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Abstract 

 
    Passive radio frequency identification (RFID) tag has been shown efficient in item tracking and 

management in the supply chain. Attracted to low weight and small size of wireless nodes, some 

research work was conducted to extend the RFID advantage into environmental sensing applications. 

The concept is to using tag frequencies as sensing parameters. When variation occurs in the 

surrounding environment, such as temperature and humidity level, the operation frequencies of tags 

would be shifted, and such shift can be used to identify the degree of variation in the environment. 

One challenge of RFID tag is the distortion from other surrounding objects, the existence of obstacles 

and metals can have greatly impact on the sensing performance in both accuracy and sensing range.  

 

    This thesis work conducts an investigation of the performance of a passive radio-frequency 

identification (RFID) based system. The investigation systematically probed the effects of passive 

RFID tag orientation and obstacles (blocking line-of-sight between a reader and a tag) as well as 

reading period (the time required for successful detection) on the range of detection. In the absence of 

obstacles, optimized tag orientation improved the system reliability and range of detection. At a 

reading distance where tag readability became unstable, increasing the reading period led to a higher 

reliability. A theoretical model was also established and was in good agreement with measurement 

results, providing a simple guideline to the further experiments. 

 

    This work would also advance the knowledge understanding on wireless sensing on metal effect, 

humidity and temperature.  
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Chapter 1  

 

Introduction 
 

 

 

Sensor technologies have long existed in the scientific field for the purpose of monitoring 

subjects, and environmental sensors are the ones typically monitoring the state of their 

surrounding environment, such as in-door air quality, temperature, humidity, carbon dioxide 

level and many others. The environment sensor network extends mankind’s abilities on 

environmental control to prevent undesired occurrence and tragedies. One typical example in 

practical use of sensing technology is smoking detectors in residential houses. The 

applications of environment sensors are widely spread out in many fields, including structure 

monitoring for buildings and constructions, health monitoring for patients’ conditions, and 

item tracking for inventory management.  

 

    The trend of sensor technologies is moving towards wireless, and wireless technology has 

seen significant development over the past decade. Compared to a wired sensor network, a 

wireless sensor network is more flexible in general. Adding a wireless sensor node to the 

network is much more convenient without the concern on the path of wiring and the length of 

wire. For example, in health monitoring for patients’ conditions, a wired device would 

require patients to stay close to the monitoring device. Less weight and smaller size are the 

other advantages of wireless sensors. In the applications where space is sensitive and crucial, 

such as structural health monitoring on aircrafts in aerospace application, the space of an 

aircraft is limited and weight is expected to be as low as possible.  

 

 

1.1 RFID Technology 

 

A basic passive RFID system, as shown in Figure 1(a), is consisted of three components: a 

host (including a database) for information management and control, RFID tags which 

contain the information of items that they attach to, readers to retrieve information from the 

tags and transmit the information to the host where the data is stored and processed.  
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 (a)  (b) 

Figure 1: RFID Tracking System; (a) a basic RFID system and its component [1]; (b) 

warehouse implement demonstration [2]. 

 

    RFID tags serve the same purpose as a bar code or a magnetic strip on the back of a credit 

card or ATM card, to track, store and provide unique identification of the objects [3]. 

However, RFID technology can address problems that other technology cannot.  People have 

to scan the bar code manually each time to track the item when it moves; Ultrasound and 

infrared technologies cannot penetrate materials, so it would require an open box examination 

to trace what is inside; GPS, on the other hand, does not work well in an indoor environment 

[4].  

 

    Beside passive tags, there are also other types of RFID tags. Generally speaking, the RFID 

tags are usually categorized as passive tags, active tags and semi-passive (or semi-active) tags 

based on whether the tags have their own power source, such as batteries. The general pros 

and cons of the RFID technology are discussed as following. 

 

Some of the typical advantages of RFID technology are [5]: 

 Robust tags that can stand extreme conditions and temperatures; 

 Tags are available in a great range of types, sizes and materials; 

 No need for physical contact between the data carrier and the communication device.  

 The Tags can be used repeatedly; 

 Relatively low manufacture and maintenance cost; 

 An RFID tag could identify the item and store detailed information about the item; 

 

Benefits of RFID applications are [6]: 

 Total asset visibility; 

 Tracking for incoming and outgoing deliveries; 

 Full inventory history and records; 

 Localization of items; 

 Real-time security; 

 

Common Problems with RFID: 

 Reader Collision – occurs in RFID systems when the coverage area of one RFID 

reader overlaps with that of another reader, due to signal interference or multiple 

readers of the same tag [7]. 

 Tag collision – occurs when multiple tags are energized by the RFID tag reader 

simultaneously, and reflect their respective signals back to the reader at the same time 

[8]. 

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=54
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Other potential issues and concerns about RFID: 

 Security and privacy issue – due to limited resources that can be dedicated to security 

functions [9]; 

 Health concern – due to long period exposure to the RF electromagnetic fields. 

However, there are no evidences showing that there is a health risk [10]. 
 

 

1.2 Problem Description and Motivation 
 

RFID technology has been proven to be successful in item tracking. Tags contain unique 

identifications enable asset tracking ability. To extend the ability of RFID, it is always the 

interest to provide more information on the tracked asset, not only tracking the location but 

also monitoring the state.  

 

    In the field of aerospace, temperature and humidity are the initiators and promoters for 

corrosion and crack on air-vehicles.  They are looking for wireless solutions of detecting and 

monitoring cracks and their development. Although wired solutions are available, they no 

longer meet the needs of nowadays aircraft. Space and weight become critical to most air 

vehicles. When aircraft is getting more and more sophisticated, wired sensors gradually 

become an issue, since such aircraft may employ hundreds of wired sensors for state 

monitoring which results tons of wire in weight.  To more effectively and efficiently operate 

aircraft, wireless solution becomes curial to reduce the weight and to improve space 

efficiency. 

 

    Passive ultra high frequency (UHF) RFID tag which is designed with the feature of small 

size and no power consumption satisfies the demand on wireless solution for air vehicles. An 

UHF RFID based sensor would be suitable for essential requirements. The concept is to use 

the UHF RFID tag as a sensing platform. On this platform, a sensitive layer is deposited. By 

monitoring the frequency displacement of the tag caused by the sensitive material reacted to 

humidity and temperature, the degree of the change can be determined. 

Significant efforts have been devoted to develop sensors using RFID tag as the wireless node 

for communication, such as RFID based surface acoustic wave (SAW) sensors and carbon 

nano-tube (CNT) sensors, which is described in more detail in chapter 3. More recently, some 

scientists start to implement RFID tags for sensing applications. It has been reported to use 

high frequency (HF) RFID tags for chemical sensor applications. Nevertheless, UHF tags 

which are commonly used for logistic and item tracking, have not seen much progress in 

chemical sensing application. The main obstacles are noted following: 

 

RF signal absorption – It is a known issue that when a UHF tag is directly attached to metal 

surface, it would lose its function (both forwards and backward communication). The current 

solution, or so call “metal” tag, contains a cover on the original tag to create a displacement 

between the tag and the metal surface.  

 

Path loss formulation – Path loss is always a challenge in the signal transmission. The present 

of objectives in the surrounding environment would simply increase the difficulty of the 

formulation. Although there are many research works on path loss formulation, there is not a 

universal solution or method for it. 

 

Signal interference – As a result of multipath generated from reflection and deflection, signal 

overlapping and collision results noise in measurement accuracy. 
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1.3 Sensing Platform and Approach 

 

The concept of this approach is using RFID tag as a sensing platform. Shown in Figure 2, a 

sensing film is layered at the top of the tag. The sensing film is directly deposited on the tag 

antenna. Such deposition would modify the characteristic of the original tag by changing its 

impedance, which, in turn, modifies the operation frequency of the tag. The new operation 

frequency and corresponding characteristics are used as the sensing baseline to sense targeted 

analytes as shown in Figure 3.   The added layer can be treated as a simplified R-C circuit 

with a resistant value of R and a capacitor value of C, in addition to the circuit of the tag itself. 

 

When an analyte presents, the reaction between the analyte and the sensing film would 

again modify the impedance of the tag. Now the sensing circuit is presented by the circuit 

with a resistor Rf and a capacitor of Cf. By comparing the status of the tag after reaction to the 

baseline and measuring the changes in the sensing parameter, in other words, by comparing 

the differences between R and Rf and the differences between C and Cf it is possible to 

determine the type of the analyte. 

 

    This approach was first described by Radislav Potyrailo on a high frequency tag that 

operates at 13.56MHz and operating frequency is the measuring parameter. His experiment 

demonstrated a possibility of detecting different types of chemicals, which is detailed in 

Chapter 3.  We would like to apply the similar principle on the ultra high frequency tags for 

chemical and corrosion detections.  Our first step is to evaluate the impact of the deposition 

on the tag itself before any reaction is taken in place as shown in Figure 3(a), and it is one 

major objective of this thesis. To select suitable sensing films and corresponding analytes, a 

literature review is also conducted and presented in the next chapter. 

 

 

1.4 Thesis Contribution 

 

The major contribution of this thesis is to propose a model to evaluate the performance of a 

RFID system and validate the feasibility of the model based on the system performance 

toward wireless sensor. To this end, the research objectives are defined as: 

 

 To evaluate the effect of sensing distance and path loss in the present of obstacle on 

the performance of the RFID system.  

 

 To formulate a model to simulate and simplify the evaluation procedure of the 

environmental effect. The model would take into account of the effects of distance 

and both ideal (free space) and non-ideal conditions and predict the performance in 

specific conditions when tag is attached to wood, metal and other materials. 

 

 To explore the effects of humidity and temperature on the characteristics of the RFID 

system. The impact of surrounding environment condition on the RFID system must 

demonstrate the sensitivity and possibility towards a temperature or humidity sensor 

and to a long term goal as a corrosion sensor. 

 

The empirical experiment results are reported and discussed to demonstrate the evaluation 

process in practical use.  
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(a) (b) 

 

Figure 2: Schematic diagram of RFID sensing platform; (a) sensing layers;  

(b) sensing film deposition. 

 

 

 

 

 
(a) 

 

 

 
(b) 

 

Figure 3: modeling presentation of sensing process; (a) tag exposed to air; (b) tag coated with 

sensing film and then exposed to analyte. 
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1.5 Thesis Organization 
 

The reminder of this thesis is organized as follows: 

 

    Chapter 2 describes the overview of RFID system and background of relevant materials. It 

first introduces the current state of RFID system and its marketing potential, followed types 

of RFID system as well as detail concept on our approach. 

 

    Chapter 3 presents the literature work of related to wireless sensor development and work 

towards RFID sensors. The literature work mainly focus on surface acoustic wave (SAW) 

and carbon nano-tube (CNT) sensors and their work towards RFID technology. 

 

    Chapter 4 provides the theoretical development and simulation proposed for the evaluation 

of a RFID system. It highlights the model prediction on the behavior of radio frequency 

signal in an open environment. This includes near field effect and far field effect and 

classifies the region of the behavior changes. 

 

    Chapter 5 and 6 reports our experimental results from our evaluation process.  Chapter 5 

reports on sensing distance, obstacle and orientation effect on the performance of RFID 

system, while chapter 6 reports on humidity and temperature effect. The set of experiments is 

targeted to evaluate the feasibility and reliability of the system as well as to validate the 

theoretical modeling.  

 

    Chapter 7 concludes the research work. It highlights research contribution and provides 

recommendation on future work related research work.  
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Chapter 2  

 

Overview of RFID Technology 
 

 

 

This chapter provides the background information of the RFID technology. Section 2.1 

presents the current state of RFID technology and its market value. Section 2.2 compares two 

major technologies, barcode and RFID in the field of logistics. Section 2.3 and 2.4 details the 

types and concept of RFID technology. Section 2.5 suggests the choice of antenna and 

section 2.6 provides information on the RFID tag inlay. 

 

 

2.1 Current Market of the RFID Technology 

 

The growth and development of wireless technologies on sensing have attracted many 

attentions and the growing interests on the wireless technologies create a large market for 

investments.  

 

    One report [12] by Kevin Gainer in 2009 on the market of environmental sensors indicated 

that the global market for environmental sensing and monitoring technologies was worth $9.1 

billion in 2008 and estimated a value of $10.1 billion for 2009. This was expected to reach 

$13 billion in 2014. This report covers the sensor industry and its structure, markets and 

applications of the sensors as well as companies profiles on the sensors.  For the remote and 

wireless sensing technology, Jim Wilson reported [11] in 2007 that the total global market 

expenditures for remote sensing products were more than $7 billion in 2006 and expected to 

reach almost $7.3 billion in 2007. By 2012 the market would reach more than $9.9 billion. 

This report further detailed an overview of the remote sensing industry, including 

descriptions of global positioning system (GPS), Geographic information system (GIS), and 

applications, including weather forecasting, intelligence gathering, climate change, public 

health. A market analysis on these applications is also provided.  

 

    Besides, wireless technology has seen significant development over the past decade. In the 

field of logistics, passive Radio Frequency Identification (RFID) technology has shown its 

capacity on tracking and managing a large amount of items. The enforcement of 

implementation of the RFID technology in the supply system by organizations such as 

Department of Defense (DOD) on its military supplements and Wal-Mart on its shipments 

has brought the technology to eyes of thousands companies worldwide.  The success on the 

focused logistics led by these two organizations and the attractive characteristics of reduced 

size and weight and no power requirement attract more and more attention to the technology 
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and result an increase on the adoption of the technology. The global market value for radio 

frequency identification (RFID) technologies was $6.4 billion in 2010. That value is 

projected to reach $11.3 billion in 2015 in by the electronics industry market research and 

knowledge network in its report “RFID: Technology, Applications, and Global Markets” [13]. 

 

    Ultra high frequency passive tags are most frequently used in the warehouse. These tags 

are placed on the containers of the items, such as inside the cardboard box as in Figure 1 (b).  

When the box is passing through a gateway or a check point, the reader at that gateway 

detects the tag embedded inside container and records the identifications of the sealed objects 

and then transmits the corresponding information to the remote host for tracking and 

management. Before RFID is first introduced in warehouses, the most common one is 

barcode. 

 

 

2.2 RFID vs. Barcode 

 

In the field of logistic, traditional method of tracking and management of goods is done 

through barcode, which requires line of sight while scanned. The RFID tag, on the other hand, 

is more flexible on its position while read and can be even embedded inside the cardboard of 

the box with insignificant impact on its readability, which increases the security of the tag 

itself. The automatic reading system can reduce the work and time of scanning process 

required by the barcode. 

 

 
(a) 
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(b) 

Figure 4: Barcode and RFID Technology; (a) barcode standard; (b) RFID standard [14]. 

     

In addition, the RFID tag is using digital memory for information storage rather than graphic 

presentation as it is for the barcode. Figure 2 compares the typical standards of the two 

technologies. For the 12 digit barcode using Universal Product Code (UPC), it has a header 

digit, 6 digits to indicate manufacturer and 4 digits to identify the type of the item, with one 

checking digit. It should be noted that barcode only identify the type of the item but does not 

distinguish the products of the same type. For example, two bottles of milk from the same 

manufacturer have the identical barcode number. On the other hand, RFID has a 2-digit 

version number and 28 digits for manufacturers which are 23 digits more than the barcode. It 

also has a 24 digits of product number which are 20 digits more than the barcode. In addition, 

it includes a serial number to identify each individual items of same type, which means it is 

able to identify each bottle of milk even though they are from the manufacturers. 

 

    With digital memory, RFID is able to carry massive data and offers more and detailed 

information of the object. Thus, tracking can be more accurate and precise with RFID system. 

Besides, digital memory can be rewritable, enabling reuse of the tag and modification of the 

information, while for barcode, any modification requires a replacement and barcode reaches 

end of its life cycle when the item is delivered to its destination. The major differences 

between two logistic technologies are summarized hereby: 

 

Table 1: Comparison of two logistic technologies, Barcode and RFID [15, 16] 

Attribute Barcodes RFID Tags 

Technology Optical, image technology Radio frequency, wireless 

Standard ISO/IEC 15426-1 (linear) 

ISO/IEC 15426-2 (2D) 

ISO/IEC 18000(Item 

Management) ISO/IEC 14443 

(Proximity cards) 

ISO/IEC 15693 (Vicinity cards )  

Data capacity Up to 24 characters for linear 

presentation and up to 2000 

characters for two 

dimensional barcode 

Several thousand characters 

Reading 

requirements 

Line of sight required  Within the detection range  

Durability Subject to wear/damage or 

removed; cannot be read if 

Can be hidden but subject to 

certain environmental impact (by 
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dirty or greasy  metal, liquids, etc.) 

Security Data can be easily reproduced Data can be encrypted and a “kill” 

feature to remove data 

permanently 

Read Rate One at a time, slow and 

slower for two dimensional 

barcode;  

Multiple tags can be read 

simultaneously 

Read and write Read only Tags can be both read only and 

rewritable 

Human Capital Scanned by human in general Scan process can be automated 

Convenience Barcode can be electronic 

generated so it can be printed 

or reproduced at any printer  

via internet 

Tag has to be made at manufacture 

or requires a sophiscated RFID 

printer. 

Event Triggering Not possible with barcode Yes (door opening, alarm, etc.) 

 

    Due to the nature optical image technology, barcode is visible, with no protection against 

information access and reproduction. That exposure reduces its duration and security 

compared to RFID technology based tag, which can be hidden or sandwiched between layers. 

Although exposure and easy reproduction scarifies the security level, it increases its 

convenience. Can be printed on most printers of the world via internet access makes the 

information easy to transfer. As a result, although passive RFID tags exceed barcode in 

several categories, RFID is still seen as a complementary to barcode by some viewers 

because of the convenience. Barcode is much easier to reproduce and can be electronic 

generated. Thus, the intention now is to store basic identification on barcode and more 

sensitive information on RFID tag.  

 

 

2.3 Types of RFID 

 

Readers and tags are two major components of the RFID system. Tags store identification of 

the object, while readers transmit signals and retrieve it. For different types of tags, readers 

are designed differently and implemented with different standards. A typical RFID reader 

contains Transmitter (signal modulation), baseband processor, circulator and receiver (signal 

demodulation) as well as the reader antenna. Different RFID technologies require different 

modulation modules. This section will focus on the types of technologies used in RFID 

system from tag aspects.  

 

    There are several ways that RFID tags can be classified depending on the criteria, such as 

frequencies and protocols. Generally speaking, the RFID tags are usually categorized as 

passive tags, active tags and semi-passive (or semi-active) tags based on whether the tags 

have their own power source, such as batteries.  
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(a)               (b)                            (c) 

Figure 5: RFID Tags; (a) passive; (b) semi-passive/active with battery source; (c) active [17, 

18]. 

 

    Passive tag – has no internal power supply. When a RFID reader is approaching, the tag 

retrieves power from signals emitted by the reader to operate, and then it transmits data to the 

reader by inductive coupling or backscattering techniques, which are revealed in next Section 

2.4.  It can be flat and thin as shown in Figure 3(a).  

 

    Semi-passive/active tags – have their own power sources but just for powering the chips 

but not for data transmission. Since no demand on power from the reader, all signal power 

from the reader is used for data transmission, with a better response and detection range to 

reader signal compared to passive tag. Both inductive coupling and backscatter coupling 

technologies are seen in the data transmission for this type of tags. As illustrated in Figure 

3(b), the tag contains a button cell type battery for the processor so that all received power 

can be used for transmitting back the signal which is stronger than passive transducer. This 

allows increasing communication distance with quit cheap solution [17]. 

 

    Active tags – requires their own power sources to generate outgoing data signal. Differed 

from previous two types of tags, active tags can be treated as standard-alone wireless nodes. 

By having own power supply, active tags usually have better performance than passive tag, 

having more memory, more power to send outgoing signal far away. Besides, most of active 

tags can be programmed.  

 

Table 2: Summary of characteristics of different types of tags 

Attribute Passive Tag Active Tag Semi-passive/active Tag 

Internal Power Source No Yes Yes 

Response Distance Short Very long Long 

Weight Light Less light Less light 

Cost Cheap Expensive Less expensive 

Life Cycle Long Short Long 

     

    Table 2 summarizes the major differences among the types of the tags. Because of 

existence of the power source and life cycle of passive tag is generally longer. In addition, 

with a much complex design, active and semi-passive/active is much expensive compared to 

passive tag, and that complexity also increase on the weight of the tags.  The passive nature 

with less weight and longer life time proves the passive tag is a better candidate than other 

two as the platform for chemical sensing. 
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2.4 Data Transmission Techniques 

 

There three major techniques that are used in data transmission in radio frequency and its 

applications: capacitive coupling, inductive coupling and backscattering. Each technique has 

its advantages and disadvantages, which is presented in detail. 

 

 

2.4.1 Capacitive coupling  

 

Capacitive coupling transfer electromagnetic energy via mutual capacitance rather than 

mutual inductance. When two circuits are placed close enough the circuits create a mutual 

capacitance between them, acted as dielectric materials. Smart card is a typical example and 

where the majority of the application involve. The reading range is generally less than 2 

centimeter as defined by ISO standard 10536. A typical frequency is 125kHz. 

 
Figure 6: Capacitive coupling; tag is inside into the reader for communication. 

 

    As shown in Figure 8 for a smart card reader and a tag from a smart card that is inserted 

into the reader, capacitance is created at both above and below the tag. The capacitance is 

measured by the electrical storage capacity and voltage cross them.  When a signal is 

generated in the reader, the signal is transferred through the changes in the across voltage and 

then used to power up the tag in the same as inductive coupling. The signal is also returned 

by load changing in the same way as inductive coupling. However, for mutual capacitance to 

exist, the distance between two circuits are limited, within a few millimeters and less than a 

few centimeters. Different from inductive coupling, which is based on magnetic field, and 

whose reading range can be extended by a larger antenna area, the antenna for capacitive 

coupling is not as they are replaced by electrodes. As the result, the reading range based on 

capacitive coupling is usually less than other techniques. 

 

 

2.4.2 Inductive coupling  

 

There are two major types of techniques are used in RFID wireless transmission for 

contactless communication, inductive coupling and backscattering coupling.  Figure 5 

describes the inductive coupling principles. 
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Figure 7: Inductive coupling between the reader and the passive tag [20]. 

 

On the reader side, receiver is designed with coupling effect as presented in Figure 5. A 

part of the emitted field penetrates the antenna coil of the transponder by induction, which 

generates a voltage in the transponder's antenna coil serving as the power supply for the 

microchip.  To provide such electromagnetic field, a capacitor is carefully selected in parallel 

with the reader’s antenna coil to form a parallel resonant circuit, which introduces a very high 

current in the antenna coil of the reader by the resonance. As energy is drawn from the reader 

to the transponder, the additional power consumption can be measured as the voltage drop at 

the internal resistance in the reader antenna.  Here is how data is transferred from transponder.   

 

 
Figure 8: Signal Transmission between reader and transponder. 

 

    There is load modulation that changes the load between two stages in the transponder. 

While switching between two stages affects the voltage change at the reader's antenna as in 

Figure 6, and as the switch is alternated based on the data, the reader can retrieve the data by 

monitoring the voltage changes on the reader side. Due to the limitation of this technology, 

the reader has to be close enough to the tag to introduce inductive coupling. As the result, the 

typical reading distance ranges from a few millimeters up to one meter. 

 

 

2.4.3 Backscattering Coupling 

 

Reader

Tag

Load Modulator

Power Supply

data

S1

R1
R2

AC
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The efficiency with which an object reflects electromagnetic waves is described by its 

reflection cross-section. Thus, most antennas for active tags have a particularly large 

reflection cross-section for high transmission efficiency [20]. 

 
Figure 9: Operation principle of a backscatter transponder [20] 

 

    Figure 7 illustrates the data transmission process between the reader and the transponder 

using this technology. On the reader side, a directional coupler is attached in the front of 

transceiver-receiver function. Power P1 is emitted from the reader's antenna to the 

transponder's antenna. The power P1' is supplied to the antenna connections can be used 

power for the chip, while the power P2 is the reflection power of P1’ by the antenna. The 

reflection characteristics (= reflection cross-section) of the antenna can be influenced by 

altering the load connected to the antenna. To transmit data, a load resistor RL connected in 

parallel with the antenna is switched on and off in time with the data stream to be transmitted. 

The amplitude of the power P2 reflected from the transponder can thus be modulated.  A 

small proportion of P2 is picked up by the reader's antenna as P2’. This "backwards" power 

can be decoupled using a directional coupler and transferred to the receiver input of the 

reader [20].  

 

 

2.4.4 Selection of the Sensing Technologies 

 

In previous section, types of tags and different operation principles are presented. Capacitor 

coupling has a very limited range which is not suitable for wireless sensing requirement. 

Inductive coupling is generally adopted by high frequency tags and backscattering is adopted 

by ultra high frequency tags. Both of them have potential for wireless sensing and related 

literature work is presented in Chapter 3. 

 

    Based on the frequency ban, tags can be also categorized into low frequency, high 

frequency and ultra high frequency. Commonly, capacitor coupling is used in low frequency; 

high frequency tags adopt inductive coupling technique; while backscattering is employed in 

ultra high frequency tags. In terms of detection range, capacitor coupling is shortest while 

backscattering is longest. Inductive coupling is based magnetic field induce surrounded 

antenna which is applicable in the near field, while backscattering is based radar theory in the 

far field. Since the energy in the signal increases as frequency increases, the approximate 

reading range and data transfer rate increases when operation frequency become higher. 

Some characteristics of RFID are summarized in the Table 3 based on frequency range.  

 

Table 3: RFID frequency and characteristics [19] 

Ban Low Frequency High Frequency Ultra High Frequency 
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(LF) (HF) (UHF) 

Frequency 30-300kHz 3-30MHz 300 MHz-3GHz 

Typical RFID 

Frequencies 

125-134kHz 13.56 MHz 433 MHz, 

865 – 956 MHz, 

2.45 GHz 

Approximate 

read range 

Less than 0.5 meter Up to 1.5 meters 433 MHz = up to 100 

metes 

865-956 MHz = 0.5 to 5 

meters 

Typical data 

transfer rate 

Less than 1 kbit/s Approximately 25 

kbit/s 

433-956 MHz = 30 kbit/s 

2.45 GHz = 100 kbit/s 

Characteristic

s 

Short-range, low 

data transfer rate, 

penetrates water but 

not metal 

Higher ranges, 

reasonable data rate, 

penetrates water but 

not metal 

Long ranges, high data 

transfer rate, cannot 

penetrate water or metals 

Typical use Animal ID 

Car immobilizer 

Smart Labels 

Contract-less cards 

Access and security 

Specialist animal tracking, 

logistics 

 

    Based on requirement of designing wireless sensing, a longer range of detection is 

preferred, and as stated in Table 3, ultra high frequency tags that adopt backscattering 

technique has the longest range compared to other techniques. 

 

 

2.5 Choices of Antennas 

 

A RFID system is based on the signal transmission which has both electrical and magnetic 

properties known as the electromagnetic wave [21]. Antenna is an important aspect of data 

transmission which affects range of detection and direction of electromagnetic wave 

propagation. There are three different types of RFID antenna structures based on the 

polarization directions.  

 
(a)            (b) 

Figure 10: Types of Propagation; (a) schematic of linear polarization and its direction; (b) 

Dual Dipole antenna[21, 22]. 

 

    Single Dipole (Linear Polarization) – As stated in the words, the electromagnetic wave 

only propagates one direction in one plane as shown in Figure 8(a). As the propagation 

direction is fixed, the transmission path is fixed, so it is best for the tag orientation is known 

and fixed [22]. Many tags are mainly designed in this mainly due to its simple structure. 

 

    Dual Dipole – Dual dipole is an antenna with two dipoles, an implementation from single 

dipole. One way to create a dual dipole is connecting the end of one single dipole antenna 
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with the end of another one to form a “V” shape antenna with an angle between two tails as 

shown in Figure 8(b). This way provides the flexibility on antenna orientation as the angle 

between two antennas is adjustable. The dual dipole design can greatly reduce the orientation 

effect caused by single dipole antenna by providing two transmission paths [23]. In the RFID 

design, the dual dipoles usually placed orthogonally to each other achieve circular 

polarization.  

 

 
(a)         (b) 

Figure 11: Helix and Crossed dipoles; (a) propagation direction; (b) types of presentation: 

helix, patch and crossed dipole [21, 22] 

 

    Helix or Crossed dipoles (Circular Polarization) – The electromagnetic wave is capable of 

propagating in two planes and creating a circular effect as shown in Figure 10(a). In Figure 

10(b) are some typical antenna forms which could be the structure of RFID reader antenna. 

Due to its continuously rotational electromagnetic field, it is able to cover any tag that is in its 

path, which makes it excellent detector for tags with unknown or unfixed orientations. 

However, comparing to the single dipole antenna, the circular polarization technique will 

result the loss of power at least 3dB [21]. These three types of antenna structures are 

commonly used in read antenna based on the application requirements. 

 

    The circular antenna can be further categorized into two families, Monostatic and Bistatic 

circular polarized antenna.  The monostatic antenna is the common used antenna type that 

both the transmitter and receiver are collocated [24], meaning using the same antenna for 

both data transmitting and data receiving, while the transmitter and receiver are separated in 

bistatic antenna structure [25], meaning using separated and dedicated antennas for the 

transmit and receive operations. For example, a four-port monostatic reader requires four 

antennas; a four-port bistatic reader requires eight antennas [26].  Since both transmitting and 

receiving signals share the same antenna in a monostatic system, this arrangement is subject 

to signal reflections back into the receiver path, raising the noise floor, lowering dynamic 

range, and lowering reader sensitivity. However, a monostatic system is inexpensive, simple 

to deploy, and exhibits better data collection and processing efficiency over bistatic solutions 

[26]. 

 

    To select the best antenna is essential in the RFID design process, and it is based on the 

application of the RFID. For doorway or portal tracking, a high gain antenna with circular 

polarization would be a good candidate, because of limited or no control at all on the items’ 

orientations, while the RFID readers are generally fixed. The purpose of circular polarization 

is to provide full range detecting zone of pass by RFID tags. In order to avoid or passing 

through blocking substance, several circular polarized readers may be required to be installed 

on the two sides and top of the doorway. On the other hand, for access cards and check out 

station system, a low gain antenna with near filed design is enough, since the tag orientation 

is known and direction signal transmission can be easily established. 
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    In terms of antenna selection, circular polarization has a better detection range but requires 

more energy, which can be used as the reader antenna.  For the tag antenna, single dipole is 

most common for backscattering tags to increase the reflect directivity while circular is often 

applied on inductive coupling to maximize the magnetic field. 

 

 

2.6 Methods of Tag Inlay 

 

The material of the antenna is also impact and affecting the performance of data transmission 

as well. A lower resistively material is usually better than a high resistively. For high 

frequency tags, which oscillated within 13.56 MHz, any reasonably conductive metal would 

work, such as aluminum, copper, silver [27]. However, different materials results different 

specific read and write characteristics due to differences in chemical properties. A copper 

antenna is slightly more expensive than aluminum or silver but is more conductive and 

usually provides a longer distance read capability [28], such as for ultra high frequency. To 

compose of a chip with an antenna, technologies of inlays are involved, which should be 

considered in selecting tags. There are two types of RFID inlays, referred as either “dry” or 

“wet”.  

 

                     
(a)         (b) 

Figure 12: Types of Inlays; (a)wet Inlay;(b)dry inlay[29,30]. 

 

    Dry inlay – when chip is comprised with antenna, antenna is directly attached to the 

substrate backing material [28] as in Figure 10(a), such as paper, PVC and PET. Usually, 

PVC and PET are commonly in use. 

 

     Wet inlay – it is similar as a dry inlay, but adhesive is added at the back [31], shown in 

Figure 10(b).  

    

    In both cases the inlay is supplied to a converter where it is inserted into a label or tag for 

requirement of the application [31]. 
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Chapter 3  

 

Review of SAW, CNT and RFID Wireless 

Sensing Technology 
 

 

 

In the human history, many catastrophes have occurred, which cost tremendous loss in 

people’s live, property and even result finance crisis, such as the earthquake, tsunami and 

nuclear meltdown in Japan in 2011. The tsunami alone caused more than $309 billion loss in 

the damage, forcing half million people away from home [32]. To reduce the impact of 

disasters, people started to develop monitoring and reporting systems to have better control 

over environment and preparation against disasters. For this purpose, many sensor 

technologies have been deployed to alarm the sign of changes in the environment so that an 

unexpected situation can be notified and possibly handled at an early stage. For example, an 

in-house smoke alarm is able to indicate the sign of a fire and allows people to take proper 

actions before the fire is out of control. When such change in the air quality is at molecular 

level, chemical reaction based sensing technologies, or chemical sensing technologies is used.  

 

    There are different kinds of chemical sensors, capable of measuring variety of parameters 

of air quality including temperature, humidity and concentration and component of the vapors. 

For example, D. Hauden et al [33] in early 1980s designed a SAW temperature sensor, and 

Jing Li et al [34] in 2003 designed a carbon nanotube sensor for gas and organic vapor 

detection. The initial designs of many those chemical sensors are generally wire based. 

However as wireless technologies grow and become mature, sensor technologies adopt the 

advantage of being wireless. Reindl, L.M. [35] in 2004 developed a wireless SAW 

temperature sensor, and in 2006 Calusdian, J. and Jing Li et al [36] implement their carbon 

nanotube gas sensor in [34] wirelessly. Employing wireless technologies, sensors are no 

longer limited by the length of the wire and gain better mobility. In addition the weight and 

size of the sensors are also reduced.  

 

    One major issue of being wireless is to power the sensors. An easy and common solution is 

to employ built-in power sources, such as batteries, as a part of sensor designs. However, as 

batteries have limited life cycles, periodically replacement is necessitated, while that may be 

neither suitable when the replacement is quite frequently and expansive nor applicable where 

the replacement is not acceptable, for instance, in a sealed container. Other designs generally 

adopt energy harvesting module to absorb certain type energy, such as piezoelectric based 

module for vibration and thermoelectric based module for temperature differences, and these 

modules generally either require directly connections to the sensors or integrated with the 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Reindl,%20L.M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Calusdian,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Jing%20Li.QT.&newsearch=partialPref
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sensors to power them. However, due to the limitation on the type of energy to harvest, these 

designs are generally energy type dependent. Researches start to look at another technology, 

the radio frequency (RF) after the realization of attracting energy from RF signals.  The RF 

technology, beside of being wireless, can also be passive, meaning no built-in power sources 

or modules for the sensors. The entire energy that sensors consume would directly come from 

the RF signals received by the sensors. Thus, part of the signal energy is used to power 

sensors. The revolution of this technology is eliminate the concept that the power source has 

to be physically connected to sensors and bring the wireless technology to next level from 

wireless data transmission to wireless power transmission. 

 

    The work in both [35] and [36] employed the RF technologies to make the sensors 

“powerless”. They adopted so-called radio frequency identification (RFID) tags. The RFID 

tag is not only wireless and passive but also is almost costless. The cost per single tag can go 

as low as between ¢10 and ¢20 in the large scale of production, reported by ODIN inc. in its 

RFID report [37]. The report also indicated the growth of demand for the RFID tag in the 

supply chain and other applications. One of the most notable events in driving tag demand is 

the adoption of the RFID technology by Walmart. Reik Read of Robert W. Baird & Company 

raised its 2010 estimate growth from 40% to over 125% just based on the announcement of 

this program [37]. Besides, it also reports Alien receives $10.9 million in new funding and 

announces 50% quarter over quarter growth rate over previous two quarters. 

 

    There are varies of chemical sensing technologies introduced in the past decades, widely 

used in gas and liquid sensing and monitoring as well as others. One major concept of gas 

sensing is to monitor the change of chemical properties through chemical reaction. By 

retrieving the change in the properties, it is able to detect the existence of certain molecular in 

the air or the change of the surrounding air quality. Two major technologies that adopt this 

technique are Surface Acoustic Wave (SAW) and carbon nanotube technologies which are 

reviewed hereby. 

 

 

3.1 SAW Sensing Technologies 

 

A typical SAW is composed of a piezoelectric crystal substrate with an inter-digital 

transducer (IDT) introduced by White RM, Voltmer FW in 1965, shown in Figure 12. Such 

mechanic wave only propagates at the surface of the substrate. Surface acoustic wave has 

existed for quite a long time after SAW is first explained in 1885. Acoustic wave is able to 

perform real-time measurement, with competitive pricing, high sensitivity and accuracy and 

intrinsic reliability [38-40].  
 

    As the energy of the SAW is confined at the surface level regardless of the thickness of the 

substrate, it has the potential sensitive towards any changes on the surface, such as mass 

loading, viscosity and conductivity. For chemical sensing, a sensitive film that responds to a 

specific gas is laid down on the propagation path [38-40]. 

 



20 

 

 
Figure 13: An example and schematic presentation of a SAW Sensor [41]. 

 

    When an electronic signal is applied at the input of the IDT from one side, the 

measurement of the SAW is obtained at the output of the IDT on the other side. As the 

sensitive film reacts to the desire chemical molecular, the characteristic of the surface 

acoustic wave is modified due to the changes of the charges on the surface of the substrate, 

and such change can be measured by monitoring the target chemical molecular in the 

surrounding environment.  

 

    The first SAW-based sensor on solid substrate was created by Wohltjen and Dessy in 1979. 

The IDT was coated with a sensitive polymer layer for gas detection [42]. Since then, varies 

of SAW sensors were introduced to detect many physical and chemical parameters, including 

temperature, pressure, stress,  gas flow, vapor concentration, vapor desorption and diffusivity.   

 

    In Dickert’s work[43], he compared the properties of SAW resonators with QMB(quartz 

micro balances) for chemical sensing, which showed SAW was forty-fold higher sensitivity 

than QMB in detecting solvent vapors after both SAW and QMB were coated with a cross-

linked β-Cyclodextrin to detect m-xylene. The author also tried molecular imprinting with 

both SAW and QMB. It showed that the sensor response to the vapor depended on the 

percentage of cross-linkers used. SAW also provides an excellent reversibility in this case. In 

the comparison with Thickness Shear Mode (TSM),  according to Bodenhofer [44], the SAW 

devices is able to operate with a large amount of response signals with enhanced surface 

sensitivity, making it suitable for very thin layers. The SAW devices also showed advantages 

on the ability of multiple transduction mechanisms as a more versatile sensor platform than 

the TSM. 

 

    Other types of SAW sensors are also developed. In Susan’s work [45], she showed the dual 

sensor technique with two different sensor materials was able to separate convoluted 

contributions between mass and modulus to the frequency response.  In the experiments with 

A2 silica-coated quartz and Gas sensors exposed to methanol, when the methanol 

concentration increased, the quartz exhibited a negative frequency shifted, while Gas sensor 

exhibited a positive frequency shift.  Shen [39] proposed a SAW sensor with coating L-

glutamic acid hydrochloride which could be a good candidate for detecting ammonia gas. 

From his experiments, the sensitivity of the sensor was 0.10 ppm/ppm when ammonia 

concentration was less than 2.27 ppm. The frequency shift of the SAW sensor was 0.91 ppm, 

the noise level was 0.03 ppm, and the signal-to-noise ratio was 30.33. The increase of 

temperature would not affect the performance of the SAW gas sensors and the L-glutamic 

acid hydrochloride showed itself as reversible gas sensing material at room temperature. In 

addition, Fechete [46] presented another kind of sensor, which was consisted of layered 

Input 
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SAW-based gas sensors with an InOx/SiNx/36° YX LiTaO3 structure. An intermediate layer 

of SiNx was deposited by PECVD using SiH4/NH3/N2 chemistry at a low (<200 °C) 

temperature. A 100 nm InOx sensing layer was then deposited by RF magnetron sputtering. 

The result showed that the hydrogen adsorption into the InOx film led to an increase in its 

conductivity by injecting electrons into the surface, which caused a decrease in the oscillation 

frequency. When the SAW sensor was exposed to an oxidizing gas, the conductivity of the 

InOx film was decreased by removing free electrons. As a result, the oscillation frequency 

increased.  

 

    As demands on wireless sensing, Wen [47] introduced a RFID tag based CO2 wireless 

sensor by developing a SAW integrated sensor system. The ID tag and gas sensor were 

placed on the right side of the IDT, whereas the humidity sensor was located on the left side. 

The reflection peaks represented the tag's ID and data. The reading system emitted EM 

energy, extracting all the information from all the sensors, and recognizing environmental 

conditions at each sensor location through radio-frequency identification (RFID) tag. The 

reflection coefficient of the tag antenna was measured as well as the phase angle shifts of the 

reflection peaks. It showed that the phase shifts were clearly observed for different CO2 

concentrations. The diversity of the SAW on gas sensing can be extended if wireless 

technologies such as RFID are employed as shown in Wen’s work. 

 

Table 4 presents a summary of some earlier research work done during 1981 and 1997 on 

SAW chemical sensors. 

 

 

3.2 Carbon nanotube (CNT) 

 

Beside SAW sensor, CNT based sensors are also received many attentions after the discovery 

[49, 50] of cylindrical graphene shape (shown in Figure 3) multiwall carbon nanotube 

(MWNT) [49] and single walled carbon nanotube (SWNT) [50] in the past two decades, 

which puts forwards a new technology, with high chemical and thermal stability, high 

elasticity, high tensile strength and metallic conductivity [49]. Since then many intense 

investigations and researches has been ongoing on CNT and many novel applications has 

occurred including scanning probes, electron field emission sources, actuators, batteries, 

nanotube devices [51].   

 

 

Figure 14: Structure of single walled carbon nanotubes (SWNTs) [52]. 

 

    Figure 14 represents the general structure of the carbon nanotube, consisted of a cylindrical 

wall and two caps. However, there are research evidences showing that the purified nanotube 

with open-ends have a better electrochemical properties, as the dangling bonds is able to 

further react with chemicals[53]. Moore et al [54] reported that the ends of carbon nanotube 

showed excellent electrochemical properties, with reversible electrochemistry at the ends of 

the tubes because of the oxide species formed from the dangling bonds of carbons. Pre-

treatment and purification are to improve the electrode performance, but to sense the 

existence of the chemical is to monitor the change in the electrode.  In general, the CNT-



22 

 

based gas sensing utilizes the electrical conductance change caused by the gas adsorption as 

the electrical readout.  

 

Table 4: Chemicals and monitored air particles [48] 

Measurand Substrate Chemically interactive material 

(CIM) 

Acetone  Hydroxybutyl methyl cellulose 

Methanol  Hydroxybutyl methyl cellulose 

H2 YZ-LiNbO3 Palladium 

 STX-SiO2 Palladium 

 Si/SiO2/ZnO Palladium 

CH3CHOH  Hydroxybutyl methyl cellulose 

H2O STX-SiO2 Phthalocyanine (PC) 

H2S YZ-LiNbO3 WO3 

 YZ-LiNbO3 TEA 

 YZ-LiNbO3 WO3 

 RCY-quartz WO3 

 Si/SiO2/ZnO WO3 

CO STX-SiO2 Phthalocyanine (PC) 

CO2  Phthalocyanine (PC) 

CH4 STX-SiO2 Phthalocyanine (PC) 

SO2 YZ-LiNbO3 Triethanolamine (TEA) 

 STX-SiO2 Phthalocyanine (PC) 

 quartz Heteropolysiloxane 

NO2 YZ-LiNbO3 Lead phthalocyanine 

 STX-SiO2  

 YX-LiNbO3 Lead phthalocyanine 

 Quartz Copper phthalocyanine 

 Si/SiO2/ZnO Copper phthalocyanine 

 LiNbO3 none 

NH3 STX-SiO2 Platinum 

 RCY-quartz WO3 

Antigen/antibody 

reactions 

Z cut LiNbO3 Biologic film 

SO2 Yz LiNbO3 Triethanolamine (TEA) 

Toluene ZnO/AI/SixNy Poly(dimethylsiloxane) 

  Ethylene/vinylacetate 

CH2CL2  Polycarbonate resin 

Humidity STX-SiO2 Polyethynyfluoreno 

Organic vapours ZnO/SiO2/Si Polymers 

Vapours ZnO/Si Polymers 
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    Rosen [56] applied carbon nanotubes as electrodes in gas discharge tube(GDT) in his work. 

The result showed that dc breakdown voltage of the GDTs was highly depended on the gas 

pressure and on the noble gas.  However, the dc breakdown voltage of the nanotube coated 

GDTs decreases gradually with increasing number of surges. In general, gas discharge tubes 

comprising SWNT-coated electrodes had significantly improved performance in terms of dc 

breakdown voltage, with lower breakdown voltage and a factor of 4–20 reduction in 

breakdown voltage fluctuation. That could be attractive to Asymmetric Digital Subscriber 

Line (ADSL) and High-bit-rate Digital Subscriber Line (HDSL). 

 

    Parikh[57], in 2005, described the fabrication and performance characteristics of single 

walled carbon nanotube (SWNT) bundles based sensor, which was directly deposited from 

aqueous surfactant supported dispersions on plastic substrates. Different types of SWNT were 

used in sensing different vapors including NO2, O2, NH3. The result evidenced the change in 

resistance, which was believed to be due to a work function of the tube or charge transfer 

interactions, and SWNT/PET also showed better electrical responses over black/PET in his 

work.  

 

    In the interest of carbon nanotube antenna, G. W. Hanson[55] did calculation on the 

properties of carbon nanotube antennas via a Hallén’s-type integral equation. A carbon 

nanotube antenna had inherently high impedance and relatively sharp resonances with very 

low efficiencies compared to macro-scale antennas.  However, carbon nanotube antennas 

were found to exhibit plasmon resonances above a sufficient frequency. 

 

    In addition, Keat [58] tested a wireless gas sensor that was comprised of a gas-responsive 

multiwall carbon nanotube (MWNT)—silicon dioxide (SiO2) composite layer which was 

deposited on a planar inductor-capacitor resonant circuit. This sensor was able to monitor 

carbon dioxide (CO2),oxygen (O2), and ammonia (NH3).  The sensor response was 

reversible for O2 and CO2 but irreversible for NH3. The response time was approximately 

45s, 4 min and 2 min for CO2, O2, NH3. The result also showed MWNT had a lower affinity 

for O2 compare to CO2. The conductivity of MWNTs shifted lower when the sensor was 

exposed to CO2 or NH3. The MWNT was also humidity and temperature dependent. 

 

    Some of the research work is summarized in Table 5, including detection of 

ammonia(NH3), nitrogen dioxide(NO2), hydrogen (H2) and methane (CH4), carbon monoxide 

(CO), sulfur dioxide (SO2) and hydrogen sulfide (H2S), oxygen (O2).  
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Table 5: Summary of research work on CNT-based chemical sensors [59]. 

Analyte CNT Material/Method Detection Limit 

NO2 Calculation N/A 

 bare CNTs 10 ppb 

 vertically aligned CNTs 25 ppb 

 metal-decorated CNTs 100 ppb 

 metal oxide decorated CNTs 500 ppb 

 Polymer-coated CNTs 100 ppt 

NH3 Calculation N/A 

 bare CNTs 5 ppm 

 vertically aligned CNTs 5 ppm 

 CNT capacitor N/A 

 CNT resonant frequency 

sensor 

ca. 10 ppm 

 metal-decorated CNTs 5 ppm 

 metal oxide decorated CNTs 5 ppm 

 Polymer-coated CNTs 100 ppb 

 Atomically doped CNTs ca. 1% 

H2 Pd-decorated CNTs 10 ppm 

 Pt-decorated CNTs 0.4 % 

 vertically aligned CNTs 100 ppm 

 Cryogenically cooled CNT 

optical probe 

4% 

CH4 Calculation N/A 

 Metal-decorated CNTs 6 ppm 

CO Calculation N/A 

 bare CNTs 100 ppm 

 metal-decorated CNTs 2500 ppm 

 metal oxide decorated CNTs 10 ppm 

 radially deformed CNTs N/A 

 Atomically doped CNTs N/A 

 CNT capacitor N/A 

 CNT resonant frequency 

sensor 

1500 ppm 

 Polymer-coated CNTs 167 ppm 

SO2 Bare CNTs 10 ppm 

H2S Metal Oxide decorated CNTs 50 ppm 

O2 Calculation N/A 

 Bare CNTs N/A 

 CNT SAW sensor 1500 ppm 

 

 

 

 

 

 

 

 

 



25 

 

3.3 Radio Frequency Identification (RFID) Technology 

 

Different from above technologies, Radio Frequency Identification (RFID) is entirely 

wireless based. It is still a relatively new technology in chemical sensing field, evolved from 

identifying and tracking technology on inventory management.  

 

    A recent work [60] done by Yang et al demonstrated the great advantage of the RFID 

system. He revealed a three-level Zigbee RFID sensor network for inventory management 

applications.  This connectionless tracking structure employed from RFID and Zigbee 

network did not require dense router, and also provided a reasonable good battery life by 

employing sleep mode. Originally, RFID technology serves the same purpose as bar code 

technology to provide unique identification of the object for easy locating and tracking. Bar 

codes have to be manually scanned, while RFID system can be auto controlled; Ultrasound 

and infrared cannot penetrate many materials, but RF signal is able to pass through many 

media except conductive materials and a few others; GPS, on the other hand, is not for indoor 

environment. 
 

    Another research done by Tseng also illustrated that ability. In this work [61], the author 

developed a Globally Harmonized System (GHS)-based RFID system, which was able to 

provide security monitoring and wireless sensing technology to collect the inventory of the 

chemicals, enabling the inventory control on hazardous chemicals. The usage of all the 

hazardous chemicals was recorded automatically, hence, ensuring the security of them. It also 

eliminated the human operations in the system and was able to measure the varying quantities 

of the chemicals in containers. 

 

    By integrating RFID technology into chemical sensing will enable the control of sensors as 

well as provide wireless ability to the sensors, as mentioned earlier in Wen’s work [47] on 

surface acoustic wave.  Chang synthesized a new type of antenna with an RH (relative 

humidity) sensing function using a modified polyimide and passive RFID. The polyimide 

film had on hydrophobic element and the polyimide acid is made from diamine of 

oxidianiline(ODA) and dianhydride of m-pyromellitic dianhydride in an aprotic solvent of N-

methly-2-pyrrolidone(NMP). It operates at a humidity-dependent frequency with a sensitivity 

of 108kHz/%RH under 25-90%PH. 

 

    In Steinberg’s recent work [62], a pH-sensitive sol–gel thin film containing the 

colorimetric indicator BCG was chosen as a model chemical interface with which to 

demonstrate the feasibility of the wireless optical chemical sensor.  The optoelectronic 

interface of the RFID tag comprises a silicon photodiode and two light emitting diode (LED) 

sources measuring the optical absorption of the pH-induced color change of the thin film at 

two discrete wavelengths. The pH response curve and the pK value of the immobilized 

indicator were determined using the RFID tag system and compared with the results obtained 

using a standard laboratory spectrophotometer. A good correlation between the 

measurements was achieved, demonstrating the viable integration of an optical absorption 

based chemical sensor onto a passive RFID tag. 

 

    Potyrailo [63, 64] did research on RFID sensors and showed the possibility of such 

technology on sensing toxic vapor by directly coating the sensing film onto the RFID antenna. 

In his recent work, a chemical solution polystyrene sulfonate acid was coated on the surface 

of a RFID sensor which was then exposed to two types of toxic vapors, acetonitrile and 
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ethanol. The results evidenced the shifts and changes of frequencies were good indicators of 

the concentration of the vapors.  

 

 

3.4 Summary 

 

Based on the review in this section, Table 6 and 7 are produced as a summary of the possible 

candidates for sensing film and analytes as well sensing parameters that could use as the 

measurement and determination of the analytes. 

 

    Table 6 summarizes the sensing materials and corresponding vapors under the test. It 

provides a guide for sensing film selection to the target vapor. Table 7 summarizes the 

parameters that can be used as the indicators or the detectors corresponding to the Table 6. 

 

Table 6: Potential sensing materials and candidates 

 Chemical/Material coated Vapors to be sensed 

1 L-glutamic acid hydrochloride ammonia gas 

2 β-Cyclodextrin m-xylene 

3 A2 silica-coated quartz and Gas methanol 

4 SiNx , InOx O3, H2 

5 LiNbO3 CO2, humidity 

6 SWNT/PET NO2 

7 MWNT(pyrolysis of ferrocene and xylene)-SiO2 CO2, O2, NH3 

8 SnO2 CO and NO2 

9 Poly file(dimethylsiloxane) toluene 

10 Polyisobutylene; polyvinyl alcohol, polyvinylpyrrolidone; 

polyethylene glycol, polyethyleneimine; Nafion 

HCl vapor, CO2 

11 Mixture of Dicyclothexylcarbodiimide(DCC) 

Dimethylsulfoxide(DMSO) Dichloromethane(DCM) 

H2 

12 - methane, ethane, propane 

13 super continuum spectrum Carbon monoxide(CO) 

14 Polystyrene sulfonate acid EtOH, CAN, H2O 

15 - - 

16 WO3 NOx, NH3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Sensing Parameters 
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Parameters 

1 Frequency and 

frequency shift 

Concentration Time   

2 Frequency shift due 

to mass loading 

Resonant 

frequency 

Layer height Mass 

loading 

Film layer 

density 

3 Mass change of the 

methanol 

Modulus change 

of the methanol 

Frequency changes 

of quartz and Gas 

SAW 

  

4 Time Frequency    

5 Antenna S11, 

reflection 

coefficient 

Antenna Phase 

angle 

   

6 Voltage  Current Time Electric 

response 

∆R/R 

 

7 Time Relative 

permittivity 

Conductivity Resonant 

frequency 

impedance 

8 Current Time    

9 Plate wave 

Frequency shift and 

frequency 

Mass per unit area 

on the bare plate 

and chemical 

sensitive film 

Wave length and 

optical wave length 

of the laser 

Intensity of 

the laser 

wave 

 

10 Voltage  Current Time Electric 

response 

∆R/R 

 

11 Voltage Current Wavelength Transmittan

ce 

 

12 Temperature conductance Surface Shottky 

barrier height, Vs 

  

13 Time Wavelength  Voltage Correlation 

amplitude 

 

14 Antenna Resonant 

frequency(f1 and 

f2) 

Antenna 

Impedance Zp 

Antenna Frequency 

position fp 

Vapor 

pressure and  

saturated 

vapor 

pressure 

 

15 Antenna Resonant 

frequency(f1 and 

f2) 

Antenna 

Impedance Zp 

Antenna Frequency 

position fp 

Vapor 

pressure and  

saturated 

vapor 

pressure 

 

16 Operation 

temperature 

Annealing 

temperature 

Vapor 

Concentration 

Time  
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Chapter 4  

 

Theory and Modeling of Distance Effect of 

UHF RFID 
 

 

 

4.1 Power and Distance 

 

The wireless energy transmission described by Friis equation [65], with reflection coefficient 

[66],  , and polarization loss factor (PLF) [67],     , taken into consideration, is following 

 

           
               

      
  

 

      
           (1) 

 

Where, 

                              
                                         

                             

                       

                                      
                                 

 

From Eq. (1), it shows that the received power by the tag,     , is inverse proportional to 

the second power of the distance: 

 

   
 

  
  (2) 

 

    The inverse proportionality shows that as the distance increases, the less amount of the 

power drops over the increment distance. Based on Eq. (2), the modeling of the received 

power of the tag over distance for a simple RFID system that contains one reader and one tag 

can be simulated as Fig. 1(a): 
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(a)                  (b) 

Figure 15: Mapping between power and reliability of the system; (a) power levels for 100% 

and 0% reliability and corresponding distances; (b) linear approximation of the model and 

mapping from power to reliability. 

 

When the received power is sufficient high (>Pi), the present of tag is always detected, 

defined as 100% reliability, while when the received power becomes insufficient to power the 

tag (<Pf) as the distance increases, the tag is no longer detectable, defined as 0% reliability. 

When the power decreases from Pi to Pf as the distance increases, the reliability is also 

decreasing from 100% to 0%. Thus, the percentage reliability can be mapped to the power for 

that range, and following equation is proposed. 

 

              
       

     
              (3) 

 

Where, 

                                                                 

                                                          

                                   

                                      
                                      
                          

 

Thus, based on Eq. (1) and (3) the reliability in second region can be rewritten as 

 

              
  
    

     

     
    

  
              (4) 

     

A simplified version can be obtained by applying linear approximation, presented as a 

straight dash line connected between 100% and 0% reliability in Fig. 1(a). 

 

       
     

     
     

     

     
                     (5) 

 

    Rearranging it, the relationship between power and distance is obtained. 
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  (6) 

 

    Based on the distances, di, df, three regions can be identified. In the first region (d<di), 

denoted as the stable region, the reading reliability is relatively high (100%); in the second 

region (di<d<df), denoted unstable region, the reading reliability is between 0% and 100%; 

and in the third region (d>df), the reliability is low and becomes zero. Depending on the range 

of unstable region, following two cases have been identified. 

 

 

Case 1: the unstable region is quite small 

 

In RFID design, the operation power of tag is expected to be quite low, with relative long 

reading distance, di, of the stable region. Thus, the unstable region, defined as df-di, is small 

compared to stable region. Thus, for this case, the following conditions are applied. 

 

 
  

  
      

 

  
    (7) 

 

    Then, substitute into Eq. (4), the simplified version is given as following. 

 

              
    

     
  (8) 

 

    This is the same as linear approximation of the general case in Fig. 1(b). Thus, the linear 

approximation could be quite accurate when the unstable region is small. 

 

 

Case 2: the unstable region is large 

     

When the df is getting larger, the corresponding Pf is quite small (≈0), which indicates Pf << 

Pi. Thus, Eq. (3) can be rewritten as 

 

              
    

  
             (9) 

 

Then, 

 

              
  
 

  
 (10) 

 

    By modeling reliability based on the distance, it is much more convenient and easier for 

performance prediction since distance is a parameter that is relatively easy to measure in the 

practical sense. 

 

 

4.2 Reading period 

 

When energy is transmitted wireless to tag, it will first charge a capacitor inside the tag to 

reach the operation power requirement of the tag. As the distance between tag and reader 
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increases, less energy is transmitted and consequently more time would be required to reach 

the threshold power for the tag to operate. Thus, besides increasing the output power of the 

reader, increasing the reading period would also extend the reading range. Other factors, such 

as reflection coefficient and propagation loss factor have similar effects but already included 

in the basic formula which is not evaluated hereby. 

 
Figure 16: Illustration of two reading periods, t1 and t2. The maximum reading distance with 

100% reliability are defined as d1i and d2i; the 0% reliability first occurs at d1f and d2f. 

 

    Figure 16 illustrates two reading periods, t1 and t2 respectively. d1i and d1f define the 

unstable region for reading period t1 while d2i and d2f defines unstable regions for reading 

period t2. By energy equation, following equation is obtained. 

 

   
 

 
                   (11) 

 

Substitute Eq.(1) to Eq.(11), for different time period as illustrated in Fig. 2, the 

relationship between time and distance can be found for the two cases for 100% and 0% 

reliability respectively.  

 

 
  

   
  

  

   
      

  

   
  

  

   
   (12) 

 

Hence,  

 

 
   

   
 

   

   
  (13) 

 

And, 

 

 
       

   
 

       

   
  (14) 

 

    Eq. (13) and (14) illustrate that the unstable region is proportional to the stable region for 

the same tag and it is independent of time. 
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    Thus, the extended distance is following. 

 

           
  

  

 
       (15) 

 

Similarly, 

 

           
  

  

 
       (16) 

 

Combining Eq.(15) and (16), 

 

          
  

  

 
           (17) 

 

    Eq. (12) and (17) shows that as time, t2, increases, though the reading distance, d2i, would 

increase, the unstable region defined by d2f-d2i would also increase. This allows prediction of 

reading distance based on the time period. By performing one set measurement (t1, d1f), one is 

able to predict the required reading period for preferred distances. It also evidences that this is 

a tradeoff among reading range, power and the width of unstable region.  

 

 

4.3 Reader Modeling 

 

Many applications take the advantages of passive tags because of its relatively small size, low 

cost and battery-free characteristics. However, to maintain suitable reading ranges, readers 

are required to output more power to ensure the operation of passive tags.  

Based on Eq. (1) which describes the power transmission between two antennas, the power 

received by the tag antenna would be: 

 

             
                                    

    
 

             
                                         

 

      
  (18) 

 

And 

 

          
  

  
             (19) 

 

 

    Where, 
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In the experiments, the reader and the tag are placed face to face, light in sight, and 

then               . Hence, 

 

             
                          

 

      
 (20) 

 

 

4.4 Tag Modeling 
 

 
 

 

Figure 17: Equivalent circuit model of a typical tag. 

 

Tag is another major component of RFID system, consisted of a transponder chip and an 

antenna, a simplified tag representation in Figure 17.    is referred as modulated impedance 

during load modulation in backscattering process, which varies based on the stored data in 

the chip and generates corresponding voltage alternations on the reader side. Such voltage 

alternation is then demodulated to obtain the data at the reader side.     is referred as load 

resistor and    is referred as charging capacitor that stores incoming energy from the reader. 

For maximum power transmission in the ideal case, the antenna impedance, ZA, would match 

with the chip impedance,   . The reflection coefficient from transmission theory provided in 

[64] then is calculated as following: 

 

   
     

     
  (21) 

 

    Where, 

                          
 

Also, based on radar theory, the power reflected or backscattered at the tag antenna would 

be: 

 

             
                           

    
  (22) 

 

Antenna 

Reader Tag 

Chip 

http://en.wikipedia.org/wiki/Orthogonal_projection
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    Where, 

                                                        
                                         

     

Then, 

 

                            
  (23) 

 

                                  (24) 
 

  Where, 

                                        

                                  

 

Substitute Eq. (6) to (3),  

 

              
                     

    
     (25) 

 

That would give, assuming no other losses: 

 

                
  

       
     

  
 (26) 

 

Based on the geometry shape of the tag, an approximation on the equation in [65] for the 

maximum cross section area of a rectangular flat plate is adopted:  

 

      
      

 
                      (27) 

 

Where 

                             
                            

  

Therefore, Eq. (3) can be rewritten as: 

 

                 
           

       
      

   

      
     (28) 
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Chapter 5  

 

Distance Experiment Results of UHF RFID 
 

5.1 Experiments Setup 

 

Experiments were conducted in an open space. Five types of Ultra-High-Frequency (UHF) 

metal tags and two types of ultra-high-frequency paper tags were used. One handheld RFID 

reader with linear polarized antenna (MC9000G, Symbol Technologies), which is similar to 

that used at the checkout points in glossary stores, and one fixed reader (MICRO-UHF with 

portable antennas, Tagsense Inc. ) were used in the experiments. The output power for 

handheld reader is 4 watt, while the output power for the fixed reader is 50 milliwatt. Two 

portable antennas, 6dbi dipole antenna and 8dbi flat antenna, were used for MICRO-UHF 

reader. 

 

In the range sensitivity test, the reader was fixed while the RFID tag is displaced 

perpendicularly to its out of plane axis (vertical position) away from the reader by 

incremental distances such as d1 and d2. For each incremental distance, tag presence or lack 

of was recorded. The maximum reading distance, df , is determined as the distance where the 

tag are no longer detectable and identifiable. 

 

    In the orientation sensitivity tests, tags were orientated either vertically or horizontally, at 

which the vertical orientation refers to the case of zero degree angle (see Figure 18(a)) and 

the horizontal orientation refers to θ=90º (see Figure 18(b)). The range sensitivity test is 

repeated as the tags are placed along the horizontal orientation. 

 

   The range sensitivity tests were conducted to assess the performance of the RFID system in 

the presence of “obstacles” that were placed between the reader and the tag or right behind 

the tag (Figure 18(c)). Materials such as paper, cardboard, foam, metal and graphite 

composites were employed in the obstacle structures. 

 

    For above tests, there were 10 trials for each experiment which was then repeated three 

times or more. In this paper, data summarized in the table and figures were the average values 

based on 10 trials. Two criteria in the evaluation of RFID system performances were tag 

sensitivity and reliability. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 18: (a) Schematic diagram of range sensitivity with tag orientation at zero degree from 

the vertical plane; (b) Schematic diagram of the orientation sensitivity tests; (c) Schematic 

diagram of tests influencing RF signals due to obstacle film; 

 

 
 

 

d1

d2

Reader

Tag Tag

θ

Reader

RFID Tag with 

angle of θ

Reader
Tag

Obstacle Film



37 

 

5.2 Range and sensitivity 

 

It is observed that the range sensitivity spectrum can be divided into three regions. In the first 

region, denoted as the stable region, the reading reliability is relatively high (100%); in the 

second region, denoted as unstable, the reading reliability is between 0% and 100%; and in 

the third region, the reliability is low and eventually becomes zero. Fig. 5 illustrates these 

three regions for different tag orientations (vertical and horizontal). It is further noted that the 

presented data is the average of 10 readings conducted at 10 sec duration each. Readings at 2 

sec were also conducted leading to lower reliability and sensitivity ranges, hence not reported 

here.  In fact for the 2 sec detection response the stable sensitivity range was less than 50 cm; 

however, when the response time was set to 10 seconds, stable sensitivity range was doubled 

to 100 cm. 

 

    Table 7 shows the results for range and orientation sensitivity and reliability, using the 

portable RFID reader with linear polarized 6 dBi gain antenna and 915MHz UHF RFID paper 

tag.  The processes described in Fig. 3(a) and (b) were conducted to produce this table.  

 

Table 8: Effect of Distance and Orientation between Portable Reader and UHF Paper Tag. 

Range Sensitivity d 

 (cm) 

Tag Detection Rate (Reliability, %) 

Reader ┴ to Tag 

        (Horizontal 90
o
) 

Reader ┴ to Tag 

(Vertical 0
o
) 

100 100 100 

110 100 87 

120 100 43 

130 100 13 

140 97 10 

150 100 0 

160 83 0 

170 67 0 

180 53 0 

190 33 0 

200 26 0 

210 0 0 

 

    Figure 19 represents the percentage power loss in this studied region, for a horizontal tag 

orientation. The received power at distance 150 cm was considered as the reference power 

and other power was denoted as a percentage of the reference power.  This power loss 

percentage is based on the theoretical Eq. (1) and (3), while the reliability is obtained from 

experimental data. The demonstration of the similarity between power and tag reliability 

confirmed that as the reading range increases, the reliability decreases along with the power. 

Above a high threshold point (the power received at a distance of 150 cm), the RFID tag can 

reliably be detected, below a lower threshold point (the power received at and after a distance 

of 200 cm), the RFID tag can’t be detected at all. The measured reliability is proportional to 

the received power.  
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(a) 

 

 
(b) 

 

Figure 19: Reliability rate (%) drops as distance increases in the unstable region at 0
o
 phase 

shift and 90
o
 phase shift; (a) Horizontal measurement, 0

o
; (b) Vertical Measurement, 90

o
. 
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    The prediction by the ratio is quite similar to reliability measurement. The prediction errors 

are approximately 7.1% for linear modeling based on Eq.(8) and 13.6% for quadratic 

modeling based on Eq.(10) for horizontal measurement as in Fig. 4(a). For vertical 

measurement, the errors are 13.9% and 15.9% for linear and quadratic modeling respectively. 

Linear modeling shows a better result for this tag. This also confirms that when the stable 

region is larger, quadratic modeling is getting more accurate, while it is opposite for linear 

modeling, also shown in Fig. 5. In addition, by knowing the region boundary of the transition 

region, the reliability of the tag in the region can be predicted directly based on the distance 

of the boundaries. The corresponding power can also be found based on modeling equation. 

Then the measurement of power loss are only required at the boundary of the transition 

region to obtain the full spectrum of the region.  

 

It also notices that the measurement of the transition region is approximately 50% of the 

stable region for both horizontal and vertical cases. It evidences that the transition region is 

also proportional to the stable region by a ratio, which is also confirmed by the model and 

Equation (13) and (14).  

 

5.3 Time 

 

It is further noted that the presented data in Fig. 5 is the average of 10 readings conducted at 

10 sec duration each. Readings at 2 sec were also conducted leading to lower reliability and 

sensitivity ranges.  

 

    Figure 20 shows the comparison between 2 second measurement and 10 second 

measurement. The prediction errors are approximately 11.4% for linear modeling and 28.0% 

for quadratic modeling in the 2 second measurement. For the 10 second measurement, the 

errors are 16.5% and 14.2% for linear and quadratic modeling respectively, which confirms 

the finding that as stable region grows quadratic modeling is more appropriate.  In addition, 

the widths of the unstable region are 70 centimeters and 100 centimeters. 
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(a) 

 

 
(c) 

 

Figure 20: Measurements and experiments result for different time period which shows linear 

modeling has a better coherence. (a) 2 second reading period; (b) 10 second reading period. 
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5.4 Obstacle 

 

In the obstacle experiment, the fixed MICRO-UHF reader, with 8 dBi gain flat patch antenna, 

and the 915MHz paper tag were used. A stack of paper, of different thickness was used as the 

obstacles. As presented in Table 8, using the flat patch antenna, the stable sensitivity range or 

stable region (defined as 100% reliability) was 70 cm. This is due the difference between the 

output powers of the two readers and the gains associated with readers’ antennae.     

 

    A reliability of 100% was obtained for detection range within 12 cm for all ranges of paper 

thicknesses. At 100 cm, the reliability has completely degraded.  It is observed that as the 

paper thickness increases linearly, the range sensitivity decreases exponentially.  Figure 21(b) 

illustrates this characteristic. Additionally, as the reliability decreases, the curve shifts from 

left (100% reliability) to right (0% reliability). Figure 21(a) demonstrates the relationship of 

the percent reliability to the paper stack thickness. The solid lines represent experimental data 

at different distances; from top to bottom are distances 15 cm, 20 cm and 25 cm, respectively. 

It is observed that the reliability declined as the paper stack thickness increased; the higher 

the thickness, the faster the decline rate is.  At a range of 20 cm, a linear relationship between 

the reliability and the obstacle thickness is established (dotted linear line).  Such linearity 

provides predictive ability to assess the reliably in the presence of such obstacle. 

 

Table 9: Effect of Obstacles between Fixed Micro-UHF Reader and UHF Paper Tag. 

Sensitivity Range 

d (cm) 

Tag Detection Rate 

(average successful trails out of 10 trails) 

No obstacle Papers 

(15mm) 

Papers 

(35mm) 

Papers 

(65mm) 

10 10 10 10 10 

12 10 10 10 10 

13 10 10 10 9.7 

14 10 10 10 2.3 

15 10 10 9.3 2 

16 10 10 8.3 0 

18 10 9.5 4.3 0 

20 10 8.7 3.7 0 

22 10 2.3 2 0 

24 10 1 0 0 

25 10 0 0 0 

70 10 0 0 0 

80 9.7 0 0 0 

90 6 0 0 0 

100 3 0 0 0 

110 0 0 0 0 

 

    It is noted that similar trends were observed for other non-metallic obstacles; however, for 

metallic obstacles (e.g. aluminum alloy film), a 0% reliability was obtained for all sensitivity 

ranges. This was expected, since the incident electromagnetic wave was reflected by the 

metallic surface with a 180º phase shift [66, 67]. 
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(a) 

 
 

 

(b) 

 

Figure 21: (a)Obstacle thickness effect on reliability; (b) Obstacle thickness effect on range 
sensitivity. 
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Chapter 6  

 

Humidity and Temperature Experiment Result 

of UHF RFID 
 

 

 

6.1 Experiments Setup 

 

One thin (paper like) 915 MHz UHF tag (98.2 x 12.3 mm) and one 840~960 MHz flat 

antenna (220 x 220 x 30 mm) were used in this experimental assessment. An ESPEC (ESX-

3CA) environmental chamber was used for humidity and temperature control, and an Anristu 

network analyzer (VNA-MS2026C) was used for data collection and analysis as in Figure 

22(a). Inside the environmental chamber shown in Figure 22(b), the antenna was placed at a 

fixed 10 cm away from the tag. The antenna was connected to the network analyzer which 

was placed outside the environmental chamber. The environmental chamber’s operating 

conditions are shown in Fig.2. 

 

 
Figure 22: Illustration of experimental setup; (a) environmental chamber and network 

analyzer; (b) tag and antenna. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 23: Frequency measurements; (a) tag’s resonant frequency; (b) valley and peak 

frequency of the imaginary impedance measurement; (c) peak frequency of the real 

impedance measurement. 
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    In this performance assessment work the tag-antenna system was subjected to a varying 

temperature and humidity environment. In the temperature variation experiment, the relative 

humidity (RH) was fixed, independently, at 50% and 80%, while the temperature increased 

from 20oC to 80oC at increments of 10oC.  Similarly, at the same humidity levels, the 

temperature was ramped down at the same increments of 10oC from 80oC to 20oC.  To 

assess the repeatability of the results the tests were repeated twice.  In the humidity variation 

experiment, the temperature was fixed, independently, at 50oC and 80oC, while the RH 

varied from 20% to 80% and from 80% to 20% at increments of 10%.   Similar to the 

temperature experiments, and to assess the repeatability of the results the tests were repeated 

twice. 

 

    In both humidity and temperature tests, the environmental chamber was considered as an 

enclosure having metal sidewalls.  The adverse effects of metal on radio frequency 

propagation are well known and are presented in the open literature. To discern the metal 

effect and to project a more realistic environment, additional data was taken with the 

environmental chamber door open, at the above presented conditions.  The door was kept 

open for few seconds at each test point. For example, after taking data at 50oC and 50% RH, 

the door of the chamber was opened, for few seconds, to allow for signal propagation and 

data collection for the particular condition. This process reduces the interaction of the 

conductive enclosure on the RF signal propagation.  

 

In this investigation, analysis has mainly focused on the passive UHF RFID tags’ resonant 

frequency variation as a result of environmental changes. Selected tag’s frequency 

characteristics (Figure 23) were monitored.  These characteristics include resonant frequency, 

imaginary impedance valley and peak frequency and real impedance peak frequency.  The 

resonant frequency is denoted by fo (Fig. 21(a)), the valley and peak frequencies of the 

imaginary impedance are denoted by F1 valley and F1 peak (Fig. 21(b)); whereas, the peak 

frequency of the real impedance measurement is denoted by F2 peak. 

 

 

6.2 Temperature Variation Effects 

 

In varying the temperature while holding the RH constant, a change in the resonant frequency 

of the RFID tag was observed, as shown in Fig. 4.   In both cases where the environmental 

chamber door was open and closed, and at 80% RH, a linear relationship was obtained 

between the resonant frequency and the temperature. 

 

In the experimental setup where the door of the environmental chamber was closed, and at 

80% RH, the frequency decreased from 912.727 MHz to 909.425 MHz with a rate (slope of 

the trend line) of 55.05 kHz/
o
C while the temperature increased from 20

o
C to 80

o
C (Figure 

24(a)); when the door was open, the decrease of frequency was more pronounced and varied 

from 912.927 MHz to 907.524 MHz with a rate of 90.05 kHz/
o
C (Figure 24(b)). The rate of 

frequency decrease is higher when the chamber door was open.  This is a result of the effect 

of the metal enclosure on the UHF response. Although the heat transfer from the chamber to 

its outside, when the door was opened, might have certain effect on the frequency shift, the 

heat loss would result in lower temperature indicative of lesser resonant frequency shift. 

Additionally, the rate of decrease between the temperature ramp up and down for both closed 

and open chamber door, is found to be 57.1 kHz/
o
C and 82.8 kHz/

o
C respectively. This 

difference between temperature ramps up and down is believed to be due humidity variation.  
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Figure 24: The resonant frequency shift as a result of temperature variation; (a) chamber door 

closed (at 80% RH); (b) chamber door open (at 80% RH); (c) comparison between 50% RH 

and 80% RH. 
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Figure 24: The resonant frequency shift as a result of temperature variation; (a) chamber door 

closed (at 80% RH); (b) chamber door open (at 80% RH); (c) comparison between 50% RH 

and 80% RH. 
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This difference is practically insignificant in the open door case.   It is noted that the rates 

of increase or decrease are obtained as an averages between the ramps up and ramp down.   

 

    At 50% RH, similar frequency decreases were also observed (Figure 24(c)). A rate of 

decrease of 25.5 kHz/
o
C for closed chamber door and of 25.8 kHz/

o
C for open chamber door, 

were obtained, respectively. Similar to the 80% RH case, the higher rate of decrease is 

associated with the open door configuration, indicating the similar effects of the metallic 

enclosure on the RF signal propagation.  Additionally, at this lower level of humidity, the rate 

of change was slower than at higher humidity levels. Such higher frequency variation at 

higher humidity level is also observed in the humidity experiment (next section). This change 

can be attributed to the change of antenna properties, including both resistance and 

capacitance. Larger variation on temperature may result higher change on the antenna 

resistance and capacitance, which could alter the resonant frequency further away from its 

nominal value. 

 

 

6.3 Humidity Variation Effects 

 

In varying the humidity while holding the temperature constant, a change in the resonant 

frequency of the RFID tag was observed, as shown in Fig. 5.   In both cases where the 

environmental chamber door was open and closed, and at 80
o
C, a linear relationship was 

obtained between the resonant frequency and relative humidity.  In this experiment, both the 

humidity ramp up and down are provided at 80
o
C but only the ramp up was recorded at 50

o
C, 

unlike the case of temperature variation where both temperature ramp up and down were 

provided for both cases in Figure 25. 

 

    In the experimental setup where the door of the environmental chamber was closed, and at 

80
o
C, the frequency increased from 906.529MHz to 908.279MHz, for variations in humidity 

from 20% RH to 80%RH at intervals of 10% RH (Fig. 5(a)), with a variation rate of 12.1 

kHz/RH. Whereas, in the case of open chamber door, the variation of frequency was 

increased from 907.126MHz to 908.627MHz (Fig. 5(a)) with a variation rate of 0.08 kHz/RH.  

The rate of frequency increase is higher when the chamber door was closed.  This is a result 

of the effect of the metal enclosure on the UHF response as well as heat transfer. This 

difference is practically insignificant in the open door case believed to be due to reflection 

and deflection of water vapor at higher relative humidity level beside the metal effect caused 

by the chamber itself. The added reflection and deflection generally introduces phase shift to 

the original signal, and such phase shift can be both positive and negative, which could cause 

the resonant frequency shift either way. As a result, more frequency variation was observed 

when the chamber was closed. The gap between the two trend lines may be explained by heat 

transfer loss, identified earlier. The higher the humidity level, the more humidity and 

frequency loss would be expected when the door is open. Given the fact, the trend lines R
2
 

values are low for both closed and open door cases, 0.106 and 0.00001 respectively, these 

trend lines are not conclusive.  
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Figure 25: Resonant frequency shift due to humidity variation; (a) comparison between two 

cases (open and close) at 80
o
C; (b) comparison between 50

o
C and 80

o
C. 
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    At 50
o
C, similar frequency behavior was also observed in Figure 26(b). A rate of increase 

of 12.2 kHz/
o
C for closed chamber door and a rate of decrease of 9.7 kHz/

o
C for open 

chamber door, were obtained, respectively. Similar to the 80
o
C, the similar rate of increase is 

associated with the open door configuration, indicating the similar effects of the metallic 

enclosure and humidity impact on the RF signal propagation and showing the repeatability of 

the experiment.  Additionally, the constant displacement of approximately 0.88 MHz also 

confirmed the frequency shift due to temperature variation (previous section). Although 

based on Figure 26(a), the expectation of the displacement would be about 1.5 MHz, such 

difference could be caused by humidity variation, which is 2.75MHz. It is observed that, at 

both 50
o
C and 80

o
C, the change in frequency shift between the closed and open door 

configurations, increased as the humidity increased. This increase took place at similar rates 

but opposite direction. If the average of the frequency shift for both open and closed 

configurations, for both 50
o
C and 80

o
C, is obtained, no change of the frequency shift would 

be observed with increase in humidity.   

 

In addition to the use of the UHF RFID resonant frequency, for the assessment of the 

impact of temperature and humidity variations on the tags response, characteristics such as 

impedance valley and peak frequency were also used.  Figure 27 and Figure 28 present the 

valley frequency (F1 valley), peak frequency (F1 peak) of imaginary impedance and peak   

frequency (F2 peak) for real impedance at different temperature and humidity variations, 

respectively. These experimental conditions, for obtaining the variations in frequency, are 

identical to those employed in the above two sections. 

 

    Figure 27 illustrates distinctively the rate of increase of F1 valley, F1 peak and F2 peak  

frequencies as function of temperature increase in both, open and close door configurations 

and for both high and low humidity, 80% RH and 50% RH, respectively. It is observed that 

the rate of increase, with temperature increase was lower for open door configuration for both 

cases of RH. However, as seen in Fig 4.c, a higher rate of decrease was observed for the open 

door configuration. At this stage of the research, it is not clear why as the temperature 

increased the resonant frequency shifts decreased, while the F1 valley, F1 peak and F2 peak 

frequencies increased. The difference between the frequencies at 80% RH and 50% RH was 

not as pronounced in Figure 27 as was in Figure 25(c).  Additionally, Figure 27 illustrates an 

insignificant change in F1 valley, F1 peak and F2 peak frequencies as the relative humidity 

increased from 20% to 80% for both open and closed door configuration and for both 80
o
C 

and 50
o
C.  If the average of open and closed door configurations is taken in the case of Figure 

25, similar conclusions can be drawn about the insignificance change in the resonant 

frequency shifts. 
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(a) 

 

 
(b) 

 

Figure 26: The peak and valley frequency shift as a result of temperature variation; (a) close 

case at 80% RH; (b) open case at 80% RH; (c) close case at 50% RH; (d) open case at 50% 

RH 
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(c) 

 

 
(d) 

 

Figure 26: The peak and valley frequency shift as a result of temperature variation; (a) close 

case at 80% RH; (b) open case at 80% RH; (c) close case at 50% RH; (d) open case at 50% 

RH 

 

694

695

696

697

698

699

700

701

702

0 20 40 60 80 100

F
re

q
u

e
n

c
y

 (
M

H
z
)

Temperature (oC)

F1 Valley

F1 Peak

F2 Peak

690

692

694

696

698

700

702

704

10 30 50 70 90

F
r
e
q

u
e
n

c
y

 (
M

H
z
)

Temperature (oC)

F1 Valley

F1 Peak

F2 Peak



53 

 

    
(a) 

 

 
(b) 

 

Figure 27: The impedance frequency shift as a result of humidity variation; (a) close case at 

80
o
C; (b) open case at 80

o
C; (c) close case at 50

o
C; (d) open case at 50

o
C 
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(c) 

 

 
(d) 

 

Figure 27: The impedance frequency shift as a result of humidity variation; (a) close case at 

80
o
C; (b) open case at 80

o
C; (c) close case at 50

o
C; (d) open case at 50

o
C 
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Chapter 7  

 

Conclusion 
 

 

 

Our experimental studies investigate the characteristics of different tags in different 

environment. The tag performance data is important in tag selection for practical applications 

and future optimization.  

 

    The range detection sensitivity, the tag orientation sensitivity, as well as the RFID system 

reliability to obstacles presence have been evaluated.  In the absence of obstacles, tag 

orientation has improved the system reliability and range of detection.  Employing a higher 

gain antenna, the sensitivity range is improved by half of the original range, for the same 

reliability level. By increasing the response time, the readability increases in the unstable 

zone. In the presence of non-metallic obstacles, it appears the reliability and range sensitivity 

has not been affected by the thickness of the obstacle used.   The range detection sensitivity, 

the tag orientation sensitivity, as well as the RFID system reliability to obstacles presence 

have been evaluated and matches with theoretical model.  In the absence of obstacles, tag 

orientation has improved the system reliability and range of detection.  Our experimental 

studies investigate the characteristics of different tags in different environment. The tag 

performance data is important in tag selection for practical applications and future 

optimization. The study on the temperatures shows that temperature has linear relationship 

with resonant frequency.  

 

    By knowing the region boundary distance of the transition region, the power loss in the 

region can be predicted directly based on the ratio of the two boundaries, and the 

measurement of power loss are only required at the boundary of the transition region to 

obtain the full spectrum of the region with 10.6% error. In addition, the linearity between 

time and power in the transition region can be used to predict the transition region of other 

reading periods by knowing one reading periods with 14% error. This could greatly simply 

the calculation required for three regions predictions, stable, transition and unstable regions. 

 

    An investigation on the impact of temperature and humidity variations on a passive UHF 

RFID system response was also conducted.  UHF RFID characteristics such as resonant 

frequency and impedance frequency were used to assess such impact at different 

temperatures (20
o
C to 80

o
C) and relative humidity (20% to 80%) in closed and open 

environments.  
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    Experimental results demonstrate a linear relationships between passive UHF RFID tags’ 

frequency (resonant and impedance) and temperature at different level of humidity. 

Additionally, as the relative humidity increased, at different levels of temperature, an 

insignificant change in frequency (resonant and impedance) is observed, indicating the lack 

of influence of humidity on the tag’s response. The linear relationship between frequency and 

temperature could be used as a temperature indicator On the other hand, for future work on 

the RFID tags, only temperature compensation is required. . Further investigations will focus 

on understanding the mechanism behind the decrease of resonant frequency and the increase 

of impedance frequency as function of temperature. 
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