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Abstract

We report on the first systematic study of correlation functions in N = 4 super Yang-Mills
theory using integrability techniques. In particular, we show how to compute three- and four-
point functions of single-trace gauge-invariant operators at tree level in the SU(2) sector of
the theory. Using the AdS/CFT correspondence, the correlation functions that we compute
can be thought of as the joining or splitting of strings moving in AdS5 × S5. We show that
when one (two) of the operators in the three-(four-)point function are taken to be small BPS
operators, our weak coupling results match perfectly with the strong coupling results in the
Frolov-Tseytlin limit. We conclude by presenting some results that will be needed to extend
the methods presented in this thesis beyond the SU(2) sector of N = 4 super Yang-Mills.
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Chapter 1

Introduction

The goal of this chapter is to introduce the physical observables that we will be studying
in N = 4 super Yang-Mills theory. As a short motivational review, we will explain how
to compute the spectrum of anomalous dimensions of the theory at weak coupling using
integrability techniques, and at strong coupling using the AdS/CFT correspondence. We
will then move on to reviewing what is known for correlation functions in the theory at weak
and strong coupling.

1.1 Correlation functions in N = 4 SYM

Four-dimensionalN = 4 super Yang-Mills theory (orN = 4 SYM for short) with gauge group
U(Nc) is a theory of scalar fields Φi, gluons Aµ and sixteen-component Majorana spinors Ψ.
The corresponding Lagrangian is [1]

L =
1

g2
YM

Tr
[

1

2
FµνF

µν + (DµΦi)
2 − 1

2
[Φi,Φj]

2 + Ψ̄
(
ΓµDµΨ− iΓi [Φi,Ψ]

)]
, (1.1)

where greek indices run over 1, 2, 3, 4; latin indices run over 1, . . . , 6; Γ are 16 × 16 Dirac
gamma matrices and the covariant derivative is defined in the usual way:

Dµ· = ∂µ · −i [Aµ, ·] .

All the fields in the theory are matrices of size Nc×Nc in the adjoint representation of U(Nc):

Φi = Φa
i T

a , Aµ = Aaµ T
a , Ψ = Ψa T a ,

where T a are the generators of the group, normalized as Tr(T aT b) = δab/2. We can group
the six scalars in pairs to form three complex scalars, defined as

X ≡ Φ1 + iΦ2 , Y ≡ Φ3 + iΦ4 , Z ≡ Φ5 + iΦ6 (1.2)

2



1.1 Correlation functions in N = 4 SYM

plus their respective complex conjugates X̄, Ȳ , Z̄.
A particularly interesting regime of the theory is the famous ’t Hooft limit, which is given

by taking
Nc →∞ , λ ≡ g2

YMNc fixed ,

where λ is the ’t Hooft coupling. By doing the standard large Nc counting, one can see
that in this limit the dominant contribution to correlation functions comes from studying
planar N = 4 SYM. This means that, in double-line notation, we only have to consider
those interaction diagrams that can be drawn on a sphere. Those that can only be drawn in
higher-genus surfaces are supressed by factors of 1/Nc.

For the most part of this work, we will focus on single-trace gauge-invariant operators
in the SU(2) subsector of the theory, which are those operators made out of two complex
scalars:

O(x) = Tr (ZXXZZ . . .XZXZ) (x) . (1.3)

Our ultimate goal is to compute correlation functions of such operators in the planar limit
using integrability techniques. Thus, let us review what we know in advance about these
objects, which are the most natural local observables in this theory. First, it is well-known
that in the ’t Hooft limit, the correlation function of n gauge-invariant operators goes as

Gn(x1, . . . , xn) ≡ 〈O1(x1) . . .On(xn)〉 ∝ 1

Nn−2
c

. (1.4)

Second, and quite remarkably, N = 4 SYM is a conformal theory even at the quantum level.
This fact alone restricts enormously the form of correlation functions in the theory, see [2, 3].
In particular, let us consider correlation functions of renormalized operators. Conformal
symmetry completely fixes the form of the two-point function to be

G2(x1, x2) ≡ 〈Oi(x1)Ōj(x2)〉 = Ni
δij

|x12|2∆i
, (1.5)

where xij ≡ xi − xj, Ni are normalization constants that may be set to one and ∆i is the
conformal dimension of operator Oi. This form is valid to any loop order, as long as the
operators are appropriately renormalized. With the two-point function defined as above, the
three-point function is also fixed by conformal symmetry to take the form

G3(x1, x2, x3) ≡ 〈O1(x1)O2(x2)O3(x3)〉 =
1

Nc

√
N1N2N3C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
,

(1.6)
where the different C123 are known as structure constants.1 The square root factor on the

1An alternative way of writing the structure constants in a scheme independent way is as

C123 ≡ 〈O1(x1)O2(x2)O3(x3)〉

√√√√ 3∏
i=1

〈Oi(xi+1)Ōi(xi+2)〉
〈Oi(xi)Ōi(xi+1)〉 〈Oi(xi)Ōi(xi+2)〉

3



1.1 Correlation functions in N = 4 SYM

=
∑
k

Fk(∆k)
C12k Ck34

O1 O3

O2 O4

O1

O2

O3

O4

Figure 1.1: Reconstructing four-point functions. The functions Fk(∆k) are known as conformal
blocks and are completely fixed by conformal symmetry: they only depend on the conformal dimen-
sions ∆1,∆2,∆3,∆4,∆k (and also on the positions x1, x2, x3, x4). It is clear that to reconstruct
four-point functions, we need to know all conformal dimensions ∆i and structure constants Cijk.
See [4, 5] for more details.

r.h.s. of this formula is necessary to take into account the normalization of the two-point
functions. Without it, the three-point function would not be well-defined. Moreover, the
structure constants are not completely unambiguous because we can still multiply Oi by a
phase. That would not affect the normalization of the two-point function, but it would change
C123 by that phase. Thus, one should consider the absolute value |C123| as the unambiguously
defined object. Note that in these formulas we have assumed that the operators Oi are only
made out of scalar fields. However, they are also valid for operators with spin: in that case we
would have an extra index structure on the r.h.s. of the formulas above, but the space-time
dependence would be the same.

As opposed to the two- and three-point functions, the form of four-point functions is not
uniquely determined in N = 4 SYM. Indeed, conformal symmetry tells us that the four-point
function will depend on the cross-ratios

u ≡ x2
12x

2
34

x2
13x

2
24

, v ≡ x2
12x

2
34

x2
14x

2
23

that we can form with the positions of the operators. For example, the four-point function
takes the following form:

G4(x1, x2, x3, x4) ≡ 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

N2
f (u, v)

4∏
i<j

|xij|∆/3−∆i−∆j , (1.7)

where ∆ =
∑4

i=1 ∆i. Then, the problem of computing four-point functions boils down to
determining the function of the cross-ratios f(u, v).

An important fact about conformal field theories such as N = 4 SYM is that, in principle,

where the indices are identified modulo 3. The right hand side is indeed an xi independent quantity which
coincides with C123 once we use (1.5) and (1.6).

4



1.1 Correlation functions in N = 4 SYM

we only need to know two- and three-point functions to reconstruct higher-point functions.
Let us see how this comes about. Recall that in a conformal field theory, the operator product
expansion (OPE) of two local operators can be written as a sum over all primary operators
Ok and their descendants as

Oi(xi)Oj(xj) =
∑
k

∞∑
n=0

cµ1...µn
k (xij)∂µ1 . . . ∂µnOk(xi) . (1.8)

The coefficients cµ1...µn
k (xij) are related to the structure constants Cijk that appear in (1.6).

To see this, we need to write the three-point function 〈O1(x1)O2(x2)Op(xp)〉 by using the
OPE of the first two operators. By doing so, we can check that

cµ1...µn
k (x12) = C12k b

µ1...µn
k (x12) , (1.9)

where the functions bµ1...µn
k (x12) are completely fixed by conformal symmetry.2 Now, let us

consider the four-point function G4(x1, x2, x3, x4) that we introduced in (1.7). First, let us
use the OPE of the first two operators, making use of the result (1.9). We get

G4(x1, x2, x3, x4) =
1

N2
c

∑
k

C12k

∞∑
n=0

bµ1...µn
k (x12)∂µ1 . . . ∂µn〈Ok(x1)O3(x3)O4(x4)〉 .

But we know the form of the three-point function appearing on the r.h.s., see (1.6). Thus,
we finally arrive at the following expression for the four-point function

G4(x1, x2, x3, x4) =
1

N2
c

∑
k

C12k Fk(∆k)Ck34 . (1.10)

The functions Fk(∆k) are known as conformal blocks and are completely fixed by conformal
symmetry: they only depend on the conformal dimensions ∆1,∆2,∆3,∆4,∆k (and also on
the positions x1, x2, x3, x4 and the spin of Ok). Note that we could perform a similar exercise
with higher-point functions. The conclusion would be the same: higher-point functions can
be reconstructed using the anomalous dimensions and structure constants as building blocks.

Thus, it is clear that to compute any higher-point correlation function in N = 4 SYM,
we need to know all anomalous dimensions and structure constants in the theory. We will
refer to these as “the spectrum problem” and “the structure constant problem”, respectively.
Once this is accomplished, we could claim to have in principle solved an interacting four-
dimensional gauge theory for the very first time.3 We say in principle because to date the

2For example, for scalar operators O1,O2,Ok:

bk(x12) =
1

|x12|∆1+∆2−∆k
, bµ1

k (x12) =
(∆1 + ∆2 −∆k)xµ1

12

2∆k|x12|∆1+∆2−∆k
,

etc.
3Of course, one would also like to compute non-local observables such as Wilson loops and scattering
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1.2 The spectrum problem

conformal blocks entering (1.10) (or higher-point functions) are not known in full generality.
Thus, it remains to be seen if the conformal blocks approach is more efficient than directly
computing higher-point functions without recurring to the structures constants. In any event,
it is useful to attack the problem from both directions. In this spirit, one of the goals of this
thesis is to show how to efficiently compute four-point functions without using conformal
blocks.

Let us now explain how to compute anomalous dimensions and structure constants at
weak and strong coupling.

1.2 The spectrum problem

1.2.1 At weak coupling: Solving N = 4 SYM using integrability

When λ � 1, we can use pertubation theory to compute physical quantities. Thus, in this
regime, the conformal dimensions depend on the ’t Hooft coupling as

∆(λ) = ∆(0) + γ(1) λ+ γ(2) λ2 + . . . , (1.11)

where ∆(0) is the classical dimension of the operator, which is given by the number of fields
in the trace, while γ(n) is the n-loop anomalous dimension of the operator. For notational
convenience, we will often use ∆(n) ≡ γ(n)λn, where n ≥ 1.

How do we go about computing the different terms in the expansion (1.11)? We could of
course start computing hundreds of thousands of Feynman diagrams to determine a single
anomalous dimension to certain loop order. Needless to say, this would be a very tedious
endeavour. Fortunately, over the last decade a very large body of work has shown that in the
planar limit N = 4 SYM is an integrable theory, see [13] for a comprehensive review on the
subject. From a physicist’s perspective, this means that the theory is exactly solvable, i.e. one
can actually compute analytically all relevant physical observables. Given this remarkable
property, it is natural to expect that integrability is the right tool to address the computation
of anomalous dimensions in the theory. This is indeed the case and we will now review how
to exploit the underlying integrability of the theory to compute anomalous dimensions of
SU(2) operators (see (1.3)).

At tree level (λ = 0), there are many single-trace operators that have the same classical
dimension ∆(0): it is simply the number of fundamental fields in the trace, which we will de-
note by L. For example, both Tr(ZXZX) and Tr(ZZZZ) have the same classical dimension
L = 4. This large degeneracy is lifted at one loop, where we can identify linear combina-
tions of single-trace operators that have definite one-loop anomalous dimension. In order to
find these linear combinations, we need to diagonalize the corresponding one-loop dilatation

amplitudes in the theory. Remarkable progress has been made in these fronts, both at weak [6, 7, 8] and
strong coupling [9, 10]. Moreover, correlation functions, Wilson loops and scattering amplitudes in N = 4
SYM are all related to each other, forming a triality of observables, see e.g. [11, 12].
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1.2 The spectrum problem

operator: its eigenstates are the linear combinations we are after, while its eigenvalues are
their definite anomalous dimensions ∆(1). In their seminal work [14] (see [15] for a modern
review), Minahan and Zarembo found by explicitly computing Feynman diagrams that the
one-loop dilatation operator in the SU(2) sector of N = 4 SYM is given by

Ĥ =
λ

8π2

L∑
n=1

(In,n+1 − Pn,n+1) , (1.12)

where I and P are the identity and permutation operators, which act on two consecutive
fields inside a trace as

In,n+1 Tr(. . . Z
n
X
n+1

. . . ) = Tr(. . . Z
n
X
n+1

. . . ) ,

Pn,n+1 Tr(. . . Z
n
X
n+1

. . . ) = Tr(. . . X
n

Z
n+1

. . . ) .

It makes perfect sense that the one-loop dilatation operator only involves nearest-neighbor
interactions: at this loop order and in the planar limit, only nearest-neighbor fields can
interact.

The operator appearing in (1.12) is nothing but the famous Heisenberg spin chain Hamil-
tonian. Thus, it is useful to think of operators of the form (1.3) as states on a closed SU(2)

spin chain, where at each site we have a vacuum field Z or an excitation X.4 Moreover, we
will denote the number of X fields by N , so that the number of Z fields is of course L−N .

Quite remarkably, it turns out that the Hamiltonian (1.12) is integrable! This means that
we may use all the machinery from integrability and exactly solvable models to diagonalize
it. In fact, this particular problem was solved long ago by Bethe [16] by means of the famous
Bethe Ansatz. We will review it in great detail in chapter 3, but let us state here its main
features.

The eigenvectors of Ĥ are precisely the linear combinations of operators that have definite
one-loop anomalous dimension . If we consider operators of length L withN excitations, these
eigenvectors are explicitly given by

O(x) =
∑

1≤n1<n2<···<nN≤L

ψ(n1, . . . , nN) Tr(. . . ZX
n1

Z . . . ZX
n2

Z. . .
...
ZX
nN
Z . . . )(x) , (1.13)

where the wave function is

ψ(n1, . . . , nN) =
∑
P

A(P )
N∏
j=1

ei pPjnj . (1.14)

The sum in the wave function runs over all N ! permutations P of (1, 2, . . . , N) and pj are
the momenta with which the excitations X move around the chain/trace. The plane wave

4The corresponding spin chain is closed because of cyclicity of the trace. Also, the choice of vacuum is
our convention: we could have chosen to think of X as vacuum fields and Z as excitations.
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1.2 The spectrum problem

coefficients are such that they obey the following relation

A(. . . , k, j, . . . )

A(. . . , j, k, . . . )
=

1
2

cot pk
2
− 1

2
cot

pj
2

+ i
1
2

cot pk
2
− 1

2
cot

pj
2
− i

. (1.15)

Thus, by fixing one of the plane wave coefficients, e.g. A(1, 2, . . . , N) = 1, all the other ones
are determined using (1.15). These coefficients tell us the phase acquired when two momenta
are interchanged (i.e. when the corresponding excitations scatter). What should be surprising
to the reader is that any of the plane wave coefficients is in fact a sequence of two-momenta
exchanges.5 This very non-trivial fact is a consequence of integrability. Moreover, the set of
momenta {pj} is determined once we impose periodicity of the wave function (1.14). Doing
this, one obtains the Bethe equations

eipjL
N∏
k 6=j

1
2

cot
pj
2
− 1

2
cot pk

2
− i

1
2

cot
pj
2
− 1

2
cot pk

2
+ i

= 1 . (1.16)

The physical interpretation of this equation is very clear: the exponential term corresponds
to the free propagation of an excitation with momentum pj around the chain/trace, while the
product of terms takes into account the scattering of this excitation with all other excitations.
Of course, the total phase acquired by the excitation with momentum pj once it comes back
to its original position must be one.

The eigenvalues of Ĥ that correspond to the eigenvectors (1.13) are

E =
λ

2π2

N∑
j=1

sin2 pj
2
. (1.17)

These are the anomalous dimensions ∆(1) of the operators (1.13), see (1.11). This is very
nice: without computing a single Feynman diagram, we are able to determine the one-loop
anomalous dimension of SU(2) operators. All we need to know is the length L of the operator
and the number of excitations N that we want to consider. With these two numbers, we
find the set of momenta {pj} by solving the set of equations (1.16) and plug the result into
(1.17) to obtain the one-loop anomalous dimension. For example, the member of the Konishi
multiplet made out of two complex scalars Z and X is

K ∝ Tr(ZZXX)− Tr(ZXZX) . (1.18)

In this case L = 4 and N = 2, such that p1 = −p2 = 2π/3. Hence, the one-loop anomalous

5That is, if we set A(1, 2, 3, . . . ) = 1, then A(2, 1, 3, . . . ) =
1
2 cot p22 −

1
2 cot p12 + i

1
2 cot p22 −

1
2 cot p12 − i

, A(2, 3, 1, . . . ) =

1
2 cot p22 −

1
2 cot p12 + i

1
2 cot p22 −

1
2 cot p12 − i

×
1
2 cot p32 −

1
2 cot p12 + i

1
2 cot p32 −

1
2 cot p12 − i

, etc.
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1.2 The spectrum problem

dimension of the Konishi operator is

∆
(1)
K =

3λ

4π2
.

This was an oversimplified version of the story for the spectrum problem, but it is all
we need for this thesis.6 We point the interested reader who wants to learn more about it
to the relevant chapters of [13]. Let us just emphasize that the general idea of computing
anomalous dimensions by finding the energy spectrum of a given Hamiltonian and solving
the corresponding Bethe equations persists at higher loops and all sectors of N = 4 SYM.

Let us conclude this section by listing the two key points that the reader must remember
from this section:

• Single-trace operators are mapped into spin chain states.

• Finding the spectrum of anomalous dimensions amounts to computing the energy eigen-
values of a spin chain Hamiltonian.

1.2.2 At strong coupling: Classical strings in AdS5 × S5

When λ� 1, we cannot use usual pertubative methods. So, how do we go about computing
anomalous dimensions in this regime? This is where the AdS/CFT correspondence comes into
play. In its original formulation [21, 22, 23], the correspondence states that type IIB string
theory in AdS5 × S5 is dual to N = 4 SYM.7 Given that this duality relates a theory with
gravity to a gauge theory defined on a lower-dimensional space, the AdS/CFT correspondence
is to date the most precise realization of the holographic principle [26]. For completeness,
in table 1.1 we list the map between some parameters and physical observables on each side
of the correspondence as they will be relevant to this thesis (see [27, 28] for the standard
reviews on the subject).

Apart from the remarkable fact that it relates two seemingly radically different theories,
the AdS/CFT correspondence has another key property: it is a weak/strong duality. For
example, consider the ’t Hoof limit introduced in the previous section. Indeed, as can be seen
from table 1.1, the weak coupling regime of N = 4 SYM (λ � 1) corresponds to strongly
coupled strings in AdS5 × S5. Similarly, the strong coupling regime of the gauge theory
(λ � 1) maps into weakly coupled strings. In this sense, the AdS/CFT correspondence is
a powerful computational tool! It allows us to extract information about strongly coupled
N = 4 SYM, for which our usual perturbative techniques do not apply, by performing

6The state of the art regarding the spectrum problem is the Y-system of AdS/CFT [17, 18, 19]. This is a
set of functional equations that one can solve numerically to obtain the anomalous dimension of any operator
in the theory at any value of the ’t Hooft coupling (see [20] for a plot of the anomalous dimension of the
Konishi operator).

7Other dualities of this type have been proposed [24, 25] and, in general, one refers to them as gravity/gauge
dualities. However, whenever we mention AdS/CFT in this thesis, we will be refering to Maldacena’s original
correspondence.
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1.2 The spectrum problem

N = 4 U(N) super Yang-Mills Type IIB strings in AdS5 × S5

’t Hooft coupling λ = g2
YMNc λ =

R4

α′2

Number of colors Nc Nc =
R4

α′2gs
=

R4

l4sgs

Single-trace operators Single-string states

Conformal dimensions ∆ Energies E of string states

Higher-point correlation functions Splitting and joining of string states

Table 1.1: AdS/CFT dictionary relevant to this thesis. R,α′, gs and ls are the AdS radius, the
Regge slope, the string coupling and the string length, respectively.

classical computations on the AdS side. Likewise, we can learn about the highly quantum
regime on the string theory side by doing usual perturbative calculations at weak coupling
in N = 4 SYM.

Of particular interest to us is that we can compute conformal dimensions of single-trace
operators at strong coupling by finding the energy of the dual classical single-strings moving
in AdS5 × S5. Let us then give a quick review of classical strings in this spacetime.

Five-dimensional Anti de Sitter space, which is the maximally symmetric space with
constant negative curvature in five dimensions, can be embedded in R2,4 using three complex
coordinates W = (W1,W2,W3) as

W · W̄ = W1W̄1 +W2W̄2 −W3W̄3 = −1 . (1.19)

Similarly, a five-dimensional sphere S5 can be embedded as a surface in R6 using three
complex coordinates U = (U1, U2, U3) as

U · Ū = U1Ū1 + U2Ū2 + U3Ū3 = 1 . (1.20)

Note that we have set both the sphere and AdS radius to 1.
The motion of classical strings in AdS5× S5 is described by the Polyakov action. We are

only interested in its bosonic part, which in the conformal gauge reads

S = −
√
λ

4π

∫
dτdσ

[
∂aW · ∂aW̄ + Λ̃

(
W · W̄ + 1

)
+ ∂aU · ∂aŪ− Λ

(
U · Ū− 1

)]
, (1.21)

where τ and σ are the string worldsheet coordinates, and we are using the following signature
∂a∂

a = −∂2
τ + ∂2

σ. Of course W, U depend on τ, σ, but we are not writing this dependence
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1.2 The spectrum problem

explicitly. The Lagrange multipliers Λ̃ and Λ impose the restrictions (1.19) and (1.20). The
equations of motion for the action (1.21) are[

∂a∂
a −

(
∂aW · ∂aW̄

)]
Wj = 0 ,

[
∂a∂

a +
(
∂aU · ∂aŪ

)]
Uj = 0 , (1.22)

while the two Virasoro constraints can be written in the following form:

∂τŪ · ∂τU + ∂σŪ · ∂σU + ∂τW̄ · ∂τW + ∂σW̄ · ∂σW = 0 , (1.23)

∂τŪ · ∂σU + ∂τW̄ · ∂σW = 0 . (1.24)

There are six global conserved charges associated with the bosonic string action (1.21): the
energy E, two spins S1, S2 in AdS5 and three angular momenta J1, J2, J3 in S5. Explicitly,
they are given by

E =
√
λ

2π∫
0

dσ

4π
i
(
W3∂τW̄3 − W̄3∂τW3

)
, Sj =

√
λ

2π∫
0

dσ

4π
i
(
Wj∂τW̄j − W̄j∂τWj

)
, (1.25)

Jj =
√
λ

2π∫
0

dσ

4π
i
(
Uj∂τ Ūj − Ūj∂τUj

)
. (1.26)

The SU(2) operators that we considered at weak coupling, see (1.13), are dual to strings
that have point-like motion in the middle of AdS5 and have two non-zero angular momenta
J1, J3 on S5. The map between the charges at weak and strong coupling is

N ↔ J1 , L↔ J1 + J3 .

Of course, the exact form of W and U as functions of the worldsheet coordinates τ, σ depends
on the particular classical string solution that we want to consider and we will see an explicit
example in chapter 7. The interested reader can see [29, 30, 31, 32, 33, 34, 35] and references
therein for reviews and recent developments regarding the computation of string energies in
AdS5 × S5.

For now, what we should take from this section is that:

• Given a single-trace operator in N = 4 SYM, we can find its anomalous dimension at
strong coupling by computing the energy of the dual string solution using (1.25).

1.2.3 Types of operators in N = 4 SYM

Having reviewed the spectrum problem at weak and strong coupling, we will find it useful
to introduce a classification of single-trace operators in N = 4 SYM. This depends on the
strong coupling behaviour of their anomalous dimensions or the scaling of their charges at
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1.2 The spectrum problem

weak coupling. Namely, the operators that we introduced in the previous sections fall into
three categories:

Weak coupling Strong coupling

Light operators ∆ ∼ 1 ∆ ∼ 1

Medium operators N,L ∼ 1 ∆ ∼ λ1/4

Heavy operators N,L� 1 ∆ ∼ λ1/2

Table 1.2: Types of operators in N = 4 SYM.

Let us explain this notation.

• Light operators are BPS operators, i.e. their anomalous dimensions are zero to all orders
in perturbation theory. Thus, their conformal dimensions are simply their classical
dimensions at any value of the ’t Hooft coupling. At weak coupling, BPS operators
correspond to any operator with L − N vacuum fields Z and N excitation fields X
with zero anomalous dimension. In the language of the Bethe ansatz mentioned in
the previous sections, the excitations in a BPS state are frozen, i.e. they have zero
momenta. At strong coupling, BPS operators are dual to supergravity modes, which
are the light, massless modes of the strings.

• Operators that have non-trivial anomalous dimension correspond to massive string
states. Medium operators are the lightest of these. At weak coupling, they correspond
to single-trace operators with non-zero anomalous dimension and with charges L,N of
order 1. For example, the Konishi operator introduced in (1.18) belongs to this class of
operators. At strong coupling, medium operators are dual to short strings with angular
momenta of order 1, whose energies scale as λ1/4.

• Finally, heavy operators are dual to the heaviest massive string states. At weak cou-
pling, they correspond to single-trace operators with non-zero anomalous dimension
and large charges L,N . At strong coupling, they are dual to classical string states with
large angular momenta, whose energies scale as λ1/2.
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1.3 The structure constants problem

1.3 The structure constants problem

1.3.1 At weak coupling

When λ � 1, the structure constants appearing in (1.6) can be expanded in the ’t Hooft
coupling as

C123(λ) = C
(0)
123 + C

(1)
123 λ+ C

(2)
123 λ

2 + . . . , (1.27)

where C
(n)
123 is the n-loop structure constant. As opposed to the spectrum problem, see

(1.11), in this case even the leading term in this expansion is non-trivial to compute. Indeed,
given three single-trace operators, C(0)

123 is found by performing all possible Wick contractions
between them. If the operators are very long, i.e. heavy in the sense of table 1.2, this
combinatorial problem is quite involved. Since integrability played a crucial role in the
spectrum problem, it is natural to expect that it will also help us in computing the different
terms in (1.27), starting with the leading one. This is precisely what we will show in this
thesis: C(0)

123 can be computed efficiently using integrability techniques. Moreover, we will
also show that the same techniques can be used to compute four-point functions at tree level.
We will explain the general strategy that we will use to do so in the next chapter. However,
let us anticipate a crucial difference with respect to the spectrum problem. As can be seen
in figure 1.2, we will need to “break” each operator in order to perform all contractions in
the three-point function (and similarly for four-point functions). Since in the integrability
approach we think of each operator Oi to be of the form (1.13), it is clear that we will need
to know the exact form of the wave functions ψ(n1, . . . , nNi) of all operators. Recall that for
the spectrum problem, we only needed to know the energy eigenvalues of the Hamiltonian
(1.12). Thus, computing three-point functions using the integrability approach will be more
involved than the spectrum problem. The notion of breaking operators/spin chains will be
made precise in the next chapter. For now, let us review what is known for three-point
functions in N = 4 SYM at weak coupling.

Until recently, much less was known about correlation functions compared to the spectrum
problem at weak coupling. It was shown in [36] that the three-point function of three BPS
operators is protected. Earlier works had already provided evidence that integrability should
play an important role in the computation of correlation functions in N = 4 SYM. For
example, [37] pointed out the importance of the algebraic Bethe ansatz in the computation
of three-point functions. Also, it was found in [38, 39] that when considering one-loop three-
point functions of SO(6) operators, some of the corrections correspond to insertions of the
integrable SO(6) Hamiltonian at the points where one breaks the operators to perform the
Wick contractions. An important recent development was the formulation of integrability
techniques to compute three- and four-point functions of SU(2) operators at tree level inN =

4 SYM [40, 41]. Moreover, in [42] a weak/strong coupling match for three-point functions of
two heavy operators and a light BPS operator in the SU(3) sector of the theory was presented
(see also [43] for subsequent work on SL(2) operators). The results of [40, 41, 42] constitute
the bulk of this thesis and will be explained in great detail in coming chapters.
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1.3 The structure constants problem

O2

O1
O3

Figure 1.2: Three-point functions at tree level in the double-line notation. In order to perform
all possible planar Wick contractions, we need to “break” each operator/spin chain. This requires
knowing the precise form of each spin chain wave function.

Finally, more recently the classical limit of the three-point functions that we will com-
pute in this thesis was presented in [44, 45]. Also, and quite remarkably, new integrability
techniques to compute three-point functions of SU(2) operators at one loop in N = 4 SYM,
i.e. C(1)

123 in (1.27), were developed in [46]. We will briefly touch on these subjects in our
conclusions.

What we should take from this section is that:

• In order to compute three- and higher-point functions, we need to know the exact form
of the wave function of each operator, see (1.13).

1.3.2 At strong coupling

When λ� 1, we have to turn again to the AdS/CFT correspondence to compute correlation
functions. The process that one has to consider in AdS is that of joining and splitting of
strings, see table 1.1. We will refer to these processes as holographic correlation functions.
A little more was known about them in the context of the duality, e.g. for earlier works on
three- and four-point functions see [47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. A common feature
of most of these papers is that they were related to correlation functions of supergravity
modes. In this case one can use the technology of Witten diagrams to compute correlation
functions via the GKPW prescription [22, 23], see figure 1.3a (see [28] for a review).

Naturally, one would also like to compute holographic correlation functions of heavy
operators. This was an open problem until Janik et al. [57] gave the correct prescription
to compute the two-point function of two heavy, classical string states, see also [58]. They
correctly reproduced the usual functional form of the two-point function (1.5) and the energy
of the string solutions. The picture that arises is that of a worldsheet defined by the two
large string states, which pinches off as it approaches the boundary of AdS at the insertion
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(a)

O1(x1)

O3(x3)

O2(x2)

(b)

O1(x1)

O3(x3)

O2(x2)

Figure 1.3: Holographic correlation functions in AdS/CFT. (a) Usual Witten diagrams for supe-
gravity modes. (b) Fattened Witten diagrams for classical strings states [57].

points x1 and x2 of the two-operators. An important point is that for higher-point correlation
functions of heavy operators, the corresponding surface spanned by these should approach
the insertion points of the operators in exactly the same way as they do in the two-point
function case. For example, see figure 1.3b for a depiction of the holographic three-point
function of three heavy operators. In [59] the computation of two-point functions of heavy
operators was formulated in terms of vertex operators building on [60, 61].

Subsequently, these methods were extended to compute the three-point function of two
heavy operators and a light BPS operator [62, 63, 64]. Various cases for this type of three-
point function were worked out [65, 66, 67, 68, 69]. Moreoever, building on these results,
in [70] the authors computed the four-point function of two heavy operators and two light
BPS operators. They found that it factorizes into the product of two three-point functions.
Very importantly, we should mention that all this progress was being made on the strong
coupling side (i.e. the gravity side of the correspondence) without exploiting the underlying
integrability of the string sigma model.

It is worth mentioning a couple of important recent developments on the strong coupling
side using integrability techniques. In particular, in [71] the authors successfully computed
part of the three-point function of three heavy operators with non-trivial motion in S5, while
[72] computed part of the case corresponding to three GKP strings [73].

In short, given that the spectrum problem is already very well understood, we expect
that integrability will also play a crucial role in the computation of three- and higher-point
correlation functions both at weak and strong coupling in N = 4 SYM. The recent progress in
this field suggests that this is indeed the case. With this we close our introduction and move
on to explaining the general strategy that we will use to exploit the underlying integrability
of the theory to compute three- and four-point functions at weak coupling.
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Chapter 2

General Setup and Outline

The main goal of this thesis is to show that one can use integrability techniques to efficiently
compute correlation functions of single-trace operators in N = 4 SYM. Having introduced
how spin chains arise in the theory, in this chapter we sketch our strategy to compute three-
and four-point functions using spin chains. We also provide an outline of the thesis.

2.1 Three-point functions

As we saw in the previous chapter, the fundamental objects in N = 4 SYM are the two-
and three-point functions. Knowing them we can in principle construct any higher-point
function by gluing these building blocks together. Given that the problem of computing
two-point functions, or the anomalous dimensions of operators, has already been solved
using integrability, it is natural to expect that this property should allow us to compute
the structure constants appearing in the three-point functions of the theory, see (1.6). We
will show in this thesis that this is indeed the case. In particular, we will compute planar
three-point functions of single-trace operators at tree level in N = 4 SYM.8 That is, we will
determine the term C

(0)
123 in the expansion (1.27) (from now on, we will simply refer to it as

C123, unless otherwise stated). The type of single-trace operators that we will consider are
those in the SU(2) sector of the theory, see (1.13). Let us now explain our strategy.

The setup that we will consider is the one shown in figure 2.1. We have three single-trace
operators of lengths L1, L2 and L3, which are contracted by free propagators. Of course,
in general each operator will have vacuum and excitation fields, but we do not distinguish
between them in figure 2.1. This is simply because we do not need to do so in order to
explain our strategy. Since each propagator connects two fields, L1 + L2 + L3 must be an
even number. Notice that once we know the lengths of the three operators, the number of

8Earlier interesting and inspirational works on three-point functions in N = 4 SYM at weak coupling are
[38, 37, 39]. In particular, [38] introduced the physical picture of cutting and gluing spin chains on which we
elaborate below and [37] emphasizes the usefulness of the algebraic Bethe ansatz techniques for computing
scalar products of quantum spin chains, which turns out to be very relevant for this problem.
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2.1 Three-point functions

O2

O1

O3

(a)

|Ψ2〉l ⊗ r〈
←−
Ψ 2|

|Ψ
1〉
l
⊗

r〈←−
Ψ

1|

|Ψ
3〉l⊗

r〈
←−Ψ3|

(b)

Figure 2.1: (a) The planar tree-level contraction of three single-trace operators in the double-line
notation. The diagram has a pair-of-pants topology (sphere with three punctures). (b) In the spin
chain picture, each of the three single-trace operators corresponds to a state on a closed chain. The
closed chains are cut into right and left open chains where the external states are represented. The
three states are sewed together into the three-point function by overlapping the wave functions on
each right chain with the wave function on the left subchain of the next operator.

free Wick contractions between Oi and Oj is

lij ≡
Li + Lj − Lk

2
. (2.1)

These propagators automatically reproduce the factors 1/|xij|∆i+∆j−∆k in (1.6), with ∆i being
the classical dimension ∆

(0)
i = Li in the case at hand. The tree-level structure constant is

then given by the sum over all such Wick contractions, normalized by the two-point functions,
see (1.6).

At λ = 0 many single-trace operators have the same dimension, which is simply the
number of fundamental fields in the operator. That huge degeneracy is lifted at one loop.
Therefore, to correctly identify the tree-level structure constants, we have to use those linear
combinations of single-trace operators that have definite one-loop anomalous dimension ∆i =

∆
(0)
i + γ

(1)
i λ.9 As we saw in the previous chapter, these linear combinations can be thought

of as states |Ψi〉 on a closed spin chain. In the spin chain language, the structure constant is
constructed by going through the following steps (see also figure 2.1b)

1. Start with three closed chain states |Ψi〉, |Ψj〉, |Ψk〉 and choose a cyclic ordering (i, j, k).
9This is nothing but the standard textbook degenerate perturbation theory in Quantum Mechanics and

needs to be taken into account. See e.g. [74, 75, 76] for discussions on the importance of this point.
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2.1 Three-point functions

2. Break the ith closed chain into left and right open subchains of lengths (Li+Lj−Lk)/2,
(Li + Lk − Lj)/2. Do the same for the other two closed chains.

3. Express each closed chain state as an entangled state in the tensor product of the two
subchains Hilbert spaces with the lengths indicated in the previous point. That is:
|Ψi〉 =

∑
a |Ψia〉l ⊗ |Ψia〉r, where the sum runs over all possible ways of breaking the

sites of the closed chain.

4. Wick contract the operator corresponding to the state |Ψi〉r with the operator corre-
sponding to the state |Ψi+1〉l. The Wick contraction is obtained from the spin chain
contraction of a ket and bra states r〈

←−
Ψ i|Ψi+1〉l after a flipping operation |Ψi〉l⊗|Ψi〉r →

|Ψi〉l ⊗ r〈
←−
Ψ i|, see figure 2.1b. This flipping operation maps the ket states in the right

subchain into bra states with 1) reversed spin chain sites, 2) same wave function (not
conjugated), 3) same charges.10

5. Normalize the three external states.

The resulting structure constant can then be obtained from brute force contractions of the
states and is given by

C123 =

L1L2L3

∑
a,b,c

r〈
←−
Ψ 3c |Ψ1a〉l r〈

←−
Ψ 1a|Ψ2b〉l r〈

←−
Ψ 2b|Ψ3c〉l√

L1〈Ψ1|Ψ1〉
√
L2〈Ψ2|Ψ2〉

√
L3〈Ψ3|Ψ3〉

(2.2)

Here, the factors of L1, L2 and L3 arise from summing over all the ways of cutting open the
closed chains, before gluing them together.

What we have said so far applies to the planar tree-level contraction of any single-trace
operators, whether they have a definite one-loop anomalous dimension or not. However,
operators with definite anomalous dimension are generically some linear combinations of a
huge number of single-trace operators. Even at tree level the direct calculation of these
contractions is a very complicated combinatorial problem, whose complexity grows rapidly
as we increase the lengths of the operators in the three-point function.

Let us now focus on the SU(2) operators of interest, represented by the spin chain states
(1.13). One may hope, that the underlying integrability of the theory may help to simplify
the problem of computing three-point functions of these types of operators. Indeed, recall
that the one-loop anomalous dimension matrix is represented by the integrable spin chain
Hamiltonian (1.12). We can therefore use integrability techniques to compute the external
eigenstates and hence compute their normalizations. Moreover, at one loop the spin chain
Hamiltonian only acts locally on the chain. As a result, when we decompose the external
state as an entangled state in the two subchains, each of the subchain states still has the same
local form as an eigenstate. Therefore, even though the subchain states are not eigenstates,
we can still use integrability techniques to compute their overlaps. We will show that the

10This point was previously considered in [38] and it will be explained in greater detail in chapter 4.
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2.2 Four-point functions

integrability techniques applied to this problem are much more efficient than a brute force
calculation and in particular allow us to make computations for asymptotically long operators,
which is otherwise impossible.

From our discussion, it should be clear that, while for the spectrum problem we needed the
energies of an integrable Hamiltonian, see (1.12), the central ingredient in the case of three-
point functions (and higher-point functions in general) is the precise form of the eigenstates
that correspond to operators with definite anomalous dimensions. This implies knowing ex-
plicitly the wave function of every operator in the three-point function, see (1.13). Therefore,
at the end of the day, the structure constant (2.2) will be a function of the set of momenta
of the three operators. That is

C123 ({p1}, {p2}, {p3}) . (2.3)

Explicit expressions for three-point functions in terms of the momenta of the operators will
be given in chapter 5.

To summarize, the integrability tools we need in order to compute tree-level three-point
functions are (they will be explained in detail in chapters 3 and 4):

• The spin chain eigenstates, including of course the precise form of the wave function.

• The decomposition of an external eigenstate into an entangled state on the direct
product of the two subchains. We shall denote this decomposition procedure by cutting.

• Once an eigenstate state is cut in two we need to flip one of its halves from a ket into
a bra, see figure 2.1b.

• The overlaps of subchain states and norms of spin chain eigenstates. We denote these
overlapping computations by sewing.

2.2 Four-point functions

In principle, the techniques outlined above can be used to compute any n-point correlation
function. We are now going to show how to use them to compute four-point functions of
single-trace operators in the SU(2) sector of N = 4 SYM. These correlation functions are
interesting dynamical observables in their own right.

Let us consider the setup of figure 2.2a, where we have four operators of lengths L1, L2, L3

and L4. Again, we do not distinguish between vacuum and excitation fields in figure 2.2. As
reviewed in chapter 1, four-point functions are not uniquely fixed by conformal symmetry.
Rather, they may take the form (1.7). We denote the number of Wick contractions between
operators Oi and Oj by lij. Recall that in the case of three-point functions, the lij were
uniquely fixed by the lengths of the three operators, see (2.1). This is not the case for
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2.2 Four-point functions

O1

O2

O3 O4

(a) (b)

|Ψ2〉l ⊗ r1〈
←−
Ψ2| ⊗ r2〈

←−
Ψ2| ⊗ r3〈

←−
Ψ2|

|Ψ1〉l1⊗|Ψ1〉l2⊗|Ψ1〉l3⊗r〈
←−
Ψ1|

|Ψ
4
〉 l
⊗

r
〈←− Ψ

4
||Ψ

3 〉
l ⊗

r 〈 ←−Ψ
3 |

Figure 2.2: (a) The planar tree-level contraction of four single-trace operators in the double line
notation. (b) In the spin chain picture, each of the four single-trace operators corresponds to a state
on a closed chain. In this case we need to cut some of these closed chains more than once into open
subchains. The four states are then sewed together into the four-point function by overlapping the
wave functions on in the order shown in the picture. The restriction of not having Wick contractions
between O3 and O4 can be trivially relaxed, see section 6.4.

four-point functions. Therefore, the tree-level four-point function can be written as11

G4(x1, x2, x3, x4) =
1

N2

∑
all possible {lij}

C1234;{lij}∏
i<j

|xij|2lij
. (2.4)

Each C1234;{lij} can be computed using the techniques mentioned in the previous section.
As is clear from figure 2.2b, the main difference with respect to the case of three-point

functions is that there is much more cutting and sewing to be done for four-point functions.
Going through all the necessary steps and putting everything together, the four-point function
is given by

C1234;{lij} =

L1L2L3L4

∑
a,b,c,d

s(a, b, c, d)√
L1〈Ψ1|Ψ1〉

√
L2〈Ψ2|Ψ2〉

√
L3〈Ψ3|Ψ3〉

√
L4〈Ψ4|Ψ4〉

, (2.5)

11For non-planar diagrams, each C1234;{lij} will come with additional 1/N factors. However, in this thesis
we will focus on planar diagrams, such that each C1234;{lij} is simply a number.
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2.3 Outline

where

s(a, b, c, d) = r3〈
←−
Ψ 2b|Ψ1a〉l1 r〈

←−
Ψ 4d |Ψ1a〉l2 r1〈

←−
Ψ 2b |Ψ1a〉l3 r〈

←−
Ψ 1a|Ψ3c〉l r〈

←−
Ψ 3c|Ψ2b〉l r2〈

←−
Ψ 2b|Ψ4d〉l.

Let us point out that the information about the number of contractions between the different
operators, i.e. {lij}, is implicit in the different scalar products that appear in s(a, b, c, d) (we
will see this in more detail in chapters 3 and 4).

Lastly, let us point out that, since in this case we also need the precise form of the wave
functions of the four operators, the four-point function will depend on the corresponding set
of momenta:

C1234;{lij} ({p1}, {p2}, {p3}, {p4}) . (2.6)

Explicit expressions for four-point functions in terms of the momenta of the operators will
be given in chapter 6.

2.3 Outline

Let us now give an outline of how the material is organized in the rest of this thesis.

• Part II: In this part, we develop the necessary integrability tools to compute correlation
functions at weak coupling in N = 4 SYM. Chapter 3 reviews the coordinate and
algebraic Bethe ansatz, which provide the framework to develop the tools we need.
Then, in chapter 4 we explictly show how to perform the three basic operations on spin
chains mentioned in the previous sections. Namely, we will show how to cut, flip and
sew spin chains. These three operations will make up our integrability toolkit. The two
chapters of this part of the thesis are based on material first published in [40].

• Part III: We will then use our integrability toolkit to compute correlation functions.
We will explain in great detail how to go about implementing the steps outlined in
sections 2.1 and 2.2. First, we start with three-point functions in chapter 5 and then
move on to consider four-point functions in chapter 6. The material in these chapters
is based on [40] and [41].

• Part IV: The subject of this part of the thesis is the weak/strong coupling match
for correlation functions in the Frolov-Tseytlin limit. Chapter 7 provides the necessary
strong coupling material, such as classical strings in AdS5 × S5, the Frolov-Tseytlin
limit and holographic correlation functions. In particular, to motivate the weak/strong
coupling that we will present, we review the weak/strong coupling match for the spec-
trum in the same classical limit. In chapter 8 we use the results of Part II to provide
conclusive numerical evidence to support the match, while in chapter 9 we prove it by
using the language of coherent states. Finally, in chapter 10 we address the issue of
back-reaction from the weak coupling point of view. The material in this part is based
on [41, 42].
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2.3 Outline

• Part V: In chapter 11 we present some results that will be needed to extend the
integrability techniques for correlations functions beyond the SU(2) sector of N = 4

SYM. More specifically, in section 11.1 we present the coordinate nested Bethe ansatz
for SU(K) and SU(K|J) spin chains, thus generalizing the discussion presented for
SU(2) spin chains in section 3.1. In section 11.2 we give a formula to compute the norm
of Bethe eigenstates corresponding to spin chains with general Lie group. Moreover,
in section 11.3 we explain how to compute the overlap of Bethe states of SL(2) and
SU(1|1) spin chains. Part of the material in this chapter appeared in [40]. Finally, we
present our conclusions and mention future directions in chapter 12.
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Part II

Integrability Toolkit
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Chapter 3

Bethe Ansatz

In this chapter we will review the coordinate and algebraic Bethe ansatz for SU(2) spin
chains. One of the goals of this chapter is to set the notation for the rest of the thesis. The
expert reader is certainly familiar with the contents of this chapter and can safely skip it.
However, we hope it is a useful resource for anyone trying to learn the subject.

3.1 Coordinate Bethe ansatz

As anticipated in the introduction, in this thesis we will mostly consider single-trace operators
with definite one-loop anomalous dimensions made out of two complex scalars ofN = 4 SYM.
An operator of this type is in fact linear combinations of single-trace operators and it can
be mapped to a quantum state |Ψ〉 on a closed SU(2) spin chain. We will represent an
operator made of L complex scalar fields Z by a ferromagnetic vacuum state of L spins up
[77]. Operators with N scalar fields X and L − N fields Z are represented by flipping N
of those spins up into spins down, see figure 3.1.12 These spin flip excitations are called
magnons. For example, in the case of the Konishi operator (1.18) we have L = 4 and N = 2.

A generic SU(2) spin chain state will be of the form

|Ψ〉 =
∑

1≤n1<n2<···<nN≤L

ψ(n1, . . . , nN)|n1, . . . , nN〉 , (3.1)

where the ket |n1, . . . , nN〉 stands for the state with spins down at positions n1, n2, . . . nN
13

while ψ(n1, . . . , nN) is the wave function, which we will fix below by requiring that the states
(3.1) diagonalize the SU(2) Heisenberg spin chain Hamiltonian:

Ĥ =
λ

8π2

L∑
n=1

(In,n+1 − Pn,n+1) . (3.2)

12This is will be our convention throughout the thesis: Z fields and their conjugates Z̄ will represent the
vacuum, while X and X̄ fields will represent excitations around this vacuum.

13E.g., Tr
(
Zn1−1XZn2−n1−1XZn3−n2−1XZL−n3

)
= | . . . ↓

n1

. . . ↓
n2

. . . ↓
n3

. . . 〉 7→ |n1, n2, n3〉
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3.1 Coordinate Bethe ansatz

X
Z Z Z X Z Z X Z

Z
Z

XZZZXZZZXZ

Z 1 2 . . .
L

Tr (ZZZXZZX . . .XZZX) |↑↑↑ ↓ ↑↑ ↓ . . . ↓ ↑↑ ↓〉

Figure 3.1: Map between single-trace operators made out of two complex scalars Z,X and SU(2)
spin chain states. There are L−N vacuum fields Z (spins up) and N excitations X (spins down),
such that the total length of the spin chain is L. The grey numbers in the left picture label the
operator/spin chain sites.

In the spin chain language, the identity In,n+1 and permutation Pn,n+1 operators act on the
spins at positions n and n+ 1 as follows

In,n+1| . . . ↑
n
↓
n+1

. . . 〉 = | . . . ↑
n
↓
n+1

. . . 〉 ,

Pn,n+1| . . . ↑
n
↓
n+1

. . . 〉 = | . . . ↓
n
↑
n+1

. . . 〉 ,

where of course L + 1 ≡ 1. The energy spectrum of this Hamiltonian gives us the one-
loop anomalous dimensions ∆(1) of the operators. We will now review how to construct the
wave functions ψ(n1, . . . , nN) which diagonalize the spin chain Hamiltonian (3.2).14 For very
pedagogical references on the coordinate Bethe ansatz, see [78, 79, 80].

Let us first consider the simplest case: a spin chain state with a single magnon, i.e. N = 1

in (3.1). We can diagonalize the translation-invariant Hamiltonian by going to Fourier space:
ψ(n1) = eip1n1 . With this, it is a simple exercise to show that the energy of the state ε(p1),
also called the dispersion relation, is given by

ε(p) =
λ

2π2
sin2 p

2
. (3.3)

For a two-magnon state we make the following ansatz for the wave function

ψ(n1, n2) = eip1n1+ip2n2 + S(p2, p1)eip2n1+ip1n2 . (3.4)

The relative coefficient between the two plane waves is the amplitude for incoming momenta
{p1, p2} to be exchanged into {p2, p1}. In other words, it is the two-body S-matrix. By
explicitly acting with Ĥ on this state we find that its energy is simply given by ε(p1) + ε(p2)

14In chapter 11 we explain how the coordinate Bethe ansatz works for more general spin chains.
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3.1 Coordinate Bethe ansatz

ψ(n1, n2) :

n1 n2 n1 n2

+

p1 p2 p1 p2

ψ(n1, n2, n3) :

n1 n2 n1 n2

+

p1 p2 p1 p2

n3

p3 p3

n3 n1 n2

p1 p2 p3

n3

+

n1 n2

p1 p2 p3

n3 n1 n2

p1 p2 p3

n3

+

+

n1 n2

p1 p2 p3

n3

+

Figure 3.2: Diagramatic representation of SU(2) wave functions. Note that we are only showing
the plane wave terms and not their corresponding coefficients. The top diagram correspond to the
two-magnon wave function (3.4), while the bottom diagram corresponds to the three-magnon wave
function (3.7). The fact that in the latter case the scattering occurs in a pairwise manner is non-
trivial and is a consequence of integrability. For example, the plane wave coefficient of that last term
of ψ(n1, n2, n3) is S(p3, p2)S(p3, p1)S(p2, p1), where S(pi, pj) is the SU(2) S-matrix shown in (3.5).

and that the S-matrix takes the following form

S(pa, pb) =
1
2

cot pa
2
− 1

2
cot pb

2
+ i

1
2

cot pa
2
− 1

2
cot pb

2
− i

. (3.5)

Given that we are in 1+1 dimensions, energy and momenta conservation imply that the
individual momenta of two identical particles can at most be exchanged in an elastic scattering
process between them. Thus, the two-particle wave function ansatz we made had to work.

For three particles the story is radically different. This is when integrability starts playing
a role. Integrability means that in addition to the momentum Q1 = P̂ and energy Q2 = Ĥ,
there exists a tower of local conserved charges Qn which commute with the momentum
and Hamiltonian. We can introduce an arbitrary complex number u and simply encode all
conservation laws as follows15

∞∑
n=0

[
P̂ , Qn

]
un =

∞∑
n=0

[
Ĥ,Qn

]
un = 0 . (3.6)

15After some n the charges are of course not independent. For the Hamiltonian (3.2) such relation can be
easily derived using the algebraic Bethe ansatz (ABA) formalism which we will review in section 3.2.
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3.1 Coordinate Bethe ansatz

This relation has important consequences. For example, it allows us to guess the form of
ψ(n1, n2, n3) in (3.1). The reason is that the existence of the higher conserved charges does
imply that if we scatter three magnons with momenta {p1, p2, p3} they will scatter into some
other momenta {p′1, p′2, p′3}, which must be related to the original ones by a simple reshuffling.
In other words, the scattering is effectively pairwise. For example, for three particles we are
thus lead to

ψ(n1, n2, n3) = eip1n1+ip2n2+ip3n3 + Aeip2n1+ip1n2+ip3n3 + A′ eip2n1+ip3n2+ip1n3 + . . . (3.7)

where . . . stand for the remaining 3 possible plane waves. The coefficient A multiplies the
plane wave which is obtained from the plane wave with unit coefficient by swapping particles
with momenta p1 and p2. Thus

A = S(p2, p1) , (3.8)

where S(p, p′) is the two-body S-matrix (3.5) derived above. The coefficient A′ is the coeffi-
cient of the plane wave which is obtained after a sequence of two-momenta exchanges,

A′ = S(p2, p1)S(p3, p1) . (3.9)

The coefficients of the three remaining plane waves are obtained in the same way.
The generalization to N > 3 particles involves N ! plane waves whose coefficients follow

again the same pattern. Therefore, the wave function of a generic N -magnon SU(2) state
can be nicely written as

ψ(n1, . . . , nN) =
∑
P

A(P )
N∏
j=1

ei pPjnj , (3.10)

where the sum runs over all N ! permutations P of (1, 2, . . . , N). The plane wave coefficients
are such that they obey the following relation

A(. . . , j, i, . . . )

A(. . . , i, j, . . . )
= S(pj, pi) , (3.11)

where S(p, p′) is the S-matrix given in (3.5). Our convention for the normalization of the
wave function is that the plane wave with no momenta exchanged has unit coefficient, i.e.
A(1, . . . , N) = 1. This choice of normalization, together with equation (3.11), fixes all plane
wave coefficients. Of course, this normalization depends on the choice of an ordering of the
momenta; more on this in section 3.3. The observation that the eigenstates of the Heisenberg
spin chain are given by such ansatz was the key insight of the seminal work of Hans Bethe
[16]. States of the form (3.1), whose wave functions are given by (3.10) are called Bethe
states.
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3.1 Coordinate Bethe ansatz

The energy of the multiparticle state is the sum of the energy of the individual magnons:

E =
N∑
j=1

ε (pj) . (3.12)

Since the system is put in a finite circle of length L, the spectrum is discrete. The periodicity
of the wave function imposes a set of N quantization conditions for the N momenta,

eipjL
N∏
k 6=j

S(pk, pj) = 1 (3.13)

which are called Bethe equations. The physical meaning of this equation is the following:
if we carry a magnon with momentum pj around the circle, the free propagation phase pjL
plus the phase change due to the scattering with each of the other N − 1 magnons must give
a trivial phase. We shall denote by Bethe eigenstates those Bethe states whose momenta are
quantized as in (3.13). Furthermore, since we are dealing with single-trace operators on the
gauge theory side, we have to take into account the cyclicity of the trace by imposing the
zero momentum condition on the spin chain picture:

N∏
j=1

eipj = 1.

Let us stress again that the fact that the simple wave functions described above diagonalize
the Hamiltonian (3.2) is remarkable and very non-trivial. A generic spin chain Hamiltonian
will not lead to an integrable theory, the scattering will not factorize into two-body scattering
events and the set of momenta of multiparticle states will not be conserved. Hence, in general,
the problem will be of exponential complexity and the best we can do is diagonalize small
spin chains in a computer. The Bethe ansatz reduces this problem to a polynomial one. For
example, the spectrum problem is completely solved by the simple set of algebraic equations
(3.13): we first solve these equations to find the values of the momenta pj, plug those values
in (3.12) and we are done.

Before moving to the algebraic Bethe ansatz, let us introduce the rapidities uj, which is
a convenient parametrization of the momenta pj. They are given by

u ≡ 1

2
cot

p

2
, eip =

u+ i/2

u− i/2
. (3.14)

With this parametrization, the S-matrix (3.5) takes the simple form

S(ua, ub) =
ua − ub + i

ua − ub − i
, (3.15)

28



3.2 Algebraic Bethe ansatz

while the Bethe equations (3.13) become simple polynomial equations

eiφj = 1 where eiφj ≡
(
uj + i/2

uj − i/2

)L N∏
k 6=j

uj − uk − i
uj − uk + i

. (3.16)

If the rapidities uj satisfy the Bethe equations, they are also known as Bethe roots. Note
that we have introduced the phases φj, which we will use in later chapters. Finally, in this
parametrization, the eigenvalues of the Hamiltonian (3.2), see (3.12), read

E =
λ

8π2

N∑
j=1

1

u2
j + 1

4

. (3.17)

3.2 Algebraic Bethe ansatz

While the coordinate Bethe ansatz we just reviewed gives us a nice physical picture of Bethe
states and the Bethe equations, it does not really provide a rigorous explanation as to why the
wave functions (3.10) diagonalize the Heisenberg Hamiltonian. The algebraic Bethe ansatz
[81], which we now proceed to review, provides the explanation for this “miracle". We will
show why relation (3.6) is indeed true and we will recall that the wave function (3.10) can be
constructed by acting on the “ferromagnetic" state with some nonlocal “creation" operators
B(u). For example, the state (3.1) with wave function (3.10) is simply given by

|Ψ〉 = NB(u1)B(u2) . . .B(uN) |↑ . . . ↑〉

where N is some simple known normalization factor which we will write down later.
The algebraic Bethe ansatz is a formalism developed by the Leningrad school for con-

structively producing and solving integrable theories (see [78, 81, 82] for nice introductions to
the subject and for further references). Originally “solving” meant “computing the spectrum”;
however, the algebraic Bethe ansatz was later used to solve more dynamical quantities, such
as correlation functions [83, 84]. The great advantage over the coordinate Bethe ansatz is
the constructive nature of the method and the mathematical elegance. The main drawback
is that the physical picture is somehow obscured. For example, the magnon physical picture
of (3.10) is somehow hidden in this formalism.

The starting point of our review is the statement that the Hamiltonian Ĥ (3.2) can be
obtained from the following object:

Ĥ − λL

8π2
= − λ

8π2

L∑
n=1

Pn,n+1 =
λ

8iπ2

d

du

(
log Tr0

[
(u I + iP)01 . . . (u I + iP)0L

])
u=0

. (3.18)

Before deriving this fact or explaining its relevance, let us digest the notation that we just
introduced. First, u is the so-called spectral parameter. It is an arbitrary complex number
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3.2 Algebraic Bethe ansatz

which we set to zero after taking the derivative.16 Then, we introduce the R-matrix, defined
as17

R0j(u) ≡ (u I + iP)0j . (3.19)

This is an operator acting on a tensor product of two vector spaces: the physical spin chain
vector space at site j and an extra auxiliary vector space labeled by the index 0. Both these
spaces are isomorphic to C2, the space where the spin 1/2 lives. Just as in (3.2), I is the
identity operator and P is the permutation operator that interchanges the spins at physical
position j and auxiliary position 0. We can of course write the R-matrix as a simple 4 × 4

matrix acting on the vector space |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉.
The operator inside the square brackets in (3.18) is the monodromy matrix, defined as

L0(u) ≡ R01(u) . . . R0L(u) . (3.20)

It acts on the tensor product of L+1 spaces: the L physical spaces corresponding to the L spin
chain sites plus the auxiliary space 0. Since it is crucial to understand well the notation we
are introducing let us be maximally pedestrian for a second. Using indices ii, . . . iL, j1, . . . , jL
for the physical spaces and a, b for the auxiliary space, the monodromy matrix is an object
with indices

L0(u)j1...jL;b
i1,...iL;a ≡

(
L0(u)j1...jL;1

i1,...iL;1 L0(u)j1...jL;2
i1,...iL;1

L0(u)j1...jL;1
i1,...iL;2 L0(u)j1...jL;2

i1,...iL;2

)
≡
(
A(u+ i/2)j1...jLi1,...iL

B(u+ i/2)j1...jLi1,...iL

C(u+ i/2)j1...jLi1,...iL
D(u+ i/2)j1...jLi1,...iL

)b
a

.

The shifts by i/2 are introduced for future convenience. In other words, we can make the C2

auxiliary space manifest and write

L0(u) =

(
A(u+ i/2) B(u+ i/2)

C(u+ i/2) D(u+ i/2)

)
(3.21)

where A,B, C,D are operators which only have physical indices, i.e. they act on the physical
spin chain Hilbert space H = (C2)⊗L. These operators obey an algebra, which we will derive
below.

The next object we see in (3.18) is the trace of the monodromy matrix with respect to
the auxiliary space. This defines the transfer matrix

T̂ (u) ≡ Tr0L0(u) . (3.22)

Since we traced over the auxiliary space the transfer matrix is an operator acting on the
16This variable u will be soon identified with u appearing in (3.6) and (3.14) in the previous section.
17Since I and P are the only two invariant tensors of SU(2), it is natural that we use them to construct the

R-matrix. But what about the coefficients of these operators in (3.19)? If we write R(u) = r(u) I + s(u)P
and plug this into the Yang-Baxter relation, see (3.32), we find that r(u)/s(u) = u/i. Of course, this does
not completely fix the R-matrix and as such, (3.19) is our choice of normalization for this operator.
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3.2 Algebraic Bethe ansatz

R(u− v) = 1
i
R(0) =

T̂ (u) =

1
iL
T̂ (0) = eiM̂om =

T̂−1(0)T̂ ′(0) = 1
i

L∑
k=1

= 1
i

L∑
k=1

u

v

u
iLT̂−1(0) = e−iM̂om =

1 2 . . . k . . . L

. . .

. . .

. . .

1 2 . . . k . . . L

Figure 3.3: Since i−1R(0) = P, i−LT̂ (0) is the unit shift operator to the right, see the upper right
corner of the figure. By definition of inverse iLT̂−1(0) is the unit shift operator to the left. When
computing T̂ ′(0) the derivative will act on one of the R’s at position k, hence the sum in the last
line. Also, note that R′(0) = I. We see that T̂ ′(0) is a sum of terms which are almost a total shift of
one unit to the right except for a small “impurity” at site k. Therefore, when multiplying by T̂−1(0),
we almost get the identity operator acting on the full Hilbert space. The impurity simply leads to
a permutation acting on sites k and k − 1. Hence (3.24) leads to (3.2).

physical Hilbert space. More explicitly we can write it in terms of the operators A and D as

T̂ (u) = A(u+ i/2) +D(u+ i/2) . (3.23)

Finally, in (3.18) we have the derivative of the logarithm of an operator (or big matrix). This
is understood as usual as the inverse of the matrix times its derivative. With the notation
introduced above, (3.18) simply reads

Ĥ − λL

8π2
=

λ

8iπ2
T̂−1(0) T̂ ′(0) (3.24)

where the prime stands for derivative with respect to the spectral parameter u. With all
we know so far, we can readily show that the r.h.s of (3.24) does indeed give its l.h.s. This
derivation is illustrated in figure 3.3.

An important feature of this construction is that, as explained in figure 3.4, transfer
matrices with different spectral parameters commute,[

T̂ (v), T̂ (u)
]

= 0 , ∀ u, v . (3.25)

The Hamiltonian is just the log derivative of the transfer matrix and hence [Ĥ, T̂ (u)] = 0.
Also [Ĥ, log T̂ (u)] = 0. The latter relation is quite nice since it implies (3.6) neatly. Recall
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3.2 Algebraic Bethe ansatz

that the existence of the higher local charges Qn is what ensures integrability of the model.
Indeed, we can Taylor expand log T̂ (u) around u = 0,

log T̂ (u) =
∞∑
n=0

Qnu
n , (3.26)

and generate in this way a tower of local conserved charges.18 The first one, Q1, is the
momentum and the second, Q2, is the energy, see figure 3.3. The higher terms are the higher
charges we were looking for. Hence, indirectly, we now understand why the multi-particle
ansatz (3.10) ought to work.

Relation (3.25) has another interesting consequence. Since the transfer matrices commute
with each other for different values of the spectral parameter we can diagonalize T̂ (u) with
a spectral-parameter-independent base of 2N states |Ψi〉 such that

T̂ (u)|Ψi〉 =
(
A(u+ i/2) +D(u+ i/2)

)
|Ψi〉 ≡ T (u)i|Ψi〉 . (3.27)

These states diagonalize all the higher charges at the same time since they are simple deriva-
tives of the transfer matrix. We could have picked any of the higher charges as the Hamil-
tonian. The algebraic Bethe ansatz approach tells us that all these Hamiltonians can be
diagonalized at once with the same wave functions! We start seeing the constructive nature
of this approach.

We already encountered the state |Ψ〉 in the coordinate Bethe ansatz approach: it is
simply (3.1) with the wave function given by (3.10). For us it is important to construct
this state in the algebraic Bethe ansatz language. It turns out that the monodromy matrix
elements B(u) can be used as creation operators for the magnons.19 More precisely, the claim
is that

|Ψ〉 = B(u1) . . .B(uN) |↑ . . . ↑〉 , (3.28)

yields a state proportional to (3.1) once we identify ui and pi according to (3.14). In other
words |Ψ〉 is a Bethe state. If ui are Bethe roots satisfying the Bethe equations (3.16), then
|Ψ〉 satisfies (3.27) and is a Bethe eigenstate.

To understand why (3.27) indeed holds we need to

1) understand how to take the operators A and D through the creation operators B,

2) derive the action of A and D on the ferromagnetic vacuum.

18Of course we would also get conserved charges by expanding T̂ (u) or any functional of the transfer matrix
around any point u = u∗. The advantage of expanding log T̂ (u) around u = 0 is that the charges generated
in this way are local. This follows from the important relation R(0) = P, see the derivation in figure 3.3 for
an illustration of the importance of this property.

19This will be made more clear below, see discussion after (3.39).
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3.2 Algebraic Bethe ansatz

R23(v)R13(u+ v)R12(u)R12(u)R13(u+ v)R23(v)

L02(v)L01(u)R0102(u− v) R0102(u− v)L01(u)L02(v)

u −v0

1 2 3

u −v0

1 2 3

1 2 3 L

u

v
01

02

1 2 3 L

u

v

02

01

Figure 3.4: The R-matrix is a very special operator. It is designed to satisfy the Yang-Baxter
equation depicted at the top. This equation is arguably the most important equation in quantum
integrability. In particular it implies the LLR = RLL type relation represented at the bottom. To
prove this relation we simply move one of the vertical lines from the left group to the right region
using Yang-Baxter and repeat this procedure until all the vertical lines are to the right of the R-
matrix. From this simple equation all the algebra relations (table 3.1) of the monodromy matrix
elements A,B, C,D follow trivially as explained in the main text. Finally, multiplying this equation
by R−1 and taking the trace over the tensor product of the two auxiliary spaces 01 and 02 we derive
(3.25).

The latter is simple. From the definition (3.20) we easily see that

A(u) |0〉 = a(u) |0〉 , D(u) |0〉 = d(u) |0〉 , (3.29)

C(u) |0〉 = 0 , B(u) |0〉 = a non-trivial single spin excitation , (3.30)

where |0〉 = |↑ . . . ↑〉 is the ferromagnetic vacuum state and20

a(u) ≡
(
u+

i

2

)L
, d(u) ≡

(
u− i

2

)L
. (3.31)

Next we need to understand the algebra of the elements of the monodromy matrix A,B, C
and D. In order to do so, we first note that the R-matrix is constructed in such a way that

20Different overall normalizations of the R-matrix (3.19) lead to different functions a(u) and d(u). The
ration a(u)/d(u) is however independent of that choice of normalization and any physical quantity will
depend in a and d only through that ratio. With our choice of normalization for the R-matrix we have that
[B(u)]

†
= −C(u∗).
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3.2 Algebraic Bethe ansatz

it obeys the following equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) . (3.32)

This is the famous Yang-Baxter relation, which is depicted at the top of figure 3.4. As
explained in that figure, the fact that the R-matrix obeys this equation implies that the
monodromy matrix L(u) satisfies the relation

L02(v)L01(u)R0102(u− v) = R0102(u− v)L01(u)L02(v) , (3.33)

where 01 and 02 are two auxiliary spaces isomorphic to C2. This relation encodes the algebra
of the monodromy matrix elements. More explicitly we can choose a basis |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉
spanning the tensor product of these two spaces. In this basis the left-hand side of (3.33)
simply reads
A(v) B(v) 0 0

C(v) D(v) 0 0

0 0 A(v) B(v)

0 0 C(v) D(v)



A(u) 0 B(u) 0

0 A(u) 0 B(u)

C(u) 0 D(u) 0

0 C(u) 0 D(u)



u−v+i 0 0 0

0 u−v i 0

0 i u−v 0

0 0 0 u−v+i


while the right-hand side is obtained by multiplying the same matrices in the opposite order.
In this way we get 16 algebra relations between the several elements, which we present in
table 3.1.

To justify the identification of B and C as creation and annihilation operators, we compute
the commutation relations of these nonlocal operators with the total spin generators Si ≡∑L

n=1 σ
i. For that aim we consider the limit v → ∞ with u held fixed. In this limit

we have, from the definition (3.20), that A(v)/a(v) ' 1 + i
2v

(1 + Sz), C(v)/a(v) ' i
v
S+,

D(v)/a(v) ' 1 + i
2v

(1− Sz) and
B(v)

a(v)
' i

v
S− . (3.39)

Now, from the sixteen algebra relations in table 3.1 we can read for example the commutation
relations [B(u), Sz] = 2B(u) and [C(u), Sz] = −2 C(u). This means that B(u) is a single spin
creation operator while C(u) is a single spin annihilation operator. We also have [A(u), Sz] =

[D(u), Sz] = 0. Furthermore, [
S+,B(u)

]
= A(u)−D(u) , (3.40)

Equations (3.39) and (3.40) have further important consequences which we will discuss at
the end of the next section.

Recall that our goal was to learn how to carryA andD through the B operators. Relations
(3.34) and (3.35) tell us how to do this. Suppose we would drop the second term in the right-
hand side of (3.34) and (3.35). Then it is clear that (3.28) would be an eigenstate of T̂ (u−i/2)
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3.2 Algebraic Bethe ansatz

A(v)B(u) = f(u− v)B(u)A(v) + g(v − u)B(v)A(u) (3.34)
B(v)A(u) = f(u− v)A(u)B(v) + g(v − u)A(v)B(u)

D(v)B(u) = f(v − u)B(u)D(v) + g(u− v)B(v)D(u) (3.35)
B(v)D(u) = f(v − u)D(u)B(v) + g(u− v)D(v)B(u)

C(v)A(u) = f(v − u)A(u)C(v) + g(u− v)A(v)C(u)

A(v)C(u) = f(v − u)C(u)A(v) + g(u− v)C(v)A(u)

C(v)D(u) = f(u− v)D(u)C(v) + g(v − u)D(v)C(u)

D(v)C(u) = f(u− v)C(u)D(v) + g(v − u)C(v)D(u)

[C(v),B(u)] = g(u− v) [A(v)D(u)−A(u)D(v)] = g(u− v) [D(u)A(v)−D(v)A(u)] (3.36)
[D(v),A(u)] = g(u− v) [B(v)C(u)− B(u)C(v)] = g(u− v) [C(u)B(v)− C(v)B(u)]

[B(u),B(v)] = [C(u), C(v)] = [A(u),A(v)] = [D(u),D(v)] = 0 (3.37)

where
g(u) ≡ i

u
, f(u) ≡ 1 +

i

u
. (3.38)

Table 3.1: Algebra of the monodromy matrix elements which follows from the LLR = RLL
relations described in the text and depicted in figure 3.4.

with eigenvalue

T (u− i/2) =

(
u+

i

2

)L N∏
j=1

u− uj − i
u− uj

+

(
u− i

2

)L N∏
j=1

u− uj + i

u− uj
. (3.41)

Because of the second term in the right hand side of (3.34) and (3.35) the state |Ψ〉 is
typically not an eigenstate of the transfer matrix. We can wonder what conditions do we
need to impose so that the contribution of these extra terms vanishes. These conditions are
nothing but the Bethe equations (3.16)!21

21 Indeed, those extra terms would lead to terms of the form
∑N
k=1(αk+δk)B(u)

∏
j 6=k B(uj) |↑ . . . ↑〉 where

αk is the contribution coming from A(u) and δk is the contribution coming from D(u) in (3.27). Suppose we
want to find αk. We start with A(u)B(uk)

∏
j 6=k B(uj) |↑ . . . ↑〉 and need to carry A(u) to the right until it hits

the vacuum. Note that we ordered the creation operators so that B(uk) comes first. We can always do it since
[B(u),B(v)] = 0. Now it is clear that to end up with terms contributing to αk we must first use the second
term in (3.34) to commute A(u) through B(uk) so that B(uk) becomes B(u) (A(u) becomes A(uk)). But
then we must always use the first term in (3.34) to commute A(uk) through all other B’s since we are already
happy with the arguments of the B operators. Hence we conclude that αk = a(uk)g(u−uk)

∏N
j 6=k f(uj −uk).

Similarly δk = d(uk)g(uk − u)
∏N
j 6=k f(uk − uj). The condition αk + δk = 0 yields the Bethe equations (3.16)

once we recall (3.31) and (3.38).
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3.3 A few comments and summary of notation

As explained above, the coordinate Bethe states (3.1) and the algebraic Bethe states (3.28)
are proportional to each other. Let us write a precise relation between the two. First, recall
that to define the coordinate Bethe state normalized according to (3.10) we pick a particular
order for the momenta. Given an ordering p1, . . . , pN for the momenta, the relation between
the Bethe states normalized according to the coordinate Bethe ansatz (CBA) (3.10) and the
algebraic Bethe ansatz (ABA) (3.28) is22

|Ψ〉al = d{u} g{u+ i
2
}f
{u}{u}
< |Ψ〉co , (3.42)

where we have introduced the shorthand notation

F {u} ≡
∏

uj∈{u}

F (uj) , F
{u}{u}
< ≡

∏
ui, uj ∈ {u}

i < j

F (ui − uj) , (3.43)

where F (u) is any given function. We will use this notation throughout the rest of this thesis.
Also, from now on we should explicitly attach an upper index “al” or “co” where necessary
to specify if we are referring to a given object in the algebraic or coordinate normalizations.
For example, we will often denote the CBA and ABA Bethe states by |{u}〉co and |{u}〉al,
respectively, where {u} denotes the set of all rapidities of the state. That is, from now on

|Ψ〉al ↔ |{u}〉al , |Ψ〉co ↔ |{u}〉co . (3.44)

Of course the normalization of the algebraic Bethe ansatz state (3.28) does not depend
on the order of the momenta. After all, we see from (3.37) that the B(ui) operators commute
with each other. Hence we can also use (3.42) to go between two coordinate Bethe state with
different ordering of the same magnons.

Let us rewrite the Konishi state (1.18) in the coordinate and algebraic normalizations.
The Konishi state has L = 4, N = 2 and momenta p1 = −p2 = 2π/3 or Bethe roots
u1 = −u2 =

√
3/6. This leads to

Kco = 4 e−iπ/3
[
Tr(ZZXX)− Tr(ZXZX)

]
,

Kal =
8

27

[
Tr(ZZXX)− Tr(ZXZX)

]
,

Finally let us end this section with a discussion on the completeness of the basis of states
discussed so far. Using (3.40) and the same kind of reasonings of footnote 21 we can easily

22In the local basis of states (3.1), the wave functions are rational function of the rapidities {ui}. The
conversion factor in (3.42) can be simply derived by demanding that the two wave functions have the same
zeros, poles and large uk behavior.
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prove that
S+B(u1) . . .B(uN) |↑ . . . ↑〉 = 0 (3.45)

if the roots uj obey Bethe equations. In other words, S+ kills Bethe eigenstates. This means
that Bethe eigenstates are highest weight states. Indeed, if we count the solutions to the
Bethe equations (3.16) we find that there are precisely [81]

ZL,N =

(
L

N

)
−
(

L

N − 1

)
solutions with N spin flips. This is exactly the number of highest weights for a chain of
length L and Sz = L/2 − N . All other states are found by acting with S− on these states.
Indeed

L/2∑
N=0

[
2

(
L

2
−N

)
+ 1

]
ZL,N = 2L . (3.46)

Hence a complete basis of states is given by(
S−
)n |{u}〉al =

(
S−
)n B(u1) . . .B(uN) |↑ . . . ↑〉 (3.47)

where uj obey Bethe equations and n = 0, . . . , L − 2N . All these states have the same
energy (or any other charge) as the highest weight state B(u1) . . .B(uN) |↑ . . . ↑〉 since the
Hamiltonian (or the transfer matrix) commutes with Si for i = z,+,−.

Note also that these states can be written using only the creation operators B(u) since
for large rapidities this operator becomes the lowering operator, see (3.39). More precisely,
this state is simply given by

(
S−
)n |{u}〉al = lim

Λk→∞

(
n∏
k=1

Λ1−L
k

i

)
B(Λ1) . . .B(Λn)B(u1) . . .B(uN) |↑ . . . ↑〉 . (3.48)

In short, we see that if we consider the Bethe equations for uj and then add a few Bethe
roots at infinity we describe the full Hilbert space. The factor

(∏n
k=1 Λ1−L

k /i
)
simply ensures

a good limit when the roots go to infinity.
The coordinate Bethe ansatz states have a better limit when we send some of the roots

u∗ to infinity
lim
uk→∞

|{u}〉co = S−|{uj}j 6=k〉co . (3.49)

Particularly important states are the so-called vacuum descendants

|{∞N}〉co =
(
S−
)N |↑ . . . ↑〉 (3.50)

which correspond to a state with N roots at infinity only. They correspond to a ferromagnetic
vacuum rotated away from the z axis. In the N = 4 language it corresponds to an operator
with L−N scalar fields Z and N scalar fields X without any anomalous dimension. These
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are BPS states whose anomalous dimension is zero to all orders in perturbation theory as a
consequence of supersymmetry. In the string theory dual language these states correspond
to BMN point like strings which rotate around one of the equators of S5 at the speed of light.
Different values of N correspond to different equators of S5 which are of course related by a
global rotation.
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Chapter 4

Integrability Toolkit

In this chapter we will present the necessary tools for computing correlation functions in
N = 4 SYM in the fashion explained in the introduction. That is, we will express a closed
spin chain Bethe eigenstate as an entangled state in the tensor product of the two open
subchain Hilbert spaces (section 4.1). Then we will explain how to map a state in one of
the two subchains from ket to bra (section 4.2). Finally, we will compute the overlap of
Bethe states (section 4.3). We call these three procedures cutting, flipping and sewing. In
chapters 5 and 6 these tools will be used to put the pieces together into the three- and
four-point functions as illustrated in figures 2.1 and 2.2. Two references that give a nice,
pedagogical introduction to the techniques used in the cutting and sewing sections below
(from the algebraic Bethe ansatz point of view) are [78, 82].

4.1 Cutting

Consider a spin chain of length L and a generic state (3.1) of that spin chain. We denote the
first l spins starting from the left of that chain by left subchain and the last r = L− l spins
by right subchain. We can represent that state in the big chain (3.1) as an entangled state
in the tensor product of the left and right subchains as

|Ψ〉 =

min{N,l}∑
k=0

∑
1≤n1<···<nk≤l

∑
l<nk+1<···<nN≤L

ψ(n1, . . . , nN) |n1, n2, . . . , nk〉 ⊗ |nk+1 − l, . . . , nN − l〉 .

(4.1)
The sum over k is the sum over how many magnons are in the left chain. The sum on
the right-hand side of (4.1) has

(
L
N

)
terms. For Bethe states there is a huge simplification.

Namely, when we represent a Bethe state as an entangled state in the two subchains, each
of the subchain states still has the same Bethe state form.

The reason is that – locally – these are eigenstates of a local Hamiltonian and therefore
take the specific local form presented in the previous chapter. As a result, when we represent
a Bethe state as an entangled state in the two subchains, each of the subchain states still has
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4.1 Cutting

the same local Bethe state form.
In other words, a magnon that is locally propagating along the chain does not know

that at some far away point the chain was broken. To write the corresponding piece of the
wave function, all we need to know is whether that magnon propagates on the left or right
subchains. A Bethe state therefore breaks into two as

|{u}〉 =
∑
α∪ᾱ

H(α, ᾱ)|α〉l ⊗ |ᾱ〉r , (4.2)

where the sum is over all 2N possible way of splitting the rapidities into two groups α and
ᾱ such that α ∪ ᾱ = {u}. For example, if N = 2, the possible partitions (α, ᾱ) would be
({}, {u1, u2}) , ({u1}, {u2}) , ({u2}, {u1}) , ({u1, u2}, {}). As opposed to the

(
L
N

)
terms in (4.1),

we only have 2N terms in (4.2). This is a very convenient simplification whenever L� N .
The function H(α, ᾱ) takes different forms in the coordinate and algebraic bases. Below

we will compute that function for each of these normalizations. Before moving on, let us
introduce some further notation in the same spirit of (3.43). We shall use

Fα ≡
∏
uj∈α

F (uj) , F αᾱ ≡
∏
ui ∈ α
vj ∈ ᾱ

F (ui − vj) , F αα
< ≡

∏
ui, uj ∈ α
i < j

F (ui − uj) . (4.3)

Cutting a coordinate Bethe state

The normalization of a Bethe state in the coordinate basis |{u}〉co depends on the choice
of ordering u1, u2, . . . , uN of the magnons, see (3.10). For the states in the two subchains
|α〉col and |ᾱ〉cor we choose the ordering induced from the ordering of |{u}〉co. With these
conventions we will now derive Hco(α, ᾱ).

We first consider the case where all the magnons are in the left subchain: α = {u}, ᾱ = ∅.
In this case, by construction, the wave function of |α〉col coincides with the wave function of
|{u}〉co and therefore

Hco({u}, ∅) = 1 .

Now suppose we shift some set of magnons from α to ᾱ. There will be two factors contributing
to Hco(α, ᾱ). One is the phase shift acquired by the ᾱ magnons when translated trough the
first l sites23 ∏

ᾱ

(
ᾱj + i

2

ᾱj − i
2

)l
≡ aᾱl
dᾱl
≡ eᾱl . (4.4)

where al (ar) and dl (dr) are defined as in (3.31) but using the length of the left (right)
subchain instead of L. The second contribution to Hco(α, ᾱ) is the scattering phase between

23In other words, this factor arises because we shifted the label of the positions of the magnons of the right
chain by l in order to start counting them from 1 as usual, see (4.1).
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4.1 Cutting

all pairs of magnons uj ∈ α and ui ∈ ᾱ such that i < j

∏
i < j

uj ∈ α, ui ∈ ᾱ

f(uj − ui)
f(ui − uj)

.

Multiplying the two factors and using our shorthand notation introduced in (4.3), we can
write Hco(α, ᾱ) as

Hco(α, ᾱ) = eᾱl
fαᾱf ᾱᾱ< fαα<

f
{u}{u}
<

. (4.5)

Finally, note that cutting a descendant of a coordinate state is trivially obtained from (3.49)

|{u,∞n}〉co =
∑

α∪ᾱ={u}

Hco(α, ᾱ)
n∑

m=0

(
n

m

)
|α ∪ {∞}m〉col ⊗ |ᾱ ∪ {∞}n−m〉cor . (4.6)

Cutting an algebraic Bethe state

We can now use the relation between the coordinate and the algebraic normalizations (3.42)
to conclude that

Hal(α, ᾱ) = fαᾱ dαr a
ᾱ
l . (4.7)

Alternatively, we can also derive (4.7) by writing the monodromy matrix (3.20) as a product
of the monodromy matrices of the left and right subchains, L = (R01 . . . R0l) (R0l+1 . . . R0L) ≡
LlLr . More explicitly, the monodromy matrix elements are split as(

A(u) B(u)

C(u) D(u)

)
=

(
Al(u) Bl(u)

Cl(u) Dl(u)

)(
Ar(u) Br(u)

Cr(u) Dr(u)

)
. (4.8)

In particular, the Bethe state (3.28) can be written as

B(u1) . . .B(uN) |0〉 =
N∏
j=1

(
Al(uj)Br(uj) + Bl(uj)Dr(uj)

)
|0〉 . (4.9)

We could open the parentheses and get a sum of 2N terms parametrized by which roots end
up in the left spin chain creation operator Bl. That set of roots is denoted by α. The set
of roots ending up in the right spin chain creation operator Br is denoted by ᾱ. Of course
{u} = α ∪ ᾱ. This is precisely the sum over partitions in (4.2). To get rid of the A and D
operator in (4.9) we use the commutation relations in table 3.1 to commute them through
the B’s plus the actions of these operators on the vacuum of the corresponding chains as
given in (3.30). In this way one arrives at (4.7). This technique is known as the generalized
two-component model [84, 83].
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4.2 Flipping

4.2 Flipping

After splitting the states into two (which we did in the previous section), we need to represent
the Wick contraction of the elementary fields in the single-trace operators as a spin chain
operation. In this language, the Wick contraction operation takes two subchain ket states
on two different operators and produces a number. This can be achieved in two steps. We
first flip one of the two subchain kets into a bra and then, in the next section, contract the
ket and bra states. The result does not depend on which of the two kets we choose to flip.
In what follows we will always flip the state in the right subchain before contracting it with
the state on the left subchain of the next operator (as illustrated in figures 5.1 and 2.2).
As explained in the introduction, the flipping procedure is not the usual conjugation. The
latter acts on the corresponding operator by conjugation and therefore flips the order of fields
and their charges. On the contrary, the flipping procedure F does not change the operator.
As a result, the contraction of a ket state with a flipped bra state is the same as the Wick
contraction of the corresponding operators.

In the introduction we added an upper arrow to distinguish r〈
←−
Ψ | = F |Ψ〉r from r〈Ψ| =

(|Ψ〉r)†. Let us give an example of how the usual conjugation and flipping operations act on
a given ket state. For real φ, we have

† : eiφ|XZXZZ〉 7→ 〈XZXZZ|e−iφ , (4.10)

F : eiφ|XZXZZ〉 7→ 〈Z̄Z̄X̄Z̄X̄|e+iφ . (4.11)

Note that in our conventions 〈Z|Z〉 = 〈Z̄|Z̄〉 = 1, 〈Z̄|Z〉 = 0 and the spins (or fields) in
the kets and bras are ordered from left to right, i.e. 〈ZX|ZX〉 = 1, while 〈XZ|ZX〉 = 0.
Summarizing, the difference between the two maps is most clearly illustrated by their action
on the local basis (3.1)

† : ψ(n1, . . . , nN) |n1, . . . , nN〉 7→ ψ†(n1, . . . , nN) 〈n1, . . . , nN | ,
F : ψ(n1, . . . , nN) |n1, . . . , nN〉 7→ ψ(n1, . . . , nN) 〈L− nN + 1, . . . , L− n1 + 1| Ĉ ,

where Ĉ stands for charge conjugation, which exchanges Z ↔ Z̄ and X ↔ X̄.
We can now flip any Bethe state. Since the Hamiltonian is invariant under flipping the

orientation of the chain and the charges, the operation F maps a ket Bethe state into a bra
Bethe state. The overall factor relating these two states depends on the normalization. To
determine this factor in the coordinate normalization, consider first a two-magnon state

|{u1, u2}〉co =
∑

1≤n1<n2≤L

[
eip1n1+ip2n2 + S(p2, p1)eip2n1+ip1n2

]
|n1, n2〉 .

By changing variables to m1 ≡ L− n2 + 1 and m2 ≡ L− n1 + 1 it is easy to see that

F |{u1, u2}〉co = ei(L+1)(p1+p2)S(p2, p1) co〈{u∗1, u∗2}| Ĉ .
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4.3 Sewing

This construction is trivially generalized to any number of magnons. We find

F |{u}〉co = e
{u}
L+1

f
{u}{u}
>

f
{u}{u}
<

co〈{u∗}| Ĉ , (4.12)

where e{u}L+1 is defined as in (4.4). Recall that our goal was to flip the second ket in (4.2)
which we can now do. We have

Fsecond chain |{u}〉co =
∑

α∪ᾱ∈{u}

eᾱL+1

fαᾱf ᾱᾱ> fαα<

f
{u}{u}
<

|α〉col ⊗ co
r〈ᾱ∗| Ĉ , (4.13)

where ᾱ∗ is the set ᾱ with its elements complex conjugated. Similar expressions can be
written in the algebraic normalization using the conversion factor derived before.24

4.3 Sewing

The last building block that we need to understand to compute correlation functions is the
overlap of Bethe wave functions, i.e. scalar products. The procedure of overlapping the wave
functions is what we denote as sewing. The importance of spin chain scalar products in
N = 4 SYM was first pointed out in [37].

The quantity we are interested in is

Sal
N ({v}, {u}) ≡ 〈0|

N∏
j=1

C(vj)
N∏
j=1

B(uj)|0〉 . (4.16)

The explicit form of this quantity is actually known [85] and it is written for completeness
in (A.2) in appendix A. Note that it is trivially related to the scalar product through

Sal
N ({v∗}, {u}) = (−1)N al〈{v}|{u}〉al ,

which in turn follows from C(u∗) = − [B(u)]†, see footnote 20. Luckily, when {u}, {v} take
particular values the scalar product (4.16) simplifies dramatically. Let us look at two par-
ticular cases, which will be relevant for the computation of correlation functions in the next
part of this thesis.25

24Using (3.42) we see that the algebraic Bethe states transforms as

F |{u}〉al = (−1)N al〈{u∗}|Ĉ . (4.14)

Furthermore
Fsecond chain |{u}〉al =

∑
α∪ᾱ∈{u}

fαᾱ dαr a
ᾱ
l Bα|0〉l ⊗r〈0|Cᾱ

∗
Ĉ . (4.15)

Recall that in our normalization C(u∗) = − [B(u)]
†.

25There is one more case where the general formula (4.16) simplifies. This is the case when one of the
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4.3 Sewing

Norm of a Bethe eigenstate

For example, when we consider the norm of a Bethe eigenstate we have {u} = {v} and both
sets of roots obey the Bethe equations. In this case we have the remarkably simple result
[86, 87]

Sal
N ({u}, {u}) = d{u} a{u}f

{u}{u}
> f

{u}{u}
< det

j,k
∂jφk (4.17)

where φk was introduced in (3.16), ∂j = ∂
∂uj

and we are using the shorthand notation intro-
duced in (3.43). We shall also use det

j,k
∂jφk ≡ detφ′{u}. The norm of a Bethe eigenstate in

the coordinate basis reads

N co({u}) ≡ co〈{u}|{u}〉co =
1

g{u+ i
2
}g{u−

i
2
}

f
{u }{u }
>

f
{u∗}{u∗}
>

detφ′{u} . (4.18)

As explained in section 3.3, descendants of Bethe states are obtained by sending some of the
roots to infinity, see (3.49). Using N to denote the total number of roots and M to denote
the number of finite roots {u}, the norm of a Bethe eigenstate descendant is related to (4.18)
by the square of the Clebsch-Gordan coefficients

co〈{u;∞N−M}|{u;∞N−M}〉co =
(L− 2M)! (N −M)!

(L−M −N)!
co〈{u}|{u}〉co . (4.19)

Scalar product with a vacuum descendant

Another notable simplification occurs when we send one set of Bethe roots, e.g. {v}, to
infinity. The resulting state is a vacuum descendant, see (3.50). In this case we find that the
scalar product takes the form26

co〈{∞}|{u}〉co =
(−1)N N !

g{u+ i
2
}f
{u}{u}
<

∑
α∪ᾱ={u}

(−1)|α| eα f ᾱα , (4.20)

where the sum runs over all possible partitions of the N elements of the set {u} into subsets
α, ᾱ and |α| denotes the number of elements in α. Similarly, the scalar product of a Bethe
state descendant with a vacuum descendant is related to (4.20) by a product of Clebsch-
Gordan coefficients

co〈{∞}|{u,∞N−M}〉co =
(L−M)!N !

M ! (L−N)!
co〈{∞}|{u}〉co . (4.21)

Again, in this formula the number of roots {u} is M .

operators is a Bethe eigenstate while the other one is left generic. This is presented in (A.7) in appendix A.
26Note that in this case the algebraic Bethe states are not well normalized. Indeed, as we saw before,
C(uj) ∼ i a(uj)/uj S

+ → ∞ as uj → ∞. The coordinate wave functions are better normalized and do not
vanish or diverge in this limit, see (3.49).
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Note that sewing Bethe states involves at most sums over partitions of the magnons.
The number of terms therefore only grows as a power of the number of magnons and is
independent of the chains’ lengths.

4.3.1 A new recursion relation for SU(2) scalar products

For completeness let us illustrate how we could compute (4.16) for arbitrary {u}, {v}. A
possible strategy to compute this quantity is to derive a recursion relation yielding SN in
terms of SN−1. Such recursion relations exist in the literature, see e.g. [85], and are presented
in appendix A for completeness.

Here we derive a new recursion relation which we found quite efficient computationally.
The idea is to get rid of particle creation operator B(u1) by writing

Sal
N ({v}, {u}) = 〈0|

[
N∏
j=1

C(vj),B(u1)

]
N∏
j=2

B(uj)|0〉 (4.22)

which holds since the B operator kills the bra vacuum. Next we use the algebra relations
(3.36) to compute this commutator. We have[

N∏
j=1

C(vj),B(u1)

]
=
∑
n

(
n−1∏
j=1

C(vj)

)
g(u1−vn)

(
A(vn)D(u1)−A(u1)D(vn)

)( N∏
j=n+1

C(vj)

)
,

(4.23)
where the sum over n runs of course from 1 to N . The term between the two products is
just [C(vn),B(u1)]. Now we pick the operators A and D in this expression and carry them
to the left through the C’s using the algebra relations. Recall that A and D have a trivial
action on the left vacuum. This procedure does not change the number of C’s which is now
equal to N − 1. So, what are the possible final arguments of the remaining N − 1 C’s? When
commuting an A through a C we have

C(v)A(u) = f(v − u)A(u)C(v) + g(u− v)A(v)C(u) , (4.24)

which means that A can keep the same argument or swap arguments with C. The same is true
for a D operator passing through a C. It is clear that we will get terms where the arguments
of the C’s are N − 1 out of the N original v’s. There is however one more possibility which
comes from the algebra terms which swap the argument of the operators: we can also end
up with N − 2 of the original v’s together with the root u1. That is

Sal
N ({v1, . . . , vN}, {u1, . . . , uN}) =

∑
n

bal
n S

al
N−1 ({v1, . . . , v̂n, . . . , vN}, {û1, u2, . . . , uN})

−
∑
n<m

cal
n,m S

al
N−1 ({u1, v1, . . . v̂n, . . . , v̂m, . . . vN}, {û1, u2, . . . , uN}) , (4.25)
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4.3 Sewing

where the hat means that the corresponding root is omitted. Naturally Sal
0 = 1. We simply

need to find bn and cn,m! Let us derive bn. We start by re-ordering the C’s in a smart way
and write (4.23) as27, [(

N∏
j 6=n

C(vj)

)
C(vn),B(u1)

]
. (4.26)

We are interested in bn. In other words we want to consider the contribution to the scalar
product where C(vn) and C(u1) are not present. This means that we must get rid of C(vn) in
(4.26) and therefore the only term which will contribute is(

N∏
j 6=n

C(vj)

)
[C(vn),B(u1)] =

(
N∏
j 6=n

C(vj)

)
g(u1 − vn)

(
A(vn)D(u1)−A(u1)D(vn)

)
. (4.27)

Now the A’s must travel to the left using (4.24). Furthermore, when using these relations
we must always pick the first term in the right-hand side. This is the term where the A and
C do not swap their arguments. Otherwise we would end up with a C with an argument vn
or u1 and therefore this would not contribute to bn. For example,

〈0|

(
N∏
j 6=n

C(vj)

)
A(vn) = a(vn)

N∏
j 6=n

f(vj − vn) 〈0|

(
N∏
j 6=n

C(vj)

)
+ . . . (4.28)

where . . . stand for terms where one of the C’s ended up with the argument vn. We used
the fact that the action of A(vn) on the bra vacuum simply yields a(vn). The other A and
D operators in (4.27) are treated in the same way. It should be clear that at the end of the
day we get

bal
n = g(u1 − vn)a(vn)d(u1)

N∏
j 6=n

f(u1 − vj)f(vj − vn) + (u1 ↔ vn) , (4.29)

With a similar reasoning we could derive cn,m. We would find

cal
n,m = g(u1 − vn)g(u1 − vm)a(vm)d(vn)f(vn − vm)

N∏
j 6=n,m

f(vn − vj)f(vj − vm) + (n↔ m) .(4.30)

Since we know how to convert between the coordinate and algebraic Bethe states we can easily
write a recursion relation for scalar products in the coordinate Bethe ansatz normalization.
This is presented in appendix A.

The recursion relation (4.25) with (4.29) and (4.30) provides a complete solution to any
scalar product in a straightforward way. For example, it is straightforward to implement
this recursion in Mathematica. As mentioned above, there exists another recursion for the

27Note that we can order them in any way we want since they commute, [C(u), C(v)] = 0, see table 3.1.
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general scalar product (4.16) in the literature, which we present for completeness in (A.6).
It is interesting to compare the two recursions in the following table:

New recursion (4.25) Usual recursion (A.6)
Uses scalar products with less particles as
fundamental building blocks.

Uses generalized objects as building blocks.
I.e., scalar products in different theories with
different a and d functions appear at every
step of the recursion and less particles.

Derived by reducing the number of particles
in a very explicit way. Notion of particle is
fundamental.

Derived from the analytic properties of the
result. The scalar product is a rational func-
tion which can be therefore reconstructed
from its poles and zeros. The notion of re-
ducing the number of particles is secondary.

Contains much less terms than a brute force
computation of the scalar product but still
more terms than the recursion (A.6).

Contains much less terms than a brute force
computation of the scalar product and less
terms than the recursion (4.25).

Table 4.1: Comparison between the two recursion relations obeyed by the scalar product (4.16).

Given this comparison, it is fun to draw an analogy with two very important recursion
relations inN = 4 SYM which are used in studying scattering amplitudes: the CSW recursion
relations [88] and the BCFW expansion [89]. A very similar table would be suitable for
comparing these two recursions. The CSW and BCFW recursions would be the analogue of
(4.25) and (A.6) respectively.
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Exact Results for Correlation Functions
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Chapter 5

Three-Point Functions

Having introduced the necessary integrability tools in the previous chapter, we are now ready
to put them to use in order to compute the objects of interest of this paper: correlation
functions in N = 4 SYM. In this chapter, we will start by computing structure constants
C123 of three single-trace operators in N = 4 SYM at tree level. We will focus on a particular
subset of operators as we will now describe.

5.1 Setup

The operators we will consider are linear combinations of single-trace operators made out
of two complex scalars. As reviewed in the previous chapters, such operators with definite
one-loop anomalous dimensions can be represented by Bethe eigenstates on a spin-1

2
chain.

This fact will allow us to use the integrability technology introduced in the previous chapter
for cutting, flipping and sewing the operators.

The general setup that we will use in this chapter is presented in figure 5.1a. We consider
three operators O1, O2 and O3, with corresponding lengths L1, L2 and L3. The number of
propagators between operators i and j is fixed to be

lij =
1

2
(Li + Lj − Lk) , (5.1)

where (i, j, k) is a permutation of (1, 2, 3). We will restrict ourselves to the non-extremal case,
that is where all lij’s are strictly positive. This is not only the generic case but it also has one
important advantage: for non-extremal correlators the contribution of the operator mixing
with double trace operators is suppressed in 1/Nc and need not be considered. Furthermore,
there is considerable evidence in the literature that the extremal correlators can be considered
as an analytic continuation of the non-extremal ones when some lij → 0 [90, 91].

Each operatorOi is a single-trace operator made out of two complex scalars and is mapped
to a spin chain state. One of the scalars we interpret as being the vacuum (or spin up) while
the other scalar we interpret as excitations on that vacuum (or spin down). The total length
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O3 O1

O2

X̄

Z Z

X

Z̄ X̄

ᾱ

α

(a) (b)

{v}

{w}
{u}

Figure 5.1: (a) Three-point function of SU(2) operators at tree level. All contractions are such
that R-charge is preserved. This is the simplest non-trivial configuration which is not extremal.
Note that the number of excitations on each chain is subject to the condition N1 = N2 +N3. Also,
if we denote by lij the number of propagators between operators i and j, we have l12 = L1 − N3,
l13 = N3 and l23 = L3−N3. (b) We show the partitions of the excitations in O1. Note that we only
need to use the operation of cutting for this operator, as a part of its excitations (α) are contracted
with those of O2 and another part (ᾱ) with those of O3.

of the operator is Li and the number of excitations is denoted by Ni. The different scalars
for the different operators are summarized in the following table:28

Vacuum Excitations Notations
O1 Z X #{Z,X} = {L1 −N1, N1}
O2 Z̄ X̄ #{Z̄, X̄} = {L2 −N2, N2}
O3 Z X̄ #{Z, X̄} = {L3 −N3, N3}

(5.2)

Note that this is the only setup that is fully contained in the SU(2) sector and which
involves non-extremal correlators at the same time. Due to R-charge conservation, when
Wick contracting the single-trace operators with each other we can only connect a scalar
with its conjugate. Therefore we see that all the vacuum constituents of O3 are connected
to O2, while all excitations of O3 are contracted with O1, i.e.

l23 = L3 −N3 , l13 = N3 .

28Note that there is no physical difference between O1 and O2. Indeed, our results will be invariant under
the exchange of the two. The choice of vacuum (5.2) however is not symmetric. Still, we found this choice
more convenient to work with than a more symmetric one.

50



5.2 Brute force computation

The richest contraction is between operators O1 and O2, which has length

l12 = L1 −N3 .

In this case we can overlap both vacuum and excitations. Finally, note that the total number
of excitations in the three operators are constrained by

N1 = N2 +N3 .

All these statements are illustrated in figure 5.1a.

5.2 Brute force computation

Representing each operator by a spin chain state of the form (3.1) and writing the Bethe
wave functions as ψn1,...,nN instead of ψ(n1, . . . , nN) for space convenience, we can always
compute the three-point function of figure 5.1a by brute force as

C123 = Ω123

∑
1≤n1<···<nN2

≤L1−N3

ψ
(1)
n1,...nN2

,L1−N3+1,L1−N3+2,...,L1
ψ

(2)
L2+1−nN2

,...,L2+1−n1
ψ

(3)
1,2,...,N3

(5.3)
where

Ω123 =

√
L1 L2 L3

N1N2N3

(5.4)

and ψ(j) is the wave function of Oj given in (3.10). The factor Ω123 contains the symmetry
factors mentioned in the introduction, see (2.2), and the normalization of the states Nj which
is given by

Nj =
∑

1≤n1<···<nNj≤Lj

(
ψ(j)
n1,...,nNj

)∗ (
ψ(j)
n1,...,nNj

)
. (5.5)

This way of computing the structure constant is equivalent to the direct Feynman diagram
computation and involves the precise form of the N -particle wave function (3.10), which has
N ! plane wave terms, and a sum of O

(
(L1 −N3)N2

)
terms. For large number of excitations

and long chains, (5.3) is very inefficient. This is when the techniques we introduced in the
previous chapter will prove most powerful. Namely, we will see that using the operations of
cutting, flipping and sewing, one can express the structure constant purely in terms of the
rapidities and lengths of each spin chain.

Note that the absolute value of the structure constants is independent of the normal-
ization of the three operators since we divide the overlap by the normalization of the wave
functions. On the other hand changing the phase of these wave functions does not change
their norm but it will modify the overlap by a phase. Therefore the phase of the structure
constants is sensitive to the normalization of the operators. The phase is important however
for bootstrapping higher-point functions and therefore we will keep track of it. To fix this
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phase we choose to work with the coordinate convention for the wave functions.29 Note that
in order to make our formulas less clutered, we will deliberately omit the superscript “co”
from most quantities in this chapter.

5.3 Three-point functions using integrability toolkit

To compute the three-point function using the integrability tools introduced in chapter 4, we
use the notation shown in figure 5.1b and denote the rapidities of O1,O2,O3 by {u}, {v}, {w}
respectively. First, we need to use the cutting and flipping operations to cut the three
operators and prepare them to be sewed. As mentioned in the introduction, we always
choose to flip the right subchain of a given operator. Thus, in principle each operator should
be decomposed and flipped as in (4.13), where the lengths of the left and right subchains of
operator Oi in our setup are respectively li−1,i and li,i+1 (with the indices identified modulo
3), see (5.1). However, as depicted in figure 5.1, only very particular subsets contribute when
we cut the operators O2 and O3. Namely we need the left subchain of O2 and the right
subchain of O3 to contain no excitations. The non-trivial cutting is that of O1. The lengths
of the left and right subchains for this operator are L1 −N3 and N3 respectively. Therefore,
after using (4.13) to cut each operator and flip its corresponding right subchain, the three
operators will have been schematically decomposed as

|{u}〉 → |α〉 ⊗ 〈ᾱ∗| , |{v}〉 → |{}〉 ⊗ 〈{v∗}| , |{w}〉 → |{w}〉 ⊗ 〈{}| ,

where we are of course leaving out the various factors appearing in (4.13).
The second step is to compute the scalar products between the different subchains, this

is what we called the sewing procedure above. Note that the contractions between operators
O2 and O3 are trivial, as we are simply contracting vacuum fields. On the other hand, the
contractions between O1 and O2 and between O1 and O3 are nontrivial and we need to
use the scalar products of Bethe states to compute them. Finally, we normalize our result
dividing it by the norm Nj of each Oj.

At the end of the day, the three-point function is given by

C123 = Ω123

e
{v}
L2
f
{v}{v}
>

f
{v}{v}
< f

{u}{u}
<

∑
α∪ᾱ={u}

eᾱL1+1 f
αᾱf ᾱᾱ> fαα< 〈{v∗}|α〉〈ᾱ∗|{w}〉 , (5.6)

where Ω123 is given in (5.4), we are using the notation introduced in (4.3) and

e
{u}
l ≡ a

{u}
l

d
{u}
l

=
∏

uj∈{u}

(
uj + i

2

uj − i
2

)l
, f(u) = 1 +

i

u
. (5.7)

29Recall that the coordinate normalization is sensitive to the order of Bethe roots. Therefore, different
orders will give different structure constants. Of course, the absolute value of C123 is always the same but
the phase does change.
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Again, in these formulas all quantities are computed in the coordinate normalization, but we
chose to omit the explicit “co” superscript to make the formulas less cluttered.30 So,

〈ᾱ∗|{w}〉 ≡ co
N3
〈ᾱ∗|{w}〉coN3

, 〈{v∗}|α〉 ≡ co
L1−N3

〈{v∗}|α〉coL1−N3

and the norms appearing in Ω123 (5.4) are

N1 = co
L1
〈{u}|{u}〉coL1

, N2 = co
L2
〈{v}|{v}〉coL2

, N3 = co
L3
〈{w}|{w}〉coL3

,

where we added subscripts to the bras and kets to indicate the length of the correponding
(sub)chain. Our expression (5.6) is completely given in terms of scalar products between
Bethe states in the coordinate normalization. These scalar products can be found using the
new recursion relation (4.25) in the coordinate basis or using the general formula (A.3). Thus
we solved the problem of computing C123 for generic states in our setup.

Furthermore, in most cases the scalar products in (5.6) are not the most generic ones
and therefore the formula can be simplified considerably. For example, for the normalization
factors Nj we can simply use (4.18) which is of course much simpler than the generic scalar
product! Then, we note that 〈ᾱ∗|{w}〉 is also quite simple: since the states |{w}〉 and |ᾱ〉
are proportional the vacuum descendant with all spins down (see figure 5.1b), the product
〈ᾱ∗|{w}〉 factorizes into31

〈ᾱ∗|{w}〉 =
〈ᾱ∗|{∞}N3〉〈{∞}N3 |{w}〉
〈{∞}N3|{∞}N3〉

. (5.8)

For the inner products in this expression we can now use (4.20) and (4.21) which are again
much simpler than the general case (A.3). In sum, the only complicated scalar product in
(5.6) is 〈{v∗}|α〉. For this case we should indeed use (4.25) or (A.3) generically. Of course,
there are some cases when even this general scalar product simplifies. For example, if we send
the roots {u} (and thus α) or {v} to infinity, i.e. when either O1 or O2 is a BPS operator.

5.4 Simplest examples

Let us now use (5.6) in a couple of examples. In what follows, we will use ◦ to indicate
a protected (BPS) operator and • to label a non-BPS operator. The simplest three-point
function involves three BPS operators. This case is protected by supersymmetry and was
studied in [36]: the tree-level result holds at any coupling. In our language this correlation
function involves three operators where all excitations have zero momentum, i.e. all Bethe

30As explained above, different normalizations of the wave functions yield the same absolute value for C123

but different phase for the structure constant. In other words, we get the same absolute value for C123 for
the coordinate wave function with any order of Bethe roots or even for states in the algebraic normalization.
But the phase will differ for all these cases.

31Again we omit the subscript N3 and the superscript “co" which is common to all ket’s and bra’s in this
expression.
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roots are sent to infinity. In other words, all three operators are vacuum descendants in the
SU(2) sense. In this case (5.6) simplifies to a simple combinatorial factor32

C◦◦◦123 =

√
L1L2L3

(
L1 −N3

N2

)
√(

L1

N1

)(
L2

N2

)(
L3

N3

) . (5.9)

This is indeed the result obtained in [36]. The fact that our general formula for three-point
functions (5.6) reduces to this simple combinatorial result is a check that we did not make
any mistake when deriving it.

The next-to-simplest case is when one of the operators is not protected. In this case the
three-point function is no longer fixed by supersymmetry and it has a very interesting and
rich structure. Consider for example the case when O1 and O3 are BPS states (i.e. vacuum
descendants) while O2 is a generic Bethe eigenstate. In this case, the structure constant C◦•◦123

will be a function of the N2 Bethe roots characterizing the operator O2. If all these roots
are finite, the operator corresponds to a highest weight spin chain state. When N2 −M2 of
these roots are sent to infinity we obtain SU(2) descendants; i.e. we generate the full SU(2)

multiplets by acting on the highest weights with (S−)
N2−M2 . The number of finite roots is

M2 and we use {v} to denote the set of finite roots. The structure constant for the case when
only O2 is non-BPS is then given from (5.6) by

C◦•◦123 =

√
L1L2L3

(
L1−N3−M2

N2−M2

)√(
L1

N1

)(
L3

N3

)(
L2−2M2

N2−M2

)
√√√√g{v+ i

2
}g{v−

i
2
}f
{v∗}{v∗}
>

f
{v}{v}
> detφ′{v}

∑
β∪β̄={v}

(−1)|β| fββ̄/eβL1−N3

g{v+ i
2
}f
{v}{v}
<

. (5.10)

There are several interesting limits which we can take in (5.10). We can consider many
magnons, few magnons, the near-BMN limit, the classical limit, etc. The simplification of
this result in the BMN limit is discussed in appendix B. We should note that the classical
limit of (5.10) was recently studied in [44] and we will comment on it in our conclusions.

For example, the simplest possible nontrivial case is when O2 has only two particles with
opposite momenta. In this case we have simply M2 = N2 = 2 and v1 = −v2 ≡ v ≡ 1

2
cot p

2
.

Furthermore, from the Bethe equations (3.13) we can see that in this case p = 2πn/(L2− 1),
with n ∈ Z. Then (5.10) simplifies to

C◦•◦123 = e−ip/2
√

L1L2L3

2
(
L1

N1

)(
L2

2

)(
L3

N3

) sin
(
p l12

2

)
sin
(
p
2
(l12 − 1)

)
sin2

(
p
2

) , (5.11)

32The normalization of the coordinate Bethe state when all roots are sent to infinity is given by
co〈{∞}N |{∞}N 〉co =

(
L

N

)
(N !)2, see (4.21).
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where l12 = (L1 + L2 − L3)/2, N3 = (L1 + L3 − L2)/2 and N1 = N3 + 2.

5.5 General cases

In this section we summarize the final results obtained from (5.6) for generic operators Oi. As
we can see from (5.10), even in a simple example the expression for the three-point function
looks a little long. Thus, to present the results in a concise way we find it convenient to
introduce some useful notation. As before we use Li to denote the length of operator Oi, Ni

to denote the number of excitations of this operator and Mi to denote the number of finite
Bethe roots. The sets of finite roots of the three operators are denoted by {u}, {v}, {w}.

We first introduce the following quantity

A (l|{u}) ≡
∑

α∪ᾱ={u}

(−1)|α|fαᾱ/eαl , (5.12)

which is related to the scalar product with a vacuum descendant (4.20) and (4.21). Recall
that el and f were defined in (4.4) and (5.7), respectively. The next quantity that we will
use is related to the norm of Bethe states (4.18) and (4.19). It reads

Bj ≡
g{r−

i
2
}f
{r}{r}
<√

g{r+
i
2
}g{r−

i
2
}

√√√√ f
{r}{r}
>

f
{r∗}{r∗}
>

detφ′{r}
Lj

(
Lj − 2Mj

Nj −Mj

)
, (5.13)

where the set of Bethe roots {r} appearing in Bj is {u}, {v}, {w} for j = 1, 2, 3 respectively
(recall that these sets comprise only the Mj finite roots of each operator). Recall that φj was
introduced in (3.16) and, as usual, we are using the shorthand notation (3.43) and (4.3).

Finally, the last object that we need is related to the general scalar product (A.3) and is
given by

C (l|{u}, {v}) ≡
∑

α ∪ ᾱ = {u}
β ∪ β̄ = {v}

g
{u}{u}
< g

{v}{v}
> (−1)Pα+Pβeᾱl e

β
l h

αβhβ̄ᾱhαᾱhβ̄β det tαβ det tβ̄ᾱ .

where (−1)Pα is defined as the sign of a permutation of the ordered set {u} which gives
α ∪ ᾱ.33 We have also introduced

h(u) = 1− iu , t(u) = − 1

u(u+ i)
, (5.14)

33In Mathematica we define (−1)Pα as sign[a_List, ab_List,u_List] := Signature[Join[a, ab]]Signature[u].
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C◦◦◦123 =

(
l12

N2

)
1

B1B2B3

, C◦•◦123 =

(
l12 −M2

N2 −M2

)
A (l12|{v})
B1B2B3

C◦◦•123 =

(
l12

N2

)
A (l13|{w})
B1B2B3

, C•◦◦123 =

(
l12 −M1

N2

)
A (l13|{u})
B1B2B3

C◦••123 =

(
l12 −M2

N2 −M2

)
A (l12|{v})A (l13|{w})

B1B2B3

, C•◦•123 =

(
l12 −M1

N2

)
A (l13|{u})A (l13|{w})

B1B2B3

C••◦123 =
1

B1B2B3

∑
α ∪ ᾱ = {u}
|ᾱ| = l13

eᾱL1
fαᾱA (l13|ᾱ)C (l12|α, {v})

C•••123 =
A (l13|{w})
B1B2B3

∑
α ∪ ᾱ = {u}
|ᾱ| = l13

eᾱL1
fαᾱA (l13|ᾱ)C (l12|α, {v})

Table 5.1: Tree-level structure constants C123 for three SU(2) operators in the setup of figure 5.1.
We use ◦ to indicate a BPS state and • to label a non-BPS state. So, for example, C◦••123 corresponds
to the structure constants when O1 is a protected BPS operator while O2 and O3 are generic Bethe
eigenstates. The most general case is of course C•••123 . The last two cases were computed for highest
weights only, i.e. for Mj = Nj . It is straightforward to generalize them to the case comprising
descendants but the formulas become more involved. The first two cases were discussed in greater
detail in the previous section.

as well as the shorthand notation

det tαβ ≡ det
ui ∈ α
vj ∈ β

t(ui − vj) (5.15)

We can now use these useful objects to present the final results for C123 using (5.6). They
are presented in table 5.1, which is one of the main results of this thesis. Note that C◦•◦123 and
C•◦◦123 , as well as C◦••123 and C•◦•123 , are not different cases. That is, O1 and O2 are exchanged if
we choose to view the same operators as Z (Z̄) excitations on a vacuum of X (X̄) instead of
X (X̄) excitations on a vacuum the Z (Z̄). We notice that C◦•◦123 and C◦••123 are only nonzero
when M2 ≤ l12 ≤ L2 −M2 due to cancelations in A (l12|{v}).

We should stress that the integrability-based formulas presented in table 5.1 are far more
efficient from a computational point of view than the brute force computation (5.3). For the
reader’s convenience, we present in appendix E the Mathematica codes needed to compute
three-point functions in both ways, as well as some specific examples showing how to use
the codes. As noted in that appendix, even when the number of excitations and lengths of
the operators are not too large, the brute force formula (5.3) becomes computationally much
slower than the formulas obtained from (5.6).
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5.6 Three-point functions as determinants

The general formula for structure constants (5.6) is already a huge improvement compared
to the brute force result, both from a conceptual and computational point of view. However,
in [92], an expression for this general formula was obtained as a product of two determinants.
It turns out that the matrices whose determinants one needs to compute are of size N1×N1

and N3×N3. Naturally, this is computationally more efficient than performing the sum over
the 2N1 terms appearing in (5.6), while also computing scalar products at each step.

The general strategy is to rewrite the two scalar products in (5.6). More specifically,
recall that schematically we have

C123 ∝
∑

α∪ᾱ={u}
L1−N3〈{v∗}|α〉L1−N3 N3〈ᾱ∗|{w}〉N3 , (5.16)

where we included the subscripts to denote the lengths of the states for convenience, see
figure 5.1. Following [92], we recast this equation in such a way that it involves the scalar
product between the full state of operator O1, i.e. |{u}〉, and the two subchains in O2 and
O3. Namely:

C123 ∝
(
N3〈{w}| ⊗L1−N3 〈{v∗}|

)
|{u}〉L1 . (5.17)

Very importantly, in this way we have got rid of the sum over partitions of the rapidities {u}!
This is a huge simplification.

To obtain an explicit expression for the r.h.s. of (5.17), we need to recast the computation
of the three-point function considered in figure 5.1 in terms of the language of the six-vertex
model, based on the algebraic Bethe ansatz. Here we will only sketch the idea behind the
derivation of the determinant form of equation (5.6) and we refer the reader to [92] for more
details.34 However, let us simply recall that in the language of the algebraic Bethe ansatz,
the states entering (5.17) are

|{u}〉L1 = B(u1) . . .B(uN1) |↑〉⊗L1 ,

|{v}〉L1−N3 = B(v1) . . .B(vN2) |↑〉⊗L1−N3 , (5.18)

|{w}〉N3 = B(w1) . . .B(wN3) |↑〉⊗N3 .

5.6.1 Graphical rules

The starting point is to consider a spin chain of length L where at each site we have an
impurity θj, with 1 ≤ j ≤ L. These impurities are introduced because they will be necessary
to obtain the determinant form of three-point functions. Then, we have an SU(2) R-matrix

34We should point out that some of our conventions/normalizations are different from the ones used in
[92]. Ours are such that they comply with the ones used in chapter 3 for the algebraic Bethe ansatz. Of
course, the final result is independent of whatever normalization we choose to work with.
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given by
R(u− θ) ≡ (u− θ) I + iP , (5.19)

where we are using the normalization that we introduced in chapter 3, see (3.19). Of course,
the latter is recovered by taking θ → 0. We can represent the R-matrix graphically as

u

θ

j
k

m

l

R(u− θ) = = (u− θ) δjkδlm + i δjlδkm

A nice way to keep track of the flow of the four indices in the R-matrix is to assign an arrow
to each of its legs. In this way, one quickly realizes that the only non-zero components of
the R-matrix are those shown in figure 5.2. These are the building blocks of the so-called
six-vertex model. An important feature of this model is that the number of incoming and
outgoing arrows at each vertex is conversed.

u− θ u− θ + i i

u u u

θ θ θ

u u u

θ θ θ

Weight:

Vertex: a b c

Figure 5.2: Non-vanishing components of the R-matrix (5.19) and their corresponding weights.
This is known as the six-vertex model. Note that the number of incoming and outgoing arrows at
each vertex is conserved. The weights are easy to read-off from the graphical representation of the
R-matrix. For example, in the case of a-vertices, both the identity and permutation contribute,
hence the factor u− θ + i.

Recall from chapter 3 that, once we define the R-matrix, we can construct the monodromy
matrix as

L(u) ≡ R(u− θ1) . . . R(u− θL) . (5.20)

Of course, the monodromy matrix introduced in (3.20) is recovered from the one above by
taking the homogeneous limit θj → 0. The upper-right component of the monodromy matrix
is B(u), which acts as a creation operator when acting on the ket vacuum, see (3.21) and
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θ1 θ2 θL−1 θL

θ1 θ2 θL−1 θL

uB(u) :

uC(u) :

Figure 5.3: B- and C-lines, which are the graphical representation of the operators B(u) and C(u).

(3.30). Similarly, the lower-left component of L(u) is C(u), which acts as an annhilation
operator on the ket vacuum. Also, since in our normalization [B(u)]† ∝ C(u∗), see footnote
20, C(u) can be regarded as a creation operator on the bra vacuum. These two operators can
be represented graphically by so-called B- and C-lines, see figure 5.3. At first, this graphical
representation of the operators B(u) and C(u) might seem obscure, so, let us explain how
they come about by introducing the freezing trick. Our convention is that in any graph, the
top row of arrows represents a ket state, while the bottom row of arrows represents a bra
state. Suppose that B(u) acts on the state |↑〉⊗L. Then, let us pick any of the vertices and
fix it to be a c-vertex from figure 5.2. This implies that the spin at that site will be flipped,
while it is easy to check using conservation of arrow flow at all vertices that the other spins
will be left untouched, see figure 5.4a. In short, acting with B(u) on the vacuum, we obtain
a one-magnon ket, i.e. B(u) acts as a creation operator. This is precisely what we wanted.
Using a similar logic, one can check that C(u) acting on 〈↑|⊗L creates a one-magnon bra, see
figure 5.4b.

θ1 θ2 θL−1 θL. . .

(b) u

θ1 θ2 θL−1 θL. . .

(a) u

Figure 5.4: Freezing trick. (a) B(u) acting on the ket vacuum |↑〉⊗L. Note that we can choose any
of the nine vertices (e.g. the one with the orange bullet) and fix it to be a c-vertex, see figure 5.2.
Using conservation of arrow flow at each vertex, it is easy to see that the resulting state will be a
one-magnon ket. (b) C(u) acting on the bra vacuum 〈↑|⊗L. Using a similar logic as for B(u), it is
easy to see that the resulting state will be a one-magnon bra.
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θ1 θN3 θL1−1 θL1

..
.

u2

. . .

uN1

u1

..
.

vN2−1

θ1

vN2

θN3

v1

. . .

..
.

θN3+1

Figure 5.5: Toward three-point functions from the six-vertex model using the freezing trick.

We can repeat a similar exercise by acting on the ket vacuum with a stack of two B-
lines and freezing a single vertex in each of them (of course, on different vertical lines).
The resulting state is a two-magnon ket. It should now be clear how one can represent an
N -magnon state using the graphical rules given above. For example, an N -magnon ket is
represented by stacking N B-lines on top of each other, such that the arrows in the top row
would be all pointing up. Since different B(u) operators commute, see (3.1), the order in
which we label the rapidities of the magnons in the graphical representation is not relevant.
Similarly, to create an N -magnon bra, we stack N C-lines on top of each other, such that the
arrows in the bottom row are all pointing up.

5.6.2 Determinant form of three-point functions

We now have the necessary tools to represent graphically the three-point function of interest.
The steps we need are the following (see figures 5.5 and 5.6):

• First we draw L1 vertical lines with rapidities θ1, . . . , θL1 and N1 B-lines with rapidities
u1, . . . , uN1 . Conventionally, we choose to label the rapidities on these B-lines from
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top to bottom, see figure 5.5. Also, the rapidities {u} satisfy the Bethe equations for
an SU(2) spin chain of length L1 and with N1 magnons. By fixing the upper row
of vertical segments to have arrows pointing up, we have effectively created operator
O1 = |{u}〉L1 .

• Then, below the B-lines that we just drew, we stack N1 C-lines with some arbitrary
rapidities, i.e. they need not satisfy any set of Bethe equations. So, we choose to
label these rapidities from bottom to top as θ1, . . . , θN3 , v1, . . . , vN2 , where of course
N1 = N2 + N3. Moreover, we fix the lower row of vertical segments to have arrows
pointing up, see figure 5.5. Notice that with this step, we have not created any other
state appearing in (5.17) yet.

• We will now use the freezing trick on the lower N3 vertices in the diagonal of the
diagram. Let us start by picking the lower orange dot in figure 5.5 and fixing it to be
a c-vertex. Doing so, once can easily check using conservation of arrow flow that all
vertices on the C-line with rapidity θ1 and those in the vertical line with rapidity θ1,
but below the B-line with rapidity uN1 , will be frozen. Namely, they are b-vertices.

• Similarly, fixing the remaining N3 − 1 orange dots in the diagonal to be c-vertices, one
can check that all vertices in the green shaded area of the diagram in figure 5.5 have
been frozen! Thus, the contribution from this part of the diagram is trivial: it is simply
the product of weights of all b- and c-vertices contained in it (see figure 5.2).

• What are we left with by removing the shaded area of figure 5.5? Of course, we still have
the state |{u}〉L1 at the top of the diagram. The bottom right state is an N2-magnon
bra created with C-lines of length L1 − N3. Since the rapidities {v} were arbitrary,
we can choose them to be the Bethe roots of operator O2. Thus, with this we have
represented graphically the state L1−N3〈{v}| appearing in (5.17), see figure 5.6.

• Of course, we still need the state N3〈{w}| and the curious reader must have noticed
by now that there are no rapidities wj in any of the figures so far. So, where do they
come from? Recall that after removing the shaded area of figure 5.5 we still have the
bottom left state, which is an N3-magnon bra of length N3. As pointed out in [92], we
must consider all possible ways in which these excitations can be created by inserting
N3 C-lines with rapidities labeled by w1, . . . , wN3 from bottom to top. We take these
to be the Bethe roots of O3. The red-shaded area in figure 5.6 corresponds to this
contribution, which is known as a domain-wall partition function.

After following all the steps listed above, we end up with the six-vertex diagram of figure
5.6. This is the six-vertex model representation of our formula for three-point functions (5.6).
The domain-wall partition function (red-shaded area) has a determinant expression, found
by Izergin [93]. The rest of the diagram is a restricted version of the Slavnov scalar product
[83] between a Bethe eigenstate and a generic Bethe state. In our case, both sets of rapidities
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θ1 θN3 θL1−1 θL1

..
.

u2

. . .

uN1

u1

..
.

vN2−1

v1

. . . θN3+1

vN2

wN3

..
.

w1

Figure 5.6: Three-point functions from the six-vertex model. The red-shaded area is the contri-
bution from the Bethe roots of operator O3. This corresponds to a domain-wall partition function
of size N3 ×N3, which has a determinant expression found by Izergin [93]. The rest of the diagram
is a restricted version of the Slavnov scalar product [83] between a Bethe eigenstate and a generic
Bethe state, which also has a determinant expression [94, 95].

{u} and {v} are the Bethe roots of O1 and O2. There is also a known determinant expression
for this scalar product [94, 95]. Working out the details, one arrives at the following formula
for three-point functions in terms of two determinants [92]:

C123 = Ω̄123 F det (Zjk) det (Rjk ⊕ Sjk) , (5.21)

where

F =

∏N1

j=1

(
uj + i

2

)N3
∏N3

j=1

(
wj + i

2

)N3∏N1

j<k(uk − uj)
∏N2

j<k(vj − vk)
∏N3

j<k(wj − wk)
, (5.22)

Zjk =
1

(k − 1)!
∂k−1
θ

(
i

(wj − θ + i
2
)(wj − θ − i

2
)

)
, (5.23)

Rjk =
i

uj − vk

[(
vk + i

2

vk − i
2

)L1 N1∏
l 6=j

(ul − vk + i)−
N1∏
l 6=j

(ul − vk − i)

]
, (5.24)
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Sjk =
1

(k − 1)!
∂k−1
θ

(
i

(uj − θ + i
2
)(uj − θ − i

2
)

N2∏
l=1

1

vl − θ − i
2

)
. (5.25)

and Ω̄123 is defined in a similar way as (5.4), except that the norms in this case are given by

N̄1 =

N1∏
j 6=k

uj − uk + i

uj − uk
detφ′{u} (5.26)

and similarly for N̄2 and N̄3 (compare with (4.18)). Note that in all these formulas, we must
take the homogeneous limit θj → 0.
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Chapter 6

Four-Point Functions

In this chapter, we will describe the computation at weak coupling of tree-level four-point
functions of generic operators in the SU(2) sector of N = 4 SYM. That is, we will show
how to compute the quantity C1234;{lij} appearing in (2.4). The discussion and notation are
similar to those used in the previous chapter.

6.1 Setup

We will consider the configuration shown in figure 6.1. Unlike in the case of three-point
functions, the number of contractions between operators Oi and Oj is not simply given in
terms of the lengths of the operators, see (5.1). However, note that in our setup there is
only one choice for the number of contractions {lij} between the different operators, which is
completely determined by their charges. For example, denoting again the length and number
of excitations of operator Oi by Li and Ni, we have that

l23 = L3 −N3 , l24 = L4 −N4 , l14 = N4 ,

etc. More importantly, l34 = 0. Hence, we will simply denote the quantity C1234;{lij} appearing
in (2.4) by C1234, such that the four-point function shown in figure 6.1 is simply

G4(x1, x2, x3, x4) =
1

N2

C1234∏
i<j

|xij|2lij
. (6.1)

Our choice of vacuum and excitations for the operators is shown in the following table:

Vacuum Excitations
O1 Z X

O2 Z̄ X̄

O3 Z X̄

O4 Z X̄
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6.1 Setup

O3

O1

O2

X̄

Z

Z X

Z̄ X̄

O4

X̄

Z

α1α2α3ᾱ3

β̄3β3β2β1

{u}

{v}

{w} {z}γ

γ̄
δ̄

δ

l l′

Figure 6.1: Setup for the computation of the four-point function of SU(2) operators. The black
(solid) lines represent vacuum fields, while the red (dashed) lines represent excitations. The top
figure shows the vacuum (Z or Z̄) and excitation choice (X or X̄) for each operator. The figure
at the bottom shows the labelling of the excitations of each operator and the different partitions
needed to perform the Wick contractions. Of course, we could have used only l or l′, but it turns
out that some our formulas are more concisely written using one or the other.
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6.2 Brute force computation

Before showing how to compute the quantity C1234 appearing in (6.1), we should stress
that the results from this chapter are valid for generic SU(2) operators. In figure 6.1, opera-
tors O3 and O4 look small compared to the other two, but they are general SU(2) operators
with the charges indicated in the figure. They were simply drawn in this way for convenience:
all their X̄ or Z fields are contracted with O1 and O2 respectively. Also, as mentioned above,
the configuration we are considering does not include interactions between operators O3 and
O4. However, it is trivial to modify the formulas we present below to consider the more
general case in which O3 and O4 interact with each other.35 Finally, note that the four-point
functions that we are considering are non-extremal.

6.2 Brute force computation

We can always do a brute force computation to determine C1234 using the explicit form of
the Bethe states representing each of the operators, see (3.1). Then, writing the Bethe wave
functions as ψn1,...,nN instead of ψ(n1, . . . , nN) and using the parameter l′ instead of l in figure
6.1 for convenience, we have

C1234 = Ω1234

L1−N3−N4∑
l′=0

min {l′,N1−N3−N4}∑
|α1|=0

∑
1≤n1<...<n|α1|≤l

′

∑
1≤m1<...<mN1−N3−N4−|α1|≤L1−N3−N4−l′

× ψ
(1)
n1,...,n|α1|,l

′+1,...,l′+N4,N4+l′+m1,...,N4+l′+mN1−N3−N4−|α1|,L1−N3+1,...,L1

× ψ
(2)
L2−(L4−N4+l′+mN1−N3−N4−|α1|)+1,...,L2−(L4−N4+l′+m1)+1,L2−n|α1|+1,...,L2−n1+1

× ψ
(3)
1,2,...,N3

ψ
(4)
L4−N4+1,...,L4

(6.2)

where ψ(i) is the Bethe wave function associated to operator Oi, |α1| is the number of Bethe
roots in partition α1, see figure 6.1, and36

Ω1234 =

√
L1L2L3L4

N1N2N3N4

. (6.4)

This factor takes into account the equivalent ways of breaking the spin chains (i.e. due to
cyclicity we can rotate each chain before cutting it). Finally, Ni denotes the norm of operator
Oi, which is defined in (5.5).

35We consider such four-point functions in section 6.4.
36We can also include a symmetry factor in Ω1234 to take into account the case when O3 or O4 are dropped

from the four-point function:

Ω1234 =

√
L1L2L

δL3>0

3 L
δL4>0

4

N1N2N3N4

1

(L1 − j1 − k1)
(
Θ(L3)Θ(L4)− δL3>0δL4>0

)
+ 1

, (6.3)

with Θ(x) being the Heaviside theta function, defined as Θ(x) = 1, for x ≥ 0 and Θ(x) = 0, for x < 0. In
this case we recover the brute force formula for three-point functions, see (5.3).
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6.3 Four-point functions using integrability toolkit

Since each Bethe wave function ψ(i) has Ni! terms, we see that for large Ni, Li equation
(6.2) is computationally extremely inefficient due to the huge number of terms involved.
Below, we will see that using integrability techniques, we are able to simplify the computation
of C1234 significantly.

6.3 Four-point functions using integrability toolkit

The combinatorial problem associated with the multiple Wick contractions required to com-
pute the tree-level four-point function can be solved using the integrability tools introduced
in chapter 4. Thinking of each operator a closed spin chain state and denoting the rapidi-
ties of the four operators by {u}, {v}, {w}, {z} respectively, one simply needs to follow these
steps:

• We cut each of the closed spin chains 1 and 2 into four open subchains. Formally this
means that we write each of the states |Ψ1〉 and |Ψ2〉 as a linear combination of tensor
products of four states in open subchains. Schematically, i.e. leaving out the sums over
the different partitions and the factors arising from cutting the chains, see (4.2) and
(4.5), and using the notation in figure 6.1:

|{u}〉 → |α1〉 ⊗ |α2〉 ⊗ |α3〉 ⊗ |ᾱ3〉 , |{v}〉 → |β1〉 ⊗ |β2〉 ⊗ |β3〉 ⊗ |β̄3〉 .

• Similarly, we cut each of the closed spin chains 3 and 4 into two open subchains, i.e.
we write each of the states |{w}〉 and |{z}〉 as a linear combination of tensor products
of two states in open subchains. However, in this case all excitations of O3 and O4 are
in their corresponding left- and right-subchains, respectively. Thus, schematically we
have:

|{w}〉 → |{w}〉 ⊗ |{}〉 , |{z}〉 → |{}〉 ⊗ |{z}〉 .

• In order to perform the Wick contractions among the operators in the four-point func-
tion, we first need to flip some subchain states. Again, leaving out the sum over parti-
tions and the relevant factors coming from the flipping procedure (4.12), we schemati-
cally have

|{u}〉 → |α1〉 ⊗ |α2〉 ⊗ |α3〉 ⊗ 〈ᾱ∗3| , |{v}〉 → |β1〉 ⊗ 〈β∗2 | ⊗ 〈β∗3 | ⊗ 〈β̄∗3 | ,

|{w}〉 → |{w}〉 ⊗ 〈{}| , |{z}〉 → |{}〉 ⊗ 〈{z∗}| .

• We contract, or sew, the different subchain states as shown in figure 6.1. This involves
the computation of scalar products of Bethe states. Note that some scalar products
are trivial, as they only involve contractions of vacuum fields.

• Finally, we normalize the states and sum over the distinct ways of breaking them, see
the factor defined in (6.4).
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6.4 More general four-point functions

After all the dust has settled, we get37

C1234 = Ω1234

L1−N3−N4∑
l=0

∑
α1∪ᾱ1={u}

∑
α2∪ᾱ2=ᾱ1

∑
α3∪ᾱ3=ᾱ2

∑
β2∪β̄2={v}
|β2|=|α3|
|β̄2|=|α1|

eᾱ1
L1−N3−N4−l e

ᾱ2
N4

fα1ᾱ1fα1α1
< fα2ᾱ2fα2α2

<

f
{u}{u}
<

× eᾱ3
l+N3+1 f

α3ᾱ3f ᾱ3ᾱ3
> fα3α3

< e
{v}
L3−N3+l+1 e

β̄2

L2−L3+N3−l
fβ2β̄2fβ2β2

> f β̄2β̄2
>

f
{v}{v}
<

e
{z}
L4+1

f
{z}{z}
>

f
{z}{z}
<

× 〈β∗2 |α3〉〈β̄∗3 |α1〉〈{z∗}|α2〉〈ᾱ∗3|{w}〉 . (6.5)

This is the main result of this chapter: it computes the four-point function of generic SU(2)

operators obeying the setup of figure 6.1.
Clearly, the integrability-based result for four-point functions (6.5) is much more compli-

cated than the result for three-point functions (5.6). The latter involves a single sum over
partitions, while the former involves four different sums over partitions plus the sum over
l. Thus, there is not really much point in trying to present a table for four-point functions
summarizing the results for different configurations of BPS and non-BPS operators: they
would not look terribly simpler. Of course, in some particular cases, the scalar products in
(6.5) can be computed using one of the simpler formulas for scalar products presented in
chapter 4. For example, this is the case when O3 and O4 are BPS operators. We will come
back to this particular configuration in later chapters.

Let us stress that the integrability-based formula (6.5) proves to be far more efficient than
the brute force computation (6.2). For the reader’s convenience, we present in appendix E
the Mathematica codes needed to compute four-point functions using both formulas, as well
as some specific examples showing how to use the codes. As noted in that appendix, even
when the number of excitations and lengths of the operators are not too large, the brute
force formula (6.2) becomes computationally much slower than formula (6.5).

6.4 More general four-point functions

In the case we studied in the previous sections, operators O3 and O4 did not Wick contract
between them due to R-charge conservation, see figure 6.1. The motivation to first study
such a setup was that it will be used to obtain a match with the strong coupling result in
the Frolov-Tseytlin limit when O3 and O4 are taken to be light, small BPS operators. For
reasons that will become clear in the strong coupling picture, the four-point function in this
case is of order O(L2

1).38

37As opposed to the brute-force formula (6.2), where we used l′, we now use the parameter l from figure
6.1.

38The curious reader can see figure 7.4, which is the holographic counterpart of the four-point functions of
figure 6.1. In a nutshell, each factor of L1 comes from integrating the insertion point of a light operator over
the worldsheet defined by the heavy operators.
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6.4 More general four-point functions

O3

O1

O2

X

Z̄

Z X

Z̄ X̄

O4

X̄

Z

l

(a)

(b)

O3

O1

O2

m1
O4

m3

Figure 6.2: More general four-point functions in the SU(2) sector. (a) It is clear that the diagrams
with no contractions between O3 and O4 are planar for any l ≥ 0. (b) If there are contractions
between O3 and O4, the only planar diagrams are those in which l = 0. We denote by m1 and m3

the number of fields X and Z (and their conjugates) contracted between O3 and O4.
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6.4 More general four-point functions

In this section, we consider a more general class of four-point functions of SU(2) operators.
In particular, our new setup is such that it allows for contractions between O3 and O4, see
figure 6.2. Just like in our previous case, we should stress that O3 and O4 are general SU(2)

operators with the charges indicated in the figure. They were drawn small compared to the
other two operators for convenience. It should be clear by looking at this setup that when
there are no contractions between O3 and O4, the four-point function is planar for any value
of l, see figure 6.2a. This is basically equivalent to the first setup that we considered in figure
6.1 and thus is also of order O(L2

1). However, once we consider interactions between O3 and
O4, the resulting diagrams will be planar only for l = 0 and are of order O(L1)39, see figure
6.2b.

The choice of vacuum and excitations for the four operators in this new setup is summa-
rized in the following table:

Vacuum Excitations
O1 Z X

O2 Z̄ X̄

O3 Z̄ X

O4 Z X̄

Note that in this case we need to specify the number of excitations (X and X̄) and vacuum
fields (Z and Z̄) contracted between operators O3 and O4. We will denote these by m1 and
m3, respectively. Hence, we have

l23 = N3 −m1 , l24 = L4 −N4 −m3 , l14 = N4 −m1 ,

etc. Therefore, in this case the four-point function (2.4) in the planar limit reads40

G4(x1, x2, x3, x4) =
1

N2
G{0,0}(x1, x2, x3, x4)

L1−L3+N3−N4∑
l=0

C1234,{0,0,l} +

1

N2

min {N3,N4}∑
m1=0

min {L3−N3,L4−N4}∑
m3=0

δm1+m3 6=0 C1234,{m1,m3,0} G{m1,m3}(x1, x2, x3, x4) ,

(6.6)

39Indeed, the holographic process dual to figure 6.2b is the tree-level diagram of figure 9.4. Since only a
single integration over the worldsheet is performed, this process is suppressed by 1/L1 with respect to the
diagram of figure 6.2a.

40We are excluding the disconnected diagrams that may appear when {N3, L3 −N3} = {N4, L4 −N4}.
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6.4 More general four-point functions

α1α2α3ᾱ3

β̄3β3β2β1

{u}

{v}

{w} {z}
γ1

γ̄2

δ̄2

δ1

l

γ2 δ2

Figure 6.3: Setup for the computation of the four-point functions of section 6.4 at weak coupling.
The black (solid) lines represent vacuum fields, while the red (dashed) lines represent excitations.
The figure shows the labelling of the excitations of each operator and the different partitions needed
to perform the Wick contractions.

where

G{m1,m3}(x1, x2, x3, x4) =
1

|x12|2(L1−L3+N3−N4+m1+m3)|x13|2(L3−N3−m3)|x14|2(N4−m1)
×

× 1

|x23|2(N3−m1)|x24|2(L4−N4−m3)|x34|2(m1+m3)
.

(6.7)

The first term in (6.6) corresponds to the contribution of diagrams for which m1,m3 = 0 and
l ≥ 0, while the second term takes into account the contribution of planar diagrams where
O3 and O4 operators can contract between themselves and therefore we must have l = 0. We
can compute C1234,{m1,m3,l} using the integrability tools of chapter 4, see figure 6.3. The steps
we need to follow are very similar to the ones outlined for the setup of figure 6.1, except that
now we also have to cut operators O3 and O4 more than once and perform some extra scalar
products. The result is
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6.4 More general four-point functions

C1234,{m1,m3,l} = Ω1234

∑
α1∪ᾱ1={u}

∑
α2∪ᾱ2=ᾱ1

∑
β1∪β̄1={v}

∑
β2∪β̄2=β̄1

|β2|=|α3|
|β̄2|=|α1|

∑
γ2∪γ̄2={w}
|γ̄2|=|β1|

∑
δ2∪δ̄2={z}
|δ̄2|=|α2|

× eᾱ1
L1−L3+N3−N4+m1+m3−l e

ᾱ2
L3−N3−m1

fα1ᾱ1fα1α1
< fα2ᾱ2fα2α2

< f ᾱ2ᾱ2
<

f
{u}{u}
<

× eβ̄1

N3−m1
eβ2

l+1 e
β̄2

L2−N3+m1+1

fβ1β̄1fβ1β1
< fβ2β̄2fβ2β2

> f β̄2β̄2
>

f
{v}{v}
<

f δ2δ̄2f δ2δ2> f δ̄2δ̄2>

f
{z}{z}
<

× e
{w}
L3−N3−m3

eγ̄2

N3+m3+1

fγ2γ̄2fγ2γ2
< f γ̄2γ̄2

>

f
{w}{w}
<

e
{z}
L4−N4−m3

eδ2m1+m3+1 e
δ̄2
N4+m3+1

× 〈β∗2 |α3〉〈β̄∗3 |α1〉〈γ̄∗2 |β1〉〈δ̄∗2|α2〉〈δ∗2|γ2〉 , (6.8)

where Ω1234 is given in (6.4) and the labeling for the Bethe roots is indicated in figure 6.3.41

Note that for the first term in (6.6) this expression (6.8) simplifies since the partitions δ2 and
γ2 become empty. This is the main result of this section. Again, we emphasize that equation
(6.8) is valid for any four operators obeying the setup presented in figure 6.2.

41Just like for the setup of figure 6.1, we can also include a symmetry factor in Ω1234 to take into account
the case when O3 or O4 are dropped from figure 6.2. In this case, it reads

Ωm1,m3 =

√
L1L2L

δL3>0

3 L
δL4>0

4

N1N2N3N4

1

(L1 − L3 +N3 −N4 +m1 +m3)
(
Θ(L3)Θ(L4)− δL3>0δL4>0

)
+ 1

.
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Weak/Strong Coupling Match
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Chapter 7

The Frolov-Tseytlin limit and
Holographic Correlation Functions

In this chapter we review the basics of classical strings in AdS5 × S5 in the Frolov-Tseytlin
limit. We also review the computation of holographic three- and four-point functions involv-
ing two heavy operators. Finally, we motivate the weak/strong coupling match for correla-
tion functions that we will present in coming chapters by reviewing the weak/strong coupling
match for the spectrum problem in the Frolov-Tseytlin limit.

7.1 The Frolov-Tseytlin limit

We gave a short review of classical strings in AdS5 × S5 in the introduction. In this thesis,
we will only be interested in classical strings that are dual to single-trace operators made
out only of the three complex scalars X, Y, Z of N = 4 SYM. Hence, we will only consider
solutions whose motion is non-trivial in S5 and point-like in AdS5 with global time

t = κτ . (7.1)

This means that for us, W1 = W2 = 0 and W3 = eiκτ in (1.19), such that the energy (1.25)
of the solutions that we will consider will always be

E =
√
λκ . (7.2)

The simplest classical string solutions in S5 are point-like strings rotating around one of
the equators

U(τ, σ) = eiκτv , (7.3)

where v is a constant unitary vector which can be parametrized as

va =

√
Ja
J

, J = J1 + J2 + J3 , (7.4)
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7.1 The Frolov-Tseytlin limit

where Ja are defined in (1.26) and J =
√
λκ is the total angular momentum of the point-like

string. The energy of this solution is of course given by (7.2). In the classical limit we should
have κ� 1. This solution is simply the BMN point-like string [77] dual to the BPS operator

OBPS ∝ Tr
(
XJ1Y J2ZJ3

)
+ all possible permutations .

A simple generalization of the BMN solution is given by considering solutions of the form

U(τ, σ) = eiκτu(τ, σ) . (7.5)

This is an important subclass of classical solutions, because when one considers the limit
[96, 97]

κ→∞ with κ ∂τu , ∂σu held fixed (7.6)

these solutions can be mapped to coherent spin chain states at weak coupling. This fact
will allow us to perform the analytical weak/strong coupling match for three- and four-point
functions in chapter 9. In this limit, the equation of motion and the Virasoro constraints
reduce to42

2iκ ∂τu = ∂2
σu + 2u (∂σū · ∂σu) (7.7)

and
ū · ∂σu = 0 , (7.8)

while the global charges (1.26) read

Ja =
√
λ

2π∫
0

dσ

2π
(κūaua − iūa∂τua) . (7.9)

Using J = J1 + J2 + J3 and the fact that the energy of these solutions is given by (7.2), this
equation leads to

J = E − λ

2E

2π∫
0

dσ

2π
∂σū · ∂σu ,

which allows us to find the energy of the string in the limit (7.6). We obtain

E = J

1 +
λ

2J2

2π∫
0

dσ

2π
∂σū · ∂σu +O

(
λ2

J4

) . (7.10)

This result resembles a weak coupling expansion in the coupling λ/J2. This is precisely the
42Note that when writing (7.7), we used the fact that in this limit, the Virasoro constraint (1.23) implies

that 2iκū · ∂τu = ∂σū · ∂σu. Equation (7.8) follows directly from the other Virasoro constraint (1.24).
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7.2 The folded string and weak/strong coupling match for the spectrum

result in the famous Frolov-Tseytlin limit [98, 99, 100, 101], which corresponds to

λ, J →∞ , with
λ

J2
� 1 . (7.11)

The fact that the limits (7.6) and (7.11) are equivalent was first pointed out in [96].
Given that the expansion in powers of λ/J2 (7.10) resembles a weak coupling expansion

in λ, the AdS/CFT correspondence tells us that in this particular limit we should be able
to compare the coefficients of λ in both expansions. Indeed (7.10) turns out to coincide
precisely with the weak coupling spin chain spectrum in the classical limit L → ∞! (Of
course, the spin chain length L is identified with the total momentum of the string solution
J .) Moreover, the same result can be obtained when describing the spin chain states by
coherent states, as we will show in chapter 9. The Frolov-Tseytlin limit was instrumental
in establishing a first bridge between weak and strong coupling for non-protected operators
in the spectrum problem [100, 102, 103, 96, 104]. We hope that the weak/strong coupling
match for correlation functions that we will present in chapters 8 and 9 will also have the
same consequences for three- and four-point functions.

7.2 The folded string and weak/strong coupling match
for the spectrum

Having introduced the Frolov-Tseylin limit and its importance in the previous section, we
will now motivate the weak/strong coupling match for three- and four-point functions by
reviewing the weak/strong coupling match for the spectrum problem in a specific example.43

As we saw in the previous section, the energy of a classical string solution in the Frolov-
Tsetylin limit resembles a weak coupling expansion in λ/J2:

E = J

(
1 + a1

λ

J2
+ a2

λ2

J4
+ . . .

)
= J + a1

λ

J
+ a2

λ2

J3
+ . . . , (7.12)

where J is the total angular momentum of the string. On the gauge theory side, the conformal
dimension of the dual single-trace operator has the following expansion in the limit where
L→∞ [101]

∆ = L+ b1
λ

L
+ b2

λ2

L3
+ . . . , (7.13)

with L being the classical dimension of the operator (which is identified with J above).
Given that the AdS/CFT dictionary identifies energies of strings with conformal dimensions
of operators, see table 1.1, we can compare the coefficients of the two expansions above and
see if they agree. In particular, we will see that the first correction to the string energy a1

43Here we will show the match numerically. However, we will also provide an analytical match for the
spectrum in section 9.1 by representing large, classical operators as coherent states.
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7.2 The folded string and weak/strong coupling match for the spectrum

agrees with the one-loop correction to the anomalous dimension b1 [102, 100, 105, 103, 106].
We refer to this as a weak/strong coupling match. Let us see how this match works for a
specific example.

We want to consider a folded string with unit mode number rotating inR×S3 ⊂ AdS5×S5,
with angular momenta (J1, J3). The explicit form of Uj(τ, κ) = eiκτuj(τ, κ) for this solution
is:

U1 = eiκτ sinψ(σ) eiw1τ , U3 = eiκτ cosψ(σ) eiw3τ , (7.14)

where the function ψ(σ) obeys a differential equation [101], which is solved by

sinψ(σ) =
√
q sn(w31σ|q) , cosψ(σ) = dn(w31σ|q) ,

where
q ≡ κ2 − w2

1

w2
3 − w2

1

, w31 ≡
√
w2

3 − w2
1 =

2

π
K(q) (7.15)

and K(q) is the complete elliptic integral of the first kind, while sn(x|y) and dn(x|y) are Ja-
cobi elliptic functions. For them, we use Mathematica’s convention: K(q) = EllipticK[q],
sn(x|y) = JacobiSN[x,y] and dn(x|y) = JacobiDN[x,y].

By solving the two equations in (7.15) we can find the form of the folded string solution
in the Frolov-Tseytlin limit κ→∞. It is given by [100, 96]

u1(τ, σ) = e
2i(1−q)K(q)2

π2
τ
κ
√
q sn

(
2K(q)

π
σ
∣∣∣q) ,

u3(τ, σ) = e
2iqK(q)2

π2
τ
κ dn

(
2K(q)

π
σ
∣∣∣q) . (7.16)

Also in this limit, one can use the formula for the angular momenta (7.9) to find that q is
related to the filling fraction α by

α ≡ J1

J1 + J3

= 1− E(q)

K(q)
, (7.17)

where we use Mathematica’s convention for the complete elliptic integral of the second kind,
such that E(q) = EllipticE[q]. Finally, the energy of this solution is given by (7.10):

E = J +
2K(q)(E(q)− (1− q)K(q))

π2

λ

J
+O

(
λ2

J3

)
. (7.18)

Of course, this has precisely the form of the expansion (7.12). For a given filling fraction α,
we solve (7.17) to find q and use this value in (7.18) to compute a1, the first correction to the
string energy. The first column in table 7.1 and the four horizontal lines in figure 7.2 show
the value of a1 for α = 1/3, 1/4, 1/5, 1/6.

On the weak coupling side, the corresponding single-trace operator is made out of N (or
J1) scalar fields X and L − N (or J3) scalar fields Z. This object can be mapped into an
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Figure 7.1: Two Bethe roots configurations for a folded string with α = 1/3 and L = 42, 168,
represented by the larger and smaller bullets respectively. The horizontal and vertical axes are the
real and imaginary part of u/L, where u is the rapidity of an excitation, related to its momentum
by u = 1

2 cot p2 . Note that even though the number of roots for L = 42 is not very large, we see that
they lie nicely along the cuts formed by the clearly classical configuration L = 168.

SU(2) spin chain, whose corresponding Bethe roots lie along two symmetric cuts, see figure
7.1. The positions of these roots can be easily found by solving the one-loop Bethe equations
(3.16), see [107] or appendix E for an explicit implementation in Mathematica. Once this is
done, we can compute the one-loop anomalous dimension γ(1) of the operator from (3.17)

γ(1) =
1

8π2

N∑
j=1

1

u2
j + 1

4

, (7.19)

where uj are the Bethe roots. Since ∆ = L + γ(1)λ + . . . , see (1.11), in the Frolov-Tseytlin
limit we can compare this expansion with (7.13), so that b1 = Lγ(1). The bullet points in
figure 7.2 correspond to the values of b1 for a given filling fraction α = 1/3, 1/4, 1/5, 1/6 and
different lengths of the operator. Given that for each value of α we have 20 data points,
we can collect this data as {L, b1}, fit it in Mathematica as

∑20
j=1 cjL

−j+1 and read off the
leading contribution to b1 when L→∞, i.e. c1. Table 7.1 shows the values of b1 in this limit,
as well as the values of a1. Clearly, we have a perfect match between the weak and strong
coupling results.

From a more modern perspective, we now know that the match in the Frolov-Tseytlin
limit is, to a great extent, a fortunate accident. A priori the limit λ, J →∞ with λ/J2 → 0

is not the same as λ → 0. Indeed, the weak/strong coupling match persists at two loops
[103], but breaks down at three loops [108]. However, the match in the spectrum problem was
instrumental in establishing a first bridge between weak and strong coupling for non-protected
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Figure 7.2: Weak/strong coupling match for the spectrum in the Frolov-Tseytlin limit for different
filling fractions α = 1/3, 1/4, 1/5, 1/6, from top to bottom. The bullet points correspond to the
one-loop correction to the anomalous dimension times the length of the operator: b1 = Lγ1, where
γ1 is computed in the spin chain picture using (7.19). The dashed horizontal lines correspond to a1,
the first correction to the energy of the string in the Frolov-Tseytlin limit, see (7.12). Clearly, we
obtain a perfect match when extrapolating the weak coupling data to very large L.

α a1 b1 Extrapolated Error
1/3 0.204374192779560665 0.204374192779560645 10−16

1/4 0.1443976761846279564713582 0.1443976761846279564713279 10−22

1/5 0.11182456481327910887282331 0.11182456481327910887282264 10−24

1/6 0.09129636703526671858111487869 0.09129636703526671858111487369 10−26

Table 7.1: Numerical values of a1, the first correction to the string energy (7.12), and b1 = γ1L,
where γ1 is the one-loop anomalous dimension of the dual operator (7.13). Both results agree to
very high numerical precision, making it clear that the match is perfect.

operators. For example, the weak/strong coupling match for the spectrum can be derived by
showing that both weak and strong coupling classical limits are properly described by some
algebraic curves [104, 109, 110] which become identical in the Frolov-Tseytlin limit.44 Such
algebraic curves were one of the main ingredients involved in conjecturing the form of the

44It was explained in [104] that any string classical motion can be mapped to a Riemann surface defined
by some quasimomenta q̃(x). The same is true at weak coupling: each solution to Bethe equations in the
classical limit is described by some quasimomenta q(u). The main difference between the weak and the
strong coupling quasi-momenta is in their pole singularities: in properly chosen variables the strong coupling
quasimomenta has two poles at x = ±λ/J2 while the weak coupling quasi-momenta has a single pole at
u = 0. In the FT limit the strong coupling poles go to zero and the weak and strong coupling curves coincide.
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strong coupling Arutyunov-Frolov-Staudacher equations [111] and even the all-loop Beisert-
Staudacher equations [112] which are important input for the Y-system for AdS/CFT [17]
mentioned in the introduction. Those quantum equations can be interpreted as a proper
discretization of the classical algebraic curves. We hope that the match we will present for
structure constants will be equally important in the study of three-point functions in N = 4

SYM.

7.3 Holographic three-point functions

As anticipated in the introduction, we will consider the holographic three-point function of
single-trace SU(3) operators, which are made out of three complex scalars of N = 4 SYM.
This is a straightforward generalization of the case considered by Zarembo [62]. Our choice
of vacuum and excitations is summarized in the following table45

Vacuum Excitations Notations
O1 Z X and Y #{X, Y, Z} = {J1, J2, J3}
O2 Z̄ X̄ and Ȳ #{X̄, Ȳ , Z̄} = {J1 − j1, J2 − j2, J3 + j3}
O3 Z X̄ and Ȳ #{X̄, Ȳ , Z} = {j1, j2, j3}

(7.20)

The total length of operators O1 and O3 are, respectively,

J ≡ J1 + J2 + J3 and j ≡ j1 + j2 + j3 .

We will take O1 and O2 to be dual to heavy, classical string solutions, while O3 is taken to be
a small BPS operator, with j � J , of the form Tr

(
X̄j1Ȳ j2Zj3

)
+ all possible permutations.

In short, and using the notation of chapter 5, we will be computing C••◦123 at strong coupling.
We will also need to compute the structure constant of three BPS operators with the charges
shown in (7.20), which in the limit we are considering reads [36]:46

C◦◦◦123 = Jvj11 v
j2
2 v̄

j3
3 (j1 + j2)!

√
j j3!

j1!j2!j!
, (7.22)

where, as introduced in (7.4), vi =
√
Ji/J .

Following Zarembo [62], the holographic three-point function of two heavy operators
45Note that the notation we will use at strong coupling to denote the length and number of excitations of

an operator differs from that used at weak coupling, see (5.2). We do this simply to comply with the usual
strong coupling notation used in previous sections and elsewhere in the literature.

46For general BPS operators with the charges shown in (7.20), the structure constants reads

C◦◦◦123 =

(
J−j1−j2

J1+J2−j1−j2

)(
J1+J2−j1−j2

J1−j1

)(
j1+j2
j1

)√
Jj(J − j1 − j2 + j3)√(

J
J−J3

)(
J−J3
J2

)(
j

j1+j2

)(
j1+j2
j1

)(
J−j1−j2+j3
J1+J2−j1−j2

)(
J1+J2−j1−j2

J1−j1

) . (7.21)
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=
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Figure 7.3: Holographic three-point function of two heavy operators and a light BPS operator. The
computation involves a two-dimensional integration of a boundary-to-bulk propagator over the full
string worldsheet. In the Frolov-Tseytlin limit the integration becomes localized in the slice τe = 0
and only the integral over σ survives. Note that τe = 0 is the only point that is shared between
the Lorentzian and Euclidean solutions; the localization mechanism tell us to take a snapshot of the
string at precisely this physical point.

and a light chiral primary operator can be computed by integrating the bulk-to-boundary
propagator corresponding to O3 over the worldsheet defined by O1 and O2, see figure 7.3.
The two-point function solution for two large, classical states was first worked out in [57].
After all the dust has settled, one obtains [62]

C••◦123 = C
∞∫

−∞

dτe

2π∫
0

dσ

2π

√
λ

J

U j1
1 U

j2
2 Ū

j3
3

coshj κτe

[
2κ2

cosh2 κτe
− κ2 − ∂aŪ · ∂aU

]
, (7.23)

where
C =

RC◦◦◦123

vj11 v
j2
2 v̄

j3
3

, R =
j + 1

2j+2

(
j

j3

)
, (7.24)

κ relates the global and worldsheet time coordinates, see (7.1), and the Euclidean time is
τe = iτ . As mentioned above, v = {v1, v2, v3} is associated with the point-like BPS string,
see (7.4), while U = {U1, U2, U3} are the three complex sphere embedding coordinates given
in (7.5) and they depend on the particular classical string solution that one considers.

Given that we are interested in the Frolov-Tseytlin limit, where κ→∞ while κ ∂τu and
∂σu are held fixed, the integral over τe in (7.23) can be easily computed because only the first
term in square brackets contributes at leading order, while the remaining two are subleading.
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This can be seen by using the Virasoro contraint (7.8):

2κ2

cosh2 κτe
− κ2 − ∂aŪ · ∂aU =

2κ2

cosh2 κτe
− 2∂σū · ∂σu

κ→∞' 2κ2

cosh2 κτe
.

Then, plugging Ui(σ, τe) = eκτeui(σ, τe) into (7.23), we notice that we can set τe = 0 in ui
because the factor 1/ coshj+2(κτe) localizes the integral around τe ' 1/κ, while u is a slowly
changing variable. Hence, we can evaluate the integral over τe as (here T = κτe)

∞∫
−∞

dT
e(j1+j2−j3)T

coshj+2 T
=

2j+1

(j + 1)
(
j
j3

) =
1

2R
.

Therefore, the three-point function (7.23) takes the simple form

C••◦123 = J
(j1 + j2)!

j1!j2!

√
j
j1!j2!j3!

j!

2π∫
0

dσ

2π
uj11 u

j2
2 ū

j3
3

∣∣∣∣∣∣
τe=0

. (7.25)

In order to remove any dependence on the normalization convention, we take the ratio of the
structure constant of interest to the three-point function of three BPS operators. Moreover,
we also take the absolute value of this ratio to avoid the ambiguity that arises when multi-
plying each operator in the three-point function by a phase. Finally, if we use the equation
that relates R and C (7.24), we find a simple expression for the ratio C••◦123/C

◦◦◦
123 :

r123 ≡
∣∣∣∣C••◦123

C◦◦◦123

∣∣∣∣ =

∣∣∣∣∣∣ 1

vj11 vj22 v̄j33

2π∫
0

dσ

2π
uj11 u

j2
2 ū

j3
3

∣∣∣∣∣∣
τe=0

. (7.26)

This is the main result of this section. As we see, it is a simple and elegant result that depends
only on the heavy classical solution that we wish to consider u, its charges Ji, which define
vi =

√
Ji/J , and the charges j1, j2, j3 of the light BPS operator. It is precisely the ratio r123

which we will use to perform the weak/strong coupling match in the next two chapters.

7.4 Holographic four-point functions

Let us now consider the holographic four-point function of two heavy operators O1,O2 and
two light BPS operators O3,O4, see figure 7.4. Just like in the previous section, we consider
SU(3) operators made out of three complex of N = 4 SYM. Our choice of vacuum and
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Figure 7.4: The holographic four-point function of two heavy operators and two light BPS operators
factorizes into a product of two three-point functions, each of which involves a two-dimensional
integration of a boundary-to-bulk propagator over the full string worldsheet.

excitations is summarized below

Vacuum Excitations Notations
O1 Z X and Y #{X, Y, Z} = {J1, J2, J3}
O2 Z̄ X̄ and Ȳ #{X̄, Ȳ , Z̄} = {J1 − j1 − k1, J2 − j2 − k2, J3 + j3 + k3}
O3 Z X̄ and Ȳ #{X̄, Ȳ , Z} = {j1, j2, j3}
O4 Z X̄ and Ȳ #{X̄, Ȳ , Z} = {k1, k2, k3}

(7.27)
where

J ≡ J1 + J2 + J3 , j ≡ j1 + j2 + j3 , k ≡ k1 + k2 + k3 ,

such that j, k � J . Note that our current setup allows for a single choice of {li,j}, the
number of contractions between operators Oi and Oj. Moreover, if we restrict to SU(2)

operators (only Z andX fields and their conjugates), the object in figure 7.4 is the holographic
realization of the four-point function of figure 6.1 that we considered at weak coupling. This
is because the charges shown in (7.27) do not allow for contractions between O3 and O4, just
like our weak coupling setup.

In [70], the holographic computation of four-point functions G4(x1, x2, x3, x4) of single
trace gauge-invariant operators was considered. It was argued that if the charges of the
operators O1 and O2 are much larger than those of the operators O3 and O4, such that
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O1 ' Ō2, then the four-point function factorizes into a product of two three-point functions47

G4(x1, x2, x3, x4) =
G3(x1, x2, x3)G3(x1, x2, x4)

G2(x1, x2)
, (7.28)

where G4(x1, x2, x3, x4) is given in (2.4). Since we are considering the setup shown in (7.27),
so that only one choice of {lij} survives in (2.4) and expression (7.28) simply translates into

C••◦◦1234 = C••◦123C
••◦
124 , (7.29)

where • denotes a non-BPS operator, while ◦ denotes a BPS operator. Consequently, we just
need to know how to compute the holographic three-point function of two large operators
and a light BPS operator. This is precisely what we accomplished in the previous section!
Thus, after dividing equation (7.29) by C◦◦◦123C

◦◦◦
124 , we can simply borrow the result (7.26)

valid in the Frolov-Tseytlin limit to compute r123 and

r124 ≡
∣∣∣∣C••◦124

C◦◦◦124

∣∣∣∣ =

∣∣∣∣∣∣ 1

vk1
1 v

k2
2 v̄k3

3

2π∫
0

dσ

2π
uk1

1 u
k2
2 ūk3

3

∣∣∣∣∣∣
τe=0

, (7.30)

where C◦◦◦124 is of course exactly the same as C◦◦◦123 with ji → ki, see (7.22). Hence, the
factorization formula (7.29) in the Frolov-Tseytlin limit reads

r1234 ≡
∣∣∣∣ C••◦◦1234

C◦◦◦123C
◦◦◦
124

∣∣∣∣ = r123 r124 . (7.31)

This is the main formula of this section.
A few remarks are in order. The charges of the operators in the four-point function

in the factorization formula (7.28), or equivalently in (7.31), are those specified in (7.27).
However, the charges of the operators entering the three-point functions in (7.28) and (7.31)
must be, due to charge conservation, slightly different. This point was already raised in [70];
however, the operators considered therein were made out of the complex scalars Z and Z̄

only. Since in this paper we are considering operators that also have X, Y and X̄, Ȳ , let
us give the correct prescription for the charges of the operators in the three-point functions
entering the factorization formulas above. Given the charges shown in (7.27), the charges
of the operators in the three-point function C123 are {J1, J2, J3}, {J1 − j1, J2 − j2, J3 + j3}
and {j1, j2, j3}, respectively. Similarly, the charges of the operators in C124 are {J1, J2, J3},
{J1 − k1, J2 − k2, J3 + k3} and {k1, k2, k3}.

47In fact, the more general claim is that the n-point function of two heavy operators and n− 2 light BPS
operators factorizes into the product of n− 2 three-point functions of two heavy operators and a light BPS
operator.
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Chapter 8

Numerical Match

In this chapter we will provide conclusive numerical evidence to support the weak/strong
coupling match of three- and four-point functions in the Frolov-Tseytlin limit. To generate
the results of this chapter, we will use formulas from chapters 5, 6 and 7.

8.1 Three-point functions

8.1.1 O3 = Tr(Z2X̄2)

Let us first focus on the strong coupling computation. We want to consider the three-point
function between the following operators. We take O3 to be the small BPS operator

O3 = 2 Tr(ZZX̄X̄) + Tr(ZX̄ZX̄) , (8.1)

meaning that we consider j1 = j3 = 2 and j2 = 0 in the setup (7.20). For the classical
states O1 and O2 we will take operators dual to the folded string with unit mode number
and angular momenta (J1, J3) that we reviewed in section 7.2. That is, we will have J2 = 0

in the setup (7.20). In short, we are considering the three-point function of SU(2) operators.
Given the we know the precise form of u = {u1, u3} for this solution, see (7.14) and (7.16),
we can plug these expressions into (7.26) and obtain48

r123 =
α + q (1− 2α)

3α (1− α)
, (8.3)

48For a general BPS operator O3 in the SU(2) sector, that is with j2 = 0 and any j1, j3, we find

r123 =

√
π Γ
(

1+j1
2

)
qj1/2 (1− q)j3/2 2F1

(
1
2 ,

1+j
2 ; 2+j1

2 ; q
)

αj1/2 (1− α)j3/2 j1 Γ
(
j1
2

)
K(q)

, (8.2)

where j1 is an even number so that when O2 is a zero-momentum state, so is O1.
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where we used (7.17) to simplify the result. For different filling fractions α of O1 we find q
from (7.17), plug it in this expression and get a number. For example, for α = 1/4 we find

r123 ' 0.85689762237703939665 . (8.4)

Several such predictions are represented by the gray dashed lines in figure 8.1. The claim of
this chapter is that these numbers, which were obtained in the Frolov-Tseytlin limit, can be
matched with the same ratio computed at weak coupling in the classical limit.

Here we will check this claim by comparing (8.3) with the ratio C••◦123/C
◦◦◦
123 obtained from

the exact tree-level results of chapter 5. Since C◦◦◦123 is a protected quantity and is a simple
combinatorial factor, we only need to worry about computing C••◦123 . The data required to
compute this structure constant using the formula in table 5.1 or the determinant formula
(5.21) are the positions of the Bethe roots of operators O1 and O2.

For a folded string the Bethe roots are distributed along two symmetric cuts, see figure
7.1. Consider first the operator O2. Using for convenience the strong coupling notation of
(7.20), the total number of Bethe roots in this operators is the number of X̄ fields which is
equal to J1− 2. Hence, each of the cuts will have (J1− 2)/2 roots. For O1 we have J1 scalars
X. Hence, operator O1 is parametrized by J1 Bethe roots, two more roots than O2. We
want to consider an operator O1 which is roughly the complex conjugate of O2. So, where
do we put the extra two roots of O1 with respect to the configuration of Bethe roots of O2?
We will add them to the already existing classical cuts. As we are about to see, this choice
corresponds to O1 ' Ō2, thus allowing us to perform the weak/strong coupling match.49

We will now provide a numerical check of the agreement between the weak and strong
coupling results in the Frolov-Tseytlin limit. We will discuss the general analytical match for
general BPS states and general classical solutions later. For the numerics we need to find the
solutions to Bethe equations with two symmetric cuts for both O1 and O2. This is very simple
to do even for a very large number of roots (e.g. one can use the Mathematica code given in
appendix E). When [40] appeared, the obstacle when computing C••◦123 using the formula of
table 5.1 was that this expression involves sums over partitions of Bethe roots, computations
of sub-determinants and so on. In practice this means that the computationally-doable
numbers of roots using this formula is not very large. However, now that we have the
determinant form of equations (5.1), see (5.21), we can do much better.

Indeed, we can now generate more data than in [40] to perform the weak/strong coupling
match. For example, when O1 has filling fraction α = 1/4 we can use the Mathematica
function r123 defined in appendix E to find50

data={{8,1.27416239226353464467},{16,0.97686808229300299151},
49As we will explain in detail in chapter 10, there are two more options when adding extra roots to a

classical configuration of Bethe roots: they can be put at infinity or they can be placed at finite, symmetric
values outside the classical cuts. These options have important implications.

50In practice, we collected this data with 50 digits of numerical precision. However, here we simply show
20 digits for presentation purposes.
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Figure 8.1: Weak/strong coupling match for three-point functions with O3 = Tr(Z2X̄2). We
show the fits (black curves) of the numerical data obtained with the weak coupling formula (5.21)
compared to the strong coupling analytical prediction (8.3) (dashed gray lines) for different values
of the filling fraction of operator O1: α = 1/3, 1/4, 1/5, 1/6, from bottom to top.

{24,0.91941521886855988534},{32,0.89706072035365968294},
{40,0.88569795406191305813},{48,0.87899943199038460803},
{56,0.87465545336933938691},{64,0.87164398739740457834},
{72,0.86945065481644172743},{80,0.86779134596155748215},
{88,0.86649765483029201512},{96,0.86546405295652998721},

{104,0.86462137259917919779},{112,0.86392256341563745682},
{120,0.86333460580355643768},{128,0.86283370237463974408},
{136,0.86240230431904557575},{144,0.86202720944827868998},
{152,0.86169830953422218836},{160,0.86140774381062637301}};

where the first entry is the length of operator O1 and the second entry is r123 = |C••◦123/C
◦◦◦
123 |,

which can be computed using the code in appendix E. Since we want to know the result of
r123 in the classical limit, we need to extrapolate our data to J → ∞. How do we do this?
We perform a numerical fit as follows: given a set of data {J, r123(J)} with n points, we fit
it with n − 1 coefficients, e.g. something like r123 = a0 + a1/J + · · · + an−1/J

n−1. This can
be easily done in Mathematica as follows:

Fit[data,J/J^Range[Length[data]],J] ,

which fixes the constants ak. In particular, a0 is precisely what we were looking for: the
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α Analytical Prediction Numerical Extrapolation Error
1/3 0.79949123273018398082 0.79949123273017749944 8× 10−15

1/4 0.856897622377039396648 0.856897622377039396585 7× 10−20

1/5 0.8887595417938396163482477 0.8887595417938396163481959 6× 10−23

1/6 0.90901548205573305781608467 0.90901548205573305781608404 7× 10−25

Table 8.1: Weak/strong coupling match for three-point functions with O3 = Tr(Z2X̄2). We
show the strong coupling analytical prediction (8.3) compared with the extrapolated weak coupling
data for different values of the filling fraction α of operator O1, see figure 8.1. Clearly, this is
conclusive numerical evidence for the weak/strong coupling match for three-point functions in the
Frolov-Tseytlin limit.

leading large-length asymptotics of r123! For the case shown above, we obtain

rnum
123 ' 0.85689762237703939659 , (8.5)

which agrees perfectly with the strong coupling result (8.4) within the numerical error. In
figure 8.1 we plotted several other sets of data and their corresponding fits for different filling
fractions, up to very large values of J . We see that, very non-trivially, the weak coupling
results approach all the predictions from strong coupling in the Frolov-Tsetytlin limit! The
numerical results for the analytical strong coupling prediction and the extrapolated weak
coupling results shown in figure 8.1 are summarized in table 8.1.

Let us emphasize that the only assumption we need to make to perform the fits is on
the form of the expansion of r(J). Otherwise there is no fine-tuning whatsoever involved.
For example, the α = 1/3 curve in figure 8.1 has quite a nice non-trivial behavior with a
minimum and an inflection point nicely converging from below to the predicted analytical
result. This is the honest outcome of a fit like the one we described above, no fine-tuning is
involved.

8.1.2 O3 = Tr(Zj) and (ignoring) mixing with double traces

In the previous section we considered three-point functions in which all operators are Wick
contracted to each other, see figure 5.1 and equation (7.20). When this is the case, a simple
large N counting shows that we can ignore mixing of the single trace operators with double
traces.

Let us provide another simple example, still using the folded string as our toy model but
using a different BPS operator. Namely, we will consider

O3 = Tr(Zj) ,

with j1 = j2 = 0 and j = j3 in the setup (7.20). In this case, the length of operator O2 is the
sum of the lengths of the other two operators. In other words, there are now no tree-level
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Wick contractions between O1 and O3. In this case to compute the structure constants we
must also consider the mixing of operator O2 with double traces [74].51 The setup we have
been using so far, the one of figure 5.1, was chosen to avoid this complication.

On the other hand, the case O3 = Tr(Zj) was the case that was first extensively studied in
the literature at strong coupling [62, 63, 68, 64, 65, 67, 69, 114, 70]. In all these computations,
the mixing with multi-string states was not taken into account. Let us ignore the mixing
with double trace effect and see what we get in the classical limit at weak coupling. Basically,
the hope is that the same effect is being forgotten at weak and strong coupling and hence
“cancels out” leaving a remainder quantity behind which can still be matched. Another
plausible option is that this effect is negligible in the classical large L limit.

On the strong coupling side, we can use (8.2) to obtain an analytical prediction for the
ratio r123. For concreteness, we will consider j = 3 for our numerical checks below. Then,
when O1 has filling fraction α = 1/3 we obtain

r123 ' 1.03747260848704626063 . (8.6)

The dashed gray lines in figure 8.2 represent the results obtained in this way for α =

1/3, 1/4, 1/5, 1/6.
At weak coupling, we need again to be precise and face the kind of question which we

already encountered in the previous section. Namely, given a classical operator O2, what is
the operatorO1 ' Ō2? In this case operatorO1 has J1 scalarsX and total length J . Operator
O2 has J1 scalars X̄ (remember that now O3 does not have X̄ scalars) but a slightly larger
length equal to J + j. Operator O2 is parametrized by some configuration of Bethe roots like
the one in figure 7.1. The position of the roots is uniquely fixed by a choice of mode numbers
and by the length of the operator. Hence, a most natural choice for O1 is to take it to be
the (conjugate of the) operator whose Bethe roots have the same mode numbers as O2 but
slightly smaller length.

To be more concrete, consider O2 to be the operator dual to the folded string with unit
mode number introduced in section 7.2. Then O1 would be the same folded string with
slightly smaller length. From the string point of view this would be a folded string with the
same angular momentum in the plane identified by the scalar X and with j less units of
angular momentum in the plane identified by the scalar Z.

Using again the determinant form of three-point functions (5.21), we can generate weak-
coupling data. For example, for j = 3 and O1 with filling fraction α = 1/3 we get

data={{6,0.56476713115448865113},{12,0.65044781232074351246},
{24,0.71729413712004076475},{24,0.76586835778725794630},
{30,0.80209501401708243219},{36,0.82997659018657844687},
{42,0.85203755412391650224},{48,0.86990274602484745026},
{54,0.88465316709536216148},{60,0.89703188014875518365},

51At the same time, we should mention that there is however considerable evidence in the literature that
extremal correlators can be considered as an analytic continuation of non-extremal ones [90], see also [113].
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Figure 8.2: Weak/strong coupling match for three-point functions with O3 = Tr(Z3). We show the
fits (black curves) of the numerical data obtained with the weak coupling formula (5.21) compared
to the strong coupling analytical prediction (8.3) (dashed gray lines) for different values of the filling
fraction of operator O1: α = 1/3, 1/4, 1/5, 1/6. As we mentioned in the main text, in this particular
case we ignore mixing with double-trace operators.

{66,0.90756491257853738152},{72,0.91663441648012045280},
{78,0.92452438417860108286},{84,0.93145009779967499358},
{90,0.93757763528167808202},{96,0.94303711803547138097},

{102,0.94793191293945535188},{108,0.95234515472668300765},
{114,0.95634445405047852161},{120,0.95998535233451530559}};

where, just like before, the first entry is the length of operator O1 and the second entry is
r123 = |C••◦123/C

◦◦◦
123 |. Fitting this data in exactly the same manner as in the previous section,

we obtain the leading large-length asymptotics value:

rnum
123 ' 1.03747260848704329327 , (8.7)

which agrees perfectly with the strong coupling result (8.6) within the numerical error. Fig-
ure 8.2 shows different sets of data for α = 1/3, 1/4, 1/5, 1/6 and their corresponding fits.
Again, it is clear that the extrapolated weak coupling result approaches neatly the strong
coupling results represented by the dashed grey lines. Table 8.2 shows the numerical val-
ues corresponding to this case, which again provide conclusive evidence for the weak/strong
coupling match for three-point functions in the classical limit.
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α Analytical Prediction Numerical Extrapolation Error
1/3 1.03747260848704626063 1.03747260848704329328 3× 10−15

1/4 1.01786059862184537098901 1.01786059862184537097509 1× 10−20

1/5 1.010419624141099846504010 1.010419624141099846503995 1× 10−23

1/6 1.006819928937576846354417605 1.006819928937576846354417509 1× 10−25

Table 8.2: Weak/strong coupling match for three-point functions with O3 = Tr(Z3). We show
the strong coupling analytical prediction (8.3) compared with the extrapolated weak coupling data
for different values of the filling fraction α of operator O1, see figure 8.2. Clearly, this constitutes
yet again more conclusive numerical evidence for the weak/strong coupling match for three-point
functions in the Frolov-Tseytlin limit. As we mentioned in the main text, in this particular case we
ignore mixing with double-trace operators.

8.2 Four-point functions

Having performed the numerical weak/strong coupling match for three-point functions, let us
move on to consider the same match for four-point functions. Let us describe the operators
that we will consider. Operators O3 and O4 are taken to be the small BPS operator:

O3 = O4 = 2 Tr(ZZX̄X̄) + Tr(ZX̄ZX̄) , (8.8)

i.e. j1 = k1 = 2, j3 = k3 = 2 and j2, k2 = 0 in the setup (7.27). Just like before, operators
O1 and O2 are taken to be large non-BPS operators dual to the folded string with unit mode
number with two angular momenta (J1, J3). In short, we are considering the four-point
function of SU(2) operators. Given that we are interested in computing the ratio r1234, see
(7.31), we can directly borrow the results for three-point functions (8.3) to compute r123 and
r124, which are of course equal given our choice of light operators. Thus, at strong coupling
we obtain

r1234 =

[
α + q (1− 2α)

]2
9α2 (1− α)2 , (8.9)

where α is the filling fraction of O1. Again, given a filling fraction we can find the corre-
sponding value of q from (7.17) and plug everything into (8.9) to obtain a number, which
will be the analytical prediction from strong coupling. The first column in table 8.3 has
three different such predictions for α = 1/3, 1/4, 1/5. The goal of this section is to show
numerically that these results match the weak coupling results in the classical limit.

The setup we are considering is the holographic realization of the weak coupling setup
of figure (6.1), because due to R-charge conservation, we are not allowing for contractions
between operators O3 and O4. Hence, to generate weak coupling data, we have to evaluate
our weak coupling formula (6.5) keeping α fixed and increasing the length of this operator.
All we need to do so are the Bethe roots of the two large operators, dual to the folded string
with unit number. Operator O2 has J1 − 4 Bethe roots, while O1 has J1 of them. Just like
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Figure 8.3: Weak/strong coupling match for four-point functions in the classical limit with O3 =
O4 = Tr(Z2X̄2). The bullets correspond to the numerical data obtained by evaluating the weak
coupling formula (6.5) with the roots of O1 and O2 lying on the same classical cuts, for different
values of α = 1/3, 1/4, 1/5, from bottom to top. In this case the fits (solid black curves) nicely
match the analytical prediction from strong coupling (dashed gray lines) obtained from (8.9).

in the case of three-point functions, we choose the extra roots of O1 to lie on the already
existing two symmetric cuts defined by the Bethe roots of O2. Given our setup, this means
that we add two roots to each of the cuts. This is the weak coupling choice that corresponds
to O1 ' Ō2 and thus reproduces the strong coupling computation.

Note that due to the sum over l, the many sums over partitions and the scalar products
appearing in it, equation (6.5) is quite non-trivial to evaluate numerically if we consider a
large number of excitations. Moreover, as opposed to the case of three-point functions, there
is no known determinant form of this equation. This means that in practice we were only
able to evaluate (6.5) for configurations with 4, 6, 8 and 10 Bethe roots in operator O1 using
the Mathematica codes presented in appendix E. We collected this data in the following
form {J, r1234}, where r1234 is the ratio on the l.h.s of (7.31). For example, for filling fraction
α = 1/3, we obtained

data={{12,0.669138111344},{18,0.654008855014},{24,0.639613251186},
{30,0.631580997967}};

We then fit this data in order to find the large J asymptotics of r1234, exactly in the same
way that we did for three-point functions. For the data shown above, we obtain

rnum
1234 = 0.627249 . (8.10)
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In the second column of table 8.3 we present the values of such numerical extrapolations for
three different filling fractions. We see that, with very small relative error, the numerical weak
coupling results approach the analytical strong coupling predictions in the Frolov-Tseytlin
limit. Figure 8.3 shows our list of data points, their fits and the analytical predictions.

α Analytical prediction Numerical extrapolation Relative error
1/3 0.639186 0.627249 1.868%
1/4 0.734274 0.734578 0.042%
1/5 0.789894 0.791947 0.259%

Table 8.3: Weak/strong coupling match for four-point functions in the classical limit with O3 =
O4 = Tr(Z2X̄2). We compare the strong coupling analytic prediction (8.9) compared with the
numerical extrapolation of the weak coupling data obtained with (6.5) for different values of the
filling fraction of operator O1.

Before closing this chapter, let us make some comments regarding the accuracy of our
numerical results for four-point functions. By looking at table 8.3 and figure 8.3, the skep-
tical reader might think that the results presented in this section are not conclusive enough
to claim a weak/strong coupling match for four-point functions obeying the setup of figure
6.1. However, we should note again that we only used four points of data to perform each
fit, compared to the 20 points used for the numerical weak/strong coupling match of three-
point functions presented in the previous section. In that case, the accuracy in the numerical
match was indeed much higher. However, had we only considered the first four points of data
to perform the fit for the three-point functions match, the relative error between the ana-
lytical and numerical results for α = 1/3, 1/4, 1/5 would have been 2.122%, 0.612%, 0.381%,
respectively. Hence, we see that the relative errors for the weak/strong coupling match of
four-point functions shown in table 8.3 are in fact smaller than the relative errors in the
match of three-point functions. We can be confident that adding more points of data to our
fits would simply increase the accuracy of the numerical results even further, confirming that
the weak/strong coupling match presented here is indeed exact. For example, once a determi-
nant form of equation (6.5) is derived, one could quickly check this statement. Furthermore,
we will present an analytical proof of the match for four-point functions in the next chapter.
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Chapter 9

Analytical Match

In the previous chapter, we provided conclusive numerical evidence for the weak/strong
coupling match for tree-level three- and four-point functions of SU(2) operators in the Frolov-
Tseytlin limit. In this chapter we will provide an analytical proof of this match by representing
the two large, classical operators as Landau-Lifshitz coherent states at weak coupling. In
fact, our analytical proof is for correlation functions of SU(3) operators, thus generalizing
the SU(2) case considered for the numerical match.

9.1 Landau-Lifshitz coherent states

Just like in the previous chapter, we will be interested in three- and four-point functions
of two large non-BPS operators with one or two small BPS operators. For convenience, we
focus the discussion in this section to the three-point function case, with the extension to
four-point functions being very clear.

Let us take operators O1 and O2 to be very large SU(3) operators with a lot of excitations
such that their density is kept fixed in the large length limit. Hence, using the notation shown
in (7.20) or (7.27), we consider

J1, J2, J3 →∞ , α =
J1 + J2

J
fixed ,

where J = J1 + J2 + J3. Moreover, we only consider low lying excitations around the
ferromagnetic vacuum. These are excitations with long wavelength. That is, the momenta
of the individual excitations of operators O1 and O2 are of order 1/J . The energy of the
individual excitations is of order 1/J2 so that the total energy is of order 1/J . In short,
we will consider the Sutherland classical limit [115, 116], rediscovered in the context of the
AdS/CFT correspondence in [102].

The operators O1 and O2 are taken to be roughly the complex conjugate of each other
in a sense that will be made precise later. The physical picture is that the large operator
O2 interacts with the small operator O3 to become the slightly modified final large operator
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9.1 Landau-Lifshitz coherent states

O1. Note that we can not take O1 to be exactly the conjugate of O2: this would lead to a
vanishing three-point function by R-charge conservation.

Now, in the classical limit the excitations have long wavelength and can be depicted as
changing the spin configuration slowly as one goes around the spin chain. In this limit,
magnon dynamics are well approximated by the Landau-Lifshitz field theory [117, 96]. More
explicitly, we can use coherent states to approximate the exact SU(3) states, see figure
9.1.52 The coherent states mimic the exact Bethe states in the following precise sense: when
computing with them an average of a classical quantity Qclassical such as the total spin or
energy, they yield the same result up to finite size corrections. In the spin chain language,

〈Ψ|Qclassical|Ψ〉
〈Ψ|Ψ〉

=
〈ϕ|Qclassical|ϕ〉
〈ϕ|ϕ〉

(
1 +O

(
1

J

))
, (9.1)

where |Ψ〉 denotes the exact Bethe state while |ϕ〉 denotes the coherent state. Let us see how
to describe the latter.

Since we are studying SU(3) spin chains in the classical limit, see e.g. [97], at each site
we have three possible degrees of freedom which we denote as |X〉, |Y 〉 and |Z〉. Therefore,
at a given site n in the spin chain we have a complex vector of the form

|u(n)〉 = u
(n)
1 |X〉+ u

(n)
2 |Y 〉+ u

(n)
3 |Z〉 ,

which denotes a linear superposition of the three degrees of freedom. We normalize u(n) to
be a unitary vector so that automatically

〈u(n)|u(n)〉 = ū(n) · u(n) = 1 (9.2)

and, since the spin configuration is slowly varying along the chain, we must have that
u(n+1) − u(n) = O(1/J). Therefore, in the large J classical limit that we are consider-
ing, the very entangled and complex exact SU(3) quantum states |Ψ〉, which have order
(number of X’s and Y ’s)! terms, can be approximated by coherent classical states which
simply read [117]

|ϕ〉 = |u(1)〉 ⊗ · · · ⊗ |u(J)〉 . (9.3)

The norm of such states is automatically equal to 1. Note that we have purposely used the
letter u to represent the coherent states, as this will be identified with the classical string
solution u introduced at strong coupling in chapter 7, see (7.5).

The physical picture is that of a spin wave pointing in direction u which changes slowly
as we go from one site to the next. It is then convenient to package all the information about
the classical state in a continuous field

u(n) → u(σ) , with σ = 2π
n

J
.

52See section 11.1 to learn how to construct exact SU(3) eigenstates.
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To get some experience with these classical states let us review the computation of the energy
of such low wavelength states using the Hamiltonian (3.2), which is also the one corresponding
to SU(3) spin chains. We have

〈ϕ|H|ϕ〉 =
λ

8π2

J∑
n=1

〈u(n)| ⊗ 〈u(n+1)| (In,n+1 − Pn,n+1) |u(n)〉 ⊗ |u(n+1)〉

=
λ

8π2

J∑
n=1

[
1−

(
ū(n) · u(n+1)

) (
ū(n+1) · u(n)

)]
.

Expanding u as

u(n+k) = u(n) +
2πk

J
∂σu +

1

2

(
2πk

J

)2

∂2
σu + . . .

and using the equations of motion (7.7) and Virasoro constraints (7.8), we obtain

〈ϕ|H|ϕ〉 ' λ

2J

2π∫
0

dσ

2π
∂σū · ∂σu . (9.4)

This expression precisely agrees with the strong coupling result in the Frolov-Tseytlin limit
(7.10)! Thus, we see that by using coherent states to represent large, classical operators
at weak coupling, one is able to analytically prove the weak/strong coupling match for the
spectrum presented in chapter 7. Finally, we should mention that the coherent states evolve
in time as follows from the Schrödinger equation. That evolution is equivalent to the equation
of motion (7.7) [117].

The Hamiltonian is just one of the many conserved charges of the integrable spin chain,
which is a classical operator in the classical limit. The (trace of the) transfer matrix encodes
all of them. Hence, a nice way of identifying whether a coherent state mimics an exact state
is by measuring the expectation value of the transfer matrix and imposing that it matches
the classical limit of the quantum transfer matrix [104].

A related but more technical comment is the following. The exact Bethe eigenstates are
highest weights: S+|Ψ〉 = 0. The coherent states which we use to mimic them are only
highest weights at the level of averages, that is 〈ϕ|S+|ϕ〉 = 0. Similarly, the exact states are
cyclic, eiP |Ψ〉 = |Ψ〉 while 〈ϕ|eiP |ϕ〉 = 1. Cyclicity of the exact states means that we do not
need to care about where we break them when computing expectation values or correlation
functions. On the other hand, to mimic these computations with coherent states we should
align the operators as done in the following section.

9.2 Three-point functions

In this section we present the analytical weak/strong coupling match for three-point functions
using the coherent state machinery reviewed in the previous section. Again, we will consider
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O2 =
∑
ψ2Tr

(
Z̄...X̄...Ȳ ...

)

O
3

=
∑ T

r
( ZX̄

Ȳ
)

O1 =
∑
ψ1Tr (Z...X...Y ...)

(a) (b)

O2 ' ū1ū2ū3 . . .

O1 ' u1u2u3 . . .

Large J simplification

O
3

Figure 9.1: Three-point function of SU(3) operators, which is a generalization of the SU(2) setup
of figure 5.1. O1 and O2 are large and roughly conjugate to each other while O3 is small. (a) Exact
setup. The tree-level contraction of three pure eigenstates (see section 11.1 for an explicit expression
of SU(3) eigenstates). These are very entangled states with order (number of X’s and Y ’s)! terms.
All contractions are such that R-charge is preserved. (b) Classical limit. O1 and O2, represented by
coherent states, are not entangled at all, so their contraction is trivial. The non-trivial contribution
to the three-point function comes from tree-level contraction of the small operator O3 with the two
large coherent states.

the computation of three-point functions where two of the operators, O1 and O2, are classical
operators and are thus well approximated by coherent states. The third operator O3 is taken
to be a small operator, see figure 9.1. In this section and the next, we will use the notation

Li ≡
Li
2π

,

where Li is the length of operator Oi. This will simplify our expressions a great deal. For
now, we take O3 to be a BPS operator:

O3 =M
(
Tr
[
X̄j1Ȳ j2Zj3

]
+ permutations

)
, (9.5)

where we only distinguish permutations up to a cyclic permutation due to the cyclicity of
the trace. The normalization coefficient

M =

√
j1!j2!j3!

j! j
(9.6)
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is included so that O3 has norm 1, just like the coherent states (9.3). To accomplish our
businesses with combinatorics let us notice that among all the terms in O3 only the ones of
the form Tr[Zj3 anything] can give a nonzero contribution to the Wick contractions with O1

and O2, see figure 9.1b. The number of such terms is equal to j
(
j1+j2
j1

)
.

The operators O1 and O2 are described by coherent states as introduced in the previous
section:

|O1〉 = · · · ⊗
∣∣∣u( n

L1
)
〉
⊗
∣∣∣u(n+1

L1
)
〉
⊗ . . .

〈O2| = · · · ⊗
〈
ū( n
L2

)
∣∣∣⊗ 〈ū(n+1

L2
)
∣∣∣⊗ . . . (9.7)

The three-point function is now obtained by Wick contracting the three operators as depicted
in figure 9.1b. Since there is no entanglement in operators O1 and O2 the contractions
are trivial. The operator O3 is glued, i.e. Wick contracted, with the other states at sites
k, k − 1, ... . We should then sum over the insertion starting point k. The Wick contractions
between O1 and O2 give

Ik =

l12+k∏
i=k+1

ū(i/L2) · u(i/L1) . (9.8)

where l12 is the number of contractions between O1 and O2. What is left is to consider the
Wick contractions between O3 and O1, O2. Consider one of the terms in O3 which gives
a nonzero contribution Tr[Zj3X̄X̄Ȳ . . . ]. The Wick contraction of this operator with the
coherent states O1, O2 at position k, k − 1, . . . gives

ū3( k
L2

)ū3(k−1
L2

) . . . ū3(k−j3+1
L2

)u1( k
L1

)u1(k−1
L1

)u2(k−2
L1

) . . . .

Since the field changes slowly over those sites, we can approximate this contribution by

uj11 (k/L1)uj22 (k/L1) ūj33 (k/L2) .

Thus, all nonzero Wick contractions between O3 and O1, O2 give approximately the same
contribution and, as mentioned above, there are j

(
j1+j2
j1

)
of them. Hence, the result of these

contractions is
Jk =M j

(
j1 + j2

j1

)
uj11 (k/L1)uj22 (k/L1) ūj33 (k/L2) . (9.9)

All together, we get

C••◦123 '
J∑
k=0

Ik Jk , (9.10)

where we recall that J is the length of operator O1, see (7.20).
Note that we have a U(1) gauge invariance when representing the coherent states as tensor

products of single site states. That is, we can multiply the state associated with any site of
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the chain by an independent phase factor

u(j/L)→ eiΛ(j) u(j/L) , ū(j/L)→ e−iΛ(j) ū(j/L) . (9.11)

All observables, including the structure constant (9.10) are of course invariant under the gauge
transformation. However Ik and Jk in (9.10) do transform nontrivially (for j3 6= j1 + j2).
We can profit from this fact to choose the most convenient gauge. Namely we can fix a
conformal-like gauge by demanding that Ik does not depend on k. That is

1 =
Ik
Ik−1

=
ū(k/L2 + l12/L2) · u(k/L1 + l12/L1)

ū(k/L2) · u(k/L1)
.

We have

u(k/L1 + l12/L1) ' u(k/L1)− j1 + j2

L1

∂σu(k/L1) +O(1/L2
1) ,

ū(k/L2 + l12/L2) ' ū(k/L2)− j3

L2

∂σū(k/L2) +O(1/L2
2) ,

where we used the fact that l12 = L1 − (j1 + j2) = L2 − j3, u(σ + 2π) = u(σ) and similarly
for ū. Thus we have to require that

(j1 + j2 − j3) ū · ∂σu = 0 , (9.12)

which matches nicely the Virasoro constraint (7.8). In the conformal-like gauge (9.12), we
further have that

I0 =

l12∏
i=1

ū(i/L2) ·u(i/L1) ' exp

2π− j3
L2∫

0

J
dσ

2π
log

(
ū ·
[
1− j1 + j2 − j3

L
σ∂σ

]
u

)
= 1 +O(1/L) .

We conclude that in this gauge:

C••◦123 '
(j1 + j2)!

j1!j2!

√
j
j1!j2!j3!

j!

2π∫
0

J
dσ

2π
uj11 u

j2
2 ū

j3
3 , (9.13)

which is precisely the strong coupling result (7.25)! This is the main result of this section.
Notice also that if we substitute va from (7.4) instead of ua we get

C◦◦◦123 = J
(j1 + j2)!

j1!j2!

√
j
j1!j2!j3!

j!

(
J1

J

)j1/2(J2

J

)j2/2(J3

J

)j3/2
(9.14)

which is indeed the limit Ja � ja of the known BPS formula (7.21), see (7.22). Of course,
upon dividing the two equations above and taking the absolute value, we obtain the ratio
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r123, which matches exactly with the strong coupling result (7.26). Moreover, in some sense
this result justifies that fact that we represented the large operators by coherent states, as
it matches the numerical extrapolation of our formulas of chapter 5 (see figure 8.1). This
concludes our analytical proof of the weak/strong coupling match for three-point functions
in the classical limit.

9.2.1 Non-BPS operator O3

The tree-level computation of the previous section did not rely on the small operator being
protected.53 We can therefore trivially generalize it to any small SU(3) operator O3 as
we will now explain. All the manipulations of the previous subsection involving the large
operators were not sensitive to the precise form of the small operator and only depended
on its global charges. The only difference when considering non-protected small operators
is in the combinatorial factor outside the integral in (9.13). That is, the more general weak
coupling result is

C•••123 = D
2π∫

0

J
dσ

2π
uj11 u

j2
2 ū

j3
3 , (9.15)

where D is the sum of the coefficients of the traces in O3 in which all the Z fields are next
to each other.

To illustrate this point let us consider a simple example where O3 is the Konishi operator

O3 =
1√
3

[
Tr
(
Z2X̄2

)
− Tr

(
ZX̄ZX̄

)]
⇒ D =

1√
3
⇒ C•••123

C••◦123

=
1√
3

√
3

2
. (9.16)

This ratio is exact and does not rely on the classical limit. Note that although in this example
O3 is in the SU(2) subsector, the operators O1 and O2 can be generic SU(3) operators.
Another simple example is

O3 =
1√
2

[
Tr(ZX̄Ȳ )− Tr(ZȲ X̄)

]
⇒ D = 0 . (9.17)

If we restrict to the SU(2) sector considered in chapter 5, see figure 5.1, we have

C•••123

C••◦123

=
C◦◦•123

C◦◦◦123

=

√
1

j

(
j

j3

)
A (j1|{w})
B({w})

, (9.18)

where we used the results from table 5.1. In particular, note that the dependence on O1 and
O2 has canceled out. Recall that we are now considering non-BPS operators O3 which can
be parametrized by its Bethe roots: those are the wj. Again, this formula is exact and does
not rely on any classical limit.

53Three-point functions of two heavy operators and certain light non-BPS operators were discussed in [64].
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O2 ' ū1ū2ū3 . . .

O1 ' u1u2u3 . . .

l

O
3

=
∑ T

r
( ZX̄

Ȳ
) O

4
= ∑

T
r (Z

X̄
Ȳ )

Figure 9.2: Four-point function of SU(3) operators with no contractions between O3 and O4. This
is the SU(3) generalization of the SU(2) setup considered in figure 6.1. O1 and O2 are large and
roughly conjugate to each other. They are represented by coherent states, so their contraction is
trivial. The non-trivial contribution to the four-point function comes from tree-level contraction of
the small operators O3 and O4 with the two large coherent states.

For non-protected operators however, we do not expect a match with strong coupling
in the classical limit considered so far. That can be seen already at one loop. A main
ingredient for the match between strong and weak coupling in the Frolov-Tseytlin limit is
that the perturbative expansion organized itself in powers of λ/J2. At one loop, there are
two types of corrections [38]. One is the insertion of one-loop Hamiltonians right where we
cut a given operator. The other is the two-loop correction to the Bethe wave functions. In
contradistinction to the case where the small operator is BPS, these two types of corrections
are not suppressed by 1/J2 and therefore, do not follow the Frolov-Tseytlin scaling.

9.3 Four-point functions

We now consider the SU(3) generalization of the four-point function setup for SU(2) op-
erators of figure 6.1. In particular, two of the operators are classical, while the other two
are small and are not Wick contracted between themselves, see figure 9.2. The operators
O1 and O2 are taken to be large operators with their charges and lengths being much larger
than the corresponding charges and lengths of O3 and O4. Thus, the exact Bethe states
that correspond to O1 and O2 are again well approximated by the coherent states (9.7). The
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9.3 Four-point functions

operators O3 and O4 are the small BPS operators:

O3 = M3

(
Tr[X̄j1Ȳ j2Zj3 ] + permutations

)
,

O4 = M4

(
Tr[X̄k1Ȳ k2Zk3 ] + permutations

)
, (9.19)

where the normalization constants are

M3 =

√
j1!j2!j3!

j! j
, M4 =

√
k1!k2!k3!

k! k
. (9.20)

The operator O3 is Wick contracted with O1 and O2 at sites q, q − 1, . . . . For a given
q and l (see figure 9.2), the Wick contractions between the large operators O1 and O2 are
given by

Iq,l =

l+q∏
i=q+1

ū(i/L2) · u(i/L1)

l12+q+k1∏
j=q+l+k1+1

ū(j/L2) · u(j/L1) . (9.21)

Let us consider the contractions between O3 or O4 with the classical operators. Given
the present configuration, the only terms of O3 which give a nonzero contribution are
Tr[Zj3X̄j1Ȳ j2 ], i.e. those in which all Z fields are together. Similary, the only terms in
O4 that contribute are Tr[Zk3X̄k1Ȳ k2 ]. For a fixed q and l, we denote the Wick contractions
of O3 and O4 with the classical operators by J (3)

q,l and J (4)
q,l , respectively. Following the same

logic that led to (9.9), we get

J (3)
q,l 'M3 j

(
j1 + j2

j1

)
uj11

(
q

L1

)
uj22

(
q

L1

)
ūj33

(
q

L2

)
,

J (4)
q,l 'M4 k

(
k1 + k2

k1

)
uk1

1

(
q + l + 1

L1

)
uk2

2

(
q + l + 1

L1

)
ūk3

3

(
q + l + 1

L2

)
.

Finally, we get54

C••◦◦1234 '
J∑
l=0

J∑
q=0

Iq,l J (3)
q,l J

(4)
q,l , (9.22)

where we recall that J is the length of operator O1, see (7.27).
Just like in the case of three-point functions, we will now argue that to leading order, the

contractions between the large operators is simply 1, i.e. Iq,l ' 1. For that, we may use the
fact that |C••◦◦1234 | must be invariant under multiplying each single site state by a phase, see
(9.11). We fix this gauge by choosing the conformal-like gauge (9.12). Then, with this gauge
and using

L2 = L1 +
k1 + k2 + j1 + j2 − k3 − j3

2π
, (9.23)

54The upper limit in the sum over l should be J − j1− j2− k1− k2. We replaced it by J , since J � ja, ka.
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(9.21) can be rewritten as

Iq,l ' exp

2πl∫
0

dσ

2π
log

(
ū ·
[
u− j3 + k3 − j1 − j2 − k1 − k2

2πL2

σ∂σu

])

× exp

2π(l12−l)∫
0

dσ′

2π
log

(
ū ·
[
u− j3 + k3 − j1 − j2 − k1 − k2

2πL2

σ′∂σ′u

])
' 1 +O (1/L2) .

With this simplification, the remaining part of the formula becomes

C••◦◦1234 ' M3M4 j k

(
j1 + j2

j1

)(
k1 + k2

k1

)
×

J∑
l=0

J∑
q=0

uj11

(
q

L1

)
uj22

(
q

L1

)
ūj33

(
q

L2

)
uk1

1

(
q + l + 1

L1

)
uk2

2

(
q + l + 1

L1

)
ūk3

3

(
q + l + 1

L2

)

'

(j1 + j2)!

j1!j2!

√
j
j1!j2!j3!

j!

2π∫
0

J
dσ

2π
uj11 (σ)uj22 (σ)ūj33 (σ)

×
(k1 + k2)!

k1!k2!

√
k
k1!k2!k3!

k!

2π∫
0

J
dσ

2π
uk1

1 (σ)uk2
2 (σ)ūk3

3 (σ)


where in the last step we have used (9.23) and the periodicity of the chain, which allowed us
to factorize the double sum in the first line. We immediately recognize that the first term
in brackets is C••◦123 , while the second one is C••◦124 , see (7.25). This constitutes an analytical
proof of the factorization formula (7.29). Of course, upon dividing the expression above by
C◦◦◦123C

◦◦◦
124 , which can be read from (7.22), and taking the absolute value we exactly obtain

the strong coupling result for r1234, see (7.31)!

9.3.1 More general four-point functions and 1/J supression

Let us now consider the more general setup for four-point functions that we first introduced in
figure 6.2, which in the classical limit looks like the one in figure 9.3. Using exactly the same
methods as before, we again impose the conformal-like gauge such that the contractions
between heavy operators are approximately one. The contributions from the contractions
between the light operators O3 and O4 with the heavy operators are respectively given by

J (3)
q,l,{mj} '

(
m1 +m2

m1

)
M3 j ū

j1−m1

1

(
q

L2

)
ūj2−m2

2

(
q

L2

)
uj3−m3

3

(
q

L1

)
,
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O2 ' ū1ū2ū3 . . .

O1 ' u1u2u3 . . .

l

O
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( Z̄X

Y
) O

4
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T
r (Z
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(a)

(b)

m1

m2

m3

Figure 9.3: More general four-point function of SU(3) operators, which allow contractions between
O3 and O4. This is the SU(3) generalization of the SU(2) setup considered in figure 6.2. Again,
the contraction between the large operators O1 and O2 is trivial. Thus, the only contribution comes
from the Wick contractions between the light operators and the large operators and between the
light operators themselves. (a) When there are no contractions between the light operators, the
diagrams are planar for any l. (b) If there are contractions between O3 and O4, the diagrams are
planar only for l = 0. We denote by m1, m2 and m3 the number of fields X, Y and Z (and their
conjugates) contracted between the light operators.
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J (4)
q,l,{mj} '

(
m1 +m2

m1

)
M4 k u

k1−m1
1

(
q + l + 1

L1

)
uk2−m2

2

(
q + l + 1

L1

)
ūk3−m3

3

(
q + l + 1

L2

)
,

where q is the site of the heavy operators where O3

For l 6= 0 and m1 +m2 +m3 6= 0 the diagrams are non-planar, and hence 1/N suppressed.
Hence, in the planar limit, the four-point function is given by

G4(x1, x2, x3, x4) ' 1

N2

J∑
l=0

J∑
q=0

G{0}(x1, x2, x3, x4)J (3)
q,l,{0} J

(4)
q,l,{0}+

+
1

N2

min {j1,k1}∑
m1=0

min {j2,k2}∑
m2=0

min {j3,k3}∑
m3=0

J∑
q=0

δm1+m2+m3 6=0 G{mj}(x1, x2, x3, x4)J (3)
q,0,{mj}J

(4)
q,0,{mj}

(9.24)

where

G{mj}(x1, x2, x3, x4) =
1

|x12|2(J−k1−k2−j3+m)|x13|2(j3−m3)|x14|2(k1+k2−m1−m2)
×

× 1

|x23|2(j1+j2−m1−m2)|x24|2(k3−m3)|x34|2m
.

(9.25)

The first term takes into account the contribution of the diagrams for which {m1,m2,m3} =

{0, 0, 0} and any l. The second term corresponds to the diagrams with l = 0 and m1 +m2 +

m3 6= 0. Taking the continuum limit of this expression in a similar way as was done before,
we obtain

G4(x1, x2, x3, x4) '

1

N2
G{0}(x1, x2, x3, x4)M3M4

2π∫
0

J
dσ

2π
ūj11 (σ)ūj22 (σ)uj33 (σ)

2π∫
0

J
dσ′

2π
uk1

1 (σ′)uk2
2 (σ′)ūk3

3 (σ′) +

+
1

N2

min {j1,k1}∑
m1=0

min {j2,k2}∑
m2=0

min {j3,k3}∑
m3=0

δm1+m2+m3 6=0 G{mj}(x1, x2, x3, x4)

(
m1 +m2

m1

)2

M3M4×

×
2π∫

0

J
dσ

2π
ūj1−m1

1 (σ) ūj2−m2

2 (σ)uj3−m3

3 (σ)uk1−m1
1 (σ)uk2−m2

2 (σ) ūk3−m3
3 (σ) .

(9.26)

The first term corresponds to the case of figure 6.2a and is again the strong coupling result
(7.31), see also (9.24). The second term corresponds to figure 6.2b and is suppressed by
1/J compared to the first one. The holographic description of the process described by this
second term is clear. In this case there is only a single light BPS operator being integrated
over the worldsheet defined by the large classical states, see figure 9.4. This is why this
process is supressed by 1/J with respect to the one shown in (7.4), where there are two
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O2

O1

O4

O3

τ e
=

0

Figure 9.4: Although this is a tree-level diagram, it is suppressed by 1/J with respect to the case of
figure 7.4 since in this case only one integration over the worldsheet is performed. This is analogous
to the weak coupling configuration of figures 6.2b or 9.3b.

integrations over the worldsheet. This light operator then decays into the two the final light
BPS operators O3 and O4. It would be very interesting to compare the second term in (9.26)
with the result of a strong coupling computation of the tree-level four-point function of figure
9.4 and see if a match occurs for them.
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Chapter 10

The Issue of Back-reaction

In the previous two chapters, we performed the weak/strong coupling match for correlation
functions in the classical limit by noticing that, at weak coupling, O1 ' Ō2 corresponds to
putting the extra roots of O1 on the already existing cuts of O2. We will now examine other
options for the positions of the extra roots and see that they indeed give different results
when comparing weak and strong coupling results.

10.1 Deforming a classical state

As explained in previous chapters, eigenstates of the one-loop Hamiltonian are labeled by a
set of Bethe roots uj. States that describe a classical solution correspond to configurations
of Bethe roots like the one shown in figure 7.1, where the roots are forming some dense cuts
in the complex plane. Recall that in our general setups for three- and four-point functions,
see figures 5.1 and 6.1, the state O2 had in general a smaller number of Bethe roots than the
state O1. When performing the numerical weak/strong coupling match for C••◦123 and C••◦◦1234

in chapter 8, we had to decide where to put the extra roots of O1 with respect to those of
O2. We chose to put them on the already existing classical cuts formed by the latter. As
anticipated then, it turns out that this is not the unique possibility to deform a classical
state. Indeed, there are in fact three natural options when it comes to adding extra roots to
a classical configuration (these are depicted in figure 10.1).

(A) One option is to put the extra roots at infinity (i.e. with zero momenta). This corre-
sponds to acting with a global symmetry generator on the classical configuration, see
e.g. [112, 81]. In order to put n extra roots at infinity, we simply consider the O1 spin
chain state to be obtained by acting on the Ō2 state n times with the lowering operator
S−. This is the global symmetry operator which converts a Z field into an X field.

(B) Another option is to add roots at finite values outside the existing classical cuts. Putting
roots outside the cuts at finite values can be interpreted as considering quantum fluctu-
ations around the classical solution [118, 119, 120].

107



10.2 Back-reaction numerically

(A) (B) (C)

Figure 10.1: Three different types of deformations of a classical state: (A) A global symmetry
transformation. (B) A quantum fluctuation. (C) A fluctuation in an already existing cut (i.e. adding
a “zero mode").

(C) The last option is to add more roots to the classical cuts which already exist. The
number of roots on each of these classical cuts corresponds to the action variables of the
classical solution [121]. Hence adding roots to already open cuts leads to a new classical
state with slightly larger magnitude for the same excited action variables.

Naively, it might seem like it does not matter where we add the extra roots and all of
these options should correspond to O1 ' Ō2. As we saw explicitly in chapter 8, this is not
the case. There is a sense in which only option (C) corresponds to O1 ' Ō2. In the present
chapter, we discuss numerical and analytical results concerning the other options (A) and
(B). We refer to the study of these other possibilities as the issue of back-reaction. While we
will focus our discussion on the three-point functions C••◦123 , the arguments presented in this
chapter should also be valid for four-point functions of the type C••◦◦1234 .55

10.2 Back-reaction numerically

In this section we begin our study of back-reaction. We will start by a simple analytical
example and then provide some numerics to gain intuition about the more general picture.
We will again use the folded string introduced in chapter 7 as our toy model to obtain
numerical data. A general analytical discussion is presented in the next section.

Let us consider a specific example where C••◦123 can be computed exactly, which we will use
to draw some general conclusions about back-reaction. The case in mind is

O3 = Tr
(
ZX̄

)
and for simplicity, we take O1 and O2 to be in the SU(2) sector. The point is that the Wick
contraction of O3 with O1 flips one of the X fields into a Z field and therefore effectively
acts as S+. Now suppose we take O1 to be a Bethe eigenstate. Since Bethe eigenstates are
highest weight states, they are annihilated by S+, so C••◦123 = 0.

55In fact, numerical evidence to support this claim was given in [41], but we chose not to include it in this
thesis for presentation purposes.
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Now suppose that, instead, we take

O1 =
1√

J3 − J1 + 2

[
S−, Ō2

]
whereO2 is represented by an exact Bethe eigenstate |Ψ2〉 and we are again using the notation
of (7.20), but restricted to the SU(2) sector (i.e. only Z and X fields). Here S− flips one Z
field into an X and is normalized such that it preserves the unit norm of |Ψ2〉. We get that56

C••◦123 =
√
J3 − J1 + 2 .

On the other hand, the result for three BPS operators (7.21) reduces in this case to

C◦◦◦123 =
√
J1(J3 + 1) .

Therefore, we find that in the classical limit:

r
(A)
123 =

C••◦123

C◦◦◦123

=
1√
J

√
1− 2α + 2/J

α(1− α + 1/J)
, (10.1)

where the superscript (A) indicates that this ratio was obtained when considering the option
of placing the extra root of O1 at infinity. Even in this simple example, we see that the result
for the ratio r123 is very sensitive to the position of the extra roots. As we saw in chapter 8,
in the classical limit, the leading term of the ratio r(C)

123 was of order one, while here we see
that the one for r(A)

123 is of order 1/
√
J .

10.2.1 Numerical results for roots at infinity

Here we study the option (A) from the list above. We consider O3 to be a BPS operator with
j/2 scalars X̄ and j/2 scalars Z for even j. In this case the final operator O1 and O2 have
the same length, but O1 has n ≡ j/2 more Bethe roots than the operator O2. We consider
the situation when the extra n roots are sent to infinity, which means that O1 is a descendant
of Ō2.

For the simplest case n = 1 we computed the result exactly above, see (10.1). This
suggests that for general n, the ratio r(A)

123 should go as

r
(A)
123 =

C••◦123

C◦◦◦123

∼ 1

Jn/2
. (10.2)

56√J3 − J1 + 2C••◦123 = 〈Ψ2|S+S−|Ψ2〉 = 〈Ψ2| [S+, S−] |Ψ2〉 = 〈Ψ2|Sz|Ψ2〉 = (J3 − J1 + 2).
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Figure 10.2: The bullets correspond to the numerical data for the ratio r(A)
123 = C••◦123/C

◦◦◦
123 computed

for the case (A), i.e. by adding extra roots at infinity, against the analytical prediction (10.1) (dashed
gray lines) for different values of the filling fraction of operator O1: α = 1/3, 1/4, 1/5, 1/6, from
bottom to top.

Indeed the numerics for the case n = 2 and α = 1/5 give

J 10 20 30 40 50 60

r
(A)
123 1 0.27036118 0.14195150 0.092991262 0.068076848 0.053258866

Fitting this data as Ja
∑4

i=0
bi
Ji

we obtain a = −1.01, which is indeed consistent with
eq.(10.2).57 Notice that for exactly the same O2 and O3, but in the situation when all
roots of O1 belong to the big classical cuts of the roots of O2, we obtained a finite value
r
(C)
123 = 0.8887595 by fitting the numerical data to infinite length (see table 8.1). Thus we see
that back-reaction is very important in this case and that adding roots at infinity gives a
completely different result compared to the option (C) studied in chapter 8.

In the next section we give a simple reason for this behavior and draw a general criteria
for back-reaction.

10.2.2 Numerical results for finite roots

We now want to study numerically option (B) with n = 2. To keep the zero momentum
condition in O1, the two extra finite roots that we add should have opposite mode numbers

57We also considered cases with more Bethe roots at infinity and found again evidence for (10.2) although
the precision decreases substantially as we increase the number n of Bethe roots sent to infinity.
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Figure 10.3: Numerical data for the three-point C••◦123 function with operator O1 deformed by
adding two finite roots with mode numbers k = ±3 (option (B)) divided by the same three-point
function with operator O1 deformed by adding two roots to the already existing cuts with mode
numbers k = ±1 (option (C)) for different filling fractions of operator O1: α = 1/3, 1/4, 1/5, 1/6
(from bottom to top). We see that the ratio does not go to one. In other words, back-reaction is
relevant.

k and −k. The case k = 1 is the one that we considered in chapter 8: it amounts to adding
more roots to the already open classical cuts. The cases k = 2, 3, . . . correspond to option
(B) from the list above.

The main question is whether we get the same result for C••◦123 when adding the two extra
roots with mode number k 6= 1 compared to the case k = 1 considered previously. To answer
this question we use again the analytic results of chapter 5 and evaluate these expressions
numerically for both cases. The results are shown in figure 10.3. We conclude that again
the answer is no and that the result differ considerably. In other words, back-reaction is also
relevant when adding extra roots at finite values outside the classical cuts of O2.

10.3 General criteria for back-reaction

In this section we will give a qualitative explanation for the dependence of the result on the
type of modification of the state O1 with respect to the state Ō2, which is necessary for
R-charge conservation. As we discussed above there are three options (see figure 10.1). One
can think about the case (A) as a limit of (B) when the mode number k of the extra roots
goes to zero. In this section we focus therefore on cases (B) versus case (C).

To understand better the difference between these two cases, we first consider the example
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of a free massless scalar field φ(σ, τ) on the cylinder. A general classical solution is of the
form:58

φ(σ, τ) =
∑
n

An cos (n(σ + τ) + φn) .

The analog of the finite gap solution would be the situation when the sum has only finitely
many terms. The amplitude An is related to the number of excitations inside a cut through a
Bohr-Sommerfeld quantization condition, which in the present case coincides of course with
the oscillator nA2

n = cNn where c ∼ ~ is a small constant and Nn is the number of excitations
at mode number n called filling number. We see that

An '
√
Nn

n
. (10.3)

Suppose we start with an unperturbed solution consisting of a single large cut

φ0(σ, 0) = A cos(nσ) .

There are two different types of perturbations we can introduce. One is by adding a small
number of excitations, l, to the existing large cut

φ(C)(σ, 0) =
[
A+ δA(C)

]
cos(nσ) .

The other, is by adding the small number of excitations l at a different mode number k 6= n

φ(B)(σ, 0) = A cos(nσ) + δA(B) cos(kσ) .

These perturbations obviously correspond to the options (C) and (B) introduced in the
previous section. Since the amplitude is proportional to the square root of the filling number
(10.3), for the case N � l we get

δA(C) ' A
l

2N
, δA(B) '

√
l

k
' A

√
nl

Nk
. (10.4)

We see that in these cases the scaling of the correction to the wave function is very different.
Having understood this let us turn back to our calculation of the three-point function at

weak coupling and see how the difference between the two behaviors in (10.4) really matters.
The only difference between the quasi-classical approximation for the Bethe eigenstates and
the free field example is that now the specific form of the solutions are more complicated and
when we add new roots, the old roots get a small correction. These differences are irrelevant
for the behavior (10.4).

In the large J limit, the quasi-classical approximation is valid and we can repeat our
previous calculation of the three-point function as prescribed in chapter 9. For simplicity we

58For simplicity, we only consider the left-moving solutions.
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10.3 General criteria for back-reaction

consider the case j3 = j1 +j2 in the setup (7.20) so that the lengths L1 = L2 are equal and we
do not have to worry about the U(1) gauge transformations (9.11). This time however, let
us be a bit more careful about back-reaction. Namely we assume that the coherent states for
O1 and O2 are a bit different and are parametrized by two different functions u2(σ) ≡ ū(σ)

and u1(σ) ≡ u(σ) + δu(σ). Since u1 is a unit vector, we have

ū · δu + δū · u = −δū · δu . (10.5)

An important step in the previous calculation of chapter 9 was the proof that the direct
Wick contractions between O1 and O2 (9.8) are trivial. The overlap of the two coherent wave
functions is equal to

I ≡ exp

(
J

2π

∫
dσ log(1 + ū · δu)

)
' exp

(
J

2π

∫
dσ

[
ū · δu− 1

2
(ū · δu)2

])
. (10.6)

As we are only interested in the absolute value of the three-point function, we only need to
consider the real part of the integrand. The real part of the first term in the integrand is
precisely the left-hand side of (10.5). Thus we see that the real part of the integrand is of
order ∼ J‖δu‖2.

For the type of correction (C) where the roots are added to the big open cuts, we found
that δu(C) ∼ l/J . In that case, the integrand goes as l2/J and the overlap I is indeed 1.
That lead us to the main result (9.13). For the second type of corrections where the roots
are not added to the big cuts, we found that δu(B) ∼

√
l/J . In that case we then get

|I| ' e−c l (10.7)

and thus for this case we have an additional exponential suppression for large l (the coefficient
must be negative since the overlap cannot exceed 1). Furthermore, in this case, (10.7) is not
even the only correction. This is indeed the case according to what we found from our
numerics. That is, for small l’s we found an order 1 correction compared to case (C) studied
in chapter 8.

Note that if we try to pass to the limit k → 0 corresponding to the case (A), the wave
function correction goes to infinity as one can easily see from eq.(10.4). This indicates that
when adding roots at infinity, the suppression should be even stronger in agreement with our
finding (10.2).

We end this section by noting that at strong coupling, the classical operators are described
by the same coherent states. Our findings indicate that also at strong coupling, the three-
point function of two large and one small operators is dominated by the overlap of the wave
functions. As such, we expect the above criteria for back-reaction to apply.
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Beyond the SU(2) sector and Conclusions
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Chapter 11

Beyond the SU(2) sector

In order to compute correlation functions of general single-trace operators in N = 4 SYM
using integrability, we need to generalize some of the techniques presented in part II of this
thesis. In this chapter we provide some tools that will be useful to go beyond the SU(2)

sector of the theory. The contents of this chapter slightly deviate from the logical flow of the
previous ones. Hence, the reader can first read to the conclusions and then come back to this
chapter.

11.1 Coordinate nested Bethe ansatz for SU(K) and
SU(K−J |J) spin chains

First, let us explain the procedure to construct the Bethe states of a spin chain with a general
Lie (super) group in the coordinate basis. In particular, we will give a detailed account on
how to construct SU(K) and SU(K−J |J) spin chains states. These cases will allow us to
introduce the concept of nested wave function. The simplest example, namely the SU(2)

spin chain, was already considered in chapter 3. For convenience, let us recall that in the
coordinate basis, a generic N -magnon SU(2) Bethe state is given by

|Ψ〉co =
∑

1≤n1<n2<···<nN≤L

ψ (n1, . . . , nN) |n1, . . . , nN〉 , (11.1)

with Bethe wave function

ψ (n1, . . . , nN) =
∑
P

A(P )
N∏
j=1

(
uPj + i

2

uPj − i
2

)nj
, (11.2)

where the sum runs over all N ! permutations P of (1, 2, . . . , N). The plane wave coefficients
are such that they obey the following relation A(...,j,i,... )

A(...,i,j,... )
= S(uj, ui), where S(uj, ui) is the

SU(2) S-matrix introduced in (3.15). The states Ψco diagonalize the SU(2) Hamiltonian
(3.2). The goal of this chapter is to generalize this construction to higher rank groups. As
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11.1 Coordinate nested Bethe ansatz for SU(K) and SU(K−J |J) spin chains

1

1 2 3 K − 1

(a) (b)

1 2 3 K − 1

1

Figure 11.1: Excitations at a spin chain site are created by exciting nodes in the corresponding
Dynkin diagram. (a) SU(K) Dynkin diagram. There are K − 1 nodes, labeled by the lower (gray)
numbers, while the upper number 1 is the Dynkin label, indicating the massive, momentum-carrying
node. (b) Two possible choices of Dynkin diagram for a given SU(K−J |J) spin chain. Both are
related by a fermionic duality, which in this case was applied to the second node (see [122] for
details). In this case there are also K − 1 nodes.

usual, we choose to write our formulas in terms of the rapidities u introduced in (3.14) instead
of the momenta.

Let us consider an SU(K) or SU(K−J |J) spin chain of length L. In this case, the
Hamiltonian that we have to diagonalize is

Ĥ =
λ

8π2

L∑
n=1

(In,n+1 − SPn,n+1) , (11.3)

where SPn,n+1 is the super permutation operator. The action of this operator is analogous to
the normal permutation operator Pn,n+1, except that it picks a minus sign when exchanging
two fermions at positions n and n+1. Before explaining how to diagonalize this Hamiltonian,
let us recall what is the Hilbert space of the spin chains that we are considering.

At each site in the chain there is a spin with one of K different polarizations. The
Dynkin diagrams of the corresponding algebras provide a convenient way to see what type
of excitations can be created at a given spin chain site. In the fundamental representation of
the group, the SU(K) Dynkin diagram is the one shown in figure 11.1a. In the case of super
groups, there is no unique Dynkin diagram and all possible choices are related by so-called
fermionic dualities [122] (we review these in appendix D). Figure 11.1b shows two possible
choices for a given SU(K−J |J) spin chain. In all these cases, there are a total of r nodes
in the diagram, with r = K − 1 being the rank of the group. The construction that we are
about to present is valid for both types of chains.59

The eigenstates of the Hamiltonian (11.3) are

|Ψ〉co =
∑

positions

ψ |{n1,j}, {n2,j}, . . . , {nr,j}〉 , (11.4)

where ψ is the spin chain wave function and the sum runs over the different allowed positions
59In fact, it can also be used for SL(2) spin chains, which we will brielfy review in section 11.3.
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11.1 Coordinate nested Bethe ansatz for SU(K) and SU(K−J |J) spin chains

Initial vacuum of length L

Create N1 excitations at positions {n1,j}

Create N2 excitations at positions {n2,j} in the reduced chain of length N1

Create N3 excitations at positions {n3,j} in the reduced chain of length N2

2

Then |{n1,j}, {n2,j}, {n3,j}〉 is represented by

1 0 0 3 0 0 2 1 0 3 0

Figure 11.2: Nesting procedure for the case of SU(4) or SU(K−J |J) with K = 4, L = 12,
{n1,j} = {1, 2, 5, 8, 9, 11}, {n2,j} = {1, 3, 4, 6} and {n3,j} = {2, 4}. For a = 2, 3, we have Na

excitations at positions {na,j} in a reduced spin chain of length Na−1.

of the excitations described above. We will now proceed to explain how to construct each of
the terms appearing in (11.4). First, let us explain how to construct the ket on the r.h.s. and
give explicitly the limits of summation in this formula.

11.1.1 Nested ket

The ket |{n1,j}, {n2,j}, . . . , {nr,j}〉 is obtained by exciting Na times node a in one of the
Dynkin diagrams of figure 11.1 and putting the corresponding excitations at the following
positions:

1 ≤ n1,1 < · · · < n1,N1 ≤ L ,

1 ≤ na,1 < · · · < na,Na ≤ Na−1, for 2 ≤ a ≤ r . (11.5)

These are the limits of the sum appearing in (11.4). This procedure is called nesting and
is illustrated in figure 11.2 for the case of SU(4) or SU(K−J |J) with K = 4, L = 12,
{n1,j} = {1, 2, 5, 8, 9, 11}, {n2,j} = {1, 3, 4, 6} and {n3,j} = {2, 4}. In this case the resulting
ket is

|{n1,j}, {n2,j}, . . . , {nr,j}〉 = |2 1 0 0 3 0 0 2 1 0 3 0〉,
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11.1 Coordinate nested Bethe ansatz for SU(K) and SU(K−J |J) spin chains

where the numbers a on the right-hand side denote an excitation of node a in the Dynkin
diagram, with 0 being an original vacuum site. It is then clear that for generic SU(K) or
SU(K−J |J) spin chains, we have N1 excitations at positions {n1,j} in the original spin chain
of length L, while for 2 ≤ a ≤ r, we have Na excitations at positions {na,j} in a reduced
spin chain of length Na−1. This is precisely what the limits (11.5) tell us. Moreover, we will
denote by {ua,j} the rapidities of the excitations of node a, with j = 1, . . . , Na.

11.1.2 Nested wave function

It should be clear from the nesting procedure explained above that the wave function ψ

appearing in (11.4) will not only depend on the first-node rapidities and positions, {u1,j} and
{n1,j}, but must also contain information about the rapidities and positions of the excitations
of the other nodes. This can be made precise using the nested Bethe ansatz [123], which
introduces the concept of nested wave function: the spin chain wave function ψ is written in
terms of wave functions ψa, for 2 ≤ a ≤ r, associated with the different nodes in the Dynkin
diagram. The dependence of these wave functions on the positions and rapidities is such that

ψa ({na,j}, {na+1,j}, . . . , {nr,j}; {ua−1,j}, {ua,j}, {ua+1,j}, . . . , {ur,j}) .

However, for notational convenience, we will not write these arguments explicitly. Instead,
we will only write the dependence of the wave functions on the permutation of the rapidities
of the previous node. More explicitly, the wave function appearing in (11.4) is

ψ =
∑
P1

A1(P1)

N1∏
j=1

(
u1,P1,j

+ i
2

u1,P1,j
− i

2

)n1,j

ψ2(P1) , (11.6)

while for 2 ≤ a ≤ r, the nested wave functions are given by

ψa(Pa−1) =
∑
Pa

Aa(Pa)
Na∏
j=1

na,j∏
k=1

(
ua,Pa,j − ua−1,Pa−1,k

−Ma−1,a
i
2

)δk 6=na,j
ua,Pa,j − ua−1,Pa−1,k

+Ma−1,a
i
2

ψa+1(Pa) , (11.7)

with ψr+1(Pr) = 1 and Ma,b being the Cartan matrix of the Lie (super) group.60 In these
formulas, Pa denotes the set of all permutations of (1, . . . , Na). Thus, Pa,j simply denotes
the jth element of Pa. Spin chain states of the form (11.4), whose wave functions are given
by (11.6), are referred to as Bethe states.

The terms in the product over k in (11.7) might seem strange at first, so, let us explain the
60For example, in the case of SU(K), the Cartan matrix corresponding to the Dynkin diagram of figure

11.1a is a matrix of size (K − 1)× (K − 1):

Ma,b = 2δa,b − δa−1,b − δa+1,b . (11.8)

For super groups, the choice of Dynkin diagram, and hence of Cartan matrix, is not unique. See appendix D
to learn how to write the Cartan matrices for the the Dynkin diagrams of figure 11.1b.
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11.1 Coordinate nested Bethe ansatz for SU(K) and SU(K−J |J) spin chains

physical picture behind them. Recall that the excitations with rapidities {ua,j} are placed at
positions {na,j} in a reduced spin chain formed by the excitations {ua−1,j}. Thus, the product
over k = 1, . . . , na,j−1 is interpreted as the cost of moving a ua excitation in the new vacuum
formed by the ua−1 excitations. The last term k = na,j (for which the numerator in (11.7)
is simply one) corresponds to the cost of placing the ua excitation at its final position in the
reduced chain.

Our choice of normalization is such that at each level the plane wave coefficient for which
no rapidities have been exchanged is set to one, i.e. Aa(1, . . . , Na) = 1. Moreover, all other
plane wave coefficients Aa can be uniquely determined as they obey the following relation

Aa(. . . , k, j, . . . )

Aa(. . . , j, k, . . . )
= Sa(ua,k, ua,j) , (11.9)

where Sa(ua,k, ua,j) is the S-matrix at node a, which is explicitly given by

Sa(ua,k, ua,j) = (−1)δMa,a,0
ua,k − ua,j +Ma,a

i
2

ua,k − ua,j −Ma,a
i
2

. (11.10)

Having described the exact form of the nested ket and wave function appearing in the
state (11.4), we can check in Mathematica that the latter is indeed an eigenstate of the
Hamiltonian (11.3), such that Ĥ |Ψ〉co = E|Ψ〉co, with eigenvalue

E =
λ

8π2

N1∑
j=1

1

u2
1,j + 1

4

. (11.11)

Here u1,j are the rapidities of the momentum-carrying node. We performed this check for
several SU(K) and SU(K−J |J) spin chains.

Finally, by imposing periodicity of the wave function ψ, we obtain the nested Bethe
equations, which can be written in the following compact form [124](

ua,j + Va
i
2

ua,j − Va i
2

)L
=

r∏
b=1

Nb∏
k=1

(a,j)6=(b,k)

ua,j − ub,k +Ma,b
i
2

ua,j − ub,k −Ma,b
i
2

, (11.12)

where Va are the Dynkin labels (for all the cases in this section, we have Va = δa,1). If all
rapidities satisfy these equations, then the state (11.4) is a Bethe eigenstate.

An example: the SU(3) spin chain

In order to be as pedagogical as possible, let us show how to construct the nested wave
function for the SU(3) spin chain using the procedure outlined above. Since the rank of the
group is r = 2 with the Cartan matrix given by (11.8), the Bethe wave function in this case
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11.2 Norm of Bethe eigenstates

reads

ψ =
∑
P1

A1(P1)

N1∏
j=1

(
u1,P1,j

+ i
2

u1,P1,j
− i

2

)n1,j

ψ2(P1) ,

where

ψ2(P1) =
∑
P2

A2(P2)

N2∏
j=1

n2,j∏
k=1

(
u2,P2,j

− u1,P1,k
+ i

2

)δb6=n2,j

u2,P2,j
− u1,P1,k

− i
2

and the coefficients A1(P1) and A2(P2) obey (11.10). Let us explicitly write out the first
terms in both expressions above. We have

ψ =

(
u1,1 + i

2

u1,1 − i
2

)n1,1 (u1,2 + i
2

u1,2 − i
2

)n1,2

. . .

(
u1,N1 + i

2

u1,N1 − i
2

)n1,N1

ψ2(1, 2, . . . , N1) ,

+
u1,2 − u1,1 + i

u1,2 − u1,1 − i

(
u1,2 + i

2

u1,2 − i
2

)n1,1 (u1,1 + i
2

u1,1 − i
2

)n1,2

. . .

(
u1,N1 + i

2

u1,N1 − i
2

)n1,N1

ψ2(2, 1, . . . , N1) + . . .

ψ2(P1) =

n2,1∏
k=1

(
u2,1 − u1,P1,k

+ i
2

)δk 6=n2,1

u2,1 − u1,P1,k
− i

2

n2,2∏
k=1

(
u2,2 − u1,P1,k

+ i
2

)δk 6=n2,2

u2,2 − u1,P1,k
− i

2

. . .

+
u2,2 − u2,1 + i

u2,2 − u2,1 − i

n2,1∏
k=1

(
u2,2 − u1,P1,k

+ i
2

)δk 6=n2,1

u2,2 − u1,P1,k
− i

2

n2,2∏
k=1

(
u2,1 − u1,P1,k

+ i
2

)δk 6=n2,2

u2,1 − u1,P1,k
− i

2

· · ·+ . . .

Writing out explicitly the dependence of the wave function on the positions of the excitations,
we can impose the periodicity conditions at each level of the nesting as

ψ({n1,1, n1,2, . . . , n1,N1}, {n2,j + 1}) = ψ({n1,2, n1,3, . . . , n1,1 + L}, {n2,j}) ,
ψ2({n2,1, n2,2, . . . , n2,N2}) = ψ2({n2,2, n2,3, . . . , n2,1 +N1}) .

These two conditions lead to the SU(3) Bethe equations(
u1,j + i

2

u1,j − i
2

)L
=

N1∏
k 6=j

u1,j − u1,k + i

u1,j − u1,k − i

N2∏
k=1

u1,j − u2,k − i
2

u1,j − u2,k + i
2

1 =

N1∏
k=1

u2,j − u1,k − i
2

u2,j − u1,k + i
2

N2∏
k 6=j

u2,j − u2,k + i

u2,j − u2,k − i
, (11.13)

which indeed agree with what we obtain using the formula for nested Bethe equations (11.12).

11.2 Norm of Bethe eigenstates

To generalize the results of this thesis to any type of operator in N = 4 SYM, one of the first
ingredients that we need is the norm of such operators. In this chapter, we present a formula
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11.2 Norm of Bethe eigenstates

to compute the norm of Bethe eigenstates of spin chains with general Lie (super) group.

11.2.1 Norm of Bethe eigenstates for general Lie groups

Let us consider a spin chain of length L with Lie (super) group of rank r with Cartan
matrix Ma,b. The physical space at each site can be either the space where the fundamental
representation acts or some other space where a representation with Dynkin label Va lives.
Then, just like in the previous section, each quantum state is parametrized by a set of Bethe
roots {ua,j}, where a = 1, . . . , r refers to the Dynkin node and j = 1, . . . , Na, with Na being
the number of magnons of type a. We will find it useful to introduce some useful notation,
which we will use throughout this chapter to write equations in a more compact form. In
particular, let us introduce the Baxter polynomials

Qa(u) ≡
Na∏
j=1

(u− ua,j) . (11.14)

With them, the general Bethe equations (11.12) can be written as(
ua,j + Va

i
2

ua,j − Va i2

)L
= sa

r∏
b=1

Qb

(
ua,j +Ma,b

i
2

)
Qb

(
ua,j −Ma,b

i
2

) , (11.15)

where sa = −1, 1 if node a is bosonic or fermionic respectively. We can take the logarithm
of the Bethe equations and define the following phases

φa,j ≡
1

i
log

[
sa

(
ua,j + Va

i
2

ua,j − Va i2

)L r∏
b=1

Qb

(
ua,j −Ma,b

i
2

)
Qb

(
ua,j +Ma,b

i
2

)] . (11.16)

In the case of SU(2) spin chains, this equation simply reduces to the one introduced in (3.16).
In the coordinate base, the norm of a Bethe eigenstate of the spin chain described above

reads:

Nco =
Nm∏
j=1

(
u2
m,j +

1

4

) ∣∣det
I,J

∂IφJ
∣∣ , (11.17)

where m denotes the massive node in the Dynkin diagram and we combined the indices a
and j into single indices I, J = 1, 2, . . . , (N1 + · · ·+Nr).

We checked numerically the validity of formula (11.17) by comparing it to the value
obtained from the brute force computation of the norm as

Nco = co〈Ψ|Ψ〉co , (11.18)

where |Ψ〉co is constructed using the procedure explained in the previous section. Needless
to say, formula (11.17) is far more efficient than (11.18) from a computational point of view.
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11.2 Norm of Bethe eigenstates

The former involves the calculation of a determinant of size (N1 + · · ·+Nr), while the latter
involves a sum over (N1! . . . Nr!)

2 plane wave terms for each possible configuration of positions
{n1,j},{n2,j},. . . ,{nr,j} in (11.18), see (11.5). We performed this check for several types of
spin chains, considering different configurations of Bethe roots in each case, always making
sure that these probed the interactions at all levels of the nesting. More specifically, we
considered the following cases: SU(2), SU(3), SU(4), SU(1|1), SU(1|2), SU(2|1), SU(1|3),
SU(2|2) and SU(3|1). The agreement between the two formulas for the norm (11.17) and
(11.18) was perfect in all cases. We should note that for each super group we considered two
different choices of Dynkin diagram related by a fermionic duality, see figure 11.1.

We now want to show that it is possible to write the non-trivial part of (11.17), i.e.
the determinant, in terms of an object related to the transfter matrix T (u). To make our
expressions more compact, let us introduce some further notation. Given a function f(u),
we will use

f±(u) ≡ f(u± i/2) , f [n](u) ≡ f(u+ i n/2) . (11.19)

For a Lie (super) group of rank r, the transfer matrix T (u) takes the schematic form

T (u) = T1(u) + T2(u) + · · ·+ Tr(u) + Tr+1(u) , (11.20)

where the Ta’s are ratios of Baxter polynomials. Also, the Ta corresponding to the massive
node in the Dynkin diagram will have the usual term (u+ i/2)L/(u− i/2)L. Our convention
when writing the transfer matrix is that the Bethe equations for node a are recovered from
the residues of Ta and Ta+1 at the shifted Bethe roots u = ua,j + i(1 − a)/2. Now, we can
define T (u) by multiplying T (u) by the product of all Baxter polynomials appearing in the
denominators of the building blocks Ta(u). Thus, schematically:

T (u) = T1(u) + T2(u) + · · ·+ Tr(u) + Tr+1(u) . (11.21)

The Bethe equations for node a are recovered from

eiφ
[1−a]
a,j ≡ −T

[1−a]
a (ua,j)

T [1−a]
a+1 (ua,j)

= 1 , (11.22)

where the phases φa,j are precisely the ones introduced in (11.16).
Moreover, consider two consecutive terms in (11.21) Ta(u) + Ta+1(u) and let us take the

derivative of this with respect to the roots ub,k. Using (11.22), we arrive at

∂ub,k
[
Ta(u) + Ta+1(u)

]
=
(
1− eiφa(u)

)
∂ub,kTa+1(u)− ieiφa(u)Ta+1(u)∂ub,kφa(u) .

If we evaluate this expression at the shifted Bethe roots u = ua,j + i(1 − a)/2, the term in
brackets on the r.h.s. vanishes and we obtain:

∂ub,k

[
T [1−a]
a (ua,j) + T [1−a]

a+1 (ua,j)
]

= iT [1−a]
a (ua,j)∂ub,kφa,j . (11.23)
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11.2 Norm of Bethe eigenstates

We readily identify the non-trivial part of (11.17). Therefore, we arrive at the conclusion
that the norm of a coordinate Bethe eigenstate can be obtained by making the following
replacement in (11.17):

det ∂ub,kφa,j =

(
r∏

a=1

Na∏
j=1

1

i T [1−a]
a (ua,j)

)
det ∂ub,k

[
T [1−a]
a (ua,j) + T [1−a]

a+1 (ua,j)
]
. (11.24)

Let us show how the fundamental objects (11.20) and (11.21) look for the SU(3) spin
chain. In this case, and in our conventions, the transfer matrix reads

T (u) =

(
u+ i

2

u− i
2

)L
Q−−1 (u)

Q1(u)
+
Q++

1 (u)Q−2 (u)

Q1(u)Q+
2 (u)

+
Q+++

2 (u)

Q+
2 (u)

,

where we are using the notation introduced in (11.14) and (11.19). One can readily check that
the residues of the first two terms at u1,j give the first set of equations in (11.13). Likewise,
the residues of the last two terms at u2,j − i/2 give the second set of equations in (11.13).
Following the procedure outlined above, we can introduce T (u) by multiplying the transfer
matrix by Q1(u)Q+

2 (u):

T (u) =

(
u+ i

2

u− i
2

)L
Q−−1 (u)Q+

2 (u) +Q++
1 (u)Q−2 (u) +Q+++

2 (u)Q1(u) .

It is now clear what are the building blocks Ta that we need to use in (11.24) in the case of
SU(3). Again, we obtain a perfect numerical match when comparing (11.17) in its original
form versus the same formula, but with the replacement (11.24).

11.2.2 Norm of Bethe eigenstates and dualities

The general nested Bethe equations (11.15) obey some important dualities called fermionic
[122, 110] and bosonic [125] dualities. We refer the reader to appendix D, where we review
both types of dualities in detail. Here we will simply sketch the idea behind them to set the
stage. Moreover, the discussion in this subsection pertains to the SU(K) and SU(K|J) spin
chains reviewed in section 11.1.

Let us suppose that we solve the Bethe equations (11.15) corresponding to a spin chain
whose symmetry group has rank r. Doing so, we find a set of Bethe roots {u1,j, . . . , ud,j, . . . , ur,j}.
By applying either a fermionic or bosonic duality to a non-massive node in the Dynkin di-
agram, say node d, we obtain a new system of nested Bethe equations, whose solutions are
{u1,j, . . . , ũd,j, . . . , ur,j}. As reviewed in appendix D, the new set of Ñd dual roots {ũd,j} is
completely determined by the set of roots {ud−1,j} and {ud+1,j}. From now on, we will use a
tilde to denote quantities obtained after a duality.

The norms of the corresponding spin chain eigenstates before and after the duality can of
course be computed from (11.17). However, we find that the ratio of these norms takes the
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very simple form:

Ñco

Nco
=

∣∣∣det
j,k

∂ũd,k φ̃d,j

∣∣∣∣∣∣det
j,k

∂ud,kφd,j

∣∣∣ , (11.25)

where

φ̃d,j = φ̃d,j ({ud−1,j, ũd,j, ud+1,j}) , φd,j = φd,j ({ud−1,j, ud,j, ud+1,j}) .

Formula (11.25) involves only the phases φ̃d, φd corresponding to the node on which we
apply the duality, see (11.16). Thus, the determinants on the r.hs. of (11.25) are of size Ñd

(numerator) and Nd (denominator). This is a big simplification, since in principle the ratio
on the l.h.s. of (11.25) involves two determinants of size (N1 + · · · + Ñd + · · · + Nr) and
(N1 + · · ·+Nd + · · ·+Nr), see (11.17).

Let us now use formula (11.25) to obtain explicit expressions for a couple of examples.
First, consider an SU(2|1) spin chain. The corresponding Bethe equations can be obtained
from the more general SU(3|1) spin chain that we review in appendix D. They read:61

eiφ1,j ≡ −eiτ1
(
u+ i/2

u− i/2

)L
Q−−1 Q+

2

Q++
1 Q−2

∣∣∣∣∣
u=u1,j

= 1 , eiφ2,j ≡ eiτ2
Q+

1

Q−1

∣∣∣∣∣
u=u2,j

,

where we have defined the phases corresponding to each node. After applying a fermionic
duality to the second node, we obtain the following new system of equations:

eiφ̃1,j ≡ ei(τ1+τ2)

(
u+ i/2

u− i/2

)L
Q̃−2
Q̃+

2

∣∣∣∣∣
u=u1,j

= 1 , eiφ̃2,j ≡ e−iτ2
Q−1
Q+

1

∣∣∣∣∣
u=ũ2,j

,

where the new Baxter polynomials Q̃2(u) are defined in a similar way as in (11.14):

Q̃2(u) ≡
Ñ2∏
j=1

(u− ũ2,j) .

One can readily check that the matrices entering (11.25) are diagonal in this case. Explicitly,
we get:

Ñco

Nco
=

Ñ2∏
k=1

N1∑
j=1

−1

(ũ2,k − u1,j)2 + 1/4
N2∏
k=1

N1∑
j=1

1

(u2,k − u1,j)2 + 1/4

. (11.26)

Let us now consider an SU(3) spin chain, whose Bethe equations can be obtained from
61We are introducing twists τa in the Bethe equations to keep the discussion more general, see appendix

D.
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the more general SU(4) spin chain reviewed in appendix D. They are:

eiφ1,j ≡ −eiτ1
(
u+ i

2

u− i
2

)L
Q−−1 Q+

2

Q++
1 Q−2

∣∣∣∣∣
u=u1,j

, eiφ2,j ≡ −eiτ2Q
+
1 Q
−−
2

Q−1 Q
++
2

∣∣∣∣∣
u=u2,j

.

After applying a bosonic duality to the second node in the Dynkin diagram, we obtain the
following system:

eiφ̃1,j ≡ −ei(τ1+τ2)

(
u+ i

2

u− i
2

)L
Q−−1 Q̃+

2

Q++
1 Q̃−2

∣∣∣∣∣
u=u1,j

, eiφ̃2,j ≡ −e−iτ2Q
+
1 Q̃
−−
2

Q−1 Q̃
++
2

∣∣∣
u=ũ2,j

.

In this case the matrices entering (11.25) are not diagonal and we obtain:

Ñco

Nco
=

det
j,k

δjk
N1∑
l=1

1

(ũ2,j − u1,l)2 + 1/4
−

Ñ2∑
l=1

2

(ũ2,j − ũ2,l)2 + 1

+
2

(ũ2,j − ũ2,k)2 + 1


det
j,k

[
δjk

(
N1∑
l=1

1

(u2,j − u1,l)2 + 1/4
−

N2∑
l=1

2

(u2,j − u2,l)2 + 1

)
+

2

(u2,j − u2,k)2 + 1

] .
(11.27)

11.3 SL(2) and SU(1|1) scalar products

In this section we give several formulas for the scalar products of SL(2) and SU(1|1) spin
chains, which are dual to single-trace operators in the other two rank-1 subsectors of N = 4

SYM. These formulas were obtained from the ones for SU(2) spin chains presented in chapter
4 and appendix A by making educated guesses. We checked their validity by comparing them
to the result obtained from the brute force computation of the scalar product using the SL(2)

and SU(1|1) wave functions, which we brielfy review below.

11.3.1 SL(2) scalar products

Single-trace operators in the SL(2) sector of N = 4 SYM are made out of L fields Z and N
covariant derivatives D. This type of operators are dual to strings rotating in AdS3 [73] and
play an important role in the computation of gluon scattering amplitudes and expectation
values of Wilson loops in the theory [126].

In the spin chain picture, the N covariant derivatives D are regarded as excitations on
a vacuum of L scalar fields Z, i.e. the number of fields Z determines the length of the spin
chain. The covariant derivatives do not really occupy spin chain sites, but simply act on
the corresponding vacuum fields. As opposed to the SU(2) case, the SL(2) spin chain is
non-compact, which physically means that there is no bound on the number of excitations
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that we can have at a given site. Hence, a generic SL(2) state is of the form

|Ψ〉SL(2) =
∑

1≤n1≤n2≤···≤nN≤L

ψSL(2)(n1, . . . , nN)|n1, . . . , nN〉 .

It is important to take into account these new limits of summation when computing scalar
products by brute force. The wave function ψSL(2) can be constructed using the procedure
explained in section 11.1 with Cartan matrixM = −2. That is, in this case the wave function
is given by

ψSL(2) (n1, . . . , nN) =
∑
P

A(P )
N∏
a=1

(
uPa + i

2

uPa − i
2

)na
, (11.28)

where the plane wave coefficients obey

A(. . . , b, a, . . . )

A(. . . , a, b, . . . )
= SSL(2)(ub, ua) =

ub − ua − i
ub − ua + i

.

States constructed in this way diagonalize the SL(2) Hamiltonian, whose density HSL(2) acts
on two adjacent sites with k and n− k covariant derivatives D in the following way [127]

HSL(2)|k, n− k〉 =
λ

8π2

n∑
k′=0

[
δk=k′

(
h(k) + h(n− k)

)
− δk 6=k′

|k − k′|

]
|k′, n− k′〉 ,

where h(j) are the harmonic numbers: h(j) =
∑j

k=1
1
k
and the energy eigenvalues are again

given by (11.11). Finally, by imposing periodicity of the wave function we obtain the corre-
sponding Bethe equations: (

uj + i
2

uj − i
2

)L
=

N∏
k 6=j

uj − uk − i
uj − uk + i

.

Having quickly reviewed the main facts about SL(2) operators in N = 4 SYM and their
corresponding spin chain description, let us now give explicit formulas to compute SL(2)

scalars products in the latter picture.

General scalar product

Our claim is that the scalar product in the algebraic basis Sal
N({v∗}, {u}) between two generic

SL(2) spin chains with rapidities {u} and {v} can be computed using the new recursion
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relation (4.25) or formula (A.2), but with the following expressions for the building blocks:62

a(u) =

(
u+

i

2

)L
, d(u) =

(
u− i

2

)L
,

f(u) =
u− i
u

, g(u) = − i
u
, h(u) =

u− i
−i

, t(u) =
−1

u(u− i)
.

In order to make sure that this proposal is correct, we need the scalar product in the coor-
dinate basis. In this way, we will be able to compare it against the result obtained from the
brute force computation using the wave functions (11.28). The conversion factor that relates
the scalar product in the coordinate and algebraic basis is obtained from that for SU(2) spin
chains, see (A.3), but with a minor modification:

co〈{v}|{u}〉co =
(−1)N

d{u}a{v∗}g{u+ i
2
}g{v

∗− i
2
}f
{u}{u}
< f

{v∗}{v∗}
>

Sal
N({v∗}, {u}) (11.29)

Scalar product with a Bethe eigenstate

If the set of rapidities {u} satisfy the SL(2) Bethe equations, the general scalar product in
the algebraic basis simplifies to

Sal
N({v}, {u}) = g

{u}{u}
> g

{v}{v}
< d{u} det

j,k
Ω(uj, vk) , (11.30)

where the matrix Ω is

Ω(uj, vk) = a(vk)t(uj − vk)h{u−vk} − (−1)Nd(vk)t(vk − uj)h{vk−u} .

Norm of a Bethe eigenstate

Finally, the norm in the coordinate basis is given by our conjectured formula (11.17)

Nco =
N∏
j=1

(
u2
j +

1

4

) ∣∣det
j,k

∂jφk
∣∣ ,

where the phases φj are defined as

eiφj ≡
(
uj + i/2

uj − i/2

)L N∏
k 6=j

uj − uk + i

uj − uk − i
= 1 .

62Just like in the spectrum problem, SL(2) equations can be obtained from those for SU(2) by changing
i→ −i.
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11.3.2 SU(1|1) scalar products

Single-trace operators in the SU(1|1) sector of N = 4 SYM are made out of L−N fields Z
and N fermions Ψ. In the spin chain picture, the N fermions are regarded as excitations on
a vacuum of scalar fields Z. A generic SU(1|1) state is of the form

|Ψ〉SU(1|1) =
∑

1≤n1<n2<···<nN≤L

ψSU(1|1)(n1, . . . , nN)|n1, . . . , nN〉 ,

where the wave function ψSU(1|1) can be constructed using the procedure explained in section
11.1 with Cartan matrix M = 0. That is, in this case the wave function is again of the form
(11.28), but the plane wave coefficients obey

A(. . . , b, a, . . . )

A(. . . , a, b, . . . )
= SSU(1|1)(ub, ua) = −1 .

Thus, in this case the scattering is trivial: the excitations behave as free fermions! States con-
structed in this way diagonalize the SU(1|1) Hamiltonian given in (11.3), with corresponding
energy eigenvalues given by (11.11). Finally, we have to take Fermi statistics into account
when imposing periodicity of the wave function. For example, from ψSU(1|1)(n1, n2, . . . , nN) =

(−1)N−1ψ(n2, n3, . . . , nN , n1 + L) we obtain the Bethe equations(
uj + i

2

uj − i
2

)L
= 1 ,

which are of course trivially solved by uj = 1
2

cot
πnj
L
. Let us now give explicit formulas to

compute scalar products of SU(1|1) spin chains.

General scalar product

Just like before, the scalar product Sal
N({v∗}, {u}) of two generic SU(1|1) spin chains with

rapidities {u} and {v} can be computed using the new recursion relation (4.25) or the sum
over partitions formula of (A.2), but with the following expressions for the building blocks

a(u) =

(
u+

i

2

)L
, d(u) =

(
u− i

2

)L
,

f(u) =
i

u
, g(u) =

i

u
, h(u) = 1, t(u) =

i

u

In this case, the relation between the scalar product in the algebraic and coordinate bases is
exactly the same as that for SU(2), see (A.3).
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Scalar product with a Bethe eigenstate

Then, if the set of rapidities {u} satisfy the SU(1|1) Bethe equations, the scalar product
simplifies to

Sal
N({v}, {u}) = g

{u}{u}
> g

{v}{v}
< d{u} det Ω(uj, vk) , (11.31)

where the matrix Ω is now given by

Ω(uj, vk) = (−i)N [a(vk)t(uj − vk) + d(vk)t(vk − uj)] .

Norm of a Bethe eigenstate

Again, the norm in the coordinate basis is given by formula (11.17) with φj defined as

eiφj = 1 where eiφj ≡
(
uj + i/2

uj − i/2

)L
.
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Chapter 12

Conclusions and Future Directions

In this thesis, we have shown that integrability techniques, so useful in the spectrum problem,
can also be used to tackle the computation of correlation functions at weak coupling in N = 4

SYM. In particular, we explained in great detail how to efficiently compute all tree-level three-
and four-point functions of single-trace gauge-invariant operators in the SU(2) sector of the
theory. The method we used involves thinking of the operators as spin chain states that are
cut, flipped and sewed into the corresponding correlation functions.

Using the classical limit of our weak coupling results for three- and four-point functions,
we performed a weak/strong coupling match by comparing them to the results obtained for
the corresponding holographic correlation functions in the Frolov-Tseytlin limit. In order to
do this, we precisely identified what O1 ' Ō2 means at weak coupling. Since this type of
match was instrumental in guessing all-loop results in the spectrum problem [112, 111], we
hope the same will be the case for three-point functions. That is, one should not view this
weak/strong coupling match as fundamental, but rather as a guiding principle in the pursuit
of higher-loop results. In this spirit, it was recently shown that the match persists at one
loop for three-point functions of two heavy operators and a light BPS operator in the SU(2)

sector [46].
We should also emphasize the important role that numerics played in our work. The

Mathematica implementation of our weak coupling formulas of chapter 5 and 6 (see appendix
E) allows us to obtain exact numerical results for operators with small or large charges. Using
our code, we were able to show numerically the weak/strong coupling match for three- and
four-point functions. In turn, this result justified the use of coherent states to represent the
large operators in the correlation functions. Recently, the numerical weak/strong coupling
match for three-point functions was extended to one loop [46]. The analytical coherent state
computation of this match is yet to be performed (see [128] for an interesting effort). Finally,
let us recall that we were able to identify the issue of back-reaction in chapter 10 precisely
because of our numerical work. In short, the use of numerical results was a powerful guiding
tool in our research.

As first pointed out in [40], the building blocks of the weak coupling results of part III of
this thesis are the same that appear in the spectrum problem. To promote tree-level results
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up to four-loops in the spectrum problem, one has to modify the expression for the energy
and the momenta of excitations. For example:

eip =
u+ i

2

u− i
2

→
x(u+ i

2
)

x(u− i
2
)
,

where √
λ

2π
x(u) = u+

√
u2 − λ

4π2

is the so-called Zhukovsky variable introduced in [129]. We expect that such replacements
in our tree-level expressions for correlation functions capture most of the correct higher-loop
result for asymptotic operators, i.e. those for which there are no wrapping corrections. Recent
results for one-loop three-point functions seem to confirm this claim [46]. This is expected
because for asymptotic operators, the dominant contribution to their correlation functions
comes from the overlap of their wave functions, which is precisely what we studied in this
thesis.

From a broader perspective, computing three-point functions in N = 4 SYM is an ambi-
tious goal with far reaching consequences. The main motivation to develop efficient methods
to compute these observables is that, together with the two-point functions, the three-point
functions are enough to reconstruct any higher-point function in this conformal field theory.
The material presented in this thesis constitutes the first step toward finding a systematic
procedure that will allow us to compute all three-point functions in the theory, just like the
Y-system does for the spectrum of anomalous dimensions. Of course, in order to accomplish
this longer-term goal, we need to extend the techniques presented in this thesis. Thus, let us
comment on some future directions of research.

Other sectors of N = 4 SYM

An obvious first step is to generalize our results to compute tree-level correlation functions of
operators in other sectors of the theory. After all, to glue three-point functions together into
higher-point correlation functions we will need the most general cases. Recall that for the
spectrum problem, we needed to know the spectrum of eigenvalues of integrable Hamiltonians.
As we showed in the main text, for correlation functions the basic ingredient is the precise
form of the eigenstates, i.e. the precise structure of the spin chain wave functions. The nested
coordinate Bethe ansatz for SU(K) and SU(K|J) spin chains that we presented in section
11.1 allows us to construct the eigenstates corresponding to a large class of operators in
N = 4 SYM. A feature shared by these types of spin chain is that the massive node in their
Dynkin diagrams is the first one, see figure 11.1. What remains to be done is to understand
how to construct the wave functions of spin chains whose Dynkin diagrams have two wings,
i.e. in these cases the massive node is the middle one. This is important because the Dynkin
diagram corresponding to the spin chain of N = 4 SYM is precisely of this type [112].

The best starting point to address this issue is to study the SO(6) spin chain corresponding
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1

1 2 3

Figure 12.1: SO(6) Dynkin diagram, where the upper number 1 indicates the momentum-carrying
node. Note that the lower (gray) numbers label the nodes and the middle node is common to both
wings.

to operators made out of all complex scalars in the theory. The Hamiltonian in this case
is known [14] and the Dynkin diagram is the same as that of SU(4), but with the massive
node being the middle one (see figure 12.1). Thus, each of the two wings looks like an
SU(3) Dynkin diagram. This naturally leads to conjecture that we can write the SO(6)

wave function as a product of two SU(3) wave functions constructed using the procedure
from section 11.1. We have numerical evidence that this is indeed the case (one has to take
into account some subtelties related to the fact that the two SU(3) wings share the middle
node).

Once the wave functions are known, we need to develop new technology for computing
scalar products of Bethe states for higher-rank groups. That is, we need to generalize the
SU(2) formulas presented in chapter 4.63 As a first step we generalized the formula for the
normalization of Bethe states to generic Lie (super) algebras, see (11.17). As explained in
section 11.2, we tested the validity of our conjectured formula by comparing it against the
brute force computation of the norm of a Bethe state constructed using the wave functions
of section 11.1. The numerical match was perfect in all cases. Moreover, taking into account
the subtelties mentioned in the previous paragraph, we also checked that the formula is valid
for SO(6) spin chains.

For the other rank-one sectors of N = 4 SYM, i.e. for the SL(2) and the SU(1|1) sectors,
we went a bit further. For these cases we generalized all possible scalar products (and not
only the norm) in section 11.3. Hence, we can trivially convert the results of the main text
to their analogue in the other rank-one sectors.

The next step in complexity is to understand how to generalize the formulas of chapter 4
to compute general scalar products of SU(3) spin chains.

Loops

Another natural direction is to develop integrability techniques to compute correlation func-
tions at loop order. There are two type of loop corrections that one needs to take into
account, which we explain below for the case of three-point functions.

63To our knowledge the only previous results for scalar products of Bethe states in nested Bethe ansatz
systems are [130] for the norm of SU(3) Bethe eigenstates and [131] for the norm of eigenstates in the Hubbard
model. See also [132] for recent progress in computing particular limits of SU(3) scalar products.
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O1 = |Ψ1〉2-loop

O2 = |Ψ2〉2-loop

O
3

=
|Ψ

3
〉2

-l
oo

p

Ĥ1-loop

Figure 12.2: At one loop, the three-point function gets two types of corrections. One type is the
two-loop correction to the external wave functions eigenstates. The other correction shown in this
figure comes from the one-loop Hamiltonian insertion Ĥ between legs that originate from one of the
operators and goes to two different operators. As opposed to the overlap of the wave functions, that
contribution is very local and therefore it is somehow simpler. It can be thought of as measuring
the energy cost of splitting the string [38]. Outside the scalar sector the picture seems to be more
involved [39].

• The first are loop corrections to the wave functions of the three operators. These
comprise nonlocal corrections – due to the dependence of the scattering matrices (3.5)
on the coupling – and also local corrections due to the insertion of the so-called contact
terms [133]. Due to the degeneracy of the spectrum at tree level, the computation of
these corrections to the three-point functions at l loops involves the (l + 1)-loop wave
functions.

• The second are loop corrections to the contraction of the three operators. At low loop
orders, these are local corrections which dress the nonlocal overlap of the three wave
functions. At one loop, and in the scalar sector, these corrections are captured by
Hamiltonian density insertions at the spin chain breaking points [38, 39], see figure
12.2. One can think of these Hamiltonian insertions as measuring the energy cost of
splitting the three operators [38]. Outside the scalar sector the picture seems to be
more involved [39].

It was recently shown in [46] that one can indeed use integrability techniques to compute
three-point functions at one loop in the SU(2) sector. The idea is to introduce rapidities θj at
all sites of a spin chain of length L, just like we did in chapter 5 when deriving the determinant
form of three-point functions. It was realized in [46] that all the corrections listed above can
be accounted for by introducing a novel differential operator called Θ-derivative, which acts
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on a function as

((
f
))
θ
≡ f +

λ

32π2

L∑
i=1

(
∂θi − ∂θi+1

)2
f

∣∣∣∣
θj→0

+O(λ2) . (12.1)

Quite remarkably, by acting with this operator on eigenstates of the one-loop Hamiltonian
(3.2), we obtain, up to some factor, eigenstates of the two-loop SU(2) Hamiltonian [134]

Ĥ =

(
λ

8π2
− λ2

32π4

) L∑
n=1

Hn,n+1 +
λ2

128π4

L∑
n=1

Hn,n+2 , (12.2)

where Ha,b ≡ Ia,b − Pa,b. Namely, if we consider an operator with rapidities {u}:

|{u}〉2-loop =

(
1− λ

16π2
ΓuHL,1

)((
|{u}〉1-loop

))
θ
, (12.3)

where Γu is the sum part of the one-loop energy (3.17). This is precisely the first type of
correction mentioned above. What is even more suprising is that the Θ-derivative also takes
care of considering the Hamiltonian insertions between the three operators. Namely, the
one-loop three-point functions in the SU(2) sector are simply given by

C1-loop
123 =

√
L1L2L3

((
Ctree-level

123 /Ω̃123

))
θ1((√

N 1

))
θ1

((√
N 2

))
θ2

((√
N 3

))
θ3

, (12.4)

where N1 = 1-loop〈{u}|{u}〉1-loop, and similarly for N2 and N3, while θi are the rapidities
introduced for each operator. In this equation, Ctree-level

123 should be understood as the expres-
sion appearing on the r.h.s. of (5.21). This is remarkable: the Θ-derivative basically acts as a
“loop generator” on three-point functions. As an example, all one-loop three-point functions
shown in table C.1 (which were computed by brute force) are reproduced by (12.4) [135].

It is natural to expect that by considering higher-order terms in λ in the Θ-derivative
(12.1), one should be able to obtain higher-loop three-point functions in the SU(2) sector
in a similar fashion. Unfortunately, there are no explicit Feynman diagram computations
of three-point functions in N = 4 SYM beyond one loop. Thus, it would be important to
initiate a systematic perturbative study of three-point functions at loop order to compare
those results with the ones obtained from the integrability approach.

Classical limit

An important direction of research is the classical limit of the general tree-level results that
we obtained in chapters 5 and 6. This limit proves to be very useful for comparison with
string theory computations through the Frolov-Tseytlin limit. In the case of three-point
functions, this limit has already been worked out in [45, 46]. Let us flash one of these results.
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ρ(u)

A-cycles

Figure 12.3: In the classical limit, the Bethe roots distribute themselves alongs some cuts (red
bullets) described by some density ρ(u) (blue bullets). In this limit, the three-point function C◦•◦123 can
be expressed as an integral over the A-cycles that encircle the cuts (green curves) and an integral
over the cuts themselves, see (12.7). In this particular example, we show the Bethe roots for a
two-cut solution with L = 1000, N = 100.

Recall that classical scaling limit that we considered is the Sutherland limit [115], which was
rediscovered in [102] in the context of the AdS/CFT correspondence. In this limit, the length
L, the number of Bethe roots N and the roots themselves are very large:

N ∼ L ∼ v →∞ (12.5)

and are of the same order. Moreover, the roots distribute themselves in contours Ck described
by some density ρ(v), see figure 12.3. These contours are also called cuts. A systematic
description of the spectrum in the classical limit is achieved through the finite gap method
of KMMZ [104]. In this method one introduces a resolvent

G(u) =
N∑
k=1

1

u− vk
=

∫
∪Ck

dv
ρ(v)

u− v
(12.6)

where the integral is over all the contours Ck where the roots lie in the continuum limit. In
this language, the classical limit of the ratio C◦•◦123/C

◦◦◦
123 is given by [44]

C◦•◦123

C◦◦◦123

∝ A (l|{v})
B({v})

= exp

1∫
0

dt

 ∮
∪Ck

dv

2πi
q log

(
1− eiqt

)
−
∫
∪Ck

dv ρ log
(
2 sinh(πtρ)

) (12.7)
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where
q(u) =

l

u
−G(u) (12.8)

is a sort of trimmed quasi-momenta. In this expression all the roots are taken to be finite.
The integral involving the quasi-momenta q(v) is over the A-cycles that encircles the cuts,
while the integral involving the density ρ(u) is taken over the cuts, see figure 12.3. Note from
table 5.1 that the ratio A /B is also the essential building block of C•◦◦123 and C◦◦•123 . Hence
(12.7) is also the answer for those cases.

The scaling limit of the more general SU(2) cases in table 5.1 can be also analyzed.
Indeed, the result for the most general three-point function C•••123 of three heavy, non-BPS
operators was recently derived in [45]. In that case, the result is also neatly expressed in
terms of integrals of the quasi-momenta around the cuts formed by the roots of each operator.
Finally, as first proposed in [40], the all-loop answer in the classical limit might be obtained
from the tree-level result of [45] by using the exact expression for the quasi-momenta to
higher-loop order, including the dressing phase [136]. It would be very interesting to explore
this possibility.

Strong coupling

There are also interesting directions to pursue on the strong coupling side. An important
open problem is to compute the full holographic correlation function of three heavy operators.
So far, only the AdS5 contribution to the answer has been computed [71], while the S5 part
remains to be found. Once the full result is known, one could compare its Frolov-Tseytlin
limit with the classical limit of the weak coupling result, which was obtained in [45], to see
if a match occurs. One would also like to extend the integrability techniques for three-point
functions developed in [71] and [72] to compute higher-point correlation functions at strong
coupling. When such techniques are available, it would be interesting to make a comparison
of the strong coupling results and our weak coupling results of chapter 6 when more than
two operators in the four-point function are heavy and see if a weak/strong coupling match
occurs.

Another interesting avenue is the study of back-reaction at strong coupling. Recall that
for the holographic three-point function of two heavy non-BPS operators and a light BPS
operator, we showed in chapter 10 that O1 ' Ō2 corresponds to option (C) at weak coupling.
This means adding the extra roots of O1 to the existing classical cuts formed by the roots
of O2. It would be interesting to identify what strong coupling computations correspond to
the options (A) and (B) at weak coupling, in which we add the extra roots of O1 outside of
the cuts of O2 at infinity or finite values, respectively. Recall that these options correspond
to acting with global symmetry generators on the classical solution or considering quantum
fluctuations around it, see figure 10.1. In both of these cases we still have that the classical
state O1 seems similar to Ō2.

Of course, one would also like to be able to compute the holographic correlation function
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of one heavy non-BPS operator and two light BPS operators, for which we know the result
at weak coupling, see (12.7).

Finally, it would be interesting to compute the 1/J correction to the holographic four-
point function of figure 9.4 and see it a match occurs with our weak coupling prediction
(9.26) in the Frolov-Tseytlin limit.
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Appendix A

SU(2) Scalar Products

In this appendix, we write several useful formulas for SU(2) scalar product in both the
algebraic and coordinate bases. These complement the formulas in chapter 4. We also give
explicit expressions for the scalar products for SL(2) and SU(1|1) spin chains. In order to
simplify the expressions, it is convenient to introduce the following functions

h(u) =
f(u)

g(u)
=
u+ i

i
, t(u) =

g2(u)

f(u)
=

−1

u(u+ i)
, (A.1)

and make use of the shorthand notation introduced in (3.43).

General scalar product as a sum over partitions

If all rapidities involved in the scalar product are arbitrary complex numbers, the scalar
product can be written as a sum over all possible partitions of the two sets of rapidities.
Explicitly [85, 83]

Sal
N({v}, {u}) = g

{u}{u}
< g

{v}{v}
>

∑
α ∪ ᾱ = {u}
γ ∪ γ̄ = {v}

(−1)Pα+Pγdαaᾱaγdγ̄hαγhγ̄ᾱhαᾱhγ̄γ det tαγ det tγ̄ᾱ ,

(A.2)
where we are using the notation introduced in (4.3) and (−1)Pα is defined as a sign of the
permutation of the ordered set {v} which gives α ∪ ᾱ. Note that the sum runs over all
partitions α ∪ ᾱ = {u} and γ ∪ γ̄ = {v}, such that the number of elements in α and the
number of elements in γ are equal. We can use the conversion factor in (3.42) to obtain the
corresponding expression in the coordinate basis as:

co〈{v}|{u}〉co =
1

d{u}a{v∗}g{u+ i
2
}g{v

∗− i
2
}f
{u}{u}
< f

{v∗}{v∗}
>

Sal
N({v∗}, {u}) (A.3)
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where Sal
N is defined in (4.16). Recall that C(u∗) = − [B(u)]† so that

Sal
N({v∗}, {u}) = (−1)N al〈{v}|{u}〉al . (A.4)

New recursion relation in the coordinate basis

Alternatively, we can define the general scalar product recursively, as in (4.25). Using the
conversion factor (3.42), the new recursion relation in the coordinate basis reads

Sco
N ({v1, . . . , vN}, {u1, . . . , uN}) =

∑
n

bcon S
co
N−1({v1, . . . , v̂n, . . . , vN}, {û1, u2, . . . , uN})

−
∑
n<m

ccon,m S
co
N−1({u1, v1, . . . v̂n, . . . , v̂m, . . . vN}, {û1, u2, . . . , uN}) , (A.5)

with the coefficients being in this case

bcon =

N∏
j 6=n

f(u1 − vj)
N∏
j<n

S(vj, vn)− a(u1)d(vn)

d(u1)a(vn)

N∏
j 6=n

f(vj − u1)
N∏
j>n

S(vn, vj)

g(u1 + i
2
) g(vn − i

2
)

g(u1 − vn)

N∏
j 6=1

f(u1 − uj)

ccon,m =

S(vm, vn)
d(vn)

a(vn)

∏
j>n

S(vn, vj)
∏
j<m

S(vj, vm) +
d(vm)

a(vn)

∏
j>m

S(vm, vj)
∏
j<n

S(vj, vn) d(u1) g(u1 + i
2
) g(vn − i

2
) g(vm − i

2
)
∏
j 6=1

f(u1 − uj)

a(u1) g(u1 − i
2
) g(u1 − vn) g(u1 − vm)

∏
n6=n,m

f(vj − u1)


where we used the usual SU(2) S-matrix S(u, v) = f(u− v)/f(v − u).

Usual recursion relation

Finally, for completeness, we write the recursion relation for the general scalar product known
in the literature [85]

Sal
N [a(x), d(x)] =

N∑
n=1

g(u1 − vn)
N∏
j 6=1

g(u1 − uj)
N∏
k 6=n

g(vk − vn)k 6=n (A.6)

×
{
a(vn)d(u1)Sal

N−1 [a(x)h(u1 − x), d(x)h(x− vn)]

− a(u1)d(vn)Sal
N−1 [a(x)h(vn − x), d(x)h(x− u1)]

}
,

where the sets of magnons entering Sal
N−1 are obtained from the set entering Sal

N by omitting
u1 and vn. The difference between both sides of (A.6) lies in the action of the operators A(u)
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and D(u) on the vacuum. For Sal
N , this action is simply given by a(u) and d(u), see (3.31).

For the first Sal
N−1 in (A.6), this action is given by a(u)h(u1 − u) and d(u)h(u − vn), while

for the second Sal
N−1 it is a(u)h(vn − u) and d(u)h(u − u1). That is, this recursion relation

uses somehow generalized objects at each recursion stage, see also discussion at the end of
section 4.3.1.

Scalar product with a Bethe eigenstate

If the set of rapidities {u} satisfies the Bethe equations (3.13), while {v} are arbitrary complex
numbers, the scalar product simplifies to [83]

Sal
N({v}, {u}) = g

{u}{u}
> g

{v}{v}
< d{u} det

j,k
Ω(uj, vk) , (A.7)

where
Ω(uj, vk) = a(vk)t(uj − vk)h{u−vk} − (−1)Nd(vk)t(vk − uj)h{vk−u} ,

where we are using our short-hand notation, such that h{u−vk} =
∏N

j=1 h(uj − vk). In order
to derive (A.7), one starts with (A.2) and makes use of the fact that the Bethe equations
(3.13) for {u} can be written as

a(uj)

d(uj)
= (−1)N−1h

{uj−u}

h{u−uj}
.

We refer the reader to [83] for the details of the derivation.
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Appendix B

Three-Point Functions of BMN
Operators

In this appendix we consider a simple limit of the three-point functions of chapter 5, when
the lengths of operators La scale to infinity whereas the numbers of magnons Ma are fixed.
We also assume that the momenta of the magnons are small (or equivalantly the Bethe
roots are large). That is, similarly to the thermodynamical limit we have ua ' La. These
states describe small quasi-classical fluctuations about the BMN point-like string. For related
papers, see [74, 137, 138, 113].

In this limit, one can replace the S-matrix factor by 1 in the Bethe ansatz equations,
which leads to the trivial quantization condition:

uk '
L

2πnk
(B.1)

where nk is an integer. In general one should assume that all nk’s are different. Otherwise
there is a degeneracy which is lifted at the next order only.64

As it was shown in the main text, in order to construct all the structure constants one
needs only tree key structures denoted by A ,B,C . They can be easily expanded in the near

64 Namely, for the Mn roots with nk = n to the next order in 1/
√
L are [116]

ul '
1

2πn

(
L+ izl

√
2L
)

, l = 1, . . . ,Mn (B.2)

where zl are the zeros of the Hermite polynomial, HMn(zk) = 0. In what follows we assume that the roots
are large and well separated between each other.
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BMN limit65

A (l|{u}) '
∏
k

(
1− e

l
iuk

)
(B.3)

B({u}) '

√(
L− 2M

N −M

)
1

L

M∏
k=1

i
√
L

uk
(B.4)

C (l|{u}, {v}) '
∑
σ

∏
k

e
il
uk − e

il
vσk

i(uk − vσk)
. (B.5)

Having these quantities at hand we simply combine them into structure constants using the
expressions in table 5.1. For example,

C••◦123 '
∏M1

k=1
vk

i
√
L1

∏M2

k=1
uk
i
√
L2√

(L1−2M1
N1−M1

)(L2−2M2
N2−M2

)(L3
N3

)
L1L2L3

∑
α ∪ ᾱ = {u}
|ᾱ| = l13

∑
σ

 |α|∏
k=1

e
il12
αk − e

il12
vσk

i(αk − vσk)

 |ᾱ|∏
k=1

e
iL1
ᾱk − e

il12
ᾱk

 . (B.6)

65It is also very simple to derive them directly from their definition and the form of the wave function
(3.10). Recall that up to trivial factors B,A ,C are related to the norm of eigenstates, inner product with
vacuum descendants and general inner product respectively. When the S-matrix is replaced by 1 all these
quantities are very simple to compute directly without any fancy integrability machinery.
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Appendix C

Data: Three-Point Functions at
One-Loop

In this appendix we present numerical data for one-loop structure constants. As mentioned
in the conclusions, two things need to be done: we need to contract the external wave
functions of the three operators using Hamiltonian insertions [38, 37, 39] and we need to
take into account the O(λ) correction to the wave function, which is a two-loop effect. The
latter effect was not taken into account in previous works [38, 37, 39] but its importance was
mentioned in the conclusions of [38].

For simplicity we shall consider two kind of operators only: BPS operators and non-BPS
operators with two impurities with opposite momentum. We can write any BPS state with
N excitations and length L, which we denote by [N,L], as

[N,L] =
∑

1≤n1<n2<···<nN≤L

Tr(Z . . .X
↓
n1

. . . X
↓
n2

. . .
...

. . . X
↓
nN

. . . Z)

For example:

[2, 5] = 5 Tr
(
Z3X2

)
+ 5 Tr

(
Z2XZX

)
,

[3, 6] = 6 Tr
(
Z3X3

)
+ 6 Tr

(
Z2XZX2

)
+ 6 Tr

(
Z2X2ZX

)
+ 2 Tr (ZXZXZX) .

The non-BPS operators that we will consider diagonalize the two-loop Hamiltonian (12.2).
Their rapidities are given by

u = ±
(

1

2
cot

πn

L− 1
+

λ

8π2

L

L− 1
sin

2πn

L− 1
+O(λ2)

)
(C.1)

and their energy is

∆ =
λ

π2
sin2 nπ

L− 1
− λ2

4π4

1

L− 1

(
1 + L+ 2 cos

2πn

L− 1

)
sin4 πn

L− 1
+O(λ3) . (C.2)
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The integer n = 1, . . . , L/2 − 1 is called the mode number. Thus, we will denote these
operators by (n, L). We take (g2 = λ/16π2)

(1, 4) = Tr [Z,X]2 ,

(1, 5) = Tr
(
Z3X2

)
− Tr

(
Z2XZX

)
,

(1, 6) = Tr
(
Z4X2

)
− 3−

√
5

2
(1 + g2) Tr

(
Z3XZX

)
+

1−
√

5 + (3−
√

5)g2

2
Tr
(
Z2XZ2X

)
,

(2, 6) = Tr
(
Z4X2

)
− 3 +

√
5

2
(1 + g2) Tr

(
Z3XZX

)
+

1 +
√

5 + (3 +
√

5)g2

2
Tr
(
Z2XZ2X

)
(1, 7) = Tr

(
Z5X2

)
− g2

2
Tr
(
Z4XZX

)
− 1

2
(2− g2) Tr

(
Z3XZ2X

)
,

(2, 7) = Tr
(
Z5X2

)
−
(

2 +
3g2

2

)
Tr
(
Z4XZX

)
+

(
1 +

3g2

2

)
Tr
(
Z3XZ2X

)
,

(1, 8) = Tr
(
Z6X2

)
+
[
sec
(π

7

)
sin
( π

14

)
− 0.489997 g2

]
Tr
(
Z5XZX

)
−
[
sec
(π

7

)
sin

(
3π

14

)
− 0.206966 g2

]
Tr
(
Z4XZ2X

)
−
[

1

2
sec
(π

7

)
− 0.283031 g2

]
Tr
(
Z3XZ3X

)
,

(2, 8) = Tr
(
Z6X2

)
−
[
cos
(π

7

)
csc

(
3π

14

)
+ 1.117057 g2

]
Tr
(
Z5XZX

)
−
[
sin
( π

14

)
csc

(
3π

14

)
− 1.023185 g2

]
Tr
(
Z4XZ2X

)
+

[
1

2
csc

(
3π

14

)
+ 0.093872 g2

]
Tr
(
Z3XZ3X

)
,

(3, 8) = Tr
(
Z6X2

)
−
[
csc
( π

14

)
sin

(
3π

14

)
+ 3.392947 g2

]
Tr
(
Z5XZX

)
+
[
csc
( π

14

)
cos
(π

7

)
+ 8.769849 g2

]
Tr
(
Z4XZ2X

)
−
[

1

2
csc
( π

14

)
+ 5.376903 g2

]
Tr
(
Z3XZ3X

)
.

Note that for convenience, we gave the numerical values of exact expressions in the states
shown above. For example, in the last term of O3,8, we have

5.376903 =

√
9− 8 cos

(
π
7

)
+ 8 sin

(
3π
14

)
44− 54 cos

(
π
7

)
+ 78 sin

(
π
14

)
− 20 sin

(
3π
14

) .
All the states written in this appendix consider the vacuum as being Z fields and the

excitations as being the X fields. In other words, they are good states for the operator O1.
For the operators O2 and O3 we use the same states but with different scalars playing the
role of vacuum and excitations, see (5.2).
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Having computed the two-loop eigenstates (n, L) and knowing how to write any BPS
operator [N,L] with a given length and number of excitations, we provide a list of ratios of
one-loop structure constants to tree-level structure constants in table C.1 involving these two
kind of operators. These were computed by directly Wick contracting the constituent fields
of the operators and inserting the one-loop Hamiltonian (3.2) at the point where we break
each operator to be contracted with the other two, see figure 12.2.
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O1 O2 O3 r O1 O2 O3 r

(1,4) BPS BPS −6 (3,8) BPS BPS −9.561263
BPS BPS (1,4) −6 [2, 4] (3,8) [0, 4] −23.396074
(1,5) BPS BPS −4 [4, 4] (3,8) [2, 8] −9.561263
BPS BPS (1,5) −4 [4, 8] (3,8) [2, 4] −9.561263

(1,6) BPS BPS −11/2 + 13
√

5/10 [3, 5] (3,8) [1, 5] −8.188323

[3, 4] (1,6) [1, 4] 3
√

5/10− 7/2 [4, 6] (3,8) [2, 6] −8.188323

[4, 5] (1,6) [2, 5] 3
√

5/10− 7/2 [3, 6] (3,8) [1, 4] −5.330327

BPS BPS (1,6) −11/2 + 13
√

5/10 [4, 7] (3,8) [2, 5] −5.330327

(2,6) BPS BPS −11/2− 13
√

5/10 [4, 5] (3,8) [2, 7] −5.330327

[3, 4] (2,6) [1, 4] −3
√

5/10− 7/2 [3, 4] (3,8) [1, 6] −5.330327

[4, 5] (2,6) [2, 5] −3
√

5/10− 7/2 BPS BPS (3,8) −9.561263

BPS BPS (2,6) −11/2− 13
√

5/10 BPS (1,4) (1,4) −12
(1,7) BPS BPS −7/4 [4, 5] (1,5) (1,4) −10
[3, 4] (1,7) [1, 5] −2 (1,4) [0, 5] (1,5) −10

[3, 5] (1,7) [1, 4] −2 [4, 6] (1,6) (1,4) 13
√

5/10− 23/2

[4, 5] (1,7) [2, 6] −2 (1,4) [0, 6] (1,6) 13
√

5/10− 23/2
[4, 6] (1,7) [2, 5] −2 [4, 7] (1,7) (1,4) −31/4
BPS BPS (1,7) −7/4 (1,4) [0, 7] (1,7) −31/4
(2,7) BPS BPS −27/4 [4, 8] (1,8) (1,4) −7.237755
BPS BPS (2,7) −27/4 (1,4) [0, 8] (1,8) −7.237755
(1,8) [0, 8] [2, 4] −1.237755 (1,4) (1,8) [0, 4] 5.123727

[2, 4] (1,8) [0, 4] −4.525727 [4, 6] (2,6) (1,4) −13
√

5/10− 23/2

[4, 6] (1,8) [2, 6] −1.513645 (1,4) [0, 6] (2,6) −13
√

5/10− 23/2
[3, 5] (1,8) [1, 5] −1.513645 [4, 7] (2,7) (1,4) −51/4
[3, 4] (1,8) [1, 6] −1.455824 (1,4) [0, 7] (2,7) −51/4
[3, 6] (1,8) [1, 4] −1.455824 [4, 8] (2,8) (1,4) −11.200983
[4, 5] (1,8) [2, 7] −1.455824 (1,4) [0, 8] (2,8) −11.200983
[4, 7] (1,8) [2, 5] −1.455824 (1,4) (2,8) [0, 4] −1.554117
[4, 4] (1,8) [2, 8] −1.237755 [4, 8] (3,8) (1,4) −15.561263
[4, 8] (1,8) [2, 4] −1.237755 (1,4) [0, 8] (3,8) −15.561263
BPS BPS (1,8) −1.237755 (1,4) (3,8) [0, 4] −9.293748
(2,8) [0, 8] [2, 4] −5.200983 [4, 4] (1,5) (1,5) −8
[2, 4] (2,8) [0, 4] −10.078199 (1,5) [0, 6] (1,5) −8

[4, 7] (2,8) [2, 5] −7.213849 [4, 5] (1,6) (1,5) 3
√

5/10− 15/2

[4, 5] (2,8) [2, 7] −7.213849 (1,5) [0, 7] (1,6) 13
√

5/10− 19/2
[3, 6] (2,8) [1, 4] −7.213849 [4, 6] (1,7) (1,5) −6
[3, 4] (2,8) [1, 6] −7.213849 (1,5) [0, 8] (1,7) −23/4
[4, 8] (2,8) [2, 4] −5.200983 [4, 7] (1,8) (1,5) −5.455824

[4, 4] (2,8) [2, 8] −5.200983 [4, 5] (2,6) (1,5) −3
√

5/10− 15/2

[3, 5] (2,8) [1, 5] −0.298032 (1,5) [0, 7] (2,6) −13
√

5/10− 19/2
[4, 6] (2,8) [2, 6] −0.298032 (1,5) [0, 8] (2,7) −43/3
BPS BPS (2,8) −5.200983 [4, 7] (2,8) (1,5) −11.213849

Table C.1: Data for the absolute value of the ratio between the one-loop and tree-level structure
constants parametrized by r in C123 = C

(0)
123

(
1 + g2r +O(g4)

)
. The notation (n,L) indicates a

two-magnon operator with mode number n and length L. The notation [N,L] indicates a BPS
operator with N spin flips and total length L. The vacuum and excitation choice for each of the
three operators is given in (5.2). When we write BPS we can replace it by any [N,L] with N ≤ 4
and L ≤ 8 (such that the three-point function exists); in this case the result is independent of N and
L. To make the table easier to read we colored the BPS operators in red and the non-BPS operators
in blue. We also colored in green the ratios for configurations with l13 = 0. For these cases (and
only for these cases) the mixing of O2 with double trace operators should in principle be included
[74, 76] (we did not take this effect into account).
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Appendix D

Fermionic and Bosonic Dualities

In this appendix we briefly review the fermionic and bosonic dualities that related different
sets of the nested Bethe equations. We used the results obtained here in section 11.2. To
keep the discussion as general as possible, let us introduce twists into the Bethe equations.
Namely:

eiτa
(
ua,j + Va

i
2

ua,j − Va i2

)L
= sa

r∏
b=1

Qb

(
ua,j +Ma,b

i
2

)
Qb

(
ua,j −Ma,b

i
2

) , (D.1)

where the Baxter polynomials Qa(u) were introduced in (11.14). These are the nested equa-
tions that we will consider in this appendix. The effect of the twists is to modify the periodic
boundary conditions of the chain. Of course, the usual Bethe equations (11.15) are recovered
from τa = 0.

D.1 Fermionic dualities

Contrary to what happens for usual Lie algebras, the Dynkin diagram and Cartan matrix of a
super algebra are not unique. Consider for example the super algebra su(K|J). The different
Dynkin diagrams can be identified as the different paths that one can draw on a rectangular
lattice of size K×J , starting from the upper-right corner and ending on the lower-left corner.
Depending on the type of node that it passes, the path either continues in the same direction
(bosonic nodes) or makes a ninety degree turn (fermionic nodes), always approaching the
end point of the path. All the different paths are related by fermionic dualities [122, 110].
An important feature regarding these dualities is that when applied to a given node in the
Dynkin diagram, the adjacent nodes change from bosonic to fermionic, or viceversa. This is
illustrated in figure D.1. The Cartan matrix associated with a specific diagram is given by

Ma,b = (pa + pa+1)δa,b − pa+1δa+1,b − paδa,b+1 , (D.2)

where pa corresponds to the link between node a and node a + 1 (see the grey numbers in
figure D.1) and is equal to +1 (−1) for a vertical (horizontal) link.
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K

J

0

1

2 3

K + J − 1

0

1 2

3

K + J − 1

Figure D.1: The Dynkin diagram for su(K|J) is not unique. A given diagram can be drawn in
a rectangular lattice of size K × J , starting at (J,K) and ending at (0, 0), always approaching the
latter. When passing through a bosonic node, the path continues in the same direction, while a
fermionic node makes the path turn 90 degrees. All the different diagrams are related by fermionic
dualities [122, 110]. Graphically, the action of a fermionic duality changes a left-down turn into a
down-left turn, and viceversa. In our example, a duality was applied to node 2, and as a consequence,
the adjacent nodes 1 and 3 changed their nature.

Let us show explicitly how the fermionic dualities work with a specific example: the
SU(3|1) spin chain with Dynkin labels Va = δa,1. This example is general enough to illustrate
all the features of this duality. Suppose we start with the choice of Dynkin diagram shown
in figure D.2a. The corresponding Bethe equations are given by (D.1):

eiτ1
(
u+ i/2

u− i/2

)L
= −Q

++
1 Q−2

Q−−1 Q+
2

∣∣∣∣∣
u=u1,j

,

eiτ2 =
Q−1 Q

+
3

Q+
1 Q
−
3

∣∣∣∣∣
u=u2,j

, eiτ3 =
Q+

2

Q−2

∣∣∣∣∣
u=u3,j

, (D.3)

where we are omitting the argument of the Baxter polynomials, so that Q±a should be un-
derstood as Qa(u ± i/2), see (11.19). We will apply a fermionic duality to the second node
in the diagram.66 To do so, notice that the second set of equations (D.3) are equivalent to
the following polynomial equation:

e−iτ2/2Q−1 Q
+
3 − eiτ2/2Q+

1 Q
−
3

∣∣∣
u=u2,j

= 0 . (D.4)

By definition, some of the zeros of this equation are the roots u2,j, which are neatly packaged
66For simplicity, throughout this appendix we will only apply fermionic and bosonic dualities to non-

momentum-carrying nodes. Taking into account some subtelties, they can also be applied to massive nodes,
see [122, 125].
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0

1

2

Ma,b =

 2 −1 0
−1 0 1
0 1 0


0

1 2

Ma,b =

 0 1 0
1 0 −1
0 −1 2


(a) (b)

1 1

Figure D.2: Two possible choice of Dynkin diagram for an SU(3|1) spin chain. The black label 1
denotes the non-zero Dynkin label. The Cartan matrices are given by (D.2). The diagram in (b) is
obtained from the first one after applying a fermionic duality on the second node.

in the Baxter function Q2. Therefore, we can write:

eiτ2/2Q+
1 Q
−
3 − e−iτ2/2Q−1 Q+

3 = 2i sin
(τ2

2

)
Q2Q̃2 . (D.5)

The polynomial on the l.h.s. has degree N1 +N3, such that

Q̃2(u) ≡
Ñ2∏
j=1

(u− ũ2,j) ,

with Ñ2 = N1 + N3 − N2. This Baxter function defines the position of a new set of dual
Bethe roots ũ2,j. From now on, we will use a tilde to denote objects obtained after applying
a duality.

It is now straightforward to shift the argument of (D.5) by ±i/2 to obtain the following
equations:

−eiτ2Q
++
1

Q−−1

=
Q+

2 Q̃
+
2

Q−2 Q̃
−
2

∣∣∣
u=u1,j

, −e−iτ2Q
++
3

Q−−3

=
Q+

2 Q̃
+
2

Q−2 Q̃
−
2

∣∣∣
u=u3,j

.

We can use these expressions and plug them into the original Bethe equations (D.3) to obtain
a new nested system:

ei(τ1+τ2)

(
u+ i/2

u− i/2

)L
=
Q̃+

2

Q̃−2

∣∣∣∣∣
u=u1,j

,

e−iτ2 =
Q+

1 Q
−
3

Q−1 Q
+
3

∣∣∣∣∣
u=ũ2,j

, ei(τ3+τ2) = −Q̃
−
2 Q

++
3

Q̃+
2 Q
−−
3

∣∣∣∣∣
u=u3,j

, (D.6)
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One can readily check that these are precisely the Bethe equations corresponding to the
choice of Cartan matrix shown in figure D.2b. As we anticipated, by applying a fermionic
duality to the second node, the first node is now fermionic, while the third one turned into
a bosonic node.

The procedure we just explained is quite general and can be applied to any non-massive
fermionic node a in a given Dynkin diagram. The starting point is always to write the
equivalent to equation (D.5):

eiτa/2Q+
a−1Q

−
a+1 − e−iτa/2Q−a−1Q

+
a+1 = 2i sin

(τa
2

)
QaQ̃a

and manipulate it just as we did above. Of course, Qa±1 may be absent from this equation,
depending on the position of node a in the Dynkin diagram. For example, if we apply the
duality to the third node in figure D.2a, the above equation would read eiτ3/2Q+

2 −e−iτ3/2Q−2 =

2i sin
(
τ3
2

)
Q3Q̃3 .

D.2 Bosonic dualities

The other important duality obeyed by the nested Bethe equations are the so-called bosonic
dualities, first introduced in [125]. As their name suggests, these are applied to bosonic nodes
in the Dynkin diagram. In this case, there is no nice diagrammatic interpretation like there
was for fermionic dualities, see figure D.1. Therefore, let us go straight to the equations. We
will consider an SU(4) spin chain with Va = δa,1. Again, this example is general enough to
illustrate all the features of this duality. The Cartan matrix is

Ma,b =

 2 −1 0

−1 2 −1

0 −1 2

 ,

so that the corresponding Bethe equations are

eiτ1
(
u+ i

2

u− i
2

)L
= −Q

++
1 Q−2

Q−−1 Q+
2

∣∣∣∣∣
u=u1,j

,

eiτ2 = −Q
−
1 Q

++
2 Q−3

Q+
1 Q
−−
2 Q+

3

∣∣∣∣∣
u=u2,j

, (D.7)

eiτ3 = −Q
−
2 Q

++
3

Q+
2 Q
−−
3

∣∣∣∣∣
u=u3,j

. (D.8)

151



Fermionic and Bosonic Dualities

We want to apply a bosonic duality to the second node. In order to do so, we consider the
following equation [125]:

2i sin
(τ2

2

)
Q1Q3 = eiτ2/2Q−2 Q̃

+
2 − e−iτ2/2Q+

2 Q̃
−
2 , (D.9)

which defines a new set of Bethe roots ũ2,j:

Q̃2(u) ≡
Ñ2∏
j=1

(u− ũ2,j) ,

with Ñ2 = N1 + N3 − N2. We can now do a couple of things. First, we shift the argument
of (D.9) by ±i/2 and evaluate the resulting equations at u = ũ2,j. Second, we can directly
evaluate (D.9) at u = u1,j, u3,j. The equations we obtain are

e−iτ2 = −Q
−
1 Q̃

++
2 Q−3

Q+
1 Q̃
−−
2 Q+

3

∣∣∣
u=ũ2,j

, e−iτ2
Q̃−2
Q̃+

2

=
Q−2
Q+

2

∣∣∣
u=u1,j ,u3,j

.

Combining the above equations with the original SU(4) Bethe equations (D.7), we obtain
the following new nested system:

ei(τ1+τ2)

(
u+ i

2

u− i
2

)L
= −Q

++
1 Q̃−2

Q−−1 Q̃+
2

∣∣∣∣∣
u=u1,j

,

e−iτ2 = −Q
−
1 Q̃

++
2 Q−3

Q+
1 Q̃
−−
2 Q+

3

∣∣∣
u=ũ2,j

, (D.10)

ei(τ3+τ2) = −Q̃
−
2 Q

++
3

Q̃+
2 Q
−−
3

∣∣∣∣∣
u=u3,j

. (D.11)

We see that, as opposed to the fermionic ones, a bosonic duality applied to a node a does
not change the nature of the adjacent nodes a− 1 and a+ 1 in the Dynkin diagram.

Again, the procedure we just explained is quite general and can be applied to any non-
massive bosonic node a in a given Dynkin diagram. The starting point is always to write the
equivalent to equation (D.9) and manipulate it just like we did above. Of course, Qa±1 may
be absent from this equation, depending on the position of node a in the Dynkin diagram.
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Appendix E

Mathematica Codes

In this appendix we provide the Mathematica codes for computing the three- and four-
point functions described in the main text. In both cases we implement the brute force and
integrability-based formulas, giving some explicit examples on how to use the codes. With
some slight modifications of the code presented below, equation (6.8) can be implemented in
a similar manner, but we leave that to the interested reader. Also, we refer to section 7 of
[107] to see how to find the positions of a very large number of Bethe roots.

E.1 General formulas

Useful functions

Le=Length;
n[0]=0; m[0]=0;
f[u_]=1+I/u; g[u_]=I/u; h[u_]=f[u]/g[u]; t[u_]=g[u]^2/f[u];
f[l1_List,l2_List]:=Product[f[l1[[j1]]-l2[[j2]]],{j1,Le[l1]},{j2,Le[l2]}]
h[l1_List,l2_List]:=Product[h[l1[[j1]]-l2[[j2]]],{j1,Le[l1]},{j2,Le[l2]}]
fs[l1_List]:=Product[f[l1[[j1]]-l1[[j2]]],{j1,Le[l1]},{j2,j1+1,Le[l1]}]
gs[l1_List]:=Product[g[l1[[j1]]-l1[[j2]]],{j1,Le[l1]},{j2,j1+1,Le[l1]}]
fb[l1_List]:=Product[f[l1[[j1]]-l1[[j2]]],{j1,Le[l1]},{j2,j1-1}]
gb[l1_List]:=Product[g[l1[[j1]]-l1[[j2]]],{j1,Le[l1]},{j2,j1-1}]
gp[l_List]:=Times@@g[l+I/2]; gm[l_List]:=Times@@g[l-I/2]
e[l_List]:=Times@@((l+I/2)/(l-I/2))
Dvd[ls_List]:=({Complement[ls,#],#}&)/@Subsets[ls,{0,Le[ls]}];
BPS[N_]:=Table[10^(10+j),{j,N}];
Prn[a_]:=(NotebookDelete[prntmp];prntmp=PrintTemporary[a];);
BPlot[l_]:=ListPlot[{Re[#],Im[#]}&/@l];

Two-cut SU(2) Bethe equations (3.16)
BAE[N_,L_]:=Block[{j,k},Table[((u[j]+I/2)/(u[j]-I/2))^L
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==-Product[(u[j]-u[k]+I)/(u[j]-u[k]-I),{k,1,N}],{j,N}]];
BetheRoots[M_,N_,Lf_,Li_,m_,n_]:=Block[{u,u0,L=Li},
u0=Join[Li/(2*Pi*m)+(I*Sqrt[2*Li]*zk)/(2*Pi*m)/.NSolve[HermiteH[M,zk]==0,zk],
Li/(2*Pi*n)+(I*Sqrt[2*Li]*zk)/(2*Pi*n)/.NSolve[HermiteH[N,zk]==0,zk]];
Do[u0=Table[u[k],{k,M+N}]/.FindRoot[BAE[M+N,L],Table[{u[k],u0[[k]]},
{k,M+N}],WorkingPrecision->100,AccuracyGoal->10];Prn[L],{L,Li,Lf,-1/2}];u0];

Let us show how to use this code to find the Bethe roots of an operator dual to the folded
string with unit mode number considered in chapters 7 and 8. For example, to obtain the
roots represented by the big blue bullets in figure 7.1, we would simply run

M=14; L=42;
roots=BetheRoots[M/2,M/2,L,L+10,1,-1];
BPlot@(roots/L)

SU(2) wave functions

Off[Det::matsq];
S[x_,y_]:=(x-y+I)/(x-y-I)
Wave[l_List]:=Block[{p=Permutations[Range[Le[l]]],i,j},Sum[A[p[[i]]]
Product[((l[[p[[i,j]]]]+I/2)/(l[[p[[i,j]]]]-I/2))^n[j],{j,1,Le[l]}],{i,1,Le[p]}]
//.{A[{a___,b_,c_,d___}]:>S[l[[b]],l[[c]]]A[{a,c,b,d}]/;b>c}
/.{A[a___]:>1/;a==Range[Le[a]]}];

Norm of Bethe eigenstates (4.19)
dphi[L_,l_List]:=Det@Table[-If[i==j,L/(l[[i]]^2+1/4)-Sum[2/((l[[i]]-l[[k]])^2+1),
{k,Le[l]}],0]-2/(1+(l[[i]]-l[[j]])^2),{i,Le[l]},{j,Le[l]}]/.Det[{}]->1
normdet[L_,l_List]:=Block[{inf,fin,onlyfin},inf=Select[l,Abs[#]>10^8&];
If[inf=={},fin=l,fin=Select[l,MemberQ[inf,#]==False&]];
onlyfin=(fb[fin]dphi[L,fin])/(fb[Conjugate[fin]]gp[fin]gm[fin]);
If[inf=={},onlyfin,(((L-2Le[fin])!Le[inf]!)onlyfin)/(L-2Le[fin]-Le[inf])!]]

Norm of Bethe states by brute force (5.5)
normbf[L_,l_List]:=Sum[(Wave[l]/.Complex[a_,b_]->a-b I)Wave[l],
Evaluate[Sequence@@Table[{n[j],n[j-1]+1,L},{j,Le[l]}]]]

Note that the norm of Bethe eigenstates can be computed by brute force using normbf, as
in (5.5), or using normdet, which is just the implementation of (4.19). In practice, we choose
to use the latter as it is computationally much more efficient to compute a determinant than
performing the sums involved in (5.5).
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New recursion relation for SU(2) scalar products (4.25)
AtoC[u_List,v_List,L_]:=Block[{a,d,f,g,z},a[z_]=(z+I/2)^L;d[z_]=(z-I/2)^L;
f[z_]=(z+I)/z;g[z_]=I/z;(1/(Times@@g[u+I/2]Times@@g[v-I/2]
Times@@a[v] Times@@d[u]))(1/(Product[f[u[[j1]]-u[[j2]]],{j1,Le[u]},
{j2,j1+1,Le[u]}]Product[f[v[[j1]]-v[[j2]]],{j1,Le[u]},{j2,j1-1}]))]

NewrecAl[u_,v_,L_]:=NewrecAl[u,v,L]=Module[{N=Le[u],n,i,j,a,d,z,f,g,n1,n2},
a[z_]=(z+I/2)^L; d[z_]=(z-I/2)^L; f[z_]=(z+I)/z; g[z_]=I/z;
Sum[g[u[[1]]-v[[n]]](Product[If[j!=n,f[u[[1]]-v[[j]]],1],{j,1,N}]
Product[If[j!=n,f[v[[j]]-v[[n]]],1],{j,1,N}]a[v[[n]]]d[u[[1]]]-
Product[If[j!=n,f[v[[j]]-u[[1]]],1],{j,1,N}]
Product[If[j!=n,f[v[[n]]-v[[j]]],1],{j,1,N}]a[u[[1]]]d[v[[n]]])
NewrecAl[Drop[u,1],Drop[v,{n}],L],{n,1,N}]-
If[Le[v]==1,0,Sum[(g[u[[1]]-v[[n1]]]g[u[[1]]-v[[n2]]])
(Product[f[v[[n1]]-j]f[j-v[[n2]]],{j,Join[Take[v,n1-1],
Take[v,{n1+1,n2-1}],Take[v,{n2+1,Le[v]}]]}]f[v[[n1]] - v[[n2]]]
a[v[[n2]]]d[v[[n1]]]+Product[f[j-v[[n1]]]f[v[[n2]]-j],
{j,Join[Take[v,n1-1],Take[v,{n1+1,n2-1}],
Take[v,{n2+1,Le[v]}]]}]f[v[[n2]]-v[[n1]]]a[v[[n1]]]d[v[[n2]]])
NewrecAl[Drop[u,1],Join[{u[[1]]},Join[Take[v,n1-1],Take[v,{n1+1,n2-1}],
Take[v,{n2+1,Le[v]}]]],L],{n2,2,N},{n1,1,n2-1}]]]
NewrecAl[{},{},L_]=1;
SProduct[u_List,v_List,L_]:=AtoC[u,v,L]NewrecAl[u,v,L]

Note that NewrecAl is the implementation of the new recursion relation in the algebraic
basis, while AtoC is the scalar product conversion factor between the algebraic and coordinate
bases shown in (A.3).

A (l|{u}), Bj and C (l|{u}, {v}) from section 5.5

sign[a_List,ab_List,v_List]:=Signature[Join[a,ab]]Signature[v]
dett[l1_List,l2_List]:=Det@Table[t[l1[[i]]-l2[[j]]],{i,Le[l1]},
{j,Le[l2]}]/.Det[{}]->1
A[L_,ls_List]:=Block[{dv=Dvd[ls],al,alb},Sum[al=dv[[i,1]];
alb=dv[[i,2]];(-1)^Le[al]f[al,alb]/e[al]^L,{i,Le[dv]}]];
B[L_,N_,l_List]:=gm[l]fs[l]Sqrt[fb[l]dphi[L,l]Binomial[L-2Le[l],N-Le[l]]
/(fb[Conjugate[l]]L)]/Sqrt[gp[l]gm[l]]
T[n_,u_List,v_List]:=Block[{dv=Dvd[v],du=Dvd[u],al,alb,be,beb},gs[u]gb[v]Sum[
al=dv[[i,1]];alb=dv[[i,2]];be=du[[j,1]];beb=du[[j,2]];If[Le[al]==Le[be]&&
Le[alb]==Le[beb],sign[al,alb,v]sign[be,beb,u]dett[be,al]dett[alb,beb]e[beb]^n
e[al]^n h[be,al]h[alb,beb]h[be,beb]h[alb,al],0],{i,Le[dv]},{j,Le[du]}]]
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E.2 Three-point functions

Brute force formula (5.3)

C123[L1_,N1_,L2_,N2_,L3_,N3_,l1_List,l2_List,l3_List]:=
Block[{i,j,psis,norms,limits},
psis=(Wave[l1]/.n[j_]:>L1-N3+j-N2/;j>N2)
(Wave[l2]/.n[j_]->L2+1-n[N2-j+1])(Wave[l3]/.n[j_]->j);
norms=normdet[L1,l1]normdet[L2,l2]normdet[L3,l3];
limits=Sequence@@Table[{n[j],n[j-1]+1,L1-N3},{j,N2}];
Sqrt[L1 L2 L3/norms]If[limits===Sequence[],psis,Sum[psis,limits]]]

Integrability-based formulas from table 5.1

Cooo[L1_,N1_,L2_,N2_,L3_,N3_]:=(Binomial[L1-N1+N2,N2]/
(B[L1,N1,{}]B[L2,N2,{}]B[L3,N3,{}]))
Cxoo[L1_,N1_,L2_,N2_,L3_,N3_,l1_List]:=(Binomial[L1-N1+N2-Le[l1],N2]
A[N1-N2,l1]/(B[L1,N1,l1]B[L2,N2,{}]B[L3,N3,{}]))
Coxo[L1_,N1_,L2_,N2_,L3_,N3_,l2_List]:=(Binomial[L1-N1+N2-Le[l2],N2-Le[l2]]
A[L1-N1+N2,l2]/(B[L1,N1,{}]B[L2,N2,l2]B[L3,N3,{}]))
Coox[L1_,N1_,L2_,N2_,L3_,N3_,l3_List]:=(Binomial[L1-N1+N2,N2]
A[N1-N2,l3]/(B[L1,N1,{}]B[L2,N2,{}]B[L3,N3,l3]))
Coxx[L1_,N1_,L2_,N2_,L3_,N3_,l2_List,l3_List]:=(Binomial[L1-N1+N2-Le[l2],N2-Le[l2]]
A[L1-N1+N2,l2]A[N1-N2,l3]/(B[L1,N1,{}]B[L2,N2,l2]B[L3,N3,l3]))
Cxox[L1_,N1_,L2_,N2_,L3_,N3_,l1_List,l3_List]:=(Binomial[L1-N1+N2-Le[l1],N2]
A[N1-N2,l1]A[N1-N2,l3]/(B[L1,N1,l1]B[L2,N2,{}]B[L3,N3,l3]))
Cxxo[L1_,N1_,L2_,N2_,L3_,N3_,l1_List,l2_List]:=(dv=Dvd[l1];
Sum[al=dv[[i,1]];alb=dv[[i,2]];If[Le[al]==N1-N2,e[al]^L1 f[alb,al]A[N1-N2,al]
T[L1-N1+N2,alb,l2],0],{i,Le[dv]}]/(B[L1,N1,l1]B[L2,N2,l2]B[L3,N3,{}]))
Cxxx[L1_,N1_,L2_,N2_,L3_,N3_,l1_List,l2_List,l3_List]:=(A[N1-N2,l3]B[L3,N3,{}]
Cxxo[L1,N1,L2,N2,L3,N3,l1,l2]/B[L3,N3,l3])

As determinants 5.21

normdet2[L_,u_List]:=Product[If[i==j,1,f[u[[i]]-u[[j]]]],{i,1,Le[u]},
{j,1,Le[u]}]dphi[L,u];
F[u_List,v_List,w_List,N3_]:=(Times@@((u+I/2)^N3)Times@@((w+I/2)^N3))/
(Product[u[[j]]-u[[i]],{i,1,Le[u]},{j,i+1,Le[u]}]
Product[v[[i]]-v[[j]],{i,1,Le[v]},{j,i+1,Le[v]}]
Product[w[[i]]-w[[j]],{i,1,Le[w]},{j,i+1,Le[w]}]);
Z[w_List]:=Table[(1/(j-1)!)D[I/((w[[i]]-theta+I/2)
(w[[i]]-theta-I/2)),{theta,j-1}]/.theta->0,{i,Le[w]},{j,Le[w]}];
RS[L1_,u_List,v_List]:=Block[{N1=Le[u],N2=Le[v]},
Table[If[j<=N2,(I/(u[[i]]-v[[j]]))(((v[[j]]+I/2)/(v[[j]]-I/2))^L1
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Product[If[k==i,1,u[[k]]-v[[j]]+I],{k,1,N1}]-
Product[If[k==i,1,u[[k]]-v[[j]]-I],{k,1,N1}]),
(1/(j-N2-1)!)D[(I/((u[[i]]-theta+I/2)(u[[i]]-theta-I/2)))
Product[1/(v[[k]]-theta-I/2),{k,1,N2}],{theta,j-N2-1}]
/.theta->0],{i,N1},{j,N1}]];
C123det[L1_,L2_,L3_,u_List,v_List,w_List]:=(Sqrt[L1 L2 L3]/Sqrt[normdet2[L1,u]
normdet2[L2,v]normdet2[L3,w]])F[u,v,w,Le[w]]Det[Z[w]]Det[RS[L1,u,v]];

Ratio r123 for the numerical match of chapter 8

r123[L1_,N1_,L2_,N2_,L3_,N3_,u_List,v_List]:=(Sqrt[Binomial[L1,N1]Binomial[L2,N2]]
F[u,v,{},N3]Det[RS[L1,u,v]])/(Sqrt[normdet2[L1,u]normdet2[L2,v]]Binomial[L1-N3,N2]);

Examples

Let us show how to use the code above to compute the most general case C•••123 in table 5.1
for some three-point function configuration. In this example, the sets of rapidities us, vs, ws
satisfy the Bethe equations of operators O1, O2 and O3, respectively, with the lengths and
number of excitations indicated in each case. Evaluating

L1=9;N1=4;L2=9;N2=2;L3=4;N3=2;
us={0.414080361016-0.993048580811 I,0.409292874229,

0.414080361016+0.993048580811 I,-0.131911999475};
vs={-0.207106781187,0.207106781187};
ws={-0.288675134595,0.288675134595};
Abs@C123[L1,N1,L2,N2,L3,N3,us,vs,ws]
Abs@Cxxx[L1,N1,L2,N2,L3,N3,us,vs,ws]
Abs@C123det[L1,L2,L3,us,vs,ws]

we obtain a perfect match between the brute force computation (5.3), the analytic prediction
of table 5.1 and the determinant formula for three-point functions (5.21). For these values
of the Bethe roots we find

|C•••123 | = 0.480198 .

We can also use the codes above to get analytic results. For example, to reproduce C◦•◦123

for the case of two magnons N2 = 2, see equation (5.11), we would simply run

ClearAll[L1,N1,L2,N2,L3,N3]
fsi=FullSimplify[#,{0<p<\[Pi]/2}]&;
fsi2=#//.{Exp[a_]-Exp[b_]:>Exp[(a+b)/2]2Sinh[(a-b)/2//fsi],
Exp[a_]-1:>Exp[a/2]2Sinh[a/2//fsi],Exp[a_]:>Exp[a//fsi]}&;
fsi@Coxo[L1,N3+2,L2,2,L3,N3,{u,-u}]/.u->Cot[p/2]/2//TrigToExp//Factor//fsi//fsi2

Finally, we can compute the ratio r123 = C••◦123/C
◦◦◦
123 considered in chapter 8. For simplicity,

the discussion in this appendix refers to the case when all roots in the heavy operators are
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finite. After some slight modifications, the codes given in this appendix can (and were) used
to compute the cases when some roots are at infinity. For example, if we wanted to reproduce
the third point for α = 1/4 in figure 8.1, we would simply run

us={-2.8928215931306757460+1.2863414912352617840 I,-3.0063106400693221845,
-2.8928215931306757460-1.2863414912352617840 I,2.8928215931306757460-
1.2863414912352617840 I,3.0063106400693221845,2.8928215931306757460+
1.2863414912352617840 I};

vs={-3.2898499173796199229+0.7760278937943849641 I,-3.2898499173796199229-
0.7760278937943849641 I,3.2898499173796199229-0.7760278937943849641 I,
3.2898499173796199229+0.7760278937943849641 I};

Abs@r123[24,6,24,4,4,2,us,vs]

to obtain
r123 = 0.919415219 .

The roots us and vs were found using the function BetheRoots that we introduced above,
which finds the Bethe roots with 100 digits of precision. However, here we are only showing
their first 20 decimal places, which is why the result for r123 shown here has only a few digits
compared to the one in section 8.1.1. As we mentioned in the main text, the determinant
form of the three-point function is very efficient from a computational point of view. It
allowed us to compute many more points of data for the numerical match of section 8.1.1
compared to the number of points originally considered in [40].

E.3 Four-point functions

Brute force formula (6.2)

C1234bf[L1_,N1_,L2_,N2_,L3_,N3_,L4_,N4_,l1_List,l2_List,l3_List,l4_List]:=
Block[{j,k,psis,norms,lim,lim2},psis[r_,s_]:=(Wave[l1]/.{n[j_]:>r+j-s/;s<j<=s+N4,
n[k_]:>N4+r+m[k-s-N4]/;s+N4<k<=N1-N3,n[q_]:>L1+q-N1/;q>N1-N3})
(Wave[l2]/.{n[k_]:>L2-(L4-N4+r+m[N1-N3-N4-s-k+1])+1/;k<=N1-(N3+N4+s),
n[j_]:>L2-n[N1-(N3+N4)-j+1]+1/;j>N1-(s+N3+N4)})(Wave[l3]/.n[j_]->j)
(Wave[l4]/.n[j_]->L4-N4+j);
norms=normdet[L1,l1]normdet[L2,l2]normdet[L3,l3]normdet[L4,l4];
lim[s_,r_]:=Sequence@@Table[{n[j],n[j-1]+1,r},{j,s}];
lim2[s_,r_]:=Sequence@@Table[{m[k],m[k-1]+1,L1-N3-N4-r},{k,N1-N3-N4-s}];
Sqrt[L1 L2 If[L3==0,1,L3]If[L4==0,1,L4]/norms]
Sum[Sum[If[L3==0 || L4==0,1/(L1-N3-N4+1),1]psis[r,s],lim2[s,r],lim[s,r]],
{r,0,L1-N3-N4},{s,0,Min[r,N1-N3-N4]}]]

Integrability-based formula (6.5)
C1234int[le_,L1_,N1_,L2_,N2_,L3_,N3_,L4_,N4_,l1_List,l2_List,l3_List,l4_List]:=
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Block[{a1,a1b,a2,a2b,a3,a3b,b1,b1b,b2,b2b,b3,b3b,dv1,dv2,dv3,dv4,norms},
dv1=Dvd[l1]; dv2=Dvd[l2];
norms=normdet[L1, l1]normdet[L2, l2]normdet[L3,l3]normdet[L4,l4];
Sqrt[(L1 L2 If[L3==0,1,L3]If[L4==0,1,L4])/norms]
Sum[If[L4==0||L3==0,1/(L1-N3-N4+1),1](a1=dv1[[i,1]];a1b=dv1[[i,2]];
b2=dv2[[j,1]];b2b=dv2[[j,2]];If[Le[a1]==Le[b2b],dv3=Dvd[a1b];
Sum[a2=dv3[[k,1]];a2b=dv3[[k,2]];If[Le[a2]==N4,dv4=Dvd[a2b];Sum[a3=dv4[[l,1]];
a3b=dv4[[l,2]];If[Le[a3b]==N3&&Le[a3]==Le[b2],(1/(fs[l1]fs[l2]))
e[a1b]^(L1-N3-N4-le)e[a2b]^N4 e[a3b]^(N3+le+1)e[l2]^(L3-N3+le+1)
e[b2b]^(L2-L3+N3-le)e[l4]^(L4+1)f[a1,a1b]fs[a1]f[a2,a2b]fs[a2]f[a3,a3b]fb[a3b]
fs[a3]f[b2,b2b]fb[b2]fb[b2b](fb[l4]/fs[l4])SProduct[a3,b2,le]
SProduct[a1,b2b,L1-N3-N4-le]SProduct[a2,l4,N4]SProduct[l3,a3b,N3],0],
{l,1,Le[dv4]}],0],{k,1,Le[dv3]}],0]),{i,1,Le[dv1]},{j,1,Le[dv2]}]];
C1234int[L1_,N1_,L2_,N2_,L3_,N3_,L4_,N4_,l1_List,l2_List,l3_List,l4_List]:=
(temp[le_]=C1234int[le,L1,N1,L2,N2,L3,N3,L4,N4,l1,l2,l3,l4];Sum[temp[le],
{le,0,L1-N3-N4}])

Examples

Let us now show how to use the code to compute four-point functions. Note that the functions
C1234bf and C1234int can be used to compute any four-point function obeying the setup
of figure 6.1. In the examples below, us, vs, ws and zs are the Bethe roots of operators O1,
O2, O3 and O4, respectively, for the charges indicated in each case. Let us consider first an
example in which all four operators are non-BPS. Running the following code

L1=12;N1=6;L2=12;N2=2;L3=4;N3=2;L4=4;N4=2;
us={0.676245041405-0.993633391204 I,0.678017442247,0.676245041405+0.993633391204 I,
-0.676245041405+0.993633391204 I,-0.678017442247,-0.676245041405-0.993633391204 I};
vs={1.702843619444,-1.702843619444};
ws={0.288675134594,-0.288675134594};
zs={0.288675134594,-0.288675134594};
C1234bf[L1,N1,L2,N2,L3,N3,L4,N4,us,vs,ws,zs]
C1234int[L1,N1,L2,N2,L3,N3,L4,N4,us,vs,ws,zs]

we obtain a perfect agreement between the brute force computation and the integrability-
based formula, giving

C••••1234 = 1.28031− 0.66373 i .

As we mentioned in the main text of the paper, the integrability-based formula is computa-
tionally much faster than the brute force formula. This can be checked in Mathematica for
the example above by simply using the function AbsoluteTiming when executing C1234bf
and C1234int. The result is that the former takes 18 seconds to compute, while the latter
only takes 1 second! Of course, the gain in efficiency is even more notorious as we increase
the length and number of excitations of each operator in the four-point function.
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Now, let us consider a case in which O3 and O4 are BPS operators and compute the ratio
r1234 = C••◦◦1234/(C

◦◦◦
123C

◦◦◦
124). The following configuration corresponds to the second point of

data for α = 1/3 used in section 8.2. Running

L1=18;N1=6;L2=18;N2=2;L3=4;N3=2;L4=4;N4=2;
us={1.892118528217-1.114121041954 I,1.976939483361,1.892118528217+1.114121041954 I,
-1.892118528217+1.114121041954 I,-1.976939483361,-1.892118528217-1.114121041954 I};
vs={2.674763752754,-2.674763752754};
ws={10^10,10^15};
zs={10^11,10^16};
r=Abs@C1234int[L1,N1,L2,N2,L3,N3,L4,N4,us,vs,ws,zs]/

(Cooo[L1,N1,L2,N2+N4,L3,N3]Cooo[L1,N1,L2,N2+N3,L4,N4])//FullForm

we obtain
r1234 = 0.6540088550 ,

which is exactly the second blue bullet plotted in figure 8.3.
Note that when some of the operators in the four-point function are BPS, it is compu-

tationally more efficient to replace the appropriate general scalar products SProduct (which
compute formula (A.5)) appearing in C1234int by a function that implements the scalar
product between a Bethe state and a BPS state (4.20).
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