Parallel Architectural Skeletons: Re-Usable

Building Blocks for Parallel Applications

by

Dhrubajyoti Goswami

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo. Ontario. Canada. 2001

(©Dhrubajvoti Goswami 2001

i+l

Your Sle Votre rélerence

Our Ke Notre réMrenca

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et]
Bibliographic Services services bibliographiques
395 Wallington Street 395, rue Wellington
Ottawa ON K1A ONA Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése m des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-65241-6

Canadi

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below. and give address and dare.

111

Abstract

In the context of object-oriented software design. the concept of design patterns
is well studied and frequently applied. Similar ideas are being explored in other
areas of computing as well. Over the past several years, researchers have been
experimenting with the feasibility of employing design-pattern concepts in the par-
allel computing domain. Starting with the late 80s. several pattern-based systems
have been built and several parallel programming models based on patterns have
been formulated. As an important distinction with object-oriented patterns. most
researchers here aim to use patterns not only at the design level. but also at the

implementation level.

Though the idea of design- and implementation-level paralle] patterns hold sig-
nificant promise. most of the current pattern-based approaches to parallel program-
ming suffer severe limitations, some of which include: lack of flexibility. limited to

zero extensibility, ad hoc pattern sets. and language-related limitations.

In contrast to the previous approaches, this research proposes a generic. pattern-
based model for fast and reliable development of parallel applications. The model
is generic because it can be described in a manner independent of patterns and
applications. The model is based on the message-passing paradigm, which makes
it particularly suited for a network of workstations and PCs. The term parallel
architectural skeleton is used to represent the generic set of attributes associated
with a pattern. An architectural skeleton contains the necessary ingredients for
constructing application-specific virtual architectures. Together with the comple-
mentary communication-synchronization protocols. a user can develop applications

on these architectures.
The generic nature of the Parallel Architectural Skeleton Model (PASM) en-

v

hances usability. In addition. the model combines the flexibility of a low-level MPI-
like message-passing parallel programming environment together with the benefits
of high-level parallel patterns. This approach provides the necessary flexibility to
the user in application development. Hierarchical pattern composition is an inher-

ent characteristic of the model. which in turn facilitates hierarchical refinement.

PASM is an ideal candidate for an object-oriented stvle of design and implemen-
tation. An object-oriented and library-based implementation of the model. using
MPI as the underlying communication-syvnchronization library. is completed with-
out necessitating any language extension. The object-oriented and library-based
implementation. together with the generic model. facilitates extensibility. That is.
new patterns can be added to the system by an experienced user without requiring

modifications to the existing repertoire.

A thin implementation layer over the standard message-passing interface, MPI,
has resulted in negligible performance degradation. Moreover. from the software en-
gineering perspective. desired software qualities such as separation of concerns and
software reusability are some of the basic features of the approach. Other software
engineering related benefits emanate from the aforementioned unique features of
PASM. i.e.. genericness. inherent support for hierarchical design and development.

low-level flexibility. and an extensible repertoire of parallel architectural skeletons.

Acknowledgements

I would like to thank my supervisor. Prof. Ajit Singh. and co-supervisor. Prof.
Bruno R. Preiss. for their guidance, support. and encouragement throughout my
research. I would also like to thank all members of the Parallel and Distributed
Systems (PADS) group at the University of Waterloo. The PADS meetings were
extremely beneficial to convey my ideas. to improve my public speaking skills. and

to listen to other’s ideas.

I would like to acknowledge Mauricio De Simone and Stephen Siu for their initial
contributions to this research. My special acknowledgment goes to Ladan Tahvildari

for her active involvement in the software-quality experiments and analyses using

the PASM system.

I will also like to thank all my friends and colleagues (specially Amir Gourgy
and Mohammad Zulkernine from the Bell Canada Software Reliability lab, Rodrigo
Fuentes-Loyola. Diego Hernandez. Nader Fayyaz. and the others at the Minota

Hagey Residence) for their continual support, thought-provoking discussions, and
friendship.

My special thanks go to my parents and my sister for their moral support
throughout the research. Finally, I am grateful to God for providing me with
the opportunity to conduct this exciting research, guiding me throughout, and for

enabling me to conquer the mountain.

vi

Contents

1 Introduction
1.1 Objectives of this Research
1.2 Different Approaches to Parallel Programming
1.2.1 Advantages and Limitations
1.3 An Alternative Approach to Parallel Programming
1.3.1 Shortcomings of the existing pattern-based approaches
1.3.2 Contributions of thisresearch

1.4 Organization of the Thesis

2 Patterns in Parallel Computing
2.1 Example 1: Divideand Conquer
2.2 Example 2: A Graphic Animation System
2.3 Example 3: Algorithmic Patterns
2.4 Existing Approaches to Parallel Programming

2.5 Motivation for Pattern-based Approaches

vil

10
10

12

13

26.1 Code 30
26.2 Frameworks L Lo oo 31
26.3 Enterprise 32
264 Hemce 33
265 Tracs. o o o e e 33
266 DPnDP 35
26.7 Archetypes 37
2.6.8 Model Programming 37
2.6.9 Algorithmic Skeletons 38
2.7 Limitations of the Existing Pattern-Based Approaches 40
2.8 A Generic Model for Pattern-Based Parallel Computing 41
Parallel Architectural Skeletons 43
31 TheModel. 43
3.1.1 A formal description of themodel 45
32 Examples 49
3.2.1 A Graphics Animation Application 30
322 Jacobi e 54
3.23 Divideand Conquer 33
3.3 Summary e e 37

viil

4 An Object-Oriented Implementation
4.1 Basic Implementation Features
4.2 The Textual User Interface: Examples
421 Helloworld,
4.2.2 The graphics animation application
423 Jacobi
424 Divideand Conquer
4.3 Implementation Issues

4.3.1 Implementing Architectural Skeletons: Reusability and Ex-

tensibility Lo
4.3.2 The Graphics Animation Application: Revisited
4.3.3 The Dynamic Execution Model

4.3.4 Mechanisms for Constructing the HTree
4.3.5 Obtaining Information about Peers
4.3.6 Process-Processor Mapping
4.4 Steps Involved in Building an Application

43 Summary e e e e e e

5 A Pattern Language
3.1 Imtroduction
5.2 Pattern: Dynamic Replication

5.3 Pattern: Parallel Divide and Conquer

ix

59

39

61

5.4 Parttern: Data-parallel computation 108

3.5 Pattern: Hierarchical Composition 109
5.6 Pattern: Pipeline L 110
5.7 Pattern: Single process computation 111
3.8 Conclusion L 111
Performance Evaluation 113
6.1 Application Specific Evaluation 114
6.1.1 PQSRS 114
6.1.2 2-D Discrete Convolution 116
6.1.3 Jacobi 116
6.1.4 Software Quality Measurement 119
6.2 Application Independent Evaluation 119
6.2.1 Comparison of Some Basic Primitives with MPI 120
6.2.2 Effect of Granularity on Master-Worker Performance 122
6.2.3 Pipeline with and without Replication 123
6.2.4 Performance of Pipeline with Varying Granularity 125
6.253 Conclusion. 127
Crucial Issues, Future Directions 128
7.1 Fundamental Contributions 128
7.2 Software Engineering Issues 0 0L 129

T21 Reuseo 129
T.22 GEeDETICHOSS . . « v v v v o v e e e e e e e e e e e e 130
7T.23 Flexibility 130
7.24 Extensibility. oo o 131
7.2.5 Hierarchical Development and Refinement 132
7.2.6 Separationof Concerns 133
7.2.7 Composition Using Patterns 133

7.3 Comparison with Related Work 134
7.4 Future Research Directions 137
75 Conclusion 138
Bibliography 140

List of Figures

4.1

4.2

4.3

4.4

A divide-and-conquertree

The graphics animation application

Application development using architectural skeletons
Structure of an abstract moduleo
Diagrammatic representation of a HTree
Structure of the animation application,
HTree representation of the animation application
Structure of the Jacobi application

Structure of a stand-alone divide and conquer application

HelloWorld o
Structure of the animation application
Structure of the Jacobi application
High level class diagram behind the design of the skeleton library

High level class diagram for the graphics animation application . . .

Xii

[$]]
Qr

o
ot |

6.1

6.2

6.3

6.4

High level class diagram after refinement 82

HTree and its traversal scheme 83
Relationship between skeletons and patterns in the language 94
Speed-up ratio versus number of processors 1135
Effect of granularityon speed-up, 118
Effect of granularity on performance 122
Performances of pipeline with and without replication 124
Performances of pipeline with varying degrees of granularity 126

Xiii

Chapter 1

Introduction

Parallel application design and development is a major area of focus in the domain
of high performance scientific and industrial computing. In fact. starting from com-
putational physics to weather prediction and space applications. parallel computing

is becoming an integral part in several major application domains.

With the advent of fast networks of workstations and PCs. it is now becom-
ing increasingly possible to develop high-performance paralle]l applications using
the combined computing powers of these networked-resources. at reasonable price-
performance ratio. Contrast this to the situation a few vears back. where parallel
computing was confined only to special-purpose parallel computers. each priced
high enough to be affordable only by major research/academic institutions. Con-
sequently. high-speed networks and fast general-purpose computers are facilitating

the mainstream adoption of parallel compurting.

However. it must be emphasized that parallel computing is complex. Complexity
of parallel software development has always been one of the major obstacles to the

mainstream adoption of parallel computing. Though parallel computers, and lately

CHAPTER 1. INTRODUCTION

(B

multiprocessor workstations. PCs and their clusters. are becoming more and more
economical and widely available. their efficient utilization has been an issue of

concern since the dawn of parallel computing.

There are several reasons for the aforementioned complexity in parallel pro-

gramming:

o There is no single standard architecture and standard programming model for
parallel computing. Unlike sequential computers. which follow the Von Neu-
mann model of computation. different parallel architectures support different
parallel programming models (e.g.. data-parallel. data-flow. control-parallel.
svstolic). Each programming model gives birth to a group of languages. com-
pilers. compilation techniques and a group of programmers proficient in their

use.

Often a parallel algorithm is suitable only for specific types of programming
models. As a result. algorithms developed for one platform are not always eas-
ily portable to other platforms. or may not be as efficient on other platforms

if ported.

e In the case of parallel programming. there are added complexities over se-
quential code due to many of the low-level parallelism related details. These
include problem decomposition (the identification of parallelism), distribution
(the physical exploitation of the potential parallelism identified by decomposi-
tion). process/thread creation and management. process-processor mapping,
communication and synchronization. data packing and unpacking, load bal-
ancing. and architecture- and network-specific low-level details. As a result of

these low-level complexities. parallel programming remains an expert’s job.

CHAPTER 1. INTRODUCTION 3

o In the case of sequential computing. it is possible to predict performance of an
application (e.g.. faster processor and memory access result in better perfor-
mance). This predictability is more difficult with parallel computing. There
exists certain parallel programming models (e.g.. implicit data-parallelism as
with functional languages) which hinder performance prediction on the part
of the programmer. The actual performance depends on the efficient mapping
of the parallel components over the multiprocessor architecture. and might
depend on the order of evaluation of the implicit parallel components. Unless
the programmer has explicit control over these issues. it is very difficult to cor-
rectly predict performance. On the contrary. explicit control over these issues
results in another set of complexities as mentioned before. Consequently. a
suitable compromise regarding how much of the low-level details are handled

by the programmer is often needed.

@ Due to the lack of a standard model of parallel computation. there are no
standard methods or tools for developing. debugging or profiling of paral-
lel applications. Consequently. specialized tools for individual platforms are

often required.

@ [t is often impossible to reuse existing sequential application code while devel-
oping parallel applications. This lack of reusability results in writing every-
thing from scratch. Also. porting an existing parallel application to another
platform often requires major modifications to the existing parallel applica-

tion.

@ Another important issue, which applies to sequential computing as well, is the
programming language. Researchers have been experimenting with different

parallel programming languages and paradigms. Lack of a uniform language

CHAPTER 1. INTRODUCTION 4

across sequential and parallel computing platforms results in limited reusabil-
ity of existing code. Moreover. frequent shifting to new languages or language
extensions and new programming paradigms is problematic. because it often
results in higher learning curves and non-reusable code. It is generally the
case that a group of programmers comfortable with a specific model and a set
of associated languages and tools find it difficult to shift focus to something

entirely different.

Over the years. there have been numerous efforts to overcome some of the afore-
mentioned difficulties. This research focuses on a specific approach to network-
oriented parallel programming that is based on frequently used parallel design pat-

terns.

1.1 Objectives of this Research

Starting with the early days of parallel computing, different abstractions and tech-
niques have been proposed to handle some of the aforementioned complexities. In
this research. we investigate one specific approach to parallel programming that is
based on the use of frequently occurring structures for parallelism. These frequently
occurring structures are often called parallel design patterns. Examples of such re-
curring patterns are: static and dynamic replication, divide and conquer, data
paralle] pattern with various topologies. compositional framework for irregularly-
structured control-parallel computation. systolic array, pipeline, singleton pattern

for single-process single- or multi-threaded computation.

In particular, it is believed that the high-level abstractions provided by such

structures can be used to simplify the task of building parallel applications and to

CHAPTER 1. INTRODUCTION 5

promote software reusability. together with other issues which are discussed shortly.
There have been other pattern-based approaches in the past. However most of
them have severe limitations. This research continues the effort to overcome some
of those limitations and to create a more flexible and usable pattern-based parallel

programming environment.

In the following section. some of the different approaches to parallel program-

ming are briefly discussed. These will be further elaborated in the next chapter.

1.2 Different Approaches to Parallel Program-
ming

There are two main approaches to address the complexities of parallel computing
mentioned earlier. The first approach is an architectural route that develops a
parallel Von-Neumann machine. i.e.. a universal abstract machine, to which a con-
ventional parallel programming model can be applied with predictable performance,
and that can be implemented on a scalable architecture with a predictable perfor-
mance cost. For instance. the parallel random-access machine (PRAM) model [71]

and the distributed shared memory model [43] take this route.

The second approach is based on high-level parallel programming models that
attempt to hide the low-level details related to hardware architectures. interconnec-
tion topologies. process and thread creation/mapping, communication and synchro-
nization. load balancing. data marshaling and un-marshaling. and numerous other
details. Some of them also trv to handle the issue of portability across various

architectural platforms.

Different models employ different abstraction techniques such as communication

CHAPTER 1. INTRODUCTION 6

libraries. macros. new parallel languages and language extensions. and abstract
data types. Depending on the amount of direct specification of parallel interactions
required from a programmer. these models can broadly be categorized as explicit.

implicit or semi-explicit.

In the explicit models. a user has to explicitly handle all the parallelism-related
issues in the software. These approaches can be further classified based on their
levels of abstraction. At the lowest level. the user works with primitives such as
TCP/IP sockets [44] at a level closest to the hardware. Parallel programming using
sockets is probably as difficult as sequential programming using assembly language.
As a result. higher level parallel programming models and tools have been developed
on top of sockets [27.28.35.72]. This process is similar to emploving high level
programming languages to hide the difficulties associated with assembly language

programming.

At the other extreme of the existing parallel programming models, there is no
explicit specification of parallelism in the user-supplied application code. Here. the
user writes sequential code and the parallel programming system. for instance a
parallelizing compiler. explores the parallelism in the code. Parallel code is then
automatically generated by the compiler for the underlying architecture [5]. Var-
ious functional programming languages [29] are implicitly parallel, which can be

exploited by the associated compilers.

There are other approaches which fall in between the above two extremes and,
therefore. are referred to as semi-explicit parallel programming models. In some
of these approaches. the user handles the performance-crucial issues (for instance.
data and task decomposition. resource allocation) and the rest is handled by the

system [21, 46. 56. 63].

CHAPTER 1. INTRODUCTION T

These approaches are further discussed in the next chapter.

1.2.1 Advantages and Limitations

All high-level approaches to parallel programming have the obvious advantages
of reducing some of the difficulties associated with parallel programming. How-
ever. many of them have their own limitations. which often overshadow the gains

achieved.

It has been found that the PRAM model imposes unavoidable overhead when
implemented on certain architectures (e.g.. the distributed memory machines. which
are the most scalable). and hence efficient implementation on these architectures is

impossible.

The parallel programming models. in general. have at least two main objectives:
to provide high-level abstractions to free the user from the low-level details. and
to retain the good performance and flexibility generally available with low-level
primitives. However. gains in some of these objectives often involve trade-offs in
some other issues. For instance. it is possible to obtain near optimal performance
with hand-crafted parallel code written close to the hardware level. However, as
the abstraction level increases and the more one relies on automatic parallelization,
the performance gradually degrades unless it is possible to perform some user-level

fine-tuning of the generated code.

Many of the high-level parallel programming approaches are suitable only for
solving a limited range of problems that fit into specific models of parallel com-
putation. For instance, the success of parallelizing compilers is limited by the
availability of parallelizable loops inside an application. Similar situations apply to

the functional programming languages, many of which are implicitly data-parallel.

CHAPTER 1. INTRODUCTION §

Most of these languages exhibit implicit parallelism. and consequently all crucial
parallelism-related details need to be handled by the language implementer. How-
ever. somewhat successful implementations of these languages have been achieved

only on shared-memory architectures.

With high-level models. the higher-level of abstraction is often associated with
a decline in flexibility on the part of the user in application development. This
means that the user is often restricted to working with high-level abstractions.
without being able to use lower-level primitives like point-to-point message passing
for customization or better performance. Thus. in most cases. it is impossible for
an experienced user to fine-tune an application or to extend the existing system as
need arises (i.e.. lack of extensibility). In fact. the loss of flexibility is a major issue

that dictates other extremely important issues like usability.

Finally, the lack of portability of high-level parallel systems across various ar-
chitectural platforms and the non-availability of support tools remain chronic prob-
lems in the area of parallel programming. These and several other issues are further

elaborated in the next chapter.

1.3 An Alternative Approach to Parallel Program-
ming

This research focuses on an alternative approach to parallel programming that is
based on the idea of parallel design patterns. In the context of object-oriented
software design. the term design pattern is used to describe strategies for solving
recurring design problems in systematic and general ways [25]. In a similar fashion.

parallel design patterns specify recurring problems in the parallel computing domain

CHAPTER 1. INTRODUCTION 9

and their solution strategies.

It has been observed that a large number of parallel applications are based on
commonly occurring control structures and that they differ only in the application
specific code [9.10] and some other application specific parameters. As a result.
it is often possible to achieve a significant amount of separation of specifications.
whereby these paralle] structures can be generated independent of the application
code. The application code can later be plugged into the generated parallel struc-
tures. An isolated parallel structure or a composition of them may constitute the
skeleton of a parallel application. i.e.. it embodies the parallel structure of the en-
tire application without the application specific code. Since the generated skeleton
hides most of the lower-level details. the developer is freed from the extra burden of
these low-level complexities. A design pattern based parallel programming system
helps the user to generate these parallel structures. A detailed discussion of this

approach can be found in the subsequent chapters.

Starting with the late 80s. several pattern based approaches were studied and
some systems developed. All these approaches use patterns as application inde-
pendent reusable building blocks that hide most of the low-level and error-prone
parallelism related details. An important distinction in the use of pattern-concepts
in parallel computing is that researchers here use patterns not only at the design
level but also at the implementation level. Accordingly. in the rest of the thesis, the
terminology parallel pattern is used to imply both design- and implementation-level

patterns.

CHAPTER 1. INTRODUCTION 10

1.3.1 Shortcomings of the existing pattern-based approaches

Though the idea of design- and implementation-level patterns holds significant
promise, in practice however. most of the existing pattern-based systems face some
or all of the limitations mentioned previously. e.g., lack of flexibility. limited to zero
extensibility. Moreover. most of these systems support only a limited and fixed
set of patterns in ad hoc manners. which often results in confusion regarding their
use. Due to the ad hoc nature of their pattern components. pattern composition is
often impossible inside these systems (or possible in very restricted manners). thus
further limiting their use. The ad hoc approach also leads to limited extensibility.
Many of these systems are based on new languages or language extensions. thus
contributing to another bottleneck. Each of these factors limits the usability of a

particular system.

Detailed discussions on some of these approaches and their shortcomings are

postponed till the next chapter.

1.3.2 Contributions of this research

As opposed to the previous ad hoc approaches. this research proposes a generic
pattern-based model for fast and reliable development of parallel applications. The
model is generic because it can be described in a manner independent of patterns
and applications. The model is based on the message-passing paradigm, which
makes it particularly suited for a network of workstations and PCs. All of the par-
allel patterns mentioned previously can be elegantly realized within the frameworks
of the model. The term parallel architectural skeleton is used to represent the set of
generic attributes associated with a pattern. An architectural skeleton contains the

necessary ingredients for constructing application-specific virtual architecture(s).

CHAPTER 1. INTRODUCTION 11

Together with the necessary communication-synchronization protocols. a user de-

velops applications on the virtual architectures.

The generic approach of the Parallel Architectural Skeleton Model (PASM) helps
in more than one aspects. It helps a user to become familiar with the approach.
which results from the inherent commonality among the multiple patterns. It helps
in pattern composition. due to the inherent presence of standard interfaces and
protocols. Finally. it helps in designing new patterns. and thus. further extend the

system. All these issues enhance usability.

Both low-level message-passing (something similar to PV'M [27, 28] and MPI [33.
72]) high-level patterns are encompassed within the framework of PASM. Support
for the low-level primitives. in conjunction with the high-level patterns. substan-
tially enhances a user’s flexibility in application development (a user has the options
of using existing patterns. or developing applications from scratch using the low-
level functionalities. or designing new patterns to incorporate into the system if

need arises).

PASM can be well represented through the object-oriented style of design and
implementation. An object-oriented and library-based implementation of the model
in C++. using MPI as the layer underneath. is complete without necessitating
any language extension. The generic approach in conjunction with the object-
oriented and library-based implementation facilitate extensibility, i.e., new patterns
can be added to the system by an experienced user without requiring any major

modifications to the existing repertoire.

Hierarchical pattern composition is an integral characteristic of the model that
facilitates hierarchical refinement. A pattern can be stand-alone or it can be con-

tained inside another pattern. This capability enables multiple patterns to work

CHAPTER 1. INTRODUCTION 12

together based on a generic scheme. Support for hierarchical design and low- as
well as high-level protocols provide added flexibility not found in existing parallel

systems that aim to support design patterns.

Lastly. from the software engineering perspective. desired software qualities such
as separation of concerns and software reusability are some of the basic features of
PASM. Software engineering related aspects of the model are discussed in a later

part of the thesis.

1.4 Organization of the Thesis

The next chapter further elaborates the different approaches to parallel computing
and discusses some of the existing pattern-based approaches in some detail. Chap-
ter J introduces the architectural skeleton model and illustrates the idea behind the
mode] with several examples. Chapter 4 discusses an object-oriented implementa-
tion of the model and revisits the examples discussed in chapter 3. Chapter 5
revisits the model from the perspective of a pattern language and it also serves as
a catalog of patterns. Chapter 6 discusses the various performance measures of the
framework that implements the model. Finally. chapter 7 discusses several crucial
software engineering related aspects of the model together with its comparisons
with other related works and various other issues that need to be considered in the

future evolutions of the work.

Chapter 2

Patterns in Parallel Computing

The term design pattern has been used hy different researchers in different application-
domains and at different levels of abstraction. For instance, one of the most promi-
nent contexts in which design patterns are frequently applied is in the domain of
object-oriented (abbreviated OO) software design. Here, design patterns imply
recurring design problems in the OO paradigm and their solution strategies [25].
These QO patterns are not pre-implemented code in some particular language.
Rather they document the methodologies for solving recurring design problems in
systematic and general ways. The QO patterns need to be implemented (or. re-used
from existing code with modifications based on the application's context) each time

they are applied.

There are also patterns and pattern-based development toolkits in the domain of
network-level distributed programming. For instance. ACE (the Adaptive Commu-
nication Environment) [57] is an OO toolkit that implements various network-level
patterns to simplify the development of concurrent, event driven communication

software. The design and implementation of ACE is based on fundamental com-

13

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 14

munication software design patterns [38]. The ~"Pattern Languages of Program
Design™ series of books [37] are good references covering pattern-related topics for

a diverse range of disciplines.

In the parallel computing domain. design-pattern related concepts have been
employed as early as in the late 80s. Different researchers have used different termi-
nologies for describing similar concepts. However, different terminologies describe
patterns at different abstraction levels. and they are often based on completely dif-
ferent methodologies. For instance. the term design pattern has been used to denote
commonly occurring parallel or distributed computing abstractions [64]. Some other
authors have used terms like programming paradigm (9]. algorithmic skeleton (18]
or template [62] to denote similar ideas. Different researchers have used patterns
at different levels of abstraction. For instance, templates in [62] have completely
different functionalities from the so called patterns in [64]. which is evident in a
later part of this chapter. Different approaches employ different methodologies
for abstracting patterns. For instance. the algorithmic-skeleton stream of research
treats patterns as algorithmic abstractions realizable as high-order functional con-
structs with associated cost functions. There are even variations inside the same
research-stream. For instance. different authors have formulated their own versions

of algorithmic skeletons, a comparison of which can be found in [14].

As an important distinction with the abstract-level OO design patterns in [25],
most researchers in parallel computing have used patterns not only at the design
level but also at the implementation level. i.e., the design-level patterns are also
pre-implemented. This approach is similar in concept to a framework [40] from
the Software Engineering perspective. The Software Engineering aspects of this

research are discussed in the later part of the thesis.

In this thesis. the terminologies parallel pattern and pattern are used interchange-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 15

ably to imply recurring design- and implementation-level patterns in parallel com-
puting. unless otherwise specified (e.g.. OO patterns to imply design patterus in the
object-oriented context). Examples of such recurring patterns in parallel computing
are: static and dynamic replication. divide and conquer, data parallel (with various
topologies). pipeline. compositional framework for irregularly-structured control-
parallel computation. systolic arrays. and singleton (for singie-process. single- or

multi-threaded computation).

As the examples in the previous paragraph suggest. a pattern in parallel com-
puting is an application independent abstraction with associated structural and
behavioral components. The same pattern applies to a wide range of different
parallel applications. In other words. distinct parallel applications are found to
possess identical structural and behavioral characteristics. and hence can be said
to follow an identical pattern of parallel computation. One of the structural com-
ponents might be the interconnecting topology of the various sequential-computing
elements constituting the parallel-computing structure. At the same time, the be-
havioral components specify the unique behaviors associated with the structural
components. For instance. a 2-D mesh for data-parallel computation and a systolic
array might look identical from the structural perspective, but they have clearly dis-
tinct behaviors. Evidently. behavioral components play important roles in defining

a pattern.

The presence of the same generic structural and behavioral components in a
wide range of applications results in a number of beneficial aspects. First, each
component can be studied in detail and its various properties can be recognized
and documented for future use. Accordingly. the second time such a pattern is en-
countered. one does not have to start from scratch. Second. it is possible to abstract

the application independent components associated with a pattern and implement

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 16

them as reusable modules for use in different applications. These reusable modules
hide most of the low-level parallelism-related details (e.g.. problem decomposition
and distribution. process/thread creation. process-processor mapping. load balanc-
ing, communication and synchronization. data marshaling and un-marshaling. ac-
tual hardware architecture and topology) and thus enable the user to concentrate
more on the application. Moreover. these pre-packaged modules are tested to be
reliable. provided they are used correctly. Third. as already mentioned. the generic
components are application-independent. Consequently. a clear separation of spec-
ification can be achieved. whereby it is possible to generate (and compile and run)
the code-skeleton of an application. which is devoid of any application code. Such
a clear separation not only liberates the user from the additional burden of the
application-independent details. but also facilitates the reuse of sequential code
segments of an application. As is illustrated later on. a parallel application can
be viewed as a restructuring of the original sequential code with embedded paral-
lelism constructs. With proper restructuring. it might be possible to reuse sizeable

portions of the original sequential code.

The following examples further elaborate the concepts behind parallel patterns.

2.1 Example 1: Divide and Conquer

As a first example. let us consider the divide and conguer pattern. It is encountered
in a large number of applications. starting from various sorting algorithms (e.g..
merge and quick sort) to graph and matrix multiplication algorithms [54]. An
algorithm that follows the divide and conquer pattern can be divided into two parts:
(1) Divide: (recursively) divide the problem to be solved into smaller subproblems,

except for the base case where the subproblem is directly solved by applying some

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 17

suitable algorithm without any further sub-division. (2) Conquer: the solution to

the original problem is formed by combining the solutions to the subproblems.

As can be seen in the previous paragraph. it is possible to describe the generic
divide and conquer pattern. without even considering a specific application. In
other words. it is possible to abstract the high-level application-independent com-
ponents of the pattern. It is now possible to dig further to sub-classify the high-level
application-independent components. First let us identify one of the structural com-
ponents: topology. It can be seen that repeated division of the problem into smaller
sub-problems results in a tree-structured topology (refer to Figure 2.1). The origi-
nal problem is input and output at the root of the tree. For each node of the tree
during the divide phase. if the node is a leaf node (in other words. the base case)
then the problem is solved applying some suitable algorithm: else the problem is
further sub-divided and distributed to the children of the node. At each non-leaf
node of the tree during the conquer phase. results from the children are combined

to output the final result.

As one of the behavioral components. the tree can be static (independent of the
base case and the problem size) in nature or it can be dynamic. i.e.. grows in size
top-down starting from the root of the tree during the divide phase. and shrink in
size bottom-up towards the root of the tree during the conquer phase (Figure 2.1).
Parallelism is obvious. i.e.. each node of the tree can be an independent process or
thread. However. it should be mentioned here that the type of parallelism achieved
in divide and conquer is restrictive. and hence. not very efficient (e.g.. during the
conquer phase. each node in the tree has to wait before getting the results from all

its children. which results in ineficiency).

Another behavioral component is the communication-synchronization pattern

between the different nodes of the tree. The following high-level algorithm sum-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING l

(/2]

Legends:
—= Divide Phase
=~ Conquer Phase

A dynamic Divide-Conquer tree of width 2

Figure 2.1: A divide-and-conquer tree

marizes the computation and communication involved at each node of a dvnamic
divide and conquer tree:

Input: data of size N.
Qutput: data of size M.

step 1. If the base condition is met, then process data sequentially and
goto step 6, else

step 2. divide data into K subparts based on some criterion.
step 3. distribute the K subparts to K children.
step 4. collect results from the K children.
step 5. combine results to produce the final output.
step 6. output result.

In the preceding algorithm. communication is involved during the input and the
output (step 6) phases of each non-root node. Moreover. there is communication
involved with each non-leaf node during steps 3 and 4. The remaining steps involve

sequential computation.

Until now. it has been possible to explain the parallel divide and conquer pat-

tern without resorting to any specific application. As is shown in a later part of

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 19

the thesis. it is possible to abstract and implement the various structural and be-
havioral components associated with the divide and conquer pattern in a generic.
application-independent manner. as re-usable module(s). The application-specific
components can later be plugged into the generated structure. Where do the
application-specific components fit? Various divide and conquer applications differ
from one another in the data-types and data-structures used. and in the actions
during step 1 (the base case and the sequential algorithm applied). step 2 (the
data-division algorithm) and step 5 (the data-combining algorithm). Clearly. these

are the places where the application-specific components fit-in.

The next example illustrates a case where more than one pattern is applied in a
single application. The example uses two patterns. namely pipeline and replication,
and also illustrates the concept of refinement. which is described in a later part of

the thesis.

2.2 Example 2: A Graphic Animation System

This example demonstrates the use of pattern-based methodologies in the system-
atic development of parallel applications. Let us consider a graphics animation
program consisting of three modules: Generate, Geometry and Display [63]. The
program generates a sequence of graphical image-frames. Depending on the sub-
ject of animation, Generate computes the location and motion of each object for
each frame. It then passes the frame to Geometry, which performs actions such as
viewing transformations. projection and clipping. Finally. the frame is passed to
Display, which performs hidden-surface removal and anti-aliasing, and finally saves
the frame on the disk. The whole process repeats with successive frames, thus

keeping the pipeline full during successive iterations.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 20

The simplest way to parallelize this application is to use a 3-stage pipeline
pattern and then to plug in the code for the three sequential modules into the three
pipeline stages. as illustrated in Figure 2.2(a). Based on the particular method
of implementation. modifications might be necessary in each sequential module to
interact with the next stage. Other than that. the core of the sequential code

remains intact. When the pipeline is full. each stage works on a different frame at

an instant.
. Generate ‘ Generate
|
‘ Geometry ‘ Geometry
! Replicated Display
‘Display
A 3-stage pipeline pattern 3-stage pipeline composed with replication

(a) (b)

Figure 2.2: The graphics animation application

It is generally the case that the Display module. which performs actions such
as hidden surface removal and anti-aliasing is the most time intensive of the three
modules. This will slow down the entire pipeline. One way to resolve this bottle-
neck is to replace the stage 3 of the pipeline with a replication pattern. where as
many copies of Display are dynamically created as needed (refer to Figure 2.2(b)).
Consequently. each replicated Display module is working on a different frame. and
this should speed up the entire application. It is interesting to note that the two

applications remain the same in terms of functionality, but only differ in terms of

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 21

the patterns they use. The application codes for stage 1 and 2 remain unchanged.
1.e.. the modules Generate and Geometry remain untouched by this change. This
type of localized replacement is called refinement. The example also illustrates the
possible involvement of multiple patterns in a single application. This example and

the idea of refinement are re-visited in a later part of the thesis.

Until now. patterns have been illustrated from the architectural perspective. i.e..
patterns consisting of pure structural and behavioral components. Others have also
investigated patterns from the algorithmic perfective (e.g.. the algorithmic skeletons
research. to be discussed later in this chapter). The next example illustrates this

perspective.

2.3 Example 3: Algorithmic Patterns

Anyone familiar with any sequential programming language is knowingly or un-
knowingly dealing with many of the sequential computational patterns. For in-
stance. let us consider the while loop in any of the imperative languages. In one
sense, it is a computational pattern (may be used for both sequential and implicitly
parallel loops), which can be described in an application independent manner as

follows:

while <some_condition_is_true>
<body_of_the_while_loop>

Irrespective of the application code, all while loops follow this particular pattern.
In fact, any sequential programming language is made up of a collection of such
useful patterns. which in effect determine the strength and the applicability of the

language to a wide range of applications.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 22

Can a similar technique be applied to develop a universal parallel language
consisting of all useful parallel algorithmic patterns captured at the high-level lan-
guage? This is a good proposition. however with no convincing solution till this
moment. The diversity of parallel algorithms. models, and the underlying architec-

tures are some of the factors to blame. However. the approach is worth mentioning.

One convenient way to express parallel algorithmic patterns is found to be
through the use of high-order. polymorphic functional constructs. A high-order
function is one which can take other functions as its parameters and can return
another function. As an example, let us consider the polymorphic function map.

which takes another function f as its parameter to return the function map f

f:a => b
(map £):[a] ~> [b)

Here fis a function from a to b. where ¢ and b can be any types. even identical.
The result of applyving map to fis the function map f. which takes a list of elements
of type a as its argument and returns a list of elements of type b. The effect of map
fis to apply f to every element of the argument-list and to place the result in the
corresponding place in the result-list. The function map is polymorphic because
f can be any suitable single-argument function. For instance, let us consider the

following:

square:int -> int
{map square):([int] -> [int]

In the above. the function map square squares all the elements of an integer-list.
The type of map can be mathematically expressed as follows, which states that map

takes a single-argument function as its parameter and returns another function:

map:(a -> b) -> ([a] -> [b])

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 23

As can be seen. there is implicit data parallelism in the function map fi. i.e.. the
same function fis being applied to different data-elements in the argument-list. In
addition. the representation of the tvpe of data-parallelism through map is com-
pletely architecture-independent. i.e.. the previous representations have no reference

to the underlying architecture (and applies to a sequential architecture as well).

Such types of suitable high-order polymorphic functions. which can conveniently
express parallel computational patterns of some sort. are traditionally called algo-
rithmic skeletons. Clearly. high-order polvmorphic functions are most conveniently
realized using the various functional programming languages. However. conven-
tional imperative languages can also be used to represent higher-order functions. in

which case they are implemented as program- or procedural-templates [18].

To conclude this discussion on examples, let us illustrate the already discussed
divide-and-conquer pattern as a high-level functional construct. the same way it
is represented in [18]. Here. D.C stands for the high-order polymorphic function
representing divide-conquer. and P stands for the problem of type prob:

F

f P, if indivisible P
join (map F (split P)), otherwise

D_C indivisible split join f
vhere F P

where,
indivisible : prob -> bool
f : prob -> sol
split : prob -> [probl
join : [sol] -> sol
F : prob -> sol
map : (prod -> sol) -> ([prob] -> [s0l])
D_C : (prob -> bool) =-> (prob -> [probl)) -> ([sol] -> sol)
-> (prob -> sol) -> (prob -> sol)

All functions except D_C and map are application specific and need to be filled

in by the user in some suitable base language. which need not be the same as the

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 24

high-level functional language in which the algorithmic skeleton is defined. This
discussion on algorithmic skeletons is re-visited in a later part of the chapter. Now,
before proceeding further, let us briefly discuss some of the existing approaches to

parallel computing.

2.4 Existing Approaches to Parallel Programming

As is discussed in Chapter 1. the different models for parallel programming can be
broadly divided into explicit. implicit and semi-explicit categories. Different models
employ different levels of abstraction in an effort to hide the low-level details and. in
order to achieve this. they use different abstraction techniques (e.g.. communication
libraries. macros. new parallel languages and language extensions. and abstract data

tvpes).

The different models falling into the explicit category can be further sub-classified
based on their levels of abstraction. At the lowest level. which is closest to the hard-
ware architecture. we have something similar to the TCP/IP sockets [44]. Sockets
are the most difficult to use, but are the most flexible. Working with sockets is anal-
ogous to working at the assembly-language level. At a slightly higher level, we have
the message passing libraries (MPL) and remote procedure call (RPC) [7] packages.
which abstract lower level socket communication. Two standards have emerged for
MPLs: the de facto standard PVM [27. 28] and the proposed message-passing in-
terface (MPI) standard [35.72]. Both standards are supported on many platforms.
Most operating systems support some variants of RPC. Both MPL and RPC are
quite popular among the parallel programming community. However. they are still
a low level of abstraction and a programmer still has to tackle many lower-level

details before correctly running his application. Consequently, other high-level sys-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 25

tems have been built. including the system based on this research. on top of these
packages with varving degrees of flexibility. These svstems can be categorized from

explicit to semi-explicit (e.g.. Frameworks [61]. Tracs [6]. PUL-TUF Library [70]).

In the implicit models. parallelism related aspects are completely hidden from
the user. One approach is through the use of parallelizing compilers. which explore
the presence of implicit parallelism in sequential code. Different compilation tech-
niques for high performance computing are discussed in detail in {3]. Ideally. given
a sequential program, a parallelizing compiler is supposed to generate an efficient
parallel program for the underlying architecture. However. the utility of currently
available techniques for parallelizing compilers is limited by the fact that it can only
deal with the parallelization of loops. which results in data-parallel applications. If
an application involves control parallelism or if recursion. dynamic data structures
or pointers are used. the present technology of parallelizing compilers is inadequate
to automatically generate parallel programs from sequential code. Moreover. often
the data partitioning generated by parallelizing compilers may not be as efficient

as created by an expert programmer.

Another approach towards implicit parallelism is through the use of the differ-
ent existing functional programming languages [29]. Such implicit parallelism is
already illustrated in some of the examples in the previous section. e.g.. map and
D_Ctunctions. However. in practice. the expressive power of these languages to rep-
resent the different existing parallel programming models is very limited. Besides,
somewhat efficient implementations of some of these languages exist only for the
shared-memory architectures [41.67). The theoretical work in [13] shows that no
fully automatic scheduling strategy for functional languages on distributed-memory
machines can ensure good performance. unless the processes can somehow migrate

from one processor to another.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 26

In the semi-explicit category. user takes care of the difficult parallelism related
issues. the rest is handled by the system. for example: High Performance Fortran
(HPF) [46] and Fortran D [38]. Both approaches follow the data-parallel model
of computation. The user specifies the most crucial parts of parallel application
development, e.g., the virtual architecture and the data decomposition strategy.
and the rest is handled by the semi-automatic compiler and the run-time system.
Like automatic parallelizing compilers, the utility of these approaches is limited by
the availability of parallelizable loops resulting exclusively in data-parallel compu-

tations.

Several variations of the algorithmic-skeleton approach (refer to the previous
section) are also semi-explicit. For instance. in the algorithmic-skeleton approach
taken by Darlington et al [21], critical issues like resource allocation are documented
for each skeleton/machine pair and are addressed explicitly during implementation

in an Interactive manner.

The Linda model [13] introduces the concept of shared tuple-space between
processes, and based on individual perceptions it can fall anywhere from implicit
to semi-explicit categories. Together with a few tuple-space operations. Linda is
a powerful parallel programming model from the theoretical point of view. How-
ever, from the practical stand-point, implementation of the shared tuple-space in a
distributed-memory architecture results in considerable communication overhead.
Another weakness of Linda lies in the fact that it completely hides the cost of
computation from the programmer. because nothing can be assumed about the re-
sponse time of tuple-space accesses [67]. Implementation(s) of Linda over popular
language platforms exist [43]. Irrespective of the weaknesses, the idea of tuple-space
is an interesting one and is borrowed by some of the industrial tool-kits for building

distributed applications [24].

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 27

There exist numerous other high-level parallel programming models and sys-
tems. which are not based on the data-parallel paradigm. and can be classified into
the semi-explicit category. In these approaches. the user takes care of critical issues
like data partitioning and mapping. The associated models provide functionalities
to handle the rest of the complexities. Several of these approaches. which are based
on C++ or its extensions. are discussed in [74]. Several pattern-based systems are

also semi-explicit. Some of these systems are discussed in a following section.

2.5 Motivation for Pattern-based Approaches

Irrespective of whether it is communication libraries. macros. language extensions.
parallelizing compilers. or application specific parallel libraries. all of these ap-
proaches intend to provide a higher level of abstraction to make the task of devel-
oping parallel applications easier by hiding the low-level details. However. all these
efforts come with certain cost. and hence. there is always a trade-off involved. For
instance. higher-level models make programming more restrictive (i.e., the program-
mer often loses flexibility in application development). Moreover. most high-level
models are applicable only to a limited spectrum of parallel computing models (e.g.,

a good number of them are data-parallel).

Like any other high-level approach. the pattern-based approaches also have
the same incentives and also fall into the trap of the similar trade-offs mentioned
before. However. as compared to the other approaches. patterns have the potential

for attaining the following additional objectives:

e Re-usability: Pattern-based approaches favor two types of reuse: reuse of

application code and reuse of code for patterns (i.e., code-skeletons). QOne

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 28

main intention of all pattern-based approaches is to be able to reuse exist-
ing sequential code. instead of re-writing parallel applications from scratch.
Patterns are application-independent abstractions. It is possible to generate
code-skeletons for patterns and then plug in application-specific code inside
these skeletons. This clear separation (also known as separation of specifica-
tions) might enable large segments of existing sequential code to be reused.
because most parallelism-related constructs are abstracted inside the code-
skeletons. Moreover. each pattern is itself a reusable component. realized as a
pre-implemented code-skeleton. which can be reused in different applications

that follow the same pattern.

¢ Problem decomposition and distribution: Problem decomposition means
identifving the parallel components in a problem. while distribution deals
with the suitable distribution of these parallel components to the under-
lying architecture. Through the use of patterns. the parallel components
are already identified. e.g., in the divide-and-conquer tree, each node of the
tree is a parallel component. Accordingly, a suitable architecture-specific
distribution strategy for these parallel components. in order to minimize
communication-synchronization overhead, can be laid-out by the implementer
in an application-independent manner. Thus, by selecting a particular pat-
tern. the programmer has selected a specific problem-decomposition and dis-

tribution strategy [18].

o Usability: Design patterns might simplify complex problems by letting de-
velopers approach them at a higher level of abstraction. Together with a
thorough study and documentation of each pattern, it might be possible to

reduce the time to understand a pattern and to use it properly. In fact, what

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 29

this research demonstrates is the feasibility of a well-defined. hierarchical-

development model for systematic development of parallel applications.

e Correctness: The reusable code-skeletons for patterns can be well tested.
This reduces the probability of erroneous code. provided patterns are used
correctly. Most parallelism related and error-prone issues are hidden inside
the code-skeletons. Consequently. the developer can spend more time in the

application-specific issues.

The next section presents an overview of some of the existing pattern-based

systems and similar approaches.

2.6 Some Existing Pattern-Based Approaches

The pattern-based approach to parallel programming is not new. It was applied in
the late 1980s in systems like CODE {11. 12] and FrameWorks [60-63]. Some recent
systems based on similar ideas are CODE2 [12]. Enterprise {56.63]. HeNCE [12],
PUL-TUF (70], Tracs (6], DPnDP [64-66] and CO,P5S [47]. In [20]. the authors
take a similar approach from the functional programming viewpoint (based on the
functional language called FP. first introduced by Backus in late 1970 [4]). Similarly,
in [22], the authors take their approach based on a high-level parallel programming
language called Strand [23], which is similar to any logic programming language
that uses guarded rules. Both model programming {9, 10] and Archetypes [16] em-
phasize the use of patterns from the viewpoint of education. documentation and
example implementations. In the work by Pandey et al [53], the authors propose a

concurrent programming model and a programming language (e.g., CYES-C++),

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 30

which emphasize the idea of separating computation from communication and syn-
chronization that could facilitate extension and meodification of programs (similar

to the idea of separation of specifications. mentioned previously).

Some of these approaches are briefly discussed next from the point of view of
their design philosophy. and definition and implementation of pattern-concepts.
The systems surveyed here often have other contributions to parallel computing.
other than the use of patterns. However. they are analyzed from the perspective of

the use of pattern-related concepts in their programming models.

2.6.1 Code

CODE(Computationally Oriented Display Environment) [11.12] was developed at
the University of Texas at Austin in the late 80s. It is one of the pioneers of the idea
of separation of specifications, by allowing a two-step development process. During
the first step. programmers design the various sequential components and then. in
the second step. compose them into a parallel structure. It uses visual program-
ming techniques to aid the programmer graphically develop a parallel structure
through the use of nodes and arcs that represent computations and interactions
respectively. The programmer subsequently configures the nodes and arcs using
textual annotations, following specific rules. in the graph. The sequential code can

be developed in C or Fortran.

CODE follows a data-flow model of computation, where each node can begin
computing only when data is available on each of the arcs incident to it. There is,
thus, one obvious pattern in CODE. which is a composition of the various nodes and
arcs interacting in a data-low manner. Each node in CODE can itself be another

data-flow graph. Thus, it supports reuse of other data-flow graphs by allowing

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 31

recursive embedding of graphs.

2.6.2 Frameworks

Frameworks [60-62] was developed at the University of Alberta in the late S0s.
It was specifically designed to restructure existing sequential programs to exploit
parallelism on workstation clusters. Accordingly. one of its main emphases was on
the reuse of the existing sequential code. The Frameworks programming model
supports separation of specifications by segregating the application specific sequen-
tial code from the parallel structure of the application. which can be developed

separately.

Patterns in Frameworks are called templates. which are at a different level of
abstraction than the parallel patterns mentioned previously in this chapter. In the
Frameworks programming model. an application consists of a set of modules that
interact with one another via calls similar to remote procedure calls(RPCs). These
calls can be blocking or non-blocking. Messages between modules are in the form
of user defined frames. which are C structures except that pointer tvpes are not
allowed. Each module consists of a set of procedures. one of which is the entry
procedure and is the only procedure called by other modules in the application. A
module also contains local procedures, callable only within the module. A module’s
complete interconnection with other modules are specified by an input template, an
output template, and a body template. An input template specifies the scheduling
algorithm for incoming RPCs, an output template specifies scheduling algorithm for
outgoing RPCs. and the body template specifies how the body behaves. either as a
single node or as a replication. Developers create modules by selecting appropriate

templates and application procedures. Arbitrary process graphs can be created by

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 32

interconnecting resulting modules. Each module is written in an extension of C.

augmented by features to support remote procedure calls.

Frameworks is an early system that successfully exploited the idea of using com-
monly occurring parallel structures in parallel application development and inspired

the development of another pattern-based system called Enterprise. discussed next.

2.6.3 Enterprise

Enterprise [56.63] was developed at the University of Alberta and is a successor to
Frameworks. It is not just a parallel programming tool. it is a complete parallel
programming environment with a complete tool set for parallel program design.

coding. compiling. executing. debugging and profiling.

There are a number of improvements in Enterprise over Frameworks. Patterns
in Enterprise are at a much higher level of abstraction than in Frameworks. The
three-part templates in Frameworks are combined into single units in Enterprise
and are called assets. which are named to resemble operations in a human organi-
zation. For example. the asset named department represents a master-slave pattern
in the traditional parallel programming terminology. A fixed collection of assets
is provided by the system. which can be combined to create an asset diagram to
represent the parallel program structure. Each asset is associated with a piece
of application code consisting of procedures with sequential flow of control. This
separation of specifications is much stricter in Enterprise than in Frameworks. As-
sets can be hierarchically combined to form a parallel program. Enterprise allows
the use of pointers as parameters and the system takes care of marshaling and
un-marshaling of data. Features like future variables enable more concurrency. A

number of other features and tools improve the usability and portability aspects of

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 33

the system.

Like FrameWorks. Enterprise provides a fixed number of hard-coded patterns
for application development. The patterns are built into the system and work well
in combination with each other. However. there is no easy way of introducing
new patterns without performing a major modification to the system. Besides.
both Frameworks and Enterprise offer their own high-level models for application

development. which users often found too restrictive and inflexible {63].

2.6.4 Hence

Hence (Heterogeneous Network Computing Environment) was developed at the
University of Tennessee [12]. It is similar in purpose to Code. and uses similar visual
programming and separation of specification techniques. However, unlike the data-
flow graphs in Code. graphs in Hence depict control-flow. Hence supports patterns
supporting replication. pipeline. loop and conditional constructs. It uses PVM
underneath and runs on a network of Unix machines. The sequential procedures in

each node are written in C or Fortran.

[t was observed that Hence is much easier to learn and use as compared to
Code. However. experience showed that it might not be flexible enough to express
more complex parallel algorithms [12]. In these respects. Hence suffers from similar

limitations (e.g.. lack of flexibility and extensibility) as FrameWorks and Enterprise.

2.6.5 Tracs

Tracs [6] was developed at the University of Pisa. and it provides an elegant graph-

ical user interface for developing message-passing parallel programs. It uses sepa-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 34

ration of specifications. similar to the other svstems described previously.

Tracs is based on the message passing programming model. In this model. at a
given instant. a set of applications may be running. each comprising of one or more
tasks. A task can interact with other tasks primarily via a service. a mechanism
similar to a remote procedure call. Tasks belonging to the same application can
also communicate via a low-level mechanism. either synchronous or asvnchronous
point-to-point communication via uni-directional channels. Each task is context-
insensitive. meaning that its code does not depend on which tasks it interacts with.

or which host it is placed on. The languages supported are C. C++ and Fortran.

Application development is composed of two distinct phases: the definition
phase and the configuration phase. In the definition phase. the user defines the
three basic components of an application: the message model. the task model and
the architecture model. A message model defines a template for the structure of a
message. An application has a collection of such message models. which have to be
identified during this phase. The second component. a task model. is a complete
description of a task. starting from the language to be used. ports. services and
message models used by the task, etc. The architecture model defines the software
architecture of the parallel application in terms of formal message and task models.
An architecture model defined during this phase can be saved in a user-defined

library for latter use.

During the configuration phase. the programmer constructs the complete ap-
plication from the basic components, either defined during the definition phase or
selected from the system libraries or both. The libraries are composed of two parts:
the user-defined libraries and the libraries supplied with the environment. If every-
thing is selected from the libraries. the definition phase can be skipped. Separation

of the development process into the two distinct phases is exactly the separation of

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 35

specifications issue discussed earlier. An elegant graphical user interface aids visual

development of an application during both the phases of development.

Patterns in Tracs are actually the architecture models. constructed from formal
message and task models. defined during the definition phase of the development. It
supports the notion of extensibility of the system. unlike the other systems described
previously. by allowing the user to define and save an instantiatad pattern for future
use. However, Trac's way of realizing extensibility and re-usability has several
limitations. First. the complete graphical definition of a pattern from the two basic
components. message and task models. has limited scope. For instance. there is no
elegant way to define a dynamically created divide-and-conquer tree graphically.
Second. the graphical model does not support the creation of some very useful
patterns; for instance. a pattern that uses peer-to-peer interaction as in a data-
parallel mesh. Thus, an application needing a data-parallel mesh for its solution
is generally out of its scope. Third. the patterns that can be defined and saved
graphically are non-parameterized. and hence. are not general. For instance. the
user can visually instantiate a 5-slave master-slave pattern and save it for future
use. but not a general master-slave pattern. which is more elegant and useful as a

re-usable component.

2.6.6 DPnDP

DPnDP [65.66] was developed at the University of Waterloo with an intention to
handle two of the major limitations of some of the previous pattern based systems:
lack of flexibility and closeness (i.e.. non-extensibility). The DPunDP model pro-
vides four basic components: nodes, ports. channels and message handlers, from

which an application can be developed either textually or graphically. The pro-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 36

gramming model supported is similar to a client-server type model. A node can
either be a singleton. containing sequential application code. or a design pattern.
Design patterns like master-slave, pipeline. and replication were incorporated into
the system library and could be used as reusable components. It applies a two
step development process. similar to the other systems described previously. and
thus separates most of the parallelism related issues from the sequential application

code.

Though DPnDP was intended to be a flexible and extensible pattern-based
system. where new patterns could be incorporated into the system by a user as per
requirements. these intentions were not fulfilled. This failing can be attributed to
the following limitations of the model. First. in DPaDP. each pattern is modeled as
a server processing requests in first-come-first-served order. This single scheduling
technique. based on the client-server paradigm. reduces the generality of the model.
Second. although each design pattern is modeled as a server. the approach advocates
message passing to access the low-level primitives. The model is quite unclear
about the separation between these two types of interactions. Third. and this is
a major limitation. although DPnDP provides a methodology for defining a new
design pattern for extending the library. the definition only allows one to create
the desired structure of the design pattern. The provision of interaction primitives
among the various computing modules. which brings in the behavior. is not included
in the methodology. Fourth. the DPnDP model does not specify the constituents
of a pattern and its interfaces with other patterns. With this lack of information,
the designer is uncertain regarding how to design and add a new patterns to the
system without affecting the rest. which substantially hampers the extensibility of

the approach.

Although DPoDP did not meet its goals. it did provide a good learning experi-

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 37

ence and also set up the stage for further research into the area in order to overcome

some of its major limitations.

2.6.7 Archetypes

Concurrent program archetypes was a project at the California Institute of Tech-
nology [16.17]. As mentioned in [17] A concurrent program archetype aids in
the development of reliable. efficient, parallel applications with common computa-
tion/communication structure by providing development methods and code-libraries
specific to that structure”™. An archetype is a collection of three components: a
method of problem solving for a restricted class of problems. a program design
strategy associated with this method, and a collection of tutorial example applica-
tion programs in different languages and run-time systems, and on different target

architectures for each application.

The work on Archetypes so far has not proposed any software tool or model
for parallel application development. Rather. the emphasis is on understanding the
commonly used parallel structures via example implementations and documenta-

tion, so that the knowledge can be conveved in a systematic manner.

2.6.8 Model Programming

The work by Per Brinch Hansen {9.10] focuses on similar ideas in the domain of
scientific computing. In the author’s words, a programming paradigm is a class
of algorithms that solve different problems but have the same control structure.
The work studies a number of such paradigms, for instance: all-pairs pipeline, the
multiplication pipeline. the divide and conquer tree. the divide and conquer cube,

parallel Monte Carlo trials and the cellular automata.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 38

For each paradigm. a general program is written that defines the common control
structure. Such a program is called an algorithmic skeleton. a generic program
or a program template. Such a program contains a few unspecified data-tyvpes
and procedures that vary from one application to another. A model program is
obtained by replacing these data-types and procedures from a sequential program
that solves a specific problem. Thus. a model program has a parallel component
that implements a paradigm and a sequential component for a specific application.
This approach is exactly the issue of separation of specifications discussed before.

Description of each paradigm includes example applications.

Similar work on algorithmic paradigms and skeletons. more from the functional
programming perspective, is a major focus point of the so called algorithmic skele-

tons research group. which is briefly discussed next.

2.6.9 Algorithmic Skeletons

One of the pioneering works in the area of parallel algorithmic patterns is the Ph.D.
research by Murray Cole [18] at the University of Edinburgh. One of these patterns
is already illustrated in the beginning of this chapter under section 2.3. Parallel
algorithmic patterns in Cole's work. and other similar works. are often represented
as high-order polvmorphic functions. which are best represented using the various
functional programming languages [29]. However. as Cole's work suggests. conven-
tional imperative languages (specially those that support functions as parameters)
can also be used for realizing higher-order polymorphic functions in the form of

program- or procedural-templates.

Logic programming languages. in the form of predicates and associated clauses,

can also be used to mimic the functionalities of high-order functions. In this case,

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 39

program execution consists of deciding whether the outermost predicate is true.
given its arguments as clauses and their definitions. With this approach. it is even
possible to specify the outermost predicate with unbound arguments. The purpose
of program execution in this case is to find bindings to the unbound arguments

allowing the predicate to be satisfied, or to determine if no such bindings exist.

The other pioneering work by lan Foster et al {22] takes a similar approach from
the logic programming viewpoint. in their high-level representation of algorithmic
skeletons. This work uses the concurrent logic programming language Strand {23]
in its representation of algorithmic skeletons. A Strand program consists of a col-
lection of guarded rules. where each rule resembles a predicate and a set of associ-
ated clauses. plus some added features. Program development in Strand facilitates
source-to-source-transformation. which is one of the features of this approach. This
facility allows a programmer to develop an application in a form that is convenient
to him, and is automatically transformed to a form convenient to the system so that
the resultant application can be linked with the system library. Another feature is
the possibility for creating new skeletons. from partly existing ones and partly new

skeleton-code. using composition rules without rewriting all from scratch.

In the work by Darlington et al [21]. the authors follow a path similar to Cole’s
work for imperative languages. As a distinction. algorithmic skeletons in this work
are formulated in a non-strict functional programming language called Haskell [39].
Unlike Cole’s skeletons, where the programmer is completely unaware of the under-
lving architecture, skeletons in this work are augmented with documents regarding
resource allocation issues for each skeleton/machine pair. The resource allocation
issues are addressed explicitly during implementation in an interactive manner. Ac-
cordingly. the programming model here is semi-explicit as compared to the Cole’s

implicit approach.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 40

Of late. there are several variations of research works in this direction. A com-
prehensive surveyv and comparison of the various algorithmic skeletons formulated

by some of the well known researchers in this area can be found in [14].

2.7 Limitations of the Existing Pattern-Based Ap-

proaches

Although the idea of design- and implementation-leve] patterns holds significant
promise. in practice however. most of the pattern based systems mentioned before

face some or all of the following severe limitations:

1. Limited flezibility: In most systems, the user is often restricted by a limited set
of pre-defined patterns and hard-set restrictive rules. Often. if some desired
pattern is not supported by the system. the user has no alternative but to

quit the idea of using the particular approach altogether.

o

No eztensibility: Most systems are hard-coded with a limited and fixed set of
patterns. and often there is no method for adding new patterns to the system
whenever need arises. This type of closeness hampers the usability of the

approach.

3. Ad hoc patterns: Most systems support an ad hoc set of parallel patterns,
without providing any canonical definition of a pattern. This omission has
serious adverse implications. restricting the user’s ability to develop applica-
tions using pattern-composition. and also in designing new patterns which

need to work in conjunction with the existing ones.

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 41

4. Language: Many of the pattern-based systems are based on new languages
or language extensions. The work on algorithmic skeletons is based on ab-
stract mathematical concepts and is best suited for implementation using the
various functional and logic programming languages. However. adoption of
such approaches by the main-stream parallel programming community be-
comes an issue, where the conventional languages (like Fortran. C. C++ and
Java) and programming models remain the preferred choices for the major-
ity of developers. Moreover. adoption of new languages and/or programming
paradigms also directly affects other important issues like software reusability

and maintainability.

All these factors severely restrict the usability of a particular approach. A
detailed discussion on these shortcomings can be found in (63]. More comparisons

with some of the related works appear towards the end of the thesis.

2.8 A Generic Model for Pattern-Based Parallel
Computing

The idea of design- and implementation-level patterns in parallel computing holds
significant promise and is an active area of research at this moment. However,
most of the current pattern-based approaches suffer from severe limitations, some
of which include: lack of flexibility, zero extensibility, ad hoc patterns hindering

pattern-composition. and language related limitations.

In contrast to the previous approaches, this research proposes a generic pattern-
based model for the design and development of parallel applications. The model

is generic because it can be described in a manner independent of patterns and

CHAPTER 2. PATTERNS IN PARALLEL COMPUTING 42

applications. The model is based on the message-passing paradigm. which makes
it particularly suited for a network of workstations and PCs. It combines the flex-
ibility of a low-level. MPI-like message-passing environment with the benefits of
high-level parallel patterns. which provides the necessary flexibility in application
development. The generic model. as opposed to being ad hoc. enhances usability.
As is discussed later, the generic model also contributes towards extensibility. As it
turns out. the model can be ideally implemented using object-oriented techniques.
An object-oriented and library-based implementation of the model in C++. using
MPI as the layer underneath. has been completed without necessitating any lan-
guage extension. The object-oriented and library-based approach. in conjunction

with the generic definition of a pattern. facilitates extensibility.

The next two chapters discuss the model and its present object-oriented im-
plementation. The subsequent chapters further elaborate on issues like the appli-
cability of the model in the realization of the various parallel patterns mentioned
earlier. issues ranging from flexibility and extensibility to the various software engi-
neering aspects of the model. and finally performance related issues of the present

implementation.

Chapter 3

Parallel Architectural Skeletons

This chapter introduces the Parallel Architectural Skeleton Model (abbreviated
PASM). Latter in the chapter, the mode] is further elaborated with the help of a
few examples. Implementation issues of the same examples. from the perspective
of the PASM system. are discussed in the next chapter. The model is discussed

next.

3.1 The Model

A parallel architectural skeleton [31-33] is a set of attributes that encapsulate the
structure and the behavior of a parallel pattern in an application independent
manner. These attributes are generic for all patterns. As is described later in this
chapter, many of these attributes are parameterized where the value of a parameter
depends on the needs of an application. Some of these parameters are statically
configurable (i.e.. at compile time) while the others are dynamic (i.e., run-time

configurable). User extends a skeleton by specifying the application-dependent

43

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 44

Legends:

Step 1: Extend
Step 2: Add Application Code
Step 3: [nstantiate

As: An Architectural Skeleton
Am: An Abstract Module
Cm2 Cm: A Concrete Module

Cml

Step 3

Instantiation of Concrete Modules as
collection of processes

J

Figure 3.1: Application development using architectural skeletons

static parameters. as needed by the application at hand.

Figure 3.1 approximately illustrates the various phases of application devel-
opment using parallel architectural skeletons. As shown in the figure. different
extensions of the same skeleton can result in somewhat different abstract parallel
computing modules (abbreviated as an abstract module). An abstract module is yet
to be filled in with application code. Once an abstract module is supplied with
application code. it results in a concrete parallel computing module (abbreviated
as a concrete module or simply a module). A parallel application is a systematic

collection of mutually interacting, instantiated modules.

An abstract module inherits all the properties associated with a skeleton. Be-
sides, it has additional components that depend on the needs of a given application.

In object-oriented terminology, an architectural skeleton can be described as the

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 43

Interaction using

P . .
Int /, Interaction using PE‘ (
/
1 4

Legends

=N .
: Rep (Representative) ---- A communication link

Q@o Other abstract modules O Enclosure of a module
G50;

inside back-end ¢ Representative of a module
3 Enclosure of the back-end

BE (Back-end)

An Abstract Module Am

Figure 3.2: Structure of an abstract module

generalization of the structural and behavioral properties associated with a partic-
ular parallel pattern. An abstract module is an application-specific specialization

of a skeleton.

Figure 3.2 diagrammatically illustrates the anatomy of an abstract module (in
this case. the module extends the data-parallel architectural skeleton designed for
2-D mesh topology). The various attributes associated with a skeleton (and subse-

quently inherited by an abstract module and a module) are explained next.

3.1.1 A formal description of the model

Definition 1.1: An architectural skeleton. As. is an application-independent ab-
straction comprising of the following set of generic attributes. { Rep. BE. Topology,
Pine. Pes}. An abstract module is an application-specific extension of a skeleton.
Let Am be such an abstract module that extends the skeleton. As. The various

attributes inherited by Am (from As) are described in the following:

o Hep is the representative of Am. When filled in with application code, Rep

represents the module in its action and interaction with other modules.

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 46

e BE is the back-end of Am. Formallv. BE = {dm;. Am,..... Amg}. where
each Am;, is itself an abstract module. The notion of modules inside another
module results in a tree-structured hierarchy. .Am. at the root of this tree. is
the parent and each Am, is its child. Modules Am; and Am, belonging to the

same back-end are peers of one another.

e Topology is the interconnection-topology specification of the modules inside

the back-end (BE), and their connectivity specification with Rep.

e P, is the internal communication-synchronization protocol of Am and its
associated skeleton. As. The internal protocol is an inherent property of the
skeleton. and it captures both the paralle] computing model of the corre-
sponding pattern and the topology. Formally, Py, is a set of communication-
synchronization primitives. Using the primitives inside Pjy,. the representa-
tive of Am can interact with the modules in its back-end, and a module in

the back-end can interact with its peers.

e Pg, is the external communication-synchronization protocol of Am. For-
mally. it is defined as a set of primitive commands. Using the primitives
inside Pg;, Am can interact with its parent and the peers. Unlike Py,
which is an inherent property of the skeleton. Pg,, is adaptable. That is, Am
adapts to the context of its parent by using the internal protocol of its parent

as its external protocol. Formally. (Pgz¢)am = (Pint)Parentam-

Though an abstract module is an application specific specialization of an archi-
tectural skeleton. it is still devoid of any application code. A user writes application
code for an abstract module using its communication-synchronization protocols,

Prne and Ppge. A code-complete abstract module is called a concrete parallel com-

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 47

puting module (abbreviated as a concrete module or a module). A concrete module

can be formally defined as follows:

Definition 1.2: (1) An abstract module with no children (i.e.. an empty BE)
becomes concrete as soon as its representative, Rep, is filled in with application
code. (2) An abstract module with children becomes concrete provided each of its
children is a concrete module and its own representative is filled in with application
code. A parallel application is a hierarchical combination of mutually interacting

concrete modules.

As is mentioned before. the notion of parent-child relationships among modules
results in a tree-structured hierarchy. A parallel application can be viewed as
a hierarchical collection of modules, consisting of a root module and its children
forming the sub-trees. This tree is called the HTree associated with the application.
The hierarchy can be formally defined as follows:

Definition 2: (a) Let us consider a module M., either abstract or concrete. Let Rep
be its representative and BE = {M;, M;..... M,.} be its back-end. The hierarchy
associated with M is denoted as HTree[M] and is recursively defined as the set,
HTree[M] = {Rep. HTree[M,]. HTree[M,].....HTree[M,]}. In other words. Rep of
VM is at the root of the tree, and the modules in the back-end form the sub-trees.
(b) Let the module M form the root of an application’s hierarchy. In that case,
the HTree associated with the application is the same as HTree[M)]. The application

becomes complete as soon as M becomes a concrete module (also refer to Definition

1.2).

Every parallel application is structured as an HTree. For instance: (1) in a
Master-Slave application, which can be implemented using the dynamic replication

skeleton. the Master module forms the root of the hierarchy and the dynamically

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 4

ANIA

|
i
y [g

(V7]

Slave @ @ Slave Producer \h aorker Consum:r
lave
Slave (b)
,\ |
Worker @
Producer Consumer @ Representanve of a module
—= Pareat-Child relationship in
the hierarchical gee
Sub-Worker Sub-Worker
Sub-Worker

©
Figure 3.3: Diagrammatic representation of a HTree

replicated children. Worker modules. form the sub-trees. (2) In an application
consisting of the three modules: Producer. Worker and Consumer. a compositional
module (i.e.. a module which extends the compositional skeleton) forms the root of
the hierarchy. and its three children (i.e.. Producer. Worker and Consumer) form
the sub-trees. In either case. a singleton module that has no children is a leaf.
HTrees associated with these two applications are illustrated in Figure 3.3(a) and

(b) respectively.

Definition 3: As is seen earlier. a parallel application is a hierarchical collec-
tion of modules. Each module takes in some inputs from other modules (i.e., its
parent and peers), performs some action. and produces some outputs to other mod-
ules. It is possible to replace a module M, with another module M,, while keeping
this replacement transparent to its parent and peers. provided M, has the same
input-output interface and performs the same action as M;. This type of local-

ized replacement that might aid towards the betterment of a parallel application

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 49

is called refinement. Refining a parallel application is equivalent to modifying a

sub-tree of the associated HTree. without affecting the rest.

For instance. let us consider the Producer-Worker-Consumer application. men-
tioned earlier. Initially, each of the three modules is a singleton module (Fig-
ure 3.3(b)). However. Worker is found to be very time consuming. and hence.
is refined to a dynamic-replication module of identical name. In this case. the
Worker module dynamically replicates its work-load to Sub-Workers. each of which
is a singleton module. The corresponding change in the HTree is illustrated in Fig-
ure 3.3(c). Note that the modules Root, Producer and Consumer remain untouched

by this change.

To summarize. an architectural skeleton is a pure application-independent ab-
straction. An abstract module contains some application specific components (e.g..
the right parameters for topology. the right protocol depending on the current
context). A concrete module is an application-specific completion. A hierarchy
comprising of only abstract modules represents the overall structure of an appli-
cation. without application code. From the implementation perspective. such a

structure can be compiled and run. however without doing anything useful.

In the rest of the discussion, the parallel architectural skeleton model will be
abbreviated as PASM wherever appropriate. The next section illustrates the theory

behind the model with various examples.

3.2 Examples

This section exemplifies the theory behind the PASM model in an implementation-

independent manner. The next chapter discusses the current object-oriented im-

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 50

plementation and re-visits the examples. More examples are presented in chapter 5

which describes the catalog of existing parallel architectural skelerons.

3.2.1 A Graphics Animation Application

Let us consider the graphics animation application [63] already discussed in Chap-
ter 2. As mentioned before. it consists of the three modules: Generate. Geometry
and Display. The application takes a sequence of graphics images. called frames.
and animates them. Generate computes the location and motion of each object
for a frame. It then passes the frame to Geometry. which performs actions such
as viewing transformation. projection and clipping. Finally. the frame is passed to
Display. which performs hidden-surface removal and anti-aliasing. Then it stores
the frame onto the disk. After this. Generate continues with the processing of the

next frame and the whole process repeats.

Each of Generate. Geometry and Display performs sequential computation (at
least. for the time being). and together they form a pipeline. Parallelism is obvious
in this case: each pipeline stage can work concurrently with the other two stages

and speed-up should be achieved as long as the pipeline remains full.

The singleton skeleton is designed for single-process. single- or multi-threaded
computation. and hence. it can be extended to create each of the three sequential
computing modules: Generate. Geometry and Display. Together they form a
pipeline. Either of the pipeline skeleton or the compositional skeleton can be used
to compose the three sequential modules to form the pipeline. In this case, it is
decided to use the compositional skeleton due to the fact that some other features
of the model (e.g.. flexibility) are enhanced by the compositional skeleton and are

discussed later in the thesis. The compositional skeleton is used to irregularly

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 51

The Root module:

Extends the composinonal skeleton.

Internal protocol = PROT_Net

Extemal protocol = Void

Topology = Default

Children = Generate (Ge). Geometry (Geo), Display (Di)

(a)

The Display module:
Extends the rephcation skeleton
Internal protocol = PROT_Repl
External protocol = PROT_Net
Children = Worker (W)

" The Display module:

Extends the singleton skeleton.
Internal protocol = Void
External protocol = PROT_Net

(b)

Legends:

------- Communication using PROT_Net
Communication using PROT_Repl
GE = Generate, Geo = Geometry, Di = Display. W = Worker

Figure 3.4: Structure of the animation application

compose other modules. By default. the modules composed (i.e.. the child modules
inside the back-end) are all-to-all interconnected. The internal protocol Pj, of
the compositional skeleton is PROT Net = {Send(...), Receive(...) . Broadcast(...).
Spawn(...)....}.

After deciding on selecting the appropriate architectural skeletons, the applica-
tion is structured as follows. A compositional module (initially abstract) named
Root extends the compositional skeleton and forms the root of the hierarchy (Fig-
ure 3.4(a)). The module Root extends the compositional skeleton by specifying
the following application-specific static parameters associated with the various at-
tributes discussed before: (1) the constituents of its back-end, which in this case
are: Generate, Geometry and Display: (2) the topology specification which, in
this case, is the default fully-connected topology; and (3) the adaptable external

CHAPTER 3. PARALLEL ARCHITECTURAL SKRELETONS 52

- Root A Root

/ e
\
/ +Geometry
L] o Display
cher:ue Geomctry Dlsplay Generate /
) J

Legends: Workct
Worker Worker urkcr
@D Representative of a module

-—— Parent-child relationship in the
hierarchical tree

Figure 3.5: HTree representation of the animation application

protocol. Pg,,. which is void in this case since Root is at the root of the hierarchy

and accordingly it has no parent.

Each of the three (abstract) modules Generate. Geometry and Display is
formed by extending the singleton skeleton (Figure 3.4(b)). In each case. the fol-
lowing single static parameter needs to be specified while extending the skeleton:
the adaptable external protocol, Pg,,. In this case. the external protocol becomes
PROT Net. which is the same as the internal protocol of the parent. i.e.. the Root
module. Thus. in one sense. the external protocol is implied by PASM and hence it
does not need explicit specification by the user. Note that a singleton module can
have no children. and hence, both of its internal protocol. Pin,. and the topology

attributes are empty.

Figure 3.4(a) illustrates the top-level structure of the application. The corre-
sponding HTree representation is shown in Figure 3.5(a). Figure 3.4(b) illustrates
the anatomy of the Display module which. in this case. extends the singleton skele-
ton. A singleton module can have no children and with an empty back-end it forms

a leaf in the hierarchy. The empty back-end of Display is not shown in the figure.

Until now. nothing has been mentioned about the application code for each

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 33

module. As is discussed in the previous section. each abstract module becomes
concrete as soon as it is code-complete (refer to Definition 1.2). Discussion about
the code-specific parts of the application is postponed to the next chapter. where

the implementation issues of PASM are presented.

Refinement

As discussed in the previous chapter. in a typical graphics application. the Display
module that performs hidden surface removal and anti-aliasing is the most time
intensive of the three children modules. This will slow-down the entire pipeline. The
best way to resolve this is to distribute the work-load of Display to dvnamically
replicated (i.e.. replicated based on load) workers. Consequently. the singleton
Display module is replaced with another module. of identical name. which extends
the replication skeleton. In this case. the work-load of the new Display module
is distributed among dynamically replicated children. i.e.. Worker modules. Each

Worker extends the singleton skeleton.

The internal protocol of the replication skeleton is PROT Repl. which becomes
the external protocol of each Worker. The external protocol of Display remains

the same as before. i.e.. PROT Net.

The new Display module is illustrated in Figure 3.4(c). The corresponding
change in the HTree representation of the application structure is shown in Fig-
ure 3.5(b). Note that the rest of the application is unaffected by this change. In

fact. that is exactly the definition of refinement (refer to Definition 3).

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 34
3.2.2 Jacobi

This example illustrates an application of the PASM model in a parallel imple-
mentation of the Jacobi iterative scheme for solving sparse linear systems. Sparse
systems are frequently encountered in various scientific applications. for instance:
thermodynamics. computational fluid dynamics. electromagnetics. [50.59]. In this
specific application. it is assumed that a square grid with given boundary con-
ditions is used. The algorithm iterates over all grid points. and at each point it
calculates certain value (for instance: temperature) associated with the point based
on the values of the neighboring grid points. The algorithm repeats until all the
values converge. The converged values correspond to the solution of the collec-
tion of linear equations. as represented by the sparse (matrix) system. Evidently.
nearest-neighbor communication is an essential ingredient of the Jacobi iteration

scheme.

The data-parallel mesh is the most appropriate for this application. The given
grid is equally partitioned among the mesh-elements. Some suitable mapping al-
gorithm or heuristic method can be applied in this mapping [30]. However. in the
case of a square grid. the mapping is quite straightforward. Multiple grid-points are
mapped per mesh-element. which determine the granularity of the application (i.e..
the ratio of computational time to communication overhead at each mesh-element,.
between two successive communications). Note that nearest neighbor communica-

tion is needed at the inner mesh-boundaries.

Obviously. the architectural skeleton for mesh-structured data-parallel compu-
tation is the most appropriate for this application. Accordingly. the root of the
hierarchy is formed by the module named Jacobi, which extends the data-parallel

skeleton {refer to Figure 3.6(a)). As shown in the figure, its topology parameter is

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS

o
Ot

The Jacobi module /-\\ The MeshElement module

Extends the DataParallel skeleton. (Rep \ Extends the singleton skeleton
Topology = 2-D Mesh i External protocol = PROT_2DMesh
Internal protocol = PROT_2DMesh internal protocoi = void

External protocol = void

Children = MeshElement(ME)

(a) ®

Legends:

------ Communicasion using PROT_2DMesh
ME = MeshElemerns

Figure 3.6: Structure of the Jacobi application

selected as 2-D mesh and the corresponding internal protocol is PROT 2DMesh. Its
child module is named MeshElement. Identical copies of MeshElement constitute
the back-end of the Jacobi module (this is one of the properties of the data-parallel
architectural skeleton, associated with its programming model) and together they

form a mesh-structured topology.

As is shown in Figure 3.6(b). each MeshElement module extends the singleton
skeleton. However. it can be refined to any other module based on an application’s
needs. The adaptable external protocol of the Jacobi module is void, since it is at
the root of the hierarchy. The adaptable external protocol of each MeshElement is

PROT _2DMesh. which is the same as the internal protocol of its parent.

After structuring the application this way, each (initially abstract) module is
filled in with application code. Code-segments of the Jacobi implementation are

illustrated in the next chapter.

3.2.3 Divide and Conquer

The divide and conquer pattern is discussed in the previous chapter. Of all the pat-

teras in parallel computing mentioned earlier. divide and conquer is an interesting

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 36

one because realization of this pattern inside PASM is recursive.

As a property of the divide and conquer skeleton. a module extending the skele-
ton can have multiple copies of itself as its own children. Accordingly for a divide
and conquer module, the static parameter that specifies its children is implicit.
Each module corresponds to a node of the divide-conquer tree. as discussed in the
previous chapter. The internal protocol of each module is PROT DivideConquer.
Though the parent and child modules are identical statically (i.e. at compile time).
some of their dynamic characteristics differ. For instance. as is evident from the
previous chapter. the root module. a leaf module and an inner module have dif-
ferent functionalities. How does a module dynamically identify itself? This role is

played by the primitives inside PROT DivideConquer (refer to the next chapter).

The divide and conquer tree supported in this model is dynamic in nature. which
provides the maximum flexibility to the user. The width of the tree could be either
static or dynamic (i.e.. run-time configurable). and it is up to the user to make the
appropriate selection. A static width corresponds to the fixed number of children
each module can have (other than the leaf modules). The height of the divide and
conquer tree is dynamic, which implies that whether a module can have further
children or not is determined at run-time (based on whether the base condition is

satisfied or not, as is discussed in the previous chapter).

In this example. a divide and conquer application of static width three is dis-
cussed. The width corresponds to the fixed number of children that each module
can have. As is stated before, though the parent and child modules are statically
identical, the root module corresponding to the root of the divide and conquer tree
has slightly different characteristics than a non-root module. Some of these differ-
ences are illustrated in Figure 3.7. Figure 3.7(a) corresponds to the root module

(root of the divide and conquer tree, as well as the root of the hierarchy in this

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 37
DC

The DC module (Root)
cp O Extends the DivideConquer skeleton.
R {ntermal protocol = PROT_Divideconguer

i(ee @ External protocol = void

Number of children = width = 3

(@)

The DC module (Inner)
Extends the DivideConguer skeleton.

Intemai protocol = PROT_Divideconquer]

txiernal protocol = PROT Divideconquer]

Number of children = widih =3
(b)

------ Communication using PROT _DivideConquer
DC = A divide-and-conquer module

Figure 3.7: Structure of a stand-alone divide and conquer application

application). while Figure 3.7(b) corresponds to an inner module. All the implicit
static parameters are highlighted as shaded areas. Note that the external proto-
col of the root module is void. whereas that of a non-root module is the same as
its internal protocol. PROT DivideConquer. A leaf module has no children and
this information is known only at run-time. A leaf module is not illustrated sep-
arately. Code segments of a divide and conquer application are illustrated in the

next chapter.

3.3 Summary

A pattern-based model for parallel application design and development has been
presented. The Parallel Architectural Skeleton Model (abbreviated PASM) is generic

because it can be described independent of patterns and applications. The model

CHAPTER 3. PARALLEL ARCHITECTURAL SKELETONS 38

1s based on the message-passing paradigm which makes it particularly suited for a
network of workstations and PCs. A majority of the frequently used patterns in
parallel computing are realizable within the frameworks of the model. Some of these
patterns and relevant applications are discussed to illustrate the idea behind the
model. More examples on patterns and related applications follow in subsequent
chapters. Implementation issues of the mode] are discussed in the next chapter.
Other important issues associated with the model and its implementation. e.g..

flexibility and extensibility. are discussed in a later part of the thesis.

Chapter 4

An Object-Oriented

Implementation

This chapter discusses an implementation of PASM. When the model was origi-
nally designed. there was no specific implementation strategy in mind. However.
later on. it was realized that PASM is an ideal candidate for object-oriented style
design and implementation. Recently. an object-oriented and library-based imple-
mentation of PASM has been completed in C++. without necessitating any lan-
guage extension. Together with the performance measures discussed in chapter 6,
the implementation demonstrates the practical feasibility of the model. The key

implementation-features are discussed next.

4.1 Basic Implementation Features

The current implementation of the PASM system uses C++ (SUNCC Compiler

V4.1). The system is built on top of MPI [35]. There are several vendors who

39

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION 60

are working towards the implementation of the MPI standard (presently 2.0). as
proposed by the MPI forum [2]. The current implementation of the PASM system
uses LAM 6.1 [1]. initially developed at the Ohio Supercomputing Center and now
maintained and extended at the University of Notre Dame, USA. LAM (Local Area
Multicomputer) is an MPI programming environment and development/debugging
system for heterogeneous computers on a network. It implements the complete

MPI-1 standard and many of the MPI-2 features.

A textual user interface helps the user in various stages of application devel-
opment. Application code written using the textual interface is parsed by a Perl-
script [73] to expand to C++ code. which is subsequently compiled and linked with
the skeleton-library to produce the executable. As is illustrated later. the use of
the textual interface is not a language-extension. but merely an optional feature
that helps the user to skip certain laborious and often monotonous steps in the
development process. If desired. the user can bypass this phase and directly work

in C++.

Other important features of the current implementation include: (1) use of
C++ operator-overloading to implement certain primitive operations inside proto-
col classes. e.g.. Send(...). Receive(...) operations, inside PROT Net. (2) Imple-
mentation of automatic data-marshaling and un-marshaling mechanisms whereby
the data attributes of an object. user- or system-defined. can be marshaled. shipped
over a communication link and then un-marshaled without the usual hassles of data

packing and un-packing as in MPIL

The discussion begins with various examples, including the ones discussed in
the previous chapter. illustrating the use of the textual interface, its parser, and
the few other steps involved in application development. Subsequently. more subtle

issues related to some of the implementation details are covered.

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION 61

4.2 The Textual User Interface: Examples

This section exemplifies a user’s perspective of applying the system in implementing
various applications. It is assumed that the user is thoroughly familiar with the
PASM model discussed in the previous chapter. However there is no requirement
for the user to have any knowledge about the underlying implementation. Some
useful implementation related issues meant for an advanced user. i.e.. who might

want to extend the system. are discussed in the subsequent sections.

A simple sequential application is illustrated next.

4.2.1 Hello world

This first example does nothing more than printing the string “Hello World". How-
ever. it demonstrates some important features of the PASM model. its implemen-
tation and the current textual user interface. As discussed in the previous chapter.
the singleton skeleton is designed for single-process and single or multi-threaded

computation. and is the most appropriate for this example.

Figure 4.1(a) illustrates a user’'s implementation of the application using the
current textual interface. The (initially abstract) module, MyModule. extends the
singleton skeleton. Rep is the representative of MyModule. The representative Rep
is initially empty. which corresponds to an abstract module. Filling in of Rep with
application code results in the concrete module, MyModule, as shown in the figure
(also refer to Definition 1.2 in the previous chapter). As a property of the singleton
skeleton, the back-end of MyModule is empty. and hence. the internal protocol, Py,

is void.

The application code written using the textual interface is parsed and expanded

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 62

. 11 Generated code for module: “MyModule”
?lyModule EXTENDS SingletonSkeleton class My - ic SingletonSkel <Void>
Rep { (.
| printf("Hello World\n"); l"‘"‘:"‘yu e ():
| ~ viral void RepQ {
® M‘HﬁbWaHh'):
|
-llmhddeﬁmmgobdw
J N
#inclde "VoidClassh® - . - k =
!mduh 'Sm;kmﬁcleu;h : void Pmain()
{
!Imwﬁmmmpbebr MyModule Root_524;
'_” -) , Root_524.Run();
. J - ®

Figure 4.1: Hello World

by a Perl-script to generate the C++ file: Pmain.cc. Figure 4.1(b) illustrates the
automatically generated file. Pmain.cc. which is subsequently compiled and linked
with the skeleton library to generate the executable. As is evident here. the user
can directly develop the application code in C++. The textual interface and its
parser merely reduce some of the extra work. which are evidently more pronounced
in the examples that follow. Being a stand-alone module, the external protocol.
Pg.. of MyModule is also void, which is specified as the template parameter Void

in the generated code.

4.2.2 The graphics animation application

Let us consider the graphics animation application discussed in the previous chap-
ter. The application consists of the three modules: Generate. Geometry and
Display. It generates a sequence of graphics images, called frames, and animates

them. Generate computes the location and motion of each object for a frame. It

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 63

The Root module:
\ Extends the compositional skeleton.

— | Internal protocol = PROT_Net
O’ - 'O’ ° O External protocal = Void
Ge Geo Di Topology = Default

BE Children = Generate (Ge). Geometry (Geo). Display (Di)
(a)
. P - — d The Display module:
-~ The Display module: d Extends the replication skeleton.
Extends the singleton skeleton. P Internal protocol = PROT_Repl
Internal protocol = Void — Ny External protocol = PROT_Net
External protocol = PROT_Net O "’QQ Q /I Children = Worker (W)

BE

(b)

Legends: ©

------- Communication using PROT_Net
Communication using PROT_Repl
GE = Genenate, Geo = Geometry, Di = Display, W = Worker

Figure 4.2: Structure of the animation application

then passes the frame to Geometry. which performs actions such as viewing trans-
formation. projection and clipping. Finally. the frame is passed to Display. which
performs hidden-surface removal and anti-aliasing. Then it stores the frame onto
the disk. After this, Generate continues with the processing of the next frame and

the whole process repeats.

One way of structuring the application is illustrated in the previous chapter. For
convenience to the reader. Figure 4.2 is repeated here from the previous chapter.
The application uses the compositional skeleton and the singleton skeleton. As dis-
cussed earlier. the Root compositional module (i.e, Root extends the compositional
skeleton) forms the root of the hierarchy. The three children of Root are Generate,
Geometry and Display, and they form the subtrees. Each of the three children is

initially a singleton module, and hence. is a leaf of the hierarchy.

CHAPTER 4. AN OBJECT-ORIENTED INMPLEMENTATION 64

The following code-segments illustrate one way of implementing the application
using the textﬁa.l interface. The internal protocol (i.e.. Py,) of the compositional
skeleton is PROT Net = {Send(...), Receive(...) . Broadcast(...). Spawn(...)....}.
Accordingly. PROT Net becomes the external protocol (i.e.. Pgy) for each of the
three children.

GenerateGeometry and GeometryDisplay are user defined classes whose data
attributes can be marshaled. shipped over a communication link and then un-
marshaled. without the usual hassles of data packing and unpacking. Their con-
stituent data members are either system defined wrappers of standard data-types or
other user defined marshal-able types. The example also illustrates the use of C++
operator overloading as an alternative way of defining certain primitive operations

inside PROT Net (e.g.. Send(...), Receive(...)).

//.““‘.l‘i‘"‘.“‘t‘.l.““‘."“.‘.“.“.O“.‘.“t“..“‘O‘...‘.l‘

GLOBAL {
// Any global definition may go here.

#include "geom.h"
#define MAXIMAGES 120

// The following defines a marshal-able class.
Elaas GenerateGeometry : public UType

Int imageNumber; // "Int" is a System defined marshal-able wrapper
// for "int" type.

ObjTable table; // "ObjTable" is a marshal-able class defined
// in "geom.h"

public:
virtual void Marshal() {imageNumber.Marshal(); table.Marshal();};
// Marshal "this" object.
virtual void UnMarshal() {imageNumber.UnMarshal();
table.UnMarshal();}; // Un-marshal "this" object
// Comstructor(s) etc. follow...

};

// Another marshal-able class definition.
Elass GeometryDisplay : public UType

Int imageNumber;
Int aPoly;
PolyTable tables; // "PolyTable" is another marshal-able
// class defined in "geom.h"
public:

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 65

virtual void Marshal() {imageNumber.Marshal(); nPoly.Marshal();
table.Marshal();};

virtual void UnMarshal() {imageNumber.UnMarshal();
nPoly.UnMarshal(); table.UnMarshal();};

// Comstructor(s) etc. follow...

}
}

//‘.‘.l‘.-.‘.‘.".‘.l"..0‘.0."‘...‘.‘l‘...‘.‘..“'...‘.“....‘.....‘
// The "Root" module, which is at the root of the hierarchy.

// 1t has three child modules: Generate, Geometry and Display.

%oot EXTENDS CompositionalSkeleton

CHILEREN = Generate, Geometry, Display;

Rep

// The representative code goes here. In this case, the
// representative of Root has no functionality.

}

//...."...‘.“‘l‘“‘.‘““‘..“.3‘.."'..‘.““““‘.“"..‘.“l‘.‘.‘
// The "Generate" module, which extends the singleton skeleton.
%enerate EXTENDS SingletonSkeleton

// A{singleton module can have no children.
Rep
// The representative code goes hers.
int image;
GenerateGeometry Work;
for (image = 0; image < MAXIMAGES ; image++){
ComputeUbjects (Work);
Geometry << Work; // A member primitive of the external
// protocol: PROT_Net. An alternative option is to
; // use: Send(Geometry, Work, context).
}
// All local definitions go below:
LocaL {
zoid Computelbjects(GenerateGeometryk Work)

// User code for "Compute(bjects" goes here.
}

}

//".‘...““‘...“.“.8-.‘.“‘““..‘.‘.'.“““..‘..““......“‘.“

// The "Geometry" module.
Geometry EXTENDS SingletonSkeleton
{ -

Rep {
int image = 0;
GenerateGeometry Work;
GeometryDisplay Frame;
for (image = 0; image < MAXIMAGES ; image++){
Generate >> Work; // A member primitive of the external
// protocol: PROT_Net. An alternative option is to
// use: Receive(Generate, Work, contcxtg.
DoConversion(Work, Frame);

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 66

Display << Franme;

}
LocaL {
// Local definition of DoConversion(...) goes here.

}

//“.‘0.‘.‘.".l...“".“l..“‘..“‘....‘..‘.'.‘..‘.“..‘.....".‘..‘

// The "Display" module.
%isplay EXTENDS SingletonSkeleton

Rep {
int image;
GeometryDisplay Frame;
for (image = O; image < MAXIMAGES ; image++) {
Geometry >> Frame;
DoHidden (Frame);
Vritelmage(Frame);

}
LOCAL { // Local definitions of DoHidden(...) and
} // Vritelmage(...) go here.

}

//“.“.‘."‘.‘.‘..‘...l.l.‘t“““‘..‘.‘.....“‘.l‘....‘lt‘...‘.....‘

As discussed in the previous example. the above code is parsed by the Perl-based
parser to produce the C++ file. Pmain.cc. which is subsequently compiled and
linked with the skeleton library to produce the executable. The following is the

skeleton of the automatically generated file. Pmain.cc:

include "BasicDef.h"

#include "VoidClass.h"

#include "CompositionalSkeleton.h"
#include "UnaryHandle.h"

#include "PROT_Net.h"

#include "SingletonSkeleton.h"

// The items defined inside GLOBAL are copied in the following without
// any change.
// SRS ESBE LU EL0SE VI CERSESIRR LIS EEEESE0OSSEERSEPESESS USROS

#include "geom.h"
#define MAXIMAGES 120

// The following defines a marshal-able class.
class GenerateGeometry : public UType

// Body of the class is copied as it is.

// Another marshal-able class definition.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION

glass GeometryDisplay : public UType
;/ Body of the class is copied as it is.

// [J 211222122 24 22112221 11122 112231222 112 222R2d222 0422

// Automatically Generated code for module: "Generate"
class Generate : public SingletonSkeleton <PROT_Net>
public:

ilus Paranms

public:
HandleBases h_73;
HandleBase* h_113;
Params (HandleBases _h_73,HandleBase* _h_113) :
h_73(_h_73),h_113(_h_113){};
Params{) :h_73(0),h_113(0){};

Params p_611;
Generate(Params _p) : p_611(_p){};

virtual void Rep() {
// The representative code goes here.
int image;
GenerateGeometry Work;
for (image = 0; image < MAXIMAGES ; image++){
ComputeObjects (Work);
s(p_611.h_73) << Work; // A member primitive of the external
// protocol: PROT_Net. An alternative optiom is to
) // use: Send(Geometry, Work, context).
}

// LOCAL definitions go here:

void ComputeObjects(GenerateGeometryk Work)

5/ User code for "ComputeObjects" goes here.
}
// Automatically Generated code for module: "Geometry"
Elass Geometry : public SingletonSkeleton <PRCT_Net>

public:
class Params

public:
HandleBase* h_481;
HandleBases h_113;
Parans (HandleBases _h_481,HandleBase*s _h_113) :
h_481(_h_481) ,h_113(_h_113){};
Params() :h_481(0),h_113(0){};

89

«300Y, OTNPOE 307 SPO> PelIwIBuUS) LTesT3emOINY //

{

:ex0y of suoTITUIIOP TYDDT //

{
{
! (ourex3)efemyoatap
{(swead)ueppryoq
‘omexy << (€274 1Z7d)e
} (++98ewt ! SIDVKIXVH > eSwwr !p = eBemt) 103
‘ewez3 ferdstgiizemoen
{ofwemwt 3ut
} ()dey proa Tem3zta

{3(d7)1z7d : (d- swereq)Lerdsig

11z7d smexey
{
{3(0)ELTH (0)I8 Y: ()suweIRd
FELTT)ELTY (18 YT IBY Y
1 (EL7Y” +0SREOTPURH' 1Y 4~ s0SREOTPURY)sSwRIRg
{EL7Y sosegeTpuRy
{18%7¢ sosSRgOTPURY
:o11qnd
}

swRIRd SSRID

:or1qnd

}
<39N~10¥d> uolerexsuczeidurs otiqnd : Lerdsrg sserd

wLetdstg, :einpow 03 epo> peseieusn LITestiwmoany //

{
{

‘ex0y $00F ,U0TISIGAUCHO(], 203 OpPOd IeSp //

}

(ouwex3 gderdsrgliiemoen ‘xiop PL119WOEHVIVIGTENH)UOTEIVAUCHOQ PLOA

:030q of suoraturzep TYO01 //

{

{
rowezd >> (E11°U 0167d)e
‘(emrRId ‘NIOR)UOTSIVAVOHOQ]
*(3X93U0D ‘XI0A ‘SIRIVUGH)OATEORY @SN //

03 St uoTado SATIRUINIT® UY "3ION"IDYd :To2030ad //
Teu193X® 9Y3 Jo ear3TEtId Joquewm y // !XIOAm << (188”9 0167d)e

}(++0Bemt ! SIDYHIYVN > oFwmt !p = efewmt) 103
‘owrexz3 Lerdsigiazemoen
!x1on £230m00neIRIRTRN
{0 = oBemr aur
} ()dey proa Teniita

‘{3(d7)o167d : (d- swereq)Lzzemoen

‘016-d smexed

NOLLVININNITdINT dIINJIHO-1D3r80 XY '+ YILdVHD

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 69

Elass Root : public CompositionalSkeleton <PROT_Net ,Void>

UnaryHandle<Generate, Generate::Params> h_481;

UnaryHandle<Geometry, Geometry: :Params> h_73;

UnaryHandle<Display, Display::Params> h_113;
public:

Root() : h_481(Generate::Params(&h_73,&h_113)),
h_73(Geometry: :Params(&h_481,&h_113)),
h_113(Display: :Params(&h_481,&h_73)){};

virtual void Rep() {
// The representative code goes here

// LOCAL definitions go heres:

;oid Pmain()

Root TopLevel_820;
TopLevel_820.Run();

The automatically-generated C++ code-segments shown above suggest that the
textual interface and its Perl-based parser significantly reduce the work-load on the
part of the user in application development. The textual interface handles many of
the implementation- and C++-related. and other laborious and often monotonous

details that can easily be automated.

The textual interface could be developed based on the fact that all applications
that use the same architectural skeleton(s) follow similar implementation patterns,
irrespective of the applications. For instance. applications that use compositional
modules as the root of the hierarchy follow identical implementation patterns. as is
observed inside the Root class (e.g.. the param class, the unary handles for children,
the various C++ templates. and the typical stvle in using them). Similarly. all
singleton modules that are the children of a compositional module have identical
constructs (e.g.. the param class. unary handles for peers. the external protocol

PROT Net as a C++ template parameter). Obviously, for a stand-alone singleton

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 70

module. which is at the root of the hierarchy and hence has no peers. the param
class is missing. A user can familiarize oneself with these implementation patterns
via practice and then directly work in C++. Until then. the textual interface takes

care of this part.

C++ templates are extensively used for statically specifving the internal and
external protocols for modules, as well as for specifving the static parameters for
handles. The functionality of a handle is discussed later. The external protocol of
the Root module is void and is specified as the template parameter. Void. More de-
tailed implementation issues and concepts related to the previous code are discussed

in the following sections.

Refinement

As is discussed in the previous chapter. the Display module that performs hidden
surface removal and aati-aliasing is the most time intensive of the three children
modules. Consequently, the singleton Display module is replaced with another
module of identical name that extends the replication skeleton. In this case. the
work-load of the new Display module is distributed among dynamically created

replicas. i.e.. Worker modules (refer to Figures 4.2(c)).

The internal protocol. Pjy,. for the replication skeleton is PROT Repl. Conse-
quently PROT Repl becomes the external protocol for each replicated child Worker
module. Note that none of the other modules is affected by this change. This type
of localized replacement that works towards the betterment of an application is
called a refinement (refer to Definition 3 in the previous chapter). The change in

the user’s implementation is illustrated next:

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION !

// The refined "Display" module.
?isplay EXTENDS ReplicationSkeleton

//The dynamically replicated children of "Display"
CHILDREN = Worker;
Rep {
int image = 0O;
int success;
GeometryDisplay Frame;
for (image = 0; image < MAXIMAGES; image++){
Geometry >> Frame; // A member primitive
// of the external protocol, PROT_Net.
success = SendWork(Frame); // A member
// primitive of the internal protocol PROT_Repl.

if ('success) {// Do it myself, if not successful in
// assigning to a worker.
DoHidden(Frame);
WriteImage(Frame);

}
}
LOCAL { ... }

// Each replicated "Vorker" module
gorkcr EXTENDS SingletonSkeleton

Rep {
GeometryDisplay Frame;
ReceiveWork(Frame); // A member primitive of the external
// protocol, PROT_Repl.
DoHidden(Frame) ;
WUritelmage(Frame);

}
LocaL { ... }

The corresponding automatically generated C++ code is illustrated in the follow-
ing:

// Automatically Generated code for module: "Display"
class Display : public ReplicationSkeleton <Worker, PROT_Repl, PROT_Net>
{

public:
Elass Params

public:
HandleBase* h_355;
HandleBase* h_79;
Parans(HandleBase® _h_355,HandleBase* _h_79) :
R_355(_h_355),h_79(_h_79){};
Params() :h_355(0),h_79(0){(};

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION 2

Params p_47;
Display(Params _p) : p.47(_p){};

virtual void Rep() {
int image = 0;
int success;
GeometryDisplay Frame;
for (image = 0; image < MAXIMAGES; image++){
Geometry >> Frame; // A member primitive
// of the external protocol, PROT_Net.
success = SendWork(Frame); // A member
// primitive of the internal protocol PROT_Repl.

if (!success) {// Do it myself, if not successful in
// assigning to a worker.
DoHidden(Frame) ;
Writelmage(Frame);

}
}

// LOCAL definitions go here:
}

// Automatically Generated code for module: "Worker"
Elass Worker : public SingletonSkeleton <PROT_Repl>

public:
virtual void Rep() {
GeometryDisplay Frame;
ReceiveWork(Frame); // A member primitive of the external
// protocol, PROT_Repl.
DoHidden(Frame);
Writelmage(Frame);

}
// LOCAL definitions go here:

It should be noted that the initial part of the new Display class that deals with
establishing connection with the peers through the use of handles. through the def-
inition of the param class and its subsequent declaration and instantiation, remains
identical to the old Display class before refinement. This simply reflects the fact
that the Display module. as seen by its parent and the peers, remains unchanged
from before. It is only the internal representation of Display. i.e., the sub-tree

with Display at its root, that has changed.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 3

The Jacobi module * The MeshElement module

Extends the DataParalle! skeieton. Extends the singleton skeieton
Topology = 2-D Mesh ; External protocol = PROT_2DMesh
Internal protocol = PROT_2DMesh _/ Internal protocol = void

Extemal protocol = void

Children = MeshElement(ME)

(a) (b)
Legends:

------ Communication using PROT_2DMesh
ME = MeshElement

Rep

Figure 4.3: Structure of the Jacobi application

The Worker class extends the singleton skeleton. The (implicit) external proto-
col, PROT Repl. is statically configured as a C++ template parameter. The peers
of Worker are implicit in this case. which are instantiated copies of itself (as a prop-
erty of the parent replication module). Accordingly. the “param class-definition™
part, that is used for establishing connections with the peers, is missing. All these

issues are elaborated in the following sections.

4.2.3 Jacobi

The Jacobi iterative scheme and one possible way of structuring the application
are illustrated in the previous chapter. It uses the two modules: Jacobi and
MeshElement (refer to figures 4.3(a) and (b). re-produced here from the previous
chapter). The Jacobi module corresponds to the front-end of a data-parallel mesh.

The MeshElements constitute the back end.

The following code segments illustrate an implementation of the Jacobi scheme
using the current textual interface. For reasons of both simplicity and efficiency, the
implementation shown here uses a 1-D mesh. Since Jacobi involves nearest neighbor

communications at the mesh boundaries. use of a 1-D mesh reduces the number of

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION T4

boundary communications to half as compared to a 2-D mesh. The implementation
illustrates the use of C++ operator-overloading technique for implementing certain
primitive operations inside PROT_1DMesh (for instance: primitives for nearest
neighbor communication), and also more on automatic data marshaling and un-

marshaling.

#include "Grid.h"

))...O.“..“..“.““-“.“““‘.....‘.....'.‘.‘..“.

// The "Jacobi" module corresponds to the front-end of an 1-D mesh.
iacobi EXTENDS DataParallelSkeleton

CHILDREN = MeshElement;

PROTOCOL = PROT_1DMesh; // In this case, we need to explicitly specify
// the internal protocol, since more than one
// choice is possible.

Rep {

int N = SetMeshWidth(4) // Set mesh-width to 4. It is a a member of
// PROT_iDMesh. Mesh-width is one parameter
// that can be configured either statically
// or dynamically.

Grid A(1000,1000); // A 1000 X 1000 marshal-able grid.

ReadIn (A);

PartitionGrid (A,N); // Partition the grid row-wise among the

/ 8B = 4 children
CollectResults (A,N); // Collect the results from the children.

}

LoCAL {

// Definitions of ReadIn (...), PartitionGrid (...), CollectResults (...)
// and other methods and local variables may go here (or may be defined
;/ globally).

}

// SISO REEI0S0S2ERIESSEESUSEESSINSEEEEESSISI0ESR0E
// Each element of the 1-D mesh.

:eshﬁlenent EXTENDS SingletonSkeleton

Rep {

int context = ...;

Grid A;

ReceiveFromRep(A,context); // It is a member of external protocol,
// PROT_iDMesh. In this particular case, A is a 252 X 1000 grid.
// There are twc extra rows (i.e., rows O and 251) for holding

// boundary rovs from neighboring elements.

Grid B = A;

int 1b, ub;

int nRows = A.Rows();

int nColumns = A.Columns();

int myPosition = getMyPosition(); // Get my position in the 1-D mesh.

CHAPTER 4.

AN OBJECT-ORIENTED IMPLEMENTATION 73

// It is a member primitive of PROT_iDMesh.

int meshWidth = getMeshWidth(); // Get the width of the 1-D mesh. It

i? (myPosition

// is a member primitive of PROT_1DMesh.
0) 1b = 2; else 1b = };

if (ayPosition == (meshWidth ~ 1)) ub = nRows - 3; else ub = nRows - 2;

// MAXITERATIONS is chosen as some reasonable value.
for (int k = 0; X < MAXITERATIONS; k++){

if
it
if
it

(myPosition > 0) Peer(Left] << A[1]; // Each row of A is a

// marshal-able object.
(myPosition < (meshWidth - 1)) Peer(Right] >> A[nRows - 1];
(myPosition < (meshWidth - 1)) Peer[Right] << A[nRows - 2];
(myPosition > 0) Peer[Left] >> A[0];

The above four statements illustrate communication with peers
(in this case, nearest neighbor communication). Different types
of communication, including broadcasting to peers, are possible,
which are member primitives of PROT_iDMesh. The above statements
also illustrate the use of C++ operator-overloading in
implementing certain primitive operations. An alternative option
is to use functions calls, e.g., SendToLeft(...),
ReceiveFromRight(...), SendToOffset(...), etc.

for (int i = 1b; i <= ub; i++){

for (int j = 1; j <= nColumas - 2; j++)
Blil[j] = (A[ij (3-11 + Ali-1103] + Ali+1][3] + A(id(j+1))/4;

}
A =B;

SendToRep(A, context); // A member of external protocol, PROT_1DMesh.

)5

// SEESSEENINHELGNISERBISEESSSL RIS ELSRES OSSR EEIES RN

The same steps as before are involved in generating the executable. and hence, are

not shown here.

thesis.

Performance results for Jacobi are illustrated in a later part of the

4.2.4 Divide and Conquer

The last example for this chapter illustrates a parallel implementation of the quick

sort algorithm [54] using the divide-and-conquer skeleton. The divide and conquer

approach is discussed in the previous two chapters. The implicit children of a divide

and conquer module are copies of itself. As a result, the module has to dynamically

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 76

differentiate the root of the divide-and-conquer tree. an inner node. and a leaf. The
primitive command IamTheRoot() inside PROT DivideConquer (refer below) lets
a module dynamically identify itself. Whether a module is an inner node or a leaf
is application dependent. and hence, cannot be judged by a primitive (refer to the

use of the “Threshold” value in the following application).

The two other primitive operations inside PROT DivideConquer emploved in
this application, i.e., PartitionData(...) and CollectResults(...). are used respec-
tively for dividing the data among the children (i.e., copies of itself) and then col-
lecting the results. All primitive methods are commented with a star (*) for ease
in identification. The rest of the methods used in the application are application-

specific. and are defined either locally or globally.

GLOBAL {
#include <fstream.h>
#define Threshold 200

// The following methods can be defined either locally or globally, it
// does not matter in this application.
;oid InsertionSort(Aintk A)

{/ The insertion sort routine is used below.

zoid ReadIn{ifstreamk infile, Aint& A)
void WriteOut(Aintk A, ofstreamk outfile)

}
%Sort!odule EXTENDS DivideCongquerSkeleton

Rep {
if (lamTheRoot(}){ //+ It is a member primitive of the internal

// protocol, PROT_DivideConquer, which lets a module
// dynamically identify whether it is the root of the
// divide-conguer tree.s

ifstrear InFile(...);

ofstream OutFile(...);

Aint A; // A system defined marshal-able array of integers.

ReadIn(InFile, A); // Defined globally.

QuickSort(A); // Defined locally in the following.

WriteOut(A, OutFile); // Defined globally.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION

return;

// Else, 1 am an inner node or a leaf.

Aint A;
ReceiveFromParent(A); //* Member primitive of PROT_DivideConquer.e
QuickSort(A);
SendToParent(A); //+ Member primitive of PROT_DivideConquer.s
}
LocaL {

// The following methods could also be defined globally.
void QuickSort(Aintk A)

it (A.getSize() < Threshold)

else {

}

InsertionSort(A);

int 1 = 0;

int end = A.getSize() - 1;
int j = end - 1;

int pivot = A[end];

while (i < j) {

while (compare(A[i],pivot) < 0) i += 1;
while (compare(A[j],pivot) > 0) j -= 1;
if (i < j)

Swap(A,1,3);

}
Swap(A,i,end);

// The following informationr is used to divide A
// into two partitions. First partition: 0 to i,
// Second partition: (i+1) to (end-1).

Aint PartitionInfo(4);

PartitionInfo(0] = 0;

PartitionInfo[1] = i;

PartitionInfo[2] = i+1;

PartitionInfo{3] = end - i;

PartitionData(A,Partitionlnfo); //¢ Partition A among
// the child modules as based on the information
// provided. It is a member primitive of
// PROT_DivideConquer.s
Auser<Aint> datum; //¢ A 2-D marshal-able array.
CollectResults(datum); // Collect results from the
// child modules. It is a member primitive of
// PROT_DivideConguer.s

// Now merge the results:
MergeResults (datum, A);

Eoid Swap (Aint& A, iat i, int j)

void MergeResults(Auser<Aint>k datum, Aintk A)

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 78

The example further illustrates the use of automatic data marshaling and un-
marshaling mechanisms. Aint is a system defined integer-array tyvpe that can be
automatically marshaled and un-marshaled. Auser<Aint> is a marshal-able array

of marshal-able integer-arrays (hence. a 2-D marshal-able array).

There is something interesting with the automatically generated code in this

case. The following code-skeleton shows relevant pieces of the generated code:

éiiss QSortModule :public DivideConquerSkeleton <QSortModule,PROT_DivideConquer,

. Void >
public:
QSortModule() {};
QSortModule(Voidk _v) {};
virtual void Rep() {
if (IamTheRoot()){
j..
) .

In the first line of the previous code. the actual value of the first template-parameter
to DivideConquerSkeleton is the class QSortModule itself. The C++ language
allows this type of “recursive” parameter passing, which. in turn, facilitates the

implementation to strictly conform to the PASM model.

4.3 Implementation Issues

This section discusses the various implementation issues that are the key features of

the present object-oriented implementation of the PASM model. These issues are

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 79

: ArchuecturalSkeleton |
e
| :
CompasinanalSkelelod SingletonSkeleton | | ReplicanonSkeleton
’ DataParéllelSkeIemn] [DtvideConquerkeleran‘! | PipeLineSkeletont

[1] T :
[PROT_Net | | PROT_DataParalic! | [PROT_Repl | | PROT_DivideConquer | { PROT_PipeLinc |

| !
| PROT_IDMesh | {PROT_2DMesh| | PROT_HyperCube |

Figure 4.4: High level class diagram behind the design of the skeleton library

also an essential reading for an experienced user who wants to extend the existing
system, before start exploring the skeleton-library source code. The implementation

of the model is referred to as the PASM system wherever appropriate.

4.3.1 Implementing Architectural Skeletons: Reusability
and Extensibility

Figure 4.4 illustrates the high-level class diagram behind the design of the skeleton
library. The figure uses the standard UML [8] notation. For simplicity. the figure
does not illustrate the relationships between the skeleton- and the protocol-classes.
Moreover. the various attributes and the methods associated with each class, and
the formal parameters. in the form of templates, associated with each inherited
skeleton-class are not shown for a cleaner representation. More detailed UML-

representation for an example is illustrated in the next subsection.

From the implementor’s or an experienced user’s perspective, certain features

of the object-oriented design. in conjunction with the generic nature of the PASM

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION S0

model. favor reuse and extension of the skeleton library. The generic model helps.
because it provides a clear picture regarding what the different components of a
skeleton are and what their functionalities are going to be (compare it with a
totally ad hoc approach). Furthermore, from the model's perspective. each module
is an independent entity whose only interface with the outside world is through its
representative and the adaptable external protocol. Accordingly. what the outside
world sees of the module are only through its actions (i.e.. input/output and any
observable side effects). without knowing exactly how these actions are carried out
internally. In other words. the module acts as a black-box to the outside world.
The same arguments apply to the internal structure of the module where its back
end might contain copies of itself (for instance: in the divide-and-conquer skeleton)
or other modules. with which it can interact only via their representatives. These
exclusive features of the model facilitate the design and addition of new skeletons

without affecting the existing ones.

Many of the object-oriented features that are supported in C++. for instance:
polymorphism (through the use of C++ templates and virtual methods) and in-
heritance. facilitate the reuse and extension of the existing skeleton library. New
classes can be defined by extending existing ones. thus enabling the design and
addition of new skeletons and protocols with added functionalities. Completely
new skeletons and protocols can be designed by extending the base classes (refer
to Figure 4.4). In each case. a collection of pre-existing virtual methods need to be
overridden and some new additional methods might need to be defined in order to

reflect the characteristics of the newly designed skeleton.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION §1

...

' P_Ext: ProtocolBase:

| CompositionaiSkeieton| | SingletonSkeleton | """

[Void | ﬁo*r_we[z |

..................................

<4 External Protoco!

4 4 | <« External Protocol o
= map;’;'i"':’ C‘”:t — E g __ Bound Class Bound Class Bound Class
<PROT _Net. Void> 5 & | SingletonSkeleion SingletonSkeleton SinglesonSkeleton
P A E E <PRO';'_N¢D <PROT_Neo>] <PR($T_N¢I>
2 S
<] .
s 8| (oo i
—— Displa; Geome! Generate|
(Rooy ; Internaj Protocol » sp] Y lﬂj !—-l—l

Figure 4.5: High level class diagram for the graphics animation application
4.3.2 The Graphics Animation Application: Revisited

Figure 4.5 illustrates the high-level design in UML notation pertaining to the graph-
ics animation application before refinement, discussed in the previous chapter and
detailed in section 4.2.2. As the automatically generated code in section 4.2.2 and
figure 4.5 suggest. each architectural skeleton is implemented as a template class,
where each template relates to a statically configurable parameter associated with
an attribute of the skeleton. For instance, in the case of the compositional skele-
ton. the two statically configurable parameters are the (implicit) internal protocol,
P Int, and the adaptable external protocol. P Ext. For design reasons, the other
static parameters for the compositional skeleton (for instance: the specification of
the children) are not realized as templates. In the case of the singleton skeleton,

the only parameter is the adaptable external protocol. P_Ext.

As shown in the figure (also refer to the generated code), each template skeleton
class becomes bound as soon as the actual values of the template-parameters are

specified. The concrete class Root extends the bound (but abstract) compositional

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION §2
"Child: ArchitecturalSkeleton. P_lnt: ProtocolBase. P_Ext: ProtocolBase
| Replimnonsie_l-el.z;n. ';F """""""""""""""""""""""""""""""""""""""
I void | IPRoT_Ncl: | < External Protocol
Bound C1 % . < _Exiernal Protocol i
ound Class b
CompositionaiSkeleton z 2 Bound Class Bound Class
<PROT _Net. Void> E s SingletonSkeleton SingletonSkeleton
) £ & <PROT_Neo> <PROT_Net>
o 3 T
= [R
[Root Internal Protocol ® | & comewy| | \ cnerate|
1 | "
\ |
> N ;
r rd ‘
Y L |
Bound Class Bound Class
‘ Replicati i
plicationSkeleton | SingletonSkeleton
| <Worker, PROT_Repl, PROT_Neo | PROT_Rep | <PROT_Repl>
- { 2 T |
| L J
!
i Internal Protocol » 4 External Protocol
! Display I Has dynamucaily replicated children » m et
i 1 1.*

Figure 4.6: High level class diagram after refinement

skeleton class. Similarly. the concrete classes Generate. Geometry and Display

extend the bound (but abstract) singleton skeleton classes. Each of Generate,

Geometry and Display is contained inside Root. The rest of the diagram is self

explanatory. The functionality of the handles (i.e.. UnaryHandle) inside Root (refer

to the automatically generated code) is discussed towards the end of this section.

Figure 4.6 illustrates the change in the high level design after refinement (refer to

the previous chapter and also section 4.2.2). When compared with figure 4.5. it can

be seen that the rest the application. other than that involving Display, remains

intact. The modified part of the design is included inside the dotted rectangle.

As before. the replication skeleton is a template-class. Unlike the compositional

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 83

Root(0) Root(0)

i Geomerry
[@ @ o)) Display(02)
Generate Geometry Display Generate
(00) on (02) (00)
a

lﬁse’lds.' @ Wotk? . gorker

‘ 020y Worker Worker 020
@ Representative of a module 020) (020 (020)
——« Parent-child relationship in the

hierarchical tree (b)

Figure 4.7: HTree and its traversal scheme

skeleton. the replication skeleton has one extra template parameter. that is the
child to be replicated (refer to the figure and also to the automatically generated
code). Note that the the child is specified here as a template parameter. The
child-components of the compositional skeleton are not specified using template
parameters because it can have an arbitrary number of different children. The rest

of the diagram is self explanatory.

4.3.3 The Dynamic Execution Model

The execution model for the PASM system is SPMD. i.e.. each processor in the
processor-cluster loads and executes the same file. which results in major savings
in terms of management of source. object and executable files. Consequently. each
process falls through the same ATree associated with the application. starting at
the root of the tree. Figures 4.7(a).(b) illustrate the HTree associated with the

graphics-animation application before and after refinement respectively.

A node of a HTree corresponds to the representative of a module (refer to

Definition 2 in the previous chapter). Each process is responsible for executing

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 34

exactly one node of the tree. that is: there is a one-to-one correspondence between
a process and a representative node. A process starts at the root of the hierarchy

and then traverses down the tree to its designated node.

How does a process determine the path to traverse? This is achieved as follows:
each process is dynamically assigned an identification string (by its parent node
based on its own identification string). by following a unique labeling scheme. As a
process traverses down the tree. it dvnamically calculates its path. by following the
same scheme. The process traverses down a specific path of the tree. if and only
if the already calculated path is a substring of its assigned identification string.
When the calculated path matches the identification string. the process is at its

designated node and thus it can execute the code pertaining to that node.

In figure 4.7. the string in parentheses beside each node is the identification
string that determines which process executes the node. The dynamically repli-
cated Workers after refinement are all identical. Therefore they execute the same
code and have the same identification string. Whenever processes with the same
identification string have to identify their relative positions with respect to their
peers (for instance: inside a 2-D mesh. or for the same level nodes inside a divide-
and-conquer tree). they use MPI's internal “rank™ mechanism for finding their

positions inside a communicator group [1].

All of the previous issues are completely hidden from the user. In fact. for
instance. a user follows the general structure as illustrated by the examples in this
chapter. and writes an application with the perspective that one is dealing with
individual modules. rather than with individual processes. Without any further
aid from the user. the dynamic execution model makes it possible for a process to

execute the code segment pertaining to a given module.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 85

4.3.4 Mechanisms for Constructing the HTree

The previous discussion outlined the mechanism that allows a process to traverse
down the HTree to its designated node. This subsection discusses some of the key
implementation aspects of the traversal scheme. The discussion starts with the basic
implementation-mechanism for constructing the hierarchy. For convenience. the
discussion is presented from the perspective of the graphics animation application
discussed before. Relevant pieces of the generated code (refer to section 4.2.2) are

re-inserted in the following:

éiéss Root : public CompositionalSkeleton <PROT_Net ,Void>

UnaryHandle<Generate, Generate::Params> h_481;

UnaryHandle<Geometry, Geometry::Params> h_73;

UnaryHandle<Display, Display: :Params> h_113;

public:

Root() : h_481(Generate::Params(&h_73,&h_113)),
h_73(Geometry: :Params(&h_481,&h_113)),
h_113(Display: :Params(&h_481,&h_73)){};

virtual void Rep() {

// The representative code goes here

// LOCAL definitions go here:

void Pmain()

Root TopLevel_820;
TopLevel _820.Run();

The mechanism for constructing the hierarchy is through the conditional construc-
tion of objects of type “architectural skeleton™ inside another object of the same
type. For instance. the objects of type Generate, Geometry and Display are (con-
ditionally) constructed inside an object of type Root. Each of Generate, Geometry
and Display may, in turn. contain other objects inside it (in fact, Display contains

objects of type Worker after refinement). Also refer to figures 4.5, 4.6 and 4.7.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION S6

The decision on the part of a process regarding whether to construct an object
inside the context of another object is analogous to deciding whether or not to
traverse a specific path down the hierarchy (refer to the previous subsection). This
decision is taken inside the handles. as shown by the objects of type UnaryHandlein
the previous code. In other words. a handle serves as a locking-unlocking mechanism
that allows only a selected number of processes to traverse down the hierarchy.
based on the previous string-based traversal scheme. while blocking the rest. An
object of type UnaryHandle contains. besides other information. the reference to
the created “architectural skeleton™ object. Similarly. there are handles of type
GroupHandle (for instance: used inside the data-parallel skeleton). where each

handle is associated with a group of identical “architectural skeleton™ objects.

Inside the procedure Pmain() in the previous code. a call to the hidden method
Run () associated with Root is made. This call causes each process to start traversing
down the hierarchy. starting at the root. There is also a Run() method associated
with each handle tvpe. The Run() of Root conditionally calls the Run()s of the
three handle-objects. The Run()s of the handles. in turn. conditionally call the
Run()s of their associated -architectural skeleton™ objects. and thus this sequence

repeats.

As an example. let us consider the case of the process assigned with identification
string "02". that is meant for executing the representative of Display (refer to
the previous subsection and also Figure 4.7). As it traverses down from Root. it
temporarily calculates its path. Inside Root. it calculates its temporary path as
“0”. Since it is a substring of its assigned string “02". it is supposed to traverse
down the hierarchy further. So. the process calls the Run() method associated with
the handle for Generate (that is: the handle h_481 in the previous code), where

it calculates the temporary path as “00”. Since it is not a substring of “02”, the

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION A

process is not supposed to traverse down further this path. and hence. it does not
create the associated object. Generate. The situation is the same for the handle
associated with Geometry. where the path is calculated as ~01”. Finally. inside the
handle for Display. the temporary path is calculated as “02". which matches with
the assigned string for the process. Hence the object. Display. is created inside

the handle and the process starts executing its representative.

After refinement. Display has to further spawn identical Worker modules. The
corresponding processes are dyvnamically assigned their identification strings based
on its current identification string, “02". Accordingly. this first set of identical
processes are assigned with the identification string “020". Had there been a second
set of processes, they would have been assigned “021°. and so on. The same steps
as before apply to the new processes when they start traversing down the hierarchy.
As mentioned before. identical processes can identify their relative positions with
respect to their peers with the help of MPI's internal rank mechanism inside a
communicator group [1]. Once again it should be mentioned that all of the previous

issues are completely hidden from the user.

4.3.5 Obtaining Information about Peers

When identical processes are simultaneously spawned, they fall into MPI's same
communicator group. Accordingly. they can figure out their identities. their relative
positions inside the group. and any other relevant information using MPI’s internal
primitives (obviously all of these are hidden from the user). This is not the case
when the processes spawned are not identical. The following discussion presents
the scenario where non-identical processes are peers of one another and need to

interact.

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION

N
(V)]

Once again. let us refer to the previous code. Since the Generate. Geometry and
Display objects are created inside the context of Root. each of the child objects
1s passed with the information about its peers. with which it interacts. This infor-
mation. in the form of references. is packed inside a Params object and is passed
as a parameter during the construction of each of the handle objects (refer to the
constructor of Root). For a default all-to-all interconnection topology. a handle is
passed with the references of all the other peer-handles. A handle. in turn. passes
this information to its associated “architectural skeleton™ object while constructing
it. Relevant pieces of the automatically generated code for Generate are re-inserted

in the following:

Elass Generate : public SingletonSkeleton <PROT_Net>
public:
class Params
public:
HandleBases h_73;
HandleBase® h_113;
Params (HandleBases _h_73,HandleBases _h_113) :
h_73(_h_73),h_113(_h_113){};
) Params() :h_73(0),h_113(0){};
P;rans p-61};

Generate(Params _p) : p_611(_p){};

In the previous code. when the Generate object is constructed by the associated
handle. it is passed with the previous information as a parameter to one of its con-
structors. In that way. each of Generate, geometry and Display has references to
the handles of its peers. The communication protocols use this internal information

whenever peers need to interact with one another.

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 89

4.3.6 Process-Processor Mapping

When processes are mapped to processors. it is desired that processes that need
to frequently communicate with one another be placed in a closer vicinity in the
processor cluster. Many other factors. other than the physical distances of the
processes, also arise. for instance: processor load. non-uniform network speed and
bandwidth inside the cluster. network congestion at a specific time. and maintaining
optimal load-balancing among processors. The topic of process-processor mapping.
while taking into consideration all of the previous factors. is a complicated research
issue in itself and the interested reader may refer to [30] for a discussion and links
to various mapping related topics. The present implementation does not apply any
specific mapping strategy and lets MPI handle this aspect (which applies a round-
robin mapping scheme). Enough opportunity exists for exploring the mapping
related issues inside many of the skeletons (for instance: the compositional and the
data-paralle] skeletons). and need to be researched in the future versions of this

work.

4.4 Steps Involved in Building an Application

This section describes the steps involved in developing an application that uses
the current textual specification language. It is assumed that the skeleton library
and the applications reside inside a single directory. identified by the environment
variable SKELETON_HOME_DIR. That directory is divided into several sub-directories:
the Lib sub-directory contains the skeleton library, the App sub-directory contains
the C++ applications. the UI sub-directory contains the applications written using

the specification language. the Include sub-directory contains the various include

CHAPTER 4. AN OBJECT-ORIENTED IMPLEMENTATION 90

files. and the Parser sub-directory contains the specification language parser and

associated files.

The following discussion presents the steps involved in building the Jacobi
application. It is assumed that the application written using the specification lan-
guage resides inside the single file Jacobi.txt (note that multiple files can also
be supported) in the sub-directory $(SKELETON_HOME_DIR)/UI/Jacobi. A user
issues the make command. which invokes the Makefile residing in the same sub-
directory. This. in turn. invokes the parser. which automatically generates the
C++ file Pmain.cc inside the sub-directory, $ (SKELETON_HOME_DIR)/App/Jacobi.

A sample Makefile might look as follows:

RRAARBERRBRRRBBERRL AR SRR RR AR RAR RS AR RAIRRBRBARRRARRIR RS
Makefile for application source.

All rights reserved. 1998.

Dhrubajyoti Goswami

PARSERDIR = $(SKELETON_HOME_DIR)/Parser
PARSE = parse
TARGET = Pmain.cc

FRARBRLARRRERERERRBERL A AR BB AL BR R AR BAR AR RSB RLAR A AR AR R IRNER

SRC = Jacobi.txt
APPDIR = $(SKELETON_HOME_DIR)/App/Jacobi

$(TARGET): true
ln -s S(PARSERDIR)/‘.pn .
$(PARSE) -f $(SRC) -o $(TARGET)
mkdir ~e $(APPDIR)
cp $(TARGET) $(APPDIR)

.DONE:
ra -f ${TARGET) s.pm

true:

CHAPTER 4 AN OBJECT-ORIENTED IMPLEMENTATION 91

As the next step. the user changes directory to $ (SKELETON_HOME_DIR) /App/Jacobi.
where the automatically generated C++ source(s) resides. There the user invokes
another make command to generate the executable. The corresponding Makefile

is not shown here.

Finally. assuming that MPI is installed in the underlying cluster and is working
properly. the corresponding executable file can be executed using the command:
run <executable_file_name>. Here. run is a shell script that resides inside the

sub-directory called $ (SKELETON_HOME_DIR)/Scripts.

4.5 Summary

The chapter presents the key implementation aspects of the PASM model, starting
with the textual user interface and its use in implementing various applications. The
subsequent sections deal with the different implementation aspects of the model
including the design of the skeleton library, its reusability and extensibility. the
dynamic execution model. mechanisms for constructing the hierarchy. and finally
the issue of process-processor mapping. The implementation of the PASM model
is often abbreviated as the PASM system in the following chapters. The next
chapter discusses the individual patterns in somewhat detail from the perspective
of a “pattern language”. a format that is presently widely adopted by the patterns

community for writing about patterns in any discipline.

Chapter 5

A Pattern Language

Until now. parallel architectural skeletons have been discussed without bringing in
the actual correlations between the skeletons and the various patterns in parallel
computing. This chapter bridges that gap. Considering a pattern as a “prob-
lem/solution pair”. a skeleton provides solution(s) for a pattern from the perspec-
tive of the model. The following discussion presents the inter-related solutions for

patterns provided by the skeletons in the form of a pattern language.

5.1 Introduction

Since the visionary idea on patterns and pattern languages by the architect named
Christopher Alexander (3]. applied in the context of (physical) architectural design
(e.g.. buildings. bridges. hospitals, etc.). similar ideas are recently being widely
adopted by the object oriented computing community and several other disciplines.
some of which are not even related to computing. As mentioned in an earlier

chapter. the “Pattern Languages of Program Design” series of books [37] are good

92

CHAPTER 5. A PATTERN LANGUAGE 93

references for anyone interested in pattern-related topics covering a wide range of

disciplines.

A design pattern catalog provides a set of individual. not-necessarily related
solution techniques to common design problems. Ouxn the other hand. a pattern
language provides a collection of interrelated solution techniques to common design
problems in a specific problem domain. A pattern language is not a formal language.
but rather a collection of interrelated solution techniques that together provide a

vocabulary for talking about a specific problem or a collection of problems.

The skeletons discussed in this thesis are all woven together by the generic PASM
model, which defines them. and these interrelated skeletons are used together to
solve commonly occurring problems encountered in network-oriented parallel com-
puting. Each skeleton is a physical manifestation of a pattern in paralle] comput-
ing (e.g.. the data-parallel skeleton is a semi-concrete physical manifestation of the
data-parallel pattern), where each pattern is represented as a “problem/solution
pair”. Solutions for patterns realized by the skeletons are interrelated with each
other in the context of the model. and together they form a pattern language that
provides techniques for designing and implementing network-oriented parallel ap-
plications. Figure 5.1 diagrammatically illustrates the relationship between the

various skeletons and the associated patterns in this pattern language.

The following discussion presents the current set of patterns that has been
realized by the generic model. i.e.. patterns and their solutions realized through the
parallel architectural skeletons. The discussion uses the present commonly accepted

format in pattern writing [49].

In describing each pattern. which is essentially a “problem/solution pair” for a

commonly occurring problem, the problem is discussed in a general context which

CHAPTER 5. A PATTERN LANGUAGE

94

Skeleton Name Pattern Name :
[The Generic Mode!L The Compositional Skeleton J [Hierarchical Pattern Composuuoni '
\ (The Replication Skeleton L Static or Dynamic Replication ‘
*- The Data-Parallel Skeleton | Data-Parallel Computation |
|
\
’] The Divide-Conquer Skeleton L Divide-and-Conquer 1
|
\ I The Pipeline Skeleton I { Pipelined Computation]
|
!
\L |
! The Singleton Skeleton 1[[Single-process Computation J
Legends l j
/" _s Defines
A B Skeleton "A" realizes (or, implements solution(s) for) pattern "B

Figure 5.1: Relationship between skeletons and patterns in the language

CHAPTER 5. A PATTERN LANGUAGE 95

universally applies to parallel computing. Solutions to the problem are often pre-
sented exclusively from the architectural skeleton perspective. meant for a user of
the skeleton-library. The examples are illustrated only from the perspective of the

architectural-skeleton approach.

Since there is no notion of a process in the architectural-skeleton approach. the
following conventions in terminology are followed in the rest of the discussion. A
process in the general context is equivalent to a sequential module (that is imple-
mented as an extension of the singleton skeleton) in the architectural-skeleton con-
text. and the two terms are used interchangeably. A module in the general context
means a modular. single- or multi-process entity. A module in the architectural-

skeleton context conveys its usual meaning.

Descriptions of the patterns follow next. Due to space constraints. two of the
patterns are discussed for illustrative purposes in full detail (indicating what a
future reference manual might look like). Discussion of the compositional and the
data-parallel patterns are vast topics and their inclusion here would explode the
size of this document. Accordingly. the rest of the existing patterns are briefly

discussed, only partially conforming to the set standard in pattern writing.

5.2 Pattern: Dynamic Replication

Contezt: The following problem may arise in the general context of any paral-
lel application development that uses the message passing paradigm. and involves

single or multiple interacting modules.

The problem described below is applicable in either of the following situations:

(a) a sequential module (which could be implemented using the singleton skeleton in

CHAPTER 5. A PATTERN LANGUAGE 96

this language) has to interact with other modules in an application. The module has
to perform repeated identical computations on different sets of data. for instance. in
different iterations of a loop where the loop iterations are independent of each other.
However. in comparison with the other modules that it interacts with. the workload
of the sequential module is high enough to slow down the entire application. (b) A
stand-alone sequential module has to repeatedly do the following: read in some data
from an I/O device or a file. perform some computation on the data. and finally
output the result to an [/O device or a file. However. the computation phase is a

bottleneck.

Problem: How to increase the throughput of the out-of-pace module in the

previous context, and thus possibly enhance overall performance. without modifving

the rest of the application?

Forces:

¢ Achieving speedup with minimal possible modifications is the biggest consid-

eration here.

e It is possible that multiple developers are involved. specially when the first
situation in the previous context applies. In that case. a bottleneck in part

of the application needs to be resolved without involving others.

e The first bottleneck-situation in the previous context frequently arises. for
instance. when the interacting modules form a pipeline. Each pipeline stage
perfortns some repeated identical computations inside a loop. where each iter-
ation of the loop is independent of the other. and communication is involved
exclusively at the beginning and the end of each iteration. One or more of the
pipeline stages might participate in relatively more time-intensive computa-

tions as compared to the rest. which in turn pulls down the performance of

CHAPTER 5. A PATTERN LANGUAGE 97

the entire pipeline (for instance: refer to the graphics animation application

discussed in the previous chapter).

Solution: A solution to the problem is presented here from the architectural-

skeleton perspective, intended for a user of the skeleton-library. In discussing the
solution. it is assumed that the original sequential module has the following repe-

tition code-structure:

SomeModule EXTENDS SingletonSkeleton
{
Rep {

while (some_condition == True)} {
Read_in (data); // ‘‘data’’ is read-in from some I/C device,
// tile or from another module.
Process (data); // Process data that is read-in above.
Write_out (data); // Output processed data to some 1/0 device,
// file or another module.
Revalidate_condition(some_condition, ...); // Re-validate
// ‘‘some_condition'’ to see if it still holds

A solution to the problem involves the following steps:

e Step 1: Identify the repeated identical computations performed by the se-
quential module. SomeModule. that can be replicated to run concurrently in
order to possibly enhance the throughput of the module. provided multiple
free processors are available, without affecting the rest of the application. For
instance, in the previous code, it is the method Process(data) inside the

while loop.

e Step 2: Enclose the repeated part of the computation into a separate sequen-

tial module (in the previous case. it is the method Process(data)). Here,

CHAPTER 5. A PATTERN LANGUAGE 98

this sequential module is named as Worker. since it performs the pure com-

putation part. A code segment for Worker is shown in the following.

e Step 3: Replace the sequential SomeModule with another module of identical
name, but this time extending the replication skeleton. The Worker module.

in step 2. becomes its child.

¢ Step 4: The external protocol of SomeModule remains the same as before. 1.e..
if it is at the root of the hierarchy:. its external protocol is Void. Otherwise, the

external protocol of SomeModule becomes the internal protocol of its parent.

e Step 5: The internal protocol of the replication module. SomeModule. is
PROT Repl. Accordingly. PROT Repl becomes the external protocol of each
replicated Worker. Use the communication-synchronization primitives inside
PROT Repl to restructure the code-segments of both the modules. as illus-

trated in the following self-explanatory code segments.

e Step 6: (Optional) Later replace the sequential Worker module with any

other suitable module supported by this language. if deemed necessary.

The following code-segments illustrate one particular solution. However, other

variations are also possible depending on the specifics of the problem.

?ome!odule EXTENDS ReplicationSkeleton

CHILDREN = Worker
Rep {

tor (;;) {

int success = True;

while ((some_condition == True) && (success == True)) {
Read_in (data);
success = SendWork(data); // Dynamically send work-load to a
// tree worker. If none is free, spawn one while performing a
// suitable load-balancing strategy. It is a member primitive
// of the internal protocol, PROT_Repl, and is described in
// the following.

CHAPTER 5. A PATTERN LANGUAGE 99

Revalidate_condition (some_conditiom, ...);

if (success == False) { // Unsuccessful in assigning work-locad to a

// worker. So, process it on your own.

Process (data);
Write_out (data);

CollectResults(); // Collect as many available results as possible.

// This procedure is defined in the following.
if (some_condition == False) break;

while (ResultsPending()) CollectResults(); // Collect all remaining
// results. ResultsPending() is a member primitive of PROT_Repl.

}
LOCAL {
IOid Collect_Results()
int success;
while ({success = ReceiveResultNB(data)) == True) {
// The above is a member primitive of PROT_Repl, and is
// non-blocking. Collect as many of awaiting results as
// possible.

Write_out (data);

}

// Each of the replicated worker.
gorker EXTENDS SingletonSkeleton

Rep {
ﬁ;éeivoﬂork(data); // This blocking version of receive is a member

// primitive of the extermal protocol, PROT_Repl, and is a
// counterpart of SendWork(data), used previously.

Process (data);
SendResult(data); // A member primitive of the external protocol,
// PROT_Repl.

The previous code-segments convey the basic idea. based on a generic repetition
structure. Other variations of the code are possible, depending on the specific situa-
tion (for instance, a multi-threaded representative could also be designed providing
similar functionalities). Also. refer to the examples that follow for concrete illus-

trations, and a following section that describes the primitives for a detailed look at

CHAPTER 5. A PATTERN LANGUAGE 100

their functionalities.

Ezamples: For a concrete example. refer to the graphics animation application

discussed in the previous chapter. There. the out-of-pace sequential Display mod-
ule was replaced with another module of identical name. that supports dynamic
replication. It should be noted that none of the other modules in the application
was affected by this change. The interested reader might want to compare the
previous generic code with the code for the graphics animation application. It will
be observed that the Collect Results() portion of the previous solution is missing

from the refined Display module.
Selected Primitives: A selected set of primitives from PROT Repl is dis-

cussed in the following:

int SendWork(Wrapper& workload) : The range of actions performed by this

primitive is elaborated in the following pseudo-code.

0. result := success.
1. if any free child module is currently available
then

1.1. apply some suitable load-balancing strategy // Another research issue
to assign workload to one of the free modules.
else
1.2. If the current number of child modules is within the prescribed
maximum limit, spawn one child module while applying the needed
load-balancing strategy.
1.3. If successful in spawning

then

1.3.1. Assign worklocad to that child.
else

1.3.2. result := failure.

2. return result.

int operator<< (ReplicationPort& port, Wrapper& workload): This is an

operator-overloaded variation of the previous primitive.

int SendWork(Wrapper& workload, int context) : This is another variation

of the previous primitive that uses explicit user-specified context.

CHAPTER 5. A PATTERN LANGUAGE 101

void RecieveResult(Wrapper& workload) : The range of actions performed

by this primitive is elaborated in the following pseudo-code.

1. if no child has completed yet

then

1.1 block.

2. // ¥akeup here

2.1. Collect result from the first available child.

2.2. If the child did not terminate itself

then
2.2.1 Mark child as free. // To be used in SendWork(...)

3. Exit.
void operator>> (ReplicationPort& port, Wrapper& workload): This is

an operator-overloaded variation of the previous primitive.

int ReceiveResult NB(Wrapper& workload) : The non-blocking version of the

above. It returns 1 on success.

void RecieveResult(Wrapper& workload, int context) : Another variation

that uses explicit user specified context.

int ResultsAwaiting() : This primitive is used for checking if computation result
1s currently available from any of the child modules. without actually reading in

the results. It returns 1 if at least one of the child modules has its results awaiting.

int ResultsPending() : Check if any more results are pending. It returns 1 on

S11Ccess.

The following are the child-specific counterparts of the previous send and receive
primitives: void ReceiveWork (Wrapper& workload). void SendResult
(Wrapper& workload). Other possible child-specific variants are not listed.

5.3 Pattern: Parallel Divide and Conquer

Contezt: The following problem may arise in the context of any parallel ap-

CHAPTER 5. A PATTERN LANGUAGE 102

plication development. Here. a (sequential}) module needs to implement a divide
and conquer algorithm. During the divide phase of the algorithm. the application-
problem to be solved is recursively divided into smaller and smaller sub-problems
until some base condition is reached: then the sub-problem is solved by some suit-
able base-case algorithm. During the conquer phase of the algorithm. the solution
to the original application-problem is formed by combining the results from the

smaller sub-problems using a conquer-phase algorithm.
Problem: How to iraplement a parallel version of divide and conquer?

Forces:

¢ The divide and conquer pattern is encountered in a large number of problems.
ranging from searching (e.g.. binary search). sorting (e.g.. merge and quick
sort). various graph algorithms (e.g.. recursive graph partitioning. finding the
closest pair of points in a graph). selection algorithm (i.e.. to find the kf*
smallest element in a list of n elements) to an optimal O(n??!) algorithm for

the multiplication of two matrices. to name a few.

® Successive dividing of the problem into smaller sub-problems and the subse-
quent conquering results in a divide-and-conquer tree structure, which grows
in size during the dividing phase and shrinks during the conquering phase.
Data is always input at the root of this tree. Qutput need not always be at
the root level (for instance. refer to the recursive partitioning of a graph).

Leaves of the tree correspond to the base condition. Also refer to section 2.1.

o For a recursive (i.e.. sequential) implementation. each non-root node of the
previous divide-and-conquer tree correlates to a recursive subroutine call that
implements the particular divide and conquer algorithm. Each leaf node

correlates to the base condition of the algorithm.

CHAPTER 5. A PATTERN LANGUAGE 103

e Obviously. in a parallel implementation. each recursive call needs to be re-
placed by a separate process/thread that executes the subroutine. However.
creation of a new process/thread for each invocation can result in reduced
efficiency. simply due to the fact that each parent node of the tree has to
wait idle until results from all its children become available. Thus. common-
sense says that efficiency can be enhanced by assigning the workload of one
of the children to the parent process/thread. consequently keeping all pro-
cesses/threads and involved processors busy during the dividing phase of the

computation.

Solution: I[n discussing the solution. it is assumed that the following is the

generic structure of the recursive divide and conquer algorithm executing at each

node of the divide and conquer tree:

Procedure DivideConquer(datala: Input, dataQut: Qutput)

step 1. if the base condition is met
then
step 1.1. ProcessData (dataln, dataOut); // Application-specific
// base-case procedure to straightaway process input when
// the base condition is met.
step 1.2. go to step 5.
step 2. PartitionData (datala, Parti, Part2,...,Partk); // Application-
// specific procedure for partitioning data into k
// sub-parts when the base condition is not met.
step 3. Execute the following k recursive calls:
step 3.1. DivideConquer (Parti, Outl);
step 3.2. DivideConquer (Part2, Cut2);

ééép 3.x. DivideConquer (Partk, Qutk);
step 4. Combine (Outil, QOut2,..., Outk, dataOut); // Application-specific
// procedure that combines the results from the k

// recursive calls to produce the final output.
step 5. return.

A general solution to the problem replaces each recursive call with a separate pro-
cess/thread that executes the same algorithm. A process-based general solution

that is applicable to an MIMD distributed-memory environmeant is as follows, where

CHAPTER 5. A PATTERN LANGUAGE 104

the previous procedure is replaced with a module (i.e.. an executable file in the gen-

eral context). Each executing copy of the module maps to a different node of the

divide and conquer tree.

Module DivideConquer
dataln: Input
dataOut: Output

step 1.

step 2.

step 3.

step 4.

step 5.

step 6.

step 7.

step 8.

if root node
then Read (dataln); // Read in data from an I/0 device, file or
// some other module.
else Receive (Parent, dataln); // Else receive data from parent.
if the base condition is met
then
step 2.1. ProcessData (dataln, dataQut); // Application-specific
// base-case procedure to straightaway process input when
// the base condition is met.
step 2.2. go to step 7.
PartitionData (dataln, Parti, Part2,...,Partk); // Application-
// specific procedure for partitioning data into k
// sub-parts when the base condition is not met.
for i := 1 to k, do the following
step 4.1. handle h_i = Spawn (DivideConquer,...); // Spasn a
// process that executes "DivideConquer” and retain
// the handle to the process for future reference.
step 4.2. Send (h_i, Parti);
for 1 := 1 to k, do the following
Receive (h_i, Quti);
Combine (Outi, Out2,..., Outk, dataCut); // Application-specific
// procedure that combines the results from the k
// modules to produce the final output.
if root node
then Write (dataOut); // Write out result to an 1/0 device, file
// or send it to some other module.
else Send (Parent, dataQut); // Else send data to parent.
exit.

A specialized solution from the architectural skeleton perspective involves the fol-

lowing steps. The solution assumes that the input is provided as an 1-D array of

marshal-able objects.

@ Step 1: The previous module in the general context is substituted with

a module in the context of this approach. that extends the DivideConquer

skeleton. As a property of this skeleton. a module extending it has copies of

itself as its own children (also refer to chapter 3).

CHAPTER 5. A PATTERN LANGUAGE 105

e Step 2: For the copy of the module that is at the root of the divide-and-
conquer tree. if it is also at the root of the hierarchy then its external protocol

is Void. Else. its external protocol is the internal protocol of the parent.

o Step 3: For each non-root module. its external protocol is the same as the

internal protocol. i.e.. PROT DivideConquer.

o Step 4: Use the primitives inside PROT DivideConquer to restructure the
previous code as follows. It assumes that a marshal-able arrayv of tvpe ttt

(where. ttt can be built-in type or user defined) is input to the module.

For convenience to the reader. the member primitives of PROT DivideConquer
used in the following code-segments are commented between two star (*) marks for

easy identification. The primitives are described in a following section.

DivideConquerModule EXTENDS DivideConquerSkeleton
{

Rep {
4 if (IamTheRoot()){ //# It is a member primitive of the internal
// protocol, PROT_DivideConquer, which lets a module
// dynamically identify itself regarding whether it
// is the root of the divide-~conquer tree.s

Aiit dataln, dataQut; // Attt can be one of Aint, Achar,
// Afloat, Auser, or any other marshal-able array
// of standard data type.

Readin (datala}; // Application-specific procedure that reads
// in the input data (either from an I/0 device, a file
// or receive the input from another module, in case
// this module is a part of a bigger application). It
// is defined locally in the following.

DivideConquerProcedure (dataln, dataOut); // The generic
// divide-and-conquer procedure is defined locally in
// the following.

Writeout (dataOut); // Application-specific procedure that
/ writes out the output data (either to an I/0 device,
// a tile or serd the output to another module, in case
// this module is a part of a bigger application). It
// is defined locally in the following.

return;

CHAPTER 5. A PATTERN LANGUAGE 106

// Else

Attt dataln, dataOut;

ReceiveFromParent (dataln); //¢ A member primitive of
// PROT_DivideConquers

DivideConquerProcedurs (dataln, dataCut); // The generic
// divide-and-conquer procedure is defined locally in
// the following.

SendToParent (dataOut); //+ A member primitive of
// PRQT_DivideConquers
}

LocaL {
void DivideConquerProcedure (Atttk dataln, Atttd& dataOut)

if (BaseConditionlsMet(dataln)) // Check if the base condition
¢ // is satisfied. It is defined locally in the following.

ProcessData (dataln, dataQut); // Process input data
// straightaway if the base condition is satisfied. It
; // is defined locally in the following.
else {
Aint Partitioninfo;
CreatePartition (dataln, PartitionInfo); // Create the
// application-specific partitioning of the input
// data. It is defined locally in the following.

PartitionData (dataln, PartitionInfo); //¢ A member primitive
// of PROT_DivideConquer, used for dynamically creating
// the children modules (copies of itself) and then
// dividing the input among them, based on Partitionlnfo.s

Auser<ittt> Results;

CollectResults (Results); //+ A member primitive of
// PROT_DivideConquer, used for collecting the results
// from the children.s*

Combine (Results, dataOut); // Application specific procedure
// for combining the results from the children. It is

) // detined locally in the following.
}

// The following application specific methods need to be implemented
// by the user. They can be defined either locally or globally.

void Readin (Atttk dataln) {...}

void Writeout (Atttk dataCut) {...}

int BaseConditionlsMet (const Atttk dataln) {...}
void ProcessData (Attt& dataln, Atttk dataQut) {...}

void CreatePartition (Atttl dataln, Aintk PartitionInfo) {...}

CHAPTER 5. A PATTERN LANGUAGE 107

void Combine (Auser<Aint>k Results, Atttk dataOut) {...}

Ezamples: For a concrete example. refer to the previous chapter for an im-

plementation of quick sort using the divide and conquer skeleton. The interested
reader might want to compare the previous generic code-structure and the concrete
example in the previous chapter to get an idea about the similarities and the differ-
ences. Notice that the differences arise only in the application-specific aspects. The
application-independent aspects and the overall code-structure (or. code-skeleton)

remain identical for both.

Selected Primitives: The following is a selected set of primitives from the

protocol. PROT DivideConquer. These primitives are applicable when the input is

in the form of a marshal-able. 1-D array of objects (either user- or system-defined).

int JamTheRoot(): This primitive lets a module dynamically determine if it is

the root of the divide and conquer tree. It returns 1 if that is the case.

void SetTreeWidth(int width): Dynamically set the width of the tree. which
is by default two. In this way. it is possible to create a multi-width divide and

conquer tree.

int PartitionData (MarshalableArray& dataln, Aint& PartitionInfo): Cre-
ate n copies of children (i.e.. copies of itself). where n is the current width, and
distribute the input “dataln™ to the children. as based on “PartitionInfo”. The
array “PartitionInfo™ contains the lower index and the size of each data partition,
and its length must be even and at least four. If the current width of the tree is n
(either by default or set by SetTreeWidth(...)).then the length of “PartitionInfo”

must be 2 = n. It returns 1 on success.

CHAPTER 5. A PATTERN LANGUAGE 108

void CollectResults (Auser<Attt>& Results): Collect results from all the »
children. and return them in “Results”. It blocks until all the results are available.
Auser<Attt>is a user-defined marshal-able array of type Attt, where Attt is again
a marshal-able array of user- or system defined type (e.g.. Aint. Afloat. Achar.

Adouble, Auser. etc.).

int CollectResultsNB (Auser<Attt>& Results): This is the non-blocking

version of the previous primitive. It returns 1 on success.

The following are the other primitives that do not need further explanation: void
SendToParent (Attt& data). void ReceiveFromParent (Attt& data). int
ReceiveFromParentNB (Attt& data).

5.4 Pattern: Data-parallel computation

Data-parallelism is one of the most frequently used patterns in parallel computing,.
applicable to a wide variety of applications starting from image processing to sparse
system solvers to various sorting and searching algorithms to applications in neural
networks. to name a few. As the name implies. here the parallelism lies in the data.
i.e., a group of identical modules perform the same operations but on different sets
of data. The identical modules can form different topologies (e.g., N-dimensional
mesh. N-D hypercube). From the perspective of this model. the data-parallel skele-
ton implements the data-parallel pattern. The identical modules that perform the
actual computations are the children of a data-parallel module that extends the
data-paralle] skeleton. and constitute its back-end. (Also refer to the replication
skeleton discussed in this chapter. However. the differences are that the identical
children of a replication module can dynamically grow and shrink in number, i.e.,

they do not have a fixed topology, and there is no interaction among peers).

CHAPTER 5. A PATTERN LANGUAGE 109

The internal protocals of the data-parallel skeleton (e.g.. PROT _.uDMesh. PROT
Hypercube) are designed for specific topologies. Primitive operations inside these
protocols can be broadly classified into several categories: collective operations {e.g..
gather, scatter. reduce. barrier synchronization, etc.), topology specific point-to-
point operations (e.g.. nearest neighbor communication. selective communication).
topology independent operations (e.g.. broadcast). Each category contains an ex-

haustive range of primitives suitable for specific needs.

For an illustration. refer to the implementation of the Jacobi iterative scheme

in the previous chapter.

5.5 Pattern: Hierarchical Composition

Control-parallelism is another frequently used pattern in parallel computing. Unlike
data-parallelism. where a group of identical modules execute on different data sets.
here a group of different modules (i.e.. modules that execute different instructions)
act on the same or different data sets. A typical parallel application is a combination

of data- and control-parallelism.

The pattern named Hierarchical Composition provides solution techniques for
arbitrarily composing an arbitrary number of modules. From the perspective of
PASM. the compositional skeleton implements this pattern. The child modules
inside the back-end of a compositional module (i.e.. a module that extends the
compositional skeleton) can be all identical. thus resulting in purely data-parallel
computation. Alternately. the child modules may be all different. thus resulting
in purely control-parallel computation. As another alternative. some of the the
modules in the back-end may be identical and the rest may be different, thus

resulting in a combination of control- and data-parallelism.

CHAPTER 5. A PATTERN LANGUAGE 110

Each module in the back-end can include other modules as well (for instance:
a compositional module can include other compositional module(s)). This. in fact.
shows the ability to form a hierarchy with an arbitrary composition of modules.

Hence, is the name hierarchical composition.

One of the main purposes of the compositional skeleton is to provide the needed
flexibility to a user in application development. The internal protocol of the compo-
sitional skeleton is PROT Net. which is intended to provide an MPI- or PV'M-like
message-passing parallel programming environment to the user. An MPI-like par-
allel programming environment can be supported inside the compositional skeleton.
simply by replacing MPI-processes with PASM-modules and by supporting MPI-
like message passing primitives inside PROT Net. Many of these primitives have
already been implemented. This facility enables a user to develop an application
from scratch if deemed necessary. or to intermix already supported patterns with

arbitrary composition if an application demands so.

For an illustration. refer to the graphics animation application in the previous

chapter. and its subsequent hierarchical refinement.

5.6 Pattern: Pipeline

Pipeline is a special form of control-parallelism. and the compositional skeleton
described previously can be used for constructing a pipeline. However. pipeline
itself is a frequently used pattern in parallel computing, and accordingly the pipeline
skeleton is specifically designed for this purpose. Each stage of a pipeline is a parallel
computing module that extends a specific skeleton. For constructing an N-stage
pipeline, each stage is represented by a module and all the .V modules can constitute

the back-end of a pipeline module that extends the pipeline skeleton. Alternately,

CHAPTER 5. A PATTERN LANGUAGE 111

for NV > 2, the first stage or the last stage or both of them could merge with the
representative of a pipeline module. and the remaining modules constitute its back-
end. Data flow inside a pipeline can be uni- or bi-directional. Primitives inside the

protocol, PROT Pipeline, capture the various operations needed inside a pipeline.

When someone thinks of a pipeline. what naturally comes to mind is a single
dimensional structure. However, there may be multi-dimensional pipeline-like pat-
terns as well. For instance. one could think about the systolic arrayv pattern. where
the computation in each module (which is often called a cell in the context of a
systolic array) is propagated to neighboring modules in a certain rhythmic fashion.
Though presently the systolic skeleton is not designed and implemented. it may be

considered in the future evolutions of the work if deemed necessary.

5.7 Pattern: Single process computation

In the general context. a parallel application is a composition of one or more inter-
acting processes, where each process could be single- or multi-threaded. However.
there is no notion of a process in this model. The singleton skeleton provides all the
functionalities of a process from the conventional parallel programming perspective.
Since the back-end of a singleton module is empty, its internal protocol Py, is also
void. Examples in this and the previous chapter have demonstrated usages of the

singleton skeleton.

5.8 Conclusion

The chapter contains detailed presentations of two of the patterns of the pattern

language that provides techniques for designing and implementing network-oriented

CHAPTER 5. A PATTERN LANGUAGE 112

parallel applications. The rest of the patterns are discussed briefly. The patterns
in the language are all woven together by the generic PASM model. The next
two chapters discuss the performance issues. and the various software engineering

related and other aspects of the model and the system.

Chapter 6

Performance Evaluation

The main purposes of this chapter are to demonstrate the following: (1) the PASM
system has been efficiently implemented. (2) The performance of the system is com-
parable with MPI. (3) A suitable application of proper granularity should exhibit

reasonable performance gain when implemented using the system.

Experiments were conducted to assess the performance of the PASM system.
The results were compared with direct MPI-based implementations. The perfor-
mance difference with MPI lies within 5%. which can be attributed to the fact that
the skeleton-library is implemented as an extremely thin layer on top of MPI. The
thin implementation laver generally implies that any application that demonstrates
good performance with direct MPI-based implementation should provide similar

performances with a skeleton-based implementation. under all identical conditions.

The following discussion presents the performance results, which can be broadly
divided into two categories: application specific evaluation and application inde-
pendent evaluation. The application-specific category involves results for some

well-known parallel applications. Some of these results demonstrate the effect of

113

CHAPTER 6. PERFORMANCE EVALUATION 114

granularity on performance. These results can be further subdivided into two cat-
egories: performance based on timing and on software quality. The software engi-
neering related aspects of the PASM model and the system are further elaborated

in the next chapter.

The application-independent category compares the performances of certain
primitive commands with direct MPI-based primitives. besides other application-

independent performance measures to be discussed shortly.

6.1 Application Specific Evaluation

6.1.1 PQSRS

Parallel Quick Sort using Regular Sampling. abbreviated PQSRS [53]. is a parallel
version of quick sort. shown to be effective for a wide variety of MIMD architec-
tures. It uses a combination of master-slave and 1-D mesh patterns. which is easily
realized using the data-parallel skeleton for mesh topology and the singleton skele-
ton. The algorithm works in the following steps: (1) the master module partitions
the data items to be sorted to the .V children (i.e., slaves). Each child then per-
forms sequential quick sort on its own data items, selects NV data items as regular
samples. and sends them back to the parent (i.e.. master). (2) the master gathers
the regular samples from all its children, sorts them. gathers .V — 1 pivot values and
broadcasts them to the children. Each child partitions its portion of sorted items
into N disjoint partitions, based on the .V — 1 pivot values. (3) Child : keeps the
i** partition and sends the j** partition to its j** peer. Thus, at this phase, each
child has to communicate with all its .V — 1 peers. (4) Each child receives N — 1

partitions from its peers, merges them with its own partition to form a single sorted

CHAPTER 6. PERFORMANCE EVALUATION 113

PQSRS
12 T T T T T T T L
Sequential -
10+ #~ - -+ PQSAS (Size = 10000) - .
Q- - -0 PQSRS (Size = 24000) _--"
a lr---- Linear speed-up _--" e
3 - Y
| - ===
§ 6 ’," _ -== - b
9 4t e -:::3:—— -
—” - -” ="
4’ - -
2= _ = Py 4
0°= = L 1 1 L L 1 A L L
2 3 4 5 6 7 8 9 10 i 12
Number of processors
Discrete Convolution
12 T T L4 T T \ T T _ -
Sequential -
10- @ - - Parallel {Size = 568 x 608) -7 .
e~ - -# Parallel (Size = 640 x 480) -7
a 8r—---- Linear speed-up _--" .
2 .-
1 -
s &r —" - - == = = I
g ," - -
1) ok - e - - - 4
.- -z e
2""" - - ‘t -
(]
ol] 1 4 1 L L ‘) S 1
3 4 5 6 7 8 9 10 1" 12
Number of processors

Figure 6.1: Speed-up ratio versus number of processors

list. and sends the sorted list back to the master. Finally. the master concatenates

the sorted sub-lists from all its children to form the final sorted list.

PQSRS is a non-trivial algorithm which requires a considerable amount of peer-
to-peer interaction among the slaves, which is supported by the internal protocol(s)
of the data-parallel skeleton. It cannot be implemented using most other pattern
based systems discussed previously. Figure 6.1 illustrates the results obtained for
sorting 10000 and 24000 randomly generated objects using PQSRS. Time to com-

pare two objects is approximately 0.2 ms. The underlying hardware is a cluster of

CHAPTER 6. PERFORMANCE EVALUATION 116

Sun Sparc workstations (each is an Ultra 10 Elite with 256 MB of RAM) connected
by a 10-megabit Ethernet network. The speed-up ratio is measured with respect
to the same sequential quick-sort routine used inside PQSRS. The performance

difference with MPI is negligible and hence is not illustrated separately.

6.1.2 2-D Discrete Convolution

This is an image processing algorithm used for convoluting a given image through
the application of a mask. The mask is applied to each image pixel to produce
the convoluted image {31]. As compared to the previous application. this one
is relatively simple. Like most other image processing algorithms. it follows the

master-slave pattern where the slaves need not interact with one another.

Figure 6.1 illustrates the results obtained for the parallel discrete convolution
of two pixel images of sizes 640 x 480 and 368 x 608. The mask used in each
case is of size 10 x 10. The underlying hardware is identical to that used in the
previous application. The speed-up ratio is measured with respect to the best
sequential algorithm. The experiments demonstrate almost identical performances
with both the images. however there is observed performance degradation with a
5 x 5 mask in each case (not shown in the figure) due to non-optimal computational
granularity. More on the effect of granularity on performance is discussed in the

next experiment.

6.1.3 Jacobi

The Jacobi method and its implementations have already been discussed in chapters

4 and 5. As compared to the previous two applications. it is a relatively finer-grain

CHAPTER 6. PERFORMANCE EVALUATION 117

application (e.g.. four floating point additions and one division per node of a graph.
as compared to the sliding of an entire mask over each image pixel in the case of
the discrete convolution algorithm). As the code fragment illustrates. the parallel
implementation requires nearest-neighbor communication. Compare it with the
PQSRS algorithm. where each computing element (i.e., slave) has to communicate

with all its peers.

The granularity (i.e.. the ratio of computational time to communication over-
head. between two successive communication points) can be increased by mapping
more nodes per processor. provided that the corresponding rate of increase in com-
munication overhead is less than the rate of increase in the number of nodes per
processor. If granularity is more than a certain optimal value. which can vary
from situation to situation. theoretically there should be speed-up. Otherwise. the

parallel application shows performance degradation.

Figure 6.2 illustrates the effect of granularity on speed-up in the case of Jacobi,
for multiple-sized square grids. As it is observed. if the granularity is too small (e.g..
in the case of a 30 x 30 grid). there is visible slow-down. The optimal speed-up is
observed for a grid size close to 500 x 500. There are almost identical speed-ups for
grids of dimensions 100. 1000 and 2000. When the grid becomes too large (e.g.. size
2500 x 2500). there are other overheads due to message fragmentation and swapping

of memory space. etc.. which might have contributed to the reduction in speed-up.

For a given grid size. division of the grid into n processors should ideally give a
speed-up of n. However. in practice. this is not the case due to the communication-
related and other overheads. As the number of processors increases, the computa-
tional granularity per processor decreases. Bevond a certain threshold. there is no
added benefit in further dividing the grid into smaller sub-pieces. That threshold

is not observed in the previous figure due to the lack of sufficient number of pro-

CHAPTER 6. PERFORMANCE EVALUATION

—
—
[7 7]

Effect of Granulanty on Speed-up
3-5 T T 1 T T 1
= - < % Gnd=50X50
3 O- - - © Gnd=100X 100
0= = = 8 Gng=500X500
V- - = ¥ Gng=1000x 1000
O— - - © Gnd=2000X 2000 -7
25F 4= = - + Gnd=2500X2500 a”
P bt - ,_,?.’:»‘g
a 2F o - ’::”ﬁ -
7 .- -g="~
a- =" 1
;g;' I ,;—1"8" R
1.5F ’n’ ‘.‘F‘b _ —, - -
-7 ’l‘ o+ - -
- - P = -
/Q'_;"' - -
1 ’:51 ’..' —— - =¥
L P e - - = - -— -
? 27 .- .- -
- P
- F
0. p
O 1 L 1 1 L L
2 3 4 S 6 7 8 9

No. of Processors

Figure 6.2: Effect of granularity on speed-up

CHAPTER 6. PERFORMANCE EVALUATION 119

cessors while conducting the experiments. The underlying hardware in this case is

identical to that used in the previous two experiments.

6.1.4 Software Quality Measurement

As part of the Master's research of another graduate student. a comprehensive
study was conducted to assess the software quality related aspects of PASM and
some other related systems. The concept of software metrics is well established and
a variety of software metrics have been used over time to measure the qualities of

software products.

In this study. some candidate metrics for measuring software qualities. especially
complexity. were collected (e.g.. Halstead software science metrics [36]. McCabe's
cyclomatic complexity metrics [48]). The experiments involved PASM. Frame-
works [62]. Enterprise [56] and direct implementations using MPI. The study sug-
gests that the use of architectural skeletons significantly lowers software complexity
as compared to the code written from scratch using MPI. A detailed discussion of
the study is bevond the scope of this thesis. The interested reader can refer to the

comprehensive description of the work [68. 69].

6.2 Application Independent Evaluation

The measurements in this section can be subdivided into two categories: (1) com-
parison of certain primitive operations with equivalent MPI-based primitives, and
(2) application-independent evaluation of certain patterns implemented using ar-

chitectural skeletons, in comparison with equivalent sequential implementations.

CHAPTER 6. PERFORMANCE EVALUATION 120

As mentioned before. the performance difference with MPI is found to be rather
insignificant. and hence. the first category of measurements confines only to the first
of the following set of measurements. merely for the sake of completeness. The rest

of the measurements fall into the second category.

6.2.1 Comparison of Some Basic Primitives with MPI

The Send and Receive primitives inside PROT _Net were compared with their coun-
terparts. MPI_Send and MPI_Receive, inside MPI. Since the mentioned primitives
inside PROT Net (as well as other similar primitives inside PROT Net and the
other protocols) perform automatic data marshaling and un-marshaling. it makes
sense to include the equivalent message-packing and unpacking times while measur-
ing the MPI-based times. The table on the next page illustrates the best measured
times for sending and receiving 1000 messages with varying message sizes. and the
percentage differences. For each message size. the best time is taken out of at least

five different runs under all identical configurations.

As the results suggest. the performance differences are insignificant and the vary-
ing network load conditions are the main contributing factors for the fluctuations

in the results. which cannot be explained otherwise.

CHAPTER 6. PERFORMANCE EVALUATION 121

Message Size Send (PROT Net) MPI Pack + MPI Send %

(Integer) Best time (s/1000 msg) Best time (s/1000 msg) Difference

20000 11.42 11.45 -0.26%
410000 24.524 24.232 1.21%
80000 50.09 49.56 1.07%

120000 61.74 62.87 -1.79%

Message Size | Receive (PROT Net) | MPI Receive + MPI_Unpack %

(Integer) Best time (s/1000 msg) Best time (s/1000 msg) Difference

20000 11.03 11.07 -0.36%
40000 22.39 22.43 -0.18%
80000 43.79 42.62 2.75%
120000 60.37 60.36 -0.31%

As another measure of comparison. the amount of code to be written by the user
using both the approaches are also compared. In the previous test case. the minimal
size of code to be written using the skeleton-based approach is approximately 1400
bytes (36 lines with all comments and blank lines removed). The same functionality
could be achieved using MPI with a total user-written code size of approximately
3400 bytes. spread over two files (105 lines altogether with all comments and blank
lines removed). The reduction in user-written code size is approximately 59%. and
the reduction in the number of lines is approximately 47%. Note that byte size
comparison will also depend on the lengths of the variable- and procedure-names

used.

Other similar measures for the application-specific category were included inside

software metrics measurements. discussed in the previous section.

CHAPTER 6. PERFORMANCE EVALUATION 122

EMect of computalional granulanty on perionrmance

-
-
Sequental e
= = = - Unear speed-up 4
Y0_0——-0(:arr:u.mucmgumumy-t(urrsl L’ -$
o- - @ Computatonal granuanty = 10 - P
O~ - < Compuanona granuanty = 40 e -
P @ |
4 ”
., i
1
ok A ")
s Pd .-
” rd - '
,l A’ .4’ i
g - . .
. P -
(13 - - - -
3 P W
PR - \
” - -
rd - -
7 - -
A PR . ‘
L. - -
PRy |
R |
s - t
} L -9 e - - - .- - - - - - -~ _ _ i
| 27 - - -2d
F .- |
- 5
1 i
ok . . — !
2 3 4 5 [7 8 9 10 1 12
Nurmdet of workers

Figure 6.3: Effect of granularity on performance
6.2.2 Effect of Granularity on Master-Worker Performance

The next set of experiments involves application-independent performance evalu-
ation of certain patterns. implemented using the architectural skeleton approach.
The first in this categoryv involves the master-worker pattern. implemented using
the replication skeleton. The experiment involves a fixed amount of workload. dis-
tributed among replicated workers. The maximum number of workers concurrently

present is varied. One worker is mapped per available processor.

The experiment is carried our with three levels of computational granularities
per worker: granularity 1 (approximately 4.4 ms), granularity 10 and granularity
40. Granularity is introduced via 5 floating point multiplications inside a loop.

With a computational granularity of 1, there are altogether 4800 calls to workers,

CHAPTER 6. PERFORMANCE EVALUATION 123

and a total of 9600 messages (send and receive) of fixed message size. With a
computational granularity of 10. the total number of calls to workers (and also
the number of messages) is reduced proportionately to 480. while the message size
remains the same as before. Same is the case with the granularity of 40. where the
number of calls is reduced to 120. Figure 6.3 illustrates the results obtained with

different numbers of workers present at a particular run.

As the figure shows. higher computational granularity gives near-linear perfor-
mances. On the other hand. with lower computational granularity (of one). the
performance is sub-linear with a higher number of workers. This phenomenon can
be attributed to the fact that communication cost (associated with 9600 messages)
and the maintenance cost of the workers dominate the computational time on each
worker. As a result. performance gradually degrades with a higher number of
workers. On the contrary. communication cost is much reduced with a higher com-
putational granularity (for instance. a total of 240 messages are associated with a
granularity of 40). and also the maintenance cost of the workers becomes negligible
as compared to the computational granularity per worker. These factors contribute

towards the near linear performances with higher granularities.

6.2.3 Pipeline with and without Replication

The graphics animation application and its subsequent refinement is discussed in
detail in chapter 4. This set of experiments involves a similar situation with three
modules: Producer. Worker and Consumer. which have different levels of computa-
tional granularities and together they form a pipeline. Once the pipeline becomes
full in a parallel run. each of the modules is working concurrently and hence the

overall speed-up is governed by the slowest of the modules. For instance: assuming

CHAPTER 6. PERFORMANCE EVALUATION 124

Performances of ppeiine with and without replication

9
Sequental
= = = Speed-up obtaned for ppeline without replication
8 - - — - Maxmum attainabie sOeed—up by rephcating workers A
®~ ~ - Actual speed-up obtained by replicatng workers
rd o
6 ——————————————————————————————————————
o -~ ®" - W= - 8= - 0= —- -9 - -
gsr -
; -
3 L4
td
4 »
L
”
ar ,’ 4
rd
./
2-
1F d
0 s "
t 2 3 4 5 8 7 8 9 10 1

Number of replicated sub-workers
Figure 6.4: Performances of pipeline with and without replication

that the granularities of the modules are 1. 9 and 2 respectively. a sequential run
has a granularity close to 12 per iteration. On the other hand. a parallel run (once
the pipeline becomes full) has a granularity close to 9. ignoring the communication
overhead. and thus the maximum attainable speed-up is close to 12/9 = 1.33. This
can be improved by replicating the workload of the slow Worker among subordinate
workers. 1.e.. SubWorkers. Theoretically, with 9 SubWorkers present concurrently.
one of them is producing a result every 1 time unit, and hence. the computational
granularity of the Worker should reduce approximately to 1. The Consumer module.
with a granularity of 2, now dominates the pipeline and the maximum attainable
speed-up is close to 12/2 = 6. This can once again be improved by replicating the

Consumer. which can theoretically provide a maximum speed-up of 12.

This set of experiments involves the exact situation with the aforementioned

CHAPTER 6. PERFORMANCE EVALUATION 125

granularities of the three modules. Computational granularity of one corresponds
to approximately 3 ms. Only the Worker module is replicated. and hence the
maximum attainable speed-up is 6. Figure 6.4 illustrates the results obtained with
and without replication. As shown in the figure, the maximum attained speed-up

without replication is 1.28, while the theoretical limit is 1.33.

With replication. a saturation point is reached with approximately 6 sub-workers.
This can be attributed to the fact that. starting at the saturation point. the main-
tenance cost of the sub-workers and the commurication overhead (between worker
and sub-workers) start dominating over the computational granularity of each sub-

worker. thus offsetting any benefit henceforth.

The experiments were carried out at different times of the day. spread over two
days. and the best readings are taken. Moreover. due to the brief vacation period
at the end of the term. the system and the network load was quite minimal during

the times of the tests.

6.2.4 Performance of Pipeline with Varying Granularity

The next set of experiments involving pipeline investigates the effect of granularity
on performance. There are several variable factors that need to be considered: total
number of pipeline stages. computational granularity per stage assuming uniform
granularity across all stages. and message size. For this set of experiments, the
total number of pipeline stages is fixed at § where all stages have equal granularity.
Granularity is directly proportional to the ratio of the computational time between
two successive communication points (that is, the computational granularity) to
the communication overhead. Theoretically. higher granularity gives better perfor-

mance. as long as granularity is below some threshold value that depends on many

CHAPTER 6. PERFORMANCE EVALUATION 126

Periormance of 8-stage poeine with varyng granutanty

1" T T T
Sequental
10fF = = = - ldeat speed-up 4
e— — - Performance with message sze = 1000
& — -9 Performance with message sze = 10000
o9r
b = - - - m e e e e e et e e e e e e e e e r e e e ettt e e e a - — ==
e - @@= - - - - - == -
7+ e 4
- "
e o -=--9
?Q" s "_-—' -
[} -
; ’ -
Sk ’ * "~ <
‘ r'd
Y S s -
' _ -
] -
r [J
1 /
/ [
28 ’
s
[
1=, o
/
>
0 L s . " : ; N L "
0 10 20 30 40 50 60 70 80 90 100

Computanonal granulanty per stage
Figure 6.5: Performances of pipeline with varying degrees of granularity

physical factors of the underlying architecture.

With 8 pipeline stages. each of equal granularity. the maximum attainable speed-
up is 8. Figure 6.5 illustrates the results obtained with varving degrees of gran-
ularities per stage. Throughout the experiments. each pipeline stage is mapped
per available processor. The computational granularity of 1 corresponds to ap-
proximately 0.5 ms. With fixed message size, higher computational granularity
corresponds to higher granularity per stage. On the other hand. with fixed com-
putational granularity. higher message size corresponds to lower granularity per
stage. The graphs demonstrate better performance with higher granularity, thus

conforming to usual predictions.

CHAPTER 6. PERFORMANCE EVALUATION 127

6.2.5 Conclusion

The chapter presents the application-specific and application-independent perfor-
mances of the PASM system. As the comparisons with MPI suggest. performance
differences with direct MPI-based implementations are negligible. which is due to
the fact that the skeleton-library is implemented as an extremely thin layer on top
of MPI. The software engineering related aspects of PASM are discussed in the next

chapter.

Chapter 7

Crucial Issues, Future Directions

This chapter focuses on several important aspects of the PASM model and the
associated system. These include the fundamental contributions of the research,
various software engineering related issues of the model and the system. and its
comparison with some other related works. The following section on future research
directions emphasizes some of the core issues that need to be considered in future

versions of this work.

7.1 Fundamental Contributions

The most fundamental contribution of the parallel architectural skeleton model
is its genericness, which leads to the other contributions of the approach (e.g.,
flexibility and extensibility). Some of the other fundamental contributions are:
modularity (which contributes towards its object-oriented design and implementa-
tion). the capability of describing a skeleton independent of other skeletons (which

contributes towards extensibility), and the capability of implementing the model in

128

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 129

C++ without requiring any language extension. Some of these issues are further

discussed in the following.

7.2 Software Engineering Issues

The following discussion presents the various software engineering related aspects

of the model and the system. Some of these issues were previously discussed in the

book-chapter by this author [34].

7.2.1 Reuse

There are two types of reuse that can be mentioned: (a) reuse of code for patterns.
and (b) reuse of application code. The first type of reuse is quite evident in this sys-
tem. since each architectural skeleton extracts and implements the structural and
the behavioral attributes associated with a pattern in an application-independent
manner. The various parameters associated with these attributes (for instance:
dimensions of a mesh, width of a divide-conquer tree, selection of appropriate pro-
tocol(s). etc.) enable the same skeleton to be configured to the needs of different
applications as abstract parallel computing modules. The abstract modules become

concrete with the insertion of application code.

Regarding the reuse of application code. a parallel application can be viewed as a
restructuring of the original sequential code with embedded parallelism constructs.
A smart restructuring enables good portions of the original sequential code to be
reused. For instance. in the graphics animation example in chapter 4. the proce-
dures DoHidden(...). DoConversion(...) and WriteImage(...) are reused from the

original sequential code. except for minor changes related to the parameter type(s).

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 130

Moreover. these reused procedures contain the majority of the code for the entire

application.

7.2.2 Genericness

As opposed to being ad hoc. each architectural skeleton is defined in a generic
fashion (that is. in a manner independent of any pattern or application) with its
canonical set of attributes. Many useful patterns in parallel computing are realized
inside the frameworks of the generic model (refer to Figure 4.4). Each parallel
computing module can interact with other modules via standard interfaces (i.e..
the representatives). a well-defined set of protocols and using a universal set of

rules. The generic approach enhances usability.

7.2.3 Flexibility

Flexibility is one of the major concerns associated with all pattern based ap-
proaches {63]. Often. if a certain desired pattern is not supported by a pattern-based
svstem. there is no alternative but to abandon the idea of using the particular ap-

proach altogether.

MPI [35] is known to be extremely flexible because of its proven applicability in
solving a vast majority of parallel applications. Often different solution strategies
can be planned out while solving an application using MPI. which gives the user
complete flexibility. Inside the frameworks of PASM, that type of flexibility can
be achieved if the features of MPI can be directly supported. This is the main
idea behind the compositional skeleton and its associated protocol, PROT Net.

The compositional skeleton in cogjunction with its internal protocol PROT Net

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 131

is intended to provide an MPI-like parallel programming environment within the
frameworks of the model. and it can be used to substirute patterns if an application

demands so.

Moreover. a compositional module is like any other module from PASM’s per-
spective. Consequently it can be used in conjunction with the other patterns sup-
ported by the model. This type of uniformity should provide added flexibility to

the user.

7.2.4 Extensibility

As mentioned previously. lack of extensibility is another major concern associated
with most pattern-based approaches [63]. Most of these systems are hard-coded
with a limited and fixed set of patterns. and often there is no clear way to add new

patterns to the system when need arises.

From the implementor’s or an experienced user’s perspective, certain features
of the object-oriented design. in conjunction with the generic nature of the model,
favor reuse and extension of the skeleton library. The generic model helps. because it
provides a clear picture regarding the different components of a skeleton and their
functionalities (compare it with a totally ad hoc approach). Furthermore. from
PASM'’s perspective. each module is an independent entity whose only interface
with the outside world is through its representative and the adaptable external
protocol. Accordingly. what the outside world sees of a module are its actions (i.e.,
input/output and any observable side effects). without knowing exactly how these
actions are carried out internally. In other words. each module is an independent
self-contained entity that acts as a black-box to the outside world. For the same

reasons, each module can be designed independent of others. In other words, the

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 132

PASM model inherently supports extensibility.

From the PASM svstem'’s perspective. many of the object-oriented features that
are supported in C++. for instance: polymorphism (through the use of C++ tem-
plates. inheritance and overloading), favor the reuse and extension of the existing
skeleton library. New classes can be defined by extending the existing ones. thus
enabling the design and addition of new skeletons and protocols with added func-
tionalities. Completely new skeletons and protocols can be designed by extending
the base classes (refer to Figure 4.4). In each case. a collection of pre-existing vir-
tual methods need to be over-written and new additional methods might need to

be designed in order to reflect the characteristics of the newly designed skeleton.

7.2.5 Hierarchical Development and Refinement

A parallel computing module can contain other modules. and hence, application
development using PASM is distinctly hierarchical. Moreover. a parallel computing
module can be viewed as a black-box. where the only visibility from the outside
world is in the action of the module. and in its interface and interaction with other
modules. As long as these factors remain unchanged. the module can always be
replaced with another module. which implements some other pattern(s). without
affecting the rest of the application. Such type of replacement for betterment is

called a refinement. The hierarchical model leads to hierarchical refinement.

Hierarchical refinement is illustrated for the graphics animation example in
chapter 4, where the singleton Display module is refined to a dynamically-replicated
module of identical name. Figure 4.7 illustrates the affect of refinement on the hi-

erarchy.

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 133
7.2.6 Separation of Concerns

Also known as separation of specifications. separation-of-concern is a desirable char-
acteristic of all pattern-based approaches. Through the extraction of the application-
independent components of patterns into architectural skeletons. there exists a
clear separation between application code and application-independent issues. The
application-independent components hide most of the low-level details related to
process/thread creation and management. process-processor mapping. communi-
cation and synchronization. load balancing. data marshaling and un-marshaling,
and architecture- and network-specific low-level details. These pre-packaged com-

ponents are tested to be reliable. provided they are used correctly.

Application development using parallel architectural skeletons is clearly a multi-
stage process (refer to Figure 3.1). where each stage is distinct from the others. The
first stage provides pure application-independent abstractions. The clear separation
of the low-level details allows a user to concentrate more on the application-specific

issues.

7.2.7 Composition Using Patterns

A parallel computing module can contain other modules inside its back end. and
thus. pattern-composition is an inherent property of the model. The compositional
skeleton supports arbitrary composition of patterns inside its back end, with no
restriction on the types of patterns that can be composed (refer to chapter 5). Thus,
a compositional module, which is an extension of the compositional skeleton. can
contain other compositional modules as well. Standard interfaces for all modules

and a well-defined adaptation rule make pattern-composition extremely feasible.

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 134

7.3 Comparison with Related Work

The generic nature of the architectural-skeleton model is one of the features that
distinguishes this research from other pattern-based approaches in parallel com-
puting. As has already been discussed. the generic model contributes towards both
flexibility and extensibility. which are some of the essential features lacking in most

of the existing pattern-based approaches to parallel computing.

In the past. several parallel programming systems have supported frequently
used parallel interactions [11.12.356.61). However. in all these cases a fixed number
of high-level parallel interactions are hard-coded into the system. As a consequence.
if a user’s desired high-level interaction is not supported by a particular system. then
the user has to adopt a different approach. To achieve higher flexibility. traditionally
parallel programmers have relied on low-level communication libraries such as PVM
and MPI. So there is clearly a trade off between the ease of development provided
by the higher-level systems and the flexibility offered by low level primitive libraries.
As discussed. in PASM. a user can mix high-level architectural skeletons with low-
level MPI-like message passing (for instance. the internal protocol PROT Net inside
the compositional skeleton). Moreover. in all of previous systems. the supported
patterns are tightly integrated into the implementation of the system. so there is
no easy way of adding newer patterns without major modifications to the entire
system. In PASM. on the other hand. every architectural skeleton is independent
of other patterns. and thus. adding new architectural skeletons is a simple matter

of extending the library of architectural skeletons.

Tracs [6] is one of the earlier systems that addresses the issue of extensibility.
It is a graphical development system. where application development consists of

two distinct phases: the definition phase and the configuration phase. During the

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 135

definition phase. the user graphically defines the three basic components of an
application: the message model. the task model and the architecture model. The
architecture model defines the software architecture of the parallel application in
terms of message and task models. An architecture model defined during this phase
can be saved in a user-defined library for later use. During the configuration phase.
the programmer constructs the complete application from the basic components.
either defined during the definition phase or selected from the svstem libraries or
both. Evidently. Tracs supports the idea of extensibility by providing support for
an extensible library of user-defined architecture models. However. the type of
extensibility realized by Tracs is restrictive. For instance. in Tracs. a user can
graphically create a 3-slave master-slave pattern and save it inside the library for

future use. However. a generic master-slave pattern is more useful for this purpose.

As far as known to us. DPnDP [66] is the first svstem that addresses both the
issues of flexibility and extensibility. It was a nice attempt. but unfortunately it
concentrates only on the structural aspects of a pattern and ignores the behav-
loral aspects altogether (for instance: parallel computing model. communication-
synchronization behavior inside a pattern). In spite of its limitations. DPnDP was

a good learning experience and it set up the initial stage for this research.

There are various other systems and research projects in the object-oriented
domain that are intended to facilitate parallel application development. A majority
of them are based on C++ or its extensions. Some of these systems are pattern-
related. A comprehensive discussion on many of these systems can be found in [74].
Though none of them bear similarity to this generic architectural-skeleton model,

some of them are worth mentioning here.

HPC++ [26] focuses on a common foundation for portable parallel applications.

Parts of its implementation are through libraries and parts through C++ language

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 136

extensions. One of its key features is the exploration of loop parallelism. as in
HPF [46]. Another feature is the parallel extension of the C++ standard tem-
plate library (STL) {52]. The parallel standard template library (PSTL) provides
distributed versions of the STL container classes along with versions of the STL
algorithms that have been modified to run in parallel. As a major distinction with
most pattern-based systems. including this architectural-skeleton approach. PSTL
is a class-library and not a framework (i.e.. the user selects the library routines
for an application and it is the user’s application that dominates). Other major
differences lie in the HPF-like features. such as loop-parallelism and the extended

C++ language syntax.

POOMA (Parallel Object-Oriented Methods and Applications) {19] is a collec-
tion of C++ template-classes for writing high-performance scientific applications.
It provides high-level data-parallel types (for instance. high-level abstractions for
multi-dimensional arrays. computational mesh. etc) that make it easy to write par-
allel PDE (partial differential equation) solvers without worrying about the low-
level details of layout. data transfer. and synchronization. In its restricted problem
domain. POOMA is able to provide good amount of optimizations for achieving
high performance. In comparison. the architectural-skeleton approach is not re-
stricted to any specific problem domain inside parallel computing. and hence, it

may not be able to offer the same amount of domain-specific optimizations as in

POOMA.

Similarly. DAPPLE [42] is another C++ class library that provides the illusion
of a data-parallel programming language on conventional hardware and with con-
ventional compilers. DAPPLE defines Vectors and Matrices as basic classes, with
all the C++ operators overloaded to provide for element-wise arithmetic. In addi-

tion, DAPPLE provides typical data-parallel operations that are most commonly

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 137

applied. In comparison to DAPPLE's exclusive data-parallel domain. the architec-
tural skeleton library is applicable to a much wider range of parallel programming

paradigms.

7.4 Future Research Directions

The following are some of the issues that need to be considered in the future evo-

lutions of the work:

e How flexible and usable is the approach? How can these issues be measured
and compared? (For instance. consider the software metrics measurements
for assessing software complexity). Usability evaluations based on existing
usability metrics and statistical experiments need to be planned out in the

future.

® Though the PASM model inherently supports extensibility. the issue of ex-
tensibility needs to be further investigated for the PASM system. The object-
oriented design of the skeleton library needs to be further fine tuned so that
adding a new skeleton to the library merely becomes an issue of filling in some

pre-defined blanks (i.e.. filling in the pre-defined virtual methods).

® Does the PASM system need a graphical user interface (GUI)? Will the in-
troduction of a GUI-based system hamper extensibility? These issues need

further investigation.

® The issue of process-processor mapping was mentioned before. Presently no

specific mapping strategies are employed, which is a separate research topic

CHAPTER 7. CRUCIAL ISSUES. FUTURE DIRECTIONS 138

in itself. In future versions. several pattern-specific heuristic-based mapping

strategies need to be designed and investigated.

e The generic model can suitably realize all of the frequently used patterns in
network-oriented parallel computing that are known at this moment. Are
there any other useful patterns left out? Is there any such pattern that
cannot be realized inside the model? In that hypothetical latter case, what

modifications to the model will be necessary?

One such pattern is the data-flow pattern which. though useful. is rarely
applied in practice. If at all needed. it could be implemented using the com-
positional skeleton or could be designed as a separate pattern conforming to
the model. Another pattern is the client-server pattern. which is in fact a
pattern for distributed computing (as compared to the focus of this work.

which is on distributed parallel computing).

7.5 Conclusion

The research presents a generic model for designing and developing parallel ap-
plications. and is based on the idea of design patterns. The model is based on
the message-passing paradigm that makes it well suited for a cluster of worksta-
tions and PCs. An architectural skeleton is a physical abstraction of a pattern in
parallel computing. The skeleton-based model is an ideal candidate for implemen-
tation using object-oriented techniques. The object-oriented approach can be used
to build an application-independent. extensible library of skeletons. Other issues
of equal importance that form integral parts of the model are: flexibility. reusabil-

ity (of code for patterns and of application code). separation of specifications, and

BIBLIOGRAPHY 139

inherent support for hierarchical development and refinement.

The present collection of architectural skeletons supports those patterns for
coarse-grain message-passing computation which can provide good performance
in a networked MIMD environment. Research is in progress to incorporate new

skeletons for such an environment.

Bibliography

[1] LAM/MPI Parallel Computing. http://www.lam-mpi.org/.

2]

8]

[4]

Message Passing Interface Forum. http://www.mpi-forum.org/.

C. Alexander. S. Ishikawa. M. Silverstein. M. Jacobson. I. Fiksdahl-King, and
S. Angel. A Pattern Language: Towns. Buildings, Construction. Oxford Uni-

versity Press, 1977.

J. Backus. Can Programming Be Liberated from the Von Neumann Style? A

Functional Programming Style and its Algebra of Programs. Communications

of the ACM. 21(8). August 1978.

D. F. Bacon. S. L. Graham. and O. J. Sharp. Compiler Transformation for
High-Performance Computing. Technical Report UCB/CSD-93-781. Univer-
sity of California. Berkeley, 1993.

A. Bartoli. P. Corsini, G. Dini. and C. A. Prete. Graphical Design of Dis-
tributed Applications Through Reusable Components. JEEE Parallel and Dis-
tributed Technology. 3(1):37-30. Spring 1995.

A. D. Birrell and B. J Nelson. Implementing Remote Procedure Calls. ACM
Transaction on Computer Systems. 2:39-59, Feb. 1984.

140

BIBLIOGRAPHY 141

[8] G. Booch. J. Rumbaugh. and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley Publishing Company. 1999.

[9] P. Brinch Hansen. Studies in Computational Science: Parallel Programming

Paradigms. Prentice Hall. 1995.

{10] P. Brinch Hansen. The Search for Simplicity: Essays in Parallel Programming.
IEEE Computer Society Press. Los Alamitos. California. 1996.

(11] J. C. Browne. M. Azam. and S. Sobek. CODE: A Unified Approach to Parallel
Programming. IEEE Software. pages 10-18. July 1989.

[12] J. C. Browne. S. I. Hyder. J. Dongarra. K. Moore. and P. Newton. Visual
Programming and Debugging for Parallel Computing. IEEFE Parallel and Dis-
tributed Technology. 3(1):75-83. Spring 1995.

(13] F. W. Burton and V. J. Rayward-Smith. Worst case scheduling for parallel

functional programs. J. Functional Programming. 4(1):65-75. January 1994.

(14] D. K. G. Campbell. Towards the Classification of Algorithmic Skeletons. Tech-
nical Report YCS 276. Department of Computer Science. University of York,

1996.

[15] N. Carriero and D. Gelernter. How to Write Parallel Program: A Guide to the
Perplexed. ACM Computing Surveys. 21(3):323-357. September 1989.

(16] K. Mani Chandy. Concurrent Program Archetypes. In International Parallel
Processing Symposium. 1994. Keynote Address.

[17] K. Mani Chandy. The Caltech Archetypes/eText Project. September 1996.

http://www.etext.caltech.edu.

BIBLIOGRAPHY 142

(18] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. The MIT Press. Cambridge. Massachusetts. 1989.

[19] J. C. Cummings. J. A. Crotinger, S. W. Hanev. W. F. Humphrey. S. R.
Karmesin. J. V. W. Revnders. S. A. Smith. and T. J. Williams. Rapid Appli-
cation Development and Enhanced Code Interoperability using the POOMA
Framework. In SIAM Workshop or. Object-Oriented Methods and Code Inter-
operability in Scientific and Engineering Computing: 0098.

[20] M. Danelutto and S. Pelagatti. Parallel Implementation of FP using a
Template-based Approach. In Proc. of 3** International Workshop on Im-

plementation of Functional Languages. The Netherlands, September 1993.

(21] J. Darlington. A. J. Field. and P. G. Harrison. Parallel Programming Using
Skeleton Functions. In PARLE93. Munich. Germany. June 1993. Appeared

in Lecture Notes in Computer Science. Vol. 694. pages 146-160.
[22] 1. Foster and R. Stevens. Parallel Programming with Skeletons. In JCPP90.

[23] I. Foster and S. Tavlor. Strand: New Concepts in Parallel Programming.
Prentice-Hall. Eaglewood Cliffs. N.J.. 1989.

[24] E. Freeman. S. Hupfer. and K. Arnold. JavaSpaces™ Principles. Patterns.
and Practice. Addison-Wesley. 1999. The Jini™¥ Technology Series.

(25] E. Gamma. R. Helm. R. Johnson. and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Publishing Company,
1994.

{26] D. Gannon. P. Beckman, E. Johnson. T. Green. and M. Levine. HPC++
and the HPC++Lib Toolkit. Department of Computer Science, Indiana Uni-

BIBLIOGRAPHY 143

versity. and Los Alamos National Laboratory. White paper available at

http://www.extreme.indiana.edu/hpc++/.

[27] A. Geist. A. Beguelin. J. Dongarra. W. Jiang, R. Manchek. and V". Sunderam.
PVM: Parallel Virtual Machine. The MIT Press. 1994.

[28] A. Geist and V. Sunderam. Network-based Concurrent Computing on the

PVM System. Concurrency: Practice and Ezperience. 4(4):293-311. 1992.

[29] B. Goldberg. Functional Programming Languages. ACM Computing Surveys.
28(1):249-251. March 1996.

[30] D. Goswami. Data parallel Solution Strategies for Irregular Problems. Master's

thesis, McGill University. June 1995.

[31] D. Goswami. A. Singh. and B. R. Preiss. From Design Patterns to Parallel Ar-
chitectural Skeletons. Journal of Parallel and Distributed Computing (JPDC).

Accepred for publication. June 2001. 25 pages. To appear.

[32] D. Goswami. A. Singh. and B. R. Preiss. Architectural Skeletons: The Re-
Usable Building-Blocks for Parallel Applications. In 1999 International Con-

ference on Parallel and Distributed Processing Techniques and Applications

(PDPTA '99). Las Vegas. USA. June 1999.

[33] D. Goswami. A. Singh. and B. R. Preiss. Using Object-Oriented Techniques
for Realizing Parallel Architectural Skeletons. In the third International Sym-
postum on Computing in Object-oriented Parallel Environments (ISCOPE’99),
San Francisco. USA. December 1999. Appeared in Lecture Notes in Computer

Science. Vol. 1732. pages 130-141.

BIBLIOGRAPHY 144

(34] D. Goswami. A. Singh. and B. R. Preiss. Building parallel applications using
design patterns. In Advances in Software Engineering: Topics in Comprehen-
ston, Evolution and Evaluation. Springer-Verlag, New York. 2001. 24 pages.

To appear.

[35] W. Gropp. E. Lusk. and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface. The MIT Press. Cambridge.
Massachusetts. 1994.

(36] M. H. Halstead. Elements of Software Science. Elsevier North-Holland. Inc..
1977.
[37] N. Harrison. B. Foote. and H. Rohnert. editors. Pattern Languages of Program

Design 4. Addison-Wesley Publishing Company. December 1999. Software

Patterns Series.

[38] S. Hiranandani. K. Kennedy, and C. Tseng. Compiling FORTRAN D for
MIMD Distributed Memory Machines. Commaunication of the ACM. 35(8):66-
80, August 1992.

[39] P. Hudak. S. L. Pevton Jones. P. L. Wadler. B. Boutel, J. Fairburn. J. Fasel.
M. Gunzman. K. Hammond. J. Hughes. T. Johnsson. R. Kieburtz. R. S. Nikhil,

W. Partain. and J. Peterson. Report on the Functional Programming Language
Haskell. SIGPLAN Notices, 27(5). May 1992.

[40] R. E. Johnson and B. Foote. Designing Reuseable Classes. Journal of Object-
Ortented Programming, June 1988.

[41] O. Kaser, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar.
EQUALS: a fast parallel implementation of a lazy language. J. Functional
Programming, 7(2):183-217, March 1996.

BIBLIOGRAPHY 143

[42)

(43]

[44]

[46]

[47]

D. Kotz. A data-parallel programming library for education(DAPPLE). In
Twenty-sizth SIGCSE Technical Symposium on Computer Science Education.
pages 76-81. ACM Press, March 1993.

P. Ledru. JSpace: Implementation of a Linda System in Java. ACM SIGPLAN
Notices. 33(8):48-50. August 1998.

S. J. Leffer. M. K. McKusick. M. J. Karels. and J. S. Quarterman. The Design
and Implementation of 4.3. BSD Uniz Operating System. Addison-Wesley
Publishing Company, Inc.. 1990.

K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems. 7(4):329-59. 1989.

D. B. Loveman. High Performance Fortran. [EEE Parallel and Distributed
Technology. pages 25-42. February 1993.

S. MacDonald. D. Szafron. and J. Schaeffer. Object-Oriented Pattern-Based
Parallel Programming with Automatically Generated Frameworks. In 5th
USENIX conference on Object-Oriented technology and systems (COOTS99),
pages 29-43. 1999.

T. J. McCabe and C. W. Butler. Design complexity measurement and testing.

Commaunications of the ACM. 32(12):1415-1425, 1989.

G. Meszaros and J. Doble. A pattern language for pattern writing. In Pattern
Languages of Program Design-S, Software Patterns Series. Addison-Wesley
Publishing Company, 1997.

J. J. Modi. Parallel Algorithms and Matriz Computation. Clarendon Press,
Oxford. 1988.

BIBLIOGRAPHY 146

(51]

[52]

[53]

[58]

[59]

H. R. Myler and A. R. Weeks. The Pocket handbook of Image Processing
Algorithms in C. Prentice Hall. 1993.

M. Nelson. C++ Programmer’s Guide to the Standard Template Library. IDG
Books Worldwide. 1995.

R. Pandey and J. C. Browne. A Compositional Approach to Concurrent Pro-
gramming. In Parallel and Distributed Programming Techniques and Applica-
tions, pages 1489-1500. 1996.

B. R. Preiss. Data Structures and Algorithms with Object-Oriented Design
Patterns in JAVA. John Wiley & Sons. Inc.. 2000.

M. J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill. Inc.,
1994.

J. Schaeffer. D. Szafron. G. Lobe. and I. Parsons. The Enterprise Model for De-
veloping Distributed Applications. IEEE Parallel and Distributed Technology.
1(3):85-96. August 1993.

D. C. Schmidt. ACE: an Object-Oriented Framework for Developing Dis-
tributed Applications. In 6** USENIX C++ Technical Conference. Cambridge.

Massascusetts, April 1994.

D. C. Schmidt. Experience Using Design Patterns to Develop Reusable Object-
Oriented Communication Software. Commaunications of the ACM (Special is-

sue on Object-Oriented Ezperiences). 38(10). October 1995.

T. M. Shih. Numerical Heat Transfer. Hemisphere Publishing Corp.. Wash-
ington, 1984.

BIBLIOGRAPHY 147

[60]

[61]

[62]

[63]

[64]

[65]

(66]

[67]

A. Singh. J. Schaeffer. and M. Green. A template-based Tool for Building
Applications in a Multicomputer Network Environment. Parallel Computing

89. pages 461-466. 1989.

A. Singh. J. Schaeffer. and M. Green. Structuring Distributed Algorithms in
a Work-Station Environment: the FrameWorks Approach. In International

Conference on Parallel Processing. volume II. 1989.

A. Singh. J. Schaeffer. and M. Green. A Template-Based Approach to the Gen-
eration of Distributed Applications Using a Network of Workstations. [EEE

Transactions on Parallel and Distributed Systems. 2(1):52-67. January 1991.

A. Singh. J. Schaeffer. and D. Szafron. Experience with parallel programming
using code templates. Concurrency: Practice and Ezperience. 10(2):91-120.

1998.

S. Siu. Openness and Extendibility in Design-Pattern-Based Parallel Program-

ming Systems. Master's thesis, University of Waterloo. 1996.

S. Siu. M. D. Simone. D. Goswami. and A. Singh. Design Patterns for Par-
allel Programming. In Parallel and Distributed Programming Techniques and
Applications, California. August 1996.

S. Siu and A. Singh. Design Patterns for Parallel Computing Using a Network
of Processors. In Sizth IEEE International Symposium on High Performance
Distributed Computing. pages 293-304. Oregon, USA., August 1997.

D. B. Skillicorn. The Bird-Meertens Formalism as a Parallel Model. In NATO
ARW Software for Parallel Computation, Cosenza. Italy. June 1992.

BIBLIOGRAPHY 148

[68}

[69]

[72]

(73]

(74]

L. Tahvildari. Assessing the impact of using design-pattern-based svstems.
Master’s thesis. Department of Electrical and Computer Engineering. Univer-

sity of Waterloo. 1998.

L. Tahvildari and A. Singh. Impact of using pattern-based systems on the qual-
ities of parallel applications. In The 2000 International Conference on Parallel
and Dustributed Processing Techniques and Applications (PDPTA "2000). pages
1713-1720. Las Vegas. USA. June 2000.

S. M. Trewin. PUL-TUF Prototype User Guide. Technical Report EPCC-
KTP-PUL-TF-PROT-UG 1.7. University of Edinburgh. July 1993.

L. G. Valiant. General purpose parallel architectures. In Handbook of Theo-
retical Computer Science. North-Holland. 1990.

D. Walker. The Design for Standard Message Passing Interface for Distributed

Memory Concurrent Computers. Parallel Computing. 20(4):657-673. 1994.

L. Wall. T. Christiansen. and R. L. Schwartz. Programming Perl. O" Reilly &

Associates, Inc.. 1996.

G. V. Wilson and P. Lu. editors. Parallel Programming using C++. The MIT
Press. 1996.

