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Abstract 

 The plant growth-promoting bacterium (PGPB) Pseudomonas putida UW4, previously 

isolated from the rhizosphere of common reeds growing on the campus of University of 

Waterloo, promotes plant growth in the presence of different environmental stresses, such as 

flooding, high concentration of salt, cold, heavy metals, drought and phytopathogens. The known 

mechanisms used by P. putida UW4 to promote plant growth include 1-aminocyclopropane-1-

carboxylate (ACC) deaminase, indole-3-acetic acid (IAA) synthesis and siderophore production. 

In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps 

between the contigs were closed by directed PCR. The P. putida UW4 genome contains a single 

circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome 

contains 5,431 predicted protein-coding sequences that occupy 87.4% of the genome. Nineteen 

genomic islands were predicted and thirty one complete putative insertion sequences were 

identified. Genome analyses were conducted in order to better characterize the general features of 

the UW4 genome. Genes potentially involved in plant growth promotion such as IAA 

biosynthesis, trehalose production, siderophore production, and acetoin synthesis were identified, 

which will facilitate a better understanding of the mechanisms of plant-microbe interactions. 

Moreover, genes that contribute to the environmental fitness of UW4 were also determined 

including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, 

molybdate, cobalt, arsenate, and chromate. Central metabolic pathways helped elucidate the 

physiological roles of diverse metabolites of UW4. Unexpectedly, whole-genome comparison 

with other completely sequenced Pseudomonas sp. revealed that UW4 is more similar to the 

fluorescens group rather than to the putida group. More surprisingly, a putative type III secretion 

system (T3SS) was found in the UW4 genome, and T3SS was thought to be essential for 
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bacterial pathogenesis. Although putative T3SS was observed in other non-pathogenic 

Pseudomonas spp. previously, this is the first report indicating that a T3SS in a Pseudomonas sp. 

is highly similar to the one from Salmonella spp.  
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1  INTRODUCTION 

The number of sequenced bacterial genomes has grown exponentially in the past decade 

mainly because of the new and improved Next Generation Sequencing (NGS) technologies. The 

underlying reasons for sequencing the genome of various bacteria are either because they are 

highly virulent to humans, animals or plants, or they can be applied to bioremediation or 

bioenergy production. In fact, as of May 2012, among the 2120 complete microbial genomes 

available in the National Center for Biotechnology Information (NCBI) genome database (May 

25th, 2012), the top 20 sequenced bacterial genomes are all pathogenic organisms (Table 1-1), 

whereas the proportion of plant growth-promoting bacteria (PGPB) genomes is very small. In this 

work, the genome of a very well studied PGPB, Pseudomonas putida UW4, was sequenced using 

one of the NGS sequencing techniques, 454 pyrosequencing and subsequently finished by 

directed PCR and primer walking. Then, the genome sequences were annotated and analyzed 

using various computational tools. Genomic analyses of P. putida UW4 provided valuable 

information towards a comprehensive understanding of the physiology of this microorganism, as 

well as insights into the molecular mechanisms used by this PGPB to promote plant growth. 

 

1.1 Plant Growth-Promoting Bacteria 

Plant-microbe interactions can occur at all parts of the plant including spermosphere, 

rhizosphere, phyllosphere, vascular tissue and endophytic regions (Beattie 2006). Because as 

much as 40% of plant photosynthates are exuded from plant roots, this makes the rhizosphere a 

most attractive place for microorganisms (Lynch and Whipps 1990). There are three groups of 

bacteria that associate with plants. First, most bacteria have no detectable effect on plant growth 

and development and they are mostly found on plant surfaces (Beattie 2006). Second,  
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Table 1-1. Top Twenty Sequenced Bacterial Genomes as of May 25th, 2012. 
Organisms Number 

Escherichia coli 60 
Chlamydia trachomatis 59 
Bacillus cereus 40 
Helicobacter pylori 39 
Staphylococcus aureus 33 
Salmonella enterica  31 
Streptococcus pneumoniae 24 
Mycobacterium tuberculosis 21 
Bacillus thuringiensis 19 
Clostridium difficile 18 
Listeria monocytogenes  16 
Neisseria meningitidis 16 
Streptococcus pyogenes  16 
Clostridium beijerinckii 15 
Buchnera aphidicola 14 
Corynebacterium pseudotuberculosis 14 
Rickettsia prowazekii  14 
Sulfolobus islandicus  14 
Acinetobacter baumannii 13 
Corynebacterium diphtheriae 13 
Streptococcus suis  13 
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phytopathogenic bacteria may induce diverse deleterious symptoms and can be found on any part 

of a plant. Third, mutualistic bacteria may enhance plant growth by providing nutrients and/or 

inhibiting proliferation of pathogenic bacteria. These beneficial bacteria are generally referred to 

plant growth-promoting bacteria (PGPB) (Bashan and Holguin 1998). Among the PGPB, bacteria 

that colonize plant roots are termed plant growth-promoting rhizobacteria (PGPR) (Kloepper and 

Schroth 1978); they are reputed to exert beneficial effects on plant growth.  

PGPB can promote plant growth and development directly and/or indirectly (Glick 1995; 

Glick et al. 1999). Direct mechanisms involve providing the plants with nutrients when they are 

insufficient, such as nitrogen, phosphate and iron. Indirect mechanisms include suppression of 

soil-borne diseases by synthesizing antibiotics and lytic enzymes, competing for nutrients and 

colonization sites, and inducing systemic resistance. Furthermore, some PGPB are capable of 

synthesizing phytohormones and/or 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 

which can modulate phytohorme levels within plants and stimulate plant growth directly or 

indirectly. Most PGPB are not limited to one mechanism to enhance plant growth, rather they 

employ multiple strategies to maximize the positive effects with their mutualistic partner.  

 

1.1.1 Phosphate Solubilization 

Phosphorous (P) is an essential macronutrient necessary for plant growth. In soil, P is 

present at ~ 400-1200 mgkg-1 (Rodríguez and Fraga 1999). However, soluble P that is available 

for plants under most soil conditions is only ~ 1 mgkg-1, therefore it is considered as a major 

constraint to plant growth (Goldstein 1994; Hinsinger 2001; Feng et al. 2004). Insoluble P 

present in soils is mainly in two groups: mineral and organic forms. Mineral forms are 

represented by apatite, hydroxyapatite, and oxyapatite, while organic forms consist of inositol 

phosphate (soil phytate), phosphomonoesters, phosphodiesters, and phosphotriesters (Rodríguez 
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and Fraga 1999; Khan et al. 2007). Because of limited bioavailability of P, large amount of 

expensive chemical P fertilizers are applied to the soil through high-energy-intensive processes 

every year (Goldstein et al. 1993).  However, at least 75% of the P fertilizers applied to soil are 

reimmobilized into insoluble forms by metal-cation complexes, thus excess application of P 

fertilizer is required (Goldstein 1986; Stevenson 1986; Omar 1998; Zaidi et al. 2009).  

Many bacteria are known to solubilize P through different mechanisms, thereby 

improving plant growth. Those genera include Bacillus (De Freitas et al. 1997; Toro et al. 1997; 

Rojas et al. 2001; Sahin et al. 2004), Burkholderia (Tao et al. 2008; Jiang et al. 2008; Park et al. 

2010), Enterobacter (Toro et al. 1997; Sharma et al. 2005), Erwinia (Liu et al. 1992), 

Methylobacterium (Jayashree et al. 2011), Pantoea (Castagno et al. 2011), Pseudomonas (Di 

Simine et al. 1998; Gulati et al. 2008; Park et al. 2009; Malboobi et al. 2009; Meyer et al. 2011), 

and Rhizobium (Halder et al. 1991; Abd-Alla 1994; Chabot et al. 1996). 

The main mechanism used by P solubilizing bacteria (PSB) to solubilize inorganic P is 

the production and excretion of low molecular weight organic acids, i.e. acetate, citrate, 

gluconate, ketogluconate, lactate, succinate, etc. (Goldstein 1995; Nahas 1996; Kim et al. 1998; 

Jones 1998).  These organic acids chelate the P-bound cations via hydroxyl and carboxyl groups, 

resulting in the release of plant-available P into the soil (Bnayahu 1991; Kpomblekou and 

Tabatabai 1994; Sagoe et al. 1998; Gyaneshwar et al. 2002; Vyas and Gulati 2009). The major 

organic acid used by PSB to solubilize inorganic P is gluconic acid, which is derived from 

oxidation of glucose. The reaction is catalyzed by glucose dehydrogenase (GDH) and its cofactor 

pyrroloquinoline quinone (PQQ) (Buurman et al. 1994; Buch et al. 2008). Several studies with 

Pseudomonas and Enterobacter spp. showed that bacterial mutants deficient in GDH activity 

and/or PQQ production failed in P solubilization processes (Gyaneshwar et al. 1999; Han et al. 

2008; De Werra et al. 2009).    
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Besides the organic acid theory of solubilization of mineral P, it has been proposed that 

other mechanisms may play important roles as well. Illmer and Schinner (1992) observed the lack 

of correlation between pH and the amount of solubilized P, and therefore suggested that H+ 

excreted from the cytoplasm to the outer surface may help solubilize P directly at the cell surface. 

In addition, Yi et al. (2008) found that exopolysaccharides (EPS) and organic acids act 

synergistically on the solubilization of tricalcium phosphate. However, the amount of solubilized 

P depends on the origin and concentration of EPS in the medium. Further studies are necessary to 

confirm the mechanism of EPS holding phosphorus.  

Organic P in soil comes from plant and animal remains. PSB can mineralize organic P 

through synthesis of phosphatases, which can hydrolyze phosphoric esters or phosphoanhydride 

bonds (Rodríguez and Fraga 1999). Phosphatases can be grouped into acid or alkaline, specific or 

nonspecific (Rossolini et al. 1998; Rodríguez and Fraga 1999). One of the specific phosphatases 

is phytase, which can sequentially remove P from phytate (myo-inositol hexakisphosphate), the 

most abundant (up to 80%) organic P in soil (Turner et al. 2002). It has been reported that a 

phytase-negative mutant of PSB did not promote plant growth when its phytase synthesis gene 

phyA  was disrupted (Idriss et al. 2002). Furthermore, a phytase gene (phyC) from Bacillus 

amyloliquefaciens FZB45 is controlled by the phosphate starvation-induced PhoPR two-

component system. Makarewicz et al. (2006) proposed a model to explain how PhoP~P and RNA 

polymerase (RNAP) activate the transcription of phyC during phosphate limitation. The promoter 

of the phyC gene in B. amyloliquefaciens FZB45 is EσA dependent, which usually has an optimal 

spacing of 17 to 19 bp between the -35 and 10 regions. However, in the case of FZB45, a 21 bp 

window was observed between the -35 and -10 regions of the phyC promoter, indicating 

improper spacing. When the phosphate concentration is high, unphosphorylated PhoP is not able 
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to bind to the two PhoP boxes around the -35 region. Therefore, EσA RNAP will only bind to 

either the -35 or -10 region because of the improper spacing, leading to a silent phyC. Under 

phosphate starvation, dimeric PhoP~P bind to the two PhoP boxes at -32 and -49, resulting in 

binding of EσA RNAP at the -10 region due to the formation of a PhoP~P-RNAP protein 

complex, causing subsequent transcription activation of phyC (Makarewicz et al. 2006). More 

recently, Makarewicz et al. (2008) demonstrated that the expression of phyC in FZB45 has a 

second level of control by AbrB, which is a transition state regulator. The transcription of phyC is 

directly repressed by AbrB during exponential growth, due to the binding of this protein to the 

two binding sites within the phyC promoter region. During the transition from the exponential to 

the stationary phase, phosphorylated Spo0A, the regulator responsible for the initiation of 

sporulation, binds to the P2 promoter of abrB and lowers its transcription, thus relieving the 

repression of phyC transcription (Makarewicz et al. 2008).  

 The efficiency of PSB depends on many factors, such as carbon and nitrogen sources, 

specificity for the host plant, soil pH and type (Kim et al. 1998; Rodríguez and Fraga 1999; 

Gyaneshwar et al. 2002; Gamalero and Glick 2011). In addition, higher efficiency in stimulating 

plant growth was observed when PSB were co-inoculated with PGPR having other physiological 

capabilities (Ray et al. 1981; Azcón-Aguilar et al. 1986; Toro et al. 1997; Rojas et al. 2001; 

Babana and Antoun 2006; Valverde et al. 2006a; Matias et al. 2009; Bianco and Defez, 2010; 

Leaungvutiviroj et al. 2010; Castagno et al. 2011).  

 

1.1.2 Nitrogen Fixation 

Nitrogen is an essential element in living cells because it is a primary component of all 

amino acids and nucleic acids. Although 78% of the earth’s atmosphere is composed of nitrogen, 
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it cannot be used directly in plant growth because it exists as dinitrogen (N2). Plants become 

stunted and chlorotic when the N source is insufficient. As a result, chemical fertilizers are 

widely used in agriculture at the cost of the environment and, likely, human health (Peplow 2005; 

Townsend and Howarth 2010). In addition, large amount of natural gas, high pressure and high 

temperature are required to produce ammonia (Vance 2001). However, at least half of the 

fertilizer applied in the field is lost due to leaching, run-off into streams, or metabolism by soil 

microorganisms (Bhattacharjee et al. 2008).  

Certain eubacteria (Fischer 1994), cyanobacteria (Sohm et al. 2011) and actinomycetes 

(Benson, 1988) are able to convert N2 to ammonia or nitrate, a process called biological nitrogen 

fixation. Those prokaryotic organisms are defined as diazotrophs, which can be classified into 

three subgroups including symbiotic, such as Rhizobium, Bradyrhizobium, Mesorhizobium, 

Sinorhizobium (Masson-Boivin et al. 2009); free-living, such as Klebsiella, Azotobacter, 

Clostridium, Rhodospirillum, Azospirillum, Acetobacter, Herbaspirillum, Azoarcus (Klipp et al. 

2004); and endophytic, such as Gluconoacetobacter, Azospirillum, Burkholderia, Herbaspirillum, 

Pantoea, Pseudomonas, Rhanella, Klebsiella, Enterobacter (Hill et al. 1983; Paula et al. 1991; 

Sevilla et al. 2001; Oliveira et al. 2002; 2009; Caballero-Mellado et al. 2004; Iniguez et al. 2004; 

Reis et al. 2004; Govindarajan et al. 2006; 2008; Montanez et al. 2009; Peng et al. 2009). 

The most studied nitrogen fixation system is the symbiosis between rhizobia and their 

leguminous host plants. The whole nodulation process is highly regulated by complex 

communications between the plant and the bacteria (Göttfert 1993). Briefly, the plant signals, 

flavonoids secreted by the roots, bind to the nodD gene product from rhizobia, activate the 

expression of nodulation genes by binding to their promoter regions called a nod box, and 

produce lipochitooligosaccharide signals called Nod factors (Perret et al. 2000). These molecules 

stimulate the legume root hairs to curl due to the expression of nodABC genes. Next, rhizobia 
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invade the root through the root hair tip where they induce the formation of an infection thread, 

which is a tube-like structure growing from the root hair tip toward the root cell body, through 

which the rhizobia enter, travel, and are released into the dividing cortical cells of legume roots, 

leading to the formation of root nodules. Rhizobial cells released in the plant cells differentiate 

into their symbiotic form, nitrogen fixing bacteroids.  

Inside the root nodule, the nitrogen fixation reaction is catalyzed by the nitrogenase 

enzyme, which requires high energy (Seefeldt et al. 2009).  

N2 + 8e- + 8H+ + 16MgATP  2NH3 + H2 + 16MgADP + 16 Pi 

The structure of nitrogenase is complex. It has two components and both are oxygen 

sensitive (Rubio and Ludden 2008; Glick et al. 2010). Component I catalyzes the reduction of N2. 

It has two identical α-protein subunits, two identical β-protein subunits, 24 molecules of iron, 2 

molecules of molybdenum and an iron molybdenum cofactor (FeMoCo). Component II acts as an 

electron donor to component I. It consists of two α-protein subunits, which are different from the 

ones in component I, and a number of iron molecules. Besides the two components, about 20 

additional proteins are required to make nitrogenase fully functional.  

The identification of nitrogen fixation (nif) genes was through genetic complementation, 

which was achieved by screening a wild-type library that can restore nitrogen fixation to various 

mutants of the original strain (Fischer 1994). In the 1970’s, the nif gene cluster was first isolated 

and characterized from the free-living diazotroph, Klebsiella pneumonia M5a1, which became 

the model organism for the genetic study of nitrogen fixation (Dixon 2004). The gene cluster 

contains 20 proteins and they are nifA , nifL, nifD, nifK, nifH, nifF, nifJ, nifQ, nifB, nifN, nifE, 

nifV , nifM, nifS, nifW, nifZ, nifT, nifY , nifU, and nifX . NifA is a positive regulatory protein, 

which turns on the transcription of all of the nif operons except its own. NifL is a negative 



  9 

regulatory protein, which acts as antagonist of the NifA protein in the presence of either oxygen 

or high levels of fixed nitrogen, therefore it turns off the transcription of all other nif genes 

(Dixon 2004). Rhizobia have a different number of nif genes compared to those in K. pneumonia 

M5a1. For example, Bradyrhizobium has 15 nif genes, S. meliloti has 9, and Rhizobium 

leguminosarum bv. viciae has 8. The core nif genes shared by rhizobia are nifH encoding 

dinitrogenase reductase, nifDK encoding the α and β subunits of dinitrogenase, nifEN serving as 

the molecular scaffold for assembly of the Fe-Mo cofactor, nifB involved in FeMoCo synthesis, 

and nifA . It is possible that different organisms have different nitrogenase assembly machinery, 

on the other hand the missing nif products are likely replaced by novel proteins or proteins with 

novel functions (Masson-Boivin et al. 2009). 

The concentration of oxygen is critical in the nitrogen fixation process. It inhibits 

nitrogenase activity but is required for bacteroid respiration. To solve this problem, Rhizobium 

can be engineered to produce leghemoglobin, which can bind free oxygen tightly. It has been 

demonstrated that R. etli that is transformed with a hemoglobin gene from Vitreoscilla sp. has a 

much higher respiratory rate as well as nitrogenase activity than the wild-type strain (Ramírez et 

al. 1999; Glick et al. 2010). To further improve the efficiency of nitrogen fixation, it will be 

preferable to save the energy from producing H2. This can be achieved by introducing 

hydrogenase gene to a diazotroph. Hydrogenase can take up H2 from the atmosphere and convert 

it into H+. Meanwhile, more ATP will be generated and enter into nitrogen fixation (Báscones et 

al. 2000). 

Nitrogen fixation in free-living bacteria has been demonstrated in Azotobacter vinelandii, 

which has three systems designated as Nif, Vnf and Anf based on three types of nitrogenases. 

The three nitrogenases are different because of their metal content. For example, the Nif system 
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needs molybdenum for nitrogenase activity; Vnf system requires vanadium; while the Anf system 

requires neither (Joerger and Bishop 1988; Joerger et al. 1989 and 1990; Dos Santos and Dean 

2011). A total of 82 genes were found in its genome that are known or might be involved in 

nitrogen fixation and they are organized into at least 16 operons (Setubal et al. 2009). The 

localization of the nitrogen fixation gene clusters is close to the origin of replication, which 

implies their high level of expression during active growth (Setubal et al. 2009). Furthermore, 

expression of specific nif genes, such as nifU, nifS, nifV  and nifB is required for all three systems 

(Joerger et al. 1986; Kennedy and Dean 1992; Drummond et al. 1996). Recently, it has been 

observed that ClpX2, a component of an ATP-dependent protease system, regulates protein levels 

of NifB and NifEN in A. vinlendii. A. vinlendii carries two copies of clpX  genes in its genome 

and clpX2 is located between the nifM and nifF genes in the major nif cluster. Although it is not 

essential for the nitrogen fixation process (Jacobson et al. 1989), it was suggested that ClpX2, 

together with housekeeping protein ClpP, could degrade NifB and NifEM to maintain Fe 

homeostasis in nitrogen fixing cells (Martínez-Noël et al. 2011).  

Compared to free-living diazotrophs, nitrogen-fixing endophytes have the advantage of 

living inside plants, which facilitates nutrient exchange more readily. After moving from soil to 

the root area in response to plant signals, endophytes enter at lateral root junctions or at wound 

sites. They colonize the plant vascular tissues or intercellular spaces and are able to move up to 

stems and leaves (Doty 2011). Pseudomonas stutzeri A1501 is a nitrogen-fixing endophyte 

isolated from paddy rice and its genome sequence was published in 2008 (Yan et al. 2008). It has 

a nitrogen fixation island that is 49 Kb in size and consists of 59 genes. This region was probably 

acquired by horizontal gene transfer because its GC content is higher than the average of the 

entire genome and the island isn’t found in most other Pseudomonas species. The organization of 

nif genes in A1501 shares a high degree of similarity with that of A. vinelandii (Yan et al. 2008). 
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Global transcriptional profiling analysis of nitrogen fixation and ammonium repression in A1501 

showed that 166 genes were upregulated under nitrogen fixation conditions but downregulated 10 

minutes after ammonium shock. Furthermore, a new gene pnfA , which was annotated as a 

hypothetical protein in other diazotrophic microorganisms, was found to have influence on 

nitrogenase activity (Yan et al. 2010).  

Due to the complexity of the nitrogen fixation process, a nondiazotrophic strain is 

unlikely to fix nitrogen by simply introducing nif genes from diazotrophs. However, complete 

genome sequences of diazotrophs and their whole genome transcriptome analysis will allow us to 

better understand the gene regulatory network controlling nitrogen fixation, providing a 

foundation for further improving the efficiency of nitrogen-fixing bacteria.  

 

1.1.3 Siderophore Production 

Iron is essential for nearly all living organisms. It is required in many important biological 

processes such as electron transport, respiration, photosynthesis, DNA biosynthesis, and nitrogen 

fixation. Although it is the fourth most abundant element in the earth’s crust, it is hardly available 

because the prevalent form in nature is ferric iron, which has very low solubility (Ksp of 

Fe(OH)3=10-39) in aerobic environments (Sandy and Butler 2009). The concentration of soluble 

iron in soil is around 10-18 M at pH 7.4, whereas iron requirements for bacterial growth are in 

micromolar levels (Sandy and Butler 2009; Glick et al. 2010). Plants are usually not harmed by 

iron deficiency because they need much lower iron concentration. However, it becomes a 

problem in calcareous soil, which accounts for 30% of the world’s farmland (Hider and Kong 

2010). To acquire enough iron for growth, plants and microorganisms have evolved multiple 

approaches to extract iron from the environments. One of the most common strategies that 

bacteria and plants use to solubilize and transport iron to the cell is siderophore production.  
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Siderophores are low molecular weight compounds (~400- to 1,000-dalton) that can 

chelate and bind Fe3+ with very high affinity (Kd = 10-20 to 10-50 M) (Drechsel and Jung 1998; 

Glick et al. 2010). Once it binds with Fe3+, the complex can be recognized by outer membrane 

receptor proteins and then transported across cell membranes through periplasmic binding and 

inner membrane transport proteins, or ABC-type transport proteins (Templeton 2002; Crosa et al. 

2004; Brown and Holden 2002). The reduction of Fe3+ to Fe2+ can occur either outside the cell by 

extracellular or membrane bound ferric-chelate reductases, or in the cytoplasm by intracellular 

ferric-siderophore reductases or hydrolases (Miethke and Marahiel 2007).  

Bacterial siderophores are structurally diverse molecules, which can be categorized into 

three types: catecholates (enterobactin, vibriobactin, yersiniabactin and pyochelin), hydroxamates 

(alcaligin and desferrioxamine B) and carboxylates (staphyloferrin A and achromobactin). One 

strain can synthesize more than one type or even mixed-type siderophores (heterobactin B, 

mycobactin T, petrobactin and aerobactin) (Miethke and Marahiel 2007).  

Siderophore biosynthesis and transport have been extensively studied in fluorescent 

pseudomonads. Under iron-limited conditions, fluorescent pseudomonads can produce green-

yellow fluorescent pigments, pyoverdines, which are mixed catecholate-hydroxamate 

siderophores. Pyoverdines have three components including a fluorescent dihydroxyquinoline 

chromophore, an acyl side chain bound to the amino group of the chromophore, and a strain-

specific peptide chain linked by an amide group bound to the C1 or C3 carboxyl group of the 

chromophore (Visca et al. 2007a). Most studies on pyoverdines have been carried out with 

Pseudomonas aeruginosa PAO1 and this strain has served as a model organism for understanding 

pyoverdine synthesis and regulation.  

Based on mutations and bioinformatics analyses, most of the pyoverdine synthesis genes 

(pvd genes) in PAO1 are clustered at a single locus on the chromosome, with a few genes located 
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on a second minor region (Ankenbauer et al. 1986; Hohnadel et al. 1986; Visca et al. 1992). A 

total number of 32 genes that span about 90 Kb on the chromosome were identified to be 

associated with the process (Tsuda et al. 1995; Visca et al. 2007b). The pyoverdine biosynthetic 

enzymes consist of four non-ribosomal peptide synthetases (NRPS) encoded by pvdD, pvdI, pvdJ 

and pvdL (Merriman et al. 1995; Lehoux et al. 2000; Mossialos et al. 2002). NRPS is a large 

enzyme family that catalyzes the formation of peptide bonds between amino acids that cannot be 

joined ribosomally (Finking and Marahiel 2004). PvdA is an L-ornithine-N5-oxygenase that is 

responsible for converting L-ornithine to L-N5-hydroxyornithine (Ge and Seah 2006), which can 

be subsequently converted to L-N5-formyl-N5-hydroxyornithine by the product of pvdF 

(McMorran et al. 2001). Then PvdI and PvdJ can incorporate the substrate L-N5-formyl-N5-

hydroxyornithine into pyoverdine. PvdH is an aminotransferase that catalyzes the formation of L-

Dab, which is a substrate of pyoverdine being incorporated by PvdL (Vandenende et al. 2004). 

The roles of other pvd genes are not clear since biochemical studies have not been carried out on 

them. However, their functions can be predicted based on a bioinformatic analysis. For example, 

PvdE could be an ATP-binding-cassette (ABC) membrane transporter protein, based on sequence 

similarity, and PvdG is predicted to be a thioesterase (Visca et al. 2007b).  

The major iron responsive regulator in bacteria is the ferric uptake regulator (Fur), which 

is a repressor protein maintaining homeostasis in cells. Fur is a 17 kDa metalloprotein 

functioning as a dimer. The N-terminal domain is responsible for DNA binding, while the C-

terminal domain helps in dimerisation. When the iron concentration is sufficient, Fur protein 

bound with Fe2+ will recognize specific DNA sequences, Fur boxes, of relevant genes, repressing 

the transcription of those genes, thereby preventing iron uptake (Hantke K, 1981; Andrews et al. 

2003). In addition, two small RNAs, PrrF1 (116 nt) and PrrF2 (114 nt), are involved in positive 

iron regulation of gene expression in P. aeruginosa PAO1 (Wilderman et al. 2004). They are 
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tandemly arranged on the chromosome and are only transcribed under iron-limited conditions 

because their transcription is repressed by Fur-Fe2+ when iron is sufficient. PrrF RNAs can base 

pair at the 5’ end of the transcripts and function at the post-transcriptional level by increasing the 

rate of decay of mRNA of target genes (Wilderman et al. 2004). More recently, it was observed 

that the two PrrF RNAs could be transcribed as a single transcript, defined as PrrH (325 nt) 

(Oglesby-Sherrouse and Vasil 2010). PrrH covers the unique intergenic region (95 nt) of PrrF1 

and PrrF2, indicating PrrH has more potential mRNA targets (Oglesby-Sherrouse and Vasil 

2010).  

Although Fur is a key player for iron responsive in the cell, the regulation of pyoverdine 

biosynthesis and uptake directly related to PvdS, an extracytoplasmic function (ECF) family 

sigma factor (Cunliffe et al. 1995; Leoni et al. 2000). All pyoverdine biosynthesis and uptake 

genes have an iron starvation box in their promoter region, which is recognized by PvdS (Rombel 

et al. 1995; Wilson and Lamont 2000). However, the pvdS gene itself is under the control of Fur 

and it is expressed only in iron-starved bacteria (Ochsner et al. 1995). This regulatory cascade 

ensures the tight iron-regulated expression of pyoverdine genes.   

A number of pieces of evidence have shown that siderophore-producing bacteria may 

enhance plant iron nutrition. Mutants of siderophore-producing strains lost their ability to 

promote plant growth and restored the activity by complementation experiments (Kloepper et al. 

1991; Sharma et al. 2003; Katiyar and Goel 2004; Vansuyt et al. 2007). Furthermore, PGPR with 

high siderophore activity have the advantage of suppressing fungal pathogens by competing for 

the iron source with them, preventing the proliferation of those disease-causing organisms (Gupta 

et al. 2002; Chaiharn et al. 2009).  

 

1.1.4 Biocontrol of Phytopathogens 
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Some PGPB have biocontrol power against pathogens and the mechanisms include 

antibiosis, competition for niches and nutrients, production of hydrolytic enzymes, degradation of 

virulence factors, and induced systemic resistance.  

Common antibiotics produced by Pseudomonas sp. are cyclic lipopeptides, hydrogen 

cyanide (HCN), phenazines, pyrrolnitrin, pyoluteorin, and 2,4-diacetyl phloroglucinol. The 

modes of action of these antibiotics include insertion into cell membranes, inhibition of 

metalloenzymes especially cytochrome oxidase, inhibition of electron transport, suppression of 

fungal respiratory chains (Chin-A-Woeng et al. 1998; 2003; Kirner et al. 1998; Nowak-

Thompson et al. 1999; Haas and Keel 2003; Haas and Défago 2005; Mavrodi et al. 2006). 

Bacilllus cereus is able to produce zwittermycin A and kanosamine (Silo-Suh et al. 1994; Milner 

et al. 1996). Zwittermicin A has a broad-spectrum activity against Gram-positive, Gram-negative, 

and eukaryotic microorganisms (Silo-Suh et al. 1998) and the biosynthetic genes as well as the 

potential regulatory gene were identified by mutation analysis (Emmert et al. 2004). Kanosamine 

was shown to have very high inhibitory effect on the growth of pathogenic oomycetes. Its 

production was regulated by plant factors. For example, kanosamine accumulation was greatly 

enhanced by adding alfalfa seedling exudate to minimal medium (Milner et al. 1996).  

Although it is relatively easy to isolate antibiotic-producing PGPB, their antagonist 

effects on phytopathogens are not persistent all the time. The production of phenazines is 

strongly influenced by temperature, salinity, and the levels of ferric, phosphate, sulfate and 

ammonia ions (Van Rij et al. 2004). In addition, antibiotics can be degraded under certain 

conditions, resulting in less active derivatives that are not as efficient as the original compound 

(Bottiglieri and Keel 2006).  

The plant rhizosphere is a significant carbon sink. One strategy used by PGPB to 

outcompete phytopathogens is through competition for the niches and nutrients surrounding plant 
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roots (Compant et al. 2005). Bacteria reach root surfaces by flagella and are guided by chemical 

attractants to root exudates such as organic acids, amino acids, and sugars (De Weger et al. 1987; 

Steenhoudt and Vanderleyden 2000; Turnbull et al. 2001a and 2001b; De Weert et al. 2002; 

Nelson 2004; Welbaum et al. 2004). Some exudates can also be antimicrobial agents. Therefore, 

if PGPB can produce enzymes to detoxify them, it gives advantage to those PGPB to survive 

(Bais et al. 2004). Bacterial lipopolysaccharides (LPS) can also contribute to root colonization, 

although it might be strain dependent (De Weger et al. 1989; Duijff et al. 1997; Dekkers et al. 

1998). In addition, several reports have indicated that high bacterial growth rate, vitamin B1, 

NADH dehydrogenases, and type IV pili are all important to colonization by bacteria (Strom and 

Lory 1993; Simons et al. 1996; Hahn 1997; Dörr et al. 1998; Dekkers et al. 1998; Steenhoudt and 

Vanderleyden 2000). In some PGPB, efficient root colonization is attributed to their capability to 

produce a site-specific recombinase sss, which confers the ability of bacteria to adapt to new 

environments, subsequently resulting in successful plant-microbe interactions (Dekkers et al. 

1998 and 2000; Mavrodi et al. 2006).  

Some PGPB produce hydrolytic enzymes such as chitinases (E.C. 3.2.1.14) and 

glucanases (E.C. 3.2.1.39). Chitin is a homopolymer of β-1,4 linked N-acetyl-D-glucosamine and 

is a major structural component of fungal cell walls. Chitinases can hydrolyze chitin, thereby 

disrupting fungal cell walls directly, meanwhile releasing oligo-N-acetyl glucosamines that can 

activate plant defense response (Ren and West 1992; Podile and Prakash 1996; Gohel et al. 2006; 

Neeraja et al. 2010). Glucanase is an enzyme that targets β-1,3-glucans in fungal cell walls. 

Palumbo et al. (2005) reported that Lysobacter enzymogenes strain C3 synthesized three 

extracellular glucanases that together accounted for the total enzyme activity that was detected. 

Mutations in all three glucanase genes (gluA, gluB, gluC) resulted in reduced biocontrol activity 

of the strain (Palumbo et al. 2005). Although the two groups of hydrolytic enzymes showed 
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promise against phytopathogens, it was observed that the synergistic action of chitinases and 

glucanases was more effective in inhibition of fungal pathogens than either enzyme alone (Sela-

Buurlage et al. 1993; Jongedijk et al. 1995; Lawrence et al. 1996; Anfoka and Buchenaue 1997; 

Vogeli et al. 1988). 

Degradation of virulence factors is another mechanism used by PGPB for controlling 

disease-causing organisms. Fungal pathogens secrete extracellular hydrolytic enzymes such as 

pectolytic enzymes, cellulases and cutinase, which facilitate the fungal penetration by disrupting 

plant cell walls (Kishore et al. 2006). Bacillus megaterium B 153-2-2 can produce a calcium-

dependent extracellular endoproteinase to suppress the activities of the enzymes produced by the 

pathogen Rhizoctonia solani (Bertagnolli et al. 1996).  Another biocontrol agent, P. aeruginosa 

GSE 18, was able to reduce rotting and wilting of groundnut by >60% in an Aspergillus niger-

infested potting mixture via activating host defence responses and inhibiting fungal cell wall-

degrading enzymes (Kishore et al. 2006).  

In addition, many bacteria express virulence factors only at a high cell density, when the 

quorum sensing signal molecules reach a certain level. Quorum sensing (QS) is a phenomenon in 

which bacteria use small signal molecules, called autoinducers (AIs), to monitor their population 

density and coordinate their gene regulation (Miller and Bassler 2001). The most common AIs in 

Gram-negative bacteria are acyl homoserine lactones (AHLs). When bacterial cell densities are 

low, an AI synthase gene synthesizes only a small amount of signal molecules, which diffuse out 

of the cells and are then diluted in the surrounding area. As the bacterial population increases, the 

concentration of AIs accumulates. Then they can bind specifically to a transcriptional regulator 

protein and the activated regulators interact with target DNA sequences so as to enhance or block 

the transcription of QS controlled genes, including pathogenicity factors (Lazdunski et al. 2004). 

It has been observed that QS is involved in the synthesis of cell wall degrading enzymes of the 
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pathogen Erwinia carotovora (Andersson et al. 2000). Also, the pathogenicity of P. aeruginosa is 

dependent on its ability to secrete several virulent compounds and degradative enzymes including 

toxins, proteases and hemolysin, all of which are not expressed until late logarithmic phase of 

growth when the cell density is high. Studies have shown that QS is essential for the expression 

of P. aeruginosa virulence factors and biofilm formation (Passador et al. 1993; Latifi et al. 1995). 

Because of the importance of QS in regulating virulence factors in many pathogens, it is desirable 

for a biocontrol strain to produce QS inhibitors, such as AHL lactonases and acylases, both of 

which are able to degrade AHL signal molecules (Uroz et al. 2009). In fact, two Microbacterium 

testaceum strains isolated from the leaf surface of Solanum tuberosum (potato) plants produced 

AHL-lactonase which interrupted infection caused by the plant pathogen Pectobacterium 

carotovorum subsp. carotovorum (Morohoshi et al. 2009). Moreover, when a lactonase-encoding 

gene (aiiA ) from Bacillus sp. A24 was introduced into Pseudomonas fluorescens P3, which is not 

an effective biocontrol agent, the transformant significantly reduced symptoms of plant disease 

caused by E. carotovora and Agrobacterium tumefacines (Molina et al. 2003). 

In 1991, two research groups independently discovered that induced systemic resistance 

(ISR) is a mechanism used by PGPB to suppress plant disease (Van Peer et al. 1991; Wei et al. 

1991). ISR is a “state of enhanced defensive capacity developed by a plant reacting to specific 

biotic or chemical stimuli” (Bakker et al. 2007). It can work effectively against different types of 

pathogens. For example, P. fluorescens WCS374r triggered ISR and protected radish from 

Fusarium wilt, resulting in a 40% increases in yield (Leeman et al. 1995). ISR is phenotypically 

similar to systemic acquired resistance (SAR), which develops when plants successfully activate 

their defense mechanism in response to primary infection by necrotizing pathogen (Sticher et al. 

1997). Usually SAR requires endogenous or exogenous salicylic acid (SA) as a stimulation 

signal, whereas ISR needs ethylene or jasmonic acid (JA) to trigger the pathway (Gaffney et al. 
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1993; Sticher et al. 1997; Pieterse et al. 1998). Bacterial traits that can trigger ISR have been 

extensively studied in Pseudomonas sp. Several determinants include flagella (Meziane et al. 

2005), lipopolysaccharides (Van Peer and Schippers 1992; Leeman et al. 1995; Van Wees et al. 

1997; Meziane et al. 2005), siderophores (Maurhofer et al. 1994; Leeman et al. 1996; Audenaert 

et al. 2002; Meziane et al. 2005; Ran et al. 2005) and 2,4-diacetylphloroglucinol (Iavicoli et al. 

2003; Siddiqui and Shoukat 2003). Some PGPB can have several determinants to activate ISR, 

making it harder to identify the bacterial metabolites using a mutational approach. However, this 

redundancy ensures that ISR occurs even if one determinant fails to elicit ISR. Furthermore, if 

the different traits were differentially regulated, it would make a particular PGPB a better 

biocontrol agent when it is applied in the field (Bakker et al. 2007).  

 

1.1.5 IAA Production 

Auxins were the first growth hormone discovered in plants and they play vital roles in cell 

elongation, plant tropisms, vascular differentiation, floral and fruit development, lateral root 

formation, and determination of root and shoot architecture (Teale et al. 2006; Taiz and Zeiger 

2010; Pliego et al. 2011). Examples of naturally occurring auxins in plants are indole-3-acetic 

acid (IAA), 4-chloroindole-3-acetic acid (4-Cl-IAA), and indole-3-butyric acid (IBA). Because 

IAA has been found in all plants, it is considered the most abundant and physiologically 

important auxin.  

Many bacteria can synthesize IAA and it was estimated that 80% of rhizosphere bacteria 

are capable of producing this hormone (Patten and Glick 1996). Those microorganisms include 

pathogens such as A. tumefaciens (Liu et al. 1982), Agrobacterium rhizogenes (Costacura and 

Vanderleyden 1995), Erwinia herbicola (Manulis et al. 1991), and Pseudomonas syringae 

(Mazzola and White 1994), as well as PGPB such as Azospirillum brasilense (Barbieri et al. 
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1986), P. putida (Patten and Glick 2002), Rhizobium (Badenochjones et al. 1983), Enterobacter 

cloacae (Saleh and Glick 2001), Acetobacter diazotrophicus (Fuentes-Ramirez et al. 1993), and 

Bradyrhizobium japonicum (Sekine et al. 1988). IAA secreted by microorganisms can contribute 

to a plant’s endogenous auxin pool, thereby altering the plant growth and development processes 

related to auxin signaling. 

Biosynthesis of IAA has been extensively studied in bacteria and five tryptophan 

dependent pathways were identified. They are the indole-3-acetamide (IAM) pathway, the indole-

3-pyruvate (IPyA) pathway, the tryptamine (TAM) pathway, the tryptophan side-chain oxidase 

(TSO) pathway, and the indole-3-acetonitrile (IAN) pathway (Patten and Glick 1996; Spaepen et 

al. 2007). The enzymes and steps involved are as follows: 

• In the IAM pathway, tryptophan-2-monooxygenase (IaaM) catalyzes the 

conversion of tryptophan to IAM. Then IAM is converted to IAA by IAM 

hydrolase (IaaH).  

• In the IPyA pathway, tryptophan is first converted to IPyA by an 

aminotransferase. Next, IPyA is decarboxylated to indole-3-acetaldehyde (IAAld) 

by indole-3-pyruvate decarboxylase (IpdC). Then IAA is produced by oxidation of 

IAAld.   

• Three steps are involved in the TAM pathway. First, tryptophan is converted to 

TAM by tryptophan decarboxylase. Next, TAM is converted to IAAld by amine 

oxidase. In the last step, IAAld is converted to IAA by IAAld dehydrogenase.  

• Different from the IPyA and TAM pathways, in the TSO pathway, tryptophan is 

directly converted to IAAld, which is subsequently oxidized to IAA.  
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• In the IAN pathway, the precursor of IAA, IAN can be produced either through 

tryptophan via indole-3-acetaldoxime then by glucobrassicin or directly from 

anthranilic acid independent of tryptophan. Next, IAN is converted to IAA by 

nitrilase, or first to IAM by nitrile hydratase then to IAA by amidase. 

Both phytopathogenic bacteria and PGPB are capable of synthesizing IAA. The impact of 

the exogenous IAA on plants can be deleterious or beneficial, and the effect greatly depends on 

the IAA concentration (Evans et al. 1994; Xie et al. 1996; Persello-Cartieaux et al. 2001; 2003). 

In addition, the sensitivity of the host plants may play a role in the effect of IAA as well (Kucey 

1988; Dubeikovsky et al. 1993; Persello-Cartieaux et al. 2001). Although it was suggested that 

pathogenic organisms synthesize IAA through the IAM pathway and beneficial bacteria produce 

IAA via the IPyA pathway, several studies have proved this is not necessarily the case 

(Vasanthakumar and McManus 2004; Theunis et al. 2004). Many PGPB have shown plant 

growth enhancement by producing IAA. They facilitate lateral and adventitious root growth, 

thereby enhancing plant mineral uptake and root exudation (Dobbelaere et al. 1999; Lambrecht et 

al. 2000; Steenhoudt and Vanderleyden 2000). However, the observed beneficial effects on plant 

growth are usually the consequences of multiple mechanisms used by PGPB rather than the 

impact of IAA production alone (Xie et al. 1996; Bashan and Holguin 1997).  

 

1.1.6 Cytokinins and Gibberellins Production 

Cytokinins are regulators of plant cell division and are present in roots, stems, leaves, 

flowers, fruits and seeds (Garcia de Salamone et al. 2006). The first natural cytokinin, discovered 

in the immature endosperm of Zea mays, was called zeatin (trans-6-(4-hydroxy-3-methylbut-2-

enylamino)purine). Zeatin represents the major active compound of cytokinin molecules in 

higher plants (Letham 1963 and 1973). Zeatin can exist in cis or trans configuration due to a 
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double bond in the side chain, and the two forms can be interconverted by zeatin isomerase found 

in some plants (Taiz and Zeiger 2010). The configuration of zeatin is species specific and both 

forms can play important roles in plant cell division and development (Taiz and Zeiger 2010).   

Cytokinins are able to induce plant cell division when auxin is present and the molar 

ratios of auxin and cytokinin determine whether roots or shoots differentiate from callus cultures. 

For instance, high auxin concentrations promote root formation whereas high cytokinin 

concentrations promote shoot differentiation (Pliego et al. 2011). Root tips and developing seeds 

are the main sites of cytokinin biosynthesis. Cytokinins are transported from these sites to other 

plant tissues where they control diverse aspects of development such as senescence inhibition, 

cell growth, secondary metabolism, and chloroplast development (Neuman et al. 1990; Nooden 

and Letham 1993; Garcia de Salamone et al. 2006; Pliego et al. 2011).  

Many bacteria are able to produce cytokinins, thereby contributing to the plant cytokinin 

pool. These bacteria include Agrobacterium, Erwinia, Pseudomonas, Paenobacillus, Azotobacter, 

Azospirillum, Bacillus, and Rhizobium (Phillips and Torrey 1972; Gonzalez-Lopez et al. 1986; 

Akiyoshi et al. 1987; Nieto and Frankenberger 1989; Strzelczyk et al. 1994; Lichter et al. 1995; 

Timmusk et al. 1999; Ortíz-Castro et al. 2008). Many reports have demonstrated that cytokinin-

producing PGPB can promote plant growth. For example, mutants in cytokinin biosynthesis were 

unable to promote growth of wheat and radish compared to the wild type strain P. fluorescens 

G20-18 (García de Salome 2000). In another study, the levels of different cytokinins in Glycine 

max were compared after inoculation with Bradyrhizobium and it was observed that a high ratio 

of cytokinin:auxin in the soybean roots facilitated nodule initiation (Caba et al. 2000). Recently, 

it was shown that a strain of B. megaterium that was able to promote growth of Arabidopsis 

thaliana and Phaseolus vulgaris seedlings had a much lower activity when inoculated to A. 
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thaliana mutants lacking cytokinin receptors, indicating that the plant growth promotion by this 

strain is dependent on cytokinin signaling (Ortíz-Castro et al. 2008). 

Gibberellins (GAs) are plant phytohormones that affect many developmental and 

physiological processes in higher plants, including seed germination, cell division, stem 

elongation, root growth, root hair abundance, pollen tube growth, and flower induction (Pharis 

and King 1985; Tanimoto 1987; Fulchieri et al. 1993; Hedden and Kamiya 1997; King and Evans 

2003). They are diterpenoids that are formed from four isoprenoid units each consisting of five 

carbons. GAs can be produced by plants, fungi, and bacteria (Taiz and Zeiger 2010). To date, at 

least 136 GAs were identified from higher plants, although not all of them have biological 

activity because some of them are either metabolic precursors or deactivation products 

(MacMillan 2002; Taiz and Zeiger 2010). A couple of GAs such as GA1, GA3, GA4, GA9, GA19 

and GA20 were found in various PGPB including B. japonicum, Azospirillum lipoferum, 

Rhizobium phaseoli, and Bacillus spp. (Bottini et al. 1989; Manero et al. 1996; Piccoli et al. 1996 

and 1997; Atzorn et al. 1988; Gutiérrez-Mañero et al. 2001; Boiero et al. 2007).  

Biosynthesis of gibberellin in higher plants starts with the cyclization of a C20 precursor, 

geranyl geranyl diphosphate (GGPP), yielding ent-kaurene (ent-K) catalyzed by copalyl 

diphosphate synthase (E.C. 5.5.1.13) and ent-kaurene synthase (E.C. 4.2.3.19). Then ent-K is 

converted to gibberellin by a set of oxidative reactions by membrane-related cytochrome P450 

monooxygenases and 2-oxoglutarate dependent dioxygenases (2ODDs)  (Bottini et al. 2004). In 

fungi, the production of ent-K is catalyzed by a bifunctional diterpene synthase instead of by two 

enzymes as in plants. Also, different enzymatic steps are involved after ent-kaurenoic acid is 

formed (Morrone et al. 2009). A cluster of six genes including gibberellin-specific GGPP 

synthase gene, ent-K synthase gene, and four cytochrome P450 monooxygenase genes are 

involved in gibberellin biosynthesis in Gibberella fujikuroi (Mende et al. 1997; Linnemannstöns 
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et al. 1999; Tudzynski et al. 2003). In bacteria, the first potential gibberellin biosynthetic pathway 

was reported in B. japonicum USDA110 (Morrone et al. 2009). An operon consisting of genes 

encoding a GGPP synthase, two diterpene synthases, and three P450 monooxygenases are 

involved in GA biosynthesis in this strain. Sequence comparisons of the diterpene synthases from 

plants, fungi and bacteria suggest they might have a common origin, although the diterpene 

synthases in B. japonicum are significantly smaller than the ones found in plants and fungi. In 

addition, bacteria only require three P450 monooxygenases instead of four in fungi and GA 

biosynthesis is 2ODDs independent. Therefore, GA biosynthesis in bacteria represents a third 

independent pathway (Morrone et al. 2009).  

It was demonstrated that GA-producing Bacillus sp. were able to promote growth of red 

peppers (Joo et al. 2004) and the promoting effect greatly depended on high efficiency of 

bacterial root colonization (Joo et al. 2005). In another study, Acinetobacter calcoaceticus SE370 

was isolated from soil based on GA production and its culture filtrates promoted growth of 

several plants such as cucumber, Chinese cabbage and crown daisy (Kang et al. 2009). Currently, 

the mechanism of GA involved in plant growth stimulation is still obscure, probably due to the 

relative paucity of information on the biosynthesis of GA in bacteria. However, this situation will 

change significantly as more GA biosynthesis genes are identified from completely sequenced 

bacterial genomes.  

 

1.1.7 ACC Deaminase 

ACC deaminase (E.C. 3.5.99.7) is an enzyme that is capable of hydrolyzing ACC, the 

immediate precursor of ethylene in plants, to α-ketobutyrate and ammonia. It was first isolated 

from Pseudomonas sp. strain ACP in 1978 (Honma and Shimomura 1978). Since then, ACC 
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deaminase has been found in a yeast (Hansenula saturnus) (Minami et al. 1998), a fungus 

(Penicillium citrinum) (Honma 1993), and in a number of bacterial strains (Klee et al. 1991; 

Sheehy et al. 1991; Jacobson et al. 1994; Glick et al. 1995; Campbell and Thomson 1996; Burd et 

al 1998; Jia et al. 1999; Belimov et al. 2001 and 2005; Mayak et al. 2001; Babalola et al. 2003; 

Ghosh et al. 2003; Ma et al. 2003; Dey et al. 2004; Uchiumi et al. 2004; Hontzeas et al. 2005; 

Blaha et al. 2006; Madhaiyan et al. 2006). Many of these bacteria were identified by their ability 

to grow on minimal medium containing ACC as the sole nitrogen source. 

ACC deaminase is an important trait in a PGPB because bacteria containing ACC 

deaminase can lower plant ethylene levels when the plants are under different environmental 

stresses, thereby facilitating plant growth (Glick et al. 1998). Ethylene has long been recognized 

as a hormone that controls plant responses under growth-limiting conditions (Abeles et al. 1992; 

Morgan and Drew 1997). It has been proposed that ethylene is produced in two peaks in response 

to environmental stresses (Stearns and Glick 2003; Pierik et al. 2006). The first peak is small and 

usually occurs a few hours after the stress. This small peak is thought to be beneficial because it 

may turn on the transcription of genes that are responsible for plant protection (Van Loon and 

Glick 2004; Van Loon et al. 1997; Glick 2004). The second peak is much larger and occurs one 

to three days after the stress. This second peak typically causes visible damage to the plant, such 

as senescence, chlorosis and abscission (Glick et al. 2007a).  

A model has been proposed to explain the mechanism of action of ACC deaminase in 

plant growth promotion (Glick et al. 1998 and 2007a). Generally, rhizobacteria attached to the 

seeds or roots of a developing plant can synthesize and secrete IAA in response to tryptophan and 

other small molecules in plant exudates (Patten and Glick 1996; 2002; Bayliss et al. 1997; 

Penrose and Glick 2001). The IAA produced by the PGPB and plant can stimulate plant growth 

and development or induce the synthesis of ACC synthase, which converts S-adenosyl-
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methionine (SAM) to ACC. This ACC can be subsequently converted to ethylene by ACC 

oxidase but it can be also exuded to the rhizosphere and taken up by PGPB. Bacteria containing 

ACC deaminase can hydrolyze the ACC to α-ketobutyrate and ammonia. Because the amount of 

ACC outside the roots or seeds is reduced, to maintain the equilibrium between internal and 

external levels, more ACC will be secreted, resulting in a lower amount of ACC available for 

oxidation to ethylene. By decreasing the level of ACC inside the plant cells, the inhibitory effect 

of stress ethylene on root elongation is reduced (Glick 1995). Additionally, IAA can activate the 

transcription of ACC synthase, leading to more ethylene production (Kim et al. 1992; Kende 

1993; Kende and Zeevaart 1997). On the contrary, ethylene inhibits IAA transport and signal 

transduction; therefore this feedback loop will eventually limit the amount of ethylene levels 

when the plant is under environmental stress (Burg and Burg 1966; Morgan and Gausman 1966; 

Suttle 1988; Prayitno et al. 2006). With the presence of ACC deaminase-containing PGPB, the 

feedback loop breaks because the ACC produced is degraded in the bacteria, thus the repression 

of auxin response factor synthesis by ethylene is relieved, resulting in more IAA production and 

plant growth promotion (Glick et al. 2007b).    

ACC deaminase is usually present in bacteria at a low level before it is induced and the 

induction of enzyme activity is a slow and complex process. Therefore, the small peak of 

ethylene still occurs right after environmental stresses, which will induce a defense response in 

the plant. As the concentration of ACC increases, bacterial ACC deaminase is induced, thus the 

second deleterious ethylene peak may be reduced significantly by ACC deaminase activity (Glick 

et al. 2007a).  

ACC deaminase genes have been cloned and characterized from a number of different soil 

bacteria, such as Pseudomonas sp. strains 6G5 and 3F2 (Klee et al. 1991; Klee and Kishore 
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1992), Pseudomonas sp. strain 17 (Campbell and Thomson 1996), Pseudomonas sp. strain ACP 

(Sheehy et al. 1991), E. cloacae CAL2 and P. putida UW4 (Glick et al. 1995; Shah et al. 1998), 

Pseudomonas brassicacearum Am3 (Belimov et al. 2007), R. leguminosarum bv. viciae (Ma et al. 

2003; Duan et al. 2009), as well as from the yeast, H. saturnus (Minami et al. 1998), and fungus, 

P. citrinum (Jia et al. 1999). In all of the above-mentioned strains, the ACC deaminase structural 

gene (acdS) was shown to have the enzyme activity. Putative acdS were identified in Escherichia 

coli, various Archaebacteria and numerous other bacteria. However, none of these organisms has 

been demonstrated to have ACC deaminase activity. With more complete sequenced genomes 

available, more putative acdS genes may be discovered, but their function has to be confirmed by 

biochemical assays as other enzymes have similar sequences and may be mistaken for ACC 

deaminase (Todorovic and Glick 2008).   

The regulation of acdS has been studied in several PGPB. In P. putida UW4, many 

genetic elements are involved in this complex regulation process (Grichko and Glick 2000; Li 

and Glick 2001; Cheng et al. 2008). The acdR gene encoding a leucine-responsive regulatory 

protein (Lrp) is the regulatory gene located 5’ upstream of the acdS and transcribed in the 

opposite direction of the acdS.  In between them, there is a 165 bp intergenic region containing 

possible binding sites for Lrp (an LRP box), which overlaps with the acdR promoter region, a 

fumarate and nitrate reduction protein (an FNR box), which is located within one of the acdS 

promoters, and a cAMP receptor protein (a CRP box) overlapped with the second acdS promoter. 

Based on what is known about other LRP proteins, AcdR (=LRP) functions as an octamer 

(Leonard et al. 2001) and when it binds to an LRP box, it either activates or represses the 

transcription of the target gene. Studies have shown that AcdR can bind to a complex of ACC 

bound to AcdB, a glycerophosphoryl diester phosphodiesterase. The complex may bind to either 

an FNR or CRP box under anaerobic or aerobic conditions, respectively. The binding to the FNR 
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or CRP boxes facilitates acdS transcription. One of the products generated by ACC deaminase 

reaction is α-ketobutyrate, which is a metabolic precursor of leucine. With increasing amounts of 

leucine levels in the cell, the Lrp octamer is dissociated, resulting in a silencing of acdS gene 

expression.  

Many studies have shown that bacteria containing ACC deaminase promote plant growth 

under different environmental stresses including at the presence of phytopathogens, high 

concentration of salt, drought, flooding, heavy metals, organic compounds (Burd et al. 1998; 

2000; Belimov et al. 2001; 2005; Wang et al. 2000; Grichko and Glick 2001; Nie et al. 2002; 

Glick 2003; Huang et al. 2004a; 2004b; Mayak et al. 2004a; 2004b; Saleh et al. 2004; Reed and 

Glick 2005; Farwell et al. 2006; Saravanakumar and Samiyappan 2006; Cheng et al. 2007; 

Farwell et al. 2007; Hao et al. 2007; Rodriguez et al. 2008; Gamalero et al. 2009). Moreover, the 

acdS gene has become a widely used genetic marker for screening PGPB functions. 

 

1.2 Pseudomonas putida UW4 

P. putida UW4 is a well-studied PGPB that was isolated from the rhizosphere of reeds in 

Waterloo, Ontario (Glick et al. 1995). This strain has the ability of utilizing ACC as a sole source 

of nitrogen and promoting canola seedling root elongation in growth pouches under gnotobiotic 

conditions (Glick et al. 1995).  

At the beginning, UW4 was designated Pseudomonas sp. on the basis of growing on 

Pseudomonas Agar F (PAF) selective medium and siderophore production. Later on, the name of 

the bacterium was changed to Enterobacter cloacae UW4 based on the results of fatty acid 

analysis (Shah et al. 1998). However, after sequencing a partial 16S ribosomal RNA gene from 

UW4, the results indicated that it is Pseudomonas putida (Hontzeas et al. 2005), and the genus 



  29 

and species were further confirmed by thorough metabolic profiling (MicroLog System, Release 

4.0).  

Under the microscope, P. putida UW4 cells are straight rods that are 2-4 µm in length and 

2 µm in width. They are Gram-negative, motile, non-spore forming and are routinely grown in 

Tryptic Soy broth (TSB) at 30°C in the lab. UW4 is a psychrotroph that can proliferate at 4°C. 

On PAF medium plates, the colonies are round in shape with smooth regular borders and green-

yellowish color after 24 hours incubation at 25°C or 30°C. Antibiotic resistance tests showed that 

this strain can grow in the presence of ampicillin (128 µg/ml), erythromycin (64 µg/ml), 

novobiocin (256 µg/ml), but is sensitive to kanamycin (4 µg/ml) and tetracycline (8 µg/ml) 

(unpublished data).  

In 1998, the gene encoding ACC deaminase was isolated from UW4 and a putative 

ribosomal binding site (AAGGA) at -13 as well as a potential transcription termination site 

(GTAGGAGCGGGC) at 37 nucleotides downstream from the stop codon were found. Southern 

hybridization results indicated that there is only one copy of acdS gene in UW4. When the ACC 

deaminase gene of UW4 was introduced into E. coli DH5α, P. putida ATCC 17399 and P. 

fluorescens ATCC 17400, the gene was expressed and the transformed strains were able to 

promote root elongation of canola seedlings (Shah et al. 1998).  Furthermore, when the acdS gene 

in UW4 was disrupted, the strain lost its capability to promote root elongation (Li et al. 2000). In 

order to understand how the acdS gene is regulated, the gene upstream of the acdS and the 

intergenic region between the two genes was studied (Grichko and Glick 2000; Li and Glick 

2001; Cheng et al. 2008). The results revealed a fairly complicated transcriptional regulatory 

network involving several components; the regulation of the acdS gene in UW4 has been 

discussed in the previous section.  
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From then on, a number of studies focused on the impact of the acdS gene of UW4 on 

plant growth under different environmental stresses. For example, when the acdS gene and its 

regulatory region was introduced into a biocontrol strain, P. fluorescens strain CHA0, the 

transformed strain showed improved ability to protect cucumber against Pythium damping-off, 

and potato tubers against Erwinia soft rot under the conditions used (Wang et al. 2000). 

Furthermore, transgenic tomato plants expressing the UW4 ACC deaminase showed reduced 

symptoms of Verticillium wilt (Robison et al. 2001). And, in the presence of heavy metals such 

as Cd, Co, Cu, Mg, Ni, Pb, or Zn, ACC deaminase-producing tomato and canola plants showed 

less deleterious effects of the metals on plant growth compared to the non-transgenic plants 

(Grichko et al. 2000; Nie et al. 2002; Stearns et al. 2005). In another study, under flood 

conditions, tomato plants inoculated with UW4 acdS-containing bacterial strains showed a 

significant tolerance to flooding stress (Grichko and Glick 2001).  

In addition to the studies on acdS-transformed bacteria and transgenic plants, the 

influence of the strain P. putida UW4 on the plant growth under various stresses was also 

examined. For instance, UW4 has been shown to enhance plant growth in the presence of 

flooding (Farwell et al. 2007), heavy metals (Farwell et al. 2006), cold (Cheng et al. 2007), high 

concentration of salt (Cheng et al. 2007), and phytopathogens (Hao et al. 2007; Toklikishvili et 

al. 2010).  

In an effort to better understand the interaction between plants and free-living PGPB, the 

proteomes of wild type UW4 and its acdS minus mutant were investigated upon treatment with 

canola root exudates (Cheng et al. 2009a). Levels of 72 proteins changed significantly, and 

putative predictions of many of the proteins are related to nutrient transport, cell envelope 

synthesis, and transcriptional/translational regulation. Functional analysis of four proteins, outer 

membrane protein F, peptide deformylase, transcription regulator Fis family protein, and an 
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uncharacterized protein, confirmed that they are key proteins involved in plant-microbe 

interactions (Cheng et al. 2009a). Furthermore, when UW4 was exposed to 2 mM Ni, bacterial 

proteins involved in heavy metal detoxification such as stress adaptation, anti-oxidative stress, 

and heavy metal efflux proteins were up-regulated significantly (Cheng et al. 2009b). More 

recently, Cheng et al. (2011) analyzed the protein expression profile of canola plants inoculated 

with UW4 or its acdS minus mutant under salinity stress. As expected, many of the differentially 

expressed proteins in the plants are related to salt stress tolerance. Moreover, it was observed that 

the enzyme ACC deaminase played an important role in the salt response of canola plants. For 

example, the expression of proteins involved in photosynthesis decreased to a lesser extent if the 

plants were treated with wild type UW4 prior to salt exposure, and the plants were healthier due 

to the lowered stress ethylene levels (Cheng et al. 2011).  

In 2009, a proteome reference map of P. putida UW4 was published (Cheng et al. 2009c). 

The map represents 275 different proteins of UW4 and the bacterium was cultured under the 

typical conditions used in the lab (aerobically to late-log phase in TSB at 30 °C). Although this 

map only represents ~ 5% of the total number of proteins synthesized by UW4, it should facilitate 

future proteomic studies with this bacterium. 

 

1.3 Bacterial Genome Sequencing 

Since the first bacterial genome, Haemophilus influenzae, was fully sequenced in 1995, 

over 1700 complete bacterial genome sequences have been determined. DNA sequencing 

technology has dramatically improved from the first generation, automated Sanger DNA 

sequencing, which dominated this field for almost two decades, to the current NGS platforms. 

The newer technology dramatically reduces both the time and cost of DNA sequencing, making it 
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possible for a small lab to completely sequence the genome of their favorite bacterium. With the 

enormous amount of information obtained from whole genome sequencing, scientists can readily 

address a wide range of biological questions that were hitherto beyond their capabilities (Duan et 

al. 2010).  

 

1.3.1 Sanger DNA Sequencing 

The Sanger DNA sequencing technique has been an important method in sequencing 

bacterial genomes. The sequencing chemistry is based on the use of the DNA chain terminator 

dideoxynucleotide (ddNTP), which is a molecule lacking a hydroxyl group at the 3’ carbon of the 

deoxyribose sugar (Sanger et al. 1977). During DNA synthesis, an incoming deoxyribonucleotide 

(dNTP) can form a phosphasdiester bond between its 5’ α-phosphate group and the 3’ hydroxyl 

group of the last nucleotide. However, if a dideoxynucleotide is incorporated at the end of the 

growing strand, DNA chain growth terminates. The four dideoxynucleotides used in Sanger 

sequencing are labeled with four fluorescent dyes with each dye representing a particular 

nucleotide (Smith et al. 1986). The dye-labeled ddNTPs are added into the reaction mixture 

containing single-stranded DNA template, primer, DNA polymerase and all four dNTPs. The 

polymerase chain reaction (PCR) products are separated by capillary electrophoresis according to 

their masses. Each fluorescent dye emits light following its activation by a laser at the end of the 

capillary. Therefore, the DNA sequence can be determined by the order of the fluorescent signals 

(Swerdlow et al. 1990). 

Using Sanger DNA sequencing chemistry to sequence the entire genome of an organism 

is comprised of three major steps: DNA library preparation, template purification and DNA 

sequencing. For shotgun de novo sequencing, DNA is randomly fragmented to generate small (2 
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Kb) and large (15~20 Kb) fragments, which are subsequently cloned into a high-copy-number 

plasmid. The plasmids are then used to transform E. coli cells. After transformation, resultant 

colonies are transferred into either 96- or 384-well plates. Plasmid purification occurs directly on 

the plates. Then the PCR-based DNA sequencing is performed (Fleischmann et al. 1995). 

Because the genomic DNA is randomly broke down, longer DNA sequences can be obtained by 

aligning and assembling short sequence fragments based on partial sequence overlaps.  

After decades of improvement of this methodology, sequences of up to ~1 Kb DNA can 

be obtained by Sanger sequencing with an accuracy as high as 99.999% (Shendure and Ji 2008). 

Nevertheless, an individual lab may encounter substantial expense and a number of months of 

work to complete the sequencing of a microbial genome. These limitations have encouraged 

scientists to develop and utilize a variety of new sequencing technologies. 

 

1.3.2 Roche 454 GS FLX Genome Sequencer  

Roche/454 commercialized Pyrosequencing in 2005 and the sequencer was the first NGS 

platform on the market (Margulies et al. 2005). The basis of the technology is the measurement 

of the release of inorganic pyrophosphate by converting it into visible light during DNA synthesis 

(Ronaghi et al. 1996 and 1998). The sequencing chemistry consists of a series of enzymatic 

reactions. First, pyrophosphate, released from the growing DNA strand, combines with 

adenosine-5’-phosphosulfate catalyzed by ATP sulfurylase to form ATP. Then, the ATP is used 

by luciferase to convert luciferin to oxyluciferin to generate light. Before the next nucleotide is 

added, it is necessary to remove the unused ATP and the unincorporated deoxynucleoside 

triphosphate; this is done by the enzyme apyrase. In addition, a thio-modified dATP, 
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deoxyadenosine α-thiotriphosphate (dATPαS), is used as a substitute for natural dATP to avoid 

creating a false positive signal (Ronaghi et al. 1996; 1998).  

The general pyrosequencing workflow includes DNA library preparation, emulsion PCR, 

DNA sequencing and data analysis (Margulies et al. 2005). Briefly, bacterial genomic DNA is 

fractionated by nebulization, in which the DNA is forced through a small hole, and DNA 

fragments in the range of 300- to 800-bp are selected. After DNA repair and end polishing to 

generate blunt ends, short 3’ and 5’ DNA adapters are added to each fragment. In the next step, 

each fragment is immobilized onto a 28 µm bead, which has sulfurylase and luciferase attached 

to it. PCR amplification is performed within droplets of an oil-water emulsion. As a result, 

several thousand copies of the same template sequence are generated on each bead. The beads are 

then deposited into titanium-coated PicoTiterPlate wells. The diameter of the PicoTiterPlate wells 

is designed to allow for only one bead per well. During pyrosequencing, individual dNTPs are 

added sequentially in a predetermined order. The amount of light generated is proportional to the 

number of dNTPs added. The bioluminescent images are recorded by a charge-coupled device 

(CCD) camera. Because the linear relationship between light intensity and the number of dNTP 

incorporated can only hold up to 6 nucleotides, pyrosequencing has high error rates (insertions 

and deletions) when dealing with homopolymer repeats (Margulies et al. 2005; Metzker 2010).  

The aforementioned DNA library preparation method generates sequences that can be 

assembled into a number of unordered and unoriented contigs. In order to close the gaps in 

bacterial genome sequences between those contigs, construction of a paired-end DNA library is 

usually recommended (Jarvie and Harkins 2008). To construct a paired-end library, bacterial 

genomic DNA is first sheared randomly and certain sized fragments are selected such as 3, 8 or 

20 Kb. The fragments are methylated to avoid EcoRI cleavage, and hairpin adapters are ligated 
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onto both ends of the DNA. Subsequent exonuclease digestion removes all of the DNA fragments 

that are not protected by hairpins. In addition, the hairpin adapters are biotinylated and contain 

EcoRI recognition sites that are not methylated. Therefore, after digestion with EcoRI, the DNA 

can be circularized by self-ligation. The EcoRI digestion step also removes the terminal hairpin 

structures from the DNA. Second, the circularized DNA is fragmented by nebulization and 

fragments containing the added adapters are selected using streptavidin, which has very tight 

biotin-binding capability (Chaiet and Wolf 1964). Eventually, a DNA library consisting of true 

paired end reads is generated, with a 44-mer adapter sequence in the middle, flanked with ~150 

bp sequences on average. The two flanking 150 bp sequences are fragments of DNA that were 

originally located approximately 3, 8 or 20 Kb apart in the genome of interest. This library is now 

ready for emulsion PCR and DNA sequencing. Using paired-end reads, scaffolds can be obtained 

from the ordered and oriented contigs and this greatly facilitates the complete sequencing of the 

genome.  

Pyrosequencing has been used to sequence a wide variety of genomes including the 

second complete human genome (Wheeler et al. 2008). Currently, the latest sequencer GS FLX+ 

System can produce read lengths up to 1,000 bp, which has reached the current Sanger 

sequencing capacities. Because the data output per run almost doubled compared to the previous 

versions of the sequencer, it makes pyrosequencing more attractive again. However, the error-

prone raw data caused by insertions and deletions as well as low throughput compared to other 

NGS platforms may limit its application in certain research fields.  

 

1.3.3 Illumina/Solexa Genome Analyzer 

Illumina/Solexa’s Genome Analyzer is currently the most widely used DNA sequencing 

platform. It was the second commercialized NGS platform on market. The sequencing chemistry 
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is based on four-color cyclic reversible terminators that are blocked at the 3’ end using modified 

nucleotides such as 3’-O-azidomethyl-dNTPs (Guo et al. 2008). In the procedure, four 

fluorescently labeled nucleotides are simultaneously added into the reaction mixture and DNA 

polymerase incorporates the nucleotide that is complementary to the template base. DNA 

synthesis terminates after the addition of the one nucleotide. The unincorporated nucleotides are 

washed away and fluorescence is recorded to determine the incorporated nucleotide. Then, the 3’ 

blocking group is cleaved from the incorporated nucleotide to restore a 3’-OH group and the 

fluorophore is also removed from the base. Therefore, two chemical bonds need to be cleaved 

before the next cycle begins (Bentley et al. 2008). Also, since the 3’ blocked terminators cannot 

be readily incorporated into the growing DNA strand by the native form of DNA polymerase, a 

modified form of DNA polymerase, created by site-directed mutagenesis, is used to carry out the 

reaction (Chen et al. 2010).  

The sequencing workflow of the Genome Analyzer includes three steps: DNA library 

preparation, generation of clonal clusters, and sequencing (Bentley et al. 2008). Genomic DNA is 

first fragmented by nebulization or sonication. DNA end-repair is performed in order to generate 

blunt ended DNA. Following phosphorylation of the 5’ and 3’ ends, an adenosine overhang is 

added to each end. This facilitates the ligation between the sequencing adapters and the DNA 

fragments. Next, a flow cell is used to capture template molecules to generate clonal clusters, 

which are identical copies of each single DNA template within the diameter of one micron. The 

flow cell is a silica slide with eight channels and each channel can hold up to 12 samples. 

Different from emulsion PCR on small beads, in solid-phase amplification denatured DNA 

templates are covalently attached to a lawn of oligonucleotides immobilized on the flow cell 

surface. Templates bound to the primers are 3’-extended using a high-fidelity DNA polymerase. 

After denaturation, the original templates are washed off and the amplified copies are left on the 
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flow cell surface. Because there are adapter oligonucleotides on the free ends of the bound 

templates, this adapter may hybridize to adjacent lawn primer, which is immobilized on the flow 

cell surface, to form a bridge. DNA polymerase copies the template from the primer to form a 

double-stranded DNA bridge, which is subsequently denatured and two single-stranded DNAs 

may hybridize to adjacent lawn primers to form new bridges. This process is repeated to create 

millions of dense clonal clusters, each containing about 2,000 molecules. Following denaturation 

of the double-stranded DNA bridges, the reverse strand is removed by cleavage at the reverse 

strand-specific lawn primers. The 3’-OH ends are blocked to avoid nonspecific priming and 

sequencing primers are hybridized to the adapter attached to the unbound ends of the DNA 

templates. Now the flow cell, which contains clusters of ~1,000 copies of single-stranded DNA 

molecules, is ready for transfer to the Genome Analyzer for sequencing (Bentley et al. 2008).  

Illumina/Solexa offers three strategies to prepare a DNA library, including single-read, 

paired-end and mate-pair. The single-read method is described in the sequencing workflow 

section. Mate-pair library preparation is essentially the same as paired-end library preparation in 

pyrosequencing, except that in mate-pair protocols the templates to be sequenced are separated 

by 2-5 Kb inserts instead of 3, 8 or 20 Kb. The protocol for paired-end library preparation for the 

Illumina Genome Analyzer is completely different from the mate-pair DNA library preparation. 

It generates twice the amount of sequencing data compared with single-read and it also requires 

twice the run time. In addition, another instrument, a Paired-End Module, needs to be attached to 

the Genome Analyzer. End users may choose the length of the sequencing insert ranging from 

200 to 500 bp. During paired-end library sequencing, the forward strand of the DNA template is 

sequenced in the same way as in single-read sequencing. After denaturation, the newly 

synthesized partial strand is removed and the 3’ ends are unblocked. The free ends can bind to 

lawn primers to reform bridges and double-stranded DNA clusters are regenerated. This time, the 
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forward strands are cleaved leaving only the newly synthesized reverse strands attached to the 

flow cell. Subsequent sequencing is performed on the reverse strands to produce paired-end data.  

Currently, there are four sequencing instruments provided by Illumina including HiSeq 

2000, HiSeq 1000, Genome Analyzer IIx, and MiSeq. The new HiSeq 2000 system is able to 

produce read length of up to 2 × 100 bp (paired-end reads) with a maximum output of 600 Gbp 

per run. It also has a dual flow cell design, which enables simultaneous run applications that 

requires different read lengths. With Illumina technology, the most common error during 

sequencing is substitutions, especially after a ‘G’ base (Dohm et al. 2008). Amplification bias 

during template preparation could also cause underrepresentation of AT-rich and GC-rich regions 

(Dohm et al. 2008; Hillier et al. 2008; Harismendy et al. 2009; Metzker 2010).  

 

1.3.4 ABI SOLiD System 

In contrast to Roche/454 and Illumina/Solexa, which use DNA polymerase as the core 

biochemistry, ABI developed its NGS platform based on DNA ligase. DNA ligase can join two 

DNA strands that have a double-strand break. It can also link the ends on only one of the two 

strands, providing that the incoming single strand nucleotides are perfectly complementary to the 

reverse strand (Tomkinson et al. 2006). 

The NGS platform commercialized by ABI is named Support Oligonucleotide Ligation 

Detection (SOLiD) (Valouev et al. 2008). DNA templates are prepared in a manner similar to 

pyrosequencing technology. The DNA is sheared by nebulization or sonication, and ligated to 

oligonucleotide adapters. One of the adapters is then hybridized to another adapter, called the P1 

adapter, which is immobilized onto one-micron diameter paramagnetic beads. The DNA library 

is diluted before the hybridization between the two adapters to ensure that only one DNA 
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template attaches to each bead. In the next step, DNA templates are clonally amplified by 

emulsion PCR, followed by bead purification. In contrast to pyrosequencing where a 

PicoTiterPlate is used to catch the beads, in the present technique a flow cell glass slide is used. 

Before bead deposition, the 3’ end of the DNA template on the beads is modified to allow its 

covalent attachment to the slide. Because there is another adapter attached to the free end of the 

DNA template, the modification can be made by attaching a polystyrene bead, which has 

complementary adapter sequences on its surface. Currently, three types of slides are available for 

SOLiD 4 system, which allow for the analysis of 1, 4, or 8 samples on a single slide. In order to 

achieve multiplexing capability, barcoding is introduced and up to 96 DNA libraries can be 

loaded on one region of an 8-region glass slide. The SOLiD 4 system can hold two independent 

flow cell slides at once. Therefore, up to 1,536 samples can be analyzed in a single run. The 

newer models 5500 series SOLiD sequencers use microfluidic FlowChips, which has either 6 or 

12 independent lanes on the surface, allowing flexibility to run a single lane without paying for 

the whole run.  

The 5500 series and SOLiD 4 system are able to handle three types of DNA libraries 

including a fragment library, a mate-pair library with insert size from 600 bp – 10 Kb, and a 

paired-end library. The strategies that are used to construct fragment and mate-paired libraries are 

similar to those are used in the Illumina/Solexa technology. SOLiD 4 system can produce up to 2 

× 50 bp for a mate-paired library and 50 bp for a fragment library, whereas 5500 series can 

generate 2 × 60 bp and 75 bp, respectively. Paired-end library sequencing involves sequencing of 

both the forward and reverse direction of DNA templates using DNA ligase. With SOLiD 4, 50 

bp of forward strand and 25 bp of reverse strand can be obtained. With the newer 5500 series 

sequencers, an improvement of read length up to 75 bp for the forward and 35 bp for the reverse 
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strand have achieved. The maximum output per run for SOLiD 4 and 5500 series systems are 80-

100 GB and 300 GB, respectively. 

The first step of Sequencing by Ligation (SBL) is to ligate a probe to a sequencing primer 

(Valouev et al. 2008). Each probe consists of eight base pairs (octamer), of which the first two at 

the 3’ end are the ones providing the measuring information. The remaining six nucleotides are 

degenerate nucleotides with one of four fluorescent labels linked to the 5’ end. Since 

dinucleotides can generate sixteen different combinations, and only four colors are used for 

measurement, a two-base encoding strategy is employed. For instance, blue represents the 

combination of AA, CC, GG or TT; green represents the combination of CA, AC, TG or GT; 

yellow corresponds to the combination of GA, AG, TC or CT; and red corresponds to the 

combination of TA, AT, GC or CG. As long as the first nucleotide is known, the second 

nucleotide can be determined based on the color observed. In the first sequencing step, the probes 

representing all 16 possible two-base combinations are added into the reaction mixture. 

Annealing only occurs when the probe is complementary to the sequences immediately adjacent 

to the sequencing primer. Then ligation is performed and the unbound probes are washed away. 

In the next step, unextended reactions are capped by dephosphorylation, making them 

unavailable to participate the future reactions. The last three bases and the fluorescent moiety 

from the probes are then cleaved with AgNO3. Now the probe is reduced to 5 nucleotides with a 

free phosphate group. Ligation is repeated up to 15 cycles to obtain a sequence of 75 base pairs. 

Fifteen cycles of ligation is referred to as a “round”. Primer reset is carried out where the 

extended sequences melt off the template and a new primer, which is one base inset closer to the 

bead than the starting primer, is hybridized to the adapter. Then the same set of probes is used to 

measure different pairs of dinucleotides. Primers are reset for five rounds in total and each new 

primer has a successive offset, i.e. n-1, n-2 and so on. Using this approach, each nucleotide on the 
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template is sequenced twice by different dye-labeled probes, thereby reducing sequencing errors 

dramatically. Eventually, 75 color space sequence information is collected which will be taken 

forward to obtain a 75 nucleotides sequence. In order to convert the color space sequence to a 

base pair sequence, the first nucleotide has to be known. This information can be easily obtained 

from the first cycle of the second round of sequencing because the first base pair of probe is the 

complement of the last nucleotide of the sequencing primer.  

In order to obtain paired-end or mate-pair sequences, sequencing of the reverse direction 

of the template is performed (Valouev et al. 2008). First, 3’-hydroxylated primer is annealed to 

the adapter region of the templates and probes that are 5’ phosphorylated are ligated to the 

primer. To prevent dephasing, primer that is unextended is capped by a ddNTP that is introduced 

by polymerase. After cleavage by AgNO3, only 5 nucleotides from the probe will remain. The 3’ 

phosphate is removed and the cycles are repeated until the desired read length is obtained.  

Similar to Genome Analyzers of Illumina/Solexa, the most common error type created by 

SOLiD systems is substitution (Metzker 2010). Secondly, the beads may carry a mixture of 

sequences, creating false reads and low quality bases. This could be the reason of obtaining large 

amount of “junk” data in several studies (Harismendy et al. 2009; Suzuki et al. 2011). In addition, 

SOLiD data also reveals an underrepresentation of AT-rich and GC-rich regions (Harismendy et 

al. 2009).  

 

1.3.5 Helicos HeliScope Sequencer 

HeliScope developed by Helicos BioSciences was the first commercialized single-

molecule sequencer (Braslavsky et al. 2003). It has the advantage of not requiring amplification 

of the templates by PCR before sequencing, since clonal amplification of templates may 
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introduce errors. This technology significantly increased the speed of DNA sequencing, while 

decreasing the cost.  

The HeliScope uses Virtual Terminators, which are 3’-unblocked cyclic reversible 

terminators (Bowers et al. 2009). The inhibiting group is a nucleoside analogue that is directly 

attached to the fluorophore. Using a 3’-unblocked terminator is highly efficient because removal 

of the fluorophore and terminating group is combined into one step. Furthermore, it is no longer 

necessary to screen large libraries of mutant DNA polymerase since 3’-unblocked terminators 

can be incorporated into the growing strand DNA effectively by wild-type DNA polymerase.  

The workflow of single-molecule sequencing may be summarized as following (Harris et 

al. 2008). A DNA sample is sheared into short strands of about 100-200 nucleotides in length 

before a poly-A universal priming sequence is added to the 3’ end of each DNA strand, which is 

then labeled with a fluorescent adenosine nucleotide. The labeled strands serve as templates for 

the single molecule sequencing chemistry. The DNA strands are hybridized to the Helico’s flow 

cell that contains billions of oligo-T universal capture sites that are immobilized on the flow cell 

surface. Because the HeliScope sequencer detects single molecules, the templates can be packed 

at very high density, i.e. billions of templates per run. After the DNA sequences have been 

hybridized to the flow cell surface, they are loaded into the Heliscope instrument. A laser 

illuminates the surface of the flow cell, highlighting the location of each fluorescently labeled 

template. A CCD camera then produces a map of the template on the flow cell surface. After the 

template has been imaged, the template label is cleaved and washed away. The sequencing 

reaction begins by introducing a DNA polymerase and a fluorescently (Cy5) labeled nucleotide 

with the oligo-T capture sites serving as sequencing primers. DNA polymerase catalyzes the 

addition of Cy5-labeled nucleotides to the primers in a template directed manner. A washing step 

then removes the polymerase and any unincorporated nucleotides. The billions of single molecule 
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templates that have incorporated a particular nucleotide are then visualized by illuminating and 

imaging the entire flow cell surface. After imaging, the fluorescent labels are cleaved and 

removed. The process continues with each of the remaining bases and repeats until the desired 

read length has been achieved. Unlike amplification-based sequencing technologies, the single-

molecule sequencing process is asynchronous. Every strand is unique and is sequenced 

independently.  

Paired-end reads can be obtained from individual single molecules as well. Unlike the 

traditional paired-end library preparation, the procedure does not involve cloning, circularization 

and digestion of the sheared genomic DNA sample. Briefly, after fragmentation of genomic 

DNA, an adapter sequence is ligated to the 5’ end of the fragments. Then poly-A tails that will 

hybridize to the poly-T immobilized on the flow cell surface are created on the 3’ end of the 

fragments. Following the completion of sequencing the 3’ end of the template, the template is 

copied to the end by DNA polymerase and all four natural nucleotides. The template DNA is 

removed by denaturation, leaving only the reverse strand bound to the flow cell surface. A 

universal primer then hybridize to the adapter sequence, which is at the free end of the DNA 

fragment, and sequencing can be performed from the free end of DNA template, i.e. the 3’ end of 

the reverse strand.  

Currently, HeliScope can generate an average single read length of 35 bp with 21 to 35 

Gbp output per run. According to the company’s report, the raw error rate for substitution, 

insertion and deletion are 0.2%, 1.5%, and 3%, respectively. Since the first HeliScope sequencer 

was sold in March 2008, only a few machines have been installed globally. This is probably due 

to the high cost of the sequencer (~ one million dollars) and short reads compared to other NGS 

platforms (Kircher and Kelso, 2010; Glenn 2011).  
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1.3.6 Pacific BioSciences PACBIO RS 

Single molecule real time (SMRT) sequencing is a Sequencing by Synthesis (SBS) 

technology that involves monitoring the incorporation of fluorescent dye-labeled nucleotides 

continuously during DNA synthesis (Eid et al. 2009). The SMRT DNA sequencing system was 

commercialized by Pacific Biosciences in May 2011 and is named PacBio RS. The most 

attractive feature of this sequencing system is that it can generate more than a thousand base pairs 

of sequence information in fast cycle times, since DNA polymerase synthesized DNA 

continuously without termination (Metzker 2009 and 2010; Eid et al. 2009).  

During the template preparation, the DNA sample is first sheared to varied lengths (250 

bp – 6 Kb); the ends of the fragments are then repaired so that a hairpin structure can be ligated to 

each end. Following purification, the fragments with hairpin adapters are selected and ready for 

sequencing. The company provides Template Preparation Kit to convert the DNA sample into 

SMRTbell library format, which will eventually generate structurally linear and topologically 

circular DNA morphology. This way, both the sense and antisense DNA strands can be 

sequenced. In contrast to other SBS approaches in which templates are attached to a solid surface, 

in SMRT sequencing, single DNA polymerase molecule is anchored to the bottom of a nanoscale 

well called zero-mode waveguide (ZMW) (Levene et al. 2003; Foquet et al. 2008). Parallel 

sequencing is achieved using a chip containing thousands of ZMWs to capture individual DNA 

polymerase molecules (Eid et al. 2009). Because the DNA polymerase and DNA template are 

diffused into the ZMWs, not all the wells are active for sequencing. It has been estimated that 

about one third of ZMWs of a chip are active for a given run (Schadt et al. 2010). A modified ϕ29 

DNA polymerase is chosen for this sequencing platform because it can incorporate 

phospholinked dNTPs efficiently into the growing strand. In addition, ϕ29 polymerase is able to 

synthesize DNA in a strand-displacement manner so that the template can be sequenced multiple 
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times to ensure accuracy. With this approach, read accuracy was improved from <80% for a 499 

bp template to >99% by circular consensus sequencing for 15 times or more (Eid et al. 2009). 

The nucleotides used in SMRT are phospholinked hexaphosphate nucleotides and have a distinct 

character in that a fluorophore is linked to the terminal phosphate rather than to the base. The 

formation of phosphodiester bond leads to the release of the dye-labeled pentaphosphate and the 

signal is recorded immediately before it diffuses away (Eid et al. 2009).  

SMRT sequencing can be used to identify DNA modification because the polymerase 

kinetics changes at and around the modified base position in the DNA template, which is 

typically slower compared to unmodified DNA. For instance, DNA methylation such as N6-

methyladenine, 5-methylcytosine, 5-hydroxymethylcytosine, and N4-methylcytosine have been 

detected by SMRT sequencing (Flusberg et al. 2010; Song et al. 2011; Clark et al. 2011). In 

addition, various forms of DNA damage can be revealed directly by SMRT sequencing as well. It 

has been demonstrated that DNA templates containing 8-oxoguanine, 8-oxoadenine, O6-

methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-

hydroxymethyluracil, or thymine dimers can be identified readily with single-modification 

resolution and DNA strand specificity (Clark et al. 2011). These applications will advance our 

understanding DNA-lesion-related diseases, aging, and DNA polymerase enzymology (Clark et 

al. 2011).  

It has been reported that using the SMRT system to sequence an E. coli genome, it is 

possible to achieve 99.3% genome coverage with average read lengths of 964 bp and at high 

accuracy, i.e. >99.999%. However, it was necessary to have a 38-fold base coverage to obtain 

this high quality data (Metzker 2010). The error rates of the raw reads are still pretty high (~5%) 

for this platform, and the dominant forms of errors are insertions and deletions. Furthermore, the 

throughput of SMRT sequencing depends on the number of ZMWs that are active for a given 
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run. At present, one SMRT cell contains up to 2 × 75,000 ZMWs. Even if all the wells are active, 

the maximum throughput may not be comparable with other NGS platforms (Schadt et al. 2010).  

 

1.3.7 Polonator G.007  

The Polonator is a platform that may serve as an alternative to ABI SOLiD systems and 

Illumina Genome Analyzers. The developers of the platform aim to lower the cost of sequencing 

instruments and reagents dramatically while maintain high throughput, accuracy, and reliability 

of the data.  

The Polonator was initially developed by George Church’s lab at Harvard Medical School 

in collaboration with Dover, and has been sold by Azco Biotech since 2009. The system is an 

open platform with free operating software and protocols available for public download. Users 

may employ the standard settings or they can innovate freely.  

Two protocols are available to construct DNA libraries, which will generate either a 

Polony or Rolony library. To construct a Polony library, the genomic DNA is sheared into 1 Kb 

fragments by a Hydroshear and purified. The DNA segments are then circularized using a T30 

Universal Linker followed by a restriction digest to create two mate-paired genomic DNA tags. 

Next, forward and reverse sequencing primers are ligated to the tags. Then the DNA library is 

used to attach to magnetic beads, where emulsion PCR occurs. After separating the amplified 

beads from the unamplified beads, the tags are ready for sequencing (Shendure et al. 2005; Azco 

Biotech). To construct a Rolony library, the genomic DNA is first sheared into 500 bp – 1 Kb 

segments and purified. Secondly, ½ of the Universal Adapter is added to each end of the DNA 

fragment. This fragment is circularized followed by cleavage with restriction endonuclease to 

generate the tag. Then a primer is ligated to the end of the tag. Next, another tag is added by 
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repeating the procedure from the second step. After adding the second tag, the DNA is ligated on 

a T30 linker to become a circle. Then, rolling circle amplification is performed to create DNA 

balls, which will subsequently attach to a slide for sequencing. With this protocol, expensive 

magnetic beads are no longer used (Azco Biotech; Drmanac et al. 2009).  

Currently, two sequencing techniques, SBL using DNA ligase and SBS using DNA 

polymerase, can be performed on Polonator system, making it more flexible. At present, the read 

length of Polonator is 18 – 22 bp, and about 16 Gbp can be generated per run. The mean accuracy 

for mappable reads is greater than 99.7% and the current run time for SBL is 2.5 days for a mate-

paired run (Azco Biotech). The major drawback of Polonator is that it generates the shortest read 

lengths compared with other NGS platforms, making genome assembly a big challenge. Before 

Polonator can push the read length to a competitive position, certain application such as targeted 

sequencing that does not require long reads will probably be more suitable for this system.  

 

1.3.8 Ion Torrent Personal Genome Machine 

Personal Genome Machine (PGM) developed by Ion Torrent is based on an entirely new 

method known as semiconductor sequencing. The machine was launched at the end of 2010 and 

it measures the hydrogen ion released when a base is incorporated into a template DNA by 

polymerase.  

To perform this biochemical process, Ion Torrent designed a high-density ion chip with 

millions of wells, which allow parallel detection of individual sequencing reactions (Rothberg et 

al. 2011). Beneath each well is an ion sensitive layer and below that is an ion sensor. The 

sequencer sequentially floods the chip with one natural nucleotide after another. If the nucleotide 

is complementary to the template base, the pH in the solution will change due to the release of 

hydrogen ion, which will be converted to voltage and recorded by the semiconductor sensor. In 
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the case of two identical bases on the DNA strand, the voltage change will double and the signal 

will be recorded as two identical bases call. This direct detection requires no scanning, no 

cameras, and no light, which saves a lot of time (Rothberg et al. 2011).  

To prepare a DNA library for semiconductor sequencing, genomic DNA is sheared 

randomly into fragments by mechanical or enzymatic approaches. Then the DNA fragments are 

ligated to Ion-specific forward and reverse adapters on each end. The DNA with the adapters will 

be subsequently amplified on beads. Next, the beads containing DNA template are selected and 

DNA polymerase and sequencing primers are added, and individual beads are loaded onto an Ion 

chip followed by sequencing (Rothberg et al. 2011). Recently, a protocol for paired-end 

sequencing became available. During the library preparation, a modified adapter that contains 

site-specific nicking site is used, which will facilitate the reverse sequencing. After the forward 

sequencing run, the ion chip is removed from PGM and a series of enzymatic steps are 

performed. The forward primer is extended fully to the end of the template. Then, the original 

template is nicked and degraded by an enzyme to produce the primer for the reverse sequencing. 

Next, the chip is loaded back to PGM, and the sequencing is performed in the reverse direction 

(Ion Torrent, 2011b).  

Ion Torrent offers three kinds of chips, 314, 316, and 318. The number of wells on each 

type of chip are 1.2, 6.2, and 11.1 million. For single-end sequencing, the three chips can 

generate >10 Mbp, >100 Mbp, and >1 Gbp output, respectively. Currently, the read length of 

single-end is around 200 bp, but it will reach 400 bp in 2012 (Ion Torrent, 2011a). With paired-

end sequencing on an E. coli strain, 2 × 100 bp can be produced using a 314 chip, yielding 69.7 

Mbp of data with a quality score greater than 20. Compared with a 314 chip, a 2 × 100 bp paired-

end sequencing on a 316 chip can produce a total of 826 Mbp of data, increasing the output 
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significantly. At present, no paired-end sequencing datasets have been released for the 318 chips 

(Heger, 2011).  

The semiconductor sequencing technology provides even coverage of an entire genome 

regardless of the changes in G+C content, demonstrating minimum sequence bias in the reads 

(Rothberg et al. 2011). In terms of data accuracy, semiconductor sequencing is able to achieve 

>99.5% raw accuracy and >99.99% consensus accuracy according to the company’s reports (Ion 

Torrent, 2011a). However, similar to pyrosequencing, the most common error types are insertions 

and deletions caused by homopolymers in the DNA template. A 6-mer or longer stretches makes 

statistical analysis problematic and difficult (Ion Torrent, 2011a).    

 

1.3.9 Summary 

Due to the intrinsic limitations and biases of each of the currently available sequencing 

technologies, it has been suggested that using a combined sequencing strategies is more practical, 

considering both the quality of sequencing results and cost (Goldberg et al. 2006; McCutcheon 

and Moran 2007; Aury et al. 2008; Lam et al. 2011). Also, some platform may have a better 

performance on certain applications compared with other techniques. In addition, for a genome 

having a large number of repetitive regions, the use of paired-ends or mate-pairs DNA library is 

necessary since the addition of a large amount of relatively short reads won’t help much to reduce 

the gaps between sequencing regions.  

At present, cost and data quality are still the main concerns of bacterial genome 

sequencing. However, with constantly developing sequencing technology as well as 

bioinformatics analysis tools, it is possible that in the near future, bacterial genome sequencing 

and analysis will become a routine procedure in every microbial laboratory.  
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2  OBJECTIVES 

Since P. putida UW4 is a well-studied PGPB that has great potential to promote plant 

growth in the field, knowing its genome sequence will be beneficial in understanding the 

mechanisms of plant-microbe interactions. Moreover, bacterial genome sequencing is now 

affordable owing to the rapid development of NGS technologies, making the genome sequencing 

of UW4 feasible. Therefore the objectives of my research project were: 

I. Sequence P. putida UW4 genome using one of the NGS platforms namely 

pyrosequencing, with two DNA libraries, single-read and paired-end read 

II. Fill the gaps between contigs by directed-PCR and primer-walking 

III. Annotate and analyze P. putida UW4 genome sequence: 

a. General features of the genome 

b. Genes involved in plant growth promotion and UW4 lifestyle 

c. Metabolic pathways and protein secretion systems 

d. Whole genome phylogeny and comparisons 

e. Genome comparison among complete sequenced Pseudomonas genomes 

f. 16S rRNA genes phylogenetic analysis of Pseudomonas genomes 

g. Heat shock protein genes phylogeny and σ32 promoter analyses 
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3  MATERIALS AND METHODS 

3.1 Bacterial Growth and DNA Extraction 

A single colony of P. putida UW4 grown on Tryptic Soy agar (Difco Laboratories, 

Detroit, MI) was inoculated into 5 mL of TSB (Difco Laboratories, Detroit, MI) and grown 

overnight with shaking at 30°C. Bacterial cells were collected by centrifugation and the genomic 

DNA was extracted with a Wizard® Genomic DNA purification kit (Promega, Madison, WI, 

USA) according to the manufacturer’s instructions. E. coli DH5α (Hanahan, 1983) was used as a 

recipient for recombinant plasmids. This strain and its transformants with different plasmids were 

grown at 37°C in Luria-Bertani (LB) broth medium (Difco Laboratories, Detroit, MI), with 

appropriate antibiotics. Antibiotics were added at the following concentrations for E. coli: 

ampicillin, 100 µg/mL; tetracycline, 15 µg/mL.  

  

3.2 Whole Genome Pyrosequencing and Sequence Assembly 

The complete genomic sequencing was carried out at The McGill University and Genome 

Quebec Innovation Center where they used the current Roche GS-FLX Titanium chemistry 

protocols in place to sequence the genomic DNA. First, a shotgun library was prepared from 5 µg 

of DNA and subsequently sequenced, generating 203,178 reads in 74,063,913 bp of sequencing 

data. The average final read length for the run was 365 bp. For the assembly, 93% of the reads 

were fully assembled into 312 large contigs, ranging from 518 – 197,691 bp. The sum of the 

large contigs’ size is 6,049,654 bp and about 12× of the sequencing coverage was achieved. In 

order to facilitate gap closure in the genome sequence, an 8 Kb paired-end library was then 

constructed using 15 µg of DNA to re-sequence the entire genome. After sequencing, 186,877 

reads were generated in 73,775,344 bp of sequencing data, with an average final read length of 
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395 bp. Combining the results of shotgun and paired-end sequencing, 96% of the reads were fully 

assembled into 122 large contigs ranging from 500 – 356,439 bp. Ten ordered and oriented 

scaffolds with a genome size of 6.22 Mb were obtained. Using paired-end sequencing, another 

12× genome coverage was achieved. De novo sequence assembly was completed using Roche’s 

Newbler assembler v.2.0.01.14 at The McGill University and Genome Quebec Innovation 

Center. Gaps between the contigs were filled in by sequencing the PCR products using Applied 

Biosystems 3730xl DNA Analyzers at The McGill University and Genome Quebec Innovation 

Center, University of Guelph’s Advanced Analysis Centre, and York University Core Molecular 

Biology and DNA Sequencing Facility. Initially, 100 pairs of primers were designed to fill in the 

100 gaps. Then, primer walking was used to close the gaps that were greater than 1.5 Kb. KOD 

Hot Start DNA Polymerase (EMD Millipore, MA, United States) and GoTaq® Hot Start 

Polymerase (Promega, WI, United States) were used for PCR amplification. 

 

3.3 Genome Annotation and Analysis 

The P. putida UW4 genome sequence was first annotated using web-based automated 

pipelines including Bacterial Annotation System (BASys) v1.0 (Van Domselaar et al. 2005) and 

Integrative Services for Genomic Analysis (ISGA) v1.2 (Hemmerich et al. 2010). Putative coding 

sequences (CDS) were identified by Glimmer v3.02 (Delcher et al. 2007) and Prokaryotic 

Dynamic Programming Genefinding Algorithm (Prodigal) v2.5 (Hyatt et al. 2010). The results 

from the two programs were combined and manually reviewed. Ribosomal RNA and transfer 

RNA genes were predicted by RNAmmer v1.2 (Lagesen et al. 2007) and tRNAScan-SE (Lowe 

and Eddy 1997), which are embedded in the ISGA annotation pipeline. Next, functional 

annotation of the identified genes was conducted by a sequence similarity search against non-
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redundant (NR) protein database at the GenBank by BLAST, and putative function was assigned 

to each gene with a cutoff E-value of ≤1 E-05. Cluster of Orthologous Group (COG) and enzyme-

coding genes were predicted by COG Finder 1.0 and ECNumber Finder in BASys. With the 

ISGA pipeline, COG was searched against the NCBI COG database (Tatusov et al. 1997 and 

2003) and an E.C. number was assigned by PRIAM (Claudel-Renard et al. 2003). The results 

from both pipelines were compared and manually corrected based on the current COG database 

and Enzyme nomenclature database (Bairoch 2000). Protein localization was predicted by 

PSORTb v3.0.2 (Yu et al. 2010) and genomic islands (GIs) were detected using IslandViewer 

(Langille and Brinkman 2009). Repeat sequences were examined by Tandem Repeats Finder 

v4.04 (Benson 1999). The metabolic pathways were constructed using Pathway Tools v15.5 

(Karp et al. 2009) and the KEGG database (Kanehisa et al. 2004). Genome comparisons among 

10 completely sequenced P. putida and P. fluorescens genomes were carried out using 

TBLASTX (Camacho et al. 2009) and displayed by the Artemis Comparison Tool (ACT) (Carver 

et al. 2005). Orthologs in the 21 Pseudomonas genomes were identified using Roundup (DeLuca 

et al. 2006) with the most stringent blast E-value (1 E-20) and divergence thresholds (0.2). Then 

the amino acid sequences of the core genes were aligned using the MUSCLE program in 

SeaView v4.3.2 (Edgar 2004; Gouy et al. 2010), and poorly aligned regions were removed 

manually using Geneious Pro 5.4.6 (Drummond et al. 2011). Before constructing a maximum 

likelihood (ML) tree for each alignment, the model of protein evolution was selected using 

PROTTEST v2.4 (Abascal et al. 2005).  Next, a ML tree was built using PHYML v3.0 (Guindon 

and Gascuel 2003) embedded in SeaView v4.3.2 with the appropriate model for each alignment. 

Nodal support was evaluated by the approximate likelihood ratio test (aLRT) (Anisimova and 

Gascuel 2006). Based on all the orthologs that were identified, a phylogenetic tree of 21 different 

Pseudomonas species was constructed using the consensus tree program of Geneious Pro 5.4.6 
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(Drummond et al. 2011). DNAPlotter (Carver et al. 2009) was used to draw a P. putida UW4 

genome atlas. The analysis of DnaA boxes consensus sequences of UW4 was performed using 

MEME (Multiple Em for Motif Elicitation) v4.8.1 (Bailey and Elkan, 1994). 

 

3.4 Phylogeny of 16S rRNA genes of Pseudomonas genomes 

The 16S rRNA gene sequences of P. putida UW4 were aligned with those of the publicly 

available Pseudomonas genome sequences or the type strain of P. fluorescens and P. putida using 

the MUSCLE program in SeaView v4.3.2 (Edgar 2004; Gouy et al. 2010) and refined manually 

using Geneious Pro v5.4.6 (Drummond et al. 2011). All the 21 Pseudomonas genomes have 

multiple copies of 16S rRNA genes, and only unique sequences were included in this analysis. 

The substitution model was selected using jModeltest v0.1.1 (Posada 2008) and a ML tree was 

built by PHYML v3.0 (Guindon and Gascuel 2003) in SeaView v4.3.2 with a general time-

reversible model (GTR), with the nodal support assessed by aLRT. Analysis of 16S rRNA 

sequence identities was perfomed by BioEdit v7.1.3 (Hall 1999). 

 

3.5 Analysis of Heat Shock Protein Genes and σ32 promoters 

Nucleotide sequences of heat shock protein genes were aligned using Seaview v4.3.2 and 

poorly aligned regions were eliminated using Geneious Pro v5.4.6. jModelTest v0.1.1 was used 

to determine the best substitution model for nucleotide sequence alignments and GTR model was 

chosen for constructing the ML phylogenetic trees. aLRT was used to evaluate the reliability of 

the nodal support. The promoter sequences of the heat shock sigma factor, σ32, were determined 

visually through sequence similarity with the consensus sequence.  
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4  Results 

4.1 General Genome Features 

The genome of P. putida UW4 has a single circular chromosome of 6,183,388 bp (Fig. 4-

1) and an average G+C content of 60.05% (Table 4-1). The genome contains 5,431 predicted 

CDSs with an average length of 995 bp. Among these CDSs, 4379 (80.7%) genes could be 

classified into COG families composed of 22 categories (Table 4-2). Seventeen CDSs were 

assigned pseudogenes due to missing either an N- and/or C-terminus (Table 4-3). Coding regions 

cover 87.4% of the whole genome. Biological roles were assigned to 4,154 (76.4%) genes of the 

predicted coding sequences based on similarity searches and experimental evidence. The 

remaining coding sequences were classified as proteins with unknown function. Among the 1277 

(23.5%) CDSs with unknown function, 132 hypothetical proteins have no hit when searched 

against protein databases using a cutoff E value of 10-5, indicating putative unique genes present 

only in UW4. A total of seven rRNA operons including eight 5S rRNAs, seven 16S rRNAs, and 

seven 23S rRNAs are present on the chromosome. In addition, 72 tRNA genes that represent all 

20 amino acids, and a tRNA for selenocysteine, were identified (Table 4-4).  

For circular bacterial chromosomes, replication starts at the oriC (replication origin) 

region and proceeds bidirectionally to the terminus. It has been observed that most circular 

bacterial genomes display asymmetry in nucleotide composition in the leading strand and lagging 

strand, due to the strand-biased spontaneous mutation from C to T during replication (Marín and 

Xia 2008). Therefore GC skew (G-C/G+C) has been widely used to identify the origin and 

terminus of replication in many bacteria. The chromosome of P. putida UW4 displays two clear 

GC skew transitions, which corresponds with its oriC and terminus (Fig. 4-1). The oriC site 

contains nine conserved DnaA-binding boxes (TTATCCACA and closely related sequences) 
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Fig. 4-1. Circular genome map of P. putida UW4. From the outside in, the outer black circle 

shows the scale line in Mbps; circles 2 and 3 represent the coding region with the colors of the 

COG categories; circle 4 and 5 show tRNA (green) and rRNA (red), respectively; circle 6 

displays the IS elements (blue); circle 7 shows the genomic islands (orange); circle 8 represents 

mean centered G+C content (bars facing outside-above mean, bars facing inside-below mean); 

circle 9 shows GC skew (G-C)/(G+C). GC content and GC skew were calculated using a 10-kb 

window in steps of 200 bp. 
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Table 4-1. General Features of P. putida UW4 Genome 
Features Chromosome 
Size (bp) 6,183,388 
G+C content (%) 60.05 
Number of CDSs 5431 
Total CDSs size (bp) 5,406,063 
Coding % 87.4 
Average CDS length (nt) 995 
Pseudogenes 17 
tRNAs 72 
rRNA genes (clusters) 22 (7) 
Number of genes with assigned function 4154 (76%) 
Number of genes without assigned function 1277 (24%) 
Number of predicted enzymes 1551 (29%) 
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Table 4-2. COG Functional Categories of P. putida UW4 
  Functional Category UW4 
A RNA processing and modification 1 
B Chromatin structure and dynamics 3 
C Energy production and conversion 288 
D Cell cycle control, cell division, chromosome partitioning 37 
E Amino acid transport and metabolism 500 
F Nucleotide transport and metabolism 90 
G Carbohydrate transport and metabolism 232 
H Coenzyme transport and metabolism 156 
I Lipid transport and metabolism 255 
J Translation, ribosomal structure and biogenesis 174 
K Transcription 431 
L Replication, recombination and repair 177 
M Cell wall/membrane/envelope biogenesis 262 
N Cell motility 114 
O Posttranslational modification, protein turnover, chaperones 179 
P Inorganic ion transport and metabolism 229 
Q Secondary metabolites biosynthesis, transport and catabolism 102 
R General function prediction only 440 
S Function unknown 373 
T Signal transduction mechanisms 231 
U Intracellular trafficking, secretion, and vesicular transport 43 
V Defense mechanisms 62 
- Not in COGs 1052 
Total   5431 
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Table 4-3. P. putida UW4 Pseudogenes 
locus_tag product pseudo 
PputUW4_2113 long-chain fatty acid transporter C-terminus missing fragment 
PputUW4_2521 AraC family transcriptional regulator C-terminus missing fragment 
PputUW4_3551 IS630 family transposase, truncated C-terminus missing fragment 
PputUW4_5207 glutamine amidotransferase C-terminus missing fragment 
PputUW4_0114 von Willebrand factor, type A N-terminus missing fragment 
PputUW4_1252 methyltransferase N-terminus missing fragment 
PputUW4_2026 ATP-dependent DNA ligase LigD N-terminus missing fragment 
PputUW4_2127 IS30 family transposase N-terminus missing fragment 
PputUW4_2373 IclR family transcriptional regulator N-terminus missing fragment 
PputUW4_2519 xylulose kinase N-terminus missing fragment 
PputUW4_3361 phage integrase N-terminus missing fragment 
PputUW4_3383 LuxR family transcriptional regulator N-terminus missing fragment 
PputUW4_4664 type IV pilus-associated protein N-terminus missing fragment 
PputUW4_1487 transcriptional regulator N- and C-terminus missing fragment 
PputUW4_2143 hypothetical protein N- and C-terminus missing fragment 
PputUW4_2427 LysR family transcriptional regulator N- and C-terminus missing fragment 
PputUW4_4694 glutamate dehydrogenase N- and C-terminus missing fragment 
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Table 4-4. P. putida UW4 tRNAs 
tRNA Number 
Ala 9 
Arg 5 
Asn 2 
Asp 4 
Cys 1 
Gln 2 
Glu 4 
Gly 5 
His 2 
Ile 7 
Leu 6 
Lys 2 
Met 5 
Phe 1 
Pro 3 
Sec 1 
Ser 4 
Thr 3 
Trp 1 
Tyr 1 
Val 4 
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(Fujita et al. 1989; Yee and Smith, 1990) and is located between the rpmH and the dnaA  genes 

(Fig. 4-2).  

Nineteen putative GIs were identified by IslandViewer, which integrates two prediction 

methods IslandPath (DNA composition comparison) (Hsiao et al. 2003) and SIGI-HMM (codon 

usage) (Waack et al. 2006) (Fig. 4-3 and Table 4-5). The size of the 19 islands ranged from 4,143 

bp  (GI 15) to 25,664 bp (GI 7). The largest GI 7 contains 24 genes, whereas the smallest GI 15  

has 6 genes (Table 4-5). Eighteen GIs have a lower GC content ranging from 40.33% to 58.82% 

compared with the average GC content of the UW4 genome. GI 11 has a GC content of 63.92%, 

which is higher than the average GC content of the UW4 genome. It contains 5 genes and two of 

them (PputUW4_2603 and PputUW4_2604) showed high similarities (88% and 84% at an amino 

acid level) with those in the predicted GIs of P. fluorescens Pf0-1. Among the 19 GIs, six contain 

mobile genetic elements, such as integrase and transposase genes, suggesting that these GIs can 

self-mobilize (Langille et al. 2010). The 3’ ends of tRNAs have been suggested to be hot spots 

for foreign DNA integration (Hacker et al. 1997). In UW4, GI 4 and GI 15 are inserted adjacent 

to the 3’ ends of tRNA-Leu and tRNA-Val, respectively, which support the identification of these 

two GIs.  

 The genome of P. putida UW4 has 31 complete putative Insertion Sequence (IS) elements 

and 5 truncated remnants of IS elements (Table 4-6). Among the complete IS elements, sixteen 

belong to the IS110 family, seven from the IS1182 family and eight from the IS3 family. No 

intact prophages were observed in the genome of UW4, nevertheless, UW4 carries 19 phage 

related genes (Table 4-7).  

 One hundred and eighty two tandem repeats were identified in the P. putida UW4 genome 

(Table 4-8). Among the 182 repeats, 122 were found in the coding region, which may cause 

changes in protein sequence during replication. Sixty repeats were observed in the non-  
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Fig. 4-2. (A) Nucleotide sequence of the dnaA  upstream region of P. putida UW4. Putative 

promoters of rpmH and dnaA  are boxed. DnaA boxes are underlined in orange and the arrows 

indicate the orientation. (B) Frequencies of nucleotides at each position of the nine UW4 DnaA 

boxes.  
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(A) 

 
(B) 
 

 
 
 
 
 

 

TGTCGTGTTACCTGGTTCGTCCACAACGGGCCGGAATGGCCCCCGTTTTAAGAG!

ACCGGGGATTCTAGAGAAAGCAAGCCTTCAGGTCAATTTCCAACCAGCGTTTCCTTATAAATAGATCT

CCAGGCGTTTTGCGCTGAACGAACCGCGGGTAAATATAAAAATAAGAAAGGAAAGTATTTAAAGCTTT

TCTGTAAAGCTTATAAAAGCTAGGCCCGGACCCTTCTGTGGATAAGTGCCTTTAGCCCTTGTTTTACC

TGCTGTACAGAGAATGACAACTACAGTGGAAAACCGTGTTCAGCCTGTGCTGCGCTATCGGATAACCT

GTGTGTGGAAAGCCGGTTTATCCACAGGCCGGTTATCCACCGAGTTTCGCTCCCACTTGTGCAATGAC

CTTAACCCCGGTTATCCACAGAGCTTATGCACAGACCACTGGTCGTCTTTTTTGCGTATGAAACGGCG

ATTCTTCTTGGTCGATGAACCACCTTCGTGTGGATAAGTCGGCGTCTGGTCGCTACAATGGCCGCTTG

TTTTTGCCTCACCGGCTTTCAACTTAGGGGATATCC!
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Fig. 4-3. Genomic islands of P. putida UW4 predicted by IslandViewer. The outer black circle 

shows the scale line in Mbps. Predicted genomic islands are colored based on the following 

methods: SIGI-HMM, orange; IslandPath-DIMOB, blue; Integrated detection, red. Black plot 

represents the GC content (%). 
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Table 4-5. Genomic Islands of P. putida UW4 Predicted by IslandViewer 
Genomic Islands Genes 

GC 
content   Start End Size 

(bp) Locus ID Product 

1 743,662 749,401 5,739 

PputUW4_0641 ATPase 

53.94 

PputUW4_0642 
McrBC 5-methylcytosine 
restriction system 
component-like protein 

PputUW4_0643 hypothetical protein 
PputUW4_0644 hypothetical protein 
PputUW4_0645 hypothetical protein 
PputUW4_0646 hypothetical protein 
PputUW4_0647 hypothetical protein 
PputUW4_0648 hypothetical protein 

2 780,455 791,108 10,653 

PputUW4_0666 hypothetical protein 

55.06 
PputUW4_0667 putative helicase 
PputUW4_0668 DNA helicase 
PputUW4_0669 hypothetical protein 
PputUW4_0670 phage integrase 

3 797,778 809,172 11,394 

PputUW4_0673 chemotaxis protein MotB-
related protein 

54.74 

PputUW4_0674 hypothetical protein 

PputUW4_0675 SNF2 family DNA/RNA 
helicase 

PputUW4_0676 5-methylcytosine-specific 
restriction protein C 

PputUW4_0677 hypothetical protein 
PputUW4_0678 Phage integrase 

4 1,078,659 1,088,425 9,766 

PputUW4_0917 
NAD-dependent formate 
dehydrogenase gamma 
subunit 

52.94 
PputUW4_0918 type III restriction protein 

res subunit 
PputUW4_0919 hypothetical protein 

5 1,598,659 1,609,449 10,790 

PputUW4_1368 putative lipoprotein 

44.61 

PputUW4_1369 Integration host factor 
subunit beta 

PputUW4_1370 chain length determinant 
family protein 

PputUW4_1371 acetyltransferase 

PputUW4_1372 lipopolysaccharide 
biosynthesis protein RffA 
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PputUW4_1373 hypothetical protein 
PputUW4_1374 hypothetical protein 
PputUW4_1375 hypothetical protein 
PputUW4_1376 hypothetical protein 

PputUW4_1377 glycosyl transferases group 
1 family protein 

PputUW4_1378 dTDP-4-dehydrorhamnose 
reductase 

6 2,436,768 2,446,210 9,442 

PputUW4_2095 hypothetical protein 

54.74 

PputUW4_2096 hypothetical protein 
PputUW4_2097 hypothetical protein 
PputUW4_2098 hypothetical protein 
PputUW4_2099 diguanylate cyclase 
PputUW4_2100 hypothetical protein 
PputUW4_2101 acetyltransferase 

PputUW4_2102 MarR family transcriptional 
regulator 

PputUW4_2103 AraC family transcriptional 
regulator 

7 2,464,903 2,490,567 25,664 

PputUW4_2118 quinone oxidoreductase 

55.11 

PputUW4_2119 methionine sulfoxide 
reductase A 

PputUW4_2120 RND family efflux 
transporter, MFP subunit 

PputUW4_2121 ABC transporter family 
protein 

PputUW4_2122 peptide ABC transporter 
permease 

PputUW4_2123 peptide ABC transporter 
permease 

PputUW4_2124 IS1182 family transposase 
PputUW4_2125 ThiF family protein 
PputUW4_2126 hypothetical protein 
PputUW4_2128 hypothetical protein 
PputUW4_2129 hypothetical protein 
PputUW4_2130 hypothetical protein 
PputUW4_2131 hypothetical protein 

PputUW4_2132 IS1182 family transposase, 
truncated 

PputUW4_2133 IS1182 family transposase, 
truncated 

PputUW4_2134 hypothetical protein 
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PputUW4_2135 hypothetical protein 
PputUW4_2136 IS1182 family transposase 

PputUW4_2137 polysaccharide deacetylase 
family protein 

PputUW4_2138 GCN5-related N-
acetyltransferase 

PputUW4_2139 hypothetical protein 

PputUW4_2140 HxlR family transcriptional 
regulator 

PputUW4_2141 nitrilase 

PputUW4_2142 
glutathione-dependent 
formaldehyde-
activatingGFA 

8 2,522,087 2,526,716 4,629 

PputUW4_2167 hypothetical protein 

48.66 
PputUW4_2168 integrase family protein 
PputUW4_2169 hypothetical protein 
PputUW4_2170 hypothetical protein 
PputUW4_2171 hypothetical protein 

9 2,593,656 2,597,985 4,329 

PputUW4_2219 cytosine/purines uracil 
thiamine allantoinpermease 

55.66 
PputUW4_2220 histone deacetylase 

PputUW4_2221 LysR family transcriptional 
regulator 

PputUW4_2222 lysine exporter protein 
LysE/YggA 

10 2,943,190 2,947,513 4,323 PputUW4_2534 hypothetical protein 49.35 PputUW4_2535 hypothetical protein 

11 3,036,561 3,041,305 4,744 

PputUW4_2600 2,4-dihydroxyacetophenone 
dioxygenase 

63.92 

PputUW4_2601 hypothetical protein 

PputUW4_2602 short chain dehydrogenase 
family protein 

PputUW4_2603 thiolase 

PputUW4_2604 AMP-dependent synthetase 
and ligase 

12 3,099,312 3,104,459 5,147 

PputUW4_2652 LysR family transcriptional 
regulator 

53.17 
PputUW4_2653 amino acid transporter 

PputUW4_2654 cystathionine gamma-
synthase 

PputUW4_2655 AraC family transcriptional 
regulator 
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13 3,176,210 3,186,955 10,745 

PputUW4_2727 hypothetical protein 

53.82 

PputUW4_2728 CadC family transcriptional 
regulator 

PputUW4_2729 hypothetical protein 
PputUW4_2730 hypothetical protein 

PputUW4_2731 AraC family transcriptional 
regulator 

PputUW4_2732 hypothetical protein 

PputUW4_2733 OmpA-like transmembrane 
domain protein 

PputUW4_2734 hypothetical protein 

14 3,737,337 3,743,674 6,337 

PputUW4_3195 
two component LuxR 
family transcriptional 
regulator 

58.82 

PputUW4_3196 hypothetical protein 
PputUW4_3197 IS110 family transposase 

PputUW4_3198 XRE family transcriptional 
regulator 

PputUW4_3199 hypothetical protein 
PputUW4_3200 hypothetical protein 
PputUW4_3201 3-oxoadipate enol-lactonase 
PputUW4_3202 aldehyde dehydrogenase 

15 3,966,752 3,970,895 4,143 

PputUW4_3416 hypothetical protein 

52.82 

PputUW4_3417 hypothetical protein 
PputUW4_3418 hypothetical protein 
PputUW4_3419 hypothetical protein 

PputUW4_3420 flagella synthesis regulator 
FleN 

PputUW4_3421 hypothetical protein 

16 4,116,806 4,123,634 6,828 

PputUW4_3545 glycerol-3-phosphate 
cytidyltransferase 

40.33 
PputUW4_3546 polysaccharide biosynthesis 

protein 
PputUW4_3547 hypothetical protein 
PputUW4_3548 hypothetical protein 
PputUW4_3549 glucosyltransferase 
PputUW4_3550 glucosyltransferase 

17 4,159,348 4,182,589 23,241 

PputUW4_3585 integrase family protein 

54.4 
PputUW4_3586 hypothetical protein 
PputUW4_3587 hypothetical protein 
PputUW4_3588 hypothetical protein 
PputUW4_3589 hypothetical protein 
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PputUW4_3590 hypothetical protein 
PputUW4_3591 hypothetical protein 
PputUW4_3592 transposon resolvase 
PputUW4_3593 hypothetical protein 
PputUW4_3594 hypothetical protein 
PputUW4_3595 hypothetical protein 
PputUW4_3596 hypothetical protein 
PputUW4_3597 hypothetical protein 
PputUW4_3598 hypothetical protein 
PputUW4_3599 hypothetical protein 

PputUW4_3600 NAD-dependent DNA 
ligase LigA 

PputUW4_3601 cell division protein ZipA 

PputUW4_3602 chromosome partition 
protein 

PputUW4_3603 GntR family transcriptional 
regulator 

PputUW4_3604 xanthine dehydrogenase 
small subunit 

PputUW4_3605 
xanthine dehydrogenase, 
molybdopterin-
bindingsubunit B 

18 4,818,892 4,826,804 7,912 

PputUW4_4192 hypothetical protein 

44.48 

PputUW4_4193 cytosine-specific 
methyltransferase 

PputUW4_4194 hypothetical protein 
PputUW4_4195 histidine kinase 
PputUW4_4196 hypothetical protein 

PputUW4_4197 5-methylcytosine-specific 
restriction enzyme 

PputUW4_4198 DNA mismatch 
endonuclease Vsr 

19 5,281,019 5,288,766 7,748 

PputUW4_4611 paraquat-inducible protein 
A 

52.04 PputUW4_4612 paraquat-inducible protein 
A 

PputUW4_4613 sulfite oxidase subunit 
YedZ 
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Table 4-6. P. putida UW4 IS Elements 
Family/Group P. putida UW4 CDS ID 
IS110 PputUW4_0474 PputUW4_0841 PputUW4 2025 PputUW4 4591 PputUW4 5362 

IS110/IS1111 
PputUW4_0318 PputUW4_1254 PputUW4_1997 PputUW4_3132 
PputUW4_3197 PputUW4_3451 PputUW4_4228 PputUW4_4445 
PputUW4_5136 PputUW4_5212 PputUW4_5335 

IS1182 PputUW4_1560 PputUW4_2124 PputUW4_2136 PputUW4_2164 
PputUW4_2166 PputUW4_2215 PputUW4_2223 

IS3/IS3 PputUW4_0151 PputUW4_1502 PputUW4_1775 PputUW4_2015 
PputUW4_3143 PputUW4_3925 PputUW4_4241 PputUW4_4349 

Truncated   
IS110/IS1111 PputUW4_3001 
IS1182 PputUW4_2132 PputUW4_2133 
IS30 PputUW4_2127 
IS5/IS427 PputUW4_3360 
IS630 PputUW4_3551 
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Table 4-7. P. putida UW4 Phage Related CDSs 
locus_tag product 
PputUW4_0456 HflK protein 
PputUW4_0457 HflC protein 
PputUW4_0670 phage integrase 
PputUW4_0678 phage integrase 
PputUW4_1008 GtrA family protein 
PputUW4_1009 bactoprenol glucosyl transferase 
PputUW4_1029 hypothetical protein 
PputUW4_1125 phage repressor 
PputUW4_1558 phage integrase family site specific recombinase 
PputUW4_1764 phage repressor 
PputUW4_1775 integrase catalytic protein 
PputUW4_2419 cointegrate resolution protein T 
PputUW4_2420 cointegrate resolution protein S 
PputUW4_2781 phage integrase 
PputUW4_3269 hypothetical protein 
PputUW4_3361 phage integrase 
PputUW4_3592 transposon resolvase 
PputUW4_4196 hypothetical protein 
PputUW4_5301 prophage antirepressor 
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Table 4-8. Tandem Repeats Identified in P. putida UW4 

Start End Period 
Size 

Consensus 
Size 

Copy 
Number 

Affected Gene or 
Region Gene Product Repeats Relative to 

CDS 

43924 43964 21 22 1.9 41 oligopeptidase A inside 
121176 121255 27 28 3 114 (pseudo) von Willebrand factor, type A inside 
121830 121859 6 6 5 114 (pseudo) von Willebrand factor, type A inside 

124695 129038 318 317 13.7 114 (pseudo), 
115, 116 

von Willebrand factor, type A; 
conserved repeat domain 
protein; conserved repeat 
domain protein 

inside 

129077 129901 300 300 2.8 116 conserved repeat domain 
protein inside 

130252 130291 6 6 6.7 116 conserved repeat domain 
protein inside 

448990 449029 21 21 1.9 396 dihydrolipoamide 
acetyltransferase inside 

571073 571412 84 84 4 497 hypothetical protein inside 

634896 634947 15 14 3.7 555 
acetyl-CoA carboxylase biotin 
carboxyl carrier protein 
subunit 

inside 

634923 634952 6 6 5 555 
acetyl-CoA carboxylase biotin 
carboxyl carrier protein 
subunit 

inside 

1058842 1059321 123 123 3.9 903 hypothetical protein inside 

1237244 1237308 21 20 3.1 1043 methyl-accepting chemotaxis 
protein inside 

1373898 1373930 16 17 2 1170 hypothetical protein inside 
1408421 1408452 12 12 2.7 1199 hypothetical protein inside 
1479472 1479511 15 15 2.7 1266 hypothetical protein inside 
1479931 1480007 36 36 2.1 1267 hypothetical protein inside 
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1807605 1807634 15 16 1.9 1550 Non-ribosomal peptide 
synthetase inside 

1865671 1865696 12 12 2.2 1584 Hpt sensor hybrid histidine 
kinase inside 

1920541 1921009 39 39 12 1630 hypothetical protein inside 
1939911 1939955 21 21 2.1 1649 hypothetical protein inside 
1940032 1940078 24 24 2 1649 hypothetical protein inside 
2029994 2030045 27 27 1.9 1725 heme peroxidase inside 
2030037 2030826 273 272 2.9 1725 heme peroxidase inside 
2030243 2030299 27 27 2.1 1725 heme peroxidase inside 
2030533 2030592 27 27 2.2 1725 heme peroxidase inside 
2067404 2067444 20 21 2 1756 AFG1-like ATPase inside 
2222958 2223231 39 39 7 1899 hypothetical protein inside 
2248389 2248418 15 15 2 1921 hypothetical protein inside 
2248428 2248469 15 15 2.8 1921 hypothetical protein inside 
2248458 2248521 30 30 2.2 1921 hypothetical protein inside 
2259311 2259560 84 84 3 1932 hypothetical protein inside 
2449938 2450234 33 33 9 2106 hypothetical protein inside 
2450214 2450295 18 18 4.6 2106 hypothetical protein inside 
2450218 2450303 36 36 2.4 2106 hypothetical protein inside 

2532903 2532935 6 6 5.3 2173 cyclic beta 1-2 glucan 
synthetase inside 

2544850 2544899 18 19 2.8 2181 hypothetical protein inside 
2544895 2544959 9 9 7.2 2181 hypothetical protein inside 
2562691 2563936 276 275 4.5 2190 sensor histidine kinase inside 

2600012 2600043 16 17 1.9 2224 RipR family transcriptional 
regulator inside 

2665103 2665175 27 27 2.7 2284 hemolysin-type calcium-
binding region inside 
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2665366 2665503 54 54 2.6 2284 hemolysin-type calcium-
binding region inside 

2665925 2665996 27 27 2.7 2284 hemolysin-type calcium-
binding region inside 

2682575 2682603 14 15 2 2301 3-oxoacyl-[acyl-carrier-
protein] reductase inside 

2801188 2801654 123 123 3.8 2395 hypothetical protein inside 
2975571 2975623 24 24 2.2 2556 hypothetical protein inside 
2975578 2975624 24 24 2 2556 hypothetical protein inside 
3112030 3112056 12 12 2.2 2664 cation efflux family protein inside 
3144781 3144819 18 17 2.4 2692 hypothetical protein inside 
3154032 3154065 15 15 2.3 2701 hypothetical protein inside 
3176471 3176601 67 68 1.9 2727 hypothetical protein inside 
3510124 3510909 300 300 2.6 2993 hypothetical protein inside 
3511360 3512139 375 375 2.1 2993 hypothetical protein inside 
3641058 3641162 48 48 2.2 3101 hypothetical protein inside 
3641142 3641185 18 18 2.4 3101 hypothetical protein inside 
3644694 3645032 126 126 2.7 3106 hypothetical protein inside 
3644757 3644959 63 63 3.2 3106 hypothetical protein inside 
3738308 3738659 78 78 4.5 3196 hypothetical protein inside 
3741377 3741429 27 27 2 3199 hypothetical protein inside 
3741468 3741516 24 24 2 3199 hypothetical protein inside 
3846098 3846150 15 15 3.5 3304 hypothetical protein inside 
3846136 3846204 18 18 3.7 3304 hypothetical protein inside 
3846167 3846212 21 21 2.2 3304 hypothetical protein inside 
3846236 3846265 9 9 3.3 3304 hypothetical protein inside 
3846422 3846586 36 36 4.6 3304 hypothetical protein inside 

4050739 4050793 24 24 2.3 3489 copper-resistance protein 
CopA inside 

4051392 4051496 39 39 2.7 3490 copper resistance protein B inside 
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4155899 4155941 21 21 2 3582 hypothetical protein inside 
4165503 4165535 15 16 2.1 3589 hypothetical protein inside 
4216459 4216692 63 63 3.7 3635 hypothetical protein inside 

4394420 4394470 18 18 2.8 3805 dihydrolipoamide 
succinyltransferase inside 

4421694 4421724 15 15 2.1 3829 urea transporter inside 

4449929 4449975 15 15 3.1 3860 chemotaxis sensor histidine 
kinase CheA inside 

4469374 4469413 12 12 3.3 3881 flagellar assembly protein H inside 

4531905 4531945 21 22 1.9 3939 TrkH family potassium uptake 
protein inside 

4560584 4560618 18 18 2 3957 ABC transporter, 
transmembrane region inside 

4654006 4654046 18 18 2.3 4047 ribonuclease E inside 
4654015 4654049 18 18 1.9 4047 ribonuclease E inside 
4654106 4654169 27 27 2.4 4047 ribonuclease E inside 
4718832 4718880 21 21 2.2 4110 GTP diphosphokinase inside 
4767521 4769427 462 462 4.1 4154 hypothetical protein inside 
4769292 4769562 135 135 2 4154 hypothetical protein inside 
4769427 4770439 462 463 2.2 4154 hypothetical protein inside 
4785020 4785089 34 34 2.1 4166 hypothetical protein inside 

4850751 4850780 15 15 2 4226 lysine exporter protein 
LysE/YggA inside 

4930376 4930450 27 24 3.1 4297 TolA colicin import membrane 
protein inside 

4930413 4930507 24 25 3.8 4297 TolA colicin import membrane 
protein inside 

4930462 4930537 24 24 3.2 4297 TolA colicin import membrane 
protein inside 
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4930518 4930582 24 24 2.7 4297 TolA colicin import membrane 
protein inside 

4930537 4930591 24 21 2.5 4297 TolA colicin import membrane 
protein inside 

4930623 4930735 18 18 6.3 4297 TolA colicin import membrane 
protein inside 

5038760 5038790 9 9 3.4 4391 chaperonin GroEL inside 
5316884 5316909 12 12 2.2 4639 glucose-6-phosphate isomerase inside 
5439683 5439712 15 15 2 4756 hypothetical protein inside 
5439985 5440013 12 12 2.4 4756 hypothetical protein inside 

5550454 5550510 27 27 2.1 4858 single-stranded DNA-binding 
protein inside 

5727150 5727183 12 12 2.8 5019 hypothetical protein inside 
5797511 5797551 21 21 2 5080 formate/nitrate transporter inside 
5803893 5803923 12 12 2.6 5085 ATP-dependent RNA helicase inside 
5821054 5821090 12 12 3.1 5104 signal transducer, CheW inside 
5864843 5864867 12 12 2.1 5147 aldehyde dehydrogenase inside 
5914851 5915078 48 48 4.8 5195 S-type Pyocin inside 

5919408 5919444 15 16 2.5 5197 AraC family transcriptional 
regulator inside 

5971992 5972025 15 16 2.2 5248 TonB domain-containing 
protein inside 

5997825 5997883 30 30 2 5272 hypothetical protein inside 
5997897 5998087 24 24 7.7 5272 hypothetical protein inside 

6033004 6033039 18 18 2 5308 xanthine 
phosphoribosyltransferase inside 

6069812 6069848 15 16 2.4 5346 TonB-like protein inside 

1948571 1948892 133 134 2.4 1660 hypothetical protein inside and 
downstream 
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3574756 3575299 260 260 2.1 3048 hypothetical protein inside and 
downstream 

3768552 3768922 123 123 3 3226 hypothetical protein inside and 
downstream 

3956354 3956411 17 17 3.5 3404 LacI family transcription 
regulator 

inside and 
downstream 

4134951 4135470 284 284 1.8 3561 aerotaxis receptor inside and 
downstream 

4785054 4785456 123 123 3.3 4166 hypothetical protein inside and 
downstream 

1954356 1955116 263 265 2.9 1666 hypothetical protein inside and upstream 

3156644 3157707 123 123 8.7 2705 hypothetical protein inside and upstream 

3176187 3176540 123 123 2.9 2727 hypothetical protein inside and upstream 

3235498 3235719 123 123 1.8 2777 hypothetical protein inside and upstream 

3593725 3594335 136 136 4.5 3064 hypothetical protein inside and upstream 

3680599 3680921 133 133 2.4 3142 hypothetical protein inside and upstream 

4046312 4046894 123 123 4.7 3486 hypothetical protein inside and upstream 

3729837 3730254 133 133 3.1 3189 hypothetical protein inside, upstream and 
downstream 

4858915 4859409 112 112 4.4 4234 hypothetical protein inside, upstream and 
downstream 

305869 306071 79 80 2.5 intergenic region      
1002063 1002092 14 14 2.1 intergenic region      
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1374095 1374169 19 19 3.9 intergenic region      
1824758 1824840 18 18 4.5 intergenic region      
1824936 1824975 19 19 2.1 intergenic region      
1916677 1916736 6 6 10 intergenic region      
2176903 2177229 129 131 2.5 intergenic region      
2187851 2187894 17 17 2.6 intergenic region      
2196382 2196412 14 14 2.2 intergenic region      
2229075 2229120 15 15 3 intergenic region      
2354303 2354650 134 134 2.6 intergenic region      
2355824 2356096 135 134 2 intergenic region      
2375568 2375860 131 132 2.2 intergenic region      
2388278 2388645 133 132 2.8 intergenic region      
2436141 2436172 15 15 2.1 intergenic region      
2450520 2450623 33 33 3.2 intergenic region      
2471329 2471355 6 6 4.5 intergenic region      
2546335 2546418 18 18 4.7 intergenic region      
2546336 2546400 21 21 3.1 intergenic region      
2546351 2546388 15 15 2.5 intergenic region      
2546683 2546763 9 9 9 intergenic region      
2546786 2546882 33 33 2.9 intergenic region      
2546929 2547042 33 33 3.5 intergenic region      
2546930 2547092 66 66 2.5 intergenic region      
2546944 2546985 21 21 2 intergenic region      
2547120 2547179 18 18 3.3 intergenic region      
2565588 2565646 11 11 5.4 intergenic region      
2646854 2647217 123 123 3 intergenic region      
2707912 2707959 16 16 2.9 intergenic region      
2744769 2744999 123 123 1.9 intergenic region      
2759436 2759466 15 14 2.1 intergenic region      
2888440 2888575 68 68 2 intergenic region      
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2994262 2994913 123 123 5.3 intergenic region      
3022913 3023148 125 125 1.9 intergenic region      
3110014 3110072 8 8 7.4 intergenic region      
3129909 3129952 15 15 2.9 intergenic region      
3138106 3138445 123 123 2.8 intergenic region      
3279148 3279185 19 19 2 intergenic region      
3354637 3354674 19 19 2 intergenic region      
3408820 3408861 18 18 2.3 intergenic region      
3421369 3422102 123 123 5.9 intergenic region      
3432149 3432476 123 123 2.7 intergenic region      
3577587 3577730 68 68 2.1 intergenic region      
3577672 3578137 123 123 3.8 intergenic region      
3591390 3591761 125 125 3 intergenic region      
3654879 3654911 17 17 1.9 intergenic region      
3655013 3655045 17 17 1.9 intergenic region      
3671332 3671585 123 123 2.1 intergenic region      
3698756 3699197 169 167 2.6 intergenic region      
3751285 3751347 19 19 3.4 intergenic region      
3756009 3756048 19 19 2.1 intergenic region      
3784412 3784469 28 28 2.1 intergenic region      
4128189 4128229 18 18 2.3 intergenic region      
4731531 4731562 16 16 2 intergenic region      
4764716 4764748 17 17 1.9 intergenic region      
4772590 4772615 9 9 2.9 intergenic region      
5015287 5015322 18 18 2 intergenic region      
5262394 5262754 141 141 2.6 intergenic region      
5755701 5755743 21 21 2 intergenic region      
6127819 6127848 14 14 2.1 intergenic region      
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coding region, which may act as promoter components of downstream genes or transcription 

terminators of upstream genes (Yeramian and Buc 1999; Usdin 2008).   

 In order to elucidate the protein function of the 5431 CDSs, protein localization prediction 

was performed. The results indicate that UW4 consists of 2509 (46%) cytoplasmic proteins, 1259 

(23%) cytoplasmic membrane proteins, 176 (3%) periplasmic proteins, 115 (2%) outer membrane 

proteins, and 44 (1%) extracellular proteins. The remaining 1328 (25%) CDSs have unknown 

localization (Fig. 4-4 and Table 4-9).  

 

4.2 Genes Involved in Plant Growth Promotion and P. putida UW4 Lifestyle 

4.2.1 ACC deaminase 

The ACC deaminase gene, acdS (PputUW4_4159), and its upstream regulatory gene, 

acdR (PputUW4_4160), were characterized previously (Shah et al. 1998; Grichko and Glick 

2000; Cheng et al. 2008). UW4 genome sequencing confirmed the presence of both genes as well 

as the intergenic sequences between the two genes. Interestingly, examination of genes 

downstream of acdS revealed that PputUW4_4153 and 4155 were found only in other genera but 

not in any pseudomonads, and PputUW4_4154 and 4157 are genes that are unique to UW4. In 

addition, a tRNA-Arg gene was found 3,138 bp downstream of acdR and tRNA-Arg is one of 

tRNA genes that are preferentially used for insertion of GI (Langille et al. 2010). Therefore, it is 

possible that the region of the genome that encodes acdS and acdR was acquired from other 

genera by horizontal gene transfer, which is in concert with previous findings (Hontzeas et al. 

2005). However, this region was not identified as a GI by automatic prediction using 

IslandViewer.  
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Table 4-9. P. putida UW4 Predicted Protein Localizations 
Protein Localization Number 

Cytoplasmic 2509 
Cytoplasmic membrane 1259 

Periplasmic 176 
Outer membrane 115 

Extracellular 44 
Unknown 1328 

Total 5431 
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Fig. 4-4. P. putida UW4 predicted protein localizations. 
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4.2.2 Siderophores 

P. putida UW4 fluoresces under UV light, consistent with the production of pyoverdine 

siderophore by this organism. In the UW4 genome, putative genes associated with pyoverdine 

synthesis are shown in Table 4-10 and Fig. 4-5. The pvdF gene for the type I pyoverdine found in 

P. aeruginosa is absent in UW4. This gene encodes a transformylase responsible for the 

formation of N5-formyl-N5-hydroxyornithine from N5-hydroxyornithine (McMorran et al. 2001). 

However, in UW4, a gene encoding hydroxyornithine acetylase, pvdY II, was found. The gene 

product of pvdY II can convert N5-hydroxyornithine to N-hydroxy-cyclo-ornithine, resulting in 

the production of type II pyoverdine in P. aeruginosa (Lamont et al 2006) (Fig. 4-6). Amino acids 

sequence alignment of PvdYII from UW4 and P. aeruginosa Pa4 (ABC55668) showed that the 

two proteins share 70% identities and 79% similarities, and that conservation occurs to the 

greatest extent at the C-terminus (Fig. 4-7).  

 

4.2.3 IAA production 

It was demonstrated previously that P. putida UW4 actively produces the phytohormone  

IAA (Saleh and Glick 2001). Here, two potential IAA biosynthesis pathways were identified in 

the genome of UW4; they are the IAM pathway and the IAN pathway (Fig. 4-8). However, the 

IPyA pathway, which was identified in another PGPB, Pseudomonas putida GR12-2 (Patten and 

Glick, 2002), is absent in UW4. In the IAM pathway, tryptophan is converted to IAM by 

tryptophan 2-monooxygenase (PputUW4_4967, 4535) and then to IAA by amidase 

(PputUW4_3355). In the IAN pathway, tryptophan is converted to indole-3-acetaldoxime and 

then to IAN by indoleacetaldoxime dehydratase (PputUW4_3353). Next, IAA can be produced 

directly through IAN by nitrilase (PputUW4_2466). Alternatively, IAN can be first converted to 

IAM by nitrile hydratase (PputUW4_3356 and PputUW4_3357), and then IAM is converted to  
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Fig. 4-5. Pyoverdine synthesis genes in P. putida UW4. Genes are not drawn to scale and are 

oriented according to the direction of transcription.  
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Table 4-10. Genes associated with pyoverdine synthesis in P. putida UW4. 
CDS ID Gene Function 
1484 pvdYII Hydroxyornithine acetylase 
1485 pvdS ECF iron sigma factor 
1486 pvdL Non-ribosomal peptide synthetase 
1503 pvdH Aminotransferase 
1504 mbtH Unknown 
1549 pvdG Thioesterase 
1550 pvdI Non-ribosomal peptide synthetase 
1551 syrP Pyoverdine biosynthesis regulatory protein 
1552 pvdD Non-ribosomal peptide synthetase 
1553 pvdJ Non-ribosomal peptide synthetase 
1569 fpvA TonB-dependent pyoverdine receptor 
1570 pvdE ABC transporter 
1571 pvdO Unknown 
1572 pvdN Aminotransferase 
1573 pvdM Dipeptidase 
1574 pvdP Unknown 
1575   Outer membrane efflux protein 
1576   ABC transporter 
1577   Membrane efflux protein 
1578 fpvI ECF sigma factor required for expression of fpvA 
1579 pvdA L-ornithine hydroxylase 
2459 pvdQ Acylase 
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Fig. 4-6. P. putida UW4 predicted pyoverdine biosynthesis pathway.  
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Fig. 4-7. Amino acid sequence alignment of pvdY II in P. putida UW4 and P. aeruginosa 
(Accession no. ABC55668).  
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IAA by amidase (PputUW4_3355). The functions of the above mentioned genes in IAA 

biosynthesis are putative and they need to be confirmed experimentally.  

 

4.2.4 Trehalose 

Trehalose is a non-reducing disaccharide of glucose whose two glucose moieties are 

linked by an α,α-1,1-glycosidic bond. It functions as an osmoprotectant in the stabilization of 

biological structures including dehydrated enzymes, proteins and lipids under environmental 

stresses such as drought, high salinity and low temperature in a wide range of organisms, i.e. 

bacteria, archaea, fungi, invertebrates, insects and plants. In transgenic rice, trehalose improves 

the plant’s abiotic stress tolerance (Garg et al. 2002). In another study, when maize plants were 

inoculated with a strain of Azospirillum brasilense transformed to overexpress trehalose, 85% of 

the plants survived drought stress, whereas only 55% of the plants inoculated with the non-

transformed strain survived. Furthermore, a 73% increase in the biomass of maize plants was 

obtained when the plants were inoculated with the transformed strain (Rodríguez-Salazar et al. 

2009). In the genome of UW4, two trehalose synthesis pathways, TreS and TreY-TreZ pathways, 

were identified (Fig. 4-10). The TreS pathway involves the conversion of maltose to trehalose by 

trehalose synthase (TreS) (PputUW4_2805). In the TreY-TreZ pathway, maltodextrin is first 

converted to maltooligosyltrehalose by maltooligosyltrehalose synthase (TreY) 

(PputUW4_2797), and then to trehalose by maltooligosyltrehalose trehalohydrolase (TreZ) 

(PputUW4_2795). 

 

4.2.5 Acetoin and 2,3-butanediol 
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Fig. 4-8. P. putida UW4 IAA biosynthesis pathways. 
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Fig. 4-9. P. putida UW4 trehalose biosynthesis pathways. 
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Acetoin and 2,3-butanediol are volatile compounds released from certain PGPB, which 

can promote plant growth by stimulating root formation (Ryu et al. 2003). In the genome of 

UW4, genes involved in acetoin production were identified, including acetolactate synthase 

(PputUW4_4617 and PputUW4_4618) and zinc-containing alcohol dehydrogenase  

(PputUW4_3051) (Fig. 4-10). However, enzymes responsible for 2,3-butanediol synthesis are 

absent from the UW4 genome.  

 

4.2.6 Antimicrobial compounds and antibiotics resistance 

It has been reported that 4-hydroxybenzoate has antimicrobial activity and its biosynthesis 

pathway has been found in the genome of several PGPB, such as Pseudomonas fluorescens Pf-5 

(Paulsen et al. 2005), Enterobacter sp. 638 (Taghavi et al. 2010) and Mesorhizobium amorphae 

(Hao et al. 2012). In addition, a complete pathway of 4-hydroxybenzoate synthesis from 

chorismate was identified in the genome of UW4 (Fig. 4-11).  

Antibiotic susceptibility testing of UW4 has shown that it is resistant to ampicillin (128 

µg/ml), erythromycin (64 µg/ml), and novobiocin (256 µg/ml). Two genes that encode β-

lactamase were found in the UW4 genome (PputUW4_1226 and PputUW4_1639), which may 

confer the ampicillin resistance of the strain. One gene that encodes macrolide 

glycosyltransferase (PputUW4_3151) was identified; the product of this gene can glycosylate and 

inactivate macrolide antibiotics such as erythromycin (Bolam et al. 2007). Novobiocin is 

produced by Streptomyces and this antibiotic’s target is DNA gyrase subunit B (Gellert et al. 

1976; Thiara and Cundliffe 1988). There are two mechanisms used by bacteria to inhibit 

novobiocin activity. One strategy is through the mutation of the gyrase B (gyrB) subunit gene 

(Thiara and Cundliffe 1993). For example, Streptomyces sphaeroides has two gyrB genes and  
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Fig. 4-10. P. putida UW4 acetoin synthesis pathway. 
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Fig. 4-11. P. putida UW4 4-hydroxybenzoate synthesis pathway. 
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one is novobiocin sensitive, which is constitutively produced, and the other one is novobiocin 

resistant, which is induced by the drug (Thiara and Cundliffe 1989). The second strategy of 

novobiocin resistance is through the use of multidrug efflux pumps (Poole 2001). P. putida UW4 

has a single gyrB gene in its genome. The product of this gene hasn’t been characterized to see if 

it is novobiocin sensitive or resistant. On the other hand, multiple multidrug efflux systems have 

been identified in the UW4 genome based on sequence similarity search, which may play an 

important role in novobiocin resistance (Table 4-11). 

 

4.2.7 Polyhydroxyalkanoates biosynthesis 

Polyhydroxyalkanoates (PHAs) are a group of metabolic energy and carbon storage 

compounds that are deposited as intracellular water-insoluble granules in many living organisms 

during imbalanced growth conditions (Verlinden et al. 2007). PHAs extracted from bacteria can 

be used as alternative starting materials to petrochemical in the synthesis of plastics because they 

are biodegradable and environmentally friendly (Madison and Huisman 1999). Furthermore, 

bacteria can accumulate PHAs to levels as high as 90% (w/w) of the dry cell mass, making them 

potential candidates for the large-scale production of PHAs (Steinbüchel and Lütke-Eversloh 

2003). Recently, it has been reported that PHA production played an important role in cold 

adaptation of an Antarctic bacterium Pseudomonas sp. 14-3, likely by alleviating the oxidative 

stress induced by cold environments (Ayub et al. 2009). Thus, the PHA synthase-minus mutant 

of Pseudomonas sp. 14-3 could not grow at 10°C and was more susceptible to freezing than the 

wild-type strain. In addition, cold shock treatment caused rapid degradation of PHA in the wild-

type strain (Ayub et al. 2009).  
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Table 4-11. P. putida UW4 Multidrug Efflux Systems. 
PputUW4_ Product 
0125 multidrug efflux MFS transporter 
0126 multidrug efflux MFS membrane fusion protein 
0127 multidrug efflux MFS outer membrane protein 
0135 fusaric acid resistance protein 
0137 multidrug resistance efflux pump protein 
0138 multidrug efflux outer membrane protein 
0180 multidrug RND transporter, membrane fusion protein 
0181 multidrug RND transporter, membrane fusion protein 
0182 acriflavin resistance protein 
0503 small multidrug resistance protein SugE 
1069 multidrug RND transporter, membrane fusion protein 
1070 acriflavin resistance protein 
1214 multidrug efflux RND outer membrane protein 
1215 multidrug efflux RND inner membrane transporter 
1216 multidrug efflux RND membrane fusion protein 
1594 EmrB/QacA family drug resistance transporter 
1595 multidrug resistance protein (HlyD family), EmrA-like secretion 
1897 multidrug resistance efflux protein 
1898 EmrB/QacA subfamily drug resistance transporter 
2114 multidrug efflux system outer membrane protein 
2115 RND family efflux transporter MFP subunit 
2116 acriflavin resistance protein 
2144 acriflavin resistance protein 
2145 RND family efflux transporter MFP subunit 
2146 RND efflux system outer membrane lipoprotein 
2443 multidrug efflux system transmembrane protein 
2444 multidrug efflux RND membrane fusion protein 
2536 fusaric acid resistance protein 
2538 multidrug resistance efflux pump protein 
2539 multidrug efflux system outer membrane protein 
2540 RND multidrug efflux transporter 
2541 RND family efflux transporter MFP subunit 
2815 multidrug efflux system outer membrane protein 
2816 multidrug efflux system transmembrane protein 
2817 multidrug efflux system transmembrane protein 
2818 multidrug efflux system inner membrane protein 
2954 ABC efflux system outer membrane protein 
2955 ABC efflux system ATP-binding protein 
2956 ABC efflux system permease 
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3471 multidrug resistance efflux pump 
3472 EmrB/QacA family drug resistance transporter 
3533 multidrug ABC transporter ATPase/permease 
3536 multidrug efflux transporter 
3756 small multidrug resistance protein 
3988 multidrug ABC transporter ATP-binding protein/permease 
4061 ABC-type multidrug transport system, permease component 
4062 ABC-type multidrug transport system, ATPase component 
4383 RND family multidrug transporter membrane fusion protein 
4384 RND multidrug efflux transporter 
4491 fusaric acid resistance protein 
4493 fusaric acid resistance protein 
4494 RND efflux system, outer membrane lipoprotein 
4496 RND family multidrug transporter membrane fusion protein 
4497 multidrug efflux system transmembrane protein 
5156 multidrug resistance transporter, Bcr/CflA family 
5306 multidrug resistance-transport membrane protein 
5424 permease 
5425 multidrug efflux system outer membrane protein 
5426 multidrug resistance efflux pump 
5427 membrane protein 
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In the genome of P. putida UW4, Two PHA synthesis and one degradation pathway were 

identified (Fig. 4-12). In the first synthesis pathway, two molecules of acetyl-CoA are combined 

by β-ketothiolase (PhaA) to produce acetoacetyl-CoA. In the presence of NADH, acetoacethyl-

CoA reductase (PhaB) catalyzes the reduction of acetoacetyl-CoA to β-hydroxybutyryl-CoA. 

Then, PHA synthase (PhaC) polymerizes β-hydroxybutyryl-CoA to PHA, releasing coenzyme-A. 

The second PHA synthesis pathway in UW4 is through fatty acid de novo biosynthesis. One 

intermediate of fatty acid de novo synthesis, β-hydroxyacyl-ACP, is converted to the 

corresponding CoA-derivative by 3-hydroxydecanoyl-ACP-CoA transacylase (PhaG). Finally, 

PHA synthase (PhaC) catalyzes the formation of PHA through the substrate, β-hydroxyacyl-CoA.  

The PHA degradation pathway in UW4 is catalyzed by PHA depolymerase (PhaZ). PhaZ first 

depolymerizes PHA to β-hydroxybutyrate monomers, which are subsequently converted to 

acetoacetate by β-hydroxybutyrate dehydrogenase. Then, acetoacetate is recycled by acetoacetyl-

CoA synthetase to form acetoacetyl-CoA.  

 

4.2.8 Degradation of aromatic compounds 

In the genome of UW4, a complete degradation pathway of benzoate via the catechol 

route of the β-ketoadipate pathway was identified (Fig. 4-13). In addition, the protocatechuate 

branch of the β-ketoadipate pathway is also present. Protocatechuate is one of the key 

intermediates during the degradation of various aromatic compounds, including 4-

hydroxybenzoate and quinate (Fig. 4-14) (Jiménez et al. 2004). A putative degradation pathway 

of 3-hydroxyphenylpropionate (3-HPP) was described for P. putida W619, and the complete 

pathway includes the enzymes encoded within the mhpRABCDFET operon (Wu et al. 2011). 

When searching these eight genes within the genome sequence of UW4, five putative enzyme-  
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Fig. 4-12. P. putida UW4 PHA biosynthesis and degradation pathways. Black arrows indicate the 

biosynthesis pathways. Red arrows represent the degradation pathway. PhaA, β-ketothiolase 

(PputUW4_1998); PhaB, acetoacetyl-CoA reductase (PputUW4_4038); PhaC, PHA synthase 

(PputUW4_0333, 0335, and 2305); PhaG, 3-hydroxydecanoyl-ACP-CoA transacylase 

(PputUW4_1255); PhaZ, PHA depolymerase (PputUW4_0334, 2306); FabD, malonyl CoA-acyl 

carrier protein transacylase (PputUW4_4039); FabB, 3-oxoacyl-(acyl carrier protein) synthase I 

(PputUW4_0363 and 4105); FabF, 3-oxoacyl-(acyl carrier protein) synthase II (PputUW4_0360, 

1386 and 4036); FabG, 3-oxoacyl-(acyl carrier protein) reductase (PputUW4_0361, 0576, 2301, 

2241, 3674, 4038, 4217, 4395); FabI, enoyl-(acyl-carrier-protein) reductase (PputUW4_2893); 

FabA, 3-hydroxydecanoyl-(acyl carrier protein) dehydratase (PputUW4_0362 and 4104). 

Acetyl-CoA carboxylase: PputUW4_0554, 0555, 1107, 3446; β-hydroxybutyrate dehydrogenase: 

PputUW4_2378; Acetoacetyl-CoA synthetase: PputUW4_1999 and 2000. 
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Fig. 4-13. Benzoate degradation pathway in P. putida UW4. 
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Fig. 4-14. 4-hydroxybenzoate and L-quinate degradation pathways in P. putida UW4. 
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encoding genes, mhpACDFE, were found (Table 4-12), indicating the presence of an incomplete 

degradation pathway for 3-HPP. 

 

4.2.9 Heavy metal resistance 

Based on the genome sequence of P. putida UW4, various heavy metal resistance 

determinants were identified (Table 4-13). It has been shown that UW4 can grow in rich medium 

containing 2 mM nickel at a growth rate of 0.24 generation/hour (Cheng et al. 2009b). As 

expected, putative nickel transporters were found in the UW genome. The genes encoding the 

transporters showed similarities to the Nik system (nikABCDE) that was originally identified in 

E. coli. A typical Nik system is comprised of five components including an ABC transporter 

periplasmic nickel binding protein (NikA), two nickel transporter cytoplasmic permeases (NikB 

and NikC), and two membrane-associated nickel import ATP-binding proteins (NikD and NikE) 

(Navarro et al. 1993). In addition, a nickel-responsive regulator NikR is present either 

downstream of NikE (in E. coli) or upstream of NikA (in P. putida KT2440 and P. putida W619) 

and acts as a repressor when the nickel concentrations are high. In the genome of UW4, the locus 

of the Nik system contains three copies of NikA (PputUW4_0746, 0748, 0749) and a single copy 

of NikB (PputUW4_0745), NikC (PputUW4_0744), NikD (PputUW4_0743), and NikE 

(PputUW4_0742) (Fig. 4-15). At the amino acid level, pairwise sequence identities and 

similarities between NikA2 and NikA3 were 70% and 81%. Whereas NikA1 showed lower 

identities and similarities compared with NikA2 (47% identity and 63% similarity) and NikA3 

(46% identity and 65% similarity) (Fig. 4-16). Furthermore, located between the first and the 

second copy of nikA , there is a putative gene encoding an outer membrane porin, which is 

transcribed in the same orientation as nikA . However, based on a sequence similarity search, 

NikR is not encoded in the UW4 genome.  
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Table 4-12. Genes involved in 3-hydroxyphenylpropionate degradation. 

Gene Product 
W619 UW4 
ORF ID ORF ID 
PputW619_ PputUW4_ 

mhpT 3-Hydroxyphenylpropionic acid transporter 1985   
mhpE 4-Hydroxy-2-oxovalerate aldolase 1984 1665 
  

 
2007  

mhpF Acetaldehyde dehydrogenase 1983 1664 
  

 
2008  

mhpD 2-Hydroxypenta-2,4-dienoate hydratase 1982 1663 
    2011   
mhpC 2-Hydroxy-6-ketonona-2,4-dienedioic acid hydrolase 1981 1662 
mhpB 2,3-Dihydroxyphenylpropionate 1,2-dioxygenase 1980   
mhpA 3-(3-Hydroxy-phenyl)propionate hydroxylase 1979 2149 
mhpR Mhp operon transcriptional activator 1978   
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Sixteen genes that might be involved in the copper resistance of UW4 were identified 

(Table 4-13). These 16 genes are located at six regions on the chromosome, including three 

copper resistance systems in UW4, two individual sets of two-component transcriptional 

regulators, and one gene that might be involved in the bacterium survival in the presence of high 

bioavailable Cu(II). The first region contains three genes (PputUW4_0580, 0581, 0583) and the 

amino acid sequences of all three genes showed high identities/similarities (89%/95%, 93%/96%, 

88%/91%, respectively) compared to those of CueAR-CopP in P. putida PNL-MK25 (Fig. 4-

17BCD), which has been experimentally confirmed to play an important role in copper 

homeostasis in PNL-MK25 (Adaikkalam and Swarup 2002). Thus, the cueAR mutant of PNL-

MK25 showed a six-fold reduced tolerance to copper compared to the wild-type strain. CopP 

(PputUW4_0583) is located upstream of cueA  and is transcribed away from the cueAR operon 

(Fig. 4-17A). The copP gene encodes a heavy metal transport/detoxification protein containing a 

heavy-metal-associated (HMA) domain at its N terminus (Fig. 4-17D) and a cueR binding site, a 

cop box, in the promoter region (Fig. 4-17E).  

The second region related to copper resistance contains four genes (PputUW4_3489 – 

3492) (Fig 4-19A). The homologs for the four genes were characterized in P. putida PNL-MK25 

as well and they are designated copABCD (Adaikkalam and Swarup 2005). CopA is a multi-

copper oxidase family protein, and a type-1 copper-binding motif (HCHLLYHM) is present at its 

carboxyl end (Ouzounis and Sander 1991). Similar to the CopA in PNL-MK25, CopA in UW4 

has two HXXMXXM motifs at position 375 (Fig. 4-18B). CopB is a protein involved in copper 

binding. One MXXM and two HXXMXXM motifs were found at the N terminus of CopB in 

UW4 (Fig. 4-18C), whereas only one copy of MXXM motif was found in this protein in PNL- 

MK25 (Adaikkalam and Swarup 2005). The gene encoding CopC is similar to periplasmic 

proteins involved in copper resistance, and one MXXM metal binding motif is present in the  
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Table 4-13. Genes potentially involved in metal resistance of P. putida UW4.  
Metal Gene PputUW4_ Product 

Nickel nikA3 0749 nickel ABC transporter periplasmic nickel-binding 
protein 

 

nikA2 0748 nickel ABC transporter periplasmic nickel-binding 
protein 

 

nikA1 0746 nickel ABC transporter periplasmic nickel-binding 
protein 

 
nikB 0745 nickel transporter permease 

 
nikC 0744 nickel transporter permease 

 
nikD 0743 nickel import ATP-binding protein 

  nikE 0742 nickel import ATP-binding protein 
Copper copP 0583 heavy metal transport/detoxification protein 

 
cueA 0581 copper-translocating P-type ATPase 

 
cueR 0580 MerR family transcriptional regulator 

 
copA 3489 copper resistance protein 

 
copB 3490 copper resistance protein 

 
copC 3491 copper resistance protein 

 
copD 3492 copper resistance protein 

 
cinQ 3503 7-cyano-7-deazaguanine (pre-Q0) reductase 

 
cinA 3504 copper-containing azurin-like protein 

 

cinR 3505 two-component heavy metal response transcriptional 
regulator  

 
cinS 3506 heavy metal sensor histidine kinase 

 
 2454 involved in survival in the presence of high bioavailable 

Cu(II) 

  2050 heavy metal sensor signal transduction histidine kinase 

 
 2051 two-component heavy metal response transcriptional 

regulator  

 
 4498 two-component heavy metal response transcriptional 

regulator  
    4499 heavy metal sensor signal transduction histidine kinase 
Cadmium cadA 5170 cadmium translocating P-type ATPase 

 
cadR 5171 MerR family transcriptional regulator 

  cadA2 5411 cadmium-translocating P-type ATPase 
Zinc   1619 metallothionein 

 
znuA 0067 zinc ABC transporter periplasmic protein 

 
znuB 0064 zinc ABC transporter permease 

 
znuC 0065 zinc import ATP-binding protein 

  zur 0066 ferric uptake regulator family protein 
Molybdate modA 2404 molybdate-binding periplasmic protein 

 
modB 2403 molybdate ABC transporter permease 

 
modC 2402 molybdate ABC transporter ATP-binding protein 

    4989 ModE family transcriptonal regulator 
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Cobalt cbtA 2364 cobalt transporter subunit A 
  cbtB 2365 cobalt transporter subunit B 
Arsenate arsR 2256 arsenical resistance operon repressor  

 
arsB 2255 arsenite efflux transporter 

 
arsC1 2254 arsenate reductase  

 
arsH 2253 NADPH-dependent FMN reductase  

 
arsC2 1085 arsenate reductase  

  arsC3 4122 arsenate reductase  
Chromate chrA 3072 chromate transporter 
  oscA 0155 hypothetical protein 
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Fig. 4-15. Genetic organization of nickel transporters located on the genome of P. putida UW4. 

 

 

 

 

 

 

 

 

 

 

 

 



  120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nikE 

0742 

nikD nikC nikB nikA1 oprD 

nikA2 nikA3 

0743 0744 0745 0746 0747 

0748 0749 



  121 

 

 

 

 

 

 

 

 

 

 

Fig. 4-16. Multiple sequence alignment of NikA of P. putida UW4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  122 

 

 

 

 

 

 

 

 

 

 

 

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

MKMLPLRAAIAAALLSVAVGVSAKP--LVVCTEASPEGFDMVQYTTAVTADAVAETIFNRLADFKPGTT

EVIPALADSWDISEDGLSYTFHLRKGVKFHTTEYFKPTRDMNADDVVWSFQRQLDPNHPWHKLSSVGFPY

FESMGFKELLKSVEKVDDNTVKFTLTRREAPFLADIAMAFSSIYSAEYADQLLKANKAGDLNNKPVGTGP

FVFQRYNKDAQVRFKANPDYFR-GKPPADALILAIATDNNVRLQKLKANECQVALYPKPDDIPSIKKDSN

LKVDELNAMTVSYIAMNTTHK--------YMSDVRVRKAIDIAFDKEAYVNALFGKGNATAGVNPYPDTL

LGYNHDLKNPARDLDKARALLKEAGVPEGTTFTLFTRNGGGPTNPNPMLGTQMMQADLAKVGIKIDIRVM

EWGEMLKRAKNGEHDMVSAGWAGDNGDPDNFLTPMLSCEAAKNGENYARWCNDKFQALIDQAREKTDPAE

RAALYEQAQVIFNQDQPWISMAHTRMFTAMRNNVEGYHISPLTTNNFATTQVK*

MRHTLVLSALLGTGLLAATSISQAANNSLVFCSEGSPAGFDTAQYTTATDNDA-AEPLYNRLAEFEKGAT

NVVPGLATSWDISEDGLKYTFHLREGVKFHTTKYFTPTRDFNADDVLFTFNRMLDPQQPFRKAYPTEFPY

FNGMSLNKNIARVEKTGPLTVVFTLNSVDAAFIQNIAMSFAAILSAEYADKLLAEGKPSDINQKPVGTGP

FVFKSYQKDSNIRYTGNKHYWDPSRVKLDNLIFAINTDASVRVQKLKADECQITLHPRPADVPALKNDPA

LQLIEKPGFNLGYIAYNVRHK--------PFDQLEVRQALDMAVNKQGILNAVY-QGAGQLAVNAMPPTQ

WSYDDTIKDAAYNPEKARELLKAAGVKEGTEITLWAMPVQRPYNPNAKLMAEMLQADWAKIGLKVKIVSY

EWGEYIKRTKNGEHDISLIGWTGDNGDPDNWLGTLYSCDAI-GGNNYSMWCDPAYDKLIKQAKVVTDRDQ

RTLLYKQAQQYLKQQVPITPVAHSTVNQPLSAKIEGFKVSPFGRNVFSGVSIEK*

MLKQAVIPFLVGASLLASAPFAQAATN-LVFCSEGSPAGFDPGQYTTGTDFDASAETMFNRLTQFERGGT

AVIPGLATSWDVSDDGLTYTFHLREGVKFHTTPYFKPTREFNADDVLFTFNRMINKDDPFRKAYPTEFPY

FTDMGMDTNITKIDKVDDKTVKFTLKDVDAAFIQNMAMSFASIQSAEYAAQLLKEGKAADINQKPVGTGP

FVFKSYQKDSNIRYTGNKDYWKPDDVKIDNLIFAITTDPSVRIQKLKKNECQVTLFPRPADLKALKEDKD

LKLPDQAGFNLGYIAYNVMPKVKGQTDANPLAELKVRQALDMAVNKQQIIDSVY-QGAGQLAVNAMPPTQ

WSYDTTIKDAPYNPEKAKELLKEAGVKDGTEIVLWAMPVQRPYNPNAKLMAEMLQSDWSKIGLKVKIQSY

EWGEYIKRSKGGENQAMLIGWSGDNGDPDNWLNVLFGCDSL-EGNNFSKWCDKKFDDIVKQAKRTSDQAK

RTELYKQAQHVLKDAVPMTPIAHSTVFQPMRANVQDFKISPFGLNSFYGVSVSK*

1 10 20 30 40 50 60 70

80 90 100 110 120 130 140

150 160 170 180 190 200 210

220 230 240 250 260 270 280

290 300 310 320 330 340 350

360 370 380 390 400 410 420

430 440 450 460 470 480 490

500 510 520 530 540 545

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA1

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA2

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3

UW4_nikA3



  123 

CopC of UW4 (Fig. 4-18D). The last gene in the operon is copD, which encodes a copper 

transport protein containing eight hydrophobic regions predicted by SPLIT4 server (Juretic et al. 

2002) (Fig. 4-18EF). It was demonstrated that the copABCD system in PNL-MK25 showed 

minimal role compared with the same system in other microorganisms, including P. syringae pv. 

syringae, E. coli and Xanthomonas campestris. Furthermore, the copABCD system played a 

minor role compared with the cueAR system of the same strain. It was suggested that the reduced 

function of the copABCD operon is likely caused by these genes encoding fewer metal-binding 

domains compared to the homologs in other microorganisms (Adaikkalam and Swarup 2005). 

Based on the studies of the copABCD system in PNL-MK25, it is possible that this copper 

resistance system also plays a less important role in UW4 compared with other copper resistance 

systems because only two more metal binding motifs were observed in one of the four proteins 

(CopB).  

 The third copper resistance locus consists of four genes, cinQARS (PputUW4_3503-

3506) (Fig. 4-19A). The gene cinQ encodes a putative 7-cyano-7-deazaguanine (pre-Q0) 

reductase, and cinA  encodes a putative copper-containing azurin-like protein. The gene products 

of the cinRS operon are a two-component heavy metal response transcriptional regulator (CinR) 

and a heavy metal sensor histidine kinase (CinS). It has been shown that cinA  and cinQ of P. 

putida KT2440 were cotranscribed and induced by copper but not by nickel, ferrous iron, or zinc 

(Quaranta et al. 2007). However, deletion of cinA  or disruption of cinQ in strain KT2440 did not 

increase the copper sensitivity significantly in disk assays, likely due to the redundancy in copper 

resistance genes in this strain (Quaranta et al. 2007). Furthermore, the two-component system 

cinRS activated transcription of cinAQ in the presence of copper, and two histidines, H37 and 

H147, in the periplasmic domain of CinS were found to be essential to induce the transcription of 

cinAQ (Quaranta et al. 2009). Amino acid sequence alignments of CinQARS between strains  
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Fig. 4-17. CueAR copper resistance system in P. putida UW4. (A) Genetic organization of 

cueAR system on the genome of UW4. (B) Amino acid sequence alignment of CueA between 

UW4 and PNL-MK25. (C) Amino acid sequence alignment of CueR between UW4 and PNL-

MK25. (D) Amino acid sequence alignment of CopP between UW4 and PNL-MK25. Red bar 

shows the HMA domain (MSCGHC). (E) Intergenic region between the hypothetical protein and 

CopP. The predicted -10 and -35 regions of copP are in black boxes. Putative cop box is 

underlined in orange.  
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M SESTT FDL PIAGMT CA SCAGRV ERALRKV SGA SAV SVNLAT EQARVQ

A PGDRL PALMQAV ERAGY SV PRQTV EL SIDGMT CA SCVGRV ERAL SKV

PGV SSV SVNLAN ERA HIELLGQVDTQTLLDAV SKAGY SA SVWQA ER PQ

SDDQQKRL HR ERWAL ICA IALAL PLVL PMLLQ PFG IHWML PAWAQ FAL

AT PVQ FIFGAR FYVAAWKAVRAGAGNMDLLVALGT SAGYGL SVY EWA S

AAGRM PHLY FEA SAVV IALVLLGKYL ESRAKRQTA SA IRAL EALR PER

A IQV IDGR EQDVA ISALRLDDLVLVK PG ER FPVDG EVV EGQ SHAD EAL

ISG ESL PV PKQ PGDKVTGGA ING EGRLLVRTQALGA ETVLAR IIRLV E

DAQAAKA PIQKLVDKV SQ IFV PTVLL IALATL IGWWLYGA PL ETAV IN

AVAVLV IA CPCALGLAT PTA IMAGTGVAAR HG IL IKDA EAL ERA HEV S

SVV FDKTGTLT SGT PR IA HFSAVDGD ENNLLTLAGALQRG SEHPLAKA

VLDAAA ERGLNV PDV SD SQALTGRG IAGTLDGRRLALGNRRMLD ESAL

STG EL SA SA EAW ER EGRTL SWL IEQ SPQ PKVLGL FA FGDTLK PGALQA

VQQLAARD IQ SHLLTGDN SG SARVVA EALG IQNV HA EVL PADKAATVA

ELKKT SVVAMVGDG INDA PALAAAD IG IAMGGGTDVAM HAAG ITLMRG

D PRLV PAAL EISRKTYAK IRQNL FWA FVYNL IG IPLAV FG FLN PVLAG

AAMAL SSV SVV SNALLLKTWK PKDL EEHR

M SESTT FDL PIAGMT CA SCAGRV ERAL SKV IGA SAV SVNLAT EQARVQ

A PSD SL PALMDAVAKAGY SV PQQNL EL SIDGMT CA SCVGRV ERALGKV

VGVK SV SVNLAN ERA HL ELLGQVD PQTL IAAVTKAGYTA SVW EA EHPP

ADNQQQRLYR ERLAL IMA IVLAL PLVL PMLLQ PFGV HWML PAWVQ FAL

AT PVQ FIFGAR FYVAAWKA IRAGAGNMDLLVALGT SAGYGL SLY EWAT

AAGRM PHLY FEA SAVV IALVLLGKYL ESRAKRQTA SA IRAL EALR PER

A IQVLDGR EQ EVA ISALRLNDLVMVK PG ER FPVDG EV IEGQ SHAD EAL

ISG ESL PV PKQ PGDKVTGGA ING EGRLLVRTQALGA ETVLAR IIRLV E
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Fig. 4-18. CopABCD copper resistance system in P. putida UW4. (A) Genetic organization of 

copABCD operon on the chromosome of UW4. (B) Amino acids sequence alignment of CopA 

between PNL-MK25 and UW4. Red bar indicates the type-1 copper-binding motif 

(HCHLLYHM) and brown bars show the metal binding motif (HXXMXXM). (C) Amino acids 

sequence alignment of CopB between PNL-MK25 and UW4. Brown bars indicate the metal 

binding motif (HXXMXXM/MXXM). (D) Amino acids sequence alignment of CopC between 

PNL-MK25 and UW4. Brown bar indicates the metal binding motif (MXXM). (E) Amino acid 

sequence alignment of CopD between PNL-MK25 and UW4. Red bars show the transmembrane 

helix domains of CopD of UW4. (F) Transmembrane analysis of CopD of UW4 by SPLIT 4.0 

SERVER. Red line: transmembrane helix preference (THM index); blue line: beta preference 

(BET index); gray line: modified hydrophobic moment index (INDA index); violet boxes (below 

abscisa): predicted transmembrane helix position (DIG index).  
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UW4 and KT2440 are shown in Fig. 4-19BCDE. The identities and similarities of each pair of 

sequence are 55%/72% (CinA), 78%/90% (CinQ), 87%/92% (CinR), and 66%/78% (CinS). The 

copper binding motifs (HXXMXXM/MXXM) are highlighted in the alignment of CinA, and the 

two conserved histidines required for the transcription of cinAQ are shown in the alignment of 

CinS.  

 Sequence analysis of the two sets of two-component transcriptional regulators 

PputUW4_2050-2051 and PputUW4_4498-4499 showed similarities compared with CopRS in P. 

putida KT2440. The copR gene encodes a two-component heavy metal response transcriptional 

regulator and copS encodes a heavy metal sensor signal transduction histidine kinase. The 

alignment of CopS, PputUW4_2050, and PputUW4_4499 showed low similarities at the N 

terminus and high similarities at the C terminus (Fig. 4-20A), which is common in two-

component systems in bacteria because the N terminus contains the variable sensing domain and 

the C terminus contains the conserved kinase domain. The alignment of CopR, PputUW4_2051, 

and PputUW4_4498 showed high similarities (Fig. 4-20B) and the pairwise identities/similarities 

are 60%/75% (2051 and CopR), 55%/74% (4498 and CopR), and 57%/76% (2051 and 4498). A 

proteomics study on the copper response in P. putida KT2440 has previously shown that CopR 

was up-regulated significantly in response to copper induction (Miller et al. 2009).  

 Lastly, a protein that might be involved in bacterial survival in the presence of high 

bioavailable Cu(II) was identified in the genome of UW4 (PputUW4_2454). A sequence 

similarity search showed that it has high similarities compared with CopG1 and CopG2 in 

KT2440 (Fig. 4-21). Both copG1 and copG2 are located within copper resistance operons in 

KT2440. However, this is not observed in the UW4 genome.  

Besides nickel and copper, P. putida UW4 may possess resistance to other heavy metals, 

such as cadmium, zinc, cobalt, molybdenum, chromate, and arsenate. Two genes, cadA   
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Fig. 4-19. CinQARS copper resistance system in P. putida UW4. (A) Genetic organization of 

cinQARS operon on the chromosome of UW4. (B) Amino acids sequence alignment of CinA 

between KT2440 and UW4. Brown bars show the metal binding motif (HXXMXXM/MXXM). 

(C) Amino acids sequence alignment of CinQ between KT2440 and UW4. (D) Amino acids 

sequence alignment of CinR between KT2440 and UW4. (E) Amino acid sequence alignment of 

CinS between KT2440 and UW4. Blue bars above the sequence of UW4 CinS show the 

conserved histidines essential for the transcription of cinAQ. 
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(PputUW4_5171) and cadR (PputUW4_5172), involved in cadmium resistance were identified. 

The gene cadA  is known to encode a cadmium-transporting ATPase, and CadR is a MerR family 

response regulator responsible for cadmium resistance. It has been reported that cadAR played a 

major role in cadmium resistance and also contributed to zinc resistance in P. putida 06909 (Lee 

et al. 2001). In addition, the transcription of cadR is induced by cadmium and repressed by high 

levels of CadR in the absence of cadmium (Lee et al. 2001). Sequence alignments of CadAR 

from UW4 and 06909 are shown in Fig. 4-22AB. In the genome of UW4, another cadA  gene 

(PputUW4_5412) was identified based on a sequence similarity search. However, when 

comparing the amino acid sequence of the PputUW4_5412 to CadA from P. putida 06909, the 

identities and similarities are only 36% and 52%, respectively. Furthermore, PputUW4_5412 

lacks the HMA domain at N terminus. Therefore, the function of this CadA needs to be 

confirmed experimentally in UW4.  

 Zinc is an essential trace element that acts as a cofactor for many enzymes. However, high 

concentrations of zinc are toxic to the cell. Bacteria employ different strategies to control zinc 

levels, including storage by metallothionein and export from the cell by ABC transporter systems 

(Hantke 2005). In the genome of UW4, a putative metallothionein was identified 

(PputUW4_1619). It has previously been observed that the metallothionein from P. putida 

KT2440 bound multiple Zn2+ molecules via cysteine side chains (Blindauer et al. 2002). A 

sequence alignment of metallothionein from P. putida UW4, P. putida KT2440, P. fluorescens 

Pf0-1, and P. fluorescens SBW25 shows that the protein contains 10 conserved cysteine residues 

(Fig. 4-23). In addition, a common zinc transporter system is also present in UW4. The system 

consists of three genes znuABC (PputUW4_0067, 0064, 0065) and one transcriptional repressor 

zur (PputUW4_0066). The gene products of znuABC are a periplasmic binding protein, a 

membrane permease, and an ATPase, respectively. The gene zur is located between znuA  and 
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znuC, and is transcribed in the same orientation as znuBC, but in the opposite direction from 

znuA  (Fig. 4-24A). An amino acid sequence comparison of ZnuA from UW4 and E. coli K12 

indicated 39% identities and 59% similarities, with the ZnuA from UW4 having the conserved 

His and Asp residues that have been shown by crystallography to bind to zinc (Hantke 2005) 

(Fig. 4-24B).   

 The molybdate transport system in P. putida UW4 is comprised of three genes, modABC 

(PputUW4_2404, 2403, 2402). ModA is a periplasmic binding protein; ModB is an integral 

membrane protein; and ModC is an ATPase. In E. coli, the modABC expression is tightly 

controlled by a repressor protein, ModE, and the gene is located upstream of modABC operon 

(Self et al. 2001). In the genome of UW4, a homolog of ModE is not present upstream of the 

molybdate transport system. However, a ModE family transcriptional regulator (PputUW4_4990) 

is found elsewhere on the chromosome. A sequence comparison of ModE between E. coli and 

UW4 is shown in Fig. 4-25, and the two sequences have 39% identities and 57% similarities. 

 One cobalt transporter locus comprising two genes, cbtA  (PputUW4_2364) and cbtB 

(PputUW4_2365) was identified in the genome of UW4. This transport system has been found in 

various bacteria and it is related to vitamin B12 biosynthesis. Homologs of CbtA usually have five 

transmembrane segments, and the gene is always co-localized with cbtB, which encodes one 

transmembrane segment and a histidine-rich C terminus likely to be a metal-binding site 

(Rodionov et al. 2003).  

 Arsenic ions are very toxic to most microbes and are common environmental pollutants. 

Arsenic resistance determinants were found in three regions on the chromosome of UW4, 

including an operon arsRBCH (PputUW4_2256-2253), and two individual arsC genes 

(PputUW4_1085 and PputUW4_4122). The gene product of arsC is an arsenate reductase that 

catalyzes the reduction of arsenate to arsenite. ArsB is an arsenite efflux transporter, which can  
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Fig. 4-20. Multiple sequence alignments of CopRS, PputUW4_2050-2051, and PputUW4_4498-

4499. (A) Amino acids sequence alignment of CopS, PputUW4_2050 and 4499. (B) Amino acids 

sequence alignment of CopR, PputUW4_2051 and 4498. 

 

 

 

 

 

 

 

 

 

 

 



  138 

(A) 

 

(B) 

 

MSSNSIALRLSGMFTLVALLVFLLIGWALYQQVDKGLGLLPEAELD

ARYSVLESTVGRYGTPEHWVKINNKL--NLLSEEDKRISFWIISGDPHY--EYGNLT
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Fig. 4-21. Amino acid sequence alignment of PputUW4_2454 and CopG of KT2440.  
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MLRKHLLTLSLLAVTGLAQAAE--TIDVYRDPNCGCCKAWISHLRDNG

FTVNDHVEPNMSAVKQRLGVAPRLASCHTGVIGGKFVEGHVPAEQVRLLAKRND

LKGLAVPGMPMGSPGMEMGDHKDAYQVIGVTQDGQDTVVANY

MKANSRFLR--LAAFAAFIALPPVYAAVPTTIDVHRDANCGCCKKWIAHLEQNG

FKVIDHVETDMSAVKQSLGVAPRLASCHTAVIDGKFVEGHVPAEQVRELANRDD

LIGVAVPGMPAGSPGMEVDGVSHAYQVIGLNKSGRDEVVAEYPGH

MRNPLR--LIALSALFMSSLVQAADLIPIEVHRDANCGCCKKWISHLEANG
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1 10 20 30 40 50

60 70 80 90 100

110 120 130 140 150 153

KT2440_2203_CopG

KT2440_2203_CopG

KT2440_2203_CopG

KT2440_5377_CopG

KT2440_5377_CopG

KT2440_5377_CopG

UW4_2454

UW4_2454

UW4_2454



  141 

 

 

 

 

 

 

 

 

Fig. 4-22. Amino acid sequence alignments of CadAR from P. putida UW4 and P. putida 06909. 

(A) Alignment of CadA (identities/similarities: 77%/86%). Heave-metal-associated (HMA) 

domain is shown in red. Metal binding sites are shown in blue. (B) Alignment of CadR 

(identities/similarities: 77%/84%). Histidine rich region at C terminus is highlighted in green. 
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MSDSQHTHKPVAEHEIGVKLRPLP-KHDHGGHGDACCSSKTAAPARVTLSASPTAGARLSSFR IEAMDC

PTEQTL IQNKLSKLTGVQQLEFNLINRVLGVTHDLPGTEP ITEAIKSLGMHAEPLEQGAETPAAKPD--

RKHWWPLALSGVGALLAEVIHFTATAPDWMVAVIALVSILSGGLGTYKKGWIALKNLNLNINALMSIAV
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RVRVRPGERIGLDGEVLSGRSTIDQAPITGESLPVEKTVGDKVFAGTINQAGSLEYAVTAVAGNSTLAR

IIHAVEQAQGARAPTQRFVDQFSKIYTPVVFVLALAVAVIPPLFMGALWFDW IYRALVLLVVACPCALV
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extrude arsenite out of the cell. ArsR functions as an arsenical resistance operon repressor that 

responds to arsenate (Cánovas et al. 2003). ArsH is a NADPH-dependent FMN reductase and its 

role in arsenic resistance is not clear (Ye et al. 2007). The other two individual ArsC proteins 

showed far less similarity compared with the ArsC in the operon, implying that they belong to 

different families of arsenate reductase.  

The mechanism used by various bacteria to extrude toxic chromate is through a chromate 

transporter, ChrA (Nies et al. 1990; Cervantes et al. 1990; Alvarez et al. 1999; Pimentel et al. 

2002; He et al. 2010). A gene encoding ChrA was identified in the UW4 genome 

(PputUW4_3072). The deduced amino acids sequence showed 31.2% identities compared with a 

previously characterized ChrA in P. aeruginosa (accession no. AAA88432) (Fig. 4-25A). 

However, the protein sequence of ChrA in UW4 showed much higher identities (75.8%) when 

compared with the gene from strain KT2440 (Fig. 4-25B). In another study, a small protein, 

OscA, was found to be responsible for chromate resistance in Pseudomonas corrugata 28 (Viti et 

al. 2009). The gene, oscA, was identified by characterizing a chromate-sensitive mutant created 

by transposon mutagenesis. In the genome of UW4, an oscA  homolog (PputUW4_0155) was 

found upstream of a sulfate-binding protein gene (cysP), which has been demonstrated to form a 

transcriptional unit with oscA  (Viti et al. 2009). The genetic organization of the oscA  region (Fig. 

4-26) is exactly the same as this region in P. corrugata 28, indicating that the oscA  gene from 

UW4 may also play an important role in chromate resistance.  

 

4.3 P. putida UW4 Central Metabolic Pathways and Protein Secretion Systems 

A schematic summary of the metabolic strategies in P. putida UW4 is shown in Fig. 4-27. 

The genome of P. putida UW4 contains a complete central carbon metabolism pathway including  
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Fig. 4-23. Amino acid sequence alignment of metallothionein in P. putida KT2440, P. fluorescens 

Pf0-1, P. fluorescens SBW25, and P. putida UW4. Pink bars indicate the conserved cysteine 

residues.  
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Fig. 4-24. (A) Genetic organization of zinc transporter system in UW4. (B) Amino acid sequence 

alignment of ZnuA between UW4 and E. coli K12. Pink bars indicate the conserved His or Asp 

residues that bind zinc. Residues underlined by green indicate the His-Asp loop usually found in 

zinc transporters.  
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Fig. 4-25. Sequence comparison of ChrA between (A) P. putida UW4 and P. aeruginosa (B) P. 

putida UW4 and P. putida KT2440.  
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Fig. 4-26. Genetic organization of oscA  in the genome of P. putida UW4. cysP, encoding 

sulphate-binding protein; cysT, encoding sulfate ABC transporter permease protein; cysW , 

encoding sulfate ABC transporter permease protein; cysA , encoding sulfate ABC transporter 

ATP-binding protein. 
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glycolysis/gluconeogenesis, a tricarboxylic acid (TCA) cycle with glyoxylate bypass, and a 

pentose phosphate pathway (PPP).  

Metabolism of sulfur in UW4 involves assimilation of inorganic sulfate and 

mineralization of organic sulfonates. Inorganic sulfate or thiosulfate is transported into the cell by 

an ABC-type transporter including a periplasmic binding protein, Sbp (PputUW4_3831) for 

sulfate or CysP (PputUW4_0156) for thiosulfate, permease CysT and CysW, and an ATPase 

CysA. Sulfate and thiosulfate use the same permease components and ATPase for transport. 

Once in the cell, sulfate is activated to adenosine-5’-phosphosulfate (APS) by sulfate 

adenylyltransferase, CysDN (PputUW4_0798, 0799), and then to sulfite by phosphoadenosine 

phosphosulfate reductase, CysH (PputUW4_3670). Sulfite is further reduced to sulfide by sulfite 

reductase, CysI (PputUW4_2355). This sulfide then joins O-acetylserine catalyzed by cysteine 

synthase, CysK (PputUW4_4008) to form cysteine. In the case of thiosulfate, a gene encoding O-

acetylserine sulfhydrylase, CysM (PputUW4_4112), catalyzes the reaction between thiosulfate 

and O-acetylserine to generate S-sulfocysteine, which is then converted to cysteine (Kertesz 

2004; Chambers and Trudinger 1971). In the genome of UW4, six SulP family sulfate 

transporters were identified (PputUW4_0023, 0047, 0619, 2921, 3097, 4199). Although the role 

of these transporters in sulfate assimilation in bacteria is not clear, the homologs in several 

eukaryotes have been characterized and shown to be active components of sulfate transport, some 

of which function as sulfate:H+ symporters (Piłsyk and Paszewski 2009). Organosulfur 

compounds are widely present in nature. For example, in aerobic soils organic sulfur can make up 

greater than 95% of the total sulfur in the forms of peptides/amino acids, sulfonates (C-SO3H), 

sulfamates (C-NH-SO3H), and sulfate esters (C-O-SO3H) (Kertesz 2004). Desulfonation of 

alkanesulfonates by UW4 is potentially catalyzed by alkanesulfonate monooxygenase, SsuD 

(PputUW4_5216), and an NADPH-dependent FMN reductase, SsuE (PputUW4_5218). The two  
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Fig. 4-27. Schematic overview of metabolic pathways and transport systems in P. putida UW4. 

Individual pathways are denoted by single-headed arrows, while reversible pathways are denoted 

by double-headed arrows. 
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genes are located within an operon, ssuEADCBF (PputUW4_5213-5218), which also includes 

sulfonate transporter genes, ssuABC, and a molybdenum-pterin binding protein gene, ssuF. 

Similar to other Pseudomonas putida strains, a gene encoding the thiol-specific antioxidant, 

LsfA, was found upstream of ssuE. It has been demonstrated that expression of lsfA increased 

dramatically under sulfate starvation (Quadroni et al. 1999). Taurine is a naturally occurring 

aliphatic sulfonate. In the genome of UW4, two operons that each contains four genes encoding 

an ABC-transporter (tauABC) (PputUW4_0121-0123 and PputUW4_0200-0202) and a taurine 

dioxygenase (tauD) (PputUW4_0120 and PputUW4_0199) were identified. In addition, a third 

set of genes tauA (PputUW4_5223) and tauD (PputUW4_0897) are present in the genome. 

However, neither of them is associated with other tau genes. Like sulfonates, sulfate esters are 

components commonly present in soil. A sulfatase gene cluster that might be involved in 

desulfurization of aryl and alkylsulfate esters of UW4 was identified. The cluster contains seven 

genes, atsACBR-sftR-atsK-sftP (PputUW4_0166-0172), which encode arylsulfatase, sulfate ester 

transporter ATP-binding component, aliphatic sulfonates ABC transporter permease, periplasmic 

aliphatic sulfonates-binding protein, LysR family transcriptional regulator, alkylsulfatase, and 

TonB-dependent receptor, correspondingly. It has been reported that in many gram-negative 

bacteria a LysR-type transcriptional regulator, CysB, mediated global sulfur regulation. Under 

the sulfur limitation conditions, CysB activates the transcription of cysteine synthesis genes in the 

presence of N-acetylserine or O-acetylserine, whereas sulfide and thiosulfate function as 

corepressors by inhibiting the binding of CysB to the promoters of the cysteine synthesis genes 

(Ostrowski and Kredich 1989, 1990; Hryniewicz and Kredich 1991). In UW4, a gene encoding 

CysB was identified (PputUW4_1424) and it contains a typical helix-turn-helix motif at the N 

terminus for binding to the target DNA.   



  157 

 P. putida UW4 is unable to fix nitrogen and it also lacks the genes for denitrification. 

However, it contains the genes for assimilatory nitrate reduction. Two types of nitrate 

transporters are present on the chromosome of UW4 including an ABC-type nitrate transporter 

system and a NarK family transporter NasA. The locus of the ABC transporter system contains 

three genes that encode a nitrate transporter periplasmic protein (PputUW4_2324), a nitrate 

transporter permease (PputUW4_2325), and a nitrate transporter ATP-binding protein 

(PputUW4_2326). NasA is located within a cluster of eight genes, nasST-nasA-ppkB-nasDEC-

cobA  (PputUW4_3643-3650), which is potentially involved in nitrate/nitrite assimilation. The 

gene nasS encodes a periplasmic nitrate-binding protein and nasT encodes a response regulator 

that acts as an inducer of the nas operon in response to the presence of nitrate/nitrite (Gutierrez et 

al. 1995; Caballero et al. 2005). It has been shown that NasA is a nitrate transporter and a nasA  

mutant was unable to grow on nitrate but capable of growing on nitrite (Moir and Wood 2001). 

The genes nasDEC-cobA are located within an operon and they encode assimilatory nitrite 

reductase (NasDE), assimilatory nitrate reductase (NasC), and uroporphyrin III methyltransferase 

(CobA), respectively. Uroporphyrin III methyltransferase is an enzyme responsible for siroheme 

synthesis and the gene was induced strongly by nitrate (Wang et al. 2000). Furthermore, a 

siroheme synthetase homolog gene mutant of Rhizobium etli was unable to grow on nitrate as the 

sole nitrogen source (Tate et al. 1997). The gene ppkB (PputUW4_3646), which is located 

immediately downstream of nasA , encodes a serine/threonine protein kinase. It has been 

demonstrated that a protein kinase carried out phosphorylation of the nitrate transporter and 

played an important role in nitrate deprivation response in A. thaliana and Hansenula polymorpha 

(Hu et al. 2009; Martín et al. 2011).  

 Many soil bacteria are capable of solubilizing poorly soluble mineral phosphates by 

synthesizing organic acids and acid phosphatases. In the genome of UW4, the genes responsible 
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for gluconic acid synthesis were found. The production of gluconic acid is catalyzed by glucose 

dehydrogenase (PputUW4_0992) and its cofactor PQQ. The PQQ biosynthetic genes of UW4 are 

clustered in two separate loci on the chromosome: the pqqABCDEFH (PputUW4_4969-4975) 

and the pqqBCDE (PputUW4_2943-2946). In addition, five putative acid phosphatase-encoding 

genes were identified including two phosphatidic acid phosphatase (PAP2) protein genes 

(PputUW4_0633, 4390), two SurE superfamily protein genes (PputUW4_1119, 1674), and one 

non-specific acid phosphatase gene (PputUW4_2829).  However, no phytase gene is present in 

UW4. Inorganic phosphate uptake in UW4 may be facilitated by two high-affinity phosphate 

transport systems: PstBACS (PputUW4_5366-5369) and PhnDCE1E2 (PputUW4_3168-3171), 

and one low-affinity phosphate transport system, PitA (PputUW4_1200). The high-affinity 

phosphate uptake system is composed of multi-subunit ABC transporters and is induced by 

phosphate-starvation, whereas the low-affinity system consists of a single membrane protein and 

is constitutively expressed (Gebhard et al. 2009).  

 P. putida UW4 has seven major protein secretion systems including Sec, Tat, Type I, II, 

III, V and VI (Table 4-14). The Sec (general secretory pathway) and Tat (twin arginine 

translocation) systems are the two ubiquitous systems for export across the cytoplasmic 

membrane. UW4 has one of each such system. MscL is a large conductance mechanosensitive 

channel protein and is able to export small proteins in response to osmotic pressure changes 

within the cell (Kloda et al. 2008). Type I secretion system (T1SS) consists of an outer membrane 

protein, an ABC transporter, and a membrane fusion protein. Three complete T1SS and their 

putative substrates were identified in UW4 (PputUW4_0114, 0117-0119, 1722-1725, 3955-

3958). In addition, one partial T1SS containing only an ABC transporter and a membrane fusion 

protein was found (PputUW4_2636-2638). The putative substrate, mannuronan C-5-epimerase, is 

located downstream of the membrane fusion protein and is transcribed in an opposite direction.  
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Table 4-14. Protein secretion systems in P. putida UW4. 
System Gene PputUW4_ 
(a) Sec secretory pathway     
Chaperone secB 0281 
ATPase secA 4321 
TM complex secY 4869 

 
secE 4902 

 
secG 0706 

Auxiliary proteins secD 0923 

 
secF 0924 

 
yajC 0922 

Membrane insertion proteins ftsY 5140 

 
ffh 4439 

 
yidC 5445 

Spase I lepB 0960 
Spase II lspA 4672 
(b) Twin arginine targeting (Tat) secretory pathway     

 
tatA 0323 

 
tatB 0322 

  tatC 0321 
(c) Large conductance mechanosensitive ion channel     
Channel mscL 4710 
(d) Type I secretory system     
TolC family outer membrane protein 

 
0117 

  
1722 

  
3956 

HylD family membrane fusion protein 
 

0119 

  
1723 

  
2637 

  
3958 

ATPase 
 

0118 

  
1724 

  
2638 

  
3957 

Putative substrate: RTX toxins and related Ca2+ binding proteins 
 

0114 

  
1725 

  
2636 

    3955 
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Table 4-14. Continued.  
(e) Type II secretory system     
Secretin gspD 3290 
Inner membrane protein gspF 3303 

 
gspG 3287 

  
3288 

  
3289 

  
3302 

APTase gspE 3295 
    5229 
(f) Type III secretory system     
HopJ type III effector protein 

 
0810 

Apparatus protein orgAB 3618 
Apparatus lipoprotein prgK 3619 
Needle complex protein prgJ 3620 
Cytoplasmic protein prgI 3621 
Needle complex protein prgH 3622 
Cell invasion protein iagB 3623 
Invasion protein regulator hilA 3624 
Acyl carrier protein iacP 3625 
Cell invasion protein sipD 3626 
Invasin sipC 3627 

 
sipB 3628 

Chaperone sicA 3629 
Surface presentation of antigens protein spaS 3630 

 
spaR 3631 

 
spaQ 3632 

 
spaP 3633 

 
spaO 3634 

Invasion protein invJ 3635 
Secretory apparatus invI 3636 
Secretory apparatus ATP synthase invC 3637 
Invasion protein invB 3638 

 
invA 3639 

 
invE 3640 

 
invG 3641 

  invF 3642 
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Table 4-14. Continued. 
(g) Type V secretory system     
Autotransporters estA 4925 

  
2802 

  
0219 

(h) Type VI secretory system 
  OmpA/MotB domain-containing protein 
 

3076 
Lysozyme-like protein tssE 3077 
Lipoprotein tssJ 3078 
Secretion protein 

 
3079 

Secretion protein 
 

3080 
Secretion-associated protein 

 
3081 

ImcF domain-containing protein tssM 3082 
Hypothetical protein 

 
3083 

PAAR repeat-containing protein 
 

3084 
Hypothetical protein 

 
3085 

Hypothetical protein 
 

3086 
Hypothetical protein 

 
3087 

Vgr family protein vgrG1 3088 
ClpV1 family type VI secretion ATPase clpV 3089 
Hcp1 family effector hcp 3090 
OmpA/MotB domain-containing protein 

 
3091 

Hypothetical protein tssL 3092 
Secretion protein 

 
3093 

EvpB family secretion protein tssC 3094 
Secretion protein tssB 3095 
Vgr family protein vgrG2 1753 
Vgr family protein vgrG3 3284 
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Since this system lacks the outer membrane protein, the transport mechanism of this large 

extracellular protein (1871 aa) is not clear. Genes involved in the type II secretion system (T2SS) 

of UW4 are located mainly within one cluster consisting of two separate operons 

(PputUW4_3287-3295 and PputUW4_3302-3303). The first operon contains nine genes but only 

five can be identified as T2SS protein genes based on sequence similarities. The other four genes 

encode three hypothetical proteins and a fimbrial assembly protein. The genes potentially 

involved in UW4 type III secretory pathway were found within one locus and showed strong 

similarity to those located within pathogenicity island I of Salmonella, suggesting that these 

genes were likely acquired by horizontal transfer. However, one gene invH, which encodes an 

outer membrane lipoprotein located upstream of invF in Salmonella, is absent in UW4. It has 

been demonstrated that in Salmonella, InvH is required for efficient adherence and invasion of 

cultured epithelial cells (Altmeyer et al. 1993). In addition, InvH is also essential for the proper 

localization of the secretin, InvG, in the outer membrane and the secretion of the virulence 

effector SipC (Daefler and Russel, 1998). Since UW4 does not have this gene, the function of the 

type III secretion system (T3SS) of UW4 needs to be confirmed experimentally. The type V 

secretion system (T5SS) of Gram-negative bacteria contains two steps: inner membrane transport 

via Sec pathway and outer membrane transport by a β barrel protein. Currently, two subtypes of 

T5SS have been identified including the autotransporters (ATs) and the two-partner secretion 

system (TPS). In UW4, three putative ATs were found. One of them, estA , possesses esterase 

activity and was shown to play an important role in twitching, swarming, and swimming 

motilities of P. aeruginosa (Wilhelm et al. 2007). The other two putative ATs in UW4 encode an 

outer membrane autotransporter (PputUW4_2802) and an extracellular serine protease 

(PputUW4_0219), respectively. However, none of these have been characterized experimentally. 
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The TPS system consists of two proteins. One protein named TpsA has a secretion motif and a 

catalytic domain. The other protein named TpsB contains the β domain involved in recruitment 

of the TpsA protein. Several TPS systems have been identified in Pseudomonas sp. such as P. 

aeruginosa PAO1, P. fluorescens Pf0-1 and P. putida KT2440 (Bleves et al. 2010; Molina et al. 

2006). However, none of those systems is present in UW4. The type VI secretion system (T6SS) 

was first described in Vibrio cholerae six years ago (Pukatzke et al. 2006). Since then, the T6SS 

has been found in the genome of hundreds of bacteria, where it reportedly functions as a regulator 

of bacterial interactions and competition (Cascales and Cambillau, 2012). UW4 contains one 

gene cluster that is associated with T6SS. The cluster is composed of twenty genes 

(PputUW4_3076_3095) including the core components to form the minimal apparatus. 

Haemolysin coregulated protein (Hcp) forms hexamers and eventually assembles as nanotubes, 

which are responsible for transportation of other T6SS effector proteins. Another protein, valine-

glycine repeat protein (VgrG), forms a trimer and serves as a puncturing device towards the 

targeted cells. Structures of Hcp and VgrG indicated that they are related to the needle tail and 

syringe components of bacteriophage T4. TssB (Type Six Secretion B) and TssC form structures 

similar to the bacteriophage needle sheath, and TssE resembles the needle hub. TssM, TssL, and 

TssJ are three proteins anchored to the bacterial cell envelope. TssJ, an outer membrane 

lipoprotein, interacts with the inner membrane protein TssM, which links the inner and outer 

membrane, and forms a stable complex with protein TssL (Felisberto-Rodrigues et al. 2011; 

Cascales and Cambillau, 2012; Durand et al. 2012).  

 Efficient plant growth stimulation requires effective root colonization that often relies on 

the bacterial cell surface structures, such as pili. Type IV pili are 5-7 nm fibers and the function is 

controlled by numerous genes. A total of twenty-four genes that are involved in type IV pili 



  164 

biosynthesis were identified on the genome of UW4 (Table 4-15). These genes are arranged 

mainly within four clusters, pilMNOPQ, pilACD, pilEXWV-fimT, pilL/chpA-pilJIHG, where the 

last cluster contains the genes involved in pili biosynthesis regulation.  

 

4.4 Pseudomonas Genome Comparisons and Phylogeny 

A total of 1679 orthologous genes were identified between P. putida UW4 and other 

completely sequenced Pseudomonas genomes. Phylogenetic analysis of the 1679 conserved 

genes indicated that P. putida UW4 has a closer relationship with P. fluorescens than with P. 

putida (Fig. 4-28). The putative orthologous relations between UW4 and 20 completely 

sequenced Pseudomonas genomes are shown in Table 4-16. In addition, 71 CDSs were found in 

other Pseudomonas sp., whose genome sequences have not been determined (Table 4-17). In 

UW4 genome, 278 CDSs were considered as unique based on two criteria: 1. No hits to any CDS 

present in NCBI nr protein sequences database with a cutoff E-value of 1 E-20; 2. Identities are 

less than 30% and/or query/subject coverage is less than 80% (Table 4-18). Among the 278 

CDSs, 240 have been annotated as hypothetical proteins. When comparing UW4 CDSs with 

those in nr database, 199 showed similarities with protein sequences in other genera only, 

indicating these genes probably originated from a genus outside of Pseudomonas (Table 4-19).  

Comparisons of genome structure for UW4 vs completely sequenced P. fluorescens and P. putida 

genomes are illustrated in Fig. 4-29, with the red lines indicating individual TBLASTX matches 

and blue lines exhibiting inverted matches. The distribution of the genes among the Pseudomonas 

genomes showed that the unique genes are mostly located at the replication termini, whereas the 

orthologues are commonly present at the replication origin. Furthermore, the whole genome 

alignments showed extensive DNA rearrangement indicated by the blue lines, which is likely 

driven by repeat sequences within the genome. Moreover, the line plots revealed that genes in  



  165 

Table 4-15. Type IV Pilus Genes in P. putida UW4 
Gene Gene Product PputUW4_ 
pilM type IV pili biogenesis protein PilM 0346 
pilN type IV pili biogenesis protein PilN 0347 
pilO type IV pili biogenesis protein PilO 0348 
pilP type IV pili biogenesis protein PilP 0349 
pilQ type IV pili biogenesis protein PilQ 0350 
pilF type IV pili biogenesis protein PilF 0940 
pilZ type IV pilus assembly PilZ 3510 
pilZ type IV pilus assembly PilZ 4339 
fimD fimbrial biogenesis outer membrane usher protein 4454 
pilA type IV pili prepilin PilA 4645 
pilC type IV fimbrial assembly protein 4646 
pilD type IV pili prepilin peptidase PilD/XcpA 4647 
pilE type IV pili biogenesis protein PilE 4663 
pilX type IV pilus assembly protein 4665 
pilW type IV pilus assembly protein 4666 
pilV type IV fimbrial biogenesis protein PilV 4667 
fimT type IV pilin 4668 
fimT type IV pili biogenesis protein 4669 
traX conjugal transfer pilus acetylation protein 5018 
pilL/chpA type IV pili sensor histidine kinase/response regulator 5106 
pilJ type IV pili methyl-accepting chemotaxis transducer 5107 
pilI type IV pili signal transduction protein PilI 5108 
pilH type IV pili response regulator PilH 5109 
pilG type IV pili response regulator PilG 5110 
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Fig. 4-28. Phylogenetic tree of 21 different Pseudomonas species, base on 1,679 conserved genes. 

Numbers on nodes represent percentages of individual trees containing that relationship. The 

scale bar corresponds to the number of substitutions per site.  
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Table 4-16. Putative Orthologous Relations Between UW4 and completely sequenced 
Pseudomonas genomes 
 

Species Putative orthologous shared 
with P. putida UW4, no. (%) 

P. fluorescens Pf0-1 4113 (76) 
P. fluorescens Pf-5 3789 (70) 
P. fluorescens SBW25 3595 (66) 
P. putida KT2440 3356 (62) 
P. putida GB-1 3434 (63) 
P. putida F1 3435 (63) 
P. putida BIRD-1 3394 (62) 
P. putida W619 3405 (63) 
P. putida S16 3466 (64) 
P. brassicacearum NFM-421 3815 (69) 
P. entomophila L48 3387 (62) 
P. syringae DC3000 3015 (55) 
P. syringae 1448a 2992 (55) 
P. syringae B728a 3061 (56) 
P. mendocina NK-01 2918 (54) 
P. stutzeri A1501 2414 (44) 
P. aeruginosa LESB58 3175 (58) 
P. aeruginosa PAO1 3182 (58) 
P. aeruginosa UCBPP-PA14 3185 (58) 
P. aeruginosa PA7 3182 (58) 
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Table 4-17. Predicted CDSs that share similarities with other Pseudomonas sp. 
locus_tag product 
PputUW4_0243 transcription repressor protein 
PputUW4_0802 hypothetical protein 
PputUW4_0918 type III restriction protein res subunit 
PputUW4_1235 hypothetical protein 
PputUW4_1655 short chain dehydrogenase 
PputUW4_1656 dehydratase 
PputUW4_1658 3-ketosteroid-5-isomerase 
PputUW4_1662 2,6-dioxo-6-phenylhexa-3-enoate hydrolase 
PputUW4_1670 short-chain dehydrogenase/reductase SDR 
PputUW4_1671 lipase 
PputUW4_1676 hypothetical protein 
PputUW4_1677 3-oxosteroid-delta-1-dehydrogenase 
PputUW4_1678 short chain dehydrogenase 
PputUW4_1690 2,3-dihydroxybiphenyl-1,2-dioxygenase 
PputUW4_1691 CoA-transferase subunit alpha 
PputUW4_1692 CoA-transferase, beta subunit 
PputUW4_1693 enoyl-CoA hydratase 
PputUW4_1694 2-nitropropane dioxygenase 
PputUW4_1695 enoyl-CoA hydratase 
PputUW4_1696 acyl-CoA dehydrogenase 
PputUW4_1697 acyl-CoA dehydrogenase 
PputUW4_1699 short chain dehydrogenase 
PputUW4_1740 LysR family transcriptional regulator 
PputUW4_1815 leucyl-tRNA synthetase 
PputUW4_1893 glutamine synthetase 
PputUW4_1993 AraC family transcriptional regulator 
PputUW4_2075 AMP-dependent synthetase and ligase 
PputUW4_2077 AMP-dependent synthetase and ligase 
PputUW4_2080 acyl-CoA dehydrogenase 
PputUW4_2082 enoyl-CoA hydratase 
PputUW4_2197 diguanylate cyclase 
PputUW4_2257 ribosomal-protein-alanine acetyltransferase 
PputUW4_2269 exported protein 
PputUW4_2270 alpha/beta fold family hydrolase 
PputUW4_2280 phenylserine aldolase 
PputUW4_2308 long-chain-fatty-acid--CoA ligase 
PputUW4_2568 plasmid stabilization system protein 
PputUW4_2610 phage integrase 
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PputUW4_2622 AraC family transcriptional regulator 
Table 4-17. Continued 
PputUW4_2624 alpha/beta hydrolase fold family protein 
PputUW4_2646 hypothetical protein 
PputUW4_3047 betaine aldehyde dehydrogenase 
PputUW4_3144 aldehyde dehydrogenase 
PputUW4_3257 hypothetical protein 
PputUW4_3279 MutT/nudix-family hydrolase 
PputUW4_3554 dTDP-4-dehydrorhamnose 3,5-epimerase 
PputUW4_3593 hypothetical protein 
PputUW4_3617 hypothetical protein 
PputUW4_3618 oxygen-regulated gene required for bacterial internalization  
PputUW4_3619 type III secretion apparatus lipoprotein 
PputUW4_3620 type III secretion system needle complex protein 
PputUW4_3621 type III secretion cytoplasmic protein 
PputUW4_3622 type III secretion system needle complex protein 
PputUW4_3624 invasion protein regulator 
PputUW4_3625 acyl carrier protein 
PputUW4_3626 type III effector protein cell invasion protein 
PputUW4_3627 invasin 
PputUW4_3628 invasin 
PputUW4_3629 chaperone protein SicA 
PputUW4_3630 surface presentation of antigens protein 
PputUW4_3631 surface presentation of antigens protein 
PputUW4_3632 surface presentation of antigens protein 
PputUW4_3634 hypothetical protein 
PputUW4_3635 hypothetical protein 
PputUW4_3636 hypothetical protein 
PputUW4_3640 invasion protein 
PputUW4_3642 invasion protein 
PputUW4_3921 hypothetical protein 
PputUW4_4962 transcriptional regulator 
PputUW4_4963 hypothetical protein 
PputUW4_5044 hypothetical protein 
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Table 4-18. Putative unique CDSs in P. putida UW4 
locus_tag product 
PputUW4_0044 hypothetical protein 
PputUW4_0101 hypothetical protein 
PputUW4_0115 conserved repeat domain protein 
PputUW4_0143 hypothetical protein 
PputUW4_0144 hypothetical protein 
PputUW4_0145 hypothetical protein 
PputUW4_0146 peptidase 
PputUW4_0151 IS3 family transposase 
PputUW4_0204 hypothetical protein 
PputUW4_0219 extracellular serine protease 
PputUW4_0231 hypothetical protein 
PputUW4_0239 hypothetical protein 
PputUW4_0359 hypothetical protein 
PputUW4_0488 hypothetical protein 
PputUW4_0499 hypothetical protein 
PputUW4_0500 hypothetical protein 
PputUW4_0539 hypothetical protein 
PputUW4_0544 hypothetical protein 
PputUW4_0545 hypothetical protein 
PputUW4_0573 hypothetical protein 
PputUW4_0594 hypothetical protein 
PputUW4_0635 hypothetical protein 
PputUW4_0639 hypothetical protein 
PputUW4_0640 hypothetical protein 
PputUW4_0645 hypothetical protein 
PputUW4_0646 hypothetical protein 
PputUW4_0647 hypothetical protein 
PputUW4_0651 hypothetical protein 
PputUW4_0658 hypothetical protein 
PputUW4_0677 hypothetical protein 
PputUW4_0726 hypothetical protein 
PputUW4_0727 hypothetical protein 
PputUW4_0737 hypothetical protein 
PputUW4_0740 hypothetical protein 
PputUW4_0741 hypothetical protein 
PputUW4_0861 hypothetical protein 
PputUW4_0866 hypothetical protein 
PputUW4_0894 hypothetical protein 
PputUW4_0895 hypothetical protein 



  172 

Table 4-18. Continued 
PputUW4_0903 hypothetical protein 
PputUW4_0912 ion channel family protein 
PputUW4_0926 hypothetical protein 
PputUW4_0968 hypothetical protein 
PputUW4_1014 hypothetical protein 
PputUW4_1028 hypothetical protein 
PputUW4_1030 hypothetical protein 
PputUW4_1071 hypothetical protein 
PputUW4_1183 hypothetical protein 
PputUW4_1199 hypothetical protein 
PputUW4_1213 hypothetical protein 
PputUW4_1218 hypothetical protein 
PputUW4_1234 LuxR family transcriptional regulator 
PputUW4_1236 hypothetical protein 
PputUW4_1238 hypothetical protein 
PputUW4_1266 hypothetical protein 
PputUW4_1267 hypothetical protein 
PputUW4_1314 hypothetical protein 
PputUW4_1375 hypothetical protein 
PputUW4_1393 K+-transporting ATPase subunit F 
PputUW4_1414 hypothetical protein 
PputUW4_1487 transcriptional regulator 
PputUW4_1488 hypothetical protein 
PputUW4_1489 hypothetical protein 
PputUW4_1490 hypothetical protein 
PputUW4_1499 hypothetical protein 
PputUW4_1547 hypothetical protein 
PputUW4_1556 hypothetical protein 
PputUW4_1557 hypothetical protein 
PputUW4_1559 hypothetical protein 
PputUW4_1567 hypothetical protein 
PputUW4_1619 metallothionein 
PputUW4_1666 hypothetical protein 
PputUW4_1687 hypothetical protein 
PputUW4_1706 hypothetical protein 
PputUW4_1719 hypothetical protein 
PputUW4_1726 hypothetical protein 
PputUW4_1730 hypothetical protein 
PputUW4_1743 hypothetical protein 
PputUW4_1761 hypothetical protein 
PputUW4_1812 Class II Aldolase/Adducin Family Protein 
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Table 4-18. Continued 
PputUW4_1877 hypothetical protein 
PputUW4_1921 hypothetical protein 
PputUW4_1932 hypothetical protein 
PputUW4_1946 hypothetical protein 
PputUW4_1959 hypothetical protein 
PputUW4_1996 hypothetical protein 
PputUW4_2009 hypothetical protein 
PputUW4_2015 IS3 family transposase 
PputUW4_2019 hypothetical protein 
PputUW4_2021 hypothetical protein 
PputUW4_2046 aldehyde dehydrogenase family protein 
PputUW4_2047 hypothetical protein 
PputUW4_2097 hypothetical protein 
PputUW4_2098 hypothetical protein 
PputUW4_2100 hypothetical protein 
PputUW4_2106 hypothetical protein 
PputUW4_2124 IS1182 family transposase 
PputUW4_2125 ThiF family protein 
PputUW4_2126 hypothetical protein 
PputUW4_2128 hypothetical protein 
PputUW4_2129 hypothetical protein 
PputUW4_2130 hypothetical protein 
PputUW4_2131 hypothetical protein 
PputUW4_2133 IS1182 family transposase, truncated 
PputUW4_2135 hypothetical protein 
PputUW4_2136 IS1182 family transposase 
PputUW4_2147 hypothetical protein 
PputUW4_2164 IS1182 family transposase 
PputUW4_2167 hypothetical protein 
PputUW4_2169 hypothetical protein 
PputUW4_2171 hypothetical protein 
PputUW4_2179 hypothetical protein 
PputUW4_2183 hypothetical protein 
PputUW4_2187 heme peroxidase 
PputUW4_2188 hypothetical protein 
PputUW4_2192 hypothetical protein 
PputUW4_2202 hypothetical protein 
PputUW4_2203 hypothetical protein 
PputUW4_2205 hypothetical protein 
PputUW4_2216 LysR family transcriptional regulator 
PputUW4_2217 hypothetical protein 
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Table 4-18. Continued 
PputUW4_2223 IS1182 family transposase 
PputUW4_2284 hemolysin-type calcium-binding region 
PputUW4_2285 hypothetical protein 
PputUW4_2288 hypothetical protein 
PputUW4_2307 LuxR family ATP-dependent transcriptional regulator 
PputUW4_2353 hypothetical protein 
PputUW4_2356 hypothetical protein 
PputUW4_2371 hypothetical protein 
PputUW4_2395 hypothetical protein 
PputUW4_2397 hypothetical protein 
PputUW4_2415 hypothetical protein 
PputUW4_2447 hypothetical protein 
PputUW4_2457 hypothetical protein 
PputUW4_2481 hypothetical protein 
PputUW4_2520 hypothetical protein 
PputUW4_2534 hypothetical protein 
PputUW4_2535 hypothetical protein 
PputUW4_2537 hypothetical protein 
PputUW4_2570 hypothetical protein 
PputUW4_2574 hypothetical protein 
PputUW4_2588 hypothetical protein 
PputUW4_2589 AraC family transcriptional regulator 
PputUW4_2601 hypothetical protein 
PputUW4_2607 AraC family transcriptional regulator 
PputUW4_2608 hypothetical protein 
PputUW4_2609 hypothetical protein 
PputUW4_2611 hypothetical protein 
PputUW4_2620 hypothetical protein 
PputUW4_2621 hypothetical protein 
PputUW4_2632 hypothetical protein 
PputUW4_2633 hypothetical protein 
PputUW4_2657 hypothetical protein 
PputUW4_2658 hypothetical protein 
PputUW4_2668 hypothetical protein 
PputUW4_2674 ion transport 2 domain-containing protein 
PputUW4_2688 hypothetical protein 
PputUW4_2705 hypothetical protein 
PputUW4_2725 hypothetical protein 
PputUW4_2727 hypothetical protein 
PputUW4_2728 CadC family transcriptional regulator 
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 Table 4-18. Continued 
PputUW4_2729 hypothetical protein 
PputUW4_2730 hypothetical protein 
PputUW4_2731 AraC family transcriptional regulator 
PputUW4_2732 hypothetical protein 
PputUW4_2733 OmpA-like transmembrane domain protein 
PputUW4_2734 hypothetical protein 
PputUW4_2750 hypothetical protein 
PputUW4_2761 DNA-binding response regulator 
PputUW4_2762 hypothetical protein 
PputUW4_2777 hypothetical protein 
PputUW4_2807 hypothetical protein 
PputUW4_2845 hypothetical protein 
PputUW4_2870 hypothetical protein 
PputUW4_2928 hypothetical protein 
PputUW4_2993 hypothetical protein 
PputUW4_2994 hypothetical protein 
PputUW4_3001 IS110 family transposase 
PputUW4_3027 hypothetical protein 
PputUW4_3042 hypothetical protein 
PputUW4_3048 hypothetical protein 
PputUW4_3064 hypothetical protein 
PputUW4_3085 hypothetical protein 
PputUW4_3088 type VI secretion system Vgr family protein 
PputUW4_3098 hypothetical protein 
PputUW4_3103 hypothetical protein 
PputUW4_3130 hypothetical protein 
PputUW4_3133 hypothetical protein 
PputUW4_3141 hypothetical protein 
PputUW4_3142 hypothetical protein 
PputUW4_3145 hypothetical protein 
PputUW4_3146 hypothetical protein 
PputUW4_3159 hypothetical protein 
PputUW4_3189 hypothetical protein 
PputUW4_3191 hypothetical protein 
PputUW4_3214 glutamine amidotransferase class-I 
PputUW4_3226 hypothetical protein 
PputUW4_3246 hypothetical protein 
PputUW4_3255 hypothetical protein 
PputUW4_3270 hypothetical protein 
PputUW4_3280 hypothetical protein 
PputUW4_3286 hypothetical protein 
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Table 4-18. Continued 
PputUW4_3297 hypothetical protein 
PputUW4_3304 hypothetical protein 
PputUW4_3311 hypothetical protein 
PputUW4_3312 hypothetical protein 
PputUW4_3324 hypothetical protein 
PputUW4_3329 hypothetical protein 
PputUW4_3349 hypothetical protein 
PputUW4_3359 hypothetical protein 
PputUW4_3416 hypothetical protein 
PputUW4_3417 hypothetical protein 
PputUW4_3418 hypothetical protein 
PputUW4_3421 hypothetical protein 
PputUW4_3478 hypothetical protein 
PputUW4_3482 hypothetical protein 
PputUW4_3486 hypothetical protein 
PputUW4_3547 hypothetical protein 
PputUW4_3548 hypothetical protein 
PputUW4_3551 IS630 family transposase, truncated 
PputUW4_3560 hypothetical protein 
PputUW4_3587 hypothetical protein 
PputUW4_3588 hypothetical protein 
PputUW4_3590 hypothetical protein 
PputUW4_3591 hypothetical protein 
PputUW4_3594 hypothetical protein 
PputUW4_3595 hypothetical protein 
PputUW4_3597 hypothetical protein 
PputUW4_3616 hypothetical protein 
PputUW4_3677 hypothetical protein 
PputUW4_3678 hypothetical protein 
PputUW4_3679 surface antigen protein 
PputUW4_3680 surface antigen protein 
PputUW4_3681 hypothetical protein 
PputUW4_3683 hypothetical protein 
PputUW4_3763 hypothetical protein 
PputUW4_3768 hypothetical protein 
PputUW4_3812 hypothetical protein 
PputUW4_3954 hypothetical protein 
PputUW4_3967 hypothetical protein 
PputUW4_3968 hypothetical protein 
PputUW4_3996 aldehyde dehydrogenase family protein 
PputUW4_4022 hypothetical protein 
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Table 4-18. Continued 
PputUW4_4069 hypothetical protein 
PputUW4_4083 hypothetical protein 
PputUW4_4113 hypothetical protein 
PputUW4_4114 hypothetical protein 
PputUW4_4154 hypothetical protein 
PputUW4_4157 hypothetical protein 
PputUW4_4163 hypothetical protein 
PputUW4_4164 hypothetical protein 
PputUW4_4166 hypothetical protein 
PputUW4_4172 hypothetical protein 
PputUW4_4194 hypothetical protein 
PputUW4_4232 hypothetical protein 
PputUW4_4234 hypothetical protein 
PputUW4_4311 hypothetical protein 
PputUW4_4336 hypothetical protein 
PputUW4_4362 hypothetical protein 
PputUW4_4363 hypothetical protein 
PputUW4_4500 hypothetical protein 
PputUW4_4518 hypothetical protein 
PputUW4_4519 hypothetical protein 
PputUW4_4625 hypothetical protein 
PputUW4_4664 type IV pilus-associated protein 
PputUW4_4696 hypothetical protein 
PputUW4_4698 hypothetical protein 
PputUW4_4828 hypothetical protein 
PputUW4_4911 hypothetical protein 
PputUW4_4964 hypothetical protein 
PputUW4_5019 hypothetical protein 
PputUW4_5020 hypothetical protein 
PputUW4_5024 hypothetical protein 
PputUW4_5088 hypothetical protein 
PputUW4_5206 glutamine amidotransferase 
PputUW4_5210 hypothetical protein 
PputUW4_5218 hypothetical protein 
PputUW4_5350 hypothetical protein 
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Table 4-19. Predicted UW4 CDSs that share sequence similarities to those in other genera only 
locus_tag product 
PputUW4_0444 hypothetical protein 
PputUW4_0525 hypothetical protein 
PputUW4_0644 hypothetical protein 
PputUW4_0657 ADP-Ribosylglycohydrolase 
PputUW4_0666 hypothetical protein 
PputUW4_0739 hypothetical protein 
PputUW4_0863 hypothetical protein 
PputUW4_0864 hypothetical protein 
PputUW4_0868 radical SAM family protein 
PputUW4_0869 branched-chain amino acid aminotransferase 
PputUW4_0870 hypothetical protein 
PputUW4_0871 hypothetical protein 
PputUW4_0872 hypothetical protein 
PputUW4_0873 GntR family transcriptional regulator with aminotransferase domain 
PputUW4_0884 histidine kinase 
PputUW4_0885 two component transcriptional regulator 
PputUW4_0886 methionine-R-sulfoxide reductase 
PputUW4_0887 methionine sulfoxide reductase A 
PputUW4_0892 hypothetical protein 
PputUW4_1333 Glucose/sorbosone dehydrogenases 

PputUW4_1334 tat (twin-arginine translocation) pathway signal sequence domain 
protein 

PputUW4_1373 hypothetical protein 
PputUW4_1374 hypothetical protein 
PputUW4_1376 hypothetical protein 
PputUW4_1561 hypothetical protein 
PputUW4_1593 hypothetical protein 
PputUW4_1653 acyl-CoA dehydrogenase 
PputUW4_1654 acyl-CoA dehydrogenase 
PputUW4_1659 hypothetical protein 
PputUW4_1660 hypothetical protein 
PputUW4_1661 oxidoreductase, short chain dehydrogenase/reductase family 
PputUW4_1668 LuxR family transcriptional regulator 
PputUW4_1669 rieske [2Fe-2S] domain protein 
PputUW4_1674 5'-nucleotidase SurE 
PputUW4_1679 acyl-CoA synthetase 
PputUW4_1680 hypothetical protein 
PputUW4_1681 FAD-binding oxidoreductase 
PputUW4_1683 fumarate reductase/succinate dehydrogenase 
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Table 4-19. Continued 
PputUW4_1685 acyl-CoA dehydrogenase 
PputUW4_1686 flavin-dependent oxidoreductase 
PputUW4_1729 17 kDa surface antigen 
PputUW4_1735 hypothetical protein 
PputUW4_1736 arylsulfatase 
PputUW4_1737 multiple antibiotic resistance (MarC)-like protein 
PputUW4_1741 AMP-dependent synthetase and ligase 
PputUW4_1744 enoyl-CoA hydratase 
PputUW4_1808 Citrate lyase subunit beta 
PputUW4_1809 MaoC Domain Protein Dehydratase 
PputUW4_1810 ornithine cyclodeaminase 
PputUW4_1811 D-3-phosphoglycerate dehydrogenase 
PputUW4_1813 histidinol-phosphate aminotransferase 
PputUW4_1858 LuxR family transcriptional regulator 
PputUW4_1859 amidohydrolase family protein 
PputUW4_1863 hypothetical protein 
PputUW4_1864 D-alanyl-D-alanine dipeptidase 
PputUW4_1883 hypothetical protein 
PputUW4_1890 amino acid permease family protein 
PputUW4_2012 AraC family transcriptional regulator 
PputUW4_2022 hypothetical protein 
PputUW4_2030 hypothetical protein 
PputUW4_2033 Arginine/lysine/ornithine decarboxylases 
PputUW4_2034 putrescine transporter 
PputUW4_2053 hypothetical protein 
PputUW4_2054 hypothetical protein 
PputUW4_2061 dihydroxy-acid dehydratase 
PputUW4_2066 TetR family transcriptional regulator 
PputUW4_2067 short-chain dehydrogenase/reductase SDR 
PputUW4_2068 MaoC-like dehydratase 
PputUW4_2069 hypothetical protein 
PputUW4_2070 thiolase 
PputUW4_2072 LuxR family MalT-like ATP-dependent transcriptional regulator 
PputUW4_2074 enoyl-CoA hydratase/carnithine racemase 
PputUW4_2076 thioesterase superfamily protein 
PputUW4_2079 thiolase 
PputUW4_2081 acyl-CoA dehydrogenase 
PputUW4_2087 alcohol dehydrogenase class III 
PputUW4_2090 hypothetical protein 
PputUW4_2091 hypothetical protein 
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Table 4-19. Continued 
PputUW4_2092 AraC family transcriptional regulator 
PputUW4_2096 hypothetical protein 
PputUW4_2120 RND family efflux transporter, MFP subunit 
PputUW4_2122 peptide ABC transporter permease 
PputUW4_2123 peptide ABC transporter permease 
PputUW4_2134 hypothetical protein 
PputUW4_2140 HxlR family transcriptional regulator 
PputUW4_2142 glutathione-dependent formaldehyde-activating GFA 
PputUW4_2143 hypothetical protein 
PputUW4_2145 RND family efflux transporter MFP subunit 
PputUW4_2146 RND efflux system outer membrane lipoprotein 
PputUW4_2148 transcriptional regulator ATPase, winged helix family 
PputUW4_2150 TetR family transcriptional regulator 
PputUW4_2152 TetR family transcriptional regulator 
PputUW4_2154 fumarylacetoacetate (FAA) hydrolase 
PputUW4_2157 hypothetical protein 
PputUW4_2174 hypothetical protein 
PputUW4_2185 LuxR family transcriptional regulator 
PputUW4_2186 histidine kinase family protein 
PputUW4_2189 sensor histidine kinase 
PputUW4_2190 sensor histidine kinase 
PputUW4_2191 two component LuxR family transcriptional regulator 
PputUW4_2195 hypothetical protein 
PputUW4_2206 hypothetical protein 
PputUW4_2239 hypothetical protein 
PputUW4_2260 hypothetical protein 
PputUW4_2264 hypothetical protein 
PputUW4_2283 twin-arginine translocation pathway signal 
PputUW4_2286 patatin-like phospholipase family protein 
PputUW4_2298 thiolase 
PputUW4_2299 MaoC-like dehydratase 
PputUW4_2300 MaoC-like dehydratase 
PputUW4_2301 3-oxoacyl-[acyl-carrier-protein] reductase 
PputUW4_2331 major facilitator superfamily MFS_1 
PputUW4_2554 hypothetical protein 
PputUW4_2571 hypothetical protein 
PputUW4_2573 hypothetical protein 
PputUW4_2585 hypothetical protein 
PputUW4_2586 hypothetical protein 
PputUW4_2587 hypothetical protein 
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Table 4-19. Continued 
PputUW4_2591 LuxR family ATP-dependent transcriptional regulator 
PputUW4_2592 acetyl-CoA acetyltransferase 
PputUW4_2597 Radical SAM domain protein 
PputUW4_2598 oxidoreductase 
PputUW4_2599 arylsulfatase 
PputUW4_2600 2,4-dihydroxyacetophenone dioxygenase 
PputUW4_2612 hypothetical protein 
PputUW4_2625 major facilitator superfamily protein 
PputUW4_2626 enoyl-CoA hydratase/isomerase 
PputUW4_2627 AMP-dependent synthetase and ligase 
PputUW4_2628 carbon monoxide dehydrogenase small subunit 
PputUW4_2630 carbon-monoxide dehydrogenase, large subunit 
PputUW4_2676 TetR family transcriptional regulator 
PputUW4_2677 hypothetical protein 
PputUW4_2681 glutathione-dependent formaldehyde-activating GFA 
PputUW4_2692 hypothetical protein 
PputUW4_2693 major facilitator family protein 
PputUW4_2701 hypothetical protein 
PputUW4_2702 MarR family transcriptional regulator 
PputUW4_2708 isochorismatase family protein 
PputUW4_2713 cytochrome b561 family protein 
PputUW4_2714 hypothetical protein 
PputUW4_2716 hypothetical protein 
PputUW4_2717 cytochrome c oxidase subunit III 
PputUW4_2718 cytochrome c oxidase subunit III 
PputUW4_2719 cytochrome c oxidase, subunit I 
PputUW4_2720 cytochrome c oxidase subunit II 
PputUW4_2723 hypothetical protein 
PputUW4_2724 hypothetical protein 
PputUW4_2745 ABC transporter permease protein 
PputUW4_2746 ABC transporter permease protein 
PputUW4_2747 ABC transporter family protein 
PputUW4_2748 ABC transporter family protein 
PputUW4_2749 ABC transporter substrate-binding protein 
PputUW4_2847 hypothetical protein 
PputUW4_2995 LuxR family two component transcriptional regulator 
PputUW4_3012 IclR family transcriptional regulator 
PputUW4_3024 nitrilase 
PputUW4_3026 glutathione S-transferase 
PputUW4_3043 spermidine/putrescine ABC transporter ATPase subunit 
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Table 4-19. Continued 
PputUW4_3044 spermidine/putrescine-binding periplasmic protein 
PputUW4_3058 prolyl-tRNA synthetase 
PputUW4_3086 hypothetical protein 
PputUW4_3097 sulfate transporter 
PputUW4_3104 hypothetical protein 
PputUW4_3127 peroxidase 
PputUW4_3148 phosphotransferase family protein 
PputUW4_3149 hypothetical protein 
PputUW4_3150 hypothetical protein 
PputUW4_3151 macrolide glycosyltransferase 
PputUW4_3152 spermidine/putrescine ABC transporter, ATP-binding protein 
PputUW4_3155 spermidine/putrescine-binding periplasmic protein 
PputUW4_3156 GntR family transcriptional regulator 
PputUW4_3157 glycosyl transferase family protein 
PputUW4_3158 FAD dependent oxidoreductase 
PputUW4_3172 hypothetical protein 
PputUW4_3173 ATP-dependent DNA helicase 
PputUW4_3176 succinylglutamate desuccinylase/aspartoacylase 
PputUW4_3177 hypothetical protein 
PputUW4_3242 glutathione S-transferase 
PputUW4_3325 hypothetical protein 
PputUW4_3334 alpha/beta hydrolase fold protein 
PputUW4_3335 LysR family transcriptional regulator 
PputUW4_3336 demethylmenaquinone methyltransferase 
PputUW4_3338 dimethylmenaquinone methyltransferase 
PputUW4_3350 hypothetical protein 
PputUW4_3383 LuxR family transcriptional regulator 
PputUW4_3545 glycerol-3-phosphate cytidyltransferase 
PputUW4_3546 polysaccharide biosynthesis protein 
PputUW4_3549 glucosyltransferase 
PputUW4_3550 glycosyltransferase 
PputUW4_3589 hypothetical protein 
PputUW4_3598 hypothetical protein 
PputUW4_3638 surface presentation of antigens protein 
PputUW4_4107 hypothetical protein 
PputUW4_4153 two component LuxR family transcriptional regulator 
PputUW4_4155 dihydrolipoamide acetyltransferase 
PputUW4_4192 hypothetical protein 
PputUW4_4195 histidine kinase 
PputUW4_4695 GntR family transcriptional regulator 
PputUW4_4697 hypothetical protein 
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Fig. 4-29. Comparative synteny line plots of the complete six-frame translations of the whole 

genome sequences of P. putida UW4 with other P. fluorescens and P. putida genomes. The 

analysis was carried out using Artemis Comparison Tool and computed using TBLASTX with a 

cutoff E value of 1 E-5. The red bars between the DNA lines indicate individual TBLASTX 

matches, and the blue lines exhibit inverted matches. The cutoff identities and alignments length 

are 75% and 30 amino acids, respectively.  
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UW4 are more closely related to those in P. fluorescens than in P. putida, illustrated by the 

number of matches. This result is consistent with the results obtained from whole genome 

phylogenetic analysis.  

 

4.5 16S rRNA Genes Phylogenetic Analysis 

16S rRNA gene sequences are highly conserved among the same bacterial species and are 

frequently used to identify and classify microorganisms. It has been observed that the number of 

rRNA genes in prokaryotic genomes can vary from one to as many as 15 copies and the 

intragenic diversity ranges from 0.06% to 20.38% (Pei et al. 2010). On the chromosome of UW4, 

seven ribosomal RNA (rrn) operons were identified. Among the seven 16S rRNA genes, three 

were found to have identical sequences (i.e., RNAs 3, 4 and 6). A ML phylogenetic tree was 

constructed for the unique 16S rRNA genes of Pseudomonas genomes (Fig. 4-30). Although the 

16S rRNA genes of UW4 are grouped with those of P. putida, the node support is only 0.45, 

indicating low confidence for the classification.  

Additional analysis was conducted using the unique 16S rRNA genes of UW4, P. 

fluorescens SBW25, P. putida KT2440, as well as the type strain of P. fluorescens and P. putida, 

IAM12022 (D84013) and IAM1236T (D84020), respectively (Anzai et al. 1997; Peix et al. 2009). 

Sequence alignment of the twelve 16S rRNA genes is shown in Fig. 4-31 and the pairwise 

identities are shown in Table 4-20. Results of the identities table shows that the intragenomic 

diversity of 16S rRNA genes of UW4 is below the common threshold (1 to 1.3%), and overall 

UW4 is phylogenetically closer to putida than to fluorescens. However, the diversities between 

UW4 and putida 16S rRNA gene sequences are all above the threshold, ranging from 1.7%-2.9%. 

In the case of fluorescens, the diversities range from 2.1%-3.5%. Also, it is important to note that  
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Fig. 4-30. ML phylogenetic tree of 16S rRNA sequences from completely sequenced 

Pseudomonas genomes. Nodal support was evaluated by aLRT. Different species are shown in 

different colors. Only unique sequences from each genome were included for this analysis.  
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Fig. 4-31. 16S rRNA gene sequences alignment of UW4, P. putida KT2440, P. fluorescens 

SBW25, and the type strain of P. putida IAM1236T (D84020) and P. fluorescens IAM12022 

(D84013). Only the unique genes were included for the analysis. The consensus sequence is 

showing above the alignment. The dots represent the nucleotides that are identical to the 

consensus sequences.  
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Table 4-20. 16S rRNA Genes Sequences Pairwise Identities. 
  UW4_16S-1  UW4_16S-5  UW4_16S-3  UW4_16S-7  UW4_16S-2  
UW4_16S-1  ID 0.998 0.998 0.992 0.99 
UW4_16S-5  0.998 ID 0.996 0.994 0.991 
UW4_16S-3  0.998 0.996 ID 0.994 0.99 
UW4_16S-7  0.992 0.994 0.994 ID 0.993 
UW4_16S-2  0.99 0.991 0.99 0.993 ID 
KT2440_16S-1  0.982 0.98 0.983 0.977 0.973 
IAM_1236T  0.981 0.98 0.982 0.978 0.973 
KT2440_16S-3  0.981 0.979 0.982 0.977 0.973 
KT2440_16S-6  0.98 0.98 0.982 0.977 0.972 
KT2440_16S-4  0.98 0.979 0.981 0.977 0.971 
SBW25_16S-1  0.978 0.977 0.979 0.974 0.969 
IAM_12022  0.973 0.973 0.975 0.97 0.965 

ID: Identical 
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only one copy of 16S rRNA gene from each of the type strain, IAM12022 and IAM1236T, was 

available for the analysis.  

 

4.6 Heat Shock Protein Genes Phylogenetic and Promoter Analyses 

Heat shock protein (HSP) genes can be used in bacterial classification along with 16S 

rRNA genes because of their conservation and ubiquity (Ahmad et al. 2000). Phylogenetic 

analysis of seven HSPs in UW4 based on nucleotide sequences is shown in Figure 4-33A-G. ML 

trees of larger HSPs including DnaK, DnaJ, GroEL and ClpB are in close agreement with the 

Pseudomonas whole genome phylogenetic tree based on 1679 conserved genes, which illustrates 

the aeruginosa clade branching first, followed by putida clade, and finally the syringae and 

fluorescens clades. In addition, the phylogenetic relationships of stutzeri and mendocina vary 

among the four trees. For example, the DnaK tree shows stutzeri and mendocina as part of 

aeruginosa, whereas the GroEL and ClpB trees show stutzeri and mendocina after the aeruginosa 

clade. In the DnaJ tree, mendocina clade is before aeruginosa while stutzeri is after.  

 For smaller HSPs such as GrpE, GroES and IbpA, the trees are more dissimilar. In the 

GrpE tree, the fluorescens group is shown first, followed by syringae, and then putida and 

aeruginosa clades. Similar to the GrpE tree, the GroES tree also depicts the fluorescens and 

syringae groups earlier than the putida and aeruginosa groups. However, the IbpA tree is entirely 

different from the other trees, where the fluorescens group is shown first, followed by aeruginosa, 

and then by syringae and putida groups.  

 In every HSP tree constructed, P. putida UW4 was grouped with the fluorescens clade 

rather than the putida clade, which agrees with the whole genome phylogenetic tree.  
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Fig. 4-32. HSPs ML trees. The phylogenetic analysis of the Pseudomonas species was based on a 

comparison of the nucleotide coding sequences of the A) DnaK, B) DnaJ, C) GrpE, D) GroEL, E) 

GroES, F) ClpB and G) IbpA. Escherichai coli K12 MG1655 orthologous were used as 

outgroups. Nodal support was evaluated by aLRT.  
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A. DnaK 
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B. DnaJ 
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C. GrpE 
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D. GroEL 
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E. GroES 
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F. ClpB 
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G. IbpA 
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The protein, σ32 is bacterial heat shock sigma factor that can turn on the transcription of 

many genes in response to heat shock stress. The alignment of the σ32 promoter sequences of 

HSP genes including dnaK operon (dnaK, dnaJ and grpE), the groE operon (groEL and groES), 

clpB and ibpA  are shown in Fig. 4-33. The promoter regions were determined based on the 

sequence similarity with the consensus sequence from E. coli (Nonaka et al. 2006). In all cases, 

the -35 region is more conserved than the -10 region.  
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Fig. 4-33. σ32 promoter sequence alignment of HSPs. A. dnaK operon, B. groE operon, C. clpB, 

D. ibpA . Dots indicate the nucleotides that are identical to the promoter sequences of P. putida 

UW4. Gaps are indicated by dashes. The consensus sequences of -35 and -10 regions are shown 

above the alignment. PpUW4: Pseudomonas putida UW4; PaLESB58: Pseudomonas aeruginosa 

LESB58; PaPAO1: Pseudomonas aeruginosa PAO1; PaUCBPPPA14: Pseudomonas aeruginosa 

UCBPP-PA14; PaPA7: Pseudomonas aeruginosa PA7; PsA1501: Pseudomonas stutzeri A1501; 

Pmymp: Pseudomonas mendocina ymp; PpKT2440: Pseudomonas putida KT2440; PpF1: 

Pseudomonas putida F1; PpGB1: Pseudomonas putida GB-1; PpW619: Pseudomonas putida 

W619; PpPCL1445: Pseudomonas putida PCL1445; PeL48: Pseudomonas entomophila L48; 

PfPf01: Pseudomonas fluorescens Pf0-1; PfPf5: Pseudomonas fluorescens Pf-5; PfSBW25: 

Pseudomonas fluorescens SBW25; Ps1448A: Pseudomonas syringae pv. phaseolicola 1448A; 

PsB728a: Pseudomonas syringae pv. syringae B728a; PsDC3000: Pseudomonas syringae pv. 

tomato DC3000; EcMG1655: Escherichia coli str. K-12 substr. MG1655 
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5  Discussion 

5.1 Taxonomy of P. putida UW4: putida or fluorescens 

Whole genome phylogenetic analysis, HSPs phylogeny and the HSPs σ32 promoter 

analysis suggested that UW4 is closer to fluorescens than to putida. However, 16S rRNA gene 

phylogeny of completely sequenced Pseudomonas genomes showed that UW4 is grouped with 

the putida clade, albeit with low confidence. Additional analysis of the 16S rRNA gene 

phylogeny including the type strains of P. fluorescens and P. putida as well as the unique 16S 

sequences of KT2440 and SBW25 showed that UW4 has a closer relationship with putida than 

fluorescens. Nevertheless, the diversities of UW4 and putida 16S rRNA gene sequences are 

above the common threshold, 1.3%. These results raise the question whether UW4 belongs to 

putida or fluorescens.  

Pseudomonas sp. is one of the most diverse and prevalent genera that are present in all 

natural environments. Since its first discovery by Migula in 1894, the taxonomy of Pseudomonas 

has always been controversial (Peix et al. 2009). The initial classification of Pseudomonas in the 

1920s contained only very limited phenotypic characteristics including Gram-negative, aerobic 

non-sporulated rods that are motile through polar flagella, and did not show a clear differentiation 

from other Gram-negative bacteria (Peix et al. 2009). In 1974, genetic information such as G+C 

content was first added in Bergey’s Manual to assist bacterial classification. Meanwhile, another 

genotypic criterion based on RNA-DNA relatedness was used to classify Pseudomonas into five 

rRNA subgroups, and only the strains in group I were kept in genus Pseudomonas (Palleroni et 

al. 1973; Peix et al. 2009). In 1984, a new bacterial identification scheme based on 16S ribosomal 

RNA was proposed by Woese and collaborators (Woese et al. 1984). Since then, sequencing of 

16S rRNA gene has become a routine method to identify bacteria, mainly because its 



  206 

evolutionary rate is high enough to differentiate different species, and also there is sufficient 

sequence conservation within the same species. Furthermore, with the advancement of 

mathematical models for construction of trees, phylogenetic classification of prokaryotes can be 

readily achieved. As bacterial taxonomy has progressed, many Pseudomonas sp. have been 

reclassified as other species and/or genera through the years (Johnson and Palleroni, 1989; 

Willems et al., 1990, 1992; Yabuuchi et al. 1992, 1995; Palleroni and Bradbury, 1993; Segers et 

al., 1994; Grimes et al. 1997; Denner et al. 1999; Anzai et al. 2000; Brown et al. 2001; Coenye et 

al. 2001; Satomi et al. 2002; Peçonek et al. 2006; Peix et al., 2007; Kämpfer et al. 2008).  

Although 16S rRNA genes are the basis of the current bacterial classification, it is known 

that very closely related species of bacteria cannot be differentiated based on this gene (Fox et al. 

1992; Lechner et al. 1998; Wink et al., 2003; Valverde et al., 2006b; Dutta and Gachhui, 2007; 

Rivas et al., 2007; Zurdo-Piñeiro et al., 2007). Therefore, many studies have shown that other 

genes, such as “housekeeping” genes recA, atpD, carA, gyrB, rpoB, trpB, should be used to assist 

bacterial species classification (Hilario et al., 2004; Maiden 2006; Peix et al. 2007; Guo et al. 

2008). Furthermore, the fact that most bacteria have multiple copies of 16S rRNA genes and their 

intragenomic diversities within individual genomes indicate that it is necessary to include all 

unique 16S rRNA genes of one bacterium for its identification. However, without knowing the 

complete genome sequence of the bacterium, one can hardly obtain all the sequences of its 16S 

rRNA genes. Thanks to the continually improved sequencing technologies, more and more 

complete bacterial genome sequences will become available, which will greatly facilitate 16S 

rRNA gene based bacterial taxonomy. Another asset of genome sequencing is that it allows 

whole genome phylogenetic analysis among the species of the same genus, which will help 

determine the core and pan-genome and provide valuable information to aid bacterial 

classification. 
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Since the resolution of 16S rRNA tree was not sufficient to differentiate UW4 from other 

closely related Pseudomonas species, the classification of this bacterium should follow the whole 

genome phylogeny based on the conserved genes among all sequenced Pseudomonas genomes, 

which indicated that it belongs to P. fluorescens. Furthermore, according to the Bergey’s Manual 

of Determinative Bacteriology (Holt, 1994), P. fluorescens is positive for nitrate reduction, 

whreas P. putida is negative. In the genome of UW4, the presence of a putative nitrate reductase 

(PputUW4_3649) supports the reclassification of UW4 into fluorescens. However, experimental 

evidence is necessary to confirm the validity of this classification.  

 

5.2 Comparative Genomics of UW4 with Other Pseudomonas 

At the time of this writing, 20 complete sequenced Pseudomonas genomes were available 

in the NCBI genome database and their general features are shown in Table 5-1.  

Among the 20 genomes, four belong to aeruginosa, which is one of the major 

opportunistic human pathogens. P. aeruginosa PAO1 was the first sequenced Pseudomonas 

genome, and was originally isolated from a wound (Stover et al. 2000). PA14 is a human clinical 

isolate from a burn patient and has been the cause of disease in various hosts (Lee et al. 2006). 

LESB58 represents Liverpool Epidemic Strain B58 and was obtained from a cystic fibrosis 

patient in the United Kingdom (Winstanley et al. 2009). The last one, PA7 was isolated from a 

non-respiratory patient in Argentina (Roy et al. 2010). P. brassicacearum NFM421 is a PGPB 

that is associated with the roots of A. thaliana and Brassica napus (Ortet et al. 2011). It can be 

used as a biocontrol strain because of the production of antifungal compounds. P. entomophila 

L48 is an entomopathogenic bacterium that was isolated from a fruit fly of Guadeloupe and it 

kills insects upon ingestion (Vodovar et al. 2006). P. fluorescens strains are well known for their 

physiological diversities that they can colonize various environments such as soil, water and plant 
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Table 5-1. General Features of the Pseudomonas Genomes. 

Pseudomonas sp. Genome 
Size, bp 

CDS 
no. Pseudogenes 

G+C 
content, 

% 

Coding 
density, 

% 

tRNA 
no. 

rRNA 
genes 

(operon 
no.) 

Plasmid 
no. Ref. 

UW4 6,183,388 5,430 18 60.92 87.4 72 22 (7)  This study 

aeruginosa LESB58 6,601,757 5,925 34 66.3 88.4 67 13 (4)  
Winstanley et al. 
2009 

aeruginosa PA7 6,588,339 6,286 8 66.5 89.5 63 12 (4)  Roy et al. 2010 
aeruginosa PAO1 6,264,404 5,566 5 66.6 89.3 63 13 (4)  Stover et al. 2000 
aeruginosa UCBPP-PA14 6,537,648 5,892 none 66.3 89.4 59 13 (4)  Lee et al. 2006 
brassicacearum subsp. 
brassicacearum NFM421 6,843,248 6,097 N/A 60.8 88.2 65 16 (5)  Ortet et al. 2011 

entomophila L48 5,888,780 5,169 N/A 64.2 89.1 78 22 (7)  Vodovar et al. 2006 
fluorescens Pf-5 7,074,893 6,144 N/A 63.3 88.8 71 16 (5)  Paulsen et al. 2005 
fluorescens Pf0-1 6,438,405 5,741 9 60.6 89.8 73 19 (6)  Silby et al. 2009 
fluorescens SBW25 6,722,539 6,009 88 60.5 88.3 66 16 (5)  Silby et al. 2009 
mendocina NK-01 5,434,353 4,958 N/A 62.5 88.7 65 12 (4)  Guo et al. 2011 
putida BIRD-1 5,731,541 5,124 N/A 61.7 86.9 64 22 (7)  Matilla et al. 2011 
putida F1 5,959,964 5,300 49 61.9 88.7 76 19 (6)  Wu et al. 2010 
putida GB-1 6,078,430 5,417 8 61.9 89.4 74 22 (7)  Wu et al. 2010 
putida KT2440 6,181,863 5,420 N/A 61.6 86.7 73 22 (7)  Nelson et al. 2002 
putida S16 5,984,790 5,218 N/A 62.3 84.9 70 19 (6)  Yu et al. 2011 
putida W619 5,774,330 5,471 26 61.4 88.9 75 22 (7)  Wu et al. 2010 
stutzeri A1501 4,567,418 4,146 N/A 63.8 89.8 61 12 (4)  Yan et al. 2008 
syringae pv. phaseolicola 
1448A 5,928,787 5,144 N/A 58 87 64 16 (5) 2 Joardar et al. 2005 

syringae pv. syringae B728a 6,093,698 5,137 47 59.2 88.5 64 16 (5)  Feil et al. 2005 
syringae pv. tomato str. 
DC3000 6,397,126 5,615 N/A 58.4 86.8 63 15 (5) 2 Buell et al. 2003 
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 surface. Strain Pf-5 is a soil bacteriaum that possesses biocontrol capabilities such as the 

production of broad spectrum of antibiotics and secondary metabolite (Paulsen et al. 2005). 

SBW25 is a plant beneficial bacterium that was obtained from the leaf surface of a sugar beet 

plant in the United Kingdom, and Pf0-1 was isolated from loam soil in Sherborn, Massachusetts, 

USA in 1987 (Silby et al. 2009). P. mendocina NK-01 was isolated from farmland soil in Tianjin, 

China. It produces PHA and alignate oligosaccharides under nitrogen starvation, which made it a 

candidate for genome sequencing (Guo et al. 2011). Complete genome sequences of six P. putida 

strains are publically available in the genome database. Strain KT2440 is a rhizospheric 

bacterium isolated from garden soil in Japan. It is certified as a safety strain for cloning and 

expression of foreign genes for Gram-negative soil bacteria, and is recognized as the best 

characterized putida strain that serves as the workhorse for Pseudomonas research (Nelson et al. 

2002; Wu et al. 2011). P. putida F1 was obtained from a polluted creek in Urbana, IL, USA and 

can be used in bioremediation owing to its ability to degrade aromatic hydrocarbon compounds 

such as benzene, toluene, ethylbenzene and p-cymene (Wu et al. 2011).  Strain GB-1 is a 

manganese oxidizer that was isolated from fresh water of Green Bay, WI, USA. It serves as a 

model organism for molecular genetic studies of Mn2+ oxidation (Wu et al. 2011). W619 is an 

endophyte that was isolated from Populus trichocarpa × deltoides cv. “Hoogvorst” (Wu et al. 

2011).  It is a PGPB that can improve plant growth by decreasing the activities of antioxidative 

defence related enzymes such as glutathione reductase and superoxide dismutase, resulting in 

lowered oxidative stress level. It can also reduce stomatal resistance, leading to increased plant 

fitness (Weyens et al. 2011). BIRD-1 is a rhizopheric PGPB that is highly tolerant to desiccation, 

is able to solubilize inorganic phosphate, synthesize siderophores and phytohormones such as 

IAA (Matilla et al. 2011). S16 is the first completely sequenced nicotine-degrading 
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microorganism, which can serve as a reference strain in research on biodegradation of N-

heterocyclic compound (Yu et al. 2011). P. stutzeri A1501 was isolated from rice paddy soils and 

has been applied in the field as a crop inoculant in China. It has the ability to fix nitrogen, which 

is not considered to be a common characteristic of Pseudomonas (Yan et al. 2008). P. syringae 

are well known plant pathogens that can grow epiphytically on various plants. P. syiangae pv. 

tomato Strain DC3000 was isolated from tomato grown in the Channel Islands, Guernsey, UK. It 

is pathogenic on tomato and the model plant A. thaliana (Buell et al. 2003). P. syiangae pv. 

syringae Strain B728a was isolated from a snap bean leaflet in Wisconsin, USA. It differs from 

DC3000 in terms of host range and it has higher abiotic stress tolerance (Feil et al. 2005). P. 

syringae pv. phaseolicola Strain 1448a was isolated from common bean, Phaseolus vulgaris, in 

Ethiopia in 1985, which causes halo blight of bean (Joardar et al. 2005).  

 Currently, the largest Pseudomonas genome is P. fluorescen Pf-5 (7 MB), whereas the 

smallest one is P. stutzeri A1501 (4.5 MB), indicating a high degree of physiological and genetic 

versatility of Pseudomonas sp. (Table 5-1). UW4 has a similar genome size (6.18 MB) and 

number of predicted protein coding genes (5,430) compared with P. putida KT2440 (6.18 MB 

and 5,420, respectively). The number of CDSs usually reflects the size of the genome, with one 

exception represented by PA7, whose genome size is smaller than Pf-5 but has 142 more 

predicted CDSs. The number of pseudogenes among the 21 genomes ranges from zero (P. 

aeruginosa UCBPP-PA14) to 88 (P. fluorescens SBW25). However, pseudogenes were not 

analyzed in most sequenced Pseudomonas genomes, and only 11 out of 21 has the data available 

for comparsion. The three P. syringae strains have the lowest G+C content (58-59.2%), whereas 

P. aeruginosa strains have the highest (66.3-66.6%). In the case of UW4, its G+C content is in 

between that of the putida strains and two fluorescens strains, SBW25 and Pf0-1. The coding 

densities of Pseudomonas genomes range from 84.9% (putida S16) to 89.8% (stutzeri A1501), 
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and UW4 has slightly lower value (87.4%) than that of brassicacearum NFM421 (88.2%) and 

higher value than that of syringae 1448A (87%). The number of rrn operons in Pseudomonas 

genomes range from 4 to 7, with most of them comprising an additional 5S rRNA. Similar to 

most putida strains, UW4 has 7 rrn operons and an additional 5S rRNA. The presence of 

plasmids has been documented in only two sequenced Pseudomonas genomes, P.syringae strain 

DC3000 and 1448A. The plasmids of the two pathovars are significantly different in size and 

gene content. For example, genes involved in virulence located on p1448A-A and –B are present 

on the chromosome of DC3000, whereas three plasmid borne virulence factors of DC3000 are 

found on the 1448A chromosome (Feil et al. 2005).  

 Whole genome alignment among the 21 Pseudomonas sp. identified 1679 conserved 

genes, which makes the core genome of Pseudomonas. The putative orthologous shared between 

UW4 and other Pseudomonas are shown in Table 4-16, with the two P. fluorescens strains, Pf0-1 

and Pf-5 being the top two. The rest of the CDSs including those shared with (1) one or several 

but not all completely sequenced Pseudomonas genomes; (2) other Pseudomonas sp. whose 

genomes are not available; (3) CDSs present only in other genera, and (4) the unique genes in 

UW4, will contribute to the pan genome of Pseudomonas. 

 Since UW4 is a well-studied PGPB, the following discussion will focus on genomic 

comparisons between UW4 and other Pseudomonas sp. with respect to plant growth-promotion. 

The discussion of the two features, antibiotic resistance and heavy metal resistance, have been 

combined with the results, thus they won’t be included here.   

 

5.2.1 ACC deaminase 

ACC deaminase gene is present in five Pseudomonas genomes including UW4, P. 

brassicacearum NFM421, P. syringae DC3000, P. syringae B728a, and P. syringae 1448A. 
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Pairwise amino acid sequence identities between UW4 acdS and the other four genomes range 

from 89% to 99%, and they all contain the important active sites (Glick et al. 2007b), suggesting 

that the putative acdS gene in those genomes is likely functional. Furthermore, the common acdS 

regulatory gene, acdR, was found immediately upstream of acdS in all five genomes, and the 

amino acid sequence identities between UW4 acdR and the other four genomes range from 80% 

to 93%. This type of acdS regulation scheme has been observed in many bacteria and was 

proposed as a main feature of the functioning of bacterial ACC deaminase (Glick et al. 2007a).  

 

5.2.2 Siderophores 

Siderophore production is a typical characteristic possessed by fluorescent pseudomonads. 

Among the 21 Pseudomonas genomes, only P. stutzeri A1501 does not have the genes for 

siderophore biosynthesis, and it also has the smallest genome compared to the other 20 species, 

suggesting loss of functions in A1501 (Yan et al. 2008). Compared with UW4, 11 genomes 

contain a gene encoding PvdYII including P. putida KT2440 (locus_tag: PP_4245), P. putida 

BIRD-1 (PPUBIRD1_1611), P. putida F1 (Pput_1682), P. putida GB-1 (PputGB1_3811), P. 

putida W619 (PputW619_3564), P. putida S16 (PPS_3636), P. brassicacearum NFM421 

(PSEBR_a1665), P. entomophila L48 (PSEEN_1813), P. fluorescens Pf0-1 (Pfl01_3942), P. 

mendocina NK-01 (MDS_1799), P. aeruginosa PA7 (PSPA7_2826), indicating these species 

likely produce type II pyoverdine since this gene was only observed in the strains of P. 

aeruginosa that make type II pyoverdine (Smith et al. 2005; Lamont et al. 2006). However, the 

precise structure of the siderophore needs to be confirmed experimentally. 

In P. fluorescens Pf-5, genes responsible for pyoverdine as well as pyochelin were 

identified. The genes required for pyoverdine synthesis are located in three clusters; whereas 

genes necessary for pyochelin synthesis are present in a single cluster  (Paulsen et al. 2005). In P. 
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entomophila L48, two gene clusters of pyoverdine synthesis are present, which exhibits similar 

organization compared with that found in other fluorescent pseudomonads. In addition, one gene 

cluster related to acinetobactin was observed on the chromosome, and it contains a salicylamide 

moiety (Vodovar et al. 2006). P. syringae DC3000 produces two types of siderophores, 

pyoverdine and yersiniabactin, and in both cases the required genes are present in a single cluster 

(Buell et al. 2003). P. syringae B728a also secretes two types of siderophores. The first type is 

pyoverdine, and as in DC3000, the determinants are located in one gene cluster. The second type 

is achromobactin, which is a citrate siderophore produced by Pectobacterium chrysanthemi and 

Escherichia carotovora pv. atroceptica (Feil et al. 2005). The ability of bacteria to produce 

multiple siderophores surely benefits these organisms, as they may function in different 

environments, making them more competitive against other organisms in the same niche.  

 

5.2.3 IAA production 

Although many bacteria are able to synthesize IAA, the amounts produced vary 

significantly between strains. Depending on the concentration, bacterially produced IAA can 

either stimulate or inhibit plant growth. In UW4, two potential tryptophan-dependent IAA 

biosynthesis pathways, indole-3-acetamide (IAM) and indole-3-acetonitrile (IAN), were 

identified, and 7 genes might be involved. When searching those genes against the other 20 

Pseudomonas genomes, 7 orthologous genes were found in one PGPB, P. fluorescens SBW25, 

suggesting similar IAA synthesis pathways compared to UW4. P. putida BIRD-1 has 6 homologs 

that complete the IAM and IAN pathways, but it lacks the gene encoding the nitrilase 

(PputUW4_2466). P. putida F1 lacks the homolog for one of the tryptophan 2-monooxygenases 

(PputUW4_4535), but it contains all of the other 6 genes. It is possible that one of the tryptophan 
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2-monooxygenases is dominant over the other, but currently it is not known which one plays a 

more important role in IAA biosynthesis in these strains.  

Many studies have shown that numerous bacterial strains possess multiple IAA synthesis 

pathways. Besides the above mentioned strains, it has been observed that putative TAM and IAM 

pathways are present in P. putida W619, GB-1, and F1 (Wu et al. 2011). Therefore, to study the 

role of each gene in IAA biosynthesis of a particular bacterium it is necessary to construct a large 

number of mutants, single or multiple, and test the functioning of each one. Currently, mutational 

analyses are ongoing for UW4 IAA biosynthesis genes. 

 

5.2.4 Trehalose 

It has been reported that trehalose can protect bacterial cells from environmental stresses 

such as desiccation, high salinity, freezing, and heat (Freeman et al. 2010). In bacteria, five 

trehalose biosynthetic pathways are known including OtsA/OtsB, TreS, TreY/TreZ, TreP, and 

TreT (Paul et al. 2008). In UW4, two trehalose synthesis pathways, TreS and TreY/TreZ, were 

identified. When searching the orthologous in the other Pseudomonas genomes, all 20 species 

contain the genes involved in those two trehalose synthesis pathways, and they are organized in a 

similar way, indicating the ubiquity and importance of this sugar. In addition, P. stutzeri A1501 

has a third trehalose synthesis pathway, OtsA/OtsB, which is the most widespread pathway 

present in both eukaryotes and prokaryotes, and this may further contribute to its survival under 

different environmental stresses.   

 

5.2.5 Acetoin 

Bacterial volatile compounds such as acetoin can stimulate the growth of plants such as 

A. thaliana by increasing the total leaf surface area and reducing the disease symptoms triggered 
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by pathogenic bacterium, Erwinia carotovora subsp. carotovora (Ryu et al. 2003, 2004). In the 

UW4 genome, a potential acetoin biosynthesis pathway was identified, and three enzymes are 

involved. First, pyruvate is converted to 2-acetolactate by acetolactate synthase (PputUW4_4617, 

4618). Because the intermediate, 2-acetolactate, is unstable, it undergoes a spontaneous 

decarboxylation in the presence of O2, resulting in the production of diacetyl. Next, diacetyl is 

converted to acetoin by diacetyl reductase/acetoin dehydrogenase (PputUW4_3051).  

When the genomes of the other Pseudomonas were examined for acetoin synthesis, the 

same pathway was observed in all 20 species, although the enzyme that catalyzes the last step 

couldn’t be determined definitely due to ambiguous annotations. Since the genes identified in 

acetoin biosynthesis pathway were predicted based on sequence similarity only, experiments 

need to be conducted to verify the production of acetoin by UW4.  

 

5.2.6 Antimicrobial compounds 

It has been demonstrated that fungal elicitors such as Pythium aphanidermatum and 

Fusarium oxysporum can induce the production of 4-hydroxybenzoate in carrot cell cultures and 

alfalfa plants, respectively (Schnitzler et al. 1992; Cvrikova et al. 1993). In bacteria, 4-

hydroxybenzoate is formed from chorismate directly by chorismate lyase encoded by ubiC. When 

searching the gene ubiC in Pseudomonas genomes, it was found in all 21 species including UW4, 

suggesting 4-hydroxybenzoate synthesis is a common pathway in the genus of Pseudomonas. 

HCN is another antimicrobial agent that confers biocontrol ability onto some PGPB 

(Blumer and Haas 2000; Haas and Défago 2005). In the genome of UW4, the gene cluster 

hcnABC, which is responsible for HCN synthesis, is absent. When the three genes were searched 

against the genomes of the other Pseudomonas, it was found that they are present in 8 of the 21 

strains including P. fluorescens Pf-5, P. fluorescens Pf0-1, P. brassicacearum NFM421, P. 
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entomophila L48, and the four P. aeruginosa strains LESB58, PAO1, PA7 and UCBPP-PA14. 

Since HCN can be produced by both PGPB and pathogens, other plant growth-promoting traits 

should also be considered when trying to isolate PGPB from the environments.  

 

5.2.7 PHAs biosynthesis 

The genes involved in PHA synthesis are found in many Pseudomonas sp. such as P. 

putida KT2440, P. putida GPo1, P. aeruginosa PAO1, P. fluorescens Pf0-1, P. fluorescens Pf-5, 

P. syringae pv phaseolicola, and P. syringae DC3000 (Prieto et al. 2007). The gene cluster 

typically contains six genes including phaC1, phaZ, phaC2, phaD, phaF, and phaI. The order of 

the six genes is highly conserved (phaC1ZC2DFI) in the above mentioned strains, and was also 

observed in UW4 (PputUW4_0335-0330). The gene phaC encodes the key enzyme, PHA 

synthase or PHA polymerase, for the biosynthesis of PHA. The PhaC1 and PhaC2 belong to the 

class II PHA synthases that preferentially use 3-hydroxyalkanoates consisting of 6-14 carbons as 

substrates, and the class II PHA synthases are primarily found in Pseudomonas sp. The phaZ 

gene encodes a depolymerase that is responsible for PHA degradation. The gene product of phaD 

is a transcriptional regulator that positively regulates the expression of the downstream genes, 

phaI and phaF, which code for phasins (Prieto et al. 2007). When this pha gene cluster was 

searched against the other Pseudomonas genomes, orthologs were found to be absent in P. 

syringae pv. syringae B728a. In addition, the genome of P. stutzeri A1501 contains a gene cluster 

different from phaC1ZC2DFI, designated phaCABR that is responsible for poly-hydroxybutyrate 

(PHB) synthesis (Yan et al. 2008). In the genome of UW4, a second phaC1 gene was identified 

(PputUW4_2305). Compared with the phaC1 in the pha gene cluster, the second phaC1 showed 

69% identities and 83% similarities. It is likely that the redundant phaC1 gene also contributes to 

the production of PHA in UW4, however this has to be confirmed experimentally.   
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5.2.8 Degradation of aromatic compounds 

In polluted environments, P. putida strains are often isolated as predominant 

microorganisms and are therefore commonly used in bioremediation. Aromatic compounds are 

among the most abundant and recalcitrant pollutants in the soil and their degradation by bacteria 

usually involves ring-cleavage in the presence of O2 by oxygenase (Fuchs et al. 2011). For 

example, the toluene degradation pathway in P. putida F1 is composed of the toluene 

dioxygenase operon todABC1C2DE (Zylstra and Gibson, 1989). However, this toluene 

degradation pathway is absent in all the other 20 Pseudomonas sp., including UW4. In the 

genome of P. putida W619, the genes involved in 3-HPP were identified previously (Wu et al. 

2011). Nevertheless, this pathway seems unique in this strain because in the other 20 

Pseudomonas genomes, it is either absent or incomplete, such as in P. putida F1 (Wu et al. 2011) 

and UW4. In the genome of UW4, catechol and protocatechuate branches of the β-ketoadipate 

pathway are present. Since this pathway is considered to be one of the central pathways for the 

catabolism of aromatic compounds in Pseudomonas sp., its presence is ubiquitous in the 

completely sequenced Pseudomonas genomes.  

 

5.3  Type III secretion system in non-pathogenic Pseudomonas 

T3SS have been known for some time to be expressed by Gram-negative pathogens to 

deliver virulence effectors into host cells. Members of these bacteria include Salmonella sp., 

enteropathogenic E. coli, Y ersinia sp., Shigella sp., Erwinia carotovora, P. aeruginosa, and P. 

syringae (Blocker et al. 2003; Galán and Wolf-Watz 2006; Cornelis 2006).  
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Surprisingly, a putative T3SS was found in UW, which has been recognized as a PGPB 

since it was first isolated in 1995. The T3SS of UW4 consists of 26 genes, with 25 genes located 

in one cluster (PputUW4_3618-3642), and one gene encoding a HopJ type III effector located 

elsewhere (PputUW4_0810). Sequence analyses showed that this system is likely acquired from 

Salmonella spp. since the genes are highly similar to those of the typical T3SS of Salmonella. 

However, one gene, invH, required for the functioning of the T3SS in Salmonella is absent in 

UW4, therefore it is not clear whether or not this T3SS is functional.  

Actually, UW4 is not the only PGPB that has been found to have T3SS. It has been 

observed that P. fluorescens SBW25 has a 20-kb cluster containing 22 CDSs of T3SS-related 

genes (Preston et al. 2001). This system resembles the T3SS of P. syringae at the level of amino 

acid sequence and with respect to genomic organization. Although the wild-type SBW25 is a 

PGPB and does not induce a hypersensitive response (HR) in host plants, a modified strain that 

over-expressed the sigma factor RspL specific to T3SS did elicit HR in A. thaliana and Nicotiana 

clevelandii (Preston et al. 2001). T3SS have been found in three other P. fluorescens strains 

including WH6, KD, and Q8r1-96 (Kimbrel et al. 2010; Rezzonico et al. 2004, 2005; Mavrodi et 

al. 2011). WH6 seems to have a complete and functional T3SS (PFWH6_0718-0737) consisting 

of 20 genes, and it is highly homologous to the T3SS region of P. syringae (Kimbrel et al. 2010). 

The T3SS of the biocontrol strain KD is also thought to originate from P. syringae. It has been 

demonstrated that this T3SS is functional in KD, and the T3SS mutant of KD had low biocontrol 

activity against Pythium ultimum on cucumber while maintaining its root-colonization ability 

(Rezzonico et al. 2005). Similar to SBW25 and KD, the strain Q8r1-96 has a functional T3SS 

with a P. syringae origin. However, the genomic organization of the gene cluster is divergent 

from SBW25 and KD (Mavrodi et al. 2011).  
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Although T3SS has been found in many non-pathogenic Pseudomonas sp., the ecological 

significance of this observation is still unclear. Several studies have shown that the T3SS 

enhanced the biocontrol ability of the wild-type strains instead of eliciting HR in the host plants. 

However, the T3SS in strain UW4 apparently has a different origin compared to all of the above 

mentioned P. fluorescens strains, and it doesn’t seem to have a complete pathway compared to 

the T3SS of its putative origin, Salmonella sp. Therefore, experimental approaches are necessary 

to verify the functionality (or lack thereof) of the T3SS in UW4. If it is functional, further studies 

need to be performed to investigate the effect of these genes on the plant growth-promotion 

activity of UW4.  

 

5.4 Heat shock proteins and σ32 promoter analysis 

In bacterial cells, HSPs are a group of highly conserved proteins that are rapidly induced 

when the cells are exposed to environmental stresses such as higher temperature, addition of 

ethanol, hydrogen peroxide or heavy metals, and extreme pH values in order to deal with the 

increased denaturation of cellular proteins. The increased transcription of HSPs is the result of an 

increased level of heat shock sigma factor, σ32, which has a short half-life under normal 

physiological conditions. Upon a shift to abnormal conditions that trigger cellular protein 

denaturation, enhanced translation of ropH (encoding σ32) and increased stability of the σ32 

occur, leads to preferential expression of HSP genes (Craig 1985; Bukau 1993; Yura et al. 1993).   

Bacteria are frequently exposed to various environmental stresses in their natural habitats. 

Therefore, the heat shock response likely plays an important role in the behavior of bacteria when 

they are exposed to abnormal conditions. In this study, seven HSPs including DnaK, DnaJ, 

GroEL, ClpB, GrpE, GroES, and IbpA of UW4 were analyzed by comparing the nucleotide 
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sequences of this bacterium with the corresponding sequences found in other Pseudomonas 

species and E. coli. Phylogenetic trees were subsequently constructed in order to illustrate the 

evolutionary relationships among those strains. Furthermore, the promoter sequences of the 

transcriptional units grpE-dnaKJ, groES-groEL, clpB, and ibpA  of UW4 were compared visually 

with corresponding sequences of other Pseudomonas spp. and E. coli.  

The results obtained from the phylogeny of seven HSP genes are consistent with the 

whole genome phylogenetic analysis, which suggest that UW4 is a fluorescens and not a putida 

(Fig. 4-32). Also, the -35 and -10 regions of the σ32 promoter of the fluorescens strains are the 

closest to UW4 (Fig. 4-33), especially in the cases of the GroE operon and ClpB, supporting the 

reclassification of UW4. In the phylogenetic trees of the three small HSPs including GrpE, 

GroES, and IbpA, members of the fluorescens form a paraphyletic group, and in the phylogenetic 

trees of the large HSPs such as DnaK, DnaJ, GroEL, and ClpB, the fluorescens clade varies 

considerably in topology. These results indicate that the fluorescens species are more genetically 

diverse than the other Pseudomonas species.  
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6  Conclusions 

In this work, the genome of P. putida UW4, a well-studied PGPB, was sequenced by one 

of the next-generation sequencing methods, pyrosequencing. Genome assembly was done by 

PCR and subsequent Sanger sequencing, and genome annotation was performed first by 

automated pipelines available online, followed by manual corrections. Strain UW4 genome 

analyses included general genome features, genes involved in plant growth promotion and UW4 

lifestyle, central metabolic pathways, protein secretion systems, Pseudomonas genome 

comparisons, 16S rRNA gene phylogeny, and heat shock protein and promoter analyses.  

As expected, many plant growth-promoting determinants were observed in the UW4 

genome, including genes encoding ACC deaminase, which were previously characterized, and 

potential genes encoding siderophore, IAA, trehalose, and acetoin biosynthesis. Furthermore, 

pathways that are thought to contribute to the fitness of UW4 were also identified including 

production of antimicrobial compounds, aromatic compound degradation, and heavy metal 

resistance. The central metabolic pathways and protein secretion systems provide an overview of 

the physiology of strain UW4 and the strategies that it uses to interact with the environment. 

Comparisons among the completely sequenced Pseudomonas genomes provided valuable 

information on determining the pan and core-Pseudomonas genome, and offered insights into 

evolutionary changes between Pseudomonas sp.  

From the results of genome analyses, two important questions with regard to the 

taxonomy of UW4 and the significance of the presence of a type III secretion system were 

discussed. It was concluded that UW4 has a better fit within the fluorescens group rather than the 

putida group, and this should be verified by more detailed phenotypic characteristics. Although it 

was a surprise to observe a T3SS in UW4, it appears that T3SS is not uncommon in P. 
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fluorescens strains, and more importantly the presence of this system didn’t induce a 

hypersensitive response under the experimental conditions shown by Preston et al. (2001). 

Therefore, it will be very interesting to investigate the function of the T3SS in UW4.  

Genome sequencing of UW4 has opened up a number of opportunities to study this PGPB 

from different aspects in the future, and it will absolutely benefit the development of a more 

complete understanding of the mechanisms used by this bacterium to promote plant growth. 

Knowing the complete genome sequence of UW4 allows us to see this bacterium from a whole 

new point of view. Because biological functions rely on interactions between different 

biomolecules, rather than a single gene product, the availability of the whole genetic contents of 

this organism will surely help to provide more additional insight in unraveling the complex 

biological mechanisms that UW4 and other similar organisms use to promote plant growth. This 

work aims to initiate a more comprehensive study of the strain UW4. The analyses that have been 

done will provide a fundamental basis for future studies towards fully understanding the 

functioning of this organism.  
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Appendix A. Examples of primers used for gaps closure. 

Oligo name Sequence Estimated Gap Size (bp) 
1-5 GACTATGCCGAGCGTTACTGG 2619 
1-3 GCCTGCTGGATGACAAACAC 
2-5 CAAATGGCTCCACAACTCGC 341 
2-3 CATCCACTACACCGCCACC 
3-5 GCAGGTCTGGAACGAAGGTC 1357 
3-3 GTGGGCAAGTTCAGGGTTT 
4-5 GGGTCATCGGCACTTCTTCG 68 
4-3 CGCCAGCGTTCAGCAAGT 
5-5 CGCCTGGGTTTCGGTGTT 1197 
5-3 AGCGGCACTGAACCCTGA 
6-5 GGATGGCGTGCGTTTCTA 4578 6-3 CGTTTGAGGTGTATGGAGGC 
7-5 GGCTCGGCACAAATACTCCA 1197 7-3 CAACGCCGATGCCGAAAA 
8-5 GGTCGTGCTGGTGTTGTTG 17 
8-3 GACCGCACCCACGCTAAA 
9-5 GCCCAAAGCGGTCAGTCA 5220 
9-3 CGCTGCTGAGAATGTGGG 

10-5 GGCGTGCCGTTGTTCATT 226 
10-3 TGGTTGGCTTGGGCGATA 
11-5 GAGTTCGTCGGCGGTTTG 20 
11-3 CGCCGACTCCAGCAAGAT 
12-5 GCCCTGTCAGCCATTCGT 1361 12-3 AGCACGCCACCTTCACGAC 
13-5 GGCGTTGTCCATCCACCA 547 
13-3 CGTGACGACCAAGGGCAAT 
14-5 CAAATGCCTGCCGTGCTG 1245 
14-3 GGGCGTTTGATTCCTGCTGT 
15-5 ATGAGCAGCAGCCCAACC 5349 
15-3 CAGGTAATGGCGGCAACA 
16-5 GGAGTTTGCGACCGCTTGA 1628 
16-3 CGAATCTGAAGGAAGCCCGA 
17-5 AGACTCTGCTGCTGGTTCGC 351 
17-3 GCAGCGTGACCAGACCGATT 
18-5 GCGGGCAGGGAAGTAATCG 590 
18-3 CGCTTTCGCCGCAACTTCT 
19-5 CGGCGAGTTGCGGTATCTG 20 
19-3 CGCCTTCTGCTCGTTTGG 
20-5 CGGGGTTTACAGTTCGTTCC 826 
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20-3 CCCTTGAATGCTTGCGTGT 
21-5 GCTGCCCAACGACTGAATAG 460 
21-3 GCTGGTGACCCGAATGAGTA 
22-5 CCAAAGGAGGTGTCGGGAGA 1245 
22-3 TGGTGATGGGCGATGTGA 
23-5 AACTGGGCGGCGTGGACAT 300 
23-3 GCCTGCCCTATCTGTCGCTGA 
24-5 CACTGCCGCACGACCGAC 499 
24-3 CCTGACCCGAGCCAAATCC 
25-5 CGGACAGCACCCAATACCAG 425 
25-3 GCCCTGGACCATCAAGACC 
26-5 CGAGAAGCCGCAGGTGTAGG 396 
26-3 AGCGAGCACCGAAAACCC 
27-5 GCTGGTGGTGCCGAGTGAGT 1245 
27-3 TAACCGCCGCTGCCTTTGG 
28-5 GGATGATGAAGTCGCCAAGCC 2372 
28-3 GACGGACGGGCTTGTGGC 
29-5 TCTTTCTCGCCCTGACGC 475 
29-3 TGATTCCGTTTGGTGAGCC 
30-5 GCACGCAAGACTCCTCAAACA 516 
30-3 CGTTGAGCGAGCGGGAAAT 
31-5 GCGGTCAGCAGCAATCCA 20 
31-3 GCCATTGCCTGCTACACCA 
32-5 CTGGGTTTGTTGTTGATGGG 1613 
32-3 AGGTTACTGGGAAGGGTTGG 
33-5 CTGTGGAAGCAAACGGAGAT 4381 
33-3 GCTCCGCCTTGAACATCG 
34-5 TGATGGCTGCCCTTGGTG 4526 
34-3 CCAAAGGGTTCGGCGTCA 
35-5 TGGTGGCGGTGATGGTGC 360 
35-3 GCCTGGAAATACTCGCTGGTCG 
36-5 CGAAGAGGGCAGGACGAT 1613 
36-3 CAGCAGTTTGAGCCGTGGT 
37-5 CTACAGTTTCAGCGTGGGCA 469 
37-3 GTTGCGTGCCAGTGGTGTA 
38-5 AAACCTGTGCCTGCGTATCA 352 
38-3 GCTGGCGGACCGTTTGTT 
39-5 CAAGGAGGCGTTGCTGGTG 102 
39-3 GCGTGCCGACCATTACCCT 
40-5 GCATTATTTCCGAGCCGCAAC 20 
40-3 CGCTTTGACTCATACGCCCTACC 
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41-5 ACCTCTGAAGCCTGGACG 169 
41-3 TCGCATCTGTAGGAGCATC 
42-5 TGGCGGTTTCGGCTATCAA 3306 
42-3 ACTGCTCTGCGTCGGGTTCG 
43-5 GTGAGCGGACAACATTCG 1414 
43-3 GCGAATGTTTGCCCTGTT 
44-5 GGCACAGGATGGAGGCAAGG 595 
44-3 CGGGCAAGGCATTGGTTACTC 
45-5 CGTCGGAAATCAGCCACAGG 351 
45-3 CCCAATGCGTGCTAAATCCC 
46-5 GCCACTTCTTCACGCAATACCG 2490 
46-3 TTCCTCGCCAGCCAGACC 
47-5 AGAAGCCCTCAACCTGTGCC 3643 
47-3 GCCTTCTCCGCAACCTCATCC 
48-5 CCCTGCTGCTGTTTGTCTCCG 378 
48-3 TGCTGCCCAGGAACAACCC 
49-5 TCACCGTCAACGCCAACA 994 
49-3 GGTGACGCCAGGGACATCG 
50-5 TCGGTGAGTCGTTGCTGCC 4753 
50-3 GGGCGATGAACGAAGGCAAT 
51-5 TTGCGGTCCAGGGAGTTGC 443 
51-3 GCGGCGAGTTGTTGTTGA 
52-5 TGGAGGAAACCCGCAAGA 3241 
52-3 GCAAAGCCTATCGGTTCAGC 
53-5 GCCGTTCTGGTTGGTCTTG 2795 
53-3 CTGGAAATGGGCGACACG 
54-5 TTGCCTTGCTGCGGTTCA 456 
54-3 GGTTGAGGGTGGCGGTGTAG 
55-5 GGCGATGTAGGGTTTGTCCG 428 
55-3 GGCACTTTCGCTTCAACCTC 
56-5 GGATTTAGTCGTGGAAGCC 1245 
56-3 CGGTATGGCGTGAGGAGA 
57-5 GCATAACCATACGCCCGACAA 370 
57-3 CTGCCGCTGCTGCCCAAG 
58-5 GCCACCTCGGACAGTCGCTT 153 
58-3 ACGCCAGCCAGGAACAGA 
59-5 CCGCTACCTCTGCTCAACCTG 1502 
59-3 GCCCACTGGAATGCCTGTAAT 
60-5 ACACGCAACCTGAGGAATAC 47 
60-3 GCTACGGCGGTGACGAGT 
61-5 CCGAGCAACAAACCACCC 439 
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61-3 CCAGTGAGGCATTGAAGACG 
62-5 CGGCGATTTGTGGTTTGGC 2272 
62-3 GGATTGGCAGTTCGTGGC 
63-5 AGCCCGCCGAGGTGTTTA 344 
63-3 GTCTGACACTCCGCCTTCG 
64-5 CACCACGCAACGGAACCA 6032 
64-3 CGGTGACGAGCGAATGGAC 
65-5 GTGGTGCTCGGCTCGTTT 169 
65-3 CCGACGCCGAGGAGTTGT 
66-5 CCTTGTGGTGCCTGTGATGG 1357 
66-3 ATGGGCTCGCAGTTCGTC 
67-5 GGACGAACACGGCGAAACA 676 
67-3 GAGCAATGACGGGCGAGTG 
68-5 GCCTGTTTGCTGGGTTCG 249 
68-3 CTTCCCGCAGTTTGTTCGTT 
69-5 GCTGGACTAACTGCTGACCG 385 
69-3 CACGGAACTCCTCAACCC 
70-5 TCGGCTTGGGCTTGAGGT 430 
70-3 GCACCGACACCGAAGCCTAT 
71-5 TGTAGAACTCGGGCAAGGACG 3435 
71-3 GCCGCTCCTGTTGCTCCAC 
72-5 CGCACCACGCTGACGAAG 388 
72-3 TGACGAGGACGGCGATAGA 
73-5 CGGTCGTCAGTAGCGTCTCG 2537 
73-3 GCTGACAGTGGACGAGACGC 
74-5 TCGCAATCATCATCGCAGCA 582 
74-3 GATGACCCTGGCGAAGATGG 
75-5 CAGGGAAGCCGCACTCATC 81 
75-3 TGTCGGCGTGGCAGATTTT 
76-5 TCCCGCAACTGGTCAAGG 707 
76-3 GCAACTCAGCCAGGGTCGTCT 
77-5 CCAAATCCAACACCTGACCCA 1225 
77-3 CCTGGACGGCGATGGAAA 
78-5 CAGGTTGCCGATGTTATGCG 683 
78-3 GGCGTGGAACTGGCGAAC 
79-5 GCGGTGAAGGATTGCGAACTG 1245 
79-3 CGCATCACCGACTTCAGCA 
80-5 CACCTGCTGAGCCACGACTG 1245 
80-3 AGCGGCAGGGAGTTGGAGT 
81-5 CGAGGTCCTGAGCGGTGAT 393 
81-3 GGGCGAACGGCATCTCAA 
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82-5 TGTCCCAAGGGCAGAAGC 1361 
82-3 GGGAAGGAACACTAAATGGCTC 
83-5 AGGCGGAACTGGCGGCTT 20 
83-3 TCAGAAGGGCGACGAGCAG 
84-5 TTCCACCTGCTGACCACCA 1124 
84-3 GGTTTCGGCGGGATTGGT 
85-5 GGGCGAGTTCTGGCTTACG 5670 
85-3 TGTGCGTGCCGACCTCAA 
86-5 CGCAACAAACCGAACCTG 359 
86-3 GACTCGCAAGCGGTGTTC 
87-5 CAGGTCGGTATGGATGGTG 308 
87-3 GTTACGGTGGCAAGGGTG 
88-5 CGCTCGGGCACTTATCTCG 5370 
88-3 CTTCTCGGCTCGGGTGGC 
89-5 CGGAACTGATGGACGGCTAC 459 
89-3 CGATGGCTTTGAAGTAGAGGG 
90-5 GCTCAGGAACGGCACCAT 494 
90-3 GGGCAAGCAAAGCGAGTG 
91-5 AATCGCTCGCCTCGTTCA 290 
91-3 CTTCTGGCTCACGACCTGCT 
92-5 ACCTCAGCCGACAGCAATC 1361 
92-3 GCTGGCTGGCGGAAGAAA 
93-5 GGAAGGGATGCGGGTGTT 1357 
93-3 GCAACCAGTTCAAAGGCTCCA 
94-5 CGCCACGCTGTTCAAGGA 320 
94-3 TTGCGGGCACTGAACTGG 
95-5 ACGAACAGGCGGAGATGC 1361 
95-3 TGCCTCGGCTATCTGCTTC 
96-5 GGCGGTCGCTGTAGGAAA 1197 
96-3 ACGAACCGAAGCCCGACA 
97-5 AATACGGGCACGGCTCC 470 
97-3 CTGGAGTTGGCGGAAAGC 
98-5 CTGGCGTGCTTTGATTGC 4982 
98-3 GGTGGTTCCAACGCTCTATG 
99-5 GGCAGCCTTGATTGATTCGG 4097 
99-3 CCCGAGCGTGGACGAAAA 

100-5 CGACAGACCGGTCCAGAC 10000 
100-3 GAACAGCGTGGCCGAGAT 
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Appendix B. Examples of agarose gel pictures for filling gaps between the contigs. 

The number showing above each lane indicates the gap number. M: DNA ladder. 
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