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Abstract 

 

Mercury concentrations in freshwater and marine biota are an ongoing concern, even in 

areas remote from local point sources, such as in the Canadian Arctic and sub-Arctic.  

Anadromous Arctic charr, which feed in the marine environment, have lower mercury 

concentrations than non-anadromous Arctic charr, which feed strictly in freshwater, but 

the two life-history forms have rarely been studied together, and the mechanisms 

driving the difference are unclear.  Here, data from nine pairs of closely-located 

anadromous and non-anadromous Arctic charr populations were used to explore the 

impact of biological and life-history factors on individual total mercury concentration 

([THg]) across a range of latitudes (49 – 81° N) in eastern Canada.  From six of these 

sampling locations, additional samples of lower trophic level biota (i.e., algae, 

invertebrates, and forage fishes) were obtained in order to investigate patterns of total 

mercury (THg) and methylmercury (MeHg) biomagnification in the marine and lacustrine 

foodwebs supporting Arctic charr.  Arctic charr mean [THg] ranged from 20 to 114 ng/g 

wet weight (ww) in anadromous populations, and was significantly higher in non-

anadromous populations (all p < 0.01), ranging from 111 to 227 ng/g ww.  Within-

population variations in Arctic charr [THg] were best explained by fish age, and were 

also positively related to fork-length and δ15N-inferred trophic level.  Across all sampling 

sites, the relationship between Arctic charr [THg] and fish age was significant and 

statistically similar in both life-history types, but only the non-anadromous fish 

demonstrated a significant relationship with trophic level.  Fork-length and site latitude 

did not explain significant additional variation in Arctic charr [THg] across sampling 
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locations.  Trophic magnification factors were 1.98 – 5.19 for THg and 3.02 – 6.69 for 

MeHg in lacustrine foodwebs, and 1.59 – 2.82 for THg and 2.72 – 5.70 for MeHg in 

marine foodwebs, and did not differ significantly between the two feeding habitats for 

either THg or MeHg.  The biomagnification rate of MeHg exceeded that of THg in both 

habitats.  Mercury concentrations at the base of the foodweb were higher in the 

lacustrine environment (estimated at 17 – 139 ng/g dw for THg and 5 – 42 ng/g dw for 

MeHg) than in the marine environment (8 – 39 ng/g dw for THg and 1 – 11 ng/g dw for 

MeHg).  The proportion of mercury in the methylated form was related to trophic level, 

and the relationship was statistically similar in the lacustrine and marine habitats.  There 

was no effect of site latitude on mercury concentrations in marine or lacustrine biota, 

thus the difference between feeding habitats was consistent across a range of latitudes 

(56 – 72°N) in eastern Canada.  We conclude that a difference in prey mercury 

concentration, driven by differential mercury concentrations at of the base of the 

lacustrine and marine foodwebs, is important for explaining the difference in mercury 

concentration between anadromous and non-anadromous Arctic charr.   
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Chapter 1 

Background information 

 

1.1 Arctic charr 

Arctic charr (Salvelinus alpinus) have a northern circumpolar distribution and are 

the only freshwater fish found in the high Arctic (Power et al. 2008).  The natural 

distribution of Arctic charr is more widespread than any other salmonid fish, and natural 

populations are found in 16 countries (Maitland 1995).  In North America, the latitudinal 

range of Arctic charr extends from approximately 43°N in Maine, USA to 82°N on 

Ellesmere Island, Nunavut (Johnson 1980; Power et al. 2008).  Arctic charr exhibit both 

non-migratory lacustrine and anadromous life-history strategies throughout much of 

their range, although anadromy is considered to be a facultative trait, and declines 

toward both the northern and southern limits of the species’ distribution (Doucett et al. 

1999; Power et al. 2008).  Anadromous individuals begin seaward migrations in May 

and June at three to eight years old, spend six to eight weeks feeding in the marine 

coastal environment, and return to freshwater to overwinter (Power et al. 2008).   

Arctic charr are long-lived fish, with individuals from some populations reaching 

30 years or older (e.g., Guiguer et al. 2002), and one specimen from Aquiatusuk Lake, 

Cornwallis Island, Nunavut aged at 44+ years (Gantner et al. 2010a).  Arctic charr 

display large variations in somatic growth rate and size at maturity (Johnson 1980; 

Klemetsen et al. 2003a; Parker and Johnson 1991), and often display bimodal size 

distributions or “standing waves” in length-frequency distributions (Johnson 1980; 

Power et al. 2008).  Thus, Arctic charr of the same size can be of very different ages.  
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The somatic growth rate of individual Arctic charr is related to lake characteristics such 

as temperature (Larsson et al. 2005), altitude, depth, and microcrustacean density 

(Cavalli et al. 2002).  Within populations, individual growth rate covaries with differences 

in morphotype (Reist et al. 1995), diet composition, and stomach fullness (Kahilainen 

and Lehtonen 2002).  The somatic growth of Arctic charr tends to follow a sigmoidal 

pattern where life begins with a period of relatively slow growth, followed by rapid 

growth that may be associated with a change in diet to marine feeding (in anadromous 

individuals) or piscivory (Kahilainen and Lehtonen 2002).  Anadromous Arctic charr 

generally have higher growth rates than lacustrine fish (Rikardsen et al. 2000).   

The occurrence of more than one form of Arctic charr in a lake (polymorphism) 

has been well documented (Johnson 1980; Klemetsen et al. 2003a; Power et al. 2008), 

with up to four different Arctic charr morphotypes identified in a single lake (e.g., lake 

Thingvallavatn, Iceland; Malmquist et al. 1992; Sandlund et al. 1992).  Different forms of 

Arctic charr can be differentiated by morphology, colouration, growth rate, size and age 

at maturity, life-history type, habitat use and diet, and time and place of spawning 

(Adams et al. 2003; Adams et al. 1998; Amundsen et al. 2008; Andersson 2003; 

Johnson 1980; Malmquist et al. 1992; Power et al. 2005; Power et al. 2008; Reist et al. 

1995; Sandlund et al. 1992).  Where multiple forms of Arctic charr coexist, there is often 

a small benthivorous and large pelagic planktivorous form, as well as a large 

piscivorous form (Power et al. 2008).   

Arctic charr are opportunistic feeders, and can make use of a variety of food 

items where they are available.  In the lacustrine environment, Arctic charr feed on 

benthic and pelagic invertebrates, including surface insects, chironomid larvae and 
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pupae, molluscs, amphipods, copepods, and cladocerans (Amundsen and Knudsen 

2009; Cavalli and Chappaz 1996; Klemetsen et al. 2003a,b; Knudsen et al. 2007; 

Malmquist et al. 1992; Svenning et al. 2007).  In many lakes, there is a shift to piscivory 

with larger size (e.g., Guiguer et al. 2002; Svenning et al. 2007), and cannibalistic 

feeding on smaller Arctic charr is not uncommon (Hammar 2000; Svenning and 

Borgstrom 1995).  Arctic charr may feed almost exclusively on chironomids in high 

Arctic lakes (Johnson 1980).  In the marine environment, the diet of anadromous Arctic 

charr includes fish (e.g., sand lance, Ammodytes spp.; capelin, Mallotus villosus; 

sculpins, Myoxocephalus spp.), amphipods, mysids, copepods, and krill (Dempson et al. 

2002; Rikardsen et al. 2000).  Non-anadromous Arctic charr feed throughout the year 

(Klemetsen et al. 2003a,b; Svenning et al. 2007).  In contrast, anadromous Arctic charr 

obtain the majority of their nutrition during summer marine feeding forays, and the 

dietary contribution from lacustrine or riverine sources is minimal after the onset of 

anadromy (Johnson 1980; Rikardsen et al. 2003; Swanson et al. 2011a).  The diet and 

habitat use of Arctic charr vary with life-history strategy (anadromous or non-

anadromous), life-stage, time of year, and morphotype (Power et al. 2008).   

Along with other northern fish species, Arctic charr are an important food 

resource for the Inuit people of northern Canada (Evans et al. 2005a).  Consuming 

country food, including Arctic charr, provides nutritional, economic, and cultural benefits 

to northern people (Van Oostdam et al. 2005).  In addition to their importance in 

subsistence fisheries, Arctic charr are also valuable for sport and commercial fishing 

(Evans et al. 2005a; Maitland 1995).  
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1.2 Mercury in the aquatic environment 

Mercury (Hg) is a transition metal and has an atomic number equal to 80.  Long-

range transport of gaseous Hg in the atmosphere is responsible for conveying mercury 

around the globe, and to relatively pristine Arctic regions (AMAP/UNEP 2008; Munthe et 

al. 2011; Pacyna et al. 2010).  Naturally, mercury is released to the atmosphere through 

volcanoes, geothermal vents, and rock weathering, as well as from previously 

contaminated soil and water (AMAP/UNEP 2008).  Principle anthropogenic sources of 

mercury include coal combustion, waste incineration, mining, and metal smelting 

(Pacyna et al. 2006; Pacyna et al. 2010).  Global mercury emissions have been 

relatively constant (between 1881 and 2235 tons/year) since 1980, with reduced 

European emissions balanced out by increasing emissions from Asia (Pacyna et al. 

2006).  By country, China is by far the largest emitter of mercury, followed by India and 

the United States (Pacyna et al. 2010).  Mercury is primarily released to the atmosphere 

in the form of gaseous elemental mercury, Hg(0) (Pacyna et al. 2006), which can be 

oxidized to Hg(II) and then deposited to Arctic aquatic environments via precipitation or 

deposition onto ice and snow (Douglas et al. 2011; Munthe et al. 2011).  Once 

deposited, Hg(II) can be converted to methylmercury (MeHg) by bacteria, primarily in 

anoxic water and sediments (Barkay and Poulain 2007; Morel et al. 1998; Ullrich et al. 

2001).   

In single-celled aquatic organisms, the uptake of mercury across the cell 

membrane is accomplished primarily via passive diffusion of the neutrally-charged 

chloride complexes HgCl2 and CH3HgCl (Mason et al. 1996).  Thus the rate of mercury 

uptake is controlled by mercury speciation, which is ultimately determined by water 
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chemistry parameters such as pH, salinity, and the concentrations of chloride, sulphide, 

and total organic carbon and/or organic ligands (Lawson and Mason 1998; Morel et al. 

1998; Ullrich et al. 2001; Watras et al. 1998).  Biological factors such as zooplankton 

species composition (Chetelat and Amyot 2009; Pickhardt et al. 2005), phytoplankton 

cell size (Mason et al. 1996), algal concentration (Chen and Folt 2005; Pickhardt et al. 

2005, 2002), and growth rate (Gorski et al. 2006; Karimi et al. 2007) are also important 

factors influencing [Hg] at the base of the foodweb.  Furthermore, site-specific 

characteristics such as lake size and catchment area, lake productivity, underlying 

geology, surrounding land use, and temperature influence mercury concentrations in 

lacustrine biota (Chen et al. 2005; Evans et al. 2005b; Greenfield et al. 2001; Kamman 

et al. 2004; Lockhart et al. 2005; Marusczak et al. 2011; Rose et al. 1999; Schindler et 

al. 1995), as does atmospheric mercury deposition (Hammerschmidt and Fitzgerald 

2006).  Considering the abundance of confounding variables among sample sites, it is 

not surprising that mercury concentrations in water and sediments are often poorly 

correlated to fish mercury concentrations (Evans et al. 2005b; Gantner et al. 2010a; 

Kamman et al. 2004; Rose et al. 1999).   

While direct uptake from water is an important source of Hg to organisms at the 

base of aquatic foodwebs (Morel et al. 1998), the vast majority of mercury accumulated 

by organisms at higher trophic levels (e.g., fish) is obtained through consumed food 

(Hall et al. 1997).  Once it has been taken up by biota, mercury is well known to 

bioaccumulate in aquatic organisms and biomagnify in temperate and polar aquatic food 

webs (e.g., Cabana and Rasmussen 1994; Campbell et al. 2005; Gantner et al. 2010b; 

Jæger et al. 2009; Sharma et al. 2008; Wyn et al. 2009).  van Leeuwen and Hermens 
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(1995) defined bioaccumulation as, “the net result of uptake, distribution and elimination 

of a substance due to all routes of exposure, i.e. exposure to air, water, soil/sediment 

and food,” which includes bioconcentration, “the net result of uptake, distribution and 

elimination of a substance due to water-borne exposure of an organism” and 

biomagnification, “the accumulation and transfer of chemicals via the food web (e.g. 

algae-invertebrate-fish-mammal) due to ingestion, resulting in an increase of the internal 

concentration in organisms at the succeeding trophic levels.”  Due to biomagnification, 

mercury concentrations in higher trophic level biota are positively related to food chain 

length (Cabana and Rasmussen 1994; Cabana et al. 1994; Schindler et al. 1995).   

Methylmercury is more efficiently transferred from prey to predator than inorganic 

mercury (Mason et al. 1995; Morel et al. 1998), thus the proportion of mercury in the 

methylated form increases with trophic level in aquatic foodwebs (Douglas et al. 2011).  

Methylmercury is also considered the most toxic form of Hg, causing reproductive 

deficiencies and behavioural changes in wildlife (Scheulhammer et al. 2007), and 

developmental neurotoxicity and cardiovascular effects in humans (Mergler et al. 2007).   

 

1.3 Mercury in fish 

High mercury concentrations in fish tissue are an ongoing concern in the 

Canadian Arctic, as the levels in desirable food species may approach or exceed 

recommended guidelines for human consumption (Evans et al. 2005a,b; Lockhart et al. 

2005; Swanson et al. 2011b).  The Health Canada guideline for mercury in 

commercially sold fish is 0.5 ppm (500 ng/g wet weight), and the recommended 
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guideline for sensitive consumers (i.e., women of childbearing age, children, and 

frequent fish consumers) is 0.2 ppm Hg (200 ng/g wet weight) (Health Canada 2007).   

In addition to the site-specific abiotic and biotic factors mentioned in the previous 

section, individual biological characteristics influence fish total mercury concentration 

([THg]).  Mercury concentrations in non-anadromous Arctic charr have been positively 

related to fish age, size, and trophic level (Gantner et al. 2010a, 2009; Muir et al. 2005; 

Riget et al. 2000; Rognerud et al. 2002), but relationship strengths vary among 

populations and are usually not examined in anadromous Arctic charr (Riget et al. 2000 

is an exception).  Life-history strategy (i.e., feeding habitat) is also a key determinant of 

mercury concentration, with anadromous Arctic charr having lower measured [THg] than 

non-anadromous conspecifics (Evans et al. 2005a; Lockhart et al. 2005; Riget et al. 

2000; Swanson et al. 2011b).   

It has been suggested that by increasing somatic growth rates, [THg] in fish can 

be reduced without changing the mercury concentration in fish prey items (Lepak et al. 

2009; Verta 1990).  A negative relationship between total mercury concentration and 

somatic growth rate has been observed in fish species including: juvenile Atlantic 

salmon, Salmo salar (Ward et al. 2010), walleye, Sander vitreus (Simoneau et al. 2005), 

yellow perch, Perca flavescens (Essington and Houser 2003), and northern pike, Esox 

lucius (Sharma et al. 2008; Verta 1990). Similarly in Arctic charr, Hammar et al. (1993) 

found higher levels of PCB and DDE contaminants in a slow-growing dwarf form than in 

faster-growing “normal” charr.  Therefore, the lower [THg] observed in anadromous, 

relative to non-anadromous, Arctic charr may be related to the higher rate of somatic 

growth evident in anadromous fish (Rikardsen et al. 2000).  However, while somatic 
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growth rate may influence fish [THg], it is considered less important than the mercury 

concentration in fish diet (Essington and Houser 2003; Henery et al. 2010; Lindqvist et 

al. 1991; Verta 1990; Ward et al. 2010), and the effects of growth rate changes on fish 

[THg] can be masked when increases in size are associated with a shift in diet (Lepak 

et al. 2009).   

 

1.4 Applications of stable isotope analysis 

Stable isotope analysis provides useful information for a wide variety of 

ecological studies.  For example, mapping isotopes in soil or water can reveal patterns 

of nutrient cycling at the landscape level, sulphur and oxygen isotope signatures can be 

used to track animal migrations, and stable carbon and nitrogen isotopes can 

demonstrate complex foodweb relationships (Fry 2006).  

The carbon and nitrogen isotope ratios of an organism reflect its average feeding 

pattern, as opposed to stomach content analysis which provides a snapshot of recently 

consumed prey items (Vinson and Budy 2011).  In aquatic foodwebs, the nitrogen 

isotope ratio (δ15N) increases by approximately 3.4‰ between a consumer and its food 

source and provides a quantitative measure of trophic level (Minagawa and Wada 1984; 

Post 2002).  In contrast, carbon stable isotope values (δ13C) increase by a small amount 

between trophic levels (< 1‰; Post 2002; Vander Zanden and Rasmussen 2001), but 

can differentiate between benthic and pelagic (Hecky and Hesslein 1995) or marine and 

freshwater (Doucett et al. 1999; Kim and Rochford 2008) carbon sources.  Stable 

isotopes have been used to distinguish between Arctic charr morphotypes displaying 

trophic polymorphism (Adams et al. 2003; Guiguer et al. 2002; McCarthy et al. 2004; 
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Power et al. 2005), and can differentiate between anadromous and non-anadromous 

individuals (Doucett et al. 1999).  To compare consumer δ13C and δ15N between sites, 

stable isotope values must be corrected for differences in isotope signatures at the base 

of the foodweb, which can vary substantially between locations as a result of 

anthropogenic or biogeochemical influences (Post 2002).   

Because they reflect the average assimilated diet of a consumer (Peterson and 

Fry 1987), δ13C and δ15N isotopes provide key information explaining mercury 

concentrations in upper trophic level consumers (e.g., fish) that obtain mercury primarily 

through consumed food (Hall et al. 1997).  Mercury concentrations in fish tend to 

increase with increasing δ15N or trophic level (Cabana and Rasmussen 1994; Kidd et al. 

1995), and have been inversely related to δ13C or reliance on benthic food sources 

(Kidd et al. 2003; Lavoie et al. 2010; Power et al. 2002).  Stable isotopes have also 

been widely used to quantify the rate of mercury biomagnification in aquatic foodwebs, 

using δ15N or δ15N-inferred trophic level versus log [THg] or log [MeHg] (Borgå et al. 

2012; Jardine et al. 2006).   

 

1.5 Research objectives 

Previous studies examining [THg] in Arctic charr have often been based on small 

sample sizes of large fish, and have usually focused on characterizing spatial and/or 

temporal trends among populations (e.g., Evans et al. 2005a; Gantner et al. 2010a; 

Lockhart et al. 2005; Muir et al. 2005; Riget et al. 2000; Swanson et al. 2011b).  Less is 

known about the biological and life-history factors impacting individual [THg] within and 

among populations, particularly for anadromous Arctic charr.  Furthermore, mercury 
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concentrations of anadromous and non-anadromous Arctic charr have been studied 

together at only a few locations: the coast of Labrador, Canada (Bruce and Spencer 

1979), near Qaqortoq in southern Greenland (Riget et al. 2000), Kangiqsujuaq, northern 

Quebec, Canada (Lockhart et al. 2005), and the West Kitikmeot region, Nunavut, 

Canada (Swanson et al. 2011b).  In view of the limited knowledge about large scale 

spatial differences in, and the causal mechanisms behind, known differences in [THg] 

between anadromous and non-anadromous Arctic charr, this research compares 

latitudinally-paired populations of anadromous and non-anadromous Arctic charr to 

address a number of critical hypotheses as outlined below.   

In chapter 2, the impacts of biological factors influencing Arctic charr [THg] 

across a range of latitudes (49 – 81° N) in eastern Canada are explored using nine pairs 

of co-located anadromous and non-anadromous Arctic charr populations (Table 1.1).  

Specifically, the following hypotheses are tested:  

1. Anadromous Arctic charr have lower [THg] than conspecifics from closely located or 

sympatric non-anadromous populations, and this difference is consistent across a 

range of latitudes in eastern Canada 

2. Within-population differences in [THg] are positively related to individual age, fork-

length, and δ15N-inferred trophic level, and negatively related to average somatic 

growth rate and δ13C-inferred benthic connection, with relationships being 

statistically similar in anadromous and non-anadromous populations 

3. Among-population differences in [THg] are positively related to differences in age, 

fork-length, and trophic level, and negatively related to average somatic growth rate 

and site latitude 
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In chapter 3, data from six spatially-paired marine and lacustrine foodwebs along 

a latitudinal gradient in eastern Canada (Table 1.1) are used to examine mercury 

accumulation patterns in feeding habitats important for Arctic charr.  The specific 

hypotheses addressed are:  

1. Biomagnification rates (quantified using the slope of mercury concentration versus 

δ15N-inferred trophic level) are lower in marine foodwebs than in spatially-proximate 

lacustrine foodwebs 

2. Mercury concentrations at the base of the foodweb are lower in the marine than in 

the lacustrine feeding habitats 

3. The proportion of methylated mercury increases with trophic level, therefore 

biomagnification rates are higher for MeHg than THg, and the trend is similar in both 

feeding habitats used by Arctic charr 

4. The differences between feeding habitats are consistent across a range of latitudes 

(56 – 72°N) in eastern sub-Arctic and Arctic Canada 

 



 12 

1.6 Tables 

 

Table 1.1. Location of sample collection sites for anadromous and non-anadromous Arctic charr.   

Type Sample site Region Latitude (N) Longitude (W) Sampling 
year(s) 

nb 

Anadromous      
 Rivière de la Trinité Quebec 49°25' 67°18’ 2010 10 
 Fraser River, Nain Baya Labrador 56°37.072' 62°15.243' 2008 20 
 Okak Baya Labrador 57°33.250' 62°05.914' 2008 20 
 Saglek Bay (North Arm) a Labrador 58°32'41.5" 63°27'30.6" 2007 22 
 Nepihjee River, Dry Baya Ungava Bay, Quebec 58°32' 68°17' 2009, 2010 33 
 Frobisher Bay, Iqaluita Baffin Is., Nunavut 63°41'22.5" 68°25'17.2" 2004, 2010 30 
 Pangnirtung Fjord Baffin Is., Nunavut 66°8'15.2" 65°45'11.2" 2004, 2009 40 
 Salmon River, Pond Inleta Baffin Is., Nunavut 72°40'46.3" 78°3'11.2" 2005-08, 2010 70 
 Heintzelman Lake Ellesmere Is., Nunavut 81° 42' 66° 56' 2001 7 
Non-anadromous      
 Rivière de la Trinité Quebec 49°25' 67°18' 2009, 2010 10 
 Coady's Pond #2, Nain Baya Labrador 56°38'32.5" 63°37'33.9" 2007 20 
 Esker Lake, Okak Baya Labrador 57°9'14.8" 62°52'39.4" 2008 20 
 Upper Nakvak Lake, Saglek Baya Labrador 58°39'46.1" 63°18'59.8" 2007 20 
 Tasiapik Lake, Dry Baya Ungava Bay, Quebec 58°31' 68°21' 2009, 2010 31 
 Crazy Lake, Iqaluita Baffin Is., Nunavut 63°52'13.4" 68°28'10.5" 2010 47 
 Iqalugaarjuit Lake, Pangnirtung Baffin Is., Nunavut 66°34'21.8" 66°42'48.5" 2004 19 
 unnamed lake, Pond Inleta Baffin Is., Nunavut 72°35'40.0" 77°58'19.8" 2010 18 
 Heintzelman Lake Ellesmere Is., Nunavut 81°42' 66°56' 2001 112 
aAdditional samples of lower trophic level biota (i.e., algae, invertebrates, and forage fishes) were obtained in order to test 
hypotheses regarding mercury biomagnification in the marine and lacustrine foodwebs supporting Arctic charr.   
bThe total number of Arctic charr analyzed for [THg] from all sampling years. 
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Chapter 2 

Comparing total mercury concentrations in anadromou s and non-anadromous 

Arctic charr ( Salvelinus alpinus) from eastern Canada 

 

2.1 Introduction 

Mercury concentrations in Arctic biota have increased by an order of magnitude 

since pre-industrial times (Dietz et al. 2009), and represent an ongoing threat to the 

health of Arctic ecosystems and inhabitants (Dietz et al. 2011; Stow et al. 2011).  This is 

particularly concerning for species such as Arctic charr (Salvelinus alpinus), which are 

consumed regularly by northern people and are culturally and economically significant 

(Evans et al. 2005a).  The primary route of exposure to mercury is through diet, thus 

contamination of traditional country foods has critical implications for human health 

(Stow et al. 2011; Van Oostdam et al. 2005).   

Arctic charr have a holarctic distribution that extends farther north than that of 

any other freshwater fish species, and as far south as 43°N in North America (Power et 

al. 2008).  Where access to the sea exists, anadromous Arctic charr migrate to 

nearshore coastal areas for summer feeding, and return to freshwater to overwinter.  

However, sympatric populations of anadromous and lake-resident Arctic charr are not 

uncommon (Klemetsen et al. 2003).  The prevalence of anadromy is related to latitude, 

declining to the northern and southern extremes of the species distribution (Power et al. 

2008).  

Total mercury concentrations ([THg]) in Arctic charr are variable, both within and 

among populations (AMAP 2005; Evans et al. 2005a; Lockhart et al. 2005).  In non-
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anadromous Arctic charr, within-population [THg] has been positively related to fish age, 

size, and trophic level (Gantner et al. 2010a, 2009; Muir et al. 2005; Riget et al. 2000; 

Rognerud et al. 2002; Swanson et al. 2011a), but relationship strengths vary among 

populations and are usually not examined in anadromous Arctic charr (Riget et al. 2000 

is an exception).  Anadromous Arctic charr have higher somatic growth rates than non-

anadromous conspecifics (Rikardsen et al. 2000), and high rates of somatic growth 

have been associated with low [THg] in some fish species (e.g., Doyon et al. 1998; 

Ward et al. 2010).   

Anadromous Arctic charr generally have lower [THg] than non-anadromous 

conspecifics (AMAP 2005; Evans et al. 2005a; Lockhart et al. 2005).  However, the two 

life-history forms have been studied together at only a few sites: the coast of Labrador, 

Canada (Bruce and Spencer 1979), near Qaqortoq in southern Greenland (Riget et al. 

2000), Kangiqsujuaq, northern Quebec, Canada (Lockhart et al. 2005), and the West 

Kitikmeot region, Nunavut, Canada (Swanson et al. 2011a).  No wide-scale spatial 

investigation of differential [THg] in closely-located populations of anadromous and non-

anadromous Arctic charr of which we are aware has been conducted.  Furthermore, the 

mechanisms driving the difference in mercury concentration between the two life-history 

forms are unknown, though they may be related to differing fish ages or somatic growth 

rates (Evans et al. 2005a,b; Swanson et al. 2011a), trophic levels (Kim and Rochford 

2008), or exposure concentrations in the marine versus freshwater feeding habitats 

(Mason et al. 2006).   

The vast majority of mercury in fish is obtained from ingested food (Hall et al. 

1997).  Thus stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) are potentially 
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useful in explaining differential mercury concentrations, as they reflect the average 

assimilated diet of a consumer (Peterson and Fry 1987).  In aquatic foodwebs, δ15N is 

enriched by an average of 3.4‰ in a consumer relative to its diet, and provides a 

quantitative measure of trophic level (Jardine et al. 2006; Minagawa and Wada 1984; 

Post 2002).  In contrast, δ13C changes by only a small amount (~0.4‰, Post 2002) 

between trophic levels, and can distinguish between benthic and pelagic sources of 

carbon in aquatic environments (Hecky and Hesslein 1995).  Mercury concentrations in 

fish tend to increase with increasing δ15N or trophic level (Cabana and Rasmussen 

1994; Kidd et al. 1995), and have been inversely related to δ13C or reliance on benthic 

food sources (Kidd et al. 2003; Lavoie et al. 2010; Power et al. 2002).   

In view of the limited knowledge about the large scale spatial differences in [THg] 

between anadromous and non-anadromous Arctic char, we explore the impact of 

biological factors influencing Arctic charr [THg] across a range of latitudes (49 – 81° N) 

in eastern Canada.  Specifically we test the following hypotheses: [1] anadromous Arctic 

charr have lower [THg] than conspecifics from closely located or sympatric non-

anadromous populations, and that this difference is consistent across a range of 

latitudes in eastern Canada; [2] within-population differences in [THg] are positively 

related to individual age, fork-length, and δ15N-inferred trophic level, and negatively 

related to average somatic growth rate and δ13C-inferred benthic connection, with 

relationships being statistically similar in anadromous and non-anadromous populations; 

and [3] among-population differences in [THg] are positively related to differences in 

age, fork-length, and trophic level, and negatively related to average somatic growth 

rate and site latitude.  



 16 

 

2.2 Methods  

2.2.1 Sample collection 

Nine sampling locations were selected to represent a range of latitudes in 

eastern Canada from Rivière de la Trinité, Quebec (49° N) in the south to Heintzelman 

Lake, Ellesmere Island (81° N) in the north (Figure 2.1). At each location, matching 

anadromous and non-anadromous Arctic charr populations were sampled, either from 

near-by locales containing discrete life-history form populations, or from a single site 

where the two life-history forms co-occurred.  Distances between paired anadromous 

and non-anadromous sampling sites (0 to 68 km) were minimized to remove possible 

confounding spatial factors (e.g., airborne depositional Hg gradients), with the proximity 

of sample sites being controlled by population occurrences and the realities of sampling 

logistics.  Details on sampling sites are provided in Table 2.1, including the known fish 

assemblages for the lakes.   

Arctic charr samples were collected between 2001 and 2010 from purpose 

designed field programs or in conjunction with Government of Canada monitoring 

programs, often with the aid of local Hunters and Trappers Organizations (HTOs).  

Sample sizes ranged from 7 to 112 individual fish from a particular location and for a 

given life-history type (Tables 2.3 and 2.4).  All non-anadromous Arctic charr, except for 

those from Rivière de la Trinité, were captured from lakes using multi-mesh nylon 

multifilament sinking gillnets as described by Johnson (1983) set perpendicular from 

shore in open water.  Anadromous and non-anadromous fish were captured during the 

spring (May) migration in the Rivière de la Trinité using a fyke trap, with previously non-
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anadromous fish being intercepted prior to reaching the marine environment.  

Anadromous Arctic charr were collected from the nearshore marine environment using 

114, 127, and 140 mm mesh gillnets or angling, and were obtained from local 

subsistence fishers at Pond Inlet, Pangnirtung, and Iqaluit.  Anadromous Arctic charr 

from Dry Bay were trapped while migrating upstream in a fyke net set in the Nepihjee 

River.  Anadromous individuals were captured concurrently with non-anadromous fish in 

Heintzelman Lake and Iqalugaarjuit Lake (Pangnirtung).  

Samples of primary consumers were collected from as many sampling sites as 

possible (7 of 9 marine and 7 of 9 freshwater sites) in order to correct for differences in 

the isotope baseline, which can vary considerably among sampling sites (Post 2002).  

Benthic macroinvertebrates were used (filter-feeding bivalves or other primary 

consumers, Table 2.1), as they provide a time-integrated measure of basal δ13C and 

δ15N values (Post 2002).  Invertebrates were collected by hand or using forceps from 

rocks or pools in the littoral zone (snails, mussels, clams, barnacles, and gammarids) or 

by using dipnets and a kick-sweep method at 0.5 – 1 m depth (chironomid larvae).  All 

invertebrate samples were frozen and transported to the laboratory for stable isotope 

analysis.   

In some cases, whole and undigested invertebrates were opportunistically 

sampled from Arctic charr stomachs, which can provide a useful source of prey items 

for stable isotope analyses (Peterson 1999; Tieszen et al. 1983).  To guard against 

potential biases imparted by digestion, only intact dietary items obtained directly from 

the stomach were used (Guelinckx et al. 2008), with the influence of digestion on stable 

isotope values of such prey items having been shown to be negligible in Arctic charr 
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dietary studies from Loch Ness (Grey et al. 2002).  To further minimize the influence of 

digestive tract material on prey stable isotope values, all stomach-derived prey items 

were rinsed with deionized water prior to analysis.   

 

2.2.2 Laboratory analyses 

All collected Arctic charr were processed immediately after capture or were 

frozen and transported to the laboratory for processing.  Each fish specimen was 

weighed whole (g) and measured for fork-length (mm).  A sample of dorsal muscle 

tissue (≈ 5 g) was removed from the left side of each fish in the region dorsal to the 

lateral line and posterior to the dorsal fin.  Muscle samples were kept frozen prior to use 

in stable isotope and mercury analyses.   

Sagittal otoliths were removed from all Arctic charr, and fish ages were 

determined using standardized methods by Fisheries and Oceans Canada in Winnipeg, 

Canada, and cross validated with aging conducted at the University of Waterloo, 

Waterloo, Canada.  Ageing methods included visual inspection of whole otoliths under 

reflected light, break and burn (Reist et al. 1995), or thin-section techniques.  Otoliths to 

be sectioned were embedded in epoxy (EPO-THIN resin 20-8140-032 and hardener 20-

8142-016, Buehler Ltd., Lake Bluff, Illinois) mixed according to the manufacturer’s 

directions, and left to harden for one week.  Embedded otoliths were cut through the 

nucleus perpendicular to the sulcus using a Buehler Isomet 1000 precision sectioning 

saw (Buehler Ltd., Lake Bluff, Illinois) outfitted with a Buehler diamond wafering blade 

(152 mm in diameter, 0.5 mm thick, No. 11-4246, series 15 HC), and a speed set to 575 
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rpm.  The micrometer was advanced 1.0 mm and a 0.5 mm section was cut from the 

otolith, which was then examined under reflected light.   

Arctic charr life-history form (anadromous or non-anadromous) was determined 

from sampling location in the case of landlocked fish, or anadromous Arctic charr 

caught at sea or while conducting upstream migrations in late summer.  In the case of 

sympatric populations of anadromous and lake-resident Arctic charr (Rivière de la 

Trinité, Iqalugaarjuit Lake, unnamed lake near Pond Inlet, and Heintzelman Lake) life-

history strategy was assessed using the stable sulphur isotope ratio (δ34S) of dorsal 

muscle tissue (Doucett et al. 1999), and confirmed using scanning proton microprobe 

analysis of sagittal otoliths, using methods described in Loewen et al. (2009).  

Total mercury concentrations of individual Arctic charr were quantified via 

thermal decomposition and atomic absorption spectroscopy following U.S. EPA method 

7473 (U.S. Environmental Protection Agency 2007) using a Milestone Direct Mercury 

Analyzer, DMA-80 (Milestone S.r.l., Sorisole, Italy).  A subsample of 0.1 – 0.2 g of 

frozen, non-homogenized dorsal muscle tissue was used for analysis, and the results 

are expressed as ng/g wet weight (ww).  Certified reference materials and blanks were 

run at the beginning and end of each batch of 20 samples.  The method detection limit, 

determined as 3x the standard deviation of the blanks, was 0.33 ng Hg.  One sample 

was run in triplicate during each sample batch, and the mean relative standard deviation 

of the triplicates was 4.8%.  The reference materials used and percent recoveries 

(mean percentage of certified value ± 1 standard deviation) were NIST 1566b (89.9 ± 

5.4) and NIST 2976 (98.6 ± 6.4) from the National Institute of Standards and 

Technology (Standard Reference Materials Program, Gaithersburg, USA), as well as 
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TORT-2 (100.8 ± 2.5) and DORM-1 (96.2 ± 8.3) from the National Research Council 

Canada (Institute for National Measurement Standards, Ottawa, Canada).   

Stable isotope analyses were conducted using dorsal muscle tissue for each 

Arctic charr specimen, and whole bodies of invertebrates (bivalves, gastropods, and 

barnacles were first removed from shells).  Small invertebrates (e.g., chironomid larvae) 

were pooled to obtain sufficient mass for a single sample (≈ 0.1 – 0.5 g ww), while 

larger invertebrates were analyzed individually.  Tissue samples were oven dried at 

50°C for 48 hours, homogenized using a Retsch MM 301 ball mill grinder (Retsch 

GmbH, Haan, Germany), and weighed into tin capsules using a high-precision analytical 

balance (UMX2, Mettler-Toledo GmbH, Greifensee, Switzerland).  Stable isotope 

analyses were conducted at the Environmental Isotope Laboratory at the University of 

Waterloo, Waterloo, Canada following standard protocol.  Briefly, a Delta Plus 

Continuous Flow Stable Isotope Ratio Mass Spectrometer (Thermo Finnigan, Bremen, 

Germany) coupled to a Carlo Erba Elemental Analyzer (CHNS-O EA1108, Carlo Erba, 

Milan, Italy) was used for simultaneous determination of δ13C and δ15N.  Analysis of δ34S 

was completed using an Isochrom Continuous Flow Stable Isotope Ratio Mass 

Spectrometer (GVInstruments, Micromass, Manchester, UK) coupled to a Costech 

Elemental Analyzer (CNSO 4010, Costech Analytical Technologies Inc., Valencia, 

USA).  All stable isotope ratios are expressed using standard delta (δ) notation as parts-

per-thousand differences from recognized international standards, with a precision in 

organic material of ± 0.2‰ for carbon, ± 0.3‰ for nitrogen, and ± 0.5‰ for sulphur.   
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2.2.3 Data analysis 

To compare trophic positions of Arctic charr from different sampling sites, mean 

δ15N values of primary consumers were used to assess baseline values (δ15Nbase) for 

each site (Table 2.1).  Arctic charr trophic level was calculated using site-specific δ15Nbase 

following: 

Trophic levelArctic charr = 2 + (δ15NArctic charr – δ15Nbase) / 3.4 

While the trophic fractionation of δ15N (∆δ15N) is variable (e.g., -2.1 to +5.4‰, 

McCutchan et al. 2003; -0.7 to +9.2‰, Vander Zanden and Rasmussen 2001; -1.16 to 

+5.89‰, Vanderklift and Ponsard 2003), the average value of 3.4‰ provides a 

reasonable approximation of ∆δ15N when averaged across multiple trophic levels, 

particularly when a primary consumer is used for the baseline value (Jardine et al. 2006; 

Post 2002; Vander Zanden and Rasmussen 2001).  In order to evaluate the potential 

bias associated with using an estimated ∆δ15N value, all statistical analyses involving 

trophic level were also carried out using baseline-adjusted δ15N, calculated as: 

Adjusted δ15NArctic charr = δ15NArctic charr – δ15Nbase 

The use of baseline-adjusted δ15N rather than trophic level produced no 

difference in the results of any statistical significance testing, presumably because the 

conversion to trophic level is a scalar transformation that does not affect the relative 

position of data points.  Therefore, the results presented herein are based on 

calculations with trophic level.   

A marine δ15Nbase was used to assess the trophic level of anadromous fish, 

because migratory Arctic charr feed primarily in the marine environment, and the dietary 

contribution from lacustrine or riverine sources is minimal after the onset of anadromy 
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(Johnson 1980; Rikardsen et al. 2003; Swanson et al. 2011b).  Sampling was not 

conducted in the Gulf of St. Lawrence, the marine feeding environment of the Rivière de 

la Trinité anadromous Arctic charr, therefore a literature value was used for δ15Nbase.  

The δ15N (7.2 ± 0.1‰) for blue mussel (Mytilus edulis) was selected from Lavoie et al. 

(2010), a figure that agrees well with previously reported values of 7.4‰ and 7.3‰ for 

blue mussel from the St. Lawrence Estuary and Gulf of St. Lawrence (Lesage et al. 

2001).  Trophic levels were not calculated for Arctic charr from one anadromous 

population (Heintzelman Lake) and 2 non-anadromous populations (Iqalugaarjuit Lake, 

Pangnirtung and Heintzelman Lake) due to lack of suitable baseline signature samples.   

All statistical analyses were conducted using the R program for statistical 

computing (R Development Core Team 2009) with Type I error set to α = 0.05.  Total 

mercury concentration data were natural-log transformed prior to inclusion in analyses 

in order to satisfy assumptions of normality.  Normality was confirmed using a Shapiro-

Wilk test (Shapiro and Wilk 1965).  Means of two groups were compared using t-tests 

adjusted for variance equality or inequality (Zar 2010).  Variances of two groups were 

compared using an F-test when the data were normally distributed, and a Levene’s test 

using the median when the data were not normally distributed.  Relationships between 

two variables were assessed using Pearson’s correlation coefficients and simple linear 

regression.  Partial correlation analysis was used to evaluate the significance of a single 

term while other factors were held constant (e.g., Zar 2010).   

The effect of fork-length, given a constant age, was used to explore the 

significance of average somatic growth rate (i.e., individuals with a faster average 

growth rate are larger at a given age than slower-growing conspecifics) within and 
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among Arctic charr populations.  To further visualize the effect of average somatic 

growth rate on mercury concentrations among populations, the age versus ln [THg] and 

ln age versus ln fork-length relationships for each population were used to estimate 

population-specific ln [THg] and ln fork-length at a standardized age.  Age 9 was 

selected, as it was within the ranges of most anadromous and non-anadromous 

populations, so no extrapolation was required.  The exception was the Rivière de la 

Trinité populations, for which age-standardized ln [THg] and fork-length were not 

possible owing to the limited age ranges (anadromous = 4 – 6 years, non-anadromous 

= 5 – 6 years) and fork-length ranges (anadromous = 239 – 339 mm, non-anadromous 

= 181 – 202 mm) that did not overlap with many of the other populations.  Plots of age 

versus length for all populations are provided in Appendix 1 (Figure S1).   

A general linear model was conducted to explain individual ln [THg] using fish 

age, fork-length, and trophic level (covariates), as well as life-history type and sampling 

location (factors).  In order to evaluate the effects of biological and life-history factors on 

fish mercury concentration, regardless of sampling site, linear mixed models were 

employed.  Mixed models were conducted within each life-history type to explain 

individual ln [THg] using fish age, trophic level, and site latitude.  A final model was 

conducted using Arctic charr from both life-history types, and described individual ln 

[THg] as a function of fish age and trophic level (inner covariates), life-history type (fixed 

effect factor), and site latitude (outer covariate).  Interaction terms were included for age 

x type, trophic level x type, and latitude x type to determine whether the relationships 

differed between the anadromous and non-anadromous life-history types.  Sample site 

was included as a random-effect factor in the mixed models to allow for variations in the 
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slopes of ln [THg] versus age and trophic level, as well as the model intercept, among 

sampling sites.   

 

2.3 Results 

Individual anadromous Arctic charr had [THg] ranging from 9 to 217 ng/g ww in 

muscle, while the concentrations in non-anadromous fish ranged from 28 to 1033 ng/g 

ww.  Only 2 of the 549 individuals analyzed had [THg] greater than the Health Canada 

limit for mercury concentration in commercially sold fish (500 ng/g ww), and both were 

non-anadromous.  The [THg] of 40 individuals exceeded the Health Canada guideline 

for frequent fish consumers (200 ng/g ww); of these, 38 fish were non-anadromous and 

2 fish were anadromous.  These guidelines are the same as those recommended by the 

World Health Organization for internationally marketed fish (500 ng/g ww) and for fish 

consumed by sensitive groups (i.e., women of childbearing age, children, and frequent 

fish consumers; 200 ng/g ww).  Similarly, all anadromous and most non-anadromous 

Arctic charr had muscle mercury concentrations lower than the U.S. Food and Drug 

Administration guideline (1000 ng/g ww) and more conservative U.S. Environmental 

Protection Agency guideline (300 ng/g ww) for mercury concentrations in fish.   

Location-specific mean [THg] ranged from 20 to 114 ng/g ww in anadromous 

populations, and from 111 to 227 ng/g ww in non-anadromous populations (Table 2.2, 

Figure 2.2). The non-anadromous populations had mean [THg] 1.8 to 6.3 times higher 

than their paired anadromous counterparts, and there was a significant difference in ln 

[THg] for each pair (two-sample t-tests; all p < 0.01; Table 2.2).  There was no 
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significant relationship between latitude and the difference in mean [THg] between the 

two life-history types (p = 0.88).   

The anadromous Arctic charr were significantly larger than non-anadromous 

conspecifics at all locations except Nain Bay (two-sample t-test; p = 0.17), but there was 

no consistent difference in mean age between the two life-history types (Table 2.2; see 

also Appendix 1 Figure S1).  At most locations, the anadromous fish occupied a higher 

mean trophic level than the non-anadromous conspecifics where a significant difference 

existed, although the opposite was true at Dry Bay (two-sample t-test; p < 0.001; Table 

2.2).   

Within-population ln [THg] data were positively related to both fish age and fork-

length, and the relationships tended to be stronger in the non-anadromous populations 

(Figures 2.3 and 2.4; Table 2.3).  Fish age was significantly related to ln [THg] in 6 of 9 

anadromous and 7 of 9 non-anadromous populations (Figure 2.3; Table 2.3).  

Significant positive relationships existed between ln [THg] and fork-length in 3 of 9 

anadromous and 7 of 9 non-anadromous populations (Figure 2.4; Table 2.3).  Partial 

correlation analysis revealed that fish age was a better predictor of within-population ln 

[THg] than fork-length when controlling for the effect of other factors, a pattern that held 

true for both life-history types (Table 2.4).  Significant relationships between ln [THg] 

and δ15N or δ13C occurred in approximately half of the studied populations, with the 

magnitude and even direction of the relationships varying among populations (Table 

2.3; see also Figure 2.5 and Appendix 1 Figures S2, S3, and S4).  Within a given 

sampling location, anadromous Arctic charr usually had lower [THg] than non-

anadromous conspecifics at a similar age, fork-length, or trophic level (Figures 2.3, 2.4, 
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and 2.5), thus the difference in mercury concentration between the two life-history types 

could not be attributed to differences in age, size, or trophic level.  

Little evidence of a negative effect of average somatic growth rate on Arctic charr 

[THg] was found, either within or among populations.  The within-population 

relationships between ln [THg] and fork-length after controlling for the effects of age and 

δ15N (a measure of average somatic growth rate) were significant and negative in only 3 

of 18 populations (Table 2.4).  When individual Arctic charr were pooled across 

sampling locations, there was no significant correlation between ln [THg] and fork-length 

(after controlling for the effects of age and trophic level) within either life-history type 

(Table 2.5).  A negative correlation between ln [THg] and fork-length, when controlling 

for other factors, occurred only when all Arctic charr from both life-history types were 

combined.  While there was a wide range in age-specific ln fork-length among 

populations of both life-history types, there was no relationship to age-specific ln [THg] 

among the anadromous or non-anadromous populations (Figure 2.6).   

The general linear model evaluating the relative importance of biological, life-

history, and location characteristics in explaining ln [THg] found that the effect of fork-

length was not significant (F = 0.96, p = 0.33), therefore it was removed from further 

analyses.  Subsequent analysis of ln [THg] indicated significant effects of fish age, 

trophic level, life-history type, and sampling location (R2 = 0.74, adjusted R2 = 0.73, 

F10,390 = 110.5, p < 0.001).  To estimate the importance of site-to-site variability in 

predicting fish [THg], the model was also conducted without including sampling location 

as a predictor variable, and the percentage of explained variation was substantially 

reduced (R2 = 0.54, adjusted R2 = 0.54, F3,397 = 155.3, p < 0.001).   
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Results of the linear mixed models indicated a significant positive effect of fish 

age on individual ln [THg] for both life-history types, but a significant positive effect of 

trophic level was only apparent in the non-anadromous Arctic charr (Table 2.6).  Site 

latitude did not significantly impact ln [THg] in either life-history type.  The more complex 

model including fish from both life-history types (n = 401 observations from 15 sites) 

demonstrated that the age effect was statistically similar between the anadromous and 

non-anadromous fish (i.e., no age x type interaction, p = 0.30).  When both life-history 

types were considered, there was a negative effect of site latitude (p < 0.01) that did not 

differ significantly between the anadromous and non-anadromous fish (p = 0.08).  

However, inspection of Figure 2.2 suggests that the apparent decline in [THg] with 

latitude may rely on a single high mercury and low latitude location, Rivière de la Trinité.  

Indeed, when the linear mixed model was conducted without the fish from Rivière de la 

Trinité (n = 381 observations from 13 sites), there was no longer a significant effect of 

latitude (p = 0.16).   

 

2.4 Discussion 

Evidence was found to support the hypothesis that anadromous Arctic charr have 

lower [THg] than non-anadromous conspecifics, and that the difference is independent 

of latitude (49 – 81° N) in eastern Canada.  Within-population [THg] was most 

consistently related to fish age in both anadromous and non-anadromous Arctic charr, 

although significant positive relationships with fork-length and δ15N or trophic level also 

occurred.  Differences in δ13C were poorly related to [THg], particularly in non-

anadromous Arctic charr.  Fish [THg] was poorly related to fork-length, when controlling 
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for the effects of fish age and δ15N or trophic level, within and  among populations.  

Among-population differences in individual [THg] were positively related to fish age in 

both life history types, but only the non-anadromous Arctic charr demonstrated a 

significant increase in [THg] with trophic level.  Individual fork-length and site latitude did 

not explain significant additional variation in fish [THg] across sampling locations.  

The mean mercury concentrations observed in the anadromous populations (20 

to 64 ng/g except Rivière de la Trinité = 114 ng/g) are consistent with previously 

reported values of mean [THg] in migratory Arctic charr (e.g., 10 – 130 ng/g, Bruce and 

Spencer 1979; 30 – 80 ng/g, Evans and Muir 2010; 30 – 70 ng/g, Evans et al. 2005a; 40 

– 50 ng/g, Riget et al. 2000; 40 ng/g, Swanson et al. 2011a).  The mean [THg] observed 

in non-anadromous populations (111 to 227 ng/g) were also within the range of 

previously reported concentrations in non-migratory Arctic charr (e.g., 110 – 500 ng/g, 

Bruce and Spencer 1979; 50 – 1760 ng/g, Evans et al. 2005a; 70 – 1310 ng/g, Gantner 

et al. 2010a; 97 – 185 ng/g, Marusczak et al. 2011; 147 – 1520 ng/g, Muir et al. 2005; 

30 – 940 ng/g, Muir et al. 2009a; 120 – 801 ng/g, Riget et al. 2000; 55 – 179 ng/g, 

Rognerud et al. 2002; 190 ng/g, Swanson et al. 2011a).   

As expected, mercury concentrations were lower among anadromous Arctic 

charr than in closely located non-migratory conspecifics across the full range of latitudes 

represented in the present study.  The difference in [THg] between life-history types 

existed whether the non-anadromous fish were landlocked, or co-occurred with 

sympatric anadromous individuals.  In contrast, Swanson et al. (2011a) did not detect a 

significant difference in mercury concentration between anadromous and lake-resident 

Arctic charr, and estimated mercury concentrations of 40 ng/g at a standardized length 
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of 500 mm for both life-history types.  Here the non-anadromous fish had mean [THg] 

1.8 to 6.3 times higher than paired anadromous conspecifics, whereas others have 

reported concentrations 3.5 to 15 times higher in non-anadromous compared to 

anadromous Arctic charr (Bruce and Spencer 1979; Lockhart et al. 2005; Riget et al. 

2000; Swanson et al. 2011a).   

Lower mercury concentrations have also been detected in anadromous lake 

trout, Salvelinus namaycush (Swanson et al. 2011a), Atlantic salmon, Salmo salar 

(Bruce and Spencer 1979), and brown trout, Salmo trutta (Kim and Rochford 2008) than 

in non-migratory conspecifics.  In sockeye salmon, Oncorhynchus nerka, [THg] was 

higher in freshwater-reared smolts than in adults returning from the sea to spawn (Baker 

et al. 2009).  In fact, there is a general tendency for marine or estuarine fish to have 

lower mercury concentrations than nearby freshwater fish (Baker et al. 2009; Holsbeek 

et al. 1997; Jewett and Duffy 2007; Kütter et al. 2009; Mason et al. 2006), although the 

opposite trend was found in a survey of 10 freshwater species and 10 marine species 

from a fish market in Hong Kong (Cheung et al. 2008).   

The lower mercury concentrations in marine relative to freshwater fish may be 

due to differential incorporation of Hg at the base of the marine and freshwater 

foodwebs (Mason et al. 1995).  Total mercury concentrations measured in freshwater 

are generally higher than those in seawater (Leopold et al. 2010; Ullrich et al. 2001; and 

references therein), and in the Canadian Arctic and sub-Arctic specifically, [THg] 

observed in lakes (e.g., 0.30 – 1.39 ng/L, Chetelat and Amyot 2009; 1.8 ± 0.8 ng/L, 

Evans et al. 2005b; 0.29 – 0.72 ng/L, Gantner et al. 2010a; 0.56 ± 0.09 to 1.44 ± 0.55 

ng/L, Loseto et al. 2004; 2.66 ± 2.70 ng/L in ponds and 1.11 ± 0.48 ng/L in lakes, St. 
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Louis et al. 2005) were usually higher than concentrations in marine water (0.14 – 0.24 

ng/L, St. Louis et al. 2007; 0.40 ± 0.47 ng/L, Kirk et al. 2008).  Furthermore, it is the 

methylated form of mercury that biomagnifies in aquatic foodwebs (Watras et al. 1998), 

and the proportion of methylated Hg is often higher in freshwater (≈30%) than in 

seawater (typically <5%) (Leopold et al. 2010; Ullrich et al. 2001; and references 

therein), although high percentages of methylated Hg (30 – 40%) have been measured 

in Arctic marine waters at depth or under sea ice (Kirk et al. 2008; St. Louis et al. 2007).   

An alternative explanation for higher [THg] in freshwater fish may be a higher 

rate of mercury biomagnification (quantified as the slope of δ15N versus log [Hg]) 

through freshwater foodwebs (Swanson and Kidd 2010).  However, while 

biomagnification rates vary among lakes (Gantner et al. 2010b; Kidd et al. 1995; Wyn et 

al. 2009), similar rates have been found across diverse aquatic foodwebs, including 

freshwater and marine ecosystems (e.g., Campbell et al. 2005; Chumchal et al. 2011; 

Riget et al. 2007; and references therein).  Furthermore, there is evidence that varying 

biomagnification rates may not predict fish mercury concentrations among lakes 

(Gantner et al. 2010a; Wyn et al. 2009).  

Fish age was the most consistent predictor of [THg] within both anadromous and 

non-anadromous Arctic charr, although significant relationships between age and [THg] 

did not always occur.  In some cases, the lack of a relationship may be related to the 

small sample sizes obtained (n ≤ 10 for anadromous Arctic charr from Heintzelman 

Lake and both life-history types from Rivière de la Trinité).  Our findings agree with 

previous studies that have found age to be a better predictor of [THg] than size in Arctic 

charr (Rognerud et al. 2002; Swanson and Kidd 2010; Swanson et al. 2011a) and other 
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northern fish species (Evans et al. 2005b).  In contrast, size was a better predictor of 

mercury concentration in non-anadromous Lake Hazen Arctic charr, where larger 

individuals were piscivorous and smaller fish were insectivorous (Gantner et al. 2009), 

thus ontogenetic shifts in diet with increasing size can obscure the age versus [THg] 

relationship.  Riget et al. (2000) also found that fish size better predicted [THg] than age 

in non-anadromous Arctic charr populations, but did not investigate differences in 

trophic position.  Relationships between [THg] and fork-length were observed in many 

of the Arctic charr populations examined here, but were not consistent among 

populations, particularly after the effects of age and trophic level or δ15N were removed.  

Similarly, the relationships between [THg] and δ15N or δ13C were variable among 

populations.  Therefore, the relationships between [THg] and fish size or trophic position 

appeared to be population-specific, and influenced by foodweb and/or abiotic 

differences among sampling sites.  In contrast, the trend for higher [THg] with increasing 

fish age was relatively system-independent.   

In most cases the relationships between fish [THg] and δ15N were positive and 

consistent with the expected increase in mercury concentration with trophic level (e.g., 

Cabana and Rasmussen 1994; Kidd et al. 1995).  However, negative relationships 

between [THg] and δ15N and δ13C were observed in two of the anadromous populations.  

The negative trends occurred in areas with extensive estuaries (Rivière de la 

Trinité/Gulf of St. Lawrence and Dry Bay), and may reflect a gradient in the usage of 

freshwater, estuarine, and marine feeding habitats within the studied Arctic charr 

populations.  In estuarine environments, there is a trend for higher δ15N and δ13C values 

and lower [THg] as freshwater influence declines (Attrill et al. 2009; Cossa and 
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Rondeau 1985; Fry and Chumchal 2012).  There were no negative relationships 

between ln [THg] and δ15N or δ13C in any of the non-anadromous populations.  Most 

non-anadromous populations showed no relationship between mercury concentration 

and δ13C, which may reflect the strong reliance on benthic prey (particularly 

chironomids) in Arctic lakes, and little variation in prey carbon source among individual 

Arctic charr (Gantner et al. 2010b).  

While a growth dilution effect cannot be entirely ruled out, it is unlikely that the 

difference in Arctic charr [THg] between the life-history types is caused by differential 

somatic growth rates.  A negative relationship between ln [THg] and fork-length, after 

controlling for the effects of age and trophic level (a measure of average somatic growth 

rate), occurred only when Arctic charr from both life-history types were combined.  The 

lack of a relationship within either the anadromous or non-anadromous fish suggests 

that the apparent dilution effect between life-history types is due to the shift in feeding 

habitat that drives both a reduction in tissue mercury concentration (e.g., due to a lower 

exposure concentration, Mason et al. 2006) and increase in somatic growth rate 

(Rikardsen et al. 2000) in anadromous relative to non-anadromous Arctic charr.  It has 

been previously demonstrated that any effects of differential growth rates can be 

masked when increases in size are associated with a shift in diet (Lepak et al. 2009).  

Similarly, the anadromous populations had higher age-specific length (i.e., average 

somatic growth rate) than all but two of the non-anadromous populations, but even the 

non-anadromous populations with high growth rates (at Coady’s Pond #2, Nain Bay and 

Tasiapik Lake, Dry Bay) did not experience a reduction in mean [THg] relative to the 

other non-anadromous populations (Figure 2.6).  Thus, this work supports the body of 
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literature concluding that somatic growth rate is less important than fish diet and/or 

feeding habitat in predicting fish mercury concentrations (e.g., Essington and Houser 

2003; Henery et al. 2010; Lepak et al. 2009; Verta 1990).  The enhanced growth rates 

of the non-anadromous Arctic charr from Coady’s Pond #2 and Tasiapik Lake may be 

explained by the small size of the two lakes (≤1 km2) and the presence of lake trout, 

which is known to increase the somatic growth rate of sympatric Arctic charr (Fraser 

and Power 1989).   

Across all populations, approximately 54% of the variation in individual [THg] 

could be predicted using only fish biological factors (age, trophic level, and life-history 

type).  The percentage of explained variation increased to 74% when sampling location 

was also included in the model, demonstrating the importance of individual sample site 

characteristics in determining fish [THg].  Fish mercury concentrations have been 

related to physical parameters (e.g., temperature, lake size, catchment area, underlying 

geology), chemical factors (e.g., concentration of dissolved organic carbon, pH, 

alkalinity), and biological considerations such as zooplankton density (Chen and Folt 

2005; Chen et al. 2005; Essington and Houser 2003; Greenfield et al. 2001; Pickhardt et 

al. 2002; Schindler et al. 1995; Watras et al. 1998).  At the base of the foodweb, the 

species composition (Chetelat and Amyot 2009) and concentration of mercury in biota 

(Chumchal et al. 2008) may also critically influence [THg] in fish.   

Considering the abundance of confounding variables among sample sites, it is 

not surprising that a latitudinal trend in fish [THg] was not apparent once the Rivière de 

la Trinité populations were removed from the analysis, despite trends of mercury in lake 

sediments that indicate a decrease in Hg deposition from south to north (Muir et al. 
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2009b; Schindler et al. 1995).  The high mercury concentrations observed in the Rivière 

de la Trinité populations likely reflect greater industrialization and Hg pollution in the St. 

Lawrence River Basin (e.g., Cossa and Gobeil 2000, and references therein), compared 

to the more northern locales.  

 

2.4.1 Summary 

The present study is, to our knowledge, the first wide-scale spatial investigation 

of mercury concentrations in co-located populations of anadromous and non-

anadromous Arctic charr.  Mercury concentrations were usually low; less than 1% of all 

individuals measured exceeded the Health Canada limit for mercury in commercially 

sold fish (500 ng/g), while 0.8% of anadromous and 12.8% of non-anadromous Arctic 

charr exceeded the more conservative guideline for frequent fish consumers (200 ng/g).  

The difference in mercury concentration between anadromous and non-anadromous 

Arctic charr was independent of site latitude, and could not be explained by differential 

fish ages, fork-lengths, or trophic levels.  Therefore, it is reasonable to expect that 

factors relating to the marine versus lacustrine feeding environments, such as Hg 

concentrations in biota at the base of the foodweb (Chumchal et al. 2008; Wyn et al. 

2009) or rates of biomagnification (Swanson and Kidd 2010) are responsible for the 

difference in Arctic charr [THg] with life-history type.  A key finding of the present study 

is that mercury concentrations are determined by fish age rather than fork-length in 

Arctic charr, a species characterized by a long life-span and highly variable length-at-

age (Johnson 1980; Klemetsen et al. 2003).  Therefore, we recommend that fish [THg] 
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be corrected using fish age when comparing concentrations across populations, 

particularly when examining long-lived species.  
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2.5 Tables and Figures 

 

Table 2.1. Details on sample collection sites for anadromous and non-anadromous Arctic charr.  Abbreviations for 

lacustrine fish community members are: AC-A = anadromous Arctic charr (Salvelinus alpinus); AC-N = non-anadromous 

Arctic charr; AE = American eel (Anguilla rostrata); AS = Atlantic salmon (Salmo salar); LC = lake chub (Couesius 

plumbeus); LT = lake trout (Salvelinus namaycush); 3SS = threespine stickleback (Gasterosteus aculeatus); BT = brook 

trout (Salvelinus fontinalis); LS = longnose sucker (Catostomus catostomus); RW = round whitefish (Prosopium 

cylindraceum); 9SS = ninespine stickleback (Pungitius pungitius).  Location abbreviations are defined in Figure 2.1.  

Type Sampling site (location abbreviation) Lake area 
(km2) 

δ15Nbase (n) Base taxon Lacustrine fish community 

Anadromous     
 Rivière de la Trinitéa (TR) - 7.2 ± 0.1 (21)b Mussel - 
 Fraser River, Nain Bay (NB) - 9.0 ± 0.5 (5) Mussel - 
 Okak Bay (OB) - 8.8 ± 0.8 (5) Mussel - 
 Saglek Bay (SB) - 7.9 ± 0.5 (5) Mussel - 
 Nepihjee River, Dry Bay (DB) - 8.5 ± 0.3 (5) Mussel - 
 Frobisher Bay, Iqaluit (IQ) - 8.7 ± 0.2 (5) Barnacle - 
 Iqalugaarjuit Lake, Pangnirtung Fjord (PG) - 10.5 ± 0.4 (5) Clam - 
 Salmon River, Pond Inlet (PI) - 8.6 ± 0.9 (10) Gammarid - 
 Heintzelman Lake (HZ) - NA NA - 
Non-anadromous     
 Rivière de la Trinitéa (TR) 0.9 3.5 ± 0.3 (5) Mussel AC-A, AC-N, AE, AS 
 Coady’s Pond #2 (NB) 1.0 2.8 ± 0.6 (3) Clam AC-N, LC, LT, 3SS 
 Esker Lake (OB) 33.2 5.2 ± 0.6 (4) Chironomid AC-N, LC, LT, BT, LS, RW 
 Upper Nakvak Lake (SB) 5.9 5.1 ± 0.9 (3) Chironomid AC-N 
 Tasiapik Lake (DB) 0.3 4.2 ± 0.5 (18) Snail AC-N, LT, 3SS 
 Crazy Lake (IQ) 4.4 4.0 ± 0.6 (4) Chironomid AC-N 
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Table 2.1. (Continued) 

Type Sampling site (location abbreviation) Lake area 
(km2) 

δ15Nbase (n) Base taxon Lacustrine fish community 

 Iqalugaarjuit Lake (PG) 1.4 NA NA AC-A, AC-N, 3SS 
 unnamed lake (PI) 0.2 2.8 ± 0.4 (4) Chironomid AC-A, AC-N, 9SS 
 Heintzelman Lake (HZ) 10.2 NA NA AC-A, AC-N 
aArctic charr of both life-history types overwinter in Lac Davidson. Marine feeding of anadromous individuals occurs in the 
Gulf of St. Lawrence, and non-anadromous fish were caught prior to making their first marine feeding foray (e.g., Doucett 
et al. 1999). The fish community and lake area are given for Lac Davidson.  
bCollected in the Gulf of St. Lawrence, from Lavoie et al. (2010) 
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Table 2.2. Summary data for Arctic charr from the paired sampling sites.  Sampling locations are listed in order of 

increasing latitude, using abbreviations defined in Figure 2.1.  Means ± 1 standard deviation are given for the anadromous 

(A) and non-anadromous (N) populations at each location.  Significant differences between the two life-history types at a 

given location are indicated as: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  

Location Age (years) Fork-length (mm) Trophic level THg concentration (ng/g ww) 
 A N A N A N A N 
TR 4.8 ± 0.8 5.3 ± 0.5 275 ± 39 192 ± 7*** 3.4 ± 0. 2 3.6 ± 0.1 114 ± 54 220 ± 25*** 
NB 7.3 ± 2.0 5.6 ± 3.0* 363 ± 88 316 ± 124 3.7 ± 0. 1 3.2 ± 0.1*** 22 ± 8 120 ± 42*** 
OB 7.9 ± 2.4 10.7 ± 5.4* 430 ± 98 278 ± 106*** 3.4 ± 0.3 2.8 ± 0.3*** 47 ± 27 111 ± 179** 
SB 8.2 ± 3.6 11.7 ± 6.7 390 ± 94 287 ± 166* 3.8 ± 0 .2 3.3 ± 0.3*** 20 ± 11 126 ± 124*** 
DB 5.6 ± 1.5 5.9 ± 3.6 416 ± 108 296 ± 165** 3.6 ± 0.2 4.1 ± 0.2*** 38 ± 16 111 ± 50*** 
IQ 10.6 ± 2.3 7.3 ± 5.2*** 517 ± 48 176 ± 100*** 3. 7 ± 0.3 3.3 ± 0.3*** 35 ± 9 112 ± 160*** 
PG 12.1 ± 1.8 6.5 ± 2.5*** 588 ± 72 188 ± 30*** 3.1  ± 0.2 NA 50 ± 21 118 ± 53*** 
PI 13.9 ± 2.8 10.3 ± 8.0 644 ± 92 254 ± 151*** 3.7 ± 0.2 3.8 ± 0.2 60 ± 21 227 ± 109*** 
HZ 9.4 ± 2.8 12.5 ± 5.1 284 ± 64 212 ± 63** NA NA 64 ± 16 117 ± 51** 
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Table 2.3. Pearson’s correlation coefficients for within-population ln [THg] versus age, fork-length, δ15N, or δ13C.  

Sampling locations are ordered by increasing latitude, using abbreviations defined in Figure 2.1.  Significance of the 

correlation is indicated as: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

Type Location n ln [THg] 
age 

ln [THg] 
fork-length 

ln [THg] 
δ15N 

ln [THg] 
δ13C 

Anadromous     
 TR 10 -0.30 -0.44 -0.84** -0.69* 
 NB 20 0.60** 0.28 0.25 0.44 
 OB 20 0.80*** 0.26 0.35 0.59** 
 SB 22 0.89*** 0.75*** 0.73*** 0.69*** 
 DB 33 0.20 0.00 -0.35* -0.36* 
 IQ 30 0.58*** 0.44* -0.07 0.06 
 PG 40 0.52** -0.25 0.49** 0.34* 
 PI 70 0.47*** 0.46*** 0.36** 0.39** 
 HZ 7 0.65 -0.75 -0.07 0.01 
Non-anadromous     
 TR 10 0.10 -0.16 0.54 -0.23 
 NB 20 0.69*** 0.68*** 0.34 0.55* 
 OB 20 0.74*** 0.52* 0.63** -0.11 
 SB 20 0.95*** 0.88*** 0.72*** 0.15 
 DB 31 0.25 0.22 0.10 -0.07 
 IQ 47 0.84*** 0.93*** 0.86*** -0.09 
 PG 19 0.68** 0.57* 0.29 0.17 
 PI 18 0.60** 0.50* 0.43 0.17 
 HZ 112 0.70*** 0.60*** 0.40*** 0.09 
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Table 2.4. Pearson’s partial correlation coefficients for within-population ln [THg] versus age or fork-length when 

controlling for other factors.  Sampling locations are ordered by increasing latitude, using abbreviations defined in Figure 

2.1.  Significance of the correlation is indicated as: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.  

Type Location n ln [THg] age, 
given fork-
length 

ln [THg] fork-
length, given 
age 

ln [THg] age, 
given fork-
length and δ15N 

ln [THg] fork-
length, given 
age and δ15N 

Anadromous     
 TR 10 -0.22 -0.40 -0.24 -0.32 
 NB 20 0.61** -0.29 0.60** -0.32 
 OB 20 0.90*** -0.69*** 0.89*** -0.70*** 
 SB 22 0.72*** 0.04 0.60** 0.04 
 DB 33 0.39* -0.34* 0.19 0.02 
 IQ 30 0.44* 0.11 0.46** 0.32 
 PG 40 0.52*** -0.26 0.49** -0.35* 
 PI 70 0.19 0.21 0.25* 0.14 
 HZ 7 0.54 -0.67 0.60 -0.58 
Non-anadromous     
 TR 10 0.12 -0.17 0.02 -0.10 
 NB 20 0.19 0.10 0.04 0.25 
 OB 20 0.77*** -0.59** 0.72*** -0.60** 
 SB 20 0.74*** -0.05 0.74*** -0.07 
 DB 31 0.19 -0.10 0.19 -0.10 
 IQ 47 0.13 0.75*** 0.19 0.57*** 
 PG 19 0.47* 0.04 0.50* 0.05 
 PI 18 0.40 -0.15 0.47* -0.30 
 HZ 112 0.55*** 0.36*** 0.36*** 0.52*** 
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Table 2.5. Pearson’s partial correlation coefficients between ln [THg] and age or fork-length when controlling for other 

factors.  Arctic charr of a given life-history type were pooled across all sampling locations.  Significance of the correlation 

is indicated as: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

 Anadromous Non-
anadromous 

Both life-history 
types 

n (n with trophic level data) 252 (244) 297 (166) 549 (410) 
ln [THg] age, given fork-length 0.33*** 0.37*** 0.55*** 
ln [THg] fork-length, given age -0.08 0.30*** -0.49*** 
ln [THg] age, given fork-length and trophic level 0.28*** 0.39*** 0.53*** 
ln [THg] fork-length, given age and trophic level -0.01 0.06 -0.50*** 
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Table 2.6. Results for fixed effect factors from the linear mixed models to explain ln [THg] using individual age, trophic 

level, and site latitude within the two life-history types, given the random effect of sampling site.  Type = anadromous (A) 

or non-anadromous (N).   

Type n (sample 
sites) 

Source Coefficient 
estimate 

Standard 
error 

F-value p 

A 236 (8) Intercept 5.51 1.87 422.59 < 0.001 
  Age 0.09 0.02 19.61 < 0.001 
  Trophic level 0.02 0.10 0.11 0.75 
  Latitude -0.05 0.03 2.27 0.13 
N 165 (7) Intercept 2.74 1.48 1163.12 < 0.001 
  Age 0.06 0.01 34.75 < 0.001 
  Trophic level 0.70 0.13 26.69 < 0.001 
  Latitude -0.02 0.02 0.40 0.56 
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Figure 2.1. Map of north eastern Canada indicating the nine locations of Arctic charr 

collection.  Location abbreviations used in Tables 2.1 – 2.4 are given in parentheses.   
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Figure 2.2. Latitude (decimal degrees) versus mean [THg] (ng/g ww) for Arctic charr 

from anadromous (solid circles) and non-anadromous (open circles) populations. Error 

bars represent one standard error of the mean.  
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Figure 2.3. Age (years) versus ln [THg] (ng/g ww) for Arctic charr from 9 paired 

sampling sites.  Sampling locations are ordered by increasing latitude (left to right then 

top to bottom).  Data points represent individual fish from anadromous populations 

(closed circles) and non-anadromous populations (open circles).  Lines indicate 

significant linear regressions in anadromous (solid line) and non-anadromous (dashed 

line) populations.   
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Figure 2.4. Fork-length (mm) versus ln [THg] (ng/g ww) for Arctic charr from 9 paired 

sampling sites.  Sampling locations are ordered by increasing latitude (left to right then 

top to bottom).  Data points represent individual fish from anadromous populations 

(closed circles) and non-anadromous populations (open circles).  Lines indicate 

significant linear regressions in anadromous (solid line) and non-anadromous (dashed 

line) populations.   
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Figure 2.5. Trophic level versus ln [THg] (ng/g ww) for Arctic charr from 8 sampling 

locations.  Locations are ordered by increasing latitude (left to right then top to bottom).  

Data points represent individual fish from anadromous populations (closed circles) and 

non-anadromous populations (open circles).  Lines indicate significant linear 

regressions in anadromous (solid line) and non-anadromous (dashed line) populations.  

Trophic level could not be calculated in three populations due to lack of suitable δ15Nbase 

values (Table 2.1).  
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Figure 2.6. Age-adjusted ln fork-length (mm) versus age-adjusted ln [THg] (ng/g ww) for 

Arctic charr from the anadromous (closed circles) and non-anadromous (open circles) 

populations.  All [THg] and fork-lengths were adjusted to a standard age of 9 years; 

error bars represent 95% confidence intervals of the estimates.  Location abbreviations 

are defined in Figure 2.1.  Age-standardized ln [THg] and fork-length were not 

calculated for the Rivière de la Trinité populations (see text).   
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Chapter 3 

Basal mercury concentrations and biomagnification r ates in freshwater and 

marine foodwebs: effects on Arctic charr ( Salvelinus alpinus) from eastern 

Canada 

 

3.1 Introduction 

Mercury contamination presents a continuing threat to the health of Arctic 

ecosystems and inhabitants (Dietz et al. 2011; Stow et al. 2011).  Mercury is 

transported to the Arctic and other remote regions primarily via long-range atmospheric 

transport (Munthe et al. 2011), and originates from both natural (e.g., volcanic activity) 

and anthropogenic (e.g., mining and metal production, fossil fuel burning) sources 

(AMAP/UNEP 2008; Munthe et al. 2011; Pacyna et al. 2010).  Atmospheric mercury 

enters Arctic aquatic environments through precipitation or deposition onto ice and 

snow (Douglas et al. 2011; Munthe et al. 2011).  Additional sources of mercury to the 

Arctic Ocean include inflows from the Atlantic and Pacific Oceans, coastal erosion, and 

inputs from rivers (Munthe et al. 2011), while watershed inputs such as snowmelt runoff 

and erosion of thawed soils are important for lakes (Douglas et al. 2011).  Once in the 

aquatic environment, inorganic mercury can be transformed into methylmercury 

(MeHg), primarily by sulphate-reducing bacteria in anoxic water and sediments (Barkay 

and Poulain 2007; Morel et al. 1998; Ullrich et al. 2001).  Mercury, particularly MeHg, is 

well known to bioaccumulate in organisms and biomagnifiy in aquatic foodwebs 

(Douglas et al. 2011; Mason et al. 1995; Morel et al. 1998; Watras et al. 1998).   

Methylmercury is considered the most toxic form of mercury, causing 

reproductive deficiencies and behavioural changes in wildlife (Scheulhammer et al. 
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2007), and developmental neurotoxicity and cardiovascular effects in humans (Mergler 

et al. 2007).  The proportion of mercury in the methylated form (%MeHg) increases with 

trophic level in aquatic foodwebs (Douglas et al. 2011), from <1 – 12.2% in lacustrine 

primary producers (Bowles et al. 2001; Gantner et al. 2010a) to ≈10 – 80% in marine 

and lacustrine zooplankton (Back et al. 2003; Campbell et al. 2005; Gantner et al. 

2010a; Lavoie et al. 2010; Loseto et al. 2008; Swanson et al. 2011a) and to ≈80 – 100% 

(often >90%) in muscle tissue of most marine and freshwater fish (Bloom 1992; 

Chumchal et al. 2011; Gantner et al. 2010a; Jæger et al. 2009; Lasorsa and Allen-Gil 

1995; Loseto et al. 2008; Riget et al. 2007; Wyn et al. 2009).  Thus, the foodweb 

biomagnification rate of MeHg is often higher than that of total Hg (e.g., Lavoie et al. 

2010; Riget et al. 2007).   

While direct uptake from water is an important source of Hg to organisms at the 

base of aquatic foodwebs (Morel et al. 1998), the vast majority of mercury in organisms 

at higher trophic levels (e.g., fish) is obtained through consumed food (Hall et al. 1997).  

Therefore, stable isotope ratio methods commonly used in ecological studies to 

characterize trophic relationships (e.g., Guiguer et al. 2002; Grey et al. 2002; Swanson 

et al. 2003) are potentially useful for examining the trophic transfer of mercury, as they 

reflect the long-term assimilated diet of a consumer (Peterson and Fry 1987).  Stable 

isotope methods have been used to quantify the rate of biomagnification across trophic 

levels (Borgå et al. 2012; Jardine et al. 2006), with previous studies having found that 

mercury is positively related to δ15N-inferred trophic level, and that the observed 

biomagnification rate (the slope of the relationship between mercury concentration and 

δ15N or trophic level) is relatively consistent among diverse aquatic foodwebs (e.g., 



 51 

Campbell et al. 2005; Chumchal et al. 2011; Riget et al. 2007; and references therein).  

However, Swanson and Kidd (2010) found that MeHg biomagnification rates in 

freshwater foodwebs were significantly higher than in a nearby marine foodweb.  Thus, 

differences in mercury concentrations between common taxa functioning in different 

foodwebs are likely related to differing biomagnification rates and/or mercury 

concentrations at the base of the foodweb (Chumchal et al. 2008; Mason et al. 2006; 

Wyn et al. 2009).   

Within the Arctic, one key species known to function in a diverse range of aquatic 

habitats and foodwebs (Power et al. 2008) is Arctic charr (Salvelinus alpinus).  Arctic 

charr have been internationally used as a sentinel species to evaluate spatial and 

temporal trends in mercury contamination (AMAP 2005; Douglas et al. 2011), are an 

important food resource for northern people (Evans et al. 2005a; Van Oostdam et al. 

2005), and are vulnerable to changing climate (Reist et al. 2006).  Arctic charr are found 

throughout the Arctic, and have a distribution that extends farther north than that of any 

other freshwater fish (Johnson 1980; Power et al. 2008).  Where access to the sea 

exists, anadromous Arctic charr migrate to the nearshore marine environment for brief 

periods of intensive summer feeding, and return to freshwater to spawn and overwinter 

(Johnson 1980).  Anadromy is not obligate, and populations of landlocked and lake-

resident (i.e., have access to the sea but do not migrate) Arctic charr are common 

(Johnson 1980; Klemetsen et al. 2003), with the prevalence of anadromy declining 

toward the northern and southern limits of the species’ distribution (Power et al. 2008).  

Differences in Arctic charr life-history strategy have been related to total mercury 

concentration ([THg]), with lower measured [THg] in anadromous than non-anadromous 
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fish (Bruce and Spencer 1979; Lockhart et al. 2005; Riget et al. 2000; Swanson et al. 

2011a).  Within-population differences in [THg] of anadromous and non-anadromous 

Arctic charr have been positively related to fish age, size, and trophic level (Gantner et 

al. 2010b, 2009; Muir et al. 2005; Riget et al. 2000; Rognerud et al. 2002; see also 

Chapter 2), although the significance and strength of the associations vary markedly by 

population.   

Here we use data from six spatially-paired marine and lacustrine foodwebs along 

a latitudinal gradient in eastern Canada to examine mercury accumulation patterns in 

feeding habitats important for Arctic charr.  Specifically, we test the following 

hypotheses: [1] biomagnification rates (quantified using the slope of mercury 

concentration versus δ15N-inferred trophic level) are lower in marine foodwebs than in 

spatially-proximate lacustrine foodwebs; [2] mercury concentrations at the base of the 

foodweb are lower in the marine than in the lacustrine feeding habitats; [3] the 

proportion of methylated mercury increases with trophic level, therefore biomagnification 

rates are higher for MeHg than THg, and the trend is similar in both feeding habitats 

used by Arctic charr; and [4] the differences between the lacustrine and marine feeding 

habitats are consistent across a range of latitudes (56 – 72°N) in eastern sub-Arctic and 

Arctic Canada.   

 

3.2 Methods 

3.2.1 Sample collection 

Six sampling locales were chosen from a range of latitudes in the eastern 

Canadian Arctic and sub-Arctic (Figure 3.1) on the basis of accessibility and the 
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presence of both anadromous and non-anadromous Arctic charr.  At each locale, 

spatially proximate nearshore marine and lacustrine foodwebs were sampled.  Arctic 

charr (anadromous or non-anadromous) were obtained from each foodweb, and 

represented the top trophic level at each sample site (i.e., higher trophic level organisms 

were not targeted in the present study).  Anadromous Arctic charr were included as part 

of the marine foodweb, because migratory Arctic charr feed primarily in, and were 

typically sampled from, the marine environment.  Furthermore, the dietary contribution 

from lacustrine or riverine prey resources is minimal after the onset of anadromy 

(Johnson 1980; Rikardsen et al. 2003; Swanson et al. 2011b).  In instances where 

putative anadromous fish were obtained late in the season from freshwater, 

anadromous status was confirmed using sulphur stable isotopes following methods 

outlined in Doucett et al. (1999).  Sampling was conducted in conjunction with Fisheries 

and Oceans Canada and the Northern Contaminants Program, in cooperation with local 

Inuit Hunters and Trappers Organizations (HTOs).   

In the lacustrine environment, Arctic charr were captured using multi-mesh nylon 

multifilament sinking gillnets (Johnson 1983) set perpendicular from shore for a period 

of ≥4 hours, usually overnight.  Juvenile Arctic charr, threespine stickleback 

(Gasterosteus aculeatus), and ninespine stickleback (Pungitius pungitius) were 

obtained using small, un-baited fyke nets set near shore or with dipnets.  Benthic 

invertebrates (e.g., chironomids, trichoptera larvae, amphipods, gastropods) were 

collected from sediments using dipnets and a kick-sweep method at 0.5 – 1 m depth, or 

were removed from rocks and pools in the littoral zone.  Zooplankton were sampled by 

surface tows using a 65 or 125 µm zooplankton net.  Filamentous algae and/or 
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periphyton were collected by hand from the water surface or from rocks in the littoral 

zone.  Additional samples including terrestrial insects, benthic invertebrates, and 

stickleback were opportunistically sampled from Arctic charr stomach contents.   

Anadromous Arctic charr were either captured in the nearshore marine 

environment using a combination of angling and 114 to 140 mm mesh gillnets, or were 

purchased from local subsistence fishers who used similar sampling gear (at Iqaluit and 

Pond Inlet).  Anadromous individuals from Dry Bay were collected while migrating 

upriver in a counting fence fyke trap set in the Nepihjee River fishway.  Additional fish 

species captured from marine sampling sites included: blennies (Blennioidei sp.), 

capelin (Mallotus villosus), gunnels (Pholis fasciata, P. gunnellus), ninespine 

stickleback, polar cod (Boreogadus saida), sandlance (Ammodytes sp.), sculpin 

(Myoxocephalus sp.), and threespine stickleback.  Forage fish were collected along the 

shore using dipnets, or were opportunistically sampled from Arctic charr stomachs.  

Invertebrates including mussels (Mytilus edulis), barnacles (Balanus sp.), and 

gastropods (Littorina sp.) were removed from rocks in the intertidal zone.  Gammarid 

amphipods were collected from pools in the intertidal zone.  Arctic charr stomachs 

yielded additional invertebrate samples (e.g., hyperiid amphipods, mysids).  

Zooplankton were obtained by surface tows using a 65 or 125 µm zooplankton net.  

Marine algae including Fucus sp., kelp, filamentous algae, and others (e.g., Ulva sp.) 

were collected from rocky intertidal areas, or from fragments washed up on shore.   

Previous studies have identified fish stomach contents as a useful source of prey 

items for stable isotope (Grey et al. 2002; Peterson 1999; Tieszen et al. 1983) and 

mercury analyses (e.g., Lepak et al. 2009; Ward et al. 2010).  To minimize the impact of 
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digestion on prey samples obtained from fish stomachs, only intact dietary items 

obtained directly from the esophagus or upper stomach with no evidence of digestion 

were used (Guelinckx et al. 2008).  All samples from stomachs were rinsed in deionized 

water prior to analysis to ensure minimal influence of digestive tract materials on 

completed analyses.   

 

3.2.2 Sample processing and analysis 

All samples of forage fish, invertebrates, and algae were frozen in the field and 

transported to the laboratory.  Arctic charr were either processed in the field 

immediately after capture, or were frozen whole and transported to the laboratory.  

Fork-length (mm) and whole weight (g) were measured for each Arctic charr specimen, 

and sagittal otoliths were removed for fish aging.  Further details regarding the Arctic 

charr populations used in this study can be found in Chapter 2.   

Tissue types used for stable isotope and mercury analyses were as follows: for 

Arctic charr and larger forage fish, dorsal muscle tissue was excised from the left side of 

the fish posterior to the dorsal fin and dorsal to the lateral line.  For small forage fish 

(stickleback and sculpin < 5 cm total length), the head, fins, and viscera were removed 

and the remainder of the body (primarily muscle tissue) was used for analysis.  Whole 

bodies of invertebrates were used (snails, mussels, and barnacles were first removed 

from shells).  Algae samples were rinsed in deionized water and cleaned of debris prior 

to analysis.  

All stable isotope analyses were conducted at the Environmental Isotope 

Laboratory at the University of Waterloo, Waterloo, Canada, following methods 
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described in Chapter 2.  Small invertebrates (e.g., chironomid larvae, cladocera) were 

pooled to obtain sufficient mass for analysis (≈0.1 – 0.5 g wet weight), while larger 

invertebrates and fish were measured individually.  Stable isotope ratios of carbon 

(δ13C) and nitrogen (δ15N) were quantified in a total of 847 samples.  Sample sizes for 

each taxon are given for lacustrine and marine sampling sites in Tables 3.1 and 3.2, 

respectively.  

Total Hg concentrations were measured on a Milestone Direct Mercury Analyzer, 

DMA-80 (Milestone S.r.l., Sorisole, Italy) via thermal decomposition and atomic 

absorption spectroscopy as described in U.S. EPA method 7473 (U.S. Environmental 

Protection Agency 2007).  Total mercury concentrations were measured using 0.1 – 0.2 

g of frozen, non-homogenized tissue for individual fish.  Invertebrates were pooled to 

obtain samples of ≈1 – 2 g wet weight.  All algae and invertebrate samples were 

lyophilized and then homogenized using an acid-washed glass mortar and pestle.  A 

sample of 0.05 – 0.1 g of dried tissue was used for THg analysis.  Blanks and standard 

reference materials were run at the beginning and end of each batch of 20 – 30 

samples, and one sample per batch was run in triplicate.  The standard reference 

materials used and percent recoveries (mean percentage of certified value ± standard 

deviation) were: NIST 2976 (96.7 ± 5.1) from the National Institute of Standards and 

Technology (Standard Reference Materials Program, Gaithersburg, USA), DORM-3 

(108.9 ± 12.2), and DORM-1 (99.7 ± 6.2) from the National Research Council Canada 

(Institute for National Measurement Standards, Ottawa, Canada).  The method 

detection limit (3x the standard deviation of blanks) was 0.34 ng Hg, and the mean 

relative standard deviation of triplicates was 4.4%.  Total mercury concentrations were 
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directly measured in a total of 554 samples, and were calculated as MeHg + Hg (II) in a 

further 125 samples from mercury speciation analysis.  Sample sizes for lacustrine and 

marine taxa are given in Tables 3.1 and 3.2, respectively.   

All samples for mercury speciation analysis were freeze dried and then 

homogenized using an acid-washed glass mortar and pestle.  Arctic charr were 

analyzed individually, while invertebrates and forage fish were pooled to obtain the 

required mass (≈1 – 2 g wet weight) for analysis.  Samples were weighed (±0.1 mg) 

before and after lyophilization and the percent moisture was calculated for each sample 

to permit interconversion of wet weight (ww) and dry weight (dw) concentrations of THg 

and MeHg (Tables 3.1 and 3.2).  Concentrations of MeHg and inorganic Hg (II) were 

measured at Quicksilver Scientific (Lafayette, CO, USA).  Quality control measures 

included matrix spikes and certified reference materials.  The limit of detection (LOD) 

and limit of quantification (LOQ) were LOD = 0.20 ng/g, LOQ = 0.50 ng/g Hg for both 

MeHg and Hg (II) in algae and invertebrate samples, and LOD = 1.33 ng/g, LOQ = 3.33 

ng/g Hg for both MeHg and Hg (II) in fish samples.  Where Hg (II) concentrations were 

below the limit of quantification or limit of detection (n = 16 samples), half of the 

LOQ/LOD value was used in order to calculate total mercury concentration.  No 

samples had MeHg concentrations below the LOQ or LOD values.  MeHg concentration 

was estimated for 554 samples (most were Arctic charr, n = 341) that had measured 

[THg] values, using the relevant mean %MeHg for the taxon (e.g., non-anadromous 

Arctic charr = 99.0 ± 0.7%).  In the case where %MeHg was not measured for a taxon 

(e.g., marine calanoids), the %MeHg from a similar taxon was used (e.g., marine mixed 

zooplankton = 7.5 ± 4.3%).  Mercury speciation analysis was conducted on a total of 
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125 samples.  Sample sizes for lacustrine and marine taxa are given, respectively, in 

Tables 3.1 and 3.2.   

 

3.2.3 Data analysis 

To compare the trophic positions of organisms from different sampling sites, 

mean δ15N values of primary consumers were used to assess baseline values (δ15Nbase) 

for each site (Tables 3.1 and 3.2).  Trophic level (TL) was calculated using site-specific 

δ15Nbase following (Post 2002): 

Trophic level sample = 2 + (δ15N sample – δ15N base) / 3.4 

While the trophic fractionation of δ15N is variable (e.g., -2.1 to +5.4‰, McCutchan 

et al. 2003; -0.7 to +9.2‰, Vander Zanden and Rasmussen 2001; -1.16 to +5.89‰, 

Vanderklift and Ponsard 2003), the average value of 3.4‰ provides a reasonable 

approximation of trophic fractionation when averaged across multiple trophic levels 

(Post 2002), particularly when a primary consumer is used for the baseline value 

(Vander Zanden and Rasmussen 2001).   

For each marine and lacustrine foodweb, the trophic magnification factor (TMF) 

of THg and MeHg was calculated following Borgå et al. (2012) and Jardine et al. (2006) 

as: 

TMF = 10b 

where the exponent b is the estimated slope coefficient obtained from the regression: 

log10 [Hg] = a + b*(TL – 1).  All trophic level data were subtracted by one in order to set 

the intercept of the regression line to the first trophic level (i.e., the presumed base of 
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the foodweb).  The basal mercury concentration of each foodweb was estimated as 10a 

where a represents the estimated intercept of the relationship.  

Because invertebrate specimens were too small to conduct mercury and stable 

isotope analyses on the same individual, means of pooled composite samples were 

used for lower trophic level organisms.  Individual values were used for fish following 

recommendations by Borgå et al. (2012) and to remain consistent with other studies 

that used individual values for fish (e.g., Gantner et al. 2010a; Swanson and Kidd 2010).  

In order to facilitate comparisons with studies that used different statistical approaches 

(e.g., Campbell et al. 2005; Riget et al. 2007; and references therein), results for the 

slope of mercury concentration versus δ15N are also provided, and were calculated 

using wet weight as well as dry weight mercury concentrations.  To evaluate the 

potential bias associated with using individual values for fish and mean composite 

values for invertebrates, slopes of δ15N versus log [THg] and log [MeHg] were also 

calculated using mean values for all taxa.   

To determine whether the biomagnification rate of MeHg exceeded that of THg, a 

general linear model (ANCOVA) was used to assess the statistical significance of a 

difference in the slopes of the trophic level versus log [THg] and trophic level versus log 

[MeHg] relationships for all sampling sites.  Linear mixed models were further used to 

explain log [THg] or [MeHg] as a function of trophic level, habitat type (lacustrine or 

marine), and the interaction between trophic level and habitat type, with sampling site 

included as a random-effect factor.  The effect of trophic level on the percentage of 

mercury in the methylated form was evaluated using the non-linear logistic model of 

growth towards an asymptote: 
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Percent MeHg = 100 / (1 + e(β1 + β2*TL)) 

where the asymptote was set to 100%, β1 represents the %MeHg when trophic level 

equals zero (i.e., the estimated intercept of the relationship), and β2 reflects the rate at 

which %MeHg approaches the asymptote as a function of trophic level.   

All statistical analyses were conducted using the R program for statistical 

computing (R Development Core Team 2009) with Type I error set to α = 0.05.  Prior to 

inclusion in regression analysis, THg and MeHg concentrations were log10 transformed 

to ensure an approximately normal data distribution.  Compliance with all required 

statistical model assumptions was verified using diagnostic plots (e.g., normal Q-Q and 

fitted values versus residuals).   

 

3.3 Results 

Concentrations of total mercury in individual samples spanned 4 orders of 

magnitude, from 4 ng/g dw in Fucus sp. from Nain Bay to 4293 ng/g dw in a single non-

anadromous Arctic charr from Crazy Lake.  Mercury concentrations were lowest in 

algae and zooplankton, and increased with trophic level to maximum values in Arctic 

charr and other fish species (Tables 3.1 and 3.2).  Measured [MeHg] ranged from 0.4 

ng/g dw in Fucus sp. from Nain Bay and kelp from Saglek Bay to 1028 ng/g dw in 

ninespine stickleback from an unnamed lake near Pond Inlet.  The percentage of 

methylated mercury ranged from a low of 3% in Kelp from Saglek Bay to >99% 

observed in individual Arctic charr, polar cod, sandlance, and sculpin from a variety of 

locations.  Percent MeHg also increased with trophic level.  Minimal values were 

observed in algae and zooplankton, and most fish species had >90% MeHg (Tables 3.1 
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and 3.2).  The measured %MeHg in all Arctic charr exceeded 95%, with means ± 

standard deviation of 99 ± 0.7% in non-anadromous (n = 10 fish from 2 sites) and 98 ± 

1.3% in anadromous (n = 10 fish from 2 sites) individuals.  

Where taxa were collected in both feeding habitats, lake-dwelling organisms had 

higher mercury concentrations than those captured in the marine environment (when 

data were pooled across all sampling locations, not necessarily from matched sampling 

sites).  The trend was evident in Arctic charr (pooled mean [THg] ± standard deviation: 

lacustrine = 546 ± 548; marine = 182 ± 96 ng/g dw), algae (lacustrine = 91 ± 74; marine 

= 53 ± 15 ng/g dw), gammarid amphipods (lacustrine = 76 ± 12; marine = 39 ± 18 ng/g 

dw), zooplankton (lacustrine = 286 ± 294; marine = 20 ± 16 ng/g dw), snails (lacustrine 

= 84; marine = 45 ± 0.05 ng/g dw), ninespine stickleback (lacustrine = 915 ± 260; 

marine = 206 ± 116 ng/g dw), and threespine stickleback (lacustrine = 474 ± 216; 

marine = 179 ± 80 ng/g dw).  At each sampling location, non-anadromous Arctic charr 

had significantly higher mean [THg] than anadromous conspecifics (two-sample t-tests; 

all p < 0.01).   

Log-transformed [THg] and [MeHg] were both significantly positively related to 

trophic level in each lacustrine and marine foodweb examined (Tables 3.3 and 3.4, 

Figures 3.2 and 3.3).  Trophic magnification factors (TMFs) averaged 3.18 in lacustrine 

and 2.25 in marine foodwebs for THg (dw), and were not significantly different between 

the two feeding habitats (Welch two sample t-test; t = 1.8, d.f. = 7.1, p = 0.11).  For 

methylmercury (dw), TMFs averaged 4.70 in lacustrine and 3.98 in marine foodwebs, 

and did not differ significantly between the two feeding habitats (Welch two sample t-

test; t = 0.9, d.f. = 9.9, p = 0.40).  Slopes of log [Hg] versus δ15N averaged 0.14 in 



 62 

lacustrine and 0.10 in marine foodwebs for THg (dw), and 0.19 in lacustrine and 0.17 in 

marine foodwebs for MeHg (dw).  When calculated using wet weight concentrations, 

slopes of log [Hg] versus δ15N increased to average 0.18 and 0.12 for THg in lacustrine 

and marine foodwebs, and 0.23 and 0.19 for MeHg in lacustrine and marine foodwebs.  

When slopes of log [Hg] versus δ15N were calculated using mean values for all taxa, 

there was no consistent difference in lacustrine foodwebs (mean slope = 0.14) and a 

slight increase in marine foodwebs (mean slope = 0.11) for THg (dw), while slopes for 

MeHg (dw) increased to average 0.21 in lacustrine and 0.22 in marine foodwebs.  

Estimated basal [THg] values ranged from 17 to 139 ng/g dw in lacustrine sites and 

from 8 to 39 ng/g dw in marine sites.  Estimated basal [MeHg] values ranged from 5 to 

42 ng/g dw in lacustrine and from 1 to 11 ng/g dw in marine sites.  

When the data from all lacustrine sites were considered together, the slope of the 

trophic level versus log [MeHg] (dw) relationship (linear regression slope = 0.48, 95% 

confidence interval = 0.41 – 0.55) was significantly greater (ANCOVA; p = 0.009) than 

the slope of the relationship with [THg] (dw) (slope = 0.35, 95% confidence interval = 

0.29 – 0.41).  The same pattern occurred when the data from all marine sites were 

considered; the slope of the relationship between trophic level and [MeHg] (dw) (slope = 

0.59, 95% confidence interval = 0.54 – 0.64) was significantly greater (ANCOVA; p < 

0.001) than the slope of trophic level versus [THg] (dw) (slope = 0.35, 95% confidence 

interval = 0.30 – 0.39).  

The linear mixed models used to explain log [THg] or log [MeHg] as a function of 

trophic level and habitat type indicated that trophic level was an important determinant 

of taxon [THg] or [MeHg], and that mercury concentrations at the base of the foodweb 
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were higher in the lacustrine than marine habitats for both total and methylmercury 

(Table 3.5, Figures 3.4 and 3.5).  There was no significant interaction between habitat 

type and trophic level for either THg or MeHg, signifying that there was no consistent 

difference in the rates of [THg] and [MeHg] biomagnification between the two habitat 

types.  Linear mixed model analysis conducted including site latitude as an additional 

covariate indicated no effect of site latitude on log [THg] (F1, 512 = 1.20, p = 0.27), or log 

[MeHg] (F1, 512 = 0.13, p = 0.72), therefore the latitude term was removed from both 

models.  For both [THg] and [MeHg], models that included the random effects of sample 

site on the intercept and slope provided a significantly better fit to the data than models 

without the random effects (likelihood ratio tests; all p < 0.001), indicating that the slope 

and intercept of the log [THg] or [MeHg] versus trophic level relationships varied 

significantly among sampling sites (see also Figures 3.4 and 3.5).  The estimated [THg] 

at the base of the foodweb was 37 ng/g dw for lacustrine and 17 ng/g dw for marine 

sites, with TMFs of 2.92 and 2.19 in the lacustrine and marine environments, 

respectively.  The estimated [MeHg] at the base of the foodweb was 14 ng/g dw for 

lacustrine and 4 ng/g dw for marine sites, with TMFs of 4.35 and 3.82 in the lacustrine 

and marine environments, respectively.   

Non-linear logistic models indicated that the percentage of mercury as 

methylmercury was significantly related to trophic level in both marine and lacustrine 

taxa (Figure 3.6).  When a model containing separate β1 and β2 parameters for marine 

and lacustrine taxa was compared with the common-parameter model (i.e., data from 

both habitat types considered together), the separate parameter model did not provide a 

significantly better fit to the data (nested model ANOVA; F = 0.90, p = 0.41).  Therefore, 
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there was insufficient evidence to detect a difference in the trophic level versus percent 

MeHg relationships between the two habitat types, and the common-parameter model 

was accepted (Table 3.6).  

 

3.4 Discussion 

No evidence was found to support the hypothesis that biomagnification rates in 

lacustrine foodwebs are consistently higher than those in spatially proximate marine 

foodwebs located in the eastern Canadian Arctic and sub-Arctic.  At a given trophic 

level, lacustrine biota had higher [THg] and [MeHg] than marine foodweb items, and the 

hypothesis that mercury concentrations at the base of the foodweb are higher in the 

lacustrine environment was supported.  Both lacustrine and marine taxa demonstrated a 

non-linear trend of increasing percent MeHg with trophic level, and biomagnification 

rates of MeHg exceeded that of THg in both habitat types.  There was no effect of site 

latitude on mercury concentrations in marine or lacustrine biota, thus the difference 

between feeding habitats was consistent across a range of latitudes (56 – 72°N) in 

eastern Canada.   

The mean mercury concentrations observed in anadromous and non-

anadromous Arctic charr are consistent with previously reported values (e.g., Evans et 

al. 2005a; Riget et al. 2000; Swanson et al. 2011a; see Chapter 2 for a more detailed 

comparison).  Observed [THg] and [MeHg] in other lacustrine biota were similar to or 

higher than previously reported values for lakes in the Canadian Arctic and sub-Arctic 

(Gantner et al. 2010a; Power et al. 2002; Swanson and Kidd 2010).  Observed total and 

methylmercury concentrations in marine biota were usually similar to or lower than 



 65 

previously reported values in Arctic marine foodwebs (Atwell et al. 1998; Campbell et al. 

2005; Loseto et al. 2008; Nfon et al. 2009; Riget et al. 2007).   

In the present study, mercury biomagnification rates in the lacustrine foodwebs 

did not significantly exceed rates in the marine foodwebs.  The finding is consistent with 

previous indications that the slope of the [Hg] versus δ15N or trophic level relationship is 

relatively consistent among diverse aquatic habitats (Campbell et al. 2005; Chumchal et 

al. 2011; Riget et al. 2007).  In contrast, Swanson and Kidd (2010) found that MeHg 

biomagnification rates in freshwater foodwebs (slopes of log [MeHg] versus δ15N = 0.16 

– 0.26) were significantly higher than in a nearby marine foodweb (slope = 0.08).  In the 

lacustrine feeding habitat, slopes of δ15N versus [Hg] calculated here were 0.09 – 0.21 

for THg and 0.14 – 0.24 for MeHg, and are comparable to previously reported values for 

lakes in Canada including (for total Hg) 0.192 for Stewart Lake, northern Quebec 

(Power et al. 2002), 0.17 – 0.29 for lakes with five to eight fish species in north-western 

Ontario (Kidd et al. 1995), and (for MeHg) 0.16 – 0.26 for the West Kitikmeot region, 

Nunavut (Swanson and Kidd 2010), and 0.18 – 0.23 for lakes in Nova Scotia (Wyn et al. 

2009).  Observed lacustrine trophic magnification factors (TMFs) were 1.98 – 5.19 

(THg) and 3.02 – 6.69 (MeHg), which are on the low end of the range of TMFs 

calculated for a series of lakes across the Canadian Arctic (3.6 – 64.3 for MeHg in 

muscle tissue/whole homogenates of fish and invertebrates; Gantner et al. 2010a).   

In the marine feeding environment, calculated slopes of δ15N versus [Hg] were 

0.06 – 0.13 for THg and 0.13 – 0.22 for MeHg, which were usually lower than previously 

reported slopes for northern marine foodwebs including 0.232 – 0.255 for THg and 

0.254 – 0.311 for MeHg in the Beaufort Sea (Loseto et al. 2008), 0.197 for THg and 
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0.223 for MeHg in the Northwater Polynya, Baffin Bay (Campbell et al. 2005), 0.183 for 

THg and 0.339 for MeHg in western Greenland (using the natural logarithm of [Hg]; 

Riget et al. 2007), 0.134 for THg and 0.201 for MeHg in the Gulf of St. Lawrence, 

Canada (Lavoie et al. 2010), 0.2 for THg in Lancaster Sound, Nunavut (Atwell et al. 

1998), and 0.08 for MeHg in Melville Sound, Nunavut (Swanson and Kidd 2010).  

However, it should be noted that the previously mentioned studies (with the exception of 

Swanson and Kidd 2010) included birds and/or mammals in the examined foodwebs.  

The inclusion of homeotherms is known to increase the contaminant biomagnification 

rate in the foodweb (Fisk et al. 2001; Hop et al. 2002), and it is not surprising that these 

studies found higher biomagnification rates than those that examined only invertebrates 

and fish (this study and Swanson and Kidd 2010).  Similarly, the TMFs calculated for 

our marine foodwebs (1.59 – 2.82 for THg) were lower than that calculated using 

seabirds and fish from Svalbard (4.87 for THg in muscle, Jaeger et al. 2009).   

Foodweb biomagnification rates calculated using wet weight mercury 

concentrations exceed those calculated using dry weight concentrations, presumably 

because moisture content is variable, and is generally highest in invertebrates (Tables 

3.1 and 3.2).  Lavoie et al. (2010) also determined higher biomagnification rates for 

MeHg and THg using wet weight concentrations in the Gulf of St. Lawrence, as did 

Riget et al. (2007) in Davis Strait, west Greenland.  When biomagnification rates were 

investigated using means for all species (as opposed to individual values for fish), the 

slopes of δ15N versus [Hg] were relatively unaffected for total mercury, but increased for 

methylmercury.  This is likely because of the high %MeHg observed in all fish species 

(usually >90%), and because of the high number of fish samples relative to non-fish 
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samples from our study sites.  Because of the potential bias in the calculated 

slopes/TMFs (particularly with MeHg) induced by using individual values for fish and 

pooled composite values for invertebrates, it is recommended that the models 

presented herein not be extrapolated to higher trophic levels beyond Arctic charr.  

Pooling all values for Arctic charr would also be inappropriate, as the species frequently 

occupies more than one trophic level.  Cannibalism is common in Arctic charr (Johnson 

1980; Klemetsen et al. 2003), and had the effect of lengthening the food chain in some 

cases (e.g., Crazy Lake), a phenomenon also noted in Gantner et al. (2010a).  

The similar biomagnification rates and difference in basal mercury concentrations 

we observed between the two habitats suggest that mercury concentrations in upper 

trophic level aquatic organisms are ultimately determined by mercury uptake rates at 

the base of the foodweb (Chumchal et al. 2008; Loseto et al. 2008; Mason et al. 1995; 

Wyn et al. 2009).  Our conclusion, that basal [Hg] in the lacustrine environment exceeds 

that in the marine environment, is corroborated by reported mercury concentrations in 

northern lacustrine zooplankton (e.g., 2 – 26 ng/g ww THg, 50 – 660 ng/g dw THg and 

25 – 483 ng/g dw MeHg, this study; 30 – 297 ng/g dw THg and 10 – 269 ng/g dw MeHg, 

Chetelat and Amyot 2009; 60 ± 40 ng/g dw THg and 20 ± 30 ng/g dw MeHg, Gantner et 

al. 2010a; 1 – 56 ng/g dw MeHg, Swanson et al. 2011a; 33 – 206 ng/g dw THg, Watras 

et al. 1998; 90 – 230 ng/g dw MeHg, Wyn et al. 2009) that usually exceed 

concentrations in northern marine zooplankton (e.g., 1 – 3 ng/g ww THg, 6 – 33 ng/g dw 

THg and 1 – 3 ng/g dw MeHg, this study; 6 ± 5 ng/g ww THg, Nfon et al. 2009; 6 ± 2 

ng/g ww THg, Campbell et al. 2005; 35 ± 5 ng/g dw THg and 10 ± 1 ng/g dw MeHg, 

Loseto et al. 2008; 13 – 65 ng/g dw THg and 3 – 6 ng/g dw MeHg, Lavoie et al. 2010).   
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Higher basal [Hg] in freshwater foodwebs may be explained by enhanced 

bioavailability of mercury at low pH and low salinity, which are conditions typically found 

in freshwaters relative to seawater (Barkay et al. 1997; Morel et al. 1998; Ullrich et al. 

2001).  Furthermore, the uptake of MeHg by single-celled organisms is greater than that 

of inorganic Hg (Pickhardt and Fisher 2007), and mercury methylation is favoured by 

warm water temperature and relatively low sulphate concentration, as found in lakes 

relative to the marine environment (Ullrich et al. 2001).  Accordingly, the proportion of 

methylated Hg is often higher in freshwater (≈30%) than in seawater (typically <5%) 

(Leopold et al. 2010; Ullrich et al. 2001; and references therein), although high 

percentages of methylated Hg (30 – 40%) have been measured in Arctic marine waters 

at depth or under sea ice (Kirk et al. 2008; St. Louis et al. 2007).  Finally, total mercury 

concentrations measured in freshwater are generally higher than those in seawater 

(Leopold et al. 2010; Ullrich et al. 2001; and references therein), and in the Canadian 

Arctic and sub-Arctic specifically, [THg] observed in lakes (e.g., 0.30 – 1.39 ng/L, 

Chetelat and Amyot 2009; 1.8 ± 0.8 ng/L, Evans et al. 2005b; 0.29 – 0.72 ng/L, Gantner 

et al. 2010b; 0.56 ± 0.09 to 1.44 ± 0.55 ng/L, Loseto et al. 2004; 2.66 ± 2.70 ng/L in 

ponds and 1.11 ± 0.48 ng/L in lakes, St. Louis et al. 2005) were usually higher than 

concentrations reported for marine water (0.14 – 0.24 ng/L, St. Louis et al. 2007; 0.40 ± 

0.47 ng/L, Kirk et al. 2008).  The higher mercury concentrations in lakes relative to 

marine water may reflect watershed-related inputs of inorganic or methylmercury, such 

as surface runoff from melting snow or contributions from wetlands (Hammerschmidt et 

al. 2006; Loseto et al. 2004; Semkin et al. 2005).  
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The trend for the proportion of MeHg to increase with trophic level has been 

previously observed, although the present study is, to our knowledge, the first to 

explicitly model the relationship and test for differences among aquatic habitat types 

(lacustrine and marine).  One novel finding of the present study is that the increase in 

%MeHg with trophic level was statistically similar in lacustrine and marine foodwebs.  

Percent MeHg increases with trophic level because MeHg is more efficiently transferred 

from prey to predator than total Hg (Mason et al. 1995; Morel et al. 1998), which also 

caused the biomagnification rate of MeHg to exceed that of THg in both feeding 

habitats.  Our results suggest that the relative trophic transfer efficiencies of total and 

methylmercury are unaffected by the biotic and abiotic factors that differ between the 

lacustrine and marine feeding habitats (e.g., mercury concentrations in biota, water 

chemistry, species composition, etc.).   

There was no effect of site latitude on [THg] or [MeHg] in marine or lacustrine 

biota, and the difference in [THg] of upper trophic level consumers (Arctic charr) 

between the two feeding habitats was independent of latitude (49 – 81° N) in eastern 

Canada (Chapter 2).  This finding agrees with results presented in Gantner et al. 

(2010b), but contrasts with evidence from lake sediment cores suggesting a pattern of 

decreasing mercury deposition from south to north in North America (Muir et al. 2009b; 

Schindler et al. 1995).  Furthermore, mercury methylation and uptake by biota increase 

with water temperature, productivity, and nutrient availability (Chetelat and Amyot 2009; 

St. Louis et al. 2005; Ullrich et al. 2001), which covary with latitude.  Together these 

results suggest that large-scale abiotic factors such as temperature and mercury 
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deposition rates are not as important as site-specific chemical, physical, and/or 

biological factors in determining [Hg] in biota (Chetelat et al. 2008; Rose et al. 1999).   

 

3.4.1 Summary 

To our knowledge, the present study is the first wide-scale spatial investigation of 

mercury biomagnification in co-located pairs of lacustrine and marine foodwebs 

supporting a common predator (Arctic charr).  We conclude that the difference in 

mercury concentration between anadromous and non-anadromous Arctic charr is not 

driven by differential biomagnification rates in lacustrine and marine foodwebs, a 

conclusion corroborated by evidence that differences in fish mercury concentrations 

among lakes may not be related to within-lake biomagnification rates (Wyn et al. 2009; 

Gantner et al. 2010b).  Rather, a difference in prey mercury concentration, driven by 

differential mercury concentrations at of the base of the lacustrine and marine 

foodwebs, is important for explaining the difference in mercury concentration between 

anadromous and non-anadromous in Arctic charr.  Indeed, results from the present 

study may be extended to explain the general tendency for marine or anadromous fish 

to have lower mercury concentrations than nearby freshwater fish.  There was no effect 

of site latitude on mercury concentrations in marine or lacustrine biota, suggesting that 

individual site characteristics are more important than wide-scale regional differences in 

determining [Hg] in biota.  Therefore, our results imply that spatial extrapolation (i.e., 

from site to site) will suffer from errors, and that more, not less, monitoring is needed.   
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3.5 Tables and Figures  

 

Table 3.1. Summary of samples obtained from lacustrine sampling sites.  Sample sites are ordered by increasing latitude, 

with location abbreviations, as defined in Figure 3.1, following in parentheses.  Stable isotope and mercury data are 

presented as mean ± standard error when n ≥ 3 and as individual values when n < 3, trophic level and percent moisture 

(% H2O) are given as means only.  Within sites, taxa are ordered by increasing δ15N/trophic level.  Sample sizes are 

provided in parentheses for stable isotope analysis, THg analysis, and MeHg analysis.  NA = not analyzed.  

Site Taxon δ13C (‰) δ15N (‰) Trophic  
level 

[THg]  
(ng/g dw) 

Percent 
MeHg 

% H2O 

Coady’s Pond #2 (NB)          
 Algae -17.1 ± 0.5 0.7 ± 0.7 1.4 (3) 24 (1) 8 (1) 65 
 Cladocera -26.8 ± 0.4 1.2 ± 0.1 1.5 (3) 324 ± 59 (3) NA  93 
 Clams (Sphaeriidae)a -24.3 ± 0.2 2.8 ± 0.4 2.0 (3) NA  NA  NA 
 Trichoptera -22.4 ± 0.4 3.2 ± 0.1 2.1 (4) 115 ± 10 (3) 75, 76  (2) 83 
 Diptera larvae -24.4 ± 0.1 3.5 ± 0.2 2.2 (3) 388 (1) 77 (1) 88 
 Coleoptera -24.8 ± 0.9 4.6 ± 0.2 2.5 (6) 180 (1) 97 (1) 70 
 Arctic charr -21.1 ± 0.3 6.9 ± 0.1 3.2 (20) 503 ± 41 (20) 99 ± 0.3 (5) 76 
 Threespine stickleback -20.7 ± 0.6 7.0 ± 0.5 3.3 (3) 512, 1007 (2) NA  NA 
Esker Lake (OB)          
 Trichoptera -24.4 ± 0.9 2.0 ± 0.3 1.1 (3) 16, 25 (2) 54, 57  (2) 65 
 Chironimidsa -28.2 ± 0.4 5.2 ± 0.3 2.0 (4) 162, 184 (2) 82, 86 (2) 89 
 Terrestrial insectsb -26.7, -26.2 3.9, 6.8 2.0 (2) 98 ± 15 (3) 63, 73 (2) 91 
 Arctic charr -24.0 ± 0.4 7.8 ± 0.2 2.8 (24) 555 ± 168 (24) NA  NA 
Upper Nakvak Lake (SB)          
 Terrestrial insectsb -22.1 ± 0.9 4.5 ± 0.2 1.8 (3) 103, 106 (2) 68, 70 (2) 92 
 Chironimidsa -20.2 ± 0.7 5.1 ± 0.5 2.0 (3) 183, 248 (2) 63, 74 (2) 89 
 Arctic charr -19.2 ± 0.3 9.2 ± 0.2 3.2 (22) 492 ± 114 (22) NA  NA 
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Table 3.1. (Continued) 

Site Taxon δ13C (‰) δ15N (‰) Trophic  
level 

[THg]  
(ng/g dw) 

Percent 
MeHg 

% H2O 

Tasiapik Lake (DB)          
 Algae -16.0 ± 0.5 2.2 ± 0.7 1.4 (18) 27 ± 2 (3) 13 (1) 89 
 Gastropodsa -22.4 ± 0.5 4.2 ± 0.1 2.0 (18) 85 (1) NA  68 
 Gammarid amphipods -21.1 ± 0.2 4.3 ± 0.2 2.0 (27) 76 ± 7 (3) 90, 91 (2) 87 
 Coleoptera -25.7 ± 1.9 5.6 ± 0.4 2.4 (3) 200 (1) 97  (1) 81 
 Trichoptera -23.3 ± 0.4 6.3 ± 0.1 2.6 (22) 85, 143 (2) 76, 87 (2) 80 
 Zooplankton -26.0 ± 0.3 7.7 ± 0.5 3.0 (15) 47, 54 (2) 47 (1) 96 
 Cladocera -29.6 ± 0.1 8.1 ± 1.3 3.1 (3) 211 ± 17 (3) NA  96 
 Threespine stickleback -24.9 ± 0.3 10.1 ± 0.1 3.7 (25) 364 ± 31 (7) 98, 99 (2) 75 
 Arctic charr -23.9 ± 0.3 11.2 ± 0.1 4.1 (31) 462 ± 37 (31) NA  NA 
Crazy Lake (IQ)          
 Algae -29.4, -29.6 1.1, 1.5 1.2 (2)  31, 32 (2) 15 (1) 88 
 Zooplankton -29.3, -29.5 3.4, 3.5 1.9 (2) 139, 156 (2) 22 (1) 95 
 Chironimidsa -17.8 ± 1.1 4.0 ± 0.3 2.0 (4) 232 (1) 61 (1) 89 
 Trichoptera -17.3 5.0 2.3 (1) 60 (1) 59 (1) 76 
 Arctic charr -19.3 ± 0.3 8.5 ± 0.2 3.3 (47) 467 ± 97 (47) NA  NA 
unnamed lake (PI)          
 Algae -23.1 ± 1.4 0.0 ± 0.8 1.2 (6) 166 ± 21 (6) 34 (1) 89 
 Chironomidsa -23.5 ± 0.2 2.8 ± 0.2 2.0 (4) NA  NA  NA 
 Trichoptera -29.6 ± 0.4 3.5 ± 0.2 2.2 (6) 156 ± 124 (4) 24, 32 (2) 78 
 Zooplankton -31.0 ± 0.4 3.6 ± 0.5 2.2 (5) 642, 680 (2) 71 (1) 96 
 Ninespine stickleback -27.5 ± 0.4 8.3 ± 0.2 3.6 (16) 959 ± 56 (22) 97 ± 1 (3) 78 
 Arctic charr -25.8 ± 0.2 8.8 ± 0.2 3.8 (18) 1003 ± 108 (18) 99 ± 0.3 (5) 79 
aTaxon used to assign δ15Nbase 
bIncludes Diptera, Hymenoptera, and Hemiptera 
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Table 3.2. Summary of samples obtained from marine sampling sites.  Sample sites are ordered by increasing latitude, 

with location abbreviations, as defined in Figure 3.1, following in parentheses.  Stable isotope and mercury data are 

presented as mean ± standard error when n ≥ 3 and as individual values when n < 3, trophic level and percent moisture 

(% H2O) are given as means only.  Within sites, taxa are ordered by increasing δ15N/trophic level.  Sample sizes are 

provided in parentheses for stable isotope analysis, THg analysis, and MeHg analysis.  NA = not analyzed. 

Site Taxon δ13C (‰) δ15N (‰) Trophic  
level 

[THg]  
(ng/g dw) 

Percent 
MeHg 

% H2O 

Nain Bay (NB)          
 Algae (Fucus sp.) -15.9 ± 0.5 6.4 ± 0.4 1.2 (4) 7 ± 1 (4) 10 (1) 70 
 Mysids -18.2 ± 0.1 8.6 ± 0.2 1.9 (3) 16 (1) 79 (1) 65 
 Musselsa -20.8 ± 0.1 9.0 ± 0.2 2.0 (5) 83 (1) 42 (1) 87 
 Gammarid amphipods -16.8 ± 0.1 9.5 ± 0.2 2.2 (4) 16, 17 (2) 78, 83 (2) 70 
 Hyperiid amphipods -20.6 ± 0.3 9.7 ± 0.2 2.2 (3) 22 (1) NA  83 
 Sculpin -20.2 ± 0.2 10.9 ± 0.2 2.6 (5) 27 ± 2 (14)  84 ± 4 (3) 80 
 Sandlance -21.3 ± 0.3 12.2 ± 0.1 2.9 (5) 28 ± 3 (6) 97 (1) 74 
 Blennies -19.3 ± 0.6 12.9 ± 0.2 3.2 (5) 136 ± 8 (5) NA  93 
 Capelin -20.6 ± 0.1 13.3 ± 0.2 3.3 (4) 67 ± 11 (5)  99 (1) 77 
 Arctic charr -19.1 ± 0.2 14.8 ± 0.1 3.7 (20) 89 ± 7 (20) 98 ± 1 (5) 75 
Okak Bay (OB)          
 Algae (Fucus sp.) -14.9 ± 0.4 3.8 ± 0.3 0.5 (3) 8 ± 1 (3) 19 (1) 74 
 Gammarid amphipods -17.5 ± 0.5 8.1 ± 0.7 1.8 (5) 46 ± 17 (3) 81 ± 9 (3) 84 
 Mysids -16.5 ± 0.0 8.3 ± 0.2 1.9 (3) 40, 221 (2) 85, 98 (2) 86 
 Musselsa -19.5 ± 0.4 8.8 ± 0.3 2.0 (5) 121, 134 (2) 54, 57 (2) 88 
 Sculpin -19.9 ± 0.1 11.2 ± 0.2 2.7 (5) 37 ± 3 (6) 88 (1) 79 
 Sandlance -19.8 ± 0.5 11.6 ± 0.1 2.8 (5) 57 ± 15 (6) 94 ± 4 (3) 72 
 Threespine stickleback -16.5 ± 0.7 12.8 ± 0.7 3.2 (5) 179 ± 33 (6) 95 (1) NA 
 Arctic charr -18.6 ± 0.2 13.7 ± 0.3 3.4 (20) 193 ± 25 (20) NA  NA 
Saglek Bay (SB)          
 Algae (Fucus sp.) -10.6, -10.4 4.0, 4.6 1.0 (2) 10 (1) 10 (1) 68 
 Algae (filamentous) -20.1, -16.2 4.4, 5.1 1.1 (2) 34 (1) 13 (1) 88 
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Table 3.2. (Continued) 

Site Taxon δ13C (‰) δ15N (‰) Trophic  
level 

[THg]  
(ng/g dw) 

Percent 
MeHg 

% H2O 

 Algae (kelp) -17.0, -16.3 5.3, 5.4 1.3 (2) 17, 17 (2) 3 (1) 81 
 Gammarid amphipods -17.3 ± 0.2 7.7 ± 0.1 2.0 (3) 41 ± 2 (3) 69 ± 6 (3) 81 
 Hyperiid amphipods -22.8 ± 0.3 7.9 ± 0.5 2.0 (3) 27, 30 (2) NA  88 
 Musselsa -19.9 ± 0.3 7.9 ± 0.2 2.0 (5) 70 (1) 61 (1) 77 
 Mysids -17.6 ± 0.9 8.6 ± 0.2 2.2 (4) 38 (1) 82 (1) 88 
 Isopods -19.0, -15.6 10.1, 11.6 2.9 (2) 21 (1) NA  71 
 Gunnels -20.0 ± 0.1 11.3 ± 0.2 3.0 (5) 35 ± 4 (5) NA  75 
 Sculpin -18.9 ± 0.2 11.8 ± 0.3 3.2 (5) 134 ± 55 (12) 94 ± 3 (3) 76 
 Ninespine stickleback -16.5 ± 1.0 12.2 ± 0.3 3.3 (5) 206 ± 44 (7) NA  NA 
 Decapod -15.1 13.3 3.6 (1) 29 (1) NA  75 
 Arctic charr -19.9 ± 0.1 14.0 ± 0.1 3.8 (22) 83 ± 10 (22) NA  NA 
Dry Bay (DB)          
 Algae (Fucus sp.) -17.7 ± 0.3 4.6 ± 0.1 0.9 (5) 22, 27 (2) 30 (1) 80 
 Algae (kelp) -18.1 ± 0.2 4.7 ± 0.4 0.9 (5) 31, 37 (2) 17 (1) 92 
 Algae (filamentous) -14.5 ± 0.1 5.5 ± 0.2 1.1 (3) 51, 57 (2) 30 (1) 93 
 Gammarid amphipods -17.2 ± 0.2 8.2 ± 0.2 1.9 (6) 49 ± 13 (3) 68 ± 17 (3) 84 
 Musselsa -20.5 ± 0.2 8.5 ± 0.1 2.0 (5) 176 ± 22 (6) 54, 60 (2) 77 
 Plankton -20.3, -20.2 7.6, 10.5 2.2 (2) 31, 35 (2) 11 (1) 90 
 Sandlance -19.6 ± 0.2 11.8 ± 0.3 3.0 (3) 50 ± 7 (7) 95 (1) 73 
 Sculpin -17.5 12.7 3.2 (1) 211 (1) NA  NA 
 Arctic charr -19.7 ± 0.1 13.8 ± 0.1 3.6 (33) 158 ± 12 (33) NA  NA 
Iqaluit (IQ)          
 Plankton -22.5 ± 0.2 7.0 ± 0.3 1.5 (7) 5, 7 (2) 5 (1) NA 
 Algae (Fucus sp.) -16.6 ± 0.6 7.1 ± 0.4 1.5 (6) 7 ± 1 (3) 22 (1) 81 
 Algae (kelp) -17.7 ± 0.9 7.8 ± 0.3 1.7 (3) 9 ± 0.1 (3) 5 (1) 87 
 Barnaclesa -21.6 ± 0.2 8.7 ± 0.1 2.0 (5) 18 ± 1 (3) 41, 42 (2) 78 
 Decapod -22.5, -21.3 7.9, 10.9 2.2 (2) 54 (1) NA  86 
 Gastropods -15.8 ± 0.1 9.8 ± 0.2 2.3 (5) 45, 45 (2) NA  82 
 Hyperiid amphipods -21.6 ± 0.3 10.1 ± 0.2 2.4 (3) 45, 51 (2) NA  86 
 Gammarid amphipods -17.4 ± 0.1 10.3 ± 0.2 2.5 (10) 30 ± 0.4 (5) 78 ± 1 (3) 82 
 Mysids -21.4 ± 0.2 11.0 ± 0.1 2.7 (3) 67 (1) 92 (1) 90 
 Polar cod -19.9 ± 0.1 14.5 ± 0.1 3.7 (20) 114 ± 6 (23) 99 ± 0.1 (3) 81 
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Table 3.2. (Continued) 

Site Taxon δ13C (‰) δ15N (‰) Trophic  
level 

[THg]  
(ng/g dw) 

Percent 
MeHg 

% H2O 

 Arctic charr -19.0 ± 0.2 14.5 ± 0.2 3.7 (30) 144 ± 7 (30) NA  NA 
Pond Inlet (PI)          
 Algae (Fucus sp.) -19.4 ± 1.2 6.0 ± 0.2 1.2 (3) 15 (1) 7 (1) 79 
 Algae (other) -19.5 ± 0.4 6.7 ± 0.4 1.4 (6) 10, 13 (2) NA  85 
 Algae (kelp) -18.9 ± 1.3 7.1 ± 0.2 1.6 (3) 16 (1) 4 (1) 85 
 Algae (filamentous) -21.8, -21.4 7.2, 8.2 1.7 (2) 69 (1) 38 (1) 91 
 Calanoids -26.3 ± 0.2 8.2 ± 0.2 1.9 (3) 154 (1) NA  93 
 Gammarid amphipodsa -21.4 ± 0.4 8.6 ± 0.3 2.0 (10) 41 ± 6 (4) 66 ± 10 (3) 81 
 Mysids -24.0 ± 0.3 9.4 ± 0.1 2.2 (3) 50, 53 (2) 91, 91 (2) 91 
 Hyperiid amphipods -24.4 ± 0.6 9.5 ± 0.6 2.3 (3) 58 ± 1 (3) NA  90 
 Sandlance -21.8 ± 0.1 12.5 ± 0.1 3.2 (25) 153 ± 15 (28) 98 ± 1 (3) 76 
 Polar cod -21.3 ± 0.1 13.6 ± 0.2 3.5 (16) 201 ± 20 (17) 98 ± 0.3 (3) 81 
 Arctic charr -21.1 ± 0.1 14.2 ± 0.1 3.7 (74) 247 ± 11 (74) 98 ± 0.3 (5) 74 
aTaxon used to assign δ15Nbase 
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Table 3.3. Relationships between log [THg] (ng/g) and δ15N or trophic level within each marine and lacustrine foodweb. 

Sample sites are ordered by increasing latitude, with location abbreviations following in parentheses.  All regressions were 

significant (all p < 0.001).  

  log10 [THg] (ng/g) versus δ15N log10 [THg] (ng/g dw) versus trophic level 
 Sample site (location) Slope 

(dw) 
R2 Slope 

(ww) 
R2 Intercepta Slope 10slope 

(TMF) 
R2 

Lacustrine foodwebs         
 Coady's Pond #2 (NB) 0.13 0.55 0.15 0.79 1.74 0.43 2.68 0.55 
 Esker Lake (OB) 0.21 0.60 0.22 0.61 1.30 0.72 5.19 0.60 
 Upper Nakvak Lake (SB) 0.15 0.42 0.21 0.62 1.39 0.52 3.33 0.43 
 Tasiapik Lake (DB) 0.11 0.67 0.14 0.60 1.48 0.37 2.37 0.70 
 Crazy Lake (IQ) 0.16 0.62 0.20 0.79 1.24 0.55 3.55 0.64 
 unnamed lake (PI) 0.09 0.50 0.14 0.75 2.14 0.30 1.98 0.50 
Marine foodwebs         
 Nain Bay (NB) 0.11 0.53 0.11 0.73 0.95 0.37 2.35 0.53 
 Okak Bay (OB) 0.11 0.50 0.12 0.61 1.31 0.37 2.33 0.50 
 Saglek Bay (SB) 0.06 0.26 0.07 0.36 1.36 0.20 1.59 0.26 
 Dry Bay (DB) 0.06 0.44 0.10 0.60 1.59 0.22 1.65 0.44 
 Iqaluit (IQ) 0.13 0.75 0.16 0.76 0.90 0.44 2.77 0.75 
 Pond Inlet (PI) 0.13 0.67 0.16 0.77 1.16 0.45 2.82 0.67 
aAt trophic level = 1 
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Table 3.4. Relationships between log [MeHg] (ng/g) and δ15N or trophic level within each marine and lacustrine foodweb. 

Sample sites are ordered by increasing latitude, with location abbreviations following in parentheses.  All regressions were 

significant (all p < 0.001).  

  log10 [MeHg] (ng/g) versus δ15N log10 [MeHg] (ng/g dw) versus trophic level 
 Sample site (location) Slope 

(dw) 
R2 Slope 

(ww) 
R2 Intercepta Slope 10slope 

(TMF) 
R2 

Lacustrine foodwebs         
 Coady's Pond #2 (NB) 0.22 0.64 0.24 0.81 1.06 0.73 5.42 0.64 
 Esker Lake (OB) 0.24 0.66 0.26 0.66 1.10 0.83 6.69 0.66 
 Upper Nakvak Lake (SB) 0.18 0.51 0.23 0.68 1.22 0.60 3.94 0.51 
 Tasiapik Lake (DB) 0.15 0.68 0.19 0.61 1.02 0.52 3.32 0.68 
 Crazy Lake (IQ) 0.22 0.80 0.26 0.86 0.72 0.76 5.79 0.81 
 unnamed lake (PI) 0.14 0.66 0.19 0.84 1.63 0.48 3.02 0.66 
Marine foodwebs         
 Nain Bay (NB) 0.16 0.65 0.17 0.81 0.47 0.56 3.63 0.66 
 Okak Bay (OB) 0.15 0.62 0.16 0.70 0.98 0.50 3.19 0.62 
 Saglek Bay (SB) 0.14 0.53 0.16 0.60 0.59 0.49 3.09 0.53 
 Dry Bay (DB) 0.13 0.63 0.16 0.68 1.03 0.43 2.72 0.63 
 Iqaluit (IQ) 0.22 0.73 0.24 0.74 0.07 0.75 5.57 0.73 
 Pond Inlet (PI) 0.22 0.79 0.25 0.82 0.37 0.76 5.70 0.79 
aAt trophic level = 1 
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Table 3.5. Results for fixed effect factors from the linear mixed models used to explain log [THg] or log [MeHg] using 

trophic level, habitat type, and the interaction between trophic level and habitat type, given the random effect of sampling 

site (n = 12 sites).  Habitat type = lacustrine (L) or marine (M).  

Response n Source Coefficient 
estimate 

Standard 
error 

F-value p 

log [THg] 
(ng/g dw) 

527 Intercepta L: 1.57 
M: 1.22 

L: 0.12 
M: 0.17 

1664.60 < 0.001 

  Trophic level L: 0.47 
M: 0.34 

L: 0.05 
M: 0.07 

128.50 < 0.001 

  Habitat type   31.03 < 0.001 
  Trophic level x habitat   3.18 0.075 
log [MeHg] 
(ng/g dw) 

527 Intercepta L: 1.14 
M: 0.59 

L: 0.15 
M: 0.20 

1067.59 < 0.001 

  Trophic level L: 0.64 
M: 0.58 

L: 0.06 
M: 0.08 

224.18 < 0.001 

  Habitat type   28.48 < 0.001 
  Trophic level x habitat   0.46 0.497 
aAt trophic level = 1 
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Table 3.6. Results for the non-linear logistic model explaining percent MeHg as a function of trophic level. The model was 

fitted using data from both the lacustrine and marine habitat types.  

Parameter Estimate Standard error t-value p Lower CI Upper CI 
β1 4.46 0.60 7.38 < 0.001 3.26 5.66 
β2 -2.43 0.31 -7.86 < 0.001 -3.04 -1.81 
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Figure 3.1. Map of north-eastern Canada indicating the six locales of marine and 

freshwater foodweb sampling.  Location abbreviations are given in parentheses.   
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Figure 3.2. Trophic level versus log [Hg] (ng/g dw) for each lacustrine foodweb.  Points 

represent [THg] (circles) and [MeHg] (+) of individual fish or invertebrate taxa.  

Significant linear regressions are indicated for [THg] (solid line) and [MeHg] (dashed 

line).  Sample sites are ordered by increasing latitude, with location abbreviations 

following in parentheses.  
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Figure 3.3. Trophic level versus log [Hg] (ng/g dw) for each marine foodweb.  Points 

represent [THg] (circles) and [MeHg] (+) of individual fish or invertebrate taxa.  

Significant linear regressions are indicated for [THg] (solid line) and [MeHg] (dashed 

line).  Sample sites are ordered by increasing latitude, with location abbreviations 

following in parentheses.  
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Figure 3.4. Trophic level versus log [THg] (ng/g dw) relationships for each of six 

lacustrine (dashed lines) and six marine (solid lines) foodwebs.  Regression lines are 

identified using location abbreviations, located at the beginning or end of each line.  To 

improve clarity of the display, individual data points are not plotted.  
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Figure 3.5. Trophic level versus log [MeHg] (ng/g dw) relationships for each of six 

lacustrine (dashed lines) and six marine (solid lines) foodwebs.  Regression lines are 

identified using location abbreviations, located at the beginning or end of each line.  To 

improve clarity of the display, individual data points are not plotted.  
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Figure 3.6. Trophic level versus percent MeHg for taxa from marine (solid circles) and 

lacustrine (open circles) foodwebs.  The non-linear logistic model was estimated using 

data from both habitats.  
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Chapter 4 

Conclusions and future research directions  

 

That mercury in consumed fish poses a threat to human health has been known 

for over 50 years (McAlpine and Araki 1958), and mercury concentrations in fishes from 

the Canadian Arctic, and Arctic charr in particular, have been measured since the 1970s 

(Lockhart et al. 2005).  Previous investigations of [THg] in Arctic charr have often been 

based on small sample sizes, and targeted large fish of potential interest to human 

consumers (e.g., Evans et al. 2005a; Evans and Muir 2010; Lockhart et al. 2005; Muir et 

al. 2009; Muir et al. 2005; Riget et al. 2000).  Such studies provide valuable information 

concerning spatial and temporal variations in mercury concentrations, and are vital in 

predicting human health risks from fish consumption.  Relatively less is known about the 

biological factors driving differences in [THg] among individual Arctic charr, although 

recent studies are beginning to fill that information gap (e.g., Gantner et al. 2010a,b, 

2009; Swanson et al. 2011).  Nevertheless, there remains a paucity of information 

explaining spatial patterns in, and mechanisms responsible for, differences in [THg] 

between anadromous and non-anadromous Arctic charr, which this M.Sc. project was 

designed to address.   

This study represents the first wide-scale spatial comparison of mercury 

concentrations and associated biological variables (age, fork-length, and trophic 

position) between anadromous and non-anadromous Arctic charr.  At each of nine 

sampling locations, anadromous Arctic charr had significantly lower mercury 

concentrations than spatially-proximate non-anadromous conspecifics, which is 
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consistent with previous observations (Bruce and Spencer 1979; Lockhart et al. 2005; 

Riget et al. 2000; Swanson et al. 2011).  However, anadromous Arctic charr also tended 

to be larger, and usually fed at a higher trophic level, than non-anadromous 

conspecifics, and both factors have been associated with higher [THg] in Arctic charr 

(e.g., Gantner et al. 2009).  Thus, our results indicate that feeding habitat (lacustrine or 

marine) is more important than size or fork-length in determining fish mercury 

concentration.  While the prevalence of anadromy in Arctic charr is related to latitude 

(Power et al. 2008), the difference in [THg] observed between the two life-history types 

was independent of latitude across 49 – 81° N in eastern Canada.   

A key finding of the present study is that within-population [THg] is determined 

primarily by fish age in both anadromous and non-anadromous Arctic charr, a species 

characterized by a long life-span and highly variable length-at-age (Johnson 1980; 

Klemetsen et al. 2003).  Individual trophic position was strongly related to fish [THg] in 

some populations, particularly where Arctic charr occupied more than one trophic level 

(e.g., due to cannibalism in large individuals from Crazy Lake).  However, δ15N-inferred 

trophic position did not consistently predict fish [THg], particularly in anadromous 

populations.  Results presented herein suggest that individual fork-length is not directly 

related to fish mercury concentration.  Rather, mercury concentrations were determined 

by age and, in some populations, trophic position, which both covary with fork-length.  

Similarly, differences in somatic growth rate may be correlated to differences in fish 

[THg], but the occurrence of a relationship does not imply causation, particularly where 

differences in somatic growth rate are associated with differences in diet (e.g., a switch 

to feeding in the marine environment).   
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Thus, it is concluded that the accumulation of mercury in Arctic charr is driven 

primarily by age, but can be altered by a shift in diet (e.g., to piscivory), or habitat (e.g., 

anadromy).  Accordingly, monitoring of Arctic charr for purposes of human health risk 

assessment should take into account the age distribution of consumed fish, particularly 

as climate change may significantly alter existing length-at-age relationships for many 

populations of Arctic charr.  In addition, it is recommended that fish [THg] be corrected 

using fish age, rather than fork-length, when comparing concentrations across 

populations, particularly when examining long-lived species such as Arctic charr.  

Finally, in order to elucidate the mechanisms of mercury accumulation among individual 

fish, future studies should aim to obtain a reasonably large sample size including 

representatives from all size and age classes, morphotypes, and life-history variants 

(e.g., anadromous and non-anadromous) present in the population.  

This study also marks the first wide-scale spatial investigation of mercury 

biomagnification in co-located pairs of lacustrine and marine foodwebs supporting Arctic 

charr.  Biomagnification rates were quantified using slopes of δ15N-inferred trophic level 

versus [THg] or [MeHg] in each of six spatially-paired foodwebs.  While biomagnification 

rates varied among individual sampling sites, there was no consistent difference in the 

rate of total or methylmercury biomagnification between the marine and lacustrine 

feeding habitats.  However, the mercury concentration at the base of the foodweb was 

higher in lacustrine than marine habitats, which may be driven by differences in water 

[THg], percent MeHg, or bioavailability of Hg to organisms at the base of the foodweb 

between the two habitat types.  One novel finding of the present research is that the 

proportion of mercury in the methylated form increases with trophic level similarly in 
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lacustrine and marine foodwebs, suggesting that the relative trophic transfer efficiencies 

of total and methylmercury are independent of the physical, chemical, and biological 

differences that exist between the two habitat types.   

While some general inferences can be made about [THg] in Arctic charr (e.g., 

anadromous individuals have lower [THg] than non-anadromous conspecifics), results 

presented herein suggest that it is not feasible to accurately predict fish mercury 

concentration among sampling sites using biological factors (e.g., age, fork-length, 

trophic level, life-history strategy) or wide-scale spatial information (e.g., site latitude).  

Rather, lake-specific characteristics influencing mercury input and cycling in the abiotic 

and biotic environment, and biological features such as species composition and food 

chain length, are critical factors for predicting differences in fish [THg] among lakes 

(Rose et al. 1999).  The implication of this finding is that spatial extrapolation (i.e., site to 

site) will suffer from errors, and that more, not less, monitoring is needed.   

While the results of this study offer insight into the spatial patterns and causal 

mechanisms driving the difference in [THg] between anadromous and non-anadromous 

Arctic charr, there are still many areas where additional research could be focused.  

Future research directions include:  

1. An investigation of mercury concentrations comparing spatially-proximate 

landlocked, lake-resident, and anadromous Arctic charr.  Swanson et al. (2011) 

found no difference in mercury concentration between anadromous and lake-

resident fish, although both had a lower mean mercury concentration than 

landlocked Arctic charr.  This contrasts with the results presented in Chapter 2, 

where anadromous fish had significantly lower [THg] than non-anadromous 
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conspecifics, regardless of whether the non-anadromous Arctic charr were 

landlocked, or were sympatric with anadromous fish.  Future research would be 

warranted to resolve this discrepancy.   

2. A study of mercury concentrations in an anadromous population of Arctic charr 

both before and after the onset of anadromy could be conducted.  The goal here 

would be to investigate the reduction in tissue mercury concentration associated 

with the transition from feeding in the freshwater foodweb for the first several 

years of life, to feeding in the relatively mercury poor marine foodweb after the 

onset of anadromy.   

3. Future studies should aim to characterize mercury concentrations and δ13C 

values in benthic and pelagic organisms at the base of northern lacustrine and 

marine foodwebs, in order to compare basal mercury concentrations in the 

benthic versus pelagic food chains (as in Lavoie et al. 2010).  In the present 

study, the effect of benthic connection (inferred using δ13C) was investigated 

within, but not among, Arctic charr populations, due to a lack of benthic and 

pelagic baseline δ13C in many of the studied foodwebs.  Future research could 

investigate whether Arctic charr demonstrate a shift in benthic connection with 

anadromy (e.g., from primarily benthic feeding in the lacustrine environment to 

more pelagic foraging in the marine feeding habitat), that may be related to 

differences in [THg] (e.g., Kidd et al. 2003; Power et al. 2002).   

4. Differences in Arctic charr [THg] among sample sites could be related to lake-

specific chemical (e.g., pH, dissolved organic carbon, chloride concentration) and 

physical factors (e.g., lake size, catchment area, temperature), as well as THg 
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and MeHg concentrations in water.  These relationships have been 

demonstrated in more southerly areas (e.g., Chen et al. 2005; Greenfield et al. 

2001; Kamman et al. 2004; Marusczak et al. 2011; Rose et al. 1999; Schindler et 

al. 1995), but have been scarcely studied in Arctic lakes (although some lake-

specific characteristics were examined in Evans et al. 2005b and Gantner et al. 

2010a), and may help to explain differences in Arctic charr [THg] among lakes.   

5. Laboratory studies are warranted in order to estimate physiological parameters 

such as the assimilation efficiency of Hg from water and ingested food, food 

consumption rates, and elimination rates of Hg (including loss to gonads during 

spawning) for Arctic charr reared at a range of tolerable temperatures.  Such 

estimates have been produced for more southerly fish species (e.g., lake trout, 

Salvelinus namaycush, from Lake Ontario, Trudel and Rasmussen 2006; yellow 

perch, Perca flavescens, from the Ottawa River, Norstrom et al. 1976; walleye, 

Sander vitreus, from the Ottawa River, Trudel and Rasmussen 2001), and would 

allow bioenergetics modelling to predict changes in Arctic charr [THg] in 

response to changing parameters (e.g., prey [THg], somatic growth rate, 

temperature), as predicted by future climate warming scenarios.   

6. Finally, sampling could be conducted from a wider geographic area to determine 

whether the trends seen here are consistent throughout the circumpolar range of 

Arctic charr (Johnson 1980).  Mercury concentrations have been measured in 

Arctic charr from Greenland, Iceland, the Faroe Islands, northern Europe, and a 

single Russian site (AMAP 2005; Ford et al. 2005).  However, studies that 

investigate the biological and life-history factors influencing Arctic charr [THg] 
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have predominantly used Canadian fish (e.g., Evans and Muir 2010; Gantner et 

al. 2010a,b, 2009; Muir et al. 2009; 2005; Swanson et al. 2011); an exception is 

Riget et al. (2000), where Arctic charr from Greenland were studied.  The use of 

paired anadromous and non-anadromous Arctic charr from a wider geographic 

area would allow a more robust examination of spatial patterns in, and 

mechanisms influencing, differences in [THg] between the two life-history types.   
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Appendix 1 

Supporting figures 

 

 

Figure S1. Age (years) versus fork-length (mm) for Arctic charr from 9 paired sampling 

sites.  Sampling locations are ordered by increasing latitude (left to right then top to 

bottom).  Data points represent individual fish from anadromous populations (closed 

circles) and non-anadromous populations (open circles).   
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Figure S2. Fork-length (mm) versus δ15N (‰) for Arctic charr from 9 paired sampling 

sites.  Sampling locations are ordered by increasing latitude (left to right then top to 

bottom).  Data points represent individual fish from anadromous populations (closed 

circles) and non-anadromous populations (open circles).   
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Figure S3. Fork-length (mm) versus δ13C (‰) for Arctic charr from 9 paired sampling 

sites.  Sampling locations are ordered by increasing latitude (left to right then top to 

bottom).  Data points represent individual fish from anadromous populations (closed 

circles) and non-anadromous populations (open circles).   
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Figure S4. δ13C (‰) versus ln [THg] (ng/g ww) for Arctic charr from 9 paired sampling 

sites.  Sampling locations are ordered by increasing latitude (left to right then top to 

bottom).  Data points represent individual fish from anadromous populations (closed 

circles) and non-anadromous populations (open circles).   


