
Parallel Architectural Skeletons: Re-Usable

Building Blocks for Par allel Applications

Dhrubajyoti Goswami

-4 thesis

presented to the rniversity of Waterloo

in fulfdlment of the

thesis requirernent for the degree of

Doctor of P hilosophy

in

Electrical and Cornputer Engineering

Waterloo. Ontario. Canada. 2001

@ D h b a j y o t i Goswami 2001

National Library (*I of Canada
Bibliothbque nationale
du Canada

Acquisitions and Acquisitions el
Bibliogaphic Services services bibliographiques
395 WIClington Street 395, rue WeHingîori
OnawaON KIAOW -ON K 1 A W
canada Canada

The author has granted a non-
exclusive licence aiiowing the
National Library of Canada to
reproduce, loan, disaibute or seli
copies of this thesis in microfom,
paper or electronic formats.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fome de microfiche/filrn, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thése ni des extraits substantiels
may be printed or othenvise de celle-ci ne doivent être imprimés
reproduced without the author' s ou autrement reproduits sans son
permission. autorisation.

The Cniversir!- of Katerloo requires the signatures of al1 persons using or ph*

tocopying this thesis. Please sign below. and give address and date.

Abstract

In the context of object-oriented software design. the concept of design patterns

is well studied and frequently applied. Similar ideas are being e-quplored in other

areas of computing as well. Over the past several years. researchers have been

e-xperimenting with the feasibility of employing design-pat tern concepts in the par-

allel computing domain. S tarting wi th the late SOS. several pattern- based sys tems

have been built and several parallel programming rnodels based on patterns have

been formulated. .As an important distinction with object-oriented patterns. most

researchers here aim to use patterns not only at the design level. but aiso at the

implementation level.

Though the idea of design- and implementation-level parallel patterns hold sig-

nificant promise. most of the curent pattern-based approaches to pa rde l program-

ming suffer severe limitations. some of ivhich include: lack of flexibility. limited to

zero extensibility. ad hoc pattern sets. and languagerelated limitations.

In contrast to the previous approaches, this research proposes a generic. pattern-

based model for fast and reliable development of parallel applications. The model

is generic because it can be described in a manner independent of patterns and

applications. The model is based on the message-passing paradigm, which makes

it particulad- suited for a network of workstations and PCs. The tenn parallei

architectural skeleton is used to represent the generic set of attributes associated

with a pattern. An architectural skeleton contains the necessary ingredients for

constructing application-specific virtuai architectures. Together wit h the comple-

ment a . communication-spchronization protocols. a user can develop applications

on these architectures.

The generic nature of the Pardel .Architectural Skeleton Mode1 (PASM) en-

hances usability. In addition. the model combines the flesibility of a loir-level MPI-

l ih message-passing parallel programming environment toget her wi t h the benefits

of high-level parallel patterns. This approach provides the necessary flesibili ty <O

the user in application development . Hierarchical pat tem composition is an inher-

ent characteristic of the model. which in turn facilitates hierarchical refinement.

PASM is an ideal candidate for an object-oriented style of design and implemeri-

t ation. An object-oriented and library-hased implementation of the model. using

'UIPI as the underlying communication-synchronization library. is completed with-

out necessitating any language extension. The object-orirnted and library-based

implernent ation. toget her wit h the generic model. facili t ates estensi bili ty. That is.

new patterns cm be added to the system by an e-xperienced user without requiring

modifications to the existing repertoire.

.A thin implementation layer over the standard message-passing interface. MPI.

has resulted in negligible performance degradation. Noreover. from the software en-

gineering perspec tive. desired software qudi t ies such as ~eparation of concemu and

~oftwure reusability are some of the basic features of the approach. Other software

engineering relat ed benefit s emanate from the aforement ioned unique feat ures of

PASM. i.e.. genericness. inherent support for hierarchical design and development.

low-level flexibili ty. and an extensible repert oire of parallel architectural shletons.

Acknow ledgement s

I wouid like to thank my supervisor. Prof. Ajit Singh. and cc+super~isor. Prof.

Bruno R. Preiss. for their guidance. support. and encouragement throughout my

research. 1 would also like to thank al1 members of the Parallel and Distributed

Systems (PADS) group at the University of Waterloo. The PADS meetings were

extremely beneficid to coavey my ideas. to improve my public speaking skiils. and

to listen to other's ideas.

1 would l i h to achowledge Mauricio De Simone and Stephen Siu for their initial

contributions to this research. Y y special acknowledgment goes t O Ladan Tahvildari

for her active involvement in the software-quality experiments and analyses using

the PASM system.

1 will also like to thank a i l my friends and colleagues (specially Amir Gourgy

and 'uIohammad Zulkemine from the Bell Canada Software Reliability lab, Rodrigo

Fuentes-Loyola. Diego Hemandez. Nader Fa-yaz. and the others at the Minota

Hagey Residenct) for their continual support. thought-provoking discussions. and

friendship.

My special t h d s go to my parents and my sister for their moral support

throughout the research. Findy. 1 am grateful to God for providing me with

the opportunity to conduct this exciting research, guiding me throughout, and for

enabling me to conquer the mountain.

Contents

1 Introduction 1

. 1.1 ObjectivesofthisResearch 4

. 1.2 Different Approaches to Parallel Programming 5

I 1.2.1 Advant ages and Limitations 1

1.3 An Alternative Approach to Parallel Programming S

1.3.1 Shortcomings of the existing pattern-based approaches . . . 10

. 1.3.2 Contributions of this research 10

. 1.4 Organization of the Thesis 12

2 Patterns in Parallel Computing

. 2.1 Example 1: Divide and Conquer 16

. 2.2 Example 2: .4 Graphic Animation System 19

. 2.3 Example 3: Algorithmic Patterns 21

. 2.4 Exist ing Approaches to Parallel Programming 24

. 2.5 Motivation for Pat tern-based Approaches 27

vii

2.6 Some Esisting Pattern-Based Approaches 29

2.6.1 Code . 30

2.6.2 Frameworks . 31

2.6.3 Enterprise . 32

2.6.4 Hence . 33

. 2-65 Tracs 33

2.6.6 DPnDP . 35

2.6.7 Archetypes . 37

2.6.5 llodel Progamming . 37

2.6.9 Algori t hmic Skeletons . 38

2.7 Limitations of the Existing Pattern-Based Approaches 40

2.8 -4 Generic Model for Pattern-Based Parallel Computing 41

3 Parallel Architectural Skeletons 43

3.1 The Mode1 . 43

3.1.1 A formal descript ion of the mode1 45

3.2 Examples . 49

3.2.1 -4 Graphics Animation Application 50

3.2.2 Jacobi . 54

3.2.3 Divide and Conquer . 55

3.3 Summary . 57

4 An Object-Oriented Implementation 59

4.1 Basic knplementation Features . 59

4.2 The Textual Cser Interface: Examples 61

4.2.1 HeUo worid . 61

1.2.2 The gaphics animation application 69

4.2.3 Jacobi . 73

-. 4.2.4 Divide and Conquer . , a

4.3.1 Implementing .-\ rchitecrural Shletons: Reusabili ty and Ex-

tensibility . 79

4.3.2 The Graphics .-\ nimat ion Application: Revisited 91

4.3.3 The Dpamic Execution Mode1 53

4.3.4 Mechanjsrns for Constructing the HTree 85

3 Obtaining Information about Peers Si'

4.3.6 Process-Processor Mapping 89

4.4 Steps Involved in Building an Application 89

5 A Pattern Language 92

5.1 Introduction . 92

5.2 Pattern: Dpamic Replication . 95

5.3 Pattern: Parallel Divide and Conquer 101

5 . 4 Pattern: Data-parallel computation 10s

5.5 Pattern: Hierarchical Composition 109

5.6 Pattern: Pipeline . 110

5 . 7 Pattern: Single process computation 111

5.8 Conclusion . 111

6 Performance Evaluation

6.1 Application Specific Evaluation . 114

6.1.1 PQSRS . 114

6.1.2 2-D Discrete Convolution . 116

6.1.3 Jacobi . 116

6 Application Independent E d u a t i o n 119

6.2.1 Cornparison of Some Basic Primitives trith NP1 120

. . . . 6.2.2 Effect of Granularity on llasrer-Worker Performance 122

6.2.3 Pipeline nith and without Replication 123

6.2.4 Performance of Pipeline with Yarying Granularity 125

6.2.5 Conclusion . 127

7 Crucial Issues. Fùture Dùections 128

7.1 Fundamental Contributions . 128

7.2 Software Engineering Issues . 129

. . 2.1 Reuse 129

. 7.2.2 Genericness 130

. 7.2.3 Flexibility 130

. 7.2.1 Exrensibility 131

. 7.2.5 Hierarchical Development and Refinement 132

. 7.2.6 Separation of Concerns 133

. 2 Composition Csing Patterns 133

. 7.3 Cornparison a i th Related Work 131

. 7 . 4 Future Research Directions 137

- . . a Conclusion 138

Bibtiogaphy

List of Figures

. 2.1 h divide-and-conquer tree 1s

. 2.2 The graphics animation application 20

. 3.1 Application development using architectural skeletons 41

. 3.2 Structure of an abstract module 45

. 3.3 Diagrammatic representation of a HTree -1s

. 3.4 Structure of the animation application 51

. 3.5 HTree represent at ion of the animation application 52

. 3.6 Structure of the Jacobi application 55

3.7 Structure of a stand-alone divide and conquer application 57

. 4.1 Hello World 62

. 1.2 Structure of the animation application 63

. 1.3 Structure of the Jacobi application 73

4.4 High level class diagram behind the design of the shleton library . 79

4.5 High level class diagram for the graphics animation application . . . 81

4.6 High level class diagram after refinement S2

4 . 7 HTree and its traversal scheme . S3

. 5 1 Relationship between skeletons and par terns in the laquage 94

6.1 Speed-up ratio versus number of processors 115

6.2 EfTect of ganularicy on speed-up 11s

6.3 Effect of granularity on performance 122

6.4 Performances of pipeline with and without replication 124

6.5 Performances of pipeline with varying degrees of granularity 126

Chapter 1

Introduction

Patallel application design and development is a major area of focus in the domain

of high performance scientific and industrial computing. In fact. starting from corn-

putarional physics to weather prediction and space applications. parallel computing

is becoming an integral part in several major application domains.

With the advent of fast networks of workstations and PCs. it is now becom-

ing increasingly possible to develop high-performance parallel applications using

the combined computing powers of these networked-resources. at reasonabie price-

performance ratio. Conrrast this to the situation a few years back. where parallel

computing ras confined only to special-purpose pa rde l cornputers. each priced

high enough to be affordable only by major research/academic institut ions. Con-

sequently. high-speed networks and fast general-purpose computers are facilitating

the mainst ream adoption of pa rde l cornpuring.

However. it must be emphasized that parallel computing is cornplex. Complexity

of pa rde l software development has always been one of the major obstacles to the

mainstream adoption of paralle1 computing. Though parailel computers. and lately

multiprocessor workst at ions. PCs and t heir clusters. are becoming more and more

economical and widely a d a b l e . their efficient utilization has b e n an issue of

concern since the d a m of parallel computing.

There are several reasons for the aforementioned complexity in parallel pro-

gramming :

There is no single standard architecture and standard programming model for

parallel computing. Lnlike sequential computers. which follow the \on Yeu-

m a n model of comput at ion. different parallel architectures support different

parallel programming modeis (e.g . . dat a-parallel. dat a-flow . cont rol-pardel.

systolic). Each programming model gives birth to a group of languages. com-

piler~. compilation techniques and a group of programmers proficient in their

use.

Often a parallel algorithm is suitable only for specific types of programming

models. A s a result. algorithms developed for one platfonn are not always eas-

ily portable to other platforms. or ma? not be as efficient on other platforms

if ported.

In the case of parallel progamming. there are added complexities over s e

quential code due to many of the low-level parallelism related details. These

include problem decomposit ion (the identification of pardelism) . dis tribut ion

(the physicd exploitation of the potential pardelism identified by decomposi-

t ion). process/ t hread creation and management. process-processor mapping,

communication and synchronization. data packhg and unpackkg. load bal-

ancing. and architecture- and network-specific low-level details. .As a result of

t hese low-level complexi t ies . par d e l programrning remains an expert's job.

0 In the case of sequential computing. it is possible to predict performance of an

application (e.g.. faster processor and memory access result in better perfor-

mance). This predictability is more difficult wit h parallel cornput ing. There

e'ust s certain parailel programming models (e.g.. implicit dat a-parallelism as

wit h functional languages) which hinder performance predict ion on the part

of the programmer. The actual performance depends on the efficient mapping

of the parallel components over the multiprocessor architecture. and might

depend on the order of e d u a t i o c of the irnplicit parallel components. Cnless

the programmer has explicit control over t hese issues. it is very difficult to cor-

rectly predict performance. On the contraq. explicit control over these issues

results in another set of cornplexities as mentioned before. Consequently. a

suitable compromise regarding h o r much of the low-level details are handled

by the programmer is often needed.

Due to the lack of a standard mode1 of pa rde l computation. there are no

standard methods or tools for developing. debugging or profiling of paral-

le1 applications. Consequently. specialized tools for individual platforms are

often required.

It is often impossible to reuse exist ing sequent ial application code ahile devel-

oping parallel applications. This lad of reusability results in writing every-

thing from scratch. .Uso. porting an existing pardel application to another

platform often requires major modifications to the existing parallel applica-

tion.

Another important issue. which applies to sequential computing as well. is the

programming language. Researchers have been experimenting with different

p a r d e l programming languages and paradigms. Lack of a uaiform lmguage

across sequential and parallel cornpuring platforms results in limited reusabil-

ity of existing code. SIoreover. frequent shifting to new languages or language

extensions and new programming paradigms is problematic. because it often

results in higher learning curves and non-reusable code. It is generally the

case that a group of programmers cornfortable with a specific mode1 and a set

of associated languages and tools find it difficult to shift focus to something

entirely different .

Over the years. there have been numerous efforts to overcome some of the afore-

ment ioned difficult ies. This research focuses on a specific approach to network-

oriented parailel programming that is based on frequently used parallel design pat-

terns.

1.1 Objectivesofthis Research

S tarting with the early days of parallel computing, different abstractions and tech-

niques have been proposed to handle some of the aforementioned complexities. In

this research. we investigate one specific approach to pardel programming that is

based on the use of frequently occurring stnictures for pardelism. These frequently

occurring structures are often called parallel design patterns. Examples of such re-

curring patterns are: static and dynarnic replication, divide and conquer, data

par d e l pattern wi t h various topologies. composit ional framework for irregularly-

structured control-parallel compu t ation. systolic array, pipeline, singleton pattern

for single-process single- ç r multi-threaded computation.

In particular, it is believed that the high-level abstractions provided by such

structures can be used to simpli- the task of building parailel applications and to

promote software reusability together with other issues which are discussed short15

There have b e n other pattern-based approaches in the past. Hoivever most of

them have severe limitations. This research continues the effort to overcome some

of those limitations and to create a more flexible and usable pattern-based parallel

programming environment.

in the following section. some of the different approaches to parallel program-

ming are b r idy discussed. These will be further elaborated in the next chapter.

1.2 Different Approaches to Parallel Program-

ming

There are two main approaches to address the cornplexities of parallel cornputing

mentioned eariier. The first approach is an architectural route that develops a

parallel Von-Neumann machine. i.e.. a universal abstract machine. to ahich a con-

ventionai parallel programming model can be applied with predictable performance.

and that can be implemented on a scalable architecture with a predictable perfor-

mance cost. For instance. the parallel random-access machine (PRALI) model [il]

and the distributed shared memory model [45] take this route.

The second approach is based on high-level parallel programming models that

at tempt to hide the low-level details related to hardware architectures. interconnec-

tion topologies. process and thread creation/mapping, communication and synchre

nization. load balancing. data rnarshaling and un-marshaling. and numerous other

details. Some of them also try to handle the issue of portability across various

architectural platfoxms.

Different models employ different abstraction tediniques such as communication

libraries. rnacros. new parallel ianguages and language estensions. and abst ract

data types. Dependilig on the amount of direct specification of parallel interactions

required from a programmer. these models can broadly be categorized as erplicit.

irnplici t or semi-explicit .

In the explicit models. a user has to explicitly handle d l the parallelisni-related

issues in the software. These approaches can be further classified based on their

levels of abstraction. -4t the lovvest lewl. the user worlis with primitives such as

TCP/IP sockets (441 at a level closest to the hardware. Parallel programming using

sockets is probably as difficult as sequential programming using assembly language.

As a result . higher level parallel programming models and tools have been developed

on top of sockets [27.28.33.72]. This process is similar to employing high level

programming languages to hide the difficulties associated with assembly language

programming .

At the other extreme of the existing parallel programming models. there is no

expiicit specificat ion of parallelisrn in the user-supplied application code. Here. the

user writes sequential code and the pardel prograrnming system. for instance a

parallelizing compiler. explores the parallelism in the code. Parallel code is then

automatically generated by the compiler for the underlying architecture (51. Va-

ious functional programming languages [29] are implicitly parallel, which can be

e-xploited by the associated compilers.

There are other approaches which fall in between the above two extremes and,

therefore. are refened to as semi-explicit parailel programming models. in some

of t hese approaches. the user handes the performance-crucial issues (for instance.

data and task decomposition. resource allocation) and the rest is handled by the

system [21,46.56.63].

CHAPTER 1. IXTROD I'CTIOS

These approaches are further discussed in the next chapter.

1.2.1 Advantages and Limitations

Ali Lgh-level approaches to pardel programming have the obvious adnntages

of reducing some of the difficulties associated with parallel programming. Horv-

ever. many of them have their own limitations. which often overshadow the gains

achieved.

It has been found that the PRAM model imposes unavoidable overhead when

implemented on certain architectures (e.g.. the distributed memory machines. which

are the mos t scalable) . and hence efficient implement at ion on t hese architectures is

impossible.

The parallel programming models. in general. have at least two main objectives:

to provide high-level abstractions to free the user from the low-level details. and

to retain the good performance and flexibili ty generally anilable a i t h low-level

primitives. However. gains in some of these objectives often involve trade-offs in

some other issues. For instance. it is possible to obtain near optimal performance

with hand-crafted parde l code written close to the hardware level. However, as

the abstraction level increases and the more one relies on automatic parallelization,

the performance graduaily degrades unless it is possible to perform some user-level

fine-tuning of the generated code.

Many of the high-level parailel programming approaches are suitable only for

solving a limited range of problems that fit into specific models of pardel corn-

putation. For instance, the success of pardlelizing compilers is limited by the

availability of pardelizable loops inside an application. Similar situations apply to

the func t ional programming languages, many of which are implici tly dat a-pardel.

llost of these languages exhibit implici t parallelism. and consequent ly all crucial

parallelism-related details need to be handled by the language implenienter. How-

ever. someivhat successful implement at ions of t hese languages have been achieved

oniy on shared-memory architectures.

Wit h high-level models. the higher-level of abstraction is often associated [vit h

a deciine in flexibility on the part of the user in application deveelopment. This

means that the user is often restricted to worlcing with high-level abstractions.

without being able to use lower-level primitives like point-tepoint message passing

for customization or better performance. Thus. in most cases. it is impossible for

an experienced user to fine-tune an application or to extend the existing system as

need arises (i.e.. lack of extensibility). In fact . the loss of flexibility is a major issue

that dictates other extremely important issues like usability.

Finally. the l a d of portability of high-Ievel pardel systems across ~arious ar-

chitectural platforms and the non-availability of support tools remain chronic prob-

lems in the area of parallel programming. These and severai other issues are further

elaborated in the nexr chapter.

1.3 An Alternative Approach to Parallel Program-

ming

This research focuses on an alternative approach to pa rde l programming that is

based on the idea of parallel design patterns. In the context of object-oriented

software design. the tenn design pattern is used to describe strategies for solving

recurring design problems in systematic and general ways [25]. In a similar fashion,

parallel design patterns spec* recurring problems in the parallel comput ing domain

and their solut ion strategies.

It has been observed that a large number of parallel applications are based on

commonly occurring control structures and that the' differ only in the application

specific code [9.10] and some other application specific parameters. -4s a result .
it is often possible to achieve a significant amount of separution of specification*.

whereby t hese parallel structures can be generated independent of the application

code. The application code can later be plugged into the generated parallel struc-

tures. An isolated parallel structure or a composition of t hem may constitute the

skeleton of a paralle1 application. i.e.. it embodies the parallel structure of the en-

tire application without the application specific code. Since the generated skeleton

hides most of the lower-level det ails. the developer is freed from the extra burden of

t hese low-level complexi t ies. A design pattern based par d e l programming sys tem

helps the user to generate these parallel structures. A detailed discussion of this

approach c m be found iu the subsequent chapters.

Starting with the late 80s. severd pattern based approaches were studied and

some systems developed. Al1 these approaches use patterns as application inde-

pendent reusable building blocks that hide most of the low-level and error-prone

parallelism related det ails. An important distinct ion in the use of pat tern-concepts

in parallel computing is that researchers here use patterns not oniy at the design

level but also at the implementation level. Accordingly. in the rest of the thesis, the

terminology parallei pattern is used to imply both design- and implementation-level

patterns.

1.3.1 Shortcomings of the existing pat tern-based approaches

Though the idea of design- and implernentation-level patterns holds significant

promise. in practice hoivever. most of the existing pattern-based systenis face some

or all of the limitations mentioned previously e.g.. lack of flexibility. limited to zero

extensibility. Moreover. most of these systems support only a limited and fixed

set of patterns in ad hoc manners. which often results in confusion regarding their

use. Due to the ad hoc nature of their pattern cornponents. pattern composition is

often impossible inside these systems (or possible in very restricted manners). thus

further limiting their use. The ad hoc approach also leads to limited extensibility

SIany of these systems are based on new laquages or laquage extensions. thus

contributing to another bottleneck. Each of these factors limits the usability of a

particular system.

Detailed discussions on some of these approaches and their shortcomings are

postponed till the next chapter.

1.3.2 Contributions of t his research

As opposed to the previous ad hoc approaches. this research proposes a generic

pat tem-based model for fast and reliable development of parallel applications. The

model is generic because it c m be described in a manner independent of patterns

and applications. The mode1 is based on the message-passing paradigm. which

makes it particularly suited for a network of workstations and PCs. Ail of the par-

d e l patterns mentioned previously can be elegantly realized within the frameworks

of the model. The tenn parallel architectural skeleton is used to represent the set of

generic attributes associated with a pattern. An architectural skeleton contains the

necessary ingredients for constmcting application-specific virtual architecture(s).

Toget her with the necessary communicat ion-synchroniza t ion prot ocols. a user de-

velops applications on the virtual architectures.

The generic approach of the Parallel Architectural Slieleton Mode1 (P.WU) helps

in more than one aspects. It helps a user to become familia with the approach.

ahich results from the inherent commonality among the multiple patterns. It helps

in pattern composition. due to the inherent presence of standard interfaces and

protocols. Finally. it helps in designing new patterns. and thus. further estend the

sys tem. -411 these issues enhance usabili t .

Both low-level message-passing (something similar to PVJI [27.21] and MPI [35.

721) high-level patterns are encompassed wit hin the framework of PAS M. Support

for the lorv-level primitives. in conjunct ion nit h the hi&-level patterns. substan-

tially enhances a user's flexibility in application development (a user has the options

of using existing patterns. or developing applications from scratch using the low-

level functionalities. or designing new patterns to incorporate into the system if

need aises).

PASM can be well represented through the object-oriented style of design and

implementation. An object-oriented and library-based implementation of the mode1

in C++. using JIPI as the layer underneath. is complete without necessitating

any language extension. The generic approach in conjunction with the object-

oriented and library-based implementation facilit ate extensibility. i.e., new pat tems

can be added to the system by an experienced user without requiring any major

modifications t O the exis t ing repert oire.

Hierarchical pattern composition is an integral characteristic of the mode1 that

facilitates hierarchical refinement. -4 pattern can be stand-alone or it can be con-

tained inside another pattern. This capability enables multiple patterns to work

together based on a generic scheme. Support for hierarchical design and low- as

well as high-level protocols provide added flexibility not found in esisting parallel

systems that aim to support design patterns.

Lady from the software engineering perspective. desired software qualities such

as szparation of c o n c e m and software reusability are some of the basic features of

PASM. Software engineering related aspects of the model are discussed in a Inter

part of the thesis.

1.4 Organization of the Thesis

The next chap ter furt her elaborates the different approaches to pardlel cornput ing

and discusses some of the existing pattern-based approaches in some detail. Chap-

ter 3 introduces the architectural skeleton model and illustrates the idea behind the

model nit h several examples. Chapter 4 discusses an ob ject -0riented implement a-

rion of the mode1 and revisits the examples discussed in chapter 3. Chapter 5

revisits the model frorn the perspective of a pattern language and it also serves as

a catalog of patterns. Chapter 6 discusses the Larious performance measures of the

framework that implements the model. Finaile chapter 7 discusses several crucial

software engineering related aspects of the mode1 together with its cornparisons

with other related works and various other issues that need to be considered in the

future evolutions of the work.

Chapter 2

Patterns in Parallel Computing

The term design pattern has been used ')y different researchers in different application-

domains and at different levels of abstraction. For instance. one of the most promi-

nent contexts in which design patterns art freqrieutly applied is in the domain of

object-oriented (abbreviated 00) software design. Here. design pattems imply

recuning design problems in the 00 paradigm and their solution strategies [25].

These 00 pattems are not pre-implemented code in some particular language.

Rather they document the methodologies for soiving recurring design problems in

systematic and general ways. The 00 pattems need to be implemented (or. re-used

from existing code rvith modifications based on the application's context) each time

they are applied.

There are also patterns and pattern-based development tookits in the domain of

network-level distributed programming. For instance. ACE (the Adaptive Commu-

nication Environment) [jî] is an 00 toolki t t hat implements various network-level

pattems to simplify the development of concurrent. event driven communication

softwue. The design and implementation of X E is based on fundamentd corn-

munication software design pat tems [SS] . The -Par tern Laquages of Program

Designn series of books 1371 are good references covering pat r ern-relat ed t opics for

a diverse range of disciplines.

In the parallel computing domain. design-pattern related concepts have b e n

employed as early as in the late 80s. Different researchers have used different terrni-

nologies for descri bing similar concepts . However , different t errninologies descri be

patterns at different abstraction levels. and they are often based on completely dif-

ferent methodologies. For instance. the term design pattern has been used to denote

commonly occurring parallei or distributed computing abstractions [64]. Some other

authors have used t e m s like programming paradigm [9]. algotithmic skeleton [IS]

or template [62] to denote similar ideas. Different researchers have used patterns

at different levels of abstraction. For instance, templates in [62] have completely

different functionalities from the so called patterns in 1611. nhich is evident in a

later part of this chapter. Different approaches employ different rnethodologies

for abstracting patterns. For instance. the aigorit hmic-shleton Stream of research

treats patterns as algori t hmic abstractions realizable as high-order functional con-

structs with associated cost functions. There are even variations inside the same

research-stream. For instance, different authors have formulated their own versions

of algorithmic skeletons. a cornparison of which can be found in (141.

As an important distinction with the abstract-level 00 design patterns in [25],

most researchers in parailel computing have used patterns not only at the design

level but also at the implementation ievel. Le., the design-level patterns are also

pre-implemented. This approach is similar in concept to a frurnevork [40] from

the Software Engineering perspective. The Software Engineering aspects of this

research are discussed in the later part of the thesis.

In this thesis. the terminologies paralle1 pattern and pattern are used interchange-

ably to imply recurring design- and im~lementation-level patterns in parallel corn-

puting. unless otherwise specified (e.g.. 00 par tems to imply design patterns in the

object-oricnted context). Examples of suc. recurring patterns in parallel computing

are: static and dynamic replication. divide and conquer. data parallel (tvith various

topologies). pipeline. compositionai framework for irregularly-struct ured cont rol-

pa rde l computation. sys tolic arrays. and singleton (for singie-process. single- or

mult i-t hreaded comput ation) .

-4s the exampies in the previous paragraph suggest . a pattern in parallel corn-

put ing is an application independent abstraction wi t h associated structural and

behaviord components. The same pattern applies to a wide range of different

parallel applications. In other words. distinct p a r d e l applications are found to

possess identical structural and behavioral charactetistics. and hence can be said

to follow an identical pattern of paraliel computation. One of the structural corn-

ponents might be the interconnecting topology of the various sequential-computing

elements constituting the parallel-computing structure. At the same time, the be-

harioral componenrs specify the unique behaviors associated with the structural

components. For instance. a 2-D mesh for data-pardel computation and a systolic

anay might look identicd from the structural perspective. but they have clearly dis-

tinct behaviors. Evidently. behavioral components play important roles in defining

a pattern.

The presence of the same generic structural and behavioral components in a

nide range of applications results in a number of beneficial aspects. First. each

component can be studied in detail and its various properties can be recognized

and documented for future use. .4ccordingly. the second time such a pattern is en-

countered. one does not have to start from scratch. Second. it is possible to abstract

the application independent components associated with a pattern and implement

CHA PTER 2. P-4TTERSS IS P-4R-4 L LEL COJIP L'TISG 16

them as reusable modules for use in different applications. These reusable modules

hide most of the lorv-level parallelism-related details te-g.. problem decomposition

and distribution. process/thread creation. process-processor mapping. load baianc-

ing, communication and synchronization. data rnarshaling and un-marshding. ac-

tuai hardware architecture and topology) and thus enable the user to concentrate

more on the application. Moreover. these prepachged modules are tesred to be

reliable. provided they are used correctly. Thztd. as already mentioned. the generic

components are application-independent . Consequent ly. a clear separation of spec-

ification can be achieved. whereby it is possible to generate (and compile and run)

the code-skeleton of an application. which is devoid of q application code. Such

a clear separation not only Liberates the user from the additional burden of the

applicat ion-independent details. but also facilitates the reuse of sequent ial code

segments of an application. -4s is illustrated later on. a parallel application can

be viewed as a restructuring of the original sequential code with embedded paral-

lelism constructs. With proper restructuring. it might be possible to reuse sizeable

portions of the original sequential code.

The following examples further elaborate the concepts behind parallel patterns.

2.1 Example 1: Divide and Conquer

As a h t example. let us consider the davide and conper pattern. It is encountered

in a large number of applications. starting from various sorting algorithms (e.g..

merge and qui& sort) to graph and matrix multiplication algorithms [%]. An

algorithm that follows the divide and conquer pattern can be divided into two parts:

(1) Divide: (recursively) divide the problem to be solved into smaller subproblems,

except for the base case where the subproblem is directly solved by applying some

suit able algorithm without an'* further sub-di\-ision. (3) Conquet: the solution to

the original problem is formed by combining the solutions to the subproblems.

.As can be seen in the previous paragraph. it is possible to describe the generic

divide and conquer pattern. without even considering a specific application. In

ot her words. i t is possible to abstract the high-level applicat ion-independent corn-

ponents of the pattern. It is now possible to dig further to sub-classify the high-level

application-independent components. First let us identify one of the structural corn-

ponents: topology. It can be seen t hat repeated division of the problrm into smaller

sub-problems results in a tree-structured topology (refer to Figure 2.1). The origi-

nal problem is input and output at the root of the tree. For each node of the tree

during the divide phase. if the node is a leaf node (in other words. the base case)

then the problem is solved applying some suitable algorithm: else the problem is

further sub-divided and distributed to the children of the node. At each non-leaf

node of the tree during the conquer phase. results from the children are combined

to output the final result.

As one of the behavioral components. the tree can be static (independent of the

base case and the problem size) in nature or it c m be dynarnic. i.e.. grows in size

topdown starting from the root of the tree during the divide phase. and shrink in

size bottom-up towards the root of the tree during the conquer phase (Figure 2.1).

ParalleLisrn is obvious. i.e.. each node of the tree can be an independent process or

thread. Hoivever. it should be mentioned here that the type of pardelism achieved

in divide and conquer is restrictive. and hence. not very efficient (e.g.. during the

conquer phase. each node in the tree has to wait before getting the results from aLl

its children. ahich results in inefficiency).

Another behavioral component is the communication-synchronization pattern

between the different nodes of the tree. The following hi&-level algorithm sum-

k g en&: - Divide Phase
t-- Conquer Phase

.A dynmic Divide-Conquer tree of width 2

Figure 2.1 : -4 divide-and-conquer tree

marizes the computation and communication involved at each node of a dynarnic

divide and conquer tree:

Input: d a t a of s i t e N.
Output :

s top 1.

s t op 2.
s t o p 3.
s t e p 4.
s t e p 5.
s t op 6 .

d a t a of s i z e U .

If t h e base condi t ion is met, then process d a t a s equen t i a l l y and
goto s t op 6 , else
d iv ide da t a i n t o K s u b p u t s based on soma c r i t e r i o n .
d i s t r i b u t e t h e K subparts t o K ch i ld ren .
c o l l e c t r e s u l t r from t h e K ch i ld ren .
combine r e s u l t a t o produce t h e f i n a l output .
output r e s u l t .

In the preceding algorit hm. communication is involved during the input and the

output (step 6) phases of each non-root node. Moreover. there is communication

involved with each non-leaf node during steps 3 and 4. The rernaining steps involve

sequential computat ion.

cntil now. it has been possible to explain the pardel divide and conquer pat-

tern without resorting ta any specific application. -4s is shown in a later part of

the thesis. it is possible to abstract and implement the ~ar ious structural and be-

havioral components associated with the divide and conquer pattern in a generic.

application-independent manner. as re-usable module(s). The applicat ion-specific

components can later be plugged into the generated structure. Where do the

application-specific components fit? Various divide and conquer applications differ

from one another in the data-types and data-structures used. and in the actions

during step 1 (the base c w and the sequential algorithm applied). step 2 (the

data-division algorit hm) and step 5 (the dat a-combining algorit hm). Clearly. t hese

are the places shere the applicat ion-specific component s fit -in.

The next example illustrates a case where more than one pattern is applied in a

single application. The example uses two patterns. namely pipeline and replication.

and also illustrates the concept of nfinement. which is described in a later part of

the t hesis.

2.2 Example 2: A Graphic Animation System

This example demonstrates the use of pattern-based methodologies in the system-

atic development of parallel applications. Let us consider a graphics animation

program consisting of three modules: Generate. Geometry and Display 1631. The

program generates a sequence of graphical image-frames. Depending on the sub-

ject of animation. Generate computes the location and motion of each object for

each frame. It then passes the frame to Geometry, which performs actions such as

viewing transformations. projection and clipping. Findy. the frame is passed to

Display. which performs hidden-surface removal and anti-aliasing, and h d y saves

the frame on the disk. The whole process repeats with successive hames, thus

lieeping the pipeline full during successive iterations.

The simplest a- CO parallelize this application is to use a 3-stage pipeline

pattern and then to plug in the code for the t h e sequential modules into the three

pipeline stages. as ilhstrated in Figure 2.2(a). Based on the particular method

of impiement at ion. modifications might be necessary in each sequent i d module t O

interact with the next stage. Other than that. the core of the sequential code

remains intact. Rien the pipeline is full. each stage works on a different frame at

an instant.

A 3-stage pipeline pattern 3-stage pipeline composed wich tcpt ication

(a) (b)

Figure 2.2: The graphics animation application

It is generally the case that the Display module. which performs actions such

as hidden surface r e m o d and ami-aliasing is the most time intensive of the thiee

modules. This d l slow down the entire pipeline. One way to resolve this bottle

ne& is to replace the stage 3 of the pipeline with a replication pattern. where as

many copies of h p l a y are dynamically created as needed (refer to Figure 2.2(b)).

Consequently. each replicated Drsplay module is working on a difTerent frame. and

this should speed up the entire application. It is interesting to note that the two

applications remain the same in tenns of functionality. but oniy differ in te- of

the patterns they use. The application codes for stage 1 and 2 remain unchangrd.

i.e.. the modules Generate and Geometry remain untouched by this change. This

type of localized replacement is called refinement. The esample also illustrates the

possible involvement of multiple patterns in a single application. This esample and

the idea of refinement are re-visited in a later part of the thesis.

Cntil now. patterns have been illustrated from the architectural perspective. i.e..

patterns consisting of pure structural and behavioral components. Others have also

investigated pat tems from the algorit hmic perfective (e.g.. the algorithmie deletons

research. to be discussed later in this chapter). The next example illustrates this

perspective.

Example 3: Algorithmic Patterns

familiar with any sequential programming language is

knowingly dealing wi t h man? of the sequent ial comput at ional

knowingly or un-

patterns. For in-

stance. let us consider the whde Zoop in any of the imperative languages. In one

sense. it is a computational pattern (may be used for both sequential and implicitly

parallel loops), which c m be described in an application independent manner as

follow s :

Irrespective of the application code. all while loops follow this particular pattern.

In fact, any sequential programming language is made up of a collection of such

usefid pattems. which in effect determine the strength and the applicability of the

language to a wide range of applications.

Can a sirnilas technique be appiied to develop a universal parallel languoge

consist ing of ali useful parallel algorithmic par tems captured at the high-level lan-

guage? This is a good proposition. hotvever with no convincing solution till this

moment. The diversi t y of parallel algori t h m . models. and the underlying archi tec-

tures are some of the factors to blame. However. the approach is tvorth ment ioning.

One convenient way to express parallel algorithmic patterns is found to be

through the use of high-order. p o l p o r p hic functional cons t ructs. A high-order

function is one tvhich can take other functions as its parameters and can return

another function. .As an example. let us consider the polymorphic function map.

ahich takes another function f as its parameter to return the function rnap f:

f:a -> b
(map f 1 : Cal -> CbI

Here f i s a function from a tu b. where a and b can be any types. e w n identical.

The resdt of applying rnap to f i s the function map f. which takes a list of elements

of type a as its argument and returns a list of elements of type b. The effect of rnap

f i s to apply f to ewry element of the argument-list and to place the result in the

corresponding place in the result-list. The function rnap is polymorphic because

f can be any suitable single-argument function. For instance. let us consider the

following :

square : int -> int
(map square) : Cint3 -> tint1

In the above. the function map squan squares all the elements of an integer-Iist.

The type of rnap can be mathematicdy expressed as follows. which states that rnap

talies a single-argument function as its parameter and retunis another function:

-4s can be seen. there is implicit data parallelism in the function mup fi. Le.. the

same function f i s being applied to different data-elements in the argunient-list. In

addition. the representation of the type of data-parallelism through map is coni-

pletely architectureindependent. i .e.. the previous represent at ions have no reference

to the underlying architecture (and applies to a sequential architecture as well).

Such types of suit able high-order polymorphic funct ions. which c m convenient ly

express parallel computational patterns of some sort. are traditionallu called algo-

rithmic dceletom. Clearly. high-order pol ymorp hic func t ions are most conrenient ly

realized using the various funct ional programming languages. Horvever. conven-

tional imperative languages can also be used to represent higher-order functions. in

which case they are irnplemented as program- or procedu~d-templates [lS].

To concliide this discussion on examples. let us illustrate the already discussed

divide-and-conquer pattern as a high-level functiond construct . the same way it

is represented in [IS]. Here. D-C stands for the high-order polymorphic function

representing divide-conquer. and P stands for the problem of type prob:

D-C i n d i v i s i b l e s p l i t j o i n f = F
uhera F P = f P. if i n d i v i s i b l e P

= jo in (map F (s p l i t P l) , o theruiss

where ,
i n d i v i s i b l e : prob -> bool

f : prob -> s o l
s p l i t : prob -> lprobl

jo in : [roll -> s o l
F : prob -> s o l

mrp : (prob -> s o l) -> (Cprob] -> [sol])
D-C : (prob -> bool) -> (prob -> Lptob])) -> ([sol] -> s o l)

-> (prob -> r o i) -> (prob -> s o l)

.AU functions except D-Cand map are application specific and need to be Wed

in by the user in some suitable base language. which need not be the same as the

high-level functional language in tvhich the aigorithmic skeleton is defined. This

discussion on algori thic skeletons is re-visited in a later part of the chapter. Sow.

before proceeding further, let us briefly discuss some of the existing approaches to

parallel cornput ing .

2.4 Exist ing Approaches to Parallel Programming

-1s is discussed in Chapter 1. the different models for parallel programming can be

broadly divided into explicit. implicit and semi-explicit categories. Different models

employ different levels of abstraction in an effort to hide the low-level details and. in

order to achieve this. they use different abstraction techniques (e.g.. communication

libraries. rnacros. new parallel languages and language extensions. and abstract data

types) .

The different models falling into the explicit category can be further sub-classified

based on t heir levels of abstraction. At the lowest level, which is closest to the hard-

ware architecture. we have something similar to the TCP/IP sockets [Ml. Sochts

are the most difficult to use. but are the most flexible. Working with sockets is anal-

ogous to working at the assembly-language level. At a slightly higher level, we have

the message passing libraries (MPL) and remote procedure cal1 (RPC) [il packages.

which abstract lower level socket cornmunica t ion. Two standards have emerged for

MPLs: the de facto standard PVM [27.28] and the proposed message-passing in-

terface (MPI) standard [33.72]. Both standards are supported on many platforms.

Most operating systems support some variants of RPC. Both MPL and RPC are

quite popular among the parallel programming community. However. they are still

a loft* level of abstraction and a programmer still has to taclde many lower-level

det ails before correctly nuuiing his application. Consequent ly, ot her high-level sys-

tems have been built . including the system based on this research. on top of these

packages with ~arying degrees of flexibility. These systerns can be categorized from

explicit to semi-esplicit (e.g.. Frameworks [61]. Tracs [6]. PCL-TL-F Library [;O]).

In the implicit models. parallelism related aspects are completely hidden from

the user. One approach is through the use of parallelizing compilers. which esplore

the presence of implicit parallelism in sequent id code. Different compilation tech-

niques for high performance computing are discussed in detail in j j] . Ideally given

a sequential program. a parallelizing compiler is supposed to generate an efficient

parallel program for the underiying architecture. However. the utili ty of current ly

available techniques for parallelizing compilers is limi ted by the fact t hat it can only

deal with the parallelization of loops. which results in data-parallel applications. If

an application involves control parallelism or if recursion. d p a m i c data structures

or pointers are used. the present technology of parallelizing compilers is inadequate

to automatically generate parailel programs from sequential code. Moreover. often

the data partitioning generated by pardelizing compilers may not be as efficient

as created by an expert programmer.

Another approach towards implicit parallelism is through the use of the differ-

ent existing functional programming languages [29]. Such implicit parallelism is

already illustrated in some of the examples in the previous section. e.g.. map and

D-Cfunctions. Honever. in practice. the eqxessive power of these languages to rep

resent the different existing parallel programming modeis is very limited. Besides,

somewhat efficient implementations of some of these languages exist only for the

shared-memory architectures [4l. 67). The theoretical work in [13] shows t hat no

f d y automatic scheduling strategy for functional languages on distributed-memory

machines can ensure good performance. unless the processes can somehow migrate

from one processor to another.

h the semi-explicit category. user t &es care of the difficult parallelism related

issues. the rest is handled by the system. for esample: High Performance Fortran

(HPF) [46] and Fortran D [38]. Both approaches follow the data-parallel model

of computation. The user specifies the most crucial parts of parallel application

development. e.g.. the vinual architecture and the data decomposition st rategy.

and the rest is handled by the semi-automatic compiler and the run-time systeni.

Like automatic parallelizing compilers. the utili ty of these approaches is limited by

the availability of parallelizable loops resulting exclusively in dat a-parallel cornpu-

t at ions.

Several variations of the algori t hmic-skeleton approach (refer t O the previous

section) are also semi-explicit . For instance. in the algorit hmic-skele ton approach

taken by Darlington et al [XI. critical issues like ressource allocation are documented

for each skeleton/machine pair and are addressed explici tly during implementation

in an interactive manner.

The Linda model [lj] introduces the concept of shared tuple-space between

processes. and based on individual perceptions it can fali anywhere from implicit

t O semi-explicit categories. Toget her wit h a few t uple-space operat ions, Linda is

a powerful pa rde l programming model from the theoretical point of view. How-

ever, from the practical stand-point , implement ation of the shared tuple-space in a

distributed-rnemory architecture results in considerable communication overhead.

Another weakness of Linda lies in the fact that it completely hides the cost of

computation from the programmer. because nothing can be assumed about the re-

sponse tirne of t uple-space accesses [67]. Implement at ion(s) of Linda over popular

language platforms exist [43]. Irrespective of the weaknesses, the idea of tuple-space

is an interesting one and is borrowed by some of the industrial tool-kits for building

distributed applications (241.

T here exkt numerous ot her high-level par alle1 programming models and sys-

tems. which are not based on the data-parallel paradigm. and can be classified into

the semi-explicit category. In these approaches. the user takes care of critical issues

like data partit ioning and mapping. The associated models provide funct ionali t ies

to handle the rest of the cornplexhies. Several of these approaches. cvhich are based

on C++ or its extensions. are discussed in [XI. Several pat tern-based systenls are

also semi-explicit. Some of these systems are discussed in a following section.

2.5 Motivation for Pattern-based Approaches

irrespect ive of whether it is communication libraries. macros. language estensions.

parallelizing compilers. or application specific parallel libraries. a l l of these a p

proaches intend to provide a higher l e ~ e l of abstraction to malie the ta& of devel-

oping parallel applications easier by hiding the low-level details. However. al1 these

efforts corne wit h certain cost. and hence. there is always a trade-off involved. For

instance. higher-level models make programming more restrictive (i .e.. the program-

mer often loses flexibility in application development). Moreover. most high-level

models are applicable only to a limited spectrum of parallel computing models (e.g.,

a good nurnber of them are data-parallel).

Like any ot her high-level approach. the pat t em-based approaches also have

the same incentives and also f d into the trap of the similar trade-offs mentioned

before. However. as compared to the other approaches. patterns have the potentid

for attaining the following additional objectives:

Re-usability: Pattern-based approaches favor two types of reuse: reuse of

application code and reuse of code for patterns (i.e.. code-skeletons). One

main intention of al l pattern-based approaches is to be able to reuse enist-

ing sequential code. instead of rewriting parallel applications from scratch.

Patterns are appiication-independeut abstractions. It is possible t O generate

code-skeletons for patterns and then plug in application-specific code insidr

these skeletons. This clear separation (also known as separation of speczjica-

tions) might enable large segments of existing sequential code to be reused.

because most parallelism-related constructs are abstracted inside the code-

skeletons. Moreover. each pattem is itself a reusable component. realized as a

pre-implemented code-skeleton. which CM be reused in different applications

that follorv the same pattern.

Problem decornposition and distribution: Problem decomposition means

identifying the parallel components in a problem. $*hile distribution deah

with the suitable distribution of these parallei components to the under-

lying architecture. Through the use of patterns. the parallel components

are already identified. e.g.. in the divide-and-conquer tree. each node of the

tree is a pardel component. Accordingly. a suitable architecture-specific

distribution strategy for t hese par allel components. in or der to minimize

communication-synchronization overhead. can be laid-out by the implementer

in an application-independent manner. Thus, by selecting a particular pat-

tern. the programmer has selected a specific problem-decomposition and dis-

tribution strategy [18].

Usability: Design patterns might simplify complex problems by letting de-

velopers approach them at a higher level of abstraction. Together with a

thorough study and documentation of each pattem, it might be possible to

reduce the time to understand a pattem and to use it properly. In fact, what

t his research demonst rates is the feasi bili ty of a nell-defined. hierarchical-

development model for sys t emat ic development of parallel applications.

Correct ness: The reusable code-skeletons for patterns can be well tesred.

This reduces the probability of erroneous code. provided patterns are used

correct.. Y ost parallelism related and error-prone issues are hidden inside

the code-skeletons. Consequently. the developer cm spend more time in the

application-specific issues.

The next section presents an overvier of some of the existing pattern-based

systems and similar approaches.

2.6 Some Exist ing Pat t ern-Based Approaches

The pattern-based approach to parallel programming is not new. It was applied in

the late 1980s in systems like CODE [11.12] and FrameWorks [60-631. Some recent

systems based on similar ideas are CODE2 [12]. Enterprise [56.63]. HeYCE [12],

PCGTCF [TOI. Tracs [6]. DPnDP [64-66) and COz P3S [lï]. In [20]. the authors

take a similar approach from the functional programming viewpoint (based on the

functiond language called FP. first introduced by Backus in late 1970 [4]). Simiiarly.

in [22]. the authors take their approach based on a high-level parallel programming

language c d e d Strand [23], which is similar to any logic programming language

that uses guarded des. Both model programming [9.10] and Archetypes (161 em-

phasize the use of patterns from the viewpoint of education. documentation and

example implementations. In the work by Pandey et al [53], the authors propose a

concurrent programming model and a programming language (e.g., CYES-C++),

which emphasize the idea of separating computation from communication and syn-

chronization thar could facilitate extension and modification of prograrns (siniilar

to the idea of separation of spec2fications. mentioned previously).

Some of these approaches are briefly discussed next from the point of view of

their design philosophy. and definition and implementation of pattern-concepts.

The systems surveyed here often have ot her contributions to parallel comput ing.

ot her than the use of pat tems. Hoivever. t hey are analyzed from the perspective of

the use of pat tern-related concepts in t heir programming models.

2.6.1 Code

CODE(Compu tat ionally Oriented Display Environment) [Il . 121 \vas developed at

the University of Texas at Austin in the iate SOS. It is one of the pioneers of the idea

of separation of speczfications. by allowing a two-step development process. During

the first step. programmers design the mrious sequential cornponents and then. in

the second step. compose them into a pa rde l structure. It uses visud program-

ming techniques to aid the programmer gaphically develop a pa rde l structure

through the use of nodes and arcs that represent computations and interactions

respect ively. The programmer subsequently configures the nodes and arcs using

textual annotations. following specific d e s . in the graph. The sequential code c m

be deveioped in C or Fortran.

CODE follows a data-flow mode1 of computation, where each node can begin

computing only when data is available on each of the arcs incident to it. There is,

thus. one obvious pattern in CODE. which is a composition of the various nodes and

arcs interacting in a data-flow manner. Each node in CODE can itself be another

data-flow graph. Thus. it supports reuse of other data-flow graphs by allowing

2.6.2 Fkameworks

Frameworks [60-621 !vas developed at the University of Alberta in the late SOS.

It was specifically designed to restructure existing sequential programs to esploi t

parallelism on wotkstation clusters. .\ccordingly. one of its main emphases &vas on

the reuse of the existing sequential code. The Frameworks programming model

supports separation of specifications by segregating the application specific sequen-

tial code from the parallel structure of the application. d i c h can be developed

separately.

Patterns in Frameworks are called ternplates. which are at a different level of

abstraction than the parallel patterns mentioned previously in this chapter. In the

Frameworks programming model. an application consists of a set of modules that

interact with one another via calls similar to remote procedure calls(RPCs). These

c d s can be blocking or non-blocking. Messages between modules are in the form

of user deiïned frames. which are C structures except that pointer types are not

allowed. Each module consists of a set of procedures. one of which is the entry

procedure and is the only procedure called by other modules in the application. A

module dso contains local procedures. cdable only rithin the module. -4 module's

complete interconnection with other modules are specified by an input template. an

output template. and a body template. An input template specifies the scheduling

algorithm for incoming RPCs. an output template specifies scheduling algorithm for

outgoing RPCs. and the body template specifies how the body behaves. either as a

single node or as a replication. Developers create modules by selecting appropriate

templates and application procedures. Arbitrary process graphs can be created by

interconnecting resulting modules. Each module is written in an esrension of C.

augmented by features to support remote procedure calls.

Frameworks is aa early system that successfully exploited the idea of using corn-

monly occurring parallel structures in pa rde l application development and inspired

the development of another pattern-based system called Enterprise. discussed nest.

2.6.3 Enterprise

Enterprise [56.63] was developed at the University of Alberta and is a successor to

Frameworks. It is not just a parallel programming tool. it is a complete parallel

programming environment with a complete tool set for parallel program design.

coding. compiling. executing. debugging and profling.

There are a number of improvements in Enterprise over Frameworks. Patterns

in Enterprise are at a much higher level of abstraction than in Frameworks. The

three-part templates in Frameworks are combined into single units in Enterprise

and are called cwsets. which are named to resemble operations in a human organi-

zat ion. For example. the asset named department represent s a mas ter-slave pattern

in the traditional parallel programming terminology. A k e d collection of assets

is provided by the system. which can be combined to create an asset diagram to

represent the parailel prograrn structure. Each asset is associated with a piece

of application code consisting of procedures with sequential flor of control. This

separation of specifications is much stricter in Enterprise than in Frameworks. As-

sets can be hierarchically combined to form a parallel prograrn. Enterprise d o w s

the use of pointers as parameters and the system takes care of marshaling and

un-marshahg of data. Features lilie futun variables enable more concurrency. .4

number of other features and tools improve the usability and portability aspects of

the system.

Like FrameIVorks. Enterprise provides a fked number of hard-coded par terns

for application development. The patterns are built into the sysrem and work w l l

in combination r i t h each other. However. there is no easy way of introducing

new pattems without performing a major modification to the system. Beides.

both Frameworks and Enterprise offer their own high-level models for application

development . which users often found too restrictive and inflesi ble 1631.

2.6.4 Hence

Hence (Heterogeneous Setwork Computing Environment) was developed at the

Cnirersity of Tennessee [El. It is similar in purpose to Code. and uses similar visual

progamming and separation of specification techniques. However. unlike the data-

flow graphs in Code. graphs in Hence depict control-floa*. Hence supports patterns

supporting replication. pipeline. loop and conditional constructs. It uses PVM

undemeath and runs on a network of Cnix machines. The sequential procedures in

each node are written in C or Fortran.

It was obsenred that Hence is much easier to leam and use as compared to

Code. However. experience showed that it might not be flexible enough to express

more comples parallel aigorithms [12]. In these respects. Hence suffers from similar

limitations (e.g.. lack of flexibility and extensibility) as FrameWorks and Enterprise.

Tracs [6] was developed at the Cniversity of Pisa. and it provides an elegant graph-

ical user interface for developing message-passing pardel programs. It uses sepa-

ration of specifications. similar to the ot her syst ems descri bed previously.

Tracs is based on the message passing programming model. In this model. at a

given instant. a set of applications may be riinning. each comprising of one or more

tasks. A task can interact with other t a s h primarily via a service. a mechanism

simiiar to a remote procedure c d . Tasks belonging to the same application can

also communicate via a low-level mechanism. either synchronous or asynchronous

point-t+point communication via uni-directional channels. Each task is context-

insensitive. meaning that its code does not depend on which tasks it interacts with.

or which host it is placed on. The laquages supported are C. C++ and Fortran.

Application development is composed of tivo distinct phases: the definition

phase and the configuration phase. In the definition phase. the user defmes the

three basic components of an application: the message model. the task model and

the architecture model. -4 message model defines a template for the structure of a

message. An application has a collection of such message models. which have to be

identified during this phase. The second component. a task model. is a complete

description of a task. starting from the laquage to be used. ports. services and

message models used by the ta&. etc. The architecture model defines the software

architecture of the pardel application in terms of fonnal message and task models.

An architecture model defined during this phase can be saved in a user-defined

library for latter use.

During the configuration phase. the programmer constructs the complete a p

plication from the basic components. either defined during the definit ion phase or

selected from the system libraries or both. The libraries are composed of two parts:

the user-defined libraries and the libraries supplied with the environment. If every-

t hing is selected from the libraries. the definition phase can be skipped. Separation

of the development process into the two distinct phases is exactly the separation of

specifications issue discussed earlier. An elegant graphical user interface aids visual

deveiopment of an application during both the phases of developrnent.

Patterns in Tracs are actually the architecture models. constructed from formal

message and taçk models. defmed during the definition phase of the development. It

supports the notion of extensibility of the system. unlike the ot her systems described

previously. by dowing the user to define and save an instant iatzd pattern for future

use. However. Trac's way of realizing extensibility and re-usability has several

limitations. First. the cornpiete graphical definition of a pattern from the two basic

components. message and ta& models. has limited scope. For instance. t here is no

elegant way t O define a d ynamically creat ed divide-and-conquer tree grap hically.

Second. the graphical model does not support the creation of some very useful

patterns: for instance. a pattem that uses peer-tepeer interaction as in a data-

parallel mesh. Thus. an application needing a data-parallel mesh for its solution

is generally out of its scope. Third. the patterns that can be defined and saved

gaphicdly are non-parameterized. and hence. are not generd. For instance. the

user can visually instantiate a 5-daue master-slave pattern and Save it for future

use. but not a general master-slave pattern. which is more elegant and useful as a

re-usable component .

2.6.6 DPnDP

DPnDP [65.66] %vas developed at the Lniversity of Waterloo with an intention to

handle two of the major limitations of some of the previous pattern based systems:

la& of dexibility and closeness (i.e.. non-extensibility). The DPnDP model pro-

vides four basic components: nodes. ports. channels and message handlers, from

which an application can be developed either textually or graphically. The pr*

gramming model supported is similar to a client-semer type model. -4 node can

either be a singleton. containing sequenrial application code. or a design patteni.

Design patterns like master-slave. pipeline. and replicat ion were incorporated int o

the system library and could be used as reusable components. It applies a two

step development process. similas to the other systems described previously. and

thus separates most of the parallelism related issues from the sequent i d application

code.

Though DPnDP was intended to be a flexible and extensible pattern-based

system. where new pattems could be incorporated into the system by a user as per

requirements. these intentions were not fulfilled. This failing can be attributed to

the following limitations of the model. First . in DPnDP. each pattern is modeled as

a senrer processing requests in first-corne-first-served order. This single scheduling

technique. based on the client-server paradigrn. reduces the generality of the model.

Second. although each design pattern is modeled as a server. the approach advocates

message passing to access the low-level primitives. The model is quite unclear

about the separation betvveen these two types of interactions. Third. and this is

a major limitation. although DPnDP provides a methodologv for defining a new

design pattem for estending the library the definition only dows one to create

the desired structure of the design pattern. The provision of interaction primitives

among the various computing modules. which brings in the behavior. is not included

in the methodology. Fourth. the DPnDP model does not speci- the constituents

of a pattem and its interfaces with other pattems. With this lack of information,

the designer is uncettain regarding how to design and add a new pattems to the

system without affect ing the rest . substantially hampers the extensibility of

the approach.

Although DPnDP did not meet its goals. it did provide a good learning experi-

CHAPTER 2. P-4TTER.U IS PAR-AL LEL CO.\fPI'TISG 37

ence and also set up the stage for further research into the area in order to overconie

some of its major limitations.

2.6.7 Archetypes

Concurrent program archetypes aas a project at the California Institute of Tech-

nology [16.17]. -4s mentioned in [17] - A concvment program archetype ai& in

the development of reliable. efficient. parallel applzcatiorw with comrnon cornputa-

tion/communication &ucture b y providing development rnethod* and code-lzbraries

specific to that structure ". An archetype is a collection of three components: a

method of problem soiving for a restricted class of problems. a program design

strategy associated with this method, and a collection of tutorial example applica-

tion progarns in different laquages and ru- t ime systems. and on different target

architectures for each application.

The work on Archetypes so far has not proposed any software tool or mode1

for parallel application development. Rather. the emphasis is on understanding the

commonl y used parallel structures via example implement arions and document a-

tion. so that the knowledge can be conveyed in a systematic manner.

2.6.8 Mode1 Programming

The work by Per Brinch Hansen [9.10] focuses on similar ideas in the domain of

scientific computing. IR the author's words. a programming paradigm is a class

of algorithms that solve different problems but have the same control structure.

The work studies a number of such paradigms. for instance: all-pairs pipeline, the

multiplication pipeline. the divide and conquer tree. the divide and conquer cube,

pardel Monte Car10 trials and the cellular automata.

CH-IPTER 2. P-ATTERSS IS P=IRAL LEL COJPL'TKG 3s

For each paradigm. a general program is writ ten t hat defines the conmon coot rol

structure. Such a program is called an algonthmic skeleton. a geraenc program.

or a program template. Such a program contains a few unspecified data-types

and procedures that vary from one application to another. A mode1 program is

obtained by replacing these data-types and procedures from a sequential program

that solves a specific problem. Thus. a mudel program has a parallel coniponent

that implements a paradigm and a sequential component for a specific application.

This approach is exactly the issue of sepamtion of ~pecàficatiow discussed before.

Description of each paradigm includes example applications.

Similar work on algorithmic paradigms and skeletons. more from the functional

programming perspective. is a major focus point of the so called algorithmic d e l e -

tons research group. which is briefly discussed next.

2.6.9 Algorit hmic Skeletons

One of the pioneering works in the area of parallel algorithmic pattems is the Ph.D.

research by Murray Cole [IS] at the University of Edinburgh. One of these pattems

is already illustrated in the beginning of this chapter under section 2.3. Pardlel

algorithmic patterns in Cole's work. and other similar works. are often represented

as high-order polymorphic functions. which are best represented using the various

func t ional programming languages [29]. However . as Cole's work suggest S. conven-

tional imperat ive languages (specially those t hat support functions as parameters)

c m aiso be used for realizing higher-order polporphic functions in the form of

program- or procedural-templates.

Logic programrning languages. in the fonn of predicates and associated clauses,

can also be used to mimic the functionalities of hi&-order functions. In this case,

program execution consists of deciding whet her the outermost predicate is true.

given its arguments as clauses and their definitions. Mïth this approach. it is even

possible to specify the outermost predicate ni th unbound arguments. The purpose

of progam execution in this case is to find bindings to the unbound arguments

d o r i n g the predicate to be satisfied. or to determine if no such bindings esist.

The other pioneering work by Ian Foster et al (22) takes a similar approach from

the logic programming viewpoint . in t heir high-level represent at ion of algorit hmic

skeletons. This work uses the concurrent logic programming language Strand (231

in its representation of dgorithmic skeletons. A Strand program consists of a col-

lection of guarded d e s . where each rule resembles a predicate and a set of associ-

ated clauses. plus some added features. Program development in Strand facilit ates

source-t~sourcetransformat ion. which is one of the features of t his approach. This

facility d o w s a programmer to develop an application in a form that is convenient

to him. and is autornaticdy transformed to a form convenient to the system so that

the resultant application can be linlied with the system library Another feature is

the possibility for creating new skeletons. from partly existing ones and partly new

skeleton-code. using composition d e s wit hout remit ing all from scratch.

In the work by Darlington et ai [21]. the authors foliow a path similar to Cole's

work for imperative laquages. -4s a distinction. algorithmic skeletons in this work

are fonnulated in a non-strict functional programming language cdled Haskell[39].

Unlike Cole's skeletons. where the programmer is completely unaware of the under-

lying architecture, skeletons in this work are augmented with documents regarding

resource allocation issues for each skeieton/rnachine pair. The resource allocation

issues are addressed explicitly during implementation in an interactive man.net. Ac-

cordingly. the programming mode! here is semi-explicit as compared to the Cole's

implicit approach.

CHAPTER 2. PATTER-YS 1.S P.4R-4 LLEL COJlPL'TIXG 40

Of late. there are severd i-ariations of research works in this direction. .A com-

prehensive survey and cornparison of the ~ar ious algorithmic skeletons fornmlated

by some of the well known researchers in this area can be found in [14].

2.7 Limitations of the Existing Pattern-Based Ap-

proaches

Although the idea of design- and implementation-level patterns holds significant

promise. in practice however. most of the pattem based systems mentioned before

face some or al1 of the following severe limitations:

1. Limited flezibzlzty: In most systems. the user is often restricted by a limited set

of pre-dehed pat tems and hard-set restrictive d e s . Often. if some desired

pattern is not supported by the system. the user has no alternative but to

quit the idea of using the particular approach altogether.

'2. No e ~ t e ~ i b i l i t y : Most systems are hard-coded with a limited and fked set of

patterns. and often there is no method for adding n e r patterns to the system

whenever need aises. This type of closeness harnpers the usabiiity of the

approach.

3. Ad hoc pattern: Most systems support an ad hoc set of parallel patterns,

without providing any canonical definition of a pattern. This omission has

serious adverse implications. restrict ing the user's ability to develop appiica-

tions using pat tern-composition. and also in designing new pat tems rvhich

need to work in conjunction with the existing ones.

4. Lanpage: Uany of the pattern-based systems are based on new languages

or language extensions. The work on algorithmic skeletons is based on ab-

stract mathematical concepts and is best suited for implementation using the

various functional and logic programming languages. However. adoption of

such approaches by the main-stream parallel programming community be-

cornes an issue, where the conventional languages (like Fortran. C. C++ and

Java) and programming models remain the preferred choices for the major-

ity of developers. 'rforeover. adoption of new llanguages and/or programniing

paradigms also directly affects other important issues like software reusability

and maint ainability

Al1 these factors severely restrict the usability of a particular approach. .A

detailed discussion on these shortcomings can be found in [63]. More cornparisons

with some of the related works appear towards the end of the thesis.

2.8 A Generic IvIodel for Pattern-Based Parallel

Comput ing

The idea of design- and implementation-level patterns in parallel computing holds

significant promise and is an active area of research at this moment. However.

most of the current pattern-based approaches suffer fiom severe iimitations. some

of which include: lack of flexibility, zero extensibility, ad hoc patterns hindering

pat tern-composit ion. and language related limitations.

In contrast to the previous approaches. this research proposes a generic pattern-

based model for the design and deveiopment of parallel applications. The model

is generic because it can be described in a manner independent of patterns and

applications. The model is based on the message-passing paradigm. nhich makes

it particularly suited for a network of workstations and PCs. It combines the fles-

ibility of a low-level. MPI-like message-passing environment with the benefits of

high-level parallel pat tems. which provides the necessary flexibility in application

development. The generic model. as opposed to being ad hoc. enhances usability.

As is discussed later. the generic model also contributes towards estensibility. -4s it

t urns out. the model can be ideally implemented using ob ject-oriented techniques.

An object-oriented and library-based implementation of the model in C++. using

MPI as the layer underneath. has been completed rithout necessitating any lan-

guage extension. The object-oriented and library-based approach. in conjunction

with the generic definition of a pattern. facilitates extensibility.

The next two chapters discuss the model and its present object-oriented im-

plementation. The subsequent chapters further elaborate on issues like the appli-

cability of the model in the realization of the nrious parde l patterns mentioned

earlier. issues ranging from flexibility and extensibility to the various software engi-

neering aspects of the model. and finally performance related issues of the present

implementation.

Chapter 3

Parallel Architectural Skeletons

This chapter introduces the Pardel Architectural S keleton Mode1 (abbreviated

PAS'II). Latter in the chapter. the mode1 is further elaborated uith the help of a

few examples. Impiement at ion issues of the sarne examples. from the perspective

of the PAS34 system. are discussed in the next chapter. The mode1 is discussed

next.

h parallel architectural skeleton [31-331 is a set of attributes that encapsulate the

structure and the behavior of a pardel pattern in an application independent

manner. These attributes are generic for a l l patterns. As is described later in this

chapter, many of these attributes are parameterized where the value of a parameter

depends on the needs of an application. Some of these parameters are staticaiiy

configurable (i.e.. at compile time) while the othen are dynamic (i.e.. run-time

configurable). User extends a skeleton by speci@ing the application-dependent

1 Step 3

instantiation of Concrcu Modules as
collection of processes

Step 1: Extcnd
Step 2: Add Application Code
Step 3: Instmtiiue

As: An Architectur;il Skclaon
Am: An Absact Module
Cm: A Concrcte Module

Figure 3.1: Application development using architectural skelet ons

static parameters. as needed by the application at hand.

Figure 3.1 approximately illustrates the various phases of application devel-

opment using parallel architectural skelet ons. As shown in the figure. different

extensions of the sarne skeleton can result in somewhat different abstract parallel

computing modules (abbreviated as an abstract module). An abstract module is yet

to be filled in with application code. Once an abstract module is supplied with

application code. it results in a concrete parallel computing module (abbreviated

as a concrete module or simply a module). .A pardel application is a systematic

collection of mutuaily interacting, instantiated modules.

An abstract module inherits all the properties associated with a skeleton. Be-

sides. it has additional components that depend on the needs of a given application.

In object-oriented terminology. an architectural skeleton can be described as the

ûthcr a b s w t modules O LuIosure of a module
inside back-end 0 Rcpnscntative of a modulc

0 Enclosure of the back-end

An Absaact Module Am

Figure 3.2: Structure of an abstract module

generalzzation of the st nicturd and behavioral properties associated \vit h a partic-

ular paralle1 pattern. An abstract module is an application-specific specialization

of a skeleton.

Figure 3.2 diagrarnmatically illustrates the anatomy of an abstract module (in

r his case. the module ex tends the data-parallel architecturai skeleton designed for

3-D mesh topology). The various attributes associated with a skeleton (and subse-

quently inherited by an abstract module and a module) are explained next.

3.1.1 A formal description of the mode1

Definition 1.1: An architectural skeleton. -4s. is an application-independent ab-

straction comprising of the following set of generic attributes. { Rep. BE. Topology ,

Prnr. fEri). An abstract module is an application-specific extension of a skeleton.

Let An be such an abstract module that extends the skeleton. As. The various

attributes inherited by Am (fiom -4s) are described in the following:

0 Rep is the representative of .-lm. When filled in with application code, Rep

represents the module in its action and interaction wit h ot her modules.

BE is the back-end of .-lm. Formally. BE = {Aml. Am2-Inin}. where

each Am, is itself an abstract module. The notion of modules inside another

module results in a tree-structured hierarchy. -4172. at the root of this tree. is

the parent and each Am, is its child. Xodules Am, and Am, belonging to the

same back-end are peen of one another.

Topology is the interconnection-topolog?. specificat ion of the modules iuside

the back-end (BE). and their connectivity specification ivith Rep.

PI,,, is the internal communication-s>lidironization protocol of Am and its

associated skeleton. -4s. The interna1 protocol is an inhcrent property of the

skeleton. and it captures both the parde l computing mode1 of the corre-

sponding pattern and the topology. Formally. PInt is a set of communication-

spchronization primitives. Using the primitives inside Prnt. the representa-

tive of Am can interact with the modules in its back-end, and a module in

the back-end can interact with its peers.

Pfi i is the extemal communicat ion-spchronization protocol of .-lm. For-

m d y . it is defined as a set of primitive cornrnands. Gsing the primitives

inside PEIt, Am can interact with its parent and the peers. Lnlike Ph#,

which is an inherent property of the skeleton. PEri is adaptable. That is, .4m

adapts to the context of its parent by using the internai protocol of its parent

as its extemal protocol. Formally. (PEr<)Am = (Plni) PoretirAm

Though an abstract module is an application specific specialization of an archi-

tectural skeleton. it is still devoid of any application code. -4 user writes application

code for an abs tract module using it s communication-spchronization protocols,

PInt and PEIi. A code-complete abstract module is called a concrete parallel com-

puting moduk (abbreviated as a concrete module or a module). A concrete module

can be formally defined as foliows:

Definition 1.2: (1) An abstract module with no children (Le.. an empty BE)

becomes concrete as soon as its representative. Rep. is Wed in with application

code. (2) An abstract module with children becomes concrete provided each of its

children is a concrete module and its own representative is fdled in with application

code. A parallel application is a hietarchical combination of rnutually interacting

concret e modules.

As is mentioned before. the notion of parent-child relationships among modules

results in a tree-structured hierarchy. A parallel application can be viewed as

a hierarchicd collection of modules. consisting of a root module and its children

forming the sub-trees. This tree is called the H W e associated with the application.

The hierarchy can be fonnally defined as foliows:

Definition 2: (a) Let us consider a module M . either abstract or concrete. Let Rep

be its representative and BE = {Ml. .CI2, Mn) be its back-end. The hierarchy

associated ivith JI is denoted as HTree[M] and is recunively defined as the set,

HTree['il] = {Rep. HTree[M1]. HTree[;\I2] HTree[.bIn]}. In other words. Rep of

.CI is at the root of the tree. and the modules in the back-end fornl the sub-trees.

(b) Let the module JI form the root of an application's hierarchy. In that case,

the HTree asociated w'th the application is the same as HTree[Mj. The application

becomes complete as soon as becomes a concrete module (also refer to Definition

1.2).

Every parallel application is structured as an HIPree. For instance: (1) in a

Mast er-Slave application, which can be implemented using the dynamic replication

slieleton. the Hast er module forms the root of the hierarchy and the dpamically

/K. 2 ,y,, cou-
/
i i Lr SubWarttr

Sub-Waka

- Parent-Child nlhonsiup in

the hicrychld otc

Figure 3.3: Diagrammatic representation of a HTree

repiicated children. Worker modules. form the sub-mes. (2) In an application

consisting of the three modules: Producer. Worker and Consumer. a compositional

module (i.e.. a module which extends the compositional skeleton) forms the root of

the hierarchy, and its three children (Le.. Producer. Uorker and Consumer) form

the sub-trees. In either case. a singleton module that has no children is a leaf.

HTrees associated wi th these two applications are illustrated in Figure 3.3(a) and

(b) respect ively.

Definition 3: As is seen earlier. a parallel application is a hietarchical collec-

tion of modules. Each module takes in some inputs from other modules (i.e., its

parent and peers). performs some action. and produces some outputs to other mod-

ules. It is possible to replace a module JI, with another module .M,, while keeping

this replacement transparent to its parent and peers. provided M'' has the same

input-output interface and performs the same action as M,. This type of local-

ized replacement that might aid towards the bettement of a parallel application

CHAPTER 3. P-AR--ILLEL .4RCHITECTL'RAL SKELETOSS 49

is called tefinement. Refining a parallel application is equilalent to modifyirg a

sub-tree of the associated HTree. without affecting the rest.

For instance. let us consider the Producer-Worker-Consumer application. nien-

tioned earlier. Initialle each of the three modules is a singleton module (Fig-

ure 3.3(b)). However. Worker is found to be very time consuming. and hencc.

is refined to a dpamic-replication module of identical name. In this case. the

Worker module d-mamicaily replicates its work-load to Sub-Workers. each of which

is a singleton module. The corresponding change in the HTree is illustrated in Fig-

ure 3.3(c). Sote that the modules Root. Producer and Consumer remain untouched

by this change.

To summarize. an architectural skeleton is a pure application-independent ab-

straction. An abstract module cont ains some appiicat ion specific components (e.g..

the right parameters for topology. the right protocol depending on the curent

context). A concrete module is an application-specific completion. A hierarchy

comprising of only abstract modules represents the overall structure of an appli-

cation. without application code. From the implementation perspective. such a

structure can be compiled and nui. however without doing anything usefd.

in the rest of the discussion. the parallel architectural skeleton model will be

abbreviated as PASM wherever appropriate. The next section illustrates the theory

behind the model nith various examples.

3.2 Examples

This section exemplifies the theory behind the PASM model in an implementation-

independent manner. The next chapter discusses the curent object-oriented im-

piemenration and re-visits the esamples. More esamples are presented in chapter 5

which describes the catalog of existing parallel architectural skelerons.

3.2.1 A Graphics Animation Application

Let us consider the graphics animation application [63] already discussed in Chap-

ter 2. As mentioned before. it consists of the three modules: Cenerate. Geometry

and Display. The application takes a sequence of graphics images. called frames.

and animates them. Generate cornputes the location and motion of each object

for a frame. It then passes the frame to Geometry. which performs actions such

as vievving transformation. projection and clipping. Finally the frame is passed to

Display. which performs hidden-surface r e m o d and ant i-aliasing. Then it stores

the frame onto the disk. .Ifter this. Cenerate continues with the processing of the

nem frame and the whole process repeats.

Each of Generat e. Geometry and Display performs sequential computation (at

least . for the rime being) . and together t hey form a pipeline. Pardelism is obvious

in this case: each pipeline stage can work concunently r i t h the other two stages

and speed-up should be achieved as long as the pipeline remains full.

The singleton skeieton is designed for singleprocess. single- or multi-threaded

cornputation. and hence. it can be extended to create each of the three sequential

computing modules: Generate. Geometry and Display. Together they foxm a

pipeline. Either of the pipeline skeleton or the compositiond skeleton can be used

to compose the three sequentid modules to form the pipeline. In this case. it is

decided to use the compositional skeleton due to the fact that some other features

of the mode1 (e.g.. flexibility) are enhanced by the compositiond skeleton and are

discussed later in the thesis. The compositional skeleton is used to irregularly

Exunds Lht compioonai sktlttdn.
inmuai pmmcol= PRûT-Net
Exteruai protoc01 = Void
Topology = Dciault
Childrca = Gcncrate (Ge). Gcomray (Gco), Dispiay (Di)

.

Intemal proincol = Void
Extemai pmuicol= PRûT-Net

Tbc DispLy modulc
ExunQ tfic rcplicaaon skclctoa
Inuml pmtacol= PROT-Rcpl
Enud praocol= PROT-Nri
Ciuldrta = Worktr (W)

- - - - - - - Communiatioa using P R W N e t

Commwication using PROTRcpl
GE = Gcnerau. Gco = Geomcay. Di = Display. W = Workcr

Figure 3.4: Structure of the animation application

compose other modules. By default. the modules composed (i.e.. the child modules

inside the back-end) are d-to-all interconnected. The interna1 protocol Prnt of

the compositionai skeleton is PROT-Yet = {Send(...). Receive(...) . Broadcast(...).

Spawn(. . .)) .

hfter deciding on selecting the appropriate architectural shletons. the applica-

tion is structured as follows. .A compositional module (initiaily abstract) named

Root extends the compositional skeleton and forms the root of the hierarchy (Fig-

ure 3 4 a)) . The module Root extends the compositional shleton by specifying

the foîlowing applicat ion-specific static paramet ers associated wit h the various at -
tributes discussed before: (1) the constituents of its back-end, which in this case

are: Cenerate, Geometry and Display: (2) the topology specification which, in

this case. is the default My-connected topology; and (3) the adaptable extemal

Figure 3.5: HTree representation of the animation application

protocol. PErt. rhich is void in this case since Root is at the root of the hierarchy

and accordingly it has no parent.

Each of the three (abstract) modules Generate. Geometry and Display is

formed by extending the singleton skeleton (Figure 3 4 b)) . In each case. the fol-

lowing single static parameter needs to be specified nhile extending the shleton:

the adaptable extemd protocol. PEzl. In this case. the external protocol becomes

PROTSet . which is the same as the intemal protocol of the parent. Le.. the Root

module. Thus. in one sense. the external protocol is implied by PAS31 and hence it

does not need explicit specification by the user. Note that a singleton module c m

have no children. and hence. both of its interna1 protocol. P I N . and the topology

attributes are empty.

Figure 3.4(a) illustrates the toplevel structure of the application. The corre-

sponding HTree representation is shown in Figure 3.5(a). Figure 3 4 b) illustrates

the anatomy of the Display module which. in this case. extends the singleton skele-

ton. A singleton module can have no children and with an empty back-end it fonns

a leaf in the hierarchy. The empty back-end of Display is not shown in the figure.

thil now. nothing has been mentioned about the application code for each

module. -4s is discussed in the previous section. each abstract module beconws

concrete as soon as it is code-complete (refer to Definition 1.2). Discussion about

the code-specific parts of the application is postponed to the nest chapter. where

the irnplement at ion issues of P.\S.\I are presented.

Refinernent

As discussed in the previous chapter. in a typical graphics application. the Display

module that performs hidden surface remonl and anti-aliasing is the most time

intensive of the t hree children modules. This d l slow-dom the entire pipeline. The

best way to resolve this is to distribute the work-load of Display to dynamicdly

replicated (i.e.. replicated based on load) workers. Consequently. the singleton

D i s p 1 ay module is replaced wi t h mot her module. of ident ical name. which extends

the replicatian skeleton. In this case. the work-load of the new Display module

is distributed among dynamicdly replicated children. i.e.. Worker modules. Each

Worker extends the singleton skeleton.

The interna1 protocol of the replication skeleton is PROTRepl. which becomes

the extemal protocol of each Uorker. The extemal protocol of Display remains

the same as before. i.e.. PROTSet .

The new Display module is illustrated in Figure 3 4 ~) . The corresponding

change in the HTree representation of the application structure is shown in Fig-

ure 3.5(b). Sote that the rest of the application is unaffected by this change. In

fact. that is exactly the definition of rehement (refer to Definition 3).

CHAPTER 3. P-4RALLEL ARCHITECTI'RAL SKELETOSS

3.2.2 Jacobi

This example illustrates an application of the PASAI mode1 in a parallel irnple-

mentation of the Jacobi iterative scbeme for solving sparse linear systems. Sparse

systems are fkequently encountered in various scientific applications. for ins t ance:

t herniodynamics. comput ational fluid dynamics. electromagnetics. [5O. 591. In t his

specific application. it is assurned that a square grid with given boundary con-

ditions is used. The algorithm iterates over all g i d points. and at each point it

calculates certain d u e (for instance: temperature) associated with the point based

on the values of the neighboring grid points. The algorithm repeats until al1 the

values converge. The conwrged values correspond to the solution of the collec-

tion of linear equations. as represented by the sparse (matrir) system. E\?identlc

neares t-neighbor communication is an essential ingredient of the Jacobi iterat ion

scheme.

The data-pardel mesh is the most appropriate for this application. The given

grid is equdy partitioned among the mesh-elements. Some suit able mapping al-

gorit hm or heuristic method can be applied in this mapping [30]. However. in the

case of a square grid. the mapping is quite straightforward. hlultiple grid-points are

mapped per mesh-element . which determine the granulari ty of the application (i.e..

the ratio of cornputational t ime to communication overhead at each mesh-element .
between two successive communications). Sote t hat nearest neighbor communica-

tion is needed at the inner mesh-boundaries.

O bviously. the architectural skeleton for mesh-st ructured dat a-parallei compu-

tation is the most appropriate for this application. Accordingly. the root of the

hierarchy is formed by the module named Jacobi. which extends the data-parallel

skeleton irefer to Figure 3.6(a)). As s h o u ~ in the figure. its topology parameter is

The Jacobi module The McshElcmcnt module

Exrrnâs the DataParailel skeleton.
Topology = 2-D M u h Ex~cruai proiocol = PROT-ZDMcsb
I n m a l protocol= PROT-ZDMesh InicmJ protucol = void

BE
Exurn;il pmtocol= void
Chiidrtn = MeshElemcnt(ME)

(a) (b)
Lrgendî:

- - - - - - Ctmuwhuim usutg PROT-2DMesh
ME = MeshElcme~

Figure 3.6: Structure of the Jacobi application

selected as 2-D mesh and the correspondhg internal protocol is PROTSDMesh. Its

child module is named Mes hElement . Ident ical copies of MeshElement const it ute

the back-end of the Jacobi module (this is one of the properties of the data-parallel

architectural skeleton. associated tvith i ts programming model) and together t hey

form a mesh-structured topology

As is shotvn in Figure 3.6(b). each MeshElement module extends the singleton

skeleton. However. it can be refined to any other module based on an application's

needs. The adaptable external protocol of the Jacobi module is void. since it is at

the root of the hierarchy. The adaptable external protocol of each MeshElement is

PROTSDMesh. which is the same as the internal protocol of its parent.

After structuring the application this way. each i ini t idy abstract) module is

filled in with application code. Code-segments of the Jacobi implementation are

illustrated in the next chapter.

3.2.3 Divide and Conquer

The divide and conquer pattern is discussed in the previous chapter. Of ail the pat-

terns in pardel computing mentioned earlier. divide and conquer is an interesting

one because realization of this pattern inside P.-\S'.I is recursive.

-4s a property of the divide and conquer skeleton. a module estending the skele

ton can have multiple copies of itself as its own children. Accordingly for a divide

and conquer module, the static parameter that specifies its children is implicit .

Each module corresponds to a node of the divide-conquer tree. as discussed in the

previous chapter. The intemal protocol of each module is PROTDivideConquer.

Though the parent and child modules are identical statically (i.e. at compile time).

some of their dpamic characteristics differ. For instance. as is evident from the

previous chapter. the root module. a leaf module and an inner module have dif-

ferent funct iondi t ies . Horv does a module dynamicall y ident ify i t self 7 This role is

played by the primitives inside PROTDivideConquer (refer to the next chapter).

The divide and conquer tree supported in this mode1 is dyamic in nature. whidi

provides the maximum flexibility to the user. The width of the tree could be either

static or dpamic (i.e.. run-time configurable). and it is up to the user to make the

appropriate selection. -4 static width corresponds to the fixed number of children

each module can have (other than the leaf modules). The height of the divide and

conquer tree is d ~ a m i c , which implies that whether a module can have further

children or not is determined at run-time (based on whether the base condition is

satisfied or not. as is discussed in the previous chapter).

In this example. a divide and conquer application of static width three is dis-

cussed. The width corresponds to the fixed number of children that each module

can have. As is stated before, though the parent and child modules are statically

identical. the root module corresponding to the root of the divide and conquer tree

h a slightly different characteristics than a non-root module. Some of these differ-

ences are illustrated in Figure 3.7. Figure 3.7(a) corresponds to the root module

(root of the divide and conquer tree, as weil as the root of the hierarchy in this

CHAPTER 3. PARALLEL -4RCHITECTI'RAL SKELETOSS

Figi

t DC module (Roof)
Extends rtie DividcConqucr skeleton.
bn~aual ~rococol= PROT Dividecoaaucrj

8 DC module (Innu)

N u m k of childm = widtb = 3

~c tu re of a stand-alone divide and conquer application

application). nhile Figure 3 7 b) corresponds to an inner module. A11 the implicit

static parameters are highlighted as shaded areas. Note that the external prote

col of the root module is void. whereas that of a non-root module is the same as

its interna1 protocol. PROTDivideConquer. .\ leaf module has no children and

this information is known only at run-time. A leaf module is not illustrated s e p

arately. Code segments of a divide and conquer application are illustrated in the

next chapter.

3.3 Summary

-4 pattern-based model for pardel application design and development has been

presented. The Pardel Architectural Skeleton Mode1 (abbreviated PASM) is generic

because it can be described independent of patterns and applications. The model

is based on the message-passing paradigm nhich malies it particularly suited for a

networli of workstations and PCs. A rnajority of the frequently used patterns in

parallel comput ing are realizable within the frametvorks of the model. Some of t hese

patterns and relevant applications are discussed to illustrate the idea behind the

model. More examples on patterns and related applications follotv in subsequent

chapters. knplementation issues of the model are discussed in the nest chapter.

Other important issues associated with the model and its implemenration. e.g..

flexibility and extensibility. are discussed in a later part of the thesis.

Chapter 4

An Object-Oriented

Implement at ion

This chapter discusses an implementation of P.AS.\I. When the model ivas origi-

n d y designed. t here sas no specific implement at ion st rategv in mind. However.

iater on. it was realized that PASM is an ideal candidate for object-oriented style

design and implement at ion. Recently. an object-oriented and librar-based imple-

mentation of PASM has been completed in Cf+. without necessitating any lm-

guage extension. Together ivith the perhrmance measures discussed in chapter 6.

the implementation demonstrates the practical feasibility of the model. The key

implement ation-features are discussed next .

4.1 Basic Implementat ion Feat ures

The curent implementation of the PXSM system uses C++ (SCXCC Compiler

V4.1). The system is built on top of MPI [35]. There are several vendors who

are working towards the implementation of the IIPI standard (presently 2.0). as

proposed by the MPI forum [2]. The current implementation of the P.-\Sll system

uses LAh1 6.1 [Il. initialiy developed at the Ohio Çupercomputing Center and now

maintained and extended at the University of Sotre Dame, USA. LA31 (Local Area

Multicomputer) is an MPI programming environment and development/debugging

system for heterogeneous computers on a network. It implements the complete

MPI-1 standard and many of the SIPI-:! features.

.-\ textual user interface helps the user in carious stages of application devel-

opment. Application code written using the textual interface is parsed by a Perl-

script [73] to expand to C++ code. which is subsequently compiled and linked with

the skeleton-library to produce the executable. As is illustrated later. the use of

the textual interface is not a laquage-extension, but merely an opt ional feature

that helps the user to skip certain laborious and often monotonous steps in the

development process. If desired. the user can bypass this phase and directly work

in C++.

Other important features of the current implementation include: (1) use of

C+ + operator-overloading to implement certain primitive operations inside prote

col classes. e.g.. Send(.. .) . Receive(. ..) operations. inside PROT3e t . (2) Imple-

mentation of automatic data-rnarshaling and un-marshaling mechanisms whereby

the data attributes of an ob ject . user- or system-defined. can be marshaled. shipped

over a communication link and then un-marshaled without the usual hassles of data

paclring and un-packng as in MPI.

The discussion begins with various examples. including the ones discussed in

the previous chapter. illustrating the use of the textual interface. its parser. and

the few other steps involwd in application development. Subsequently. more subtle

issues related to some of the implementation details are covered.

4.2 The Textual User Interface: Examples

This section exemplifies a user's perspective of applying the system in implenienting

tarious applications. It is assumed that the user is thoroughly familiar wit h the

PASM model discussed in the previous chapter. However there is no requirement

for the user to have any knodedge about the underlying implementation. Sonle

usefd implementation related issues meant for an advanced user. i.e.. who niight

nant to extend the system. are discussed in the subsequent sections.

A simple sequential application is illustrated next.

4.2.1 Hello world

This first example does nothing more than printing the string -Hel10 Worldw . How-

ever. it demonstrates some important features of the PAS11 model. its implemen-

tation and the curent textual user interface. .As discussed in the previous chapter.

the singleton skeleton is designed for single-process and single or multi-threaded

computation. and is the most appropriate for this example.

Figure 4. l (a j illustrates a user's implementation of the application using the

current textual interface. The (initially abstract) module. MyModule. extends the

singleton skeleton. Rep is the representative of MyModule. The representative Rep

is initially ernpty. which corresponds to an abstract module. Filling in of Rep r i t h

application code results in the concrete module? HyModule. as shown in the figure

(also refer to Definition 1.2 in the previous chapter). -4s a property of the singleton

skeleton. the back-end of MyModule is empty. and hence. the interna1 protocol. Prnc.

is void.

The application code written using the te-xtual interface is parsed and expanded

My Module EXTENDS SingleconSkelelon
(

Rcp I
printf("Htl10 WorldLi");

1
1

(8)

Figure 4.1: Hello World

by a Perl-script to generate the C++ me: Prnain.cc. Figure .I.l(b) illustrates the

automatically generated file. Pmain.cc. which is subsequent ly compiled and linked

with the slieleton tibrary to generate the executable. As is evident here. the user

can directly develop the application code in C++. The textual interface and its

parser merely reduce some of the extra work. which are evidently more pronounced

in the examples that follow. Being a stand-alone module. the erternal protocol.

Ph,. of MyModule is also void. ahich is specified as the template parameter Vo2d

in the generated code.

4.2.2 The grap hics animation application

Let us consider the gaphics animation application discussed in the previous chap-

ter. The application consists of the three modules: Generate. Geometry and

Display. It generates a sequence of graphics images. cailed frames, and animates

them. Generate computes the location and motion of each object for a frame. It

Extrnds the compositioml skclcton.
intemal pmmcol= PROT-Net
E x m l protocol= Void
Topology = Default
Childrca = Gcnenu (Ge). Geomeuy (Gco). Display (Di)

- . ,

Intrriul protacol = Void
burual pmtaoi = PROT,Nct

Figure 4.2: Structure of the animation application

then passes the frame to Ceometry. which perfonns actions such as viewing trans-

formation. projection and clipping. Finally. the frarne is passed to Display. which

performs hidden-surface remoid and anti-aiiasing. Then i t stores the frarne onto

the disk. After this, Generate continues with the processing of the next fiame and

the whole process repeats.

One way of stmcturing the application is illustrated in the previous chapter. For

convenience to the reader. Figure 4.2 is repeated here from the previous chapter.

The application uses the compositional skeleton and the singleton skeleton. As dis-

cussed earlier. the Root compositional module (i.e. Root extends the compositional

shleton) forms the root of the hierarchy. The three chilchen of Root are Generate,

Ceometry and Display. and they form the subtrees. Each of the three children is

in i t idy a singleton module. and hence. is a leaf of the hierarchy.

The following code-segments illustrate one tvay of implement ing the application

using the textual interface. The internai protocol (i.r.. Plnt) of the conipositional

skeleton is PROTSet = {Send(...). Receive(...) . Broadcast(...). Spatvn(...) }.
Accordingly. PROT-\et becomes the external protocol (i.e.. PEri) for eack of the

t hree children.

GenerateGeometry and GeometryDisplay are user defined classes whose data

attributes can be marshaled. shipped over a communication link and then un-

marshaled. without the usud hassles of data packing and unpacking. Their con-

stituent data members are eit her system defined wrappers of standard data-types or

other user d e h e d marshal-able types. The example also illust rates the use of C+ +
operator overloading as an alternat ive way of defining certain primitive operations

#include "geom.hn
M e f i n e HAXIHAGES 120

// Tha f o l l o a i n g d e f i n e s a marshal-able c l a s s .
c l a s s GenarateGeomstry : p u b l i c UTypa
E

I n t imagalumber; // " In t " is a System daf ined marshal-able urappar
// f o r " i n t " type.

ObjTabLa t a b l e ; // "ObjTablet' is a marshal-able c l a s s d e f i n e d
// i n "geom. hW

publ ic :
v i n u a l void I l u s h a ï () {imageNumber. U u s h a l () ; t a b l e . H u s h a l () ; 1;

// Harshal " t h i s u o b j e c t .
v i r t u a l vo i d UnWarshal() {imageNumber . UnUara ha1 () ;

t ab le .UnHunha l () ;) ; // Un-marshal " t h i s " o b j e c t
// Cons t ruc to r (s) e t c . f o l l o u . . .

// Aaothar marshal-able c l a s s d e f i n i t i o n .
c l a s r GaomatryDisplay : p u b l i c UTypa
C

Int imageHumber ;
I n t nPoly;
PolyTable t a b l e ; // "PolyTable" is anothar m r s h a l - a b l e

// c l a s s de f ined i n "gaom.hM
publ ic :

v i r t u a l void l!arshal() EiniqeNuniber. Harshal() ; nPoly. n u s h a 1 (1 ;
t a b l e . M u t h a l (1 ; 3 ;

virtual void UMarshal() {imageNuniber. U d l u s h a l ~) ;
nPoly .UnHarshal() ; table.UnHarshal() ;);

// Constructor(s) e t c . fol low ...

/ / ~ o ~ ~ o ~ o ~ ~ ~ ~ ~ o ~ o ~ o o o ~ o o o o ~ o ~ e o o o o o o o m o o o o o o o o e o o e o e ~ m e o m o o o o * * o ~ o ~ o o o
// The "Root" module, ahich i n at t h e roo t of t h e hierarchy.
// It has t h r ee c h i l d modules: Cenerate, Geometry and Display.
Root EXTENDS CompositionalSkeleton
E

CHIUREN = Generate, Geometry, Display;
Rep €
// The represen ta t ive code goes here . In t h i s case , t h e
// represen ta t ive of Root has no f u a c t i o n a l i t y .
> >

/ / * . ~ * * *000* .000*0 *00~ . *0 * * *0 *000*008*00*00*00000*0 *000000080*000* *0 *0

// The "Generatett module, uhich extends t h e s ing le ton skeleton.
Generate EXTENDS SingletonSkeleton
E

// A s ing le ton module can have no ch i ld ren .
Rep

// The represen ta t ive coda goes here .
iat image ;
CenerateGeoaetry York;
f o r (image = O ; image < MAXIHACES ; image++)<

ConputeOb j e c t s (York) ;
Ceometry CC Vork; // A member pr imi t ive of t he ex t e rna l
// protocol : PROT-Net. An a l t e r n a t i v e opt ion is t o
// use: Send(Geomstry, Uork, con tex t) .

>
1
// A l 1 l o c a l d e f i n i t i o n s go beloo:
LOCAL C

void ComputeUbjrcts(GsnerateGao~etry& Uork)
C
// User code f o r "ComputeObjscts" goes here .
> >

1

/ / 0 0 0 ~ 0 0 . ~ * 0 * * * . 0 0 ~ . . * * 0 * 0 0 0 0 ~ 0 * 0 * 0 0 8 0 * ~ * 0 * * 0 0 * 0 * . * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 * 0 0 0 *

// The "Ceometryl' module.
Geometry EXTENDS SingletonSkeleton
C +

Rep i
i n t image = 0;
GenerrtrGeoiatry Uork;
GeometryDisplay Frame;
f o r (image = 0; b a g a < HAXIIIIIGES ; image++)<

Gonerate >> York; // A member pr imi t ive of t h e e x t e t a a l
// protocol : PRûT-Net. Aa a l t e r n a t i v e O t i o n is t o
// us. : Resmive (Generate, York. cont ext! .

DoConversion(Vork, Frame) ;

Display <€ Fram;
>

1
LOCAL Ç
// Local definition of DoCorivarsion(...) goes here.
>

1

/ / * 1 0 8 8 8 ~ 1 0 1 ~ ~ ~ 0 * 0 1 ~ 0 * 1 1 0 0 8 1 0 0 8 0 0 0 8 0 0 0 * 0 * 8 0 0 0 0 * * 0 0 0 * * 8 ~ * 0 8 ~ 0 0 0 0 ~ 0 0 0 @ @ ~

// The "Display" module.
Display WTENDS SinglrtonSkeleton
i

Rep i
int image;
GsomitryDisplap Frue;
for (imago = 0; image < RAXIMAGES ; image++) E

Geometry >> Frame;
DoHidden(Frame);
UriteImage(Frame) ;

-4s discussed in the prerious example. the above code is parsed bu the Perl-based

parser to ~roduce the Cf+ file. Pmain.cc. which is subsequently compiled and

linked with the skeleton library to produce the executable. The following is the

skeleton of the automatically generated file. Pmain.cc:

// The items defined insida GLOBAL u s copisd in the following vithout
// aay change.
// 0 0 8 ~ ~ ~ ~ 1 1 1 1 + 0 ~ 0 8 8 + ~ 0 0 ~ 0 C 8 0 8 8 0 ~ 0 ~ 0 8 0 0 0 0 8 ~ ~ 0 ~ 8 ~ 0 0 0 ~ 0 ~ ~ ~ 0 8 0 8 @ 0

*includm "gaom. hl'
Mefine X A X I U G E S 120

// Thm following difines a muthal-able clams.
class GenerateGoometry : public UType
C
// Body of the clans iu copied as it is.
>;
// Aaother muthal-able class definition.

c l a s s GeometryDisplay : publ ic UType
€
// Body of t h e c l a s s i s copied as it is .
1
// **.***

// Automatically Generated code f o r module: "Cenerate"

c l a s s Cenerate : publ ic SingletonSkeleton <PRûT,Nat>
C
public:

c l a s s Puam8
I
publ ic :

HaadleBase* h-73;
HuidleBase* h-113;
Puams(HurdleBase* ,h,73,HmdleBase* ,h,113) :

h,73(,h,73> ,h,113(_h-l13)I);
Parama0 :h,73(0),h,t13(0){>;

1.

v i r t u a l void Repo €
// The r ep r e sen t a t i ve code goes
i n t image ;

here .
Generats~eometry Uork;
f o r (image = O ; Ma e < MAXIMAGES ; image++) <

CoiputeObjecti 7VorL) ;
*(p,6ll.h,73) << York; // A member p r im i t i ve of t he ex t s rna l

// protocol: PROT-Net. An a ï t e r n a t i v e opt ion i s t o
// use: Send(Geometry, Uork, con t sx t) .

3 >
// LOCAL d e f i n i t i o n s go here:

void CornputeOb j e c t s (GansrateGeometryL Uork)
€
// User code f o r "ComputeObjects" goes here .
> >

// Automatically Generated code f o r module: "Geometry"

c l a s s Geometry : pub l i c SirrgletonSkeleton <PRUT,Net>
E
public:

c l a m Pa ram
C
pub l i c :

BandleBase* h-48 1 ;
HandleBase* h-113;
P u a n ~ (H a a d l e B ~ s e * ,h,481,HandleBase* ,h-113) :

h,481(,!1,481) ,h,113(-hh113)C);
Pu rms () :h,481(0) ,h,113(O)i);

1;

class Root : public CompositionrlSkeleton <PROT,Net ,Void>
C

UnaryH.ndle<Generite, Ganerate::Params> h-481;
UnuyHandls<Geometry, Ceomatry::Puams> h-73;
UaaryHandlecDisplay, Display::Parms> h-113;

public:

Root () : h-481 (Generate : : P u u s (Lh-73 ,UL~ 13)) ,
h-73 (Geomatry : : ~ u - 8 (th-481 ,tbtbl13)) ,
h,l13(Display: :params(khth481 ,th,f3))C);

virtual void RepO i
// The representative code goes here

>
// LOCAL dei initions go hem:

1;

void Pmaia()
C

Root TopLavel-820;
TopLeval-820 .Runo ;

>

The automatically-generated C++ codesegments shown above suggest t hat the

textual interface and its Perl-based parser significantly reduce the work-load on the

part of the user in application development. The textual interface handles many of

the implementation- and Cf+-related. and other laborious and often monotonous

details t hat can easily be automated.

The textual interface could be developed based on the fact t hat d l applications

that use the same architectural skeleton(s) follow similar implementation pattems.

irrespect ive of the applications. For instance. applications t hat use compositional

modules as the root of the hierarchy follon identical implementation pattems. as is

observed inside the Root class (e.g.. the param class. the unary handles for children,

the various C++ templates. and the typical style in using them). Similady. all

singleton modules that are the children of a compositional module have identical

constructs (e.g.. the param class. un- handles for peers. the extemal protocol

PROT-Vet as a C++ template parameter). Obviousiv, for a s taud-alone singleton

module. which is at the root of the hierarchy and hence bas no pers . the param

class is missing . -4 user can familiarize oneself with t hese implement at ion patterns

via practice and t hen directly work in C++. Cntil then. the testual interface takes

care of this part.

C++ templates are extensively used for statically specifying the internal and

external protocols for modules. as well as for specifying the static parameters for

handles. The functionality of a handle is discussed later. The esternal protocol of

the Root module is void and is specified as the template parameter. Void. More de-

tailed impiementation issues and concepts related to the previous code are discussed

in the following sections.

Refinement

.As is discussed in the previous chapter. the Display module that performs hidden

surface r e r n o d and anti-aliasing is the most time intensive of the three children

modules. Consequently. the singleton Display module is replaced with another

module of identical name that extends the replication skeleton. In this case. the

work-load of the new Display module is distributed among dynamicdy created

replicas. i.e.. Worker modules (refer to Figures 4.2(c)).

The internal protocol. Pr,,. for the replication skeleton is PROTRepl. Conse-

quently PROTRepl becomes the external protocol for each replicated child Uorker

module. Xote that none of the other modules is affected by this change. This type

of localized replacement that works towards the betterment of an application is

called a refinement (refer to Definition 3 in the previous chapter). The change in

the user's implement ation is illustratecl next:

// The r e f i ned "Display" module.
Display EXTENDS ReplicationSkeleton
i

//The dynamically r ep l i c a t ed ch i ld ren of "Displap"
CHILOREN = Vorker;
Rep C

i n t image = 0;
int succass;
GeometryDiaplay Fraae;
f o r (image = O ; image c HAXIIUGES ; image++){

Geometry >> Frama; // A member pr imi t ive
// of t h e ex t a r aa ï p ro toco l , PROT-Wet.

success = SendVork(Frame); // A m a b e r
// p r imi t i ve of t h e i n t e n t a i protocol PROT-Repl.

i f (! success) i// Do it myself , i f not success fu l i n
// assigning t o a workar.

DoHidden(Frama);
UriteImage(Frame) ;

>
1 >

LOCAL i . . . >
>
// Each r ep l i c a t ed "Worker" module
Vorker EXTENDS SingletonSkeleton
i

Rsp C
GeometryDisplay Franie;
ReceiveUork(Frame); // A member pr imi t ive of t he e r t e r n a l

// pro toco l , PROT-Repl.
DoHidden(Frame) ;
Uritdm.ge(Franie) ;

>
LOCAL 1 . . . > >

The corresponding automatically generated C++ code is illustrated in the follow-

ing:

i / Automaticaïly Generated code f o r module: "Display"
c l ans Displap : public ReplicationSkeleton CVorker, PROT-Repl, PROT,Net>
C
publ ic :

c l r s s P u a m
C
public:

BandleBase* h-365;
HmdleBase+ h-79;
Purnr (HaadleBase* ,h,355, HmdleBase* ,h,79) :

h-355(-h,355) , h,79(-hh79)i3;
Params() :h,355(0),h,79(O){);

>;

v i r t u a l void Repo C
i n t image = 0;
i n t success;
GeometryDisplry F r m e ;
f o r (image = 0; image < MAXIRAGES ; image++) I

Geometry >> F r u e ; // A membar p r im i t i ve
// of t h e s r t e r n a 1 pro toco l , PROT-Nat .

success = SendVork(Frame) ; // A member
// pr imi t ive of t h e i n t e rna1 pro toco l PROT-Repl.

i f (!success) <// Do it myself, if not success fu l i n
// ass ign ing t o a worker.

DoHidden(Frame);
Yritalmage(Frame) ;

> >
1

// LOCAL d e f i n i t i o n s go here:

// Automatically Generated code f o r module: "Yorksr"
c l a s s Uorker : publ ic SingletonSkeleton <PROT,Repl>
i
publ ic :

vir tual void Repo 1
GaomatryDisplap Frama ;
Receivdork(Frame); // A membor pr imi t ive of t h e ex t e rna l

// pro toco l , PROT-Repl.
DoHiddea(Franie) ;
YriteImage(Frame) ;

>
// LOCAL d e i i n i t ions go here:

S . .

1

It should be noted that the initial part of the new Display class that deals with

establishing connection with the pers through the use of handles. through the def-

inition of the param class and its subsequent declaration and instantiation. remains

identical to the old Display class before rehement. This simply reflects the fact

that the Display module. as seen by its parent and the peers, remains unchanged

from before. It is only the interna1 representation of Display. i.e.. the sub-tree

a i t h Display at its root. that has changed.

Figure 4.3: Structure of the Jacobi application

The Worker class extends the singleton skeleton. The (irnplicit) esternal prote

col. PRGTRepl. is statically configured as a C++ template paranieter. The peers

of Worker are implicit in this case. which are instantiated copies of itself (as a prop-

erty of the parent replicat ion module). Accordingly the -param class-defini tionw

part. that is used for establishing connections with the peers. is missing. A11 these

issues are elaborated in the following sections.

4.2.3 Jacobi

The Jacobi iterative scheme and one possible way of structuring the application

are illustrated in the previous chapter. It uses the two modules: Jacobi and

MeshElement (refer to figures 4.3(a) and (b). re-produced here from the previous

chapter). The Jacobi module corresponds to the front-end of a data-parallel mesh.

The MeshElements constitute the back end.

The following code segments illustrate an implernentation of the Jacobi scheme

using the current textual interface. For reasons of both simplicity and efficiency, the

implementation shown here uses a 1-D mesh. Since Jacobi involves nearest neighbor

communications at the mesh boudaries. use of a 1-D mesh reduces the number of

bound- communications to half as cornpared to a 2-D niesh. The implementation

illustrates the use of C++ operator-overloading technique for irnplenient ing certain

primitive operations inside PROTJDJIesh (for instance: primitives for nearest

neighbor communication). and also more on automatic data marshaling and un-

marshaling.

// The "Jacobi" module corresponds to the front-end of an 1-D rnesh.
Jacobi EXTENDS DataParallelSkeleton
C

CHILOREN = MeshElement ;
PROTOCOL = PROT-1DKesh; // In this case, we need ta erplicitly specify

// the internai protocol, since more than one
// choice is possible.

Rep I
. . .
int N = SetHeshVidth(4) // Set mesh-width to 4. It is a a member of

// PEUT-1DHesh. Hesh-uidth is one parameter
// that can be configured either statically
// or dpnamically.

Grid A(1000,1000); // A 1000 X 1000 muthal-able grid.
ReadIn (A);
PartitionGrid (A,N); // Partition the grid row-vise among the

// N = 4 children
CollectResults (ADN); // ColLect the rssults from the children.
...

1
LOCAL C
// Def initions of ReadIn (. . .) , Partit ionGrid (. . .) , CollectResults (. . .)
// and other methods and local variables map go here (or may ba defined
// globally) .
1 >

// ~8880000800080080080~000000000800008000000~88~8~080
// Each element of the 1-0 mesh.
HeshElement EXTENDS SingletonSkelston
i

Rep €
m..

int context = ...;
Grid A;
RaceiveFroWsp(A,context); // It is a member of extemai protocol,
// PROi-IDHesh. In thia puticulu cua. A is a 252 X 1000 q i d .
// Thare are tuo extra roos (i.e., r o m O and 251) for holding
// boundary r o m from neighboring elaments.
Grid B = A;
- - .
int lb, ub;
int nRoas = A. Roua () ;
int nColpnns = A. C o l m i (1 ;
int myPosition = getHyPositioa(); // Get my position in the 1-D mash.

// It is a member p r b i t i v e of PROT-1DMesh.
i n t meshiiidth = getMeshiiidth(); // Get t h e u id th of t h e 1-D mesh. I t

// is a member pr imi t ive of PROT-1DMesh.
i f (myPosition = O) l b = 2; i l s e l b = 1 ;
if (myPosition .= (meshUidth - 1)) ub = nRows - 3; e l s e ub = nRovs - 2;

// MAXITERATIONS is chosen 88 soma raasonable value.

f o r (i a t k = O; k < IIAXITERATIONS; k++){
i f (myPosition > O) Peer [Loft] << A C 1 1 ; // Each row of A is a

// mushad-able ob j ec t .
i f (myPosition C (meshWidth - 1)) PaerCRightl >> ACnRovs - 11 ;
i f (myPosition < (mashVidth - 1) Peer CRightJ << AhRous - 21 ;
i f (myPosition > 0) Peer CLeftl >> ACOJ ;

// The above four statements i l l u s t r a t e communication u i t h psers
// (i n t h i s case, nmues t neighbor coaniunication). D i f f i r e n t types
// of communication, including broadcasting t o paers , a r e poss ib le ,
// uhich a r e membar pr imit ives of PMT-IDHesh. The above statements
// a l r o i l l u s t r a t a t h e use of C++ oporator-overloaàing i n
// implemant ing c e r t a i n pr imi t ive operat ions . An a l t e r n a t ive opt ion
// is t o use f u c t i o n 8 c a ï l s , e.g., SendToLeft(. . .) ,
// ReceivaFromRight (. . .) , SendToOf f s e t (. . .) , e t c .

f o r (i n t i = l b ; i C= ub; i++){
f o r (i n t j = 1- ' C = n C o l m s - 2 ; j*)

1
B C i i Cj3 = (Abij Cj-il + A C i - i l Cjl + Ali+ll Cjl + *Ci3 C j+ i l) / r ;

SendToRep(A, contex t) ; // A member of extemal protocol , PaOT-1DHesh.
>

The same steps as before are involved in generating the executable. and hence. are

not shom here. Performance results for Jacobi are illustrated in a later part of the

t hesis.

4.2.4 Divide and Conquer

The last example for this chapter illustrates a paralle !I implementation of the qui&

sort algori t hm [54] using the divide-and-conquer s kele t on. The divide and conquer

approach is discussed in the previous two chapters. The implicit children of a divide

and conquer module are copies of itselt A s a result, the module has to dynamically

CHAPTER 4. -4-Y OBJECT-ORIEXTED IJIPLEJIEST4TIOS

differentiate the root of the divide-and-conquer me. an inner node. and a leaf. The

primitive command IamTheRoot () inside PROTDivideConquer (refer below) lets

a module dyamically identify itself. Whether a module is an inner node or a leaf

is application dependent. and hence. cannot be judged by a primitive (refer to the

use of the *Threshold' value in the following application).

The two other primitive operations inside PROTDivideConquer employed in

this application. Le.. PartitionData(...) and CollectResults(...). are used respec-

tively for dividing the data among the children (Le.. copies of itself) and then col-

lecting the results. Ali primitive methods are commented with a star (*) for ease

in identification. The rest of the methods used in the application are application-

specific . and are defined ei t her locally or globally.

GLOBAL C
tinclude <fstreim.h>
Mefins Threshold 200

// The follotring iethods c u i br definsd either locally or globally, it
// doss not matter in this application.
void InssrtionSort(Aint& A)
€
// The insertion sort routine is used below.
>
void
€

ReadIn(if utroiun& infile, AintL A)

UtiteOut (Aintt A, ofstrean& outf ils)

QSortHoduls EXTENDS DivideConquerSkeleton
E

Rep i
if (IamThiRoot()){ //* It is a member primitive of the interna1

// protocol, PIWT,DividsConquer, which lets a nodule
// dynaaically identify whether it i a the root of the
// divide-conque? tree.8

if strma InFile(. . .) ;
ofstroam OutFilr(...) ;
Aint A; // A systa definsd mushaî-able u r a y of intsgers.
ReadIn(InFila, A); // Defined globilly.
QuickSort(A); // Defined locaïly in the following.
VriteOat(A, OutFile); // Defined globilly.

Aint A;
ReceiveFromPuent(A); //* Hember p r i m i t i v e of PROT-DivideConquer.*
QuickSort(A);
SendToParent (A) ; //* h m b e r p r i m i t i v e of PROT-DivideConquer.*

>
LOCAL <

// The f o l l o u i n g methods could r l a o be de f ined g l o b a l l y .
void QuickSor t (Ain t t A)

i f (A . g s t S i z e () C Threshold)
I n s e r t i o n s o r t (A) ;

else I
i n t i = 0 ;
i n t end = A.ge tS ize0 - 1 ;
i n t j = end - 1 ;
i n t p ivo t = ACend] ;

~ u a p (~ , ï , j);
>
Suap(A, i , end) ;

// The fol lowing information is used t o d i v i d e A
// i n t o tuo p a r t i t i o n s . F i r s t p a r t i t i o n : O t o i ,
// Second p u t i t i o n : (i + i) t o (end-1).
Aint P a r t i t ion1 nfo (4) ;
P a r t i t i o n l n f O CO] = 0;
P a r t i t i o n I n f o [l] = i ;
Par t i t ionInfoC21 = i + l ;
P u t i t i o n I n f o C J l = end - i ;

PartitionData(A.P~titionIrtfo); / /* P a r t i t i o n A u o n g
// t h e c h i l d modules a s bassd on t h e informat ion
// providad. I t is a mrmber p r i m i t i v e of
// PRûT,DivideConquer.*

Auser<Aint> datum; //* A 2-D musha l -ab le u r a y .
Col lac tR~su l t s (da tun i) ; // C o l l a c t r s s u l t s from t h e

// c h i l d modulas. I t is a aambsr p r i m i t i v e of
// PRûT,DivideConquer.*

// Nou marge t h e r e s u l t s :
HergeResults (datuni, A) ;

1

Swap (AintL A, i n t i, i n t j

datum, A i n t t A)

The example further illustrates the use of automatic data marshaling and un-

marshaling mechanism. Aint is a system defined integer-array type that can be

autornatically marshaled and un-marshded. Auser<Aint> is a marshal-able anay

of marshal-able integer-arrays (hence. a 2-D marshal-able array).

There is sornething interest ing with the automaticdy generated code in this

case. The following code-shleton shows re lemt pieces of the generated code:

S . .

class QSortUodule :public DivideConquerSkeleton <QSortHodule,PROT,DivideConquer,
Void >

x
public :

v i r t u a l void RepO C
if (1 amTheRoot (1 1 E

In the &st line of the previous code. the actual value of the fîrst template-parameter

to DivideConquerSkeleton is the class QSortModule itself. The C++ language

d o w s this type of nrecursive" parameter passing, which. in turn. facilitates the

implementation to strictly conform to the PASM model.

4.3 Implementat ion Issues

This section discusses the various implement ation issues that are the key features of

the present object-oriented implement ation of the PASM model. These issues are

Figure 4.4: High level class diagram behind the design of the skeleton libraq

also an essential reading for an experienced user who wants to extend the existing

system. before start exploring the skeleton-libr- source code. The implement ation

of the mode1 is referred to as the PASM system wherever appropriate.

4.3.1 Implementing Architectural Skeletons: Reusability

and Ext ensibility

Figure 4.4 illustrates the high-level class diagram behind the design of the skeleton

library. The figure uses the standard CàIL [S] notation. For simplicity. the figure

does not illustrate the relationships bettveen the skeleton- and the protocol-classes.

'cloreover. the various attributes and the methods associated with each class. and

the formal parameters. in the form of templates, associated with each inherited

skeleton-class are not shom for a cleaner representation. More detailed UMG

represent ation for an example is illustrated in the next subsec t ion.

From the implementor 's or an experienced user's perspective. certain features

of the object-oriented design. in conjunction with the generic nature of the P.4SM

model. favor reuse and extension of the skeleton Library. The generic model helps.

because it provides a clear picture regarding what the different components of a

skeleton are and what their functionalities are going to be (compare it with a

totally ad hoc approach). Furthemore. from the model's perspective. each module

is an independent entity whose only interface a i th the outside world is through its

representative and the adaptable extemal protocol. Accordingly. what the outside

world sees of the module are only through its actions (i.e.. input/output and an'

observable side effects). without knorving exactlu how thees actions are carried out

intemally. In other words. the module acts as a black-box to the outside world.

The same arguments apply to the intemal structure of the module where its back

end might contain copies of itself (for instance: in the divide-and-conquer skeleton)

or other modules. with which it can interact only via their representatives. These

exclusive feat ures of the model facilitate the design and addit ion of new skeletons

wit hout affecting the exist ing ones.

'ilan' of the object-oriented features that are supported in C++. for instance:

polymorphism (rhrough the use of C++ ternplates and virtual methods) and in-

heritance. facilitate the reuse and extension of the existing skeleton library New

classes can be defmed by extending existing ones. thus enabling the design and

addition of new skeletons and protocols a i t h added functionalit ies. Completely

ner skeletons and protocols can be designed by extending the base classes (refer

to Figure 4.1). In each case. a collection of pre-existing virtual methods need to be

overridden and some new additional methods might need to be defined in order to

reflect the characteristics of the newly designed skeleton.

Void F

Figure 4.5: High level class diagram for the graphics animation application

4.3.2 The Graphics Animation Application: Revisited

Figure 4.5 illustrates the high-level design in CML notation pertaining to the graph-

ics animation application before refinement. discussed in the previous chapter and

detailed in section 4.2.2. A s the automatically generated code in section 4.2.2 and

figure 4.5 suggest . each architectural skeleton is implemented as a template c h .

nhere each template relates to a statically configurable parameter associated wit h

an attribute of the skeleton. For instance, in the case of the compositional skele-

ton. the two statically codgurable parameters are the (implicit) interna1 protocol,

P h t . and the adaptable extemal protocol. PExt. For design reasons, the other

static parameters for the compositional skeleton (for instance: the specification of

the children) are not realized as templates. In the case of the singleton shleton,

the only parameter is the adaptable external protocol. PExt.

As shown in the figure (also refer to the generated code), each template skeleton

class becomes bound as soon as the actual values of the template-parameters are

specified. The concrete class Root extends the bound (but abstract) compositional

Figure 4.6: High level class diagram after refinement

skeleton class. Similady. the concrete classes Generat a. Geometry and Display

extend the bound (but abstract) singleton skeleton classes. Each of Generate,

Geometry and Display is contained inside Root. The rest of the diagram is self

explanatory. The funct iondi ty of the handles (i.e.. UnaryHandle) inside Root (refer

to the automaticdy generated code) is discussed towards the end of this section.

Figure 4.6 illustrates the change in the high level design after refinement (refer to

the previous chapter and also section 4.2.2). When compared with figure 4.5. it can

be seen that the rest the application. other than that involving Display, remains

intact. The modified part of the design is included inside the dotted rectangle.

-4s before. the replicat ion skeleton is a template-class. Unlike the compositional

- Parent-chiId rclationstiip in the
hicrarchical oet

Figure 1.7: HTree and its traversal scheme

skeleton. the replication skeleton has one extra template parameter. that is the

child to be replicated (refer to the figure and also to the automatically generated

code). Sote that the the child is specified here as a template parameter. The

child-components of the compositional shleton are not specified using template

parameters because it cm have an arbitrary number of different children. The rest

of the diagram is self explanatory

4.3.3 The Dynamic Execution Mode1

The execution mode1 for the PASM system is SPMD. i.e.. each processor in the

processor-cluster loads and executes the same file. which results in major savings

in t ems of management of source. object and executable files. Consequentiy. each

process falls through the same H l k e associated with the application. starting at

the root of the tree. Figures 4.T(a).(b) illustrate the HTree associated with the

graphies-animation application before and after rehement respectively.

A node of a HTree corresponds to the representative of a module (refer to

Definition 2 in the previous chapter). Each process is responsible for executing

esactly one node of the tree. thar is: there is a one-to-one correspondence between

a process and a representative node. A process starts at the roor of the hierarch-

and then traverses down the tree to its designated node.

Hotv does a process determine the path to traverse'? This is achieved as follows:

each process is dpamically assigned an identification string (by its parent node

based on its own identification string). by foilowing a unique labeling scheme. .As a

process traverses don% the tree. it dyamically calculates its path. by following the

same scheme. The process traverses down a specific path of the tree. if and only

if the already calculated path is a substring of its assigned identification string.

Khen the calculated path matches the identification string. the process is at its

designated node and thus it can esecute the code pertaining to that node.

In figure 4.7. the string in parentheses beside each node is the identification

string that determines ahich process executes the node. The dynlmically repli-

cated Uorkers after refinement are all identical. Therefore they execute the same

code and have the same identification string. Khenever processes with the same

identification string have to identify their relative positions tvit h respect to t heir

peers (for instance: inside a 2-D mesh. or for the sarne le1:el nodes inside a ditide-

and-conquer tree). t hey use 1IPI's internal -rankU mechanism for finding t heir

positions inside a communicator group [Il.

.AU of the previous issues are completely hidden from the user. In fact. for

instance. a user follows the general structure as illustrated by the examples in this

chapter. and mites an application with the perspective that one is dealing with

individud modules. rather than wit h individud processes. Without any further

aid fiom the user. the dynamic execution model makes it possible for a process to

execute the code segment pertaining to a given module.

CH-4PTER 4. -4-Y OBJECT-ORIEXTED I,\IPLEI\IEST,-ITIO.I-

4.3.4 Mechanisms for Constructing the HTree

The previous discussion outlined the mechanism that ailows a process to tra sers

down the HTree to its designated node. This subsection discusses some of the key

implementation aspects of the travenal scheme. The discussion starts with the basic

implement at ion-mechanism for const ruct ing the hierarchy. For convenience. the

discussion is presented from the perspective of the gaphics animation application

discussed before. Relevant pieces of the generated code (refer to section 4'1.2) are

re-inserted in the following:

...
class Root : publ ic CompositionalSkeleton <PROT,Net ,Void>
E

UnaryHandleGanerate, Generate::Params> h-481;
UaaryHandle<Ceomatry, Geometry::Parans> h-73;
UnaryHaadle<Display, Displap::Params> h-113;

public:

Root () : h-481 (Cenerate: : Params (Lh-73 ,ththl13)) ,
h,73(Geometry : : Param8 (th-481, &hhl 13)) ,
h,lt3(Display: :Params(Lh-481,LhLh73))C);

virtuai void Rep() {
/ / The rapresentative code goes hem

1

// LOCAL. def in i t ions go hsre:
1;

void Pmain()
i

Root TopLooel-820;
TopLevsl,820. Runo ;

1

The mechanism for cons truc t ing the hierarchy is t hrough the conditional cons truc-

tion of objects of type -architectural skeleton' inside another object of the same

type. For instance. the objects of type Generate. Geometry and Display are (con-

ditionally) constructed inside an object of type Root. Each of Generate, Geometry

and Display may. in turn. contain other objects inside it (in fact, Display contains

objects of type Worker after refinement). Also refer to figures 4.5. 4.6 and 4.7.

The decision on the part of a process regarding whether to construct an object

inside the context of another object is analogous to deciding whether or uot to

traverse a specific path down the hierarchy (refer to the previous subsectioii). This

decision is taken inside the handles. as s h o m by the objects of type UnaryHandle in

the previous code. In other words. a handle serves as a locking-unlocking niechanisni

that d o w s oniy a selected number of processes to traverse down the hierarchy.

based on the previous string-based traversal scheme. while blocking the rest. An

object of type UnaryHandle contains. besides other information. the reference to

the created -architectural skeleton- object . Similarly. t here are handles of type

GroupHandle (for instance: used inside the data-parallel skeleton) . where each

handle is associated \vit h a group of identical "architectural skeletonn ob jects.

Inside the procedure h a i n () in the previous code. a call to the hidden method

Run () associated with Root is made. This call causes each process to start traversing

doivn the hierarchy. starting at the root. There is also a Runo method associated

nith each handle type. The Runo of Root conditionally cdls the Runos of the

three handle-objects. The Runos of the handles. in turn. conditionally cal1 the

Run () s of t heir associated -architectural skeleton' ob jects. and thus this sequence

repeats.

-4s an example. let us consider the case of the process assigned wit h identification

string -02". that is meant for executing the representative of Display (refer to

the previous subsection and also Figure 4.7). As it traverses d o m from Root. it

temporarily calculates its path. Inside Root. it calculates its temporary path as

-0". Since it is a substring of its assigned string -02". it is supposed to traverse

down the hierarchy fun her. So. the process calls the Run () method associated with

the handle for Generate (that is: the handle h-481 in the previous code). where

it calculates the temporary path as -00". Since it is not a substring of -02". the

process is not supposed to traverse down further this path. and hcnce. it does not

create the associated object. Cenerate. The situation is the sarne for the handk

associated with Geometry. tvhere the path is calculated as -01-. Finally. inside the

handle for Display. the temporary path is calculated as -02-. nhich matches with

the assigned string for the process. Hence the object. Display. is created inside

the handle and the process s t a r t s executing it s represent ative.

After refinernent. Display has to further spawn identical Uorker modules. The

corresponding processes are dynamically assigned t heir identification strings baseci

on its current identification string. -02-. Accordingly. this first set of identicd

processes are assigned n-ith the identification string -0201. Had there been a second

set of processes. the' wouid have been assigned -021q. and so on. The sarne steps

as before apply to the new processes when the- start traversing down the hierarchy.

-4s ment ioned before. ident ical processes can ident i f i their relative positions with

respect to their p e r s with the help of 1IPI.s internal rank mechanism inside a

communicator group [Il. Once again it shodd be rnentioned that al1 of the previous

issues are completely hidden from the user.

4.3.5 Obtaining Information about Peers

When identicd processes are simultaneously spanmed. they fd l into 11PI's same

cornmunicator group. .4ccordingly t hey can figure out their identities. their relative

positions inside the group. and any other relemnt information using MPI's internal

primitives (obviously al l of these are hidden from the user). This is not the case

when the processes spawned are not identical. The following discussion presents

the scenario where non-identical processes are p e r s of one another and need to

interact .

Once again. let us refer to the previous code. Since the Generat e. Geometry and

Display objects are created inside the context of Root. each of the child objects

is passed with the information about its peers. with which it interacts. This infor-

mation. in the form of references. is packed inside a Params object and is passed

as a parameter during the construction of each of the handle objects (refer to the

constructor of Root). For a default all-to-all interconnection topolog-. a handle is

passed with the references of all the other peer-handles. -4 handle. in turn. passes

t his informat ion t O i t s associated -architectural skeletonw object while const ruct ing

it. Relevant pieces of the automatically generated code for Generate are re-inserted

in the folloaing:

class Generate : public SingletonSkeleton <PROT,Net>
i
public:

class Params

public:
HaadleBass* h-73;
HandleBase* h-113;
Params(HandleBase* ,h,73,HandleBase* ,h,113) :

h,73(,h,73) ,h,llS(,h-l13)C>;
P u a m s () :h,73(0),h,113(0)();

1;
Params p-611;

In the previous code. when the Cenerate object is constructed by the associated

hande. it is passed with the previous information as a parameter to one of its con-

structors. In that way. each of Generate. geometry and Display has references to

the handles of i t s peers. The communication protocols use t his intemal information

whenever peers need to interact with one another.

4.3.6 Process-Processor Mapping

When processes are mapped to processors. it is desired that processes that need

to frequently communkate with one another be placed in a closer ~icinity in the

processor cluster. JIany other factors. other than the physical distances of the

processes. also aise. for instance: processor load. non-uniform network speed and

bandwidth inside the cluster. network congestion at a specific time. and maintaining

optimal load-balancing among processors. The topic of process-processor niapping.

while taking into consideration all of the previous factors. is a cornplicated research

issue in itself and the interested reader may refer to 1301 for a discussion and links

to various mapping related topics. The present implementation does not apply an?

specific mapping strategy and lets MPI handle this aspect (which applies a round-

robin mapping scheme) . Enough opport unit y esists for exploring the mapping

related issues inside many of the skeletons (for instance: the compositional and the

data-parallel skeletons). and need to be researched in the future versions of this

wor k .

4.4 Steps Involved in Building an Application

This section describes the steps involved in developing an application t hat uses

the current textual specification language. It is assumed that the skeleton library

and the applications reside inside a single directory. identified by the environment

miab le SKELETON-HOME-DIR. That directory is divided into several subdirectories:

the t i b sub-directo- contains the skeleton library. the App sub-directory contains

the C++ applications. the U I sub-di recto^ contains the applications uritten using

the specification language. the Include sub-directory contains the various include

CHAP TER 4. ,4S OBJECT-ORIESTED I M P t EJIEST-4TIO.S

files. and the Parser sub-directory contains the specification language parser and

associated files.

The following discussion presents the stepe involwd in building the Jacobi

application. It is assumed that the application u-ritten using the specification lan-

guage resides inside the single file Jaco b i . t x t (note that multiple files can dso

be supported) in the sub-directory $(SKUETON-HOME,DIR)/UI/Jacobi. .A user

issues the make comrnand. which invokes the Makef i l e residing in the same sub-

directo- This. in t urn. invokes the parser. which automat ically generat es the

C++ file Pmain . cc inside the sub-directory $ (SKELETON_HOME_DIR) /App/ Jacobi.

A sample Makef i l e might look as f o l l o ~ :

Halrefile for applicat ion source.
Al1 r ights rssarved. 1998.
Dhrubaj yot i Gosuami ---
s-
Application source: user s p e c i f i e s t h i s

SAC = Jacobi . t x t
APPDIR = $(SKUETON,HOE,DIR)/App/Jacobi

-4s the next step. the user changes directo- ro $ (SKELETON-HOME-DIR) /App/ Jacobi.

where the automatically generated C++ source(s) resides. T here the user invokes

another make command to generate the emcutabie. The corresponciing Makef iie

is not s h o m here.

Finally. assuming that 'IIPI is installed in the underlying cluster and is working

properly. the corresponding executable file can be executed using the conirnand:

run <executable_file_name>. Here. nin is a shell script that resides insidr the

sub-directori called $ (SKELETON_HOME,DIR) /Script S.

4.5 Summary

The chapter presents the key implementation aspects of the PAS11 model. starting

with the textual user interface and its use in implementing various applications. The

subsequent sections deal with the different implementation aspects of the model

including the design of the skeleton library its reusability and extensibiiity. the

dpamic execution model. mechanisms for construct ing the hierarchy. and finally

the issue of process-processor mapping. The implementation of the PAS11 model

is often abbreriated as the PASSI system in the following chapters. The next

chapter discusses the individual patterns in sometvhat det ail from the perspective

of a 'pattern language". a format that is presently widely adopted by the patterns

community for writing about patterns in an' discipline.

Chapter 5

A Pattern Language

Cnt il now. parallel architectural skeletons have been discussed without bringing in

the actual correlat ions between the skeletons and the various patterns in parallel

computing. This chapter bridges that gap. Considering a pattern as a 'prob

lem/solution pair". a skeleton provides solution(s) for a pattem from the perspec-

tive of the rnodel. The folloiving discussion presents the inter-related solutions for

patterns provided by the skeletons in the fonn of a pattern language.

5.1 Introduction

Since the visionary idea on patterns and pattem laquages by the architect named

Christopher Alexander [3]. applied in the context of (physicd) architectural design

(e.g.. buildings. bridges. hospitals. etc.). similar ideas are recently being widely

adopted by the object oriented computing community and several ot her disciplines.

some of which are not even related to computing. As mentioned in an earlier

chapter. the &Pattern Laquages of Program Design" series of book [37] are good

references for a n o n e interested in pattern-related ropics covering a wide range of

disciplines.

A design pattern catalog provides a set of indiridual. not-necessarily related

solution techniques to cornmon design problems. On the other hand. a pattern

language provides a collection of interrelated solution techniques to cornnion design

problems in a specific problern domain. .-\ pattern language is not a formal language.

but rather a collection of interrelated solution techniques t hat toget her provide a

vocabulary for taking about a specific problem or a collection of problems.

The skeletons discussed in this thesis are all m e n together by the generic PASU

model. which defines t hem. and t hese interrelated skeletons are used toget her to

solve commonly occurring problems encountered in network-oriented parallel corn-

puting. Each skeleton is a physicd manifestation of a pattern in parallel comput-

ing (e.g.. the data-parallel skeleton is a semi-concrete physical manifestation of the

dat a-parallel part ern) . ahere each pattern is represented as a -problern/solution

pairw. Solutions for patterns realized by the skeletons are interrelated with each

other in the context of the model. and together they form a pattern language that

provides techniques for designing and implementing network-oriented parallel ap-

plications. Figure 5.1 diagrammatically illustrates the relationship between the

various skeletons and the associated patterns in t his pattern language.

The following discussion presents the current set of patterns that has been

realized by the generic model. i.e.. patterns and t heir solutions realized through the

pa rde l architectural skeletons. The discussion uses the present commonly accepted

format in pattern writing [49].

In describing each pattern, which is essentially a -problem/solution pair" for a

commonly occurring problem. the problem is discussed in a general context which

The Replication Skclecon

The Singleton Skclcton I

A B Skcleton *Aw rciûitcs (or. impltments solution(s) for) pattern "B"

Figure 5.1: Relationship bettïeen skeietons and patterns in the language

universally applies to pa rde l computing. Solutions to the probleni are often p r e

sented exclusively from the architectural shleton perspective. meant for a user of

the skeleton-library. The examples are illustrated only from the perspective of the

architectural-skeleton approach.

Since there is no notion of a process in the architectural-skeleton approach. the

following conventions in termînologv are followed in the rest of the discussion. A

process in the general context is equilalent to a sequential nodule (that is imple-

mented as an extension of the singleton skeleton) in the architectural-skeleton con-

text. and the two t e m s are used interchangeably. h module in the general contesr

means a modular. single- or multi-process entity. .A module in the architectural-

skeleton context conveys i ts usual meaning.

Descriptions of the pat tems follow next . Due to space constraints. two of the

patterns are discussed for illustrative purposes in full detail (indicating what a

future reference manuai might look like). Discussion of the compositional and the

data-parallel patterns are vast topics and their inclusion here would explode the

size of this document. Accordingly. the rest of the existing patterns are briefly

discussed. only partially conforrning to the set standard in pattern writing.

5.2 Pattern: Dynamic Replicat ion

Contezt: The following problem may arise in the general context of any paral-

le1 application development that uses the message passing paradigm. and involves

single or multiple interacting modules.

The problem described below is applicable in either of the following situations:

(a) a sequential module (which could be irnplemented using the singleton skeleton in

this language) has to interact with other modules in an application. The nioduk has

to perform repeated ident ical computat ions on different sets of data. for iiistance. in

different iterations of a loop where the loop iterations are independent of each other.

However. in comparison nith the other modules that it interacts wit h. the workload

of the sequential module is high enough to slow down the entire application. (b) .A

st and-alone sequentiai module bas to repeatedly do the following: read in some data

from an 110 device or a Ne. perfonn some computation on the data. and finally

output the result to an I/O device or a file. However. the computation phase is a

bot tleneck.

Problem: How to increase the throughput of the out-of-pace module in the

previous context. and thus possibly enhance overall performance. without modifying

the rest of the application.?

Forces:

0 .-\chieving speedup with minimal possible modifications is the biggest consid-

era t ion here.

It is possible that multiple developers are involved. speciall- when the first

situation in the previous context applies. In that case. a bottleneck in part

of the application needs to be resolved without involving others.

The first bottleneck-situation in the previous context frequently aises. for

instance. when the interacting modules form a pipeline. Each pipeline stage

performs some repeated identical computations inside a loop. where each iter-

ation of the loop is independent of the other. and communication is involved

exclusively at the beginning and the end of each iteration. One or more of the

pipeline stages might participate in relatively more time-intensive cornputa-

tions as compared to the rest . which in tuni pulls down the performance of

the ent ire pipeline (for instance: refer to the graphics animation application

discussed in the previous chapter).

Solution: .-\ solution to the problem is presented here from the architectural-

skeleton perspective. intended for a user of the slieleton-library. In discussing the

solution. it is assumed that the original sequential module has the following repe-

tit ion code-st ruc t u e :

. . .
while (sone,condition = True) {

Read-in (data); // "data1> i s read-in from sons I/O dewice,
// f i l e or from another module.

Process (data) ; // Process data that i s read-in above.
Vrite-out (data); // Output ptocessed data t o some 110 device,

// f i l e or another module.
Revalidats,condition(soma~condition, ...); // Re-validate

// "some,condi t ion~ t o see if it s t i l l holds
1

.A solution to the pr~blem involves the following steps:

Step 1: Identify the repeated identical computations performed by the se

quential module. SomeModule. that can be replicated to nui concurrently in

order to possibly enhance the throughput of the module. provided multiple

free processors are available. without affecting the rest of the application. For

instance. in the previous code. it is the method Process (data) inside the

while loop.

Step 2: Enclose the repeated part of the computation into a separate sequen-

tial module (in the previous case. it is the method Process(data)). Here,

this sequential module is named as Uorker. since it performs the pure com-

putation part. .A code segment for Uorker is shown in the following.

Step 3: Replace the sequential SomeModule wit h mot her module of identical

name. but this time extending the replication skeleton. The Uorker module.

in step 2, becomes its child.

0 Step 4: The external protocol of SomeModule rernains the same as before. Le..

if it is at the root of the hierarchy. its external protocol is Vo id. Otherwise. the

external protocol of SomeModule becomes the internal protocol of its parent.

Step 5: The internal protocol of the replication module. SomeModule. is

PROTRepl. Accordingly. PROTRepl becomes the erternal protocol of each

replicated Worker. Cse the communication-synchronization primitives inside

PROTRepl to restructure the code-segments of both the modules. as illus-

trated in the following self-explanatory code segments.

Step 6: (Optional) Later replace the sequential Uorker module with any

other suitable module supported by this language. if deemed necessary.

The folioaing code-segments illust rate one part icular solut ion. Hoivever, ot her

variations are also possible depending on the specifics of the problem.

SoaeHoduh EXTENDS ReplicationSkeleton
I

Clif LDREN = Vorker
Rep i

f & (;;) <
int success = Tme;
u h i l e ((some,condition = Trur) && (succrss == True)) <

Raab-in (data) ;
suecass = SendVork(data); // Dyaamicaîly iend uork-foui to a
// frse oorkor. If none is frra, spawn one while perforning a
// suitable load-baïaacing stratogy. It is a member primitive
// of the internai protocol, PRûT-Repl, and is described in
// the folloaing.

Revalidate-condition (some,eondition, ... 1;
1
if (success = False) { // Uasuccessful in assigning vork-load to a

/ / uorkar. So, procass it on your oun.
Procass (data) ;
Vrite-out (data) ;

>
CollsctResults(); // Collect as mlny available results as possible.

// This procedure is defined ia the follouing.
if (some,condition = False) break;

1
while (ResultsPendiag()) ~01lectRssults~); / / Collect al1 remaining

// results. ResultsPending() is a membar primitive of PROT-Repl.
>
LOCAL i

void Collect,Results()
.c

int success;
whils ((success = RecaiveResultNB(data) = True) <

// The above is a member primitive of PROT-Repl, and is
// non-blocking. Collect as many of auaiting results as
// possible.

Urite-out (data) ;
1

1
. . .

1
1

// Each of the replicated aorker.
Uorker EXTENDS SingletonSkeleton
E

Rep <
a - .

ReceiveUork(data); // This blocking version of teceive is a msmber
// primitive of the external protocol, PROT-Repl, and is a
// counterpart of SendWork(data), u8ed previously.

Procass (data) ;
SendResult (data) ; // A member primitive of the external protocol,

The previous

structure. Ot

code-segments convey the basic idea.

her variations of the code are possible. (

based on a generic repetition

iepending on the specific situa-

tion (for instance. a multi-t hreaded representative could also be designed providing

similar functionalities). .&o. refer to the examples that follow for concrete illus-

trations. and a following section that describes the primitives for a detailed look at

t heir functionalit ies.

Examples: For a concrete esample. refer to the graphics animation application

discussed in the previous chapter. There. the out-of-pace sequent ial D i splay mod-

d e u.as replaced with another module of identicd name. that supports dynarnic

replication. It should be noted that none of the other modules in the application

was affected by this change. The interested reader might want to compare the

previous generic code with the code for the graphics animation application. It ivill

be observed that the CollectResults() portion of the previous solution is missing

from the refined Display module.

Selected Primitives: A selected set of primitives from PROTRepl is dis-

cussed in the following:

int SendWork(Wrapper& workload) : The range of actions performed by this

primitive is elaborated in the following pseudecode.

O . r e s u l t := S U C C ~ S S .
1. i f any f r e e c h i l d module is cu r r sn t l y a v a i l a b l s

t han
1.1. apply sons s u i t a b l e load-balaacing s t r a t e g y // Anothsr r e s e u c h i s sue

t o ass ign workload t o one of t h e f r e e modules.
e l s e

1 .2 . I f t h e c u r r m t n u b e r of c h i l d modules is within t he prssc r ibed
maximum limit, spaun one c h i l d module o h i l e applying t h e nseded
load-balancing s t r a t egy .

1.3. I f success fu l i n spauning
then

1.3.1. Assign workload t o t h a t c h i l d .
e l s e

1.3.2. r e s u l t := f a i l u r e .
r e t u r n r r s u l t .

int operator<< (ReplicationPort& port, Wrapper& workload): This is an

operat or-overloaded variation of the previous primitive.

int SendWork(Wrapper& workload, int context) : This is another variation

of the previous primitive that uses explicit user-specified context.

void RecieveResult(Wrapper& workload) : The range of actions perforn~ed

by this primitive is elaborated in the following pseudo-code.

1. if no child ha8 completed pet
thon

1.1 block.
2. // Uakeup here

2.1. Collect result from the first availabls child
2.2. If the child did not terminate itself

then
2.2.1 Hark child as f ree. // To be ussd in

3. Exit.

void operator> > (ReplicationPort& port, Wrapper& workload): This is

an operat or-overloaded bariat ion of the previous primitive.

int ReceiveResultNB(Wrapper& workload) : The non-blocking version of the

above. It returns 1 on success.

void RecieveResult (Wrapper& workload, int context) : Another iariation

t hat uses explici t user specified context.

int ResultsAwaiting() : This primitive is used for checking if computation result

is currently amilable from an' of the child modules. rithout actually reading in

the results. It returns 1 if at least one of the child modules has its results arvaiting.

int ResultsPending() : Check if any more results are pending. It returns 1 on

success.

The following are the child-specific counterparts of the previous send and receive

primitives: void ReceiveWork (Wrapper& workload). void SendResult

(Wrapper& workioad) . O t her possible child-specific lariants are not listed.

5.3 Pattern: Parallel Divide and Conquer

Contezt: The foUoWing problem may arise in the context of any parallel a p

plication development. Here. a (sequential) module needs to implement a divide

and conquer algorithm. During the divide phase of the algorithm. the application-

problem to be solved is recursively divided into smaller and smaller sub-problems

until some base condition is reached: then the sub-problem is solved by some suit-

able base-case algorithm. During the conquer phase of the algorithm. the solution

to the original application-problem is formed by combining the results froni the

smaller sub-problems using a conquer-phase algorithm.

Problem: How to irnplement a parallel version of divide and conquer?

Forcea :

The divide and conquer pattern is encountered in a large nurnber of probiems.

ranging from searching (e.g.. binary search). sorting (e.g.. merge and quick

sort). n.rious graph algorithms (e.g.. recursive graph partit ioning. finding the

closest pair of points in a gaph) . selection algorithm (i.e.. to find the krh

smallest element in a list of n elements) to an optimal 0 (n2*") algorithm for

the multiplication of two matrices. to name a few.

Successive dividing of the problem into smaller sub-problems and the subse-

quent conquering results in a divide-and-conquer t ree structure. which grows

in size during the dividing phase and shrinks during the conquering phase.

Data is always input at the root of this tree. Output need not always be at

the root level (for instance. refer to the recursive partitioning of a gaph) .

Leaves of the tree correspond to the base condition. Also refer to section 2.1.

For a recursive (i.e.. sequential) implementation. each non-root node of the

previous divide-and-conquer tree correlates to a recursive subroutine c d that

implements the particular divide and conquer algorithm. Each leaf node

correlates to the base condition of the algorithm.

Obviously. in a pa rde l implementarion. each recursi~e c d needs to be re-

placed by a separate process/thread that executes the subrourine. Hoivever.

creation of a new process/thread for each invocation can result in reduced

efficiency. simply due to the fact that each parent node of the tree has to

wait idle until resdts from al1 its children become amilable. Thus. common-

sense says that efficiency can be enhanced by assigning the workload of one

of the children to the parent process/thread. consequently keeping d l pr*

cesseslthreads and involved processors bus- during the dividing phase of the

computation.

Solution: In discussing the solution. it is assumed that the following is the

generic structure of the recursive divide and conquer algorithm executing at each

node of the divide and conquer tree:

Procedure DivideConquer(data1n: Input , da taout : Output)

s t o p 1. i f t h e base condi t ion is met
then

s t o p 1.1. ProcessData (da ta In , da t aou t) ; // Applicat ion-specif ic
// base-case procedure t o s t ra ightaway procesr input when
// t h e b u e condi t ion is met.

s t o p 1.2. go t o s t op 5.
s t o p 2. Par t i t ionData (da ta In , P a r t l , P u t 2 , ..., Pa r tk) ; // Application-

// s p e c i f i c procedure f o r p u t i t i o n i n g d a t a i n t o k
// s u b - p u t s uhan t h e base condi t ion is not met.

s t o p 3. Exacuts t he fo l l ou i ag k recurs ive c a l l s :
s t e p 3.1. DividaConquet (P a r t l , Out1 ;
s t o p 3.2. DivideConquer (Put2, Out2) ;

3. k . DivideConquer (Partk, Outk) ;
s t e p 4. Combine (Outi , Out2, ..., Outk, da t aou t) ; // Applicat ion-specif ic

// procedure t h a t combines the r e s u l t s from t h e k
// recurs ive ca ï l s t o produce t h e f i n a l output .

s t o p 5. r a t u r a .

A general solution to the problem replaces each recursive c d with a separate pro-

cesslthread that executes the same algorithm. A process-based generai solution

t hat is applicable to an MMD distributed-memory environment is as foilows. where

the previous procedure is replaced with a module (i.e.. an esecutable file in the gen-

eral context). Each esecuting copy of the module maps to a different node of the

divide and conquer tree.

Module DivideConquer
da ta fn : Input
da taout : Output

s t e p 1. i f roo t node
then Read (da t a In) ; // Read i n d a t a from an I / O dev ice , f i l e o r

// some o the r module.
e l s e Receive (P u e n t . da t a fn) ; // Else rece ive d a t a from p u e n t .

s t o p 2. i f t h e base condi t ion is met
thon

s t o p 2.1. ProcessData (da t a In , da taout) ; // Applicat ion-specif i c
// base-case procedure t o s t ra igh tauay process input uhen
// t h e base condi t ion is met.

s t e p 2.2. O t o s t e p 7.
s t e p 3 . P a r t i t ionData fda t a In , P a r t i . P W Z Partk) ; // Application-

// s p e c i f i c procedure f o r p a r t i t i o n i n g d a t a i n t o k
// sub-parts uhen t h e base condi t ion is not met.

s t o p 4. f o r i := 1 t o k , do t h e fo l l ou ing
s t e p 4.1. handle h-i = Spawn (DivideConquer, ...); // Spawn a

// process t h a t executes "DivideConquer" and t e t a i n
// t h e handle t o t h e process f o r f u t u r s seferance.

s t o p 4.2. Send (h- i , P a r t i) ;
s t o p 5. f o r i := 1 t o k , do t h e fo l l ou ing

Receive (h- i , Out i) ;
s t o p 6. Combine (Outl, Out2. ..., Outk. da t aou t) ; // Application-specific

// procedure t h a t combines t h e r e s u l t s from t h e k
// modules t o produce t h e f i n a l output .

s t o p 7. i f r oo t node
then Ur i t e (da taout) ; // Uri te ou t r e s u l t t o an I/O device , f i l e

// o r send it t o sons o the r module.
e l s e Send (Paren t , dataout) ; // Else send d a t a t o paren t .

s t e p 8. e x i t .

h specialized solution from the architectural skeleton perspective involves the fol-

lowing steps. The solution assumes that the input is provided as an 1-D array of

marshal-able ob jects.

Step 1: The previous module in the general context is substituted with

a module in the context of this approach. that extends the LhvideConquer

skeleton. As a property of this shleton. a module extending it has copies of

itself as its own children (&O refer to chapter 3).

CHAP TER 5. -4 P-îT TERX LASG LXGE 1 05

O Step 2: For the copy of the module that is at the root of the divideand-

conquer tree. if it is also at the root of the hierarchy then its estemal protocol

is Void. Else. its extemal protocol is the internal protocol of the parent.

0 Step 3: For each non-root module. its externd protocol is the sanie as the

internal protocol. i.e.. PROTDivideConquer.

Step 4: Cse the primitives inside PROTDivideConquer to restructure the

previous code as follows. It assumes that a marshal-able array of type ttt

(rhere. t t t can be built-in type or user defined) is input to the module.

For convenience to the reader. the member primi tives of P ROTDivideConquer

used in the following code-segments are commented between two star (*) marks for

easy identification. The primitives are described in a following section.

DivideConquerHodule EXïWDS DivideConqusrSkelston
i

Rep i
if (famTheAoot())i //* I t is a member p r im i t i ve of t h e i n t e r n a l

// pro toco l , PRQT,DivideConquer, which lets a module
// d p a m i c a l l y i den t i f y i t s e l f r e g u d i n g whether it
// i s t h e root of t h e divids-conquer t r e e . *

a - .

A t t t d a t a In , da taout ; // A t t t can be one of Aint , Achar,
// Afloat , Auser, o r anp o the r musha l -ab le array
// of standard d a t a type.

Rsadin (da t a In) ; // Applicat ion-specif ic procetdure t h a t reads
// i n t h e input d a t a (e i t h e r from an I/O device , a f i l e
// o r rece ive t h e input from another module, i n case
// this module i n a pa r t of a bigger app l i c a t i on) . Xt
/ / is defined l oca l l y i n t h e fol lotr ing.

DivideConquarProcedurs (da ta In , da t aou t) ; // The gener ic
// divide-and-conquer procedure i n def ined l o c a l l y i n
// t h e following.

Uri teout (dataout) ; // Application-specif i c procedwe t h a t
// mites out t h e output d a t a (e i t h e r t o an :/O device,
// a f i l e o r send t h e output t o ariothor module, i n case
// t h i s module is 8 part of a bigger app l i c a t i on) . I t
// is definad l o c a l l p i n t h e fol lowing.

// Else
A t t t d a t a I n , da taou t ;
ReceiveFromParent (d a t a I n) ; / /* A mamber p r i m i t i v e of

// PRûT,DivideConquer+

DividsConquerProcedure (da ta In , d a t a o u t) ; // The g r n e r i c
// divide-and-coriquar procedure is def ined l o c a ï l y i n
// t h e fol lowing.

SendToParent (d a t a o u t) ; //+ A member p r i m i t i v e of
// PRQT,DivideConquer*

>
LOCAL C

void DivideConquerProcedure (A t t t t d a t a I n , A t t t & da taou t)

i f (BaseConditionIsUet(data1n)) // Check i f t h e base c o n d i t i o n
// is satisfied. It is def ined l o c a l l y i n t h e f o l l o u i n g .

C

ProcesaData (d a t r f n , da taou t) ; // Process input d a t a
// s t r a i g h t a o a y i f t h e base cond i t ion is s a t i s f i e d . 1%
/ / is def ined l o c a l l y i n t h e f o l l o u i n g .

>
e l s e C

Aint P a r t i t i o n h f o ;
C r r a t e P a r t i t i o n (d a t a I n , P a r t i t i o n I n f O) ; // Craate t h e

// a p p l i c a t i o n - s p e c i f i c p a r t i t i o n i n g of t h e inpu t
// d a t a . I t i n de f ined l o c a l l y i n t h e f o l l o u i n g .

P a r t i t i o n D a t a (d a t a I n , P a r t i t i o n l n f o) ; / /+ A member p r i m i t i v e
// of PROT,DividaConquer, used f o r dynamically c r e a t i n g
// t h e c h i l d r e n modules (copies a i i t s e l f) and t h e n
// d i v i d i n g t h e inpu t among them, based on P a r t i t i o n I n f o . *

Auser<Attt> R e s u l t s ;
Co l lec tResu l t s (R e s u l t i) ; //* A member p r i m i t i v e of

// PROT,DivideConquer, used f o r c o l l e c t i n g t h e r e s u l t s
// from t h e ch i1dren . r

Combine (R e s u l t s , d a t a o u t) ; // Applicat ion s p e c i f i c procedure
/ / f o r combining t h e r e s u l t s from t h e ch i ld ren . f t i s
/ / d s f i n e d l o c a l l y i n t h e f o l l o u i n g .

>
1

// The f o l l o u i n g a p p l i c a t i o n s p e c i f i c methods need t o be implemented
// by t h e u s e r . They can bs def ined e i t h e r l o c a l l y o r globai lp .

void Readin (A t t t k d a t a f a) C...)

void Vr i t eou t (A t t t t d a t a o u t) i.. .)

i n t BaseConditionIsHet (const A t t t t da ta In) {...)

void ProcensData (A t t t t d a t a I n , A t t t t da taou t) C . . .3

void C r e a t e P a r t i t i o n (A t t t t d i t a I n , A i n t t P a r t i t i o n f n f o) <...)

void Combine (AussrcAint>& Rssults, A t t t t dataout) i...)
3

3

Ezumples: For a concrete example. refer to the previous chapter for an im-

plementation of quick sort using the divide and conquer skeleton. The interested

reader might want to compare the previous generic codestructure and the concrete

example in the previous chapter to get an idea about the similarities and the differ-

ences. Notice that the differences a i s e only in the application-specific aspects. The

application-independent aspects and the overail code-struct ure (or. code-skeleton)

remain identical for both.

Selected Pfimittves: The following is a selected set of primitives from the

protocol. PROTDivideConquer. These primitives are applicable when the input is

in the form of a marshal-able. 1-D array of objects (either user- or system-defined).

int IamTheRootO: This primitive lets a module dparnically determine if it is

the root of the divide and conquer tree. It returns 1 if that is the case.

void SetTkeeWidth(int width): Dynarnically set the width of the tree. which

is by default two. In this way. it is possible ro create a multi-width divide and

conquer t ree.

int PartitionData (MarsbalableArray& dataIn, Ain& PartitionInfo): Cre-

ate n copies of children (Le.. copies of itself). where n is the current width. and

distribute the input -dataIn- to the children. as based on "PartitionInfo". The

array ;PartitionInfo" contains the lower index and the size of each data partition.

and its length must be even and at leasr four. If the current width of the tree is n

(either by default or set by SetTreeVidth(. . .)). then the length of -PartitionInfou

must be 2 * n. It returns 1 on success.

void Collect Results (Auser<Attt >& Results): Collect results from al1 the r1

children. and retum them in uResultsu. It blocks until al1 the results are anilable.

Auser<Attt> is a user-defined marshal-able array of type A t t t . where A t t t is again

a marshal-able anay of user- or system defined type (e.g.. Aint. Afloat. Achar.

Adouble. Auser. etc.).

int Collect ResultsNB (Auser< Attt >& Results) : This is the non-blocking

version of the previous primitive. It returns 1 on success.

The following are the other primitives that do not need further explanation: void

SendToParent (Attt& data). void ReceiveFkomParent (Attt& data). int

ReceiveRomParentNB (At tt& data).

5.4 Pattern: Data-parallel computation

Data-parallelism is one of the most frequentiy used patterns in parallel computing.

applicable to a wide variety of applications starting from image processing tu sparse

system solvers to ~arious sorting and searching algorithms to applications in neural

networks. to narne a fem. .As the name implies. here the parallelism lies in the data.

Le.. a goup of identical modules perform the same operations but on different sets

of data. The ident i d modules can form different topologies (e.g.. N-dimensional

mesh. S -D h-ypercube j. From the perspective of this model. the data-parallel skele-

ton implements the data-parallel pattern. The identical modules that perfonn the

actual computations are the children of a data-parailel module that extends the

data-pardel skeleton. and constit ute i ts back-end. (-41so refer to the replication

skeleton discussed in this chapter. However. the differences are that the identical

children of a replication module can d p a m i c d y grow and &ri& in number. i.e.,

they do not have a fixed topology, and there is no interaction among pers) .

The intemal protocols of the data-paraIlel skeleron (e-g.. PROT sDlIesh . PROT

Hypercube) are designed for specific topologies. Prirnit ive operat ions insidc t hese

protocols can be broadly classified into several categories: collective operations i e.g..

gat her . scat ter. reduce. barrier synchronizat ion. etc.) . topologv specific point - t c ~

point operat ions (e.g.. nearest neighbor communication. selective communication).

topo log^ independent operations (e.g.. broadcast). Each category contains an es-

haustive range of primitives sui table for specific needs.

For an illustration. refer to the implementation of the Jacobi iterarive scheme

in the previous chapter.

5.5 Pattern: Hierarchical Composition

Cont rol-parallelism is anot her frequent ly used pattern in parallel comput ing. Cnlike

data-parallelism. rvhere a group of identical modules esecute on different data sets.

here a group of different modules (i.e.. modules that execute different instructions)

act on the same or different data sets. A typical parallel application is a combination

of data- and control-parallelism.

The pattern named Hierarchical Compositiori provides solution techniques for

arbitrarily composing an arbitrary number of modules. From the perspective of

PASM. the compositional skeleton impiements t his pat tem. The child modules

inside the back-end of a compositional module (i.e.. a module that extends the

compositional skeleton) can be all identical. thus resulting in purely data-parallel

computation. Alternatel- the child modules may be all different. thus resulting

in purely control-parallel computation. As another alternative. some of the the

modules in the back-end may be identical and the rest may be different. thus

resulting in a combination of control- and data-parallelism.

Each module in the back-end can include other modules as well (for instance:

a compositional module can include ot her compositional module(s)) . This. in fact .
shows the ability to form a hierarchy ivith an arbitra- composition of modules.

Hence, is the name hzerarchzca~ compo~ition.

One of the main purposes of the compositional skeleton is to provide the needed

flexibility to a user in application development. The intemal protocol of the compo-

sitional skeleton is PROT-Yet. which is intended to provide an NPI- or PY'rI-like

message-passing parailel progamming environment to the user. An JIPI-like par-

alle1 progamming environment can be supported inside the compositional s keleton.

simply by replacing JIPI-processes with PASM-modules and by supporting JIPI-

like message passing primitives inside PROT S e t . Jlany of these primitives have

already been implemented. This facility enables a user to develop an application

from scratch if deemed necessary. or to intermir already supported patterns with

arbit rary composition if an application demands so.

For an illustration. refer to the graphics animation application in the previous

chapter. and i ts subsequent hierarchical refinement .

5.6 Pattern: Pipeline

Pipeline is a speciai form of control-parallelism. and the compositional skeleton

described previously can be used for cons t ruc ting a pipeline. Honiever. pipeline

itself is a frequently used pattern in pardel computing, and accordingly the pipeline

skele ton is specifically designed for this purpose. Each stage of a pipeline is a pardel

computing module that extends a specific skeleton. For constructing an X-stage

pipeline. each stage is represented by a module and all the X modules cm constitute

the back-end of a pipeline module that extends the pipeline skeleton. Alternately,

for .V > 2. the first stage or the last stage or both of them could merge ai th the

representative of a pipeline module. and the remaining modules constit ute its back-

end. Data flow inside a pipeline can be uni- or bi-directional. Primitives inside the

protocol. PROTPipeline, capture the various operations needed inside a pipeline.

When someone thinlrs of a pipeline. what naturally cornes to mind is a single

dimensional structure. However , t here may be multi-dimensional pipeline-like par -
rems as weU. For instance. one could think about the systolic array pattern. where

the computation in each module (which is often c d e d a ce11 in the context of a

systolic array) is propagated to neighboring modules in a certain rhythmic fashion.

Though presently the systolic skeleton is not designed and irnplemented. it may be

considered in the future evolutions of the work if deemed necessary.

5.7 Pattern: Single process computat ion

In the general context, a parallel application is a composition of one or more inter-

acting processes. tvhere each process could be single- or multi-threaded. However.

there is no notion of a process in this model. The singleton skeleton provides al1 the

functionalities of a process from the conventional parallel programming perspective.

Since the back-end of a singleton module is empty. its interna1 protocol PI,, is also

void. Examples in this and the previous chapter have demonstrated usages of the

singleton skeleton.

5.8 Conclusion

The chapter contains detailed presentations of two of the patterns of the pattern

language that provides techniques for designing and implementing network-oriented

parallel applications. The rest of the patterns are discussed briefly. The patterns

in the language are d woven together by the generic PAS11 model. The nest

two chapters discuss the performance issues. and the ~arious software engineering

related and other aspects of the model and the systern.

Chapter 6

Performance Evaluat ion

The main purposes of this chapter are to demonstrate the following: (1) the PASM

system has been efficiently implemented. (2) The performance of the system is corn-

parable wirh MPI. i3) ..\ suitable application of proper granularit' should exhibit

reasonable performance gain rvhen implemented using the system.

Experiments were conducred to assess the performance of the PASM system.

The results were compared wi t h direct MPI- based implement ations. The perfor-

mance difference with NP1 lies within 5%. which can be attributed to the fact that

the skeleton-library is implemented as an extremely thin layer on top of MPI. The

thin implementation layer generally implies that any application that demonstrates

good performance with direct SIPI-based implementation should provide simiiar

performances wit h a skeleton-based implementat ion. under al1 ident i d condit ions.

The following discussion present s the performance result s, which can be broadly

divided into two categories: application specific evaluation and application inde-

pendent evaluation. The application-specific category involves resdts for some

well-known parallel applications. Some of these resdts demonstrate the effect of

ganularity on performance. These results can be further subdivided into two car-

egories: performance based on timing and on software qualit-. The software engi-

neering related aspects of the PAS31 mode1 and the system are further elaborated

in the next chapter.

The application-independent category compares the performances of certain

primitive commands with direct MPI-based primitives. besides other application-

independent performance measures to be discussed shortly.

6.1 Application Specific Evaluation

6.1.1 PQSRS

Parallel Quick Sort using Regular Sampling. abbreviated PQSRS [55] . is a parallel

version of quick sort. shown to be effective for a wide variety of MI'IID architec-

tures. It uses a combination of master-slave and 1-D mesh patterns. which is easily

realized using the data-parallel skeleton for mesh topology and the singleton skele-

ton. The algorit hm works in the following steps: (1) the master module partitions

the data items to be sorted to the .V children (i.e., slaves). Each child then per-

forms sequential qui& sort on its own data items, selects N data items as regular

samples. and sends them back to the parent (Le.. master). (2) the master gathers

the regular samples from all its children. sorts them. gathers .V - 1 pivot values and

broadcasts them to the children. Each child partitions its portion of sorted items

into :'iT disjoint partitions. based on the 3 - 1 pivot values. (3) Child i keeps the

ith partition and sends the jth partition to its jth peer. Thus, at this phase, each

child has to communicate with al l its .V - 1 peers. (4) Each child receives N - 1

partitions from its peers, merges them with its own partition to form a single sorted

PQSRS

C

0

d
a

C
C

0
0

0
e

&
C

-
C

C
C

-
C

. = = -
a

&
C

4
0

- - = = 5 = -
C C

Z
C

4

& a= '
0

*
C

- - - e
- 1 - -

m e = -

! l I I I I

2 3 4 5 6 7 8 9 IO 11 12
Number of processors

Oixrete Convolution
12 1 1 I I I 1 1 1 1 1 e -

C

i Sequemiai @ C @

0

10, @- - * Paraltel (Sue = 56û x 608) ' *- - + Parâilel (Sue = Mû x 480) ..
tineai speed-up

0

C
-.&.a- = = = = -

4 ' "*
- . - . O

C * A s -
*

a

Figure 6.1: Speed-up ratio versus number of processors

list. and sends the sorted list back to the master. Finally. the master concatenates

the sorted sub-lists from al1 its children to form the final sorted list .

PQSRS is a non-trivial algorithm which requires a considerable amount of peer-

tepeer interaction among the slaves. which is supported by the intemal protocol(s)

of the data-pardel shleton. It cannot be implemented using most other pattern

based systems discussed previously. Figure 6.1 illustrates the results obtained for

sorting 10000 and 21000 randomly generated objects using PQSRS. Time to corn-

pare two objects is approximately 0.2 ms. The underlying hardware is a cluster of

Sun Sparc workstations (each is an Cltra 10 Elite with 256 MB of RAJI) connected

by a 10-megabit Ethernet network. The speed-up ratio is measured with respect

to the same sequential quick-sort routine used inside PQSRS. The performance

difference with MPI is negligible and hence is not illustrated separately.

6.1.2 2-D Discrete Convolution

This is an image processing algorithm used for convduting a given image rhrough

the application of a mask. The mask is applied to each image pixel to producc

the convoluted image [XI. As compared to the previous application. this one

is relatively simple. Like most other image processing algorithms. it follows the

master-slave pat t r m where the slaves need not interact wit h one mot her.

Figure 6.1 illus trat es the results obt ained for the parallel discrete convolut ion

of two pixel images of sizes 640 x 450 and 56s x 608. The mask used in each

case is of size 10 x 10. The underlying hardware is identical to that used in the

previous application. The speed-up ratio is measured with respect to the best

sequential algorithm. The experiments demonst rate almost identical performances

with both the images. hoaever there is observed performance degradation with a

5 x 5 mask in each case (not shown in the figure) due to non-optimal computational

granularit- More on the effect of granularity on performance is discussed in the

next experirnent .

6.1.3 Jacobi

The Jacobi method and its implementations have already been discussed in chapters

4 and 5. As compared to the previous two applications. it is a relatively ber-grain

application (e.g.. four fioating point additions and one division per node of a graph.

as compared to the sliding of an entire mask over each image pisel in the case of

the discrete convolution algorithm). -1s the code fragment illustrates. the parallel

implementat ion requires nearest-neighbor communication. Compare i t wi t h the

PQSRS algorithm. where each computing element (i.e.. slave) has to communicate

with ail its peers.

The granularity (i.e.. the ratio of computational time to communication over-

head. betlveen two successive communication points) can be increased by mapping

more nodes per processor. provided that the corresponding rate of iucrease in com-

munication overhead is less than the rate of increase in the number of nodes per

processor. If granularity is more than a certain optimal \due. which can vary

from situation to situation. t heoretically there should be speed-up. Otherwise. the

parallel application shows performance degradarion.

Figure 6.2 illustrates the effect of granularity on speed-up in the case of Jacobi,

for multiple-sized square grids. As it is observed. if the ganularity is too small (e.g..

in the case of a 50 x 50 g i d) . there is visible slow-donm. The optimal speed-up is

observed for a grid size close to 500 x 500. There are alrnost identical speed-ups for

grids of dimensions 100. 1000 and 2000. When the grid becomes too large (e.g.. size

2500 x 2500). t here are ot her overheads due to message fragmentation and swapping

of mernon space. etc.. which might have contributed to the reduction in speed-up.

For a given grid size. division of the g i d into n processors should ideally give a

speed-up of n. However. in practice. this is not the case due to the communication-

related and other overheads. -4s the number of processors increases, the computa-

tional granularity per processor decreases. Beynd a certain threshold. there is no

added benefit in further dividing the grid into s m d e r subpieces. That threshold

is not observed in the previous figure due to the la& of sdiicient number of p r e

5 6
No. of Procassors

Figure 6.2: EfFect of granularity on speed-up

cessors while conducting the experiments. The underlying hardware in this case is

identical to that used in the previous two experiments.

6.1.4 Software Quality Measurement

-4s part of the 'ilaster's research of another graduate student. a comprehrnsiïe

study was conducted to m e s s the software quaiity related aspects of P.AS11 and

some other related systems. The concept of software metrics is well established and

a va.riety of software metrics have been used over time to measure the qualities of

software products.

In t his s tudy. sorne candidate met rics for measuring software quali t ies. especially

complexity. were collected (e.g.. Halstead software science metrics [36]. McCabe's

cyclomatic complexi ty metrics [4S]) . The experiments involved PASM. Frame-

tvorks [62]. Enterprise [56] and direct implementations using MPI. The study sug-

gests that the use of architectural skeletons significantly lowers software complexity

as compared to the code written from scratch using MPI. .A detailed discussion of

the study is beyond the scope of this thesis. The interested reader can refer to the

comprehensive description of the work [68.69].

6.2 Application Independent Evaluat ion

The rneasurernents in this section can be subdivided into two categories: (1) corn-

parison of certain primitive operations wit h equivalent MPI-based primitives. and

(2) application-independent evaluation of certain pat t ems implemented using ar-

chitectural skeletons. in comparison wit h equivalent sequential implement ations.

-4s mentioned before. the performance difference with NP1 is found to be rather

insignificant. and hence. the first category of measurements confines only to the first

of the following set of measuremrnts. merely for the sake of completeness. The rrst

of the measurements fail into the second category.

6.2.1 Cornparison of Some Basic Primitives wit h MPI

The Sand and Receive primitives inside P R O T S e t were cornpared with their coun-

terparts. MPI ,Send and MPI Jteceive. inside MPI. Since the mentioned primitives

inside PROT-?Jet (as well as other similar primitives inside PROTSet and the

other protocols) perform automatic data marshaling and un-marshaling. it malies

sense t O include the equivalent message-packing and unpacking t imes while measur-

ing the JIPI-based times. The table on the next page illustrates the best measured

times for sending and receiving 1000 messages with varying message sizes. and the

percentage differences. For each message size. the best time is taken out of at least

five different runs under a.lI identical configurations.

-4s the results suggest . the performance differences are insignificant and the =y-

ing network load conditions are the main contributing factors for the fluctuations

in the results. which cannot be explained otherwise.

- --

Message Size Send (PROTSet)

(Integer) Besttime(s/1000msg)

MPI-Pack + NPISend

Best time (s/1000 msg)

1 (Integer) 1 Best time (s/1000 msg) 1 Best tirne (s/1000 msg) 1 Difference 1

As another measure of comparison. the amount of code to be wit ten by the user

--

120000 1 61.73

using both the approaches are also cornpared. In the previous test case. the minimal

size of code to be written using the shleton-based approach is approximately 1100

bytes (56 lines wit h al1 commenrs and b l d lines removed) . The sarne functionality

could be achieved using NPI with a total user-written code size of approximately

62S1 1 -1.79%

I Message Size

3400 bytes. spread over two files (105 lines altogether ir-ith al1 comments and blank

lines removed). The reduction in user-written code size is approximately 59%. and

!iIPIRecei~e + JIPISnpack Receive (PROTSe t)

the reduction in the number of lines is approximately 47%. Sote that byte size

comparison aill also depend on the lengths of the variable- and procedure-names

%

used.

Other simila. measures for the application-specific category were included inside

software met rics measurements. diswsed in the previous section.

Figure 6.3: Effect of ganularity on performance

6.2.2 Effect of Granularity on Master-Worker Performance

The nest set of experiments involves application-independent performance e d u -

arion of certain patterns. implemented using the architectural skeleton approach.

The first in this category involves the master-worker pattern. implemented using

the replication shleton. The e ~ ~ e r i r n e n t invoives a h e d amount of workload. dis-

tnbuted among replicated workers. The mavimum number of workers concurrently

present is varied. One worker is mapped per amilable processor.

The experiment is carried out wit h three leveis of computational grandarities

per worker: grandarity 1 (approximately 4.4 ms). granularity 10 and granularity

40. Grandarit- is introduced via 5 floating point multiplications inside a loop.

\Vith a computational granularity of 1. there are altogether 4800 calls to workea.

and a total of 9600 messages (send and receive) of fised message size. With a

computational granularit' of 10. the total number of calls to workers (and also

the number of messages) is reduced proportionatel' to -80. while the message size

remains the same as before. Same is the case with the granularit' of 40. where the

number of calls is reduced to 120. Figure 6.3 illustrates the results obtained with

different numbers of w o r h n present at a particular nui.

-4s the figure shows. higher computational granulari ty gives near-linear perfor-

mances. On the other hand. with lower computational granularity (of one). the

performance is sub-linear with a higher number of workers. This phenonienon can

be attributed to the fact that communication cost (associated with 9600 messages)

and the maintenance cost of the workers dominate the computational time on each

worker. As a resulr. performance gradually degrades with a higher number of

workers. On the c o n t r q . communication cost is much reduced with a higher com-

putational granularity (for instance. a total of 230 messages are associated a i th a

granularit' of 40). and also the maintenance cost of the workers becomes negligible

as compared to the computationd granulari ty per worker. These factors cont ribute

towards the near linear performances with higher granularities.

6.2.3 Pipeline wit h and wit hout Replication

The graphics animation application and its subsequent refinement is discussed in

detail in chapter 4. This set of e-xperiments inwlves a similar situation with three

modules: Producer. Worker and Consumer. which have different levels of computa-

tional granularities and together the- f o m a pipeline. Once the pipeline becomes

full in a parallel run. each of the modules is working concurrently a d hence the

overall speed-up is governed by the slowest of the modules. For instance: assuming

Figure 6.4: Performances of pipeline with and ivithout replication

t hat the ganularities of the modules are 1. 9 and 2 respectively. a sequential run

has a granularity close to 12 per iteration. On the other hand. a parallel run (once

the pipeline becomes fuil) has a grandarity close to 9. ignoring the communication

overhead. and thus the maximum attainable speed-up is close to 1219 = 1.33. This

c a n be improved by replicating the workload of the slow Uorker among subordinate

workers. Le.. SubWorkers. Theoretically. with 9 SubWorkers present concunently.

one of them is producing a result every 1 time unit. and hence. the computationd

granularity of the Worker should reduce approximately to 1. The Consumer module.

with a granularity of 2, now dominates the pipeline and the maximum attainable

speed-up is close to 1212 = 6. This can once again be improved by replicating the

Consumer. which can tlîeoretically provide a maximum speed-up of 12.

This set of experiments involves the exact situation with the aforementioned

gr anularit ies of the t hree modules. Compu t arional granulari ty of one corresponds

to approximately 5 ms. Only the Worker module is replicated. and hence the

maximum attainable speed-up is 6. Figure 6.4 illustrates the results obtained with

and without replication. As shown in the figue. the maximum attained speed-up

without replication is 1 .B. while the theoretical limit is 1.33.

With replication. a saturation point is reached mith approximately 6 sub-workers.

This can be attributed to the fact that. starting at the saturation point. the niain-

tenance cost of the sub-workers and the cornmurrication owrhead (between worker

and sub-workers) start dominating over the computational granularity of each sub-

worker. t hgs offset r ing any benefit hencefort h.

The experiments were carried out at different times of the day. spread over two

days. and the best readings are taken. Sloreover. due to the brief ~acation period

at the end of the term. the system and the network load was quite minimal during

the times of the tests.

6 .Z.4 Performance of Pipeline wit h Varying Granularity

The next set of e-xperirnents involving pipeline investigates the effect of granularity

on performance. There are several variable factors that need to be considered: total

number of pipeline stages. comput at ional granulari ty per stage assuming uniform

granularity across ail stages. and message size. For this set of experiments. the

total number of pipeline stages is Lved at 8 where al1 stages have equal granularity.

Granularity is directly proportionai to the ratio of the computationd time between

two successive communication points (that is, the computational ganularity) to

the communication overhead. Theoretically. higher granularity gives better perfor-

mance. as long as granularity is below some threshold value that depends on maay

Figure 6.5: Performances of pipeline with w i n g degrees of granularity

physical factors of the underlying architecture.

Wit h S pipeline stages. each of equal granularity. the maximum at tainable speed-

up is S. Figure 6.5 illustrates the results obtained with varying degrees of gran-

da r i t ies per stage. Throughour the experiments. each pipeline stage is mapped

per alailable processor. The computational granularity of 1 corresponds to ap-

prosimately 0.5 ms. With fixed message sim. higher comput at ional granulari ty

corresponds to higher granularity per stage. On the other hand. with fked com-

put ational granularity. higher message size corresponds to lower granulari ty per

stage. The graphs demonstrate better performance with higher granularity. thus

conforming to usual predictions.

6.2.5 Conclusion

The chapter presents the application-specific and application-independent perfor-

mances of the PASM system. A s the cornparisons with MPI suggest. performance

difierences wi t h direct MPEbased implemmtations are negligibie. nhich is due to

the fact that the skeleton-library is implemented as an extrernely thin layer on top

of MPI. The software engineering related aspects of PAS11 are discussed in the nest

chapt er.

Chapter 7

Crucial Issues, Future Directions

This chapter focuses on several important aspects of the PASM model and the

associated sustem. These include the fundamental contribut ions of the research,

various software engineering related issues of the model and the system. and its

cornparison wit h some ot her related wor ks. The following section on future research

directions ernphasizes some of the core issues that need to be considered in future

versions of this work.

7.1 Fundamental Contributions

The most fundament al contribution of the parallel architectural skeleton model

is its genericness. which leads to the other contributions of the approach (e.g.,

flexibili ty and extensibility). Some of the other fundamental contributions are:

modularit' (which cont ribut es towards its ob ject-oriented design and implementa-

tion). the capability of describing a skeleton independent of other skeletons (which

contributes towards extensibility), and the capability of implementing the model in

CHAPTER 7. CR L'CIAL ISS L'ES. FI'TI'R E DIRECTIOSS 129

C++ without requiring any language estension. Sonie of these issues are furt her

discussed in the following .

7.2 Software Engineering Issues

The following discussion presents the \arious software engineering related aspects

of the mode1 and the system. Some of these issues were previously discussed in the

book-chapter by this author [NI.

7.2.1 Reuse

There are two types of reuse that can be mentioned: (a) reuse of code for patterns.

and (b) reuse of application code. The h s t type of reuse is quite evident in this sys-

tem. since each architectural skeleton estracts and implements the striictural and

the behavioral attributes associated with a par tem in an application-independent

manner. The karious parameters associated with t hese at tributes (for instance:

dimensions of a mesh. width of a divide-conquer tree. selection of appropriate pro-

tocol(s). etc.) enable the same skeleton to be configured to the needs oi different

applications as abstract pa rde l comput ing modules. The abstract modules become

concrete wi th the insertion of application code.

Regarding the reuse of application code. a pardel application c m be viewed as a

rest ruct uring of the original sequentiai code wi t h embedded parallelism constructs.

-4 smart restnicturing enables good portions of the original sequentid code to be

reused. For instance. in the graphics animation example in chapter 4. the proce-

dures DoHidden(...). DoConversion(...) and WriteImage(...) are reused from the

original sequent i d code. except for minor changes related to the parameter type(s) .

CH-4PTER 7. CRLICIAL ISSL-ES. FLcTLtRE DIRECTIOSS 130

lforeover. these reused procedures contain the majority of the code for the entire

appiicat ion.

7.2.2 Genericness

-4s opposed to being ad hoc. each architectural skeleton is defined in a generic

fashion (that is. in a manner independent of hny pattern or application) with its

canonical set of attributes. 'if- useful patterns in parallel computing are realized

inside the frameworks of the generic mode1 (refer to Figure 4.4). Each parallel

computing module c a . interact tvit h ot her modules via standard interfaces (i.e..

the representatives). a ivell-defined set of protocols and using a universal set of

rules. The generic approach enhances usability.

7.2.3 Flexibility

Flexibility is one of the major concems associated with dl pattern based ap-

proaches (631. Often. if a certain desired pattern is not supported by a pattern-based

system. there is no alternative but to abandon the idea of using the particular a p

proach altogether.

JIPI [35! is knotvn to be extremely flexible because of i ts proven applicability in

solving a last majority of parallel applications. Often different solution strategies

can be planned out tvhile solving an application using MPI. which gives the user

complete flexibility. Inside the frameworks of P.4SM. that type of Lxibility can

be achieved if the features of MPI can be directly supported. This is the main

idea behind the compositional skeleton and i ts associated protocol. PROT -?et.

The compositional skeleton in conjunction with its interna1 protocol PROTNet

CR L'CL4 L ISS L'ES. F I'Tl'RE DIRECTIOSS

is intended to provide an 11 PI-Lilie parallel programming environment wit hin the

frameworks of the model. and it can be used to subetiture patterns if an application

demands so.

Moreover. a compositional module is Lih any other module from P.4S)iI's per-

spective. Consequently it can be used in conjunction with the other patterns sup-

ported by the model. This type of uniformit' should provide added flesibiiity to

the user.

7.2.4 Extensibility

As mentioned previously. lack of extensibility is another major concern associated

with most pattern-based approaches [63]. Most of these systems are hard-coded

a i t h a limited and fixed set of patterns. and often there is no clear way to add ner

patterns to the system when need arises.

From the implementor's or an experienced user's perspective. certain features

of the object-oriented design. in conjunction with the generic nature of the model,

favor reuse and extension of the skeleton library. The generic model helps. because it

provides a clear picture regarding the different components of a skeleton and their

functionalities (compare it with a totally ad hoc approach). Furthemore. from

PASSI'S perspective. each module is an independent entity nhose oniy interface

with the outside world is through its representative and the adaptable extemal

protocol. Accordingly. what the outside world sees of a module are its actions (i.e.,

input/output and any observable side effects). without knowing exactly how these

actions are carried out internally In other words. each module is an independent

self-contained entity that acts as a black-box to the outside world. For the same

reasons. each module can be designed independent of others. In other words, the

CHAPTER 7. CR ['CI-4L ISS C'ES. FI'TI'RE DIRECTIOSS

P..\SM model inherent 1- supports extensibili ty.

From the P.4Sll system's perspective. man- of the object-oriented feat tires t ha<

are supported in C++. for instance: polymorphism (t hrough the use of C + + tem-

plates, inheri t ance and overloading) , favor the reuse and extension of the exis t ing

skeleton library. Sew classes CM be defined by extending the esisting ones. t hiis

enabiing the design and addition of new skeletons and protocols with addrd func-

tionalities. Completely new skeletons and protocols can be designed by estending

the base classes (refer to Figure 4.1). In each case. a collection of pre-existing vir-

tua1 methods need to be over-written and new additional methods rnight need to

be designed in order to refiect the characteristics of the newly designed skeleton.

7.2.5 Hierarchical Development and Refinement

h parallel computing module can contain other modules. and hence. application

development using PAS11 is distinctly hierarchical. Moreover . a parallel comput ing

module can be viewed as a black-box. where the only visibility from the outside

world is in the action of the module, and in its interface and interaction with other

modules. As long as these factors remain unchanged. the module can always be

replaced wit h another module. nhich implement s some ot her pattern(s). wi thout

affecting the rest of the application. Such type of replacement for betterment is

called a refinement. The hierarchical model leads to hierarchical refinement.

Hierarchical refinement is illustrated for the gaphics animation exarnple in

chapter 4. where the singleton D i sp lay module is refined to a dynamically-replicated

module of identical name. Figure 4.7 illustrates the affect of refinement on the hi-

erar &y.

CHAPTER 7. CR L'CIAL ISSL'ES. FCTL'RE DIRECTIOSS

7.2.6 Separation of Concerns

Also known as sepuration of ~pecifications. separatiori-of-conceni is a desirable char-

acteristic of ail pattern-based approaches. Through the extraction of the application-

independent components of patterns into architectural skeletons. t here esist s a

clear separation between application code and application-independent issues. The

applicat ion-independent components hide mos t of the low-level details related t O

process/ thread creation and management. process-processor mapping. comniuni-

cation and s~chronization. load balancing. data marshaling and un-marshaling.

and architecture- and network-specific low-level details. These pre-packaged com-

ponents are tested to be reliable. provided tbey are used correctly.

Application development using parallel architectural shletons is clearly a multi-

stage process (refer to Figure 3.1). where each stage is distinct from the others. The

first stage provides pure application-independent abstractions. The clear separat ion

of the low-level details allows a user to concentrate more on the application-specific

issues.

7.2.7 Composition Using Patterns

-4 parallel computing module can contain other modules inside its back end. and

thus. pattern-composition is an inherent property of the model. The compositional

skeleton supports a r b i t r q composition of patterns inside its back end, with no

restriction on the types of patterns that can be cornposed (refer to chapter 5). Thus,

a compositional module. which is an extension of the compositional skeleton. can

contain other compositional modules as well. Standard interfaces for aIl modules

and a well-defined adaptation nile malie pattern-composition extremely feasible.

CHAPTER 7. CR I'CIAL ISSL'ES. FI'TI'RE DIRECTIOSS

7.3 Cornparison with Related Work

The generic nature of the architectural-skeleton mode1 is one of the features that

distinguishes t his research from ot her pattern-based approaches in parallel corn-

puting. As has already been discussed. the generic mode1 contributes towards both

flexibility and extensibility. which are some of the essential features lacking in most

of the existing pat tem-based approaches to parailel comput ing.

In the pas t . several pardel programming systems have supported frequentl-

used parallel interactions [I l . 12.56.61). However. in d l these cases a fised number

of high-level parallel interactions are hard-coded into the system. -4s a consequence.

if a user's desired high-level interaction is not supported by a particular system. then

the user has to adopt a different approach. To achiet-e higher flexibility. traditionally

parallel progammers have relied on low-level communication libraries such as PVM

and MPI. So there is clearly a trade off between the ease of development provided

by the higher-levcl systems and the flesibility offered by low levol primitive libraries.

-4s discussed. in PASSI. a user can mix high-level architectural skeletons with low-

level JIPI-like message passing (for instance. the internal protocol P R O T S e t inside

the compositional skeleton). 'iloreover. in d l of previous systems. the supported

patterns are tightly integrated into the implementation of the system. so there is

no easy r a y of adding newer patterns without major modifications to the entire

system. In P-IS'II. on the other hand. every architectural skeleton is independent

of other patterns. and thus. adding new architectural shletons is a simple matter

of extending the library of architectural skeletons.

Racs (61 is one of the earlier systems that addresses the issue of extensibility

It is a graphical development system. rvhere application development consists of

two distinct phases: the definition phase and the configuration phase. During the

definition phase. the user graphically defines the three basic components: of an

application: the message model. the task model and the architecture model. The

architecture model defines the software architecture of the parallel application in

temis of message and task models. An architecture model defined during this phase

can be saved in a user-defined iibrary for later use. During the configuration phase.

the programmer constructs the complete application from the basic component S.

either d e h e d during the definition phase or selected from the system libraries or

both. Evidently. Tracs supports the idea of estensibility by providing support for

an extensible li br- of user-defined architecture models. Hoivever. the type of

estensibility realized by Tracs is restrictive. For instance. in Tracs. a user can

graphically create a %slave master-slave pattern and Save it insidc the library for

future use. Hoivever. a generic master-slave pattem is more useful for this purpose.

As far as known to us. DPnDP [66] is the first system that addresses both the

issues of flesibility and extensibility. It ivas a nice attempt. but unfortunately it

concentrates only on the structural aspects of a pattern and ignores the behav-

ioral aspects altoget her (for instance: pardlel comput ing model. communication-

synchronization behavior inside a pattern). In spite of its limitations. DPnDP was

a good leaxning esperience and it set up the initial stage for this research.

There are various ot her systems and research projects in the ob ject-oriented

domain t hat are intended to facilitate parallel application development . A majority

of them are based on C i + or its extensions. Some of these systerns are pattern-

related. .A comprehensive discussion on many of these systems can be found in [74].

Though none of thern bear similarity to this generic architecturai-skeleton model,

some of them are worth mentioning here.

HPC + + [26] focuses on a common foundation for portable parallel applications.

Parts of its implementation are through libraries and parts through C++ language

CH-4PTER 7. CR C'CIAL ISSL'ES. FL'TI'RE DIRECTIOSS 136

extensions. One of its key features is the esploration of loop parailelism. as in

HPF [46]. Another feature is the parallel estension of the Ci+ standard tern-

plate library (STL) 1521. The parallel standard template library (PSTL) provides

distributed versions of the STL container classes dong with versions of the STL

algorithms that have been modified to nui in paraliel. As a major distinction with

most pattern- based systems. including this architectural-skeleton approach. PSTL

is a class-library and not a f.arnework (i.e.. the user selects the library routines

for an application and it is the user's application that dominates). Other major

differences lie in the HPF-like features. such as loop-parallelism and the extended

C++ language syntau.

POOU.-\ (Parallel Object-Oriented Met hods and Applications) [19] is a collec-

t ion of C + + t emplate-classes for writing high-performance scient ific applications.

It provides high-level dat a-pardel types (for instance. high-level abstractions for

multi-dimensional anays. cornputational mesh. etc) that make it easy to write par-

alle1 PDE (partial different id equation) solvers wit hout worrying about the low-

level details of layout. data transfer. and synchronization. In its restricted problem

domain. POO'rlA is able to provide good amount of optimizations for achieving

high performance. In cornparison. the architect ural-skelet on approach is not re-

stricted to an- specific problem domain inside parallel computing. and hence. it

may not be able to offer the same amount of domain-specific optimizations as in

POOMA.

Similarly. DAPPLE [42] is another C++ class libr- that provides the illusion

of a data-pardel programming language on conventional hardware and with con-

ventional compilers. DAPFLE defmes Vectors and Matrices as basic classes, with

a.ll the Cf+ operators overloaded to provide for element-wise arithmetic. In addi-

tion. DAPP LE provides typical data-parallel operations chat are most commonly

CHAPTER 7. CRI-CIA L ISSUES. FIWTL-RE DIRECTIOSS

applied. In cornparison to D.-\PPLE8s esclusive data-parallel domain. the architec-

tural skeleton libr- is applicable to a much wider range of parallel programming

paradigms.

7.4 Future Research Directions

The following are some of the issues that need to be considered in the future ev*

lut ions of the work:

How flexible and usable is the approach? How can these issues be rneasured

and compared? (For instance. consider the software metrics measurements

for assessing software complexity). Csability evaluations based on esisting

usability metrics and statistical experiments need to be planned out in the

future.

Though the PASM mode1 inherently supports entensibility. the issue of ex-

tensibility needs to be further investigated for the PASXI system. The object-

oriented design of the skeleton libraq needs to be further fine tuned so that

adding a new skeleton to the library rnerely becomes an issue of filling in some

predefined blanks (i.e.. filling in the pre-defined virt ual met hods).

Does the PASM system need a graphical user interface (GUI)? Wili the in-

troduction of a GGI-based system hamper extensibility? These issues need

further investigation.

The issue of process-processor mapping was mentioned before. Presently no

specific mapping strategies are employed, which is a separate research topic

C ' H M TER 7. CR L'CM L ISS L'ES. FL'TL'RE DIRECTIOSS 13s

in itself. In future versions. several pat tern-specific heurist ic-based mapping

strategies need to be designed and in~estigated.

The generic model can suitably realize al1 of the frequently used patterns in

network-oriented pardel computing that are h o n n at this moment. Are

there a q other useful patterns left out? 1s there an' such pattern that

cannot be realized inside the model? In that hypothetical latter case. what

modifications to the model will be necessary':

One such pattern is the data-flow pattern which. though useful. is rarely

applied in practice. If at d l needed. it could be implemented using the com-

positional skeleton or could be designed as a separate pattern conforming to

rhe model. Another pattern is the client-semer pattern. which is in fact a

pattern for distributed computing (as compared to the focus of this work.

rvhich is on distributed parallel computing).

7.5 Conclusion

The research presents a generic model for designing and developing parallel ap-

plications. and is based on the idea of design patterns. The model is based on

the message-passing paradigm that makes it well suited for a cluster of worksta-

tions and PCs. An architectural skeleton is a physical abstraction of a pattern in

pardel computing. The skeleton-based model is an ideal candidate for implemen-

t ation using object-oriented techniques. The object-oriented approach can be used

to build an application-independent . extensible l i b r q of skeletons. O t her issues

of equal importance that form integral parts of the model are: flexibility. reusabil-

ity (of code for patterns and of application code). separation of specifications. and

inherent support for hierarchical development and refinement .

The present collection of architectural skeletons supports those patterns for

coarse-grain message-passing computation which can provide good performance

in a networked 'IIIMD environment. Research is in progress to incorporate new

skeletons for such an environment.

Bibliography

[l] L.UI/MPI Parallel Computing. http://www.larn-mpi.org/.

[2] Message Passing Interface Forum. ht t p: //www.mpi-forum.org/ .

[3] C. Alexander. S. Ishikawa. 11. Silverstein. 11. Jacobsen. 1. Fiksdahl-King. and

S. Angel. A Pattern Langaage: T o m . Buildings. Cotwtniction. Osford Cni-

versitu Press. 1977.

[-LI J. Backus. Can Programming Be Liberated from the Von Seumann Style? h

Functiond Programming Style and its Algebra of Progams. Communications

of the ACM. 21(S). August 197s.

[j] D. F. Bacon. S. L. Graham. and 0. J. Sharp. Compiler Transformation for

High-Performance Computing. Technical Report LCB/CSD-93-781. Cniver-

sity of California. Berkeiey. 1993.

[6] A. Bartoli. P. Corsini. G. Dini. and C. A. Prete. Graphical Design of Dis-

tributed Applications Through Reusable Component S. IEEE Parallel and Dis-

tributed Technology. 3(1):K-ZO. Spring 1995.

[7] -4. D. Birrell and B. J ?;elson. Implementing Remote Procedure C d s . ACM

Dansaction on Cornputet Systems. 239-59. Feb. 1984.

[S! G. Booch. J. Rumbaugh. and 1. Jacobson. The llnified Modeling Language

User Guide. Addison-Wesley Publishing Company. 1999.

[9] P. Brinch Hansen. Studzes in Computational Science: Paralle1 Prograinmitig

Paradigms. Prentice Hall. 1993.

[IO] P. Brinch Hansen. The Search for Simplicity: Essays in Parallel Programmitag.

IEEE Computer Society Press. Los .Uamitos. California. 1996.

[I l] J. C. Browne. 11. Xtam. and S. Sobek. CODE: A Cnified Approach to Parallel

Programrning. IEEE Software. pages 10-1s. July 1989.

[12] J. C. Brotvne. S. 1. Hyder. J. Dongarra. K. Moore. and P. Sewton. Visual

Programming and Debugging for Pardel Computing. IEEE Parallel and DY-

tributed Technology. 3(1):75-83. Spring 1993.

[13] F. W. Burton and V. J. Rayward-Smith. Worst case scheduling for parallel

func t ional programs. J. Fvnctional Programming. 4 1) :6S-X. January 1994.

[14] D. K. G. Campbell. Towards the Classification of Algorithmic Skeletons. Tech-

nical Report YCS 376. Department of Computer Science. University of York,

1996.

[l5] S. Carriero and D. Gelemter. How to Write Parallel Program: A Guide to the

Perplexed. ACM Computzng Surveys. 21(3):323-357. September 19S9.

[16] K. Mani Chandy. Concurrent Program Archetypes. In International Pardel

Processing Symposium. 1993. Keynote Address.

[17] K. Mani Chandy. The Caltech Archetypes/eText Project. September 1996.

http://www.etext .caltech.edu.

[18] M. Cole. Algorithmic Skeletonr: Structured Management of Parallel Cornpu-

tation. The MIT Press. Cambridge. .\lassachuset ts. 1989.

[19] J. C. Cummings. J. .A. Crotinger. S. W. Haney. W. F. Humphrey. S. R.

Karmesin. J. V. W. Repders. S. A. Smith. and T. J. Williams. Rapid hppli-

cation Development and Enhanced Code Interoperability using the POO!dr\

Framework. h SIAM Worhhop ori Object- Oriented Methods and Code Inter-

operabilzty in Scientzfic und Engineering Computing: 0098.

[20] 'il. Danelutto and S. Pelagatti. P a r d e l Implementation of FP using a

Template-based Approach. In Proc. of sth Intentational Worhhop on Im-

plementation of Functionai Languages. The Netherlmds. September 1993.

[XI J. Darlington. A. J. Field. and P. G. Harrison. Parallel Programming Csing

S keleton Functions. In P.4 RLE '93. Munich. Germany. June 1993. Appeared

in Lecture Sotes in Computer Science. Loi. 694. pages 146-160.

[22] 1. Foster and R. Stevens. Parallel Programming with Slieletons. In ICPP '90.

[33] 1. Foster and S. Taylor. Strand: New Conceph in Parallel Prograrnrntng.

Prentice-Hall. Eaglewood Cliffs. Y. J.. 1989.

[24] E. Freeman. S. Hupfer. and K . Arnold. ~ a v a S ~ a c e s ~ " Phnciple~. Pattern.

and Practice. Addison-Wesley. 1999. The ~ini~.'* Technology Series.

[?SI E. Gamma. R. Helm. R. Johnson. and J. ilissides. Design Pattern: Elements

of Reusable Objeet- 07ient ed Software. Addison- Wesley Publishing Company.

1994.

[26] D. Ganoon. P. Becliman. E. Johnson. T. Green. and M. Levine. HPC++

and the HPC++Lib Tookt . Department of Computer Science. Indiana Uni-

versity. and Los Alamos Sationai Laboratory. White paper anilable at

http://~~~nv.extreme.indiana.edu/hpc++/.

[XI A. Geist. -4. Beguelin. J . Dongarra. W. Jiang. R. Manchek. and Y. Sunderam.

PVM: Parallel I/'irtual Machine. The JIIT Press, 1994.

[2S] -4. Geist and 1'. Sunderam. Setwork-based Concurrent Computing on the

PVbl System. Concumncy: Praetice and Ezperience. 1(4):293-311. 1992.

[29] B. Goldberg. Functional Progamming Languages. ACM Computing Sunteys.

28(1):249-251. h r c h 1996.

[30] D. Goswami. Data parailel Solution S trategies for Irregular Problems. Ilaster's

thesis. McGill University. June 1993.

[31] D. Gos~vami. -4. Singh. and B. R. Preiss. From Design Patterns to Parde i Ar-

chitecturai Skeletons. Journal of Parallel and Dwtduted Computing (JPDC).

Accepted for publication. June 2001. 25 pages. To appear.

[32] D. Gosrvami. A. Singh. a d B. R. Preiss. Architectural Skeletons: The Re-

Csable Building-Blocks for Parallel Applications. In 1999 International Con-

ference on Parallel and DUtributed Procedsing Techniques and Applicationr

(PDPT.4 *99). Las Vegas. CSA. June 1999.

[33] D. Gosivarni. -4. Singh. and B. R. Preiss. Gsing Object-Oriented Techniques

for Realizing Parallel Architectural Skeletons. IR the third International Sym-

posium on Computing in Object-oriented Parailel Environmenta (ISCOPE '991,

San Francisco. CS.;. December 1999. -4ppeared in Lecture Xotes in Computer

Science. L01. 1732. pages 130-141.

D. GoswKni. A. Singh. and B. R. Preiss. Building parallel applications using

design patterns. In Advances m Software Engineering: Topics in Comprehen-

sion. Evolution and Evaluation. Springer-Verlag, Sew York. 3001. 2-1 pages.

To appear.

W. Gropp. E. Lusk. and -4. Skjellum. U~zng MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface. The NIT Press. Cambridge.

Massachuset t S. 1994.

M. H. Halstead. Elements of Sofiware Science. Elsevier Sort h-Holland. Inc..

1977.

'ri. Harrison. B. Foote. and H. Rohnert. editors. Pattern Langvages of Program

Design 4 . Addison-Wesley Publishing Company. December 1999. Software

Patterns Series.

S. Kiranandani. K. Kennedy, and C. Tseng. Compiling FORTRA?; D for

MIMD Distributed Memory Machines. Communication of the ACM. 33: S):66-

80, August 1992.

P. Hudak. S. L. Peyton Jones. P. L. Wadler. B. Boutel. J. Fairbuni. J. Fasel.

M. Gunzman. K. Hammond. J. Hughes. T. Johnsson. R. Kieburtz. R. S. Nikhil.

W. Partain. and J. Peterson. Report on the Functional Programrning Language

Haskell. SIGPLAN Notices. 27(5). 'tlay 1992.

R. E. Johnson and B. Foote. Designing Reuseable Classes. Journal of Object-

Orient ed Prog~ummzng, June 1958.

O. Kaser. C. R. Ramakrishnan. 1. V. Ramakrishnan. and R. C. Sebiar.

EQCALS: a fast p a r d e l implementation of a lazy language. J. Functional

Programming, î (2): 183-217. March 1996.

[42] D. Potz. .A data-parallel programming library for educarion(D.1PPLE). In

Twenty-&th SIGCSE Technical Symposium on Cornputer Science Education.

pages 76-81, .IC'iI Press. Mach 1995.

(431 P. Ledru. JSpace: Implementation of a Linda System in Jam ACM SIGPLA N

Notices. 33(S):18-50. August 1998.

[44] S. J. Leffer. hl. K. 'rlcKusick. 'Il. J . Karels. and J. S. Quarteman. The Design

and Implementation of 4 3. BSD Uniz Operating System. .-\cidison-\\éslq

Publishing Company. Inc.. 1990.

[45] K. Li and P. Hudak. Memory Coherence in Shared Virtual Merno Systems.

ACM Transactions on Computer Systemr. 7(1):329-59. 1989.

[46] D. B. Loveman. High Performance Fortran. IEEE Parallel and Dlgtribvted

Technology. pages 25-42. Febniary 1993.

4 S. MacDonald. D. Szafron. and J. Schaeffer. Ob ject-Oriented Pat tern-Based

Parallel Programming with Automatically Generated Frameworks. In 5th

USENIX conference on Object- Oriented technology and systemj (COOTS '99).

pages 29-43. 1999.

[AS] T. J. McCabe and C. W. Butler. Design complexity measurement and testing.

Communicatiorw of the ACM. 32(12):1415-1425. 1989.

[49] G. 1Ieszaros and J. Doble. A pat tem language for pattern writing. In Pattern

Languages of Program Design-3, Software Patterns Series. Addison- Wesley

Publishing Company. 1997.

[SOI J. J . Modi. Parallel Algorithm and Matriz Computation. Clarendon Press.

Oxford. 1988.

H. R. Slyler and -4. R. léeeks. The Pocket handbook of Image Proce~ing

Algonthm in C. Prentice Hall. 1993.

11. Nelson. C++ Programmer's Guide to the Standard Template Library. IDG

Books Worldwide. 1995.

R. Pandey and J. C. Browne. -4 Compositional Approach to Concurrent Pro-

gramming. In Parallel and Distribut ed Programming Techniques and A pplica-

tions, pages 1489-1500, 1996.

B. R. Preiss. Data Structures and Algorithm Wth Object-Oriented Design

Pa t te rn 2n JAVA. John Wiley k Sons. Inc.. 2000.

M. J . Quinn. Parallel Computing: Theory and Practice. IIcGraiv-Hill. Inc..

1994.

J. Schaeffer. D. Szafron. G. Lobe. and 1. Parsons. The Enterprise Jfodel for De-

veloping Distributed Applications. IEEE Parallel and Distributed Technology.

1(3):83-96. August 1993.

D. C. Schmidt. X E : an Object-Oriented Framework for Developing Dis-

t ributed Applications. In 6th USENIX C++ Technical Conference. Cambridge.

Ilassascuset ts. April 1994.

D. C. Schmidt. E-xperience Csing Design Patterns to Develop Reusable Object-

Oriented Communication Software. Communications of the ACM (Special w-

due on Object-Oriented Ezperiences). 3S(10). October 1995.

T. Y. Shih. Numerical Heat Trarwjes. Hemisphere Publishing Corp.. N h h -

ington. 1984.

[60] A. Singh. J . Schaeffer. and M. Green. A template-based Tool for Building

Applications in a Slulticomputer Setwork Environment. Parallel Computirig

89. pages 461466. 1989.

[61] A. Singh. J. Schaeffer. and 11. Green. Structuring Distributed Algorithms in

a Work-Station Environment: the FrameWorks Approach. In International

Conference on Parallel Processing. volume I I . 1989.

[62] -4. Singh. J. Schaeffer. and JI. Green. A TemplateBased Approach to the Gen-

eration of Distributed Applications Csing a Setwork of Korkstations. IEEE

TTansactiow on Parallel and Distnbuted Systenu. 2(1) :52-67. January 1991.

[63] .A. Singh. J. Schaeffer. and D. Szafron. Experience tvith parallel programming

using code templates. Concurrency: Practice and Eqerience. lO(9):gl- 120.

1998.

[64] S. Siu. Openness and Extendibility in Design-Pat tern-Based Parallel Program-

ming Systems. Slaster's thesis. University of Waterloo. 1996.

[65] S. Siu. 11. D. Simone. D. Goswami. and A. Singh. Design Patterns for Par-

d e l Programming. In Parallel and Distributed Programming Technique3 and

Applications. California. .August 1996.

[66] S. Siu and A. Singh. Design Patterns for Parallel Computing Csing a ?;etwork

of Processors. In Sùth IEEE International Symposium on Hàgh Perfomance

Distnbvted Computing. pages 293-304. Oregon. CS.-\., August 1997.

[67] D. B. Skllicorn. The Bird-Mertens Formalism as a Pa rde l Model. In NATO

ARW Software for Parallel Computation. Cosenza. Italy. June 1992.

[68] L. Tahvildari. Assessing the impact of using design-pat t ern-based s yst enis.

'tlaster's thesis. Department of Electrical and Computer Engineering. Cniwr-

sity of \vaterloo. 1998.

[69] L. Tahvildari and -4. Singh. Impact of using pattern-based systems on the qual-

ities of paralkl applications. In The 2000 International Conference on Parallel

and Distributed Processing Techniques and Applicatiow (PDPTA '2000). pages

1713-1720. Las Yegas. USA. June 2000.

[;O] S. SI. Trewin. PCL-TCF Prototype Cser Guide. Technical Report EPCC-

KTP-PCL-TF-PROT-GG 1.7. University of Edinburgh. July 1993.

[T l] L. G. Valiant. General purpose parallel architectures. In Handbook of Theo-

retical Comput er Science. Xort h- Holland. 1990.

[y21 D. Waker. The Design for Standard Message Passing Interface for Dis t ri buted

llemory Concurrent Comput ers. Parallel Computing. ?0(4):657-673. 1994.

[Z] L. Wall. S. Christiansen. and R. L. Schwartz. Programming Perl. O' Reilly S:

Associates. Inc.. 1996.

[XI G. V. Wilson and P. Lu. editors. Parallel Programming wing C++. The MIT

Press. 1996.

