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Abstract

The syntactic complexity of a regular language is the cardinality of its syntactic semi-
group. The syntactic complexity of a subclass of the class of regular languages is the
maximal syntactic complexity of languages in that class, taken as a function of the state
complexity n of these languages. We study the syntactic complexity of suffix-, bifix-, and
factor-free regular languages, star-free languages including three subclasses, and R- and
J -trivial regular languages.

We found upper bounds on the syntactic complexities of these classes of languages. For
R- and J -trivial regular languages, the upper bounds are n! and be(n− 1)!c, respectively,
and they are tight for n > 1. Let Cn

k be the binomial coefficient “n choose k”. For
monotonic languages, the tight upper bound is C2n−1

n . We also found tight upper bounds
for partially monotonic and nearly monotonic languages. For the other classes of languages,
we found tight upper bounds for languages with small state complexities, and we exhibited
languages with maximal known syntactic complexities. We conjecture these lower bounds
to be tight upper bounds for these languages.

We also observed that, for some subclasses C of regular languages, the upper bound
on state complexity of the reversal operation on languages in C can be met by languages
in C with maximal syntactic complexity. For R- and J -trivial regular languages, we also
determined tight upper bounds on the state complexity of the reversal operation.

Part of the work presented in this thesis has appeared in the papers [6, 12].
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Chapter 1

Introduction

The class of regular languages plays a fundamental role in theoretical computer science.
It is exactly the class of languages accepted by deterministic / nondeterministic finite au-
tomata (DFA’s / NFA’s), which are the simplest, but still powerful, computational models.
There are many applications of regular languages and finite automata in computer systems,
especially in various information processing algorithms and programming languages. Op-
erations on finite automata are often needed to accomplish a computational task. Beside
computational complexity measures, the amount of resources needed to describe finite au-
tomata resulting from various operations has become crucial in recent years due to the
massive usage of large finite automata. At the same time, the development of a num-
ber of software packages for manipulating regular languages and finite automata, such as
AMoRE, FAdo, Grail, and GAP, made it much easier to explore problems on descriptional
complexity of regular languages.

One of the widely considered descriptional complexity measures for regular languages is
the so-called state complexity, which is the number of states in the minimal DFA accepting
a regular language. An equivalent notion is quotient complexity [3], which is the number of
distinct quotients of a regular language. State complexity of regular languages and regular
operations has been studied quite extensively. In 1959, Rabin and Scott [39] proved the 2n

upper bound on the number of states in the minimal DFA obtained from an n-state NFA.
This bound was proved to be tight by Mirkin [33] in 1966. In 1970, Maslov [31] stated
without proof the tight upper bounds on state complexity of some regular operations. State
complexity became a very active topic in the 1990s. For surveys of this topic and lists of
references we refer the reader to [53, 4].

State complexity of operations on subclasses of regular languages has also attracted
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many researchers. Subclasses of regular languages are important not only because they
are theoretically interesting, but also because some applications may not require the full
class of regular languages, but only a special subclass. For example, from the theoretical
point of view, it is very interesting that the state complexity of unary languages is closely
related to Jacobsthal’s function from number theory [37]. In practice, special subclasses
of regular languages are used in coding theory and its applications, and more will be said
about this later. Also, the class of ideal regular languages, studied in [10], is very useful in
pattern matching and its applications.

Another descriptional complexity measure for regular languages is syntactic complexity,
which is the cardinality of the syntactic semigroup of a language. A construct similar to
the syntactic semigroup is the syntactic monoid of a language. The syntactic semigroup
and monoid are among the central objects in algebraic automata theory, and they are used
to bring deep connections between algebra and formal language theory. Examples include
the work of Krohn and Rhodes [29], Schützenberger [44], and Simon [49]. The syntactic
semigroup of a regular language is isomorphic to the semigroup of all transformations
performed by the minimal DFA of that language. So it is natural to consider the relation
between the syntactic complexity and the state complexity of a language. By the syntactic
complexity of a subclass of regular languages, we mean the maximal syntactic complexity
of languages in that class, taken as a function of the state complexity of these languages.

In contrast to state complexity, syntactic complexity has not received much attention.
In 1970 Maslov [31] stated without proof that nn was a tight upper bound on the number of
transformations performed by a DFA of n states. In 2003–2004, Holzer and König [23], and
Krawetz, Lawrence and Shallit [28] studied the syntactic complexity of unary and binary
languages. Brzozowski and Ye [8] examined the syntactic complexity of ideal and closed
regular languages in 2010; they found a tight upper bound on the syntactic complexity
of prefix-free regular languages [6] in 2012. A language is definite (reverse-definite) if it
can be decided whether a word w belongs to the language simply by examining the suffix
(prefix) of w of some fixed length. Recently Brzozowski and Liu [13] studied the syntactic
complexity of finite/cofinite, definite, and reverse definite languages.

It was pointed out in [8] that syntactic complexity can be very different for regular lan-
guages with the same state complexity. Thus, for a fixed n, languages with state complexity
n may possibly be distinguished by their syntactic complexities. Another interesting dis-
covery [4] is that the state complexity upper bounds for most regular operations and many
of their combinations can be reached simultaneously by a family of regular languages with
maximal syntactic complexities. An earlier theorem in [43] shows that the upper bound on
the reversal operation on regular languages is reached by languages with maximal syntactic
complexities.
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In this thesis, we extend recent studies in syntactic complexity to more subclasses
of regular languages, namely suffix-, bifix-, and factor-free regular languages, star-free
languages including monotonic, partially monotonic, and nearly monotonic languages, and
R- and J -trivial regular languages. In the following, we first give an overview of these
subclasses. We then describe the structure of this thesis at the end of this chapter.

1.1 Suffix-, Bifix-, and Factor-Free Regular Languages

A proper prefix (suffix, factor) of a word w is a prefix (respectively, suffix, factor) of w
other than w itself. A language is prefix-free (respectively, suffix-free, factor-free) if it
does not contain any pair of words such that one is a proper prefix (respectively, suffix,
factor) of the other. It is bifix-free if it is both prefix- and suffix-free. Nontrivial prefix-,
suffix-, bifix-, and factor-free languages are also known as prefix, suffix, bifix, and infix
codes [2, 46], respectively, and have many applications in areas such as cryptography, data
compression and information processing.

In this thesis we consider only regular prefix-, suffix-, bifix-, and factor-free languages.
With regard to state complexity, Han, Salomaa and Wood [21] examined prefix-free regular
languages in 2009, and Han and Salomaa [20] studied suffix-free regular languages in the
same year. Bifix- and factor-free regular languages were studied by Brzozowski, Jirásková,
Li, and Smith [11] in 2011.

1.2 Star-Free Languages and Three Subclasses

Star-free languages are the smallest class containing the finite languages and closed under
boolean operations and concatenation. In 1965, Schützenberger [44] proved that a lan-
guage is star-free if and only if its syntactic monoid is group-free, that is, has only trivial
subgroups. An equivalent condition is that the minimal DFA accepting a star-free language
is permutation-free, that is, has only trivial permutations (cycles of length 1). Such DFA’s
are called aperiodic, and this is the term we use. Star-free languages were studied in detail
in 1971 by McNaughton and Papert [32].

Monotonic (partially monotonic) languages are regular languages whose minimal DFA’s
can perform only monotonic (partially monotonic) transformations with respect to a fixed
total order. A language is called nearly monotonic if its minimal DFA can perform only
partially monotonic or constant transformations with respect to a fixed total order. The
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precise definitions of monotonic and partially monotonic transformations will be given later
in the corresponding chapter. The syntactic semigroups of monotonic (partially monotonic)
languages are subsets of the semigroup of monotonic (partially monotonic) transformations,
which were studied in [24, 19]. In 2005, Ananichev and Volkov [1] studied monotonic DFA’s
for the problem of reset words for synchronizing automata.

It has been shown in 2011 by Brzozowski and Liu [7] that boolean operations, concate-
nation, star, and reversal in the class of star-free languages meet all the state complexity
upper bounds of regular languages, with very few exceptions. Monotonic languages were
used as witnesses to these upper bounds. Also, Kutrib, Holzer, and Meckel [22] proved in
2011 that in most cases exactly the same tight state complexity bounds are reached by
operations on aperiodic NFA’s as on general NFA’s.

1.3 R-Trivial and J -Trivial Regular Languages

The well-known Green equivalence relations L,R,J ,H on semigroups, treated in [25] for
example, are very important in semigroup theory. The definition of the Green equivalence
relations will be given later. If ρ is a Green equivalence relation on a monoid M , then M
is ρ-trivial if and only if every ρ-equivalence class contains only one element. A language
is ρ-trivial if and only if its syntactic monoid is ρ-trivial. In this thesis we consider only
regular ρ-trivial languages. Note that H-trivial regular languages are exactly the star-free
languages, and L-, R-, and J -trivial languages are all subclasses of star-free languages.

A language L ⊆ Σ∗ is piecewise-testable if it is a finite boolean combination of languages
of the form Σ∗a1 · · ·Σ∗alΣ

∗, where ai ∈ Σ. Simon [49] proved in 1975 that a language is
piecewise-testable if and only if it is J -trivial. A biautomaton is a finite automaton which
can read the input word alternatively from the left and from the right. In 2011 Kĺıma and
Polák [27] showed that a language is piecewise-testable if and only if it is accepted by an
acyclic biautomaton.

In 1979 Brzozowski and Fich [5] proved that a regular language is R-trivial if and only
if its minimal DFA is partially ordered, that is, has an acyclic graph representation. They
also showed that R-trivial regular languages are exactly the languages of a finite boolean
combination of languages Σ∗

1a1 · · ·Σ∗
l alΣ

∗, where ai ∈ Σ and Σi ⊆ Σ \ {ai}.
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1.4 Organization

We first state basic definitions and facts about syntactic complexity in Chapter 2. In
Chapters 3 to 5 we find upper and lower bounds on syntactic complexities of suffix-, bifix-,
and factor-free regular languages, star-free languages including three subclasses, and R-
and J -trivial regular languages. We also exhibit witness languages to lower bounds on the
syntactic complexities in their classes.

It is very difficult to obtain tight upper bounds on the syntactic complexities of some
languages. For example, although tight upper bounds for right ideals and prefix-closed
regular languages are easy to derive, our knowledge on tight upper bounds for left ideals
and suffix-closed regular languages is limited to small cases [8]. Our upper bounds for
monotonic, partially monotonic, nearly monotonic, and R- and J -trivial regular languages
are tight. For other classes of languages, we prove tight upper bounds for some small cases,
and we present conjectures on tight upper bounds for general cases.

In Chapter 6 we show that, for most language classes that we study, the upper bounds on
the state / quotient complexity of reversal of these languages can be met by our languages
with largest syntactic complexities. Chapter 7 concludes the thesis and discusses future
work.
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Chapter 2

Preliminaries

In this chapter we state basic definitions and facts that will be helpful for our study of
syntactic complexity of regular languages.

2.1 Transformations

A partial transformation of a set Q is a partial mapping of Q into itself. We consider
partial transformations of finite sets only, and we assume without loss of generality that
Q = {1, 2, . . . , n}. Let t be a partial transformation of Q. If t is defined for i ∈ Q, then it is
the image of i under t; otherwise it is undefined and we write it = �. For convenience, we
let �t = �. If X is a subset of Q, then Xt = {it | i ∈ X}. The composition of two partial
transformations t1 and t2 of Q is a partial transformation t1 ◦ t2 such that i(t1 ◦ t2) = (it1)t2
for all i ∈ Q. We usually drop the composition operator “◦” and write t1t2 for short.

An arbitrary partial transformation can be written in the form

t =

(
1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)
,

where ik = kt ∈ Q ∪ {�}, for k ∈ Q. We also use the notation t = [i1, i2, . . . , in−1, in] for
the partial transformation t above. The domain of t is the set dom(t) = {k ∈ Q | kt 6= �}.
The range of t is the set rng(t) = Qt. The rank of t, denoted by rank(t), is the cardinality
of rng(t), i.e., rank(t) = |rng(t)|. The binary relation ωt on Q×Q is defined as follows: For
any i, j ∈ Q, i ωt j if and only if i, j ∈ Q and itk = jtl for some k, l > 0. Such a relation is
an equivalence relation, and each equivalence class is called an orbit of t. For any i ∈ Q,
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the orbit of t containing i is denoted by ωt(i). The set of all orbits of t is denoted by Ω(t).
Clearly, Ω(t) is a partition of Q.

A (full) transformation t of a set Q is a partial transformation such that dom(t) = Q.
The identity transformation maps each element to itself, that is, it = i for i = 1, . . . , n.
A transformation t is a cycle of length k > 2 if there exist pairwise distinct elements
i1, . . . , ik such that i1t = i2, i2t = i3, . . . , ik−1t = ik, ikt = i1, and jt = j for all j 6∈
{i1, . . . , ik}. Such a cycle is denoted by (i1, i2, . . . , ik). For i < j, a transposition is the
cycle (i, j). A singular transformation, denoted by

(
i
j

)
, has it = j and ht = h for all h 6= i.

A constant transformation, denoted by
(
Q
j

)
, has it = j for all i.

The set of all full transformations of a set Q, denoted by TQ, is a finite semigroup,
in fact, a monoid. We refer the reader to the book of Ganyushkin and Mazorchuk [17]
for a detailed discussion of finite transformation semigroups. In 1935 Piccard [36] proved
that three transformations of Q are sufficient to generate the monoid TQ. In the same
year, Eilenberg showed that fewer than three generators are not possible, as reported by
Sierpiński [47]. Dénes [16] (apparently unaware of the earlier work) studied more general
generators in 1968; we use his formulation:

Theorem 2.1 (Transformations). The complete transformation monoid TQ of size nn can
be generated by any cyclic permutation of n elements together with any transposition and
any singular transformation. In particular, TQ can be generated by a = (1, 2, . . . , n), b =
(1, 2) and c =

(
n
1

)
.

A permutation of Q is a mapping of Q onto itself. In other words, a permutation π of Q
is a transformation where rng(π) = Q. The set of all permutations of a set Q of n elements
is a group, denoted by SQ and called the symmetric group of degree n. It is well-known
that two generators are sufficient to generate the symmetric group of degree n.

Theorem 2.2 (Permutations). The symmetric group SQ of size n! can be generated by
any cyclic permutation of n elements together with any transposition. In particular, SQ

can be generated by a = (1, 2, . . . , n) and b = (1, 2).

2.2 Syntactic Complexity of Regular Languages

For general definitions and facts about regular languages, we refer the reader to the hand-
book chapter by Yu [52]. Let Σ be a finite non-empty alphabet, Σ∗ the free monoid
generated by Σ, and Σ+ the free semigroup generated by Σ. A word w is an element of Σ∗,
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and its length is denoted by |w|. The empty word is denoted by ε. A language over Σ is a
subset of Σ∗.

The left quotient, or simply quotient, of a language L by a word w is the language
Lw = {x ∈ Σ∗ | wx ∈ L}. The quotient complexity of L, denoted by κ(L), is the number
of distinct quotients of L. The Nerode right congruence [35] ∼L of any language L ⊆ Σ∗ is
defined as follows: For all x, y ∈ Σ∗,

x ∼L y if and only if xv ∈ L ⇔ yv ∈ L, for all v ∈ Σ∗.

Clearly, Lx = Ly if and only if x ∼L y. Thus each equivalence class of this right congruence
corresponds to a distinct quotient of L.

The Myhill congruence [34] ≈L of any language L ⊆ Σ∗ is defined as follows: For all
x, y ∈ Σ∗,

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

This congruence is also known as the syntactic congruence of L. The quotient set Σ+/≈L

of equivalence classes of the relation ≈L is a semigroup called the syntactic semigroup
of L, and Σ∗/≈L is the syntactic monoid of L. The syntactic complexity σ(L) of L is the
cardinality of its syntactic semigroup. The monoid complexity µ(L) of L is the cardinality
of its syntactic monoid. If the equivalence class containing ε is a singleton in the syntactic
monoid, then σ(L) = µ(L)− 1; otherwise, σ(L) = µ(L).

Regular languages are the smallest class of languages containing finite languages and
are closed under concatenation, union, and star operations. Both Nerode and Myhill
congruences are important for regular languages because of the following famous equivalent
conditions on any language L:

1. L is a regular language;

2. The Nerode right congruence ∼L of L is of finite index;

3. The Myhill congruence ≈L of L is of finite index.

In other words, L is regular if and only if L has a finite number of quotients, and if and
only if the syntactic semigroup of L is finite.

A deterministic finite automaton (DFA) over Σ is a quintuple A = (Q,Σ, δ, q1, F ),
where Q is a finite, non-empty set of states, δ : Q × Σ → Q is the transition function,
q1 ∈ Q is the initial state, and F ⊆ Q is the set of final states. We extend δ to Q× Σ∗ in
the usual way. The DFA A accepts a word w ∈ Σ∗ if δ(q1, w) ∈ F . The set of all words
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accepted by A is L(A). If q is a state of A, then the language Lq of q is the language
accepted by the DFA (Q,Σ, δ, q, F ). Two states p and q of A are equivalent if Lp = Lq.
A state q of A is empty if Lq = ∅. Regular languages are exactly the languages accepted by
DFA’s. The state complexity of a regular language is the number of states in the minimal
DFA accepting that language.

If L is regular, then we define the quotient DFA of L as A = (Q,Σ, δ, q1, F ), where
Q = {Lw | w ∈ Σ∗} is the set of quotients of L, δ(Lw, a) = Lwa, q1 = Lε = L, and
F = {Lw | ε ∈ Lw}. Such a DFA is the minimal DFA accepting L. Hence, for regular
languages, quotient complexity and state complexity are the same.

An incomplete deterministic finite automaton (IDFA) is a quintuple I = (Q,Σ, δ, q1, F ),
where Q, Σ, q1 and F are as in a DFA, and δ is a partial function such that, for any p, q ∈ Q,
a ∈ Σ, either δ(q, a) = p for some p ∈ Q or δ(q, a) is undefined. An IDFA is minimal if no
two of its states are equivalent. Every DFA is also an IDFA.

The quotient IDFA of L is the quotient DFA of L after the empty state (if present)
and all transitions incident to it are removed. The quotient IDFA is minimal. If a regular
language L has quotient IDFA I, then the DFA A obtained by adding the empty quotient
to I, if necessary, is the quotient DFA of L. Conversely, if L has quotient DFA A, then
the IDFA I obtained from A by removing the empty quotient, if present, is the quotient
IDFA of L. The two automata A and I are equivalent, in the sense that they accept the
same language.

Let A = (Q,Σ, δ, q1, F ) be a DFA. For each word w ∈ Σ+, the transition function for

w defines a transformation tw of Q by the word w: for all i ∈ Q, itw
def
= δ(i, w). The set

TA of all such transformations by non-empty words forms a subsemigroup of TQ, called the
transition semigroup of A [38]. Conversely, we can use a set {ta | a ∈ Σ} of transformations
to define δ, and so the DFA A. When the context is clear we simply write a = t, where t
is a transformation of Q, to mean that the transformation performed by a ∈ Σ is t.

If A is the quotient DFA of L, then TA is isomorphic to the syntactic semigroup TL of
L [32], and we represent elements of TL by transformations in TA.

For any IDFA I, each word w ∈ Σ∗ performs a partial transformation of Q. The set of
all such partial transformations is the transition semigroup of I. If I is the quotient IDFA
of a language L, this semigroup is isomorphic to the transition semigroup of the quotient
DFA of L, and hence also to the syntactic semigroup of L.
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Chapter 3

Syntactic Complexity of Suffix-,
Bifix-, and Factor-Free Languages

If w = uxv for some u, x, v ∈ Σ∗, then u is a prefix of w, v is a suffix of w, and x is a
factor of w. Both u and v are also factors of w. A proper prefix (suffix, factor) of w is
a prefix (suffix, factor) of w other than w. A language is prefix-free (respectively, suffix-
free, factor-free) if it does not contain any pair of words such that one is a proper prefix
(respectively, suffix, factor) of the other. It is bifix-free if it is both prefix- and suffix-free.

In this chapter, we study the syntactic complexity of suffix-, bifix-, and factor-free
regular languages. The syntactic complexity of prefix-free regular languages was studied
by Brzozowski and Ye, and their results were published in [6]. For completeness, and
because of the close relations to other language classes in this chapter, we first review the
syntactic complexity of prefix-free regular languages in Section 3.1. Then we continue with
suffix-, bifix-, and factor-free regular languages in Sections 3.2 to 3.4. We summarize our
results in Section 3.5.

3.1 Prefix-Free Regular Languages

We start with the case when |Σ| = 1. For unary languages, the concepts prefix-, suffix-,
bifix-, and factor-free, coincide. Suppose L is an unary prefix-free regular language with
quotient complexity κ(L) = n. When n = 1, the only prefix-free language is L = ∅ with
σ(L) = 1. For n > 2, a prefix-free language L must be a singleton, L = {an−2}. The
syntactic semigroup TL of L consists of n − 1 transformations tw by words w = ai, where
1 6 i 6 n− 1. Thus we have

10



Proposition 3.1 (Unary Prefix-Free Regular Languages). If L is a unary prefix-, suffix-,
bifix-, or factor-free regular language with κ(L) = n > 2, then σ(L) = n− 1.

Note that the tight upper bound on the syntactic complexity of regular unary lan-
guages [23] is n.

We assume that |Σ| > 2 in the following. To simplify notation we write ε for the
language {ε}. For any regular language L, a quotient Lw is final if ε ∈ Lw. Recall that
a regular language L is prefix-free if and only it has exactly one final quotient, and that
quotient is ε [21]. The following upper bound was shown in [6]:

Theorem 3.2 (Prefix-Free Regular Languages). If L is regular and prefix-free with κ(L) =
n > 2, then σ(L) 6 nn−2. Moreover, this bound is tight for n = 2 if |Σ| > 1, for n = 3 if
|Σ| > 2, for n = 4 if |Σ| > 4, and for n > 5 if |Σ| > n+ 1.

3.2 Suffix-Free Regular Languages

For any regular language L, a quotient Lw is uniquely reachable [3] if Lw = Lx implies
that w = x. It is known from [20] that, if L is a suffix-free regular language, then L = Lε

is uniquely reachable by ε, and L has the empty quotient. Without loss of generality, we
assume that 1 is the initial state, and n is the empty state in the quotient DFA of L. We
will show that the cardinality of Bsf(n), defined below, is an upper bound (B for “bound”)
on the syntactic complexity of suffix-free regular languages with quotient complexity n.
For n > 2, let

Bsf(n) = {t ∈ TQ | 1 6∈ rng(t), nt = n, and for all j > 1,

1tj = n or (1tj 6= itj ∀i, 1 < i < n)}.

Proposition 3.3. If L is a regular language with quotient DFA An = (Q,Σ, δ, 1, F ) and
syntactic semigroup TL, then the following hold:

1. If L is suffix-free, then TL is a subset of Bsf(n).

2. If L has the empty quotient, only one final quotient, and TL ⊆ Bsf(n), then L is
suffix-free.

11



Proof. 1. Let L be suffix-free, and let An be its quotient DFA. Consider an arbitrary
t ∈ TL. Since the quotient L is uniquely reachable, it 6= 1 for all i ∈ Q. Since the quotient
corresponding to state n is empty, nt = n. Since L is suffix-free, for any two quotients Lw

and Luw, where u,w ∈ Σ+ and Lw 6= ∅, we must have Lw ∩ Luw = ∅, and so Lw 6= Luw.
This means that, for any j > 1, if 1tj 6= n, then 1tj 6= itj for all i, 1 < i < n. So t ∈ Bsf(n),
and TL ⊆ Bsf(n).

2. Assume that TL ⊆ Bsf(n), and let f be the only final state. If L is not suffix-
free, then there exist non-empty words u and v such that v, uv ∈ L. Let tu and tv be the
transformations by u and v, and let i = 1tu; then i 6= 1. Assume without loss the generality
that n is the empty state. Then f 6= n, and we have 1tv = f = 1tuv = 1tutv = itv, which
contradicts the fact that tv ∈ Bsf(n). Therefore L is suffix-free.

Let bsf(n) = |Bsf(n)|. We now prove that bsf(n) is an upper bound on the syntactic
complexity of suffix-free regular languages.

With each transformation t of Q, we associate a directed graph Gt, where Q is the set
of nodes, and (i, j) ∈ Q×Q is a directed edge from i to j if it = j. We call such a graph
Gt the transition graph of t. For each node i, there is exactly one edge leaving i in Gt.
Consider the infinite sequence i, it, it2, . . . for any i ∈ Q. Since Q is finite, there exists least
j > 0 such that itj+1 = itj

′
for some j′ 6 j. Then the finite sequence st(i) = i, it, . . . , itj

contains all the distinct elements of the above infinite sequence, and it induces a directed
path Pt(i) = i, it, . . . , itj from i to itj in Gt. In particular, if n ∈ st(1), and nt = n, then
we call st(1) the principal sequence of t, and Pt(1), the principal path of Gt.

Proposition 3.4. There exists a principal sequence for every transformation t ∈ Bsf(n).

Proof. Suppose t ∈ Bsf(n) and st(1) = 1, 1t, . . . , 1tj. If t does not have a principal sequence,
then n 6∈ st(1), and 1tj+1 = 1tj

′ 6= n for some j′ 6 j. Let i = 1tj+1−j′ ; then i 6= 1 and
1tj

′
= itj

′
, violating the last property of Bsf(n). Therefore there is a principal sequence for

every t ∈ Bsf(n).

Fix a transformation t ∈ Bsf(n). Let i ∈ Q be such that i 6∈ st(1). If the sequence st(i)
does not contain any element of the principal sequence st(1) other than n, then we say that
st(i) has no principal connection. Otherwise, there exists least j > 1 such that 1tj 6= n
and 1tj = itj

′ ∈ st(i) for some j′ > 1, and we say that st(i) has a principal connection at
1tj. If j′ < j, the principal connection is short; otherwise, it is long.

Lemma 3.5. For all t ∈ Bsf(n) and i 6∈ st(1), the sequence st(i) has no long principal
connection.
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Proof. Let t be any transformation in Bsf(n). Suppose for some i 6∈ st(1), the sequence
st(i) has a long principal connection at 1tj = itj

′ 6= n, where j 6 j′. Hence itj
′−j 6= n,

and 1tj = (itj
′−j)tj, which is a contradiction. Therefore, for all i 6∈ st(1), st(i) has no long

principal connection.

To calculate the cardinality of Bsf(n), we need the following observation.

Lemma 3.6. For all t ∈ Bsf(n) and i 6∈ st(1), if st(i) has a principal connection, then
there is no cycle incident to the path Pt(i) in the transition graph Gt.

Proof. This observation can be derived from Theorem 1.2.9 of [17]. However, our proof is
shorter. Pick any i 6∈ st(1) such that st(i) has a principal connection at 1tj = itj

′
for some

i, j and j′. Then the sequence st(i) contains n, and the path Pt(i) does not contain any
cycle. Suppose C is a cycle which includes node x = itk ∈ Pt(i). Since there is only one
outgoing edge for each node in Gt, the cycle C must be oriented and must contain a node
x′ 6∈ Pt(i) such that (x′, x) is an edge in C. Then the next node in the cycle must be itk+1

since there is only one outgoing edge from x. But then x′ can never be reached from Pt(i),
and so no such cycle can exist.

By Lemma 3.6, for any 1tj ∈ st(1), where j > 1, the union of directed paths from
various nodes i to 1tj, if i 6∈ st(1) and st(i) has a principal connection at 1tj, forms a
labeled tree Tt(j) rooted at 1tj. Suppose there are rj + 1 nodes in Tt(j) for each j, and
suppose there are r elements of Q that are not in the principal sequence st(1) nor in any
tree Tt(j), for some rj, r > 0. Note that 1tj is the only node in Tt(j) that is also in the
principal sequence st(1). Each tree Tt(j) has height at most j−1; otherwise, some i ∈ Tt(j)
has a long principal connection. In particular, tree Tt(1) has height 1; so it is trivial with
only one node 1t. Then r1 = 0, and we need consider trees Tt(j) only for j > 2. Let Sm(h)
be the number of labeled rooted trees with m nodes and height at most h. This number
can be found in the paper of Riordan [40]; the calculation is somewhat complex, and we
refer the reader to [40] for details. For convenience, we include the values of Sm(h) for
small values of m and h in Table 3.1, where the row number is h and the column number
is m.

Since each of the m nodes can be the root, there are S ′
m(h) =

Sm(h)
m

labeled trees rooted
at a fixed node and having m nodes and height at most h. The following is an example of
trees Tt(j) in transformations t ∈ Bsf(n).
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Table 3.1: The number Sm(h) of labeled rooted trees with m nodes and height at most h.

h/m 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0
1 1 2 3 4 5 6 7
2 1 2 9 40 205 1176 7399
3 1 2 9 64 505 4536 46249
4 1 2 9 64 625 7056 89929
5 1 2 9 64 625 7776 112609
6 1 2 9 64 625 7776 117649

Example 3.7. Let n = 15. Consider any transformation t ∈ Bsf(15) with principal sequence
st(1) = 1, 2, 3, 4, 5, 15. There are 9 elements of Q that are not in st(1), and some of them
are in the trees Tt(j) for 2 6 j 6 4. Consider the cases where r2 = 2, r3 = 3, r4 = 1, and
r = 3. Figure 3.1 shows one such transformation t.

1 2 3 4 5

6 7 8

9 10

11

12

13

1415

Figure 3.1: Transition graph of some t ∈ Bsf(15) with principal sequence 1, 2, 3, 4, 5, 15.

For j = 2, the tree Tt(2) has height at most 1, and there are S ′
r2+1(1) =

Sr2+1(1)

r2+1
= 3

3
= 1

possible Tt(2). For j = 3, there are S ′
r3+1(2) =

Sr3+1(2)

r3+1
= 10 possible Tt(3), which are of

one of the three types shown in Figure 3.2. Among the 10 possible Tt(3), one is of type (a),

three are of type (b), and six are of type (c). For j = 4, there are S ′
r4+1(3) =

Sr4+1(3)

r4+1
= 1

possible Tt(4). �

Let Cn
k be the binomial coefficient, and let Cn

k1,...,km
be the multinomial coefficient. Then

we have the following lemma:
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44 4

(a) (b) (c)

i1 i2 i3 i1

i2 i3

i1 i2

i3

Figure 3.2: Three types of trees of the form Tt(3), where {i1, i2, i3} = {8, 9, 10}.

Lemma 3.8. For n > 2, we have

bsf(n) =
n−2∑
k=0

Cn−2
k k!

∑
r2+···+rk+r
=n−k−2

Cn−k−2
r2,...,rk,r

(r + 1)r
k∏

j=2

S ′
rj+1(j − 1). (3.1)

Proof. Let t be any transformation in Bsf(n). Suppose st(1) = 1, 1t, . . . , 1tk, n for some
k, 0 6 k 6 n − 2. There are Cn−2

k k! different principal sequences st(1). Now, fix st(1).
Suppose n−k−2 = r2+ · · ·+rk+r, where, for 2 6 j 6 k, tree Tt(j) contains rj +1 nodes,
for some rj > 0. There are Cn−k−2

r2,...,rk,r
different tuples (r2, . . . , rk, r). Each tree Tt(j) has

height at most j − 1, and it is rooted at 1tj. There are S ′
rj+1(j − 1) =

Srj+1(j−1)

rj+1
different

trees Tt(j). Let E be the set of the remaining r elements x of Q that are not in any tree
Tt(j) nor in the principal sequence st(1). The image xt can only be chosen from E ∪ {n}.
There are (r + 1)r different mappings of E. Altogether we have the desired formula.

From Proposition 3.3 and Lemma 3.8 we have

Proposition 3.9. For n > 2, if L is a suffix-free language with quotient complexity n,
then its syntactic complexity σ(L) satisfies σ(L) 6 bsf(n), where bsf(n) is the cardinality
of Bsf(n), and it is given by Equation (3.1).

Note that Bsf(n) is not a semigroup for n > 4 because s1 = [2, 3, n, . . . , n, n], s2 =
[n, 3, 3, . . . , 3, n] ∈ Bsf(n), but s1s2 = [3, 3, n, . . . , n, n] 6∈ Bsf(n). Hence, although bsf(n) is
an upper bound on the syntactic complexity of suffix-free regular languages, that bound
is not tight. Our objective is to find the largest subset of Bsf(n) that is a semigroup.
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For n > 2, let

W65
sf (n) = {t ∈ Bsf(n) | for all i, j ∈ Q where i 6= j,

we have it = jt = n or it 6= jt},

where W stands for “witness”, and the superscript 6 5 will be explained in Theorem 3.14.

Proposition 3.10. For n > 2, W65
sf (n) is a semigroup contained in Bsf(n), and its cardi-

nality is

w65
sf (n) = |W65

sf (n)| =
n−1∑
k=1

Cn−1
k (n− 1− k)!Cn−2

n−1−k.

Proof. We know that any t is in W65
sf (n) if and only if the following hold:

1. it 6= 1 for all i ∈ Q, and nt = n;

2. for all i, j ∈ Q, such that i 6= j, either it = jt = n or it 6= jt.

Clearly W65
sf (n) ⊆ Bsf(n). For any transformations t1, t2 ∈ W65

sf (n), consider the
composition t1t2. Since 1 6∈ rng(t2), we have 1 6∈ rng(t1t2). We also have nt1t2 = nt2 = n.
Pick any i, j ∈ Q such that i 6= j. Suppose it1t2 6= n or jt1t2 6= n. If it1t2 = jt1t2,
then it1 = jt1 and thus i = j, a contradiction. Hence t1t2 ∈ W65

sf (n), and W65
sf (n) is a

semigroup contained in Bsf(n).

Let t ∈ W65
sf (n) be any transformation. Note that nt = n is fixed. Let Q′ = Q \ {n},

and Q′′ = Q \ {1, n}. Suppose k elements in Q′ are mapped to n by t, where 0 6 k 6
n − 1; then there are Cn−1

k choices of these elements. For the set D of the remaining
n − 1 − k elements, which must be mapped by t to pairwise distinct elements of Q′′,
there are Cn−2

n−1−k(n − 1 − k)! choices for the mapping t|D. When k = 0, there is no

such t since |Dt| = n − 1 > n − 2 = |Q′′|. Altogether, the cardinality of W65
sf (n) is

|W65
sf (n)| =

∑n−1
k=1 C

n−1
k (n− 1− k)!Cn−2

n−1−k.

Remark 3.11. A partial injective transformation of a set Q is a partial injective mapping
of Q into itself. The set of all such transformations of Q is a semigroup, usually called the
symmetric inverse semigroup [17] and denoted by ISQ. Let Q′ = Q \ {n}. The number
w65

sf (n) coincides with the number of nilpotents in ISQ′ , which are the transformations
t ∈ ISQ′ such that dom(tk) = ∅ for some k > 1. Riordan [41] reported that w65

sf (n) has
the asymptotic approximation

w65
sf (n) ∼

1√
2e

(n− 1)n−
4
5 e−(n−1)+2

√
n−1.

16



We now construct a generating set G65
sf (n) (G for “generators”) of size n for W65

sf (n),
which will show that there exist DFA’s accepting suffix-free regular languages with quotient
complexity n and syntactic complexity w65

sf (n).

Proposition 3.12. When n > 2, the semigroup W65
sf (n) is generated by the following set

G65
sf (n) of transformations of Q:

G65
sf (2) = {a1}, where a1 = [2, 2];

G65
sf (3) = {a1, a2}, where a1 = [3, 2, 3] and a2 = [2, 3, 3];

and for n > 4, G65
sf (n) = {a0, . . . , an−1}, where

• a0 =
(
1
n

)
(2, 3),

• a1 =
(
1
n

)
(2, 3, . . . , n− 1),

• For 2 6 i 6 n − 1, jai = j + 1 for j = 1, . . . , i − 1, iai = n, and jai = j for
j = i+ 1, . . . , n.

For n = 4, a0 and a1 coincide, and three transformations suffice.

Proof. We have G65
sf (n) ⊆ W65

sf (n), and so 〈G65
sf (n)〉, the semigroup generated by G65

sf (n),
is a subset of W65

sf (n). We now show that W65
sf (n) ⊆ 〈G65

sf (n)〉.
It is easy to verify the cases for n = 2, 3. Assume n > 4. Pick any t in W65

sf (n). Note
that nt = n is fixed. Let Q′ = Q \ {n}, Et = {j ∈ Q′ | jt = n}, Dt = Q′ \ Et, and
Q′′ = Q \ {1, n}. Then Dtt ⊆ Q′′, and |Et| > 1, since |Q′′| < |Q′|. We prove by induction
on |Et| that t ∈ 〈G65

sf (n)〉.
First, note that 〈a0, a1〉, the semigroup generated by {a0, a1}, is isomorphic to the

symmetric group SQ′′ by Theorem 2.2. Consider Et = {i} for some i ∈ Q′. Then iai =
it = n. Moreover, since Dtai, Dtt ⊆ Q′′, there exists π ∈ 〈a0, a1〉 such that (jai)π = jt for
all j ∈ Dt. Then t = aiπ ∈ 〈G65

sf (n)〉.
Assume that any transformation t ∈ W65

sf (n) with |Et| < k can be generated byG65
sf (n),

where 1 < k < n−1. Consider t ∈ W65
sf (n) with |Et| = k. Suppose Et = {e1, . . . , ek−1, ek}.

Let s ∈ W65
sf (n) be such that Es = {e1, . . . , ek−1}. By assumption, s can be generated

by G65
sf (n). Let i = eks; then i ∈ Q′′, and ej(sai) = n for all 1 6 j 6 k. Moreover, we

have Dt(sai) ⊆ Q′′. Thus, there exists π ∈ 〈a0, a1〉 such that, for all d ∈ Dt, d(saiπ) = dt.
Altogether, for all ej ∈ Et, we have ej(saiπ) = ejt = n, for all d ∈ Dt, d(saiπ) = dt, and
n(saiπ) = nt = n. Thus t = saiπ, and t ∈ 〈G65

sf (n)〉.
Therefore W65

sf (n) = 〈G65
sf (n)〉.
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Theorem 3.13. For n > 2, let An = (Q,Σ, δ, 1, {n−1}) be a DFA with alphabet Σ, where
each a ∈ Σ defines a distinct transformation in G65

sf (n) as in Proposition 3.12. Then
L = L(An) has quotient complexity κ(L) = n, and syntactic complexity σ(L) = w65

sf (n).
Moreover, L is suffix-free.

Proof. The cases for n = 2, 3 are easy to verify. Assume n > 4. First we show that all
the states of An are reachable: 1 is the initial state, state n is reached by a1, and for
2 ≤ i ≤ n − 1, state i is reached by ai−1

i . For 1 ≤ i ≤ n − 1, the word an−1−i
n−1 is accepted

only by state i. Also n is the empty state. Thus all the states of An are distinct, and
κ(L) = n.

By Proposition 3.12, the syntactic semigroup of L isW65
sf (n); hence σ(L) = |W65

sf (n)| =
w65

sf (n). By Proposition 3.3, L is suffix-free.

As shown in Table 3.2 on p. 32, the size of Σ cannot be decreased for n 6 5.

Theorem 3.14. For 2 6 n 6 5, if a suffix-free regular language L has quotient complexity
κ(L) = n, then its syntactic complexity satisfies σ(L) 6 w65

sf (n), and this is a tight upper
bound.

Proof. By Proposition 3.3, the syntactic semigroup of a suffix-free regular language L is
contained in Bsf(n). For n ∈ {2, 3}, w65

sf (n) = bsf(n). So w65
sf (n) is an upper bound,

and it is met by the language L = ε for n = 2 and by L = ab∗ for n = 3. For n = 4,
we have |Bsf(4)| = 15 and |W65

sf (4)| = 13. Two transformations, s1 = [4, 2, 2, 4] and
s2 = [4, 3, 3, 4], in Bsf(4) are such that s1 conflicts with t1 = [3, 2, 4, 4] ∈ W65

sf (4) (because
t1s1 = [2, 2, 4, 4] 6∈ Bsf(4)), and s2 conflicts with t2 = [2, 3, 4, 4] (because t2s2 = [3, 3, 4, 4] 6∈
Bsf(4)). Thus σ(L) 6 13. Let L be the language accepted by the DFA A4 in Theorem 3.13;
then κ(L) = 4 and σ(L) = 13. So the bound is tight.

For n = 5, we have |Bsf(5)| = 115 and |W65
sf (5)| = 73. Suppose Bsf(5) \ W65

sf (5) =
{s1, . . . , s42}. For each si, we enumerated transformations inW65

sf (5) using GAP and found
a unique ti ∈ W65

sf (5) such that the semigroup 〈ti, si〉 is not contained in Bsf(5). Thus at
most one transformation in each pair {ti, si} can appear in the syntactic semigroup of L.
So we reduce the upper bound to 73. By Theorem 3.13, this bound is tight.

When n > 6, the semigroup W65
sf (n) is no longer the largest semigroup contained in

Bsf(n); hence the upper bound in Theorem 3.14 does not apply. In the following, we define
and study another semigroup W>6

sf (n), which is larger than W65
sf (n) and is also contained

in Bsf(n). For n > 2, let

W>6
sf (n) = {t ∈ Bsf(n) | 1t = n or it = n ∀ i, 2 6 i 6 n− 1}.
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Proposition 3.15. For n > 2, the set W>6
sf (n) is a semigroup contained in Bsf(n), and

its cardinality is
w>6

sf (n) = |W>6
sf (n)| = (n− 1)n−2 + (n− 2).

Proof. Pick any t1, t2 in W>6
sf (n). If 1t1 = n, then 1(t1t2) = n and t1t2 ∈ W>6

sf (n). If
1t1 6= n, then, for all i ∈ {2, . . . , n− 1}, it1 = n and i(t1t2) = n; so t1t2 ∈ W>6

sf (n) as well.
Hence W>6

sf (n) is a semigroup contained in Bsf(n).

For any t ∈ W>6
sf (n), nt = n is fixed. There are two possible cases:

1. 1t = n: For each i ∈ {2, . . . , n− 1}, it can be chosen from {2, . . . , n}. Then there are
(n− 1)n−2 different t’s in this case.

2. 1t 6= n: Now 1t can be chosen from {2, . . . , n−1}. For each i ∈ {2, . . . , n−1}, it = n
is fixed. Then, for any t′ ∈ W>6

sf (n) such that 1t′ 6= n, t differs from t′ if and only if
1t 6= 1t′. So there are n− 2 different t’s in this case.

Therefore w>6
sf (n) = (n− 1)n−2 + (n− 2).

When n > 6, one verifies that w>6
sf (n) > w65

sf (n). Hence W>6
sf (n) is a larger semigroup

than W65
sf (n). Table 3.2 on p. 32 contains values of w65

sf (n) and w>6
sf (n) for small n’s. For

n ∈ {2, 3}, we have W>6
sf (n) = W65

sf (n). From now on, we are only interested in larger
values of n.

Proposition 3.16. For n > 4, the semigroup W>6
sf (n) is generated by the set G>6

sf (n) =
{a1, a2, a3, b1, . . . , bn−2, c} of transformations of Q, where

• a1 =
(
1
n

)
(2, . . . , n− 1), a2 =

(
1
n

)
(2, 3), a3 =

(
1
n

)(
n−1
2

)
;

• For 1 6 i 6 n− 2, bi =
(
1
n

)(
i+1
n

)
;

• c =
(
Q\{1}

n

)(
1
2

)
= [2, n, . . . , n].

For n = 4, a1 and a2 coincide, and five transformations suffice.

Proof. Clearly G>6
sf (n) ⊆ W>6

sf (n), and 〈G>6
sf (n)〉 ⊆ W>6

sf (n). We show in the following
that W>6

sf (n) ⊆ 〈G>6
sf (n)〉.

Let Q′ = {2, . . . , n−1}. By Theorem 2.1, a1, a2 and a3 together generate the semigroup

Y = {t ∈ W>6
sf (n) | for all i ∈ Q′, it ∈ Q′},

which is isomorphic to TQ′ and is contained inW>6
sf (n). Next, consider any t ∈ W>6

sf (n)\Y.
We have two cases:

19



1. 1t = n: Let Et = {i ∈ Q′ | it = n}. Since t 6∈ Y, Et 6= ∅. Suppose Et = {i1, . . . , ik},
for some 1 6 k 6 n − 2. Then there exists t′ ∈ Y such that, for all i 6∈ Et, it

′ = it.
Let s = bi1−1 · · · bik−1. Note that Ets = {n}, and, for all i 6∈ Et, i(t

′s) = (it′)s = it.
So t = t′s ∈ 〈G>6

sf (n)〉.

2. 1t 6= n: If 1t = 2, then t = c. Otherwise, 1t ∈ {3, . . . , n−1} ⊆ Q′, and we know from
the above case that there exists t′ ∈ G>6

sf (n) such that 2t′ = 1t. Then 1(ct′) = 1t,
and i(ct′) = (ic)t′ = n = it, for all i ∈ Q′. Hence t = ct′ ∈ 〈G>6

sf (n)〉.

Therefore 〈a1, a2, a3, b1, . . . , bn−2, c〉 = W>6
sf (n).

Theorem 3.17. For n > 4, let A′
n = (Q,Σ, δ, 1, {2}) be a DFA with alphabet Σ =

{a1, a3, b1, b2, c} if n = 4 or Σ = {a1, a2, a3, b1, . . . , bn−2, c} if n > 5, where each letter
defines a transformation as in Proposition 3.16. Then L′ = L(A′

n) is suffix-free with quo-
tient complexity κ(L′) = n and syntactic complexity σ(L′) = w>6

sf (n).

Proof. First we show that κ(L′) = n. From the initial state, we can reach state 2 by c and
state n by a1. From state 2 we can reach state i, 3 6 i 6 n− 1, by ai−1

1 . So all the states
in Q are reachable. The word c is accepted only by state 1. For 2 6 i 6 n − 1, the word
an−i
1 is accepted only by state i. State n is the empty state, which rejects all words. Thus

all the states in Q are distinct.

By Proposition 3.16, the syntactic semigroup of L′ is W>6
sf (n), and σ(L′) = w>6

sf (n).
Also L′ is suffix-free by Proposition 3.3.

Theorem 3.18. If L is a suffix-free regular language with κ(L) = 6, then σ(L) 6 w>6
sf (6) =

629 and this is a tight bound.

Proof. Note that |Bsf(6)| = 1169 and |W>6
sf (6)| = 629. Suppose {s1, . . . , s540} = Bsf(6) \

W>6
sf (6). For each i, we enumerated transformations in W>6

sf (6) using GAP and found
a unique ti ∈ W>6

sf (6) such that 〈ti, si〉 6⊆ Bsf(6). As in the proof of Theorem 3.14, for
each i, at most one transformation in {ti, si} can appear in the syntactic semigroup of L.
Then we can reduce the upper bound to 629. This bound is met by the language L′ in
Theorem 3.17; so it is tight.

We know that the upper bound on the syntactic complexity of suffix-free regular lan-
guages is achieved by the largest semigroup contained in Bsf(n). We conjecture that
W>6

sf (n) is such a semigroup also for n > 7.

Conjecture 3.19 (Suffix-Free Regular Languages). If L is a suffix-free regular language
with κ(L) = n > 7, then σ(L) 6 w>6

sf (n).
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3.3 Bifix-Free Regular Languages

Let L be a regular bifix-free language with κ(L) = n. From Sections 3.1 and 3.2 we have:

1. L has ε as a quotient, and this is the only final quotient;

2. L has ∅ as a quotient;

3. L as a quotient is uniquely reachable.

Let A be the quotient DFA of L, with Q as the set of states. We assume that 1 is the
initial state, n − 1 corresponds to the quotient ε, and n is the empty state. For n > 2,
consider the set

Bbf(n) = {t ∈ Bsf(n) | (n− 1)t = n}.

The following is an observation similar to Proposition 3.3.

Proposition 3.20. If L is a regular language with quotient complexity n and syntactic
semigroup TL, then the following hold:

1. If L is bifix-free, then TL is a subset of Bbf(n).

2. If ε is the only final quotient of L, and TL ⊆ Bbf(n), then L is bifix-free.

Proof. 1. Since L is suffix-free, TL ⊆ Bsf(n). Since L is also prefix-free, it has ε and ∅ as
quotients. By assumption, n− 1 ∈ Q corresponds to the quotient ε. Thus for any t ∈ TL,
(n− 1)t = n, and so TL ⊆ Bbf(n).

2. Since ε is the only final quotient of L, L is prefix-free, and L has the empty quotient.
Since TL ⊆ Bbf(n) ⊆ Bsf(n), L is suffix-free by Proposition 3.3. Therefore L is bifix-
free.

Lemma 3.21. We have |Bbf(2)| = 1, and for n > 3, |Bbf(n)| = Mn +Nn, where

Mn =
n−2∑
k=1

Cn−3
k−1 (k − 1)!

∑
r2+···+rk+r
=n−k−2

Cn−k−2
r2,...,rk,r

(r + 1)r
k∏

j=2

S ′
rj+1(j − 1), (3.2)

Nn =
n−3∑
k=0

Cn−3
k k!

∑
r2+···+rk+r
=n−k−3

Cn−k−3
r2,...,rk,r

(r + 2)r
k∏

j=2

S ′
rj+1(j − 1). (3.3)
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Proof. It is easy to see that Bsf(2) = {[2, 2]}. Assume n > 3. Let t be any transformation
in Bbf(n). Suppose st(1) = 1, 1t, . . . , 1tk, n, where 0 6 k 6 n− 2. For 2 6 j 6 k, suppose
tree Tt(j) contains rj +1 nodes, for some rj > 0; then there are S ′

rj+1(j− 1) different trees
Tt(j). Let E be the set of elements of Q that are not in any tree Tt(j) nor in the principal
sequence st(1). Then there are two cases:

1. n− 1 ∈ st(1): Since (n− 1)t = n, we must have 1tk = n− 1, and k > 1. So there are
Cn−3

k−1 (k − 1)! different st(1). Let r = |E| = (n− k − 2)− (r2 + · · ·+ rk). Then there
are Cn−k−2

r2,...,rk,r
tuples (r2, . . . , rk, r). For any x ∈ E, its image xt can be chosen from

E ∪ {n}. Then the number of transformations t in this case is Mn.

2. n − 1 6∈ st(1): Then k 6 n − 3, and there are Cn−3
k k! different st(1). Note that

n−1 ∈ E, and (n−1)t = n is fixed. Let r = |E\{n−1}| = (n−k−3)−(r2+· · ·+rk).
Then there are Cn−k−3

r2,...,rk,r
tuples (r2, . . . , rk, r). For any x ∈ E \ {n − 1}, xt can be

chosen from E ∪ {n}. Thus the number of transformations t in this case is Nn.

Altogether we have the desired formula.

Let bbf(n) = |Bbf(n)|. From Proposition 3.20 and Lemma 3.21 we have

Proposition 3.22. For n > 2, if L is a bifix-free regular language with quotient complexity
n, then its syntactic complexity σ(L) satisfies σ(L) 6 bbf(n), where bbf(n) is the cardinality
of Bbf(n) as in Lemma 3.21.

When 2 6 n 6 4, the set Bbf(n) is a semigroup. But for n > 5, it is not a semi-
group because s1 = [2, 3, n, . . . , n, n], s2 = [n, 3, 3, n, . . . , n, n] ∈ Bbf(n) while s1s2 =
[3, 3, n, . . . , n, n] 6∈ Bbf(n). Hence bbf(n) is not a tight upper bound on the syntactic com-
plexity of bifix-free regular languages in general. We look for a large semigroup contained
in Bbf(n) that can be the syntactic semigroup of a bifix-free regular language. For n > 2,
let

W65
bf (n) = {t ∈ Bbf(n) | for all i, j ∈ Q where i 6= j,

we have it = jt = n or it 6= jt}.

(The reason for using the superscript 6 5 will be made clear in Theorem 3.27.)

Proposition 3.23. For n > 2, W65
bf (n) is a semigroup contained in Bbf(n) with cardinality

w65
bf (n) = |W65

bf (n)| =
n−2∑
k=0

(
Cn−2

k

)2
(n− 2− k)!
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Proof. First, note that W65
bf (n) = W65

sf (n) ∩ Bbf(n), and that W65
sf (n) is a semigroup

contained in Bsf(n) by Proposition 3.10. For any t1, t2 ∈ W65
bf (n), we have t1t2 ∈ W65

sf (n),
and (n − 1)t1t2 = nt2 = n; so t1t2 ∈ Bbf(n). Then t1t2 ∈ W65

bf (n), and W65
bf (n) is a

semigroup contained in Bbf(n).

Pick any t ∈ W65
bf (n). Note that (n − 1)t = n and nt = n are fixed, and 1 6∈ rng(t).

Let Q′ = Q \ {n− 1, n}, E = {i ∈ Q′ | it = n}, and D = Q′ \ E. Suppose |E| = k, where
0 ≤ k ≤ n − 2; then there are Cn−2

k choices of E. Elements of D are mapped to pairwise
different elements of Q \ {1, n}; then there are Cn−2

n−2−k(n− 2− k)! different mappings t|D.
Altogether, we have |W65

bf (n)| =
∑n−2

k=0

(
Cn−2

k

)2
(n− 2− k)!

Remark 3.24. Assume n > 3, and let Q′ = Q \ {n − 1, n}. Then the semigroup W65
bf (n)

is isomorphic to the symmetric inverse semigroup ISQ′ ; so w65
bf (n) = |ISQ′|. Janson and

Mazorchuk [26] showed that, for large n, the number w65
bf (n) is asymptotically

w65
bf (n) ∼

1√
2e

e2
√
n−2−n+2(n− 2)n−

7
4 .

Proposition 3.25. For n > 2, let Q′ = Q \ {n − 1, n} and Q′′ = Q \ {1, n}. Then the
semigroup W65

bf (n) is generated by

G65
bf (n) = {t ∈ W65

bf (n) | Q
′t = Q′′ and it 6= jt for all i, j ∈ Q′}.

Proof. The case for n = 2 is trivial since G65
bf (2) = W65

bf (2). Assume n > 3. We want to
show that W65

bf (n) = 〈G65
bf (n)〉. Since G65

bf (n) ⊆ W65
bf (n), we have 〈G65

bf (n)〉 ⊆ W65
bf (n).

Let t ∈ W65
bf (n). By definition, (n − 1)t = nt = n. Let Et = {i ∈ Q′ | it = n}. If

Et = ∅, then t ∈ G65
bf (n); otherwise, there exists x ∈ Q′′ such that x 6∈ rng(t). We prove

by induction on |Et| that t ∈ 〈G65
bf (n)〉.

First note that, for all t ∈ G65
bf (n), t|Q′ is an injective mapping from Q′ to Q′′. Consider

Et = {i} for some i ∈ Q′. Since |Et| = 1, rng(t)∪{x} = Q′′. Let t1, t2 ∈ G65
bf (n) be defined

by

1. jt1 = j + 1 for j = 1, . . . , i− 1, it1 = n− 1, jt1 = j for j = i+ 1, . . . , n− 2,

2. 1t2 = x, jt2 = (j − 1)t for j = 2, . . . , i, jt2 = jt for j = i+ 1, . . . , n− 2.

Then t1t2 = t, and t ∈ 〈G65
bf (n)〉.

Assume that any transformation t ∈ W65
bf (n) with |Et| < k can be generated byG65

bf (n),
where 1 < k < n−2. Consider t ∈ W65

bf (n) with |Et| = k. Suppose Et = {e1, . . . , ek−1, ek},
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and let Dt = Q′ \ Et = {d1, . . . , dl}, where l = n− 2− k. By assumption, all s ∈ W65
bf (n)

with |Es| = k−1 can be generated by G65
bf (n). Let s be such that Es = {1, . . . , k−1}; then

1s = · · · = (k − 1)s = n. In addition, let ks = x, and let (k + j)s = djt for j = 1, . . . , l.
Let t′ ∈ G65

bf (n) be such that ejt
′ = j for j = 1, . . . , k− 1, kt′ = n− 1, and djt

′ = k+ j for
j = 1, . . . , l. Then t′s = t, and t ∈ 〈G65

bf (n)〉. Therefore, W
65
bf (n) = 〈G65

bf (n)〉.

Theorem 3.26. For n > 2, let An = (Q,Σ, δ, 1, {n − 1}) be a DFA with alphabet Σ of
size (n − 2)!, where each a ∈ Σ defines a distinct transformation ta ∈ G65

bf (n). Then
L = L(An) has quotient complexity κ(L) = n, and syntactic complexity σ(L) = w65

bf (n).
Moreover, L is bifix-free.

Proof. The case for n = 2 is easy to verify. Assume n > 3. We first show that all the
states of An are reachable. Note that there exists a ∈ Σ such that ta = [2, . . . , n−1, n, n] ∈
G65

bf (n). State 1 ∈ Q is the initial state, and ai−1 reaches state i ∈ Q for i = 2, . . . , n.
Furthermore, for 1 ≤ i ≤ n − 1, state i accepts an−1−i, while for j 6= i, state j rejects it.
Also, n is the empty state. Thus all the states of An are distinct, and κ(L) = n.

By Proposition 3.25, the syntactic semigroup of L is W65
bf (n). So the syntactic com-

plexity of L is σ(L) = w65
bf (n). By Proposition 3.20, L is bifix-free.

Theorem 3.27. For 2 6 n 6 5, if a bifix-free regular language L has quotient complexity
κ(L) = n, then σ(L) 6 w65

bf (n), and this bound is tight.

Proof. We know by Proposition 3.20 that the upper bound on the syntactic complexity
of bifix-free regular languages is reached by the largest semigroup contained in Bbf(n).
Since w65

bf (n) = bbf(n) for n = 2, 3, and 4, w65
bf (n) is an upper bound, and it is tight by

Theorem 3.26.

For n = 5, we have bbf(5) = |Bbf(5)| = 41, and w65
bf (5) = |W65

bf (5)| = 34. Let
Bbf(5) \W65

bf (5) = {τ1, . . . , τ7}. We found for each τi a unique ti ∈ W65
bf (5) such that the

semigroup 〈τi, ti〉 is not a subset of Bbf(5):

τ1 = [2, 4, 4, 5, 5], t1 = [3, 4, 2, 5, 5];
τ2 = [3, 4, 4, 5, 5], t2 = [3, 5, 2, 5, 5];
τ3 = [4, 2, 2, 5, 5], t3 = [2, 4, 3, 5, 5];
τ4 = [4, 3, 3, 5, 5], t4 = [2, 5, 3, 5, 5];
τ5 = [5, 2, 2, 5, 5], t5 = [3, 2, 4, 5, 5];
τ6 = [5, 3, 3, 5, 5], t6 = [2, 3, 4, 5, 5];
τ7 = [5, 4, 4, 5, 5], t7 = [3, 2, 5, 5, 5].
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Since 〈τi, ti〉 ⊆ TL, if both τi and ti are in TL, then TL 6⊆ Bbf(5), and L is not bifix-free
by Proposition 3.20. Thus, for 1 6 i 6 7, at most one of τi and ti can appear in TL, and
|TL| 6 34. Since |W65

bf (5)| = 34 and W65
bf (5) is a semigroup, we have σ(L) 6 34 = w65

bf (5)
as the upper bound for n = 5. This bound is reached by the DFA A5 in Theorem 3.26.

When n > 6, the semigroup W65
bf (n) is no longer the largest semigroup contained in

Bbf(n), and the upper bound in Theorem 3.27 does not apply. We find another large
semigroup W>6

bf (n) suitable for bifix-free regular languages. For n > 3, let

U1
n = {t ∈ Bbf(n) | 1t = n},

U2
n = {t ∈ Bbf(n) | 1t = n− 1},

U3
n = {t ∈ Bbf(n) | 1t 6∈ {n, n− 1}, and it ∈ {n− 1, n} for all i 6= 1},

and let W>6
bf (n) = U1

n ∪U2
n ∪U3

n. Note that U3
3 = ∅.

Proposition 3.28. For n > 3, W>6
bf (n) is a semigroup contained in Bbf(n) with cardinality

w>6
bf (n) = |W>6

bf (n)| = (n− 1)n−3 + (n− 2)n−3 + (n− 3)2n−3.

Proof. First we show that U1
n is a semigroup. For any t1, t

′
1 ∈ U1

n, since 1(t1t
′
1) = (1t1)t

′
1 =

nt′1 = n, we have t1t
′
1 ∈ U1

n. Next, let t2 ∈ U2
n and t ∈ U1

n ∪U2
n. If t ∈ U1

n, then 1(t2t) =
(n− 1)t = n and 1(tt2) = nt2 = n; so t2t, tt2 ∈ U1

n. If t ∈ U2
n, then 1(t2t) = (n− 1)t = n

and 1(tt2) = (n− 1)t2 = n; so t2t, tt2 ∈ U1
n as well. Thus U1

n∪U2
n is also a semigroup. For

any t3 ∈ U3
n and t′ ∈ W>6

bf (n), since it3 ∈ {n−1, n} for all i 6= 1, and (n−1)t′ = nt′ = n, we
have i(t3t

′) = n, and t3t
′ ∈ W>6

bf (n). Also 1(t′t3) = (1t′)t3 ∈ {n− 1, n}, so t′t3 ∈ U1
n ∪U2

n.
Hence W>6

bf (n) is a semigroup contained in Bbf(n).

Note that U1
n, U

2
n, and U3

n are pairwise disjoint. For any t ∈ W>6
bf (n), there are three

cases:

1. t ∈ U1
n: For any i 6∈ {1, n − 1, n}, it can be chosen from Q \ {1}. Then |U1

n| =
(n− 1)n−3;

2. t ∈ U2
n: For any i 6∈ {1, n − 1, n}, it can be chosen from Q \ {1, n − 1}. Then

|U2
n| = (n− 2)n−3;

3. t ∈ U3
n: Now, 1t can be chosen from Q \ {1, n − 1, n}. For any i 6∈ {1, n − 1, n}, it

has two choices: it = n− 1 or n. Then |U3
n| = (n− 3)2n−3.

Therefore we have |W>6
bf (n)| = (n− 1)n−3 + (n− 2)n−3 + (n− 3)2n−3.
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Table 3.3 on p. 33 contains values of w65
bf (n) and w>6

bf (n) for small n’s. When n ∈ {3, 4},
we have W>6

bf (n) = W65
bf (n), and these cases were already discussed. So we are only

interested in larger values of n. When n > 6, one verifies that w>6
bf (n) > w65

bf (n); hence
W>6

bf (n) is larger than W65
bf (n).

Proposition 3.29. For n > 5, the semigroup W>6
bf (n) is generated by

G>6
bf (n) = {a1, a2, a3, b1, . . . , bn−3, c1, . . . , cm, d1, . . . , dl},

where m = (n− 2)n−3 − 1 and l = (n− 3)(2n−3 − 1), and

• a1 =
(
1
n

)(
n−1
n

)
(2, . . . , n− 2), a2 =

(
1
n

)(
n−1
n

)
(2, 3), a3 =

(
1
n

)(
n−1
n

)(
n−2
2

)
;

• For 1 6 i 6 n− 3, bi =
(
1
n

)(
n−1
n

)(
i+1
n−1

)
;

• Each ci defines a distinct transformation in U2
n other than [n− 1, n, . . . , n, n];

• Each di defines a distinct transformation in U3
n other than [j, n, . . . , n, n] for all

j ∈ {2, . . . , n− 2}.

For n = 5, a1 and a2 coincide, and 18 transformations suffice.

Proof. Since G>6
bf (n) ⊆ W>6

bf (n), we have 〈G>6
bf (n)〉 ⊆ W>6

bf (n). It remains to be shown
that W>6

bf (n) ⊆ 〈G>6
bf (n)〉. Let Q′ = Q \ {1, n− 1, n}.

1. First consider U1
n. By Theorem 2.1, a1, a2 and a3 together generate the semigroup

Y′ = {t ∈ U1
n | for all i ∈ Q′, it ∈ Q′},

which is contained in U1
n. For any t ∈ U1

n \Y′, let Et = {i ∈ Q | it = n − 1}; then
Et 6= ∅. Suppose Et = {i1, . . . , ik}, where 1 6 k 6 n − 3. Then there exists t′ ∈ Y′

such that, for all i 6∈ Et, it
′ = it. Let s = bi1−1 · · · bik−1. Note that Ets = {n − 1},

and, for all i 6∈ Et, i(t
′s) = (it′)s = it. So t′s = t, and 〈a1, a2, a3, b1, . . . , bn−3〉 = U1

n.

2. Next, the transformations that are inU2
n∪U3

n but not inG>6
bf (n) are ti = [i, n, . . . , n, n],

where 2 6 i 6 n − 1. Note that d =
(
1
2

)(
n−1
n

)(
Q′

n−1

)
∈ G>6

bf (n), and, for each

i ∈ {2, . . . , n − 1}, si =
(
1
n

)(
n−1
n

)(
2
i

)
∈ U1

n. Then ti = dsi ∈ 〈G>6
bf (n)〉, and

U2
n ∪U3

n ⊆ 〈G>6
bf (n)〉.

Therefore W>6
bf (n) = 〈G>6

bf (n)〉.
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Theorem 3.30. For n > 5, let A′
n = (Q,Σ, δ, 1, {n− 1}) be a DFA with alphabet Σ of size

18 if n = 5 or (n−2)n−3+(n−3)2n−3+2 if n > 6, where each letter defines a transformation
as in Proposition 3.29. Then L′ = L(A′

n) has quotient complexity κ(L′) = n, and syntactic
complexity σ(L′) = w>6

bf (n). Moreover, L′ is bifix-free.

Proof. First, for all i ∈ Q \ {1}, there exists a ∈ Σ such that ta = [i, n, . . . , n, n] ∈ G>6
bf (n),

and state i is reachable by a. So all the states in Q are reachable. Next, there exist b, c ∈ Σ
such that tb = [n−1, n, . . . , n, n] ∈ G>6

bf (n) and tc = [n, 3, 4, . . . , n−1, n, n] ∈ G>6
bf (n). The

initial state accepts b, while all other states reject it. For 2 6 i 6 n − 2, state i accepts
cn−i−1, while all other states reject it. Also, state n− 1 is the only final state, and state n
is the empty state. Then all the states in Q are distinct, and κ(L′) = n.

By Proposition 3.29, the syntactic semigroup of L′ is W>6
bf (n); so σ(L′) = w>6

bf (n). By
Proposition 3.20, L′ is bifix-free.

Theorem 3.31. If L is a bifix-free regular language with κ(L) = 6, then σ(L) 6 w>6
bf (6) =

213 and this is a tight bound.

Proof. Since |Bbf(6)| = 339 and |W65
bf (6)| = 213, there are 126 transformations τ1, . . . , τ126

in Bbf(6) \ W65
bf (6). For each τi, we enumerated transformations in W>6

bf (6) using GAP
and found a unique ti ∈ W65

bf (6) such that 〈ti, τi〉 6⊆ Bbf(6). Thus, for each i, at most
one of ti and τi can appear in the syntactic semigroup TL of L. So we lower the bound to
σ(L) 6 213. This bound is reached by the DFA A′

6 in Theorem 3.30; so it is a tight upper
bound for n = 6.

Conjecture 3.32 (Bifix-Free Regular Languages). If L is a bifix-free regular language with
κ(L) = n > 7, then σ(L) 6 w>6

bf (n).

3.4 Factor-Free Regular Languages

Let L be a factor-free regular language with κ(L) = n. Since factor-free regular languages
are also bifix-free, L as a quotient is uniquely reachable, ε is the only final quotient of L,
and L also has the empty quotient. As in Section 3.3, we assume that Q is the set of states
of quotient DFA of L, in which 1 is the initial state, and states n− 1 and n correspond to
the quotients ε and ∅, respectively. For n > 2, let

Bff(n) = {t ∈ Bbf(n) | for all j > 1, 1tj = n− 1 ⇒ itj = n ∀ i, 1 < i < n− 1}.

We first have the following observation:
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Proposition 3.33. If L is a regular language with quotient complexity n and syntactic
semigroup TL, then the following hold:

1. If L is factor-free, then TL is a subset of Bff(n).

2. If ε is the only final quotient of L, and TL ⊆ Bff(n), then L is factor-free.

Proof. 1. Assume L is factor-free. Then L is bifix-free, and TL ⊆ Bbf(n) by Proposi-
tion 3.20. For any transformation tw ∈ TL performed by some non-empty word w, if
1tjw = n − 1 for some j > 1, then wj ∈ L. If we also have itjw 6= n for some i ∈ Q \ {1},
then i 6∈ {n − 1, n} as (n − 1)t = nt = n for all t ∈ Bff(n). Thus there exist non-empty
words u and v such that state i is reachable by u, and state itjw accepts v. So uwjv ∈ L,
which is a contradiction. Hence TL ⊆ Bff(n).

2. Since ε is the only final state and Bff(n) ⊆ Bbf(n), L is bifix-free by Proposition 3.20.
If L is not factor-free, then there exist non-empty words u, v and w such that w, uwv ∈ L.
Thus 1tw = n−1, and 1tuwv = 1(tutwtv) = n−1. Since L is bifix-free, 1tu 6= 1 and ntv = n;
thus (1tu)tw 6= n, which contradicts the assumption that tw ∈ TL ⊆ Bff(n). Therefore L is
factor-free.

The properties of suffix- and bifix-free regular languages still apply to factor-free regular
languages. Moreover, we have

Lemma 3.34. For all t ∈ Bff(n) and i 6∈ st(1), if n− 1 ∈ st(1), then n ∈ st(i).

Proof. Suppose n− 1 = 1tk ∈ st(1) for some k > 1. If n 6∈ st(i), then for all j > 1, itj 6= n.
In particular, itk 6= n, which contradicts the definition of Bff(n). Therefore n ∈ st(i).

Lemma 3.35. We have |Bff(2)| = 1, and for n > 3, |Bff(n)| = Nn +On, where

On = 1 +
n−2∑
k=2

Cn−3
k−1 (k − 1)!

∑
r2+···+rk+r
=n−k−2

Cn−k−2
r2,...,rk,r

S ′
r+1(k)

k∏
j=2

S ′
rj+1(j − 1),

and Nn as given in Equation (3.3).

Proof. First we have Bff(2) = {[2, 2]} and |Bff(2)| = 1. Assume n > 3. Let t ∈ Bff(n) be
any transformation. Suppose st(1) = 1, 1t, . . . , 1tk, n, where 0 6 k 6 n − 2. Then there
are two cases:
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1. n − 1 ∈ st(1). Since (n − 1)t = n, we have n − 1 = 1tk, and k > 1. If k = 1, then
1t = n − 1, and it = n for all i 6= 1; such a t is unique. Consider k > 2. There are
Cn−3

k−1 (k − 1)! different st(1). For 2 6 j 6 k, suppose there are rj + 1 nodes in tree
Tt(j); then there are S ′

rj+1(j − 1) such trees. Let E be the set of elements x that are
not in any tree Tt(j) nor in st(1), and let r = |E| = (n− k− 2)− (r2 + · · ·+ rk). By
Lemma 3.34, n ∈ st(x) for all x ∈ E. Then the union of paths Pt(x) for all x ∈ E
form a labeled tree rooted at n with height at most k, and there are S ′

r+1(k) such
trees. Thus the number of transformations in this case is On.

2. n − 1 6∈ st(1). Now, for all j > 1, 1tj 6= n − 1. Then t ∈ Bbf(n). As in the proof of
Lemma 3.21, the number of transformations in this case is Nn.

Altogether we have the desired formula.

Let bff(n) = |Bff(n)|. From Proposition 3.33 and Lemma 3.35 we have

Proposition 3.36. For n > 2, if L is a factor-free regular language with quotient com-
plexity n, then its syntactic complexity σ(L) satisfies σ(L) 6 bff(n), where bff(n) is the
cardinality of Bff(n) as in Lemma 3.35.

The tight upper bound on the syntactic complexity of factor-free regular languages
is reached by the largest semigroup contained in Bff(n). When 2 6 n 6 4, Bff(n) is a
semigroup. The languages L2 = ε, L3 = a over alphabet {a, b}, and L4 = ab∗a have
syntactic complexities 1 = bff(2), 2 = bff(3), and 6 = bff(4), respectively. So bff(n) is a
tight upper bound for n ∈ {2, 3, 4}. However, the set Bff(n) is not a semigroup for n > 5,
because s1 = [2, 3, . . . , n−1, n, n], s2 =

(
n−1
n

)(
2

n−1

)(
1
n

)
= [n, n−1, 3, . . . , n−2, n, n] ∈ Bff(n)

but s1s2 = [n− 1, 3, . . . , n− 2, n, n, n] 6∈ Bff(n).

Next, we find a large semigroup that can be the syntactic semigroup of a factor-free
regular language. For n > 3, let t0 =

(
Q\{1}

n

)(
1

n−1

)
= [n − 1, n, . . . , n], and let Wff(n) =

U1
n ∪ {t0} ∪U3

n.

Proposition 3.37. For n > 3, Wff(n) is a semigroup contained in Bff(n) with cardinality

wff(n) = |Wff(n)| = (n− 1)n−3 + (n− 3)2n−3 + 1.

Proof. As we have shown in the proof of Proposition 3.28, U1
n is a semigroup. For any

t ∈ U1
n ∪ {t0}, since t0 ∈ U2

n, we have tt0, t0t ∈ U1
n; so U1

n ∪ {t0} is also a semigroup. We
also know that, for any t3 ∈ U3

n and t′ ∈ Wff(n), since Wff(n) ⊆ W>6
bf (n), i(t3t

′) = n for
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all i 6= 1; so t3t
′ ∈ Wff(n). If t′ ∈ U1

n ∪ {t0}, then 1t′t3 = n and t′t3 ∈ U1
n; otherwise,

t′ ∈ U3
n, and t′t3 = t2 or

(
Q
n

)
∈ U1

n. Hence Wff(n) is a semigroup.

For any t ∈ U1
n, since 1t = n, we have t ∈ Bff(n). For any t ∈ U3

n, 1t 6= n − 1, and
it2 = n for all i ∈ {2, . . . , n}; then t ∈ Bff(n) as well. Clearly t0 ∈ Bff(n). Hence Wff(n) is
contained in Bff(n).

We know that |U1
n| = (n − 1)n−3 and |U3

n| = (n − 3)2n−3. Therefore |Wff(n)| =
(n− 1)n−3 + (n− 3)2n−3 + 1.

For n ∈ {3, 4}, we have Wff(n) = Bff(n). So we are interested in larger values of n in
the rest of this section.

Proposition 3.38. For n > 5, the semigroup Wff(n) is generated by

Gff(n) = {a1, a2, a3, b1, . . . , bn−3, c1, . . . , cm},

where m = (n− 3)(2n−3 − 1), and

• a1 =
(
1
n

)(
n−1
n

)
(2, . . . , n− 2), a2 =

(
1
n

)(
n−1
n

)
(2, 3), a3 =

(
1
n

)(
n−1
n

)(
n−2
2

)
;

• For 1 6 i 6 n− 3, bi =
(
1
n

)(
n−1
n

)(
i+1
n−1

)
;

• Each ci defines a distinct transformation in U3
n other than [j, n, . . . , n, n] for all

j ∈ {2, . . . , n− 2}.

For n = 5, a1 and a2 coincide, and 10 transformations suffice.

Proof. We know that U1
n is generated by {a1, a2, a3, b1, . . . , bn−3}, by the proof of Proposi-

tion 3.29. Also, the transformations that are in {t0} ∪ U3
n but not in Gff(n) are tj =

[j, n, . . . , n, n], where j ∈ {2, . . . , n − 1}. Let Q′ = Q \ {1, n − 1, n}. Each tj is a

composition of d =
(
n−1
n

)(
Q′

n−1

)(
1
2

)
∈ G>6

bf (n) and sj =
(
1
n

)(
n−1
n

)(
2
j

)
∈ U1

n. Therefore

〈Gff(n)〉 = Wff(n).

Theorem 3.39. For n > 5, let An = (Q,Σ, δ, 1, {n − 1}) be a DFA with alphabet Σ of
size 10 if n = 5 or (n − 3)2n−3 + 3 if n > 6, where each letter defines a transformation
as in Proposition 3.38. Then L = L(An) has quotient complexity κ(L) = n, and syntactic
complexity σ(L) = wff(n). Moreover, L is factor-free.
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Proof. Since Gff(n) ⊆ G>6
bf (n), the DFA An can be obtained from the DFA A′

n of Theo-
rem 3.30 by restricting the alphabet. The words used to show that all the states of A′

n

are reachable and distinct still exist in An. Then we have κ(L) = n. By Proposition 3.38,
the syntactic semigroup of L is Wff(n); so σ(L) = wff(n). By Proposition 3.33, L is
factor-free.

Theorem 3.40. For n ∈ {5, 6}, if L is a factor-free regular language with κ(L) = n, then
σ(L) 6 wff(n) and this is a tight upper bound.

Proof. For n = 5, |Bff(5)| = 31, and |Wff(5)| = 25. There are 6 transformations τ1, . . . , τ6
in Bff(5) \ Wff(5). For each τi, 1 6 i 6 6, we found a unique ti ∈ Wff(5) such that
〈ti, τi〉 6⊆ Bff(5):

τ1 = [2, 3, 4, 5, 5], t1 = [5, 2, 2, 5, 5],
τ2 = [2, 3, 5, 5, 5], t2 = [5, 4, 2, 5, 5],
τ3 = [2, 5, 3, 5, 5], t3 = [5, 3, 3, 5, 5],
τ4 = [3, 2, 5, 5, 5], t4 = [5, 2, 4, 5, 5],
τ5 = [3, 4, 2, 5, 5], t5 = [5, 3, 2, 5, 5],
τ6 = [3, 5, 2, 5, 5], t6 = [5, 3, 4, 5, 5].

For each 1 6 i 6 6, at most one of ti and τi can appear in the syntactic semigroup TL

of a factor-free regular language L. Then σ(L) = |TL| 6 25. By Theorem 3.39, this upper
bound is tight for n = 5.

For n = 6, |Bff(6)| = 246, and |Wff(6)| = 150. There are 96 transformations τ1, . . . , τ96
in Bff(6) \Wff(6). For each τi, 1 6 i 6 96, we enumerated the transformations in Wff(6)
using GAP and found a unique ti ∈ Wff(6) such that 〈ti, τi〉 6⊆ Bff(6). Thus 150 is a tight
upper bound for n = 6.

Conjecture 3.41 (Factor-Free Regular Languages). If L is a factor-free regular language
with κ(L) = n, where n > 7, then σ(L) 6 wff(n).

3.5 Summary

We summarize our results on suffix-, bifix-, and factor-free regular languages in Tables 3.2
and 3.3. The upper bound of prefix-free regular languages is also included. Each cell of
Table 3.2 shows the syntactic complexity bounds of prefix- and suffix-free regular languages,
in that order, with a particular alphabet size. Table 3.3 is structured similarly for bifix- and
factor-free regular languages. The figures in bold type are tight bounds verified by GAP. To
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Table 3.2: Syntactic complexities of prefix- and suffix-free regular languages.

n = 2 n = 3 n = 4 n = 5 n = 6

|Σ| = 1 1 2 3 4 5
|Σ| = 2 ∗ 3/3 11/11 49/49 ?
|Σ| = 3 ∗ ∗ 14/13 95/61 ?
|Σ| = 4 ∗ ∗ 16/∗ 110/67 ?
|Σ| = 5 ∗ ∗ ∗ 119/73 ?
|Σ| = 6 ∗ ∗ ∗ 125/ ∗ ? /501
|Σ| = 7 ∗ ∗ ∗ ∗ 1296/ ?
|Σ| = 8 ∗ ∗ ∗ ∗ ∗ /629
· · ·
nn−2 1 3 16 125 1296

w65
sf (n) 1 3 13 73 501

w>6
sf (n) 1 3 11 67 629
bsf(n) 1 3 15 115 1169

compute the bounds for suffix-, bifix-, and factor-free languages, we enumerated semigroups
generated by elements of Bsf(n), Bbf(n), and Bff(n) that are contained in Bsf(n), Bbf(n),
and Bff(n), respectively, and recorded the largest ones. By Propositions 3.3, 3.20, 3.33,
we obtained the desired bounds from the enumeration. The asterisk ∗ indicates that the
bound is already tight for a smaller alphabet. In Table 3.2, the last four rows include the
tight upper bound nn−2 for prefix-free languages, w65

sf (n), which is a tight upper bound
for 2 6 n 6 5 for suffix-free languages, conjectured upper bound w>6

sf (n) for suffix-free
languages, and a weaker upper bound bsf(n) for suffix-free languages. In Table 3.3, the
last four rows include w65

bf (n), which is a tight upper bound for bifix-free languages for
2 6 n 6 5, conjectured upper bounds w>6

bf (n) for bifix-free languages and wff(n) for factor-
free languages, and weaker upper bounds bbf(n) for bifix-free languages and bff(n) for
factor-free languages.
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Table 3.3: Syntactic complexities of bifix- and factor-free regular languages.

n = 2 n = 3 n = 4 n = 5 n = 6

|Σ| = 1 1 2 3 4 5
|Σ| = 2 ∗ ∗ 7/6 20/12 ?
|Σ| = 3 ∗ ∗ ∗ 31/16 ?
|Σ| = 4 ∗ ∗ ∗ 32/19 ?
|Σ| = 5 ∗ ∗ ∗ 33/20 ?
|Σ| = 6 ∗ ∗ ∗ 34/ ? ?
· · ·

w65
bf (n) 1 2 7 34 209

w>6
bf (n) 1 2 7 33 213
wff(n) 1 2 6 25 150

bbf(n)/bff(n) 1/1 2/2 7/6 41/31 339/246
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Chapter 4

Syntactic Complexity of Star-Free
Languages

Recall that regular languages can be defined as the smallest class containing the finite
languages and closed under union, concatenation, and star operations. Star-free languages
are the smallest class containing the finite languages and closed under boolean operations
(union, intersection, and complementation) and concatenation. An equivalent condition
is that a language is star-free is and only if its minimal DFA can perform only aperiodic
transformations [32]. Such DFA’s are called aperiodic. In Section 4.1, we obtain a weak
upper bound on the syntactic complexity of star-free languages by studying aperiodic
transformations, and we discuss some small cases. In Section 4.2, we study three subclasses
of star-free languages: monotonic, partially monotonic, and nearly monotonic languages,
and we show tight upper bounds on their syntactic complexities. We summarize our results
about star-free languages in Section 4.3.

4.1 Aperiodic Transformations

A transformation is aperiodic if it contains no cycles of length greater than 1. A semigroup
T of transformations is aperiodic if and only if it contains only aperiodic transformations.
Thus a language L with quotient DFA A is star-free if and only if every transformation in
TA is aperiodic.

Let An be the set of all aperiodic transformations of Q. Each aperiodic transformation
can be characterized by a forest of labeled rooted trees as follows. Consider, for example,
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Figure 4.1: Forests and transformations.

the forest of Figure 4.1 (a), where the roots are at the bottom. Convert this forest into
a directed graph by adding a direction from each child to its parent and a self-loop to
each root, as shown in Figure 4.1 (b). This directed graph defines the transformation
[1, 4, 4, 5, 5, 7, 7] and such a transformation is aperiodic since the directed graph has no
cycles of length greater than one. Thus there is a one-to-one correspondence between
aperiodic transformations of a set of n elements and forests with n nodes.

Proposition 4.1. There are (n + 1)n−1 aperiodic transformations of a set of n > 1 ele-
ments.

Proof. By Cayley’s theorem [14, 45], there are (n+1)n−1 labeled unrooted trees with n+1
nodes. If we fix one node, say node n + 1, in each of these trees to be the root, then we
have (n + 1)n−1 labeled trees rooted at n + 1. Let T be any one of these trees, and let
v1, . . . , vm be the parents of n+1 in T . By removing the root n+1 from each such rooted
tree, we get a labeled forest F with n nodes formed by m rooted trees, where v1, . . . , vm
are the roots. The forest F is unique since T is a unique tree rooted at n + 1. Then we
get a unique aperiodic transformation of {1, . . . , n} by adding self-loops on v1, . . . , vm.

All labeled directed forests with n nodes can be obtained uniquely from some rooted
tree with n+1 nodes by deleting the root. Hence there are (n+1)n−1 labeled forests with
n nodes, and that many aperiodic transformations of Q.

Since the quotient DFA of a star-free language can perform only aperiodic transforma-
tions, we have

Corollary 4.2. For n > 1, the syntactic complexity σ(L) of a star-free language L with n
quotients satisfies σ(L) 6 (n+ 1)n−1.

The bound of Corollary 4.2 is our first upper bound on the syntactic complexity of
a star-free language with n quotients, but this bound is not tight in general because the
set An is not a semigroup for n > 3. For example, if a = [1, 3, 1] and b = [2, 2, 1], then

35



322

113 122 323 121

313 112 233 221

223

131

133

Figure 4.2: Conflict graph for n = 3.

ab = [2, 1, 2], which contains the cycle (1, 2). Hence our task is to find the size of the largest
semigroup contained in An.

First, let us consider small values of n:

1. If n = 1, the only two languages, ∅ and Σ∗, are both star-free, since Σ∗ = ∅. Here
σ(L) = 1, for both languages, the bound 20 = 1 of Corollary 4.2 holds and it is tight.

2. If n = 2, |A2| = 3. The only unary languages are ε and ε = aa∗, and σ(L) = 1 for
both. For Σ = {a, b}, one verifies that σ(L) 6 2, and Σ∗aΣ∗ meets this bound. If
Σ = {a, b, c}, then L = Σ∗aΣ∗bΣ∗ has σ(L) = 3.

In summary, for n = 1 and 2, the bound of Corollary 4.2 is tight for |Σ| = 1 and |Σ| = 3,
respectively.

We say that two aperiodic transformations a and b conflict if ab or ba contains a cycle;
then (a, b) is called a conflicting pair. When n = 3, |A3| = 42 = 16. The transformations
a0 = [1, 2, 3], a1 = [1, 1, 1], a2 = [2, 2, 2], a3 = [3, 3, 3] cannot create any conflict. Hence we
consider only the remaining 12 transformations.

Let b1 = [1, 1, 3], b2 = [1, 2, 1], b3 = [1, 2, 2], b4 = [1, 3, 3], b5 = [2, 2, 3], and b6 = [3, 2, 3].
Each of them has only one conflict. There are also two conflicting triples (b1, b3, b6) and
(b2, b4, b5), since b1b3b6 and b2b4b5 both contains a cycle. Figure 4.2 shows the conflict graph
of these 12 transformations, where normal lines indicate conflicting pairs, and dotted lines
indicate conflicting triples. To save space we use three digits to represent each transfor-
mation, for example, 112 stands for the transformation [1, 1, 2], and (112)(113) = 111. We
can choose at most two inputs from each triple and at most one from each conflicting pair.
So there are at most 6 conflict-free transformations from the 12, for example, b1, b3, b4,
b5, c1 = [1, 1, 2], c2 = [2, 3, 3]. Adding a0, a1, a2 and a3, we get a total of at most 10. The
inputs a0, b4, b5, c1 are conflict-free and generate precisely these 10 transformations. Hence
σ(L) 6 10 for any star-free language L with κ(L) = n = 3, and this bound is tight.
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4.2 Monotonicity in Transformations, Automata and

Languages

We now study syntactic semigroups of languages accepted by monotonic and related au-
tomata.

4.2.1 Monotonic Transformations, DFA’s and Languages

We have shown that the tight upper bound for n = 3 is 10, and it turns out that this
bound is met by a monotonic language (defined below). This provides one reason to
study monotonic automata and languages. A second reason is the fact that all the tight
upper bounds on the quotient complexity of operations on star-free languages are met by
monotonic languages [7].

A transformation t of Q is monotonic if there exists a total order 6 on Q such that,
for all p, q ∈ Q, p 6 q implies pt 6 qt. From now on we assume that 6 is the usual order
on integers, and that p < q means that p 6 q and p 6= q.

Let MQ be the set of all monotonic transformations of Q. In the following, we restate
slightly the result of Gomes and Howie [19, 24] for our purposes, since the work in [19]
does not consider the identity transformation to be monotonic.

Theorem 4.3 (Gomes and Howie). When n > 1, the set MQ is an aperiodic semigroup of
cardinality

|MQ| = f(n) =
n∑

k=1

Cn−1
k−1C

n
k = C2n−1

n ,

and it is generated by the set H = {a, b1, . . . , bn−1, c}, where, for 1 6 i 6 n− 1,

1. 1a = 1, ja = j − 1 for 2 6 j 6 n;

2. ibi = i+ 1, and jbi = j for all j 6= i;

3. 3pt c is the identity transformation.

Moreover, for n = 1, a and c coincide and the cardinality of the generating set cannot
be reduced for n > 2.

Remark 4.4. By Stirling’s approximation, f(n) = |MQ| grows asymptotically like 4n/
√
πn

as n → ∞.
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Example 4.5. For n = 1 there is only one transformation a = c = [1] and it is monotonic.
For n = 2, the three generators are a = [1, 1], b1 = [2, 2] and c = [1, 2], and MQ consists
of these three transformations. For n = 3, the four generators a = [1, 1, 2], b1 = [2, 2, 3],
b2 = [1, 3, 3], and c = [1, 2, 3] generate all ten monotonic transformations. �

Now we turn to DFA’s whose inputs perform monotonic transformations. A DFA
is monotonic [1] if all transformations in its transition semigroup are monotonic with
respect to some fixed total order. Every monotonic DFA is aperiodic because monotonic
transformations are aperiodic. A regular language is monotonic if its quotient DFA is
monotonic.

Let us now define a DFA having as inputs the generators of MQ:

Definition 4.6. For n > 1, let An = (Q,Σ, δ, 1, {1}) be the DFA in which Q = {1, . . . , n},
Σ = {a, b1, . . . , bn−1, c}, and each letter in Σ performs the transformation defined in Theo-
rem 4.3.

DFA An is minimal, since state 1 is the only accepting state, and for 2 6 i 6 n only
state i accepts ai−1. From Theorem 4.3 we have

Corollary 4.7. For n > 1, the syntactic complexity σ(L) of any monotonic language
L with n quotients satisfies σ(L) 6 f(n) = C2n−1

n . Moreover, this bound is met by the
language L(An) of Definition 4.6, and, when n > 2, it cannot be met by any monotonic
language over an alphabet having fewer than n+ 1 letters.

4.2.2 Monotonic Partial Transformations and IDFA’s

As we shall see, for n > 4 the maximal syntactic complexity cannot be reached by mono-
tonic languages; hence we continue our search for larger semigroups of aperiodic transfor-
mations. In this subsection, we extend the concept of monotonicity from full transforma-
tions to partial transformations, and hence define a new subclass of star-free languages.
The upper bound of syntactic complexity of languages in this subclass is above that of
monotonic languages for n > 4.

A partial transformation t of Q is monotonic if there exists a total order 6 on Q such
that, for all p, q ∈ dom(t), p 6 q implies pt 6 qt. As before, we assume that the total
order on Q is the usual order on integers. Let PMQ be the set of all monotonic partial
transformations of Q with respect to such an order. Gomes and Howie [19] showed the
following result, again restated slightly:
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Figure 4.3: Partially monotonic automata: (a) IDFA; (b) DFA.

Theorem 4.8 (Gomes and Howie). When n > 1, the set PMQ is an aperiodic semigroup
of cardinality

|PMQ| = g(n) =
n∑

k=0

Cn
kC

n+k−1
k ,

and it is generated by the set I = {a, b1, . . . , bn−1, c1, . . . , cn−1, d}, where, for 1 6 i 6 n− 1,

1. 1a = �, and ja = j − 1 for j = 2, . . . , n;

2. ibi = i+ 1, (i+ 1)bi = �, and jbi = j for j = 1, . . . , i− 1, i+ 2, . . . , n;

3. ici = i+ 1, and jci = j for all j 6= i;

4. d is the identity transformation.

Moreover, the cardinality of the generating set cannot be reduced.

Example 4.9. For n = 1, the two monotonic partial transformations are a = [�], and
d = [1]. For n = 2, the eight monotonic partial transformations are generated by a = [�, 1],
b1 = [2,�], c1 = [2, 2], and d = [1, 2]. For n = 3, the 38 monotonic partial transformations
are generated by a = [�, 1, 2], b1 = [2,�, 3], b2 = [1, 3,�], c1 = [2, 2, 3], c2 = [1, 3, 3] and
d = [1, 2, 3].

Partial transformations correspond to IDFA’s. For example, a = [�, 1], b = [2,�] and
c = [2, 2] correspond to the transitions of the IDFA of Figure 4.3 (a). �

Laradji and Umar [30] proved the following asymptotic approximation:

Remark 4.10. For large n, g(n) = |PMQ| ∼ 2−3/4(
√
2 + 1)2n+1/

√
πn.
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Figure 4.4: Partially monotonic DFA that is monotonic and has an empty state.

An IDFA is monotonic if all partial transformations in its transition semigroup are
monotonic with respect to some fixed total order. A quotient DFA is partially monotonic
if its corresponding quotient IDFA is monotonic. A regular language is partially monotonic
if its quotient DFA is partially monotonic. Note that monotonic languages are also partially
monotonic.

Example 4.11. If we complete the transformations in Figure 4.3 (a) by replacing the un-
defined entry � by a new empty (or “sink”) state 3, as usual, we obtain the DFA of
Figure 4.3 (b). That DFA is not monotonic, because 1 < 2 implies 2 < 3 under input b
and 3 < 2 under ab. A contradiction is also obtained if we assume that 2 < 1. However,
this DFA is partially monotonic, since its corresponding IDFA, shown in Figure 4.3 (a), is
monotonic.

The DFA of Figure 4.4 is monotonic for the order shown. It has an empty state, and
is also partially monotonic for the same order. �

Consider any partially monotonic language L with quotient complexity n. If its quotient
DFA A does not have the empty quotient, then L is monotonic; otherwise, its quotient
IDFA I has n − 1 states, and the transition semigroup of I is a subset of PMQ′ , where
Q′ = {1, . . . , n − 1}. Hence we consider the following semigroup CMQ of monotonic
completed transformations of Q. Start with the semigroup PMQ′ . Convert all t ∈ PMQ′ to
full transformations by adding n to dom(t) and letting it = n for all i ∈ Q \ dom(t). Such
a conversion provides a one-to-one correspondence between PMQ′ and CMQ. For n > 2,
let e(n) = g(n− 1). Then semigroups CMQ and PMQ′ are isomorphic, and e(n) = |CMQ|.

Definition 4.12. For n > 1, let Bn = (Q,Σ, δ, 1, {1}) be the DFA in which Q = {1, . . . , n},
Σ = {a, b1, . . . , bn−2, c1, . . . , cn−2, d}, and each letter in Σ defines a transformation such
that, for 1 6 i 6 n− 2,

1. 1a = na = n, and ja = j − 1 for j = 2, . . . , n− 1;

2. ibi = i+ 1, (i+ 1)bi = n, and jbi = j for j = 1, . . . , i− 1, i+ 2, . . . , n;
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3. ici = i+ 1, and jci = j for all j 6= i;

4. d is the identity transformation.

We know that monotonic languages are also partially monotonic. As shown in Table 4.1,
|MQ| = f(n) > e(n) = |CMQ| for n 6 3. On the other hand, one verifies that e(n) > f(n)
when n > 4. By Corollary 4.7 and Theorem 4.8, we have

Corollary 4.13. The syntactic complexity of a partially monotonic language L with n
quotients satisfies σ(L) 6 f(n) for n 6 3, and σ(L) 6 e(n) for n > 4. Moreover, when
n > 4, this bound is met by L(Bn) of Definition 4.12, and it cannot be met by any partially
monotonic language over an alphabet having fewer than 2n− 2 letters.

Table 4.1 contains these upper bounds for small values of n. By Remark 4.10, the upper
bound e(n) is asymptotically 2−3/4(

√
2 + 1)2n−1/

√
π(n− 1).

4.2.3 Nearly Monotonic Transformations and DFA’s

In this section we develop an even larger aperiodic semigroup based on partially monotonic
languages.

Let KQ be the set of all constant transformations of Q, and let NMQ = CMQ∪KQ. We
shall call the transformations in NMQ nearly monotonic with respect to the usual order
on integers.

Theorem 4.14. When n > 2, the set NMQ of all nearly monotonic transformations of a
set Q of n elements is an aperiodic semigroup of cardinality

|NMQ| = h(n) = e(n) + (n− 1) =
n−1∑
k=0

Cn−1
k Cn+k−2

k + (n− 1),

and it is generated by the set J = {a, b1, . . . , bn−2, c1, . . . , cn−2, d, e} of 2n− 1 transforma-
tions of Q, where e is the constant transformation

(
Q
1

)
, and all other transformations are

as in Definition 4.12. Moreover, the cardinality of the generating set cannot be reduced.

Proof. Pick any t1, t2 ∈ NMQ. If t1, t2 ∈ CMQ, then t1t2, t2t1 ∈ CMQ. Otherwise t1 ∈ KQ

or t2 ∈ KQ, and both t1t2, t2t1 are constant transformations. Hence t1t2, t2t1 ∈ NMQ and
NMQ is a semigroup. Since constant transformations are aperiodic and CMQ is aperiodic,
NMQ is also aperiodic.
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If X is a set of transformations, let 〈X〉 denote the semigroup generated by X. Since
J ⊆ NMQ, 〈J〉 ⊆ NMQ. Let I

′ = J \ {e}, and Q′ = Q \ {n}. Then PMQ′ ' CMQ = 〈I ′〉.
For any t =

(
Q
j

)
∈ KQ, where j ∈ Q, since sj =

(
Q
j

)(
n
n

)
∈ CMQ ⊆ 〈J〉, we have that

t = esj ∈ 〈J〉. So NMQ = 〈J〉. Note that
(
Q
i

)
∈ CMQ if and only if i = n. Thus

h(n) = |NMQ| = |PMQ′|+ (n− 1) = e(n) + (n− 1).

Since the cardinality of I ′ cannot be reduced, and e 6∈ 〈I ′〉, also the cardinality of J
cannot be reduced.

Example 4.15. For n = 2, the three nearly monotonic transformations are a = [2, 2],
d = [1, 2] and e = [1, 1]. For n = 3, the ten nearly monotonic transformations are generated
by a = [3, 1, 3], b1 = [2, 3, 3], c1 = [2, 2, 3], d = [1, 2, 3], and e = [1, 1, 1]. �

An input a ∈ Σ is constant if it performs a constant transformation of Q. Let A be
a DFA with alphabet Σ; then A is nearly monotonic if, after removing constant inputs,
the resulting DFA A′ is partially monotonic. A regular language is nearly monotonic if its
quotient DFA is nearly monotonic.

Definition 4.16. For n > 2, let Cn = (Q,Σ, δ, 1, {1}) be a DFA, where Q = {1, . . . , n},
Σ = {a, b1, . . . , bn−2, c1, . . . , cn−2, d, e}, and each letter in Σ performs the transformation
defined in Theorem 4.14 and Definition 4.12.

Theorem 4.14 now leads us to the following result:

Theorem 4.17. For n > 2, if L is a nearly monotonic language L with n quotients, then
σ(L) 6 h(n) =

∑n−1
k=0 C

n−1
k Cn+k−2

k + (n− 1). Moreover, this bound is met by the language
L(Cn) of Definition 4.16, and cannot be met by any nearly monotonic language over an
alphabet having fewer than 2n− 1 letters.

Proof. State 1 is reached by ε. For 2 6 i 6 n − 1, state i is reached by wi = b1 · · · bi−1.
State n is reached by wn−1bn−2. Thus all states are reachable. For 1 6 i 6 n− 1, the word
ai−1 is only accepted by state i. Also, state n rejects ai for all i > 0. So all n states are
distinguishable, and Cn is minimal. Thus L has n quotients. The syntactic semigroup of L
is generated by J ; so L has syntactic complexity σ(L) = h(n) =

∑n−1
k=0 C

n−1
k Cn+k−2

k +(n−1),
and it is star-free.

As shown earlier, e(n) > f(n) for n > 4. Since h(n) = e(n) + (n− 1), and h(n) = f(n)
for n ∈ {2, 3}, as shown in Table 4.1, we have that h(n) > f(n) for n > 2, and the maximal
syntactic complexity of nearly monotonic languages is at least that of both monotonic and
partially monotonic languages.
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Although we cannot prove that NMQ is the largest semigroup of aperiodic transforma-
tions, we can show that no transformation can be added to NMQ.

A set S = {T1, T2, . . . , Tk} of transformation semigroups is a chain if T1 ⊂ T2 ⊂ · · · ⊂ Tk.
Semigroup Tk is the largest in S, and we denote it by max(S) = Tk. The following result
shows that the syntactic semigroup TL(Cn) = TCn of L(Cn) in Definition 4.16 is a local
maximum among aperiodic subsemigroups of TQ.

Proposition 4.18. Let S be a chain of aperiodic subsemigroups of TQ. If TCn ∈ S, then
TCn = max(S).

Proof. Suppose max(S) = Tk for some aperiodic subsemigroup Tk of TQ, and Tk 6= TCn .
Then there exist t ∈ Tk such that t 6∈ TCn , and i, j ∈ Q such that i < j 6= n but it > jt,
and it, jt 6= n. Let τ ∈ TQ be such that (jt)τ = i, (it)τ = j, and hτ = n for all h 6= i, j;
then τ ∈ TCn . Let λ ∈ TQ be such that iλ = i, jλ = j, and hλ = n for all h 6= i, j; then
also λ ∈ TCn . Since Tk = max(S), TCn ⊂ Tk and τ, λ ∈ Tk. Then s = λtτ is also in Tk.
However, is = i(λtτ) = j, js = j(λtτ) = i, and hs = n for all h 6= i, j; then s = (i, j)

(
P
n

)
,

where P = Q \ {i, j}, is not aperiodic, a contradiction. Therefore TCn = max(S).

Conjecture 4.19. The syntactic complexity of a star-free language L with κ(L) = n > 4
satisfies σ(L) 6 h(n).

4.3 Summary

Our results on star-free languages are summarized in Table 4.1. Let Q = {1, . . . , n}, and
Q′ = Q \ {n}. The figures in bold type are tight bounds verified using GAP [18], by
enumerating aperiodic subsemigroups of TQ. The asterisk ∗ indicates that the bound is
already tight for a smaller alphabet. The last four rows show the values of f(n) = |MQ|,
e(n) = |CMQ| = g(n−1) = |PMQ′ |, h(n) = |NMQ|, and the weak upper bound (n+1)n−1.
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Table 4.1: Syntactic complexity of star-free languages.

|Σ| / n 1 2 3 4 5 6

1 1 1 2 3 5 6
2 ∗ 2 7 19 62 ?
3 ∗ 3 9 31 ? ?
4 ∗ ∗ 10 34 ? ?
5 ∗ ∗ ∗ 37 125 ?
· · · · · · · · · · · · · · · · · · · · ·

f(n) = |MQ| 1 3 10 35 126 462
e(n) = |CMQ| = g(n− 1) = |PMQ′| − 2 8 38 192 1002
h(n) = |NMQ| = e(n) + (n− 1) − 3 10 41 196 1007

(n+ 1)n−1 1 3 16 125 1296 16807
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Chapter 5

Syntactic Complexity of R- and
J -Trivial Languages

Recall that the Green equivalence relations on any monoid M are defined as follows: For
any s, t ∈ M ,

s L t⇔Ms = Mt,

sR t⇔ sM = tM,

s J t⇔MsM = MtM,

sH t⇔ s L t and sR t.

We say that M is ρ-trivial, where ρ ∈ {R,J ,L,H}, if and only if (s, t) ∈ ρ implies s = t
for all s, t ∈ M . A language L is ρ-trivial if and only if its syntactic monoid is ρ-trivial. In
this chapter we consider only regular ρ-trivial languages.

5.1 R-Trivial Regular Languages

Given DFA A = (Q,Σ, δ, q1, F ), we can define the reachability relation → as follows. For
all p, q ∈ Q, p→ q if and only if δ(p, w) = q for some w ∈ Σ∗. We say that A is partially
ordered [5] if the relation → is a partial order on Q.

Consider the natural order < on Q. A transformation t of Q is nondecreasing if p 6 pt
for all p ∈ Q. The set FQ of all nondecreasing transformations of Q is a semigroup, since the
composition of two nondecreasing transformations is again nondecreasing. It was shown
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in [5] that a language L is R-trivial if and only if its quotient DFA is partially ordered.
Hence, equivalently, L is anR-trivial language if and only if its syntactic semigroup contains
only nondecreasing transformations.

A transformation t of Q is an idempotent if t2 = t. It is known [17] that the semigroup
FQ can be generated by the following set

GFQ = {1Q} ∪ {t ∈ FQ | t2 = t and rank(t) = n− 1}.

For any transformation t of Q, let Fix(t) = {i ∈ Q | it = i}. Then

Lemma 5.1. For any t ∈ GFQ, rng(t) = Fix(t).

Proof. Pick arbitrary t ∈ GFQ. The claim holds trivially for 1Q. Assume t 6= 1Q. Clearly
Fix(t) ⊆ rng(t). Suppose there exists i ∈ rng(t) but it 6= i. Then jt = i for some j ∈ Q, and
j 6= i. However, since jt2 = it 6= i = jt, t is not an idempotent, which is a contradiction.
Therefore rng(t) = Fix(t).

If n = 1, then FQ contains only the identity transformation 1Q, and GFQ = FQ = {1Q}.
So |GFQ| = |FQ| = 1. If n > 2, then we have

Lemma 5.2. For n > 2, |GFQ| = 1 + Cn
2 .

Proof. Pick t ∈ GFQ such that t 6= 1Q. Then rank(t) = n − 1, and, by Lemma 5.1,
|Fix(t)| = n− 1. There is only one element i ∈ Q \ Fix(t), and i < it. Note that t is fully
determined by the pair (i, it). Hence there are Cn

2 different t. Together with the identity
1Q, the cardinality of GFQ is 1 + Cn

2 .

Lemma 5.3. If G ⊆ FQ and G generates FQ, then GFQ ⊆ G.

Proof. Suppose there exists t ∈ GFQ such that t 6∈ G. Since G generates FQ, t can be
written as t = g1 · · · gk for some g1, . . . , gk ∈ G, where k > 2. Then rng(g1) ⊇ · · · ⊇
rng(gk) ⊇ rng(t). Note that 1Q is the only element in FQ with range Q; so if t = 1Q, then
g1 = · · · = gk = 1Q, a contradiction.

Assume t 6= 1Q. Then rank(t) = n − 1, and rng(g1) = · · · = rng(gk) = rng(t).
Since each gi is nondecreasing, for all p ∈ Fix(t), we must have p ∈ Fix(gi) as well; so
Fix(t) ⊆ Fix(gi). Moreover, since Fix(gi) ⊆ rng(gi) = rng(t) and rng(t) = Fix(t) by
Lemma 5.1, Fix(gi) = Fix(t) = rng(t). Now, let q be the unique element in Q \ Fix(t).
Then q 6∈ Fix(g1), and qg1 ∈ Fix(g2) = · · · = Fix(gk). So q(g1 · · · gk) = qg1. However, since
t = g1 · · · gk, q(g1 · · · gk) = qt and qg1 = qt. Hence g1 = t, and we get a contradiction again.
Therefore GFQ ⊆ G.
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Consequently, GFQ is the unique minimal generator of FQ. So we obtain

Theorem 5.4. If L ⊆ Σ∗ is a regular R-trivial language of quotient complexity κ(L) =
n > 1, then its syntactic complexity σ(L) satisfies σ(L) 6 n!, and this bound is tight if
|Σ| = 1 for n = 1 and |Σ| > 1 + Cn

2 for n > 2.

Proof. Let A be the quotient DFA of L, and let TL be its syntactic semigroup. Then TL is
a subset of FQ. Pick an arbitrary t ∈ FQ. For each p ∈ Q, since p 6 pt, pt can be chosen
from {p, p+ 1, . . . , n}. Hence there are exactly n! transformations in FQ, and σ(L) 6 n!.

When n = 1, the only regular languages are ε or ∅, and they both are R-trivial. To see
the bound is tight for n > 2, let An = (Q,Σ, δ, 1, {n}) be the DFA with alphabet Σ of size
1+Cn

2 and set of states Q = {1, . . . , n}, where each a ∈ Σ defines a distinct transformation
in GFQ. For each p ∈ Q, since GFQ generates FQ and tp = [p, n, . . . , n] ∈ FQ, tp = e1 · · · ek
for some e1, . . . , ek ∈ GFQ, where k depends on p. Then there exist a1, . . . , ak ∈ Σ such
that each ai performs ei and state p is reached by w = a1 . . . ak. Moreover, since t =
[2, 3, . . . , n, n] ∈ FQ, there exist b1, . . . , bl ∈ Σ such that the word u = b1 . . . bl performs t.
So state p ∈ Q can be distinguished from other states by the word un−p. Hence L = L(An)
has quotient complexity κ(L) = n. The syntactic monoid of L is FQ, and so σ(L) = n!.
By Lemma 5.3, the alphabet of An is minimal.

Example 5.5. When n = 4, there are 4! = 24 nondecreasing transformations of Q =
{1, 2, 3, 4}. Among them, there are 11 transformations with rank n− 1 = 3. The following
6 transformations from the 11 are idempotents:

e1 = [1, 2, 4, 4], e2 = [1, 3, 3, 4]

e3 = [1, 4, 3, 4], e4 = [2, 2, 3, 4]

e5 = [3, 2, 3, 4], e6 = [4, 2, 3, 4]

Together with the identity transformation 1Q, we have the generating set GFQ for FQ

with 7 transformations. We can then define the DFA A4 with 7 inputs as in the proof of
Theorem 5.4; A4 is shown in Figure 5.1. The quotient complexity of L = L(A4) is 4, and
the syntactic complexity of L is 24. �

5.2 J -Trivial Regular Languages

We first recall some facts from universal algebra. Let Q be an non-empty finite set with n
elements, and assume without loss of generality that Q = {1, 2, . . . , n}. There is a linear
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1 2 3 4

e2, . . . , e6 e1, . . . , e6e1, e2, e3 e1, e4, e5, e6

e6

e3
e5

e4 e2 e1

Figure 5.1: DFA A4 with κ(L(A4)) = 4 and σ(L(A4)) = 24; the input performing the
identity transformation is not shown.

order on Q, namely the natural order < on integers. If X is an non-empty subset of Q,
then the maximal element in X is denoted by max(X). A partition π of Q is a collection
π = {X1, X2, . . . , Xm} of non-empty subsets of Q such that

1. Q = X1 ∪X2 ∪ · · · ∪Xm, and

2. Xi ∩Xj = ∅ for all 1 6 i < j 6 m.

We call each subset Xi a block in π. For any partition π of Q, let Max(π) = {max(X) | X ∈
π}. The set of all partitions of Q is denoted by ΠQ. We can define a partial order � on ΠQ

such that, for any π1, π2 ∈ ΠQ, π1 � π2 if and only if each block of π1 is contained in some
block of π2. We say π1 refines π2 if π1 � π2. Then (ΠQ,�) forms a poset. Furthermore,
(ΠQ,�) is a finite lattice; for any π1, π2 ∈ ΠQ, their meet π1∧π2 is the �-largest partition
that refines both π1 and π2, and their join π1∨π2 is the �-smallest partition that is refined
by both π1 and π2. From now on, we simply refer to the lattice (ΠQ,�) as ΠQ.

For any m > 1, we can define an equivalence relation ↔m on Σ∗ as follows. For any
u, v ∈ Σ∗, u↔m v if any only if for every x ∈ Σ∗ with |x| 6 m,

x is a subword of u⇔ x is a subword of v.

Let L be any language over Σ. Then L is piecewise-testable if there exists m > 1 such
that, for every u, v ∈ Σ∗, u↔m v implies that u ∈ L⇔ v ∈ L. Let A = (Q,Σ, δ, q1, F ) be
a DFA. If Γ is a subset of Σ, a component of A restricted to Γ is a minimal subset P of
Q such that, for all p ∈ Q and w ∈ Γ∗, δ(p, w) ∈ P if and only of p ∈ P . A state q of A
is maximal if δ(q, a) = q for all a ∈ Σ. Simon [49] proved the following characterization of
piecewise-testable languages.
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Theorem 5.6 (Simon). Let L be a regular language over Σ, let A be its quotient DFA,
and let TL be its syntactic monoid. Then the following are equivalent:

1. L is piecewise-testable;

2. A is partially ordered, and for every non-empty subset Γ of Σ, each component of A
restricted to Γ has exactly one maximal state;

3. TL is J -trivial.

Consequently, a regular language is piecewise-testable if and only if it is J -trivial. The
following theorem is due to Saito [42]. It is another characterization of J -trivial monoids.

Theorem 5.7 (Saito). Let S be a monoid of transformations of Q. Then the following
are equivalent:

1. S is J -trivial;

2. S is a subset of FQ and Ω(ts) = Ω(t)∨Ω(s) for all t, s ∈ S.

Let L be a regular J -trivial language with quotient DFA A = (Q,Σ, δ, q1, F ) and
syntactic monoid TL. Since TL is a subset of FQ, to get an upper bound on the syntactic
complexity of L, we find an upper bound on the cardinality of J -trivial submonoids of FQ.

Lemma 5.8. If t, s ∈ FQ, then

1. Fix(t) = Max(Ω(t));

2. Ω(t) � Ω(s) implies that Fix(t) ⊇ Fix(s), where the equality holds if and only if
Ω(t) = Ω(s);

Proof. 1. First, for each j ∈ Max(Ω(t)), since t ∈ FQ, we have jt = j, and j ∈ Fix(t).
So Max(Ω(t)) ⊆ Fix(t). On the other hand, if there exists j ∈ Fix(t) \ Max(Ω(t)), then
jt = j, and j < max(ωt(j)). Let i = max(ωt(j)); then for any k, l > 0, jtk = j < i = itl.
So i 6∈ ωt(j), which is a contradiction. Hence Fix(t) = Max(Ω(t)).

2. Assume Ω(t) � Ω(s). By definition, we have Max(Ω(t)) ⊇ Max(Ω(s)). Then, by 1,
Fix(t) ⊇ Fix(s). Furthermore, Ω(t) = Ω(s) if and only if Max(Ω(t)) = Max(Ω(s)), and if
and only if Fix(t) = Fix(s).
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Example 5.9. Consider nondecreasing t = [1, 3, 3, 5, 6, 6], as shown in Figure 5.2 (a). The
orbit set Ω(t) has three blocks: {1}, {2, 3}, and {4, 5, 6}. Note that Fix(t) = {1, 3, 6} =
Max(Ω(t)), as expected.

In addition, let s = [4, 3, 3, 6, 6, 6] be another nondecreasing transformation, as shown
in Figure 5.2 (b). The orbit set Ω(s) has two blocks: {1, 4, 5, 6} and {2, 3}. Note that
Ω(t) ≺ Ω(s) and Fix(t) ⊃ Fix(s). �

1 2 3 4 5 6(b)

(a) 1 2 3 4 5 6

Figure 5.2: Nondecreasing transformations t = [1, 3, 3, 5, 6, 6] and s = [4, 3, 3, 6, 6, 6].

Define the transformation tmax = [2, 3, . . . , n, n]. The subscript “max” is chosen be-
cause Ω(tmax) = {Q} is the maximum element in the lattice ΠQ. Clearly tmax ∈ FQ and
Fix(tmax) = {n}. For any submonoid S of FQ, let S[tmax] be the smallest monoid containing
tmax and all elements of S.

Lemma 5.10. Let S be a J -trivial submonoid of FQ. Then

1. S[tmax] is J -trivial.

2. Let A = (Q,Σ, δ, 1, {n}) be the DFA in which each a ∈ Σ defines a distinct transfor-
mation in S[tmax]. Then A is minimal.

Proof. 1. By Theorem 5.7, it is sufficient to prove that for any t ∈ S, Ω(t)∨Ω(tmax) =
Ω(ttmax) and Ω(tmax)∨Ω(t) = Ω(tmaxt). Since Ω(tmax) = {Q}, we have Ω(t)∨Ω(tmax) =
Ω(tmax)∨Ω(t) = {Q}. On the other hand, since S ⊆ FQ and tmax ∈ FQ, both ttmax and
tmaxt are nondecreasing as well. Suppose i ∈ Fix(ttmax); then i(ttmax) = (it)tmax = i. Since
tmax is nondecreasing, it 6 i; and since t is also nondecreasing, i 6 it. Hence it = i,
and itmax = i, which implies that i ∈ Fix(tmax) and i = n. Then Fix(ttmax) = {n} and
Ω(ttmax) = {Q}. Similarly, Fix(tmaxt) = {n} and Ω(tmaxt) = {Q}. Therefore S[tmax] is also
J -trivial.

2. Suppose a0 ∈ Σ performs the transformation tmax. Each state p ∈ Q can be reached
from the initial state 1 by the word u = ap−1

0 , and p accepts the word v = an−p
0 , while all

other states reject v. So A is minimal.
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For any J -trivial submonoid S of FQ, we denote by A(S, tmax) the DFA in Lemma 5.10.
Then A(S, tmax) is the quotient DFA of some regular J -trivial language L. Next, we have

Lemma 5.11. Let S be a J -trivial submonoid of FQ. For any t, s ∈ S, if Fix(t) = Fix(s),
then Ω(t) = Ω(s).

Proof. Pick any t, s ∈ S such that Fix(t) = Fix(s). If t = s, then it is trivial that
Ω(t) = Ω(s). Assume t 6= s, and Ω(t) 6= Ω(s). By Part 2 of Lemma 5.8, we have
Ω(t) 6≺ Ω(s) and Ω(s) 6≺ Ω(t). Then there exists i ∈ Q such that ωt(i) 6= ωs(i). Suppose
p = max(ωt(i)) and q = max(ωs(i)); then p, q ∈ Fix(t) = Fix(s), and p 6= q. Consider the
DFA A(S, tmax) with alphabet Σ, and suppose a ∈ Σ performs t and b ∈ Σ performs s.
Let B be the DFA A(S, tmax) restricted to {a, b}. Since p ∈ ωt(i) and q ∈ ωs(i), then p, q
are in the same component P of B. However, p and q are two distinct maximal states in
P , which contradicts Theorem 5.6. Therefore Ω(t) = Ω(s).

Example 5.12. To illustrate one usage of Lemma 5.11, we consider two nondecreasing
transformations t = [2, 2, 4, 4] and s = [3, 2, 4, 4]. They have the same set of fixed points
Fix(t) = Fix(s) = {2, 4}. However, Ω(t) = {{1, 2}, {3, 4}} and Ω(s) = {{2}, {1, 3, 4}}. By
Lemma 5.11, t and s cannot appear together in a J -trivial monoid. Indeed, consider any
minimal DFA A having at least two inputs a, b such that a performs t and b performs s.
The DFA B of A restricted to the alphabet {a, b} is shown in Figure 5.3. There is only one
component in B, but there are two maximal states 2 and 4. By Theorem 5.6, the syntactic
monoid of A is not J -trivial. �

1 2 3 4
a

b

a, b a, b

a, b

Figure 5.3: DFA B with two inputs a and b, where ta = [2, 2, 4, 4] and tb = [3, 2, 4, 4].

For any partition π of Q, define E(π) = {t ∈ FQ | Ω(t) = π}. Then

Lemma 5.13. If π is a partition of Q with r blocks, where 1 6 r 6 n, then |E(π)| 6 (n−r)!.

Proof. Suppose π = {X1, . . . , Xr}, and |Xi| = ki for each i, 1 6 i 6 r. Without loss of
generality, we can rearrange subsets Xi’s such that k1 6 · · · 6 kr. Let t ∈ E(π) be any
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transformation. Then t ∈ FQ, and hence Fix(t) = Max(Ω(t)) = Max(π). Consider each
block Xi, and suppose Xi = {j1, . . . , jki} such that j1 < · · · < jki . Since jki = max(Xi),
then jki ∈ Fix(t) and jkit = jki . On the other hand, if 1 6 l < ki, then jl 6∈ Max(π), and
since t ∈ FQ, we have jlt > jl; since jlt ∈ ωt(jl) = Xi, jlt ∈ {jl+1, . . . , jki}. So there are
(ki − 1)! different t|Xi

, and there are
∏r

i=1(ki − 1)! different transformations t in E(π).
Clearly, if r = 1, then kr = n and |E(π)| = (n − 1)!. Assume r > 2. Note that ki > 1

for all i, 1 6 i 6 r, and
∑r

i=1 ki = n. If k1 = · · · = kr−1 = 1, then kr = n − r + 1, and
|E(π)| = (kr − 1)!

∏r−1
i=1 0! = (n − r)!. Otherwise, let h be the smallest index such that

kh > 1. Then

r∏
i=1

(ki − 1)! =
h−1∏
i=1

0!
r∏

i=h

(ki − 1)!

= (kr − 1)!
r−1∏
i=h

(ki − 1)!

Since (kh − 1)! < (kh − 1)kh−1 6 (kr − 1)kh−1 < (kr + kh − 2) · · · kr:

< (kr + kh − 2)!
r−1∏

i=h+1

(ki − 1)!

Similarly, we have that

< (kr + kh + · · ·+ kr−1 − (r − h+ 1))!

= (n− r)!

Therefore |E(π)| 6 (n− r)!.

Example 5.14. Suppose n = 10, r = 3, and consider the partition π = {X1, X2, X3}, where
X1 = {1, 2, 5}, X2 = {3, 7}, and X3 = {4, 6, 8, 9, 10}. Then k1 = |X1| = 3, k2 = |X2| = 2,
and k3 = |X3| = 5. Let t ∈ E(π) be an arbitrary transformation; then Fix(t) = {5, 7, 10}.
For any i ∈ X1, if i = 1, then it could be 2 or 5; otherwise i = 2 or 5, and it must be 5. So
there are (k1 − 1)! = 2! different t|X1 . Similarly, there are (k2 − 1)! = 1! different t|X2 and
(k3 − 1)! = 4! different t|X3 . Hence we have |E(π)| = 2!1!4! = 48.

Consider another partition π′ = {X ′
1, X

′
2, X

′
3} with three blocks, where X ′

1 = {5},
X ′

2 = {7}, and X ′
3 = {1, 2, 3, 4, 6, 8, 9, 10}. Then k1 = |X ′

1| = 1, k2 = |X ′
2| = 1, and

k3 = |X ′
3| = 8. We have that Max(π′) = Max(π) = {5, 7, 10}. Then, for any t ∈ E(π′),
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Fix(t) = {5, 7, 10} as well. Since k1 = k2 = 1, both t|X1 and t|X2 are unique. There are
(k3 − 1)! = 7! different t|X3 . Together we have |E(π′)| = 1!1!7! = (10 − 3)! = 5040, which
is the upper bound in Lemma 5.13 for n = 10 and r = 3. �

Note that, for any t ∈ FQ, we have n ∈ Fix(t). Let Pn(Q) be the set of all subsets Z
of Q such that n ∈ Z. Then we obtain the following upper bound.

Proposition 5.15. If S is a J -trivial submonoid of FQ, then

|S| 6
n∑

r=1

Cn−1
r−1 (n− r)! = be(n− 1)!c.

Proof. Assume S is a J -trivial submonoid of FQ. For any Z ∈ Pn(Q), let SZ = {t ∈
S | Fix(t) = Z}. Then S =

∪
Z∈Pn(Q) SZ , and for any Z1, Z2 ∈ Pn(Q) with Z1 6= Z2,

SZ1 ∩ SZ2 = ∅.
Pick any Z ∈ Pn(Q). By Lemma 5.11, for any t, s ∈ SZ , since Fix(t) = Fix(s) = Z,

we have Ω(t) = Ω(s). Let π ∈ ΠQ denote such a partition Ω(t) of Q. Suppose r = |Z|.
Since n ∈ Z, we have r > 1; and clearly r 6 n. Note that SZ ⊆ E(π). By Lemma 5.13,
|SZ | 6 |E(π)| = (n− r)!. Since there are Cn−1

r−1 different Z, we have that

|S| =
∑

Z∈Pn(Q)

|SZ | 6
n∑

r=1

Cn−1
r−1 (n− r)!

=
n∑

r=1

(n− 1)!

(r − 1)!

= be(n− 1)!c.

The last equality is due to a well-known combinatorics identity.

The above upper bound is met by the following monoid Sn. For any Z ∈ Pn(Q),
suppose Z = {j1, . . . , jr} such that j1 < · · · < jr; then we define partition πZ = {Q} if
Z = {n}, and πZ = {{j1}, . . . , {jr−1}, Q \ {j1, . . . , jr−1}} otherwise. Let

Sn =
∪

Z∈Pn(Q)

E(πZ).

Example 5.16. Suppose n = 4; then |P4(Q)| = 23 = 8. First consider Z = {1, 3, 4} ∈
P4(Q). By definition, πZ = {{1}, {3}, {2, 4}}. There is only one transformation t1 =
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[1, 4, 3, 4] in E(πZ). If Z ′ = {3, 4}, then πZ′ = {{3}, {1, 2, 4}. There are two transforma-
tions t2 = [2, 4, 3, 4] and t3 = [4, 4, 3, 4] in E(πZ′). Table 5.1 summaries the number of
transformations in E(πZ) for each Z ∈ P4(Q). Note that the set S4 contains 16 transfor-
mations in total. �

Table 5.1: Number of transformations in E(πZ) for each Z ∈ P4(Q).

Z Blocks of πZ |E(πZ)|
{1, 2, 3, 4} {1}, {2}, {3}, {4} 1
{1, 2, 4} {1}, {2}, {3, 4} 1
{1, 3, 4} {1}, {3}, {2, 4} 1
{2, 3, 4} {2}, {3}, {1, 4} 1
{1, 4} {1}, {2, 3, 4} 2
{2, 4} {2}, {1, 3, 4} 2
{3, 4} {3}, {1, 2, 4} 2
{4} {1, 2, 3, 4} 6

Proposition 5.17. The set Sn is a J -trivial submonoid of FQ with cardinality

g(n) = |Sn| =
n∑

r=1

Cn−1
r−1 (n− r)! = be(n− 1)!c. (5.1)

Proof. First we prove the following claim:

Claim: For any t, s ∈ Sn, Ω(ts) = πZ for some Z ∈ Pn(Q).

Let t ∈ E(πZ1) and s ∈ E(πZ2) for some Z1, Z2 ∈ Pn(Q). Suppose Ω(ts) 6= πZ for any
Z ∈ Pn(Q). Then there exists a block X0 ∈ Ω(ts) such that n 6∈ X0 and |X0| > 2. Suppose
i ∈ X0 with i 6= max(X0). We must have i ∈ ωt(n) or it ∈ ωs(n); otherwise it = i and
(it)s = i and so i = max(X0). However, in either case, there exists large m such that
itm = n or (it)sm = n, respectively. Then n ∈ ωts(i) = X0, a contradiction. So the claim
holds. �

By the claim, for any t, s ∈ Sn, since Ω(ts) = πZ for some Z ∈ Pn(Q), ts ∈ E(πZ) ⊆ Sn.
Hence Sn is a submonoid of FQ.
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Next we show that Sn is J -trivial. Pick any t, s ∈ Sn, and suppose t ∈ E(πZ1) and
s ∈ E(πZ2) for some Z1, Z2 ∈ Pn(Q). Suppose Max(Z1)∩Max(Z2) = {j1, . . . , jr}, for some
r > 0. Then we have Z1∨Z2 = {{j1}, . . . , {jr}, X}, where X = Q\{j1, . . . , jr} and n ∈ X.
On the other hand, by the claim, Ω(ts) = {{p1}, . . . , {pk}, Y }, where Y = Q\{p1, . . . , pk}.
Note that, since E(πZ1), E(πZ2) ⊆ FQ, Max(Ω(ts)) = Fix(ts) = Fix(t)∩Fix(s) = Max(Z1)∩
Max(Z2). Then r = k and {j1, . . . , jr} = {p1, . . . , pk}. Hence Ω(t)∨Ω(s) = Z1∨Z2 = Ω(ts).
By Theorem 5.7, Sn is J -trivial.

For any Z ∈ Pn(Q) with |Z| = r, where 1 6 r 6 n, suppose πZ = {X1, . . . , Xr} with
ki = |Xi| = 1 for 1 6 i < r, and kr = |Xr|. By Lemma 5.13, |E(πZ)| = (n−r)!. Since n ∈ Z
is fixed, there are Cn−1

r−1 different Z. Therefore |Sn| =
∑n

r=1 C
n−1
r−1 (n− r)! = be(n− 1)!c.

Let t be any transformation of Q. An orbit X of t is trivial if it contains just one
element of Q; otherwise it is non-trivial. Hence any transformation t ∈ Sn has only one
non-trivial orbit. We now define a generating set of the monoid Sn.

Definition 5.18. Suppose n > 1. For any Z ∈ Pn(Q), if Z = Q, then let tZ = 1Q.
Otherwise, let hZ = max(Q \ Z), and let tZ be a transformation of Q defined by: For all
i ∈ Q,

it
def
=


i if i ∈ Z,

n if i = hZ ,

hZ otherwise.

Let GSn = {tZ | Z ∈ Pn(Q)}.

Example 5.19. Suppose n = 5. As the first example, consider Z = {1, 3, 4, 5}. Then hZ =
max(Q \ Z) = 2, and tZ = [1, 5, 3, 4, 5]. If Z ′ = {4, 5}, then hZ′ = 4 and tZ′ = [3, 3, 5, 4, 5].
If Z ′′ = {5}, then hZ′′ = 4 and tZ′′ = [4, 4, 4, 5, 5]. The set GS5 contains the following 16
transformations:

t1 = [1, 2, 3, 4, 5], t2 = [1, 2, 3, 5, 5], t3 = [1, 2, 4, 5, 5],
t4 = [1, 2, 5, 4, 5], t5 = [1, 3, 5, 4, 5], t6 = [1, 4, 3, 5, 5],
t7 = [1, 4, 4, 5, 5], t8 = [1, 5, 3, 4, 5], t9 = [2, 5, 3, 4, 5],
t10 = [3, 2, 5, 4, 5], t11 = [3, 3, 5, 4, 5], t12 = [4, 2, 3, 5, 5],
t13 = [4, 2, 4, 5, 5], t14 = [4, 4, 3, 5, 5], t15 = [4, 4, 4, 5, 5],
t16 = [5, 2, 3, 4, 5].

�

Proposition 5.20. For n > 1, the monoid Sn can be generated by the set GSn of 2n−1

transformations of Q.
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Proof. First, for any tZ ∈ GSn, where Z ∈ Pn(Q), we have Ω(tZ) = πZ ; hence tZ ∈
E(πZ) ⊆ Sn. So GSn ⊆ Sn and 〈GSn〉 ⊆ Sn.

Fix arbitrary Z ∈ Pn(Q), and suppose U = Q \ Z. Note that n ∈ Z. Let Y be the
block in πZ such that n ∈ Y . For any t ∈ E(πZ), we have Fix(t) = Z. Furthermore, if
i ∈ Q \ Y , then i ∈ Fix(t) and it = i. We prove by induction on |U | that E(πZ) ⊆ 〈GSn〉.

1. U = ∅: Then πZ = {{1}, . . . , {n}}, and E(πZ) = {1Q}. Note that 1Q ∈ GSn. So
E(πZ) ⊆ 〈GSn〉.

2. U = {h} for some h 6= n: Then Y = {h, n}. For any t ∈ E(πZ), since Fix(t) = Z and
h 6∈ Z, we have ht > h. Since Y is an orbit of t, we have ht = n, and t =

(
h
n

)
. Note

that tZ =
(
h
n

)
= t. So E(πZ) ⊆ 〈GSn〉.

3. U = {h1, h2} for some h1 < h2 < n: Then Y = {h1, h2, n}. Note that tZ =
(
h2

n

)(
h1

h2

)
.

For any t ∈ E(πZ), since h1 < h2, and Y is an orbit of t, we have h2t = n and
h1t ∈ {h2, n}. If h1t = h2, then t = tZ ; otherwise, t = t2Z . So E(πZ) ⊆ 〈GSn〉.

4. U = {h1, . . . , hl} for some h1 < · · · < hl < n, where l > 3: Assume that, for any
Z ′ ∈ Pn(Q) with |Q\Z ′| < l, we have E(πZ′) ⊆ 〈GSn〉. Now Y = {h1, . . . , hl, n}, and
tZ =

(
hl

n

)(
hl−1

hl

)
· · ·

(
h1

hl

)
. For any t ∈ E(πZ), since Y is an orbit of t and Q\Y ⊆ Fix(t),

we have

t =

(
hl

pl

)(
hl−1

pl−1

)
· · ·

(
h1

p1

)
,

where pl = n, and pi ∈ {hi+1, . . . , hl, n} for i = 2, . . . , l − 1. We have three cases:

(a) p1 = · · · = pl = n: Then t = t2Z , and t ∈ 〈GSn〉.
(b) p1 = · · · = pl−1 = hl: Then t = tZ , and t ∈ 〈GSn〉 as well.
(c) Otherwise, there exists some hi, where 1 6 i < l, such that pi = hit 6∈ {hl, n}.

Let hr be the smallest such hi, and let Y ′ = Y \ {hr}. Then hr 6∈ rng(t), and
pr = hrt ∈ Y ′ \ {hl, n}. Now, let

t′ =

(
hl

n

)
· · ·

(
hr+1

pr+1

)(
hr−1

pr−1

)
· · ·

(
h1

p1

)
and Z ′ = Fix(t′). Then Y ′ is an orbit of t′, and Z ′ = Fix(t)∪{hr}; so t′ ∈ E(πZ′).
By assumption, since |Q \ Z ′| = l− 1 < l, we have t′ ∈ 〈GSn〉. As the last step,

56



let Z ′′ = {hr, pr}. Since pr = hrt > hr, we have tZ′′ =
(
pr
n

)(
hr

pr

)
∈ GSn. Note

that hr 6∈ rng(t′) and pr 6∈ Fix(t′). So

t′tZ′′ =

(
hl

n

)
· · ·

(
hr+1

pr+1

)(
hr−1

pr−1

)
· · ·

(
h1

p1

)
◦
(
pr
n

)(
hr

pr

)
=

(
hl

n

)
· · ·

(
hr+1

pr+1

)(
hr−1

pr−1

)
· · ·

(
h1

p1

)
◦
(
hr

pr

)
=

(
hl

n

)
· · ·

(
hr+1

pr+1

)(
hr

pr

)(
hr−1

pr−1

)
· · ·

(
h1

p1

)
= t.

Thus t ∈ 〈GSn〉.

By induction we have Sn =
∪

Z∈Pn(Q) E(πZ) ⊆ 〈GSn〉. Therefore Sn = 〈GSn〉. Since there

are 2n−1 different Z ∈ Pn(Q), there are 2n−1 transformations in GSn.

Example 5.21. Suppose n = 5. The list of all transformations in GS5 is shown in Exam-
ple 5.19. Consider Z = {3, 5} ∈ P5(Q), and t = [2, 4, 3, 5, 5] ∈ E(πZ). The transition
graph of t is shown in Figure 5.4 (a). As in Proposition 5.20, we have Y = {1, 2, 4, 5}, and
U = {1, 2, 4}. To show that t ∈ 〈GS5〉, we find hr = 1. Then t′ =

(
4
5

)(
2
4

)
= [1, 4, 3, 5, 5],

and Z ′ = {1, 3, 5}. We assume that t′ ∈ 〈GS5〉; in fact, t′ = tZ′ in this example. We also
need Z ′′ = {1, 1t} = {1, 2}, and tZ′′ =

(
2
5

)(
1
2

)
= [2, 5, 3, 4, 5]. The transition graphs of t′

and tZ′′ are shown in Figure 5.4 (a) and (b), respectively. One can verify that t = t′tZ′′ ,
and hence t ∈ 〈GS5〉. �

1

1

1

2 3 4 5

2 3 4 5

2 3 4 5

(a)

(b)

(c)

Figure 5.4: Transition graphs of t = [2, 4, 3, 5, 5], t′ = [1, 4, 3, 5, 5], and tZ′′ = [2, 5, 3, 4, 5].
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Now, by Propositions 5.15, 5.17, and 5.20, we have

Theorem 5.22. Let L ⊆ Σ∗ be a regular language with quotient complexity n > 1 and
J -trivial syntactic monoid. Then its syntactic complexity σ(L) satisfies σ(L) 6 g(n) =
be(n− 1)!c, and this bound is tight if |Σ| > 2n−1.

Remark 5.23. It was shown by Saito [42] that, if S is a J -trivial submonoid of FQ, then
Ω(S) = {Ω(t) | t ∈ S} ⊆ ΠQ forms a ∨-semilattice such that Max(Ω(t)∨Ω(s)) = Fix(t) ∩
Fix(s), called a J -∨-semilattice. Let P∨(ΠQ) be the set of all J -∨-semilattices that are
subsets of ΠQ. A maximal J -trivial submonoid S of FQ corresponds to an maximal element
P in P∨(ΠQ), with respect to set inclusion, such that S =

∪
π∈P E(π). P ∈ P∨(ΠQ) is called

full if {Max(π) | π ∈ P} = Pn(Q), which is an maximal element in P∨(ΠQ) with respect
to set inclusion. The monoid Sn then corresponds to a full J -∨-semilattice, and hence it is
maximal. Saito described all maximal J -trivial submonoid of FQ and those corresponding
to full J -∨-semilattices. However, here we consider the J -trivial submonoid of FQ with
maximum cardinality.

Remark 5.24. The number be(n−1)!c also appears in the paper of Brzozowski and Liu [13]
as a lower bound and the conjectured upper bound for the syntactic complexity of definite
languages. However, the semigroup Bn with this cardinality in [13] for definite languages
is not isomorphic to Sn, since Bn is not J -trivial.
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Chapter 6

Quotient Complexity of Reverse
Languages

In this chapter we consider nondeterministic finite automata (NFA’s). A NFA N is a
quintuple N = (Q,Σ, δ, I, F ), where Q, Σ, and F are as in a DFA, δ : Q × Σ → 2Q is
the nondeterministic transition function, and I is the set of initial states. For any word
w ∈ Σ∗, the reverse of w is defined inductively as follows: wR = ε if w = ε, and wR = uRa
if w = au for some a ∈ Σ and u ∈ Σ∗. The reverse of any language L is the language
LR = {wR | w ∈ L}. For any finite automaton (DFA or NFA) M, we let MR denote the
NFA obtained by reversing all the transitions of M and exchanging the roles of initial and
final states, and by MD, the DFA obtained by applying the subset construction to M.
Then L(MR) = (L(M))R, and L(MD) = L(M). To simplify our proofs, we use an
observation from [9] that, for any NFA N without empty states, if the automaton NR is
deterministic, then the DFA ND is minimal if only reachable subsets are included in the
subset construction.

For any regular language L with quotient complexity κ(L) = n > 2, the upper bound on
the quotient complexity of the reverse language LR is 2n [39], and this bound is tight [33].
In 2004, Salomaa, Wood, and Yu showed that if a regular language L has quotient com-
plexity n > 2 and syntactic complexity nn, then its reverse language LR has quotient
complexity 2n. As shown in [8], for certain regular languages with maximal syntactic com-
plexity in their subclasses, the reverse languages have maximal quotient complexity. We
now show that the similar statement holds true for some subclasses of regular languages
studied in previous chapters.

First, consider suffix-, bifix-, and factor-free regular languages. Although we do not
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have tight upper bounds on their syntactic complexities, for languages in these classes
with the maximal known syntactic complexities, their reverse languages reach the upper
bounds on the quotient complexities of the reversal operation.

Theorem 6.1. For n > 4, the reverse of the suffix-free regular language accepted by the
DFA A′

n of Theorem 3.17 restricted to {a1, a2, a3, c} has 2n−2 + 1 quotients, which is the
maximum possible for a suffix-free regular language.

Proof. Let Cn be the DFAA′
n restricted to the alphabet {a1, a2, a3, c}. Since L(A′

n) is suffix-
free, so is L′

n = L(Cn). Let N ′
n be the NFA obtained from CR

n by removing unreachable
states. Figure 6.1 shows the NFA N ′

6.

1 2 3 4 5

a3

a2

a3 a2, a3 a2

a1 a1

a1, a3

a1, a2c

Figure 6.1: NFA N ′
6 of L′R

6 with quotient complexity κ(L′R
6 ) = 17; empty state omitted.

Applying the subset construction to N ′
n, we get a DFA N ′D

n . Its initial state is a
singleton set {2}. From the initial state, we can reach state {2, 3, . . . , i} by (a3a

n−3
1 )i−2,

where 3 6 i 6 n− 1. Then the state {2, 3, . . . , n− 1} is reached from {2} by (a3a
n−3
1 )n−3.

Assume that any set S of cardinality l can be reached, where 2 6 l 6 n − 2. If j ∈ S,
then we can reach S ′ = S \ {j} from S by aj−1

1 a3a
n−j−1
1 . So all the non-empty subsets of

{2, 3, . . . , n − 1} can be reached. We can also reach the singleton set {1} from {2} by c,
and, from there, the empty state by c again. Hence N ′D

n has 2n−2 + 1 reachable states.

Since the automaton N ′R
n , the reverse of N ′

n, is a subset of Cn, it is deterministic; hence
N ′D

n is minimal. Then the quotient complexity of L′R
n is 2n−2 + 1, which meets the upper

bound for reversal of suffix-free regular languages [20].

Theorem 6.2. For n > 5, the reverse of the factor-free regular language accepted by
the DFA An of Theorem 3.39 restricted to the alphabet {a1, a2, a3, c}, where c = [2, n −
1, n, . . . , n, n] ∈ Gff(n), has 2n−3 + 2 quotients, which is the maximum possible for a bifix-
or factor-free regular language.
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Proof. Let Dn be the DFA An restricted to the alphabet {a1, a2, a3, c}; then L′′
n = L(Dn)

is factor-free. Let N ′′
n be the NFA obtained from DR

n by removing unreachable states. An
example of N ′′

n is shown in Figure 6.2.

1

6

2 3 4 5

a3

a2

a3 a2, a3 a2

a1 a1

a1, a3

a1, a2c

c

Figure 6.2: NFA N ′′
7 of L′′R

7 with quotient complexity κ(L′′R
7 ) = 18; empty state omitted.

Note that N ′′
n can be obtained from the NFA N ′

n−1 in Theorem 6.1 by adding a new
state n − 1, which is the only initial state in N ′′

n , and the transition from {n − 1} to {2}
under input c. We know that all non-empty subsets of {2, 3, . . . , n− 2} are reachable from
{2}. The final state {1} is also reachable from {2}. From the initial state n− 1, we reach
the empty state under input a1. Then N ′′D

n has 2n−3 + 2 reachable states.

Since N ′′R
n is a subset of Dn and it is deterministic, the DFA N ′′D

n is minimal. Therefore
κ(L′′R

n ) = 2n−3+2, and it reaches the upper bound for reversal of both bifix- and factor-free
regular languages with quotient complexity n [11].

We prove in the following the tight upper bounds on the quotient complexities of the
reverse of R- and J -trivial regular languages. These bounds can be reached by languages
with maximal syntactic complexities in their classes.

Theorem 6.3. For n > 2, if L is a regular R-trivial language with quotient complexity
κ(L) = n, then κ(LR) 6 2n−1. Moreover, this bound can be met if L is over an alphabet of
size n.

Proof. Let A = (Q,Σ, δ, q1, F ) be the quotient DFA of L, where |Q| = n. Suppose L is
R-trivial; then A must be partially ordered. Assume q1 = 1, and upon reordering elements
in Q, let the reachability relation → as a partial order be compatible with the natural order
< on Q; that is, for all p, q ∈ Q, p→ q implies p < q. Then for all a ∈ Σ, we must have
δ(n, a) = n. Let N = AR be the NFA accepting LR. There are two cases:
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1. n ∈ F : Then n is in the set of initial states of N . Since δ(n, a) = n for all a ∈ Σ, for
any reachable set P of states of N , we must have n ∈ P . There are 2n−1 subsets of
Q containing n. So there are at most 2n−1 reachable set of states of N .

2. n 6∈ F : Now, since δ(n, a) = n, the state n is not reachable in N . There are 2n−1

subsets of Q not containing n. So there are at most 2n−1 reachable set of states of
N as well.

Therefore κ(LR) 6 2n−1.

To see the bound is tight, consider the DFA An = (Q,Σ, δ, 1, {n}), where Q =
{1, . . . , n}, Σ = {a1, . . . , an}, and the transitions are defined such that:

• For 1 6 i 6 n− 2, δ(i, ai) = n, and δ(p, ai) = p if p 6= i;

• δ(p, an−1) = p+ 1 if p < n, and δ(n, an−1) = n;

• δ(1, an) = 2, and δ(p, an) = p if p 6= 1.

Let Ln = L(An), and let Nn = AR
n be an NFA accepting LR

n . The NFA N5 is shown in
Figure 6.3. Note that there is no unreachable state in AR

n . Clearly An is partially ordered;
so Ln is R-trivial.

2 3 4

a1

a2 a3
a4

a4, a5 a4 a4

a2, a3 a1, a2, a5a1, a3, a5 a1, a2, a3, a5

5

1

Σ

Figure 6.3: NFA N5 = AR
5 for n = 5 accepting LR

5 .

We now show that all 2n−1 subsets P of Q containing n is reachable in Nn. First,
I = {n} is the initial subset of Nn. If P = {i, n}, where 1 6 i 6 n− 1, then P is reached
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by ai. Suppose P = {i1, . . . , ik, n}, where 1 6 i1 < · · · < ik < n and k > 2. Note that, for
any 1 < p < n, we have δ(p, aq) = p for all q < p. Then P can be reached by the word
aik · · · ai1 . Hence ND

n has 2n−1 reachable states.

Since there is no unreachable state in AR
n , and NR

n = An is deterministic, the DFA ND
n

is minimal. Then the quotient complexity of LR
n is 2n−1, which is the tight upper bound

for reversal of R-trivial regular languages.

Theorem 6.4. For n > 2, if L is a regular J -trivial language with quotient complexity
κ(L) = n, then κ(LR) 6 2n−1. Moreover, this bound can be met if L is over an alphabet of
size 2n−1 − 1.

Proof. Since any J -trivial regular language is also R-trivial, the upper bound 2n−1 in
Theorem 6.3 also holds for J -trivial regular languages.

To see that the bound is tight, consider the DFA Bn = (Q,Σ, δ, 1, {n}) such that
Q = {1, . . . , n}, |Σ| = 2n−1 − 1, and each a ∈ Σ defines a distinct transformation in GSn

other than 1Q. Let Ln = L(Bn). By Proposition 5.20, the transition semigroup TBn of Bn

contains all transformations in Sn other than 1Q.

Let Nn = BR
n be an NFA accepting LR

n , which contains no unreachable state. Let P
be any subset of Q containing n. If P = {n}, then it is the initial set of states of Nn.
Otherwise, suppose P = {p1, . . . , pk, n} for some pi ∈ Q and 1 6 k 6 n − 1. Let t =(
p1
n

)
· · ·

(
pk
n

)
be a transformation of Q, and let R = Q\P = {q1, . . . , ql}, where k+ l+1 = n.

Then Fix(t) = R∪{n}, and Ω(t) = {{q1}, . . . , {ql}, R∪{n}}. So t ∈ Sn. Clearly t 6= 1Q as
k > 1. Thus t ∈ TBn , and there exists w ∈ Σ∗ such that w performs the transformation t,
i.e., tw = t. This means that, for any p ∈ Q, δ(p, w) = n if and only if p ∈ P . Hence we
can reach the set P of states of Nn from the initial set of states by the word w. Since there
are 2n−1 distinct subsets P of Q containing n, there are 2n−1 reachable states in ND

n .

Note that there is no unreachable state in BR
n . Then the DFA ND

n is minimal, and
κ(LR

n ) = 2n−1. This shows that the upper bound 2n−1 is tight for reversal of J -trivial
regular languages.
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Chapter 7

Conclusions

We have presented our results on syntactic complexity of several subclasses of regular
languages, namely suffix-, bifix-, and factor-free regular languages, star-free languages and
three subclasses, and R- and J -trivial regular languages. We found upper bounds on the
syntactic complexities of these classes of languages. For monotonic, partially monotonic,
and partially monotonic languages, and for R- and J -trivial regular languages, the upper
bounds are tight. For the other classes of languages, we found tight upper bounds for
languages with small quotient complexities, and we also found lower bounds. We conjecture
these lower bounds to be tight upper bounds for these languages.

Once again we have demonstrated that upper bounds on syntactic complexity are dif-
ferent for different subclasses of regular languages. In particular, this is true for classes
where one class is contained in another. Hence syntactic complexity may be able to distin-
guish different subclasses of regular languages with the same state / quotient complexity,
and it is a useful complexity measure in addition to state / quotient complexity.

We also observed that, for some subclasses C of regular languages, the upper bound on
quotient complexity of the reversal operation on languages in C can be met by languages in
C with maximal syntactic complexity. So far we were not able to generalize this observation.

We hope that our results can stimulate more studies in syntactic complexity. For
possible future directions, one should certainly try to prove tight upper bounds on syntactic
complexity of suffix-, bifix-, and factor-free regular languages, and star-free languages.
For related classes of languages, the problem of syntactic complexity of subword-free and
L-trivial regular languages is still open. One can also consider languages in the various
hierarchies of star-free languages, for example, the dot-depth hierarchy [15], the Straubing-
Thérien hierarchy [50, 51], and depth-one hierarchy [48]. Within the depth-one hierarchy,
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definite and reverse definite languages were considered by Brzozowski and Liu [13], and
piecewise-testable languages were considered here. One might also consider the syntactic
complexity of the languages obtained from regular operations as a function of the state /
quotient complexities of the operands.
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