
Some Theory and Applications of
Probability in Quantum Mechanics

by

Christopher Ferrie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2012

c© Christopher Ferrie 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis investigates three distinct facets of the theory of quantum information. The
first two, quantum state estimation and quantum process estimation, are closely related
and deal with the question of how to estimate the classical parameters in a quantum
mechanical model. The third attempts to bring quantum theory as close as possible to
classical theory through the formalism of quasi-probability.

Building a large scale quantum information processor is a significant challenge. First, we
require an accurate characterization of the dynamics experienced by the device to allow for
the application of error correcting codes and other tools for implementing useful quantum
algorithms. The necessary scaling of computational resources needed to characterize a
quantum system as a function of the number of subsystems is by now a well studied
problem (the scaling is generally exponential). However, irrespective of the computational
resources necessary to just write-down a classical description of a quantum state, we can
ask about the experimental resources necessary to obtain data (measurement complexity)
and the computational resources necessary to generate such a characterization (estimation
complexity). These problems are studied here and approached from two directions.

The first problem we address is that of quantum state estimation. We apply high-level
decision theoretic principles (applied in classical problems such as, for example, universal
data compression) to the estimation of a qubit state. We prove that quantum states are
more difficult to estimate than their classical counterparts by finding optimal estimation
strategies. These strategies, requiring the solution to a difficult optimization problem,
are difficult to implement in practise. Fortunately, we find estimation algorithms which
come close to optimal but require far fewer resources to compute. Finally, we provide a
classical analog of this quantum mechanical problem which reproduces, and gives intuitive
explanations for, many of its features, such as why adaptive tomography can quadratically
reduce its difficulty.

The second method for practical characterization of quantum devices takes is applied
to the problem of quantum process estimation. This differs from the above analysis in
two ways: (1) we apply strong restrictions on knowledge of various estimation and control
parameters (the former making the problem easier, the latter making it harder); and (2)
we consider the problem of designing future experiments based on the outcomes of past
experiments. We show in test cases that adaptive protocols can exponentially outperform
their off-line counterparts. Moreover, we adapt machine learning algorithms to the problem
which bring these experimental design methodologies to realm of experimental feasibility.

In the final chapter we move away from estimation problems to show formally that
a classical representation of quantum theory is not tenable. This intuitive conclusion is
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formally borne out through the connection to quasi-probability – where it is equivalent
to the necessity of negative probability in all such representations of quantum theory. In
particular, we generalize previous no-go theorems to arbitrary classical representations of
quantum systems of arbitrary dimension. We also discuss recent progress in the program to
identify quantum resources for subtheories of quantum theory and operational restrictions
motivated by quantum computation.

This thesis is based on the following publications:

• Ferrie, C., Granade, C.E. and Cory, D.G. (2012) Quantum Information Processing,
Online First. [72]

• Ferrie, C. and Blume-Kohout, R. (2012) AIP Conference Proceedings 1443, 14. [68]

• Ferrie, C., Granade, C. and Cory, D.G. (2012) AIP Conference Proceedings 1443,
165. [71]

• Ferrie, C. (2011) Reports on Progress in Physics 74, 116001. [67]

• Ferrie, C., Morris, R. and Emerson J. (2010) Physical Review A 82, 044103. [73]

Portions of the appendix are based on work lead by Victor Veitch (and contained in
reference [215]) as well as unpublished work with Victor Veitch and Joseph Emerson.

The latter portions of Chapter 2 are based on completed work (with a manuscript
in preparation) with Robin Blume-Kohout. Latter portions of Chapter 3 are based on
completed work (now, with a near completed draft in the final stages of preparation) with
Chris Granade, Nathan Wiebe and David Cory.
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2.1 The risk of the hedged maximum likelihood estimator for N = 10 coin flips.
On the left is the risk for all coin biases. Note that if the estimator possess
the symmetry p̂(N − n) = p̂(n), then it also posses the symmetry R(1 −
p, p̂) = R(p, p̂). Thus we will only display the non-redundant information,
as shown on the right. The risk of the same strategies for N = 100 is shown
in figure 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The risk of the hedged maximum likelihood estimator for N = 100 coin
flips. As explained in figure 2.1, we need only see half the state space due to
symmetry. However, we can also see that the “interesting region” becomes
squashed near the boundary of the state space. This behaviour is generic for
the problems we consider in the thesis so pay close attention to the region
that is being plotted in the remainder. In this plot and 2.1, note that we can
start to see the O(1/N) behaviour of the (near) optimal “add-1/2” strategy. 12
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2.3 As in figure 2.1 for the classical problem, the quantum state estimation
problem possesses convenient symmetries depending on the measurements
that are made. Here we have assumed an equal number N of Pauli X, Y
and Z measurements are made and the estimator satisfies ρ̂(N − nx, N −
ny, N − nz) = ρ̂(nx, ny, nz). The corresponding non-redundant region in
the Bloch sphere is constructed following the left to right flow in the figure.
First create a pie slice in the XY -plane which makes an angle of 45o from the
X-axis. From this point off the axis, move along a great circle toward the
north pole approximately 54.7o (the so-called “magic angle” – arctan

√
2).

Finally, enclosed the convex region which connects this point to the origin.
This is the region is the quantum state space which contains no redundant
information on the risk of a symmetric estimator. Of course, it will be
difficult to plot the risk in the region since we are missing a fourth spacial
dimension. Thus, the risk will be plotted along the 3 rays from the origin
on the edges of this regions and it will become clear how this contains the
majority of the useful information on the performance of the estimators we
will consider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 The risk of the hedge maximum likelihood estimator for β = 0.5 for N = 10
Pauli X, Y and Z measurements on the left and N = 100 on the right. The
horizontal axis is label by r, the radius of the Bloch sphere. Note that three
rays are plotted. As noted in figure 2.3, these rays form the edges of the
non-redundant region of the Bloch sphere. Comparing them to figures 2.1
and 2.2, which display the risk of the hedged maximum likelihood estimators
for a coin, we can see that quantum behaviour of these strategies is both
qualitatively and quantitatively different. Indeed, it is clear that the risk for
a qubit is not going to be O(1/N). More measurements would show that
the risk is O(1/

√
N) near the boundary and remains O(1/N) in the “bulk”

of the state space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Plotted is a slice of the Bloch sphere. The outer shaded box is a slice of
the “Bloch cube” which is the boundary of the set of possible empirical
frequencies. The measurement axes are X and Y . Notice that when the
state lies in a measurement axis, the measurements act as (and are formally
equivalent to) tosses of two independent coins. However, when the state
lies outside the measurement axes, it is possible to obtain a frequency of
outcomes which lies outside the allowed states. If we imagine that the state
lies along a hypothetical measurement axis, the measurement of the quantum
system is equivalent to what we call a noisy coin. . . . . . . . . . . . . . . 18
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2.6 Illustration of a hedging function (β = 0.1), and its effect on the likelihood
function for noiseless (left) and noisy (right) coins. In the left plot, we show
the hedging function over the 2-simplex (dotted black line), the likelihood
function for an extreme data set comprosing 10 heads and 0 tails (red line),
and the corresponding hedged likelihood (blue line). The right plot shows the
same functions for a noisy coin with α = 0.1. The shaded regions are outside
the p-simplex (and therefore forbidden), but correspond to valid q values.
Note that the unconstrained maximum of Pr(n|p) lies in the forbidden region
where p > 1, and therefore the maximum of the constrained likelihood is on
the boundary (p = 1) – a pathology that hedging remedies. . . . . . . . . . 19

2.7 HML (hedged maximum likelihood) estimators p̂β(n) are shown for several
values of β, and compared with the maximum likelihood (ML) estimator
p̂ML(n). N = 100 in all cases. Whereas the ML estimator is linear in n until
it encounters p = 0, the hedged estimator smoothly approaches p = 0 as the
data become more extreme. Increasing β pushes p̂ away from p̂ = 0. . . . . 20

2.8 The risk profile R(p, p̂β) is shown for several hedge maximum likelihood
estimators for N = 10 on the left and N = 100 on the right. A noisy coin
with α = 1/4 has been estimated using three different HML estimators. The
optimal β ≈ 0.05 balances boundary risk against interior risk. Increasing
β increases boundary risk, while decreasing it increases interior risk. Risk
approaches O(1/

√
N) for noisy coins, vs. O(1/N) for noiseless coins which

is reproduced in the black curve for comparison. . . . . . . . . . . . . . . . 21

2.9 Minimax and maximum likelihood estimators are shown for N = 100 and
α = 1/10, 1/4. Note that the minimax estimator is grossly biased in the
interior – a pathological result of the mandate to minimize maximum risk
at all costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 The risk profile R(p, p̂) is shown for the minimax estimators of figure 2.9
(N = 100; α = 1/10, 1/4) and for a noiseless coin (also N = 100). No
estimator can achieve lower risk across the board – but the minimax esti-
mator’s risk is very high in the interior (p > 1/

√
N) compared with HML

estimators. The O(1/
√
N) risk of HML estimators is intrinsic to noisy coins. 23
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2.11 The risk profiles of the optimal HML estimator (red) and the minimax esti-
mator (blue) are compared with the bimodal lower bound Rbimodal(p). Note
that while the HML maximum risk exceeds the minimax risk (as it must!), it
is competitive – and HML is far more accurate in the interior. The bimodal
lower bound supports the conjecture that HML is a good compromise, since
the HML risk exceeds the bimodal bound by a nearly constant factor. . . . 24
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2.13 The risk profile R(p, p̂) is shown for the Bayes estimators of the numerically
found least favorable prior. As noted in figure 2.3, it is difficult to visualize
a function over the interior of the Bloch sphere so we first illustrate the idea
with a rebit : a qubit restricted to the XY plane. The left is for N = 10
Pauli X and Y measurements while the right plot has N = 20. The larger
black dots are the support points of the least favorable prior as found by
our first algorithm. The smaller grey dots are the support points retained
by the Monte Carlo algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.14 The Bayes risk of the numerically computed least favorable priors for a
qubit and rebit as a function of the number of measurements. The larger
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ments in each basis (plotted is an average of N = 3× 103 randomly selected
data sets). The worst-case performance of any static protocol will be along
the “noisiest” axis (the one directed toward the vertices of the Bloch cube
in red) and have risk O(1/

√
N). Asymptotically equal is the risk of states

on the rays 45o from the measurement axes (green). The measurement axes
behave as “noiseless” coins with O(1/N) risk (blue). For our adaptive pro-
tocol, all states have risk scaling O(1/N). . . . . . . . . . . . . . . . . . . . 32

xiv



3.1 The likelihood function (3.2). Usually we think of a probability distribution
as a function of the variable on the left of the conditional and for a fixed set
of parameters on the right. However, the terminology “likelihood function”
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Chapter 1

Introduction

After all our physical needs are met – food, water, shelter, internet – our base intangible
need is predictive information. We ask “why” because when we know the “reason” for
something, we can (or, at least, we think we can) predict when it will happen again or
perhaps even control it. For the last hundred years we have known that our physical world
has promised more information than we have been able to ascertain. This theoretical limit
of information we can have about a physical system is its quantum state and it is only
recently that we have been able to exact enough experimental precision to extract this
information. The problem is that the extraction process is a quantum measurement and
does not have output of the form “here is the quantum state of your physical system”. The
output is a string of seemingly random bits which we must use to estimate the quantum
state. That is problem studied in Chapter 2. Namely, given a set of data, how and what
should we conclude about the physical system that produced it.

A quantum state is deceptively similar to a classical probability distribution for coins
or dice; it give the probabilities for the outcomes of future “tosses”, or measurements.
Thus we might expect that the classical theory of estimation [56] will be of use – and it is.
However, its use extends only so far and new techniques are needed. For this we propose
a better classical analogue which reflects the key conceptual difference between classical
and quantum measurements – classical measurement reveals the state of the system (the
coin lands “heads”, for example). A quantum measurement, on the other hand, produces
outcomes which are intrinsically noisy. We call this sampling mismatch and propose the
noisy coin as a classical system with the same feature. The noisy coin is a tossed coin
whose outcome we do not get to directly see – but we are told the correct outcome with
some known probability. In other words, some fixed portion of the time, the outcome is
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reported incorrectly. If we still desire to know the true bias of coin, we have an analogy
with quantum measurement (at least for the purpose of estimation).

There are many methods for the estimation of quantum states (also known as quantum
state tomography [166]) which include, for example, linear inversion, maximum likelihood,
and Bayesian mean. But none of them is clearly “the most accurate” for data of finite size
N . Even the upper limits on accuracy are as yet unknown, which makes it difficult to say
that a given method is “accurate enough”. We address this problem here by (i) calculating
the minimum achievable error for single-qubit tomography with N Pauli measurements, (ii)
finding minimax estimators that achieve this bound, and (iii) comparing the performance
of known estimators.

In our decision theoretic approach [18], estimators can be ranked by their worst-case
risk – the maximum, over all ρ, of the expected error. The best-performing estimator by
this metric is called the minimax estimator. Different error metrics (fidelity, trace-norm,
and so on) yield different minimax estimators; here we focus on relative entropy [189, 213]
error (the canonical choice in classical predictive estimation and machine learning [133]).
The minimax estimators for quantum tomography are impractical to calculate but they
serve as a critical benchmark : a tomography algorithm is “good enough” inasmuch as its
risk is close to that of the minimax estimator.

In Chapter 2, we construct minimax estimators for reconstructing single-qubit states
from N measurements of the Pauli operators (σx, σy, σz); use them to get absolute lower
bounds on achievable risk; and find that risk scales as N−1/2 (for classical probabilities, risk
scales as N−1). We reproduced most features of quantum tomography, including N−1/2

risk scaling, with our simpler “noisy coin” model.

Quantum mechanics gives the most accurate description of many physical systems of
interest. In turn, the most accurate characterization of a quantum device is given by
its quantum mechanical model. Thus, efficient methods for the honest estimation of the
distribution of parameters in a quantum mechanical model are of utmost importance,
not only for building robust quantum technologies, but to reach new regimes of physics.
The quantum state is classical description of a preparation procedure producing physical
systems. We can perform quantum mechanical measurements on these physical systems to
ascertain a useful description of our preparation devices. However, it is likely the case that
something, intentional or not, will happen to the physical system between its preparation
and measurement and almost certainly the case that something intentional must happen
it if we are to utilize the physical system for technological gain. Thus, we must also
characterize how the state of the physical system transforms by our actions upon it.

Whereas we approached the estimation of quantum states in Chapter 2 from a global
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perspective (a more top-down approach), in Chapter 3 we tackle the estimation of param-
eters in quantum dynamical processes from the perspective of precise prior knowledge (a
more bottom-up approach). This makes the problem somewhat less difficult. On the other
hand, we add two additional challenges: (1) we consider adaptively designing experiments
and (2) we consider experimentally restricted control and measurement paradigms. The
former is not necessary of course – but we will find that it drastically improves the accu-
racy with which we can determine unknown parameters. The latter, however, is almost
tautologically necessary; the parameters necessary for precise control are the very ones we
are trying to estimate!

In Chapter 3 we apply Bayesian statistical principles to the problem of characterizing
quantum devices. We do so for sample problems of varying complexity. For models that
adhere to certain information theoretic assumptions, we can derive protocols which are
provably optimal by also obtaining analytic expressions, and lower bounds, on the accuracy
of generic protocols. This is the ideal situation because it is important to know how
well current and prospective strategies do with respect to what is optimal. Moreover, we
found that the absolute best strategies require the solutions of complicated optimization
problems and will therefore be infeasible to implement in practice. However, we derive
intuition from those solutions to motivate practically implementable strategies which come
close to optimal but are vastly simpler to perform. That is, we derived heuristics which
offer an extreme boost in efficiency at a small cost in accuracy. Indeed, we show that the
asymptotic scaling of our protocol is equivalent to the optimal solution.

Although we illustrated the utility of our procedure for a specific estimation problem,
the methodology applies more generally. However, it does not extend to fully generic
estimation problems. For that we look to classical machine learning methods [62] and
provide a proof of principle that they will produce robust protocols which will significantly
improve the accuracy and efficiency with which we can obtain optimal, reliable estimates
of parameters in dynamical models of quantum systems.

In the final chapter we explore a different facet of quantum information theory which
overlaps with the foundations of quantum mechanics. Since the advent of quantum theory,
identifying the quintessential feature of the theory has remained an open problem. That
is, we have yet to answer the long standing question of specifying the conditions under
which a given physical process is “truly quantum”. In Chapter 4, we explore this question
in the context of one of the oldest notions of “quantumness” – namely, quasi-probability.

There exists an enormous variety of ways to map quantum theory to a classical prob-
abilistic framework [67]. However, building on previous work, we show it is impossible for
the resulting theory to be a proper classical theory. In other words, “negative probability”
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must emerge somewhere. This conclusion was suspected for a very long time and many
attempts have been made in the past, but have failed since additional assumptions were
needed or tacitly applied. This results has implications primarily in the field of quan-
tum foundations. It should also find use wherever quasi-probability representations are
employed (notably: quantum optics [188], quantum chaos [207], and decoherence theory
[122]) as it clarifies the connection between the various definitions of quasi-probability rep-
resentations. We also comment on recent progress identifying subtheories or operationally
restricted sets of quantum operations which allow a classical representation [215, 219].
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Chapter 2

Quantum State Estimation

We will call state estimation the general situation surrounding the following question:
how should one estimate the parameters (generally, probabilitic) in an assumed (generally,
probabilistic) model based on obtained data? Classical state estimation is sub-discipline
of decision theory [18] and, more broadly, information theory [56]. The phrase “quantum
state estimation” may evoke two connotations. The first is the now usual sense in which
all the elements of a classical theory are replaced with their “quantum analogue”. For
example, in some quantum computing models, we replace bits with quantum bits (qubits)
and gates with quantum gates and so on. This is not the interpretation we are interested
in. We are interested in obtaining a classical description of a quantum state [166]. This is
a means to an end; for at some point in the future this procedure will not be necessary.
However, since scientists presently communicate with classical information, this task is a
daily requirement. And thus we quickly come to the urgent question: given experimental
data, what is the best procedure for estimating the classical description of the quantum
state?

A quantum theoretical model of a physical system is easy enough to state and un-
derstand provided we have some knowledge of the following linear algebra terms which
unfortunately must be assumed of the reader: inner product space, Hermitian transpose,
positive semi-definite matrix, identity matrix and trace. The model is as follows:

1. To each physical system, we assign an inner product space H of dimension d <∞.

2. Each preparation procedure is represented by a positive semi-definite matrix ρ with
Tr(ρ) = 1.
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3. Each measurement procedure is represented by set of positive semi-definite matrices
{Ek} where each Ek represents an outcome of the measurement and the set satisfies∑

k Ek = 1.

4. The probability of outcome k given preparation ρ is

Pr(Ek|ρ) = Tr(Ekρ). (2.1)

Quantum state estimation1, or tomography, proceeds in two steps: (1) measuring iden-
tically prepared systems in different bases to collect data D; and (2) approximating the
state ρ by plugging the data into an estimator ρ̂(D) of the preparation procedure. Clearly,
tomography is of interest to experimentalists who need to know what state they are prepar-
ing. But, there is a recent growing interest in the theoretical aspects of the problem. What
we have been doing so far has “worked” for the for small dimensional systems. But it is
not clear if, or how well, it will work for larger, more complex, systems.

Before we define what “best” means, let us state the basic problem more formally.
Suppose the same preparation procedure is performed N times, and each outcome k of the
measurement {Ek} occurs nk times. The problem can now be concisely stated as follows:
infer the state ρ from the experimental data {nk}. Note that even if we assume, which we
do, there is some “true” state ρ, this is an impossible task for finite N . Thus, we will need
to find some (generalized) metric d(ρ, ρ̂) which measures the performance of our estimation
procedure ρ̂.

For one, the estimator should (must!) be accurate; technically, we demand it have
low expected error (or risk) for all true states. Some popular estimators (e.g. linear
inversion, or maximum likelihood) have no provable accuracy properties for finite number
of measurements N . Others (Bayesian mean estimation) are provably optimal only on
average over a particular ensemble of input states – which isn’t particularly helpful, since
device states in the laboratory are not selected at random.

Instead, estimators can be ranked by their worst-case risk: the maximum value, over
all true states ρ, of the expected error. The best-performing estimator by this metric is
called the minimax estimator. Different error metrics (fidelity, trace-norm and so on) yield
different minimax estimators. Here we focus on relative entropy error (the canonical choice
in classical predictive estimation and machine learning). As in many cases, the minimax
estimators for quantum tomography are strange, unwieldy, and impractical for laboratory

1A collection of papers on quantum state estimation, each with some historical references is in [166].
There is also a historical review in reference [22].
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use. But they serve a crucial purpose as a benchmark: an estimator is “good enough”
inasmuch as its risk is close to that of the minimax estimator.

This chapter is structured as follows. The natural, perhaps obvious, first step is to look
to the classical theory of estimation. Unfortunately, this does not quite work as we will
see in section 2.1. We find a better classical analog of the problem in section 2.2, which
we call the noisy coin. We show how the formalism of the noisy coin can give insight into
the solution of the fully quantum mechanical problem in section 2.3. We discuss the future
directions of this research in section 2.4.

Portions of the this chapter is based on the reference [68].

2.1 Why Classical Estimation Fails

One might expect that since a quantum state can be interpreted classically as a calculation
tool to predict the probability distribution of the outcomes of future measurements, it might
behave the same way when we try to estimate it from past data. Wrong! And, here we
will see why.

2.1.1 Classical Estimation

Few things are as ubiquitous in information theory as the Shannon entropy [195] and two
people: Alice and Bob. In classical statistics the entropy quantifies the average uncertainty
in a random variable. More intuitively, it measures the expected surprise an agent, say
Bob, should feel upon the outcome of an experiment the possible outcomes for which he has
assigned probabilities. For example, suppose Bob tosses a die and he deems the probability
of each face to be pk. The Shannon entropy of a toss of a d-sided die is

H(p) = −
d∑

k=1

pk log pk.

The toss has the most capacity to surprise when the die is unbiased (H is maximized at
pk = 1/d). If Bob is certain that the die is loaded (p1 = 1 and pk>1 = 0, say) then Bob
expects to be unsurprised by the outcome of the toss and hence the entropy is zero.

The Shannon entropy has operational significance as the amount of bits required to
describe the expected outcome of the toss [56]. Suppose Bob tosses the die N times and
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he is interested only in the frequency with which each outcomes occurred. Then he can
store, code or compress, the outcome of the N tosses with a bit string of expected length
approaching NH(p) as N → ∞. Bob achieves this theoretical lower bound, called the
Shannon bound, by assigning short codes to outcomes he deems more probable. But so far
Bob has known or had some confidence in assigning the probability p. But what happens
if he is unsure?

Now suppose Bob is in the possession of a die which he wants to know the bias of. Bob
is a public relations professional employed by a celebrity or a government administration
or an oil company and is hence very busy. Bob decides to hire an “expert”, Alice, to tell
him what the bias is. Call Alice’s opinion of the bias p and her reported bias p̂. Bob would
clearly like to know p. To ensure an honest report Bob arranges to pay Alice R(p̂k) dollars
if he tosses the coin and face “k” occurs. Alice’s honesty is ensured provided the payments
are made according to

d∑
k=1

pkR(p̂k) ≤
d∑

k=1

pkR(pk). (2.2)

In other words, Alice’s expected pay is maximized when reporting her honest opinion. It
is a theorem of Aczel and Pfanzagl2 that a function R satisfying equation (2.2) must be of
the form R(x) = C log x + B for some constants C ≥ 0, B. Equivalently, Alice’s expected
loss when reporting p̂ is

C
d∑

k=1

pk log
pk
p̂k
,

which is, up to the constant C, the definition of a quantity introduced by Kullback and
Leibler in 1951 [134] which now bears their names. It is given the symbol D(p‖p̂) and also
called relative entropy.

Now suppose Alice lied on her resume and she is no “dice-bias-determining-expert”.
Her payoff constrains her to be honest, but how should she generate an opinion to be
honest about? The possibilities are endless. On a whim, she decides to toss the die a fixed
number N times and if the outcomes are n := {nk}, where each nk denotes the number of
times each face occurred, she will estimate the bias as p̂(n). That is, p̂ is a rule (a function,
or map) taking every possible measurement outcome to an estimate of the bias.

If Alice assumes there is some “true” bias p which she should be reporting, the difference
between the amount of money she could make and the amount she expects is the weighted

2The original reference is [6]. For a proof which does not assume any regularity conditions on R, see
[76]. For a generalization, see [3]. Also, [5, 4].
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average of D(p‖p̂(n)) over possible outcomes of her tosses. This is called the risk and is
explicitly given as

R(p, p̂) :=
∑
n

Pr(n|p)D(p‖p̂(n)),

where

Pr(n|p) = N !
∏
k

pnkk
nk!

is the distribution of outcomes. When considered as a function of p, it is called the likelihood
function.

Suppose Bob uses Alice’s estimate to store sequences of coin tosses. In order to do so
efficiently he attempts to achieve the Shannon bound using an appropriate code based on
Alice’s reported p̂. Then the risk gives the redundancy of his code: the expected difference
of the actual code length from the theoretical minimum.

The risk can written equivalently in the more compact notation

R(p, p̂) = En[D(p‖p̂(n))].

with the understanding that En[·] is the average with respect to the probability distribution
of n. Supposing Alice has a prior probability distribution π(p)dp in mind at the time of
reporting p̂, her expected loss is

r(π, p̂) :=

∫
R(p, p̂)π(p)dp = Ep[R(p, p̂)],

which is called the Bayes risk of p̂.

Amongst the infinitely many possible estimators are a few special ones each having its
own justification. Here we define the minimax and Bayes estimators. Loosely speaking,
the minimax estimator is the one which does best in the worst case; the Bayes estimator
is the one which does best on average with respect to a single prior.

A minimax estimator p̂minimax is

p̂minimax := argmin
p̂

max
p
R(p, p̂).

This is the estimator which has the best worst case behaviour regardless of the probability
of such an event. A Bayes estimator is

p̂π := argmin
p̂

r(π, p̂).
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This is the estimator which has the best expected performance with respect to a given
prior π. The Bayes risk of the prior π is the expected risk under π when using its Bayes
estimator: r(π) := r(π, p̂π). That is, it is the expected risk when choosing the best estimate
with respect to the given prior π. A prior satisfying

πLFP := argmax
π

r(π),

is called a least favorable prior. If

r(π) = max
p
R(p, p̂π),

then p̂π is minimax and π is least favorable. For the case of relative entropy, the Bayes
estimators p̂π are unique and hence the unique minimax estimators as well. We call this
result Bayes-minimax duality.

For example, the “add-β” estimators are the simplest non-trivial (linear, but not con-
stant) estimators given by

p̂k,β(nk) :=
nk + β

N + dβ
.

They are not minimax. However, it turns out that they are “not much worse” than the
minimax estimator. First we note that the minimax risk is lower bounded by the Bayes
risk for any prior:

inf
p̂

max
p
R(p, p̂) ≥ r(π).

Breass and company [28] calculated a lower bound on the minimax risk using the uniform
prior which agrees with the asymptotic results of Rukhin [181] and Krichevskiy [133]. They
found, as N →∞,

inf
p̂

max
p
R(p, p̂) ≥ 0.5

1

N
+O

(
1

N

)
.

Whereas, the best “add-β” estimator has asymptotic risk

inf
p̂β

max
p
R(p, p̂) = β0

1

N
+O

(
1

N

)
,

where β0 ≈ 0.509 and is achieved by the “add-β0” estimator [181, 133]. Thus, the “add-β0”
estimator is trivial to implement and incurs only a constant fraction of excess risk. The
risk of some “add-β” estimators for a die with d = 2 sides (also known as a coin) are
depicted in figure 2.1 and figure 2.2.
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Figure 2.1: The risk of the hedged maximum likelihood estimator for N = 10 coin flips.
On the left is the risk for all coin biases. Note that if the estimator possess the symmetry
p̂(N − n) = p̂(n), then it also posses the symmetry R(1 − p, p̂) = R(p, p̂). Thus we will
only display the non-redundant information, as shown on the right. The risk of the same
strategies for N = 100 is shown in figure 2.2.

2.1.2 Quantum Relative Entropy

A qubit quantum state is equivalent to the bias of the coin in the sense that once it is known,
we can probabilistically predict the outcome of future “flips”. But estimating the quantum
state from current data is somehow “harder” than classical probabilistic estimation. To
see this, we must return to our story of Alice and Bob.

Alice does well with the coin, but this was only a test. Bob has a black-box, with the
label “V-Wade”, which he has been promised prepares a qubit which he would like to know
the quantum state of. He asks Alice, who happens also to be an experimental physicist,
to determine the state of his qubit. Alice reports ρ̂ but Bob would like to know her honest
opinion ρ for the state of the qubit. To ensure her honesty, Bob performs a measurement
{Ei} and will pay Alice R(qi) if he obtains outcome Ei, where qi = Tr(ρ̂Ei). Denote the
honest probabilities of Alice by pi = Tr(ρEi). Then her honesty is ensured if∑

i

piR(pi) ≤
∑
i

piR(qi).

The Aczel-Pfanzagl theorem holds and thus R(p) = C log p + B. Thus, Alice’s expected

11



Figure 2.2: The risk of the hedged maximum likelihood estimator for N = 100 coin flips.
As explained in figure 2.1, we need only see half the state space due to symmetry. However,
we can also see that the “interesting region” becomes squashed near the boundary of the
state space. This behaviour is generic for the problems we consider in the thesis so pay close
attention to the region that is being plotted in the remainder. In this plot and 2.1, note
that we can start to see the O(1/N) behaviour of the (near) optimal “add-1/2” strategy.

loss is (up to a constant C)∑
i

pi(log pi − log qi) =
∑
i

Tr(ρEi) log

[
Tr(ρEi)

Tr(ρ̂Ei)

]
.

For example [24], if Bob performs a measurement in the diagonal basis of Alice’s reported
state, then her expected loss is the quantum relative entropy 3

D(ρ‖ρ̂) = Tr(ρ log ρ)− Tr(ρ log ρ̂).

Since the quantum relative entropy is strictly convex in its second argument, in this exam-
ple, Alice is constrained to be honest since the minimum of D(ρ‖ρ̂) is uniquely obtained at
ρ̂. This is not true for any measurement Bob can make (take the trivial measurement for
example). So, we naturally must ask which measurements can Bob make to ensure Alice’s
honesty? That is, which measurements are characterized by∑

i

Tr(ρEi) log

[
Tr(ρEi)

Tr(ρ̂Ei)

]
= 0⇔ ρ̂ = ρ?

3See a history of this quantity in reference [79].
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In some sense it does not matter since Alice does not know, in general, the measurement
Bob is to perform. For Alice, she cares only about minimizing her expected worst case
loss, which is the quantum Kullback information [61]

K(ρ‖ρ̂) = max
{Ei}

∑
i

Tr(ρEi) log

[
Tr(ρEi)

Tr(ρ̂Ei)

]
.

Moreover, she cannot assume Bob will only measure one copy of the qubit. Supposing
Bob can measure N copies the qubit with a possibly joint measurement, Alice’s worst case
expected loss is

KN(ρ‖ρ̂) = max
{Ei}

∑
i

Tr(ρ⊗NEi) log

[
Tr(ρ⊗NEi)

Tr(ρ̂⊗NEi)

]
= D(ρ‖ρ̂) as N →∞

and, non-asymptotically, KN(ρ‖ρ̂) ≤ D(ρ‖ρ̂) [111].

In exactly the same way as the classical scenario, the quantum relative entropy gives
the redundancy of the codes used in data compression when the wrong quantum state is
used [189]. That is, if Bob uses Alice’s state ρ̂ to perform quantum data compression and
the true state is ρ, his codewords will have, on average, D(ρ‖ρ̂) more qubits than necessary.

2.1.3 Quantum State Estimation

We are a little ahead of ourselves however. How does Alice come to the decision ρ̂ in the
first place? The natural thing, for an experimental physicist such as herself, to do is to
perform a measurement of her own! Amongst the many possible schemes she could come
up with, let us assume she is to perform a fixed measurement {Ek} a total of N times. The
set of possible outcomes is O := {{nk} :

∑
k nk = N}, where each nk denotes the number

of times Ek occurred. Her reported state is a map ρ̂ : O → D(H) which takes experimental
data {nk} to a density matrix. If Alice assumes there is a “true” state ρ, her expected loss
is (bounded above but also asymptotically given by) the average of the quantum relative
entropy over the possible experimental outcomes:

R(ρ, ρ̂) :=
∑
{nk}

Pr({nk}|ρ)D(ρ‖ρ̂({nk})),

where the likelihood function is

Pr({nk}|ρ) = N !
∏
k

Tr(ρEk)
nk

nk!
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a multinomial distribution.

The beauty of the general decision theoretic approach is that the methodology is in-
dependent of the model and dictates that we should minimize the risk R. Thus, all the
definitions of the various estimation strategies are essentially the same. A minimax esti-
mator ρ̂minimax is

ρ̂minimax := argmin
ρ̂

max
ρ
R(ρ, ρ̂).

This is the estimate which has the best worst case behaviour regardless of the probability
of such an event. Supposing Alice has a prior distribution π(ρ)dρ in mind when it comes
time to report ρ̂, her expected loss (with respect to π) is

r(π, ρ̂) :=

∫
R(ρ, ρ̂)π(ρ)dρ,

which is called the Bayes risk of ρ̂ (with respect to π). A Bayes estimator is

ρ̂π := argmin
ρ̂

r(π, ρ̂).

This is the estimator which has the best expected performance with respect to a given
prior π. The Bayes risk of the prior π is the expected risk under π when using its Bayes
estimator: r(π) := r(π, ρ̂π). That is, it is the expected risk when choosing the best estimate
with respect to the given prior π. The prior

πLFP := argmax
π

r(π),

is called a least favorable prior. The Bayes-minimax duality theorem remains unchanged:
if

r(π) = max
ρ
R(ρ, ρ̂π),

then ρ̂π is minimax and π is least favorable. We also know exactly what the Bayes esti-
mators are. Given any prior π, the Bayes estimator is the mean of the Bayesian updated
posterior [208] (this is more generally true for any strictly proper scoring rule, not just the
quantum relative entropy [24]).

2.1.4 Hedged Maximum Likelihood

Given that “add-β” estimators are near-optimal for classical probability estimation, Blume-
Kohout generalized these strategies to the estimation of quantum states [23] – but what
he found was surprising!
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First we note that classical “add-β” estimators achieve the maximum of a hedged like-
lihood function hβ(p)× Pr(n|p) where the hedging function is

hβ(p) := pβ(1− p)β.
In order to generalize this to the estimation of quantum states, the hedging function ought
to be “add-β” if the measurement outcomes are mutually exclusive (only one outcome of
a set can occur). That is, if the measurement is a standard projective measurement (if
the set of measurement operators {Pk} are orthogonal projectors) the estimated quantum
state should be the density operator

ρ̂ =
∑
k

nk + β

N + 2β
Pk

when the measurement yields outcomes {nk}. It was shown that the only measurement-
independent hedging function which achieves this is

hβ(ρ) = det(ρ)β.

For an arbitrary measurement, then, the hedged maximum likelihood (HML) estimators are
defined as

ρ̂β := argmax
ρ

hβ(ρ)
∏
k

Tr(ρEk)
nk

nk!
.

The intuition behind this choice of hedging function stems from the fact that det(ρ) is
the product of the eigenvalues of ρ and is unitarily invariant. So these should be nearly
optimal having only a constant offset from the asymptotic O(1/N) risk scaling of classical
probability estimation, right? Wrong! As depicted in figure 2.4, the risk of the HML
estimators is significantly worse near the boundary of the state space. Next, we will
investigate this curiosity from a less quantitative point of view.

2.1.5 Conceptual Lessons Learned

Why is quantum state estimation different from classical probability estimation? The key
feature is measurement. In classical probability, measuring reveals the state of system
(Alice and Bob get to see if the die toss produced “1” or “2” or...). In quantum theory,
however, the true state is not revealed and the relationship between the true state and
the outcome of the experiment depends strongly on what measurement is made. Perhaps,
then, we should look for a better classical analogue of quantum state estimation. The
intuition for the solution presented in the next section is better described pictorially, as is
done in figure 2.5.
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Figure 2.3: As in figure 2.1 for the classical problem, the quantum state estimation
problem possesses convenient symmetries depending on the measurements that are made.
Here we have assumed an equal number N of Pauli X, Y and Z measurements are made
and the estimator satisfies ρ̂(N − nx, N − ny, N − nz) = ρ̂(nx, ny, nz). The corresponding
non-redundant region in the Bloch sphere is constructed following the left to right flow
in the figure. First create a pie slice in the XY -plane which makes an angle of 45o from
the X-axis. From this point off the axis, move along a great circle toward the north
pole approximately 54.7o (the so-called “magic angle” – arctan

√
2). Finally, enclosed the

convex region which connects this point to the origin. This is the region is the quantum
state space which contains no redundant information on the risk of a symmetric estimator.
Of course, it will be difficult to plot the risk in the region since we are missing a fourth
spacial dimension. Thus, the risk will be plotted along the 3 rays from the origin on the
edges of this regions and it will become clear how this contains the majority of the useful
information on the performance of the estimators we will consider.

2.2 Noisy Coins: a Better Classical Analogue

So we have seen how classical probably estimation fails for quantum state estimation.
However, it seems (see figure 2.5 again) that we have been comparing to a poor classical
analogy. What we need is a classical problem where the sampling distribution is different
from the one we want to estimate. For this we invent the “noisy coin”. Adding noise –
random bit flips with probability α – to the coin flip data separates the effective probability
of “heads”,

q = α + p(1− 2α), (2.3)

from the true probability p. Quite a lot of the complications that ensue can be understood
as stemming from a single underlying schizophrenia in the problem: there are now two
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Figure 2.4: The risk of the hedge maximum likelihood estimator for β = 0.5 for N = 10
Pauli X, Y and Z measurements on the left and N = 100 on the right. The horizontal axis
is label by r, the radius of the Bloch sphere. Note that three rays are plotted. As noted
in figure 2.3, these rays form the edges of the non-redundant region of the Bloch sphere.
Comparing them to figures 2.1 and 2.2, which display the risk of the hedged maximum
likelihood estimators for a coin, we can see that quantum behaviour of these strategies is
both qualitatively and quantitatively different. Indeed, it is clear that the risk for a qubit
is not going to be O(1/N). More measurements would show that the risk is O(1/

√
N) near

the boundary and remains O(1/N) in the “bulk” of the state space.

relevant probability simplices, one for q and one for p. One part of the problem (the data,
and therefore the likelihood function) essentially live on the q-simplex. The other parts
(the parameter to be estimated, and therefore the risk function) live on the p-simplex. The
core problem here is sampling mismatch. We sample from q, but the risk is determined by
p.

As we attempted to do for the quantum mechanical problem, we will try to replicate the
classical “add-β” estimator via hedging the likelihood function. The “hedging function” for
the noisy coin is h(p) =

∏
k p

β
k = pβ(1−p)β (which is analogous to the quantum mechanical

version: h(ρ) = det(ρ)β). We define the hedged maximum likelihood (HML) estimator for
the noisy coin as

p̂β(n) = argmax
p

h(p) Pr(n|p).

See figure 2.6 for a graphical depiction of the effect of hedging. For a noiseless coin, this
is identical to adding β fictitious observations of each possible event – but for α > 0, they
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Figure 2.5: Plotted is a slice of the Bloch sphere. The outer shaded box is a slice of
the “Bloch cube” which is the boundary of the set of possible empirical frequencies. The
measurement axes are X and Y . Notice that when the state lies in a measurement axis,
the measurements act as (and are formally equivalent to) tosses of two independent coins.
However, when the state lies outside the measurement axes, it is possible to obtain a
frequency of outcomes which lies outside the allowed states. If we imagine that the state
lies along a hypothetical measurement axis, the measurement of the quantum system is
equivalent to what we call a noisy coin.

are not equivalent. The hedging function modification is sensitive to the pk = 0 boundary
of the simplex, and inexorably forces the maximum of h(p) Pr(n|p) away from it (since
h(p) Pr(n|p) remains log-convex, but equals zero at the boundary).

For the noisy coin we can solve for the HML estimator explicitly. It is given by

p̂β =
q̂β − α
1− 2α

,

where q̂β is the zero of the cubic polynomial

(N + 2β)q̂3 − (N + n+ 3β)q̂2 + (n+ β +Nα−Nα2)q̂ + nα2 − nα.

that lies in [α, 1− α].
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Figure 2.6: Illustration of a hedging function (β = 0.1), and its effect on the likelihood
function for noiseless (left) and noisy (right) coins. In the left plot, we show the hedging
function over the 2-simplex (dotted black line), the likelihood function for an extreme data
set comprosing 10 heads and 0 tails (red line), and the corresponding hedged likelihood
(blue line). The right plot shows the same functions for a noisy coin with α = 0.1. The
shaded regions are outside the p-simplex (and therefore forbidden), but correspond to valid
q values. Note that the unconstrained maximum of Pr(n|p) lies in the forbidden region
where p > 1, and therefore the maximum of the constrained likelihood is on the boundary
(p = 1) – a pathology that hedging remedies.

Figure 2.7 illustrates how p̂β depends on n
N

. In the “bulk”, far from the simplex
boundary (0 and 1), hedging has relatively little effect – it behaves essentially the same
as the maximum likelihood estimator (β = 0). In fact, hedging yields an approximately
linear estimator akin to “add-β”. But as we approach 0 or 1, the effect of hedging increases.
When a linear estimator intersects 0, at n = αN , p̂β = O(1/

√
N). This fairly dramatic

shift occurs because the likelihood function is approximately Gaussian, with a maximum
at p = 0 and a width of O(1/

√
N). Pr(n|p) declines rather slowly from p = 0, and

p = O(1/
√
N) is not substantially less likely than p = 0, so the hedging imperative to

avoid p̂ = 0 pushes the maximum of h(p) Pr(n|p) far inside the simplex.

How accurate are these hedged estimators? Figure 2.8 shows the pointwise risk as a
function of the true p, for different amounts of hedging (β). For the noiseless (α = 0)
coin, β = 1/2 yields a nearly flat risk profile given by R(p) ≈ 1/2N . In contrast, hedged
estimators for the noiseless coin yield similar profiles that rise fromO(1/N) in the interior to
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Figure 2.7: HML (hedged maximum likelihood) estimators p̂β(n) are shown for several
values of β, and compared with the maximum likelihood (ML) estimator p̂ML(n). N = 100
in all cases. Whereas the ML estimator is linear in n until it encounters p = 0, the hedged
estimator smoothly approaches p = 0 as the data become more extreme. Increasing β
pushes p̂ away from p̂ = 0.

a peak of O(1/
√
N) around p = O(1/

√
N). This is exactly the same behaviour we witness

for the quantum problem in figure 2.4. At first glance, this behavior suggests a serious flaw
in the hedged estimators. The peak around p ≈ O(1/

√
N) is of particular concern, since

in all cases the risk is O(1/
√
N) there. But in fact, this behavior is generic for the noisy

coin. Minimax estimators have similar O(1/
√
N) errors, and hedged estimators turn out

to perform quite well. However, they are not minimax, or even close to it! As we shall
soon see, the noisy coin’s “intrinsic risk” profile is far from flat. The minimax estimator
attempts to flatten it – at substantial cost.

Some simple estimators (such as “add-1/2”) are nearly minimax for the noiseless coin.
This is not true for the noisy coin in general, because (as we shall see) the minimax
estimators are somewhat pathological. So we used numerics to find good approximations
to minimax estimators for noisy coins [68]. An example is plotted in 2.9, which illustrates
minimax estimators for several N and α, while Figure 2.10 shows the resulting risk profiles.
The minimax risk is O(1/

√
N) – not O(1/N) as for the noiseless coin. The minimax

estimators are highly biased toward p ≈ 1/
√
N – not just when p is close to the boundary

(when bias is inevitable) but also when p is in the interior! This effect is truly pathological,
although it can easily be explained. Low risk, of order 1/N , can easily be achieved in the
interior. However, the minimax estimator seeks at all costs to reduce the maximum risk,
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Figure 2.8: The risk profile R(p, p̂β) is shown for several hedge maximum likelihood es-
timators for N = 10 on the left and N = 100 on the right. A noisy coin with α = 1/4
has been estimated using three different HML estimators. The optimal β ≈ 0.05 balances
boundary risk against interior risk. Increasing β increases boundary risk, while decreas-
ing it increases interior risk. Risk approaches O(1/

√
N) for noisy coins, vs. O(1/N) for

noiseless coins which is reproduced in the black curve for comparison.

which is achieved near p ≈ 1/
√
N . By biasing heavily toward p ≈ 1/

√
N , the estimator

achieves slightly lower maximum risk–at the cost of dramatically increasing its interior risk
from O(1/N) to O(1/

√
N).

2.2.1 Bimodal Risk and the Comprimising Optimality of Hedg-
ing

The preceding analysis made use of an intuitive notion of pointwise “intrinsic risk” – i.e., a
lower bound Rmin(p) on the expected risk for any given p. Formally, no such lower bound
exists. We can achieve R(p′) = 0 for any p′, simply by using the estimator p̂ = p′. But we
can rigorously define something very similar, which we call bimodal risk.

The reason that it’s not practical to achieve R(p′) = 0 at any given p′ is, of course,
that p′ is unknown. We must take into account the possibility that p takes some other
value. Least favorable priors are intended to quantify the risk that ensues, but a LFP is a
property of the entire problem, not of any particular p′. In order to quantify “how hard is
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Figure 2.9: Minimax and maximum likelihood estimators are shown for N = 100 and
α = 1/10, 1/4. Note that the minimax estimator is grossly biased in the interior – a
pathological result of the mandate to minimize maximum risk at all costs.

a particular p′ to estimate,” we consider the set of bimodal priors,

πw,p′,p′′(p) = wδ(p− p′) + (1− w)δ(p− p′′),

and maximize Bayes risk over them. We define the bimodal risk of p′ as

Rbimodal(p
′) = max

w,p′′
r(πw,p′,p′′).

The bimodal risk quantifies the difficulty of distinguishing p′ from just one other state p′′.
As such, it is always a lower bound on the minimax risk.

Figure 2.11 compares the bimodal risk to the pointwise risk achieved by the minimax
and (optimal) HML estimators. Note that the bimodal risk function is a strict lower bound
(at every point) for the minimax risk, but not for the pointwise risk of any estimator
(including the minimax estimator itself). However, every estimator exceeds the bimodal
risk at at least one point, and almost certainly at many points. Figure 2.11 confirms that
the noisy coin’s risk is dominated by the difficulty of distinguishing p ≈ 1/

√
N from p = 0.

States deep inside the simplex are far easier to estimate, with an expected risk of O(1/N).

Minimax is an elegant concept, but for the noisy coin it does not yield “good” esti-
mators. In a single-minded quest to minimize the maximum risk, it yields wildly biased
estimates in the interior of the simplex. This is reasonable only in the case where p is truly
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Figure 2.10: The risk profile R(p, p̂) is shown for the minimax estimators of figure 2.9
(N = 100; α = 1/10, 1/4) and for a noiseless coin (also N = 100). No estimator can
achieve lower risk across the board – but the minimax estimator’s risk is very high in
the interior (p > 1/

√
N) compared with HML estimators. The O(1/

√
N) risk of HML

estimators is intrinsic to noisy coins.

selected by an adversary. In the real world, robustness against adversarial selection of p is
good, but should not be taken to absurd limits.

This leaves us in need of a quantitative criterion for “good” estimators. Ideally, we
would like an estimator that achieves (or comes close to achieving) the “intrinsic” risk
for every p. The bimodal risk Rbimodal(p) provides a reasonably good proxy – or, more
precisely, a lower bound – for intrinsic risk (in the absence of a rigorous definition). This
is not a precise quantitative framework, but it does provide a reasonably straightforward
criterion: we are looking for an estimator that closely approaches the bimodal risk profile.

Hedged estimators are a natural ansatz, but we need to specify β. Whereas the noiseless
coin is fairly accurately estimated by β = 1/2 for all N , the optimal value of β varies with
N for noisy coins. Local maxima of the risk are located at p = 0 and at p ≈ 1/

√
N , one

or both of which is always the global maximum. So, to choose β, we minimize maximum
risk by setting them equal to each other. Elsewhere [68], we showed that this optimum
approaches βoptimal ≈ 0.0389 for large N . This value is obtained for a large range of α’s,
as shown in Figure 2.12. We conclude that while optimal hedging estimators probably do
not offer strictly optimal performance, they are (i) easy to specify and calculate, (ii) far
better than minimax estimators for almost all values of p, and (iii) relatively close to the
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Figure 2.11: The risk profiles of the optimal HML estimator (red) and the minimax esti-
mator (blue) are compared with the bimodal lower bound Rbimodal(p). Note that while the
HML maximum risk exceeds the minimax risk (as it must!), it is competitive – and HML is
far more accurate in the interior. The bimodal lower bound supports the conjecture that
HML is a good compromise, since the HML risk exceeds the bimodal bound by a nearly
constant factor.

lower bound defined by bimodal risk.

On the theoretical side, bimodal prior also provide us with a relatively simple method to
obtain asymptotic lower bound on the minimax risk. We can obtain this asymptotic lower
bound using the normal approximation to the binomial distribution: n ∼ N [Nq,Nq(1−q)].
Note that for α > 0 the normal approximation is valid for all p whereas it is invalid for
p→ 0 when α = 0. The Bayes risk is asymptotically given by

r(π) =
1

2
[R(p0, p̂) +R(p1, p̂)].

Now let us choose p0 = 0 and p1 = 1/
√
N and the very crude bound R(p1, p̂) ≥ 0. We

focus then on the first term, for which

D(0‖p̂(n)) = − log(1− p̂(n)) ∼ p̂(n)

is a monotonically increasing function of n. We can make use of the measure theoretic
Chebyshev inequality:

R(0, p̂) ≥ 1

2
q(t) Pr(n ≥ t).
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Figure 2.12: The optimal value of β for N = 2 . . . 217 and α = 2−12 . . . 2−2. It approaches
the optimal noiseless value ≈ 1/2 when N � α−1. It rapidly declines and at roughly
N ≈ α−1 it is well within 10−2 of what appears to be its asymptotic value βoptimal ≈ 0.0389.

The choice t = αN , the mean of the distribution, is convenient since it can be shown that

p̂(αN) =
1(

1 + e−2+ 1
2α(1−α)

) 1√
N

=: 2B(α)
1√
N
, (2.4)

where the implicitly defined scaling constant B is independent of N . Then the risk is lower
bounded by

max
p
R(p, p̂) ≥ B(α)

1√
N

+O

(
1

N

)
.

2.3 Optimal Qubit State Estimation

Now, we apply the intuition afforded to us by the noisy coin to quantum state estimation.
Consider the following question: what is the quantum state of a qubit when is it known
that identical preparations of it have been measured in each of the bases X, Y and Z and
the outcomes are (nx, N − nx), (ny, N − ny) and (nz, N − nz), respectively? As depicted
in figue 2.5, this is conceptually similar to estimating a noisy coin bias.

When the data set is (nx, ny, nz) =: n ∈ {0, 1, . . . , N}3, the estimate is a map n 7→ ρ̂(n)
and the likelihood function, the probability of data given the true state, simplifies to the
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product of three binomial distributions:

Pr(n|ρ) =
∏

k=x,y,z

(
N

nk

)
pnkk (1− pk)N−nk ,

where px = 1
2
(1 + Tr(ρX)) and similarly for py and pz. These probabilities are the coordi-

nates of the Bloch sphere representation of ρ. Given the results for the risk of the noisy
coin, we can intuit that the risk of estimating qubits is at least O(1/

√
N). In fact, we can

show this formally. Let

ρ =
∑
i

pi|pi〉〈pi|, ρ̂ =
∑
i

p̂i|p̂i〉〈p̂i|,

be the spectral decompositions of ρ and ρ̂. Then we have

D(ρ‖ρ̂) =
∑
i

pi log pi −
∑
ij

pi log p̂j |〈pi, p̂j〉|2 .

Application of Jensen’s inequality gives D(ρ‖ρ̂) ≥ D(p‖m), the classical relative entropy
between the probability distribution p of eigenvalues of ρ and the probability distribution
m defined as

mi =
∑
j

p̂j |〈pi, p̂j〉|2 .

The probabilities can be written

px = p0(1− αx) + (1− p0)αx,

with αx = 1
2
(1 + 〈p0|X|p0〉) and similarly for py and pz. Since the measurements are

independent, a second application of Jensen’s inequality gives

R(ρ, ρ̂) ≥
∑

k=x,y,z

∑
nk

(
N

nk

)
pnkk (1− pk)N−nkD(pk‖mk).

This is equivalent, in the worst case, to the risk of estimating three independent biases of
noisy coins with noise levels αx, αy and αz. Thus

max
ρ∈D(H)

R(ρ, ρ̂) ≥ (B(αx) +B(αy) +B(αz))
1√
N

+O

(
1

N

)
,

where B is implicitly defined in Eq. 2.4.
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Applying our intuition gained from the noisy coin, we see that each axis of the Bloch
sphere acts a noisy coin whose effective “noise” is determined by the angle from the nearest
measurement axis. We expect, then, that the minimax risk should attempt to be flat,
at O(1/

√
N), as possible over all states. For smallish N , we can numerically construct

minimax estimators. We do so with two algorithms, both of which rely on Bayes-minimax
duality. That is, we construct Bayes estimator from approximately least favorable priors.
Each prior π(ρ)dρ defines a Bayesian mean estimator ρ̂π(n), which is Bayes for π(ρ). Its
risk profile R(ρ, ρ̂π) provides both upper and lower bounds on the minimax risk – the
maximum value is an upper bound and the average is a lower bound.

As is often the case for discretely distributed data, the minimax priors appear to al-
ways be discrete [137]. We searched for least favorable priors (holding N fixed) using the
algorithm of Kempthorne [125]. We defined a prior with a few support points, and let the
location and weight of the support points vary in order to maximize the Bayes risk. Once
the optimization equilibrated, we added new support points at local maxima of the risk,
and repeated this process until the algorithm found priors for which the maximum and
Bayes risk coincided to within 10−3 relative error.

To get a sense of the how challenging this is, note that minimax estimators for a simple
coin had only been numerically found for up to tens of flips. Therefore, it shouldn’t be
surprising that this algorithm was only able to find minimax estimators for up to N = 10
Pauli measurements on a qubit. Utilizing everything we know about the symmetry of the
problem, we can reduce the dimension of the search space by almost 100-fold. However
the difficulty still lies in the fact that maximizing the Bayes risk in this way consists of
multiple global optimizations problem over a space whose dimension is increasing cubically
in N . For example, to find the least favorable for N = 10 required iteratively maximizing
the Bayes risk over spaces of dimension 8 up to 28, which took about 4 days on a modern
laptop.

All is not lost, however! We can find approximately least favorable priors via Monte
Carlo methods. The key idea is that, by fixing states and optimizing only over the weights,
the problem reduces to a convex optimization problem, which can be solved much more
efficiently. The solution of this problem will not produce a qualitatively accurate least
favorable prior, but the estimators derived from them will arbitrarily close to minimax
provided enough support points are randomly chosen. We demonstrate the least favorable
priors found by both of our algorithms in figure 2.13 for a rebit. A rebit is a qubit restricted
to the XY plane, which plane allows us to more easily visualize the risk and least favorable
priors. The minimax risk of the qubit and rebit is plotted in figure 2.14, which shows the
scaling is equivalent in either case.
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Figure 2.13: The risk profile R(p, p̂) is shown for the Bayes estimators of the numerically
found least favorable prior. As noted in figure 2.3, it is difficult to visualize a function over
the interior of the Bloch sphere so we first illustrate the idea with a rebit : a qubit restricted
to the XY plane. The left is for N = 10 Pauli X and Y measurements while the right
plot has N = 20. The larger black dots are the support points of the least favorable prior
as found by our first algorithm. The smaller grey dots are the support points retained by
the Monte Carlo algorithm.

In figure 2.15, the risk of the numerically computed minimax estimators is plotted along
with the bimodal risk. As we expected from the noisy coin analogy, the “intrinsic risk”
of states furthest away from a measurement axis is higher. Those near the boundary on
these “bad” axes are the only ones which contribute to the O(1/

√
N) scaling while all

other states have O(1/N) intrinsic risk. The minimax estimator ignores this structure, as
it must, and has the less favorable O(1/

√
N) everywhere. We must remedy this pathology.

Fortunately, we now know to look to the hedged maximum likelihood estimators for the
desired fix. Also plotted in figure 2.15 is the risk of the HML estimators, which we see are
a good compromise – mimicking the profile of the bimodal risk.

Therefore, we propose that the HML estimator is the optimal choice for quantum state
estimation. Although it is not universal in the strict sense of minimax, it is nearly minimax
and has quadratically improved performance for most states. Moreover, it is much easier
to calculate that the minimax estimator. The analysis of hedging for the noisy coin given
us the optimal hedging parameter βoptimal ≈ 0.0389.
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Figure 2.14: The Bayes risk of the numerically computed least favorable priors for a qubit
and rebit as a function of the number of measurements. The larger data markers are for
the deterministic algorithm while the smaller grey dots represent the values found for a
single run of the Monte Carlo algorithm which used 500 initial Monte Carlo samples from
a “flat” (or Hilbert-Schmidt or uniform) prior.

2.3.1 Adaptive State Estimation

In this chapter, we have considered the worst-case performance, with respect to relative en-
tropy loss, of estimators for quantum states and its classical analogue: the noisy coin. We
have shown that both have a worst-case risk that scales as O(1/

√
N) and is overwhelm-

ingly dominated by nearly-pure states. Hedged maximum likelihood estimators achieve
asymptotic scaling with a constant penalty near the boundary. More importantly, for all
states in the bulk region (not within O(1/

√
N) of the boundary), HML estimators achieve

O(1/N) risk.

We have seen that each axis of the Bloch sphere acts a noisy coin whose effective “noise”
is determined by the angle from the nearest measurement axis. What this suggests is that
states whose axes lie in a measurement axis should behave as a noiseless coin - and hence
have the more favorable risk scaling O(1/N). To see this, suppose the true state lies on one
the axes defined by the measurements. Without loss of generality, let ρ = pX++(1−p)X−.

29



Figure 2.15: The risk profile R(p, p̂) is shown for the HML estimator, minimax estima-
tor and bimodal risk lower bound. The risk is plotted for N = 25 Pauli X, Y and Z
measurements. Note that the HML risk profile matches that of the bimodal risk.

Then,

Pr(n|ρ) =

(
N

nx

)(
N

ny

)(
N

nz

)
pnx(1− p)N−nx

(
1

2

)2N

,

and

R(ρ, ρ̂) ≥
(

1− 1

2N

)2∑
nx

(
N

nx

)
pnx(1− p)N−nxD(p‖m)

≥
N∑
n=0

(
N

n

)
pn(1− p)N−nD(p‖m),

which, in the worst case, is identical to the risk of estimating the bias of a noiseless coin.
Thus, when ρ has an eigenbasis equivalent to a measurement basis,

max
ρ∈D(H)

R(ρ, ρ̂) ≥ 0.5
1

N
+O

(
1

N2

)
.
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This results suggests for the estimating a general qubit state, one should attempt to adapt
the measurements to align with the eigenbasis of the state. If such an adaptive scheme
were possible, our result proves it would achieve the favorable risk scaling of noiseless coin
bias estimation.

Adaptive tomography has been considered before. For example, it has been shown for
an alternative risk function, namely fidelity, that the Bayes risk with respect to the class
of Bures priors can be minimized, albeit asymptotically, by only a single adaptive step
[12]. The number of measurements to spend on determining the adaptation depends on
the prior. Therefore, if one is concerned about worst-case risk, as we are here, it is not
clear from an experimental perspective, where finite data counts may be very low, how
many measurements should be performed before adapting to achieve the minimax bound.

Moreover, for non-asymptotic data counts, it may be the case that more than a single
adaptation is necessary to achieve good performance. However, our numerical results
suggest that the limit of adapting after every step [118] is far from necessary. Indeed, the
returns of multiple adaptation diminish quite rapidly when using optimal HML estimators.
This is illustrated in figure 2.16.

2.4 Discussion and Future Directions

The noisy coin analogy is a convenient and intuitive proxy for the problem of quantum
state estimation – but only when the measurements are binary. It is likely the case that an
analogy to noisy dice is appropriate for a more general measurement. However, it is not
clear that, for example, hedging will produce the same favorable properties nor is it obvious
that the numerically found optimal parameters for hedging will be the same, although we
conjecture this to be the case.

We are also one step removed from the truly universal estimators for classical prediction
since our strategies still depend on N . That is, the number of measurements N must be
known. This is not a problem for given data, but it is certainly inconvenient, and probably
ultimately infeasible, to have to compute an estimator for every N . In classical theory,
estimators are usually designed to “deal with” any N . The “add-β” estimators, although
they depend on N , are trivial to implement. To explicitly remove the dependence on N ,
cumulative risk is usually replaces the standard risk function:

RN(ρ, ρ̂) 7→ lim
N→∞

1

N

N∑
n=1

Rn(ρ, ρ̂).
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Figure 2.16: A comparison of static versus adaptive tomography for N = 104 measure-
ments in each basis (plotted is an average of N = 3 × 103 randomly selected data sets).
The worst-case performance of any static protocol will be along the “noisiest” axis (the one
directed toward the vertices of the Bloch cube in red) and have risk O(1/

√
N). Asymptot-

ically equal is the risk of states on the rays 45o from the measurement axes (green). The
measurement axes behave as “noiseless” coins with O(1/N) risk (blue). For our adaptive
protocol, all states have risk scaling O(1/N).

In the classical context [50], the least favorable priors are no longer discrete and actually
turn out to be uniquely Jeffrey’s prior. This is nice because, for one, discrete priors are
conceptually pathological – no sane “agent” is going to assign such a prior. Moreover,
there are many contexts in which Jeffrey’s prior has been shown to be the unique choice
[121, 95]. It would be interesting to know if the same phenomenon occurs in the quantum
mechanical setting.
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Chapter 3

Quantum Process Estimation

In Chapter 2 we used the following quantum mechanical model:

1. To each physical system, we assign an inner product space H with dimension d <∞.

2. Each preparation procedure is represented by a positive semi-definite matrix ρ with
Tr(ρ) = 1.

3. Each measurement procedure is represented by set of positive semi-definite matrices
{Ek} where each Ek represents an outcome of the measurement and the set satisfies∑

k Ek = 1.

4. The probability of outcome k given preparation ρ is

Pr(Ek|ρ) = Tr(Ekρ). (3.1)

The operational axioms above, although sufficient to obtain predictions provided one knows
the state immediately before the measurement, leaves out the possibility of transformations.
The idea is that one knows some initial preparation and final measurement but something
happens to the system in the time between the two. In quantum theory this something
takes the form of a completely positive and trace preserving (CPTP) map. A positive trace
preserving map is a linear transformation taking density matrices to density matrices. Such
a map is completely positive if the map induced when a second arbitrary system is added
remains positive.

A CPTP map is vector in the space of linear operators acting on the vector space of
linear operators acting on the Hilbert space H (call these superoperators). There are many
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ways to representation such an object. The usual Krauss decomposition and Stinespring
dilation [163] are not unique and hence not very useful for characterizing quantum pro-
cesses. There are two useful (invertible) representations which revolve around the standard
basis of d2 linear operators Eij = |i〉〈j|, where the |i〉 are the standard orthonormal basis
for H, and the Choi matrix Φik,jl = 〈i|Φ(|k〉〈l|)|j〉, for some superoperator Φ.

The natural, linear or Liouville representation is

K(Φ) =
∑
ijkl

Φik,jlEik ⊗ Ejl,

and is defined such that K(Φ)vec(ρ) = vec(Φ(ρ)). Note that K(Φ) is an operator acting
on H⊗H. The action of the superoperator is recovered via

Φ(ρ) =
∑
ijkl

Φik,jlEikρE
†
jl.

Had we chosen a different basis {Bα}, instead of {Eij}, such that

Φ(ρ) =
∑
αβ

χαβBαρB
†
β,

then
K(Φ) =

∑
αβ

χβαBα ⊗Bβ,

and the coefficients in this basis are together called the χ-matrix. References [49, 175]
give an algorithm to determine the χ-matrix which was first experimentally determined in
NMR [46] 1. The Choi matrix was experimentally determined in references [27, 222].

The other useful representation is the Choi-Jamiolkowski representation and is given
by

J(Φ) =
∑
ij

Φ(Eij)⊗ Eij.

1This article reports the determination of the χ-matrix for NMR quantum computer running a
controlled-NOT pulse sequence. The χ-matrix is used to compute the minimum and average gate fi-
delity. In order to characterize the decoherence process, the authors chose to fit χ to a model χm which
has far fewer parameters and is motivated by the large body of NMR knowledge. The results show the
model is in good agreement with the obtained data. Note that reference [162] is the first to report an
experiment performing quantum process estimation, which was done for a qubit. See reference [27] for an
example of dynamical process estimation in NMR. For a linear optical implementation, see [158].
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The inversion is provided by the formula

Φ(ρ) = Tr2[J(Φ)(1⊗ ρT)].

This representation was found to be useful in the characterizing the full set of CPTP maps
for maximum likelihood estimation [77, 183, 166].

In references [140, 57] a simple overview of Choi’s proof is given which shows how
to construct the Kraus operators using what is now known as the Choi-matrix or Choi-
Jamiolkowski isomorphism. The matrix

T (Φ) =
∑
ij

Eij ⊗ Φ(Eij),

where Eij = |i〉〈j| are elements of the standard basis. Note that this is a density matrix
when Φ acts on one-half of the maximally entangled state

|Φ〉 =
1√
d

∑
i

|i〉 ⊗ |i〉 .

This suggests the following recipe for quantum process estimation:

1. Prepare the maximally entangled state |Φ〉.

2. Send one half of that state through Φ.

3. Determine by state estimation the joint density matrix T (Φ).

The Kraus operators can then be determined by linear algebra. Note that determining
the joint density matrix requires d4 parameters (d2 are constrained by trace preservation)
which is in agreement with estimation schemes which determine the effect of Φ on d2 basis
states.

All these techniques rely on the ability to perform reliable quantum state estimation.
But it is interesting to note that, while necessary for these schemes, optimal state estimation
is not sufficient for optimal process estimation. Since state estimation will never be perfect,
statistical errors alone might suggest a non-CPTP map has been performed. However, there
is an added level of complexity here at the fundamental level since there exist physical maps
which are non-CPTP (as noted in textbook accounts [163] and by experimental evidence
[222]). So we cannot simply slough off those estimates which are non-CPTP as we did with
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negative and zero eigenvalue estimates in state estimation. Thus there is much theoretical
work to be done in order to determine what optimal means for process estimation.

In any case, what has been discussed is full quantum process estimation – there really
is a “black box” we know nothing about. While conservative, this is highly unlikely – es-
pecially if we are the ones trying to build a quantum information processing device, rather
than being given an unlabeled one. That is, we can assume we have some additional knowl-
edge of the process. When this additional knowledge reduces the number of parameters of
the process to specify it is sometimes called partial process estimation or partial tomog-
raphy. If our goal is to build a quantum information processing device, we must consider
also an additional complication; a characterization of a process at a “snap-shot” in time
is not nearly as useful as a characterization of the dynamics a quantum system undergoes
(the latter can considered as a snap-shot at all times). Since, for closed systems, evolution
is given by a Hamiltonian operation, this is usually called Hamiltonian estimation.

One way to adapt the above schemes to Hamiltonian estimation is by stroboscopically
estimating snap-shots of the process at fixed times and then use various algorithms to invert
these to find the Hamiltonian (see [164] and references therein). At each time, an ensemble
measurement is performed, whereas here we take a different, more general, approach. We
allow the possibility to estimate the Hamiltonian after every single projective measurement.
Moreover, we also consider adaptively changing the measurement parameters between run
of the experiment. We do so in a fully parametric Bayesian framework.

The outline of this chapter is as follows. First, in section 3.1, we review the framework
of Bayesian experimental design and apply it to a simple Hamiltonian model for a qubit. In
section 3.2 we use statistical techniques to provide analytic and asymptotic lower bounds on
the derived estimation protocols. In section 3.3 we apply sequential Monte Carlo techniques
from machine learning to more difficult, higher dimensional parameter space, examples.
Finally, in section 3.4, we discuss the viability of the derived algorithms for use in generic
Hamiltonian estimation problems.

This chapter is based on work presented in references [72, 71] and unpublished results
obtained in collaboration with Chris Granade and David Cory.

3.1 Bayesian Experimental Design

Bayesian experimental design (see, e.g. [146]) is a methodology to ascertain the utility
of a proposed experiment. Bayesian experimental design has been successfully applied to
problems in experimental physics, such as in the recent examples of [64] and [217].
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In classical theories of physics and statistics, the measurement simply reveals the state
of the system at that instant. By contrast, quantum theory presents with the following
physical (and conceptual) barrier: no single measurement can reveal the state. Rather,
each potential kind of experiment admits a probability distribution from which we draw
our data. Thus, the methodology of experimental design seems tailor-made for quantum
theory.

The structure of this section is as follows. We begin by reviewing the general outline
of Bayesian experimental design. We then apply the technique to devise an algorithm for
the estimation of quantum Hamiltonian parameters. We show that in a particular case,
this strategy is nearly globally optimal and demonstrate its improvement over standard
algorithms numerically. Finally we conclude with a discussion on the applicability of this
technique to real experiments on more complex quantum systems.

3.1.1 Formalism

We assume some initial experiment E has been performed and data D has been obtained.
The goal is to determine Pr(Θ|D,E), the probability distribution of the model parameters
Θ given the experimental data. To achieve this we use Bayes’ rule

Pr(Θ|D,E) =
Pr(D|Θ, E) Pr(Θ|E)

Pr(D|E)
,

where Pr(D|Θ, E) is the likelihood function, which is determined through the process of
modeling the experiment, and Pr(Θ|E) is the prior, which encodes any a priori knowledge
of the model parameters. The final term Pr(D|E) can simply be thought as a normalization
factor.

At this stage we can stop or obtain further data. Experimental design is well suited to
quantum theory since an arbitrary fixed measurement procedure does not give maximal
knowledge as is often assumed in the statistical modeling of classical system. We conceive,
then, of possible future data D1 obtained from a, possibly different, experiment E1. The
probability of obtaining this data can be computed from the distributions at hand via
marginalizing over model parameters

Pr(D1|E1, D,E) =

∫
Pr(D1|Θ, E1) Pr(Θ|D,E)dΘ.

We can use this distribution to calculate the expected utility of an experiment

U(E1) =
∑
D1

Pr(D1|E1, D,E)U(D1, E1),
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where U(D1, E1) is the utility we would derive if experiment E1 gave result D1. This could
in principle be any function tailored to the specific problem. However, for scientific infer-
ence, a generally well motivated measure of utility is information gain [141]. In information
theory, information is measured by the entropy

U(D1, E1) =

∫
Pr(Θ|D1, E1, D,E) log Pr(Θ|D1, E1, D,E)dΘ.

Thus, we search for the experiment which maximizes the expected information in the final
distribution. That is, an optimal experiment Ê is one which satisfies

U(Ê) = max
E1

{∑
D1

Pr(D1|E1, D,E)×∫
Pr(Θ|D1, E1, D,E) log Pr(Θ|D1, E1, D,E)dΘ

}
.

3.1.2 Application to Simple Example

As an example of how to apply the Bayesian experimental design formalism to problems
in quantum information, we consider a simple situation with a single qubit. In particular,
we suppose that the qubit evolves under an internal Hamiltonian

H =
ω

2
σz.

Here ω is an unknown parameter whose value we want to estimate. An experiment consists
of preparing a single known input state ψin = |+〉, the +1 eigenstate of σx, evolving under
the Hamiltonian H for a controllable time t and performing a measurement in the σx basis.
This is the simplest problem where adaptive Hamiltonian estimation can be used and is
the problem studied in reference [193].

In the language of Bayesian inference, the data D ∈ {0, 1} is the outcome of the mea-
surement. An experiment E consists of a specification of time the t that the Hamiltonian
is on, while the model parameter Θ is simply ω. The likelihood function is given by the
Born rule

Pr(D = 0|Θ, E) =
∣∣〈+| eiω2 σzt |+〉∣∣2 = cos2

(ω
2
t
)
. (3.2)

This distribution is plotted in figure 3.1.

Experimental design is a decision theoretic problem based on the utility function

U(t) =
∑
D

Pr(D|t)
∫

Pr(ω|D, t) log Pr(ω|D, t)dω.
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Figure 3.1: The likelihood function (3.2). Usually we think of a probability distribution
as a function of the variable on the left of the conditional and for a fixed set of parameters
on the right. However, the terminology “likelihood function” implies the opposite inter-
pretation. Here we have fixed the datum D = 1 and plotted the probability distribution
for variable ω and t.
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Θ,E {Pr(D|Θ,E)}

Pr(Θ)

ED
U(E|D)

U(E)

Pr(Θ)

Ê=argmax U(E) D Pr(D|Θ,Ê)

Pr(Θ|D,Ê)

Figure 3.2: Overview of a step in the online adaptive algorithm for finding locally optimal
experiments. Top: Method for calculating the utility function U(E), given a simulator and
a prior distribution Pr(Θ) over model parameters Θ. Bottom: Method for updating prior
distribution with results D from chosen actual experiment.

The optimal design is any value of t which maximizes this quantity. We proceed by
performing the optimal experiment and obtaining data D1. Using Bayesian inference we
update our prior Pr(ω) via Bayes’ rule:

Pr(ω|D1) =
Pr(D1|ω) Pr(ω)

Pr(D1)
.

If we are not satisfied, we can repeat the process where this distribution becomes the prior
for the new experimental design step. This algorithm is depicted in figure 3.2.

3.1.3 Estimators, Squared Error Loss and a Greedy Alternative
to Information Gain

The preceding problem had a single unknown variable. If we desire an estimate Θ̂ of the
true value Θ, the most often used figure of merit is the squared error loss :

L(Θ, Θ̂) =
∣∣∣Θ− Θ̂

∣∣∣2 .
The risk of an estimator Θ̂ : {D,D1, D2, . . . , DN} 7→ R is its expected performance

with respect to the loss function:

R(Θ, Θ̂) =
∑

{D,D1,D2,...,DN}

Pr({D,D1, D2, . . . , DN}|Θ)L(Θ, Θ̂).
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For squared error loss, the risk is also called the mean squared error. The average of this
quantity with respect to some prior Pr(Θ) =: π(Θ) is the Bayes risk of π,

r(π, Θ̂) =

∫
R(Θ, Θ̂)π(Θ)dΘ,

and the estimator which minimizes this quantity is called a Bayes estimator. In this case
the Bayes estimator is the mean of the posterior distribution2. Let us assume then that
the estimators we choose are Bayes. Let us also choose a uniform prior for Θ. Then, the
final figure of merit is the average mean squared error (AMSE):

r =

∫
R(Θ, Θ̂)dΘ.

We would like a strategy which minimizes this quantity. Non-adaptive Fourier and Bayesian
strategies were investigated and compared to an adaptive strategy in reference [193]. Their
adaptive strategy fits into the Bayesian experimental design framework when the utility is
measured by the variance of the posterior distribution:

V (D1, E1) = −
∫

Pr(Θ|D1, E1, D,E)(Θ2 − µ(D1, E1))2dΘ,

where

µ(D1, E1) =

∫
Pr(Θ|D1, E1, D,E)ΘdΘ

is the mean of the posterior. Recall that the mean is a Bayes estimator of AMSE, so µ = Θ̂.
For a single measurement this utility function satisfies V = −r. That is, maximizing the
utility locally at each step of the algorithm is equivalent to minimizing the AMSE at each
step. Hence, when using the negative variance as our utility function, the adaptive strategy
summarized in figure 3.2 is an example not only of a local optimization, but also a greedy
algorithm with respect to the AMSE risk.

As experiments are designed and measurements are made, a decision tree is built up (a
cartoon of this is shown in figure 3.3). We can also write the risk of this strategy recursively
as follows. Suppose at the N ’th, and final, measurement we have the updated distribution
πN−1. Then, the risk of the local strategy is

lN(πN−1,Θ) =
∑
DN

Pr(DN |Θ, ÊN)L(Θ, µ(DN , ÊN)),

2Note that in any case where the loss function is strictly proper, i.e. is equal to zero if and only if the
estimate is equal to the true state, the Bayes estimator is the posterior mean [24].
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where ÊN is the locally optimal design satisfying

ÊN = argmin
EN

∫ ∑
DN

Pr(DN |Θ, EN)L(Θ, µ(DN , EN)))πN−1(Θ)dΘ.

The expected risk at any other stage is

ln(πn−1,Θ) =
∑
Dn

Pr(Dn|Ên)ln+1

(
Pr(Dn|Θ, Ên)πn−1(Θ)∫
Pr(Dn|Θ, Ên)πn−1(Θ)dΘ

)
,

where Ên is, again, the locally optimal design satisfying

Ên = argmin
En

∫ ∑
Dn

Pr(Dn|Θ, En)L(Θ, µ(Dn, En)))πn−1(Θ)dΘ.

Then, the Bayes risk of the greedy strategy is∫
l1(π0,Θ)π0(Θ)dΘ.

Again, it is clear that the greedy algorithm is globally optimal on the final decision, as
there is no further hypothetical data to consider. That is, the optimal solution at the N ’th
measurement is

gN(πN−1,Θ) =
∑
DN

Pr(DN |Θ, ÊN)L(Θ, µ(DN , ÊN)),

where ÊN is the locally optimal design satisfying

ÊN = argmin
EN

∫ ∑
DN

Pr(DN |Θ, EN)L(Θ, µ(DN , EN)))πN−1(Θ)dΘ.

However, the globally optimal risk at any other stage

gn(πn−1,Θ) =
∑
Dn

Pr(Dn|Ẽn)gn+1

(
Pr(Dn|Θ, Ẽn)πn−1(Θ)∫
Pr(Dn|Θ, Ẽn)πn−1(Θ)dΘ

)
,

where now Ẽn is the globally optimal design satisfying

Ẽn = argmin
En

∫ ∑
Dn

Pr(Dn|Θ, En)gn+1

(
Pr(Dn|Θ, En)πn−1(Θ)∫
Pr(Dn|Θ, En)πn−1(Θ)dΘ

)
πn−1(Θ)dΘ.
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Then, the Bayes risk of the greedy strategy is∫
g1(π0,Θ)π0(Θ)dΘ.

In general, l1(π0,Θ) 6= g1(π0,Θ). Nor is it the case that∫
l1(π0,Θ)π0(Θ)dΘ =

∫
g1(π0,Θ)π0(Θ)dΘ

for an arbitrary prior. However, for the special case of the uniform prior, we have found
numerically that the Bayes risk of the greedy strategy and the Bayes risk of the global
strategy are similar enough that the greedy strategy is useful.

3.1.4 Performance Comparisons

In reference [193], it was shown via simulation that the posterior variance of the greedy
strategy is best fit by an exponentially decreasing function of N , the total number of
measurements. In contrast, all off-line strategies decrease at best as a power of N .

In Figure 3.4, we show that the local information gain optimizing algorithm also enjoys
an exponential improvement in accuracy over naive off-line methods. Moreover, we show
Nyquist rate sampling is unnecessary and, indeed, sub-optimal. All results stated are
obtained using a uniform prior on [0, 1] and are computed numerically by exploring every
branch of the decision tree, in contrast to simulation.

In order to be “fair” to the off-line methods, we restricted the adaptive methods to
explore the same experimental design specifications. That is, for this particular problem,
the adaptive algorithm was allowed to select measurement times from [0, Nmaxπ], where
Nmax is the total number of measurements. In principle, these methods could only do
better with a larger design specification.

3.1.5 Nyquist Considered Harmful

We have shown for the problem of estimating the parameter in a simple Hamiltonian
model of qubit dynamics an adaptive measurement strategy can exponentially improve
the accuracy over offline estimation strategies. Moreover, we have shown that sampling
at the Nyquist rate is not optimal in the case of strong measurement. We have derived
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Figure 3.4: Performance of the estimation strategies. The Bayesian sequential and the
strategy labeled “Nyquist” are sampled at the Nyquist rate. The “optimized” strate-
gies find the global maximum utility (using Matlab’s “fmincon” starting with the optimal
Nyquist time). In each case, Nmax = 12 measurements are considered. Left: the ideal
model with no noise. Right: a more realistic model with 25% noise and an addition re-
laxation process (known as T2) which exponentially decays the signal (to half its value at
t = 10π).
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Figure 3.5: The information gain (left) and variance (right) utilities for the prior followed
by three simulated measurements. The vertical grid lines indicate the Nyquist times. Note
that the times at which the utilities are maximized do not necessarily increase with the
number of measurements.

a recursive solution to the risks for both the local and global optimal strategies. Using
this solution, we numerically found that the local strategy is nearly optimal in the special
case of a uniform prior. That the greedy algorithm is nearly optimal in a case relevant
to experiment demonstrates that an adaptive Bayesian method may be computationally
feasible, in that an implementation need not consider all possible future data when choosing
each experiment.

Together, these results demonstrate the usefulness of an adaptive Bayesian algorithm
for parameter estimation in quantum mechanical systems, especially in comparison with
other algorithms in common use. In the presence of noise, this improvement becomes still
more stark, as demonstrated by the results shown in Figure 3.4.

Why is it the case that the Nyquist times are not optimal? First, why should we
expect them to be optimal? The Nyquist theorem states that a signal which contains no
frequencies higher than ωmax is completely and unambiguously characterized by a discrete
set of samples taken at a rate greater than or equal to π/2ωmax. However, the classical
notion of sampling fails for the strong-measurement case that we consider here. What we
have is a periodic probability distribution which can be sampled, not a periodic function
whose values can be ascertained. That is, there is no signal, in the classical sense of the
word, which can be reconstructed. The failure of the Nyquist rate sampling is exemplified
in Figure 3.5.
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3.2 A Lower Bound on Local Strategies

In the last section and in reference [193], measurement adaptive tomography was suggested
as an efficient means of performing partial quantum process tomography. Little is known
about optimal protocols when realistic experimental restrictions are imposed — as opposed
to the case where one is allowed arbitrary quantum resources3. Indeed, even in the simplest
example we have looked at above, not even bounds have been given on the proposed
protocols. Here, we give analytic bounds on both non-adaptive and adaptive estimation
protocols for the simple Hamiltonian parameter estimation problem. Moreover, we derive
estimation protocols which asymptotically achieve these bounds. Adaptive protocols are
typically difficult to implement because a complex optimization problem must be solved
after each measurement. We instead derive a heuristic that is easy to implement and
achieves the exponentially improved asymptotic risk scaling of the optimal solution.

3.2.1 Mean Squared Error Lower Bound

Recall the problem specified in section 3.1.2. If we desire an estimate ω̂ of the true value
ω, a commonly used figure of merit is the squared error loss :

L(ω, ω̂) = |ω − ω̂|2 .

The risk of an estimator, which is a function that takes data sets (D,T ) := ({dk}, {tk}) to
estimates ω̂(D,T ), is its expected performance with respect to the loss function:

R(ω, ω̂) =
∑
D

Pr(D|ω, T )L(ω, ω̂(D,T )).

For squared error loss, the risk is also called the mean squared error (MSE).

The difficulty here is that the random outcomes of the measurements are not identically
distributed. In fact, since they depend on the measurement time, each one could be differ-
ent. Although, asymptotic results exist for non-identically distributed random variables4,
these results are derived for insufficient statistics, such as the sample mean. Moreover, we
desire to provide computationally tractable heuristics that permit useful estimates with a
finite number of samples.

3As in the standard phase estimation protocol. See e.g. [47].
4The frequentist reference is [113], while a useful Bayesian reference is [223].
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Although it is quite difficult to obtain exact expressions for the risk for arbitrary mea-
surement times, in some cases we have obtained an asymptotically tight lower bound. For
unbiased estimators, we can appeal to the Cramer-Rao bound [56]

R(ω, ω̂) ≥ 1

I(ω)
, (3.3)

where

I(ω) = −
∑
D

Pr(D|ω, T )
∂2 log(Pr(D|ω, T ))

∂ω2
(3.4)

is called the Fisher information. In our particular case, the Fisher information reduces to
quite a simple form in

I(ω) =
N∑
k=1

t2k, (3.5)

which is conveniently independent of ω. Let us derive this here. We show that for the
simple model represented by the likelihood function presented in equation (3.2), the Fisher
information reduces to the form claimed in (3.5). To show this, we first note that the
likelihood for a vector D = (d1, d2, . . . , dk) of observations at times T = (t1, t2, . . . , tk) is
given by a product of the likelihoods for each individual measurement,

Pr(D|ω, T ) =
∏
k

Pr(dk|ω, tk).

Thus, the log-likelihood function is simply a sum over the individual log-likelihoods. Since
the derivative operator commutes with summation, we obtain that

∂2

∂ω2
log Pr(D|ω, T ) =

∑
k

∂2

∂ω2
log Pr(dk|ω, tk).

This in turn implies that the Fisher information for a vector of measurements is given by
the sum for each measurement of that measurement’s Fisher information.

To calculate the single-measurement Fisher information, we find the second derivative
of the log-likelihood for a single measurement is given by

∂2

∂ω2
log Pr(dk|ω, tk) = t2k

(2dk − 1) (1− 2dk + cos (ωtk))

((2dk − 1) cos (ωtk)− 1)2 .
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Thus, we find that the single-measurement Fisher information is given by

I(ω|tk) = −
∑

dk∈{0,1}

Pr(dk|ω, tk)
∂2

∂ω2
log Pr(dk|ω, tk)

= t2k
∑

dk∈{0,1}

(2dk − 1) (1− 2dk + cos (ωtk))

2 (2dk − 1) cos (ωtk)− 2

= t2k.

We conclude that I(ω|T ) =
∑

k t
2
k, as claimed. Later we show that this bound becomes

exponentially suppressed when we include noise in our model. In general, this quantity is
dependent on the true parameter ω.

The Bayesian solution considers the average of the risk, called the Bayes risk, with
respect to some prior π(ω):

r(π, ω̂) =

∫
R(ω, ω̂)π(ω)dω.

As in references [193], we choose a uniform prior for ω ∈ (0, 1). Then, the final figure of
merit is the average mean squared error:

r(ω̂) =

∫
R(ω, ω̂)dω.

The goal is to find a strategy which minimizes this quantity. Although there exist Bayesian
generalizations of the Cramer-Rao bound [87], ours is independent of ω and thus remains
unchanged by integration over the parameter space:

r(ω̂) ≥ 1∑N
k=1 t

2
k

. (3.6)

Note also that, in general, Bayesian Cramer-Rao bounds require fewer assumptions to
derive than the standard (frequentist) bound. Although they are the same for this model,
they differ for a more general model considered later. In broad strokes, the difference
in practice between Bayesian and frequentist methods is averaging versus optimization.
Below we demonstrate a heuristic strategy which draws from both methods to achieve
the goal of determining the measurement times which give the lowest possible achievable
bound on the Bayes risk (3.6).

As useful as the Bayesian Cramer-Rao lower bound (3.6) is, it is simple to see that it
is not always achievable. We can obtain a lower bound by considering the best protocol

49



we could possibly hope for in any two-outcome experiment. In such a protocol, one bit
of experimental data provides exactly one bit of certainty about the parameter ω. If we
learn the bits of ω in sequence, at each step k, our risk is upper bounded by the worst-case
where all the remaining bits of ω are either all 0 or all 1. In either case, the error incurred
by estimating a point between the two extremes is given by

∑∞
n=k+2 2−n = 2−(k+1), leading

to the best possible MSE after N measurements being 2−2(N+1), even though we can make
a smaller Cramer-Rao bound by choosing times that grow faster than this exponential
function. Note that we can achieve risk scaling as 2−N via the standard phase estimation
protocol [47], but that this protocol requires quantum resources which are not part of our
model.

3.2.2 Lower Bounds for Some Sampling Schemes

Let us consider a couple of examples for which the lower bound can be further simplified.
First, consider the case when all the measurement times are the same. This is by far
the simplest case, since the outcomes become identically distributed. Recall ω ∈ (0, 1).
Then, the measurement time should be less then the first Nyquist time, t ≤ π, or the data
will be consistent with more than one ω. That is, for t > π (but less than 2π, say), the
likelihood function will have two equally likely maxima. We minimize the risk, then, by
choosing t = π. Then, the maximum likelihood estimator (MLE), for example, will be
asymptotically efficient [137] achieving the Cramer-Rao lower bound

r(ω̂MLE) =
2

π2N
+O

(
1

N2

)
.

Now consider a uniform grid of times. Since ω ∈ (0, 1), we should choose the Nyquist
sampling rate: tk = kπ. Then, for any estimator ω̂ using data collected at these measure-
ment times, the Cramer-Rao bound gives

r(ω̂) ≥ 6

π2N(1 +N)(1 + 2N)
=

3

π2N3
+O

(
1

N4

)
.

Again, the maximum likelihood estimator will be asymptotically efficient. However, since
the likelihood function will have many local maxima, the maximum likelihood estimator is
non-trivial to find as gradient methods are not guaranteed to work. Bayesian estimators
were derived in [193], where simulations yielded∼ 1/N3 risk scaling which is asymptotically
efficient.
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Note that since we are considering a uniform spacing of times, we can apply a Fourier es-
timation technique without worrying about spectral aliasing introduced by non-uniformity
[148]. That is, we apply the discrete Fourier transform and estimate the peak of the power
spectrum. Since the resolution in the frequency domain is 1/N4t, we expect the Bayes
risk to be

r(ω̂Fourier) =
1

π2N2
.

The sampling theorem requires that we sample from a deterministic function, not a proba-
bility distribution. In practice, this condition is often approximately satisfied by sampling
some stable statistic such as the mean value of the distribution at each time. This can be
achieved by measuring at the same time until a sufficiently accurate estimate of the mean
at that time is obtained, then repeating this for many other times. But as we have shown,
this method can be quadratically improved by performing every single measurement at a
different time.

3.2.3 Lower Bound on Local Adaptive Strategies

It has been shown that Bayesian adaptive solutions lead to risk decreasing exponentially
with the number of measurements [193]. However, these results are given by fits to numer-
ical data. Here, we give an analytic lower bound on the risk of these protocols.

Our local (in time) Bayesian adaptive protocol can be described as follows: (1) begin
with a uniform prior Pr(ω) and determine the first measurement time t1 ≈ 1.136π which
minimizes the average (over the two possible outcomes) variance of the posterior distribu-
tion; (2) perform a measurement at t1, record the outcome d1, and update the distribution
Pr(ω) 7→ Pr(ω|d1, t1) via Bayes’ rule; (3) repeat step (1) replacing the current prior with
the current posterior. Note that the expected variance in the posterior is the Bayes risk.
Thus, the protocol attempts to minimize the risk assuming the next measurement is the
last. Strategies that are local in this sense are called a greedy strategies, as opposed to
strategies which attempt to minimize the risk over all future experiments.

For some choices of measurement times, including those given by the protocol above, the
posterior will be approximately normally distributed5. This is guaranteed in the asymptotic
limit, but the posterior distribution near its peak is also remarkably well approximated by
a Gaussian after as few as 15 reasonably chosen measurements (we found a uniform grid
tk = kπ to be sufficient for “warming up” to the Gaussian approximation). Thus, we

5This is true asymptotically and higher order corrections can be used if required [223].
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approximate the current distribution (at given some sufficiently long measurement record
D) as

Pr(ω|D) =
1√

2πσ2
e−

(ω−µ)2

2σ2 ,

with some arbitrary mean µ and variance σ2 implied by D. The expected posterior variance
(which is equal to the Bayes risk) of the probability distribution of the next measurement
is

r(t) = σ2

(
1 +

t2σ2 sin(µt)2

−et2σ2 + cos(µt)2

)
, (3.7)

which oscillates with frequency 2µ within an envelope σ2
(

1− t2σ2e−t
2σ
)

. Next, we derive

expressions for posterior distributions under the assumption of a normally-distributed prior,
and then apply these expressions to show the asymptotic scaling of the Bayes risk. We
also derive update rules that allow for expedient implementation of the greedy algorithm.

Under the assumption of a normally-distributed prior, all prior information about the
parameter ω can be characterized by the mean µ and variance σ2 of the prior distribution.
Thus, we shall write our priors as Pr(ω|µ, σ2) to reflect the assumption of normality. Then,
the probability of obtaining a datum d at time t given such prior information is then given
by

Pr(d|t;µ, σ2) =

∫ ∞
−∞

Pr(d|t, ω) Pr(ω|µ, σ2)dω =
1

4

(
2− (2d− 1)

(
1 + e2iµt

)
e−

1
2
t(σ2t+2iµ)

)
.

Applying Bayes’ rule then produces the posterior distribution

Pr(ω|d, t;µ, σ2) =
Pr(ω|µ, σ2) Pr(d|t, ω)

Pr(d|t;µ, σ2)

=

√
2
π
e−

(µ−ω)2

2σ2 ((1− 2d) cos(tω) + 1)

σ
(

2− (2d− 1) (1 + e2iµt) e−
1
2
t(σ2t+2iµ)

) .
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Figure 3.6: The risk envelope E(t, σ2), and the risk r(t;µ, σ2) ≥ E(t, σ2) for the examples
where µ = 0.4 and σ2 = 10−3 (left) and σ2 = 5 × 10−5 (right). Note that as σ2 shrinks,
the intersections between E and r (marked by dots) become more tightly packed.

The mean and variance of this distribution are given by:

E[ω|d, t;µ, σ2] =
2
(

(2d− 1)e−
1
2
σ2t2 (σ2t sin(µt)− µ cos(µt)) + µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2
t(σ2t+2iµ)

V[ω|d, t;µ, σ2] = µ2 + σ2 −
2
(

(2d− 1)e−
1
2
σ2t2 (σ2t sin(µt)− µ cos(µt)) + µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2
t(σ2t+2iµ)

− 2(2d− 1)σ2teiµt (σ2t cos(µt) + 2µ sin(µt))

(2d− 1) (1 + e2iµt)− 2e
1
2
t(σ2t+2iµ)

To chose optimal times, we wish to pick t so as to minimize the expected value over
of the variance, where this expectation is taken over possible data. Based on the previous
expressions, we find that

Ed[Vω[ω|d, t;µ, σ2]] = σ2

(
1 +

t2σ2 sin(µt)2

−et2σ2 + cos(µt)2

)
,

in agreement with Equation (3.7).

This expected variance, which describes our risk incurred by measuring at a given t, is

bounded below by an envelope E(t, σ2) = σ2
(

1− t2σ2e−t
2σ2
)

. A pair of examples of the

envelope E(t, σ2) and achievable risk r(t;µ, σ2) is illustrated in figure 3.6.

Note that the envelope is minimized by t̂ = argmin
t

E(t, σ2) = 1/σ. Moreover, the

expected variance saturates the lower bound at intervals in t of 1/µ, but the width of
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the envelope’s minimum grows as 1/σ2, so that as more measurements are performed,
the bound becomes a good approximation for the minimum achievable risk. Thus, in the
asymptotic limit of large numbers of experiments, we have that the risk at scales with each
step as the minimum of the envelope,

E(t̂, σ2)

σ2
= 1− e−1 ≈ 0.632.

We conclude that in the asymptotic limit, the risk decays as e−N ln 0.632 ≈ e−0.458N , where
N is the number of measurements performed, and this is achieved at measurement times
which scale as

tk ∼
1

σ(1− e−1)k/2
≈ 1.26k

σ
.

These times are guaranteed to be optimal only in the asymptotic limit. For finite
numbers of samples, we suggest two simple heuristics. First, we suggest the use of expo-
nentially increasing times, where the base of the exponent is optimized offline, followed
by the use of the maximum likelihood estimator for these times. Second, we suggest a
simpler adaptive scheme based on the assumption that the distribution remains Gaussian
after each measurement. Making use of this normality assumption, we only need update
equations for the mean and variance of the distribution over ω. In deriving the update
equations, we also take into account the oscillations of the expected Bayes risk by finding
the nearest achievable minima to the one given by the lower bound. We state without
derivation the update rules for µ and σ2 after obtaining a measurement result d from an
experiment performed at time t, under the assumption of an normal prior. For the simple
model described by equation (3.2),

E [ω|d] = µ−
π(2d− 1)σ2(−1)k (2k − 1) exp

(
−π2σ2(1−2k)2

8µ2

)
2µ

(3.8)

V [ω|d] = σ2 −
π2(1− 2d)2σ4 (1− 2k)2 exp

(
−π2σ2(1−2k)2

4µ2

)
4µ2

, (3.9)

where k = round
[
µ
πσ

+ 1
2

]
is used to pick the intersection of E(t, σ2) and r(t;µ, σ2) to the

minimum of E.

3.2.4 Generalizations to Noise Models

In practice, we will have to consider not only experimental restrictions but also noise and
relaxation processes. Processes which do not affect the quantum state can be effectively
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Figure 3.7: The Bayes risk – the average (over a uniform prior) mean (over data) squared
error – of the strategies discussed in the thesis. Data points are at evenly spaced measure-
ment numbers N ∈ {16, 20, 24, . . . , 124} and the lines are linear interpolants to guide the
eye. Each data point is the average of 104 simulations. In each figure, the noise parameter
η = 1 since its inclusion only gives a constant offset. From top to bottom, the relaxation
characteristic time is T2 = ∞, 1010π, 104π. The thin solid lines indicate the lower bound
given by Equation (3.12).
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modeled by random bit-flip errors occurring with probability 1 − η. Processes which do
affect the quantum state (decoherence) are modeled by an exponential decay of phase
coherence6 with characteristic time T2. Since the state being measured lies in the xy-plane
of the Bloch sphere, this loss of phase coherence manifests as an exponential decaying
envelope being applied to the original likelihood (3.2). The model is thus fully specified by
the likelihood function

Pr(0|ω, t, η, T2) = η

(
e
− t
T2 cos2

(ω
2
t
)

+
1− e−

t
T2

2

)
+

1− η
2

. (3.10)

For the model with finite T2 and limited visibility, given by the likelihood function
(3.10), we can follow the same logic. We find the second derivative of (3.10) with respect
to ω gives us

∂2

∂ω2
log Pr(dk|ω, tk) = ηt2k ·

(2dk − 1)
(
η (1− 2dk) + e

tk
T2 cos (ωtk)

)
(
η (1− 2dk) cos (ωtk) + e

tk
T2

)2 .

The expected value of this derivative then gives us the Fisher information for a single
measurement in the finite-T2 model,

I(ω|tk) =
η2t2k sin2 (ωtk)

e
2tk
T2 − η2 cos2 (ωtk)

.

Taking the sum of this information then produces the Cramer-Rao bound

R(ω, ω̂) ≥
(

N∑
k=1

t2kη
2 sin2(ωtk)

e
2tk
T2 − η2 cos2(ωtk)

)−1

. (3.11)

Note that unlike the Cramer-Rao bound for the noiseless case, the above bound is not
independent of ω and thus we must appeal to the Bayesian Cramer-Rao bound so that
the measurement times can be chosen independently of the true parameter. However,
the Bayesian bound turns out to be very loose. A sharper bound is given by first upper
bounding each term in the denominator to give

r(ω̂) ≥ 1

η2
∑N

k=1 t
2
ke
− 2tk
T2

.

6We do not include amplitude damping in our model since our populations remain equal throughout
evolution and thus T1 only manifests as a contribution to T2.
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The noise term (or visibility) η simply gives a constant reduction in the achievable
accuracy. The relaxation process provides a more interesting dynamic as we see that
the gains from longer times are exponentially suppressed. In other words, strategies are
restricted to explore tk ≤ T2. We can thus do no better than

r(ω̂) ≥ e2

Nη2T 2
2

. (3.12)

The adaptive strategy discussed above can be generalized to include noise and relax-
ation. For the finite-T2 model, the updated mean and variance are given by

E [ω|d] = µ+

π(2d− 1)(−1)k(2k − 1)σ2 exp

(
− (π−2πk)(−2πkσ2T2+4µ+πσ2T2)

8µ2T2

)
2µ

(3.13)

V [ω|d] = σ2 −
π2(2d− 1)2(2k − 1)2σ4 exp

(
− (π−2πk)(−2πkσ2T2+4µ+πσ2T2)

4µ2T2

)
4µ2

, (3.14)

where in this case,

k = round

[
µ− µ

√
4σ2T 2

2 + 1 + πσ2T2

2πσ2T2

]
.

To illustrate the performance of our adaptive strategy, we simulate the adaptive strategy
along with offline strategies using identical times (tk = π), linearly spaced times (tk = kπ)
and exponentially sparse times (tk = (9/8)k). For each strategy, we perform simulations
for experiments consisting of different numbers of samples N , up to N = 124, and repeat
each such simulation 104 to obtain an estimate of the Bayes risk for that strategy and
experiment size. In Fig. 3.7, we present the results of these simulations for the noiseless
case, and for the cases T2 = 1010π and T2 = 104π.

Note that in all cases, the adaptive strategy achieves exponential scaling until the times
selected reach t = T2. At that point, the risk will then scale linearly if the remaining mea-
surement times are t = T2. However, if the protocol continues to select larger measurement
times, the information gained from those measurements will tend to zero and the risk will
remain constant.
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3.3 Sequential Monte Carlo Algorithms

In this section we are going to consider the noise model from the previous section:

Pr(0|ω, T2; t) = e
− t
T2 cos2

(ω
2
t
)

+
1− e−

t
T2

2
, (3.15)

Pr(1|ω, T2; t) = 1− Pr(0|ω, T2; t),

where now both ω and T2 are unknown. The time t remains the only experimentally
controllable parameter. We will find that, even for such a simple generalization as this,
the methods discussed above are not adequate for this more general problem. We instead
propose a Sequential Monte Carlo [62] algorithm that performs well with an experimentally
viable amount of resources.

3.3.1 Cramer-Rao Bound

For one parameter models a commonly used figure of merit is the squared error loss :
L(ω, ω̂) = |ω − ω̂|2. Here we use a generalization called the quadratic loss which is suitable
for a vector of parameters x := (ω, T2). It is defined as

LQ(x, x̂) = (x− x̂)TQ(x− x̂),

where Q is a positive definite matrix on the space of unknown parameters. An estimator is
a function x̂ that takes a set of observed data D := {dk} collected from a set of experiments
with controls C := {tk} and produces a set of estimates for the unknown parameters x.
The risk of an estimator given a set of experiment designs C is its expected performance
over all possible outcomes D with respect to the loss function:

R(x, x̂; C) = ED|x;C [L(x, x̂(D,C))].

The Bayes risk is the average of this quantity with respect to a prior distribution on x and
is given explicitly by

r(π;C) = Ex[R(x, x̂; C)]

where x̂ is assumed to be a Bayes estimator.

If we are to proceed by analogy with the single-parameter case, we want to prove
asymptotic lower bounds on the risk R(x, x̂; C) by finding the Fisher information. In
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the case of multiple parameters, the Fisher information is no longer a scalar, but a matrix
defined by

I(x;C) = ED|x;C

[
∇x log (Pr(D|x;C)) ·∇T

x log (Pr(D|x;C))
]
.

Importantly, the Fisher information does not depend at all on the prior distribution, and
thus is calculated in the same way regardless of how many experiments have already been
performed. The Cramer-Rao bound is then given by Cov(x̂) ≥ I(x;C)−1, where X ≥ Y
means that X − Y is positive semi-definite. If we choose Q = 1, then R(x, x̂;C) =
Tr(Cov(x̂)) ≥ Tr(I(x;C)−1). Clearly, this statement of the multivariate Cramer-Rao
bound assumes that I is non-singular. Unfortunately, that assumption is not met for the
given model in the case that we consider a single measurement.

Fortunately, we avoid this problem by considering the Bayesian information matrix
J(π;C) = Ex[I(x;C)]. However, note integration of these types are often intractable
against analytic solutions. By numerically integrating, we can find lower bounds for specific
values of t, T2 and ω. Alternatively, we can apply an iterative algorithm7 as follows. We will
subscript the various quantities of interest by N , which means “at the N ’th measurement”.
The Bayesian Cramer-Rao bound is given by

r(π;CN+1) ≥ JN+1(CN+1)−1, (3.16)

where the iteration is given by

JN+1(CN+1) = J(π;CN+1) + JN(CN)

and the initial condition is J0 = Ex[∇x log (π(x)) ·∇T
x log (π(x))].

An additional complication is that the maximum likelihood estimator is not well-
behaved in cases where the Fisher information matrix is singular. In particular, the likeli-
hood function will not in general be locally normally distributed about its maximum. This
also precludes making the assumption that our posterior approaches appropriate normality
in the limit of many measurements, frustrating efforts at extending our update-rule heuris-
tic to this more complicated case. However, next we will see that via a Sequential Monte
Carlo algorithm we can efficiently compute Bayesian mean estimators and its respective
lower bound.

7This type of algorithm as be given some attention recently for “state space models” and classical
signals with additive noise [209].
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3.3.2 Idea of Sequential Monte Carlo

Suppose we want to compute the integral of a function f : R → R with respect to some
probability density p:

I =

∫ b

a

f(x)p(x)dx.

Then we could use various deterministic numerical integration techniques that we learned
in our first year calculus courses. All of them break the interval [a, b] in to smaller intervals:
[a, b] = [a, x1) ∪ [x1, x2) ∪ · · · ∪ [xn−1, b]. Suppose for brevity that each of the n intervals is
the same size: 4x = (b− a)/n. Then we approximate I, for example, by

Î =
∑
k

f(xk)p(xk)4x.

Using Taylor’s theorem we can show that the leading order error term in such an approx-
imation is O(4x2) for each term. Since there are n terms, the error is bounded by n−1.
Using the same technique for a function g : R2 → R will yield error scaling as n−1/2, and
so on, so that for a parameter space of dimension d, the error of deterministic numerical
integration scales exponentially as n−1/d. This is bad. And, for a long time it hindered
progress of Bayesian techniques as the formulas above some times even require three nested
integral expectations!

Monte Carlo methods attempt to remedy this situation by drastically reducing this
error to a constant n−1/2, in many cases. Now, general Monte Carlo methods have a rich
and complicated history. However, we will be using a more recent variant which dates back
to 1993 [91] but has been rediscover many times in a wide variety of scientific applications
under the following names8: sequential Monte Carlo, particle filters, sequential importance
sampling, Bayes filters, and so on. Fortunately, this field is yet to be plagued by the choice
of name being decided by the charm of the acronym it can generate. For no good reason
other than my personal proclivity, we will use the term sequential Monte Carlo. We will
now sketch the idea behind the algorithm.

Recall the Bayes update rule for one datum D1

Pr(x|D1) ∝ Pr(D1|x) Pr(x).

8See, for example, [62] for a recent tutorial on these methods.
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The distribution can be processed sequentially as more data arrive:

Pr(x|D2, D1) ∝ Pr(D2|x) Pr(x|D1),

Pr(x|D3, D2, D1) ∝ Pr(D3|x) Pr(x|D2, D1),

...

Now it would be incredibly convenient, and possible more efficient, if the prior and posterior
were both from a small family of probability densities. Such a class is a property of the
likelihood function and is called its conjugacy class (see, for example, [19]). For example,
a normally distributed prior is conjugate to a normal likelihood since its posterior will also
be normal. Normality is often assumed for analytic and numeric tractability since we need
only track a few parameters (mean and variance) which are sufficient to specify the normal
distribution.

However, the likelihood functions that we will consider are not normal – not even
asymptotically! But, it turns out that one simple class of prior is conjugate to every
likelihood function: a Dirac delta-function, or more generally, a weighted sum of delta-
functions. Using such a prior guarantees that at all times in the sequential Bayesian
computation, we have the same delta-functions with possibly different weights. Not only
does this greatly simply the analysis, it makes the required multidimensional integrals
tractable.

Integration with respect to a sum of delta-functions becomes a simple summation over
the finitely many support points. Moreover, and perhaps most importantly, this choice of
prior can be made a good approximation to the correct distribution at every step in the
computation. That is, we approximate an arbitrary distribution by

Pr(x|D) ≈
n∑
k=1

wk(D)δ(x− xk),

where the weights at each step are iteratively calculated from the previous step via

wk(Dj+1) =
n∑
k=1

Pr(Dj+1|xk)wk(Dj).

This will be a good approximation provided we feed in, at the initial stage, the appropriate
weights {wk} and support points, often called particles, {xk}. Such a choice is to have
equal weight, wk = 1/n for all k, and sampled particles according to the correct prior
Pr(x).
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Like all numerical techniques, this one requires its own bit of alchemy. The first prob-
lem any sequential Monte Carlo algorithm runs into is zero weights. This is doubly painful
since we are effectively operating with fewer particles but using the same amount of com-
putational resources. Since the support of our approximate distribution is a measure-zero
set according to the correct distribution, all the weights will eventually be zero; we cannot
avoid this. However, we can use various resampling techniques to postpone this disaster.

Generally, the idea behind resampling is to adaptively change the location of the par-
ticles to those which are most likely. The simplest of these types of algorithm chooses n
particles (the original number), with replacement, according to the distribution of weights
then reset the weights of all particles to 1/n. Thus, zero weights particles are “moved” to
higher weight locations.

Here we have used a more powerful general purpose resampling algorithm 9. The idea is
similar to above but that algorithm still potentially leaves large volumes of the parameter
space unexplored. To remedy this, after the new particle is chosen, we apply a random
perturbation to the particle location. Thus, when the same (probably high-weight) particle
is chosen multiple times, the new particles are randomly spread around that location in
the parameter space. Looking ahead at figure 3.8, we can see how the locations of the
particles move along with the higher likelihood regions of the parameter space.

Using this method we can efficiently compute the require expectations in the experiment
design protocols and Bayesian Cramer-Rao bounds since all integral expectations become
summations. To illustrate how this algorithm works let us go back to the simple model with
likelihood function given in equation (3.10). An example trial run is plotted in figure 3.8,
for the case of known T2, and in figure 3.9 for unknown T2. The frequency of resampling
is tunable but also depends on the random outcomes. However, in figures 3.8 and 3.9, we
have forced the resampling before plotting so that each particle has the same weight.

3.3.3 Proof of Concept

Here we demonstrate the utility of the sequential Monte Carlo algorithm through its per-
formance on our example problems. The model is that of equation (3.15). First, with
known T2 = 100π, the performance is plotted in figure 3.10 for a variable number of par-
ticles. As expected, the more Monte Carlo samples used, the more accurate the estimates
of integrals and, hence, the more accurate the protocol. The same is true in figure 3.11,
where the performance is plotted for unknown ω and unknown T2.

9The details are well documented in reference [142].
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Figure 3.8: Left to right: the likelihood function for N = 1, 6, and 11 simulated mea-
surements at random times in in (0, 5π). The model is that given in equation (3.10) with
η = 1 and T2 = 100π. The red dot (and red arrow) is the randomly chosen true parameter
ω. The blue dots are the n = 100 sequential Monte Carlo “particles”.

3.4 Discussion and Future Directions

There are a few details to address under the rug in the discussion of the efficiency of
the sequential Monte Carlo algorithm. The first thing to note is that, since the choice of
resampling algorithm is usually tailored to the problem at hand, it is hard to say something
in general about the algorithmic complexity of it. A more pressing issue for us, however, is
that this algorithm cannot possibly be efficient in the number of physical systems we are
trying to estimate the parameters of. This is simply because the calculation of the likelihood
function requires a quantum simulation, which is an exponentially difficult problem in the
number of physical systems.

Essentially, what we need to do is reduce the number of evaluations of the likelihood
function. There are a number of options to consider. First, we can use a different utility
function, such as information gain, rather than a variance reduction algorithm. Computing
information gain requires no posterior updates to compute whereas computing the variance
requires a hypothetical update of the posterior at each potential experiment10. We have
been using the latter as we have been benchmarking the performance of our algorithm with
a quadratic loss function. This is standard in statistical theory due to its various math-
ematical conveniences. However, it does not seem to posses any operational motivation.
Thus, although maximizing information gain will be suboptimal with respect to quadratic
loss, it might be optimal with respect to a more relevant, an operationally motivated,
information theoretic loss function (such as relative entropy).

Using an alternative utility function can be seen as an approximation, or not. However,

10This preference was espoused also in reference [118] in the context of quantum state tomography.
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Figure 3.9: The likelihood function for N = 1, 51, 101, 151 and 201 simulated measure-
ments at random times in in (0, 20π). The model is that given in equation (3.10) with
η = 1. The red dot (and red arrow) is the randomly chosen true parameter x = (ω, T2).
The blue dots are the n = 100 sequential Monte Carlo “particles”.
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Figure 3.10: Left to right: the performance, as a function of the number of measurement
N , of the sequential Monte Carlo algorithm for n = 100, 1 000, and 10 000 particles. The
model is that of equation (3.10) with η = 1 and T2 = 100π (see also figure 3.8). The blue
curve is the posterior variance of the particles; green is the actual mean squared error and
black is the asymptotic lower bound. The averages have been calculated from 100 trials.

we can make two explicit approximations to any utility function optimization. Firstly, we
can use only the highest weighted particles to compute the expectation values appearing in
the utility function11. Secondly, we can perform a stochastic optimization by Monte Carlo
averaging the expectations over data sets as well [155]. Of course, the latter will be of
little use for binary data produced by a measurement on a quibt since only one likelihood
evaluation is necessary already. However, as the dimension of the underlying Hilbert space
increases, so too will the number of outcomes of the measurements.

Note that sequential Monte Carlo algorithm presented above can also estimate credible
regions and hyperparameters. Thus, we can also provide region and distribution estimates
in addition to point estimates of parameters. The performance of the algorithm for these
problems will be investigated in future research.

11This idea is due to Chris Granade and seems to perform well on our example problem in preliminary
tests.
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Figure 3.11: The performance, as a function of the number of measurement N , of the
sequential Monte Carlo algorithm for n = 100 and 1 000, particles. The model is that of
equation (3.10) with η = 1 and unknown T2 (which is estimated as Γ = 1/T2). The blue
curve is the posterior variance of the particles; green is the actual mean squared error and
red is numerically calculated Bayesian Cramer-Rao lower bound. The averages have been
calculated from 100 trials.
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Chapter 4

Necessity of Negativity in Quantum
Theory

The quasi-probability representations of quantum theory evolved from the phase space
representations. Phase space is a natural concept in classical theory since it is equivalent
to the state space. The idea of formulating quantum theory in phase space dates back to
the early days of quantum theory when the Wigner function was introduced [224]. The
term quasi-probability refers to the fact that the function is not a true probability density
as it takes on negative values for some quantum states.

The Wigner phase space formulation of quantum theory is equivalent to the usual ab-
stract formalism of quantum theory in the same sense that Heisenberg’s matrix mechanics
and Schrodinger’s wave mechanics are equivalent to the abstract formalism. The Wigner
function representation is not the only quasi-probabilistic formulation of quantum theory.
However, in most, if not all, of the familiar quasi-probability representations the kinematic
or ontic space of the representation is presumed to be the usual canonical phase space of
classical physics. In the broader context of attempting to represent quantum mechanics as
a classical probability theory, the classical state space need not necessarily correspond to
the phase space of some classical canonical variables. This is important since most quan-
tum information protocols deal with finite systems rather than the continuous variables of
classical physics.

There is a long standing problem of understanding the conditions under which a given
physical process is “truly quantum” and this takes sharper focus in the context of quan-
tum computing where a major open question is to determine the necessary and sufficient
conditions for a quantum processor to exponentially outperform a classical one. While
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entanglement is the most notable criteria for quantumness, it can only be defined for
composite systems. A non-negative quasi-probability function is a true probability distri-
bution, prompting some authors to suggest that the presence of negativity in this function
is a defining signature of non-classicality for a single system. Thus, a central concept in
studies of the quantum-classical contrast in the quasi-probability formalisms of quantum
theory is the appearance of negativity. However, it should be understood that any particu-
lar representation is non-unique and to some extent arbitrary since a state with negativity
in one representation is positive in another.

In this chapter we complete the program set out in references [69, 70] by generalizing
those results to quantum systems of arbitrary dimension and classical representations re-
specting the weakest – or, most general – set of restrictions. This chapter is structured
as follows. First, in section 4.1, we review the ontological models framework. Then, we
show how this leads to a no-go theorem and a natural generalization to quasi-probability
in section 4.2. The formalism of references [69, 70] is briefly reviewed in section 4.3 and
the fully general no-go theorem and generalized quasi-probability formalism is presented
in section 4.4.

This chapter is based on references [73, 67].

4.1 Ontological Models and Non-contextuality

Figure 4.1: With appologies to my experimentalist friends: an abstraction of physical
experiment. An operational theory is a mathematical model for the probability Pr(K|P,M)
– the prediction that K will happen given settings P and M are chosen.

An operational theory [104, 199, 106] is an attempt to mathematically model a real
physical experiment. The concepts in the theory are preparations, systems, measurements
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and outcomes. A preparation P is a proposition specifying how a real physical system has
come to be the object of experimental investigation. We will reason about a set of mutually
exclusive preparations P . The system is assumed to then be measured according to some
measurement procedure which produces an unambiguous answer called the outcome. The
measurement procedure is specified by a proposition M belonging to a set of mutually
exclusive possibilities M. The outcome is specified by a proposition k which is assumed
to belong to a set of mutually exclusive and exhaustive possibilities K. This means that,
in any given run of the experiment, exactly one of K is true.

For example, P could be the setting of the knob on a “black box” which sends objects
to another “black box” with knob setting M which outputs some sensory cue (e.g. an
audible “click” or flash of light) labeled k as each system passes through. Note that P and
M need not be statements about devices in a laboratory [184]; P could be a statement
about a photon arriving from the sun, for example.

For a fixed preparation and measurement the outcome may not be deterministic. The
role of the theory is then to describe the probability of each each outcome conditional on
the the various combinations of preparations and measurements. That is, the theory should
tabulate the numbers Pr(k|P ∧M) for all k, P and M . For fixed P and M , the mutually
exclusive and exhaustive property of K implies

∑
k Pr(k|P ∧ M) = 1. An operational

theory is then a specification (P ,M, K, {Pr(k|P ∧M)}).
Quantum theory is an example of an operational theory where each preparation P ∈ P

is associated with a density operator ρP ∈ D(H) via the mapping ρ : P → D(H). In
general, this mapping is not required to be injective or surjective; different preparations
may lead to the same density operator and there may not exist a preparation which leads
to every density operator. Similarly, each measurement M ∈ M and outcome k ∈ K is
associated with an effect EM,k ∈ E(H) via the mapping E :M×K → E(H). Again this
mapping need not be injective or surjective. Quantum theory prescribes the probabilities
Pr(k|P ∧M) = Tr(ρPEM,k) which is called the Born rule. Since K is a set of mutually
exclusive and exhaustive possibilities, for fixed M , {EM,k} ∈ POVM(H).

Notice that an operational theory only specifies the probabilities given the preparations
in the set P . Suppose, for example, we are told a coin is tossed which determines which of
two preparations procedures are implemented in a laboratory experiment. The operational
theory does not offer the probability of a given outcome conditional on this information.
However, the laws of probability provide us with the tools necessary to derive the desired
probabilities. In general, the task is, given any disjunction

∨
i Pi of propositions from

the set of preparations P , determine the probabilities Pr(k|∨i Pi ∧M). Since the set of
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preparations is mutually exclusive, the laws of probability dictate

Pr(k|∨i Pi ∧M) =
∑
i

Pr(k|Pi ∧M) Pr(Pi). (4.1)

Similarly, for any disjunction
∨
jMj of propositions from the set of measurements M

Pr(k|P ∧∨jMj) =
∑
j

Pr(k|P ∧Mj) Pr(Mj). (4.2)

Putting Equations (4.1) and (4.2) together yields

Pr(k|∨i Pi ∧
∨
jMj) =

∑
ij

Pr(k|Pi ∧Mj) Pr(Pi) Pr(Mj). (4.3)

Consider the example of quantum theory again. Let
∨
i Pi be an arbitrary disjunction

of preparations from P . Then for fixed k and M

Pr(k|∨i Pi ∧M) =
∑
i

Pr(k|Pi ∧M) Pr(Pi)

=
∑
j

Tr(ρPiEM,k) Pr(Pi)

= Tr

(∑
i

Pr(Pi)ρPiEM,k

)

suggesting we define the function ρ̂ : D(P)→ D(H)

ρ̂ :
∨
i Pi 7→

∑
i Pr(Pi)ρPi . (4.4)

Similarly, let us define a function Ê : D(M)×K → E(H) as

Ê : (
∨
jMj, k) 7→∑

j Pr(Mj)EMj ,k. (4.5)

Now, using ρ̂ and Ê and defining PD :=
∨
i Pi and MD =

∨
jMj we have

Pr(k|∨i Pi ∧
∨
jMj) = Tr(ρ̂PDÊMD,k). (4.6)

This works for the probabilities of any operational theory and hence the set
(D(P), D(M), K,H, ρ̂, Ê) is an operational theory itself. Unless specified otherwise we
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will simply assume this analysis has been done when given an operational theory. This
is equivalent to assuming the ρ and E of an operational theory (P ,M, K,H, ρ, E) have
ranges which are convex sets.

An ontological model is an attempt at interpreting an operational theory as an effec-
tively epistemic theory of a deeper model describing the real state of affairs of the system.
An ontological model posits a set Λ of mutually exclusive and exhaustive ontic states λ.
Each preparation P is assumed to output the system in a particular ontic state λ. However,
the experimental arrangement may not allow one to have knowledge of which state was
prepared. This ignorance is quantified via a conditional probability Pr(λ|P ). When this
probability is viewed as a mapping P → P (Λ) it is neither injective or surjective. That
is, in general, different preparation may give the same probability distribution of Λ and,
certainly, not all probability distributions are realized. A measurement M may not deter-
ministically give an outcome k which reveals the state λ of the system. Each measurement
can then only be associated with an conditional probability Pr(k|M ∧ λ) ∈ P (M). Again,
when this probability is viewed as a mapping M× K → P (M) it is not assumed to be
injective or surjective. An ontological model also requires that Λ be such that knowledge
of λ renders knowledge of P irrelevant. In the language of probability,

CI k is conditionally independent of P given λ.

Summarizing, an ontological model is a set (P ,M, K,Λ, {Pr(λ|P )}, {Pr(k|M ∧ λ)}) such
that CI holds. As a consequence of CI, the law of total probability states

Pr(k|P ∧M) =
∑
λ

Pr(k|M ∧ λ) Pr(λ|P ). (4.7)

Loosely speaking, non-contextuality encodes the property that operationally equivalent
procedures are represented equivalently in the ontological model [199]. Two preparations
are indistinguishable operationally if no measurement exists for which the probability of any
outcome is different between the two. An ontological model is non-contextual (with respect
to it preparations) if the probabilities over the ontic space for operationally equivalent
preparations produce are equal. Similarly, measurements can be operationally equivalent
and the ontological model can be non-contextual with respect to them. A mathematically
concise definition of non-contextuality is as follows.

Definition 4.1.1. Let (P ,M, K,Λ, {Pr(λ|P )}, {Pr(k|M∧λ)}) define an ontological model.

(a) Let P, P ′ ∈ P. The ontological model is preparation non-contextual if for all k ∈ K,
M ∈M and λ ∈ Λ

Pr(k|P ∧M) = Pr(k|P ′ ∧M)⇒ Pr(λ|P ) = Pr(λ|P ′).
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(b) Let M,M ′ ∈ M. The ontological model is measurement non-contextual if for all
k ∈ K, P ∈ P and λ ∈ Λ

Pr(k|P ∧M) = Pr(k|P ∧M ′)⇒ Pr(k|M ∧ λ) = Pr(k|M ′ ∧ λ).

(c) The model is simply called a non-contextual ontological model if it is both preparation
and measurement non-contextual.

4.2 Contextuality and Quasi-Probability

Recall that quantum theory as an operational model is defined via the mappings ρ and E.
As an example, consider only those preparations associated with pure states. These pure
states are determined by a mapping ρ =: ψ : P → P(H). The model of Beltrametti and
Bugajski [17] posits the ontic space Λ = P(H) and a sharp probability distribution

Pr(λ|P )dλ = δ(λ− ψP )dλ (4.8)

for each preparation P . This model suggests that the quantum state provides a complete
specification of reality. Recall each measurement procedure is associated with a POVM via
the mapping E :M×K → E(H). Each measurement procedure M implies a conditional
probability

Pr(k|M ∧ λ) = 〈λ,EM,kλ〉. (4.9)

To show this is an ontological model, it remains only to verify that Equation (4.7) is
satisfied. It follows that

Pr(k|P ∧M) =

∫
Λ

Pr(k|M ∧ λ) Pr(λ|P )dλ

=

∫
Λ

〈λ,EM,kλ〉δ(λ− ψP )dλ

= 〈ψP , EM,kψP 〉,

which is the Born rule for pure states. The Beltrametti-Bugajski model is an ontological
model for pure state quantum theory which is preparation non-contextual. However, the
range of the mapping ρ in this case is not convex. As we will now see, if we looked at
all possible logical disjunctions of preparations in this model, so that range of the new
mapping ρ̂ is D(H), quantum theory admits no non-contextual model.
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Lemma 4.2.1. Suppose the convex range of E contains a basis (for H(H)) and the onto-
logical model (P ,M, K,Λ, {Pr(λ|P )}, {Pr(k|M∧λ)}) is preparation non-contextual. Then,
there exists a affine mapping µ : Ran(ρ)→ P (Λ) satisfying µ(λ|ρP ) = Pr(λ|P ).

Proof. For equivalent disjunctions of preparations

Tr(ρPEM,k) = Pr(k|P ∧M) = Pr(k|P ′ ∧M) = Tr(ρP ′EM,k). (4.10)

Since the range of E is a basis it spans H(H) and therefore ρP = ρP ′ if and only if P and P ′

are operationally equivalent. Then, from the definition of preparation non-contextuality,
Pr(λ|P ) 6= Pr(λ|P ′) implies ρP 6= ρP ′ . Thus the mapping µ(λ|ρP ) = Pr(λ|P ) is well-
defined.

Now we show the mapping µ is affine. That is,

µ(λ|pρP + (1− p)ρP ′) = pµ(λ|ρP ) + (1− p)µ(λ|ρP ′)

for all p ∈ [0, 1] and all P, P ′ ∈ D(P). There is some P ′′ ∈ D(P) such that ρP ′′ =
pρP + (1− p)ρP ′ . That is to say, P ′′ = P ∨ P ′ while Pr(P ) = p and Pr(P ′) = 1− p. From
the non-contextuality assumption this implies

Pr(λ|P ′′) = Pr(λ|P ∨ P ′)
= Pr(P ) Pr(λ|P ) + Pr(P ′) Pr(λ|P ′).

Applying the definition of µ to this yields

µ(λ|ρP ′′) = pµ(λ|ρP ) + (1− p)µ(λ|ρP ′),

which proves µ is affine.

Lemma 4.2.2. Suppose the range of ρ contains a basis (for H(H)) and the ontological
model (P ,M, K,Λ, {Pr(λ|P )}, {Pr(k|M∧λ)}) is measurement non-contextual. Then, there
exists a unique convex-linear mapping ξ : E(H)→ P (K) satisfying Pr(k|M∧λ) = ξ(EM,k).

The proof of Lemma 4.2.2 is similar to that of Lemma 4.2.1. Together, the mappings
µ and ξ are called a classical representation of quantum theory.

Lemma 4.2.3. A classical representation satisfies, for all λ ∈ Λ, all ρ ∈ D(H) and all
E ∈ E(H),

(a) µρ(λ) ∈ [0, 1] and
∑

λ µρ(λ) = 1,
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(b) ξE(λ) ∈ [0, 1] and ξ1(λ) = 1,

(c) Tr(ρE) =
∑

λ µρ(λ)ξE(λ).

In Reference [69] the name “classical representation” was defined to be a set of mappings
satisfying (a)-(c). Through Lemmas 4.2.1 and 4.2.2 we have shown that the assumption of
non-contexuality guarantees that these mappings are well defined, convex linear and satisfy
(a)-(c). However, regardless of how we choose to arrive at a pair of convex linear mappings
satisfying (a)-(c), one (or more) of the assumptions we make will be false as shown by the
following theorem.

Theorem 4.2.4. A classical representation of quantum theory does not exist.

The theorem is implied by an earlier result on a related topic in reference [35]. It is also
implied by the equivalence of a classical representation and a non-contextual ontological
model of quantum theory [200] and the impossibility of the latter [199]. This theorem was
proven in reference [69] using the notion of a frame and its dual, which we will see later.
A direct and more intuitive proof was given in reference [70].

Now let us relax some assumptions in order to avoid a contradiction. First, we will
relax the assumption of non-contextuality.

Definition 4.2.5. A contextual representation of quantum theory is a pair of mappings
µ : D(H) × CP → P (Λ) and ξ : E(H) × CM → P (Λ) which satisfy, for all λ ∈ Λ, all
ρ ∈ D(H) and all E ∈ E(H), all cP ∈ CP , and all cM ∈ CM,

(a) µρ,cP (λ) ∈ [0, 1] and
∑

λ µρ,cP (λ) = 1,

(b) ξE,cM(λ) ∈ [0, 1] and ξ1,cM(λ) = 1,

(c) Tr(ρE) =
∑

λ µρ,cP (λ)ξE,cM(λ).

Here CP and CM are the preparation and measurement contexts.

Although it is clearly possible, the author is unaware if a contextual representation
has been explicitly constructed. More common, however, is to relax the assumption of
non-negative probability.

Definition 4.2.6. A quasi-probability representation of quantum theory is a pair of affine
mappings µ : D(H)→ L(Λ) and ξ : E(H)→ L(Λ) which satisfy, for all λ ∈ Λ, all ρ ∈ D(H)
and all E ∈ E(H),
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(a) µρ(λ) ∈ R and
∑

λ µρ(λ) = 1,

(b) ξE(λ) ∈ R and ξ1(λ) = 1,

(c) Tr(ρE) =
∑

λ µρ(λ)ξE(λ).

It is immediately clear that theorem 4.2.4 is equivalent to the following “negativity
theorem”:

Theorem 4.2.7. A quasi-probability representation of quantum theory must have negativity
in either its representation of states or measurements (or both).

There are many instances of mappings µ satisfying the first requirement. In reference
[69] it was shown by construction how to find a mapping ξ which, together with µ, satisfy
all of them. Most of the mappings µ are called phase space functions as they conform to
added mathematical structure not required in definition 4.2.6. A phase space representation
is then a particular type of quasi-probability representation which we formally define as
follows:

Definition 4.2.8. If there exists a symmetry group on Λ, G, carrying a unitary repre-
sentation U : G → U(H) and a quasi-probability representation satisfying the covariance
property UgρU

†
g 7→ {µρ(g(λ))}λ∈Λ for all ρ ∈ D(H) and g ∈ G, then ρ 7→ µρ(λ) is a phase

space representation of quantum states.

4.3 Unification via Frames

A frame can be thought of as a generalization of an orthonormal basis [48]. However,
the particular Hilbert space under consideration here is not H. Considered here is a
generalization of a basis for H(H), which is the set of Hermitian operators on an complex
Hilbert space of dimension d. With the trace inner product 〈A,B〉 := Tr(AB), H(H) forms
a real Hilbert space itself of dimension d2. Let Λ be some set of cardinality d2 ≤ |Λ| <∞.

A frame1 for H(H) is a set of operators F := {F (λ)} ⊂ H(H) which satisfies

a‖A‖2 ≤
∑
λ∈Λ

Tr[F (λ)A]2 ≤ b‖A‖2, (4.11)

1Frames have been considered in the context of quantum theory for other purposes in [190, 22].
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for all A ∈ H(H) and some constants a, b > 0. This definition generalizes a defining
condition for an orthogonal basis {Bk}d2k=1

d2∑
k=1

Tr[BkA]2 = ‖A‖2, (4.12)

for all A ∈ H(H). The mapping A 7→ Tr[F (λ)A] is called a frame representation of H(H).

A frame D := {D(λ)} which satisfies

A =
∑
λ∈Λ

Tr[F (λ)A]D(λ), (4.13)

for all A ∈ H(H), is a dual frame (to F). The frame operator associated with the frame
F is defined as

S(A) :=
∑
λ∈Λ

Tr[F (λ)A]F (λ).

If the frame operator is proportional to the identity superoperator, S = a1̃, the frame is
called tight. The frame operator is invertible and thus every operator has a representation

A = S−1SA =
∑
λ∈Λ

Tr[F (λ)A]S−1F (λ). (4.14)

The frame S−1F is called the canonical dual frame. When |Λ| = d2, the canonical dual
frame is the unique dual, otherwise there are infinitely many choices for a dual frame. A
tight frame is ideal from the perspective that its canonical dual is proportional to the frame
itself. Hence, the reconstruction is given by the convenient formula

A = S−1SA =
1

a

∑
λ∈Λ

Tr[F (λ)A]F (λ)

which is to be compared with

A =
d2∑
k=1

Tr[BkA]Bk

which defines {Bk}d2k=1 as an orthonormal basis.

Recalling the formal definition (4.2.6) of a quasi-probability representation, we have
the following theorem
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Theorem 4.3.1. Two functions µ and ξ constitute a quasi-probability representation if
and only if

µρ(λ) = Tr[ρF (λ)]

ξE(λ) = Tr[ED(λ)],

where {F (λ)} is a frame and {D(λ)} is one if its duals.

This was proven in reference [70]2. This theorem allows us to make the following state-
ment which is equivalent to the no-classical-representation theorem (4.2.4) and negativity
theorem (4.2.7): there does not exists two frames of positive operators which are dual to
each other.

With this results we can create quasi-probability representations of the whole opera-
tional formalism of quantum theory, not just states. First, we chose one of the discrete
quasi-probability functions. Second, we identify the frame which gives rise to it. Lastly, we
compute its dual frame to obtain the part of the quasi-probability representation mapping,
ξ, which takes measurements to functions on the space Λ.

Suppose instead the functions µ and ξ are defined via

µρ(λ) = Tr[ρF (λ)]

ξE(λ) = Tr[EF (λ)],

where {F (λ)} is a frame. Then,

(a) µρ(λ) ∈ [0, 1] and
∑

λ µρ(λ) = 1,

(b) ξE(λ) ∈ [0, 1] and ξ1(λ) = 1,

(c) Tr(ρE) =
∑

λ,λ′ µρ(λ)ξE(λ′)Tr[D(λ)D(λ′)].

In reference [69] this representation was called a deformed probability representation since
states and measurements are represented as true probabilities but the law of total proba-
bility is deformed.

2Compare this to a similar result in a more operational setting in references [171, 172].
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The frame formalism also provides a convenient transformation matrix to map between
representations. We have

µρ(λ) = Tr[ρF (λ)]

=
∑
λ′

Tr[ρF ′(λ′)]Tr[D′(λ′)F (λ)]

=
∑
λ′

Tλ′λµ
′(λ′),

where the matrix Tλ′λ is the symmetric matrix which takes the µ representation to µ′

representation.

Given a quasi-probability representation note that the frame satisfies∑
λ∈Λ

F (λ) = 1.

Thus, if the quasi-probability representation satisfies 0 ≤ µ(λ) ≤ 1, the frame is an in-
formationally complete positive operator valued measure (IC-POVM)3. Similarly, the dual
frame satisfies

Tr[D(λ)] = 1,

for all λ ∈ Λ. Thus, if the the quasi-probability representation satisfies 0 ≤ ξ(λ) ≤ 1,
the dual frame is a set of density operators. The definitions and results we have so far
considered are tailored to the case d < ∞ – that is, finite dimensional quantum theory.
Now we will extend them to infinite dimensions as done in reference [73].

4.4 Generalization to Arbitrary Quantum Systems

For the remainder suppose that the dimension of the Hilbert space H is arbitrary and let
(Ω,Σ) be a measurable space. In this section we define the generalization of frame to the
space of trace-class operators Ts(H). First, we need to introduce the notation which gener-
alizes the familiar concepts from the finite dimensional analysis above. On the classical side,
(Ω,Σ) denotes a measurable space, where Σ is a σ-algebra. Over this space, MR(Ω,Σ)
denotes the bounded signed measures while FR(Ω,Σ) denotes the bounded measurable
functions. A signed measure generalizes the usual notion of measure to allow for negative

3Frames have also been used in definition of informationally completeness in the context of tomography
in reference [22].
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values. The classical states are the probability measures, denoted S(Ω,Σ) ⊂ MR(Ω,Σ).
The classical effects are the measurable functions taking values in [0, 1]. These are de-
noted E(Ω,Σ) ⊂ FR(Ω,Σ). On the quantum side, the familiar symbol H denotes a Hilbert
space. Over this space, Ts(H) denotes the trace-class self-adjoint operators while Bs(H)
denotes the bounded self-adjoint operators. Quantum states are the density operators
S(H) ⊂ Ts(H). Quantum effects are the positive operators E(H) ⊂ Bs(H) bounded above
by 1. These are the elements of a positive operator valued measure (POVM).

Recall that a frame for Hermitian matrices is equivalent to an informationally complete
operator valued measure (no positivity required). Essentially, it is a IC-POVM whose
elements can have negative eigenvalues. So, we generalize the definition of informationally
complete observable for infinite dimensions and define an operator valued measure as a
map F : Σ→ Bs(H) satisfying F (∅) = 0, F (Ω) = 1 and

F

(
∞⋃
i=1

Bi

)
=
∞∑
i=1

Bi,

where the sets Bi ∈ Ξ are mutually disjoint and the sum converges in the weak sense.
A frame for Ts(H) is an operator valued measure F for which the map T : Ts(H) →
MR(Ω,Σ),

T (W ) := Tr(WF ),

is injective. The map T is called a frame representation of Ts(H).

Similarly, generalizing the reconstruction formula for finite frames yields the generalized
notion of a dual. That is, given a frame F , a dual frame to F is a map D : Ω → Bs(H)∗

for which the function
SA(·) := D(·)(A)

is measurable and satisfies

A =

∫
Ω

SAdF, (4.15)

for all A ∈ Bs(H).

Now we will generalize the definition of classical representation to the more general
measurable space (Ω,Σ). A classical representation of quantum mechanics is a pair of
mappings T : S(H)→ S(Ω,Σ) and S : E(H)→ E(Ω,Σ) such that

1. T and S are affine.

2. S(0) = 0.
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3. For all ρ ∈ S(H) and E ∈ E(H),

Tr(ρE) =

∫
Ω

(SE)d(Tρ). (4.16)

As expected, we have

Theorem 4.4.1. A classical representation of quantum mechanics does not exist.

Proof. Suppose T and S form a classical representation of quantum mechanics. Conditions
1 and 2 imply that T and S can be extended to bounded linear functions T : Ts(H) →
MR(Ω,Σ) and S : Bs(H)→ FR(Ω,Σ). Thus for all W ∈ Ts(H) and A ∈ Bs(H), condition
3 gives

Tr(WA) =

∫
Ω

(SA)d(TW ) = Tr(W (T ′SA)). (4.17)

Hence for all A ∈ Bs(H), A = T ′SA. S must be injective, and so S−1 exists, and if R(S)
is the range of S, then T ′|R(S) = S−1. Therefore

T ′E(Ω,Σ) ⊃ T ′|R(S)E(Ω,Σ) = S−1E(Ω,Σ) ⊃ E(H).

Also, if f ∈ E(Ω,Σ) and W ∈ S(H), then

0 ≤
∫

Ω

fd(TW ) = Tr(W (T ′f)) ≤
∫

Ω

d(TW ) = 1,

so T ′f ∈ E(H) and T ′E(Ω,Σ) ⊆ E(H). Therefore, T ′E(Ω,Σ) = E(H).

However, this is a contradiction since T ′E(Ω,Σ) ⊂ E(H) is a proper inclusion [205]. A
short and intuitive proof that the inclusion is proper was briefly mentioned by Bugajski in
Reference [33]. The proof relies on the notion of coexistent effects [110]. Intuitively, two
(classical or quantum) effects are coexistent if they can be measured together. Any two
classical effects are coexistent while two quantum effects are not necessarily coexistent.
Since T ′ is a linear operator, it preserves the coexistence of effects. That is, the set
T ′E(Ω,Σ) is one in which any two elements (quantum effects) are coexistent. But, again,
not all quantum effects can be measured together (take two projectors in separate mutually
unbiased bases, for example). Hence the inclusion is proper.

In analogy with the finite dimensional case, we allow “negative probabilities” in a
classical representation. A quasi-probability representation of quantum mechanics is a pair
of mappings T : S(H)→MR(Ω,Σ) and S : E(H)→ FR(Ω,Σ) such that

80



1. T and S are affine, T is bounded.

2. Tρ(Ω) = 1.

3. S(0) = 0.

4. For all ρ ∈ S(H) and E ∈ E(H),

Tr(ρE) =

∫
Ω

(SE)d(Tρ). (4.18)

Since a quasi-probability representation in which TS(H) ⊂ S(Ω,Σ) and SE(H) ⊂
E(Ω,Σ) is a classical representation, we have immediately from Theorem 4.4.1,

Corollary 4.4.2. A quasi-probability representation of quantum mechanics must have, for
some ρ ∈ S(H), E ∈ E(H) either (Tρ)(B) < 0 for some B ∈ Ξ or (SE)(ω) 6∈ [0, 1] for
some ω ∈ Ω.

Note that, strictly speaking, we could have SE(ω) > 1. However, we still refer to this
as negativity since SE(ω) is meant to be interpreted as a probability and 1− SE(ω) < 0
should stand on the same footing. Thus, the above corollary gives us the necessity of neg-
ativity in quasi-probability representations. Being more general, this theorem implies the
previous three equivalent “negativity theorems” and says essentially the same; a classical
representation does not exist and within a quasi-probability representation negativity must
appear in the representation of the states or measurements or both.

It is obvious that every frame representation defines a quasi-probability representation.
The converse is also true as established by the following theorem:

Theorem 4.4.3. The pair (T, S) is a quasi-probability representation of quantum mechan-
ics if and only if T is a frame representations of Ts(H) and S is a dual frame.

Proof. Assume (T, S) is a quasi-probability representation. Define F (B) := T ′χB. By the
definition of the dual map

Tr[ρF (B)] = Tr[ρT ′χB] =

∫
Ω

χBd(Tρ) = (Tρ)(B).

It is clear then that F (∅) = 0 and F (Ω) = 1 by normalization. The σ-additive can
be verified by directly substituting the union of an arbitrary sequence of disjoint sets
{Bi} ⊂ Σ. It is known that T and S can be uniquely extended to bounded linear mappings
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T : Ts(H) → MR(Ω,Σ) and S : Bs(H) → FR(Ω,Σ). Now suppose TW is the trivial
measure for some W ∈ Ts(H). From the last property of a quasi-probability representation,
the Law of Total Probability, we have

Tr(WA) =

∫
Ω

(SA)d(TW ) = 0.

Since this is true for all A ∈ Bs(H), W = 0. Therefore T is injective, and we have shown
that T is a frame representation. Now define Dω = S∗δω. So we have

Dω(A) = S∗δω(A) =

∫
Ω

(SA)dδω = (SA)(ω).

And, again from the Law of Total Probability,

Tr[WA] =

∫
Ω

(SA)dTr[WF ] = Tr

[
W

∫
Ω

(SA)dF

]
.

Hence

A =

∫
Ω

(SA)dF,

and by definition D is dual to F . The proof of the converse should be clear.

4.5 Discussion and Future Directions

The idea of using quasi-probability representations to identify non-classical features of
quantum theory can be done in the following ways

1. Choose your favourite representation (the P function, for example) and define nega-
tively represented states in this representation as the quantum ones.

2. Choose your favourite property of quantum states as your notion of quantumness
(entanglement, for example) and find a representation in which negatively represented
states have this property.

3. Within a quantum resource theory (magic state quantum computation, for exam-
ple), identify a representation in which the “free” resources correspond exactly to
classically represented states, measurements and transformation.
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In the Appedix, we argue that only the last option is viable. Indeed, as shown in reference
[215] and discussed in section A.2.1, the discrete Wigner function satisfies the constraint
that the “free” resources in magic state distillation of qudits are represented classically.

It is not clear that such a procedure is always possible. Take a resource theory where
the restricted set of quantum operations has, say, a classically efficient description. Such
a resource theory is magic state distillation of qubits. The Gottesman-Knill theorem [92]
shows that the so-called stabilizer formalism (the restricted, or “free” resources in magic
state distillation) has a classically efficient description. It is intuitive to suggest that one can
find a quasi-probability representation (like the discrete Wigner function) in which these
operations correspond to classically represented objects. However, this is not possible since,
for qubits, one can violate a Bell-type inequality and such a classical representation is ruled
out by Bell’s theorem. Now, it could be the case that locality and efficient simulatability
are fundamentally distinct notions of classicality. If this is the case, it should be possible
to find a representation in which the stabilizer formalism is classical yet also contextual in
efficiently simulatable way. We leave this as an interesting question for future investigation.

Finally, we comment on the use of negativity and the quasi-probability formalism for
measuring quantumness in an operationally restricted setting. Many aspects of quantum
theory can be thought of as a resource theory [60, 94]. The most famous example of this
is the restriction of local operations and classical communication (LOCC) which led to the
theory of entanglement, the resource theory of LOCC. Entanglement is rich resource theory
giving us measures of entanglement and specifies when one entangled state can be con-
verted to another via LOCC. We conjecture the following: a proper resource theory should
implicitly define a quasi-probability representation in which the restricted operations are
represented classically (positive probability distributions, positive conditional distributions
and stochastic transformations). If this conjecture is true, then negative quasi-probability
is at least a necessary condition for any real, or suspected, quantum advantage. Evi-
dence for this is provided in appendix A, where we discuss ongoing collaborative research
which shows that this correspondence holds for the magic state model of qudit quantum
computation and a generalization thereof to continuous variable systems.
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Appendix A

Negativity as a Resource for
Non-classicality

Given this ubiquitous presence of “negative probability” in quantum theory, there is a
strong tradition in physics of considering negativity of a particular quasi-probability func-
tions as an indicator of non-classical features of quantum states. However, distinctions
between quantum states are irrelevant outsides of the context of some operational setup.
In other words, it depends on what we want do with a quantum system that defines which
quantum states possess any non-classical features. This can be formalized via specific re-
source theories defined by operational restrictions on quantum theory. One important class
of operational restrictions are resource theories for quantum computation. That is, there
exist interesting models of computation in which some easily accessible operations are not
able to perform an arbitrary quantum computation – but additional resource operations
enable universal quantum control.

In section A.1 we review the standard interpretations of negativity in particular qausi-
probability representations as non-classicality indicators. We also give arguments for the
failure of this interpretation when place in an operational context. We have conjectured
that negativity can be given a formal interpretation of non-classicality when one can find a
classical representation for quantum mechanical subtheory or operational restriction which
gives rise to a resource theory. In section A.2, we identify such a correspondence between
quantum computational models and quasi-probability representations such that negativity
in the representation is a necessary condition for quantum computation. In particular,
we have identified a correspondence between the “magic state model” [30] (which is well
motivated by recent progress in quantum error correction and topological quantum compu-
tation) and a particular quasi-probability representation: the “discrete Wigner function”
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[96]. In this case it is shown that negativity in this representation is a necessary condition
for quantum computation. Analogously, we define a mixed state magic-state-like model of
computation for continuous variables – those encountered in quantum optics, for example.
Here we find the same phenomenon – negativity of Wigner’s original function is necessary
for continuous variable quantum computation via a continuous variable generalization of
the magic state model.

The technical content of reference [215] was mostly due to the efforts of Victor Veitch
and the details will not be reproduced here. The refined discussion of negativity as a
resource has coalesced in ongoing discussions with Victor Veitch, Joseph Emerson and
Daniel Gottesman.

A.1 Negativity as “Quantumness” per se

There have been a variety of approaches to the problem of characterizing what is non-
classical about quantum theory. In the previous section one such notion of non-classicality
was considered: the requirement of “negative probability”, or simply negativity. However,
the negativity theorem leaves open the question of the interpretation of negativity in any
particular representation. In this section we discuss the ways in which negativity can be
applied as a criterion for quantumness with respect to particular choices of representation.
First we review the traditional ideas of quantumness, namely contextuality and nonlocality1,
in relation to negativity. Then we will discuss the deficiencies of broadly defining negativity
as quantumness.

A.1.1 Traditional “Quantumness”: Contextuality and Nonlocal-
ity

The traditional definition of contextuality evolved from a theorem which appears in a
paper by Kochen and Specker [131]. The Kochen-Specker theorem concerns the standard
quantum formalism: physical systems are assigned states in a complex Hilbert space H and
measurements are made of observables represented by Hermitian operators. The theorem
establishes a contradiction between a set of plausible assumptions which together imply
that quantum systems possess a consistent set of pre-measurement values for observable
quantities. Let H be the Hilbert space associated with a quantum system and A ∈ H(H)

1These are diverse and rich fields of study in their own right. A starting point for the interested reader
on contextuality is reference [109] and quantum nonlocality is reference [177].
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be the operator associated with some observable. The function fψ(A) represents the value
of the observable when the system is in state ψ. One assumption used to derive the
contradiction is that for any function F , fψ(F (A)) = F (fψ(A)). This is plausible because,
for example, we would expect that the value of A2 could be obtained in this way from the
value of A.

The conclusion of Kochen-Specker theorem implies the following counterintuitive exam-
ple [119]. Suppose three operators A, B, and C satisfy [A,B] = 0 = [A,C], but [B,C] 6= 0.
Then, the value of the observable A will depend on whether observable B or C is chosen to
be measured as well. That is, assuming that physical systems do possess values which can
be revealed via measurements, the value of A depends on the context of the measurement.

What the Kochen-Specker theorem establishes then is the mathematical framework of
quantum theory does not allow for a non-contextual model for pre-measurement values.
This fact is often expressed via the phrase “quantum theory is contextual”.

The original notion of contextuality in lacking in the sense that it only applies to the
standard formalism of quantum theory and does not apply to general operational models.
This problem was addressed by Spekkens as discussed above. The notion of contextuality
defined by Spekkens is more general; one can recover the original assumptions of Kochen-
Specker by assuming that the projector valued measures in the spectral resolutions of
observables are represented by dispersion free (0-1 valued) conditional probabilities (these
are also called sharp indicator functions) 2. Since the set of fewer assumptions already
contains a contradiction when taken in conjunction, the addition of the assumption of
Kochen-Specker is unnecessary. Thus, we need only consider the more general notion of
contextuality we have already defined. This more general notion of contextuality has also
recently been subject to experimental tests [201].

A hidden variable theory originally formulated by de Broglie and later by Bohm [26]
is perhaps the most famous example of an ontological model of quantum theory. The
model assumes that for a given experimental configuration, there exists a particle with
well defined trajectory and a quantum state ψ. The hidden variable is the position of
the particle in real space. That is, the classical state space is Λ = R3 × H. The Hilbert
space is included in the state space as its serves as a wave which guides the particle. If
at any time the particle is distributed according to quantum probability distribution |ψ|2,
it remains so. Thus, so long as it is assumed that the particle is prepared according to
this distribution, the model provides the same predictions as the standard formulation of

2Cabello has also generalized the notion of contextuality to POVMs [36]. Again, however, the additional
assumption of dispersion free condition probabilities is used. See [98] for an elaboration on this point. For
a more broad discussion on contextuality see [159] and [106].
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quantum theory.

Note that this model does not fit into the framework of quasi-probability representa-
tions. Exactly as it was for the Beltrametti-Bugajski model, the de Broglie-Bohm model
does not consider the entire range of possible quantum states. Where a classical represen-
tation contains a convex-linear mapping ρ 7→ µ(λ) for all ρ ∈ D(H), the de Broglie-Bohm
model considers only a mapping with domain H. Bell notes that [16] “in the de Broglie-
Bohm theory a fundamental significance is given to the wavefunction, and it cannot be
transferred to the density matrix.”

Bell does not claim that the situation is such that the de Broglie-Bohm model cannot
be extended to include density operators. The key words in his comment are “fundament
significance”. Indeed, the de Broglie-Bohm model can be extended to include density
operators provided this extension is either contextual or contains negativity. In either
case, the pure states (wavefunctions) retain their significance while the density operators
possess non-classical features. As an example, the de Broglie-Bohm model could be such
that (ρ, cP) 7→ µcP (λ) where each preparation consists of a density operator ρ supplied
with a context cP which specifies a particular convex decomposition of ρ into pure states.
Such a model would be preparation contextual.

The non-locality debate was initiated by a paper by Einstein, Podolsky and Rosen
(EPR) [65] where it was argued that quantum mechanics is incomplete (each element
of physical reality does not have a counterpart in quantum theory) if special relativity
remains valid. The latter means physical causation must be local or events cannot have
causes outside of their past light cones. Using a particular spatially separated quantum
system, and some standard quantum theory, EPR concluded that quantum mechanics is
either incomplete or nonlocal (or both!). Locality was such a desired property of any theory
that quantum mechanics was concluded to be incomplete. That is, there must be elements
of physical reality (hidden variables) which quantum mechanics does not account for.

The argument of EPR was reformulated by Bohm [26] for two qubits. The argument
is built around the following hypothetical experiment. Two parties, Alice and Bob, are at
distant locations with a source midway between them creating quantum systems described
by the quantum state

ψ =
1√
2

(φ1 ⊗ φ2 − φ2 ⊗ φ1), (A.1)

where {φ1, φ2} is an orthonormal basis for a qubit. One particle is sent to Alice and the
other to Bob. Alice performs the projective two-outcome measurement {P1, P2} on the
particle which was sent to her. The state in equation (A.1) is such that Alice, once she
performs her measurement, she can predict with certainty the outcome Bob receives when
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he performs the same measurement at his side of the experiment regardless of whether or
not the measurement events are spacelike separated (i.e. nonlocal). For example, Alice
could perform the measurement {φ1φ

∗
1, φ2φ

∗
2}. According to the collapse postulate, if Alice

registers the first outcome, Bob particle will immediately collapse to φ2 and he is certain
to obtain the second outcome if he were to make the same measurement. Therefore, unless
there exists hidden variables which pre-determine the possible outcomes when the particles
are created, quantum theory is nonlocal.

Bell later investigated the possibility of finding the hidden variables Einstein thought
to exist [16]. He noted immediately that the de Broglie-Bohm theory was such a theory
yet in contained an astonishingly nonlocal character. He was able to prove that any hidden
variable theory of quantum phenomena must possess nonlocal features. This is now called
Bell’s theorem.

The proof is by contraction and follows the general line of reasoning which lead to the
negativity theorem: build a mathematical model with assumptions that can be identified
with (or motivated by) some notion of classicality then prove that quantum theory does
not satisfy these assumptions. Consider the EPR experimental setup. Alice and Bob can
each perform a two-outcome measurement with outcomes labeled A and B, respectively.
Without loss of generality, the outcomes can be assigned numerical values A,B = ±1.

Suppose there exist a classical state space Λ (i.e. a set of hidden variables or, as we have
called it above, an ontology) which serves to determine the outcomes A andB. Probabilistic
knowledge of the state is represented by a density µ(λ) ≥ 0 which is normalized∫

Λ

dλµ(λ) = 1.

The different measurements Alice and Bob can perform are parameterized by detector
settings a and b, respectively. Locality is enforced by assuming that the outcomes A and
B depend only the local detector settings and the global state. That is A = A(a, λ) is
allowed but A = A(a, b, λ) is not. Define the correlation function

C(a, b) =

∫
Λ

dλA(a, λ)B(b, λ)µ(λ). (A.2)

Bell’s theorem states that the correlations obtained in the EPR experiment (i.e. a partic-
ular quantum experiment) cannot satisfy this equation. The proof follows by deriving an
inequality from equation (A.2) such as

|C(a, b)− C(a, c)| ≤ 1 + C(b, c). (A.3)
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This inequality holds for any hidden variable model which satisfies the locality assumption.
For the quantum state in equation (A.1), the inequality is violated. This is the contradic-
tion between the quantum theory and a local hidden variable model which proves Bell’s
theorem.

It was noted that the assumptions which go into the hidden variable models first con-
sidered by Bell imply those models are deterministic. That is, the theorem did not exclude
models which suggested quantum theory only provides stochastic (or probabilistic) infor-
mation of the possible outcomes of measurements. Bell later extended the theorem to
include such models. For the EPR experimental setup, let the conditional probability of
outcome A = 1, for Alice, given the state (hidden variable) is λ ∈ Λ be denoted MA(λ)
and similarly define MB(λ) for Bob. Now denote the conditional joint probability of the
simultaneous outcomes A,B = 1 by MAB(λ). Fine [75] defines a stochastic hidden variable
model as one which satisfies

Pr(A = 1) =

∫
Λ

dλMA(λ)µ(λ) (A.4)

and

Pr(A = 1, B = 1) =

∫
Λ

dλMAB(λ)µ(λ). (A.5)

If MAB(λ) = MA(λ)MB(λ), then the model is factorizable. Bell claimed this also encoded
the assumption of locality. Again, it can be shown that quantum theory is in contradic-
tion with an inequality derived from these assumptions. Fine showed that a factorizable
stochastic hidden variable model exists for the EPR-type correlation experiment if and
only if a deterministic hidden variable model exists for the experiment. Since the latter is
ruled out, the former is also ruled out.

A.1.2 Negativity of Quantum States

There is a strong tradition in physics of considering negativity of the Wigner function
as an indicator of non-classical features of quantum states. The non-classical features
attributed to negativity of the original Wigner function include quantum nonlocality [16,
123], quantum chaos [168] and quantum coherence [168]. In quantum optics, however,
tradition has been to use the Q- and P-functions (section B.1.2) to define quantumness
[149]. The P-function of ρ is defined implicitly through

ρ =

∫
d2αP (α)|α〉〈α|.
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If P has the properties of a probability distribution, then the state is a mixture of coherent
states. Coherent states are minimum uncertainty states and this fact is often cited when
it is stated that such a state is “the most classical” of the quantum states of light. More
specifically, if P is a probability distribution then the quantum field cannot display genuine
quantum optical effects and can be simulated by a stochastic classical electromagnetic
field [220]. Technically, however, P is not a function but a distribution which can be
highly singular. Thus P functions which are not classical distributions are difficult to
experimentally prepare and verify; although, recent progress has been made [127].

Effort has been extended beyond qualitatively defining negativity as quantumness to
quantifying quantumness via negativity. In terms of the Wigner function, the volume of
the negative parts of the represented quantum state has been suggested as the appropriate
measure of quantumness [126]. The distance (in some some preferred norm on H(H)) to
the convex subset of positive Wigner functions was suggested to quantify quantumness in
reference [153]. This was also done in references [88, 89] for a finite analogs of the P- and
Q-functions rather than the Wigner function.

The main difficulty with interpreting negativity in a particular quasi-probability rep-
resentation as a criterion for or definition of quantumness is the non-uniqueness of that
particular quasi-probability representation. We can always find a new representation in
which any given state admits a non-negative quasi-probability representation. Recall, in
fact, that in some representations all states are non-negative. Thus, negativity of some
state ρ in one particular arbitrary representation is a meaningless notion of quantumness
per se.

An alternative approach to establishing a connection between quantumness and neg-
ativity is to start by assuming some criterion for quantumness and then finding a choice
of representation in which this criterion is expressed via negativity. This approach has
been applied in the context of multi-partite systems for which entanglement is presumed
to provide a criterion for quantumness. Entanglement is a kind of correlation between
two quantum systems which cannot be achieved for classical variables and is one of the
central ingredients in quantum information theory 3. Recall that a density matrix ρ is
entangled if it cannot be written as a convex combination of the form ρ =

∑
k pkρ

(1)
k ⊗ρ

(2)
k ,

for all k, where ρ
(1)
k and ρ

(2)
k are states on the individual subsystems. Consider a product-

state frame constructed out of frames for two subsystems. That is, consider the frame
{F (1)(λ)⊗ F (2)(λ′)}, where each {F (j)(λ)} is a set of density matrices composing a frame.
Then, if we represent a quantum state using the dual frame, we a have a quasi-probability
representation in which states with negativity are entangled. Explicit constructions of such

3For a recent review of entanglement, see [115].
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quasi-probability representations were developed by Schack and Caves [187]. An optimiza-
tion procedure to find the representation with the minimum amount of negativity was
given in reference [202].

An obvious limitation with the above approach is that entanglement cannot capture
any notion of quantumness for single quantum systems. A second, more subtle, issue is
that identification of entanglement as “the” crucial non-classical resources is problematic in
certain branches of quantum information science. The most striking example questioning
the role of entanglement in quantum information theory is DQC1 (deterministic quantum
computing with one clean qubit). DQC1 [128] is a model of computation which refers to
any algorithm which satisfies the following (or a modification not requiring exponentially
more resources)4:

1. its input consists of a single pure state in the first control register and the remaining
n registers are in the maximally mixed state ρ = 2−n1;

2. the input state is subjected to a unitary Un controlled by the state of the first register;

3. the output is a statistical estimate of 2−nTr(Un) (achieved by measuring the average
of control bit in the Z basis).

DQC1 appears to be a non-trivial computational model which has been shown to have
exponential advantages over (known) classical algorithms in the the follow areas: simulation
of quantum systems [128], quadratically signed weight enumerators [129], evaluating the
local density of states [66], estimating the average fidelity decay under quantum maps [174]
and estimating the value of Jones polynomials [197].

In the DQC1 model, the bipartite split between the control qubit and the rest con-
tains no entanglement and in reference [59] it was shown that there is a vanishingly small
amount of entanglement across any other bipartite splitting. This suggests it is unlikely
that entanglement is responsible for the speed-up provided by DQC1 [58]. Conceptually,
computation is a local task with complex dynamics and may not require the non-local,
Bell-inequality-violating correlations of entanglement [135]. A sentiment issued in refer-
ence [135] and reiterated recently by Vedral [214] is that no one single criteria can capture
quantumness and perhaps even the resources necessary for the quantum advantage must
be studied on a case-by-case basis.

4This model of computation has served as the basis for various definitions of complexity classes, also
called DQC1. There are many open questions in this line of research and the interested reader should
consult references [197, 9, 196].
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An important consideration for all of the above approaches is that the notion of a
quantum state, considered in isolation, is operationally meaningless. Comparison with
experiment always requires specifying both a state (a preparation procedure) and a mea-
surement. Consider two experiments, one which prepares a product state and measures
the state by projecting onto an entangled basis, and a second which prepares an entangled
state and measures that state in a product basis. Both experiments produce the same
statistical predictions, but only the second is considered non-classical when considering
the state in isolation. As emphasized in references [200, 69] we can overcome this obvious
deficiency if we consider the whole operational set-up – states and measurements. In this
way, the existence of a positive quasi-probability representation implies the existence of a
non-contextual ontological model and vice versa.

The formalism of references [69, 70, 73] shows the necessity of negativity when con-
sidering a representation of the full quantum formalism. That is, the negativity theorem
(theorem 4.2.7) applies to quasi-probability representations of quantum theory as a whole.
However, the negativity theorem may not apply if we consider a specific experiment, de-
vice, or protocol which may not faithfully reproduce the full power of quantum theory.
This work suggests the following promising approach: define a classical representation of
an experiment as the existence of a frame and dual for which the convex hull of the exper-
imentally accessible states and measurements have positive representation. Then, we can
conclude that negativity, taken to mean the absence of any representation satisfying the
above conditions, corresponds to quantumness.

The above criterion for classicality was considered in reference [186] to question the
quantum nature of proposed NMR quantum computers. However, as noted there, the
immediate objection is the following: the states and measurements can be represented by
classical probabilities while the transformation between them may not be represented by
classical stochastic maps. That is, a truly classical model must represent each applied
transformation in a experiment as classical stochastic mapping. In reference [186], such
stochastic maps were identified for the set of NMR experiments reported at the time 5.

The scope of quantum theory that has been consider thus far can be thought of as kine-
matical ; only the description of experimental configurations is of concern. The traditional
approach to quantum theory (quantum mechanics) focuses on how and why quantum sys-
tems change in time. Using the Wigner function formalism to describe the dynamical
transformations predicted by quantum mechanics yields the dynamical law

∂µρ
∂t

= {H,µρ}+
∞∑
n=1

1

22n(2n+ 1)!

∂2n+1H

∂q2n+1

∂2n+1µρ
∂p2n+1

, (A.6)

5Note, however, that the reasonable requirement of an efficient classical model was not met.
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where µρ is the Wigner function and H is the classical Hamiltonian and {H,µρ} is the clas-
sical Poisson bracket. Notice then that Equation (A.6) is of the form “classical evolution”
+ “quantum correction terms”. Using this formalism, one can then do more than discuss
which experimental procedures are classical. Now one can discuss the transitions between
quantum and classical descriptions, a process known as decoherence [168, 100, 122]. The
representation of the dynamics was also studied for the spherical phase space in [229, 124].
The goal is to compare the representation of the quantum dynamics (be it the Schrodinger
equation or the more general master equation) to the natural classical dynamics of the rep-
resentation’s phase space. The challenge for finite dimensional systems is that no natural
notion of discrete phase space exists for classical system. This problem has been recently
studied by Livine [143] by introducing a discrete differential calculus for the discrete phase
spaces of Wootters. However, beyond these few examples, transformations and dynamics
have not been studied anywhere near to the extent that states have for quasi-probability
representations and presents itself as a open problem.

A.2 Negativity as “Quantumness” via Quantum Com-

putation

It is plausible that to each operationally restricted scenario, a unique resource can be
identified which enables quantumness. For example, for the circuit model of quantum
computation, is the demonstration by Vidal that large amounts of entanglement is nec-
essary, but not sufficient, for quantum computational speedup [216]. Unfortunately, this
result does not generalize to other models of quantum computation. A particularly impor-
tant alternative model is the magic state model of Bravyi and Kitaev [30], which is well
motivated by recent progress in quantum error correction, fault-tolerance and topological
quantum computation. We will see here that, for odd dimensional systems, a necessary
resource for universal computation in the magic state model corresponds to negativity in a
distinguished discrete Wigner function [96]. In the second half of this section we shown that
the analogous result holds for continuous variable quantum computation and the original
Wigner function.
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A.2.1 Negativity is a Necessary Condition for Magic State Dis-
tillation

The magic state distillation model requires only Clifford operations and the preparation
of a mixed ancilla state [30]. The full set of ideal operations are taken to be: prepare a
qudit in the state |0〉; apply unitary operators from the Clifford group; and measure an
eigenvalue of a Pauli operator on any qudit. It is well known that these operations are
insufficient for universal quantum computation [2], so something further is required. To
this end an additional process is allowed: the preparation of an ancillary qudit in a mixed
state ρ. Using only Clifford operations some, but not all, ancilla states may be distilled to
non-stabilizer “magic states”. These may be consumed to implement non-Clifford gates,
enabling universal quantum computation. The major open problem is to determine the
set of ancilla states which enable computation outside of the Clifford group. We will call
a state ρ magic state distillable if for any ε > 0 it is possible to produce a state with
fidelity 1 − ε to some pure, non-stabilizer state using only repeat preparations of ρ and
ideal operations 6.

In [215] we derived a necessary condition for distillability which defines a region in the
space of mixed quantum states. The only previously known boundary on this region is
the trivial one consisting of the convex combinations of stabilizer states. Surprisingly, the
region we derive here is strictly larger than this set, which implies the existence of bound
states for magic state distillation [39]. These are states which cannot be prepared using
Clifford resources but which do not enable universal quantum computation.

Our technique is to represent magic state distillation routines as stochastic processes
over a discrete phase space. Intuitively, if the dynamics of the quantum system admit a
representation as a classical statistical process then it should not be sufficient for universal
quantum computation. To represent the magic state model as a classical probability theory
we seek a quasi-probability representation where stabilizer states and projective measure-
ments onto stabilizer states have non-negative representation and Clifford transformations
correspond to stochastic processes. There exists a quasi-probability representation with
these properties: the discrete Wigner function picked out by Gross [96] from the broad
class defined by Gibbons et al [86] (this formalism is review in section B.2.5).

What was shown in [215] is that a necessary condition for a state ρ to enable univer-
sal computation in the magic state model is that it has negative quasi-probability repre-
sentation. We also showed that in power of prime dimension the phase point operators

6A more sophisticated mapping might also make use of classical randomness, classical feedforward
and more complicated input states than ρ⊗n. It turns out that no advantage can be gained from these
techniques, and this is proven formally for the qubit case in [38].
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correspond to a proper subset of the facets of the polytope with stabilizer states as its
vertices. This implies the existence of states with non-negative representation which are
not convex combinations of stabilizer states, the bound states for magic state distillation.
This also generalizes the results of van Dam and Howard [211] who have used techniques
of this type to derive a bound on the amount of depolarizing noise a state can withstand
before entering the stabilizer polytope for systems of prime dimension.

For completeness, let us briefly review the important properties of the Clifford group
for qudits and the discrete Gross-Wigner representation (which is an instance of those
reviewed in B.2.5). The Clifford group on n qudits is the group of unitary operators which
permute the phase space point operators. These are the only allowed unitary operations
in magic state distillation. For quantum systems of odd Hilbert space dimension we define
the discrete Gross-Wigner function using the phase point operators {Aα}

A(0,0) =
∑
α

Tα, Aα = TαA(0,0)T
†
α,

where {Tα} are the Heisenberg-Weyl operators and α ∈ Fd × Fd is an indexing vector.
There are d2 such operators for d-dimensional Hilbert space, they are informationally
complete and orthogonal in the sense Tr(AαAβ) = dδ(α, β). These operators have several
important features [96, 86]: (1) (Discrete Hudson’s theorem) if |S〉 is a stabilizer state
then Tr(Aα|S〉〈S|) ≥ 0 ∀α, and the stabilizer states are the only pure states satisfying this
property; (2) the Clifford operators preserve the set of states satisfying Tr(ρAα) ≥ 0; (3)
for ρ =

∑
α pαAα and σ =

∑
α qαAα the trace inner product is Tr(ρσ) = d

∑
α pαqα; and

(4) the phase point operations in dimension dn are tensor products of n copies of the d
dimension phase point operators (B.35).

A magic state distillation routine consumes n copies of an ancilla state ρ to prepare a
state ρout that has greater fidelity with respect to some pure, non-stabilizer state. At each
step of a distillation protocol a Clifford operation is applied to ρ⊗n and an error syndrome
measurement is made on the last n− 1 systems. This later step is equivalent to making a
projective measurement of stabilizer states on the last n− 1 qudits and post selecting on
the outcome. We have shown that operations of this form preserve the non-negativity of
the representation of ρ.

Formally, define:

F (ρ) = minαTr(Aαρ),

F (ρout) = minα
Tr(Aα ⊗ |0〉〈0|⊗n−1Uρ⊗nU †)

Tr(I⊗ |0〉〈0|⊗n−1Uρ⊗nU †)
.
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The latter quantity is the negativity of the representation of ρout, the state achieved by
applying the Clifford operation U to ρ⊗n and doing a measurement with post selection
on an arbitrary stabilizer state, where the arbitrary freedom is rolled into the Clifford
operation U . A state ρ has non-negative representation if and only if F (ρ) ≥ 0.

By showing F (ρ) ≥ 0 =⇒ F (ρout) ≥ 0 for any choice of distillation protocol we
establish that states with non-negative representation are not distillable. This holds even
allowing for repeated distillation operations of different types. The main theorem of [215]
is as follows:

Theorem A.2.1. A necessary condition for a state ρ to be distillable is that ρ has negative
representation.

As promised, this results comes with a peculiar bonus feature: there exists non-negative
states which lie outside the stabilizer polytope. These states, which cannot be prepared
via stabilizer operations but also cannot be distilled, have been dubbed bound states [39].
The set of convex combinations of stabilizer states is a convex polytope with the stabilizer
states as vertices. The stabilizer polytope may be thought of as a bounded convex polytope
living in Rd2−1, the space of d dimensional mixed quantum states. This means that there
are states that may not be written as a convex combination of stabilizer states which
nevertheless satisfy Tr(Aαρ) ≥ 0 for all phase point operators. That is, there are non-
negative states which are not in the convex hull of stabilizer states. These are bound
states for magic state distillation. An explicit example of such a state for the qutrit is
given in [96]. This volume of bound states is depicted in figure A.1.

A.2.2 Negativity is a Necessary Condition for Continuous Vari-
able Quantum Computation

Quantum information is usually thought of in terms of qubits: 2-level systems or quantum
bits. But we can do equally non-classical computation via qutrits, qudits (finite d-level
systems) or even qumodes – which are systems of continuous variables. The most commonly
considered system of this latter type is a quantized electromagnetic field. Although we will
discuss continuous variable quantum computation in the context of optics, we note that
the mathematical models apply equally well to other such systems: vibration modes of a
solid, Bose-Einstein condensates and large ensembles of atomic systems, to name a few.

Many of the seminal results in discrete variable quantum computation have analogs in
the continuous variable setting. Perhaps the most important example is the “continuous
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Figure A.1: Bound states for magic state distillation. Shown is a slice through the 8
dimensional qutrit state space from two different perspective. The point (1/3, 1/3, 1/3)
in the shown slice of this representation is the identity state. The inner polytope is the
stabilizer polytope and the larger polytope is that of the positive Wigner function. The
red object is the boundary of the qutrit state space.

variable Gottesman-Knill theorem”, which states that a computation restricted to the sub-
set of quantum theory containing only Gaussian states is classically efficiently simulatable
[15]. The Gottesman-Knill theorem [92], on the other hand, states that a quantum com-
putation restricted to stabilizer states is classically efficiently simulatable. This seems very
surprising – at least at first sight – when juxtaposed with the following two facts: all known
error-correction schemes consist mostly of elements of this stabilizer formalism and only
a single type of unitary operation needs to be added to the formalism to enable universal
quantum computation. The caveat here is that the standard stabilizer formalism requires
pure states. An intuitively satisfying results is that allowing classical randomness to the
preparation (allowing states in the convex hull of stabilizer states) affords no improvement
in computational power of the model [34].

A natural extension then is to conceive of a resource theory for the stabilizer formalism.
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Indeed, Bravy and Kitaev showed that repeated preparations of certain non-stabilizer
mixed ancilla states can be distilled using only elements of the stabilizer formalism to enable
universal quantum computation [30]. With these results in hand, we have two conditions
for a resource state to allow for universal quantum computation via distillation: (1) it is
necessary that the resource state be a non-stabilizer state, and (2) it is sufficient that the
resource have fidelity above some threshold value with one of a set of pure “magic states”.
Unfortunately, these results hold only for qubits. But as we might expect, distillation
is possible for systems of larger dimension. Indeed, Anwar et al. recently provided a
sufficient condition by way of an explicit protocol [10] – while the necessary condition that
stabilizer states are insufficient remains the same. But, as we crank up the dimension
of the individual systems, the unexplored region between these two conditions becomes
vast. Recently, we found a prodigious extension of the necessary boundary beyond the
stabilizer states, as discussion in the previous section and reference [215]. This implies the
existence of a large class of bound states : states which cannot be prepared via the stabilizer
formalism but do not enable universal quantum computation.

Here we provide the analogous result for continuous variable systems. That is, we
define a quantum computational resource theory for Gaussian quantum theory and show
that there exists a large class of non-Gaussian bound states. Moreover, we show that the
classical efficient simulatability of Gaussian quantum theory extends to this boundary. This
is appealing because the boundary is given by those states with positive Wigner function
and thus we argue that this gives the first operational interpretation of negativity of the
Wigner function as a non-classical feature of the quantum state.

First, we will briefly review continuous variables à la quantum optics. Standard quanti-
zation of an electromagnetic field, with N modes indexed by k, results in a set of harmonic
oscillators [220]. The dimensionless Hamiltonian of a single mode k reads

Hk =
1

2
(P 2

k +Q2
k),

operators satisfy the canonical commutation relations [Qk, Pj] = iδkj, [Qk, Qj] = 0, and
[Pk, Pj] = 0 It is also common to treat the oscillator in terms of the creation and annihilation
operators

ak =
1√
2

(Qk + iPk),

a†k =
1√
2

(Qk − iPk).

A transformation is usually considered to be contained in linear optics if its Hamiltonian
commutes with H =

∑N
k=1Hk. i.e. it can be written HLO = a† ·Ma for some N × N
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Hermitian matrix M . Such transformations preserve the overall photon number and are
called passive. In the Heisenburg picture it can be represented by

ak 7→
N∑
j=1

Ukjaj,

where U is an N × N unitary matrix. Note that any such unitary can be efficiently
decomposed as a sequence of beam splitters and phase shifters [176].

But note also for linear optics Hamiltonians there are no terms which mix the Q’s and
P ’s. Although the Hamiltonian is a quadratic polynomial is the joint vector x = q ⊕ p,
it is not the most general one. For that, we define linear optics and squeezing (which will
refer to as just linear optics herein) to be the set of transformation whose Hamiltonians,
in terms of x, are exactly those that can be written as a quadratic polynomial:

HLOS = x · Sx + V · x,

where S is 2N×2N real symmetric matrix and V is a real 2N -dimensional vector. In terms
of the creation and annihilation operators in the Heisenburg picture, these transformation
induce mappings of the form

ak 7→
∑
j

Akjaj +Bkja
†
j + γj,

where the matrices A and B satisfy ABT = (ABT)T and AA† = BB† + 1 to preserve the
commutation relations.

With these definitions we can now conveniently define a non-linear process. That is, we
define non-linear optics as the set of transformations whose Hamiltonians are polynomials
(in the elements of x) whose degree is strictly greater than 2. A classical example of such
a non-linear process is given by a Kerr non-linearity,

HKerr = (Q2 + P 2)2,

which was used to show to that quadratic Hamiltonians and any non-linear optics Hamil-
tonian generate the algebra of all polynomial Hamiltonians [144].

The eigenbasis of k’th harmonic oscillator Hamiltonian is {|n〉k} with ak |n〉k =
√
n |n− 1〉k

and a† |n〉k =
√
n+ 1 |n+ 1〉k. The ground state |0〉k is called the vacuum state and in

the quantum optics context, |1〉k is a single photon state, |2〉k is a two photon state, and
so on. In general, they are called either number states or Fock states. The eigenstates of
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the annihilation operator, called coherent states, also play a particularly important role in
quantum optics. In the number state basis, the state defined as a |α〉k = α |α〉k is explicitly

|α〉k = e−
|α|2
2

∑
n

αn√
n!
|n〉k ,

where α is in general a complex number. It is convenient to write the coherent states as
displaced vacuum states: |α〉k = Dk(α) |0〉k, where

D(α) = eαa
†
k−α

∗ak

is called the displacement operator. Through this operator we can define one more class of
states: squeezed states. First, we define a squeezed vacuum state as

|r, φ〉k = er(e
−2iφa2k−e

2iφa†2k ) |0〉k ,

for some real numbers r, φ. Then the general squeezed states are displacements: |α, r, φ〉k =
Dk(α) |r, φ〉k.

Phase space representations have a strong tradition in quantum optics. The phase
space distributions of quantum optics are reviewed in section B.1. Here we will focus on
the Wigner function. Hudson’s theorem [116] was the first attempt to characterize the
positive Wigner functions and it was later generalized to the following [198]. Let ψ be a
pure quantum state of N oscillators. Then its Wigner function is positive if and only if

ψ(Q) = e−
1
2

(Q·AQ+B·Q+c),

where A is an N × N Hermitian matrix, B is an N -dimensional complex vector and c is
a normalization constant. In our quantum optics terminology, these turn out to be either
coherent states or squeezed states. Plugging these state into the definition of the Wigner
function yield multivariate Gaussian distributions in phase space.

Convex combinations of these states (incoherent mixtures of them) will also have pos-
itive Wigner function since the mapping is linear. Early on, these were conjectured to be
the only such mixed states with positive Wigner function. However, an explicit example
of a quantum state with positive Wigner function that is not a convex combination of
Gaussian states is [32]:

ρ =
1

2
(|0〉〈0|+ |1〉〈1|).

This state is depicted in figure A.2.

101



=+½½

1| ›0| › ›0| |›1

Figure A.2: A state with positive Wigner function that is not a convex combination of
Gaussian states.

The question of mixed states was given a full treatment in reference [203] and later in
[32]. Both references independently found that a theorem in classical probability attributed
to Bochner [25] and generalization thereof can be used to characterize both the valid Wigner
functions and the subset of positive ones. The point here is that there exist a large class of
states with positive Wigner function that are not convex combinations of Gaussian states.
So far, these states have received little attention. Next we show how they play a role more
prominent than a mere mathematical curiosity.

Gaussian quantum information is defined to be the following set of operators (see, for
example, [221]): M mode Gaussian input state; linear optics Hamiltonians; and, mea-
surements with (or without) post-selection onto Gaussian states. If the ancilla system is a
Gaussian state then the model above classically efficiently simulatable [15] (i.e. there exists
an efficient, in the number of modes M , algorithm reproducing the output probabilities
of the measurement results). Thus, some non-Gaussian resource is needed. We allow, in
analogy with [30], that an arbitrary number N of copies of some state ρ to be acted upon
via Gaussian quantum mechanics and ask if performing a measurement on the last N − 1
copies of ρ results in a state arbitrarily close to some pure state for the remaining copy.
Such a procedure is called distillation and if it succeeds, we call ρ distillable.

Our main result is as follows: a necessary condition for a state ρ to be distillable is that it
have negative Wigner function. First we argue that any state with positive Wigner function
remains so under linear optics. This happens to have a convenient classical interpretation
as linear optics Hamiltonians induce affine transformations on the underlying phase space.
That is, any linear optics unitary can be written as a linear transformation followed by a
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phase space translation. This fact goes all the way back to Moyal [160] who showed that
quadratic Hamiltonians induce the following dynamics on the Wigner function:

∂P (Q,P ; t)

∂t
=
∂H(Q,P )

∂Q

∂P (Q,P ; t)

∂P
− ∂P (Q,P ; t)

∂Q

∂H(Q,P )

∂P
.

This is a completely classical dynamical trajectory given by Hamiltonian flow in Wigner
representation. Via Liouville’s theorem, the probability is conserved along trajectories and
thus the Wigner function remains positive.

Now it remains to show that N copies of such a state remains positive after an arbitrary
linear optics transformation followed by a projective measurement onto Gaussian states.
As we have argued, the positivity of the initial state is preserved after the transformation.
Since the Wigner mapping is self-dual, Gaussian measurements are also represented as
positive functions. The final state is the result of the overlap of two positive functions and
is hence positive.

The above argument also implies the following: Gaussian quantum information sup-
plemented with ancilla states with positive Wigner function is classically efficiently simu-
latable. Since the Wigner function is positive, we are free to interpret it as a probability
distribution. Now, although it requires an exponential number of resources to determinis-
tically evolve the Wigner distribution, we can sample from it via Monte Carlo simulations
and evolve the phase space point under the Hamiltonian evolution – as is done in the sim-
ulation of classical dynamical systems. Thus, we can efficiently simulate the outcomes of
Gaussian measurements of physical systems evolving under linear optical operations when
the initial state is represented by a positive Wigner function. At first sight this seems
counter-intuitive since we are taught that points in the quantum phase space are meaning-
less since they maximally violate the uncertainty principle. This is a restriction, however,
that the classical physical system carrying out the simulation need not be bound by.

Reference [14] nicely summarized what was known at the time about continuous variable
quantum computation. The table presented there is reproduced below in Table A.1 with
some more recent results. The field began with Lloyd and Braunstein’s observation that
non-linear optical processes are sufficient for UQC. Later, it was shown that linear optics is
sufficient provided photon counting measurements are available [130, 93]. The continuous
variable analog of the measurement-based model shows that preparation of single photon
state preparation is also sufficient [154]. More recently, the result of Aaronson and Arkhipov
[1] shows that preparing and measuring single photon states (without post-selection) is
equivalent to problem that is thought to be hard classically – but it still manages to
(probably) not be universal for quantum computation.
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It is possible that the Aaronson and Arkhipov model may be intermediately between
classically efficiently simulatable and universal for quantum computation. Another sus-
pected model of this type is the DQC1 model of Knill and Laflamme [128]. The key point
for this latter model is that uses highly mixed states. Mixed states have not been for-
mally consider for continuous variable quantum computation. Here we have generalized
the Bravyi and Kitaev magic state model to the continuous variable domain. We have
shown, via the Wigner phase space formalism, that negative representation is necessary for
universal quantum computation. Moreover, any computation that uses states possessing a
positive Wigner function is classically efficiently simulatable. It would be quite interesting
if this condition turned out also to be sufficient as this would provide a sharp boundary
between quantum and classical systems with regard to their computational power.

As we have seen in the previous section, an analogous result holds also for collections
of systems of odd dimension. However, such a class of bound states does not appear to
exists for the qubit case. This provides one more piece of evidence that ∞ is indeed closer
to 3 as it is to 2.
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Preparations Gates Measurement Efficiently simu-
latable classically

Vacua Linear optics Gaussian
3 [15, 13]

Vacua Non-linear optics Gaussian
7 [144]

Single photons Linear optics (no
squeezing)

Photon counting
(with post-selection) 7 [130]

Vacua Linear optics Gaussian and Pho-
ton counting (with
post-selection)

7 [93]

Single photons Linear optics Gaussian
7 [99]

Single photons Linear optics (no
squeezing)

Photon counting
7 [1]

Independent positive
Wigner distributions

Linear optics Gaussian
3 (this work)

Table A.1: Simulation results for continuous variable quantum computation. An extension
of the table appearing in [14].
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Appendix B

Quasi-probability Function Review

This chapter reproduces the portions of reference [67] which reviewed the known quasi-
probability representations of quantum theory along with examples of their application to
problems in quantum information science. Section B.1 is devoted to the infinite dimensional
setting while section B.2 reviews the finite dimensional analogs.

B.1 Quasi-probability in Infinite Dimensional Hilbert

Space

Here will we review the quasi-probability distributions which have been defined for quantum
states living in an infinite dimensional Hilbert space - the canonical example being a
particle moving in one dimension. Since there are a myriad of excellent reviews of the
Wigner function and other phase space distributions 1, our discussion of them will be brief.
We will mainly focus on those details which have inspired analogous methods for finite
dimensional Hilbert spaces.

First we start with the familiar Wigner function in section B.1.1. The other phase
space distributions, such as the Husimi function, are bundled up in section B.1.2.

1See reference [112] for a classic and reference [136] for a more recent review of phase space quasi-
probability distributions.
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B.1.1 Wigner Phase Space Representation

The position operator Q and momentum operator P are the central objects in the abstract
formalism of infinite dimensional quantum theory. The operators satisfy the canonical
commutation relations

[Q,P ] = i.

We are looking for a joint probability distribution µρ(p, q) for the state of the quantum sys-
tem. From the postulates of quantum mechanics we have a rule for calculating expectation
values. In particular, we can compute the characteristic function

φ(ξ, η) :=
〈
ei(ξq+ηp)

〉
= Tr(ei(ξQ+ηP )ρ).

Since the characteristic function is just the Fourier transform of the joint probability dis-
tribution, we simply invert to obtain

µρ(p, q) =
1

(2π)2

∫∫
R2

Tr(ei(ξQ+ηP )ρ)e−i(ξq+ηp)dξdη, (B.1)

which is the celebrated Wigner function of ρ [224]. The Wigner function is both positive
and negative in general. However, it otherwise behaves as a classical probability density on
the classical phase space. For these reasons, the Wigner function and others like it came
to be called quasi-probability functions.

The Wigner function is the unique representation satisfying the properties [20]

Wig(1) For all ρ, µρ(q, p) is real.

Wig(2) For all ρ1 and ρ2,

Tr(ρ1ρ2) = 2π

∫
R2

dqdp µρ1(q, p)µρ2(q, p).

Wig(3) For all ρ, integrating µρ along the line aq+ bp = c in phase space yields the probability
that a measurement of the observable aQ+ bP has the result c.

We can write the Wigner function as

µρ(p, q) = Tr [F (p, q)ρ] ,

where

F (q, p) :=
1

(2π)2

∫
R2

dξdη eiξ(Q−q)+iη(P−p). (B.2)

Thus the properties Wig(1)-(3) can be transformed into properties on a set of operators
F (q, p) which uniquely specify the set in Equation (B.3). These properties are
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Wig(4) F (q, p) is Hermitian.

Wig(5) 2πTr(F (q, p)F (q′, p′)) = δ(q − q′)δ(p− p′).

Wig(6) Let Pc be the projector onto the eigenstate of aQ+ bP with eigenvalue c. Then,∫
R2

dqdp F (q, p)δ(aq + bp− c) = Pc.

These six properties are often the basis for generalizing the Wigner function to finite
dimensional Hilbert spaces, as we will soon see.

Applications: quantum teleportation

The applications of the Wigner function are far reaching and not limited to to physics 2.
A modern application can be found in reference [42] where Caves and Wódkiewicz use the
Wigner function to obtain a hidden variable model of the continuous-variable teleportation
protocol [210, 29]. Later, in section B.2.6, we will discuss the much simpler discrete-variable
teleportation protocol. Here, then, we will avoid the details of the protocol and focus on
the result. It suffices to know the following: there are three quantum systems; the goal
of the protocol is to transfer a quantum state from system 1 to system 3; the transfer is
mediated through the special correlations between system 2 and system 3. The success of
the protocol is measured by the average fidelity : a measure of the closeness of the initial
state ρ = |ψ〉〈ψ| of system 1 and the average final state ρout of system 3.

Following Caves and Wódkiewicz we define ν = q+ip and index the Wigner function as
µρ(ν). This is convenient since the protocol is tailored to a quantum optical implementation
where the outcomes of measurements are usually expressed as complex numbers. Initially,
the state of system 2 and 3 is described by the joint Wigner function µ2,3(α, β).

In terms of the Wigner functions, the average fidelity is

F = π

∫
d2νd2βµρ(ν)µρout(β).

This intuitively measures closeness by quantifying the overlap of the Wigner functions on
the classical phase space. The output state, determined by the details of the protocol, is

µρout(β) =

∫
d2νd2αµρ(β − ν)µ2,3(α, ν − α).

2For example, see reference [63] for a recent review of the applications of the Wigner function in signal
processing.
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The initial Wigner function µρ(ν) and the joint Wigner function µ2,3(α, β) are determined
by the particular implementation of the protocol. The standard quantum optical imple-
mentation is done using coherent states of light. It is easy to show that such states have
positive Wigner functions 3. Thus, the Wigner function provides a classical phase space
picture of the entire protocol.

A first step toward performing an experiment requiring genuine quantum resources
might be to avoid the above classical description by teleporting a non-coherent quantum
state. Caves and Wódkiewicz have devised a classical explanation for this case as well. The
new model involves a randomization procedure which transforms the initial non-coherent
state into a coherent one thus giving it a positive Wigner function. However, it can be
shown that within such a model, the fidelity is bounded: F < 2/3. So 2/3 emerges as a
“gold-standard” since teleporting a non-coherent state with fidelity F ≥ 2/3 avoids this
classical phase space description.

B.1.2 Other Phase Space Representations

Another class of solutions to the ordering problem is the association eiξq+iηp 7→ eiξQ+iηPf(ξ, η)
for some arbitrary function f 4.

Consider again the classical particle phase space R2 and the continuous set of operators

F (q, p) :=
1

(2π)2

∫
R2

dξdη eiξ(q−Q)+iη(p−P )f(ξ, η). (B.3)

The f dependent distributions

µfρ(q, p) := Tr(ρF (q, p)) (B.4)

define quasi-probability functions on phase space alternative to the Wigner function, which
is simply the f = 1 special case of this more general formalism.

Besides the Wigner function, the most popular choices of f are

f(ξ, η) = e±
1
4

(ξ2+η2),

which give, via equation (B.4), the Glauber-Sudarshan [90, 206] and Husimi [117] functions,
respectively. These two mappings are sometimes referred to as the P- and Q-representations

3More difficult is to show that coherent states are the only states with positive Wigner functions [116].
4This is very closely related to the s-ordered Cahill-Glauber formalism [37]. See Table 1 of [136] for a

concise review of the traditional choices for f .
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(not to be confused with position and momentum representations). We will follow the usual
convention by introducing the annihilation operator

a =
1√
2

(Q+ iP ) (B.5)

and the coherent states defined via a |α〉 = α |α〉, where we write α = q + ip. Then the
Husimi function can be conveniently written

Q(α) := µfρ(q, p) =
1

π
〈α, ρα〉. (B.6)

The Glauber-Sudarshan function ρ→ P (α) can be expressed implicitly through the iden-
tity

ρ =

∫
d2αP (α)|α〉〈α|, (B.7)

where d2α = (1/2)dqdp. Notice that this immediate implies the following duality condition
between the P- and Q-representation:

Tr(ρρ′) =

∫
d2αPρ(α)Qρ′(α). (B.8)

Application: quantumness witness

Here we will discuss a more recent application of the P and Q functions of interest in
quantum information and foundations 5. We will concern ourself with a particular notion
of “non-classicality” defined in reference [7].

Consider two observables represented by the self-adjoint operators R and S. Another
observable W (R, S) written as an ordered power series of R and S is a quantumness
witness if it possesses at least one negative eigenvalue and the function w(r, s) obtained
by replacing R and S with its spectral elements is positive: w(r, s) ≥ 0 for all r ∈ spec(R)
and s ∈ spec(S).

As an example consider R, S ≥ 0 and define A := R, B := R+ S and V := W (R, S) =
S2 + RS + SR. Then, V possess a negative eigenvalue and w(r, s) = s2 + 2rs ≥ 0 for
r, s ≥ 0. As proven in reference [8], 0 ≤ A ≤ B implies A2 ≤ B2 if and only if the algebra
of observables is commutative, which is generally agreed upon as a necessary requirement

5The P and Q functions are powerful visualization tools prominently used in the areas of quantum
optics and quantum chaos [207]. See [188] for an overview of the applications in quantum optics.
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for classicality. However, the algebra of quantum observables is such that their exists
0 ≤ A ≤ B but A2 ≥ B2. Thus, if we can measure V and find 〈V 〉 ≤ 0, then we have
shown that the system being measured cannot admit a classical model and we have found
a signature of quantumness.

Now consider R = Q and S = P , the usual position and momentum operators. Re-
calling the parameterization in terms of the annihilation operator in equation (B.5), we
define

W (a) :=
∑
m,n

cmn(a†)man

such that
w(α) =

∑
m,n

cmnα
mαn ≥ 0

andW possesses at least one negative eigenvalue (a concrete example is (a†)2a2−2ma†a+m2

for m ≥ 1). Then, in terms of the Q and P-representation defined above, we have

〈W 〉 = Tr(ρW ) =

∫
d2α〈α,Wα, P 〉(α) =

∫
d2αw(α)P (α). (B.9)

In optics especially, coherent states are considered classical. From equation (B.7) we see
that if P (α) ≥ 0, the quantum state is a statistical mixture of coherent states and hence
just as classical. So if ρ is a classical state, equation (B.9) tells us 〈W 〉 ≥ 0. Therefore, if
we measure 〈W 〉 ≤ 0, we can rule out the classical model of statistical mixtures of coherent
states; we can say W (a) detects the quantumness of the states.

B.2 Quasi-probability in Finite Dimensional Hilbert

Space

Nearly all definitions of quasi-probability distributions for finite dimensional Hilbert spaces
have been motivated by the Wigner function. The earliest such effort was by Stratonovich
and is reviewed in section B.2.1. The Stratonovich phase space is a sphere and hence
continuous. Later, many authors have define Wigner function analogs on discrete phase
spaces. A sampling, with a bias towards those which have found application in quantum
information theory, is given in sections B.2.2-B.2.6.

There also exist quasi-probability distributions which where introduced to solve various
problems far removed from proposing a finite dimensional analog of the Wigner function.
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Sections B.2.7-B.2.10 review those quasi-probability distributions which do not have a
canonical phase space structure and hence form a somewhat weaker analogy to the Wigner
function.

We note that there exists many other quasi-probability distributions defined on discrete
phase spaces which are not reviewed here [103, 51, 74, 83, 165, 147, 101, 179, 161, 218, 44,
45, 96, 97].

B.2.1 Spherical Phase Space

Here we will be concerned with a set of postulates put forth by Stratonovich [204]. The
aim of Stratonovich was to find a Wigner function type mapping, analogous to that of a
infinite dimensional system on R2, of a d dimensional system on the sphere S2. The first
postulate is linearity and is always satisfied if the Wigner functions on the sphere satisfy

µρ(n) = Tr(ρ4(n)), (B.10)

where n is a point on S2. The remaining postulates on this quasi-probability mapping are

µρ(n)∗ = µρ(n),

d

4π

∫
S2
dn µρ(n) = 1,

d

4π

∫
S2
dn µρ1(n)µρ2(n) = Tr(ρ1ρ2),

µ(g·ρ)(n) = µρ(n)g, g ∈ SU(2),

where g · ρ is the image of UgρU
†
g and U : SU(2)→ UH is an irreducible unitary represen-

tation of the group SU(2). These postulates are analogous to Wig(1)-(3) for the Wigner
function modulo the second normalization condition (which could have be included in the
Wigner function properties).

The continuous set of operators 4(n) is called a kernel and we note it plays the role
of the more familiar phase space point operators in the latter. Requiring that Equation
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(B.10) hold changes the postulates to new conditions on the kernel

4(n)† = 4(n), (B.11)

d

4π

∫
S2
dn 4(n) = 1, (B.12)

d

4π

∫
S2
dn Tr(4(n)4(m))4(n) = 4(m), (B.13)

4(g · n) = Ug4(n)U †g , g ∈ SU(2). (B.14)

These postulates are the spherical analogies of properties Wig(4)-(6) (again, modulo the
normalization condition). Heiss and Weigert [108] provided a concise derivation of 22s,
where s = d−1

2
is the spin, unique kernels satisfying these postulates 6. They are

4(n) =
s∑

m=−s

2s∑
l=0

εl
2l + 1

2s+ 1
Cs l s
m 0 mφm(n)φ∗m(n), (B.15)

where C denotes the Clebsch-Gordon coefficients. Here, φm(n) are the eigenvectors of the
operator S · n, where S = (X, Y, Z); and εl = ±1, for l = 1 . . . 2s and ε0 = 1.

Heiss and Weigert relax the postulates Equations (B.11)-(B.14) on the kernel 4(n) to
allow for a pair of kernels 4n and 4m. The pair individually satisfy Equation (B.11),
while one of them satisfies Equation (B.12) and the other Equation (B.14). Together, the
pair must satisfy the generalization of Equation (B.13)

d

4π

∫
S2
dnTr(4n4m)4n = 4m. (B.16)

A pair of kernels, together satisfying Equation (B.16), is given by

4n =
s∑

m=−s

2s∑
l=0

γl
2l + 1

2s+ 1
Cs l s
m 0 mφm(n)φ∗m(n),

4n =
s∑

m=−s

2s∑
l=0

γ−1
l

2l + 1

2s+ 1
Cs l s
m 0 mφm(n)φ∗m(n),

where each γl is a finite non-zero real number and γ0 = 1. The original postulates are
satisfied when γl = γ−1

l ≡ εl.

6This was also shown earlier [212, 31] - see also references [11, 192].
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The major contribution of reference [108] is the derivation of a discrete kernel 4ν :=
4nν , for ν = 1 . . . d2 which satisfies the discretized postulates

4†ν = 4ν , (B.17)

1

d

d2∑
ν=1

4ν = 1, (B.18)

1

d

d2∑
ν=1

Tr(4ν4µ)4ν = 4µ, (B.19)

4g·ν = Ug4νU
†
g , g ∈ SU(2). (B.20)

The subset of points nν is called a constellation. The linearity postulate is not explicitly
stated since it is always satisfied under the assumption

ρ→ µρ(ν) = Tr(ρ4ν). (B.21)

Equation (B.19) is called a duality condition. That is, it is only satisfied if 4ν and 4µ are
dual bases for H(H). In particular,

1

d
Tr(4ν4µ) = δνµ.

Although the explicit construction of a pair of discrete kernels satisfying Equations (B.17)-
(B.20) might be computationally hard, their existence is a trivial exercise in linear algebra.
Indeed, so long as 4ν is a basis for H(H), its dual, 4µ, is uniquely determined by

4µ =
d2∑
ν=1

G−1
νµ4ν ,

where the Gram matrix G is given by

Gνµ = Tr(4ν4µ).

The authors of reference [108] note that almost any constellation leads to a discrete kernel
4ν forming a basis for H(H). The term almost any here means that a randomly selected
discrete kernel will form, with probability 1, a basis for H(H).
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Application: NMR quantum computation

The spherical quasi-probability functions for qubit systems (d = 2) were put to use by
Schack and Caves for the purpose of obtaining a classical model of nuclear magnetic res-
onance (NMR) experiments designed to perform quantum information tasks [186]. For a
single qubit we choose the kernels

4n =
1

2
(1 + n · σ),

4n =
1

4π
(1 + 3n · σ),

where σ = (X, Y, Z) are the usual Pauli operators. In NMR experiments many qubits are
employed to perform quantum information tasks such as error correction and teleportation.
Suppose there are n qubits with total Hilbert space dimension 2n. We choose an n-fold
tensor product of the qubit kernels. Explicitly, they are

4n =
1

2n

n⊗
j=1

(1 + n · σ), (B.22)

4n =
1

(4π)n

n⊗
j=1

(1 + 3n · σ). (B.23)

The quasi-probability function is given by

µρ(n) = Tr(ρ4n).

As expected, in general, this function is both positive and negative.

The quantum state of an NMR experiment is of the form

ρ = (1− ε) 1

2n
1 + ερ1, (B.24)

where ρ1 is arbitrary but often chosen to be a specific pure state. The parameter scales as

ε ∝ n

2n
.

So we have

µρ(n) =
1− ε
(4π)n

+ εµρ1(n).
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It is easy to determine the lower bound

µρ(n) ≥ 1− ε
(4π)n

− ε22n−1

(4π)n
.

Thus, provided

ε ≤ 1

1 + 22n−1
,

µρ(n) ≥ 0 and we have a representation of NMR quantum states in terms of classical
probability distributions on a classical phase space. In reference [186] the authors note that,
for typical experimental values of the scaling parameter in ε, such a classical representation
is valid for n < 16 qubits.

The spherical phase space representations have also been put to good use in visualizing
decoherence [85] and photon squeezing [194].

B.2.2 Wootters Discrete Phase Space Representation

In reference [225], Wootters defined a discrete analog of the Wigner function. Associated
with each Hilbert space H of finite dimension d is a discrete phase space. First assume d
is prime. The prime phase space, Φ, is a d× d array of points α = (q, p) ∈ Zd × Zd.

A line, λ, is the set of d points satisfying the linear equation aq + bp = c, where all
arithmetic is modulo d. Two lines are parallel if their linear equations differ in the value
of c. The prime phase space Φ contains d+ 1 sets of d parallel lines called striations.

Assume the the Hilbert space H has composite dimension d = d1d2 · · · dk. The discrete
phase space of the entire d dimensional system is the Cartesian product of two-dimensional
prime phase spaces of the subsystems. The phase space is thus a (d1 × d1) × (d2 × d2) ×
· · · (×dk×dk) array. Such as construction is formalized as follows: the discrete phase space
is the multi-dimensional array Φ = Φ1 × Φ2 × · · · × Φk, where each Φi is a prime phase
space. A point is the k-tuple α = (α1, α2, . . . , αk) of points αi = (qi, pi) in the prime phase
spaces. A line is the k-tuple λ = (λ1, λ2, . . . , λk) of lines in the prime phase spaces. That
is, a line is the set of d points satisfying the equation

(a1q1 + b1p1, a2q2 + b2p2, . . . , akqk + bkpk) = (c1, c2, . . . , ck),

which is symbolically written aq+ bp = c. Two lines are parallel if their equations differ in
the value c. As was the case for the prime phase spaces, parallel lines can be partitioned into
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sets, again called striations; the discrete phase space Φ contains (d1 + 1)(d2 + 1) · · · (dk + 1)
sets of d parallel lines.

The construction of the discrete phase space is now been complete. To introduce Hilbert
space into the discrete phase space formalism, Wootters chooses the following special basis
for the space of Hermitian operators. The set of operators {Aα : α ∈ Φ} acting on an d
dimensional Hilbert space are called phase point operators if the operators satisfy

Woo(4) For each point α, Aα is Hermitian.

Woo(5) For any two points α and β, Tr(AαAβ) = dδαβ.

Woo(6) For each line λ in a given striation, the operators Pλ = 1
d

∑
α∈λ

Aα form a projective

valued measurement (PVM): a set of d orthogonal projectors which sum to identity.

Notice that these properties of the phase point operators Woo(4)-(6) are discrete analogs
of the properties Wig(4)-(6) of the function F defining the original Wigner function. This
definition suggests that the lines in the discrete phase space should be labeled with states
of the Hilbert space. Since each striation is associated with a PVM, each of the d lines in
a striation is labeled with an orthogonal state. For each Φ, there is a unique set of phase
point operators up to unitary equivalence.

Although the sets of phase point operators are unitarily equivalent, the induced labeling
of the lines associated to the chosen set of phase point operators are not equivalent. This
is clear from the fact that unitarily equivalent PVMs do not project onto the same basis.

The choice of phase point operators in reference [225] will be adopted. For d prime, the
phase point operators are

Aα =
1

d

d−1∑
j,m=0

ωpj−qm+ jm
2 XjZm, (B.25)

where ω is a d’th root of unity and X and Z are the generalized Pauli operators. For
composite d, the phase point operator in Φ associated with the point α = (α1, α2, . . . , αk)
is given by

Aα = Aα1 ⊗ Aα2 ⊗ · · · ⊗ Aαk , (B.26)

where each Aαi is the phase point operator of the point αi in Φi.

117



The d2 phase point operators are linearly independent and form a basis for the space of
Hermitian operators acting on an d dimensional Hilbert space. Thus, any density operator
ρ can be decomposed as

ρ =
∑
q,p

µρ(q, p)A(q, p),

where the real coefficients are explicitly given by

µρ(q, p) =
1

d
Tr(ρA(q, p)). (B.27)

This discrete phase space function is the Wootters discrete Wigner function. This discrete
quasi-probability function satisfies the following properties which are the discrete analogies
of the properties Wig(1)-(3) the original continuous Wigner function satisfies.

Woo(1) For all ρ, µρ(q, p) is real.

Woo(2) For all ρ1 and ρ2,

Tr(ρ1ρ2) = d
∑
q,p

µρ1(q, p)µρ2(q, p).

Woo(3) For all ρ, summing µρ along the line λ in phase space yields the probability that
a measurement of the PVM associated with the striation which contains λ has the
outcome associated with λ.

Application: entanglement characterization

In [78], Franco and Penna relate the negativity of Wootter’s discrete Wigner function to
entanglement. Recall that a bipartite density matrix ρ is separable if it can be written as
a convex combination of the form

ρ =
∑
k

pkρ
(1)
k ⊗ ρ

(2)
k ,

for all k, where ρ
(1)
k and ρ

(2)
k are states on the individual subsystems. Let Φ1 and Φ2 be

the DPS associated with ρ
(1)
k and ρ

(2)
k , respectively.
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The Wootters representation of a density matrix of the form ρ = ρ(1) ⊗ ρ(2) is given by
µρ(α) = µ

(1)
ρ (α1)µ

(2)
ρ (α2), where α = (α1, α2) ∈ Φ1 × Φ2. This can be shown as follows:

µρ(α1, α2) =
1

d
Tr(ρ(1)Aα1 ⊗ ρ(2)Aα2)

=
1

d

∑
β1∈Φ1,β2∈Φ2

µ(1)
ρ (β1)µ(2)

ρ (β2)Tr(Aβ1Aα1 ⊗ Aβ2Aα2)

=
1

d

∑
β1∈Φ1,β2∈Φ2

µ(1)
ρ (β1)µ(2)

ρ (β2)dδβ1α1δβ2α2

= µ(1)
ρ (α1)µ(2)

ρ (α2).

Thus, separability can be recast entirely in terms of the discrete phase space. That is,
a discrete Wigner function is separable if it can be written

µρ(α) =
∑
k

pkµ
(1)
ρ (α1)kµ

(2)
ρ (α2)k, (B.28)

else it is entangled.

The two qubit product state µρ(α) = µ
(1)
ρ (α1)µ

(2)
ρ (α2) with µ

(1)
ρ (α1) = 1

2
for some α1

and µ
(2)
ρ (α2) = 1−

√
3

4
for some α2 will have the most negative value for a separable state,

namely 1−
√

3
8

. Thus, if a two qubit Wigner function has a value strictly less that 1−
√

3
8

,
it is entangled. Since entanglement is considered non-classical, negativity of the Wigner
function (below some threshold) is associated with non-classicality. However, even if a
Wigner function is positive on all of phase space, it can still be entangled. Therefore,
Franco and Penna have found a new sufficient condition for entanglement in two qubits.

For a necessary condition, the authors of [78] turn to the positive partial transpose
condition [170, 114]. The result is a two qubit state ρ is separable if and only if both
the discrete Wigner function of ρ and the discrete Wigner function of ρT2 (the partial
transpose) are non-negative everywhere on the discrete phase space.

Wootters discrete Wigner function has also found application in quantum teleportation
[132]. The authors have found the discrete phase space representation of the teleportation
protocol much clearer especially when considering quantum systems with much larger than
qubit dimensional Hilbert spaces.
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B.2.3 Extended Discrete Phase Space

In reference [53], Cohendet et al define a discrete analogue of the Wigner function which
is valid for integer spin 7. That is, dim(H) = d is assumed to be odd. Whereas Wootters
builds up a discrete phase space before defining a Wigner function, the authors of [53]
implicitly define a discrete phase space through the definition of their Wigner function.

Consider the operators
Wmnφk = ω2n(k−m)φk−2m,

with m,n ∈ Zd and φk are the eigenvectors of Z. Then, the discrete Wigner function of a
density operator ρ is

µodd
ρ (q, p) =

1

d
Tr(ρWqpP ), (B.29)

where P is the parity operator.

The authors call the operators 4qp = WqpP Fano operators and note that they satisfy

4†qp = 4qp,

Tr(4qp4q′p′) = dδqq′δpp′ ,

W †
xk4qpWxk = 4q−2x p−2k.

The Fano operators play a role similar to Wootters’ phase point operators; they form a
complete basis of the space of Hermitian operators. The phase space implicitly defined
through the definition of the discrete Wigner function (B.29) is Zd × Zd. When d is an
odd prime, this phase space is equivalent to Wootters discrete phase space. In this case
the Fano operators are 4qp = A(−q,p). This can seen by writing the Wootters phase point
operators as

A(q,p) =
1

d
X2qZ2pPω2qp.

Let σ ∈ {±1}. The extended phase space is Zd × Zd × {±1}. Define the new Wigner
function

µρ(q, p, σ) =
1

4d

(
2

d
+ σµodd

ρ (q, p)

)
.

This function is satisfies the positivity and normalization requirements of a true probability
distribution.

7This difficulty was overcome in a later paper [52].
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Application: Master equation for an integer spin

In the same paper, Cohendet et al show the quantum dynamical equation of motion can be
represented in the extended phase space as a classical stochastic process. This is achieved
by showing the time evolution of the discrete Wigner function is

∂

∂t
µρ(q, p, σ; t) =

∑
q′,p′,σ′

A(q, p, σ|q′, p′, σ′)µρ(q′, p′, σ′; t),

for a suitable choice of jump moments A. This is in the form of the master equation of a
Markov process. The authors interpret this result as follows: “Quantum mechanics of an
integer spin appears as the mixture of two classical schemes of a spin. However at random
times the schemes are exchanged.”

B.2.4 Even Dimensional Discrete Wigner Functions

In reference [138], Leonhardt defines discrete analogues of the Wigner function for both
odd and even dimensional Hilbert spaces. In a later paper [139], Leonhardt discusses the
need for separate definitions for the odd and even dimension cases. Naively applying his
definition, or that of Cohendet et al, of the discrete Wigner function for odd dimensions
to even dimensions yields unsatisfactory results. The reason for this is the discrete Wigner
function carries redundant information for even dimensions which is insufficient to specify
the state uniquely. The solution is to enlarge the phase space until the information in the
phase space function becomes sufficient to specify the state uniquely.

Suppose dim(H) = d is odd. Leonhardt defines the discrete Wigner function as

µLeo
ρ (q, p) =

1

d
Tr(ρX2qZ2pPω2qp).

Leonhardt’s definition of an odd dimensional discrete Wigner function is unitarily equiva-
lent to the Cohendet et al definition. That is, µLeo

ρ (q, p) = µodd
ρ (−q, p). To define a discrete

Wigner function for even dimensions, Leonhardt takes half-integer values of q and p. This
amounts to enlarging the phase space to Z2d × Z2d. Thus the even dimensional discrete
Wigner function is

µeven
ρ (q, p) =

1

2d
Tr(ρXqZpPω

qp
2 ),

where the operators

4even
qp =

1

2d
XqZpPω

qp
2
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could be called the even dimensional Fano or phase point operators. Of course, these
operators do not satisfy all the criteria which the Fano operators (in the case of Cohendet
et al) or the phase point operators (in the case of Wootters) satisfy; they are not orthogonal,
for example. Moreover, they are not even linearly independent which can easily be inferred
since there are 4d2 of them and a set of linearly independent operators contains a maximum
of d2 operators.

Application: quantum computation

Leonhardt’s discrete Wigner function has been used to visualize and gain insights for
algorithms expected to be performed on a quantum computer [21, 156, 157]. For each step
in a quantum algorithm the state ρ(t) of the quantum computer is update via some unitary
transformation

ρ(t+ 1) = Uρ(t)U †.

This can be represented in the discrete phase space as

µρ(q, p; t) =
∑
q′p′

Z(p, q|p′, q′)µρ(q′, p′; t),

where Z can be easily obtained from U . This resembles the update map for the proba-
bilities of classical stochastic variables. However, the properties of Z imply that not all
admissible maps are classical; they do not connect single points in phase space and hence
are “nonlocal”. In reference [156] the authors identify a family of classical maps which can
be efficiently implemented on a quantum computer. The authors admit that the ultimate
usefulness of this approach is uncertain but speculate that the phase space representation
may inspire improvement and innovation in quantum algorithms. It certainly makes for
some inspiring pictures!

The Leonhardt phase space formalism has also been applied to study decoherence in
quantum walks [145]. For large system, numerics are often employed to study the main
features. The phase space method offers an intuitive and visual alternative. It allows one
to visually see the quantum interference and its disappearance under decoherence. Related
to these is a hybrid approach between the Wootters and Leonhardt discrete phase spaces
used to analyze various aspects of quantum teleportation [167].

B.2.5 Finite Fields Discrete Phase Space Representation

Recall that when dim(H) = d is prime, Wootters defines the discrete phase space as a
d× d lattice indexed by the group Zd. In reference [226], Wootters generalizes his original
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construction of a discrete phase space to allow the d × d lattice to be indexed by a finite
field Fd which exists when d = pn is an integer power of a prime number. This approach is
discussed at length in the paper [86] authored by Gibbons, Hoffman and Wootters (GHW).

Similar to his earlier approach, Wootters defines the phase space, Φd, as a d× d array
of points α = (q, p) ∈ Fd × Fd. A line, λ, is the set of d points satisfying the linear
equation aq + bp = c, where all arithmetic is done in Fd. Two lines are parallel if their
linear equations differ in the value of c.

The mathematical structure of Fd is appealing because lines defined as above have the
following useful properties: (i) given any two points, exactly one line contains both points,
(ii) given a point α and a line λ not containing α, there is exactly one line parallel to λ
that contains α, and (iii) two nonparallel lines intersect at exactly one point. Note that
these are usual properties of lines in Euclidean space. As before, the d2 points of the phase
space Φd can be partitioned into d + 1 sets of d parallel lines called striations. The line
containing the point (q, p) and the origin (0, 0) is called a ray and consists of the points
(sq, sp), where s is a parameter taking values in Fd. We choose each ray, specified by the
equation aq + bp = 0, to be the representative of the striation it belongs to.

A translation in phase space, Tα0 , adds a constant vector, α0 = (q0, p0), to every phase
space point: Tα0α = α+α0. Each line, λ, in a striation is invariant under a translation by
any point contained in its ray, parameterized by the points (sq, sp). That is,

τ(sq,sp)λ = λ. (B.30)

The discrete Wigner function is

µfield
ρ (q, p) =

1

d
Tr(ρA(q,p)),

where now the Hermitian phase point operators satisfy the following properties for a pro-
jector valued function Q, called a quantum net, to be defined later.

GHW(4) For each point α, A is Hermitian.

GHW(5) For any two points α and β, Tr(AαAβ) = dδαβ.

GHW(6) For any line λ,
∑
α∈λ

Aα = dQ(λ).

The projector valued function Q assigns quantum states to lines in phase space. This
mapping is required to satisfy the special property of translational covariance, which is
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defined after a short, but necessary, mathematical digression. Notice first that properties
GHW(4) and GHW(5) are identical to Woo(4) and Woo(5). Also note that if GHW(6) is
to be analogous to Woo(6), the property of translation covariance must be such that the
set {Q(λ)} when λ ranges over a striation forms a PVM.

The set of elements E = {e0, ..., en−1} ⊂ Fd is called a field basis for Fd if any element,
x, in Fd can be written

x =
n−1∑
i=0

xiei, (B.31)

where each xi is an element of the prime field Zp. The field trace8 of any field element is
given by

tr(x) =
n−1∑
i=0

xp
i

. (B.32)

There exists a unique field basis, Ẽ = {ẽ0, ...ẽn−1}, such that tr(ẽiej) = δij. We call Ẽ the
dual of E.

The construction presented in reference [86] is physically significant for a system of n
objects (called particles) having a p dimensional Hilbert space. A translation operator, Tα
associated with a point in phase space α = (q, p) must act independently on each particle
in order to preserve the tensor product structure of the composite system’s Hilbert space.
We expand each component of the point α into its field basis decomposition as in Equation
(B.31)

q =
n−1∑
i=0

qiei (B.33)

and

p =
n−1∑
i=0

pif ẽi, (B.34)

with f any element of Fd. Note that the basis we choose for p is a multiple of the dual of
that chosen for q. Now, the translation operator associated with the point (q, p) is

T(q,p) =
n−1⊗
i=0

XqiZpi , (B.35)

Since X and Z are unitary, Tα is unitary.

8Note that we will distinguish the field trace, tr(·), from the usual trace of a Hilbert space operator,
Tr(·), by the case of the first letter.
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We assign with each line in phase space a pure quantum state. The quantum net Q is
defined such that for each line, λ, Q(λ) is the operator which projects onto the pure state
associated with λ. As a consequence of the choice of basis for p in Equation (B.34), the
state assigned to the line ταλ is obtained through

Q(ταλ) = TαQ(λ)T †α. (B.36)

This is the condition of translational covariance and it implies that each striation is asso-
ciated with an orthonormal basis of the Hilbert space. To see this, recall the property in
Equation (B.30). From Equation (B.36), this implies that, for each s ∈ Fd, T(sq,sp) must
commute with Q(λ), where the line λ is any line in the striation defined by the ray consist-
ing of the points (sq, sp). That is, the states associated to the lines of the striation must
be common eigenstates of the unitary translation operator T(sq,sp), for each s ∈ Fd. Thus,
the states are orthogonal and form a basis for the Hilbert space. That is, their projectors
form a PVM which makes GHW(6) identical to Woo(6) when d is prime.

In reference [86], the author’s note that, although the association between states and
vertical and horizontal lines is fixed, the quantum net is not unique. In fact, there are
dd+1 quantum nets which satisfy Equation (B.30). When d is prime, one of these quantum
nets corresponds exactly to the original discrete Wigner function defined by Wootters in
Section B.2.2.

Application: quantum computation

As conjectured by Galvão [84], the authors of reference [55] have shown the only quantum
states having a non-negative discrete Wigner function 9 are convex combinations of sta-
bilizer states, which are simultaneous eigenstates of the generalized Pauli operators [92].
Working only with stabilizer states is “classical” in the sense that that one can represent
them with only a polynomial number of classical bits whereas an arbitrary quantum state
requires a exponential number of bits [163].

Strengthening the connection between negativity and non-classicality, it was also shown
that the unitary operators preserving the non-negativity of the discrete Wigner function
are a subset of the Clifford group, which are those unitaries which preserve Pauli operators
under a conjugate mapping. According to the Gottesman-Knill theorem, a quantum com-
putation using only operators from the Clifford group and stabilizer states can be efficiently
simulated on a classical computer [92]. Thus, as noted in reference [84] for a particular

9Note that it is assumed the discrete Wigner function is non-negative for all definitions - that is, for all
quantum nets.
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computational model, negativity of the Wigner function is necessary for quantum compu-
tational speedup.

This discrete Wigner function was also used to analyze quantum error correcting codes
in reference [169]. The aim was to gain insights and intuition for various quantum maps
by studying their pictorial representation in the discrete phase space.

B.2.6 Discrete Cahill-Glauber Formalism

In reference [182], Ruzzi et al have discretized the Cahill-Glauber phase-space formalism.
The set of operators {S(η, ξ)}, where η, ξ ∈ [−l, l] and l = d−1

2
(d odd), is called the

Schwinger basis and explicitly given by

S(η, ξ) =
1√
d
XηZξω

ηξ
2 .

These d2 operators form an orthonormal basis for the space of linear operators. In analogy
with the Cahill-Glauber formalism, the basis is generalized to

S(s)(η, ξ) = S(η, ξ)K(η, ξ)(−s),

where |s| ≤ 1 is any complex number and K(η, ξ) is a (relatively) complicated expression
of Jacobi ϑ-functions (see the Appendix of reference [182]). Next we take the Fourier
transform

T (s)(q, p) =
1√
d

l∑
η,ξ=−l

S(s)(η, ξ)ω−(ηq+ξp).

The set operators {T (s)(q, p)} is the discrete analog of the s-ordered mapping kernel of the
Cahill-Glauber formalism. Moreover, the authors of reference [182] have shown that the
continuous limit of this set is indeed the Cahill-Glauber mapping kernel.

Suppose s is real. Then , the operators {T (s)(q, p)} enjoy the following familiar prop-
erties:

T (s)(q, p)† = T (s)(q, p),

Tr(T (s)(q, p)T (−s)(q′, p′)) = dδqq′δpp′ .

Thus, similarly to the discrete kernel of Heiss and Weigert, {T (s)(q, p)} and {T (−s)(q, p)}
are dual bases for the space of Hermitian operators.
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In the now familiar way, we can define a quasi-probability function on the (q, p) phase
space as

µ(s)
ρ (q, p) = Tr(T (s)(q, p)ρ). (B.37)

Cahill and Glauber showed, for their s-ordered formalism, that s = 0 corresponds to the
Wigner function; s = 1 corresponds to the Husimi function; and s = −1 corresponds to the
Glauber-Sundarshan function. Using equation (B.37), we call, for example, the function
obtained when s = 0 the discrete Wigner function.

Application: quantum teleportation

Marchiolli et al have applied this formalism to quantum tomography and teleportation
[150]. The teleportation protocol was analyzed for arbitrary s but, for brevity, we will
consider the s = 0 case (which is now assumed so the superscript can be ignored). The
teleportation protocol utilizes entanglement to transfer a quantum state between two par-
ties through the exchange of only a small amount of classical information [163]. Consider
the tripartite system

ρ = ρ(1) ⊗ ρ(2,3),

where one party possess subsystem 1 and 2 and the other possess subsystem 3. The goal
is for ρ(1) to be transferred from subsystem 1 to subsystem 3 without simply swapping
them. It is essential that the shared state ρ(2,3) be entangled. In particular, assume it is
a maximally entangled pure Bell-state. We choose, following Wootters [225], to construct
the global phase space to be a Cartesian product of the phase spaces of the individual
subsystems. The discrete Wigner function of the whole system is then

µρ(q1, q2, q3; p1, p2, p3) = µρ(1)(q1, p1)µρ(2,3)(q2, q3; p2, p3).

A Bell-measurement is performed on the first two subsystems, which in phase space is inter-
preted as a measurement of the total momentum and relative coordinate of the subsystem
composed of subsystems 1 and 2. Marginalizing over subsystems 1 and 2 gives

µρ(3)(q3, p3) = µρ(1)(q3 − α, p3 + β),

where α and β parameterize the result of the Bell-measurement (note ρ(3) can be identified
as the reduced state of subsystem 3). Thus, the final state of the subsystem 3 is simply
a displacement in the phase space and communicating only the measurement result (α, β)
leads to recovery of the initial state.

The discrete Husimi function (s = 1) was used to define a discrete analog of squeezed
states [151] and to analyze spin tunneling effects in a particular toy model of interacting
fermions [152].
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B.2.7 Probability Tables

In 1986, before introducing the discrete Wigner function, Wootters represented the quan-
tum state as a “probability table” which was simply a list of outcome probabilities for a
complete set of measurements [227]. The complete set of interest was that of mutually
unbiased bases (MUBs). We call n bases {ψnk} mutually unbiased if they satisfy∣∣∣〈ψn′k′ , ψnk 〉∣∣∣2 = δkk′δnn′ +

1

d
(1− δnn′). (B.38)

Wootters noted for d prime, a set of n = d + 1 MUBs could be explicitly constructed via
a prescription in reference [120]. Wootters also posed many questions of MUBs, some of
which have now been answered. It is now known that for any dimension 3 ≤ n ≤ d + 1,
where the upper bound can be achieved, by construction, for any dimension which is a
power of a prime 10.

Here we will consider the case when d is prime and all probability tables for non prime
dimensions can be built up from those for their prime factors, in much the same was as
was done in section B.2.2 for the discrete phase spaces.

Consider the generalized Pauli operator Z and its eigenbasis {φk} and the projectors
onto these vectors Pk := φkφ

∗
k. Define the finite Fourier transform

F =
1√
d

d−1∑
k,k′=0

ωkk
′
φkφ

∗
k′ (B.39)

and the operator

V =
d−1∑
k=0

ω
k2

2 FPkF
†. (B.40)

Here, as before, division by two represents the multiplicative inverse of the element 2. For
Hilbert space dimension d = 2, this operator requires the special definition

V =
1

2

(
1 + i 1− i
1 + i 1− i

)
. (B.41)

Now we can construct d+ 1 MUBs via

ψ0
k = φk,

ψnk = V nφk, n = 1, . . . , d.

10For a recent review of the MUB problem see [54].
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We will denote the projectors onto these basis vectors P (n, k) := ψnkψ
n∗
k . Then the proba-

bility of obtaining the kth outcome when measuring in the nth basis is

µρ(n, k) = Tr(ρP (n, k)). (B.42)

This can be view as a matrix in which the columns index the measurements while the rows
index the outcomes. This can also be viewed as a mapping whose inverse is given by

ρ =
d∑

n=0

d−1∑
k=0

µρ(n, k)P (n, k)− 1. (B.43)

Application: quantum mechanics without amplitudes

The purpose of reference [227] was not to introduce a new representation of the quantum
state per se, but to show that the whole of operational formalism of quantum mechanics
can be done rather simply without complex numbers.

Wootters notes first:

It is obviously possible to devise a formulation of quantum mechanics without
probability amplitudes. One is never forced to use any quantities in one’s theory
other than the raw results of measurements. However, there is no reason to
expect such a formulation to be anything other than extremely ugly.

To our surprise, the rule for transitioning between the probability tables turn out to
be remarkably simple. In quantum mechanics, for the transition between states ρ to ρ′,
the probability of this transition is Pr(ρ→ ρ′) = Tr(ρρ′). If we work with the probability
tables and call the tables µ and µ′, we have

Pr(µ→ µ′) =
d∑

n=0

d−1∑
k=0

µ(n, k)µ′(n, k)− 1. (B.44)

Unfortunately, as Wootters notes, it is not easy to ignore the density matrix altogether.
We have yet to specify which probability tables are valid and which do not correspond to
quantum states. The simplest characterization of valid probability tables is to say those
for which equation (B.43) is a unit trace positive semi-definite matrix. This is unsatisfying
as we would like a characterization independent of the density matrix.
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B.2.8 Hardy’s Vector Representation

In reference [104] Hardy showed that five axioms are sufficient to imply a special vector
representation which is equivalent to an operational form of quantum theory. We first
describe the vector representation.

Consider a basis for a d dimensional Hilbert space {φk} (the eigenbasis of Z, say) and
the following set of d2 projectors:

Pkj :=


φkφ

∗
k if k = j

(φk + φj)(φk + φj)
∗ if k < j

(φk + iφj)(φk + iφj)
∗ if k > j

. (B.45)

These projectors span the space of linear operators on the Hilbert space spanned by {φk}.
Now we vectorize by choosing an arbitrary but fixed ordering convention. For definiteness,
we choose to stack the rows on top of one another. To this end, define α := dk + j and
P (α) := Pkj. Then, the vector representation of the state ρ is given by

µρ(α) = Tr(ρP (α)). (B.46)

Now the outcome of any quantum measurement can be assigned a positive operator E.
Call this “outcome E”. Define the vector ξE(α) implicitly through

E =
∑
α

ξE(α)P (α).

Then, the probability of “outcome E” is given by

Pr(“outcome E”) =
∑
α

ξE(α)µρ(α),

which, in vector notation, we can write as the dot product
−→
ξ · −→µ .

We define the sets M and Ξ as the set of vectors obtainable through the mappings ρ 7→ µ
and E 7→ ξ defined above. More precise statements, in the form of inequalities, which make
no recourse to the usual quantum mechanical objects, can be made to define these sets.
Assuming this has been done, we can rephrase the axioms of quantum mechanics, without
mention of Hermitian operators and the like, in this vector representation succinctly as
follows: states are represent by vectors −→µ ∈M ; measurement outcomes are represented by

vectors
−→
ξ ∈ Ξ; the probability of “outcome

−→
ξ ” in state −→µ is given by Pr(“outcome

−→
ξ ”) =−→

ξ · −→µ .
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Application: quantum axiomatics

As was the case in the previous section, this vector representation was not introduced as
such. In references [104, 105], Hardy has shown that five axioms are sufficient to imply the
real vector formalism of quantum mechanics. The frequency interpretation of probability
was given its own axiom. However, if we take our everyday intuitive notion of probability
[173], we no longer require this first axiom, which is independent of the rest [184].

We will make use of the following definitions:

• The number of degrees of freedom, K, is defined as the minimum number of yes-no
measurements whose outcome probabilities are needed to determine the state (of
belief in the mind of a reasonable agent), or, more roughly, as the number of real
parameters required to specify the state.

• The dimension, d, is defined as the maximum number of states that can be reliably
distinguished from one another in a single shot measurement.

Axiom 1 defines probability as limiting frequencies and is not required [184]. The
remainder of the axioms are as follows:

2 Simplicity. K is determined by a function of N (i.e. K = K(d)) where d = 1, 2, . . .
and where, for each given d, K takes the minimum value consistent with the axioms.

3 Subspaces. A system whose state is constrained to belong to an n dimensional sub-
space (i.e. have support on only n of a set of d possible distinguishable states) behaves
like a system of dimension n.

4 Composite systems. A composite system consisting of subsystems A and B satisfies
d = dAdB and K = KAKB.

5 Continuity. There exists a continuous reversible transformation on a system between
any two pure states of that system.

These four axioms are sufficient for a derivation of the vector representation of quantum
theory defined above. This axiomatization is also important for contrasting quantum
theory with classical probability theory. As Hardy has shown, discrete classical probability
theory (of dice, coins and so on) can be derived from only axioms 2, 3 and 4. That is,
the only difference between quantum and classical theory is the existence of a continuous
reversible transformation between pure states.
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B.2.9 The Real Density Matrix

In reference [107] Havel defined the “real density matrix” which, not surprisingly, is a
particular real-valued representation of the quantum state.

For d = 2, define the 2× 2 matrix of Pauli operators as

P =

(
1 X
Y Z

)
. (B.47)

For d = 2n, denote the bits in the binary expansion of k as

k =
n∑
a=1

ka × 2n−a,

and similarly for j. Then, the d× d matrix of Pauli operators is given by

Pkj = Pk1j1 ⊗ · · · ⊗ Pknjn . (B.48)

These d2 operators are orthogonal, and hence form a basis for the space of linear operators
on the d dimensional Hilbert space. Therefore, each density matrix can be expressed as

ρ =
1

d

d−1∑
k,j=0

σkjPkj,

where the coefficients σkj, explicitly given by

σkj = Tr(ρPkj), (B.49)

form the real density matrix.

Application: NMR pedagogy

Since the observables measured in NMR experiments are elements of the matrix of Pauli
operators (B.48), the elements of the real density matrix are the experimentally measurable
values. There is no need to reconstruct the density matrix. This is also a convenient fix to
the problem of reporting or visualizing a quantum state. Since the density matrix contains
d2 complex values, it is often graphically displayed as two d × d matrices of the real and
imaginary parts. Not only is this redundant, it is conceptually awkward. On the other
hand, the real density matrix can be displayed as a single d×d matrix of real values. Havel
offers the real density matrix as useful teaching device in such situations.
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B.2.10 Symmetric Representations

Consider the unitary group
U(p,q) = ω

pq
2 XpZq, (B.50)

where (p, q) ∈ Zd × Zd. In references [228, 178], the authors conjecture that the set
{U(p,q)φ} for some fiducial φ ∈ H forms a symmetric informationally complete positive
operator valued measure (SIC-POVM). The defining condition of a SIC-POVM is a set of
d2 vectors {φk} such that

|〈φk, φj〉|2 =
δkjd+ 1

d+ 1
. (B.51)

The set is called symmetric since the vectors have equal overlap. The POVM is formed
by taking the projectors onto the one-dimensional subspaces spanned by the vectors. It is
informationally complete since these d2 projectors span the space of linear operators acting
on H.

As of writing, it is an open question whether SIC-POVMs exist in every dimension.
Although numerical evidence suggests this to be the case [191].

For the remainder of this section we assume, for any dimension d, a SIC-POVM exists.
Define the operators Pk := 1

d
φkφ

∗
k. Then, define the symmetric-representation of a quantum

state ρ as
µρ(k) = Tr(ρPk). (B.52)

This is a probability distribution and in particular it is the probability distribution for the
POVM measurement formed by the effects {Pk}. As we have noted, this is an informa-
tionally complete measurement. Therefore, the density matrix can be reconstructed from
the probabilities via

ρ = d(d+ 1)
d2−1∑
k=0

µρ(k)Pk − 1. (B.53)

When viewed as a mapping, this representation is a bijection from the convex set of
density matrices to a convex subset of the d2-dimensional probability simplex.

Application: Quantum Bayesianism

Quantum Bayesianism [185, 40, 80, 82, 81] is an interpretation of quantum theory which
sheds new light on not only the tradition “foundational” problems (the “measurement
problem”, for example) but also many concepts in quantum theory, such as the “unknown
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quantum state”[41]. A key realization is the mathematical and conceptual sufficiency of
viewing quantum states as the probability distribution via the Born rule for a fixed POVM
{Ek}. The only remaining freedom is which one.

One ideal is to have the POVM elements orthogonal: Tr(PkPj) = δkj. The statement
that is not possible is equivalent to theorem 4.2.4. Next, then, we desire them to be as
close to orthogonal as possible. Formally, we want to minimize the quantity

F =
∑
kj

(Tr(PkPj)− δkj)2.

This expression is minimized if and only if the {Pk} form a SIC-POVM. Using the re-
construction formula in equation (B.53) it can be shown that, in terms of this SIC-
representation, the Born rule for a measurement {Ej} given state µ(k) is

Pr(outcome j) =
∑
k

(
µ(k)− 1

d

)
ξ(j|k), (B.54)

where ξ(j|k) = Tr(EjPk). In the same sense as the SIC-POVM being as close to orthogonal
as possible, equation (B.54) is as close as possible to the classical Law of Total Probability.
Effort is being made to use equation (B.54) as a starting point for a natural set of axioms
which would single out quantum theory.
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[32] T. Bröcker and R. F. Werner. Mixed states with positive Wigner functions. Journal
of Mathematical Physics, 36(1):62–75, 1995.

[33] S lawomir Bugajski. Classical frames for a quantum theory A bird’s-eye view. Inter-
national Journal of Theoretical Physics, 32(6):969–977, June 1993.

[34] Harry Buhrman, Richard Cleve, Monique Laurent, Noah Linden, Alexander Schri-
jver, and Falk Unger. New Limits on Fault-Tolerant Quantum Computation. pages
411–419, October 2006.

[35] P. Busch, K. E. Hellwig, and W. Stulpe. On classical representations of finite-
dimensional quantum mechanics. International Journal of Theoretical Physics,
32(3):399–405, March 1993.

137



[36] Adán Cabello. Kochen-Specker Theorem for a Single Qubit using Positive Operator-
Valued Measures. Physical Review Letters, 90(19):190401+, May 2003.

[37] K. E. Cahill and R. J. Glauber. Density Operators and Quasiprobability Distribu-
tions. Physical Review Online Archive (Prola), 177(5):1882–1902, January 1969.

[38] Earl T. Campbell and Dan E. Browne. On the Structure of Protocols for Magic State
Distillation Theory of Quantum Computation, Communication, and Cryptography.
volume 5906 of Lecture Notes in Computer Science, chapter 3, pages 20–32. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2009.

[39] Earl T. Campbell and Dan E. Browne. Bound States for Magic State Distillation
in Fault-Tolerant Quantum Computation. Physical Review Letters, 104:030503+,
January 2010.

[40] Carlton M. Caves, Christopher A. Fuchs, and Rüdiger Schack. Quantum probabilities
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[42] Carlton M. Caves and Krzysztof Wódkiewicz. Classical Phase-Space Descriptions
of Continuous-Variable Teleportation. Physical Review Letters, 93(4):040506+, July
2004.

[43] Jose L. Cereceda. Local hidden-variable models and negative-probability measures.
December 2000.

[44] S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, and R. Simon.
Wigner distributions for finite dimensional quantum systems: An algebraic approach.
Pramana, 65(6):981–993, December 2005.

[45] S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, and R. Simon.
Wigner&ndash;Weyl correspondence in quantum mechanics for continuous and dis-
crete systems&mdash;a Dirac-inspired view. Journal of Physics A: Mathematical and
General, 39(6):1405–1423, 2006.

[46] Andrew M. Childs, Isaac L. Chuang, and Debbie W. Leung. Realization of quantum
process tomography in NMR. Physical Review A, 64(1):012314+, June 2001.

138



[47] Andrew M. Childs, John Preskill, and Joseph Renes. Quantum information and
precision measurement. Journal of Modern Optics, 47(2):155–176, 2000.

[48] Ole Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston,
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[145] Cecilia C. López and Juan P. Paz. Phase-space approach to the study of decoherence
in quantum walks. Physical Review A, 68(5):052305+, November 2003.

[146] Thomas J. Loredo. Bayesian Adaptive Exploration. AIP Conference Proceedings,
707(1):330–346, 2004.

[147] A. Luis and J. Perina. Discrete Wigner function for finite-dimensional systems.
Journal of Physics A: Mathematical and General, 31(5):1423–1441, 1998.

[148] Mark W. Maciejewski, Harry Z. Qui, Iulian Rujan, Mehdi Mobli, and Jeffrey C.
Hoch. Nonuniform sampling and spectral aliasing. Journal of Magnetic Resonance,
199(1):88–93, July 2009.

146



[149] L. Mandel. Non-Classical States of the Electromagnetic Field. Physica Scripta,
1986(T12):34+, January 1986.

[150] Marcelo A. Marchiolli, Maurizio Ruzzi, and Diógenes Galetti. Extended Cahill-
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