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Abstract

Research on multisensor data fusion aims at providing the enabling technology to com-
bine information from several sources in order to form a unified picture. The literature
work on fusion of conventional data provided by non-human (hard) sensors is vast and
well-established. In comparison to conventional fusion systems where input data are gen-
erated by calibrated electronic sensor systems with well-defined characteristics, research
on soft data fusion considers combining human-based data expressed preferably in uncon-
strained natural language form. Fusion of soft and hard data is even more challenging, yet
necessary in some applications, and has received little attention in the past. Due to being
a rather new area of research, soft/hard data fusion is still in a fledging stage with even
its challenging problems yet to be adequately defined and explored.

This dissertation develops a framework to enable fusion of both soft and hard data
with the Random Set (RS) theory as the underlying mathematical foundation. Random
set theory is an emerging theory within the data fusion community that, due to its powerful
representational and computational capabilities, is gaining more and more attention among
the data fusion researchers. Motivated by the unique characteristics of the random set
theory and the main challenge of soft/hard data fusion systems, i.e. the need for a unifying
framework capable of processing both unconventional soft data and conventional hard data,
this dissertation argues in favor of a random set theoretic approach as the first step towards
realizing a soft/hard data fusion framework.

Several challenging problems related to soft/hard fusion systems are addressed in the
proposed framework. First, an extension of the well-known Kalman filter within random
set theory, called Kalman evidential filter (KEF), is adopted as a common data process-
ing framework for both soft and hard data. Second, a novel ontology (syntax+semantics)
is developed to allow for modeling soft (human-generated) data assuming target tracking
as the application. Third, as soft/hard data fusion is mostly aimed at large networks of
information processing, a new approach is proposed to enable distributed estimation of
soft, as well as hard data, addressing the scalability requirement of such fusion systems.
Fourth, a method for modeling trust in the human agents is developed, which enables the
fusion system to protect itself from erroneous/misleading soft data through discounting
such data on-the-fly. Fifth, leveraging the recent developments in the RS theoretic data
fusion literature a novel soft data association algorithm is developed and deployed to ex-
tend the proposed target tracking framework into multi-target tracking case. Finally, the
multi-target tracking framework is complemented by introducing a distributed classifica-
tion approach applicable to target classes described with soft human-generated data.
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In addition, this dissertation presents a novel data-centric taxonomy of data fusion
methodologies. In particular, several categories of fusion algorithms have been identified
and discussed based on the data-related challenging aspect(s) addressed. It is intended to
provide the reader with a generic and comprehensive view of the contemporary data fusion
literature, which could also serve as a reference for data fusion practitioners by providing
them with conducive design guidelines, in terms of algorithm choice, regarding the specific
data-related challenges expected in a given application.
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Chapter 1

Introduction

1.1 Motivation and Scope

Traditionally data fusion systems have been mostly developed to tackle problems in mil-
itary domain such as situational awareness, threat assessment, condition monitoring of
machinery, and target identification and tracking. As a result, the bulk of research in data
fusion literature is based upon a related process model called JDL [9] where input data
is primarily provided by physical (electronic) sensors (S-space) such as radar, LIDAR 1,
and acoustic sensors with limited input from human observers [185]. However, two recent
trends in the data fusion community are changing the conventional role of humans from a
passive element to an active analyst and provider of data. The first major trend is data
fusion applications that are also interested at targets, which are not primarily physical,
such as locations, identity, and interaction of individuals and groups. For instance tack-
ling the military threat of IED 2 involves a hierarchy of physical to nonphysical targets
sought, ranging from physical devices and vehicles to human networks, belief systems,
cyberconnectivity, and policies. This requires a transition from monitoring and character-
izing the physical landscape to the one referred to as human landscape, involving data-rich
yet model-poor problems. In other words, the main challenge is to properly model such
abundant human-generated data in order to be able to process it in a mathematically
sound and coherent manner. The second trend driving the change of human role is the
emergence of two new sources of data, namely, human observations (H-space) and the
Web-based data (I-space). For instance, about 4 billion cell phones, mostly equipped with

1Light Detection and Ranging
2Improvised Explosive Devices
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GPS sensors, image sensors, etc., are currently used worldwide. One can consider these
cell phone users as a formal/informal community of observers supplying information about
an evolving situation. Similarly, new websites that enable information sharing by humans
such as YouTube, Facebook, Twitter, and Blogs provide a gigantic amount of data.

In contrast to the conventional data provided in the S-space, which could typically be
related to the system state in a well-defined and crisp way, hence the name hard data, the
data available in the H-space and the I-space are usually more difficult to model and relate
to the system state, hence the name soft data. Indeed, processing and utilizing such data
involves numerous challenges that are yet to be appropriately identified and understood.
The pioneering work by Hall et al. [149] outlines some of these new challenging problems
including the soft sensor tasking 3, data and knowledge elicitation, and most importantly
representation of data imperfection and second-order uncertainty. The main focus of this
dissertation is on the last issue, i.e. we propose the Random Set (RS) theory as an ap-
propriate mathematical framework to enable fusion of soft, as well as hard data. The
RS theory is an attractive solution to this issue, which has gained researchers’ attention
recently. Indeed, imperfect data represented in probabilistic, evidential, fuzzy, and possi-
bilistic frameworks are shown to have a corresponding formulation within the random set
framework [29, 97]. Due to such powerful representational and computational capabilities,
we advocate a RS theoretic approach as an appealing solution to enable fusion of disparate
forms of data. Moreover, the main application context assumed in this work is the dis-
tributed target tracking in sensor networks. As a result, the novel framework proposed in
this dissertation can be considered to lie at the intersection of three active areas of research
in the data fusion community, namely, RS theoretic data fusion, soft/hard data fusion, and
distributed data fusion (See Figure 1.1).

The essential thesis of this dissertation is a random set theoretic approach to enable
fusion of soft/hard data. To substantiate this thesis:

• Section 1.2 of this chapter briefly describes the main contributions of this dissertation.

• Chapter 2 presents an elaborate survey of the data fusion state-of-the-art based on
a novel data-centric taxonomy of fusion methodologies. In particular, the unifying
power of the random set theory to enable dealing with various data imperfection
aspects is discussed in this chapter.

• Chapter 3 proposes the core of our RS theoretic approach to the soft/hard data fusion
problem relying on an extension of the Kalman filter within the RS theory called the

3Please note throughout this thesis the terms hard sensor and non-human sensor are used interchange-
ably.
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Kalman evidential filter (KEF). A review of the related literature work is presented.
This chapter further elaborates on the data modeling schemes developed for both
soft and hard data, as well as the multi-agent architecture adopted to implement the
proposed framework.

• Chapter 4 considers the problem of single-target tracking using soft/hard data and
applies the proposed RS theoretic framework as a solution. The goal is to estimate
the state, e.g. position and/or velocity, for the single target of interest over time. Fur-
thermore, two novel approaches to enable distributed data aggregation and modeling
of human trustworthiness, thus enhancing the scalability and robustness of the pro-
posed framework, are presented. Lastly, a series of single-target tracking experiments
evaluating the proposed framework are detailed.

• Chapter 5 further extends the target tracking problem into multi-target case by
proposing a novel soft data association algorithm. As with the single-target tracking
problem, the objective of a multi-target tracking system is to estimate the state of
multiple targets of interest over time. A review of the background literature work is
presented. Similar to chapter 4, a series of multi-target tracking experiments assessing
the proposed approach are described. Furthermore, a new distributed target clas-
sification method applicable to target classes described using soft human-generated
data is discussed.

• Chapter 6 provides a synopsis and critical appraisal of the key results, and finally
sketches future research directions.

1.2 Key Contributions

This dissertation adopts a random set theoretic approach to address the problem of soft/hard
data fusion for distributed target tracking task.

The following is a summary of the main contributions of this dissertation:

• A comprehensive review of the data fusion state-of-the-art based on a novel data-
centric taxonomy is presented. Our review discusses various imperfection aspects of
fusion data and the mathematical techniques commonly deployed to deal with them.
In particular, the power of RS theory as a unifying approach to unable dealing with
the majority of the data imperfection aspects is explored.
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Figure 1.1: The scope of the proposed data fusion framework

• Using the RS theory, a powerful, scalable, and robust single-target tracking frame-
work is developed that is capable of processing both soft human-generated data,
as well as hard conventional data. Extensive experimental results demonstrate the
tracking performance enhancement achieved using the proposed distributed data ag-
gregation algorithm and the human trust modeling scheme in challenging target
tracking scenarios. As soft/hard data fusion applications typically involve a large
number of sensor nodes (human and non-human), which could also potentially be
unreliable (especially for human type sensor nodes), the proposed distributed data
aggregation and human trust modeling approaches tackle two of the most important
issues regarding the practicality of the soft/hard fusion systems in the future.

• Leveraging recent developments in the RS theoretic data fusion literature, a novel soft
data association algorithm (SDAA) is developed to further extend the proposed tar-
get tracking framework into multi-target case. The proposed SDAA can be deemed as
an augmented nearest neighbor association algorithm that is applicable to soft data
modeled using the RS theory and takes into account both the human observer opin-
ions, as well as potential inter target conflict to come up with the final measurement
to track associations. A series of multi-target tracking experiments using soft data
are conducted to demonstrate the efficiency of the proposed approach. Moreover,
the proposed RS theoretic multi-target framework is complemented by introducing a
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novel distributed classifier applicable to target classes described with vague human-
generated data. The preliminary experimental results demonstrate the robustness of
the proposed approach to the noisy target data and highly vague target description
data.
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Chapter 2

A Data-centric Taxonomy of
Multisensor Data Fusion
Methodologies

2.1 Introduction

Multisensor data fusion is a technology to enable combining information from several
sources in order to form a unified picture. Data fusion systems are now widely used in
various areas such as sensor networks, robotics, video and image processing, and intelligent
system design, to name a few. Data fusion is a wide ranging subject and many terminolo-
gies have been used interchangeably. These terminologies and ad hoc methods in a variety
of scientific, engineering, management, and many other publications, shows the fact that
the same concept has been studied repeatedly. The focus of this chapter is on multisensor
data fusion. Thus, throughout this chapter the terms data fusion and multisensor data
fusion are used interchangeably.

The data fusion research community have achieved substantial advances, especially in
recent years. Nevertheless, realizing a perfect emulation of the data fusion capacity of
the human brain is still far from accomplished. This chapter is an endeavor to investi-
gate the data fusion task, including its potential advantages, challenging aspects, existing
methodologies, and recent advances. In particular, discussion of the existing data fu-
sion methods relies on a data-centric taxonomy, and explores each method based on the
specific data-related challenging aspect(s) addressed. While several general [1, 2, 3] and
specific [4, 5, 6, 7, 8] reviews of the data fusion literature exist; this chapter is intended
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to provide the reader with a generic and comprehensive view of contemporary data fusion
methodologies, as well as the most recent developments and emerging trends in the field.
The bulk of data fusion research has been dedicated to problems associated with the first
level of the Joint Directors of Laboratories (JDL) model [3]. As work on low-level fusion
becomes well established and approaches maturity, research on high level fusion tasks is
gaining more attention. A discussion of new developments on high level fusion methodolo-
gies may be insightful; nonetheless, as the focus of this chapter is on low level fusion, such
presentation is left to a future work.

The rest of this chapter is organized as follows: in section 2.2 popular definitions,
conceptualizations, and purposes, as well as the major benefits of data fusion, are discussed.
The challenging problems pertaining to performing data fusion are described in section 2.3.
Section 2.4 provides a discussion of data fusion methodologies based on their data treatment
approach. Finally, section 2.5 presents the concluding remarks for this chapter.

2.2 Multisensor Data Fusion

Many definitions for data fusion exist in the literature. Joint Directors of Laboratories
(JDL) [9] defines data fusion as a “multi-level, multifaceted process handling the auto-
matic detection, association, correlation, estimation, and combination of data and infor-
mation from several sources.” Klein [10] generalizes this definition, stating that data can
be provided either by a single source or by multiple sources. Both definitions are gen-
eral and can be applied in different fields including remote sensing. In [11], the authors
present a review and discussion of many data fusion definitions. Based on the identified
strengths and weaknesses of previous work, a principled definition of information fusion
is proposed as: “Information fusion is the study of efficient methods for automatically or
semi-automatically transforming information from different sources and different points in
time into a representation that provides effective support for human or automated decision
making”. Data fusion is a multi-disciplinary research area borrowing ideas from many
diverse fields such as signal processing, information theory, statistical estimation and in-
ference, and artificial intelligence. This is indeed reflected in the variety of the techniques
presented in section 2.4.

Generally, performing data fusion has several advantages [12, 2]. These advantages
mainly involve enhancements in data authenticity or availability. Examples of the former
are improved detection, confidence, and reliability, as well as reduction in data ambiguity,
while extending spatial and temporal coverage belong to the latter category of benefits.
Data fusion can also provide specific benefits for some application contexts. For example,
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wireless sensor networks are often composed of a large number of sensor nodes, hence posing
a new scalability challenge caused by potential collisions and transmissions of redundant
data. Regarding energy restrictions, communication should be reduced to increase the
lifetime of the sensor nodes. When data fusion is performed during the routing process,
that is, sensor data is fused and only the result is forwarded, the number of messages is
reduced, collisions are avoided, and energy is saved.

Various conceptualizations of the fusion process exist in the literature. The most com-
mon and popular conceptualization of fusion systems is the JDL model [9]. The JDL
classification is based on the input data and produced outputs, and originated from the
military domain. The original JDL model considers the fusion process in four increasing
levels of abstraction, namely, object, situation, impact, and process refinement. Despite
its popularity, the JDL model has many shortcomings, such as being too restrictive and
especially tuned to military applications, which have been the subject of several extension
proposals [13, 14] attempting to alleviate them. The JDL formalization is focused on
data (input/output) rather than processing. An alternative is Dasarathy’s framework [15]
that views the fusion system, from a software engineering perspective, as a data flow
characterized by input/output as well as functionalities (processes). Another general con-
ceptualization of fusion is the work of Goodman et al. [16], which is based on the notion
of random sets. The distinctive aspects of this framework are its ability to combine deci-
sion uncertainties with decisions themselves, as well as presenting a fully generic scheme
of uncertainty representation. One of the most recent and abstract fusion frameworks
is proposed by Kokar et al. [17]. This formalization is based on category theory and is
claimed to be sufficiently general to capture all kinds of fusion, including data fusion, fea-
ture fusion, decision fusion, and fusion of relational information. It can be considered as
the first step towards development of a formal theory of fusion. The major novelty of this
work is the ability to express all aspects of multi-source information processing, i.e., both
data and processing. Furthermore, it allows for consistent combination of the processing
elements (algorithms) with measurable and provable performance. Such formalization of
fusion paves the way for the application of formal methods to standardized and automatic
development of fusion systems.

2.3 Challenging Problems of Multisensor Data Fusion

There are a number of issues that make data fusion a challenging task. The majority
of these issues arise from the data to be fused, imperfection and diversity of the sensor
technologies, and the nature of the application environment as following:
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• Data imperfection: data provided by sensors is always affected by some level of
impreciseness as well as uncertainty in the measurements. Data fusion algorithms
should be able to express such imperfections effectively, and to exploit the data
redundancy to reduce their effects.

• Outliers and spurious data: The uncertainties in sensors arise not only from the
impreciseness and noise in the measurements, but are also caused by the ambiguities
and inconsistencies present in the environment, and from the inability to distinguish
between them [18]. Data fusion algorithms should be able to exploit the redundant
data to alleviate such effects.

• Conflicting data: fusion of such data can be problematic especially when the fusion
system is based on evidential belief reasoning and Dempster’s rule of combination [19].
To avoid producing counter-intuitive results, any data fusion algorithm must treat
highly conflicting data with special care.

• Data modality: sensor networks may collect the qualitatively similar (homogeneous)
or different (heterogeneous) data such as auditory, visual, and tactile measurements
of a phenomenon. Both cases must be handled by a data fusion scheme.

• Data correlation: this issue is particularly important and common in distributed
fusion settings, e.g. wireless sensor networks, as for example some sensor nodes
are likely to be exposed to the same external noise biasing their measurements. If
such data dependencies are not accounted for, the fusion algorithm, may suffer from
over/under confidence in results.

• Data alignment/registration: sensor data must be transformed from each sensor’s
local frame into a common frame before fusion occurs. Such an alignment problem is
often referred to as sensor registration and deals with the calibration error induced by
individual sensor nodes. Data registration is of critical importance to the successful
deployment of fusion systems in practice.

• Data association: multi-target tracking problems introduce a major complexity to the
fusion system compared to the single-target tracking case [20]. One of these new diffi-
culties is the data association problem, which may come in two forms: measurement-
to-track and track-to-track association. The former refers to the problem of identify-
ing from which target, if any, each measurement is originated, while the latter deals
with distinguishing and combining tracks, which are estimating the state of the same
real-world target [3].
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• Processing framework: data fusion processing can be performed in a centralized or
decentralized manner. The latter is usually preferable in wireless sensor networks,
as it allows each sensor node to process locally collected data. This is much more
efficient compared to the communicational burden required by a centralized approach,
when all measurements have to be sent to a central processing node for fusion.

• Operational timing: the area covered by sensors may span a vast environment com-
posed of different aspects varying in different rates. Also, in the case of homogeneous
sensors, the operation frequency of the sensors may be different. A well-designed
data fusion method should incorporate multiple time scales in order to deal with
such timing variations in data. In distributed fusion settings, different parts of the
data may traverse different routes before reaching the fusion center, which may cause
out-of-sequence arrival of data. This issue needs to be handled properly, especially
in real-time applications, to avoid potential performance degradation.

• Static vs. dynamic phenomena: the phenomenon under observation may be time-
invariant or varying with time. In the latter case, it may be necessary for the data
fusion algorithm to incorporate a recent history of measurements into the fusion
process [21]. In particular, data freshness, i.e., how quickly data sources capture
changes and update accordingly, plays a vital role in the validity of fusion results.
For instance in some recent work [22], the authors performed a probabilistic analysis
of the recent history of measurement updates to ensure the freshness of input data,
and to improve the efficiency of the data fusion process.

• Data dimensionality: the measurement data could be preprocessed, either locally
at each of the sensor nodes or globally at the fusion center to be compressed into
lower dimensional data, assuming a certain level of compression loss is allowed. This
preprocessing stage is beneficial as it enables saving on the communication bandwidth
and power required for transmitting data, in the case of local preprocessing [23], or
limiting the computational load of the central fusion node, in the case of global
preprocessing [24].

While many of these problems have been identified and heavily investigated, no single
data fusion algorithm is capable of addressing all the aforementioned challenges. The
variety of methods in the literature focus on a subset of these issues to solve, which would
be determined based on the application in hand. Our presentation of data fusion literature
is organized according to the taxonomy shown in Figure 2.1. The existing fusion algorithms
are explored based on how various data-related challenges are treated.
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Figure 2.1: Taxonomy of data fusion methodologies: different data fusion algorithms can
be roughly categorized based on one of the four challenging problems of input data that
are mainly tackled: namely, data imperfection, data correlation, data inconsistency, and
disparateness of data form.

2.4 Multisensor Data Fusion Algorithms

Regardless of how different components (modules) of the data fusion system are organized,
which is specified by the given fusion architecture, the underlying fusion algorithms must
ultimately process (fuse) the input data. As discussed in section 2.3, real-world fusion
applications have to deal with several data related challenges. As a result, we decided
to explore data fusion algorithms according to our novel taxonomy based on data-related
aspects of fusion. Figure 2.1 illustrates an overview of data-related challenges that are
typically tackled by data fusion algorithms. The input data to the fusion system may be
imperfect, correlated, inconsistent, and/or in disparate forms/modalities. Each of these
four main categories of challenging problems can be further subcategorized into more spe-
cific problems, as shown in Figure 2.1 and discussed in the following.

Various classifications of imperfect data have been proposed in the literature [25, 26, 27].
Our classification of imperfect data is inspired by the pioneering work of Smets’ [26] as
well as recent elaborations by Dubois and Prade [28]. Three aspects of data imperfection
are considered in our classification: uncertainty, imprecision, and granularity.
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Data is uncertain when the associated confidence degree, about what is stated by the
data, is less than 1. On the other hand, the imprecise data is that data which refers to
several, rather than only one, object(s). Finally, data granularity refers to the ability to
distinguish among objects, which are described by data, being dependent on the provided
set of attributes. Mathematically speaking, assume the given data d (for each described
object of interest) to be structured as the following:

object O attribute A statement S

representing that the data d is stating S regarding the relationship of some attribute(s)
A to some object O in the world. Further assume C(S) to represent the degree of confidence
we assign to the given statement S. Then, data is regarded to be uncertain if C(S) < 1
while being precise, i.e., a singleton. Similarly, data is deemed as imprecise if the implied
attribute A or degree of confidence C are more than one, e.g. an interval or set. Please
note, the statement part of the data are almost always precise.

The imprecise A or C may be well-defined or ill-defined, and/or, miss some information.
Thus, imprecision can manifest itself as ambiguity, vagueness, or incompleteness of data.
The ambiguous data refers to those data where the A or C are exact and well-defined yet
imprecise. For instance, in the sentence “Target position is between 2 and 5” the assigned
attribute is the well-defined imprecise interval [2 5]. The vague data is characterized by
having ill-defined attributes, i.e., attribute is more than one and not a well-defined set or
interval. For instance, in the sentence “The tower is large” the assigned attribute “large”
is not well-defined as it can be interpreted subjectively, i.e., have different meaning from
one observer to the other. The imprecise data that has some information missing is called
incomplete data. For instance, in the sentence “It is possible to see the chair”, only the
upper limit on the degree of confidence C is given, i.e., C < τ for some τ [29].

Consider an information system [30] where a number of (rather than one) objects
O = {o1, . . . , ok} are described using a set of attributes A = {V1, V2, . . . , Vn} with respective
domains D1, D2, . . . , Dn. Let F = D1 ×D2 × . . . ×Dn to represent the set of all possible
descriptions given the attributes in A, also called the frame. It is possible for several
objects to share the same description in terms of these attributes. Let [o]F to be the set of
objects that are equivalently described (thus indistinguishable) within the frame F , also
called the equivalence class. Now, let T ⊆ O to represent the target set of objects. In
general, it is not possible to exactly describe T using F , because T may include and exclude
objects which are indistinguishable within the frame F . However, one can approximate
T by the lower and upper limit sets that can be described exactly within F in terms of
the induced equivalence classes. Indeed, the Rough set theory, discussed later on in this
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section, provides a systematic approach to this end. In summary, data granularity refers to
the fact that the choice of data frame F (granule) has a significant impact on the resultant
data imprecision. In other words, different attribute subset selections B ⊆ A will lead to
different frames, and thus different sets of indiscernible (imprecise) objects.

Correlated (dependent) data is also a challenge for data fusion systems and must be
treated properly. We consider inconsistency in input data to stem from (highly) conflicting,
spurious, or out of sequence data. Finally, fusion data may be provided in different forms,
i.e. in one or several modalities, as well as generated by physical sensors (hard data) or
human operators (soft data).

We believe such categorization of fusion algorithms is beneficial as it enables explicit
exploration of popular fusion techniques according to the specific data-related fusion chal-
lenge(s) they target. Furthermore, our taxonomy is intended to facilitate ease of devel-
opment by supplying fusion algorithm designers with an outlook of the appropriate and
established techniques to tackle the data-related challenges their given application may in-
volve. Finally, such exposition would be more intuitive and therefore helpful to non-experts
in data fusion by providing them with an easy-to-grasp view of the field.

2.4.1 Fusion of Imperfect Data

The inherent imperfection of data is the most fundamental challenging problem of data
fusion systems, and thus the bulk of research work has been focused on tackling this issue.
There are a number of mathematical theories available to represent data imperfection [31],
such as probability theory [32], fuzzy set theory [33], possibility theory [34], rough set the-
ory [35], and Dempster-Shafer evidence theory (DSET) [36]. Most of these approaches are
capable of representing specific aspect(s) of imperfect data. For example, a probabilistic
distribution expresses data uncertainty, fuzzy set theory can represent vagueness of data,
and evidential belief theory can represent uncertain as well as ambiguous data. Historically,
the probability theory was used for a long time to deal with almost all kinds of imperfect
information, because it was the only existing theory. Alternative techniques such as fuzzy
set theory and evidential reasoning have been proposed to deal with perceived limitations
in probabilistic methods, such as complexity, inconsistency, precision of models, and uncer-
tainty about uncertainty [32]. We discuss each of these families of data fusion algorithms,
along with their hybridizations that aim for a more comprehensive treatment of data im-
perfection. Examples of such hybrid frameworks are fuzzy rough set theory (FRST) [37]
and fuzzy Dempster-Shafer theory (Fuzzy DSET) [38]. We also describe the new emerging
field of fusion using random sets, which could be used to develop a unified framework for
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Figure 2.2: Overview of theoretical frameworks of imperfect data treatment (note: the
fuzzy rough set theory is omitted from the diagram to avoid confusion)

treatment of data imperfections [39]. Figure 2.2 provides an overview of the aforemen-
tioned mathematical theories of dealing with data imperfections. On the x-axis, various
aspects of data imperfection, introduced in Figure 2.1, are depicted. The box around each
of the mathematical theories designates the range of imperfection aspects targeted mainly
by that theory. The interested reader is referred to [29] for a comprehensive review of the
classical theories of representing data imperfections, describing each of them along with
their inter-relations.

Probabilistic Fusion

Probabilistic methods rely on the probability distribution/density functions to express data
uncertainty. At the core of these methods lies the Bayes estimator, which enables fusion
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of pieces of data, hence the name “Bayesian fusion”. Assuming a state-space represen-
tation, the Bayes estimator provides a method for computing the posterior (conditional)
probability distribution/density of the hypothetical state xk at time k given the set of
measurements Zk = {z1, . . . , zk} (up to time k) and the prior distribution, as following

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(Zk|Zk−1)
(2.1)

Where

• p(zk|xk) is called the likelihood function and is based on the given sensor measurement
model

• p(xk|Zk−1) is called the prior distribution and incorporates the given transition model
of the system

• The denominator is a merely a normalizing term to ensure that the probability density
function integrates to one

One can apply the Bayes estimator each time and update the probability distribu-
tion/density of the system state by fusing the new piece of data, i.e. zk, recursively.
However, both the prior distribution and the normalizing term contain integrals that can-
not be evaluated analytically in general. Thus, an analytic solution of the Bayes estimator
is occasionally available. Indeed, the well-known Kalman filter (KF) is an exceptional
case of the Bayes filter with an exact analytical solution due to enforcing simplifying (and
somewhat unrealistic) constraints on the system dynamics to be linear-Gaussian, i.e. the
measurement and motion model are assumed to have a linear form and be contaminated
with zero-mean Gaussian noise [39]. Nonetheless, the Kalman filter is one of the most pop-
ular fusion methods mainly due to its simplicity, ease of implementation, and optimality in
a mean-squared error sense. It is a very well established data fusion method whose proper-
ties are deeply studied and examined both theoretically and in practical applications. On
the other hand, similar to other least-square estimators, the Kalman filter is very sensi-
tive to data corrupted with outliers. Furthermore, the Kalman filter is inappropriate for
applications whose error characteristics are not readily parameterized.

When dealing with non-linear system dynamics, one usually has to resort to approxi-
mation techniques. For instance, the Extended KF [40] and Unscented KF [41], which are
extensions of the Kalman filter applicable to non-linear systems, are based on the first-order
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and second-order approximations as a Taylor series expansion about the current estimate,
respectively. However, both of these methods can only handle non-linearities to a lim-
ited extent. Grid-based methods [42] provide an alternative approach for approximating
non-linear probability density functions, although they rapidly become computationally
intractable in high dimensions.

The Monte Carlo simulation-based techniques such as Sequential Monte Carlo (SMC) [43]
and Markov Chain Monte Carlo (MCMC) [44] are among the most powerful and popular
methods of approximating probabilities. They are also very flexible as they do not make
any assumptions regarding the probability densities to be approximated. Particle filters
are a recursive implementation of the SMC algorithm [45]. They provide an alternative for
Kalman filtering when dealing with non-Gaussian noise and non-linearity in the system.
The idea is to deploy a (weighted) ensemble of randomly drawn samples (particles) as an
approximation of the probability density of interest. When applied within the Bayesian
framework, particle filters are used to approximate the posterior (conditional) probability
of the system state as a weighted sum of random samples. The random samples are usually
drawn (predicted) from the prior density (transition model) with their weights updated
according to the likelihood of the given measurement (sensing model). This approach
to the implementation of particle filters is referred to as sequential importance sampling
(SIS). One usually performs a resampling step where the current set of particles is replaced
by a new set drawn from it with probabilities proportional to their weights. This step
is included in the original proposal of the particle filters [46], which is called sequential
importance resampling(SIR).

Similar to the Kalman filter, the particle filters have been shown to be sensitive to
outliers in data, and require a set of auxiliary variables to improve their robustness [47].
In addition, when compared to the Kalman filter, particle filters are computationally ex-
pensive as they may require a large number of random samples (particles) to estimate the
desired posterior probability density. Indeed, they are not suitable for fusion problems
involving a high-dimensional state space as the number of particles required to estimate a
given density function increases exponentially with dimensionality.

An attractive alternative for particle filters when dealing with high dimensions, are the
MCMC algorithms. The underlying idea is to ease the burden of high-dimensional density
approximation by using a Markov chain to evolve the samples, instead of simply drawing
them randomly (and independently) at each step. Here, a Markov chain is a sequence
of random samples generated according to a transition probability (kernel) function with
Markovian property, i.e. the transition probabilities between different sample values in the
state space depend only on the random samples’ current state. It has been shown that
one can always use a well-designed Markov chain that converges to a unique stationary
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density of interest (in terms of drawn samples) [44]. The convergence occurs after a suf-
ficiently large number of iterations, called the burn-in period. Metropolis et al. [48] were
the first to deploy this technique for solving problems involving high-dimensional density
approximation. Their method was later extended by Hastings [49] and is referred to as the
Metropolis-Hastings algorithm. The algorithm works by successively sampling a candidate
point from some jumping (proposal) distribution, which is the conditional probability of a
potential sample given a current sample. The obtained candidate point is accepted with
a probability that is determined based on the ratio of the density at the candidate and
current points. The Metropolis-Hastings algorithm is sensitive to the sample initialization
and the choice of jumping distribution. Indeed, the burn-in period may be significantly
longer for an inappropriate choice of initial samples and/or jumping distribution. Research
on the so-called optimal starting point and jumping distribution is the subject of active
work. The starting point is typically set as close as possible to the center of distribution,
e.g. the distribution’s mode. Also, random walks and independent chain sampling are two
of the commonly adopted approaches for jumping distribution.

The popular Gibbs sampler is a special case of the Metropolis-Hastings algorithm where
the candidate point is always accepted. The keys advantage of this method is that it
considers only univariate conditional distributions, which usually have simpler form and
are thus much easier to simulate than complex full joint distributions [50]. Accordingly, the
Gibbs sampler simulates n random variables sequentially from the n univariate conditionals
rather than generating a single n-dimensional vector in a single pass using the full joint
distribution. One of the difficulties of applying MCMC methods in practice is to estimate
the burn-in time, although it is often suggested that provided a large enough sample
size, the burn-in time is not that important. Nonetheless, the effect of burn-in time may
not be neglected when parallel processing schemes are deployed to implement MCMC
methods [51]. With parallel MCMC the computational load is divided into several pieces,
and thus the individual sample sizes may not be as large. To alleviate this problem, the
convergence diagnostics methods [52] are commonly used to determine the burn-in time.
This has to be done with caution as these methods can potentially introduce some biases
of their own into the computations.

Evidential Belief Reasoning

The theory of belief functions was founded by Dempster’s work [53], and was later mathe-
matically formalized by Shafer [36] toward a general theory of reasoning based on evidence.
It is a popular method to deal with uncertainty and imprecision and is based on a the-
oretically attractive evidential reasoning framework. Dempster-Shafer theory introduces
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the notion of assigning beliefs and plausibilities to possible measurement hypotheses along
with a collection of combination rules to fuse them.

Mathematically speaking, consider X to represent all possible states of a system (also
called the frame of discernment) and the power set 2X to represent the set of all possible
subsets of X. In contrast to probability theory that assigns a probability mass to each
element of X, Dempster-Shafer theory assigns belief mass m to each element E of 2X ,
which represent possible propositions regarding the system state x. Function m has two
properties as follows

1. m(φ) = 0

2.
∑

E∈2X m(E) = 1

Intuitively for any proposition E, m(E) represents the proportion of available evidence
that supports the claim that the actual system state x belongs to E. Usually, m is non-zero
for only a limited number of sets called the focal elements. Using m, a probability interval
can be obtained for E as below:

bel(E) ≤ P (E) ≤ pl(E) (2.2)

Where:

• bel(E) is called belief of E and is defined as bel(E) =
∑

B⊆Em(B)

• pl(E) is called plausibility of E and is defined as pl(E) =
∑

B∩E 6=φm(B)

Evidence from sensors is usually fused using the Dempster’s rule of combination. Con-
sider two sources of information with belief mass functions m1 and m2, respectively. The
joint belief mass function m1,2 is computed as follows:

m1,2(E) = (m1 ⊕m2)(E) =
1

1−K
∑

B∩C=E 6=φ

m1(B)m2(C) (2.3)

m1,2(φ) = 0 (2.4)

Where K represents the amount of conflict between the sources and is given by:
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K =
∑

B∩C=φ

m1(B)m2(C) (2.5)

D-S Theory has established itself as a promising and popular approach to data fusion
especially in the last few years. Nonetheless there are issues such as the exponential
complexity of computations (in general worst case scenario) as well as the possibility of
producing counterintuitive results when fusing conflicting data using Dempster’s rule of
combination. Both of these issues have been heavily studied in the literature and numerous
strategies have been proposed to resolve or alleviate them. Several family of complexity
reduction approaches based on graphical techniques [58], parallel processing schemes [59],
reducing the number of focal elements [60], and coarsening the frame of discernment to
approximate the original belief potentials [61] have been studied. Some works have also
deployed the finite set representation of focal elements to facilitate fusion computations [62].

As mentioned, the latter issue of fusing conflicting data using Dempster’s rule of combi-
nation has been an active area of fusion research and has been studied extensively, especially
in recent years. Many solutions to this issue have been proposed, which are discussed in
detail in section 2.4.3.

Fusion and fuzzy reasoning

Fuzzy set theory is another theoretical reasoning scheme for dealing with imperfect data.
It introduces the novel notion of partial set membership, which enables imprecise (rather
than crisp) reasoning [33]. A fuzzy set F ⊆ X is defined by the gradual membership
function µF (x) in the interval [0, 1] as below:

µF (x) ∈ [0, 1] ∀x ∈ X (2.6)

Where the higher the membership degree, the more x belongs to F . This makes fuzzy
data fusion an efficient solution where vague or partial sensory data is fuzzified using a
gradual membership function. Fuzzy data can then be combined using fuzzy rules to
produce fuzzy fusion output(s). Fuzzy fusion rules can be divided into conjunctive and
disjunctive categories. Examples of the former are the following:

µ∩1 (x) = min[µF1(x), µF2(x)] ∀x ∈ X (2.7)

µ∩2 (x) = µF1(x).µF2(x) ∀x ∈ X (2.8)
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which represent the standard intersection and product of two fuzzy sets, respectively.
Some examples of the latter fuzzy fusion category are

µ∪1 (x) = max[µF1(x), µF2(x)] ∀x ∈ X (2.9)

µ∪2 (x) = µF1(x) + µF2(x)− µF1(x).µF2(x) ∀x ∈ X (2.10)

which represent the standard union and algebraic sum of two fuzzy sets, respectively.
Conjunctive fuzzy fusion rules are considered appropriate when fusing data provided by
equally reliable and homogeneous sources. On the other hand, disjunctive rules are de-
ployed when (at least) one of the sources is deemed reliable, though which one is not known,
or when fusing highly conflictual data. Accordingly, some adaptive fuzzy fusion rules have
been developed, as a compromise between the two categories, that can be applied in both
cases. The following fusion rule proposed in [64] is an example for adaptive fuzzy fusion:

µAdaptive(x) = max
{ mu∩i (x)

h(µF1(x), µF2(x))
,min{1−h(µF1(x), µF2(x)), µ∪j (x)}

}
∀x ∈ X (2.11)

where h(µF1 , µF2) measures the degree of conflict between the gradual membership
functions µF1 and µF2 defined as

h(µF1(x), µF2(x)) = max(min{µF1(x), µF2(x)}) ∀x ∈ X (2.12)

and µ∩i and µ∪j are the desired conjunctive and disjunctive fuzzy fusion rules, respec-
tively.

In contrast to the probability and evidence theories, which are well suited to modeling
the uncertainty of membership of a target in a well-defined class of objects, fuzzy sets
theory is well suited to modeling the fuzzy membership of a target in an ill-defined class.
Yet, similar to probability theory that requires prior knowledge of probability distributions,
fuzzy sets theory requires prior membership functions for different fuzzy sets. Due to being
a powerful theory to represent vague data, fuzzy set theory is particularly useful to represent
and fuse vague data produced by human experts in a linguistic fashion. Furthermore, it
has been often integrated with probabilistic [155, 66] and D-S evidential [38, 67] fusion
algorithms in a complementary manner.
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Possibilistic fusion

Possibility theory was founded by Zadeh [34] and later extended by Dubois and Prade [68,
69]. It is based on fuzzy set theory, but was mainly designed to represent incomplete rather
than vague data. Indeed possibility theory’s treatment of imperfect data is similar in
spirit to probability and D-S evidence theory with a different quantification approach [29].
The model of imperfect data in possibility theory is the possibility distribution πB(x) ∈
[0, 1] ∀x ∈ X, which characterizes the uncertain membership of an element x in a (well-
defined) known class B. This is distinguished from the gradual membership function µF (x)
of fuzzy set theory, which characterizes the membership of x in an ill-defined fuzzy set F .
Another important distinction is the normalization constraint that requires that at least
one value is totally possible, i.e. ∃x∗ ∈ X s.t. πB(x∗) = 1. Given the possibility distribution
πB(x), the possibility measure Π(U) and necessity measure N(U) of an event U are defined
as below

Π(U) = maxx∈U{πB(x)} ∀U ⊆ X (2.13)

N(U) = minx/∈U{1− πB(x)} ∀U ⊆ X (2.14)

A possibility degree Π(U) quantifies to what extent the event U is plausible, while the
necessity degree N(U) quantifies the certainty of U , in the face of incomplete information
expressed by π(x) [70]. The possibility and necessity measures can also be interpreted as a
special case of upper and lower probabilities, in connection with the probability theory [71].

The data combination rules used for possibilistic fusion are similar to those deployed
for fuzzy fusion. The main difference is that possibilistic rules are always normalized.
The choice of appropriate fusion rules is dependent on the how agreeable the data sources
are, and also what is known about their reliability [69]. However, the basic symmetric
conjunctive and disjunctive fusion rules of fuzzy set theory are sufficient only for restricted
cases. There are a number of enhancements of possibilistic fusion methods that allow for
handling more difficult fusion scenarios. For instance, assuming 0 ≤ λi ≤ 1 to represent the
perceived reliability of the ith source for a set of unequally reliable sources, one can modify
the associated possibility distribution πi of the source using the discounting approach as
π

′
i = max(πi, 1− λ) to incorporate its reliability into the fusion process [68].

Although possibility theory has not been commonly used in the data fusion community,
some researchers have studied its performance in comparison to probabilistic and evidential
fusion approaches [72], where it was shown to be capable of producing competitive results.
Also, possibilistic fusion is argued to be most appropriate in poorly informed environments
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(no statistical data available) as well as in fusion of heterogeneous data sources [64]. For
example, a recent work by Benferhat and Sossai [73] has demonstrated the effectiveness of
possibilistic fusion for robot localization in partially known indoor environments.

Rough set based fusion

Rough set is a theory of imperfect data developed by Pawlak [35] to represent imprecise
data, ignoring uncertainty at different granularity levels. Indeed, the Rough set theory
enables dealing with data granularity. It provides means of approximating a crisp target
set T within a given frame FB designated by the set B ⊆ A, which is the specific set
of attributes chosen to describe objects. The approximation is represented as a tuple
〈B∗(T ), B∗(T )〉, where B∗(T ) and B∗(T ) represent the lower and upper approximations of
set T within frame FB, respectively, and are defined as below [74]

B∗(T ) = {o|[o]FB
⊆ T} (2.15)

B∗(T ) = {o|[o]FB
∩ T 6= φ} (2.16)

and B∗(T ) ⊆ T ⊆ B∗(T ). The lower approximation B∗(T ) can be interpreted as a
conservative approximation that includes only objects that are definitely a member of T ,
whereas the upper approximation B∗(T ) is more liberal in including all objects that can
possibly belong to T . Based on this approximation, the boundary region of T is defined
as BNB(T ) = B∗(T ) − B∗(T ) which is the set of objects that can neither be classified as
belonging nor not-belonging to T . Accordingly, a set T is considered rough if BNB(T ) 6= φ.

Within the data fusion framework, T can be considered as representing the imprecise
set of (target) states of a system (instead of abstract objects). Then, Rough set theory
would allow the approximation of possible states of the system based on the granularity
of input data, i.e. FB. Once approximated as rough sets, data pieces can be fused using
classic set theory conjunctive or disjunctive fusion operators, i.e. intersection or union,
respectively.

In order to perform fusion successfully, data granules must be neither too fine nor
too rough. In the case of data granules being too fine, i.e. [o]FB

being singletons, the
Rough set theory reduces to classical set theory. On the other hand, for very rough data
granules, i.e. [o]FB

being very large subsets, the lower approximation of data is likely to
be empty, resulting in total ignorance. The major advantage of Rough set compared to
other alternatives is that it does not require any preliminary or additional information such
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as data distribution or membership function [75]. Rough set theory allows for fusion of
imprecise data approximated based merely on its internal structure (granularity).

Due to being a relatively new theory and not well understood within fusion community,
Rough set theory has been rarely applied to data fusion problems. Some work has been
reported on data fusion systems using Rough set theory [76, 77], where it provides a means
to select the most informative set of attributes (sensors) regarding the goal of the fusion
system, e.g. classification of objects. The idea is to use a rough integral as the measure of
relevance for each sensor, and filter out sensors below the given threshold.

Hybrid fusion approaches

The main idea behind development of hybrid fusion algorithms is that different fusion
methods such as fuzzy reasoning, D-S evidence theory, and probabilistic fusion should be
not be competing, as they approach data fusion from different (possibly complementary)
perspectives. At the theoretical level, hybridization of fuzzy set theory with D-S evidence
theory has been studied frequently [78, 38] aiming at providing a framework for more
comprehensive treatment of data imperfection. Among many such proposals, the work
by Yen [38] is perhaps the most popular approach that extends D-S evidence theory into
the fuzzy realm while maintaining its major theoretical principles. Yen’s theory of fuzzy
D-S evidence theory has been frequently used in the literature. For instance, Zue and
Basir [67, 79] developed a hybrid fusion system applied to an image segmentation problem,
which is based on a fuzzy Dempster-Shafer evidential reasoning scheme.

Combination of fuzzy set theory with Rough set theory (FRST), proposed by Dubois
and Prade, is another important theoretical hybridization existing in the literature [37].
In spite of being a powerful representation tool for vague as well as ambiguous data, the
original FRST has some limitations such as relying on special fuzzy relations. This issue has
been recently addressed by Yeung et al. [80] in an attempt to generalize FRST to arbitrary
fuzzy relations. Application of FRST to data fusion has not often been investigated in the
fusion literature as Rough set theory itself is still not an established data fusion approach.
Nonetheless, some preliminary work has been reported [81].

Random set theoretic fusion

The principles of random sets theory were first proposed to study integral geometry in
1970s [82]. The unifying capability of random set theory has been shown by several re-
searchers [83, 84, 16], among them, the work of Goodman et al. [16] has been most successful

23



in gaining attention. The most notable work on promoting random set theory as a unified
fusion framework has been done by Mahler in his papers [20, 16, 85] and recent book [39].
In particular, in his book he attempts to present a detailed exposition of random set theory
and its application to general single-target as well as multi-target data fusion problems.

Random set theory is usually deemed as an ideal framework for extending the popular
Bayes filter from single-target (modeled by a random variable) into multi-target (mod-
eled by a random set). Accordingly, the majority of research work has been focused on
applying random set theory to tracking of multiple targets. This generalization is not a
straightforward procedure and is only possible provided that an appropriate calculus of
random finite sets is formulated [20]. Indeed, within random set theory data, i.e. target
states and measurements, are modeled as random sets of finite size instead of conventional
vectors. Having done this, priors and likelihood functions are constructed that are capable
of modeling a wide range of different phenomena. For instance, phenomena related to the
system dynamics such as target disappearance/appearance, extended/unresolved targets,
and target spawning, as well as measurement-related phenomena such as missed detection
and false alarms can be explicitly represented.

Obviously, one can not expect to solve for this multi-target tracking analytically (as was
not the case for single-target Bayes filter). Therefore, different approximation techniques
are devised to compute the Bayes update equation. The moment matching techniques
have been very successful in approximating the single-target Bayes filter. For instance,
Kalman filter relies on propagating the first two moments (i.e. mean and covariance) while
alpha-beta filters match only the first moment. In case of multi-target tracking, the first
moment is the Probability Hypothesis Density (PHD), which is used to develop a filter
with the same title, i.e. PHD filter [86]. There is also a higher order extension of this
filter called Cardinalized Probability Hypothesis Density (CPHD) filter [87, 88], which
propagates the PHD as well as the full probability distribution of the random variable
representing the number of targets. Both PHD and CPHD filters involve integrals that
prevent direct implementation of a closed form solution. As a result two approximation
methods, namely, Gaussian Mixture (GM) and Sequential Monte Carlo (SMC), have been
used in the literature to further ease the implementation stage for these filters [89, 90]. Both
of these methods have been evaluated and shown to compare favorably with alternative
approaches such as JPDA [88] and MHT [91], while being less computationally demanding
than either. One important advantage of the (C)PHD family of filters is to avoid the data
association problem, but this also means that maintaining track continuity can become a
challenging task. For a review of recent work on the (C)PHD filter, the interested reader
is referred to [92].

Random set theory has also been recently shown to be able to efficiently solve fusion
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related tasks such as target detection [93], tracking [94], identification [29], sensor man-
agement [95], and soft/hard data fusion [96]. Nonetheless, further research through more
complex test scenarios in diverse applications should be performed to prove its performance
as a unifying framework for fusion of imperfect data.

2.4.2 Fusion of Correlated Data

Many data fusion algorithms, including the popular KF approach, require either indepen-
dence or prior knowledge of the cross covariance of data to produce consistent results.
Unfortunately, in many applications fusion data is correlated with potentially unknown
cross covariance. This can occur due to common noise acting on the observed phenom-
ena [100] in centralized fusion settings, or the rumor propagation issue, also known as data
incest or double counting problem [101], where measurements are inadvertently used sev-
eral times in distributed fusion settings [3]. If not addressed properly, data correlation can
lead to biased estimation, e.g. artificially high confidence value, or even divergence of fusion
algorithm [102]. For KF-based systems, the optimal KF approach exists that allows for
maintaining cross covariance information between updates [3]. However, it is not typically
desirable, as it is shown to scale quadratically with the number of updates [103]. Also, in
case of data incest, an exact solution is to keep track of pedigree information which includes
all sensor measurements that have contributed to a certain estimate [104]. This solution
is not appealing as it does not scale well with the number of fusion nodes [105]. Most of
the proposed solutions to correlated data fusion attempt to solve it by either eliminating
the cause of correlation or tackling the impact of correlation in fusion process.

Table 2.1: Comparison of Imperfect Data Fusion Frame-
works

Framework Characteristics Capabilities Limitations
Probabilistic [32, 40,
45]

Represents sensory
data using proba-
bility distributions
fused together
within Bayesian
framework

Well-established
and under-
stood approach
to treat data
uncertainty

Considered inca-
pable of address-
ing other data
imperfection as-
pects
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Table 2.1: Comparison of Imperfect Data Fusion Frame-
works

Framework Characteristics Capabilities Limitations
Evidential [36, 54, 55,
56, 58]

Relies on probabil-
ity mass to further
characterize data
using belief and
plausibilities and
fuses using Demp-
sters’ combination
rule

Enables fusion
of uncertain and
ambiguous data

Does not deal
with other as-
pects of data im-
precision, ineffi-
cient for fusion
of highly con-
flicting data

Fuzzy reasoning [155,
66, 67]

Allows vague data
representation,
using fuzzy mem-
berships, and
fusion based on
fuzzy rules

Intuitive ap-
proach to deal
with vague data
esp. human
generated

Limited merely
to fusion of
vague data

Possibilistic [29, 72,
64]

Similar in data
representation to
probabilistic and
evidential frame-
works and fusion
to fuzzy framework

Allows for han-
dling incomplete
data common in
poorly informed
environment

Not commonly
used and well
understood in
fusion commu-
nity

Rough set theo-
retic [35, 99, 75, 77]

Deals with am-
biguous data using
precise approxi-
mate lower and
upper bounds ma-
nipulated using
classical set theory
operators

Does not require
any preliminary
or additional in-
formation

Requires appro-
priate level of
data granularity
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Table 2.1: Comparison of Imperfect Data Fusion Frame-
works

Framework Characteristics Capabilities Limitations
Hybridization [78, 38,
67, 79]

Aims at providing
a more comprehen-
sive treatment of
imperfect data

Deploys fusion
framework in a
complementary
rather than
competitive
fashion

Rather ad-hoc
generalization
of one fusion
framework
to subsume
other(s), extra
computational
burden

Random set theo-
retic [20, 16, 85, 39]

Relies on random
subsets of mea-
surement/state
space to represent
many aspects of
imperfect data

Can potentially
provide a uni-
fying framework
for fusion of im-
perfect data

Relatively new
and not very
well appreci-
ated in fusion
community

Eliminating data correlation

Data correlation is especially problematic in distributed fusion systems and is commonly
caused by data incest. The data incest situation itself happens when the same information
takes several different paths from the source sensor to the fusion node or due to cyclic
paths through which the information recirculates from output of a fusion node back to the
input [106, 3]. This issue can be eliminated (before fusion) either explicitly by removal of
data incest [107] or implicitly through reconstruction of measurements [108]. The former
family of approaches usually assume a specific network topology as well as fixed communi-
cation delays, although recent extensions consider the more general problem of arbitrary
topologies with variable delays using graph theoretic algorithms [109, 110]. The latter
approaches attempt to form a decorrelated sequence of measurements by reconstructing
them such that the correlation with previous intermediate updates from current interme-
diate state updates is removed. The decorrelated sequence is then fed to the global fusion
processor as input to a filtering algorithm. Extensions in this family consider more complex
fusion scenarios with existence of clutter, data association, and interacting targets [111].
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Data fusion in presence of unknown correlations

Instead of removing data correlation, one can design a fusion algorithm that accounts for
correlated data. Covariance Intersection (CI) [100] is the most common fusion method to
deal with correlated data. CI was originally developed to avoid the problem of covariance
matrix underestimation due to data incest. It solves this problem in general form for two
data sources (i.e. random variables) by formulating an estimate of the covariance matrix as
a convex combination of the means and covariances of the input data. CI has been shown
to be optimal, in terms of finding the upper bound for the combined covariances [112], as
well as theoretically sound and applicable to any probability distribution function, from
information theory perspective [113].

On the other hand, CI requires a non-linear optimization process and is therefore com-
putationally demanding. Furthermore, it tends to overestimate the intersection region,
which results in pessimistic results and consequent degradation of fusion performance.
Some faster variants of CI have been proposed attempting to alleviate the former is-
sue [114, 115]. The Largest Ellipsoid (LE) algorithm was developed, as an alternative
to CI, to address the latter issue [116]. LE provides a tighter estimate of covariance matrix
by finding the largest ellipse that fits within the intersection region of the input covari-
ances. It has been recently argued that LE’s formula derivation for the center of largest
ellipsoid is not appropriate and a new algorithm, called Internal Ellipsoid Approximation
(IEA), is proposed to accomplish this task [117]. One major limitation with all these meth-
ods is their inability to facilitate fusion of correlated data within a more powerful fusion
framework than KF-based techniques, such as particle filters [3]. Very recently, a fusion
framework based on an approximation to the generalized CI algorithm, called Chernoff
fusion method, is proposed, which tackles the generic problem of fusing any number of
correlated PDFs [118].

2.4.3 Fusion of Inconsistent Data

The notion of data inconsistency, as applied in this chapter, is in a generic sense and
encompasses spurious, as well as disordered and conflicting data. We explore various
techniques in the data fusion literature which are developed to tackle each of the three
aspects of data inconsistency.
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Spurious data

Data provided by sensors to the fusion system may be spurious due to unexpected situations
such as permanent failures, short duration spike faults, or slowly developing failure [18]. If
fused with correct data, such spurious data can lead to dangerously inaccurate estimates.
For instance, KF would easily break down if exposed to outliers [119]. The majority of work
on treating spurious data has been focused on identification/prediction and subsequent
elimination of outliers from the fusion process. Indeed, the literature work on sensor
validation is partially aiming at the same target [120, 121, 122]. The problem with most of
these techniques is the requirement for prior information, often in the form of specific failure
model(s) As a result, they would perform poorly in a general case where prior information
is not available or unmodeled failures occur [123]. Recently, a general framework for
detection of spurious data has been proposed that relies on stochastic adaptive modeling
of sensors and is thus not specific to any prior sensor failure model [18, 124]. It is developed
within the Bayesian fusion framework by adding a term to the common formulation that

Table 2.2: Summary of Correlated Data Fusion Methods

Framework Algorithms Characteristics

Correlation
elimination

Explicit removal [107, 109,
110]

Usually assumes a specific
network topology and fixed
communication delays

Measurement reconstruc-
tion [108, 111]

Applicable to more complex
fusion scenarios

Correlation
presence

Covariance Intersec-
tion [100, 112]

Avoids the covariance un-
derestimation problem, yet
computationally demanding
and rather pessimistic

Fast CI [114, 115] Enhanced efficiency
through alternative
non-linear optimization
processes

Largest Ellipsoid [116] Provides a tighter (less
pessimistic) covariance esti-
mate, yet limited to KF-
based fusion like the others
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represents the probabilistic estimate that the data is not spurious conditioned upon the
data and the true state. The intended effect for this term is increasing the variance of the
posterior distribution when data from one of the sensors is inconsistent with respect to the
other. Extensive experimental simulations have shown the promising performance of this
technique in dealing with spurious data [123].

Out of sequence data

The input data to the fusion system is usually organized as discrete pieces each labeled
with a timestamp designating its time of origin. Several factors such as variable propaga-
tion times for different data sources as well as having heterogeneous sensors operating at
multiple rates can lead to data arriving out of sequence at the fusion system. Such out of
sequence measurements (OOSM) can appear as inconsistent data to the fusion algorithm.
The main issue is how to use this, usually old, data to update the current estimate while
taking care of the correlated process noise between the current time and the time of the
delayed measurement [125]. A trivial solution to OOSM is to simply discard it. Such
solution would cause information loss and severe fusion performance degradation if OOSM
is prevalent in the input data. Another intuitive solution is to store all input data in order
and reprocess it once OOSM is received. This approach yields optimal performance yet is
impractical due to having intense computational and storage requirements. There has been
considerable amount of research done in this area in the last decade due to the increasing
popularity of distributed sensing and tracking systems [125]. We explore these methods
according to their assumed number of step lags as well as number of tracking targets.

Most of the early work on OOSM assumed only single-lag data. For example, an
approximate sub-optimal solution to OOSM called “Algorithm B” [126] as well as its
famous optimal counterpart “Algorithm A” [127], both assume single-lag data. Some
researchers have proposed algorithms to enable handling of OOSM with arbitrary lags [128,
129, 130]. Among these methods the work in [130] is particularly interesting as it provides
a unifying framework for treating OOSM with “Algorithm A” as special case. Nonetheless,
it was shown in [131] that this approach along with many other multi-lag OOSM methods
are usually very expensive in terms of computational complexity and storage. The same
authors proposed an extension to the “Algorithm A” and “Algorithm B” called “algorithm
Al1”’ and ”Algorithm Bl1”, respectively. They further showed that these new algorithms
have requirements similar to their single-lag counterparts and are therefore recommended
for practical applications, especially “Algorithm Bl1” is preferred due to being almost
optimal and very efficient. Some recent work also investigates the OOSM problem in case
of having both single-lag and multiple-lag data, termed the mixed-lag OOSM problem.
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The proposed algorithm is claimed to handle all three types of OOSM data and is shown
to be suboptimal in the linear MMSE sense under one approximation [132].

The bulk of research on the OOSM problem has been traditionally concentrated on
an OOSM filtering algorithm that considers only a single-target, and does not address
issues pertinent to data association and the presence of clutter that arise in multi-target
fusion scenarios [133]. This problem has received attention in recent years and several
methods tackling various aspects of OOSM in multi-target tracking have been proposed.
In [133], a multitarget OOSM dwell-based tracking algorithms is proposed which includes
gating, likelihood computation, and hypothesis management; and the single-lag and two-
lag OOSM problems are discussed. In [134], the authors present a generic framework
that enables straightforward extension of many single-target OOSM solutions to efficient
algorithms in the multi-target data association case. The problem of out of sequence
data for disordered tracks, instead of measurements, termed OOST, is explored in [135].
The OOST problem is solved using equivalent measurements obtained from individual
sensor tracks, which are then used in an augmented state framework to compute the joint
density of the current target state and the target state corresponding to the delayed data.
Generally, in comparison with the OOSM problem, the OOST problem is much less studied
in the literature. More recently, the three popular algorithms for the OOSM problem
proposed by Bar-Shalom [136] are adapted to handle the OOST problem. This work is
expected to improve the research community’s understanding of the OOST problem.

Conflicting data

Fusion of conflicting data, when for instance several experts have very different ideas about
the same phenomenon, has long been identified as a challenging task in the data fusion com-
munity. In particular, this issue has been heavily studied for fusion within the Dempster-
Shafer evidence theory framework. As shown in a famous counterexample by Zadeh [137],
naive application of Dempster’s rule of combination to fusion of highly conflicting data re-
sults in unintuitive results. Since then Dempster’s rule of combination has been subject to
much criticism for rather counter-intuitive behavior [138]. Most of the solutions proposed
alternatives to Dempster’s rule of combinations [139, 140, 141, 142]. On the other hand,
some authors have defended this rule, arguing that the counter-intuitive results are due to
improper application of this rule [143, 144, 39]. For example, in [39] Mahler shows that the
supposed unintuitive result of Dempster’s combination rule can be resolved using a simple
corrective strategy, i.e. to assign arbitrary small but non-zero belief masses to hypotheses
deemed extremely unlikely. Indeed, proper application of Dempsters rule of combination
requires satisfaction of the following three constraints: (1) independent sources providing
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independent evidences, (2) homogeneous sources defined on a unique frame of discernment
and (3) a frame of discernment containing an exclusive and exhaustive list of hypotheses.

These constraints are too restrictive and difficult to satisfy in many practical applica-
tions. As a result DSET has been extended to more flexible theories such as Transferable
Belief Model (TBM) [140] and DezertSmarandache theory (DSmT) [141]. The former the-
ory extends DSET by refuting the exhaustivity constraint, i.e open-world assumption, and
allowing elements outside the frame of discernment to be represented by the empty set.
The latter refutes the exclusivity constraint allowing compound elements, i.e. elements of
the hyper power set, to be represented. The theoretical justification for TBM was recently
presented by Smets [19]. In this work, he provides an exhaustive review of the existing
combination rules in an attempt to shed light on their applicability as well as theoretical
soundness. He argues that the majority of proposed combination rules are ad-hoc in na-
ture and lack appropriate theoretical justification. It is also demonstrated that most of
the alternative combination rules are indeed conjunctive fusion operators that redistribute
the global (or partial) conflicting belief mass among some elements of the power set. This
relies on the notion that if experts agree on some evidence, they are considered reliable,
and otherwise at least one of them is unreliable and the disjunctive fusion rules are de-
ployed. But disjunctive rules usually result in degradation in data specificity. Therefore,
the reliability of the expert sources must be either known a priori or estimated [145].

Fusion of conflicting data within the Bayesian probabilistic framework has also been
explored by some authors. For example, Covariance Union (CU) algorithm is developed to
complement the CI method, and enable data fusion where input data is not just correlated
but may also be conflicting [146]. Furthermore, a new Bayesian framework for fusion
of uncertain, imprecise, as well as conflicting data was proposed recently [147]. Authors
exploit advances in the Bayesian research arena to develop Bayesian models with similar
theoretical properties as TBM and DSmT theories allowing for consistent probabilistic
fusion of conflicting data.

2.4.4 Fusion of Disparate Data

The input data to a fusion system may be generated by a wide variety of sensors, humans,
or even archived sensory data. Fusion of such disparate data in order to build a coherent
and accurate global view or the observed phenomena is a very difficult task. Nonetheless,
in some fusion applications such as human computer interaction (HCI), such diversity of
sensors is necessary to enable natural interaction with humans. Our focus of discussion
is on fusion of human generated data (soft data) as well as fusion of soft and hard data,
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as research in this direction has attracted attention in recent years. This is motivated by
the inherent limitations of electronic (hard) sensors and recent availability of communica-
tion infrastructure that allow humans to act as soft sensors [149]. Furthermore, while a
tremendous amount of research has been done on data fusion using conventional sensors,
very limited work has studied fusion of data produced by human and non-human sensors.
An example of preliminary research in this area includes the work on generating a dataset
for hard/soft data fusion intended to serve as a foundation and a verification/validation
resource for future research [150, 151]. Also in [149], the authors provide a brief review on
ongoing work on dynamic fusion of soft/hard data, identifying its motivation and advan-
tages, challenges, and requirements. Very recently, a Dempster-Shafer theoretic framework
for soft/hard data fusion is presented that relies on a novel conditional approach to up-
dating as well as a new model to convert propositional logic statements from text into
forms usable by Dempster-Shafer theory [152]. Furthermore, some new work investigates
the problem of uncertainty representation for linguistic data [153]. The authors describe
various types of uncertainty inherent in the nature of human languages as well as some
tools to perform linguistic disambiguation such as lexicons, grammars, and dictionaries.
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Table 2.3: Overview of Inconsistent Data Fusion Methodologies

Inconsistency
Aspect

Problem Resolution Strat-
egy

Characteristics

Outlier If fused with
correct data,
can lead to
dangerously
inaccurate
estimates

Sensor validation
techniques [120,
121, 122]

Identification/predication
and subsequent removal
of outliers, typically
restricted to specific
prior-known failure
models

Stochastic adaptive
sensor model-
ing [123]

General framework for
detection of spurious data
without prior knowledge

Disorder Update
current esti-
mate using
old mea-
surements
(OOSM)

Ignore, repro-
cess, or use back-
ward/forward
prediction [126,
127, 125, 130, 148]

Mostly assume single-lag
delays and linear target
dynamics

Update
current esti-
mate using
old track
estimates
(OOST)

Use augmented
state framework to
incorporate delayed
estimates [135, 136]

Much less understood and
studied in the literature

Conflict Non-intuitive
results while
fusing highly
conflicting
data using
Dempsters’
combination
rule

Numerous alterna-
tive combination
rules [139, 140, 141,
142]

Mostly ad-hoc in nature
without proper theoreti-
cal justification

Apply corrective
strategies while
using Dempsters’
rule [143, 144, 39]

Defend validity of Demp-
sters’ rule provided that
certain constraints are
satisfied
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Another new direction of work is focused on the so called human centered data fusion
paradigm that puts emphasis on the human role in the fusion process [154]. This new
paradigm allows human to participate in the data fusion process not merely as soft sen-
sors, but also as hybrid computers and ad-hoc teams (hive mind). It relies on emerging
technologies such as virtual worlds and social network software to support humans in their
new fusion roles. In spite of all these developments, research on hard/soft data fusion
as well as human centered fusion is still in the fledging stage, and believed to provide
rich opportunities for further theoretical advancement and practical demonstrations in the
future.

2.5 Chapter Summary

This chapter presented a critical review of data fusion state-of-the-art methodologies based
on a novel data centric taxonomy. Data fusion is a multi-disciplinary research field with
a wide range of potential applications in areas such as defense, robotics, automation and
intelligent system design, pattern recognition, etc. This has been and will continue to act
as the driving force behind the ever-increasing interest in research community in developing
more advanced data fusion methodologies and architectures.

Based on this exposition, it is clear that research on data fusion systems is becoming
more and more common-place. There are a number of areas in the data fusion community
that will most likely be highly active in the near future. For instance, the ever-increasing
demand for data fusion on extremely large scales, such as sensor networks and the Web,
will drive intense research on highly scalable data fusion algorithms based on distributed
architectures. In addition, the availability and abundance of non-conventional data in the
form of human-generated reports or Web documents will lead to the development of new
and powerful fusion frameworks capable of processing a wide variety of data forms. Such
fusion frameworks could potentially be realized by exploiting strong mathematical tools for
modeling imperfect data, such as random set theory. This is the main motivation behind
our RS theoretic soft/hard data fusion framework introduced in the next chapter.
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Chapter 3

RS Theoretic Soft/Hard Data Fusion

3.1 Introduction

The literature work on fusion of conventional data provided by non-human (hard) sen-
sors is vast and well-established as presented in reviews given in [2, 3]. In contrast to
the conventional fusion systems where input data are assumed to be provided by cali-
brated electronic sensor systems (with well-defined characteristics), research on soft data
fusion systems aims at developing approaches to enable combining human-generated data
expressed preferably in unconstrained natural language. It is motivated mainly by asym-
metric urban military operations, where human-generated data are shown to be of crucial
importance [152]. Soft data fusion by itself is a challenging problem and has received
little attention in the past [165]. Fusion of soft and hard data is even more challeng-
ing yet necessary in some applications. Recent developments in the literature such as
human-centered data fusion paradigm [185] as well as several pioneering work on soft/hard
fusion [188, 149, 152, 150, 151, 166] are an indicative of the new trend towards more gen-
eral data fusion frameworks to achieve efficient processing of both soft and hard data. In
this chapter we describe the main building blocks underpinning the novel RS theoretic
soft/hard data fusion system developed in this work, namely, the KEF, the soft and hard
data modeling schemes, and the multiagent architecture deployed for the system imple-
mentation.

In order to develop a soft/hard fusion system one has to deploy an appropriate math-
ematical framework to represent inherent data imperfections and allow for performing in-
ference using available data. Probabilistic, Dempster-Shafer, fuzzy, possibilistic and rough
set theoretic are among some of the most commonly used frameworks in the data fusion
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community. Each of these frameworks has its own advantages and drawbacks, nonethe-
less, none of them is able to fully address all aspects of imperfect data [97]. Random set
(RS) theory is a candidate solution to this issue, which has gained researchers’ attention
recently. Indeed, imperfect data represented in probabilistic, evidential, fuzzy, and pos-
sibilistic frameworks are shown to have a corresponding formulation within the random
set framework [29]. Due to such powerful representational and computational capabilities,
in this chapter RS theory is proposed as an appealing approach to enable fusion of dis-
parate forms of data. The recent research work on RS theoretic fusion has been mostly
restricted to multitarget tracking problems [167, 168, 39] inspired by the pioneering works
of Mahler [169, 170]. Very recently RS theory was deployed to develop a soft data fusion
system capable of state estimation using natural language propositions [171]. Nonetheless,
to the best of our knowledge, a RS theoretic approach to the soft/hard data fusion problem
does not exist in the literature. The main contribution of this chapter is to develop a RS
theoretic approach to represent both soft and hard data in a unified manner. In particular,
assuming a target tracking application, a novel ontology is proposed to enable the format-
ting and interpretation of soft data provided as language statement(s). The natural (raw)
soft data is assumed to be preprocessed by an appropriate natural language processing
(NLP) algorithm.

The rest of this chapter is organized as follows. In section 3.2 a brief review of the
related literature work is presented. The RS theoretic fusion approach for soft/hard data
processing is discussed in section 3.3. Lastly, section 3.4 concludes this chapter.

3.2 Background and Related Work

In this section we briefly discuss the background literature pertinent to the main context
of the proposed fusion system, i.e. soft/hard data fusion, as well as, the RS theoretic
data fusion. It is worth to mention that the literature work on the RS theoretic multi-
target tracking is rather established and is not detailed in this section. Interested reader
is referred to [39] for a more elaborate discussion.

3.2.1 Soft/Hard Data Fusion

The main focus of research studies in this area is to achieve fusion of human-generated
data (soft data), as well as fusion of soft and hard data. This is motivated by the inherent
limitations of electronic (hard) sensors, and recent availability of communication infras-
tructure that allows humans to act as soft sensors [149]. Furthermore, while a tremendous
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amount of research has been done on data fusion using conventional sensors, very limited
work has studied fusion of data produced by human and non-human sensors. An example
of the preliminary research in this area is the work on generating a dataset for hard/soft
data fusion intended to serve as a foundation and a verification/validation resource for
future research [150, 151]. Also in [149], authors provide a brief review of ongoing work on
dynamic fusion of soft/hard data, identifying its motivation and advantages, challenges,
and requirements. Very recently, a Dempster-Shafer theoretic framework for soft/hard
data fusion was presented that relies on a novel conditional approach to updating, as well
as a new model to convert propositional logic statements from text into forms usable by
Dempster-Shafer theory [152]. Furthermore, some new work examines the uncertainty rep-
resentation problem for the case of linguistic data [153]. Authors examine various types
of uncertainty inherent in the nature of human languages, as well as some of the existing
tools to enable linguistic disambiguation such as lexicons, grammars, and dictionaries.

Another new direction of work in this area is focused on the so called human centered
data fusion paradigm that puts emphasis on human role in the fusion process [185, 154].
This new paradigm considers humans as active participants in the data fusion process and
not merely as soft sensors but also as hybrid computers and ad hoc teams (hive mind).
It relies on emerging technologies such as virtual worlds and social network software to
support humans in their new fusion roles. In spite of these accomplishments, research on
hard/soft data fusion, as well as human-centered fusion is still in its fledging stage and
is believed to provide rich opportunities for further theoretical advancement and practical
demonstrations in the future [97].

3.2.2 Random Set Theoretic Fusion

The principles of random sets theory were first proposed to study integral geometry in
1970s [82]. The unifying capability of random set theory has been studied early on by
several researchers [83, 84, 16], among them the work of Goodman et al. [16] has gained
the most attention. The most notable recent work on promoting random set theory as
a unified fusion framework has been done by Mahler in his papers [177, 85] and recent
book [92]. In particular, in his book he makes an attempt to provide a detailed exposition
of random set theory and its application to general single-target, as well as multi-target
data fusion problems.

The RS theory is typically deployed within a Beyesian framework to provide a gen-
eralization of the (single-target) Bayes filtering to multi-target applications. As a result,
the majority of research work has been focused on applying RS theory to tracking of
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multiple targets. This generalization is not a straightforward procedure and requires the
development of an appropriate calculus of random finite sets where both target state and
measurement(s) are modeled as random sets of finite size instead of the conventional vec-
tor representation, hence the name random finite set (RFS). Having done this, the prior
and likelihood functions are also reconstructed to enable explicit modeling of a wide range
of different phenomena observed in multi-target fusion systems such target disappear-
ance/appearance, extended/unresolved targets, and target spawning, which are otherwise
rather challenging to deal with using the more traditional multi-target tracking approaches
such as JPDA [178] and MHT [179]. The RS theory can also be deployed to perform single-
target Bayes filtering using the generalized (non-conventional) measurement(s) that cannot
be readily expressed as vectors. For instance, human-generated data in the form of natural
language statements or expert rules can be fused using RS theoretic representation of data
within the Bayesian framework. This potential capability of RS theory has been rarely
exploited in the data fusion literature. This observation has been the main motive for
developing the soft/hard data fusion framework described in this chapter.

3.3 Random Set Theoretic Soft/Hard Data Fusion

Our pioneering work [96] was probably the first paper to argue in favor of a RS theoretic
approach to deal with various imperfection aspects of soft data. This section presents the
basic building blocks of our RS theoretic soft/hard fusion system, i.e. the RS theoretic rep-
resentation of unconventional data imperfections, a generalization of the popular Kalman
filter (KF), derived using the aforementioned RS theoretical formalism, called Kalman ev-
idential filter (KEF), the soft and hard data modeling approaches, and the multi-agent
organization of the proposed fusion system.

3.3.1 RS Theoretic Representation of Ambiguous and Vague Data

Although soft human-generated data can express several types of imperfections (See section
2.4), in this work we focus on two of the most common data imperfection aspects observed
in soft data, namely, vagueness (fuzziness) and ambiguity. The exposition in this section
is meant to outline the basic ideas underpinning the RS theoretic representation of such
data. As discussed earlier in chapter 2, the vague data is a particular type of imprecise
data characterized by having ill-defined attributes, i.e. attribute is not a singleton and not
a well-defined set or interval mostly due to the being open to (subjective) interpretation.
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Such data is usually modeled using a fuzzy membership function f(u) with values in [0, 1]
representing the membership degree of u in the fuzzy set specified by f .

Assume A to be a uniformly distributed random number on [0, 1], the random set
representation of a fuzzy membership function f(u) is [39]

ΣA(f) = {u|A ≤ f(u)} (3.1)

For each random a ∈ [0, 1], the subset Σa(f) ⊆ Ω (Ω is the universe of discourse)
is called the level set of the function f cut by the (hyper)plane given by a. Due to the
uniformity of A,

P (u ∈ ΣA(f)) = P (A ≤ f(u)) = f(u) (3.2)

Where P () represents the probability distribution. In other words, the random set
ΣA(f) faithfully represents the fuzzy information contained in f(u).

The data ambiguity can also be defined as another form of imprecision where both
the attribute and the statement confidence are well-defined yet imprecise. As discussed in
section 2.4, the Dempster-Shafer theory is commonly deployed to represent data ambiguity
using a basic mass assignment function (b.m.a.) m. For the case of ambiguous and vague
data, the m can be extended into a fuzzy b.m.a. function o(f) defined on fuzzy membership
function(s) f(u). The RS theoretic representation of o can be constructed by first dividing
A = [0, 1] up into intervals A1, . . . , Ae with respective lengths o1, . . . , oe. Considering a
generalized RS representation of a fuzzy membership function fi as [39]

Wi = {(u, a)|o+
i−1 < a < o+

i−1 + oifi(u)} (3.3)

Where o+
0 = 0 and o+

i =
∑i

k=1 ok for i = 1, . . . , e. Please note the Wi will be mutually
disjoint.

Let

W0 = W1 ∪ . . . ∪We (3.4)

The RS theoretic representation of o(f) would be ΣA(W0)
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3.3.2 Kalman Evidential Filter

The KEF is derived by applying RS theory within the Bayesian estimation framework and
is capable of processing imprecise as well as vague data. The details of the KEF derivation
are not presented in this section and can be found in [92]. Similar to the KF, the KEF
is formulated within a state-space modeling scheme. However instead of working in the
original space, KEF relies on the so-called fuzzy Dempster-Shafer states which are indeed
a special case of fuzzy basic mass assignment function (fuzzy b.m.a.) on the original state
space X . Mathematically speaking, a fuzzy D-S state is a non-negative function µ(f)
defined on fuzzy membership functions f(x) where x ∈ X . Furthermore, function µ(f)
complies with the following three constraints:

1. µ(f) = 0 for all but a finite number of fuzzy membership functions f that constitute
its focal set,

2. The fuzzy membership functions of the focal set are normalized Gaussian multivariate
in form, i.e.

f(x) = NC(x− x0) = exp(−1

2
(x− x0)TC−1(x− x0)) (3.5)

where x0 and C correspond to the mean and covariance of the multivariate distribu-
tion, respectively,

3.
∑

f µ(f) = 1.

The KEF performs prediction and correction steps (similar to KF) that update the fuzzy
D-S state according to the target motion model and input measurement(s), respectively
(see Figure 3.1). At the prediction step, KEF estimates the next fuzzy D-S state of the
system µt+1|t assuming underlying target dynamics in the original state-space x ∈ X to be
linear-Gaussian as shown below:

xt+1 = Fxt + V (3.6)

where vector V is a Gaussian random vector with zero mean and covariance Q. The
fusion problem considered in our experiments is a single-target tracking system in 2D.
Therefore, the goal of KEF is to estimate the target position, i.e. x = [X Y ]T , where X
and Y are the estimated target x and y coordinates in the original space. Please note the
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Figure 3.1: The KEF state evolution and target state estimation steps.

linearity constraint is imposed not by the RS theory but indeed by the KEF formulation
to ensure all derived equations remain in closed-form. The matrix F in 3.6 represents the
target motion model and is defined as

F =

[
1 + τx

X
0

0 1 + τy
Y

]
(3.7)

where τx and τy represent the target velocity along the x and y axes, respectively.

Given the current fuzzy D-S state of KEF at time t as µt|t with focal sets of the form
fi(x) = NCi

(x − xi) for i = 1, . . . , e and corresponding mass of µi, the focal sets of the
predicted fuzzy D-S state µt+1|t are computed as the following

f
′

i (x) = NDi
(x− x′

i) (3.8)

where Di = Q+ FCiF
T and x

′
i = Fxi.

The corresponding mass assigned to the focal sets µ
′
i would also be computed according

to
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µi
′ =

ωi.µi∑e
i=1 ω

′
i.µ

′
i

(3.9)

where ωi =
√

detCi

detDi
.

At the correction step, KEF assumes an underlying sensing model for the original
measurement z of the form

zt = Hxt +W (3.10)

where matrix H characterizes the sensing model and W is a Gaussian random vector
with zero mean and covariance R. Given the predicted fuzzy D-S state as µt+1|t and the
new fuzzy D-S measurement ot+1 with fuzzy focal sets gj(z) in normalized Gaussian form,
i.e. gj(z) = NCj

(z− zj), and corresponding mass of oj for j = 1, . . . , d, the corrected fuzzy
D-S state after fusing new measurement µt+1|t+1 would have the focal sets fi,j(x) with the
corresponding mass µi,j computed as [92]

fi,j(x) = NEi,j
(x− ei,j) (3.11)

µi,j =
µi.oj.ωi,j.NCj+HTDiH(zj −Hxi)∑e

i′=1

∑d
j′=1 µi′ .oj′ .ωi′ ,j′ .NC

j
′ +HTD

i
′H(zj′ −Hxi′ )

(3.12)

where

ei,j = xi +Ki,j(zj −Hxi) (3.13)

Ei,j = (I −Ki,jH)Di (3.14)

ωi,j =

√
detCj.detDi

detEi,j.det(Cj +HTDiH)
(3.15)

and Ki,j = DiH
T (HDiH

T + Cj)
−1 may be considered as the KEF gain.

Note that F , H, V and W used in the sensing and target motion modeling are not
required to be constant and are indeed in the form of Ft, Ht, Vt and Wt. To simplify the
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Figure 3.2: Laser range finder range measurement scheme.

notation, the subscript t has been omitted. Furthermore, one can notice that the number of
Gaussian components produced by the KEF correction step grows exponentially. However,
this issue can be substantially alleviated by merging similar components and removing the
ones with negligible weights [180].

3.3.3 Hard Data Modeling

The target is assumed to be observed by laser range finder (LRF)1 sensors that provide
the hard data . The LRF has a 180 ◦ field of view and supplies data as a set of range
measurements L in the form shown below (see also Figure 3.2).

L =
{
rθ|θ = 1, . . . , 180

}
(3.16)

The LRF deploys a simple tracking scheme based on the comparison between two con-
secutive measurement sets Lt+∆thard and Lt to estimate the approximate relative position
of the target with respect to a LRF sensor. The final hard data sent to the fusion system
zhard is in the form of zhard = [zx zy]

T , where zx and zy are estimated target x and y coor-
dinates with respect to the global coordinate system. Each LRF is modeled using a linear
sensing model (see equation 3.10) with H = I as zhard = x and sensor noise covariance
R determined experimentally. Indeed, hard data provided by LRF are simply considered
as a fuzzy D-S measurement with d = 1, i.e. having only a single focal set in the form of
Gaussian 2D fuzzy membership function g(z) = NR(z − zhard).

1Laser Range Finder
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Figure 3.3: Syntax considered for the soft data report.

3.3.4 Soft Data Modeling

The soft data supplied by a human observer can generally be a report provided in uncon-
strained natural language statement form. Nonetheless, to simplify the modeling process
it is assumed that reports comply to a specific syntax and semantics determined by a
predefined ontology. This assumption is valid as ideally any unconstrained report related
to the target tracking application can be transformed into the desired predefined form
using an appropriate natural language processing scheme. Figure 3.3 shows the syntax
considered for the human-generated reports. As illustrated each report is comprised of
several (up to three in the current implementation) expressions. This allows for represent-
ing any ambiguities that human agents may be willing to express regarding the true state
of the target. Each expression is indeed a language sentence describing target dynamics
in terms of action, speed, and direction. In addition, three qualifiers, namely expression
qualifier (e qualifier), action qualifier (a qualifier), and direction qualifier (d qualifier)
have been incorporated into the sentence. These qualifiers allow the human observer to
express his/her confidence in the corresponding term from very high, i.e. certainly, to
very low, i.e. slightly. The reported target action could be speeding, stopping, as well as
moving. The first two possibilities are included in the new soft data ontology in order to
enable our system to model richer soft data reporting on target acceleration/deceleration.
This is inspired by the ability of human sensors to perform pattern recognition and report
on complex high-level target dynamics, in this case variation of target speed over time,
which are typically difficult to obtain using conventional hard sensors.

Once produced according to the specified syntax, each qualitative human-generated re-
port must be interpreted to be transformed into an equivalent quantitative representation.
Figure 3.4 presents the schematic of the semantics used to interpret soft data expressions.
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Figure 3.4: Schematic of the semantics used to interpret soft data.

As shown, target displacement from time t to t + ∆tsoft is determined using a vector
designating the amount ∆r as well as direction θ of the movement. Note that for represen-
tational convenience the Cartesian coordinate system is replaced by the polar coordinate
system. Each jth expression is modeled as a 2D Gaussian fuzzy membership function, i.e.:

gj(z) = NCj
(z − zj) (3.17)

which is defined on the original measurement space and where zj and Cj represent the
distribution mean and covariance, respectively. The ∆rj is determined according to target
action and speed reported in the given expression, i.e. the faster the speed the larger
the ∆rj. Similarly, θj is determined using the reported target direction. The formulation
used for soft data allows for the representation of fuzziness and subjectivity inherent in
the expression terms reported by the human observers. For example, let target speed be
reported as ”fast”; the term ”fast” may have slightly different meaning to different people
and is thus inherently vague. Given ∆rj and θj, the new target measurement ztj according
to expression j at time t is computed as shown below

zj
t = zj

t−1 + [∆rj × cos(θj)×∆tsoft ∆rj × sin(θj)×∆tsoft]
T (3.18)

where z0
j = [Xinit Yinit]

T is the initial target position estimate.

In addition, the action and direction qualifier terms of the expression j are deployed to
determine the covariance Cj associated with the distribution mean (assuming ∆rj and θj
to be independent) as shown below.

Cj =

[
var(∆rj) 0

0 var(θj)

]
(3.19)
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The var(∆rj) and var(θj) are chosen directly proportional to the inverse of the con-
fidence level expressed by the expressions’ qualifier, i.e., the higher the confidence, the
lower the variance. The mass assigned to each expression oj is computed according to the
normalized relative weight of that expression given by its qualifier (e qualifier). The more
certain the e qualifier, the higher the assigned mass. Finally, for the soft data that report
on target acceleration/deceleration, i.e. action = (speeding or stopping), the correspond-
ing target speed components are updated using the reported target positive or negative
acceleration acc and direction θ as (see Table 4.1)

τx = τx + acc× cos(θ)×∆tsoft

τy = τy + acc× sin(θ)×∆tsoft. (3.20)

3.3.5 System Organization

Our prototype soft/hard data fusion system is implemented within the multi-agent paradigm
using a Java-based framework called JADE2. An overview of the system architecture is il-
lustrated in Figure 3.5. There are several type of agents developed to handle different tasks
involved in the system. The core of the system is the data fusion agent (DFA), where the
KEF is deployed to process data and compute the target position estimate. Two separate
agents are in charge of collecting soft and hard data, namely, the soft data agent (SDA)
and the hard data agent (HDA). Furthermore, to interact with the human observer and
obtain reports, a GUI 3 agent named the human interaction agent (HIA) is developed.
Once obtained by the HIA, the raw human reports are then sent to the SDA to be vali-
dated using the predefined domain ontology discussed in the previous section. The target
is assumed to be a mobile robot and is simulated using a powerful robotic simulation plat-
form called Player/Stage 4 (P/S). Player is a server that acts as a hardware abstraction
layer and allows different client programs (usually written in C/C++) to communicate
with the sensors/actuators of the robot through simple standard interfaces. On the other
hand, Stage is the underlying software that provides the simulated robotic platform as well
as experimental environment to the Player. Another agent is called the actuation agent
(AA), which controls target (robot) movement precisely and also reports on the exact robot
position, which is used as the ground truth in the target tracking experiments presented in
chapters 4 and 5. The data preprocessing agent (DPA) is in charge of preprocessing both

2Java Agent Development Framework
3Graphical User Interface
4http://playerstage.sourceforge.net
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Figure 3.5: The multi-agent organization of developed fusion system.

soft and hard data and forwarding results to the consensus propagation agent (CPA) and
the consensus filter agent (CFA) for aggregation, respectively, as discussed later in section
4.3.

The communication among agents is accomplished using a message-passing mechanism,
called agent communication language (ACL), which complies to FIPA 5 standards. Fur-
thermore, as P/S is compatible only with C/C++ and our agents are developed using Java
in JADE, a middleware library called Javaclient is used to bridge between the two software
platforms. The main advantage of the multi-agent architecture are the ease of extension
and scalability, which are highly desired for the future development of our fusion system.
In addition, both P/S and JADE are available for free as open source software.

3.4 Chapter Summary

In this chapter a novel soft/hard data fusion system based on the RF theory was presented.
Both soft/hard data fusion and the RS theory are rather new areas of research in the

5Foundation for Intelligent Physical Agents
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data fusion community. The developments described in this chapter support the notion
of a RS theoretic approach to fusion of soft/hard data. Compared to other alternative
approaches of dealing with data uncertainty (imperfection), the RS theory appears to
provide the highest level of flexibility in dealing with complex unconventional data while
still operating within the popular and well-studied framework of Bayesian inference. The
prototype system introduced is by no means complete and is intended merely to serve as
the core of our framework to be extended in the subsequent chapters.
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Chapter 4

RS Theoretic Single-target Tracking
Using Soft/Hard Data

4.1 Introduction

This chapter presents an extension of our prototype fusion system described earlier in chap-
ter 3. The main contributions of this chapter can be summarized as the following. First, a
scheme based on consensus propagation is developed to enable distributed aggregation of
soft data requiring only local information exchange among neighbors. Most importantly,
compared to other distributed fusion schemes, our CP-based aggregation has the advantage
of allowing a sensor node to exclude itself from the aggregation processes, i.e. provide no
informational contribution, while participating in the data propagation process across the
network. This characteristic is very useful when aggregating soft data as described later
in this chapter. Second, a human trust modeling approach is proposed that allows for on-
the-fly estimation of agent trustworthiness and thus avoiding misleading or erroneous soft
data to some extent. Extensive experimental results obtained for a single-target tracking
application demonstrate the improved tracking performance and efficiency achieved by the
proposed fusion system through integrating soft and hard data.

The growth in popularity of sensor networks has led to an ever-increasing demand for
the development of highly scalable data fusion algorithms suitable for processing large
amount of data provided by such vast networks. This has attracted a lot of research
on decentralized data fusion architectures where the centralized fusion node is not re-
quired. Among the existing decentralized schemes, the fully distributed architectures are
the most appealing as they rely only on local information exchange among neighbors to
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achieve a global outcome and hence are highly scalable. Moreover, distributed data fu-
sion promises to yield improved efficiency, reliability, and ease of deployment. The large
volume of research work published on distributed data fusion methodologies using the
gossip-based [172], message passing [173], and diffusion processes [174], is an indicator
of the growing interest in this subject. We propose a novel distributed data fusion ap-
proach applicable to the fusion of soft data based on the consensus propagation (CP)
algorithm [175]. On the other hand, the success of a data fusion system depends on two
main factors, namely, the quality of input data and the efficiency of the adopted fusion
algorithm (operator). The former factor in turn is characterized by how well data is rep-
resented, how accurate the prior knowledge is, and most importantly how trustworthy the
source of data is deemed to be [156]. Accordingly, the level of trust assumed for the source
of data has a major role in the overall performance of a fusion system. Nonetheless, the
majority of the fusion systems today are based on an optimistic presumption about the
trustworthiness of data sources that they are all truthful. In context of the fusion systems
dealing with soft data produced by human agents this issue is even more significant as
humans are typically far more susceptible to failure and malfunction compared to ma-
chines (sensors). This observation, has motivated us to address the problem of human
trust modeling in the proposed fusion system.

The rest of this chapter is organized as follows. An overview of the related work in
distributed data fusion and data trustworthiness issue is provided in section 4.2. The
distributed data aggregation schemes for both soft and hard data are presented in section
4.3. Section 4.4 is dedicated to the discussion of the human trust modeling approach. Our
experiments with single-target tracking application are discussed in section 4.5. Finally,
our conclusive remarks and potential avenues of future work are presented in section 4.6.

4.2 Background and Related Work

This section presents a summary of related work on the two areas we are contributing
to, namely, distributed data fusion, and data trustworthiness modeling. A more in-depth
exploration of these research areas could be found at the review studies published in [7,
176, 97].

4.2.1 Distributed Data Fusion

In a distributed data fusion (DDF) architecture each node in the sensor field operates as
a local data fusion unit relying on local measurements collected from its neighbors. The
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fusion process is typically repeated iteratively and ideally converges to the same global
outcome as a centralized data fusion scheme. This approach eliminates the need for the
complicated and power-demanding process of routing data packets across the entire field,
to be received and processed by the centralized fusion node (sink), and thus promises to
enhance the scalability, efficiency, reliability, and ease of deployment of the fusion system.
On the other hand, the main drawback of a distributed fusion architecture is the inherent
lack of global structure, which would make it challenging to control the fusion process.

Early work on distributed data fusion attempts to simplify this problem by assuming
a fully connected network [181, 182], i.e. every sensor can communicate with every other
sensor, which is not a valid assumption for the majority of vast sensor networks of modern
days. One may refer to such scheme as decentralized to distinguish it from the fully
distributed systems discussed above. Modern distributed fusion systems operate within
three main computational paradigms:

• Gossip-based signal processing: local statistics are exchanged iteratively till conver-
gence to the desired global statistics [172]. The popular consensus filter [183] belongs
to this category of algorithms.

• Message passing algorithms: similar in nature to the gossip-based methods and be-
lieved to be closely related theoretically. The main difference is that the exchanged
messages are usually in form of tables (representing the so-called potential functions)
and the message computation process is slightly different for each of the neighbor
nodes. The loopy belief propagation [173] is a well-known algorithm in this category.
Compared to the gossip-based methods, distributed fusion using the message passing
approaches is far less studied.

• Diffusion process: a local convex combination (weighted sum) of the estimates pro-
vided by all the neighbors is computed at each node, with no iterations, to enable
information diffusion across the sensor field [174]. The weights used in the diffusion
process must be either pre-calculated or learned at run-time.

The gossip-based distributed algorithms are the most commonly used approach to
achieve distributed fusion and thus are well studied in the community. However, they are
mostly limited to average consensus filtering. Furthermore, due to their iterative nature
they enforce two time-scales of operation, one to achieve consensus iteratively and another
to perform fusion using the aggregated data. The diffusion processes on the other hand are
not iterative and hence resolve the time-scale issue. Also, the weights used in the diffusion
process may be learned and thus adapted to the requirement(s) of the fusion task at hand.
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Message passing algorithms have already proven to be an efficient approach to perform
distributed inference on graphs and yet are rarely deployed to develop distributed fusion
systems. Further research on these new alternatives to the popular gossip-based methods
is required to examine their inter-relationship and possibly come up with hybrid schemes
for distributed processing that provide a well-balanced compromise. An example of such
hybrid approaches is the consensus propagation [175] algorithm, which can be considered
as a special case of belief propagation devised to achieve consensus among several sensor
nodes, similar to the average consensus algorithm. Our distributed aggregation scheme
presented for soft data is based on the consensus propagation algorithm.

4.2.2 Data Trustworthiness

The bulk of the data fusion literature is built on optimistic premises regarding the trustwor-
thiness of fusion data. For instance, sensory data are commonly considered to be produced
by highly and equally trustworthy sources. Nonetheless, in many practical cases such as-
sumptions are too simplistic and lead to performance degradation of the fusion system. A
recent trend in fusion research attempts to address this issue by explicitly modeling the
data source trustworthiness. This is mostly accomplished by introducing the notion of a
second level of uncertainty, i.e. uncertainty about uncertainty, represented as trustworthi-
ness coefficients. The challenges are how to estimate these coefficients, as well as how to
incorporate them into the fusion process. A number of approaches to estimate trustwor-
thiness coefficients have been proposed which rely on domain knowledge and contextual
information [157], learning through training [158], possibility theory [159], and expert judg-
ments [160]. In addition, the problem of trustworthiness modeling has been studied within
several fusion frameworks such as Dempster-Shafer theory [161], fuzzy theory [69], trans-
ferable belief model [162], and probability theory [163]. More recent work also investigates
the impact of data trustworthiness on high-level data fusion [164].

In spite of the preliminary studies mentioned above, the issue of data trustworthiness
is still not well understood in the fusion community, and several open questions such
as interrelationship between trustworthiness coefficients, trustworthiness of heterogeneous
data, a comprehensive architecture to manage data fusion algorithm and trustworthiness
of data sources, and even a standard (or at least well-accepted) definition of the concept
trust within the fusion process remain as a part of future research [7, 161]. Furthermore,
virtually all of the studies so far target sensors providing hard data and hence are not
directly applicable to modeling trustworthiness in case of soft data provided by human
agent(s). Thus, our pioneering approach, discussed in the next section, is among the first
attempts to address this highly unexplored issue.

53



4.3 Distributed Data Aggregation

In order to achieve distributed fusion of soft/hard data, we propose to first compute the
global average of hard and soft data in a distributed way at each of the sensor nodes and
then supply the outcome to the individual KEF of each sensor node. It is assumed that
each sensor node is always provided with hard data and may (or may not) be provided with
soft data. Accordingly, computing the global average of hard data is straightforward and
is accomplished using the popular average consensus filter (CF) method [184]. Computing
the global average of soft data, on the other hand, is more challenging as some sensor nodes
may not be contributing to the data aggregation process and hence the CF approach may
not be deployed. We propose to deploy a distributed inference approach called consensus
propagation [175] to deal with the distributed soft data aggregation problem. The key
advantage of CP is that it propagates the number of contributing sensor nodes along with
the estimate of global average at any time, hence allowing a sensor node to exclude itself
from the aggregation process while still propagating data.

4.3.1 Hard Data Aggregation

As mentioned earlier, the hard data zhard at each sensor node provide a local estimate of
the 2D position of the target, i.e. zlocalhard = [zx zy]

T . The local estimates are extracted in the
DPA from the hard data reported by the HDA. The local estimates are then sent to the
CFA in order to be used in an iterative filtering procedure. The CF is formulated based on
an algebraic graph theoretic representation of the sensor network, i.e. a graph G = {V,E}
is used to show the interconnections between sensor nodes. V = {v1, . . . , vM} represents
the set of graph vertices corresponding to the sensor nodes in the sensor network while E =
{(vi, vj) ∈ V × V | vi and vj are neighbors} is the set of graph edges. Usually two sensor
nodes are considered neighbors if they are situated close enough to easily communicate
over a wireless channel. Assuming zglobal,khard,i to represent the global estimate of average hard
data at iteration k for node i, the discrete consensus filter at node i operates as shown
below:

Zglobal,k+1
hard,i =

Zglobal,k
hard,i + ε

[∑
j∈Ni

(Zglobal,k
hard,j − Z

global,k
hard,i ) + (Z local

hard,i − Z
global,k
hard,i )

]
(4.1)
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where Ni = {j ∈ V |(vi, vj) ∈ E} is the set of neighbor sensor nodes for node i. The ε
is the operation rate of the CF to ensure stability of the filter and is determined according
to the constraint specified as the following.

ε ≤ 1

dmax
(4.2)

The dmax is the maximum degree of graph G, where di = |Ni| represents the degree of
sensor node i. As shown in Equation 4.1, the CF updates its estimate of the global average
iteratively using the local estimate, as well as the most recent estimates received from the
neighbors. The iterative updates continue until reaching convergence or a predetermined
maximum number of iterations.

4.3.2 Soft Data Aggregation

One can consider the fuzzy D-S state used by the KEF as a Gaussian mixture with a
varying number of components. Each component j of the mixture, corresponding to an
expression in the soft report, is distinguished using three parameters, namely, its weight
oj, mean zj, and the associated covariance Cj. On the other hand, as discussed earlier,
the report given by the human observer may contain up to three expressions (hypotheses)
regarding the state of the target, i.e. soft data is modeled using a maximum of three
components. There is also a fourth component which models the state of total ignorance
about the target, i.e. g(z) = 1, and requires only a weight parameter. Therefore, there are
a maximum of 10(= 3 × 3 + 1) parameters required to represent soft data in a numerical
form. The conversion from the soft qualitative into a purely quantitative form occurs at
the DPA.

The global average of these ten parameters is computed using the consensus propagation
method. The CP is indeed a special case of Gaussian belief propagation that can be used
to compute global average in a distributed manner. Similar to CF, CP is an iterative
algorithm. However CP differs from CF in that data (messages) sent to each of the neighbor
sensor nodes are specific to that node, whereas CF broadcasts the same message to all
neighbors at each iteration. More importantly, using CP the message sent to each neighbor
sensor node contains not only the latest estimate of the desired parameter U but also the
number of sensor nodes contributing to that estimation process MU . Mathematically, for
every iteration k at node i, the incoming data [U ji,k−1,M ji,k−1

U ] previously received and
stored from all neighbor sensor nodes j ∈ Ni are used (along with the local estimate U local

i

if applicable) to update the global estimate U global,k
i of the desired parameter as
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U global,k
i =

ρi +
∑

j∈Ni
U ji,k−1M ji,k−1

U

κi +
∑

j∈Ni
M ji,k−1

U

(4.3)

The stored incoming data are also used to compute the (neighbor-specific) outgoing
messages [U ij,k,M ij,k

U ] for each of the neighbor nodes j as shown below.

U ij,k =
ρi +

∑
l∈Ni/ j

U li,k−1M li,k−1
U

κi +
∑

l∈Ni/ j
M li,k−1

U

(4.4)

M ij,k
U =

κi +
∑

l∈Ni/ j
M li,k−1

U

1 + 1
β
(κi +

∑
l∈Ni/ j

M li,k−1
U )

(4.5)

ρi =
{ U local

i node i is contributing
0 otherwise

(4.6)

κi =
{ 1 node i is contributing

0 otherwise
(4.7)

Here, β ≥ 0 is a constant that allows one to control the attenuation level of the CP. The
intuition behind the attenuation process is to avoid the unbounded growth of MU caused by
the existence of loops in the network topology. It is easy to see that the larger the MU and
smaller the β, the stronger the attenuation process would be. The convergence properties
of this approach are proven and discussed in detail in [175]. The outgoing messages from
node i are received and stored (as incoming data) at each of the neighbor sensor nodes j
to be used in the next iteration of the CP repeating the procedure described above. This
iterative procedure is initialized at the CPA upon receiving the latest local estimate of
the parameters from the DPA and is repeated until reaching convergence or a predefined
maximum number of iterations.

As discussed earlier, some sensor nodes may not supply soft data pertinent to the
parameters of a given component. We have modified the CP (as shown in 4.6 and 4.7)
using the ρi and κi parameters to allow a sensor node i to control whether or not to
participate in the aggregation process while still propagating the data. The idea is that
by excluding itself from the computation of the number of contributing sensor nodes Mk

U

and the associated parameter of interest Uk at each iteration (ρ = 0 and κ = 0), a non-
contributing sensor node will still receive and forward messages from and to its neighbors
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Figure 4.1: Distributed computation of global estimate of soft/hard data at each sensor
node.

(propagate soft data) without affecting them by its local evidence (no contribution). At
the first iteration of the CP, a non-contributing sensor node will prepare and send out its
outgoing messages as [don′t care, 0]. Therefore, the exclusion from the global averaging
process is initiated by setting the initial number of contributing nodes to zero in the first
outgoing messages. Please note that the reported estimate of the desired parameter is not
important, hence treated as “don’t care”, as it will not be considered in the subsequent
computations. Figure 4.1 demonstrates an overview of the distributed computation of
global average at each sensor node i in terms of the inputs, data (message) exchange with
each neighbor node j, and the produced output.

4.4 Soft Data Trustworthiness

Inspired by the work of Young and Palmer [156], we model soft data trust relying upon three
core concepts, namely, belief, reliability, and credibility. The belief is defined as a conviction
of the truth of a proposition usually acquired through perception. The credibility is the
measure of believability of a statement, action, or source, and the ability of the observer
to believe that statement based upon the consistency with other evidence. Finally, the
reliability is the degree to which prior historical reports from a source have been consistent
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with fact.

Accordingly, in our approach we consider belief Bel as the reported confidence in a
given soft report component. In the soft data ontology described earlier in section III
such confidence level is represented using the expression qualifier, i.e. e qualifier. Also,
the reliability Re is assumed to be provided a priori as a function of the earlier historical
performance of an agent. Lastly, the credibility Cr is formulated and calculated on-the-fly
in order to measure the consistency degree of the (human) agent reports over time.

The credibility computation approach is developed in order to satisfy several design
requirements shown below:

1. Agent credibility should be directly proportional to the temporal consistency of re-
ports, i.e. the higher the frequency and the amount of qualifier variations over time,
the lower the credibility,

2. The changes in the e qualifier are deemed more significant than a(d) qualifier vari-
ations,

3. Credibility computations are performed on-the-fly and thus must be done efficiently,

4. The effect of the latest reports must be adjustable as desired,

5. Gradual variation of the qualifiers must be tolerated to some extent

The individual credibility cri s.t. i ∈ {1, 2, 3} for each of the three possible expressions
in a given soft report are computed separately and the total credibility Cr is obtained
using a simple averaging, i.e. Cr = 1

3

∑3
i=1 cri.

The individual cri are computed efficiently through a recursive approach (see design
requirement 3) as follows

crki = 1−Dk
i (4.8)

where crki and Dk
i represent the individual credibility estimate and the normalized ex-

ponential weighted average of qualifier variations, respectively, for expression i at iteration
k. The Dk

i is computed as

Dk
i = α×

( (1−weq)

2
× (diffacti + diffdiri ) + (weq × diff eqi ))

DIFFmax
+(1− α)×Dk−1

i (4.9)
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where weq > 0.33 is the averaging weight assigned to the variations in the e qualifier
(see design requirement 2), and the absolute difference between the new and old reported
expression, action, and direction qualifiers are represented as diff eqi , diffacti , and diffdiri ,
respectively. The DIFFmax is used to normalize qualifier variations by the maximum
possible value, which in our system is 3(=4-1) as we assign 4 to the highest confidence
level (certainly) and 1 to the lowest level (slightly). Finally, 0 < α < 1 is the parameter
controlling the influence of the latest report in the exponential averaging process, i.e. the
higher the α the higher the impact of recent report (see design requirement 4). In order to
enforce the last design requirement, α is set according to the variation pattern/amount in
a given expression as below

α =
{ 0.2 diff eqi ≤ 1 and diffacti ≤ 1 and diffdiri ≤ 1

0.8 otherwise
(4.10)

to restrict penalizing the small variations in the qualifiers. Once computed, the credibil-
ity Cr of the data is combined with the reported reliability of the data source Re to provide
the discounting coefficient Dis, which then determines the discounting effect applied to the
reported data belief Bel as below

Beldis = Dis×Bel (4.11)

As suggested in [156], assuming source reliability parameter to take the form of the
Beta distribution, i.e. Re ∼ Be(r1, s1), the single parameter combining data credibility
and source reliability (Dis in our case) would also be of the Beta distribution form and
Dis ∼ Be(r1 + Cr, s1 + 1 − Cr). Accordingly, the expected value for the discounting
coefficient would be computed as

E(Dis) =
r1 + Cr

r1 + s1 + 1
(4.12)

The parameters r1 and s1 distinguishing the original Beta distribution for source reli-
ability are computed as follows

s1 = (n− 1)(1−Re) (4.13)

r1 =
Re× s1
1−Re

(4.14)
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where parameter n represents the (minimum) number of historical reports assessed to
evaluate the reliability of a data source and typically n = 8 is used. The soft data trust
modeling computations are performed by the DPA. Once discounted using the calculated
discounting coefficient Dis (see 4.12), soft data expressions are then categorized based on
their final belief Beldis into three categories, namely, certain-level (0.75 < Beldis ≤ 1),
almost-level (0.5 < Beldis ≤ 0.75), and perhaps-level )0.25 < Beldis ≤ 0.5) before being
sent to the CPA.

4.5 Single-target Tracking Experiments

Although there are some preliminary works aiming at creating a standard data set to enable
evaluation of soft/hard data fusion systems [150, 151], there are no publicly available data
sets for this purpose at this point. Therefore, we have conducted a series of experiments
ourselves, which are designed to highlight the performance enhancements that can be
achieved through soft data integration into the fusion process. Although our fusion system
is capable of operating, i.e. tracking target(s), while relying only on soft reports, the
experiments presented in this section mostly deploy soft data as a complementary source
of information to correct, improve, or update the target motion model, i.e. matrix F
in 3.6. We first present the results of the preliminary experiments performed to evaluate
the performance of the developed system for single-target tracking using soft/hard data.
Next we discuss the results of three series of experiments designed to further evaluate
the performance enhancements achieved using the proposed distributed data aggregation
approach, soft data trust modeling scheme, as well as the soft data provided through the
new augmented ontology, respectively.

4.5.1 Experimental Setup

The performance metric used for the experiments is the average position tracking error
(ATE), i.e. the cumulative average of the Euclidean distance between the known and the
estimated target position. The known target position (ground truth) is provided by the
AA, while the estimated position is the output of the DFA. Each of the experimental
scenarios is repeated five times in an attempt to obtain a more realistic measure of the
system performance. The simulation time resolution is 1ms. The SDA and HDA supply
their data to the DPA every 500ms and 100ms, respectively, i.e. ∆tsoft = 500ms and
∆thard = 100ms. Please note that the agent may input his/her report once (if desired)
and SDA will produce an appropriate soft data, according to the given ontology, and sends
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Table 4.1: Soft data interpretation parameter setting
Reported data Corresponding pa-

rameter
Corresponding
value(s)

moves slow/regular/fast ∆r 0.2/0.5/0.8 (m/s)
speeding slow/regular/fast acc 0.05/0.1/0.2 (m/s2)
stopping slow/regular/fast acc -0.05/-0.1/-0.2 (m/s2)
E/NE/N/NW/W/SW/S/SE θ 0/π

4
/π

2
/3π

4
/π/5π

4

/3π
2
/7π

4
(radians)

it to the DPA periodically. The DPA interprets both soft and hard data and sends the
extracted numerical values to the CPA and the CFA, respectively. In particular, the soft
data interpretation provides the parameters shown in Table 4.1, which once aggregated are
used in the DFA to determine the functions gj(z) (see 3.17) and/or matrix F (see 3.6). For
target motion model update, the soft data is used only if its aggregated discounted belief
Beldis is more than almost-level threshold. Please note that in each of the experimental
cases the target dynamics, human agent reports, and other characteristics (e.g. agent
reliability Re) are tailored to test for a specific feature of the fusion system. In all cases,
the enhancement of the tracking performance is reflected by the improvement percentage
of the ATE.

4.5.2 Preliminary Experiments

The basic system performance was evaluated with two categories of experiments distin-
guished depending on the relative role of soft data within the fusion process as described
in the following.

Soft data as necessary source of information

The target is tasked to move from the departure to the destination point such that it is
observable by the LRFs at the beginning and final portions of its path, but not the middle
portion (see Figure 4.2). The human observer is assumed to be able to observe the target
throughout the middle portion. Therefore, in order to compute a continuous track of target
position, soft data must be deployed.

Table 4.2 shows the experimental results obtained for five different trials of the system
with and without soft data deployment. Please note that the ATE computed when soft
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Figure 4.2: Snapshot of the simulation arena in Stage used to evaluate soft data as necessary
information source: the blue circles represent the LRFs while target is designated in red

data is not included is only for the portions of the target path where it is visible to the
LRF and the error associated with the invisible portion is simply ignored. The target path
is set in such a way that it moves in a north-east bound direction with a speed that is
considered slow to the human observer and the supplied human report is ”almost robot
certainly moves slow almost N”. Experimental results show that using soft as well as hard
data, the target track can be estimated continuously with ATE that compares favorably to
the performance of LRFs alone. Indeed, the average ATE computed over the five trials is
even slightly lower in the case of soft data inclusion. This can be attributed to the fact that
using soft data allows for initializing the second LRF, used in the final portion of target
path, with a very good estimate of target position. It is worth mentioning that several
other experiments with different path planning schemes for the target were performed and
resulted in a similar behavior for the system.

Soft data as complementary source of information

The experiments in this category are designed in order to evaluate the role of soft data
as a complementary source of information and enhancing tracking performance. Three
different test scenarios have been implemented as shown in Figure 4.3. In all scenarios
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Table 4.2: Average tracking error obtained without and with soft data inclusion
Trial
No.

Soft Data
Excluded

Soft Data
Included

1 0.177 0.155
2 0.169 0.165
3 0.172 0.160
4 0.173 0.164
5 0.171 0.156
Avg 0.172 0.160

the target is assumed to be maneuvering and soft data provided by human observer is
deployed to update the target motion model, i.e. matrix F in 3.6. The soft data report is
first transformed into a quantitative representation using the approach described in section
3.3.4. Next, the terms τx and τy of the target motion model are determined according to
the components ∆r and θ of soft data as projected onto the x and y axis, respectively, i.e.

F =

[
1 + ∆r × cos(θ)×∆tsoft 0

0 1 + ∆r × sin(θ)×∆tsoft

]
. (4.15)

Figure 4.3(a) shows the path the target is tasked to traverse for the first scenario. Along
its path the target maneuvers twice. Each time the target changes its movement, a new
soft data supplied by a human observer is used to update the matrix F . Table 4.3 provides
a summary of the results obtained for five different trials. Comparing the average ATE
computed for cases without and with soft data inclusion, it is clear that system performance
can be enhanced by about 9% through soft data inclusion in the fusion process.

Figure 4.3: The three scenarios used to evaluate soft data as complementary information
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Table 4.3: Average tracking error obtained for tracking of maneuvering target
Trial
No.

Soft Data
Excluded

Soft Data
Included

1 0.262 0.240
2 0.268 0.246
3 0.287 0.241
4 0.261 0.247
5 0.264 0.247
Avg 0.268 0.244

The experiments for the second scenario are similar to the first scenario, with the
difference that in this case the target’s change of direction is more drastic (see Figure
4.3(b)) and therefore the effect of having a more accurate motion model (using soft data)
should be magnified. This claim is indeed supported by the experimental results shown in
Table 4.4, as the achieved performance improvement for this more challenging experiment
is about 17%.

Table 4.4: Average tracking error obtained for tracking a more challenging maneuvering
target

Trial
No.

Soft Data
Excluded

Soft Data
Included

1 0.377 0.301
2 0.359 0.303
3 0.352 0.298
4 0.360 0.289
5 0.343 0.291
Avg 0.358 0.296

The third scenario is intended to show the importance of soft data as a means to improve
system performance in case the prior information available regarding the target motion is
wrong or misleading. As shown in Figure 4.3(c) the target is tasked to move northwards
(N). Nonetheless, the initial matrix F provided to the fusion system is such that it predicts
southward (S) movement for the target. In this case, the soft data provided by the human
observer is used to correct for the the misleading motion model, and the obtained results
are presented in Table 4.5. It can be seen that the role of soft data in this scenario is even
more significant, as the achieved improvement in tracking performance approaches 30%.
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Table 4.5: Average tracking error obtained for tracking with misinforming prior information
Trial
No.

Soft Data
Excluded

Soft Data
Included

1 0.225 0.171
2 0.222 0.168
3 0.219 0.169
4 0.215 0.174
5 0.224 0.169
Avg 0.221 0.170

The experimental results presented in this section demonstrated the important role
of soft data as either an essential or complementary source of information for the single-
target tracking application. It was shown that incorporating soft data, the developed
filter was able to achieve almost the same level of accuracy as that obtained with hard
data for tracking the target within areas not visible to the typical physics-based sensors.
This capability is specially conducive to military urban operations where there are many
civilian/residential areas that can only be covered by human agents.

Furthermore, soft data proved to be a very useful source of information by allowing
up to 30% improvement in tracking accuracy for cases where the presumed motion model
of the target was allowed to be corrected (updated) using soft data supplied by a human
obsever. The experiments described in the subsequent sections evaluate the advanced
characteristics of the proposed data fusion framework.

4.5.3 Distributed Data Aggregation Experiments

This section presents results of the experiments performed to evaluate the performance
of the developed distributed soft/hard data fusion approach as applied to the problem of
single-target tracking. The experiments are performed in two categories. In both cate-
gories, soft data are used as a complementary source of information deployed to correct for
the misinformed prior knowledge regarding the target motion. In the first category, an ex-
periment is performed to validate the efficiency of the CP in computing the global average
of soft data and compare it to the results obtained using the CF, and thus show the supe-
riority of the CP. The second category of experiments aims to demonstrate the advantage
of diffusing soft data through the sensor network using the proposed CP-based approach.
It is shown how this enables the tracking system to deal with a misleading source of soft
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Figure 4.4: (a) A snapshot of the P/S simulation arena. (b) The graph representation of
the sensor network simulated in the experiments.

data by fusing its report with other sources while relying only on local communication with
neighbors.

For the experiments, the target robot is tasked (using the AA) to move according
to an a priori known trajectory. The sensor network simulated for the experiment is
comprised of five sensor nodes. Figure 4.4(a) shows a snapshot of the Stage simulation
arena illustrating the positioning of human agents (blue circles) and initial position of the
target (red circle). Figure 4.4(b) shows a graph representation of this network where each
sensor node is depicted as a vertex and the interconnection among the nodes is depicted
by the existence/non-existence of an edge.

CP vs. CF: distributed computation of global average soft data

For this experiment, it’s assumed that all sensor nodes except SN3 have a source of soft
data (e.g. human observer) associated with them. The target is tasked to move towards
the north (upward) while the prior knowledge used to model the target motion is set to
indicate a downward motion towards south. All four of the available soft data are set to
be roughly correct and indicative of an upward target motion as shown in the Table 4.6.

The global average of the soft data is then used to update the matrix F and hence
improve the performance of the distributed tracking system. In the first scenario, the
CP approach is used to compute the global average of the four soft data reports. The
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Table 4.6: CF vs. CP for distributed averaging of soft data: soft reports
Sensor
node

Soft report

1 almost target certainly moves regular almost N
2 certainly target almost moves slow perhaps N
4 almost target perhaps moves regular almost NE
5 slightly target almost moves slow certainly NW

Table 4.7: CF vs. CP for distributed averaging of soft data: results
Trial CF simu-

lated
CP

1 0.232 0.153
2 0.203 0.161
3 0.228 0.148
4 0.183 0.154
5 0.198 0.145
ATE 0.208 0.152

second scenario evaluates CF applied to solve the global averaging problem. Table 4.7
shows the results obtained in terms of the average tracking error of all sensor nodes for
each of the five different trials along with the final ATE. It can be seen that the final ATE
produced by the CP-based distributed global averaging process provides a lower final ATE
thus enhancing tracking performance. This is due to the fact that CP-based algorithm
allows the exclusion of the (non-contributing) SN3 from the averaging process and yields
the global target direction specified by the angle θ, which is computed over four (not
five) sensor nodes and is thus closer to the desired value. On the other hand, using the
CF to perform the distributed global averaging the non-contributing sensor node cannot
exclude itself from the process. One might think that setting the reported value to zero
for non-contributing nodes, could produce the same effect as excluding that node from the
averaging process. Indeed this is how the effect of CF-based averaging is simulated at SN3
in this experiment. However, the lower quality of the tracking results obtained with this
approach shows the inefficiency of such a solution.
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Table 4.8: CF vs. CP for distributed averaging of soft data: soft reports
Sensor
node

First hypothesis Second hypothesis

1 perhaps target almost
moves slow almost N

certainly target almost
moves slow certainly S

2 almost target perhaps
moves regular almost N

perhaps target certainly
moves slow certainly S

3 almost target perhaps
moves fast almost N

slightly target certainly
moves slow certainly S

4 almost target slightly moves
regular slightly NW

slightly target certainly
moves regular almost S

5 certainly target perhaps
moves regular almost N

perhaps target almost
moves fast perhaps S

Dealing with erroneous/misleading soft data through distributed averaging

This experiment is designed and conducted to evaluate the efficiency of distributed soft data
aggregation in enabling the tracking system to alleviate the impact of erroneous/misleading
soft data. As in the earlier experiment, the global average soft data is used to update the
incorrect prior information of the target motion model, i.e. target is tasked to move
upward while the prior information indicates a downward motion. Two scenarios are
considered. In scenario one, there are no soft data available and tracking is performed using
the misinformed prior. In the second scenario, each of the five sensor nodes are assumed
to have an associated source of soft data (human observer), producing five reports each
comprised of two hypotheses (expressions) regarding the movement of the target.

As shown in table 4.8, all soft reports are set to express a higher level of certainty for
the (roughly) correct hypothesis regarding the direction of target movement except for the
SN1. To update the matrix F , first the global average of each of the two hypotheses are
computed using the CP-based approach developed in this paper. Next, the hypothesis with
the higher level of aggregated certainty is chosen to update the matrix F . Table 4.9 shows
the results obtained (in terms of tracking performance) at sensor node 1 for the first and
second scenarios described above. One can easily see a large percentage of improvement in
tracking performance for scenario two, where the misinformed prior information is corrected
for using the aggregated soft reports. This is very interesting because as discussed earlier
the soft report provided to SN1 is misleading, i.e. has higher certainty associated to
the wrong expression. Nonetheless, the aggregated soft report at this sensor is correctly
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estimated and hence once used to update the matrix F yields a drastic improvement in
tracking performance.

Table 4.9: Distributed soft data fusion to correct misinformed prior: average tracking error
Trial Soft data

excluded
Soft data
included

1 0.532 0.233
2 0.490 0.252
3 0.528 0.206
4 0.420 0.232
5 0.560 0.244
ATE 0.506 0.233

4.5.4 Soft Data Trust Modeling Experiments

The experiments discussed in this section are divided into two categories. The objective
of the first category of experiments is to demonstrate the advantages of excluding the
misleading soft reports from the fusion process. This is accomplished by using the proposed
trust modeling scheme to discount the temporally inconsistent reports, i.e. reports with
drastic change in qualifiers over time. On the other hand, the experiments in the second
category are conducted in order to evaluate the ability of the developed fusion system to
tolerate gradual change of the qualifiers. The observation is that in some tracking scenarios
accurate reports could change gradually over time and if not tolerated and discounted
heavily the performance would suffer. For instance, for the case where target moves towards
the human agent and is thus observed more and more accurately, the confidence level
expressed in the provided soft data would gradually increase.

There are two cases in the first category of experiments. In both cases target is tasked
to move with slow speed towards the north (N). It’s assumed that the prior knowledge
regarding the target dynamics is wrong and the aggregated soft data are used to correct
this prior. In case one, all agents initially provide certain-level, i.e. e qualifier = certainly
for the first report expression, and high-quality reports. However, one (SN1 in scenario
one) or two (SN1 and SN2 in scenario two) of the human agents deviate from the truth
and supply low-quality and eventually misleading reports over time while incurring drastic
changes in the qualifiers from one report to the next. This results in a decrease in the
credibility measure for these agents, which in turn causes their misleading reports to be
aggregated at the almost-level (instead of certain-level) and hence effectively excludes them
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Table 4.10: Avoiding misleading soft data (Case 1): initial soft data provided by all five
agents at time stage one

Time
stage

SN1 SN2 SN3 SN4 SN5

1 certainly
target
almost

moves slow
almost N

OR almost
target

certainly
moves slow
certainly

NE

certainly
target

perhaps
moves slow
almost N

OR almost
target

certainly
moves slow
certainly

SW

certainly
target
almost

moves slow
almost N

OR
perhaps
target

certainly
moves slow
certainly

SE

certainly
target

slightly
moves
regular
slightly
NW OR
perhaps
target

certainly
moves
regular

almost SE

certainly
target
almost

moves slow
almost N

OR almost
target
almost

moves fast
perhaps

SW

from the aggregated reports used to update target motion model. Table 4.10 shows the
initial reports provided by all agents at time stage one. The soft reports provided by SN1
at the subsequent time stages (used in scenarios one and two) are shown in Table 4.11.
Please note the reports provided by other agents need not to be shown as they remain
virtually unchanged throughout. Similarly, the SN2 soft data used in scenario two are also
shown in Table 4.12.

The scenarios for the case two of the first category are similar to the case one scenarios.
The difference is that the misleading agents reports are certain-level while the other agents
in this case provide high-quality and almost-level reports. Thus, discounting the misleading
reports allows for fusing them with the other high-quality almost-level reports and updat-
ing the target motion model using the obtained almost-level aggregated data. Moreover
similar to the case one, the results are obtained with one (only SN1) and two (SN1 and
SN2) nodes acting as the misleading agents. Figure 4.5 illustrates the enhancements in
tracking performance obtained by enabling the trust modeling scheme as the improvement
percentage of ATE.
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Table 4.11: Avoiding misleading soft data (case 1): the SN1 soft data over time with
drastic qualifier variations

Time
stage

Soft report

2 certainly target perhaps moves slow perhaps S OR almost
target perhaps moves slow slightly NE

3 certainly target almost moves slow certainly S OR slightly
target perhaps moves slow certainly SE

4 certainly target almost moves slow perhaps SE OR perhaps
target slightly moves slow slightly SE

5 certainly target almost moves slow certainly SE OR perhaps
target certainly moves slow certainly E

6 certainly target perhaps moves slow perhaps SW OR almost
target almost moves slow perhaps E

Figure 4.5: Avoiding misleading soft report(s): obtained ATE improvement percentages

Examining the results shown in Figure 4.5, we make several observations. For a single
misleading agent (SN1), our approach is more effective in case two than case one. It is
reasonable as without trust modeling in case two only the misleading report produced by
SN1 is used to update the motion model, whereas in case one the misleading report (if
not excluded using the trust modeling) is still aggregated with other high-quality reports
and then used to update the target motion model. On the other hand, for the scenarios
involving two misleading agents the performance improvement is more noticeable for the
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Table 4.12: Avoiding misleading soft data (case 1): the SN2 soft data over time with
drastic qualifier variations

Time
stage

Soft report

2 certainly target certainly moves slow slightly E OR perhaps
target slightly moves slow perhaps S

3 certainly target perhaps moves slow certainly SE OR almost
target almost moves slow almost S

4 certainly target certainly moves slow perhaps SE OR
perhaps target slightly moves slow perhaps S

5 certainly target perhaps moves slow certainly SW OR
almost target certainly moves slow certainly S

6 certainly target almost moves slow perhaps SW OR perhaps
target almost moves slow slightly SE

case one rather than case two. This could be contributed to the fact that in case one
trust modeling allows us to exclude more misleading reports from the aggregation process
while in case two even with trust modeling enabled both of the misleading reports are
still aggregated with the other reports to compute the final report. In summary, for the
case one scenarios our approach becomes more and more effective for higher number of
misleading agents existing in the network whereas for scenarios of the second case the
trend is reversed.

As mentioned earlier, the second category of experiments evaluate the effect of dealing
with gradual change of qualifiers in the obtained performance. The effect of disabling the
tolerance to gradual changes mechanism is simulated by constantly setting α = 0.8. Similar
to the first category experiments, two experimental cases each comprised of two scenarios
have been conducted. In both cases, target dynamics are the same and involve three stages
as follows. First, target is tasked to move with slow speed towards north west (NW). Next,
target is tasked to move regular towards north east (NE). Finally, it is tasked to move fast
towards south (S). For case one, all agents provide certain-level reports where some are
high-quality and gradually changing and others are medium-quality and not much changing
over time. The goal is to maintain the high-quality reports in the aggregation process by
restricting the discounting effect of trust modeling. The experiments are performed for two
scenarios where there are only one (SN1) and three (SN1, SN3, and SN5) agents providing
such high-quality reports.

Table 4.13 shows the high-quality reports provided by SN1 over six time stages (scenario
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Table 4.13: Tolerating gradual qualifier variations (Case 1): the SN1 soft data over time
with gradual qualifier variations

Time
stage

Soft report

1 certainly target almost moves slow perhaps NW OR almost
target certainly moves slow certainly N

2 certainly target certainly moves slow almost NW OR
perhaps target almost moves slow almost N

3 certainly target almost moves regular certainly NW OR
almost target perhaps moves slow perhaps N

4 certainly target perhaps moves regular almost NE OR
perhaps target slightly moves slow slightly NW

5 certainly target almost moves fast perhaps S OR slightly
target perhaps moves slow perhaps S

6 certainly target perhaps moves fast almost S OR perhaps
target slightly moves slow slightly E

one). Similarly, Table 4.14 shows the reports of SN3 and SN5 over time used in the scenario
two experiments. Due to space limitations, we only show the reports provided by SN2 as
an example of medium-quality reports, which are provided by other human agents (see
Table 4.15). Examining the results illustrated in Figure 4.6, it is clear that by tolerating the
gradual changes in qualifiers and retaining the high-quality reports in the data aggregation
process, the tracking performance is improved especially for the second scenario with three
agents providing high-quality and gradually changing reports the improvement achieved is
rather significant (over 25%).

The second case of experiments in this category are performed assuming all reports to
be almost-level. Once again, two scenarios are considered where the majority, i.e. either
3 or 4 (out of 5) of the human agents provide high-quality and gradually changing reports
while the rest (SN1 and SN3) provide low-quality reports and incur abrupt change in
qualifiers. Table 4.15 shows the data provided by SN1 over time. The high-quality data
provided by the agents majority is produced similar to the first category experiments and
is thus not shown. The fusion system is expected to retain and use the high-quality reports
by limiting the discounting effect of the trust modeling scheme.
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Table 4.14: Tolerating gradual qualifier variations (Case 1): the SN3 and SN5 soft data
over time with gradual qualifier variations

Time
stage

SN 3 soft report SN 5 soft report

1 certainly target perhaps moves
slow almost NW OR perhaps
target certainly moves slow

certainly S

certainly target certainly moves
slow certainly NW OR slightly

target almost moves fast perhaps
S

2 certainly target almost moves
slow certainly NW OR slightly

target certainly moves slow
certainly S

certainly target almost moves
slow almost NW OR perhaps

target almost moves fast perhaps
S

3 certainly target certainly moves
regular certainly NE OR perhaps

target almost moves slow
certainly N

certainly target perhaps moves
slow perhaps NE OR slightly

target almost moves fast perhaps
S

4 certainly target certainly moves
regular almost NE OR almost

target almost moves slow almost
N

certainly target slightly moves
slow almost NE OR slightly

target almost moves fast slightly
S

5 certainly target certainly moves
fast certainly S OR perhaps

target almost moves slow almost
N

certainly target almost moves
fast almost S OR slightly target

almost moves fast perhaps E

6 certainly target almost moves
fast almost S OR slightly target

almost moves slow almost N

certainly target certainly moves
fast certainly S OR slightly

target almost moves fast slightly
E
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Figure 4.6: Tolerating gradual qualifier variation results: the high-quality and gradually
changing soft data are retained and aggregated with other medium-quality soft data

Table 4.15: Tolerating gradual qualifier variations (Case 1): the SN2 soft data over time
with occasional qualifier variations

Time
stage

Soft report

1 certainly target perhaps moves regular almost W OR
perhaps target certainly moves slow certainly S

2 certainly target perhaps moves regular perhaps W OR
perhaps target certainly moves slow certainly S

3 certainly target perhaps moves regular almost E OR perhaps
target certainly moves slow certainly S

4 certainly target almost moves regular almost E OR perhaps
target certainly moves slow certainly S

5 certainly target almost moves regular perhaps SE OR
perhaps target certainly moves slow certainly S

6 certainly target perhaps moves regular perhaps SE OR
perhaps target certainly moves slow certainly S
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Figure 4.7: Tolerating gradual qualifier variation results: the high-quality and gradually
changing soft data are retained and used solely to update the target motion model

Table 4.16: Tolerating gradual qualifier variations (Case 2): the SN1 low-quality soft data
over time with abrupt variations

Time
stage

Soft report

1 almost target perhaps moves regular perhaps N OR perhaps
target certainly moves slow certainly W

2 almost target slightly moves regular certainly N OR slightly
target slightly moves slow certainly W

3 almost target certainly moves slow almost N OR perhaps
target slightly moves slow perhaps W

4 almost target perhaps moves fast certainly N OR slightly
target certainly moves regular perhaps W

5 almost target perhaps moves fast slightly E OR perhaps
target perhaps moves regular perhaps SE

6 almost target certainly moves fast perhaps E OR slightly
target certainly moves fast certainly SE

Figure 4.7 shows the results obtained for two scenarios of the second case. One can see
that in both scenarios the performance improvements are rather significant. This could be
contributed to the fact that without tolerance to gradual change in qualifiers, the high-
quality reports would not be used to update the target motion model. Furthermore, even
the low quality reports could not be used either as they incur drastic change in qualifiers
leading to a rapid drop in their credibility measure, which will in turn force trust in them
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Figure 4.8: Target speed (Y axis) vs. the time stage (X axis): the speed is in m/s and
each time stage lasts for 1500ms

to go below almost level and thus make them unusable for the target motion model update.
In effect, in both cases target motion model will not be updated unless the high-quality and
gradually changing reports are retained and deployed through the tolerance mechanism.

4.5.5 Augmented Soft Data Experiments

The improved augmented soft data ontology allows for dealing with target dynamics in-
volving acceleration/deceleration. The experiments described in this section evaluate the
ability of our fusion system to deal with more challenging targets referred to as agile. Three
increasingly more difficult test cases are performed. In each case two scenarios are con-
sidered. In one scenario, we deploy the soft data produced based on the original ontology
where human agents cannot explicitly report on target acceleration/deceleration. In the
other scenario, target dynamics are described more accurately using the soft data produced
by the new augmented ontology. As our goal here is not to evaluate the distributed data
aggregation scheme (see earlier experiments described in section x), we set all agents to
produce the same report in all cases. Figure 4.8 shows how the target is tasked to move in
each of the three cases. The motion direction is always set towards NE. Table 4.17 shows
the soft reports provided using the original and the augmented ontology in each case. It
is easy to notice that as target dynamics become more complex, the soft reports provided
using the earlier ontology become more of an approximation and less representative of true
target dynamics.

Figure 4.9 shows the performance improvements obtained using the new soft reports
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for each of the three test cases. As expected, the improvement achieved for the more
challenging cases, i.e. second and third, is more noticeable. In addition, the improvement
for the second case is slightly higher than the third, which may seem rather non-intuitive at
first as target dynamics in the third case are more complex. However, a closer examination
of the target dynamics in each of the last two cases along with the soft reports available to
update the motion model in each case, would reveal that the tracking performance for the
second case could actually be worse if one uses only the old ontology reports. Indeed, at
both the second and third time stages the soft reports provided indicate something which
is exactly to the contrary of how the target is about to behave. For instance, at time
stage two the report implies that the target is going to be moving fast while in fact it
will be reducing its speed at a high rate. A similar situation is repeated at the third time
stage. Such a contrast between the reported target dynamics and its true behavior is not
demonstrated in the third case although it involves more time stages and more frequent
variations in the target dynamics.

Figure 4.9: Augmented soft data experiment results

4.6 Chapter Summary

In this chapter, we addressed two important challenges pertinent to the development of
soft/hard data fusion systems, namely, distributed aggregation of soft data, and human
trust modeling and estimation. The experimental results obtained for a single-target track-
ing task demonstrated the potential of soft data to significantly improve the performance
of tracking systems once fused properly with hard data.

We envision several avenues of future research for this work. The RS theory has been
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already shown to be capable of representing first order, second order and even composite
rules [92]. This makes it interesting to study the potential of this theory to model human
data (reports) in form of rule-based logical statements and incorporate them into the fusion
process. A natural extension of the current single-target tracking system into multi-target
tracking seems appealing. This would require solving the data association problem where
both target measurements and states have the fuzzy D-S form discussed in this chapter.
This has been the main objective of the human-centered multi-target tracking approach
discussed in the next chapter.
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Chapter 5

Human-Centered RS Theoretic
Multi-target Tracking and
Classification

5.1 Introduction

A rather recent thread of research work in the data fusion community is the deployment of
Random Set theory as an alternative mathematical framework to deal with target tracking
problems, especially for the multi-target tracking applications RS theory is argued to be the
natural choice [39, 186]. In chapter 4, we proposed a novel RS theoretic approach to enable
fusion of soft human-generated data for single-target tracking applications. This chapter
further develops our framework by proposing a data association algorithm applicable to soft
data modeled using the RS theory, hence extending its applicability to multi-target tracking
tasks. We also propose a robust RS theoretic Bayes classifier to enable classification of
targets described using vague soft data. The obtained experimental results demonstrate
the capacity of the RS theory as a viable approach to human-centered multi-target tracking
and classification.

The rest of this chapter is organized as follows. The human-centered multi-target track-
ing approach, including the novel soft data association algorithm, is detailed in section 5.2.
The preliminary multi-target tracking experiment results, demonstrating the efficiency of
our soft data association algorithm, are discussed in section 5.3. The proposed RS theo-
retic apporach towards human-centered multi-target classification is described in section
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Require: PDM,Atr, I, Ia
Ensure: Cols
1: while I.size() > 0 do
2: i = I.next()
3: {Find the index of PDM col with smallest value dmin ind for the current target i}
4: if Ia[i] == −1 {Agent has no opinion} then
5: Cols[i] = dmin ind
6: else
7: if |PDM [i][dmin ind]− PDM [i][Ia[i]]| ≤ DIF TH

Atr[i]
then

8: Cols[i] = dmin ind

9: else if PDM [i][Ia[i]]
Atr[i]

≤ DIF2 TH then

10: Cols[i] = Ia[i]
11: else
12: Cols[i] = −1 {Target unmatched!}
13: end if
14: end if
15: end while

Figure 5.1: Comp cols method (local matching stage)

5.4, followed by a discussion of the obtained experimental results in section 5.5. The clas-
sification approach is then extended into the distributed paradigm through a distributed
decision fusion algorithm presented in section 5.6. The related experimental results are
provided in section 5.7. Finally, section 5.8 concludes this chapter and discusses several
directions of future research for this work.

5.2 Human-Centered RS Theoretic Multi-target Track-

ing

As discussed in chapter 3, the soft data is modeled as a so-called fuzzy Dempster-Shafer
state and fused using the Kalman Evidential Filter (KEF). A very recent work by Mahler
develops conditional likelihood functions required to establish distance between the pre-
dicted target state and the given measurement for nonconventional cases including the
fuzzy Dempster-Shafer states [187]. Leveraging these new developments, we propose a
novel soft data measurement to track association algorithm tailored to the specific require-
ments of our original soft/hard data fusion framework considering a multi-target tracking
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Require: PDM,Atr, I, Ia
Ensure: Asc data ind
1: while I.size() > 0 do
2: Cols = Comp cols(PDM,Atr, I, Ia)
3: i = I.next();
4: if Cols[i] == −1 then
5: Asc data ind[i] = −1 {mark target as unmatched}
6: I.remove(i)
7: else
8: Candid tr = i Candid sd = Cols[i]

{Inter-target checking step}
9: for j ∈ Iandj 6= i do
10: if Cols[j] == Candid sd and PDM [j][Candid sd] <

PDM [Candid tr][Candid sd] then
11: Candid tr = j
12: end if
13: end for
14: if PDM [Candid tr][Candid sd] ≤ DIFF2 TH then
15: Asc data ind[Candid tr] = Candid sd

{Remove Candid sd as a choice from PDM for all targets, e.g. by setting
PDM [][Candid sd] = LARGE NUM}
{Similarly, remove Candid sd as a choice of the agents from Ia }

16: else
17: Asc data ind[Candid tr] = −1
18: end if
19: I.remove(Candid tr)
20: end if
21: end while

Figure 5.2: Soft Data Association Algorithm

83



task. Once the data association is performed, we apply a bank of KEFs to update tracks
for all targets. We performed a series of tests to evaluate the efficiency of our algorithm in
terms of average tracking accuracy for several targets. Comparing with the baseline case
of relying merely on human agent opinions to resolve the association problem, our results
demonstrate the ability of our soft data association algorithm (SDAA) to significantly
improve the tracking performance. To the best of our knowledge, this is the first work
to explore a RS theoretic approach towards multi-target tracking using nonconventional
human-generated data.

5.2.1 Soft Data Association Algorithm

This section presents the core enabling technology for our human-centered multi-target
tracking system, i.e. a novel soft data association algorithm. Our SDAA can be consid-
ered as an augmented nearest neighbor (NN) association algorithm as it relies mainly on
the pairwise distance between measurements and target tracks and assigns tracks to the
measurement with the minimum distance. However in contrast to the basic NN algorithm
applicable to hard data, our SDAA also takes into account the human agent opinions.
Moreover, to further enhance the robustness of associations an inter-target checking (ITC)
procedure is performed to resolve any potential conflicts among targets before finalizing
the associations.

Before proceeding with describing our SDAA, we should define some terminology used
in the pseudocode representation of this algorithm. The PDM is a Nt × Nm matrix
storing the pairwise distance measure between given Nt number of targets and Nm number
of measurements. The PDM computation equations are discussed later at the end of this
section. The Atr is an array storing the (relative) agent trust ratios for each of the targets
i ∈ {1, . . . Nt} reported by the agent and is defined as

Atr[i] =
3∑
e=1

e qualifiere
5− e

(5.1)

The Atr[i] = 1 if all the three possible expressions comprising the given target report
have the highest level of certainty available, i.e e qualifier1 = certainly, e qualifier2 =
almost and so on (See also Figure 3.3). This parameter captures the human agent’s
confidence level in the expressed report regarding a target. Please note the above equation
assumes the e qualifier to be coded as certainly = 4, almost = 3, perhaps = 2, and
slightly = 1. The I represents the set of all given target indices to be matched with
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measurements and is initialized to {1, . . . Nt}. The Ia represents the set of target indices
as expressed by the term target ID in the soft data ontology, i.e. Ia specifies the target
track to measurement associations according to the human agent opinion.

In summary, there are two stages involved in the proposed SDAA, the local association
stage and the global association stage. In the local stage, which is implemented as proce-
dure Comp cols() (See Figure 5.1), the index of the best candidate measurement for each
of the target tracks is computed and returned as array Cols. In the local matching process
the first priority is given to the closest measurement, the one with smallest PDM , which is
also not too far from the one specified by the agent (See Figure 5.1 lines 7-8). The allowed
difference between the measurement with minimal distance and the agent’s choice is con-
trolled by the threshold DIFF TH, which is penalized (enlarged) for Atr < 1, i.e. agent
report not completely certain. The second priority is given to the measurement specified
as the target match by the agent as long as it’s distance, which is similarly penalized by
Atr, is below the threshold level DIFF2 TH (See Figure 5.1 lines 9-10). In case none of
the aforementioned conditions hold, target is marked as unmatched.

In the global matching stage, shown as a pseudocode in Figure 5.2, an inter-target check-
ing (ITC) procedure is performed to check for potential conflicts among targets. Targets i
and j are considered to be in conflict if they are both assigned to the same measurement
in the local matching stage (See Figure 5.2 lines 8-13). The conflict is resolved by assign-
ing the problematic measurement to the target with the smallest distance (closest match).
Moreover, in order to avoid accepting a poor measurement as a match the chosen measure-
ment is rejected if its pairwise distance to the given target is too large (See Figure 5.2 line
14). Once a measurement is assigned to a target it is no longer considered as a potential
match or choice of the human agents (See Figure 5.2 line 15). This two-stage procedure is
repeated until all targets are either matched or marked as unmatched. The indices of the
final measurement to target associations are stored in the array Asc data ind.

The measurement to track distance metric used in our SDAA is developed based on
the premises originally introduced by Mahler [39]. More recently he formally describes
a framework to establish measurement to track association for nonconventional measure-
ments formulated using the RS theory [187]. As discussed earlier, in our framework both
soft measurement o and (predicted) target state µt+1|t are represented as fuzzy D-S states.
Mathematically speaking, let µt+1|t to be comprised of focal sets of the form

fk(x) = N̂Di
(x− xi) (5.2)

with the corresponding weight µk and similarly the measurement o to have focal sets
as shown below
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gl(z) = N̂Cl
(z − zj) (5.3)

and weights denoted as ol.

The PDM [i][j] represents the distance between the predicted state of target i and soft
measurement j and is computed as below

PDM [i][j] =
1

`(oj|µi)
(5.4)

where [39]

`(oi|µj) =
e∑

k=1

d∑
l=1

wk,l.ol.µk.N̂Cl+HDkHT (Hxk − zl) (5.5)

and

wk,l =

√
det2πCl

det2π(Cl +HDkHT )
.

√
det2πDk∑e

n=1 µn.
√
det2πDn

(5.6)

5.3 Multi-target Tracking Experiments

As discussed earlier, there are some preliminary works aiming at creating standard datasets
to enable evaluation of soft/hard data fusion systems [150, 151], there are no publicly
available datasets for this purpose at this point. Therefore, we have conducted a series of
multi-target tracking experiments ourselves, which are designed to highlight and evaluate
several performance characteristics of the proposed soft data association algorithm.

5.3.1 General Settings

The performance metric used for the experiments is the average position tracking error
(ATE), i.e. the cumulative average of the Euclidean distance between the known and
the estimated target position (in meters). Each of the experimental scenarios is repeated
five times in an attempt to obtain a more realistic measure of the system performance.
The simulation time resolution is 1ms. The SDA supplies soft data to the DPA every
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Figure 5.3: A snapshot of the Player/Stage simulation arena setup for the second experi-
ment.

1000ms, i.e. ∆tsoft = 1000ms. The parameter setting used to interpret soft data is
shown in Table 4.1. All the threshold values are determined experimentally. The multi-
target experiments are conducted with three targets (mobile robots) at this time, namely,
T1, T2, and T3. However, due to the distributed nature of computations, it should be
easy to scale up our experiments to a larger number of targets. As our main objective
is to assess the soft data association algorithm, we rely merely on soft data for tracking
in our experiments. Nonetheless, since the proposed framework is capable of processing
both soft and hard data, one can adopt and use an appropriate hard data association
algorithm (from the data fusion literature) and perform soft/hard multi-target tracking.
Figure 5.3 shows a snapshot of the Stage simulation arena illustrating the positioning of
human agents (blue circles) and initial position of targets (red circles) as setup for our
second experiment. Furthermore, Figure 4.4 shows the connectivity map of the five sensor
nodes (human agents) deployed in our experiments.
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5.3.2 Removing Poor Soft Data

This scenario is designed in order to evaluate the effectiveness of the soft data association
algorithm in excluding poor data from the association process and thus avoiding perfor-
mance degradation. Targets are assumed to have rather distinct dynamics and are tasked
to move accordingly (See Figure 5.4(a)). The soft reports provided by the human agents
are organized such that for T1 and T3 all agents produce high quality reports whereas
for T2 the (minimum) majority of agents (3 out of 5, i.e. SN1, SN3, and SN5 in this
test) provide low quality data while the rest provide medium quality data (see Table 5.1).
The low quality data must be identified and removed by the data association algorithm
while the medium quality must be preserved. i.e. associated with T2. The baseline algo-
rithm involves no data association algorithm, i.e. relies merely on the human agent opinion
expressed as the target ID in soft data ontology (see Figure 3.3).

Figure 5.5 shows the ATE for all three targets using both the baseline and our soft data
association algorithms. Comparing the two algorithms, one could see for T1 and T3, for
which the human soft data are high quality and properly associated, the results are almost
identical, whereas for T2 the performance is significantly improved once the poor data
provided by SN1, SN3, and SN5 are removed successfully by the SDAA. Please note the
reason for tracking results for T2 using the SDAA being worse than the other two targets
is that the available soft data (not removed) for this target provided by SN2 and SN4 are
of medium quality rather than high quality (See Table 5.1). Indeed, these T2 reports are
set to be of medium quality intentionally to ensure that the SDAA algorithm is able to
associate them to the T2 while eliminating other low quality reports.

Figure 5.4: Target dynamics: (a) Removing poor data scenario (b) Resolving target
confusion scenario (c) The need for ITC scenario (Hint: the longer the arrow, the faster
the target speed).
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Table 5.1: The soft data provided by all five agents for removing poor soft data scenario
SN1 SN2 SN3 SN4 SN5
certainly tar-
get1 perhaps
moves fast per-
haps NE OR
perhaps tar-
get1 certainly
moves regular
certainly N
AND certainly
target2 perhaps
moves fast
perhaps W OR
perhaps tar-
get2 certainly
moves slow
certainly NE
AND certainly
target3 perhaps
moves slow
perhaps W OR
perhaps tar-
get3 certainly
moves regular
certainly SW

certainly tar-
get1 perhaps
moves fast per-
haps NE OR
perhaps tar-
get1 certainly
moves regular
certainly N
AND certainly
target2 perhaps
moves fast
perhaps S OR
perhaps tar-
get2 certainly
moves regular
certainly SE
AND certainly
target3 perhaps
moves slow
perhaps W OR
perhaps tar-
get3 certainly
moves regular
certainly SW

certainly tar-
get1 perhaps
moves fast per-
haps NE OR
perhaps tar-
get1 certainly
moves regular
certainly N
AND certainly
target2 perhaps
moves fast
perhaps W OR
perhaps tar-
get2 certainly
moves slow
certainly NE
AND certainly
target3 perhaps
moves slow
perhaps W OR
perhaps tar-
get3 certainly
moves regular
certainly SW

certainly tar-
get1 perhaps
moves fast per-
haps NE OR
perhaps tar-
get1 certainly
moves regular
certainly N
AND certainly
target2 perhaps
moves fast
perhaps S OR
perhaps tar-
get2 certainly
moves regular
certainly SE
AND certainly
target3 perhaps
moves slow
perhaps W OR
perhaps tar-
get3 certainly
moves regular
certainly SW

certainly tar-
get1 perhaps
moves fast per-
haps NE OR
perhaps tar-
get1 certainly
moves regular
certainly N
AND certainly
target2 perhaps
moves fast
perhaps W OR
perhaps tar-
get2 certainly
moves slow
certainly NE
AND certainly
target3 perhaps
moves slow
perhaps W OR
perhaps tar-
get3 certainly
moves regular
certainly SW

5.3.3 Resolving Target Confusion

This test scenario evaluates the ability of the proposed SDAA to resolve potential confusion
of targets (by human observers). This could be caused for instance by targets with rather
similar dynamics passing by each other at a close vicinity. The baseline algorithm deployed
in this test is the same as the one described for the previous test scenario, i.e. based only
on the human agent opinions. For this test the initial positioning (see Figure 5.3) and
dynamics (see Figure 9(b)) for T1 and T2 are set in such a way that their trajectories get
close causing confusion of the human observers, i.e. T1 being reported as T2 and vice versa
by a (minimum) majority of the agents (SN1, SN3, and SN5) in this test. The T3 on

89



Figure 5.5: Removing poor soft data: the tracking performance using the baseline algo-
rithm and the proposed soft data association algorithm.

the other hand traverses through a distinct trajectory and thus is assumed to be followed
easily by the human observers. Table 5.2 illustrates the soft data provided by SN1 and
SN2 for this test scenario over several time steps. The data provided by the SN3 and SN5
are the same as SN1. Similarly, SN4 provides a data identical to that of SN2 and thus
is not repeated here. As shown all soft data are of high quality and correctly associated
at the first two time steps. However, SN1 confuses T1 with T2 for the time steps 3 to
5, which if not corrected for by the SDAA leads to performance degradation as shown in
Figure 5.6 diagrams. We have also included the tracking results obtained using the SDAA
algorithm where the agent trust modeling scheme is disabled, i.e. always Atr = 1 (See
Fig 5.1 and (7)). As shown the SDAA is unable to resolve the target confusion in this case.
This is due to the fact that with Atr = 1 instead of its proper value in this experiment
Atr = 0.83, the DIFF TH threshold value is not penalized enough to allow for the proper
measurement, the one with the smallest PDM distance, to be associated to the confused
targets. This experiment illustrates the advantage of the proposed soft data association
algorithm in dealing with challenging tracking scenarios involving close targets. Moreover,
it signifies the importance of the agent trust modeling scheme embedded into the local
matching stage of the SDAA.
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Figure 5.6: Resolving target confusion: the tracking performance using the baseline algo-
rithm and the proposed soft data association algorithm with and without the Atr modeling.

Table 5.2: The exemplary soft data provided by SN1 and SN2 for resolving target confu-
sion scenario

Time
step

SN1 SN2

1-2 certainly target1 perhaps moves
regular perhaps SE OR perhaps
target1 certainly moves regular
certainly E AND certainly tar-
get2 perhaps moves regular per-
haps SW OR perhaps target2 cer-
tainly moves regular certainly S
AND certainly target3 perhaps
moves fast perhaps N OR per-
haps target3 certainly moves reg-
ular certainly N

certainly target1 perhaps moves
regular perhaps SE OR perhaps
target1 certainly moves regular
certainly E AND certainly tar-
get2 perhaps moves regular per-
haps SW OR perhaps target2 cer-
tainly moves regular certainly S
AND certainly target3 perhaps
moves fast perhaps N OR per-
haps target3 certainly moves reg-
ular certainly N

3-5 same as steps 1-2 except now tar-
get1 and target2 are swapped

same as steps 1-2

6 same as steps 1-2 same as steps 1-2
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Table 5.3: The two soft data categories used for the need for ITC scenario
Category 1 data Category 2 data
certainly target2 slightly moves
fast slightly N AND certainly
target3 slightly moves regular
slightly NW AND certainly
target1 slightly moves regular
slightly S

certainly target1 perhaps moves
slow perhaps W OR perhaps tar-
get1 certainly moves regular cer-
tainly W AND certainly target2
perhaps moves regular perhaps
NW OR perhaps target2 certainly
moves regular certainly W AND
certainly target3 slightly moves
regular slightly NE

5.3.4 The Need for ITC

There are situations where it is not satisfactory to rely merely on the distance between
the predicted target state and the measurement, as well as the human observer opinion,
to determine the association between target tracks and measurements. In other words,
one also has to consider potential inter target conflicts and resolve them before finalizing
the associations and that is the objective of the ITC stage of the proposed SDAA. The
test scenario discussed in this section aims at simulating a tracking scenario where the
requirement for the ITC stage is highlighted. In order to do so we arrange for the target
dynamics to be rather similar (see Figure 5.4(c)). Furthermore, the soft data provided by
the agents is set to belong into two categories (See Table 5.3). The first category of data
are provided by the (minimum) majority of the agents, namely, SN1, SN3, and SN5, and
require the ITC stage in order to be associated more accurately to their corresponding
targets. The second category of soft data however are set to require no ITC, i.e. the
associations are identical with or without the ITC procedure.

The baseline algorithm (no ITC) here performs in a sequential way, i.e. find and assign
the best measurement for T1, then T2 and so on without checking for inter target conflicts
and performing reassignment/reiteration steps involved in the ITC procedure. Table 5.4
shows the measurement to track associations produced by the proposed SDAA, with and
without the ITC stage, for the majority of the agents providing the first category of soft
data and the rest of the agents providing the second category soft data. The obtained
experimental results are depicted in Figure 5.7. As shown using the ITC stage the tracking
performance is highly improved especially for T2 and T3 as a result of far more accurate
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Table 5.4: The need for ITC: measurement to track associations produced by the proposed
SDAA

Category 1
Data

Category 2
Data

No ITC ITC No ITC ITC
T1 report2 Unmatched report1 report1
T2 report1 report2 report2 report2
T3 Unmatched report1 report3 report3

Figure 5.7: The need for ITC: the tracking performance using the proposed soft data
association algorithm without and with ITC enabled.

associations being established (See Table 5.4). Please note the improvement is not as
significant for T1. This is contributed to the fact that using ITC for the first category soft
data this target is left unmatched, in contrast to the high quality matches for T2 and T3,
simply because there is no such high quality matching measurement available. Nonetheless,
the overall tracking performance for all targets is enhanced substantially.

5.4 Human-Centered RS Theoretic Multi-target Clas-

sification

In this section we describe an approach to further extend the proposed RS theoretic multi-
target system by deploying the target state estimates over time to classify targets. The
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targets themselves are vaguely described in an unconventioal fashion by the soft human-
supplied data. Considering that the proposed RS theoretic framework in chapter 3, deploys
soft vague data to update the target state estimates over time, we assume the obtained
estimation to possess/express vagueness type of data imperfection as well. In his recent
book, Mahler [39] discusses fusion of an abstract type of data called AGA (ambigiously
generated ambigious data) that fits our fusion scenario. In the following, we first present
the developed soft data ontology used to describe different target classes, namely, spy,
passenger, and threat. Next, we discuss how these vaguely described target classes along
with the vague target state estimates could be deployed in a RS theoretic Bayes classifier
to achieve robust target classification.

5.4.1 Modeling Target Classes Using Soft Data

Figure 5.8 shows the syntax considered for the soft data describing various target classes.
In the current implementation targets are distinguished using two characteristics (actions),
namely, their velocity and maneuver. However, if necessary the proposed approach could
be easily extended to accomodate a larger number of target characteristics. Accordingly,
in order model the vague target data generation process (aka target signature), we deploy
a 2D Gaussian fuzzy membership function ηTi(z) for target Ti as

ηTi(z) = NσTi
(z − zTi). (5.7)

The mean zTi = [V elTi ∆θTi ]
T is comprised of the nominal velocity V elTi and maneuver

∆θTi of target class Ti chosen according to the target velocity and meneuver size of the
provided description statement (see Figure 5.8).

In addition, the velocity and maneuver qualifier terms of the target class Ti description
(v qualifier and m qualifier, respecrtively) are deployed to determine the corresponding
covariance matrix σTi , assuming V elTi and ∆θTi to be independent, as shown below (see
also Table 5.5).

σTi =

[
var(velTi) 0

0 var(∆θTi)

]
(5.8)

In order to obtain the data pertinent to target characteristics of interest disucssed
above, the original target state representation model x = [X Y ]T discussed in chapter 3 is
augmented as x = [X Y Ẋ Ẏ ]. The augmented target state includes an estimate of target
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Figure 5.8: Syntax considered for the soft target description data.

Table 5.5: Soft target class data interpretation parameter setting
Reported data Corresponding pa-

rameter
Corresponding
value(s)

moves slow/regular/fast V elTi 0.2/0.5/0.8 (m/s)
maneuvers small/medium/large ∆θTi 10/15/25 degrees
(v qualifier) cer-
tainly/almost/perhaps/slightly

var(velTi) 0.2/0.4/0.6/0.8 (m/s)

(m qualifier) cer-
tainly/almost/perhaps/slightly

var(∆θTi) 5/10/15/20 degrees

velocity along the x and y axes (Ẋ and Ẏ , respectively) and thus the associated motion
and measurement models are also modified accordingly. Using the new target state, the
desired target characteristics, i.e. velocity V el and maneuver size ∆θ are calculated over
time as shown in the equations below.

V elt =

√
Ẋ2
t + Ẏ 2

t (5.9)

θt = arctan
Ẏt

Ẋt

(5.10)

∆θt = |θt − θt−1| (5.11)

Once computed, the vague target characteristic measurement zt = [V elt ∆θt]
T is mod-

eled as a 2D fuzzy Gaussian membership function g(zt) defined below
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g(zt) = Nσo(z − zt) (5.12)

where the covariance matrix σo is denoted as

σo =

[
var(velt) 0

0 var(∆θt)

]
. (5.13)

5.4.2 Robust RS Theoretic Bayes Classiifer

Using a RS theoretic representation of vague measurement model g(zt) and the vague target
data generation model ηTi(z), Mahler [39] defines the generalized likelihood function for
such AGA data as below

Pr(Θt|Ti) = Pr(Θt ∩ ΣTi 6= ∅) (5.14)

Where Θt and ΣTi denote the random set representations of the vague measurement
model and vague target data generation model, respectively. Accordingly, it is shown that
for fuzzy AGA data the above equation takes the following form

Pr(g(z)|ηTi(z)) = sup minz{g(z), ηTi(z)} (5.15)

Which for the specific case of g(z) and ηTi(z) being Gaussians, is shown to reduce to
the following

Pr(g(zt)|ηTi(z)) = exp(− (zt − zTi)2

2(σo + σTi)
2
) (5.16)

Deploying this likelihood function within the Bayesian framework, we develop a RS
theoretic Bayes filter as

Pr(Ti|g(zt), . . . , g(z0)) =
Pr(g(zt)|Ti) . . . P r(g(zt)|Ti))∑
T Pr(g(zt|T ) . . . P r(g(zt)|T ))

(5.17)

where target measurements are assumed to be independent and the target class priors
are considered to be uniform. For classificatin purposes, the maximum likelihood principle
is applied to deduce the target class as shown below.
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T̂ = Clsg = argmaxTiPr(Ti|g(zt), . . . , g(z0)) (5.18)

It can be noted that the aforementioned target classifier is designed such that the more
the number of target readings, the better the classification performance and reliability
would become through temporal “fusion” of new target data. We have defined a classifica-
tion confidence measure Cf shown below to reflect upon this gradual improvement in the
classification reliability in our experiments.

Cf(T̂ ) =
Pr(T̂ |g)∑
Ti
Pr(Ti|g)

(5.19)

Indeed, the experimental results presented in the subsequent section support this no-
tion.

5.5 Multi-target Classification Experiments

In this section we first discuss the modifications made to the multi-agent organization of
our system (see Figure 3.5) in order to implement the vague target classifier and then
present the results of the preliminary experiments performed to evaluate the performance
of the developed target classifier.

5.5.1 Augmented Multi-agent Organization

As shown in Figure 5.9, the target classification algorithm is performed by the classifier
agent (CA), which operates using the target state estimates provided by the DFA and
vague target descriptions supplied by the DPA. Please note similar to the soft target data,
the vague target description data is collected by the HIA, formatted by the SDA (according
to the syntax depicted in Figure 5.8) and is preprocessed/interpretted at the DPA (using
the semantics shown in Table 5.5).

5.5.2 Preliminary Experiments

The experiments in this section are comprised of two test scenarios whereby the soft data
describing target classes express a low and high level of vagueness, respectively. The
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Figure 5.9: The augmented multi-agent organization of developed fusion system.

objective is first to assess the ability of the proposed classifier to deploy vague target
description data and achieve robust classification and second to observe how higher levels
of vagueness in target description affects performance of the classifier. Following is the
common settings used in both test scenarios. Both cases involve five targets T1 . . . T5
and three target classes, namely, spy, passenger, and threat (presuming a surveillance
application). T1, T2, and T5 are of passenger type while T3 and T4 belong to the threat
and spy classes, respectively. Tables 5.6 and 5.7 present the vague target description
data deployed in the experiments. Comparing the target descriptions, one can note that
in case of high vagueness, the statement provided by the human agent has less certain
qualifiers corresponding to highly overlapping random set representations of the vague
target areas. Consequently, one would expect the target classification task in this case to
be more challenging due to such overlapping areas. This is confirmed by the experimental
results presented later on in this section.

Figures 5.10 and 5.11 demonstrate the target data, namely, target velocity and ma-
neuver size, respectively. This data is deployed in both experiments, i.e. fed to the CA
over time. As shown ten readings are collected over time for each of the targets. We have
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Table 5.6: Soft data description of target classes with low vagueness
Target
Class

Description Data

Spy target1 moves certainly slow maneuvers certainly small
Passenger target2 moves certainly regular maneuvers certainly medium
Threat target3 moves certainly fast maneuvers probably large

Table 5.7: Soft data description of target classes with high vagueness
Target
Class

Description Data

Spy target1 moves certainly slow maneuvers certainly small
Passenger target2 moves almost regular maneuvers almost medium
Threat target3 moves probably fast maneuvers slightly large

Figure 5.10: The target velocity estimate provided over time (in m/s).

arranged the target data such that readings for the T1 and T3 are contaminated with a
higher level of noise while the rest of targets data are less noisy , i.e. closer to what is
expected from the specific target class. Our objective is to evaluate the robustness of the
proposed classifier with respect to noisy target data.
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Figure 5.11: The target maneuver estimate provided over time (in degrees).

Figure 5.12: Low vagueness target description experiment: the estimated target class over
time (class 0: spy, class 1: passenger, class 2: threat).

Figures 5.12 and 5.13 depict the obtained experimental results, in terms of estimated
target class and classification confidence, respectively, for the test involving the low vague-
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ness target descriptions. As shown the target class estimation is correct for all targets
except T1 and T3, which could be contributed to the high level of noise for these targets
data. Nonetheless, after collecting only three measurements the classifier is able to de-
duce the correct target class for both T1 and T3 demonstrating its robustness to noise.
Furthermore, as expected the classification confidence improves rather steadily over time
with more target data being supplied to the classifier. Similarly, the obtained experimen-
tal results for the test involving the high vagueness target descriptions are presented in
Figures 5.14 and 5.15. Once again, the estimated target classes are initially invalid for
both T1 and T3 and are corrected after receiving the fourth and third measurements, re-
spectively. As expected in this case, it takes a larger number of target readings for the
classifier to deduce the correct target classes for the targets with noisy data. The larger
number of measurements, which is still reasonably small, is justified by the fact that the
highly overlapping target areas make the classification task more difficult, i.e. less con-
fident. This is also reflected in the estimated classification confidence results presented
in Figure 5.15. Comparing this diagram with its counterpart in the former experiment
(Figure 5.13), one can see that although in both cases the trend is increasing over time,
the maximum confidence level achieved in the latter case is lower.

Figure 5.13: Low vagueness target description experiment: the estimated classification
confidence over time.
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Figure 5.14: High vagueness target description experiment: the estimated target class over
time (class 0: spy, class 1: passenger, class 2: threat).

Figure 5.15: High vagueness target description experiment: the estimated classification
confidence over time.
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5.6 Distributed Multi-target Classification

The distributed decision fusion approach underlying the proposed distributed target clas-
sification method is described in this section. The aim is to enhance the classification
performance through fusion of local classifier results while the distributed nature of com-
putations leads to improved scalability. As discussed earlier, the proposed approach differs
from previous work on distributed target classification in being truly distributed, i.e. no
need for a fusion center, and also not relying only on binary local decisions.

In order to achieve the distributed fusion of local results, we propose to compute the
weighted average of the local likelihood measures Pri(Tc|Zt) (see 5.17) for each of the de-
tected targets i and given target classes Tc (Please note Zt denotes the set of target readings
gathered by time t). This is accomplished using the distributed aggregation scheme called
consensus propagation algorithm and thus is truly distributed, i.e. requires merely local
information exchange among sensor nodes. Assuming each of the local likelihood mea-
sures as a parameter, there are a total of N t ×N c parameters to be aggregated, where Nt

and Nc represent the number of detected targets and the given number of target classes,
respectively.

5.6.1 Distributed Decision Fusion Algorithm

The CP is indeed a special case of Gaussian belief propagation that can be used to compute
global average in a distributed manner. Similar to the popular consensus filter [184] (CF),
CP is an iterative algorithm. However CP differs from CF in that data (messages) sent
to each of the neighbor sensor nodes are specific to that node, whereas CF broadcasts the
same message to all neighbors at each iteration. More importantly, using CP the message
sent to each neighbor sensor node contains not only the latest estimate of the desired
parameter U but also the number of sensor nodes contributing to that estimation process
MU . Mathematically, for every iteration k at node i, the incoming data [U ji,k−1,M ji,k−1

U ]
previously received and stored from all neighbor sensor nodes j ∈ Ni are used (along with
the local estimate U local

i if applicable) to update the global estimate U global,k
i of the desired

parameter as

U global,k
i =

ρi +
∑

j∈Ni
U ji,k−1M ji,k−1

U

κi +
∑

j∈Ni
M ji,k−1

U

(5.20)

The stored incoming data are also used to compute the (neighbor-specific) outgoing
messages [U ij,k,M ij,k

U ] for each of the neighbor nodes j as shown below.
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U ij,k =
ρi +

∑
l∈Ni/ j

U li,k−1M li,k−1
U

1 +
∑

l∈Ni/ j
M li,k−1

U

(5.21)

M ij,k
U =

κi +
∑

l∈Ni/ j
M li,k−1

U

1 + 1
β
(κi +

∑
l∈Ni/ j

M li,k−1
U )

(5.22)

ρi =
{ U local

i node i is contributing
0 otherwise

(5.23)

κi =
{ Cf i node i is contributing

0 otherwise
(5.24)

The Cfi represents the confidence level assumed by node i regarding its soft data and
indeed determines the corresponding weight for the likelihood measures provided by node i.
The confidence measure Cf could be provided a priori, based on the historical performance
for instance, or estimated on-the-fly. In either case, weighted averaging according to this
measure allows more reliable data to have more significant impact on the final aggregated
likelihoods, hence improving the classification performance.

Once aggregated, the likelihood measures Priaggr(Tc|Zt) are deployed along with the
maximum likelihood principle to infer the target class as shown below.

T̂aggr = argmaxTiPr
i
aggr(Ti|g(zt), . . . , g(z0)) (5.25)

5.7 Distributed Multi-target Classification Experiments

The test scenarios discussed in this section were designed and conducted in order to il-
lustrate the classification performance enhancements achieved through the distributed de-
cision fusion scheme. In terms of implementation, the multi-agent organization depicted
in Fig. 5.9 was deployed with a key distinction. The target reading data was no longer
aggregated as the outcome decisions (likelihoods) of each sensor node where aggregated
later on, i.e. the CPA was used to aggregate likelihood measures instead of target data.
The estimated likelihood measures at CA were sent to the CPA where they were aggre-
gated and the final target class for each target was estimated according to the algorithm
discussed in the previous section.
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Table 5.8: Soft data description of target classes with very high vagueness
Target
Class

Description Data

Spy target1 moves certainly slow ma-
neuvers certainly small

Passenger target2 moves almost regular ma-
neuvers almost medium

Threat target3 moves slightly fast ma-
neuvers slightly large

5.7.1 Preliminary Experimental Results

The experiments involved two series of tests were the majority of the total five (sensor)
nodes, i.e. SN2, SN4, and SN5, were provided with high quality target description
data whereas the rest of them, i.e. SN1 and SN3, had low quality target description
data. In both tests we looked at the number of target readings required by the minority
sensor nodes to achieve correct target classification for all detected targets. The former test
scenario aimed at evaluating the distributed decision fusion through simple averaging while
the latter involved a more challenging target classification task that required distributed
decision fusion with weighted averaging to yield satisfactory results.

Tables 5.6 and 5.7 show the target description data provided to the sensor nodes in the

Figure 5.16: Distributed decision fusion experiment: the estimated target class over time
for SN1 with no decision fusion (class 0: spy, class 1: passenger, class 2: threat).
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Figure 5.17: Distributed decision fusion experiment: the estimated target class over time
for SN1 with decision fusion (class 0: spy, class 1: passenger, class 2: threat).

first test. The obtained experimental results for the first test scenario and sensor node SN1
are depicted in Figs. 5.16 and 5.17. As shown, deploying the distributed decision fusion
scheme, SN1 is able to infer perfect target classification after three target readings instead
of four. This could be contributed to decision fusion allowing for SN1 likelihood measures
to be aggregated with those of high quality majority sensor nodes, hence deducing the
correct target class faster.

The second test is more challenging due to the low quality data for the class threat
being even more vague as shown in Table 5.8. Figs. 5.18, 5.19, and 5.20 show the obatined
experimental results for the second test scenario with no distributed decision fusion, and
distributed decision fusion with simple and weighted averaging schemes, respectively. The
simple averaging was implemented with Cf set to one for all sensor nodes while for the
weighted averaging case the majority sensor nodes, with higher quality target description
data, were assigned a Cf twice as of the minority ones. Once again, deploying the dis-
tributed decision fusion results in a faster recognition, i.e. less number of target readings
before perfect classification is achieved. However, in this case the improvements are more
significant, i.e. reduction in target readings from nine to five, due to the test scenario being
more challenging and also the weighted averaging scheme is shown to yield the superior
performance, i.e. requiring only three target readings.
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Figure 5.18: Distributed weighted decision fusion experiment: the estimated target class
over time for SN1 with no decision fusion (class 0: spy, class 1: passenger, class 2: threat).

Figure 5.19: Distributed weighted decision fusion experiment: the estimated target class
over time for SN1 with decision fusion (class 0: spy, class 1: passenger, class 2: threat).

5.8 Chapter Summary

A novel approach to enable tracking of multiple targets using soft human-generated data
was presented in this chapter. The problem of measurement-to-track association for uncon-
ventional soft data, expressed using a RS theoretic formulation, was addressed and tackled
efficiently as demonstrated by our experimental results. The proposed soft data association
algorithm was shown to be capable of removing poor data from the association process,
enhancing the target discrimination power in confusing situations, and improving tracking
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Figure 5.20: Distributed weighted decision fusion experiment: the estimated target class
over time for SN1 with weighted decision fusion (class 0: spy, class 1: passenger, class 2:
threat).

accuracy using the built-in inter-target checking mechanism. Currently, the number of
targets is assumed to be known a priori at the current implementation. Future work will
explore using soft data to estimate/update the number of targets over time dynamically.

Furthermore, deploying a random set theoretic representation of vague target descrip-
tion data and target data, a new classification method applicable to target classes described
using soft human-generated data, which are inherently vague, was discussed. The prelimi-
nary experimental results showed the capability of the proposed classifier to perform robust
target classification. Subsequently, the classification approach was enhanced by incorporat-
ing the classification vote of (potentially) all soft sensors through performing a distributed
decision fusion stage before finalizing the estimate of the target class. Several experimental
results demonstrated the improved classification performance yielded through the proposed
distributed decision fusion algorithm.
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Chapter 6

Concluding Remarks and Future
Work

This chapter presents closing arguments for this dissertation. A summary of contributions,
conclusive remarks, and potential directions for future research work are presented.

6.1 Highlights of the Thesis

This dissertation has considered the problem of a unified representational and computa-
tional framework to enable fusion of soft, as well as hard data. Adopting a random set
theoretic approach, several novel, robust, and computationally efficient algorithms are de-
veloped to realize a soft/hard data fusion framework for the target tracking task. The
proposed framework is applicable to both single-target and multi-target tracking applica-
tions and provides promising results as shown in several experimental scenarios.

For the case of single-target tracking, several contributions were established. First,
assuming a linear-Gaussian target dynamics an extension of the popular Kalman filter
within the RS theory, termed KEF, was adopted as the underlying data fusion mechanism.
Second, a soft data ontology was developed to enable representation of soft data using the
RS theoretic formulation of the KEF. Accordingly, the data modeling schemes for both
soft and hard data were presented. Third, to deal with the trust-related issues regarding
the soft human-generated data a human trust modeling approach was developed to enable
discounting of undependable soft data on-the-fly. Fourth, distributed data aggregation
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algorithms for both soft and hard data were developed to enhance upon the scalability and
robustness of the proposed RS theoretic framework.

For the multi-target tracking case, a key contribution was established with the intro-
duction of a measurement-to-track association algorithm applicable to soft data modeled
within the RS theory framework as fuzzy D-S state(s). The obtained experimental results
demonstrated the ability of proposed soft data association algorithm to exclude poor data
from the association process, improve the target discrimination power in confusing tracking
scenarios, and lastly improve tracking accuracy by to avoiding poor associations using a
built-in inter-target checking mechanism. Moreover, a novel distributed target classifica-
tion approach applicable to targets classes described with soft human-generated data was
presented. The preliminary experimental results showed the robustness of the proposed
classifier with respect to both target data noise, and highly vague target description data.

Last but not least, this dissertation presented a critical review of data fusion state
of the art methodologies. We introduced a new data centric taxonomy of data fusion
methodologies, and explored challenging aspects and associated theoretical frameworks
and algorithms existing in each of the categories. It is our hope for this work to serve as
a review contribution of advances in the breadth of research on sensor data fusion, and
to provide the data fusion community with a picture of the contemporary state of fusion
literature.

6.2 Concluding Remarks

The successful design, development, and application of the RS theoretic approaches towards
soft/hard data fusion in this dissertation have demonstrated that, random set theory is
capable of providing viable and efficient methods to enable fusion of soft and hard data
in a unified framework. In particular, the proposed algorithms for the single-target and
multi-target tracking tasks provided a proof-of-concept framework where the powerful rep-
resentational and computational abilities of the random set theory allowed for the intricate
forms of data imperfection expressed by human-generated soft data to be properly modeled
and processed.

The target tracking framework proposed in this dissertation may be deemed as the
first step towards expanding the applicability domain of linear-Gaussian data fusion tech-
niques based on the well-known Kalman filter from the hard conventional data into the
unconventional soft data. The proposed human trust modeling scheme is among the first
works to explore the trust-related issues regarding the unconventional human-generated
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data, contributing to the rather recent literature work on the data reliability in informa-
tion fusion systems [7]. Moreoever, the distributed data aggregation approach developed
in this dissertation is the first distributed data processing method based on the consensus
propagation algorithm. It enhances the literature on distributed data fusion in terms of
flexibility by separating the data propagation and data aggregation processes and thus
allowing the non-contributing sensor nodes to still participate in the data propagation pro-
cess, which is very conducive when aggregating soft data provided by human observers.
Lastly, the distributed classification algorithm introduced for target classes described with
vague soft data is among the first of such classifiers and also complements the proposed
RS theoretic multi-target tracking framework.

6.3 Future Research Directions

Since the time around the inception of this dissertation, several works targeting soft, as
well as soft/hard, data fusion systems have appeared [150, 151, 152, 165, 188] further
consolidating the position of the soft/hard data fusion as an emerging and active area of
study in the data fusion community. The existing literature mostly includes a Dempster-
Shafer theoretic approach towards fusion of soft/hard, as well as preliminary efforts to
develop standard datasets to be deployed to evaluate soft/hard data fusion systems. In spite
of these preliminary studies, RS theory has not yet been explored as a viable solution. Very
recently bishop et al. [171] have proposed a RS theoretic approach to enable state estimation
where the inputs (or measurements), which are deployed to reduce the uncertainty in
the state of a target, are soft data expressed in the natural language propositions form.
Nonetheless, their work neither considers modeling both soft and hard data in a unified
framework nor it is applicable to the multi-target tracking application.

In the following, we present several interesting directions for future work moving beyond
the current scope of research efforts:

• The RS theory has been shown to be capable of representing first order, second order
and even composite rules [92]. This makes it appealing to explore the potential of
this theory to model human data provided in form of rule-based logical statements
and incorporate them into the fusion process. A similar case could be imagined for
modeling of the abundance of data available on the Web,

• The multi-target soft data ontology could be extended to enable human agents to sup-
ply richer reports regarding the target dynamics such as the appearance/disappearance
of a target, as well as merging, and spawning of target(s),
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• The number of targets is assumed to be known a priori at the current implementa-
tion. Future work could explore using soft data to dynamically estimate/update the
number of targets over time,

• Current multi-target experiments are restricted to three targets. One could perform
experiments with a larger number of targets and sensor nodes to further evaluate
the efficiency of the proposed distributed data aggregation scheme in terms of its
scalability. In addition, the current multi-target experiments have been conducted
using soft data only, although the proposed framework is capable of processing both
soft and hard for tracking. Future multi-target tracking experiments with both soft
and hard data could further verify the applicability range of the proposed RS theoretic
framework,

• The current framework assumes target with linear-Gaussian dynamics. This is not a
limitation of the RS theory and is indeed imposed by the KEF in order to ensure all
equations have a nice closed form. Future studies could attempt to tackle the problem
of soft/hard data fusion for non-linear target dynamics. A potential solution could be
based on RS theoretic formulation of the Bayes filter where the resultant likelihood
and prior functions are approximated using popular techniques such as sequential
Monte Carlo (particle filtering),

• Finally, the current experiments are performed in simulation environment only. This
has had some undesired consequences such as restricting the length of experiments,
which does not exceed a minute. This is caused by the fact that having several sensor
nodes each comprised of several asynchronously communicating agents results in a
large number of concurrent agents running on a single computer competing for com-
putational resources with each other, as well as the P/S simulation platform itself.
In our experiments, we observed that this issue led to a rather unstable system per-
formance for simulations lasting more than a minute and accordingly we were forced
to limit the collection (sampling) time for soft data to 1000 milliseconds or so. To
achieve such sampling rates in our experiments, soft human reports were stored (as
priory given) and then fed to the system through the HIA at the desired time in-
stances. Although an unrealistic assumption, this issue could be easily tackled once
the system implementation is ported onto a physical robotic platform, which thanks
to the hardware abstraction layer provided by the Player server must be a straight-
forward procedure. This would allow individual sensor nodes to run their agents on
separate computational resources, e.g. processing unit of robots, and thus almost
eliminate the resource competition phenomenon and the related system unstability
issue.
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