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Abstract 

Transparent conducting oxides (TCOs) have attracted extensive attention for decades due to their 

remarkable applications in optoelectronic devices. The development of functional nanostructured 

TCOs with unique properties, and an expansion of their functionalities are therefore research 

directions of significant current interest.  Among TCOs, In2O3 is widely applied because of its high 

charge carrier concentration and mobility, as well as the ease with which it can be deposited as a thin 

film. The important role of surfaces in tuning properties in materials shows the importance of 

studying nanostructured materials with high surface areas. In this thesis I examined the synthesis of 

phase-controlled In2O3 nanocrystals (NCs) and showed the effect of doping and composition on the 

materials properties. Owing to the relevance of size, structure, and composition for manipulating 

properties of nanomaterials, synthesis of well-defined nanocrystals of pure and doped In2O3 has been 

of considerable interest for fundamental studies as well as for technological applications.  

Phase controlled synthesis of colloidal In2O3 NCs was achieved via a size-structure correlation. The 

study of the morphological and phase transformations of In2O3 NCs during their growth in solution 

implies that corundum (rh-In2O3) is a transient structure in the formation of cubic bixbyite (bcc-In2O3) 

phase. The formation of NCs smaller than 5 nm leads to the spontaneous stabilization of metastable 

phases owing to the surface energy and/or surface stress contributions, both of which are dependent 

on size. The growth beyond the critical size lowers the potential energy barrier height and causes the 

nanocrystal phase transformation. In addition, phase transformation of colloidal In2O3 NCs in the 

temperature range of 210-260 ˚C during their synthesis in solution was studied using a combination 

of structural and spectroscopic methods, including X-ray diffraction (XRD), transmission electron 

microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy, and 

analyzed data using Johnson-Mehl-Avrami-Erofeyev-Kholmogorov (JMAEK) and interface 

nucleation models. The phase transformation occurs via nucleation of bcc-In2O3 phase at the interface 

between contacting rh-In2O3 NCs, and propagates rapidly throughout the NC volume. In situ high 

temperature XRD patterns collected during nonisothermal treatment of In2O3 NCs reveal that phase 

transformation of smaller NCs occurs at a faster rate and lower temperature, which is associated with 

the higher packing density and contact formation probability of smaller nanoparticles. Owing to the 

fact that NC surfaces and interfaces play a key role in phase transformation, their control through the 

synthesis conditions and reaction kinetics is an effective route to manipulating NC structure and 

properties. 
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Although, doping semiconductor NCs is crucial for enhancing and manipulating their functional 

properties, the doping mechanism and the effects of dopants on the nanocrystal growth and structure 

are not well understood. We show that dopant adsorption to the surfaces of colloidal In2O3 NCs 

during incorporation inhibit NC growth and leads to the formation of metastable rh-In2O3 for 

nanocrystals smaller than ca. 5 nm. Direct comparison between Cr
3+

 and Mn
3+

 dopants indicates that 

the nanocrystal structure directly determines the dopant incorporation limits and the dopant electronic 

structure, and can be predicted and controlled. These results enable a new approach to designing 

multifunctional nanostructures and understanding the early stages of crystal growth in the presence of 

impurities. Nanocrystalline films fabricated from colloidal Cr
3+

- and Mn
3+

- doped In2O3 nanocrystals 

exhibit strong ferromagnetic ordering up to room temperature. The absence of ferromagnetism in the 

free standing transition metal (TM)-doped In2O3 NCs and appearance of ferromagnetism only in 

TM:In2O3 films prepared from colloidal NCs, are attributed to the formation of extended structural 

defects, proposed to be oxygen vacancies at the NC interfaces. In fact, in TM:In2O3 NCs with high 

surface to volume ratios, more oxygen vacancies are present at the surface of NCs and networking of 

NCs in the prepared film causes an increase in grain-boundary defects at the interfaces. A 

comparative study of magnetic circular dichroism (MCD) spectra of Cr
3+

-doped bcc-In2O3 and Cr
3+

-

doped rh-In2O3 revealed that Cr
3+ 

ions distinctly occupy different symmetry sites in corundum and 

bixbyite crystal structure of In2O3. In fact, a change in the crystal structure of In2O3 from bixbyite to 

corundum changes the electronic configuration of Cr
3+

.  

By manipulating the NC composition and structure in solution we applied a one-step synthesis of 

ternary gallium indium oxide (GIO) nanocrystals with variable crystal structures. The structures and 

sizes of GIO NCs can be simultaneously controlled, owing to the difference in the growth kinetics of 

In2O3 and Ga2O3 NCs, and the polymorphic nature of both materials. These dependences, induced by 

the interactions between specific defect sites acting as electron donors and acceptors, were used to 

achieve broad emission tunability in the visible spectral range at room temperature. The nature of the 

photoluminescence is identified as donor -acceptor pair (DAP) recombination and changes with 

increasing indium content owing to the changes in the energy states of, and interactions between, 

donors and acceptors. Structural analysis of GIO nanocrystals by extended X-ray absorption fine 

structure spectroscopy reveals that In
3+

 occupies only octahedral, rather than tetrahedral, sites in the 

spinel-type γ-Ga2O3 nanocrystal host lattice, until reaching the substitutional incorporation limit of ca. 

25%. The emission decay dynamics is also strongly influenced by the nanocrystal structure and 

composition.  



 

 v 

Acknowledgements 

I would like to express my deepest gratitude to my PhD supervisor Prof. Pavle V. Radovanovic for 

his invaluable support throughout this project. His guidance and enthusiasm towards research 

encouraged me to face many difficulties I encountered during my PhD study.  

I would also like to thank my advisory committee members, Dr. Eric Prouzet, Dr. Linda Nazar, and 

Dr. Dmitriy Soldatov for their insightful comments, suggestions and valuable feedback on the work. 

I acknowledge Waterloo Institute for Nanotechnology for the Graduate Research Fellowship and the 

Canadian Light Source for the Graduate Travel Award. I would like to thank Dr. Ning Chen, Dr. 

Yongfeng Hu, and Dr. Weifeng Chen for their assistance with XAS measurements. A very special 

acknowledgement, I would like to give to Dr. Eric Prouzet, my advisory committee member, who was 

always willing to help and give his best suggestions during the past years. I am also grateful to Dr. 

Jalil Assoud for his help and advice in solid state chemistry. Thanks to Randy Fagan for his precious 

technical assistance with Raman spectroscopy and Fred Pearson for his assistance with TEM 

measurements, as well as Dr. Mariya Zelinska for her assistance with XRD measurement. 

I had the pleasure of working in the group, where not only did I have the opportunity to learn a lot 

and discuss different topics and ideas, but also to make friends whom I will never forget. I would like 

to thank all my group members especially Dr. Ian Hosein, Ling Ju, Ting Wang, and Melanie Chiu. 

And last but not least, I express my heartfelt gratitude to my parents and my siblings for their love has 

always been with me and has given me the energy to reach of my goals despite the long distance 

between us. I am proud of you and you have a big share in what I have achieved. 

 

 



 

 vi 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ................................................................................................................................ v 

Table of Contents .................................................................................................................................. vi 

List of Figures ....................................................................................................................................... ix 

List of Tables ...................................................................................................................................... xvi 

List of Abbreviations ......................................................................................................................... xvii 

Chapter 1 Introduction ........................................................................................................................... 1 

1.1 Transparent Conducting Oxides ................................................................................................... 1 

1.2 Indium Oxide Polymorphs ........................................................................................................... 2 

1.3 Thermodynamic Phase Stability of NCs ...................................................................................... 4 

1.3.1 Thermodynamic Phase Stability of Indium Oxide NCs ........................................................ 5 

1.4 Kinetics of Phase Transformation in NCs .................................................................................... 7 

1.4.1 Kinetic Study of Phase Transformation in Indium Oxide NCs ............................................. 9 

1.5 Doped Semiconductor NCs ........................................................................................................ 10 

1.5.1 Magnetic Properties ............................................................................................................ 10 

1.5.2 Synthesis and Characterization of Doped Semiconductor NCs .......................................... 12 

1.5.3 Doping Mechanism ............................................................................................................. 13 

1.6 Doped In2O3 NCs ....................................................................................................................... 14 

1.7 Motivations and Scope of the Thesis ......................................................................................... 14 

Chapter 2 Experimental Section .......................................................................................................... 17 

2.1 Materials .................................................................................................................................... 17 

2.2 Synthesis and Samples Preparation............................................................................................ 17 

2.2.1 Synthesis of In2O3 NCs ....................................................................................................... 17 

2.2.2 Synthesis of Chromium and Manganese Doped In2O3 NCs ............................................... 18 

2.2.3 Synthesis of Gallium Indium Oxide NCs............................................................................ 18 

2.2.4 Synthesis of Nanocrystalline Cr2O3 .................................................................................... 18 

2.2.5 Size Selective Precipitation ................................................................................................. 18 

2.3 Measurements and Data Analysis .............................................................................................. 19 

2.3.1 Powder X-ray Diffraction ................................................................................................... 19 

2.3.1.1 In-situ XRD Measurements ......................................................................................... 19 



 

 vii 

2.3.1.2 Linear Combination and Deconvolution Analyses of XRD patterns ........................... 19 

2.3.2 Raman Spectroscopy ........................................................................................................... 20 

2.3.3 Electron Microscopy ........................................................................................................... 20 

2.3.4 X-ray Absorption Spectroscopy .......................................................................................... 21 

2.3.4.1 Indium K-edge XAS Measurements............................................................................. 22 

2.3.4.2 Chromium K-edge XAS Measurements ....................................................................... 22 

2.3.4.3 EXAFS Data Analysis .................................................................................................. 23 

2.3.5 Photoluminescence Spectroscopy........................................................................................ 23 

2.3.5.1 Relative Quantum Yield Measurements ....................................................................... 24 

2.3.6 UV-Vis Absorption Spectroscopy ....................................................................................... 24 

2.3.7 Magnetic Circular Dichroism .............................................................................................. 24 

2.3.8 Magnetic Measurements ...................................................................................................... 25 

Chapter 3 Phase-Controlled Synthesis of Colloidal In2O3 Nanocrystals and a Kinetic Study of Phase 

Transformation ..................................................................................................................................... 27 

3.1 Phase-Controlled Synthesis of Colloidal In2O3 NCs via Size-Structure Correlations ................ 27 

3.1.1 Synthesis of In2O3 NCs during Growth in Solution ............................................................ 27 

3.1.2 Indium K-edge XAS Measurements: Evidence of Surface Stress ....................................... 29 

3.1.3 Formation of InOOH NCs ................................................................................................... 32 

3.1.4 Optimized Reaction Conditions for the Synthesis High Purity rh-In2O3 and bcc-In2O3 NCs

 ...................................................................................................................................................... 33 

3.2 A Kinetic Study of Phase Transformation of In2O3 NCs ........................................................... 36 

3.2.1 Quantitative Analysis of the Kinetics of Phase Transformation of In2O3 NCs ................... 36 

3.2.2 Kinetics of Phase Transformation: JMAEK Model............................................................. 42 

3.2.3 Kinetics of Phase Transformation: Interface and Surface Nucleation Model ..................... 45 

3.2.4 The Choice of Suitable Kinetic Model ................................................................................ 48 

3.2.5 In situ Nonisothermal X-ray Diffraction Analysis .............................................................. 50 

Chapter 4 Dopant-Induced Manipulation of the Growth and Structural Metastability of Colloidal 

Indium Oxide NCs ................................................................................................................................ 53 

4.1 Changes in the In2O3 NCs Structure and Size in the Presence of Dopant .................................. 53 

4.2 Difference in Incorporation of Chromium(III) and Manganese(III) Dopants in In2O3 NCs ...... 59 

4.3 Mechanism of Inhibition of the Growth of NCs in the Presence of Dopant Ions....................... 62 

Chapter 5 Optical and Magnetic Properties of Transition Metal Ions Doped In2O3 NCs .................... 65 



 

 viii 

5.1 Chromium Doped In2O3 NCs ..................................................................................................... 65 

5.1.1 Chromium K-edge XAS Measurements ............................................................................. 65 

5.1.2 Electronic Absorption and Magnetic Circular Dichroism Spectroscopies .......................... 67 

5.1.3 Magnetism ........................................................................................................................... 72 

5.2 Manganese Doped In2O3 NCs .................................................................................................... 74 

5.2.1 Electronic Absorption Spectroscopy ................................................................................... 74 

5.2.2 Magnetism ........................................................................................................................... 76 

Chapter 6 Colloidal Gallium Indium Oxide Nanocrystals: A Multifunctional Light Emitting Phosphor 

Broadly-Tunable by Alloy Composition .............................................................................................. 78 

6.1 Structural Study of Gallium Indium Oxide NCs ........................................................................ 78 

6.2 Optical Study of Gallium Indium Oxide .................................................................................... 79 

6.3 EXAFS Study of Gallium Indium Oxide ................................................................................... 87 

6.4 Proposed Mechanism for Photoluminescence ........................................................................... 92 

Chapter 7 Conclusions and Future Work ............................................................................................. 95 

7.1 Conclusions ................................................................................................................................ 95 

7.2 Future Work ............................................................................................................................... 97 

Appendix A .......................................................................................................................................... 99 

Permissions ........................................................................................................................................ 103 

Bibliography ...................................................................................................................................... 107 

 



 

 ix 

List of Figures 

Figure 1.1 (left panel) Energy of formation for an oxygen vacancy in In2O3 as a function of distance 

from the (111) terminated surface, as calculated by density functional theory. (right panel) 

Distribution of surface donors at an equilibrium temperature of 750 K
19

 .............................................. 3 

Figure 1.2 (a, b) Crystal unit cell of cubic bixbyite-type In2O3 (bcc-In2O3, a), and corundum-type 

In2O3 (rh-In2O3, b) viewed along the b-axes. The angle between a- and b- axes for rh-In2O3 is 120º. (c, 

d) The In
3+

 sites in bcc-In2O3 (c), and rh-In2O3 (d). Indium ions are shown as large colored spheres, 

and oxygen ions as small black spheres.
23

 .............................................................................................. 4 

Figure 1.3 Cohesive energy versus volume (both per formula unit, f.u.= In2O3). Solid line: bcc-In2O3; 

dashed line: rh-In2O3
27

 ............................................................................................................................ 6 

Figure 1.4 Calculated cell volume as a function of pressure for bcc-In2O3 (open circle) and rh-In2O3 

(open triangle). The pressure-induced phase transition point is marked with an arrow and the 

corresponding pressure value at the transition point (in GPa) is also stated.
10

 ....................................... 7 

Figure 1.5 (a) Schematic representation of the phase transformation of one phase from another by the 

growth of nuclei forming randomly in the old phase. (b) Two types of nuclei growth restrictions; 

coalescence and ingestion. Black dots are nucleation sites, shaded light blue areas are old phase and 

olive areas are the new phase. ................................................................................................................ 8 

Figure 1.6 Diagram depicting relationship between the particle packing and nucleation mode in (a) 8-

nm anatase powder with less dense particle packing and (b) 6 nm anatase powder with denser particle 

packing. Key: white circle, anatase; anchor arrow, interface nucleation; spike arrows, surface 

nucleation.
41

 ............................................................................................................................................ 9 

Figure 1.7 Representation of magnetic polarons. A donor electron in its hydrogenic orbit couples with 

its spin antiparallel to impurities with a 3d shell that is half-full or more than half-full. The figure is 

drawn for x (concentration of magnetic cations) = 0.1, γ = 12. Cation sites are represented by small 

circles. Oxygen is not shown; the unoccupied oxygen sites are represented by squares.
59

 .................. 11 

Figure 1.8 Schematic of trapped dopant model. ................................................................................... 13 

Figure 2.1 X-ray absorption spectra showing three main regions: pre-edge, XANES, and EXAFS. .. 22 

Figure 2.2 Schematic representation of the MCD selection rules. ....................................................... 25 

Figure 2.3 Schematic representation of preparation of films from colloidal Cr
3+

:In2O3 NCs for 

magnetic measurements........................................................................................................................ 26 

Figure 3.1 (a-d) TEM images of nanocrystalline In2O3 during the synthesis at 250° C: 0 (a), 10 (b), 30 

(c), and 60 min (d) upon reaching the reaction temperature. (e) XRD patterns of In2O3 at different 



 

 x 

times during the synthesis at 250° C. Vertical lines at the top and bottom represent the patterns of 

bulk bixbyite bcc-In2O3 (JCPDS 06-0416) and rh-In2O3 (JCPDS 21-0406), respectively, with major 

reflections assigned. ............................................................................................................................. 28 

Figure 3.2 Fourier-filtered In K-edge EXAFS spectra of In2O3 NC samples synthesized at 250 ˚C 

(solid lines), and the resulting curve fits (dashed lines) used to calculate structural parameters. The 

reaction times corresponding to each spectrum are shown in the graph. (b) In-O (green) and In-In 

(purple) bond distances calculated from the EXAFS analysis for NCs synthesized for different 

reaction times. ...................................................................................................................................... 30 

Figure 3.3 Fourier transform EXAFS spectra of In2O3 NCs synthesized at 250˚C for different reaction 

times. The sample synthesized at 200 ˚C for 30 h (purple) was used as a reference of pure rh-In2O3 

NCs. ..................................................................................................................................................... 31 

Figure 3.4 XRD pattern of the reaction mixture for the synthesis of In2O3 nanocrystals after heating at 

150° C for 30 hours. Black lines represent the XRD pattern of bulk InOOH (JCPDS 71-2277) and red 

lines the XRD pattern of rh-In2O3 JCPDS (21-0406). Based on the reflection angles and peak 

intensities we conclude that the XRD pattern of the sample corresponds mostly to InOOH indicating 

its role as an intermediate in this synthesis. The XRD pattern of the sample also contains a 

contribution from nanocrystalline rh-In2O3 obtained by dehydration of InOOH. ............................... 33 

Figure 3.5 (a, c) Overview TEM images of (a) rh-In2O3NCs synthesized at 200 ˚C for 30 h, and (c) 

bcc-In2O3 NCs synthesized at 250 ˚C for 30 h. (b,d) Lattice-resolved TEM (top) and the 

corresponding FFT images (bottom) of (b) a single rh-In2O3, and (d) bcc-In2O3 NC. ........................ 34 

Figure 3.6 (a) XRD patterns of rh-In2O3 NCs synthesized at 200 ˚C for 30 h (bottom), and bcc-In2O3 

NCs synthesized at 250 ˚C for 30 h (top). Black lines represent the XRD patterns of the 

corresponding bulk phases. (b) Raman spectra of rh-In2O3 (bottom) and bcc-In2O3 NCs (top). ......... 35 

Figure 3.7 UV absorption spectra of 9.5 nm bcc-In2O3 (orange) and 3.5 nm rh-In2O3 NCs (blue), 

showing the band gap transitions. ........................................................................................................ 35 

Figure 3.8 XRD patterns (left) and the corresponding size distribution histograms (right) of the 

samples synthesized at (a) 230 ˚C and (b) 260 ˚C for different reaction times (indicated in the graphs). 

The vertical lines are XRD peak positions of bulk rh-In2O3 (bottom, JCPDS 21-0406) and bcc-In2O3 

(top, JCPDS 06-0416). ......................................................................................................................... 37 

Figure 3.9 TEM images of In2O3 NC samples synthesized at (a-c) 230 ˚C for 0 min (a), 10 min (b) 

and 7 h (c), and (d-f) 260 ˚C for 0 min (d), 10 min (e) and 1 h (f)....................................................... 38 



 

 xi 

Figure 3.10 (a) Narrow-range XRD pattern of the sample synthesized at 250 ˚C for 20 min (solid 

black trace), and the deconvoluted (222) and (400) peaks of bcc-In2O3 (dashed red trace), and (104) 

and (110) peaks of rh-In2O3 (dashed olive trace). The pink trace is the superposition of the 

deconvoluted peaks. Inset: linear combination fitting (solid pink line) for the same XRD range.  (b) 

Average content of bcc-In2O3 followed over 30 h for the reactions at different temperatures from 210 

to 260 ˚C. .............................................................................................................................................. 39 

Figure 3.11 (a) EXAFS spectra of In2O3 NCs synthesized at 250˚C for different reaction times (solid 

lines) and the best fit to the EXAFS spectra based on the linear combination of the rh-In2O3 and bcc-

In2O3 NC references (dashed lines). (b) Content of the bcc-In2O3 phase for the samples in (a) 

determined by the EXAFS linear combination fitting. ......................................................................... 40 

Figure 3.12 Sizes of In2O3 NCs at different reaction times: (a) rh-In2O3 NCs synthesized at 210 and 

220 ˚C, (b) rh-In2O3 NCs synthesized at 230, 250 and 260 ˚C, and (c) bcc-In2O3 NCs synthesized in 

the temperature range 210-260 ˚C. The NC sizes were calculated based on the XRD peak 

deconvolution method. ......................................................................................................................... 41 

Figure 3.13 Rate of formation of the bcc-In2O3 phase as a function of α (phase content) at different 

reaction temperatures............................................................................................................................ 42 

Figure 3.14 (a) JMAEK plots generated from the fraction of the bcc-In2O3 phase (α) present at 

different points in time in the samples synthesized at different temperatures. (b) Arrhenius plot based 

on the rate constants obtained from the JMAEK plot. ......................................................................... 43 

Figure 3.15 HRTEM images of In2O3 NCs synthesized at 230 ˚C for (a) 0 min, (b) 10 min, (c) 1 h and 

(d) 7 h. The boundaries of NCs in (b) are indicated with dashed line for clarity. ................................ 46 

Figure 3.16 (a) Kinetic plots based on the interface nucleation model, generated from the fraction of 

the bcc-In2O3 phase (α) present at different points in time in the samples synthesized at different 

temperatures. (b) Arrhenius plot based on the rate constants (kIN) obtained from the interface 

nucleation plot in (a). ............................................................................................................................ 47 

Figure 3.17 Schematic representation of the influence of (a) temperature (T) and (b) NC concentration 

(c) on the rate of phase transformation of In2O3 NCs by the interface nucleation mechanism. Red and 

blue spheres indicate rh-In2O3 and bcc-In2O3 NCs, respectively, and asterisks (*) indicate interface 

nucleation sites. The phase transformation rate is determined by the probability of contact formation 

between rh-In2O3 NCs. ......................................................................................................................... 49 

Figure 3.18 In situ variable-temperature XRD patterns of In2O3 NCs synthesized by (a) colloidal 

method at 150 ˚C for 30 h, and (b) alcoholysis method in ethanol. Both samples were preheated at 



 

 xii 

240 ˚C in the diffractometer. The vertical lines are XRD peak positions of bulk rh-In2O3 (bottom, 

JCPDS 21-0406) and bcc-In2O3 (top, JCPDS 06-0416). ..................................................................... 51 

Figure 3.19 XRD patterns of In2O3 NCs synthesized under nonisothermal conditions, with the heating 

rate of 1 °C/min. The aliquots of the sample were taken upon reaching the desired temperatures 

indicated in the graph. .......................................................................................................................... 52 

Figure 4.1 TEM images (left) and size distribution histograms (right) of Mn
3+

-doped In2O3 

nanocrystals synthesized with Mn vs In precursor molar ratios ([Mn]/[In]) of 0 (a), 0.05 (b), 0.10 (c), 

and 0.15 (d). The lines in histograms are Gaussian fits. Scale bars in TEM images are 50 nm. ......... 54 

Figure 4.2 XRD patterns of Mn
3+

-doped In2O3 nanocrystals in Figure 4.1 synthesized with different 

Mn vs In precursor molar ratios ([Mn]/[In]). The black lines are the patterns of bulk bcc-In2O3 

(bottom, JCPDS 06-0416) and rh-In2O3 (top, JCPDS 21-0406) with major reflections assigned. ...... 55 

Figure 4.3 TEM images (right) and the corresponding size distribution histograms (left) of Cr
3+

:In2O3 

synthesized with different ratios of chromium and indium precursor concentrations. ........................ 56 

Figure 4.4 XRD patterns of Cr
3+

:In2O3 synthesized with different ratios of chromium and indium 

precursor concentrations ([Cr]/[In]). The vertical lines are XRD peak positions of bulk bcc-In2O3 

(black) and rh-In2O3 (brown). .............................................................................................................. 57 

Figure 4.5 Phase transformation of colloidal Mn
3+

- and Cr
3+

-doped In2O3 nanocrystals. (a-d) High 

resolution TEM images of Mn
3+

-doped In2O3 nanocrystals synthesized with [Mn]/[In]=0.10 (a, b), 

and Cr
3+

-doped In2O3 nanocrystals synthesized with [Cr]/[In]=0.10 (c, d). Lines and arrows indicate 

the d-spacings. The d-spacings of ca. 2.74 Å (a, c) correspond to {110} lattice plane of rh-In2O3, and 

the d-spacings of 2.91 Å (b) and 2.54 Å (d) correspond respectively to {222} and {400} lattice planes 

of bcc-In2O3. The critical size for nanocrystal transformation from rh-In2O3 (a, c) to bcc-In2O3 (b, d) 

is ca. 5 nm. Scale bars: 5 nm (a-c), 2 nm (d). (e) Schematic representation of the change in the 

potential energy curve of rh-In2O3 NCs with increasing NC size. ....................................................... 58 

Figure 4.6 TEM images of Mn
3+

-doped In2O3 nanocrystals prepared with [Mn]/[In]=0.05 after size 

selective precipitation. (a) Small nanocrystals having corundum crystal structure with average doping 

concentration of 4.2 mol %. (b) Large nanocrystals having cubic-bixbyite crystal structure with 

average doping concentration of 5.7 mol %. Scale bars: 50 nm. ......................................................... 60 

Figure 4.7 (a, b) TEM images (left) and EDX spectra (right) of Mn
3+

-doped In2O3 (a) and Cr
3+

-doped 

In2O3 nanocrystals. (b) Nanocrystals analyzed by EDX spectroscopy are circled with the 

corresponding colors in associated TEM images. Both samples were synthesized with dopant to In
3+

 

precursor ratio of 0.10. (c) EDX elemental line scan profile of the Mn
3+

-doped In2O3 nanocrystal 



 

 xiii 

shown in inset. Mn (red) and In (green) profiles can be fit to the same scaled function (black line), 

indicating a homogeneous distribution of Mn dopants. ....................................................................... 61 

Figure 4.8 Three-dimensional plot of interdependence between Mn vs In precursor ratio ([Mn]/[In]), 

nanocrystal doping concentration, and the nanocrystal size distribution (x, y, and z axes, respectively). 

The nanocrystal sizes are shown as colors in the color coded bar with the black line indicating the 

critical size for transformation of hexagonal to cubic In2O3 nanocrystals. The blue line in the graph 

shows the dependence of the starting precursor ratio on the doping concentration (x-y data). ............ 64 

Figure 5.1 (a) Chromium K-edge absorption spectra, (b) k-weighted Cr K-edge EXAFS spectra, (c) 

Fourier-filtered EXAFS spectra for the In-O shell, and (d) Fourier-filtered EXAFS spectra for the (Cr-

In and/or Cr-Cr) shell correspond to the Cr2O3 (olive line), rh-In1.667Cr0.333O2 (red line), and bcc-

In1.942Cr0.058O2 (purple line). ................................................................................................................. 66 

Figure 5.2 (a) 300 K electronic absorption spectrum of rh-In1.827Cr0.173O2 NCs. (b) MCD spectra of the 

same sample at 4.5 K, collected in variable magnetic field (1-7 T). (c) Variable field MCD intensities 

at 4.5 K from the spectra in (b) with the corresponding labels. The black lines are fits to the Brillouin 

function. ................................................................................................................................................ 69 

Figure 5.3 (a) Electronic absorption spectrum of bcc-In1.942Cr0.058O2 at 300 K. (b) MCD spectra at 4.5 

K for the same sample, collected in variable magnetic field (1-7 T). (c) Variable field MCD 

intensities at 4.5 K from the spectra in (b) with the corresponding labels. The black lines are fits to the 

Brillouin function. ................................................................................................................................ 70 

Figure 5.4 (a) M vs H data for free-standing 2.7% Cr
3+

:In2O3 NCs measured at 300 K (green squares), 

and the corresponding nanocrystalline films measured at 5 K (red circles) and 300 K (red squares). 

All loops are corrected for diamagnetic contribution. (b) Temperature dependence of Ms for 

Cr
3+

:In2O3 nanocrystalline films. .......................................................................................................... 72 

Figure 5.5 M vs. H data for In2O3 nanocrystalline film (blue circles) measured at 300 K, showing no 

ferromagnetic ordering. Hysteresis loop for 2.7 % Cr
3+

:In2O3 nanocrystalline film (red circles) 

recorded at 300 K is shown for comparison. Both loops were corrected for diamagnetic contribution.

 .............................................................................................................................................................. 74 

Figure 5.6 Electronic structure of Mn
3+

-doped In2O3 nanocrystals. (a) Ligand-field energy state 

splitting pattern of Mn
3+

 (d
4
 system) in distorted octahedral coordination. (b) A schematic 

representation of the difference in the electronic structure between Mn
3+

-doped bcc-In2O3 and rh-

In2O3 nanocrystals. (c) Ligand-field electronic absorption spectra of Mn
3+

 dopants in bcc-In2O3 

(green) and rh-In2O3 (purple) nanocrystals showing the transitions indicated in (a) and (b). (d) The 



 

 xiv 

band gap absorption spectra of selectively precipitated Mn
3+

-doped bcc-In2O3 (green) and rh-In2O3 

nanocrystals (purple) prepared with [Mn]/[In]=0.05. The band gap energy of rh-In2O3 nanocrystals is 

blue-shifted with respect to the band gap energy of bcc-In2O3 nanocrystals together with ν2 transition.

 ............................................................................................................................................................. 75 

Figure 5.7 Magnetization data at 300 K collected on films of 8.8% Mn
3+

 doped rh-In2O3 NCs. ........ 77 

Figure 6.1 XRD patterns of GIO NCs synthesized with different ratios of Ga(acac)3 and In(acac)3 

precursors. The percentages indicate the final concentrations of In. The vertical lines represent XRD 

patterns of bulk γ-Ga2O3 (bottom, JCPDS 20-0426) and rh-In2O3 (top, JCPDS 21-0406). ................. 79 

Figure 6.2 (a-d) TEM images of GIO NCs with (a) 5, (b) 24, (c) 47 and (d) 92 at% of In. (e) Scanning 

TEM (STEM) image of GIO NCs containing 47 at% of In (left panel), and the corresponding EDX 

elemental maps of Ga (middle panel) and In (right panel) obtained in the STEM mode. ................... 80 

Figure 6.3 (a) Absorption spectra of GIO NCs with varying In content. (b) Photoluminescence spectra 

of GIO NCs with 0 (purple), 13 (blue), 24 (green), 47 (olive), 84 (orange) and 100 at% In (red) 

synthesized at 200 °C. (c) Photoluminescence peak energies of GIO NCs as a function of In 

concentration. Different symbols show the dominant crystal structure of GIO NCs based on XRD 

data. (d) Photograph of γ-Ga2O3 (left) GIO (24 at% In, middle) and rh-In2O3 NCs (right) synthesized 

at 200 °C. ............................................................................................................................................. 82 

Figure 6.4 (a) PL of 3.3 nm γ-Ga2O3 NCs synthesized at 200 °C (purple) and 6.0 nm γ-Ga2O3 NCs 

synthesized at 290 °C (red). (b) PL of GIO NCs containing 24 at% In synthesized at 200 °C (green) 

and 22 at% In synthesized at 290 °C (blue). ........................................................................................ 83 

Figure 6.5 (a) Steady-state (solid line) and delayed (dashed line) PL spectra of GIO NCs containing 5 

atom % In. The corresponding excitation (PLE) spectra are shown with the same lines. The delayed 

PL and PLE spectra were collected 0.1 ms after excitation and are multiplied by a factor of 50 for 

clarity. (b) Ratio of 0.1 ms delayed PL and steady-state PL intensities of GIO NCs as a function of the 

In content. The synthesis temperatures and the corresponding majority structures of GIO NCs are 

indicated in the graph. The exponential and Lorentzian function fits are shown as a guide to the eye.

 ............................................................................................................................................................. 84 

Figure 6.6 Photoluminescence spectra of bcc-In2O3 NCs synthesized at 250 °C (black trace). The 

spectrum is multiplied by a factor of 20 for clarity. Photoluminescence of γ-Ga2O3 NCs synthesized 

under identical conditions (red trace) is shown for comparison. ......................................................... 85 



 

 xv 

Figure 6.7 Indium concentration dependence of the relative quantum yield for GIO NCs having 

different crystal structures as labeled in the graph. The dashed line is an exponential fit to the 

experimental data points. ...................................................................................................................... 86 

Figure 6.8 Normalized In K-edge X-ray absorption spectra of rh-In2O3 (black trace) and GIO NCs 

containing 10 % In (red trace), synthesized at 200 °C. The spectrum of GIO NCs is intentionally 

offset along y-axis for clarity. ............................................................................................................... 87 

Figure 6.9 (a) In K-edge k -weighted EXAFS spectra of GIO NCs with different compositions 

synthesized at 200 ˚C. (b) Pseudoradial distribution functions obtained by Fourier transformation of 

the spectra in (a). (c) Fourier-filtered EXAFS spectra obtained by the inverse Fourier transform of the 

radial functions in (b) in the range R = 1.0-3.6 Å (solid lines) and the corresponding curve fits 

(dashed lines) from which the structural parameters were calculated. (d) In-O bond distances, 

determined from the EXAFS analysis, as a function of the In concentration in GIO NCs. The spectra 

in (a) - (c) correspond to In concentrations of 10 (black), 13 (blue), 24 (green), 47 (olive), and 100 

(red) atom %. ........................................................................................................................................ 88 

Figure 6.10 Fourier-filtered EXAFS spectra of the first shell (a) and the second shell (b). The 

corresponding curve fits from which the structural parameters were calculated are shown with dashed 

lines. ..................................................................................................................................................... 89 

Figure 6.11 Schematic representation of the possible origin of photoluminescence in undoped γ-

Ga2O3 NCs (left) and GIO NCs with a γ-Ga2O3 structure (right) based on the findings in this work and 

the evidence previously reported (see the text). The radiative transitions (DAP recombination) are 

indicated by arrows, and the labels correspond to the defect species described in the text. ................ 92 

Figure 6.12 Absorption and PL spectra of colloidal rh-In2O3 NCs synthesized at 200 ˚C for 1 (green), 

4 (blue), 7 (red) and 30 (purple) hours. The spectra correspond to the same concentration of NCs. The 

spectrum of the sample synthesized for 30 h is shown multiplied by a factor of 4. ............................. 93 

 



 

 xvi 

List of Tables 

Table 3.1 Fitting Parameters Determined from the Analysis of EXAFS Spectra of In2O3 NCs 

Synthesized at 250 ˚C. ......................................................................................................................... 32 

Table 3.2 Values of n and k Obtained from the JMAEK Plot. The Standard deviation for k is shown as 

error bars in Figure 3.14b. .................................................................................................................... 44 

Table 3.3 Values of kINN0 obtained from the interface nucleation plot. The Standard deviation for 

kINN0 is shown as error bars in Figure 3.16b. ....................................................................................... 48 

Table 5.1 Results of the fits of EXAFS spectra for the first Cr-O shell. .............................................. 67 

Table 6.1 Fitting parameters obtained from the analysis of EXAFS spectra of GIO NCs synthesized at 

200 °C having different In content. The standard deviation for In-O bond distances is shown as error 

bars in Figure 6.9d ............................................................................................................................... 90 

 

  



 

 xvii 

List of Abbreviations 

 

bcc                                                       Body-centered cubic 

CN                                                       Coordination number 

DAP                                                    Donor-acceptor pair 

DMS                                                    Diluted magnetic semiconductor 

DMSO                                                 Diluted magnetic semiconductor oxide 

DSC                                                     Differential scanning calorimetry  

EXAFS                                                Extended X-ray absorption fine structure  

FFT                                                      Fast Fourier transform 

FWHM                                                Full width at half maximum 

GIO                                                     Gallium indium oxide 

ICP-AES                                             Inductively coupled plasma atomic emission spectroscopy 

ITO                                                      Indium tin oxide 

JMAEK                                               Johnson-Mehl-Avrami-Erofeyev-Kholmogorov 

LCP                                                     Left circularly polarized 

LFEA                                                  Ligand-field electronic absorption 

MCD                                                   Magnetic circular dichroism  

NC                                                       Nanocrystal 

PL                                                        Photoluminescence 

PPMS                                                  Physical property measurement system 

QBS                                                    Quinine bisulfate 

RCP                                                     Right circularly polarized 

rh                                                         Rombohedral 



 

 xviii 

STXM                                                 Scanning transmission X-ray microscopy 

TCO                                                    Transparent conducting oxide 

TEM                                                    Transmission electron microscopy 

TGA                                                    Thermal gravimetric analysis 

TM                                                      Transition metal 

TOPO                                                  Tri-n-octylphosphine oxide 

UV                                                       Ultraviolet 

Vis                                                       Visible 

XANES                                                X-ray absorption near edge structure 

XMCD                                                 X-ray magnetic circular dichroism 

XAS                                                     X-ray absorption spectroscopy  

XRD                                                    X-ray diffraction 

 

 



 1 

Chapter 1* 

Introduction 

1.1 Transparent Conducting Oxides 

Wide band gap semiconductor oxides, often referred to as transparent conducting oxides (TCOs), 

have found a variety of applications due to their attractive combination of properties — transparency 

to visible light, hardness, chemical inertness, and electrical conductivity. Such a combination of 

properties makes them suitable for the fabrication of transparent electrodes, sensors, catalysts, optical 

window coatings, and solar cells.
1, 2

 Most TCOs are also polymorphic, which makes them good model 

systems for the fundamental studies of phase transformation in solid state, and allows for the control 

of their functional properties by structural manipulation.
3-5

 

Structural defects such as oxygen vacancies play a crucial role in defining the properties of TCOs. 

The electrical and optical properties of TCOs can be tuned by controlling the defects in these 

materials.
6-8

 Studies of TCO nanostructures have also received much recent attention, partly because 

of the increase in the surface-to-volume ratio, which has a significant importance for tuning the 

properties in TCOs and also because of the possibilities to manipulate their electronic structure at the 

nanoscale.  

This thesis deals with identification of TCOs with the most favorable properties and an expansion 

of their functionalities. For example, photoluminescence (PL) in TCO nanocrystals (NCs) arises 

mostly from surface states and localized crystal lattice defects.
7
 Subsequently, these NCs do not 

generally experience the same size-dependent emission tunability associated with quantum 

confinement like typical semiconductor quantum dots (i.e. CdSe, CdS, ZnSe etc.).
9
 

                                                      
*
 This thesis is combination of 5 papers: 

Reproduced with permission from [J. Phys. Chem. C, 2008, 112, 17755-17759  

DOI: 10.1021/jp807841k, http://dx.doi.org/10.1021/jp807841k ] Copyright @ 2008 American Chemical 

Society.   

Reproduced with permission from [J. Phys. Chem. C, 2009, 113, 15928-15933 

DOI: 10.1021/jp905281k, http://dx.doi.org/10.1021/jp905281k ] Copyright @ 2009 American Chemical 

Society. 

Reproduced with permission from [Chem. Mater., 2010, 22, 9-11 

DOI: 10.1021/cm9014783, http://dx.doi.org/10.1021/cm9014783 ] Copyright @ 2010 American Chemical 

Society. 

Reproduced with permission from [J. Am. Chem Soc., 2011, 133, 6711-6719 

DOI: 10.1021/ja111514u, http://dx.doi.org/10.1021/ja111514u ] Copyright @ 2011 American Chemical 

Society. 

Reproduced with permission from [J. Am. Chem Soc. 2012, 134, 7015-7024 

DOI: 10.1021/ja211627r, http://dx.doi.org/10.1021/ja211627r ] Copyright @ 2012 American Chemical Society. 

http://dx.doi.org/10.1021/jp807841k
http://dx.doi.org/10.1021/jp905281k
http://dx.doi.org/10.1021/cm9014783
http://dx.doi.org/10.1021/ja111514u
http://dx.doi.org/10.1021/ja211627r
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As one of the most important functional oxides among the TCO materials, indium oxide is the 

focus of the present study.  The polymorphs of In2O3 are cubic bixbyite- and corundum-type crystal 

structures.
5, 10

 The bixbyite and corundum crystal structures are common for rare-earth oxides and 

transition metal oxides.
5, 11, 12

 The structural relations as well as the possible phase transformation 

mechanism provide deeper understanding of functional properties in solid state materials. The 

superiority of In2O3 to the other TCOs is largely due to the higher mobility of electron in In2O3 films. 

Films of In2O3 prepared by various techniques have mobilities in the range 10-75 cm
2
 V

-1
 s

-1
, at a 

carrier density of ~ 10
19

-10
20

 electrons cm
-3

.
13, 14 

Furthermore, the possibility of using the 

nanostructures of In2O3 and In2O3-based materials for different applications is attractive, because 

semiconductor NCs always shows unique size, shape, and composition dependent properties. 

1.2 Indium Oxide Polymorphs 

Indium oxide is a wide band gap (Eg ≈ 3.7 eV) semiconductor, characterized by high charge carrier 

concentration and mobility, as well as the ease with which it can be deposited as a thin film.
14, 15

 

Because of these characteristics, In2O3 has been employed in batteries, solar cells, electrodes, displays 

and sensors.
16, 17

 In In2O3, an oxygen vacancy is the major donor which causes the n-type 

conductivity. Oxygen vacancies in In2O3 have shallow states and are capable of producing free 

electrons in the conduction band.
18, 19

 The energy required to form an oxygen vacancy decreases 

rapidly towards the surface (Figure 1.1) a consequence high electron concentration is present at 

surface and interface of In2O3.
19

 The critical role of defects and defect states in manipulating 

properties in oxide materials shows the importance of studying nanostructured materials with high 

surface area and possibly a greater propensity for defect formation in NCs. The electronic device 

characteristic of indium oxide can be tuned by controlling defects in the material. Improvements in 

the performance of In2O3 thin-film and nanowire transistors by controlling the oxygen ratio have been 

reported.
20, 21

 



 

 3 

 

Figure 1.1 (left panel) Energy of formation for an oxygen vacancy in In2O3 as a function of distance 

from the (111) terminated surface, as calculated by density functional theory. (right panel) 

Distribution of surface donors at an equilibrium temperature of 750 K
19†

 

The polymorphs of In2O3 have the cubic bixbyite-type crystal structure (bcc-In2O3, bcc=body-

centered cubic) under ambient conditions, and the corundum-type structure (rh-In2O3, 

rh=rhombohedral) under high-pressure and temperature.
5, 10

 The stable form of In2O3 having bixbyite-

type crystal can be derived from the fluorite crystal structure by removing one-fourth of the anions, 

and slightly offsetting the positions of the remaining anion sites Figure 1.2a. As a consequence, In
3+

 

cations exhibit two characteristic sites, known as b- and d-sites (Figure 1.2c).
22

 One-fourth of 

In
3+

cations reside in b-sites which have slightly trigonally compressed octahedral coordination with 

S6 or C3i symmetry.
12, 22

 Three-fourths of In
3+

cations are located in highly distorted octahedral d-sites 

with C2 symmetry sites.
12, 22

 As the symmetries of b- and d-sites are different, cations are expected to 

have distinct spectroscopic properties in these two sites. The metastable corundum-type In2O3 belongs 

to the hexagonal crystal family and consists of hexagonal close-packed oxygen ions, with In
3+

 filling 

two-thirds of the six-coordinate C3V sites (Figure 1.2b, d).  

                                                      
†
 Reprinted with permission from [Appl. Phys. Lett., 2011, 98, 261910; http://dx.doi.org/10.1063/1.3604811]. 

Copyright @ 2011, American Institute of Physics. 
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Figure 1.2 (a, b) Crystal unit cell of cubic bixbyite-type In2O3 (bcc-In2O3, a), and corundum-type 

In2O3 (rh-In2O3, b) viewed along the b-axes. The angle between a- and b- axes for rh-In2O3 is 120º. (c, 

d) The In
3+

 sites in bcc-In2O3 (c), and rh-In2O3 (d). Indium ions are shown as large colored spheres, 

and oxygen ions as small black spheres.
23‡

 

1.3 Thermodynamic Phase Stability of NCs 

The process of formation of a fresh surface of a substance is divided in two steps. In the first step, 

the solid or liquid expose a new surface by cleavage while the atoms stay fixed in the same positions 

that they occupy in the bulk phase.
3, 24

 The reversible work per unit area in forming a new surface of a 

substance by cleavage is defined as the surface free energy.
3
 Surface free energy constitutes a large 

part of the total free energy of substances of ultrafine particle sizes. In the second step, the atoms at 

the surface are allowed to rearrange to their final equilibrium positions.
24

 The reversible work per unit 

area required to elastically stretch or compress a surface is the surface stress.
3
 In the case of the liquid 

surfaces, these two steps occur as one, because the mobility of liquid molecules is high. Thus the 

work required for cleavage or surface stretching is the same, and surface free energy equals surface 

                                                      
‡
 Reproduced with permission from [J. Phys. Chem. C, 2009, 113, 15928-15933 

DOI: 10.1021/jp905281k, http://dx.doi.org/10.1021/jp905281k] Copyright @ 2009 American Chemical 

Society. 



 

 5 

stress.
24

 For this reason, surface free energy is also called surface tension. However, for solids the 

atoms (or ions) are relatively immobile, the work needed in cleavage and surface deformation is not 

the same, thus with solids it is possible to stretch or to compress the surface region (surface stress) 

only by changing the distance of atoms on the surface.
3, 24

 

It is now well known that the thermodynamic phase stability of solids can be spontaneously 

reversed below critical sizes.
 
 TiO2 is a notable example; in bulk the rutile phase is 

thermodynamically more stable relative to anatase, whereas for particle sizes below ca. 14 nm anatase 

becomes more stable than rutile.
3, 4

 The reversal of the phase stability in nanocrystalline materials has 

been associated with large surface to volume ratios in reduced dimensions. The high surface area of 

nanostructures can lead to the spontaneous stabilization of metastable phases, owing to the surface 

energy and/or surface stress contributions, both of which are dependent on size.
3
 Control and 

manipulation of crystal structures has important implications for the design and preparation of new 

solid-state materials. 

1.3.1 Thermodynamic Phase Stability of Indium Oxide NCs 

The first synthesis of the metastable rh-In2O3 was reported by Shannon in 1966,
11

 who found that at 

high temperature (1250 ˚C) and under high pressure (6.5 GPa) In2O3 undergoes phase transformation 

from the stable bixbyite crystal structure to the metastable corundum crystal structure. Rind and 

Ringwood reported in 1969 the formation of rh-In2O3 under the pressure of 12 GPa and temperature 

of 900 ˚C.
25

 All reflections in XRD patterns in their work were similar to the report for the corundum 

crystal structure by Shannon.  

For bulk In2O3 the cation-anion distances are nearly identical in both bixbyite and corundum crystal 

structures, and a small difference in density results from tighter packing of the anion layers in the 

corundum structure.
26

 From Figure 1.3 it can be seen that equilibrium volume for rh-In2O3 is smaller, 

however, the total energy is higher than that for bcc-In2O3, indicating that bcc-In2O3 is more stable 

than rh-In2O3 under ambient conditions in agreement with experimental observations.
10, 27

 

Furthermore, at lower volumes and higher pressures the dependence of total energy for rh-In2O3 

crosses that for bcc-In2O3. This indicates that upon compression bcc-In2O3 can be transformed into rh-

In2O3.
10, 27

 The pressure-induced structural transition is well demonstrated in the total energy variation 

with volume curves see in Figure 1.3.  
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Figure 1.3 Cohesive energy versus volume (both per formula unit, f.u.= In2O3). Solid line: bcc-In2O3; 

dashed line: rh-In2O3
27§

 

The dependence of the cell volume on applied pressure is shown in Figure 1.4. The volume 

shrinkage is 1.72 Å
3
 at the transition pressure, which corresponds to an applied pressure of 3.83 GPa. 

This indicates that phase transition from bcc-In2O3 to rh-In2O3 is accompanied by reduction in the cell 

volume under applied pressure.
10

 

Even if the rh-In2O3 is traditionally thought to be a high pressure In2O3 polymorph, recent work 

show that rh-In2O3 can also crystallize at ambient pressure conditions. The stabilization of rh-In2O3 

under atmospheric pressure has been achieved by annealing of crystalline In(OH)3, 
28, 29

 or InOOH 

nanofibers
30

 and nanotubes.
31

 The size-controlled rh-In2O3 nanocubes were reported by dehydration 

of small InOOH nanoparticles which were prepared by the solution-based surfactant-assisted method. 

Size of the rh-In2O3 nanocubes were modified between 8 and 12.3 nm by changing the surfactant 

ratios.
32

   

                                                      
§
 Reprinted with permission from: Fuchs, F.; Bechstedt, F., Phys. Rev. B, 77, 155107, 2008. Copyright (2008) 

by the American Physical Society 
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Figure 1.4 Calculated cell volume as a function of pressure for bcc-In2O3 (open circle) and rh-In2O3 

(open triangle). The pressure-induced phase transition point is marked with an arrow and the 

corresponding pressure value at the transition point (in GPa) is also stated.
10**

 

1.4 Kinetics of Phase Transformation in NCs 

The ability to obtain metastable high-energy structures in a controlled way requires fundamental 

understanding of the phase transformation mechanisms. A kinetic study of phase transformation 

provides quantitative information about energetic barriers between different crystal structures. 

Different nucleation and nuclei growth models have been used to describe the kinetics of solid-state 

reactions.
33-35  

 

The nucleation and nuclei growth models for solid state reactions and phase transformations 

assume that nucleation sites are randomly distributed within the lattice of the original phase.
34, 35 

This 

assumption does not exclude the possibility of preferential nuclei formation at particular sites in the 

original phase, and only requires that these active sites be randomly distributed. One of the models 

widely used to describe solid-state phase transformations is the Johnson-Mehl-Avrami-Erofeyev-

Kholmogorov (JMAEK) model,
33, 36-38

 which correlates the phase transformation kinetics to the 

                                                      
**

 Reprinted  with permission from: Karazhanov, S. Z.; Ravindran, P.; Vajeeston, P.; Ulyashin, A.; Finstad, T. 

G.; Fjellvåg, H. Phys. Rev. B, 76, 075129, 2007. Copyright (2007) by the American Physical Society 
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nucleation and growth rates of the newly formed phase, taking into account the coalescence and 

ingestion of the nuclei (Figure 1.5).
33

 

 

Figure 1.5 (a) Schematic representation of the phase transformation of one phase from another by the 

growth of nuclei forming randomly in the old phase. (b) Two types of nuclei growth restrictions; 

coalescence and ingestion. Black dots are nucleation sites, shaded light blue areas are old phase and 

olive areas are the new phase.  

Although the JMAEK model is applicable to many solid-state reactions, it does not consider finite 

size effect.
39, 40

 However other models have been developed to describe phase transformations in NCs 

based on the known or assumed mechanistic details.  Notable examples include surface and interface 

nucleation models. The common assumption in these models is that defect sites either at the surfaces 

of NCs or at the interfaces between contacting NCs serve as nucleation sites for the formation of a 

new phase.
33, 41

 However, it has been found that the correct value of the activation energy (Ea) for the 

isothermal kinetic data can be extracted using any model.
42, 43

 Employing conventional models such 

as JMAEK therefore remains a good approach for obtaining the kinetic parameters from the 

isothermal measurements for cases in which a precise model is unavailable. The kinetics studies of 

phase transformation of TiO2 NCs have suggested a strong size dependence of the phase 

transformation.
44, 45

 Zhang et al.
41, 45, 46

 proposed interface and surface nucleation models for the phase 

transformation of TiO2 NCs under different conditions. The interface nucleation mechanism, for 

which a new phase is formed at the NC-NC contacts, occurs at low reaction temperatures and high 

packing density of NCs (Figure 1.6a). For low packing density of NCs the new phase forms at the 

surfaces of the old phase (surface nucleation mechanism). Once the new phase is nucleated, the 

transformation can quickly spread through NCs (Figure 1.6b).
41, 46
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Figure 1.6 Diagram depicting relationship between the particle packing and nucleation mode in (a) 8-

nm anatase powder with less dense particle packing and (b) 6 nm anatase powder with denser particle 

packing. Key: white circle, anatase; anchor arrow, interface nucleation; spike arrows, surface 

nucleation.
41††

 

1.4.1 Kinetic Study of Phase Transformation in Indium Oxide NCs 

Synthesis of metastable rh-In2O3 has been an increasingly active area of research in recent years, 

and the stabilization of nanocrystalline rh-In2O3 under ambient conditons has been related to solvents 

used for preparing the precursors
17, 28, 47

 or the necessity of InOOH formation.
32, 47

 Although there are 

a few reports on phase transformation of In2O3 from corundum to bixbyite crystal structure,
17

 there 

has been no quantitative kinetic or mechanistic study of the phase transformation of In2O3 NCs in 

solution. The kinetics of phase transitions in NCs is usually simpler than those in bulk.
48

 As such, 

colloidal NCs offer a unique opportunity to control metastability and manipulate structural 

transformations in solutions. 

                                                      
††

 Zhang, H; Banfield, J. F., Phase Transformation of Nanocrystalline Anatase-to-Rutile via Combined Interface 

and Surface Nucleation, J. Mater. Res, 15, 2, 446, reproduced with permission. 
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1.5 Doped Semiconductor NCs 

Intentional incorporation of impurities, a process known as doping, is central to tailoring electronic, 

optical, and magnetic properties of semiconductors.
49, 50

 Colloidal doped semiconductor nanocrystals 

have attracted considerable attention in recent years due to their chemical flexibility and interesting 

multifunctional properties. They have been proposed as biological labels and recombination centers in 

hybrid organic/inorganic electroluminescent devices.
51

 In addition these materials could potentially 

find application as spin filters in future spin-based information processing device.
52

  

Incorporation of impurities into semiconductor lattices can modify electrical conductivity in doped 

semiconductor materials. A substitutional impurity with one more valence electron than the host atom 

is capable of providing extra electrons to the semiconductor. This creates an excess of negative (n-

type) electron charge carriers to the semiconductor. Similarly, an impurity with one less valence 

electron can provide an extra hole (p-type). These electrons or holes are then available as carriers of 

electrical current within the semiconductor.  

1.5.1 Magnetic Properties 

Diluted magnetic semiconductors (DMSs) are one of the most interesting categories of doped 

semiconductors where a small percentage of magnetic dopants are uniformly dispersed in a non-

magnetic semiconductor, and the resulting materials exhibit magnetic order, especially 

ferromagnetism.
49, 53

 DMSs with Curie temperature (TC) above room temperature have attracted 

intense interest in the field of spin-based electronics, or spintronics.
54

 This emerging technology has 

shown promise as an alternative to traditional microelectronics, and relies on using electron spin, 

alone or in addition to charge, for information manipulation and storage. TCOs, such as ZnO, TiO2, 

SnO2, and In2O3 have attracted particular interest as host lattices for high-TC DMSs, due to their 

stability, electrical conductivity, and optical transparency.
55-57

 The observation of ferromagnetism in 

cobalt doped TiO2 holds great promise to initiate the study of ferromagnetism in DMS oxides 

(DMSOs).
58

 The doping concentrations in DMSOs are usually well below the limit required for any 

conventional ferromagnetic exchange interactions between neighboring ions which is traditionally 

used to describe magnetic ordering in oxides.
59

 However the origin of ferromagnetism in DMSOs is 

under debate and poorly understood, and recent experimental and theoretical studies consider carrier-

mediated ferromagnetism as one possible explanation for the origin of ferromagnetism in these 

materials.
13, 59
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Ferromagnetic exchange coupling in DMSOs was discussed by Coey et al. in terms of a simple 

model in which shallow donor electrons (e.g., oxygen vacancy) form magnetic polarons that mediate 

magnetic ordering in these materials.
59

 At low concentration of donors, the localized impurity band 

forms, but above critical donor concentration the impurity band states would be delocalized. 

Interaction between the electronic states of the localized 3d impurity band, below the cation 

percolation threshold, and delocalized donor states lead to an extended hybridized state (Figure 1.7).
59

  

 

Figure 1.7 Representation of magnetic polarons. A donor electron in its hydrogenic orbit couples 

with its spin antiparallel to impurities with a 3d shell that is half-full or more than half-full. The figure 

is drawn for x (concentration of magnetic cations) = 0.1, γ = 12. Cation sites are represented by small 

circles. Oxygen is not shown; the unoccupied oxygen sites are represented by squares.
59‡‡

 

Long-range magnetic ordering in nanocrystalline Co
2+

:ZnO,
57

 Ni
2+

:ZnO,
56

 and Ni
2+

:SnO2
55

 

prepared from analogous colloids has been attributed to an increase in the magnetic domain volumes 

through interparticle electronic coupling and to the generation of charge carriers through the 

formation of interfacial defects. The critical role of defects and defect states in mediating dopant 

ferromagnetic ordering in DMSOs implies the importance of studying nanostructured materials with 

high surface area and high concentration of defects at the surface and interfaces.  

                                                      
‡‡

 Reprinted by permission from Macmillan Publishers Ltd: [Nat. Mater.] (Coey, J. M. D.; Venkatesan, M.; 

Fitzgerald, C. B. 2005, 4, 173-179.), copyright (2005) 
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1.5.2 Synthesis and Characterization of Doped Semiconductor NCs 

A successful colloidal synthesis produces crystalline nanomaterials with controlled size, shape, 

composition, and crystal phase.
60, 61

 Many different approaches to synthesize colloidal doped 

semiconductor nanocrystals have been explored. Hot-injection method has been used to synthesize 

colloidal Mn
2+

-doped CdSe.
62

 In this synthesis doping levels can be increased by dropwise addition of 

injected solution to the hot reaction mixture. Sol–gel method has been used to prepare colloidal Cr
3+

-

doped SnO2 nanocrystals.
63

 Study of nanocrystal surface ligand exchange revealed that even under 

mild reaction conditions and with a strong dopant preference for the host lattice a significant fraction 

of the dopant reside on the nanocrystal surfaces.
63

 Mn
2+

-doped CdS nanocrystals were synthesized 

with inverted micelle method where nanoparticles trapped in sol-gel silica matrices.
64

 The most 

common strategy to incorporate dopants in the host lattice substitutional sites is to include a precursor 

containing dopants in the synthesis.
62, 63

  

In spite of very promising results for doping semiconductor nanocrystals, this field of study has 

concerns regarding doping concentration level and incorporation of dopant uniformly in the 

semiconductor. Most studies of doped II-VI NCs, which have been the most widely studied host 

lattices, have reported low doping concentrations.
65

 Thermodynamic and kinetic study of dopant 

incorporation in the nanocrystal can provide deeper understanding of dopant incorporation 

mechanism in these materials. In addition, to determine whether or not the dopant is uniformly 

incorporated in the semiconductor lattice, the resulting nanocrystals must be carefully 

characterized.
49, 50

 Spectroscopic techniques are powerful for proving successful doping.
49

 Optical 

absorption spectroscopy of Co doped CdS and ZnS nanocrystals revealed that electronic transitions 

are sensitive to environment and used to confirm doping in nanocrystals.
49, 66

 Magnetic circular 

dichroism is another powerful technique. It can reveal whether a magnetic dopant is incorporated by 

measuring the influence of its magnetic spin on the nanocrystal states.
49, 57

  

In addition, X-ray absorption spectroscopy (XAS) studies of dopant at K-edge can provide 

quantitative information about the local environment of dopant sites in the doped materials.
49, 67

 This 

technique has been used as a dopant specific structural probe to provide accurate information about 

bond lengths and coordination numbers around dopant even at low doping levels.
68

 For example, 

Extended X-ray absorption fine structure (EXAFS) data analysis of Mn K-edge for the first shell 

around the Mn for two nanocrystalline and one bulk Mn
2+

-doped ZnS samples show that the Mn-S 

bond length has size dependence in Mn
2+

 doped ZnS.
67
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1.5.3 Doping Mechanism 

Several doping mechanisms have been used to explain doping in semiconductor NCs. One 

proposed mechanism is known as self-purification.
50, 69

 This model is governed by thermodynamic 

reasons and implies that nanocrystals are hard to dope, as it costs more energy to insert impurities into 

small nanocrystals than the larger ones.
69

 In addition, the distance which a defect or impurity must 

move to reach the surface of a nanocrystal is very small and that impurities are easily expelled from 

the NCs.
69

 However, a fundamental assumption in this view is thermodynamic equilibrium, which is 

strongly dependent on the diffusion of impurity atoms. This diffusion of impurities works well for 

solid or gas phase syntheses at high temperature where most dopants diffuse rapidly, whereas in 

colloidal synthesis which are performed at relatively lower temperature, diffusion may or may not be 

facile.
50

 This suggests that if thermodynamic equilibrium is not established, then kinetic factors will 

govern the doping incorporation mechanism. In the trapped dopant model which are carried out based 

on the kinetic assumption, the adsorption of impurities on the nanocrystal surface during the growth 

controls the doping incorporation in the NCs (Figure 1.8).
50

 These considerations suggest that 

nanocrystal shape, surface morphology, and surfactants are the main factors that control dopant 

incorporation. These criteria have been used to explain Mn doping in II-VI nanocrystals. Theoretical 

studies of colloidal Mn-doped II-VI NCs have suggested that the doping mechanism involves 

preferential adsorption of impurities on the specific NC surfaces, and that NC surface energies can be 

used to predict a possibility of doping particular NCs.
65

 Also, this model has suggested that CdSe 

NCs may be more easily doped if they had zinc blende, rather than wurtzite structure, a claim that is 

still under debate in the literature.
70

 

 

Figure 1.8 Schematic of trapped dopant model. 

If semiconductor NCs having distinctly different crystal structures could somehow be synthesized 

and doped under identical conditions, the dopant incorporation could be systematically studied with 

respect to the NC structure, morphology, and faceting. 



 

 14 

1.6 Doped In2O3 NCs 

In2O3 is a well-known wide band gap semiconductor oxide with high optical transparency and high 

charge carrier concentrations.
14, 15 

 Indium oxide exhibits intrinsic n-type semiconductor behavior, 

which can be further doped to yield
 
low resistivity, such as in indium tin oxide (ITO).

14
 The 

difference of valence between In
3+

 and Sn
4+

 results in donation of a free electron to the host lattice. 

The synthesis of ITO nanoparticles is of particular technological interest due to the low 

manufacturing cost and easy processability of nanoparticles into films.
71, 72

 Additionally, interest in 

applying ink-jet printing technology to ITO requires nanoparticles that display high crystallinity with 

non-agglomeration in solution.
71, 73

 In addition, other ternary compounds of In2O3 have attracted 

attention as new materials for TCOs.
74

 Some of these materials may exhibit properties that are 

suitable for specialized applications. For example, gallium indium oxide which is a wide band gap 

semiconductor with high transparency and conductivity has been employed as thin-film transistor 

channel layers.
74, 75

    

Intrinsic properties of In2O3 make this TCO a very promising host lattice for the preparation high 

TC magnetic semiconductors.
14, 15

 Different magnetic behavior was reported for transition metal ions 

doped in In2O3 based on synthesis conditions and method of preparation. Room temperature 

ferromagnetism has been reported for Cr, Fe, Co and Ni doped In2O3 thin films,
76

 Fe doped In2O3 

nanoparticles
77

 and Cr doped In2O3 thin film and bulk.
13, 78

 However, Berardan et al.
79

 have shown 

that Cr, Mn, Fe, Ni and Cu doped nanocrystalline and bulk In2O3 is intrinsically paramagnetic and 

ferromagnetism was observed when magnetic dopant concentrations exceeding the percolation 

threshold which was linked to the formation of magnetic secondary phase. These discrepancies in the 

data reported for the nominally same materials by different groups emphasize that a careful 

correlation between structural studies and magnetism must be established by applying more reliable 

materials characterization techniques.  

1.7 Motivations and Scope of the Thesis 

In2O3 polymorphs crystallize in the form of bcc-In2O3 under normal conditions and rh-In2O3 under 

high-pressure and temperature. In this thesis work, we study phase controlled synthesis of In2O3 NCs 

and show the effect of size, structure, doping and composition on material properties of colloidal 

In2O3 NCs.  
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We report the study of the morphological and phase transformations of In2O3 NCs during their growth 

in solution, and show that rh-In2O3 is a transient structure in the formation of bcc-In2O3 NCs. We 

demonstrate a direct correlation between the nanocrystal size and structure, which allows for the 

stabilization of rh-In2O3 for NCs smaller than 5 nm. These results enable a direct, straightforward and 

highly selective synthesis of colloidal In2O3 NCs having different phases by adjusting the reaction 

conditions. In addition, a detailed kinetic study of the phase transformation of colloidal rh-In2O3 to 

bcc-In2O3 NCs during their growth in solution was investigated. The correlation between the rates of 

NC growth and phase transformation was established, indicating size-dependent metastable phase 

stabilization and transformation. The structural information about the reaction products at different 

times during the synthesis were obtained from the X-ray diffraction (XRD), X-ray absorption 

spectroscopy measurements, and analyzed using JMAEK and interface nucleation models. The 

kinetic analysis in conjunction with the electron microscopy results suggests the dominant interface 

nucleation mechanism at low temperature. The effect of the NC interactions on the phase 

transformation of In2O3 NCs and the role of surface stress in this process are also discussed. The 

mechanistic results of this work allow for a rational optimization of the reaction conditions for the 

synthesis of colloidal In2O3 NCs as building blocks with a desired crystal structure, and contribute to 

the general understanding of the structural transformation and property control in the solid state. 

Crystal structures of rh-In2O3 and bcc-In2O3 are characteristic for oxides of a few transition-metals, 

which are commonly used as magnetic dopants in DMSs. Specifically, Cr2O3 has the corundum-, and 

Mn2O3 the bixbyite-type crystal structure. The isostructural nature of Cr2O3 and Mn2O3 with one of 

the polymorphs of In2O3 and the simpler phase transition mechanism in NCs compared to bulk 

inspired us to explore the possibility of using Mn
3+

 and Cr
3+

 dopants to manipulate the growth and 

structure of In2O3 NCs, and study directly the mechanism of dopant incorporation. We experimentally 

identified the structural similarity between the dopant transition-metal oxide and the In2O3 host as key 

components determining the affinity of dopant ions for the incorporation into NCs. In addition, a 

combination of structural and spectroscopic methods, including XRD, TEM, EXAFS, MCD and 

electronic absorption, provide a direct correlation between transition metal doped in individual NCs 

and the magnetic properties of the corresponding TM:In2O3 nanocrystalline films. 

To demonstrate a broad tunability of the visible emission by manipulating the NC composition and 

structure in solution, we applied a one-step synthesis of ternary gallium indium oxide (Ga2-xInxO3, 

0≤x≤2, further in the text generally referred to as GIO) colloidal NCs throughout the entire 
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composition range. To our knowledge, studies of alloyed colloidal GIO NCs with compositionally-

tunable emission have not been reported to date. Ga2O3 is chemically related to In2O3 since both Ga 

and In belong to the same group of the periodic table and have the same oxidation state in their 

respective oxides (+3). This should allow for a controlled incorporation of In
3+

 into Ga2O3 and Ga
3+

 

into In2O3 and the formation of colloidal alloyed NCs, without introducing new defect sites associated 

with charge compensation. The PL mechanism identified as the donor-acceptor pair (DAP) 

recombination changes with the NC composition on the basis of the interactions between donors and 

acceptors. The reported results open the door for rational tuning of the visible PL in TCO-NCs and 

further expansion of their inherent degrees of freedom.  
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Chapter 2 

Experimental Section 

2.1 Materials 

All reagents were used as received. Indium acetylacetonate (In(acac)3; 98%), Gallium 

acetylacetonate (Ga(acac)3, 99.99%), and chromium acetylacetonate (Cr(acac)3; 97.5%) were 

purchased from Strem Chemicals. Manganese acetylacetonate (Mn(acac)3) was purchased from Alfa 

Aesar. Oleylamine (70%) and tri-n-octylphosphine oxide (TOPO; 90%) were purchased from Sigma-

Aldrich Company. Toluene (99.98%, EMD Chemicals), hexane (99.9%, Fischer Scientific) and 

absolute ethanol were used as solvents without further purification. 

2.2 Synthesis and Samples Preparation 

2.2.1 Synthesis of In2O3 NCs 

In2O3 NCs were synthesized using a single-step procedure similar to the one previously reported.
80

 

In a typical reaction, 4 mmol of In(acac)3 and 48 mmol of oleylamine were mixed in a 100 ml three-

neck round-bottom flask and magnetically stirred for 15 minutes under a flow of argon. The reaction 

mixture was heated up to the desired temperature in the argon atmosphere. The reaction mixture was 

then refluxed at the final temperature. For the kinetic study of the phase transformation of In2O3 NCs 

portions of the obtained product were taken at different times during the reaction. For nonisothermal 

kinetic investigations in solution the reaction mixture was allowed to reach 240 °C while stirring for 1 

h, and with the heating continuing at the rate of 1 °C/min, the aliquots were taken in the temperature 

range 250-280 °C. The obtained samples were cooled to room temperature, and the NCs were 

precipitated and washed three times with ethanol. 

For in situ nonisothermal XRD study of the phase transformation of larger (ca. 5 nm) rh-In2O3 NCs, 

the sample was prepared in the powder form by the alcoholysis method, according to the previously 

reported procedure.
35

 In this synthesis, 1 mmol of In(NO3)3 was dissolved in 50 ml of ethanol and 

stirred for 30 min. The same volume of 0.15 M NaOH solution in ethanol was added to the reaction 

mixture and the obtained In(OH)3 precipitate was washed with ethanol, dried in air, and finally 

calcined to obtain rh-In2O3 NCs. 
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2.2.2 Synthesis of Chromium and Manganese Doped In2O3 NCs 

Doped In2O3 NCs are prepared using the same methods described for the synthesis of pure In2O3 NCs, 

but in the presence of various amounts of dopant precursor (Cr(acac)3 or Mn(acac)3) in the precursor 

mixture. The doped NCs were dispersed and heated in TOPO, followed by re-precipitation with 

ethanol. This procedure was repeated three times to ensure the removal of surface-bound dopant ions. 

The obtained NCs were suspended in hexane or toluene. 

2.2.3 Synthesis of Gallium Indium Oxide NCs 

All reactions were carried out using argon protection. In a typical synthesis, Ga(acac)3 and 

In(acac)3 were mixed in a 100 ml three-neck round-bottom flask with 9 g of oleylamine, and 

magnetically stirred under a flow of argon at 80 °C until the precursors were fully dissolved. The 

synthesis of pristine γ-Ga2O3 NCs was performed utilizing 1.2 g of Ga(acac)3, and for the syntheses of 

gallium indium oxide  NCs a certain amount of Ga(acac)3 was systematically replaced with In(acac)3 

to obtain alloyed NC samples throughout the full composition range.  A solution was degassed and 

heated to 200 °C (290 °C) at an average rate of ca. 3 °C/min. The reaction mixture was then refluxed 

in the argon atmosphere for 30 hours. The obtained product was cooled to room temperature, and the 

NCs were precipitated by the addition of 20 ml of ethanol followed by centrifugation at 3000 rpm for 

5 minutes. The isolated fine white powder was washed 3 times with ethanol and centrifuged. Finally, 

NCs were capped with TOPO and dispersed in hexane or toluene. 

2.2.4 Synthesis of Nanocrystalline Cr2O3 

Nanocrystalline Cr2O3, the most common oxide of chromium, was prepared by a different method
81

 

in order to compare its structural and magnetization properties with the analogous properties of 

Cr
3+

:In2O3 NCs. Nanocrystalline Cr2O3 was prepared by calcinations of a dried gel of Cr(OH)3 

precipitate. The Cr(OH)3 was precipitated from a solution of 0.05 M CrCl3 ·6H2O with 0.18 M 

NaOH. The resulting gel was filtered and washed several times with deionized water. The obtained 

amorphous Cr(OH)3·xH2O precursor was dried overnight at 60 °C, and calcined in air for 3 h at 350 

°C. 

2.2.5 Size Selective Precipitation 

In addition to narrow the size distribution and separate rh- In2O3 and bcc- In2O3 NCs we applied 

size selective precipitation method. In this method, viscous suspension of NCs including both large 
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and small particles was first centrifuged at 3000 rpm for 5 min. Large In2O3 NCs with bixbyite-type 

crystal structure were first precipitated. Small NCs with rh-In2O3 phase were then precipitated from 

the supernatant by adding 20 mL of ethanol and centrifuging for 10 min at 3000 rpm. 

2.3 Measurements and Data Analysis 

2.3.1 Powder X-ray Diffraction 

X-ray diffraction (XRD) is a powerful tool to determine the structures of unknown materials and 

find the unit cell parameters of crystals. Powder XRD is perhaps the most widely used x-ray 

diffraction technique for characterizing materials. Besides determining the structure of unknown 

materials, the crystallite size can also be estimated from the XRD peak width using the Debye-

Scherrer equation which is 

                                               )cos( B

 
 value)(average size eCrystallit






                             

Equation 1 

where K is the Scherrer constant, λ is wavelength of radiation, and B is the line broadening at half the 

maximum intensity (FWHM) in radians, θ is the peak position. 

Powder XRD patterns were collected with an INEL powder diffractometer equipped with a 

position-sensitive detector, using monochromatic Cu Kα radiation. For XRD measurements, the NCs 

were precipitated with ethanol, air-dried, and loaded as powders into an aluminum XRD sample 

holder. 

2.3.1.1 In-situ XRD Measurements 

The in-situ nonisothermal phase transformation was investigated by XRD measurements in the 

argon atmosphere, using the same diffractometer fitted with a high temperature reactor chamber. The 

samples were preheated in the chamber to 240 ˚C with a heating rate of 5 ˚C /min. Upon temperature 

stabilization the sample was heated at the same rate to different temperatures, and upon reaching the 

desired temperature the XRD pattern was recorded for 15 minutes.  

2.3.1.2 Linear Combination and Deconvolution Analyses of XRD patterns 

We performed the linear combination and deconvolution analyses to determine the phase contents 

of In2O3 NC samples synthesized between 0 and 30 h in the temperature range 210-260 ˚C. For the 

linear combination analysis we used rh-In2O3 and bcc-In2O3 NCs obtained with high purity in the 30 h 
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reaction at 200 ˚C and 7 h reaction at 230 ˚C, respectively, as references. The phase contents of the 

samples synthesized in the temperature range 210-260 ˚C for different durations were determined by 

matching their XRD patterns to the linear combination of the reference XRD patterns. For the 

deconvolution method, the phase contents of In2O3 NCs were calculated by fitting the overlapped 

bcc-In2O3 (222) and (400), and rh-In2O3 (104) and (110) peaks. The intensities of the four peaks were 

set proportionally to their standard intensities based on the JCPDS cards of these two phases. The 

weight fraction of bcc-In2O3 (Wbcc) can be calculated from: 

                                                                 rhbcc
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bcc

4.3 AA

A
W




                                             

Equation 2 

where Abcc and Arh are the integrated intensities of the bcc-In2O3 (222) and rh-In2O3 (104) peaks, 

respectively. The integrated intensity ratio for the bcc-In2O3 (222) peak to the rh-In2O3 (104) peak 

obtained from the XRD pattern of the two references is 3.4. 

2.3.2 Raman Spectroscopy 

Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic 

light, usually from a laser source. The laser light interacts with molecular vibrations, phonons or other 

excitations in the system, resulting in shifts in the laser photon energy. These shifts provide 

information about the vibrational modes in the system. The Raman spectrum is more sensitive to the 

lengths, strengths, and arrangement of chemical bonds in a material, rather than to the chemical 

composition. Raman spectra were recorded at room temperature using a Renishaw 1000 spectrometer 

using a He-Ne laser with ∼10 % of the maximum laser output power (40 mW). The spectrometer was 

calibrated using a silicon standard. For Raman measurements, the NCs powder were transferred to the 

glass slide and excited at wavelength of 632.8 nm. 

2.3.3 Electron Microscopy 

Transmission electron microscopy (TEM) imaging was performed with a JEOL-2010F microscope 

operating at 200 kV. The specimens were prepared by dropping dilute suspensions of colloidal NCs 

in toluene on copper grids with lacey formvar/carbon support films purchased from Ted Pella, Inc. 

Gatan Digital Micrograph software was used to measure d-spacing from TEM images. 
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2.3.4 X-ray Absorption Spectroscopy 

There are three main regions found on the X-ray absorption spectrum (Figure 2.1). Depending on 

the photon energy, different processes will occur that lead to different features in the X-ray absorption 

spectrum. At low energy, before the ionization energy, the transition of the electron from a core 

electronic level is not possible, because the incident photon has low energy to allow the electron to 

reach the first available electronic levels. This region is named the pre-edge. In a very narrow domain 

of a few eV around the absorption edge, the absorption coefficient increases drastically, which 

indicates that the energy transferred from the photon to the electron is sufficiently high to allow this 

electron to reach the first available energy levels. This leads to more or less complex features in the 

absorption edge, and this region is called the X-ray absorption near edge structure (XANES). 

Analysis of this part of the spectrum provides information about the electronic structure, such as spin 

state and oxidation state. 

When the energy is slightly larger the ionization energy, the absorption coefficient exhibits 

modulations with decreasing amplitude. In this region, the electron is expelled from the absorbing 

atom and goes on to explore the environment with a residual kinetic energy equal to the energy of the 

incident photon minus the energy required to transfer the electron from its ground level to the first 

available energy levels. This region is called EXAFS. The analysis of this part of the absorption 

spectrum gives information regarding the nature and number of neighbors and bond distances.  

XAS measurements were performed at the beamline 06ID-1 at the Canadian Light Source (CLS). 

For the In K-edge the energy was scanned in the range of 27690-28797.2 eV. For Cr K-edge the 

energy was scanned in the range of 5739-6869.2 eV. The scan started from 250 eV below the edge 

(for indium at 27940 eV and for chromium at 5989 eV) to 50 eV below the edge in 10 eV steps. 

Between 50 eV below the edge and 50 eV above the edge, the step size was 0.2 eV. Above 50 eV of 

the edge the step size was 0.05 Å
-1

 until the end of the scan was reached at 15k (where k = [0.2625 (E-

E0)]
½
). 
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Figure 2.1 X-ray absorption spectra showing three main regions: pre-edge, XANES, and EXAFS. 

2.3.4.1 Indium K-edge XAS Measurements 

To measure indium K-edge XAS, the Si (220) crystal was used as an X-ray beam monochromator, 

and the harmonics rejection was achieved by detuning the second monochromator crystal by 60 %. 

Indium K-edge energy calibration was carried out by using the Sn foil standard (K-edge at 29200 eV). 

For In2O3 NC samples, the spectra were recorded in the transmission mode with three ionization 

chambers. The first and second ionization chambers were used to monitor the incident and transmitted 

X-ray intensities, respectively. The third ionization chamber was used in conjunction with the Sn foil 

standard to provide internal calibration for the In K-edge position. For GIO NC samples, the spectra 

were collected in the fluorescence mode with a 32-element germanium array detector. In this setup, 

the samples were positioned at 45° angle to the incident beam, while the fluorescence signal was 

detected at 90° with respect to the incident beam. 

2.3.4.2 Chromium K-edge XAS Measurements 

To measure Chromium K-edge XAS the Si (111) double-crystal was used to monochromatize the 

radiation. Chromium K-edge energy calibration was carried out by using chromium foil standard (K-

edge at 5989 eV). For Cr2O3 standard sample the spectra were recorded in the transmission mode 

while for Cr
3+

:In2O3 NC samples, the spectra were collected in the fluorescence mode. 
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2.3.4.3 EXAFS Data Analysis 

EXAFS data analysis was performed with the Cherokee and RoundMidnight codes from the 

Multiplatform Applications for XAFS (MAX) package.
35

 EXAFS data were analyzed according to 

the single scattering theory. Firstly, the background below the edge jump was removed by 

extrapolation of the pre-edge absorption using Lengeler-Eisenberger method, and the post-edge 

background was modeled by interpolation of the atomic-absorption background by a fifth- or sixth-

degree polynomial. The extracted EXAFS spectra were converted from energy (E) to wave-vector (k), 

and then Fourier transformed from k-space to R-space by using a Kaiser-Bassel window (τ = 2.5). 

The peaks corresponding to the first oxygen and second cation shells were filtered and back-Fourier 

transformed to k-space for further fitting. Fitting of the Fourier-filtered spectra was performed using 

the EXAFS expression based on the single scattering theory: 
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                    Equation 3 

where )(k is the EXAFS amplitude, Ai(k) and )(ki respectively, are back scattering amplitude 

from and phase shift between absorber and each of the back scattering atoms (Nj), Rj is the distance of 

j
th
 atom from the absorber, λ(k) is the photoelectron mean-free path, 

2

j is the Debye-Waller factor, 

and 
2

0S is an amplitude reduction factor. EXAFS structural parameters were obtained by least-squares 

analysis of the Fourier filtered data using phase and amplitude functions generated from FEFF6 code 

with input data based on the crystallographic information for In-O and metal-metal bond distances.  

The weighted residual factor (ρ) was calculated using the following formula: 

 

                                          Equation 4 

 

2.3.5 Photoluminescence Spectroscopy 

Photoluminescence spectra were recorded with a Varian Cary Eclipse fluorescence spectrometer. 

For the delayed PL measurements, the samples were excited in the maximum of the excitation band 
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with a pulsed Xenon flash lamp, and the emission intensity at each point was recorded 0.1 ms after 

excitation (delay time) for 0.04 ms (gate time).  

2.3.5.1 Relative Quantum Yield Measurements 

Relative quantum yields of the NC samples were calculated using quinine bisulfate (QBS) as the 

reference substance, based on the following expression:  
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Equation 5 

where Φ is the quantum yield, I is the area under the emission peak (wavelength scale), A is 

absorbance at the excitation wavelength, and n is the refractive index of the sample. The subscript R 

denotes the analogous quantities of the reference. A solution of QBS was prepared in 1 N H2SO4 as 

previously described.
82

 The quantum yield of QBS under these conditions was determined to be 0.55. 

2.3.6 UV-Vis Absorption Spectroscopy 

Ultraviolet-visible (UV-Vis) spectroscopy involves the spectroscopy of photons in the UV-visible 

region. Electronic absorption spectroscopy has played a key role in the development of methods for 

synthesizing semiconductor nanocrystals including nanocrystal sizes, growth kinetics, growth 

mechanisms, and electronic structures. 

The electronic absorption spectra of doped semiconductor nanocrystals contain considerably more 

features than those of the pure host nanocrystals. The transitions observed may be grouped into three 

general classes: (a) the band gap transition which corresponds to the valence band to the conduction 

band transitions of the semiconductor host lattice, (b) the d–d transitions of the dopant ions in the 

lattice environment, and (c) charge transfer transitions. These make this spectroscopy a valuable 

technique to determine the doping speciation. 

The optical absorption spectra of colloidal NCs were collected on a Varian Cary 5000 UV-vis-NIR 

spectrophotometer using 1cm path-length quartz cell.  

2.3.7 Magnetic Circular Dichroism 

Magnetic circular dichroism (MCD) spectroscopy measures the difference in absorption of  left 

circularly polarized (LCP) and right circularly polarized (RCP) light between Zeeman-split ground 

and excited states in a magnetic field (Figure 2.2). The difference in absorption is defined by 
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convention as ΔA=A--A+, where A- is LCP absorption and A+ is RCP absorption. In addition, it is 

necessary that the ground and/or excited state possess non-zero angular momentum (j).
83, 84

 

The most important use of MCD spectra is to assist in the interpretation of electronic spectra and 

provide experimentally based information about the electronic states involved in the observed 

transitions. MCD spectra showed improved resolution in the observed electronic transitions compared 

to absorption measurements (particularly for transition metals). In addition, MCD spectroscopy 

provides selective investigation of magnetic properties of individual metal centers via temperature 

and magnetic field dependence studies of discrete transitions (optical detection of magnetization). 

 

Figure 2.2 Schematic representation of the MCD selection rules. 

MCD spectra were measured with Jasco J-815 spectropolarimeter using a high-field 

superconducting magneto-optical cryostat (SM4000-8, Oxford) with a variable-temperature (1.5-300 

K) and variable magnetic field (0-8 T) compartment positioned in the Faraday configuration. For 

MCD measurements, the colloidal suspensions were deposited on high quality quartz disks and 

mounted in the appropriate cryostats. 

2.3.8 Magnetic Measurements 

The magnetization was measured with the physical property measurement system (PPMS, 

Quantum Design) in ACMS mode, with a helium cooling system, allowing a wide range of 

temperatures from 2 to 400 K and magnetic fields up to ± 9 Tesla. The overall effective magnetic 

moment can be measured as a function of temperature, or the applied magnetic field from a positive 

to a negative one, monitoring magnetic properties. For magnetization measurements of free-standing 



 

 26 

NCs, the NC powders were precipitated with ethanol, air-dried, and loaded as powders into 

measurement capsules. For magnetization measurements of nanocrystalline films, the colloidal NCs 

were spin-coated multiple times on the clean sapphire substrates, followed by mild annealing at 300º 

C for 1 minute between consecutive coatings (Figure 2.3). The final nanocrystalline films were 

weighed again on an analytical balance in order to determine the magnetization per unit mass of the 

samples. All samples were handled identically under carefully controlled magnetic contamination-

free conditions. For each sample, three to five films were prepared. Although the magnetic moment 

varies, the data was generally in good agreement from one film to another. 

 

Figure 2.3 Schematic representation of preparation of films from colloidal Cr
3+

:In2O3 NCs for 

magnetic measurements. 

The saturation magnetization per dopant ion in the nanocrystalline film was estimated based on the 

unit mass magnetization and the elemental composition of the sample. The NCs have a significant 

amount of TOPO ligands, which must be taken into account when calculating the magnetic moment 

per dopant ion in NCs. From the phosphorus inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) analysis, we determined the amount of TOPO ligands associated with the 

NCs in the nanocrystalline film after additional drying. The mass of the dried doped NCs in the film 

was then corrected for this amount of TOPO. Then, this corrected mass, is used to determine the 

magnetization per dopant ion. 
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Chapter 3 

Phase-Controlled Synthesis of Colloidal In2O3 Nanocrystals and a 

Kinetic Study of Phase Transformation  

In this part of my thesis we studied phase-controlled synthesis of In2O3 NCs during their growth in 

solution. This chapter presents a detailed kinetic study of the phase transformation of colloidal rh-

In2O3 to bcc-In2O3 NCs during their growth in solution by a combination of structural and 

spectroscopic methods, including XRD, TEM and EXAFS spectroscopy. These results enable a 

direct, straightforward and highly selective synthesis of colloidal In2O3 NCs having different phases 

by adjusting the reaction conditions. 

3.1 Phase-Controlled Synthesis of Colloidal In2O3 NCs via Size-Structure 

Correlations 

3.1.1 Synthesis of In2O3 NCs during Growth in Solution 

TEM images of the In2O3 NCs obtained at 250 ˚C at different reaction times during the synthesis 

are shown in Figure 3.1. Immediately upon reaching the final reaction temperature the samples have a 

network-like structure with a few sub-5 nm particles imbedded in the network (Figure 3.1a). After 10 

minutes the number of nanoparticles increases with respect to the nanostructured network, and they 

become larger and faceted (Figure 3.1b). This process continues over time (30 minutes, Figure 3.1c), 

and after 1 h the network completely disappears, leaving behind only nanoparticles, which are much 

more uniform in size (Figure 3.1d). XRD patterns of several representative samples collected at 

different times during the synthesis are shown in Figure 3.1e. All samples are crystalline, although 

broadening of the XRD peaks decreases for products obtained at longer reaction times due to an 

increase in the size of the crystalline domains. Surprisingly, a change in the crystal structure was 

observed during the reaction.  
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Figure 3.1 (a-d) TEM images of nanocrystalline In2O3 during the synthesis at 250° C: 0 (a), 10 (b), 

30 (c), and 60 min (d) upon reaching the reaction temperature. (e) XRD patterns of In2O3 at different 

times during the synthesis at 250° C. Vertical lines at the top and bottom represent the patterns of 

bulk bixbyite bcc-In2O3 (JCPDS 06-0416) and rh-In2O3 (JCPDS 21-0406), respectively, with major 

reflections assigned. 
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The XRD pattern of the initially formed thin-walled networks is in good agreement with that of 

bulk rh-In2O3. As the reaction proceeds, the peaks corresponding to bcc-In2O3 become apparent. 

These peaks are significantly narrower than the peaks corresponding to rh-In2O3, indicating that the 

change in NC structure from rhombohedral to cubic accompanies an increase in NC size. These 

observations strongly suggest that metastable rh-In2O3 is an intermediate structure in the formation of 

bcc-In2O3 during NC growth. Due to surface energy contribution to the phase transformation free 

energy (ΔG), the relative stability of different polymorphs can be reversed at small grain sizes.
3, 85

 

Furthermore, for a NC with a small radius (R) the surface stress (g) is related to an average fractional 

decrease in atomic volume ( 0 ): 

                                                                             
R

g2

0





                                                Equation 6 

where   is the isothermal bulk compressibility.
86

 This reduction in volume is equivalent to an 

excess pressure which favors the stabilization of higher density rh-In2O3 (63.22 and 64.89 Å
3 
per 

In2O3 unit for rh- and bcc-In2O3, respectively).
5
 Given the relatively small ΔG between rh- and bcc-

In2O3, 
5
 surface stress could be a particularly important effect causing an excess pressure and favoring 

the stabilization of rh-In2O3 NCs due to a slightly higher density of corundum relative to cubic 

bixbyite phase . 

3.1.2 Indium K-edge XAS Measurements: Evidence of Surface Stress 

X-ray absorption spectroscopy can provide quantitative element-specific information about the 

local electronic structure environment, including surface sites,
87

 and was used here to study the 

structure of In2O3 NCs in the process of phase transformation. The local environment of In
3+

 sites 

during the phase transformation of In2O3 NCs was systematically studied by In K-edge EXAFS 

method. Figure 3.2a shows Fourier-filtered EXAFS spectra of the sample synthesized at 250 ˚C, 

during the course of the reaction. These EXAFS spectra were derived for the In-O and In-In shells by 

the inverse Fourier transform of the pseudoradial functions (Figure 3.3) in the range R=1.15-3.37 Å.  



 

 30 

 

Figure 3.2 Fourier-filtered In K-edge EXAFS spectra of In2O3 NC samples synthesized at 250 ˚C 

(solid lines), and the resulting curve fits (dashed lines) used to calculate structural parameters. The 

reaction times corresponding to each spectrum are shown in the graph. (b) In-O (green) and In-In 

(purple) bond distances calculated from the EXAFS analysis for NCs synthesized for different 

reaction times. 
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Figure 3.3 Fourier transform EXAFS spectra of In2O3 NCs synthesized at 250˚C for different 

reaction times. The sample synthesized at 200 ˚C for 30 h (purple) was used as a reference of pure rh-

In2O3 NCs. 

The structural parameters obtained from the fitting of the EXAFS spectra are summarized in Table 

3.1. For bulk In2O3 the cation-anion distances are nearly identical in both dimorphs, and a small 

difference in density results from tighter packing of the anion layers in the corundum structure.
26

 The 

average In-O bond length based on crystallographic data is 2.17-2.18 Å. In bulk rh-In2O3 the In-In 

distance is 3.243 Å with the second shell coordination number (CN) of 3, while in bulk bcc-In2O3 the 

In-In distance and CN are 3.35 Å and 6, respectively.
22, 26, 88

 The average In-O and In-In bond 

distances for the samples isolated at different times during the synthesis are shown in Figure 3.2b.  

Both In-O and In-In distances expand as the reaction proceeds. The increase in the average In-In 

distance can be attributed to the phase transformation from rh-In2O3 to bcc-In2O3, based on the bulk 

values of this parameter. This conclusion is supported by the change in the second shell (In-In) CN 

from 3.3 to 6 (Table 3.1).  
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Table 3.1 Fitting Parameters Determined from the Analysis of EXAFS Spectra of In2O3 NCs 

Synthesized at 250 ˚C. 

  In-O     In-In1    

t 

(min) 

N R 

(Å) 

σ
2
 
a
 

(Å
2
) 

 N R 

(Å) 

σ
2
 

(Å
2
) 

ρ
b
 

(%) 

5  6.0  2.163±0.005   0.007   3.3  3.329±0.023 0.010  0.6 

10  6.0  2.161±0.005 0.006   3.8  3.331±0.027 0.012  0.6 

20  6.0  2.165±0.005 0.007   3.2  3.332±0.020 0.009  0.5 

45  6.0  2.167±0.007 0.006   5.1  3.341±0.017 0.008  1.3 

60  6.0  2.168±0.006 0.005   5.9  3.340±0.012  0.008  2.0 

1800  6.0  2.179±0.007 0.006   6.0  3.342±0.009  0.005  2.5 

a
 Debye-Waller factor. 

b
 Weighted residual factor(Refer to the experimental section 2.3.4.3). 

 However, In-O bond distance is much shorter in NCs at the beginning of the reaction than in bulk, 

and expands significantly in the early stage of NC growth. Over the course of the reaction the In-O 

bond distance reaches the value characteristic for the bulk In2O3. These results are consistent with an 

increase in surface stress with decreasing NC size, which is equivalent to an excess pressure, and 

compresses In-O bonds at NC surfaces. The increase in NC size with phase transformation reduces 

the surface stress and results in an expansion of In-O distances. 

3.1.3 Formation of InOOH NCs 

To verify the role of other intermediates in this single step procedure, we performed the reaction at 

lower temperatures. The formation of nanocrystalline InOOH at temperatures as low as 150 ˚C was 

observed in XRD patterns (Figure 3.4). The formation of InOOH has been signified as the key step in 

obtaining rh-In2O3 at ambient pressure.
31, 32, 47

 The presence of In(OH)3
47

 or the absence of added 

water,
32

 on the other hand, were suggested to prevent rh-In2O3 stabilization, although In(OH)3 has 

been identified by other authors
17, 28

 as a precursor from which both bcc-In2O3 and rh-In2O3 can form. 

Corundum-type In2O3 has not been observed or reported when In(acac)3 was used as a precursor.
80

 

These discrepancies indicate a sensitivity of the obtained product to the reaction conditions and point 

out the importance of systematic studies of the In2O3 NC formation in solution. Here we used 
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In(acac)3 precursor and showed that both rh- and bcc-In2O3 are derived from InOOH, which is formed 

by dehydration of In(OH)3.  

 

Figure 3.4 XRD pattern of the reaction mixture for the synthesis of In2O3 nanocrystals after heating 

at 150° C for 30 hours. Black lines represent the XRD pattern of bulk InOOH (JCPDS 71-2277) and 

red lines the XRD pattern of rh-In2O3 JCPDS (21-0406). Based on the reflection angles and peak 

intensities we conclude that the XRD pattern of the sample corresponds mostly to InOOH indicating 

its role as an intermediate in this synthesis. The XRD pattern of the sample also contains a 

contribution from nanocrystalline rh-In2O3 obtained by dehydration of InOOH. 

Water-free synthesis in nonbasic organic solvents did not yield any NCs indicating that controlled 

presence of small amounts H2O in oleylamine is needed for In(OH)3 and InOOH formation by 

hydrolysis. Control experiments using In(NO3)3 precursor showed the same trend suggesting that 

In2O3 NCs are generally formed by hydrolysis mechanisms in solution phase preparations involving 

In
3+

 salt precursors.
89

 Understanding the growth mechanism and the structural transformation should 

allow for the rational and controlled preparation of colloidal In2O3 NCs having specific sizes and 

structures by simply adjusting the reaction conditions, including temperature, precursors, solvents, 

coordinating ligands, and reaction time.  

3.1.4 Optimized Reaction Conditions for the Synthesis High Purity rh-In2O3 and bcc-

In2O3 NCs 

We hypothesized that a rapid NC growth would lead to fast transformation of rh-In2O3, resulting in 

bcc-In2O3 NCs. A decrease in the growth rate would lead to formation of small NCs and the 

stabilization of rh-In2O3. Starting from this premise, we optimized the reaction temperatures and 



 

 34 

times to selectively obtain high purity rh-In2O3 and bcc-In2O3 NCs while keeping all other parameters 

the same. Figure 3.5a shows a TEM image of In2O3 NCs synthesized at 200 ˚C for 30 h.  

 

Figure 3.5 (a, c) Overview TEM images of (a) rh-In2O3NCs synthesized at 200 ˚C for 30 h, and (c) 

bcc-In2O3 NCs synthesized at 250 ˚C for 30 h. (b,d) Lattice-resolved TEM (top) and the 

corresponding FFT images (bottom) of (b) a single rh-In2O3, and (d) bcc-In2O3 NC. 

Well-defined NCs having an average size of ca. 3.5 nm and the corundum-type crystal structure 

(XRD in Figure 3.6a, bottom) are observed. High-resolution TEM and the corresponding fast Fourier 

transform (FFT) images (Figure 3.5b) confirm the crystal structure at the single NC level. Figure 

3.5c,d shows TEM images of a sample synthesized at 250 ˚C for 30 h. The resulting NCs have an 

average size of ca. 9.5 nm and cubic bixbyite-type structure, evidenced by TEM/FFT images (Figure 

3.5c,d) and the XRD pattern (Figure 3.6a,top). The purity of the obtained NC phases was confirmed 

by Raman spectroscopy. The spectrum of NCs from Figure 3.5a shows the dominant peak 

characteristic for rh-In2O3 (Figure 3.6b, bottom), with no evidence of the presence of bcc-In2O3. 
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Raman spectrum of NCs from Figure 3.5c is in excellent agreement with that documented for the 

bixbyite phase,
90

 suggesting purely bcc-In2O3 NCs (Figure 3.6b, top). The transformation of rh- to 

bcc-In2O3 NCs is determined by the NC growth kinetics. At 250 ˚C NCs grow rapidly and the 

transient rh-In2O3 could be isolated only after short times (Figure 3.1a,b).  

 

Figure 3.6 (a) XRD patterns of rh-In2O3 NCs synthesized at 200 ˚C for 30 h (bottom), and bcc-In2O3 

NCs synthesized at 250 ˚C for 30 h (top). Black lines represent the XRD patterns of the 

corresponding bulk phases. (b) Raman spectra of rh-In2O3 (bottom) and bcc-In2O3 NCs (top). 

Similarly, the addition of water, a reactant in hydrolysis, to the reaction mixture at 200 ˚C, which 

otherwise yielded only rh-In2O3 NCs, resulted in an increase in the NC growth rate and the formation 

of bcc-In2O3 NCs (Appendix A. 1).  

 

Figure 3.7 UV absorption spectra of 9.5 nm bcc-In2O3 (orange) and 3.5 nm rh-In2O3 NCs (blue), 

showing the band gap transitions. 
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In the methodology used in this work, the largest rh-In2O3 NCs that could be stabilized are ca. 5 

nm, which can be compared to 6.5 GPa at 1250 ˚C needed to convert bulk bcc-In2O3 to rh-In2O3. The 

optical absorption spectra of these bcc- and rh-In2O3 NCs are shown in Figure 3.7. Strong transitions 

with the shoulder like maxima at ca. 32,500 and 37,500 cm
-1

 are observed for bcc-In2O3 and rh-In2O3 

NCs, respectively. These transitions are assigned to the band gap absorptions. The blue shift in the rh-

In2O3 NC band gap transition is suggestive of a strong quantum confinement. 

3.2 A Kinetic Study of Phase Transformation of In2O3 NCs 

3.2.1 Quantitative Analysis of the Kinetics of Phase Transformation of In2O3 NCs 

Figure 3.8 shows XRD patterns and the corresponding NC size distribution histograms derived from 

the TEM images of the samples synthesized at 230 (a) and 260 ˚C (b) for different reaction times. 

Broadening of the XRD peaks is evident for short reaction times at both temperatures. For longer 

reaction times XRD peak broadening decreases, indicating an increase in the average NC size. From 

the TEM images of NCs synthesized at 230 ˚C (Figure 3.9), the average NC sizes immediately upon 

reaching the final temperature (0 min) and after 7 h of heating were determined to be ca. 2.5 and 7.3 

nm, respectively. The increase in NC size occurs concurrently with a change in the crystal structure 

from rh-In2O3 to bcc-In2O3. For the reaction times up to 10 min only NCs smaller than 5 nm were 

observed, which are largely stabilized as rh-In2O3. On the other hand, the NC product isolated after 7 

h has predominantly bcc-In2O3 structure. The XRD peaks of the sample synthesized at 260 ˚C (Figure 

3.8b) indicate a mixture of the two crystal structures at the beginning of the reaction. In addition, the 

size distribution histogram at 0 min shows a bimodal NC size distribution, with small NCs having an 

average size of ca. 3.3 nm, and large NCs of ca. 5.6 nm. Increase in the reaction time results in an 

increase in the ratio of large-to-small NCs, and a more dominant presence of the bcc-In2O3 phase. 

After 1 h bcc-In2O3 NCs having an average size of ca. 8.2 nm were isolated. At both temperatures an 

increase in the reaction time causes an increase in the fraction of large NCs at the expense of the 

small ones. Faster NC growth at higher temperature is accompanied by an increase in the rate of 

phase transformation from rh-In2O3 to bcc-In2O3 phase. 
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Figure 3.8 XRD patterns (left) and the corresponding size distribution histograms (right) of the 

samples synthesized at (a) 230 ˚C and (b) 260 ˚C for different reaction times (indicated in the graphs). 

The vertical lines are XRD peak positions of bulk rh-In2O3 (bottom, JCPDS 21-0406) and bcc-In2O3 

(top, JCPDS 06-0416). 
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Figure 3.9 TEM images of In2O3 NC samples synthesized at (a-c) 230 ˚C for 0 min (a), 10 min (b) 

and 7 h (c), and (d-f) 260 ˚C for 0 min (d), 10 min (e) and 1 h (f). 

The quantitative analysis of the kinetics of phase transformation was performed using the most 

pronounced XRD peaks in the region 2θ≈25-40°. In this range the XRD patterns consist of a mixture 

of bcc-In2O3 (222) and (400), and rh-In2O3 (104) and (110) reflections. The deconvolution of the 

XRD peaks of the sample synthesized at 250 ˚C for 20 min is shown in Figure 3.10a, as an example. 

The best fit to the experimental data in Figure 3.10a corresponds to 86 % rh-In2O3 and 14 % bcc-

In2O3 phase.  

The phase content determination was also performed by linear combination analysis using XRD 

patterns of pure phase NC samples. The linear combinations of the XRD patterns of the reference 

samples were well-matched with the experimental patterns obtained for the analogous mixtures of 

these references based on their weight percentage, justifying this complementary approach to the 

analysis of XRD data (Appendix A. 2).  
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Figure 3.10 (a) Narrow-range XRD pattern of the sample synthesized at 250 ˚C for 20 min (solid 

black trace), and the deconvoluted (222) and (400) peaks of bcc-In2O3 (dashed red trace), and (104) 

and (110) peaks of rh-In2O3 (dashed olive trace). The pink trace is the superposition of the 

deconvoluted peaks. Inset: linear combination fitting (solid pink line) for the same XRD range.  (b) 

Average content of bcc-In2O3 followed over 30 h for the reactions at different temperatures from 210 

to 260 ˚C. 
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Figure 3.11 (a) EXAFS spectra of In2O3 NCs synthesized at 250˚C for different reaction times (solid 

lines) and the best fit to the EXAFS spectra based on the linear combination of the rh-In2O3 and bcc-

In2O3 NC references (dashed lines). (b) Content of the bcc-In2O3 phase for the samples in (a) 

determined by the EXAFS linear combination fitting. 

The inset in Figure 3.10a shows the best linear combination fit for the same XRD data. The results 

of the peak deconvolution and linear combination were in a very good agreement for all samples, and 

the phase content for the kinetic analysis was derived as an average content from the two approaches. 

These phase content results were also confirmed by the EXAFS linear combination fitting (Figure 

3.11).  Figure 3.10b shows the content of bcc-In2O3 (α) over 30 h in the temperature range 210-260 

˚C.  
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Figure 3.12 Sizes of In2O3 NCs at different reaction times: (a) rh-In2O3 NCs synthesized at 210 and 

220 ˚C, (b) rh-In2O3 NCs synthesized at 230, 250 and 260 ˚C, and (c) bcc-In2O3 NCs synthesized in 

the temperature range 210-260 ˚C. The NC sizes were calculated based on the XRD peak 

deconvolution method. 

The average sizes of rh-In2O3 and bcc-In2O3 NCs of the same samples, determined from the full 

width at half maximum (FWHM) of the peaks obtained by the deconvolution method, are shown in 
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Figure 3.12. A qualitative comparison of the kinetic behavior of NC growth and phase transformation 

reveals the same trend, indicating a correlation between these two processes.  

3.2.2 Kinetics of Phase Transformation: JMAEK Model 

The phase transformation kinetics was studied by a generic JMAEK model, which is frequently 

used to describe solid-state phase transformations.
33, 36

 In this model the reaction progress (α) has a 

sigmoidal dependence on time,
33

 as the reaction at first has a slow rate, followed by a faster one, and 

then slow again.
36

 As a consequence there is a bell-shaped relationship between the reaction rate (dα 

/dt) and α. The JMAEK equation can be written as:  

                                                       
nkt)()α1ln(                                                             Equation 7 

where k is the rate constant of the reaction at time (t) and n is an exponent.
33

 Figure 3.13 shows the 

rate of formation of the bcc-In2O3 phase as a function of α at various reaction temperatures. The bell-

shaped functional forms are consistent with the sigmoidal α-t curves, and justify the use of JMAEK 

model.
33

  

 

Figure 3.13 Rate of formation of the bcc-In2O3 phase as a function of α (phase content) at different 

reaction temperatures. 

Figure 3.14a plots the phase content data for In2O3 NCs (the left hand side of                                                    

Equation 7) as a function of time for five different temperatures.  
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Figure 3.14 (a) JMAEK plots generated from the fraction of the bcc-In2O3 phase (α) present at 

different points in time in the samples synthesized at different temperatures. (b) Arrhenius plot based 

on the rate constants obtained from the JMAEK plot. 

The data are well fit to JMAEK equation (solid black lines), with the rate constant k and the 

exponent n as adjustable parameters. The plots of ln[-ln(1-α)] versus ln(t) show linear behavior 

(Appendix A. 3), allowing for the extraction of the same parameters, and the confirmation of the 

obtained results. The values of the exponents and rate constants are summarized in Table 3.2.  
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Table 3.2 Values of n and k Obtained from the JMAEK Plot. The Standard deviation for k is shown 

as error bars in Figure 3.14b. 

T (˚C)  n k (min
-1

) 

210 2.6 0.0013  

220 1.7 0.0024  

230 1.6 0.0112 

250 1.4 0.0190  

260 1.0 0.0552 

 

The exponent n decreases with increasing temperature from 2.6 to 1, in the studied temperature 

range (210-260 ˚C). According to the nuclei growth models n is a function of the geometry of nuclei 

(dimensional factor) and the nucleation probability (nucleation factor).
37

 Non-integer values of n in 

the range of 1.5-2.5 have been attributed to the diffusion-controlled mechanism for three-dimensional 

(quasi-spherical particle) growth, with decreasing nucleation rate over the course of the reaction.
34, 35

 

Lower n values are characteristic for the zero nucleation rate mechanism, or a process in which all 

nucleation events occur very rapidly at the initial stage, followed by the nuclei growth. In the context 

of these considerations the n values calculated in this study suggest that the nucleation of bcc-In2O3 

phase occurs uniformly on quasi-spherical rh-In2O3 NCs, and that the nucleation rate reaches a 

maximum at the beginning of the reaction and decreases as the reaction progresses. In the low 

temperature regime (i.e. below ca. 230 °C) the nucleation rate of bcc-In2O3 decreases gradually 

throughout the course of the synthesis, concurrently with the growth of the nucleated bcc-In2O3 phase. 

At temperatures above ca. 230 °C the rate of bcc-In2O3 nucleation drops very rapidly after initial 

nuclei formation, and the mechanism of phase transformation is governed only by the growth of the 

new phase in the course of the reaction. The kinetics of phase transformation is correlated with the 

NC size (or the kinetics of NC growth), as evident from the size distribution histograms (Figure 3.8). 

It is very likely that defect sites at NC surfaces play a key role in the phase transformation process, 

due to their lower reaction activation energies.
33

 The activation energy (Ea) of the rh- to bcc-In2O3 NC 

phase transformation can be determined from the calculated rate constant values for different 

temperatures, using the Arrhenius equation:                                                                    

                                                             
RTE

Aek
/a

                                                           Equation 8 
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where A is the pre-exponential factor and R is the gas constant. The plot of ln(k) versus 1/T (Figure 

3.14b) gives a value of 153±20 kJ/mol for the activation energy of the phase transformation in In2O3 

NCs.  

Although the JMAEK model is applicable to many solid-state reactions, it is based on the 

assumption that samples have infinite sizes in addition to randomly distributed nucleation sites.
39, 40

 

However, studies of phase transformation of TiO2 polymorphs have revealed a strong dependence of 

the phase transformation rate on the grain size.
44, 45

 Furthermore, the nucleation mechanism 

responsible for the formation of a new phase is dependent on temperature and the nature of the 

sample. Therefore, for detailed understanding of the phase transformation mechanism of 

nanocrystalline materials, which are finite in size, more precise models are needed. The choice of the 

suitable model often requires complementary structural information, particularly due to the fact that 

different models can often be fit to the same set of kinetic data.
42, 43 

3.2.3 Kinetics of Phase Transformation: Interface and Surface Nucleation Model 

High-resolution TEM (HRTEM) images of In2O3 NCs at different reaction times during the 

synthesis at 230 ˚C are shown in Figure 3.15. Upon reaching 230 ˚C the aliquots from the reaction 

mixture were removed and dispersed in toluene without any further treatment. The HRTEM image of 

the sample collected immediately upon reaching the reaction temperature (Figure 3.15a) shows that 

the sample has a network (polymer-like) morphology, which relatively quickly transforms into well-

defined NCs with rh-In2O3 crystal structure. As the reaction continues rh-In2O3 NCs begin to interact, 

forming particle-particle interfaces (Figure 3.15b). At later stages of the reaction the interacting NCs 

completely merge (Figure 3.15c) and eventually transform from elliptical to faceted quasi-spherical 

shape (Figure 3.15d). The process of NC interactions, observed by HRTEM, is accompanied by the 

transformation from rh-In2O3 to bcc-In2O3 phase, as demonstrated in Figure 3.8. Furthermore, the 

measured lattice spacing of NCs in Figure 3.15b, c and d (d≈ 2.92 Å) corresponds to (222) plane of 

bcc-In2O3 phase. 
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Figure 3.15 HRTEM images of In2O3 NCs synthesized at 230 ˚C for (a) 0 min, (b) 10 min, (c) 1 h 

and (d) 7 h. The boundaries of NCs in (b) are indicated with dashed line for clarity. 

To account for the role of surfaces and interfaces in nanocrystalline TiO2 anatase to rutile phase 

transformation, the surface and interface nucleation kinetic models have been developed.
41, 45, 46

 

Which of the two mechanisms prevails depends largely on the concentration of particles.
41

 For low-

density particle packing high free surface area is available, and the surface nucleation is a dominant 

mechanism. As the density of particle packing increases the rate of interface nucleation at particle-

particle contacts increases relative to the rate of surface nucleation. Smaller particles which have a 

larger number of particle-particle contacts per unit volume exhibit higher interface nucleation rate. 

The rate of phase transformation for the interface nucleation model is therefore ultimately determined 

by the probability of the contact formation between two particles.
41

 Investigation of the size 

dependence of phase transformation of TiO2 polymorphs using the interface nucleation model shows 

that the activation energy changes very slightly with particle size, but the pre-exponential factor 

increases significantly with decreasing particle size.
45

 The activation energy for interface nucleation is 

generally lower than that for surface nucleation. For example, for anatase TiO2 particles having an 

average size of 7.9 nm, Ea values for interface and surface nucleation are 167 and 466 kJ/mol, 

respectively, for the temperature range 620-690 ˚C.
41
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Based on the TEM images showing particle contact formation (Figure 3.15), we examined the 

kinetics of NC phase transformation in the framework of the interface nucleation model. The interface 

nucleation model for the kinetics of phase transformation can be expressed as: 

                                                                
tNk

DDrh )(1
)1(

)/(
0IN

3

0 
                                            

Equation 9 

where Drh is the average diameter of rh-In2O3 NCs (Figure 3.12), α is the fraction of bcc-In2O3 

phase (vide supra), and kIN is the kinetic constant for interface nucleation. N0 and D0 are the initial 

number and average diameter of rh-In2O3 NCs, respectively. Figure 3.16a shows the linear fit of the 

interface nucleation model to the experimental data for the phase transformation of rh-In2O3 to bcc-

In2O3 NCs.  

 

Figure 3.16 (a) Kinetic plots based on the interface nucleation model, generated from the fraction of 

the bcc-In2O3 phase (α) present at different points in time in the samples synthesized at different 

temperatures. (b) Arrhenius plot based on the rate constants (kIN) obtained from the interface 

nucleation plot in (a). 
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The values of kIN obtained as fitting parameters for different temperatures are given in Table 3.3. 

Table 3.3 Values of kINN0 obtained from the interface nucleation plot. The Standard deviation for 

kINN0 is shown as error bars in Figure 3.16b. 

T (˚C)  kINN0 (min
-1

) 

220 0.0087 

230 0.0371 

250 0.3321 

260 0.2921 

 

 The activation energy of the interface nucleation mechanism (EaIN) was determined to be 152±60 

kJ/mol from the Arrhenius fitting of ln(kINN0) vs 1/T dependence (Figure 3.16b). This value is in good 

agreement with the activation energy calculated using the JMAEK model, and is close to the values 

obtained for the anatase to rutile TiO2 phase transformation.
41, 91 

3.2.4 The Choice of Suitable Kinetic Model 

Typically, the mechanism of a solid state process is inferred by determining which model provides 

the best fit to the experimental kinetic data (model-fitting approach). Although each kinetic model is 

related to the specific type of process, it is often possible to apply more than one model to fit the 

experimental results. For isothermal solid-state processes different models can be fit to the same 

experimental data and used to calculate the activation energy,
42, 43

 allowing for deeper analysis of the 

role of different parameters in a given process. Consequently, the choice of the most suitable model 

should be supported by other complementary structural techniques. Electron microscopy imaging in 

conjunction with the interface nucleation model analysis suggests that phase transformation of 

colloidal In2O3 NCs occurs by the formation of interfaces between metastable rh-In2O3 NCs stabilized 

in an early stage of the reaction. According to this interface nucleation model, the transformation rate 

is determined by the nucleation of bcc-In2O3 at the interface of two contacting rh-In2O3 NCs. The 

nucleation of bcc-In2O3 phase occurs rapidly at the beginning of the reaction, and the nucleation rate 

decreases as the reaction progresses and the concentration of small rh-In2O3 NCs diminishes. Higher 

reaction temperature enhances the probability of NC contact formation in addition to their growth, 

increasing the phase transformation rate (Figure 3.17a). At high reaction temperatures (above 250 °C) 

the phase transformation is completed within a short period of time, due to the rapid decrease in the 
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number of small NCs. The NC size distribution results (Figure 3.8) support the conclusion that the 

fraction of small NCs in the reaction mixture decreases more dramatically at higher reaction 

temperatures. An increase in the concentration of rh-In2O3 NCs also leads to an increase in the 

number of particle-particle contacts per unit volume, which speeds up the rate of the phase 

transformation (Figure 3.17b).  

 

Figure 3.17 Schematic representation of the influence of (a) temperature (T) and (b) NC 

concentration (c) on the rate of phase transformation of In2O3 NCs by the interface nucleation 

mechanism. Red and blue spheres indicate rh-In2O3 and bcc-In2O3 NCs, respectively, and asterisks (*) 

indicate interface nucleation sites. The phase transformation rate is determined by the probability of 

contact formation between rh-In2O3 NCs. 

Importantly, all NCs imaged by TEM exhibit only a single phase, without multiple domains or 

phase boundaries, indicating a very fast propagation of bcc-In2O3 phase upon nucleation, which is 

consistent with recent theoretical investigations.
92

 The nucleation of the bcc-In2O3 phase is most 

likely initiated by the interfacial defect sites. The similarity of the activation energy of phase 



 

 50 

transformation of TiO2 nanocrystalline powder and colloidal In2O3 NCs suggests that the nucleation 

of a thermodynamically stable phase in TCO NCs is determined by the interactions at a local or 

molecular level (which should be similar for TCO NCs), rather than by macroscopic property of a 

material. 

3.2.5 In situ Nonisothermal X-ray Diffraction Analysis 

To further study the effect of NC size on the phase transformation of In2O3 we performed in situ 

nonisothermal XRD analysis. For these measurements the samples having different NC sizes were 

prepared, precipitated and dried in the air. The resulting powder was heated in the X-ray 

diffractometer to different temperatures from 240 to 350 °C, and the XRD patterns were collected at 

each temperature. Figure 3.18a shows in situ XRD patterns of the sample prepared by the colloidal 

method at 150 ˚C for 30 h. At the initial temperature of 240 °C, the NCs have corundum crystal 

structure and an average size of ca. 3 nm. Heating the sample at higher temperatures decreases the 

broadening of the XRD peaks, attesting to an increase in NC size, and induces a gradual phase 

transformation to bcc-In2O3 NCs. At 350 °C the cubic bixbyite phase becomes dominant. In situ 

phase transformation of larger rh-In2O3 NCs, which were synthesized in ethanol by the alcoholysis 

method,
17

 is shown in Figure 3.18b. These rh-In2O3 NCs have an average size of ca. 5 nm at 240 °C, 

as calculated from the XRD peak broadening, although the sample contains some nanocrystalline 

InOOH intermediate.
17

 Unlike smaller NCs in Figure 3.18a, this sample retains rh-In2O3 structure 

throughout the studied temperature range (up to 350 °C), although NCs clearly increase in size during 

in situ heating. A comparison between the nonisothermal XRD results in Figure 3.18a and b suggests 

that the phase transformation rate is faster and requires less thermal energy for smaller NCs. This 

observation contrasts thermodynamic effects on the phase stabilization of NCs. Thermodynamically, 

a decrease in size of In2O3 NCs leads to increased stabilization of rh-In2O3 phase, owing to the surface 

energy and/or surface stress contributions. The excess pressure caused by the surface stress increases 

with decreasing NC size, demanding more thermal energy to break and rearrange bonds in order to 

nucleate a new phase at NC surfaces.
45

 An increase in the activation energy with decreasing NC size 

has been reported for the phase transformation of TiO2 polymorphs.
45

 The discrepancy between these 

thermodynamic predictions and the results of Figure 3.18 can be explained assuming that at low 

temperatures and for small initial NC sizes the dominant phase transformation mechanism is the 

interface nucleation, as discussed above. Smaller NCs have higher packing density relative to the 
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larger ones, which increases the probability of particle-particle interactions and speeds up the phase 

transformation rate.  

 

Figure 3.18 In situ variable-temperature XRD patterns of In2O3 NCs synthesized by (a) colloidal 

method at 150 ˚C for 30 h, and (b) alcoholysis method in ethanol. Both samples were preheated at 

240 ˚C in the diffractometer. The vertical lines are XRD peak positions of bulk rh-In2O3 (bottom, 

JCPDS 21-0406) and bcc-In2O3 (top, JCPDS 06-0416). 

Although metastable rh-In2O3 phase is thermodynamically stabilized in NCs below ca. 5 nm in 

size, the phase transformation is kinetically controlled by the interface nucleation mechanism (i.e. 

probability of NC interaction), allowing smaller NCs to undergo phase transformation faster and at 

lower temperatures relative to larger NCs. Phase transformation under nonisothermal conditions was 

also studied in the solution phase by recording XRD patterns of the precipitated aliquots as the 

reaction mixture is heated at a rate of 1 °C/minute (Figure 3.19). 
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Figure 3.19 XRD patterns of In2O3 NCs synthesized under nonisothermal conditions, with the 

heating rate of 1 °C/min. The aliquots of the sample were taken upon reaching the desired 

temperatures indicated in the graph. 

 Comparison with in situ XRD measurements of powder samples showed in Figure 3.18a reveals 

that the phase transformation of In2O3 NCs in solution occurs at a lower temperature and a faster rate. 

This difference may be a consequence of increased probability of NC contact formation in solution, 

owing to their mobility. The synthesis and processing conditions may modify NC interactions and 

change the thermal energy of the phase transformation.  
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Chapter 4 

Dopant-Induced Manipulation of the Growth and Structural 

Metastability of Colloidal Indium Oxide NCs 

This chapter explores the effect of dopant ions on the growth and structure of colloidal In2O3 NCs, 

and factors governing the dopant incorporation during NC growth. Cr2O3 with the corundum-and 

Mn2O3 with the bixbyite-type crystal structure are isostructural with rh-In2O3 and bcc-In2O3, 

respectively. The isostructural nature of Cr2O3 and Mn2O3 with one of the polymorphs of In2O3, and 

the simpler phase transition mechanism in NCs compared to their bulk counterparts motivated us to 

study the effect of Mn
3+

 and Cr
3+

 dopants on the growth and structural metastability of In2O3 NCs, 

and study the mechanism of dopant incorporation.  

4.1 Changes in the In2O3 NCs Structure and Size in the Presence of Dopant 

TEM images and the corresponding size distribution histograms of Mn
3+

-doped In2O3 (Mn
3+

:In2O3) 

NCs synthesized at 250 °C for 1h with different concentrations of Mn
3+

 precursor are shown in Figure 

4.1.  

The starting molar ratio of Mn(acac)3 to In(acac)3 ([Mn]/[In]) was varied from 0 to 0.15. Pure In2O3 

NCs have the average diameter of 8.6 nm and a relatively narrow size distribution (Figure 4.1a). With 

[Mn]/[In]=0.05, the NC sizes and their distribution become dramatically different (Figure 4.1b). 

Bimodal size distribution is observed, with small NCs having an average size of ca. 4 nm, and large 

NCs of ca. 8.5 nm. Further increase in the concentration of Mn
3+

 precursor leads to an increase in the 

fraction of small NCs at the expense of the large ones (Figure 4.1c). At [Mn]/[In]=0.15 only the NCs 

with an average size of ∼4.5 nm are observed (Figure 4.1d). The reduction in the NC size due to an 

increase in the dopant precursor concentration is accompanied by the change in In2O3 crystal structure 

(Figure 4.2). The XRD pattern of pure In2O3 NCs shows a bixbyite-type structure. As the fraction of 

small NCs increases, the formation of corundum-type In2O3 becomes evident in XRD patterns. The 

decrease in the NC size also leads to broadening of the XRD peaks for samples synthesized with 

[Mn]/[In] of 0.10 and 0.15.  
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Figure 4.1 TEM images (left) and size distribution histograms (right) of Mn
3+

-doped In2O3 

nanocrystals synthesized with Mn vs In precursor molar ratios ([Mn]/[In]) of 0 (a), 0.05 (b), 0.10 (c), 

and 0.15 (d). The lines in histograms are Gaussian fits. Scale bars in TEM images are 50 nm. 
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Figure 4.2 XRD patterns of Mn
3+

-doped In2O3 nanocrystals in Figure 4.1 synthesized with different 

Mn vs In precursor molar ratios ([Mn]/[In]). The black lines are the patterns of bulk bcc-In2O3 

(bottom, JCPDS 06-0416) and rh-In2O3 (top, JCPDS 21-0406) with major reflections assigned. 

The same trends were observed for Cr
3+

-doped In2O3 (Cr
3+

:In2O3) NCs. Figure 4.3 shows TEM 

images of Cr
3+

:In2O3 NCs synthesized at 250 °C for 1h with different ratios of chromium and indium 

precursor concentrations ([Cr]/[In])  in the reaction mixtures and the corresponding size distribution 

histograms. The staring dopant concentration varied from 0.05 to 0.20. As the starting concentration 

of Cr
3+

 increases with respect to In
3+

, the ratio of small to large NCs increases and the NCs size 

distribution shifts to smaller sizes. At [Cr]/[In]=0.2 the population of large NCs completely 

disappears, and the average NC size is only ca. 3 nm.  
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Figure 4.3 TEM images (right) and the corresponding size distribution histograms (left) of Cr
3+

:In2O3 

synthesized with different ratios of chromium and indium precursor concentrations. 

XRD patterns corresponding to the samples in Figure 4.3 are shown in Figure 4.4. All XRD peaks of 

Cr
3+

:In2O3 NCs prepared with [Cr]/[In]=0.05 (purple trace) match those of bulk bcc-In2O3 (black 

lines, JCPDS 06-0416).  
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Figure 4.4 XRD patterns of Cr
3+

:In2O3 synthesized with different ratios of chromium and indium 

precursor concentrations ([Cr]/[In]). The vertical lines are XRD peak positions of bulk bcc-In2O3 

(black) and rh-In2O3 (brown). 

As the concentration of the Cr
3+

 precursor increases the peaks corresponding to rh-In2O3 (brown lines, 

JCPDS 21-0406) appear. For the starting precursor mixture of [Cr]/[In]=0.10 (green trace) broad 

peaks centered at ca. 32.5 and 58 degrees are readily assigned to (110) and (214)/(300) reflections, 

respectively, of rh-In2O3, and at  [Cr]/[In]=0.20 (red trace) only the NCs with corundum crystal 

structure are present. A large broadening of the XRD peaks with increasing Cr
3+

 precursor 

concentration is indicative of a strong reduction in NC size, and is consistent with the change in the 

NC size distribution observed in TEM images for increasing dopant precursor concentration. 

To further explore the change in nanocrystal structure in the presence of dopant ions, we performed 

high-resolution TEM studies (Figure 4.5a-d). In all samples studied, the vast majority of NCs smaller 

than 5 nm have corundum crystal structure, while those larger particles have cubic crystal structure, 

indicating that the critical size for NC transformation is ca. 5 nm.  
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Figure 4.5 Phase transformation of colloidal Mn
3+

- and Cr
3+

-doped In2O3 nanocrystals. (a-d) High 

resolution TEM images of Mn
3+

-doped In2O3 nanocrystals synthesized with [Mn]/[In]=0.10 (a, b), 

and Cr
3+

-doped In2O3 nanocrystals synthesized with [Cr]/[In]=0.10 (c, d). Lines and arrows indicate 

the d-spacings. The d-spacings of ca. 2.74 Å (a, c) correspond to {110} lattice plane of rh-In2O3, and 

the d-spacings of 2.91 Å (b) and 2.54 Å (d) correspond respectively to {222} and {400} lattice planes 

of bcc-In2O3. The critical size for nanocrystal transformation from rh-In2O3 (a, c) to bcc-In2O3 (b, d) 

is ca. 5 nm. Scale bars: 5 nm (a-c), 2 nm (d). (e) Schematic representation of the change in the 

potential energy curve of rh-In2O3 NCs with increasing NC size. 

For small Mn
3+

:In2O3 NC (Figure 4.5a) the average d-spacing of 2.74 Å can be assigned to {110} 

plane of rh-In2O3. The NC in Figure 4.5b has the average d-spacing of 2.91 Å, which corresponds 
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to{222} plane of bcc-In2O3. The same is observed for Cr
3+

:In2O3 NCs (Figure 4.5c, d). These findings 

indicate that a decrease in NC size due to the presence of dopant ions stabilizes the metastable rh-

In2O3 (Figure 4.5e).  

4.2 Difference in Incorporation of Chromium(III) and Manganese(III) Dopants in 

In2O3 NCs 

The measurements of the doping concentrations with ICPAES reveal very different incorporation 

of Mn
3+

 and Cr
3+

 dopant ions. The average Mn
3+

 concentrations for the samples synthesized with 

[Mn]/[In] of 0.05, 0.10, and 0.15 are 5.0, 8.8, and 12.3 mol % ([Mn]/([In] + [Mn])), respectively. The 

fraction of Mn
3+

 incorporated from its precursor into NCs decreases with increasing precursor 

concentration, suggesting higher concentrations of Mn
3+

 in bcc-In2O3 than in rh-In2O3 NCs.  

This conclusion was clearly confirmed by size selective precipitation of the sample prepared with 

[Mn]/[In] ) 0.05 (Figure 4.6), revealing the average Mn
3+

 doping concentration of 5.7 mol % in bcc-

In2O3 and 4.2 mol % in rh-In2O3 NCs. On the other hand, the fraction of incorporated Cr
3+

 increases 

with increasing precursor concentration. For [Cr]/[In]=0.05 the average doping concentration is 3.0 

mol % and for [Cr]/[In]=0.15, 13.8 mol %, which indicates lower incorporation rate into bcc-In2O3 

and higher into rh-In2O3 NCs. These trends are confirmed at the single NC level using EDX (Figure 

4.7a, b). Clearly, the NC size alone is not responsible for lower doping concentration of Mn
3+

 in rh-

In2O3 NCs due to exclusion of dopants from the initially formed nuclei. Figure 4.7c shows EDX 

elemental line scan profiles of In and Mn in a representative Mn
3+

:bcc-In2O3 NC having cubic 

morphology (Figure 4.7c, inset). In and Mn profiles have nearly identical forms, indicating a 

homogeneous distribution of dopants throughout the NC. This conclusion was quantitatively 

supported with a geometrical model designed to simulate the profiles of NCs having cubic 

morphology. Both In and Mn line scan profiles are fit well to the same functional form (Figure 4.7c, 

black line), confirming that dopants are homogeneously distributed across the NC, and are not 

segregated in an outer shell 
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Figure 4.6 TEM images of Mn
3+

-doped In2O3 nanocrystals prepared with [Mn]/[In]=0.05 after size 

selective precipitation. (a) Small nanocrystals having corundum crystal structure with average doping 

concentration of 4.2 mol %. (b) Large nanocrystals having cubic-bixbyite crystal structure with 

average doping concentration of 5.7 mol %. Scale bars: 50 nm.  
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Figure 4.7 (a, b) TEM images (left) and EDX spectra (right) of Mn
3+

-doped In2O3 (a) and Cr
3+

-doped 

In2O3 nanocrystals. (b) Nanocrystals analyzed by EDX spectroscopy are circled with the 

corresponding colors in associated TEM images. Both samples were synthesized with dopant to In
3+

 

precursor ratio of 0.10. (c) EDX elemental line scan profile of the Mn
3+

-doped In2O3 nanocrystal 

shown in inset. Mn (red) and In (green) profiles can be fit to the same scaled function (black line), 

indicating a homogeneous distribution of Mn dopants.   

For doped In2O3 it has been suggested that some dopant ions, such as Sn
4+

and Fe
3+

, can stabilize rh-

In2O3 due to their smaller sizes in comparison to In
3+

.
93, 94

 In this work all samples were prepared 
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identically, but with different starting concentrations of dopant ions. The doping concentrations of 

Mn
3+

 and Cr
3+

 in rh-In2O3 NCs are different, although both ions have similar ionic radii in octahedral 

coordination (r(Mn
3+

)=0.65 Å, r(Cr
3+

)=0.62 Å). Furthermore, higher doping concentrations of Mn
3+

 

in bcc-In2O3 than in rh-In2O3 NCs suggest that dopant incorporation is not the main factor for the 

stabilization of corundum-type In2O3 NCs.  

4.3 Mechanism of Inhibition of the Growth of NCs in the Presence of Dopant 

Ions 

Formation of NCs smaller than 5 nm allows for the spontaneous stabilization of rh-In2O3 proving 

that dopants do not have to be incorporated into NCs to induce the phase transformation. Instead, the 

dopant ions inhibit the NC growth as they bind to the surfaces of NCs during incorporation, leading to 

the stabilization of metastable In2O3. We believe that this adsorption-driven inhibition of the NC 

growth accompanied by the stabilization of metastable structures is a general phenomenon for the 

polymorphic materials having sufficiently small differences between the potential energy minima of 

different crystal structures. The dopant incorporation is then determined by the average residence 

time (τ) of dopant ions on the NC surfaces, which is directly related to their heat of adsorption 

(∆Hads): 

        






 


RT

Hadsexp0                                                      Equation 10 

where τ0 is correlated with the adsorbed dopant vibration times.
95

 The key parameter in   Equation 10 

is the heat of adsorption released upon trapping of the dopant ions on the NC surfaces. From the 

mechanistic point of view ∆Hads depends on different factors influencing the interaction of dopant 

ions with NC surfaces. Specifically, in order for a dopant ion to be adsorbed to the NC surfaces and 

eventually incorporated into the NC lattice it has to undergo ligand substitution and a change in 

coordination (i.e., coordinated ligands in the solution have to be replaced by surface binding sites). 

The relationship between the stabilization of a dopant ion by the coordinating ligands and the dopant 

affinity for a particular NC surface site will determine ∆Hads. In this study the NCs of the same 

material having two different crystal structures were doped under identical conditions with transition-

metal ions that have nearly identical size and the same oxidation state. The oxides of Cr
3+

 and Mn
3+

 

(Cr2O3 and α-Mn2O3) are, however, structurally closely related to rh-In2O3 and bcc-In2O3, 

respectively. These observations suggest that the affinity of a dopant ion binding to NC surface sites 



 

 63 

and the incorporation of surface-bound dopants depend on the relationship between the surface 

structure of the NC host lattice and the nature of the dopant ion. The NC surface structure is to a large 

extent defined by the crystal lattice structure. Microscopically, however, the NC surfaces are 

heterogeneous and contain different types of defect sites. While dopant ions have different ∆Hads on 

different surface sites, the average value of ∆Hads should reflect the binding affinity of a dopant ion on 

the surfaces of particular NCs. We believe that this affinity is strongly affected by how closely the 

crystal structures of dopant transition-metal oxides (TM2O3) are related to the structure of a given 

host In2O3 polymorph in this work. In case of structurally similar lattices the structure and geometry 

of NC host lattice surface sites would generally closely resemble those that dopant ions would 

encounter during the growth of their own lattice of the analogous material. Incidentally, in the case of 

Co
2+

:ZnO NCs for which very high doping concentrations have been reported,
96

 CoO and ZnO NCs 

are isostructural under applied synthetic conditions and have very similar lattice parameters, both of 

which are expected to contribute to a high doping concentration limit. The growth of polymorphic 

NCs in the presence of dopant impurities is complex and consists of at least three major steps: (1) 

nucleation, which is very fast and generally excludes the dopant ions, (2) stabilization and growth of 

metastable NCs whose size and doping concentration are determined by the amount of dopant 

precursor and ∆Hads , and (3) transformation of metastable NCs upon reaching the critical size, 

followed by a change in the rate of dopant incorporation based on the change in ∆Hads. This 

mechanism contrasts the stabilization of bulk corundum-type In2O3 by dopant ions, which is 

according to many accounts determined by incorporation of smaller dopant ions. Interestingly, our 

results indicate that in the kinetic mechanism of doping colloidal NCs the dopant incorporation is 

determined by the NC structure, which can be manipulated by changing the NC size. The NC size, 

structure, and composition are inherently connected, and all critically depend on the relative 

concentration of precursors in the reaction mixture. This mutual dependence is shown for Mn
3+

:In2O3 

NCs as a three dimensional plot (Figure 4.8), which can be used to predict the expected size, 

structure, and doping concentration for particular preparation conditions. 
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Figure 4.8 Three-dimensional plot of interdependence between Mn vs In precursor ratio ([Mn]/[In]), 

nanocrystal doping concentration, and the nanocrystal size distribution (x, y, and z axes, respectively). 

The nanocrystal sizes are shown as colors in the color coded bar with the black line indicating the 

critical size for transformation of hexagonal to cubic In2O3 nanocrystals. The blue line in the graph 

shows the dependence of the starting precursor ratio on the doping concentration (x-y data). 
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Chapter 5 

Optical and Magnetic Properties of Transition Metal Ions Doped 

In2O3 NCs  

In this chapter we study the spectroscopic and magnetic properties of TM ions doped into In2O3 

colloidal NCs, and their films. Magnetic properties of these nanocrystals were studied by magnetic 

susceptibility and MCD. We demonstrate the appearance of ferromagnetism in nanocrystalline films 

prepared from paramagnetic free-standing NCs, which can be associated with extended NC interfacial 

defects in such films. 

5.1 Chromium Doped In2O3 NCs 

5.1.1 Chromium K-edge XAS Measurements  

To obtain quantitative information about the local environment of chromium sites, we conducted a 

systematic XAS study of Cr
3+

:In2O3 NC samples having different Cr
3+

 concentrations. The average 

concentration of chromium in Cr
3+

:In2O3 NCs for different starting concentration of chromium after 

doing size selective precipitation were measured with ICP. At low starting concentrations of Cr
3+

 

([Cr
3+

]/[In
3+

]=0.05),  the fraction of Cr
3+

 incorporated from its precursor to bcc-In2O3 NCs is 3 at% 

(bcc-In1.942Cr0.058O2). The average concentration of Cr
3+

 incorporated from its precursor to rh-In2O3 

for the starting precursor mixture of [Cr]/[In]=0.20 was 20 at% (rh-In1.667Cr0.333O2). 

Normalized Cr K-edge X-ray absorption spectra of Cr
3+

:In2O3 and Cr2O3 standard in the full 

spectral range are shown in Figure 5.1 a. A direct comparison between the spectra of Cr
3+

:In2O3 and 

Cr2O3 standard in the near edge region confirms that chromium ions have 3+ oxidation state in 

Cr
3+

:In2O3 NCs. Figure 5.1b shows the k-weighted Cr K-edge EXAFS spectra of samples shown in 

Figure 5.1a. The spectra were Fourier transformed in the region of 2.6-15.0 Å
-1 

from k-space to R-

space. The resulting pseudo-radial distribution functions are shown in Appendix A. 4. The first 

prominent peak centered at ca. 1.5 Å is due to backscattering of the ejected photoelectron from the 

first coordination shell of the neighboring oxygen atoms (Cr-O).  



 

 66 

 

Figure 5.1 (a) Chromium K-edge absorption spectra, (b) k-weighted Cr K-edge EXAFS spectra, (c) 

Fourier-filtered EXAFS spectra for the In-O shell, and (d) Fourier-filtered EXAFS spectra for the (Cr-

In and/or Cr-Cr) shell correspond to the Cr2O3 (olive line), rh-In1.667Cr0.333O2 (red line), and bcc-

In1.942Cr0.058O2 (purple line). 

The inverse Fourier transform of the first (R=1.1-2.0 Å) shell of the pseudo-radial distribution 

functions gives the Fourier-filtered EXAFS spectra which are shown in Figure 5.1c. The Fourier-

filtered curves were fit well in the k-range of 2.6-15.0 Å
-1

 with one In-O shell (Figure 5.1c, dashed 

lines). Table 5.1 summarizes the structural parameters for the In-O shell obtained from the curve-

fitting. 

The EXAFS spectra of Cr2O3 and Cr
3+

:In2O3, are very different from each other, which indicates a 

different local environment for chromium atoms in Cr2O3 and In2O3 lattices. Fitting results for Cr2O3 

standard suggest that Cr
3+

 coordinates with 6 oxygen atoms, with an average Cr-O bond distance of 
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1.99±0.01 Å. These results are in good agreement with the crystallographic data, from which the 

average Cr-O bond length was determined to be 1.99 Å.
68

  The average bond distance for the In-O 

shell in In2O3 was reported to be 2.17-2.18 Å.
22, 88

 EXAFS analysis presented in Table 5.1 shows that 

the average Cr-O bond distances in all Cr
3+

:In2O3 NC samples are longer than those in pure Cr2O3, but 

shorter than the In-O bond distances in pure In2O3. This suggests that due to substitution of Cr in 

In2O3 the average Cr-O bond distances increase in compared to the pure Cr2O3. 

Table 5.1 Results of the fits of EXAFS spectra for the first Cr-O shell. 

Sample N R(Å) 
a
σ

2 
(Å

2
) 

b
ρ%

 b
 

bcc-In1.942Cr0.058O2 6 2.043±0.051 0.020 8.24 

rh-In1.667Cr0.333O2 6 2.081±0.017 0.015 2.45 

Cr2O3 6 1.991±0.016 0.016 6.36 

a
 Debye-Waller factor. 

b
 Weighted residual factor. 

 

Fourier-filtered EXAFS spectra of the second shell (Cr-In and/or Cr-Cr) for R-space in the region 

of 2.0-3.0 Å, are shown in Figure 5d. In the k range 9.0-15.0 Å
-1

, by substitution of chromium atoms 

by indium atoms the back scattering amplitude increased. This could be due to the indium atoms 

having a higher back scattering amplitude compared with the chromium atoms. 

5.1.2 Electronic Absorption and Magnetic Circular Dichroism Spectroscopies 

The ground state of free Cr
3+

 (d
3
) ion is described by 

4
F term. In octahedral ligand field, this term 

splits into three terms giving rise to two characteristic spin-allowed quartet-quartet transitions where, 

spectrum generally shows two broad bands in the visible region.
84, 97

 The low energy transition, 

4
A2g

4
T2g, was known as U-band, and higher energy transition, 

4
A2g

4
T1g, was known as Y-band.

98, 

99
 The spin-allowed transitions of Cr

3+
 are electric-dipole transitions and are parity-forbidden 

transitions due to Laporte selection rule.
84, 99

 The forbidding of these transitions can be relaxed under 

certain circumstances including the situation where the inversion center is removed due to lower 

symmetry site of Cr
3+

 ion and/or vibronic coupling. 
84, 99

 The weak absorption bands below the 

transition to 
4
T2 are associated with the spin-forbidden transitions (

4
A2g

2
E, 

2
T2).

84, 98
 The intensity of 

spin-forbidden bands increases due to the spin-orbit coupling between spin-forbidden transitions and 

4
T2 state, enabled by vibrational modes.

84, 100
 In low-symmetry sites of distorted octahedral, U and Y-

bands subject to the splitting due to the removing of the degeneracy of the T states. In trigonally 



 

 68 

distorted octahedral fields (e.g. C3v), 
4
T2 split into 

4
E and 

4
A1 terms, and 

4
T1 split into 

4
E and 

4
A2 

terms. As symmetry decrease further to C2, E term split to B1 and B2 terms.
101

  

The average concentration of Cr
3+

 incorporated from its precursor to rh-In2O3 NCs after size 

selective precipitation for the starting precursor mixture of [Cr]/[In]=0.10 was 9.5 at% (further in the 

text generally referred to as rh-In1.827Cr0.173O3). The ligand-field electronic absorption spectrum of rh-

In1.827Cr0.173O2 NCs at 300 K is shown in Figure 5.2a. The two peaks at ∼ 16639 cm
-1

 and ∼23256 

cm
-1

 can be assigned to the corresponding 
4
A2

4
T2 and 

4
A2

4
T1 d-d transitions, respectively, of 

pseudo-octahedral of Cr
3+

. A small but observable shoulder at ∼14440 cm
-1

 can be assigned to the 

formally 
4
A2

2
E, 

2
T2 spin-forbidden transitions. The band gap transition of the host bcc-In2O3 NCs is 

observed as a broad shoulder at ∼37500 cm
-1

. The band gap energy is estimated from the absorption 

spectrum to be ∼4.2 eV. This corresponds to the band gap energy which was mentioned for rh-In2O3 

NCs (section3.1.4). Figure 5.2b shows 4.5 K MCD spectra of the same NCs collected in a variable 

magnetic field from 1 to 7 T. The 16639 cm
-1

 absorption band correlates to a structured feature in the 

MCD spectra at the same energy. The second spin-allowed transition is likely mixed with a charge 

transfer transition involving the NC host lattice, leading to the asymmetric peak centered at 28209 

cm
-1

. The spin-forbidden transitions are readily identified in the MCD spectra which shown as the 

inset in Figure 5.2b. Figure 5.2c shows the MCD intensities at 14440 and 16639 cm
-1

 plotted as a 

function of the applied magnetic field, along with the fit to the spin-only Brillouin function for the 

spin state S=3/2, using the g value of 1.96.
102
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Equation 11 

Where N, µB and k are the total number of dopants per unit volume, the Bohr magneton and the 

Boltzmann constant, respectively, T is the temperature, and H is the applied magnetic field. The 

intensity saturates at high filed and low temperatures, consistent with the C-term MCD behavior. The 

spin-only Brillouin function fits for the only-spin state of 3/2 is a result of the absence of the orbital 

angular momentum in the 
4
A2 ground state of Cr

3+
. For higher energy spectral position at 28209 cm

-1
, 

fits for the spin-only Brillouin function slightly deviated from the S=3/2 which is likely a 

consequence of mixing of Y-band with a charge transfer transition involving the NC host lattice. A fit 

to the spin-only Brillouin function demonstrate that, these MCD intensities arise from magnetically 

isolated Cr
3+

 ions in In2O3 NCs.  
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Figure 5.2 (a) 300 K electronic absorption spectrum of rh-In1.827Cr0.173O2 NCs. (b) MCD spectra of 

the same sample at 4.5 K, collected in variable magnetic field (1-7 T). (c) Variable field MCD 

intensities at 4.5 K from the spectra in (b) with the corresponding labels. The black lines are fits to the 

Brillouin function. 

The ligand-field electronic absorption spectrum of bcc-In1.942Cr0.058O2 NCs is shown in Figure 5.3a. 

Two characteristic ligand-field bands at ∼16570 cm
-1

 and ∼21119 cm
-1

 can be assigned to the peaks 

corresponding to 
4
A2

4
T2 and 

4
A2

4
T1 transitions. A small but observable shoulder at 14440 cm

-1
 

can be assigned to the formally 
4
A2

2
E, 

2
T2 spin-forbidden transitions. The band gap transition of the 
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host In2O3 NCs is observed as a broad shoulder at ∼32500 cm
-1

. The band gap energy was estimated 

from the absorption spectrum to be ∼3.7 eV, similar to the band gap energy of bulk and nanocrystal 

of bcc-In2O3.
103

  

 

Figure 5.3 (a) Electronic absorption spectrum of bcc-In1.942Cr0.058O2 at 300 K. (b) MCD spectra at 4.5 

K for the same sample, collected in variable magnetic field (1-7 T). (c) Variable field MCD 

intensities at 4.5 K from the spectra in (b) with the corresponding labels. The black lines are fits to the 

Brillouin function. 
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As is the case with the absorption spectra, only a limited amount of information can be obtained 

from broad absorption bands. In fact, the splitting is small and was not observable in the absorption 

spectra, which closely resemble those of similar octahedral complexes. The MCD spectra (Figure 

5.3b) clearly show the distinct difference with the absorption spectrum. The MCD spectra reveal three 

sharp peaks at 14440, 15094 and, 15528 cm
-1

. The broad feature at ∼16570 cm
-1

 corresponds to the 

absorption peak at the same energy superimposed by these three sharp transitions. MCD spectra can 

greatly aid in the detection and assignment of spin-forbidden Cr
3+

 transitions hidden in the absorption 

spectra under the red tail of the U-band. The study of polarized absorption spectra of Cr
3+

 in diopside 

with C2 symmetry site for cation has revealed that the U-band (
4
A2g

4
T2g) is superimposed by three 

sharp spin-forbidden transitions, similar to the result that we see in MCD spectra of bcc-

In1.942Cr0.058O2 NCs.
99

 The difference in the MCD spectra of Cr
3+

-doped bcc-In2O3 and Cr
3+

-doped rh-

In2O3 reveal that Cr
3+ 

ions distinctly occupy different symmetry sites in corundum and bixbyite crystal 

structure of In2O3. This is in agreement with this fact that Cr
3+

 with ionic radius smaller than the ionic 

radius of In
3+

 is preferred to occupy C2 symmetry site. In the higher energy part of the spectra second 

spin allowed transition likely mixed with charge transfer raising a peak which centered at 23923 cm
-1

. 

The fitting of the MCD intensities at 14440, and, 16570 cm
-1

 to the spin-only Brillouin function using 

g=1.96 shows the deviation from the S=3/2. The 
4
A2 ground state of Cr

3+
 in an octahedral crystal field 

has no orbital angular momentum while the spin-orbit coupling within the low symmetry split 
4
T1 

state likely gives rise to the deviation from the spin-only magnetization.
57

 In fact, finding the 

magnetic moment of a term subject to the influence of both spin-orbit coupling and low symmetry 

ligand filed components is one of some complexity.
97

 For higher energy spectral position at 23923 

cm
-1

, fits for the spin-only Brillouin function slightly deviated from the S=3/2 which is likely a 

consequence of mixing of Y-band with a charge transfer transition involving the NC host lattice. The 

study of polarized spectra of Cr
3+

 in ruby reveled that most of the intensity of spin-allowed transitions 

is due to an overcoming of the symmetry selection rule by coupling of the electronic transition with 

an odd vibration.
99

 Whereas for Cr
3+

 in diopside with C2 symmetry site for Cr
3+

 the spin-allowed 

transitions gained intensity due to lower symmetry site of cation.
99

 The differences in the origin of the 

mechanism to gain intensity in the absorption spectra increase the complexity of the spectroscopy 

study of Cr
3+ 

in different site symmetries.  



 

 72 

5.1.3 Magnetism 

The magnetization properties of 2.7% Cr
3+

doped bcc-In2O3 NCs measured from 5 to 300 K are 

shown in Figure 5.4. Free-standing NCs show only paramagnetism (Figure 5.4a, green squares).  

 

Figure 5.4 (a) M vs H data for free-standing 2.7% Cr
3+

:In2O3 NCs measured at 300 K (green 

squares), and the corresponding nanocrystalline films measured at 5 K (red circles) and 300 K (red 

squares). All loops are corrected for diamagnetic contribution. (b) Temperature dependence of Ms for 

Cr
3+

:In2O3 nanocrystalline films. 

Nanocrystalline films fabricated from the same NCs exhibit rapid magnetization (M) saturation and 

small hysteresis coercivity, indicating ferromagnetic ordering. Hysteresis loops for nanocrystalline 

films at 5 and 300 K are shown in Figure 5.4a as red circles and squares, respectively. A decrease in 

magnetization and hysteresis coercivity with increase in temperature is observed. The temperature 

dependence of the ferromagnetic saturation magnetization (Ms) is plotted in Figure 5.4b. The 

ferromagnetic phase transition is not observed indicating TC above 300 K. The saturation 
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magnetization of the nanocrystalline film in Figure 5.4 is estimated to be 0.17 Bohr magneton (μB) 

per Cr
3+

 at 300 K and 0.27 μB/ Cr
3+

 at 5 K. The magnetic moments per dopant ion were quantified 

based on the unit mass magnetization and the elemental composition of the sample. 

 The origin of ferromagnetism in nanocrystalline TCOs is of great fundamental and practical 

importance. Recent experimental and theoretical studies to discover the origin of ferromagnetism in 

DMSOs have shown that long-range ferromagnetic interactions in these materials can be mediated by 

charge carriers.
13, 59

 This means a change in the carrier concentration has effect on the observed 

ferromagnetism. The absence of ferromagnetism in the free standing Cr
3+

:In2O3 NCs and appearance 

of ferromagnetism only in Cr
3+

:In2O3 films prepared from colloidal NCs is consistent with the 

pervious findings of ferromagnetism in DMSO NCs films prepared from free standing DMSO NCs in 

which the existence of extended structural defects, proposed to be oxygen vacancies at the NC 

interfaces, play a key role in mediating magnetic ordering of dopant ions and is responsible for the 

long range magnetic ordering in these materials.
104-106

 In fact, in DMSO NCs with high surface to 

volume ratios, likely more oxygen vacancies are present at the surface of NCs and networking of NCs 

in the prepared film causes an increase grain-boundary defects at interfaces (e.g. oxygen vacancies). 

Philip et al. 
13

 have shown magnetic behavior in Cr
3+

 doped bcc-In2O3 films can be controllably 

tuned by defect concentration. They observed that the Cr
3+

 doped bcc-In2O3 films exhibit 

ferromagnetism when the films are highly oxygen deficient, and are paramagnetic otherwise. In 

addition, Xing et al.
107

 have found a strong correlation between ferromagnetism and oxygen 

deficiency in Cr
3+

 doped bcc-In2O3 nanostructures. Observation of ferromagnetism in our Cr
3+

:In2O3 

nanocrystalline films imply the important role of interfacial defects for manipulating the long-range 

magnetic ordering in DMSOs. 

In addition, in our experiments ferromagnetism is not evident in In2O3 nanocrystalline films 

prepared under similar conditions as Cr
3+

:In2O3 films (Figure 5.5). The magnetization observed in 

pure oxide dielectrics, such as HfO2 thin films, has also been associated with magnetic contamination 

resulting from handling the substrates with inadequate tools.
108

 We handled identically all of our 

samples (doped and undoped) in a carefully controlled nonmagnetic environment.  
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Figure 5.5 M vs. H data for In2O3 nanocrystalline film (blue circles) measured at 300 K, showing no 

ferromagnetic ordering. Hysteresis loop for 2.7 % Cr
3+

:In2O3 nanocrystalline film (red circles) 

recorded at 300 K is shown for comparison. Both loops were corrected for diamagnetic contribution. 

It should be also noted that nanocrystalline antiferromagnetic materials, such as Cr2O3, can 

generate spontaneous magnetic ordering at high temperatures owing to the spins at nanoparticle 

surfaces.
81, 109

 Nanocrystalline Cr2O3 has a distinctly different magnetic behavior from Cr
3+

:In2O3 

nanocrystalline film, showing no ferromagnetism at room temperature, and only superparamagnetic 

behavior at low temperatures (Appendix A. 5). Taken together, our results suggest the intrinsic 

ferromagnetism in Cr
3+

:In2O3 nanocrystalline structures fabricated from colloidal Cr
3+

:In2O3 NCs as 

building blocks. 

5.2 Manganese Doped In2O3 NCs 

5.2.1 Electronic Absorption Spectroscopy 

The ground-state term in high-spin Mn
3+

(d
4
) ion is 5D (Figure 5.6a). In the ideal octahedral (Oh) 

coordination this term splits into 
5
Eg and

5
T2g terms, giving a characteristic spin allowed transition 

5
Eg 

→ 
5
T2g. In a reduced symmetry, the

5
T2g transforms into additional components (i.e. 

5
A1 and 

5
E terms 

in trigonal crystal fields).
110

In many six-coordinate Mn
3+

 complexes Jahn-Teller distortions lead to 

additional ground state (
5
Eg) splitting, resulting in low-energy absorption features. This effect has 

been particularly studied in tetragonally distorted octahedral fields.
84
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Figure 5.6 Electronic structure of Mn
3+

-doped In2O3 nanocrystals. (a) Ligand-field energy state 

splitting pattern of Mn
3+

 (d
4
 system) in distorted octahedral coordination. (b) A schematic 

representation of the difference in the electronic structure between Mn
3+

-doped bcc-In2O3 and rh-

In2O3 nanocrystals. (c) Ligand-field electronic absorption spectra of Mn
3+

 dopants in bcc-In2O3 

(green) and rh-In2O3 (purple) nanocrystals showing the transitions indicated in (a) and (b). (d) The 

band gap absorption spectra of selectively precipitated Mn
3+

-doped bcc-In2O3 (green) and rh-In2O3 

nanocrystals (purple) prepared with [Mn]/[In]=0.05. The band gap energy of rh-In2O3 nanocrystals is 

blue-shifted with respect to the band gap energy of bcc-In2O3 nanocrystals together with ν2 transition. 

We used the ligand-field electronic absorption (LFEA) spectroscopy as a direct probe of Mn
3+

 

ligand-field transitions in In2O3 NCs. The LFEA spectrum of Mn
3+

 in rh-In2O3 NCs is distinctly 

different from that of Mn
3+

 in bcc-In2O3 NCs, indicating a change in the electronic structure (Figure 

5.6c). In both spectra the higher energy band at ca. 20 000 cm
-1

 can be readily assigned to possibly 

unresolved 
5
T2g components (ν1). The lower energy transition (ν2) is, however, significantly different 

for the two samples. The origin of this transition has been discussed over the years as spin-forbidden 

transition,
111

 low energy charge-transfer band,
112, 113

 or ground-state split transition.
114

 The energy and 

intensity of ν2 argue against its assignment to the spin-forbidden transition (
5
E → 

3
T1). On the other 

hand, the charge transfer transitions should depend on the energy of the valence and conduction bands 

and therefore should be sensitive to the NC size and structure. We observed a blue shift in the band 
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gap absorption (Eg) of rh-In2O3 NCs with respect to bcc-In2O3 NCs concurrently with the shift in ν2 

(Figure 5.6d). We therefore believe that the most likely assignment of ν2 is the low-energy ligand-to-

metal charge transfer transition (Figure 5.6b). This assignment is supported by the recently reported 

charge transfer energy shift with size in Co
2+

:ZnSe NCs.
115

 While 
5
Eg splitting should be less 

pronounced in strictly trigonal fields, such as C3 and D3, it is possible that the second order ground 

state splitting presumably due to Jahn-Teller type distortion may also contribute to ν2 transition. 

Although the exact origin of this transition may still be somewhat in question, these data 

unambiguously show that the NC host lattice structure strongly influences the electronic 

configuration of the dopant ions. Furthermore, the experimentally determined extinction coefficients 

(ε) indicate lower intensity of ligand-field transitions in rh-In2O3 than in bcc-In2O3 NCs. The charge-

transfer processes involving dopant ions have been suggested to be crucial for ferromagnetism in 

oxide DMSs. Tuning the electronic structure and properties of dopant ions by changing the NC size 

and structure allows for the investigations of the origin of dilute magnetic ordering in oxides, and the 

expansion and optimization of the available multifunctional semiconductors. 

5.2.2 Magnetism 

Room temperature ferromagnetism was observed in nanocrystalline films fabricated from colloidal 

8.8% Mn
3+

 doped rh-In2O3 NCs (Figure 5.7). In contrast to the nanocrystalline films, the TOPO-

capped free-standing NCs show only paramagnetism. The observation of ferromagnetic ordering of 

different dopant ions in In2O3 NCs, only upon their incorporation into nanocrystalline films, suggests 

that the defect induced dilute magnetic ordering is a general phenomenon dependent on the post-

synthesis processing of NC building blocks. These results support an intrinsic origin of 

ferromagnetism in defective transition-metal doped TCOs.  
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Figure 5.7 Magnetization data at 300 K collected on films of 8.8% Mn
3+

 doped rh-In2O3 NCs. 
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Chapter 6 

Colloidal Gallium Indium Oxide Nanocrystals: A Multifunctional 

Light Emitting Phosphor Broadly-Tunable by Alloy Composition 

Gallium oxide (Ga2O3) is a polymorphic wide band gap (Eg ≈ 4.9 eV) material with high n-type 

conductivity and charge carrier mobility, which originate from the presence of structural defects, 

particularly oxygen vacancies.
116

 Ga2O3 occurs in five different allotropic modifications. Colloidal 

metastable γ-Ga2O3 NCs with spinel-type crystal structure can be tuned in the blue part of the 

spectrum by controlling their size via the synthesis temperature.
6
 The fact that both Ga2O3 and In2O3 

are polymorphic materials and have different crystal and electronic structures provides a large number 

of potential emission-tuning parameters, and the possibility of examining the relationship between 

size, structure, composition and emission properties of TCO-NCs.  In this chapter, we demonstrate a 

broad tunability of the visible emission by synthesis of ternary gallium indium oxide colloidal NCs 

throughout the entire composition range.  

6.1 Structural Study of Gallium Indium Oxide NCs 

The synthesis conditions were developed and optimized to obtain alloyed GIO NCs with Ga2O3 and 

In2O3 crystal structures. Figure 6.1 shows X-ray diffraction (XRD) patterns of GIO NCs with 

different compositions synthesized at 200 °C for 30h. The compositions of GIO NCs were determined 

by EDX spectroscopy, and are shown in Figure 6.1 as atomic percent (at%) of In. XRD pattern of 

pure Ga2O3 NCs (0 at% of In) matches very well the pattern of metastable γ-Ga2O3. Similarly, the NC 

sample synthesized with In(acac)3 as the only precursor in the reaction mixture (100 at% of In) 

exhibits crystal structure characteristic for metastable rh-In2O3 (corundum-type In2O3). XRD peaks for 

pure In2O3 and Ga2O3 NCs are narrower and better defined than those for GIO NCs synthesized under 

identical conditions, which is consistent with an impurity-induced NC lattice disorder and a decrease 

in average NC size, suggesting that the presence of foreign ions inhibits NC growth even for ions that 

have similar chemical behavior. As the concentration of In in the reaction mixture approaches that of 

Ga, the formation of GIO NCs with rh-In2O3 structure, in addition to those with γ-Ga2O3 structure, 

becomes evident.  
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Figure 6.1 XRD patterns of GIO NCs synthesized with different ratios of Ga(acac)3 and In(acac)3 

precursors. The percentages indicate the final concentrations of In. The vertical lines represent XRD 

patterns of bulk γ-Ga2O3 (bottom, JCPDS 20-0426) and rh-In2O3 (top, JCPDS 21-0406). 

The presence of GIO NCs with rh-In2O3 structure can be identified in samples with the final In 

concentration of ca. 25 at%, and they become dominant when In concentration reaches about 50 at%. 

In this intermediate composition range GIO NCs with both γ-Ga2O3 and rh-In2O3 structures can 

contribute to PL properties. 

6.2 Optical Study of Gallium Indium Oxide  

In order to study the optical behavior of GIO NCs with respect to their crystal structure and to 

distinguish PL of the two metastable phases of mixed oxide NCs, we used the difference in kinetics of 

In2O3 and Ga2O3 colloidal NCs growth. Synthesis of In2O3 NCs at high temperatures (ca. 250 °C and 

above) leads to the formation of larger NCs (≥ 10 nm in diameter) with bcc-In2O3 structure, while at 

lower temperatures (ca. 200 °C) the slower growth favors the formation of small-sized (ca. 3.5 nm) 

metastable rh-In2O3 NCs (Figure 3.6). On the other hand, Ga2O3 NCs, which grow much slower, are 
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stabilized in γ-Ga2O3 phase throughout the same temperature range.
6
 The XRD patterns of GIO NCs 

synthesized at 290 °C reflect this difference in the kinetics of In2O3 and Ga2O3 NC growth. The 

presence of larger In-rich GIO NCs with bcc-In2O3 structure is observed in the samples prepared at 

290 °C with higher concentrations of In(acac)3 precursor (Appendix A. 6). However, NCs with bcc-

In2O3 structure show negligible emission and the PL properties of these samples arise only from GIO 

NCs with γ-Ga2O3 structure (vide infra). 

 

Figure 6.2 (a-d) TEM images of GIO NCs with (a) 5, (b) 24, (c) 47 and (d) 92 at% of In. (e) 

Scanning TEM (STEM) image of GIO NCs containing 47 at% of In (left panel), and the 

corresponding EDX elemental maps of Ga (middle panel) and In (right panel) obtained in the STEM 

mode. 

Figure 6.2 shows transmission electron microscopy (TEM) images of GIO NCs with In contents of 

5 (a), 24 (b), 47 (c) and 92 at% (d). For similar concentrations of In and Ga, the obtained NCs are 
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smaller and tend to form a network-like structure, similar to In2O3 NCs at the early growth stages. 

This reduction in size is associated with the suppression of the NC growth in the presence of impurity 

ions, and is consistent with the XRD data in Figure 6.1.  The distribution of constituent elements was 

examined by EDX elemental mapping. Figure 6.2e shows EDX elemental maps of GIO NCs with 47 

at% of In. The images indicate a homogeneous distribution of elements in NCs. This finding was 

confirmed for other samples regardless of the NC structure. 

Absorption spectra of GIO NCs with different compositions are shown in Figure 6.3a. Ga2O3 has a 

larger band gap than In2O3. As the amount of In in GIO NCs increases, the onset of the band gap 

absorption shifts to longer wavelengths, indicating an electronic structure dependence on the NC 

composition. Ga2O3 is a wide band gap semiconductor with a large effective mass of an electron (m
*

e 

≈ 0.34m0),
117

 and as such its band gap energy is independent on the NC size.
6
 Substitutional 

incorporation of In into Ga2O3 narrows its band gap, leading to a red shift in band gap absorption. 

This observation is in agreement with previous findings about alloyed semiconductor NCs.
118

 

Conversely, GIO NCs having rh-In2O3 structure exhibit higher band gap energy compared to pure rh-

In2O3 NCs (red trace in Figure 6.3a). The electronic band structure is determined by the size of the 

constituent cations, allowing for band gap and optical property engineering of the NC systems that are 

not subject to quantum confinement in the experimentally achievable sizes. When excited into band 

gap, Ga2O3 NCs exhibit a broad PL band with a significant Stokes shift.
6
 A large Stokes shift suggests 

a localized (non-band gap) nature of the PL transition, which is in sharp contrast with a typical 

excitonic recombination transition in quantum dots.
9
 This transition has been assigned predominantly 

to the DAP recombination, where a donor is an oxygen vacancy, and an acceptor is a gallium vacancy 

or gallium-oxygen vacancy pair.
6
 The observed PL band red-shifts as the concentration of In 

increases in GIO NCs, reaching the lowest emission energy for pure rh-In2O3 NCs (Figure 6.3b).  

This composition dependence allows for continuous tuning of the emission throughout most of the 

visible spectrum, rendering alloyed GIO NCs promising materials for tunable LEDs. The PL peak 

energy dependence on the NC composition is plotted in Figure 6.3c. This dependence follows a 

horizontal sigmoidal shape. The emission energy of GIO NCs initially drops sharply with increasing 

concentration of In in γ-Ga2O3 and then saturates when In content reaches ca. 30 at%. Indium-rich 

GIO NCs with rh-In2O3 structure behave as a mirror image with increasing Ga concentration, 

although with a narrower tuning range (ca. 2.28-2.45 eV). For similar concentrations of both cations 

the energies of the PL peaks are essentially the same regardless of the NC structure. The color 

changes from purple for γ-Ga2O3 NCs, via different nuances of blue-green for GIO NCs, to orange for 



 

 82 

and rh-In2O3 NCs. Figure 6.3d qualitatively demonstrates the composition-induced tunability of GIO 

NC emission and their potential as inorganic LEDs. Importantly, a decrease in NC size leads to a blue 

shift of the γ-Ga2O3 NC emission, which can be associated with an increase in the Coulombic 

interactions between donors and acceptors due to a decrease in their average separation.
6
 However, 

the emission peaks of GIO NCs are red-shifted for higher In concentrations in spite of the fact that 

In
3+

 ions in solution inhibit NC growth.  

 

Figure 6.3 (a) Absorption spectra of GIO NCs with varying In content. (b) Photoluminescence 

spectra of GIO NCs with 0 (purple), 13 (blue), 24 (green), 47 (olive), 84 (orange) and 100 at% In 

(red) synthesized at 200 °C. (c) Photoluminescence peak energies of GIO NCs as a function of In 

concentration. Different symbols show the dominant crystal structure of GIO NCs based on XRD 

data. (d) Photograph of γ-Ga2O3 (left) GIO (24 at% In, middle) and rh-In2O3 NCs (right) synthesized 

at 200 °C. 
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Figure 6.4a compares PL spectra of γ-Ga2O3 NCs prepared at different temperatures. The blue PL 

band of γ-Ga2O3 NCs synthesized at higher temperature is red-shifted owing to the larger NC sizes 

and the lower concentration of native defects.
6
 The same comparison for GIO NCs having similar 

compositions (20-25 atom % In) reveals a much smaller difference in the emission energies (Figure 

6.4b). Smaller differences in PL band energies of GIO NCs synthesized at different temperatures 

indicate that the nature of DAP recombination changes with the incorporation of In into γ-Ga2O3 NCs. 

 

Figure 6.4 (a) PL of 3.3 nm γ-Ga2O3 NCs synthesized at 200 °C (purple) and 6.0 nm γ-Ga2O3 NCs 

synthesized at 290 °C (red). (b) PL of GIO NCs containing 24 at% In synthesized at 200 °C (green) 

and 22 at% In synthesized at 290 °C (blue). 
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Figure 6.5a compares steady state (solid line) and delayed PL spectra (dashed line) of GIO NCs 

containing 5 at% of In. The delayed PL spectrum was collected 0.1 ms after NC excitation through 

the band gap.  

 

Figure 6.5 (a) Steady-state (solid line) and delayed (dashed line) PL spectra of GIO NCs containing 5 

atom % In. The corresponding excitation (PLE) spectra are shown with the same lines. The delayed 

PL and PLE spectra were collected 0.1 ms after excitation and are multiplied by a factor of 50 for 

clarity. (b) Ratio of 0.1 ms delayed PL and steady-state PL intensities of GIO NCs as a function of the 

In content. The synthesis temperatures and the corresponding majority structures of GIO NCs are 

indicated in the graph. The exponential and Lorentzian function fits are shown as a guide to the eye. 
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The PL and delayed PL spectra, as well as the corresponding excitation (PLE) spectra, have the 

same structures and band shapes, confirming that at low-to intermediate In content the observed 

emission is due to DAP recombination in NCs having the same structure and very similar 

compositions, rather than subsets of NCs with particular compositions (i.e., Ga-rich and In-rich NCs). 

The red shift of the delayed relative to the steady-state PL spectrum, which is associated with 

recombination of more distant donors and acceptors,
6
 is much smaller than for pure Ga2O3 NCs. This 

difference suggests stronger delocalization of an electron on a donor in GIO than in Ga2O3 NCs. The 

ratios of delayed PL and PL band intensities are summarized in Figure 6.5b for different In 

concentrations in GIO NCs prepared at different temperatures. To distinguish the influence of the 

GIO NC structure and composition on the PL decay dynamics, we measured the intensity ratios of 

delayed and steady-state PL for Ga-rich NCs prepared at 290 ˚C (open circles) and In-rich NCs 

prepared at 200 ˚C (filled squares).  

 

Figure 6.6 Photoluminescence spectra of bcc-In2O3 NCs synthesized at 250 °C (black trace). The 

spectrum is multiplied by a factor of 20 for clarity. Photoluminescence of γ-Ga2O3 NCs synthesized 

under identical conditions (red trace) is shown for comparison. 

As mentioned above, the only detected secondary phase in the synthesis at 290 ˚C is bcc-In2O3-type 

GIO NCs, which show a negligible emission (Figure 6.6). The PL spectra of these samples come from 

GIO NCs with γ-Ga2O3 structure. On the other hand, for the samples synthesized at 200 ˚C PL is due 

to NCs with both γ-Ga2O3 and rh-In2O3 structures, depending on the NC composition. 
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The intensity ratios (delayed PL/PL) for NCs synthesized at 290 ˚C decrease exponentially with 

increasing concentration of In (Figure 6.5b, open circles). These data further suggest a change in the 

nature of the DAP emission of γ-Ga2O3-type NCs with increasing incorporation of In. An interesting 

comparison is the relationship between delayed and steady-state PL intensities for GIO NCs with γ-

Ga2O3 structure prepared at 200 ˚C (Figure 6.5b, open squares) and 290 ˚C (open circles). A sharp 

decrease in the delayed PL intensity is observed for NCs prepared at the lower temperature. This 

increase in the PL decay rate is associated with shorter donor-acceptor distances in NCs obtained at 

lower synthesis temperatures.
6
 As the concentration of In becomes larger the delayed PL/PL ratio for 

NCs synthesized at lower temperature approaches that of NCs synthesized at higher temperature. 

The quantum yield values for the samples in Figure 6.5b are shown in Figure 6.7. For γ-Ga2O3 NCs 

the quantum yield is ca. 20%, and it drops exponentially with increasing In content.  

 

Figure 6.7 Indium concentration dependence of the relative quantum yield for GIO NCs having 

different crystal structures as labeled in the graph. The dashed line is an exponential fit to the 

experimental data points. 

This trend is also consistent with a different nature of PL in alloyed GIO relative to pure Ga2O3 and 

In2O3 NCs. The development of LEDs that emit white light has attracted much attention lately for 

their potential use in the next generation of displays and as lighting sources. The broad tunability, 
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large-emission Stokes shifts, and long lifetimes render GIO NC-based phosphors potentially 

promising materials for the design of white light emitters. 

6.3 EXAFS Study of Gallium Indium Oxide 

To obtain quantitative information about the local environment of In sites, we conducted a 

systematic XAS study of photoluminescent GIO NC samples having different In concentrations. 

Normalized In K-edge X-ray absorption spectra of GIO and rh-In2O3 NCs in the full spectral range 

are shown in Figure 6.8. A direct comparison between the spectra of GIO and rh-In2O3 NCs in the 

near edge region confirms that indium ions have +3 oxidation state in GIO NCs.  

 

Figure 6.8 Normalized In K-edge X-ray absorption spectra of rh-In2O3 (black trace) and GIO NCs 

containing 10 % In (red trace), synthesized at 200 °C. The spectrum of GIO NCs is intentionally 

offset along y-axis for clarity. 

Figure 6.9a shows the k-weighted In K-edge EXAFS spectra of GIO NCs having different 

compositions, synthesized at 200 °C. The spectrum of rh-In2O3 NCs is also shown for comparison. 

The spectra were Fourier transformed from k-space to R-space in the 2.40-10.56 Å
-1

 region. The 

resulting pseudo-radial distribution functions are shown in Figure 6.9b. The first prominent peak 

centered at ca. 1.6 Å is due to backscattering of the ejected photoelectron from the first coordination 

shell of the neighboring oxygen atoms (In-O), while the second peak at ca. 3.0 Å is less pronounced 

and corresponds to the second shell of cation sites. The inverse Fourier transform of the first (R=1.0-

2.2 Å) and second shell (R=2.45-3.60 Å) of the pseudo-radial distribution functions gives the Fourier-
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filtered EXAFS spectra which are shown in Figure 6.10. The bond-distances obtained from the 

single-shell analysis were used as initial parameters to perform the inverse Fourier transform of the 

pseudo-radial functions in the full range (R=1.0-3.6 Å), and obtain Fourier-filtered EXAFS spectra 

(Figure 6.9c, solid lines). The Fourier-filtered curves were fit well in the k-range of 2.40-10.56 Å
-1

 

with two shells (Figure 6.9c, dashed lines).  

 

Figure 6.9 (a) In K-edge k -weighted EXAFS spectra of GIO NCs with different compositions 

synthesized at 200 ˚C. (b) Pseudoradial distribution functions obtained by Fourier transformation of 

the spectra in (a). (c) Fourier-filtered EXAFS spectra obtained by the inverse Fourier transform of the 

radial functions in (b) in the range R = 1.0-3.6 Å (solid lines) and the corresponding curve fits 

(dashed lines) from which the structural parameters were calculated. (d) In-O bond distances, 

determined from the EXAFS analysis, as a function of the In concentration in GIO NCs. The spectra 

in (a) - (c) correspond to In concentrations of 10 (black), 13 (blue), 24 (green), 47 (olive), and 100 

(red) atom %. 
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Figure 6.10 Fourier-filtered EXAFS spectra of the first shell (a) and the second shell (b). The 

corresponding curve fits from which the structural parameters were calculated are shown with dashed 

lines. 

Table 6.1 summarizes the structural parameters for the In-O and In-Ga (or In-In) shells obtained 

from the curve-fitting. For rh-In2O3 NCs the fitting results suggest In
3+

 coordination with 6 oxygen 

atoms, with an average In-O bond distance of 2.15±0.01 Å. These results are in good agreement with 

the crystallographic data, from which the average In-O bond length was determined to be 2.17 Å.
119
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Table 6.1 Fitting parameters obtained from the analysis of EXAFS spectra of GIO NCs synthesized 

at 200 °C having different In content. The standard deviation for In-O bond distances is shown as 

error bars in Figure 6.9d 

   In-O    In-Ga    In-In    

In 

[%] 

 N R [Å] σ
2 
[Å

2
]  N R (Å) σ

2
(Å

2
)

a 
 N R (Å) σ

2
(Å

2
)  ρ

b
 

[%]
 

10  5.8 2.135 0.0082  4.9 3.053 0.020  0.9 3.356 0.0040  0.6 

13  5.3 2.139 0.0071  2.7 3.063 0.020  1.0 3.349 0.0041  0.6 

24  5 2.145 0.0066  2.0 3.051 0.020  1.2 3.330 0.0054  0.4 

47  4.5 2.144 0.0077  0.2 3.040 0.000  1.3 3.343 0.0065  0.5 

100  6 2.163 0.0073  — — —  2.1 3.252 0.0130  0.5 

a 
Debye-Waller factor. 

b
 Weighted residual factor. 

Metastable γ-Ga2O3 has been reported to have a defective spinel-type cubic crystal structure, 

similar to that of γ-Al2O3, with octahedral and tetrahedral cationic sites.
120, 121

 Majority of Ga
3+

 cations 

have octahedral coordination, in the ratio Ga
3+

(Td)/Ga
3+

(Oh) ≈ 0.6.
121, 122

 The average bond distances 

for Ga-O shell in γ-Ga2O3 were reported to be 1.88 and 2.00 Å for tetrahedral and octahedral sites, 

respectively.
122

 Understanding the substitutional occupancy of the two sites for different In
3+

 

concentrations is, therefore, critical for understanding the optical properties of the complex GIO NCs. 

EXAFS analysis presented in Table 6.1 shows that the average In-O bond distances in all GIO NC 

samples are shorter than those in pure rh-In2O3 NCs due to substitution of In
3+

 in γ-Ga2O3 or Ga
3+

 in 

rh-In2O3 NCs, both of which result in the reduction of In-O distances. We plotted the In-O bond 

distances as a function of In content in GIO NCs in Figure 6.9d. An increase of In-O bond distances 

with increasing In concentration in GIO NCs is accompanied by a decrease in the coordination 

number (N). At low concentration of In (10 at%) N is determined to be 5.8, indicating the In
3+

 initially 

occupies octahedral sites. With increasing concentration of In, N becomes lower, reaching the value 

of 4.5 at 47 at% In. This decrease in the coordination number could be due to increased occupancy of 

the tetrahedral sites by In
3+

, or a local structural disorder due to In
3+

 incorporation and/or decrease in 

NC size. It has been previously reported that in bulk solid solutions In
3+

 substitutes for octahedral 

Ga
3+

 in β-Ga2O3, for In concentrations below 44 at% at 1000 °C.
123

 Further increase in In 

concentration up to 95 at% leads to the formation of both β-Ga2O3 and bcc-In2O3 phases with different 
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compositions. Above 95 at% In, Ga
3+

 substitutes for In
3+

 in the bcc-In2O3 phase. β-Ga2O3 has a 

monoclinic structure in which half of the Ga
3+

 cations occupy octahedral and the other half tetrahedral 

sites. This structural consideration in conjunction with the In solubility in bulk β-Ga2O3 (44 %) 

indicates that In
3+

 replaces most of the octahedrally coordinated Ga
3+

 sites in β-Ga2O3, before 

undergoing phase separation.
123

 The extracted data from EXAFS show a small gradual increase in In-

O bond distances for In concentration below 24 at%, due to incorporation of In
3+

 in γ-Ga2O3 structure 

(Figure 6.9d). As the concentration of In approaches that of Ga, the average In-O bond distance 

becomes nearly constant, although the apparent coordination number still decreases (Table 6.1). This 

increase in the average bond distance cannot be explained by the In
3+

 occupation of the smaller 

tetrahedral sites, and is associated with a slight expansion of the Ga2O3 NC host lattice with 

increasing In content. The decrease in the apparent coordination number, N, therefore suggests a 

distorted local environment around In
3+

, which can be associated with incorporation of a foreign ion 

or contribution from the surface sites. At high concentrations of In (above 50 at%), the In-O bond 

distances increase again, finally reaching the value for pure rh-In2O3. EXAFS results for the second 

shell support these findings. The coordination number of Ga (NIn-Ga) decreases simultaneously with an 

increase in the coordination number of In (NIn-In), indicating substitutional incorporation of In
3+

. The 

EXAFS results are in agreement with the XRD results for GIO NCs synthesized at 200 °C. At low 

concentrations of In only NCs with γ-Ga2O3 structure were formed. Upon increasing the concentration 

of In above 24 at% the rh-In2O3 phase becomes evident in addition to the γ-Ga2O3. From these data 

we conclude that In
3+

 occupies only octahedral sites in Ga2O3 until reaching saturation limit (ca. 25 

%). Further increase in the In precursor concentration leads to the phase segregation and formation of 

rh-In2O3 phase coexisting with γ-Ga2O3. 

These results are also in agreement with the dependence of the PL energies on In concentration in 

GIO NCs (Figure 6.3c). The emission energy decreases sharply with increasing In concentration up to 

ca. 30 at%, and then remains unchanged until rh-In2O3 becomes the majority phase. It should be noted 

that the shift of the PL band of GIO NCs with γ-Ga2O3 structure is significantly more dependent on 

the concentration of impurity ions than that of the NCs with rh-In2O3 structure. This structural 

analysis allows for a rational design of complex oxide NCs with targeted photonic properties based on 

the occupancy of the available crystal lattice sites. 
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6.4 Proposed Mechanism for Photoluminescence  

Figure 6.11 schematically depicts the origin of the emission in tunability of GIO NCs, on the basis 

of the results in this work and the previous reports.
6, 124-126

 The blue emission in Ga2O3 has been 

explained by the DAP recombination (Figure 6.11, left part). Theoretical work by Maximenko et al. 

has suggested that recombination of an electron on the localized isoelectronic dopant levels within the 

band gap with a valence band hole may be a possible source of green emission in Ga2O3.
126

 The 

energies of such dopant impurity sub-band gap states are sensitive to the NC composition as well as 

the band gap width (the incorporation of In
3+

 narrows the band gap, as demonstrated in Figure 6.3a) 

and are expected to become lower following a decrease in the band gap energy. Another possible 

explanation for the red shift of the GIO NC emission, and the one favored in this thesis, is the 

changing nature of the DAP recombination with the incorporation of In
3+

 (Figure 6.11,right).  

 

Figure 6.11 Schematic representation of the possible origin of photoluminescence in undoped γ-

Ga2O3 NCs (left) and GIO NCs with a γ-Ga2O3 structure (right) based on the findings in this work and 

the evidence previously reported (see the text). The radiative transitions (DAP recombination) are 

indicated by arrows, and the labels correspond to the defect species described in the text. 

The energy states of the donors and acceptors also follow a reduction in the band gap of GIO NCs, 

leading to a continuous red shift of the DAP PL band with increased substitutional incorporation of 

In
3+

. Furthermore, the average Bohr radius of the donor electrons should also increase with increasing 

In
3+

 incorporation (i.e., they become more delocalized), favoring faster DAP recombination and a 

decrease in the delayed PL intensity. The efficiency of the DAP recombination in GIO NCs may be 

lower than that in pure Ga2O3 NCs due to the change in the local environment of the oxygen 

vacancies or a decrease in the concentration of the gallium and oxygen vacancy sites. This 
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explanation for the red shift of the PL band of GIO NCs would also be consistent with a similar 

broadening of the PL spectra in Figure 6.3b. At a sufficiently high In precursor concentration (>50 

atom % with respect to Ga) GIO NCs adopt rh-In2O3 structure.  

However, the origin of PL in In2O3 is much less understood. Some literature reports propose that 

radiative recombination of a photoexcited hole in the valence band with an electron occupying sub-

band gap oxygen vacancy states is responsible for the deep-level emission in In2O3.
127

 Other authors 

suggest the DAP mechanism involving oxygen and indium vacancies, as described above for 

Ga2O3.
128

  

 

Figure 6.12 Absorption and PL spectra of colloidal rh-In2O3 NCs synthesized at 200 ˚C for 1 (green), 

4 (blue), 7 (red) and 30 (purple) hours. The spectra correspond to the same concentration of NCs. The 

spectrum of the sample synthesized for 30 h is shown multiplied by a factor of 4. 

Absorption and PL spectra of colloidal rh-In2O3 NCs synthesized for different durations at 200 ˚C 

are shown in Figure 6.12. The PL bands are rather broad and exhibit large Stokes’ shifts. With 

increasing synthesis time the PL intensity decreases and the emission band shifts to lower energies. 

The PL intensity of the sample synthesized for 30 h is ca. 15 times smaller than the intensity of the 

sample synthesized for 1 h. The decrease in the PL intensity accompanied by the red shift of the 

emission band can be attributed to an increase in the average donor-acceptor separation due to a 

decrease in the concentration of defects by NC annealing in solution similarly to colloidal Ga2O3 

NCs. The PL properties of rh-In2O3 NCs are significantly different from those of bcc-In2O3 NCs, 

which show no such emission when synthesized by the described colloidal method. This difference is 

likely associated with a lower concentration and/or different structure of defect sites in colloidal bcc-
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In2O3 NCs. It should also be noted that the synthesis conditions and the size of polymorphic NCs play 

a very important role in determining the defect electronic structure and PL properties. We believe that 

the higher synthesis temperatures lead to a significantly lower concentration of defect sites in bcc-

In2O3 compared to rh-In2O3 NCs in the present work. In addition, our results suggest that defect 

formation in metastable rh-In2O3 NCs prepared under the described conditions is more favorable than 

in bcc-In2O3 NCs. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The studies performed throughout this thesis elaborate on the manipulation of crystal phase and 

physical properties in colloidal In2O3 NCs. Structural transformations in NCs have previously been 

achieved at high pressures or temperatures, and studied as a function of these parameters. We 

demonstrated that NC phase transformations can be achieved in solution by controlling the NC 

growth conditions and sizes. In addition, we studied the kinetics of phase transformation of rh-In2O3 

to bcc-In2O3 NCs during colloidal synthesis. The kinetic data based on XRD and EXAFS 

measurements were investigated in the framework of JMAEK and interface nucleation models. The 

activation energy of phase transformation under isothermal conditions was found to be in excellent 

agreement for these two analyses (Ea≈ 152 kJ/mol). Correlation of the kinetic results with TEM 

imaging of the product at different points in time during the reaction suggests that the phase 

transformation occurs by nucleation of bcc-In2O3 at the interfaces between contacting rh-In2O3 NCs. 

The nucleation rate reaches the maximum at an early stage of the reaction and consequently decreases 

due to a decrease in the concentration of small rh-In2O3 NCs in the reaction mixture. The rate of 

phase transformation is critically dependent on both NC size and concentration; it increases with 

increasing concentration and decreasing size, owing to a higher probability of NC contact formation. 

Upon the nucleation of bcc-In2O3, which most likely occurs at the interfacial defect sites, the growth 

of the new phase propagates at a time scale much shorter than that examined in this study. This work 

demonstrates that phase transformation of In2O3 NCs in solution is a kinetically controlled process, 

and provides greater understanding of the growth and phase transformation mechanism of oxide NCs. 

The results of this study allow for a rational manipulation of the NC surfaces and their interactions by 

controlling the reaction conditions, such as time and temperature, enabling the synthesis of colloidal 

NC building blocks with a desired crystal structure and properties. These findings can be applied to 

other materials that exhibit metastability, allowing for an expansion of the available NC building 

blocks through simple chemical approaches. 

We showed that dopant ions can be generally used to control and manipulate size and crystal 

structure of colloidal free-standing In2O3 NCs. Metastable rh-In2O3, which is the transient species in 

the formation of bcc-In2O3 NCs, can be stabilized for NCs smaller than 5 nm by adsorption of 
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transition-metal impurities and subsequent inhibition of the NC growth. The incorporation of 

transition-metal ions critically depends on their average residence time on different NC surface 

binding sites, which is directly related to the average heat of adsorption of dopant ions on the NC 

surfaces. We experimentally identified the structural similarity between the dopant transition-metal 

oxide and the In2O3 host crystal lattices as a key component determining the affinity of dopant ions 

for the incorporation into NCs. It is important to note that bonding between the dopant ions and the 

coordinating ligands, such as electron pair donor/acceptor interactions, should also play a significant 

role in the process of dopant ion binding to the NC surfaces and their incorporation. These bonding 

interactions impact the stability of dopant-surface site bonds, which would directly influence ΔHads. 

Such considerations were not a subject of the current work, which was performed in the same 

chemical environment, focusing on the relative comparison of dopant incorporation into different host 

lattice polymorphs. Our approach enables a new way of simultaneously controlling the NC structure 

and doping in the solution phase, which can be applicable to both synthetic and natural systems. In a 

broader context, our results emphasize that the size, structure, and morphology of the crystallites at 

the early growth stages all critically dependent on the presence and concentration of impurities, and 

colloidal NCs can serve as a model system for studies and control of the crystal growth in such 

conditions. The paramagnetic TM:In2O3 exhibit room temperature ferromagnetism when spin-coated 

into the film which is attributed to the formation of extended structural defects, proposed to be 

oxygen vacancies at the NC interfaces. Colloidal methods and the size-structure dependence allow for 

accessibility, precise tuning, and separation of different NC phases and therefore a convenient 

engineering of the relevant properties of TCO NCs in an effective way. The MCD spectra reveal that 

Cr
3+

 ions occupy the C2 symmetry sites in bcc-In2O3 which is distinctly different from the C3v 

symmetry sites for Cr
3+

 ions in rh-In2O3. 

In addition, we demonstrated the structure and composition dependences of the PL properties of 

colloidal gallium indium oxide NCs. These dependences can be used to achieve a wide tunability of 

PL in the visible region of the spectrum. The increasing concentration of In in GIO NCs leads to band 

gap narrowing and a systematic red-shift of PL. A comparison between the emission energies and 

efficiencies, and the decay rates of γ-Ga2O3 and GIO NCs suggests that the emission peak shifts to 

lower energies with increasing indium content owing to the changes in the energy states of the donors 

and acceptors and their interactions. EXAFS analysis strongly suggests that In
3+

 is selectively 

substituted for octahedral Ga
3+

 in metastable γ-Ga2O3, which has a spinel-type structure. The changes 

in the electronic structure of defects, induced by changes in NC structure and composition, allow for 



 

 97 

wide-range tuning of the photoluminescence properties. These defects are also responsible for other 

functional properties of TCOs, particularly conductivity, and the ability to control both structure and 

composition provides new degrees of freedom, and a path for enhancement of the inherent 

functionalities of complex TCOs-NCs. Multifunctionality, achieved in this way, can enable the 

application of alloyed TCO-NCs as integrated optoelectronic materials.  

7.2 Future Work 

We have demonstrated that dopant ions can be generally used to control and manipulate size and 

crystal structure of colloidal free-standing In2O3 NCs and that the presence of dopant ions profoundly 

influences the growth, optical and magnetic properties of the host lattice. Thermodynamic and kinetic 

study of dopants incorporated in the nanocrystal can provide deeper understanding of dopant 

incorporation mechanism in doped nanomaterials. All these results enable manipulation of the 

relevant properties in these materials. The incorporation of transition-metal ions critically depends on 

their average residence time on different NC surface binding sites, which is directly related to the 

average heat of adsorption of dopant ions on the NC surfaces. As a next step, thermal gravimetric 

analysis (TGA) and differential scanning calorimetry (DSC) analysis could be used to measure the 

heat of absorption of dopant ions on the NC surfaces, and their miscibility in the host lattice in each 

crystal structure of In2O3 NCs.  

In addition, thermodynamic stability studies of transition metal oxide using calorimetric data on 

surface energies for cobalt, iron, manganese, and nickel oxide systems, has revealed that nanoparticle 

redox reactions is energetically different from the bulk.
129

 Since redox reactions of dopants may have 

an important role for the observed magnetism in semiconductors, it is of particular interest to 

investigate the effects of oxidation state of the dopant on the observed ferromagnetism. In Chapter 4, 

we shown that nanocrystalline films fabricated from colloidal chromium and manganese doped In2O3 

nanocrystals exhibit strong ferromagnetic ordering up to room temperature. Samples include 

manganese-doped In2O3 nanocrystals which were synthesized with different Mn
2+

 to In
3+

 molar ratios 

(5%-15%). Manganese can be oxidized from Mn
2+

 to Mn
3+

 during the reactions and this process can 

produce unknown molar ratios of Mn
2+

 to Mn
3+

. In the next step, quantifying these molar ratios of 

oxidation states of manganese as well as electronic structure and local coordination environment 

around dopant ions is particular of interest. X-ray absorption spectroscopy (XAS) is a powerful 

technique in both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS) regions in order to determine metal-oxidation and spin states, nature and number 
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of neighbors and metal-ligand distances. An XANES study of Mn L- and K-edge can be used to 

determine the oxidation state of Mn in the NCs. In addition, extended grain boundary defects formed 

at the interfaces of NCs in their films are a key factor in mediating dopant interactions, through 

charge carrier formation. Circularly polarized scanning transmission X-ray microscopy (STXM) 

imaging at nanoscale can provide the ability to directly correlate the location of the dopants (with 

respect to the grain boundaries) with magnetization properties in nanostructure arising from the 

presence of dopants. In these experiments, a monoenergetic X-ray beam (ca. 30 nm in diameter) is 

focused on a particular area of the sample, and an image is generated by monitoring the transmitted 

X-ray signal as the specimen is raster-scanned at the focus of the X-rays. These experiments will be 

followed by X-ray magnetic circular dichroism (XMCD) studies of both Cr-and Mn-doped In2O3 

nanocrystalline films. The dependence of XMCD intensity (and therefore magnetization) on the 

structure of nanocrystalline domains and the corresponding electronic/oxidation state of dopants 

should be established. Similar measurements will be made at the O K-edge to determine the 

interaction between dopant ions and NC valence band (mostly O in character). All of this work can 

help enhance the understanding of the microscopic origins of ferromagnetism in wide band gap 

semiconductor nanostructures, and lead to improved magnetic and electrical properties of these 

materials with significant promise in electronic and alternative energy technologies. 
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Appendix A 

The figures shown in Appendix A.1-A.3 are the supporting information for the data presented in 

Chapter 3. Appendix A.4, Appendix A. 5, and Appendix A. 6 are the supporting information for the 

data presented in Chapter 4, Chapter 5, and Chapter 6, respectively.  

 

Appendix A. 1 (a) XRD pattern of In2O3 nanocrystals synthesized at 200 °C for 30 hours without any 

water added to the original reaction mixture (data from Figure 3.6a). Black lines represent the XRD 

pattern of bulk rh-In2O3. Similar data were obtained by adding sub-stoichiometric amounts of water 

with respect to In(acac)3. (b) XRD of In2O3 nanocrystals synthesized at 200 °C for only 1 h with 

added excess water (ca. 10 times the molar amount of In(acac)3). Black lines represent the XRD 

pattern of bulk bcc-In2O3. The obtained nanocrystals have exclusively bixbyite-type structure. These 

data indicate that the amount of water determines the nanocrystal growth kinetics, and therefore the 

obtained phase. Sub-stoichiometric amounts of water result in rh-In2O3 NCs, while a large excess of 

water speeds up the reaction under identical conditions resulting in bcc-In2O3 nanocrystals. 
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Appendix A. 2 Measured XRD patterns of mixed rh-In2O3 and bcc-In2O3 NC references (solid lines) 

and the corresponding simulated XRD patterns derived as the linear combination of the references 

(dotted lines). The percentages shown indicate the content of bcc-In2O3 phase in the samples. 

 

Appendix A. 3 Linear fit to the JMAEK equation for different fractions of the bcc-In2O3 phase. open 

square (220 °C), solid square (230 °C), and open circle (250 °C) 
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Appendix A. 4 Fourier transform EXAFS spectra of Cr2O3 (olive line), rh-In1.667Cr0.333O2 (red line), 

and bcc-In1.942Cr0.058O2 (purple line) 

 

Appendix A. 5 M vs. H data for nanocrystalline Cr2O3 measured at 5 K (blue-green dots), 100 K 

(yellow dots) and 300 K (red dots). No ferromagnetic ordering is observed at 300 K, while the sample 

is superparamagnetic at 5 K and very weakly superparamagnetic at 100 K. 
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Appendix A. 6 XRD patterns of GIO NCs with different compositions synthesized at 290 °C. The 

percentages indicate the final doping concentrations of In in at%. The vertical lines at the bottom 

represent the XRD pattern of bulk γ-Ga2O3 NCs (JCPDS 20-0426). The stars indicate the peaks 

corresponding to GIO NCs having bcc-In2O3 crystal structure. 
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