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Abstract

A unique mathematical tool is developed to deal with global optimization of a set of
engineering problems. These include image processing, mechanical topology optimization,
and optimal path planning in a variational framework, as well as some benchmark problems
in parameter optimization.

The optimization tool in these applications is based on the level set theory by which an
evolving contour converges toward the optimum solution. Depending upon the application,
the objective function is de�ned, and then the level set theory is used for optimization.
Level set theory, as a member of active contour methods, is an extension of the steepest
descent method in conventional parameter optimization to the variational framework. It
intrinsically su�ers from trapping in local solutions, a common drawback of gradient based
optimization methods. In this thesis, methods are developed to deal with this drawbacks
of the level set approach.

By investigating the current global optimization methods, one can conclude that these
methods usually cannot be extended to the variational framework; or if they can, the
computational costs become drastically expensive. To cope with this complexity, a global
optimization algorithm is �rst developed in parameter space and compared with the ex-
isting methods. This method is called "Spiral Bacterial Foraging Optimization" (SBFO)
method because it is inspired by the aggregation process of a particular bacterium called,
Dictyostelium Discoideum. Regardless of the real phenomenon behind the SBFO, it leads
to new ideas in developing global optimization methods. According to these ideas, an
e�ective global optimization method should have i) a stochastic operator, and/or ii) a
multi-agent structure. These two properties are very common in the existing global op-
timization methods. To improve the computational time and costs, the algorithm may
include gradient-based approaches to increase the convergence speed. This property is
particularly available in SBFO and it is the basis on which SBFO can be extended to
variational framework.

To mitigate the computational costs of the algorithm, use of the gradient based ap-
proaches can be helpful. Therefore, SBFO as a multi-agent stochastic gradient based
structure can be extended to multi-agent stochastic level set method. In three steps,
the variational set up is formulated: i) A single stochastic level set method, called "Ac-
tive Contours with Stochastic Fronts" (ACSF), ii) Multi-agent stochastic level set method
(MSLSM), and iii) Stochastic level set method without gradient such as E-ARC algorithm.

For image processing applications, the �rst two steps have been implemented and show
signi�cant improvement in the results. As expected, a multi agent structure is more ac-
curate in terms of ability to �nd the global solution but it is much more computationally
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expensive. According to the results, if one uses an initial level set with enough holes in its
topology, a single stochastic level set method can achieve almost the same level of accu-
racy as a multi-agent structure can obtain. Therefore, for a topology optimization problem
for which a high level of calculations (at each iteration a �nite element model should be
solved) is required, only ACSF with initial guess with multiple holes is implemented. In
some applications, such as optimal path planning, objective functions are usually very
complicated; �nding a closed-form equation for the objective function and its gradient is
therefore impossible or sometimes very computationally expensive. In these situations, the
level set theory and its extensions cannot be directly employed. As a result, the Evolving
Arc algorithm that is inspired by "Electric Arc" in nature, is proposed. The results show
that it can be a good solution for either unconstrained or constrained problems. Finally, a
rigorous convergence analysis for SBFO and ACSF is presented that is new amongst global
optimization methods in both parameter and variational framework.
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Chapter 1

Introduction

In general, global optimization methods are e�ective tools for engineering applications.
One important point, which is usually ignored, is that local solutions are sometimes non-
feasible. In other words, sometimes local solutions cannot even meet the required properties
that an engineering solution needs. As a result, global optimization theory is still an open
�eld amongst science and engineering researchers.

Some major issues associated with the existing global optimization methods are as fol-
lows: First, these methods are often very slow; second, there is no rigorous mathematical
proof for their convergence and; third, for some applications, such as image segmentation,
topology optimization, and path planning, the problems need to be formulated in varia-
tional framework and usually the existing methods cannot be applied in this framework.

Conventional optimization methods that usually take the advantages of gradient vector
are generally faster than zero-order or gradient free approaches. This is because they
follow the gradient direction to reach the solution. In contrast, the gradient free algorithms
usually employ random search methods along with a multi-agent structure to explore the
entire feasible space; this is the time consuming part of the process. The CPU time issue
becomes even worse for variational problems; hence, a global optimization method based
on gradient �ow is highly desirable for such problems. As a result, multi-agent stochastic
level set method, which has the advantages of all types of existing algorithms, seems to be
a good way to deal with variational problems.

The basic idea behind the stochastic gradient system, and in particular stochastic level
set methods, is to add a stochastic operator to the conventional level set method. There
is no general proof to show that the resultant solution is the global solution, but since
the local solutions are usually not as stable as the global one, once the local solution is
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perturbed, it often leaves that location and converges towards a more stable one. Again,
it is worth mentioning that the process still might be trapped in a local solution.

To introduce a method capable of �nding the global solution of a variational problem,
the �rst step is to develop a new global parameter optimization technique. A method
has been developed in this thesis called Spiral Bacterial Foraging Optimization (SBFO).
Based on the ideas learned from this method, some algorithms in the variational framework
are proposed. SBFO has a multi-agent stochastic gradient-based structure, therefore the
corresponding variational approach should have the same structure. This is done in two
steps. First, a single-agent structure called "Active Contours with Stochastic Fronts"
(ACSF) is proposed and then a multi-agent structure is investigated. Each agent in the
multiple structure has the same behavior as ACSF, except that the agents are also forced
to converge to the same topology. As expected, the mathematical background of ACSF
and "Multi-agent Stochastic Level Set Method" (MSLSM) is based on stochastic level set
method, which is an extension of the steepest descent approach in a parameter space.

These two algorithms can be practically applied to engineering applications in which the
objective functional and the corresponding derivative (gradient vector) are clearly de�ned
in a closed form equation. Obviously, one can �nd the gradient vector numerically in a
variational problem for which a �nite di�erence or �nite element model should be solved
at each iteration of the algorithm. Topology optimization and image segmentation are
two common examples in which closed-form equations exist. In other applications such as
optimal path planning, the functionals often have very complex forms. In path planning
problem, a functional may contain energy consumption of a rover, radiation received by
solar panels and the performance of the rover; hence, a closed-form equation for the gradient
vector is not available. In such cases, Evolving Arc (E-ARC) algorithm has been developed.
E-ARC is based on stochastic level set method but since the gradient vector is not available
in closed form, a �exible numerical approach is designed in order to replace the gradient
vector. To clarify the connection of proposed methods with the existing algorithms in both
parameterized and variational framework, a chart is drawn in Figure (1.1).

As can be seen, optimization algorithms can be formulated in two di�erent frameworks:
Variational and Parameterized space. In each of these two frameworks, there are many al-
gorithms that are capable to �nd local or global solutions. The most famous techniques to
�nd global solutions in parameterized space are Genetic (and in general evolutionary) Al-
gorithm, Simulated Annealing and Particle Swarm Optimization methods. Local methods
in this framework, such as sequential quadratic programming, conjugate gradient method
and gradient descent method, are mostly gradient-based approaches. Although fast, gra-
dient based methods su�er from being trapped in local optima. Spiral Bacterial Foraging
Optimization (SBFO) method takes the advantages of both groups of algorithms. This
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method is one of the contributions of this thesis. It is usually faster than other global
optimization methods (because it is a gradient based method) but capable to �nd global
solutions. The dashed-line between gradient descent block and SBFO in Figure (1.1) shows
that SBFO is based on steepest descent method but belongs to global category.

The extension of the gradient-based methods into variational framework has the same
problem. As stated, level set method, that is a an extension of steepest descent method,
is very useful to solve variational formulation of engineering applications such as image
processing, topology optimization and optimal path planning. To take the advantages of
level set method, in this thesis global version of level set method is introduced. Active
contours with stochastic fronts (ACSF), multi-agent stochastic level set method (MSLSM)
and E-ARC are the main contributions of this thesis that are based on stochastic level
set method. The same as SBFO, the dashed-line in Figure (1.1) between local and global
algorithms shows that this class of algorithms is based on level set theory but all of its
members belong to global techniques. The gray blocks in Figure (1.1) are the developed
algorithms in this thesis.
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Figure 1.1: A block diagram to show the contributions of this thesis
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To have a preliminary background on global optimization methods, level set theory and
its applications to image processing, topology optimization, path planning, and stochastic
partial di�erential equations, are reviewed in the following sections.

1.1 Global Parameter Optimization Methods

Inspired by Darwinian evolution and natural selection, evolutionary algorithms (EA) have
come to be used extensively in arti�cial intelligence and optimization problems since the
mid-1970s [2]- [4]. Two decades later, particle swarm (PSO) [5] and Ant Colony (ACO) [6]
optimization theories were introduced to solve many engineering problems. The main
shared property between these algorithms is their multi-individual structure. Being ef-
fective at �nding the global optima, many extensions have been proposed for these algo-
rithms [7] during recent years.

Two major advantages of PSO and ACO methods are speed of convergence and ease
of use, as they have very few parameters to adjust in comparison with EA [8]. However,
premature convergence a�ects the convergence of the PSO [9] by reducing the diversity of
particle search locations. Several approaches have been proposed to cope with this problem.
A two-stage transformation has been proposed by Parsopulos et al. [10] for stretching the
objective functions to discard the local optima problem. In another attempt, a predator-
prey strategy is employed to preserve the diversity and prevent premature convergence [11].

In yet another example of a biologically-inspired optimization method, Bremermann
et al. [12]- [13] and Anderson [14] established a resemblance for the behavior of bacteria
reacting to chemo-attractants in concentration gradients. This idea was advanced by Müller
et al. [15], in which several features were added in order to attain a more capable technique
with enhanced convergence properties for both local and global optimization problems.
Passino et al [16]- [17] proposed the Bacterial Foraging Optimization (BFO) algorithm by
analogy to the foraging theory of natural creatures that explains how the �energy intake per
unit time spent for foraging� is optimized. The investigated procedures in reference [16]-
[17] have a variety of tunable parameters, therefore it is very hard to determine the proper
values of these paramters.

A mathematical model has been derived for the chemotaxis phenomenon in [18], and
the stability and convergence have been investigated using the Lyapunov stability theo-
rem. This analysis suggests a suitable bound for tunable parameters to have a proper
convergence.

Starting with a population of size Np, D-dimensional parameter vectors, Di�erential
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Evolution (DE) employs mutation, crossover and selection in order to �nd the global solu-
tion of a general nonlinear optimization problem. Depending upon the way that DE cre-
ates its donor vectors, various DE schemes are distinguished from each other. Some major
schemes are: "DE/rand/1/bin", "DE/best/1", "DE/target-to-best/1", "DE/best/2" and
"DE/rand/2". All of these schemes are implemented and publicly available at [19].

Investigation by Biswas et al. [20] resulted in a hybrid method called Chemotaxis Dif-
ferential Evolution (CDE) in which the BFO algorithm is coupled with DE algorithm [19].
In this method, both issues with slow and premature convergence are overcome.

Working along the same lines, the authors in [21] combine PSO and BFO in order to
optimize multi-modal and high dimensional functions. Abraham et al. [22] focus on the
improvement of the major operator of the BFO algorithm, the �reproduction phenomenon�
of the virtual bacteria. The authors consider the e�ects of reproduction on bacterial dy-
namics. Their results show that this phenomenon leads to fast convergence of the bacterial
population near the optimal point.

In another extension to BFO, a cooperative approach is proposed by Chen et al. in [23].
It has been claimed that the accuracy, robustness and speed of convergence have been im-
proved signi�cantly by adding the "serial heterogeneous cooperation". The corresponding
results show a remarkable improvement in e�ciency of the new algorithm, called �CBFO�,
in comparison with the classic BFO technique. BF-PSO is another improvement for BFO
by [24] to combine both BF and PSO algorithms. In this new algorithm PSO is used in
order to exchange the social information. Besides, elimination and dispersal are performed
by BFO. Shen et al. has investigated BF-PSO presented in [25], in which 23 numerical
benchmark problems have been considered and the performance of the new algorithm in a
global search is demonstrated.

1.2 Level Set Theory and Its Applications

Implicit description of curves and surfaces is the main concept of the level set method. This
capability allows the level set method to be used as a multi-dimensional tool to represent
any complex topology for structures. Changes in topology is started from a zero level set
or isophote with an initial guess which continuously evolves through a Hamilton-Jacobi
PDE formulation based on a certain cost function. Therefore, the complex topological
boundaries cannot only be represented by this method, but also the optimal topology can
be achieved using this method, [52]- [54].

The level set method is one of the most important algorithms in deformable models
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and has been widely used in many applications. In comparison with other active contour
methods, it has several advantages. These include: 1) there is no need for parameterization
of the contour; 2) �exibility in topology de�nition; 3) numerical stability, and; 4) easiness
of extension to higher dimensions [51], [55] and [56].

In this research three main applications of LSM are investigated and improvements of
the algorithms are assessed in the same applications. These three applications are: 1)
image processing 2) topology optimization 3) optimal path planning. Research literatures
associated with these three areas are as follows:

1.2.1 Level Set Theory and Image Processing

Finding a precise, fast, automated and robust approach to segment each image into mean-
ingful sections is crucial in image processing [145]. There are many classical [47] and
advanced methods [48] in image segmentation currently available. These include: thresh-
olding, clustering, histogram-based, region-growing, graph partitioning, and optimization
model based. However, amongst these, only a few can be applied in practical and non-
ideal images. Several review papers on image segmentations [48], [49] and [50] verify that
there is no general computational method to cope with all practical images. Therefore,
for each class of images, a method should be selected and tuned in order to achieve sat-
isfactory results. Deformable models or active contours are relatively new approaches in
image segmentation. As their names imply, they provide an explicit representation of the
boundary and the shape of the objects. Compared to the above-mentioned methods, they
have several desirable properties, such as inherent connectivity and smoothness, and are
capable of adding knowledge domain about the object of interest [51].

The level set method (LSM) [52], [53] and [54] is one of the most important algorithms
in deformable models and has been widely employed in image processing and segmentation.
Essentially, this method is an extension of steepest descent to the variational framework,
and therefore the problem of getting trapped in local optima is inherited to this algorithm.
As a result, the �nal solution is very sensitive to the initial guess [57]. This problem
has been relentlessly investigated in recent researches. The level set-based approaches
can be grouped into two categories. The methods in the �rst category try to reformulate
the objective functions used in image segmentation in order to improve the performance
of the algorithm. On the other hand, the methods in the second division focus on the
optimization procedure and the evolution process in the level set method. Kichenassamy
et al. [58] and Caselles et al. [59] proposed "Geodesic Active Contours" as an energy-
based algorithm for image segmentation, intended to improve the capability of non-convex
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feature detection. In addition, by this extension, the researchers improved the speed of
convergence as well. An interesting review based on "Geodesic Active Contours" can
be found in [60], in which the performance of this method on the convexi�cation of the
cost functions in image segmentation is evaluated. Finding a general convex function,
appropriate for segmentation, is obviously impossible; hence, instead of evolving based
on local edge information [61], the use of region-based cost functions [63] (with less local
optima) would be far less sensitive to the initial guess. Region-based active contours are
originated by Mumford-Shah [63]. In this research, they proposed a new segmentation
framework in which the minimization of the functional in Equation(1.1) was employed in
order to segment the image, I, by using a set of contours, ∂Ω [51], [63].

E(∂Ω, f) = α

∫
Ω

(f − I)2dx+ β

∫
Ω\∂Ω

|∇f | dx+Hn−1(∂Ω) (1.1)

where Hn−1(∂Ω) is the (N − 1) dimensional Hausdor� measure and α, β ∈ R+ are positive
real coe�cients, f is a smooth approximation of image I and Ω is the region surrounded
by ∂Ω

The main drawback of this method is its high sensitivity to in-homogeneities caused by
noise and artifacts in practical images. The moving organs in medical images in particular
exaggerate these in-homogeneities.

Using this framework, Chan and Vese create a new vision as "Active Contour without
Edge" in a series of oft-cited papers [64]- [68]. For them, object detection is performed not
necessarily by the gradient at its edges. Rather, the basic idea is based on the minimal
partition problem in which the stopping criteria does not depend on the gradient of the
image. While the problem is not convex yet has less local optima, the level set method,
which is a gradient-based algorithm, usually �nds the global (or the best possible solution)
topology that de�nes an accurate segmentation. Next is a brief review of the second
approach to improving the performance of the level set method.

There are some other models that sometimes demonstrate better responses than Chan-
Vese model. An outstanding example of this works is the research by X. Bresson [69] in
which the proposed model has a di�erent local optimal than ACWE, and usually performs
better than ACWE in terms of accuracy of segmentation particularly when the images
su�ers from low contrast features. The basic idea behind it is to add edge-based indicator
into the region-based model. Obviously, as this method is still founded on gradient �ow the
algorithm may stuck in local solutions but this local solutions are usually more accurate
than the solutions of ACWE in terms of segmentation of low contrast edges.
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1.2.2 Level Set Theory and Topology Optimization

Topology Optimization and Classic Level Set Theory

In recent years, topology optimization of continuum structures has become an intriguing
task in engineering. There are a few popular homogenization methods for the topological
design of structures [91], [92] and [93]. However, these techniques work well in linear or
slightly nonlinear cases, while they fail in highly nonlinear problems [94]. Moreover, some
of these approaches are restricted to certain objective functions such as eigenvalues or
compliance [93]. These methods are based on material models with micro scale voids,
which optimize the porosity of a structure based on a de�ned cost function. Generally
speaking, a homogenization method replaces the problem of topology optimization with a
sizing problem which is able to create internal holes [92]- [93].

In the past decade, the level set method has been developed for many applications
in engineering problems such as motion by mean curvature [95], �uid mechanics, image
processing, etc., in which evolving fronts play a main role [95]- [53]. The ease in describing
closed boundaries and less computational e�orts are some of the advantages of this method.
Hamilton-Jacobi's partial di�erential equations (PDE) are used to represent the complex
material boundaries in the structure [96]- [53]. Additionally these methods can be well-
positioned and employed where nonlinearities such as material nonlinear behavior and large
deformations are present in the system [94].

Osher and Santosa in [96] focus on a two-phase optimization of a membrane and combine
the level set method with a shape sensitivity analysis. In another study [53], the authors use
the interface method to capture the shape of the structure as a free boundary on a �x mesh.
Allair et al. [94] extended the previous work by implementing a systematic level set method
in which the evolving velocity is derived from a shape sensitivity analysis. The authors
address more complex objective functions like eigen-frequencies and multiple loads in their
work [97]. Instead of considering two-phase optimization, they apply shape optimization
and substitute the immersed interface method by the simpler ersatz material [98] approach.

In [94], the authors study the case of a nonlinear elasticity model. To do so, the shape
derivative was computed by an ad-joint problem and then used as the normal velocity
of front in the optimization process. In other words, front propagation is carried out by
solving a Hamilton-Jacobi equation for a level set function [94], [99]. Wang, et al. in [100]
propose a level set method for designing monolithic compliant mechanism consisting of
several materials. The main contribution of this work is to accurately describe the material
regions and their sharp interfaces at the structure boundaries. In addition, a scheme to
investigate the connectivity of the structure is presented by [101]- [102].
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Level Set Theory and Global Optimization

Finding the global optimum solution is one of the most challenging aspects of topology
optimization. Since the level set theory is based on the gradient methods, trapping sce-
narios in local optimum points is highly expected. A very common symptom of the local
solution is the dependency of the �nal solution on initial guesses. Di�erent research stud-
ies are designed in order to address this problem. The existing approaches to achieve
the best possible solution of topology optimization problem can be divided into two main
groups: �rst, methods based on modi�ed objective functions and; second, improved level
set approaches.

In the �rst set, cost function is usually modi�ed such that it has less local optima,
but the second set of approaches generally combine the classic level set method with other
algorithms to improve it.

A class of shape optimization problems is addressed by new optimality conditions de-
veloped by J. SokoLowski et. al, [108]. Topological derivative methods are exploited in
the interior of the design domain, as well as boundary variations techniques applied on
the boundaries. This method then improved by G. Allaire and F. Jouve [110] in which
they combined two main approaches of shape and topology optimization, namely level set
method and bubble method. As known, classic level set method uses shape derivative to
manipulate boundary propagation, but it is unable to nucleate new holes in the struc-
ture. On the other hand, bubble method is introduced to create new holes when needed.
Based on what is claimed in this paper, this combination is expected to help mitigating
the dependency on initial guess. But in practice, the use of this approach still resulted in
dependency and the reason is clear; by using a gradient based approach (for both shape
and topology derivatives), the algorithm can still be potentially stuck in local minima.

L. He et al. [111], applied the same idea to �nd an optimal shapes for maximal band
gaps in photonic crystal and acoustic drum problems. Results show that the algorithm has
less local optima, although still �nding a global solution is a remaining challenge.

The other way to decrease the number of local minima, is to use the �ltering techniques
that are usual in image processing. For example in an interesting work by S. Amstutz and
H. Andra [109] in which instead of using Hamilton-Jacobi equation, an evolution equation
has been proposed by generalizing the concept of topological gradient. Finally �ltering
techniques are employed to make the objective function smoother. It is claimed that by
using this approach, not only the creation of new holes is doable, but additionally, all kind
of topology changes are achievable.

In second group of attempts, M. Rouhi et al [113] proposed a stochastic direct search

10



method called the Element Exchange Method (EEM). The idea of this method is to ex-
change the less e�ective elements to void and conversely, the more in�uential void elements
to solid elements. The random shu�e is intended to discover the design space widely, espe-
cially when the checkerboard control scheme is employed. Although some simple examples
are investigated in this paper, this method shows the potential capability of stochastic
operators in global topology optimization problem.

H. Jia et al. [114] proposed a mixed method to mitigate the aforementioned dependency
on the initial guess. Evolutionary structure optimization (ESO) method and level set
method are combined such that not only the new hole nucleation allowed, but also the
computational expenses are more reasonable compared to ESO. While it is claimed that
the algorithm is independent of initial guesses in �nding the global solution, all investigated
examples have enough holes in their initial step that comparison of the method with other
approaches is slightly di�cult.

Rong and Liang [115] attempted to eliminate some drawbacks of the level set method.
Firstly, a set of new operators is presented to deal with the issue of structural boundary
movements. This set of robust and e�cient numerical algorithms includes level set regu-
larization, gradient projection, nonlinear velocity, mapping, and return mapping. To cope
with the limited ability of level set method to creating new holes during the optimiza-
tion procedure, they introduce GA-inspired algorithms. This operator helps the proposed
algorithm to search the design space more accurately.

According to the literature, the approaches in second part, although e�ective, do not
have a rigorous mathematical foundation, guaranteeing convergence; this holds true es-
pecially for modi�ed level set methods. In the next part, a review is carried out on the
stochastic level set method that has a solid mathematical foundation. To the best knowl-
edge of the authors, there is no paper in topology optimization of mechanical structures
based on this method yet.

1.2.3 Level Set Theory and Optimal Path Planning

Two major categories of path planning methods have been extensively investigated for
autonomous mobile robotic applications: local and global planning [123], [124], [125], [126].
As the name states, local methods �nd a collision-free path, or avoid hazardous regions,
they however, usually do not consider global environmental information and therefore may
result in trapping scenarios, preventing the algorithm from achieving global optimal states.
Global methods, on the other hand, are more likely capable to escape such situations,
but they require more computational resources. It is worth mentioning that the original
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categorization, namely global or local planning, only focuses on availability of information
and not necessarily global or local optimal solution of the algorithms. In this thesis, �nding
the global optimum solution is intended. The main link between these two classi�cations
is, the higher information available for planning, the higher chance to �nd the global
optimal solution and therefore usually using global planning method leads to achieve the
best available solution.

The graph-theoretic approaches [127], such as di�erent extensions of A? search method
[128], are proposed to address the optimal path planning problem [129] globally. These
groups of algorithms are applicable even in cases wherein the environmental variables are
continuously changing, and consequently the objective function is updated correspondingly.
Other methods include PDE-based algorithms, particularly the level set and fast marching
methods [54]- [53], are also employed for �nding the risk-free and optimal costs paths
[130], [131], [132]. Using the level set method, each point on the path evolves along the
optimal trajectory in order to minimize the objective function. The aforementioned sets
of algorithms are collated in [133] qualitatively. Results show that the level set method
[54] and its approximated solution, fast marching method [53], are better suited for path
planning in continuous spaces. The authors in [133] have employed optimality metrics
instead of Euclidean distance criterion.

Modifying the classic fast marching method, a dynamics version is proposed by [134] in
order to re-plan the path when the environment slightly changes. This article undertakes
a rigorous investigation on how the environmental changes can a�ect the level set. This
analysis shows that the suggested algorithm is able to reduce the computational costs
signi�cantly. Serial and parallel algorithms to solve the discretized version of the Hamilton-
Jacobi equation are used in [129] to cope with the trajectory optimization problem. These
two algorithms are designed to resemble Dijkstra's and Dial's shortest path algorithms,
respectively. The author has shown that the latter algorithm is capable to be parallelized.
A fast, consistent and computationally reasonable version of the fast marching algorithm,
along with the back-tracking method, is investigated for locating optimal paths for robot
navigation in small-size con�guration space by Kimmel and Sethian [132].

The most important advantage of this method is that the value function has no local
minima, so the global optimum solution can be found by gradient descent of the value
function. At the same time, the approach su�ers from an issue that the value function
which solves the Eikonal equation is rarely di�erentiable everywhere in the feasible domain.
To solve the Eikonal equation, usually the viscosity solution can be obtained by �nite
di�erence approximation. This approximation is unique, bounded and di�erentiable. One
can conclude that although the approach leads to the global solution of the optimal path
planning problem, implementation of the algorithm particularly when some constraints
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exist is quite challenging. A method with a grid model, a new consumption function, and
a search method is proposed by Na and Ping [135] to reduce the complexity of the level set
method for path planning applications. Cecil and Marthaler, in [136], extended the two-
dimensional path planning algorithm proposed by Canny [137], which is a known method
in variational framework to three-dimensional space. They de�ned an energy integral over
the path and let the path evolve along the gradient �ow to obtain a local optimal solution.
One major problem in this kind of formulation is that the algorithm is highly dependent
on de�nition of energy and analytical gradient �ow, which is not usually available in real
engineering applications. Furthermore, trapping in local solution is a drawback in this
formulation.

Most of the existing algorithms, even those considering global information, might trap
in local solutions. Moreover, analytical gradient is not always available in active contour
methods. Obviously, numerical calculation of gradient needs considerable computational
resources.

1.3 Stochastic Flows and Level Set Method

As stated, to deal with general nonlinear optimization problem, stochastic based opera-
tors are known as e�ective tools [1]. Therefore, to utilize the level set method a review
on stochastic partial di�erential equations and stochastic integration is signi�cantly help-
ful. In engineering application, stochastic level set method was initially applied to image
processing and segmentation [57].

The idea of stochastic �ow, as proposed by Walsh [70], is based on stochastic partial
di�erential equations. This concept has been employed in the modeling of physical phe-
nomena and even computer vision. Yip [71] has performed a literature review on stochastic
motion by mean curvature that shows the recent trends in this �eld. One of the most inter-
esting set of works on the viscosity solution of a stochastic partial di�erential equation has
been done by Lions and Souganidis in a series of articles [72]- [73] which are very helpful
for convergence analysis of stochastic level set method with spatial free noise source.

A stochastic curve evolution has been implemented by Juan et al. [57] in a level set
framework. By using a Stratonovich di�erential, the well-posedness of the evolution is
achieved. In addition, the �nal solution becomes almost independent of the initial curve.
The stochastic active contour proposed in this reference is able to deal with the local optima
problem and even with a complicated circumstance in which the derivation of the exact
gradient is not possible. From mathematical point of view, the model that is developed
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in [57] is more general than the model investigated in [72]- [73], because [57] has proposed
a spatial dependent noise source, to get a better performance.

A very comprehensive extension to [57] has been done in [74], where several aspects
of simulation of stochastic partial di�erential equations are investigated. In addition to
the extension of previous work by Juan [57] , a set of de�nitions for numerical stability
of stochastic partial di�erential equation (SPDE) has been suggested. M. Caruana and
co-authors in [81] has proposed a (rough) path wise approach by which the convergence of
SPDE when the noise source is spatial dependent and linear in Dφ, gradient of evolving
surface, is investigated. The main results of this reference [81] will be discussed in detail in
Section 3.2.1, background theory, when the convergence of the proposed algorithm, ACFS,
is considered.

Law et al. [145] investigate global minimization of the multi-phase piecewise constant
Mumford-Shah model [63]. To do so, a hybrid method containing the gradient-based
and stochastic method has been proposed in order to deal with the dependency of the
solution on initial guesses. It is claimed that the algorithm is very successful compared
with other stochastic algorithms such as simulated annealing. Chen et al. [75] extended
the conventional random walk Metropolis- Hastings method to high-dimensional curves;
the asymptotic convergence of the Markov chain is also proved. To accomplish this, the
authors used an implicit representation of shapes instead of conventional explicit curve
parametrization. They claim that their algorithm can be easily applied to 3D frameworks.

Pan and others in [76], proposed a new formulation for active contours, in which the
conventional state estimation is employed for evolving the curves. As a result, a hybrid
algorithm based on level set method and particle �lters has been created. Results show
that this new algorithm works well for complex images.

An interesting comparison has been made in [145] on various level set based meth-
ods. Based on this article, the pure stochastic level set algorithm has the best perfor-
mance in most of the cases in terms of �nding the most global solution. In comparison
to other algorithms like "Gradient Descent", "Simulated Annealing", or a hybrid method
called "Multi-resolution Stochastic Level Set Method", the only drawback associated with
stochastic level set method is that it has no systematic procedure to control the random
terms. Therefore, this algorithm has to search even those solutions that increase the cost
function signi�cantly, which slows the procedure. On the other hand, it is worth mention-
ing that although all of these algorithms employ stochastic operators in order to escape
from local optima, �nding the global solution is not yet guaranteed. The problem of a
global optimum point is one of the most challenging open problems in mathematics.

Based on the existing algorithms in optimization theory, there are two main approaches
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to attacking the problem: using random operators and multi-individual (agents) based
algorithms. The �rst one helps the procedure to escape from local optima, and the second
one assists in the exploration of the whole feasible region for a solution. Obviously, the
more individuals (agents) are involved in the hunt, the higher the probability of �nding the
global optimum point. This point has been proved in all of the multi-individual (agent)
based algorithms such as GA and Particle Swarm optimization method (PSO), including
multiagent gradient-based methods [1].

Essentially, along with the aforementioned operators, an algorithm for convergence
is required. There is always a tendency for researchers to prove the convergence of their
algorithm mathematically. In this regard, GA has a drawback that there is no mathematical
proof for its convergence. Even for PSO, the mathematical proofs cope with some simpli�ed
models. In level set, there is a very strong mathematical proof even in stochastic framework
[72]- [73] and [81]. As long as some conditions are satis�ed, the convergence of the stochastic
level set method can be proved for some special cases; thus, for any further extension, one
should make sure that the above-mentioned conditions are not violated.

1.4 Contributions of the Dissertation

This study is intended to develop a set of new algorithms to deal with global optimization
problems in variational framework. In doing so, a new global optimization algorithm
is developed in parameter space and then its extension to the variational framework is
investigated. In brief, the main contributions of this work are as follows:

1. Development of a global optimization algorithm in a parameter space, called Spiral
Bacterial Foraging Optimization (SBFO). Basically, this algorithm is a multi-agent
stochastic gradient method.

2. Development of two algorithms based on stochastic level set method, active con-
tours with stochastic fronts (ACSF), and Multi-agent stochastic level set method
(MSLSM).

3. Application of ACSF and MSLSM in image processing and topology optimization
problems.

4. Development of another (third) algorithm based on stochastic level set method with
the absence of the gradient function, called Evolving Arc (E-ARC).

5. Application of E-ARC in optimal path planning problem.
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1.5 Outline of the Dissertation

Chapter 2 discusses deterministic and stochastic level set methods. It basically contains a
brief explanation on the classic level set method and the derivation of required stochastic
level set equations that are developed on [57]. Besides, the main results of [72]- [73] and [81]
are presented as a background for convergence analysis.

The new algorithms for parameter optimization and variational framework are pro-
posed in Chapter 3. Section 3.1 is devoted to the development of a new global parameter
optimization method. Considering the existing global optimization approaches, and consid-
ering their advantages and drawbacks, SBFO as a multi-agent stochastic gradient method
is proposed. Then, two methods in variational framework are developed and discussed.
For the �rst method, namely ACSF, a mathematical proof of convergence is also o�ered.
It is shown that the general stochastic model proposed in [57] does not necessarily converge
towards the deterministic model; luckily the proposed algorithm, ACSF, converges, and
it has been investigated in detail. The second approach, MSLSM, is based on the ideas
learned from SBFO in parameter space in which a multi-agent stochastic structure is more
capable to �nd the global solution.

Sections 4.1 and 4.2 of Chapter 4 are assigned to direct applications of ACSF and
MSLSM to engineering examples. Image processing, or more speci�cally image segmenta-
tion, is one of the most important branches of engineering in which level set theory and
its extensions are employed. Section 4.1 starts with the formulation of the problem and
then the results of ACSF and MSLSM are discussed. As can be seen, in contrast to what
is expected, MSLSM does not show a very signi�cant improvement in results compared
to ACSF. The reasons are listed in the corresponding section, but as a result, only ACSF
is employed for the topology optimization problem. In Section 4.2, topology optimization
problem is formulated and results of ACSF is compared with classic level set method. In
Section 4.3, another problem is addressed. In some engineering applications such as opti-
mal path planning, analytical gradient functions do not exist and numerical calculation of
the gradient is obviously very expensive. E-ARC algorithm that is inspired by "Electric
Arc" is proposed in this section. A brief analogy of electric arc and optimal path planning,
followed by the de�nition of the algorithm and results are the main topics of this section.

Finally, Chapter 5 contains conclusions and possible future works.
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Chapter 2

Background to Deterministic and

Stochastic Level Set-based Optimization

2.1 Level Set Theory and Optimization:

Implicit description of curves and surfaces is the main concept of the level set method. This
capability allows the level set method to be used as a multi-dimensional tool to represent
any complex topology. Changes in topology start from a zero level set or isophote as
an initial guess, which continuously evolves through a Hamilton-Jacobi PDE formulation
based on a certain cost function [52]- [54] and [63]- [64].

Let's assume there is an implicit function, φ(x, t), in a given design domain, Ω, which
satis�es:

{ φ(x, t) > 0, x ∈ Ω+ Exterior

φ(x, t) < 0, x ∈ Ω− Interior

φ(x, t) = 0, x ∈ ∂Ω Boundaries

(2.1)

and also two other well-known Heaviside, H(s) , and Dirac delta, δ(s) , functions:

H(s) =

{
1 s ≥ 0

0 s < 0
(2.2)

δ(s) =

{
0 s 6= 0

∞ s = 0
(2.3)
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This powerful tool can be used as a dynamic representation of boundaries in a wide
range of engineering applications such as image processing, mechanical topology optimiza-
tion and optimal path planning. In most of the applications a shape or topology should be
found such that a particular objective function is optimized, hence, the dynamic bound-
aries should evolve such that at the end of the process, at least one of the local optimal
solutions is found.

Euler-Lagrange Theorem [53]- [54] is employed to formulate the optimization problem
in variational framework. This formulation needs shape derivatives or sensitivity of the
objective function with respect to the evolving boundaries.

2.1.1 Shape Derivatives:

Sensitivity of the objective functional with respect to boundary perturbation is determined
by shape derivatives. Murat and Simon have de�ned this measure as follows [94] , [111]:

Assume that a perturbation occurs in Ω ∈ D ⊂ RN under a map of θ ∈ W 1,∞(RN ,RN)
such that ‖θ‖W 1,∞ < 1:

Ωθ = (I + θ)Ω (2.4)

in which W 1,∞ is Sobolov space [94], I is the identity operator and the set Ωθ is de�ned
as [111]:

Ωθ = {x+ θ(x) | x ∈ Ω} (2.5)

The shape derivative of an objective functional J : RN → R at Ω is equivalent to Frechet
di�erential J(Ωθ) at 0. It has been shown that the shape derivative is only dependent on
θ · n on the boundary ∂Ω because the shape does not change if θ is in tangential direction
of the domain Ω. An objective functional in the form of integral over the domain Ω or
along its boundary can be formulated as [111]:

J(Ω) =

∫
Ω

f(x)dx (2.6)

It has been shown that the shape derivative of this functional is [111]:

∂SJ(Ω, θ) =

∫
Ω

∇ · (θ(x)f(x)) =

∫
∂Ω

θ(x) · n(x)f(x)ds (2.7)
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If the functional is de�ned as an integral over the boundary such as [111]:

J(Ω) =

∫
∂Ω

f(x)dx (2.8)

the shape derivative is [111]:

∂SJ(Ω, θ) =

∫
∂Ω

θ(x) · n(x)(
∂f

∂n
+ κf)ds (2.9)

where κ is the mean curvature of ∂Ω and can be de�ned as [111]:

κ = ∇ · n (2.10)

As can be seen both shape derivatives (2.7) and (2.9) only depend on boundary.

Now to optimize the functional, the gradient �ow should be determined. One can
suppose that the shape derivative is in the form of [111]:

∂sJ(Ω, θ) =

∫
∂Ω

θ(x) · n(x)Vn(Ω, x)ds (2.11)

For minimization of the objective functional one can choose the gradient �ow as [111]:

θ(x) = Vn(Ω, x)n(x) (2.12)

or basically Vn is the normal velocity at each point of the evolving boundary. Employing
the function φ to represent the boundary of Ω, the Hamilton-Jacobi equation can simulate
the motion under normal velocity.

φt + Vn(Ω, x) |Dφ| = 0 (2.13)

It has been shown [52] that the steady state solution of Equation(2.13) is a local optimal
solution of ∂sJ(Ω, θ) = 0. This can show the importance of using the level set theory in
optimal variational problem.
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2.1.2 Topology Derivatives:

Topology derivatives are designed to measures the sensitivity of functional to the creation
of a small hole at a certain point instead of boundary perturbation for shape derivatives. To
�nd this measure, a small ball Bρ,x centered at point x and radius ρ should be created and
then the variation of J with respect to the volume of this small ball should be considered.
For x ∈ Ω at which the material should be removed the topological derivative ∂TJ(Ω, x) is
de�ned as a limit:

∂TJ(Ω, x) = lim
ρ−→0

J(Ωρ,x)− J(Ω)

|Bρ,x ∩ Ω|
(2.14)

where Ωρ,x = Ω− B(ρ, x). To incorporate the topology derivative, it has been derived for
objective functional (2.6) and is represented as [111]:

lim
ρ−→0

J(Ωρ,x)− J(Ω)

|Bρ,x ∩ Ω|
= −Vn(Ω, x) (2.15)

As mentioned, this formulation is derived based on the idea of subtracting material from
Ω; obviously, in some cases it would be a great idea if the algorithm could add material in
Ω region if needed. So, the topology derivative should be reformulated:

Tn(Ω, x) =

{
−Vn(Ω, x) when x ∈ Ω

Vn(Ω, x) when x ∈ Ω
(2.16)

One can notice that it might not be easy to �nd the shape derivative a general objective
functional, but topology derivative can be achieved as long as shape derivative is derived
and the key part, namely Vn(Ω, x), exists.

2.1.3 Incorporating shape and topological derivatives into the level
set method

Based on the literature, one way to improve the trapping scenarios in local solution is to
incorporate topology derivatives into level set method. The new equation designed for this
purpose is as follows:

φt + Vn |Dφ|+ wTn = 0 (2.17)
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where Tn is the modi�ed topology derivative in Equation (2.16) and w is a positive scalar
to balance the e�ects of shape and topology derivatives.

Combining the Equation (2.16) and (2.17), the �nal equation becomes [111]:

φt = −Vn(|Dφ|+ w) (2.18)

2.1.4 Computational Scheme

The main advantage of using level set theory is to have a systematic approach (by solving
a PDE) to solve the algebraic equation ∂sJ(Ω, θ) = 0, which is not possible in general
without using LSM. There are many di�erent numerical method to solve the Hamilton-
Jacobi Equation (2.13), but in this thesis only "Upwind Di�erence Scheme� is discussed
and employed to solve the equation. This approach is one of the well-known methods
called "Finite Di�erence Methods" (FDM). Some literatures use "Finite Element Meth-
ods� (FEM) to deal with this problem but our experience with both methods show �nite
di�erence methods are strong enough to perform this analysis. Moreover they are much
easier in terms of implementation.

As stated acquiring the solution of Equation (2.13), upwind di�erence scheme is em-
ployed in this thesis. The main characteristic of this approach is that, the forward and
backward di�erences are adaptively calculated at any point depend upon the direction of
the velocity �eld [54]- [53].

For 2D applications the �rst order upwind scheme is as follows:

φn+1
ij = φnij −∆t(max((Vn)ij, 0)∇+ +min((Vn)ij, 0)∇−) (2.19)

where

5+ = {max(D−xij , 0)2 +min(D+x
ij , 0)2 +max(D−yij , 0)2 +min(D+y

ij , 0)2}
1
2 (2.20)

5− = {max(D+x
ij , 0)2 +min(D−xij , 0)2 +max(D+y

ij , 0)2 +min(D−yij , 0)2}
1
2 (2.21)

The indexes of φ are de�ned to represent the relative positions of �nite di�erence nodes
and shown in Figure (2.1) [54]- [53].
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The chosen time step ∆t should satisfy the Courant-Friedrichs-Lewy (CFL) conditions
[54]- [53] as follows:

∆t =
min(∆x,∆y)

max |(Vn)ij|
(2.22)

where ∆x and ∆y are horizontal and vertical directions respectively, and D±xij and D±yij
are also forward and backward �nite di�erence operators that are de�ned in detail in the
following equations [54]- [53]:

D+x
ij = (φi+1,j − φij)/∆x

D−xij = (φij − φi−1,j)/∆x

D+y
ij = (φi,j+1 − φij)/∆y

D−yij = (φij − φi,j−1)/∆y

(2.23)

Figure 2.1: De�nition of nodes' indexes in FDM

2.1.5 Geometric Quantities as Function of φ

Usually the objective function of optimization problems is written as a combination of
some often-used quantities like normal vector, curvature, perimeter, area. Here some of
these components will be expressed as a function of level set function φ(x) [120].
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1. Normal Vector
−→
N : This vector points in the direction of steepest increase

−→
N =

∇φ
|∇φ|

(2.24)

2. Mean Curvature κ: The divergence of the normal vector
−→
N indicates the mean

curvature of the interface

κ = ∇ ·
−→
N = ∇ · ∇φ

|∇φ|
(2.25)

3. Perimeter of the boundary |∂Ω|:

|∂Ω| =
∫

Ω

δ(φ) |∇φ| dΩ (2.26)

4. Area |Ω|: ∫
Ω

H(φ)dΩ (2.27)

2.1.6 Re-Initialization:

Level set method is based on the evolution of an implicit function de�ned by a surface. If
during the evolution process, the surface becomes too steep or too �at, the process might
becomes unstable or too slow which either cases are not desirable. One way to resolve
this issue is re-initialization. The basic idea behind the re-initialization is, if one employs
�Signed Distance Functions� as �level set function�, they usually result in more accurate,
stable and relatively fast enough evolution. Signed distance function is a subset of implicit
functions and de�ned in Equation (2.28):

φ(x) =


d(x),

0

−d(x)

∀x ∈ Ω+

∀x ∈ ∂Ω

∀x ∈ Ω−

(2.28)

in which d(x) is the distance function de�ned as:

d(x) = min(|x− xI |), for ∀xI ∈ ∂Ω (2.29)

By a simple investigation, it can be seen that:
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|∇φ| = 1, for ∀x ∈ Ω (2.30)

This special feature can prevent the evolving surface to becomes too steep or too �at
because for all points on the surface the length of the gradient vector has the same size.
So, it seems that the level set function should be regularized such that it is close to signed
distance function as much as possible. This method is called �re-initialization�. Doing so,
the re-initialization process should be done after a particular number of iterations. This
number should be chosen by trial and error. Basically, the higher the number, the faster
computation and less accurate results.

2.2 Stochastic Di�erential Equations

Stochastic di�erential equations (SDE) has been widely used in many branches of science
and engineering such as biology, economics and �nance, chemistry, MEMS and NEMS
applications. Advanced probability and stochastic processes are the main prerequisites for
complete understanding of SDE but a very brief review on concepts is intended here and for
more details, the interested readers are encouraged to refer to some extensive books such
as [84], [86] and [87]. Starting with the idea of Brownian motion, stochastic integration
will be discussed as key to solving the SDE. All the operators are de�ned in a standard
probability space (ω,F ,Ft,P). For de�nitions of standard probability space and other
introductory concepts please refer to [84], [86] and [87].

2.2.1 Brownian Motion:

A standard m−dimensional Brownian motion or standard Wiener process, over [0, T ] is a
random vectorW (t) = [W1(t), . . . ,Wm(t)]t≥0 that is a continuous function of time t ∈ [0, T ]
and satis�es the conditions as follows [85]:

1. W (0) = 0 (almost sure or with probability 1)

2. Given by incrementW (t)−W (s), for 0 ≤ s < t ≤ T , the random variable vector has a
normal distribution with mean zero and variance t−s; in other words (W (t)−W (s)) ∼√

(t− s)N(0, 1), where N(0, 1) is a symbol for normally distributed random variable
with zero mean and unit variance.
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3. The increments W (t) −W (s) and W (v) −W (u) are independent, ∀ 0 ≤ s < t <
u < v ≤ T .

In addition to these conditions Brownian motion has some other properties such as [88]:

1. W (t) has continuous paths (1
2
-holder continuous)

2. W (t) is nowhere di�erentiable

2.2.2 General Theory:

A common representation of stochastic di�erential equation is shown as [88] :

dXt = G(Xt, t)dt+H(Xt, t)dWt (2.31)

where Xt = Xt(t) is a realization of the stochastic process. G(Xt, t) and H(Xt, t) are called
drift and di�usion coe�cient, respectively. The drift coe�cient is the deterministic part
of the equation to determine the local trend of the process, and correspondingly di�usion
coe�cient is the stochastic part of the coe�cient that shows the average �uctuation of
Xt. Assuming that the stochastic part obeys the necessary conditions for Wiener process,
one may be interested to solve the stochastic Equation (2.31) in order to �nd at least one
realization, Xt. To �nd the realization, one should integrate Equation (2.31) as [88]:

Xt = Xt0 +

∫ t

t0

G(Xs, s)ds+

∫ t

t0

H(Xs, s)dWs (2.32)

First integral in Equation (2.32) is an ordinary Riemann integral. For second integral,
it should be noted that the Brownian processes are not di�erentiable. To cope with this
situation, Ito, a Japanese mathematician, proposed "Ito Stochastic Integral� in 1940, and
20 years after that, a Russian physicist, R.L. Stratonovich, suggested another stochastic
integral in order to solve Equation (2.31). To identify the di�erence between Ito and
Stratonovich integrals, usually Stratonovich integral is shown by a speci�c operator ” ◦ ”
[57].

dXt = G(Xt, t)dt+H(Xt, t) ◦ dWt (2.33)
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and correspondingly the integral form can be represented as:

Xt = Xt0 +

∫ t

t0

G(Xs, s)ds+

∫ t

t0

H(Xs, s) ◦ dWs (2.34)

In general, the second integral can be reformulated as:∫ t

t0

H(Xs, s)dWs = lim
h→0

n−1∑
k=0

H(Xτk , τk)(W (tk+1)−W (tk)) (2.35)

in this equation h = (tk+1 − tk) with intermediary points τk = (1 − λ)tk − λtk+1, ∀k ∈
{0, 1, . . . , n−1}, λ ∈ [0, 1]. Depend upon how the parameter λ is de�ned, di�erent integrals
are introduced. The instance of λ = 0 results in τk = tk, meaning that the integral is eval-
uated at the start point of each interval. This method is called Ito integral. Additionally,
λ = 1/2 gives τk = (tk+1 − tk)/2, that is corresponding to Stratonovich integral [88].

Ito integral is usually employed in �nancial mathematics in which only the information
about past is taken into account for modeling. In contrast, Stratonovich is very common
in physical science modeling. Based on aforementioned formulation, the Ito integral can
be written as follows:

∫ T

0

H(s)dWs = lim
h→0

n−1∑
k=0

H(tk)(W (tk+1)−W (tk)) (2.36)

Similarly, in Stratonovich case, the next two integrals can be employed. The equality
of these two integrals is proven in [57].

∫ T

0

H(s) ◦ dWs = lim
h→0

n−1∑
k=0

H(
tk + tk+1

2
)(W (tk+1)−W (tk)) (2.37)

∫ T

0

H(s) ◦ dWs = lim
h→0

n−1∑
k=0

(
H(tk) +H(tk+1)

2
)(W (tk+1)−W (tk)) (2.38)

2.2.3 Stochastic Flow Modeling

According to Equation (2.31), in general, the modeling of stochastic processes is based on
a deterministic term (drift) and a stochastic term (di�usion). In stochastic �ow modeling
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or curve evolution, the deterministic term can be shown as G = G(D2φ,Dφ, x, t) in which
φ is an implicit representation of the curve or surface and D is gradient operator and D2

denotes the Hessian matrix. General form of a fully nonlinear stochastic partial di�erential
equation in RN × (0,∞) is [72]- [73]:

dφ = G(D2φ,Dφ, x, t)dt+
m∑
i=1

Hi(Dφ, x, t)dWi(x, t) (2.39)

where m is the number of independent noise sources Wi(x, t), i ∈ {1, 2, ...,m}.

In a special case, wherem = 1, a stochastic model for curve evolution has been proposed
as follows [57]:

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ| dW (t) (2.40)

One may notice that in Equation (2.40), Ito operator has been chosen implicitly. Ob-
viously Equation (2.40) in Stratonovich sense can be shown as:

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ| ◦ dW (t) (2.41)

As can be seen in Equations (2.40)-(2.41), all points have an extra random force (second
term) that is not explicitly a function of position because it is only depends on |Dφ| and
Brownian process which is a function of time. A more �exible structure can be achieved
by replacing the Brownian motion W (t), by a colored spatial noise.

W (x, t) =
m∑
i=1

ψi(x)Wi(t) (2.42)

where ψi : RN −→ R are smooth functions with compact support. Thus, the �nal
stochastic evolution model is as follows [57]:

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ|
m∑
i=1

ψi(x) ◦ dWi(t) (2.43)

In order to simplify the model, one can use the same type of function ψ but at di�erent
centers. ψi(x) = ψ(x− xi), where ψ can be a convenient regular function.
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2.2.4 Convergence Analysis

A rigorous mathematical convergence analysis has been conducted by Lion [72]- [73] in
which the authors have suggested the notion of stochastic viscosity solution for fully non-
linear, second order, possibly degenerate stochastic partial di�erential equations. The
following theorem is the main result of [72].

Theorem 1. Consider the following two equations:

dφ = G(D2φ,Dφ, x, t)dt+ ε |Dφ| ◦ dW (t) with φ(·, 0) = φ0(·) (2.44)

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ| ξ̇α(t) with φ(·, 0) = φ0(·) (2.45)

where ε ≥ 0 and ξα : R+ → R is a family of smooth functions. It is �Almost Surely� true
that in ω:

1. Equation (2.44) has a unique solution.

2. Assuming {ξα(t)}α>0 and {ζβ(t)}β>0 are two families of smooth functions in such a
way that if α and β → 0, then ξαand ζβ converge to W uniformly on any compact
set in t and almost surely in ω. Let {uα}α>0 and {vβ}β>0in BUC(R+×RN), namely
a Bounded Uniformly Continuous subset of R+ × RN , be the solution of Equation
(2.44). Now, suppose that limα,β→0 ‖uα(·, 0)− vβ(·, 0)‖C(RN ) = 0, then for all T > 0,
limα,β→0 ‖uα − vβ‖C([0,T ]×RN ) = 0. In other words, any smooth approximation of W
makes a series of solutions converging to the unique solution of (2.44).

3. The solution uε of (2.45) is convergent to the solution of (2.44) in C(R+×RN) when
ε→ 0.

As can be seen, the theorem can only guarantee the convergence of Equation (2.43) when
ψi = 1 or basically when the noise is not spatial-dependent [57]. Although the general case
of this theorem is still an open problem in stochastic partial di�erential equation theory,
recently some more general cases have been studied and luckily, these new studies can
support our modi�ed version of stochastic level set method presented in Section 3.2.1.
These theorems were not available when Juan et al. [57] published their paper. The newer
theorems will be discussed in detail in Section 3.2.1.
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2.2.5 Numerical Integration

As stated, in contrast to Ito integral, Stratonovich formulation does not have an explicit
numerical scheme because it does not only depend on start point in each time interval
(see Equation 2.35). For more clari�cation, if one assumes the simple evolution dφ =
|Dφ| ◦ dW (t), the corresponding method for its implicit update scheme would be:

φi+1 = φi +
1

2
(|Dφi|+ |Dφi+1|)∆Wi (2.46)

To avoid encountering implicit update formulation such as Equation (2.46), let's con-
sider the following equation in Stratonovich sense:

dφ = H(Dφ, x) ◦ dW (t) (2.47)

A typical example for H(η, x), a real valued function in RN ×R, is H(η, x) = |η|ψ(x).
Here ψ is any regular smooth function. Expanded form of Equation (2.47) in Stratonovich
sense [57] is:

dφ = H(Dφ, x)dW (t) +
1

2
d 〈H(Dφ, x),W 〉 (t) (2.48)

This expansion shows that Stratonovich term is actually Ito term plus an additional
term, called drift.

To manipulate the drift term, second term, one can start with integration of Equa-
tion(2.47):

φ(x, t) = φ0(x) +

∫ t

0

H(Dφ(x, s), x) ◦ dW (s) (2.49)

By taking the derivative of both sides with respect to the dependent variable x:

Dφ(x, t) = Dφ0 +

∫ t

0

[D2φ(x, s)DηH(Dφ(x, s), x) (2.50)

+DxH(Dφ(x, s), x)] ◦ dW (s)
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in which Dη and Dx are gradient operator with respect to η and x respectively. Using Ito
rule [57] leads to:

H(Dφ(x, t), x) = H(Dφ0(x), x) (2.51)

+

∫ t

0

[DηH · (D2φDηH) +DηH ·DxH] ◦ dW (s)

Now the extra term in Equation (2.48) can be obtained as follows:

1

2
〈H(Dφ, x),W (t)〉 (t) =

1

2

∫ t

0

[DηH · (D2φDηH) (2.52)

+DηH ·DxH]ds

As it is assumed that H = |η|ψ(x), the aforementioned formula in Equation (2.52)
changes to:

〈H(Dφ, x),W (t)〉 (t) =∫ t

0

[ψ2(t)
Dφ

|Dφ|
·D2φ(x, s)

Dφ

|Dφ|
+ ψ(x)Dψ(x) ·Dφ(x, s)]ds (2.53)

The second order term in Equation (2.53) can be simpli�ed to [57]:

Dφ

|Dφ|
·D2φ(x, s)

Dφ

|Dφ|
= (2.54)

∆φ− |Dφ| div(
Dφ

|Dφ|
) = ∆φ− |Dφ|κ

where ”div” is divergence operator and κ is the mean curvature of level set. Equation
(2.53) is obtained based on this assumption that ”m”, the number of Brownian motions,
is 1. For a more general case in which the stochastic evolution PDE is of type:

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ|
m∑
i=1

ψi(x) ◦ dWi(t) (2.55)
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the expanded version of Equation (2.55) can be represented as follows [57]:

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ|
m∑
i=1

ψi(x)dWi(t)+

1

2

((
m∑
i=1

ψ2
i (x)

)
(∆φ− |Dφ|κ) +

(
m∑
i=1

ψi(x)Dψi(x)

)
·Dφ

)
dt (2.56)
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Chapter 3

Proposed Methods for Global

Optimization

3.1 A New Parameter Optimization Algorithm

A biologically-inspired algorithm called �Spiral Bacterial Foraging Optimization� is pre-
sented in this section in order to search for the global optimum of multi-modal objective
functions. The proposed algorithm is a multi-agent, gradient-based algorithm, which mini-
mizes both the main objective function (local cost) and the distance between each agent and
a temporary central point (global cost). A random jump is included normal to the connect-
ing line of each agent to the central point, which produces a vortex around the temporary
central point. This random jump is also suitable to cope with premature convergence
that is a feature of swarm-based optimization methods. The most important advantages
of this algorithm are as follows: First, this algorithm involves a stochastic type of search
with a deterministic convergence. Second, as gradient-based methods are employed, faster
convergence is demonstrated over GA, DE, BFO and etc. Third, the algorithm can be
implemented in a parallel fashion in order to decentralize large-scale computation. Fourth,
the algorithm has a limited number of tunable parameters, and �nally mathematical proof
of convergence for SBFO, which is rare in existing global optimization algorithms, is shown.
A detailed convergence analysis of SBFO is also investigated in this section.
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3.1.1 Spiral Bacterial Foraging Optimization

To mitigate the issues discussed in Section 1 and develop a basis for a method in varia-
tional framework, in this section Spiral Bacterial Foraging Optimization (SBFO) method
is proposed. SBFO algorithm, as a global optimization algorithm that is categorized under
particle swarm algorithms (PSO), has been initially introduced in [1]. The most impor-
tant asset of SBFO is its use of gradient operators in addition to stochastic operators and
multi-agent structure. Employing gradient-based operators not only helps to improve the
speed of convergence but it is also bene�cial for ensuring the convergence of the algorithm.
Roughly speaking, each agent in SBFO is driven by a stochastic gradient toward the best
agent.

In SBFO, the aggregation process of Dictyostelium cells is imitated in which the cells
secrete cAMP protein to attract their neighbors by chemotaxis. The cells move along the
gradient of cAMP (local search) to join other cells to build the central mound (global
optimum). A spiralling motion toward the central optima provides an opportunity to
further search the feasible region.

Although the algorithm is not completely committed to the real biological process,
some major numerical problems in previous techniques, such as premature convergence,
large number of tunable parameters and the speed of convergence, are improved. The
conventional global search methods are too slow for large-scale problems like bioinfor-
matics/protein folding, arti�cial intelligence and structural topology optimization, and as
gradient-based methods are employed in SBFO, this present algorithm converges signi�-
cantly faster than other global optimization algorithms.

Aggregation of Dictyostelium Cells

The complex life cycle of cellular slime mold, �Dictyostelium discoideum�, is widely con-
sidered to be an interesting example in developmental biology [26]- [27]. When there is
plentiful food in their environment, Dictyostelium discoideum cells live individually, called
�amoeba�, but once the food source starts to decline, the amoebae aggregate together to
create a mound of cells. The mound then reshapes to a slug form to search for a new place
with a suitable source of food, moisture or even light. After that, the slug changes to a
fruiting body, including stalk and spore cells. The movement (Chemotaxis) of the individ-
ual cells and also the slug is attributed to a chemical attractant signal cAMP. cAMP is
emitted by cells while they are migrating towards the main source of the received signal.
The stage in which the cells move due to the chemical attractant is called the Aggregation
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process. To reach the central point (main source), the cells follow a spiral pattern [27]
which can be helpful to guarantee a better performance in exploring the medium for food.

Description of the SBFO Algorithm

As stated, existing BFO methods have several notable drawbacks, including premature
convergence, tuning of parameters and speed of convergence. Premature convergence can
lead to loss of diversity; as a result, the feasible space would not be explored su�ciently.
In other words, when two or more agents encounter each other along the same path,
there is no more to be gained by having more than one agent on that path. Figure (3.1)
shows premature convergence and how it can a�ect the performance of the algorithm. It
is worthwhile to mention that the ideal convergence for agents is when they encounter
each other precisely at the best point � namely, that point where they are able to continue
exploring the feasible region separately and can thereby preserve the diversity of the agents.

Figure 3.1: premature convergence lead to loss of diversity

Figure (3.2) depicts ideal convergence, in which the agents explore the space more com-
petently in comparison with Figure (3.1), which shows an algorithm with the same number
of agents in premature convergence. Parameter tuning is another �aw in evolutionary and
swarm particle optimization methods as well as in BFO algorithms, as the proper values
of parameters can signi�cantly a�ect the e�ciency of the algorithm even though the user
has no clear idea of how to select them. Finally, the speed of convergence, which is one of
the most important criteria in evaluating the capability of an algorithm, is not desirable

34



Figure 3.2: ideal convergence to preserve the diversity with the same number of agents

in previous multi-individual methods compared with the classical gradient-based optimiza-
tion methods. Spiral Bacterial Foraging Optimization (SBFO) is intended to cope with
these three major problems.

Basic Concept The main optimization problem can be de�ned as:

min
x∈X

h(x) (3.1)

in which X ⊆ Rn, h : Rn → R is a general di�erentiable nonlinear function.

Compared to existing algorithms that have relatively complicated algorithms for indi-
vidual and collective behaviors, SBFO is relatively simple. In SBFO, each agent moves
along the steepest descent direction (obviously, other alternative gradient-based methods
such as conjugate gradient, DFP, BFGS, etc., can be employed as well) in which two di�er-
ent objectives are minimized. The �rst one is the main objective function and the second
one is the distance between each agent and the leader. This can be written as [1],

f = h+ λg (3.2)

where h is the main objective function and g : Rn → R is de�ned as,

g =
∥∥xi − xml∥∥2

(3.3)
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where xi ∈ X and xml ∈ X are corresponding vectors to the ith agent and the main leader
respectively. The leader is the best current agent. ‖‖ is the distance operator in Euclidian
space. Here, λ ∈ R+ is a positive multiplier.

To explain the algorithm, it should be mentioned that, based on this algorithm, each
agent tries to minimize the main objective function locally. In addition, each agent has
to move towards the leader agent in order to minimize the second term in Equation (3.2),
which is the key to escape from local optimum points (global search). During this process,
if any agent can �nd a better solution, the central point (leader) switches to this agent.

This process continues by converging to the best seen solution by any agent. The
main tunable parameters in this algorithm are the number of agents and the multiplier
λ. Obviously, the higher the number of agents, the higher the probability of �nding the
global optimum point, but the higher, too, the computational cost. On the other hand,
the higher value of the multiplier λ, the higher speed of convergence but less chance to
explore the search space.

Like most other multi-individual algorithms [8], SBFO has the advantage of decen-
tralizability. In other words, the corresponding process of each agent can be performed
independently on a separate processor and the only information that is required to be
exchanged between agents is the position of the leader. Movement along the gradient of
the objective function in SBFO is analogous to the movement of Dictyostelium Cells along
the gradient of a cAMP protein emitted by other pacemaker Dictyostelium cells [26]- [27].

To eliminate the premature convergence issue and improve the global search capability,
a new operator is employed [1] which is inspired by the spiral motion of Dictyostelium
cells. Assume that, as the agents are attracted toward the current main leader, a random
motion perpendicular to the connecting line between the current agent and the main leader
is imposed on the agents. Figure (3.3) shows the concept.

Therefore Equation(3.3) should be modi�ed as:

g =
∥∥xi − xvl,i∥∥2

(3.4)

in which xvl,i ∈ Rn represents the virtual (pseudo) leader solution in ith iteration, shown
in Figure (3.3)

To select a proper normal arm, it is assumed that each agent has a random rotational
velocity around the central point in addition to the radial motion. For each agent, this
rotational velocity is selected randomly so that the heading of each agent, with respect to
the radial direction, will be changing stochastically. The randomness o�ers some bene�ts
for the algorithm. First of all, as the heading of each agent changes randomly at each
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Figure 3.3: A random spiral motion to improve diversity and the global search capability

time-step, none of the agents remain on the same path, so premature convergence does not
occur. In addition, this random operator increases the capability of global search because it
helps the agents to explore more portions of the feasible space. One of the more interesting
characteristics of this operator is that, the farther the agents are from the central point,
the larger the tangential motion, which essentially helps them to search a wider region,
whereas agents closer to the central agent have a smaller tangential motion and therefore
will not deviate from the central agent signi�cantly. This enables the convergence of the
algorithm as once the agent arrives in the central point, the tangential motion will also be
zero.

SBFO Algorithm De�nition As mentioned, the main operator in SBFO can be any
of the gradient-based methods, such as the steepest descent method. The algorithm is
now described in details. In the following algorithm Na is the number of agents and the
maximum number of iterations in the main loop and line search loop, are called Nit and
Nγ, respectively.

As stated in step 3 of "Main Part" in Algorithm(1), at each time step, a normal vector
for each vector has to be found which is perpendicular to the connecting vector between the
current and leading agent. In 3-dimensional problems, one can easily �nd this normal vector
by using a cross-product operator; however, for higher dimensions, that cross-product is
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Algorithm 1 SBFO Algorithm

Initialization

1: Choose Na, Nit and Nγ.
2: Initial guesses for agents xi1 (i = 1...Na)
3: Function evaluations for initial guesses f(xi1) (i = 1...Na)
4: Set ε1, ε2, ε3 > 0 (tolerances for stopping criteria)
5: Set λi1 = a ∈ R+ (i = 1...Na)
6: Set ‖∇f(xi1)‖ = ∇f0 > 0 and ∆xi1 = ∆x0 > 0 ∀i ∈ {1, 2, ..., Na}

Main Part
While (t ≤ Nit) and (

∥∥∇f(xit+1)
∥∥ ≥ ε3) and (‖∆xit‖ ≥ ε2) ∀i ∈ {1, 2, ..., Na}

Find the main leader xmlt = argmin
xit

h (xit)

For (i = 1...Na)
7: ∆f(xit) = f(xit+1)− f(xit), ∆xit = xit+1 − xit
8: Find d(xit, x

ml
t ) = xit − xmlt (∀i 6= ml) the vector between each agent and leader.

9: Find ρ(xit, x
ml
t ) a normal vector to d(xit)

10: g(xit) =
∥∥d(xit, x

ml
t )
∥∥distance between current agent and main leader

11: f(xit) = h(xit) + λitg(xit) objective function including local and global costs
12: sit = −∇f(xit) (descent direction)
13: wit = −η ‖∇g(xit)‖ ρ(xit, x

ml
t ) (random perturbation, η ∈[0,1) )

While |∆f(xit)| ≥ ε1 and kt < Nγ (line search)
Update γit, refer to [43], [28] and [29] and see algorithm (3.1.2)
kt = kt + 1
End While(line search)

14: xit+1 = xit + γit(s
i
t + wit)

15: Update λit if necessary (See Lemma(3))
End For (i)

16: t = t+ 1

End While (Main Part)
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not de�ned, and so the following procedure has been proposed. Assume that there is an
arbitrary N-dimensional vector X. Next, two coordinates are selected randomly, such as
p and qth entities in Figure (3.4). To create a vector normal to it, one should choose a

Figure 3.4: A way to �nd a random vector normal to any arbitrary vector in N-dimensional
space

vector with zero elements except for the pth and qth elements that are replaced by X(q)
and −X(p), respectively. Obviously, the dot product of X and Y is zero; hence, they are
perpendicular to each other. This idea is shown in Figure (3.4). This vector has to be
normalized and then can be used in step 3 of global search in Algorithm(1).

Tunable parameters

An interesting characteristic of SBFO is that it has no tunable parameters other than for the
number of agents, two random distributions (random spiral velocity and random selection
of normal arm's direction), and the multiplier λ. Evidently, the ability to �nd the global
optimum can be improved with a larger number of agents, although it proportionally (not
exponentially) increases the computational costs. Therefore, proper selection of it depends
on the complexity of the problem and computational resources. Random distributions
have not been observed to have a major in�uence on the performance of the algorithm.
This robustness reduced the main tunable parameter only to the number of agents and the
multiplier, λ.
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3.1.2 Convergence analysis

Review on Convergence analysis of Stochastic Gradient Systems

To investigate the convergence of the algorithm one has to deal with the switching stochas-
tic gradient system. There are some mathematical proofs for stochastic gradient algorithms
but their conditions on random perturbation and some other parts are not exactly com-
patible with the SBFO structure. Therefore, some modi�cations are required in order to
match them with the SBFO. A survey by Y. Ermoliev [31] reviewed the development of
stochastic gradient methods for unconstrained optimization. In [32] Ermoliev and Nur-
minski have investigated stochastic quasi-gradient (SQG) methods for stochastic minimax
problems. These methods can help to deal with optimization problems without having
access to the exact value of objective function and constraints. Although there is no con-
vergence analysis in these two surveys, di�erent structures in stochastic gradient systems
have been described in detail.

B.T. Poljak [33] has proposed some techniques to examine local convergence of stochas-
tic optimization processes and has been able to prove the convergence of some di�erentiable
optimization algorithms with strong assumptions on perturbation, such as independence
of disturbances in their function evaluations and derivatives. The investigated structures
are di�erent from the SBFO structure that is concerned with in the current work. These
methods are generally regarded as optimization methods in the presence of random noise.

An asynchronous distributed computational model is presented in [34] by J. N. Tsitsiklis
et al. to investigate the convergence of a large class of either deterministic or stochastic
gradient-like algorithms. It has been shown that under some conditions, these distributed
algorithms retain the same convergence properties of centralized versions. This approach
could help in investigating multi-agent algorithms such as SBFO, particularly in path
planning applications.

Nakonechnyi in [35] surveys the literature on convergence theorems for stochastic gradi-
ent processes which employ Lyapunov's second approach. Covering some major theorems
and their proofs in addition to stability makes this survey extremely helpful for convergence
analysis, however �nding a proper Lyapunov function is still an open question.

A sample-path based stochastic gradient-descent algorithm employed to optimize ex-
pected value performance has been investigated in [36] in terms of convergence. Two types
of convergence are proposed: �rst, when the �expected value� function is continuously dif-
ferentiable and second, when the performance functions are convex but not di�erentiable.
The proofs are based on the uniform law of large numbers.
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J. C. Fort and G. Pages have proved the global Kushner-Clark theorem for stochastic
algorithms [37]. Furthermore, the smoothness assumption they made in the �rst part of the
paper is relaxed by using a new approach based on a path-dependent Lyapunov functional.

A class of descent algorithms for unconstrained optimization with an Armijo-type step
size rule is considered by [38], in which the performance function is calculated inaccurately.
The most interesting aspect of this work is that it has neither limitation on relative size
of perturbation nor is it required to tend to zero. This property helps the algorithm cope
with di�cult situations one may encounter in real problems. By doing so, the authors
have suggested a new Armijo-type rule for computing the step size to ensure having an
acceptable approximate solution.

In [39], the convergence analysis of a generalized sub-gradient algorithm when the
perturbation exists. According to this article, the previous results on convergence and
stability properties of gradient and sub-gradient methods become extended and uni�ed.

Asymptotic stability analysis of the origin for an ordinary di�erential equation (ODE
can imply the stability of the stochastic approximation algorithm) can also be employed
[40]. This approach can be advantageous in some ways such as simplicity and convergence
without prior assumption of stability.

Asymptotic behavior, distributed and multi-scale algorithms and application of stochas-
tic approximation are all studied in [41], which can be useful for both modeling of stochastic
phenomena and also optimization algorithms.

D. P. Bertsekas and J. N. Tsitsiklis in [42] have sharpened the proof of convergence
for the classic problem of gradient methods with errors; in so doing, they have considered
both deterministic and stochastic errors. Based on the assumptions, the step size in a
gradient procedure tends to zero, and also descent direction and error satisfy some standard
conditions.

It is useful to be familiar with line search as a traditional method in solving uncon-
strained optimization problems. The proof of convergence for gradient algorithm (deter-
ministic) based on line search approach has recently attracted a great deal of attention.
A work by Z. J. Shi [43] is a good reference for recent development in this regard. A
combination of these methods and the stochastic gradient approaches such as [42] and [44]
is employed in current thesis for convergence analysis.

The global convergence of two methods called gradient-type method and hybrid pro-
jection method with perturbations has been proposed in [44]. For both algorithms, non-
monotone line search technique is used. Again, this paper assumes the step size as a
decreasing value (in which the step size tends to zero when the algorithm proceeds) in the
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update process. The general proposition suggested in this work has no such limitations
over step size to be compatible with SBFO structure.

Preliminary De�nitions and Propositions

The main problem is to minimize a general nonlinear function h(x) where x ∈ Rnand
Rn represents the n-dimensional Euclidean space and f(x) : Rn → R is continuously
di�erentiable function, such that Lipschitz condition holds:

‖∇f(x)−∇f(x)‖ ≤ L ‖x− x‖ ,∀x, x ∈ Rn, (3.5)

where L is a constant value.

De�nition 1. A sequence γt is called "square summable but not summable", if it obeys the
following equations :

∞∑
t=0

γt =∞ (3.6)

∞∑
t=0

γ2
t <∞ (3.7)

Let {xt} ∈ Rn be a sequence generated by the following recursive equation [42]:

xt+1 = xt + γt(st + wt), (3.8)

in which γt ∈ R is a deterministic positive step size, st ∈ Rn is a descent direction, and
wt ∈ Rn is noise term. This corresponds to the solutions generated by SBFO, as shown in
Algorithm (1). In addition, the following assumptions are made:

Assumption I) There exist two bounded positive scalars c1and c2 ∈ R+ such that

c1 ‖∇f(xt)‖2 ≤ −∇f(xt)
T st, ∀t (3.9)

‖st‖ ≤ c2 ‖∇f(xt)‖ ,∀t (3.10)

Assumption II) wt is a deterministic error that has the following characteristic for some
p, q ∈ R+ and all t,

‖wt‖ ≤ γt(q + p ‖∇f(xt)‖). (3.11)
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Assumption III ) The sequence γt is "square summable but not summable".

The last assumption leads to slow convergence of the process that is necessary to let
the algorithm explore search space more precisely.

Proposition 1. Using the classic descent method presented in Equation(3.8) with Assump-
tions (I) to (III), either f(xt)→ −∞ or else f(xt) converges to �nite value. Moreover in
the latter case, lim

t→∞
∇f(xt) = 0 and every limit point of {xt}is a stationary point of f .

The outline of proof can be found in [42] by D.P. Bertsekas and J.N. Tsitsiklis or [44]
by Mei-xia Li, Chang-yu Wang.

In SBFO, the gradient based algorithms have been employed for each agent and the
step sizes are selected based on a line search algorithm (exact or approximate), so here
another proposition is required that replaces the assumptions, made in Proposition (1)
with conditions, required for this line search method.

Convergence of SBFO

In order to be compatible with the SBFO structure, the Assumptions (I) to (III) should
be modi�ed as follows.

Let {xt} be a sequence generated by the recursive Equation(3.8) and assume the main
descent direction st and perturbation term wt satisfy the following conditions:

∃c1 > 0, ‖st‖ ≤ c1 ‖∇f(xt)‖ ,∀t (3.12)

∃c2 ≥ 1, 〈∇f(xt), st〉 ≤ −c2 ‖∇f(xt)‖2 ,∀t (3.13)

∃p < 1, ‖wt‖ ≤ p ‖∇f(xt)‖ ,∀t (3.14)

where c1 ∈ (0,∞) and c2 ∈ [1,∞) and let I = {t ∈ Z+| 〈∇f(xt), st + wt〉 ≥ 0} and
J = Z+\I.

Rather than the constraints in Equations (3.6) and (3.7), one can assume that the
sequence γt is generated by any line search algorithm [43]. For the sake of simplicity the
"Armijo rule" [43] is chosen for this thesis and presented in the Algorithm (3.1.2). It
should be noted that this algorithm is a counterpart for the line search algorithm (inner
loop for each agent) in Algorithm (1) in which the �Armijo rule� for line search procedure
is employed. In this algorithm, the maximum number of iterations in main loop and line
search loop, are called Nit and Nγ, respectively and ε1 > 0 is the tolerance for stopping
criteria.
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Algorithm 2 Armijo Algorithm for Local Search

• De�ne constants µ, ν ∈ (0, 1), x0 ∈ Rn ,

• Set Nit and Nγ, and ε1 > 0

• Let t = 0, and rt = st + wt where st and wt has been de�ned previously

• While ‖∇f(xt)‖ ≥ ε1, and t ≤ Nit

Suppose γ = a, a ∈ R+,

while f(xt + γrt) > f(xt) + µγ 〈∇f(xt), rt〉 and k ≤ Nγ

γ = νγ

k = k + 1

end while

γt = γ

xt+1 = xt + γtrt

t = t+ 1

End While
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The gradient based scheme with perturbation is represented as follows:

In what follows, the main goal is to show that the convergence of the algorithm is
guaranteed; to do so, some explanations and lemmas are required. The main di�erence
between Propositions (1) and (2), is attributed to the characteristic of perturbation in
SBFO. As a result, the constraints (3.6, 3.7 and 3.11) are limited only to inequality (3.14).
In addition, it is assumed that c2 ≥ 1 and p < 1 which is di�erent from what is explained
in Proposition (1) to make the parameters compatible with the requirement of SBFO.
Furthermore, employing the line search algorithm, a gradual convergence is obtained in
order to have an e�cient method in discovering the search space. This is an alternative to
the "square summable but not summable" property of Equations (3.6) and (3.7).

Lemma 1. Under constraint (3.14), it is always true that 〈∇f(xt), st + wt〉 < 0 or simply
I = ∅

Proof. Let's proceed by contradiction:

Suppose ∃t ∈ I such that 〈∇f(xt), st + wt〉 ≥ 0. Therefore

− 〈∇f(xt), st〉 ≤ 〈∇f(xt), wt〉 (3.15)

from (3.13) and (3.14), and Cauchy-Schwarz inequality:

c2 ‖∇f(xt)‖2 ≤ −〈∇f(xt), st〉
≤ 〈∇f(xt), wt〉
≤ ‖∇f(xt)‖ ‖wt‖
≤ p ‖∇f(xt)‖2 (3.16)

From (3.16) one can conclude that c2 ≤ p which is a contradiction with our initial
assumption that c2 ≥ 1 and p < 1 which implies p < c2. Hence, it always holds that
〈∇f(xt), st + wt〉 < 0 or simply I = ∅.

Lemma 2. Let {xt} and {f(xt)} be iteration sequences generated by Algorithm 4.4., then
the sequence {f(xt)} is monotone and non-increasing.

Proof. Looking at step 3, in Algorithm (3.1.2) it is known that f(xt + γrt) ≤ f(xt) +
µγ 〈∇f(xt), rt〉, where rt = st + wt. From Lemma (1), 〈∇f(xt), rt〉 < 0 so f(xt+1) ≤ f(xt)
which leads to the conclusion that {f(xt)} is monotone and non-increasing where xt+1 =
xt + γrt.
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Proposition 2. The modi�ed descent method presented by assumptions (3.12-3.14) along
with the line search method in the Algorithm (3.1.2) result in either f(xt)→ −∞ or f(xt)
converges to a �nite value. Moreover in the latter case, if {∇f(xt)} is uniformly continuous
on an open convex set D ⊆ Rn that contains {xt} then:

• lim
t→∞
∇f(xt) = 0

• Every limit point of {xt}is a stationary point of f

• {xt} is convergent

Proof. Instead of a direct proof, assume that, contrary to the statement in Proposition (2),
∃ε0 > 0 such that ‖∇f(xt)‖ > ε0,∀t. By using (3.13), (3.14) and current assumption:

− 〈∇f(xt), rt〉 = −〈∇f(xt), st + wt〉
≥ c2 ‖∇f(xt)‖2 − ‖∇f(xt)‖ p ‖∇f(xt)‖
= (c2 − p) ‖∇f(xt)‖2 (3.17)

Also it is known that:

‖rt‖ = ‖st + wt‖
≤ c1 ‖∇f(xt)‖+ p ‖∇f(xt)‖
= (c1 + p) ‖∇f(xt)‖ (3.18)

From the de�nition of Algorithm (3.1.2):

f(xt+1) ≤ f(xt) + µγ 〈∇f(xt), rt〉 (3.19)

Equation(3.19) together with Equation(3.17) imply:

f(xt)− f(xt+1) ≥ −µγ 〈∇f(xt), rt〉
≥ µγ((c2 − p) ‖∇f(xt)‖2)

≥ 0 (3.20)

The left hand side of the �rst row in Equation (3.20) has a limit of zero because as f(xt)
is monotone and non-increasing, therefore f(xt) should tend to −∞ or to a �nite value.
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If one assumes that f(xt) is bounded over the domain the �nal limit is a �nite value then
the limit of left hand side (3.20) is zero. By taking the limit of all expressions of inequality
(3.20)

lim
t→∞

γt ‖∇f(xt)‖2 = 0 (3.21)

as it is assumed that ∀t, ‖∇f(xt)‖ > ε0, it leads to

lim
t→∞

γt = 0 (3.22)

Considering the way that the algorithm de�nes γt , one can say that γt is the smallest
positive value that satis�es the inequality in de�nition of algorithm (Armijo rule [43]); so
if one de�nes ψt = γt

ν
the following inequality holds:

f(xt + ψtrt) ≥ f(xt) + µψt 〈∇f(xt), rt〉 (3.23)

then,
f(xt)− f(xt + ψtrt) ≥ −µψt 〈∇f(xt), rt〉 (3.24)

Applying the Median Value Theorem,

〈∇f(xt)−∇f(xt + θtψtrt), rt〉
< (1− µ) 〈∇f(xt), rt〉 (3.25)

where θt ∈ (0, 1). By re-arranging the inequality (3.25),

1− µ <
〈∇f(xt)−∇f(xt + θtψtrt), rt〉

− 〈∇f(xt), rt〉

≤ ‖∇f(xt)−∇f(xt + θtψtrt)‖ ‖rt‖
− 〈∇f(xt), rt〉

≤ ‖∇f(xt)−∇f(xt + θtψtrt)‖ (c1 + p) ‖∇f(xt)‖
(c2 − p) ‖∇f(xt)‖2

(3.26)

But it is known lim
t→∞
‖ψtrt‖ = lim

t→∞

γt
ν
‖rt‖ = 0, so the last expressions of the above

inequality tends to zero when t→∞.
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Therefore, 1 − µ < 0 =⇒ µ > 1 which is a contradiction with our initial assumption
for µ and proves that lim

t→∞
∇f(xt) = 0. Now, re-arrange Equation (3.8), and use Equations

(3.12), (3.13) and (3.18):

‖xt+1 − xt‖ = γt ‖rt‖ ≤ a(c1 + p) ‖∇f(xt)‖ (3.27)

By taking limit of both side when t→∞ the convergence of {xt} is guaranteed.

lim
t→∞
‖xt+1 − xt‖ = 0 (3.28)

Consequently by using Proposition (2), one can deal with convergence of SBFO. Two
di�erent conditions have been investigated here. Initially, it is assumed that an agent of
SBFO has found the best possible solution; hence, no switching to another agent occurs.
Then a more general circumstance will be considered in which the process starts from initial
random locations for agents and start exploring the feasible space. Some formal de�nitions
and lemma are needed for the main theorems on convergence of the SBFO algorithm.

De�nition 2. Best Possible Solution (BPS): Given the set of sequences {xit} , i ∈
1 . . . Na. x? is the Best Possible Solution of the optimization algorithm, if x? = limt→∞ x

i
t, ∀i ∈

1 . . . Na, such that f(x?) ≤ f(xit), ∀i and t.

De�nition 3. Permanent Leader (PL): The ith agent becomes the Permanent Leader
at time t0 if

∀t ≥ t0, f(xit) ≤ f(xjt), ∀j 6= i, j ∈ {1 . . . Na} (3.29)

where the t0 is the time at which, SBFO has found this Leader.

Obviously, the permanent leader (PL) is not the best possible solution (BPS) as it is
still moving toward the BPS in a locally convex neighborhood of the BPS. The convexity
of this neighborhood will be discussed in Lemma (4) in detail.

It is worth mentioning that, if the SBFO algorithm �nds its permanent leader there is
no more switching between leaders. It usually happens at the last stage of optimization
process in which permanent leader is located at a locally convex neighborhood of best
possible solution (BPS). From this point up to Lemma (6), it is assumed that the permanent
leader has been found.

Looking at the function,f, represented in equation (3.2) one can see that in SBFO, the
objective function contains two major parts: the �rst is the main function h to be optimized,
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and the second, is the distance between the current agent and the virtual leader, g. The
function g can be re-written as follows (Pythagorean Theorem in Na dimensional space)
[see Figure(3.3)]:

g(xit) =
∥∥∥xit − xvl,it

∥∥∥2

=
∥∥∥xit − xplt ∥∥∥2

+
∥∥∥xvl,it − x

pl
t

∥∥∥2

(3.30)

xplt is the permanent leader at time t and it is known that xvl,it − x
pl
t is a perpendicular

arm to the vector connecting xit to x
pl
t and its length can be determined as:∥∥∥xvl,it − x

pl
t

∥∥∥ = η
∥∥∥xit − xplt ∥∥∥ (3.31)

In which η ∈ [0, 1) is a random number drawn from a uniform distribution over [0, 1).

Let's de�ne the function q as:

q(xit, x
pl
t ) =

∥∥∥xit − xplt ∥∥∥ (3.32)

and also ρ the unit vector perpendicular to the vector connecting xit to x
pl
t

ρ(xit, x
pl
t ) =

xvl,it − x
pl
t∥∥∥xvl,it − x
pl
t

∥∥∥ (3.33)

To be compatible with Proposition (2), It is possible to rewrite sit and w
i
t in terms of

∇h, ∇q and ρ.
sit = −∇f(xit) = −∇h(xit)− λ∇q(xit) (3.34)

wit = −λη
∥∥∇q(xit)∥∥ ρ(xit, x

pl
t ) (3.35)

Lemma 3. Given any xit for which ||∇q(xit, x
pl
t )|| 6= 0, there exists a λ > 0, such that

λ
∥∥∥∇q(xit, xplt )

∥∥∥ < ‖∇f(xit)‖

Proof. From reverse triangle inequality ∀ V, U ∈ Rn :

| ‖V ‖ − ‖U‖ | ≤ ‖V − U‖ (3.36)

By replacing U by −U :
| ‖V ‖ − ‖U‖ | ≤ ‖V + U‖ (3.37)
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Substituting V = ∇h and U = λ∇q and by de�nition of ∇f

| ‖∇h‖ − ‖λ∇q‖ | ≤ ‖∇h+ λ∇q‖ (3.38)

= ‖∇f‖

Therefore, if one �nds λ in such a way that the following inequality (3.39) is satis�ed,
the inequality in Lemma (3) will also be satis�ed.

λ ‖∇q‖ < | ‖∇h‖ − λ ‖∇q‖ | (3.39)

Solving this inequality for λ leads to the following ranges for λ:

0 < λ <
‖∇h‖
‖∇q‖

− 1 (3.40)

λ >
‖∇h‖
‖∇q‖

+ 1 (3.41)

Pictorial representation of Equation(3.34) when λ is selected from the ranges in (3.40)
and (3.41) are shown in Figures (3.5) and (3.6) respectively. As can be seen, the critical
situation happens when ~∇h and ~∇q are in opposite directions and by choosing λ based
on inequalities (3.40) or (3.41) the required condition in Lemma (3), λ

∥∥∥∇q(xit, xplt )
∥∥∥ <

‖∇f(xt)‖, will be met.

The only problem with inequality (3.40), is that when ‖∇h‖ → 0, λ approaches −1
which is not acceptable as λ has to be a positive value. So, a better choice for λ is the range
in inequality (3.41). Theorem (2) demonstrates that the structure de�ned in Equations
(3.34) and (3.35) when the λ is chosen within the range introduced by (3.41) guarantees
the convergence of SBFO.

Theorem 2. Assume that, the Permanent Leader has been found by SBFO algorithm, and
the multiplier, λ, in Equation (3.2) is chosen such that Inequality (3.41) satis�ed, then the
sequence {xit}, generated by SBFO algorithm converges to a local optimum point, such that
lim
t→∞
∇f(xit) = 0 for all i = 1 . . . Na agents.

Proof. It can be shown that st and wt in Equations (3.34) and (3.35) satisfy the conditions
in Equations (3.12-3.14), hence Proposition (2) applies. To show that, one can select
c1 = c2 = 1.
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Figure 3.5: 0 < λ <
‖∇h‖
‖∇q‖

− 1

Figure 3.6: λ >
‖∇h‖
‖∇q‖

+ 1

Inequality (3.12) holds, because:

c1 = 1→
∥∥sit∥∥ ≤ c1

∥∥∇f(xit)
∥∥ ,∀t (3.42)

and also for Inequality(3.13):

c2 = 1→
〈
∇f(xit), s

i
t

〉
≤ −c2

∥∥∇f(xit)
∥∥2
,∀t (3.43)

Finally, as η < 1, if one selects p = η, then the Inequality (3.14) always holds, which can
be seen from Equations (3.34) and (3.35) and also this point that always ‖ρ‖ = 1, one can
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conclude that:

p = η →
∥∥wit∥∥ =

∥∥∥−λη ∥∥∇q(xit)∥∥ ρ(xit, x
pl
t )
∥∥∥

= λη
∥∥∥∇q(xit, xplt )

∥∥∥
= pλ

∥∥∥∇q(xit, xplt )
∥∥∥

≤ p
∥∥∇f(xit)

∥∥ ,∀t (3.44)

The last inequality in Equation (3.44) is valid as, λ is chosen within the range introduced
by (3.41) in Lemma(3).

Finally, if one de�nes a recursive update algorithm for the set of sequences {xit},
as in Equation (3.8), according to Proposition (2), the convergence is guaranteed and
{∇f(xit)} → 0, ∀i = 1 . . . Na.

Based on the Theorem (2), it has been noted that each agent converges to a local opti-
mum point. Now one should pay attention that having the condition of {∇f(xit)} → 0 does
not necessarily mean that all agents have converged to a unique local optimum point of the
main function that is expected to be optimized. This happens because at a local optimum
point of function h, lim

t→∞
∇h(xit) and lim

t→∞
∇q(xit) ∀i = 1 . . . Na, should be zero simultaneously

but lim
t→∞
∇f(xit) = 0 may be caused by the condition: lim

t→∞
∇h(xit) = −λ lim

t→∞
∇q(xit) for some

i = 1 . . . Na. In such a circumstance, the limit point of the optimization process is not a
local optimum of the main function h. Besides, the agents will not necessary converge to a
unique point. This situation is shown in Figure (3.7).One way to deal with such a problem
is to employ an augmented multiplier in which the multiplier is updated as follows:

λt = λ0χ
κ(t) (3.45)

In which χ > 1, λ0 are constant values and κ(t) can be chosen simply as κ(t) = β0t where
β0 is a positive constant. It is worth mentioning that rapidly increasing λt will not allow
the agents to explore the search space e�ciently and on the other hand small value of λt
leads to slow convergence of the optimization process.

The following lemmas show how to cope with the aforementioned problem which leads
to an un-converged solution. Lemma(4), shows that there always exists a λt by which
the function f (including a non-convex function h and strictly convex function q) becomes
locally convex. Lemma (5) explains how the convexity of f can lead to this conclusion
that the local optimum point of f is also the local optimum point of h which is the main
function to be optimized.
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Figure 3.7: An agent is stuck because ∇h(xt) = −λ∇q(xt)

For Lemma(4), one must prove that for a Lipschitz continuous function f de�ned in
(3.2) in which q is strictly convex on Rn, ∃λ > 0, such that ∀ε > 0, f is convex at least
in a ball with radius ε, about the BPS. Therefore, the gradient based algorithm employed
for SBFO leads to a local optimum in which ∇h(xt) and ∇q(xt) are simultaneously zero
and all agents converge to a unique point in such a condition the function f has only one
solution where ∇q(xt) = 0 and q(xt) = 0 which means all agents have converged to the
central point. [see Lemma (5)]

Lemma 4. Assume f(x) de�ned in equation(3.2) is Lipschitz continuous, then ∀ε > 0,∃λ
such that f(x) is locally convex in any neighborhood Dε ⊆ D ⊆ Rnwith radius ε, where D
is the domain of f .

Proof. By de�nition, a function f : Rn −→ R is convex if D ⊆ Rn, the domain of f , is a
convex set and if for all x, y ∈ D, and θ ∈ [0, 1], also [45]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (3.46)

Strict convexity of f(x) requires,

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y) (3.47)

Moreover, it has been assumed that f is Lipschitz continuous, therefore:

∀x, y ∈ Rn,∃L ∈ R such that:

‖f(x)− f(y)‖ ≤ L ‖x− y‖ (3.48)
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To show the convexity of function f in a ball with radius ε, one should show that ∃λ > 0
by which the following inequality holds.

f(θx + (1− θ)y)

= h(θx+ (1− θ)y)) + λq(θx+ (1− θ)y)) (3.49)

≤ (θh(x) + (1− θ)h(y)) + λ(θq(x) + (1− θ)q(y))

By rearranging (3.50):

h(θx + (1− θ)y))− (θh(x) + (1− θ)h(y))

≤ λ(θq(x) + (1− θ)q(y))− q(θx+ (1− θ)y))

= λσ (3.50)

As q is a strictly convex function (on Rn), the right hand side of (3.50) is always positive
or λσ > 0 which means that instead of proving (3.50) one should show that for each σ > 0
and ε > 0 there is λ > 0 such that:

h(θx+ (1− θ)y))− (θh(x) + (1− θ)h(y)) ≤ λσ (3.51)

Knowing that h is Lipschitz continuous.

‖h(θx+ (1− θ)y)− (θh(x) + (1− θ)h(y))‖ =

‖(h(θx+ (1− θ)y)− h(y))− θ(h(x)− h(y))‖ ≤ (3.52)

2Lhθ ‖x− y‖ ≤ 2Lhθε

Where Lh is the constant in �Lipschitz continuity� condition for function h. So to �nd
a proper λ > 0 :

2Lhθε ≤ λσ =⇒ λ ≥ 2Lhθε

σ

Maxθ=1−→ λ ≥ 2Lhε

σ
(3.53)

As λt in (3.45) is a monotonic increasing function, it is always possible to �nd a t0 such
that λt ≥ 2Lhε

σ
,∀t > t0. Unfortunately the inequality (3.53) has no practical use to select a

suitable λt during the optimization process and only helps to prove the existence of a λt.

Lemma 5. There exists a sequence {λit} ∈ R+ which de�nes the function f(xit) in Theorem
(2), such that if {∇f(xit)} converges to zero, then lim

t→∞
∇h(xit) = 0 and lim

t→∞
∇q(xit, x

pl
t ) = 0

simultaneously and also all agents converge to a unique point x? ∈ D ⊆ Rn.
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Proof. It is known that a convex function has a single point satisfying necessary conditions
for optimality [45]. Select an ε such that the local optimum of h for the Permanent Leader
lies within a ball of radius ε centered at the location of the Permanent Leader at iteration
t.

Using the Lemma (4), there is a {λit} by which the function f is locally convex in the
above-mentioned ball. Obviously, the solution ∇q(xit, x

pl
t ) = 0 and ∇h(x?) = 0,∀i is a

solution for ∇f(x) = 0, where x? is the corresponding local solution of h to the permanent
leader. But one knows that f is locally convex, therefore this solution is the only solution
of ∇f(x) = 0 in that neighborhood. As mentioned, this unique solution will be achieved
when ∇q(x?, xplt ) = 0 and as q is a distance function and convex, this situation happens
when the tracking agents and the main leader are coincident and lie on the local optimum
point of h, x?, or

∥∥∥q(xit, xplt )
∥∥∥ = 0.

To accomplish the proof of convergence one should show that the SBFO algorithm
will converge to the BPS, regardless of the assumption made in Theorem (2), where it is
assumed that the PL has been found. To do so, �rst one should show that under some
conditions there is only a �nite number of switching between leaders before �nding the PL.
The next lemma is designed for this purpose.

Lemma 6. Assume that there is minimum required improvement at each switching called
ζ > 0, then only a �nite number of switching occurs between leaders.

Proof. As stated, at each switching at least an improvement of ζ > 0 is obtained, otherwise
no switching occurs. Let's de�ne K = {t1, t2, . . . , tj, . . . , tk} ⊂ Z+ where tj is the time at
which jth switching occurs between leaders and also ∆fs(tj) is de�ned as:

∆fs(tj) = f(xmltj )− f(xmltj+1
) (3.54)

by assumption:
∆fs(tj) > ζ ∀tj (3.55)

Now if one sums over both side of equation (3.54):

k−1∑
j=1

∆fs(tj) =
k−1∑
j=1

f(xmltj )− f(xmltj+1
) (3.56)
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where k is total number of switching. from (3.55):

k−1∑
j=1

∆fs(tj) > kζ (3.57)

so from Equation(3.56),

k−1∑
j=1

f(xmltj )− f(xmltj+1
) = f(xmlt1 )− f(xmltk )

=
k−1∑
j=1

∆fs(tj) > kζ (3.58)

It is obvious that the �rst row of Equations (3.58) are bounded as it is assumed that f
is bounded. Therefore, k, the total number of switches, can not be in�nite, otherwise one
arrives at a contradiction in Equation (3.58).

Theorem 3. Let {xit}, i = 1 . . . Na, be a set of sequences generated by SBFO. All members
of this set converge to a local optimum point, x? ∈ D ⊆ Rn at which ∇f(x?) = 0 as long
as there is a minimum required improvement, ζ > 0, for switching between leaders.

Proof. According to Lemma(6), in SBFO, only a �nite number of switching occurs, if
there is a minimum required improvement, ζ > 0, for switching between leaders. Now
let's limit our attention to the kth stage of the optimization, afterthe last switch, in which
k < ∞ is the total number of switches between leaders. According to Theorem(2) SBFO
is globally convergent starting from any initial guesses, xi1,k ∈ D ⊆ Rn for kth stage, or
mathematically:

∀xi1,k ∈ D ⊆ Rn ⇒ {xit,k} → x? (3.59)

in which {xit,k} is a set of sequences starting at the kth stage, converging to x?.

Note that the initial guesses for the kth stage are points that are produced by the
previous stage, (k − 1), of the SBFO algorithm.

The main di�erence between this result and Theorem(2), is that switching between the
central points is considered in the convergence process. In other words, as the process
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may �nd a better solution during the convergence toward the temporary central point, the
leader may vary during the optimization. Having a �nite number of switches is crucial for
this theorem, because only the last stage needs to be considered for convergence. The only
point is that, one should make sure that at each stage xi1,k ∈ D ⊆ Rn .

3.1.3 Algorithm Evaluation

The performance of the SBFO has been evaluated for di�erent multi-modal functions and
has been found to be consistently capable of �nding the global optimum point.

Benchmark Functions

Some standard benchmark functions such as: Shekel's Foxholes, Rosenbrock, Rastrigin,
Griewank, Ackley functions, as well as two multi-modal random bumpy objective functions
in two-dimensional space, have been used to evaluate the SBFO algorithm. As an example
for the standard benchmarks, the Shekel's Foxholes is de�ned as:

h(x) =
1

500
+

25∑
i=1

1

j +
2∑
i=1

(xi − aij)6

(3.60)

where aij a are a set of constant parameters de�ned in reference [20]- [21]. Figure (3.8)
shows Shekel's Foxholes function. For de�nitions of other standard benchmark functions
the reader is referred to [20]- [21]. The other objective function used here is a function
that consists of a set of one hundred Gaussian bell functions de�ned as follows:

h(x) = Ae−[a(x1−x01)2+2b(x1−x01)(x2−x02)+b(x2−x02)2] (3.61)

where a = cos2(θ)

2σ2
x1

+ sin2(θ)

2σ2
x2
, b = − sin2(2θ)

4σ2
x1

+ sin2(2θ)

4σ2
x2

, c = sin2(θ)

2σ2
x1

+ cos2(θ)

2σ2
x2

in which A, θ, σx1, σx2

are some constant values selected randomly.

By adding 100 functions of these bell shape functions, a bumpy multi-modal function
is available that is used to evaluate the SBFO. Figure (3.9) depicts a multimodal function
produced by this method. The discovered paths of the function is shown in Figure (3.10).
As there are many local optimum points, it is cluttered and not clear to follow the paths,
therefore, another function of this type but with simpler shape is added that has only six
Gaussian bell functions. This function is shown in Figure (3.11).
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Results

Table I presents SBFO's performance compared with respect to other methods found in
[20]- [21], for Shekel's Foxholes function. The performance in this table is de�ned as the
average number of function evaluation required to �nd the global optimum point when the
process is repeated 30 times. A brief explanation on how these algorithms work is presented
in Introduction, Section (1.1). The point [-31.950, -31.950] is the global optimum of this
problem.

Figure 3.8: Shekel's Foxholes function

Table I: Comparison of Mean Number of Function Evaluations

DE/rand/1/bin BFOA BFOA-GA CDE SBFO
16472.85 27502.40 18291.86 12237.60 7384.20

It should be noted that the mean number of function evaluations was calculated for 30
runs by using 50 individuals or agents. The next example is related to the function shown
in Figure (3.9). Again, the SBFO is successful in solving the problem. Figure (3.10) shows
the path followed by some of the selected agents to �nd the global optimum. The point
[-0.787, -13.173] is the global optimum of this example. Figure(3.12) is shown to see how
the SBFO algorithm helps to escape from local optimum points to converge to the global
solution even when the random term is o�. The global optimum point is located at [0.0,
4.0] in this example.
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Figure 3.9: A bumpy surface produced by adding one hundred Gaussian bell functions

In another attempt to evaluate the capability of SBFO some benchmark functions are
employed in order to compare SBFO with the classic global optimization algorithms like
GA and SA. In this part only the number of successful convergence to the global solution
out of 30 runs is compared.

Table II reports the results. The initial solutions for all of the algorithms are selected
randomly within the same region of interest. In this experiment there is no limitation on
total number of function evaluations unless the procedure stops at a local (or global) opti-
mum point. As can be seen when there is no constraint on number of function evaluation
GA has very good performance. Although SA behaves poorly in �nding the optimum,
in such cases that it does �nd the optimum, the number of function evaluations is ex-
tremely low compared to the other methods. Finally SBFO is comparable to GA in terms
of reliability with acceptable computational costs.
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Table II: Comparison between SA, GA and SBFO algorithms
Percentages of Convergences to global optimum

Shekel's Rosenbrock Rastrigin Griewank Ackley Bumpy O.

Foxholes 100 Bells

SBFO 95 83 60 80 73 93

SA 10 13 3 3 17 100

GA 10 100 100 100 100 17

Figure 3.10: Explored region in multi modal function with 100 bell shape functions

3.1.4 Conclusion for Parameter Optimization Algorithm: SBFO

In this section, a bio-inspired method called �Spiral Bacterial Foraging Optimization Method�
is introduced. Ease of use, simplicity of concept, and speed of convergence are some major
advantages of this algorithm. The inclusion of random operators reduces premature con-
vergence, which would otherwise limit the capability of the algorithm. The results show
the pro�ciency of the SBFO in terms of speed of convergence compared with the existing
algorithms under the same circumstances.

SBFO as a gradient based global optimization algorithm is expected to have a strong
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Figure 3.11: A bumpy surface produced by adding six Gaussian bell functions

Figure 3.12: SBFO helps to escape from local optimum points

mathematical proof of convergence. In Section (3.1.2) convergence properties were estab-
lished by expanding on [42] by Bertsekas et al. Having a general proof of convergence
is rare among the global optimization methods, but SBFO bene�ts from possessing this
signi�cant asset.

Starting from an initial set of agents, the individuals move spirally toward the best
available agent, and this center point might switch to another agent once a better solution
is found. The proof presented here only focuses on the last stage of convergence as only a
�nite number of switches occur (Lemma(6). Therefore, if one uses SBFO as an algorithm
to explore a multi-modal region in, for example, path planning problems, the theorems
(mainly Theorem (3)) should be modi�ed in order to guarantee the stability of a stochastic
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switching process.

It has been noted that one of the most important advantages of SBFO is its limited
number of tunable parameters (namely λ and number of agents), but it is worth mention-
ing that a wise selection of parameter λ can signi�cantly a�ect the performance of the
algorithm. Lemmas (3), (4) and (5) are intended to make a constructive foundation in this
regard. There may be other ways to de�ne λ properly that are not covered in this thesis
and postponed to the ongoing part of this research.

3.2 Proposed Algorithms for Variational Framework

In previous section, it has been shown that a an e�ective global optimization method
should have i) a stochastic operator, or and/or ii) a multi-agent structure. These two
properties are very common in the existing global optimization methods. To improve the
computational time and costs, the algorithm may include gradient-based approaches to
increase the convergence speed. This property is exclusively available in SBFO and it is
the basis on which SBFO can be extended to variational framework. Level set method
is chosen for optimization in variational framework, and as known, it is an extension of
steepest descent method in parameter optimization. The same way that steepest descent
method is generalized by SBFO method such that it can �nd the global solution, level
set method can be extended in order to �nd global solution of variational problems. In
three steps, the variational set up is formulated: i) A single stochastic level set method,
called "Active Contours with Stochastic Fronts" (ACSF), ii) Multi-agent stochastic level
set method (MSLSM), and iii) Stochastic level set method without gradient such as E-ARC
algorithm. The �rst two algorithms can be formulated in general and are presented in this
chapter. The latest step, when there is no closed form equation to described the gradient,
is speci�cally designed for path planning problem, so it will be discussed in next chapter
that only concerns with engineering applications.

3.2.1 Active Contour with Stochastic Fronts (ACSF) Algorithm

One of the most important applications of stochastic partial di�erential equations is in
image processing and segmentation [57]. By employing the stochastic level set method,
apparently, fronts should be able to escape from local optima, but the simulation shows
that with small number of noise sources it only works to capture the outer boundary of the
features in image. To improve the capability of the algorithm in bypassing the local edges,
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each point on the evolving curve should have an independent random jump. By local edge,
it is meant the situations where the evolving fronts are trapped at some locations and
cannot evolve anymore. Also real edges are the edges that are detected by the algorithm
and actually exist in the real image. This issue can be encountered in topology optimization
problem as well as image segmentation.

One way to bypass the local edges is to use the delta function as spatial weighting
functions in Equation (2.56). This way each point over the front has an independent ran-
dom jump. As the �nite di�erence algorithm has been employed for numerical simulations,
every node on evolving contour a delta function is assigned. Substituting delta function
and its derivative into Equation (2.56), it can be re-written as Equation (3.62) as long as
ε is small enough.

dφ = G(D2φ,Dφ, x, t)dt+ |Dφ|
m∑
l=1

δε,l(x)dWl(t)

+
1

2

((
m∑
l=1

δ2
ε,l(x)

)
(∆φ− |Dφ|κ)

)
dt

+
1

2

((
m∑
l=1

δε,l(x)Dδε,l(x)

)
·Dφ

)
dt (3.62)

here G(D2φ,Dφ, x, t) is the deterministic model. In this thesis Chan-Vese model, Equation
(4.8), is chosen and obviously any other model can be selected as well. Alsom is the number
of node on evolving contour that by de�nition of ACSF, is equal to the number of delta
functions. δε,l(x) is the Dirac delta function centered at lth node of �nite di�erence grid,
l = 1...m. An approximation for Dirac delta function with width of ε is represented in
Equation(3.63).

δε,l(x) =
1

π

ε

ε2 + (x− xl)2
(3.63)

Assuming ε � Le where Le is the minimum grid size, δε,l(x) is almost zero in all
nodes but lth node. Keeping this point in mind, Equation (3.62), or basically the original
Equation (2.43), can be rewritten in the following form:

dφ = G(D2φ,Dφ, x, t)dt+Dφ(x, t) ·Υ(x, ε) ◦ dW (t) (3.64)
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where Υ = [υil] is a matrix of m×m in which the entities are de�ned as:

υil = δε,l(xi), ∀i, l = 1...m (3.65)

One issue with this algorithm is that the edges continue wobbling for a relatively long
time before the process reaches the steady state; therefore an edge solidi�cation expression
should be added to the equation. Here an exponential term is employed for this purpose.
The modi�ed equation is as follows:

dφ = G(D2φ,Dφ, x, t)dt+ e−
t
τDφ(x, t) ·Υ(x, ε) ◦ dW (t) (3.66)

In which 1
τ
is the solidi�cation rate and should be determined by trial and error to

achieve better performance.

Convergence Analysis

In the theorem proposed by Lion and Souganidis [72]- [73], the noise source has no spatial
dependency. The general formulation in Equation (2.56) is fully dependent on spatial
terms represented by ψi functions. Basically, Theorem 1 cannot support any formulation
with spatial-dependent noise. In Equation (3.66), a simpler form is obtained which luckily
can be supported by a recent theorem proposed by M. Caruana et.al, in [81]. In spite of
what is expected, it has been shown that in presence of spatial term, the stochastic partial
di�erential equation would not necessarily converge to the solution of the deterministic
part. Although the form employed by [81] is not the general form, it can obviously con�rm
that the Theorem 1 is not valid for a general case where the spatial terms exist. To discuss
the new theorem and application of it in ACSF, some background information is required.

Nilpotent Lie Algebras Given C∞-vector �elds Hi =
∑n

j=1 H
i
j(x) ∂

∂xj
, 1 ≤ i ≤ q on

Rn. Lets denote L(H1, . . . , Hq), the Lie sub-algebra of I(Rn), expanded by {H1, . . . , Hq}.
Here I(Rn) is the Lie algebra of all C∞-vector �elds on Rn in which the bracket product
operator is de�ned as [90]:

[X, Y ] = X ⊗ Y − Y ⊗X, X, Y ∈ I(Rn) (3.67)

This operator can be expanded as:

[X, Y ]i =
n∑
k=1

(Xk dY
i

dxk
− Y k dX

i

dxk
) where i ∈ {1, ..., q}, q < n (3.68)

64



Equation (3.68) shows the ith entity of the vector �eld [X, Y ].

A Lie algebra L is called Nilponent of step p if pth term of the series in Eqaution(3.69)
vanishes [90].

[L,L] ⊃ [L, [L,L]] ⊃ [L, [L, [L,L]]] ⊃ · · · (3.69)

in which

∀A,B ⊂ L :

[A,B] =

{
k∑
i=1

[ai, bi]; ai ∈ A, bi ∈ B, i = 1, . . . , k, k = 1, 2, . . .

}
(3.70)

Supporting Theorem and Remark In a paper by M. Caruana, P.K. Friz and H.
Oberhauser [81] preceded by a set of papers by the last two authors [82]- [83], nonlinear
parabolic evolution of the form ∂tφ = G(D2φ,Dφ, x, t) subject to noise of form H(Dφ, x)◦
dB for linear H with respect to Dφ has been studied. As the authors stated this set of
researches are motivated by the work done by P.L. Lions and P.E. Souganidis [72]- [73]
that is mentioned in the Theorem 1. To deal with the recent case, they proposed the use
of rough path analysis suggested by T.J. Lyons [89]. The following theorem is the main
result of their work which is very useful for convergence analysis of ACSF.

Theorem 4. Let S = (S1, . . . , Sm) be a collection of C∞-bounded vector �elds on Rn and
W a m-dimensional standard Brownian motions. Then, for every α = (α1, . . . , αN) ∈
{1, . . . ,m}N , N ≥ 2, there exist (piecewise) smooth approximations (zk) to W , with each
zk only dependent on

{
W (t) : t ∈ Dk

}
, where Dk is a sequence of dissection of [0, T ] with

mesh tending to zero, such that almost surely

zk → W uniformly on [0, T ]

but uk, solution to

dφk = G(D2φk, Dφk, x, t)dt−Dφk(x, t) · S(x)dzk (3.71)

φk(0, ·) = φ0 ∈ BUC(Rn)

converges almost surely locally uniformly to the solution of the "wrong� di�erential equation:

dφ = [G(D2φk, Dφk, x, t)−Dφ(x, t) · Sα(x)]dt (3.72)

− Dφ(x, t) · S(x)dW

where Sα is the bracket-vector �eld given by:
Sα = [Sα1 , [Sα2 , · · · [SαN−1

, SαN ]]].
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Remark 5. It can easily be shown that the preceding theorem is also valid when the
Stratonovich di�erential ◦dW is replaced by dz for some z ∈ C1([0, T ],Rm).

An outline of the proof for Theorem 4 and the Remark 5 is available in [81]. Using this
theorem and remark, one is able to verify the convergence of ACSF. The next section is
devoted to the convergence analysis of ACSF.

Convergence of ACSF A simple comparison between Equation (3.64) de�ning the
ACSF evolution equation and Equation (3.71) in Theorem 4, shows that the equations
have the same structure except that Equation (3.64) is written in Stratonovich sense.

Considering Theorem 4 and Remark 5, one can conclude that assuming S(x) = −Υ(x, ε),
according to Theorem 4, the SPDE (3.66) will converge to a "wrong� di�erential equation
such as:

dφ = (G(D2φ,Dφ, x, t) +Dφ(x, t)Υα(x, ε))dt

+ Dφ(x, t)Υ(x, ε) ◦ dW (t) (3.73)

where suppose Υ = [Υ1, · · · ,Υm] then Υα = [Υα1 , [Υα2 , · · · [Υαm−1 ,Υαm ]]], α = (α1, . . . , αm) ∈
{1, . . . ,m}m, which is basically a bracket-vector �eld made of Dirac delta functions and
Lie bracket operator in Nilpotent fashion.

Now it is required to show that in ACSF, Υα is always zero. In other words, the
"wrong" di�erential equation becomes exactly the same as the initial equation, or the
stochastic level set equation will converge to the solution of deterministic part which is
what is needed.

Theorem 6. Given the stochastic di�erential equation (3.64), ACSF evolution equation
converges to deterministic solution of Hamilton-Jacobi equation dφ = G(D2φ,Dφ, x, t)dt.

Proof. To proceed with the proof, lets focus on Υα. One may claim that the Lie algebra,
L, de�ned over {Υα1 ,Υα2 , · · · ,Υαm−1 ,Υαm} is Nilponent of step 1 or simply:

[Υαm−1 ,Υαm ] = 0, ∀αi ∈ {1, . . . ,m}m (3.74)
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To show that this claim is true, lets recall Equations (3.65) and (3.68) for Dirac delta
functions by which the expanded version of Lie bracket is de�ned.

[Υαm−1 ,Υαm ]i

=
m∑
l=1

(υl,αm−1

dυi,αm
dxl

− υl,αm
dυi,αm−1

dxl
)

=
m∑
l=1

(δε,l(xαm−1)
dδε,i(xαm)

dxl
− δε,l(xαm)

dδε,i(xαm−1)

dxl
) (3.75)

By investigation of Equation(3.75), one can see that for each particular x, one of
δ(xαm−1) or δ(xαm) is zero. This means that both terms inside the bracket in the last
equation are zeros, so [Υαm−1 ,Υαm ]i, an arbitrary element of [Υαm−1 ,Υαm ] is always zero,
therefore the whole bracket in Equation (3.74) is zero. It leads to this conclusion that
the Lie algebra, L, is Nilponent of step 1. Based on this conclusion the extra term in
deterministic part of "wrong" Equation (3.72) (second term in the bracket) compared to
Equation (3.64) is always zero for ACSF evolution. It can con�rm that all of the performed
simulations based on ACSF di�erential equations are at least a local solution of the original
optimization problem.

Annealing Scheme to Improve the Chance of Finding the Global Solution and
Speed of Convergence

One way to improve the convergence speed of a numerical minimization such as ACSF, is
to accept only those iterations that decrease the objective function. Doing so, objective
function decrease monotonically but there is a chance of being stuck in a local optima when
the process cannot �nd a better solution. Conversely, ACSF by its own allows the process
to increase (or decrease) the objective function in some iterations randomly. It is good for
escaping from local optima but it may result in longer convergence time. One intermediate
option, is to accept iterations with higher objective function by a slight chance that is
exponentially related to how far the value of current objective function is from previous
one. Obviously if the objective function is slightly higher than previous iteration it is more
likely accepted rather than the case in which a big jump occurs and objective function
increased dramatically. The combination of ACSF and annealing scheme is summarized in
Table 3.1.

It should be noted that, even by employing the annealing scheme, there is still a chance
of being stuck in a local optima when the process can not �nd a better solution. Generally
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speaking, using delta function as weighting function in ACSF helps the active contour to
have an independent source of noise at each point of the front such that each point can
�nd a better location at each iteration if possible.

Table 3.1: A pseudo code for annealing scheme
Step 1 De�ne Temp0, stopping criteria and i = 1...NItr

Step 2 Start with initial guess φ1 and evaluate
the objective function J(φ1)

Step 3 update φi ← φi+1 based on ACSF update
scheme, Equation (3.66).

Step 4 Calculate J(φi+1)

Step 5



If J(φi+1)<J(φi)=⇒ Accept φi+1

Else =⇒ Accept φi+1with

probability :

Pacc=exp(-J(φi+1)−J(φi)
Temp(i)

)

Step 6 Update Temp(i) and loop back to (S2) to ful�ll
the stopping criteria

In this scheme, Temp(i) is the annealing temperature which is usually a monotically
decreasing function of time (iteration). Here this function is de�ned as:

Temp(i) =
Temp0√

i
(3.76)

where i is the iteration number and i = 1...NItr in which NItr is the maximum number of
iterations, and Temp0 is the initial guess for temperature [57].

Advantages of Active Contour with Stochastic Fronts

As discussed earlier, two approaches have been proposed in order to improve the perfor-
mance of active contours in image segmentation: active contour without Edges [64]- [68]
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and stochastic level set method [57], [72]- [73]. The �rst approach omits the dependency of
evolution of front on local image gradient, so it is very successful to cope with the images
corrupted with noise. But in some cases the real edges within the image are barriers for
evolution of active contour. A good example is the image shown in Figure (4.5(a)), the
strips on zebras' body prevent the contour to evolve completely and extract the whole
bodies. One the other hand, according to the Theorem (4) from [81], the general model
developed by [57] will converge to a "wrong" equation that is not necessarily the deter-
ministic model. This is not desirable as the deterministic models are designed such that
the optimization process converges to an accurate segmentation. Basically the stochastic
algorithms should �nd the best solution of the deterministic models.

Active contour with Stochastic Fronts (ACSF) as a special case of model in [57], is an
attempt to achieve all of the previously-mentioned advantages and mitigate the �aws.

It uses both formulation of region-based and stochastic level set method with a very
simple but very e�ective change in order to extract all possible details within image as well
as outer boundaries. At the same time the convergence of the resultant equation toward
the deterministic solution is also guaranteed.

3.2.2 Multi Agent Stochastic Level Set Method

In global optimization theory, there exist two main approaches to cope with local optima
problems: stochastic operators and multi-agent systems. An interesting feature of the
work in [57] is the combination of the stochastic operator with the level set method. This
innovation creates a global optimization algorithm with the advantages of gradient based
methods. In this section, the second approach (Multi Agent) is intended along with taking
the advantages of the �rst one. In doing so, instead of only one partial di�erential equation,
a set of level set equations are employed. The main idea here is to make sure that the
agents are capable of escaping from a local point. Therefore, instead of one H-J equation in
active contour with stochastic front (ACSF), several SPDEs have been employed starting
from di�erent initial guesses. This can help the evolving front to escape from local edges
when the stochastic term in Equation(3.66) is not strong enough for this purpose.

Certainly, all of the agents have to converge to the best current topology, namely leader,
so the functional in Equation (2.6) must be revised in order to make this opportunity. The
revised equation is:

Jfj(∂Ωl, ∂Ωj) = J1(∂Ωj) + J2(∂Ωj) + λljJcj(∂Ωl, ∂Ωj) (3.77)
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where:

Jcj(∂Ωl, ∂Ωj) =

∫
Ω

(H(φl) (1−H(φj)) +H(φj) (1−H(φl))) dΩ (3.78)

Figure 3.13: Region surrounded by agents

The converging force Jcj(∂Ωl, ∂Ωj) is simply a metric showing the region that is sur-
rounded between the leader, lth agent and the agent jth, l 6= j but does not include the
intersection area. To achieve the same topology, the area of this region has to converge to
zero. Figure (3.13) shows the surrounded area between the two agents i and j in general. It
is worth mentioning that although Equation (3.77) is written only for two agents, namely
leader and an arbitrary individual, it can be employed for a system with any number of
agents because the "converging force" is only applied between leader and each individual.
Obviously the leader evolves based on Equation(2.13) only and the converging force is
equal to zero for this agent, Jcl(∂Ωl, ∂Ωl) = 0.

Advantages of Multi-Agent Stochastic Level Set Method

As stated, the main problem in LSM, or indeed in the stochastic level set method, is that
when the fronts converge to an edge, there is no guarantee that this edge is a real edge or
even if the edge is real, the segmentation may be stuck over that edge and can not evolve
to �nd a better solution. To increase the probability of �nding a real edge, the zero level
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sets should start from di�erent parts of the feasible region; consequently, a multi-agent
system can overcome this problem.

In level set method, it is very common that one employs an initial level set such that it
has enough holes in it. It might seem that a stochastic level set method with multiple holes
in initial guess, Figure (4.3), is an multi-agent stochastic system by itself and there is no
need for using a complicated system such as the one proposed in in this thesis. To clarify
the di�erence between a ACSF algorithm initiated with a multiple holes zero level set and
the multi-agent structure proposed here, one should notice that every single node on the
front in �rst case evolves independently, so optimum solution for this case is similar to a
case that one runs a gradient based optimization procedure with di�erent initial guesses,
hence each agent �nds its own local optimum points. But in the latter case as the agent
are forced to �nally converge to the same shape, the probability of �nding the real edges
in image is more than the �rst case. This is similar to convergence of individuals in multi-
agent optimization algorithms such as GA, PSO and/or SBFO [1], in which each agent
starts from di�erent initial guess but they are all supposed to converge to the best possible
solution. Obviously, this is more probable to �nd the global solution rather than the case in
which each agent only �nd its local solution depend upon the initial condition that it starts
with. This point has been demonstrated by an example in Section (4.1.2) and (4.2.2).

In addition, using a multi-agent system helps to explore the whole feasible region, which
clearly increases the chance of �nding the global solution. Although the computational cost
of this algorithm is higher than the previous ones, it can be performed in a decentralized
fashion, as each agent evolves almost independently based on its own dynamics. Compared
to other multi-individual optimization algorithms like GA or PSO, the convergence should
be faster, as this algorithm is an extension of a gradient-based called SBFO algorithm [1]
to the variational framework.

In contradistinction to GA, PSO, etc., the number of tunning parameters is extremely
low, namely the number of agents and weighting parameter λlj in Equation(3.77).
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Chapter 4

Applications of ACSF and MSLSM in

Engineering Problems

4.1 Application of ACSF and MSLSM Image Segmen-

tation

This section is devoted to the application of ACSF and MSLSM to image segmentation.
Section 4.1.1 provides a brief background on edge-based, region-based formulation of im-
age segmentation in a variational framework. Then by employing the theories developed
in Chapter 3 in Section 4.1.2, results are investigated, and �nally in Section 4.1.3, a com-
prehensive conclusion is given.

4.1.1 Image Segmentation and Level Set Based Methods

In the following, a brief overview of edge-based level set method [52]- [54], re-formulation
of LSM for active contours without edge [66]- [68] and stochastic level set method [57],
[145] will be presented. One way to address the segmentation problem is to �nd curve(s)
or surface(s) that surround the region of interest in an image. Essentially, this is the
primary idea behind active contours methods. However, in these algorithms, the curve(s)
or surface(s) can be de�ned directly using control points, which can result in some issues
in the control points updating, merging and splitting closed curve(s) or surface(s). Despite
this, there are remedies for these issues, and level set method can easily cope with them.
The concept behind the level set method is to embed the above-mentioned curves in a
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surface, such that the evolution of the curve surrounding the objects in an image can be
implicitly represented by the evolution of the surface. Figure(4.1(a)) and (4.1(b)) show
how a surface embedding a curve can be morphed in order to achieve a desired topology.

(a) An original image of Maple leafs

(b) Evolved surface to segment the image

Figure 4.1: The basic idea behind the Level Set method in image segmentation

Edge-Based Level Set Method Formulation

As discussed in Section 2.1.1, the level set function is founded on the basis of the Hamilton-
Jacobi equation [143]:

φt + Vn |∇φ| = 0 (4.1)

The so-called Vn is known as a normal velocity of the evolving boundaries that control the
speed evolution of the fronts, and |∇φ| is the amplitude of the gradient vector. Solving
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this partial di�erential equation starting from an initial guess transfers the segmentation
problem to an initial value problem in PDE framework. A popular formulation [143] for
Vn in equation (4.1) is as follows:

∇IG = (IGx , I
G
y ) (4.2)

Vn = exp(−α
∣∣∇IG∣∣) (4.3)

where IG is the �ltered image by a Gaussian �lter G, α is the convergence rate Vn and
IGx and IGy are the partial derivatives of Image, I, with respect to x and y respectively.
As can be seen, Vn depends on a local gradient, which can lead to failure in inaccurate
segmentation.

Region-based Formulation and Active Contour without Edge (ACWE)

In the region-based LSM formulation, an energy functional contains the �tting energy and
the energy associated with the length and the area of the initial contour ∂Ω, ∂Ω ⊂ Ω,
φ : Ω −→ R . This functional energy can be represented as follows [64]- [68]:

E(∂Ω) = Ff + µLp∂Ω + υAΩ− (4.4)

where ∂Ω is the boundary of Ω, L∂Ω is the length of ∂Ω, p = N
N−1

, N is the dimension of
RN , and AΩ− is the area inside the ∂Ω.

The LSM as an optimization procedure will minimize the functional in equation (4.4)
in order to segment the image. The �tting energy is de�ned as [64]- [68]:

Ff = F1(∂Ω) + F2(∂Ω) =

∫
Ω−
|I − c1|2 dΩ +

∫
Ω+

|I − c2|2 dΩ (4.5)

in which the c1 and c2 are the average of image I inside and outside of the ∂Ω, respec-
tively.

c1(φ) =

∫
Ω
I (1−Hε(φ))dxdy∫

Ω
(1−Hε(φ))dxdy

(4.6)

c2(φ) =

∫
Ω
I Hε(φ)dxdy∫

Ω
Hε(φ)dxdy

(4.7)
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(a) Ff (∂Ω) > 0
F1(∂Ω) > 0
F2(∂Ω) ≈ 0

(b) Ff (∂Ω) > 0
F1(∂Ω) ≈ 0
F2(∂Ω) > 0

(c) Ff (∂Ω) > 0
F1(∂Ω) > 0
F2(∂Ω) > 0

(d) Ff (∂Ω) ≈ 0
F1(∂Ω) ≈ 0
F2(∂Ω) ≈ 0

Figure 4.2: Comparison of the �tting function for di�erent cases in image segmentation

To see how this formulation works, let us look at the following four options in Fig-
ure(4.2).

As can be seen, the �tting function is always positive except in a case where the
evolving curve completely �ts the objects in the image and functional Ff is in its global
minimum. Therefore, it can be claimed that minimization of the cost function leads to
the segmentation of the image. It is known that the steady state solution of Hamilton-
Jacobi PDE, Equation(1.1), is the optimum solution of segmentation problem [52]- [54].
The Hamilton-Jacobi PDE can be re-written in Equation(4.8) [64]- [68]:

∂φ

∂t
= δε(φ)(µp

(∫
Ω

δε(φ) |∇φ| dΩ

)p−1

div
(
∇φ
|∇φ|

)
+
(
−υ − λ1(I − c1)2 + λ2(I − c2)2

)
) (4.8)
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where the following conditions are held:

p
(∫

Ω
δε(φ) |∇φ|

)p−1 δε(φ)
|∇φ|

∂φ
∂n

= 0 on ∂Ω

φ(t, x, y) = φ0(x, y) in Ω
(4.9)

in which υ, µ, λ1, λ2 ∈ R+ are �xed parameters, n, ∂φ
∂n
denotes the exterior vector normal

to the boundary and the normal derivative of φ respectively, denotes boundary. δε, Hε are
approximation for Dirac delta and Heaviside function as follows:

δε(x) =
1

π

ε

ε2 + x2
(4.10)

Hε(x) =
1

2

(
1 +

2

π
arctan

(x
ε

))
(4.11)

when ε is a tiny positive parameter and when ε → 0 , these functions approach H(φ(x)),
δ(φ(x)).

4.1.2 Results of Image Segmentation

To evaluate the procedures, a set of benchmark images has been selected, including a nature
scene, Figure (4.5(a)), and some medical images [See Tables 4.1-4.4]. The set of medical
images is provided by [80]. This collection is a very good source of benchmark images
for evaluation of segmentation algorithms. For this thesis, 10 images of breast cancerous
tissues are selected.

Region-based level set, stochastic level set, active contour with stochastic fronts and
multi-agent stochastic level set methods are applied to the �rst image and the Figure
(4.5(a)) depict the performance of each algorithm. According to the results, Figure (4.5(b)-
4.6(c)), one can come to this conclusion that the multi-agent stochastic level set method
has the best performance. The performance is de�ned based on Equation(4.5).

The level set method is capable to �nd the details within the image but it is stuck
over some edges which leads to incomplete segmentation, Figure(4.5(d)). The stochastic
level set method usually �nds a few details within the image but almost always is able
to �nd the outer boundaries. The results presented in Figure (4.5(b)-4.6(c)) are achieved
when 5 noise sources have been considered for Stochastic level set method. It is worth
mentioning that, as the stochastic operators are used, each of the algorithms does not
necessarily converge exactly to the same segmentation for di�erent simulation but the
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latter algorithm (MSLSM) has far less deviation as the segmentation is very close to the,
global solution, complete segmentation.

Depend upon selection of solidi�cation rate the proposed algorithm could be able to
�nd the outer and inner boundaries but it is a compromisation problem, hence, the smaller
the solidi�cation rate, the longer convergence time and the higher probability to �nd more
details exist in the image. On the other hand, even a single stochastic LSM may be able to
segment the benchmark image completely, but this does not always occur, for example in
Figure (4.6(a)), the rear legs of both zebras are not segmented in single stochastic method.

Moreover, even by using a multi-agent system, there are some cases in which the proce-
dure can not segment accurately. Therefore, one can only discuss the probability of �nding
the best segmentation (or global solution) which can be improved by increasing the number
of agents, the same as the number of individuals in Genetic Algorithm or agents in Par-
ticle Swarm optimization methods. Obviously, there is a trade-o� between computational
cost and accuracy of solution. As expected in Figure (4.6(c)) the steady state solutions
of both agents converge to a single value because of the term Fcj(∂Ωl, ∂Ωj) in Equation
(3.77). As mentioned, based on Figure (4.6(c)) the best performance achieved by MSLSM.
The performance of stochastic level set method is even worse than region-based level set
method in terms of ability to �nd the details in image.

In practical image processing, and in particular medical image processing and segmen-
tation, an algorithm which is capable to �nd details within the image is required. For
example, in images in Tables (4.1-4.4) one should be able to �nd the cancerous cells within
the breast tissues. Therefore, the algorithms proposed in this thesis are evaluated based
on this set of images and compared with region-based level set to show the performance.
The relative improvement with respect to region-based LSM is given in forth column of
each of the Tables (4.1-4.4). To have a fair comparison, initial guesses for all simulations
are the same for all of the algorithms, except that for the multi-agent structure another
initial guess is employed. Both of these initial conditions are shown in Figure (4.4).

The percentage of relative improvement of performance in forth columns of Table (4.1-
4.4) is calculated based on the ground truth image provided by [80]. Each ground truth
image has precisely shown the cancerous cells in a portion of the image called as, ΩG. So,
the calculation should be done based that area only.

The performance, Pf , of each algorithm is de�ned as a sum square error between values
of dots (0 or 1) in ΩG of the ground truth image, IG and the corresponding area in the
segmented image, IS, by each algorithm.
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Pf =

Np∑
i=1

(IG(i)− IS(i))2 (4.12)

where Np is the total number if pixels in ground truth area.

Figure 4.3: Zero Level Set with multiple holes

Figure 4.4: Two zero level sets with multiple holes for medical imaging samples

78



(a) Original Image

(b) Initial guess for single agent al-
gorithm

(c) Initial guesses for multi agent algorithm

(d) Region-based Level Set method (e) Stochastic Level Set method

Figure 4.5: Evaluation of existing algorithm on a nature scene
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(a) Active Contour with Stochastic Front (b) Multi Agent Stochastic Level Set

(c) Comparison of Objective Function for Di�erent Algorithms

Figure 4.6: Evaluation of proposed algorithms
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Table 4.1: Comparison of ACSF and Region-Based LSM

Original Image Classic LSM ACSF
Imprv.
Prcntg

45.2

38.2

37.8

32.1

50.5
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Table 4.2: Comparison of ACSF and Region-Based LSM

Original Image Classic LSM ACSF
Imprv.
Prcntg

31.3

42.1

30.6

27.3

38.0
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Table 4.3: Comparison of MSLSM and Region-Based LSM

Original Image Classic LSM MSLSM
Imprv.
Prcntg

41.3

35.3

33.8

39.7

52.2
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Table 4.4: Comparison of MSLSM and Region-Based LSM

Original Image Classic LSM MSLSM
Imprv.
Prcntg

33.6

45.1

35.8

32.7

40.8
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4.1.3 Conclusion of Image Segmentation

Extending the work done by Juan [57], active contour with stochastic front (ACSF),and
a multi-agent random structure, called Multi-agent stochastic level set (MSLSM), have
been investigated in this thesis. The ACSF, a natural extension of the stochastic level set
method, emerges as a well-founded algorithm to represent the stochastic motion of fronts
coping with local optima problems. Despite its capability in this regard, there are still some
instances where ACSF is not able to �nd the global solution. A multi-agent structure is
thus proposed in this thesis in order to improve the algorithm. In this method, and similar
to the stochastic active contours method, each agent evolves based on its own stochastic
dynamics developed in Section(3.2).

The random structure proposed in this thesis is signi�cantly e�ective in helping the
algorithm escape from local minima and becomes even more competent when utilized by
multi-agent structure. Starting from di�erent initial guesses assists the latter algorithm in
exploring the feasible region, helping to �nd every possible feature in the image. Ultimately,
all of the agents must converge on the same topology. To do so, one should add a metric to
the original functional given in Equation(4.5). The results, for example in Figure(4.6(c)),
show that, as expected, the multi-agent stochastic level set method is more capable of
�nding the global solution.

As can be seen in Tables 4.1-4.4, both ACSF and MSLSM have signi�cant improvement
compared to Region-Based LSM. MSLSM employed two agents. The relative improvement
of MSLSM is not very considerable with respect to ACSF, on contrary to what is expected.
This is because the ACSF, can �nd most of the cancerous cells within the image, so the
relative improvement of MSLSM is not remarkable compared to ACSF. In other words,
ACSF with a zero level set presented in Figure (4.3), is strong enough to segment the
selected images. But in some cases that ACSF can not segment the image accurately,
MSLSM can help in order to overcome this problem.

It is worth mentioning that, what is claimed in our thesis as global optimum algorithm
is somewhat di�erent from what is meant by Bresson et al. [69] in their work. Obviously
the capability of edge indication of our algorithm is limited to the deterministic model as
our baseline (Here ACWE) and it can not be claimed that the algorithm is more capable
(compared to ACWE or any other base model we choose) to �nd the edges with low
contrast. One common issue that happens in segmentation by active contours is that
depend upon the initial guess some part of the image will not be discover by the algorithm
especially when there are lots of details in image like our application in medical imaging
of breast cancerous tissues 4.1-4.4. The reason of this is, once the algorithm �nd some
part of the real edges of the image and all of the active boundaries are busy with real
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edges, it will not evolve to detect other edges because if it wants to evolve to detect other
features it means that it should leave a local solution where the deterministic level set
method is not able to do so. As it only evolves based on gradient �ow and the gradient
�ow for this current topology is toward the local solution. The �rst example of this section
is designed to show this concept. As can be seen the stripes in zebras bodies are real
edges but the ACWE algorithm is stuck and can not evolve any more to detect all of
the stripes. Now if one runs the algorithm for another initial guess that is located in the
region that is not discovered by the �rst trial one might be able to detect other stripes
but again it will be stuck in another solution. The idea behind multi agent structure is to
have an algorithm that discovers all of the image. Obviously each agent can pull out the
other agents from their own local solutions and at the end (hopefully) the whole image is
discovered. Stochastic operators can also help to jump from local solutions to discover the
whole image, so combination of these two tool, helps to detect every single object in image
with higher probability. Obviously if one chooses the baseline model as the one that is
proposed by Bresson et al. [69] along with multi-agent ACSF proposed in current section,
the �nal approach becomes a very sophisticated algorithm that not only can detect the low
contrast edges but also it can detect most of the features in the image as much as possible.
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Figure 4.7: A general load case including external and body forces

4.2 Application of ACSF in Topology Optimization

As stated in the literature review Section 1.2.2, the classic level set method, even when it is
utilized by topology derivative, su�ers from being stuck in local solutions and consequently,
it is highly dependent on initial guesses. Topology optimization as an application of level
set theory is investigated in this chapter when the ACSF algorithm is applied. The outline
of this section is as follows: In Section 4.2.1, the fundamental theories behind the topology
optimization problem, including the general formulation of complaint mechanism design,
are explained. Then the performance of the ACSF algorithm in topology optimization is
investigated and discussed.

4.2.1 Mechanical Structures and Level Set Theory

Using the theories explained in Section 1.2.2, another application of our proposed algorithm
is investigated in this section. In this section, the often-used cost functions in topology
optimization are introduced and shape and topology derivatives are calculated for this
particular problem, then ACSF algoirthm is applied followed by the results and discussion.

Topology Optimization to Minimize Mean Compliance

A general load case for a mechanical structure is shown in Fig. 4.7, in which g is the
distributed force and fb is body force. ΓN and ΓD are Neumann and Dirichlet boundary
conditions respectively.

Assuming mean compliance optimization may be helpful in understanding how level
set equation helps in topology optimization problems, as follows:
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Min
φ

C(φ) =
∫

Ω
Eijkl(φ)εij(u)εkl(v)dΩ

Subject to:

V (φ) =
∫
V
H(φ)dV = V ?∫

Ω
Eijkl(φ)εij(u)εkl(v)dΩ =

∫
∂Ω
g.v ds

(4.13)

where Eijkl is Young's modulus elasticity tensor and is de�ned as:

E(φ) = E0H(φ) + Emin(1−H(φ)) (4.14)

in which E0 and Emin are Young's modulus of elasticity in structure and a dummy value
for voids respectively. This problem set up can be re-written in discrete �nite element form
as follows [119]:

Min
φ

C(φ) = UTK(φ)U =
∑N

ne=1 u
T
e keue =

∑N
ne=1 xeu

T
e k1ue

Subject to: V (φ) = V ?

KU = F

xe = 0 or xe = 1 ∀e = 1, ..., N

(4.15)

where x = (x1, ..., xN) is the vector of element densities. xe = 0 for void element and xe = 1
for structural elements. C(φ) is the mean compliance of the structure. F and U are global
force and displacement vectors respectively. K in elasticity equilibrium equation KU = F
is global sti�ness matrix. ke and k1 are general and solid element matrix respectively. N
is total number of elements. V and V ? are current and desired volume of structure.

In this set up, the mean compliance of structure is intended to be minimized. For
other problems like geometric and mechanical advantage or any other purpose, the main
optimization problem (4.13) should be revised.

The level set function is founded on the basis of the Hamilton-Jacobi equation:

Vn and Tn are scalar �elds over design domain and w is a weight for Tn. The so-called
Vn is known as a normal velocity, or shape derivative, of the evolving boundaries that
control the speed evolution of the fronts, and |Dφ| is the amplitude of the gradient vector.
Tn is a forcing term and depends on topological derivative of the cost [119]. It basically
determines the nucleation of new holes within the structure [99], [119] and [111] . If w is
chosen equal to 0, Equation (2.17) turns to the classic level set method for shape (and not
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topology) optimization, and is unable to create new holes. In order to satisfy the volume
constraint, Lagrangian should be de�ned as follows:

L(φ) = C(φ) + λv(V (φ)− V ?) +
1

2Λv

[V (φ)− V ?]2 (4.16)

where λv and Λv are required to be updated at each iteration based to the following
sequence [99], [119] :

λk+1
v = λkv +

1

Λk
v

(V (φ)− V ?), Λk+1
v = αΛk

v (4.17)

in which α ∈ (0, 1) is a constant value. Using the aforementioned procedure implements
augmented Lagrangian multiplier.

Shape Derivatives: To minimize the Lagrangian L one should choose normal velocity
�eld Vn as a descent direction of objective function [119]. Therefore one should take the
derivative of Lagrangian L to �nd the descent direction. For the sake of simplicity, assume
that the boundary conditions are traction free so the shape derivative of mean compliance
can be found as:

∂C

∂Ω
= −uTe keue (4.18)

similarly the shape derivative for volume V (φ) can be calculated as:

∂V

∂Ω
= 1 (4.19)

by mixing last two derivatives, descent direction or normal velocity �eld can be determined
as:

Vn = −∂L
∂Ω

= uTe keue − λkv −
1

Λk
v

(V (φ)− V ?) (4.20)

Topology Derivatives: The topological sensitivity of Lagrangian, Equation (4.16), can
be achieved simply by using Equation (2.16) and it can �nally be incorporated into Equa-
tion (2.18) to build the modi�ed level set equation.
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Compliant Mechanisms Design

A complaint mechanism is a monolith structure that transmits motion or energy from input
to output port. Topology optimization can be employed as an automatic design procedure.
In doing so, the objective function should be de�ned such that the optimum value of it
leads to desired response of the mechanism. The most famous objective functions in this
area are:

1. A weighted sum of mutual strain energy (MSE) and strain energy (SE), [121], [118]

2. Ratio of MSE to SE [121]

3. Geometric advantage (GA), mechanical advantage (MA) and work e�ciency [120]

An extensive implementation of the last method has been performed by S. Chen et al.
[120], [101]- [102]. In this series of works, geometric advantage has been formulated for
level set method. It should be mentioned that di�erent objective functions lead to di�erent
solutions [120]. In this thesis, a general formulation by Ananthasuresh is considered for
the �rst approach and formulated for level set method. The detailed calculations of shape
derivative and velocity �elds are available in [120] for interested readers. A general objective
function for compliant mechanism design is as follows [121]:

Minimize J = −αΥ(MSE) + (1− α)Θ(SE) (4.21)

where Υ and Θ are monotonically increasing functions of SE and MSE. SE, is the strain
energy and MSE is, mutual strain energy, and is de�ned as:

MSE =

∫
Ω

σdεdΩ =

∫
Ω

Eijkl(φ)εij(u)εkj(v)dΩ = δout (4.22)

σd is stress �eld when only a unit dummy load is applied in the direction of the output
displacement at output port. ε is strain tensor when only the actual force Fin is applied
at input port. εij(u) and εkl(v) are local strain when the input force Fin and unit dummy
output force are applied to the structure separately. α is a positive multiplier. In discretized
�nite element fashion, one can represent it as:

MSE = {u}T [K]{v} (4.23)

90



in which {v} is the displacement vector when only the unit dummy load is applied and
{u} is the displacement vector when actual load Fin is applied. Basically, {v} and {u} can
be achieved by solving the following static equations:

[K]{v} = {f}unit dummy load
[K]{u} = {f}actual

(4.24)

As can be seen in Equation (4.21), when J is minimized, MSE which is the de�ection
at output port [120] will be maximized (it has negative multiplier). At the same time,
the second term in Equation (4.21) helps to have a sti� enough structure such that it can
tolerate the applied forces.

Now the de�nition of cost function based on some measures of �exibility (MSE) and
sti�ness (SE) should be formulated for level set method. Let's assume J in Equation (4.21)
as a function of φ.

J(φ) = −αΥ(

∫
Ω

Eijkl(φ)εij(u)εkl(u)dΩ) (4.25)

+ (1− α)Θ(

∫
Ω

Eijkl(φ)εij(u)εkl(v)dΩ)

where MSE and SE are replaced by their de�nitions.

Shape Derivatives and Velocity Field To �nd the velocity �eld, one should take the
shape derivative of J and write it as [120] :

DΩJ = −αD
SE

ΥDΩ(SE) + (1− α)D
MSE

ΘDΩ(MSE) (4.26)

in which D
SE

Υ and D
MSE

Θ are derivative of Υ and Θ with respect to SE and MSE
respectively. As Υ and Θ are two monotonically increasing functions with respect to SE
andMSE respectively, both derivatives, D

SE
Υ and D

MSE
Θ, are always positive. Equation

(4.26) is derived by using chain rule. The next step is to calculate the shape derivative of
strain energy and mutual strain energy to accomplish the process.

From mechanics of continua, it is known that:

SE1 =
∫

Ω
Eijkl(φ)εij(u1)εkl(u1)dΩ = u1i

MSE1 =
∫

Ω
Eijkl(φ)εij(u1)εkl(v)dΩ = u1o

(4.27)
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Figure 4.8: De�ections at input and output ports due to the external force

the index 1 in SE1, MSE1and u1 are corresponding to the case in which input force is
unit. Fig. 4.8 depicts the de�nition of u1i and u1o that are de�ection at input and output
ports respectively when the force Fin is applied at input port. Fig. 4.8 shows the de�nition
of these parameters.

Shape Derivative u1i: The derivation of the shape derivatives for u1i is explained
in [120] and �nal results are as follows:

DΩu1i = 2{
∫

ΓN1
[∂(g.u1)

∂n
+ κg.u1]Vnds+

∫
Γ
fb.u1Vnds}

−
∫

Γ
Eijkl(φ)εij(u1)εkl(u1)Vnds

(4.28)

If the body force fb and length of Neumann boundary condition are negligible, only the
last term is considered.

Shape Derivative u1o :

DΩu1o =
∂l1(v)

∂Ω
+
∂l2(u1)

∂Ω
− ∂a(u1, v)

∂Ω
(4.29)

in which
∂l1(v)

∂Ω
=

∫
ΓN1

[
∂(g1.v)

∂n
+ κg1.v]Vnds+

∫
Γ

fb1 · vVnds (4.30)

∂l2(u1)

∂Ω
=

∫
ΓN2

[
∂(g2.u1)

∂n
+ κg2.u1]Vnds+

∫
Γ

fb2 · u1Vnds (4.31)
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∂a(u1, v)

∂Ω
=

∫
Γ

Eijkl(φ)εij(u1)εkl(v)Vnds (4.32)

similar to the previous shape derivative for traction free boundary condition, only the last
term will be used in practical cases.

Setting The Normal Velocity Field Vn: To optimize the objective function nat-
urally, one can use steepest descent optimization method by substituting Vn = −P in
Hamilton-Jacobi Equation (2.13), where P can be de�ned in the following equation [120].

DΩJ =

∮
∂Ω

PVndΩ (4.33)

Comparing this equation with shape derivative of cost function J , Equation (4.26), one
can conclude that:

P = −α(D
SE

Υ)Eijkl(φ)εij(u1)εkl(u1) (4.34)

+ (1− α)(D
MSE

Θ)Eijkl(φ)εij(u1)εkl(v)

Topology Derivatives: Similar to the compliance minimization problem as long as
the normal velocity Vn is available, one can use Equation (2.18) to incorporate topology
derivative into the level set method. Now, Equation (4.35) calculates P de�ned as: P =
−Vn, so again employing Equation (2.18), the Complaint mechanism design problem can
be formulated and solved for di�erent boundary conditions. Section 4.2.2 is associated to
this problem.

4.2.2 Results of Topology Optimization

In this section, the developed algorithms has been implemented and compared with classic
level set theory over a set of benchmark problems. In the �rst part, local solutions and
their dependency on initial guess in level set method (including both shape and topology
derivatives) are investigated. This basically shows the importance of the contributions of
this thesis that tries to eliminate the dependency of algorithm on initial guesses. In the
second part, the results of ACSF will be discussed and �nally MSLSM is applied over the
same set of benchmark problems.
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Local Solutions of Level Set Method

Based on the literature, topology derivatives are suggested in order to reduce the number
of local optima. Here the formulation, Equation (2.17), based on both shape and topology
derivatives is employed. As expected, local solutions are still a signi�cant issue of the
algorithm. Table 4.5 shows the results of the "Bridge Problem� for di�erent initial guesses.
Topology and shape derivatives are combinations with the same weight, w = 1. The
simulation is performed over a grid of 150× 75 in which both lower corners are �xed and a
unit load is applied downward. It has been simulated for 100 iterations. Obviously if the
convergence criterion is met does the process stop before 100 iterations.

As can be seen topology, derivative is e�ectively working, for example in the �rst
simulation that structure has no hole in initial guess, the algorithm can nucleate some
holes, caused by topology derivative term. Obviously the existing hole in structure still
can combine together to make bigger holes if needed.

Results of ACSF Modi�ed by Annealing Scheme

In this section ACSF algorithm is implemented and its results for mean compliance mini-
mization problem (Bridge Problem) and complaint mechanisms design are presented and
investigated.

Mean Compliance Minimization Problem (Bridge problem) Using ACSF For
classic problem of mean compliance of bridge problem, a grid of 100× 100 is created based
on which both structural and PDE analysis is performed. To reduce the unnecessary
complexity of model, a symmetric model is considered. The ACSF algorithm utilized by
annealing scheme is implemented and simulation is performed 20 times to ensure whether
the �nal solution is unique. In this set of simulations, 90% of cases (18 times) converge
to the same topology and only 2 times the �nal topologies are di�erent. The �nal shape
of the 18 solutions with the same topology do not have exactly the same shape, however
the objective functions are almost the same. In other words, although the shape (and not
topology) is not the same, the algorithm converges to values that are slightly di�erent.
Therefore, as the algorithm only works based on the objective function, and it is really
di�cult for it to distinguish between di�erent shapes. Table 4.6 shows the 5 most di�erent
�nal shapes (out of 18) that have almost the same topologies and cost functions. Fig. 4.2.2
depicts the convergence patterns of each shape shown in Table 4.6. As can be seen, �nal
values in all 5 simulations are almost the same but they have totally di�erent path to reach
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Figure 4.9: Convergence of the ACSF algorithm with annealing scheme for the Bridge
problem shown in Table 4.6

this �nal value. One can conclude that the simulation # 3 is still a local solution of the
topology in the simulation #1 because of the thin element at the middle-down point of
the structure. It technically says that depending upon the solidi�cation rate τ in Equation
(3.66), ACSF might be unable to escape from local fronts, resulting in unnecessary parts
in the �nal solution. The interesting point about ACSF is that there is absolutely no
dependency on initial guess, since the initial guess for all simulations are selected randomly,
and as seen, most of them are converging to the same topologies.

Complaint Mechanisms Design Using ACSF Using the Equation (4.26)-(4.35) pre-
sented in Section 4.2.1, compliant mechanisms design problem is investigated for some case
studies. For each case, classic level set method is applied starting from four di�erent initial
guesses and then results are compared to the results of ACSF. Generally, classic level set
method is notably dependent on initial guesses while ACSF almost always converges to
the same topologies. It should be noted that, similar to the Bridge problem, sometimes
the shapes are di�erent in terms of length and width of arms but usually the process ap-
proaches the same topologies and almost the same objective functions. Employing ACSF,
the pattern of convergence for all of the case studies is similar to Fig. 4.2.2 showing the
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convergence of ACSF for Bridge problem. To have a fair comparison, in this section, ACSF
is run only 1 time for each initial condition and the most frequent topology is reported in
the third column of the Tables 4.7-4.9. Obviously if ACSF is allowed to be run for more
times, it is capable to �nd the same topologies and also shapes for all initial guesses.

Case Study 1: The boundary conditions along with the input and output of a force
inventor mechanism are depicted in Fig.4.10(a).

The results of classic level set method with di�erent initial guesses are shown in Table
4.7. The �rst column shows the initial guesses and the second one shows the �nal results of
classic level set method and �nally last column shows the results of ACSF algorithm. To be
fair, ACSF algorithm is run only one time and reported in the third column. Obviously if
the ACSF algorithm runs more than one time, it is very probable that it would �nd exactly
the same solution for last column. Patterns of convergence for all of these 10 simulations
are depicted in Fig. 4.11. As can be seen, the �nal values of objective functions are almost
the same, which is predictable based on the results in Table 4.7 because the �nal solutions
are almost the same except for simulation 4 for classic level set method.

Case Study 2: In this study, the mechanism shown in Fig. 4.10(b) is considered. Again,
to represent the mechanism boundary conditions are depicted.

Dependency of classics level set method and ACSF on initial guesses for this mechanism
is investigated in Table 4.8. Convergence graph for this case study is shown in Fig. 4.12.
One can clearly see that the objective functions for ACSF algorithms are less than classic
level set method. Another point that is represented in this �gure is, simulations based
on classic level set method are stuck and do not proceed after some iterations. At the
same time, the simulations of ACSF algorithm converge to the almost the same objective
function, which is compatible with almost the same topologies in last column of Table 4.8.

Case Study 3: For the last case study, boundary conditions and correspondingly the
role of mechanism has changed and shown in Fig. 4.10(c).

The performance of the ACSF algorithm is compared with classic level set method in
Table 4.9. Similar to the previous case studies, both classic level set method and ACSF
are compared for di�erent initial guesses. Results are shown in Table 4.9 and Fig. 4.13.
The preliminary conclusion is the same as case study 2.
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(a) Boundary conditions of case study 1

(b) Boundary conditions of case study 2 (c) Boundary conditions of case study 3

Figure 4.10: De�nition of Boundary Conditions

97



4.2.3 Conclusion of Topology Optimization

Ignoring some di�erences in the �nal solutions of ACSF algorithm, it seems that this
algorithm is a promising approach to mitigate the dependency of the level set method on
initial guess. The results that are obtained and presented in Tables 4.7-4.9 con�rm this
claim. Investigating the aforementioned results, it can be seen that sometimes when the
ACSF is applied, the values of the objective functions for each case study are almost the
same, although the corresponding shapes and topologies have some discrepancies. In other
words, although the objective function which is the only criteria to distinguish between
di�erent solutions is almost the same, the corresponding shapes and topologies are not the
same. To cope with this di�culty one should add some other terms to the objective function
such that the optimization procedure can make di�erence between di�erent design. These
extra terms could be mathematical models for manufacturability, limitations on stress and
durability of the structure, in addition to robustness of the design against geometrical and
loading uncertainties during fabrication and life cycle of the product respectively.

It is worth mentioning that, as known, usually stochastic optimization methods, espe-
cially those one that are derivative-free, are very time consuming compared to gradient
based approaches. ACSF, as a stochastic gradient-based method takes the advantages of
both, hence, it is capable of �nding global solution (stochastic methods) along with fast
convergence (gradient-based approaches). Looking at the results, Fig. 4.11-4.13, one will
notice that there is not a huge di�erence between the convergence time of ACSF and clas-
sic level set method, although ACSF always takes more time to converge ( maximum 2-3
times of the simulation time for classic level set method). Obviously, in this formulation
still shape and topology derivative are required in the deterministic model of Equation
3.66, namely G(D2φ,Dφ, x, t).
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Figure 4.11: Convergence pattern of ACSF for case study 1
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Figure 4.12: Convergence pattern of ACSF for case study 2
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Figure 4.13: Convergence pattern of ACSF for case study 3
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Table 4.5: Dependency of level set method on initial guess in Bridge problem
Number Initial guess Final solution

1

2

3

4

5
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Table 4.6: The 5 most di�erent shapes (out of 18 simulations) with the same topologies
Simulation # Shape

1

2

3

4

5
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Table 4.7: Comparison of LSM and ACSF with di�erent initial guesses for case study 1
Initial Guess Classic Level Set Method ACSF Solution
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Table 4.8: Comparison of LSM and ACSF with di�erent initial guesses for case study 2
Initial Guess Classic Level Set Method ACSF Solution
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Table 4.9: Comparison of LSM and ACSF with di�erent initial guesses for case study 3
Initial Guess Classic Level Set Method ACSF Solution
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4.3 Application of Stochastic Flows in Optimal Path

Planning Problem

Inspired by electric arc discharge, the Evolving-Arc (E-ARC) algorithm is proposed in
current work in order to deal with serious di�culties. Technically, E-ARC employs the
stochastic level set method [57] in open curve fashion [138]. Improving e�ciency, and
balancing accuracy and computational costs of the method, a �exible structure is suggested
that allows a compromise between con�icting targets, depending upon the availability of
computational resources and the required precision. This section proceeds as follows: a
brief explanation on the physics of electric arc discharge and its analogy with optimal
path planning are presented in Section 4.3.1). The E-ARC algorithm along with simulated
annealing are described and compared in Section (4.3.2), followed by results (4.3.3) and
conclusions (4.3.4).

4.3.1 Electric Discharge and Analogy with Path Planning Prob-
lem

In any electric discharge the electricity �ows through a path with minimum resistance [139]-
[141]. Electric discharge has two main examples. The �rst is lightning; the second is electric
arc. Lightning as a wonderful natural phenomenon is a transient electric discharge between
thunderclouds and ground surface. The main di�erence between lightning and electric arc
is that lightning is a very brief phenomenon, while the electric arc lasts until the power
supply is connected. Electric arc is a luminous streamer, which is an optimum path in
terms of conductivity, but it can evolve as the environmental variables change while time
passes. For example, even the convection can result in changing the minimum resistance
path [140]. Just as with lightning strokes, sometimes multiple paths are required to relieve
the potential charge. Figure (4.14) shows an electric arc including several strokes. As can
be seen, one of these strokes is more enlightening than the other, which basically has the
best conductivity amongst paths shown.

Depending on environmental variables, an electric arc evolves in order to �nd the opti-
mum path with maximum conductivity. Obviously, as long as the variables do not change,
the optimum steamer settles down in a stationary condition, but usually they change in
a stochastic fashion. As a result, one can see that an electric arc evolves randomly [139],
and consequently is capable of �nding a better path of conductivity. In an optimal path
planning problem, one is looking for a path that has the best performance. Depending on
how complicated the performance is de�ned, one should choose an algorithm resulting in
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Figure 4.14: A Real Electrical Arc, image courtesy of Jonny O'Callaghan [142]

a best possible solution for the problem. The present algorithm in this section, is inspired
by electric arc evolution and designed to �nd such a path. Optimality of the path and the
stochastic behavior of the evolution is governed by using open curve [138] stochastic level
set method [57].

4.3.2 Algorithm

Open Curve Level Set Method

Usually the level set method works in cases where implicit closed curves are required.
Image segmentation and topology optimization are some examples of this purpose. In a
path planning problem, an open curve should be evolved to �nd the optimal path. As there
is no robust way to employ an open curve as a zero level set of a continuous function, P.
Smereka [138] has presented a modi�ed level set approach, usable for both open and closed
curves. The interacting spiral crystal growth has been modeled by this approach [138].
Modeling the crystal growth needs open curve to de�ne the screw dislocations in crystal.
The classic level set method with one evolving surface has been modi�ed by adding another
level set function in order to include screw dislocations. In Figure (4.15), the initial step
line is de�ned by:

Γ(0) = {φ(x, 0) = 0, ψ(x, 0) > 0} (4.35)

Therefore, the middle part of the horizontal line Γ(0) intersected by two vertical lines
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Figure 4.15: The way to implement single level set

is the open curve required for spiral crystal growth modeling. In this thesis almost the
same approach has been employed, except that in our case there is no need to update the
second level set and it is only used to show the poles, boundaries and obstacles.

Problem Setup

Before struggling with the main problem, it is necessary to discover how the path, bound-
aries, hazardous regions and obstacles are de�ned. As explained, the path should be repre-
sented as an open curve level set [138], and by using almost the same idea, the boundaries
and hazardous regions and/or obstacles will be implemented.

De�nition of Path According to Section (4.3.2), a path Ω can be de�ned by an evolving
surface φ and a stationary surface ψ0. This open curve, Ω, is shown in Figure (4.16(a)).
Here, only φ is evolving, and the �xed surface ψ0 is employed only in order to describe
the two ends of the path and φ can evolve in those regions that ψ0 > 0. The path evolves
based on the algorithms that will be explained in detail in the following sections, but two
ends of the path (A and B) will not move, because they are located in the regions that
ψ0 ≤ 0.
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(a) Open Curve As a Simple Path (b) Hazardous Regions and/or Obstacles
De�ned in E-ARC

Figure 4.16: Open Curve De�nition of Path

De�nition of Boundaries To de�ne an evolving open level set, one can employ another
�xed level set, as in Figure (4.15). Now the problem becomes how to de�ne the boundaries
for the region in which the path should evolve. Figure (4.16(a)) shows the idea to de�ne
proper boundaries for the problem. The idea is similar to the way that the poles are
de�ned, in that the curve evolves within the region that is de�ned by the boundary, and
gets frozen outside it. By adding this extra constraint, the path looks like Figure (4.16(a)).

Hazardous Regions and/or Obstacles The standard way to implement hazardous
regions and/or obstacles is to penalize those paths that are passing over these regions.
Thus, the optimization algorithm neglects these regions in order to minimize the objective
function. To penalize the path, the objective function should be magni�ed by some mul-
tipliers over hazardous regions and/or obstacles. Another valid approach is to utilize the
method introduced in Section (4.3.2) to de�ne the open path. It has been noted that to
de�ne the evolving curve that de�nes the path, one should employ another level set that
does not evolve and is only used in order to de�ne the start and end of the path. This idea
extends to de�ne the hazardous area and obstacles encountered over the path. Trying out
the idea, assume that the hazardous areas and obstacles are marked by the same level set
employed to de�ne the ends of the path. In this de�nition, while the path is evolving within

110



regular regions, it cannot evolve in marked areas because the updated path gets frozen in
aforementioned regions. Consequently, the evolving path will not enter this area and only
evolves in regular regions to optimize the objective function. Figure (4.16(b)) depicts this
idea. As evident, while the path is evolving, it cannot enter the signed area ψ < 0. The
potential problem arises when the evolving procedure completely surrounds the hazardous
region and the path cross each other: the surrounding part of path becomes unnecessary
and should be removed. It cannot be obtained automatically by classic formulation. To do
so, the Flood Fill algorithm, a popular algorithm in image processing, [144] is employed
to remove the undesired holes in the image. Considering Equation 2.1, one can conceive
the entire region as a black and white image in which the black and white regions are
de�ned by the evolving curve. When the curve crosses itself, Figure (4.17(b)), a hole will
be created in the aforementioned image. Using the image processing algorithms such as
the Flood Fill algorithm [144], one can remove these holes and mitigate the unnecessary
part of the path that surrounds the hazardous regions or obstacles. After removing the
hole(s), the evolution of the path can proceed as usual.

Description of the Evolving Algorithms

Basically, the E-ARC algorithm employs stochastic level set approach with open curve
fashion. In addition, some modi�cations are required in order to improve the e�ciency of
the algorithm. In this thesis, three steps are designed: �rst, the classic level set method
with open curve fashion will be explained. This case is only practically applicable when
the objective function has a closed form equation as a di�erentiable function of the path.
In most engineering applications this closed form equation is not available and hence this
case is not studied in detail and only a general formulation required for further steps
is presented. Instead another approach, which is very similar to simulated annealing in
variational framework [57], is studied. This second approach can be employed either in a
situation where the closed form equation exists or the path can be evaluated numerically.
Eventually the algorithm will be modi�ed to overcome some major drawbacks, such as
slow convergence and lack of accuracy in some part of the path. As stated, in engineering
applications, the objective function is usually so complex that a closed form equation does
not exist, or at most could be evaluated numerically. The third method is also usable for
both circumstances, and this is the main contribution of the current work. This method is
called �E-ARC� for �Evolutionary Arc,� but can also recall �Electric Arc,� which inspired
the algorithm.
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(a) (b)

(c) (d)

Figure 4.17: Results of Flood Fill Algorithm to Remove the Unnecessary Parts of the
Path
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Open Curve Classic Level Set Method As mentioned, this method is practically
con�ned to a problem that there exists a closed form objective function which is di�eren-
tiable with respect to the path. Although in many cases it is very restricted, it nevertheless
results in fast convergence of the optimization process as the gradient is analytically avail-
able at each point of the path which leads the path to evolve toward the optimal path. To
formulate this problem, assume that path Ω is de�ned between two ends A and B, by the
evolving surface φ and stationary functional ψ0 as shown in Figure (4.16(a)). Suppose the
objective function J(φ) de�ned as:

J(φ) =

∫
Γ

f(φ)δ(φ)H(ψ0)dΓ + λ

∫
Γ

δ(φ)H(ψ0)dΓ (4.36)

where Γ is the domain over which φ and ψ0 are de�ned. f(φ) is called local energy density
function, by which the objective function is represented all over the path Ω and should be
evaluated at each point on the path. λ > 0 is a positive multiplier. Obviously, the second
term represents the length of the path. Again, it should be noted that ψ0 is a �xed surface
and the main variable is only φ. H(ψ0) is employed in order to freeze the region that the
path is forbidden to enter. Because along as ψ0 is positive H(ψ0) would be equal to 1 and
the path evolves along the negative direction of gradient and on the other hand, when ψ0

is negative, H(ψ0) would be 0 which means that the path can not evolve any more. The
subscript ”0” in ψ0 is chosen to show the stationary status of the surface ψ, as this surface
would not evolve during the optimization process and only is employed to de�ne the path,
boundaries and/or obstacles.

The optimal path planning problem can be presented as:

min
φ
J(φ) (4.37)

Usually by solving the following Euler-Lagrange equation, this minimization problem
can be solved [54]- [53].

φt = ∇φJ (4.38)

By a little bit of mathematical manipulation:

φt −∇φ ·
∂J

∂φ
= 0 (4.39)
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which is exactly the Hamilton-Jacobi Equation 4.1 in which Vn is replaced by −∂J
∂φ
.

Therefore, Equation 4.39 should be solved in order to �nd the optimal path. Notice that
not only ∂J

∂φ
should exist but also it is desirable to have a closed form equation for ∂J

∂φ
;

otherwise, a huge amount of numerical computation is required. This restriction limits the
real application of the problem dramatically, and therefore one only uses this formulation
as a basis for the next step.

E-ARC Algorithm When analytical gradient does not exist, one may encounter two
major problems. First, numerical calculation of the gradient requires signi�cant computa-
tional resources; and second, if only the stochastic terms are used (for simulated annealing
approach), some problems with convergence will arise and usually the �nal solution is not
accurate enough in some parts. This problem arises because in stochastic gradient systems
like Equation 3.62, the process converges to the solution of deterministic system [148], [149].
That is, the system has a pattern to follow towards the �nal solution, although the stochas-
tic terms help to escape from local points, and the �nal solution is likely the global solution
or at least the best possible one. In some cases when the gradient does not exist, the pro-
cess should jump from one state to another in hope of �nding a better solution which has
a smaller probability compared to cases where gradient is available. On the other hand,
because these jumps are totally random, even if a part of the optimal path is found it
is possible to be lost in the next step as the simulated annealing only cares about the
global value of the objective function and not the local accuracy of the path. To deal
with these drawbacks, E-ARC algorithm compiles the advantages of both local and global
path evaluation. In doing so, at each step Nc perturbed paths, namely C1, ..., CNc , will
be generated instead of only 1, Figure (4.18). Next, the straight line that connects two
ends of the path is divided to Nn parts (L1, L2, ..., LNn) with random lengths in such a way
that the summation of all segments is equal to the length of the original connecting line.
Nn + 1 vertical lines are drawn such that Nc created paths are also divided into Nn parts,
Figure (4.18). The random generation of all segments (each Li) are repeated at each time
interval. From there, each part of these paths should be evaluated individually. For each
part of the path (L1, L2, ..., LNn) the best of the segmented paths (each of C1, C2, ..., CNc)
are selected based on their �tness values. Then, the new path is made of the combination
of these bests. In other words, the updated path for this step is created by connection of
the best segments for each division of paths. Figure (4.18) describes how the new path is
de�ned at each time step. The bold line in each division of Figure (4.18) is assumed to be
the best one. It might raise the question that the new path has discontinuity as the best
segments are not necessarily along each other, similar to the path in Figure (4.18). One
should pay attention that the perturbed paths are indeed very close to each other as the
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step time is selected small enough and what is depicted in Figure (4.18), is magni�ed just
to clarify the concept of the selection process. Besides, the re-initialization of the level set
method makes the path continuous, so this discontinuity would not result in divergence as
long as the time step is small enough. Although numerical simulation has shown that the
time step necessary to satisfy the ”CourantFriedrichsLewy” (CFL) condition [54], [53] is
also suitable for this purpose, there is no mathematical proof available yet as a standard
guideline. The results of this algorithm are presented in Section(4.3.3), and con�rm its
e�ciency. To summarize, the algorithm is represented in Table (4.10) as a pseudo code.

Figure 4.18: Group Gradient Concept in E-ARC
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Table 4.10: Pseudo Code for E-ARC Algorithm

Step 1 Set Nn, Nc, T0, de�ne ψ0, stopping criteria and i = 1...NItr

Step 2 Start with initial guess φ1 and evaluate J(φ1)

Step 3



1-If analytical gradient exists Vn,i = −(∂J
∂φ

)i

Create Θj
i s using

dΘj
i = (Vn,i|∇φi|dt+ |∇φi| ◦ dW j

i (t))H(ψ0)

j = 1...Nc

Else

Create Θj
i s using

dΘj
i = (|∇φ| ◦ dW j

i (t))H(ψ0)

j = 1...Nc

2-Divide the straight connecting line into Nn random segments

3-Divide each Θj
i , j = 1...Nc based on the lengths in Step (3-2)

4-Evaluate each of the segments in step (3-3)

5-Select the best segment of each path Θj
i

6-Combine the best segments to make a new path φ?i+1

7-Update φi+1by re-initialization of the φ?i+1

Step 4 Calculate J(φi+1)
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Step 5



If J(φi+1) < J(φi)=⇒ Accept φi+1

Else =⇒ Accept φi+1with probability

Pacc = exp(−J(φi+1)−J(φi)
T (i)

)

Step 6 Update T(i) and loop back to ful�ll the stopping criteria

4.3.3 Results of Path Planning Problem

In this section, only the general case of the algorithm shown in Table (4.10) in which the
analytical gradient does not exist is investigated. First, it is shown that the results for
simulated annealing algorithm, which basically illustrate the drawbacks in this algorithm
for optimal path planning problem. Then, we apply the E-ARC algorithm, and show how
the gradient at each point is replaced by a group motion of the points lying on a segment of
a path; this method is an extension of gradient-based methods. When the gradient exists,
the curve evolves along the steepest descending direction, which is opposite to the gradient
vector's direction.

In E-ARC, each segment is chosen as the best one between all Nc generated segments in
a particular section (one of the 1 to Nn sections). In other words, the best segment is the
one that creates a higher reduction in the objective function similar to the gradient-based
approach that leads each point along the steepest descending direction. If we choose Nn

such that the number of generated intervals is equal to the number of nodes over each path,
the two approaches become almost identical. Notably, E-ARC shows that when converg-
ing to the optimal path, there is no need to calculate the best direction for every single
point over the path, and that only a limited number of intervals result in a signi�cant
improvement. Therefore, the computational cost decreases remarkably compared to calcu-
lating the gradient numerically at each point. A benchmark problem is designated in order
to evaluate the algorithms. It is created by combinations of several bell shape Gaussian
functions with randomly selected heights and alignments. This bumpy surface is chosen as
an arbitrary objective function, and two �xed points over this surface are selected as two
ends of the desired path. To have a comparable condition, all optimization processes starts
from the same initial guess. The results for simulated annealing algorithm are presented in
Figure (4.19). Based on these set of results, there is no guarantee to converge to the same
solution even if the simulation starts from the same initial guesses, which is a serious �aw.
Moreover, the solution's accuracy is unacceptable in some parts of the path. The result
indicates that each path could �nd some part of the optimal path accurately, but the whole
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optimal path is not discovered. This means that the simulated annealing in the absence of
gradient is not reliable enough as an algorithm for optimal path planning problems.

Figure (4.20) depicts the E-ARC algorithm's corresponding solution. All simulations
from the same initial guess converge to the same solution; one of them is shown in this �g-
ure, implying more reliability of the algorithm. Figure (4.20(c)) shows convergence trends
for the same objective function, both in the presence and in the absence of constraints.
Moreover, the hazardous regions (or obstacles) are also represented in Figures (4.17(a))
and (4.17(b)).

A set of benchmark problems is shown in Figure (4.21). Each simulation is run sev-
eral times and usually reaches the same solution. Depending upon the initial guess, the
algorithm might �nd the di�erent solutions, meaning that the algorithm still su�ers from
being trapped in the local solution. This issue can be solved by enhancing multi-agent
structure, in which several paths are exploring the region simultaneously. Usually, in this
swarm-like structure, each agent is searching locally on its own for the best solution; with
an extra driving force, it is compelled to converge toward the best current agent [1]. The
authors examine the performance of this approach [1] in some other applications. The last
set of simulations is run in the presence of a constraint: namely, obstacles or hazardous
regions. In the simulations shown in Figure (4.22), the hazardous regions are the same
and only objective functions are di�erent. Figure (4.17(a)) and (4.17(b)) show 3D and
2D representations of constraints respectively, which can never be violated because the
evolving curve cannot enter the targeted regions. These regions are not shown in Figure
(4.22) to depict the optimal paths more clearly.

4.3.4 Conclusions of Optimal Path Planning Problem

The E-ARC algorithm has been developed and investigated in this section in order to cope
with the optimal path planning problem. Based on the stochastic level set method, E-ARC
is an optimization algorithm in a variational framework.

This section has examined the capability of E-ARC and its strong potential to extend to
other applications such as image processing and topology optimization. In this section, the
open level set approach [138] has been employed in order to de�ne the evolving path; then,
its level set formulation was utilized by stochastic operators enabling to escape from locally
optimal solutions. The simulations have shown that these two steps were insu�cient for
�nding an accurate optimal solution. To solve this problem, the E-ARC algorithm provides
a set of novel operators that enable local search for the optimal path along with the global
evaluation of regular stochastic level set method.
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Moreover, an original method to implement the constraints was introduced. Usually
a signi�cant weight was assigned to the hazardous regions or the position of obstacles
which allows the optimization process to avoid entering the targeted regions; in this work,
however, the aforementioned regions were frozen and the evolving path could not enter the
regions. The Flood Fill algorithm [144] was employed to remove the unnecessary part of the
path when the evolving path crosses itself. This algorithm was originally employed in image
processing to remove unnecessary holes in images [144]. Ultimately, the E-ARC algorithm
has demonstrated signi�cant improvements to the optimal path planning techniques.

Despite E-ARC's ability to escape from local solutions, in some cases, depending on
where the algorithm started and the complexity of the objective function, it might still
get stuck in a local solution. Extension of E-ARC to a multi-agent structure is a solution
to cope with this di�culty. The e�ectiveness of this multi-agent structure was shown in
previous sections.
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Figure 4.19: Di�erent results initiated from the same initial guesses, produced by Simulated
Annealing
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(a) 2D Representation of Benchmark's So-
lution

(b) Spatial Representation of Benchmark's Solution

(c) E-ARC 's Convergence on the Benchmark Problem

Figure 4.20: E-ARC 's results on the benchmark shown in Figure (4.19)
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Figure 4.21: Di�erent benchmarks explored by E-ARC
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Figure 4.22: Simulation results in presence of obstacles or hazardous regions
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Chapter 5

Conclusion and Future work

A set of global optimization algorithms was proposed in this study in order to cope with
variational applications as well as parameter optimization problems. A simple investigation
shows that the existing global parameter optimization methods cannot be easily extended
to the variational framework. Therefore, a new algorithm in parameter space, SBFO, was
proposed and by using the ideas learned from this approach two new algorithms, ACSF
and MSLSM, in variational framework were proposed. These two algorithms are suitable
for some applications, such as image processing and topology optimization, in which gra-
dient function is analytically available. For the cases such as optimal path planning, when
the gradient is not explicitly available, E-ARC algorithm was suggested. All of the afore-
mentioned algorithms are capable of solving constraint optimization problem as well as
unconstrained ones.

Inspired by bacterial aggregation process, SBFO was proposed and utilized by a local
search tool, gradient operator, as well as global search approaches such as multi-agent
structure and stochastic operators. SBFO can be categorized under particle swarm op-
timization methods and by tuning the weighting parameters; one can improve the local
search or global search capability whenever needed. As a rule of thumb, the bigger the λ
in Equation (3.2), the faster the convergence is and the lower the capability of local search.
At the present time, tuning of this parameter is not automatic and user should de�ne it
at the beginning of the process. The performance of SBFO was tested in some benchmark
problems. It demonstrates good results compared to the algorithms in its own category,
as well as in evolutionary algorithms such as GA. In terms of convergence speed, as SBFO
is utilized by a gradient operator, it is clearly faster than GA, although GA shows better
performance when there is no limitation on number of iterations. The main advantage of
SBFO is its capability of local search and additionally as motion of each agent is based
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on steepest descent direction; one can conclude that SBFO can be extended to variational
framework where the steepest descent method is replaced by the level set method.

To deal with variational problems such as image segmentation, topology optimization
and path planning problems, level set method has been widely used by researchers in
di�erent branches of science and engineering. Stochastic level set method is proposed
by [57] to avoid being trapped in local solutions. The general model suggested by Juan [57]
cannot be supported by the theorems proposed in [72]- [73] since the noise sources are
spatial dependent. Active contour with stochastic fronts (ACSF) as a special case was
designed in this thesis such that the convergence of the stochastic model towards the
deterministic model was guaranteed based on [81]. The convergence analysis of ACSF was
discussed in this thesis in detail. Moreover, ACSF has compact equation which is easier for
implementation and less computationally expensive compared to general form, suggested
by Juan [57].

The structure of ACSF allows the front to have an independent �uctuation at each point
of it that helps to escape from local solutions. This independent jump is useful because
during the process each point on the front can move to a better position independently
if possible (possibility will be determined by annealing scheme). While dependent source
noise, may create a situation in which only some points have this opportunity to select a
better position and other points on the front are forced to move to the positions that are
not necessarily better than before. Obviously this happens even if the overall objective
function is �nding its way toward a better value.

Another approach to discover the entire regions is to have a multi-agent structure that
each agent searches for a solution locally and at the same time all the agents are compelled
to converge to the best current solution. Multi-agent stochastic level set method was
intended for this purpose. Apparently, simulations of this approach in image processing
are not as good as expected. The reason is that the initial guess usually has enough holes,
each hole plays a role of an independent agent; hence, basically ACSF on its own is strong
enough to discover the whole feasible space. Consequently, when ACSF and MSLSM are
compared over the medical image processing there is no signi�cant improvement in results.
For the same reason and this fact that topology optimization is remarkably computationally
expensive, MSLSM was not applied to topology optimization problem.

Results show that ACSF is also capable of �nding a consistent solution for topology
optimization problems. If one compares the convergence pattern of di�erent case studies
in this problem, he/she can �gure out that although the resulting topologies are not ex-
actly the same but the objective functions are acceptably the same. This means that to
distinguish between the di�erent topologies, a new objective function should be de�ned;
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otherwise improvement of the optimization algorithm cannot help anymore.

The performance of ACSF and MSLSM is clearly dependent on both deterministic and
stochastic models, Equation (3.62). In some application, such as optimal path planing,
�nding an analytical form of the deterministic model is impossible or computationally
expensive. To clarify this, it is worth mentioning that the selection of objective functions
in optimal path planning can be as wide as fuel consumption of a rover to the amount of
energy that is absorbed by solar panels that is a function of rover orientations in space. To
cope with such problems, E-ARC algorithm was proposed that do not need the gradient
of objective function explicitly. Instead of gradient at each point, the steepest descent
direction is de�ned for a set of points over a portion of the front. The length of this portion
is randomly selected at each time step. This helps the front to uniformly converge toward
the solution. To employ the level set method in open curve fashion, the idea suggested by
Smereka [138] was used. By extension of this idea, the implementation of constraint such
as hazardous area becomes considerably easier and more e�ective compared to the other
approaches for this purpose. The results show that the E-ARC algorithm is very e�ective
for the path planning problem especially compared to stochastic level set method with the
absence of a gradient function.

To improve the performance of the proposed algorithms, the following can be suggested:

As mentioned, SFBO structure has a parameter, λ in Equation (3.2), to compromise
between local and global search. This parameter is now selected by trial and error at the
beginning of the optimization process, but during the process the required value varies
depending upon the current states of each agent. For example, if an agent is trapped in
a local point, this parameter should be large enough to help the agent escape from that
local solution; on the other hand, if the agent is still looking for a local solution and the
length of gradient vector is big, the algorithm should allow it to �nd its own local point.
Therefore an adaptive gain scheduling is really required to improve the performance of the
algorithm. The same idea can be applied to MSLSM for the parameter that forces the
agents to be similar to each other.

For image processing application, as stated, the accuracy of the algorithm in detecting
the low contrast edges is limited to the capability of deterministic model. The current
algorithm only helps to explore the entire image. Therefore, by using high performance
models like the one suggested by Bresson et al. [69], the algorithm not only can explore
the image as much as possible, but also can detect low contrast edges.

A real need for topology optimization problem is to improve the objective function such
that it results in a more robust design against geometrical and loading uncertainties. As
can be seen, ACSF is able to achieve almost the same objective functions with starting from
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di�erent initial guesses but still the �nal topologies are not exactly the same. Therefore,
it is necessary to have an algorithm that can choose a solution (amongst these di�erent
topologies) that is more robust. In doing so, some other terms should be added to the
objective function (deterministic model) such that it can distinguish between robust and
sensitive design. The current deterministic model cannot manage this problem yet.

Although the E-ARC algorithm has demonstrated acceptable results for many of the
benchmark problems, there are still some cases that E-ARC cannot �nd the best solution.
One way to improve it is to have several evolving curves instead of only one. This increases
the chances of being able to �nd the best possible solution. By looking at Figure (4.14),
which shows the real phenomenon, by which E-ARC is inspired, one can conclude that to
�nd the best path, the real event is also using di�erent evolving paths such that only one
of them is the best, which is the most illuminated one.
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