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Abstract

The probabilistic safety assessment of engineering systems involving high-consequence
low-probability events is stochastic in nature due to uncertainties inherent in time
to an event. The event could be a failure, repair, maintenance or degradation as-
sociated with system ageing. Accurate reliability prediction accounting for these
uncertainties is a precursor to considerably good risk assessment model.

Stochastic Markov reliability models have been constructed to quantify basic
events in a static fault tree analysis as part of the safety assessment process. The
models assume that a system transits through various states and that the time
spent in a state is statistically random. The system failure probability estimates
of these models assuming constant transition rate are extensively utilized in the
industry to obtain failure frequency of catastrophic events. An example is core
damage frequency in a nuclear power plant where the initiating event is loss of
cooling system. However, the assumption of constant state transition rates for
analysis of safety critical systems is debatable due to the fact that these rates do
not properly account for variability in the time to an event. An ill-consequence
of such an assumption is conservative reliability prediction leading to addition of
unnecessary redundancies in modified versions of prototype designs, excess spare
inventory and an expensive maintenance policy with shorter maintenance intervals.
The reason for this discrepancy is that a constant transition rate is always associated
with an exponential distribution for the time spent in a state.

The subject matter of this thesis is to develop sophisticated mathematical mod-
els to improve predictive capabilities that accurately represent reliability of an en-
gineering system. The generalization of the Markov process called the semi-Markov
process is a well known stochastic process, yet it is not well explored in the relia-
bility analysis of nuclear power plant systems. The continuous-time, discrete-state
semi-Markov process model is a stochastic process model that describes the state
transitions through a system of integral equations which can be solved using the
trapezoidal rule. The primary objective is to determine the probability of being in
each state. This process model ensures that time spent in the states can be rep-
resented by a suitable non-exponential distribution thus capturing the variability
in the time to event. When exponential distribution is assumed for all the state
transitions, the model reduces to the standard Markov model. The exponential
distribution is characterized by memoryless property and hence is not able to dis-
tinguish between a newly installed system and a system that has already been in
service. The primary rationale to move to semi-Markov process model is the ability
to address this shortcoming in the Markov process model.

This thesis illustrates the proposed concepts using basic examples and then
develops advanced case studies for nuclear cooling systems, piping systems, digital
instrumentation and control (I&C) systems, fire modelling and system maintenance.
The first case study on nuclear component cooling water system (NCCW) shows
that the proposed technique can be used to solve a fault tree involving redundant
repairable components to yield initiating event probability quantifying the loss of
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cooling system. The time-to-failure of the pump train is assumed to be a Weibull
distribution and the resulting system failure probability is validated using a Monte
Carlo simulation of the corresponding reliability block diagram. The main con-
tribution showcased in this application is the ability to solve a multi-state system
composed of repairable and non-repairable binary state components assuming non-
exponential failure times. The only other closest tool that can handle this config-
uration is Monte Carlo simulation which requires intensive iterations and variance
reduction techniques.

Nuclear piping systems develop flaws, leaks and ruptures due to various un-
derlying damage mechanisms. This thesis presents a general model for evaluating
rupture frequencies of such repairable piping systems. The proposed model is able
to incorporate the effect of ageing related degradation of piping systems. Time de-
pendent rupture frequencies are computed and the influence of inspection intervals
on the piping rupture probability is investigated. The Markov process model is
unable to assume non-exponential profile for flaw growth and probabilistic fracture
mechanics (PFM) depend on intensive simulations. Hence, semi-Markov process is
shown to be better suitable in the context of modelling piping system failures.

There is an increasing interest worldwide in the installation of digital instru-
mentation and control systems in nuclear power plants. The main feedwater valve
(MFV) controller system is used for regulating the water level in a steam generator.
An existing Markov model in the literature is extended to a semi-Markov model to
accurately predict the controller system reliability. The proposed model considers
variability in the time to output from the computer to the controller with intrinsic
software and mechanical failures. Safety critical systems are passive systems in the
sense that these are called on demand for a short mission time to mitigate catastro-
phes. Hence mission unreliability is a prominent reliability index to be determined
in order to evaluate the safety effectiveness of these systems. The mission unre-
liability measure is different from system failure probability in that it takes in to
consideration how long the system has already been in service before the system is
susceptible to failure with in the mission time. It is proved in this case study that
semi-Markov process model is able to effectively differentiate both the indices while
Markov process model fails to do so due to memoryless property of exponential
distributions.

State-of-the-art time-to-flashover fire models used in the nuclear industry are
either based on conservative analytical equations or computationally intensive simu-
lation models. The proposed semi-Markov based case study describes an innovative
fire growth model that allows prediction of fire development and containment in-
cluding time to flashover. The model considers variability in time when transiting
from one stage of the fire to the other. The proposed model is a reusable framework
that can be of importance to product design engineers and fire safety regulators.

Operational unavailability is at risk of being over-estimated because of assuming
a constant degradation rate in a slowly ageing system. In the last case study, it is
justified that variability in time to degradation has a remarkable effect on the choice
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of an effective maintenance policy. The proposed model is able to accurately predict
the optimal maintenance interval assuming a non-exponential time to degradation.
Further, the model reduces to a binary state Markov model equivalent to a classic
probabilistic risk assessment model if the degradation and maintenance states are
eliminated.

In summary, variability in time to an event is not properly captured in ex-
isting Markov type reliability models though they are stochastic and account for
uncertainties. Secondly, the memoryless property of exponential distribution is a
hindrance in modelling failure of ageing systems. The proposed semi-Markov pro-
cess models are easy to implement, faster than intensive simulations and accurately
model the reliability of engineering systems.
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Chapter 1

Introduction

1.1 Engineering Reliability and Nuclear Power

Applications

A key objective of Life Cycle Management (LCM) is the development of a complete

life cycle approach for the maintenance and ageing management of systems, struc-

tures, and components (SSCs) important to plant operation and safety. To reduce

the probability of system failures that can render a safety system unavailable, plant

operators often take the approach of periodic inspections and repair if anything is

found wrong.

The Canadian nuclear regulator states that though nuclear power plants were

highly reliable in the early years, they had to be increasingly taken offline later to

counter the effects of degradation and subsequently had to be shut down for refur-

bishment five to fifteen years earlier than the expected design life (Blahoianu et al.,

2011). Calling for frequent inspections that require the system to be taken offline is

clearly not an optimal approach from a cost viewpoint, especially if predictions of

failure can be improved. As a result, there is an increasing interest in probabilistic

methods to model several forms of material degradation such as flow-accelerated

corrosion, delayed-hydride cracking and stress-corrosion cracking for optimizing in-

service inspection programs (Fleming, 2004; Blahoianu et al., 2011).

The wide acceptance of risk-informed decision making approaches for manag-

ing safety critical infrastructure (Kafka, 2008) coupled with the availability of in-

service operating experience in the form of databases is resourceful in advancing

the sophistication of probabilistic models to accurately predict system reliability.

1



Many authors have expressed the need to go beyond conservative approaches and

develop advanced models to account for dynamic behaviour (account for time de-

pendence) and complex interactions (e.g., hardware-software) among system com-

ponents (Aldemir et al., 2007; Boudali et al., 2007; Rao et al., 2009; Distefano and

Puliafito, 2009; Brissaud et al., 2011). Though there has been introduction of new

formalisms to represent dynamic dependence through dynamic fault trees (DFT),

dynamic reliability block diagrams (DRBD), binary decision diagrams (BDD), dy-

namic flowgraph methodology (DFM) and stochastic petri nets, the primary way

of quantifying the models has been simulation(Rao et al., 2009; Ibáñez-Llano et al.,

2010; Chiacchio et al., 2011; Al-Dabbagh and Lu, 2010; Škňouřilová and Brǐs, 2008).

The key objective of this thesis is to develop advanced stochastic models that by-

pass the need for simulation and improve time-dependent reliability of engineering

systems while taking in to account the susceptible nature of systems to ageing re-

lated damage mechanisms. With this motivation, the next section gives an overview

of stochastic processes.

R1: May 26, 2010 

19 

(e) The system reliability analysis is to analyze the events that could cause a failure of 
the equipment etc. used as the branch point of the ET, and to assess the failure 
probability (non-reliability) as a system using parameters, such as an equipment failure 
rate, which are obtained from operating experience database etc. 

(f) The development of the database is to accumulate the data on failure, trouble, scram 
event, etc. obtained from operating experiences as database and to derive parameters 
used by PSA based on the database, such as initiating events frequencies and equipment 
failure rates. 

(g) The human-reliability analysis is to identify human errors to be taken into 
consideration by analyzing operation and maintenance activities related to safety 
functions, and to assess their probabilities. 

(h) The quantification of accident sequences is to assess the frequency of occurrence of 
each core damage accident sequence and the core damage frequency (CDF) as their sum 
by inputting the frequencies of initiating events and the results of system reliability 
analysis or HRA etc. as the branch probabilities of ET. 

(i) The uncertainty analysis and sensitivity analysis is to study the factors and 
magnitude of uncertainties accompanying the model and data used for the PSA, and 
based on the results, to assess quantitatively the uncertainties accompanying the 
information on CDFs, frequencies of occurrence of accident sequences and contributors 
etc. obtained as the PSA results and to analyze their dominant factors. 

(j) The documentation is to compile procedures, models, data, results of assessment, etc. 
used by the PSA in a report etc. in order to use them for review, application, updating, 
quality assurance etc. of the PSA. 

 

Figure 8 Workflow of level 1 PSA  

Examination of plant configuration and characteristics  

Selection of initiating events and 
assessment of their frequencies 

Quantification of accident sequences  

Uncertainty analysis and 
sensitivity analysis  

Documentation  

Human reliability 
analysis 

System reliability 
analysis 

Development 
of database 

Establishment of success criteria  

Analysis of accident sequences  

Figure 1.1: System reliability analysis in PSA Level 1 Workflow(JNES, 2011)

The Probabilistic Safety Assessment (PSA) is a comprehensive methodology to

(a) identify event combinations that could potentially lead to severe accidents (b)

determine the probability of occurrence of each event combination and (c) assess the

consequences. The US Nuclear Regulatory Commission (USNRC) initially coined

and continues to use the term Probabilistic Risk Assessment (PRA) whereas the

term PSA is used in the international nuclear community. In other fields Quanti-

tative Risk Assessment (QRA) is in widespread use (Garrick and Christie, 2008).
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Level 1 PSA analyzes contribution of system reliability to frequency of core dam-

age (Figure 1.1), Level 2 PSA determines the frequency of radioactive release and

Level 3 PSA estimates risk to public and the environment. The terms reliabil-

ity, availability and safety should not be confused. Safety deals with consequences

of system failure. A reliable system may not be safe and a safe system may not

be reliable (Leveson, 2011). Reliability is used in the context of non-repairable

systems or systems whose first failure after installation or repair completion is of

importance whereas availability is defined for repairable systems. When there is no

repair involved in the system, availability reduces to reliability and the steady-state

availability represents the long-run performance of a repairable system.

1.2 Introduction to Stochastic Processes

The states of a system are characterized by a continuous-time stochastic process

denoted by {X(t), t ≥ 0}, a sequence of random variables which take a set of values

in a set S, called the state space of the stochastic process. For example, X(t) may

represent one of the states S={working=3, minor repair=2, major repair=1} of

a repairable system at time t. The aim of the study of stochastic processes is to

characterize the statistical behaviour of the system and hence to predict the future

of the system. A sample path is a record of how a process evolved in one particular

instance. A typical sample path of a continuous-time, discrete space stochastic

process is shown in Figure 1.2. The set of all possible sample paths of a stochastic

process is called the sample space of the stochastic process. The following are the

 

 

 

 

 

 

Y0 

Y1 

Y2 

Y3 

S0 S1 S2 S3 
t 

X(t) 

Figure 1.2: A typical sample path of a continuous-time, discrete space stochastic
process

most common and important stochastic processes:
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1. Markov Processes Consider the time points 0 ≤ t0 < t1 < ... < tn <

tn+1 and the corresponding states i0, i1, ...in+1 the process was in. Then, the

Markov property is given by:

P (X(tn+1) = in+1|X(tn) = in, X(tn−1) = in−1, ..., X(t0) = i0)

= P (X(tn+1) = in+1|X(tn) = in) (1.1)

i.e. the conditional transition probability distribution of future states of the

process, given the present state and all past states, depends only upon the

present state and not on any past states. Such a stochastic process X(t)

satisfying the Markov property is said to be a Markov process. If these tran-

sition probabilities do not change over time, then the process is the time-

homogeneous Markov process:

Pr{X(t+ s) = j|X(s) = i} = P{X(t) = j|X(0) = i} (1.2)

Markov process model is a stochastic state-space based approach to solv-

ing system reliability problems(Dhillon and Yang, March 1997; Xing et al.,

1996). This technique takes all possible system dynamics in to consideration

and also offers flexibility of evaluating system reliability as well as availability

of repairable systems. However, it suffers from state explosion i.e., as the

number of system components and their failure modes increase, there is an

exponential increase in system states, making the resulting reliability model

more difficult to analyze (Pukite and Pukite, 1998). For example, if the sys-

tem consists of n different components, then the resulting number of system

states is 2n. Thus, even for a relatively simple system, the resulting Markov

model may contain an extremely large number of states. Researchers sought

approximation methods like state merging and lumping to contain the prob-

lem(Xing et al., 1996). The Markov process model assumes that failure and

repair time distributions always follow an exponential distribution which is

associated with constant state transition rates. The method has found a class

of applications that model ageing related degradation phenomena to support

risk-informed decision making programs(Fleming, 2004; Vesely, 1993).

2. Poisson Processes The stochastic process N(t) = N(0, t) representing the

number of events in the interval (0,t) having a Poisson distribution with

parameter λ as the mean occurrence rate of the events is called a Poisson
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process. Poisson process is a point process given by:

P (N(t) = n) = e−λt
(λt)n

n!
(1.3)

For example, N(t) may represent the number of failed machines at time t.

3. Renewal Processes If the interval between the point events (example: two

failure events) are independent and identically distributed random variables,

the process formed by the sequence of these random variables X(t) = {x =

t1, x = t2 − t1, ...} is called a renewal process. The name renewal process

is motivated by the fact that every time there is an occurrence the process

starts all over again. This kind of process can be used to model a sequence

of failures of a machine in continuous time.

An alternating renewal process consists of two types of independent and iden-

tically distributed random variables alternating with each other. This process

is proved to be amenable to repairable systems, with one distribution for suc-

cessful operation and the other for periods of repair. Since the process does

not restrict itself to one particular distribution, this process is a generalization

of the Poisson process.

A complex engineering system composed of components can be graphically

represented as a Reliability Block Diagram (RBD) and quantitatively eval-

uated based on probability rules. When all the components are repairable,

the alternating renewal process (Birolini, 2007) emerged as a powerful tool

in dealing with system risk and reliability analysis. Its application to infras-

tructure asset management was explored by Pandey et al. (2008). In this

stochastic method, each component is assumed to alternate between failures

and repairs. Time-to-failure and time-to-repair are treated as independent

random variables following arbitrary distributions. Availability results of the

components based on this theory are integrated at the system level using

probability rules. Since each component is individually assessed, this method

does not take in to consideration all the collective dynamics that a system

undergoes during its life-span. Apart from alternating between failures and

repairs, a component may go through gradual degradation. It may not fail

only due to sudden random occurrence. In such a case other state-space based

process models are preferred.

4. Semi-Markov Processes A sequence of bivariate random variables {(Yn, Sn), n ≥
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0} is called a Markov renewal sequence (Kulkarni, 1995) if:

(a) S0 = 0, Sn+1 ≥ Sn;Yn ∈ {0, 1, 2, ...}, and

(b) for all n ≥ 0,

P{Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i, Sn, Yn−1, Sn−1, ..., Y0, S0}
= P{Yn+1 = j, Sn+1 − Sn ≤ x|Yn = i}
= P{Y1 = j, S1 ≤ x|Y0 = i} (1.4)

where the system is being observed at times S0 = 0, S1, S2, ... etc. and

Yn is the observation (state) at time Sn.

In addition to the time-homogeneous Markov property, the Markov renewal

sequence also emphasizes on the time spent in the state.

A continuous-time stochastic process {X(t), t ≥ 0} with countable state-space

S is said to be a semi-Markov process if

(a) it has piecewise constant, right continuous sample paths, and

(b) {(Yn, Sn), n ≥ 0} is a Markov renewal sequence, where Yn = X(Sn+)

A semi-Markov process reduces to an alternating renewal process when the

number of states is limited to two and reduces to a renewal process when there

is only one state in the semi-Markov model. Semi-Markov process model is

based on Markov Renewal theory and brings together the features of renewal

theory and Markov chains i.e., this technique derives the possibility of as-

suming arbitrary distributions for transition time from renewal theory and

the ability to think beyond binary states from Markov process model. This

method also inherits the penalties of both the parent techniques. Renewal

method is based on solving a system of integral equations involving computa-

tionally resource intensive convolution operations. From the Markov process

model, the semi-Markov approach inherits the state explosion problem.

5. Markov Renewal Processes The Markov renewal processes (MRP) are

equivalent to semi-Markov process (SMP) (Nakagawa and Osaki, 1976) al-

lowing finitely many states in the model with arbitrary waiting time distri-

butions. While the objective of the latter is to determine the probability of

being in a state, the former yields the expected number of visits to a state
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(Birolini, 2007):

Ni(t) = number of transitions in state Zi during (0, t] (1.5)

An application of this process model is to determine the expected number of

visits to the system failure state in a repairable system(Nakagawa and Osaki,

1975a).

1.3 Research objectives

The objectives of the thesis are:

1. Formulate Markov and semi-Markov process models for system reliability

analysis

2. Compare the Markov process model with fault tree method for system relia-

bility analysis

3. Develop the idea of modularized semi-Markov models to eliminate state ex-

plosion using generating function and simple probability rules.

4. Validate results of the proposed semi-Markov process models using Monte-

Carlo reliability block diagram and process simulations whichever appropriate

in the context.

5. Apply the previously developed ideas to practical case studies.

1.4 Thesis organization

The thesis is divided in to seven chapters including the present chapter. Chapter

2 reviews the Markov process model to obtain time-dependent and steady state

system reliability. Techniques to determine transition rates using event data and

Bayesian techniques is discussed. Further, the Markov reward model is reviewed

to derive mean number of failures and the mean time to failure. This chapter

introduces the Nuclear Component Cooling Water (NCCW) system and models its

shutdown initiating event frequency using fault tree analysis. This chapter analyzes

the NCCW problem from a Markovian perspective.
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In chapter 3, semi-Markov process model is presented as an extension to Markov

process model. After literature review specific to this chapter, semi-Markov process

is compared to the Markov process. This is followed by model formulation and

computation of the reliability indices. Partial closed form solutions are derived

when holding time is assumed to be Weibull distributed. While appreciating the

idea of non-exponential holding times, practical difficulties in dealing with multiple

failures and large systems is discussed. Methods of finding steady state solution and

simulation of the process are discussed. For downsizing the models, state reduction

technique is introduced. In quest for faster computational techniques, discrete time

version of the semi-Markov process model is explored.

Case studies on various systems are dealt in Chapter 4.

Chapter 5 on Monte-Carlo simulation of reliability block diagrams aids as a tool

for validating semi-Markov process models. Detailed pseudo-codes are presented to

deal with repairable and non-repairable systems. A typical block diagram and the

NCCW system reliability models are revisited to validate the models developed in

the earlier chapter. Practical difficulties in using simulation techniques for multi-

state systems are discussed.

Chapter 6 describes Universal Generating Function (UGF) method. UGF is

considered in this thesis as a rescue tool to work around the well known ‘state

explosion’ problem associated with Markov and semi-Markov processes. An ex-

ample allows the reader to appreciate its flexibility and ease of use. The chapter

ends with comments on the use of this technique for general multi-state systems

as compared to the network reliability method. The semi-Markov and UGF tool

is applied to the Heat Transport System (HTS) in a Nuclear Power Plant (NPP)

to highlight the fact that this combination is instrumental in modeling practical

reliability problems.

Chapter 7 concludes with a summary of research contributions and recommen-

dations for future studies.

Appendix A covers a trapezoidal rule based algorithm to solve the system of

integral equations to compute the interval transition probabilities discussed in chap-

ter 3. Appendix B tabulates the relation between the coefficient of variation and

the Weibull shape parameter. The appendix includes a glossary of technical terms

used in this thesis.
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Chapter 2

Markov Processes

2.1 Introduction

The two main concepts in the Markov process model are system states and state

transitions. The state of a system represents a specific combination of system

parameters that describe the system at any given instant of time. The state transi-

tions govern the changes of a state that occur within a system. As time passes and

failures occur, the system goes from one state to another until one of the absorbing

states (usually the system failure states, if any) is reached. The state transitions

are characterized by parameters such as failure rates and repair rates. Solving a

Markov model consists of solving a set of differential equations, typically using

Laplace transform or numerically using a variable step Runge-Kutta method. The

solution includes the probability of the system being in each state and the system

unreliability can be calculated by adding the probability of being in each failure

state.

2.2 Literature Review

The class of Markov chains with a denumerable number of states modelled as an

infinite system of stochastic differential equations called the Kolmogorov differential

equations was first considered by Kolmogoroff (1931) in his fundamental paper on

this subject. Feller (1937) formulated the more general integro-differential equa-

tions also called the forward and backward equations describing the Markov pro-

cesses in continuous time and discrete space. The time-homogeneous or stationary
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properties of the Markov transition probabilities were laid out by Lévy (1951). A

comprehensive discussion of the analytical properties of the transition probabilities

can be found in Kolmogorov (1951); Austin (1956); Kendall (1955).

Billinton and Bollinger (1968) discussed and illustrated the basic concepts of sta-

tionary Markov processes and particularly their application to transmission system

reliability evaluation. Transmission components were assumed to operate within

a 2-state fluctuating environment described by normal and stormy weather condi-

tions.

A Markov process model for the growth of maximum pit depth in oil and gas

pipelines was discussed by Provan and Rodriguez (1989). Xing et al. (1996) made

comparison between Markov and fault tree models for determining support system

failure initiating event frequency in a nuclear power plant, for both power and

shutdown conditions. Further, they developed a correlation to estimate the ratio

between initiator frequencies through both approaches for a two parallel component

system. Bharucha-Reid (1997) gave a formal nonmeasure-theoretic treatment to

Markov processes with main emphasis on applications.

Bloch-Mercier (2001) considered a repairable Markov system such that different

completeness degrees are possible for the repair (or corrective maintenance) that go

from a minimal up to a complete repair. They observed that the optimal restarting

distribution is generally random and does not correspond to a new start in a fixed

up-state. Vinod et al. (2003) incorporated the effects of degradation mechanism

and maintenance activities by a Markov model as an efficient method for realistic

analysis. Ajah et al. (2006) developed a multi-state reliability model of a proton

exchange membrane (PEM) fuel cell power plant via Markov process. Cho and

Jiang (2008) developed a Markov process model to study the effect of test interval

in the shutdown system number one (SDS1) of a CANDU plant. Representing the

state transitions in the SDS1 by a time-homogeneous Markov process, their model

can be used to quantify the effect of surveillance test durations and interval on the

unavailability and the spurious trip probability.

2.3 Formulation of the Markov process

Consider a system whose states i=1,2,...k are observed at times t ≥ 0. The system

stays in state i for a random amount of time that is exponentially distributed with

a parameter aij called the transition intensity and then moves to state j. The time
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spent in state i and the jump to next state depend only on the state i and not

on the history of the system prior to time t. The Markov process is based on this

fundamental property called the ”‘Markov property”’ as defined in (1.1)

While (1.1) represents a conditional probability, let pi(t) be the unconditional

probability of the process being in state i. pi(t) is called the state probability of

X(t) at time t :

pi(t) = Pr{X(t) = i}, i = 1, ..., k; t ≥ 0. (2.1)

such that
k∑

i=1

pi(t) = 1 (2.2)

2.4 Determining state probabilities

The goal of Markov process is to determine the state probabilities of a stochastic

process following the Markov property. The rate of change of any state probability

of an arbitrary state j is equal to sum of the state probabilities of incoming tran-

sitions in to state j multiplied by the corresponding transition intensities minus

the state probability of state j multiplied by the sum of transition intensities of all

outgoing transitions from state j :

dpj(t)

dt
= [

k∑

i=1
i6=j

pi(t)aij]− pj(t)
k∑

i=1
i 6=j

aji (2.3)

It is assumed that the system starts in the best state k and therefore, the initial

conditions are pk(0) = 1, pk−1(0) = pk−2(0) = ...p1(0) = 0. If the state transitions

are caused due to failures and repairs of the system, then the transition intensities

are given by the corresponding failure and repair rates.

Compactly, the system of linear differential equations (2.3) can be written in

the matrix form as:

dP(t)

dt
= P(t)A (2.4)
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where

A =




a11 a12 ... a1k

a21 a22 ... a2k

...

ak1 ak2 ... akk




(2.5)

such that ajj = −
k∑

i=1
i 6=j

aji and

P(t) = [p1(t), p2(t), ..., pk(t)]

2.4.1 Solutions of the system of differential equations

The system (2.3) can be solved numerically using an algorithm like variable step

Rungekutta method or can be solved analytically using the Laplace-Stieljes trans-

form. An example is given below to illustrate the solution method.

Consider a two state non-repairable system with a constant failure rate λ. As-

sume that the system initially starts in state 2, the functioning state. Then the
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Figure 2.1: 2-state non-repairable system with a constant failure rate λ=0.5

transition intensity matrix based on (2.5) is written as:

[
0 0

λ −λ

]

The system of differential equations are formulated as per (2.3):

dp1(t)

dt
= λp2(t)

dp2(t)

dt
= −λp2(t)

p1(t) + p2(t) = 1 and

p1(0) = 0, p2(0) = 1
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The Laplace transform is given as:
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Figure 2.2: System failure probability of 2-state non-repairable system with λ = 0.5

sp̃1(s)− p1(0) = λp̃2(s)

sp̃2(s)− p2(0) = −λp̃2(s)

Solving for p̃1(s):

p̃1(s) =
1

s( s
λ

+ 1)
=

1

s
− 1

λ( s
λ

+ 1)

The inverse Laplace transform gives:

p1(t) = 1− exp(−λt) (2.6)

p2(t) = exp(−λt) (2.7)

p1(t) corresponds to system failure probability given that the system initially started

in state 2, the functioning state. p2(t) represents systems reliability.

2.5 Asymptotic solution

Theoretically, the steady-state probabilities are the state probabilities as time ap-

proaches infinity. The sum of all steady-state probabilities corresponding to the
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working states represents steady-state availability or long-run availability. Note

that it is inappropriate to term steady state reliability, because a non-repairable

system is never reliable in a long run.

A Markov process is said to be irreducible if every state of the process can be

reached from any other state (Ross, 1992). It is always possible to compute the

steady state probabilities for an irreducible Markov process.

i.e., it can be shown that the time-dependent state probabilities approach a

definite value:

lim
t→∞

pj(t) = pj (2.8)

Alternatively, a definite value is reached when the derivative of pj(t) is zero as

t→∞. This definition can be used to rewrite Equation (2.4):

0 = PA (2.9)

where P = [p1, p2, ..., pk] along with the constraint that
k∑
i=1

pi = 1

Note that there are k+1 system of equations along with the constraint and there

are k unknowns. Hence, any k of these equations with the constraint included is

sufficient to solve this system to obtain all the steady state probabilities.

2.6 Transition rate estimation

Transition rates of a Markov model can be estimated based on failure data available

at hand. This section discusses three different ways for this task.

2.6.1 Point estimate

This method is valid when count of failure events is available. The estimate λ̂ is

based on the number of failures n observed in a sample of size N over a period of

time T :

λ̂ =
n

NT
(2.10)
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Table 2.1: Sample data for transition rate estimation
Event Type Inspected Event Count
Flaws from normal state 2000 8
Leaks from flaw state 3000 4
Ruptures from leak state 5500 3

For example, consider a piping model with four states - normal, flaw, leak and

rupture. Table 2.1 shows sample event count data gathered over 10 years. The first

row gives the count of flaws observed in the pipe given that the pipe was in normal

state when earlier observed i.e., 2000 normal pipe elements were inspected and 8 of

them were found to develop flaws. Therefore, an estimate of flaw occurrence rate

is λ̂ = 8/(2000 ∗ 10) = 4e− 3 per year. Hence in the context of Markov modelling,

the analyst needs conditional failure data.

The estimate thus found reflects quality of the sample population only. The

sample might be from a particular plant site. Given the rarity of the events and

inadequate data collection, these estimates could often be misleading.

2.6.2 Estimation using Bayesian method

In Bayesian inference (Kelly and Smith, 2009), plant specific failure data from the

above section is combined with known failure rates from other sources. These ex-

ternal failure rates from world-wide plants could be averaged and used as prior

knowledge. The source could also be based on engineering judgment or expert

opinion. Advantage of this approach is that uncertainty factor can be introduced

by considering the failure rate as a random variable following a valid statistical

distribution. This distribution π(λ) is called “prior distribution” in Bayes’ termi-

nology because it reflects prior knowledge of the failure rates. For example, failure

rate of a component pooled from other plants could follow a gamma distribution

corresponding to a mean failure rate of 10−6 and standard deviation of 0.0001.

It can be assumed that the plant specific data are likely to occur from a different

distribution having the failure rate as a distribution parameter. This is represented

by the ‘likelihood function’ f(x|λ) and it can take in to account complete, interval,

left and right censored data. Note that this ‘failure rate’ is the random variable in

the prior distribution.

The normalized product of likelihood function and the prior distribution yields

an updated failure rate in the form of a distribution. This is called the “posterior
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distribution” π1(λ) in Bayes’s methodology:

πpost ∝ likelihood(x|λ)πprior(λ)

=⇒ π1(λ|x) =
f(x|λ)π(λ)∫
f(x|λ)π(λ)dλ

(2.11)

The denominator in Equation 2.11 is a normalizing constant and is called the

marginal or unconditional distribution of x often denoted by f(x).

For example, let the following failure rates per year be observed from different

plants: 3e − 3, 6e − 4, 5e − 5. Mean and standard deviation of this data are µ =

1.22e − 3 per year and σ = 1.57e − 3 respectively. The corresponding gamma

distribution parameters are α = 0.604 and β = 495 component years by assuming

the following characteristics for the gamma distribution:

fpdf (λ|α, β) =
βα

Γ(α)
λα−1e−βλ (2.12)

Mean =
α

β
(2.13)

V ariance =
α

β2
(2.14)

If Poisson data is supplied, α represents the number of failure events and β repre-

sents the period of time over which these failures were observed.

Let the observed plant data be x = 8 failures out of 200 components inspected

over 10 years i.e., t = (200)(10) = 2000 component-years. The likelihood function

for this data assuming a Poisson distribution is:

Pr(X = x|λ) =
e−λt(λt)x

x!
(2.15)

In this context, the denominator of Equation 2.11 denotes the probability of ob-

serving x failures independent of the failure rate λ.

Then from Equation 2.11,

π1(λ|x) ∝ e−λt(λt)xλα−1e−βλ

∝ λ(α−1)+xe−λ(t+β) (2.16)
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i.e., the posterior distribution is also a gamma distribution such that

αpost = x+ αprior

βpost = t+ βprior (2.17)

In the example considered, αpost = 8 + 0.604 = 8.604 and βpost = 2000 + 495 =

2495 i.e., based on the plant data, failure rate of the component can be updated as

Γ(8.604, 2494) which represents a mean failure rate of 3.44e-3 while the prior failure

rate was 1.22e-3.

The failure rate thus obtained can be utilized as a transition rate in a Markov

model. The failure frequency (hazard rate) obtained from Markov model can be

used in a fault tree as part of a Probabilistic Safety Assessment (PSA).

A gamma prior and Poisson likelihood results in a gamma posterior. Hence

gamma distribution is called a ‘conjugate prior’ for the Poisson distribution. If

the resultant posterior distribution is not one of the standard known distributions,

then the posterior characteristics can be determined through numerical treatment.

The difficulty lies in calculating the marginal in the denominator of Equation 2.11.

Markov Chain Monte Carlo (MCMC) method is a preferred tool to find the marginal

in such circumstances. Metropolis-Hastings (or its special case Gibbs sampling) and

Splice sampling are well known MCMC algorithms.

WinBUGS (Lunn et al., 2000) and its open source version OpenBUGS are widely

used software tools for Bayesian inference.

2.6.3 Estimation using Time-to-Failure data

A time-to-failure database can be developed by maintaining a list of similar com-

ponents and their respective failure times. For a multi-state system, the data must

be classified as the time-to-event data between given two states. An exponential

distribution can be fit to this data by assuming that the time-to-event is a random

variable. The mean of this dataset can be considered as the distribution parameter,

which is also the transition rate for a Markov transition. However, such a database

is exhaustive and requires more effort and maintenance when compared to that of

Poisson data. The Offshore REliability DAta (OREDA), for example is a database

sponsored by eight international oil and gas organizations. The main purpose of

this database is to act as a data bank of reliability and maintenance data. Consid-
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erable time and effort has been put to gather time-to-failure data in to the OREDA

repository.

2.7 Markov reward model

The Markov reward model was initially developed keeping cost and financial models

in mind. Later Volik et al. (1988) proved that this model can be used to obtain

reliability indices such as the mean time to failure and mean number of failures. An

example in the case of a multi-state repairable component was cited by Lisnianski

and Levitin (2003).

The continuous-time Markov chain and the Markov transition rate matrix form

the basis for this model. Additionally, each state transition and stay in a state is

associated with a reward. This reward can be positive when it fetches profit or

negative when it signifies losses. For developing a cost model, reward can be the

associated loss due to a failure or the cost incurred on a repair or profit due to a sale.

These rewards are arranged in a separate matrix which is similar in dimension to the

transition rate matrix. Given these as the input along with the initial conditions,

the total expected reward accumulated up to time t can be obtained using the

Markov reward model:

dVi(t)

dt
= rii +

K∑

j=1,j 6=i

aijrij +
K∑

j=1

aijVj(t) (2.18)

where,

• Vi(t) is the total expected reward accumulated up to time t with i as the

initial state of the process at time 0,

• rii is the reward per unit time for staying in state i,

• rij is the reward for the transition from state i to state j,

• aij is the (i, j)th element of the transition rate matrix,

• K is the number of states in the model.

Equation 2.18 can be written in a matrix form as:

d

dt
V (t) = u+ aV (t)V (t) = u+ aV (t)V (t) = u+ aV (t) (2.19)
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where,

ui = rii +
K∑

j=1,j 6=i

aijrij (2.20)

2.7.1 Mean number of failures

Consider a repairable system. The mean number of failures in the time interval

(0, t) can be obtained by setting the reward rij to 1 for all transitions from an

operating state i to a non-operating state j and solving the system of differential

equations in (2.18). This essentially sets up a counter to zero and increments it

for every failure encountered. Hence the total expected accumulated reward in this

case corresponds to the mean number of failures.

2.7.2 Mean time to failure

Consider a Markov state space with an absorbing state denoting system failure.

Then, the mean time to failure can be obtained by setting the reward rii to 1 for

staying in each of the operating states and finding the stationary solution of the

system of differential equations in (2.18):

0 = rii +
K∑

j=1

aijVj(t) (2.21)

Note that r00 = rij = 0 for all i 6= j. In this case the total expected accumulated

reward corresponds to mean time to failure of the system.

2.8 Multi-state system reliability

Assessment of reliability of a system from its basic elements is one of the most

important aspects of reliability analysis. A system is a collection of elements (sub-

systems, components etc.) whose proper, coordinated operation leads to the proper

functioning of the system (Modarres et al., 1999). Consider such a multi-state sys-

tem composed of n elements, each element j having kj different states denoted by

the set {1,2,...,kj }. Suppose that Markov processes for each of these elements is

independent of one another. Further, assume that there can only be one transition
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across the entire system i.e., there can only be one failure or one repair in the

system at any time instant t (Lisnianski and Levitin, 2003). The first step would

be to develop a state-space diagram for the entire system and then subsequently

evaluate the reliability or availability of the system. For a large system with many

components, each having multiple states, a pictorial state-space representation is

not feasible. It would be more convenient to represent the model in terms of the

system transition intensity matrix generated by composing the element transitions

together.

Let E denote the set of ordered n-tuples representing all possible combinations

of the states of the n elements.

E = {1, 2, ...k1} × {1, 2, ...k2} × ...× {1, 2, ...kn} (2.22)

The exhaustive number of states K of the entire system is the cardinality of the set

E. Also,

K =
n∏

j=1

kj (2.23)

Let each element of E be denoted by unique number from the set S={1,2,...,K}.
The order of this enumeration has no formal rule. For convenience, let the first

combination denote perfect working state of the system and the last one be the

total failure.

Consider a system transition. Then, it has to be a change in state of the system

from e1 ∈ E to e2 ∈ E. As per the assumption, these two n-tuples are identical

except for one position in the n-tuple. The corresponding transition rate of this

positional change is filled up in the system matrix. If this assumption is violated,

the corresponding transition rate is zero. The diagonal elements of the system

matrix satisfy the condition of a transition matrix of a single element as stated in

(2.5).

For example, let e1 = (1, 2, 3), e2 = (2, 1, 3). Since element 1 has transited from

state 1 to state 2 and element 2 has transited from state 2 to state 1, there have

been two transitions which is a violation of the assumption. Hence, the entry at

the intersection of e1 and e2 of the system transition matrix is zero.

Let e1 = (1, 1, 3), e2 = (1, 1, 2). Since only element 3 has a state change, the

corresponding transition rate of element 3 (µ
(3)
3,2 ) is entered in the system transition
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matrix at the intersection of e1 and e2.

2.8.1 Example

Consider a system with two elements in series with constant failure rate of λ1, λ2

and repair rates µ1, µ2 respectively. The state space diagram for the entire system

is given in Figure 2.3. The shaded state is the state of fully functional system while
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Figure 2.3: Muti-state system with two elements

the other states represent system failure due to series connection of the elements.

The transition intensity matrices a1 and a2 respectively for each of these ele-

ments based on (2.5) is written as:

a1 =

[
−µ1 µ1

λ1 −λ1

]
a2 =

[
−µ2 µ2

λ2 −λ2

]

The system transition intensity matrix a as described in section (2.8) is:

State (2,2) (1,2) (2,1) (1,1)
Combinations State# 1 2 3 4

∈ E ∈ S
(2,2) 1 -(λ

(1)
2,1 + λ

(2)
2,1) λ

(1)
2,1 λ

(2)
2,1 0

(1,2) 2 µ
(1)
1,2 -(µ

(1)
1,2 + λ

(2)
2,1) 0 λ

(2)
2,1

(2,1) 3 µ
(2)
1,2 0 -(µ

(2)
1,2 + λ

(1)
2,1) λ

(1)
2,1

(1,1) 4 0 µ
(2)
1,2 µ

(1)
1,2 -(µ

(2)
1,2 + µ

(1)
1,2)
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The system of differential equations are formulated as per (2.3):

d

dt
p1(t) = µ

(1)
1,2p2(t) + µ

(2)
1,2p3(t)− (λ

(1)
2,1 + λ

(2)
2,1)p1(t)

d

dt
p2(t) = λ

(1)
2,1p1(t) + µ

(2)
1,2p4(t)− (µ

(1)
1,2 + λ

(2)
2,1)p2(t)

d

dt
p3(t) = λ

(2)
2,1p1(t) + µ

(1)
1,2p4(t)− (µ

(2)
1,2 + λ

(1)
2,1)p3(t)

d

dt
p4(t) = λ

(2)
2,1p2(t) + λ

(1)
2,1p3(t)− (µ

(2)
1,2 + µ

(1)
1,2)p4(t)

p1(t) + p2(t) + p3(t) + p4(t) = 1 and

p1(0) = 1, p2(0) = p3(0) = p4(0) = 0

The Laplace transforms for the above system of differential equations are:

sp̃1(s)− p1(0) = µ
(1)
1,2p̃2(s) + µ

(2)
1,2p̃3(s)− (λ

(1)
2,1 + λ

(2)
2,1)p̃1(s)

sp̃2(s)− p2(0) = λ
(1)
2,1p̃1(s) + µ

(2)
1,2p̃4(s)− (µ

(1)
1,2 + λ

(2)
2,1)p̃2(s)

sp̃3(s)− p3(0) = λ
(2)
2,1p̃1(s) + µ

(1)
1,2p̃4(s)− (µ

(2)
1,2 + λ

(1)
2,1)p̃3(s)

sp̃4(s)− p4(0) = λ
(2)
2,1p̃2(s) + λ

(1)
2,1p̃3(s)− (µ

(2)
1,2 + µ

(1)
1,2)p̃4(s)

Substituting λ = 0.5 and µ = 1, then algebraically solving for p̃1(s):

p̃1(s) =
2 + 3.5s+ s2

s(4.5 + 4.5s+ s2)

=
0.4444

s
+

0.1111

s+ 1.5
+

0.4444

s+ 3

Applying inverse Laplace transform on p̃1(s), p1(t) is found:

p1(t) = 0.444 + 0.111e−1.5t + 0.444e−3t

Since the system considered is a series system, states 2,3 and 4 lead to system

failure. Hence availability of the system is given by p1(t) whose plot is shown in

Figure 2.4. The asymptotic solution is given by:

Lt
t→∞

p1(t) = 0.44444

This asymptotic limit represents the fact that failure frequency of both the compo-

nents have survived their infant mortality phase.
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Figure 2.4: System availability of 4-state repairable system with λ1 = λ2 = 0.5;µ1 =
µ2 = 1

Alternatively, the definition in Equation 2.9 can be used to find the asymptotic

solution:

0 = µ
(1)
1,2p2 + µ

(2)
1,2p3 − (λ

(1)
2,1 + λ

(2)
2,1)p1

0 = λ
(1)
2,1p1 + µ

(2)
1,2p4 − (µ

(1)
1,2 + λ

(2)
2,1)p2

0 = λ
(2)
2,1p1 + µ

(1)
1,2p4 − (µ

(2)
1,2 + λ

(1)
2,1)p3

0 = λ
(2)
2,1p2 + λ

(1)
2,1p3 − (µ

(2)
1,2 + µ

(1)
1,2)p4

Ignoring the last equation and considering the constraint p1 + p2 + p3 + p4 = 1,

the following system is obtained:




0

0

0

1




=
[
p1 p2 p3 p4

]




−(λ
(1)
2,1 + λ

(2)
2,1) λ

(1)
2,1 λ

(2)
2,1 1

µ
(1)
1,2 −(µ

(1)
1,2 + λ

(2)
2,1) 0 1

µ
(2)
1,2 0 −(µ

(2)
1,2 + λ

(1)
2,1) 1

0 µ
(2)
1,2 µ

(1)
1,2 1




Solving this system the steady state probabilities are obtained as

[
0.4444 0.2222 0.2222 0.1111

]

0.4444 represents availability of the series system in this example and is the same
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as the result obtained through the Laplace method.

Transitional probabilities p = {pij}are given by:

p =




0
λ

(1)
2,1

(λ
(1)
2,1 + λ

(2)
2,1)

λ
(2)
2,1

(λ
(1)
2,1 + λ

(2)
2,1)

0

µ
(1)
1,2

(µ
(1)
1,2 + λ

(2)
2,1)

0 0
λ

(2)
2,1

(µ
(1)
1,2 + λ

(2)
2,1)

µ
(2)
1,2

(µ
(2)
1,2 + λ

(1)
2,1)

0 0
λ

(1)
2,1

(µ
(2)
1,2 + λ

(1)
2,1)

0
µ

(2)
1,2

(µ
(2)
1,2 + µ

(1)
1,2)

µ
(1)
1,2

(µ
(2)
1,2 + µ

(1)
1,2)

0




=




0 0.5000 0.5000 0

0.6667 0 0 0.3333

0.6667 0 0 0.3333

0 0.5000 0.5000 0




From Figure 2.4, since λ1
2,1 = λ2

2,1, it is seen that p12 = p13. It is also observed that

p21 > p24 because repair rate µ1 of component 1 is greater than the failure rate λ2

of component 2.

In order to calculate the expected number of failures, the reward matrix elements

are set to 1 is written as per the description in Section 2.7.1:

rrr =




0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0




The system of integral equations (2.18) to be solved to yield the mean number

of failures with λ = 0.5 and µ = 1 are:

d

dt
V1(t) = 1− V1(t) + 0.5V2(t) + 0.5V3(t)

d

dt
V2(t) = V1(t)− (3/2)V2(t) + 0.5V4(t)

d

dt
V3(t) = V1(t)− (3/2)V3(t) + 0.5V4(t)

d

dt
V4(t) = V2(t) + V3(t)− 2V4(t)
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V1(0) = 1, V2(0) = 0, V3(0) = 0, V4(0) = 0

In this system, V1(0) = 1 represents the fact that the system starts its operation in

state 1 i.e., the perfectly operating state. The mean number of failures varies with

the initial state of operation as seen in Figure 2.5. If the system starts from the
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Figure 2.5: Expected number of failures of 4-state repairable series system with
λ1 = λ2 = 0.5;µ1 = µ2 = 1

failure state 4, it takes some time to return to operating state and hence experiences

relatively lesser failures. As a result, we see that V4(t) is lesser for all t than other

cases. If system begins with state 2 or state 3, it is more likely to be repaired

and hence returns to state 1. Since some time is spent in this process, the system

encounters lesser number of failures than the case when system starts from state 1.

2.9 Case Study: Nuclear Component Cooling Wa-

ter (NCCW) System

In nuclear power plants, Nuclear Component Cooling Water (NCCW) systems are

typically used for removing heat (cooling) systems containing potentially radioac-

tive fluids. These systems are in turn cooled by the ultimate cooling system -

river, lake, sea, or ocean water. An event that creates a disturbance in these plants

having the potential to lead to core damage, depending on the successful opera-
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tion of required mitigating systems in the plant is called an initiating event.The

number of such events occurring in a unit time is called the initiating event fre-

quency. Xing et al. (1996) compared Markov and fault tree models for determining

support system failure initiating event frequency in the Probabilistic Safety As-

sessment (PSA) of nuclear power plant for both power and shutdown conditions.

They studied two-train systems with common failure/repair characteristics. The

NCCW system consists of two parallel pump trains connected in series with a heat

exchanger train. Both pump trains have 5 components each connected in series

- pump, pump suction manual valve, pump suction filter, pump discharge check

valve and pump discharge manual valve. The heat exchanger train consists of the

following: heat exchanger, heat exchanger inlet check valve, heat exchanger cooling

water inlet valve, heat exchanger cooling filter valve and heat exchanger cooling

water outlet valve. The task is to evaluate the initiating event frequency during

the outage time of approximately τm = 80 hours. The success criterion is any one

of the two pump trains running and the heat exchanger train operating. The fault

tree of the system with the loss of NCCW train as the top event is shown in Figure

2.6.
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Figure 2.6: Fault tree for the NCCW train system.

The data for component failure rate and repair time are listed in Table 2.2.
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Table 2.2: Reliability data for NCCW System

Pump train
TDTF1R (hr−1) Pump fails during operation 5.44 x 10−6

TSHOVT (hr−1) Manual valve transfers open/closed 4.20 x 10−8

TNSC2P (hr−1) Filter plugs fail during operation 2.19 x 10−6

TSCOVP (hr−1) Check valve transfers open/closed 1.03 x 10−8

BDTF1R β-factor for common cause failure 2.70 x 10−2

τr (Hours) Pump train repair time 1.94 x 101

Heat exchanger
TBHX1B (hr−1) Heat exchanger rupture/leak rate 1.14 x 10−6

There are two cases considered here: base case and sensitivity case. Base case

represents a strong presence of a common cause failure as opposed to the sensitivity

case. The failure rate λ1 of the pump train, λH of the heat exchanger and the

common cause failure rate λc are computed from Table 2.2 and listed in Table

2.3 for the base case as computed by Xing et al. (1996). For the sensitivity case

the independent failure rate of the pump TDTF1R is steeply increased to 2.0 x

10−3(hr−1) and β-factor is decreased to 1.0 x 10−3.

Table 2.3: Failure rates for the pump train and heat exchanger.

λ1 = TDTF1R*(1-BDTF1R)+2*TSHOVT+TNSC2P+TSCOVP
λc = TDTF1R*BDTF1R
λH = TBHX1B+TSCOVP+2*TSHOVT+TNSC2P

Applying the rules in (C.1) and (C.1), the probability of the loss of NCCW

initiating event can be computed as:

fFT = (λ1τr + λcτr)λ1τm + (λ1τr + λcτr)λ1τm + λHτm + λcτm

= 2(λ1τr + λcτr)λ1τm + (λH + λc)τm

≈ 2λ2
1τrτm + (λH + λc)τm (2.24)

The evaluated event frequencies for both the base and sensitivity cases are tabulated

in Table 2.4. It is seen that the system failure probability is higher in the presence

of bigger common cause failure rate since for a parallel system failure of both the

pump trains leads to a definite failure of the entire system.

A basic assumption in the fault tree analysis is that all system failures are binary
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Table 2.4: NCCW train failure probability evaluated from the fault tree

Case Failure Probability (fFT )
Base 2.8516 x 10−4

Sensitivity 1.2821 x 10−2

in nature, i.e. a system either performs successfully or fails completely. It is also

assumed that the system is capable of performing its task if all sub-components or

sub-systems are operating. But, in the real world, a system could pass through a

number of states before it completely fails i.e. a fault tree does not treat degradation

of a system or its components over a period of time. Moreover, fault tree analysis

addresses only instantaneous failures.

The NCCW problem can be analyzed in a more rigorous time-dependent manner

using the Markov process model. With three components in the system and given

that each component could be in one of the two possible states: functioning or

failed, the system as a whole can have 23=8 possible states. Instead, the state

space diagram is reduced to three states: (a) two pumps and the heat exchanger

running, (b) one pump and the heat exchanger running and (c) system failure.

Since that any one of the pumps can fail in no particular order, the failure rate

for the transition from two pumps running to one pump running is taken as twice

the failure rate λ1 of a single pump train. If single pump fails, it can be repaired

with a constant repair rate of µ. The system fails if either both the pump trains

fail or the heat exchanger train fails. This state of system failure is considered as

an absorbing state. There can be common cause failure (CCF) for the system, and
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Figure 2.7: Markov state-space diagram for NCCW train 10 System.

such failures can occur when either two components are operating or when only

one is operating. Such a failure could cause the entire system to fail with failure

rate of λc (hr−1). CCF is dealt on a sensitivity basis. The absence of a CCF is

represented by setting λc to zero and increasing the independent failure rate λ1 of
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the pump trains.

The reduced state space diagram in shown in Figure 2.7 and a reliability block

diagram corresponding to the same is shown in Figure 2.8 The transition intensity
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Figure 2.8: Reliability Block Diagram of the NCCW train system.

matrix can be written off directly from Figure 2.7 keeping the conditions (2.5) in

mind:




0 0 0

λ1 + λc + λH −(λ1 + λc + λH + µ) µ

λc + λH 2λ1 −(λc + λH + 2λ1)




The system of differential equations follows from the intensity matrix

dp1(t)

dt
= (λ1 + λc + λH)p2(t) + (λc + λH)p3(t)

dp2(t)

dt
= 2λ1p3(t)−(λ1 + λc + λH + µ)p2(t)

dp3(t)

dt
= µp2(t)−(λc + λH + 2λ1)p3(t)

with the initial conditions p1(0) = p2(0) = 0, p3(0) = 1

The values for the failure and repair rates are taken from Table 2.3. Solving for

p1(t), gives the time-dependent system failure probability. p1(t) is plotted in Figure

(2.9) for both the base and sensitivity cases.

2.9.1 Comparison of the Markov model and Fault Tree Anal-

ysis

Even those systems that are entirely composed of non-ageing elements (with a

constant failure rate) will deteriorate (fail more often) with age, if these systems
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Figure 2.9: System failure probability for the 3-state NCCW Markov System

are redundant in irreplaceable components. Hence ageing is a direct consequence

of systems redundancy Gavrilov and Gavrilova (2003).

The system hazard rate of the NCCW system is non-constant and the expected

number of failures or the initiator frequency can be computed using:

fmk =

∫ τm

0

λ(t)dt (2.25)
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Figure 2.10: Comparison of Markov and fault tree results for NCCW System(Xing
et al., 1996).

Figure 2.10 shows a plot of the ratio of the initiator frequencies computed by

Markov and fault tree methods. On the x-axis, the ratio of the mission time

τm to the repair time is considered. When the repair time is comparable (closer
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to mission time), results of fault tree and Markov model agree with each other.

However, when repair time is much smaller than the mission time, fault tree yields

conservative results. Xing et al.(1996) argued that for systems configuration in

which mission time is short and the independent failure (common-cause failure is

negligible) dominates the failure mode, the effect of repair is more important so

that fault tree approach yields conservative results.

2.10 Conclusion

In this chapter, Markov model has been shown as a more rigorous time-dependent

alternative to the time-independent fault tree model. A system is allowed to transit

through multiple states in its lifetime with specified constant failure and repair

rates to yield failure probability over its mission time. However, Markov model

has the significant disadvantage that its size grows exponentially as the size of

the system increases. This rapid growth of the number of states may lead to

intractable models. In addition, Markov model assumes exponential time-to-failure

distribution. While the reliability and failure probabilities computed using the

Markov model are time-dependent, a more generic time-dependent model would

have the failure and repair rates also as a function of time. The next chapter

on semi-Markov models attempts to improvise on the Markov model by allowing

flexibility in choosing non-exponential transition times.
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Chapter 3

Semi-Markov Processes

3.1 Introduction

The hazard rate function λs(t) for a system is the probability that the system will

fail given that it was reliable until time t. It forms a good measure of the ageing

phenomenon for a complex engineering system.

A Markov process model assumes exponential failure or repair times. Asymp-

totically, this model shows a constant hazard rate and thus does not account for

the increasing hazard. A semi-Markov process model, on the other hand, assumes

arbitrary distributions for time spent during state transitions and hence, is able

to deviate from the conventional ideas of reliability analysis based on exponential

distributions.

If various components of the same type were observed and their time-to-failure

were tabulated, then these values are unlikely to be the same in all the cases.

Assuming a constant failure rate leads to the usage of exponential distribution as

the basis of Markov analysis. However, the failure rate function of an ageing system

is non-constant and hence a Markov process model is likely to yield not so accurate

reliability estimates.

The reliability of many engineering components can be described by a ‘bathtub’

curve which has one of its zones representing the component’s wear out period.

The Weibull distribution is capable of describing the lifetime of such components.

Its probability density function (pdf), cumulative distribution function (cdf) and
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reliability function are respectively given by:

fT (t|γ, λ) = (λγ)(λt)γ−1e−(λt)γ (3.1)

FT (t|γ, λ) = 1− e−(λt)γ (3.2)

RT (t|γ, λ) = e−(λt)γ (3.3)

where λ is the scale parameter and γ is the shape parameter. The scale parameter

centers around the mean life of the component and the shape factor is a function of

variation in the observed mean life. When γ = 1 the Weibull distribution reduces

to the exponential distribution: fT (t|λ) = λe−(λt) where 1/λ is the mean time to

failure and λ is the failure rate. Further, for γ around 3.4, Weibull distribution

reduces to normal distribution.

The coefficient of variation (cov) is the ratio of the standard deviation of the set

of observed time-to-failure life to its mean. The Weibull shape and scale parameters

corresponding to this combination of mean life and cov can be back calculated

from the following formulas for Weibull mean, standard deviation and coefficient of

variation:

µwbl = λΓ(1 +
1

γ
)

σ2
wbl = λ2Γ(1 +

2

γ
)− µ2

wbl

covwbl =
σwbl
µwbl

(3.4)

The semi-Markov process (SMP) like a Markov process also has a set of states

and the transitions between them are governed by a transition probability matrix.

The fact that the transition time between any two states is distributed exponentially

limits the use of Markov processes to many practical problems. However, in a semi-

Markov process, the time spent in any state after entering it is a random variable

which can be described by a non-exponential distribution as well. This feature

would be useful in cases where the lifetime and repair times are not exponential.

The distributions for the time spent between various states are represented in a

matrix form called the ‘kernel matrix’ of the process. The kernel matrix and the

initial state occupied by the process completely define the stochastic behavior of

the semi-Markov process. Given these as the input, the statistical time behavior of
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the process is described by a system of linear integral equations. The main problem

then is to find the solution of this system of equations yielding the probability of

being in any state given that the process started in an initial state.

3.2 Literature Review

The idea of semi-Markov process model was proposed almost simultaneously by

Lévy (1954) and Smith (1958). The foundations of semi-Markov processes can

be found in Ross (1992), Gihman and Skohorod (1974), Cinlar (1975), Silverstov

(1980), Korolyuk and Swishchuk (1995). This thesis follows the general formulation

of the semi-Markov process as developed in Howard (1964, 1971). For the first

passage distribution of general semi-Markov process, Pyke (1961a, 1961b) suggested

a Laplace-Stieljes transform approach. Ciardo et al. (1990) proposed a method of

computing the distribution of performability in a Markov reward process. For

finite mission times Iyer et al. (1986) obtained the double Laplace transform of

performability for systems that may be modeled by semi-Markov processes. White

and Palumbo (1990) proposed a method called trimming for reducing the number

of states in a semi-Markov reliability model, and derived an error bound. The

interval reliability for a repairable semi-Markov system which alternates between

working and repair periods was studied by Csenki (1995). The author applied

the results to a two-unit system with sequential preventive maintenance.A two-

point trapezoidal rule was used to numerically solve the resulting system of integral

equations. Kovalenko et al. (1997) concentrate on aspects of semi-Markov models

as a basis for mathematical theory of reliability of time dependent systems.

Ouhbi and Limnios (2003) presented a modern overall view of semi-Markov pro-

cesses and its applications in reliability. A bootstrap simulation method using a

saddlepoint approximation was proposed by Butler and Bronson (2002). Lisnianski

and Levitin (2003) systematically describe the tools for multi-state system relia-

bility assessment and optimization with applications to different fields. Ouhbi and

Limnios (2002) derived the estimators of reliability and availability of semi-Markov

systems.They studied the asymptotic properties of these estimators and constructed

the non-parametric confidence intervals for the point availability. Maximum likeli-

hood and Bayes estimates of the parameters included in a three state semi-Markov

reliability model were presented by El-Gohary (2004).
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D’Amico et al. (2006) considered the credit risk problem as a semi-Markov re-

liability problem.They applied their model to compute the default probability of a

company going into debt. özekici and Soyer (2006) considered a Poisson process in

which arrival rate at any time depends on the state of a semi-Markov process. Toma-

sevicz and Asgarpoor (2006) presented a continuous-time semi-Markov process to

determine the amount of preventive maintenance to be performed on an equipment

in order to maximize availability. They assumed that an equipment could fail due

to both deterioration and random occurrences of failures. Lisnianski (2007) ex-

tended the classical reliability block diagram method to a repairable multi-state

system.The suggested method is based on the combined random processes and the

universal generating function technique and drastically reduces the number of states

in the multi-state model. Koutras and Platis (2008) modelled preventive mainte-

nance technique (software rejuvenation) to prevent failures in continuously running

systems that experience software ageing. Rejuvenation is modelled in a redundant

computer system via a semi-Markov process in order to counteract software ageing.

Gámiz and Román (2008) proposed a smooth estimation of the availability based

on semi-Markov kernel estimator of the cumulative distribution functions (CDF)

of the failure and repair times, for which the bandwidth parameters were obtained

by bootstrap procedures.
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Corollary 1 comes from theorem 1. 
Corollary 1. For YO = i, 

jEG'  

The proof is in appendix A.2. 

Compute the limits of the average unavailability as t 
increases. Appendix A.3 treats the special case where 
the holding-time distribution depends only on the present 
state, The formula can be derived from [4]; a short, simple 
derivation is given here. 
Derivation 

Eq (7) for transition probabilities is used for Weibull 
holding-times. Since the Weibull distribution does not 
have a simple Laplace transform, the kernel R(t)  cannot 
be computed analytically. For computation, the Weibull 
distribution is replaced by an appropriate discrete distri- 
bution (see section 3). 

For discrete holding-times that take only values in the 
lattice { k  . h : IC > 0}, (7) becomes: 

prz{yk ,h = j }  = 
k 

[R2,J(Z. h) - Rz,J((Z - 1).  h)] . H ( ( k  - 1 + 1). h ) .  (11) 
z=o 

Because R,,J is a jump function for any i , j ,  the integral 
becomes a sum. 

Let Rz,J(-h) = 0. R(t)  can be computed recursively: 
00 

R,,j(t) = E , { Z  qxn = j )  * Z(Tn E [O,tl) 
n=O 

00 

= E , { E i { C Z ( X ,  = j )  .x(Tn E [O,t])ITi,Xi}} 
n=O 

00 

= & , J  +Ez{CZ(Xn =j).Z(Tn E [O,t])lTl,X1} 
n=l 

The last line of the equations follows from the preced- 
ing one by the semi-Markov property of the sequence 
{ (Xn ,Tn)  : n 2 0). For an alternative approach see [8] 
where integral equations for the transition probabilities 
can be obtained using the case where the set of up states 
contains only one state, and point availabilities rather than 
interval availabilities are considered. However, a, different 
set of integral equations would have to be solved for each 
PZJ (t).  

R,ewrite (12) for discrete holding-times on the lattice: 

R ( m . h )  = 
m 

I + C [ Q ( l  . h)  - Q ( ( I  - 1) . h)] x R ( (m - I )  h )  , (13) 
1=1 

R(0) = I; 
I E identity matrix = c & , ~ ) .  

This recursion is used in section 3 to approximate 
transition probabilities when the holding-times have the 
Weibull distribution. The continuous Weibull distribution 
is replaced by a discrete lattice distribution which closely 
resembles it. 4 

3. WEIBULL HOLDING-TIMES2 
This section presents a model for PP operation with 6 

states and Weibull holding-times. The transition proba- 
bilities are computed with ( l l ) ,  and the parameters for 
the Weibull distribution and the transition probabilities 
for the embedded Markov chain have been estimated from 
real operating data. 

3.1 Model Assumptions for This Example 

Figure 1. PP Model with Possible Transitions 

A. The system states and the possible transitions be- 

B. The 6 system states are [9, IO]: 
tween them are in figure l. 

#I. Operating state (up). 
#a. Stoppage due to low power-demand (up). 
#3. Boiler failure (down). 
#4, Turbine failure (down), 
#5. 

(down). 
#6. Refitting (down). 

C. The only transitions from down states, with the ex- 
ception of the transition from state #3 to #2, are into 
state 1. (This simplification is chosen on the basis of the 
operating data, ie, other transitions rarely occur.) How- 
ever, the formulas from section 2 do apply to arbitrary 
transit ions. 

Stoppage due to states other than #2 - #4 

2The  number of significant figures is not intended to imply any ac- 
curacy in the estimates, but t o  illustrate the arithmetic. The Pascal 
code used for numerical computations is available from the authors. 

Figure 3.1: Power plant reliability model. Source: Perman et al. (1997)

Perman et al. (1997) applied semi-Markov process model to power plant relia-

bility analysis. The model consisted of six states as in Figure 3.1 with failure states

dedicated to major components in the plant. These include the boiler and tur-

bine. The failure times were Weibull distributed with parameters estimated from

real operating data using maximum likelihood method. It was assumed that the

observations of the holding-times in a given state are independent and identically-

distributed (i.i.d). However, the reliability estimates were a result of direct numer-

ical computations by discretizing the integrals. In this thesis, the use of Weibull
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distribution is further explored leading to some closed form solutions and techniques

to reduce states in a model.

A CONTINUOUS-TIME APPLICATION

A simple stochastic process will now be discussed. Also, the equations developed
in the preceding section will be applied to produce the numerical solution of the probabil-
istic time behaviour of the process. The numerical solution will then be compared with
the analytic solution.

The problem to be considered is of an aircraft searching for a submerged submarine
in the ocean. The aircraft drops sensors to detect the submarine. The aircraft is as-
sumed to detect the submarine at a constant rate \ , where X is the reciprocal of the

meantime to detect. After the aircraft detects the submarine, it drops additional sensors
to localize (refine the location) the submarine. Localization is assumed to take place at
a constant rate X , where X is then reciprocal of the mean time to localize. Once

the aircraft has localized the submarine, the mission is considered successful and the
aircraft returns to base.

While the aircraft is attempting localization, however, the submarine may move out
of detection range of the sensors and the aircraft may lose contact. The aircraft is as-
sumed to lose contact on the submarine while attempting to localize it at a constant rate
XQ , where X is the reciprocal of the mean time to lose contact. If the aircraft loses

O O

contact on the submarine, additional sensors are laid to redetect the submarine. The
redetection rate is assumed to be equal to the detection rate X . Given that the aircraft

can search for a long time and has an inexhaustible supply of sensors, then the probabili-
ties of the aircraft being in the search, detection, and localization states as a function of
time must be determined.

The elementary process just described is a three-state system consisting of two
transient states and one absorbing state (figure 1). The arrows in the figure indicate
the direction of transitions from each of the system.

Search

,-M

X3e -A3t

Detection Localization

FIG. 1: THREE-STATE STOCHASTIC PROCESSFigure 3.2: Search for submerged submarine. Source: Nunn and Desiderio (1977)

Figure 3.2 shows a state space model to obtain reliability of a search operation.

An aircraft searches for a submerged submarine by dropping sensors in the ocean.

When an approximate location is detected, additional sensors are dropped to ex-

actly localize the position. The time taken to detect and localize follow exponential

distribution.

Transition probabilities are defined as the probability that
the system will go from the current state i to the next state j.

XO The transition probabilities, Fji, are found according to (4) and
LL1 R FO j organized into the matrix, F. Again, the columns represent the

'from' states and the rows are the 'to' states [7].

0 0 0 1 1 0 1 1
P- a ~~~~~~~~00 0 0 1 0 0

aa 0 0 0 0 0 0
S r . F > r S> r r= 0 0 0 0 0 0

M2 ~~~~~~~~~~~~0c0 0 0 0 0 0

Io c 0 0 0 0 0
FIG. 1. GENERAL STATE SPACE DIAGRAM [9] b b b 0 0 0 0 0

O O a O O O O 0

IV. PREVENTIVE MAINTENANCE MODEL Where:

A. Formulation a =k21 / (Xo +X + kX1)
The states from Fig. 1 are set according to the list below. b = 4 / (Xo + ±+ kX1)

In this case k = 3, giving the state space diagram in Fig. 2.[9] c = ), / (Xo +± + kX1)

L State The sojourn times of each state T, can be calculated by the
1 DI transition rates. Each sojourn time t1, is the inverse of the sum
2 D2 of the departure rates for state i [7].
3 D3
4 M1 t1 = 1/(o +±m+ kX2)
5 M2 t2 = I/(O +±m+ kXI)
6 M3 t3 = 1/(o ±+ m+ kXI)
7 Fo t4 = 1/ pm
8 F1 t5 = 1/pm

t6 = /pm

t7~=/iROt8l= R

Vi[1 f Fo
B. Solution Process

It is now possible to calculate the proportion of all

k1 i 01I transitions that take the system into each state (7t). These:; 1 _ Ill.tD?2
-1\ DF proportions are figured according to (1) and (2):

so~~~~~~~~~~~~~~~~~~~~~~RL+\74 1+2+ 73+ 74 + 75+ 76+ 77 + 78
v _1 F 14'74 + F 15275 + F177t7 + F187r8

____ 162l)J e F2171+F2676

73 F3272
FIG. 2. STATE SPACE DIAGRAM FOR k = 3 (N 8) 74 F417l

The transition rates, Aij, are defined as the average 5 F5272
amount of transitions per unit of time in which the system 6 F6373
leaves state i to enter state j [7]. The transition rates are 7= F87131± F722± F73t3
denoted as 2, and px depending on leaving or entering a D- 8
state respectively. The transition rate matrix [A] of the Once the proortions are found then it is ossible to
equipment with three deterioration states is of the form where p p 'calculate the final state probabilities, P. This is done using (3)the columns are the 'from' states and the rows are the 'to' with the sojour time of each state, t1. The first three elements
stte[0 ,11]: w1htesJ nheo ahsae I.Tefrtheelmnsstates,[1,11]. in the vector P, are the state probabilities of the three D-states.

0 0° 1m ~1m 0 p The sum of these three probabilities is the availability of the
kkl -Y2 0 0 0 itm 0 0 system.
0 kX1 -E3 0 0 0 0 0 After finding the availability of the system, 4 can be
Xm 0 0 -E 0 0 0 0 varied over a large range in order to find the optimal amount

A= 0°~01 0 -E5 0E 0 0 of prvniemaintenance for the eup nts maximum

Xo Xo XO 0 0 0 E o availability. Too much maintenance will be redundant and the
0 0 kX1 0 0 0 0 -E equipment will be shut down unnecessarily. If too little

5
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Figure 3.3: General state space diagram for preventive maintenance. Source: Toma-
sevicz and Asgarpoor (2006)

Tomasevicz and Asgarpoor (2006) et al. developed a continuous time semi-

Markov process model for equipments that fail due to both deterioration and ran-

dom occurrences as in Figure 3.3. They modelled the deterioration in k-discrete

steps with exclusive states for preventive and corrective maintenance. Their ap-

proach uses the time spent in the states in the formulation rather than statistical

distribution representing the time spent in the states and the outputs are steady-

state state probabilities.

A real time online computer database system is vulnerable to cyber attacks. A

cycle of a typical attack could comprise of six states - normal state G, infected state
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The transition probability matrix P for the state transition
model proposed in Figure 3:

P =

⎡
⎢⎢⎢⎢⎣

0 1− Pfa 0 0 Pfa 0
0 0 Pd 0 0 1− Pd

0 0 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(3)

To obtain the steady state probabilities of the embedded
continuous time Markov chain, solve Equation 1. We have

vG =
1

3− Pfa + Pd − PdPfa

vI =
1− Pfa

3− Pfa + Pd − PdPfa

vQ =
Pd(1− Pfa)

3− Pfa + Pd − PdPfa

vR =
Pd(1− Pfa)

3− Pfa + Pd − PdPfa

vFA =
Pfa

3− Pfa + Pd − PdPfa

vUD =
(1− Pd)(1− Pfa)

3− Pfa + Pd − PdPfa
(4)

Let vector v = (vG, vI , vQ, vR, vFA, vUD) be the steady
state probabilities of the embedded continuous time Markov
chain and vector h = (hG, hI , hQ, hR, hFA, hUD)′ be mean
sojourn time in each state, we have steady state probabili-
ties π of the semi-Markov model in Figure 3 by solving
Equation 2

G

Q

I

UD

FA

R

Pd

1-Pd

1

1
1

1 Pfa

1-Pfa

Figure 3. State Transition Model with IDS

V. SURVIVABILITY EVALUATION METRICS

It is very difficult to define or interpret survivability, since
it can mean many things in the context of different types of
systems and applications. For a database system, we define
survivability as follow:
Definition 1. Survivability is the quantified ability of a
system or subsystem to maintain the integrity and availability
of essential data, information, and services in presence of
attacks.

Based on the definition, we could evaluate the survivabil-
ity of intrusion tolerant database systems from two different

aspects. First is the ability of a system to maintain the
integrity of data and second is the ability to maintain the
availability of data. To quantify the survivability of intrusion
tolerant database systems in these aspects, we propose two
novel quantitative metrics integrity and availability in the
following section.

A. Integrity

According to survivability, we define integrity in a way
different from integrity constrains. In this paper, we define
integrity as follow:
Definition 2. Integrity is defined as a fraction of time that
all accessible data items in the database are clean.

High integrity means that the intrusion tolerant system
can serve the users good or clean data at a high probability.
Obviously, all data items are clean and accessible in state G.
When attacks occur, some data items will be affected. So in
state I , part of accessible data items are “dirty”. After the
intrusion is identified, the damaged data is quarantined until
finished the repair process. The accessible data items are
clean during the quarantine, damage assessment, and repair
process.

Consider the transition models presented in Section IV,
we can have the integrity of the state transition models is

I = πG + πQ + πR (5)

B. Availability

In reliability research availability is defined as a fraction
of time that the system is providing service to its users [1].
However, the big difference between reliability and surviv-
ability is that degraded services of survivable systems are
acceptable to users, while reliability assumes that the system
is either available or not [12]. For an intrusion tolerant
database system, if the clean data can not be accessed, it is
a loss of service to users. Availability means that the system
not only can serve its users, but also do not deny the request
for the clean data. In this paper, we define availability as
follow:
Definition 3. Availability is defined as a fraction of time
that the all clean data items are accessible.

Consider the transition models presented in Section IV,
some clean data items are contained in the quarantine state
Q. After damage assessment, contained clean data will be
released and only damaged data items are quarantined in
repair state R. Hence we have the availability of the state
transition models is

A = πG + πR (6)

VI. EMPIRICAL VALIDATION

Model validation is possibly the most important step in
the model building sequence. It is also one of the most
overlooked. In the survivability research literature [11], [12],
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Figure 3.4: Survivability model of an intrusion tolerant database system. Source:
Wang et al. (2010)

I, quarantined state Q, undetected state UD, and false alarm state FA as seen in

Figure 3.4. Wang et al. (2010) et al. developed a semi-Markov based survivability

model for this state space. Steady state probabilities for false alarm and detection

were obtained.

3.3 The Semi-Markov Process Model

This thesis follows the general formulation of the continuous-time discrete-state

semi-Markov process model as developed by Howard (1964, 1971).

Suppose the model has N states. Let fij(t) and Fij(t) denote the pdf and cdf ,

respectively, of the event corresponding to the transition from state i to state j at

time t.

Assume that the process is in state i. From this state, there could be k different

states to which the process could transit in a single step. These states could be

completion of a repair, further degradation of the system or a failure mode with

an underlying failure mechanism. Also assumed in this model is that all these k

possibilities are independent of the occurrence of each other. At a time instant t,

the process chooses only one state from these choices such that the time to be spent

in the current state i is the minimum before instantaneously jumping to the chosen

state. The probability that the next state is j and not any other state k reachable

from i is given by:
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cij(t) = fij(t)
∏

k 6=j

(1− Fik(t)) (3.5)

For N=2, cij(t) = fij(t). The matrix C(t) = [cij(t)] is called the kernel or core

of the semi-Markov process model and

wi(t) =
N∑

j=1

cij(t) (3.6)

is called the waiting time density function for the state i. It represents the proba-

bility that the system waits in state i for t time units before making a transition.

Hence it is an unconditional density function. It is assumed that any row i of the

kernel C = [cij] satisfies the condition:

∞∫

0

∑

j

cij(t)dt ≈ 1 (3.7)

This assumption assures that there is unit probability that the system will be in one

of the N states of the system at time t, given the initial state as i. The probability

that the system does not leave state i by time t is given by:

Wi(t) = 1−
t∫

0

wi(t)dt (3.8)

The objective of the model is to determine the probability φij(t) of being in each

state j given that the system initially is in a particular state i. φij(t) can be

determined by solving a system of integral equations:

φij(t) = δijWi(t) +
∑

k

t∫

0

cik(τ)φkj(t− τ)dτ (3.9)

Where i = j = k = 0, 1, 2, ...N − 1.

The right hand side of Equation 3.9 describes the following probabilities:

1. i = j and second term=0: Wi(t) is the probability that the process does not

leave state i by time t.
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2. i = j and second term not 0: process leaves state i and returns to i by time

t.

3. i 6= j and second term 6= 0 : process leaves state i and reaches state j by time

t.

The system of equations can alternatively be written in a compact form as a

matrix:

φ(t) = diag(W (t)) +

t∫

0

C(τ)φ(t− τ)dτ (3.10)

Given that the system started its operation in state i and that state j is the

only absorbing state, the failure probability of the system is given by φij(t) and

reliability R(t) = 1− φij(t).

Table 3.1: Explanation of terms in the Markov renewal equation
Term Explanation
Cij(t) Kernel of the semi-Markov process(Howard, 1971): probability density

function for the event that the process entering state i at time zero will
make its next transition to state j after holding for t time units. A
homogeneous model is assumed which means that entry in to state i at
time t is the same as entering it at time zero.The transition from i to
j is a single step transition. Occurrence of this transition either has a
probability p or a probability is assigned according to the competing risk
model.The competing risk model states that the process chooses state j
as the successor and not any other state reachable from state i in a single
step because the time spent in i with j as the successor is the minimum
of the times spent in i with any other state as the successor.

φij(t) Interval transition probability (Howard, 1971): a conditional probability
that the process will occupy state j at time t if it entered state i at time
zero. This is a multi-step transition obtained using the Markov renewal
equations. If i is completely operational state and j is an absorbing state,
φij(t) represents the system failure probability and 1−φij(t) gives system
reliability (Lisnianski, 2003).

Wi(t) Complementary cumulative waiting time probability (Howard, 1971): an
unconditional probability that the process will not leave its starting state
i by time t. This is analogous to saying that the process will remain in
state i for t time units and the successor state is not yet known
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3.3.1 Example

Consider a simple 2-state non-repairable system with state 1 as down state and

state 2 as up state. Let f21(t) = λ e−λt.

c21(t) = f21(t) since there is no competing risk in this problem. Then by Equations

3.5 and 3.6:

C(t) =

[
δ(t−∞) 0

λe−λt 0

]
w(t) =

[
0

λe−λt

]

δ(t−∞) is just a formal notation stating that once the system enters down state,

it is irreparable.

3.3.2 Solution of Markov Renewal Equation

1. Continuous time solution

(a) Transform techniques: If the process has a few states and the waiting

time distributions are simple functions, it is convenient to apply Laplace-

Stieljes or Geometric transform on Equation 3.9. This transformed al-

gebraic set of equations is solved for φij in the transformed space and

then a corresponding inverse transform is applied to obtain φij(t). These

techniques have been discussed in Howard (1971). Sometimes even for

simple systems, application and inversion of transforms is non-trivial

and numerically intractable. Most distributions do not possess a closed

form Laplace transform. Cole.W.Gulyas (2007) in a thesis dissertation

employed a transform approximation method (TAM) to evaluate the

Laplace transform of Weibull distribution and then numerically evalu-

ated its Laplace inversion.

(b) Direct numerical evaluation: Algorithms based on trapezoidal and Simp-

son’s rule were derived by Nunn and Desiderio (1977) and Smith (1958).

Smith (1958) derived an algorithm in which Eq.(3.9) is expanded in

power series. This is a recursive algorithm, but, needs to be customized

to specific distributions.

2. Discrete time solution

(a) Discretized Markov renewal equation: Nunn and Desiderio (1977) use

Eq.(3.9) almost “as is” to produce φij(t) in a recursive manner by taking
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the values of the distribution on lattice points of the desired time period:

φ(tn) = W (tn) +
tn∑

τ=0

C(τ)φ(tn − τ) (3.11)

Starting with φ(t0) = W (t0), the above equation can be solved recur-

sively.

(b) Convolution inverse method: A discrete-time semi-Markov process (DTSMP)

generalizes discrete-time Markov chain. A DTSMP does not suffer from

state explosion like continuous-time SMP. The Markov renewal equation

can be expressed as a finite series of semi-Markov kernel convolution

product. Within this framework, the initial state distribution of the

system and the discrete semi-Markov kernel completely characterize the

system. The reliability and its related measures follow from this formu-

lation. Barbu et al. (2004) defined a discrete time semi-Markov model

and proposed a computational procedure for solving the Markov renewal

equation. They introduced identity and inverse elements for the discrete

case convolution operation.

φ = diag(W ) + C ∗ φ
⇒ φ(n) = (I − C)(−1) ∗ diag(W (n)) n ∈ N

In this proposal trapezoidal rule has been adopted for availability computations

since relatively little literature exists regarding the numerical accuracy or running

time of the other algorithms.

3.3.3 Solution by direct numerical integration

Equation 3.8 is computationally expensive if the integral has to be evaluated for

each t. Instead, it can be computed as a recurrence relation as follows:

Wi(tn) =





1−
∫ ∆t

0
wi(tn)dt n = 1

Wi(tn−1)−
∫ tn
tn−1

wi(t)dt n > 1
(3.12)
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Where, by trapezoidal rule, we have:

∫ tn

tn−1

wi(t)dt =
∆t

2
{wi(tn−1) + wi(tn)} (3.13)

To solve the system of Markov renewal equations, Nunn and Desiderio(1977)

derived the following recurrence relation based on trapezoidal rule by distributing

t on a set of equally spaced points in the interval [0, t]:

φ(tn) = [I − ∆t

2
C(0)]−1[diag(W (tn)) + ∆t

n∑

k=1

C(tk)φ(tn − tk)

−∆t

2
C(tn)φ(0)] (3.14)

Where ∆t = tn − tn−1. The solution is started with φ(0) = W (0) = I. The

derivation is discussed in detail in the appendix.

The convolution operation in the above equation involves repeated addition and

multiplication of matrices thus slowing down the computations as n grows. With

sufficiently large storage space, the following technique for convolution improves

the speed:

n∑

k=1

C(tk)φ(tn − tk) =
[
C(t1) C(t2) ... C(tn)

] [
φ(tn−1) φ(tn−2) ... φ(t0) = I

]T

3.4 Concepts in reliability analysis

3.4.1 System reliability

Reliability of non-repairable system is expressed in terms of its time-to-failure dis-

tribution, which can be represented by respective cdf , pdf , or hazard (failure) rate

function (Modarres et al., 1999) i.e., the lifetime of a nonrepairable component lasts

until its first entrance in to the subset of unacceptable states called the “absorbing

state”. Given that the process started in state i at time zero, the first passage

time to the absorbing state j is given by φij(t) and its reliability is computed as

Lisnianski and Levitin (2003):

R(t) = 1− φij(t) (3.15)
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3.4.2 Availability and unavailability

Components of a system can be repaired and such an activity takes time. A re-

pairable system does not have an absorbing state. Rather it has a set of acceptable

states B that meet a preset demand and the rest are termed as unacceptable states.

The instantaneous availability of the system is computed by summing φij(t) over

the set B (Lisnianski and Levitin, 2003):

A(t) =
∑

j∈B

φij(t) (3.16)

and instantaneous unavailability is 1− A(t).

3.4.3 Hazard rate

Hazard rate is used to refer to instantaneous rate of failure of a non-repairable

system or non-repairable component in a system. It is denoted by λ(t) or h(t) and

has the units “failures per unit of time”. It is a conditional failure rate in the sense

that it expresses the likelihood that a component will fail in (t, t + ∆t) given that

it was reliable until time t. Hazard rate can be greater that one, but it is often

misinterpreted as a probability.

Some authors refer it to as failure rate function since it is considered as well

established in applied reliability Rausand and Høyland (2004). In this thesis, hazard

rate is used when dealing with non-repairable system with a repairable subsystem.

Hazard rate can be expressed in multiple ways for the continuous case Rausand

and Høyland (2004):

λ(t) =
f(t)

R(t)
=

f(t)

1− F (t)
=
−1

R(t)

dR(t)

dt
= −dlnR(t)

dt
(3.17)

where f(t), F (t) and R(t) denote the density, cumulative distribution and reliability

functions respectively of the time to failure of a component.

3.5 Steady state probabilities

Given the Markov transition rate matrix A with zero diagonal entries, the Markov

transition probability matrix P = [pij] can be found by dividing every row of the
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matrix by its row sum. For N = 2, P is the following matrix:

P = [pij] =

[
0 1

1 0

]
(3.18)

After a long time of operation, the probability of being in a state j in the Markov

sense, regardless of where the system started is given by πj. This is called the

stationary distribution of the imbedded Markov chain of the semi-Markov process

model and is found by solving the following set of equations:

πj =
N−1∑

i=0

πipij (3.19)

∑
πj = 1 (3.20)

The semi-Markov steady state probability φj for state j, considering arbitrary

distributions for failure/repair time is given by(Howard, 1964, 1971):

φij =
πjτ j∑N
j=1 πjτ j

= φj (3.21)

Where τj is the mean time spent in the state j waiting for the next transition

to happen. For N = 2, τj is simply the mean of failure/repair time distribution of

the component. However, for N > 2, τj is more complicated:

τ j =

∫ ∞

0

τwj(τ)dτ (3.22)

This integral can be numerically integrated; however, the resulting steady-state

probability may not be accurate due to varying profiles of the statistical distribu-

tions considered.
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3.6 Process simulation

Barbu and Limnios(2008) presented an algorithm to simulate a trajectory of a given

semi-Markov chain (SMC) in the time interval [0,M ]. The output of their algorithm

was the successive visited states and the jump times up to the time M . In this

section, simulating a semi-Markov process based on the “Competing risk model” as

described by Howard(1971) is presented. Assume that the process is in state i. From

this state, there could be k different states to which the process could transit to in

a single step. These states could be completion of a repair, further degradation of

the system or a failure mode with an underlying failure mechanism. Also assumed

in this model is that all these k possibilities are independent of the occurrence

of each other. The process chooses only one state from these choices such that

the time to be spent in the current state i is the minimum before instantaneously

jumping to the chosen state. Hence, in simulation, all possible adjacent states and

a sample time to be spent in the current state based on each potential successor

are enumerated and the state corresponding to the minimum time is chosen. This

procedure is repeated either until the mission time is reached or the process lands

in a trapping state.

In a typical availability problem, if the process is in a down state at the end

of the mission, then the system is considered to be unavailable and available if

not. Since there is no absorbing state in such a problem, the simulation goes on

until mission time is reached. This constitutes a single trial of the simulation. A

sufficiently large number of such trials gives an estimate of the system availability.

On the other hand, for a reliability problem, the process terminates as soon as it

encounters the absorbing state flagging the system as unreliable in that trial.

3.6.1 Algorithm for process simulation

1. Variables

Sc: The current state the process is in (operational initially)

St: Target state (usually the system failure state)

Tci: Sample time spent in current state c given the successor is state i

Tmin: min{Tc1, Tc2, ...}
T : Current time
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Tm: Mission time (input)

xi: Whether process is in target state at end of mission in trial i; 1(true) or

0(false)

p: a uniform random number

inv(p, c, t): inverse transform of probability p based on current state c and

target state t

2. Repeat until T < Tm

• Choose p

• For each state i reachable in one-step from current state Sc

– Tci = inv(p, c, i)

• Tmin = min{Tc1, Tc2, . . .}
• If T + Tmin > Tm, then exit loop

• Sc = state i corresponding to Tmin

• If Sc = St, then exit loop

• T = T + Tmin

3. xi =





1 if Sc = St

0 otherwise

For sufficiently large number N of trials, the instantaneous unavailability of the

system at time t can be calculated from xi:

Q̂ = 1− 1

N

N∑

i=1

xi (3.23)

If N is small, the denominator in Equation 3.23 is replaced with N − 1 in order to

obtain an unbiased estimate of unavailability.

3.7 Example: Non-repairable system

Consider a two state non-repairable system with a failure time given by Weibull

distribution with a scale parameter λ and shape parameter γ. Assume that the

system starts in state 2, the functioning state. Then the kernel matrix and waiting
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Figure 3.5: 2-state non-repairable system with a Weibull failure time distribution

time probabilities are given by:

C(t) =

[
δ(t−∞) 0

fwbl(t|γ, λ) 0

]
W (t) =

[
1

1− Fwbl(t|γ, λ)

]

These matrices are plugged in to the Markov renewal equation (3.9) and solved re-

cursively for the state probabilities φij(t) by trapezoidal rule. Refer to the appendix

for the derivation of the algorithm. The time-dependent system failure probabili-
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Figure 3.6: System failure probability based on semi-Markov model for Example
3.7.

ties are found in φ21(t) since the system started in state 2 and state 1 is the state

of failure. These are plotted in Figure 3.6 for λ = 0.5 and γ = 1, 1.5, 2.5. Note

that the plot corresponding to γ = 1 is the same as the one in Figure 2.2 of the

Markov chapter. It can also be seen that larger values of γ attain increased failure

probability at an earlier time than the case when γ = 1. Since the system is not

repairable, it is observed that the life time of the system does not go beyond 5 hours

given that γ = 1. But, if the transition times are not exponential in real time, it is

observed that the system fails in less than 5 hours.
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3.8 Example: Repairable system

Assume that in the example above, the system is repairable (Figure 3.7) with an

exponential repair time distribution holding a repair rate µ.
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Figure 3.7: 2-state repairable system with a Weibull failure time and exponential
repair time.

C(t) =

[
0 µe−µt

fwbl(t|γ, λ) 0

]
W (t) =

[
e−µt

1− Fwbl(t|γ, λ)

]

Since there is no absorbing state for this system, it is always repairable. It is

more appropriate to discuss its availability than reliability. The state probabilities

are computed using Eq.(3.9). While φ21(t) in Figure 3.8 represents the system

unavailability, φ22(t) gives the availability (Figure 3.9) of the system. Both state

probabilities are conditioned that the system began its operation in state 2. The

assumed parameters are µ = 1, λ = 0.5 and γ = 1,5 and 15. Note that the variation

in γ produces a substantial difference in the system unavailability. The dips and

raises in the plot corresponding to low unavailability and high unavailability is due

to the effect of γ along with longer repair times and higher failure rates. Moreover,

since that the system is repairable, it is seen that the unavailability never reaches

or stays at one. After 5 hours, the availability reaches a steady state as seen in in

Figure 3.9.

3.9 Example: Repair and Redundancy

Consider two identical components connected in parallel. Let the random variables

X1 and X2 denote time to failure of the components. Let state 2 be fully operational

state, state 1 be a state with only one component working and state 0 be an

absorbing state denoting state of system failure. Let both the components be
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Figure 3.8: System unavailability for Example 3.8.
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Figure 3.9: System availability for Example 3.8.

repairable. Then the transition 1 to 2 represents repair of a single failed component.

Let its time to repair be denoted by Y .

1
10, 01

0
00

2
11

X1X

Y

Figure 3.10: State space exemplifying time to failure.

Let X denote the time to transit from state 2 to state 1.Then,

X = min{X1, X2}
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Since both the components are identical and indistinguishable, let the time to

transit from state 1 to state 0 be X1. The total time Z taken to reach state 0 from

state 2 can be one of the following:

Z = X +X1

Z = X + Y +X +X1

Z = X + Y +X + Y +X +X1

Z = X + Y +X + Y +X + Y +X +X1

.

.

Z = X + ...+X1

i.e., transition in to state 0 acts as a stopping rule for the process. Assuming that

X and Y follow valid statistical distributions and are statistically independent, the

sum of these finite number of random variables represents a convolution operation

in continuous time. The state diagram in shown in Figure 3.10. Note that for two

random variables X and Y, both not necessarily independent, density of the sum

Z = X + Y is given by:

FX+Y (z) =

∫ ∞

−∞

∫ z−x

−∞
FX(x, y)dydx (3.24)

By assuming independence of X and Y , we arrive at a convolution operation:

FX+Y (z) = Pr{X + Y ≤ z}

=

∫ ∞

−∞
Pr{X + Y ≤ z|Y = y}dFY (y)

=

∫ ∞

−∞
Pr{X ≤ z − y}dFY (y)

=

∫ ∞

−∞
FX(z − y)dFY (y)

=

∫ z

0

fY (y)FX(z − y)dy (3.25)

If all the distributions are exponential, then the distribution of Z follows a gamma

distribution, otherwise one has to resort to Laplace transforms, Monte Carlo simu-

lations, saddle point approximation or other numerical techniques to arrive at the

distribution of Z.
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Let F (t),G(t), and H(t) be the cdf of X, Y and X1 respectively. Then the

kernel of the semi-Markov process model is given by Equation 3.5:

C(t) =




0 0 0

f(t)(1−G(t)) 0 g(t)(1− F (t))

0 h(t) 0




3.10 Kernel with Weibull sojourn times

In this section, the kernel matrix of the semi-Markov process model is based on

Weibull family of distributions which means that time spent in each state before

a transition is made can be either a Weibull, exponential or a normal distribution.

This section is needed only when there is a competing risk situation i.e., a row of

the core matrix at any time t has multiple non-zero entries.

A matrix of Weibull cdfs (say Q(t)) and pdfs (say P (t) ) representing the tran-

sition times is constructed such that

Qij(t) =




FT (t|γij, λij) if λij 6= 0

0 if λij = 0
(3.26)

Pij(t) =




fT (t|γij, λij) if λij 6= 0

0 if λij = 0
(3.27)

where it is assumed that:

γij = 1 whenever λij = 0. (3.28)

The kernel (3.5) of the semi-Markov process is obtained as follows. Let R(t) =

1 − Q(t) and let each column i of R1(t) be the product of the columns of R(t)

excluding the column i. Then an element-wise product of P (t) and R1(t) yields the

kernel or core matrix, C. This is given as C(t) = P (t)�R1(t) in Howard’s (1971)

notation.

Consider a row i whose entries represent a competing risk situation, then for

1 ≤ j, k ≤ N ,

t∫

0

∑

j

cij(t)dt =

t∫

0

∑

j

[fij(t|γij, λij)
∏

k 6=j

(1− Fik(γik, λik))]dt

51



=

t∫

0

∑

j

[(λijγij)(λijt)
γij−1e−λijt

γij
e
−

∑
k 6=j

(λikt)
γik

]dt

=

t∫

0

∑

j

[(λijγij)(λijt)
γij−1e

−
∑
k

(λikt)
γik

]dt

= −e
−

∑
k

(λikt)
γik

+ 1 (3.29)

Letting t to∞ in Equation 3.29, it is proved that the process holds the assump-

tion in Equation 3.7.

The Wi(t) in Integral Equation 3.9 based on Equation 3.8 is computed as

Wi(t) = 1− (3.29) = e
−

∑
k

(λikt)
γik

(3.30)

This simplified expression for Wi(t) aids in fast computation of the state probabil-

ities in the presence of numerous competing risk situations. It remains to plug-in

both the matrices C(t) and W (t) and evaluate the state probabilities recursively

using Equation 3.10 by applying the trapezoidal rule in Equation 3.14.

3.11 A typical system

Given the strengths and weaknesses of the semi-Markov process model, we look at

possible approaches to quantitatively evaluate the sample reliability block diagram

shown in Figure 3.11.

Figure 3.11: A typical parallel-series system.

Failure and repair data of the components are listed in Table 3.2. A coefficient

of variation (cov) of 1 is assumed for all the repair times, though this is not a must

for the analysis.

The first unsuitable way of solving this problem is to develop a single semi-

Markov model with 16 states assuming binary states for each component. Though
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Table 3.2: Component data for the four component example system
Component Mean failure time, cov Mean repair time

(years) (years)
C1 40,1 0.5
C2 30,0.3 1
C3 30 , 1 0.5
C4 20, 0.25 1

it comprises of all possible system dynamics, this kind of modelling cannot be

considered practically as a final solution to a given arbitrarily large and complex

system due to state explosion.

Hence, in this thesis we look at alternative ways of solving this problem with a

mixture of semi-Markov process model and probability rules.

3.11.1 Component level analysis

One option is to evaluate the availability of each component and use probability

rule to arrive at the system availability. Lisnianski et al. (2003) explored this

option by proposing an extended reliability block diagram method in which each

block of the diagram embeds a multi-state semi-Markov model for the corresponding

component.

For component C1, a state space with two states is considered as seen in Figure

3.12. State 1 is working state and 0 is the failed state. The transition 1→0 repre-

sents a component failure. The mean life and cov of time to failure of C1 are listed

as the label for the edge connecting 1 and 0. Similarly, the label for the transition

0→1 represents the mean repair time along with cov of time to repair. The failure

and repair distributions are not part of the label. This facilitates the flexibility to

assume any arbitrary distribution at a later time.

Figure 3.12: State-space diagram for component C1

Let fij(t) and gij(t) be the failure and repair pdf respectively for the transitions

in Figure 3.12 corresponding to the mean and cov parameters listed along the edges

of the transitions in the figure. Then arranging these in a matrix, we get the kernel

matrix:
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C(τ) =

[
0 g01(τ)

f10(τ) 0

]
(3.31)

Summing up the kernel matrix elements column-wise, we get the waiting time

matrix:

w(τ) =

[
g01(τ)

f10(τ)

]
(3.32)

W (t) is evaluated using the waiting time matrix:

W (t) =

[
1

1

]
−
∫ t

0

[
g01(τ)

f10(τ)

]
dτ (3.33)

Assuming that the component begins its operation from state 1, the probability

of being in state 0 denoted by φ10(t) gives unavailability of C1. Q2(t), Q3(t), Q4(t)

are similarly obtained for rest of the components.
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Figure 3.13: Component unavailability of individual components.

In all the cases, Weibull distribution is assumed for time-to-failure and exponen-

tial distribution for repair time. Figure 3.13 shows the unavailability of individual

54



components based on solving the integral equations using trapezoidal rule and vali-

dated using process simulation. The simulations were performed with 500,000 trials

for the hypothetical system. Availability of the entire system can be evaluated using

Equation 3.34:

As(t) = {1−
2∏

i=1

Qi(t)}{1−
4∏

i=3

Qi(t)} (3.34)

Then, system unavailability is 1− As(t).

3.11.2 Steady state probabilities for component level anal-

ysis

In this section, steady state probabilities are illustrated for component C1. For

the analysis at the component level, mean waiting time need not be computed

explicitly. It is the mean of the component failure/repair distribution.

For each component Markov model as in Figure 3.12, the transition probabilities

are given as 1 for the transitions 0→1 and 1→0:

P = [pij] =

[
0 1

1 0

]
(3.35)

The imbedded Markov chain stationary distribution is determined by solving

the following set of equations:

π0 = π0p00 + π1p10 (3.36)

π1 = π0p01 + π1p11 (3.37)

π0 + π1 = 1 (3.38)

Since the stationary chain depends only on the transition probability matrix, it

is the same for all the components:

π = [πj] =
[
0.5000 0.5000

]
(3.39)
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Finally, the steady state probabilities can be computed using Equation 3.21:

φ = [φj] =
[
0.0123 0.9877

]
(3.40)

i.e., No matter in which state component C1 starts initially, its steady state

unavailability is 0.0123. Component 1 has an availability of 0.9877. Steady state

unavailability of all the components is listed in Table 3.3.

Table 3.3: Steady state unavailability of components
Component Steady State

Unavailability
C1 0.0123
C2 0.0323
C3 0.0164
C4 0.0476
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Figure 3.14: System unavailability from components

The steady state system unavailability of the system based on Equation 3.34

without the time dependence can be computed as 0.00118. Plots for time-dependent

and steady state system unavailability are plotted in Figure 3.14. A plot of the

normalized system unavailability with Weibull, gamma and lognormal failure dis-

tributions and exponential repair distribution are shown in Figure 3.15.
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Figure 3.15: Normalized system unavailability with various distributions (Compo-
nent level analysis)

3.11.3 Subsystem level analysis

An alternative option to preserve the system dynamics to the possible extent is to

evaluate availability of each subsystem by semi-Markov technique and then compose

the system results using the probability rule. An advantage of this method is that

common cause failure can be integrated into the model.

In the example considered, there are two subsystems - {C1, C2} and {C3, C4}.
For N=2, the four possible states 0,2,1,3 are 00, 10, 01, 11 representing total system

failure (00), only component 1 working (10), only component 2 working (01), and

both working normally (11) respectively. A system transition represents a change

in the state of a single component. In the example, 3→2 means that component

2 has failed and 1→3 means that component 1 has been repaired. 3→0, if exists

represents a

0
00

1
01 (1, 1)

2
10 (0.5, 1)

3
11

(40, 1)

(30, 0.3)

(30, 0.3)
(0.5, 1)

(40, 1)
(1, 1)

Figure 3.16: State-space diagram for subsystem 1
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Figure 3.17: State-space diagram for subsystem 2

common cause failure. Figures 3.16 and 3.17 show the state-space models for

both the subsystems. Assuming that both the subsystems start operating from

state 3, φ30(t) represents subsystem unavailability. Let these be represented by

Q1(t) and Q2(t) for subsystem1 and subsystem2 respectively. Then the system

unavailability Qs(t) is given by:

Qs(t) = Q1(t) +Q2(t)−Q1(t)Q2(t) (3.41)

Let fij(t) and gij(t) be the failure and repair pdf respectively for the transitions

corresponding to the state space diagram. These are arranged as shown below:

f(τ) =




0 g01(τ) g02(τ) 0

f10(τ) 0 0 g13(τ)

f20(τ) 0 0 g23(τ)

0 f31(τ) f32(τ) 0




(3.42)

Let Fij(t) and Gij(t) be the corresponding cdf . Then the kernel of the semi-

Markov process model takes the following form:

C(τ) =




0 g01(τ)(1−G02(τ)) g02(τ)(1−G01(τ)) 0

f10(τ)(1−G13(τ)) 0 0 g13(τ)(1− F10(τ))

f20(τ)(1−G23(τ)) 0 0 g23(τ)(1− F20(τ))

0 f31(τ)(1− F32(τ)) f32(τ)(1− F31(τ)) 0



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The equation for not leaving each state up to time t is written as:

W (t) =




1

1

1

1



−
∫ t

0




g01(τ)(1−G02(τ)) + g02(τ)(1−G01(τ))

f10(τ)(1−G13(τ)) + g13(τ)(1− F10(τ))

f20(τ)(1−G23(τ)) + g23(τ)(1− F20(τ))

f31(τ)(1− F32(τ)) + f32(τ)(1− F31(τ))



dτ (3.43)

The kernel and W (t) are sufficient to calculate the state probabilities using the

Markov renewal equations. Assuming that each subsystem begins its operation in

working state 3, the probability of being in state 0 denoted by Q1(t) = φ30(t) gives

subsystem1 unavailability. Q2(t) is similarly obtained for subsystem 2. Based on

Equation 3.41, system unavailability can be determined as 1− As(t).

Figure 3.18 shows the unavailability of both the subsystems assuming Weibull

distribution for time-to-failure and exponential distribution for repair time. System

unavailability is also shown in the same figure.
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Figure 3.18: Subsystem and system unavailability

The system unavailability plots in Figures 3.14 and 3.18 based on component

and subsystem level analysis respectively do not yield the same results. The reason

for this discrepancy is the fact that semi-Markov process model is a Markov process

model at the time instants of state jumps, yet not a Markov process since the

time spent in a state can follow a non-exponential distribution. The selection of

successor state is based on the Markov chain property and not on the time spent

in the previous state. If repair of component 1 starts in state 1 in Figure 3.16,
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state 0 does not consider this time spent already in repair, rather, repair of one of

the two components begins in state 0. But, ideally repair of component 1 must be

continued in state 0 and the system must be brought online following the completion

of repair. Hence, in the rest of the thesis system availability analysis in the presence

of redundant units is not considered. However, it will be demonstrated through the

NCCW system that reliability analysis in the presence of redundant parallel units

yields accurate results. The next section delves deeper in to the problems carried

forward by semi-Markov process model from the Markov process model.

3.12 Regenerative stochastic processes

Markov and renewal processes come under a general class of processes called re-

generative processes. There are random points on the time axis called regeneration

points, the behaviour of the system after which is independent of its past opera-

tion. The system is said to regenerate or renew itself past this point and the time

between any two regeneration points called an ‘nth-cycle’ is considered as a random

variable holding a statistical distribution. These cycles are assumed to be indepen-

dent, otherwise, behaviour of the system structure could become mathematically

complicated. Also note that the moment the system begins its operation initially,

which usually is zero, is also a regeneration point.

In an ordinary renewal process, the point when system fails and is instanta-

neously replaced by a new one is a regeneration point called the ‘renewal point’.

After a renewal, the system becomes ‘as good as new’ and follows the same proba-

bilistic law as before the renewal.

In an alternating renewal process, a single regeneration cycle consists of a failure

and a repair i.e, time until failure and subsequently the time until completion of

repair together forms a cycle. The time instant at which repair is completed is a

regeneration point. The distribution of sum of the random variables representing

the time to failure and time to repair is given by convolution operation. This same

distribution is replicated for every regeneration cycle until the desired mission time.

The Markov process model is based on the ‘memoryless’ property. If current

state of the process is known, then the knowledge of the past states does not hold

a predictive value. This can be seen from the definition of discrete time Markov
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chain:

P (X(tn+1) = in+1|X(tn) = in, X(tn−1) = in−1, ..., X(t0) = i0)

= P (X(tn+1) = in+1|X(tn) = in) (3.44)

i.e., the probability of being in state in+1 at time tn+1 is dependent only on the

fact that the system is in state in at time tn. Moreover, the time spent in any

state follows an exponential distribution which is characterized by the memoryless

property:

P (T > t+ t2|T > t) = P (T > t2) (3.45)

i.e., the probability that a system will be reliable for t2 more time units is the same

as the conditional probability that it is reliable for t2 more time units given that it

was reliable until time t. Since the system forgets about its past, it does not keep

track of its age and starts anew each time it transits to a different state. Hence all

states of a Markov process model are regenerative states and the time instant at

which the state transition happens is a regeneration point.

To illustrate this point, consider a three state system shown in Figure 3.19 with

two identical components A and B. Let A be functioning and B be under repair

i.e., let the system be in state 1. Assume that A fails and the process steps in to

state 0 where both the components are non-operating. In an ideal case the repair

of B must continue and system must be brought online as soon as the repair is

completed. However, due to the memoryless property, the process forgets that in

1
10, 01

0
00

2
11

λ2λ

µ 2µ

Figure 3.19: A three state Markov model for 2-unit redundant system

the earlier state, B had already undergone a partial repair and begins repairing one

of them in state 0. This flaw is a consequence of the Markov property in Equation

3.44 i.e., the time spent in repairing the component B while in state 0 has nothing

to do with the partial time spent on repairing it in state 1.

As per Gulland(2003), this flaw is rectified by assuming that there are two

repair men repairing each component independently. This is achieved by halving
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the repair time which is equivalent to doubling the repair rate corresponding to the

transition from state 0 to state 1. In this sense, the associated transition rate is 2µ

instead of µ. An alternative reasoning would be that the time to get the system

online is the minimum of the repair times of the two components leading to an

exponential distribution with mean as the sum of the repair rates of the individual

components.

This anomaly can be seen by comparing the steady state probabilities obtained

through the Markov and probability rule approaches. The steady state unavail-

ability of both the components is given by QA = QB = λ
λ+µ

. Assuming that the

repair time is much smaller compared to the failure time i.e., µ >> λ, the steady

state unavailability Qm by Markov method and the system unavailability Qp by

probability rule respectively are:

Qm =
2λ2

2λ2 + 2λµ+ µ2
≈ 2

(
λ

µ

)2

(3.46)

Qp = QAQB =

(
λ

λ+ µ

)2

≈
(
λ

µ

)2

(3.47)

Note that when µ is assumed for the transition 0 → 1, Qm is twice that of Qp.

However when 2µ is assumed for this transition, the corrected Qm is:

Qm =
2λ2

2λ2 + 2λµ+ 2µ2
≈
(
λ

µ

)2

(3.48)

A detailed account of this flaw including the analysis of k-out-of-n systems is dis-

cussed in Gulland(2003).

Semi-Markov process is a generalization of Markov process in the sense that

it is based upon the Markov chain in selecting the successor state. It follows the

Markov property at the instant of state transition also called the ‘epoch’ of transi-

tion. It departs from the Markov process because the time spent in the state need

not be exponentially distributed. Markov renewal process is based on generalized

random variables dealing with the count of visits to each state of the process while

semi-Markov process assumes each state visited by the process is itself a random

variable. However, both the processes are considered equivalent from the view-

point of probability theory (Birolini, 2007). Hence a semi-Markov process model

is a regenerative stochastic process and if at least one of the states is not a regen-

eration point, then the process ceases to be a semi-Markov process, rather, it is a
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semi-regenerative process with an embedded semi-Markov process. For a two-state

model of a repairable component, both the states are points of regeneration since

this model corresponds to an alternating renewal process.

Usually, the system up-states are regeneration states, while the down-states are

not. Even for a simple system with more than two states in the model, the assump-

tion of arbitrary failure and repair times leads to a non-regenerative stochastic

process (Birolini, 2007). For example, consider the two component redundant sys-

tem in Figure 3.19. In this model, if failure time is assumed to follow Weibull

distribution, then states 1 and 2 are regenerative states, but state 0 is not because

the time spent in state 0 is dependent on how long the repair activity went on

in state 1. Hence, the following system of integral equations based on the state

diagram in Figure 3.19 does not yield the appropriate system unavailability:

φ20(t) =

∫ t

0

C21(τ)φ10(t− τ)dτ

φ10(t) =

∫ t

0

C10(τ)φ00(t− τ)dτ +

∫ t

0

C12(τ)φ20(t− τ)dτ

φ00(t) =W0(t) +

∫ t

0

C01(τ)φ10(t− τ)dτ (3.49)

To work around the problem of dealing with a non-regenerative point with

arbitrary transition distribution, Birolini (2007) suggested modifying the integral

equations by considering a loop from state 1 to itself assuming a single repair-

man. In this case when component A fails while B is under repair, it waits for the

completion of repair of B and then jumps back to state 1 and starts repair of com-

ponent A. There are two problems with this approach, firstly, standard approach

in reliability analysis is to assume independent repair crew; secondly, dealing with

non-regenerative points varies with each problem.

While it seems lucrative that semi-Markov process model can handle arbitrary

sojourn time distributions, there comes an extra clause that all states must be

regenerative. Hence this technique does not offer a standard boilerplate solution to

any given reliability block diagram assuming independent repair crew and arbitrary

transition time distributions.

However, semi-Markov process model has potential in dealing with first failure

of small systems which are a mixture of repairable and non-repairable components.

It can also deal with degrading systems that eventually fail and are non-repairable.
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In rest of the chapter, such systems will be considered as independent case studies.

3.13 State Reduction Techniques for Semi-Markov

Process Models

Consider n components connected in series as shown in the Reliability Block Di-

agram in Figure 3.20. Each component has a reliability Ri. Then, assuming that

Figure 3.20: Reliability Block Diagram for n Components in series.

each of these components fails according to exponential distribution with a failure

rate of λi, the reliability Rs of this system also follows an exponential distribution:

Rs(t) =R1(t)R2(t)...Rn(t)

=e−λ1te−λ2t...e−λnt

=e

−


n∑

i=1

λi

t
(3.50)

In a Markov model, this feature acts as a state reduction technique. If a system

has complex network of parallel and series combination of components, an entire

subsystem of the form shown in Figure 3.20 can be reduced to a single block with

a failure rate of sum of the failure rates of the components connected in series.

However, in an SMP model, when Weibull distribution is assumed for fail-

ure/repair time, this elegance is lost. The product of Weibull distributions is not a

Weibull distribution, rather another distribution called the poly-Weibull distribu-

tion:

Rs(t) = e

−


n∑

i=1

(λit)
γi


(3.51)

64



Then, the cdf of the poly-Weibull distribution is given by 1−Rs(t):

F (t) = 1− e
−

n∑

q=1

(λqt)
γq

(3.52)

pdf is found by differentiating F (t) w.r.t. t:

f(t) =
n∑

p=1

[(λpγp)(λpt)
γp−1]e

−

n∑

q=1

[(λqt)
γq ]

(3.53)

Another instance of state reduction is a competing risk situation (Figure 3.21).

Consider two identical pipes connected in parallel each of which has a failure rate

(a) 3-States with a competing risk

(b) 3-States reduced to 2-States with no competing risk

Figure 3.21: Dealing with identical parallel components.

λ. Let P1P2 be the state in which both the pumps are in working condition.

When pump 1 fails, the process moves to state P2 and when pump 2 fails, the

process moves to state P1. Let the process be in state P1P2 initially. Let T1

and T2 be the random variables representing the random time taken to transit to

state P1 and P2 respectively. The process chooses the successor state based on the

minimum time taken to transit i.e. according to the rule min{T1, T2}. In general,

if T1, T2, ...Tn are n independent exponentially distributed random variables arising

out of a competing risk situation, min{T1, T2, ..., Tn} turns out to be an exponential

65



distribution with mean nλ as can be seen in the following derivation:

Pr(min{T1, T2, ..., Tn} > t) =Pr(T1 > t and T2 > t and ... and Tn > t)

=
n∏

i=1

Pr(Ti > t)

=
n∏

i=1

e(−λt)

=e

−t

n∑

i=1

λ

=e−nλt (3.54)

Hence, in a competing risk situation involving identical components connected

in parallel, state reduction in a Markov model can be achieved by considering a state

transition with a transition rate of failure rate * number of parallel components. For

example, the 3-state model in Figure 3.21(a) can be replaced by a simple model

shown in Figure 3.21(b). Similarly, when Weibull failure times are considered,

Equation 3.54 turns out to be poly-Weibull distribution:

Pr(min{T1, T2, ..., Tn} > t) =
n∏

i=1

e−(λt)γ

=e

−

n∑

i=1

(λt)γ

=e−n(λt)γ (3.55)

Such adjustments of transition rates also occur in modeling k−out−of−n systems,

load-sharing systems etc.

Now that poly-Weibull distribution is identified as an ideal distribution to

achieve state reduction in SMP models, in what follows, it is proved that an SMP

model’s kernel can be entirely built using poly-Weibull distribution.

Let transition from a state i to a state j follow a poly-Weibull distribution made

of a mixture of n Weibull distributions. If n = 1, distribution is a regular Weibull

distribution.

Consider a row i whose entries represent a competing risk situation, then for

1 ≤ j, k ≤ N .
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Then
t∫

0

∑

j

cij(t)dt

=

t∫

0

∑

j

[fij(t)
∏

k 6=j

(1− Fik(t))]dt

=

t∫

0

∑

j

[

mij∑

p=1

(λijpγijp)(λijpt)
γijp−1e

−

mij∑

q=1

(λijqt)
γijq

∏

k 6=j

e

−

mik∑

q=1

(λikqt)
γikq

]dt

=

t∫

0

∑

j

[

mij∑

p=1

(λijpγijp)(λijpt)
γijp−1e

−

mij∑

q=1

(λijqt)
γijq

e

−
∑

k 6=j

mik∑

q=1

(λikqt)
γikq

]dt

=

t∫

0

∑

j

[

mij∑

p=1

(λijpγijp)(λijpt)
γijp−1e

−
∑

k

mik∑

q=1

(λikqt)
γikq

]dt

=

∫ X

0

e−XdX

=− e−X + 1 (3.56)

where

X =
∑

k

mik∑

q=1

(λikqt)
γikq so that

dX =
∑

k

mik∑

q=1

(λijqγijq)(λijqt)
γijq−1dt

Letting t to∞ in Equation 3.56, it is proved that the process holds the assump-

tion in Equation 3.7.

The Wi(t) in Integral Equation 3.9 based on Equation 3.8 is computed as

Wi(t) = 1− (3.56) = e−X = e

−
∑

k

mik∑

q=1

(λikqt)
γikq

(3.57)

This simplified expression for Wi(t) aids in fast computation of the state probabil-

ities in the presence of numerous competing risk situations. It remains to plug-in

both the matrices C(t) and W (t) and evaluate the state probabilities recursively
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using Equation 3.10 by applying the trapezoidal rule in Equation 3.14.

3.13.1 Example

1
10, 01

0
00

2
11

X1X

Y

Figure 3.22: State space exemplifying state reduction.

Consider two identical components connected in parallel. Let the random vari-

ables X1 and X2 denote time to failure of the components. Let state 2 be fully

operational state, state 1 be a state with only one component working and state 0

be an absorbing state denoting state of system failure. Let both the components be

repairable. Then the transition 1 to 2 represents repair of a single failed component.

Let its time to repair be denoted by Y .

Let X denote the time to transit from state 2 to state 1.Then,

X = min{X1, X2}

Since both the components are identical and indistinguishable, let the time to

transit from state 1 to state 0 be X1. Let X1 and X2 follow Weibull distribution

whose pdf is denoted by f(t). Then X follows a poly-Weibull distribution with pdf

h(t):

h(t) = 2(λγ)(λt)γ−1e−2(λt)γ

and the reliability function

H(t) = e−2(λt)γ

Finally, let Y follow an exponential distribution with mean µ and pdf denoted

by g(t). Then the kernel of the semi-Markov process model is given using Equation

68



3.5:

C(t) =




0 0 0

f(t)(1−G(t)) 0 g(t)(1− F (t))

0 h(t) 0




The matrix W (t) in Equation 3.8 is given as per Equation 3.57:

W (t) =




1

e−µt−(λt)γ

H(t)




3.14 Discrete-time Semi-Markov Process (DTSMP)

Model

3.14.1 Introduction

In continuous time semi-Markov process model, continuous statistical distributions

are used as kernel entries and the accuracy of the state probabilities depends on

how closely the time points are spaced. On the other hand DTSMP model involves

discrete holding time distributions. Since discrete distributions are evaluated for

discrete time points, the DTSMP method is much faster than its continuous coun-

terpart. Howard (1971) developed a discrete version of SMP model that can include

arbitrary discrete distributions for holding times.

The continuous Markov renewal equation 3.9 is discretized as follows:

φ(n) => W (n) +
n∑

m=0

[P.H(m)]φ(n−m) (3.58)

where n = 0, 1, 2, 3, ... The period in the above expression represents an element-

wise multiplication of the matrices. All the required variables and matrices are

listed in Table 3.4.

It is seen that the core matrix is written as a product of one-step transition

probabilities and holding time densities. One-step transition probabilities are often

found from data as:

pij =
Number of transitions from state i to state j

Total number of transitions from state i
(3.59)
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Table 3.4: Notation used in Howard’s (1971) formulation of DTSMP.
Notation Meaning Remarks
pij Transition probability. Current state i,

the probability that next state is j
-

τij Random variable denoting time spent in
i before going to j

-

hij(n) =
P{τij = n}

Holding time. Probability that n time
units is spent in i before transiting to j.

Any discrete
distribution

≤hij(n) =
P{τij <= n}

cumulative holding time.Probability that
n or fewer time units is spent in i before
transiting to j.

n∑

m=0

hij(m)

>hij(n) =
P{τij > n}

complementary cumulative holding
time.Probability that more than n time
units is spent in i before transiting to j.

∞∑

m=n+1

hij(m) =

1−≤ hij(n)

wi(n) =
P{τi = n}

Waiting time. Probability that n time
units is spent in i before transiting to an
unknown state.

N∑

j=1

pijhij(n)

≤wi(n) =
P{τi <= n}

cumulative waiting time.Probability that
n or fewer time units is spent in i before
transiting to unknown state.

n∑

m=0

wi(m) =

N∑

j=1

pij
≤hij(n)

>wi(n) =
P{τi > n}

complementary cumulative waiting
time.Probability that more than n time
units is spent in i before transiting to
unknown state.

∞∑

m=n+1

wi(m) =

N∑

j=1

pij
>hij(n)

φij(n) Interval transition probability. Probabil-
ity of being in state j at time n given that
the state was in state i at time 0

computed from
Markov renewal
equation

P Transition probability matrix {pij}
H(n) Holding time matrix {hij(n)}
P.H(m) Holding time weighted by transition prob-

ability. Element-wise multiplication
{pijhij(m)}

>W (n) complementary cumulative waiting time
diagonal matrix

{δij >wi(n)}

φ(n) state probability matrix {φij(n)}

Most noted discrete holding time distribution is the discrete Weibull distribution
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(Nakagawa and Osaki, 1975b) :

Wq,b(0) =0 (3.60)

Wq,b(γ) =q(γ−1)b − qγb , γ ≥ 1 (3.61)

where q, b are the scale and shape parameters respectively. Khan et al. (1989)

presented a method to estimate the parameters for the distribution. Further, they

established an equivalence between the parameters of the continuous Weibull and

the discrete Weibull distributions.

For γ = 1, this distribution reduces to geometric distribution:

g(0) =0 (3.62)

g(γ) =q(γ−1)(1− q), γ ≥ 1 (3.63)

=p(1− p)(γ−1) where p+ q = 1 (3.64)

However, one has to resort to approximation techniques to compute mean and

variance of the discrete Weibull distribution. Perman et al. (1997) applied SMP

model to power plant reliability analysis. They fit semi-Markov model with dis-

cretized Weibull distributed holding-times to actual power-plant operating data.

Due to less or no availability of detailed failure data in terms of state transitions,

the DTSMP method, though much faster, is not suitable for highly reliable systems

with scanty data. Moreover collection of data at different states requires more

inspection and data storage investments.

3.14.2 Example - A three-state system

Barbu et al. (2004) defined DTSMP model and proposed a computational procedure

based on convolution inverse method for solving the Markov renewal equation along

with methods to compute the reliability and related measures. There has been no

mention of why a new convolution inverse method is needed to solve the DTSMP

renewal equations or how it is superior to Howard’s (1971) original work.

The example considered here is taken from their work and the results are verified

against the published results. However, Howard’s (1971) method is followed to solve

the Markov renewal equation.
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Consider the state space shown in Figure 3.23 to be partitioned in to the up-state

set U = {1, 2} and down-state set D = {3}.

UP UP DOWN

1 2 3

Figure 3.23: System state space.

The system is initially conditioned to be in the up-state 1 with the transition

probability matrix P :

P =




0 1 0

a 0 b

1 0 0




where a = 0.7 and b = 0.3.

Assume the following discrete conditional holding times in each state before

moving to the successor state:

H(n) =




0 h12(n) 0

h21(n) 0 h23(n)

h31(n) 0 0




Then, the kernel C(n) is given by

C(n) = P.H(n) =




0 h12(n) 0

ah21(n) 0 bh23(n)

h31(n) 0 0




The waiting time matrix is given by summing up the column entries of the

kernel:

W (n) =




h12(n)

ah21(n) + bh23(n)

h31(n)



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The complementary cumulative holding time matrix >H(n) is given by

>H(n) =




0 1−
n∑

m=1

h12(m) 0

1−
n∑

m=1

h21(m) 0 1−
n∑

m=1

h23(m)

1−
n∑

m=1

h31(m) 0 0




Then the complementary cumulative diagonal waiting time matrix >W (n) fol-

lows

>W (n) = diag







1−
n∑

m=1

h12(m)

a(1−
n∑

m=1

h21(m)) + b(1−
n∑

m=1

h23(m))

1−
n∑

m=1

h31(m)







Assume the following scale (q) and shape (b) parameters for the holding time

entries: 0.4, 1 for h12(n), 0.7,1 for h21(n), 0.6, 0.9 for h23(n) and 0.5,1 for h31(n).

>W (n) and the kernel C(n) can now be plugged in to the discrete Markov

Renewal Equation 3.58. A recursive computation scheme with φ(0) = I and n =

1, 2, 3.... yields the required state probabilities.

Figure 3.24 shows the reliability plot. This was obtained by disregarding the

repair from system failure state 3 to up-state 1 before solving the Markov Renewal

Equation and computing R(n) = 1 − φ13(n). In other words, the down state is

considered as an absorbing state.

Figure 3.26 is the system hazard rate plot calculated from:

λ(0) =0

λ(n) =1− R(n)

R(n− 1)
, n = 1, 2, 3....

Figure 3.25 shows the availability plot. Availability was computed using the

above procedure for reliability, except that the system repair was not disregarded.
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Figure 3.26: System hazard rate.
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3.15 Conclusion

This chapter focused on binary and multi-state system reliability analysis based

on the semi-Markov process model. Numerical and simulation based methods were

reviewed to solve a given model. While fault tree lacks the time dependency in

its model, Markov model is unable to handle non-exponential failure/repair times.

Though the semi-Markov model works around both the issues, it still suffers from

the state explosion problem. Simple techniques to combine two or more states in to

a single state were introduced. The next chapter explores different areas of nuclear

power plant systems where semi-Markov modelling can be practically applied.
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Chapter 4

Case Studies

4.1 Nuclear Component Cooling Water (NCCW)

System

A reliability analysis of nuclear component cooling water system (NCCW) is carried

out. Semi-Markov process model is used in the analysis because it has potential to

solve a reliability block diagram with a mixture of repairable and non-repairable

components. With Markov models it is only possible to assume an exponential

profile for component failure times. An advantage of the proposed model is the

ability to assume Weibull distribution for the failure time of components. In an

attempt to reduce the number of states in the model, it is shown that usage of

poly-Weibull distribution arises. The objective of this case study is to determine

system failure probability under these assumptions. This result can be utilized as

an initiating event probability in probabilistic safety assessment projects.

4.1.1 Problem

In nuclear power plants, nuclear component cooling water (NCCW) system is used

for removing excess heat from components that may contain potentially radioactive

fluids. Xing et al. (1996) compared the Markov and fault tree models for determin-

ing system failure initiating event frequency in the Probabilistic Safety Assessment

(PSA) of NCCW systems for shutdown conditions. They argued that for systems

with short mission time and failure mode dominated by independent failure, the

effect of repair is significant.
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Figure 4.1: Reliability block diagram of the NCCW system(Xing et al., 1996).

The NCCW system constitutes two parallel pump trains connected in series

with a heat exchanger train as seen in Figure 4.1. While both the pump trains

are repairable, the heat exchanger train is a non-repairable component. This con-

figuration makes semi-Markov model a tool of choice to perform system reliability

analysis. In order to solve this system involving parallel redundancy, we first look

in to what kind of redundancy problems were tackled using semi-Markov process

model in the existing literature.

There were numerous studies in the past on the reliability of multi-unit and

in particular two-unit parallel redundant systems using semi-Markov or renewal

processes involving regeneration point techniques. These methods were utilized to

analyze systems with different configuration settings. To cite a few, Osaki and Nak-

agawa (1971) derived time to first failure distribution of two-unit standby system

allowing simultaneous failure of both the units; Gupta et al. (1982) considered a

two-unit cold standby redundant system with exponential failure and general repair

distribution; Mokaddis and Tawfek (1995) dealt with semi-Markov analysis of a two-

unit warm standby system with dissimilar units. However, in all these models, only

a single repair act was considered. Even, availability modeling with a single repair

act is not a straightforward semi-Markov process model, rather it turns out to be

a semi-regenerative process whose modeling and computations range from high to

very high difficulty levels (Birolini, 2007). This difficulty arises during availability

modeling with general failure or repair distributions because semi-Markov process

is a regenerative process which means every state must correspond to a renewal or

restoration of the system condition. Hence, Birolini (2007) cites a two-unit redun-

dant example with only two system up-states in the model and the system down

state is used in the formulation, but it is not part of the state space.

When availability of each unit of the redundant system is evaluated individu-

ally using Markov or renewal process models, it means that each unit undergoes

an independent, dedicated repair act. Usually, these unit availabilities are com-
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bined using probability rules to obtain overall system availability. If a redundancy

problem can be solved using a single semi-Markov process model with independent

number of repair acts and general failure distribution like Weibull, then the results

would be comparable to that of the probability rule method. However, a semi-

Markov process model considering independent repair act has not been modeled

and compared against the probability rule method so far due to inherent modeling

complexities. A potential use of solving this open problem is to model parallel

subsystems with common cause failures and then integrate the results using fault

trees in PSA projects. We do not address this problem in the present study, rather

use the semi-Markov process model in a setting where these issues do not hinder

the modeling i.e., we use semi-Markov process model as an effective tool to solve a

reliability block diagram in which some of the components are repairable and others

are not. In this case, once the system fails, the process terminates and we do not

require an independent repair act to repair the system. However, the repairable

components follow the failure and repair cycle until the system fails.

Relatively recent studies on the application of semi-Markov models for system

reliability have concentrated on multi-state systems with varying performance levels

(Lisnianski and Levitin, 2003). Perman et al. (1997) applied semi-Markov process

model to power plant reliability analysis. The failure times were Weibull distributed

with parameters estimated from real operating data.

The objective of this case study is to present a more advanced semi-Markov

process (SMP) model for the evaluation of NCCW system failure probability by

considering Weibull failure time distribution in the model.

4.1.2 Explosion model

Considering binary states for each component, the state space for the NCCW sys-

tem consists of 23 = 8 states as seen in Figure 4.2. The transition rate matrix

associated with this system is a square matrix with dimension 8. The list of all

possible transitions is listed in Table 4.1. In order to reduce the number of states

in this model, state reduction techniques must be used.

4.1.3 Reduced model

As per Xing et al. (1996), the Markov state-space shown in Figure 4.3 has three

states. In state ‘2P-H’, entire system is operational. When one of the pump trains
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Figure 4.2: NCCW State Space Diagram (repairable pump train).

Table 4.1: Transition rate matrix
Cut set ? 000 100 010 110 001 101 011 111

Yes 0 0 0 0 0 0 0 0 0 0 0
Yes 1 0 0 λ1 0 0 0 0 0 0 0
Yes 0 1 0 λ1 0 0 0 0 0 0 0
Yes 1 1 0 0 λ1 λ1 0 0 0 0 0
Yes 0 0 1 λH 0 0 0 0 0 0 0

1 0 1 0 λH 0 0 λ1 0 0 µ
0 1 1 0 0 λH 0 λ1 0 0 µ
1 1 1 0 0 0 λH 0 λ1 λ1 0

fail, the system moves to state ‘P-H’. Failure of heat exchanger train leads to system

failure represented by the state ‘F’. Both the pump trains are susceptible to common

cause failure.

Both the trains are composed of five components each and their effective failure

rates are listed in Table 4.2 in the absence of common cause failure.

Let p1(t), p2(t), and p3(t) represent the probability of being in states F, P-H

and 2P-H respectively. Based on the state-space diagram, the system of differential

equations for the Markov model is written as per the theory described by Lisnianski

and Levitin (2003):
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Figure 4.3: Markov state-space for the NCCW system.

Table 4.2: Failure/repair data for the NCCW components(Xing et al., 1996)
λ1 Pump train failure rate 7.7243 x 10−6 hr−1

λH Heat exchanger train failure rate 3.4243 x 10−6 hr−1

µ−1 Pump train repair time 19.4 hr
λc Common cause failure 0 (Not in present study)

dp1(t)

dt
= (λ1 + λH)p2(t) + λHp3(t)

dp2(t)

dt
= 2λ1p3(t)− µp2(t)

dp3(t)

dt
= µp2(t)− (2λ1 + λH)p3(t) (4.1)

In the proposed semi-Markov model, we assume that pump train failure time

and repair time follow exponential distribution with mean λ1 and µ respectively.

Let the heat exchanger failure time be governed by a Weibull distribution with

mean time to failure λ−1
H hours and a coefficient of variation of c associated with

the time to failure. A list of functions required to construct the kernel are shown

in Table 4.3.

Table 4.3: Summary of transition functions used in the kernel
f1(t), R1(t) failure time pdf and rf(pump train)
g(t), G(t) repair time pdf and rf(pump train)
fH(t), RH(t) failure time pdf and rf (heat exchanger train)
f32(t) pdf for transition from 2P-H to P-H
R32(t) reliability function corresponding to f32(t)
f21(t) pdf for transition from P-H to F
R21(t) reliability function corresponding to f21(t)

rf - reliability function

Both the pump trains are identical and the pdf of the transition from 2P-H to
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P-H is the pdf of minimum of the random variables denoting time-to-failure of the

individual pump trains and the reliability function for this transition is the product

of the reliability functions of each pump train as in Equation 3.55:

R32(t) = R1(t)R1(t) (4.2)

Similarly, for the transition from P-H to F, system failure could occur due to

pump or heat exchanger train failures acting as two competing causes. Hence, the

reliability R21(t) and pdf f21(t) of this transition are given by:

R21(t) = R1(t)RH(t) (4.3)

f21(t) = fH(t)R1(t) + f1(t)RH(t) (4.4)

f21(t) and similarly f32(t) are poly-Weibull distributions as discussed in Section

3.13.

For convenience, all the density functions corresponding to the transitions can

be arranged in a matrix form:

f(t) =




0 0 0

f21(t) 0 g(t)

fH(t) f32(t) 0


 (4.5)

With the distributions for transitions, the kernel of the semi-Markov process

model can be written according to Equation 3.5:

C(t) =




0 0 0

f21(t)G(t) 0 g(t)R21(t)

fH(t)R32(t) f32(t)RH(t) 0


 (4.6)

Since all the failure/repair time distributions in matrix f(t) are poly-Weibull,

the elements of matrix W (t) can written in closed form expression using Equation

3.57:

W (t) =




0

R21(t)G(t)

RH(t)R32(t)


 (4.7)
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The kernel C(t) and the matrix W (t) are sufficient to describe the time evolution

of the system. By substituting these matrices in Equation 3.10 and computing

the system of integrals using the trapezoidal rule discussed in the Appendix, time

dependent state probabilities of being in each state can be obtained.

Contrary to the preceding discussion, it is possible to assume that the pump

train failure time follows Weibull distribution and the heat exchanger train failure

time follows an exponential distribution. The analysis follows the same set of

Equations from 4.2 to 4.7.

4.1.4 Results and discussion
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Figure 4.4: System failure probability for cov = 0.7, 0.8, 0.9, 1.0 with heat exchanger
train failure time following a Weibull distribution

The time-dependent failure probability of the NCCW system is the probability

of the system being in state F with the assumption that the system started its

initial operation in state 2P-H. This quantity is given by solving for φ31(t) in the

Equation 3.10. A mission time of 100 hrs assuming various values for the coefficient

of variation c are plotted in Figures 4.4 and 4.5. Also super-imposed on both the

plots is the system failure probability obtained by solving the differential equations

for the Markov case in Equation 4.1. For c = 1, the model reduces to a Markov

model. The first observation is that the system failure probability using Markov

and semi-Markov formulations is the same. For the entire range of c considered
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Figure 4.5: System failure probability for cov = 1.0, 1.1, 1.2, 1.3 with heat exchanger
train failure time following a Weibull distribution

i.e., c = 0.7, ..., 1.3, we see an increasing trend in the failure probability with time

for each c. For c < 1, the failure probability decreases and increases when c > 1

relative to c = 1. In simpler words, failure probability is a function of the variability

in the failure times. Higher the variability, higher is the system failure probability.

Random failures often show up large variation in failure times whereas those of a

cohort of ageing systems are likely to show less variability.

For the NCCW system, with low failure rate of the components and perfect

repair of the pump trains, system failure probability will reach a certain probability

of 1.0 much beyond the mission time. Further, assumption of this model is that the

observation starts from the time when the system is newly installed i.e., from age

zero. Xing et al. (1996) stated that the transient nature of the hazard rate of their

NCCW Markov model with in the mission time is due to the dominant independent

component failure mode making the repairs significant as opposed to the common

cause failure. Hence, in order to witness any ageing in the system, the Markov and

semi-Markov model results must be compared long after the considered mission

time where the hazard rate of the Markov model plateaus. An alternative solution

is to introduce common cause failure in to the semi-Markov model and consider

truncated Weibull distribution to shift the focus to period of time when ageing is

clearly observable.

Consider the second case where pump train failure time follows a Weibull distri-
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Figure 4.6: System failure probability for cov=0.3,1.0,1.3 with pump train failure
time following a Weibull distribution

bution with mean λ−1
1 hours and cov of c associated with the time to failure, where

as heat exchanger train failure time follows exponential distribution. The system

failure probability for this case is plotted in Figure 4.6 for c = 0.3, 1.0 and 1.3. It

is interesting to see that the failure probabilities for c = 0.3 and c = 1.0 are hardly

distinguishable, while for c = 1.3, the system failure probability is relatively larger.

i.e., an increase in the cov until 1.0 has not led to a distinguishable increase in

system failure probability. This system behavior is a result of the following reasons

with respect to the pump trains: (1) parallel redundancy: two pump train units,

(2) small expected repair time of 19.4 hrs against very small failure rate of 7.7243

x 10−6 hr−1.

We see Markov model being used widely though it restricts the failure time

profile to exponential distribution. However, for engineering systems, often Weibull

distribution is a desirable choice due to its additional shape parameter signifying

the trend in the component’s failure rate. Hence, this case study demonstrated that

semi-Markov model for reliability analysis is a choice where better predictability is

desired by considering Weibull distribution for failure times in a partially repairable

system.

The fault tree is extensively used in the nuclear industry as part of Probabilistic

Safety Analysis (PSA). The basic events are often quantified in terms of failure

probabilities or frequencies resulting from Markov models. For example, the failure

of the NCCW system could be a basic event that initiates a potential Loss of
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Coolant Accident (LOCA) leading to a core damage. The present study proposes

the use of semi-Markov models in place of Markov models for better accuracy of

failure probabilities in such PSA applications.

4.1.5 Conclusion

The component cooling water system failure probability was determined using Semi-

Markov process model. This method is found to be effective when a system is com-

posed of two-unit parallel redundant components in combination with at least one

non-repairable component. Unlike the Markov model, the proposed method allows

the usage of Weibull distribution for the component failure time. The NCCW sys-

tem failure probability can be used as an initiating event probability in probabilistic

safety assessment projects.
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4.2 Nuclear Piping System

This section presents a general model for evaluating the rupture frequencies and

reliability of the piping system in nuclear power plant based on the theory of semi-

Markov process. The proposed model is able to incorporate the effect of ageing

related degradation of pipes. Time dependent rupture frequencies are computed

and compared against those obtained from the homogeneous Markov process model.

The influence of flaw and leak inspection intervals on the piping rupture probability

is investigated.

4.2.1 Problem

Piping systems in nuclear power plants are susceptible to ageing mechanisms such

as corrosion, cracking and fatigue. Since data regarding pipe ruptures in the nuclear

plant are rare, different modelling approaches have been developed in the literature

to estimate the rupture frequency, which serves as a useful input of the frequency of

an initiating event in probabilistic safety analysis (PSA). A piping reliability model

(Simonen and Woo, 1984) was developed based on probabilistic fracture mechanics

using Monte Carlo simulation. This method considered initial crack size, flaw (or

crack) detection probability, crack growth relation, and the deterministic stress

history as the random variables and it was observed that crack detection capability

and inspection time had the greatest impact on leak probabilities. The Markov

process model also has been applied to analyze reliability of the piping system

(Fleming, 2004). This method identifies various states of degradation, and requires

input regarding the transition rates and average time taken to recover from one

state to another. Based on this input, the Markov model is able to predict the

rupture frequency in a future operating interval.

In the context of modelling of pipe failure, the Markov model consists of three

main states or events other than the normal state of the pipe. They are flaw initia-

tion, leakage and rupture. The Markov process model assumes constant transition

rate, which means that the transition time follows an exponential distribution. In

case of an ageing piping system, this assumption is problematic. For example,

flaw initiation rate in degrading pipes is likely to change with the age of the pipe.

The exponential distribution with constant hazard rate cannot capture this aspect

of ageing. Typically, the Weibull distribution with time-dependent hazard rate is

used for modelling the ageing effects. In summary, the homogeneous Markov pro-
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cess model is not adequate for modelling the ageing effects contributing to the pipe

rupture.

The objective of this paper is to present a more advanced semi-Markov process

(SMP) model for the evaluation of rupture frequencies including the effect of ageing

related degradation mechanisms.

Section 4.2.2 defines the problem of piping reliability analysis, as described by

Fleming (2004). Section 4.2.3 discusses formulation of the piping system reliability

using semi-Markov process model.

4.2.2 State Space Model

Formulation

Figure 4.7: Four-state transition model for nuclear piping system degradation.

The Markov process model to predict piping system reliability was proposed by

Fleming (2004). The model consists of four states as seen in Figure 4.7. In the first

state S, the piping system is assumed to be in a normal operational state. Flaws

formed in the system grow gradually until they become detectable. At this time,

the system moves to the state F with a transition rate of φ per year. A detectable

flaw is either detected and repaired with a repair rate of ω, or further degrades until

it becomes a detectable leak, or directly leads to rupture of the piping system. If

the flaw is detected and repaired, the system moves back to state S, if not, it moves

to either state L or R. The rates to transit from state F to L and F to R are λF

and ρF per year respectively. In this model, the transitions S → F , F → L, and

L→ R represent gradual degradation processes.

A leak when detected is either repaired with a repair rate of µ or it develops

into a rupture with a rate of ρL per year. If the leak is repaired, the system moves

back to the state S, otherwise it transits to the state R.
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The system is assumed to be non-repairable, fail state once a flaw or leak de-

velops in to a rupture i.e., the state R is an absorbing state. This is primarily done

to evaluate the reliability of the piping system. It is assumed that all other repairs

bring back the system to ‘as good as new’ condition.

The flaw repair rate ω is determined as in Equation 4.8 (Fleming, 2004)

ω =
PIPFD

(TFI + TR)
(4.8)

Where PI=0.25 is the probability that a piping segment with a flaw will be

inspected per inspection interval, PFD = 0.90 is the probability that this flaw is

detected and TR =200hrs is the time to repair the flaw once it is detected. The

flaw inspection interval TFI is taken as 10 years in the present paper unless stated

otherwise.

The leak repair rate is formulated on similar lines in Equation 4.9:

µ =
PIPLD

(TLI + TR)
(4.9)

Where PI =0.90 is the probability that a piping segment with a flaw will be in-

spected per inspection interval, PLD = 0.90 is the probability that this leak is

detected and TR =200hrs is the time to repair the leak once it is detected. The leak

inspection interval TLI is taken as 1 year in the present paper unless stated other-

wise. (Note that the formula for µ in Fleming (2004) is missing PI , but considered

in the table entitled “Example Markov model transition parameters for a weld in

a PWR reactor coolant system”).

This four state model is applicable to pipe failure mechanisms which are a com-

bination of crack propagation (e.g. thermal fatigue near welds) and wall thinning

(e.g. flow accelerated corrosion in pipe base metal) failure mechanisms. Failures

due to severe loading such as overpressure are not accounted as observed from the

absence of direct transitions S → R and S → L. In other words, leak or a rupture

can only occur from the state of an existing flaw (Fleming, 2004).
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Homogeneous Markov Process Model

The system state transition matrix (Lisnianski and Levitin, 2003) for the model in

Figure 4.7 is given by:

T =




−φ φ 0 0

ω −(ω + λF + ρF ) λF ρF

µ 0 −(µ+ ρL) ρL

0 0 0 0




(4.10)

Let S(t), F (t), L(t),and R(t) represent the time-dependent probabilities of being

in the states S,F ,L, and R respectively. These state probabilities can be obtained

by solving the system of differential Equations 4.11 with the initial condition S(0) =

1, F (0) = L(0) = R(0) = 0. The initial condition ensures that the system initially

starts operating in state S.

dS(t)/dt = ωF (t) + µL(t)− φS(t)

dF (t)/dt = φS(t)− (ω + λF + ρF )F (t)

dL(t)/dt = λFF (t)− (µ+ ρL)L(t)

dR(t)/dt = ρFF (t) + ρLL(t) (4.11)

subject to the condition that S(t) + F (t) + L(t) +R(t) = 1

This system of equations is based on the fact that the rate of change of prob-

ability of being in any state S is negatively proportional to the rate at which the

transitions occur outward from S and positively proportional to the rate at which

inward transitions occur from other states (Lisnianski and Levitin, 2003).

For example, from Figure 4.7, it is seen that there are two inward transitions in

to state S originating from states F and L with transition rates ω and µ respectively.

ωF (t) and µL(t) are weighted transition rates added to dS(t)/dt. There is one

outward transition to state F with transition rate φ and hence negatively influences

dS(t)/dt as seen in the system of equations. The numerical solution to this system

yields the state probabilities.
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4.2.3 Rupture Frequency Analysis

Formulation

The pdfs are denoted by general symbol f(t) and subscripts are used to denote the

states as shown in Figure 4.7:

f(t) =




0 fSF (t) 0 0

fFS(t) 0 fFL(t) fFR(t)

fLS(t) 0 0 fLR(t)

0 0 0 0




The elements cij(t) of the kernel matrix C(t) are found according to Equation

3.5:

cSF (t) =fSF (t)

cFS(t) =fFS(t)[1− FFL(t)][1− FFR(t)]

cFL(t) =fFL(t)[1− FFS(t)][1− FFR(t)]

cFR(t) =fFR(t)[1− FFS(t)][1− FFL(t)]

cLS(t) =fLS(t)[1− FLR(t)]

cLR(t) =fLR(t)[1− FLS(t)]

The transition probability matrix and its elements are denoted by φ(t)φ(t)φ(t) and

φij(t)φij(t)φij(t) respectively as per Howard’s (1971) notation. These are a function of time

and will be written in bold font in this paper. φ has been used by Fleming (2004) to

denote the rate of flaw growth and is independent of time. This symbol is written

in normal font in the present paper. This approach to distinguish the symbols has

been done so as to be consistent with the notation of both the authors.

The flaw occurrence rate φ is based on the data from results of Non-Destructive

Examination (NDE) (Fleming, 2004). In order to obtain parameters of an assumed

non-exponential distribution for the time to flaw growth i.e., for the transition

S → F , it is beneficial to additionally consider the variability associated with

the time to flaw growth from the test results. Hence, the parameters affecting

the coefficient of variation (cov) will be the chemical, material, texture and other

properties taken in to consideration in the NDE inspections. For example, let the
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Table 4.4: Constant transition rates for the piping system model (Fleming, 2004)
Parameter Value
φ Flaw detection rate 4.35 x 10−4/yr
ω Repair rate of a detected flaw 2.1 x 10−2/yr
λF Leak detection rate 1.79 x 10−4/yr
ρF Rupture occurrence rate from flaw state 9.53 x 10−6/yr
µ Repair rate of a detected leak 7.92 x 10−1/yr
ρL Rupture occurrence rate from leak state 1.97 x 10−2/yr

time to flaw growth until being detectable in the piping system represented by the

state transition S → F be considered a Weibull distribution with scale λφ and shape

γφ corresponding to the mean φ−1 years and cov of c. Let the rest of the transition

times follow exponential distribution. W (t) is constructed as per Equation 3.8,

and the details are presented in Section 3.3.3. Then the Markov Renewal given in

Equation 3.10 is formulated as:

φ(t)φ(t)φ(t) =




e−(λφt)
γφ

0 0 0

0 e−(ω+λF+ρF )t 0 0

0 0 e−(µ+ρL)t 0

0 0 0 S




+

∫ T

0




0 cSF (τ) 0 0

cFS(τ) 0 cFL(τ) cFR(τ)

cLS(τ) 0 0 cLR(τ)

0 0 0 0



φ(t− τ)φ(t− τ)φ(t− τ)dτ

By solving the above system using the trapezoidal rule, the state probabilities

φ(t)φ(t)φ(t) can be found. Given that the system initially started in a perfect operating

condition (state S), the probability of a flaw being detectable (state F ), a leak being

detectable (state L) and that of a rupture (state R) are given by φSF (t)φSF (t)φSF (t) = φ12(t)φ12(t)φ12(t),

φSL(t)φSL(t)φSL(t) = φ13(t)φ13(t)φ13(t), and φSR(t)φSR(t)φSR(t) = φ14(t)φ14(t)φ14(t) respectively.

Results

The transition rates for the Markov model are taken from Fleming (2004) and are

summarized in Table 4.4.

When the coefficient of variation of the flaw initiation time is c=1.0, the semi-
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Figure 4.8: State probabilities. Time to flaw growth: mean = φ−1 years, cov = 1.0
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Figure 4.9: State probabilities. Time to flaw growth: mean = φ−1 years, cov = 0.6

Markov process model yields the same results as reported by Fleming (2004) using

homogeneous Markov model (Figure 4.8). It is seen that the state probability of

being in state F is higher than being in states L and R. This is due to timely

detection and repair of detectable flaws. On repair, the system goes back to state

S thus reducing the probability of going to state of rupture.

Now we consider the cases in which flaw initiation time is modeled by the Weibull

distribution and proposed SMP model is used for reliability computation. Figure
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Figure 4.10: State probabilities. Time to flaw growth: mean = φ−1 years, cov=1.3

4.9 and Figure 4.10 show the state probabilities for c=0.6 and c=1.3 respectively.

When c < 1, the state probabilities are lesser than that when c = 1. A reduced c

implies lesser variability in the time-to-flaw initiation, which leads to smaller state

probabilities as compared to the case of c= 1. On the other hand, increased c means

that there is large variance in the observed data. Therefore, the flaw initiation rate

is higher, which in turn increases the probability of leak and rupture events.
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Figure 4.11: Influence of flaw inspection interval on rupture probability, Time to
flaw growth: mean φ−1 years with cov=0.6

The impact on rupture probability with change in the flaw inspection interval

TFI is seen in Figure 4.11. Setting TFI in Equation 4.8 to 5, 10, and 15 year intervals,

it is observed that rupture probability increases with increase in the flaw inspection
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interval. However, the difference in the probabilities is hardly distinguishable with

in a life span of 60 years for c=0.6.
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Figure 4.12: Influence of leak inspection interval on rupture probability, Time to
flaw growth: mean φ−1 years with cov=0.6

The change in rupture probability for c=0.6 with change in the leak inspection

interval TLI is seen in Figure 4.12. Setting TLI in Equation 4.9 to 1,5, and 10 year

intervals, it is observed that rupture probability increases with increase in the leak

inspection interval.
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Figure 4.13: Hazard rate of rupture with repair. Time to flaw growth: mean φ−1

years with cov=0.4, 0.5,..., 1.3

The rupture frequency increases with increase in variability (or cov) associated

with the time to flaw initiation distribution, as shown in Figure 5. In early life
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time, the transient nature of solution is seen by increasing nature of the hazard

rate curve. However, a steady state solution is likely to be achieved at in long

term, which may be way beyond the intended life time of the nuclear plant.
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Figure 4.14: Hazard rate of rupture without repair. Time to flaw growth: mean
φ−1 years with cov=0.4, ..., 0.6,1.0, 1.3.

The rupture hazard rate in the absence of repair is plotted in Figure 4.14. As

expected, in the absence of repair, the rupture rate will increase significantly.
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Figure 4.15: Ratio of rupture rate without repair to rupture rate with repair.

The ratio of rupture rate without repair to rupture rate with repair is shown in

Figure 4.15 for three cases, c=0.6, 1 and 1.3. The increasing ratio with time shows

that in the absence of repair, rupture rate is larger. Moreover, higher the variability

in flaw growth, larger is the ratio. At the end of 30 years with a variation of 0.6
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in the time to flaw growth, it is seen that the rupture rate without repair is four

times larger than that in the presence of repair. This demonstrates the importance

of effective in-service inspection (ISI) programs for timely detection and repair of

flaws. Further research involves using the knowledge of these rupture rates in risk

informed programs to optimize the inspection intervals.

4.2.4 Conclusion

A semi-Markov process model was proposed to analyze reliability of the nuclear

piping system. In this model, the flaw initiation is modelled by Weibull distribution,

which allows to incorporate the ageing effect, i.e., increase in flaw initiation rate

with time. It was observed that the pipe rupture rate increases with increase in the

variability of time to flaw initiation distribution. Hence, a maintenance program

that removes the flaw from piping systems and repair leaks promptly will improve

the reliability against rupture event. The proposed model provides a tool set to

optimize the pipe inspection and maintenance program over the life cycle of the

plant.

96



4.3 Availability Analysis of a System

Availability analysis of a general system with multi-state components following ar-

bitrary failure and repair time distributions is described in presence of preventive

maintenance. Each component can be in one of the following four states - oper-

ational, degraded, repair and corrective maintenance. Analysis at the component

level is conducted using semi-Markov process model. Based on a general reliabil-

ity block diagram, the collection of all possible operational set of components are

identified using network reliability techniques. Component availabilities from the

semi-Markov model are combined with probability rules to arrive at system un-

availability. This general method is illustrated using a seven component system.

The influence of inspection interval on the system unavailability is investigated.

4.3.1 Problem

A large reliability block diagram consisting of all repairable components with each

component’s failure and repair time following a general distribution can be solved

for unavailability using Monte Carlo simulation (Billinton and Li, 1994). But simu-

lation requires either large number of repeated trials or effective variance reduction

techniques with added complexity. In this section, semi-Markov process model

combined with simple probability rules is applied to obtain system unavailability

from constituent components.

Time-dependent availability analysis of a large system involves obtaining avail-

ability of individual components, finding the minimal path sets of the system and

finally using an algorithm to integrate all these results. A reliability block diagram

can be represented in the form of a links matrix (Younes and Girgis, 2005). This

matrix has all the information required to identify which two of the components in

the system are connected directly in series. Using this matrix, all the minimal path

sets of the system can also be enumerated.

For example, consider the tail-gas quench and clean-up system (Caceres and

Henley, 1976) whose reliability block diagram is shown in Figure 4.16. The links

matrix corresponding to this system with only the non-zero entries for easy read-
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Figure 4.16: Reliability block diagram for tail-gas quench and clean-up system.

ability is:




A B C D E F G

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1




(4.12)

Using this links matrix we can trace all possible paths from A to G. For example,

tracing the ones, we find that A → B → D → E → G is a valid path which

maintains the system in an operational state. The set {A,B,D,E,G} is called a

minimal path set. If all the components in this set are functional, then the system

is guaranteed to be operational i.e., these components are connected in series. This

fact can also be represented in the form of an expression using set theoretic symbols.

For example (B ∪ C) ∩ (E ∪ F ) would mean that either of {B,C} and either of

{E,F} must be operational. Using this notation, we find the following possible

ways of the system being in operational state:

E1 = A ∩B ∩D ∩ E ∩G
E2 = A ∩B ∩D ∩ F ∩G
E3 = A ∩ C ∩D ∩ E ∩G
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E4 = A ∩ C ∩D ∩ F ∩G (4.13)

Similarly, one can define a path matrix. Each row of this matrix corresponds to

one path set and the number of rows corresponds to number of minimal path sets

in the system. For the tail-gas system, the path matrix is given in Matrix 4.14.




A B C D E F G

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1




(4.14)

All these path sets are analogous to four components connected in parallel. Let T

represent the fact that the system works through at least one of the paths listed in

4.13:

T = E1 ∪ E2 ∪ E3 ∪ E4 (4.15)

T can be arrived at using a step by step procedure:

E1 ∪ E2 = A ∩B ∩D ∩ (E ∪ F ) ∩G
E3 ∪ E4 = A ∩ C ∩D ∩ (E ∪ F ) ∩G
T = A ∩ (B ∪ C) ∩D ∩ (E ∪ F ) ∩G (4.16)

While for a human eye it is easy to simplify the expressions, for automation and

computation of arbitrarily large and complex systems, obtaining T is not straight-

forward. In this thesis the algorithm developed by Younes and Girgis (2005) is

applied in conjunction with semi-Markov process model to carry out system avail-

ability analysis.

4.3.2 Expression for system unavailability

Assuming that failure of one component does not affect the other, for a series system

with components B and C, let the availability of the components be B(t) and C(t)

99



respectively, then the system availability As(t) is given by:

As(t) = P (B ∩ C) = B(t)C(t) (4.17)

If any two components B and C are connected in parallel with availabilities B(t)

and C(t) respectively, then system availability is given by:

As(t) = P (B ∪ C) = B(t) + C(t)−B(t)C(t) (4.18)

Using these notations, availability of the tail-gas system using Equation 4.16 can

be evaluated as

As(t) = P (T ) = A(t)[B(t) + C(t)−B(t)C(t)]D(t)[E(t) + F (t)− E(t)F (t)]G(t)

(4.19)

Using the same notation, Equations 4.13 translate to:

E1(t) = A(t)B(t)D(t)E(t)G(t)

E2(t) = A(t)B(t)D(t)F (t)G(t)

E3(t) = A(t)C(t)D(t)E(t)G(t)

E4(t) = A(t)C(t)D(t)F (t)G(t) (4.20)

where each Ei(t) represents the combined availability of all components in its path

set. However, union of more than two events as in Equation 4.15 becomes a com-

binatorial problem:

P (E1 ∪ E2 ∪ ... ∪ En) = P (E1) + ...+ P (En)

−
∑

i<j

P (Ei ∪ Ej)

+
∑

i<j<k

P (Ei ∪ Ej ∪ Ek)

...

(−1)(p−1)P (E1 ∪ E2 ∪ ... ∪ En) (4.21)

Younes and Girgis (2005) proposed to construct the union matrix in order to avoid

repetitions in evaluating the Expression 4.21. The first k rows of the union matrix

is nothing but the path matrix. The subsequent rows are the union of the sets listed
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in the last column of the matrix. Table 4.5 shows the union matrix for the tail gas

system. For example, by the union of first two rows corresponding to E1 and E2, we

get the fifth row i.e., E1∪E2. Further, the probability of the event listed in the last

column is the product of the availabilities of the components which are tagged as

1. For example P (E1 ∪ E2) = A(t)B(t)D(t)E(t)F (t)G(t). Similarly, by evaluating

each row of the union matrix and summing them up, we get the system availability

at a single time instant t. System unavailability follows by finding 1-(4.21).

Table 4.5: Union Matrix for the tail-gas system
A B C D E F G
1 1 1 1 1 E1
1 1 1 1 1 E2
1 1 1 1 1 E3
1 1 1 1 1 E4
1 1 1 1 1 1 E1 ∪ E2
1 1 1 1 1 1 E1 ∪ E3
1 1 1 1 1 1 1 E1 ∪ E4
1 1 1 1 1 1 1 E2 ∪ E3
1 1 1 1 1 1 E2 ∪ E4
1 1 1 1 1 1 E3 ∪ E4
1 1 1 1 1 1 1 E1 ∪ E2 ∪ E3
1 1 1 1 1 1 1 E1 ∪ E2 ∪ E4
1 1 1 1 1 1 1 E1 ∪ E3 ∪ E4
1 1 1 1 1 1 1 E2 ∪ E3 ∪ E4
1 1 1 1 1 1 1 E1 ∪ E2 ∪ E3 ∪ E4

Equation 4.19 is simple and can be computed swiftly, but arriving at it from

Equations 4.13 needs an advanced programming construct which could get time

consuming for a complex system. Equation 4.21 is long and computation of possi-

bilities might get time consuming, but, arriving at this equation is a straightforward

programming approach from Equations 4.13.

The Universal Generating Function (UGF) technique proposed by Lisnianski

and Levitin (2003) greatly helps in managing combinations by assuming that states

of a component can be expressed in the form of a polynomial. The polynomials

thus obtained can be integrated at the system level to obtain system unavailability.

This technique, however, is effective when there are at least three states for each

component. In the case of binary states, storing both the failure and operational

probabilities in each polynomial is redundant since one probability can be obtained

when the other is known.
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4.3.3 Results

Consider the hypothetical life and repair data of the tail-gas quench and clean-up

system shown in Table 4.6. Availability of each of the components is obtained

Table 4.6: Hypothetical life data for the components of the tail-gas system
Component Mean life (cov) Repair time

(years) (days)
Booster fan (A) 5 (0.6) 7
Quench pumps (B,C) 10(0.4) 15
Feedwater pump (D) 10(0.3) 15
Circulation pump (E,F) 10(0.6) 15
Filter (G) 5 (0.4) 7

using the semi-Markov process model described in Section 3.3 with an illustrative

example. Let the availability computed by this method for component A be denoted

as A(t) = φ21(t). The same method is followed for rest of the components. In the

next step, these quantities are used in Equation 4.21 with the help of Table 4.5 to

evaluate the system availability.

Time dependent unavailability of A,D, and G are plotted in Figure 4.17 and

that of B,C,E, and F are plotted in Figure 4.18. It is observed that the peak

unavailabilities of these components fall around their respective mean life. Time-
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Figure 4.17: Unavailabilities of components A, D and G

dependent system unavailability by both the exact method (4.19) and automated

method (4.21) are shown in Figure 4.19.The observed difference between both the

results is indistinguishable.
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Figure 4.18: Unavailabilities of components B,C, E and F
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Figure 4.19: Tail-gas quench and clean-up system unavailability by exact and au-
tomated methods

For a general series-parallel system the steps to be followed to evaluate system

availability are (1) Translate block diagram in to links matrix - this step can be

done by updating a matrix as and when a link is made between blocks using a

Graphical User Interface (GUI) (2) Determine the path matrix and hence path sets

from the links matrix (3) Compute component availabilities using semi-Markov

process model (4) Generate a union matrix to quantify individual terms (5) Use

probability rule to arrive at expression for system availability.

In conclusion, this section analyzed a general method to automate availability
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analysis of a given reliability block diagram using semi-Markov process model com-

bined with probability rules was discussed. It was demonstrated with examples

how the path set of a general system can be obtained using links matrix form of the

block diagram. The advantage of using this combination of semi-Markov process

model and probability rules is that the semi-Markov method is faster than Monte

Carlo simulations and does not need additional variance reduction methods. The

proposed technique has potential in virtually every field of reliability design. How-

ever, for modeling aspects such as spares, preventive maintenance etc. in a large

and complex system, Monte Carlo simulation method continues to be the tool of

choice.

4.3.4 Multi-State Availability Analysis

This section has two objectives - (1) Present a semi-Markov process model for

multi-state component availability analysis in the presence of preventive mainte-

nance with Weibull failure time and (2) Apply the results of this model to a general

system made of many components. Tomasevicz and Asgarpoor (2006) developed a

continuous time semi-Markov process model for equipments that fail due to both

deterioration and random occurrences. They modeled the deterioration in k dis-

crete steps with exclusive states for corrective maintenance. For practical purposes,

it is desirable to improvise their paper with possibility of considering general statis-

tical distributions like Weibull for failure time. Vesely (1993) presented a compre-

hensive Markov model with four states - operational, degraded, maintenance and

failure for quantifying the effects of maintenance on availability. Marais and Saleh

(2009) developed a Markov model based framework for capturing and quantifying

the value of maintenance and argued that maintenance optimization techniques in

existing literature focus merely on cost minimization and not on the value of main-

tenance. Markov model has a limitation that the time spent in the states follows

an exponential distribution. A semi-Markov process has the flexibility to incorpo-

rate non-exponential distributions. Hence this section applies semi-Markov process

model combined with simple probability rules to obtain system unavailability from

constituent multi-state components.

In the proposed model, it is assumed that the entire system undergoes a pre-

ventive maintenance at specified inspection intervals. At these intervals, all the

components of the system are assumed to be independently inspected for signs of

degradation. A preventive maintenance action involving repair of each component
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is undertaken. This kind of repair leads to an ‘as good as new’ state of the com-

ponent. If the component fails even before a preventive action is taken, it leads to

a component failure. In this situation, a corrective action in the form of repair is

taken in order to restore the component to its operational state.

Consider again the tail-gas quench and clean-up system (Caceres and Henley,

1976) whose reliability block diagram is shown in Figure 4.16. The link, path and

union matrices of this system remain the same as discussed in the earlier section

with binary states.

4.3.5 Component State Space Model

1
Repair (PM)

0
Failure (CM)

3
Operating

2
Degraded

g1(t)

g3(t)

f2(t)f1(t)

g2(t)

Figure 4.20: State-space of a four-state repairable component with preventive main-
tenance.

Consider a repairable multi-state component whose state-space diagram is shown

in Figure 4.20. The transitions from one state to another are labeled with the cor-

responding density (pdf) functions with the assumption that time to transit is a

random variable. The model has four states - operating state (3), degraded state

(2), preventive maintenance state (1), and failure state or corrective maintenance

state (0). Initially, the component is assumed to be operating in state 3. Let the

time taken to proceed to a significant state of degradation (3 → 2) be a random

variable with an observed mean and coefficient of variation (cov). From this infor-

mation, a Weibull distribution can be fit using a mapping between cov and Weibull

shape parameter. Let the pdf of this transition be f1(t).

In the degraded state, the component either waits until the next inspection

(2 → 1) takes place or fails (2 → 0) completely. If an inspection takes place, a

repair is undertaken and the component is restored to operating state. Let the
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time to next inspection follow an exponential distribution with mean µ. Let its pdf

be given by g1(t). Let the Weibull parameters for the time to failure (2→ 0) be λ

and γ with a pdf given by f2(t).

Upon inspection, the time to repair (1→ 3) follows pdf given by g2(t). On the

other hand, if the component fails completely, let the time to repair (0→ 3) follow

an exponential distribution with pdf given by g3(t). Let the cdf of the distributions

considered be denoted by capital letter versions of the pdf . For example, let the

cdf of time to failure (pdf f2(t)) be F2(t).

It is assumed that the component failure occurs only after an amount of degra-

dation i.e., this model does not take random failure in to consideration. If it is

considered, the transition 3→ 0 must also be taken in to account.

The kernel matrix C(t) for the four-state component consists of the failure and

repair time pdfs:

C(t) =




0 0 0 g3(t)

0 0 0 g2(t)

f2(t)(1−G1(t)) g1(t)(1− F2(t)) 0 0

0 0 f1(t) 0




and the matrix W (t) consists of the closed form expressions as derived for a general

case in the Appendix:

W (t) =




1−G3(t)

1−G2(t)

e−µt−(λt)γ

1− F1(t)




The state probabilities can be computed by substituting the above matrices in

Equation 3.10 and solving it using trapezoidal rule as given in the Appendix:

φ(t) =




1−G3(t)

1−G2(t)

e−µmt−(λt)γ

1− F1(t)




+

∫ t

0

C(τ)φ(t− τ)dτ

The element at (4,1) of the matrix φ(t) yields the component unavailability at
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time t and the element at (4,4) yields component availability.

Example
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Figure 4.21: Unavailability of 4-state repairable component with a 30 day inspection
interval.
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Figure 4.22: Probability of taking a preventive action versus that of being in de-
graded state.

For illustrative purposes, consider a component which degrades significantly

around a mean time of five years with a cov of 0.4 associated with the time to

degradation. Let the preventive maintenance be carried out every 30 days on av-

erage. Let the mean time to repair from the degraded state be 3 days while the

mean time for completion of a corrective action be 5 days. Let the mean time to

fail completely from a degraded state be 5 years with a cov of 0.8 associated with

the time to failure. The unavailability of this component obtained using both the

analytical and Monte Carlo process simulation methods is plotted in Figure 4.21.
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It required 8 x 10−6 Monte Carlo iterations to achieve the accuracy shown in the

Figure. It is rather time consuming and still needs a reduction in the variance.

However, solving Equation 3.10 using trapezoidal rule needed only 8000 points on

the interval. It is seen that the component unavailability is peak around the mean

time to degradation i.e 5 years.

Figure 4.22 shows probabilities of being in a degraded state and undergoing a

preventive maintenance action. Since the time spent in preventive repairs is lesser

than the time spent in the degraded state waiting for the next inspection, we observe

that the probability of being in state 2 is larger than that of being in state 1. Both

these probabilities are larger than the unavailability in Figure 4.21 since there is

higher probability of detecting degradation and carrying out a minimal repair given

an inspection interval smaller than the time to failure.
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Figure 4.23: Effect of cov associated with time to degradation.

The cov of the time to degradation represented by the transition 3 → 2 has a

profound influence on the component’s unavailability. This effect is shown in Figure

4.23. A decrease in the cov shows a decrease in the unavailability of the component

until around the mean time to degradation. After that a lesser cov shows increased

unavailability. This behavior can be attributed to aging of the component.

4.3.6 Results

Consider the hypothetical life and repair data of the tail-gas quench and clean-up

system shown in Table 4.7. Availability of each of the components is obtained using

the semi-Markov process model. Let the availability computed by this method for

component A be denoted as A(t) = φ44(t). The same method is followed for rest of
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Table 4.7: Life data for the components of the multi-state system.
Component degradation time time-to-failure PM time CM time

3→2 2→0 1→3 0→3
(years) (years) (days) (days)

Booster fan (A) 7 (0.4) 8(0.6) 3 5
Quench pumps (B,C) 10(0.5) 10(0.4) 5 7
Feedwater pump (D) 9(0.6) 6(0.4) 5 7
Circulation pump (E,F) 8(0.4) 12(0.5) 5 7
Filter (G) 8(0.4) 7(0.3) 3 5

the components. In the next step, these quantities are used in Equation 4.21 with

the help of Table 4.5 to evaluate the system availability.
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Figure 4.24: Component unavailability with one year inspection program.

Time dependent unavailability of all the components is plotted in Figures 4.24

and 4.25 with an inspection interval of one and five years respectively. It is observed

that the peak unavailabilities of these components fall around the mean time to

reach the degraded state. The unavailabilities are in the order of 10−4 in the five

year inspection program whereas they have decreased to the order of 10−5 in the one

year case i.e., increasing the frequency of inspection shows decreased unavailability.

In comparison, it is also seen that there is a general shift in the unavailability of

the components. For example, peak unavailability of component A is between 5

and 10 years in the first case whereas peak unavailability is reached between 10 and

15 years for the second case. As a result, steady state is reached relatively quickly

with a one year inspection schedule. This pattern of availability improvement as
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Figure 4.25: Component unavailability with five year inspection program.

a result of in-service inspection was demonstrated in the context of nuclear piping

reliability analysis (Simonen and Woo, 1984).
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Figure 4.26: Mean time spent in corrective action as a function of inspection inter-
val.

The mean time spent in corrective maintenance action can be evaluated as the

time spent in state 0 using Equation 3.22 with i = 3, j = 0 and T = 20. It is a

function of the inspection interval and increases with decrease in the frequency of

inspections as seen in the Figure 4.26. However, inspections done at too frequent

or rare intervals may not be practically effective. This needs further investigation
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by augmenting the unavailability model to a cost model. Results of such a model

have direct impact on inspection programs and policy making.
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Figure 4.27: Tail-gas quench and clean-up system unavailability.

Time-dependent system unavailability by the proposed method using Equation

4.21 is shown in Figure 4.27 with inspection intervals of 1,3, and 5 years. There

is a visible improvement in the system availability with smaller inspection inter-

vals. Also, steady state unavailability is reached quicker with increased inspection

frequency. In a general sense, the proposed method has qualitative impact in any

field where there is a notion of components and systems or where there is a need

for multi-state system modeling - dependability analysis in software testing, fault

tolerant control systems in hardware reliability, wireless sensor reliability in ad hoc

communication networks, search and destroy/rescue scenario analysis in defense

etc.

4.3.7 Conclusion

A general method to conduct availability analysis of a given reliability block dia-

gram using semi-Markov process model combined with probability rules was dis-

cussed. A general four state model was proposed for component availability analy-

sis in the presence of preventive maintenance. It was demonstrated with examples

how the path set of a general system can be obtained using links matrix form of

the block diagram. The advantage of using this combination of semi-Markov pro-

cess model and probability rules is that the semi-Markov method is faster than
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Monte Carlo simulations and does not need additional variance reduction methods.

The proposed technique has potential in virtually every field of reliability analysis.

However, for modeling aspects such as spares, crew availability etc. in a large and

complex system, Monte Carlo simulation method continues to be the tool of choice.
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4.4 Substation Reliability and Cost Analysis

A reliability model to study the effect of number of spares on a system comprising

of a series of transformers in a substation is developed. The model takes ageing of

the transformers in to consideration. This is achieved by developing a semi-Markov

model assuming Weibull distribution for failure times. Further, it is assumed that

the transformers are repairable. The results for both Markov and semi-Markov

models are compared and the advantage of considering variability in failure times

as measure of ageing is demonstrated. Further, a substation cost model is developed

to determine the ideal number of spares to have in the inventory.

4.4.1 Problem

Redundancies and spares are expensive, yet well established ways of preventing a

mission critical system from failing. daSilva et al. (2010) proposed Markov and

Monte Carlo simulation methods to determine the optimal number of spares that

minimize the total cost. The paper compared the obtained results against a model

based on Poisson distribution. Marseguerra et al. (2005) applied a combination of

Monte Carlo simulation and genetic algorithms to optimize the number of spare

parts required by a multi-component system. The objective was to maximize the

system revenues and minimize the total spares volume. While the Markov model as-

sumes constant failure rates irrespective of the variability in the transformer failure

times, the Monte Carlo simulation is prone to large variability in reliability esti-

mates and demands specialized variance reduction techniques. Hence, the present

paper studies the effect of number of spares on substation reliability based on the

semi-Markov framework so that non-exponential distributions like Weibull can be

considered in the model implementation. The major advantage of this extension is

to study the ageing effects on the system. The paper further focuses on a predictive

financial model to determine the ideal number of spares to invest upon in order to

avoid economic losses due to unforeseen outages. The proposed model is of interest

to technical personnel to have reliability estimates at hand and for station owners

to decide how much investment needs to be made on spare transformers.

The case study is organized as follows. Section 4.4.2 discusses a Markov model

for substation reliability. A subsection in it shows an example with two spares and

develops the required differential equations. The theory for semi-Markov model is

covered in Section 3.3. Section 4.4.4 deals with the semi-Markov solution of the
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transformer problem. Markov and semi-Markov results are shown for a 12 trans-

former system with different number of spares. The Markov reward (cost) model

is reviewed in Section 2.7. Section 4.4.5 develops the cost model for determining

losses due to repairs and outages. Results are reported in Section 4.4.6.

4.4.2 Markov model

N, 0
State 1

N − 1, 0
State 0

N,n− 1
State n

N, n− 2
State n− 1

N,n
State n+ 1

Nλ

2µ

NλNλ

µ

Figure 4.28: State space for N Transformers with n Spares.

Consider N transformers connected in series with n spares available for replace-

ment on failure of any of the operational transformers. It is assumed that when all

the spares are used up and at least one of the transformers in use fails, then the

system fails. Further, the time taken to replace a failed transformer with a spare is

assumed to be negligible. While a single transformer could fail with a failure rate

of λ, it can be repaired with a repair rate of µ. The state space diagram for this

model is shown in Figure 4.28. For a system with n available spares there are n+ 2

states in the model. Assume that the system starts in state n + 1 where all the

transformers are functional and all the spares are readily available. Then, the prob-

ability of landing in state 0 gives the failure probability of the system. The model

in daSilva et al. (2010) assumes that two or more transformers are connected in

parallel. In the present paper, the same model is considered without redundancies.
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Figure 4.29: State space for N = 12 Transformers with n = 2 Spares.

4.4.3 Example: 12 Transformers and 2 Spares

In particular, consider an example with N = 12 transformers and n = 2 spares.

The Markov transition rate matrix for this case is given by:

A =




0 0 0 0

Nλ −(Nλ+ 2µ) 2µ 0

0 Nλ −(Nλ+ µ) µ

0 0 Nλ −Nλ




(4.22)

Let P(t) be a row vector of state probabilities to be determined:

P(t) = [p0(t) p1(t) p2(t) p3(t)] (4.23)

Then, the system of differential equations to obtain the state probabilities can

be compactly written in matrix form:

dP(t)

dt
= P(t)A (4.24)

or elaborately as:

dp0(t)/dt = Nλp1(t)

dp1(t)/dt = Nλp2(t)− (Nλ+ 2µ)p1(t)

dp2(t)/dt = 2µp1(t) +Nλp3(t)− (Nλ+ µ)p2(t)

dp3(t)/dt = µp2(t)−Nλp3(t)

(4.25)
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p0(t) yields the failure probability of the system assuming the initial state vector

as [0 0 0 1].

4.4.4 Semi-Markov model for substation reliability

The kernel matrix of the semi-Markov process model consists of statistical dis-

tributions respecting the competing risk law of Equation 3.5 instead of constant

transition rates. The failure time distributions are modeled as poly-Weibull dis-

tributions while the repair times follow an exponential distribution. This section

describes how these distributions can be used to construct the kernel matrix.

The cdf of the poly-Weibull distribution for the transition time corresponding

to the failure rate Nλ in the Markov model of Figure 4.28 is given by:

Fi,i−1(t) = 1− e−N(λ
′
t)γ (4.26)

where the subscript i, i− 1 represents the transition from state i to i− 1 signifying

failure of a transformer and replacement by a spare.

The corresponding pdf is found by differentiating Equation 4.26:

fi,i−1(t) = N(λ
′
γ)(λ

′
t)γ−1e−N(λ

′
t)γ (4.27)

Assuming that the repair time follows an exponential distribution, the cdf of

the time to repair is the minimum of all the times taken to repair the failed k

transformers each having a repair rate of µ:

Gi,i+1(t; k) = 1− e−kµt i 6= 0 (4.28)

The corresponding pdf is:

gi,i+1(t; k) = kµe−kµt i 6= 0 (4.29)

The kernel matrix C(τ) = [cij(τ)] is given by arranging the distribution func-
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tions as per Equation 3.5:




0 1 2 . n n+ 1

0 0 0 0 . 0 0

1 f10(τ)[1−G12(τ ;n)] 0 g12(τ ;n)[1− F10(τ)] . 0 0

. . . . . . .

. . . . . . .

n+ 1 0 0 0 fn+1,n(τ) 0




The integral equations corresponding to the above kernel matrix can be formu-

lated based on Equation 3.9. The system is then solved using numerical scheme

like trapezoidal rule as given in the appendix. Assuming that the system starts

functioning in state n + 1, the probability of being in state 0 denoted by φn+1,0(t)

gives the system failure probability.

The system of integral equations for N = 12 and n = 2 is given as an example

in the appendix.
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Figure 4.30: System failure probability with exponential failure and repair time; 12
transformers and n = 0, 1, 2, 3, 4 spares.

Considering a constant failure rate of λ = 0.03 per year and a repair rate of

4 per year for a transformer and supposing there are N = 12 such transformers

connected in series, Figure 4.30 shows the system failure probability by solving

the system of differential equations of the Markov model and the system of integral

equations of the semi-Markov model proving that the results are identical no matter

which method is used by assuming an exponential distribution for both failure and

repair times. In both cases, varying number of spares were considered. It is also
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observed that failure probability is inversely related to the number of spares i.e.,

system reliability improves with increased number of spares.
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Figure 4.31: System failure probability comparing Webull and exponential failure
time; 12 transformers and 2 spares.
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Figure 4.32: System failure probability with Webull failure time and exponential
repair time; 12 transformers and n = 0, 1, 2 spares.

In the absence of spares, system failure probability reaches 0.9999 at the end of

40 years. In this scenario, there are only two states in the system and either all the

transformers are functional or the system fails due to failure of one of the transform-

ers. Addition of a spare lowers the failure probability to 0.667 thus boosting the

system reliability by approximately 33%. In this case, there are three states in the

system. When one of the spares is used, the failed transformer can undergo repair.

After completion of the repair, a spare can be made available again. However, if one

of the transformers fails when the spare is being used, then the system fails as the

earlier failed transformer is still under repair. Adding further spares increase the
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reliability, however, beyond a certain number of spares, the system would become

too reliable to afford the spares.

Figure 4.31 compares the system failure probability for the case of two spares

assuming exponential and Weibull failure times respectively at the end of 40 years.

A cov of 0.4 is assumed for the Weibull case. While the system failure probability

for the exponential case is 4.92 x 10−2, the same for Weibull case is 1.76 x 10−9

signifying that lower variability in failure times yields higher reliability. The same

trend is observed for varying number of spares in Figure 4.32 assuming Weibull

transformer failure times. Random failures often show up large variation in fail-

ure times whereas those of a cohort of ageing transformers are likely to show less

variability.

Table 4.8: System failure probability as a function of number of spares at t = 40
years

Failure time
———————————————–

# Spares Exponential (cov = 1) Weibull (cov = 0.4)
0 0.9999 0.9999
1 6.67 x 10−1 1.70 x 10−4

2 4.92 x 10−2 1.76 x 10−9

3 1.53 x 10−3 6.15 x 10−15

4 3.47 x 10−5 9.89 x 10−21

Table 4.8 compares the effect of adding more spares to a system at the end of 40

years by assuming Weibull and exponential transformer failure times respectively.

A cov of 0.4 was assumed for the Weibull case. In both cases, the repair time is

exponentially distributed. Both the results show that the system performs better by

having more spares. The failure probability when there are no spares is very high.

Since it is assumed that the transformer failure time is less variable in the Weibull

case, the system failure probability drops to 1.76 x 10−9 by having one spare against

no spares. When system reliability is analyzed along with a financial model, these

results can have a profound impact on decision making and budget allocation with

respect to spare handling. However, one has to invest in more accurate and regular

reporting of transformer failure times if variability is also needed as the input. In

either case, simultaneous transformer failures due to common cause failures is not

considered in the present paper. The next section explores the Markov reward

model as an aid in deciding the ideal number of spares to have in the stock.
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4.4.5 Cost Model for Substation Spares

N, 0
State 1

N − 1, 0
State 0
r00

N,n− 1
State n

N, n− 2
State n− 1

N,n
State n+ 1

Cr

Cr

Cr

Figure 4.33: Markov Reward Model for N Transformers with n Spares.

The state space for the reward model is similar to the Markov model of Figure

4.28 except that the system is assumed to be repairable from state 0. Each repair is

assumed to cost Cr million dollars. A loss of r00 million dollars per year is assumed

on an outage which is equivalent to the process staying in state 0 and waiting for

a system repair to be completed. This loss is based on kilowatts of energy per year

not supplied to the consumer until the system goes online again.

The Markov reward model with the specifications described is shown in Figure

4.33. The Markov reward matrix r is a square matrix obtained from the state space:




0 1 2 ... n+ 1

0 r00 Cr 0 ... 0

1 0 0 Cr ... 0

. .

. .

. .

n 0 0 0 ... Cr

n+ 1 0 0 0 ... 0




(4.30)

4.4.6 Results and discussion

The list of symbols in the model and the assumed values are listed in Table 4.9.
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Table 4.9: Parameters for evaluating the cost model
Symbol Description Assumed Value
λ Failure rate of transformer 0.03 yr−1

µ Repair rate of transformer 4 yr−1

N Number of transformers connected in series 12
n Number of required spares 0,1,2,. . .
L Nominal capacity of one transformer 105 kW
Cr Expected cost of repair C$ 0.05 million

of one transformer
Cj Expected cost of one spare transformer C$ 8 million
Cp Cost of Energy Not Supplied (ENS) per kWh C$ 1.00
r00 Cost of ENS per year = CpL x 8760 C$ 876 million
m Assumed lifespan of a plant 40 years
r Discount rate 0.07
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Figure 4.34: Expected Cumulative Losses for 12 Transformers and n Spares.

The accumulated economic loss due to repairs and outages up to m years is

shown in Figure 4.34. The reward model does not yet consider the investment on

procuring the spares. It is seen that the expected loss is the maximum when there

are no spares available in the inventory. For 1,2 or 3 spares, the expected loss

decreases and then it is observed that the average loss is the same no matter how

many more spares are added.

To get a complete picture, the amount invested on the spares and the net present

cost obtained by combining the investment and the net present value of the expected

losses is investigated in the next step.

From the cumulative expected losses V4(t) of the reward model, from hereon re-
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ferred to as V (t), the annual combined cost of repairs and outages can be calculated

as vk = V (k+1)−V (k) for k = 1, 2, 3, ..m for the m years under consideration. The

net present value of the losses is represented as Lj, where j represents the number

of spares. The NPV Lj of the annual costs v1, v2, ..vm discounted at a rate r over

m years is then calculated as:

Lj =
m∑

i=1

vi
(1 + r)i

(4.31)

Let Cj denote the investment made on procuring j spares. The net present cost of

losses and investments for j spares is given by A = Lj + Cj. The objective then is

to determine for what j the value of A is minimum.

Table 4.10: Net present cost of investments and losses
Spares Investment NPV of Losses Net Present Cost
j Cj Lj C = Lj + Cj

C$ million C$ million C$ million
0 0 949.01 949.01
1 8 42.37 50.37
2 16 1.49 17.49
3 24 0.26 24.26
4 32 0.24 32.24
5 40 0.24 40.24

Table 4.10 tabulates the net present cost as a function of number of spares. It

is seen that the NPV of the losses remains constant beyond three spares. The net

present cost is 949 million dollars in the absence of spares highlighting the huge

risk involved in running a generating station without spares. With addition of two

spares, the net present cost is seen to decrease to nearly 18 million dollars and then

increases monotonically if the station decides to invest in more than two spares.

This concludes that for the given configuration and assumed costs, it is optimal to

have two spares always in the inventory.

Figure 4.35 shows graphically the trend seen in Table 4.10. A simple and final

plot as this is of great aid to decision makers for budget allocation and for the

smooth and reliable running of the station.
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Figure 4.35: Net present cost vs.the number of spares.

4.4.7 Conclusion

A semi-Markov model with Weibull failure times was developed for assessing relia-

bility of ageing transformers. Results were compared against a Markov model and

was proved that knowledge of variability in failure times of the transformers helps

in obtaining more accurate estimates of system reliability. The Markov model was

further extended to a Markov reward model to determine the number of spares

to have in the inventory at all times to avoid economic losses due to unforeseen

outages.
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4.5 A Semi-Markov Fire Growth Model

This paper aims to describe a new fire growth model that allows prediction of

fire development, including time to flashover, with inclusion of the unpredictable

nature of real fire development and, where available, appropriate fire test data. The

model considers potential variability in the times at which the fire will undergo

transitions between the various stages of development, using a state transition

method called semi-Markov process model. By assuming that the fire goes through

five different stages starting from ignition and progressing to flashover, the total

time to flashover may also be estimated. Perhaps most importantly, the model is

based on a reusable framework which can be modified for use with different sets

of fire data and is flexible enough for use in a variety of applications important to

both product design engineers and fire safety regulators.

4.5.1 Introduction

Fire is a complex physical phenomenon driven by interactions between chemistry,

fluid dynamics and heat transfer within the fire compartment. As such, there is

significant variation in fire behavior even in repeated tests of specific fire scenarios.

This variation can be attributed not only to the complex physics driving the fire

behavior itself, but also to the arrangement and geometry of the fuel, as well as

numerous environmental factors. In a real fire, availability of fuel and air, as well as

attempts to suppress the fire, due to consecutive fluctuations between fire growth

and recession. The many sources of variation inherent if real fire development

make probabilistic approaches the favorable choice with which to model the full

chronology of a fire.

Probabilistic models have been developed for a wide variety of applications re-

lating to fire safety, including fire detection (Joglar et al., 2005), fire growth (Au

et al., 2007; Hasofer and Beck, 1997; Williamson, 1981), fire spread (Rasbash et al.,

2004; Colbourn et al., 1994; Platt et al., 1994; Ramachandran, 1991; Morishita,

1985), smoke spread (Hadjisophocleous, 1992; Watts, 1986), and safe egress (Ha-

sofer and Odigie, 2001). Of most interest here are fire growth models which include

fire inception and growth up to flashover within a single compartment, and fire

spread models which consider the spread of fire from compartment to compartment

within a multi-enclosure building.
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In these applications, a wide range of modeling techniques have been explored for

fire modeling including Bayesian networks (Cheng and Hadjisophocleous, 2009),Monte

Carlo simulation (Au et al., 2007; Joglar et al., 2005), stochastic differential equa-

tions based on physical laws (Hasofer and Beck, 1997), network reliability tech-

niques(Hasofer and Odigie, 2001; Colbourn et al., 1994), stress-strength models in

the context of fire barriers(Platt et al., 1994; Watts, 1986), state transition meth-

ods(Berlin, 1985; Williamson, 1981) and other stochastic models(Ramachandran,

1991) including epidemic theory, percolation process and random walk. Graphi-

cal(Watts, 1986) means of representing fire resistance and growth include circuit

diagrams, fault trees, fire safety trees and logic trees whose quantification can be

done using simple probability rules.

Bayesian network models combine graph theory and Bayesian probability the-

ory. For example, in modeling fire spread in an office building fire, the office floor is

transformed into a directed acyclic graph (DAG) with the room of origin taken as

the root node and assigned an ignition probability (Cheng and Hadjisophocleous,

2009). Fire spread for rest of the nodes is predicted using probabilities conditioned

on the root node probability. Computations are performed for two cases: one with

fire protection but no suppression and the other for a building with sprinklers. The

model produces static fire spread probabilities but no time information is provided

on the progress of the fire with time. Though theoretically it could be extended

to predict time dependent behaviour, the mathematics would involve multiple in-

tegrals and their solution would require Markov Chain Monte Carlo (MCMC) type

numerical simulations. Of course, the difficulty in formulating stochastic differential

equations based on physical laws depends on the configuration of the compartment

and complexity of the fire scenarios under investigation, but even simplified situ-

ations result in the need to do Monte Carlo simulations. In general, Monte Carlo

simulations are computationally intensive, requiring long calculation times to cover

a sufficient range of cases to appropriately model a given scenario. Therefore, hybrid

models based on combinations of Monte Carlo and other fire modelling methods

have also been developed.

Such hybrid models have gained popularity for modeling fire behaviour in nu-

clear power plants where the occurrence of a fire is an extremely rare event. In

this industry, a fire may progress from ignition of a fuel spill to a larger fire which

damages critical electrical cable trays and could lead to reactor core damage. It is

clearly of primary interest to determine the core damage frequency (CDF); how-

ever, a probabilistic approach must be taken due to uncertainty in fire initiation,
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in damage to equipment and fire brigade response(Vinod et al., 2008). A combina-

tion of fire models such as CFAST(Peacock et al., 1986), FDS(McGrattan, 2004)

or COMPBRN(Siu, 1982) are used with Monte Carlo simulation and probabilistic

safety assessment (PSA) event/fault tree tools like SAPHIRE(Idaho National Engi-

neering Laboratory, 2010) to determine the estimated frequency of a fire leading to

core damage (Valbuena and Modarres, 2009; Siu and Apostolakis, 1982; Lee et al.,

2010; Arshi et al., 2010; Hostikka and Keski-Rahkonen, 2003; Frank and Moieni,

1986).

Network reliability methods also take a graph theoretic approach to modeling

fire propagation through a multi-enclosure structure. Each node represents a room

and is associated with an ignition probability and a fire spread probability. The arcs

are used to designate barriers to fire spread and therefore each is given a fire breach

probability. The goal is to start from the node of fire origin and recursively traverse

through various directed paths until the target room (a leaf) is reached, using

probability rules to arrive at the fire spread probability to that target. While such

an approach has been developed theoretically in Colbourn et al. (1994) by drawing

an analog from communication networks, the fire time dimension is missing in the

formulation so important events such as time to flashover cannot be determined.

Other approaches have visualized growing and receding fires as a game between

two gamblers and utilized stochastic random walk theory to predict the time to fire

extinguishment (Ramachandran, 1991). This method does not, however, account

for various stages that a fire under goes from inception to flashover. This method

has been extended to examine building to building fire spread via a percolation

process (i.e. random walk over a graph) and predict the average number of buildings

burnt. In both manifestations, however, there is no consideration made of the

various stages of fire growth or development and time dependence is lacking.

Stress-strength models consider two random variables with fire severity modeled

as the stress and fire resistance of the barrier modeled as the strength. For fire pro-

tection, it is of interest to calculate the probability that the fire resistance is greater

than the fire severity. Again, however, no account is taken of the various stages

of fire growth and spread, nor of any time dependence of the real fire event(Platt

et al., 1994; Watts, 1986).

The spread of fire is dynamic in nature and the variability in real fire scenarios

is best modeled as a continuous time dependent process with threshold conditions

defining the discrete stages of fire development. Hence, the present paper adopts a
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state transition approach to fire growth modeling which allows representation and

quantification of the key events in the overall fire development. In the next section,

existing state transition models for fire analysis are reviewed.

A stochastic state transition model of fire spread has been developed and ap-

plied to a hypothetical small house fire to illustrate its effectiveness(Morishita,

1985). Fire spread was analyzed both with and without fire extinguishment. It

was assumed that the fire propagates discretely from one space to another and that

an arbitrary point in space could ignite due to heat transfer from any other points

in the vicinity. While this assumption may be valid and fairly realistic, when in-

corporated into the model, the number of states in the model grows exponentially

with increasing numbers of possible surrounding points of interest. This makes it

difficult to determine the rate at which the fire grows between each pair of required

points.

In other work, six states were defined in the fire growth model (FGM) of fire

development (Williamson, 1981). The states included fire ignition, fire spread to (ig-

nition of) surrounding wall and furniture, fire impingement on the ceiling, flashover,

well ventilated fire with steady state burning, and finally, fire burn out. The state

transition model was depicted in the form of an event diagram. Deterministic mod-

els, supported by experimental data from the U.S. National Bureau of Standards

(NBS), were then used to predict the overall fire behavior. For example, within the

final model, a set of differential equations was solved to arrive at a distribution to

represent the time taken for flames to touch the ceiling. However, the approach

does not identify and treat the sources of variability in the prediction.

1
Non− fire

3
V igorous

2
Sustained

5
Remote

4
Interactive

6
Fullroom

Figure 4.36: State transition model for fire growth.

A more versatile state transition model depicted in Figure 4.36 was based on

fire test results and was developed to explain variability in the development of a
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smoldering fire in a couch with cotton cushions(Berlin, 1985). Statistical distribu-

tions were fit to fire test data and the time to transit from one state to another was

taken as a random variable. The model was an early attempt to incorporate non-

exponential distributions to represent the time to transit from one state to another.

Although the exact computations and numerical approximations were not clearly

outlined in the paper, the convolution of the random variables led to a probabilistic

distribution of the time it would take a given fire to reach flashover. While this

model provided a good first step, since its development there have been tremen-

dous advances in state transition models and in computational power, pointing to

an opportunity for refinement and/or enhancement of the original concepts. This

forms the premise for development of the model outlined here.

Berlin (1985) developed a state transition model (Figure 4.36) based on fire

tests to explain the variability of a smoldering fire in a couch with cotton cushions.

This paper fitted statistical distributions to fire test data assuming that the time

to transit from one state to another is a random variable. The model was an

early attempt to incorporate non-exponential distributions to represent the time

to transit from one state to another. The result was a probabilistic distribution

of a fire ending up in a flashover. Apparently, the results were obtained using

convolution of random variables. Further, the paper lacks ideas and thoughts on

what computations and numerical approximations were performed. Since then,

there have been tremendous advancements in mathematical models and computer

programming.

A sophisticated state transition model, which has been successfully applied to

model failures in nuclear power plant systems is the semi-Markov process model

(Veeramany and Pandey, 2011c,b,a). Using such a model, fire growth can be

modeled as a continuous-time, discrete-state process with a wide variety of non-

exponential distributions utilized to appropriately describe the time spent in each

of the possible fire states. The present paper applies this method to model fire

behavior, employing the widely used normal and log-normal distributions to repre-

sent the various stages of fire growth. For purposes of illustration and comparison,

the new method is initially applied using concepts of fire development and data

presented by Berlin (1985); however, it is important to contrast the fundamen-

tal bases of the techniques by Berlin (1985) with those applied here. While the

method by Berlin (1985) involved the direct convolution of random variables, the

semi-Markov process model presented here is based on a structured mathematical

approach. Therefore, the background to the present model will first be described
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and then the method applied to predict average times to flashover based on the

maximum probability and the likelihood that an ignited fire does or does not reach

flashover conditions for a given fire scenario.

4.5.2 The fire growth model

Table 4.11: Classification of states based on fire characteristics (Berlin, 1985).
State Upper Room Flame Heat

Temperature Height Release Rate
1 Non-fire Normal - -
2 Sustained/Ignited Normal - -
3 Vigorous > 15oC 25 cm > 2 kW
4 Interactive > 150oC 120 cm > 50 kW
5 Remote > 450oC - -
6 Full room > 800oC - -

The six transition states chosen for use in the present model mirror those pre-

sented by Berlin (1985) as listed in 4.11. These are defined based upon values of

upper layer room or ceiling layer temperature, flame height and heat release rate.

The first state is the non-fire state and represents a pre-flaming stage of the fire.

While it was used to represent a smouldering phase in the original model (Berlin,

1985), for the present paper, it in itself, does not lead to ignition. Instead it is

used as the end, non-fire, state in the case when a growing fire does not continue

to full room involvement but instead recedes back, possibly through intermediate

stages, to a non-fire state. The second state is the situation in which ignition occurs

and the first item ignited begins to burn in a sustained manner. A fire then grows

from this state, undergoing transitions to the other states based on it reaching and

exceeding the threshold criteria for each state, as listed in Table 4.11. The names

of states 4 and 5 are taken directly as those assigned by Berlin (1985); however,

it should be noted that no clear explanation was provided for these terms in the

original source. Therefore, in this work, the ‘interactive’ stage is defined as the

period of time during which surrounding objects might be ignited and contribute

to flame spread. The ‘remote’ burning stage is defined as the transition zone to

full room involvement (according to Berlin (1985), the external heat flux returning

to the fuel surface exceeds 5 kW/m2 during this period). A given fire need not go

through the entire cycle of all states in the model. It can recede from any state to

a lower state due to lack of oxygen, lack of fuel or suppression by a fire protection
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system or even manual suppression by firefighters. In these cases, as in the real

situation, the fire can return to the non-fire state without ever reaching flashover.

On the other hand, if a fire does grow and reach flashover, in reality the fire physics

and dynamics change very rapidly. This is accounted for in the present model,

since all fires that have reached flashover (i.e., all post-flashover fires) are forced

to remain in the state of ‘full-room’ involvement and cannot recede back to any

previous state.

Table 4.12: Temporal distributions for the state transitions assumedBerlin (1985).

State Transition Distribution Mean Std. dev.
(min) (min)

2 → 1 Sustained to Non-fire Uniform 2.0 5.0
2 → 3 Sustained to Vigorous Log-normal 8.45 0.78
3 → 2 Vigorous to Sustained Uniform 1.0 2.0
3 → 4 Vigorous to Interactive Normal 5.55 3.22
4 → 3 Interactive to Vigorous Uniform 1.5 9.0
4 → 5 Interactive to Remote Uniform 0.5 3.5
5 → 4 Remote to Interactive Uniform 0.6 6.0
5 → 6 Remote to Full-room Log-normal 5.18 4.18

Once the transition states have been defined, it is of interest to determine the

time it takes a fire to transit from one state to another. Since, this is highly

variable and uncertain in any real fire scenario, the transition times from state to

state are considered as random variables with associated statistical distributions in

the present model. Based on fire test data, a combination of discrete and continuous

distributions were used in previous model (Berlin, 1985) as shown in Table 4.12.

There is no justification provided for the choice of distribution, for example, as to

why a receding fire was assigned a discrete uniform distribution.
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Figure 4.37: Comparison of distributions for 2→ 1 with mean 2.0 min and s.d. 5.0
min.
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Figure 4.38: Comparison of distributions for 3 → 4 with mean 5.55 min and s.d.
3.22 min.

The authors believe that the appropriate choice of distributions is contextual

based on the material and/or test data. For example, Figures 4.37 and 4.38 show

various distributions fit to a decaying and growing fire for the transitions 2 → 1

and 3 → 4 respectively. Exponential distribution is a good fit for decaying fires,

lognormal and normal are good for fires that grow gradually and then exhibit a

slowing trend. Exponential distribution for the forward transition is sensible in the

context where there is a high probability of an instant transition during a rapid

fire growth. Uniform distribution associates with equal chance at all times during

a transition.

Table 4.13: Various configurations differing in distributions chosen for state tran-
sitions
Case# Configuration
1 As listed in Table 4.12
2 Backward transitions in Table 4.12 replaced with exponential distribution
3 All transitions in Table 4.12 replaced with log-normal distribution
4 All transitions in Table 4.12 replaced with exponential distribution

The present model explores the possible configurations as listed in Table 4.13.

One key difference over the distributions assigned in Berlin (1985) is that all back-

ward transitions in the present work are assumed to follow a continuous distribution,

a justifiable assumption since both fire growth and recession occur on a continuous

time scale but at times occupy the discrete states defined in the model. Further,

it was assumed in Berlin (1985) that all fires that did reach the stage of full room

involvement were automatically reset to the non-fire state and no temporal distribu-

tion was associated with this state transition. In the present model, the transition

from full room involvement to non-fire state is not included as it would necessi-

tate significant additional data to properly describe this transition across real fire
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scenarios.

Table 4.14: Case 1:Assumed distributions for the state transitions based on Berlin
(1985)

Transition Distribution Parameters Mean Std. Dev.
(min) (min)

2 → 1 Uniform a= -6.66 2.00 5.00
b= 10.66

2 → 3 Log-normal µ=2.13 8.45 0.78
σ2=0.01

3 → 2 Uniform a=-2.46 1.00 2.00
b=4.46

3 → 4 Normal µ= 5.55 5.55 3.22
σ2=10.37

4 → 3 Uniform a=-14.09 1.50 9.00
b=17.09

4 → 5 Uniform a=-5.56 0.50 3.50
b=6.56

5 → 4 Uniform a=-9.79 0.60 6.00
b=10.99

5 → 6 Log-normal µ=1.39 5.18 4.18
σ2=0.50

Table 4.15: Case 2: Backward distributions in Table 4.14 replaced with Exponential
distribution

Transition Distribution Parameters Mean Std. Dev.
(min) (min)

2 → 1 Exponential λ= 0.5 2.00 2.00
2 → 3 Log-normal µ= 2.13 8.45 0.78

σ2= 0.01
3 → 2 Exponential λ= 1 1.00 1.00
3 → 4 Normal µ= 5.55 5.55 3.22

σ2= 10.37
4 → 3 Exponential λ= 0.67 1.50 1.50
4 → 5 Uniform a= -5.56 0.50 3.50

b= 6.56
5 → 4 Exponential λ= 1.67 0.60 0.60
5 → 6 Log-normal µ= 1.39 5.18 4.18

σ2= 0.50

Tables 4.14 - 4.17 list the distributions assumed in the present model for each

configuration listed in Table 4.13. These parameters are adapted from Berlin (1985)

and therefore reflect the data of the 1970’s. They are used here for illustrative
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Table 4.16: Case 3: All distributions in Table 4.14 replaced with Log-normal dis-
tribution

Transition Parameters Mean Std. Dev.
(min) (min)

2 → 1 µ= -0.30 2.00 5.00
σ2= 1.98

2 → 3 µ= 2.13 8.45 0.78
σ2= 0.01

3 → 2 µ= -0.80 1.00 2.00
σ2= 1.61

3 → 4 µ= 1.57 5.55 3.22
σ2= 0.29

4 → 3 µ= -1.40 1.50 9.00
σ2= 3.61

4 → 5 µ= -2.65 0.50 3.50
σ2= 3.91

5 → 4 µ= -2.82 0.60 6.00
σ2= 4.62

5 → 6 µ= 1.39 5.18 4.18
σ2= 0.50

Table 4.17: Case 4: All distributions in Table 4.14 replaced with Exponential
distribution

Transition Parameter(λ) Mean Std. Dev.
(min) (min)

2 → 1 0.50 2.00 2.00
2 → 3 0.12 8.45 8.45
3 → 2 1.00 1.00 1.00
3 → 4 0.18 5.55 5.55
4 → 3 0.67 1.50 1.50
4 → 5 2.00 0.50 0.50
5 → 4 1.67 0.60 0.60
5 → 6 0.19 5.18 5.18

purposes only; the model can be re-run any number of times using different and/or

more current datasets with their associated distributions as may be required to

model each new set of fire scenarios.

Flashover conditions

Prediction of average times to the onset of flashover is of key importance in defining

compartment fire development since this is a time of extremely rapid fire growth
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Figure 4.39: Parabolic fire growth for slow to medium fires.

leading to the everything in the room being involved in the fire. Despite this, the

scientific definition of flashover is the subject of some debate and times to flashover

for similar fire scenarios, even in controlled test situations, can vary greatly. For

example, a set of three similar experiments on a furnished bedroom fire yielded

flashover times of 17.6 min, 7.2 min and 6.5 min respectively (Croce, 1974) with

the large differences attributed to variations in relative humidity. In other experi-

ments, flashover conditions have been reported to occur at ceiling temperature of

approximately 600o C (Hagglund et al., 1974; Fang, 1975; Drysdale, 1998) in 2.7m

high compartments or over 450o C (Heselden and Melinek, 1975; Drysdale, 1998) in

a 1m high experimental compartment. Alternative definitions suggest criteria such

as heat flux level of 20 kW/m2 to the compartment floor(Waterman, 1966). The

minimum heat release rate (HRR) at which flashover is likely to occur, as per the

600oC criterion, is around 1 MW (Babrauskas et al., 2003). Using these threshold

values and a simplified correlation for fire growth, such as the parabolic or t2 fire,

the relation between heat release and time is given by Heskestad (1984):

Q̇ = αf (t− t0)2 (4.32)

where Q̇ is the heat release rate (KW), αf is the fire-growth coefficient (kW/s2)

and t0 is the initial incubation period (s).

These elements are used, with the fuel specified by Berlin (1985) to make an

initial estimate of the fire development as a benchmark for the present work. The

cotton cushions in Berlin (1985) can be categorized as resulting in slow to medium

growth fires, with growth coefficients ranging between 0.00293 and 0.01172 (Drys-
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dale, 1998). Based on this correlation and the proposed threshold HRR of 1 MW

for flashover, it can be seen from Figure 4.39 that the times to flashover for the

fires in Berlin (1985) should range from 9.2 to 18.5 min.

Recalling that the probability density function of a transition from state i to

state j is represented by fij(t) and the distribution function by Fij(t), and letting

Rij(t) = 1− Fij(t), the kernel C(t) of the semi-Markov process for the fire growth

model can be written in its full matrix form using Equation 3.5:

C(t) =




0 0 0 0 0 0

f21(t)R23(t) 0 f23(t)R21(t) 0 0 0

0 f32(t)R34(t) 0 f34(t)R32(t) 0 0

0 0 f43(t)R45(t) 0 f45(t)R43(t) 0

0 0 0 f54(t)R56(t) 0 f56(t)R54(t)

0 0 0 0 0 0




Further, the matrix W (t) in Equation 3.8 can be computed numerically using

methods outlined in the Appendix. The kernel matrix and the matrix W (t) are then

sufficient to solve for state probabilities. Finally, the probability of being in each

of the states is computed by solving the system of integral equations in Equation

3.10 using the trapezoidal rule. The time at which the fires undergoes a transition

to that state is taken as the time when the maximum probability of being in that

state is reached.

The next step in setting up the model is to define a set of appropriate statistical

distributions to use as the state transition descriptors. Appropriate functions can

be determined from real fire test data when it is available; however, for the time

estimates to be meaningful, the data used must be representative of the fire sce-

narios of interest. For example, transition descriptors in Berlin’s model relied on

test data collected between 1959 and 1975 from large scale dwelling and room fires.

This data was based on fires initiated in sofas comprising cotton cushions. While

this was a representative scenario at that time, new materials and upholstery con-

struction methods will limit its utility for prediction of more modern fire scenarios.

Nonetheless, for the purposes of comparison, the data from Berlin is used for the
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initial test case run with the present model. Then, to demonstrate the flexibility

of the model, three combinations of transition state distributions were explored as

listed in Table 4.13.

4.5.3 Results
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Figure 4.40: Probability of being in each state. Case 1.

Table 4.18: Time at which maximum state probabilities occur. [Case 1]
State Maximum Time (min) at which

probability (1) (1) occurs
3 Vigorous 0.05 9.1
4 Interactive 0.0002 11.7
5 Remote 0.0006 15.2

Figure 4.40 shows the calculated probabilities that the fire has reached a certain

state at a given time, assuming the distributions for case 1 in Table 4.13. The

corresponding times at which values of maximum probability are reached for the

various states are summarized in Table 4.18. In these results, the fire is assumed to

start in the sustained state (state 2), so the probability of being in each state after

fire initiation is given by φ2j(t). The probability of the fire having grown enough

to enter any other state begins to increase after 5 minutes, reaches a maximum

value at some time thereafter and then eventually begins to decrease. At the same

time, the probability of the fire being in the sustained state (state 2) decreases in

time, since the fire is indeed growing. If the fire does not sustain itself, it moves

back to the pre-burning stage (state 1). The 5 minute delay could be attributed

to the incubation period. For those fires that do grow, the peak probability of

the fire growing large enough that the upper layer temperature reaches 450oC, i.e.,
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reaching the remote state (state 5), is slightly larger than the probability that the

fire remains smaller, i.e., in the interactive state (state 4), but the differences are

minimal since they are seen only when three digits of precision are used in the

calculations. The difference is physically reasonable, however, because as would be

expected in a real fire scenario, it often takes the fire longer to grow from a 450oC

upper layer temperature to full room involvement, than to grow from a 150oC upper

layer temperature to a 450oC upper layer temperature. The maximum probability

of full room involvement is slightly lower than those for either the remote or the

interactive stages. This is again as expected since, in general, the probability of

full room involvement is expected to be quite low. In reality, there is a lower

chance of a fire growing to involve the entire room due to the many paths by

which the fire can recede before growing to this point. However, since full room

involvement is a high consequence event and is often linked to fire resistance and

severity assessments, it can be important to estimate the time taken for the fire

to grow to that stage. For this case and all others in the present work, the curve

indicating full room involvement will more or less plateau without decay because

this state is considered a final state which is not connected back to the non-fire

state.

In contrast to the smoothed probability distribution for full room involvement

is that for the vigourous state (state 3), where the fire is characterized by low

flame heights and heat release rates. This distribution appears multi-modal, which

may suggest that describing the transitions to and from this state using a single

distribution may not truly represent the real fire data. Again, such an observation

is consistent with true fire behavior, since, this stage of fire growth will be highly

variable due to frequent fluctuations in development as the fire grows and recedes

(Berlin, 1985).

The time-dependent realm frequency plot (Berlin, 1985) do not represent a

statistical distribution. In contrast, the state probabilities in Figure 4.40 form a

discrete distribution with their sum equal to 1 at all times. Hence not more than

one state at any given time can have a probability be equal to 1. In the proposed

model, probabilities of states 2 to 5 approach zero beyond 45 min so that the non-

fire state probability starts increasing toward certain probability of 1.0. This gives

an impression that every fire gets extinguished with in a finite time as per the

collected fire test data.

If we retain the criterion that time to flashover corresponds to the time it takes
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the fire to enter into the remote state, and further that our best estimate of this

time can be taken as the time at which we have the maximum probability that

the fire is in that state, then the estimated time to flashover for Case 1 in Table

4.13 is 15.2 min. This falls within the range of 9.2min to 18.5min discussed in

Section 4.5.2. It is longer, however, than both the comparable empirical estimate

of 12.9 min made by the Illinois Institute of Technology Research Institute (IITRI)

based on 68 fire tests (Vodvarka and Waterman, 1975) and the estimate of 11.6 min.

made based on data from 100 fire tests including the IITRI test data (Berlin, 1985).

The increase of more than 31% in time to flashover predicted here as compared to

the 11.59 min listed above (Berlin, 1985) can be attributed to the fact that unlike

previous estimates, consideration was included here of the fact that, in reality, a

fire can recede from its present state to a less well developed state with time.
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Figure 4.41: Probability of being in each state. Case 2.

Table 4.19: Time at which maximum state probabilities occur. [Case 2]
State Maximum Time (min) at which

probability (1) (1) occurs
3 Vigorous 0.005 8.7
4 Interactive 0.0001 10.0
5 Remote 0.00001 10.8

For realistic fire scenarios, it can be difficult to determine the possible variability

in time that it might take for a fire to recede from one state back to another. A

typical example might be an under-ventilated fire that grows and recedes at different

rates across many tests. In these situations, it may only be possible to determine

the mean time that it takes the fire to change from being in the remote state (state

4 based on criterion of 150oC upper layer temperature) to being in the interactive

state (state 5 based on criterion of a 450oC upper layer temperature). It might
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then be assumed that the mean time for a transition is the same as the variability,

which could be modeled using an exponential distribution with a constant rate

of transition. Hence, this case is scenario reflecting that reflects inadequate data

collection mechanism, yet incorporating a possible variability information in to

model. It is inferred that the resulting time to flashover estimate could be either

over or under predicted. This situation is modeled in Case 2 (Table 4.15) where

all backward transitions are set to follow exponential distributions. The results are

plotted in Figure 4.41. They indicate less fluctuation in the state probabilities than

seen for Case 1, with the highest probability that the fire will grow only slightly and

less and less probability that ceiling temperatures will reach 150oC (remote), 450oC

(interactive) or full room involvement. As indicated in Table 4.19, the maximum

probability of the fire reaching each state is lower overall and the fire likely to decay

much earlier than in Case 1. Finally, time to reach any given fire growth state, and

therefore time to reach flashover, is much shorter, around 10.8min, since the large

variability in the fire test data is essentially neglected in the backward distributions

used for this case.
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Figure 4.42: Probability of being in each state. Case 3.

Table 4.20: Time at which maximum state probabilities occur. [Case 3]
State Maximum Time (min) at which

probability (1) (1) occurs
3 Vigorous 0.0127652 8.8
4 Interactive 0.00013 11.8
5 Remote 0.0002 12.4

Case 3 models the situation for which all the transition times are assumed to

follow log-normal distributions which are considered to provide good fits to a wide
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range of fire test data (Barnett, 2002, 2007). Results are plotted in Figure 4.42

with maximum probability values and times summarized in Table 4.20. For this

case, the maximum probability that the fire will reach the remote stage (stage 4)

is very close to that estimated for the fire reaching the interactive stage (stage 5),

both slightly higher than that for the fire going to full room involvement. Results

suggest an earlier time to flashover compared to Case 1, though longer than that

for Case 2. Here, the time to flashover, and interestingly for this case also the time

to full room involvement, is 12.4 min, comparable to that predicted by IITRI from

their fire test data and about 7% higher to that estimated by Berlin.
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Figure 4.43: Probability of being in each state. Case 4.[Markov method]

Table 4.21: Time at which maximum state probabilities occur. [Markov method]
State Maximum Time (min) at which

probability (1) (1) occurs
3 Vigorous 0.0516441 1.27
4 Interactive 0.00627998 3.08
5 Remote 0.00658725 3.71

In Case 4, all of the distributions in Table 2 are assumed to be exponential,

leading to a Markov process model. The resulting state probability time curves are

shown in Figure 4.43 and times to maximum probability summarized in Table 8.

Overall trends, compared to results from the semi-Markov model shown in Figure

5 and Table 4.18, are similar though the time scales of events is marked different,

particularly with respect to the times at which maximum probabilities occur. As

an example of the differences, the semi-Markov model (Case 3) predicts a time to

flashover of 12.4 min, while the Markov model predicts time to flashover of only 3.71

min, i.e., about a third of the semi-Markov model time. This clearly illustrates the
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importance of the form of the assumed distributions for state to state transitions,

since assuming exponential distributions for all the transitions in this study will

potentially lead to serious under prediction of critical fire development times and

consequent misinterpretation of results.

Table 4.22: Time (min) to flashover
Berlin’s model IITRI fire test Proposed model
Berlin (1985) Vodvarka and Waterman (1975) [Case 3]
11.59 12.9 12.4

Table 4.23: Time to flashover (TTF) for various configurations
Case# TTF (min) Comments
1 15.2 31.15% increase compared to Berlin’s model (Table 4.22)
2 10.8 Variability information from Table 4.12 is unused
3 12.4 6.99% increase compared to Berlin’s model (Table 4.22)
4 3.7 Variability information from Table 4.12 is unused

The time to flashover estimated by each of the cases investigated here is sum-

marized in Table 4.23. The semi-Markov model (Case 3) estimate of 12.4 min falls

between the estimate of 11.59 min contained in the original paper (Berlin, 1985)

and the IITRI test data estimate of 12.9 min. Cases 2 and 4 do not utilize the

variability information from the fire test data and both yield times to flashover of

less than 11.59 min. Since there was no justification provided for the distributions

chosen in Berlin (1985), it is not clear that their selection is in any way optimal.

Similarly with changes in fuels and fuel load distributions in modern enclosures, it

is unlikely that the original test data is entirely representative of more ‘modern’

fires. Through the refinement of methodology and exploration of the effects of vary-

ing the distributions, the model described in present paper has been shown to be

flexible enough to quantify time to flashover accounting for all the variability of real

fire test data, as well as cyclically receding and growing fires or other important

fire events by using varying statistical distributions and parameters as the state

transition descriptors.

Transition descriptors in Berlin’s model relied on large scale dwelling room fire

test data collected between 1959 and 1975. The test data was based on combus-

tion of sofas made of cotton cushions which is not the only material marketed

today. However, the developed model can still be utilized with appropriate choice

of statistical distributions reflecting the test data. Keeping in view the flexibility
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needed in the model development, Table 4.13 explores four different configurations

of distributions possible in applying the model.

4.5.4 Applications

As an early fire growth model, the proposed method has several potential applica-

tions. Appropriate transition state distributions, determined from existing fire test

data can be acquired and applied to account for specific fire events. Variability in

lining or construction materials, potential fuel loads or detector/sprinkler response

can also be included through appropriate identification and specification of the

transition states. The proposed model could then be used by fire safety regulators

for sensitivity analysis or as a “what if” preliminary risk assessment tool to inves-

tigate considerations such as required response times or definition of requirements

for the kinds of materials allowed in a particular structure.

4.5.5 Conclusions

Existing probabilistic fire behavior models were reviewed. A new model of early

fire development based on a mathematically well structured approach called semi-

Markov process model was proposed. The model takes into account realistic vari-

ability in the timeline for fire growth as well as the possible modes of fire extin-

guishment. Interpretations were drawn based on the time at which maximum state

probabilities occurred with one state transition used as a predictor for time to

flashover. The proposed model, with further modification, will be useful to fire

safety designers, regulators and practitioners, particularly when they seek to do a

sensitivity analysis or wish to incorporate variability into their predictions of overall

fire growth.
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4.6 Digital Controller System

A semi-Markov process model is developed for the reliability analysis of main feed-

water valve (MFV) controller system that is used for regulating the water level in a

steam generator. The proposed model is generalization of a Markov process model

reported in the literature and allows the use of non-exponential distribution for

various state transition times.

4.6.1 Problem

Digital control and protection systems are installed in nuclear power plants (NPP)

or as part of upgrades to older plants with analog systems. The primary advan-

tage of a digital system over an analog one in instrumentation and control(I&C)

systems is the fault tolerance feature offered through the use of microprocessors

instead of relay logic (Hassan and Vesely, 1998). Moreover, digital systems have

memory, enabling them to provide diagnostic data at the component level of the

control system. While logic in analog systems is driven through the use of relays

and transistors, digital systems incorporate logic into software. However, software

failures could potentially impact the performance of mitigating systems. Certain

failure modes could arise due to software that are not encountered in analog sys-

tems (Chu et al., 2010a). This integration of hardware and software in digital I&C

systems offers unique challenges in reliability modelling and hence, is an area of

important research.

Literature

The technical report by Aldemir et al. (2006) explored various methods available

for system reliability evaluation of digital instrumentation and control (I&C) sys-

tems. Static fault tree and event tree approaches were considered obsolete due to

the inherent inability of these methods to tackle “dynamic interaction” between

digital systems and rest of the plant processes. An example of such an interaction

is a competition between two tasks to get hold of a digital controller’s resources.

Deadlock could be a situation when two threads wait for each other to release re-

sources they are in control of. Starvation is a situation where a low priority thread

might have to wait indefinitely for the controller’s time slice. Hence temporal inter-

actions could lead to dynamic situations and these can be handled well using state
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transition methods by branching different situations as distinct states. Despite the

provisions for specialized dependency gates, the dynamic fault tree (DFT) method

(Rao et al., 2009) has the shortcoming that the generated cutsets might change as

the system evolves in time.

The dynamic flowgraph methodology, DFM (Al-Dabbagh and Lu, 2010) is an-

other alternative for modelling reliability of digital I&C systems. It takes the di-

rected graph approach with decision tables for state transitions, edges for failure

dependencies and nodes for variables (.e.g., Water level, Valve position). Nodes can

have discrete states (e.g., High, Stationary, Low). The decision table construction

involves all possible mappings of variables and corresponding states (e.g., Water

level high and valve open). The mapping must also account for various switching

actions for backup solutions. Yau et al. (1995) demonstrated the use of DFM for a

digital flight control system where 9 input variables with 5 states each led to 59 rows

in the decision table. The paper worked around the problem by using equations of

motion and control laws thus bypassing the construction and lookup of the decision

table. Hence decision table construction could potentially encounter a dimension-

ality problem and modelling would not adhere to a universal solution though it has

the ability to model multiple top events. Stochastic petri nets (Kleyner and Volovoi,

2010) is also a graph theoretic approach whose quantification can be done using

simulation. These models can be converted to fault trees, but size of the model and

simulation speed could severely prohibit its usage for digital I&C systems.

Another technical report by Aldemir et al. (2007) focused exclusively on reli-

ability modelling of digital I&C systems for nuclear reactor probabilistic risk as-

sessments. Markov models were developed for various controllers and computer

systems of the DFWCS. These include the main feedwater regulating valve (MFV)

controller, the bypass feedwater regulating valve (BFV) controller, the feedwater

pump (FP) controller, the pressure drop indicator (PDI) controller, power source

of these controllers and finally the main and its backup computers. This report was

at large a proof-of-concept for the use of Markov models for digital systems. The

state space for the models were elaborately developed and then reduced according

to state reduction principles for practical applications. Aldemir et al. (2010) refined

and quantified some of these models by generating Markov transition rates using

fault injection techniques. Such techniques in software testing widen the scope of

test data by introducing deliberate faults in the system.

Markov models are able to predict future failures while considering failure de-
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pendencies and can accommodate both hardware and digital interaction. However,

Markov models assume only constant transition rates leading to the assumption

that the time spent in any state can follow only the exponential distribution. A

system involving complex interactions between hard-wired analog and software con-

trolled digital subsystems could be subjected to human, software, electrical, me-

chanical and electronic failures. Lognormal, Weibull and Gamma distributions to

represent time-to-event have been found to be appropriate in different contexts

(Vineyard et al., 1999).

Proposed approach

A water level controller valve could be subject to high failure rates due to surge

voltages during startup or shutdown and a fairly constant failure rate at any ran-

dom running time. With this rationale, the present paper assumes that a Weibull

distribution is suitable to model the time to a send a previous valid output to the

valve. In order to achieve this ability to consider a non-exponential holding time

distribution in the model, the semi-Markov process model is applied for the relia-

bility analysis of digital feedwater regulating valve controller. The idea of applying

semi-Markov process model to incorporate the effect of ageing related degradation

of pipes in the nuclear industry has earlier been explored by Veeramany and Pandey

(2011c).

Markov model requires continuous plant state information to generate the tran-

sition rates required as inputs. The semi-Markov process model is also subject to

this inhibitive requirement. Further disadvantage is the difficult learning curve for

an analyst. This hindrance can be negated to an extent by the use of simple visual

interfaces.

4.6.2 The digital feedwater regulating valve controller sys-

tem

Problem

The present case study is a semi-Markov extension of one of the feedwater controller

Markov models from Aldemir et al. (2010). The digital feed water control system

(DFWCS) shown in Figure 4.44 is responsible for regulating water level in the steam

generator. A water level sensor outputs level to the computer. The computer then
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Figure 4.44: Schematic of the digital feed water control system (DFWCS).

determines the amount by which the valves need to be repositioned so as to adjust

the water flow speed. This information is sent in the form of a signal to the

controller. Accordingly, the controller actuates the main feedwater regulating valve

(MFV) to optimize the water flow. Apart from MFV, there are other controllers and

actuating devices as part of the DFWCS. The focus of this case study is to analyze

the reliability of the MFV controller system based on its output to the valve. There

is a finite probability of the valve getting stuck in its maximum or minimum flow

position due to an erroneous output from the controller. It is also possible that the

controller sends an arbitrary or random output to the valve. These could be due to

a processing error or an internal problem in the computer. In these abnormal cases

the controller feeds a valid previous output to the valve. This situation is termed

as the failure of the controller system.

Markov analysis

1
Correct
Output

3
Previous
Output

2
Output
low

5
Arbitrary
Output

4
Output
High

Figure 4.45: State space for Main Feedwater regulating Valve (MFV)(Aldemir et al.,
2010).
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The model proposed by Aldemir et al. (2010) based on Aldemir et al. (2007)

has five states as shown in Figure 4.45. The system initially begins operation in

state 1. In this state, the controller receives correct output from the computer and

sends it to the valve. The system moves to state 2,4 or 5 when the output is too

low, high or arbitrary respectively. It is assumed that these states do not lead back

to the correct output, instead move on to state 3 where a valid previous output is

sent to the valve. For modelling purposes, state 3 is an absorbing state representing

system failure. As per this model, there is a transition from state 1 to state 3 in

which case an internal problem with the computer is recognized by the controller

and a previous output is sent to the valve. The literature also suggests that there

are circumstances when the controller fails to sense the failure of the computer and

hence sends arbitrary output to the valve.

Table 4.24: Sample Markov transition rates for the controller system. (Aldemir
et al., 2010)

State Transition Transition Rate (hr−1)
λ12 Correct Output → Output Low 2.55 x 10−7

λ13 Correct Output → Previous Output 4.2 x 10−5

λ14 Correct Output → Output High 5.5 x 10−8

λ15 Correct Output → Arbitrary Output 5.5 x 10−8

λ23 Output Low → Previous Output 4.2 x 10−5

λ43 Output High → Previous Output 4.2 x 10−5

λ53 Arbitrary Output → Previous Output 4.2 x 10−5

Due to lack of practical data, Aldemir et al. (2010) estimated failure rates

based on fault injection experiments. These rates listed in Table 4.24 are useful for

demonstrative purposes.

The system of differential equations to solve the Markov model is based on the

fact that the rate of change of the probability of being in any state S is negatively

proportional to the rate at which the transitions occur outward from S and posi-

tively proportional to the rate at which inward transitions occur from other states

(Lisnianski and Levitin, 2003).

For example, from Figure 4.45, it is seen that there are four inward transitions

in to state 3 originating from states 1,2,4 and 5 while there is only one transition

going out from states 2,4 and 5.

dp1(t)/dt = −(λ12 + λ13 + λ14 + λ15)p1(t)
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dp2(t)/dt = λ12p1(t)− λ23p2(t)

dp3(t)/dt = λ13p1(t) + λ23p2(t) + λ43p4(t) + λ53p5(t)

dp4(t)/dt = λ14p1(t)− λ43p4(t)

dp5(t)/dt = λ15p1(t)− λ53p5(t)
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Figure 4.46: Controller failure probability.

Results

Figure 4.46 plots the probability of being in state 3, which is the probability of

controller system failure. Note that the system could land in state 3 either directly

from state 1 or through the other states. Out of a year, the operational mission

time of the DFWCS is assumed to be 11 months allowing for one month of outage

time (Aldemir et al., 2007). For PRA purposes, the usual (default) reference time

period is 24h (Aldemir et al., 2010). Hence, in this paper, duration for all the plots

is 24 hours.

Figure 4.47 plots the probability of being in states 2, 4 and 5. The state prob-

ability of a high or an arbitrary output is the same owing to the same failure rate

shared by the respective transitions from the state of correct output. The failure

rate of a low output from correct output is lower than that of a high or an arbi-

trary output. Correspondingly, the state probabilities reflect the trend. However,

comparing Figure 4.46 and 4.47 the probability of a controller failure is higher than
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Figure 4.47: Probability of being in states 2,4 and 5.

being in any of the other states. This can be attributed to the fact that state of

previous output is an absorbing state and hence all transitions eventually end in

this state.

A direct transition from correct to previous output has higher influence over

the controller failure probability than that due to transiting through intermediate

steps and reaching the previous output. This is due to relatively larger failure rate

for the transition from correct to previous output when compared to the combined

failure rates of the alternate paths.

4.6.3 Mission Reliability

For the feedwater valve controller system, φ13(t) denotes the failure probability and

R(t) = 1 − φ13(t). Let the time to failure T of the system be a random variable.

Assume that the system is reliable until the time tb i.e., T > tb. The probability

that the system is able to further complete a mission duration of tm successfully is

conditioned on the time already spent in reliable service and is called the mission

reliability (Kumar, 2000):

MR(tb, tm) =
R(tb + tm)

R(tb)
=

1− φ13(tb + tm)

1− φ13(tb)

MR(tb, tm) represents the probability that the system stays in one of the states

other than the failure state (state 3) given that it has not yet stepped in to state

3 until tb. Note that if distribution of T is exponential then the mission reliability
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is independent of tb, MR(tb, tm) = R(tm). For plotting, the mission unreliability,

1−MR(tb, tm), is a convenient choice:

1−MR(tb, tm) =
φ13(tb + tm)− φ13(tb)

1− φ13(tb)

This quantity represents the probability that the system enters state 3 during the

time interval (tb, tb + tm) given that it has been reliable until time tb.

4.6.4 Semi-Markov model for digital feedwater valve con-

troller

The holding time in any state is a random variable. Though hard to determine

and establish the variability, this information can be of potential use to study its

effect on the controller system’s failure probability. In this paper, it is assumed

that the time-to-previous output from the state of correct output follows a Weibull

distribution. The coefficient of variation (cov) is varied between 0.4 and 1.0. The

rest of the transition times are assumed to follow exponential distributions with

the mean transition rates as listed in Table 4.24. Let Rij(t) = 1 − Fij(t). Then,

the kernel C(t) of the semi-Markov process for the controller system can be written

using Equation 3.5,




0 f12(t)
∏

i=3,4,5

R1i(t) f13(t)
∏

i=2,4,5

R1i(t) f14(t)
∏

i=2,3,5

R1i(t) f15(t)
∏

i=2,3,4

R1i(t)

0 0 f23(t) 0 0

0 0 0 0 0

0 0 f43(t) 0 0

0 0 f53(t) 0 0




The kernel matrix and the matrix W (t) are sufficient to solve for state proba-

bilities. The probability of being in each of the states is computed by solving the

system of integral equations in Equation 3.10 using the trapezoidal rule (Veeramany

and Pandey, 2011c,b).

The transition rates for the Markov model (Aldemir et al., 2010) were a result

of reducing the total number of states to five from a seven state model. These
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effective rates are used in the proposed model as a first hand approximation. Alter-

natively, state reduction techniques can be applied on a semi-Markov process model

to determine the effective distribution parameters as explored by Veeramany and

Pandey (2011b).

Results of semi-Markov process model
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Figure 4.48: Controller system failure probability comparing variability in time to
previous-output.

Figure 4.48 shows the controller failure probability for three cases of coefficient

of variation: 1.0, 0.6 and 0.4. Recall that this variability corresponds to time to

the previous output from the state of correct output. Comparing the Figures 4.46

and 4.48, it can be seen that a cov of 1.0 corresponds to the Markov case. On the

other hand, the lower the variability, the lower is the failure probability.

Table 4.25: Controller failure probability at the end of 24 hrs.
cov Controller failure

probability
1.0 1.0075 x 10−3

0.6 5.88034 x 10−6

0.4 1.05061 x 10−8

The controller failure probabilities at the end of 24h are shown in Table 4.25 for

each of the covs considered. It is seen that the failure probability increases with an

increase in cov and it is the highest for the Markov model.

Consider two MFV controller systems - the first system has been in service

for 10 hours and the second system is newly installed after first system has been
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Figure 4.49: Controller system mission unreliability for additional 14 hrs given that
the system was reliable for the initial 10 hrs [cov=1].

operational for 10 hours. The mission unreliability of the first system given a

10h reliable operating history and the failure probability of the second system are

compared in Figure 4.49. The comparison assumes cov = 1 for the time to transition

from state 1 to state 3. It is observed that both probabilities are the same for the

observed 14 hour period. This well known result shows that the Markov model

does not differentiate a system already in service and a newly installed one.
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Figure 4.50: Controller system mission unreliability for additional 14 hrs given that
the system was reliable for the initial 10 hrs [cov=0.6].

Assuming cov = 0.6 for the time to transition from state 1 to state 3, Figure

4.50 shows that mission unreliability of the first system is higher than the system
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failure probability of the newly installed system. This is a result of considering

non-exponential distribution in the semi-Markov model formulation.

Since a digital I&C system is a combination of hardware and software systems,

it is prone to ageing. Nuclear power plant systems undergo certain maintenance ac-

tivities that could be carried out even without outages. Under these circumstances,

continuous execution of software embedded in hardware (firmware) could exhibit

software ageing due to performance degradation, numerical error accumulation and

unexpected crashes (Laird and Brennan, 2006). Moreover, mechanical movement

of the feedwater valve in response to controller commands could go out of control.

In an intuitive sense, the failure probability of an ageing system at the present

moment is very low given that the system was reliable until now. Overtime, failure

probability of such a system is likely to be higher than that of a newly installed sys-

tem due to increased risks of wear and tear. However both these quantities remain

the same if the failure time of a system is assumed to follow an exponential distri-

bution. This inability to take ageing in to account is a result of the memoryless

property of the exponential distribution. A recommendation for future research is

to analyze reliability of an ageing digital I&C system over the life span of a typical

power plant and not just for a short period of 24h.

Apart from the main feedwater regulating valve (MFV) controller, the digital

feedwater controller system (DFWCS) is connected to a feedwater pump (FP) and

its controller, a bypass feedwater valve (BFV) and its controller, a main computer

and its backup and a pressure drop indicator (PDI) controller. A critical application

in the nuclear plant reliability analysis is the probabilistic assessment of the entire

digital controller system. NUREG-CR/6942 proposed Markov models for each of

MFV, computer and the PDI systems. The MFV, BFV and the FP share the same

model used in this paper. Hence, a larger application of semi-Markov process model

would be to integrate the reliability models of the above said systems in to a single

model for the digital feedwater controller system.

4.6.5 Conclusion

The main feedwater valve controller system used to regulate water level in a nuclear

power plant steam generator is a critical digital instrumentation and control system

of interest. A Markov model was developed in NUREG-CR/6942. This case study

presents a more general semi-Markov model so that non-exponential distributions
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can be included in the model. An example is presented to analyze this problem in

which Weibull distribution is assumed for a state transition time in the model.
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4.7 Quantifying Maintenance Effects on Unavail-

ability

This case study presents a general model for evaluating unavailability of engineer-

ing systems with maintenance effects based on the theory of semi-Markov process.

The proposed model is able to incorporate non-exponential distributions to consider

degradation of systems. The effect of degradation intensity, variability in degrada-

tion and maintenance interval on the component’s unavailability are investigated.

The model is able to recommend an optimal maintenance interval for minimizing

the operational unavailability.

4.7.1 Problem

Samanta et al. (1991)’s NUREG report was an early attempt to show that degra-

dation can be modeled using state space techniques to identify ageing trends and

thus formed the basis for Vesely (1993)’s Markov model. The basic idea was to bor-

row minimal inputs from standard two-state probabilistic risk assessment (PRA)

models and build a Markov model capable of identifying optimal maintenance in-

tervals. However, the Markov process model assumes constant rate of occurrence of

degradation implying that the time-to-degradation initiation is a random variable

following an exponential distribution. However, if degradation accelerates rapidly

due to ageing, Weibull or gamma distribution can be a better choice. For example,

Bae et al. (2007) derive insights from comprehensive degradation analyses done by

Lu and Meeker (1993); Meeker and Escobar (1998). They explain that the choice of

distribution in metal corrosion and degradation of electronic devices such as semi-

conductors has profound implications on the resulting lifetime model. The paper

investigated the characteristics of lifetime distributions when Weibull, Gamma and

log-logistical distributions are used in degradation analysis. Vineyard et al. (1999)

identified that the Weibull distribution was found to be a strong fit for the time

between failures for electronic, human, mechanical, and software failures. Similarly

lognormal distribution was found to be a strong fit for the time between failures

for electrical failures. Hence, keeping in view the importance of non-exponential

distributions in degradation modelling, the objective of this case study is to extend

Vesely (1993)’s Markov model in to a more general semi-Markov process (SMP)

model that permits the use of non-exponential distributions for time spent in the

component states in order to quantify the maintenance effects on unavailability.
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Consequences and maintenance management of ageing components have been

investigated through renewal theory (Radulovich et al., 1995), physics of ageing

damage in passive components(Smith et al., 2001) and linear and Weibull ageing

models (Kancev and C̆epin, 2011; Vesely, 1978). Veeramany and Pandey (2011c)

developed a semi-Markov model to evaluate reliability of a degrading nuclear pip-

ing system to support risk-informed in-service inspection programs. The model as-

sumed that the time to flaw growth in a pipe follows non-exponential distribution.

The paper extended a Markov model proposed by Fleming (2004) which argues that

apart from catastrophic failures like severe loading, there can be a number of piping

related degradation issues like flow accelerated erosion-corrosion, thermal fatigue,

wall thinning, crack propagation, flaws and leaks. The present case study proposes

a more general model that quantifies the effect of maintenance on unavailability of

degrading systems. Veeramany and Pandey (2011b) focused on modelling reliabil-

ity of redundant systems where one or more constituent components could follow

non-exponential distribution for time to failure. Ideas for reducing the number of

states in the model for specific cases were proposed. Gupta and Dharmaraja (2011)

proposed a ten state semi-Markov dependability model yielding time-dependent re-

sults. The paper explained the necessity to introduce non-exponential distributions

for resource degradation and presented an application that assumed exponential dis-

tribution for all sojourn times. Simulation was used to determine probability of a

security attack in a telecommunications network. Semi-Markov process model has

also been explored (Veeramany and Pandey, 2011a) to model reliability of digital

instrumentation and control (I&C) systems where there is a scope for firmware

to undergo performance degradation due to software ageing in combination with

risks of mechanical wear and tear. Tomasevicz and Asgarpoor (2009) developed a

semi-Markov decision process based on an n-state degradation model to solve for

optimal maintenance policy of repairable equipment without the use of continuous

time statistical distributions.

4.7.2 State Space Model

The original Markov model by Vesely (1993) seen in Figure 4.51 consists of four

states - operational, degraded, maintenance and failure. The only input available

from a standard probabilistic risk assessment (PRA) is the component’s failure rate

λ. Vesely derived analytical expressions to connect λ to each of the transition rates

in the Markov model by introducing a few intermediary quantities. The proposed
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Figure 4.51: Four-state transition model for system degradation (Vesely, 1993).

model additionally introduces coefficient of variation, γ in the time to failure. As

a result there is a scope for the time spent in the states o and d towards the

transitions o → d, o → f and d → f to follow non-exponential distribution. An

application is presented assuming that only the time to degradation corresponding

to the transition o→ d follows non-exponential distribution.

The component failure rate λ accounts for both catastrophic failures and also the

failures that pass through degradation. However, these are not directly observable.

λ is related to the catastrophic failure rate λof through the catastrophic failure

fraction fof (Vesely, 1993):

λof = fofλ

If a non-exponential distribution is to be used for transitions o→ d and o→ f , it

is desirable to have the mean time to failure and the cov of the time to event data

so that distribution specific parameters can be fitted for each of the transitions.

Equation 4.7.2 can be alternatively written in terms of the mean time to failures:

µof =
1

fof
µ

Let the coefficient of variation (cov) of data that yield µ and µof be γ and γof

respectively. If the time spent in the operational state is assumed to follow an

exponential distribution then, γof = γ = 1. If not, γof = γ assuming that scal-

ing the mean corresponds to a dataset in which each of the data points is scaled

accordingly.

Hence, by knowing λ, γ and with an estimate of fof , one could arrive at the
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mean µof and cov γof of catastrophic time to failure corresponding to the transition

o → f . These two quantities are sufficient to set up a desired non-exponential

distribution to time to catastrophic failure given that the system is operational.

Let the probability density function (pdf) and the cumulative distribution function

(cdf) corresponding to this set of mean and cov be denoted by gof (t) and Gof (t)

respectively.

On similar lines, it can be argued that the component failure rate λ and the

component degradation rate λod can be related (Vesely, 1993) through degradation

ratio rod:

µod =
1

rod
µ

γod = γ

The above two quantities are sufficient to set up a desired non-exponential distri-

bution to time to degradation given that the system is operational. Let the pdf

and the cdf corresponding to this set of mean and cov be denoted by god(t) and

God(t) respectively.

In view of restricting to as less additional variables as possible, the degraded

failure rate λdf is related to the total failure rate λ through the ratios rod and fof

and the definition that Todf = Tod + Tdf (Vesely, 1993):

rdf =
rod(1− fof )
rod − (1− fof )

λdf = rdfλ

or

µdf =
1

rdf
µ

γdf = γ

The above two quantities are sufficient to set up a desired non-exponential dis-

tribution to time to failure given that the system is degraded. Let the pdf and

the cdf corresponding to this set of mean and cov be denoted by gdf (t) and Gdf (t)

respectively.

The maintenance frequencies λom and λdm when in operational and degraded

states respectively can be assumed to be constant transition rates owing to the fact
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that there is less variability in time to maintenance once a maintenance policy is

selected. These rates were derived on the assumption that the degradation rate is

constant (Vesely, 1993) and continue to be the closest approximate for the proposed

semi-Markov model:

λom =
exp(−(1− fof )λTm)

Tm

λdm =
exp(−λdf Tm2 )

Tm/2

where Tm is the average time between maintenances.

The transition m → f representing a component failure while under mainte-

nance and backward transitions m → o, m → d, f → o and f → d represent-

ing component state improvements are assumed to follow constant transition rates

keeping in view the scarcity of data to fit non-exponential distributions. These

transition rates (Vesely, 1993) are listed in Table 4.26.

Table 4.26: Constant transition rates for rest of the transitions (Vesely, 1993)
Transition Transition rate Constraints
m→ o λmo = pmo/dm pmo + pmd + pmf = 1
m→ d λmd = pmd/dm dm: average maintenance duration
m→ f λmf = pmf/dm
f → o λfo = pfo/df pfo + pfd = 1
f → d λfd = pfd/df df = T

2
(1− 1

3
T
Tm

) + r

r = average repair time
T=surveillance test interval

For the Markov model presented in Figure 4.51, the transition rate matrix is

given by:




0 λod λom λof

0 0 λdm λdf

λmo λmd 0 λmf

λfo λfd 0 0




and the time evolution of states yielding the state probabilities is given by a system

of differential equations. In the next section, the semi-Markov process model is

described to arrive at a system of integral equations taking in to account the ability

to incorporate non-exponential distributions.
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4.7.3 Application of SMP to the maintenance model

The proposed model is applied to a hypothetical component assuming that the time

to degradation follows Weibull distribution. The mean time to degradation µod and

cov of time to degradation γod are used to back-calculate the scale λ
′

od and shape

γ
′

od parameters of Weibull distribution.

The kernel of the semi-Markov process model can be constructed with all the

known transition information gathered from Equation 4.7.2 through Table 4.26:

C(t) =




o d m f

o 0 cod(t) com(t) cof (t)

d 0 0 cdm(t) cdf (t)

m cmo(t) cmd(t) 0 cmf (t)

f cfo(t) cfd(t) 0 0




where

cod(t) = god(t)(1−Gom(t))(1−Gof (t))

com(t) = gom(t)(1−God(t))(1−Gof (t))

cof (t) = gof (t)(1−God(t))(1−Gom(t))

cdm(t) = gdm(t)(1−Gdf (t))

cdf (t) = gdf (t)(1−Gdm(t))

cmo(t) = gmo(t)(1−Gmd(t))(1−Gmf (t))

cmd(t) = gmd(t)(1−Gmo(t))(1−Gmf (t))

cmf (t) = gmf (t)(1−Gmd(t))(1−Gmo(t))

cfo(t) = gfo(t)(1−Gfd(t))

cfd(t) = gfd(t)(1−Gfo(t))

φ(t) =




0 φod(t) φom(t) φof (t)

0 0 φdm(t) φdf (t)

φmo(t) φmd(t) 0 φmf (t)

φfo(t) φfd(t) 0 0



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=




e−((λ
′
odt)

γ
′
od+(λom+λof )t) 0 0 0

0 e−(λdm+λdf )t 0 0

0 0 e−(λmo+λmd+λmf )t 0

0 0 0 e−(λfo+λfd)t




+

∫ T

0

C(τ)φ(t− τ)dτ

If it is assumed that the component begins in the operating state, the cumula-

tive probability of being in the degraded, maintenance and failure states is given by

φod(t), φom(t) and φof (t) respectively. The sum φod(t)+φom(t) + φof (t) yields oper-

ational unavailability of the component. The goal then is to determine an optimal

maintenance interval that corresponds to minimum operational unavailability.

Table 4.27: Sample input data
Quantity Value
λ 1 x 10−6h−1 Component failure rate
γ 1.0, 0.6, 0.4 variability in time to degradation
fof 0.1 catastrophic failure fraction
rod 3.0, 10.0 degradation ratio
pmo 0.9990 fraction of maintenances resulting in state o
pmd 0.0009 fraction of maintenances resulting in state d
pmf 0.0001 fraction of maintenances resulting in state f
pfd 0.01 fraction of failures resulting in state d
pfo 0.09 fraction of failures resulting in state o
r 20h average repair time
T 730h surveillance test interval
Tm various 1 week, 2 weeks, 1 month, 3 months, 6 months,

1 year, 2.5 years, 5 years, 8.33 years

Table 4.27 lists the set of sample inputs used for the present illustrative appli-

cation. Of these λ, fof and rod have been borrowed from Vesely (1993). γ is specific

to the proposed model and rest of the inputs missing from Vesely (1993) have been

assumed here based on a hypothetical degrading component.

Results
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Figure 4.52: Effect of variability in time to degradation and maintenance interval on state probabilities
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Table 4.28: Effect of variability in degradation - steady state probabilities, rod = 10
PPPPPPPPPState

Tm 1 week 1 year
cov=0.6 1.0 Increase cov=0.6 1.0 Increase

Degraded 0.0003 0.0009 200% 0.0104 0.0421 304.8%
Maintenance 0.3035 0.3037 0.07% 0.0076 0.0078 2.6%
Operationally 0.3040 0.3048 0.26% 0.0180 0.0500 177.8%
Unavailable

Figure 4.52 and Table 4.28 show how variability in degradation affects steady

state probabilities. In each of the plots, rod is assumed to be 10. Assuming a

constant degradation rate over-estimates the degradation probability by more than

200% when the actual variability in degradation is only 0.6. This proves that expo-

nential distribution for time to degradation is an overly conservative assumption.

The conservativeness is significantly reflected in increase in the operational un-

availability (177.8%) as the maintenance interval increases. This is because longer

maintenance interval adds more to degradation propagation apart from uncertainty

in time to degradation.
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Figure 4.53: Effect of variability in time to degradation and degradation ratio on
degradation probability

Figure 4.53 shows that lower degradation probability is associated with lower

degradation ratio i.e., if the component failures are driven more by degradation

rather than catastrophic failures, it follows that probability of being in the degra-

dation state is higher. Given a degradation ratio and maintenance interval, the

degradation probability is proportional to the variability in degradation. However,

significant differences in degradation probabilities are not evident for smaller main-
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tenance intervals. If the component undergoes maintenance once in 8.33 years,

the degradation probability is the highest (0.2503) when rod = 10,cov=1 and low-

est(0.0256) when rod = 3,cov=0.6.
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Figure 4.54: Operational unavailability φod(t)+φom(t)+φof (t) for degradation ratio
rod = 3, 10

An important application of the proposed model is to suggest an optimal main-

tenance interval based on the component’s failure rate extracted from a standard

PRA model. Such an optimal interval depends additionally on variability in degra-

dation for better accuracy. In Figure 4.54 maintenance interval was varied between

one week to 8.33 years and operational unavailability was plotted for degradation

ratio of 3.0 and 10.0 separately. It is observed that operational unavailability de-

creases with decreasing variability in degradation though significant only beyond a

two month maintenance interval for rod = 3.0 and one month interval for rod = 10.0.

In all the plots, there is a point at which operational unavailability stops decreas-
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Table 4.29: Operational unavailability
Maintenance rod = 3 rod = 10
Interval Tm cov = 1 0.6 0.4 cov = 1 0.6 0.4
1 week 0.3045 0.3042 0.3042 0.3048 0.3040 0.3040
2 weeks 0.1784 0.1780 0.1780 0.1792 0.1776 0.1776
1 month 0.0915 0.0904 0.0904 0.0936 0.0901 0.0900
3 months 0.0354 0.0323 0.0322 0.0425 0.0326 0.0317
6 months 0.0230 0.0168 0.0165 0.0374 0.0190 0.0163
1 year 0.0214 0.0097 0.0085 0.0500 0.0180 0.0103
2.5 years 0.0353 0.0094 0.0044 0.1018 0.0487 0.0270
5 years 0.0618 0.0173 0.0048 0.1783 0.1148 0.0797
8.33 years 0.0893 0.0265 0.0064 0.2513 0.1811 0.1341

ing and then reverses the trend with increasing maintenance interval. Thus, irre-

spective of the variability in degradation, too frequent and delayed maintenance

schemes increase unavailability due to longer stay in the maintenance state with

reduced performance or total unavailability.

The observed point of inflection is a suggested optimal maintenance interval

that minimizes unavailability. Table 4.29 shows that for an rod = 3.0, it is sufficient

to perform maintenance once in 2.5 years when the cov=0.6 as compared to a more

frequent 1 year maintenance when the cov=1.0. When cov=0.6, rod = 10.0 would

require a maintenance interval of 6 months as opposed to an yearly maintenance for

rod = 3.0. A Markov model would recommend frequent maintenance which could

have significant financial implications.

The difference in optimal maintenance intervals between cov=0.6 and cov=1.0 is

more dramatic than that between cov=0.6 and cov=0.4. For example, for rod = 3.0,

the interval could be one year when cov=1.0, but an interval of 2.5 years is sufficient

for both cov=0.6 and 0.4 though the operational unavailability is lesser for cov=0.4

when compared to that of cov=0.6. Also observed for a degradation ratio of 10.0

is the relatively steeper increase in operational unavailability if the maintenance

interval is more than a year. The application demonstrated could be practically

utilized to decide on a maintenance frequency for a class of components prone more

to degradation induced failures than catastrophic ones.
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4.7.4 Conclusion

An extension of Markov model to evaluate optimum maintenance interval has been

proposed based on the theory of semi-Markov process model. This advancement

allows non-exponential distributions to be used in the model to describe phenomena

underlying state transitions. An example application was demonstrated assuming

that component degradation follows Weibull distribution. It was observed that

there is significant scope of over-estimating operational unavailability and hence

optimum maintenance intervals by assuming a constant degradation rate. The

proposed model reduces to a Markov model by assuming constant rate for all the

transitions, and further reduces to a standard PRA model if the degradation and

maintenance states are eliminated from the model. In other words, the proposed

model can be viewed as a direct extension of PRA techniques to account for ageing

in a degrading system.
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Chapter 5

Monte-Carlo Simulations

5.1 Introduction

Wang and Pham (1997) listed four main difficulties in evaluating availability of

complex large scale systems - complex system structure, various failure distribu-

tions, arbitrary repair distributions in case of maintainability and insufficient failure

data This paper identified Monte Carlo technique combined with Bayes method as

a powerful tool to deal with these complexities. This chapter is primarily targeted

at promoting Monte Carlo simulation as a validation tool to verify the semi-Markov

process model.

5.2 Literature review

Billinton and Li (1994) introduced basic concepts and applications of Monte Carlo

simulation with practical applications to electric power generation, transmission,

and distribution systems. They summarized Monte Carlo availability simulation

procedures and surveyed various reduction techniques. Ramirez-Marquez and Coit

(2005) argued that binary state analysis of a system is insufficient and described a

Monte Carlo methodology for estimating reliability of a multi-state network based

on minimal cutsets. Billinton and Wangdee (2006) utilized sequential Monte Carlo

simulation in bulk electric systems to obtain reliability indices. Naess et al. (2009)

focused on development of Monte Carlo based method for estimating the reliability

of structural systems. Based on the failure probability obtained by Monte Carlo
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simulation,the paper set up an approximation procedure to reduce the computa-

tional cost.

5.3 Reliability indices

Instantaneous or point availability of a system is the probability that it is opera-

tional at a time t. A single trial in availability simulation consists of failure and

repair times generated until the mission time t. Many such trials are conducted.

The status of the system at the end of the mission is noted as:

xi =





1 if system operating at end of mission for ith trial

0 otherwise

Then, for sufficiently large number N of trials, the instantaneous unavailability of

the system at time t can be calculated from xi:

Q̂ = 1− 1

N

N∑

i=1

xi

If N is small, the denominator in Equation 5.3 is replaced with N − 1 in order to

obtain an unbiased estimate of unavailability.

Further, by keeping track of the mean downtime, an estimate of the steady state

unavailability can be determined:

Q =
mean downtime

mean uptime + mean downtime

The mean E(x) and variance V (x) of the simulated observations can be obtained

from:

E(x) = x =
1

N

N∑

i=1

xi

V (x) =
1

N

N∑

i=1

(xi − x)2 =
1

N

N∑

i=1

(
x2
i

)
− x2

Note that xi in 5.3 can be any reliability index whose mean and variance are

of interest. For example, if xi are the steady state unavailabilities for each trial
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i, then x and V (x) represent the average and variance estimates of steady state

unavailability.

5.4 Simulation algorithm

The algorithm to obtain the reliability estimates consists of two major modules -

building a time line of events and then analyzing them to obtain the necessary reli-

ability indices. An abridged pseudo-code comprising both the modules is presented

in this section.

5.4.1 Time line construction

A time line consists of all the component events placed in chronological order until

the assumed mission time. A time line corresponds to one trial. This section

presents a pseudo-code to construct such a time line.

It is assumed that each component of the system follows a general failure

and repair distribution. Further each component can either be repairable or non-

repairable. Random failure and repair times are based on the “inverse transform”

method (Billinton and Li, 1994). In this method, a uniform random number p in

[0,1] is generated and the cdf of the distribution for the time to event is inverted

to obtain a sample time. A pseudo-random generator like Mersenne twister (Mat-

sumoto and Nishimura, 1998) can be used to generate p. It is ideal for Monte Carlo

simulations with provision for fast and high quality pseudo-random numbers.

1. Constants

• DOWN: event denoting component failure

• UP: event denoting completion of component repair

2. Variables

• Tcum: cumulative time

• Tm: mission time

• E: component event - either component DOWN or UP

• Te: Time associated with event E
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• C: Component associated with event E

• L: List of events

3. For each component C in the system

• Tcum=0, E=DOWN

• Repeat until Tcum ≤ Tm

– Te=





next failure time of C if E=DOWN

time of completion of repair of C if E=UP

– If Tcum + Te has exceeded Tm, proceed to next component

– Add event E to the list L

– If component is not repairable, proceed to next component

– Tcum = Tcum + Te

– Set E =




DOWN if E=UP

UP if E=DOWN

4. Sort L according to Te

5. L is the required time line

5.4.2 System analysis

Availability analysis

For each time line made up of component events, the time line is analyzed for

system failures and down time of the system is tracked accordingly. In order to

evaluate availability, the status of the system at the end of the mission is noted.

It is assumed that components and hence the system cannot fail until the system

is completely recovered from an earlier system failure. The time line consists of

all failures and repairs irrespective of whether they have occurred when system is

in repair or not. The pseudo code in this section ignores failures during a system

failure, however, components that failed earlier to system failure can continue to be

repaired. Since components of a cutset are equivalent to a parallel system, failure

of all components in the cutset leads to system failure and repair of at least one

of its components leads to system repair. To achieve this, a count of the number

of components failed in each cutset is stored. When this count reaches length of
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the cutset, it is considered as a system failure provided system is not already under

repair.

1. Variables

• E: a component event - failure / repair

• C: component associated with E

• M : minimal cutset of which C is a member

• len(M): length of the minimal cutset M

• N(M): Number of components failed in M

• Tm : Mission time

• Te:





Failure time if E is DOWN

Repair time completion if E is UP

• Tf : Time of last system failure

• S: minimal cutset due to which system failed

• DT : total downtime of the system until mission time

• RDT : remaining down time from the current time

• Bf : System failed - True or False

• xi :





1 if system operating at end of mission for ith trial

0 otherwise

• Nf : Number of system failures encountered

• Tff : Time to first system failure

2. Initialize

• S = M = None

• Te= DT = RDT = Tf = N(M) = Nf = 0

• xi= 1

• Bf=False

3. Definitions

• System repair completion

– System earlier failed due to cutset M
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– Component C belongs to M

– E is completion of repair of component C

• System failure

– E is failure of component C

– C belongs to the cutset M

– N(M) has reached len(M) (all components of cutset M have failed)

– Bf is false (ensure no failures when system down)

4. For each event E on the time line

• Set C,Te and M based on E

• If E is a “system repair completion”

– DT = DT + (Te-Tf ) (down time since last system failure)

– Bf= False, RDT=0, xi= 1

• N(M) = N(M) +





1 if E is DOWN

−1 if E is UP

• If E is a “system failure”

– Bf= True, Tf= Te,xi=0

– Nf = Nf + 1 (Increment system failures)

– If Nf = 1, then set Tf to Te (time-to-first-failure)

– RDT=RDT+(Tm - Te)

5. DT = DT + RDT (add up any remaining down time)

6. UT = Tm - DT

Reliability analysis

In reliability analysis, only the first failure of the system is of interest. However,

component repairs can take place as long as the component failure does not lead

to a system failure. The time line construction for reliability analysis remains the

same as discussed in Section 5.4.1. Hence, in this section the above pseudo-code is

modified so that the system repairs are not considered. The algorithm exits when

a system failure is encountered.
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1. Variables

• E: a component event - failure / repair

• C: component associated with E

• M : minimal cutset of which C is a member

• len(M): length of the minimal cutset M

• N(M): Number of components failed in M

• Tm : Mission time

• Te:





Failure time if E is DOWN

Repair time completion if E is UP

• S: minimal cutset due to which system failed

• i: trial number

• xi :





1 system operating at end of mission

0 otherwise

2. Initialize

• S = M =None, xi= 1

• Te= N(M) = 0

3. Definitions

• System failure

– E is failure of component C

– C belongs to the cutset M

– N(M) has reached len(M) (all components of cutset M have failed)

4. For each event E on the time line

• Set C,Te and M based on E

• N(M) = N(M) +





1 if E is DOWN

−1 if E is UP

• If E is a ‘system failure’

– xi=0, exit
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5.5 Example

Consider the reliability block diagram in Figure 5.1. This is the same problem

considered in Section 3.11. For convenience, component data is listed again in

Table 5.1.

Figure 5.1: Reliability block diagram.

This system has seven cutsets:

{C1, C2}, {C3, C4}
{C1, C2, C3}, {C1, C2, C4}
{C3, C4, C1}, {C3, C4, C2}

{C1, C2, C3, C4}

However only the first two cutsets are minimal cutsets. The others are not since

there is at least one component in each of these cutsets such that by removing these

components, the set is still a cutset. For example, by removing {C3} from {C1,

C2, C3}, the resulting set {C1, C2} is still a cutset. Recall the assumption that

components do not fail when the system is down and until completely restored.

However, repair of components can continue whether or not they are part of the

cutset that failed.

Table 5.1: Component data for the four component example system
Component Mean failure time, cov Mean repair time

(years) (years)
C1 40,1 0.5
C2 30,0.3 1
C3 30 , 1 0.5
C4 20, 0.25 1

For a single component, the only cutset and minimal cutset is the singleton

set with the component itself. In this case, the component and the system mean

the same. The system is up when this component is up and it is down when
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this component is down. This is equivalent to an alternating renewal process with

distinct failure and repair distributions. Unavailability of each of the components

is shown in Figure 5.2. It is seen that for a single component the Monte Carlo

estimates are quite accurate with less variance.
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Figure 5.2: Unavailability of individual components.

A sample time line for each component of the 4-component system generated

using the pseudo-code presented in Section 5.4.1 is presented here:

67.43 67.50

-C1

t

38.94 39.08 85.5416 87.98

-

t

C2

30.01 30.20 33.28 33.67 43.47 43.57 67.32 69.79

-

t

C3
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32.06 35.41 64.14 64.31 87.50

-

t

C4

By merging all the events and sorting them in the order of occurrence, a single

trial representing the time line of events is listed in Table 5.2. This table was

generated using the algorithm to generate the times lines. It also shows which of

the components were operational at each instant an event occurred.

Table 5.2: A sample trial of events until 90 years
Component Event Event Working

Type Time (yrs) Components
C3 Down 30.0195 1,2,4
C3 Up 30.2037 1,2,3,4
C4 Down 32.0616 1,2,3
C3 Down 33.2826 1,2
C3 Up 33.6788 1,2,3
C4 Up 35.4109 1,2,3,4
C2 Down 38.9459 1,3,4
C2 Up 39.0817 1,2,3,4
C3 Down 43.4714 1,2,4
C3 Up 43.5758 1,2,3,4
C4 Down 64.1478 1,2,3
C4 Up 64.3193 1,2,3,4
C3 Down 67.3238 1,2,4
C1 Down 67.4363 2,4
C1 Up 67.5091 1,2,4
C3 Up 69.7963 1,2,3,4
C2 Down 85.5416 1,3,4
C4 Down 87.5023 1,3
C2 Up 87.9878 1,2,3

In the above trial, failure of C3 at 33.28 years led to a system failure and the

system is recovered at 33.68 years after C3 is repaired. The downtime is nearly 4.8

months. Despite system failure, the system is operational at the end of the mission.

Hence, for this trial the system is available at the end of 90 years.

By repeating such trials large number of times for each time point in the interval

[0,90] using the algorithm for analyzing the time line and applying the formula in

Equation 5.3, time dependent system unavailability can determined as in Figure

5.3.
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Figure 5.3: System unavailability.

For subsystem 1 and subsystem 2, there is one minimal cutset each. Figure 5.4

and 5.5 respectively illustrate the subsystem level unavailability.
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Figure 5.4: Unavailability of subsystem 1.

By averaging all the down times obtained in each trial and applying the for-

mulae in Equation 5.3 and 5.3, an estimate of mean and variance of steady state

unavailability of each component and the system can be obtained. However, con-

vergence to steady state unavailability often requires that the trial is carried out

beyond the mission time. In cases where failure rates are extremely low and repair
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Figure 5.5: Unavailability of subsystem 2.

times are small, steady state unavailability might be reached much beyond the use-

ful life period of the system. Figure 5.6 shows how steady state unavailability is

gradually reached with increasing time until 90 years.
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Figure 5.6: Steady state availability of component C2.

Component and system steady state unavailabilities for the 4-component system

are listed in Table 5.5. Components trials were replicated 500,000 times while

system trials were replicated 1,000,000 times.
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Table 5.3: Steady state unavailabilty of 4-component system by Monte Carlo
method.

Component Steady state
unavailability (variance)

C1 0.0128121 ( 0.00012996 )
C2 0.0322879 ( 0.00031301 )
C3 0.0168828 ( 0.00017276 )
C4 0.0476043 ( 0.00045350 )
System 0.0010268 ( 0.00000756 )

Table 5.4 lists the other indices such as mean time-to-first failure of the system,

average unproductive time spent and the mean number of failures encountered until

the mission time of 90 years. Note that all these indices are relatively lesser in the

system case. This is due to the rarity of occurrence of minimal cutset failures. The

mean number of failures for the components is approximately equal to the ratio of

mission time to mean life of the component.

Table 5.4: Time to first failure and other indices of the 4-component example.
Component mean time-to- mean mean number

first failure(yrs) downtime(yrs) of failures
C1 26.2975 1.1043 2.22182
C2 29.9824 2.4403 2.47324
C3 24.0351 1.46529 2.94996
C4 20.0027 3.81532 3.86452
System 11.8996 0.09246 0.278077

The simple 4-component example demonstrates the validity of semi-Markov

process model and further proves that Monte Carlo has the potential to yield many

other reliability estimates of interest to an analyst.

5.6 Case Study: Nuclear Component Cooling Wa-

ter (NCCW) system

In this section the results of the NCCW system obtained by semi-Markov process

model are validated using the Monte Carlo simulation method.

Table 5.5 shows four possible trials leading to a system failure. Since the failure

rates of the redundant pump trains and heat exchanger train are of the order of

10−6, it is likely that hardly one pump train failure is experienced in 106 trials.
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Table 5.5: Sample trials for the NCCW system.
Trial Component Event Type Event Time (hrs) Remarks
1 Pump Train 12 Down 927.911

Pump Train 11 Down 959.527 System down
Pump Train 12 Up 977.454 for 17.927 hrs
Pump Train 11 Up 983.887

2 Pump Train 12 Down 412.041
Pump Train 11 Down 439.551 System down
Pump Train 11 Up 440.034 for 0.483 hrs
Pump Train 12 Up 452.759

3 Pump Train 11 Down 378.39
Pump Train 12 Down 380.199 System down
Pump Train 12 Up 382.885 for 2.686 hrs
Pump Train 11 Up 410.539

4 Heat Exchanger Down 442.113 System down,
Train not repairable

Hence this table considers a mission time of 1000 hrs to track the failures and

repairs. The first three trials exemplify a system failure due to the failure of both

the pump trains while the last one shows the possibility of a system failure due to

heat exchanger train.
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Figure 5.7: System failure probability.

Figure 5.7 compares the system unreliability of the NCCW system with Weibull

distribution for heat exchanger train failure obtained by Monte Carlo and semi-

Markov methods. It is seen that Monte Carlo traces the stochastic process very
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Figure 5.8: System failure probability with cov=0.3,1.0, and 1.3.

well except for relatively higher variance in the first 30 hrs.

Figure 5.8 verifies the results in the case where only the pump train failure

follows Weibull distribution. Redundancy, low failure rates and prompt repair

prevent the system from rapidly ageing.

5.7 Conclusion

Monte Carlo method has immense flexibility in simulating a large system with a

wide array of features and events including degrading components, redundancy, re-

pair, repair crews, spares, inspections, preventive maintenance, cost, logistic delays

etc. However, combinatorics and replications consume large amount of time lead-

ing us in search of better options. For large systems with multi-state components,

system availability computation using Monte Carlo simulation becomes extremely

prohibitive. The next chapter deals with a technique that has the ability to mix

Markov, Semi-Markov and Monte Carlo methods in a system reliability problem.
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Chapter 6

Universal Generating Function

(UGF) Method

6.1 Introduction

A typical nuclear power plant system consists of several components (elements)

with different hazard and repair rates. The reliability indices of a complex system

has been computed traditionally using Fault Tree Analysis (FTA), Reliability Block

Diagrams (RBD), stochastic processes like Markov and semi-Markov processes etc.

Stochastic processes mentioned are well suited for dealing with multi-state elements,

but, they suffer from ‘state-explosion’ or ‘dimension damnation’ when applied to a

system with many elements. If there are N elements, the number of system states

may go up to 2N . Moreover, state enumeration cannot be elegantly depicted. The

number of system states have to be forcibly reduced by different techniques such as

lumping series elements in to one component or merging states of similar function-

ality thus compromising the accuracy of the results. Hence this chapter explores

and brings together a set of engineering tools that can deftly compute the availabil-

ity of a complex system with accuracy, simplicity, less computational burden and

without compromising all the possible states of a system and its components.

6.2 Literature Review

The mathematical fundamentals of the Universal Generating Function (UGF) were

introduced by Ushakov (1987). Levitin et al. (1998) generalized a redundancy opti-
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mization problem to multi-state systems where in UGF is used as a fast procedure

to evaluate the multi-state system availability. Levitin and Lisnianski (1999) de-

veloped an importance analysis tool for complex series-parallel multi-state systems

based on UGF. Ushakov (2000) introduced a composition operator for UGF as a

special case of the operator in generalized generating sequences suitable to optimal

redundancy problems. Levitin (2001b) adapted the UGF method of multi-state

system reliability analysis to incorporate common-cause failures (CCF) using an

implicit 2-stage approach. Levitin (2001a) combined the UGF technique with Ge-

netic Algorithm (GA) for solving a family of MSS reliability optimization problems,

such as structure optimization, optimal expansion, maintenance optimization and

optimal multistage modernization. Lisnianski and Levitin (2003) presented a UGF

based method for reliability evaluation of different types of analysis of multi-state

system reliability. They also proposed a combination of Markov process with the

UGF method by extending the Reliability Block Diagram. Levitin (2004) extended

the UGF technique used for the analysis of multi-state systems to the case when the

performance distributions of some elements depend on states of another element

or group of elements. Levitin (2005) gave a comprehensive description of the UGF

technique and its applications in both binary and multi-state system reliability

analysis.

6.3 Foundations of Universal Generating Func-

tion

6.3.1 Probability mass function (pmf)

For a discrete random variable X, the probability mass function (pmf) is the prob-

ability that X assumes the exact value of x; i.e., pmf of X is P(X = x).

Example

Consider an element A whose set of states are denoted by the r.v. X1. Let x1={0,1},
p1={0.6, 0.4} be the pmf of X1. i.e. P (X1 = 0) = 0.6 and P (X1 = 1) = 0.4 such

that P (X1 = 0) + P (X1 = 1) = 1 Here, element failure is denoted by 0 and its

functional state is denoted by 1.
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Similarly, let B be another element denoted by the r.v. X2. Let x2={0,1},
p2={0.7, 0.3} be the pmf of X2.

Let A and B undergo failures and repairs independently. Then X1 and X2 are

statistically independent random variables. This assumption allows the multiplica-

tion of probabilities to find the corresponding system level probabilities.

If A and B are connected in series and form a system, then Y1 = X1X2 yields

all possible states of the system. Similarly, Y2 = 1 − (1 − X1)(1 − X2) yields all

possible states of the system for a parallel configuration. Table 6.1 lists the pmf

of the system states.

From the table, it is possible to obtain availability of a parallel system as

A = P (Y2 = 1)

= P (X1 = 0)P (X2 = 1) + P (X1 = 1)P (X2 = 0) + P (X1 = 1)P (X2 = 1)

= 0.18 + 0.28 + 0.12 = 0.58

Table 6.1: System states for a series and parallel configuration

# X1 = x1 X2 = x2 Series Parallel Probability
Y1 Y2 P(X1=x1)P(X2=x2)

1 0 0 0 0 0.42
2 0 1 0 1 0.18
3 1 0 0 1 0.28
4 1 1 1 1 0.12

Sum 1.0

It would be elegant if these possibilities can be represented in a compact form

and easily computed. With this intent the next section discusses the moment

generating function.

6.3.2 Moment generating function (mgf)

The mgf mX(t) of the discrete random variable X with pmf x, p is defined for all

values of t by

mX(t) = E[etX ] =
k∑

i=0

etxipi
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The function mX(t) is called the moment generating function because all of the

moments of r.v. X can be obtained by successively differentiating mX(t).

6.3.3 Probability generating function (pgf)

The pgf of a r.v. X can be obtained by replacing et by the variable z in its mgf

(6.3.2):

ωX(z) = E[zX ] =
k∑

i=0

zxipi

i.e., pmf of a r.v. X can be represented by its pgf in polynomial form.

Example

pgf of X1 and X2 in Example 6.3.1 are given by the following functions:

u1(z) = ωX1(z) = 0.6z0 + 0.4z1

u2(z) = ωX2(z) = 0.7z0 + 0.3z1

pmf of the system is given by the product of these polynomials. A formal procedure

for multiplication of these functions is discussed in the next section.

6.3.4 Universal Generating Function

Consider a composition operator Ωφ to combine two u-functions u1(z) and u2(z):

U(z) =Ωφ(u1(z), u2(z))

=Ωφ(

k1∑

i1=1

p1i1z
g1i1 ,

k2∑

i2=1

p2i2z
g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1p2i2z
φ(g1i1 ,g2i2 )

Thus the z-transforms of the random variables along with the composition operator

Ωφ to combine them is called the universal z-transform or universal (moment)
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generating function (UGF).

In particular, Ωφ can be defined for series and parallel connections respectively

as follows:

U(z) =Ωφs(

k1∑

i1=1

p1i1z
g1i1 ,

k2∑

i2=1

p2i2z
g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1p2i2z
g1i1∗g2i2

U(z) =Ωφp(

k1∑

i1=1

p1i1z
g1i1 ,

k2∑

i2=1

p2i2z
g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1p2i2(z
1−(1−g1i1 )∗(1−g2i2 )

Example

It can be seen that the probabilities in Table 6.1 can be obtained by simple poly-

nomial multiplication of u1(z) and u2(z) as per Equations 6.3.4 and 6.3.4 for series

and parallel configurations respectively.

For series connection, U(z) = Ωφs(0.6z
0 + 0.4z1, 0.7z0 + 0.3z1)

= 0.42z0 + 0.18z0 + 0.28z0 + 0.12z1

For parallel connection, U(z) = Ωφp(0.6z
0 + 0.4z1, 0.7z0 + 0.3z1)

= 0.42z0 + 0.18z1 + 0.28z1 + 0.12z1

6.3.5 Extended Reliability Block Diagram

For multi-state components which have to be connected in a particular order, an

extended RBD embeds a Markov or a semi-Markov space diagram with in it. By

doing so, each block of the RBD would have multiple states embedded in it. Figure

6.1 illustrates an extended RBD of two elements A and B connected in series with

their corresponding Markov space diagrams embedded in their respective blocks.

The evaluation of the system structure function φ(x) becomes more tedious be-

cause of the book-keeping involved for all possible state and element combinations.
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Figure 6.1: An extended RBD with embedded Markov space.

Hence, the next section introduces the idea of u-functions and composition oper-

ators attached to an extended RBD in order to simplify the tracking of numerous

possibilities.

6.3.6 The u-function

A u-function is essentially a pgf in random variable z and it relates possible values

of z with the corresponding probabilities:

uj(z, t) =

kj∑

ij=1

pjij(t)z
gjij

Each element j with kj states is represented as a u-function. The coefficients of

z are time-dependent conditional state probabilities of the element j obtained by

modelling the element as a semi-Markov process as discussed in Chapter 4. The ex-

ponent of z can be any arbitrary mathematical object representing the performance

or state in which the element is currently in. It could be as simple as {0,1} corre-

sponding to the failure or functioning state of the system or numbers representing

the output of the element like the electricity in megawatts produced by the ele-

ment. These u-functions are then composed together step-by-step according to the

definition of a composition operator Ωφ which is tailored to the series-parallel na-

ture of the connections. φ is called the structure function, a terminology borrowed

from RBD method and it defines how the performance or status of the elements are

combined. Considering the series and parallel connections as AND and OR logical

operations respectively, Ωφ is defined as follows:
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1. Series Connection

u(z, t) =Ωφs(u1(z, t), u2(z, t))

=Ωφs(

k1∑

i1=1

p1i1(t)z
g1i1 ,

k2∑

i2=1

p2i2(t)z
g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1(t)p2i2(t)z
φs(g1i1 ,g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1(t)p2i2(t)z
g1i1∗g2i2

2. Parallel Connection

u(z, t) =Ωφp(u1(z, t), u2(z, t))

=Ωφp(

k1∑

i1=1

p1i1(t)z
g1i1 ,

k2∑

i2=1

p2i2(t)z
g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1(t)p2i2(t)z
φp(g1i1 ,g2i2 )

=

k1∑

i1=1

k2∑

i2=1

p1i1(t)p2i2(t)z
1−(1−g1i1 )∗(1−g2i2 )

It is assumed that the elements of the system are statistically independent. The in-

dependence constraint assures that each element can be in one of its set of allowable

states irrespective of which state the other elements are. This feature allows the

multiplication of the state probabilities as seen in Equations 1 and 2. Since, a single

(semi-)Markov system has been modularized in to individual blocks of an extended

RBD, the UGF method does not consider the characteristics of system transitions

between different states and hence the second assumption of repairability is needed.

The reliability indices like instantaneous availability and unavailability of the

system can be derived directly from the final u-function after the composition.

Usage of semi-Markov methods has been so far restricted to small systems due to

their analytical and computational complexities. This proposed procedure leverages

semi-Markov models by modularizing the entire system and composing them one
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at a time thus bringing a huge impact factor to the field of nuclear reliability

engineering.

Example

Consider a system with two elements connected in series. Let each element be

repairable with two states having the performance status - 1 (functioning) and 0

(failed). Let the failure/repair be exponentially distributed with a constant fail-

ure/repair rate. This system setup can be depicted in an extended RBD as in Figure

6.2. Let p11(t) and p12(t) be the probabilities of the element one being in state 1
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Figure 6.2: Extended Reliability Diagram for Example 6.3.6.

and state 2 respectively. Similarly, let p21(t) and p22(t) be defined for element two.

Then, the u-functions for element 1 and element 2 are respectively:

u1(z, t) = p11(t)z0 + p12(t)z1

u2(z, t) = p21(t)z0 + p22(t)z1

Since the elements are in series, the above u-functions are composed as per Equation

1:

U(z, t) = {p12(t)p21(t) + p11(t)p21(t) + p11(t)p22(t)}z0 + p12(t)p22(t)z1

The state probabilities are either obtained from Markov or semi-Markov models.

The coefficient of z0 gives the unavailability of the system and that of z1 gives the

availability.

Availability, A(t) =p12(t)p22(t)

Unavailability = 1− A(t) =p12(t)p21(t) + p11(t)p21(t) + p11(t)p22(t)
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Figure 6.3: System availability of 2-state repairable system.

The availability plot is shown in Figure 6.3 with the parameters λ1 = λ2 = 0.5

and µ1 = µ2 = 1. Note that this example is the same as the Example 2.8.1 in the

chapter on Markov processes. Over there, a system of four differential equations

were solved. Here, two systems of two differential equations are solved at a time, the

benefit here being the ability to modularize the system, depict the state transitions

pictorially and avoid the problem of state explosion.

6.4 Example: Multi-State System

This section looks at a hypothetical system where each component of the system

goes through multiple states. Consider two redundant parallel subsystems con-

nected in series as shown in Figure 6.4.

Figure 6.4: Reliability Block Diagram for the four component example problem.

This problem was earlier solved using the semi-Markov process model by solving

for each component individually. Assume that each component can exist in three

states - operational, degraded and failure.

The probability of being in each state for each individual component can be

determined using semi-Markov process model and then the system unavailability

can be obtained using the UGF technique. It is assumed that components C1 and
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C2 are identical. Similarly, C3 and C4 are identical. The failure and repair data

for each of the components is listed in Table 6.2.

Table 6.2: Failure/repair data in (time in hours, cov) format.
time-to time-to time-to time-to

Component degradation failure recover restoration
2→ 1 1→ 0 0→ 1 1→ 2

C1, C2 20,0.3 10,0.6 0.8,1 0.5,1
C3, C4 35,0.3 5,0.6 0.8,1 0.5,1

State-space diagram for components C1 and C2 is shown in Figure 6.5. Similarly,

the corresponding diagram for components C3 and C4 is shown in Figure 6.6.

Figure 6.5: State-space for component C1 and C2.

Figure 6.6: State-space for component C3 and C4.

A semi-Markov process model is fitted for each component. The results of the

model are then used as the coefficients in the u-functions. For example, p10(t)

represents the probability of component 1 being in state 0. It is equivalent to

φ20(t) of the corresponding semi-Markov model which represents that probability

of component 1 being in state 0 at time t assuming that the component started its

operation in state 2. u-function for each of the components is given below:

uC1(z, t) = p10(t)z0 + p11(t)z1 + p12z
2

uC2(z, t) = p20(t)z0 + p21(t)z1 + p22z
2

uC3(z, t) = p30(t)z0 + p31(t)z1 + p32z
2

uC4(z, t) = p40(t)z0 + p41(t)z1 + p42z
2
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The coefficients of z0 in uCi(z, t) correspond to the unavailability of the compo-

nent Ci. These quantities are plotted in Figure 6.7.
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Figure 6.7: Unavailability of individual components.

u-functions can be written for the subsystems as well. Since components C1 and

C2 are connected in parallel, the state performance for subsystem 1 is considered as

the maximum of the state performances of both the components. These possibilities

are listed in Table 6.3.

Table 6.3: Subsystem performance based on component states
State

Component 1 Component 2 Subsystem
(s1) (s2) max(s1, s2)
Normal (2) Normal (2) Normal (2)
Normal (2) Degraded (1) Normal (2)
Normal (2) Failure (0) Normal (2)
Degraded (1) Normal (2) Normal (2)
Degraded (1) Degraded (1) Degraded (1)
Degraded (1) Failure (0) Degraded (1)
Failure (0) Normal (2) Normal (2)
Failure (0) Degraded (1) Degraded (1)
Failure (0) Failure (0) Failure (0)

Let the u-functions for subsystem 1 and subsystem 2 be denoted as uS1(z, t)

and uS2(z, t) respectively:
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uS1(z, t) = uC1(z, t)uC2(t)

= p10(t)p20(t)zmax(0,0) + p10(t)p21(t)zmax(0,1) + p10(t)p22(t)zmax(0,2)+

p11(t)p20(t)zmax(1,0) + p11(t)p21(t)zmax(1,1) + p11(t)p22(t)zmax(1,2)+

p12(t)p20(t)zmax(2,0) + p12(t)p21(t)zmax(2,1) + p12(t)p22(t)zmax(2,2)

= p10(t)p20(t)z0 + p10(t)p21(t)z1 + p10(t)p22(t)z2+

p11(t)p20(t)z1 + p11(t)p21(t)z1 + p11(t)p22(t)z2+

p12(t)p20(t)z2 + p12(t)p21(t)z2 + p12(t)p22(t)z2

= p10(t)p20(t)z0+

(p10(t)p21(t) + p11(t)p20(t) + p11(t)p21(t))z1+

(p11(t)p22(t) + p12(t)p20(t) + p12(t)p21(t) + p12(t)p22(t) + p10(t)p22(t))z2

= v10z
0 + v11z

1 + v12z
2

Similarly,

uS2(z, t) = p30(t)p40(t)z0+

(p30(t)p41(t) + p31(t)p40(t) + p31(t)p41(t))z1+

(p31(t)p42(t) + p32(t)p40(t) + p32(t)p41(t) + p32(t)p42(t) + p30(t)p42(t))z2

= v20z
0 + v21z

1 + v22z
2

Since subsystems S1 and S2 are connected in series, the state performance for

the system is considered as the minimum of the state performances of both the

subsystems. These possibilities are listed in Table 6.4.

Let the u-function for the system be denoted as uS(z, t):

uS(z, t) = uS1(z, t)uS2(z, t)

= v10(t)v20(t)zmin(0,0) + v10(t)v21(t)zmin(0,1) + v10(t)v22(t)zmin(0,2)+

v11(t)v20(t)zmin(1,0) + v11(t)v21(t)zmin(1,1) + v11(t)v22(t)zmin(1,2)+

v12(t)v20(t)zmin(2,0) + v12(t)v21(t)zmin(2,1) + v12(t)v22(t)zmin(2,2)

= (v10(t)v20(t) + v10(t)v21(t) + v10(t)v22(t)+

v11(t)v20(t) + v12(t)v20(t))z0+

(v11(t)v21(t) + v11(t)v22(t) + v12(t)v21(t))z1+
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Table 6.4: System performance based on subsystem states
State

Subsystem 1 Subsystem 2 System
(s1) (s2) min(s1, s2)
Normal (2) Normal (2) Normal (2)
Normal (2) Degraded (1) Degraded (1)
Normal (2) Failure (0) Failure (0)
Degraded (1) Normal (2) Degraded (1)
Degraded (1) Degraded (1) Degraded (1)
Degraded (1) Failure (0) Failure (0)
Failure (0) Normal (2) Failure (0)
Failure (0) Degraded (1) Failure (0)
Failure (0) Failure (0) Failure (0)
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Figure 6.8: Unavailability of individual subsystems.

v12(t)v22(t)z2

Collecting the coefficient of z0 from uS(z, t), the system unavailability is found.

It is plotted in Figure 6.9.

If this problem is solved by a single semi-Markov process model, there would

be 34 = 81 states leading to long computational times. Instead, by simplifying

the model, there are only 3 states per component and hence 12 states overall.

Polynomial multiplication is relatively much faster once the state probabilities are

found by any of Markov, semi-Markov or Monte Carlo methods.
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Figure 6.9: Unavailability of the system.

6.5 Case Study: Heat Transport System (HTS)

The proposed method is an improvement over conventional state-space analysis

techniques. It needs a reliability block diagram with an embedded state space

diagram as the main input. The block diagram helps in identifying the critical

components and their series-parallel configuration. The state-space diagram gives

an idea of failure and repair times during the life of the components.

Given the above, the objective is to find the availability of individual compo-

nents and that of the entire system. A semi-Markov model is fitted to each of the

components of the system and the respective state probabilities are computed. All

these semi-Markov models are combined using the UGF technique. Availability

and unavailability of the system follows from the polynomials output by UGF. The

following case study on the heat transport system in a nuclear power plant walks

through all the above steps.

The heat transport system (HTS) (Figure 6.10) circulates pressurizedD20 coolant

through the fuel channels to remove the heat produced by fission in the nuclear fuel.

The coolant transports the heat to steam generators, where it is transferred to light

water to produce steam to drive the turbine. Two parallel HTS coolant loops are

provided in the CANDU system. The heat from half of the several hundred fuel

channels in the reactor core (380 in CANDU 6) is removed by each loop. Each

loop has one inlet and one outlet header at each end of the reactor core. D20 is fed
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Figure 6.10: Schematic diagram of the CANDU Heat Transport System.

to each of the fuel channels through individual feeder pipes from the inlet headers

and is returned from each channel through individual feeder pipes to the outlet

headers. Each heat transport system loop is arranged in a ”Figure of 8”, with the

coolant making two passes, in opposite directions, through the core during each

complete circuit, and the pumps in each loop operating in series. The coolant flow

in adjacent fuel channels is in opposite directions. The HTS piping is fabricated

from corrosion resistant carbon steel. The pressure in the heat transport system is

controlled by a pressurizer connected to the outlet headers at one end of the reac-

tor. Valves provide isolation between the two loops in the event of a loss-of-coolant

accident. Thus, the pressure tubes, feeder pipes and the steam generators form the

             

 

  

Figure 6.11: Fault tree diagram for the Heat Transport System.

main subsystem connected in series to each other as seen in the fault tree diagram

in Figure 6.11. The reliability block diagram for this subsystem is shown in Figure

6.12. Moreover, only one loop of the two parallel coolant loops has been considered

here for demonstration.

The mean life of the element gives an idea of the mean time to failure of the
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Figure 6.12: Extended Reliability Block Diagram of the Heat Transport System.

element. The coefficient of variation is the ratio of the standard deviation to the

mean and for the Weibull distribution, it is a function of the shape parameter.

These parameters along with the repair time are listed in Table 6.5.

Table 6.5: Parameters for the elements of heat transport system.
Feeders Pressure Tubes Steam Generator

Mean Life (Yrs) µwbl 25 30 30
Coeff. of Var. covwbl 0.2 0.3 0.25
MTTR (Yrs) µi 0.1, 0.5, 1 0.1, 0.5, 1 0.1, 0.5, 1

The Weibull shape and scale parameters listed in Table 6.6 are back calculated

from the following formulas for Weibull mean, standard deviation and coefficient of

variation:

µwbl = λΓ(1 +
1

γ
)

σ2
wbl = λ2Γ(1 +

2

γ
)− µ2

wbl

covwbl =
σwbl
µwbl

Table 6.6: Weibull shape and scale parameters for the elements of the heat transport
system.

Feeder Pressure Tubes Steam Generator
Shape (γi) 5.797 3.714 4.542
Scale (λi) 26.999 44.3146 32.856

With the parameters of the Weibull and exponential distributions in hand, the

semi-Markov kernel and waiting time matrices can be set up for i=1,2,3 correspond-

ing to the pressure tubes, feeders and steam generator respectively:

H(t) =

[
δ(t−∞) µie

−µit

fwbl(t|γi, λi) 0

]
W (t) =

[
e−µit

1− Fwbl(t|γi, λi)

]
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These matrices are plugged in to the semi-Markov renewal equation 3.10 and solved

using the Trapezoidal algorithm to evaluate all the state probabilities pij(t). Then,

the u-functions for the pressure tubes, feeders and the steam generator are respec-

tively:

u1(z, t) = p11(t)z0 + p12(t)z1

u2(z, t) = p21(t)z0 + p22(t)z1

u3(z, t) = p31(t)z0 + p32(t)z1

Since the elements are connected in series, the operator Ωφs is applied to the above

u-functions:

U(z, t) = Ωφs(u1(z, t), u2(z, t), u3(z, t))

= {p11(t)p21(t)p31(t) + p11(t)p21(t)p32(t) + p11(t)p22(t)p31(t)+

p11(t)p22(t)p32(t) + p12(t)p21(t)p31(t) + p12(t)p21(t)p32(t)+

p12(t)p22(t)p31(t)}z0 + p12(t)p22(t)p32(t)z1

While the terms with zero as the exponent of z contribute to the unavailability of

the system, the coefficient of the single remaining term gives the availability A(t)

of the heat transport system. Let c > 0 be the mean life of an element. Then its

average availability is given by:

Ac =
1

c

∫ c

0

A(t)dt

The average availability of each of the elements over the mission time given by

their respective mean life for various repair times are shown in Table 6.7. Given

the smaller failure rates and repair times, the average availability is very high

signifying the heat transport system as a highly reliable subsystem of the nuclear

power plant.

Table 6.7: Average availability for the elements and the heat transport system.
MTTR Feeder Pressure Tubes Steam Generator System
0.1 0.9979 0.9985 0.9985 0.9943
0.5 0.9910 0.9920 0.9923 0.9713
1 0.9837 0.9847 0.9855 0.9464

The observed pattern of unavailability of the elements of heat transport system
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Figure 6.13: Unavailability plot - Effect of repair.

Figure 6.14: Unavailability plot - Effect of ageing.

is plotted in Figure 6.13. The plots show highest unavailability around the mean

life time of the respective elements. The unavailability decreases gradually later on

199



due to repair. When the repair time is lesser, the unavailability after the restoration

is lesser before the next failure shows its influence. Hence a total availability of one

is not witnessed over time after the first failure. The system plot shows multiple

dips of high unavailability during a span of 60 years corresponding to the failures

of the elements of the system. In all, it can be said that the higher availability is a

function of lower failure rates and lesser repair times.

The effect of aging while keeping the mean time to failure and the repair time

constant is seen in Figure 6.14. In this plot, only the variability in the time to

failure is manipulated. As a result, a decreased coefficient of variation leads to an

increased shape parameter of the Weibull failure distribution. As seen in the plots,

increasing the shape parameter γ results in increased peak unavailability of the

components and of the entire system.

The reader is reminded again the fact that this application considers non-

exponential failure distributions for the elements allowing way to more realistic

time-dependent availability of the heat transport system while eliminating the state

explosion problem faced by the semi-Markov technique.

6.6 Conclusion

This chapter has brought together the versatility of semi-Markov process and the

flexibility of UGF technique in eliminating the problem of dimension damnation.

The proposed approach is useful in estimating the time-dependent availability of

nuclear power plant systems. By eliminating the need for dropping off certain

states or merging a few of them for computational ease, the UGF method manages

to modularize the entire system in to a set of semi-Markov models. This method

requires that subsystems be identified and represented in a polynomial form. How-

ever, subsystems are hard to be identified programmatically often requiring expert

intervention.
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

Within the framework of multi-state system reliability for nuclear power systems,

the current research focused on the following major topics:

1. The applicability of Markov process model for relatively medium scale systems

with finite number of states in continuous time.

2. Improving the existing Markov models in the nuclear industry to accommo-

date non-exponential failure time distribution using semi-Markov models on

small scale systems.

3. Application of the developed methodology to nuclear plant systems such as

Nuclear Component Cooling Water (NCCW) system, nuclear piping system,

tail-gas system, Pressurized Heat Transport System (PHTS) and Digital In-

strumentation and Control (I&C) system.

Semi-Markov process model is identified as a potential tool in analyzing small

to medium sized reliability block diagrams or system degradation problems. The

results of the analysis mainly are the system failure probability and system hazard

rate. These results can be incorporated in to a larger fault tree model as part of

a probabilistic safety assessment project. Semi-Markov process model is preferable

when at least one of the components of a system is non-repairable leading to an
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analysis of first failure of the system. In case of a degradation problem, the gradual

degradation usually leads to an irrecoverable system failure. These two categories

were explored in the present study. In the Nuclear Component Cooling Water

(NCCW) system, the heat exchanger was a non-repairable component. A Monte

Carlo simulation of this system validated the results of the semi-Markov process

model. A second case study considered was the degradation of the nuclear piping

system. In an attempt, a hypothetical system was considered with two redundant

subsystems assuming all the components were repairable. The semi-Markov for-

mulation of this problem with individual model for each subsystem failed to yield

known standard results and the reason was found to be a limitation of the model to

take in to consideration non-regenerative points in the presence of non-exponential

failure time distribution. Moreover, mainstream asset failure analysis profession-

als in the industry today view semi-Markov process model as either useful, but

too complex or as a tool that cannot handle complexities such as spares, inspec-

tions, repair crews etc. or as a tool that is too complex for practical requirements.

With practical applications and illustrative examples, this thesis hopes to bring the

audience at ease with the more sophisticated semi-Markov process model.

7.2 Research Contributions

The key contribution of the thesis is to explore and formulate various applications

of the semi-Markov process model for the multi-state reliability analysis of nuclear

power plant systems. Most applications are semi-Markov extensions of existing

Markov models. A brief technique to reduce the number of states in a semi-Markov

model leading to closed form solutions under competing risk conditions avoiding

intensive computations was described in Veeramany and Pandey (2011b).

The following practical applications were considered during the course of the

research:

1. Reliability analysis of nuclear piping system (Veeramany and Pandey, 2011c).

2. Reliability analysis of nuclear component cooling water system(Veeramany

and Pandey, 2011b).

3. Reliability analysis of digital instrumentation and control systems(Veeramany

and Pandey, 2011a).
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4. Quantifying the effects of maintenance on unavailability of systems (Submit-

ted to Nuclear Engineering and Design on January 25, 2012).

5. Semi-Markov model of fire growth (Submitted to Fire Technology on June 1,

2012).

6. Availability analysis of practical systems (Veeramany and Pandey, 2010a).

7. Availability Analysis of Systems with Multi-State Components (Veeramany

and Pandey, 2010b).

8. Substation reliability and cost analysis.

9. Availability analysis of heat transport system.

In summary, the semi-Markov process model provides a framework for analyzing

reliability block diagrams and degradation characteristics of multi-state systems. It

can be considered as an alternative to Monte Carlo simulations and Markov models

for better accuracy in reliability predictions.

7.3 Recommendations for future research

1. Imperfect repair, common cause failure and ageing

All throughout the thesis, it has been assumed that at the conclusion of

a repair, the component is returned to an ‘as good as new condition’. This

means that the age of the component is returned to time equals zero. However,

this may not always be the case. In fact, the age of the component after the

repair may be a percentage of its age at the time when the repair took place.

This kind of a repair is called an imperfect repair. A provision to incorporate

this imperfection in the models is recommended.

Yet another feature that accelerates system failures is the common cause

failure (CCF) and is considered significant in real world situations. There are

a few CCF models already available in the literature. One or more of these

can be adapted to be included in a semi-Markov model of redundant systems.

The above two features at large determine how distinctly ageing characteris-

tics are observed in a system that has been put in to service for a long time.

For systems with rare events and slow ageing, it is desirable to use truncated
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statistical distributions to shift the view toward particular period of time in

the system’s life rather than observing it from the time of installation.

2. Risk analysis

Reliability analysis is of no use to a decision or policy maker if the risk compo-

nent is missing in the analysis of a system. Risk analysis for a Markov model

can be achieved using the Markov reward model. An extension of this model

is the semi-Markov reward model. Hence, future research on risk analysis of

nuclear power plant systems could focus on cost models based on the concept

of rewards in conjunction with non-exponential failure time distributions as

holding times in a semi-Markov analysis.

3. Fault Tree Analysis

Static fault trees have been extensively used in the industry for over half a

century. The recent years have witnessed an increasing interest in dynamic

fault tree (DFT) and dynamic reliability block diagram (DRBD). These rep-

resentations have introduced new symbols to consider interaction between

subsystems. Developing semi-Markov models equivalent to these advanced

representations is possibly yet another area of exclusive focus.
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Appendix A

An algorithm to solve

Markov-Renewal Equation

In this appendix, an algorithm derived by Nunn and Desiderio(1977) based on

the trapezoidal rule for solving the Markov-renewal Equation 3.9 by numerical

integration is listed.

Equation 3.9 is solved by finding φ(t) on a set of equally spaced points in time.

The time points are denoted t0,t1 , ..., tm . The step size, i.e., the interval between

the time points, is denoted ∆t. The time points can be represented as: tn = ∆t∗n,

0 ≤ n ≤ m. With φij(0) = δij the solution for tn, n > 0, is now desired.

For convenience, Equation 3.9 is rewritten in matrix notation as:

φ(tn) = W (tn) +

tn∫

0

H(τ)φ(tn − τ)dτ (A.1)

where

φ(tn) = {φij(tn)}
H(tn) = {hij(tn)}

and W (tn) is the diagonal matrix with elements Wi(t) down the diagonal and zeros

elsewhere. It is observed that when τ = 0, the argument of φ in the integrand is

the same as that of φ on the left of the equation. To capitalize on this, Equation
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A.1 is rewritten as follows:

φ(tn) = W (tn) +

t1∫

0

H(τ)φ(tn − τ)dτ +

tn∫

t1

H(τ)φ(tn − τ)dτ (A.-1)

Equation A.-1 is evaluated using the trapezoidal integration rule, i.e.,

x2∫

x1

f(y)dy =
∆x

2
[f(x1) + f(x2)]− (∆x)3

12
f ′′(ξ), (x1 < ξ < x2) (A.0)

where x1 and x2 are separated by an interval ∆x, f(.) is the function to be inte-

grated, and the last term on the right is the error term. Applying equation A.0

without the error term produces:

φ(tn) = W (tn) +
∆t

2
[H(0)φ(tn) +H(t1)φ(tn − t1)]

+∆t
n∑

k=1

H(tk)φ(tn − tk)

−∆t

2
[H(t1)φ(tn − t1) +H(tn)φ(0)] (A.-1)

where H(0) = H(t0) has been used. Solving for φ(tn) produces:

φ(tn) = [I − ∆t

2
H(0)]−1[W (tn) + ∆t

n∑

k=1

H(tk)φ(tn − tk)−
∆t

2
H(tn)φ(0)] (A.0)

This equation is the basic recursive scheme used numerically to produce the

solution of Equation 3.9 on the points tn , 1 ≤ n ≤ m. The solution is started with

φ(0) = W(0) = I, and the solution for φ(t) is gotten by applying equation (A-5), etc.

In this way, the solution of Equation A.0 for any finite tn is produced. The matrix

[I−∆t
2
H(0)] in Equation A.0 need be inverted only once at the start of the numerical

scheme. If the transition matrix H(t) contains only density functions that are zero

at time zero, no inversion is required. The transition matrix should contain only

density functions that are continuous in the time interval of interest. Discontinuous

density functions may cause large numerical inaccuracies in the numerical scheme.
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At each step, the solution of Equation A.0 must satisfy the following condition:

N∑

j=1

φij(tn) ≈ 1 1 ≤ i ≤ N. (A.1)

This condition serves to check on both the numerical accuracy and stability of

the solution. The relative numerical accuracy of the iterative scheme is one order

of magnitude less than the numerical accuracy of the trapezoidal integration rule.

This occurs because of the compounding of numerical errors in the iterative scheme.

The relative error for the trapezoidal rule is given by:

R =
(∆x)3f ′′(ξ)

12f(ξ)
(A.2)

where f(.) is the function being integrated.
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Appendix B

COV vs. Weibull Shape

Parameter Mapping

The expression for cov of the Weibull distribution can be given solely in terms of

its shape parameter γ:

cov =

√√√√√√√
Γ(1 +

2

γ
)

Γ(1 +
1

γ
)
− 1

By systematically varying γ values, a mapping between cov and the shape param-

eter can be generated as shown in the Table below.

Table B.1: Relation between cov and Weibull shape parameter
cov Shape (γ) cov Shape (γ) cov Shape (γ)
0.2 5.797715 0.65 1.57291 1.1 0.910337
0.25 4.542412 0.7 1.451286 1.15 0.872159
0.3 3.713909 0.75 1.34757 1.2 0.837618
0.35 3.128894 0.8 1.258265 1.25 0.806239
0.4 2.695696 0.85 1.18071 1.3 0.777624
0.45 2.363383 0.9 1.11284 1.35 0.751436
0.5 2.101395 0.95 1.053036 1.4 0.727389
0.55 1.8903 1 1 1.45 0.705239
0.6 1.717114 1.05 0.952724

208



Appendix C

Fault Trees and Reliability Block

diagrams

C.1 Introduction

A system is a complex of subsystems (components) and when these subsystems are

put together to form an overall system, failure modes may appear that are not at

all obvious when viewed from the standpoint of the separate components.

In system reliability analysis, a fault tree is a graphical representation of the

logic that relates certain specific events or primary failures to an ultimate undesired

event through a deductive failure analysis. This undesired event constitutes the top

event in a fault tree diagram, for example, a switch fails to make contact. A fault

tree does not model all possible system failures. It is tailored to design the top

event and hence includes only those faults that contribute to the top event.

A fault tree analysis is an analytical technique where an undesirable state of

the system is specified and then analyzed to find all ways in which the undesired

event can occur. The initiating fault events that lead to the top event are called

basic events. Logic gates like AND-gate and OR-gate are used to bind these basic

events needed for the occurrence of the output events. The basic initiating events

are called “failures” and the events resulting from the inter-relationship of the basic

events are called “faults”. The OR-gate is used to show that the occurrence of one

or more of the basic basic events leads to the output event. Inputs to an OR-gate

are identical to the output but are more specifically defined to a cause. The AND-

gate is used when output fault occurs only if all the input faults occur. Both these
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(a) OR Gate (b) AND Gate

Figure C.1: Gates used in a fault tree (a) OR Gate(b) AND Gate

gates can take any number of input faults. There are a few other gates available

for fault tree modelling which are basically special cases of these two basic types.

Consider two components A and B in series such that the failure of either of

these results in an output fault. Given the probabilities of failures of each of these

components, the probability of the fault output is given by the addition rule:

P (A or B) = P (A) + P (B)− P (A and B)

Usually, the possibility of the simultaneous occurrence of any two events is ignored.

Such a situation is called a ‘rare event occurrence’. Hence the addition rule reduces

to

P (A or B) = P (A) + P (B)

This union rule can be extended to more than two events and is associated with

the OR-gate in a fault tree.

If two components are connected in parallel and isolated from one another,

the failure of one does not affect the failure of the other. The failures of these

components are assumed to be independent events. For two independent events

A and B, the probability that both the events A and B occur is given by the

multiplication rule:

P (A and B both occur) = P (A)P (B)

C.2 Common Cause Failures (CCF)

Failure of multiple components due to a common cause called the common cause

failure represents one of the most important issues in evaluation of system reliability
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or unavailability. The frequency of such events has relatively low expectancy, when

compared to random failures, which affect individual components. However, in

many cases the consequence is a direct loss of safety system or mitigative safety

function. The basic events caused due to a common cause are called common-

mode events of the cause. For example, lightning could be a common cause and the

failure of redundant valves in a cooling system could be common-mode event. Other

examples of common cause are impact, stress, vibration, temperature, manufacturer

etc. In a fault tree, a common cause failure can be represented by mirroring a

353.4 

CCF group increases, the complexity of a fault tree model expands exponentially. The 
example for a CCF group with three components (A, B and C) is shown in Figure 3. 

In order to prevent fault trees from getting too complex and to reduce the modeling 
effort, a simplified approach was taken toward modeling of CCF for groups of more than two 
components. In this approach all contributions from various CCF groups within particular 
system were captured by a single basic event attached to system-level top logic in the fault 
tree structure. The method involves an evaluation of the fault tree cutsets by CCF analyst, an 
identification of which cutsets may be susceptible to dependent failures, a calculation of 
common cause contributions and adding representative basic event directly into the fault tree 
model. 

 
SY STEM  FAILS

Train A fails Train B fails

Component A fails Component B fails

Individual (random)
failures of component A

Individual (random)
failures of component B

Component A & B fail
due to common cause

Component A & B fail
due to common cause

A CCF B CCF  
Figure 1: Fault Tree Model of CCF for Two-Component Group 

 
As already mentioned, all CCF groups with 3 or more components were identified 

during the system fault tree analyses. System fault trees were then developed with no account 
for common cause failures of 3 or more components in an explicit manner. Once a fault tree 
for a particular system was developed, its minimal cutsets were generated and evaluated as a 
part of consistency checking. They contained basic events representing CCFs of two-
component groups, since these were included in the fault tree during its development, as 
described above. 

Generated system-level cutsets were then subjected to a screening process, performed 
by the CCF analyst, in order to identify those cutsets that are to be “marked” as susceptible to 
CCF of more than two components. Similar cutsets from one system fault tree were grouped 
together. The process is illustrated by a simple system of three redundant components A, B 
and C with its fault tree representation conceptually shown in Figure 2. The post processing 
for this simplified example is illustrated by Table 1. 

A “marked” cutset generally contains a product of an independent individual failure(s) 
of components that are not members of CCF group and at least two independent individual 
failures of components that are part of the same CCF group. For instance, minimal cutset “j2” 
in Table 1 is a product of basic events representing individual random failures of components 

Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, Sept. 8-11, 2003 

Figure C.2: Cut set example

basic event for all the components failing due to a common cause. For example,

Figure C.2 shows a two component redundant system susceptible to a common

cause (Vrbanić et al., 2003).

A dependent event is an event whose probability in a group of events cannot be

expressed as simple product of unconditional probability of failure. Recall that if

any two events A and B are independent then,

P (A|B) = P (A)

where as if A is indeed dependent on B, then

P (A|B) =
P (A ∩B)

P (B)
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Common cause failures can be categorized under the general class of dependent

events and show up in the design of redundant systems. These lead to outage of

multiple components caused by a single undesired event, for example, outage of all

components due to a common electrical supply failure. Cascade failures are another

class of dependent events that do not affect redundant components. Failure of one

component leads to the failure of another and the chain of failures continues like a

cascading waterfall.

C.2.1 β − factor model

The β − factor model (Fleming, 1974) expresses the correlation between the in-

dependent random component failures and common cause failures in a redundant

system. Let λ be the failure rate of the component such that

λ = λi + λCCF

where λi is the independent failure rate and λCCF is the failure rate due to common

cause. Define β − factor as the ratio of λCCF to λ:

β =
λCCF
λ

so that

λCCF = βλ

and

λi = λ− λCCF
= λ(1− β)

i.e., both the independent failure rate and the common cause failure rate are

expressed as a function of the component’s failure rate. β lies between 0 and 1. In

the field of power transmission it is found that the β value averages between 0 and

25% (Borcsok and Holub, 2008).
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C.3 Cut sets

A cut set of a system is defined as a set of system components, which when failed,

causes failure of the system (Billinton and Allan, 1992). In other words, a cut set is

collection of basic events; if all these basic events occur, the top event is guaranteed

to occur (Henley and Kumamoto, 1980).

A cut set of size n has n basic events in it and is called an n − event cut set.

Cut sets with a single event significantly contribute to the top-event. The only

exception is when this one-event has a very small probability of occurrence.

C.3.1 Example

Consider the fault tree in Figure C.3. The basic events in this example are D, E, F

 

 

A 

 

 

B 

 

 

C 

 

 

D 

 

 

E 

 

 

F 

 

 

G 

 

AND 

OR AND 

Figure C.3: Cut set example

and G. The top event A occurs if both D and E occur and one of F and G occur.

Hence the cut sets are

{D,E, F}, {D,E,G}, {D,E, F,G}

A minimal cut set of a system is also a cut set such that removal of any event

from it does not cause the system to fail.
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In this example removing either of event F orG from the cut set {D,E, F,G}still
leads to system failure. Hence it is not a minimal one. Also note that this cut set

is a superset of the other two cut sets. However, the other two cut sets are minimal

since removal of any of F,G does not lead to the top event.

C.3.2 Computer codes

If the occurrence of one event prevents another event from occurring, then these

events are called mutually exclusive events. In the absence of such events, a com-

puter program called MOCUS (Fussel et al., 1974) was developed to obtain minimal

cut sets from fault trees. It was based on the fact that OR gates increase the number

of cut sets and AND gates increase the size of the cut set.

The common cause failure cut sets can be derived from the set of minimal cut

sets of a fault tree. Minimal cut sets may contain events from components sharing

a common location or a common link. Components share a common location if

no barrier insulates any one of them from the common cause. A common link is

a dependency among components which cannot be removed by a physical barrier

(e.g., a common energy source or common maintenance instructions). Presence of

duplicate minimal cut sets identifies a common cause failure. The COMCAN fault

tree analysis codes (Burdick et al., 1976) were designed to analyze complex systems,

such as nuclear plants for common causes of failure.

The CAFTA software owned by Electric Power Research Institute (EPRI), USA

is used widely by US and international nuclear power plants. It is an integrated

tool part of the EPRI risk and reliability suite of products providing four main

programs - fault tree editor, a reliability database editor, a cutset editor and an

event tree editor.

C.4 Reliability Block Diagrams

A reliability block diagram is a success-oriented network describing the function

of the system. It is suitable for systems of non-repairable components and where

the order in which failures occur does not matter. Each element of the system is

represented by a block and a label identifies it. Given a vector x consisting of the

state of each of the elements, the state of the system is obtained by evaluating the

structure function φ(x):
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1. Series Structure A system functions if and only if all of its n elements are

functional.

φ(x) = x1.x2...xn =
n∏

i=1

xi

2. Parallel Structure A system functions if at least one of its elements is

functional.

φ(x) = 1− (1− x1)(1− x2)...(1− xn) = 1−
n∏

i=1

(1− xn)

The failure rate and mean time to failure of simple series and parallel systems

are given by:

λseries =
n∑

i=1

λi

MTTFseries =
1

n∑

i=1

λi

MTTFparallel =
1

λ1

+
1

λ2

− 1

λ1 + λ2

Let RA(t) and RB(t) be the reliability of the components A and B respectively.

Then the unreliability of a series system Qs(t) is the unreliability of at least one of

the components:

Qs(t) = 1−RA(t)RB(t)

Let QA(t) and QB(t) be the unreliability of the components A and B respec-

tively. Then the unreliability of a parallel system Qp(t) is the unreliability of both

the components:

Qp(t) = QA(t)QB(t)

1−Qs(t) and 1−Qp(t) produce the reliability of the series and parallel systems

respectively.
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Appendix D

Semi-Markov Modeller

The models in this thesis have been developed using the ‘Semi-Markov Modeller’

software. The tool has been developed as an integrated modelling environment

(IME) to build, manage, execute and visualize Markov and semi-Markov models.

The models are saved with an extension of .smp and displayed as acrobat reader

files (pdf) using the GraphViz graph visualization software. State and transition

labels can be enclosed in ‘$’ to display mathematical symbols supported by the

MiKTeX pdfTeX system. The high quality pdf output can either be embedded as

is in a technical report or can be further customized using freely available GraphViz

dot language editors. The state probabilities are saved as tab delimited plain text

files and can be opened in Matlab for customized plotting though the software itself

provides basic plotting of the results. The tool supports a number of commonly used

statistical distributions in engineering including exponential, Weibull and lognormal

distributions. Figure D.1 shows a snapshot of the software package while the piping

system model was under development.
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Figure D.1: Semi-Markov Modeller
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SemiMarkovModel

Class

Fields

_model : JaggedMatrix*

C : vector<matrix<double>>

dt : double

helper : vector<matrix<double>>

MissionTime : double

N : int

ones : vector<double>

phi : vector<matrix<double>>

StateCount : int

timeStep : int

W : vector<matrix<double>>

w : vector<vector<double>>

Methods

~SemiMarkovModel()

ComputeStateProbabilities() : void

DisplayTimeStep() : void

GetStateProbabilities(int initState) : vector<vector<double>>

GetStateProbability(int initState, int targetState) : vector<double>

GetTimeVector() : vector<double>

IntegralSystemEquations(string filepath) : void

KernelElement(double t, int r, int c) : double

KernelMatrix(double t, matrix<double>& C) : void

KernelRow(double t, int r) : vector<double>

NoWaitingPolyWbl(double t, matrix<double>& W) : void

NoWaitingTedious(int t, vector<matrix<double>>& W, const vector<vector<double>>& w) : void

PathExists(int fromState, int toState) : bool

RegisterHandlers(function<matrix<double>> kernelHandler, function<vector<double>> waitingHandler) : void

SampleTimeSpent(int inState, int toState, double p) : double

SemiMarkovModel()

SemiMarkovModel(JaggedMatrix* model)

SetModelInput(double mission, int steps) : void

SetupMatrices() : void

StateWaitingTime(int t, int state) : double

Trapz2Points(int t, const vector<vector<double>>& f) : vector<double>

WaitingTimeMatrix(double t, matrix<double>& C, vector<double>& v) : void

Figure D.2: Class SemiMarkovModel
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JaggedMatrix
Class

Fields

_adjacencyMatrix : matrix<int>

_covMatrix : matrix<vector<double>>

_edgeCount : int

_jaggedMatrix : matrix<ptr_vector<Distribution>>

_meanMatrix : matrix<vector<double>>

_size : int

Methods

~JaggedMatrix()

AddDistribution() : void (+ 3 overloads)

BuildModel() : void

cdf() : matrix<double> (+ 1 overload)

Cellpdf() : vector<double>

CellReliability() : vector<double>

Display() : void

DisplayInputs() : void

GetMarkovTransitionMatrix() : matrix<double>

GetMeanMatrix() : matrix<vector<double>>

GetSize() : int

Hazard() : matrix<double>

JaggedMatrix() (+ 3 overloads)

PathExists() : bool

pdf() : matrix<double> (+ 2 overloads)

Reliability() : matrix<double> (+ 2 overloads)

RowReliabilityProduct() : double

SampleTimeSpent() : double

Serialize() : void

Nested Types

FlemingPiping
Class

Fields

F : int

L : int

lambdaF : double

mu : double

omega : double

phi : double

R : int

rhoF : double

rhoL : double

S : int

time : vector<double>

vWblF : vector<double>

vWblL : vector<double>

vWblR : vector<double>

vWblS : vector<double>

Methods

FlemingPiping()

RunModel() : void

RunWeibullModel() : void

Figure D.3: Supporting and Application Classes.
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Appendix E

Glossary

Absorbing state An absorbing state is a state from which there is a zero

probability of exiting. An absorbing Markov system is a Markov system that con-

tains at least one absorbing state.

Ageing system If the failure rate function λ(t) increases with age, we have

an ageing system (component) that deteriorates (fails more often) with age. If the

failure rate is constant in time, we have a non-ageing system.

Availability Availability represents the probability that the system is capable

of conducting its required function when it is called upon given that it is not failed

or undergoing a repair action.

Common Cause Failure A common cause failure is a single, shared event

that adversely affects two or more components at the same time. When the conse-

quences of the event include the occurrence of an accident sequence initiating event,

the event is called a common cause initiating event.

Competing risk Given the current state, if a process has to choose from more

than one state for the next transition, then the process is said to be in a competing

risk situation.

Cumulative Distribution Function (CDF) The CDF FX(x) of a random

variable X represents the probability that X takes on a value less than or equal to

x.

Extended RBD For multi-state components which have to be connected in

a particular order, an extended RBD embeds a Markov or a semi-Markov space

diagram with in it.
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Failure rate function The failure rate of a component is the conditional

probability of failure given that it has not already failed. λ(t) = f(t)
R(t)

Fault tree In reliability and systems analysis, a fault tree is a graphical

representation of the logic that relates certain specific events or primary failures to

an ultimate undesired event through a deductive failure analysis.

Fault Tree Top Event A fault tree top event is the event at the very top

of the fault tree, sometimes referred to as the undesired event, for which the fault

tree determines the causes.

Heat Transport System The heat transport system (HTS) circulates pres-

surized D20 coolant through the fuel channels to remove the heat produced by

fission in the nuclear fuel. The coolant transports the heat to steam generators,

where it is transferred to light water to produce steam to drive the turbine.

Holding time (semi-Markov) Let the process be in state i. After the

successor state j has been selected and before making a transition from i to j,the

process holds for a time tij in state i. tij is a random variable called the holding

time.

Homogeneous Markov model Given the past state of the process, the

probability of entering the present state is the same no matter at what time the

arrival in to the present state occurs.

Pr(Xn+1 = x|Xn = y) = Pr(Xn = x|Xn−1 = y)

Initiating event frequency An event that creates a disturbance in the plant

having the potential to lead to core damage, depending on the successful operation

of required mitigating systems in the plant is called an initiating event. The number

of such events occurring in a unit time is called the initiating event frequency.

Markov process A Markov process or Markov chain is a system that can

be in one of several states, and can pass from one state to another each time step

according to fixed probabilities satisfying the Markov property.

Markov property Given the present state, the future and past states are

independent.

Pr(Xn+1 = x|Xn = xn, ..., X1 = x1)= Pr(Xn+1 = x|Xn = xn) The description of

the present state fully captures all the information that could influence the future

evolution of the process. Future states will be reached through a probabilistic

process instead of a deterministic one.
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Mission Time The mission time is the time that a system or component is

required to operate in order to successfully perform its function.

NCCW system In nuclear power plants, Nuclear Component Cooling Water

(NCCW) systems are typically used for removing heat (cooling) systems containing

potentially radioactive fluids. These systems are, in turn, then cooled by the ulti-

mate cooling system - river, lake, sea, or ocean water.The NCCW system consists

of two parallel pump trains connected in series with a heat exchanger train.

NDE Non-destructive examination is an industrial technique to collect charac-

teristics of a system without subjecting it to permanent damage.

Probability Density Function (PDF) The PDF fX(x) of a random variable

X represents the probability that X takes on a value equal to x.

Probabilistic Safety Assessment (PSA) PSA is a quantitative assessment

of the risk associated with plant operation and maintenance. The risk is measured

in terms of the frequency of occurrence of different events, including severe core

damage.

Reliability Reliability represents the probability of components, parts and

systems to perform their required functions for a desired period of time without

failure in specified environments with a desired confidence.

Reliability Block Diagram (RBD) A reliability block diagram is a success-

oriented network diagram describing the function of the system. It is suitable for

systems of non-repairable components and where the order in which failures occur

does not matter.

Semi-Markov kernel The matrix H = {pijhij(t)} is called the kernel or

core of the semi-Markov process. Here, pij are the transition probabilities and hij

are the time spent in state j given that the process initially started in state i.

If the transition probabilities are not known, they are replaced by an equivalent

competing risk formulation. The kernel totally characterizes the statistical time

behavior of the semi-Markov process.

Semi-Markov process Like a Markov process, a semi-Markov process (SMP)

also has a set of states and the transitions between them are governed by a transition

probability matrix. However, in a semi-Markov process, the time spent in any state

after entering it is a random variable which can be described by a non-exponential

distribution as well.
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State transition diagram A Markov process can be illustrated by means of

a state transition diagram, which is a diagram showing all the states and transition

rates.

Static and dynamic fault tree A fault tree in which the system failure is

insensitive to the order of occurrence of component fault events is called a static

fault tree. Dynamic fault trees are a superset of traditional (static) fault trees in

that additional gates are used to model sequential behavior.

u-function A u-function is essentially a polynomial in random variable z and

it relates possible values of z with the corresponding probabilities. Each element j

with kj states is represented as a u-function.The coefficients of z are time-dependent

conditional state probabilities of the element j obtained by modeling the element

as a semi-Markov process. The exponent of z can be any arbitrary mathematical

object representing the performance or state in which the element is currently in.

Waiting time (semi-Markov) A waiting time ti in a state i is a holding

time where the successor of the state i is not known i.e. an unconditional holding

time is called a waiting time.
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