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Abstract 

In this thesis we study the coupled system of stochastic integal equations 

in which c > O is a small parameter, {xc(t)) is an R%alued slow process. and 

{ye (t) } is an ~ ~ - v a l u e d  fast process. Our generd goal is to characterize asymptotic 

properties of the slow process {xc(t)} over intemals of the form O 5 t 5 T / E .  for a 

fixed constant T E (O. cm). as c -t O. The motivation for studying this question is a 

result of Khas'minskii ('*On the Averaging Principle for Itô Stochastic Differential 

Equations" , Kybernetika, V. 1(3) : 260-279,1968 (Russian). also stated as Theorem 

9.1 on page 264 of the book Random Perturbations of Dynamical Systems by Freidlin 

and Wentzel. Springer-Verlag, 1981), which basically goes as follows: suppose that 

the auxiliary stochast ic differential equation 

(which is r e d y  just (O.O.?), but wit h the slow variables xc(s) "frozen" at some fixed 

x E Bid) is "stable", in the sense that the Markov process arising fiom (0.0.3) has 

a unique invariant probability measure x,. for each r E Rd. Define the "averaged" 

drift 

and use this to mite  the "averaged" version of (0.0.1) namely 

F (F (s) ) ds + G (f (s) ) dw (s) . (0.0.5) 



It is shown by Khas'minskii op. cd.  that the solution { r c ( t ) }  of (0.0.1) converges 

in probabiiity to the solution {fC(t)) of (0.0.5). as c + O. namely 

for each 6 > O, One can regard t h  convergence as a type of weak law of large 

numbers. Our goal in this thesis is to establish a rate of convergence for this 

weak law of large numbers in the form of a result which may be regardcd as a 

compiementary centml lzmit theorem. To be more precise, we are going to study 

the nonnalized d i s c ~ p a n c  y pmcess { 2' ( t ) } defined by 

Using the method of martingale problems we establish that { z c ( t ) ,  O 5 t 5 T / c }  

converges weakly to a !imit as c + 0, and we shall characterize this limit. 
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Basic Notation and Terminology 

1. Matrices, Vectors, Norms, Balls: Rm@" denotes the rector space of matrices 

with m-rows, n-colurnns and real entries. If -4 E IFSn then /Al denotes the 

fiobenius norm of matrix A. namely 

The spaces I P  and Pm are considered identical, thus It 1 is the Euclidean length 

of the vector z E P. For any R E ( O ' s o )  let SF denote the closed bal1 of radius 

R centered at the origin of BT, thus 

2 { X E  Rm: 1x1 5 R). 

II. Polynomially bounded funct ions A function (x. y)  -, 8(t ,  y) : 8 w + 

R is c d e d  polynornially y-bounded of order r locally zn x, when there is a constant 

r E [O, ca). and, for each R E [O. ca), there is a constant C(R) E [O, xi), such that 

When the mlue of the constant r E [O. x) is unimportant then 8 ( x 1  y)  is just called 

polynomially y-bounded locally in I, and 8 ( x 1  y) is called uni fon l y  y-bounded lo- 

cally in r when it is polynomially y-bounded of order r = O locally in x. 

III. Function Spaces and Probability Distributions: Let C[O. lj denote the 

Banach space of all R%alued continuous functions defined over the unit interval 

[O7 11 with the usual supremum norm. Put 

where 0' is regarded as a metric space with the usual product metric, and B[Rg] is 

the Borel O-algebra in R'. We shaii use (X, Z), with X ,  Z E C[0,1], for a generic 



member of R', and define the usual natural filtration {B, .  7 [O. 1]} in (W, 3.) 

by 

& & { X ( s ) , Z ( s ) ,  s € [ O , r ] ) ,  V r €  [ O , l ] .  (0.0.9) 

Moreover, if { ~ ( r ) ,  r E [O, 1) and { i ( r ) ,  r E [O, 1) are two d-valued processes 

with continuous sample-paths on some common probabiiity space (fi. 3. P) then 

L(,T, Y )  will denote the probability distribution measure over (RB, F) for the joint 

process {(m, ml r E [O, 11). 

IV. Derivatives and Gradients: Suppose that the mapping (z. y)  + F ( x .  y) : 

R" 8 fl + IP is such that x -t F(z ,  y) is differentiable on Rn for each y E Rr. 

Then (a, F ) ( x .  y) denotes the matriv with m-rows and n-columns whose ( 2 ,  j)- 

entry is given by the partial derivative (a,, F )  ( z ,  y )  for each i = 1.2. . . . . m. 

j = 1,2, . . . , n. In particular, when rn = 1 (i.e. F is ~ul-valued) t hen (O, F) (r.  y)) is 

a mw vectorof length n, with j-th entry given by (& F ) ( x ,  y). Also. if y i F ( z ,  y )  

is a differentiable mapping on î F  for each x E W", then the notation (3, F) ( x ,  y)  

has an obviously analogous interpretation, as  does the notation (8, F) (x) when 

F : W" + P is a differentiable mapping. 

Suppose that H : EP -t Rn@" is differentiable at each r E P. Then. for each 

t., t E Rn, w ( a Z H ) ( t )  [z] to denote the n by m-matrix whose ( 2 ,  j)-entry is the 

scalar product (a, H ) ' j ( x ) z ,  for each i = 1 .2 , .  . . , n, j = 1 .2 , .  . . , m. 

V. Borel a-algebra, sets of probability measures: Suppose that (S,p) is 

a complete separable metric space. Then B ( S )  denotes the Borel O-algebra in S, 

and P(S)  denotes the set of al1 probabiiity measures on B(S). 

VI. Ruiction Spaces: C ( P )  denotes the collection of al1 real-valued continuous 

mappings on iP, and Cr (BT), for some positive integer r, denotes the set of aU 



members of C(BP) which are r-times continuously differentiable on Rn: C"(Rn) 

denotes the set which is the intersection of C'(Rn) over all positive integers r. Xlso 

Cc(Rn) [respectively C:(JP), Cr(Rn)] denotes the set of aii members of C(Wn) 

[respectively CT(R"), COD (F)] which have compact support. C ~ - ~ ( R *  @ R*) d e  

notes the collection of al1 continuous functions 8 : 8 &ID -t W such that ( i )  the 

partid derivative functions (&e)(z ,  y)  and (a,ia,r 0 )  (x, y), 1,  k = 1.2 .  . . . . d. exist 

and are continuous at ail ( x ,  y) E id R ~ ,  and (ii) the partial derivat ive functions 

(adû)(x, y) and (û&tû)(x, y), 1, k = 1,2. . . . , D, exist and are continuous at al1 

(x, y) E d @ R ~ .  Sotice that there is no requirement that the mixed partial 

derivatives (i3,d,,&)(z. y) ,  1 = 1.2.. . . , d. 1; = 1.2,. . . , D, need exist for members 

of c2t2(d @ R ~ )  



Chapter 1 

Historical Motivation 

1.1 Introductory Remarks 

Our research goal is to study the avemgrng pnnciple for systerns of stochastic dif- 

ferential equations. Roughly speaking, the term "averaging principle" refers to a 

family of results where one has a system of differential equations (either ordinary or 

stochastic) typicdy having "complex" right-hand sides, but where it is possible to 

. approximate the solution (of the system) by solving a related but simpler system of 

equations in which these complex right-hand sides are replaced with simpler right- 

hand sides obtained by some form of "averaging" of the original complex systern 

of equations. To make this rather vague statement more precise, and to place our 

own research problem in clearer perspective, we shall devote the present chapter to 

a short introduction on the subject of averaging principles, emphasizing in partic- 

ular the historical development of ideas. Our goal in this introduction is to avoid 

technicalities and cornmunicate only the basic intuition, and so we s h d  adopt a 

level of discussion which is rather heuristic, the precise statements of conditions 

and resdts being left to the detadeci literature review in Chapter 2. In the course 



of this discussion we shail also d r w  attention to Our own research problem. which 

is then taken up in Chapter 3. 

1.2 Introduction to Averaging Principles - The Determin- 

istic Case 

The method of averaging in ordinary differential equations has its origins in the 

study of celestial mechanics (i.e. planetary motion) during the late eighteenth 

century. Here it proved necessary to study systems of differential equations having 

the form 

where c > O is a small parameter appearing multiplicatively in the equation. and 

the problem is to determine the solution x ' ( - )  of the system over intervals of the 

form O 5 t 5 T/c ,  where T > O is some finite constant. ?;otite that, because É > O 

is small in (1.2.1). it is only over such "large but finite" intervals that the solution 

exhibits significant variation. In (1.2.1) the mapping F : d 8 [O, a?) -+ R~ is 

typicaiiy fairly cornplex. although regular enough to ensure that (1 -2.1) has a unique 

solution { x e  (t), t E [O, cm)}. In general one can Say not hing about the solution of 

(1.2.1) without explicitly solving this system over the interval of interest, which is 

usually a difficult t ask in view of the complexity of the mapping F ( , -) . However, 

suppose the function t -t F ( x ,  t )  enjoys the fwther property of having a well-defined 

avemge F ( X )  for each x E d, i.e. suppose that the limit 

t 

F ( Z )  iim 1 F(X, s)ds 
t+m t 

exists in R~ for each x E p. This is the case if, for example, the mapping 

t -r F ( x ,  t) is periodic for each z E p, a situation which often arises in celestial 
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mechanics where one is studying the movement of a Wtem of planets around the 

sun. Now one can introduce an averaged d2fferential equation namely 

Setting aside the issue of existence and uniqueness of solutions, and supposing that 

(1.2.3) has a unique solution { i L ( t ) ,  t  E [O,  m)}, one might anticipate a relation 

between the mappings t + xC(t) (i.e. the solution of (1.2.1)) and t + Pc(t) over 

the interval (1, Tic]. Indeed, in the course of a study on planetary motion. Gauss 

suggested that these two rnappings are virtuaily indist inguishable provided t hat the 

parameter r > O in (1.2.1) is small enough, i.e. the discrepancy 

between the two solutions tends to zero as 6 + O. The usefulness of a result of this 

kind arises from the fact that the "averaged" right hand çide z + F (x) in (1 .?.3) is 

often quite simple, enabling one to solve this equation, and the resulting mapping 

t + Z c ( t )  is a very close approximation to the solution of (1.2.1) over the interval 

[O, Tlc] as long as c > O is small enough. A statement of this kind, where one uses 

the solution of a simpler "averaged" ordinary differential equation to approxirnate 

the solution of a given complex differential equation when an underlying multiplica- 

tive parameter is suficiently small, is called an "averaging principle". Of course, 

this is not a rigorously established theorem but merely a useful method of approxi- 

mation which seems to be b a s 4  upon a plausible intuition. Despite the evident jack 

of solid mat hemat ical justification, the averaging principle quickly became widely 

used in diverse areas of science including celestid mechanics, cosmology, statisti- 

cal mechanics and the study of mechanical vibrations. Xevertheless, the lack of a 

rigorously established theorem, which could be used to j u s t e  application of the 

averaging principle, became a source of difficulty in certain challenging problems of 

physics. For example, in their book on averaging in systems of dinerential equations, 
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Sanders and Verhulst [31] indicate a problem in cosmology Ili] where an unjusti- 

fied use of the averaging principle gave rise to erroneous conclusions (see page 19 in 

[31]). Problems of this kind stimulated efforts to place the averaging principle on 

a rigorous mathemat i d  basis, and to establish theorems whose conditions ident i& 

when one is entitled to use the averaging principle. This task was undertaken by 

the Russian school of anaiysts during the 1930's and 195O's, especially Bogoliubov, 

Krylov and Mitropolskii [6]. In Section 2.1 we discuss the conditions for their main 

theorem and present a complete statement of it (see Theorem 2.1.1 on page 12). 

1.3 Averaging in Randorn Differential Equations 

Continuing with Our rather heuristic discussion of averaging in differential equa- 

tions, we consider ne.* the situation where one has a random ordinary differentiai 

equat ion, namel y 

Here c E (O. CO) is a small multiplicative parameter, exactly as in (1.2. l)? {((t), t E 

[O, oo)) is an ~ ~ - v a l u e d  strictly stationary ergodic process on some probability 

space (R, 3, P), and the mapping F : d @ #ID + l? is sufficiently regular to 

ensure that (1.3.5) has a unique solution {xC(t,w), t E [O,oo))  for each w E R. 

Such random differential equations are of considerable importance in many areas 

of physics and engineering. Motivatecl by the (nonrandom) averaging principle 

introduced earlier, one might expect that if an "averaged" right-hand side is dehed 

by 

F EF ( ( O ) )  , Vz E pl (1 .3.6) 

and the "averaged" different i d  equat ion 



has a unique solution {ZL(t), t E [O. 50) } . then the discrepancy 

tends to zero (in some sense) as c -t O. The task of making this intuition rigorous. 

and thus placing this "stochastic averaging principle" on a sound mathematical 

basis was again undenaken by the Russian school of probabilists and analysts. 

In Section 2.2 we present perhaps the most general theorem pertaining to the 

stochastic averaging principle, taken from the book of Liptser and Shiryayev [N] 

(and stated in full as Theorem 2.2.1 on page 13in Chapter 2 of this t hesis), which 

shows t hat , under fairly generai conditions, the quantity in ( 1 .X8) converges to zero 

almost surely as E + 0. namely 

In the preceding paragraph we introduced an averaging principle for the random 

ordinary differential equation (1.3.5) in which the dynamics are perturbed by a 

strictly stationary process {f ( t  ) . t E [O, m) } . This raises the question of possibly 

extending this resdt by considering, in place of the perturbed ordinary differential 

equation ( 1.3.5). a perturbed stochastic differential equation, namely 

(observe that (1.3.10) reduces to (1.3.5) in the specid case ~vhere the covariance 

hinction G(.) in (1.3.10) is identically zero). Here c E (O, ao) is a smdl parameter, 

{((t), t E [O. a)} is an ~ ~ - v a l u e d  arictly stationary ergodic process, {w(t), t E 

[O, oc)) is an ~ ~ - v a l u e d  standard Wiener process, both defined on (0, 7, P) with 

{<( t ) ,  ; t  E [O, m)) and {w(t), ; t E [O, oc)) being independent. The mappings F : 

d 8 #ID + and G : R~ + WdaM are sufficiently reguiar to ensure that 

(1.3.10) has a pathwise unique strong solution {xC(t), t E [O, m)). The stochastic 

averaging principle of the preceding paragraph suggests that, if one defines F(z) as 



in ( 1.3.6)' and introduces an "averaged" stochastic different i d  equation 

then it is reasonable to expect that the discrepancy between the solut ions of ( 1.3.10) 

and (1.3.11), namely 

max IxE(t) - ~ ' ( t )  1 (1.3.12) 
O S t l T / c  

should in some sense be small when the parameter e is small. A result of this 

kind is an averaging principle for stochast ic different ial equat ions. and has been 

established rigorously by Liptser and Stoyanov [23], who show that the quantity in 

(1.3.12) goes to zero in probability as a i O, that is for each 6 E (0, m), 

Section 2.3 is devoted to a precise statement of this result. Liptser and Stoyanov 

[25] also address another crucial aspect of the averaging principle for the stochastic 

differential equation (1.3.10), namely the issue of a rate of convergence (to zero) 

of the discrepancy (1.3.12) as r + O. The idea here is to nonal i ze  the error in 

( 1.3.12) by defining a process 

where h : (O, m) + (O, w) is sorne function such that l i ~ + ~  h(e) = O. If it can be 

shown that the stochastic process {rr (t),  O 5 t 5 T/c) converges to some sensible 

lirnit (in the sense of weak convergence) as c + O then this suggests that the solution 

{xr(t), O 5 t < Tic) of (1.3.10) approaches the solution {zC(t) ,  O 5 t 5 TIC} of 

the averaged equation (1.3.11) at a speed giwn by O(h(e)) , at least in the sense of 

weak convergence. Liptser and Stoyanov [25] estabiish this result in the case where 
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and a detailed presentation of their theorem is given in Section 2.3.1. 

1.4 Averaging in Coupled Stochastic Differential Equations 

Rom the point of view of applications. a disadtantage of the system ( 1.3.10) is t hat 

the perturbation process {((t), t E [O, CG)} in the drift term evolves unilatemlly. 

and is in no way conditioned by the solution xe(t) of (1.3.10)- In many applications 

the appropriate mathematical mode1 is a stochastic differentid system similar to 

(l.XlO), but with the extra feature that the solution zC(t)  "feeds back" and in turn 

influences the perturbation process { ( ( t ) ,  t E [O. CO)) appearing in the drift. One 

way of modeling this dependence is to write the perturbation process as the solution 

of a second stochastic differential equation whose drift and covariance func t ions in 

turn depend on zL(t). Thus. instead of the single perturbed stochastic differential 

equation (1.3.10). we are led to consider the pair of equations 

Here the first equation (1.4.16) is the analogue of (1.3.10), but now the perturbation 

process appearing in the drift (which we prefer to denote by {yC (t) , t E [O, 00) )  

rather than by {[(t), t E [O, CO)), as in (1.3.10)) is the solution of the second 

equation (1.4.17) whose drift b(., -)  and covariance O ( . ,  O )  are allowed to depend 

upon the solution of the first equation (1.1.16). In the pair (1.416) and (1.4.17) 

the processes {w( t ) ,  t E [O, cm)) and {P(t), t E [O, 00)) are standard indepen- 

dent Wiener processes, of appropriate dimensions, defined on the probability space 

(fl,3, P). The pair of equations (1.4.16) and (1.4.17) is at the root of the so-cded 

Smoluchowska-Krarners approximation in mathematicd physics, where it h a  long 

been used without very much solid theoretical justification. More recently, it has 



also been argued in Sastry [32] that this pair of equations is a redistic model for 

microelectronic circuits subject to wide-band thermal noise. From the physical 

viewpoint , the two equations (1.4.16) and (1.4.17) become a useful mat hematical 

model only when the second equation ( 1 A. 17) possesses enough intrinsic "st abil- 

ity" to cause the perturbing process {yC(t), t E [O, CS))  to "average" the drift in 

(1.4.16). To make this idea clearer, suppose that the awiliary stochastic differential 

equat ion 

has a unique invariant probability mesure ;r,(.) for each x E Bld. We then define 

an averaged drift term by 

and use this to mite  an "averaged version of (1.4.16), namely 

The intuition here is that. when 4 is small enough, then ye(t) is varying so rapidly 

in cornparison wit h xC (t ) t hat F(xc (t  ) , y' (t  ) ) is virtually indistinguishable from 

F(zc(t)) .  This in turn suggests that the solution {xc(t), t E [O,CQ)}  of the rather 

complex equation (1.4.16) should be nicely approximated by the solution of the 

simpler averaged equation (1.4.20) when E is small, at l e s t  over intervais of the 

form [O, T / E ] .  Plainly, a theorem is needed to make this rather delicate intuition 

precise, and such a result has been established by Khas'minskii [20], who used a 

rather intricate argument to show that the discrepancy 

between the solutions of (1.4.16) and (1.4.20) converges to zero in probability as 

E + 0. 



1.5 Brief Summary of Research Problem 

The preceding remarks provide a very condensed account of the main developments 

in averaging principles from their inception by Gauss up to the present time. and 

give enough background for us to briefly outline the main research problem of this 

thesis. 

Goal: Our research goal concems the pair of equations (1.4.16) and (1.4.17) 

which, with the exception of the early work of Khas'minskii [20], has not received 

very much attention, despite its importance as  a mathematical model in several 

applications. The objective here is to establish a rate of convergence, motivated by 

the rate of convergence established by Liptser and Stoyanov [25] for the stochastic 

differential equat ion (1 -3.10). That is. for 

where {xe(t), O 5 t 5 TIC)  is given by (1.4.16) and (1.4.17) and {F( t ) ,  O 5 t 5 

T / c }  is aven by (1.4.20), we d l  establish that { iC(t) .  O 5 t 5 T I C )  converges 

weakly to a limit as c + 0, and will charactrize this limit. Because of the extensive 

dependencies allowed by the model (1 A.16) and (1 A.17) t his turns out to be a sub- 

stantially more chailenging problem than that addressed by Liptser and Stoymov 

[25] and requires significantly different methods of analysis. In Chapter 3 we shall 

use a martingale-based method, suggested by ideas of Kurtz [IO] and Papanicolaou, 

Stroock and Varadhan (291 to study this question. 



Chapter 2 

Literat ure Review 

In this chapter aie consider again the main results that were informally summarized 

in Chapter 1. However. we shall now pay much more attention to the careful 

enunciation of these results? including in panicdar the precise statement of the 

hypotheses and conclusions. 

2.1 The Averaging Principle of Krylov-Bogoliubov- 

Mit ropolskii 

The .?veraging Princzple of Krylov-Bogoliubov-Mitropolskii (see e-g. [6]), is a re- 

sult in the theoty of non-linear ordinary differential equations which has several 

applications in science and engineering. 

To see the idea of the averaging principle suppose that we have a differential 

equation in which a small parameter r E (O,  cm) appears muitiplicatively as follows: 



Here F : p8 [O, m) + p. t E [O. m). zc E d. and the function F ( r .  t )  is regular 

enough to ensure that the differential equation (2.1.1) has a unique solution Y ( . )  

on intenal [O, w), for each c E (O. m). One is usually interested in the asymptotic 

behaviour of ze(.) over the intenal [O. TIC] ,  for some âxed T E (O. x). as c -+ O, 

since significant changes in the solution of (2.1.1) only occur on intenals [O. T/c ] .  

when c is smaii. Throughout this chapter, with no loss of generality. we assume 

T = 1. To investigate the limit behaviour of xc(t) over [O, 1/c]. it is useful to change 

time-scales as follows: Put 

Xe (7) ) Qf E [O, 11. (2.1.2) 

Differentiating ( 2 . 1 4 ,  and using (2.1.1), results in 

i.e. we have 

. We observe that {.Yc(s). O 5 r 5 1}. the solution of (2.1.4). is equivalent to 

{ x c ( t ) ,  O 5 t 5 l / e ) ,  the solution of (2.14, via the relation (2.1-2). 

Suppose that the time average F(z) of the function t c-, F ( x .  t )  exists for each 

The idea of the averaging 

that the solution Xe(?) of 

principle of Krylov, Bogoliubov and Mitropolskii [6] is 

(2.1.1) can be approximated by the solution ~ ( r )  of the 

following "averaged" Merential equation 
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in a sense which is made precise by the nest result: 

Theorem 2.1.1. suppose that the function (r, t )  c, F ( x .  t )  : 3 [O. x )  -i R~ 
satisfies the following conditions: 

1. (r ,  t )  -t F ( r .  t )  is Borel measumble on d 8 [O. m).  

2. there is a constant 

3. the function r c--, 

AI E ( O ,  m) such that 

F ( x ,  t) l  5 dl,  Vr E d. Vt  E [O, s), 

F ( r .  t )  satisfies a Lipschitz condition, i .e .  

1 F ( x ~ .  t )  - F ( x ~ .  t ) l  5 X 1x1 - 1 ~ 1  

for some constant X E ( O , x ) , Q t  E [O. cm) and Qx l , x2  E p, 

4. the time average &) of (2.1.5) erists uniformly for each x E Wd. i . e .  

iim {sup I F ( = )  - i / t  F(Z .  s ) d s l }  = O. 
t-w 

Then (2.1.6) has a unique solution {,y(?), O 5 r 5 l }  and 

hm max I X c ( r )  - X ( r ) (  = 0. 
c - 4  t € [ O . l i  

where { X C ( r ) ,  O 5 T 5 1 )  W the unique solution of (2.1.4) for each c E (0.1) .  

A detailed proof of this result can be found in Krylov-Bogoliubov-Mitropolskii 

[6], Gihman [13], and Besjes [2]. W have taken the preceding statement from 

Besjes ([2]. Theorem 1'. page 358). 

2.2 Stochastic Version of the Averaging Principle 

Here we introduce a stochastic analogue of the averaging principle of Section 2.1. 

Let F : 8 R~ + be $(Rd) 8 B(R~) /B(~)-measurable  and suppose that 



{ [ ( t ) , O  5 t < 3 ~ }  is an ~ ~ - v a l u e d  jointly measurable strictly station- random 

process defined on a probability space (R, F, P) , such t hat (2. t 1 -, F (x. c( t ) )  is 

regular enough to ensure t hat the "random" different ial equation 

has a unique solution { z e ( t ) ,  t E [O, CG)) for each e E (O, m) and 2 E R . Csing 

(2.1.2), as  before, we first change time-scales in the equation (2.2.1 1) as follows: 

Put 

Then, in the same way that (2.1.3) followed, we see that 

dX' ( r )  -= A 

dr F ( )  ( 1 ) )  , .Yc(0) = x0, V r  E [O, 11. 

Theorem 2.1.1 on page 12 seems to suggest that the solution F(T)  of the equation 

(2.2.13) is approximated. for small values of e E (O, cm), by the solution S ( r )  of the 

non-random different ial equation 

dx( r )  -- A - F ( ( T )  . X ( 0 )  = 10, VT E [O, 11, d r  

where F ( Z )  is the "averaged" value of the right-hand side of (2.2.13),  defined by 

Under certain conditions this intuition has been made precise by Liptser and 

Shiryayev (see [24], page 722, Theorem 1) who showed: 

Theorem 2.2.1. Let {c( t ) ,  t E [O, oc)}  be a stnctly statàonary jointly meclsumble 

ergodic pmcess defined on a pmbabilàty space (RI  3, P) , taking values in R ~ ,  and 

let the fimction ( x ,  y )  c, F ( x ,  y )  : @ 8 RD + satisfy the following conditions: 

1. the function (2. y) r F(z ,  y) is B(P) @ B ( R ~ ) / B ( ~ ) -  meosumble. 



2. There is a constant L E [O. x) such that 

IF(z1, Y) - m 2 >  34 5 L 1x1 - 2 2 1  1 

Vx1,z2 E and y E JID. 

Then we have 

max IXc(r) - X ( r )  1 } = O ,  a.s. 

2.3 The Averaging Principle for Stochast ic Different id 

Equat ions 

Liptser and Stoyanov (231 extend the stochastic version of the averaging principle 

in Section 2.2 to Ito stochastic differential equations of the form 

where É E (O, cm) is a s m d  parameter, the functions F ( t , ( ( t ) )  and G(z) are 

regular enough to ensure that (2.3.19) has a pathwise unique strong solution for 

each c E (O, s) , and { ( ( t )  , t E [O. oo) } is a strictly stationary ergodic process and 

independent of the Wiener process {w(t), t E [O, oc)). Among their results(see 

Theorem 2.3.1 on page 15 which follows) is one which shows that the solution 

{xc(t), t E [O, l/c]} of (2.3.19) is approximated by the solution {zC(t ) , t  E [O, l/c]} 

defined by the "averaged stochastic dinerential equation of the form: 

I' ( t  ) = za + c F (F(s ) )  ds + eli2 G (F (s) ) dut (s) , 
I o  I o  

(2.3.20) 



which differs from (2.3.19) in that the hinction F ( . )  is now non-random and defined 

y "averaging" in the sense of 

Before formulating this result in precise terms, we normalize from a time scale of 

[O, l /c]  to the finite intervai [O, 11 by defining 

A A XC(r. W) = ze(r/e. W )  and .Ye(r.u) = Z'(T/E?W), VT E [O, 11, Qz ).E 

(2.3.22) 

and 

We(r. s) 2 ~ ' ~ * u ( r / c .  w ) .  VT E [O, 11, V u  E E. (2.3.23) 

Then we can rewrite (2.3.19) and (2.3.20) as 

X C ( r )  = xo + F (.YC(s), ( (S IC) )  ds + G ( X e ( s ) )  dWe(s), VT E [O. 11, 
I o  /O 

and 

respectively. It is weU-known from the re-scaling property that {IVe(r), r E [O, II} 

in (2.3.23) is a standard Wiener process on ( R . F .  P), for each c E (O, m). 

The following Theorem. established by Liptser and Stoyanov ([25], Theorem l ) ,  for- 

mulates an averaging principle for stochastic differential equations in the preceding 

context: 

Theorem 2.3.1. Suppose that (3,. t E [O, oc)) is a fltration in ( R ,  3, P )  such that 

F0 tncludes al1 P-nul1 events in 3, {([(t), Ft),  t E [O, sc)} zs a strictly stationary 

~ ~ - v a l u e d  pmgnszvely mewurable ergodzc pmcess, {(w(t),F,); t E [O, oc)) i s  an 

BZM-ualued standard Wiener process, and the following conditions hold: 
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1. functions ( 2 .  y )  ct F(rl y) : @ R' + @ and r et G ( r )  : -+ lRd S W." 

are ~ ( B i d )  8 B ( B I ~ ) / B ( W ~ )  and B ( P ) / B ( p i d  8 R ~ )  measurable. rcspectitely. 

2. F ( x ,  y )  and G(x) are globally Lipschitz continuous and satisfy linear growth 

condition with respect to x, uniformly in y: namely, for some constant L E 

4 .  The pmcesses { { ( t ) ,  t E [O.  m)} and { w ( t ) .  t E [O.  cm)} are independent 

Then for each b > 0: one has 

where Xe(.) and -Tc(.), for each É E (0, CO)! are the unique strong solutions of 

(2.3.24) and (2.3. B), respectively. 

Remark 2.3.2. Xotice that the conditions postdated in Theorem 2.3.1 on page 

15 are sufncient to ensure that (2.3.21) has a pathwise unique strong solution 

{XC (T),  r E [O, 11) and (2.3.25) has a pathwise unique strong solution {.yC ( r ) ,  T E 

[O, 11 } for each c E (O, oo ) . This is ensured, for example, by Theorem 5.1.1 of 

Kallianpur [Ml. 



2.3.1 Rate of Convergence in Theorem 2.3.1 on page 15 

Liptser and Stoyanov (see [25j, Theorem 2.1). also establish a mte of convergence 

in (2.3.28) in the foliowing form: 

Define the family of processes { Z L ( r ) ,  O 5 T l}  by 

Zc(r)  c-'/* [XC(r)  - ,yL ( z ) ]  . Qe € (O1 eu), QT E [O. 11. (23.29) 

where Xe(.) and Xe(.) are the unique strong solutions of equations (2.3.24) and 

(2.3.25) , respectively. Thus Zc ( . ) normaiizes the discrepancy between Sc ( . ) and 

X e ( . )  by a factor of cl/*. Liptser and Stoyanov (see [X], Theorem 2.1). established 

that the process {ZC(s). O 5 r 5 l} converges weakly to some well-defined limit 

as c + O (under additional assumptions for the functions F(.. .) and G(.) which 

are formulated precisely in the next paragraph). This suggests that the process 

{XC (r). r E O. 11) converges weakly to the simpler process {-vc(s). r E [O. il} at a 

''rate" which is O(cl/?) as É + 0. 

We next formulate the regularity conditions which are needed for this result tu 

hold. and then present a precise statement of the result. Suppose that (O. 3. P) is 

a probability space. {F,, t E ( -m. C S ) }  is a filtration in t his probability space such 

that F0 includes d l  P-nul1 events in 3. and the following Conditions (BO) - ( B 6 )  

hold for (2.3.19). 

(BO) Mappings (x,y) + F ( x .  y) : Hid 8 W~ + d and x -t G ( x )  : Bid + 

l? 8 EZM are Borel measurable, and there is a constant L E (O. m), such that 



(BI) The functions F and G are continuously differentiable in x such that 

their derivatives are bounded, and satisfy a Lipschitz condition. Samely. for some 

constant L E [O, oc) , we have 

(BZ) The initial condition xo E d in (2.3.19) and (2.3.20) is a non-random 

constant. 

(B3)  { ( w ( t ) , F t ) ; t  E [O.  m)} is an JZM- \dueci standard Wiener process on 

( 0 , F .  P). 

(B4) { (  3 t E ( - w , CU)}  is an lRD- valued progressively nieasurable 

process on (0, 3, P), and { ( ( t ) :  t  E (-oc, oc))  is strictly station- and ergodic. 

We define 

(B5) The processes { (w ( t )  ; t  E [O, S I ) )  and { [ ( t )  ; t E (-cm, m) } are indepen- 

dent. 

For each x PT', let { ~ ( z ) ,  t E [O, CG)}  be an IZd-valued process defined by 

~ ( z ) & F ( s . E ( t ) ) - ~ ( z ) ,  V Z I I R ' ?  (2.3.39) 



In view of Condition (B4, the process q(z) 2 { r ) ( ( ~ ) ,  t E [O. CG)} .  for each E p. 
is strictly stationary and ergodic with Eq, (x)  = O. Here is an additional assumption 

on the process ((.) given in terms of the process &): 

(Be) For some p > 2, we have 

h where llQllp = (E ( 1 ~ l p ) ) ' I ~  and 6 denotes the o-algebra generated by the process 

5 up to time O, i.e. 6 o{c(t), -m < t <_ 0). 

Remark 2.3.3. If there existed perfect independence of qt(r) and 6, then we 

would have 

An ergodic process { { ( t ) )  generally fails to have a strong independence property of 

this kind, and Condition (B6) expresses a decaying dependence of qt(z) on $ as 
t + m, i.e. E (%(r)lF$) is "gerting srnall" as t + m. 

Remark 2.3.4. Condition (B6) implies that 

is defined and is a symmetric d 8 d positive semi-definite matrix for each x E JId. 

It  then follows from linear algebra (see Exercise 12.46 of Noble [17]) that, for each 

x E &, there is a unique symmetric positive semi-definite d @ d matrix ul/*(x j 

such t hat 

and the mapping z + v112(x) : + PBd is l3(pid)/l?(Pad) - meamrable (see 

comments on page 171 of Karatzas and Shreve [19]). The square-root vl/*(-) will 

shortly be needed when we formulate Theorem 2.3.6 on page 20 to follow on rates 

of convergence. 



Remark 2.3.5. Let B(z,  z )  be the d 8 61 matrix defined for each r. z E R~ by 

(see Item IV in "Basic ?iotation and Terminology" ); that is, the ( 2 ,  j )  t h entry of 

B(x, z )  is given by the inner product 

for i = 1 ,2 ,  ..., d, j = 1,2 .  ..., Ml where we recd from Item IV of "Basic Sotation 

and Terminology" that ( & C j ) ( x )  denotes the row vector of length d whose k-th 

entry is (&r Gij ) (2). 

Now we can formulate the following rate-of-convergence result which was estab 

lished by Liptser and Stoyanov [25] for Theorem 2.3.1 on page 15: 

Theorem 2.3.6. Suppose Conditions (BO) to ( B 6 )  hold and r e c d  (2.3.29). Then 

where {Z(T) ,  r E [O,  11) is the solution of the following stochastic dzfferential equa- 

tion 

in which {P (T ) ,  T E [O, 11) and {CV(r), T E [O, 11) are standard independent Wiener 

processes on a cornmon probability space, wàth { P ( I ) )  being R'balued and { W ( r ) )  

being R~ -valued. 

Remark 2.3.7. The televance of Theorem 2.3.6 on page 20 can be explained by 

some ideas hom simple probability theory. Suppose that a sequence {en, n = 

1 ,2 ,3 , .  . . ) of randorn variables on a probability space ( R , 3 ,  P) is subject to a 



weak law of large numbers of the following form: There is some number i E R such 
t hat 

converges in probability to the limit 2, namely 

for each 6 > O. Then a natural question is how to characterize a possible rate of 

convergence of xn to the limit 2 (in this weak law of large numbers). One typically 

does this by normalizing the discrepancy (x, - f) by a non-random factor h(n) ,  

where h(n) -t O, as n -+ m, and asking if h(.) can be chosen to ensure that 

converges weakly to some limiting randorn variable Z as n + O. Of course the possi- 

bility of doing this requires that {&,} exhibit some form of "partial independence". 

If this partial dependence is strong enough then one can typically show that 

Zn & a Gaussian limit Z (2.3.50) 

when 

(this is just the Central Limit Theorem). Going back to the context of Theorem 

2.3.1 on page 15, we have a somewhat analogous situation, in which the "function 

- space valued randorn variables XC(.) and ri.) play roles similar to x, and 5 

in the preceding discussion, and the convergence in (2.3.28) is just a weak law of 

large numbers in "functional form" which is analogous to  (2.3.48). The question 

then mises as to how to establish an analogue of (2.3.50) in the context of Theorem 

2.3.1 on page 15. It is natural to proceed by defining Zc( . )  as in (2.3.29), to be the 



"function - space" analogue of Zn in (2.3.49) wit h h(n)  giwn by (2.3.51). and then 

to seek a weak limit of ZC(.) as e + O. This is provided by Theorem 2.3.6 on page 

20, in which (2.3.15) is the analogue of (2.3.30) except that in this case the limit 

in (2.3.45) no longer turns out to be Gaussian as it is in (2.3.50). In summary. we 

can regard Theorem 2.3.6 on page 20 as a type of "central limit theoreni" for the 

"weak law of large numbers" given by Theorem 2.3.1 on page 15. 

2.4 The Averaging Principle for Coupled Itô equations 

In the preceding section, we have seen an averaging principle when the perturbing 

process {<(t) ,  t E [O. oo)} in (2.3.19) is independent of { w ( t ) ,  t E [O. cc)}. In this 

section, we shall introduce a case in which the perturbing process is constructed by a 

stochastic diflerential equation conditioned by the slowly laring process {rc(t) ,  t E 

[O, oo)} and is hence conditioned by the driving Wiener process {w(t), t E [O, cm)} 

in the stochastic differential equation for {ze(t),  t E [O, m)}. To be precise we 

consider the coupled stochastic differential equations 

yE(t) = y. + Ilt b ( i  ( s ) .  y e ( s ) ) d s  + o(xC(s),  yC(s))d8(s), (2.453) l 
Qt E [O, m). where {w(t), t E [O. 30)) and {@( t ) ,  t E [O, oc)} are independent 

IZM and R"-valued Wiener processes respectively, defined on a probability space 

(R, 3, P). The idea here is to postdate that the stochastic differentiai equation 

is "stable", in the sense that the Markov process arising from (2.4.54) has a unique 

invariant probability measure n, on d, for each x E d. Xow define an "averaged" 



and use this to write the "averaged" version of (2.4.52) namely 

t t 
4 x (f) = zO + s 1 F ( ~ ( s ) )  ds + c l i 2  G ( F ( s ) )  dw(s), W E [O, cm). (2.4.56) 

.f O 

From (2.4.52) and (2.4.53) we see that yc(t) varies much more rapidly than xc(t). 

which suggests that F(xc(s), yC(s)) is "close" to P(xc(s)) ,  and hence that { ~ ' ( t ) }  

arising from (2.4.52) may be well-approximated by { F ( t ) }  arising fiom (2.4.56). 

It turns out that this intuition is correct provided that we limit attention to time 

intervals t E [O, l/c].  This intuition is justified by the next theorem. essentially due 

to Khas'minskii [20] (also given as Theorem 9.1 on page 264 of the book [ I l ]  by 

Freidlin and Wentzel), which says that 

goes to zero in probability as c + O. Before presenting this result, it is convenient 

to normalize the time scale of [O, 1/c]  to the finite interval [O, 11 by defining 

for al1 e E (O, 11 and r E [O, 11. Then, fiom (2.4.52), (2.4.53) and (2.4.56), we see 

t hat 



and 

For the system of equations (2.1.52), (2.4.53), we assume tbat the following condi- 

t ions hoid: 

( ~ ~ ) ~ h e m a ~ ~ i n ~ s ~ : H Z d @ ~ ~ + ~ ~ ~ : B l d + ~ @ " ' . b : d ~ ~ ~ - + ~ ~  

and 0 : 8td @ mD -t RdaN are uniformly bounded and satisfy a Lipschitz condition, 

i.e. there is a constant L E [O, oo) such that 

and 

(Cl) For each x E pl there is a unique invariant probability measure n, on 

( R ~ ,  B ( R ~ ) )  for the hlaxkov process {c(t, x), t E [O, m)) defined by the stochastic 

dinerent ial equat ion 



(C2) The mapping F : id defined by 

is globally Lipschitz continuous, namely there is a constant C E [O. sci) such that 

Moreover 

where { ( ( t ,  x. y) ,  t E [O, m) } is the solution of (2 .464)  with initial condition 

C ( 0 , x )  = Y. 

(C3) The processes { w ( t ) ,  t E [O, m)} and {@( t ) ,  t E [O1 cm)) in (2.452) and 

(2.1.53) are independent Wiener processes on a common probability space (R. 3. P) , 

w ( t )  is w"-valued and ( t )  is ~ ~ - v a l u e d .  

Theorem 2.4.1. Suppose Conditions (CO), (Cl), (C2) and (C3) hold for the sys- 

tem of equations (2.4.52), (2.4.53). Then for any 6 > O ,  we have 

sup I x ' ( T ) - x ~ ( T ) I  > 6  

2.5 Goals and Organization of Thesis 

Theorem 2.1.1 on page 25, whch pertains to the coupled system (2.4.52) and 

(2.4.53), is an obvious analogue to Theorem 2.3.1 on page 15 for the system (2.3.19). 

As such, it can be viewed as a type of weak law of large numbers in functional fonn, 

for the system (2.4.52) and (2.4.53). We saw in Remark 2.3.7 that Theorem 2.3.6 

on page 20 gives a "central limit theorem" which complements the weak law of 

large numbers provided by Theorem 2.3.1 on page 15 for the system (2.3.19). It is 



therefore natural to try to establish a central limit theorem which is an analogue of 

Theorem 2.3.6 on page 20, and which bears the same general relation to the weak 

law of large numben in Theorem 2 .41  on page 25 as the central limit theorem of 

Theorem 2.3.6 on page 20 does to the weak law of large numbers in Theorem 2.3.1 

on page 15. Establishing a result of this kind is our main research problem in the 

present thesis, and is addressed in the next chapter. 

The organization of the thesis is as follows: In Section 3.2 of Chapter 3 we 

s h d  declare basic conditions on the coefficients of the coupled system (2.1.52) and 

(2.4.53) which are sufticient to ensure t hat such a central limit t heorem does indeed 

hold. and in Section 3.3 we shall state the main result of the thesis (see Theorem 

3.3.3 on page 12). The conditions that we postulate will be in fairly abstract form. 

and in particular will entail solvability of certain Poisson-type partial differential 

equat ions associated wi t h the linear second-order different i d  operator arising from 

the coeffcients of the second of the coupled equations (2.4.53). In Section 3.4 of 

Chapter 3 we shall therefore formulate some simple sufncient conditions on the 

coefficients of (2.1.52), (2.4.53). which are enough to ensure verification of the 

rather abstract conditions in Section 3.4. The proof of the main result (Theorem 

. 3.3.3) on page 42 is given in Appendix A, and dl results stated in Section 3.4 are 

proved in Appendix B. Appendix C lists sonle standard miscellaneous technical 

results, needed for the proofs in Appendices A and B, that we have collected for 

easy reference. Appendices D and E summarize standard background information, 

on ergodicity and mking, and on solvability of Poisson equations associated with 

discrete-parameter Markov chains, that are useful for the discussions in the thesis. 

Finally, Appendix F summarizes the main ideas due to  Gihman and Skorohod (141 

on swcalled L2-derivatives of solutions of SDE's; the ideas and results summarized 

here are needed for the proofs in -4ppendix B. 



Chapter 3 

Averaging for Coupled Itô 

Equat ions 

3.1 Introduction 

In this chapter we consider the coupled itô equations (2.152) and (2.153) .  which 

we reproduce for convenience as follows 

Here xo E and y0 E IlD are nonrandom, and { ~ ( t ) ,  t E [O, 30)) and {3(t), t E 

[O, m)} are independent standard Wiener processes on the same probability space 

(RI F, P), taking \dalues in 1~'~ and ndN respectively. 

Suppose that the mappings b( . ,  .) and a(. .  .) in (3.1.2) are such that, for each 

z E p, there is a unique inlariant probability measure ;r, on ( R ~ ,  B(IR~)) for the 



Markov process {<(t, z), t E [O. x)) defined by 

and use this to d e h e  an "averaged version* of (3.1.1) narnely 

In Theorem 2.4.1 on page 25 conditions were introduced which are sufficient to 

ensure that 

goes to zero in probability as e + O. where we have used the re-scalings 

.4s was noted in Remark 2.3.7 and Section 2.5. this result is a type of 'we& law 

of large numbers". and the question of an associated rate of convergence natu- 

rally arises. In this chapter we ail1 look at the "normalized discrepancy process" 

{ Z C ( r ) .  O <_ T < l ) ,  defined by 

and try to estabiish reasonable and naturai conditions on the mappings F ( . , .) , G(.) , 
b( . ,  .) and a(., .) in (3.1.1) and (3.1.2) which are sufficient to ensure weak convergence 

of { Z e ( r ) ,  O 5 r < 1) to a limiting process { z ( T ) ,  O 5 s 5 1). We shall also 

fully diaracterize this limit process. The motivation for this is, of course, Theorem 

2.3.6 on page 20 which protides a similar type of rate of convergence for the "weak 

law of large numbers" given by Theorem 2.3.1 on page 15 for averaging in the Itô 
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stochastic differential equation (2.3.19). Thus our goal in this chapter is really 

to establish an analogue of Theorem 2.3.6 on page 20 but for the system (3.1.1), 

(3.1-2). 

There is in fact a special case of such a result due to Skorohod (see $3 and 

Theorem 15 on page 163 of [33]) who studies the system (3.1.1) and (3.1.2) with 

G r O (so that (3.1.1) is an ordinary differential equation) and it is assumed that 

the averaged drift F ( . )  in (3.1.4) is identically zero. This is the so - called '*neutral 

case" in which the averaged equation (3.1.5) is trivial (since G = O and F 5 O by 

assumption) and it therefore follows from (3.1.5) that 

+ 
I ( t )  a 20. (3.1.9) 

With these additionai assumptions it is established in Theorem 15 on page 163 of 

[33] t hat 

converges weakly to a limiting process (which is Gaussian in this case). E-xtending 

this result to the "non-neutral case". in which we do not suppose that G I O and 

F = O, involves definite technicai challenges, and is the main goal of this chapter. 

Our approach to this problem will be quite different from that found in Liptser 

and Stoyanov [25] and Skorohod [33], and will be based on a method of singularly 

perturbed martingale problems introduced by Papanicolaou, Stroock and Varadhan 

[29] for problems in the theory of turbulent flows. 

3.2 Conditions 

The following condit ions will hencefort h be supposed for the equat ions (3.1.1) and 



Condition 3.2.1. The mappings F : d 8 EZD + Wd. b : d 8 W~ + piD. 

o : 8 EZD + BIDeN in (3.1.1) and (3.1.2) are linearly bounded and locally 

Lipschitz continuous. That is. there is a constant Ci E [O. m) such that 

and, for each R E (O, cc), there is some constant C(R)  E [O. mj such that 

for all ( x , , y , )  E S i @ S i ,  i = 1.2. withsimilar bounds for b ( + , * ) ,  a(.,.). 

Also, G : + pidaM is linearlg bounded and a globally Lipschitz continuous 

and C2-function. In particular. there exists a constant L2 E [O. m) such that 

Condition 3.2.2. In (3.1.1) and (3.1.2) the initial values xo E and y0 E lRD 

are nonrandom. Also, { (w( t ) .  Ft);  t E [O. 30)) and { ( $ ( t ) ,  3J; t  E [O.  cm)) are 

independent standard Wiener processes. Rh! and R"-valued respectively, defined 

on the complete probability space ( S I .  3. P), and each Ft includes al1 P-nul1 events 

in 3. Without loss of generality we shall take Ft to be given by 

31 2 o{u*(s), $(SI, O 5 s 5 t )  v {P-nul1 events in 7). (3.2.13) 

We next define the drift F ( x )  in the averaged equation (3.1.5) and formulate 

condit ions on t bis drift : 

Condition 3.2.3. For each t E there is a unique invariant probability mesure  

xz on ( J I D ,  13(IZD)) for the Markov process {[( t !  x) )defineci by (3.1.3). The integral 

in (3.1.4) exists for each x E Rd. and the mapping P : -+ B? defines a globally 

Lipschitz continuous and C2-function. 
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Remark 3.2.4. By Theorem 5.2.5 of Karatzas and Shreve [19i. Conditions 3.21.  

3.2.2, and 3.2.3 ensure that the coupled Itô equations (3.1.1). (3.1.2) have a pat hm-ise 

unique strong solution { (zc( t ) .  ye(t)) . t E [O. cc)). Likewise. we see that (3.1.5) 

with F ( Z )  given by (3.1.4) has a pathnise unique strong solution { F ( t ) :  t E 

[O? 4 1. 
Remark 3.2.5. Condition 3.2.3 of course raises the question of recognizing when 

there is a unique invariant probability measure 7, for each I E d. In Section 3.4 

we will give simple sufbcient conditions on b ( . .  .) and O ( . ,  .) in (3.1.3) rhich ensure 

that this is the case. 

Remark 3.2.6. Let 8 : d @ lRD 4 R be a mapping such that y + B(r. y) : 

R~ -t R is a C2-mapping for each s E d. Put 
D D 

Ag(=. y) 1 bl(x. y)(ayaû)(z. y) + 1/2 1 ctJ(z.  y)(O&e)(z, y), (3.2.14) 
t = l  13=l 

w here 

A T 
C ( I .  y) = O(*.  y)cr (z. y). V ( E .  y) E f? id lRD- (3.2.15) 

Remark 3.2.7. Let c ~ * ~ ( ~ @ R ~ )  denote the collection of al1 continuous functions 

. 8 : d e EZD + R such that (i) the partial derivat ive functions (4, €3) (x. y) and 

!&&0)(x .  y),  1, k = 1.2.. . . . d, exist and are continuous at al1 (t. y) E d 8 R ~ ,  

and (ii) the partial derivative b c t i o n s  (ay, 9) (z. y) and ( t3ydyr 0) (x, y), 1,  k = 

1.2.  . . . . D. exist and are continuous at al1 (x. y) E @ ElD.  Sot ice t hat t here is 

no requirement that the m k d  partial derivatives (&ayk 8) (3, y), 1 = 1.2' - - - , d,  

k = 1,2,. . . , D, need exist. 

Conditions 3.2.8 and 3.2.15 ahich follow postdate solvability of certain Poisson 

partial differential equation in terms of the operator A given by (3.2.11). The 

solutions of these Poisson equations wiiI be essential for the asymptotic analysis of 

the coupled system (3.1.1) and (3.1.2). 
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4. The solutions P ( x ,  y)  of (3.2.19) subject to (32 .17 )  are unique in the following 

sense: if a rnapping 6' : @ JZD -t R is such that y -t &'(r. y) is C2 - 
mapping for each t E d with 

(3.2.21) 

and the partial derivative functions ( i $ d t ) ( x .  y),  (ayd,&)(r. y ) .  are uni- 

formiy y-bounded locally in x, then a i ( x ,  y) - &(= , y )  is a function of r only. 

Remark 3.2.9. The preceding Condition 3.2.8 may look somewhat strange. It 

tums out that there are strong connections between the asymptotic properties of a 

SIarkov process {{( t ) ) and solvability of a corresponding Poisson equat ion. Indeed, 

let { < ( t ) )  be a strictly station- Markov procas (assumed to be WD-valued for the 

sake of argument) with unique invariant probability a. Then { { ( t ) }  is an ergodic 

Markov process (see Corollary D.0.19). In general, ergodicity by itself is not enough 

to establish second - order asymptotic properties of { { ( t ) }  such as centrai limit t h e  

orems, and must be supplemented by additional conditions on { { ( t ) ) .  For example. 

one could postulate that { [ ( t ) )  is not just ergodic but also strong mixing (in the 

sense summarized in Appendix D.0.3) and this is typicaily enough to establish a 

central limit t heorem. An alternat ive strengthening of ergodicity to get second- 

order properties, which avoids the strong mixing hypothesis and is particularly 

well-suited to the Markov case. can be formulated as follows: Let Ç be the in- 

finitesimal generator of the Markov process { { ( t ) }  and suppose that F : WD + W* 
is some bounded Borel - measurable mapping such that kr - F(.) is in the range 

of Ç (for F 5 LD P (c) d r ( { )  ) for each i = 1,2 ,  . . . d. Equivalently, t here are 

functions V E domain [Ç] whch solve the "Poisson equations" 

Ergodicity of {{( t ) )  ensures that the Functions ai in (3.2.22) are unique to aithin 
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a constant, that is, for axy 6' E domain[Ç] such that 

it necessarily follows that 

for some constants a', i = 1,2, . . . , d. (This follows e.g. from Theorem 1.3.7 of 

Kunita [21]). Then (3.2.22), together with uniqueness modulo constants of the a', 
may be used to establish second - order properties of {e(t)} such as central limit 

theorems. Indeed this very approach (which originates in the work of Doeblin [8] 

and Doob (Section V.7 of [9])) is used in Jacod and Shiryayev ([16], Theorem 3.65, 

page 445) to show that the random process 

converges to a Gaussian distribution on C[O, 11 (the space of R 'h lued  continuous 

functions on the unit intenal [O, 11) as e -r 0. Notice t hat our problem reduces to 

exactly this case if, in place of the equations (3.1.1) and (3.1.2), we consider the 

simplet relation 

That is, we put G = O and remove d l  dependence on xc(t) in the right hand side of 

(3.1. 1), and take the fast perturbing process in (3.1.1) to be a stationary ~ ~ - v a l u e d  

Markov process { t ( t ) )  with infinitesimal generator Ç, which evolves independently 

of {xc(t)) (unlike the perturbing process {yc(t)), which is conditioned by xL(t)). 

This is a considerably simpler situation than the one represented by the coupled 

pair (3.1.1), (3.1.2), but it turns out that this basic methodology, built on the 

Poisson equation (3.2.22), nevert heless can be made to work for the system (3.1.1) 

and (3.1.2). The technical challenges that m u t  be dealt with in doing this are, 

briefly, as follows: 
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(1) The perturbing process {yc(t)} in (3.1.1) is a component of the @7D-~dued 

Markov d i h i o n  {(xC(t) , yL(t)) }. .4s is well known (see the comments on page 

243 of Rogers and Williams V.1 [30]) it is generdly impossible to fully char- 

acterize the infinitesimal generator of SIarkov difisions, so we cannot use 

(3.2.22) itself. However, if {,C(t.x)) is an IZD-valued Markov diffusion de- 

fined by the stochastic differential relation (3.1.3), then it is knonn that its 

second-order differential operator (which is defined by (3.2.14)) agrees wit h the 

infinitesimal generator of {((t, x)} on a large part of its domain (see Theorem 

II 1.13.3 of Rogers and Williams V. 1 [30]) and hence our analogue of (3.2.22) is 

the Poisson equation (3.2.19). In fact , the SDE (3.1.3) really gives a family of 

R"-vdued Markov processes {((t, x), t E [O, cic) ), parametrized by x E R ~ ,  

and (3.2.19) is the corresponding famzly of Poisson equations in the variable y, 

parametrized by the variable x E d. The properties of the solution a' (x, . ) 
of (3.2.19) formulatecl by Condition 3.2.8, will be necessary when we exploit 

the relation (3.2.19). 

(2) In place of the static system (3.2.26) we are considering the dynamically cou- 

pled pair (3.1.1) and (3.1.2). In order to deal with these dpnamics we shall in- 

tegrate the method of Poisson equations with the methodology of the Stroock- 

Varadhan martingale problem, in a way that is suggested by the work of Pa- 

panicolaou, Stroock and Varadhan (291 on limit theorems in hydrodynamics. 

In particular, we are motivated by the study on averaging in coupled ordinay 

differential equations (corresponding to putting G o O and u = O in (3.1.1) and 

(3.1.2) due to  Papanicolaou [28]). Indeed, Our whole approach is essentially to 

generalize the methodology and ideas of [28] to deal with the ditfusion terms 

in (3.1.1) and (3.1.2). 

(3) In (3.1.1) and (3.1.2), the fast - perturbing process { y C ( t ) )  is not stationary 

and ergodic, uniike the perturbation process {c ( t ) )  in (3.2.25). 
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Remark 3.2.10. There remains the question of recognizing when the Poisson 

equation (3.2.19) is solvable, and has solutions that satisk the requirements of 

Condition 3.2.8. An important second- goal of this thesis is to develop simple 

sufncient conditions on the mappings b ( . ,  .) and a(.. .) in (3.1.3) which ensure t hat 

Condition 3.2.8 holds. This issue is taken up in Section 3.4. 

Remark 3.2.11. To state the remaining conditions define 

and the symmetric d x d-matrices a(x, y) and ü(x) by 

From (3.2.20), (3.2.16), (3.2.1 1) we see that the integral in (3.2.29) certainly exists 

for each r E Ild. 

Remark 3.2.12. Since the solutions @'(z, y)  of (3.2.19) are unique modulo func- 

tions of x only (see Condition 3.2.8 (4)),  and we see from (3.1.4) and (3.2.27) that 

it follows t hat the funct ions Ti' J (z) in (3.2.29) are uniquely defined. Indeed, suppose 

6' is also a solution of (3.2.21), i = 1.2, . . . , d, and put 

A 
~ ' " ( 2 ,  y) = ~ ( r ,  y) + P(2, y)Qi(z, y). (3.2.31) 
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Then, £rom (3.2.31) and (3.2.29). 
F 

By Condition 3.2.8 (4) we know t hat O' (r  , () - @(z ,  () is a function of r only. çay  

ai (z ) ,  i = l , 2 ,  . . . , d. Then. from (3.2.32), (3.2.30), 

This shows that iiaJ(z) is uniquely defined. regardless of which solutions O' of 

(3.2.19) we use in (3.2.28). 

In Section A.2 of Appendiv -4, we will prove the following result: 

Proposition 3.2.13. Suppose Conditions 3.2.1, 3.2.2. 3.2.3 and 3.2.8 hold. Then 

the function ü(z), defined by  (3.2.29), 2s nonnegative-definite for each x E IRd. 

Remark 3.2.14. It foliows from Proposition 3.2.13 on page 37 that there is a 

unique symmetric nonnegative semidefinite matriu ül/* (2) such t hat 

We shall see later that â(x) determines the weak limit of 2' (in (3.1.8)) in much 

the same way that u ( x )  (see (2.3.42)) determines the weak limit of 2' in Theorem 

2.3.6 on page 20. To t his end, we m u t  impose some technical restrictions on ü(x) 

as follows: 



Condition 3.2.15. 1. The mappings x H P ( x )  defined bu (3.3.29). i. j = 

1,2,. . . , d, are iocally Lipschitz continuous on d. 

2. For each i, j = 1,2,. . . . d ,  there exists a function (2 y)  ct Q I J ( r .  y )  : R~ 

R* + R in ~ * * ~ ( d @  lRD) such that qtJ(z ,  y), (&W)(I,  Y),  ( l l , , \ I . l J ) ( ~ .  y). 

(&& @ ' J )  (x, y), and (a,l a,& qaJ ) (2. y )  are pal-ynommily y- bounded of order 

q3  locally in x for some constant q3 E [O, oc), i.e. for each R E [O. m ) . there is 

a constant C ( R )  E [O, ac), such that 

for each (x, y )  E S i  8 mD. 

3. The mappings 9'J (x. y)  in (2) satisfy the Poisson equation 

dqlJ(z, y) = s V J ( x )  - aaJ(x, y), V(x, y) E d 8 R ~ .  (3.2.36) 

Remark 3.2.16. Observe that, in contrast to Condition 3.2.8, we do not insist 
. . 

on the uniqueness of solutions Y '*' of (3.2.36) modulo hinctions of x only. This is 

because we do not use the O' j  to define any quantities. analogous to (3.227) and 

(3.2.28) where the uniqueness of a' was essential (see Remark 3.2.12)- In fact, the 

huiction @'J furnished by (3.2.36) will be used only to cancel terms that depend 

on y when we utilize the secalled near identity method of singular perturbations, 

resulting in a function of (x, 2 )  only, from which we can deduce the desired limit 

t heorems. That said, in Section 3.4 we will develop a solvability theory for Poisson 

equations which includes (3.2.19) and (3.2.36), and which provides uniqueness of 

solutions, modulo functions of x only, for both of t hese equations. 
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Remark 3.2.17. Our final condition (see Condition 3.2.18 to follow). which is 

suggested by Condition (90) on page 143 of Skorohod [33], is really a type of stability 

condition for the stochastic different ial equation (3.1.3). This condition will play a 

very important role in our aspptot ic  anaiysis. It wiU ailow us to keep the moments 

of y C ( t )  in (3.1. l ) ,  (3.1.2), under control as  r + 0, and provide us with the means 

to deal with the lack of stationarity and ergodicity of {yC(t)} ahich was noted in 

Remark 3.2.9. 

Condition 3.2.18. There is a constant q4 E (2 + 2qz, m) n (2 + 2q3, sc) (where q2 

and q3 are specified in Conditions 3.2.8 and 3.2.15 respectively), such that, for 

we have the foilowing: corresponding to each R E [O, m) there are constants AR E 

(O, CU) and a~ E [O, ca) such that 

Remark 3.2.19. In this section w have formdated Conditions 3.2.1, 3.2.2, 32.3, 

3.2.8, 3.2.15 and 3.2.18. These will be the basic conditions that we need to estab 

lish convergence of the scaled discrepancy process {Z ' (T ) }  in (3.1.8). Conditions 

3.2.1 and 3.2.2 are quite elementary, and are needed for (3.1. l ) ,  (3.1.2), to have a 

pathwise unique strong solution. Condition 3.2.3 enables us to formulate an "aver- 

aged stochastic differential equation (3.1.5). On the ot her hand Conditions 3.2.8, 

3.2.15, and 3.2.18 represent "stability - type" conditions on the stochastic difleren- 

tial equation (3.1.3) which will eusure that the fast process {yC(t)) is well enough 

behaved for {ZC(r)} in (3.1 .a) to converge to a lirnit. In Section 3.4 we will present 

some simple sufficient conditions on the coefficients in (3.1.1) and (3.1.2) which are 

enough to ensure that Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18 hold. 



3.3 Main Result 

We first declare the basic notation in terms of which the main result of this chapter 

is going to be formdated. Some of this notation has aiready been introduced 

previously but we repeat it here so that it is dl defined in one place. For each 

c E (O, 11 and r E [O, 11 put 

Recalling Condition 3.2.2. for each e E (O.  11 define the filtration {Ç:. r E [O. 111 by 

3 ,  V T E [O, 11. (3.3.41) 

In view of Condition 3.2.2 we see that ((LI"(r)). G:), T E [O, 11) and { ( B e ( r ) ,  G;). E 

[O, 11) are independent standard Wiener processes on (R, 3, P) for each e E (O, 11, 

and it follows from (3.1.1) and (3.1.2) that { ( X ' ( r ) . Y C ( ~ ) ) . r  E [O, II} solves the 

re-scaled equat ions 

.\~so, we see from (3.1.5) and (3.3.39), {Xf(r) ,  r E [O, 11) solves the rescaled 

equation 
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For each c E (O' 11 define the scded discrepancy process { Z c  ( r), r  E [O. 111 by 

We are going to show that, as c + 0 ,  the process { ( X c ( r ) , Z c ( r ) ) .  r E [O.  l ] }  

converges weakly to a limiting process { ( ~ ( r ) ,  ~ ( r ) ) ,  T E [O. 1 ] }  which çolves the 

system of equations 

where { w l ( r ) ,  r E [ O ,  11) and {%(T ) ,  7 E [O, 11) are independent standard Wiener 

processes, R" and R%alued processes respectively, on some probability space 

(fi, 3, P) (see *'Basic Notation and Tenninology IV" for the definition of the d by 

M matrix (aG)(z)[:]~, r E IRd). 

Remark 3.3.1. Since { (We( r ) ,  Ç z ) ,  r E [O,  11 } is a standard Wiener process for 

. each c E (O. 11 it follows from (3.3.44) that the solution { r ( r ) ,  r  E [O. 11) has a 

distribution which is invariant with respect to c E (O, 11. In fact, comparing (3.3.14) 

with (3.3.46) onesees that 

{r(+), r E [O, 11) {x(T), T E [O. I I ) ,  (3.3.48) 

D 
tic E ( O ,  11, where = denotes equality in probability law. 

Remark 3.3.2. From Condition 3.2.1, Condition 3.2.3, and the bilinearity of 

(3.3.47), the system of equations (3.3.46), (3.3.47), has a pathwise unique strong 

solution, and hence a result of Yamada and Watanabe (see Proposition 5.3.20 of 

Karatzas and Shreve [19]) ensures that the law of the process {(x (r), ~ ( r ) ) ,  T E 
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[O, 11) is uniquely defined on the measure space ( R m . F ) .  where 

regardles of which the square root function Ü(x)''' is used in the equation(3.3.47). 

The main result of this chapter is 

Theorem 3.3.3. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3. 3.2.8. 3 .215 and 

3.2.18 hold. Then we have 

E 
lim,,oP{ sup IXe(r) - .Y (s)l 2 6 }  = 0, E [O. x). (3.351) 

~ € ( O , l j  

and 

where the convergence is weak convergence of pmbabzlzty measures ouer (Ra. 7') 

defined b y  (3.3.49) and (3.3.50). 

Remark 3.3.4. Theorem 3.3.3 on page 42 is proved in Appendiv A. 

Remark 3.3.5. The weak convergence in (3.3.52) is of course the result of primary 

interest in Theorem 3.3.3 on page 42. Sotice however, from [3.3.51), that Theorem 

3.3.3 on page 12 also establishes a convergence in probability like t hat of Theorem 

2.1.1 on page 23. which also deals with essentially the coupled system (3.1.1) and 

( 3 . 2 ) .  However. the hypotheses that we postdate in Theorem 3.3.3 on page 12 

for this result are somewhat different from the hgotheses postulated for Theorem 

2.4.1 on page 25. We believe that the conditions in Theorem 3.3.3 on page 42 are 

somewhat more natural than those in Theorem 2.4.1 on page 25. In particular, the 

uniformity of convergence in (2.4.67) that is required for Theorem 2.4.1 on page 25 

looks rather stringent and difficult to verify. On the other band, as we s h d  see in 
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Section 3.4, we can propose simple sufficient conditions on the coefficients in (3.1 -1) 

and (3.1.2) which imply satisfaction of the conditions for Theorem 3.3.3 on page 

42. Of course, the main motivation for our hypotheses in Theorem 3.3.3 on page 

42 is not just to improve on the conditions in Theorem 2.4.1 on page 25. but rather 

to  ensure that the weak convergence in (3.3.52) holds. 

3.4 Sufncient Hypotheses for Conditions 3.2.3, 3.2.8, 3.2.15 

and 3.2.18 

In this section, we are going to formulate some simple sufncient conditions on the 

coefficients of the coupled Itô equat ions (3.1.1) and (3.1.2) which imply Conditions 

3.2.3, 3.2.8, 3.2.15, and 3.2.18 of Section 3.2. The essential aspect of Conditions 

3.2.3. 3.2.8 and 3.2.15 is existence and uniqueness of an invariant probability mea- 

sure T, for the Markov process { [ ( t ,  x)) defined by the stochastic differential qua- 

tion (3.1.3) together with solvability of the equations (3.2.19) and (3.2.36), which 

are "Poisson equations" in the variable y. parametrized by z E d ( s e  Remark 

3.2.9). Our approach to establishing t hese sufficient conditions is motivated by 

the following resul t of B hat t acharya and W a p i r e  [3], w hich essent ially est ablishes 

conditions on the coefficients of an Itô stochastic differentid equation of the f o m  

to ensure that the corresponding Markov process has a unique invariant probability 

measure: 

Theorem 3.4.1. (see Theorem 4.2 on page 593 of Bhattacharya and Waymzre [3]) 

Suppose that the following hold: 

(i) The functions b : #ZD + W~ and a : #ZD + RD@* are globally Lipschitz 



continuous with 

Iu(Ei)-o(Ez)lI-~ol6-E2i  ER^. (3.4.54) 

for some constant & E [O, cm). 

(ii) The function b ( . )  is a Cl- mapping on R~ with D x D Jacobian matru 

J ( C )  (acb)(c)Y (3.4.55) 

(iii) We have 

where 

and A,, denotes the largest eigenvalue of the D x D symmetric mutri2 

Then the= ezists a unique invariant pmbability measure A on R~ for the Morkov 

process { [ ( t  ) ) defwied by 

where { $ ( t ) )  is a standard R" -valued Wiener process. Moreover, for each bounded 

continuous function y : BID + W: we have 

r 

lim Ey(E(4 y)) = IR pdn,  Vy E IlD,  
2 4 -  D 

where {C(t,  y)} is the solution of the stochast2c differentid equation (3.4.58) subject 
O 

to {(O' Y )  = y- 
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Remark 3.4.2. 1. Our statement of Theorem 3.4.1 on page 13 differs slightly 

from that in [3] because we are using the Frobenius norm for matrices (see 

"Basic Sotat ion and Terminoloa;" ) to define the Lipschitz constant .Io for 

O( . ) ,  whereas the operator norm is used in (3). 

2. Sotice that Theorem 3.1.1 on page 13 does not insist on nonsingularity of 

the rnatrk aaT, and therefore includes the important case of '*degenerateq* 

di&isions. 

3. The basic intuition in Theorem 3.1.1 on page 13 is that sharp local variations 

in O ( . )  (reflected in a large value for the Lipschitz constant A*) must be corn- 

pensatecl by having all eigenvalues of (112) [ J ( ( )  + p(<)] sufficiently negatire, 

uniformly with respect to < (see (3.1.56)). 

Remark 3.4.3. Theorem 3.1.1 on page 43 ensures that the transition probability 

funct ion 

for the Markov process given by (3.4.58) has a unique invariant probability measiire 

7 .  Thus if {,C(t)} is a solution of (3.1.58) wit h {(O) independent of { 3 ( t ) ,  t E [O, 00) } 

and distribution given by ;i, then { < ( t ) )  is a strictly stationary Markov process (as 

follows from the standard theory of Itô stochastic differential equations - see for 

evample Theorem 10.1 1 of Chung and Williams [il). Moreover it follows from 

Corollary D.0.19 that {,C(t)} is ergodic. 

Theorem 3.1.1 on page 13 does not address the solvability of Poisson equations 

açsociated with the second-order linear differential operator for the Markov difi- 

sion {c(t)}.  We shall therefore introduce a strengthening of its basic hypothesis 

to establish solvability of these Poisson equations. We will then "transfer" these 

conditions to the parametrized stochastic dinerentid equation (3.1.3) and in this 
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way get sufficient conditions on the coefficients in (3.1.3) u-hich ensure sol\xbility 

of the Poisson equations (3.2.19) and (3.2.36). Here our approach is itifluenced by 

a result due to Benveniste, Metivier and Priouret ([Il, page 253. Proposition 3) 

which we reproduce as Proposition E.0.27 on page 216 in Append~x E. Among 

other things, this result ensures solvability of the Poisson - type operator equation 

for a discrete - parameter Markov chah in R~ with one - step transition proba- 

bility function n(x, A), z E lRD. A E 13(mD). having a unique invariant probability 

measure m. 

In brief we extend Theorem 3.4.1 on page 43, due to Bhattacharya and Waymire 

[3], to cover the case of the stochastic different i d  equation (3.1.3) which is parametrized 

by z E p. . h o ,  motivateci by Proposition E.0.27 on page 216 we also extend The- 

orem 3 .41  on page 13 to ensure not just a unique invariant probability measure, 

but also solvability of the Poisson equations (3.2.19) and (3.2.36). In contrast to 

the Poisson-type operator (1 - II) whch features in (3.4.61) and which is the gen- 

erator of a discrete-parameter Markov chah with transition probability ll, we are 

dealing here with Poisson equations that aise from the parametrized second order 

differential operator A in (3.2.11). The technical problems of verifying solvability 

in this case are a good deal more delicate than in the case of the operator equation 

(3.4.61), mainly because the second-order linear differential operator is unbounded 

and non-closed. In the course of handling these problems, we shall frequently use 

the theory of Lp-deriwitives for the solution of stochastic diflerential equations due 

to Gihman and Skorohod [14] which is sumrnarized for easy reference in Appendix 

F. 

We now begin to formulate our sufncient conditions on the coefficients in (3.1.3): 

Condition 3.4.4. The mappings ( x ,  [) ++ b'(x, é) and (x, () * dJ (x, E )  are C3- 
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functions, Vi = 1 .2 . .  . . 0, j = 1 .2 . .  . . . S. and the fint. second and thrd (z.Ë)- 

derivative hinctions of bl(x, <) and olJ (I. E) are uniformly ,C-bounded locally in I. 

That is, for every multi-index (al.. . . . û d .  7 1 , .  . . .qD). in which the a, and r), are 

non-negative integers such that 

we have the following: for each R E [O. sc) there is a constant C ( R )  E [O. x) such 

t hat 

for al1 (I, <) E S; x R~ wit h identical bounds holding for o'J ( x .  ,C) in place of 

b X ( G  t )  - 

The following simple Lemma establishes a global Lipschitz constant for the map 

ping E + O(=.<)  : R~ + RD@". 

Lemma 3.4.5. Suppose that Condition 3.4 4 holds. Then. for each R E [O. a). 

we have 

and Ao(R) c m,VR E [O, 34). 

Remark 3.4.6. For each (z, () E Rd@ BID, let A,&, () denote the largest eigen- 

value of the D x D symmetric matriv 
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where 

and, for each R E [O, m), put 

The next condition is motivated by (3.4.56) of Theorem 3.4.1 on page 43. but 

applies to the stochastic difTerential equation (3.1.3) which is parametrized by x E 

IF: 

Condition 3.4.7. There is a constant q E (8, m) such that 

(for no( R) given by (3.4.64)). 

Remark 3.4.8. Suppose that there is no dependence on x in (3.1.3). i.e. (3.1.3) 

is just (3.458). Then condition (3.4.67) is still non-trividy stronger than (3.456). 

since we are supposing q > 8 in (3.461). and (3.4.56) follows from (3.1.67) with 

q = 2. The reason that we insist on taking q > 8 in Condition 3.1.7, is because we 

want enough "stability' in (3.1.3) to get not only a unique invariant probability 

measure a, but also solvability of the Poisson equations (3.2.19) and (3.2.36) which 

are associated with the second order linear differential operator (3.2.14) for the 

diffusion given by (3.1.3). As will be seen in due course (see Remark 3.1.23) a d u e  

of q > 8 tunis out to be enough to ensure this. 

Remark 3.4.9. Motivated by Remark E.0.26, for later use we define the foUow- 

ing spaces of locdy  Lipschitz continuous functions fkom IZD + R: For a Borel 

meamrable function h : IRD -t R and some r E [O, cm), put 

[hl, sup Ih(y1) - h(y2)l A MY) l 
Y I *  I Y ~  - Y ~ I P  + lyllr + 1y2Ir]' 

II h Ilr+1= f P  + 7 



and 

For each r E [O, oc), define the function spaces 

Cleady, h E Li(0)  if and only if h(.) is globally Lipschitz continuous on R ~ .  

Definition 3.4.10. Suppose that r E [O, jc). Then Li(& 2s the set of Botel- 

meosumble functions g : 8 R~ -t R with the following property: for each 

R E [O, oo) there is a constant C(R) E [O. oo) such that 

Remark 3.4.11. Thus g E L Z ( ~ ) ~ ,  implies that g(z, .) E Li(r) with 

sup .\I,(g(+, .)) < m. V R  E [O. x)). (3.4.69) 
zf S i  

Clearly, g E Li(& for some r E [O. CS) implies that g is polynomially y-bounded 

of order r + 1 locally in x .  namely for each R E [O.=), there exists a constant 

C(R) such that 

and 

The next Proposition ail1 be needed for the main result of this section, nameiy 

Proposition 3.1.16 on page 5 1 on solvability of Poisson equations, and will also 

provide us with the means for verifying Condition 3.2.18 later in this section (see 

Remark 3.4.23): 
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Proposition 3.4.12. Suppose that Conditions 3.4.4 and 3.4.7 hold, and put 

P(Y) 2 l!,lqT VY E IlD (3.4.72) 

whete q zs the constant given b y  Condition 3.4.7. Then, for each R E [O,  x ) ,  there 

are constants a~ E [O, m), AR E (0 .  OQ), such that 

&(ZT y )  + A ~ ~ ( ~ )  5 Q R ,  v ( x ,  Y )  E S i  8 R ~ -  (3-4-73) 

Remark 3.4.13. from now on write {<(t, r, y), t E [O, cm)} for the (pathwise 

unique) solution of (3.1.3) with initial value y at t = O, namely 
t 

E ( t . x , d = ~ + l  k E ( s . r . y ) ) d s +  o ( ç . C ( s . x , y ) ) d D ( s ) ,  l (3.4.74) 

Proposition 3.4.14. Suppose that b( - ,  .) and O ( - .  e )  in (3.1.3) are subject to Condi- 

tions 3-81. 3 - 4 4  and 3.4.7. Then, for each x E R ~ ,  there ezists a unique invariant 

probabzlity measure ir, on (mD, &IRD)) for the Markou process {(( t ,  x)} defined by  

(3.1.3). and 

(where q is gtven by  Condition 3.4.7). 

rl E [O,  q - II, then, for each R E [O, m), 

r ( R )  E ( O .  cm), such that 
,. 

Furthemore, if f E Li(r&, for some 

there are some constants C(R) E [O, ri), 

for each ( t ,  2.  y)  E [O, 00) @ S i  8 l I D .  

Remark 3.4.15. If Conditions 3.2.1, 3.4.4 and 3.4.7 hold, and f E Li(& for 

some r E [O, q - 11, where q is given by Condition 3.4.7, then Proposition 3.4.14 on 

page 50 ensures that the functions 
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are weil defined. This will be important for the next result, which is the main result 

of this section, and which essentially de& with solvability of the Poisson equations 

that occur in Condition 3.2.8 and Condition 3.2.15: 

Proposition 3.4.16. Suppose that 

( i )  b( - .  - )  and O ( - ,  -)  in (3.1.3) are subject to Conditions 3.2.1, 3-44 and 3.4.7: 

(ii) f E Li(& for some r E [O,  912). where q zs given by  Condition 3.4.7. and sup- 

pose in addition that y + f (x, y )  is a C2-mapping for each t E D? such that 

the partial derivative functions (ayi f) (x, y) ,  and (a,id,r f ) (x, y )  are continuous 

in (x, y ) ,  and are polynornially y-bounded of order r locally in I ;  namely, for 

each R E [O. 30) there is a constant Ci(R) f [O, x), such that 

Then for the functions f (x) and 8 ( x ,  y )  defined b y  (3.4.77) and (3.4.781, we have 

2. y + 8(r.  y )  is a C2-rnapping for each E E d, and the partial derivative 

functions (agi 0) (x, y)  and (a,d,l 0) (x. y )  are continuous in (I, y ) ,  and are 

polynomially y-bounded of order r locally in x ,  i .e. ,  for each R E [O, oc),  there 

is a constant C(R) E [O. oo) svch that 

3. The following relation holds: 

whew A is defined by (3.2.14). 



CHAPTER 3. A\TR4GLVG FOR COUPLED ITO EQUATIO,VS 52 

Proposition 3.4.16 on page 5 1 basically postdates condit ions on the coefficients 

b(., .) and O( . ,  .) in (3.1.3) and on the function f ( 9 .  -)  which are suficient to ensure 

solvability of the Poisson equation (3.4.81). It rernains to settle the sense in which 

solutions of this equation are unique. This is dealt with by the nem result. which 

essentidy says that if 8 , (x.y) .  i = 1.2. satisb (3.1.81) then e l ( x .  y) - &(I. y)  is 

a b c t i o n  of I only: 

Proposition 3.4.17. Suppose that 

(i) of Proposition 3.4.16 on page 51 holds; 

(ii) the mappings f, 0 : R~ @ IZD + R belong to L Z ( ~ ) ~ ,  for some r E [O. 912).  

the mappings y c, f ( 2 . y )  : R* + R a n d y  ct &.y) :  IR^ -t R are 

C2-functions for each x E p. and the partial denvatives (a,,&) (r, y )  and 

(a,d,i 0 )  (t, y )  are polynominlly y - bounded of order r locally in x; 

(iii) the following relation holds: 

for f (t) defined by (3.4.77). 

Then the solution 8 ( x ,  y )  of (3.4.82) satisfies the relation 

ë(x. Y) = 8 ( x )  + 8 ( x T  y). V(x, y) E PT1 @ w ~ ,  (3.1.83) 

whem 8 ( x ,  y )  is pven hy (3.4.78), and 

In particular, the mapping 

is a fùnction of x only. 



The following proposition deals aith the dependence on x of the mappings f (x) 

in (3.4.77) and 8 ( x ,  y) in (3.478): 

Proposition 3.4.18. Suppose that 

(i) of Proposition 3.4.16 on  page 51 holds. 

(ii) of Proposition 3.4.16 o n  page 51 holds. In  addition. suppose that r + f (1, y )  

is a C2 - mapping for each y E w ~ ,  such that the partial derivative functions 

(& f )(x, y) and (az& f )(z, y )  are continuous in (x, y ) ,  and are polynomially 

y - bounded of order r locally i n  x; namely for euch R E [O,  jo) there is a 

constant C2(R) E [O, cm), such that 

(a) The rnapping f ( z )  defined by (3.4.77) is a C2 - fimction on p. 

(b) For the rnapping 8 ( x ,  y) de f ied  by (3.4. W), the partial derivative functions 

(&le) (x, y )  and (&a,, e) (x, y )  ezist, are continuous in (x, y ) ,  and are poly- 

nomially y -6ounded of order ( r  + 1 )  locally in z. 

We are now going to use Propositions 3.1.14 on page 50, 3.4.16, 3.4.17. and 3.4.18 

to check Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18. To this end, we will suppose 

that b( . ,  .) and a(., .) in (3.1.2) sath& the Conditions 3.2.1, 3.4.4 and 3.4.7, which 

are the basic hypotheses on these mappings that are postulated by each of these 

Propositions. We nill dso suppose t hat F (., .) in (3.1.1) is subject to the following 

condition (which supplements the requirements imposed on F ( . , .) by Condition 

3.2.1). 
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Condition 3.4.19. The rnappings Ft : d 8 W~ + W are members of C ' . ~ ( W ~  8 

R ~ )  for each i = 1.2, .  . . ,d, (recall Remark 3.2.7), and the partial derivative 

functions (a,, F) (z, y), (a,l a,k F1) (5 ,  y), ( $ 1  F ) (x, y), and (a,,+ Fa) ( r  . y) are uni- 

f o d y  y - bounded locally in z. That is, for each R e [O, oo) there exists a constant 

C(R) E [O, oo) such that 

for al1 (x, y) E S i  @ LUD. 

Remark 3.4.20. Notice that Condition 3.4.19 certainly ensures that F' E Lz(O)~ , ,  

i = 1,2, . . . , d. In fact, from Condition 3.4.19 and the mean-due t heorem. we see 

that for each R E [O, x) there is a constant C(R) E [O, s) such that 

Again by Condition 3.1.19 and the mean-value theorem. we see that for each R E 

[O, m) there exists a constant C(R)  E [O, w) such that 

Yow it follows from (3.4.87) and (3.4.88) t hat F' E Li(0)l, (recall Definition 3.4.10). 

Remark 3.4.21. From now on we suppose that Conditions 3.2.1, 3.4.1, 3.4.7 and 

3.4.19 hold. We will show that these conditions are sufficient to ensure that the 

Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18 hold (recall Rernark 3.2.19): 

Partial Check of Condition 3.2.3: One sees from Proposition 3.4.14 on page 

50 that, for each z E nid, there is a unique invariant probability measure n, on 

( R ~ , B ( R ~ ) )  for the Markov process { t ( t , x ) )  defined by (3.1.3). By Condition 

3.4.7 we have q E (8, oc), and thus 
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for each x E Rd ( s e  (3.475). It follows kom (3.4.87) and (3.4.89) that the integral 

in (3.1.4) certainly exits for each x E R ~ ,  and Proposition 3.1.18 on page 53 ensures 

that F(.) is a C2-mapping on d. We have thus checked Condition 3.2.3. except 

for the required global Lipschitz continuity of F ( - )  (see Remark 3.4.23). and turn 

next to Condition 3.2.8. 

Remark 3.4.22. The main tool for veribing Condition 3.2.8(1) and (?) will be 

Proposition 3.1.16 on page 51. Observe tliat (i) of Proposition 3.4.16 on page 51 

holds by virtue of our hypotheses (recall Remark 3.4.21). -4s for (ii) of Prop* 

sition 3.4.16 on page 51, we know from Remark 3.4.20 that Fi E Li(0) i , ,  i = 

1,2,. . . ,d. Moreover, from Condition 3.4.19, we see that the functions (8t~F')(x, f)  
A 

and (a&F)(x, () are polynomially <-bounded of order r = O locally in r. Thus 
A a 

(ii) of Proposition 3.4.16 on page 51 holds when we take r = O and f = F'. Yow 

(compare (3.1 A ) ,  (3.1.77) and (3.1.78)) we define 

A We are now able to apply Proposition 3.4.16 on page 51 when we take r = 0, 
A f = F i ,  and 8 8'. for each i = 1.2,. . . ,d. and establish the following 

Check of Condition 3.2.8(1): Proposition 3.4.16(1) on page 51 ensures that 
D <Pt E LZ(O)~, ,  and hence that @'(x, y) is polynomially y-bounded of order q2 = 1 
A 

locally in z (see Remark 3.4.11). By Proposition 3.4.16(2) on page 51 (with r = 0, 
A a 

f = F a ,  8 = a'), it follows that y H @(z, y) is a C2-mapping for each x E d, and 

that the partial derivative functions (L$i 9') (x, y) and (a& Oc) (z, y) are continuous 

in (x, y) and are uniformly y-bounded locally in x, that is, for each R E [O, cm) 

t here is a constant C( R) E [O, oo) such t hat (3.2.17) holds. -49 for the 2-derivative 

functions (& Oi) (z, y) and (&& <P1)(x, y), we see fiom Proposition 3.4.18 on page 
A A A 

53 (with r = O, f = P, 8 = QI), that these partial derivatives ex&, are continuous 

in (x, y), and are polynomially y-bounded of unit order locally in x, that is, for each 
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R E [O, oc) there is a constant C(R) E [O, m) such that 

a 
for each (r, y) E S i  @ wD, so that (3.2.18) holds wit h q* = 1. This verifies Condi- 

tion 3.2.8(1). 

a Check of Condition 3.2.8(2): By Proposition 3.1.16(3) on page 51 (with r = 0. 

f F, 8 2 V ) ,  we see that (3.2.19) holds, hence we have checked Condition 

3.2.8(2). 

Check of Condition 3.2.8(3): This is an immediate consequence of (3.1.89) 
a 

and the fact that q* = 1. 

Check of Condition 3.2.8(4): We shall use Proposition 3.4.17 on page 52 as  the 

tool for checking Condition 3.2.8(4). Suppose that a mapping 6' : Pid 63 lRD + Bi 
has the properties stipulated in Condition 3.2.8(4). That is, y + &il. y) : R~ + R 
is a C2-mapping for each x E Bld which satisfies the Poisson equation (3.2.21), 

and the partial derivat ive functions (a+ Oi)(x, y), (a,d,k &')(x, y), are uniformly y- 

bounded locally in x, namely for each R E [O, oo) there is a constant C(R) € [O, ai) 

such t hat 

for al1 i = 1,2,.  . . , d, and 1, k E 1,2,. . . , D. Clearly (i) of Proposition 3.4.17 on 

page 52 holds (see Remark 3.4.21). Moreover, we have 4' E Li(0)r,  (by (3.4.92) 

and the mean-value theorem), and we have already seen (in Remark 3.4.22) that 

F E LZ(O)~,. It follows that (i), (ii), and (iii) of Proposition 3.4.17 on page 52 hold 
A - A A -  

when we take r = O, f 2 F, 8 = @', and thus, in view of (3.4.83) and (3.4.90), we 



have 

( y) = LD ( ) d ( )  + E [ F  (r. { ( t ,  1, y)) - P(r)]dt. 

for ail (x, y) E R ~ @  R ~ .  Thus a a ( x ,  y )  - &(x,  y )  is a function of I only. as required 

by Condition 3.2.8(4). 

Check of Condition 3.2.15(1): We will use Proposition 3.1.18 on page 53 

to check Condition 3.2.15(1). From (3.4.87). (3.1.88). and (3.227).  we see that 

E Li(0)i,, thus for each R E [O. oc) there is a constant C(R) E [O, x7) such that 

~ & z , ~ ) l  5 C(R)[1 + lyl], Q (x,  y )  E S: 8 lUD, i = 1 , 2 , .  . . . d. (3.1.93) 

Also, we have seen that O' E Li(O)/, (see Check of Condition 3.7.8(1)). hence 
A 

O' (x ,  y) is polynomidy y-bounded of order qz = 1 locally in x, that is, for each 

R E [O, m) there is a constant C ( R )  E [O.oo) such that 

IP(x .  y)l 5 C(R)[I  + lyl], V (x,  y )  E SR 8  IR^, i = 1 . 2 , .  . . .d. (3.4.94) 

Thus, from (3.4.94), (3.4.93) and (3.2.28) we see the following: for each R E [O, 30) 

there is a constant C(R) E [O, m) such that 
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Moreover, we have 

We have seen that O' E Li(0)i, and P E Li(0)r,, hence, for each R E [O. 3c) there 

is a constant C(R) E [O, 30) such that 

for each x E Si, Qyl , y2 E R ~ .  SOW, from (3.4.93), (3.1.94), (3.4.96), (3.4.97), 

(3.4.98), and (3.2.28), we see the following: for each R E [O. OG) there is a constant 

C(R) E [O, oo) such that 

Vx € S ~ , V ~ ~ , I J ~  E R*. Thus from (3.4.99), (3.4.93) and Definition 3.4.10 we see 
. . 

that a'j  E Li(l ) i , .  We next look at the 2-derivative functions (& aaJ ) ( x ,  y) and 

(&&aiJ )(z, y), and d l  see that these mappings exist, are continuous in (x, y), 
A and are polynomially y-bounded of order r = 2 locally in x: We have 

From Condition 3.4.19, we know that for each R E [O, oc) there is a constant 
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C(R) E [O, oc) such that 

In view of (3.4.101), (3.4.100), (3.1.91), (3.4.94) and (3.1.93), we see that for each 

R E [O, oo) there is a constant C( R) E [O, cm) such that 

for al1 (x, y) E S i  @ R ~ .  Thus, in view of (3.2.28), (3.4.100), and (3.4.102). we see 

that the partial derivat ive function (&a8J) (x, y) exists, is continuous in (x, y) .  and 
A 

is polynomially y-bounded of order r = 2 locally in x. As for the second-derivative 

function (& B'J ) (x, y). from (3.4.100) we have 

From (3.1.103), (3 .101) ,  (3.4.91): (3.1.94), and (3.4.93), we see that for each 

R E [O, ao) there is a constant C(R) E [O. m) such that 

for dl (x, y) E S i  8 R ~ .  Thus, in view of (3.2.28), (3.4.103), and (3.4.104), we see 

that the partial derivative function (ard,, a'j ) (x, y) exists, is continuous in (2, y), 
A 

and is polynomially y-bounded of order r = 2 locally in z. Now we have shown 

that a'd E L z ( ~ ) ~ ,  c Li(2)1,, so that we can use Proposition 3.4.18(a) on page 53 
A a 

(with r = 2 and f = a ' ~ )  to conclude that Ü'J(.) is a C2-mapping, and therefore it 

is locally Lipschitz continuous on p. This checks Condition 3.2.15(1). 

Check of Condition 3.2.15(2): Rom Condition 3.4.19, the fact that y -t <P1(x, y) 



CHAPTER 3. AVEMGLYG FOR COLPLED ITO EQUATIOXS 60 

are C2-mappings for each x E Ild (see Partial Check of Condition 3.?.6(1)), and 

(3.2.28), one sees that y + at j (x .  y) is a C2-mapping for each z E p. In the follow- 

ing we check that the partial derivative functions (a,ialJ)(x, y) and (aYl&,ta1J)(x. y) 
A 

are polynomially y-bounded of order r = 1 locally in 1: We have 

Moreover, from Condition 3.1.19, we know that for each R E [O, x) there is a 

constant C(R) E [O, w) such that 

Thus, from (3.4.105), and the bounds given by (3.4.93), (3.2.17), (3.4.106), and 

(3.1.94). we see that for each R E [O, m) there is a constant C(R) E [O. 3c j such 

t hat 

for dl ( x ,  y)  E S i  @ R ~ .  Thus. in view of (3.2.28). (3.1.105) and (3.1.107) we see 

that the partial derivative function (aYlaga) (2, y) exits. is continuous in (2, y), and 
A 

is polynomidly y-bounded of order r = 1 locally in x. -4s for the second derivative 

hinction, from (3.4.105) we find 

Thus, from (3.4.108), together with the bounds given by (3.4.106). (3.2.l?), (3.4.93), 

and (3.1.94), we see the following: for each R E [O, oo) there is a constant C(R)  E 

[O, oo) such that 
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for all (z, y) E S i  @ ElD. Hence. from (3.2.28), (3.4.108), and (3.1.109). it follows 

t hat the second derivat ive funct ions (agi 0,k a'J ) ( t , y) eltist . are cont inuous in ( r . y ) .  
a 

and are polynornially y-bounded of order r = 1 locally in x. This checks (3.4.79) 
D A when f = U'J and r = 1 (note that r E [O, 912) since q > 8 in Condition 3.4.7). 

Kow define 

We have alceady seen that a'j E Li(l)i, (see Check of Condition 3.2.13(1)). so 
A 

that we have checked ail hypotheses for Proposition 3.4.16 on page 51 when r = 
A ,  b 

1, f = a'J and 8 = @'A.  Then Proposition 3.4.16(1) on page 51 ensures that 

' L i ( )  Thus from Remark 3.4.11, for each R E [O. OG) there is a constant 

C(R) E [O, cm) such that 

IWd(z. y)l 5 C(R)[l + l y i2 ] ,  V ( x ,  y) E S; x R ~ .  (3.4.11 1) 

Proposition 3.4.16(2) on page 51 ensures that y ct W(z.  y) is a C2-mapping 

for each x E d, and that the partial derivative hnctions (+4'j)(x, y)  and 

(ay+ QaJ ) (2, y) are continuous in (s, y) and are polynomially y-bounded of order 
A 

r = 1 locally in x; that is. for each R E [O. m) there is a constant C(R) E [O. m) 

such t hat 

As for the derivative functions (hi Q ' j )  (x, y) and (a,,% @'a)  ( x ,  y), we have already 
A 

seen that the hypotheses of Proposition 3.4.18 on page 53 are verified for r = 2 and 
A .  f = a'j (see Check of Condition 3.2.15(1)). Thus, from Proposition 3.4.18(b) on 

A 
page 53, with 9 = SiJ, we conclude that the partial derivatives (&@'~)(z, y) and 

(ad& 8'j)(z, y) exist, are continuous in ( x ,  y), and are polynomially y-bounded 

of order r + 1 = 3 locally in z. That is, for each R E [O, cm) there is a constant 
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Putting together (3.4111). (3.4.11?), and (3.1.113), 

there is a constant C(R) E [O, 30) such that 

t ~ l ~ ] ,  V ( Z . ~ ) E S $ ~ R ~ -  

(X-l.113) 

we see that for each R E [O. r) 

A 
for each (z, y) E SI: @ R ~ .  This checks (32.35) with 93 = 3, and so we have verified 

Condition 3.2. E ( 2 ) ) .  

Check of Condition 3.2.15(3): Proposition 3.1.16(3) on page 51 (with f 4 a 'J ,  
a r = 1 ,  8 fi q ' j )  show that the Poisson relation (3.2.36) holds. which checks Con- 

dition 3.2.15(3). 

Check of Condition 3.2.18: We have now shown that Condition 3.2.8 holds 
O 

with q2 = 1. and Condition 3.2.13 holds with q3 = 3. We now put q4 = q. 

where q is the constant in Condition 3.4.7. Then, since q > 8. we have q d  E 

(2 + 2qz, m) n (2 + 2q3, m) = (8, cm). Moreover. from Proposition 3.4.12 on page 50, 

we see that for each R E [O, m) there are constants a~ E [O, m) and AR E (0, 10) 

such that (3.2.38) holds. This checks Condition 3.2.18. 

Remark 3.4.23. We have now shown that, if Conditions 3.2.1. 3.4.4. 3.4.7 and 

3.4.19 hold, then Condition 3.2.8 holds with q, = 1, Condition 3.2.15 holds with 

q3 = 3, and Condition 3.2.18 holds with 94 = q in Condition 3.4.7. We also showed 

that Condition 3.2.3 holds, except for the global Lipschitz continuity of the mapping 

F .  This Iast requirement appears to be rather difficult to verify in general terms, 
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mainly because the dependence on r of the unique invariant probability measure *, 
in (3.1.4) is difficult to characterize. In particular examples. such as d e n  (3.1.3) 

has no dependence on x so that the invariant probability measure a is £ised. this 

global Lipschitz continuity may be clear. 

Remark 3.4.24. The results of this section do not require that ooT(r. y)  be non- 

singular. Condition 3.1.7 provides enough *bstability" in (3.1.3) to ensure that there 

is a unique invariant probability measure T, for the 1Iarkov process defined by 

(3.1.3) and to ensure that Conditions 3.2.8, 3.2.15. and 3.2.18 hold. Verification of 

Condition 3.4.7 can be facilitated when t here is addit ional structure in the system 

(3.1.1) and (3.1.2). For example: 

(a) if a(x,y) = o(x), V(x.y) E R ~ @ R ~ ,  then .A0(R) = O, R E [O.=). in 

Condition 3.4.7. 

(b) if o(z? y) = al(=) + q(y) and b(r, y )  = b l ( r )  + b(y )  on IF? 8 R ~ ,  then A. 

in (3.1.64) is determined by a?(.) and no longer depends on R, while A,, 

( s e  Remark 3.4.6)) is determined by b?(.) and is a function of y only. Thus 

Condition 3.4.4 follows when 

A special case of this occurs when ~ ( t ,  y) and b(x .  y) are functions of y only. 

( c )  When D = !V = 1 then Condition 3.4.7 reduces to a simple condition on the 

scaiar function (ap) (t, [) and (a tb)  (x: <). 

In Proposition 3.2.13 on page 37 we saw that the matrix ü(z) defined by the rela- 

tion (3.2.29) is positive semi-definite for each x E nid when Conditions 3.2.1, 3.2.2, 

3.2.3 and 3.2.8 hold. In the next result we establish a more intuitively appealing 

erprgsion for ü(x) when the conditions of this Section are assumed: 
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Proposition 3.4.25. Suppose that Conditions 3.2.1, 3.8.2. 3.4.4. 3 .47 and 3.4.19 

hold. Then the integmls in (3.4.114) are well-defied. and Z ( I )  defined b y  (3.2.29) 

is  alternatively given b y 

for each t E d, where {c(t: z), t E [O. m)) is some ~ ~ - v a l u e d  stationary Markou 

process defined by (3.1.3) (on some pmbability space (R.3. P ) )  with marginal dis- 

tribution gwen by the invariant probability measure *, of Proposition 3.4.14 on page 

50. 



Appendix A 

Proofs for Section 3.3 

Remark A.0.26. For the proofs of t his section. define the stopping times: 

A 
th = inf{t E [o.E-']  : Izc(t)l 2 R )  (A.O.1) 

C 
Ti = inf{r E [O. 11 : IXC(r)I > R), (A.0.2) 

for each R E (O. s) and c E (O. Il. From (3.1.1) and (3.1.2), and Condition 3.2.2 

we see that t', is a {Ft}-stopping time. and, from Section 3.3, it follows that T i  is 

a O:-stopping time for each c E (O.  11 (recall (3.3.41)): and 

A 
T; = a',, VÉ E (0.11. YR E (O. m). 

A.1 The Main Result 

Proof of Theoiem 3.3.3 on page 42: Let C denote the linear second order 

dinerential operator for the difiusion process defined in the equations (3.3.46) and 
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(3.3.47). Thus, for each g ( z .  2) E c?(P 8 p) we have 

+ C-' (2) GJ.' (x)  (hl arl g) (x. -) 

(A. 1 A) 

Remark A.1.1. In proving (3.3.52) we use the following method: first establish 

tightness of the family of measures {L(Xe,  2'). c E (0,111 and then show that 

each weak accumulation point of the family {L(SC, 2'). c E (O. II) coincides with 

L(?,z)  for (.%, 2) given by (3.3.16) and (3.3.17). Sow (3.3.52) follows from Re- 

mark 3.3.2. In following this plan we use the Stroock and Varadhan martingale 

problem, and the secdeci  perturbed near-identity transformation method. That is, 

if Ç' is the usud linear second order differential operator for ( X e ,  Y'. Ze) (given by 

(3.3.12!, (3.3.43), (3.3.45)), then for each g E ~:(d 8 d) we will construct a 

C2-rnapping 4; : Wd @ I Z D  8 IZd -) R having the form 

where dJ(z, y ,  r )  and di(2, y, 2) will be chosen such that Ç'Qé is of the form 

çCq& y ,  2) = Cg(x.  :) + cA(c, L, y, z ) .  (A. 1.6) 

Here the iinear operator C, defined in (AM), is a consequence of the averaging 

procedure and acts on functions depending on ( x ,  z )  only, and the mapping A is a 
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bounded continuous function. The relation (A.1.6) implies that as c goes to zero 

the linear second order differential operator Ç' "converges*' to the linear second 

order differential operator C in (A.1.1), which corresponds to the limiting diffusion 

process (x, 2) defined by (3.346) and (3.3.47). Thus. using the martingale problem 

method and (A. l.6), one can prove the weak convergence C ( S c .  2') + ~(. t .  2). as 

€ + o. 

The perturbed near-identity transformation method introduced above is broadly 

used in singular perturbation t heory wben dealing wit h averaging problems. This 

rnethod, sometimes in the literature called the perturbed test jiinction method , is 

used for proving the weak convergence theorem. as the functions Qi in (-4.1.5) 

are perturbed by the factor depending on c. The general idea of applying this 

method was introduced in Kurtz [22], Blankenship and Papanicolau [j], Papani- 

colau, Stroock, and Varadhan [?9] and subsequently extended in Kushner(e.g sec 

~ 3 1 )  

Following the procedure outlined above we are now ready to establish (3.3.52) 

in three steps: 

STEP 1: Let ( R ' , F m )  be the measurable space defined by (3.3.49) and (3.3.50). 

Also, let {B( r ) ,  r E [O. II} be a filtration defined in (R'.Fm) by 

To introduce the martingale problem. for each g(z. :) E ~ ~ ( 6 1 6  8 IZd), define 

for every (X. 2) E R' and r E [O. 11. For each c E (O, 11, put 

P: L ( X L ,  Zc) .  (A. 1.9) 

Xow, fix an arbitrary sequence {e,, n E PI) C (0.11 such that c, + O as n + m. 
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To get (3.3.52) it is enough to prove 

iim PL = L ( X ,  2). 
n-do 

To establish t his, fix an arbitrary subsequence {P'no, lC of {P;n}. From Proposir ion 

A.3.1 on page 98 we know that {P:n) is weakly relatively compact. hence the 

subsequence { P:n( ,) is &O weakly relat ively compact. Hence. by definit ion of 

weak relative compactness, t here is a h r t  her subsequence { P:nli(mii lm wit h some 

probability measure P' on (Rel 7' ) , such t hat 

It remains to show that 

for then ( A l .  10) follows by Fact C.0.5 on page 203. To simplihr the notation we 

will mite Pm for P,' 
n(k(m)) 

so t hat (A. 1.1 1) becomes 

lim PA = P'. 
rn-w 

In view of Remark 3.3.2, the probability law of each 

(3.3.47), is uniquely defined. Thus, by C o r o l l a ~  5.49 

(A.1.13) 

solution (.%, 2)  of (3.3.16), 

of Karatzas and Shreve (191 

there is a unique probability measure P on (Ral 3') with 

such that {(A,(r), B ( T ) )  , r E [O, 11) is a martingale on (W. 3'. P), 

Vg E C C ( W ~  @ p ) ,  and this probability is the (unique) law L ( x , z ) .  Thus, it 

is enough to show that {(A&), B ( 7 ) )  , T E [O, 11) is a martingale on (R0,3', Pa) 

(where P' is the limit in (Al. 13)) for each g E @ nid), for then (A. 1.12) 

follows, as required to establish the Theorem. 

Rom now on fix g(x, r )  E ~ ? ( P l d  @ p). TO see that {(A,(r), &), r E [O, l]} 

is a martingale on (R', P, Pm), it is enough to establish that, for arbitrary O 5 
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71 < ~2 5 1 and mappings r : Q' + R having the f o m  

with O < so < sl c ... < s,, 5 TI and continuous uniformly bounded functions 

h, : @ R~ + R, one has 

It then follows from Fact C.O.l on page 202 that (A. 1.16) continues to hold for al1 

B(rl)-measurable and uniformly bounded mappings ï : 0' -t R. which proves that 

{ ( A ( ) ,  B ( ) )  T E [O, l]} is a martingale. Thus Lx arbitrary partition O 5 so < 
si < . . . < s, 5 rl and fix continuous uniformly bounded functions h, : lRd id + 

R, i = 1 2 .  . , n It remains to show that (A.1.16) holds when r is given by 

(A.1.15). 

Since (X, 2)  -t [(Ag(r2) - Ag(rl))T'] : R* + R is ciearly a uniformlr bounded and 

cont inuous mapping, it follows from (A. 1.13) t hat 

lim E'A [(Ag(X, 2) (sz) - h,(.Y, 2) (71 ))  I'(.Y. Z)] 
m+ac 

= E ~ '  [(-dg(x, z) (r2) - AJX, z) (71 )) r (-Y z ) ]  - 

(A.l .17) 

Now one sees from (A. 1.9) t hat 

Thus, the relation (A. 1.16) ( hence Theorem 3.3.3) on page 42 follows from (A. 1.17) 

and (A.1.18) once it is shown that 
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In order to get (A. 1. lg), we s h d  establish in Step II the following 

limE[{Ag(Xe,ZC)(~2~TT(R)-Ag(XrlZr)(~l ~ h ~ ) ) ï ' ( X ' , Z ~ ) j  = O .  V R E  (Ro,crc). 
c+O 

(A. 1.20) 

for a fixed & E (O, m) being large enough that support of g(x, t) is wit hin the 

interior of S& @ @ (Th is defined in (A.0.2)). To see that (.A. 1.19) follows from 

(A.1.20), note from (A. 1 A ) ,  (A. 1.8). the uniform bounds on the h, in (A. 1.15). and 

g E C,OD (81d id R ~), that 

for al1 (X, 2) E R*, r E [O, 11, and some constant CI [O, oo). Now we can mite 
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Thus, from (A.1.21) and (A.1.22), there is some constant C E [O. s) such that 

Vc E (O, 11, VR E [O, 3 ~ ) .  ?;OW &Y some srnail 7 E (0,~). By Proposition A.1.4 on 

page 111 there is some R(7) E (Ro ,  oo) and cl(q) E (O, 11 such that 

CP[T;,,, < 11 < 1 Vc E (O.  cl(q)). 2 ' 
(A. 1 .N) 

Moreover. by (A.1.20), there is some ~ ~ ( 9 )  E (O,  11 such that 

Vc E (O, e 2 ( q ) ) .  Using (A. 1 X), (-4-1.24) and (A.1.25) we get 

Qc E (O, el (7) A e 2 ( q ) ) ,  which proves (A.1. lg) ,  and hence Theorem 3.3.3 on page 42 

follows. 

Remark A.1.2. Thus, it remains to prove (A. 1.20) in order to establish Theorem 

3.3.3 on page 42. We s h d  do this in Steps II to IV using the near-identity method 

surnmerized in Remark A. 1.1. 



M ' P E N D E  A. PROOFS FOR SECTION 3.3 72 

STEP II: Since P ( - )  is a C2-function(by Condit ion 3.2.3) we have by the mean 

value t heorem: 

(A. 1.27) 

(recall that &P(z)  is a row vector of length d ) ,  where 

V(x,z) E 8 p, Ve E (0.11, i = 1,2 , .  . . .d. Similarly, since Cl"(.) iç a C2- 

function (see Condition 3.2.1) we have 

(recall that &Gi~'(x) is a row vector of length d). where 

Q(x, Z) E id Ve E (0,1]. i = 1.2 , .  . . , d. 1 = 1 , 2 . .  . . , M. SIoreover, from 

(3.3.45), (A. 1 X), and (A. 1.29) one has 

(.4.1.31) 

V r  E [O, 11, Vz = 1,2, . . . , d, and 

cvL ( x ~ T ) )  - G'*~(Y(T)) = [ ( a z c ~ L ) ( . x c ( ~ ) ) z c ( ~ ) ]  - EI;'(E! x ~ T ) ,  Z ~ T ) ) ,  

(A. 1.32) 

Qr E [O, 11. vz = 1,2, . . . , d, and 1 = 1,2. . . . -6.1. Xow, from (3.3.451, (3.3.42), 

(3.3.44) we get 

2: (7) = e-lj2 {/I (P (x' (s) . ~ ' ( s ) )  - P (r (s)) ds 
O 

k -  + (c*'(x'(s)) - Gv (X (s))) dW,(s)  
k=l 

(A. 1.33) 
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Then, using (A.1.31) and (A.1.32) in (A.1.33), we ~ i t e :  

+ 1 /o ( 8 ' ~ ~ ~ ~ )  ( X e ( s ) ) Z C ( s ) d W ;  ( s )  
k= 1 

We next calculate the variation and crossvariation processes of {Xe ( r  ) , T E [O, II}, 

{ y e  (7 )  , E [O. 111, and { Z e ( r )  , r E [O. 111, using (3.3.Q),  (3.3.43).  (A. 1.33) and 

independence of { W e ( r ) ,  T E [O.  11) and { B e ( r ) ,  r E [O,  l]}(as follows from (3.3.40) 

and Condition 3.2.2): 
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-a1'* / o  W G~~~(x~( s ) ) I ;~ '  (a.  ~ ' ( s ) ,  ~ ' ( s ) )  ds,  

~ ' ( s ) ) ]  ds. 
k=1 

-8' jO C [(&c'-') (X'(S))Z~(S)]  I$(E.  .Ye (s) . Ze(s))ds 

(A. 1.35) 

Remark A.1.3. Fix some arbitrary continuous mapping (z, y, z) + O(xl y, r )  : 

(@ 8 IlD 8 p) + R. ahose Brst partial derivative functions (aza@), i = 

1,2,. . . ,dl (a,&), i = l 1 2 , .  . . , D, (&dP), i = i , 2 , .  . . , d ,  exist and are continuous 
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on @ R~ @ p. and whose second part iai derimtiw functions (4. azJ \Y), i. j = 

i , j  = 1,2, . . . , d, exist and are continuous on Wd @ R~ 8 p. Sotice that ive do 

not require the mixed derivative fimctions &d, and ayJ&. to exist. Since we have 

seen t hat the cross-mriations [X:, Y;] and [yc, ZJ] are identically zero. we will not 

need these derivatives when we make an expansion of *(Xe! Y'. 2'). as we do nest. 

For a mapping @ as in Remark A. 1.3, Itô's formula gives 

+ 1 ' (&. 9) (Xe, Y'. 2') ( s ) d c  (s) 
x = l  

V r  E [O, 11. Putting together (A. 1-32), (A. 1.33), (A. 1.351, (A. 1.36), (3.2. Pl), (3.3.42), 

and (3.3.43), one sees that 

* ( X e .  y', 2') ( r )  = * ( x o ,  yo. ;O) + ] G'@(XL, Y', ZC)(s)ds + M i  ( T ) ,  QT E [O, 11, 
O 

(A. 1.37) 
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w here 
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and we have put 

Sext, we introduce the class of perturbed near-identity functions: for the fixed 

hinction (x, t) + g ( x ,  z )  E C C ( ~  x p) and for each B E (0,1], define the 

funct ion 
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V(xl y,  r )  E bid @ lZD 8 Rd, where 

(A. 1-41) 

and the mappings P( t .  y) and Q t J ( x ,  y) are defined in Conditions 3.2.8 and 3.2.15 

respect ivel. 

We have defined the functions El. S2 and 5 in (A.1.41) such that ,  upon taking 

iU qp in (A.1.39), we will be able to use 

(a) the fact that A g ( x . 2 )  r O (by (3.2.14) to remove the term involving c - I l  

(b) the relation (3.2.19) in Condition 3.2.8 to cancel the  terms involving c-II2, 

(c) the equations (3.2.28), (3.2.19) and (3.2.36) to get the terms of power ro 

independent of y. 

a 
To this end. we first evaluate each term on the right side of (4.1.39) with 9 = q',. 

Before doing t h ,  notice from (A. 1-41) and the fact that V 1  WJ E ~~* ' (d  8 IZD) 

(recall Remark 3.2.7), that 9; has al l  of the derivatives required by Remark A. 1.3, 

so that Q'q: is indeed defined. From Remark 3.2.6, Condition 3.2.8, Condition 

3.2.15, and (A . l . l l )  we see that: 

Ag(zl y, z )  = O, (A. 1.42) 
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and 

Also, from (A.1.40) and (A.1.41): 

+ 2 1 2  (z, 9. :) [ ~ ( z .  Y) - F(z)] . (A. 1.44) 
i= 1 
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From (A.l.lO) and (A.l.41): 

From (A.1.40) and (A.1.11): 

+c C 1 (&LE2) (I, y, z)ZJ (&P) (x) 

(A. 1.45) 

(A. 1.46) 
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1 
= - 1 1 1 (azl a,, g )  (x ,  =)c*' ( x ) @ ( r )  

9 

1 1 1 (azt&,El) ( x ,  9 ,  ~ ) G ' * ' ( x ) G J * ' ( ~ )  

+;c 1 x  el) (z. y. .-)G"(x)GJ~'(x) ( A .  i . 4 i )  
1=1 ]=1 1=1 

From (A.1.10) and (A.l.ll): 

+CI!? 1 1 (&&rl ) (2, y ,  ~)c*'(z) [(&GJ*') (z) z] 
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And, also from (A.1.10) and (A.1.11): 
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We substitute (A. 1.43) to (A.1.49) in (A. 1.39) and simpli. to get (A.l.50) which 

follows. Sote that, in (A.l.jO), we collect d l  terms multiplieci by cki2 into the term 

AL(e,2, y, z ) ,  for each k = 1.2.3,4. 
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Moreover? from (3.2.28): 

Then. substituting (.A. 1.51) in (X.l.50), and simplifing, we get 

1 

+ 5 1 G~'(Z)GJ?' ( r )  (&&g) (+, 2) 

+ Z A ~ ( € .  z, y, z ) .  

Thus, in view of (A.1.4) and (.4.l.Z), we establish 
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(compare (A.1.40) with (.4.1.5), and (A.l.53) a i th  (.4.1.6)). In this equation we 

have not given the explicit forms for the functions A&. z. y. :)(in t e r m  of @(r. y), 

*(x, y), F ( z ,  y), etc.) since these are not important(and quite lengthy). Indeed. 

the only significant thing about these functions is that ($,y,-) + AK(c.x,  y.:) 

is continuous on (@ 8 8 R*) for each c E (O, 11, and, corresponding to each 

R E [O,oc), there is a constant C i ( R )  E [O,m) such that, for each Iï = 1.2.3.4.  

one has 

Vc E (0,1], and, Y(=, y, r )  E S i  @ mD @ d. This follows easily by check- 

ing al1 term for the individual &(x. 9, :), and using the compact support of 

g(2. :) and its part i d  derivat ives, together wit h Condit ion 3.2.8 (which ensures 

t hat 4'(x, y), @P(z, y), and &a,, v (z, y) are polynornially y-bounded of order 

qz locaily in x) . and Condition 3.2.15 (which ensures that V J  (z,  y), a,i 9'J (x, y), 

and &ta,, !PIJ (x, y) are polynomially y-bounded of order q~ locally in z), and Con- 

dition 3.2.1 (which ensures that F1(x. y) is polpomially y-bounded of unit order, 

iocally in r). 

D 
Sow let Mi(r) denote .M$(r) in (A. 1.38) when = rkg, and combine (A. 1 X), 

(A-1.40), (.4.1.41), (.4.1.53) 
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to get 

1=1 

d 

+€ C Oi(XC, Y C ) ( s )  (&g) ( X C ,  Z C )  ( r )  

(A. 1-55) 

Rearranging (A. 1.55): 
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In view of (-4.1.8) and (A.l.56) we have 

- cK12 /0 Ah- ( E .  -Yc. Y' ,  2') (s)ds. VT E [O, 11. 
K= t 

In order to establish (A. 1.20) from (A. 1.53, which will follow in Step III ,  we now 

upper-bound the expectations of terms on the right hand side of M;(r A T i )  from 

(A.1.57) starting with the 1 s t  term. From (A.0.2) we have Xe(s)  E Si, QO s 5 

Th, thus. fiom (.4.1.54), and qd > (1 + q? v q3)  (see Condition 3.2.18) we get 

5 C,(R) [l + IYe(s)lq4] I {S 5 T i ) .  (A. 1 SS) 

Taking expectation in (A.l.58) and using Lemma A.4. i  on page 123 we get a con- 

stant C2(R) E [O. oc) such that 

Vc E (O, 11, Vs E [O, 11, K = 1,2,3,4,  and t hus by Fubini's theorem one has 
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As for the second term on the right side of (A.l.57). fk some R E (Ro.  s) 

where & is specified at (A.1.20). Then we have IXC (T;) 1 = R, hence on the event 

{Th c r ) ,  (XC(r TC,), Z c ( r  T i ) )  4 support {(&.g)(.. .)}, and thus 

{ @ ' ( ~ ' ( 5  A T i ) ,  y'(. A Ta)) (&g) (X'(r A T(R), Z'(T A Ti)) ) I {Ti < T }  = 0. 

(A. 1.61) 

tlr E [O, 11, Vc E (O, 11. In view of Condition 3.2.8, which ensures that P(r. y)  

is polynomially y-bounded of order q, locally in z, and also using the fact that 

(&.g)(z,-) is uniformly bounded, there is a constant C3(R) E [O, cm) such that 

IW(XC(r A G), Y c ( r  A Ti))  (&g) (XC(r T f R ) ,  ZC(7 A T;i))l I { r  5 T i }  

5 C3(R)[l+ IYC(r A Tk)ln]I {T  5 Ti}. (A. 1.62) 

Yow, from (A.1.61) and (A.1.62), we can mite 

IW(?iC(t A Ti)! YC(i  A Ti))  (&g) (XC(r  /\ Tk)? ZC(r A T;O)I 

5 C3(R)[l + IYC(r A TA)Im]I { r  5 T i } ,  (A. 1.63) 

Thus, taking expectation in (A.1.63) and using Lemma A.4.1 on page 123 there is 

a constant C4(R) E [0,m) such that 

EI@'(Xc(r T i ) ,  YC(r T i ) )  (&g)  (XC(r A Ti) ,  Z'(T A S(R))I 

the third term on the right hand side of 

(A.1.57), a similar argument shows that there is a constant C5(R) such that 



.&€'PENDE A- PROOFS FOR SECTIOS 3.3 89 

for al1 e E (O, 11, T E 10,1]. For the fourth term on the right hand side of (A.l .57).  

an argument ahich is similar to that used for (A.1.64) together a l t h  (3.2.35) e s  

tablishes; for each R E [O, oo), there is some constant Cs(R) such that 

for all e E (0,1], T E [O, 11. Let J j  ( T )  denote the sum of al1 terms on the right side 

of (A.1.57), except for the first term A,(Xc, Zc)(r) ,  thus 

for al1 c E (O? Il, r E [O, 11. From (A. l.60), (A. 1.64), (A. 1.65) and (A. 1.66) we have 

seen that for each R E (&, m) there is a constant Cï(R)  E [O, cm) such that 

E IJi (T A T i )  1 5 c'12c7(~), (A. 1.68) 

for al1 c E (O, l ] , r  E [O, 11. 

STEP III: In t his step we show t hat { (Mi(r A Ta), 9:) , r E [O, 11 ) is a mart ingaie 

on (fi, F, P) for each c E (0.11, R E (O, cc) and g E CC (@ 8 p), recalling that 
'5 

iV;(r) is given by (A. 1.38) with iIr = qi from (4.1 AO). We do this by showing t hat 

the stochastic integrals on the right side of (A.1.38) ( which are clearly {Ç:}-local 

martingales ) in fact become genuine {Ç:)-martingales when stopped at T;L. Be- 

ginning with the second term on the right hand side of (A.1.38), take y'-derimtives 

of Y(, in (.4.1.40) and use (A.1.41) to get 

1 + -c (a,, q' j )  (2, y) (&&g) (2, z) . (A. 1.69) 
i=l j=i 



APPELMILX A. PROOFS FOR SECTION 3.3 90 

Since &g(z, z )  and &.g(z, 2) (recall g E C F ( ~  8 @) and &.&.g(x. z )  are uni- 

formly bounded, it follows from (A. 1.69) and Condit ions 3.2.8(see (3.2.17)) and 

3.2.15 that, for the futed R E (O, oc), there is a constant Cs(R) E [O, cm) such that 

Vc E (O, 11. and, Y(+, y, r)  E S i  @ R* 8 ar'. Thus, from (A. 1.70) and Condit ion 

3.2.1, there is a constant C9(R) E [O, oo) such that 

VÉ E (O, 11, and, V(x, y, r) E S i  @ R~ 8 d. Then from (A.1.71) we can 

Vc E (O, 11, Vs E [O, 11. Taking expectation in (A. 1.72), applying Lemma A.4.7 on 

page 123 and recalling that q 4  > 2( 1 + 92 v q3)  there is a constant C9(R) E [O, m) 

such that 

for aII s E [O. 11. 'Jow fiom (A.1.73), Fubini's theorem, the Itô isometry, and the 
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fact that q d  > 2(1 + qz V g3) (see Condition 3.2.18) it  follows that 

where Cil (R) E [O, CS] is a constant. Thus, from (A.1.74), it follows that 

is an Lz-continuous martingale with respect to {Ç:, r E [O, Il). Similar analysis for 

ail terms in the right hand side of (A. 1.38) shows that {(Mi (r A Th), Ç:), s E [O, l]} 

is a martingale on ( R , 3 ,  P), for each É E (O, 11, R E (O, m). and g E CF (Wd @ l Z d ) .  

STEP IV: In this step, we show that (A. 1.20) holds, which establishes the result 

(see Remark A. 1.2). Since r (Xe, Ze) is uniformly bounded and Çk -memurable 

(recall (A.1.15)), it follows from Step III that 

for each e E (O, 11 and O 5 51 < r2 5 1. From (A.1.76) and (A.1.67): 
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Moreover, from (A. 1.68), and the uniform boundedness of I'(Xc. 2') we s e  t hat 

Lm E [{ J; (9 A T i )  - Ji (q A T a ) )  T ( x L ,  z')] = 0. (A. 1.78) 
c-bo 

for each R E (&, m) . Now from (A. 1.77) and (A. 1.78) we get 

Lm E [(A, (Xe, 2') (r2 A Ta) - A,(Xc, 2') ( T ~  A q) T(XC, ZL)] = 0. (A. 1.79) 
c-O 

as required. 

Proof of Proposition 3.2.13 on page 37: Fix x E d, and fi?< i, j E 

{1,2, .  . . , d) throughout the proof. Observe fiom (3.2. lg), (3.2.27), (3.2.28) and 

We now study the terms on the right hand side of (A.2.80). Since i and j can be 

interchanged we need to study only the first term. Define 

A where {c(t, 2, y)} is given by (3.1.3) with {(O, z, y)  = y, namely 
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and *(x, 5) is subject to Condition 3.2.8. E-xpanding V (x, {(t .  x. y)) using (3.2.1.1) 

and Itô's formula gives 

Now fix R E [O, oc) such that x E S i .  From Condition 3.2.8, there is a constant 

Ci(R) E [O, cm) such that 

for each (s,y) E [O,oo) 8 R". Since (3.2.11) holds with O ( . , . )  in place of F ( - , a )  

(see Condition 3.2.1) there is a constant C2(R)  E [O, a?) such that 

for each (s, y) E [O, oo) 0 R*. From (A.2.84), (4.2.85) and using this fact in 

conjunction with (C.0.7) in Lemma C.0.6 on page 203. one checks that 

5 4 ( R )  t 1 + E max ~{(s,z,y)l~('~~) lo%t 
where C3(R) E [O. oo) is a constant. As a result , the stochastic integrals in (A.2.83) 

are L2-martingales and nul1 at the origin. 

Now one easily sees from Conditions 3.2.1, 3.2.8, and (3.2.14), that A@J(x, y) 

is polynomially y-bounded of order (2 + q2) Iocally in x.  Since x E S i ,  there is a 



constant C3(R) E [O, ca) such that 

V(s, y )  E [O. oc) €3 lRD. (..\.2.87) 

Hence, we can mite 

E mu IAY(x, ((s, X, y)l 5 C3(R) 1 + E max [~(s, x, y ) ~ ( ~ + " )  
s€[O.tl s€[O.t ]  

V(t, y) E [O, m) 8 IZD. Thus, by (C.0.7) in Lemma C.0.6 on page 203 and using 

(A.2.88), one sees that for each T E [O, oc) there is a constant C5(R, T) E [O, oo j 

such that 

t hus 

V(t, y) E [O, cm) 8 R! Thus taking expectation in (A.2.83) and using Fubini's 

theorem with (A.2.90) we have 

E ( V  (2, {(t, z, y)) = W x ,  Y) + E [AW (2, t(sl 2, Y))] ds. 
1 0  

In view of (A.2.80) and (A.2.91): 

Xow let {c(t ,  x) , t E [O, oc) ) be some IZD-vdued stationary Markov process dehed 

by (3.1.3) with marginal distribution given by the invariant probability measure ~r, 

of Condition 3.2.3. From (A.2.80) and the Markov property of {c(t, 2,  y)) we have 
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Thus, by (A.2.93) and the composition rule for condit ional expectations. 

and so, from (-4.2.91) and (A.2.94) we get 

We now show that s + E [ d V ( ~ ( s , ~ . y ) ]  , s  E [O,m), is continuous. Fix some 

sequence {sn, n E N) C [O, oc) such that s, + S. Since { ( O ,  xT y )  is continuous and 

AV(x,  .) is continuous, we have 

V ( 2 , y , w )  E Wd@ IZD 8 0. Yow, suppose that O 5 s, 5 T < m,Vn E W, then, 

using (A.2.89), we get 

V(z, y) E R ' ~ I  p. Thus, using (A.2.97), (A.2.96) and the Dorninated Convergence 

Theorem, it follows that 
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Q(x ,  y) E id IlD, which proves that s -t E [dW(r, {(s, z, y))] is continuous over 

[O, oo). Hence fixing a sequence {t,) such that O < t ,  5 1 and lim,,, t ,  = 0. by 

the Fundamental Theorem of calculus we get 

Thus, clearly 

for V ( z ,  y) defined in Condition 3.2.8. But, from (A.2.89) and Condition 3.2.8(1), 

one rees that the mapping (r, y )  O1(z. y) (5 Jin E [A++, ((S. r. y))] ds} is 

polynomially y-bounded of order (2  + 2q2) locally in x; namely 

for some constant Cs( R) E [O, w). From (3.2.20) the dominating function 

y  -+ Cs(R) [I + ly1(2+2a)] : mD i R in (-4.2.101) is n,-integrable. Thus (A.2.100) 

and the Dominated Convergence Theorem give 
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and therefore, from (A.2.95) and (A.2.102): 

= - n-00 lim LD Q i ( x .  y) {i JII. E [AV(=. ( ( S .  z. Y)) ]  ds 

Since {c(t ,  x ) )  is stationary we have 

t hus 

E [{at ( x ?  :(O7 z)) *'(x- Z(tn X I )  } {w (x, ?(O, X )  1 - (x* t(tn* x ) )  }] 

= E [ O ' ( ~ , $ ( O , X ) )  { p ( x . è ( ~ , r ) )  - ~ ( 2 .  T ( t n * x ) ) ) ]  

- E [@'(z. $( tn .  x ) ) P  ( x ,  :(O, x))] 

+E [WG m n .  4 ) ~  ( x .  a t m  411 
= E [W(L :(O. x)) {P (x. :(O. x)) - ~ ( x .  t(tn. x ) ) } ]  

-E [ + l ( x . ~ ( t n . x ) ) ~ ( x , R ~ . ~ ) ) ]  

+E [W(L :(O. x ) ) V  ( x .  f (0 .  r ) ) ]  

= E [at (x- ?(o. X )  ) {@' ( x ,  :(O, 1 - (xt E(tn 7 XI ) }] 

+E [ ~ ( x .  C ( O ,  2 ) )  { v ( x .  :(O* x)) - @'(x! z(tn, x)))] . 

(A.2.105) 
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Yow combine (4.2.80), (A.2.103) and (A.2.105) to get 

1 = iim -E [ { @ ' ( X , : ( O ,  x)) - @'(x&,,, x))} {P(x.  ~(0. x)) 
n+- t, 

Since the right hand side of (-4.2- 106) defines a nonnegative definite matr~x. we see 

that ü(z) is nonnegative definite. 

A.3 Compactness 

In this section we give the proof of the result on compactness which is needed to 

establish Theorem 3.3.3 on page 42. 

Proposition A.3.1. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8, and 3.2.18 

hold, and {c , ,  n E PI) is an arbitra y sequence in ( O ,  11 with E, * O ,  as n + SI. 

Then the sequence of probability measures {L(Xen , Zen), n E M) oves (R' , F ) (dejined 

by  (3.3.49) and (3.3.50)) is weakly relatively compact. 

ProoE Fix some 6 E (O, 11. From Proposition A.4.4 on page 11 1 there is some 

R(6) E (O, w) and positive integer n&5) such that 
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Let C E (O. oc), and choosing O < 7 < 1. 

max IZcn(r2) - Zen(rl)l 2 C 
I l - y i l ~  
Tl . q € l O , l I  

max IZCn (Q) - Zen (q) 1 2 C 
l 3 - 1 1 5 ?  
I .?€[O4 

max IZ'n(~2) - Zcn(r1)l > C 
1 9 - q I s 7  
-t . V € I O . l l  

max / 2'" ( 7 2  A T&,) - Zen (7, h Y&,)( 2 C 
I'z-fl 1st 
71 . ~ € ~ O . l ~  

Thus. using (A.3.108). one sees that 

max IZefi(i2) - Zcn(il)l  2 C 
11-1151 
71 .-2€[O.lj 

Xow from Proposition A.42 on page 101, Chebyshev's inequality, and the fact that 

P f ( 2 4 4  
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for each y E (O, 1) 

for each y (0, 1) 
a ri = ri (Cl 3) E (0, 

C(R(a)) [(,J I + ,:] , ar1 E [O. II, 
CP 

and each C E (O,=). Clearly? from (A.3.110)' one has 
r 1 

and each C E (O, m). Fiu C, 8 E (O, w), then there is a constant 
A 

a?) and a positive integer nz = nz(C, 3) such that 

Hence, from (.4.3.111) and (.4.3.112), we get 

Sow, by Theorem C.O.10 on page 20-1: it follows easily that the sequence of prob- 

ability measures {L(ZCn (. A qn)) , n E N) on (CIO, 11, Bc[o~ll) is tight . Thus, by 

Theorem C.0.8 on page 204, there exists some h(C, 6) E (0: 11 and some positive 

integer n3 (C, 6) such that 
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Combining (-4.3. lo i ) ,  (A.3.109) and (A.3. ll-k), Xe get 

Thus, using Theorem C.0.8 on page 204, one sees that the sequence {L (Zen).  n E 

W) is tight, hence weakly relatively compact ( by Theorem 6.1 on page 37 of Billings- 

ley (41). A similar argument using Propositions A.4.4 on page 11 1 and A.4.3 shows 

that {&Y'-), n E N) is also relatively compact. Finally, weak relative compact- 

ness of {L(XCn1 Zen), n € N) folloais from Lemma (C.O. 11) on page 205. 

A.4 Supporting Results for the Proof of Proposition A.3.1 

on page 98 

Remark A.4.1. In this section we give the prook of the various supporting results 

which were used to establish Proposition A.3.1 on page 98. To this end, for each 

E E (O, 11 define 

where @(x, y) is the C2-hc t ion  in Condition 3.2.8. Also, observe from Condition 

3.2.18 that there is some constant p E ( 2 , ~ )  such that p(1 +q2) 5 q4. 

Proposition A.4.2. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18 

hold, and let p E (2, OQ) be the constant in Rernark A.4.1. Then, for each R E 

( O ,  oo) , the= i s  a constant C( R) E ( O ,  m) such that 

max Z c ( r ~ T ; )  - Z ' ( r l ~ ~ ) l p ]  5 C(R) [ r ( p 2 ) / 2 + ( r 2 - i l ) ~ / 2 ] ,  
TE[? ,+11 

for d l  e E ( O ,  11 and O 5 ri < TZ 5 1. 
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ProoE Fix R E (O, cm). From (3.3.12), (3.3.44). (3.3.43) and (3.2.19). for each 

E E (O, 11, we have 

A z Ze(u r\ T i )  = [x'(u A T i )  - X (U A T;)] 
UAT;, 

- € - -v2 [JIuAT' F(XC(s) ,  Ye(s) jds + // G ( S e  (s))dlIvL (s) 

UAT;, 

+ I  [G(xe(s) )  - G(F (s))] &Ve (s) 

UAT;, 

+1 [F(.Y'(s), ye(s)) - F(x'(s))] ds] 

u AT; 

+ [G(.Y'(S)) - G ( ~ ( S ) ) ]  d t ï e  (s )  

u AT;, 

-1 AO(Xe(s),  YC(s))  ds , Vu E [O, 11. 

(A.4.118) 

In view of (A.4.116) and (AA.118): 
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Vu E [O, 11, Ve E (O, 11. Hence 

UAT;, - 
ZC(u A  FR) - Z'(T~ A Ti) = e-"* 

LAq F ( x C ( s ) )  - F ( ~ ( S ) ) ]  ds 
UAT; 

+c-l /2  L, AT; 
[G(x'(s)) - G (X? (s) )] &VC (s) 

- [?(U A Ti) - ? ' ( T ~  A FR)] (A.4.120) 

Vc E (O, 1],VO 5 si 5 u < 1. From (A.4.120) we can mite 

Ve E (O, Il, t/O 5 rl 5 u 5 1. Thus, from (A.1.121), we get 

- < e-''* / IF(x' (s)) - F(F (s)) 1 I{s < T i } d s  
Q 

+ max IEC(u A T i )  - 3 ' ( ~ ~  A T;)I, 
uE [ri ,7] 

E (O, 1],VO 5 TI 5 T 5 1. YOW, fIom (A.1.122), one has 

+ r - ~ / '  max I/: [G(x'(s)) - G ( ~ ( s ) ) ]  I{s 5 T ~ ) d W C ( s )  
u€ [q ,TI IP 

+ max ~ ~ ( u A T ; )  - ? ( T ~  A ~ ) I ~  
uE [q ,r] 
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Ve E (0,1],QO 5 rl 5 r 5 1. Taking expectation in ( X . 1 . 1 2 3 ) .  gives 

E max I Z < ( U A T ; )  - ~ ' ( q  AT;)P] I u€ [ri JI 

max I E ' ( U A T ; ) - Z ~ ( T ~ A T ; , ) I ~  
uE [7l JI 

Then. if LI denotes the global Lipschitz constant of F( . )  ( s e  Condition 3.2.3), one 

sees from Holder's inequality (with conjugate exponents y and i) and (3.3.45) 

that 
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5 (7 - T ~ ) ~ - ~ ( ~ L I ) ~  [(r  - rl)E / Z e ( q  A ?';),P + /: U ~ ( S ) ~ S ]  . (A.4.126) 

VE E (O, 11, r E [ri, l]. Considering the second term on the right side of (.\A. 1%). 

the Burkholder inequaiity gives a constant C, E [O. oc) such that 

E max c-lI2 [G(x'(s)) - c(F (s))] I (S 5 T~}dCVC(s) 
[u~h.rl I il 

Vc E (O. 11, r E [sl . 11. Thus, if L2 is the global Lipschitz constant of G ( . )  (see Con- 

dition 3.2.1 ) , t hen Holder inequality (wit h conjugate exponent &, 2) and (A.4.127) 
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gwes 

E max c - ' / ~  [G(x' ( s ) )  - G ( ~ ( s ) ) ]  Z{s 5 T;R)&VL(s) 
[u€h.rlI l 
e - p / 2 ~ p  E ( r  - r1)  

II 
[ ip-2i'2 {jli IG(XC(s)) - G ( ~ ( s ) )  lp  I { s  5 T;Ods 

5 (T  - T ~ ) ~ - ~ ) ~ ~ c ~ E  [l I G ( x ~ ( s ) )  - G ( T ( s ) ) / ~  I { S  q } d s  

11 
5 ( f  

1 
- T ~ ) ( ~ - ~ ) / ~ C , ( L ~ ) P E  (Xe(s )  - (s)) I P  I { S  5 Ti}ds  [/: 

< C,(r - T ~ ) ( P - ~ ) / ~ ( L ~ ) P E  [[ IZe(s) l P  I { s  < T';}ds] 

1 
I Cp(r - 11) ' p - 2 v 2 ( ~ 2 ) p ~  [JI: ZL ( s  A 7';) P d s ]  

5 cP(7 - T I )  ' P - ~ ) / ~ ( L , ) P E  [JC: 1ze(rl A TA) + ( z e ( s  A T;) - ZC(T' A T ; ~ ) ) I ~ ~ J  

5 c p ( r  - 11) ( P - ~ ) / ~ ( ? L ~ ) ~ E  [[ !Ze(r1 A 7';)IP + Z ' (S  A Ti) 

1 
-Z ' (T~ A Ti ) lp  ds] 

5 C,(r - ~ ~ ) @ - ~ ) / ~ ( 2  ~ 2 ) ~  [ (T  - q)  E IZL(rl A Ta) J P  

+ jT E [ u $ E i l ~ e ( i r  AT;) - Z C ( q  n d~ 
'7 

< Cp(2L?)P(r - n)(p'2)/2 ( r  - r t ) E Z e ( r l  ilT;)IP + L ~ r ~ ( s ) d s ]  , 

1 1  
[ 

(A.1.128) 

Qe E ( O ,  11, VT E [ T ~ ,  11. Combining (A.4.124) with (A.4.126) and (A.4.128): 

U i ( r )  < 3P (T - T ~ ) ~ - ~ ( z L ~ ) ~  [ ( T  - T ~ ) E Z ' ( T ~  hT;1)Ip + [ L J R ( s ) d s ]  { 
+C,(T - T ~ ) ( P - ~ ) / ~ ( ~ L ~ ) P  [ (T  - r1)E 1 Zc(q  A q) I P  + Ir LIR(s)d~] 

n 
r 

i E  [ u ~ [ r i  max .rj S e (unT; )  - ~ ' ( u h ~ ) ~ ~ ] }  (A.4.129) 
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Ve E (O, 11, Vr E [ri, 11. Then, from Proposition -4.4.3 on page 107 there is a 

constant Cl(R) E [O,CQ) such that 

+E[ max, ' ( u  A 5) - ?(u A TR)~']] . 
u€f,,t, 

Vr E (O,  l ] ,Vr  E [rl, 11. Thus, fiom (A.4.129) and Proposition A.4.6 on page 117 

there are some constants C2(R), C3(R) E [O, m) such that 

Qr € (0,1],  QO 5 5 rz <_ 1. Applying the Gronwall's inequality in (A.1.131), one 

has 

for some constant C(R) E [O, w), thus (A.4.117) follows. 

The next result is used for the proofs of Proposition A.4.2 on page 101 and Propo- 

sition A.3.1 on page 98. 

Proposition A.4.3. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18 

hold, and let p E ( 2 ,  m) be the constant in Rernark A.#. 1. Then, for each R E 

( O ,  a), thete is a constant C(R)  E ( O ,  oc) such that 
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ProoE Fk R E ( O ,  oo). üsing ZC(u A T i )  given by (.Li. 1 19). we have 

QO 5 u 5 T 2 1,Vc E (O,l]. From (A.4.131): 

u 2 q ,  

t/s E [O! l ] , k  E (O, 11. Hence 

+c-'/' max / / [G(XC(s)) - G(X<(s))] d l l * ' ( s )  
uz~[O,r] O 

UAT; 

+€-pl2 max I /  [ G ( - w ) )  - m ( 4 ) ]  dwwlp},  
u€[O.7] ,, 

(A.4.136) 

. 
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Vs E [O, l],Qc E (O, 11. Upon taking expectation in (A.1.136): 

max I Z c ( u ~ q ) I P  
u€[O,+] 

VT E [O,l],Ve E (O, 11 Now, for each T E [O, II, put 
r 

Rom (3.3.45), (A.4.138), the global Lipschitz cont inuity of F(.) (see Condit ion 

3.2.3), with Lipschitz Constant LI E [O, m), and Holder inequality, we find an 

upper bound for the second expectation on the right side of (A.1.137): 

max IZc(u A Ti)IPdS 
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Vr E [O, l],Vc E (0, m]. 

Also, using the Burkholder's inequality, for the third expectation on the right side 

of (.4.4.137), there is a Constant C, E [O, m) such that 

[G(x'(s)) - G(Y (s))] I {s 5 T;)&C''(s) 13 

VT E [O, 1],Vc E (O, 11. If Lz E [O,ca) is a global Lipschitz constant for G(.) 

(see Condition 3.2.1) , then, applying Holder inequality (with conjugate e-xponents 

5, f ) ,  (3.3.45) and (A.4.138), one establishes an upper bound for (A.4.140) as 

follows 

rnax I c - 1 / 2 1 u  [G(x'(s)) - G ( ~ ( s ) ) ]  I{s < T~}dlVLjs) 
u ~ f O 7 l  

V r  E [O, 11, Vc E (O, 11. Hence, from (A.4. W ) ,  (A.4.139) and (A.4.141) we have 
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VT E [O, 11, V E  E (0, 11 and for some constant C2 E [O' 30). SoW. by Proposition 

A.4.6 on page 117, there is a constant C3(R) E [O, m) such that 
r 1 
mau I Z ( u  A Ti)IP 5 C3(R) ,  Vc E (O. 11. 

UE[O,II J 
Hence, fiom (A.1.112) and (-4.1.143): 

VT E [O, 11, b'c E (O, 11. Thus (A.4.133) follows fiom (A.4.138), (A.1.144) and Gron- 

waii's inequality. 

The next result is used for Proposition A.3.1 on page 98 and Theorem 3.3.3 on page 

42. 

Proposition A.4.4. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18 

hold. Then, for each 11 E (0,1], there is some R(7) E (0,  m) and c(g) E (0,1] such 

that 

P [Th = 11 2 1 - r ) ,  QC E (O. ~ ( q ) ] .  V R  E [R(q),  -ci). (4.4.145) 

ProoE Fiu arbitrary c E (0.11, R E [O. cm). From Remark A.0.26 one has 

1 Xc(Th) 1 = R on {Th < 1). Sow, clearly 

for each r E [O. 11, and thus we have 

From (A.4.147) one has 
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Hence 

{c < 1) C {lxc(q)i = R )  = {max lx'(; A Tk)I 2 R) . (A.4.150) 
~ ~ i O . 1 1  

from (A-4.149) and (.4.4.150). we see that 

Sow fkx some arbitrary g E (0.11. Since xo is nonrandom. it follows from Rernark 

3.3.1 and standard moment bounds for stochast ic differential equations (see e.g. 

Lemma C.0.6 on page 203 that there is a constant Co E [O, 30) such that 

mau ~ y ( ~ ) ) l  5 Co. Vc E (O, 11. 
~ ~ ( 0 . 1 1  1 

where p E (2,oo) is the constant in Remark A.1.l. Thus, using Chebyshev's in- 

equality, there is R(q) E (0, m) such that 

5 ~ 1 2 ,  Ve E (O, 11. (4.4153) 
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Moreover, by Proposition A.4.3 on page 1 13 and Chebys hev's inequality. t here is 

~ ( r ] )  E (0 ,1]  such that 

maw I.Y'(T A T'&,) - (T  A T&,JI 3 R ( 9 ) / 2  < q/2. Ve E ( O .  r ( q ) ] .  
~€[O,lj J 

Thus, one sees fiom (A.4.1M), (X.4.153) and (A.l.151) that 

Since Ta increases with increasing R (see Remark A.0.261, thus the result follows; 

namely 

The next result is used for the proofs of the Propositions A.4.4 on page 111 and 

Theorem 3.3.3 on page 42. 

Proposition A.4.5. Suppose that Conditions 3.2.1. 3.2.2, 3.23, 3.2.8 and 3.2.18 

boldo and let p E ( 2 ,  m) be the constant in Remark ri.4.1. Then, for each R E 

there is a constant C ( R )  E ( O .  3c) such that 

1 max I x ' ( T  A T i )  - ( r  A T R )  1'1 < c(R)@' /~ ,  t e  E (O, 11. (A-4.157) 
~ ~ p . 1 1  
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ProoE Fix c E (O, il, R E (O.=). In view of (3.3.Q), (3.3.11) and Condition 

3.2.8, clearly 

Vu E [O, 1;. Hence, from (.4.1.138): 
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Moreover, from (A.4.lj9). one sees that 

E max X ' ( U A G )  - Y ( ~ A T ; I ) I ~ J  I uE[O,T] 

Yow put 

If Li, L2 E [O,=) are global Lipschitz constants for F ( . )  and G(.) respectively 

(see Conditions 3.2.3 and 3.2.1), then it follows easily that the first and second 

evpectations on the right side of (A.4.160) have upper bound given by 
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and 

5 Cp(L2)PE [17 1 X' (s) - (s) 1 [s 5 T i ]  ds 1 

Here we used Holder's inequality to get the first inequality in (A.4.162), the 

Burkholder inequality at the fim inequality of (A.1.163), and Holder's inequality at 

the t h rd  inequality of (-4.4.163) (where Cp is a constant resulting from Burkholder's 

inequality). Csing (A.4.116) and Proposition A.1.6 on page 117, there is a constant 

C(R) E [O, xi) such that the upper bound of the third expectation in (A.4.160) is 

given by 

5 c(R)cP~' .  Vc E (O, l].(A.4.164) 

Insert h g  the upper bounds of (A.& 164) ? (A.?. 163) and (A.4.162) into ( A d .  l6O), 

and using (A.4.161), we get 

~ ~ ( ~ ) < C I ~ ~ U ~ ( S ) ~ S + C ( R ) E ~ / ~ ;  [ O ] ,  ( O l ]  (A.4.165) 

for some constant Cl E [O1 30).  Thus. from (A.4.165) and Gronwall's inequality one 

has 
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which establishes (A.4.157). 

The follon-ing result is used for the proof of Proposition A.1.5 on page 113. Propo- 

sition A.4.3 on page 107 and Proposition A.4.2 on page 101: 

Proposition A.4.6. Suppose that Conditions 3.2.1, 3.2.2. 3.2.3. 3.2.8 and 3.2.18 

hold, and let p E ( 2 ,  a) be the constant in Remark r1.4.1. Then. for each R E 

(O,=) , there is a constant C(R) E ( 0 , ~ )  svch that 

for al1 O 5 TI  < 72 5 1 and c E (O. 11 ( m l 1  Z' zs defined in (-4.4.116)). 

Proof: Take d = D = M = .Y = 1 in Condit ions 3.2.1. 3.2.2, 3.2.3, 3.2.8 and 

3.2.18; the proof for the general dimensions is unchanged and just involves more 

complicated notation. Sow (3.2.19) reduces to 

- 
A@(x, y) = F ( z )  - F ( x .  y ) .  V(X. y) E L?Z @ R. (-4.4.168 j 
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Fix R E (O, 11. Expanding @(XL(r), Y i ( r ) )  in (A.4.168) using Itô's formula. a-e 

have 

VÉ E (O, 11, VT E [O. 11. Sow. using (3.3.12), (3.3.43) and independence of {Wc(r). r E 

[O, 11) and {BC(r). r E [O. 11) (as follows from (3.3.40) and Condition 3.2.2). the 

crossvariation processes in (A.4.170) are given by 

[Xe. Y'] (1) = lT G(-Y~(S))O(.~'(S). yc(s))d [W. B'] (s) 
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QE E (O, 11, Vr E [O, 11. From (A.4.110). (A.-l.l69), (-4.4.171). (3.3.42) and (3.3.43). 

it follows t hat 

VE E (O, 11, Vr E [O, 11. Hence, from (A.4.172) and (AA.116): 
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Vc E (O, 11, tfr E [O, 11. Clearly, using (A.l.lT3) and rearranging yields 

-cli2 1- (a,@) (X', Y') (s)G(X4 (s))I{s < T;}dllc(s) 

- ln 
(&@)(xC, Y')(s)u(Xe, Y') (s) I {s 5 Ti}dBc(s), 

VO TI  T 5 1,Ve E (0.11. Also, taking expectation in (A.4.174, for the constant 

p E (2. CU) in Remark A.4.1, one sees that 

(az@) (.Yc. Y') (s)G(XC(s)) I {s < T;l}dWe (s) II 
(a,@) ( X e ,  Yf)(s)a(X', Y') (s) I {s 5 T;}dBc(s) 

W 5 TI < 12 5 1, VC E (0,1]. First consider the sixth term on the right side of 

(A.4.175). By the inequality of Burkholder there is a constant Cl E [O, oa) such 
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VO 5 TI < T* 5 1 , k E (O, 11. Moreover, using Holder inequality (wit h conjugate 

exponents -& and 1) and (~4.4.176)~ we get 

Sow (3, y)  + ay9(x, y)& y) is polynomially 

bounded of order (1 + q2)  in y and locally in x (by Conditions 3.2.1, 3.2.8), thus 

there is a constant C2( R) E [O, 00) such that 

hence (since p(1 + q2)  5 q d ,  by Remark A.4.1) 

Vs E [O, 11. Then, by (A.4.177), (A.1.179) and Lemma A.4.7 on page 123, we have 
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VO 5 11 < r2 5 1, and for some constant C3 (R)  E [O. m). In the same way. one 

fin& a similar bound on the stochastic integral of the fourth term on the right side 

t10 5 r1 c 12 5 1, and for some constant C4 (R)  E [O, oo). Sext , consider the t hird 

term on the right side of (A.4.175). Clearly: by Conditions 3.2.1 and 3.2.8 

Lemma A.4.7 on page 123 and using (A.1.182). we have 

(&a) (A', Y') (s) F(X'  , lm) (s) I {s 5 T(R)ds II 

QO 5 11 < T? <_ 1. and for some constant Cs(R) E [O, oc). Again, by a similar argu- 

ment, one gets the same upper-bound for the fifth term on the right of (.4.4.l75), 

Y0 5 rl < r2 < 1, and for some constant C7(R) E [O, m). Finally, consider the first 

term on the right side of (A.4.175): Since (x, y) + O ( x ,  y) is polynomially bounded 
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of order q2 in y locally in z and p q 2  < q ~ .  there is a constant Cs(R)  E [O. x) such 

t hat 

max l@(Xc7 Y"(T A Ti)[' 5 Ce(R) 1 + max (IY'(s)lq' I{T 5 
r f  [O,ll r~(O,l] 

max l e L / 2 9 ( . ~ e ,  Y')(T A T'i)Ip 5 c~(R)c(P-~)? J +€[0,1] 

Vc E (O, 11, and for some constant C9(R) E [O. oo). Combining (A.l . l?5) ,  (.4.4.180). 

(A.4.181), (A.1.183), (A.4.184) , and (A.4.186), one fin& a constant C(R) E (O,  x] 

such t hat 

E ( max IZ.(T A T;) - ~ ~ ( q  A 
/pJ TE[? ,r?] 

VO 5 TI < r2 5 1.Vc E (O, 11. Thus (A.4.167) holds. 

The following result controls the q4-th order moments of Yc(r )  (recall Condition 

3.2.15) when X c ( r )  is bounded, and is used in several proofs in this section. This 

Lemma is suggested by, and extends, Exercise 5.1.35 of Karatzas and Shreve [19]. 

Lemma A.4.7. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18 hold. 

Then, for each R E [O: m) there is a constant C(R) E [O, oc) such that 



A 
ProoE Fix c E (O, 11, R E [O. CS). and let $(y) = lylq4, Vy E pl be the CZ- 

hinction defined in Condition 3.2.18. Sow, put 

In view of Condition 3.2.1 we see that (&7) (y)o(x, y) is a row vector of length .Y 

entary calculus we have 

From Condition 3.2.1 there is a constant CI E [O, oo) such that 

Combining (A.4.190) and (4.4.191) we easily see that there is a constant Cz E [O, so) 

such t hat 

l(ayv)(g)42. y)12 < C? [l + I(Z, , Qx E bP, Vy E R ~ ,  (A.1-192) 

(where I ( x ,  y)l denotes the Euclidean length of the (d + D)-vector (x, y)). 

Since the coetncients in (3.1.1) and (3.1.2) are linearly bounded (see Condition 

3.2.1) and xo, yo, are non-random, it follows fiom well-known moment bounds for 

stochastic different i d  equat ions (see Lemma C -0.6 on page 203) that 

Thus, { ( M C ( t )  ,3,) , Vt E [O, oci) } is a martingale on (R, 3, P) , hence by the optional 

sampling theorem { ( M C ( t  A th), Fr), W E [O, 00)) is a martingale (recall Remark 
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.4.0.26), hence 

Using Itô's formula and (3.1.2) to expand y (yC(t)), one has 

tively. Clearly, from (A.1.195) : 

VO 5 t l  < t? < m. From Condition 3.2.18 and (A.0.1), 

Upon taking expectation in (A.4.196), by (A.4.197) and (A.1.194), we get 



APPENDm A. PROOFS FOR SECTIO-V 3-3 

VO 5 t1 < t2 < m. We now show that 

QO 5 t 1 < tz  < m. To see this consider the following cases: 

(i) O 5 tk < tl < t2 < m. 

Here 

left hand side of (A.1.199) = 0, 

right hand side of (A.4.199) = 9 (yc&)) - y (yc@',)) = 0, 

hence (A A. 199) holds. 

(ii) O 5 t l  5 tL, < t2 < m. 

Here 

left hand side of (.LLl99) = -9 (gC(tl)) , 

right hand sideof (A.1.199) = q(yt(tR)) - p ( y c ( t l ) ) ,  

hence, since 9 (gc(t(R)) 2 O? we pet (A.1.199). 

(iii) O 5 t l  < t2 5 tk < ai. 
Here 

left handsideof (A.4.199) = y(ye(t2))  - p ( y C ( t l ) ) ,  

right handsideof (A.1.199) = y(yL(t2) )  -rp(yC(tl)), 



APPE.WLY A. PROOFS FOR SECTIOA* 3.3 127 

hence (A.4.199) follows. Thus we have established (A.1.199). From (i\.-l.lW) and 

(A.4.198), one has 

where the dependence of ~ ( t )  on É, R. is omitted to simpliQ the notation. From 

(A.1.200) and (A.4.201). we can write 

Xow we check that t -t ~ ( t )  is left-continuous on [O. xi). Since t + I{ t  5 t h )  is 

clearly left-continuous on [O, m) , and t -+ y ( yc ( t  A t h ) )  is continuous on [O, cm), we 

- see that 

t + I { t  5 t',)p(yc(t A th))  is left-continuous on [O, 00). Sow fbc {t,} C [O, w) such 

that hmn,, t ,  = t < oc, with t ,  5 t. Clearly 

for all n E N. By Lemma C.0.6 on page 203 and linear boundedness of the coeffi- 

cients in (3.1.1) and (3.1.2) (recall Condition 3.2.1) we have 
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From (A.1.203), (.i.4.2O-l), Lebesgue Dominated Convergence Theorem and ieft - 
continuity of t -+ I {t 5 t',)q(yc(t A t h ) )  it follows that t + y(t)  is left-continuous 

on [O, 00). We must now use (A.1.202) to upper-bound r ( t ) .  Sotice that we can 

not apply the Gronwall inequality directly since -AR 5 0. SOW put 

where u(t) solves the equation 

Then the solution of (A.4.206) is clearly given by 

Aiso. by (-.\.1.206), we can mite 

In view of (A.4.208) and (A4.4.202). one has 

where t + v ( t )  is clearly leh-continuous and o(0) = O. Then it is easy to see that 

v ( t )  5 O, V t  E [O, û0). Indeed, we argue to contrary: let 
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We must show that -4 = 0, thus suppose .4 f 0. and let to E -4. i.e. r( to)  > O. Put 

h t. = sup { s  E [O. to] : ~ ( s )  5 0) . (-4.4212) 

Since v ( . )  is left-continuous there is 6 > O such that 

In tiew of (h.4.213) clearly 

Also, by definition of t. and the fact that Y(.)  is left-continuous. one sees that 

v(t .)  5 O and u ( s )  > O.Qs E ( t e .  to ] .  Thus, from (-4.4.210) and AR E (0. % ) ( s e  

Condition 3.2. la), 

which contradicts the fact that c(s) > O, Vs E (t., toj. Thus .4 = 0 ,  hence r ( t )  5 

O. W E [O. m). hence from (A.4.205) and (A.4.207) 

Sow fiom (A.4.216) and (A.1.201) we have 

thus there is a constant C(R) E [O, CO) such that 
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Sow (A.4.188) fouows from (t\.-I.219). (X.O.3), and (3.3.40). 

The foiiowing result is used for the proof of Proposition A.1.6 on page 117. 

Coroiiary A.4.8. Suppose that Conditions 3.2.1, 3.2.2 and 3.8.18 hold. Then, for 

each R E (O, ao), the= is a constant C(R) E [O. m) such thot 

Y€ E (O, 11. 

ProoE Fix R E (O, oo), and put 

where yC(t) is given by (3.1.2) and th is the stopping time in Remark A.0.26. Clearly, 

from (A.4.221) we have 

Hence 

Yow, it is enough to find an upper bound for U;sR as follows: one can write 

Hence for each c E (O, 11 and n = 0 ,1 ,2 , .  . . 
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thus from (A.4.225), 

The second inequality in (A.4.226) follows because, for each t E [n. n + l]. n = 

0 , 1 , 2 , .  . . , we have 

From (A.1.226), a-e have 

max I { t  < t(R) 1 yr(t)lq4 
t~ [n ,n+ l ]  

V r  E (O, 11, Vn = 0 .1 ,2 ,  . . . . Thus, from (A.1.221), (.4.1.223), and (A.-I.ZS), one 

observes t hat 
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VE € (O. 11, Vn = 0.1,2.  . . . . By Lemma -1.1.; on page 123, for the first espectat ion 

of the right side of (A.4.229). we get 

ER Qd 

E [ I { n <  tR}lue(n)lq4] = E [ ~ { c "  ] 
= E[I{cn  5 G} IY'(cn)lq4] 

5 CdR),  (A.4.230) 

Vc E (O, 11, Vn = 0,1 ,2 , .  . . . Also, for each t E [n. n + 11, ive have 

Hence, using (3.1.2). for the second expectation of the right side of (;\.-L.3?9), one 

has 

?iow when t E [n.n + 11 we have 

tAt., 

/ b(rC, yC)(s)ds = /IL b ( z C ,  yc)(s)ds, when n 5 th < t ,  

:Ath  t / 6(xC,  y') (s ) d s h  
= I b(xC,  yC)(s)ds, when t < tk 

n h t L  
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From t hese t hree cases, 

Thus, from (A.4.232), (A.1.234) and (A.4.235) 

< - 2"E ( max IIn I { s  < t ' , } b ( ~ ' . y ' ) ( s j d ~  
t~[n ,n+l j  

VÉ E (O. 11. V n  = 0 . 1 . 2 .  . . . . By Condition 

constants Cl. C2(R) E [O. CQ) such that 

I { s  5 t;} 1 b(xC .  y') (s)l ds 

3.2.1 and Jensen's inequality there are 
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QE E (O! 11. Vn = 0,1,2, . . . . Clearly. from (X.-U3i). Lemma A.1.ï on page 123. 

(A.0.3) and (3.3.40), it foiiows that 

un I { s  < t',} lb(xC. yC)(s)/ d s )  

VE E ( O ,  11, Vn = 0.1.2. . . . , and constants C 3 ( R ) .  C4 (R)  E [O, û0). Also. by Jensen 

and Burkholder inequalities. there is a constant Cs E [O, m) such that 

I {s 5 t',) Trace (ouT (x ' .  y') ( s ) )  ds 

< CrE [[ I{s 5 t k }  (Trace (oaT(r', I.J')(S)))'' /~ ds 1 
(A.4.239) 

t fe  E [O? cm), Vn = 0.1,2,  . . . . Frorn Condition 3.2.1 we easily see that 

(nace (ooT(z, 5 C (1 + lxlq4 + /plq4] , (A.4.240) 
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V(z, y) E @ IZD1 for a constant C E [O,X)) .  Thus. combining [h.-k.'clO). 

(A.4.239), (A.O.3), (3.3.40) and Lemma A.1.7 on page 123 we have 

E max 
L€b*n+ll IL I { s  5 t',}a(C yC)(s)d3(s) 

t 

5 G E  [/: I { s  5 t',) (1 + lf(s)l + lye(s)li" ds] 

Ve E (O,  1],Vn = OJ,?, . .  . . and constants C6(R),C7(R) E [ ~ ~ c c ) .  SOW, from 

(A.4.236), (A.1.238) and (..\.4.241), there is a constant Cs(R) E [O, s) such that 

VB E (O. 11, Vn = 0,1.2. . . . . Thus, from (.4.-l.229), (A.-l.î3O). (A.1.212). it follows 

t hat 

Vr E (O, 11' and some constant Cs(R) E [O, m). In view of (-4.4.243). (A.0.3), and 

(3.3.40) we get 



Appendix B 

Proofs for Section 3.4 

Proof of Lemma 3.4.5 on page 47: The proof is just a tedious but elementary 

computation. Fix R E [O. m). x E Si .  Using the Frobenius nom (see I of "Basic 

Sotation and Terminology" ) , for al1 cl, & E R' , aie have 

By the mean d u e  theorem. we expand each term on the right side of (B.0.1): 

for k = 1,2, . . . Dl n = 1,2, . . . N ,  and Vtl, & E R*. Thus, by Jensen inequdity 

and (B.0.2), we get 
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From (8.0.3) and using Cauchy-Schrvarz inequality it follows that 

v(1, E #ID .  By (B.O.l) and (B.O..L), we can mi te  

Sow put 

Thus, in view of (B.0.5) and (B.0.6), we have 

as required for (3.4.63). Finally. fiom (B.0.6) and Condition 3.4.4. we see that 

Ao(R) < ooJR E [O, 30). 

Proof of Proposition 3.4.12 on page 50: The proof just uses easy calculus. 

Consider the second order differential operator A(x, y) defineci by (3.2.14); recall 
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V(z, y) E 8 QID. Using the mean d u e  theorem, for the first term on the right 

hand side of (B.0.8) we have 

Put 

Thus, from (B.0.9) and (B.O.lO): 

b(x ,  y) = b(xl O) + J(x, û y ) y  da, V ( t ,  y )  E IRd @ R ~ .  1' 
Hence 

V(x, y) E R! @ R ~ .  Yow. obviously, one has 

V(z, y) E nZd 8 W ~ . Q Q  E [O, 11. Fix arbi trq  R E [O,m). Then Remark 3.4.6, 

(3.4.66), and Lemma C.O.12 on page 205 for the syrnmetric matrix [~(x. ûy) + P ( x ,  ay)] 
in (B.0.13) ensure that 

yTJ(x ,  ay)y 5 maximum eigenvalue {1/2[J(xl ûy)  + J'(x, ay)]) ly12 

where A1(R) is defined by (3.4.66) in Rernark 3.4.6. Thus, from (B.0.12) and 

(B.0.14), we get 

V(x, y) E S i  8 R*. For use here and later, we record the following elementary 
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Fact B.0.9. For : IlD -t R given by $ ( y )  = lylq. q E [2. m) a constant. we have 

cp E c2(&ZD) Wth 

(where is the Kronecker 6). 

Hence, from (B.O.15) and (B.0.16) one can mite 

V(x. y) E S i  O IZD. Noa consider the second term on the right hand side of (8.0.8): 

From (B.0.17) it follows that 

1 C 1 [O(% y)oT(xl y)] (a,'4,~9)(~) 2 i = i  j=i 
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V(x, y) E 27; @ R ~ .  By Lemma C.0.12 on page 205 we have 

yT [auT (x, y)] y 5 maximum eigenialue[oaT (t . y)] 1 y 1' 
5 ~ r a c e [ u o ~ ( x ,  y)] 1 V(x, y) E S: @ niD. 

(B.0.20) 

In view of (B.0.20) and (B.0.19) one has 

Y(+, y) E @ @ I Z D .  Also, (3.4.63) together with triangle inequality for the Frobenius 

norm 1.1 gives 

Thus, from (B.0.22) and (B.0.21). we have 
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Combining (B.O.8), (B.O.l8), (B.0.23) and (B.0.24) we get 

We now require the foilowing elementary Fact B.O.lO. 

Fact B.O.lO. Suppose O < Cl < Cz < m. Then, for each 6 E (0, XI), one has 

~ z l ~ ~  <_ bC2-Ct~zic2 + (1/6)'1, V: E piD. (B .0.26) 

Proof of Fact B.O.lO: To see this, observe that 

cc' 5 1+f2, Q<'c [O,m). (B.0.27) 

a Fiu 6 E (0, m) and put C = 6 1 ~ 1 .  for : E #ZD. Thus. by (B.0.26), we have 

Ziow tùr b E (O, 00). From Fact B.O.10 on 

(l/)c. Vr E R ~ .  (B.0.29) 

O 

page 141 we have 
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AIso. define 

Thus, from (B.0.25) and (B.0.30), one gets 

Xow Condit ion 3.4.7 ensures t hat 

A Hence, for each R E [O, oc), we can fix d = 6 ( R )  small enough that 
h A 

AR = -C3(R,b(R)) > O. Sow put a~ = C4(R.b(R)) in (B.0.32) to get (3.4.73). 

Proof of Proposition 3.4.14 on page 50: Fix some x E and some R E [O, oo) 

such that x E Si. From Condition 3.1.7 and Lemma 3.4.5 on page 17 we obviously 

have 

and 

Hence Theorem 3.4.1 on page 43 applied to the coefficients b(x, .) and o ( x ,  .) shows 

that t here exists a unique invariant probability measure n, on ( R ~ ,  B(R")) for the 
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iularkov process {[(t.x)) defined by (3.4.74). We ne12 establish (3.1.75). To this 

end, fiu some y E HI! From Proposition B. l . l  on page 175 we have 

Now put 

From (B.0.35) and (B.0.36), 

But, f N  : ~1~ -+ R is bounded and continuous, so that Theorem 3.41 on page 43 

gives 

lim EJYW X. 9 ) )  = jRD fN ( w m .  
t d o c  (B.0.38) 

From (B.0.37) and (B.0.38), 
Ii 

Sow take N i 30 in (B.0.39) and use the monotone convergence theorem to 

obtain (3.4.75). It remains to establish (3.4.76). Fk some rl E [O.q - 11 and some 

h E Li(rl) .  From Remark 3.4.9 we have 

a 
Vt  E [O, m), Vy E IlD. Clearly rz = 1 + rl 5 q, hence from Proposition B . l . l  on 

page 175 there is a constant C1(R)  E [O, m)  such that 

V t  E [O, cm),Vy IlRD. Upon taking expectation in (B.0.40) and using (B.0.41) one 

has 
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Vt E [O: oo),tfy E R ~ ,  where C2(R) E [O. x) is a constant. 1Ioreover. by Rernark 

3.4.9 we have 

3 
Qt E [O, oo) , Qyl, 342 E DlD. First suppose tl = 0. and take r? = 1 + rl . Csing 

(B.0.13), one has 

and hence. h m  Proposition B. 1.1 on page 175 (see (B.1.202)), we get 

V t  E [O, oo), Vy,, y2 E R ~ ,  for some constant yo(R) E (O,  m). Now suppose rl E 
A (O, q - 11. By (8.0.43) and Holder's inequality, with conjugate exponents a = 1 + rl 

A 
and 3 = ( 1  + r l ) / r l ,  one has 
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V t  E [ O , w ) , V y l . y ~  E HI*. We have0 = 1 + r l  5 q and 3rl = (1 + r l )  5 q. Thus. 

£rom Proposition B.l.l on page 175, (B.0.16), and the fact that [la1 + Ibl + lclj3 5 

3@ [ I U I B  + lblB + ~cla] we can mite 

V t  E [O. sc),Vy E IZD. By the Markov property of {E( t , x ,  y))(recall ( 3 . 4 . 2 ) )  (see 

e-g. page 240. Theorem IO. 11. of Chung and Williams [7]) we have 

3: 1 o{J(u) ,  u E [O,s]} v {P - nuiI events in 3). (8 .O. 50) 

Thus, from (B.0.19), 
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Hence 

Vs, t E [O, cio) . Vy E R ~ .  Combining (B.0.52) and (B.O.N), and also using Proposi- 
9 

tion B.1.1 on page 175. the fact that rz = 1 + rl 5 q. and the Liapunov inequality, 

it follows that 

V s , t  E [O,oo),Vy E R ~ ,  where Ci(R) E [O, oc) is a constant. We next observe that 

LD h(0I  dni(E) < m. (~.0.56) 
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Indeed, since h E Li (r 1 ) for some r 1 E [O. x) , we have that 

for some constant Cs E [O, m) (see Remark 3-49). thus we get (B.0.56) from (3.4.75) 

(which we have just established). Sow put 

where h,(<) is the usual positive part of h(,C). Then one trivially checks that 

Since (B.0.55) holds for arbitrary h E Li(rl). in view of (B.0.59) we get 

Since h z  : R* + R is bounded and continuous. from Theorem 3.4.1 on page 43 

we have 

Lm ~h:([(s + t ,  2. y)) 

Hence, taking s + cm in (B.0.60) gives 

.4lso, by (B.0.12), one has 
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By (B.O.63), and the monotone convergence t heorem. 

From (B.0.62) and (B.0.64), 

.An identical form to (B.0.65). with hi replaced by h-. also holds. so that 

Finally, identi- h( . )  in (B.0.66) with f (z. .), for f E L Z ( ~ ~ ) ~ , ,  rl E [O. q - II, to 

obtain (3.4-76). 

Proof of Proposition 3.4.16 on page 51: 

Step 1 : Here it is shown that 8(.. .) E Li(r)l , ,  that y + 8(z, y) is a C2 - 
function for each x E Bld. and ( 3 . 4 8 0 )  holds. Since r E [O. 9/21 and q E (8. cm) (se 

A Condition 3.4.7) we have that tz = 1 + r < q. Thus Remark 3.1.15 ensures that 

f(z) in (3.4.17) and 8 ( x ,  y) in (3.1.78) exist for each z E R? y E lRD. FLX some 

R E [O, a), and fix arbitrary x E Si. Since f E L Z ( ~ ) ~ , ,  we have f ( x ,  .) E Li@), 

hence we can repeat the simple calculation which gave (B.0.47) (but with r, f (z, .) 

in place of rl ,  h ( . ) )  to get 
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Qt E [O, oo),Qyl, yz E IID. where C2(R) E [O. 3c) and yi (R)  E (O. s) are constants. 

From (3.4.78), and (B.0.67), there is a constant C3(R)  E [O, oc) such that 

Qyi, y* E lUD. Thus, from (B.0.68) and Remark 3.1.9, one has 

Moreover, by (3.1.76), (3.4.77). (3.4.78). and the fact that r < q - 1,  there is a 

constant C4R)  E [O. m) such that 

Hence, by Remark 3.1.9: 

Sow from (B.0.69). (B.0.71), and Remark 3.4.9, we have 

whence 8 E Li(r)r, .  

Sext, consider smoothness of the mapping y + 8 ( x ,  y) for fked x E Rd. Define 

where 
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By Corollary F.0.34, it folIoa-s that y + B(t. I .  y )  is a C' - function ~ 5 t h  

V ( t , ~ , y )  E [O,oo)  0 @ @ R ~ ,  1 = 1 . 2  .... .D (here ( a , i ~ ~ ) ( t . ~ . g )  is the first L2 - 
derivative of c k ( t ,  r, y)  with respect to yL. as  formuiated in Remark F.O.32). Sow 

Lu some R E [O. w); from hypothesis ( i i )  of Proposition 3.1.16 on page 51 and 

(8.0.74). there is a constant C5(R) E [O, m) such that 

In view of (B.0.76) toget her with (B.O.75). the Cauchy-Schwarz inequality, Prop* 

sition B.1.3 on page 181 (see (B.1.245)). and (B.1.201) of Proposition B.1.1 on page 
a 175 (with rz = 2r 5 q) ,  we see that there are constants Cs(R) .  C7(R)  E [O.  cm). 

such t hat 

V( t ,  z, y) E [O, oc) 8 S i  @ R ~ ,  where 7 * ( R )  E (O, 00) is a constant. Since Corollary 

F.0.31 shows that y + 6 ( t ,  x. y )  is a Cl - mapping, for each a E R, we have 
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V ( t .  x, y) E [O, m) @ bid 8 R~ (here el denotes the 1-th basis vector in w~). Sor 

from (B.0.73), (B.0.74), and (3.478): we have 

Thus, it follows kom (B.0.78) and (B.0.79) that 

V(x, y)  E s;@BZD, Va E ni. Since R E [O! cc) is arbitrary in (B.0.81) this inequality 

in fact holds for aU a E R. (x, y) E R~ @ R ~ .  Hence, from (B.O.80), (B.0.81), and 

Fubini's theorem. one has 

V a  E R, (z, y) E @ IlD. Sow, by (B.O.77). the Dominated Convergence Th- 

rem, and the fact that y + B(t. x, y )  is Cl, one easily sees that the mapping 
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is continuous (for fixeci (t .x.y)). In view of this fact . (B.0.82). and the Fundamental 

theorern of calculus, one has 

8 ( x .  y + a e i )  - 8(1. y )  
lim 
(1-0 cl 

= la(13yl@)(t. r. y)dt.  

V(x, y )  E 8 IZD. Sow an argument identical to  that showing that the rnapping 

in (B.0.83) is continuous. also shows t hat 

is continuous: it foliows from (B.0.81) that the y + B(x. y )  is a C1 - mapping. and 

From (B.O.77) and (B.0.85) it follows that (a,&) (z, y) is polynomially y-bounded 

of order r locally in I. i.e. for each R E [O. ?o) there is a constant Cs( R) E [O. m) 

such that 

?;ext consider the second partial y-derivat ives of 8(x, y). Using Corollary F .O%, 

one sees that y + B(t. 2. y) is a C2-mapping, with 

V ( t .  t. y) E [O, 30) @6id@IZD. By hmothesis and (B.O.74), we know t hat (aCtj) (G I) 
and (l3&&z, y) are polynomidy (-bounded of order r locdy in z. Thus from 
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(B.0.87) and Holder's inequality, for each R E [O. ri) there is a corstant C9(R) E 

[O, oo) such that 

V(t,x, y) E [O,=) 8 S i  8 w ~ .  By Proposition B.1.3 on page 181, (B.1.201) of 
a 

Proposition B.1.1 on page 175 ( with r2 = 2r 5 q), and (B.0.88), for each R E [O. m) 

there are constants Cio(R) E [O, m) , 73 (R) E (O, cm), such t hat 

V(t, Z, y) E [O, m) 8 S i  8 d. SOW the mapping y + (a@) (t, r' y )  has been seen 

to be a CL - function (by CoroUary F.0.34), thus for each a E R we have 

V ( t ,  r, y) E [O, m) 8 @ R ~ .  By (B.0.85) and (B.0.90) one bas 
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V(x, y) E d 8 @ , V a  E R. Sloreo~er. by (B.0.89) for each R E [O. cc). we see 

V(x, y) E S i  8 R ~ .  Thus, from (B.0.92), one can use Fubini's theorem to wite  

V a  E R. V(z. y) E IRd @ IlD. Sow one easily observes from (8.0.89). the fact that 

y + B ( t .  z. y) is C2. and the Lebesgue Dominated Convergence Theorem that the 

mapping 

is continuous. Thus from (8.0.93) and the fundamental theorem of calculus one 

has 

1 
lim - [(&,+e) (x, Y + ûej )  - (ayle) (x, Y)]  
a d 0  Q 

= p y J a , ~ ) ( t .  x, Y) dt. (B.0.95) 

V(x, y) E d e wD. From (B.0.89), the fact that y I B(t, x, y) is c2, and the 

Lebesgue Dominated Convergence Theorem. it follows that 
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is continuous, so we see from (B.0.95) that y + 8 ( x ,  y) is a C - function with 

V(z, y) E d @ R ~ .  From (B.0.89) and (B.0.96), for each R E [O, w) there is a 

constant Cil (R) E (O, w ) such t hat 

V(x, y) E S i  8 R ~ .  We have seen that y + 8(x, y) is a C2-mapping, and also, 

from (B.0.86) and (B.O.g?), the mappingç (a,, û)(+, y) and (8y,%1 8 ) ( x .  y) are poly- 

nomially y-bounded of order r 1ocaiIy in z. This completes Step 1. 

(see Remark 3.1.11) 

such that 

Step 2 : It remains to show that (3.1.81) holds. We have seen that 8 E Li(r)i,. 

hence it follows that 8 ( x ,  y) is polynomially y-bounded of order r + 1 locally in x 

, thus for each R E [O, oo) there is a constant CL2 (R) E [O, 00) 

Moreover we have seen that (a,; û)(x, y) and (aydy, û)(x, y) are polynomially y- 

bounded of order r locdly in z. In view of these facts one sees from (3.2.14), 

(3.4.74), and Theorern 3 on page 293 of Gihman and Skorohod [Ml, 

?iow evaluate quantity on right side of (B.0.99). Fix x E Bld, fix R E [O, m) such 

that x E Si. From (B.0.74) and (3.4.77) we have 
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Then, from (B.0.100), (B.0.73) and Proposition 3.4.11 on page 50. there are con- 

stants CI3(R)  E [O, m) and 7 4 R )  E (O, oc) such that 

V(t, y) E [O, 30) @ JID.  FLX tl  E (O, m) and y E ElD, and take y 2 < ( t l ,  I. y). Thus. 

from (B.O.lOl), we can mite 

A 
V(t, y) E [O, CU) 631 IZD. From Proposition B.l.l on page 175 (with rl = 1 + r < q)  

and (B.0.102) we get 

V ( t ,  y) E [O, 30) @ w ~ ,  for some constant Ci4(R) E [O. 00). Hence from (B.0.103), 

V(x, y) E d 8 R*. Sow from (B.O.79) we have 

gets 

V(tl, x, y) E (0, m) 8 Wd @ R ~ .  Rom (B.O.73), we have 
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Vt ,  tl E [O, oo), Q(x, y) E 8 R ~ .  Also. from the 4Iarkov propeny of the solution 

of (3.474) (see Theorem 10.11 of Chung and Williams [7]) and (B.0.73). we have 

Vt ,  t 1 E [O, m) , V(x, y) E @ IZD. Thus, from (B.O.107) and 8.0.108). 

Vt ,  t E [O, m) , V ( x ,  y) E d e ozD. From (B.O.106) and (B.0. loi) ,  for each (r. y) E 

IRd @ BZD, we have 

Y = Io B(t + i l .  x, y)dt, V t l  E [O. m) .  (8.0.110) 

Combining (B.0.79) and (B.O.llO) shows that 

(tl , x, y) E (O, oc>) @ Wd @ ElD. Sow from Theorem F.0.37 on page 223 (with h 2 f) ,  
one sees that t + B(t, x, y) is a C1-mapping, that y + B(t, q y )  is a C2 - mapping, 

and the following relation holds 

V(t,x, y )  E [O,oc) @ IRd 8 IZD, for AB given by (F.O.11). In the 11ew of Condition 

3.2.1, (F.O.ll), (B.0.77), (B.0.89), and (B.O.112), there are constants Clô(R) E 

[O. cm) and 7 6 ( R )  E (O, ca) such that. 
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V ( t , z , y )  E [O, m) @ S i  @ R*. From the mean - value theorem. and the fact that 

t + B( t ,  x, y) is a Cl-mapping one has 

9(t + t1, z, y) - B(t, 2, y) = tl(i$e)(sl, x. y), for some sl E [t. t i tl]. 

(B.O. 11.1) 

Using (B.0.113) and (B.0.114), we get 

Vt l  E (O, cm), V ( t ,  z, y) E [O, cm) 8 SR @ #ID. From (B.O.115) and the Dominated 

Convergence Theorem one has 

where the thirc: i line follows since t + 9(t, x ,  y) is a C1 - function. Now 



APPENDCY B. PROOFS FOR SECTION 3.4 

V(X, y) E 8 R ~ .  From (B.O.73) and (B.0.71) one has 

Moreover one finds from (B.O. 101) that 

Combining (B.0.99). (B.O.lll) ,  (B.0.116), (B.0.117), (B.0.118), and [B.0.119), it 

follows t hat 

A8(x, y) = lim E8(2. f(t1. X .  y) )  - e(3. y) 
t l + O  t 1 

= lim [9(T, x, y) - 9(O. x, y)] 
T4ac 

thus (3.4.81) follows. 

Step 3 : Here we establish joint continuity in (z. y) of the mappings 

(21 Y )  -t (ay'e)(xl Y ) ,  (17 Y) -t (+a ,ke) (x?  Y). 

FU< some sequence {(z,, 9,)) in 8 R* such that 

Lm (tn, ~ n )  = (z01 Y O ) -  
n+oo 

Using Theorem 5.2 on page 118 of Friedman [12] (on parametric dependence in 

the L2 - sense of solutions of stochastic differential equations) it is easy, although 

tedious, to show that 
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and 

for each t E [O,m). From (B.0.121). (B.0.122) and (8.0.75) it follows that 

for each t E [O, m). In (B.0.77) fur R E [O, xi) large enough that 10. xn E SR. n = 

2 3, . . . . Shen from (B.0.?7), (B.O.85), (B.0. E3), and the Lebesgue Dominated 

Convergence Theorem, we get 

as required for joint continuity of (x. y) + (ay&) (x, y). The case of joint continuity 

of the second derivat ive (z. y) + (ayl aYr 0 )  (x. y )  follows similarly, but uses the 

bound (B.0.89) to justify use of the Lebesgue Dominated Convergence Theorem in 

(B.0.96). 

Proof of Proposition 3.4.17 on page 52: Expanding 8 ( x ,  <(t, x ,  y)) by Itô's 

formula and (3.4.74, yields 

V ( t ,  x, y) E [O, m) 8 bld@ R ~ ,  where A@(., .) is given by (3.2.14). Since by hypoth- 

esis the partial derivative functions ag&(z, y )  and a@, 9(x,  y) are polynomially 

y-bounded locally in t, it is easily checked that all integals in (B.0.125) exist, and 
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we have 

V(t, x, y) E [O, oo) @ @ RD. Thus. the stochastic integals on right hand side of 

(B.0.125) are martingales nul1 at the origin, hence 

V(t,z, y) E [O, oo) @ 8 RD. Fix arbitrary z E dl choose R E [O, CS) such that 

r E Si. From (3.2.14), Condition 32.1,  and the hypotheses, there is a constant 

Cl(R) E [O, CQ) such that 

Thus one sees from (B.0.128) and (C.0.7) (see Appendix C), that 

Taking expectations in (B.0. lE) ,  using (3.4.82), (B.0. lX), (B.0. l29), and Fubini 

theorem. gives 

V ( t ,  y) E [O. cm) 8 IlD. Since 0 E Li(r)l,, for some r 5 q / 2  < q - 1 (where q is 

@en by Condition 3.1.7) from Proposition 3.4.14 on page 50 we get 

/ E B ( Z ,  ~(t. x, y)) - LD e ( x ,  C)~"=(E) 5 c ( ~ ) e - " ~ "  [ 1 + 1 1  Y "' 1 

V( t ,  y) E [O, m) 8 R ~ .  where C(R) E [O, w) and y (R) E (O, cm) are constants which 

depend on our choice of R E [O, oc) to ensure that z E s:. Now take t + oo in 
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(B.0.131) and use (3.484) to get 

SIoreover, since f E Li(&, for some r 5 q / 2  < q - 1, one sees from Remark 

3.6.15 that 

Thus, using (B.0.132), (B.0.133), and taking t + m in (B.0.130), we have 

Sow (3.1.83) follows from (B.0.131) and Our a r b i t r q  choice of x E IZD. 

Proof of Proposition 3.4.18 on page 53: The proof of this proposition involves 

many steps that are very similar to arguments deployed elsewhere in this thesis. 

Accordingly, in this proof we shall depart from Our usual custom of exhaustively 

presenting ail details! and will merely sumrnarize the main steps, indicating where 

arguments and calculations are similar to those elsewhere in the thesis. 

Fix an arbitrary 1 E { 1 , 2 , .  . . . d l .  For each ( t ~ ,  y, 2) E [O, m) @ ~ @ R ~ @ R ~  

let {qr ( t ,  x' y ,  r) } be the solution of the stochastic differential equation 
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From Condition 3.1.4 and Theorem 1 on page 55. 56 of Gihman and Skorohod il41 

one sees that partid derivative (&<) ( t .  3. y) of the solution [ ( t ,  x. y)  of (3.4.74) 

exists in the Lg - Sense and is given by 

a 
Indeed, the right hand side of (B.0.135). with : = O. is just the formal derivative of 

the right - hand side of (3.4.74) with respect to xl, and Theorem 4 on page 55,56 

of Gihman and Skorohod [11] justifies this formal differentiation in the light of the 

smoot hness h p o t  heses poçtulated in Condition 3.4.4. 

STEP 1 : In this step m shall establish that j(x) given by (3.4.77) is a C2 - 
mapping on p. To simpli. the notation. put 

and 

V ( t ,  tl y) E [O, ca) 8 Rd @ R ~ .  From (B.0.137) and Corollary 1 on page 62 of 

Gihman and Skorohod [14] we see that x + @(t, x, y) is a CL - mapping, with 
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Hence from (B.O.141) and the fundamentai theorem of calculus, one has. for Lved 

( t ,  zo, y )  E [O, m) 8 Rd @ RO, that 

for cr E R (here el = (0,. . . ,O, 1 ,0 , .  . . ,O) denotes the usual 1 - th canonical basis 

vector of Bld).  In light of Proposition 3.1.14 on page 50 (see (3.476)) and (8.0.140) 

we have 

tVé will shortly establish existence of a mapping 5' : Bid + Bi with the following 

property : for each R E [O, m )  there are constants Ci(R) E [O, x;) and t l (R)  E 

(O, m) such that 

V(t, r, y) E [O, 30) 8 S; 8 BID. Then, since the mapping in (B.O. 141) is continuous 

in x (for arbitrary (t, y)) and the convergence in (B .0 .M)  is clearly uniform with 

respect to z in balls Si ,  we see that ir'(.) is necessarily continuous on p. 'u'ow 6.x 

some X Q ?  y, and a in (B.0.142), and make R E [O, oc) large enough that ro+sel E Si,  

for all s E [-/al, laIl. Theno from (B.0.144), we have 

for al1 s E [-loi, la&t E [O,m), and y E IZD. Since the quantity on the right of 

(B.0.145) is h i t e  and u d o r m  with respect to t E [O, oo) and lsl 5 loi, we can 
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take t + oo in (B.0.112), and use (B.0.113). (B.0.144) and the Lebesgue bounded 

convergence theorem to get 

In view of the observed continuity of hl(.), we see from (B.O.l-l6) that f (.) is a C1 

- function, with 

Thus. it rem- to show existence of hi : Rd -t R such that (B.0.144) holds. 

An argument similar to that used for establishing (B.1.201) shows that. for each 

R E [O. oc), there is a constant C?(R) E [O, cm) such that 

V ( t ,  x.  y, 2) E [O, as) 8 S i  8 W~ 8 BZD. In view of (B.0.148), (B.1.201), and the 

Chebyshev inequality, it folloas that { ( ( t .  x. y), q ( t ,  r, y, z ) ,  t E [O! m)} is a tight 

family of RZD - vdued random vectors for each (I, y, 2) E d 8 R~ 8 R ~ .  Thus, 

for each (1. y. z )  E & 8 JID 8 RZD, there is a sequence tn + m. and a probability 

measure pl((x, y, z ) ,  .) on R2D. such that 

We are now going to see that the limit &x, y, z ) ,  .) in (B.0.149) does not in fact 

depend on (y, z )  : 4n application of Condition 3.1.7 shows that , for each R E [O, oo) . 
there is a constant %( R) E (O, m) such that 

Vz 'z Si,  Qyl , 21, 32, t2 E IID, tit E [O, cm) (the technical details for establishing 

(B.0.150) are fairly lengthy, but essentially pardel  the steps by which we obtained 
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(B.1.202)). In view of (B.1.202) and (B.O.150) we see that 

for arbitrary yl, zl E RD. In view of (B.O.151) and (B.0.149) we have 

for arbitrary yl, rl E RD. It follows that the limit pl((z,  y, z), .) in (B.0.149) does 

not depend on (y, z )  , and will be denoted by (x, .) . To summarize, for each 

x E d, there is a sequence tn -+ m and a probability measure pl(x, .) on R2D 

such t hat 

for al1 (y, i) E I lZD.  Son*. for each x E pl (3.474) and (B.0. 135) is a pair of 

classical Itô stochastic differential equations, and hence defines a Markov diffusion 

( with state space PiZD ) whose transition operator {T )  is easily seen to have the 

Feller property (i.e. (T;Q)(y, :) is a real - valued bounded continuous function in 

(y, z) E RZD when t$ is a real - valued bounded continuous function on B Z ~ ~ ) .  For 

bounded continuous # : RZD + R, we see from (8.0.153) that 

(qm, 2) = 4(x) A 
n+CJO 

- @(Y', z 1 ) d ( &  d(dl  LI)), (8.0.154) 

for each (x, y, z )  E Rd IZD @ R ~ .  Then, by Lebesgue Dominated Convergence 

Theorem and (B.O.l54), 
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for arbitrary (t ,  x, y, 2) E [O, m) 8 R~ 8 RD 8 R ~ .  Also, çince Tto  is bounded and 

continuous on p22D ( by the Feller p r o p e q  of {r ) ) we can apply (B.O.lj-1). but 

with 4 replaced by T;Q, to get 
f l  

lim y n ( T d ) ( y ,  :) - 
n-ccu 

(p?) (yI1  :l)d(x, d(yl, 2')) 7 

for arbitrary (t. r, y, r )  E [O. oc) 8 IZd @ RD 8 IRD. Yow 

(since {T; ) is a semigroup), thus cornparison of (B.0.155) and (B.O. 156) gives 
L I 

for each (t, x) E [O, oc) 8 d, each bounded continuous function @ : Il2* + R. It  

follows from (8.0.157) that, for each x E d, the measure & x ,  .) is an invariant 

probability for the 'rlarkov diffusion defined by (3.4.74) and (B.O.135). To see that 

(2, .) is the only such invariant probability, let v ( x ,  .) be some arbitrary invariant 

probability for the Markov diffusion defined by (3.474) and (B.O.135). Then for 

arbitrary bounded and continuous 4 : PIzD 7 W. we have 
r P 

(Tn 1 (yt, +(x* d(!ll, zl)) - - IRZD 
( y ,  ) ( x  ( y  ) )  (B.0.158) 

for al1 n = 1,2.3. . . . . Then, from (B.0. I N ) ,  (B.O. 158) and Lebesgue Dominated 

Convergence Theorem, 
F m 

Since (B.O.159) holds for arbitrary bounded continuous @, we see that 

as required for uniqueness. To summarize, we see t hat , for each x E d, the Markov 

dinusion (3.4.74) and (B.0.W) has a unique invariant probability measure which 
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is given by p'(z, .). We therefore conclude t hat 

for each (2, y. r )  E d @ IZD @ IlD. We next show that the integral 

exists for each z E pl and that (B.0.l-M) holds for the mapping h'(.) in (B.0.161). 

From (B.0.139) and (B.0.141) we see that 

(that the expectations in (B.0.162) exist foilons easily from (3.4.74, (8.0.135). the 

postulated polynomial boundedness in y of (& f )  (z, y) and (L$ f) (1, y ) ,  and Lemma 

C.0.6) on page 203. Consider the second term on the right hand side of (B.0.162) 

: Put 

By the Markov property of the diffusion { [ ( t ,  x, y),  q( t ,  x, y, r)) ,  we see that 

Vs, t E [O, r ) . V(z, y, t ) E Rd 8 W~ 8 R ~ .  Sow an application of Condition 

3.4.7 shows that, for each R E [O, oc), there are constants C3(R) E [O, CG) and 

y 3 ( R )  E (O, X) such that 
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Vs, t E [O. oc), Y(+, y) E S; 8 EZD (the technical details for establishing (B.0.165) 

are fairly lengthy, but parallel very closely the steps by ahich we obtained the 

inequaiity (B.0.55)). Likewise, considering the first term on the right hand side of 

(B.0.162), we can use Condition 3.1.7 to see that, for each R E [O, cm) there esist 

some constants C4(R) E [O, oc) and yl(R) E (O, oc) such that 

Vs. t E [O, m), V(x, y) E S i  @ EZD (again, the technical details for establishing 

(B.0.166) are similar to those for the inequality (8.0.55)). From (8.0- l65), (B.O.166). 

and (B.0.162), for each R E [O, cm) there are constants C5(R)  E [O, m) and p5(R) E 

(O, oo) such that 

Vs, t E [O. m),V(z, y) E S i  @ IlD. Sow, in view of (B.0.138). (B.0.139), and the 

h-ypothesis that (a,, f )(x, y) and ( 8 , k  f ) ( x .  y) are polynomially y - bounded of order 

r locally in x. we see that for each R E [O. oc) there is a constant Cs (R)  E [O. oo) 

such that for 3 E (1, m) 

V(x, <, q )  E S: @ R~ 8 R ~ .  Thus from (B.0.168) and Holder's inequality, 
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V(t?x,y) E ( 0 , ~ )  8 S i  @ LUD and some constant Cî(R)  E (0 .m) .  Sow £is 3 E 

(1, q/2r) n (1, 912) (recall that r is postulated in the range [O, q / 2 ) ,  so that 

q/2r > 1 ). Since 2P < q, we get from (B.0.118) that 

Q(t, X,  y, 2) E [O, m) 8 SI, 8 R~ 8 R ~ .  where Ca(R) E [O, 00) is some constant. 

Since 2pr c q, we see from (B.1.201) that 

V(t, x, y) E [O, m) 8 S i  8 LUD, where C9(R) E [O, m) is a constant. Combine 

(B.O.l69), (B.0.170}), (B.O. E l )  to get 

V(t, r, y) E [O, m) 8 S i  @ mD. where Clo(R) E [O, oo) is a constant. Since Q > 1, 

it follows fiom (B.O. 172) that {h(x, ( ( t ,  2, y), q ( t ,  2,  y, O ) ) ,  t E [O, oc)} is uniformly 

integable for each (z, y) E LUd@ R ~ .  Thus. fiom (B.0.160) we see that the integral 

in (B.0.161) is defined and 

for each z E R* (by Theorem 5.4 on page 32 of Billingsley [4]). Taking s + oo in 

(B.0.167), together with (B.0.173) and (B.O.l6l), gives constants CI (R) E [O, oo) 

and y, (R) E (O, oc) such that (B.0.144) holds. We have therefore established that 

f(.) defined by (3.4.77) is a CL - mapping on (with derivative (& f)(x) given 

by @(z) defined by (B.O.161)). To show that f (.) is a C2 - mapping one procedes 

in much the same way as before, only now we must take a forma1 derivative of 

q ( t , x ,  y, z )  with respect to (say) zk, to get the Lz - derivative ( & d , k { ) ( t , x ,  y), 

and then follow the preceding arguments. 
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STEP 2 : We show that (a,r 0) (t, y) exists, is continuou in (t, y),  and is polyns 

maiiiy y - bounded of order (r + 1) Iocally in x. Put 

and 

Then, frorn (3.4.78), 

(B.O. 176) 

V ( x ,  y)  E d @ R ~ .  Yow 6x some xo E p. From (B.O.li5) and (B.0.176), for 

each a E 83, we can write 

Yow we have seen in Step 1 that, for each t E [O, m), y E w ~ ,  the mappings 

2 -+ Ef(x,<(t ,x ,  y ) )  and z + f(x) are Cl - functions on d. Thus from (B.0.174) 

and (B.0.175) the mapping z + Q(t ,  z, y) is a Cl - function. Therefore: 

@(t.  xo + aeil Y) - w ,  xo, Y )  = ~ a ( ~ z l o ) ( t . z o + r e ~ , y ) d s l  (B.0.178) 

whence from (B.O.177) we have 

e ( z o + a e i , y )  -B(ro ,y )  = ~ - { ~ a ( ~ z ~ @ ) ( t l z o + s e i l y ) d s  

From (B.0.140), (B.0.141), (B.0.147). (B.0.171), (B.0.175), 

= Eh(x, c(tl x, y),  q ( t .  x, y, O)) - LL(t). (B.0.180) 

Thus by (B.0.180) with (B.0.144) one obtains 
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Vz E S;,tfy E EZD1vt E [O. 3 ~ ) .  From (B.0.181) one sees that 

V a  E Bi, Qp E IZD. Thus hom Fubini's theorem with (B.O.179): 

V a  E R , V y  E R ~ .  Eow an easy but tedious computation shows that the mapping 

is continuous on nIdTD for each t E [O, m), and since x + h l ( s )  was shown to be 

continuous on dl we see from (B.O.180) that (x, y) + (& 4) ( t . x, y) is cont inuous 

on PcD for each t E [O, x?). Thus, by (B.0.181) and Dominated Convergence 

Theorem one finds that 

is continuous. In particular. for each y E R ~ ,  the mapping 

is continuous. Thus from (B.0.183) and the fundamental theorem of calculus. we 

have 

is continuous. Moreover, from (B.0.187) with (B.0.181), for each R E [O, m), there 
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V(z, y) E Si 8 B Z ~ ,  so that (az&) (.) is poipomially y - bounded of order ( r  + 1) 

locdy in z. To conclude, we have shom that (&û)(x, y) exists for each (x. y)  E 

biD, is continuous in ( x ,  y), and is polynomially y - bounded of order ( r  + 1) b 

cally in x. In the same way one establishes that the second derkative (&I&&) (q y) 

exists for each (x, y) E Wd @ R ~ ,  is continuous in (x. y), and is polynomially y - 

bounded of order (r + 1) locally in x. 

Proof of Proposition 3.4.25 on page 64: Condition 3.2.1 and (3.2.27) ensure 

that Ft E Li(0)im, thus for each R E [O, cm) we have 

for some constant C I ( R )  E [O, m). Then Proposition 3.414 on page 50 shows that 

cert ainly (see (3 A. 73) ) 

(B .O. NO) 

and there are constants C2(R) E [O, oc), y, (R) E (O. m), siich that (see (3.2.30) 
a a and (3.4.76) with rl = O and f = F J )  

V ( t ,  x, y) E [O. m) s;8IZD. From (B.0.189), (B.0.190) and (B.0.191), we see that 

V(z, y) E Si 8 R ~ .  Since R E [O, m) is arbitrary, this bound holds for all (z, y) E 

8 R*. Rom Proposition 3.4.17 on page 52 we know that the solution V (z, y) 
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in (3.2.28) is a unique moduio hinction of x only. Thus, by Remark 3.2.12, without 

loss of generality we can take the V (s ,  y )  in (3.2.28) to be given by 

Thus, from (B.0. l92), (8.0.193) and Fubini's theorem we have 

(B.O. 194) 

V(x, y) E l Z d  @ R ~ .  Xow put 

By the Markov property of { f ( t ;  x) ) (see e.g. Lemma 10.10 of Chung and Williams 

[il) we have 

V(s, x) E [O. w) 8 d. Hence, by stationarity of {<(t, z) }, 

V(s. x) E [O, 00) 8 d. Now combine (B.0.195) and (B.0.197) to get 
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V(s, t) E [O, cc) €3 d. By (B.O.19-i) and (B.O.l98), one has 

V z  E PZd. Sow using (3.2.28), (3.2.29), and (B.0. lgg), we get 

V z  E d, il  j = 1 . 2 , .  . . ,d, and thus (3.4.114) follows. 

B.1 Some Useful Results 

In this section, we present some results which are needed for proofs of Proposition 

3.1.14 on page 50 and Proposition 3.4.16 on page 51. 

Proposition B.1.1. Suppose Conditions 3.2.1, 3.4.4, und 3.4.7 hold. Then, for 

each R E [O, oo) and r2 E [O, q] (q defined in Condition 3.4.7), there are constants 

C(r2, R)  E [O, m) and y(r2, R) E (O,  w) such thut 

Vx E Si,\Jy, yl,y2 E IZD,Vt E [O,m) (recul1 Remark 3.4.13 for the definition of 

((4 2, Y)). 
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ProoT: Fix some R E [O, m). and Lu r E S i  and y. pl,  y2 E w ~ .  Put 

(where q is given by Condition 3.4.7). From Remark 3.1.13, (B.1.203), and Itô 

formula, one can mite  

Qt E [O, m), where Ap(., .) is defined by (3.2.14). In view of Condition 3.2.1. Lemma 

(2.0.6 on page 203 (see (C.0.7)), and (B.0.16), we see that 

c m ?  VtE[O,m), (B. 1.205) 

for some constant Ci (R) E [O, m). Thus the sum of stochastic integals on the right 

hand side of (B. 1.204) is a continuous martingale which is nul1 at the origin, hence 

has zero expectation. Moreover, from Proposition 3.4.12 on page 50 and (B. 1.203), 

we have 

where a ( R )  E [O, m) and y ( R )  E (0, m) are constants. Thus, from Lemma (2.0.6 

on page 203 and (B. 1.206) : 

~EIAV(X,C(S .X .Y) ) I  d s < m 7  Q ~ E [ O ~ ~ ) *  (B. 1.207) 

In view of (B. 1.204), (B. l.207), and using Fubini's theorem we get 
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Sow, put 

In view of (B. 1.206), Lemma C.0.6 on page 203 (see (C.0.7)), and the Dominated 

Convergence Theorem, we easily see that s i E [dv(x? ((s, z, y))]  : [O, x) -> R is 

continuous. Thus from (B.1.208), (B.1.209), and Proposition 3.4.12 on page 50. it 

foilows t hat 

- r (R)O(t)+a(R) ,  V t ~ [ O . c u ) .  (B. 1.210) 

Thus from (B. 1.210). one easily sees that 

Vt E [O. m). 

Hence, by (B.1.211), (B.1.209) and (B.1.203), 

Without loss of generality we take rz E (O.q]. By the Liapunov inequdity and 

(B.1.212). we find 

where C2(R) [ ~ ( R ) / ~ ( R ) ] " ~ .  Then. from (B.1.213) and (B.1.212), we that, 

for each r2 E [O, q] , 

where C3(rZi R) E [Ol m) is a constant. Thus (B.1.201) is proved. 
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Xext we prove the inequdity (B.1.202). To establish this result &x some R E 

[O,m), and fix x E Si, and y,y , ,y*  E R ~ ,  and also put 

(B.1.215) 

(B.1.216) 

(B.1.217) 

(B. 1.218) 

From (3.1.74), (B.1.215), (B.1.217) and (B.1.218) we have 

(B. 1.219) 

Put 

Then, by (B. MN), (B.1.220). and using I t Ô  formula. one sees that 

(B. 1.221) 

From Fact B.0.9 on page 139, we have 
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Aiso from (B.1.219) we have 

= 1 [' ~ & * ~ ( s )  4aksn(s)  d[3", On] (s) 

Using (B.1.222) and (B.l.219). the second term in (B. 1.221) can be written: 

Vt E [O,oo) .  Moreover, by (B.1.223) and (B.1.224), for the third term in (B.1.221) 
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we have 

V t  E [O, CG). 

Combining (B. 1.221), (B. 1.225), and (B. 1.226) one has 
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Vt E (0,s). XOW by (B.1.217), (B.1.215), and the mean d u e  theorem get 

(recdl (3.465) where J(z. t )  2 &b(z. c)). Thus h m  (B.l.228). 

1 

( 4 ~ ( s ) ) ~ ~ b ( s )  = I /  ( A E ( S ) ) ~  J ( L  C(s. z. h) + @.1E(s)) A:($) do. 

(B.  1.229) 

Sow. by Lemma C.0.12 on page 205. one has for the integrand of (B. 1 

where Al  (R)  is defined by (3.4.66). Thus. from (B. 1.230) and (B. l.?29). we have 

Moreover, from (B.1.215). (B.1.218) and Lemma 3.4.5 on page 47 

i ~ < ( s ) l ~ - ~  l~cr(s) l~  5 A:(R) I ~ ( ( S ) ( ~ .  (B. 1.232) 

(B. 1.233) 
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Thus one has from (B.1.232) and (B.1.233) 

By Lernma C.0.6 on page 203 (see (C.O.7)) one easily sees that 

Thus the stochastic integral on the right hand side of (B.1.227) is a continuous 

martingale nul1 at the origin. Sow. put 

@(t )  2 EIY(t) lq .  (B.  1.236) 

Therefore. taking e.xpectations in (B.1.227) and using Fùbini's theorem, we get 
P L  

Vt 't [O, oc). Hence (B.1.237). (B.1.231), (B.1.232), and (B.1.234) implies 

and 
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Thus, from (B.1.239), we have 

183 

(B. 1 .%O) 

where 

By Condition 3.47,  we observe that )i (R) E (O,  m). Combining (B. 1.?38), (B. 1 .Ml). 

and (B.1.216), gives 

Without loss of generality take rz E (O, q].  Sow, by Liapunov's L,-inequality and 

(B.1.242), for each rz E (O, q ] ,  one has 

where y(rz, R) E (O,  ca) is aconstant. Thus from (B.1.243). (B.1.212), and (B.1.215), 

for each rz E [O, q] ,  we have 

EK(t. x ,  yi) - ( ( t .  x. yz)lr2 < e-7('1*R)L Iyi - y21r2. Qt E [O, m), (B.1.244) 

Remark B.1.2. For the next proposition we will need the notion of the partial 

derivat ives (agi () ( t  , x, y) and (a,, () (t , z, y) of the solution of (3.4.74) in a cer- 

tain Lz - sense which is made expiicit in hppendix F. The bounds developed in 

Proposition B.1.3 on page 184 are essential for the proof of Proposition 3.4.16 on 

page 51. 
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Proposition 8.1.3. Suppose that Conditions 3-44 and 3.4.7 hold. Then, uith 

reference to  Remark 8-12 and dppendix F. for each R E [ O .  -ci) there are constants 

C(R)  E [O,  m) and y l ( R ) ,  72(R) E ( O .  ce), such that 

Proof: For i = 1 . 2 . .  . . . Dl  define the IZD-dued random vector 

Also. for z E d and E.  d E BZD, let B(x,  5 ,  d )  be the D by M matriu whose (k. n) 

- element is defined by 

Vk = 1,2,  . . . , D, Vn = 1.2 .3 ,  . . . .5 (recall that (acak*")(x, <) is a row vector with 

D entries given by L + m k * " ( ~ , ~ ) . I  = 1 . 2 , .  . . . D). Moreover. mite [ ( t )  for c ( t . r ,  y j  

and 19, (t) for &(t .  z. y) .  when there is no risk of confusion. By Remark F.0.32 and 

(3.4.71), one has 

V(t, 2. y) E [O, oc) 8 Rd 8 IZD, Vi, k = 1 .2 ,3 . .  . . , D, (where biVk is the Kronecker 

delta). Using ( B . l . N i ) ,  (B.1.218), and the D x D Jacobian matrix J( . ,  .) dehed 
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by (3.4.63), the system of equations in (B.1.349) can be written in vector form as 

J ( 2 .  ((s))di(s) ds + B ( x ,  {(s), di(s))  d 3 ( ~ )  , 1' 
(B. 1 .'?SO) 

Vi = 1 ,2 , .  . . , D, (where ei = (0 , .  . . . 1 . 0 , .  . . ,O)= is the usual i-th canonical b a i s  

vector in IlD). Sow put 

By (B.1.250), (B.l.2Eil), and using Itô's formula, one has 

Vt  E [O, m),Vi = 1: 2..  . . , D. From Fact B.0.9 on page 139 and (B.1.251) we have 

V j ,  k = 1,2,  . . . . 0. Thus. from (B.l  .%O) and (B.l .E3),  for the second terrn on 

right hand side of (B. 1.252) we have 
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From (B. l.250), the CO-quadratic nriation in (B. 1 .X2) is giwn by 

(B.1.256) 

W E [O, w). Thus, from (B.1.256) and (B.1.254), for the third term in (B.1.252), 
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one gets 

= 2 1 0  Trace [BB'(z, ~ ( s ) .  &(s))] ld.(s) l2 ds 

Sow, by (B.1.251). (B.1.252), (B.1.255) and (B.1.257), it follows that 

V t  E [O, m). One easily sees from Lemma C.0.6 on page 203 that the stochastic 

integral on right hand side of (B. 1.258) is a continuous martingale, hence 
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V(t.2) E [0,00) 8 P. SOW put 

+4 E [(Ji (s))* ( B B ~ ( x .  ~ ( s ) .  oi(s))) di (s)] ds. 

(B. 1 .'?6l) 

T hus 

V t  E [O, oo), where Bi (O, x ,  y) = 1. Yow fix R E [O, oc). Rom the definition of 

Al(R) (see (3.4.66)) and Lemma C.0.12 on page 205: 

< ( R ) ~ I * ,  vx E SR, v ~ ,  s E P. - (B. 1.263) 

Moreover, since B BT (z, (, q) is positive semi-definite, one easily sees t hat 

1 9 ~  [ B B ~ ( Z ,  <, 19)]  19 5 Trace [ B B ~ ( z .  [, B ) ]  Id12, b'x E Pld, VC, 6 E BZD. 

(B.1.264) 

Combining (B.1.262), (B.1.263), (B.1.264) and (B.1.260) one has 
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V( t ,  x, y) E [O, 00) 8 S i  8 R ~ .  From (B. 1 .N8), (3.-l.64), and Cauchy-Schwarz, one 

observes that 

(B. 1.266) 

By (B.1.265), (B.1.266) and (B.1.260) we have 

for 

From Condition 3.4.7 we have 

for a constant q E (8, oc), thus 

so that yi(R) E (O, w). Xow, hom (B.1.267), (B.1.268), and thefact that O1(O,z, y) = 

1, one sees that 
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Thus, the first inequality of (B.1.245) follom from (8.1.260) and (B.1.269), i.e. 

~1i9~(t,~.~)l'<e-''(~", Q ( ~ , x ~ ~ ) E [ O , W ) @ S R @ R ~ .  (B.1-270) 

Sext, are establish the second inequality of (B.1.246). put 

for 2 ,  j = 1 2 . .  . From Remark F.0.32 and (B.1.219) the second derivative 

(%,a,,() (t. x, y)  can be computed formally a s  the solution of the following equation 

+ 1 (apkvn) (z. F(s. x. Y)) (ayJay.(') ( S .  Z, g) d3" (s) 
n=i 1=1 0 

(B. 1.272) 

V(t,x,y) E [O,m) 8 d 8 R ~ , V Z ,  j , k  = 1.2 .... , D. Rearranging (B.1.272), for 



arbitrary i, j ,  k E {1,2,. . . , D). aTe get 

+ C /o- [(40**")(x. [(S. X? y)] [(a,ay.m. x. y)] dJ"(4 
n= 1 

Here we 

[ ( a y . m ,  xt Y,] d3"(4 

use (a&bk)(z, c) to denote the D x D symmetric m 

(B. 1 .Y3) 

atrix whose ( p ,  1 )  

element is given by (a&i bk) (x, 0, p, I = 1,2, . . . , D. The notation (x. [) 

likewise indicates the D x D symmetric matrix whose (p, I )  element is given by 

(+i3tmk*n)(x,<). Let A(s,z,  y )  be the D @ 1 vector whose k - th scdar entry is 

AL (s, x? y) defined by 

Vk = 1: 2 , .  . . , D, and also let C(s, x, y) be the D @ iV matrix whose (k, n)-entry is 

Ck*"(s, x .  y )  given by 

Vk = 1 , 2  ,... ,D,n = 1,2 ,... ,iV. Xow using (B.1.271), (B.1.248), and (3.4.65), 
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one can mite (B.1.273) more cornpactly in vector form as follows 

V(t, z, y) E [O, m) 8 8 ~ ~ . ~ , t l i ,  j = 1 .2 , .  . . D. Again, Xe write \ - , , ( t )  for 

xi j ( t ,x ly) ,  A(s) for A(s .x ,y ) ,  and C(s) for C(s,t.,y) when there is no risk of 

confusion. Now, put 

(B. 1.277) 

Thus, by (B.1.276) and Itô formula, one gets 

(B. 1 X 8 )  

V t  E [O, CG). Now evaluate terms on right hand side of (B.1.278): From Fact B.0.9 

on page 139, for each x E R ~ ,  we have 

Moreover, from (B.1 .2?6), one sees that 

Combine (B.1.278) (B.1.279) and (B.1.280) to get 

(B. 1.279) 

(B. 1 .Z8O) 
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Vt E [O, m),t(i: j = 1 ,2 , .  . . , D. In view of (B.1.216). the first term on the right 

hand side of (B.1.281) can be written: 

(B. 1.282) 

Rom (B. 1.276) one has 

V k  = 1,2, . . . , D. Thus, for the second term on the right hand side of (8.1.281) we 

have 

(B. 1.284) 

where 

Now it is easily seen that the stochastic integrals in (B.1.282) are martingales, nul1 

at the origin, hence have expectat ion equal to zero. Combining (B. 1.281), (B. 1.282), 
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(B. 1.284) and t aking expect ations, it foiion-s t hat 

+l E  race ( [ ~ ( s )  + C(s)j [B(s)  + C'(s)jT)} ds. 

(B. 1 .%6) 

Now put 

Thus, using (B.1.286) and (B.1.287), we get 

and 

V ( t ,  x. y) E [O, m) 8 d 8 lRD. Yow fix R E [O, oo). Usiag the definition of AI (R) 

(see (3.4.66)), (B.l.287), and Lernma C.0.12 on page 205, for the first term on right 

hand side of (B. 1.289), one has 

V(tT x ,  y )  E [O. m )  8 S i  8 R*. For second term on right hand side of (B.1.289): 

clear 1 y 



APPEXDE B. PROOFS FOR SECTIOX 3.4 195 

Q ( t , z ,  y )  E [O,m) @ Wd @ lRD. Son. from (B.1.291),  (B.1.271).  (B . l .247) .  and 

Condition 3.44, there is a constant CI(R) E [O, oc) such that 

Q ( t ? t ,  y )  E [O,=) 8 S i  €3 lRD. B y  (B.1.292),  the Cauchy-Schwarz inequality. and 

( B .  1 .%5) one finds t hat 

V ( t ,  r. y) E [O. 30) @ S i  8 R? As for the third term on right hand side of (B.1.289) 

we have 

= nace [ ~ ( t ) ( ~ ( t ) ) '  + ~ ( t ) ( ~ ( t ) ) =  + ~ ( t ) (  ~ ( t ) ) ~  + ~ ( t ) ( ~ ( t ) ) * ]  

= Race [ ~ ( t ) ( ~ ( t ) ) ~ ]  + 2Trace [ ~ ( t ) ( ~ ( t ) ) ~ ]  + Race [ ~ ( t ) ( ~ ( t ) ) * ]  

( B .  1.294) 

Sow evaluate the terms on right hand side of (B.1.294): Exactly as in (B.1.266),  

for the first term on right hand side of (B. 1.294) we get 



As for second term on right hand side of (B.1.294) we can mite: 

Trace [ ~ ( t ) ( ~ ( t ) ) * ]  - (B.1.296) 

XOW, by (B.1.275) and Condition 3.1.4, there is a Constant C2(R) E [O. m) such 

t hat 

'rloreover, from (B. 1 %8), (B. 1.285), and using Condit ion 3.4.4 one has 

for some constant C3(R) E [O,=). Thus, by (B.1.298), (B.1.297'), (B.1.296), and 

(B.1.247) there is a constant C4(R) E [O, oc) such that 

Upon taking expectation in (B. 1.?99), using the Cauchy-Schwarz inequali ty and 

(B.1.245) we have 

where n ( R )  2 y. From (B.l.297) and (B. 1.247) one sees that 



APPEEM)IX B. PROOFS FOR SECTION 3.4 197 

Thus, from (B.1.301), (B.1.245) and the Cauchy - Schwarz inequality one has 

for constant C5(R) E [O, CS). Combining (B.1.287), (B.1.291), (B.1.295). (B.1.300) 

and (B. 1.302) we get 

(B. 1.303) 

Thus, fiom (B.l.287). (B. l.289), (B. 1 .NO), (B.l.293) and (B. 1.303) it follows that 

V(t, z, y) E [O. m) 0 S i  8  PI^. Simplifying (B.1.304) and using the fact that 5 

1 + for O E [O, x), it is easily seen t hat 

~(t,x,y) E [O, oc) 8 Sg 8 R ~ ,  for some constants Cs(@, C@) E [O, 4- ClearI~ 

Condit ion 3.4.7 implies t hat 

O < [q - ~ ] A ; ( R )  < - [ ~ A ~ ( R )  + A~(R)] . (B. 1.306) 
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Jow fix some to(R) E [O, oc) such that 

(B. 1.307) 

Rom (B. 1.306) 

(B. 1.308) 

By (B.1.305), (B.1.307) and (B.1.308) we have 

Then O < 33 (R) < T~(R) hence from (B. l.309), we have 

Then, by (B. 1.31 1) one gets 



AFPE.%mLX B. PROOF'S FOR SECTIOS 3.4 199 

V(t ,x ,  y) E [ t o ( ~ ) .  m) @ S ; ~ R ~ .  Sow by (B.1.312): for al1 t  E [to(R),  x) .  we have 

(B. 1.311) 

V ( t ,  z. y) E [to(R). ooj 8 S i  8 R ~ .  We next show that 

Let ik(t) solve the ordinary differentid equation 

for 
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and fix arbitrary (z, y) E S i  8 EtD.  Put 

{ ( t )  2 @(t) - 82(t. X, y). 

Then, from (B.1.320), (8.1.319). (B.1.31?), and (8.1.305) we have 

( a m )  2 4 t ,  W t )  

with 

(B. 1.320) 

(B. 1.322) 

(see (B.1.288)). Thus, from (B.1.321) 

2 O. (B. 1.323) 

From (B. 1.323) and (B. 1.322) we get 

hence {(t) 2 O, W E [O, oc), hence by (B.1.320) 

SUP ~ z ( ~ . G Y )  5 sup 'W. (B. 1.326) 
( t s . u ) € [ o , t a ( ~ ) l @ ~ ~ @ ~ ~  t€[Q,to(R)j 

But (B.1.317) is a linear ordinary dinerentid equation thus @(.) exists over all t E 

[O, m) hence the right hand side of (B. 1.326) is finite, as required for (B. 1.316). Now 
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it follows from (B.1.315) and (B.1.316) that there are constants CII(R) E [O. CG) 

and y ( R )  E (O, w) such that 

Also, again by (B.1.326), there is a constant Ci2(R)  E [O. 30) such that 

for dl ( t ,  2, y) E [O, t o ( ~ ) ]  B S; O R ~ .  Sow (B.1.321) and (B.1.328) giws a constant 

C(R) E [O. oc) such that 

B2(t, 2. y )  5 c ( R ) ~ - ' ( ~ ) ~ ,  V ( t ,  x. y) E [O. m) 8 S: 8 R ~ ,  

(B. 1.329) 

and t his gives (B. 1.246). 



Appendix C 

Miscellaneous Technical Result s 

Here we list for easy reference a miscellany of simple technical results that are 

needed for the thesis. 

Fact C.0.4. If (A.1.16) hdds  for T(X1 2) gzven by (A.1.15) when the h, : Bid @ 

d + W are uniformly bounded and contirtuous, then 

Proof: To show (C.O.l) it is enough to show that (A. 1.16) holds for T(X,  2) 

given by (A.1.15) when the ht have the form 

for clowd sets F, c BZd 8 since B(P @ d) is the minimal O-algebra which 

includes dl of the closed subsets of Wd @ p. But for closed set F, C Bld 8 d, 
there is a sequence of bounded and continuous functions gi : @ + R such 
that O 5 g i  5 1, Vk EN, and 



Hence, by the dominated convergence theorem. are see that (Al -16) holds for hi 

given by IF,, Fi closed. 

h c t  C.0.5. Suppose {z,) is a sequence in a metric space S .  If each subsepence 

{x.(~))~ of {t,,} contains a furthet subsequence {z,,,,,,}, such that 

Lemma C.0.6. (Problem 3.15 on page 306 of Karatzas and Shreve [19]). 

Suppose that the following holds: 

(i) The mappings b t ( ( )  and agJ (c), 1 5 i 5 D, 1 5 j 5 N ,  are Borel rneasurable 

functions from IZD into R satisfying 

where K E [O. oo) is a constant. 

( i i )  { ( P ( t ) ,  z), t E [O. 00)) is  an ~ ~ - u a l u e d  standard Wiener process on (0.3, P )  

and 

{(<(t. y ) ,  FL), t E [O, m) } is an IZD -valued adapted pmcess on (R, 3? P )  such that 

for some(non-mndom) y E I l D .  Then, for each T E ( O ,  oo) and m = 1,2,3.. . we 

have 

~ ( m a x l ( ( s , y ) l ~ ' )  o<r<t < ~ ( i + y l ~ ~ ) e ~ ~ ;  O < t < T ,  (C.0.7) 

and 

Elc(t, y )  - ~ ( s ,  y)lZrn 5 C (1 + ( t  - s ) ~ ;  O 5 s < t 5 T, (C.0.8) 

where C is a positive constant dependzng only on m, T, K, and D. 



Remark C.O.7. Let {X,, n E H) be a sequence of processes from ( R , F ,  P) into 

(C[O, 11, B(C[O, 11)). The sequence {X,, n E W) is by definition tight when the 

sequence of corresponding distribution is tight . According to Theorem 8.2 on page 

55 and Theorem 8.3 on 56 of Billingsley [4], we establish the following results. 

Theorem C.0.8. The sequence f(X,) is tight t f  and only if  the following two 

conditions hold: 

(i) For each E (O, 11, there zs a < E (O, m) such that 

(ii) For eoch c E (O,  oc) and q E (O. 11, there exists a 7 E (O. 11 and a positive 

integer no such that 

P sup IJL(4 - X*(t)l 1 I V 1  n L no- { 1 (C.O. 10) 
I s - ~ < T  

Remark C.0.9. Condition ( i )  stipulates that {C(X,,(O)), n E N) be tight. Con- 

dition (ii) says that the processes {X,(t), t € [O, ca)} do not Vary too rapidly. 

Sext theorem can be stated similar to Theorem 8.2, assuming a stronger assumption 

in Condition (ii) .  

Theorem C.O.lO. The sequence L(X,,) is tight if these conditions are satisfied: 

(i) For each 11 E (O, Il, there is  a < ( O ,  oo) such that 

(5)  For each c E ( O ,  oc) and q E (O, 11, there ezists a 7 E (O, 1) and a positive 

integer no such that 



Lemma C.O.11. (Problem 6 on page 41 of Billingsley [4]) Let Si and S2 

be metric spaces, and {P.} be the collection of probability measures on SI 8 S2. Let 
A PA be the marginal of Pa on SI ( i.e. PA(Al) = P,(Al 8 Sz), V i l l  E B ( S l )  ) and 

let P: be the marginal of Pa on S2. Then, the famiZy {Pa) of probability rneasures 

on Sl 8 S2 zs tight if and only if the family {Pt) of probubdity rneasures on Si is 

tight and the family {PA 1 of probability measures on S2 is tight. 

In this thesis we repeatedly use the folIowing result which is a special case of 

"Rayleigh's Principle" in linear algebra: 

Lemma C.0.12. ( see Theorem 10.25 of Noble and Daniel [27] ) 

Let M be a D x D symmetnc matriz m'th eigenvalves (necessarily rea2) 

Then zue have 



Appendix D 

Ergodicity and Mixing 

In this appendix we summarize, for the sake of completeness, some of the most 

basic definitions and results on ergodicity and mixing in stochastic processes. Let 

(X, B,m) be a probability space, and let T : X -t X be a transformation. T is 

measurable when 

Definition D.O.13. A measurable transformation T 

sute preserutng when 

(D.O.l) 

: X -+ X is said to be mea- 

P(T- 'A)  = P ( A ) ,  VA E B. 

Definition D.0.14. A set B f B is said to be an invariant set when 

T - I ( B )  = B. 

Remark D.0.15. let BI be the family of invariant sets in B, namely 

B~ 5 { A  E B : T-'(A) = A ) .  

We see easily that Br is a O-algebra. 
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Definition D.O.16. A measure presewing transformation T : X -, S is said to 

be ergodic when 

P(B) = Oor P(B) = 1, for each B E BI.  

D.O.1 Ergodicity of Strictly Stationary Processes 

We now formulate the notion of ergodicity in the context of a strictly stationary 

~ ~ - v a l u e d  process. 

Let Z denote the set of d l  functions from [O. oo) to # Z D ,  namely 

Also, let Ç be the minimal a-algebra generated by the cylindrical subsets of E. Let 

{ [ ( t ) ,  t E [O, cm)} be a strictly stationary &ZD-valued process on the probability 

space (fi, y, P) (whose paths are therefore members of Z). It is elementary to show. 

that the mapping 

G -+ E( . ,w)  : ( R . 3 ,  P )  -+ z ( D . o . ~ )  

is 3/Ç-measurable, hence we can define a probability measure PC-' on (E. 9 )  by 

For each t E [O, m) define a shift operator Tt : Z + E by 

(Tt@) (s) &(t + s), VS E [O, OO), @ E Z. (D.0.9) 

One tnvially sees that T,  is E/Ç measurable and the family {Tt, t E [O, m)) is a 

semi-group of operators, meaning that 



for all tl ,  t2 E [O, w). Also, since { [ ( t ) ,  t E [O. w)} is strictly stationary. it folloa?s 

that each Tt is meusure preserving, in the sense that? for each t E [O, oo), we have 

An additional property which the strictly stationary process {c(t), t E [O, 30) ) ma)- 

possibly have, is that of ezgodtcity. To formulate this property, define the so-cailed 

inuatiant a-algebm (of the sets in Ç) by 

(it is trividly verified that I is indeed a a-algebra). 

If, for each I' E 1, we have 

t hen the stationary process {[(t) , t E [O, co) ) is an ergodic process, or ergcdic. To 

understand what it means for the stationary process to be ergodic, suppose that 

the property asserted by ergodicity fails to hold. Then there is some set î E I such 

t hat 

Since ll('(r) = i', Vt E [O, oo) we see that if $J E r, then Tt@ E T, Vt 't [O, w). 

Likewise if $J $ î, then since î c  E I, we have Tt@ $ r, Vt E [O, cm). Thus the 

space of paths P can be partitioned into two sets r and Tc, each of stnctly positive 

probability, but isolated hom each other in that one can never transfer a path I$ 

inside l? into a path Tt@ outside r by some shift operator Tt. Ergodicity eliminates 

this type of ''non-mixing" behavior, and asserts the property that, for each ï E Ç 

with (PC-') (ï') > O, the sets T;'(T), t E [O, m) effectively "cover" the whole space 

5. (More precisely it can be shown that ergodicity of {((t), t E [O, m)) actually 



impiies the following: if ( f c - l )  (I') > O then 

for any sequence O 5 t l  < tz  < t3 < . . . with t,, 4 w ). 

It is generally difficult to check when a given strictly stationary process { ( ( t ) }  is 

ergodic. However, two exceptions are when { ~ ( t ) )  is a strictly stationary 'IIarkov 

process and when { ( ( t ) )  is a strictly stationary mixing process. We consider each 

of these cases next. 

D.0.2 The Markov case 

Let { [ ( t ) ,  t E [O, oo)) be an ~ ~ - v a l u e d  Markov process on probability space 

(fi, 3, P) with homogeneous transition probability function Pt(z, A) for t E [O, oo), 

x E ElD,  A E  13(lRD), that is 

P [ ( ( t )  E A 1 {(O) = z] = P,(x, A), for P<(o)-' - almost ail r E R ~ .  (D.0.16) 

Let n be an invariant probability measure on ( R ~ ,  B ( w ~ ) )  for the transition prob 

ability function P,(x, A), in the sense that, for each t E [O, m), we have 

We would like some characterization of the invariant probability measures n with 

the property that the corresponding strictly stationary Markov process {[( t ) ,  t E 

[O, 00)) is ergodic. This is given by the next result. We mite P ( R ~ )  for the set of 

probability measures on ( I lD,  B ( R ~ ) ) .  We also need the following terminology: 

Definit ion D .O. 17. Giuen a hornogeneous transition pro babilit y function 

Pt(x, A ) ,  t E [O, w), x E l lD,  A E B ( R ~ ) ,  a measure T E P ( B I ~ )  is called ergodic 

when 
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( i )  * is  an invariant probability measure for the transition pmbability function 

Pt ( G A )  - 

(ii) The ~ ~ - u a l u e d  strictly stationa y Markov pmcess { E ( t ) ,  t E [O, m)} with 

initial distribution x and transition probability Pt(z,  A) is ergodic. 

Theorem D.0.18. (see Theorem 7.4.8 in Stmock [34]) Suppose that P, (x .  il). t E 

[O, oc), x E w ~ ,  A E B ( R ~ )  is a homogeneow tmnsition probability function, and 

let Mi be the collection of al1 n E P ( R ~ )  such that (0.0.17) holds ( i e .  Mi is 

the collection of all invariant probability measures). If Mi is not empty, then Ml 

is a convex subset of p(IZD). Moreover, îr E M 1 is ergodic if and only i f  n is an 

extreme point of M l .  Final$, if al and n? are ergodic, then either T I  = s;? or al 

and nz are mutually singular. 

The next result is immediate from the preceding: 

Corollary D.0.19. Suppose that the homogeneous transition pmbability function 

Pt(z, A), t E [O, oc), 2 E R ~ ,  .4 E B ( R ~ ) ,  has a unique invariant probability mea- 

sure n. Then n is ergodic. 

Remark D.0.20. Corollary D.0.19 is also established in 4.11.43 on page 271 of 

Ethier and Kurtz [IO]. 

Remark D.0.21. In order to use Corollary D.O.19 it is necessary to have condi- 

tions which ensure existence and uniqueness of an invariant probability measure. 

This is typically ensured by conditions such as the Doeblin condition which, in 

the context of an IlD-valued Markov process with transition probability Pt(z ,  A), 

goes as follows: there exists a finite measure 9 on ( R ~ ,  B ( R ~ ) ,  a (small) number 

e E (O, l), and sorne to E (O, m) such that for each A E f3(IZD) with rp(A) < e we 

have 



APPENDN D. ERGODZCITY ,LhD AiIiWVG 2 11 

If Pt(x, A) is non-degenerate in the sense that there e-xists a jointly continuous 

mapping 

such t hat 

and the preceding Doeblin condition holds, then it can be shown that there exists 

a unique invariant probability measure T. together with numbers a E (O, so) and 

y E (0,oo) such that 

where llpllrv denotes total variation of a signed measure p (this is a "continuous 

parameter" version of Theorem 16.0.2 of Meyn and Tweedie (261). There are severai 

objections to using this condition when the ~ ~ - v a l u e d  Markov process {c( t ) }  is a 

solution of an Itô stochastic differential equation of the form 

' 

First, we do not usually know the transition probability function for the the Markov 

process given by (D.0.22). Second, we can never use Lebesgue measure on J l D  for 

ip in achieving the Doeblin's condition, (since it is not a finite measure), and there 

appear to be no guidelines indicating a reasonable choice for the finite measure 

p.). Finally, we really have no need for the very strong convergence in (D.0.21). 

For these reasons we prefer to verify the existence of a unique invariant probability 

measure by following the approach of Bhattacharya and Waymire [3] to Markov 

process arising as solutions of Itô stochastic differential equations(see Theorem 

3.4.1 on page 43). 



D.0.3 The Mixing case 

In this thesis we are concemed with an intrinsicdy llarkovian situation and do 

not require any ideas from the classicai theory of rnixing processes. Severtheless. 

for background information only, in this subsection we briefly indicate the links 

that exist between ergodicity and the classical notions of mluing. Let { [ ( t ) }  be an 

~ ~ - v a l u e d  process on (fi,?, P) and define 

The mapping a : [O. cm) + [O.  s) defined by 

A 
a ( u )  = sup sup 1 P ( M )  - P ( 4  P(B)I , (D.O.24) 

t€[O,ocr)  AEF0.t 
BE%,., 

is called the strong rnin'ng function of the ~ ~ - v a l u e d  process {c ( t ) ) .  Then the 

~ ~ - d u e d  process { { ( t ) }  is said to be a strong rnixing process when 

lim ~ ( u )  = 0. 
U-+CiO 

(D.0.25) 

Remark D.0.22. Observe that we have not assumed that {( ( t  ) } is strictly station- 

ary, hence the notion of strong mixing of { < ( t )  } makes sense even when { c ( t ) }  is not 

strictly stationary. Compare this wit h ergodicity, which requires strict stationarity 

as a prior condition for ergodicity to make sense. 

Yext, define the tail O-algebm of { ( ( t ) )  as 

The ~'-valued process {{ ( t ) )  is called regular when, for each A E L,,, we have 



By adapting the arguments for Theorem 17.1.1 on page 302 of Ibraginov and Linnik 

[15], we obtain: 

Theorem D.0.23. The stationay IRD -valued process {<(t) .  t  E [O. m) } is regular 

if and only if 

Thus Theorem D.0.23 on page 213 gives an alternative characterization of { ( ( t  ) , t E 

[O, m)) being regular. The relation betwen ergodicity and regularity of a process 

is given by Corollary 17.1.1 on page 302 of Ibraginov and Linnik [ls], rhich we 

state as follows: 

Theorem D.0.24. If the R~ -valued process {f(t), t  E [O, oc)) is regular and 

stnctly stationay, then it is  ergodic. 

Finally, the relation between strong mixing and regularity is given by the fol- 

lowing simple result : 

Theorem D.0.25. If the ItD -ualued process {{ ( t )  y t [O. cm)} is strictly station- 

ary and stmng rnixing, then (0.0.28) holds. 

Proof: Define 

Then D is a r-class and we easily see that 

Put 
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Fix A E 'D. From (D.0.29) we have 

Since { c ( t ) }  is strong mixing we know that 

iim sup 1 P I A B )  - P ( A )  P ( B )  1 = O, 
U+OC BE3t *u.m 

hence A E C. It follows that 

vcc .  

It remains to see that C is a A-class: From (D.0.31) we have fi E C. Sext. fix 

A l ,  A2 E C , A2 C Al.  One easily sees t hat 

lim sup / P ( ( A ,  - A,) B )  - P(A, - A*) P(B) 1 = O, (D.0.35) 
U-'dO BE3u.00 

hence Al - A2 E C. Finally, fix A, E C, with -4, C AnTi and put -4 = Un A,. One 

easily shows that 

lim sup 1 P ( A B )  - P ( A )  P ( B ) I  = O. (D.0.36) 
u4ac B E 3 u . x  

hence .4 E C. It follows that C is a A-class, hence (D.0.34), (D.0.30) and Dgnkin's 

A-r theorem gives 

which establishes the result. 



Appendix E 

Solvability of Poisson-type 

Equat ions 

The Case of Discrete-time Markov Chains 

In this append~u we give an adaptation due to Benveniste. Métivier and Priouret 

il] of a result originally due to Sunyach [35] on stability properties of discrete- 

parameter Markov chains, since this result is an important motivation for the a p  

proach that we take in Section 3.4. Basicdy, the result says the foliowing: If li 

is the transition probabiiity function of a discrete-parameter ~ ~ - v a l u e d  Markov 

chain, and its r-th iterate II' is a strict contraction on a properly defined collection 

of locally Lipschitz functions on #ZD for some positive integer t, then the Markov 

chah h a  a unique invariant probability measure and the Poisson equation defined 

by the operator 1 - Ii is uniquely solvable to within constants. Before giving this 

result we formulate the " properly defined collection of Lipschitz continuous func- 

tions" mentioned previously. 

Remark E.0.26. Fix some p E [O, cm), and let h : IZD + R be a Borel-measurable 
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funct ion. Define 

a 
[hl, = SUP 

Ih(x1) - h(22)I 
r t+ t l  1x1 - 121 [If 1x1 l P  + Ix21PI 

A 
Li(p) = { h :  EtD -+ R 1 [hl, c w ) .  

One easily sees that 

lIh(lpçl 5 Ih(O)l + 2 [hlp < m. for h E Li@). (E.0.2) 

Thus, if [hl, < oc, then we have I l  hllpli < m. Hence, for each h E L i ( p ) ,  we see 

t hat 

is finite, and 

For every Borel-rneasurable h : IZD -+ Bi such that 
P 

let IIh be defined by 

where 1T denotes the transition probability function of a discrete - parameter Markov 

chah on JZD. 

Proposition E.0.27. (see Proposition 3 on page 253 of Benveniste, Métivier and 

Priouret [l]) Suppose II(x, A) is one-step tmnsition prohbilityfunction of a J ismte -  

pammeter Markov chatn on l Z D ,  and p E [O, oc) is a constant, such that the fol- 

loving hold: 
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(i) We have 

(ii) For each h E Li@) we have IIn h E L i ( p ) ,  Vn = 1.2.3, . . . . 

(iii) Thete ezists some integer r 2 1: with some constant p E ( O .  1 )  such thct 

[n'hl, 5 P [hl, 9 V h  E L i ( p ) .  (E.0.6) 

Then: 

(a) XI has a unique invariant probability measure m on ~1~ such that 

(b) There ezist constants KI > 0 ,  O < pl < 1 such that 

for each h E Li(p)  and x E IZD. 

(c) For each h E Li@), the fùnction 

is a member of Li@), and sofves the operator equation 

([l - II] IL) (z) = h ( r )  - 1 h dm. Vx E 

(E.O. 11) 

luD. (E.0.12) 

Furthennow, i ful  is another mernber of Li(p)  which solves thzs operator equa- 

u(z )  - ul (x) = a constant , Vx E R ~ .  
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Remark E.0.28. The crucial condition in Proposition E.0.27 on page 216 is (iii) 

which says that, for some integer r 2 1, the r-th iterate IIr is a strict contraction on 

Li@), where we measure the "size" of h E Li@) by the quantity [hl,. This condition 

is strong enough to ensure existence of a unique invariant probability measure for ii. 

toget her wit h solvability of the Poisson-type operator equation (E.0.12) uniquely 

within constants. The nice feature of this result is that it applies even to Ilarkov 

chains which fail to be recurrent in the Harris sense (examples are given in the paper 

of Sunyach [35]). In Section 3.4 of the thesis we will establish a related result for R ~ -  

valued Markov processes {< (t , x) } defined by the Itô stochast ic different i d  equation 

(3.1.3), which will give us existence of a unique invariant probability measure as 

in Condition 3.2.3 of Section 3.2, t oget her wit h solvabili ty of the Poisson- type 

equations in Conditions 3.2.8 and 3.2.15 of Section 3.2. 

Remark E.0.29. Proposition E.0.27 on page 216 is formulated in terms of func- 

tions in Li@), which are locally Lipschitz continuous and have 'polynomial growth" 

of order 1 +p. The reason for introducing this space is that, subject to Conditions 

(i), (ii) and (iii) of Proposition E.0.27 on page 216, we are guaranteed solvability to 

within constants of the Poisson equation (E.0.12) for each and every h that belongs 

to Li@). 



Appendix F 

L2-Derivatives and the Backward 

Equat ion 

In this appendix we discuss the issue of smoothness of the solutions of stochastic 

differential equations with respect to a parameter in the &-sense and then introduce 

the Kolmogorov Backward Equation for diffusions defined by classical Itô stochastic 

differential equations. These ideas will be needed in the course of establishing 

Proposition 3.4.16 on page 51, and we summarize them here for easy reference. 

First we need the following generd definition: 

Definition F.0.30. Suppose that (R, 3. P) is a probability space, and let g, f : 

~1~ 8 R + R be B ( R ~ )  8 3 measurable mappings. If 

A (where ei = (0, . . . ,O, 1.0, . . . ,O) is i-th b a i s  vector for #ID), then g ( . )  is said to 

have a partiai denvative with respect to its i-th argument in the L2-sense at y. and 

this partial derivative is given by f (y). 



Remark F.0.31. Sotice that this partial derivative is itself a random tariable on 

( R , 3 ,  P). We d l  use classical calculus notation to indicate partial deri\xtives in 

the Lz-sense, so we put 

By replacing g with (ay.g) in the preceding definition we can obviously also define 

the notion of the double partial derivative (a,, a,.g) in the Lz-sense. 

Remark F.0.32. The notion of Lz - derivatives set forth previously is due to 

Gihman and Skorohod [14], as are the results on differentiability in the Lz-sense of 

solutions of stochastic differential equations that we summarize next. Recall the 

stochastic different i d  equat ion 

which defines the process {( ( t ,  z, y)) ( s e  (3.4.74)). Then, it follows from Condition 

3.4.4 and Theorem 1 on page 61 of Gihman and Skorohod [14], that the derivative 

(avkck) (t. x, y)  exists in the L2 - sense of Definition F.0.30 and satisfies the relation 

( s e  (3) on page 59 of Gihman and Skorohod 1141). Also, the double derivative 

(ayl % l t f k )  ( t ,  x ,  y )  exists in the L2 - sense of Definition F.0.30 and satisfies the rela- 



t ion 

(see (4) on page 60 of Gihman and Skorohod [14]). 

Remark F.0.33. The significance of the preceding results of Gihrnan and Skor* 

hod [14] is that the first and second derivatives (aybck)(t, x, y) and (ay8Ck)(t, 2,  y) 

exist in the Lz -sense and can be calculated by formally taking the first and second 

derivatives with respect to y of (F.0.3). The L2 - derivatives are useful for the fol- 

lowing reason. Suppose we have a smooth mapping f : R~ + W ,  which is used to 
A 

define another (non-random) mapping ~ ( t  , x ,  y) = E [ f (c(t, z, y))]. It is kequently 

necessary to calculate the partial derivat ives (ay, 4) (t , x, y) and (av a,##) (t , 2, y). 

Indeed, such derivatives m u t  be computed severai times in the course of estab 

lishing Proposition 3.4.16 on page 51. The next result is a type of "chain rule" 

which clearly illustrates the key role played by the L2 - derivatives (8,,4)(t, X ,  y) 

and (a,, a,,{) (t, x, y) in the computat ion of the first and second partial derivat ives 

of Y + M ,  2, Y). 



Corollary F.0.34. ( Coroiiary 1 on page 63 of Gihman and Skorohod [14]) 

Suppose condition 3.4.4 holds, and let f : R~ + R be a C2 -rnapping such that 

for constants C, r E [O, oc). Then the rnapping 

ezists for euch ( t ,  2. y) E [O, oc) 8 IZd 8 R ~ .  is twice - continuously differentiable 

in y for each ( t .  x) E [ O .  ~ 7 )  @ I?, and has first and second y - denvat i iw gicen by 

and 

for al1 ( t .  x. y )  E [O. m) @ d 8 JID.  

Remark F.0.35. Observe that (F.0.6) and (F.O.?) are really a "stochastic chain 

d e " ,  and are reasonably consistent with rhat one would expect on the basis of 

the ordinary chah d e  of calculus, except that (a,.(') ( t ,  x, y )  and (a, ( t ,  x, y)  

are derivatives in the L2 - sense. 

Remark F.0.36. Coroilary F.0.34 is also usefui for establishing the following re- 

sult, which is a trivial variant of Theorem 5 on page 297 of Gihman and Skorohod 

[14] : 
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Theorem F.0.37. Suppose Condition 3.4.4 holds, and let h :  IR^ + IR be a C2 - 
mapping such that 

l l + l &*hl K)l + 

for some constants C, r E [O, cm). Put 

Then y + O(t,z, y )  : IZD -t W 2s a C2 - mapping for each ( t . x )  E [O,  3c) @ w ~ .  
whik t + B(t,z, y) : [O,oo) + R is a C1 - mapping for each (r ,  y )  E R~ 8 ElRD, 

and 

V(t. x, y )  E [O. m) 8 8 R ~ ,  where ( c. f. (32.14)) 

(F.O. 11) 

Remark F.0.38. The relation (F.0.10) is of course the well - known Kolmogorov 

Backward Equation for the d i h i o n  { ( ( t  x, y)}  given by (3.4.74). 
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