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Abstract 

In the context of object-oriented software design. the concept of design patterns 

is well studied and frequently applied. Similar ideas are being e-quplored in other 

areas of computing as well. Over the past several years. researchers have been 

e-xperimenting with the feasibility of employing design-pat tern concepts in the par- 

allel computing domain. S tarting wi th the late SOS. several pattern- based sys tems 

have been built and several parallel programming rnodels based on patterns have 

been formulated. .As an important distinction with object-oriented patterns. most 

researchers here aim to use patterns not only at the design level. but aiso at the 

implementation level. 

Though the idea of design- and implementation-level parallel patterns hold sig- 

nificant promise. most of the curent  pattern-based approaches to pa rde l  program- 

ming suffer severe limitations. some of ivhich include: lack of flexibility. limited to 

zero extensibility. ad hoc pattern sets. and languagerelated limitations. 

In contrast to the previous approaches, this research proposes a generic. pattern- 

based model for fast and reliable development of parallel applications. The model 

is generic because it can be described in a manner independent of patterns and 

applications. The model is based on the message-passing paradigm, which makes 

it particulad- suited for a network of workstations and PCs. The tenn parallei 

architectural skeleton is used to represent the generic set of attributes associated 

with a pattern. An architectural skeleton contains the necessary ingredients for 

constructing application-specific virtuai architectures. Together wit h the comple- 

ment a .  communication-spchronization protocols. a user can develop applications 

on these architectures. 

The generic nature of the Pardel .Architectural Skeleton Mode1 (PASM) en- 



hances usability. In addition. the model combines the flesibility of a loir-level MPI- 

l ih  message-passing parallel programming environment toget her wi t h the benefits 

of high-level parallel patterns. This approach provides the necessary flesibili ty <O 

the user in application development . Hierarchical pat tem composition is an inher- 

ent characteristic of the model. which in turn facilitates hierarchical refinement. 

PASM is an ideal candidate for an object-oriented style of design and implemeri- 

t ation. An object-oriented and library-hased implementation of the model. using 

'UIPI as the underlying communication-synchronization library. is completed with- 

out necessitating any language extension. The object-orirnted and library-based 

implernent ation. toget her wit h the generic model. facili t ates estensi bili ty. That is. 

new patterns cm be added to the system by an e-xperienced user without requiring 

modifications to the existing repertoire. 

.A thin implementation layer over the standard message-passing interface. MPI. 

has resulted in negligible performance degradation. Noreover. from the software en- 

gineering perspec tive. desired software qudi t ies such as ~eparation of concemu and 

~oftwure reusability are some of the basic features of the approach. Other software 

engineering relat ed benefit s emanate from the aforement ioned unique feat ures of 

PASM. i.e.. genericness. inherent support for hierarchical design and development. 

low-level flexibili ty. and an extensible repert oire of parallel architectural shletons. 
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Chapter 1 

Introduction 

Patallel application design and development is a major area of focus in the domain 

of high performance scientific and industrial computing. In fact. starting from corn- 

putarional physics to weather prediction and space applications. parallel computing 

is becoming an integral part in several major application domains. 

With the advent of fast networks of workstations and PCs. it is now becom- 

ing increasingly possible to develop high-performance parallel applications using 

the combined computing powers of these networked-resources. at reasonabie price- 

performance ratio. Conrrast this to the situation a few years back. where parallel 

computing ras confined only to special-purpose pa rde l  cornputers. each priced 

high enough to be affordable only by major research/academic institut ions. Con- 

sequently. high-speed networks and fast general-purpose computers are facilitating 

the mainst ream adoption of pa rde l  cornpuring. 

However. it must be emphasized that parallel computing is cornplex. Complexity 

of pa rde l  software development has always been one of the major obstacles to the 

mainstream adoption of paralle1 computing. Though parailel computers. and lately 



multiprocessor workst at ions. PCs and t heir clusters. are becoming more and more 

economical and widely a d a b l e .  their efficient utilization has b e n  an issue of 

concern since the d a m  of parallel computing. 

There are several reasons for the aforementioned complexity in parallel pro- 

gramming : 

There is no single standard architecture and standard programming model for 

parallel computing. Lnlike sequential computers. which follow the \on Yeu- 

m a n  model of comput at ion. different parallel architectures support different 

parallel programming modeis (e.g . . dat a-parallel. dat a-flow . cont rol-pardel. 

systolic). Each programming model gives birth to a group of languages. com- 

piler~. compilation techniques and a group of programmers proficient in their 

use. 

Often a parallel algorithm is suitable only for specific types of programming 

models. A s  a result. algorithms developed for one platfonn are not always eas- 

ily portable to other platforms. or ma? not be as efficient on other platforms 

if ported. 

In the case of parallel progamming. there are added complexities over s e  

quential code due to many of the low-level parallelism related details. These 

include problem decomposit ion ( the identification of pardelism ) . dis tribut ion 

(the physicd exploitation of the potential pardelism identified by decomposi- 

t ion). process/ t hread creation and management. process-processor mapping, 

communication and synchronization. data packhg and unpackkg. load bal- 

ancing. and architecture- and network-specific low-level details. .As a result of 

t hese low-level complexi t ies . par d e l  programrning remains an expert's job. 



0 In the case of sequential computing. it  is possible to predict performance of an 

application (e.g.. faster processor and memory access result in better perfor- 

mance). This predictability is more difficult wit h parallel cornput ing. There 

e'ust s certain parailel programming models (e.g.. implicit dat a-parallelism as 

wit h functional languages) which hinder performance predict ion on the part 

of the programmer. The actual performance depends on the efficient mapping 

of the parallel components over the multiprocessor architecture. and might 

depend on the order of e d u a t i o c  of the irnplicit parallel components. Cnless 

the programmer has explicit control over t hese issues. it is very difficult to cor- 

rectly predict performance. On the contraq. explicit control over these issues 

results in another set of cornplexities as mentioned before. Consequently. a 

suitable compromise regarding h o r  much of the low-level details are handled 

by the programmer is often needed. 

Due to the lack of a standard mode1 of pa rde l  computation. there are no 

standard methods or tools for developing. debugging or profiling of paral- 

le1 applications. Consequently. specialized tools for individual platforms are 

often required. 

It is often impossible to reuse exist ing sequent ial application code ahile devel- 

oping parallel applications. This lad  of reusability results in writing every- 

thing from scratch. .Uso. porting an existing pardel application to another 

platform often requires major modifications to the existing parallel applica- 

tion. 

Another important issue. which applies to sequential computing as well. is the 

programming language. Researchers have been experimenting with different 

p a r d e l  programming languages and paradigms. Lack of a uaiform lmguage 



across sequential and parallel cornpuring platforms results in limited reusabil- 

ity of existing code. SIoreover. frequent shifting to new languages or language 

extensions and new programming paradigms is problematic. because it often 

results in higher learning curves and non-reusable code. It is generally the 

case that a group of programmers cornfortable with a specific mode1 and a set 

of associated languages and tools find it difficult to shift focus to something 

entirely different . 

Over the years. there have been numerous efforts to overcome some of the afore- 

ment ioned difficult ies. This research focuses on a specific approach to network- 

oriented parailel programming that is based on frequently used parallel design pat- 

terns. 

1.1 Objectivesofthis Research 

S tarting with the early days of parallel computing, different abstractions and tech- 

niques have been proposed to handle some of the aforementioned complexities. In 

this research. we investigate one specific approach to pardel programming that is 

based on the use of frequently occurring stnictures for pardelism. These frequently 

occurring structures are often called parallel design patterns. Examples of such re- 

curring patterns are: static and dynarnic replication, divide and conquer, data 

par d e l  pattern wi t h various topologies. composit ional framework for irregularly- 

structured control-parallel compu t ation. systolic array, pipeline, singleton pattern 

for single-process single- ç r  multi-threaded computation. 

In particular, it is believed that the high-level abstractions provided by such 

structures can be used to simpli- the task of building parailel applications and to 



promote software reusability together with other issues which are discussed short15 

There have b e n  other pattern-based approaches in the past. Hoivever most of 

them have severe limitations. This research continues the effort to overcome some 

of those limitations and to create a more flexible and usable pattern-based parallel 

programming environment. 

in the following section. some of the different approaches to parallel program- 

ming are b r idy  discussed. These will be further elaborated in the next chapter. 

1.2 Different Approaches to Parallel Program- 

ming 

There are two main approaches to address the cornplexities of parallel cornputing 

mentioned eariier. The first approach is an architectural route that develops a 

parallel Von-Neumann machine. i.e.. a universal abstract machine. to ahich a con- 

ventionai parallel programming model can be applied with predictable performance. 

and that can be implemented on a scalable architecture with a predictable perfor- 

mance cost. For instance. the parallel random-access machine (PRALI) model [il] 

and the distributed shared memory model [45] take this route. 

The second approach is based on high-level parallel programming models that 

at tempt to hide the low-level details related to hardware architectures. interconnec- 

tion topologies. process and thread creation/mapping, communication and synchre 

nization. load balancing. data rnarshaling and un-marshaling. and numerous other 

details. Some of them also try to handle the issue of portability across various 

architectural platfoxms. 

Different models employ different abstraction tediniques such as communication 



libraries. rnacros. new parallel ianguages and language estensions. and abst ract 

data types. Dependilig on the amount of direct specification of parallel interactions 

required from a programmer. these models can broadly be categorized as erplicit. 

irnplici t or semi-explicit . 

In the explicit models. a user has to explicitly handle d l  the parallelisni-related 

issues in the software. These approaches can be further classified based on their 

levels of abstraction. -4t the lovvest lewl. the user worlis with primitives such as 

TCP/IP sockets (441 at a level closest to the hardware. Parallel programming using 

sockets is probably as difficult as sequential programming using assembly language. 

As a result . higher level parallel programming models and tools have been developed 

on top of sockets [27.28.33.72]. This process is similar to employing high level 

programming languages to hide the difficulties associated with assembly language 

programming . 

At the other extreme of the existing parallel programming models. there is no 

expiicit specificat ion of parallelisrn in the user-supplied application code. Here. the 

user writes sequential code and the pardel  prograrnming system. for instance a 

parallelizing compiler. explores the parallelism in the code. Parallel code is then 

automatically generated by the compiler for the underlying architecture (51. Va- 

ious functional programming languages [29] are implicitly parallel, which can be 

e-xploited by the associated compilers. 

There are other approaches which fall in between the above two extremes and, 

therefore. are refened to as semi-explicit parailel programming models. in some 

of t hese approaches. the user handes the performance-crucial issues (for instance. 

data and task decomposition. resource allocation) and the rest is handled by the 

system [21,46.56.63]. 



CHAPTER 1. IXTROD I'CTIOS 

These approaches are further discussed in the next chapter. 

1.2.1 Advantages and Limitations 

Ali Lgh-level approaches to pardel  programming have the obvious adnntages 

of reducing some of the difficulties associated with parallel programming. Horv- 

ever. many of them have their own limitations. which often overshadow the gains 

achieved. 

It has been found that the PRAM model imposes unavoidable overhead when 

implemented on certain architectures (e.g.. the distributed memory machines. which 

are the mos t scalable ) . and hence efficient implement at ion on t hese architectures is 

impossible. 

The parallel programming models. in general. have at least two main objectives: 

to provide high-level abstractions to free the user from the low-level details. and 

to retain the good performance and flexibili ty generally anilable a i t  h low-level 

primitives. However. gains in some of these objectives often involve trade-offs in 

some other issues. For instance. it is possible to obtain near optimal performance 

with hand-crafted parde l  code written close to the hardware level. However, as 

the abstraction level increases and the more one relies on automatic parallelization, 

the performance graduaily degrades unless it is possible to perform some user-level 

fine-tuning of the generated code. 

Many of the high-level parailel programming approaches are suitable only for 

solving a limited range of problems that fit into specific models of pardel corn- 

putation. For instance, the success of pardlelizing compilers is limited by the 

availability of pardelizable loops inside an application. Similar situations apply to 

the func t ional programming languages, many of which are implici tly dat a-pardel. 



llost of these languages exhibit implici t parallelism. and consequent ly all crucial 

parallelism-related details need to be handled by the language implenienter. How- 

ever. someivhat successful implement at ions of t hese languages have been achieved 

oniy on shared-memory architectures. 

Wit h high-level models. the higher-level of abstraction is often associated [vit h 

a deciine in flexibility on the part of the user in application deveelopment. This 

means that the user is often restricted to worlcing with high-level abstractions. 

without being able to use lower-level primitives like point-tepoint message passing 

for customization or better performance. Thus. in most cases. it is impossible for 

an experienced user to fine-tune an application or to extend the existing system as 

need arises (i.e.. lack of extensibility ). In fact . the loss of flexibility is a major issue 

that dictates other extremely important issues like usability. 

Finally. the l a d  of portability of high-Ievel pardel  systems across ~arious ar- 

chitectural platforms and the non-availability of support tools remain chronic prob- 

lems in the area of parallel programming. These and severai other issues are further 

elaborated in the nexr chapter. 

1.3 An Alternative Approach to Parallel Program- 

ming 

This research focuses on an alternative approach to pa rde l  programming that is 

based on the idea of parallel design patterns. In the context of object-oriented 

software design. the tenn design pattern is used to describe strategies for solving 

recurring design problems in systematic and general ways [25]. In a similar fashion, 

parallel design patterns spec* recurring problems in the parallel comput ing domain 



and their solut ion strategies. 

It has been observed that a large number of parallel applications are based on 

commonly occurring control structures and that the' differ only in the application 

specific code [9.10] and some other application specific parameters. -4s a result . 
it is often possible to achieve a significant amount of separution of specification*. 

whereby t hese parallel structures can be generated independent of the application 

code. The application code can later be plugged into the generated parallel struc- 

tures. An isolated parallel structure or a composition of t hem may constitute the 

skeleton of a paralle1 application. i.e.. it embodies the parallel structure of the en- 

tire application without the application specific code. Since the generated skeleton 

hides most of the lower-level det ails. the developer is freed from the extra burden of 

t hese low-level complexi t ies. A design pattern based par d e l  programming sys tem 

helps the user to generate these parallel structures. A detailed discussion of this 

approach c m  be found iu the subsequent chapters. 

Starting with the late 80s. severd pattern based approaches were studied and 

some systems developed. Al1 these approaches use patterns as  application inde- 

pendent reusable building blocks that hide most of the low-level and error-prone 

parallelism related det ails. An important distinct ion in the use of pat tern-concepts 

in parallel computing is that researchers here use patterns not oniy at the design 

level but also at the implementation level. Accordingly. in the rest of the thesis, the 

terminology parallei pattern is used to imply both design- and implementation-level 

patterns. 



1.3.1 Shortcomings of the existing pat tern-based approaches 

Though the idea of design- and implernentation-level patterns holds significant 

promise. in practice hoivever. most of the existing pattern-based systenis face some 

or all of the limitations mentioned previously e.g.. lack of flexibility. limited to zero 

extensibility. Moreover. most of these systems support only a limited and fixed 

set of patterns in ad hoc manners. which often results in confusion regarding their 

use. Due to the ad hoc nature of their pattern cornponents. pattern composition is 

often impossible inside these systems (or possible in very restricted manners). thus 

further limiting their use. The ad hoc approach also leads to limited extensibility 

SIany of these systems are based on new laquages or laquage extensions. thus 

contributing to another bottleneck. Each of these factors limits the usability of a 

particular system. 

Detailed discussions on some of these approaches and their shortcomings are 

postponed till the next chapter. 

1.3.2 Contributions of t his research 

As opposed to the previous ad hoc approaches. this research proposes a generic 

pat tem-based model for fast and reliable development of parallel applications. The 

model is generic because it c m  be described in a manner independent of patterns 

and applications. The mode1 is based on the message-passing paradigm. which 

makes it particularly suited for a network of workstations and PCs. Ail of the par- 

d e l  patterns mentioned previously can be elegantly realized within the frameworks 

of the model. The tenn parallel architectural skeleton is used to represent the set of 

generic attributes associated with a pattern. An architectural skeleton contains the 

necessary ingredients for constmcting application-specific virtual architecture(s). 



Toget her with the necessary communicat ion-synchroniza t ion prot ocols. a user de- 

velops applications on the virtual architectures. 

The generic approach of the Parallel Architectural Slieleton Mode1 ( P.WU) helps 

in more than one aspects. It helps a user to become familia with the approach. 

ahich results from the inherent commonality among the multiple patterns. It helps 

in pattern composition. due to the inherent presence of standard interfaces and 

protocols. Finally. it helps in designing new patterns. and thus. further estend the 

sys tem. -411 these issues enhance usabili t .  

Both low-level message-passing (something similar to PVJI [27.21] and MPI [35. 

721) high-level patterns are encompassed wit hin the framework of PAS M. Support 

for the lorv-level primitives. in conjunct ion nit h the hi&-level patterns. substan- 

tially enhances a user's flexibility in application development (a user has the options 

of using existing patterns. or developing applications from scratch using the low- 

level functionalities. or designing new patterns to incorporate into the system if 

need aises). 

PASM can be well represented through the object-oriented style of design and 

implementation. An object-oriented and library-based implementation of the mode1 

in C++. using JIPI as the layer underneath. is complete without necessitating 

any language extension. The generic approach in conjunction with the object- 

oriented and library-based implementation facilit ate extensibility. i.e., new pat tems 

can be added to the system by an experienced user without requiring any major 

modifications t O the exis t ing repert oire. 

Hierarchical pattern composition is an integral characteristic of the mode1 that 

facilitates hierarchical refinement. -4 pattern can be stand-alone or it can be con- 

tained inside another pattern. This capability enables multiple patterns to work 



together based on a generic scheme. Support for hierarchical design and low- as 

well as high-level protocols provide added flexibility not found in esisting parallel 

systems that aim to support design patterns. 

Lady  from the software engineering perspective. desired software qualities such 

as szparation of c o n c e m  and software reusability are some of the basic features of 

PASM. Software engineering related aspects of the model are discussed in a Inter 

part of the thesis. 

1.4 Organization of the Thesis 

The next chap ter furt her elaborates the different approaches to pardlel cornput ing 

and discusses some of the existing pattern-based approaches in some detail. Chap- 

ter 3 introduces the architectural skeleton model and illustrates the idea behind the 

model nit  h several examples. Chapter 4 discusses an ob ject -0riented implement a- 

rion of the mode1 and revisits the examples discussed in chapter 3. Chapter 5 

revisits the model frorn the perspective of a pattern language and it also serves as 

a catalog of patterns. Chapter 6 discusses the Larious performance measures of the 

framework that implements the model. Finaile chapter 7 discusses several crucial 

software engineering related aspects of the mode1 together with its cornparisons 

with other related works and various other issues that need to be considered in the 

future evolutions of the work. 



Chapter 2 

Patterns in Parallel Computing 

The term design pattern has been used ')y different researchers in different application- 

domains and at different levels of abstraction. For instance. one of the most promi- 

nent contexts in which design patterns art freqrieutly applied is in the domain of 

object-oriented (abbreviated 00) software design. Here. design pattems imply 

recuning design problems in the 00 paradigm and their solution strategies [25]. 

These 00 pattems are not pre-implemented code in some particular language. 

Rather they document the methodologies for soiving recurring design problems in 

systematic and general ways. The 00 pattems need to be implemented (or. re-used 

from existing code rvith modifications based on the application's context) each time 

they are applied. 

There are also patterns and pattern-based development tookits in the domain of 

network-level distributed programming. For instance. ACE (the Adaptive Commu- 

nication Environment ) [jî] is an 00 toolki t t hat implements various network-level 

pattems to simplify the development of concurrent. event driven communication 

softwue. The design and implementation of X E  is based on fundamentd corn- 



munication software design pat tems [SS] .  The -Par tern Laquages of Program 

Designn series of books 1371 are good references covering pat r ern-relat ed t opics for 

a diverse range of disciplines. 

In the parallel computing domain. design-pattern related concepts have b e n  

employed as early as in the late 80s. Different researchers have used different terrni- 

nologies for descri bing similar concepts . However , different t errninologies descri be 

patterns at different abstraction levels. and they are often based on completely dif- 

ferent methodologies. For instance. the term design pattern has been used to denote 

commonly occurring parallei or distributed computing abstractions [64]. Some other 

authors have used t e m s  like programming paradigm [9]. algotithmic skeleton [IS] 

or template [62] to denote similar ideas. Different researchers have used patterns 

at different levels of abstraction. For instance, templates in [62] have completely 

different functionalities from the so called patterns in 1611. nhich is evident in a 

later part of this chapter. Different approaches employ different rnethodologies 

for abstracting patterns. For instance. the aigorit hmic-shleton Stream of research 

treats patterns as algori t hmic abstractions realizable as high-order functional con- 

structs with associated cost functions. There are even variations inside the same 

research-stream. For instance, different authors have formulated their own versions 

of algorithmic skeletons. a cornparison of which can be found in (141. 

As an important distinction with the abstract-level 00 design patterns in [25], 

most researchers in parailel computing have used patterns not only at the design 

level but also at the implementation ievel. Le., the design-level patterns are also 

pre-implemented. This approach is similar in concept to a frurnevork [40] from 

the Software Engineering perspective. The Software Engineering aspects of this 

research are discussed in the later part of the thesis. 

In this thesis. the terminologies paralle1 pattern and pattern are used interchange- 



ably to imply recurring design- and im~lementation-level patterns in parallel corn- 

puting. unless otherwise specified (e.g.. 00 par tems to imply design patterns in the 

object-oricnted context ). Examples of suc. recurring patterns in parallel computing 

are: static and dynamic replication. divide and conquer. data parallel (tvith various 

topologies). pipeline. compositionai framework for irregularly-struct ured cont rol- 

pa rde l  computation. sys tolic arrays. and singleton (for singie-process. single- or 

mult i-t hreaded comput ation ) . 

-4s the exampies in the previous paragraph suggest . a pattern in parallel corn- 

put ing is an application independent abstraction wi t h associated structural and 

behaviord components. The same pattern applies to a wide range of different 

parallel applications. In other words. distinct p a r d e l  applications are found to 

possess identical structural and behavioral charactetistics. and hence can be said 

to follow an identical pattern of paraliel computation. One of the structural corn- 

ponents might be the interconnecting topology of the various sequential-computing 

elements constituting the parallel-computing structure. At the same time, the be- 

harioral componenrs specify the unique behaviors associated with the structural 

components. For instance. a 2-D mesh for data-pardel computation and a systolic 

anay might look identicd from the structural perspective. but they have clearly dis- 

tinct behaviors. Evidently. behavioral components play important roles in defining 

a pattern. 

The presence of the same generic structural and behavioral components in a 

nide range of applications results in a number of beneficial aspects. First. each 

component can be studied in detail and its various properties can be recognized 

and documented for future use. .4ccordingly. the second time such a pattern is en- 

countered. one does not have to start from scratch. Second. it is possible to abstract 

the application independent components associated with a pattern and implement 
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them as reusable modules for use in different applications. These reusable modules 

hide most of the lorv-level parallelism-related details te-g.. problem decomposition 

and distribution. process/thread creation. process-processor mapping. load baianc- 

ing, communication and synchronization. data rnarshaling and un-marshding. ac- 

tuai hardware architecture and topology) and thus enable the user to concentrate 

more on the application. Moreover. these prepachged modules are tesred to be 

reliable. provided they are used correctly. Thztd. as already mentioned. the generic 

components are application-independent . Consequent ly. a clear separation of spec- 

ification can be achieved. whereby it is possible to generate (and compile and run) 

the code-skeleton of an application. which is devoid of q application code. Such 

a clear separation not only Liberates the user from the additional burden of the 

applicat ion-independent details. but also facilitates the reuse of sequent ial code 

segments of an application. -4s is illustrated later on. a parallel application can 

be viewed as a restructuring of the original sequential code with embedded paral- 

lelism constructs. With proper restructuring. it might be possible to reuse sizeable 

portions of the original sequential code. 

The following examples further elaborate the concepts behind parallel patterns. 

2.1 Example 1: Divide and Conquer 

As a h t  example. let us consider the davide and conper pattern. It is encountered 

in a large number of applications. starting from various sorting algorithms (e.g.. 

merge and qui& sort) to graph and matrix multiplication algorithms [%]. An 

algorithm that follows the divide and conquer pattern can be divided into two parts: 

(1) Divide: (recursively) divide the problem to be solved into smaller subproblems, 

except for the base case where the subproblem is directly solved by applying some 



suit able algorithm without an'* further sub-di\-ision. (3) Conquet: the solution to 

the original problem is formed by combining the solutions to the subproblems. 

.As can be seen in the previous paragraph. it is possible to describe the generic 

divide and conquer pattern. without even considering a specific application. In 

ot her words. i t is possible to abstract the high-level applicat ion-independent corn- 

ponents of the pattern. It is now possible to dig further to sub-classify the high-level 

application-independent components. First let us identify one of the structural corn- 

ponents: topology. It can be seen t hat repeated division of the problrm into smaller 

sub-problems results in a tree-structured topology (refer to Figure 2.1 ). The origi- 

nal problem is input and output at the root of the tree. For each node of the tree 

during the divide phase. if the node is a leaf node (in other words. the base case) 

then the problem is solved applying some suitable algorithm: else the problem is 

further sub-divided and distributed to the children of the node. At each non-leaf 

node of the tree during the conquer phase. results from the children are combined 

to output the final result. 

As one of the behavioral components. the tree can be static (independent of the 

base case and the problem size) in nature or it c m  be dynarnic. i.e.. grows in size 

topdown starting from the root of the tree during the divide phase. and shrink in 

size bottom-up towards the root of the tree during the conquer phase (Figure 2.1). 

ParalleLisrn is obvious. i.e.. each node of the tree can be an independent process or 

thread. Hoivever. it should be mentioned here that the type of pardelism achieved 

in divide and conquer is restrictive. and hence. not very efficient (e.g.. during the 

conquer phase. each node in the tree has to wait before getting the results from aLl 

its children. ahich results in inefficiency ). 

Another behavioral component is the communication-synchronization pattern 

between the different nodes of the tree. The following hi&-level algorithm sum-  



k g  en&: - Divide Phase 
t-- Conquer Phase 

.A dynmic Divide-Conquer tree of width 2 

Figure 2.1 : -4 divide-and-conquer tree 

marizes the computation and communication involved at each node of a dynarnic 

divide and conquer tree: 

Input:  d a t a  of s i t e  N. 
Output : 

s top  1. 

s t op  2. 
s t o p  3. 
s t e p  4. 
s t e p  5. 
s t op  6 .  

d a t a  of s i z e  U . 

If t h e  base condi t ion is met, then process  d a t a  s equen t i a l l y  and 
goto s t op  6 ,  else 
d iv ide  da t a  i n t o  K s u b p u t s  based on soma c r i t e r i o n .  
d i s t r i b u t e  t h e  K subparts  t o  K ch i ld ren .  
c o l l e c t  r e s u l t r  from t h e  K ch i ld ren .  
combine r e s u l t a  t o  produce t h e  f i n a l  output .  
output  r e s u l t .  

In the preceding algorit hm. communication is involved during the input and the 

output (step 6 )  phases of each non-root node. Moreover. there is communication 

involved with each non-leaf node during steps 3 and 4. The rernaining steps involve 

sequential computat ion. 

cntil now. it has been possible to explain the pardel  divide and conquer pat- 

tern without resorting ta any specific application. -4s is shown in a later part of 



the thesis. it is possible to abstract and implement the ~ar ious  structural and be- 

havioral components associated with the divide and conquer pattern in a generic. 

application-independent manner. as re-usable module( s ). The applicat ion-specific 

components can later be plugged into the generated structure. Where do the 

application-specific components fit? Various divide and conquer applications differ 

from one another in the data-types and data-structures used. and in the actions 

during step 1 (the base c w  and the sequential algorithm applied). step 2 (the 

data-division algorit hm) and step 5 (the dat a-combining algorit hm). Clearly. t hese 

are the places shere the applicat ion-specific component s fit -in. 

The next example illustrates a case where more than one pattern is applied in a 

single application. The example uses two patterns. namely pipeline and replication. 

and also illustrates the concept of nfinement. which is described in a later part of 

the t hesis. 

2.2 Example 2: A Graphic Animation System 

This example demonstrates the use of pattern-based methodologies in the system- 

atic development of parallel applications. Let us consider a graphics animation 

program consisting of three modules: Generate. Geometry and Display 1631. The 

program generates a sequence of graphical image-frames. Depending on the sub- 

ject of animation. Generate computes the location and motion of each object for 

each frame. It then passes the frame to Geometry, which performs actions such as 

viewing transformations. projection and clipping. Findy.  the frame is passed to 

Display. which performs hidden-surface removal and anti-aliasing, and h d y  saves 

the frame on the disk. The whole process repeats with successive hames, thus 

lieeping the pipeline full during successive iterations. 



The simplest a- CO parallelize this application is to use a 3-stage pipeline 

pattern and then to plug in the code for the t h e  sequential modules into the three 

pipeline stages. as ilhstrated in Figure 2.2(a). Based on the particular method 

of impiement at ion. modifications might be necessary in each sequent i d  module t O 

interact with the next stage. Other than that. the core of the sequential code 

remains intact. Rien the pipeline is full. each stage works on a different frame at 

an instant. 

A 3-stage pipeline pattern 3-stage pipeline composed wich tcpt ication 

(a) (b) 

Figure 2.2: The graphics animation application 

It is generally the case that the Display module. which performs actions such 

as hidden surface r e m o d  and ami-aliasing is the most time intensive of the thiee 

modules. This d l  slow down the entire pipeline. One way to resolve this bottle 

ne& is to replace the stage 3 of the pipeline with a replication pattern. where as 

many copies of h p l a y  are dynamically created as needed (refer to Figure 2.2(b)). 

Consequently. each replicated Drsplay module is working on a difTerent frame. and 

this should speed up the entire application. It is interesting to note that the two 

applications remain the same in tenns of functionality. but oniy differ in te- of 



the patterns they use. The application codes for stage 1 and 2 remain unchangrd. 

i.e.. the modules Generate and Geometry remain untouched by this change. This 

type of localized replacement is called refinement. The esample also illustrates the 

possible involvement of multiple patterns in a single application. This esample and 

the idea of refinement are re-visited in a later part of the thesis. 

Cntil now. patterns have been illustrated from the architectural perspective. i.e.. 

patterns consisting of pure structural and behavioral components. Others have also 

investigated pat tems from the algorit hmic perfective (e.g.. the algorithmie deletons 

research. to be discussed later in this chapter). The next example illustrates this 

perspective. 

Example 3: Algorithmic Patterns 

familiar with any sequential programming language is 

knowingly dealing wi t h man? of the sequent ial comput at ional 

knowingly or un- 

patterns. For in- 

stance. let us consider the whde Zoop in any of the imperative languages. In one 

sense. it is a computational pattern (may be used for both sequential and implicitly 

parallel loops), which c m  be described in an application independent manner as 

follow s : 

Irrespective of the application code. all while loops follow this particular pattern. 

In fact, any sequential programming language is made up of a collection of such 

usefid pattems. which in effect determine the strength and the applicability of the 

language to a wide range of applications. 



Can a sirnilas technique be appiied to develop a universal parallel languoge 

consist ing of ali useful parallel algorithmic par tems captured at the high-level lan- 

guage? This is a good proposition. hotvever with no convincing solution till this 

moment. The diversi t y of parallel algori t h m .  models. and the underlying archi tec- 

tures are some of the factors to blame. However. the approach is tvorth ment ioning. 

One convenient way to express parallel algorithmic patterns is found to be 

through the use of high-order. p o l p o r p  hic functional cons t ructs. A high-order 

function is one tvhich can take other functions as its parameters and can return 

another function. .As an example. let us consider the polymorphic function map. 

ahich takes another function f as its parameter to return the function rnap f: 

f:a -> b 
(map f 1 : Cal -> CbI 

Here f i s  a function from a tu b. where a and b can be any types. e w n  identical. 

The resdt of applying rnap to f i s  the function map f. which takes a list of elements 

of type a as its argument and returns a list of elements of type b. The effect of rnap 

f i s  to apply f to ewry element of the argument-list and to place the result in the 

corresponding place in the result-list. The function rnap is polymorphic because 

f can be any suitable single-argument function. For instance. let us consider the 

following : 

square : int  -> int 
(map square) : Cint3 -> tint1 

In the above. the function map squan squares all  the elements of an integer-Iist. 

The type of rnap can be mathematicdy expressed as follows. which states that rnap 

talies a single-argument function as its parameter and retunis another function: 



-4s can be seen. there is implicit data parallelism in the function mup fi. Le.. the 

same function f i s  being applied to different data-elements in the argunient-list. In 

addition. the representation of the type of data-parallelism through map is coni- 

pletely architectureindependent. i .e.. the previous represent at ions have no reference 

to the underlying architecture (and applies to a sequential architecture as well). 

Such types of suit able high-order polymorphic funct ions. which c m  convenient ly 

express parallel computational patterns of some sort. are traditionallu called algo- 

rithmic dceletom. Clearly. high-order pol ymorp hic func t ions are most conrenient ly 

realized using the various funct ional programming languages. Horvever. conven- 

tional imperative languages can also be used to represent higher-order functions. in 

which case they are irnplemented as program- or procedu~d-templates [lS]. 

To concliide this discussion on examples. let us illustrate the already discussed 

divide-and-conquer pattern as a high-level functiond construct . the same way it 

is represented in [IS]. Here. D-C stands for the high-order polymorphic function 

representing divide-conquer. and P stands for the problem of type prob: 

D-C i n d i v i s i b l e  s p l i t  j o i n  f = F 
uhera F P = f P. if i n d i v i s i b l e  P 

= jo in  (map F ( s p l i t  P l ) ,  o theruiss  

where , 
i n d i v i s i b l e  : prob -> bool 

f : prob -> s o l  
s p l i t  : prob -> lprobl 

jo in  : [roll  -> s o l  
F : prob -> s o l  

mrp : (prob -> s o l )  -> ( Cprob] -> [sol]  ) 
D-C : (prob -> bool) -> (prob -> Lptob])) -> ( [sol]  -> s o l )  

-> (prob -> r o i )  -> (prob -> s o l )  

.AU functions except D-Cand map are application specific and need to be Wed 

in by the user in some suitable base language. which need not be the same as the 



high-level functional language in tvhich the aigorithmic skeleton is defined. This 

discussion on algori thic skeletons is re-visited in a later part of the chapter. Sow. 

before proceeding further, let us briefly discuss some of the existing approaches to 

parallel cornput ing . 

2.4 Exist ing Approaches to Parallel Programming 

-1s is discussed in Chapter 1. the different models for parallel programming can be 

broadly divided into explicit. implicit and semi-explicit categories. Different models 

employ different levels of abstraction in an effort to hide the low-level details and. in 

order to achieve this. they use different abstraction techniques (e.g.. communication 

libraries. rnacros. new parallel languages and language extensions. and abstract data 

types ) . 

The different models falling into the explicit category can be further sub-classified 

based on t heir levels of abstraction. At the lowest level, which is closest to the hard- 

ware architecture. we have something similar to the TCP/IP sockets [Ml. Sochts 

are the most difficult to use. but are the most flexible. Working with sockets is anal- 

ogous to working at the assembly-language level. At a slightly higher level, we have 

the message passing libraries (MPL) and remote procedure cal1 (RPC) [il packages. 

which abstract lower level socket cornmunica t ion. Two standards have emerged for 

MPLs: the de facto standard PVM [27.28] and the proposed message-passing in- 

terface (MPI) standard [33.72]. Both standards are supported on many platforms. 

Most operating systems support some variants of RPC. Both MPL and RPC are 

quite popular among the parallel programming community. However. they are still 

a loft* level of abstraction and a programmer still has to taclde many lower-level 

det ails before correctly nuuiing his application. Consequent ly, ot her high-level sys- 



tems have been built . including the system based on this research. on top of these 

packages with ~arying degrees of flexibility. These systerns can be categorized from 

explicit to semi-esplicit (e.g.. Frameworks [61]. Tracs [6]. PCL-TL-F Library [;O] ). 

In the implicit models. parallelism related aspects are completely hidden from 

the user. One approach is through the use of parallelizing compilers. which esplore 

the presence of implicit parallelism in sequent id code. Different compilation tech- 

niques for high performance computing are discussed in detail in j j ] .  Ideally given 

a sequential program. a parallelizing compiler is supposed to generate an efficient 

parallel program for the underiying architecture. However. the utili ty of current ly 

available techniques for parallelizing compilers is limi ted by the fact t hat it  can only 

deal with the parallelization of loops. which results in data-parallel applications. If 

an application involves control parallelism or if recursion. d p a m i c  data structures 

or pointers are used. the present technology of parallelizing compilers is inadequate 

to automatically generate parailel programs from sequential code. Moreover. often 

the data partitioning generated by pardelizing compilers may not be as efficient 

as created by an expert programmer. 

Another approach towards implicit parallelism is through the use of the differ- 

ent existing functional programming languages [29]. Such implicit parallelism is 

already illustrated in some of the examples in the previous section. e.g.. map and 

D-Cfunctions. Honever. in practice. the eqxessive power of these languages to rep 

resent the different existing parallel programming modeis is very limited. Besides, 

somewhat efficient implementations of some of these languages exist only for the 

shared-memory architectures [4l. 67). The theoretical work in [13] shows t hat no 

f d y  automatic scheduling strategy for functional languages on distributed-memory 

machines can ensure good performance. unless the processes can somehow migrate 

from one processor to another. 



h the semi-explicit category. user t &es care of the difficult parallelism related 

issues. the rest is handled by the system. for esample: High Performance Fortran 

(HPF) [46] and Fortran D [38]. Both approaches follow the data-parallel model 

of computation. The user specifies the most crucial parts of parallel application 

development. e.g.. the vinual architecture and the data decomposition st rategy. 

and the rest is handled by the semi-automatic compiler and the run-time systeni. 

Like automatic parallelizing compilers. the utili ty of these approaches is limited by 

the availability of parallelizable loops resulting exclusively in dat a-parallel cornpu- 

t at ions. 

Several variations of the algori t hmic-skeleton approach ( refer t O the previous 

section) are also semi-explicit . For instance. in the algorit hmic-skele ton approach 

taken by Darlington et al [XI.  critical issues like ressource allocation are documented 

for each skeleton/machine pair and are addressed explici tly during implementation 

in an interactive manner. 

The Linda model [lj] introduces the concept of shared tuple-space between 

processes. and based on individual perceptions it can fali anywhere from implicit 

t O semi-explicit categories. Toget her wit h a few t uple-space operat ions, Linda is 

a powerful pa rde l  programming model from the theoretical point of view. How- 

ever, from the practical stand-point , implement ation of the shared tuple-space in a 

distributed-rnemory architecture results in considerable communication overhead. 

Another weakness of Linda lies in the fact that it completely hides the cost of 

computation from the programmer. because nothing can be assumed about the re- 

sponse tirne of t uple-space accesses [67]. Implement at ion(s ) of Linda over popular 

language platforms exist [43]. Irrespective of the weaknesses, the idea of tuple-space 

is an interesting one and is borrowed by some of the industrial tool-kits for building 

distributed applications (241. 



T here exkt numerous ot her high-level par alle1 programming models and sys- 

tems. which are not based on the data-parallel paradigm. and can be classified into 

the semi-explicit category. In these approaches. the user takes care of critical issues 

like data partit ioning and mapping. The associated models provide funct ionali t ies 

to handle the rest of the cornplexhies. Several of these approaches. cvhich are based 

on C++ or its extensions. are discussed in [XI. Several pat tern-based systenls are 

also semi-explicit. Some of these systems are discussed in a following section. 

2.5 Motivation for Pattern-based Approaches 

irrespect ive of whether it is communication libraries. macros. language estensions. 

parallelizing compilers. or application specific parallel libraries. a l l  of these a p  

proaches intend to provide a higher l e ~ e l  of abstraction to malie the ta& of devel- 

oping parallel applications easier by hiding the low-level details. However. al1 these 

efforts corne wit h certain cost. and hence. there is always a trade-off involved. For 

instance. higher-level models make programming more restrictive ( i .e.. the program- 

mer often loses flexibility in application development). Moreover. most high-level 

models are applicable only to a limited spectrum of parallel computing models (e.g., 

a good nurnber of them are data-parallel). 

Like any ot her high-level approach. the pat t em-based approaches also have 

the same incentives and also f d  into the trap of the similar trade-offs mentioned 

before. However. as compared to the other approaches. patterns have the potentid 

for attaining the following additional objectives: 

Re-usability: Pattern-based approaches favor two types of reuse: reuse of 

application code and reuse of code for patterns (i.e.. code-skeletons). One 



main intention of al l  pattern-based approaches is to be able to reuse enist- 

ing sequential code. instead of rewriting parallel applications from scratch. 

Patterns are appiication-independeut abstractions. It is possible t O generate 

code-skeletons for patterns and then plug in application-specific code insidr 

these skeletons. This clear separation ( also known as separation of speczjica- 

tions) might enable large segments of existing sequential code to be reused. 

because most parallelism-related constructs are abstracted inside the code- 

skeletons. Moreover. each pattem is itself a reusable component. realized as a 

pre-implemented code-skeleton. which CM be reused in different applications 

that follorv the same pattern. 

Problem decornposition and distribution: Problem decomposition means 

identifying the parallel components in a problem. $\*hile distribution deah 

with the suitable distribution of these parallei components to the under- 

lying architecture. Through the use of patterns. the parallel components 

are already identified. e.g.. in the divide-and-conquer tree. each node of the 

tree is a pardel  component. Accordingly. a suitable architecture-specific 

distribution strategy for t hese par allel components. in or der to minimize 

communication-synchronization overhead. can be laid-out by the implementer 

in an application-independent manner. Thus, by selecting a particular pat- 

tern. the programmer has selected a specific problem-decomposition and dis- 

tribution strategy [18]. 

Usability: Design patterns might simplify complex problems by letting de- 

velopers approach them at a higher level of abstraction. Together with a 

thorough study and documentation of each pattem, it might be possible to 

reduce the time to understand a pattem and to use it properly. In fact, what 



t his research demonst rates is the feasi bili ty of a nell-defined. hierarchical- 

development model for sys t emat ic development of parallel applications. 

Correct ness: The reusable code-skeletons for patterns can be well tesred. 

This reduces the probability of erroneous code. provided patterns are used 

correct.. Y ost parallelism related and error-prone issues are hidden inside 

the code-skeletons. Consequently. the developer cm spend more time in the 

application-specific issues. 

The next section presents an overvier of some of the existing pattern-based 

systems and similar approaches. 

2.6 Some Exist ing Pat t ern-Based Approaches 

The pattern-based approach to parallel programming is not new. It was applied in 

the late 1980s in systems like CODE [11.12] and FrameWorks [60-631. Some recent 

systems based on similar ideas are CODE2 [12]. Enterprise [56.63]. HeYCE [12], 

PCGTCF [TOI. Tracs [6]. DPnDP [64-66) and COz P3S [lï]. In [20]. the authors 

take a similar approach from the functional programming viewpoint (based on the 

functiond language called FP. first introduced by Backus in late 1970 [4] ). Simiiarly. 

in [22]. the authors take their approach based on a high-level parallel programming 

language c d e d  Strand [23], which is similar to any logic programming language 

that uses guarded des. Both model programming [9.10] and Archetypes (161 em- 

phasize the use of patterns from the viewpoint of education. documentation and 

example implementations. In the work by Pandey et al [53], the authors propose a 

concurrent programming model and a programming language (e.g., CYES-C++ ), 



which emphasize the idea of separating computation from communication and syn- 

chronization thar could facilitate extension and modification of prograrns (siniilar 

to the idea of separation of spec2fications. mentioned previously ). 

Some of these approaches are briefly discussed next from the point of view of 

their design philosophy. and definition and implementation of pattern-concepts. 

The systems surveyed here often have ot her contributions to parallel comput ing. 

ot her than the use of pat tems. Hoivever. t hey are analyzed from the perspective of 

the use of pat tern-related concepts in t heir programming models. 

2.6.1 Code 

CODE( Compu tat ionally Oriented Display Environment ) [Il .  121 \vas developed at 

the University of Texas at Austin in the iate SOS. It is one of the pioneers of the idea 

of separation of speczfications. by allowing a two-step development process. During 

the first step. programmers design the mrious sequential cornponents and then. in 

the second step. compose them into a pa rde l  structure. It uses visud program- 

ming techniques to aid the programmer gaphically develop a pa rde l  structure 

through the use of nodes and arcs that represent computations and interactions 

respect ively. The programmer subsequently configures the nodes and arcs using 

textual annotations. following specific d e s .  in the graph. The sequential code c m  

be deveioped in C or Fortran. 

CODE follows a data-flow mode1 of computation, where each node can begin 

computing only when data is available on each of the arcs incident to it. There is, 

thus. one obvious pattern in CODE. which is a composition of the various nodes and 

arcs interacting in a data-flow manner. Each node in CODE can itself be another 

data-flow graph. Thus. it supports reuse of other data-flow graphs by allowing 



2.6.2 Fkameworks 

Frameworks [60-621 !vas developed at the University of Alberta in the late SOS. 

It was specifically designed to restructure existing sequential programs to esploi t 

parallelism on wotkstation clusters. .\ccordingly. one of its main emphases &vas on 

the reuse of the existing sequential code. The Frameworks programming model 

supports separation of specifications by segregating the application specific sequen- 

tial code from the parallel structure of the application. d i c h  can be developed 

separately. 

Patterns in Frameworks are called ternplates. which are at a different level of 

abstraction than the parallel patterns mentioned previously in this chapter. In the 

Frameworks programming model. an application consists of a set of modules that 

interact with one another via calls similar to remote procedure calls(RPCs). These 

c d s  can be blocking or non-blocking. Messages between modules are in the form 

of user deiïned frames. which are C structures except that pointer types are not 

allowed. Each module consists of a set of procedures. one of which is the entry 

procedure and is the only procedure called by other modules in the application. A 

module dso contains local procedures. cdable only rithin the module. -4 module's 

complete interconnection with other modules are specified by an input template. an 

output template. and a body template. An input template specifies the scheduling 

algorithm for incoming RPCs. an output template specifies scheduling algorithm for 

outgoing RPCs. and the body template specifies how the body behaves. either as a 

single node or as a replication. Developers create modules by selecting appropriate 

templates and application procedures. Arbitrary process graphs can be created by 



interconnecting resulting modules. Each module is written in an esrension of C. 

augmented by features to support remote procedure calls. 

Frameworks is aa early system that successfully exploited the idea of using corn- 

monly occurring parallel structures in pa rde l  application development and inspired 

the development of another pattern-based system called Enterprise. discussed nest. 

2.6.3 Enterprise 

Enterprise [56.63] was developed at the University of Alberta and is a successor to 

Frameworks. It is not just a parallel programming tool. it is a complete parallel 

programming environment with a complete tool set for parallel program design. 

coding. compiling. executing. debugging and profling. 

There are a number of improvements in Enterprise over Frameworks. Patterns 

in Enterprise are at a much higher level of abstraction than in Frameworks. The 

three-part templates in Frameworks are combined into single units in Enterprise 

and are called cwsets. which are named to resemble operations in a human organi- 

zat ion. For example. the asset named department represent s a mas ter-slave pattern 

in the traditional parallel programming terminology. A k e d  collection of assets 

is provided by the system. which can be combined to create an asset diagram to 

represent the parailel prograrn structure. Each asset is associated with a piece 

of application code consisting of procedures with sequential flor of control. This 

separation of specifications is much stricter in Enterprise than in Frameworks. As- 

sets can be hierarchically combined to form a parallel prograrn. Enterprise d o w s  

the use of pointers as parameters and the system takes care of marshaling and 

un-marshahg of data. Features lilie futun variables enable more concurrency. .4 

number of other features and tools improve the usability and portability aspects of 



the system. 

Like FrameIVorks. Enterprise provides a fked number of hard-coded par terns 

for application development. The patterns are built into the sysrem and work w l l  

in combination r i t h  each other. However. there is no easy way of introducing 

new pattems without performing a major modification to the system. Beides. 

both Frameworks and Enterprise offer their own high-level models for application 

development . which users often found too restrictive and inflesi ble 1631. 

2.6.4 Hence 

Hence (Heterogeneous Setwork Computing Environment) was developed at the 

Cnirersity of Tennessee [El. It is similar in purpose to Code. and uses similar visual 

progamming and separation of specification techniques. However. unlike the data- 

flow graphs in Code. graphs in Hence depict control-floa*. Hence supports patterns 

supporting replication. pipeline. loop and conditional constructs. It uses PVM 

undemeath and runs on a network of Cnix machines. The sequential procedures in 

each node are written in C or Fortran. 

It was obsenred that Hence is much easier to leam and use as compared to 

Code. However. experience showed that it might not be flexible enough to express 

more comples parallel aigorithms [12]. In these respects. Hence suffers from similar 

limitations (e.g.. lack of flexibility and extensibility) as FrameWorks and Enterprise. 

Tracs [6] was developed at the Cniversity of Pisa. and it provides an elegant graph- 

ical user interface for developing message-passing pardel  programs. It uses sepa- 



ration of specifications. similar to the ot her syst ems descri bed previously. 

Tracs is based on the message passing programming model. In this model. at a 

given instant. a set of applications may be riinning. each comprising of one or more 

tasks. A task can interact with other t a s h  primarily via a service. a mechanism 

simiiar to a remote procedure c d .  Tasks belonging to the same application can 

also communicate via a low-level mechanism. either synchronous or asynchronous 

point-t+point communication via uni-directional channels. Each task is context- 

insensitive. meaning that its code does not depend on which tasks it interacts with. 

or which host it is placed on. The laquages supported are C. C++ and Fortran. 

Application development is composed of tivo distinct phases: the definition 

phase and the configuration phase. In the definition phase. the user defmes the 

three basic components of an application: the message model. the task model and 

the architecture model. -4 message model defines a template for the structure of a 

message. An application has a collection of such message models. which have to be 

identified during this phase. The second component. a task model. is a complete 

description of a task. starting from the laquage to be used. ports. services and 

message models used by the ta&. etc. The architecture model defines the software 

architecture of the pardel  application in terms of fonnal message and task models. 

An architecture model defined during this phase can be saved in a user-defined 

library for latter use. 

During the configuration phase. the programmer constructs the complete a p  

plication from the basic components. either defined during the definit ion phase or 

selected from the system libraries or both. The libraries are composed of two parts: 

the user-defined libraries and the libraries supplied with the environment. If every- 

t hing is selected from the libraries. the definition phase can be skipped. Separation 

of the development process into the two distinct phases is exactly the separation of 



specifications issue discussed earlier. An elegant graphical user interface aids visual 

deveiopment of an application during both the phases of developrnent. 

Patterns in Tracs are actually the architecture models. constructed from formal 

message and taçk models. defmed during the definition phase of the development. It 

supports the notion of extensibility of the system. unlike the ot her systems described 

previously. by dowing the user to define and save an instant iatzd pattern for future 

use. However. Trac's way of realizing extensibility and re-usability has several 

limitations. First. the cornpiete graphical definition of a pattern from the two basic 

components. message and ta& models. has limited scope. For instance. t here is no 

elegant way t O define a d ynamically creat ed divide-and-conquer tree grap hically. 

Second. the graphical model does not support the creation of some very useful 

patterns: for instance. a pattem that uses peer-tepeer interaction as in a data- 

parallel mesh. Thus. an application needing a data-parallel mesh for its solution 

is generally out of its scope. Third. the patterns that can be defined and saved 

gaphicdly are non-parameterized. and hence. are not generd. For instance. the 

user can visually instantiate a 5-daue master-slave pattern and Save it for future 

use. but not a general master-slave pattern. which is more elegant and useful as a 

re-usable component . 

2.6.6 DPnDP 

DPnDP [65.66] %vas developed at the Lniversity of Waterloo with an intention to 

handle two of the major limitations of some of the previous pattern based systems: 

la& of dexibility and closeness (i.e.. non-extensibility ). The DPnDP model pro- 

vides four basic components: nodes. ports. channels and message handlers, from 

which an application can be developed either textually or graphically. The pr* 



gramming model supported is similar to a client-semer type model. -4 node can 

either be a singleton. containing sequenrial application code. or a design patteni. 

Design patterns like master-slave. pipeline. and replicat ion were incorporated int o 

the system library and could be used as reusable components. It applies a two 

step development process. similas to the other systems described previously. and 

thus separates most of the parallelism related issues from the sequent i d  application 

code. 

Though DPnDP was intended to be a flexible and extensible pattern-based 

system. where new pattems could be incorporated into the system by a user as per 

requirements. these intentions were not fulfilled. This failing can be attributed to 

the following limitations of the model. First . in DPnDP. each pattern is modeled as 

a senrer processing requests in first-corne-first-served order. This single scheduling 

technique. based on the client-server paradigrn. reduces the generality of the model. 

Second. although each design pattern is modeled as a server. the approach advocates 

message passing to access the low-level primitives. The model is quite unclear 

about the separation betvveen these two types of interactions. Third. and this is 

a major limitation. although DPnDP provides a methodologv for defining a new 

design pattem for estending the library the definition only dows  one to create 

the desired structure of the design pattern. The provision of interaction primitives 

among the various computing modules. which brings in the behavior. is not included 

in the methodology. Fourth. the DPnDP model does not speci- the constituents 

of a pattem and its interfaces with other pattems. With this lack of information, 

the designer is uncettain regarding how to design and add a new pattems to the 

system without affect ing the rest . substantially hampers the extensibility of 

the approach. 

Although DPnDP did not meet its goals. it did provide a good learning experi- 
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ence and also set up the stage for further research into the area in order to overconie 

some of its major limitations. 

2.6.7 Archetypes 

Concurrent program archetypes aas a project at the California Institute of Tech- 

nology [16.17]. -4s mentioned in [17] - A concvment program archetype ai& in 

the development of reliable. efficient. parallel applzcatiorw with comrnon cornputa- 

tion/communication &ucture b y providing development rnethod* and code-lzbraries 

specific to that structure ". An archetype is a collection of three components: a 

method of problem soiving for a restricted class of problems. a program design 

strategy associated with this method, and a collection of tutorial example applica- 

tion progarns in different laquages and ru- t ime systems. and on different target 

architectures for each application. 

The work on Archetypes so far has not proposed any software tool or mode1 

for parallel application development. Rather. the emphasis is on understanding the 

commonl y used parallel structures via example implement arions and document a- 

tion. so that the knowledge can be conveyed in a systematic manner. 

2.6.8 Mode1 Programming 

The work by Per Brinch Hansen [9.10] focuses on similar ideas in the domain of 

scientific computing. IR the author's words. a programming paradigm is a class 

of algorithms that solve different problems but have the same control structure. 

The work studies a number of such paradigms. for instance: all-pairs pipeline, the 

multiplication pipeline. the divide and conquer tree. the divide and conquer cube, 

pardel Monte Car10 trials and the cellular automata. 
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For each paradigm. a general program is writ ten t hat defines the conmon coot rol 

structure. Such a program is called an algonthmic skeleton. a geraenc program. 

or a program template. Such a program contains a few unspecified data-types 

and procedures that vary from one application to another. A mode1 program is 

obtained by replacing these data-types and procedures from a sequential program 

that solves a specific problem. Thus. a mudel program has a parallel coniponent 

that implements a paradigm and a sequential component for a specific application. 

This approach is exactly the issue of sepamtion of ~pecàficatiow discussed before. 

Description of each paradigm includes example applications. 

Similar work on algorithmic paradigms and skeletons. more from the functional 

programming perspective. is a major focus point of the so called algorithmic d e l e -  

tons research group. which is briefly discussed next. 

2.6.9 Algorit hmic Skeletons 

One of the pioneering works in the area of parallel algorithmic pattems is the Ph.D. 

research by Murray Cole [IS] at the University of Edinburgh. One of these pattems 

is already illustrated in the beginning of this chapter under section 2.3. Pardlel 

algorithmic patterns in Cole's work. and other similar works. are often represented 

as high-order polymorphic functions. which are best represented using the various 

func t ional programming languages [29]. However . as Cole's work suggest S. conven- 

tional imperat ive languages (specially those t hat support functions as parameters) 

c m  aiso be used for realizing higher-order polporphic  functions in the form of 

program- or procedural-templates. 

Logic programrning languages. in the fonn of predicates and associated clauses, 

can also be used to mimic the functionalities of hi&-order functions. In this case, 



program execution consists of deciding whet her the outermost predicate is true. 

given its arguments as clauses and their definitions. Mïth this approach. it is even 

possible to specify the outermost predicate ni th unbound arguments. The purpose 

of progam execution in this case is to find bindings to the unbound arguments 

d o r i n g  the predicate to be satisfied. or to determine if no such bindings esist. 

The other pioneering work by Ian Foster et al (22) takes a similar approach from 

the logic programming viewpoint . in t heir high-level represent at ion of algorit hmic 

skeletons. This work uses the concurrent logic programming language Strand (231 

in its representation of dgorithmic skeletons. A Strand program consists of a col- 

lection of guarded d e s .  where each rule resembles a predicate and a set of associ- 

ated clauses. plus some added features. Program development in Strand facilit ates 

source-t~sourcetransformat ion. which is one of the features of t his approach. This 

facility d o w s  a programmer to develop an application in a form that is convenient 

to him. and is autornaticdy transformed to a form convenient to the system so that 

the resultant application can be linlied with the system library Another feature is 

the possibility for creating new skeletons. from partly existing ones and partly new 

skeleton-code. using composition d e s  wit hout remit ing all from scratch. 

In the work by Darlington et ai [21]. the authors foliow a path similar to Cole's 

work for imperative laquages. -4s a distinction. algorithmic skeletons in this work 

are fonnulated in a non-strict functional programming language cdled Haskell[39]. 

Unlike Cole's skeletons. where the programmer is completely unaware of the under- 

lying architecture, skeletons in this work are augmented with documents regarding 

resource allocation issues for each skeieton/rnachine pair. The resource allocation 

issues are addressed explicitly during implementation in an interactive man.net. Ac- 

cordingly. the programming mode! here is semi-explicit as compared to the Cole's 

implicit approach. 
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Of late. there are severd i-ariations of research works in this direction. .A com- 

prehensive survey and cornparison of the ~ar ious  algorithmic skeletons fornmlated 

by some of the well known researchers in this area can be found in [14]. 

2.7 Limitations of the Existing Pattern-Based Ap- 

proaches 

Although the idea of design- and implementation-level patterns holds significant 

promise. in practice however. most of the pattem based systems mentioned before 

face some or al1 of the following severe limitations: 

1. Limited flezibzlzty: In most systems. the user is often restricted by a limited set 

of pre-dehed pat tems and hard-set restrictive d e s .  Often. if some desired 

pattern is not supported by the system. the user has no alternative but to 

quit the idea of using the particular approach altogether. 

'2. No e ~ t e ~ i b i l i t y :  Most systems are hard-coded with a limited and fked set of 

patterns. and often there is no method for adding n e r  patterns to the system 

whenever need aises. This type of closeness harnpers the usabiiity of the 

approach. 

3. Ad hoc pattern: Most systems support an ad hoc set of parallel patterns, 

without providing any canonical definition of a pattern. This omission has 

serious adverse implications. restrict ing the user's ability to develop appiica- 

tions using pat tern-composition. and also in designing new pat tems rvhich 

need to work in conjunction with the existing ones. 



4. Lanpage: Uany of the pattern-based systems are based on new languages 

or language extensions. The work on algorithmic skeletons is based on ab- 

stract mathematical concepts and is best suited for implementation using the 

various functional and logic programming languages. However. adoption of 

such approaches by the main-stream parallel programming community be- 

cornes an issue, where the conventional languages (like Fortran. C. C++ and 

Java) and programming models remain the preferred choices for the major- 

ity of developers. 'rforeover. adoption of new llanguages and/or programniing 

paradigms also directly affects other important issues like software reusability 

and maint ainability 

Al1 these factors severely restrict the usability of a particular approach. .A 

detailed discussion on these shortcomings can be found in [63]. More cornparisons 

with some of the related works appear towards the end of the thesis. 

2.8 A Generic IvIodel for Pattern-Based Parallel 

Comput ing 

The idea of design- and implementation-level patterns in parallel computing holds 

significant promise and is an active area of research at this moment. However. 

most of the current pattern-based approaches suffer fiom severe iimitations. some 

of which include: lack of flexibility, zero extensibility, ad hoc patterns hindering 

pat tern-composit ion. and language related limitations. 

In contrast to the previous approaches. this research proposes a generic pattern- 

based model for the design and deveiopment of parallel applications. The model 

is generic because it can be described in a manner independent of patterns and 



applications. The model is based on the message-passing paradigm. nhich makes 

it particularly suited for a network of workstations and PCs. It combines the fles- 

ibility of a low-level. MPI-like message-passing environment with the benefits of 

high-level parallel pat tems. which provides the necessary flexibility in application 

development. The generic model. as opposed to being ad hoc. enhances usability. 

As is discussed later. the generic model also contributes towards estensibility. -4s it 

t urns out. the model can be ideally implemented using ob ject-oriented techniques. 

An object-oriented and library-based implementation of the model in C++. using 

MPI as the layer underneath. has been completed rithout necessitating any lan- 

guage extension. The object-oriented and library-based approach. in conjunction 

with the generic definition of a pattern. facilitates extensibility. 

The next two chapters discuss the model and its present object-oriented im- 

plementation. The subsequent chapters further elaborate on issues like the appli- 

cability of the model in the realization of the nrious parde l  patterns mentioned 

earlier. issues ranging from flexibility and extensibility to the various software engi- 

neering aspects of the model. and finally performance related issues of the present 

implementation. 



Chapter 3 

Parallel Architectural Skeletons 

This chapter introduces the Pardel Architectural S keleton Mode1 (abbreviated 

PAS'II). Latter in the chapter. the mode1 is further elaborated uith the help of a 

few examples. Impiement at ion issues of the sarne examples. from the perspective 

of the PAS34 system. are discussed in the next chapter. The mode1 is discussed 

next. 

h parallel architectural skeleton [31-331 is a set of attributes that encapsulate the 

structure and the behavior of a pardel  pattern in an application independent 

manner. These attributes are generic for a l l  patterns. As is described later in this 

chapter, many of these attributes are parameterized where the value of a parameter 

depends on the needs of an application. Some of these parameters are staticaiiy 

configurable (i.e.. at compile time) while the othen are dynamic (i.e.. run-time 

configurable). User extends a skeleton by speci@ing the application-dependent 
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instantiation of Concrcu Modules as 
collection of processes 

Step 1: Extcnd 
Step 2: Add Application Code 
Step 3: Instmtiiue 

As: An Architectur;il Skclaon 
Am: An Absact Module 
Cm: A Concrcte Module 

Figure 3.1: Application development using architectural skelet ons 

static parameters. as needed by the application at hand. 

Figure 3.1 approximately illustrates the various phases of application devel- 

opment using parallel architectural skelet ons. As shown in the figure. different 

extensions of the sarne skeleton can result in somewhat different abstract parallel 

computing modules (abbreviated as an abstract module). An abstract module is yet 

to be filled in with application code. Once an abstract module is supplied with 

application code. it results in a concrete parallel computing module (abbreviated 

as a concrete module or simply a module). .A pardel  application is a systematic 

collection of mutuaily interacting, instantiated modules. 

An abstract module inherits all the properties associated with a skeleton. Be- 

sides. it has additional components that depend on the needs of a given application. 

In object-oriented terminology. an architectural skeleton can be described as the 
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Figure 3.2: Structure of an abstract module 

generalzzation of the st nicturd and behavioral properties associated \vit h a partic- 

ular paralle1 pattern. An abstract module is an application-specific specialization 

of a skeleton. 

Figure 3.2 diagrarnmatically illustrates the anatomy of an abstract module (in 

r his case. the module ex tends the data-parallel architecturai skeleton designed for 

3-D mesh topology ). The various attributes associated with a skeleton (and subse- 

quently inherited by an abstract module and a module) are explained next. 

3.1.1 A formal description of the mode1 

Definition 1.1: An architectural skeleton. -4s. is an application-independent ab- 

straction comprising of the following set of generic attributes. { Rep. BE. Topology , 

Prnr. fEri). An abstract module is an application-specific extension of a skeleton. 

Let An be such an abstract module that extends the skeleton. As. The various 

attributes inherited by Am (fiom -4s) are described in the following: 

0 Rep is the representative of .-lm. When filled in with application code, Rep 

represents the module in its action and interaction wit h ot her modules. 



BE is the back-end of .-lm. Formally. BE = {Aml.  Am2 ..... .-Inin}. where 

each Am, is itself an abstract module. The notion of modules inside another 

module results in a tree-structured hierarchy. -4172. at the root of this tree. is 

the parent and each Am, is its child. Xodules Am, and Am, belonging to the 

same back-end are peen of one another. 

Topology is the interconnection-topolog?. specificat ion of the modules iuside 

the back-end (BE). and their connectivity specification ivith Rep. 

PI,,, is the internal communication-s>lidironization protocol of Am and its 

associated skeleton. -4s. The interna1 protocol is an inhcrent property of the 

skeleton. and it captures both the parde l  computing mode1 of the corre- 

sponding pattern and the topology. Formally. PInt is a set of communication- 

spchronization primitives. Using the primitives inside Prnt. the representa- 

tive of Am can interact with the modules in its back-end, and a module in 

the back-end can interact with its peers. 

Pfi i  is the extemal communicat ion-spchronization protocol of .-lm. For- 

m d y .  it is defined as a set of primitive cornrnands. Gsing the primitives 

inside PEIt, Am can interact with its parent and the peers. Lnlike Ph#, 

which is an inherent property of the skeleton. PEri is adaptable. That is, .4m 

adapts to the context of its parent by using the internai protocol of its parent 

as its extemal protocol. Formally. (PEr<)Am = ( Plni ) PoretirAm 

Though an abstract module is an application specific specialization of an archi- 

tectural skeleton. it is still devoid of any application code. -4 user writes application 

code for an abs tract module using it s communication-spchronization protocols, 

PInt and PEIi. A code-complete abstract module is called a concrete parallel com- 



puting moduk (abbreviated as a concrete module or a module). A concrete module 

can be formally defined as foliows: 

Definition 1.2: (1) An abstract module with no children (Le.. an empty BE) 

becomes concrete as soon as its representative. Rep. is Wed in with application 

code. (2) An abstract module with children becomes concrete provided each of its 

children is a concrete module and its own representative is fdled in with application 

code. A parallel application is a hietarchical combination of rnutually interacting 

concret e modules. 

As is mentioned before. the notion of parent-child relationships among modules 

results in a tree-structured hierarchy. A parallel application can be viewed as 

a hierarchicd collection of modules. consisting of a root module and its children 

forming the sub-trees. This tree is called the H W e  associated with the application. 

The hierarchy can be fonnally defined as foliows: 

Definition 2: (a) Let us consider a module M .  either abstract or concrete. Let Rep 

be its representative and BE = {Ml. .CI2, .... Mn) be its back-end. The hierarchy 

associated ivith JI is denoted as HTree[M] and is recunively defined as the set, 

HTree['il] = {Rep. HTree[M1]. HTree[;\I2] ..... HTree[.bIn]}. In other words. Rep of 

.CI is at the root of the tree. and the modules in the back-end fornl the sub-trees. 

(b) Let the module JI form the root of an application's hierarchy. In that case, 

the HTree asociated w'th the application is the same as HTree[Mj. The application 

becomes complete as soon as becomes a concrete module (also refer to Definition 

1.2). 

Every parallel application is structured as an HIPree. For instance: (1) in a 

Mast er-Slave application, which can be implemented using the dynamic replication 

slieleton. the Hast er module forms the root of the hierarchy and the dpamically 
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Figure 3.3: Diagrammatic representation of a HTree 

repiicated children. Worker modules. form the sub-mes. (2 )  In an application 

consisting of the three modules: Producer. Worker and Consumer. a compositional 

module (i.e.. a module which extends the compositional skeleton) forms the root of 

the hierarchy, and its three children (Le.. Producer. Uorker and Consumer) form 

the sub-trees. In either case. a singleton module that has no children is a leaf. 

HTrees associated wi th these two applications are illustrated in Figure 3.3(a) and 

( b ) respect ively. 

Definition 3: As is seen earlier. a parallel application is a hietarchical collec- 

tion of modules. Each module takes in some inputs from other modules (i.e., its 

parent and peers). performs some action. and produces some outputs to other mod- 

ules. It is possible to replace a module JI, with another module .M,, while keeping 

this replacement transparent to its parent and peers. provided M'' has the same 

input-output interface and performs the same action as M,. This type of local- 

ized replacement that might aid towards the bettement of a parallel application 
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is called tefinement. Refining a parallel application is equilalent to modifyirg a 

sub-tree of the associated HTree. without affecting the rest. 

For instance. let us consider the Producer-Worker-Consumer application. nien- 

tioned earlier. Initialle each of the three modules is a singleton module (Fig- 

ure 3.3(b)). However. Worker is found to be very time consuming. and hencc. 

is refined to a dpamic-replication module of identical name. In this case. the 

Worker module d-mamicaily replicates its work-load to Sub-Workers. each of which 

is a singleton module. The corresponding change in the HTree is illustrated in Fig- 

ure 3.3(c). Sote that the modules Root. Producer and Consumer remain untouched 

by this change. 

To summarize. an architectural skeleton is a pure application-independent ab- 

straction. An abstract module cont ains some appiicat ion specific components (e.g.. 

the right parameters for topology. the right protocol depending on the curent 

context ). A concrete module is an application-specific completion. A hierarchy 

comprising of only abstract modules represents the overall structure of an appli- 

cation. without application code. From the implementation perspective. such a 

structure can be compiled and nui. however without doing anything usefd. 

in the rest of the discussion. the parallel architectural skeleton model will be 

abbreviated as PASM wherever appropriate. The next section illustrates the theory 

behind the model nith various examples. 

3.2 Examples 

This section exemplifies the theory behind the PASM model in an implementation- 

independent manner. The next chapter discusses the curent  object-oriented im- 



piemenration and re-visits the esamples. More esamples are presented in chapter 5 

which describes the catalog of existing parallel architectural skelerons. 

3.2.1 A Graphics Animation Application 

Let us consider the graphics animation application [63] already discussed in Chap- 

ter 2. As mentioned before. it consists of the three modules: Cenerate. Geometry 

and Display. The application takes a sequence of graphics images. called frames. 

and animates them. Generate cornputes the location and motion of each object 

for a frame. It then passes the frame to Geometry. which performs actions such 

as vievving transformation. projection and clipping. Finally the frame is passed to 

Display. which performs hidden-surface r e m o d  and ant i-aliasing. Then it stores 

the frame onto the disk. .Ifter this. Cenerate continues with the processing of the 

nem frame and the whole process repeats. 

Each of Generat e. Geometry and Display performs sequential computation (at 

least . for the rime being ) . and together t hey form a pipeline. Pardelism is obvious 

in this case: each pipeline stage can work concunently r i t h  the other two stages 

and speed-up should be achieved as long as the pipeline remains full. 

The singleton skeieton is designed for singleprocess. single- or multi-threaded 

cornputation. and hence. it can be extended to create each of the three sequential 

computing modules: Generate. Geometry and Display. Together they foxm a 

pipeline. Either of the pipeline skeleton or the compositiond skeleton can be used 

to compose the three sequentid modules to form the pipeline. In this case. it is 

decided to use the compositional skeleton due to the fact that some other features 

of the mode1 (e.g.. flexibility) are enhanced by the compositiond skeleton and are 

discussed later in the thesis. The compositional skeleton is used to irregularly 



Exunds Lht compioonai sktlttdn. 
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Exteruai protoc01 = Void 
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Commwication using PROTRcpl 
GE = Gcnerau. Gco = Geomcay. Di = Display. W = Workcr 

Figure 3.4: Structure of the animation application 

compose other modules. By default. the modules composed (i.e.. the child modules 

inside the back-end) are d-to-all interconnected. The interna1 protocol Prnt of 

the compositionai skeleton is PROT-Yet = {Send( ...). Receive( ...) . Broadcast( ...). 

Spawn( . . . ) .. . . ) . 

hfter deciding on selecting the appropriate architectural shletons. the applica- 

tion is structured as follows. .A compositional module (initiaily abstract ) named 

Root extends the compositional skeleton and forms the root of the hierarchy (Fig- 

ure 3 4 a ) ) .  The module Root extends the compositional shleton by specifying 

the foîlowing applicat ion-specific static paramet ers associated wit h the various at - 
tributes discussed before: (1) the constituents of its back-end, which in this case 

are: Cenerate, Geometry and Display: (2) the topology specification which, in 

this case. is the default My-connected topology; and (3) the adaptable extemal 



Figure 3.5: HTree representation of the animation application 

protocol. PErt. rhich is void in this case since Root is at the root of the hierarchy 

and accordingly it has no parent. 

Each of the three (abstract) modules Generate. Geometry and Display is 

formed by extending the singleton skeleton (Figure 3 4 b ) ) .  In each case. the fol- 

lowing single static parameter needs to be specified nhile extending the shleton: 

the adaptable extemd protocol. PEzl. In this case. the external protocol becomes 

PROTSet .  which is the same as the intemal protocol of the parent. Le.. the Root 

module. Thus. in one sense. the external protocol is implied by PAS31 and hence it 

does not need explicit specification by the user. Note that a singleton module c m  

have no children. and hence. both of its interna1 protocol. P I N .  and the topology 

attributes are empty. 

Figure 3.4(a) illustrates the toplevel structure of the application. The corre- 

sponding HTree representation is shown in Figure 3.5(a). Figure 3 4 b )  illustrates 

the anatomy of the Display module which. in this case. extends the singleton skele- 

ton. A singleton module can have no children and with an empty back-end it fonns 

a leaf in the hierarchy. The empty back-end of Display is not shown in the figure. 

thil now. nothing has been mentioned about the application code for each 



module. -4s is discussed in the previous section. each abstract module beconws 

concrete as soon as it is code-complete (refer to Definition 1.2). Discussion about 

the code-specific parts of the application is postponed to the nest chapter. where 

the irnplement at ion issues of P.\S.\I are presented. 

Refinernent 

As discussed in the previous chapter. in a typical graphics application. the Display 

module that performs hidden surface remonl and anti-aliasing is the  most time 

intensive of the t hree children modules. This d l  slow-dom the entire pipeline. The 

best way to resolve this is to distribute the work-load of Display to dynamicdly 

replicated (i.e.. replicated based on load) workers. Consequently. the singleton 

D i  s p  1 ay module is replaced wi t h mot her module. of ident ical name. which extends 

the replicatian skeleton. In this case. the work-load of the new Display module 

is distributed among dynamicdly replicated children. i.e.. Worker modules. Each 

Worker extends the singleton skeleton. 

The interna1 protocol of the replication skeleton is PROTRepl. which becomes 

the extemal protocol of each Uorker. The extemal protocol of Display remains 

the same as before. i.e.. PROTSet .  

The new Display module is illustrated in Figure 3 4 ~ ) .  The corresponding 

change in the HTree representation of the application structure is shown in Fig- 

ure 3.5(b). Sote that the rest of the application is unaffected by this change. In 

fact. that is exactly the definition of rehement (refer to Definition 3). 
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3.2.2 Jacobi 

This example illustrates an application of the PASAI mode1 in a parallel irnple- 

mentation of the Jacobi iterative scbeme for solving sparse linear systems. Sparse 

systems are fkequently encountered in various scientific applications. for ins t ance: 

t herniodynamics. comput ational fluid dynamics. electromagnetics. [5O. 591. In t his 

specific application. it is assurned that a square grid with given boundary con- 

ditions is used. The algorithm iterates over all g i d  points. and at each point it  

calculates certain d u e  (for instance: temperature) associated with the point based 

on the values of the neighboring grid points. The algorithm repeats until al1 the 

values converge. The conwrged values correspond to the solution of the collec- 

tion of linear equations. as represented by the sparse (matrir) system. E\?identlc 

neares t-neighbor communication is an essential ingredient of the Jacobi iterat ion 

scheme. 

The data-pardel mesh is the most appropriate for this application. The given 

grid is equdy partitioned among the mesh-elements. Some suit able mapping al- 

gorit hm or heuristic method can be applied in this mapping [30]. However. in the 

case of a square grid. the mapping is quite straightforward. hlultiple grid-points are 

mapped per mesh-element . which determine the granulari ty of the application (i.e.. 

the ratio of cornputational t ime to communication overhead at each mesh-element . 
between two successive communications). Sote t hat nearest neighbor communica- 

tion is needed at the inner mesh-boundaries. 

O bviously. the architectural skeleton for mesh-st ructured dat a-parallei compu- 

tation is the most appropriate for this application. Accordingly. the root of the 

hierarchy is formed by the module named Jacobi. which extends the data-parallel 

skeleton irefer to Figure 3.6(a)). As s h o u ~  in the figure. its topology parameter is 



The Jacobi module The McshElcmcnt module 

Exrrnâs the DataParailel skeleton. 
Topology = 2-D M u h  Ex~cruai proiocol = PROT-ZDMcsb 
I n m a l  protocol= PROT-ZDMesh InicmJ protucol = void 

BE 
Exurn;il pmtocol= void 
Chiidrtn = MeshElemcnt(ME) 

(a) (b) 
Lrgendî: 

- - - - - -  Ctmuwhuim usutg PROT-2DMesh 
ME = MeshElcme~ 

Figure 3.6: Structure of the Jacobi application 

selected as 2-D mesh and the correspondhg internal protocol is PROTSDMesh. Its 

child module is named Mes hElement . Ident ical copies of MeshElement const it ute 

the back-end of the Jacobi module (this is one of the properties of the data-parallel 

architectural skeleton. associated tvith i ts programming model) and together t hey 

form a mesh-structured topology 

As is shotvn in Figure 3.6(b). each MeshElement module extends the singleton 

skeleton. However. it can be refined to any other module based on an application's 

needs. The adaptable external protocol of the Jacobi  module is void. since it is at 

the root of the hierarchy. The adaptable external protocol of each MeshElement is 

PROTSDMesh. which is the same as the internal protocol of its parent. 

After structuring the application this way. each i ini t idy abstract ) module is 

filled in with application code. Code-segments of the Jacobi implementation are 

illustrated in the next chapter. 

3.2.3 Divide and Conquer 

The divide and conquer pattern is discussed in the previous chapter. Of ail the pat- 

terns in pardel  computing mentioned earlier. divide and conquer is an interesting 



one because realization of this pattern inside P.-\S'.I is recursive. 

-4s a property of the divide and conquer skeleton. a module estending the skele 

ton can have multiple copies of itself as its own children. Accordingly for a divide 

and conquer module, the static parameter that specifies its children is implicit . 

Each module corresponds to a node of the divide-conquer tree. as discussed in the 

previous chapter. The intemal protocol of each module is PROTDivideConquer. 

Though the parent and child modules are identical statically (i.e. at compile time). 

some of their dpamic  characteristics differ. For instance. as is evident from the 

previous chapter. the root module. a leaf module and an inner module have dif- 

ferent funct iondi t ies . Horv does a module dynamicall y ident ify i t self 7 This role is 

played by the primitives inside PROTDivideConquer ( refer to the next chapter). 

The divide and conquer tree supported in this mode1 is dyamic  in nature. whidi 

provides the maximum flexibility to the user. The width of the tree could be either 

static or dpamic  (i.e.. run-time configurable). and it is up to the user to make the 

appropriate selection. -4 static width corresponds to the fixed number of children 

each module can have (other than the leaf modules). The height of the divide and 

conquer tree is d ~ a m i c ,  which implies that whether a module can have further 

children or not is determined at run-time (based on whether the base condition is 

satisfied or not. as is discussed in the previous chapter). 

In this example. a divide and conquer application of static width three is dis- 

cussed. The width corresponds to the fixed number of children that each module 

can have. As is stated before, though the parent and child modules are statically 

identical. the root module corresponding to the root of the divide and conquer tree 

h a  slightly different characteristics than a non-root module. Some of these differ- 

ences are illustrated in Figure 3.7. Figure 3.7(a) corresponds to the root module 

(root of the divide and conquer tree, as weil as the root of the hierarchy in this 
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Figi 

t DC module (Roof) 
Extends rtie DividcConqucr skeleton. 
bn~aual ~rococol= PROT Dividecoaaucrj 

8 DC module (Innu) 

N u m k  of childm = widtb = 3 

~c tu re  of a stand-alone divide and conquer application 

application). nhile Figure 3 7 b )  corresponds to an inner module. A11 the implicit 

static parameters are highlighted as shaded areas. Note that the external prote 

col of the root module is void. whereas that of a non-root module is the same as 

its interna1 protocol. PROTDivideConquer. .\ leaf module has no children and 

this information is known only at run-time. A leaf module is not illustrated s e p  

arately. Code segments of a divide and conquer application are illustrated in the 

next chapter. 

3.3 Summary 

-4 pattern-based model for pardel application design and development has been 

presented. The Pardel Architectural Skeleton Mode1 (abbreviated PASM) is generic 

because it can be described independent of patterns and applications. The model 



is based on the message-passing paradigm nhich malies it  particularly suited for a 

networli of workstations and PCs. A rnajority of the frequently used patterns in 

parallel comput ing are realizable within the frametvorks of the model. Some of t hese 

patterns and relevant applications are discussed to illustrate the idea behind the 

model. More examples on patterns and related applications follotv in subsequent 

chapters. knplementation issues of the model are discussed in the nest chapter. 

Other important issues associated with the model and its implemenration. e.g.. 

flexibility and extensibility. are discussed in a later part of the thesis. 



Chapter 4 

An Object-Oriented 

Implement at ion 

This chapter discusses an implementation of P.AS.\I. When the model ivas origi- 

n d y  designed. t here sas no specific implement at ion st rategv in mind. However. 

iater on. it was realized that PASM is an ideal candidate for object-oriented style 

design and implement at ion. Recently. an object-oriented and librar-based imple- 

mentation of PASM has been completed in Cf+. without necessitating any lm- 

guage extension. Together ivith the perhrmance measures discussed in chapter 6. 

the implementation demonstrates the practical feasibility of the model. The key 

implement ation-features are discussed next . 

4.1 Basic Implementat ion Feat ures 

The curent implementation of the PXSM system uses C++ (SCXCC Compiler 

V4.1). The system is built on top of MPI [35]. There are several vendors who 



are working towards the implementation of the IIPI standard (presently 2.0). as 

proposed by the MPI forum [2]. The current implementation of the P.-\Sll system 

uses LAh1 6.1 [Il. initialiy developed at the Ohio Çupercomputing Center and now 

maintained and extended at the University of Sotre Dame, USA. LA31 (Local Area 

Multicomputer) is an MPI programming environment and development/debugging 

system for heterogeneous computers on a network. It implements the complete 

MPI-1 standard and many of the SIPI-:! features. 

.-\ textual user interface helps the user in carious stages of application devel- 

opment. Application code written using the textual interface is parsed by a Perl- 

script [73] to expand to C++ code. which is subsequently compiled and linked with 

the skeleton-library to produce the executable. As is illustrated later. the use of 

the textual interface is not a laquage-extension, but merely an opt ional feature 

that helps the user to skip certain laborious and often monotonous steps in the 

development process. If desired. the user can bypass this phase and directly work 

in C++. 

Other important features of the current implementation include: (1) use of 

C+ + operator-overloading to implement certain primitive operations inside prote 

col classes. e.g.. Send( .. . ) . Receive( . .. ) operations. inside PROT3e t .  (2)  Imple- 

mentation of automatic data-rnarshaling and un-marshaling mechanisms whereby 

the data attributes of an ob ject . user- or system-defined. can be marshaled. shipped 

over a communication link and then un-marshaled without the usual hassles of data 

paclring and un-packng as in MPI. 

The discussion begins with various examples. including the ones discussed in 

the previous chapter. illustrating the use of the textual interface. its parser. and 

the few other steps involwd in application development. Subsequently. more subtle 

issues related to some of the implementation details are covered. 



4.2 The Textual User Interface: Examples 

This section exemplifies a user's perspective of applying the system in implenienting 

tarious applications. It is assumed that the user is thoroughly familiar wit h the 

PASM model discussed in the previous chapter. However there is no requirement 

for the user to have any knodedge about the underlying implementation. Sonle 

usefd implementation related issues meant for an advanced user. i.e.. who niight 

nant to extend the system. are discussed in the subsequent sections. 

A simple sequential application is illustrated next. 

4.2.1 Hello world 

This first example does nothing more than printing the string -Hel10 Worldw . How- 

ever. it demonstrates some important features of the PAS11 model. its implemen- 

tation and the curent textual user interface. .As discussed in the previous chapter. 

the singleton skeleton is designed for single-process and single or multi-threaded 

computation. and is the most appropriate for this example. 

Figure 4. l (a j illustrates a user's implementation of the application using the 

current textual interface. The (initially abstract ) module. MyModule. extends the 

singleton skeleton. Rep is the representative of MyModule. The representative Rep 

is initially ernpty. which corresponds to an abstract module. Filling in of Rep r i t h  

application code results in the concrete module? HyModule. as shown in the figure 

(also refer to Definition 1.2 in the previous chapter). -4s a property of the singleton 

skeleton. the back-end of MyModule is empty. and hence. the interna1 protocol. Prnc. 

is void. 

The application code written using the te-xtual interface is parsed and expanded 



My Module EXTENDS SingleconSkelelon 
( 

Rcp I 
printf("Htl10 WorldLi"); 

1 
1 

(8 )  

Figure 4.1: Hello World 

by a Perl-script to generate the C++ me: Prnain.cc. Figure .I.l(b) illustrates the 

automatically generated file. Pmain.cc. which is subsequent ly compiled and linked 

with the slieleton tibrary to generate the executable. As is evident here. the user 

can directly develop the application code in C++. The textual interface and its 

parser merely reduce some of the extra work. which are evidently more pronounced 

in the examples that follow. Being a stand-alone module. the erternal protocol. 

Ph,. of MyModule is also void. ahich is specified as the template parameter Vo2d 

in the generated code. 

4.2.2 The grap hics animation application 

Let us consider the gaphics animation application discussed in the previous chap- 

ter. The application consists of the three modules: Generate. Geometry and 

Display. It generates a sequence of graphics images. cailed frames, and animates 

them. Generate computes the location and motion of each object for a frame. It 



Extrnds the compositioml skclcton. 
intemal pmmcol= PROT-Net 
E x m l  protocol= Void 
Topology = Default 
Childrca = Gcnenu (Ge). Geomeuy (Gco). Display (Di) 

- . ,  

Intrriul protacol = Void 
burual pmtaoi = PROT,Nct 

Figure 4.2: Structure of the animation application 

then passes the frame to Ceometry. which perfonns actions such as viewing trans- 

formation. projection and clipping. Finally. the frarne is passed to Display. which 

performs hidden-surface remoid and anti-aiiasing. Then i t stores the frarne onto 

the disk. After this, Generate continues with the processing of the next fiame and 

the whole process repeats. 

One way of stmcturing the application is illustrated in the previous chapter. For 

convenience to the reader. Figure 4.2 is repeated here from the previous chapter. 

The application uses the compositional skeleton and the singleton skeleton. As dis- 

cussed earlier. the Root compositional module ( i.e. Root extends the compositional 

shleton) forms the root of the hierarchy. The three chilchen of Root are Generate, 

Ceometry and Display. and they form the subtrees. Each of the three children is 

in i t idy a singleton module. and hence. is a leaf of the hierarchy. 



The following code-segments illustrate one tvay of implement ing the application 

using the textual interface. The internai protocol (i.r.. Plnt ) of the conipositional 

skeleton is PROTSet = {Send( ...). Receive( ...) . Broadcast( ...). Spatvn( ...) .... }. 
Accordingly. PROT-\et becomes the external protocol (i.e.. PEri) for eack of the 

t hree children. 

GenerateGeometry and GeometryDisplay are user defined classes whose data 

attributes can be marshaled. shipped over a communication link and then un- 

marshaled. without the usud hassles of data packing and unpacking. Their con- 

stituent data members are eit her system defined wrappers of standard data-types or 

other user d e h e d  marshal-able types. The example also illust rates the use of C+ + 
operator overloading as an alternat ive way of defining certain primitive operations 

#include "geom.hn 
M e f i n e  HAXIHAGES 120 

// Tha f o l l o a i n g  d e f i n e s  a marshal-able c l a s s .  
c l a s s  GenarateGeomstry : p u b l i c  UTypa 
E 

I n t  imagalumber; // " In t "  is a  System daf ined  marshal-able urappar 
// f o r  " i n t "  type.  

ObjTabLa t a b l e ;  // "ObjTablet' is a marshal-able c l a s s  d e f i n e d  
// i n  "geom. hW 

publ ic :  
v i n u a l  void I l u s h a ï ( )  {imageNumber. U u s h a l ( )  ; t a b l e .  H u s h a l ( ) ;  1; 

// Harshal " t h i s u  o b j e c t .  
v i r t u a l  vo i d  UnWarshal( ) {imageNumber . UnUara ha1 () ; 

t ab le .UnHunha l ( ) ; ) ;  // Un-marshal " t h i s "  o b j e c t  
// Cons t ruc to r ( s )  e t c .  f o l l o u .  . . 

// Aaothar marshal-able c l a s s  d e f i n i t i o n .  
c l a s r  GaomatryDisplay : p u b l i c  UTypa 
C 

Int  imageHumber ; 
I n t  nPoly; 
PolyTable t a b l e ;  // "PolyTable" is anothar  m r s h a l - a b l e  

// c l a s s  de f ined  i n  "gaom.hM 
publ ic :  



v i r t u a l  void l!arshal( ) EiniqeNuniber. Harshal() ; nPoly. n u s h a 1  (1 ; 
t a b l e .  M u t h a l (  1 ; 3 ; 

virtual void UMarshal() {imageNuniber. U d l u s h a l ~ )  ; 
nPoly .UnHarshal() ; table.UnHarshal() ;); 

// Constructor(s)  e t c .  fol low ... 

/ / ~ o ~ ~ o ~ o ~ ~ ~ ~ ~ o ~ o ~ o o o ~ o o o o ~ o ~ e o o o o o o o m o o o o o o o o e o o e o e ~ m e o m o o o o * * o ~ o ~ o o o  
// The "Root" module, ahich i n  at t h e  roo t  of t h e  hierarchy.  
// It has t h r ee  c h i l d  modules: Cenerate,  Geometry and Display. 
Root EXTENDS CompositionalSkeleton 
E 

CHIUREN = Generate, Geometry, Display; 
Rep € 
// The represen ta t ive  code goes here .  In  t h i s  case ,  t h e  
// represen ta t ive  of Root has no f u a c t i o n a l i t y .  
> > 

/ / * . ~ * * *000* .000*0 *00~ . *0 * * *0 *000*008*00*00*00000*0 *000000080*000* *0 *0  

// The "Generatett module, uhich extends t h e  s ing le ton  skeleton.  
Generate EXTENDS SingletonSkeleton 
E 

// A s ing le ton  module can have no ch i ld ren .  
Rep 

// The represen ta t ive  coda goes here .  
iat  image ; 
CenerateGeoaetry York; 
f o r  (image = O ;  image < MAXIHACES ; image++)< 

ConputeOb j e c t s  (York) ; 
Ceometry CC Vork; // A member pr imi t ive  of t he  ex t e rna l  
// protocol :  PROT-Net. An a l t e r n a t i v e  opt ion is t o  
// use: Send(Geomstry, Uork, con tex t ) .  

> 
1 
// A l 1  l o c a l  d e f i n i t i o n s  go beloo: 
LOCAL C 

void ComputeUbjrcts(GsnerateGao~etry& Uork) 
C 
// User code f o r  "ComputeObjscts" goes here .  
> > 

1 

/ / 0 0 0 ~ 0 0 . ~ * 0 * * * . 0 0 ~ . . * * 0 * 0 0 0 0 ~ 0 * 0 * 0 0 8 0 * ~ * 0 * * 0 0 * 0 * . * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 * 0 0 0 *  

// The "Ceometryl' module. 
Geometry EXTENDS SingletonSkeleton 
C + 

Rep i 
i n t  image = 0;  
GenerrtrGeoiatry Uork; 
GeometryDisplay Frame; 
f o r  (image = 0; b a g a  < HAXIIIIIGES ; image++)< 

Gonerate >> York; // A member pr imi t ive  of t h e  e x t e t a a l  
// protocol :  PRûT-Net. Aa a l t e r n a t i v e  O t i o n  is t o  
// us. : Resmive (Generate, York. cont ext! . 

DoConversion(Vork, Frame) ; 



Display <€ Fram; 
> 

1 
LOCAL Ç 
// Local definition of DoCorivarsion( ...) goes here. 
> 

1 

/ / * 1 0 8 8 8 ~ 1 0 1 ~ ~ ~ 0 * 0 1 ~ 0 * 1 1 0 0 8 1 0 0 8 0 0 0 8 0 0 0 * 0 * 8 0 0 0 0 * * 0 0 0 * * 8 ~ * 0 8 ~ 0 0 0 0 ~ 0 0 0 @ @ ~  

// The "Display" module. 
Display WTENDS SinglrtonSkeleton 
i 

Rep i 
int image; 
GsomitryDisplap Frue; 
for (imago = 0; image < RAXIMAGES ; image++) E 

Geometry >> Frame; 
DoHidden(Frame); 
UriteImage(Frame) ; 

-4s discussed in the prerious example. the above code is parsed bu the Perl-based 

parser to ~roduce the Cf+ file. Pmain.cc. which is subsequently compiled and 

linked with the skeleton library to produce the executable. The following is the 

skeleton of the automatically generated file. Pmain.cc: 

// The items defined insida GLOBAL u s  copisd in the following vithout 
// aay change. 
// 0 0 8 ~ ~ ~ ~ 1 1 1 1 + 0 ~ 0 8 8 + ~ 0 0 ~ 0 C 8 0 8 8 0 ~ 0 ~ 0 8 0 0 0 0 8 ~ ~ 0 ~ 8 ~ 0 0 0 ~ 0 ~ ~ ~ 0 8 0 8 @ 0  

*includm "gaom. hl' 
Mefine X A X I U G E S  120 

// Thm following difines a muthal-able clams. 
class GenerateGoometry : public UType 
C 
// Body of the clans iu copied as it is. 
>; 
// Aaother muthal-able class definition. 



c l a s s  GeometryDisplay : publ ic  UType 
€ 
// Body of t h e  c l a s s  i s  copied as it is .  
1 
// ******************************************************.*** 

// Automatically Generated code f o r  module: "Cenerate" 

c l a s s  Cenerate : publ ic  SingletonSkeleton <PRûT,Nat> 
C 
public:  

c l a s s  Puam8 
I 
publ ic :  

HaadleBase* h-73; 
HuidleBase* h-113; 
Puams(HurdleBase* ,h,73,HmdleBase* ,h,113) : 

h,73(,h,73> ,h,113(_h-l13)I); 
Parama0 :h,73(0),h,t13(0){>; 

1. 

v i r t u a l  void Repo  € 
// The r ep r e sen t a t i ve  code goes 
i n t  image ; 

here . 
Generats~eometry Uork; 
f o r  (image = O ; Ma e < MAXIMAGES ; image++) < 

CoiputeObjecti  7VorL) ; 
*(p,6ll.h,73) << York; // A member p r im i t i ve  of t he  ex t s rna l  

// protocol:  PROT-Net. An a ï t e r n a t i v e  opt ion i s  t o  
// use: Send(Geometry, Uork, con t sx t ) .  

3 > 
// LOCAL d e f i n i t i o n s  go here: 

void CornputeOb j e c t s  (GansrateGeometryL Uork) 
€ 
// User code f o r  "ComputeObjects" goes here .  
> > 

// Automatically Generated code f o r  module: "Geometry" 

c l a s s  Geometry : pub l i c  SirrgletonSkeleton <PRUT,Net> 
E 
public:  

c l a m  Pa ram 
C 
pub l i c  : 

BandleBase* h-48 1 ; 
HandleBase* h-113; 
P u a n ~ ( H a a d l e B ~ s e *  ,h,481,HandleBase* ,h-113) : 

h,481(,!1,481) ,h,113(-hh113)C); 
Pu rms ( )  :h,481(0) ,h,113(O)i); 

1;  





class Root : public CompositionrlSkeleton <PROT,Net ,Void> 
C 

UnaryH.ndle<Generite, Ganerate::Params> h-481; 
UnuyHandls<Geometry, Ceomatry::Puams> h-73; 
UaaryHandlecDisplay, Display::Parms> h-113; 

public: 

Root () : h-481 (Generate : : P u u s  (Lh-73 ,UL~ 13)) , 
h-73 (Geomatry : : ~ u - 8  (th-481 ,tbtbl13) ) , 
h,l13(Display: :params(khth481 ,th,f3))C); 

virtual void RepO i 
// The representative code goes here 

> 
// LOCAL dei initions go hem: 

1; 

void Pmaia() 
C 

Root TopLavel-820; 
TopLeval-820 .Runo ; 

> 

The automatically-generated C++ codesegments shown above suggest t hat the 

textual interface and its Perl-based parser significantly reduce the work-load on the 

part of the user in application development. The textual interface handles many of 

the implementation- and Cf+-related. and other laborious and often monotonous 

details t hat can easily be automated. 

The textual interface could be developed based on the fact t hat d l  applications 

that use the same architectural skeleton(s) follow similar implementation pattems. 

irrespect ive of the applications. For instance. applications t hat use compositional 

modules as the root of the hierarchy follon identical implementation pattems. as is 

observed inside the Root class (e.g.. the param class. the unary handles for children, 

the various C++ templates. and the typical style in using them). Similady. all 

singleton modules that are the children of a compositional module have identical 

constructs (e.g.. the param class. un- handles for peers. the extemal protocol 

PROT-Vet as a C++ template parameter). Obviousiv, for a s taud-alone singleton 



module. which is at the root of the hierarchy and hence bas no pers .  the param 

class is missing . -4 user can familiarize oneself with t hese implement at ion patterns 

via practice and t hen directly work in C++. Cntil then. the testual interface takes 

care of this part. 

C++ templates are extensively used for statically specifying the internal and 

external protocols for modules. as well as for specifying the static parameters for 

handles. The functionality of a handle is discussed later. The esternal protocol of 

the Root module is void and is specified as the template parameter. Void. More de- 

tailed impiementation issues and concepts related to the previous code are discussed 

in the following sections. 

Refinement 

.As is discussed in the previous chapter. the Display module that performs hidden 

surface r e r n o d  and anti-aliasing is the most time intensive of the three children 

modules. Consequently. the singleton Display module is replaced with another 

module of identical name that extends the replication skeleton. In this case. the 

work-load of the new Display module is distributed among dynamicdy created 

replicas. i.e.. Worker modules (refer to Figures 4.2(c)). 

The internal protocol. Pr,,. for the replication skeleton is PROTRepl. Conse- 

quently PROTRepl becomes the external protocol for each replicated child Uorker 

module. Xote that none of the other modules is affected by this change. This type 

of localized replacement that works towards the betterment of an application is 

called a refinement (refer to Definition 3 in the previous chapter). The change in 

the user's implement ation is illustratecl next: 



// The r e f i ned  "Display" module. 
Display EXTENDS ReplicationSkeleton 
i 

//The dynamically r ep l i c a t ed  ch i ld ren  of "Displap" 
CHILOREN = Vorker; 
Rep C 

i n t  image = 0;  
int succass; 
GeometryDiaplay Fraae; 
f o r  (image = O ; image c HAXIIUGES ; image++){ 

Geometry >> Frama; // A member pr imi t ive  
// of t h e  ex t a r aa ï  p ro toco l ,  PROT-Wet. 

success = SendVork(Frame); // A m a b e r  
// p r imi t i ve  of t h e  i n t e n t a i  protocol  PROT-Repl. 

i f  ( ! success)  i// Do it myself , i f  not  success fu l  i n  
// assigning t o  a workar. 

DoHidden(Frama); 
UriteImage(Frame) ; 

> 
1 > 

LOCAL i . . . > 
> 
// Each r ep l i c a t ed  "Worker" module 
Vorker EXTENDS SingletonSkeleton 
i 

Rsp C 
GeometryDisplay Franie; 
ReceiveUork(Frame); // A member pr imi t ive  of t he  e r t e r n a l  

// pro toco l ,  PROT-Repl. 
DoHidden(Frame) ; 
Uritdm.ge(Franie) ; 

> 
LOCAL 1 . . . > > 

The corresponding automatically generated C++ code is illustrated in the follow- 

ing: 

i /  Automaticaïly Generated code f o r  module: "Display" 
c l ans  Displap : public  ReplicationSkeleton CVorker, PROT-Repl, PROT,Net> 
C 
publ ic :  

c l r s s  P u a m  
C 
public:  

BandleBase* h-365; 
HmdleBase+ h-79; 
Purnr (HaadleBase* ,h,355, HmdleBase* ,h,79) : 

h-355(-h,355) , h,79(-hh79)i3; 
Params()  :h,355(0),h,79(O){); 

>; 



v i r t u a l  void Repo  C 
i n t  image = 0;  
i n t  success;  
GeometryDisplry F r m e ;  
f o r  (image = 0; image < MAXIRAGES ; image++) I 

Geometry >> F r u e ;  // A membar p r im i t i ve  
// of t h e  s r t e r n a 1  pro toco l  , PROT-Nat . 

success  = SendVork(Frame) ; // A member 
// pr imi t ive  of t h e  i n t e rna1  pro toco l  PROT-Repl. 

i f  (!success) <// Do it myself,  if not  success fu l  i n  
// ass ign ing  t o  a worker. 

DoHidden(Frame); 
Yritalmage(Frame) ; 

> > 
1 

// LOCAL d e f i n i t i o n s  go here: 

// Automatically Generated code f o r  module: "Yorksr" 
c l a s s  Uorker : publ ic  SingletonSkeleton <PROT,Repl> 
i 
publ ic :  

vir tual  void Repo  1 
GaomatryDisplap Frama ; 
Receivdork(Frame); // A membor pr imi t ive  of t h e  ex t e rna l  

// pro toco l ,  PROT-Repl. 
DoHiddea(Franie) ; 
YriteImage(Frame) ; 

> 
// LOCAL d e i  i n i t  ions go here: 

S . .  

1 

It should be noted that the initial part of the new Display class that deals with 

establishing connection with the pers  through the use of handles. through the def- 

inition of the param class and its subsequent declaration and instantiation. remains 

identical to the old Display class before rehement. This simply reflects the fact 

that the Display module. as seen by its parent and the peers, remains unchanged 

from before. It is only the interna1 representation of Display. i.e.. the sub-tree 

a i t h  Display at its root. that has changed. 



Figure 4.3: Structure of the Jacobi application 

The Worker class extends the singleton skeleton. The (irnplicit ) esternal prote 

col. PRGTRepl. is statically configured as a C++ template paranieter. The peers 

of Worker are implicit in this case. which are instantiated copies of itself (as a prop- 

erty of the parent replicat ion module). Accordingly the -param class-defini tionw 

part. that is used for establishing connections with the peers. is missing. A11 these 

issues are elaborated in the following sections. 

4.2.3 Jacobi 

The Jacobi iterative scheme and one possible way of structuring the application 

are illustrated in the previous chapter. It uses the two modules: Jacobi  and 

MeshElement (refer to figures 4.3(a) and (b). re-produced here from the previous 

chapter ). The Jacobi module corresponds to the front-end of a data-parallel mesh. 

The MeshElements constitute the back end. 

The following code segments illustrate an implernentation of the Jacobi scheme 

using the current textual interface. For reasons of both simplicity and efficiency, the 

implementation shown here uses a 1-D mesh. Since Jacobi involves nearest neighbor 

communications at the mesh boudaries. use of a 1-D mesh reduces the number of 



bound- communications to half as cornpared to a 2-D niesh. The implementation 

illustrates the use of C++ operator-overloading technique for irnplenient ing certain 

primitive operations inside PROTJDJIesh (for instance: primitives for nearest 

neighbor communication). and also more on automatic data marshaling and un- 

marshaling. 

// The "Jacobi" module corresponds to the front-end of an 1-D rnesh. 
Jacobi EXTENDS DataParallelSkeleton 
C 

CHILOREN = MeshElement ; 
PROTOCOL = PROT-1DKesh; // In this case, we need ta erplicitly specify 

// the internai protocol, since more than one 
// choice is possible. 

Rep I 
. . .  
int N = SetHeshVidth(4) // Set mesh-width to 4. It is a a member of 

// PEUT-1DHesh. Hesh-uidth is one parameter 
// that can be configured either statically 
// or dpnamically. 

Grid A(1000,1000); // A 1000 X 1000 muthal-able grid. 
ReadIn (A); 
PartitionGrid (A,N); // Partition the grid row-vise among the 

// N = 4 children 
CollectResults (ADN);  // ColLect the rssults from the children. 
... 

1 
LOCAL C 
// Def initions of ReadIn ( . . . ) , Partit ionGrid ( . . . ) , CollectResults ( . . . ) 
// and other methods and local variables map go here (or may ba defined 
// globally) . 
1 > 

// ~8880000800080080080~000000000800008000000~88~8~080 
// Each element of the 1-0 mesh. 
HeshElement EXTENDS SingletonSkelston 
i 

Rep € 
m.. 

int context = ...; 
Grid A; 
RaceiveFroWsp(A,context); // It is a member of extemai protocol, 
// PROi-IDHesh. In thia puticulu cua. A is a 252 X 1000 q i d .  
// Thare are tuo extra roos (i.e., r o m  O and 251) for holding 
// boundary r o m  from neighboring elaments. 
Grid B = A; 
- - .  
int lb, ub; 
int nRoas = A. Roua ( ) ; 
int nColpnns = A. C o l m i  (1 ; 
int myPosition = getHyPositioa(); // Get my position in the 1-D mash. 



// It  is a member p r b i t i v e  of PROT-1DMesh. 
i n t  meshiiidth = getMeshiiidth(); // Get t h e  u id th  of t h e  1-D mesh. I t  

// is a member pr imi t ive  of PROT-1DMesh. 
i f  (myPosition = O) l b  = 2; i l s e  l b  = 1 ;  
if (myPosition .= (meshUidth - 1) )  ub = nRows - 3; e l s e  ub = nRovs - 2;  

// MAXITERATIONS is chosen 88 soma raasonable value. 

f o r  ( i a t  k = O; k < IIAXITERATIONS; k++){ 
i f  (myPosition > O) Peer [Loft] << A C 1 1  ; // Each row of A is a 

// mushad-able ob j ec t  . 
i f  (myPosition C (meshWidth - 1 ) )  PaerCRightl >> ACnRovs - 11 ; 
i f  (myPosition < (mashVidth - 1) Peer CRightJ << AhRous - 21 ; 
i f  (myPosition > 0) Peer CLeftl >> ACOJ ; 

// The above four  statements i l l u s t r a t e  communication u i t h  psers  
// ( i n  t h i s  case,  nmues t  neighbor coaniunication). D i f f i r e n t  types 
// of communication, including broadcasting t o  paers ,  a r e  poss ib le ,  
// uhich a r e  membar pr imit ives  of PMT-IDHesh. The above statements 
// a l r o  i l l u s t r a t a  t h e  use of C++ oporator-overloaàing i n  
// implemant ing c e r t a i n  pr imi t ive  operat  ions .  An a l t e r n a t  ive  opt ion 
// is  t o  use f u c t i o n 8  c a ï l s ,  e.g., SendToLeft(. . .) , 
// ReceivaFromRight ( . . . ) , SendToOf f s e t  ( . . . ) , e t c .  

f o r  ( i n t  i = l b ;  i C= ub; i++){ 
f o r  ( i n t  j = 1-  ' C = n C o l m s  - 2 ;  j*) 

1 
B C i i  Cj3 = (Abij Cj-il + A C i - i l  Cjl + Ali+ll Cjl + *Ci3 C j+ i l ) / r ;  

SendToRep(A, contex t ) ;  // A member of extemal protocol ,  PaOT-1DHesh. 
> 

The same steps as before are involved in generating the executable. and hence. are 

not shom here. Performance results for Jacobi are illustrated in a later part of the 

t hesis. 

4.2.4 Divide and Conquer 

The last example for this chapter illustrates a paralle !I implementation of the qui& 

sort algori t hm [54] using the divide-and-conquer s kele t on. The divide and conquer 

approach is discussed in the previous two chapters. The implicit children of a divide 

and conquer module are copies of itselt A s  a result, the module has to dynamically 
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differentiate the root of the divide-and-conquer me.  an inner node. and a leaf. The 

primitive command IamTheRoot ( ) inside PROTDivideConquer ( refer below ) lets 

a module dyamically identify itself. Whether a module is an inner node or a leaf 

is application dependent. and hence. cannot be judged by a primitive (refer to the 

use of the *Threshold' value in the following application). 

The two other primitive operations inside PROTDivideConquer employed in 

this application. Le.. PartitionData( ...) and CollectResults( ...). are used respec- 

tively for dividing the data among the children (Le.. copies of itself) and then col- 

lecting the results. Ali primitive methods are commented with a star ( * )  for ease 

in identification. The rest of the methods used in the application are application- 

specific . and are defined ei t her locally or globally. 

GLOBAL C 
tinclude <fstreim.h> 
Mefins Threshold 200 

// The follotring iethods c u i  br definsd either locally or globally, it 
// doss not matter in this application. 
void InssrtionSort(Aint& A) 
€ 
// The insertion sort routine is used below. 
> 
void 
€ 

ReadIn(if utroiun& infile, AintL A) 

UtiteOut (Aintt A, ofstrean& outf ils) 

QSortHoduls EXTENDS DivideConquerSkeleton 
E 

Rep i 
if (IamThiRoot()){ //* It is a member primitive of the interna1 

// protocol, PIWT,DividsConquer, which lets a nodule 
// dynaaically identify whether it i a  the root of the 
// divide-conque? tree.8 

if strma InFile(. . . ) ; 
ofstroam OutFilr( ... ) ;  
Aint A; // A systa definsd mushaî-able u r a y  of intsgers. 
ReadIn(InFila, A); // Defined globilly. 
QuickSort(A); // Defined locaïly in the following. 
VriteOat(A, OutFile); // Defined globilly. 



Aint A; 
ReceiveFromPuent(A); //* Hember p r i m i t i v e  of PROT-DivideConquer.* 
QuickSort(A); 
SendToParent ( A )  ; //* h m b e r  p r i m i t i v e  of PROT-DivideConquer.* 

> 
LOCAL < 

// The f o l l o u i n g  methods could r l a o  be de f ined  g l o b a l l y .  
void QuickSor t (Ain t t  A) 

i f  ( A .  g s t S  i z e (  ) C Threshold) 
I n s e r t  i o n s o r t  (A) ; 

else I 
i n t  i = 0 ;  
i n t  end = A.ge tS ize0  - 1 ;  
i n t  j = end - 1 ;  
i n t  p ivo t  = ACend] ; 

~ u a p ( ~ , ï ,  j); 
> 
Suap(A, i ,  end) ; 

// The fol lowing information is used t o  d i v i d e  A 
// i n t o  tuo p a r t i t i o n s .  F i r s t  p a r t i t i o n :  O t o  i ,  
// Second p u t i t i o n :  ( i + i )  t o  (end-1). 
Aint P a r t i t  ion1  nfo (4) ; 
P a r t i t i o n l n f  O CO] = 0;  
P a r t i t i o n I n f o [ l ]  = i ;  
Par t i t ionInfoC21 = i + l ;  
P u t i t i o n I n f o C J l  = end - i ;  

PartitionData(A.P~titionIrtfo); / /* P a r t i t i o n  A u o n g  
// t h e  c h i l d  modules a s  bassd on t h e  informat ion 
// providad. I t  is a mrmber p r i m i t i v e  of 
// PRûT,DivideConquer.* 

Auser<Aint> datum; //* A 2-D musha l -ab le  u r a y .  
Col lac tR~su l t s (da tun i ) ;  // C o l l a c t  r s s u l t s  from t h e  

// c h i l d  modulas. I t  is a aambsr p r i m i t i v e  of 
// PRûT,DivideConquer.* 

// Nou marge t h e  r e s u l t s :  
HergeResults (datuni, A)  ; 

1 

Swap (AintL A, i n t  i, i n t  j 

datum, A i n t t  A) 



The example further illustrates the use of automatic data marshaling and un- 

marshaling mechanism. Aint is a system defined integer-array type that can be 

autornatically marshaled and un-marshded. Auser<Aint> is a marshal-able anay 

of marshal-able integer-arrays (hence. a 2-D marshal-able array). 

There is sornething interest ing with the automaticdy generated code in this 

case. The following code-shleton shows re lemt  pieces of the generated code: 

S . .  

class QSortUodule :public DivideConquerSkeleton <QSortHodule,PROT,DivideConquer, 
Void > 

x 
public : 

v i r t u a l  void RepO C 
if (1 amTheRoot ( 1 1 E 

In the &st line of the previous code. the actual value of the fîrst template-parameter 

to DivideConquerSkeleton is the class QSortModule itself. The C++ language 

d o w s  this type of nrecursive" parameter passing, which. in turn. facilitates the 

implementation to strictly conform to the PASM model. 

4.3 Implementat ion Issues 

This section discusses the various implement ation issues that are the key features of 

the present object-oriented implement ation of the PASM model. These issues are 



Figure 4.4: High level class diagram behind the design of the skeleton libraq 

also an essential reading for an experienced user who wants to extend the existing 

system. before start exploring the skeleton-libr- source code. The implement ation 

of the mode1 is referred to as  the PASM system wherever appropriate. 

4.3.1 Implementing Architectural Skeletons: Reusability 

and Ext ensibility 

Figure 4.4 illustrates the high-level class diagram behind the design of the skeleton 

library. The figure uses the standard CàIL [S]  notation. For simplicity. the figure 

does not illustrate the relationships bettveen the skeleton- and the protocol-classes. 

'cloreover. the various attributes and the methods associated with each class. and 

the formal parameters. in the form of templates, associated with each inherited 

skeleton-class are not shom for a cleaner representation. More detailed UMG 

represent ation for an example is illustrated in the next subsec t ion. 

From the implementor 's or an experienced user's perspective. certain features 

of the object-oriented design. in conjunction with the generic nature of the P.4SM 



model. favor reuse and extension of the skeleton Library. The generic model helps. 

because it provides a clear picture regarding what the different components of a 

skeleton are and what their functionalities are going to be (compare it with a 

totally ad hoc approach). Furthemore. from the model's perspective. each module 

is an independent entity whose only interface a i th  the outside world is through its 

representative and the adaptable extemal protocol. Accordingly. what the outside 

world sees of the module are only through its actions (i.e.. input/output and an' 

observable side effects). without knorving exactlu how thees actions are carried out 

intemally. In other words. the module acts as a black-box to the outside world. 

The same arguments apply to the intemal structure of the module where its back 

end might contain copies of itself (for instance: in the divide-and-conquer skeleton) 

or other modules. with which it can interact only via their representatives. These 

exclusive feat ures of the model facilitate the design and addit ion of new skeletons 

wit hout affecting the exist ing ones. 

'ilan' of the object-oriented features that are supported in C++. for instance: 

polymorphism (rhrough the use of C++ ternplates and virtual methods) and in- 

heritance. facilitate the reuse and extension of the existing skeleton library New 

classes can be defmed by extending existing ones. thus enabling the design and 

addition of new skeletons and protocols a i t  h added functionalit ies. Completely 

ner skeletons and protocols can be designed by extending the base classes (refer 

to Figure 4.1). In each case. a collection of pre-existing virtual methods need to be 

overridden and some new additional methods might need to be defined in order to 

reflect the characteristics of the newly designed skeleton. 
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Figure 4.5: High level class diagram for the graphics animation application 

4.3.2 The Graphics Animation Application: Revisited 

Figure 4.5 illustrates the high-level design in CML notation pertaining to the graph- 

ics animation application before refinement. discussed in the previous chapter and 

detailed in section 4.2.2. A s  the automatically generated code in section 4.2.2 and 

figure 4.5 suggest . each architectural skeleton is implemented as a template c h .  

nhere each template relates to a statically configurable parameter associated wit h 

an attribute of the skeleton. For instance, in the case of the compositional skele- 

ton. the two statically codgurable parameters are the (implicit) interna1 protocol, 

P h t .  and the adaptable extemal protocol. PExt.  For design reasons, the other 

static parameters for the compositional skeleton (for instance: the specification of 

the children) are not realized as templates. In the case of the singleton shleton, 

the only parameter is the adaptable external protocol. PExt. 

As shown in the figure (also refer to the generated code), each template skeleton 

class becomes bound as soon as the actual values of the template-parameters are 

specified. The concrete class Root extends the bound (but abstract ) compositional 



Figure 4.6: High level class diagram after refinement 

skeleton class. Similady. the concrete classes Generat a. Geometry and Display 

extend the bound (but abstract) singleton skeleton classes. Each of Generate, 

Geometry and Display is contained inside Root. The rest of the diagram is self 

explanatory. The funct iondi ty of the handles ( i.e.. UnaryHandle) inside Root (refer 

to the automaticdy generated code) is discussed towards the end of this section. 

Figure 4.6 illustrates the change in the high level design after refinement ( refer to 

the previous chapter and also section 4.2.2). When compared with figure 4.5. it can 

be seen that the rest the application. other than that involving Display, remains 

intact. The modified part of the design is included inside the dotted rectangle. 

-4s before. the replicat ion skeleton is a template-class. Unlike the compositional 
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Figure 1.7: HTree and its traversal scheme 

skeleton. the replication skeleton has one extra template parameter. that is the 

child to be replicated (refer to the figure and also to the automatically generated 

code). Sote that the the child is specified here as a template parameter. The 

child-components of the compositional shleton are not specified using template 

parameters because it cm have an arbitrary number of different children. The rest 

of the diagram is self explanatory 

4.3.3 The Dynamic Execution Mode1 

The execution mode1 for the PASM system is SPMD. i.e.. each processor in the 

processor-cluster loads and executes the same file. which results in major savings 

in t ems  of management of source. object and executable files. Consequentiy. each 

process falls through the same H l k e  associated with the application. starting at 

the root of the tree. Figures 4.T(a).(b) illustrate the HTree associated with the 

graphies-animation application before and after rehement respectively. 

A node of a HTree corresponds to the representative of a module (refer to 

Definition 2 in the previous chapter). Each process is responsible for executing 



esactly one node of the tree. thar is: there is a one-to-one correspondence between 

a process and a representative node. A process starts at the roor of the hierarch- 

and then traverses down the tree to its designated node. 

Hotv does a process determine the path to traverse'? This is achieved as follows: 

each process is dpamically assigned an identification string (by its parent node 

based on its own identification string). by foilowing a unique labeling scheme. .As a 

process traverses don% the tree. it dyamically calculates its path. by following the 

same scheme. The process traverses down a specific path of the tree. if and only 

if the already calculated path is a substring of its assigned identification string. 

Khen the calculated path matches the identification string. the process is at its 

designated node and thus it can esecute the code pertaining to that node. 

In figure 4.7. the string in parentheses beside each node is the identification 

string that determines ahich process executes the node. The dynlmically repli- 

cated Uorkers after refinement are all identical. Therefore they execute the same 

code and have the same identification string. Khenever processes with the same 

identification string have to identify their relative positions tvit h respect to t heir 

peers (for instance: inside a 2-D mesh. or for the sarne le1:el nodes inside a ditide- 

and-conquer tree). t hey use 1IPI's internal -rankU mechanism for finding t heir 

positions inside a communicator group [Il. 

.AU of the previous issues are completely hidden from the user. In fact. for 

instance. a user follows the general structure as illustrated by the examples in this 

chapter. and mites an application with the perspective that one is dealing with 

individud modules. rather than wit h individud processes. Without any further 

aid fiom the user. the dynamic execution model makes it possible for a process to 

execute the code segment pertaining to a given module. 
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4.3.4 Mechanisms for Constructing the HTree 

The previous discussion outlined the mechanism that ailows a process to tra sers 

down the HTree to its designated node. This subsection discusses some of the key 

implementation aspects of the travenal scheme. The discussion starts with the basic 

implement at ion-mechanism for const ruct ing the hierarchy. For convenience. the 

discussion is presented from the perspective of the gaphics animation application 

discussed before. Relevant pieces of the generated code (refer to section 4'1.2) are 

re-inserted in the following: 

... 
class Root : publ ic  CompositionalSkeleton <PROT,Net ,Void> 
E 

UnaryHandleGanerate, Generate::Params> h-481; 
UaaryHandle<Ceomatry, Geometry::Parans> h-73; 
UnaryHaadle<Display, Displap::Params> h-113; 

public: 

Root () : h-481 (Cenerate: : Params (Lh-73 ,ththl13)) , 
h,73(Geometry : : Param8 (th-481, &hhl 13) ) , 
h,lt3(Display: :Params(Lh-481,LhLh73))C); 

virtuai void Rep() { 
/ /  The rapresentative code goes hem 

1 

// LOCAL. def in i t ions  go hsre: 
1; 

void Pmain() 
i 

Root TopLooel-820; 
TopLevsl,820. Runo ; 

1 

The mechanism for cons truc t ing the hierarchy is t hrough the conditional cons truc- 

tion of objects of type -architectural skeleton' inside another object of the same 

type. For instance. the objects of type Generate. Geometry and Display are (con- 

ditionally) constructed inside an object of type Root. Each of Generate, Geometry 

and Display may. in turn. contain other objects inside it (in fact, Display contains 

objects of type Worker after refinement). Also refer to figures 4.5. 4.6 and 4.7. 



The decision on the part of a process regarding whether to construct an object 

inside the context of another object is analogous to deciding whether or uot to 

traverse a specific path down the hierarchy (refer to the previous subsectioii ). This 

decision is taken inside the handles. as s h o m  by the objects of type UnaryHandle in 

the previous code. In other words. a handle serves as a locking-unlocking niechanisni 

that d o w s  oniy a selected number of processes to traverse down the hierarchy. 

based on the previous string-based traversal scheme. while blocking the rest. An 

object of type UnaryHandle contains. besides other information. the reference to 

the created -architectural skeleton- object . Similarly. t here are handles of type 

GroupHandle (for instance: used inside the data-parallel skeleton ) . where each 

handle is associated \vit h a group of identical "architectural skeletonn ob jects. 

Inside the procedure h a i n ( )  in the previous code. a call to the hidden method 

Run ( ) associated with Root is made. This call causes each process to start traversing 

doivn the hierarchy. starting at the root. There is also a Runo method associated 

nith each handle type. The Runo of Root conditionally cdls the Runos of the 

three handle-objects. The Runos of the handles. in turn. conditionally cal1 the 

Run ( ) s of t heir associated -architectural skeleton' ob jects. and thus this sequence 

repeats. 

-4s an example. let us consider the case of the process assigned wit h identification 

string -02". that is meant for executing the representative of Display (refer to 

the previous subsection and also Figure 4.7). As it traverses d o m  from Root. it 

temporarily calculates its path. Inside Root. it calculates its temporary path as 

-0". Since it is a substring of its assigned string -02". it is supposed to traverse 

down the hierarchy fun her. So. the process calls the Run () method associated with 

the handle for Generate (that is: the handle h-481 in the previous code). where 

it calculates the temporary path as -00". Since it is not a substring of -02". the 



process is not supposed to traverse down further this path. and hcnce. it does not 

create the associated object. Cenerate. The situation is the sarne for the handk 

associated with Geometry. tvhere the path is calculated as -01-. Finally. inside the 

handle for Display.  the temporary path is calculated as -02-. nhich matches with 

the assigned string for the process. Hence the object. Display. is created inside 

the handle and the process s t a r t s  executing it s represent ative. 

After refinernent. Display has to further spawn identical Uorker modules. The 

corresponding processes are dynamically assigned t heir identification strings baseci 

on its current identification string. -02-. Accordingly. this first set of identicd 

processes are assigned n-ith the identification string -0201. Had there been a second 

set of processes. the' wouid have been assigned -021q. and so on. The sarne steps 

as before apply to the new processes when the- start traversing down the hierarchy. 

-4s ment ioned before. ident ical processes can ident i f i  their relative positions with 

respect to their p e r s  with the help of 1IPI.s internal rank mechanism inside a 

communicator group [Il. Once again it shodd be rnentioned that al1 of the previous 

issues are completely hidden from the user. 

4.3.5 Obtaining Information about Peers 

When identicd processes are simultaneously spanmed. they fd l  into 11PI's same 

cornmunicator group. .4ccordingly t hey can figure out their identities. their relative 

positions inside the group. and any other relemnt information using MPI's internal 

primitives (obviously al l  of these are hidden from the user). This is not the case 

when the processes spawned are not identical. The following discussion presents 

the scenario where non-identical processes are p e r s  of one another and need to 

interact . 



Once again. let us refer to the previous code. Since the Generat e. Geometry and 

Display objects are created inside the context of Root. each of the child objects 

is passed with the information about its peers. with which it interacts. This infor- 

mation. in the form of references. is packed inside a Params object and is passed 

as a parameter during the construction of each of the handle objects ( refer to the 

constructor of Root ). For a default all-to-all interconnection topolog-. a handle is 

passed with the references of all the  other peer-handles. -4 handle. in turn. passes 

t his informat ion t O i t s associated -architectural skeletonw object while const ruct ing 

it. Relevant pieces of the automatically generated code for Generate are re-inserted 

in the folloaing: 

class Generate : public SingletonSkeleton <PROT,Net> 
i 
public: 

class Params 

public: 
HaadleBass* h-73; 
HandleBase* h-113; 
Params(HandleBase* ,h,73,HandleBase* ,h,113) : 

h,73(,h,73) ,h,llS(,h-l13)C>; 
P u a m s ( )  :h,73(0),h,113(0)(); 

1; 
Params p-611; 

In the previous code. when the Cenerate object is constructed by the associated 

hande. it is passed with the previous information as a parameter to one of its con- 

structors. In that way. each of Generate. geometry and Display has references to 

the handles of i t s peers. The communication protocols use t his intemal information 

whenever peers need to interact with one another. 



4.3.6 Process-Processor Mapping 

When processes are mapped to processors. it is desired that processes that need 

to frequently communkate with one another be placed in a closer ~icinity in the 

processor cluster. JIany other factors. other than the physical distances of the 

processes. also aise. for instance: processor load. non-uniform network speed and 

bandwidth inside the cluster. network congestion at a specific time. and maintaining 

optimal load-balancing among processors. The topic of process-processor niapping. 

while taking into consideration all of the previous factors. is a cornplicated research 

issue in itself and the interested reader may refer to 1301 for a discussion and links 

to various mapping related topics. The present implementation does not apply an? 

specific mapping strategy and lets MPI handle this aspect (which applies a round- 

robin mapping scheme) . Enough opport unit y esists for exploring the mapping 

related issues inside many of the skeletons (for instance: the compositional and the 

data-parallel skeletons). and need to be researched in the future versions of this 

wor k . 

4.4 Steps Involved in Building an Application 

This section describes the steps involved in developing an application t hat uses 

the current textual specification language. It is assumed that the skeleton library 

and the applications reside inside a single directory. identified by the environment 

miab le  SKELETON-HOME-DIR. That directory is divided into several subdirectories: 

the t i b  sub-directo- contains the skeleton library. the App sub-directory contains 

the C++ applications. the U I  sub-di recto^ contains the applications uritten using 

the specification language. the Include sub-directory contains the various include 
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files. and the Parser sub-directory contains the specification language parser and 

associated files. 

The following discussion presents the stepe involwd in building the Jacobi 

application. It is assumed that the application u-ritten using the specification lan- 

guage resides inside the single file Jaco b i  . t x t  (note that multiple files can dso 

be supported) in the sub-directory $(SKUETON-HOME,DIR)/UI/Jacobi. .A user 

issues the make comrnand. which invokes the Makef i l e  residing in the same sub- 

directo- This. in t urn. invokes the parser. which automat ically generat es the 

C++ file Pmain . cc inside the sub-directory $ (SKELETON_HOME_DIR) /App/ Jacobi. 

A sample Makef i l e  might look as  f o l l o ~ :  

# Halrefile for applicat ion source. 
# Al1 r ights  rssarved. 1998. 
# Dhrubaj yot i Gosuami --- 
s- 
# Application source: user s p e c i f i e s  t h i s  

SAC = Jacobi . t x t  
APPDIR = $(SKUETON,HOE,DIR)/App/Jacobi 



-4s the next step. the user changes directo- ro $ (SKELETON-HOME-DIR) /App/ Jacobi. 

where the automatically generated C++ source(s ) resides. T here the user invokes 

another make command to generate the emcutabie. The corresponciing Makef iie 

is not s h o m  here. 

Finally. assuming that 'IIPI is installed in the underlying cluster and is working 

properly. the corresponding executable file can be executed using the conirnand: 

run  <executable_file_name>. Here. nin is a shell script that resides insidr the 

sub-directori called $ (SKELETON_HOME,DIR) /Script S. 

4.5 Summary 

The chapter presents the key implementation aspects of the PAS11 model. starting 

with the textual user interface and its use in implementing various applications. The 

subsequent sections deal with the different implementation aspects of the model 

including the design of the skeleton library its reusability and extensibiiity. the 

dpamic execution model. mechanisms for construct ing the hierarchy. and finally 

the issue of process-processor mapping. The implementation of the PAS11 model 

is often abbreriated as the PASSI system in the following chapters. The next 

chapter discusses the individual patterns in sometvhat det ail from the perspective 

of a 'pattern language". a format that is presently widely adopted by the patterns 

community for writing about patterns in an' discipline. 



Chapter 5 

A Pattern Language 

Cnt il now. parallel architectural skeletons have been discussed without bringing in 

the actual correlat ions between the skeletons and the various patterns in parallel 

computing. This chapter bridges that gap. Considering a pattern as a 'prob 

lem/solution pair". a skeleton provides solution(s) for a pattem from the perspec- 

tive of the rnodel. The folloiving discussion presents the inter-related solutions for 

patterns provided by the skeletons in the fonn of a pattern language. 

5.1 Introduction 

Since the visionary idea on patterns and pattem laquages by the architect named 

Christopher Alexander [3]. applied in the context of ( physicd) architectural design 

(e.g.. buildings. bridges. hospitals. etc.). similar ideas are recently being widely 

adopted by the object oriented computing community and several ot her disciplines. 

some of which are not even related to computing. As mentioned in an earlier 

chapter. the &Pattern Laquages of Program Design" series of book [37] are good 



references for a n o n e  interested in pattern-related ropics covering a wide range of 

disciplines. 

A design pattern catalog provides a set of indiridual. not-necessarily related 

solution techniques to cornmon design problems. On the other hand. a pattern 

language provides a collection of interrelated solution techniques to cornnion design 

problems in a specific problern domain. .-\ pattern language is not a formal language. 

but rather a collection of interrelated solution techniques t hat toget her provide a 

vocabulary for taking about a specific problem or a collection of problems. 

The skeletons discussed in this thesis are all m e n  together by the generic PASU 

model. which defines t hem. and t hese interrelated skeletons are used toget her to 

solve commonly occurring problems encountered in network-oriented parallel corn- 

puting. Each skeleton is a physicd manifestation of a pattern in parallel comput- 

ing (e.g.. the data-parallel skeleton is a semi-concrete physical manifestation of the 

dat a-parallel part ern ) . ahere each pattern is represented as a -problern/solution 

pairw. Solutions for patterns realized by the skeletons are interrelated with each 

other in the context of the model. and together they form a pattern language that 

provides techniques for designing and implementing network-oriented parallel ap- 

plications. Figure 5.1 diagrammatically illustrates the relationship between the 

various skeletons and the associated patterns in t his pattern language. 

The following discussion presents the current set of patterns that has been 

realized by the generic model. i.e.. patterns and t heir solutions realized through the 

pa rde l  architectural skeletons. The discussion uses the present commonly accepted 

format in pattern writing [49]. 

In describing each pattern, which is essentially a -problem/solution pair" for a 

commonly occurring problem. the problem is discussed in a general context which 
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Figure 5.1: Relationship bettïeen skeietons and patterns in the language 



universally applies to pa rde l  computing. Solutions to the probleni are often p r e  

sented exclusively from the architectural shleton perspective. meant for a user of 

the skeleton-library. The examples are illustrated only from the perspective of the 

architectural-skeleton approach. 

Since there is no notion of a process in the architectural-skeleton approach. the 

following conventions in termînologv are followed in the rest of the discussion. A 

process in the general context is equilalent to a sequential nodule (that is imple- 

mented as an extension of the singleton skeleton) in the architectural-skeleton con- 

text. and the two t e m s  are used interchangeably. h module in the general contesr 

means a modular. single- or multi-process entity. .A module in the architectural- 

skeleton context conveys i ts usual meaning. 

Descriptions of the pat tems follow next . Due to space constraints. two of the 

patterns are discussed for illustrative purposes in full detail (indicating what a 

future reference manuai might look like). Discussion of the compositional and the 

data-parallel patterns are vast topics and their inclusion here would explode the 

size of this document. Accordingly. the rest of the existing patterns are briefly 

discussed. only partially conforrning to the set standard in pattern writing. 

5.2 Pattern: Dynamic Replicat ion 

Contezt: The following problem may arise in the general context of any paral- 

le1 application development that uses the message passing paradigm. and involves 

single or multiple interacting modules. 

The problem described below is applicable in either of the following situations: 

(a) a sequential module (which could be irnplemented using the singleton skeleton in 



this language) has to interact with other modules in an application. The nioduk has 

to perform repeated ident ical computat ions on different sets of data. for iiistance. in 

different iterations of a loop where the loop iterations are independent of each other. 

However. in comparison nith the other modules that it interacts wit h. the workload 

of the sequential module is high enough to slow down the entire application. ( b )  .A 

st and-alone sequentiai module bas to repeatedly do the following: read in some data 

from an 110 device or a Ne. perfonn some computation on the data. and finally 

output the result to an I/O device or a file. However. the computation phase is a 

bot tleneck. 

Problem: How to increase the throughput of the out-of-pace module in the 

previous context. and thus possibly enhance overall performance. without modifying 

the rest of the application.? 

Forces: 

0 .-\chieving speedup with minimal possible modifications is the biggest consid- 

era t ion here. 

It is possible that multiple developers are involved. speciall- when the first 

situation in the previous context applies. In that case. a bottleneck in part 

of the application needs to be resolved without involving others. 

The first bottleneck-situation in the previous context frequently aises. for 

instance. when the interacting modules form a pipeline. Each pipeline stage 

performs some repeated identical computations inside a loop. where each iter- 

ation of the loop is independent of the other. and communication is involved 

exclusively at the beginning and the end of each iteration. One or more of the 

pipeline stages might participate in relatively more time-intensive cornputa- 

tions as compared to the rest . which in tuni pulls down the performance of 



the ent ire pipeline ( for instance: refer to the graphics animation application 

discussed in the previous chapter). 

Solution: .-\ solution to the problem is presented here from the architectural- 

skeleton perspective. intended for a user of the slieleton-library. In discussing the 

solution. it is assumed that the original sequential module has the following repe- 

tit ion code-st ruc t u e :  

. . .  
while (sone,condition = True) { 

Read-in (data);  // "data1> i s  read-in from sons I/O dewice, 
// f i l e  or  from another module. 

Process (data) ; // Process data that  i s  read-in above. 
Vrite-out (data);  // Output ptocessed data t o  some 110 device,  

// f i l e  or another module. 
Revalidats,condition(soma~condition, ...); // Re-validate 

// "some,condi t ion~  t o  see  if  it s t i l l  holds 
1 

.A solution to the pr~blem involves the following steps: 

Step 1: Identify the repeated identical computations performed by the se 

quential module. SomeModule. that can be replicated to nui concurrently in 

order to possibly enhance the throughput of the module. provided multiple 

free processors are available. without affecting the rest of the application. For 

instance. in the previous code. it is the method Process (data) inside the 

while loop. 

Step 2: Enclose the repeated part of the computation into a separate sequen- 

tial module (in the previous case. it is the method Process(data) ). Here, 



this sequential module is named as Uorker. since it performs the pure com- 

putation part. .A code segment for Uorker is shown in the following. 

Step 3: Replace the sequential SomeModule wit h mot her module of identical 

name. but this time extending the replication skeleton. The Uorker module. 

in step 2, becomes its child. 

0 Step 4: The external protocol of SomeModule rernains the same as before. Le.. 

if it is at the root of the hierarchy. its external protocol is Vo id.  Otherwise. the 

external protocol of SomeModule becomes the internal protocol of its parent. 

Step 5: The internal protocol of the replication module. SomeModule. is 

PROTRepl. Accordingly. PROTRepl becomes the erternal protocol of each 

replicated Worker. Cse the communication-synchronization primitives inside 

PROTRepl to restructure the code-segments of both the modules. as illus- 

trated in the following self-explanatory code segments. 

Step 6: (Optional) Later replace the sequential Uorker module with any 

other suitable module supported by this language. if deemed necessary. 

The folioaing code-segments illust rate one part icular solut ion. Hoivever, ot her 

variations are also possible depending on the specifics of the problem. 

SoaeHoduh EXTENDS ReplicationSkeleton 
I 

Clif LDREN = Vorker 
Rep i 

f &  (;;) < 
int success = Tme; 
u h i l e  ( (some,condition = Trur) && (succrss == True)) < 

Raab-in (data) ; 
suecass = SendVork(data); // Dyaamicaîly iend uork-foui to a 
// frse oorkor. If none is frra, spawn one while perforning a 
// suitable load-baïaacing stratogy. It is a member primitive 
// of the internai protocol, PRûT-Repl, and is described in 
// the folloaing. 



Revalidate-condition (some,eondition, ... 1; 
1 
if (success = False) { // Uasuccessful in assigning vork-load to a 

/ /  uorkar. So, procass it on your oun. 
Procass (data) ; 
Vrite-out (data) ; 

> 
CollsctResults(); // Collect as mlny available results as possible. 

// This procedure is defined ia the follouing. 
if (some,condition = False) break; 

1 
while (ResultsPendiag()) ~01lectRssults~); / /  Collect al1 remaining 

// results. ResultsPending() is a membar primitive of PROT-Repl. 
> 
LOCAL i 

void Collect,Results() 
.c 

int success; 
whils ( (success = RecaiveResultNB(data) = True) < 

// The above is a member primitive of PROT-Repl, and is 
// non-blocking. Collect as many of auaiting results as 
// possible. 

Urite-out (data) ; 
1 

1 
. . . 

1 
1 

// Each of the replicated aorker. 
Uorker EXTENDS SingletonSkeleton 
E 

Rep < 
a - .  

ReceiveUork(data); // This blocking version of teceive is a msmber 
// primitive of the external protocol, PROT-Repl, and is a 
// counterpart of SendWork(data), u8ed previously. 

Procass (data) ; 
SendResult (data) ; // A member primitive of the external protocol, 

The previous 

structure. Ot 

code-segments convey the basic idea. 

her variations of the code are possible. ( 

based on a generic repetition 

iepending on the specific situa- 

tion (for instance. a multi-t hreaded representative could also be designed providing 

similar functionalities). .&o. refer to the examples that follow for concrete illus- 

trations. and a following section that describes the primitives for a detailed look at 



t heir functionalit ies. 

Examples: For a concrete esample. refer to the graphics animation application 

discussed in the previous chapter. There. the out-of-pace sequent ial D i  splay mod- 

d e  u.as replaced with another module of identicd name. that supports dynarnic 

replication. It should be noted that none of the other modules in the application 

was affected by this change. The interested reader might want to compare the 

previous generic code with the code for the graphics animation application. It ivill 

be observed that the CollectResults() portion of the previous solution is missing 

from the refined Display module. 

Selected Primitives: A selected set of primitives from PROTRepl is dis- 

cussed in the following: 

int SendWork(Wrapper& workload) : The range of actions performed by this 

primitive is elaborated in the following pseudecode. 

O .  r e s u l t  := S U C C ~ S S .  
1. i f  any f r e e  c h i l d  module is cu r r sn t l y  a v a i l a b l s  

t han 
1.1. apply sons s u i t a b l e  load-balaacing s t r a t e g y  // Anothsr r e s e u c h  i s sue  

t o  ass ign  workload t o  one of t h e  f r e e  modules. 
e l s e  

1 .2 .  I f  t h e  c u r r m t  n u b e r  of c h i l d  modules is within t he  prssc r ibed  
maximum limit, spaun one c h i l d  module o h i l e  applying t h e  nseded 
load-balancing s t r a t egy .  

1.3. I f  success fu l  i n  spauning 
then 

1.3.1. Assign workload t o  t h a t  c h i l d .  
e l s e  

1.3.2. r e s u l t  := f a i l u r e .  
r e t u r n  r r s u l t .  

int operator<< (ReplicationPort& port, Wrapper& workload): This is an 

operat or-overloaded variation of the previous primitive. 

int SendWork(Wrapper& workload, int context) : This is another variation 

of the previous primitive that uses explicit user-specified context. 



void RecieveResult(Wrapper& workload) : The range of actions perforn~ed 

by this primitive is elaborated in the following pseudo-code. 

1. if no child ha8 completed pet 
thon 

1.1 block. 
2. // Uakeup here 

2.1. Collect result from the first availabls child 
2.2. If the child did not terminate itself 

then 
2.2.1 Hark child as f ree. // To be ussd in 

3. Exit. 

void operator> > (ReplicationPort& port, Wrapper& workload): This is 

an operat or-overloaded bariat ion of the previous primitive. 

int ReceiveResultNB(Wrapper& workload) : The non-blocking version of the 

above. It returns 1 on success. 

void RecieveResult ( Wrapper& workload, int context ) : Another iariation 

t hat uses explici t user specified context. 

int ResultsAwaiting( ) : This primitive is used for checking if computation result 

is currently amilable from an' of the child modules. rithout actually reading in 

the results. It returns 1 if at least one of the child modules has its results arvaiting. 

int ResultsPending() : Check if any more results are pending. It returns 1 on 

success. 

The following are the child-specific counterparts of the previous send and receive 

primitives: void ReceiveWork (Wrapper& workload). void SendResult 

( Wrapper& workioad) . O t her possible child-specific lariants are not listed. 

5.3 Pattern: Parallel Divide and Conquer 

Contezt: The foUoWing problem may arise in the context of any parallel a p  



plication development. Here. a (sequential) module needs to implement a divide 

and conquer algorithm. During the divide phase of the algorithm. the application- 

problem to be solved is recursively divided into smaller and smaller sub-problems 

until some base condition is reached: then the sub-problem is solved by some suit- 

able base-case algorithm. During the conquer phase of the algorithm. the solution 

to the original application-problem is formed by combining the results froni the 

smaller sub-problems using a conquer-phase algorithm. 

Problem: How to irnplement a parallel version of divide and conquer? 

Forcea : 

The divide and conquer pattern is encountered in a large nurnber of probiems. 

ranging from searching (e.g.. binary search). sorting (e.g.. merge and quick 

sort ). n.rious graph algorithms (e.g.. recursive graph partit ioning. finding the 

closest pair of points in a gaph) .  selection algorithm (i.e.. to find the krh 

smallest element in a list of n elements ) to an optimal 0 (n2*"  ) algorithm for 

the multiplication of two matrices. to name a few. 

Successive dividing of the problem into smaller sub-problems and the subse- 

quent conquering results in a divide-and-conquer t ree structure. which grows 

in size during the dividing phase and shrinks during the conquering phase. 

Data is always input at the root of this tree. Output need not always be at 

the root level (for instance. refer to the recursive partitioning of a gaph) .  

Leaves of the tree correspond to the base condition. Also refer to section 2.1. 

For a recursive (i.e.. sequential) implementation. each non-root node of the 

previous divide-and-conquer tree correlates to a recursive subroutine c d  that 

implements the particular divide and conquer algorithm. Each leaf node 

correlates to the base condition of the algorithm. 



Obviously. in a pa rde l  implementarion. each recursi~e c d  needs to be re- 

placed by a separate process/thread that executes the subrourine. Hoivever. 

creation of a new process/thread for each invocation can result in reduced 

efficiency. simply due to the fact that each parent node of the tree has to 

wait idle until resdts from al1 its children become amilable. Thus. common- 

sense says that efficiency can be enhanced by assigning the workload of one 

of the children to the parent process/thread. consequently keeping d l  pr* 

cesseslthreads and involved processors bus- during the dividing phase of the 

computation. 

Solution: In discussing the solution. it is assumed that the following is the 

generic structure of the recursive divide and conquer algorithm executing at each 

node of the divide and conquer tree: 

Procedure DivideConquer(data1n: Input ,  da taout :  Output) 

s t o p  1. i f  t h e  base condi t ion is met 
then 

s t o p  1.1. ProcessData (da ta In ,  da t aou t ) ;  // Applicat ion-specif ic  
// base-case procedure t o  s t ra ightaway procesr input  when 
// t h e  b u e  condi t ion is met. 

s t o p  1.2. go t o  s t op  5. 
s t o p  2. Par t i t ionData  (da ta In ,  P a r t l ,  P u t 2 ,  ..., Pa r tk ) ;  // Application- 

// s p e c i f i c  procedure f o r  p u t i t i o n i n g  d a t a  i n t o  k 
// s u b - p u t s  uhan t h e  base condi t ion is not met. 

s t o p  3. Exacuts t he  fo l l ou i ag  k recurs ive  c a l l s :  
s t e p  3.1. DividaConquet ( P a r t l ,  Out1 ; 
s t o p  3.2. DivideConquer (Put2, Out2) ; 

3. k . DivideConquer (Partk,  Outk) ; 
s t e p  4. Combine (Outi ,  Out2, ..., Outk, da t aou t ) ;  // Applicat ion-specif ic  

// procedure t h a t  combines the r e s u l t s  from t h e  k 
// recurs ive  ca ï l s  t o  produce t h e  f i n a l  output .  

s t o p  5. r a t u r a .  

A general solution to the problem replaces each recursive c d  with a separate pro- 

cesslthread that executes the same algorithm. A process-based generai solution 

t hat is applicable to an MMD distributed-memory environment is as foilows. where 



the previous procedure is replaced with a module (i.e.. an esecutable file in the gen- 

eral context ). Each esecuting copy of the module maps to a different node of the 

divide and conquer tree. 

Module DivideConquer 
da ta fn :  Input 
da taout  : Output 

s t e p  1.  i f  roo t  node 
then Read (da t a In ) ;  // Read i n  d a t a  from an I / O  dev ice ,  f i l e  o r  

// some o the r  module. 
e l s e  Receive ( P u e n t .  da t a fn ) ;  // Else rece ive  d a t a  from p u e n t .  

s t o p  2. i f  t h e  base condi t ion is met 
thon 

s t o p  2.1. ProcessData ( da t a In ,  da taout )  ; // Applicat ion-specif i c  
// base-case procedure t o  s t ra igh tauay  process input uhen 
// t h e  base condi t ion is met. 

s t e p  2.2. O t o  s t e p  7. 
s t e p  3 .  P a r t i t  ionData fda t a In ,  P a r t i .  P W Z .  . . . . Partk) ; // Application- 

// s p e c i f i c  procedure f o r  p a r t i t i o n i n g  d a t a  i n t o  k 
// sub-parts uhen t h e  base condi t ion is not met. 

s t o p  4. f o r  i := 1 t o  k ,  do t h e  fo l l ou ing  
s t e p  4.1. handle h-i = Spawn (DivideConquer, ...); // Spawn a 

// process t h a t  executes "DivideConquer" and t e t a i n  
// t h e  handle t o  t h e  process f o r  f u t u r s  seferance.  

s t o p  4.2. Send (h- i ,  P a r t i ) ;  
s t o p  5. f o r  i := 1 t o  k ,  do t h e  fo l l ou ing  

Receive (h- i ,  Out i ) ;  
s t o p  6.  Combine (Outl,  Out2. ..., Outk. da t aou t ) ;  // Application-specific 

// procedure t h a t  combines t h e  r e s u l t s  from t h e  k 
// modules t o  produce t h e  f i n a l  output .  

s t o p  7. i f  r oo t  node 
then Ur i t e  (da taout ) ;  // Uri te  ou t  r e s u l t  t o  an I/O device ,  f i l e  

// o r  send it t o  sons o the r  module. 
e l s e  Send (Paren t ,  dataout)  ; // Else send d a t a  t o  paren t .  

s t e p  8. e x i t .  

h specialized solution from the architectural skeleton perspective involves the fol- 

lowing steps. The solution assumes that the input is provided as  an 1-D array of 

marshal-able ob jects. 

Step 1: The previous module in the general context is substituted with 

a module in the context of this approach. that extends the LhvideConquer 

skeleton. As a property of this shleton. a module extending it has copies of 

itself as its own children (&O refer to chapter 3). 
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O Step 2: For the copy of the module that is at the root of the divideand- 

conquer tree. if it is also at the root of the hierarchy then its estemal protocol 

is Void. Else. its extemal protocol is the internal protocol of the parent. 

0 Step 3: For each non-root module. its externd protocol is the sanie as the 

internal protocol. i.e.. PROTDivideConquer. 

Step 4: Cse the primitives inside PROTDivideConquer to restructure the 

previous code as follows. It assumes that a marshal-able array of type ttt 

(rhere. t t t  can be built-in type or user defined) is input to the module. 

For convenience to the reader. the member primi tives of P ROTDivideConquer 

used in the following code-segments are commented between two star ( * ) marks for 

easy identification. The primitives are described in a following section. 

DivideConquerHodule EXïWDS DivideConqusrSkelston 
i 

Rep i 
if  (famTheAoot() )i //* I t  is a member p r im i t i ve  of t h e  i n t e r n a l  

// pro toco l ,  PRQT,DivideConquer, which lets a module 
// d p a m i c a l l y  i den t i f y  i t s e l f  r e g u d i n g  whether it 
// i s  t h e  root  of t h e  divids-conquer t r e e . *  

a - .  

A t t t  d a t a In ,  da taout ;  // A t t t  can be one of Aint ,  Achar, 
// Afloat ,  Auser, o r  anp o the r  musha l -ab le  array 
// of standard d a t a  type. 

Rsadin (da t a In ) ;  // Applicat ion-specif ic  procetdure t h a t  reads 
// i n  t h e  input d a t a  ( e i t h e r  from an I/O device ,  a f i l e  
// o r  rece ive  t h e  input from another  module, i n  case 
// this module i n  a pa r t  of a bigger  app l i c a t i on ) .  Xt 
/ /  is defined l oca l l y  i n  t h e  fol lotr ing.  

DivideConquarProcedurs (da ta In ,  da t aou t ) ;  // The gener ic  
// divide-and-conquer procedure i n  def ined  l o c a l l y  i n  
// t h e  following. 

Uri teout  (dataout)  ; // Application-specif i c  procedwe t h a t  
// mites out  t h e  output d a t a  ( e i t h e r  t o  an :/O device,  
// a f i l e  o r  send t h e  output t o  ariothor module, i n  case 
// t h i s  module is 8 part  of a bigger app l i c a t i on ) .  I t  
// is definad l o c a l l p  i n  t h e  fol lowing.  



// Else  
A t t t  d a t a I n ,  da taou t  ; 
ReceiveFromParent ( d a t a I n ) ;  / /*  A mamber p r i m i t i v e  of 

// PRûT,DivideConquer+ 

DividsConquerProcedure (da ta In ,  d a t a o u t ) ;  // The g r n e r i c  
// divide-and-coriquar procedure is def ined  l o c a ï l y  i n  
// t h e  fol lowing.  

SendToParent ( d a t a o u t ) ;  //+ A member p r i m i t i v e  of 
// PRQT,DivideConquer* 

> 
LOCAL C 

void DivideConquerProcedure ( A t t t t  d a t a I n ,  A t t t &  da taou t )  

i f  (BaseConditionIsUet(data1n)) // Check i f  t h e  base c o n d i t i o n  
// is satisfied. It is def ined l o c a l l y  i n  t h e  f o l l o u i n g .  

C 

ProcesaData ( d a t r f n ,  da taou t )  ; // Process  input  d a t a  
// s t r a i g h t a o a y  i f  t h e  base cond i t ion  is s a t i s f i e d .  1% 
/ /  is def ined  l o c a l l y  i n  t h e  f o l l o u i n g .  

> 
e l s e  C 

Aint P a r t i t i o n h f o ;  
C r r a t e P a r t i t i o n  ( d a t a I n ,  P a r t i t i o n I n f  O )  ; // Craate  t h e  

// a p p l i c a t i o n - s p e c i f i c  p a r t i t i o n i n g  of t h e  inpu t  
// d a t a .  I t  i n  de f ined  l o c a l l y  i n  t h e  f o l l o u i n g .  

P a r t i t i o n D a t a  ( d a t a I n ,  P a r t i t i o n l n f o ) ;  / /+  A member p r i m i t i v e  
// of PROT,DividaConquer, used f o r  dynamically c r e a t i n g  
// t h e  c h i l d r e n  modules (copies  a i  i t s e l f )  and t h e n  
// d i v i d i n g  t h e  inpu t  among them, based on P a r t i t i o n I n f o . *  

Auser<Attt> R e s u l t s ;  
Co l lec tResu l t s  ( R e s u l t i ) ;  //* A member p r i m i t i v e  of 

// PROT,DivideConquer, used f o r  c o l l e c t i n g  t h e  r e s u l t s  
// from t h e  ch i1dren . r  

Combine ( R e s u l t s ,  d a t a o u t ) ;  // Applicat ion s p e c i f i c  procedure 
/ /  f o r  combining t h e  r e s u l t s  from t h e  ch i ld ren .  f t  i s  
/ /  d s f i n e d  l o c a l l y  i n  t h e  f o l l o u i n g .  

> 
1 

// The f o l l o u i n g  a p p l i c a t i o n  s p e c i f i c  methods need t o  be implemented 
// by t h e  u s e r .  They can bs def ined  e i t h e r  l o c a l l y  o r  globai lp .  

void Readin ( A t t t k  d a t a f a )  C...) 

void Vr i t eou t  ( A t t t t  d a t a o u t )  i.. .) 

i n t  BaseConditionIsHet (const  A t t t t  da ta In )  {...) 

void ProcensData ( A t t t t  d a t a I n ,  A t t t t  da taou t )  C . .  .3 

void C r e a t e P a r t i t i o n  ( A t t t t  d i t a I n ,  A i n t t  P a r t i t i o n f n f o )  <...) 



void Combine (AussrcAint>& Rssults, A t t t t  dataout) i...) 
3 

3 

Ezumples: For a concrete example. refer to the previous chapter for an im- 

plementation of quick sort using the divide and conquer skeleton. The interested 

reader might want to compare the previous generic codestructure and the concrete 

example in the previous chapter to get an idea about the similarities and the differ- 

ences. Notice that the differences a i s e  only in the application-specific aspects. The 

application-independent aspects and the overail code-struct ure (or. code-skeleton) 

remain identical for both. 

Selected Pfimittves: The following is a selected set of primitives from the 

protocol. PROTDivideConquer. These primitives are applicable when the input is 

in the form of a marshal-able. 1-D array of objects (either user- or system-defined). 

int IamTheRootO: This primitive lets a module dparnically determine if it is 

the root of the divide and conquer tree. It returns 1 if that is the case. 

void SetTkeeWidth(int width): Dynarnically set the width of the tree. which 

is by default two. In this way. it is possible ro create a multi-width divide and 

conquer t ree. 

int PartitionData (MarsbalableArray& dataIn, Ain& PartitionInfo): Cre- 

ate n copies of children (Le.. copies of itself). where n is the current width. and 

distribute the input -dataIn- to the children. as based on "PartitionInfo". The 

array ;PartitionInfo" contains the lower index and the size of each data partition. 

and its length must be even and at leasr four. If the current width of the tree is n 

(either by default or set by SetTreeVidth( . . . ) ). then the length of -PartitionInfou 

must be 2 * n. It returns 1 on success. 



void Collect Results ( Auser<Attt >& Results): Collect results from al1 the r1 

children. and retum them in uResultsu. It blocks until al1 the results are anilable. 

Auser<Attt> is a user-defined marshal-able array of type A t t t .  where A t t t  is again 

a marshal-able anay of user- or system defined type (e.g.. Aint. Afloat. Achar. 

Adouble. Auser. etc.). 

int Collect ResultsNB ( Auser< Attt >& Results) : This is the non-blocking 

version of the previous primitive. It returns 1 on success. 

The following are the other primitives that do not need further explanation: void 

SendToParent (Attt& data). void ReceiveFkomParent (Attt& data). int 

ReceiveRomParentNB (At tt& data). 

5.4 Pattern: Data-parallel computation 

Data-parallelism is one of the most frequentiy used patterns in parallel computing. 

applicable to a wide variety of applications starting from image processing tu sparse 

system solvers to ~arious sorting and searching algorithms to applications in neural 

networks. to narne a fem. .As the name implies. here the parallelism lies in the data. 

Le.. a goup  of identical modules perform the same operations but on different sets 

of data. The ident i d  modules can form different topologies (e.g.. N-dimensional 

mesh. S -D  h-ypercube j. From the perspective of this model. the data-parallel skele- 

ton implements the data-parallel pattern. The identical modules that perfonn the 

actual computations are the children of a data-parailel module that extends the 

data-pardel skeleton. and constit ute i ts back-end. (-41so refer to the replication 

skeleton discussed in this chapter. However. the differences are that the identical 

children of a replication module can d p a m i c d y  grow and &ri& in number. i.e., 

they do not have a fixed topology, and there is no interaction among pers) .  



The intemal protocols of the data-paraIlel skeleron (e-g.. PROT sDlIesh .  PROT 

Hypercube) are designed for specific topologies. Prirnit ive operat ions insidc t hese 

protocols can be broadly classified into several categories: collective operations i e.g.. 

gat her . scat ter. reduce. barrier synchronizat ion. etc. ) . topologv specific point - t c ~  

point operat ions (e.g.. nearest neighbor communication. selective communication). 

topo log^ independent operations (e.g.. broadcast ). Each category contains an es- 

haustive range of primitives sui table for specific needs. 

For an illustration. refer to the implementation of the Jacobi iterarive scheme 

in the previous chapter. 

5.5 Pattern: Hierarchical Composition 

Cont rol-parallelism is anot her frequent ly used pattern in parallel comput ing. Cnlike 

data-parallelism. rvhere a group of identical modules esecute on different data sets. 

here a group of different modules (i.e.. modules that execute different instructions) 

act on the same or different data sets. A typical parallel application is a combination 

of data- and control-parallelism. 

The pattern named Hierarchical Compositiori provides solution techniques for 

arbitrarily composing an arbitrary number of modules. From the perspective of 

PASM. the compositional skeleton impiements t his pat tem. The child modules 

inside the back-end of a compositional module (i.e.. a module that extends the 

compositional skeleton) can be all identical. thus resulting in purely data-parallel 

computation. Alternatel- the child modules may be all different. thus resulting 

in purely control-parallel computation. As another alternative. some of the the 

modules in the back-end may be identical and the rest may be different. thus 

resulting in a combination of control- and data-parallelism. 



Each module in the back-end can include other modules as well (for instance: 

a compositional module can include ot her compositional module( s ) ) . This. in fact . 
shows the ability to form a hierarchy ivith an arbitra- composition of modules. 

Hence, is the name hzerarchzca~ compo~ition. 

One of the main purposes of the compositional skeleton is to provide the needed 

flexibility to a user in application development. The intemal protocol of the compo- 

sitional skeleton is PROT-Yet. which is intended to provide an NPI- or PY'rI-like 

message-passing parailel progamming environment to the user. An JIPI-like par- 

alle1 progamming environment can be supported inside the compositional s keleton. 

simply by replacing JIPI-processes with PASM-modules and by supporting JIPI- 

like message passing primitives inside PROT S e t .  Jlany of these primitives have 

already been implemented. This facility enables a user to develop an application 

from scratch if deemed necessary. or to intermir already supported patterns with 

arbit rary composition if an application demands so. 

For an illustration. refer to the graphics animation application in the previous 

chapter. and i ts subsequent hierarchical refinement . 

5.6 Pattern: Pipeline 

Pipeline is a speciai form of control-parallelism. and the compositional skeleton 

described previously can be used for cons t ruc ting a pipeline. Honiever. pipeline 

itself is a frequently used pattern in pardel  computing, and accordingly the pipeline 

skele ton is specifically designed for this purpose. Each stage of a pipeline is a pardel  

computing module that extends a specific skeleton. For constructing an X-stage 

pipeline. each stage is represented by a module and all the X modules cm constitute 

the back-end of a pipeline module that extends the pipeline skeleton. Alternately, 



for .V > 2. the first stage or the last stage or both of them could merge ai th the 

representative of a pipeline module. and the remaining modules constit ute its back- 

end. Data flow inside a pipeline can be uni- or bi-directional. Primitives inside the 

protocol. PROTPipeline, capture the various operations needed inside a pipeline. 

When someone thinlrs of a pipeline. what naturally cornes to mind is a single 

dimensional structure. However , t here may be multi-dimensional pipeline-like par - 
rems as weU. For instance. one could think about the systolic array pattern. where 

the computation in each module (which is often c d e d  a ce11 in the context of a 

systolic array) is propagated to neighboring modules in a certain rhythmic fashion. 

Though presently the systolic skeleton is not designed and irnplemented. it may be 

considered in the future evolutions of the work if deemed necessary. 

5.7 Pattern: Single process computat ion 

In the general context, a parallel application is a composition of one or more inter- 

acting processes. tvhere each process could be single- or multi-threaded. However. 

there is no notion of a process in this model. The singleton skeleton provides al1 the 

functionalities of a process from the conventional parallel programming perspective. 

Since the back-end of a singleton module is empty. its interna1 protocol PI,, is also 

void. Examples in this and the previous chapter have demonstrated usages of the 

singleton skeleton. 

5.8 Conclusion 

The chapter contains detailed presentations of two of the patterns of the pattern 

language that provides techniques for designing and implementing network-oriented 



parallel applications. The rest of the patterns are discussed briefly. The patterns 

in the language are d woven together by the generic PAS11 model. The nest 

two chapters discuss the performance issues. and the ~arious software engineering 

related and other aspects of the model and the systern. 



Chapter 6 

Performance Evaluat ion 

The main purposes of this chapter are to demonstrate the following: (1) the PASM 

system has been efficiently implemented. (2)  The performance of the system is corn- 

parable wirh MPI. i3) ..\ suitable application of proper granularit' should exhibit 

reasonable performance gain rvhen implemented using the system. 

Experiments were conducred to assess the performance of the PASM system. 

The results were compared wi t h direct MPI- based implement ations. The perfor- 

mance difference with NP1 lies within 5%. which can be attributed to the fact that 

the skeleton-library is implemented as an extremely thin layer on top of MPI. The 

thin implementation layer generally implies that any application that demonstrates 

good performance with direct SIPI-based implementation should provide simiiar 

performances wit h a skeleton-based implementat ion. under al1 ident i d  condit ions. 

The following discussion present s the performance result s, which can be broadly 

divided into two categories: application specific evaluation and application inde- 

pendent evaluation. The application-specific category involves resdts for some 

well-known parallel applications. Some of these resdts demonstrate the effect of 



ganularity on performance. These results can be further subdivided into two car- 

egories: performance based on timing and on software qualit-. The software engi- 

neering related aspects of the PAS31 mode1 and the system are further elaborated 

in the next chapter. 

The application-independent category compares the performances of certain 

primitive commands with direct MPI-based primitives. besides other application- 

independent performance measures to be discussed shortly. 

6.1 Application Specific Evaluation 

6.1.1 PQSRS 

Parallel Quick Sort using Regular Sampling. abbreviated PQSRS [55] .  is a parallel 

version of quick sort. shown to be effective for a wide variety of MI'IID architec- 

tures. It uses a combination of master-slave and 1-D mesh patterns. which is easily 

realized using the data-parallel skeleton for mesh topology and the singleton skele- 

ton. The algorit hm works in the following steps: ( 1 ) the master module partitions 

the data items to be sorted to the .V children (i.e., slaves). Each child then per- 

forms sequential qui& sort on its own data items, selects N data items as regular 

samples. and sends them back to the parent (Le.. master). (2)  the master gathers 

the regular samples from all its children. sorts them. gathers .V - 1 pivot values and 

broadcasts them to the children. Each child partitions its portion of sorted items 

into :'iT disjoint partitions. based on the 3 - 1 pivot values. (3 )  Child i keeps the 

ith partition and sends the jth partition to its jth peer. Thus, at this phase, each 

child has to communicate with al l  its .V - 1 peers. (4) Each child receives N - 1 

partitions from its peers, merges them with its own partition to form a single sorted 
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Figure 6.1: Speed-up ratio versus number of processors 

list. and sends the sorted list back to the master. Finally. the master concatenates 

the sorted sub-lists from al1 its children to form the final sorted list . 

PQSRS is a non-trivial algorithm which requires a considerable amount of peer- 

tepeer interaction among the slaves. which is supported by the intemal protocol(s) 

of the data-pardel shleton. It cannot be implemented using most other pattern 

based systems discussed previously. Figure 6.1 illustrates the results obtained for 

sorting 10000 and 21000 randomly generated objects using PQSRS. Time to corn- 

pare two objects is approximately 0.2 ms. The underlying hardware is a cluster of 



Sun Sparc workstations (each is an Cltra 10 Elite with 256 MB of RAJI)  connected 

by a 10-megabit Ethernet network. The speed-up ratio is measured with respect 

to the same sequential quick-sort routine used inside PQSRS. The performance 

difference with MPI is negligible and hence is not illustrated separately. 

6.1.2 2-D Discrete Convolution 

This is an image processing algorithm used for convduting a given image rhrough 

the application of a mask. The mask is applied to each image pixel to producc 

the convoluted image [XI. As compared to the previous application. this one 

is relatively simple. Like most other image processing algorithms. it follows the 

master-slave pat t r m  where the slaves need not interact wit h one mot her. 

Figure 6.1 illus trat es the results obt ained for the parallel discrete convolut ion 

of two pixel images of sizes 640 x 450 and 56s x 608. The mask used in each 

case is of size 10 x 10. The underlying hardware is identical to that used in the 

previous application. The speed-up ratio is measured with respect to the best 

sequential algorithm. The experiments demonst rate almost identical performances 

with both the images. hoaever there is observed performance degradation with a 

5 x 5 mask in each case (not shown in the figure) due to non-optimal computational 

granularit- More on the effect of granularity on performance is discussed in the 

next experirnent . 

6.1.3 Jacobi 

The Jacobi method and its implementations have already been discussed in chapters 

4 and 5.  As compared to the previous two applications. it is a relatively ber-grain 



application (e.g.. four fioating point additions and one division per node of a graph. 

as compared to the sliding of an entire mask over each image pisel in the case of 

the discrete convolution algorithm). -1s the code fragment illustrates. the parallel 

implementat ion requires nearest-neighbor communication. Compare i t wi t h the 

PQSRS algorithm. where each computing element (i.e.. slave) has to communicate 

with ail its peers. 

The granularity (i.e.. the ratio of computational time to communication over- 

head. betlveen two successive communication points) can be increased by mapping 

more nodes per processor. provided that the corresponding rate of iucrease in com- 

munication overhead is less than the rate of increase in the number of nodes per 

processor. If granularity is more than a certain optimal \due. which can vary 

from situation to situation. t heoretically there should be speed-up. Otherwise. the 

parallel application shows performance degradarion. 

Figure 6.2 illustrates the effect of granularity on speed-up in the case of Jacobi, 

for multiple-sized square grids. As it is observed. if the ganularity is too small (e.g.. 

in the case of a 50 x 50 g i d ) .  there is visible slow-donm. The optimal speed-up is 

observed for a grid size close to 500 x 500. There are alrnost identical speed-ups for 

grids of dimensions 100. 1000 and 2000. When the grid becomes too large (e.g.. size 

2500 x 2500). t here are ot her overheads due to message fragmentation and swapping 

of mernon space. etc.. which might have contributed to the reduction in speed-up. 

For a given grid size. division of the g i d  into n processors should ideally give a 

speed-up of n.  However. in practice. this is not the case due to the communication- 

related and other overheads. -4s the number of processors increases, the computa- 

tional granularity per processor decreases. Beynd a certain threshold. there is no 

added benefit in further dividing the grid into s m d e r  subpieces. That threshold 

is not observed in the previous figure due to the la& of sdiicient number of p r e  
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cessors while conducting the experiments. The underlying hardware in this case is 

identical to that used in the previous two experiments. 

6.1.4 Software Quality Measurement 

-4s part of the 'ilaster's research of another graduate student. a comprehrnsiïe 

study was conducted to m e s s  the software quaiity related aspects of P.AS11 and 

some other related systems. The concept of software metrics is well established and 

a va.riety of software metrics have been used over time to measure the qualities of 

software products. 

In t his s tudy. sorne candidate met rics for measuring software quali t ies. especially 

complexity. were collected (e.g.. Halstead software science metrics [36]. McCabe's 

cyclomatic complexi ty metrics [4S] ) . The experiments involved PASM. Frame- 

tvorks [62]. Enterprise [56] and direct implementations using MPI. The study sug- 

gests that the use of architectural skeletons significantly lowers software complexity 

as compared to the code written from scratch using MPI. .A detailed discussion of 

the study is beyond the scope of this thesis. The interested reader can refer to the 

comprehensive description of the work [68.69]. 

6.2 Application Independent Evaluat ion 

The rneasurernents in this section can be subdivided into two categories: (1) corn- 

parison of certain primitive operations wit h equivalent MPI-based primitives. and 

(2)  application-independent evaluation of certain pat t ems implemented using ar- 

chitectural skeletons. in comparison wit h equivalent sequential implement ations. 



-4s mentioned before. the performance difference with NP1 is found to be rather 

insignificant. and hence. the first category of measurements confines only to the first 

of the following set of measuremrnts. merely for the sake of completeness. The rrst 

of the measurements fail into the second category. 

6.2.1 Cornparison of Some Basic Primitives wit h MPI 

The Sand and Receive primitives inside P R O T S e t  were cornpared with their coun- 

terparts. MPI ,Send and MPI Jteceive. inside MPI. Since the mentioned primitives 

inside PROT-?Jet (as well as other similar primitives inside PROTSet  and the 

other protocols ) perform automatic data marshaling and un-marshaling. it malies 

sense t O include the equivalent message-packing and unpacking t imes while measur- 

ing the JIPI-based times. The table on the next page illustrates the best measured 

times for sending and receiving 1000 messages with varying message sizes. and the 

percentage differences. For each message size. the best time is taken out of at least 

five different runs under a.lI identical configurations. 

-4s the results suggest . the performance differences are insignificant and the =y- 

ing network load conditions are the main contributing factors for the fluctuations 

in the results. which cannot be explained otherwise. 



- -- 

Message Size Send ( PROTSet  ) 

(Integer) Besttime(s/1000msg) 

MPI-Pack + NPISend 

Best time (s/1000 msg) 

1 (Integer) 1 Best time (s/1000 msg) 1 Best tirne (s/1000 msg) 1 Difference 1 

As another measure of comparison. the amount of code to be wit ten by the user 

-- 

120000 1 61.73 

using both the approaches are also cornpared. In the previous test case. the minimal 

size of code to be written using the shleton-based approach is approximately 1100 

bytes (56 lines wit h al1 commenrs and b l d  lines removed) . The sarne functionality 

could be achieved using NPI with a total user-written code size of approximately 

62S1 1 -1.79% 

I Message Size 

3400 bytes. spread over two files (105 lines altogether ir-ith al1 comments and blank 

lines removed). The reduction in user-written code size is approximately 59%. and 

!iIPIRecei~e + JIPISnpack Receive (PROTSe t  ) 

the reduction in the number of lines is approximately 47%. Sote that byte size 

comparison aill also depend on the lengths of the variable- and procedure-names 

% 

used. 

Other simila. measures for the application-specific category were included inside 

software met rics measurements. diswsed in the previous section. 



Figure 6.3: Effect of ganularity on performance 

6.2.2 Effect of Granularity on Master-Worker Performance 

The nest set of experiments involves application-independent performance e d u -  

arion of certain patterns. implemented using the architectural skeleton approach. 

The first in this category involves the master-worker pattern. implemented using 

the replication shleton. The e ~ ~ e r i r n e n t  invoives a h e d  amount of workload. dis- 

tnbuted among replicated workers. The mavimum number of workers concurrently 

present is varied. One worker is mapped per amilable processor. 

The experiment is carried out wit h three leveis of computational grandarities 

per worker: grandarity 1 (approximately 4.4 ms). granularity 10 and granularity 

40. Grandarit- is introduced via 5 floating point multiplications inside a loop. 

\Vith a computational granularity of 1. there are altogether 4800 calls to workea. 



and a total of 9600 messages (send and receive) of fised message size. With a 

computational granularit' of 10. the total number of calls to workers (and also 

the number of messages) is reduced proportionatel' to -80. while the message size 

remains the same as before. Same is the case with the granularit' of 40. where the 

number of calls is reduced to 120. Figure 6.3 illustrates the results obtained with 

different numbers of w o r h n  present at a particular nui. 

-4s the figure shows. higher computational granulari ty gives near-linear perfor- 

mances. On the other hand. with lower computational granularity (of one). the 

performance is sub-linear with a higher number of workers. This phenonienon can 

be attributed to the fact that communication cost (associated with 9600 messages) 

and the maintenance cost of the workers dominate the computational time on each 

worker. As a resulr. performance gradually degrades with a higher number of 

workers. On the c o n t r q .  communication cost is much reduced with a higher com- 

putational granularity (for instance. a total of 230 messages are associated a i th  a 

granularit' of 40). and also the maintenance cost of the workers becomes negligible 

as compared to the computationd granulari ty per worker. These factors cont ribute 

towards the near linear performances with higher granularities. 

6.2.3 Pipeline wit h and wit hout Replication 

The graphics animation application and its subsequent refinement is discussed in 

detail in chapter 4. This set of e-xperiments inwlves a similar situation with three 

modules: Producer. Worker and Consumer. which have different levels of computa- 

tional granularities and together the- f o m  a pipeline. Once the pipeline becomes 

full in a parallel run. each of the modules is working concurrently a d  hence the 

overall speed-up is governed by the slowest of the modules. For instance: assuming 



Figure 6.4: Performances of pipeline with and ivithout replication 

t hat the ganularities of the modules are 1. 9 and 2 respectively. a sequential run 

has a granularity close to 12 per iteration. On the other hand. a parallel run (once 

the pipeline becomes fuil) has a grandarity close to 9. ignoring the communication 

overhead. and thus the maximum attainable speed-up is close to 1219 = 1.33. This 

c a n  be improved by replicating the workload of the slow Uorker among subordinate 

workers. Le.. SubWorkers. Theoretically. with 9 SubWorkers present concunently. 

one of them is producing a result every 1 time unit. and hence. the computationd 

granularity of the Worker should reduce approximately to 1. The Consumer module. 

with a granularity of 2, now dominates the pipeline and the maximum attainable 

speed-up is close to 1212 = 6. This can once again be improved by replicating the 

Consumer. which can tlîeoretically provide a maximum speed-up of 12. 

This set of experiments involves the exact situation with the aforementioned 



gr anularit ies of the t hree modules. Compu t arional granulari ty of one corresponds 

to approximately 5 ms. Only the Worker module is replicated. and hence the 

maximum attainable speed-up is 6. Figure 6.4 illustrates the results obtained with 

and without replication. As shown in the figue. the maximum attained speed-up 

without replication is 1 .B. while the theoretical limit is 1.33. 

With replication. a saturation point is reached mith approximately 6 sub-workers. 

This can be attributed to the fact that. starting at the saturation point. the niain- 

tenance cost of the sub-workers and the cornmurrication owrhead (between worker 

and sub-workers) start dominating over the computational granularity of each sub- 

worker. t hgs offset r ing any benefit hencefort h. 

The experiments were carried out at different times of the day. spread over two 

days. and the best readings are taken. Sloreover. due to the brief ~acation period 

at the end of the term. the system and the network load was quite minimal during 

the times of the tests. 

6 .Z.4 Performance of Pipeline wit h Varying Granularity 

The next set of e-xperirnents involving pipeline investigates the effect of granularity 

on performance. There are several variable factors that need to be considered: total 

number of pipeline stages. comput at ional granulari ty per stage assuming uniform 

granularity across ail stages. and message size. For this set of experiments. the 

total number of pipeline stages is Lved at 8 where al1 stages have equal granularity. 

Granularity is directly proportionai to the ratio of the computationd time between 

two successive communication points (that is, the computational ganularity) to 

the communication overhead. Theoretically. higher granularity gives better perfor- 

mance. as long as granularity is below some threshold value that depends on maay 



Figure 6.5: Performances of pipeline with w i n g  degrees of granularity 

physical factors of the underlying architecture. 

Wit h S pipeline stages. each of equal granularity. the maximum at tainable speed- 

up is S. Figure 6.5 illustrates the results obtained with varying degrees of gran- 

da r i  t ies per stage. Throughour the experiments. each pipeline stage is mapped 

per alailable processor. The computational granularity of 1 corresponds to ap- 

prosimately 0.5 ms. With fixed message sim. higher comput at ional granulari ty 

corresponds to higher granularity per stage. On the other hand. with fked com- 

put ational granularity. higher message size corresponds to lower granulari ty per 

stage. The graphs demonstrate better performance with higher granularity. thus 

conforming to usual predictions. 



6.2.5 Conclusion 

The chapter presents the application-specific and application-independent perfor- 

mances of the PASM system. A s  the cornparisons with MPI suggest. performance 

difierences wi t h direct MPEbased implemmtations are negligibie. nhich is due to 

the fact that the skeleton-library is implemented as an extrernely thin layer on top 

of MPI. The software engineering related aspects of PAS11 are discussed in the nest 

chapt er. 



Chapter 7 

Crucial Issues, Future Directions 

This chapter focuses on several important aspects of the PASM model and the 

associated sustem. These include the fundamental contribut ions of the research, 

various software engineering related issues of the model and the system. and its 

cornparison wit h some ot her related wor ks. The following section on future research 

directions ernphasizes some of the core issues that need to be considered in future 

versions of this work. 

7.1 Fundamental Contributions 

The most fundament al contribution of the parallel architectural skeleton model 

is its genericness. which leads to the other contributions of the approach (e.g., 

flexibili ty and extensibility ). Some of the other fundamental contributions are: 

modularit' ( which cont ribut es towards its ob ject-oriented design and implementa- 

tion). the capability of describing a skeleton independent of other skeletons (which 

contributes towards extensibility), and the capability of implementing the model in 
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C++ without requiring any language estension. Sonie of these issues are furt her 

discussed in the following . 

7.2 Software Engineering Issues 

The following discussion presents the \arious software engineering related aspects 

of the mode1 and the system. Some of these issues were previously discussed in the 

book-chapter by this author [NI. 

7.2.1 Reuse 

There are two types of reuse that can be mentioned: (a) reuse of code for patterns. 

and (b)  reuse of application code. The h s t  type of reuse is quite evident in this sys- 

tem. since each architectural skeleton estracts and implements the striictural and 

the behavioral attributes associated with a par tem in an application-independent 

manner. The karious parameters associated with t hese at tributes (for instance: 

dimensions of a mesh. width of a divide-conquer tree. selection of appropriate pro- 

tocol(s). etc.) enable the same skeleton to be configured to the needs oi different 

applications as abstract pa rde l  comput ing modules. The abstract modules become 

concrete wi th the insertion of application code. 

Regarding the reuse of application code. a pardel  application c m  be viewed as a 

rest ruct uring of the original sequentiai code wi t h embedded parallelism constructs. 

-4 smart restnicturing enables good portions of the original sequentid code to be 

reused. For instance. in the graphics animation example in chapter 4. the proce- 

dures DoHidden( ...). DoConversion( ...) and WriteImage( ...) are reused from the 

original sequent i d  code. except for minor changes related to the parameter type(s ) . 
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lforeover. these reused procedures contain the majority of the code for the entire 

appiicat ion. 

7.2.2 Genericness 

-4s opposed to being ad hoc. each architectural skeleton is defined in a generic 

fashion ( that  is. in a manner independent of hny pattern or application) with its 

canonical set of attributes. 'if- useful patterns in parallel computing are realized 

inside the frameworks of the generic mode1 (refer to Figure 4.4). Each parallel 

computing module c a .  interact tvit h ot her modules via standard interfaces ( i.e.. 

the representatives). a ivell-defined set of protocols and using a universal set of 

rules. The generic approach enhances usability. 

7.2.3 Flexibility 

Flexibility is one of the major concems associated with dl pattern based ap- 

proaches (631. Often. if a certain desired pattern is not supported by a pattern-based 

system. there is no alternative but to abandon the idea of using the particular a p  

proach altogether. 

JIPI [35! is knotvn to be extremely flexible because of i ts proven applicability in 

solving a last majority of parallel applications. Often different solution strategies 

can be planned out tvhile solving an application using MPI. which gives the user 

complete flexibility. Inside the frameworks of P.4SM. that type of Lxibility can 

be achieved if the features of MPI can be directly supported. This is the main 

idea behind the compositional skeleton and i ts associated protocol. PROT -?et. 

The compositional skeleton in conjunction with its interna1 protocol PROTNet 
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is intended to provide an 11 PI-Lilie parallel programming environment wit hin the 

frameworks of the model. and it can be used to subetiture patterns if an application 

demands so. 

Moreover. a compositional module is Lih any other module from P.4S)iI's per- 

spective. Consequently it can be used in conjunction with the other patterns sup- 

ported by the model. This type of uniformit' should provide added flesibiiity to 

the user. 

7.2.4 Extensibility 

As mentioned previously. lack of extensibility is another major concern associated 

with most pattern-based approaches [63]. Most of these systems are hard-coded 

a i t h  a limited and fixed set of patterns. and often there is no clear way to add ner 

patterns to the system when need arises. 

From the implementor's or an experienced user's perspective. certain features 

of the object-oriented design. in conjunction with the generic nature of the model, 

favor reuse and extension of the skeleton library. The generic model helps. because it 

provides a clear picture regarding the different components of a skeleton and their 

functionalities (compare it with a totally ad hoc approach). Furthemore. from 

PASSI'S perspective. each module is an independent entity nhose oniy interface 

with the outside world is through its representative and the adaptable extemal 

protocol. Accordingly. what the outside world sees of a module are its actions (i.e., 

input/output and any observable side effects). without knowing exactly how these 

actions are carried out internally In other words. each module is an independent 

self-contained entity that acts as a black-box to the outside world. For the same 

reasons. each module can be designed independent of others. In other words, the 
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P..\SM model inherent 1- supports extensibili ty. 

From the P.4Sll system's perspective. man- of the object-oriented feat tires t ha< 

are supported in C++. for instance: polymorphism ( t  hrough the use of C + + tem- 

plates, inheri t ance and overloading ) , favor the reuse and extension of the exis t ing 

skeleton library. Sew classes CM be defined by extending the esisting ones. t hiis 

enabiing the design and addition of new skeletons and protocols with addrd func- 

tionalities. Completely new skeletons and protocols can be designed by estending 

the base classes (refer to Figure 4.1). In each case. a collection of pre-existing vir- 

tua1 methods need to be over-written and new additional methods rnight need to 

be designed in order to refiect the characteristics of the newly designed skeleton. 

7.2.5 Hierarchical Development and Refinement 

h parallel computing module can contain other modules. and hence. application 

development using PAS11 is distinctly hierarchical. Moreover . a parallel comput ing 

module can be viewed as a black-box. where the only visibility from the outside 

world is in the action of the module, and in its interface and interaction with other 

modules. As long as these factors remain unchanged. the module can always be 

replaced wit h another module. nhich implement s some ot her pattern( s ). wi thout 

affecting the rest of the application. Such type of replacement for betterment is 

called a refinement. The hierarchical model leads to hierarchical refinement. 

Hierarchical refinement is illustrated for the gaphics animation exarnple in 

chapter 4. where the singleton D i  sp lay  module is refined to a dynamically-replicated 

module of identical name. Figure 4.7 illustrates the affect of refinement on the hi- 

erar &y. 
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7.2.6 Separation of Concerns 

Also known as sepuration of ~pecifications. separatiori-of-conceni is a desirable char- 

acteristic of ail pattern-based approaches. Through the extraction of the application- 

independent components of patterns into architectural skeletons. t here esist s a 

clear separation between application code and application-independent issues. The 

applicat ion-independent components hide mos t of the low-level details related t O 

process/ thread creation and management. process-processor mapping. comniuni- 

cation and s~chronization. load balancing. data marshaling and un-marshaling. 

and architecture- and network-specific low-level details. These pre-packaged com- 

ponents are tested to be reliable. provided tbey are used correctly. 

Application development using parallel architectural shletons is clearly a multi- 

stage process (refer to Figure 3.1). where each stage is distinct from the others. The 

first stage provides pure application-independent abstractions. The clear separat ion 

of the low-level details allows a user to concentrate more on the application-specific 

issues. 

7.2.7 Composition Using Patterns 

-4 parallel computing module can contain other modules inside its back end. and 

thus. pattern-composition is an inherent property of the model. The compositional 

skeleton supports a r b i t r q  composition of patterns inside its back end, with no 

restriction on the types of patterns that can be cornposed (refer to chapter 5). Thus, 

a compositional module. which is an extension of the compositional skeleton. can 

contain other compositional modules as well. Standard interfaces for aIl modules 

and a well-defined adaptation nile malie pattern-composition extremely feasible. 



CHAPTER 7. CR I'CIAL ISSL'ES. FI'TI'RE DIRECTIOSS 

7.3 Cornparison with Related Work 

The generic nature of the architectural-skeleton mode1 is one of the features that 

distinguishes t his research from ot her pattern-based approaches in parallel corn- 

puting. As has already been discussed. the generic mode1 contributes towards both 

flexibility and extensibility. which are some of the essential features lacking in most 

of the existing pat tem-based approaches to parailel comput ing. 

In the pas t . several pardel  programming systems have supported frequentl- 

used parallel interactions [ I l .  12.56.61). However. in d l  these cases a fised number 

of high-level parallel interactions are hard-coded into the system. -4s a consequence. 

if a user's desired high-level interaction is not supported by a particular system. then 

the user has to adopt a different approach. To achiet-e higher flexibility. traditionally 

parallel progammers have relied on low-level communication libraries such as PVM 

and MPI. So there is clearly a trade off between the ease of development provided 

by the higher-levcl systems and the flesibility offered by low levol primitive libraries. 

-4s discussed. in PASSI. a user can mix high-level architectural skeletons with low- 

level JIPI-like message passing (for instance. the internal protocol P R O T S e t  inside 

the compositional skeleton). 'iloreover. in d l  of previous systems. the supported 

patterns are tightly integrated into the implementation of the system. so there is 

no easy r a y  of adding newer patterns without major modifications to the entire 

system. In P-IS'II. on the other hand. every architectural skeleton is independent 

of other patterns. and thus. adding new architectural shletons is a simple matter 

of extending the library of architectural skeletons. 

Racs (61 is one of the earlier systems that addresses the issue of extensibility 

It is a graphical development system. rvhere application development consists of 

two distinct phases: the definition phase and the configuration phase. During the 



definition phase. the user graphically defines the three basic components: of an 

application: the message model. the task model and the architecture model. The 

architecture model defines the software architecture of the parallel application in 

temis of message and task models. An architecture model defined during this phase 

can be saved in a user-defined iibrary for later use. During the configuration phase. 

the programmer constructs the complete application from the basic component S. 

either d e h e d  during the definition phase or selected from the system libraries or 

both. Evidently. Tracs supports the idea of estensibility by providing support for 

an extensible li br- of user-defined architecture models. Hoivever. the type of 

estensibility realized by Tracs is restrictive. For instance. in Tracs. a user can 

graphically create a %slave master-slave pattern and Save it insidc the library for 

future use. Hoivever. a generic master-slave pattem is more useful for this purpose. 

As far as known to us. DPnDP [66] is the first system that addresses both the 

issues of flesibility and extensibility. It ivas a nice attempt. but unfortunately it 

concentrates only on the structural aspects of a pattern and ignores the behav- 

ioral aspects altoget her (for instance: pardlel comput ing model. communication- 

synchronization behavior inside a pattern). In spite of its limitations. DPnDP was 

a good leaxning esperience and it set up the initial stage for this research. 

There are various ot her systems and research projects in the ob ject-oriented 

domain t hat are intended to facilitate parallel application development . A majority 

of them are based on C i +  or its extensions. Some of these systerns are pattern- 

related. .A comprehensive discussion on many of these systems can be found in [74]. 

Though none of thern bear similarity to this generic architecturai-skeleton model, 

some of them are worth mentioning here. 

HPC + + [26] focuses on a common foundation for portable parallel applications. 

Parts of its implementation are through libraries and parts through C++ language 
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extensions. One of its key features is the esploration of loop parailelism. as in 

HPF [46]. Another feature is the parallel estension of the Ci+ standard tern- 

plate library (STL) 1521. The parallel standard template library (PSTL) provides 

distributed versions of the STL container classes dong with versions of the STL 

algorithms that have been modified to nui in paraliel. As a major distinction with 

most pattern- based systems. including this architectural-skeleton approach. PSTL 

is a class-library and not a f.arnework (i.e.. the user selects the library routines 

for an application and it is the user's application that dominates). Other major 

differences lie in the HPF-like features. such as loop-parallelism and the extended 

C++ language syntau. 

POOU.-\ ( Parallel Object-Oriented Met hods and Applications ) [19] is a collec- 

t ion of C + + t emplate-classes for writing high-performance scient ific applications. 

It provides high-level dat a-pardel types (for instance. high-level abstractions for 

multi-dimensional anays. cornputational mesh. etc) that make it easy to write par- 

alle1 PDE (partial different id equation ) solvers wit hout worrying about the low- 

level details of layout. data transfer. and synchronization. In its restricted problem 

domain. POO'rlA is able to provide good amount of optimizations for achieving 

high performance. In cornparison. the architect ural-skelet on approach is not re- 

stricted to an- specific problem domain inside parallel computing. and hence. it 

may not be able to offer the same amount of domain-specific optimizations as in 

POOMA. 

Similarly. DAPPLE [42] is another C++ class libr- that provides the illusion 

of a data-pardel programming language on conventional hardware and with con- 

ventional compilers. DAPFLE defmes Vectors and Matrices as basic classes, with 

a.ll the Cf+ operators overloaded to provide for element-wise arithmetic. In addi- 

tion. DAPP LE provides typical data-parallel operations chat are most commonly 
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applied. In cornparison to D.-\PPLE8s esclusive data-parallel domain. the architec- 

tural skeleton libr- is applicable to a much wider range of parallel programming 

paradigms. 

7.4 Future Research Directions 

The following are some of the issues that need to be considered in the future ev* 

lut ions of the work: 

How flexible and usable is the approach? How can these issues be rneasured 

and compared? (For instance. consider the software metrics measurements 

for assessing software complexity). Csability evaluations based on esisting 

usability metrics and statistical experiments need to be planned out in the 

future. 

Though the PASM mode1 inherently supports entensibility. the issue of ex- 

tensibility needs to be further investigated for the PASXI system. The object- 

oriented design of the skeleton libraq needs to be further fine tuned so that 

adding a new skeleton to the library rnerely becomes an issue of filling in some 

predefined blanks (i.e.. filling in the pre-defined virt ual met hods ). 

Does the PASM system need a graphical user interface (GUI)? Wili the in- 

troduction of a GGI-based system hamper extensibility? These issues need 

further investigation. 

The issue of process-processor mapping was mentioned before. Presently no 

specific mapping strategies are employed, which is a separate research topic 
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in itself. In future versions. several pat tern-specific heurist ic-based mapping 

strategies need to be designed and in~estigated. 

The generic model can suitably realize al1 of the frequently used patterns in 

network-oriented pardel computing that are h o n n  at this moment. Are 

there a q  other useful patterns left out? 1s there an' such pattern that 

cannot be realized inside the model? In that hypothetical latter case. what 

modifications to the model will be necessary': 

One such pattern is the data-flow pattern which. though useful. is rarely 

applied in practice. If at d l  needed. it could be implemented using the com- 

positional skeleton or could be designed as a separate pattern conforming to 

rhe model. Another pattern is the client-semer pattern. which is in fact a 

pattern for distributed computing (as compared to the focus of this work. 

rvhich is on distributed parallel computing). 

7.5 Conclusion 

The research presents a generic model for designing and developing parallel ap- 

plications. and is based on the idea of design patterns. The model is based on 

the message-passing paradigm that makes it well suited for a cluster of worksta- 

tions and PCs. An architectural skeleton is a physical abstraction of a pattern in 

pardel  computing. The skeleton-based model is an ideal candidate for implemen- 

t ation using object-oriented techniques. The object-oriented approach can be used 

to build an application-independent . extensible l i b r q  of skeletons. O t her issues 

of equal importance that form integral parts of the model are: flexibility. reusabil- 

ity (of code for patterns and of application code). separation of specifications. and 



inherent support for hierarchical development and refinement . 

The present collection of architectural skeletons supports those patterns for 

coarse-grain message-passing computation which can provide good performance 

in a networked 'IIIMD environment. Research is in progress to incorporate new 

skeletons for such an environment. 
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