2002) Multivariate physico-chemical 

characterization and quantitative structure-property relationship modeling of polybrominated 

diphenyl ethers. Chemosphere. 47(4), 375-384.  

Hawkins, D. M., Basak, S. C., Mills, D. (2003) Assessing model fit by cross-validation. J. Chem. Inf. 

Comput. Sci. 43(2), 579-586.  

Heberer, T. (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic 

environment: a review of recent research data. Toxicol. Lett. 131(1-2), 5-17.  

Hirsch, R., Ternes, T., Haberer, K., Kratz, K. L. (1999) Occurrence of antibiotics in the aquatic 

environment. Sci. Total Environ. 225, 109-118.  

Ho, K., Naugher, J. (2000) Outlier lie: An illustrative example of identifying outliers and applying 

robust models. Multiple Linear Regression Viewpoints 26(2), 2-6. 

Hoigné, J. and Bader, H. (1983a) Rate constants of reactions of ozone with organic and inorganic-

compounds in water .1. Non-dissociating organic-compounds. Water Res. 17(2), 173-183.  

Hoigné, J. and Bader, H. (1983b) Rate constants of reactions of ozone with organic and inorganic-

compounds in water .2. Dissociating organic-compounds. Water Res. 17(2), 185-194.  

Hu, J. Y., Morita, T., Magara, Y., Aizawa, T. (2000) Evaluation of reactivity of pesticides with ozone 

in water using the energies of frontier molecular orbitals. Water Res. 34(8), 2215-2222.  

Huber, M. M., Canonica, S., Park, G. Y., von Gunten, U. (2003) Oxidation of pharmaceuticals during 

ozonation and advanced oxidation processes. Environ. Sci. Technol. 37(5), 1016-1024.  

Huber, P. J. (1964) Robust Estimation of a Location Parameter. Annals of Mathematical Statistics 35, 

73-101. 



 

210 

 

Huber, M. M., Gobel, A., Joss, A., Hermann, N., Loffler, D., Mcardell, C. S., Ried, A., Siegrist, H., 

Ternes, T. A., von Gunten, U. (2005) Oxidation of pharmaceuticals during ozonation of 

municipal wastewater effluents: A pilot study. Environ. Sci. Technol. 39(11), 4290-4299.  

Huerta-Fontela, M., Galceran, M. T., Ventura, F. (2011) Occurrence and removal of pharmaceuticals 

and hormones through drinking water treatment. Water Res. 45, 1432-1442.  

Ikehata, K., Naghashkar, N. J., Ei-Din, M. G. (2006) Degradation of aqueous pharmaceuticals by 

ozonation and advanced oxidation processes: A review. Ozone-Sci. Eng. 28(6), 353-414.  

Ikehata, K. and El-Din, M. G. (2005) Aqueous pesticide degradation by ozonation and ozone-based 

advanced oxidation processes: A review (Part I). Ozone-Sci. Eng. 27(2), 83-114.  

Jackson, J. E. (1991) A Users Guide to Principal Components. John Wiley & Sons, Inc., New York,  

Jaworska, J., Nikolova-Jeliazkova, N., Aldenberg, T. (2005) QSAR applicability domain estimation 

by projection of the training set in descriptor space: A review. ATLA Altern. Lab. Anim. 33(5), 

445-459.  

Jiang, J. L., Yue, X. A., Chen, Q. F., Gao, Z. (2010) Determination of ozonation reaction rate 

constants of aromatic pollutants and QSAR study. Bull. Environ. Contam. Toxicol 85, 568-572.  

Jin, X., Peldszus, S., Huck, P. M. (2009) Optimized selection strategy to identify representative 

emerging contaminants for removal studies involving oxidation processes. Proceedings of the 

AWWA Water Quality Technology Conference and Exposition (WQTC), Seattle, Washington, 

USA.Karelson, M., Lobanov, V. S., Katritzky, A. R. (1996) Quantum-chemical descriptors in 

QSAR/QSPR studies. Chem. Rev. 96(3), 1027-1043.  

Jin, X. and Peldszus, S. (2012) Selection of representative emerging micropollutants for drinking 

water treatment studies: A systematic approach. Sci. Total Environ. 414(1), 653-663. 

Joback, K. G., Reid, R. C. (1987) Estimation of pure-component properties from group-contributions. 

Chem. Eng. Commun. 57, 233-243.  

Kim, T., Drewes, J. E., Summers, R. S., Amy, G. (2007) Solute transport model for trace organic 

neutral and charged compounds through nanofiltration and reverse osmosis membranes. Water 

Res. 41(17), 3977-3988.  



 

211 

 

Kitti, A., Harju, M., Tysklind, M., van Bavel, B. (2003) Multivariate characterization of polycyclic 

aromatic hydrocarbons using semi-empirical molecule orbital calculations and physical data. 

Chemosphere 50(5), 627-637.  

Klassen, N. V., Marchington, D., Mcgowan, H. C. E. (1994) H2O2 determination by the I3- method 

and by KMnO4 titration. Anal. Chem. 66(18), 2921-2925.  

Knekta, E., Andersson, P. L., Johansson, M., Tysklind, M. (2004) An overview of OSPAR priority 

compounds and selection of a representative training set. Chemosphere 57(10), 1495-1503.  

Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., Buxton, H. 

T. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 

1999-2000: A national reconnaissance. Environ. Sci. Technol. 36(6), 1202-1211.  

Kusic, H., Rasulev, B., Leszczynska, D., Leszczynski, J., Koprivanac, N. (2009) Prediction of rate 

constants for radical degradation of aromatic pollutants in water matrix: A QSAR study. 

Chemosphere 75(8), 1128-1134.  

Kwok, E. S. C. and Atkinson, R. (1995) Estimation of hydroxyl radical reaction rate constants for 

gas-phase organic compounds using a structure reactivity relationship - an update. Atmos. 

Environ. 29(14), 1685-1695.  

Kümmerer, K. (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants 

into wastewater by hospitals in relation to other sources - a review. Chemosphere 45(6-7), 957-

969.  

Leardi, R., Boggia, R., Terrile, M. (1992) Genetic algorithms as a strategy for feature-selection. J. 

Chemometr. 6(5), 267-281.  

Lei, H. X. and Snyder, S. A. (2007) 3D QSPR models for the removal of trace organic contaminants 

by ozone and free chlorine. Water Res. 41(18), 4051-4060.  

Leonard, J. T. and Roy, K. (2006) On selection of training and test sets for the development of 

predictive QSAR models. QSAR Comb. Sci. 25(3), 235-251.  

Loos, R., Wollgast, J., Huber, T., Hanke, G. (2007) Polar herbicides, pharmaceutical products, 

perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its 



 

212 

 

carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. 

Anal. Bioanal. Chem. 387(4), 1469-1478.  

Loraine, G. A., Pettigrove, M. E. (2006) Seasonal variations in concentrations of pharmaceuticals and 

personal care products in drinking water and reclaimed wastewater in Southern California. 

Environ. Sci. Technol. 40, 687-695.  

Luehrs, D. C., Hickey, J. P., Nilsen, P. E., Godbole, K. A., Rogers, T. N. (1996) Linear solvation 

energy relationship of the limiting partition coefficient of organic solutes between water and 

activated carbon. Environ. Sci. Technol. 30, 143-152.  

Magnuson, M. L., Speth, T. F. (2005) Quantitative structure - property relationships for enhancing 

predictions of synthetic organic chemical removal from drinking water by granular activated 

carbon. Environ. Sci. Technol. 39(19), 7706-7711.  

Makdissy, G., Peldszus, S., McPhail, R., Huck, P. M. (2007) Towards a mechanistic understanding of 

the impact of fouling on the removal of EDCs/PPCPs by nanofiltration membranes. Proceedings 

to the AWWA Water Quality Technology Conference and Exposition (WQTC). Charlotte, NC, 

USA.   

Matter, H. (1997) Selecting optimally diverse compounds from structure databases: a validation study 

of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 40, 1219-1229. 

Metivier-Pignon, H., Faur, C., Le Cloirec, P. (2007) Adsorption of dyes onto activated carbon cloth: 

Using QSPRs as tools to approach adsorption mechanisms. Chemosphere 66(5), 887-893.  

Mezyk, S. P., Neubauer, T. J., Cooper, W. J., Peller, J. R. (2007) Free-radical-induced oxidative and 

reductive degradation of sulfa drugs in water: Absolute kinetics and efficiencies of hydroxyl 

radical and hydrated electron reactions. J. Phys. Chem. A 111(37), 9019-9024.  

Miao, X. S., Bishay, F., Chen, M., Metcalfe, C. D. (2004) Occurrence of antimicrobials in the final 

effluents of wastewater treatment plants in Canada. Environ. Sci. Technol. 38, 3533-3541.  

Minakata, D., Li, K., Westerhoff, P., Crittenden, J. (2009) Development of a group contribution 

method to predict aqueous phase hydroxyl radical (HO) reaction rate constants. Environ. Sci. 

Technol. 43(16), 6220-6227.  



 

213 

 

Molina, E., Estrada, E., Nodarse, D., Torres, L. A., Gonzalez, H., Uriarte, E. (2008) Quantitative 

structure-antibacterial activity relationship modeling using a combination of piecewise linear 

regression-discriminant analysis (I): Quantum chemical, topographic, and topological descriptors. 

Int. J. Quantum Chem. 108(10), 1856-1871.  

Monod, A. and Doussin, J. F. (2008) Structure-activity relationship for the estimation of OH-

oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, 

organic acids and bases. Atmos. Environ. 42(33), 7611-7622.  

Monod, A., Poulain, L., Grubert, S., Voisin, D., Wortham, H. (2005) Kinetics of OH-initiated 

oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-

activity relationships and atmospheric implications. Atmos. Environ. 39(40), 7667-7688.  

Munoz, F. and von Sonntag, C. (2000) The reactions of ozone with tertiary amines including the 

complexing agents nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) in 

aqueous solution. J. Chem. Soc. Perk. T. 2(10), 2029-2033.  

Nakata, H., Kannan, K., Jones, P. D., Giesy, J. P. (2005) Determination of fluoroquinolone antibiotics 

in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. 

Chemosphere. 58, 759-766.  

Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., Takada, H. (2006) Pharmaceutical chemicals and 

endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge 

treatment. Water Res. 40, 3297-3303.  

Neter, J., Wasserman, W., Kutner, M. H. (1983) Applied Linear Regression Models. Irwin, 

Homewood, IL. 

Netzeva, T.; Worth, A.; Aldenberg, T.; Benigni, R.; Cronin, M.; Gramatica, P.; Jaworska, J.; Kahn, 

S.; Klopman, G.; Marchant, C.; Myatt, G.; Nikolova-Jeliazkova, N.; Patlewicz, G.; Perkins, R.; 

Roberts, D.; Schultz, T.; Stanton, D.; van de Sandt, J.; Tong, W.; Veith, G.; Yang, C. (2005) 

Current status of methods for defining the applicability domain of (quantitative) structure-activity 

relationships - The report and recommendations of ECVAM Workshop 52. ATLA-Altern. Lab. 

Anim. 33, 155-173. 



 

214 

 

Neumann, M. B., Gujer, W., von Gunten, U. (2009) Global sensitivity analysis for model-based 

prediction of oxidative micropollutants transformation during drinking water treatment. Water 

Res. 43, 997-1004. 

NIST (2002) NDRL/NIST solution kinetics database on the web, NIST standard reference database 

40, a compilation of kinetics data on solution-phase reactions. 

http://kinetics.nist.gov/solution/index.php.  

Oberg, T. (2005) A QSAR for the hydroxyl radical reaction rate constant: validation, domain of 

application, and prediction. Atmos. Environ. 39(12), 2189-2200.  

Olsson, I. M., Gottfries, J., Wold, S. (2004) D-optimal onion designs in statistical molecular design. 

Chemometr. Intellig. Lab. Syst. 73(1), 37-46.  

Pablo Pocostales, J., Sein, M. M., Knolle, W., von Sonntag, C., Schmidt, T. C. (2010) Degradation of 

ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide 

(peroxone): The role of ozone consumption by dissolved organic matter. Environ. Sci. Technol. 

44(21), 8248-8253.  

Papa, E., Fick, J., Lindberg, R., Johansson, M., Gramatica, P., Andersson, P. L. (2007) Multivariate 

chemical mapping of antibiotics and identification of structurally representative substances. 

Environ. Sci. Technol. 41(5), 1653-1661.  

Park, J. S., Choi, H., Cho, J. (2004) Kinetic decomposition of ozone and para-chlorobenzoic acid 

(pCBA) during catalytic ozonation. Water Res. 38, 2285-2292. 

Peller, J. R., Mezyk, S. P., Cooper, W. J. (2009) Bisphenol A reactions with hydroxyl radicals: 

Diverse pathways determined between deionized water and tertiary treated wastewater solutions. 

Res. Chem. Intermediat. 35(1), 21-34.  

Pereira, V. J., Weinberg, H. S., Linden, K. G., Singer, P. C. (2007) UV degradation kinetics and 

modeling of pharmaceutical compounds in laboratory grade and surface water via direct and 

indirect photolysis at 254 nm. Environ. Sci. Technol. 41(5), 1682-1688.  

Peres, J. A., Dominguez, J. R., Beltran-Heredia, J. (2010) Reaction of phenolic acids with Fenton-

generated hydroxyl radicals: Hammett correlation. Desalination 252(1-3), 167-171.  



 

215 

 

Peter, A., von Gunten, U. (2007) Oxidation kinetics of selected taste and odor compounds during 

ozonation of drinking water. Environ. Sci. Technol. 41(2), 626-631.  

Razavi, B., Song, W., Cooper, W. J., Greaves, J., Jeong, J. (2009) Free-radical-induced oxidative and 

reductive degradation of fibrate pharmaceuticals: Kinetic studies and degradation mechanisms. J. 

Phy. Chem. A 113(7), 1287-1294.  

Regnery, J. and Puettmann, W. (2010) Occurrence and fate of organophosphorus flame retardants and 

plasticizers in urban and remote surface waters in Germany. Water Res. 44(14), 4097-4104.  

Reid, R. C., Prausnitz, J. M., Sherwood, T. K. (1977) The properties of gases and liquids. McGraw-

Hill Book Company, USA.  

Ren, X., Lee, Y. J., Han, H. J., Kim, I. S. (2008) Effect of tris-(2-chloroethyl)-phosphate (TCEP) at 

environmental concentration on the levels of cell cycle regulatory protein expression in primary 

cultured rabbit renal proximal tubule cells. Chemosphere 74(1), 84-88.  

Rey, R. P., Padron, A. S., Leon, L. G., Pozo, M. M., Baluja, C. (1999) Ozonation of cytostatics in 

water medium. Nitrogen bases. Ozone Sci. Eng. 21, 69-77.  

Roche, P. and Prados, M. (1995) Removal of pesticides by use of ozone or hydrogen peroxide ozone. 

Ozone-Sci. Eng. 17(6), 657-672.  

Rosenfeldt, E. J., Linden, K. G. (2004) Degradation of endocrine disrupting chemicals bisphenol A, 

ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. 

Sci. Technol. 38(20), 5476-5483.  

Rosenfeldt, E. J. and Linden, K. G. (2007) The ROH,UV concept to characterize and the model 

UV/H2O2 process in natural waters. Environ. Sci. Technol. 41(7), 2548-2553.  

Roy, K. and Roy, P. P. (2009) Comparative chemometric modeling of cytochrome 3A4 inhibitory 

activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS 

and ANN techniques. Eur. J. Med. Chem. 44(7), 2913-2922.  

Sanderson, R. T. (1983) Electronegativity and bond energy. J. Am. Chem. Soc. 105(8), 2259-2261. 

Santoke, H., Song, W., Cooper, W. J., Greaves, J., Miller, G. E. (2009) Free-radical-induced 

oxidative and reductive degradation of fluoroquinolone pharmaceuticals: Kinetic studies and 

degradation mechanism. J. Phys. Chem. A. 113(27), 7846-7851.  



 

216 

 

Shemer, H., Sharpless, C. M., Elovitz, M. S., Linden, K. G. (2006) Relative rate constants of 

contaminant candidate list pesticides with hydroxyl radicals. Environ. Sci. Technol. 40(14), 4460-

4466. 

Snyder, S. A. (2008) Occurrence, treatment, and toxicological relevance of EDCs and 

pharmaceuticals in water. Ozone Sci. Eng. 30(1), 65-69.  

Snyder, S. A., Adham, S., Redding, A. M., Cannon, F. S., DeCarolis, J., Oppenheimer, J., Wert, E. C., 

Yoon, Y. (2007) Role of membranes and activated carbon in the removal of endocrine disruptors 

and pharmaceuticals. Desalination 202(1-3), 156-181.  

Song, W., Chen, W., Cooper, W. J., Greaves, J., Miller, G. E. (2008a) Free-radical destruction of 

beta-lactam antibiotics in aqueous solution. J. Phys. Chem. A. 112(32), 7411-7417.  

Song, W., Cooper, W. J., Mezyk, S. P., Greaves, J., Peake, B. M. (2008b) Free radical destruction of 

beta-blockers in aqueous solution. Environ. Sci. Technol. 42(4), 1256-1261.  

Song, W., Cooper, W. J., Peake, B. M., Mezyk, S. P., Nickelsen, M. G., O'Shea, K. E. (2009) Free-

radical-induced oxidative and reductive degradation of N,N’-diethyl-m-toluamide (DEET): 

Kinetic studies and degradation pathway. Water Res. 43(3), 635-642.  

Spycher, S., Nendza, M., Gasteiger, J. (2004) Comparison of different classification methods applied 

to a mode of toxic action data set. QSAR Comb. Sci. 23(9), 779-791.  

Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., Reissman, D. B. 

(2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a 

conventional drinking-water treatment plant. Sci. Total Environ. 329(1-3), 99-113.  

Suarez, S., Dodd, M. C., Omil, F., von Gunten, U. (2007) Kinetics of triclosan oxidation by aqueous 

ozone and consequent loss of antibacterial activity: Relevance to municipal wastewater ozonation. 

Water Res. 41(12), 2481-2490.  

Ternes, T. A., Hirsch, R. (2000) Occurrence and behavior of X-ray contrast media in sewage facilities 

and the aquatic environment. Environ. Sci. Technol. 34, 2741-2748.  

Ternes, T. A. (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 

32(11), 3245-3260. 



 

217 

 

Ternes, T. A., Stuber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B. (2003) 

Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from 

wastewater? Water Res. 37(8), 1976-1982.  

Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H. J., Gulde, B. H., Preuss, G., 

Wilme, U., Seibert, N. Z. (2002) Removal of pharmaceuticals during drinking water treatment. 

Environ. Sci. Technol. 36(17), 3855-3863.  

Thorpe, K. L., Cummings, R. I., Hutchinson, T. H., Scholze, M., Brighty, G., Sumpter, J. P., Tyler, C. 

R. (2003) Relative potencies and combination effects of steroidal estrogens in fish. Environ. Sci. 

Technol. 37(6), 1142-1149.  

Todeschini, R., Consonni, V., Mauri, A., Pavan, M. (2005) The remote version of the well known 

DRAGON software: E-DRAGON. http://michem.disat.unimib.it/chm/Help/edragon/index.html. 

Accessed on December 2011.  

Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley-VCH, 

Weinheim, Germany. 

Topliss, J. G. and Edwards, R. P. (1979) Chance factors in studies of quantitative structure-activity-

relationships. J. Med. Chem. 22, 1238-1244.  

Tropsha, A., Gramatica, P., Gombar, V. K. (2003) The importance of being earnest: Validation is the 

absolute essential for successful application and interpretation of QSPR models. QSAR Comb. 

Sci. 22(1), 69-77.  

van der Bruggen, B., Schaep, J., Wilms, D., Vandecasteele, C. (1999) Influence of molecular size, 

polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 

156(1), 29-41.  

Vethaak, A. D., Lahr, J., Schrap, S. M., Belfroid, A. C., Rijs, G. B.J., Gerritsen, A., de Boer, J., 

Bulder, A. S., Grinwis, G. C. M., Kuiper, R. V., Legler, J., Murk, T. A. J., Peijnenburg, W., 

Verhaar, H. J. M., de Voogt, P. (2005) An integrated assessment of estrogenic contamination and 

biological effects in the aquatic environment of The Netherlands. Chemosphere. 59, 511-524.  

Vincent, S., Kotbi, A., Barbeau, B. (2010) Predicting hydroxyl radical activity and trace contaminants 

removal in ozonated water. Ozone Sci. Eng. 32, 244-251. 



 

218 

 

von Gunten, U. (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. 

Water Res. 37, 1443-1467.  

Wang, Y., Chen, J., Li, X., Zhang, S., Qiao, X. (2009) Estimation of aqueous-phase reaction rate 

constants of hydroxyl radical with phenols, alkanes and alcohols. QSAR Comb. Sci. 28(11-12), 

1309-1316.  

Westerhoff, P., Yoon, Y., Snyder, S., Wert, E. (2005) Fate of endocrine-disruptor, pharmaceutical, 

and personal care product chemicals during simulated drinking water treatment processes. 

Environ. Sci. Technol. 39(17), 6649-6663.  

Watts, M. J., Linden, K. G. (2008) Photooxidation and subsequent biodegradability of recalcitrant tri-

alkyl phosphates TCEP and TBP in water. Water Res. 42(20), 4949-4954.  

Watts, M. J. and Linden, K. G. (2009) Advanced oxidation kinetics of aqueous trialkyl phosphate 

flame retardants and plasticizers. Environ. Sci. Technol. 43(8), 2937-2942.  

Winkler, M., Kopf, G., Hauptvogel, C., Neu, T. (1998) Fate of artificial musk fragrances associated 

with suspended particulate matter (SPM) from the River Elbe (Germany) in comparison to other 

organic contaminants. Chemosphere. 37, 1139-1156.  

Wold, S., Josefson, M., Gottfries, J., Linusson, A. (2004) The utility of multivariate design in PLS 

modeling. J. Chemometr. 18(3-4), 156-165.  

Wold, S., Sjostrom, M., Eriksson, L. (2001) PLS-regression: a basic tool of chemometrics. 

Chemometr. Intellig. Lab. Syst. 58(2), 109-130.  

Wold, S., Esbensen, K., Geladi, P. (1987) Principal component analysis. Chemometr. Intellig. Lab. 

Syst. 2(1-3), 37-52.  

Worth, A. P. and Cronin, M. T. D. (2003) The use of discriminant analysis, logistic regression and 

classification tree analysis in the development of classification models for human health effects. 

J. Mol. Struc. –Theochem. 622, 97-111.  

Wu, C., Shemer, H., Linden, K. G. (2007) Photodegradation of metolachlor applying UV and 

UV/H2O2. J. Agric. Food Chem. 55(10), 4059-4065.  

Xu, L. and Zhang, W. J. (2001) Comparison of different methods for variable selection. Anal. Chim. 

Acta 446(1-2), 477-483.  



 

219 

 

Xue, N. D., Xu, X. B. (2006) Composition, distribution, and characterization of suspected endocrine-

disrupting pesticides in Beijing GuanTing Reservoir (GTR). Arch. Environ. Contam. Toxicol. 50, 

463-473.  

Yang, L., Wang, P., Jiang, Y., Chen, J. (2005) Studying the explanatory capacity of artificial neural 

networks for understanding environmental chemical quantitative structure-activity relationship 

models. J. Chem. Inf. Model. 45, 1804-1811. 

Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., Amy, G. (2010) A QSAR 

model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) 

by nanofiltration membranes. Water Res. 44(2), 373-384.  

Yangali-Quintanilla, V., Verliefde, A., Kim, T., Sadmani, A., Kennedy, M., Amy, G. (2009) Artificial 

neural network models based on QSAR for predicting rejection of neutral organic compounds by 

polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 342(1-2), 251-262.  

Yao, C. C. D. and Haag, W. R. (1991) Rate constants for direct reactions of ozone with several 

drinking-water contaminants. Water Res. 25(7), 761-773.  

Yasojima, M., Nakada, N., Komori, K., Suzuki, Y., Tanaka, H. (2006) Occurrence of levofloxacin, 

clarithromycin and azithromycin in wastewater treatment plant in Japan. Water Sci. Technol. 53, 

227-233.  

Yu, Z., Peldszus, S., Huck, P. M. (2008) Adsorption characteristics of selected pharmaceuticals and 

an endocrine disrupting compound - naproxen, carbamazepine and nonylphenol - on activated 

carbon. Water Res. 42(12), 2873-2882.  

Yu, Z., Peldszus, S., Huck, P. M. (2009a) Adsorption of selected pharmaceuticals and an endocrine 

disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics. Environ. 

Sci. Technol. 43(5), 1467-1473.  

Yu, Z., Peldszus, S., Huck, P. M. (2009b) Adsorption of selected pharmaceuticals and an endocrine 

disrupting compound by granular activated carbon. 2. Model prediction. Environ. Sci. Technol. 

43(5), 1474-1479.  



 

220 

 

Zhan, C. G., Nichols, J. A., Dixon, D. A. (2003) Ionization potential, electron affinity, 

electronegativity, hardness, and electron excitation energy: Molecular properties from density 

functional theory orbital energies. J. Phys. Chem. A. 107, 4184-4195. 

Zimbron, J. A. and Reardon, K. F. (2005) Hydroxyl free radical reactivity toward aqueous chlorinated 

phenols. Water Res. 39(5), 865-869. 

 

 

 


