
Compressed Sensing in the Presence
of Side Information

by

Mohammad Rostami

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2012

c© Mohammad Rostami 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Reconstruction of continuous signals from a number of their discrete samples is cen-
tral to digital signal processing. Digital devices can only process discrete data and thus
processing the continuous signals requires discretization. After discretization, possibility
of unique reconstruction of the source signals from their samples is crucial. The classical
sampling theory provides bounds on the sampling rate for unique source reconstruction,
known as the Nyquist sampling rate. Recently a new sampling scheme, Compressive Sens-
ing (CS), has been formulated for sparse signals. CS is an active area of research in signal
processing. It has revolutionized the classical sampling theorems and has provided a new
scheme to sample and reconstruct sparse signals uniquely, below Nyquist sampling rates.
A signal is called (approximately) sparse when a relatively large number of its elements
are (approximately) equal to zero. For the class of sparse signals, sparsity can be viewed
as prior information about the source signal. CS has found numerous applications and has
improved some image acquisition devices.

Interesting instances of CS can happen, when apart from sparsity, side information is
available about the source signals. The side information can be about the source structure,
distribution, etc. Such cases can be viewed as extensions of the classical CS. In such cases
we are interested in incorporating the side information to either improve the quality of
the source reconstruction or decrease the number of the required samples for accurate
reconstruction.

A general CS problem can be transformed to an equivalent optimization problem. In
this thesis, a special case of CS with side information about the feasible region of the
equivalent optimization problem is studied. It is shown that in such cases uniqueness and
stability of the equivalent optimization problem still holds. Then, an efficient reconstruc-
tion method is proposed. To demonstrate the practical value of the proposed scheme, the
algorithm is applied on two real world applications: image deblurring in optical imag-
ing and surface reconstruction in the gradient field. Experimental results are provided to
further investigate and confirm the effectiveness and usefulness of the proposed scheme.
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Chapter 1

Introduction

Central to digital signal processing is the Shannon-Nyquist sampling theorem [74], which
provides conditions under which a band-limited signal can be reconstructed via its discrete
time samples uniquely. It states that the minimum uniform sampling rate for exact recon-
struction of these signals is twice the signal band-width (Nyquist rate) in Fourier domain.
This theorem has been extended for the case of bandpass [21] and random sampling [20].
This classical conclusion is crucial in signal processing and permits using digital devices to
process natural continuous signals. Obviously we are interested in decreasing the sampling
rate to reduce complexity, but according to the Shannon-Nyquist sampling theorem we
are limited by the Nyquist rate in the general case. But it is easy to build special cases
where signal reconstruction is possible with sampling rates less than the Nyquist rate. The
question is, is it possible to identify such classes of signals?

Over the time the problem of reconstruction of signals subject to prior information
gained interest among researchers. Is it possible to use the prior information to decrease
the sampling rate? For instance, consider a very simple case where we know our signal
of interest is a sinusoid y(t) = A sin(ωt); it is trivial that in this extreme case one can
reconstruct the signal via two non-zero samples to solve for A and ω. Whereas, the classical
theorem suggests to use infinitely many samples with the sampling rate of π

ω
. It is easy to

show that more generally any finite mixture of sinusoids can be reconstructed using finite
number of samples (subject to knowing the number of sinusoids) [73]. This simple example
confirms how prior information can be used to decrease the classical sampling rate, needed
for reconstruction. Although the mixture of sinusoids model has practical importance but
such applications are limited. Do we have a wider class of signals with similar property?

In around 2005, a new sampling scheme was formulated for sparse signals, i.e., signals
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which admit a sparse representation in a predefined basis/frame. This theory, nowadays
known as compressed sensing (aka compressive sampling), asserts that sparse signals can
be recovered from their discrete measurements, whose number is proportional to the `0-
norm of the coefficients of the sparse representation. As a result, cases are numerous in
which the sampling efficiency of compressed sensing (CS) far supersedes that of the classical
Shannon-Nyquist sampling [15, 85]. Over the last decade many researchers have worked
on this topic and developed many interesting results. The results have been used in some
areas of signal processing and communications.

1.1 Compressed Sensing

Compressed Sensing has been formulated and studied mathematically in [15, 85, 3] and
later became a major subject of interest. The theory is based on sparse prior assumption
on the source in the sampling problem. It is interesting to note that prior to development of
this theory, its reconstruction method had been studied fairly well. In fact prior algorithms
for convex optimization of l1-norm made CS a viable technique.

Definition 1 Assume x ∈ Rn is a discrete finite signal. It is called k-sparse if its repre-
sentation, s, in basis Ψ ∈ Rn×n has at most k nonzero elements:

x = Ψs (1.1)

also we define support of a vector s as: supp(s) = {i|si 6= 0},

similarly we call the source approximately sparse if at most k elements of the source are
greater than a (small) threshold that we set, i.e., if we sort the signal values, the signal
values decay rapidly after the kth element. For instance natural images have this property
in DCT domain. It is trivial that a k-sparse signal can be stored using 2k numbers (Only
we need to store the value and the index of k nonzero element). This property has been
used to design compression algorithms such as JPEG for natural images or MPEG for
video streams.

This class of signals were known before the development of CS theory and were called
compressible signals in the literature. CS theory provides conditions under which one
can sense this class of signals compressibly. In CS framework we assume that we use
non-adaptive linear sampling, i.e.:

y = ΦΨs, (1.2)
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where y ∈ Rm is vector of samples and Φ ∈ Rm×n,m < n is a full rank matrix, called sensing
matrix. This means that instead of point sampling, in each measurement we measure a
linear combination of signal samples. The value of m specifies the sampling rate. To
reconstruct the source signal s the undetermined system (1.2) must be solved. In the
general case we have infinitely many solutions (m < n) with a feasible region automorphic
to null(Ψ) ≡ Rn−m. But k-sparsity condition limits the feasible region and unique solution
might be expected if the signal is sparse enough. Two main questions are:

1. Under what condition (1.2) has a unique solution (given Φ,Ψ,y)?

2. In case of a unique solution how one can solve (1.2) for that unique solution?

Let’s focus on the matrix A = ΦΨ. Uniqueness of the solution for (1.2) holds if no pairs
of two distinct k-sparse signals result in the same samples: As1 = As2 = y→ s1 = s2. This
means that the difference of no two distinct k-sparse signals must not lay in nullspace of A.
So linear independence of any 2k combinations of columns of A is a necessary condition for
uniqueness. Vandermonde matrices are a class of matrices that possess this property but
unfortunately are not stable for n→∞. This means that the existence of, even low power,
additive noise fails the uniqueness. Also, for the cases that our source is approximately
sparse, again uniqueness fails. So one must also consider stability towards noise. This is the
intuition behind definition of restricted isometry property (RIP) which will be discussed
in Chapter 2. Consequently in case of a unique solution, we will end up with the following
optimization problem to solve for s:

ŝ = arg min
s
‖s‖0 s.t. y = As, (1.3)

where ‖s‖0 = |supp(s)| denotes the l0-norm of the vector s.. Unfortunately this problem is
NP-Hard and can not be solved for large n. In parallel works [15, 85] it was shown if the
sensing matrix satisfies restricted isometry property (RIP) and the signal is sparse enough
then (1.2) has a unique solution and more interestingly the solution is viable through
solving a convex l1 optimization problem:

ŝ = arg min
s
‖s‖1 s.t. y = As, (1.4)

where ‖s‖1 =
∑

i |si| denotes the l1-norm of the vector s.

Mathematical proofs for CS theorems is hard to grasp and needs advanced harmonic
analysis tools. Here, we try to give some intuitions behind this result. Since lp norm is not
convex for 0 < p < 1 the problem of (1.3) is considered NP-Hard and the solution is viable
only through full search in the feasible region. This is an intractable procedure for large n.
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The intuition behind replacing (1.3) with (1.4) is to approximate l0 norm with a convex
lp norm. Obviously the more p is close to zero, the closer the approximated solution is to
the real solution. It seems logical to replace l0 norm with l1 norm since it is the closest
convex norm to l0 norm. The solution to (1.4) can be found using linear programming
algorithms such as Basis Pursuit (BP) with complexity of O(n3) [84]. There are various
faster methods which will be discussed in Chapter 2.

1.2 Applications of Compressed Sensing

Although theoretical progresses in CS theory is significant, its application has been limited.
Very often applications of l1-norm minimization are considered as applications of CS theory
but this is not precisely correct. This area is older and papers such as [82] were published
a decade before the derivation of CS theory. Although we can decrease the sampling rate
using CS but there are two main barriers which avoid the applicability of CS theory to
real world problems. First, one needs to solve the optimization problem (1.4) to recon-
struct the signal whereas in ordinary sampling theory, reconstruction is done easily using
low-pass filtering. Electronic implementation of (1.4) is more expensive and complex com-
pared to that of a simple low-pass filter. Second, designing the sampling procedure based
on CS theory in practice is not simple. Designing a suitable sensing matrix (sampling
procedure) is not easy and most known sampling matrices possess stochastic structure.
Besides, designing sampling devices where, in each measurement a linear combination of
signal samples is measured, is not easy and sometimes is not possible. These limitations
restrict the applicability of CS to real world problems. CS can be applied to problems
that we really have a problem in sampling issue. Sampling the source is either expensive
or limited by the nature or our device. In other words the CS theory is practically useful
only in the cases that we are ready to pay the expense of implementing (1.4) to decrease
the sampling rate and also designing a measuring device for CS sampling. Here, we review
briefly some of those cases.

A promising application of CS is magnetic resonance imaging (MRI) [49]. The MRI
sampling device is designed to use magnetic field for imaging human tissues. Due to rules
of optics the device measures Fourier coefficients of human body tissues images. On the
other hand human tissue images are smooth in time domain and thus sparse in gradient
field. Also it is important to decrease the number of samples to decrease the negative
effects of magnetic field on human body. If we sample Fourier coefficients partially we have
all required conditions, making the use of CS economically logical. This is the reason of
applying CS to MRI and several other medical imaging devices. Another direction is to
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apply CS in wireless networks [2], where we have limitations on power consumption and
are interested in decreasing the sampling devices (sensors) to save energy. CS also has
been applied in radar signal processing, where it is crucial to increase the sampling rate of
analog to digital convertors (ADC)[37]. Other applications include error correcting codes
[17], biology [75], sparse channel estimation [7], and blind source separation [9]. In this
work we will provide two new areas where CS can be applied to, in order to improve the
hardware measuring devices.

1.3 Extensions of Compressed Sensing

After the development of the basic CS framework, considerable research has been done
on extensions of CS, from defining and proving CS theorems using different mathematical
perspectives to providing faster and more efficient CS reconstruction algorithms and inves-
tigating related problems such as matrix completion [14]. One possible direction for the
extension of compressive sensing is cases where we have additional side information along
with source sparsity. It was explained that CS was developed mainly for more efficient
signal reconstruction, assuming sparse prior on the source signal. How about cases that we
have other types of information about the source signal? for instance we know the source
is in the positive orthant (s ∈ Rn

+) or we have some information about the source structure.
Can we use the side information and combine it with the sparsity prior to further decrease
the sampling rate and improve signal reconstruction? Answering this question has resulted
in several directions for extending CS. Depending on the type of side information, several
extensions on CS theory has been reported in the literature.

One type of side information is information about the source structure. For instance
along with sparsity the non-zero elements may have a pattern. In [30], the authors have pro-
vided CS framework for block-sparse signals, i.e., sparse signals in which non-zero element
appear in blocks rather than individually. Block sparse signals are a suitable model for
pulse-shaped signals such as radar signals. Authors have derived corresponding adopted CS
theorems and recovery algorithms for this case. Some applied signals such as image/video
signals have spatial/time structure. Normally in a natural image the value of a pixel has
correlation with neighboring pixels. Apart from spatial correlation, values of a pixel in a
video stream are correlated over time. In [78] the authors have tried to exploit the frame
correlation to improve signal recovery of images/video signals. In the case of an image, the
image is split into blocks of fixed size, which are all sparse in the same domain, and then
each block is recovered using information extracted from neighboring blocks. In case of a
video stream, a previous frame is used to help recovery of consecutive frames.
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Another type of information is about the source probability distribution. Some sig-
nals such as texture images can be modeled better via probabilistic models rather than
deterministic models. In [44], the authors provide a CS recovery algorithm when prior
information about the probability of each nonzero entry of the source is in hand. Others
have tried to adopt probabilistic graphical model message passing algorithms such as be-
lief propagation to result in faster CS recovery algorithms when the source distribution is
known [4, 26]. First an equivalent graphical model to a CS problem, inspired from error
correction codes, has been developed and next, message passing has been used to solve
for the source. This approach has provided some fast recovery algorithms compared to
CS general reconstruction algorithms. Research is going on to develop non-parametric
recovery algorithms using this approach in order to extend it to the general case [26].

The third type of information is knowledge about the feasible region. Imagine we have
information which limits the feasible region of (1.3), which is automorphic to null(A). For
instance c ∈ Rn

+. The previous information types dealt with the nature of the source, so
the uniqueness of the solution still holds for (1.3), whereas when the feasible region changes
uniqueness of the solution may fail. Consequently one must first check the uniqueness of
the solution and then provide the corresponding sparse recovery algorithm. In [43] authors
have provided an algorithm for non-negative sources. Uniqueness of the solution is proved
and one of the common CS recovery algorithms has been altered to work for such sources
more efficiently. A more general case happens when another convex constraint is added
to (1.3), i.e., Bc = b, B ∈ Rm′×n,b ∈ Rm′

(note inequality conditions like s > 0 can be
transformed to equality condition). In the current work, we focus on such a case. Special
case of this problem has been studied in the literature. In [38] derivative compressive
sampling is introduced. It is assumed that the source signal is a gradient field. Next, it
has been shown the problem can be transformed to an equivalent CS problem and then
solved using a general sparse recovery algorithm. In the current work, uniqueness of the
solution for the more general case is studied. Then it will be shown for this case equivalence
of l0-norm and l1-norm minimization solutions still holds. Furthermore, a more efficient
algorithm is provided for solution.

1.4 Thesis Organization

This chapter covered a brief review of the compressed sensing (CS) theory. Chapter 2
covers a more detailed survey on CS theory and its mathematical foundations. The classic
framework of CS is provided in section 2.1, 2.2. Section 2.3 provides a review on a more
recent mathematical foundation for CS based on spherical section property. This framework
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is easier to grasp and can be adopted for our problem, as described in Chapter 3. Section 2.4
reviews CS reconstruction methods. In Chapter 3, the problem of CS in the presence of side
information about feasible region is studied. After formulating the problem, uniqueness
and stability of the l1-norm reconstruction are provided in section 3.2. Chapter 4 and 5
are devoted to two applications of the developed scheme. In Chapter 4 the problem of
deburring in optical imaging is studied. It is shown how the provided scheme can be used
to improve performance of interferometer devices. In Chapter 5 the problem of surface
reconstruction in the gradient field is studied. Numerical simulations for both applications
confirm the effectiveness and usefulness of the proposed method. Finally, the thesis is
concluded in Chapter 6 and possible research directions for future are described.
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Chapter 2

Compressed Sensing

In this chapter compressed sensing is introduced in more details. Gelfand’s width, which is
a pure mathematical concept with close connection to CS, is introduced in section 2.1. CS
in restricted isometry perspective is considered in section 2.2. Section 2.3 covers a review
on spherical section property, which will be used in the next Chapter.

2.1 Gelfand’s width

Some mathematical ideas that are used in CS originally came from the Harmonic Analysis
literature. In this section we introduce Gelfand’s width and show how it is connected with
CS theory. Let S ⊂ Rn and m < n ∈ N. Assume Rn is equipped with lp-norm.

Definition 2 Gelfand’s width for this set is defined as:

dm(S)p = inf
K

sup{‖x‖p|x ∈ S ∩K} = inf
K

sup
x∈S∩K

‖x‖p, p ≥ 1, (2.1)

where infimum is taken over all n−m dimensional subspace K of Rn. Assume S be bounded
such that:

∀s ∈ S : −s ∈ S
∃a ∈ Rn : S + S ⊂ aS

(2.2)

For instance if S = {x ∈ Rn|‖x‖ < 1}, then assuming a = 2, this set satisfies (2.2).
Now assume we sample elements of S with a sampling matrix Φ ∈ Rm×n. Also let D be
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an operator (possibly nonlinear) which is used for reconstructions:

y = Φx

x̂ = D(y)
(2.3)

The error reconstruction in this sampling/reconstruction system over the set S would be:

E(S,Φ, D) = sup
x∈S
‖x− x̂‖p = sup

x∈S
‖x−D(Φx)‖p (2.4)

We are interested in finding a (Φ, D) pair such that E(S,Φ, D) is minimized. The best
possible performance in this framework is given by:

E(S) = inf
Φ,D

E(S,Φ, D). (2.5)

As we know dim(Null(Φ)) = n−m and thus null(Φ) is a n−m dimensional subspace
of Rn and can be considered an instance of K in the definition of Gelfand’s width of S:

dm(S)p = inf
K

sup
x∈S∩K

‖x‖p ≤ sup
x∈S∩null(Φ)

‖x‖p. (2.6)

On the other hand:

∀x ∈ S ∩ null(Φ) : D(y) = D(Φx) = D(0) = D(−Φx) (2.7)

Now note:

‖x−D(Φx)‖p + ‖ − x−D(−Φx)‖p ≥ ‖x−D(0)− x +D(0)‖p = 2‖x‖p →
‖x−D(0)‖p ≥ ‖x‖p or ‖ − x−D(0)‖p ≥ ‖x‖p.

(2.8)

Thus for any x ∈ S ∩ null(Φ), there exists an element x′ ∈ S ∩ null(Φ) such that:‖x′ −
D(Φx′)‖p ≥ ‖x‖p. Consider this fact:

E(S,Φ, D) ≥ sup
x∈S∩K

‖x−D(Φx)‖p ≥ sup
x∈S∩null(Φ)

‖x−D(Φx)‖p ≥ sup
x∈S∩null(Φ)

‖x‖p. (2.9)

From (2.6) and taking infimum on (2.9) one can conclude:

E(S)p ≥ dm(S)p. (2.10)

Now assume K ⊂ Rn with dim(K) = n − m. Let {v1, ...,vm} be a basis for orthogonal
complement of K (K⊥). Form the sampling matrix Φ = [v1, ...,vm]T . Also we define the
reconstruction operator D as follows:

D(u) =

{
a if u ∈ ΦS

b if u /∈ ΦS
(2.11)
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where a ∈ S is arbitrary such that u = Φa and b is a randomly chosen vector in S. With
these assumptions on (Φ, D) we calculate E(S)p. Let x ∈ S:

Φ(x−D(Φx)) = Φx− ΦD(Φx) = Φx− Φx = 0, (2.12)

which yields x−D(Φx) ∈ null(Φ) ≡ K. Also from (2.2):

∃a ∈ R :
x−D(Φx)

a
∈ S → x−D(Φx)

a
∈ S ∩K. (2.13)

Consequently:

E(S,Φ, D)p = a sup
x∈S
‖x−D(Φx)

a
‖p ≤ a sup

x∈S∩K
‖x‖p →

inf
Φ,D

E(S,Φ, D)p ≤ a inf
K

sup
x∈S∩K

‖x‖p → E(S)p ≤ adm(S)p.
(2.14)

Overall from (2.10) and (2.14):

dm(S)p ≤ E(S)p ≤ adm(S)p. (2.15)

This is an important result and shows how the reconstruction error over the set S is
related to Gelfand’s width of S. In other words, the best reconstruction performance in
CS is bounded by Gelfand’s width. Unfortunately finding Gelfand’s width of a set in the
general case is an open problem and only for special instances of S, such as unit ball,
Solutions have been found. Advances in this area provide a strong mathematical imbed
for CS theory.

The central question is what Φ, D pair would satisfy the bounds given by Gelfand’s
width? Independently, in [15, 85] sufficient condition on the sensing matrix was provided.
The authors introduced the concept of restricted isometry property (RIP) and used this
concept to provide theorems for unique and stable source reconstruction and prove the CS
theorems. They showed that the random sensing matrices with i.i.d. Gaussian or Bernoulli
entries satisfy the required conditions and efficient decoding D, can be accomplished by lin-
ear programming as in (1.4) (this reconstruction method has been provided before through
empirical approach).

2.2 Restricted Isometry Property (RIP) and Coher-

ence

The classical theory of CS [15, 85] uses the concept of RIP. As discussed in Chapter 1, if
the source is k-sparse, then if any combination of 2k columns of A is linearly independent,
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then the solution of (1.2) would be unique. Having this in mind, the restricted isometry
property (RIP) is defined as follows:

Definition 3 Restricted Isometry Property

We say an arbitrary matrix A, satisfies RIP of order k with constant 0 ≤ δk < 1, if for
all k-sparse vectors x:

1− δk ≤
‖Ax‖2

2

‖x‖2
2

≤ 1 + δk. (2.16)

This means that k-sparse sources not only will not lay in the null-space of A, but also
will have a distance δk with this space. This condition is stronger compared to linear
independency of any 2k columns of A and in return is also stable towards noise. In other
words it means that all sub-matrices of A with at most k columns are well-conditioned.
The constant 0 ≤ δk < 1 measures closeness of the sensing operator to an orthonormal
system. From discussions in Chapter 1, one concludes if A satisfies RIP with 0 ≤ δ2k < 1
then the solution of (1.2) is unique and can be recovered through solving (1.3). But for
practical applications equivalence of the solutions of (1.3) and (1.4) is essential.

Historically CS results are developed using RIP and over the time the conditions and
bounds on theorems are improved. The following two theorems are two main state-of-the-
art results based on the RIP approach [13].

Theorem 2.2.1 (Noiseless Recovery) Consider the system (1.2) with the unique solution
s, assume δ2k <

√
2− 1. Let ŝ be the solution to (1.4), then:

‖s− ŝ‖1 ≤ C0‖s− sk‖1

and

‖s− ŝ‖2 ≤ C0
1√
k
‖s− sk‖1

where sk is a k-sparse approximation of s and C0 is a global constant.

Note that for the case the source is exactly k-sparse, this theorem states the recovery is
exact. The next theorem states the condition for robustness towards noise.

Theorem 2.2.2 (Noiseless Recovery) Consider the system y = As+n such that ‖n‖2 < ε,
assume δ2k <

√
2− 1. Let ŝ be the solution to (1.4), then:

‖s− ŝ‖2 ≤ C0
1√
k
‖s− sk‖1 + C1ε

with the same constant C0 as in the previous theorem and another global constant C1.
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Proofs of these theorems are complicated and based on advanced real analysis mathematics.
Interested readers may refer to [15, 85, 13] for details.

RIP condition on the sensing matrix is a standard approach in CS theory, but unfortu-
nately its practical benefits is limited. Calculating RIP for a general matrix is a NP-hard
problem and only has been done for special cases. Using random matrix theory, existence
of such matrices have been proven for m > O(k log(n

k
)) for any desired δk ∈ (0, 1) but even

in such cases building such matrices is an independent issue. Note these theorems require
RIP condition but we will discuss that RIP condition is only a sufficient condition and
is not a necessary condition for accurate l1-recovery. On the other hand, it is also not a
complete concept to study CS.

An important quantity in designing the sensing matrix is mutual coherence.

Definition 4 Mutual Coherence

Let A ∈ Rn×m, the mutual coherence µA is defined by:

µA = maxi 6=j
|〈ai,aj〉|
‖ai‖‖aj‖

where ai,aj denote two distinct columns of A.

A small coherence implies of closeness of the sensing matrix to a normal matrix. If a matrix
possesses a small mutual coherence, then it also satisfies the RIP condition. It means that
coherence is a stronger condition. On the other hand the complexity of calculating the
coherence is O(n2) and thus is tractable. According to Welch inequality [79]:

µA ≥
√

n

m(n−m)
(2.17)

This implies for n � m, µA ≥ 1√
m

. Consequently if we want to design sensing matrices

which satisfy RIP condition using mutual coherence, then m > O(k2) which is much
greater than m = O(k log(n

k
)) bound for which existence of proper sensing matrices has

been proven. But due to computational complexity issues, it is the only proper tool for
this purpose.

Next section covers the new paradigm for compressive sensing [87, 94, 42]. This ap-
proach uses a completely different approach based on studying the nullspace of the sensing
matrix using spherical section property.
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2.3 Spherical Section Property (SSP)

Analysis of compressive sensing based on RIP requires advanced mathematical tools, but
this approach is not necessary to develop compressive sensing [87, 94]. Moreover, it is not
a required condition for exact recovery.

Consider the problem of (1.2). The pair (A,y) carries the information in CS framework.
Consider an invertible matrix, B. It is trivial that the system BAs = By is equivalent to
the system As = y . Thus the pair (BA,By) carries the same information as (A,y). But
the RIP of A and BA can be vastly different. For any CS problem one can choose B to
make RIP of BA significantly bad, regardless of RIP of A [94]. RIP is a strong condition
on sensing matrix and practical and experimental results confirm it is not a necessary
condition for main theorems of CS to hold. This motivates the derivation of CS in a more
simple and general approach based on spherical section property [87, 94]. Interestingly this
approach is simpler and some of the main results of CS theorems in RIP context can be
derived easier using spherical section property. Here we briefly describe CS theory in this
context and follow the approach of [94] in proving the main theorems.

Definition 5 Spherical Section Property (SSP)

Let m,n ∈ N such that n > m and V be an n −m dimensional subspace of Rn. This
subspaces is said to have spherical section property with constant ∆, if ∀s ∈ V:

‖s‖1
‖s‖2 ≥

√
m
∆

Here, ∆ is called the distortion of V.

Note if we consider the nullspace of a sensing matrix as the subspace in this definition, for
an invertible matrix ∆ = 0. Similar to RIP approach the following theorems are developed.

Theorem 2.3.1 Noiseless Recovery

Suppose null(A) has the ∆-spherical section property. Let ŝ be a nonzero vector such
that: Aŝ = y.

1. Provided that: ‖ŝ‖0 ≤ m
3∆

, ŝ is the unique vector satisfying As = y and ‖s‖0 ≤ m
3∆

.

2. Provided that: ‖ŝ‖0 ≤ m
2∆
≤ n

2
, ŝ is the unique solution to the optimization problem

(1.4).
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Proof 1 1. First define the vector sign(s) = [sign(si)]. According to the Cauchy-Schwarz
inequality:

|〈sign(s), s〉| ≤ ‖sign(s)‖2‖s‖2 →
∑

i

|si| ≤
√
|supp(s)|‖s‖2 → ‖s‖1 ≤

√
‖s‖0‖s‖2 (2.18)

Now assume v be a second solution which is more sparse compared to ŝ and ‖v‖0 = m1.
Let w = v− ŝ. Note, w 6= 0 and w ∈ Null(A), then:

‖w‖0 ≤ ‖v‖0 + ‖ŝ‖0 ≤ m1 +
m

3∆

(2.18)−−−→ ‖w‖1

‖w‖2

≤
√
m1 +

m

3∆√
m

∆
≤
√
m1 +

m

3∆
→ 2m

3∆
≤ m1,

(2.19)

this a contradiction and shows v is not sparse enough and uniqueness of the solution results.

2. Again assume v be a second solution to (1.4) such that ‖v‖1 ≤ ‖ŝ‖1 and let w = v−ŝ,
S = supp(ŝ), S̄ = {1, ..., n} − S, and wS to be the projection of w on S:

‖v‖1 = ‖w + ŝ‖1 = ‖wS + ŝS‖1 + ‖wS̄ + ŝS̄‖1 = ‖wS + ŝS‖1 + ‖wS̄‖1 ≥
‖ŝS‖1 − ‖wS‖1 + ‖wS̄‖1 = ‖ŝ‖1 − ‖wS‖1 + ‖wS̄‖1,

(2.20)

now since ‖v‖1 ≤ ‖ŝ‖1, one concludes ‖wS̄‖1 ≤ ‖wS‖1.

Note w ∈ null(A), now we want to calculate maximum value of the ratio ‖w‖1
‖w‖2 . This

problem is invariant under scaling of w, thus we set ‖w‖2 = 1 and also we can assume
w lays in the positive orthant (since the element signs would not change the norm value).
We will have the following optimization problem:

max w1 + ...+ wn

s.t.: 0 ≤ wi,∑
i∈S̄

wi ≤
∑
i∈S

wi
(2.21)

The second constraint comes from the inequality we derived before. This problem is a convex
optimization instance, so we can exhibit the maximizer in closed form if we can exhibit the
solution to the KKT condition [45]. Let

wi =

a =

√
‖ŝ‖0(n−‖ŝ‖0)/n

‖ŝ‖0 , i ∈ S

b =

√
‖ŝ‖0(n−‖ŝ‖0)/n

‖n−ŝ‖0 , i ∈ S̄
(2.22)
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It is easy to check that this point lays in the feasible region. The KKT multipliers are the
solutions to the system: {

λ1 + 2λ2b = 1

−λ1 + 2λ2a = 1
→

{
λ1 = a−b

a+b

λ2 = 1
a+b

(2.23)

So both multipliers are positive if ‖ŝ‖0 ≤ ‖n− ŝ‖0. Thus the objective value of (2.21) would

be
√
‖ŝ‖0(n−‖ŝ‖0)

n
and consequently ‖w‖1

‖w‖2 ≤
√
‖ŝ‖0(n−‖ŝ‖0)

n
. On the other hand w ∈ null(A),

which concludes: √
m

∆
≤
√
‖ŝ‖0(n− ‖ŝ‖0)

n
≤
√
‖ŝ‖0 →

m

∆
≤ ‖ŝ‖0, (2.24)

which contradicts the assumption and results the proof.

The second theorem considers stability towards noise.

Theorem 2.3.2 Noisy Recovery

Suppose null(A) has the ∆-spherical section property. Let ŝ be the minimizer of (1.4).
Then for every s̄ ∈ Rn and ∀k < min( m

16∆
, n

4
):

‖ŝ− s̄‖1 ≤ 4‖s̄k − s̄‖1, (2.25)

where sk denotes the k-sparse approximation of s.

Proof 2 Let w = ŝk − s̄, so w ∈ null(A):

‖ŝ‖1 = ‖s̄ + w‖1 =

‖s̄S + wS‖1 + ‖s̄S̄ + wS̄‖1 ≥
‖s̄S‖1 − ‖wS‖1 − ‖s̄S̄‖1 + ‖wS̄‖1 ≥
‖s̄‖1 − ‖wS‖1 + ‖wS̄‖1 − 2‖s̄S̄‖1,

(2.26)

Since ŝ is the minimizer of (1.4) we conclude:

‖wS̄‖1 ≤ ‖wS‖1 + 2‖s̄S̄‖1. (2.27)
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Now define: R = ‖w‖1
‖s̄−sk‖1

. To obtain the result, it is enough to find an upper bound for R

(R ≤ 4). We substitute R in (2.27):

‖wS̄‖1 ≤ ‖wS‖1 + 2‖w‖1/R→ ‖wS̄‖1 ≤ ‖wS‖1 + 2(‖wS‖1 + ‖wS̄‖1)/R→
(1− 2/R)‖wS̄‖1 ≤ (1 + 2/R)‖wS‖1.

(2.28)

Now note if 1− 2/R ≥ 0, then R ≤ 2 ≤ 4 and the proof results, so let 1− 2/R > 0. Then

from (2.28): ‖wS̄‖1 ≤ 1+2/R
1−2/R

‖wS‖1. Assuming γ = 1+2/R
1−2/R

(γ ≤ 3) and in exactly the same

approach as in the previous theorem one can conclude (for details refer to [94]):

‖w‖1

‖w‖2

≤ γ + γ

√
k(n− k)

k + 9(n− k)

w∈null(A)−−−−−→
√
m

∆
≤ γ + γ

√
k(n− k)

k + 9(n− k)

n−k≤((9(n−k)+k)/9)−−−−−−−−−−−−→
√
m

∆
≤ (γ + 1)

√
k

k≤ m
16∆−−−−→ 3 ≥ γ.

(2.29)

On the other hand the assumption was γ ≤ 3 and thus γ = 3. Consequently R = 2 which
results in the desired bound on R and the result follows.

These two theorems establish CS theory but in SSP context and similarly state unique-
ness and stability of l1-norm solution for a CS problem. The results are derived in a much
simpler approach compared to RIP context [15, 85]. It is interesting to note that the main
results which are derived in RIP approach can be rederived in SSP context. For instance
the error bound in Theorem 2.3.2 has been derived in RIP context, too. Also, it has been
shown the Gaussian random matrices have spherical section property and are good choice
for sensing matrix [87]. Furthermore, as it will be discussed this approach is a better embed
for considering cases when we have side information on the feasible region.

2.4 Reconstruction Methods

In this section a brief review on CS reconstruction methods is given. Nowadays one of the
limitation of using CS is the low-speed of the reconstruction methods with high dimensional
data. Improving the performance of reconstruction methods is an active research area.

2.4.1 Minimization of l1-norm

Historically l1-norm minimization is the main approach for CS reconstruction algorithms.
Main CS theorems state robustness of the l1-norm minimization towards additive noise and
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also system noise. The importance of l1-norm is that, it is a continuous convex function,
so convex optimization tools can be applied to the problem. The more important fact is
that l1-norm minimization problem can be formulated as a linear programming problem.
Let A′ = [A,−A], s′ = [s1; s2], s = s1 − s2:

min[1; 1]T s′ s.t.A′s′ = y, s′ ≥ 0, (2.30)

where 1 is an all-ones column vector and (·)T denotes matrix transposition. Consequently
well-known linear programming algorithms such as Simplex and Interior Point methods
can be used with complexity of O(n3). One group of successful algorithms in this class is
Basis Pursuit [19].

Although linear programming methods can find the solution in finite time but for
many practical applications O(n3) is not a tractable time. Specially in image processing
applications in which n = O(105) for a typical image.

2.4.1.1 Thresholding Algorithms

Some iterative methods have been introduced to decrease the computational complexity
of l1-norm minimization. In these methods an iterative sequence of vectors is produced,
which converges to the solution through iterations. Although convergence to the exact
solution is more time consuming compared to linear programming methods, these methods
quickly converge to a very good approximate of the solution.

It can be shown that for a proper selection of λ, the optimization problem (1.4) is
equivalent to the following unconstrained problem:

ŝ = arg min
s

1

2
‖y− As‖2

2 + λ‖s‖1 (2.31)

Since this problem is unconstrained one can use steepest descend or conjugate gradient
approaches to derive an iterative relation. Although l1-norm is not a smooth function but
concept of subderivative enables us to apply a similar procedure to steepest descend on
(2.31) (more discussions is given in Chapter 3). Upon choosing a proper initial value, the
iterative relation will converge to the minimizer of (1.4). Several algorithms have been
developed for this purpose [86, 31]. In the current note we work with image signals and
thus we have used one of the-sate-of-the-art iterative methods for reconstruction [6, 88].

The iterative formula for iterative hard thresholding (IHT) algorithm is as follows:

si+1 = G(si − AT (Asi − y)), (2.32)
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where G(·) is a thresholding function:

G(x) =

{
0 |si| ≤

√
λ

si |si| ≥
√
λ

, (2.33)

The main advantage is that each iteration only involves multiplication of vectors and A
and AT , followed by thresholding. So the sensing matrix can be defined only as an operator
and it is not even required to store the sensing matrix. This is much simpler than linear
programming. Note the threshold in this algorithm is constant in all iterations. A class of
successful methods is the iterative shrinkage thresholding algorithms (ISTA) which improve
IHT through using an adaptive thresholding function. The iterative step is as follows:

si+1 = Hλδ(s
i − δAT (Asi − y)), (2.34)

where δ is a parameter for step size and H(·) is a soft shrinkage threshold function:

Hλ(si) = (|si| − λ)+sign(xi). (2.35)

FISTA algorithm [6] further improves ISTA by involving the solutions of the two previous
iterations in each step.

2.4.2 Greedy Algorithms

Greedy algorithms generally solve a problem in a number of steps (in CS problem, mainly
the number of steps is equal to the sparsity level k). In each step the best selection (in
CS problem, normally the best column of the sensing matrix) is done without considering
the future steps. Consequently the result is not always the real solution but this approach
provides acceptable results in compressive sensing reconstruction.

A simple algorithm of this class is Matching Pursuit. An equivalent representation for
compressive sensing is:

y =
n∑
i=1

aisi, (2.36)

where ai is the ith column of A. If we have a k-sparse source, CS in this context can be
interpreted as finding the k related columns of A and corresponding si’s. Matching Pursuit
approximates the source in k step. In each step one column of A is revealed and then the
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corresponding si is revealed by solving a least square problem. In the first step the inner
product of y and all ai’s are calculated (〈y, ai〉). Then the column aj with the maximum
absolute value of 〈y, ai〉 is selected as an active column in (2.36) and si = 〈y, aj〉. Thus
the first term in (2.36) is known. Let this approximate of s be s(1). The next steps are
done similarly, only in each step we update the value of y as follows:

y(i+1) = y(i) − siaj. (2.37)

The main disadvantage in this approach is that it is assumed that columns of A are
orthogonal which is not the case for most sensing matrices. Orthogonal Matching Pursuit
(OMP) [60] improves this method via updating the found si’s in each step. Since this
approach uses similarity of ai’s and the residual vector of (2.37), mutual coherency of the
sensing matrix plays an important role. Faster algorithms such as Compressive Sampling
Matched Pursuit (CoSaMP) [57] improves the algorithm via a look on future steps. Overall,
this class of reconstruction methods are fast but do not necessarily find the real solution.

2.4.3 Norm Approximation

This class approximate l0-norm via a differentiable function and then use methods such as
steepest descend for minimization. For instance smoothed l0 (SL0) algorithm [55] approx-
imates the l0-norm as follows:

‖s‖0 ≈ g(s) = n−
n∑
i=0

fσ(si), (2.38)

where fσ(·) is defined as:

fσ(s) = e−
s2

2σ2 , (2.39)

and σ ∈ R+ is a small constant. The parameter σ determines the closeness to the l1-norm
and smoothness of the approximation, as σ → 0 then g(s) → ‖s‖0. The function g(·) is
continuous and differentiable and thus steepest descend methods can be applied directly
to find the minimizer of g(·). For a proper selection of σ, it may be possible to find the
global minimizer of (1.3). Experiments have shown that this method is faster than l1-norm
minimization methods but again for large scale systems it is not applicable.
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(a) (b)

Figure 2.1: (a) Probabilistic block diagram for CS and (b) corresponding factor graph

2.4.4 Message Passing Reconstruction Algorithms

Graphical Models is an active research area with a wide range of applications. Recently
fast iterative methods based on graphical models have been used in convex optimization
problems [56, 4]. The connection between belief propagation (BP) message passing algo-
rithm and convex optimization inspired researchers to apply graphical models concepts to
CS theory to find faster solvers.

In order to connect CS theory with graphical models, first we model CS problem as
a probabilistic inference problem. Fig. 2.1 (subplot (a)) provides a block diagram rep-
resentation for (1.3). It is assumed that the sparse source is resulted from sampling of a
probability distribution Ps(s). Sparse sources have been modeled with heavy-tailed dis-
tributions including Laplacian, Gaussian mixtures, generalized Gaussian, and Bernoulli
Gaussian distributions in the literature [4]. The observation is resulted from the source via
linear transformation, A = ΦΨ, followed by noise contamination. The goal is to estimate
the source signal, either MAP or MMSE estimations, using the observed measurement, y.
In this framework the original CS problem can be considered as a probabilistic inference
problem. Exact MAP estimate can be computed for the problem [4] but unfortunately the
solution involves heavier computational load compared to l1-norm minimization methods.
One idea is to use approximate inference algorithms such as BP to lessen the computational
load. To do this end a graphical model must be assigned to the problem. The main idea
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for this purpose comes form error control coding area, where it is common to represent a
parity check matrix by a biparitite graph. Analogously the block diagram in Fig.1 (subplot
(a)) can be represented by a biparitite factor graph as shown in Fig. 2.1 (subplot (b)).
There are two class of nodes in the factor graph: variable nodes (black) and constraint
nodes (white). The edges connect variable nodes to constraint nodes. A constraint node
models the dependencies that its neighboring variable nodes are subjected to. We have
two types of constraint nodes; the first type imposes the probability distribution on source
coefficients while the second type connects each coefficient node to a set of measurement
variables that are used in computing that measurement. Having this factor graph, belief
propagation can be employed to infer the probability distribution of the coefficients and
consequently the MAP estimation for source signal.

In [4], the authors used belief propagation to infer the source signal. While their ap-
proach is interesting and the algorithm is much faster compared to general CS reconstruc-
tion algorithms, it poses a main limitation: to run BP, the authors assumed the sensing
matrix to be sparse, which is not a realistic assumption in most CS applications. The
reason for this assumption is that the implementation of BP in the general case is compu-
tationally intractable for dense graphs. Fortunately BP often admits acceptable solution
for large, dense matrix when Gaussian approximation is used [5]. This property has led
to generalization of approximate message passing algorithms for dense graphs. The key
idea of generalized message passing algorithm (GMA) is to decompose the vector valued
estimation problem into a sequence of scaler problems. This idea combined with the idea
given in [4], has been used to generalize the compressive sensing algorithm via belief prop-
agation for CS problems with dense sensing matrices. This class of algorithms are new
compared to other classes and research is still going on to improve and generalize these
algorithms to non-parametric cases, where we do not have prior information about the
source distribution.

In this section a brief review on CS reconstruction algorithm was given. As stated in
Chapter 1, one of the main limitations of applying CS to applications is at its reconstruc-
tion side. After about a decade of extensive research in this area, nowadays CS is well
established and matured in terms of theory and analysis, but research is still going on to
improve the current reconstruction algorithm in terms of computational and implemen-
tational complexity. Simple algorithms which can be implemented cheaply via electronic
devices is crucial for this research area.
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Chapter 3

Compressed Sensing with Side
Information on Feasible Region

In the literature the problem of compressed sensing in the presence of side information is
studied. But, in most cases the side information are about the source itself, i.e. structure,
probability distribution, etc. In this chapter, the problem of compressed sensing in the
presence of side information about the feasible region is reviewed. We follow an approach
similar to [38] to formulate the problem mathematically for a wider class. Next it is shown
that uniqueness and stability results of CS still holds in this formulation. Finally, an
efficient recovery algorithm is derived which incorporates the side information.

3.1 Formulation

Consider a general compressed sensing problem (1.3). Assume null(A) satisfies spherical
section property with parameter ∆, consequently Theorems 2.3.1 and 2.3.2 hold for this
problem. From linear algebra if s1 is a special solution to the system As = y, then the
feasible region for the optimization problem (1.3) would be:

F = {s1 + s2|As2 = 0} = {s1}+ null(A). (3.1)

In the current work we adopt FISTA as the reconstruction algorithm. To solve for the
unique solution we start from an initial point and then search in the feasible region in
(2.34). The size of this region depends on null(A) ≡ Rm (rank(A)) and intuitively we
expect the bigger this space is, the harder is to solve the optimization problem. In other
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words when the feasible region is small then (2.34) converges faster to the solution of (1.4).
Thus any side information about the feasible region is helpful.

Now consider cases that we have side information about the feasible region. For instance
in the case of derivative compressed sensing (DCS) [38], where the source signal is a gradient
field, the side information will result in Bs = 0 condition on the source signal (B ∈ Rn

2
×n

and is resulted from inherent property of a gradient field. We will discuss this special
case in more details in Chapter 4). A more general case may happen when we have side
information as:

Bs = b, (3.2)

where B ∈ Rm′×n is a full rank matrix. Many constraints on a source can be formulated
as (3.2). In such cases we have two types of information about the source. We call the
first type, primary information, which is resulted through measurements (As = y). The
secondary information comes in hand through an inherent property of the source. Broadly
speaking, we can assume we have a general inverse problem (Bs = b) and we also have
sparsity prior on the source, then we apply CS as a regularization method on this problem.
Some problems in image/signal processing area such as image super-resolution, image
impainting, and medical imaging can be modeled in this framework. We expect that if we
incorporate this side information it somehow improves CS reconstruction. For instance we
may be able to decrease the number of measurements for recovering the source with similar
accuracy or some kind of robustness towards noise when the measurements are noisy.

Let A′ =

[
A
B

]
(A′ ∈ R(m+m′)×n and is full rank matrix) and y′ =

[
y
b

]
(y′ ∈ R(m+m′)).

We have the following equivalent problem:

ŝ = arg min
s
‖s‖0 s.t. y′ = A′s. (3.3)

Assume m+m′ ≤ n, in such cases the new problem is exactly in the form of a CS problem.
Through the rest of the thesis we assume m + m′ ≤ n so as to deal with problem in CS
framework. Now the question is: Does this problem have a unique solution? Can we
still replace the l0-norm with l1-norm? To answer these questions, the new sensing matrix
A′ must be studied. In the next section we will show the answers to both questions are
positive.

3.2 Uniqueness and Stability

Consider the optimization problem (3.3). Our assumption is that A has ∆-spherical section
property, so (1.3) has a unique solution ŝ and also we have l1-l0 equivalence. We show that
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adding the secondary condition will not violate the uniqueness, and furthermore solutions
of (1.3) and (3.3) are equal.

Lemma 1 The problem (3.3) has a unique solution ŝ equivalent to the solution of (1.3).
Furthermore l1-l0 equivalence holds for this problem, i.e.:

ŝ = arg min
s
‖s‖1 s.t. y′ = A′s. (3.4)

Proof 3 The proof is simple. First we show A′ has spherical section property with ∆′ =
(1 + m′

m
)∆. Note dim(null(A′)) = n− (m + m′) and:

A′s = 0→

{
As = 0

Bs = 0
→ null(A′) = null(A) ∩ null(B), (3.5)

thus null(A′) ⊂ null(A). Consequently ∀s ∈ null(A′) ⊂ null(A):

‖s‖1

‖s‖2

≥
√
m

∆
=

√
m+m′

∆(1 + m′

m
)
, (3.6)

according to the definition of SSP, null(A′) has spherical section property with ∆ = (1 +
m′

m
)∆.

According to the assumption ŝ is the solution of (1.3) and also satisfies Bs = b, ŝ
lays in the feasible region of (3.3). According to Theorem 2.3.1, ŝ is a unique solution of
(3.3), if ‖ŝ‖0 ≤ m+m′

2∆′ . Note ‖ŝ‖0 ≤ m
2∆

since it is the unique solution of (1.3), then from
Theorem 2.3.1:

‖ŝ‖0 ≤
m

2∆
=

m(m+m′)

2∆(m+m′)
=

m+m′

2∆(1 + m′

m
)

=
m+m′

2∆′
, (3.7)

which concludes the proof. Similarly we can conclude if the original primary CS problem
has l1-l0 equivalence in Theorem 2.3.2, then (3.3) inherits this property. Also note that
this unique solution satisfies As = y and thus is equal to solution of (1.3).

This lemma states that we can add any side information in the form of (3.2) to our problem
and this will not make the situation worse. This result is very intuitive and is expected
but the Lemma also gives a mathematical justification. For source reconstruction we can
use a general proposed CS reconstruction algorithm and find the unique solution of (3.3),
however this may not be efficient enough. In the next section, a more efficient algorithm
is proposed to solve (3.3).
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3.3 Numerical Solution Algorithm

As explained, the problem that we formulated in Section 3.1 can be formulated by (3.3).
We also expect some improvement if we use side information. In this section an efficient al-
gorithm is derived for solving this problem. When Lemma 1 holds, (3.3) can be equivalently
formulated as follows:

ŝ = arg min
s

µ‖s‖1 + ‖As− y‖2
2 s.t. Bs = b, (3.8)

now we have our original CS reconstruction problem constrained to the side information.
To solve optimization problems in this form one can use operator splitting [59, 93, 12]. We
will have a quick review on this method and then use it to solve (3.8).

3.3.1 Bregman Iteration and Operator Splitting

Consider the following optimization problem:

min
s
J(s) s.t. H(s) = 0, (3.9)

where H is a convex differentiable furcation while J is also convex but possibly non-
differentiable functions. An efficient method to solve this type of problems is to use the
Bregman iterations [59].

To proceed we need the definition of sub-gradient and Bregman distance.

Definition 6 Let J(·) : Rn → R+ be a convex and possibly non-differentiable function.
The vector p ∈ Rn is called a sub-gradient of J at point w0:

∀w ∈ Rn : J(w)− J(w0) ≤ 〈p,w−w0〉. (3.10)

Also, the set of all p’s is called sub-differentiable of J at point w and is denoted by ∂J(w0).

For a differentiable function, ∂J(w0) reduces to a singleton which only contains the gradient
vector, ∇J(w0). This concept extends the definition of gradient to convex but possibly
non-differentiable functions. For instance sub-differentiable of J(w) = |w| at the point
w = 0 is the set [−1, 1]. Next we require definition of Bregman distance
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Definition 7 The Bregman distance of a convex function J(·) : Rn → R+ between two
points s and w is defined as:

Dp
J(s,w) = J(s)− J(w)− 〈p, s−w〉, (3.11)

where p is a sub-gradient of J at w.

Note (3.11) is not symmetric, thus Bregman distance is not a metric but somehow measures
closeness of the two points.

Now back in our problem (3.9), this problem can be solved iteratively as follows:si+1 = arg min
s

Dpi

J (s, si) + δH(s)

pi+1 = pi − δ∂H(si+1),
(3.12)

where δ ≥ 0 is a constant. It is shown in [12], that if the original problem (3.9) has a
solution ŝ, then through the iterations in (3.12), as i→∞ then si → ŝ.

Now we apply this algorithm on (3.8), for which we can assume, H(s) = 1
2
‖Bs − b‖2

2

and J(s) = µ‖s‖1 + ‖As− y‖2
2. This will reduce (3.12): (si+1,bi+1) = arg min

s,b
µ‖s‖1 + 1

2
‖As− y‖2

2 + δ
2
‖Bs− b + pi‖2

2

pi+1 = pi + δBsi+1 − bi+1.
(3.13)

Note that the update step of the first equation in (3.13) has the format of a standard basis
pursuit de-noising (BPDN) problem [18], which can be solved by a variety of optimization
methods [23]. In the present paper, we used the FISTA algorithm of [6] due to the simplicity
of its implementation as well as for its remarkable convergence properties. It should be
noted that the algorithm does not require explicitly defining the matrices A and B. Only
the operations of multiplication by these matrices and their transposes need to be known,
which can be implemented in an implicit and computationally efficient manner. The main
advantage of solving the problem using operator splitting is the much faster convergence
of the thresholding algorithm.

Now equipped with some theoretical evidence and an efficient reconstruction algorithm
we continue with some experimental study on advantageous prospect of our approach.
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3.4 Experimental Study

To verify our analysis and algorithm, this section is devoted to experimental study on
synthetics data, where as in the next Chapters we will focus on the practical applications
of the developed method.

3.4.1 Source Model

For source simulation we used mixture of Gaussian model as the sparse source model:

s ∼ pN(0, σ1) + (1− p)N(0, σ2), (3.14)

where N(0, σi) denotes a Gaussian distribution with zero mean and variance σ2
i , σ1 �

σ2, and p is the parameter for a Bernoulli distribution. This model has been used to
represent sparse signals in the literature [76, 77]. Although it is not a proper model for
some applications, it is useful for our experimental study. Here, it is assumed that the
source signal has two states. The first state corresponds to source elements with large
values (non-zero elements) and the second state corresponds to elements with negligible
value (approximately zero elements). The Bernoulli distribution parameter p decides for
each element, what state is active and controls the level of sparsity, and then each state is
modeled via a Gaussian distribution. It must be taken into account that we only use this
procedure for producing the source and assume the user does not have any information
about the source probability distribution.

We also need a type of side information about the source that we can model in the
form of (3.2). For this purpose we assumed that we have a prior information about the
positions and values of some of the large value elements. This assumption is a good embed
for testing the proposed method. We transform this information to the form of (3.2). An
example makes the procedure clear. Assume we have a sparse source s ∈ R10. Assume we
know that the second and the fourth elements are non-zero and both equal to 2, thus one
concludes:

B =

[
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

]
(3.15)

and:

b =

[
2
2

]
. (3.16)

In the general case for B ∈ Rm′×n, where m′ is the number of the known non-zero elements,
in each row we set Bij related to the jth known non-zero element equal to one and the rest
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of the matrix entries equal to zero. Trivially bj is equal to the jth known non-zero element.
We continue with experiments in this framework.

3.4.2 Experiments

We set n = 1024, σ1 = 0.1, and σ2 = 10 with sparsity level of p = 0.1 to generate the
source signal through this subsection. This means that we have an approximately sparse
source with about 100 large value elements. The sensing matrix was chosen as a random
matrix with i.i.d Gaussian entries and applied to the source to produce the measurement
vector y. This selection is standard in the CS literature because these matrices satisfy
both RIP and SSP. Based on our assumption, the positions and the values of a fraction
of large value elements are known and one can form (3.2). Through the experiments, we
assumed one fourth of the large value elements of the source are known (m′ ≈ 25) and
m = 300, unless stated.

Fig. 3.1 (a) depicts an instance of the generated source in which the signal is presented
versus time (index). Fig. 3.1 (b) depicts the reconstruction results for the classical CS.
Visually, it can be seen some approximately zero elements are estimated larger than the real
values and the quality of the reconstruction is poor. Fig. 3.1 (c) depicts the reconstruction
results for the proposed method. As it can be detected visually our method outperforms
the classical method, which is also confirmed numerically by calculating the signal-to-noise
ration (SNR). The result confirms that the proposed algorithm works properly and is able
to incorporate the side information.

To analyze the algorithm two sets of experiments are done. First, we study the effect of
the number of the known elements on the performance of the algorithm. Assume 0 < r ≤ 1
indicates the fraction of the known elements. Fig. 3.2 depicts the proposed algorithm
reconstruction quality (measured via SNR) versus r for r ∈ (0.1, 1). As expected as we
increase the side information, the quality of the reconstruction also improves such that for
r = 1 we have near complete recovery.

In the second experiments we consider the effect of number of the measurements, m,
on reconstruction quality. Fig. 3.3 depicts output reconstruction SNR versus m for the
classical CS and the proposed method. As expected, the reconstruction quality improves
as the number of measurement increases for both methods. As it can be detected for large
number of the measurements both methods are saturated and we have high SNR values.
This is not surprising since when the number of the measurements are large enough we
can reconstruct the source perfectly and the side information has negligible effect on the
quality of the measurements. But for insufficient measurements, the side information
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(a)

(b) (c)

Figure 3.1: (a) The source signal (b) reconstructed using the classical CS, SNR = 14.4
(c)reconstructed using the proposed method, SNR = 26.0

becomes important and improves the quality of the reconstruction. This implies that
the proposed method can be used to either improve the quality of the reconstruction or
decrease the number of the required measurements without deteriorating the quality of
the reconstruction. Overall, these experiments confirm the effectiveness of the proposed
method. In the next chapters, this method has been applied to two practical examples:
image deblurring in optical imaging [68] and surface reconstruction in the gradient field
[67]. In both applications the source signals are gradient fields and the side information
can be formulated as (3.2) as in [38]. Also, further analysis has been done through these
applications.
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(a)

Figure 3.2: Output SNR versus the fraction of known large value elements (r)

(a)

Figure 3.3: SNR of the source reconstruction obtained with different methods as a function
of m. Here, the dashed and solid lines correspond to the classical CS and the proposed CS
method, respectively, and r = 0.25.

30



Chapter 4

Application: Image Deblurring for
Optical Imaging

The problem of reconstruction of digital images from their blurred and noisy measurements
is unarguably one of the central problems in imaging sciences. Despite its ill-posed nature,
this problem can often be solved in a unique and stable manner, provided appropriate
assumptions on the nature of the images to be discovered. In this section, however, a more
challenging setting is considered, in which accurate knowledge of the blurring operator is
lacking, thereby transforming the reconstruction problem at hand into a problem of blind
deconvolution [63, 66]. As a specific application, the current presentation focuses on re-
construction of short-exposure optical images measured through atmospheric turbulence.
The latter is known to give rise to random aberrations in the optical wavefront, which are
in turn translated into random variations of the point spread function (PSF) of the optical
system in use. A standard way to track such variations involves using adaptive optics.
For example, the Shack-Hartmann interferometer provides measurements of the optical
wavefront through sensing its partial derivatives. In such a case, the accuracy of wavefront
reconstruction is proportional to the number of lenslets used by the interferometer, and
hence to its complexity. Accordingly, in this paper, we show how to minimize the above
complexity through reducing the number of the lenslets, while compensating for under-
sampling artifacts by means of derivative compressed sensing. Additionally, we provide
empirical proof that the above simplification and its associated solution scheme result in
image reconstructions, whose quality is comparable to the reconstructions obtained using
conventional (dense) measurements of the optical wavefront.
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4.1 Background

The necessity to recover digital images from their distorted and noisy observations is com-
mon for a variety of practical applications, with some specific examples including im-
age denoising, super-resolution, image restoration, and watermarking, just to name a few
[92, 29, 50, 62]. In such cases, it is conventional to assume that the observed image v is ob-
tained as a result of convolution of its original counterpart u with a point spread function1

(PSF) i. To account for measurement inaccuracies, it is also standard to contaminate the
convolution output with an additive noise term ν, which is usually assumed to be white
and Gaussian. Thus, formally,

v = i ∗ u+ ν. (4.1)

While u and v can be regarded as general members of the signal space L2(Ω) of real-valued
functions on Ω ⊆ R2, the PSF i is normally a much smoother function, with effectively
band-limited spectrum. As a result, the convolution with i has a destructive effect on
the informational content of u, in which case v typically has a substantially reduced set of
features with respect to u. This makes the problem of reconstruction of u from v a problem
of significant practical importance [61].

Reconstruction of the original image u from v can be carried out within the framework
of image deconvolution, which is a specific instance of a more general class of inverse
problems [46]. Most of such methods are Bayesian in nature, in which case the information
lost in the process of convolution with i is recovered by requiring the optimal solution to
reside within a predefined functional class [40, 33, 80]. Thus, for example, in the case when
u is known to be an image of bounded variation, the above regularization leads to the
famous Rudin-Osher-Fatemi reconstruction scheme, in which u is estimated as a solution
to the following optimization problem [69, 16]

û = arg min
u

{
1

2
‖u ∗ i− v‖2

2 + α

∫
|∇u| dxdy

}
, (4.2)

where α > 0 is the regularization parameter. It should be noted that, if the PSF obeys∫
i dxdy 6= 0, the problem (4.2) is strictly convex and therefore admits a unique minimizer,

which can be computed using a spectrum of available algorithms [69, 16, 34, 51, 36].

In some applications, the knowledge of the PSF may be lacking, which results in the
necessity to recover the original image from its blurred and noisy observations alone. Such

1Note that, in optical imaging, this function is also referred to as an impulse transfer function [10].
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a reconstruction problem is commonly referred to as the problem of blind deconvolution
[46]. In the present study, however, we follow the philosophy of hybrid deconvolution [53],
whose main idea is to leverage any partial information on the PSF to improve the accuracy
of image restoration. In particular, in the algorithm described in this paper, such partial
information is derived from incomplete observations of the partial derivatives of the phase
of the generalized pupil function (GPF) of the optical system in use, as detailed below.

Optical imaging is unarguably the field of applied sciences from which the notion of
image deconvolution has originated [64, 48, 41]. In particular, in short-exposure turbulent
imaging [66], acquired images are blurred with a PSF, which depends on a spatial distri-
bution of the atmospheric refraction index along the optical path connecting an object of
interest and the observer. Due to the effect of turbulence, the above distribution is random
and time-dependent, which implies that the PSF i cannot be known in advance.

A standard way to overcome the above limitation is through the use of adaptive optics
(AO) [22]. As will be shown later, the PSF of a short-exposure optical system is determined
by its corresponding generalized pupil function (GPF) P , which can be expressed in a polar
form as P = Aeφ. While, in practice, the amplitude A can be either measured through
calibration or computed as a function of the aperture geometry, the phase φ accounts for
turbulence-induced aberrations of the optical wavefront, and hence is generally unknown
at any given experimental time. Fortunately, the phase φ turns out to be a measurable
quantity, and this is where the tools of AO come into play. One of such tools is the
Shack-Hartmann interferometer (SHI) (aka Shack-Hartmann wavefront sensor) [25, 47, 39],
which allows direct measurement of the gradient of φ over a predefined grid of spatial
coordinates. Subsequently, these measurements are converted into a useful estimate of φ
through numerically solving an associated Poisson equation.

Among some other factors, the accuracy of phase reconstruction by the SHI depends on
the size of its sampling grid, which is in turn defined by the number of lenslets composing
the wavefront sensor of the interferometer (see below). Unfortunately, the grid size and
the complexity (and, hence, the cost) of the interferometer tend to increase pro rata,
which creates an obvious practical limitation. Accordingly, to overcome this problem,
we propose to modify the construction of the SHI through reducing the number of its
lenslets. Although the advantages of such a simplification are immediate to see, its main
shortcoming is obvious as well: the smaller the number of lenslets is, the stronger is the
effect of undersampling and aliasing. These artifacts, however, can be compensated for by
subjecting the output of the simplified SHI to the derivative compressed sensing (DCS)
algorithm of [30], which is a special case of the problem, studied in Chapter 3. As will
be shown below, DCS is particularly suitable for reconstruction of φ from incomplete
measurements of its partial derivatives. The resulting estimates of φ can be subsequently

33



combined with A to yield an estimate of the PSF i, which can in turn be used by a
deconvolution algorithm. Thus, the proposed method for estimation of the PSF i and
subsequent deconvolution of u can be regarded as a hybrid deconvolution technique, which
comes to simplify the design and complexity of the SHI on one hand, and to make the
process of reconstruction of optical images as automatic as possible, on the other hand.

4.2 Technical Preliminaries

In short exposure imaging, due to phase aberrations in the optical wavefront induced by
atmospheric turbulence, the PSF of an imaging system in use is generally unknown [66].
To better understand the setup under consideration, we first note that, in optical imaging,
the PSF i is obtained from an amplitude spread function (ASF) h as i := |h|2. The ASF,
in turn, is defined in terms of a generalized pupil function (GPF) P (x, y) and is given by
[32]

h(ξ, η) =
1

λwzi

∫ ∞
−∞

∫ ∞
−∞

P (x, y)e
−j 2π

λzi
(x ξ+y η)

dxdy, (4.3)

where zi is the focal distance and λw is the optical wavelength. Being a complex-valued
quantity, P (x, y) can be represented in terms of its amplitude A(x, y) and phase φ(x, y) as

P (x, y) = A(x, y) eφ(x,y). (4.4)

Here, the GPF amplitude A(x, y) (which is sometimes simply referred to as the aperture
function) is normally a function of the aperture geometry. Thus, for instance, in the case
of a circular aperture, A(x, y) can be defined as [78]

A(r) =

{
1, if r ≤ D

2

0, otherwise
(4.5)

where D denotes the pupil diameter. Thus, given φ(x, y), one could determine h and there-
fore i. Unfortunately, the phase φ(x, y) is influenced by the random effect of atmospheric
turbulence, and as a result cannot be known ahead of time.

A standard way to overcome the uncertainty in φ(x, y) is to measure it using the tools
of shearing interferometry, a particular example of which is the SHI [25, 70]. The latter
is capable of sensing the partial derivatives of φ(x, y) over a predefined grid of spatial
locations. In this case, an accurate reconstruction of φ(x, y) entails taking a fairly large
number of the samples of ∇φ(x, y), which is essential for minimizing the effect of aliasing
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on the estimation result[54]. Thus, in some applications, the number of sampling points
(as defined by the number of SHI lenslets) reaches as many as a few thousands. It goes
without saying that reducing the number of lenslets would have a positive impact on the
SHI in terms of its cost and approachability. Alas, such a reduction is impossible without
undersampling, which is likely to have a formidable effect on the overall quality of phase
estimation.

To minimize the effect of phase undersampling, we exploit the DCS algorithm of [38].
The latter can be viewed as an extension of the conventional compressed sensing (CCS)
scheme, in which the standard sparsity constraints are supplemented by additional con-
straints related to some intrinsic properties of partial derivatives. This “side information”
– which are called the cross-derivative constraints – allows substantially improving the
quality of reconstruction of φ(x, y), as compared to the case of CCS-based estimation.

4.2.1 Shack-Hartmann Interferometer (SHI)

As it was mentioned the SHI can be used to measure the gradient ∇φ(x, y) of the GPF
phase φ(x, y), from which its values can be subsequently inferred. A standard approach to
this reconstruction problem is to assume the unknown phase φ(x, y) to be expandable in
terms of some basis functions {Zk}∞k=0, viz. [47]

φ(x, y) =
∞∑
k=0

akZk(x, y), (4.6)

where the representation coefficients {ak}∞k=0 are supposed to be unique and stably com-
putable. Note that, in this case, the datum of {ak}∞k=0 uniquely identifies φ(x, y), while
the coefficients {ak}∞k=0 can be estimated due to the linearity of (4.6) which suggests

∇φ(x, y) =
∞∑
k=0

ak∇Zk(x, y). (4.7)

In AO, it is conventional to define {Zk}∞k=0 to be Zernike polynomials (aka Zernike
functions) [32]. These polynomials constitute an orthonormal basis in the space of square-
integrable functions defined over the unit disk in R2. Zernike polynomials can be subdivided
in two subsets of the even Zm

n and odd Z−mn Zernike polynomials, which possess closed-form
analytical definitions as given by

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ) (4.8)
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Z−mn (ρ, ϕ) = Rm
n (ρ) sin(mϕ), (4.9)

where m and n are nonnegative integers with n ≥ m, 0 ≤ ϕ < 2π is the azimuthal angle,
and 0 ≤ ρ ≤ 1 is the radial distance. The radial polynomials Rm

n in (4.8) and (4.9) are
defined as

Rm
n (ρ) =

(n−m)/2∑
k=0

(−1)k (n− k)!

k! ((n+m)/2− k)! ((n−m)/2− k)!
ρn−2 k. (4.10)

Note that, since the Zernike polynomials are defined using polar coordinates, it makes
sense to re-express the phase φ and its gradient in the polar coordinate system as well.
(Technically, this would amount to replacing x and y in (4.6)-(4.7) by ρ and ϕ, respectively.)
Moreover, due to the property of the Zernike polynomials to be an orthonormal basis, the
representation coefficients {ak}∞k=0 in (4.6)-(4.7) can be computed by orthogonal projection,
namely

ak =

∫ 2π

0

∫ 1

0

φ(ρ, ϕ)Zk(ρ, ϕ) ρ dρ dϕ. (4.11)

In practice, however, φ(ρ, ϕ) is unknown and therefore the coefficients {ak}∞k=0 need to be
estimated by other means. Thus, in the case of the SHI, the coefficients can be estimated
from a finite set of discrete measurements of ∇φ(ρ, ϕ).

The main function of the SHI is to acquire discrete measurements of ∇φ by means of
linearization. The linearization takes advantage of subdividing a (circular) aperture into
rectangular blocks with their sides formed by a uniform rectangular lattice. An example
of such a subdivision is shown in Fig. 4.1 for the case of a 10× 10 lattice grid. In general,
the grid is assumed to be sufficiently fine to approximate φ by a linear function over the
extent of a single block. This results in a piecewise linear approximation of φ, whose
accuracy improves asymptotically when the lattice size goes to infinity. Formally, let
Ω := {(x, y) ∈ R2 | x2 + y2 ≤ D2} be a circular aperture of radius D and S = {(x, y) ∈
R2 | max{|x|, |y|} ≤ D} be a square subset of R2 such that Ω ⊂ S. Then, for each polar
coordinate (ρ, ϕ) ∈ Ω and an N×N grid of square blocks of size 2D/N×2D/N , the phase
φ can be expressed as

φ(x, y) ≈ ax+ by + c, (4.12)

for all (x, y) in a neighbourhood of (ρ cosϕ, ρ sinϕ). The approximation in (4.12) suggests
that

∇φ(x, y) ≈ (a, b)T (4.13)

where (·)T denotes matrix transposition. While c in (4.12) can be derived from boundary
conditions, coefficients a and b should be determined through direct measurements. To this
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Figure 4.1: An example of a 10×10 SHI array on a circular aperture. The shading indicates
those blocks (i.e., lenslets) which are rendered active.

end, the SHI is endowed with an array of small focusing lenses (i.e., lenslets), which are
supported over each of the square blocks of the discrete grid, thereby forming a wavefront
sensor. In the absence of phase aberrations, the focal points of the lenslets are spatially
identified and registered using a high-resolution CCD detector, whose imaging plane is
aligned with the focal plane of the sensor. Then, when the wavefront gets distorted by
atmospheric turbulence, the focal points are dislocated towards new spatial positions, which
can also be pinpointed by the same detector. The resulting displacements can be measured
and subsequently related to the values of ∇φ at corresponding points of the sampling grid.

To explain how the above procedure can be performed, additional notations are in
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Figure 4.2: Basic structure of the SHI and a resulting pattern of the focal points.

order. Let Ωd denote a finite set of spatial coordinates defined according to

Ωd :=
{

(xd, yd) ∈ Ω
∣∣

xd = −D +
2D

N

(
i+

1

2

)
, i = 0, 1, . . . , N − 1 (4.14)

yd = −D +
2D

N

(
j +

1

2

)
, j = 0, 1, . . . , N − 1

and x2
d + y2

d ≤ D2
}
.

The set Ωd can be thought of as a set of the spatial coordinates of the geometric centres
of the SHI lenslets, restricted to the domain of its aperture Ω. Under the assumption of
(4.12), one can then show [63] that the focal displacement ∆(x, y) = [∆x(x, y),∆y(x, y)]T

measured at some (x, y) ∈ Ωd is related to the value of ∇φ(x, y) according to

∇φ(x, y) ≈ 1

F
∆φ(x, y), ∀(x, y) ∈ Ωd, (4.15)

where F is the focal distance of the wavefront lenslets. An example of the above measure-
ment setup is depicted in Fig. 4.2.
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Now, provided a total of M := #Ωd (#Ωd denotes the cardinality of Ωd) measurements
of ∇φ over Ωd, one can approximate the coefficients {ak}Lk=1 of a truncated series expansion
of φ as a solution to the least-square minimization problem given by

min
{ak}

∑
(x,y)∈Ωd

∥∥ L∑
k=0

ak∇Zk(x, y)− F−1∆(x, y)
∥∥2

2
, (4.16)

subject to appropriate boundary conditions. It is worthwhile noting that (4.16) can be
rewritten in a vector-matrix form as

min
a
‖Z a− d‖2

2, s.t. a ≥ 0, (4.17)

where Z is a 2M ×L+ 1 matrix of discrete values of the partial derivatives of the Zernike
polynomials, d is a measurement (column) vector of length 2M , and a = [a0, a1, . . . , aL]T

is a vector of the representation coefficients of φ. The constraint a ≥ 0 in (4.17) is optional
and may be used to further regularize the solution by forcing a to belong to some convex
set K≥. Thus, for example, when the set coincides with the whole RL+1, the solution to
(4.17) is given by

a = Z#d, (4.18)

where Z# denotes the Moore-Penrose pseudo-inverse of Z, whose definition is unique and
stable as long as the row-rank of Z is greater or equal to L + 1 (hence suggesting that
2M ≥ L+ 1). Having estimated a, the phase φ can be approximated as

φ(ρ, ϕ) ≈
L∑
k=0

akZk(ρ, ϕ). (4.19)

A higher accuracy of phase estimation requires using higher-order Zernike polynomi-
als, which in turn necessitates a proportional increase in the number of wavefront lenses.
Moreover, as required by the linearization procedure in the SHI, the lenses have to be of a
relatively small sizes (sometimes, on the order of a few microns), which may lead to the use
of a few thousand lenses per one interferometer. Accordingly, to simplify the construction
and to reduce the cost of SHIs, we propose to reduce the number of wavefront lenslets,
while compensating for the induced information loss through the use of DCS, which is
detailed next.
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4.3 Point Spread Function Estimation via Compres-

sive Sampling

We now apply the proposed algorithm on this problem. First we show the side data, a
source signal is a gradient field, can be transformed to (3.2) and then provide experiments
that confirms that we can take advantage of the proposed scheme to improve the quality
of image deblurring.

4.3.1 Derivative Compressed Sensing

Let the partial derivatives of φ evaluated at the points of set Ωd be column-stacked into
vectors fx and fy of length M = #Ωd. In what follows, the partial derivatives fx and fy are
assumed to be sparsely representable by an orthonormal basis in RM . Representing such a
basis by an M ×M unitary matrix W , the above assumption suggests the existence of two
sparse vectors cx and cy such that fx = Wcx and fy = Wcy. In the experimental studies of
this section, the matrix W is constructed using the nearly symmetric orthogonal wavelets
of I. Daubechies having five vanishing moments [24].

The proposed simplification of the SHI amounts to reducing the number of wavefront
lenslets. Formally, such a reduction can be described by two n×M sub-sampling matrices
Ψx and Ψy, where n < M . Specifically, let bx := Ψxfx and by := Ψyfy be incomplete
(partial) observations of fx and fy, respectively. Then, based on the theoretical guarantees
of classical CS, the vectors fx and fy of the partial derivatives of φ can be approximated
by Wc∗x and Wc∗y, respectively, where c∗x and c∗y are obtained as

c∗x = arg min
c′
x

{
1

2
‖ΨxWc′x − bx‖2

2 + λx‖c′x‖1

}
(4.20)

and

c∗y = arg min
c′
y

{
1

2
‖ΨyWc′y − by‖2

2 + λy‖c′y‖1

}
(4.21)

for some λx, λy > 0. Moreover, in the case when λx = λy := λ, computing the above
estimates can be combined into a single optimization problem. Specifically, let c = [cx, cy]

T ,
b = [bx,by]

T , and A = diag{ΨxW,ΨyW} ∈ R2n×2M . Then,

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}
. (4.22)
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In this form, the problem (4.22) is identical to (1.4), in which case it can be solved by a
variety of available tools of convex optimization [27, 59].

The DCS algorithm augments classical CS by subjecting the minimization in (4.22) to
an additional constraint which stems from the fact that [38]

∂2φ

∂x ∂y
=

∂2φ

∂y ∂x
, (4.23)

which is valid for all twice continuously differentiable functions φ. Thus, in the discrete
setting, the above condition can be expressed using two partial differences matrices Dx and
Dy, in which case it reads

Dxfy = Dyfx. (4.24)

To further simplify the notations, let Tx and Ty be two coordinate-projection matrices,
which map the composite vector c into cx and cy according to Txc = cx and Tyc = cy,
respectively. Then (4.24) can be re-expressed in terms of c as

DyWTxc = DxWTyc (4.25)

or, equivalently,
Bc = 0, (4.26)

where B := DyWTx − DxWTy. Consequently, with the addition of the cross-derivative
constraint (4.26), DCS solves the constrained minimization problem given by

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖2

2 + λ‖c′‖1

}
, (4.27)

s.t. Bc′ = 0.

The problem (4.27) is an instance of (3.8) and can be solved through the sequence of
iterations produced by

c(t+1) = arg minc′

{
1
2
‖Ac′ − b‖2

2+

+λ‖c′‖1 + δ
2
‖Bc′ + p(t)‖2

2

}
p(t+1) = p(t) + δBc(t+1),

(4.28)

where p(t) is a vector of Bregman variables (or, equivalently, augmented Lagrange multi-
pliers) and δ > 0 is a user-defined parameter2.

2In this work, we use δ = 0.5.
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Once an optimal c∗ is recovered, it can be used to estimate the noise-free versions
of fx and fy as WTxc

∗ and WTyc
∗, respectively. These estimates can be subsequently

passed on to the fitting procedure to recover the values of φ, which, in combination with a
known aperture function A, provide an estimate of the PSF i as an inverse discrete Fourier
transform of the autocorrelation of P = Aeφ. Algorithm 1 below summarizes our method
of estimation of the PSF.

Algorithm 1: PSF estimation via DCS

1. Data: bx, by, and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators Ψx, Ψy, Dx, Dy,
Tx and Ty, preset the procedures of multiplication by A, AT , B and BT .

3. Phase recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28) until
convergence to result in an optimal c∗. Use the estimated (full) partial derivatives WTxc

∗

and WTyc
∗ to recover the values of φ over Ω.

4. PSF estimation: Using a known aperture function A, compute the inverse Fourier
transform of P = Aeφ to result in a corresponding ASF h. Estimate the PSF i as
i = |h|2.

The estimated PSF can be used to recover the original image u from v through the
process of deconvolution as explained in the section that follows.

4.3.2 Deconvolution

The acquisition model (4.1) can be rewritten in an equivalent operator form as given by

v = H{u}+ ν, (4.29)

where H denote the operator of convolution with the estimated PSF i. Note that, in this
case, the noise term ν accounts for both measurement noise as well as the inaccuracies
related to estimation error in i.

The deconvolution problem of finding a useful approximation of u given its distorted
measurement v can be addressed in many way, using a multitude of different techniques [71,
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83, 8, 6, 52]. In this work, we use the ROF model and recover a regularized approximation
of the original image u as

u∗ = arg min
u

{
1

2
‖H{u} − v‖2

2 + γ ‖u‖TV
}
, (4.30)

where ‖u‖TV =
∫ ∫
|∇u| dx dy denotes the total variation (TV) semi-norm of u.

The minimization problem in (4.30) can be solved using a magnitude of possible ap-
proaches. One particularly efficient way to solve (4.30) is to substitute a direct minimiza-
tion of the cost function in (4.30) by recursively minimizing a sequence of its local quadratic
majorizers [6]. In this case, the optimal solution u∗ can be obtained as the stationary point
of a sequence of intermediate solutions produced by{

w(t) = u(t) + µH∗
{
v −H{u(t)}

}
u(t+1) = arg minu

{
1
2
‖u− w(t)‖2

2 + γ ‖u‖TV
}
,

(4.31)

where H∗ is the adjoint of H and µ is chosen to satisfy µ > ‖H∗H‖. In this work, the TV
denoising at the second step of (4.31) has been performed using the fixed-point algorithm
of Chambolle [16]. The convergence of (4.31) can be further improved by using the same
FISTA algorithm of [6]. The resulting procedure is summarized below in Algorithm 2.

Algorithm 2: TV deconvolution using FISTA

1. Initialize: Select an initial value u(0); set y(0) = u(0) and τ (0) = 1

2. Repeat until convergence:

• w(t) = y(t) + µH∗
{
v −H{y(t)}

}
• u(t+1) = arg minu

{
1
2
‖u− w(t)‖2

2 + γ ‖u‖TV
}

• τ (t+1) = 0.5
(

1 +
√

1 + 4 (τ (t))2
)

• y(t+1) = u(t+1) + (τ (t)/τ (t+1))(u(t+1) − u(t))

In summary, Algorithms 1 and 2 represent the essence of the proposed algorithm for
hybrid deconvolution of short-exposure optical images. Next, experimental results are
provided which further support the value and applicability of the proposed methodology.
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4.4 Experiments

To demonstrate the viability of the proposed approach, its performance has been compared
against two reference methods. The first reference method used a dense sampling of the
phase (as it would have been the case with a conventional design of the SHI), thereby elim-
inating the need for a CS-based phase reconstruction. The resulting method is referred
below to as the dense sampling (DS) approach. Second, to assess the importance of incor-
poration of the cross-derivative constraints, we have used both classical CS and DCS for
phase recovery. In what follows, comparative results for phase estimation and subsequent
deconvolution are provided for all the above methods.

4.4.1 Phase Recovery

To assess the performance of the proposed and reference methods under controllable condi-
tions, simulation data was used. The random nature of atmospheric turbulence necessitates
the use of statistical methods to model its effect on a wavefront propagation. Specifically,
in this work, the effect of atmospheric turbulence was simulated based on the modified Von
Karman model [72]. This model is derived based on Kolmogorov’s theory of turbulence
which models atmospheric turbulence using temperature fluctuations [23]. In particular,
under some general assumptions on the velocity of turbulent medium and the distribution
of its refraction index, the Von Karman power spectrum density is given by

Q(t) = 0.033C2
n

e(−t2/t2m)

(t2 + t20)11/6
, (4.32)

where C2
n is the refractive-index and tm,t0 are chosen to match the high frequency and low

frequency behaviour of turbulence. The model of (4.32) can be used to generate random
realizations of the GPF phase, as described, e.g., in [66].

A typical example of the GPF phase φ is shown in subplot (a) of Fig. 4.3. In this case,
the size of the phase screen was set to be equal to 10 × 10 cm, while the sampling was
performed over a 128 × 128 uniform grid (which would have corresponded to the use of
16384 lenslets of a SHI). The corresponding values of the (discretized) partial derivatives
∂φ/∂x and ∂φ/∂y are shown in subplots (b) and (c) of Fig. 4.3, respectively.

The subsampling matrices Ψx and Ψy were obtained from an identity matrix I through
a random subsampling of its rows by a factor resulting in a required compression ratio r.
To sparsely represent the partial derivatives of φ, W was defined to correspond to a four-
level orthogonal wavelet transform using the nearly symmetric wavelets of I. Daubechies
with five vanishing moments [24] and periodic boundary condition.
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(a)

(b) (c)

Figure 4.3: An example of a simulated phase φ (a) along with its partial derivatives w.r.t.
x (b) and y (c).

To demonstrate the value of using the cross derivative constraint for phase reconstruc-
tion, the classical CS and DCS algorithms have been compared in terms of the mean squared
errors (MSE) of their corresponding phase estimates. The results of this comparison are
summarized in Fig. 4.4 for different compression ratios (or, equivalently, (sub)sampling
densities) and SNR = 40 dB.

As expected, one can see that DCS results in lower values of MSE as compared to clas-
sical CS, which implies a higher accuracy of phase reconstruction. Moreover, the difference
in the performances of classical CS and DCS appears to be more significant for lower sam-
pling rates, while both algorithms tend to perform similarly when the sampling density
approaches the DS case. Specifically, for the sampling density of r = 0.3, DCS results in
a ten times smaller value of MSE as compared to the case of classical CS, whereas both
algorithms have comparable performance for r = 0.83. This result suggests that, at higher
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Figure 4.4: MSE of phase reconstruction obtained with different methods as a function of
r. Here, the dashed and solid lines correspond to classical CS and DCS, respectively, and
SNR is equal to 40 dB.

compression rates, DCS is likely to result in more accurate reconstructions of the GPF
phase as compared to the case of classical CS.

A number of typical reconstruction results are shown in Fig. 4.5, whose left and right
subplots depict the phase estimates obtained using the classical CS and DCS algorithms,
respectively, for the case of r = 0.5. The error maps of the two estimates are shown
in subplot (c) and (d) of the same figure, which allows us to see the difference in the
performance of these methods more clearly. Also, a close comparison with the original
phase (as shown in subplot (a) of Fig. 4.3) reveals that DCS provides a more accurate
recovery of the original φ, which further supports the value of using the cross-derivative
constraints. In fact, exploiting these constraints effectively amounts to using additional
“measurements”, which are ignored in the case of classical CS.

As an additional comparison, Fig. 4.6 illustrates the convergence of the MSE as a
function of the number of iterations, for both classical CS and DCS algorithms. One can
see that DCS results in a substantially faster convergence as compared to classical CS. This
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(a) (b)

(c) (d)

Figure 4.5: (a) Phase reconstructed obtained by means of classical CS for SNR = 40 dB
and r = 0.5; (b) Phase reconstructed obtained by means of DCS for the same values of
SNR and r.; (c) and (d) Corresponding error maps for classical CS and DCS.

behaviour could be explained by considering the cross-derivative constraints exploited by
DCS to be effectively equivalent to noise-free measurements. To further investigate this
argument, Fig. 4.7 compares the convergence of the cross-derivative fidelity term ‖Dyfx −
Dxfy‖2 for both methods under comparison. One can see that, in the case of DCS, this
term converges considerably faster than in the case of classical CS, which improves to the
overall speed of convergence of DCS, making it superior to that of classical CS.

To investigate the robustness of the compared algorithms towards measurement noises,
their performances have been compared for a range of SNR values. The results of this
comparison are summarized in Fig. 4.8. Since the cross-derivative constraints exploited
by DCS effectively restrict the feasibility region for an optimal solution, the algorithm
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Figure 4.6: Convergence analysis of phase reconstruction obtained with different methods
as a function of iterations. Here, the dashed and solid lines correspond to classical CS and
DCS, respectively, SNR = 40, and r = 0.5.

exhibits an improved robustness to the effect of additive noise as compared to the case of
classical CS. This fact represents another advantage of incorporating the cross-derivative
constraints in the process of phase recovery.

From the viewpoint of statistical estimation theory, the data fidelity terms in (4.27)
suggests a Gaussian noise model, which may not be natural for all optical systems. In fact,
this is the Poisson noise model, which is considered to be a more standard one in optical
imagery. It turns out, however, that the use of the cross-derivative constraints by DCS
makes it robust towards the inconsistency in noise modeling. This argument is supported
by the results of Fig. 4.9, which summarizes the values of MSE obtained by classical CS
and DCS reconstructions for different levels of Poisson noise. One can see that, in this case,
the MSE values are comparable to the Gaussian case, while being substantially smaller in
comparison to the CCS-based reconstruction.

It should be taken into account that, although the shape of φ does not change the
energy of the PSF i, it plays a crucial role in determining its spatial behaviour. In the
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Figure 4.7: Convergence analysis of derivative constraint obtained with different methods
as a function of iterations. Here, the dashed and solid lines correspond to classical CS and
DCS, respectively, SNR = 40, and r = 0.5.

section that follows, it will be shown that even small inaccuracies in reconstruction of φ
could be translated into dramatic difference in the quality of image deconvolution.

4.4.2 Deblurring

As a next step, the phase estimates obtained using the CCS- and DCS-based methods for
r = 0.5 were combined with the aperture function A to result in their respective estimates of
the PSF i. These estimates were subsequently used to deconvolve a number of test images
such as “Satellite”, “Saturn”, “Moon” and “Galaxy”. All the test images were blurred with
an original PSF, followed by their contamination with additive Gaussian noise of different
levels which is controlled by the variance of noise distribution. As an example, Fig. 4.10
shows the “Satellite” image (subplot (a)) along with its blurred and noisy version (subplot
(b)).

Using the PSF estimates, the deconvolution was carried out using the method detailed
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Figure 4.8: MSE of phase reconstruction obtained with different methods as a function of
SNR. Here, the dashed and solid lines correspond to classical CS and DCS, respectively,
and r = 0.5.

in [16]. For the sake of comparison, the deconvolution was also performed using the PSF
recovered from dense sampling (DS) of φ. Note that this reconstruction is expected to
have the best accuracy, since it neither involves undersampling nor requires a CS-based
phase estimation. All the deconvolved images have been compared with their original
counterparts in terms of PSNR as well as of the structural similarity index (SSIM) of [90],
which is believed to be a better indicator of perceptual image quality [89]. The resulting
values of the comparison metrics are summarized in Table 1, while Fig. 4.11 shows the
deconvolution results produced by the CCS- and DCS-based methods.

The above results demonstrate the importance of accurate phase recovery, where even
a relatively small phase error can have a dramatic effect on the quality of image deconvo-
lution. Under such conditions, the proposed method produces image reconstructions of a
superior quality as compared to the case of classical CS. Moreover, comparing the results of
Table 1, one can see that DS only slightly outperforms DCS in terms of PSNR and SSIM,
while in many practical cases, the difference between the performances of these methods
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Figure 4.9: MSE of phase reconstruction obtained with different methods as a function
of SNR where the noise model is Poisson. Here, the dashed and solid lines correspond to
classical CS and DCS, respectively, and r = 0.5.

are hard to detect visually.

Finally, Fig. 4.12 shows the results of CCS-based and DCS-based image reconstruction
for the case of Poisson noise contamination. A close comparison of these results reveals
a noticeable degradation in the performance of the CCS-based algorithm, while the DCS-
based results are virtually indistinguishable from those obtained in the Gaussian case.

4.5 Summary

In this chapter, the applicability of the proposed scheme to the practical problem of image
deblurring in optical imaging was studied. It was shown that, in the presence of atmo-
spheric turbulence, the phase φ of the GPF P = Aeφ is a random function, which needs
to be measured using adaptive optics. To simplify the complexity of the latter, a CS-
based approach was proposed. As opposed to classical CS, however, the proposed method
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(a) (b)

Figure 4.10: Satellite image (a) and its blurred and noisy version (b).

performs phase reconstruction subject to an additional constraint, which stems from the
property of ∇φ to be a potential field. The DCS algorithm has been shown to yield phase
estimates of substantially better quality as compared to the case of classical CS. our main
focus has been on simplifying the structure of the SHI through reducing the number of its
wavefront lenslets, while compensating for the effect of undersampling by means of DCS.
The resulting phase estimates were used to recover their associated PSF, which was sub-
sequently used for image deconvolution. It was shown that the DCS-based estimation of
φ with r = 0.3 results in image reconstructions of the quality comparable to that of DS,
while substantially outperforming the results obtained with classical CS.
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(a) (b)

Figure 4.11: (a) Image estimate obtained with the CCS-based method for phase recov-
ery (SSIM = 0.781); (b) Image estimate obtained with the DCS-based method for phase
recovery (SSIM = 0.917).

(a) (b)

Figure 4.12: (a) Image estimate obtained with the CCS-based method for phase recov-
ery (SSIM = 0.732); (b) Image estimate obtained with the DCS-based method for phase
recovery (SSIM = 0.888) where the noise model is assumed to be Poisson.
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Table 4.1: SSIM and PSNR comparisons of phase recovery results
PSNR comparison (dB)) SSIM comparison

Image Noise std Blurred DS CS DCS Blurred DS CS DCS

10−5 14.06 27.97 17.06 27.42 0.200 0.730 0.349 0.674
Satellite 0.001 14.06 27.75 16.93 27.22 0.200 0.720 0.344 0.667

0.003 14.06 25.97 16.54 25.56 0.199 0.554 0.306 0.519
0.005 14.05 22.43 15.63 22.22 0.197 0.269 0.206 0.263
10−5 17.78 31.49 23.42 31.02 0.226 0.688 0.424 0.656

Saturn 0.001 17.78 31.08 23.38 30.65 0.226 0.66 0.416 0.641
0.003 17.78 28.50 22.80 28.30 0.226 0.506 0.348 0.483
0.005 17.78 23.89 20.55 23.72 0.175 0.228 0.212 0.223
10−5 19.98 25.06 22.36 25.00 0.512 0.645 0.539 0.643

Moon 0.001 19.97 25.04 22.38 24.99 0.512 0.642 0.538 0.64
0.003 19.97 24.83 22.30 24.78 0.509 0.607 0.493 0.604
0.005 19.97 21.76 19.73 21.73 0.504 0.552 0.488 0.549
10−5 18.79 23.58 21.16 23.52 0.257 0.493 0.348 0.490

Galaxy 0.001 18.79 23.60 21.12 23.54 0.257 0.495 0.347 0.491
0.003 18.78 23.38 20.64 23.32 0.257 0.501 0.326 0.501
0.005 18.78 20.93 18.46 20.86 0.254 0.397 0.224 0.393
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Chapter 5

Application: Surface Reconstruction
in Gradient Field

Surface reconstruction from measurements of spatial gradient is an important computer
vision problem with applications in photometric stereo and shape-from-shading. In the
case of morphologically complex surfaces observed in the presence of shadowing and trans-
parency artifacts, a relatively large number of gradient measurements may be required
for accurate surface reconstruction. Consequently, due to hardware limitations of image
acquisition devices, situations are possible in which the available sampling density might
not be sufficiently high to allow for recovery of essential surface details. In this section the
above problem is resolved by means of derivative compressed sensing (DCS). The results
of this study are supported by a series of numerical experiments.

5.1 Derivative Compressed Sensing for Surface Re-

covery

The notions of photometric stereo (PS) and shape-from-shading (SFS) [81] are standard in
computer vision, with their practical applications ranging from video surveillance to surface
quality assessment. In both PS and SFS, a 3-D surface of interest is recovered from the
measurements of its spatial gradient. In particular, under some reasonable assumptions on
the light source and the object reflection properties, the unit normal to such a surface can
be calculated from its grey-scale representation. Consequently, the normal can be used to

55



recover its corresponding partial derivatives, followed by reconstructing an approximation
of the original surface through the solution of a Poisson equation.

A practical difficulty in implementation of the above-mentioned techniques stems from
the necessity to deal with relatively large sets of gradient data. Typically, such dense
data sets are required to allow for accurate reconstruction of fine surface details, which
are often occluded due to shadowing and transparency artifacts. In such cases, improving
the acquisition requirements of the hardware in use through reducing the sampling density
would unavoidably produce aliasing artifacts. Fortunately again we can overcome the
above limitation, while allowing for accurately recovering digital signals from their sub-
Nyquist measurements by means of compressive sensing. CS has already been used to tackle
computer vision problems [11]. In this section, we introduce a method for reconstruction
of 3-D surfaces from the sub-critical (incomplete) measurements of their spatial gradients.

Gradient space is the 2-D space of all (zx, zy) points. It is convenient to represent surface
orientation in this space. In practice the gradient field is determined via the reflectance
map R(zx, xy)[91], which in turn is measured empirically. The reflectance map can be
viewed as a 2-D image i(x, y), where the image intensity is a function of zx and zy.

For Lambertian surfaces [91], the light is reflected in a given direction only based on
the surface orientation. If the the measuring camera is placed at infinity (a single distant
point source), the reflectance map based on Lambertian shading rule is given as [91],

R(zx, zy) =
ρ(1 + zxps + zyqs)√

1 + z2
x + z2

y

√
1 + p2

s + qsy
(5.1)

where ρ is a reflectance factor.

The idea for both PS and SFS is to vary the viewing direction for measuring the x and
y components of the gradient field of a surface, z(x, y), at discrete points. Although the
surface orientation is fixed, this will affect the reflectance map. For known ρ at least two
views are required for determining zx and zy. But due to the nonlinearity in (5.1), more
than one solution may exist. To emit such extra solutions, at least three measurements
with three different light directions are required to solve uniquely for zx and zy. In practice,
for improving the measurements, N images i(x, y) = R(zx, zy) may be used (N > 3). These
images result in the following equation for each point (xi, xj), i1(j, i)

...
iN(j, i)

 =

d1x d1y d1z
...

...
...

dnx dny dnz


n̂xn̂y
n̂z

 (5.2)
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where (dkx, dky, dkz) is the kth light ray direction and n̂T = [n̂x, n̂y, n̂z]
T is the surface

normal vector. This equation in matrix form can be written as:

I = Dn̂, (5.3)

and the least square solution is given by

n̂ = D+I, (5.4)

where D+ denotes Moore pseudo-inverse of D. Having the surface normal vector, the x
and y components of the gradient field can be computed: zx = n̂x/n̂z and zy = n̂y/n̂z.
Consequently, over the whole surface the following measurements are obtained:

Zx(j, i) =
∂z

∂x
|(x,y)=(xi,yj)

Zy(j, i) =
∂z

∂y
|(x,y)=(xi,yj)

(5.5)

For accurate surface reconstruction a high sampling density for the gradient field is re-
quired [91]. The sampling density is limited by the measuring device and there may be
situations in which the sampling density is not sufficient for recovery of the surface details.
This limitation may be resolved by applying DCS to this reconstruction problem. Having
the partial measurements of matrices Zx and Zy, one can obtain vectors bx and by via
lexicographical column-stacking and similar to previous application use Algorithm 3 to
solve for zx and zy. Analogously this is equivalent with increasing the sampling density of
the gradient field without improving the hardware device.

Algorithm 3 summarizes DCS for surface reconstruction. In the final stage of Algorithm
3, it is required to solve a Poisson equation to yield the original source (the surface). Several
approaches such as least square (LS) [35], algebraic [1], and l1-minimization [28] have been
proposed in the literature for this purpose. We use LS approach [35] in the current study
for solving the Poisson equation.

5.2 Experimental Results

Simulated surfaces from [35] were used to assess the performance of the proposed method.
The algorithm was tested over three surfaces known as Sphere, Peak-Valley, and Peak-
Ramp. The surface lattices size is chosen 64×64, δ = 0.5, and λ = 0.001. The subsampling
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Algorithm 3: Derivative Compressive Sampling for Surface Reconstruction

1. Data: bx, by, and λ > 0

2. Initialization: For a given transform matrix W and matrices/operators Ψx, Ψy, Dx, Dy,
Tx and Ty, preset the procedures of multiplication by A, AT , B and BT .

3. Gradient field recovery: Starting with an arbitrary c(0) and p(0) = 0, iterate (4.28) until
convergence to result in an optimal c∗. Use the estimated (full) partial derivatives WTxc

∗

and WTyc
∗ to recover the values of zx and zy.

4. Source recovery: Use a Poisson solver to reconstruct the original source from its gradient
field

Table 5.1: Comparisons of surface recovery results
Image Sphere Peak-Valley Ramp-Peak
SNR (dB) 10 15 20 25 10 15 20 25 10 15 20 25

MSE comparison
DS 0.0017 0.0017 0.0017 0.0017 0.0027 0.0013 0.0002 0.0001 0.0443 0.0139 0.0051 0.0033
CS 0.0057 0.0056 0.0055 0.0055 0.0210 0.0114 0.0103 0.0091 0.3773 0.2239 0.1201 0.0786
DCS 0.0022 0.0019 0.0018 0.0017 0.0071 0.0023 0.0006 0.0002 0.2464 0.0633 0.0157 0.0053

matrices Ψx and Ψy were obtained from an identity matrix I through a random subsam-
pling of its rows by a factor, r, resulting in a required partial sampling ratio. For sparse
representation basis, again W was selected to be a four-level orthogonal wavelet transform
using the nearly symmetric wavelets of Daubechies with five vanishing moments.

For the purpose of comparison we have compared our algorithm with standard dense
sampling (DS) and classical CS approaches in terms of MSE. The results of this comparison
are summarized in Table 1 for different levels of noise and partial sampling ratio of r = 0.5
for classical CS and DCS. As expected, one can see that DCS results in substantially lower
values of MSE as compared to classical CS, which implies a higher accuracy of surface
reconstruction. As expected DS outperforms both methods but the performance of DCS
is comparable and confirms the possibility of simplifying the hardware device using our
approach without substantial reduction in reconstruction quality. The reconstruction result
for Peak-Ramp surface is given in Fig. 5.1 for SNR = 20dB. Visual inspection on images,
specially at the surface edges, confirms that DCS provides a result comparable with that
of DS reconstruction. As it can be detected CS reconstruction results in smoothed edges in
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(a) (b)

(c) (d)

Figure 5.1: Peak-Ramp surface (a) and its reconstructed versions using (b) DS, (c) classical
CS, and (d)DCS for SNR = 20dB.

the ramp part of the surface, manifesting severe reduction of high frequency energy, which,
by contrast, is well preserved in DCS reconstruction.

In another set of experiment we studied robustness of the proposed method towards
noise addition. The cross-derivative constraints exploited by DCS effectively restricts the
feasibility region for an optimal solution. Moreover, as explained in [38], the constraint
Bc′ = 0 in (4.27), can be considered as extra measurements of the sparse source. These
measurements are noise free and consequently one can conclude that if we use this con-
straint, the reconstruction algorithm will become more robust towards the noise power.
To investigate the robustness of the proposed algorithms towards measurement noises, its
performances has been compared for a range of SNR values (as a measure for noise power)
with classical CS. The results of this comparison are summarized in Fig. 5.2. As expected
in both cases the reconstruction quality degrades with decreasing SNR, but this depen-
dency is more critical for classical CS, which results in steeper graph in Fig. 5.2. This
fact represents another advantage of incorporating the cross-derivative constraints in the
process of surface recovery.
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Figure 5.2: MSE of surface reconstruction as a function of SNR. Here, the dashed and
solid lines correspond to classic CS and DCS, respectively, and r = 0.5.

5.3 Summary

In this chapter, the applicability of the proposed scheme to the practical problem of sur-
face reconstruction was demonstrated. To simplify the measuring devices, a DCS-based
approach has been proposed. Experiments confirm the source estimates by DCS have
better quality as compared to the case of classical CS and comparable as to the case of
dense sampling. One direction for future work is applying the algorithm in designing the
sampling devices for surface reconstruction. Applying the algorithm in the sampling device
structure will improve the capability of reconstructing surface details in the presence of
low density measurements.
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Chapter 6

Conclusions and Future Work

In this thesis we studied compressive sensing in the presence of side information, where we
have information about the feasible region in form of an affine space. Based on spherical
section property it was shown that the solution to such problems is unique and stable
towards noise. In addition, an efficient algorithms was provided, which incorporates the
side information to solve for better estimation of the source signal. Experiments confirm
that the proposed algorithm converges to the solution faster and results in a more accurate
estimation. Moreover, it is robust towards the noise power and also the noise model. The
presented scheme was applied to practical problem: image deblurring in optical imaging
and surface reconstruction. In both cases, experimental results confirm the usefulness
and effectiveness of the proposed scheme. These results indicate that we can apply the
proposed algorithm to improve the sampling devices in such applications without improving
the hardware. Consequently we can consider this tool as a low-cost technique compared to
hardware improvement. For practical purposes one can also take benefit of this algorithm
to modify sampling devices. Instead of working with the measurements of the source signal,
their linear combination can be used, e.g., Bernoulli weights. The resulting sensing basis
might have smaller coherence with respect to the basis of wavelets, thereby offering the
possibility of more accurate and stable reconstruction.

While the proposed method offers a practical solution to the problem of compressed
sensing in the presence of side information in form of an affine space, some interesting
questions about the theoretical aspects still lay open. In particular, the question of theo-
retical performance of CS in the presence of side information on the source signal needs to
be addressed through future research. For instance, it is important to measure how much
we can decrease the required measurements for accurate reconstruction if we use the side
information. Finding answers for such questions is an interesting topic for future research.
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