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Abstract

In this thesis we study the coupled system of stochastic integral equations

z(t) —:x:o+e/ F(z*(s), y*(s)) ds+e”2/ G(z*(s))dw(s). (0.0.1)

vt 20+ / b(z*(s), y*(s))ds + f o(2%(s), ¥*(5))d3(s). 0.0.2)
0 0

in which € > 0 is a small parameter, {z°(t)} is an [R%valued slow process. and
{y*(t)} is an IRP-valued fast process. Our general goal is to characterize asymptotic
properties of the slow process {z°(t)} over intervals of the form 0 < ¢t < T/e. for a
fixed constant T € (0, o), as ¢ — 0. The motivation for studying this question is a
result of Khas'minskii (“On the Averaging Principle for It6 Stochastic Differential
Equations”, Kybernetika, V. 4(3) : 260—279, 1968 (Russian). also stated as Theorem
9.1 on page 264 of the book Random Perturbations of Dynamical Systems by Freidlin
and Wentzel, Springer-Verlag, 1984), which basically goes as follows: suppose that

the auxiliary stochastic differential equation

dé(t) = b(z,&(t))dt + o(x.£(t))dB(t) (0.0.3)

(which is really just (0.0.2), but with the slow variables z¢(s) “frozen” at some fixed
z € R?) is “stable”, in the sense that the Markov process arising from (0.0.3) has
a unique invariant probability measure 7, for each r € R?. Define the “averaged”
drift

A

F(z) = /RD F(z,§&)dn.(£), (0.0.4)

and use this to write the “averaged” version of (0.0.1) namely

T(t) = g + e/ F(z%(s))ds + 51/2/ G (T*(s)) dw(s). (0.0.5)

iv



It is shown by Khas'minskii op. cit. that the solution {z*(¢)} of (0.0.1) converges
in probability to the solution {Z¢(t)} of (0.0.3). as € — 0. namely

1imP{ max |[z°(t) — Z°(t)]| > 5} =0. (0.0.6)
<

e—0 05;

for each § > 0, One can regard this convergence as a type of weak law of large
numbers. Our goal in this thesis is to establish a rate of convergence for this
weak law of large numbers in the form of a result which may be regarded as a
complementary central limit theorem. To be more precise, we are going to study

the normalized discrepancy process {z¢(t)} defined by

:‘(t) .‘r_g_)_l__h'r_(t)’ Vo<t<
€

ne-

T (0.0.7)
€

Using the method of martingale problems we establish that {:¢(t),0 <t < T'/¢}

converges weakly to a limit as ¢ = 0, and we shall characterize this limit.
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Basic Notation and Terminology

I. Matrices, Vectors, Norms, Balls: R™®" denotes the vector space of matrices
with m-rows, n-columns and real entries. If 4 € R™®" then |4| denotes the

Frobenius norm of matrix A, namely

m n

A2 Y@y

=1 =1
The spaces R™ and IR™®! are considered identical, thus |z| is the Euclidean length
of the vector £ € IR™. For any R € (0.20) let S§ denote the closed ball of radius

R centered at the origin of R™, thus
Sp={zeR™: |z| <R}.

I1. Polynomially bounded functions A function (z.y) — 6(z,y) : R R —»
R is called polynomially y-bounded of order r locally in z, when there is a constant
r € [0,00), and, for each R € [0. ), there is a constant C(R) € [0, ), such that

18(z.y)l S C(R)1 + yl"), V(z.y) € Sz R®.

When the value of the constant r € [0. x¢) is unimportant then ©(z, y) is just called
polynomially y-bounded locally in z, and O(z,y) is called uniformly y-bounded lo-

cally in r when it is polynomially y-bounded of order r = 0 locally in z.

IT1. Function Spaces and Probability Distributions: Let C[0, 1] denote the
Banach space of all R%valued continuous functions defined over the unit interval

[0,1] with the usual supremum norm. Put
Y a .
Q*=C[0,1]®C[0,1], F* =B[Q", (0.0.8)

where Q° is regarded as a metric space with the usual product metric, and B[Q"] is

the Borel o-algebra in Q°. We shall use (X, Z), with X, Z € C|0, 1], for a generic



member of Q°, and define the usual natural filtration {B,, 7 € [0.1]} in (Q*, F*)
by

B, 2 0{X(s),2Z(s), s€ [0,7]}, Vrel01] (0.0.9)

Moreover, if {X(7), 7 € [0,1} and {Z(r), T € [0,1} are two R%valued processes
with continuous sample-paths on some common probability space (Q.F. P) then
L(X,Y) will denote the probability distribution measure over (Q*, F*) for the joint
process {(X(7), Z(7)), 7 € [0,1]}.

IV. Derivatives and Gradients: Suppose that the mapping (z.y) = F(z.y) :
R"® R — R™ is such that z — F(z,y) is differentiable on R™ for each y € R".
Then (9;F)(z,y) denotes the matrix with m-rows and n-columns whose (i, j)-
entry is given by the partial derivative (3, F*)(z,y) for each i = 1,2,... . m,
J=12,... ,n. Inparticular, when m = 1 (i.e. F is real-valued) then (3. F)(z.y))is
a row vector of length n, with j-th entry given by (3., F)(z, y). Also, if y — F(z,y)
is a differentiable mapping on R" for each z € IR", then the notation (9, F)(z,y)
has an obviously analogous interpretation, as does the notation (8;F)(z) when

F :IR* - R™ is a differentiable mapping.
Suppose that H : R®™ — R"®™ is differentiable at each r € R". Then., for each
z,z € R", use (0,H)(z){2] to denote the n by m-matrix whose (i, j)-entry is the

scalar product (8. H)"(z)z,foreachi=1,2,... ,n, j=1,2,... ,m.

V. Borel o-algebra, sets of probability measures: Suppose that (S,p) is
a complete separable metric space. Then B(S) denotes the Borel o-algebra in S,

and P(S) denotes the set of all probability measures on B(S).

VI. Function Spaces: C(IR") denotes the collection of all real-valued continuous
mappings on IR", and C"(IR"), for some positive integer r, denotes the set of all



members of C(R") which are r-times continuously differentiable on R"; C*(R")
denotes the set which is the intersection of C"(IR"™) over all positive integers r. Also
C.(IR") [respectively C7(IR"), C=(IR")] denotes the set of all members of C(R")
[respectively C™(IR"), C*(IR")] which have compact support. C**(R? @ RP) de-
notes the collection of all continuous functions © : R*® R? — IR such that (i) the
partial derivative functions (8,:0)(z, y) and (8;:8,0)(z.y), [,k =1.2.... .d. exist
and are continuous at all (z,y) € R?® IR”, and (ii) the partial derivative functions
(0y:0)(z,y) and (8,10,40)(z,y), I,k = 1,2,..., D, exist and are continuous at all
(z,y) € R*® RP. Notice that there is no requirement that the mixed partial

derivatives (0,10,40)(z,y), | =1.2.... ,d. k =1,2,..., D, need exist for members
of C**(R* ® RP).



Chapter 1

Historical Motivation

1.1 Introductory Remarks

Our research goal is to study the averaging principle for systems of stochastic dif-
ferential equations. Roughly speaking, the term “averaging principle” refers to a
family of results where one has a system of differential equations (either ordinary or
stochastic) typically having “complex” right-hand sides, but where it is possible to
approximate the solution (of the system) by solving a related but simpler system of
equations in which these complex right-hand sides are replaced with simpler right-
hand sides obtained by some form of “averaging” of the original complex systern
of equations. To make this rather vague statement more precise, and to place our
own research problem in clearer perspective, we shall devote the present chapter to
a short introduction on the subject of averaging principles, emphasizing in partic-
ular the historical development of ideas. Our goal in this introduction is to avoid
technicalities and communicate only the basic intuition, and so we shall adopt a
level of discussion which is rather heuristic, the precise statements of conditions

and results being left to the detailed literature review in Chapter 2. In the course
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(]

of this discussion we shall also draw attention to our own research problem. which

is then taken up in Chapter 3.

1.2 Introduction to Averaging Principles - The Determin-

istic Case

The method of averaging in ordinary differential equations has its origins in the
study of celestial mechanics (i.e. planetary motion) during the late eighteenth
century. Here it proved necessary to study systems of differential equations having

the form

dz;t(t) =eF (z°(t),t), z°(0) 2 Tg, (1.2.1)

where € > 0 is a small parameter appearing multiplicatively in the equation, and
the problem is to determine the solution z¢(-) of the system over intervals of the
form 0 <t < T/e¢, where T > 0 is some finite constant. Notice that, because ¢ > 0
is small in (1.2.1), it is only over such “large but finite” intervals that the solution
exhibits significant variation. In (1.2.1) the mapping F : R® ® {0,00) = R% is
typically fairly complex. although regular enough to ensure that (1.2.1) has a unique
solution {z*(t),t € [0,00)}. In general one can say nothing about the solution of
(1.2.1) without explicitly solving this system over the interval of interest, which is
usually a difficult task in view of the complexity of the mapping F(- -). However,
suppose the functiont — F'(z,t) enjoys the further property of having a well-defined
average F'(z) for each z € IR, i.e. suppose that the limit

F(z) 2 lim % F(z,s)ds (1.2.2)

t—oo 0

exists in R? for each z € IR®. This is the case if. for example, the mapping

t — F(z,t) is periodic for each £ € IR% a situation which often arises in celestial
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mechanics where one is studying the movement of a system of planets around the
sun. Now one can introduce an averaged differential equation namely

dz<(t)

- —F (&), 20) =1z (1.2.3)

Setting aside the issue of existence and uniqueness of solutions, and supposing that
(1.2.3) has a unique solution {Z*(t), t € [0,00)}, one might anticipate a relation
between the mappings ¢t — z¢(t) (i.e. the solution of (1.2.1)) and t — 7*(t) over
the interval (1,T/e]. Indeed, in the course of a study on planetary motion. Gauss
suggested that these two mappings are virtually indistinguishable provided that the

parameter € > 0 in (1.2.1) is small enough, i.e. the discrepancy

(t) — (¢ 2.
ogg/tlr() (t)] (1.2.4)

between the two solutions tends to zero as € — 0. The usefulness of a result of this
kind arises from the fact that the “averaged” right hand side z = F(z) in (1.2.3) is
often quite simple, enabling one to solve this equation, and the resulting mapping
t — z¢(t) is a very close approximation to the solution of (1.2.1) over the interval
[0,T/€] as long as € > 0 is small enough. A statement of this kind, where one uses
the solution of a simpler “averaged” ordinary differential equation to approximate
the solution of a given complex differential equation when an underlying multiplica-
tive parameter is sufficiently small, is called an “averaging principle”. Of course,
this is not a rigorously established theorem but merely a useful method of approxi-
mation which seems to be based upon a plausible intuition. Despite the evident lack
of solid mathematical justification, the averaging principle quickly became widely
used in diverse areas of science including celestial mechanics, cosmology, statisti-
cal mechanics and the study of mechanical vibrations. Nevertheless, the lack of a
rigorously established theorem, which could be used to justify application of the
averaging principle, became a source of difficulty in certain challenging problems of

physics. For example, in their book on averaging in systems of differential equations,
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Sanders and Verhulst [31] indicate a problem in cosmology {17] where an unjusti-
fied use of the averaging principle gave rise to erroneous conclusions (see page 19 in
[31]). Problems of this kind stimulated efforts to place the averaging principle on
a rigorous mathematical basis, and to establish theorems whose conditions identify
when one is entitled to use the averaging principle. This task was undertaken by
the Russian school of analysts during the 1930’s and 1950’s, especially Bogoliubov,
Krylov and Mitropolskii [6]. In Section 2.1 we discuss the conditions for their main

theorem and present a complete statement of it (see Theorem 2.1.1 on page 12).

1.3 Averaging in Random Differential Equations

Continuing with our rather heuristic discussion of averaging in differential equa-
tions, we consider next the situation where one has a random ordinary differential

equation, namely
dz‘(t)
dt
Here € € (0, 00) is a small multiplicative parameter, exactly as in (1.2.1), {£(t), t €

= eF (z5(t),&()), z%(0) £ zo. (1.3.5)

[0,00)} is an RP-valued strictly stationary ergodic process on some probability
space (Q,F, P), and the mapping F : R*® R® — R? is sufficiently regular to
ensure that (1.3.5) has a unique solution {z*(t,w), t € [0,00)} for each w € Q.
Such random differential equations are of considerable importance in many areas
of physics and engineering. Motivated by the (nonrandom) averaging principle
introduced earlier, one might expect that if an “averaged” right-hand side is defined
by

F(z) £ EF (z,£(0)), Vze R, (1.3.6)
and the “averaged” differential equation
dz“(t)
dt

=eF (z(t)), %(0) = o, (1.3.7)
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(4]

has a unique solution {Z(t), ¢ € [0, ¢)}. then the discrepancy

oJax, |z¢(t) — z<(t)] (1.3.8)

tends to zero (in some sense) as € — 0. The task of making this intuition rigorous.
and thus placing this “stochastic averaging principle” on a sound mathematical
basis was again undertaken by the Russian school of probabilists and analvsts.
In Section 2.2 we present perhaps the most general theorem pertaining to the
stochastic averaging principle, taken from the book of Liptser and Shiryvayev [24]
(and stated in full as Theorem 2.2.1 on page 13in Chapter 2 of this thesis), which
shows that, under fairly general conditions, the quantity in (1.3.8) converges to zero
almost surely as € — 0, namely

P {zl_x.no [o?éx% |z¢(t) —F(t)l] = 0} = 1. (1.3.9)
In the preceding paragraph we introduced an averaging principle for the random
ordinary differential equation (1.3.5) in which the dynamics are perturbed by a
strictly stationary process {£(t). t € [0,00)}. This raises the question of possibly
extending this result by considering, in place of the perturbed ordinary differential

equation (1.3.5), a perturbed stochastic differential equation, namely
dzt(t) = eF (z(t),£(t)) dt + €'/°G (z°(t)) dw(t), z%(0) £ Zo, (1.3.10)

(observe that (1.3.10) reduces to (1.3.5) in the special case where the covariance
function G(-) in (1.3.10) is identically zero). Here € € (0, 0¢) is a small parameter,
{£(¢), t € [0,00)} is an RP-valued strictly stationary ergodic process, {w(t), t €
[0,00)} is an IRM-valued standard Wiener process, both defined on (Q,F, P) with
{&(t),;t € [0,00)} and {w(t),;t € [0,00)} being independent. The mappings F :
R*® R° - R* and G : R® — R*M are sufficiently regular to ensure that
(1.3.10) has a pathwise unique strong solution {z°(t), t € [0,00)}. The stochastic
averaging principle of the preceding paragraph suggests that, if one defines F(z) as
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in (1.3.6), and introduces an “averaged” stochastic differential equation

dz<(t) = eF (24(t)) dt + €'/2G (2%(t)) duw(t), %(0) 2 zo, (1.3.11)

then it is reasonable to expect that the discrepancy between the solutions of (1.3.10)

and (1.3.11), namely

€ — =€ -)
omax, |z¢(t) — Z*(¢)] (1.3.12)

should in some sense be small when the parameter € is small. A result of this
kind is an averaging principle for stochastic differential equations, and has been
established rigorously by Liptser and Stoyanov [25], who show that the quantity in

(1.3.12) goes to zero in probability as € — 0, that is for each § € (0, xc),

!i_ng {Orsntas.\c% |z¢(t) — T°(¢)] > 6} =0. (1.3.13)
Section 2.3 is devoted to a precise statement of this result. Liptser and Stoyanov
[25] also address another crucial aspect of the averaging principle for the stochastic
differential equation (1.3.10), namely the issue of a rate of convergence (to zero)
of the discrepancy (1.3.12) as ¢ — 0. The idea here is to normalize the error in

(1.3.12) by defining a process

(1.3.14)

where h : (0,00) = (0, 00) is some function such that lim,_ h(e) = 0. If it can be
shown that the stochastic process {z¢(t), 0 < t < T/e} converges to some sensible
limit (in the sense of weak convergence) as e — 0 then this suggests that the solution
{z¢(t), 0 <t < T/e} of (1.3.10) approaches the solution {Z¢(t), 0 < t < T/e} of
the averaged equation (1.3.11) at a speed given by 0(h(e)), at least in the sense of

weak convergence. Liptser and Stoyanov [25] establish this result in the case where

h(e) 2 €2, (1.3.15)
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and a detailed presentation of their theorem is given in Section 2.3.1.

1.4 Averaging in Coupled Stochastic Differential Equations

From the point of view of applications, a disadvantage of the system (1.3.10) is that
the perturbation process {£(t), t € [0,oc)} in the drift term evolves unilaterally.
and is in no way conditioned by the solution z¢(¢) of (1.3.10). In many applications
the appropriate mathematical model is a stochastic differential system similar to
(1.3.10), but with the extra feature that the solution z¢(¢) “feeds back™ and in turn
influences the perturbation process {£(t), t € [0,00)} appearing in the drift. One
way of modeling this dependence is to write the perturbation process as the solution
of a second stochastic differential equation whose drift and covariance functions in
turn depend on z¢(t). Thus, instead of the single perturbed stochastic differential

equation (1.3.10), we are led to consider the pair of equations

dz(t) = €F (z°(t), y*(t)) dt + €'2G (z°(t)) dw(t), z°(0) = zo, (1.4.16)

dy'(t) = b(z*(2). ¥ (1)) dt + o (z4(8). 4*(£)) dB(),  ¥*(0) = . (1.4.17)

Here the first equation (1.4.16) is the analogue of (1.3.10), but now the perturbation
process appearing in the drift (which we prefer to denote by {y(t), t € [0,)}
rather than by {£(t), t € [0,00)}, as in (1.3.10)) is the solution of the second
equation (1.4.17) whose drift b(-,-) and covariance o(-,-) are allowed to depend
upon the solution of the first equation (1.4.16). In the pair (1.4.16) and (1.4.17)
the processes {w(t), t € {0,)} and {A(t), t € [0,00)} are standard indepen-
dent Wiener processes, of appropriate dimensions, defined on the probability space
(Q, F, P). The pair of equations (1.4.16) and (1.4.17) is at the root of the so-called
Smoluchowski-Kramers approzrimation in mathematical physics, where it has long

been used without very much solid theoretical justification. More recently, it has
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also been argued in Sastry (32| that this pair of equations is a realistic model for
microelectronic circuits subject to wide-band thermal noise. From the physical
viewpoint, the two equations (1.4.16) and (1.4.17) become a useful mathematical
model cnly when the second equation (1.4.17) possesses enough intrinsic “stabil-
ity” to cause the perturbing process {y(t), t € [0,20)} to “average” the drift in
(1.4.16). To make this idea clearer, suppose that the auxiliary stochastic differential

equation
d&(t) = b(z,&(t)) dt + o (z,£(t)) dB(2), (1.4.18)

has a unique invariant probability measure 7.(-) for each £ € IR?. We then define

an averaged drift term by
F(z) = /RD F(z,§)dn.(£), VYze Re (1.4.19)
and use this to write an “averaged” version of (1.4.16), namely
dze(t) = eF (25(t)) dt + €'/2G (2°(t)) dw(t), z°(0) 2 zo. (1.4.20)

The intuition here is that, when ¢ is small enough, then y*(t) is varying so rapidly
in comparison with z¢(¢t) that F(z%(t),y*(t)) is virtually indistinguishable from
F(z¢(t)). This in turn suggests that the solution {z¢(t), t € [0,0c)} of the rather
complex equation (1.4.16) should be nicely approximated by the solution of the
simpler averaged equation (1.4.20) when ¢ is small, at least over intervals of the
form [0,7/¢]. Plainly, a theorem is needed to make this rather delicate intuition
precise, and such a result has been established by Khas'minskii [20], who used a

rather intricate argument to show that the discrepancy
max |[z°(t) — Z°(¢)] (1.4.21)

between the solutions of (1.4.16) and (1.4.20) converges to zero in probability as

€e—=0.
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1.5 Brief Summary of Research Problem

The preceding remarks provide a very condensed account of the main developments
in averaging principles from their inception by Gauss up to the present time. and
give enough background for us to briefly outline the main research problem of this

thesis.

Goal: Our research goal concerns the pair of equations (1.4.16) and (1.4.17)
which, with the exception of the early work of Khas'minskii [20], has not received
very much attention, despite its importance as a mathematical model in several
applications. The objective here is to establish a rate of convergence, motivated by
the rate of convergence established by Liptser and Stoyanov [25] for the stochastic

differential equation (1.3.10). That is, for

A (t) — T°(¢t)

. T
=(¢) —az VOSfS?

, (1.5.22)
where {z°(t), 0 <t < T/e} is given by (1.4.16) and (1.4.17) and {T°(t), 0 <t <
T/e} is given by (1.4.20), we will establish that {z*(t), 0 < t < T/e} converges
weakly to a limit as € = 0, and will charactrize this limit. Because of the extensive
dependencies allowed by the model (1.4.16) and (1.4.17) this turns out to be a sub-
stantially more challenging problem than that addressed by Liptser and Stoyanov
[25] and requires significantly different methods of analysis. In Chapter 3 we shall
use a martingale-based method, suggested by ideas of Kurtz [10] and Papanicolaou,
Stroock and Varadhan [29] to study this question.



Chapter 2

Literature Review

In this chapter we consider again the main results that were informally summarized
in Chapter 1. However, we shall now pay much more attention to the careful
enunciation of these results, including in particular the precise statement of the

hypotheses and conclusions.

2.1 The Averaging Principle of Krylov-Bogoliubov-
Mitropolskii

The Averaging Principle of Krylov-Bogoliubov-Mitropolskii (see e.g. [6]), is a re-
sult in the theory of non-linear ordinary differential equations which has several

applications in science and engineering.

To see the idea of the averaging principle suppose that we have a differential
equation in which a small parameter € € (0, ) appears multiplicatively as follows:

dz(t)
dt

=eF (z¢(t),t), z%(0) 2 zo. (2.1.1)

10
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Here F: R?®[0,¢) = R®.t € [0. ).z € IR®. and the function F(z.t) is regular
enough to ensure that the differential equation (2.1.1) has a unique solution r*(.)
on interval [0, o0), for each € € (0,2c). One is usually interested in the asymptotic
behaviour of z¢(.) over the interval [0.7/¢], for some fixed T € (0.c). as € — 0,
since significant changes in the solution of (2.1.1) only occur on intervals [0.T /¢].
when ¢ is small. Throughout this chapter. with no loss of generality, we assume
T = 1. To investigate the limit behaviour of z¢(t) over [0, 1/€]. it is useful to change

time-scales as follows: Put
Xi(r) 2 z¢(r/e). Vrelo1]. (2.1.2)

Differentiating (2.1.2), and using (2.1.1), results in

S ARE
=§(%fm)mt=ﬁe
= [P (z(r/0).7/e) (213
i.e. we have
X F(Xe(r)r/e).  X(0) = 20 V7 € [0,1]. (2.1.4)

dr
We observe that {X¢(r). 0 < 7 < 1}, the solution of (2.1.4). is equivalent to

{z¢(t), 0 <t < 1/e}, the solution of (2.1.1), via the relation (2.1.2).

Suppose that the time average F(z) of the function t — F(z,t) exists for each

r € R®, namely

F(z) 2 tim L [ Fz,s)ds. (2.1.5)

t—ao ¢ 0

The idea of the averaging principle of Krylov, Bogoliubov and Mitropolskii (6] is
that the solution X¢(7) of (2.1.4) can be approximated by the solution X(r) of the

following “averaged” differential equation
dX(7)
dr

=F(X(r)), X(0)&z, vrelo,1], (2.1.6)
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in a sense which is made precise by the next result:

Theorem 2.1.1. suppose that the function (z,t) — F(z.t) : R® 8 [0.) = R®

satisfies the following conditions:

1. (z,t) = F(z.t) is Borel measurable on R® ® [0, o).

2. there is a constant M € (0,00) such that

|F(z,t)] < M, Vze R vte[0,x), (2.1.7)
3. the function £ — F(z.t) satisfies a Lipschitz condition, i.e.
|F(z1.t) = F(z2.t)| £ A|zy — 12 (2.1.8)

for some constant \ € (0,0¢),Vt € [0. ) and Vz,,1, € R,

4. the time average F(r) of (2.1.5) exists uniformly for each r € R®. i.e.

F(z) - 1/t/0‘ F(z.s)ds

tlim {sup } =0. (2.1.9)

Then (2.1.6) has a unique solution {X(r), 0 < 7 < 1} and
lim max | X*(r) - X(7)| = 0. (2.1.10)
e=0 r€[0.1]

where {X*(7), 0 < 7 < 1} is the unique solution of (2.1.4) for each € € (0.1).

A detailed proof of this result can be found in Krylov-Bogoliubov-Mitropolskii
(6], Gihman [13], and Besjes [2]. We have taken the preceding statement from
Besjes ([2]. Theorem 1°. page 358).

2.2 Stochastic Version of the Averaging Principle

Here we introduce a stochastic analogue of the averaging principle of Section 2.1.
Let F: R*® R - R® be B(R*) ® B(R”)/B(RR®)-measurable and suppose that
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{£(t),0 <t < oc} is an RP-valued jointly measurable strictly stationary random
process defined on a probability space (2, F, P), such that (z.t) — F (z.£(t)) is
regular enough to ensure that the “random” differential equation

dz(t)
dt

= eF (z°(t),E(t)), z%(0) 2 xo, (2.2.11)

has a unique solution {z¢(t), t € [0,oc)} for each € € (0,2) and «- € Q. Using
(2.1.2), as before, we first change time-scales in the equation (2.2.11) as follows:

Put
X¢(r,w) 2 r(r/ew), Vre(0,1], VweQ (2.2.12)

Then, in the same way that (2.1.3) followed, we see that

dX(r)
dr

= F(XY(7).6(r/e)), X«(0)2z Vrel0l]. (2.2.13)

Theorem 2.1.1 on page 12 seems to suggest that the solution X*(7) of the equation

(2.2.13) is approximated, for small values of ¢ € (0, 0), by the solution .X(7) of the
non-random differential equation
dX I

df—T) =F(X(r). X(0) 2 g, Vre [0, 1], (2.2.14)

where F(z) is the “averaged” value of the right-hand side of (2.2.13), defined by

F(z) 2 EF(z.£(t)), Vze R (2.2.15)

Under certain conditions this intuition has been made precise by Liptser and

Shiryayev (see {24], page 722, Theorem 1) who showed:

Theorem 2.2.1. Let {£(t),t € [0,00)} be a strictly stationary jointly measurable
ergodic process defined on a probability space (Q, F, P), taking values in RP, and
let the function (z,y) = F(z,y) : R®® RP — RR? satisfy the following conditions:

1. the function (z,y) — F(z,y) is B(R®) @ B(RP)/B(IR?)- measurable.
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2. There is a constant L € [0, >c) such that
IF(Ilry)_F I,y I <L|xl — I/, (2’216)

Vz,,z, € R* and y € RP.

3.
E|F(z,£(0))| < . Vze R (2.2.17)
Then we have
“( = 2.2
11_1.% {g{g}f] |Xe(r) - (r)|} 0, a.s. (2.2.18)

2.3 The Averaging Principle for Stochastic Differential

Equations

Liptser and Stoyanov [25] extend the stochastic version of the averaging principle

in Section 2.2 to Ito stochastic differential equations of the form

z°(t) =zo+e/t (z¢(s),&(s)) ds +e”2/ G (z°(s)) dw(s), (2.3.19)
0

where ¢ € (0,00) is a small parameter, the functions F(z,£(t)) and G(z) are
regular enough to ensure that (2.3.19) has a pathwise unique strong solution for
each € € (0,20), and {£(t),t € {0,00)} is a strictly stationary ergodic process and
independent of the Wiener process {w(t),t € [0,00)}. Among their results(see
Theorem 2.3.1 on page 15 which follows) is one which shows that the solution
{z°(t),t € [0,1/€]} of (2.3.19) is approximated by the solution {z*(t),t € [0,1/¢]}
defined by the “averaged” stochastic differential equation of the form:

Z(t) = 7o + € /0 tF'(:z‘:‘(s))ds +€/? .[0 ‘G(a':‘(s))dw(s), (2.3.20)
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which differs from (2.3.19) in that the function F(.) is now non-random and defined

by “averaging” in the sense of
F(z) = EF (&(t),z), Vze R (2.3.21)

Before formulating this result in precise terms, we normalize from a time scale of

[0,1/¢€] to the finite interval [0, 1] by defining

X¢(r.w) 2 1(r/e.w) and Xé(r.w) 2 2(r/e,w), Vr€[0.1], Vu € Q.

(2.3.22)
and
Wer.w) 2 w(r/e.w). VYre(0,1], Yuwe Q. (2.3.23)
Then we can re-write (2.3.19) and (2.3.20) as
_x0+/ F(. £(s/€)) d“-/ G (X*(s))dW*(s), Vrel0,1],
(2.3.24)

and
X)) =10 + /f F(X*(s))ds + /r G (X*(s))dW*(s), Vrel[0.1], (2.3.25)
0 0

respectively. It is well-known from the re-scaling property that {W<(r), r € [0, 1]}
in (2.3.23) is a standard Wiener process on (2, F. P), for each € € (0, 00).

The following Theorem, established by Liptser and Stoyanov ([25], Theorem 1), for-
mulates an averaging principle for stochastic differential equations in the preceding

context:

Theorem 2.3.1. Suppose that {F,, t € [0,0c)} is a filtration in (Q, F, P) such that
Fo includes all P-null events in F, {(§(t),F.), t € [0,00)} is a strictly stationary
RP -valued progressively measurable ergodic process, {(w(t), F);t € [0,00)} is an

IRM -valued standard Wiener process, and the following conditions hold:
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1. functions (z.y) — F(zr,y) : R*°® R® - R? and r = G(z): R* - RS RV
are B(R*) ® B(IR®)/B(IR%) and B(R*)/B(IR*® RP) measurable. respectively.
2. F(z,y) and G(z) are globally Lipschitz continuous and satisfy linear growth

condition with respect to r, uniformly in y: namely, for some constant L €

(0, 00), we have

|F(z1,y) — F(z2, )| Lizy - 13|, Yz, 1€ RY vye RP,
|F(z,y)] < L(1+jz]), Vze R vye RP.
|G(z1) - G(z2)] £ Llzy— 12|, Vzy,22€ Rd,

IG(z)| € L(1+]z]), V¥Yre R% (2.3.26)

IN

A

E|F(z.£(0))| < oc, Vze R¢ (2.3.27)
4. The processes {£(t), t € [0.00)} and {w(t). t € [0,20)} are independent

Then for each § > 0, one has

lim P { max | X¢(7) - X¢(7)| > 5} =0, (2.3.28)

«—0 r€{0.1]

where X¢(.) and X¢(.), for each ¢ € (0,2¢), are the unique strong solutions of

(2.3.24) and (2.3.25), respectively.

Remark 2.3.2. Notice that the conditions postulated in Theorem 2.3.1 on page
15 are sufficient to ensure that (2.3.24) has a pathwise unique strong solution
{X<(7), 7 € [0,1]} and (2.3.25) has a pathwise unique strong solution {X*(7), r €
[0,1]} for each € € (0,00). This is ensured, for example, by Theorem 5.1.1 of
Kallianpur [18].
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2.3.1 Rate of Convergence in Theorem 2.3.1 on page 15

Liptser and Stoyanov (see [25], Theorem 2.1), also establish a rate of convergence
in (2.3.28) in the following form:
Define the family of processes {Z¢(7), 0< 7 <1} by

Z4(r) 2 VX (r) = X4(7)]. Ve (0,00), ¥re[o.1]. (2.3.29)

where X¢(.) and X*(.) are the unique strong solutions of equations (2.3.24) and
(2.3.25), respectively. Thus Z¢(.) normalizes the discrepancy between X¢(.) and
X¢(.) by a factor of €!/2. Liptser and Stovanov (see {25], Theorem 2.1), established
that the process {Z¢(7). 0 < 7 < 1} converges weakly to some well-defined limit
as € = 0 (under additional assumptions for the functions F{(...) and G(.) which
are formulated precisely in the next paragraph). This suggests that the process
{X¢(7).7 € [0.1]} converges weakly to the simpler process {X*(7).7 € {0.1]} at a

“rate” which is O(¢!/?) as € = 0.

We next formulate the regularity conditions which are needed for this result to
hold. and then present a precise statement of the result. Suppose that (Q, F, P) is
a probability space. {F;,t € (—oc,c)} is a filtration in this probability space such
that F; includes all P-null events in F. and the following Conditions (B0) — (B6)
hold for (2.3.19).

(BO) Mappings (z,y) = F(z.y) : R*® R® - R® and z — G(z) : R* =

IR*® R™ are Borel measurable, and there is a constant L € (0. oc), such that

|F(z1,y) = F(z2,y)] < L|z, - 1za|, V1,72 € R Vye RP, (2.3.30)
|G(z1) — G(z2)] < Liry - zo|, Vzy,72 € R® (2.3.31)
|F(z,y)] < L(1+]z|), Vre RY vye RP, (2.3.32)

IG(z)] < L(1+]z]), Vze R (2.3.33)
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(B1) The functions F and G are continuously differentiable in r such that
their derivatives are bounded, and satisfy a Lipschitz condition. Namely, for some

constant L € [0,00) , we have
OF (z,y)

| 5o | <L Vze RiVye R, 1<ik<d (2.3.34)
ij
iagxix)l <L VreR! 1<ik<d 1<j<M, (2.3.35)
oF (1,
| ;ii'y) - ap;if‘y)l SLizy— 12, Vo,z€R® VyeRP, 1<ik<d

(2.3.36)

ij (10
Iaca;fl)-aca_,,(f')|sL|x;—rzL Vrizar€RY 1<ik<d 1<j<M

(2.3.37)

(B2) The initial condition zo € R? in (2.3.19) and (2.3.20) is a non-random

constant.

(B3) {(w(t),F.);t € [0.00)} is an RM- valued standard Wiener process on
(Q,F,P).

(B4) {(¢(t),F); t € (—oc,00)} is an RP- valued progressively measurable
process on (2, F, P), and {£(t);t € (~oc,00)} is strictly stationary and ergodic.
We define

F(z) 2 E[F(z.£(t))]. Vre R (2.3.38)

(B5) The processes {(w(t);t € [0,00)} and {£(¢);t € (—20,)} are indepen-
dent.

For each z € R?, let {n(z), t € (0,c)} be an R%valued process defined by

n(z) £ F(z.£(t)) — F(z), Vre R (2.3.39)
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In view of Condition (B4), the process n(z) 2 {m(z), t € [0,2c)}. for each r € R®,
is strictly stationary and ergodic with En,(r) = 0. Here is an additional assumption
on the process £(.) given in terms of the process 7(.):

(B6) For some p > 2, we have

[ esssupllE ()5 odt < o (2:3.40)

0 z
where ||Q||, 2 (E(|QJ?))"? and F§ denotes the o-algebra generated by the process
£ up to time 0, i.e. F§ 2 a{&(t), —oo <t < 0}.
Remark 2.3.3. If there existed perfect independence of n,(z) and }'5, then we
would have
E (n(2)F§) = E (n()) = 0. (23.41)

An ergodic process {£(t)} generally fails to have a strong independence property of
this kind, and Condition (B6) expresses a decaying dependence of n,(z) on }'g as
t = o0, ie F (rh(x)!fg) is “getting small” as t — oc.

Remark 2.3.4. Condition (B6) implies that
v(z) 2 /0 E (nz)nd (2)) dt + [ E (no(z)n] (2)) dt (2.3.42)
0

is defined and is a symmetric d ® d positive semi-definite matrix for each r € R%.
It then follows from linear algebra (see Exercise 12.46 of Noble {27]) that, for each
r € R4, there is a unique symmetric positive semi-definite d ® d matrix v'/?(z)

such that
v(z) = (W3(z)).(v*(z))T, Ve RY, (2.3.43)

and the mapping z = v'/3(z) : R® — R9®¢ is B(IR®)/B(IR*®?) - measurable (see
comments on page 171 of Karatzas and Shreve [19]). The square-root »*/?(-) will
shortly be needed when we formulate Theorem 2.3.6 on page 20 to follow on rates

of convergence.
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Remark 2.3.5. Let B(z, =) be the d ® M matrix defined for each r.z € R? by
A
B(z,z) = (8:G)(z)[z],

(see Item IV in “Basic Notation and Terminology”); that is, the (7, jjth entryv of

B(z, z) is given by the inner product
BY(z,z) 2 (8,GY)(z)z, (2.3.44)

fori=1,2,...d, j=1,2,..., M, where we recall from Item [V of “Basic Notation
and Terminology” that (8;G")(z) denotes the row vector of length d whose k-th
entry is (8,.GV)(z).

Now we can formulate the following rate-of-convergence result which was estab-

lished by Liptser and Stoyanov [25] for Theorem 2.3.1 on page 15:

Theorem 2.3.6. Suppose Conditions (B0) to (B6) hold and recall (2.53.29). Then
22452 ase—0, (2.3.45)

where {Z(7), T € [0,1]} is the solution of the following stochastic differential equa-

tion
2(r) = fo "(8.F)(X(s))2(s)ds + /0 " B(X(s), Z(s))dW(s) + /0 "X (s))dB(s),
(2.3.46)

in which {3(7), 7 € [0,1]} and {W(r), 7 € [0,1]} are standard independent Wiener
processes on a common probability space, with {3(7)} being R®-valued and {W (1)}
being RM -valued.

Remark 2.3.7. The relevance of Theorem 2.3.6 on page 20 can be explained by
some ideas from simple probability theory. Suppose that a sequence {&, n =

1,2,3,...} of random variables on a probability space (Q2,F, P) is subject to a
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weak law of large numbers of the following form: There is some number Z € IR such

that
et 23,47
Zn =~ Y& (2.3.47)
converges in probability to the limit T, namely
lim P{|z, - Z| >é} =0, (2.3.48)
n—+o0

for each 4 > 0. Then a natural question is how to characterize a possible rate of
convergence of z,, to the limit Z (in this weak law of large numbers). One typically
does this by normalizing the discrepancy (z. — Z) by a non-random factor h(n),
where h(n) — 0, as n — o0, and asking if h(.) can be chosen to ensure that

Inp—ZI

h(n)

ne

Zn

(2.3.49)

converges weakly to some limiting random variable Z as n — 0. Of course the possi-
bility of doing this requires that {£,} exhibit some form of “partial independence”.

If this partial dependence is strong enough then one can typically show that

Z. 2 a Gaussian limit Z (2.3.50)
when
h(n) & L (2.3.51)
— ﬁ, - -

(this is just the Central Limit Theorem). Going back to the context of Theorem
2.3.1 on page 15, we have a somewhat analogous situation, in which the “function
- space valued” random variables X¢(.) and X (.) play roles similar to z, and Z
in the preceding discussion, and the convergence in (2.3.28) is just a weak law of
large numbers in “functional form” which is analogous to (2.3.48). The question
then arises as to how to establish an analogue of (2.3.50) in the context of Theorem

2.3.1 on page 15. It is natural to proceed by defining Z(.) as in (2.3.29), to be the
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“function - space” analogue of Z, in (2.3.49) with h(n) given by (2.3.51). and then
to seek a weak limit of Z*(.) as e = 0. This is provided by Theorem 2.3.6 on page
20, in which (2.3.45) is the analogue of (2.3.50) except that in this case the limit
in (2.3.45) no longer turns out to be Gaussian as it is in (2.3.50). In summary. we
can regard Theorem 2.3.6 on page 20 as a type of “central limit theorem™ for the

“weak law of large numbers” given by Theorem 2.3.1 on page 15.

2.4 The Averaging Principle for Coupled It6 equations

In the preceding section, we have seen an averaging principle when the perturbing
process {£(t), t € [0.00)} in (2.3.19) is independent of {w(t), t € [0,oc)}. In this
section, we shall introduce a case in which the perturbing process is constructed by a
stochastic differential equation conditioned by the slowly varing process {r(t), t €
[0,00)} and is hence conditioned by the driving Wiener process {w(t), ¢t € [0,00)}
in the stochastic differential equation for {z¢(t), ¢ € {0,00)}. To be precise we

consider the coupled stochastic diﬁ'erential equations
(t) = .to+e/ F(z )ds+e”2/ G(z(s))dw(s). (2.4.52)

yi(t) = yo+/0 b(z*(s), y ())d8+/; o(z(s), y*(s))dB(s),  (2.4.53)

vVt € [0,00), where {w(t), t € [0,00)} and {3(t), t € [0,00)} are independent
RM and R"-valued Wiener processes respectively, defined on a probability space

(Q,F, P). The idea here is to postulate that the stochastic differential equation

d§(t) = b(z.&(t))dt + o(z,£(¢))dB(t), (2.4.54)

is “stable”, in the sense that the Markov process arising from (2.4.54) has a unique

invariant probability measure 7. on RR?, for each r € IR®. Now define an “averaged”
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drift
Fiz)2 | F(z.€)dn.(€), Vze R, (2.4.55)
RD

and use this to write the “averaged” version of (2.4.52) namely
z(t) —x0+e/ F(T(s))ds + €'/? [ G (T(s)) dw(s), Vte[0,00). (2.4.56)

From (2.4.52) and (2.4.53) we see that y*(t) varies much more rapidly than r¢(t).
which suggests that F(z¢(s),y*(s)) is “close” to F(z¢(s)), and hence that {z*(t)}
arising from (2.4.52) may be well-approximated by {T*(t)} arising from (2.4.56).
It turns out that this intuition is correct provided that we limit attention to time
intervals t € [0, 1/¢]. This intuition is justified by the next theorem, essentially due
to Khas'minskii [20] (also given as Theorem 9.1 on page 264 of the book [11] by
Freidlin and Wentzel), which says that

ogzg.;:/{ |z¢(t) — T°(¢)] (2.4.537)
goes to zero in probability as € —+ 0. Before presenting this result, it is convenient

to normalize the time scale of [0, 1/¢] to the finite interval [0, 1] by defining

Xr) £ z¢(r/e), ?(T)éf(r/e)
Yi(r) 2 yi(r/e), We(r) & e/u(r/e),
Be(r) £ €/25(r Je), (2.4.58)

for all € € (0,1] and 7 € [0,1]. Then, from (2.4.52), (2.4.53) and (2.4.56), we see
that

X*(7)

zo + /Of F(X“(s),Y*(s))ds + /: G(X<(s))dW*(s), (2.4.59)

Y(r) = yo+e! fo fb(X‘(s),Y‘(s))ds«f-e“/z /O fa(X‘(s),Y‘(s))dB‘(s),
(2.4.60)
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and
X(r)=m+ [ FE)ds+ [ G (aW(s) (2.461)
0 0
For the system of equations (2.4.52), (2.4.53), we assume that the following condi-
tions hold:

(C0) The mappings F: R°QR? - R, G: R® - R%M b : R*°® R® - R*
and ¢ : R*® RP? — RV are uniformly bounded and satisfy a Lipschitz condition,

i.e. there is a constant L € [0, 00) such that

|F(zi,3) = F(za,32)] < L{lzi — 22|l + ;1 — 92l],  Vzi,22 € RY, Yy, 40 € RP
|G(z)) = G(z2)] € Lty —=z3l]}, Vz,,20€ R,
b(z1,31) = b(z2, 12)| < L{lzy— 22l + s —vall, Vzi, 22 € R®, Yy, o€ RP
|a(xlvy1)_a(12ry2)| S L[III —I2| +lyl-y2|]1 V'rl!-ri’ € Rda Vylvy2€RD
(2.1.62)
and
sup  |F(z,y)| < oo,
(z.y)ER*®@RP
sup |G(z)| < o0,
ze RS
sup  |b(z,y)| < oo,
(z.y)eRIQRP
sup |o(z,y)] < oo. (2.4.63)
(z.y)éﬂ“@ﬂo

(C1) For each z € IR?, there is a unique invariant probability measure 7, on
(IR, B(R)) for the Markov process {£(t,z), t € [0,00)} defined by the stochastic

differential equation

dé(t, z) = b(z,&(t, z))dt + o(z,&(¢, z))dB,. (2.4.64)
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[ %]
(3]

(C2) The mapping F : R? — IR? defined by
F(z) = /;:: F(z,y)7.(dy), z € R (2.4.63)
is globally Lipschitz continuous, namely there is a constant C € {0, 5c) such that
|F(z)) — F(z2)| £ Clzy — 24|, Vzi,72 € R (2.4.66)

Moreover

t+T
lim sup FE ]l/ F(z.&(r.z,y)) dr = F(z)| | =0, (2.4.67)
T te(0,00) T t
(z.y)ERSRP
where {£(t,z,y), t € [0,0)} is the solution of (2.4.64) with initial condition
E(va) =Y.

(C3) The processes {w(t), t € {0,00)} and {3(t), t € [0,00)} in (2.4.52) and
(2.4.53) are independent Wiener processes on a common probability space (Q2, F. P),
w(t) is RM-valued and 3(t) is R"-valued.

Theorem 2.4.1. Suppose Conditions (C0), (C1), (C2) and (C3) hold for the sys-
tem of equations (2.4.52), (2.4.53). Then for any § > 0, we have

lim P { sup |X(r) = X(7)| > 5} =0. (2.4.68)

0<r<l1
2.5 Goals and Organization of Thesis

Theorem 2.4.1 on page 25, which pertains to the coupled system (2.4.52) and
(2.4.53), is an obvious analogue to Theorem 2.3.1 on page 15 for the system (2.3.19).
As such, it can be viewed as a type of weak law of large numbers in functional form,
for the system (2.4.52) and (2.4.53). We saw in Remark 2.3.7 that Theorem 2.3.6
on page 20 gives a “central limit theorem” which complements the weak law of

large numbers provided by Theorem 2.3.1 on page 15 for the system (2.3.19). It is
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therefore natural to try to establish a central limit theorem which is an analogue of
Theorem 2.3.6 on page 20, and which bears the same general relation to the weak
law of large numbers in Theorem 2.4.1 on page 25 as the central limit theorem of
Theorem 2.3.6 on page 20 does to the weak law of large numbers in Theorem 2.3.1
on page 15. Establishing a result of this kind is our main research problem in the

present thesis, and is addressed in the next chapter.

The organization of the thesis is as follows: In Section 3.2 of Chapter 3 we
shall declare basic conditions on the coefficients of the coupled system (2.4.52) and
(2.4.53) which are sufficient to ensure that such a central limit theorem does indeed
hold, and in Section 3.3 we shall state the main result of the thesis (see Theorem
3.3.3 on page 42). The conditions that we postulate will be in fairly abstract form,
and in particular will entail solvability of certain Poisson-type partial differential
equations associated with the linear second-order differential operator arising from
the coefficients of the second of the coupled equations (2.4.53). In Section 3.4 of
Chapter 3 we shall therefore formulate some simple sufficient conditions on the
coefficients of (2.4.52), (2.4.53), which are enough to ensure verification of the
rather abstract conditions in Section 3.4. The proof of the main result (Theorem
3.3.3) on page 42 is given in Appendix A, and all results stated in Section 3.4 are
proved in Appendix B. Appendix C lists some standard miscellaneous technical
results, needed for the proofs in Appendices A and B, that we have collected for
easy reference. Appendices D and E summarize standard background information,
on ergodicity and mixing, and on solvability of Poisson equations associated with
discrete-parameter Markov chains, that are useful for the discussions in the thesis.
Finally, Appendix F summarizes the main ideas due to Gihman and Skorohod [14]
on so-called Ly-derivatives of solutions of SDE’s; the ideas and results summarized
here are needed for the proofs in Appendix B.



Chapter 3

Averaging for Coupled Ito6

Equations

3.1 Introduction

In this chapter we consider the coupled It6 equations (2.4.52) and (2.4.53), which

we reproduce for convenience as follows

—ro+e/ F(z(s ))ds + € /G (3.1.1)

= yo +/ b(z ))ds + /0t o{z(s), y*(s))dB(s). (3.1.2)

Here 1o € R? and y € R are nonrandom, and {w(t), t € [0,20)} and {3(t), t €
[0,00)} are independent standard Wiener processes on the same probability space
(Q, F, P), taking values in RM and RR" respectively.

Suppose that the mappings b(.,.) and o(...) in (3.1.2) are such that, for each

£ € R, there is a unique invariant probability measure 7, on (IR?, B(IRP)) for the

27
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Markov process {£(t,z), t € [0.oc)} defined by
dé(t) = b(z.&(t))dt + a(z.£())d3(t). (3.1.3)
Then we can define an “averaged” drift
F(z) 2 fnv F(z.€)dm,(£), Yzre RS (3.1.4)
and use this to define an “averaged version™ of (3.1.1) namely
(t) = 20 + e/: F(z%(s))ds + €'/? ./: G(T%(s))dw(s), 0<t<et, (3.1.5)

In Theorem 2.4.1 on page 25 conditions were introduced which are sufficient to
ensure that
sup |X*(r) - X (1) (3.1.6)
0<r<1

goes to zero in probability as ¢ — 0. where we have used the re-scalings
X¢(r)2z(r/e) and X(r)2T(r/e), VO<T <1 (3.1.7)

As was noted in Remark 2.3.7 and Section 2.5, this result is a type of “weak law
of large numbers”, and the question of an associated rate of convergence natu-
rally arises. In this chapter we will look at the “normalized discrepancy process”
{Z<(7), 0 £ 7 < 1}, defined by

a X(1) =X (1)
- €l/2 !

Z¢(7) 0<7<1, (3.1.8)

and try to establish reasonable and natural conditions on the mappings F'(.,.), G(.),
b(.,.)and o(.,.) in (3.1.1) and (3.1.2) which are sufficient to ensure weak convergence
of {Z¢{(t7), 0 < 7 < 1} to a limiting process {Z(f), 0 < r £ 1}. We shall also
fully characterize this limit process. The motivation for this is, of course, Theorem
2.3.6 on page 20 which provides a similar type of rate of convergence for the “weak

law of large numbers” given by Theorem 2.3.1 on page 15 for averaging in the It
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stochastic differential equation (2.3.19). Thus our goal in this chapter is really
to establish an analogue of Theorem 2.3.6 on page 20 but for the system (3.1.1),
(3.1.2).

There is in fact a special case of such a result due to Skorohod (see §3 and
Theorem 15 on page 163 of [33]) who studies the system (3.1.1) and (3.1.2) with
G = 0 (so that (3.1.1) is an ordinary differential equation) and it is assumed that
the averaged drift F(.) in (3.1.4) is identically zero. This is the so - called “neutral
case” in which the averaged equation (3.1.5) is trivial (since G = 0 and F = 0 by

assumption) and it therefore follows from (3.1.5) that
T(t) = z0. (3.1.9)

With these additional assumptions it is established in Theorem 15 on page 163 of
(33] that

X(1) —zo

J‘e‘ *

converges weakly to a limiting process (which is Gaussian in this case). Extending

0<r<1 (3.1.10)

this result to the “non-neutral case”, in which we do not suppose that G = 0 and
F =0, involves definite technical challenges, and is the main goal of this chapter.
Our approach to this problem will be quite different from that found in Liptser
and Stoyanov [25] and Skorohod [33], and will be based on a method of singularly
perturbed martingale problems introduced by Papanicolaou, Stroock and Varadhan

[29] for problems in the theory of turbulent flows.

3.2 Conditions

The following conditions will henceforth be supposed for the equations (3.1.1) and
(3.1.2):
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Condition 3.2.1. The mappings F : R°g R? - R®. b: R*® R - RP.
o: R*® RP - IRP®V in (3.1.1) and (3.1.2) are linearly bounded and locally

Lipschitz continuous. That is. there is a constant C) € [0.o0) such that
|IF(z,y)| Ci[l1+|z] +]y]], YreR?, Vye RP, (3.2.11)
and, for each R € (0, oc), there is some constant C(R) € [0.00) such that
IF(z1.01) — F(z2,32)| £ C(R)[lz1 — 22| + |1 — 2l]. (3.2.12)

for all (z,,y) € S ® SR, i = 1.2. with similar bounds for b(-,-), @a(,").

Also, G : R? — R9®M is linearly bounded and a globally Lipschitz continuous

and C*-function. In particular. there exists a constant L, € [0, oc) such that
|G(z1) = G(z2)| < Lafty — 12, VYr,7,€ R®

Condition 3.2.2. In (3.1.1) and (3.1.2) the initial values 5 € R® and y, € R”
are nonrandom. Also, {(w(t).F.);t € {0.o¢)} and {(3(t),F);t € [0.cc)} are
independent standard Wiener processes, RM and R"-valued respectively, defined
on the complete probability space (2, . P), and each F, includes all P-null events
in 7. Without loss of generality we shall take F, to be given by

F 2 o{w(s), 3(s), 0 < s <t} v {P-null events in F}. (3.2.13)

We next define the drift F(z) in the averaged equation (3.1.5) and formulate

conditions on this drift:

Condition 3.2.3. For each r € R there is a unique invariant probability measure
7= on (IRP, B(IRP)) for the Markov process {&(t. z)}defined by (3.1.3). The integral
in (3.1.4) exists for each z € R®, and the mapping F : IR? — IR? defines a globally
Lipschitz continuous and C?-function.
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Remark 3.2.4. By Theorem 5.2.5 of Karatzas and Shreve {19]. Conditions 3.2.1.
3.2.2, and 3.2.3 ensure that the coupled It6 equations {3.1.1). (3.1.2) have a pathwise
unique strong solution {(z*(t).y*(t)). t € {0,oc)}. Likewise, we see that (3.1.3)
with F(z) given by (3.1.4) has a pathwise unique strong solution {T*(t): ¢t &
[0,00)}.

Remark 3.2.5. Condition 3.2.3 of course raises the question of recognizing when
there is a unique invariant probability measure 7, for each r € R?. In Section 3.4
we will give simple sufficient conditions on §(...) and o(.,.) in (3.1.3) which ensure

that this is the case.

Remark 3.2.6. Let © : R ® R? — R be a mapping such that y — O(z.y) :
R® - R is a C*-mapping for each r € R®. Put

D D
A8(z.y) = ¥ B (2.4)(8,0)(z.y) + 1/2 Y (2.4)(8,0,,0)(z.y). (3.2.14)

=1 1=l

where
c(z.y) 2 o(z.y)oeT(z.y). V(z.y) € R®*® RP. (3.2.15)

Remark 3.2.7. Let C**(IR°®IRP) denote the collection of all continuous functions
6 : R*® R®? - R such that (i) the partial derivative functions (9.0)(z.y) and
(8,.:0,40)(z.y), |,k =1.2.... .d, exist and are continuous at all (z,y) € R*® R”,
and (ii) the partial derivative functions (0:0)(z.y) and (9:8,0)(z,y), L.k =
1,2,... ., D, exist and are continuous at all (z.y) € R ® RP. Notice that there is
no requirement that the mixed partial derivatives (0,:0,:0)(z,y), | = 1,2.... ,d,
k=1,2,...,D, need exist.

Conditions 3.2.8 and 3.2.15 which follow postulate solvability of certain Poisson
partial differential equation in terms of the operator A given by (3.2.14). The
solutions of these Poisson equations will be essential for the asymptotic analysis of
the coupled system (3.1.1) and (3.1.2).
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Condition 3.2.8. For each: = 1.2.... .d. there exist functions (r.y) — ¢*(z.y) :
R*® R® - R in C**(R* ® RP), such that

1.

3V

The mappings ®'(z,y) are polynomially y-bounded of order g2 locally in r
for some constant g, € [0.oc), i.e. for each R € [0,00) there is a constant

C(R) € [0, 20) such that
1®*(z, y)| £ C(R)[1 + [y]®]. (3.2.16)

for each (z,y) € S4 @ RP, i = 1.2.... .d. The partial derivative functions
(0y9")(z,y), (040,49*)(z.y), are uniformly y-bounded locally in r, namely
for each R € [0.20) there is some constant C(R) € [0.oc) such that

(8 ®")(z. )| + [(8,:0,48")(z. y)| < C(R). ¥ (z.y) € SL o RP. (3.2.17)

foralli=1.2.... ,d and .k € 1.2,... .D. The mappings (3,:$*)(z.y) and
(02104 9*)(z.y) are polynomially y-bounded of order g, locally in z (where
q2 is the constant in (3.2.16)), i.e. for each R € [0,00) there is a constant
C(R) € [0.20) such that

(09" )z, y)| + (80 @) (z. y)| < C(R)(1 + |y|™), (3.2.18)

for each (z.y) € S ® R”.

. ®*(z,y) satisfies the Poisson equation

Ad'(z,y) =F (z) - F(z.y), V(z.y) e RPORP, Vi=1.2.....d
(3.2.19)

(where we use F*(z,y) and _F_""(x) to denote the i-th scalar entries of the R°-
vectors F(z,y) and F(z)).

3. For the constant g, in Condition 3.2.8(1), we have

/ [E* %% dr,(£) < 00, Vze€ R (3.2.20)
RD
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4. The solutions ®*(z, y) of (3.2.19) subject to (3.2.17) are unique in the following
sense: if a mapping ' : R ® R? — R is such that y — &'(z.y) is C? -
mapping for each z € R? with

Ad(z,y) =F(z) - F'(z,y), V(z,y)e R*QR®, VYi=1.2.....d
(3.2.21)

and the partial derivative functions (ayxtf")(a:,y), (ay,ay.,&")(:.y). are uni-

formly y-bounded locally in z, then ®'(z,y) — <i>‘(:r, y) is a function of r only.

Remark 3.2.9. The preceding Condition 3.2.8 may look somewhat strange. It
turns out that there are strong connections between the asymptotic properties of a
Markov process {£(t)} and solvability of a corresponding Poisson equation. Indeed,
let {£(t)} be a strictly stationary Markov process (assumed to be RP-valued for the
sake of argument) with unique invariant probability #. Then {£(¢)} is an ergodic
Markov process (see Corollary D.0.19). In general, ergodicity by itself is not enough
to establish second - order asymptotic properties of {£(¢)} such as central limit the-
orems, and must be supplemented by additional conditions on {£(t)}. For example,
one could postulate that {£(¢)} is not just ergodic but also strong mixing (in the
sense summarized in Appendix D.0.3) and this is typically enough to establish a
central limit theorem. An alternative strengthening of ergodicity to get second-
order properties, which avoids the strong mixing hypothesis and is particularly
well-suited to the Markov case, can be formulated as follows: Let G be the in-
finitesimal generator of the Markov process {£(¢)} and suppose that F : R? — R?
is some bounded Borel - measurable mapping such that F* — F*(.) is in the range
of G (for Fi 2 Jgo F*(§) dm(€) ) for each i = 1,2,...d. Equivalently, there are

functions ¢* € domain [G] which solve the “Poisson equations”
G (y)=F~-F(y), YyeR? i=12...4d (3.2.22)

Ergodicity of {£(t)} ensures that the functions ®* in (3.2.22) are unique to within
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a constant, that is, for any ' € domain[G] such that
Gd'(y)=F' - F'(y), VyeRP i=1.2....,d, (3.2.23)
it necessarily follows that
P(y) - '(y) =o', Vye RP, (3.2.24)

for some constants a',i = 1,2,...,d. (This follows e.g. from Theorem 1.3.7 of
Kunita [21]). Then (3.2.22), together with uniqueness modulo constants of the ¢*,
may be used to establish second - order properties of {£(t)} such as central limit
theorems. Indeed this very approach (which originates in the work of Doeblin [8]
and Doob (Section V.7 of [9])) is used in Jacod and Shiryayev ({16], Theorem 3.65,

page 445) to show that the random process
/e _
Z(r) & \Je / [F(E(s)) — Flds, 0<T<1, (3.2.25)
0

converges to a Gaussian distribution on C|0, 1] (the space of R%valued continuous
functions on the unit interval [0,1]) as € = 0. Notice that our problem reduces to
exactly this case if, in place of the equations (3.1.1) and (3.1.2), we consider the

simpler relation

(t) =zo + € /0 ‘ F(&(s))ds. (3.2.26)

That is, we put G = 0 and remove all dependence on z¢(t) in the right hand side of
(3.1.1), and take the fast perturbing process in (3.1.1) to be a stationary R”-valued
Markov process {£(t)} with infinitesimal generator G, which evolves independently
of {z¢(t)} (unlike the perturbing process {y(t)}, which is conditioned by z*(t)).
This is a considerably simpler situation than the one represented by the coupled
pair (3.1.1), (3.1.2), but it turns out that this basic methodology, built on the
Poisson equation (3.2.22), nevertheless can be made to work for the system (3.1.1)
and (3.1.2). The technical challenges that must be dealt with in doing this are,

briefly, as follows:
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(1) The perturbing process {y*(t)} in (3.1.1) is a component of the R¢"2-valued
Markov diffusion {(z°(t), y*(t))}. As is well known (see the comments on page
243 of Rogers and Williams V.1 (30]) it is generally impossible to fully char-
acterize the infinitesimal generator of Markov diffusions, so we cannot use
(3.2.22) itself. However, if {£(¢,z)} is an RP-valued Markov diffusion de-
fined by the stochastic differential relation (3.1.3), then it is known that its
second-order differential operator (which is defined by (3.2.14)) agrees with the

infinitesimal generator of {£(¢,z)} on a large part of its domain (see Theorem

the Poisson equation (3.2.19). In fact, the SDE (3.1.3) really gives a family of
IRP.valued Markov processes {£(t,z), t € [0,00)}, parametrized by r € R¢,
and (3.2.19) is the corresponding family of Poisson equations in the variable y,
parametrized by the variable z € IR®. The properties of the solution ¢*(z,.)
of (3.2.19) formulated by Condition 3.2.8, will be necessary when we exploit
the relation (3.2.19).

(2) In place of the static system (3.2.26) we are considering the dynamically cou-
pled pair (3.1.1) and (3.1.2). In order to deal with these dynamics we shall in-
tegrate the method of Poisson equations with the methodology of the Stroock-
Varadhan martingale problem, in a way that is suggested by the work of Pa-
panicolaou, Stroock and Varadhan {29] on limit theorems in hydrodynamics.
In particular, we are motivated by the study on averaging in coupled ordinary
differential equations (corresponding to putting G = 0and ¢ = 0in (3.1.1) and
(3.1.2) due to Papanicolaou [28]). Indeed, our whole approach is essentially to
generalize the methodology and ideas of (28] to deal with the diffusion terms
in (3.1.1) and (3.1.2).

(3) In (3.1.1) and (3.1.2), the fast - perturbing process {y°(t)} is not stationary
and ergodic, unlike the perturbation process {£(¢)} in (3.2.25).
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Remark 3.2.10. There remains the question of recognizing when the Poisson
equation (3.2.19) is solvable, and has solutions that satisfy the requirements of
Condition 3.2.8. An important secondary goal of this thesis is to develop simple
sufficient conditions on the mappings b(.,.) and o(.,.) in (3.1.3) which ensure that

Condition 3.2.8 holds. This issue is taken up in Section 3.4.
Remark 3.2.11. To state the remaining conditions define

F(z,y) 2 F(z.y) - F(z), V(z,y)€ R°® RP, (3.2.27)
and the symmetric d x d-matrices a(z,y) and a@(z) by

a"(z,y) £ F(z,y)® (z,y) + F'(z.)®(z,y), ¥V (z.y) € R°® RP,
(3.2.28)

a(z) = /R i a*(z,€)dr.(§), Vze R (3.2.29)

From (3.2.20), (3.2.16), (3.2.11) we see that the integral in (3.2.29) certainly exists
for each r € R4

Remark 3.2.12. Since the solutions $'(z,y) of (3.2.19) are unique modulo func-
tions of z only (see Condition 3.2.8 (4)), and we see from (3.1.4) and (3.2.27) that

o Fi(z,&)dm,(€) =0, (3.2.30)
it follows that the functions @ (z) in (3.2.29) are uniquely defined. Indeed, suppose
&' is also a solution of (3.2.21),i =1,2,... ,d, and put

@(z,y) = Fi(z,y)¥ (z,9) + F(z,9)d (2, 9). (3.2.31)
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Then, from (3.2.31) and (3.2.29),
[ [0(z,€) - 8 (z,€)] dma(e)
R9
- / F(.6) [#(2.6) - #(2.6)] dma(g)
Rd

+[ P [ - @) dnl@).
Re
(3.2.32)

By Condition 3.2.8 (4) we know that &'(r,£) - &*(z,£) is a function of z only. say
a'(z),i=1,2,...,d. Then, from (3.2.32), (3.2.30),

[ @iz -az.9)] dn)

(@) [ F(r.&)dm(€) + o'(z) / F(z,6)dm. (€)
Re f il

=0. (3.2.33)
This shows that @*/(z) is uniquely defined. regardless of which solutions ®* of
(3.2.19) we use in {3.2.28).
In Section A.2 of Appendix A, we will prove the following result:

Proposition 3.2.13. Suppose Conditions 3.2.1, 3.2.2, 3.2.3 and 3.2.8 hold. Then
the function @(z), defined by (3.2.29), is nonnegative-definite for each r € IR°.

Remark 3.2.14. It follows from Proposition 3.2.13 on page 37 that there is a

unique symmetric nonnegative semidefinite matrix @'/?(z) such that
a(z) = (@/*z))*% (3.2.34)

We shall see later that @(z) determines the weak limit of Z¢ (in (3.1.8)) in much
the same way that v(z) (see (2.3.42)) determines the weak limit of Z¢ in Theorem
2.3.6 on page 20. To this end, we must impose some technical restrictions on a(z)

as follows:
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Condition 3.2.15. 1. The mappings z — @(z) defined by (3.2.29). i.j =

1,2,...,d, are locally Lipschitz continuous on Re.

[

. For each i,j = 1,2,... .d, there exists a function (z y) — ¥*/(z.y): R‘®
RP 5 R in C**(R*® RP) such that ¥"(z,y), (82 ¥*)(z,y), (8, ¥)(z. y).
(0102 ¥*)(z,y), and (8,9, ¥*V)(z. y) are polynomially y- bounded of order
g3 locally in z for some constant g3 € [0,0c), i.e. for each R € [0.c), there is

a constant C(R) € [0, oc), such that

|9 (2, )| + 1(8F")(z, y)] + (9 ¥ )(2, )|
+(0210.+ ™) (2, y)| + {800, ¥*) (2, y)| < C(R)(I1 + [y|®),

{3.2.35)
for each (z,y) € S% ® R®.
3. The mappings ¥*7(z,y) in (2) satisfy the Poisson equation

A (z,y) =@ (z) —a(z,y), V(z,y) € R®°® R°. (3.2.36)

Remark 3.2.16. Observe that, in contrast to Condition 3.2.8, we do not insist
on the uniqueness of solutions ¥*’ of (3.2.36) modulo functions of z only. This is
because we do not use the ¥'Y to define any quantities, analogous to (3.2.27) and
(3.2.28) where the uniqueness of ®* was essential (see Remark 3.2.12). In fact, the
function ¥*Y furnished by (3.2.36) will be used only to cancel terms that depend
on y when we utilize the so-called near identity method of singular perturbations,
resulting in a function of (z,:) only, from which we can deduce the desired limit
theorems. That said, in Section 3.4 we will develop a solvability theory for Poisson
equations which includes (3.2.19) and (3.2.36), and which provides uniqueness of

solutions, modulo functions of z only, for both of these equations.
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Remark 3.2.17. Our final condition (see Condition 3.2.18 to follow), which is
suggested by Condition (90) on page 143 of Skorohod (33, is really a type of stability
condition for the stochastic differential equation (3.1.3). This condition will play a
very important role in our asymptotic analysis. It will allow us to keep the moments
of y*(t) in (3.1.1), (3.1.2), under control as € = 0, and provide us with the means
to deal with the lack of stationarity and ergodicity of {y*(t)} which was noted in
Remark 3.2.9.

Condition 3.2.18. There is a constant g; € (2 + 2¢2, 90) N (2 + 2g3, 2¢) (where g2
and g3 are specified in Conditions 3.2.8 and 3.2.15 respectively), such that, for

w(y) =™ Vvye R®, (3.2.37)

we have the following: corresponding to each R € [0, oc) there are constants Ag €

(0,00) and ag € {0, oc) such that
Ao(z,y) + Aro(y) < ag, V(z,y) € S ® R°. (3.2.38)

Remark 3.2.19. In this section we have formulated Conditions 3.2.1, 3.2.2, 3.2.3,
3.2.8, 3.2.15 and 3.2.18. These will be the basic conditions that we need to estab-
lish convergence of the scaled discrepancy process {Z¢(7)} in (3.1.8). Conditions
3.2.1 and 3.2.2 are quite elementary, and are needed for (3.1.1), (3.1.2), to have a
pathwise unique strong solution. Condition 3.2.3 enables us to formulate an “aver-
aged” stochastic differential equation (3.1.5}. On the other hand Conditions 3.2.8,
3.2.15, and 3.2.18 represent “stability - type” conditions on the stochastic differen-
tial equation (3.1.3) which will ensure that the fast process {y*(t)} is well enough
behaved for {Z¢(7)} in (3.1.8) to converge to a limit. In Section 3.4 we will present
some simple sufficient conditions on the coefficients in (3.1.1) and (3.1.2) which are

enough to ensure that Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18 hold.
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3.3 Main Result

We first declare the basic notation in terms of which the main result of this chapter
is going to be formulated. Some of this notation has already been introduced
previously but we repeat it here so that it is all defined in one place. For each

€€ (0,1] and 7 € [0, 1] put

ne

z(r/e), X (1) = T(7/e), (3.3.39)
yi(r/e),  We(r) 2 Pu(rfe), B(r) 2 e23(r/e).

"

X¢(7)
Y<(r)

>

(3.3.40)

Recalling Condition 3.2.2. for each € € (0. 1] define the filtration {G¢, 7 € [0.1]} by

A

GES Fry VTE (3.3.41)

In view of Condition 3.2.2 we see that {(W*(7)),G¢), T € [0,1}} and {(B(7),G:).T €
(0,1]} are independent standard Wiener processes on ({2, F, P) for each € € (0, 1],
and it follows from (3.1.1) and (3.1.2) that {(X*(7).Y*()),.7 € [0,1]} solves the

re-scaled equations
X{r) = zo+ [f F(X*(s),.Y*(s))ds + /T G(X<(s))dW<(s), (3.3.42)
0 0

Ye(r)

Yo+ fr b(X*(s),Y“(s))ds
0

+e712 /? a(X(s),Y(s))dB(s).
0
(3.3.43)

Also, we see from (3.1.5) and (3.3.39), {X (7), 7 € [0,1]} solves the re-scaled

equation

X (1) =10 + fof F(X (s))ds + /D'T G(X"(s))dW*(s). (3.3.44)
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For each € € (0, 1] define the scaled discrepancy process {Z¢(7), 7 € [0.1]} by
Z(r) £ e X(r) - X(7)), vreloll (3.3.43)

We are going to show that, as ¢ — 0, the process {(X*(7),Z¢(7)). € [0.1]}
converges weakly to a limiting process {(X(7), Z(7)), 7 € [0.1]} which solves the

system of equations
X(r) = zo+ / F(X(s))ds + f G(X(s))dW(s), (3.3.46)
(1]

Z(r) = /Of(if)(X(S))Z(S)dH-[O (8:G)(X (s))[Z(s)]dW 1 (s)

-~

*f rﬁ"’g(i'(s))dwg(s).
0
(3.3.47)

where {W,(r), 7 € [0,1]} and {W,(7), 7 € [0, 1]} are independent standard Wiener
processes, IR and IR%-valued processes respectively, on some probability space
(Q, F, P) (see “Basic Notation and Terminology IV” for the definition of the d by
M matrix (8G)(z)[z], z, z € RY).

Remark 3.3.1. Since {(W*(7),G%), 7 € [0,1]} is a standard Wiener process for
. each € € (0.1] it follows from (3.3.44) that the solution {X (7}, 7 € [0,1]} has a
distribution which is invariant with respect to € € (0, 1]. In fact, comparing (3.3.44)

with (3.3.46) one sees that
{X(r), ref0,1]} 2 {X(T), relo, 1]} , (3.3.48)
Ve € (0, 1], where Z denotes equality in probability law.

Remark 3.3.2. From Condition 3.2.1, Condition 3.2.3, and the bilinearity of
(3.3.47), the system of equations (3.3.46), (3.3.47), has a pathwise unique strong
solution, and hence a result of Yamada and Watanabe (see Proposition 5.3.20 of

Karatzas and Shreve [19]) ensures that the law of the process {(X(7),Z(7)), T €
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[0,1]} is uniquely defined on the measure space (Q2°.F"). where

It

Q@ £ C019C1] (3.3.19)
F 2 B(Cp.1]®Clo.1)), (3.3.50)

regardless of which the square root function @(z)'/? is used in the equation(3.3.47).

The main result of this chapter is

Theorem 3.3.3. Suppose that Conditions 3.2.1, 8.2.2, 8.2.3, 3.2.8. 3.2.15 and
3.2.18 hold. Then we have
limoP{ sup |X(r) =X (7)| >4} =0, Vée (0.x) (3.3.51)
r€{0.1]

and
lim_oL(X*. Z¢%) = L(X. 2Z). (3.3.52)

where the convergence is weak convergence of probability measures over (2. F*)

defined by (3.3.49) and (3.3.50).
Remark 3.3.4. Theorem 3.3.3 on page 42 is proved in Appendix A.

Remark 3.3.5. The weak convergence in (3.3.52) is of course the result of primary
interest in Theorem 3.3.3 on page 42. Notice however, from (3.3.51), that Theorem
3.3.3 on page 42 also establishes a convergence in probability like that of Theorem
2.4.1 on page 25, which also deals with essentially the coupled system (3.1.1) and
(3.1.2). However, the hypotheses that we postulate in Theorem 3.3.3 on page 42
for this result are somewhat different from the hypotheses postulated for Theorem
2.4.1 on page 25. We believe that the conditions in Theorem 3.3.3 on page 42 are
somewhat more natural than those in Theorem 2.4.1 on page 25. In particular, the
uniformity of convergence in (2.4.67) that is required for Theorem 2.4.1 on page 25
looks rather stringent and difficult to verify. On the other hand, as we shall see in
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Section 3.4, we can propose simple sufficient conditions on the coefficients in (3.1.1)
and (3.1.2) which imply satisfaction of the conditions for Theorem 3.3.3 on page
42. Of course, the main motivation for our hypotheses in Theorem 3.3.3 on page
42 is not just to improve on the conditions in Theorem 2.4.1 on page 23, but rather

to ensure that the weak convergence in (3.3.52) holds.

3.4 Sufficient Hypotheses for Conditions 3.2.3, 3.2.8, 3.2.15
and 3.2.18

In this section, we are going to formulate some simple sufficient conditions on the
coefficients of the coupled It6 equations (3.1.1) and (3.1.2) which imply Conditions
3.2.3, 3.2.8, 3.2.15, and 3.2.18 of Section 3.2. The essential aspect of Conditions
3.2.3, 3.2.8 and 3.2.15 is existence and uniqueness of an invariant probability mea-
sure 7. for the Markov process {£(t,z)} defined by the stochastic differential equa-
tion (3.1.3) together with solvability of the equations (3.2.19) and (3.2.36), which
are “Poisson equations” in the variable y, parametrized by r € R® (see Remark
3.2.9). Our approach to establishing these sufficient conditions is motivated by
the following result of Bhattacharya and Waymire [3], which essentially establishes

conditions on the coefficients of an Itd stochastic differential equation of the form

d€(t) = b(&(t))dt + o (&(t))dB(¢t), (3.4.53)

to ensure that the corresponding Markov process has a unique invariant probability

measure:

Theorem 3.4.1. (see Theorem 4.2 on page 593 of Bhattacharya and Waymire [3])
Suppose that the following hold:

(i) The functions b : R® - RP and 0 : R® — RP®" gare globally Lipschitz
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continuous with
|0(61) = o(&) < Aoléy ~ &l V&, & € R, (3-4.54)
for some constant Aq € [0, x0).

(ii) The function b(-) is a C'- mapping on RP with D x D Jacobian matriz

J(€) = (8cb)(8), (3.4.53)
(iii) We have
Ap < =(1/2)A3, (3.4.56)
where
AL 2 sup Amax(€) (3.4.57)
£eRP

and Amax denotes the largest eigenvalue of the D x D symmetric matriz
(1/2)[J (&) + IT(€)]-

Then there erists a unique invariant probability measure 7 on RP for the Markov

process {&(t)} defined by
d§(t) = b(§(t))dt + o(&(¢))d3(t), (3.4.58)
where {3(t)} is a standard R" -valued Wiener process. Moreover, for each bounded

continuous function ¢ : R? - R, we have

lim E¢(£(t,y)) = /D wdm, vy € RP, (3.4.59)
R

t—+00
where {£(t,y)} is the solution of the stochastic differential equation (3.4.58) subject
A
to £(0.y) = y.
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Remark 3.4.2. 1. Our statement of Theorem 3.4.1 on page 43 differs slightly
from that in (3] because we are using the Frobenius norm for matrices (see
“Basic Notation and Terminology”) to define the Lipschitz constant \q for

o(.), whereas the operator norm is used in (3.

2. Notice that Theorem 3.4.1 on page 43 does not insist on nonsingularity of
the matrix 007, and therefore includes the important case of “degenerate”
diffusions.

3. The basic intuition in Theorem 3.4.1 on page 43 is that sharp local variations
in () (reflected in a large value for the Lipschitz constant :\¢) must be com-
pensated by having all eigenvalues of (1/2)[J(€) + J7(£)] sufficiently negative,

uniformly with respect to £ (see (3.4.56)).

Remark 3.4.3. Theorem 3.4.1 on page 43 ensures that the transition probability
function

P(y.T) 2 E[Ir(€(t.y))]. te€[0,), ye RP, T e B(RP), (3.4.60)

for the Markov process given by (3.4.58) has a unique invariant probability measure
7. Thus if {£(t)} is a solution of (3.4.58) with £(0) independent of {3(t). t € [0,00)}
and distribution given by w, then {£(¢)} is a strictly stationary Markov process (as
follows from the standard theory of Itd stochastic differential equations - see for
example Theorem 10.11 of Chung and Williams [7]). Moreover it follows from

Corollary D.0.19 that {£(t)} is ergodic.

Theorem 3.4.1 on page 43 does not address the solvability of Poisson equations
associated with the second-order linear differential operator for the Markov diffu-
sion {£(t)}. We shall therefore introduce a strengthening of its basic hypothesis
to establish solvability of these Poisson equations. We will then “transfer” these

conditions to the parametrized stochastic differential equation (3.1.3) and in this
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way get sufficient conditions on the coefficients in (3.1.3) which ensure solvability
of the Poisson equations (3.2.19) and (3.2.36). Here our approach is influenced by
a result due to Benveniste, Metivier and Priouret ([1], page 255. Proposition 3)
which we reproduce as Proposition E.0.27 on page 216 in Appendix E. Among

other things, this result ensures solvability of the Poisson - type operator equation
u—l'Iu:g—/g dm (3.4.61)

for a discrete - parameter Markov chain in R” with one - step transition proba-
bility function II(z, A),z € R?, A € B(IRP). having a unique invariant probability

measure m.

In brief we extend Theorem 3.4.1 on page 43, due to Bhattacharya and Waymire
(3], to cover the case of the stochastic differential equation (3.1.3) which is parametrized
by z € IR®. Also, motivated by Proposition E.0.27 on page 216 we also extend The-
orem 3.4.1 on page 43 to ensure not just a unique invariant probability measure,
but also solvability of the Poisson equations (3.2.19) and (3.2.36). In contrast to
the Poisson-type operator (1 — II) which features in (3.4.61) and which is the gen-
erator of a discrete-parameter Markov chain with transition probability II, we are
dealing here with Poisson equations that arise from the parametrized second order
differential operator A in (3.2.14). The technical problems of verifying solvability
in this case are a good deal more delicate than in the case of the operator equation
(3.4.61), mainly because the second-order linear differential operator is unbounded
and non-closed. In the course of handling these problems, we shall frequently use
the theory of L,-derivatives for the solution of stochastic differential equations due
to Gihman and Skorohod {14] which is summarized for easy reference in Appendix
F.

We now begin to formulate our sufficient conditions on the coefficients in (3.1.3):

Condition 3.4.4. The mappings (z,£) — b(z,£) and (z,§) — o*(z,€) are C3-
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functions, Vi = 1.2,....D, j = 1.2,... ..V, and the first, second and third (z. £)-
derivative functions of b*(z,£) and o' (z.£) are uniformly ¢-bounded locally in .
That is, for every multi-index (a;.... .@q.m,... .np). in which the a, and 7, are

non-negative integers such that

we have the following: for each R € {0, ) there is a constant C(R) € [0, x) such

that

T T

[(02:0%2 ... 6;’:3;’,‘02'3 . 6;’36‘)(:.5)[ < C(R), (3.4.62)

for all (z,£) € S x RP, with identical bounds holding for o*(z, £) in place of
b(z,§).

The following simple Lemma establishes a global Lipschitz constant for the map-

ping £ = o(z.£) : RP — RP®N,

Lemma 3.4.5. Suppose that Condition 3.4.4 holds. Then. for each R € [0.20).

we have
lo(z. &) — o(z.&)] < Ao(R)|&) ~ & Vze Sy V&.&€ RP,  (3.4.63)

where Ag(R) is given by

™)

1/2
Ao(R) 2 Y 1(Bao)(z.€) ;2}] , (3.4.64)

sup
(3'5)63'}2@'20 =t

and Ag(R) < 00,VR € [0, ).

Remark 3.4.6. For each (z,£) € R*® R?, let Anaz(z, ) denote the largest eigen-

value of the D x D symmetric matrix

(1/2)[J(z,€) + J(z.6)7],
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where
J(z. €)™ £ (Bb')(z.€), i.j=12....D. (3.4.65)

and, for each R € [0, o0), put

AR S sup  [Amae(z.6)]. (3.1.66)
(z.£)ESESRP

The next condition is motivated by (3.4.56) of Theorem 3.4.1 on page 43. but

applies to the stochastic differential equation (3.1.3) which is parametrized by z €

R*:

Condition 3.4.7. There is a constant q € (8, o) such that

(1-

5 Dino(RIF, VR [0,5), (3.4.67)

J\l(R) <

(for Ag(R) given by (3.4.64)).

Remark 3.4.8. Suppose that there is no dependence on z in (3.1.3), i.e. (3.1.3)
is just (3.4.58). Then condition (3.4.67) is still non-trivially stronger than (3.4.56).
since we are supposing ¢ > 8 in (3.4.67), and (3.4.56) follows from (3.4.67) with
g = 2. The reason that we insist on taking ¢ > 8 in Condition 3.4.7, is because we
want enough “stability” in (3.1.3) to get not only a unique invariant probability
measure 7 but also solvability of the Poisson equations (3.2.19) and (3.2.36) which
are associated with the second order linear differential operator (3.2.14) for the
diffusion given by (3.1.3). As will be seen in due course (see Remark 3.4.23) a value

of ¢ > 8 turns out to be enough to ensure this.

Remark 3.4.9. Motivated by Remark E.0.26, for later use we define the follow-
ing spaces of locally Lipschitz continuous functions from IR® — R: For a Borel

measurable function h : R® - IR and some r € [0, ), put

h(y) — h(ya)] s )
R, & su | , h {lr+1= sup ———,
e = swp T+ = s s
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and
M, (h) £ max{[h,, || h lr1}.
For each r € [0, 00), define the function spaces
Lir)2 {h: RP > R | [h], <o} (3.4.68)
Clearly, h € Li(0) if and only if h(.) is globally Lipschitz continuous on R”.

Definition 3.4.10. Suppose that r € [0,50). Then Li(r)ia is the set of Borel-
measurable functions ¢ : R® ® R® — R with the following property: for each
R € [0,0) there is a constant C(R) € [0, 00) such that

M,(g(z.-)) < C(R), Vz€ Sk
Remark 3.4.11. Thus g € Li(r);, implies that g(z,.) € Li(r) with

sup M.(g(z,.)) < . VR € [0.2). (3.4.69)

ze8%
Clearly, g € Li(r)io for some r € [0.2c) implies that g is polynomially y-bounded
of order r + 1 locally in z. namely, for each R € [0,00), there exists a constant
C(R) such that

lg(z.9)) < C(R)(1+yI™™"). Ve Sk VyeR®,

(3.4.70)

and

lg(z. 1) —g(z,12)] < C(R)yi—wel[l + )" +1wal], Vze€SH Yy, 2 € RP.
(3.4.71)

The next Proposition will be needed for the main result of this section, namely
Proposition 3.4.16 on page 51 on solvability of Poisson equations, and will also
provide us with the means for verifying Condition 3.2.18 later in this section (see
Remark 3.4.23):
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Proposition 3.4.12. Suppose that Conditions 3.4.4 and 3.4.7 hold, and put
o(y) 21y, vye RP (3.4.72)

where q is the constant given by Condition 3.4.7. Then, for each R € {0, <), there

are constants ag € [0,0), Ag € (0.00), such that
Ag(z,y) + Arely) < ar,  V(z,y) € S§® RP. (3.4.73)

Remark 3.4.13. from now on write {{(¢,z,y), t € [0,20)} for the (pathwise

unique) solution of (3.1.3) with initial value y at t = 0, namely
t

ez = v+ [ bags.ods+ [ oleglo.nn)dse), @A
Proposition 3.4.14. Suppose that b(-,-) and o(-,-) in (3.1.3) are subject to Condi-
tions 3.2.1. 3.4.4 and 3.4.7. Then, for each £ € IR?, there ezists a unique invariant
probability measure 7. on (IR?, B(RP)) for the Markov process {&(t,z)} defined by
(3.1.3). and

/ |€]%dn.(€) < 0, Vre R (3.4.75)
RD

(where g is given by Condition 3.4.7). Furthermore, if f € Li(r)ic for some
ry € [0,q = 1], then, for each R € [0,c), there are some constants C(R) € [0, %),
¥(R) € (0,00), such that

|Ef(z,€(t 7,y)) / (2.9 dn(6)] < C(RIERHL+[y[1*1],  (3.4.76)
R
for each (t,z.y) € [0,00) ® 5% ® RP.
Remark 3.4.15. If Conditions 3.2.1, 3.4.4 and 3.4.7 hold, and f € Li(r)i. for

some r € [0,q — 1], where q is given by Condition 3.4.7, then Proposition 3.4.14 on
page 50 ensures that the functions

A

f@ & [ feoime, veeR, (3477

B0y
B
[~
e’
I

[0 " Elf(z.6tny) - Feldt,  W(z,y) € Bi@ RP,
(3.4.78)
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are well defined. This will be important for the next result, which is the main result
of this section, and which essentially deals with solvability of the Poisson equations

that occur in Condition 3.2.8 and Condition 3.2.15:

Proposition 3.4.16. Suppose that

(i) b(-,-) and o(-,-) in (3.1.3) are subject to Conditions 3.2.1, 3.4.4 and 3.4.7:

(ii) f € Li(r)io for somer € [0,q/2). where q is given by Condition 3.4.7. and sup-
pose in addition that y — f(z,y) is a C*-mapping for each z € R such that
the partial derivative functions (0, f)(x,y), and (80, f)(x.y) are continuous
in (z,y), and are polynomially y-bounded of order r locally in r; namely, for
each R € [0,20) there is a constant Cy(R) € [0,), such that
|8y f)(z, y)| + (8,8, f)(z,y)| S CL(R) L +1y"], Yz e Sk vYye R®.

(3.4.79)

Then for the functions f(z) and ©(z,y) defined by (3.4.77) and (3.4.78), we have

1. ©¢€ Li(r)loc;

2.y = O(z.y) is a C*-mapping for each r € R?, and the partial derivative
functions (8,,©)(z,y) and (8,:0,+0)(x.y) are continuous in (z,y), and are
polynomially y-bounded of order r locally in z, i.e., for each R € [0, ¢), there
is a constant C(R) € [0,00) such that

1(8,0)(z, )| + 1(8,18,:0)(z,y)| < C(R)[1 + yI"], V(z,y) € Sk ® RZ;
(3.4.80)

3. The following relation holds:
AB(z,y) = f(z) - f(z.y), V(z.y) € R*® RP, (3.4.81)

where A is defined by (3.2.14).
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Proposition 3.4.16 on page 31 basically postulates conditions on the coefficients
b(.,.) and o(.,.) in (3.1.3) and on the function f(:.-) which are sufficient to ensure
solvability of the Poisson equation (3.4.81). It remains to settle the sense in which
solutions of this equation are unique. This is dealt with by the next result. which
essentially says that if ©;(z,y).i = 1,2, satisfy (3.4.81) then ©,(z.y) - O2(r.y) is
a function of r only:

Proposition 3.4.17. Suppose that

(i) of Proposition 3.4.16 on page 51 holds;

(ii) the mappings .0 : R*® RP — R belong to Li(r)i, for some r € {0,q/2).
the mappings y — f(z.y) : R°® = R and y — O(z.y) : R® - R are
C?-functions for each ¢ € RR®, and the partial derivatives (Bylé)(r,y) and
(6ylayké)(l', y) are polynomially y-bounded of order r locally in x;

(iii) the following relation holds:
AB(z,y) = f(z) - flz.y). V(z.y) € R*® R®, (3.1.82)
for f(z) defined by (3.4.77).
Then the solution ©(z,y) of (3.4.82) satisfies the relation
8(z.y) = 8(z) +O(z.y).  V(z,y) € R*® R®, (3.4.83)
where O(z,y) is given by (3.4.78), and
&(z) £ /R i O(z, £)dm.(£). (3.4.84)
In particular, the mapping
(z,y) = O(z,y) - O(z,y) = 6(x)

is a function of z only.
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The following proposition deals with the dependence on r of the mappings f(r)
in (3.4.77) and O(z,y) in (3.4.78):

Proposition 3.4.18. Suppose that

(i) of Proposition 3.4.16 on page 51 holds.

(ii) of Proposition 3.4.16 on page 51 holds. In addition, suppose that r — f(z,y)
is a C? - mapping for each y € RP, such that the partial derivative functions
(O f)(z,y) and (0.0« f)(z,y) are continuous in (z,y), and are polynomially
y - bounded of order r locally in z; namely for each R € [0,20) there is a

constant C,(R) € [0, 00), such that

|0z £) (2, y)| + 1(8z18n f) (z, )| < Co(R) (1 + [y[],  Vz € S, ¥y € RP.
(3.4.85)

Then :

(a) The mapping f(x) defined by (3.4.77) is a C? - function on IR°.

(b) For the mapping O(z,y) defined by (3.4.78), the partial derivative functions
(0:9)(z,y) and (0.10:40)(z,y) exist, are continuous in (z,y), and are poly-

nomially y-bounded of order (r + 1) locally in z.

We are now going to use Propositions 3.4.14 on page 50, 3.4.16, 3.4.17, and 3.4.18
to check Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18. To this end, we will suppose
that b(.,.) and o(.,.) in (3.1.2) satisfy the Conditions 3.2.1, 3.4.4 and 3.4.7, which
are the basic hypotheses on these mappings that are postulated by each of these
Propositions. We will also suppose that F(.,.) in (3.1.1) is subject to the following
condition (which supplements the requirements imposed on F(.,.) by Condition
3.2.1).
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Condition 3.4.19. The mappings F* : R*® R® — R are members of C*?(R*®
IR®) for each i = 1,2,...,d, (recall Remark 3.2.7), and the partial derivative
functions (8, F*)(z,y), (820 F')(z,y), (8, F*)(z,y), and (8,10, F*)(r.y) are uni-
formly y - bounded locally in z. That is, for each R € [0, 0) there exists a constant
C(R) € [0,00) such that

(04 F*)(z,y)| + (0208 F*) (2, y)| + 18 F*)(z, y)| + |(8ydyx F*) (2. y)| < C(R),
(3.4.86)
for all (z,y) € S3 ® RP.
Remark 3.4.20. Notice that Condition 3.4.19 certainly ensures that F* € Li(0),oc,
1=1,2,...,d. In fact, from Condition 3.4.19 and the mean-value theorem, we see
that for each R € [0, oc) there is a constant C(R) € [0, 00) such that
IF(z.§)| <C(R)1+ (€], V(z.£)e Sg® RP. (3.4.87)
Again by Condition 3.4.19 and the mean-value theorem, we see that for each R €
[0, 00) there exists a constant C(R) € [0, 00) such that
|F(2,6) = F{(z,%)| S C(R)|& — &|, VreSk V&, &eRP.  (3.4.88)
Now it follows from (3.4.87) and (3.4.88) that F* € Li(0);0c (recall Definition 3.4.10).

Remark 3.4.21. From now on we suppose that Conditions 3.2.1, 3.4.4, 3.4.7 and
3.4.19 hold. We will show that these conditions are sufficient to ensure that the

Conditions 3.2.3, 3.2.8, 3.2.15 and 3.2.18 hold (recall Remark 3.2.19):

Partial Check of Condition 3.2.3: One sees from Proposition 3.4.14 on page
50 that, for each z € IRY, there is a unique invariant probability measure 7, on
(IRP, B(IRP)) for the Markov process {£(t,z)} defined by (3.1.3). By Condition
3.4.7 we have g € (8,00), and thus

/R 1P 7.(dg) < oo, (3.4.89)
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for each r € R? (see (3.4.75). It follows from (3.4.87) and (3.4.89) that the integral
in (3.1.4) certainly exits for each z € R?, and Proposition 3.4.18 on page 53 ensures
that F(-) is a C*-mapping on R®. We have thus checked Condition 3.2.3. except
for the required global Lipschitz continuity of F(-) (see Remark 3.4.23). and turn
next to Condition 3.2.8.

Remark 3.4.22. The main tool for verifying Condition 3.2.8(1) and (2) will be
Proposition 3.4.16 on page 51. Observe that (i) of Proposition 3.4.16 on page 51
holds by virtue of our hypotheses (recall Remark 3.4.21). As for (ii) of Propo-
sition 3.4.16 on page 51, we know from Remark 3.4.20 that F* € Li(0)jo, i =
1,2,... ,d. Moreover, from Condition 3.4.19, we see that the functions (8¢ F*)(z, §)
and (80« F*)(z, £) are polynomially §-bounded of order r =N locally in z. Thus
(ii) of Proposition 3.4.16 on page 51 holds when we take r £0and f £ F'. Now

(compare (3.1.4), (3.4.77) and (3.4.78)) we define

¥ (z,9) 2 /0 TE[F(z.Etzy) - F(o)dt, Vzy) e RQR®. (34.9)

We are now able to apply Proposition 3.4.16 on page 51 when we take r 2 0,
f 2 F' and © 2 ®', for each i = 1,2,... ,d. and establish the following

Check of Condition 3.2.8(1): Proposition 3.4.16(1) on page 51 ensures that
®* € Li(0)0c, and hence that ®(z,y) is polynomially y-bounded of order g, 21
locally in z (see Remark 3.4.11). By Proposition 3.4.16(2) on page 51 (with r = 0,
f SFi et ®'), it follows that y — ®*(z,y) is a C*-mapping for each z € R¢, and
that the partial derivative functions (9,,%')(z, y) and (8,19« ®*)(z, y) are continuous
in (z,y) and are uniformly y-bounded locally in z, that is, for each R € [0, 0)
there is a constant C(R) € [0,00) such that (3.2.17) holds. As for the z-derivative
functions (8, %*)(z,y) and (0,10, ®*)(z,y), we see from Proposition 3.4.18 on page
53 (with r 2o, f SF.et ®'), that these partial derivatives exist, are continuous

in (z,y), and are polynomially y-bounded of unit order locally in z, that is, for each
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R € [0, 00) there is a constant C(R) € [0, oc) such that
(8:4®") (2, y)| + |(Bp B ')z, y)| < C(R)(L + yl), (3.4.91)

for each (z,y) € S& ® RP, so that (3.2.18) holds with ¢, £ 1. This verifies Condi-
tion 3.2.8(1).

Check of Condition 3.2.8(2): By Proposition 3.4.16(3) on page 51 (with r =)
f 2 Fi, © 2 &), we see that (3.2.19) holds, hence we have checked Condition
3.2.8(2).

Check of Condition 3.2.8(3): This is an immediate consequence of (3.4.89)

and the fact that ¢, 21.

Check of Condition 3.2.8(4): We shall use Proposition 3.4.17 on page 52 as the
tool for checking Condition 3.2.8(4). Suppose that a mapping $ . R'QR° > R
has the properties stipulated in Condition 3.2.8(4). That is, y — $(z.y): R° > R
is a C*-mapping for each r € R® which satisfies the Poisson equation (3.2.21),
and the partial derivative functions (ay:@‘)(x, ), (ay,aykéf)(z, y), are uniformly y-
bounded locally in z, namely for each R € [0, o) there is a constant C(R) € [0, 00)
such that

(8, %) (2, y)| +1(8,:0,48")(z,y)| < C(R). V(z,y) € S§® R®, (3.4.92)

foralli =1,2,...,d, and I,k € 1,2,...,D. Clearly (i) of Proposition 3.4.17 on
page 52 holds (see Remark 3.4.21). Moreover, we have & € Li(0),c (by (3.4.92)
and the mean-value theorem), and we have already seen (in Remark 3.4.22) that
F* € Li(0);. It follows that (i), (ii), and (iii) of Proposition 3.4.17 on page 52 hold
when we take r £ 0, f £ F, 82 &' and thus, in view of (3.4.83) and (3.4.90), we
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have

d'(z,y) = RD )dnz(z / E[F(z,£(t, z,y)) - '(I)]dt.

f@( 2)dra(2) + #(z.y),
RD

for all (z,y) € R*® RP. Thus & (z,y) — $*(z,y) is a function of r only. as required
by Condition 3.2.8(4).

Check of Condition 3.2.15(1): We will use Proposition 3.4.18 on page 33
to check Condition 3.2.15(1). From (3.4.87), (3.4.88). and (3.2.27), we see that
F* € Li(0)s0c, thus for each R € [0.0oc) there is a constant C(R) € [0, o) such that

IFiz,y)| <C(R)1+yll, V(.)€ SE®@RP, i=12,....d (3493)

Also, we have seen that ® € Li(0)c (see Check of Condition 3.2.8(1)). hence
®'(z,y) is polynomially y-bounded of order ¢. 21 locally in z, that is, for each

R € [0, 00) there is a constant C(R) € [0.20) such that
|®'(z,y)| < C(R)1 +yl], Y(z.y) €SE®@RP, i=1.2,....d  (3.494)

Thus, from (3.4.94), (3.4.93) and (3.2.28) we see the following: for each R € [0, 20)
there is a constant C(R) € [0, o0) such that

0¥ (z,)| S C(R)1+yf, ¥ (z.y) € SR RP, ij=12...,d (3495)
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Moreover, we have

- .

P )® (2, 1) - Fz,1)# (z.v)|
= ‘F’"(r, )& (z.41) — F(z,3)¥ (2, 32)

+F(z, ) (2, 2) — F*(z,y2)¥ (7. 42)

< || | w) - ¥ w)

+|F(z, 1) - F"(I»yz)‘ |¥7(z, v

(3.1.96)

We have seen that & € Li(0);oc and F* € Li(0)10, hence, for each R € [0.oc) there
is a constant C(R) € [0, 20) such that

|®/(z,51) — ¥ (z.32)| < C(R)} Iy — val (3.4.97)
[P @) - Fla.w)| < CR) I - wl, (3.4.98)

for each z € S%, Vy,y2 € RP. Now, from (3.4.93), (3.4.94), (3.4.96), (3.4.97),
(3.4.98), and (3.2.28), we see the following: for each R € (0. oc) there is a constant
C(R) € [0, 00) such that

|a™ (2, 1) — @ (z, 32)| < C(R) [y ~ yal [ + lya] + [3al]
(3.4.99)

vz € S%,Vy1,y2 € R®. Thus from (3.4.99), (3.4.95) and Definition 3.4.10 we see
that a*J € Li(1);0. We next look at the r-derivative functions (9:a*V)(z,y) and
(0n8:+a'7)(z,y), and will see that these mappings exist, are continuous in (z,y),

and are polynomially y-bounded of order r =P locally in z: We have
(8. F'®)(z,y) = Fi(z,y)(02%)(z,y) + (0. F*)(z,y)¥ (z,y).  (3.4.100)

From Condition 3.4.19, we know that for each R € [0,0c0) there is a constant
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C(R) € [0,00) such that
(B F)(z,y)| + (88, F¥)(z,y)| < C(R),  Y(z,y) € S R?. (3.14.101)

In view of (3.4.101), (3.4.100), (3.4.91), (3.4.94) and (3.4.93), we see that for each
R € [0,00) there is a constant C(R) € [0, o0) such that

(0. F'®9)(z, y)‘ < C(R)[1+ 1], (3.4.102)

for all (z,y) € S3 ® RP. Thus, in view of (3.2.28), (3.4.100), and (3.4.102). we see
that the partial derivative function (d:a"’)(z, y) exists, is continuous in (z,y), and
is polynomially y-bounded of order r 29 locally in z. As for the second-derivative

function (8,:8,xa')(z,y), from (3.4.100) we have

(0204 F'®)(z,y) = (8:F")(z,9)(829)(z,y)
+ F'(z2,y)(0:48:9)(2,y)
+ (88 F*)(z, )9 (2,y)
+ (BuF)(z,y) (0% )(z, ). (3.4.103)

From (3.4.103), (3.4.101), (3.4.91), (3.4.94), and (3.4.93), we see that for each
R € [0, 0c) there is a constant C(R) € [0, oc) such that

(020, F®)(z,9)| < C(R) [1 + Iyf?], (3.4.104)

for all (z,y) € S% ® RP. Thus, in view of (3.2.28), (3.4.103), and (3.4.104), we see
that the partial derivative function (8,:8,«a"’)(z,y) exists, is continuous in (z,y),
and is polynomially y-bounded of order r 29 locally in z. Now we have shown
that a™v € Li(1)jee C Li(2)10c, S0 that we can use Proposition 3.4.18(a) on page 53
(with + £ 2 and f £ a'J) to conclude that @9 (-) is a C2-mapping, and therefore it

is locally Lipschitz continuous on [R®. This checks Condition 3.2.15(1).

Check of Condition 3.2.15(2): From Condition 3.4.19, the fact that y — &*(z, y)
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are C*-mappings for each r € R? (see Partial Check of Condition 3.2.8(1)), and
(3.2.28), one sees that y — a*(z, y) is a C*-mapping for each £ € R®. In the follow-
ing we check that the partial derivative functions (8,:a*V)(z,y) and (8,:9,xa*7)(z. y)

are polynomially y-bounded of order r 21 locally in x: We have

(O F @) (z,y) = F'(z,y)(8,8)(z,y) + B F*)(z,y)P(z.y).  (3.4.105)

Moreover, from Condition 3.4.19, we know that for each R € [0,oc) there is a

constant C(R) € [0, 00) such that
|(8y'ﬁ)('rv E)[ + ](ay‘aykﬁi)(xv y)l < C(R)v V(I, y) € S‘}ii ® RD- (34106)

Thus, from (3.4.105), and the bounds given by (3.4.93), (3.2.17), (3.4.106), and
(3.4.94), we see that for each R € [0,00) there is a constant C(R) € [0,oc) such
that

|0, F#)(a.y)| < CLR)[1 + lyl, (3.4.107)

for all (z,y) € S% ® RP. Thus. in view of (3.2.28), (3.4.105) and (3.4.107) we see
that the partial derivative function (dpa'’)(z,y) exits. is continuous in (z,y), and
is polynomially y-bounded of order r 21 locally in z. As for the second derivative
function, from (3.4.105) we find
(B0 F'®)(z.y) = (F")(2,4)(8,9)(z,y)

+ FYz,y)(0:0,%)(z,y)

+ (8x0, F*)(z,y)®(z,y)

+ (BuFY)(z,y) (0P ) (2, y). (3.4.108)
Thus, from (3.4.108), together with the bounds given by (3.4.106), (3.2.17), (3.4.93),

and (3.4.94), we see the following: for each R € [0, o0) there is a constant C(R) €
[0, 00) such that

(8,0 F'®)(z,y)| < C(R) [1 + Iyl (3.4.109)
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for all (z,y) € S% ® RP. Hence, from (3.2.28), (3.4.108), and (3.4.109). it follows
that the second derivative functions (8,:8,xa*’)(z, y) exist. are continuous in (z.y).
and are polynomially y-bounded of order r 2 locally in z. This checks (3.4.79)
when f Sovandr 21 (note that r € (0,q/2) since ¢ > 8 in Condition 3.4.7).
Now define

T(z,y) 2 /om E[a"(z,&(t,z,y) — @ (z)ldt  V(r.y) € R*® R®. (3.4.110)
We have already seen that a*v € Li(1);, (see Check of Condition 3.2.15(1)). so
that we have checked all hypotheses for Proposition 3.4.16 on page 51 when r 2
1, f £ oV and © £ ¥, Then Proposition 3.4.16(1) on page 51 ensures that
¥ € Li(1)j0e. Thus from Remark 3.4.11, for each R € [0,0c) there is a constant
C(R) € [0,%0) such that

9(z.9)| S CR)1 +yl?). ¥ (z.y) € Sg x R®. (3-4.111)

Proposition 3.4.16(2) on page 51 ensures that y — ¥*(z,y) is a C*-mapping
for each £ € R% and that the partial derivative functions (8,%"/)(z,y) and
(88, ¥*J)(z,y) are continuous in (z,y) and are polynomially y-bounded of order
r £ 1 locally in z; that is, for each R € [0,00) there is a constant C(R) € [0,00)
such that

(8 ¥ )(z, y)| + (88 ¥ ) (2, y)| < C(R)1 +lyl], V¥ (z,y) € Sg x RP.
(3.4.112)

As for the derivative functions (8,:%*7)(z,y) and (8.0 ¥*7)(z, y), we have already
seen that the hypotheses of Proposition 3.4.18 on page 53 are verified for r £ 2and
f & aiJ (see Check of Condition 3.2.15(1)). Thus, from Proposition 3.4.18(b) on
page 53, with © £ @i we conclude that the partial derivatives (3,:%*V)(z,y) and
(08 ¥ )(z,y) exist, are continuous in (z,y), and are polynomially y-bounded
of order r + 1 = 3 locally in z. That is, for each R € [0,00) there is a constant
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C(R) € [0.00) such that

(0 ¥*) (2, )| + (B0 ¥)(2,y)| S C(R)1 + [y°], ¥ (z.y) € Sk x R®.
(3.4.113)
Putting together (3.4.111). (3.4.112), and (3.4.113), we see that for each R € [0. )

there is a constant C(R) € [0, 20) such that

¥ (2. y)| + 18 ¥V )(z, y)| + (9 ¥*) (2. y)
+((8404 ) (2. y)| + (88, ¥)(z. y)| < C(R)(I1 + [yP).

for each (z.y) € 3§®RD. This checks (3.2.35) with g3 = 3, and so we have verified
Condition 3.2.15(2)).

Check of Condition 3.2.15(3): Proposition 3.4.16(3) on page 51 (with f 2 a'v,
r21,02 ¥*J) shows that the Poisson relation (3.2.36) holds, which checks Con-
dition 3.2.15(3).

Check of Condition 3.2.18: We have now shown that Condition 3.2.8 holds
with g2 = 1. and Condition 3.2.15 holds with g3 = 3. We now put g, = q.
where q is the constant in Condition 3.4.7. Then, since ¢ > 8, we have q; €
(2+2gq, 00) N (2 + 2¢3,00) = (8, o). Moreover, from Proposition 3.4.12 on page 50,
we see that for each R € [0,0) there are constants ag € [0,00) and Ag € (0,20)

such that (3.2.38) holds. This checks Condition 3.2.18.

Remark 3.4.23. We have now shown that, if Conditions 3.2.1, 3.4.4, 3.4.7 and
3.4.19 hold, then Condition 3.2.8 holds with g, = 1, Condition 3.2.15 holds with
g3 = 3, and Condition 3.2.18 holds with g; = ¢ in Condition 3.4.7. We also showed
that Condition 3.2.3 holds, except for the global Lipschitz continuity of the mapping
F. This last requirement appears to be rather difficult to verify in general terms,
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mainly because the dependence on z of the unique invariant probability measure =,
in (3.1.4) is difficult to characterize. In particular examples, such as when (3.1.3)
has no dependence on z so that the invariant probability measure = is fixed. this

global Lipschitz continuity may be clear.

Remark 3.4.24. The results of this section do not require that o7 (r.y) be non-
singular. Condition 3.4.7 provides enough “stability” in (3.1.3) to ensure that there
is a unique invariant probability measure 7, for the Markov process defined by
(3.1.3) and to ensure that Conditions 3.2.8, 3.2.15, and 3.2.18 hold. Verification of
Condition 3.4.7 can be facilitated when there is additional structure in the system
(3.1.1) and (3.1.2). For example:

(a) if o(z,y) = o(z), Y(z.y) € R*® RP, then Ag(R) = 0, R € [0.x). in
Condition 3.4.7.

(b) if o(z,y) = o1(z) + o2(y) and b(z.y) = bi(z) + be(y) on R® @ R, then Aq
in (3.4.64) is determined by o2(.) and no longer depends on R, while Amqz
(see Remark 3.4.6)) is determined by b+(.) and is a function of y only. Thus

Condition 3.4.7 follows when

sup [Amaz(£)] < (-2

A2
£eRP 2 o

A special case of this occurs when o(z,y) and b(z.y) are functions of y only.

(c) When D = N =1 then Condition 3.4.7 reduces to a simple condition on the
scalar function (8¢0)(z,£) and (9¢b)(z.§).

In Proposition 3.2.13 on page 37 we saw that the matrix @(z) defined by the rela-
tion (3.2.29) is positive semi-definite for each r € IR? when Conditions 3.2.1, 3.2.2,
3.2.3 and 3.2.8 hold. In the next result we establish a more intuitively appealing

expression for @(z) when the conditions of this Section are assumed:
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Proposition 3.4.25. Suppose that Conditions 3.2.1, 8.2.2, 8.4.4. 8.4.7 and 3.4.19

hold. Then the integrals in (3.4.114) are well-defined, and a(z) defined by (3.2.29)
1s alternatively given by

a(z) & /0 " {E(F @B o) P B0 )} + E{F(.E0:2)FT(2.8(s:2))} } ds.

(3.4.114)

for each € R®, where {€(t:1), t € [0,0¢)} is some RP-valued stationary Markov
process defined by (3.1.8) (on some probability space (0. F, P)) with marginal dis-
tribution given by the invariant probability measure =, of Proposition 3.4.14 on page
50.



Appendix A

Proofs for Section 3.3

Remark A.0.26. For the proofs of this section, define the stopping times:

ne

th

Tx

inf{t € [0.€7'] : |z*(t)| > R} (A.0.1)
inf{r € [0,1] : 1X*(7)| > R}, (A.0.2)

2

for each R € (0.oc) and € € (0.1}. From (3.1.1) and (3.1.2), and Condition 3.2.2
we see that t%, is a {F,}-stopping time, and, from Section 3.3, it follows that T} is

a Gt-stopping time for each ¢ € (0. 1] (recall (3.3.41)): and

< Sett,  Vee (0.1], VR € (0.). (A.0.3)

A.1 The Main Result

Proof of Theorem 3.3.3 on page 42: Let C denote the linear second order

differential operator for the diffusion process defined in the equations (3.3.46) and
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(3.3.47). Thus, for each g(r.z) € C*(R® ® R?) we have

Cg(z,z2)
d d d
=Y F@) @9 (z2)+Y 3 (6,;?') (z) (8..9) (z. )
1'_141 d M T
+§ Z z Z G'J(I)G”(I) (07:0;:9) (2, 2)
=1 j3=1 =1
i a
+ Z Z (3:-3;,9) (I, :)G"I(I) [(6261.1)(x):]
=1 j=1 =
1 dJ d 1 - Al | | |
+3 Z { (a‘d(x) + Z ((8:G*)(z)z] [(B:GJ-I)(I):J) (8..0.,9) (1:,:)} ,
=1 =1 =1

(A.1.4)

Remark A.1.1. In proving (3.3.52) we use the following method: first establish
tightness of the family of measures {£(X*, Z¢). € € (0,1]} and then show that
each weak accumulation point of the family {£(X*, Z¢), € € (0.1]} coincides with
L(X,2) for (X,Z) given by (3.3.46) and (3.3.47). Now (3.3.52) follows from Re-
mark 3.3.2. In following this plan we use the Stroock and Varadhan martingale
problem, and the so-called perturbed near-identity transformation method. That is,
if G¢ is the usual linear second order differential operator for (X¢, Y, Z¢) (given by
(3.3.42), (3.3.43), (3.3.45)), then for each g € C*(RR* ® R?) we will construct a
C*-mapping L R*® RP ® R® — R having the form

e - 2 . ; - ; .
Wi(z,y,2) = gz, 2) + €70 (z,y. 2) + €03(z,y. 2), (A.1.5)
where 0}(z,y, z) and @3(z,y, =) will be chosen such that G*¥¢ is of the form
GVo(z.y,2) =Cg(z.2) + eA(e, 2,y. 2). (A.1.6)

Here the linear operator C, defined in {A.1.4), is a consequence of the averaging

procedure and acts on functions depending on (z, z) only, and the mapping A is a
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bounded continuous function. The relation (A.1.6) implies that as € goes to zero
the linear second order differential operator G¢ “converges” to the linear second
order differential operator C in (A.1.4), which corresponds to the limiting diffusion
process (X, Z) defined by (3.3.46) and (3.3.47). Thus, using the martingale problem
method and (A.1.6), one can prove the weak convergence £(X¢. Z¢) — £(X.Z). as

e—=0.

The perturbed near-identity transformation method introduced above is broadly
used in singular perturbation theory when dealing with averaging problems. This
method, sometimes in the literature called the perturbed test function method , is
used for proving the weak convergence theorem. as the functions ¥ in (A.1.5)
are perturbed by the factor depending on e. The general idea of applyving this
method was introduced in Kurtz [22], Blankenship and Papanicolau [5], Papani-
colau, Stroock, and Varadhan [29] and subsequently extended in Kushner(e.g see
[23]).

Following the procedure outlined above we are now ready to establish (3.3.52)
in three steps:
STEP I: Let (Q°, F*) be the measurable space defined by (3.3.49) and (3.3.50).
Also, let {B(r), r € [0.1]} be a filtration defined in (Q°, F*) by

B(r) £ o{X(s), Z(s), s € [0,7]}. (A.1.7)
To introduce the martingale problem, for each g(z, z) € C=(RR* ® IR%), define
Ag(X, Z)(7) = g(X (7). 2(7)) - 9(X(0 / Cg(X(s), Z(s))ds, (A.18)
for every (X,Z) € Q° and 7 € [0, 1]. For each ¢ € (0, 1], put
Pr £ £(X, 29). (A.1.9)

Now, fix an arbitrary sequence {e,, n € N} C (0,1] such that ¢, = 0 as n — oo.
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To get (3.3.52) it is enough to prove
lim P! = L(X,2). (A.1.10)

To establish this, fix an arbitrary subsequence {P., ., }xof {F. }. From Proposition
A.3.1 on page 98 we know that {P;} is weakly relatively compact, hence the
subsequence {P:..( o }« is also weakly relatively compact. Hence, by definition of

weak relative compactness, there is a further subsequence {P:

n(k(m))

}m with some

probability measure P* on (Q*, F*), such that

lim {P;

En(k(m))

b = P (A.1.11)
It remains to show that
P* =L(X,2) (A.1.12)

for then (A.1.10) follows by Fact C.0.5 on page 203. To simplify the notation we

will write Py, for P, emyy? SO that (A.1.11) becomes
lim P, = P". (A.1.13)

In view of Remark 3.3.2, the probability law of each solution (X, Z) of (3.3.46),
(3.3.47), is uniquely defined. Thus, by Corollary 5.4.9 of Karatzas and Shreve [19)

there is a unique probability measure P on (Q*, F*) with
P((X,2)e Q" : (X(0),2(0)) €T) = b(xo, %), VI €B(R* R, (A.1.14)

such that {(Ay(7),B(r)), 7 € [0,1]} is a martingale on (Q*, F*, P),

Vg € C*(R* ® R%), and this probability is the (unique) law £(X,Z). Thus, it
is enough to show that {(A,(7),B(7)), 7 € [0,1]} is a martingale on (Q*, F*, P*)
(where P* is the limit in (A.1.13)) for each g € C®(R® ® R®), for then (A.1.12)
follows, as required to establish the Theorem.

From now on fix g(z,z) € C®(R? ® R%). To see that {(Ay(7), B(r), T €[0,1]}
is a martingale on (Q°*, F*, P*), it is enough to establish that, for arbitrary 0 <
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71 < T3 < 1 and mappings ' : Q* — R having the form

I(X,2) = f[h,-(X(s.),Z(s,-)), V(X.Z) e, (A.1.15)

=1
with 0 € sp < 81 < ... < s, < 7 and continuous uniformly bounded functions
h; : R®*® R% — R, one has

EP" [(Ay(X, Z)(r2) — Ay(X. 2)(m))T(X. Z)] = 0. (A.1.16)

It then follows from Fact C.0.4 on page 202 that (A.1.16) continues to hold for all

B(7)-measurable and uniformly bounded mappings I' : Q* — IR, which proves that

{(Ag(7),B(7)), 7 € [0,1]} is a martingale. Thus fix arbitrary partition 0 < s¢ <

$1 < ...< sp <7 and fix continuous uniformly bounded functions h, : IR?® R* —

R, i = 1,2,...,n. It remains to show that (A.1.16) holds when I is given by

(A.1.15).

Since (X, Z) = [(Ay(m2) — Ay(11))T] : @ — R is clearly a uniformly bounded and

continuous mapping, it follows from (A.1.13) that

lim E [(Ay(X, Z)(72) ~ Ag(X, Z)(n)) T(X. 2)]
= EP [(Ag(X. 2)(m) = Ay(X. 2)(n)) T(X, 2)].

(A.1.17)

Now one sees from (A.1.9) that

EP: [(Ag(’xv Z)(T2) - Ag(xv Z)(Tl)) F(Xv Z)l
= E[(Ag(X*, Z)(m2) — Ag(X*, Z°)(n)) T(X", Z)].
(A.1.18)

Thus, the relation (A.1.16)( hence Theorem 3.3.3) on page 42 follows from (A.1.17)
and (A.1.18) once it is shown that

li_x}(:)E’ [(Ag(X©, Z%)(12) — Ag(X<, Z°) (1)) T(X*<, Z°)} = 0. (A.1.19)
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In order to get (A.1.19), we shall establish in Step II the following

lim B ({Ag(X%, 2)(r2 ATE) = Ag(X", Z)(n AT}T(X. 2] = 0. VR € (Ro,

(A.1.20)
for a fixed Ry € (0,00) being large enough that support of g(z,z) is within the
interior of S§ & R? (T is defined in (A.0.2)). To see that (A.1.19) follows from

(A.1.20), note from (A.1.4), (A.1.8), the uniform bounds on the A, in (A.1.15). and
g € CX(R*® R?), that

|Ag(X, Z)(T)T(X, Z)| < Cy, (A.1.21)
for all (X,Z) € Q*, 7 € [0,1], and some constant C; € [0,00). Now we can write

E ([A(X*, Z9)(m2) — Ag(X*, Z%)(r)| T(X", 29)

= E([Ag(X*, Z%)(r2) — Ag(X%, Z9)(r)| [(X*, Z)I{Tg > 1})

+E ([Ay(X¢, Z9)(m2) — Ag(X<, Z%) ()| (XS, Z9) I{Tg < 1})
= E ([Ay(X%, Z%)(ra ATE) = Ag(X<, Z%)(ry A TR)] T(XS, Z91{T 2 1})
+E ([Ag( X%, Z)(2) — Ag(X¢, Z°)(m)| (X, Z)I{Tg < 1})
= E([A,(X%, Z%)(ra A TR) = Ag(X%, 29)(ry A TR)] T(X°, 29))
—E ([Ay(X%, 2)(ra A Tg) — Ag(X", Z°)(ry A TR)| T(X4, Z9)I{T§ < 1})
+E ([A(X, Z%)(m) — A(X%, Z9)(m)| (X<, Z){Tg < 1})

(A.1.22)
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Thus, from (A.1.21) and (A.1.22), there is some constant C € {0.oc) such that

|E ([(Ag(X*, Z°)(m2) — Ag(X*, Z°)(m)) T(X*. Z9)]) |
< |E ([Ag( X, Z%)(r2 ATY) — Ag(X€, Z9)(my A TE)| T(X*. 29) |
+E ([Ag(X®, Z°)(r2a ATR) — Ag(X®, Z°)(n ATR)| DX, Z)I{TR < 1})
+HE ([Ag( X<, Z°)(12) = Ag(X*, Z°)(n)]T(X*, 29 {T < 1}) |
< |E ([Ag(X*, Z)(r2 ATE) = Ag(X. Z(m ATS)| T(XE, Z%)) |
+E|[Ag( X, Z9)(r2 ATE) = Ag(X®, Z)(m ATE) T(XE, Z9)I{Tg < 1}]
+E|[Ag(X<, Z9)(12) = Ag(X<, Z¢)(r)] T(X<, Z)I{T§ < 1}]
< E ([Ag(X<, Z9)(ra A T) = Ag(X*, Z9)(m AT T(X", 29)) |
+2CP[TS < 1]. (A.1.23)

Ve € (0,1], VR € {0,o¢). Now fix some small € (0,50). By Proposition A.4.4 on
page 111 there is some R(7n) € (Ry, 00) and €;(n) € (0, 1] such that

CP[Thy <1< 1, Ve€ (0.crln)). (A.1.24)
Moreover, by (A.1.20), there is some e2(n) € (0, 1] such that
|E [(Ag(X¢, Z°) (72 A Thy)) — Ag(X*, Z°) (11 A Tiyy)) DX, Z9) < g (A.1.25)
Ve € (0,€e2(n)). Using (A.1.23), (A.1.24) and (A.1.25) we get
|E [(Ag(X<, Z%)(12) = Ag(X*, Z°)(n)) (X<, Z9)] | < m, (A.1.26)

Ve € (0,€1(n) A €2(n)), which proves (A.1.19), and hence Theorem 3.3.3 on page 42

follows.

Remark A.1.2. Thus, it remains to prove (A.1.20) in order to establish Theorem
3.3.3 on page 42. We shall do this in Steps II to IV using the near-identity method

summerized in Remark A.l1.1.



APPENDIX A. PROOFS FOR SECTION 3.3 72

STEP II: Since F (-) is a C2-function(by Condition 3.2.3) we have by the mean
value theorem:
Fl(z - e/%2) = F(2) — /2 [(6,—1':’-‘)(1:)2] +eli(e, 1, 2), (A.1.27)

(recall that 0:7‘-‘(1:) is a row vector of length d), where

1
I (e, z, z)é/O (Z* (1-¢ Z:,, (0:,0:, F*) (z — €'/%¢= )) d¢,  (A.1.28)

k=1 n=1
Y(z,z) € R*® R% Ve € (0,1}, i = 1,2,... ,d. Similarly, since G*/(.) is a C*-
function (see Condition 3.2.1) we have
G (z ~ €'/22) = G*(z) - €2 [(8,G")(z)z] + ey (e, 1, 2), (A.1.29)
(recall that 8,G*(z) is a row vector of length d). where

1/ d 4
e z.2) = / (sz(l—c)zzn(a&aﬂc‘-‘) (r—e‘”&)) d¢,  (A.1.30)
0

k=1 n=1
Y(zr,z) e RR® R Ve € (0,1).i=1.2,...,d1 =12, ... M Moreover, from
(3.3.45), (A.1.27), and (A.1.29) one has
F (X (1) = F(X(r)) — €2 [(aj‘)(r(r))z‘(r)] +el' (e, X¥(7), Z(7)).

(A.1.31)

vrel0,1], vi=1,2,...,d, and

GY(X4(7)) = GM(X'(7)) = €2 [(8:G*)(X*(1)) Z%(7)] — el3'(e. X*(), Z¢()),

(A.1.32)

vr e [0,1], ¥i = 1,2,... .d, and | = 1,2,... , M. Now, from (3.3.45), (3.3.42),
(3.3.44) we get

ZEr) = V2 { / ’ (F‘(X‘(s),Y‘(s)) - ?(F(s)) ds
0
+ Z / K(X¥(s) - G*(X(s)) dW:(s)} .

(A.1.33)
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Then, using (A.1.31) and (A.1.32) in (A.1.33), we can write:
z(r) = {e [ [P vsn - Fux)] ds

+ /0 ' (a,?) (X<(s)) Z%(s)ds — €'/ '/0 ’ I'(e. X*(s). Z‘(s))ds}

M . .
+> [o (3:G™*) (X*(s))Z(s)dW{(s)
k=1

M

~e2 Y [ B4 X4(6). 26N ). (A134)
k=170

We next calculate the variation and cross-variation processes of {X¢(r), 7 € [0, 1]},
{Y¢(r), r € [0.1]}, and {Z(7), T € [0.1]}, using (3.3.42), (3.3.43), (A.1.33) and
independence of {W*(r), 7 € [0.1]} and {B*(7), € [0, 1]}(as follows from (3.3.40)
and Condition 3.2.2):
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s M
[Xe, Xe] (1) = /0;0 (X<(s))G(X(s))ds
Y
(XY () = €' ZZG‘ (X4(5))o7*(X<(s), Y(s))d[W?, B]
0 =1 k=1

[Xf,Z,‘-] (r) = /ZG"(X‘ [(8:G7)(X*(5))Z%(s)] ds

0 =1
r M
—e2 [ " GHX(s) B (€, X(s), Z¢(s)) ds
0
] Nl 1
[Ye Yo (r) = e—lfu Z: [0"*(X<(s5), Y¥(5))0"*(X*(5), Y(s))] ds
+r M N
Ve Z] () = [ 3 ) e Xe(e) Yi(s)) {G7 (X (s))
=1 k=1
- G*(X(s))} AW, B
= r M _
(2:,2](r) = /; ) [(8:G)(X(5)2%(s)] [(8:G7)(X*(s))Z%(s)] ds
=1
r M
=€ | 3" [(3:GM)(X(5))Z%(9)] (e, X“(5), Z°(s))ds
0 = l

—e!/? Z (B:G)(X<(s)) Z°(5)] I (e, X*(s), Z%(s))ds

0 =y

+e/0 ZI‘ (€, X¥(s), Z¢(s)) I3* (e, X*(s), Z%(s))d
=1
(A.1.35)

Remark A.1.3. Fix some arbitrary continuous mapping (z,y,2) — ¥(z,y,2) :
(R* ®@ R® @ RY) — IR, whose first partial derivative functions (9, %), i =
1,2,...,d,(0,%),i=1,2,...,D,(0.¥),i=1,2,... ,d, exist and are continuous
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on R*® RP ® R®, and whose second partial derivative functions (9;:8;, %), i,j =
1,2,....d, (8y0,%), i,j = 1,2,....D, (0..0.,%¥), i,j = 1,2,....d, (0:+0::¥).
i,j=1,2,...,d, exist and are continuous on R® ® RP ® R%. Notice that we do
not require the mixed derivative functions 9,.0,, and 9,,9.. to exist. Since we have
seen that the cross-variations (X7, Y] and (Y%, Z;] are identically zero. we will not

need these derivatives when we make an expansion of ¥(X*¢, Y*, Z¢), as we do next.
For a mapping ¥ as in Remark A.1.3, Itd’s formula gives

d T
U(X(r), Y¥(r), Z5(7)) = ¥(zo.v0.%) + Y. /0 (8. 0) (X4, Y, Z°)(s)dX((s)

r

+ (8, %) (X°.Y*¢, Z°)(s)dY(s)

-
il
—~

Mo
S

M=
M= s

(3--‘1’) (X*,Y*, Z%)(s)dZ{(s)

1=1
d
1 T
+ 5{ > fo (82:0,,F) (X<, Y, Z°)(s)d[X{, X{](s)
=1 ;=1
d d -
+ 222 /0 (0:0:: W) (X, Y<, Z°)(s)d[X?, Z5](s)

,_

p>

=1

B, %) (X4, Y<, Z)(s)d[YS, Yo(s)

LR |

u[\’]o"
o\.

D
3
i
d
+ Z 6

=1

1Y%

0, W) (X, YS, Z¢)(s)d[ 25, Z3)(s )}

1

.
]

M=
'c\.

(A.1.36)

V7 € [0,1]. Putting together (A.1.32), (A.1.33), (A.1.35), (A.1.36), (3.2.14), (3.3.42),
and (3.3.43), one sees that

W(XYE, Z9)(r) = ¥(z0,y0, 70) + / GU(X*,Y*, Z¢)(s)ds + M5(r), Vr € {0, 1],
0

(A.1.37)
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where

d M r
Mir) 2 33 [0 (XY Z9GH X (D)

=1 (=1

D N L
+e'1/222/ (8 0) (X<, Y¢, Z%)(s)o"* (X (s), Y(s))dBL(s)
i=1 k=170

d M

PR [o (0-0) (XY, Z°)(s) [(8:G™)(X*(5)) Z¢(s)] dW Y (s)

=1 =1

d M r
~€2Y 7Y /0 (B W) (X, Y4, Z) () Iy (€, X, Z)dW(s)

=1l [=1

(A.1.38)



APPENDIX A. PROOFS FOR SECTION 3.3 T
and we have put
¢ Ay -1
G¥(z,y,2) = A‘I'(x Y, 3)

+ -1/22(6.. zy,~[ (z,y) - F(J-')]

d
> (8:¥) (2.9, 2)F(2,y)

=1

+

N,

(8:¥) (z.y,2)58,, F (z)

+
M- <
[

-
il
-

.
1]
-

M
Y (8:8.9) (z,4,2)GH(2)G(z)

=1

+
M a

,
it
o
.
i
-
z

(82080 ¥) (2,9, 2)G*(z) [(8:G™) (z)z]

1

M
3 (0:8.,%) (z.3,2) [(8:G™) ()] [(a,GJ~‘)(r>:}}

=1

M=~
M=

-
\l
—

.
1
—
.
]

1\[3\%-;
M a

..
]

—_
~
il

—

M-
S

V) (z,y, 2) ] (e, . 2)

!
m
—
~
%)
P
-
Il

-
M-
M=

..
I
-
“~
Il
—
-
I
—

(02280 %) (z,y, )G (2) (e, 2, 2)

X

2 ¥) (2,9, 2) [(8:6")(2)z] B'(e.2.2)

+
) —
M=
'M‘L
®
&

+
ra -
. ”»
)= i
L
Mn. I
-
S0

..
1
—
-
1]
—
.
]
-

(0::0.; %) (z, [ (0:G*)(z ] Ye.z,z }

+ (0:0.,9) (2,9, 2) I3 (€, 2, 2) 3*(e,7,2)  (A.1.39)

-
1
—

LY
I
—
-
Il
—

M-
M=

Next, we introduce the class of perturbed near-identity functions: for the fixed
function (z,z) — g(z,z) € C®(R® x R?) and for each ¢ € (0,1], define the
function
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(z,y,7) & ¥i(z,9.5) : R R° S R* - R by
Ve(z,y,2) £ g(z,2) + 751(2, 5. 2) + (2. 9. 5) + €Sa(z.p. ). (A.140)

V(z,y,z) € R®® R ® R?, where

d

Siz,9.2) = Y 8z,y)(3.9) (.2),

=1

d
Zaz.9,2) £ Y @(z,y)(Be9) (2. 2),
=1

d d
Si(z,y,2) = %ZZ‘I""(I.y) (02:0.,9) (z. =), (A.1.41)

and the mappings ¢*(z,y) and ¥*J(z, y) are defined in Conditions 3.2.8 and 3.2.15
respectively.

We have defined the functions =;. =, and =3 in (A.1.41) such that, upon taking
U= ¥; in (A.1.39), we will be able to use

(a) the fact that Ag(z.z) =0 (by (3.2.14) to remove the term involving €7,

(b) the relation (3.2.19) in Condition 3.2.8 to cancel the terms involving e~'/2,
(c) the equations (3.2.28), (3.2.19) and (3.2.36) to get the terms of power €’

independent of y.

To this end, we first evaluate each term on the right side of (A.1.39) with ¥ = v
Before doing this, notice from (A.1.41) and the fact that &', ¥*v € C**(R?® RP)
(recall Remark 3.2.7), that ¥§ has all of the derivatives required by Remark A.1.3,
so that (_}‘\Il; is indeed defined. From Remark 3.2.6, Condition 3.2.8, Condition
3.2.15, and (A.1.41) we see that:

Ag(z,y,2) =0, (A.1.42)
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and

d
=12 }: [f"(z) - F‘(:r,y)] (8..9) (I.:)}

d .
+3 [F@) - Flz.9)] (0ug) (2.2

d d
+% Y ) (@) - aV(z,9)] (8.0.9) (z.2).  (A143)

j=1
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From (A.1.40) and (A.1.41):

d
Z (3z \I!‘ D) FYz,y)
1=1 .
=Y (829) (z,2)F'(z.y)
=1
d
+€'2Y (0251 (7,4, 2) Fr(z.y)
=1
d
+e)_(02%2) (2.3, 5)F'(z.y)
1=1
d
+ez (0233) (z,y, 2)Fi(z.y) (A.1.45)
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=1 jy=1
1 d d M
+3€23 030 (8:0531) (2,4, )G (D)6 (2)
i=1 j=1 I=1
1 d d M
+36) DY (8:8:%2) (£,4,2)GM (2)G*(2)
= =1 og=lod=1
1 d d M '
+§GZZ (8,.0,,%3) (z,y, )G ()G (z)  (A.1.47)
=1 =1 I=1

From (A.1.40) and (A.1.41):

d d M
YN (8204 %;) (2,9, 2)GH (2) [(8:G67)(z)=]

=1 ;=1 =1

d d
=330 (000g) (2516 (2) [(B:G)2):]

d d M
7YY (00,5 (2.4, 96 @) (.62

=

—

d
+ 33 Y (0u00%:) (2,3, 2)6% () [(0.6)(@):]

d d
+€3 3" " (8:0455) (2.4, 2)G (2) [(8:67)(z)=] (A.1.48)
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And, also from (A.1.40) and (A.1.41):

M

d d
% Y DTN (8:8.¥7) (2.3, 2) [(8:G4)(2):] [(8:67)(2)=]

=1 ;=1 =1

1

"E"Ji
M a
M=

1
—
[
n
—
-~
1
—

(5)&
Mm
[\’]:

(a:'azlg) (Iv :) [(a:Gu)(I):] [(axGJ'l)(I):]

(0:48:=1) (2.9, 2) [(3:G*)(2)=] [(8:G")(x)z]

i
—
-
I
-
-
"
-

0.%2) (2.4, 2) [(0:6")(2)2] [(8:6)(2):]

-+

NI —

™m
M= .
[\/]n.
Mk
’G;

-
1]
—
-
[
—
i
-
N

MA-—‘
M-
Mn.

+

(8::8..53) (z.y. 2) [(8:G™)(2)z] [(8:G7)(2)=]

-
it
—_
-
1]
-
—
il
—

(A.1.49)
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We substitute (A.1.43) to (A.1.49) in (A.1.39) and simplify to get (A.1.50) which
follows. Note that, in (A.1.50), we collect all terms multiplied by ¢ into the term
Ai(e,z,y,2), foreach k =1,2,3,4.

d .
GUy(z.y.2) = {Z[‘F“(z)-r*(r.y)] (8e:9) (3,2

=1
d
FAE Y [0 - a¥(ey)] (Buba9) (2.5)
1=1 ;=1
d
*ZZ‘I”(IJ) [F'(r,y) F(z )] (8.48.,9) (z. 2)
=] =1

d d
P TS (0.0.0) (2. G ()G (2)
d d
+ZZ (0:809) (z.2)6(2) [(0.67)2)7]

d d M
+§ZZZ 6.0.9)(z.7) [(0.6")(z )]E<3=G”')""’:]}

=1 ;=1 (=1
+€1/2AI(€. Iy, :) + 652(Ey LY, :) + 63/2A3(€' I, Y, :)

+ €2A4(€, I.y.z)
(A.1.50)
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Moreover, from (3.2.28):

iz«m[ Fi(z,y) - F(2)] (8:0.9)(z.2)

d d |
; Z Z (z { (z.y) - F(l')] (040, 9)(z. 2)
=1

d d

+%ZZ¢‘I v) [F’ ry) - F'J(I)](a 0..9)(z. )
1=1 ;=1

1 d d

§ZZa"’ T,y)(0..0.:9)(z, 2). (A.1.51)
=1 ;=1

Then. substituting (A.1.51) in (A.1.50), and simplifing, we get

d d d
GUy(z.y.9) = P F(2)@ug)(z.2)+ 3D (0aF ) (2) (Bug) (z.2)

1=1 1=l =1
M

d d
+ 3T Y GHEIGH(E) (Bedug) (2.

-

d M
+ 33" (8:0.9) (2. 2)GM(2) [(9:6)(2)2]

=1

-~

=1 ;=1

M
+ ¥ [(0.6(@)2] (.62 (): ]) (8.:8.19) (3, z)}
=1

+ €2A(e,1,y,2) + €As(e. 1.y, 2) + €2 As(e, 1. y. 2)
+e2A4(e. 1.y, 2).
(A.1.52)

Thus, in view of (A.1.4) and (A.1.52), we establish

4
G¥(z,y,2) = Cg(z,2) + Y X2 Ax(e 2,9, 2), (A.153)
K=1
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(compare (A.1.40) with (A.1.5), and (A.1.53) with (A.1.6)). In this equation we
have not given the explicit forms for the functions Ag(e, z.y, z)(in terms of ®(x. y),
¥(z,y), F(z,y), etc.) since these are not important(and quite lengthy). Indeed.
the only significant thing about these functions is that (z,y,z) = Ag(e.1,y.2)
is continuous on (R? ® RP ® R?) for each € € (0, 1], and, corresponding to each
R € [0,00), there is a constant Cy(R) € [0,00) such that, for each A = 1.2.3.4.

one has
|Ak(e.z,y,2)] < Cu(R)[1 + [y|'+(#Ve)), (A.1.54)

Ve € (0,1], and, VY(z,y,2z) € S3 ® R? ® R®. This follows easily by check-
ing all terms for the individual Ag(z.y,:), and using the compact support of
g(z.z) and its partial derivatives, together with Condition 3.2.8 (which ensures
that &'(z,y), 8.9 (z,y), and 8,:0,¥*(z,y) are polynomially y-bounded of order
g2 locally in ), and Condition 3.2.15 (which ensures that ¥'V(z,y), 8% (z,y),
and 8,:8,. 9" (z,y) are polynomially y-bounded of order g3 locally in z), and Con-
dition 3.2.1 (which ensures that F*(z,y) is polynomially y-bounded of unit order,

locally in ).

Now let M((7) denote M (7) in (A.1.38) when ¥ = ¥¢, and combine (A.1.37),
(A.1.40), (A.1.41), (A.1.33)
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to get

d
My(r) = g(X*,Z)(r) + €2 Y & (X, Y)7) (Bng) (X, Z°)(7)

, =1
ey B(XY)(r) (Bng) (X, Z)()
1'=1d d
+3e 0 3 WX Y(r) (9:09) (X4, Z9)(7)
=1 j=1

d
~g(z0,20) — €2 ) _ &'(z0, %0) (8:+9) (Z0, 0)

1=1

d d
—EZ;Z‘I" Zo, Yo) (82:9) (%o, 20)

=1 =1

1 d 4
- 5€2_ > V(0. 10) (8:48.59) (20, 20)
=1 j=l

T 4 T
- f Cg(X<, 2¢)(s)ds - Y f X2 Ak (e, X*, Y*, Z°)(s)ds.

0 K=1Y0

(A.1.55)

Rearranging (A.1.55):

Mi(r) = g(X%Z%)(r) - g(z0. 20) /0 "Cg(X*. 2%)(s)ds

d
+€/2 Y { @ (X, Y9N (T) (Bg) (X4, Z4)(7) = ©(20,%0) (8:+9) (20, 20)}

=1

d
+e)_ {$HXY)(7) (Bug) (X, Z°)(7) — ¥(20, Y0) (Bg) (%0, 0) }
i=1
d d
#3620 3 {9 Y9 (0.0,9) (X4, 29(7)

=1 =1

- \Ili'd(xo, Yo) (0:49::9) (zo, 30)}

4 ,
- Z erz'[ Ax(e, X, Y*, 2% (s)ds, VT€[0,1]. (A.1.56)
K=1

0
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In view of (A.1.8) and (A.1.56) we have
Mi(r) = Ag(X<,Z°)()

d
+€/2) " {84 (X, Y*)(7) (B29) (X, Z)(7) — &*(Z0. %0) (8::9) (z0. )}

i=1
d
+EZ {84(X,Y)(7) (829) (X*, Z°)(7) = &'(20, Y0) (8:9) (Zo. 20) }
1'_ld d N
+562_ > {¥H(X5Y*) (8:0.9) (X4, Z9)(7)
i=1 j=1
— ¥ (2o, Yo) (8:10:59) (T0. %0) }
4 r
- e"/’-'f Ak(e, XY, Z%)(s)ds, VT e€l0,1]. (A.1.57)
K=1 0

In order to establish (A.1.20) from (A.1.57), which will follow in Step III, we now
upper-bound the expectations of terms on the right hand side of M;(7 A TR) from
(A.1.57) starting with the last term. From (A.0.2) we have X*(s) € S§, V0 <5 <
%, thus, from (A.1.54), and ¢4 > (1 + g2 V ¢3) (see Condition 3.2.18) we get
|Ak (e, XY, Z) ()T {s < TR}
< CUR) [1+|Y*(s)|""™®)] I {s < Tg}
SCUR)[1+|Ye(s)|®]I{s <Tg}. (A.1.58)
Taking expectation in (A.1.58) and using Lemma A.4.7 on page 123 we get a con-
stant Cz(R) € [0, o0) such that

El|Ax(e, XY, Z($) {s < T8}] < Ca(R). (A.159)
Ve € (0,1], Vs € [0,1], K =1,2,3,4, and thus by Fubini’s theorem one has
TATE T
E [ Iakte x4 Y 2(s)lds = || Elate. x4 Y4 26 {5 < TaHds
0 0
< Cy(R) (A.1.60)

Vee (0,1], Vr€0,1], K =1,2,3,4.
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As for the second term on the right side of (A.1.57), fix some R € (Ry.x)
where R, is specified at (A.1.20). Then we have | X¢(T§)| = R, hence on the event
{Tg <7}, (X(r ATR), Z(r ATR)) ¢ support {(8..9)(.,.)}, and thus

{B(X(T ATE), Y (T ATE)) (8:9) (X(T ATE), Z(T AT} I {Ty < 7} =0
(A.1.61)

V7 € [0,1], Ve € (0,1). In view of Condition 3.2.8, which ensures that &(r,y)
is polynomially y-bounded of order ¢, locally in r, and also using the fact that
(0:g)(z, z) is uniformly bounded, there is a constant C3(R) € [0, o) such that

|8 (X*(r ATR), Y*(r ATR)) (8:29) (X*(r ATR), Z4(r ATR)I {7 < T}
SC(R1+Y(rATE)®) {r <Tg}. (A.1.62)
Now, from (A.1.61) and (A.1.62), we can write
|9 (X*(r ATR), Y*(r ATR))(8..9) (X*(T ATR), Z(r A Tg))|
SCi(R){1+ Y (TATR)®I{r < T}, (A.1.63)

Thus, taking expectation in (A.1.63) and using Lemma A.4.7 on page 123 there is
a constant Cy(R) € [0,20) such that

E|® (X (7 ATR), Y (7 ATR)) (0-9) (X*(r ATR), Z(T A TR))|
S E(C(R)[1+|Y(r ATR)I®] I {r < Tg})
< Cy(R), (A.1.64)

for all € € (0,1}, T € [0,1]. Considering the third term on the right hand side of

(A.1.57), a similar argument shows that there is a constant Cs(R) such that

E|® (X(T ATR),Y(r ATR)) (8xg) (X(7 ATg), Z°(r ATg))| < Cs(R),
(A.1.65)
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for all € € (0,1], 7 € [0,1]. For the fourth term on the right hand side of (A.1.57).
an argument which is similar to that used for (A.1.64) together with (3.2.35) es-

tablishes; for each R € [0, 00), there is some constant Cg(R) such that

E|W (X1 ATR), Y*(r ATR)) (8ud.g) (X“(r ATE), Z%(r ATR))| < Co(R).
(A.1.66)

for all e € (0,1], 7 € [0,1]. Let J;(r) denote the sum of all terms on the right side
of (A.1.57), except for the first term Ay(X¢, Z¢)(7), thus

M (1) = Ag(X<, Z°) () + J4(7), (A.1.67)

for all e € (0,1], 7 € [0,1]. From (A.1.60), (A.1.64), (A.1.65) and (A.1.66) we have
seen that for each R € (Ry, o) there is a constant C-(R) € [0, o0) such that

ElJY(r AT3)| < €2CH(R), (A.1.68)

for all ¢ € (0,1], 7 € [0, 1].

STEP III: In this step we show that {(M:(r ATg),G%) , 7 € (0,1]} is a martingale
on (Q,F, P) for each € € (0.1], R € (0,00) and g € C=(R* ® R?), recalling that
M;(r) is given by (A.1.38) with ¥ 2 ¥ from (A.1.40). We do this by showing that
the stochastic integrals on the right side of (A.1.38) ( which are clearly {G¢}-local
martingales ) in fact become genuine {G:}-martingales when stopped at T;. Be-
ginning with the second term on the right hand side of (A.1.38), take y'-derivatives
of U5 in (A.1.40) and use (A.1.41) to get

d
8, ¥i(z,y,2) = €2 (8y9") (z,9) (Ba9) (. 2)

i=1
d

+ € (949 (2,4) (9n9) (=, 2)

=1
d d

+ 5€)_ D (8,¥V) (2,9) (8:0.9) (z,2).  (A.169)

i=1 j=1
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Since 8..(z, z) and 8,.g(z, ) (recall g € C=(R* ® R?) and 8..9,.g(z. =) are uni-
formly bounded, it follows from (A.1.69) and Conditions 3.2.8(see (3.2.17)) and
3.2.15 that, for the fixed R € (0, 00). there is a constant Cs(R) € [0, oc) such that

| (8, %) (2,9, 2)| < €/3Cs(R) [1 + Jy]'®=¥®)], (A.1.70)

Ye € (0,1], and, Y(z,y,:) € S ® RP ® R®. Thus, from (A.1.70) and Condition
3.2.1, there is a constant Cy(R) € {0, 00) such that

| (8,1%;) (z,y, 2)0"*(z,y)I> < eCo(R) [1 + [yt +ev@)] (A.1.71)
Ve € (0,1}, and, ¥(z,y,2) € S ® R? ® R®. Then from (A.1.71) we can write

[ (B, %5) (X<(s), Y<(s), Z<(s))o " (X(s), Y(s))|*] {s < T}
< eCy(R) [1 + |Y*(s)2+9Va)] [ {s < T5}, (A.1.72)
Ve € (0,1], Vs € [0, 1]. Taking expectation in (A.1.72), applying Lemma A.4.7 on

page 123 and recalling that g4 > 2(1 + g2 V q3) there is a constant Cy(R) € [0, 00)
such that

E (| (0,%%) (X¥(5), Y¥(5), Z(5))a™* (X“(s), Y¥(s)) '] {s < T3})
< E (eCo(R) [1+ [Y*(s)PI*=V®)] [ {5 < Tg})
< eCo(R), (A.1.73)

for all s € [0,1]. Now from (A.1.73), Fubini’s theorem, the It6 isometry, and the
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fact that g3 > 2(1 + g2 V ¢3) (see Condition 3.2.18) it follows that

E| fo " (@) (X¥(8), Y¥(5), Z(9))o 4 (X¥(s). Y*(5))dB (o)
=E| ]0 B, (X¥(5), Y¥(s), Z(s))a"* (X*(s), Y¥(s) {s < Ty}dBi(s)f*
=E [0 0, T(X(5), Y¥(5), Z4()a (X (s), V()T {5 < Tg}d(s)
= fo T E (10, W5(X(5), Y¥(s), Z¥(s))0™*(X“(s), V()T {5 < T5}) (o)

< f " eCro(R)d(s)
0
< eCu(R), Vrelo,1], (A.1.74)

where C};(R) € [0, o] is a constant. Thus, from (A.1.74), it follows that
TAT}

H(r) £ /; ) (8,0%) (X4(s), Y¥(s). Z°(s)) o™ (X (s),Y*(s))dBi(s) (A.1.75)
is an L,-continuous martingale with respect to {G¢, 7 € [0, 1}}. Similar analysis for
all terms in the right hand side of (A.1.38) shows that {(M:(rATR),G:), 7 € [0,1]}
is a martingale on (Q, F, P), for each ¢ € (0,1], R € (0,00)., and g € C=(R*® RY).
STEP IV: In this step, we show that (A.1.20) holds, which establishes the result
(see Remark A.1.2). Since ['(X* Z¢) is uniformly bounded and Gf -measurable
(recall (A.1.15)), it follows from Step III that

E [(Mi(ra ATg) — Mi(n ATE)) T(XE, 29
=E[E [M;(rz ATR) — Mi(ry ATR)GE] NG G AS]
=0, (A.1.76)
for each e € (0,1] and 0 € 7y < 72 < 1. From (A.1.76) and (A.1.67):
E[{Ag(X¢, Z°)(ra ATR) — Ag(X¢, 2°)(my ATR)}T(X*Z°)]
= E [{M (2 ATR) - Mi(n ATg)} T(X<, 29]
~E [{Ji(r ATg) = Ji(ri ATR)}T(X<, Z9)]
=~-F [{J;(Tg ANTR) = Jg(m A TR)}T(X,29)]. (A.LT7)
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Moreover, from (A.1.68), and the uniform boundedness of I'(X*¢. Z¢) we see that
P_%E [{J;(Tg ATR) = Jg(ri A TR }T(XE, Z9] =0, (A.1.78)
for each R € (Rp, 00). Now from (A.1.77) and (A.1.78) we get

lim B [(Ag(X%, Z9)(2 ATR) = Ag(X%, Z)(m ATRT(X, Z9] = 0. (A.L79)

as required.

A.2 Semi-definiteness

Proof of Proposition 3.2.13 on page 37: Fix z € RY and fix i,j €
{1,2,... ,d} throughout the proof. Observe from (3.2.19), (3.2.27), (3.2.28) and
(3.2.29),

@) = [ a9l
RD
= - [, ¥ @)
RD
- | ®(z,y)A®(z, y)7(dy) (A.2.80)
HD
We now study the terms on the right hand side of (A.2.80). Since ¢ and j can be

interchanged we need to study only the first term. Define
0(t.z,y) £ E[ (z,€(t,2,9)],  V(ty) € [0,00) @ RP, (A.2.81)
where {£(t,z,y)} is given by (3.1.3) with £(0,z,y) 2 y, namely

et.a) =y + [ bag(rap)dr+ [ ‘o(z,E(r,z,p)dB(r),  (A282)
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and ®/(z, £) is subject to Condition 3.2.8. Expanding &/ (z, §(t. r,y)) using (3.2.14)

and Ito's formula gives

¥(z,6(tzy) = Ploy)+ [ A (z,6(s. 2.)) ds

T z-:“;/ 0 (. £(5, 7,9))0"" (2, £(5, 7. y))d3"(s).

(A.2.83)

Now fix R € [0,00) such that z € S§. From Condition 3.2.8, there is a constant

C\(R) € [0,00) such that
|0 @7 (2. £(s, 2, y))| < Cu(R) 1 + |€(s,z.9)|%], (A.2.84)

for each (s,y) € [0,00) ® RP. Since (3.2.11) holds with o(-,-) in place of F(-,-)

(see Condition 3.2.1) there is a constant C>(R) € [0, o) such that

lo*™(z, (5,2, )| < Ca(R) [1 + (s, 7, 9)]], (A.2.85)

for each (s,y) € [0,00) ® RP. From (A.2.84), (A.2.85) and using this fact in

conjunction with (C.0.7) in Lemma C.0.6 on page 203, one checks that
E / 06 (2. (5. 7.4))0*" (2. £(5. 7, ) ds
< G(R) [ [1+ Elé(s, z,y) =) ds
0

< Cy(R) -t [1 +E [gnax (s, 7, y)F“'ﬂn’H ds
<o, Vte0,m) (A.2.86)

where C3(R) € [0, o) is a constant. As a result, the stochastic integrals in {A.2.83)
are L.-martingales and null at the origin.

Now one easily sees from Conditions 3.2.1, 3.2.8, and (3.2.14), that Ad'(z,y)
is polynomially y-bounded of order (2 + g;) locally in z. Since z € S%, there is a
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constant C3(R) € [0,00) such that

A (z,£(s,2,y) | < C3(R) 1+ [&(s,2.9)| )],

¥(s,y) €[0,00) @ RP.  (A.2.87)
Hence, we can write

E max [A® (r,&(s,z,y)| < C3(R) |1+ E max |£(s, 1,y)|®"% ],
JE[O.![ Selo.t]
(A.2.88)

¥(t,y) € [0,00) ® RP. Thus, by (C.0.7) in Lemma C.0.6 on page 203 and using
(A.2.88), one sees that for each T € (0, oc) there is a constant Cs(R,T) € [0,00)
such that

0<s<

E[m&glA@(r,f(s,:c.y))l] < C3(R)[1+Cs(R,T) 1 + |y|*9)] eC5RTIT)
< o0, VWyeR®, (A.2.89)
thus
t
[ Bl e gts.zuies < t-E[mu AP (2, £(s.2.9)
0 0<s<T
< o, (A.2.90)

¥(t,y) € [0,00) ® RP. Thus taking expectation in (A.2.83) and using Fubini'’s
theorem with (A.2.90) we have

E(® (z,&(t, 1,y) = ¥ (z.y) +/0 E [.A‘b’(::,&(s,r,y))] ds. (A.2.91)
In view of (A.2.80) and (A.2.91):
8(t,z.y) = ¥ (z,y) + / t E [A®(z,&(s,2,y))] ds. (A.2.92)
0

Now let {(t, z), t € [0,0c)} be some RP-valued stationary Markov process defined
by (3.1.3) with marginal distribution given by the invariant probability measure 7,
of Condition 3.2.3. From (A.2.80) and the Markov property of {£(t,z,y)} we have

E [®(z,&(t, 2))£(0,z)] = 6(t, z,§(0, z)), a.s. (A.2.93)
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Thus, by (A.2.93) and the composition rule for conditional expectations.
E ['(z,8(0,2))® (z,E(t, )]
= E [¢'(z,£(0,2))E [#(z,E(t, 2))|E(0, 2)]]
- /R (2, 9)6(2, 7, y)dma(y)

= ” &'(z,y)E [¥(z,£(¢,7,9))] dm.(y). (A.2.94)

and so, from (A.2.91) and (A.2.94) we get

E {#'(z,£(0,7)) [#'(z,£(0. 7)) - ¥ (z,&(t,2))] }
= E [#'(z,§(0,2))®(z,§(0, 7)) ~ #'(2,£(0,2))¥ (z, &(¢, 2))]

= [ #en®e i) - [ #E0E[@E )] )
- - [ ¥ {E# e ata)] - ¥} dnl)
= - /n‘ &'(z,y) {/0 E [.Adﬂ (z,€(s,z, y))] ds} dr.(y). (A.2.95)

We now show that s — E[A®I(£(s,z.y)],s € [0,00), is continuous. Fix some
sequence {s,, n € N} C [0, 00) such that s, — s. Since £(-, z, y) is continuous and

A®/(z,) is continuous, we have
lim AP (2,650 7.0)) = AV (2.6 8520), (A296)

Y(z,y,w) € R*® R® @ Q. Now, suppose that 0 < s, < T < 00,¥n € N, then,
using (A.2.89), we get

E|A® (z,§(sn,2,9))| < E | max |[A®(z.(s,z,y))l

s€(0,T]
< o, (A.2.97)

¥(z,y) € R°®RP. Thus, using (A.2.97), (A.2.96) and the Dominated Convergence

Theorem, it follows that

lim E [A®(z,&(sn,2,y))] = E [A¥(z,£(s,2,¥))] , (A.2.98)

n—+00
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¥(z,y) € R*® RP, which proves that s — E [A®/(z,£(s, z,y))] is continuous over
[0, 00). Hence fixing a sequence {t,} such that 0 < t, <1 and lim,_ t, = 0. by

the Fundamental Theorem of calculus we get

lim {l / " E [A® (2. £(s,2,9))] ds}
n—co t"l. 0
= E [A®(z,£(0,2,9))]
= AP (z,y). (A.2.99)

Thus, clearly
tn
lim &'(z, y) {;1- / E [A®(z,&(s,7,1))] 45} = ¢'(z,y)A¥ (z,y), (A.2.100)
n=—+00 n 0

for ®/(z,y) defined in Condition 3.2.8. But, from (A.2.89) and Condition 3.2.8(1),
one sees that the mapping (z,y) — ®'(z.y) {t—:- J"E[A@J(J:,ﬁ(s,z,y))] ds} is

polynomially y-bounded of order (2 + 2¢;) locally in z; namely

®'(z,y) {tl /0 " E[A® (z,£(u,2,1))] du}

n

< @'z, y)| 'E [0’2?5"1 IA‘I”(I,ﬁ(s,I,y))”
SCs(R)[1+IyI®™)]. vwye R n=123...,
(A.2.101)
for some constant Cg(R) € [0,00). From (3.2.20) the dominating function

y = Ce(R) [1 + |y|**?®)] : R - R in (A.2.101) is m-integrable. Thus (A.2.100)

and the Dominated Convergence Theorem give

im [ #(z,y) {ti /0 " E [A®(2,£(s,7,1))] ds} dr.(y)

n—oc RD

- / B (2, y) A (z,y)d, (y), (A2.102)
RD
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and therefore, from (A.2.95) and (A.2.102):

lim —E [«p'(x £(0, )) {@J(x,z(o. 7)) - @ (I,E’(I,E(tmx))}]

n—oo ﬂ

. 1 —l— t"
~ lim RD@(I,y){tn'/; E[A¥ (z.&(s.2.y))] ds}dﬁ,(y)

n-—+oo

= —/D &' (z, y) AP (2, y)dm(y). (A.2.103)
R
Since {£(t, z)} is stationary we have

E [@‘(x,f(tn..r))@(x.f(tm1:))] =F [Q‘(:r._E(O,r))@(:,E(O.I))] . (A2.109)

thus

E [{®'(,£(0,1)) - ®*(z.§(tn.2)) } {¥(2,£(0, 7)) — (2. &(tn. 1)) }]

= E [®'(z,€(0,2)) {#'(2.£(0,2)) - ¥/ (z.&(tn. 1)) }]

~E [#'(z,&(tn, 1))® (2, (0. 1))]

+E [®'(2.&(t, 2))® (2.£(tn, T))]
= E [®(2.£(0. 1)) {#°(2.£(0. 1)) — ¥/ (2.&(tn. 1)) }]
—E [®(2.&(tn. ))& (2, (0. 1))]
+E [¢'(2.£(0.1)) % (. £(0. 2))]
= E [¢'(2.£(0.7)) {$#(z.£(0,2)) — ¥ (z,&(tn. 2)) }]
+E [#(2.£(0,2)) {#'(2.£(0.2)) — &'(z.&(tn, 2))}] -
(A.2.105)

&t
£
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Now combine (A.2.80), (A.2.103) and (A.2.103) to get

@(z) = lim —E [®'(2.£(0,2)) {#(2.£(0,2)) — ¥ (z,&(tn, 2))}]

n— ﬂ

+ lim —E[ (2,§0.2)) {#'z.8(0,2)) - '(z,E(tn, 7)) }]

= gg—EH@xEWxn ®'(z,&(tn, 7)) } {#(2.£(0.2))
_Q(Iv f(tm I))}]
(A.2.106)

Since the right hand side of (A.2.106) defines a nonnegative definite matrix. we see

that @(z) is nonnegative definite.

A.3 Compactness

In this section we give the proof of the result on compactness which is needed to

establish Theorem 3.3.3 on page 42.

Proposition A.3.1. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8, and 5.2.18
hold, and {€,, n € N} is an arbitrary sequence in (0,1] with €, — 0, as n = 0.
Then the sequence of probability measures {L(X*, Z*), n € N} over (0, F")(defined
by (3.3.49) and (3.3.50)) is weakly relatively compact.

Proof: Fix some 4 € (0,1]. From Proposition A.4.4 on page 111 there is some

R(8) € (0,00) and positive integer n;(4) such that

Ppgﬂ<1]<g, Vn > ny(6). (A.3.107)
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Let { € (0. 00), and choosing 0 < v < 1, write

Im=-71igy
m.r2€[0.1]

{ max IZ'"(Tz)—Z‘"(Tl)IZC}

= [{ |,’IP,alJ'SE,’ ’Z‘n(TQ) - Z‘H(TI)I > C} N {Tl?ié) = 1}]

n.m€[0.1)
U [{ Jmax |Z¢(r) = Z(r)] 2 c} n{Ti < 1}]
n.m2€(0.1]

[ el U
r.r3€{0.1]

U [{J:?f}lls’ |12 (12) = Z*~(71)| 2 C} N {T;z?&) < 1}]

r1.rp€{0.1]

) [{ max |2(m2 A Tgigy) — 2 (n A Tip)l 2 C} ) {Tfi?a) = l}]

= [{ max |2 (r2 A Tgig) = 2 (n ATgig il 2 <} Y {T;'('&, < 1}]
.7 E{0.1]

(A.3.108)

Thus, using (A.3.108), one sees that

P { nax |2 (mq) = Z2°~(71)| 2 C}

*1.71€[0.1]

frg=-m i<y
r1.m€[0.1]

< P{ max |2 (2 ATgs) = Z°(n A Tgigy)l 2 C} +P {TEZ&) < 1}
(A.3.109)

Now from Proposition A.4.2 on page 101, Chebyshev’s inequality, and the fact that
p € (2,0)
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(see Remark A.4.1) we can write

P e 120 AT - 20 AT 2]
_E [max,.e[m.,+.,l |26 (7 A Ty)) = 2% (ry A T;;m)p’]
< z

< C(?’fa)) [(e,,)%’ +7¥] . v el0.), (A.3.110)
for each v € (0,1) and each ¢ € (0,c). Clearly, from (A.3.110), one has

1
-P [femax |Z (T A T;’Eﬂ) -2 (n A T;ﬁ&))l > (}

Y {n.o+]

< SRV 1e)%2 44, vnelo,
P
(A.3.111)
for each v € (0, 1) and each ¢ € (0,). Fix ¢,3 € (0, o0), then there is a constant
T & m(¢,3) € (0,00) and a positive integer n, = na(¢, 3) such that
C(R(8)) w2 3
¢
C(R(8)) _ -2
ey
Hence, from (A.3.111) and (A.3.112), we get

, vn > n,. (A.3.112)

1
il Zo(r ATgg) = 2 (M ATg ) 2 ¢l <3 Ya2ng, melol].
M ,E[Qﬁmi (7 A Tris) (MATEl 2¢| <8 Vn2m, nel0l]

(A.3.113)

Now, by Theorem C.0.10 on page 204, it follows easily that the sequence of prob-

ability measures {£(Z*(. A Tg;,))), n € N} on (C[0,1], Bco,y) is tight. Thus, by

Theorem C.0.8 on page 204, there exists some v2(¢,d) € (0, 1] and some positive
integer n3((, d) such that

P| max |Z*(r2ATgy) = Z(nATgg)l 2| <

irng=-ni<m
n.r3€[0.1]

,  Yn 2 ng(d,Q).

| O

(A.3.114)



APPENDIX A. PROOFS FOR SECTION 3.3 101

Combining (A.3.107), (A.3.109) and (A.3.114), we get

P . max |Z¢ (1) = 2~ ()| 2 ¢| <8, Vn>n;3(8.¢). (A.3.115)
-ni<n
ry.73€[0.1]

Thus, using Theorem C.0.8 on page 204, one sees that the sequence {£ (Z**). n €
N} is tight, hence weakly relatively compact ( by Theorem 6.1 on page 37 of Billings-
ley (4]). A similar argument using Propositions A.4.4 on page 111 and A.4.3 shows
that {£(X*), n € N} is also relatively compact. Finally, weak relative compact-
ness of {L(X*, Z*), n € N} follows from Lemma (C.0.11) on page 205.

A.4 Supporting Results for the Proof of Proposition A.3.1
on page 98

Remark A.4.1. In this section we give the proofs of the various supporting results
which were used to establish Proposition A.3.1 on page 98. To this end, for each
€ € (0, 1] define

Ze(r) R 12 / AB(XE, YY) (s)ds. Vrel0.1), {A.1.116)
0

where ®(z,y) is the C?-function in Condition 3.2.8. Also, observe from Condition

3.2.18 that there is some constant p € (2, 00) such that p(1 + ¢2) < ¢s.

Proposition A.4.2. Suppose that Conditions 3.2.1, 3.2.2, 5.2.3, 3.2.8 and 3.2.18
hold, and let p € (2,00) be the constant in Remark A.{.1. Then, for each R €
(0, 00), there is a constant C(R) € (0,00) such that

E| max |Z5(rATR) = Z(n ATRI| < C(R) [ + (r ~ )],

€[N,

(A.4.117)
forallee (0,1 and0< <7 <1
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Proof: Fix R € (0,00). From (3.3.42), (3.3.44), (3.3.43) and (3.2.19). for each
e € (0,1], we have

ZunTg) £ V2 [X(uAT) - X (uATy)]

= 2 [/MTR F(X*(s),Y*(s))ds + [MT;‘ G(X¢(s))dW™(s)
0 0

i (L-Mmf(f‘(s))ds+/ou/\m G(Y(S))d‘"‘(s))]

unTg

= 5-1/2[0 [F(X(s)) — F(X ()] ds

In view of (A.4.116) and (A.4.118):
uATg
ZwnTy) = V2 [ [FOX(s) - F(X'(s))] ds
1}

unTq —
+e7172 /O [G(X<(s)) ~ G(X (s))] dW*(s)
-Z4(uATg), (A.4.119)
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Yu € [0,1],Ve € (0, 1]. Hence

ZUATY) — Z(n ATS) = e \V? / T [F(X*(s)) = F(X"(s))] ds
nATy
unTg
+el? [ [G(X4(s)) - G(X"(5))] dW(s)
nATy

—[E(uATg) -Z(n ATE)], (A.4.120)
Ve € (0,1],V0 < 1y < u < 1. From (A.4.120) we can write
u
ZUuANTR)—Z(n ATR) = e'm/ [_F(X‘(s)) - 7(7‘(5))] I{s < Tj}ds
n

re2 [ [GUX() ~ GOV ()] 145 < To}a (o)
T (uATS) — Z(n A TS (A.4.121)

Ve € (0,1],¥0 £ ; < u < 1. Thus, from (A.4.121), we get

max |Z¢(uATg) — Z°(n A TR)|

u€n,r|

< [ [FOxe(s) - FOT ()] Hs < Thbds

+e71/? Ierfaxi fu [G(X‘(s)) - G(—f(s))] I{s < Tg}dW*(s)
+ Iex?axl |=%(u /\r1 T:) - =(n AT, (A.4.122)

Ve € (0,1],V0 < 1y < 7 < 1. Now, from (A.4.122), one has

max |Z%(uATg) — Z°(n ATR)P
ug(n,r|

r p
<3P {e-P/2 [ j IF(X<(s)) - F(X*(s))| I{s < Tﬁ}ds]
14

+ €?/? max
u€(n,7]

[ [60X(s)) = GCR(s))] Hs < Tr)aw(s

+ max |[Z(uATY) — Z(n A TS } (A.4.123)

ug(n,7|
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Ve € (0,1],V0 < 7, < 7 < 1. Taking expectation in (A.4.123), gives
E [max |1 Z¢(uATg) — Z¢(1y A Tﬁ)[”]
u€[n,7|

<3 {E [6-1/2 [/: [F(X<(s)) = F(X (s))| I{s < Tg}ds]ﬁ]

+E [ max |e™!/ / ) [G(X(s)) - G(X(s))] I{s < TL}dW(s) ,,]
+E [ug}fxﬂ IZ¢(u A TS) — Z¢(, A :r,;)r’] } , (A.4.124)

VYee (0,1],¥0 < 7y <7 < 1. Now fix , € {0,1) and put

4

ugr,r}

Ui(r) = E [ max [Z°(u ATg) — Z°(m A TE)P] ,  Vre[n,1. (A4.125)

Then, if L, denotes the global Lipschitz constant of F(.) (see Condition 3.2.3), one

sees from Holder’s inequality (with conjugate exponents %‘ and ;‘,) and (3.3.45)

that
E [e—*“ /,, ' [F(X<(s)) - F(X(s))| I{s < TR}ds]
< (r=nPiE [ 2 [ [FOr(s) - PO Hs < T
< (=G [ [ (06 - TP 1o < Thbes]

< (r =) NL)PE / \Z<(s)P I{s < R}ds]

< (r-7n)P"YL)PE / IZ‘(sAT,‘z)[”ds]
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< (r=np L | [ 12 ATg) + (24 A TR - Z2 (A TP as|
< (r=n)'(2L)PE [/ Z¢(r ATE)P +|2%(s ATE) — Z¢(r1 ATR)IP) ds]

< (r=n)PRLY(T - ™) E[Z(ri ATR)P
E[ max [Z‘(u/\ 5) — Z¢(11 A Tg)|Pds]

n u€(ry,9

< (r-n)PELY [(r—rl)f:szwmmlu [vstas|. (a0

Ve € (0,1}, 7 € [, 1]. Considering the second term on the right side of (A.4.124).

]

[ [60x<() = G(X(s))] Hs < Ta}aw(s)

the Burkholder inequality gives a constant C, € [0,00) such that

E’[max

u€fn,7}

7 [ 6(X*(s) = GOT ()] I{s < TaaW (o

n

< ePPE [ max
u€(n,r|

/]
’ /2
< e P2C,E [( / [G(X<(s) - G(X"(s))] I{s < Tiz}d8>p ]

k2

< eP1C,E [(T — ) e-22 {/f |G(X¢(s)) = G(X(s))" I{s < sz}ds}]
" (A.4.127)

Ve € (0.1},7 € [r,1]. Thus, if L, is the global Lipschitz constant of G(.) (see Con-

dition 3.2.1), then Holder inequality (with conjugate exponent - and (A.4.127)

30 5)
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[]

< €eP2C,E [(‘r — )22 {/T IG(X(s)) = G(X ()" I{s < T;z}ds}]

gives

E[max

u€{n,7|

7 [ [6(X4(5)) = GR(s)] Hs < Ta}aWe(s

n

< (r - 7)®D1C,E [/T eP?|G(X(s)) - G(X ()" I{s < Tfa}ds]
<(r- Tl)(p-z)/ecp(Lz)pE -/r |e_”2 (X<(s) — T(s))r I{s < qu}ds]

< Co(r = )P (Ly)PE f 1Z(s)I” I{s < TE}C’SJ
LY 1

< Cy(r - )DL, E / |z=(sATa)|”ds]

< Cp(r — 1) P2 (Ly)PE / |Z(m ATg) +(Z(sATg) — Z(n A T‘))I"ds}

< Cy(r = 1)P-V2(2L,PE [/ 1Z4(r AT + |2%(s A TE)
-z (T{ A T dS]
< Gylr = m)FIR(2L P (7 — )E|Z(n A TR

+/ E [max |Z¢(u ATR) — Z‘(TIAT,‘,)l”] ds]
n u€[n,9} i

< Cp(2Ly)P(r — ) P~D/2 [(T - n)E|Z(n AT + f UE(S)ds] ,
i (A.4.128)

Ve € (0,1],VT € [}, 1]. Combining (A.4.124) with (A.4.126) and (A.4.128):
Ur(r) < 3"{(T—Tl)p '(2L,)? [(T—7‘1)5|Z‘(71/\Tn)|p [ Uk(s) ]
+Cp(r — 1) P~A2(2L,)P [(T -n)E|1Z(n ATY)P + / Ug(s) ds]

+E [ max |=*(u A TH) - T'(uA TR ] } (A.4.129)

u€(n,7]
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Ve € (0,1],vr € [n,1]. Then, from Proposition A.4.3 on page 107 there is a
constant C,(R) € [0, 00) such that

Ug(r) < Cu(R) [ [ vaiords + ="
+E[ug%:§_‘ E‘(u A T;t) — E‘(u A T;?)lp}] .
(A.4.130)

Ve € (0,1],V7 € [n,1]. Thus, from (A.4.129) and Proposition A.4.6 on page 117
there are some constants C2(R), C3(R) € {0, 00) such that

Ur) < CI(R){(r—n)P/%cz(m €74 (=) + [ ’U;z<s)ds}

n

< Ci(R) {(Tg — 7)P/% 4 P2 +/ U,‘z(s)ds} . (A.4.131)
n

Ve € (0,1],¥0 < 1y < 72 < 1. Applying the Gronwall’s inequality in (A.4.131), one

has
Us(r) < C(R) [e(p--2)/2 +(m -7 )P/ZI ' (A.4.132)

for some constant C(R) € [0, 00), thus (A.4.117) follows.
a

The next result is used for the proofs of Proposition A.4.2 on page 101 and Propo-

sition A.3.1 on page 98.

Proposition A.4.3. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18
hold, and let p € (2,00) be the constant in Remark A.{.1. Then, for each R €
(0, 00), there is a constant C(R) € (0,00) such that

E|max |2 ATRP| SC(R),  Ve&(01] (A.4.133)
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Proof: Fix R € (0,00). Using Z*(u A T§) given by (A.4.119), we have

[Z°(uATg)| £ max |Z%(u1 ATR)|
u1€[0,7]

AT __
+e /2 f |F(X<(s)) = F(X (s))| ds
[

+€"'? max
u3€[0,7]

ug/\T“ft
fo [G(X(s)) = G(X"(s))] dW*(s)| .
(A4.134)

VO<u<T7<1,Vee (0,1]. From (A.4.134):

Z(uATy)| < S (uATS
urg[gggll (uATR)| < uxg[gll (u AT

TATq _ _
+e-‘-"-’fo |F(X(s)) — F(X (s))|ds

-1/2
+€ max
u€(0,r}

uATh
fo [G(X*(s)) = G(X™(s))] dW¥(s)]
(A.4.135)

Y7 € [0, 1],Ve € (0,1]. Hence

€ A TS P < p =e A P
..'2{3‘,’51]2 (uATg)” < 3 {.f?{%.’f]] (u A Tg)|

w\T"2 _ _ P
+e7P2 [ fo |F(X*(s)) = F(X (s))| ds]

+¢7P/? max
u€(0,7]

uATh P
[ lowxsn - e snawecs)] §.
(A.4.136)
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vr € [0,1],Ve € (0, 1]. Upon taking expectation in (A.4.136):

E [max 1Z%(u A T‘)l”]
u€[0,7]

53”{E[max 1=%(ur A TR)| ]

u1€{0,1]

ATy P
+E [e_m/; |F(X<(s)) - F(X(s))] ds]

€12 f ) [G(X(s)) = G(X(s))] I{s < Tg}dW(
0

o))

vr € (0,1],Ve € (0, 1]. Now, for each 7 € [0, 1], put
1
Us(r) £ E {max |Z¢(u A )["J , Vee (0,1]. (A.4.138)

u€(0,7]

From (3.3.45), (A.4.138), the global Lipschitz continuity of F(.) (see Condition
3.2.3), with Lipschitz Constant L, € [0,00), and Holder inequality, we find an
upper bound for the second expectation on the right side of {A.4.137):

AT P
E [5“2 f |F(X(s)) - F(X (s))] ds]
° [ r/\T‘ P
<@pE | [ xee) - f‘(snds]
- f/\Tao
<@pE( [ (€)X -r(s)p"ds]
- or/\T’“
< (LYWE /; |Z‘(s)|pds]
< (L,)’E /0 |Z¢(s)]P I{s < T;i}ds}

< (LY)E -/or |Z¢(s /\T,‘i)l”ds]

< (L,)PE / max |Z¢(u A T )|”ds]
0

uc(0,s]

< (L,)PE / Us(s)ds, (A.4.139)
1}
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vr € [0, 1], Ve € (0, oo].
Also, using the Burkholder’s inequality, for the third expectation on the right side
of (A.4.137), there is a Constant C, € [0, o) such that

T p/2
<C,E [(e-l / IG(X¥(s)) = G(X* ()" I{s < T,a}ds) ]
0

(A.4.140)

E [ma.x
uE[0,7]

/2 /O.u [G(X4(s)) ~- G(X(s))] I{s < Tg}dW*(s)

Vr € [0,1],Ve € (0,1]. If L, € [0,00) is a global Lipschitz constant for G(.)
(see Condition 3.2.1), then, applying Holder inequality (with conjugate exponents
;;Lz,g), (3.3.45) and (A.4.138), one establishes an upper bound for (A.4.140) as

]

<C,E [e-w /0 ' IG(X<(s)) = G(X*(s)" I{s < T;,}ds]

follows

E [max |e*‘/2 / ) [G(X*(5)) = G(X"(s))] I{s < Tg}dW*(s)
0

u€{0,7]

< C,(L,)PE - / ' e 2(X(s) - Xo(s)P I{s < T;}ds]
L/0

< C,(L.)PE / 2P Is < T;}ds]
LJO

< e | | "1Z(s A Tk)l”]

< Cp(La)PE / max |Z%(s A TR)IP ds]

o uE[0.s]

< Co(L;)’E / Ug(s)ds, Vre[o,1]. (A.4.141)
0
VT € [0,1], Ve € (0, 1]. Hence, from (A.4.137), (A.4.139) and (A.4.141) we have

Ui(r) < C; {/ Ug(s)ds + E [12[%:{1 IZ¢(u A T§)|”:| } , (A.4.142)
0 uelo,
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Vr € [0,1],Ve € (0,1] and for some constant C; € [0,). Now. by Proposition

A .4.6 on page 117, there is a constant C3(R) € [0.00) such that
E n_llg..\fl |=(u A T,‘;)Ip] < C3(R), Vee (0.1]. (A.4.143)

Hence, from (A.4.142) and (A.4.143):

Uip(t) < C; {/OT Ug(s)ds + Ca(R)} , (A4.144)
vr € [0,1],Ve € (0,1]. Thus (A.4.133) follows from (A.4.138), (A.4.144) and Gron-
wall's inequality.

a
The next result is used for Proposition A.3.1 on page 98 and Theorem 3.3.3 on page
42.

Proposition A.4.4. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18
hold. Then, for each n € (0, 1], there is some R(n) € (0,00) and e(n) € (0, 1] such
that

PTa=121-n Vee(0.e(n)]. VRE€ [R(n) x). (A.4.145)
Proof: Fix arbitrary ¢ € (0.1}, R € [0,>). From Remark A.0.26 one has
|X(Tg)| = Ron {T; < 1}. Now, clearly
IX(r AT < |X(TATE)| + | X(TATE) - X (T ATE)), (A.4.146)
for each 7 € [0, 1], and thus we have
max [X<(r AT} < max [X'()| + max |X(r A Tg) - X'(F A TR (Ad147)

From (A.4.147) one has

{max |Xe(r ATR)| > R}

r€[0.1]
C {g{gﬂt} 1 X (7)] > R/2} U {Tné'x[%':lc] | X<(rATR) - X (T ATR)| 2 R/2}
(A.4.148)
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Hence

{max | X(r ATR)| > R}

ref0.1]

{'eiﬂ 1lI (I 2 R/2} {g{g.\lcllx (T ATR) = X (T ATR)| 2 R/Q}
(A.4.149)

Since
{T <1} C {|X(T})| = R} = {rgg:lc] [ X(r ATR)| > R} , (A.4.130)
r€(0,
from (A.4.149) and (A.4.150), we see that
P{T; <1}
<P { max | X (7)| > R/2} + P { max
r€(0,1] r€{0,1}

X(rATg) =X (rATH)| 2 R/2}
(A.4.151)

Now fix some arbitrary 7 € (0. 1]. Since z; is nonrandom, it follows from Remark
3.3.1 and standard moment bounds for stochastic differential equations (see e.g.
Lemma C.0.6 on page 203 that there is a constant C; € {0, o) such that

E [m[g.:fl X (7 )[”] <Gy, Vee(0,1]. (A.4.152)

TE

where p € (2,00) is the constant in Remark A.4.1. Thus, using Chebyshev’s in-
equality, there is R(n) € (0, oc) such that
E [maxX,ep. | X (7)7]

(R(n)/2°
2

p
_ . P2
< (R(n)) Co-e
n/2, Vee(0,1]. (A.4.153)

A

P [max X7 ()| > R(n)/2]

7€[0,1]

INA
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Moreover, by Proposition A.4.5 on page 113 and Chebyshev's inequality. there is
€(n) € (0,1] such that

P | max |X“(r A Tiy) = X' (7 ATiy)| 2 R1)/2| S7/2. Ve € (0.e(n)].
(A4.154)

Thus, one sees from (A.4.154), (A.4.153) and (A.4.151) that
P Ty <1l <n. Ve (0.e(n)). (A.4.153)

Since T§ increases with increasing R (see Remark A.0.26), thus the result follows;

namely
P[Ti<1 < P[Ty, <1 <n VReE(R(n).x), Vee (0.e(n)]. (A.1.156)
c
The next result is used for the proofs of the Propositions A.4.4 on page 111 and
Theorem 3.3.3 on page 42.

Proposition A.4.5. Suppose that Conditions 3.2.1, 8.2.2, 3.2.3, 3.2.8 and 3.2.18
hold, and let p € (2,oc) be the constant in Remark A.{.1. Then, for each R €
(0, 00), there is a constant C(R) € (0.oc) such that

E mig.alcl | X(r A T) -X(rA T,‘z)|p < C(R)e?’?, Yee (0.1]. (A.4.157)
€0,
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Proof: Fix € € (0,1], R € (0.). In view of (3.3.42), (3.3.44) and Condition
3.2.8, clearly

TATq — —
IXe(uATE) -~ X (uATy)| < /0 [F(X(s). Y¥(s)) - F(X(s))] ds

uAT,'! —
+ / [G(X<(s)) = G(X*(s))] dWW"(s)
0

IA

“‘\T;l .
/0 [F(X(s). Y(s)) = F(X*(s))] ds

uATq

[F(X(s) - F(X'(s))] ds

+

0

+

uATg

" [FX¥(s)) - F(X(s))] ds

IA

0

-+

uATq
[ lexen - (X awets)

-+

Al

Ut\Th
/ AB(X*(s), Y*(s))ds
0

(A.4.158)
Vu € [0,1]. Hence, from (A.4.158):

max
ug(0,7]

X (uATg) - X (uATp)

, vrelo1].

(A.4.159)
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Moreover, from (A.4.159), one sees that

E [max | X(uATg) - X (un T§)|’]

u€(0,r]
{ [/ [F(X*(s)) = F(X))|I[s < mds],,
[g[g“fl X(s) = G(X(s)} I [s < TH]dW(s) P]
+F [ue[o 1] MT' AP(X(s),Y(s))ds } . Yrelo.l).
(A.1.160)

Now put

Ugr(T) 2E [rggx] |X‘(uATg) - X (u/\qu)IP] . Vrel0.1. (A.4.161)
u€[0.r

If Li,L, € [0,00) are global Lipschitz constants for F(.) and G(.) respectively

(see Conditions 3.2.3 and 3.2.1), then it follows easily that the first and second

expectations on the right side of (A.4.160) have upper bound given by

T —_—— P
E U |F(X(s)) = F(X))|1[s < Tg) ds]
0

<E [ / ' |F(X*(s)) - F(X (s))[" I [s < T§] dS]
SE[/ rg[%xllF (X¢(u)) - (u))|’1[sgr,;]ds]
0 u g
P/O [rg[%x | X4(u) X"(u)["] I[s < Tgds
/ E[max|X‘u/\TR)- AT§)|”] ds
0 u€[0,s

< (L) U (s)ds, VvTel0,1], (A.4.162)
0
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]

< GE [ [ I61x(e) - 6T 1l < Txlas]

and

_/ou [G(X‘(S)) - G(?(S))] I [s < Tfi] dW<(s)

F | max
u€l0,r}

S GULIE fo |X4(s) =X (s)|* T ls < T3] dS]

< Co(Ly)PE [ /0 ' | X<(s) = X" (s)|P I [s < T ds]

< Co(L,)PE / | X(s A TE) -Tc‘(sx\m)r’ds]
L/ O

< C,(Lg)”/ E [max] | X (uATg) = X (un T;z)‘p] ds
0

u€l0.s
< Cy(Ly)? [ e(s)ds.  Vr e [0,1]. (A.4.163)
0

Here we used Holder’s inequality to get the first inequality in (A.4.162), the
Burkholder inequality at the first inequality of (A.4.163), and Holder's inequality at
the third inequality of (A.4.163) (where C,, is a constant resulting from Burkholder’s
inequality). Using (A.4.116) and Proposition A.4.6 on page 117, there is a constant
C(R) € [0,20) such that the upper bound of the third expectation in (A.4.160) is
given by

E [max

uc0,1]

uATh
/ A@(X‘(s),}"(s))ds? = F [max 1Z(u A TR)IP| /2
0

u€[0,1]
< C(R)e?, vee€ (0,1](A.1.164)

Inserting the upper bounds of (A.4.164), (A.4.163) and (A.4.162) into (A.4.160),
and using (A.4.161), we get

Uy(r) <G / Ug(s)ds + C(R)eP’?,  vre[0.1], Ye€ (0,1], (A.4.165)
0

for some constant C; € {0,20). Thus, from (A.4.165) and Gronwall’s inequality one

has

Ug(t) < C(R)eP’? - 4", ¥re[0,1], Vee (0,1], (A.4.166)
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which establishes (A.4.157).
a

The following result is used for the proof of Proposition A.4.5 on page 113. Propo-
sition A.4.3 on page 107 and Proposition A.4.2 on page 101:

Proposition A.4.6. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3. 3.2.8 and 3.2.18
hold, and let p € (2,) be the constant in Remark A.4{.1. Then, for each R €
(0, 0}, there is a constant C(R) € (0,20) such that

g [ max [Z(r AT§) = Z(r ATRIP| < C(R) (727 + ()],
T

(A.4.167)

forall0 <1 <7 <1andec€ (0.1] (recall =¢ is defined in (A.4.116)).

Proof: Taked = D = M = N =1 in Conditions 3.2.1. 3.2.2, 3.2.3. 3.2.8 and
3.2.18; the proof for the general dimensions is unchanged and just involves more

complicated notation. Now (3.2.19) reduces to
Ad(r,y) =F(z) - F(z.y). Y(z.y) € R® R, (A.4.168)
where ® : R® R — R and

A®(z.y) £ b(z.9)(8,8)(z.y) + 50°(2.9)(8,0,8)(z.y), VY(z.y) e RS R

(A.4.169)

| —
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Fix R € (0,1]. Expanding ®(X*(7),Y*(7)) in (A.4.168) using Itd’s formula. we

have
o(X(r).Y(m)) = ‘f’(zo,yo)+/o (8:8)(X“(s), Y(s))dX“(s)

+ / (B,8)(X*(5), Y¥())dY*(s
0
1

+ 3 /0 T(B,B:Q)(X‘(s),Y‘(S))d[-’f‘] (s)

+ / (8:0,8)(X*(s), Y<(s))d [X<, Y| (5)
0 T

é / (8,0,8)(X%(s). Y(s))d[Y](s)  (A.4.170)
0

-+

Ve € (0,1], V7 € [0.1]. Now. using (3.3.42), (3.3.43) and independence of {1 (7). T €
(0,1]} and {B*(r). T € [0,1]} (as follows from (3.3.40) and Condition 3.2.2). the

cross-variation processes in (A.4.170) are given by

X9 (r) = [0 C(G(X¥(s))) ds,

(X<, Y] (7) /: G(X*(s))o (X (s), Y (s))d[W*. B*] (s)
0,

Y(r) = e /0 "((X¥(s). Y¥(s))) ds (A.4.171)
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Ve € (0,1],v7 € {0,1]. From (A.4.170), (A.4.169), (A.4.171), (3.3.42) and (3.3.43).

it follows that
B(X(r),Y(r) = ®(z0,30) + /0 (8:8)(X<(s), Y¥(5)) F(X*(s). Y*(s))ds
+ /0 (8:8)(X*(s), Y¥(5))G(X(s))dW*(s)
et / " AB(X(s). Y¥(5))ds
iy
oL / (8:0,8)(X*(s), Y*(5))GX(X*(s))ds
2 )y

el /of(a,,@)(r(s).Y‘(s))o(r(s),Y*(s))dB‘(s).
(A4.172)

Ve € (0,1],Vr € [0, 1]. Hence, from (A.4.172) and (A.4.116):
€/2(X(r ATE).Y(r A TR))
= €'/2®(zo, y0)

+el/? /0 MT&(B,‘I))(X‘(S),Y‘(s))F(X‘(s),Y'(s))ds

+e'/? /OMT;‘(&@)(X‘(S)»Y‘(S))G(X‘(S))d“'"(S)

+E(r AT

1 T/\T;‘
.y / (8:0;®)(X*(s), Y*(5))G*(X*(s))ds
2 Jo

[l

ATy
+/(; (8, ®)(X“(5),Y*(s))o(X“(s),Y*(s5))dB*(s),
(A.4.173)
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Ve € (0,1)],Vr € [0, 1]. Clearly, using (A.4.173) and rearranging vields
[E(T ATE) — Z4(n ATR)]
=2 [B(XY) (T ATR) — B(X,Y) (1 A TR)]
—em/ (0:P) (X Y)(s)F (X, Y)(s)[{s < TR}ds
n

2 / (@:8)(X*, Y(s)G(X“(s) I{s < Tyl (s)

— e / (8:0:8) (X<, Y*)(s)G*(X*(s))I{s < Ti}ds
n

- / ?(8!,(?)()(‘,Y‘)(s)a(X‘,Y‘)(s)I{s < TL}dB(s)
(A4.174)

V0 < n £7<1,Ve € (0,1]. Also, taking expectation in (A.4.174), for the constant
P € (2,00) in Remark A.4.1, one sees that

E [ max [Z%(r ATg) - Z(n /\T,‘z)l”]
3ty

<6° {E [m%.vf |€1/2@(X, Y)(r A Tp)| ]
re

+E[el’2<l> (X, Y)( rlAT‘)|
+e‘°/2E[

/ (8:) (X, Y*)(s)F (X, Y*)(s)[{s < Tg}ds

’1
]
i
1)

(A.4.175)

re[n 2]

+ ’?E [

/ )X, Y)()G(X () [{s < TS }dW<(s)

re[n n]

1
+ —¢e”?E | max
2Pe [‘I’G[Tl |

/ (8.0, ®) (X, Y<)(s)GA(X(s))I{s < T5}ds

+E | may

/ (8,8)(X,Y)(s)o (X<, Y*)(s)I{s < T&}dB(s)

?en

Y0 <1t <7 < 1,Ve € (0,1]. First consider the sixth term on the right side of
(A.4.175). By the inequality of Burkholder there is a constant C; € [0, 00) such
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]
T /2

<CE [( f 1(8,8) (X, Y)(s)o (X<, Y)(s) I{s < T:z}ds)p J

(A.1.176)

that

[ max / P)(Xe,Y)(s)a (X, Y)(s)I{s < Tg}dB*(s)

refn,mn]

Y0 <1y < 1 < 1,Ve € (0,1]. Moreover, using Holder inequality (with conjugate

) }
<Culn-n)F E [ [G8X YV lo(X VI s S Thds,

Tt

exponents -£; and £) and (A.4.176), we get

E[max

r€[n,m)

/ (8,8)(X, Y*)(s)a (X%, Y*)(s) I{s < T§}dB(s

(A.4.177)
Y0 <7 < < 1LVee€ (0,1. Now (z,y) — 9,8(z,y)o(z,y) is polynomially
bounded of order (1 + g;) in y and locally in r (by Conditions 3.2.1, 3.2.8), thus
there is a constant C,(R) € [0, o0) such that
18,8(z,9)o(z, )| < Co(R) [1+ 57|, VzeSh wyeR®, (A4179)
hence (since p(1 + ¢2) < g4, by Remark A.4.1)
(8, ) (X, Y*)(s)o (X . YN s)P I{s < Tg}
< Co(R) [1+ 1Y <(s)P**™)] I{s < Tg),
S C(R)[1 +|Y*(s)[* I{s < TR},
(A.4.179)
Vs € [0,1]. Then, by (A.4.177), (A.4.179) and Lemma A.4.7 on page 123, we have

E[max

re{n,nj

/ "(8,8)(X%, Y*)(s)o (X%, YO)(s) I {s < TS}dB (s)

<Ci(r-n)T [Cz(R) /n E[1+|Y<(s)|* I{s < TE}IdS]
n

< C3(R) (ra = )", (A.4.180)
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V0 < 1 < 7 < 1, and for some constant C3(R) € [0,0c). In the same way. one
finds a similar bound on the stochastic integral of the fourth term on the right side

of (A.4.175), namely
]

< Cy(R) (r, — 1 )"%, (A.4.181)

E[max

r€fn,n]

/?(Bz‘b)(x‘,Y‘)(S)G(X‘(S))I{s < Tg}dW*(s)

n

V0 < 1 < 72 < 1, and for some constant Cy(R) € [0,00). Next, consider the third
term on the right side of (A.4.175). Clearly: by Conditions 3.2.1 and 3.2.8

0:(X <, Y)($)F(X, Y)s)P I{s < T} < Cs(R) 1 + [Y(s)|" I{s < TR}].
(A.4.182)
Vs € [0,1], and for some constant Cs(R) € [0,00). Hence, by Holder's inequality,
Lemma A.4.7 on page 123 and using (A.4.182), we have
/ "0 (X, YY) F(X*, Y¥)(s)I{s < Tg}ds ]
n
<E [( [ 10.8) (X YY) F X Y s < Ta}ds)P]

n

E[ma.x

r€(n,m|

< (=) 'E [ f " (0.8) (X, YO)(s) (XS, YO (s)P I{s < qu}ds}

< (=P GR) [ T E[L+[Y4(s)® I{s < Ty)}ds
< Co(R)(m—m), (A.4.183)

VY0 € 1, < 72 < 1, and for some constant C¢(R) € [0,00). Again, by a similar argu-

ment, one gets the same upper-bound for the fifth term on the right of (A.4.175),

f '(Bzam(X‘, Y)(s)G*(X*(s))I{s < Tg}ds T
ns C:(R)(m2 — ), (A.4.184)

as follows

E[max

r€[n,m

V0 < 7y < 1, £ 1, and for some constant C;(R) € [0, 00). Finally, consider the first
term on the right side of (A.4.175): Since (z,y) — ®¥(z, y) is polynomially bounded
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of order g; in y locally in r and pg, < g4. there is a constant Cg(R) € [0. ) such

that

max (90X V)(r ATHI < Ga(R) |1+ max (VI 17 < T3]

r€(0,1]
(A.4.183)
Thus, by Corollary A.4.8,
E [m{ng] |e”2‘I>(X‘,Y‘)(T A T§)|p] < Co(R)elP=242, (A.4.186)
€0,

Ve € (0,1}, and for some constant Cg(R) € [0, 00). Combining (A.4.173), (A.4.180).
(A.4.181), (A.4.183), (A.4.184) , and {A.4.186), one finds a constant C(R) € (0. o]
such that

ré(n,mn

E [ max IZ(TATR) —Z(n A T;z)lp]
< 6P {C'g(R)e(’“z’/"' + C'g(R)e(”‘W'J
+Cs(R)EP*(7y — 1)P + C4(R)e? * (1 — 7 )P/2
+ C:(R)e”'*(r; — 1)P + C3(R) (T2 — ‘rl)”/z}
< C(RY [P7372 4 (g — m)P/?] (A.4.187)

Y0 <7 <7 <1,Ve€(0,1]. Thus (A.4.167) holds.
O

The following result controls the g4-th order moments of Y¢(r) (recall Condition
3.2.15) when X¢(7) is bounded, and is used in several proofs in this section. This

Lemma is suggested by, and extends, Exercise 5.4.35 of Karatzas and Shreve [19)].

Lemma A.4.7. Suppose that Conditions 3.2.1, 3.2.2, 3.2.3, 3.2.8 and 3.2.18 hold.
Then, for each R € [0,00) there is a constant C(R) € [0,00) such that

ElI{r <T}Y(7)*| < C(R), Vee (0,1], Vrel01] (A.4.188)
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Proof: Fix € € (0,1], R € [0,00), and let 12(y) 2 |y|*, Vy € R% be the C*
function defined in Condition 3.2.18. Now, put

Me(t) 2 /0 By} (y'(s))a(at, ¥°)(s)dB(s), Vit € [0, 00). (A.4.189)

In view of Condition 3.2.1 we see that (9,¢)(y)o(z,y) is a row vector of length .V.

By elementary calculus we have

D (-2) n
(B) (W) (2, 9)* = g4 (Z ) Z{Zy'a"’ z,y } -

=1 1=1 =1
(A.4.190)
From Condition 3.2.1 there is a constant C, € [0, 00) such that
o9z y)| S Gl +lzl + vl ¥(zy) € (RP@RP).  (A4.191)

Combining (A.4.190) and (A.4.191) we easily see that there is a constant C; € [0, %)
such that

@)Wz < C: 1+ yI®)],  vze R, vye RO, (A4.102)

(where |(z,y)| denotes the Euclidean length of the (d + D)-vector (z,y)).

Since the coefficients in (3.1.1) and (3.1.2) are linearly bounded (see Condition
3.2.1) and zg, yo, are non-random, it follows from well-known moment bounds for

stochastic differential equations (see Lemma C.0.6 on page 203) that
E[ 1(0,) (5°()) (5, y*)(s) P ds

- /0 E|(8,¢)(y(s))o(z", y°)(s)[* ds
<o vt € [0, 00). (A.4.193)

Thus, {(M(t), F.), Vt € [0, 00)} is a martingale on (2, F, P), hence by the optional
sampling theorem {(M*(t A tg), F:), Vt € [0,00)} is a martingale (recall Remark
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A.0.26), hence
E[M{(t Atg)] = E[M*(0)] =0, Vt € [0, 00). (A4.194)

Using Itd's formula and (3.1.2) to expand (y*(t}), one has

tAty

Py (tALR)) = () + ; Ap(zt, y°)(s)ds + M*(t A tR)

¢ (¥o) +/0 I{s < tR}Ap(z*, y*)(s)ds + M(t A tg)
(A.4.195)

Vvt € {0, 0), where Ap(z,y) and M<(t) are given by (3.2.14) and (A.4.189) respec-
tively. Clearly, from (A.4.195):

@(y*(r2 A tR)) — o(y*(ri A tR))
- f s < £} Ap(zt, y)(s)ds + M<(t2 A 1) — ME(t1 ALS),
1 (A.4.196)

V0 < t; < t3 < o0. From Condition 3.2.18 and (A.0.1),

I{s < tg} (Ap) (z°,¥°)(s)
< s < th}iar - Arp (¥ (s AtR))], Vs € [0,00).
(A.4.197)

Upon taking expectation in (A.4.196), by (A.4.197) and (A.4.194), we get

E ey (t2 A tR)) — o(y(t1 A tR))]
= [ E[I{s <tR}Ap)(z"(s),4(s))] ds

< ap(ts —t)) - A f "B [I{s < ti}o(y*(s A ti)] ds,
‘ (A.4.198)
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Y0 <t; <t; < o0. We now show that

I{t2 <tr}o (¥ (2 AtR)) = I {ti St} (¥ (b AtR)
< e taAtR)) — 2 (¥ (L ALtR)),
(A.1.199)

V0 < t; <ty < 00. To see this consider the following cases:
(o<, <ty <ty <.

Here

left hand side of (A.4.199) = 0,
right hand side of (A.4.199) = ¢ (y¥°(tgk)) — ¢ (¥*(tR)) =0,

hence (A.4.199) holds.

(ﬁ)OStlitfq(tg(m.

Here

left hand side of (A.4.199) - (y(t1)),

right hand side of (A.4.199) = o (¥*(tR)) — ¢ (¥*(t1)),

hence, since ¢ (y*(t%)) = 0, we get (A.4.199).
(ilii)0<t; <ty <th < .

Here

left hand side of (A.4.199)
right hand side of (A.4.199)

¢ (¥*(t2)) — 0 (¥(t1)),
¢ (¥(t2)) — o (¥°(t1)),

I
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hence (A.4.199) follows. Thus we have established (A.4.199). From (A.4.199) and
(A.4.198), one has

E[I{t; < tS}o(y'(ta A L)) — I{t, < t5}o(y(t A tR))]
< Ep(y(ta A tR)) — oy (L A tR))]
<anlta—t1) = Ar [ E[H{s < t}o(y(s A t5))] ds.

t

(A.4.200)
V0 <t <t; < co. Now put
w(t) £ E[I{t <ty (t A tY))], VYt € [0.00), (A.4.201)

where the dependence of w(t) on ¢, R, is omitted to simplify the notation. From
(A.4.200) and (A.4.201), we can write
t2
w(ta) —v(t) <ap-(ta —t1) - ’\R[ v(s)ds, 0<t <ta<oo.
t

(A.4.202)
Now we check that t — w(t) is left-continuous on [0.2). Since t — [{t < t5} is
clearly left-continuous on [0, 0c), and t — @(y“(¢ A t%)) is continuous on (0, 0), we
see that
t = I{t < t4}o(y(t Atg)) is left-continuous on [0, ). Now fix {¢,} C [0, 00} such

that lim,, t, =t < 00, with t, < t. Clearly

I{t, <tR}o (¥ (ta AtR)) < max o (y*(s))
(A.4.203)

for all n € N. By Lemma C.0.6 on page 203 and linear boundedness of the coeffi-
cients in (3.1.1) and (3.1.2) (recall Condition 3.2.1) we have

0<s<t

E [max @ (y‘(s))] < oo. (A.4.204)
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From (A.1.203), (A.4.204), Lebesgue Dominated Convergence Theorem and left-

continuity of t = I{t < t4}o(y*(t Aty)) it follows that ¢t — 2(t) is left-continuous

on [0,00). We must now use (A.4.202) to upper-bound 2(t). Notice that we can

not apply the Gronwall inequality directly since ~Ag < 0. Now put

u(t) 2 o(t) — u(t). VYt € [0,00),

where u(t) solves the equation

. A e

u(t) = —Agu(t) + ar, u(0) = |yo|™.
Then the solution of (A.4.206) is clearly given by

— p—ARt as 4 QR _ a»—ARt
u(t) =e - |yal®™ + :\—' (1 € ) , Vte [0.00)
R

Also, by (A.4.206), we can write

u(ts) - u(ty) = arlts — 1) ~ Ar / " u(s)ds.

31

In view of (A.4.208) and (A.4.202), one has

[w(ta) — w(t1)] — [u(ta) — u(ty))]
< [an(tz ~t) - r\R/ 2 w(s)ds]

ty

- [On(tz -t) - AR/ : u(s)ds] )

t
VY0 < t; < t2 < oc. Hence. from (A.4.209) and (A.4.205):

t2
v(ty) —v(t) < _/\R/ v(s)ds, V0<t <ty < o0,

ty

(A.4.205)

(A.4.206)

(A.1.207)

(A.4.208)

(A.4.209)

(A.4.210)

where t — v(t) is clearly left-continuous and v(0) = 0. Then it is easy to see that

v(t) < 0,Vt € [0,00). Indeed, we argue to contrary: let

A2 {te0,00), v(t) > 0}.

(A4.211)
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We must show that 4 = (), thus suppose A # 0. and let ¢, € A. i.e. v(tg) > 0. Put
t. = sup {s € {0.to] : v(s) < 0}. (A.4.212)
Since v(.) is left-continuous there is > 0 such that
v(t) >0, Vte (tg— 4t (A.4.213)
In view of (A.4.213) clearly
t. <ty -4 <ty (A.4.214)

Also, by definition of t. and the fact that v(.) is left-continuous. one sees that
v(t.) < 0 and v(s) > 0.Vs € (t..ty]. Thus, from (A.4.210) and Ag € (0.c)(see
Condition 3.2.18),

v(t) < v(t.) = Ag /t v(s)ds < v(t.) <0, Vte (t.,to, (A.4.215)

which contradicts the fact that v(s) > 0,Vs € (t..to]. Thus 4 = 0, hence v(t) <
0.Vt € [0.00), hence from (A.4.205) and (A.4.207)

2(t) < u(t) = e *RYyo|™ + (ar/Ar) [1- e'*“‘] . Vte[0.x). Vee(0.1].
(A.4.216)

Now from (A.4.216) and (A.4.201) we have

E[I{t < tg}ly*()]"™]
< e yo|* + (ar/Ag) [l — €], Vte[0,00), Vee (0,1],
(A.4.217)

thus there is a constant C(R) € [0, o0) such that
E[I{t <y} ly"(0I%| SC(R), Vte€[0,00), Vee (0,1,  (A4.218)
thus

E{I{re ! <t3} ly(re )|*] <C(R), Vre[0,1], Vee (0,1, (A.4.219)
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Now (A.4.188) follows from (A.4.219), (A.0.3), and (3.3.40).

The following result is used for the proof of Proposition A.4.6 on page 117.

Corollary A.4.8. Suppose that Conditions 3.2.1, 3.2.2 and 3.2.18 hold. Then, for
each R € (0,00), there is a constant C(R) € [0, 00) such that

E|max I {r < TL}|Y(r)|*| < cr) Ve € (0, 1]. (A.4.220)
r€[0.1) €
Proof: Fix R € (0,o0), and put
USRS max I{t<tQ}ly (™. n=0.1.2,..., Vee (0.1, (A.4.221)

n<t<n+1
where y¢(t) is given by (3.1.2) and t% is the stopping time in Remark A.0.26. Clearly,
from (A.4.221) we have

[( ll

Ongx I{t < L}y ()™ < z% Uk, (A.4.222)
Hence
Y
E max He <}y ™| < Y E[UA]. (A.4.223)

Now, it is enough to find an upper bound for Us# as follows: one can write

ly“ ()] < ¥ (n)| + lv°(t) = y*(n)]. Vten,n+1], ¥Yn=0,1.2,..., Ve€ (0,1].
(A.4.224)

Hence for each e € (0,1 and n =0, 1,2, ...

lye(6)|* < 2% [y (n)|* + [3°(t) — ¥(n)|*], Vt€[n,n+1], (A.4.225)
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thus from (A.4.225),

It < g}y ()™

S 2% [I{t <t} ly*(n)™ + I{t < tR} |y (t) — y*(n)|¥]

< 2% [I{n < t5} [y* ()™ + I{t < t5} [y*(t) — v (n)|®], Vte[nn+1]
(A.4.226)

The second inequality in (A.4.226) follows because, for each t € [n.n + l].n =

0,1,2,..., we have
I{t <tR} < I{n<ty}, Vee(0,1]. (A.4.227)
From (A.4.226), we have

hax I{t < tg}ly(B)*

< gn [I{n < tRby ()% + max I{t < th}Iy<(t) - y‘(nn"*} ,
teinn+
(A.4.228)

Ve € (0,1], Yn = 0.1,2,.... Thus, from (A.4.221), (A.4.223), and (A.4.228), one

observes that

E [max I{t <t} lyi(t |"‘]

o<t<

SZJE[ max, I{t<t‘}|y ["‘]
n=0

t€[n,n+
[e=!]

< 2 2% { (H{n <t} ly ("] + E [ter[g‘gi] ly“(t) — y*(n)|* I{t < t‘g}] } ,

(A.4.229)
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Ve € (0,1,vn=0,1,2,.... By Lemma A.4.7 on page 123, for the first expectation
of the right side of (A.4.229). we get
Ell{n < ti}ly'(mi®] = E|
= E[I{en < T} [Y*(en)¥]
< Ci(R), (A.4.230)

Ve € (0,1},vn =0,1,2,.... Also, for each t € [n.n + 1], we have
I{t < tg} 1y (t) — ¥ (n)]*
= I{t < tR} v (t A tR) — y*(n AtR)¥
Syt AtR) -y (n AtR)™. (A.4.231)

Hence, using (3.1.2), for the second expectation of the right side of (A.4.229), one

has

E [ max I{t < ) [y5(t) — y‘(n)l"‘]

ig[nn+1]

<E

max |y‘(t AtR) —y(nA t‘,z)l"‘]

tein,n+1j
tAth
/ b(z¢.y*)(s)ds

At'n

/ " o(z*, ¥°)(s)dB(s)

q4

< ‘2"‘5{ max

teln.n=l]

|

+ max
t€[n,n+1] Aty
(A.4.232)
Now when t € [n,n + 1] we have
tALS,
/ b(z¢,y*)(s)ds = 0, whenty <n,
nAth
tALS
/ b(z¢,y°)(s)ds = / b(z¢,y°)(s)ds, whenn <tj <t,
nAtS
2/\t§ ?
/ b(zt,y*)(s)dsds = / b(z¢,y*)(s)ds, whent <t
nAtg n

(A.4.233)
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From these three cases,

/W‘R b(zt.y*)(s)ds = /! I{s < t{}b(z°. y*)(s)ds. (A.4.234)
Similarly
f T (e ) (s)ds = / s < oz, y)(s)d3(s). (1.4.235)

Thaus, from (A.1.232), (A.1.231) and (A.4.235)
E[ max [{t <ty }Iy‘(t)—y‘(n)l‘“]
te

fn+n+1]
<2UE
- !:[n nﬂ-l]

+ max
t€n.n+1}

52«{5[/ I{s < 5} 1b(z*. y)( |dsr

q4

/ I{s < t{}b(zf. y°)(s)ds

}

[ H{s < tq}o(zt, y*)(s)d3(s)

q3
[“Emax1 / I{s < tR{}o(z". y*)(s)d3(s) }}
inn+ 1
(A.4.236)
Ve € (0.1.Vn =0,1,2,.... By Condition 3.2.1 and Jensen's inequality. there are

constants Cy. Cy(R) € [0, o0) such that
n+1 1)
E ( [N ds)

" n+l

<E [ [t st e ds}
n+1

56‘15‘[/ I{s <15} (1+ 12z(s)| + |y (s )|)"‘ds}
<34C, '/M E[1+I{s <t} |z5(s)|* + I{s <t} |y*(s)}{*] ds
< 3%C, fm [1+RI™ + EI{s < t5} ly*(s)|*] ds

< 3%Cy(R) f ~ [1+EI{s < tx}y*(s)|*]ds
” (A.4.237)
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Ve € (0,1],Vn = 0,1,2,.... Clearly. from (A.4.237), Lemma A.4.7 on page 123,
(A.0.3) and (3.3.40), it follows that

n+l q4
E ( [ Hs<u Ib(z‘,y‘)(s)lds)

n+1
< 3'"02(3)/ [1 +E [I{s <=

) qH ds

< 3%C2(R) /MI (1 + E[I{es < TR} Y (es)|"]] ds
< ICy(R) {1 + Cy(R)]
< Cy(R), (A.4.238)

Ve € (0,1],Vn =0.1,2,..., and constants C3(R),Cs(R) € [0,20). Also. by Jensen

and Burkholder inequalities. there is a constant Cs € [0, oc) such that

|

91/2
< CsE [(/ I{s < t%} Trace (007 (z%, y*)(s)) ds) ]

[ Hs < ot y(6)430)

[ee[n n+1|

< CsE [/t [{s < ty} (Trace (a'aT(:c‘,y‘)(s)))"‘/2 ds]
(A.4.239)

Ve € [0,00),Yn =0.1,2,.... From Condition 3.2.1 we easily see that

(Trace (007 (z,9)))** < C[1 + |2|* + [y|%], (A.4.240)



APPENDIX A. PROOFS FOR SECTION 3.3 135

v(z,y) € R* @ R®, for a constant C € [0,o0). Thus. combining (A.4.240).
(A.4.239), (A.0.3), (3.3.40) and Lemma A.4.7 on page 123 we have

/ I{s < tx}o(z%, ¥°)(s)d3(s) q‘]
<GsE [/ I{s < tx} (1 +|z*(s)] + ly*(s)D¥ dS]

[te[n n+1]

S3q‘Cs(R)/ 1+ E(I{s < t&} ly*(s)*)] ds

)] as

< 3%C4(R) / "L+ E(I{es < TR} [Y*(s)]™)] ds
<C:(R). (A.4.241)

< 3%Cs(R) /t [1-&- E (I{s < Ta

n

Ve € (0,.1],¥n = 0,1,2,..., and constants Cg(R),C:(R) € [0,o). Now, from
(A.4.236), (A.4.238) and (A.4.241), there is a constant Cy(R) € [0, 90) such that

E [ max I{t <t} lv*(t) - y‘(nn“] <Cu(R).

te(nn+1]

(A.4.242)

Ve € (0,1],vn =0,1.2,.... Thus, from (A.4.229), (A.4.230). (A.4.242). it follows
that

E I:orila.x I{t < tQ}iy(¢ |"‘} < -Cii&, (A.4.243)

Ve € (0,1}, and some constant Cy(R) € [0,00). In view of (A.4.243). (A.0.3), and
(3.3.40) we get

Elpas i <THON| = E|mex e <abior]

o<t

< @Tk Ve € (0, 1], (A.4.244)

as required.



Appendix B

Proofs for Section 3.4

Proof of Lemma 3.4.5 on page 47: The proof is just a tedious but elementary
computation. Fix R € [0,00), z € S&. Using the Frobenius norm (see [ of “Basic

Notation and Terminology”), for all £;,&, € RP, we have

N D
lo(z.6) ~ o(z.&)* = ZZ | (z.61) - Uk'"(I‘§2)|2- (B.0.1)

n=1 k=1

By the mean value theorem. we expand each term on the right side of (B.0.1):

1
o*™Mz,6) - o*(z.6) = [/ (Bec™™) (2,6 + a(& — &))da| (&, - &). (B.0.2)
0
for k=1,2,...D,n=1,2,...N, and V¥&,& € RP. Thus, by Jensen inequality
and (B.0.2), we get
|0t (2.&) — 0*"(2.&)|°

1
< [0 |(Be0*™) (2,6 + o(& - &)) (6 - &)]} da
(B.0.3)

136
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From (B.0.3) and using Cauchy-Schwarz inequality. it follows that
|o*"(2,6) = o*" (2, &)’

1
</
0

1 D .
<1 [ T l@eot) 2.6+ ate - @) da l6: - &F
0 =1

(B.0.4)

)

da

D
Y {(Be*™) (z.& + (& ~ &) (&' - &)}
=1

V€, & € RP. By (B.0.1) and (B.0.4), we can write

lo(z, &) - a(z, &)
D

[ f1 N
< [Ozzzlaga (2.6 + ales - &))[* da] 16 - &f?

n=1 k=1 I=1

IA

F LD
/0 Z| Oo) (z,& +alé — 6'2))|2 da] &, - &)
[Jo 1=

(B.0.5)

D 1/2
AO(R)é[( sup {ZI(@EzU)(x,ﬁ)le}] , YRe[0,). (B.06)

3.5)555@'!0 1=1
Thus, in view of (B.0.5) and (B.0.6), we have

lo(z.6) — a(z.&)* < AYR) |6 - &f°, Vze S, Va,&2€ R, (B.O.T)

as required for {3.4.63). Finally. from (B.0.6) and Condition 3.4.4, we see that
Ao(R) < 20,VYR € [0, 20).

a

Proof of Proposition 3.4.12 on page 50: The proof just uses easy calculus.
Consider the second order differential operator A(z,y) defined by (3.2.14); recall

D
Ap(z.y) 2 Y Kz, 5)(0,0)(0) + %Z S [o™(e.)] By}, (BOS)

i=1 i=1l j=1
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¥(z,y) € R*® RP. Using the mean value theorem, for the first term on the right
hand side of (B.0.8) we have

b(z,y) = b'(z,0) + /ol(ayb‘)(z.ay)y da, Vi=12,....D. (B.0.9)
Put
J(z,9) £ (9,b)(z.y), V(z.y) € R*® RP. (B.0.10)
Thus, from (B.0.9) and (B.0.10):
b(z,y) = b(z,0) + /0 : J(z,ay)y da, Y(r,y) € R*® RP. (B.0.11)
Hence
yTb(z,y) = yTb(z,0) + /0 1 yTJ(z,ay)y da, (B.0.12)

Y(z,y) € R® ® RP. Now, obviously, one has

y Iz ay)y = yTIT(z.0y)y
= éyT [J(z. ay) + I (2. ay)] ¥, (B.0.13)

V(z,y) € R*® R° Vo € [0,1]. Fix arbitrary R € [0,00). Then Remark 3.4.6,
(3.4.66), and Lemma C.0.12 on page 205 for the symmetric matrix  [J(z,ay) + J7(z, ay)]
in (B.0.13) ensure that

yTJ(z,ay)y < maximum eigenvalue {1/2[J(z, ay) + JT(z,ay)]} ly)?
< MRy, Yae(0,1], Y(z,y) € SE® RP, (B.0.14)

where A(R) is defined by (3.4.66) in Remark 3.4.6. Thus, from (B.0.12) and
(B.0.14), we get

yb(z,y) < y7b(z,0) + Au(R) |yl
bz, 0)! [yl + Ax(R) [f*, (B.0.15)

IN

Y(z,y) € SE ® RP. For use here and later, we record the following elementary
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Fact B.0.9. For o : R® = R given by »(y) = |yl q € [2.20) a constant, we have
@ € C*(IRP) with

Bp)y) = a'lyl”’, Yye R® (B.0.16)
B,0,,0) () = qlyl" 6, +alg-2y'y lwi"*, vye R®. (B.O.I7)

(where §; ; is the Kronecker &).
Hence, from (B.0.15) and (B.0.16) one can write

D
gly"* Yyt (z.y)
i=1

= qlyl"?yTb(z,y)
< qlb(z,0) |yl + qA(R) yl*.  (B.0.18)

D
)5 (z,¥)(By0) )
=1

V(z.y) € S3® IRP. Now consider the second term on the right hand side of (B.0.8):
From (B.0.17) it follows that

|~

D D ,
=YY [o(z.y)o"(z.y)]"” (B8, 9)()

=1 j=1

D .
==Y [all* 6, +alg - 23y 1w [007(z,9)]

=1 =1

I\DIH

D

D .

Z yl*~? [T (z.y)] "

= 1 D D i
522 a(g - 24"y’ yI** [o0” (z,9)]"

T(z,y)]

+2g =D 37 [oo"(2.9)] v,

I\Jli—‘

= g. |y|*~* Trace [oo

(B.0.19)
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¥(z,y) € S% ® RP. By Lemma C.0.12 on page 205 we have

yTlooT(z,y)ly < maximum eigenvaluefoo™(z, y)]|y|*

< Traceloo (z,y)|ly*, ¥(z,y) € SE® RP.
(B.0.20)

In view of (B.0.20) and (B.0.19) one has

1 &2 _
522 o(z,9)0" (z.)] " (80,,4)(¥)

%lqu ? Trace [aa (z, y)]

+%(q - 2) |y|*"* Trace [o07(z.y))]
< g (g — 1) |y|"* Trace [aar(x,y)]
<3@- Doyl (B.0.21)

¥(z,y) € R°®RP. Also, (3.4.63) together with triangle inequality for the Frobenius
norm |.| gives

lo(z. y)l < lo(z.0)l + |o(z,y) ~ o(z,0)|
lo(z,0) + Ao(R)lyl,  ¥(z,y) € R°® R®.

A

(B.0.22)

Thus, from (B.0.22) and (B.0.21), we have

D D

%Zz [o(z, y)oT(z,y ] 7(33,*334:&9)(9)

i=l j=1
(g — 1) (AJ(R)Iyl* + 2A0(R) |o(z,0)| jy|*™" + |o(z,0)]* Jy*~?)
(B.0.23)

wa-c
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¥(z,y) € R*® RP. Define

C\(R) 2 max |b(z, 0)|.

zeSYy
C2(R) £ max|o(z,0)].
zeS3
(B.0.24)
Combining (B.0.8), (B.0.18), (B.0.23) and (B.0.24) we get
Ap(z,y) < [9Ci(R) +q(g — D Ao(R)Ca(R)] |y
+[a(R) + g - AR 1y

+3(g - DCo(R Iyl (B.0.25)
We now require the following elementary Fact B.0.10.
Fact B.0.10. Suppose 0 < C; < Cy < o0. Then, for each § € (0,20), one has

[z{€ < §CC €2 + (1/86), V:ze RP. (B.0.26)
Proof of Fact B.0.10: To see this, observe that
(C<1+4¢%, (€0, 00). (B.0.27)

Fix 6 € (0,00) and put ¢ £ & |2|, for = € RP. Thus, by (B.0.26), we have

8 z|% < 146927, V:e RP, (B.0.28)

hence
2| < 897 z|% + (1/6)7, vz e RP. (B.0.29)
O

Now fix 4 € (0,0c). From Fact B.0.10 on page 141 we have

yl*=t < 6yl +(1/6¢", vy e RP
™ < &lyl? +(1/6)*2, ¥y e R® (B.0.30)
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Also, define
Cs(R.5) = qAI(R)+§(q—1){A0(R)12+qcl(ma+aq(q-1):\0<R>cg(m
+5- g - D[CAR)],
Ci(R.8) 2 qCu(R)(1/8)" +qlg - 1)AO(R)02(R)(1/6)°-
+5 (q—l[C') )i (1/8)7"
(B.0.31)

Thus, from (B.0.25) and (B.0.30), one gets
Ap(z,y) < Ci(R,8)|y|* + C4(R,8), V(z.y) € SE® RP. (B.0.32)
Now Condition 3.4.7 ensures that
gAL(R) + g(q - D{A(R)? < 0. (B.0.33)

Hence, for each R € [0, oc), we can fix § 2 §(R) small enough that
Ar £ ~C3(R,6(R)) > 0. Now put ag = Cy(R.4(R)) in (B.0.32) to get (3.4.73).

[

Proof of Proposition 3.4.14 on page 50: Fixsome z € R® and some R € [0, c0)
such that z € S¢. From Condition 3.4.7 and Lemma 3.4.5 on page 47 we obviously
have
SUP Amax(Z,§) < —(1/2) [Ao(R ] . (B.0.34)
¢eRP

and

lo(z,61) — o(z,&)| < Ao(R) |61 — &l , V61,6 € RP.

Hence Theorem 3.4.1 on page 43 applied to the coefficients b(z,.) and o(z,.) shows

that there exists a unique invariant probability measure . on (IR, B(IR®)) for the
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Markov process {£(t.z)} defined by (3.4.74). We next establish (3.4.73). To this
end, fix some y € R?. From Proposition B.1.1 on page 175 we have
Elg(t.z.y)|" < lyI* + C(q.R), Vte€[0,). (B.0.35)
Now put
fYE)SIEFAN, YEeRP, N=1,2.3,.... (B.0.36)
From (B.0.35) and (B.0.36),
EfY(&(t,z,y)) < EIE(t,z.y)° < [y + C(q, R), Vte[0,). (B.0.37)
But, f¥ : R? » R is bounded and continuous, so that Theorem 3.4.1 on page 43
gives
im ez = [ | £ (€)dna(e), (B.0.39
From (B.0.37) and (B.0.38),
/,, . fN(E)dr.(6) < yl* +C(q. R), YN=1,2,3,.... (B.0.39)

Now take N — oo in (B.0.39) and use the monotone convergence theorem to
obtain (3.4.75). It remains to establish (3.4.76). Fix some r; € [0,q — 1] and some

h € Li(r,). From Remark 3.4.9 we have
|h(€(t, z.y))| < M (R) [1 + &t z.y)"™], (B.0.40)

Vt € [0,00),Yy € RP. Clearly r, 21+ r;1 < g, hence from Proposition B.1.1 on
page 175 there is a constant C,(R) € [0, oc) such that

E|&(t,z.y)|"™ < Cu(R)[L + [y[**"] (B.0.41)

Vt € [0,00),Vy € RP. Upon taking expectation in (B.0.40) and using (B.0.41) one

has

Eh(&(t,z,y))| < Co(R) M (h) (1 + [y1"*7), (B.0.42)
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vt € [0,00),¥y € RP, where C5(R) € [0, ) is a constant. Moreover. by Remark
3.4.9 we have

|h(§(tv I, yl)) - h(&(t1 z, y2)|
< Mo, (R)[€(t zop) — €tz y2)| [1 + [E(t, 2, 30)[™ + [E(t. 2. y2) ]
(B.0.43)

vt € [0,00),Vy1,y2 € RP. First suppose ry = 0, and take r, =1+ ri. Using
(B.0.43), one has

|Eh (§(t.z,31)) — ER(&(t, 2, y2))]
S Elh(§(t.z.n)) = h{§(t z,32))
S 3Mo(h)E (L. z, y1) — £(t, 2, 32)]
(B.0.44)

and hence, from Proposition B.1.1 on page 175 (see (B.1.202)), we get
Elh((t.z, 1)) — h(E(t, 2.y2))| < 3Mo(h) e ™Rl 1y — gy, (B.0.45)

vt € [0,00),Yyi, 52 € RP, for some constant 1o(R) € (0,00). Now suppose ry; €
(0,g—1]. By (B.0.43) and Holder's inequality, with conjugate exponents a 21 +r

and 3 2 (1+r,)/r,, one has

|ER (£t z.31)) — ER(E(t.z,3))]
< Elh(E(t,z,1)) - h(E(t.2.32))]
< M, (R) E{|E(t, z,3) = £(t, T, )
[+ 16(t, 7, 301" + [€(t, 2, 92)I" ]}
< M, (R){E [£(t,z,11) — £(t, 7, 30)|"}"/°
{El+lgtzn +letzm P}
(B.0.46)
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Vt € [0,00),Vy;.y2 € RP. Wehavea =1+r, < gand 3r, = (1 +r,) <q. Thus.
from Proposition B.1.1 on page 175, (B.0.46), and the fact that [|a] + |b] + |c|]"J <
38 [|a|3 + b8 + Ic["] we can write

|ER (£(t,7,31)) - ER(E(t,7,32))
< Mo, (W) {El§(t.2.0) - £(t 2,32 "}
{#[1+EletruP + Elgtz P}
< My, (h) {e (R |y, — y2|r1+l}l/(r1+l)
{Cs(R) [L+ [yl + fgal o] Y
< Co(R)M;, (h) e Bt 1y — yo| (1 + [y | + [2|™]

(B.0.47)

vt € [0,),Yy1,y2 € RP. where C5(R), Cs(R) € [0,00) and % (R), 72(R) € (0, c¢)

are constants. Now put
8(t.z.y) = E[h(&(t.z,y))], (B.0.48)

Vt € [0, ),y € RP. By the Markov property of {£(t, z,y)}(recall (3.4.74)) (see
e.g. page 240, Theorem 10.11. of Chung and Williams [7]) we have

E[h(&(s+t,1,y)) |F?] = 6(t,2,£(s,2.y)), as. (B.0.49)
Vs, t € [0,00),Vy € RP, where
F3L5{3(u), ue {0,s]} V {P — null events in F}. (B.0.50)
Thus, from (B.0.49),

Elh((s +t,z,9))] = E[8(t,7,8(s,,9))] - (B.0.51)
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Hence

|ER(&(s +t.2,y)) — ER(&(t. z,y))|
= |EB (t,z,&(s,z,y)) — ER({(t, z,Y))|
= |E{0(t,z.4(s,z,y)) — ER (§(t,z,y))}]
SE(tz.8(s,z.y)) — ER(£(t. 7,9))| (B.0.52)
Vs,t € [0,90),Vy € RP. Now, by (B.0.48) and (B.0.47), one has

|9(tv'tv g) - Eh (s(tv Z, y))i
= JEh (f(t— Ivg)) — Eh (6(t,l‘, y))|
< M, (h)Co(R) e™®* |y — | [1 + |y|™ + [5]"] (B.0.53)

Vt € [0,00),Vy,§ € RP. Now take j = £(s.z,y) in (B.0.53) to get

10 (¢.z.£(s, 2. y)) — ER(§(t, 2. )]
< M, (h)Cs(R) e ™M [y — (s, 2, y)| [L + [y|™ + [€(s. 2. 9)"].
(B.0.54)
Vs,t € [0,20).Vy € RP. Combining (B.0.52) and (B.0.54), and also using Proposi-
tion B.1.1 on page 175, the fact that r; 21 + r; < ¢, and the Liapunov inequality,
it follows that
|ER(§(s +¢t,1,y)) — ER(§(t, z.y))
< M, (R)Cs(R)e™ R E {y| + ly|'*™ + |yll&(s. 2, 9)|"
+ (s, . 9 + [y 165, 2, y)| + 1€(s, 2, )" }
< M, (h)Cz(R) e B[] 4 [y|'*n],
(B.0.55)

Vs,t € [0,00),Vy € RP, where C7(R) € [0, 00) is a constant. We next observe that

/R _IR(E)] dr=(8) < 0. (B.0.56)
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Indeed, since h € Li(r;) for some r; € [0.2¢), we have that
h(§) < Cs[1+ (€17, V§ € RP, (B.0.57)

for some constant Cy € [0, o0) (see Remark 3.4.9), thus we get (B.0.56) from (3.4.75)

(which we have just established). Now put
hY(E) 2 ha(E)AN, VE€RP, N=1,2.3..... (B.0.38)
where h.(£) is the usual positive part of h(£). Then one trivially checks that
rY(€) € Li(ry), M, (hY) < M, (h). (B.0.59)
Since (B.0.55) holds for arbitrary h € Li(r;). in view of (B.0.59) we get

|ERY((s + t.z,y)) = ERY(E(t, 2, y))| < My, (R)Cr(R)e ™ R* [1 + [y'=m].
(B.0.60)

Since hY : R? — R is bounded and continuous. from Theorem 3.4.1 on page 43

we have

lim Ehv(ﬁ s+t z.y)) / hY(&)dm, (€ (B.0.61)

=3¢

Hence, taking s — oo in (B.0.60) gives

ERY(&(t.2.y) - /R , h‘:’(s)dwz(f)} < My, (R)CH(R)e™™ " L+ [y*n] .
(B.0.62)

Also, by (B.0.42), one has

E[h.(&(t,z.y))] < EIA((t z,v))]
C2(R)M;, (k) [1+ ly|**"]
< o, Vte[0,00), Vy € RP. (B.0.63)

IA
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By (B.0.63), and the monotone convergence theorem,

ERY(E(t, 1, y)) - / hf(s)drrx(ﬁ)’
RD

lim
N=oc

- IEh?(E(tvr-y))— [R h(@dr()].  (Bosd)

From (B.0.62) and (B.0.64),

‘Em(s(t.x,y)) - fR ] h+(s)dw,(s)f < My (R)Co(R)e™™R¥ 1 4 [y[in]

(B.0.63)
An identical form to (B.0.65), with k. replaced by h_. also holds. so that
Eh(&(t.z.y)) — / h(s)d.-r,(s)’ < 2M (R)Cr(R)e™ ™R [1 4+ [y|'=n] .
RD
(B.0.66)

Finally, identify A(.) in (B.0.66) with f(z..), for f € Li(r\)ioc,r1 € [0.¢ — 1], to
obtain (3.4.76).

Proof of Proposition 3.4.16 on page 51:

Step 1 : Here it is shown that ©(.,.) € Li(r)i., that y = O(z,y) is a C? -
function for each z € R®, and (3.4.80) holds. Since r € [0.¢/2] and q € (8.00) (see
Condition 3.4.7) we have that r, S1+r< g. Thus Remark 3.4.15 ensures that
f(z) in (3.4.77) and B(z,y) in (3.4.78) exist for each z € R® y € RP. Fix some
R € [0,0c), and fix arbitrary z € S%. Since f € Li(r)i, we have f(z,.) € Li(r),
hence we can repeat the simple calculation which gave (B.0.47) (but with r, f(z,.)
in place of ry, h(.)) to get

|Ef(z.£(t.2.3)) — Ef(z.8(t. 2. 1))
< CR)e™ P jy —yal L+ [a|" + 32"}, (B.067)
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Vt € [0,00), V1,42 € RP, where Ca(R) € {0,o¢) and v;(R) € (0.oc) are constants.
From (3.4.78), and (B.0.67), there is a constant C3(R) € [0, oc) such that

8(z, 1) - O(z.32)]
< [0 E[f (2.6t .w)) = f (2.£(t, 7, ya))]| dt

< / Ca(R)e™ Bt |y, — ol [1 + la]” + [yel"]
0
< GCi(R)yr =yl (1 + |nn|™ + l2]"]
(B.0.68)

Yy1,y2 € RP. Thus, from (B.0.68) and Remark 3.4.9, one has
[O(z,.)], < C3(R) <0, VzeSh (B.0.69)

Moreover, by (3.4.76), (3.4.77), (3.4.78). and the fact that r < ¢ — 1, there is a

constant Cy4(R) € [0, 00) such that
1O(z,y)| < Co(R) [1 +yI™Y], ¥(z.y) € S§® RP. (B.0.70)
Hence, by Remark 3.4.9:
18(z, )ll-+1 < Cs(R), Vz € Sg. (B.0.71)
Now from (B.0.69), (B.0.71), and Remark 3.4.9, we have
M,.(8(z,.)) < max{C3(R),Cs(R)}, Vze S, (B.0.72)
whence © € Li(r)n
Next, consider smoothness of the mapping y — O(z, y) for fixed z € IR®. Define
8(t.z,y) 2 [ f(z.£(t, 2. y))] Y(t.z,y) € [0,00) ® R°® RP, (B.0.73)

where

f(z.6) £ f(z.6) - f(z), ¥(z,6) € R*® RP. (B.0.74)
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By Corollary F.0.34, it follows that y — 6(t.z.y) is a C! - function with

D
(0,0)(t,z,y) = E Z(astf)(rf(t-r»y)) (Bu*)(t.z.y) |
k=1
(B.0.75)
Y(t,z,y) €[0,00) @ RT® RP, 1 =1.2.... . D (here (B &F)(¢t. 7. y) is the first L, -

derivative of £¥(t, z, y) with respect to 3. as formulated in Remark F.0.32). Now
fix some R € {0.00); from hypothesis (i7) of Proposition 3.4.16 on page 51 and
(B.0.74), there is a constant C5(R) € [0, o0) such that

|Gz, = [@ef)iz.8)
< G(RI1+1E]. V(z.§)eSg@R®.  (B.0.76)

In view of (B.0.76) together with (B.0.75). the Cauchy-Schwarz inequality, Propo-
sition B.1.3 on page 184 (see (B.1.245)). and (B.1.201) of Proposition B.1.1 on page
175 (with ry Sor< q), we see that there are constants Cg(R).C-(R) € [0.),

such that

D
|@u8)t.z.y)| < 3 E|@efilz.&lt 2.9)Bu )t 2.y)|
k=1

WE

< G(R)YE[(1+16(t2.)") |0(t.2.9)]]
k=1
D

< CoR)Y EV 1+ et 2.9) ] V2 [0t 2.9)|]
k=1

< CHR)[1+ [y Te ™R, (B.0.77)

V(t,z,y) € [0,00) ® SE® RP, where 12(R) € (0,00) is a constant. Since Corollary
F.0.34 shows that y — 8(t,z,y) is a C' - mapping, for each a € R, we have

(+3
6(t,z,y+ae) —0(t,z,y) = / (Oy0)(t, z,y + ner) dn, (B.0.78)
0
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V(t.z,y) € [0,0) ® R®*® RP (here ¢; denotes the I-th basis vector in RP?). Now
from (B.0.73), (B.0.74), and (3.4.78), we have

O(z,y) = /:c 6(t.z,y) dt, V(z.y) € R*® RP. (B.0.79)

Thus, it follows from (B.0.78) and (B.0.79) that

O(z,y + ae) — 8(z,y) /co 6(t.z.y + ae)) —8(t, z.y)] dt
0

= [T{ [ eworeayne an}

(B.0.80)
¥(z,y) € R®*® R® Ya € R. From (B.0.77) clearly:
/Om {/:a| |(8,:0)(t, z.y + ney)| dr;} dt
<cm) [ { / "1+ iy +nel] e"’"“"dn} dt
< Ci(R) { / me“““‘"dt} { / "t by e dn}
< 0, (B.0.81)

Y(z,y) € S4® RP Ya € R. Since R € [0, x) is arbitrary in (B.0.81) this inequality
in fact holds for all a € R, (z,y) € R® ® R®. Hence, from (B.0.80), (B.0.81), and

Fubini’s theorem, one has

O(z.y +ae) - 9(z.y) = foa {/om(ayae)(t,r,y + ne;) dt} dn, (B.0.82)

Va € R, (z,y) € R*® RP. Now, by (B.0.77), the Dominated Convergence Theo-

rem, and the fact that y — 8(t.z,y) is C', one easily sees that the mapping

n— / (Oub)(t, 2,y + ne;) dt, (B.0.83)
0
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is continuous (for fixed (t.x.y)). In view of this fact, (B.0.82), and the Fundamental

theorem of calculus, one has

lim O(z.y + ae;) — O(z,y)
a—0 Q

= f m(3y19)(t.:r. y)dt. (B.0.84)
0

¥(z,y) € IR ® RP. Now an argument identical to that showing that the mapping

in (B.0.83) is continuous, also shows that
y — /(;m(ayxﬂ)(t.r.y)dt :RP S5 R
is continuous; it follows from (B.0.84) that the y = ©(z.y) is a C! - mapping. and
(0,40)(z.y) = /;w(ayxe)(t.r.y) dt. V(z,y)e R*® RP. (B.0.85)

From (B.0.77) and (B.0.85) it follows that (8,9)(z,y) is polynomially y-bounded
of order r locally in z. i.e. for each R € [0.0) there is a constant Cs(R) € [0, 0¢)

such that

@] s [ CmiL+ e
< GRI1+pl. Yy eSz@R%.  (B.0S)

Next consider the second partial y-derivatives of ©(z,y). Using Corollary F.0.34,

one sees that y — 6(t, z,y) is a C®-mapping, with
(6y16y.0)(t I.y)

D
=FE [z (B f)(, £(t. 7. ¥)) (80,2 ") (t, 2, y)}

1=1

D
+E [ZZ W€ (t, 2. 9)(8p 0 (. £(t, 7,9)) (B ) 8, , y)] :

i=l =1

(B.0.87)

V(t,z.y) € [0, 0)@ R°®RP. By hypothesis and (B.0.74), we know that (Bexf.)(r, £€)
and (OgOge f)(z,y) are polynomially £-bounded of order r locally in z. Thus from
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(B.0.87) and Holder's inequality, for each R € [0.2c) there is a constant Cg(R) €
[0, 00) such that

[GYCRIER

< Go(RIEV [L+ [£(t,2.9)"] B2 |00 8)(t, 2, y)]']

+Co(RIEV2 [+ [€(t, 2, )] BV [|0p6) 8,2, 9)[*| EV* |08t 2.9)] ]
(B.0.88)

Y(t,z,y) € [0,00) ® S4 ® RP. By Proposition B.1.3 on page 184, (B.1.201) of
Proposition B.1.1 on page 175 ( with r, 2 or < q), and (B.0.88), for each R € [0. )
there are constants Cio(R) € [0, 50),73(R) € (0, o0), such that

|(8,10,48)(t, 2. y)| < Cro(R)e™™R*[1 + [y, (B.0.89)

Y(t,z,y) € [0,00) ® S ® R®. Now the mapping y — (0yf)(t, z,y) has been seen
to be a C! - function (by Corollary F.0.34), thus for each a € R we have

(Bu0)(t. 2.y + ae;) = (8,0)(t.r.y) = /; (0y:0,40)(t, z.y + ne;) dn, (B.0.90)
Y(t, z,y) € [0,00) ® R®® RP. By (B.0.85) and (B.0.90) one has

(0,0)(z,y + ae;) — (0uO)(z,y)
= /0 [(ayze)(t,r.y + ae;) — (9,0)(t, z, y)] dt

= /Ow {‘/().a(ay,ay:G)(t,z,y + ne;) dr)} dt

(B.0.91)
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¥(z,y) € R*® RP Ya € R. Moreover, by (B.0.89) for each R € [0.c). we see

that
o0 la|
/ {/ |(6y,6y19)(t.1:,y+r)ej)|d1]} dt
0 0
ac laj
< Cw(R)/ {/ (1 + |y +nel] e"’m"dn} dt
0 0

< Cio(R) {/Om 6"“‘R"dt} {/OM [1+ |y + ned"] dn}

< 00, (B.0.92)

Y(z,y) € Sﬁ ® RP. Thus, from (B.0.92), one can use Fubini's theorem to write
(B.0.91) as

(0O)(z,y + ae,) — (040)(z,y)

=/ {/ (aygayxe)(t,z,y-f-r;ej)dt} dn
0 0

Va € R, ¥(z.y) € R*® RP. Now one easily observes from (B.0.89). the fact that

(B.0.93)

y — 8(t.r.y) is C*, and the Lebesgue Dominated Convergence Theorem that the

mapping
n— / (8y:10,8)(t, z,y + ne;) dt (B.0.94)
0

is continuous. Thus from (B.0.93) and the fundamental theorem of calculus one

has
a—h

lim, = ((6,0)(z,y +ae,) ~ (3,0)(z.v)]

= / m(ay,avﬂ)(t, z,y) dt. (B.0.95)
0

¥(z,y) € R*® RP. From (B.0.89), the fact that y — 8(t,z,y) is C?, and the

Lebesgue Dominated Convergence Theorem, it follows that

y - / (3,0,0)(¢,z,y)dt : R® — R
0
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o

is continuous, so we see from (B.0.95) that y = ©(z,y) is a C* - function with
(04:0,:0)(z,y) =/ (Gy:0,0)(t, z,y) dt, (B.0.96)
0

Y(z,y) € R* ® R®. From (B.0.89) and (B.0.96), for each R € [0,00) there is a
constant Cy;(R) € [0, 00) such that

1(8,,8,0)(x,9)] < Cu(RY[1 + yl'], (B.0.97)

V(z,y) € S3 ® RP. We have seen that y — ©(z,y) is a C*mapping, and also,
from (B.0.86) and (B.0.97), the mappings (9,:0)(z, y) and (3,,0,,0)(z. y) are poly-
nomially y-bounded of order r locally in z. This completes Step 1.

Step 2 : It remains to show that (3.4.81) holds. We have seen that © € Li(r)x.
hence it follows that ©(z, y) is polynomially y-bounded of order r + 1 locally in z
(see Remark 3.4.11), thus for each R € [0, 0c) there is a constant C2(R) € [0, 00)
such that

18(z.4)I < Cuo(R) [1 +[yI™™] . ¥(z,y) € S%® RP. (B.0.98)

Moreover we have seen that (9,:0)(z,y) and (9,:0,+0)(z,y) are polynomially y-
bounded of order r locally in z. In view of these facts one sees from (3.2.14),
(3.4.74), and Theorem 3 on page 293 of Gihman and Skorohod [14],

AO(z,y) = }in& Ee(l‘,f(tlth. y)) - G(I,y)’
i+ .

Y(z,y) € R°® RP.
(B.0.99)

Now evaluate quantity on right side of (B.0.99). Fix z € R?, fix R € [0, 00) such
that z € S¢. From (B.0.74) and (3.4.77) we have

/ f(z,€)dr(€) =0, Vre R (B.0.100)
RD
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Then, from (B.0.100), (B.0.73) and Proposition 3.4.14 on page 50. there are con-
stants C13(R) € [0, o) and v4(R) € (0,oc) such that

btz = |Ef@.8t=9))]
< Cia(R)e ™Rt + |1+, (B.0.101)

Y(t, §) € [0,00) ® RP. Fix t, € (0,00) and y € RP, and take § = £(t,, z.y). Thus.

from (B.0.101), we can write
16(t, z,&(t1, 7,y)| < Cra(R)e™P* [1 + 1&(t1, z,9)'*] (B.0.102)

Y(t,y) € [0,00) ® RP. From Proposition B.1.1 on page 175 (with r; Sl1+r< q)
and (B.0.102) we get

ElO(t,2,6(,2,9)| S Cu(RE™RIE [L+ [€(ts,2, )]
< Cuy(R)e™ BT+ |y'] (B.0.103)
V(t,y) € [0,50) ® RP, for some constant C14(R) € [0, 00). Hence from (B.0.103),
/:c E8(t.z,&(t, z,y))| dt < x, (B.0.104)
V(z,y) € R ® RP. Now from (B.0.79) we have
O(z,&(ty, z,y)) = /:a 6(t,z,€(ty,z,y))dt, (B.0.105)

V(t,z,y) € [0,00) ® R*® RP. By (B.0.104), (B.0.105), and Fubini theorem one
gets

EO(z,£(t, z,y)) = /D " BBt 2. £(t, 7. y)) dt, (B.0.106)

V(t1, z,y) € (0,00) ® R® ® R®. From (B.0.73), we have

ot+tizy) = E[f@8t+t,29)]
- E[E [f-(z:,f(t+t1,z,y)|fh”, (B.0.107)
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Vt,t; € [0,00),Y(z,y) € R*® RP. Also, from the Markov property of the solution
of (3.4.74) (see Theorem 10.11 of Chung and Williams [7}) and (B.0.73). we have

E[f@&t+tzm) | Fu| = E[f@6t+tz9)| €ty
= 8(t z,£(t,2.y)) (B.0.108)

vt,t; € [0,00),V(z,y) € R*® RP. Thus, from (B.0.107) and B.0.108),
9(t+t11l',y) = E[e(tvrvf(tlax7y))]' (80109)

vt t, € [0,00),V(z,y) € R*® RP. From (B.0.106) and (B.0.107), for each (z.y) €
R*® RP, we have
E[O(z,&(ty,z.y))] = / 6(t +t,.z,y)dt, VYt €[0,00). (B.0.110)
0

Combining (B.0.79) and (B.0.110) shows that

ES(z,§(t.7.y)) — O(z.y) _ /"" bt +tzy) —0tzy)
ty 0 t ‘

(B.0.111)

(ty,z,y) € (0,00) @ R*® RP. Now from Theorem F.0.37 on page 223 (with h 2 Il
one sees that t — 8(t,z,y) is a C'-mapping, that y — 6(¢, z,y) is a C? - mapping,

and the following relation holds
(0:0)(t, z,y) = Ab(t, z.y), (B.0.112)

Y(t,z,y) € [0,00) ® R* ® RP, for A8 given by (F.0.11). In the view of Condition
3.2.1, (F.0.11), (B.0.77), (B.0.89), and (B.0.112), there are constants C\¢(R) €
[0, 00) and ¥4(R) € (0, 0o) such that.

D
88t z,9)| < D |6'(z,9)] |(8,:0)(t, 7, )|

=1

D D
+% Z Z ‘ [O(I’ y)aT(x, y)]i,j. |(6y‘0y’9)(tv z, y)l

i=l j=1

< Cig(R)e™ B [1 + |y[*+7], (B.0.113)
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VY(t,z,y) € [0,00) ® S ® RP. From the mean - value theorem. and the fact that

t — 8(t,z,y) is a C'-mapping one has

6(t +t1,z,y) — 0(t, z,y) = t,(3:0)(s1,,y), for some s, € [t.t + ¢,].
(B.0.114)

Using (B.0.113) and (B.0.114), we get

|9(t +t,z,y) -0t z.y)
t

H(8:8)(s1, 2, y)|

< Cis(R)e™™ R [1+ |y,

vt, € (0,0), V(t,z,y) € [0,00) ® S% ® R®. Thus, since s, € [t,t + ¢,]. we find

‘g(t + tlvxay) - g(tvrvy)
t

< Cig(R)e ™R [1 + |y*~],
(B.0.115)
vt, € (0,00),V(t, z,y) € [0,00) ® S ® R®. From (B.0.115) and the Dominated

Convergence Theorem one has

®O(t+t),z,y) -0t z,y)

tlin}] " dt
t1€(0.00) 7 !
b 6(t+¢t,,z,y) —0(t z,
7| e ostzg)
0 tr—0 t[
t1€(0,00)

- f @)ty b, V(z,y) € Ré® RP,
0
(B.0.116)

where the third line follows since ¢t — 4(t, z,y) is a C! - function. Now

0 T
[ otz = 1m [ @z
0 —+x Jo
= Jm @(T.z,y) ~00,z,y)],  (Boal)
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Y(z,y) € R*® RP. From (B.0.73) and (B.0.74) one has

00.2,5) = E[f(z.£0.2.9)
= f(z,y) (since £(0,z,y) =y)
= f(z,y) - flz), VY(z,y) e R®°® R". (B.0.118)

Moreover one finds from (B.0.101) that
lim 6(T,z,y) =0, ¥(z.y) € R‘® RP. (B.0.119)

Combining (B.0.99), (B.0.111), (B.0.116), (B.0.117), (B.0.118), and (B.0.119), it
follows that
EO(z.&(ti.1.y)) - ©(z.y)

AS(z,y) = tlli_r{}) .
* y) = 0(t. z,
_ lim/ it +tizy) —6(tz.y) .
t; —0 0 tl

= /Ow(a,le)(t,x,y) dt

= lim (6(T,z,y) - 6(0.2,y)]

= flzr)- f(z.y). V(z,y) € R*® RP, (B.0.120)
thus (3.4.81) follows.

Step 3 : Here we establish joint continuity in (z,y) of the mappings
(.’L‘, y) - (ay’e)(xvy)' (Iv y) - (ay’ay"e)(z'y)'
Fix some sequence {(Zn,yn)} in R?® R” such that

lim (zn, yn) = (Zo, Y0)-

n—oc
Using Theorem 5.2 on page 118 of Friedman [12] (on parametric dependence in
the L, - sense of solutions of stochastic differential equations) it is easy, although

tedious, to show that

nl;u»{; E (35tf)(1:,‘,5(t, xn:yn)) - (ae"f)(xo, é(t, Zo, yﬂ))r =0 (B0121)
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and

lim E |(6y’£k)(t1 In, y‘n) - (ay‘Ek)(tv Zo, y0)|2 =0 (80122)

n—0o0

for each t € [0, 00). From (B.0.121), (B.0.122) and (B.0.75) it follows that

im (8,0)(t, Zn,yn) = (8y:0)(t, Zo, %), (B.0.123)

n—ao0

for each t € [0,00). In (B.0.77) fix R € [0, ) large enough that zq,z, € S§.n =
1,2,3,.... Then from (B.0.77), (B.0.85), (B.0.123), and the Lebesgue Dominated

Convergence Theorem, we get

lim (8,:0) (T, yn) = (8,:0) (0. yo) (B.0.124)

n—oc

as required for joint continuity of (z.y) — (9,,0)(z,y). The case of joint continuity
of the second derivative (z,y) — (0,:0,40)(z,y) follows similarly, but uses the
bound (B.0.89) to justify use of the Lebesgue Dominated Convergence Theorem in
(B.0.96).

a

Proof of Proposition 3.4.17 on page 52: Expanding ©(z,&(t, z,y)) by Itd's
formula and (3.4.74), yields

8(z.£(t.z,y) = Oz.y)+ /0 AS(z,£(s, 7, y)) ds

D N

+ 23 [ 0n(z.8(0.7,0)(008) (2,05, ,9)) d5(s),

k=1 n=1
(B.0.125)
Y(t,z,y) € [0,00) ® R*® RP, where AO(., ) is given by (3.2.14). Since by hypoth-
esis the partial derivative functions a,,ké(z, y) and Oy yué(r, y) are polynomially
y-bounded locally in z, it is easily checked that all integrals in (B.0.125) exist, and
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we have

t - 2
E [ |o*"(a.6(0,2.4)@8)z (20| ds < .
(B.0.126)

V(t,z,y) €[0,00) @ R*® IRP. Thus. the stochastic integrals on right hand side of
(B.0.125) are martingales null at the origin, hence

k=1 n=1

D N .
E{ZZ/O o*"(z,£(s,2,9))(3a0) (2, &(s. 7, 4)) dB"(s)} =0, (B.0.127)

V(t, z,y) € [0,00) ® R® ® RP. Fix arbitrary z € R?, choose R € {0, oc) such that
z € S¢. From (3.2.14), Condition 3.2.1, and the hypotheses, there is a constant
C\(R) € [0, 00) such that

48 y)| < iR [1+ 17, vy e RP. (B.0.128)
Thus one sees from (B.0.128) and (C.0.7) (see Appendix C), that
t
/ ElAé(r,E(s,:.y))l ds <20, Y(t,y)€[0.00)® R°.  (B.0.129)
0

Taking expectations in (B.0.125), using (3.4.82), (B.0.127), (B.0.129), and Fubini

theorem, gives
ES(z,6(tz,y)) = O(z,y) + [o E[f(z) - f(z.&(s,2,y))] ds, (B.0.130)

Y(t,y) € [0,00) ® RP. Since O € Li(r)ig, for some r < q/2 < q — 1 (where g is
given by Condition 3.4.7) from Proposition 3.4.14 on page 50 we get

B8(a.g(t,2.9) - [ 8z, dne(©) < CRIE* 1.+ 131"
(B.0.131)

VY(t,y) € [0, 00) ® R, where C(R) € [0,0) and v(R) € (0, 00) are constants which

depend on our choice of R € [0,00) to ensure that z € S§. Now take t = oo in
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(B.0.131) and use (3.4.84) to get

lim £ [é(:r,&(t,:r,y))] = /no é(z:.f) dm.(£) 2 O(z).

t~»00

(B.0.132)

Moreover, since f € Li(r)oe, for some r < ¢/2 < g — 1, one sees from Remark
3.4.15 that

(7(z) ~ £(z,6(s5,2,5))] ds = /0 " F(2) - flz (s y))] ds
= -O(z,y), Vye RP.

t
lim
{—s00 0
(B.0.133)
Thus, using (B.0.132), (B.0.133), and taking ¢t = oc in (B.0.130), we have
8(z) = O(r,y)-O(z,y), Vye RP. (B.0.134)

Now (3.4.83) follows from (B.0.134) and our arbitrary choice of r € R”.
O

Proof of Proposition 3.4.18 on page 53: The proof of this proposition involves
many steps that are very similar to arguments deployed elsewhere in this thesis.
Accordingly, in this proof we shall depart from our usual custom of exhaustively
presenting all details, and will merely summarize the main steps, indicating where

arguments and calculations are similar to those elsewhere in the thesis.

Fix an arbitrary € {1,2,... ,d}. For each (¢,z,y,:) € [0,00) ® R°® R® ® RP
let {m(t,z.y,z)} be the solution of the stochastic differential equation

w252 = o+ [ (@b s+ [ 0oz 85,2, 0)d8(s
+ /0 J(z,6(s.2.9))ms, .y, =)ds

+/' B(z,&(s,z,y),m(s, z,y, 2)) dB(s), (B.0.135)
0
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where J(z, £) is defined by (3.4.65). and B(z.£.n) is the D x N matrix whose (k. n)

- element is given by

B*"(z,£,n) £ (Oeo*™)(z,6)n, Vk=1,2,...,D.Vn=12... N\
(B.0.136)

From Condition 3.4.4 and Theorem 1 on page 55, 56 of Gihman and Skorohod [14]
one sees that partial derivative (3.:£)(¢.z.y) of the solution £(t, z.y) of (3.4.74)

exists in the L, - sense and is given by
(046)(t. 2, y) = m(t, z.y,0). (B.0.137)

Indeed, the right hand side of (B.0.135). with = 20.is just the formal derivative of

-4

the right - hand side of (3.4.74) with respect to z!, and Theorem 4 on page 33, 56
of Gihman and Skorohod [14] justifies this formal differentiation in the light of the
smoothness hypotheses postulated in Condition 3.4.4.

STEP 1 : In this step we shall establish that f(z) given by (3.4.77) is a C? -

mapping on R?. To simplify the notation. put
9(z.£,1) = (Bef)(z.E) (B.0.138)
and
h(z,€,7) = (82 £)(z,€) + g(z. &), (B.0.139)
Y(z,&,17) € R°® R® ® RP. Also put
w(t.z,y) = E[f(z.£(t.z.9))], (B.0.140)

Y(t,z,y) € [0,00) ® R*® RP. From (B.0.137) and Corollary 1 on page 62 of
Gihman and Skorohod [14] we see that z — ¥(t,z,y) is a C' - mapping, with

(Bx¥)(t, z,y) = E[h(z.&(t, z.y) m(t, 2,9, 0))] . (B.0.141)
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Hence from (B.0.141) and the fundamental theorem of calculus, one has. for fixed
(t,z0,y) € [0,00) ® R*® R, that

lb(t- Zo + ae€;, y) - w(trIOr y)
- f (B)(t: 7o + ser, y)ds
0

- / Eh(zo + ser, £(t, 7o + seu, ), mi(t o + se1, y, 0))ds.
]
(B.0.142)

for € R (here ¢, = (0,...,0,1,0,...,0) denotes the usual ! - th canonical basis
vector of R?). In light of Proposition 3.4.14 on page 50 (see (3.4.76)) and (B.0.140)

we have
f(z) = lim w(t.z,y), V(z.y)€ R*® R®. (B.0.143)

We will shortly establish existence of a mapping k' : R® = R with the following
property : for each R € [0,00) there are constants Ci(R) € [0,0c) and 7,(R) €
(0, 00) such that

|Eh(z,£(t, 2, 5).m(t,2,4,0)) — K(z)| < Ci(R)e™ R [1+[y]'*"] , (B.0.144)

Y(t,z,y) € [0,0) @ S§ ® IRP. Then, since the mapping in (B.0.141) is continuous
in z (for arbitrary (¢,y)) and the convergence in (B.0.144) is clearly uniform with
respect to z in balls S%, we see that A(.) is necessarily continuous on R®. Now fix
some g, y, and a in (B.0.142), and make R € (0, o0) large enough that z¢+se; € S3,
for all s € [~|al,|a|]. Then, from (B.0.144), we have

|Eh(zq + sei, E(t, 2o + ser, y), m(t, To + se;, 0))]
< sup |RY(z)| + Ci(R) [1 + jy|'*"] (B.0.145)

zesg

for all s € [~|a},|a|],t € [0,00), and y € RP. Since the quantity on the right of
(B.0.145) is finite and uniform with respect to t € [0,00) and |s| < |a|, we can
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take t = oo in (B.0.142), and use (B.0.143), (B.0.144) and the Lebesgue bounded

convergence theorem to get
f(zo +ae)) - f(xo) = / h'(zo + se))ds, VYa € R. (B.0.146)
0

In view of the observed continuity of k!(.), we see from (B.0.146) that f(.) isa C!

- function, with
(8. f)(z) = R(z), Ve R (B.0.147)

Thus, it remains to show existence of ' : R® — R such that (B.0.144) holds.
An argument similar to that used for establishing (B.1.201) shows that, for each
R € [0.00), there is a constant C,(R) € [0, o) such that

Elm(t.z,y.2)" < |2+ C2(R) (B.0.148)

V(t.z.y,z) € [0,00) @ 2 ® R? ® RP. In view of (B.0.148), (B.1.201), and the
Chebyshev inequality, it follows that {£(t.z,y), m(t,z,y,2),t € [0,00)} is a tight
family of IR?P - valued random vectors for each (r,y,z) € R® ® R® ® RP. Thus,
for each (z.y.z) € R®*® R® ® RP, there is a sequence t, — 20. and a probability

measure p'((z,v, z),.) on R?*P, such that
weak — nli’ﬂ;(f(tm-‘ﬂv y):m(tn, 2,y.2)) = p'((z,4, 2), ). (B.0.149)

We are now going to see that the limit u/((z,y, 2),.) in (B.0.149) does not in fact
depend on (y, =) : An application of Condition 3.4.7 shows that, for each R € [0, 00).

there is a constant v2(R) € (0, oc) such that

Elm(t.z,y1,21) —m(t, z, v2. -?2)|q/2

<e Rz — 2| +{y — gl 1+ |y — wel] 1+ 120192 + |22/%%] }
(B.0.150)

Vz € S%.Vy1,21,¥2,22 € RP vt ¢ [0,00) (the technical details for establishing
(B.0.150) are fairly lengthy, but essentially parallel the steps by which we obtained
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(B.1.202)). In view of (B.1.202) and (B.0.130) we see that

Tim E {{I€(tn 2, 30) = €(ta, 7, 9)| + Iilta, 2,31, 21) = miltn, 2,3 )]**} = 0.
(B.0.151)

for arbitrary y;, 2, € RP. In view of (B.0.151) and (B.0.149) we have

weak — nli_{& (E(tnrzv yl)' ﬂl(tm Iy, :1)) = p'l(('ti Y, :)\ °)v (B0152)

for arbitrary y;,2; € IRP. It follows that the limit p!((z,y, z),.) in (B.0.149) does
not depend on (vy,z), and will be denoted by x!(zx,.). To summarize, for each
z € IR%, there is a sequence t, — oc and a probability measure y!(z,.) on R?*P

such that
weak — lim (€(tn. T, y), Miltn, 2,4, 2)) = pl(z,.), (B.0.153)

for all (y,z) € R*®. Now, for each z € R® (3.4.74) and (B.0.135) is a pair of
classical It6 stochastic differential equations, and hence defines a Markov diffusion
( with state space R*P ) whose transition operator {T7} is easily seen to have the
Feller property (i.e. (TF¥¢)(y,z) is a real - valued bounded continuous function in
(y,2) € R*P when ¢ is a real - valued bounded continuous function on R?P). For

bounded continuous ¢ : R*? — R, we see from (B.0.153) that

lim (TZ 6)(y. 2) = &(z) & /R oy, Mz d, ), (BO1SY)

n=—00

for each (z,y,:) € R* ® R®? ® IRP. Then, by Lebesgue Dominated Convergence
Theorem and (B.0.154),
Jim TA(T,0)(y, 2)
= lim E [(T7,0)(§(t. 2, y), m(t, 7.y, 2))]

=E [nlgg (T 9)(§(t, 2, 9) m(t, 2, v, z))]
= §(z), (B.0.155)
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for arbitrary (¢, z,y,z) € [0,00)® R*® RP ® RP. Also, since T7Fo is bounded and
continuous on R?P ( by the Feller property of {T7} ) we can apply (B.0.154). but
with ¢ replaced by T7 9, to get

lim T2 (TP s) = [ TRy @ dw ). (B
for arbitrary (¢, 1,y,2) € [0,0¢c) ® R®® R® ® R®. Now

THT,0) = T}, (T.0)
(since {T{} is a semigroup), thus comparison of (B.0.155) and (B.0.156) gives

[ Ty Yl (2. d(y, ) = / oy, Nz dly', ). (B.0.157)
Rw RZD

for each (t,z) € [0,oc) ® R, each bounded continuous function ¢ : R*? — R. It
follows from (B.0.157) that, for each z € R®, the measure p!(z,.) is an invariant
probability for the Markov diffusion defined by (3.4.74) and (B.0.135). To see that
¢!(z,.) is the only such invariant probability, let v(z,.) be some arbitrary invariant
probability for the Markov diffusion defined by (3.4.74) and (B.0.135). Then for

arbitrary bounded and continuous ¢ : R*? — R, we have

/ (TENY', 2wz d(y', ) = / oly', Z\w(z,d(y'.="), (B.0.158)
R3D R1D

for all n = 1,2,3,.... Then, from (B.0.154), (B.0.158) and Lebesgue Dominated

Convergence Theorem,
f oy, 2l (z.d(y', &) = / oy, iz, dy, =) (B.0.159)
R3D RiD
Since (B.0.159) holds for arbitrary bounded continuous ¢, we see that
v(z,.) = pl(z,.)

as required for uniqueness. To summarize, we see that, for each z € R?, the Markov

diffusion (3.4.74) and (B.0.135) has a unique invariant probability measure which
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is given by p!(z,.). We therefore conclude that
weak — llim (€(t, z,y).mlt, z,y,2)) = plz,.), (B.0.160)
for each (z,y,z) € R*® R” ® RP. We next show that the integral

Mﬂé/'hu@mﬁmaam) (B.0.161)
R2D

exists for each r € R?, and that (B.0.144) holds for the mapping A!(.) in (B.0.161).
From (B.0.139) and (B.0.141) we see that

E[h(xvé(tvray)am(t7r! y!O)]
= E[(0x fNz.&(t.z,y))] + E [g(z.&(t. 2. y), m(t. 2.y.0)].
(B.0.162)

(that the expectations in (B.0.162) exist follows easily from (3.4.74), (B.0.135), the
postulated polynomial boundedness in y of (3, f)(z, y) and (8, f)(z,y), and Lemma
C.0.6) on page 203. Consider the second term on the right hand side of (B.0.162)
: Put

0(t,2.9,2) 2 E [g(z,£(t,2,y), m(t. 7,5, 2)] . (B.0.163)
By the Markov property of the diffusion {£(¢t, z,y), m(t,z,y, z)}, we see that

E[g(a:.{(s +t,.z. y)v TJ'I(S +t,z, Y, Z))] =E [G(t,I,f(S,I,y), 77:(3, Iy, :)] y
(B.0.164)

Vs,t € [0,o¢).Y¥(z,y,2) € R*® RP ® RP. Now an application of Condition
3.4.7 shows that, for each R € [0, 0), there are constants C3(R) € [0,00) and
13(R) € (0,oc) such that

|E [g (Iv 5(5 + tv z, y)r '?l(s + tw z, Y, 0)] - E [g (Iv E(t: T, y), m(tvxv Y, 0))“
< Cy(R)e ™R [1 4 [y**+], (B.0.165)
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Vs, t € [0,00),¥(z,y) € S4 ® RP (the technical details for establishing (B.0.163)
are fairly lengthy, but parallel very closely the steps by which we obtained the
inequality (B.0.55)). Likewise, considering the first term on the right hand side of
(B.0.162), we can use Condition 3.4.7 to see that, for each R € [0,0) there exist

some constants Cy(R) € [0, 00) and v4(R) € (0, 00) such that

|E (82 f) (2, &(s + t,2,y))] = E[(Oxf)(z,&(¢, 2, y))]
< Cy(R)e™™ Bt [1 4 |y|'*7], (B.0.166)

Vs,t € [0,),¥(z,y) € S ® RP (again, the technical details for establishing
(B.0.166) are similar to those for the inequality (B.0.55)). From (B.0.165), (B.0.166),
and (B.0.162), for each R € [0,20) there are constants Cs(R) € [0, 20) and 15(R) €

(0, 00) such that

IEh(z.(s+t.z.y).m(s+t.2.y.0)) — Eh(z.£(t. z.y). m(t. z.y.0))|
< Cs(R)e ™R [1 4+ |yj'*]. (B.0.167)

Vs, t € [0.20),Y(z,y) € SE ® RP. Now, in view of (B.0.138). (B.0.139), and the
hypothesis that (3, f)(z,y) and (O« f)(z.y) are polynomially y - bounded of order
r locally in z. we see that for each R € [0.o0) there is a constant Cs(R) € [0, 00)

such that for 3 € (1, )

h(z. &) < 2210 f)(z, &) +2°1(Bef)(z,€)I° Inf
< Cs(R)[1+1€1%] [t + 1], (B.0.168)

¥(z,£,1) € S4 ® R® ® RP. Thus from (B.0.168) and Holder’s inequality,

E |k (z,£(t, z.y), m(t, 2,3,0))°
< C:(R) {E [1+6t.z, ) )} {E [1 + Im(t, z,9) ]},
(B.0.169)
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Y(t.z,y) € [0,00) ® S% ® RP and some constant C;(R) € [0,0¢). Now fix 3 €
(1,q/2r) N (1,q/2) (recall that r is postulated in the range [0, ¢/2), so that
q/2r > 1 ). Since 23 < q, we get from (B.0.148) that

Eim(t,z,y,2)[* <1217 + Cs(R), (B.0.170)

Y(t,z,y,2) € [0,00) ® S& ® RP ® RP, where C3(R) € [0,00) is some constant.
Since 28r < gq, we see from (B.1.201) that

El&(t, z,y)* < |y|* + Cy(R), (B.0.171)

Y(t,z,y) € [0,00) ® S% ® R, where C4(R) € [0,00) is a constant. Combine
(B.0.169), (B.0.170}), (B.0.171) to get

E|h(z,&(t,z,y), m(t,7.3,0))° < Cio(R) [1 + [y1?], (B.0.172)

Y(t,z,y) € [0,0)® S ® RP, where Co(R) € [0,00) is a constant. Since 3 > 1,
it follows from (B.0.172) that {h(z,&(t,z,y),m(t,z,y,0)), t € [0,00)} is uniformly
integrable for each (z,y) € R*® RP. Thus, from (B.0.160) we see that the integral
in (B.0.161) is defined and

im Eh(z,§(t,z. y), m(t, z,y,0)) = /Rm h(z,&,n) p'(z:d(&,m) (B.0.173)

for each z € R? (by Theorem 5.4 on page 32 of Billingsley [4]). Taking s — oo in
(B.0.167), together with (B.0.173) and (B.0.161), gives constants C;(R) € [0,00)
and v,(R) € (0,00) such that (B.0.144) holds. We have therefore established that
f(.) defined by (3.4.77) is a C! - mapping on IR? (with derivative (3, f)(z) given
by h!(z) defined by (B.0.161)). To show that f(.) is a C? - mapping one procedes
in much the same way as before, only now we must take a formal derivative of
m(t,z,y,z) with respect to (say) z*, to get the L, - derivative (8.8.)(t,z,y),
and then follow the preceding arguments.
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STEP 2 : We show that (3.:0)(z,y) exists, is continuous in (z, y), and is polyno-
mailly y - bounded of order (r + 1) locally in z. Put

f(z.€) = f(z.€) - f(z) (B.0.174)
and
o(t,z,9) = Ef(z.£(t z,9)). (B.0.175)
Then, from (3.4.78),
O(z,y) = /0 N o(t, z,y)dt (B.0.176)

¥(z,y) € R*® RP. Now fix some z, € R®. From (B.0.175) and (B.0.176), for

each a € IR, we can write
(= <]
O(zo + aer, y) — O(zo,y) = / [6(t, zo + aer, y) — @(t, T, y)} dt. (B.0.177)
0

Now we have seen in Step 1 that, for each t € [0,¢),y € RP, the mappings
r— Ef(z,&(t,z,y)) and £ = f(z) are C! - functions on R¢. Thus from (B.0.174)
and (B.0.175) the mapping z — o(t,z,y) is a C! - function. Therefore:

o(t. g + ae, y) — o(t, o, y) = Ao(a,ao)(t,xo + se;, y)ds, (B.0.178)
whence from (B.0.177) we have
O(zg + aey, y) — O(z,y) = /:D {/0‘0(3,:4))(15, Io + se;, y)ds} dt. (B.0.179)
From (B.0.140), (B.0.141), (B.0.147), (B.0.174), (B.0.175),

(a:‘¢)(tvxv y) = (3zl¢)(t'1‘7 y) - (az‘f)('r)
= Eh(z,£(t,z,y),m(t.z,y,0) - k'(z).  (B.0.180)

Thus by (B.0.180) with (B.0.144) one obtains

1828)(2,2,9)| < Co(R)e™™R* [1 4 [y[+7] (B.0.181)
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vz € S%,vy € RP vt e [0.oc). From (B.0.181) one sees that

/Om /olal |(05:0)(t, To + ser, y)ds|dt < oo, (B.0.182)

Va € R,Yy € RP. Thus from Fubini’s theorem with (B.0.179):
O(zy + aey, y) — O(zo,y) = /00 {/Ox(a,,a)(t,xo + se,,y)dt} ds, (B.0.183)
Va € R,Vy € RP. Now an easy but tedious computation shows that the mapping
(z,y) = Eh(z,&(t,z,y),m(t, z,y,0)) (B.0.184)

is continuous on R4"? for each t € [0, ), and since £ — h!(r) was shown to be
continuous on R?, we see from (B.0.180) that (z,y) — (8,:6)(t.z,y) is continuous
on R+P for each t € [0,00). Thus, by (B.0.181) and Dominated Convergence

Theorem one finds that
(z.y) = /0 m(@,xé)(t,r,y)dt R RP > R (B.0.185)
is continuous. In particular, for each y € R?, the mapping
s = /Om(c?,:cb)(t..ro + ser, y)dt (B.0.186)

is continuous. Thus from (B.0.183) and the fundamental theorem of calculus, we

have

(0.0)(z0,y) = /Ow(azxo(t,:ro,y)dt, (B.0.187)
and therefore (B.0.185) shows that

(z,y) = (0:20)(z,y): R*® R° - R

is continuous. Moreover, from (B.0.187) with (B.0.181), for each R € {0, o), there
is a constant Cy;(R) € [0, 00) such that

(8O} (z,y)| < /Oml(az«é)(t,z,y)ldt
< Cu(R)[1+yI**], (B.0.188)
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¥(z,y) € S ® R®, so that (8,:0)(.) is polynomially y - bounded of order (r + 1)
locally in z. To conclude, we have shown that (8.0)(z,y) exists for each (z.y) €
R*® RP, is continuous in (z,y), and is polynomially y - bounded of order (r+1) lo-
callyin z. In the same way one establishes that the second derivative (8,:8,:0)(z,y)
exists for each (z,y) € R*® RP, is continuous in (z.y), and is polynomially y -

bounded of order (r + 1) locally in z.
O

Proof of Proposition 3.4.25 on page 64: Condition 3.2.1 and (3.2.27) ensure
that F' € L;(0)oc, thus for each R € [0, 00) we have

)P"(x,y)| <C(R)[1+yl]. Y(z.y)€SL®RP, i=1.2.....d
(B.0.189)

for some constant C;(R) € {0,0). Then Proposition 3.4.14 on page 50 shows that
certainly (see (3.4.75))

[l dri) <, voe R (B.0.190)

and there are constants Cy(R) € [0,00), 71(R) € (0,20), such that (see (3.2.30)
and (3.4.76) with r; = 0 and f £ F7)

lEF’(:r £tz y )‘ < Cy(R)e™ R[] 4 [yl (B.0.191)

v(t, z,y) € [0. m)@Sﬁ@RD. From (B.0.189), (B.0.190) and (B.0.191), we see that

/R., { fow |F@.v)|[EF @ &5 2,9) ds} dr.(y)

< [Lcumi+in{ [~ CRe @ 1+ s analy
< oo, (B.0.192)

V¥(z,y) € S& ® RP. Since R € [0, ) is arbitrary, this bound holds for all (z,y) €
R*® R”. From Proposition 3.4.17 on page 52 we know that the solution &/ (z,y)
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in (3.2.28) is a unique modulo function of z only. Thus, by Remark 3.2.12, without
loss of generality we can take the ®/(z,y) in (3.2.28) to be given by

& (z,y) = / EFi(z,E(s,z,y)) ds, V¥(z,y) € RP® RP. (B.0.193)
0
Thus, from (B.0.192), (B.0.193) and Fubini’s theorem we have

P p®(a) dralo) = [ [ [ B EP e (s, 2.4)) drsfo)| de.
(B.0.194)

RD

V(z,y) € R* @ RP. Now put

o(t,z,y) 2 E [F‘j(x,f(t,x,y))] . Y(t,z,y) € [0.)® R*® RP.
(B.0.195)

By the Markov property of {£(t; z)} (see e.g. Lemma 10.10 of Chung and Williams

[7]) we have

E[F’(I,E-(S;I))lf—(ﬂ,r)] = #(s.1,£(0,z)), aus., (B.0.196)

— . -

V(s,z) € [0.00) ® R®. Hence, by stationarity of {(t,z)},
E [P'(x,g‘(o,z))Fi(z,g‘(s,z))] = z,£(0,2))F' (z,&(s, z)) | €0, r))]]

£[F
F(2.60,2)E [P(z.§(s.2) | 0,2))]
| F(2,£(0,2))8(s,2,£(0, 7))

= o F-"(:z,y)0(S,I, y) dﬂ,(y),

tm

F.“.
I,

il it
ty by

(B.0.197)
Y(s, ) € [0,00) ® R®. Now combine (B.0.195) and (B.0.197) to get

E[F(.60.0)F(z,&(s,2)] = /R , F@vEF (z,6(s,z,y))dm(y),
(B.0.198)
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o

¥(s,z) € [0,00) ® R®. By (B.0.194) and (B.0.198), one has

Fan)® (@ dnel) = [ B [Fla.60.2)Pe&o.2)] ds
(B.0.199)

RP

Yz € R®. Now using (3.2.28), (3.2.29), and (B.0.199), we get

a(z) & /0 ” {E [.F""(z,g(o, x))Fi(z,é(s,z))]
+E [Ff(x,g'(o,x))ﬁ'*(x,g‘(s,I))] } ds.
(B.0.200)

Vre R%i,j=1,2,...,d, and thus (3.4.114) follows.

B.1 Some Useful Results

In this section, we present some results which are needed for proofs of Proposition

3.4.14 on page 50 and Proposition 3.4.16 on page 51.

Proposition B.1.1. Suppose Conditions 3.2.1, 3.4.4, and 3.4.7 hold. Then, for
each R € [0,00) and r; € [0,q] (q defined in Condition 3.4.7), there are constants
C(re, R) € [0,00) and v(rs, R) € (0,00) such that

Elg(t,z,y)|™ < ly|™ + C(re, R), (B.1.201)

E&(t,z,y1) - E(t,z,y2)| < e~ 1(r Rl lyy — ygl’l2 , (B.1.202)

Vr € S;‘Q,Vy,yl,yg € RP vt e [0,00) (recall Remark 3.4.13 for the definition of
E(t,l',y))-
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Proof: Fix some R € [0,00), and fix z € S% and y, y1, 42 € R®. Put
¢(§) £ le°, vEe RP, (B.1.203)

(where ¢ is given by Condition 3.4.7). From Remark 3.4.13, (B.1.203), and It

formula, one can write

¢t
oE(tz.y) = Iy + [o Ap(z. £(t.2.y))ds

D N
33 [ Oeotttzp) ozt 2,0)) d5"Gs)
1=1 n=1

(B.1.204)

Vt € [0, 00), where Ap(., .) is defined by (3.2.14). In view of Condition 3.2.1. Lemma
C.0.6 on page 203 (see (C.0.7)), and (B.0.16), we see that

[0 E|(Be0)E(s.2,4)0" (2. (s, 2, 9))[* ds
< C\(R) [ EJ€(s, 2. 9)[ds
0
<00, Vte o), (B.1.205)

for some constant C,(R) € [0,00). Thus the sum of stochastic integrals on the right
hand side of (B.1.204) is a continuous martingale which is null at the origin, hence
has zero expectation. Moreover, from Proposition 3.4.12 on page 50 and (B.1.203),

we have
lAp(z,£(s.z.y))| < a(R) +v(R)I&(s,z,y)I°. Vs €[0,1], (B.1.206)

where a(R) € [0,00) and y(R) € (0,00) are constants. Thus, from Lemma C.0.6
on page 203 and (B.1.206):

t
/ E|Ap(z,£(s,1,y))| ds < o0, Vte€[0,). (B.1.207)
0
In view of (B.1.204), (B.1.207), and using Fubini’s theorem we get

Ep(€(t,2.y) = Iyl + /0 E[Ap(z,E(s,z,y)| ds, Vte€[0,00). (B.1.208)
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Now, put
8(t) & Eo(E(t,z.y)), Vi€ [0,0). (B.1.209)

In view of (B.1.206), Lemma C.0.6 on page 203 (see (C.0.7)), and the Dominated
Convergence Theorem, we easily see that s — E [Ap(z.£(s,7,y))] : {0.c) = R is
continuous. Thus from (B.1.208), (B.1.209), and Proposition 3.4.12 on page 50. it

follows that

d;‘;(t_‘l = E[Ap(z.£(t. 7,y))]

< —4(R)6(t) + a(R), Vte€ [0.00). (B.1.210)

Thus from (B.1.210), one easily sees that

8(t) < e R19(0) + % [1-e® vte 0, ). (B.1.211)
Hence, by (B.1.211), (B.1.209) and (B.1.203),

. 9 < oAy g a_(R)
Elg(tz.y)" < eyt + 2,

Without loss of generality we take r € (0.q]. By the Liapunov inequality and
(B.1.212), we find

vt € [0.00). (B.1.212)

(E &tz y)1"*

=(R)ty, 19 a_(_R_)]l/q
[e W'+ TR

< |yl +Ca(R), Vte|[0,00), (B.1.213)

(E &t 2, y))™

IA

IA

where Ca(R) £ [a(R)/7(R)]%. Then, from (B.1.213) and (B.1.212), we see that,
for each r, € [0, 4],

E|&(t,z.y)|” < lyI™ + Cs(r2, R), Vt€(0,00), (B.1.214)

where C3(r2, R) € [0, 00) is a constant. Thus (B.1.201) is proved.
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Next we prove the inequality (B.1.202). To establish this result fix some R €
[0, 00), and fix z € S%, and y, y1,y2 € R, and also put

AE(t) 2 £(t,z.y) - E(t.2.ya). (B.1.215)
8(t) 2 E|AL@R)°. (B.1.216)
Ab(t) £ b(z,(t.z.y1)) - bz E(t.2.32)), (B.1.217)
Ac(t) £ o(z.E(t.1.31)) ~ o(z, E(t. 7, 4a)). (B.1.218)

From (3.4.74), (B.1.215), (B.1.217) and (B.1.218) we have

A&(t) £ (h —y2) + /t Ab(s)ds + /l Ao(s) d3(s), Vte[0,cc).
0 0

(B.1.219)
Put
o(€) 2 €18, VEe RP. (B.1.220)
Then, by (B.1.219), (B.1.220), and using It6 formula, one sees that
¢ D
AAEED) = -l + | D00 2N AG(s) dAs)
1
+§/ ;; 06 Oee 0)(AL(s)) d [AE, AL (s), VYt € [0, 00).
(B.1.221)
From Fact B.0.9 on page 139, we have
(Og0)(€) = q& 1§12 vEe RP, (B.1.222)

(0e:0ee0)(€) = q&;kl€197% + q(g — 2)€7 €5 €|, VEe RP.
(B.1.223)
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Also from (B.1.219) we have

N
[Ag, A% (1) = [Z / Ac?™(s)d3™ (s / Ao*"(s) d3“(s)]( .

N 1\:0

= % [ 20m(s) A0Fn(s) ™ 71()
n;l m=1

= "{:l-/o. Ao?™(s) Ac*™(s) ds, Vt € [0.x)

(B.1.224)

Using (B.1.222) and (B.1.219), the second term in (B.1.221) can be written:

5 [ @oonacs) dag)
J=l
—qz f |AE($)TAL (s) d(AE(5))

=g /0 IAE(s)[ 3 AE(s))Td(AE(s))
. [0 |AE(s)[2 (AE(s))T Abs) ds

+q fo IAE(s)" (AE(s))T Aa(s) dB(s).
(B.1.225)

vt € [0,00). Moreover, by (B.1.223) and (B.1.224), for the third term in (B.1.221)
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we have
1 D D t .
5;;/0 (Be: B 0) (AE(s)) d [AE. AEY] (s)
=3 Z [ 1agar-aaeis
q D D
-2y [ A8 (s)AEH(s)| AE(s)|"* d[AE, Agk](s)
=1 k=1
q D N ’ t
== |AE()]772 |Ac?™(s)|? ds
13 [ g
D
+50- Z f |AE(s)|* AL () AL (5) Ad™™(5) Aok ™ (s) ds
= =1 k=1 m=1
= 5/ |AE(s)|972 |Aa(s)|? ds
+lig-2) / AE(s)[9* (AE(s))T [A(s) (Aa(s))T] A&(s) ds
(B.1.226)
vt € [0, o).

Combining (B.1.221), (B.1.225), and (B.1.226) one has
AEDI = Iy —wal" + g fo |AE(s)1T (AE(S))T Ab(s) ds
=7 | AE($)19 (AE(S))T Ao(s) dB(s)
# 50 [ 1€+ 180(6)7 ds

+ 0= [ A6 (AG)T [Ao(s) (Aa(s)7] Acls) s,
(B.1.227)
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Vt € [0,00). Now by (B.1.217), (B.1.215), and the mean value theorem we get
Ab(s) = [/01(3¢b) (z.£(s. 7. y2) + 0(24(s))) dB| A&(s)
- /0 T (2.€(5.2.42) + 8 AE(s)) AE(s) db. (B.1.228)
(recall (3.4.65) where J(z.£) = ng( £)). Thus from (B.1.228).

(A&(s))T Ab(s) =/0 (AE(sNT J (z.&(s.z.y2) + 0 AL(s)) AE(s) db.
(B.1.229)

Now, by Lemma C.0.12 on page 205. one has for the integrand of (B.1.229).

(A&(s)T J (z.£(s. 7. 32) + 8 AL(s)) AL(s)
( E(NT JT (2.6(s, 2. y2) + 0 AL(s)) A&(s)

= —(A‘( N [T (2.&(s.2.92) + 8 A&(s)) + T (2.€(5. 2.92) + 6 A&(s))] A&(s)
< A(R) |A&(s)]2. (B.1.230)

[ 3]

where A;(R) is defined by (3.4.66). Thus. from (B.1.230) and (B.1.229). we have
|AE(s)1972 (A&(s))T Ab(s) < A1(R) |AL(s)I°. (B.1.231)
Moreover, from (B.1.215). (B.1.218) and Lemma 3.4.5 on page 47
[AE(s)1772 |Aa(s)|* < AJ(R) |AE(s)*. (B.1.232)
Also

(A&(s))T [Ac(s) (Aa(s)T] AL(s)
< Trace [Ao(s) (Ao(s))T] 1A&(s)?
< |Aa(s)[* |AL(s) . (B.1.233)
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Thus one has from (B.1.232) and (B.1.233)
|AE(s)17™* (AE(s)T [Ao(s)(Aa(s))T] A&(s)
< AE(9)1F % A0 (s)?
< AJ(R)AL(s). (B.1.234)
By Lemma C.0.6 on page 203 (see (C.0.7)) one easily sees that
/0: E|AE(s)|* ds < oc.  Vt € [0,0¢). (B.1.235)

Thus the stochastic integral on the right hand side of (B.1.227) is a continuous

martingale null at the origin. Now, put
8(t) 2 E|AL(t)). (B.1.236)
Therefore, taking expectations in (B.1.227) and using Fubini's theorem, we get
0(t) = In —yzl"+4/utE[!'—\6(5)l“"z(AE(S))TAb(S)] ds
+g /0 'E [|A(s)12 A ()] ds

+2a-2) [ E (26088 [Ao(s)(3o(s)7] At(s)] ds.

(B.1.237)
Vt € [0,00). Hence (B.1.237). (B.1.231), (B.1.232), and (B.1.234) implies
9(0) = 91 - 1ol (B.1.238)
and
P = gE[IagnI2(agw)T sb()

+2E (18601 A0(1)]

+2(g — 2B [|A§(1)1* (A1) [Ac(t)(Ac()T] AE()]

< gAu(R)B(E) + SAS(RIB() + 3(q — DAL(RIF(), Vi € [0,00)
(B.1.239)
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Thus, from (B.1.239), we have

%(;l < —m(R) 8(t). Vte€0,00). (B.1.240)
where
n(R) £ —gi(R) - 3 = 1) [Ao( R)*. (B.1.241)

By Condition 3.4.7, we observe that v, (R) € (0,00). Combining (B.1.238), (B.1.240).
and (B.1.216), gives

E|AE(t)|? < e Py — 1), VE € [0, 00). (B.1.242)

Without loss of generality take r, € (0,q]. Now, by Liapunov’s L,-inequality and
(B.1.242), for each r; € (0, g, one has
E|Ag(t)] < e Ry, — o], Yt € [0,00).
(B.1.243)

where y(r,, R) € (0, 00) is a constant. Thus from (B.1.243), (B.1.242), and (B.1.215),

for each r; € [0, g], we have
Elg(t.z.y1) — €(t.1.30)|? < e Py — | VE € [0,00), (B.1.244)

as required.

0

Remark B.1.2. For the next proposition we will need the notion of the partial
derivatives (0,:§)(t,z,y) and (3,:0,:§)(t, z,y) of the solution of (3.4.74) in a cer-
tain'Lg - sense which is made explicit in Appendix F. The bounds developed in
Proposition B.1.3 on page 184 are essential for the proof of Proposition 3.4.16 on

page 51.
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Proposition B.1.3. Suppose that Conditions 3.4.4 and 3.4.7 hold. Then, with
reference to Remark B.1.2 and Appendiz F, for each R € [0, 20) there are constants
C(R) € [0,50) and v1(R),y2(R) € (0.2¢c), such that

E|8yft.z,y)|' < e R, (B.1.245)
E|8,0,:&(t, z, y)| < C(R)e miAr, (B.1.246)
V(t,1,y) €[0,0)®SE® R°.VI,k=1.2.....D.
Proof: Fori=1,2,... D, define the RP-valued random vector

B(tz.y) = (Bp€)(t.ry), V(t.z.y) €[0,%) ® R*® R°.
(B.1.247)

Also, for z € R® and £.9 € R”, let B(z,£, V) be the D by N matrix whose (k. n)

- element is defined by
B (z2.£,9) 2 (8ea*™)(z. £), (B.1.248)

Vk=1,2,...,D,vyn=123,..... V (recall that (8eo*")(z,&) is a row vector with
D entries given by dac*"(z,£).I = 1,2,... . D). Moreover, write &(t) for £(¢, z,y)
and 9;(t) for ¥;(t,z.y). when there is no risk of confusion. By Remark F.0.32 and
{3.4.74), one has

D
Oz = bur Y | (@126, 2, 9005, .41

Y [ @01z 800,2.90)60,805,.9005°6),

n=1 =1
(B.1.249)

V(t.z.y) € [0,00) ® R*® R®, Vi, k = 1.2,3,...,D, (where d; x is the Kronecker
delta). Using (B.1.247), (B.1.248), and the D x D Jacobian matrix J(.,.) defined
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by (3.4.65), the system of equations in (B.1.249) can be written in vector form as

follows
Ji(t) = e, +/: J(z.§(s))Vi(s) d8+/0' B (z.&(s), 9i(s)) d3(s),
(B.1.250)

Vi=1,2,...,D, (where ¢; = (0,....1.0,... ,0)7 is the usual i-th canonical basis

vector in IRP). Now put
o(9) 219, vo e RP. (B.1.251)

By (B.1.250), (B.1.251), and using Itd’s formula, one has

c3(8) 2 |e,|*+2/ (@02) (8.(s)) d(s)

=1

LYy [ @utus) @51 4[58 6
A (B.1.252)
vt € {0,00),Vi =1,2,...,D. From Fact B.0.9 on page 139 and (B.1.251) we have
(Bas)(9) = 4¥|9)°, (B.1.253)
(89:85e0) (V) = 4]9|%8;x + 8V 0%, (B.1.254)

Vi, k =1,2,...,D. Thus, from (B.1.250) and (B.1.253), for the second term on
right hand side of (B.1.252) we have

Z [ (85 2) (9:(5)) dB(s)
-4 [o 19,(5) 2(84(s))T di(s)
=4 / 19.(5)1? (9(s))7 I (2, £(5))u(s) ds

r4 [ 19:(5)F (3:(5))7 B(z,£(s), Bu(s)) dB(s),
(B.1.255)
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From (B.1.250), the co-quadratic variation in (B.1.252) is given by
[#1,9¢] (2)
. N
= [/ Y B(z.£(s), 0i(s)) dB"(s),
0

n=1

. N
/0 S BE™(z,E(s), duls)) d3™(s) | (1

N N
2 z/o B™(z,§(s), 9:(s)) B"™(2.£(s), u(s)) d[3". 3] (s)

m=1 n=1

N o
=2 fo B (z,£(s), 5i(s)) B*"(z.E(s), Bi(s)) ds
n=1

k

- /0 [B(z.£(s). 9:(5)) BT (z,€(s), B,(s))]** ds

k

a / ' [BBT(z.£(s), 8:(s))]* ds
0

(B.1.256)

Vt € {0,00). Thus, from (B.1.256) and (B.1.254), for the third term in (B.1.252),
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one gets

D D n
3 [ @ntuo) tuis)) a2, 0

1=1 k=1 1 - ‘ k
522/ (0g:Ogx ) (Vi(s)) [BBT r.£(s).9(s ))]] ds

N —

Now, by (B.1.251), (B.1.252), (B.1.255) and (B.1.257), it follows that
2, |e‘|‘+4/w T I(z.£(5))9,(s) ds
+2 /0 Trace [BBT (z.£(s), 9.(s))] [9:(s)|* ds
- /‘w( )T (BB (z,(s), 3:(s))] Bu(s

+ [ 19.()[F (9:(s))T Bz, £(5), B(s)) dB(s).
(B.1.258)

Yt € [0,00). One easily sees from Lemma C.0.6 on page 203 that the stochastic

integral on right hand side of (B.1.258) is a continuous martingale, hence

{ / 194(s)? (9:(5))T Blz. €(s), 3i(s) dB(S)} -
(B.1.259)
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V(t,z) € [0,00) ® R?. Now put
0,(t,z,y) 2 E [9i(t.z,y)[*] . Y(t.z,y) €[0,0c) ® R*® R®. (B.1.260)

Thus, from (B.1.258), (B.1.259) and (B.1.260), we get
b(t,z,y) = 1+4/E|ﬂ 12 (9:(s))T J(z, &(s))D i(s)] ds

+2/ E [Trace (BBT(z,£(s), 9i(s))) |9:(s)I*] ds

+4 / E (( T(BBT(z,&(s), 9i(s))) 9i(s)] ds.
(B.1.261)

Thus

(@8)(t,z,y) = 4E [|9:(8) (9:(2)T J(z, £(£))0:(t)]
+2E [Trace (BB (z,£(t), 9i(t))) 19.(2)]*]
+4E [(9:(1))T (BB (z.£(¢), 9:())) 9:(t)] ,
(B.1.262)

vt € [0,00), where 6,(0,z,y) = 1. Now fix R € [0,0c). From the definition of
Ai(R) (see (3.4.66)) and Lemma C.0.12 on page 205:

J(z.8) + JT(z.6) 9
2
< A(R)Y?, VreSd vede R (B.1.263)

T J(z,€)9 = IT

Moreover, since BBT(z,&, ¢) is positive semi-definite, one easily sees that
9T [BBT(z,£,0)] ¥ < Trace [BBT(z.£,9)] |9]*, Vz € R4 V€9 € RP.
(B.1.264)
Combining (B.1.262), (B.1.263), (B.1.264) and (B.1.260) one has
(8:8))(t, 7,y) < 4A1(R)Bi(t,z,y) + 6 [Trace [BBT (z,€(t), 5:(1))] 19:(6) ],
(B.1.265)
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V(t,z,y) €[0,0) @ S ® R®. From (B.1.248), (3.4.64), and Cauchy-Schwarz, one

observes that

N D
Trace [BBT(z,£,9)] = ZZ[B‘“"(::,&,&)]?
=

IA IA
s L=
= Mo
f'_\_Q) ——
S Mc
§ =
m D
e =, %
= 2
=
m
=
=
(]

< A(R)|9, VreS%.VE e RP.
(B.1.266)
By (B.1.265), (B.1.266) and (B.1.260) we have
(B:61)(t, 7,y) < 4A(R)By(t, z,y) + 6AZ(R)6,(2)
< -n(R)6i(t), (B.1.267)
for
1(R) £ —4A,(R) — 6A%(R). (B.1.268)

From Condition 3.4.7 we have
4A1(R) < 2(1 - q)A3(R)
for a constant ¢ € (8, o), thus
0 < [2(g — 1) — 6]A2(R) < —4A;(R) — 6A%(R)

so that v, (R) € (0,00). Now, from (B.1.267), (B.1.268), and the fact that 8,(0,z,y) =

1, one sees that
gl(ta z, y) S 01(01 I, y)e—ﬁl(ﬂ)t

= e—’n(ﬂ)t1 Y(t,z,y) € [0,00) ® Sg ® R (B.1.269)
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Thus, the first inequality of (B.1.245) follows from (B.1.260) and (B.1.269), i.e.

Eit,z,y)' <e ™ v(t,r,y)€[0,00)0 Sg®RP.  (B.1.270)

Next, we establish the second inequality of (B.1.246). put
Xt 2,y) = 8,0,E(t z,y), (B.1.271)

for i,j = 1,2,...,D. From Remark F.0.32 and (B.1.249) the second derivative

0,,0,€) (t.z,y) can be computed formally as the solution of the following equation
v Oy

D t
(8,0, (t.z,y) = Z/ (8::b*)(2,&(s,2,Y)) (8,:0,&") (s,x,y) ds

53> [ 100008 (2,805,290
=1 p=1
(8,.€7) (s, z.y) (9, f)(s,r.y)] ds

N D ¢
Y / (840%™ (2,6(5,2.9)) (BysB,:€") (5.2, ) dB"(s)

n=1 (=1

o

N D D

.20
p=1

n=1 (=1

[ ngaexa ) (z,&(s,z,y)) %

0
( ylg )(S,I.y) (3y-§‘)(S,I,y)] dﬂn(s)
(B.1.272)

V(t,z,y) € [0,00) ® R®® RP Vi, j,k = 1,2,...,D. Rearranging (B.1.272), for
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arbitrary i,j,k € {1,2,... , D}, we get
0o (.2) = [ O)(a.El62.0) (B0,6) (5,2.0)
+ [ [0y €)(s.2,1)] [(Bed*) (2. E(s.2, )] x
[(0)(s.2,3)] ds

N t
+Z/0 [(agak‘")(r,f(s,x,y)] [(ay,ay{)(s.r.y)] d3"(s)
n=1

N .
+ 3 [ (8006 20)]7 [@cde*) . 8(s.2.)] x
n=1

[(6y‘€)(svrv y)] dﬁﬂ(s)
(B.1.273)
Here we use (9¢9¢b*)(z,£) to denote the D x D symmetric matrix whose (p,!)
element is given by (9g8:6%)(z,£),p,{ = 1,2,... , D. The notation (8:8;0*")(z,£)
likewise indicates the D x D symmetric matrix whose (p,!) element is given by

(BerBgro*™)(z,€). Let A(s,z,y) be the D ® 1 vector whose k ~ th scalar entry is
A¥(s, z,y) defined by

A(s,z.y) £ [(8,6)(s,z.9)]" [(Be0¢b*) (. £(s. 7. y)] [(8€)(s. . 9)]
(B.1.274)

Yk =1,2,...,D, and also let C(s, z,y) be the D ® N matrix whose (k,n)-entry is
Ckn(s,z.y) given by

C™(s,2,y) 2 [(8,56)(5,2,9)] " [(8eBe™™)(z, £(5, 2, 1))] [(Bp€) (5,2, ¥)]
(B.1.275)

Yk =1,2,...,D,n = 1,2,... ,N. Now using (B.1.271), (B.1.248), and (3.4.65),
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one can write (B.1.273) more compactly in vector form as follows
t
Xi.j(tv-zy y) = L J(I»E(S-,Iy y))Xi\](saxr y) ds
t
+ [ Blaels 2. x5, .9) 4309

t t
+/ A(s,z,y) ds +/ C(s.z,y)d3(s), (B.1.276)
0 0

Y(t,z,y) € [0,00) ® R ® RD,Vi,j = 1.2,...,D. Again, we write \,,(t) for
Xij(t,z,y), A(s) for A(s,z,y), and C(s) for C(s,z,y) when there is no risk of
confusion. Now, put

2(x) = Ix2. ¥y e RP. (B.1.277)

Thus, by (B.1.276) and Itd formula, one gets

oua®) = 6al0)+ 3 [ (Be) (rale) ity (o)

k=11 D D ¢
1303 [ (0adu) () d [y it} (9,
<=1 k=170
(B.1.278)

Vt € [0,00). Now evaluate terms on right hand side of (B.1.278): From Fact B.0.9
on page 139, for each x € RP, we have

Bae) () = 2
(Budye) (X) = 2414 (B.1.279)

Moreover, from (B.1.276), one sees that
xi,;(0) = 0. (B.1.280)

Combine (B.1.278) (B.1.279) and (B.1.280) to get

t D
s =2 [ (xia(o)T dag(s) + 3 [k ] 0 (B.1.281)
o k=1
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vt € [0,00),Vi,j = 1,2,...,D. In view of (B.1.276). the first term on the right
hand side of (B.1.281) can be written:

[ (i ()T diay(s) = [ (g ()T Tz £(5)) sy (5) ds
0 0
+ / (i, (8))TA(s) ds + [ (s ()T Bz £(5). 1oy (5)) d3(s)
0 0
+ / (xe,(8))7C(s) dB(s). (B.1.282)
0
From (B.1.276) one has

N .
xisl®) = [Z /0 [B*"(z,£(5), xi(5)) + C*"(s))] dB"(s)] (t)
n=1

N oot
= Z/O [Bk'"(""’f(s)!X:‘.}‘(s)))+C""“(s)]2 ds
n=1
(B.1.283)

Yk =1,2,...,D. Thus, for the second term on the right hand side of (B.1.281) we

have
D D N t 2
S0 = X [ (B we) xoo) + Cs)) ds
k=1 k=1 n=1 0
- f Trace {[B(s) + C(s)] [B(s) + C(s)]" } ds,
0
(B.1.284)
where
B(s) £ B(z,£(s), xi;(9))- (B.1.285)

Now it is easily seen that the stochastic integrals in (B.1.282) are martingales, null
at the origin, hence have expectation equal to zero. Combining (B.1.281), (B.1.282),
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(B.1.284) and taking expectations, it follows that
Bl = 2 [ B [(xols)) Iz, Elxa(o)] do
#2 [ E[(xols))TA(s)] ds
+ [ E{Trace ([B(s) + C(s)][B(s) + C(s)]") } ds.
/0 { ( )} (B.1.286)
Now put
0,(t,7,v) = E |xiy(t.z,9)°, V(t.z,y) €[0.00)® R°® RP. (B.1.287)
Thus, using (B.1.286) and (B.1.287), we get
8:(0,z.y) =0, V(z,y) € R*® RP, (B.1.288)
and
(882)(t, 2.y) = 2E [(xiy(t.2,9)7J(z. (. 2.9))xi (8, 7. 9)]
+2E [(x.,,(t.2.9))TA(t. 2, )]

+E {Trace ([B(t. r,y)+C(t z,y)| [B(t z,y) + C(t,z. y)]T)} ,
(B.1.289)

V(t,z.y) € [0,00) ® R*® RP. Now fix R € [0,00). Using the definition of A;(R)
(see (3.4.66)), (B.1.287), and Lemma C.0.12 on page 205, for the first term on right
hand side of (B.1.289), one has

E [(Xi,j(tv'rv y))TJ(.‘L',E(t,I, y))Xi.j(t?Iv y)] S E [AI(R)lXi,j(tvIv y)l2]
< A(R)6a(t,z,y), (B.1.290)

Y(t,z,y) € [0,00) ® S& ® RP. For second term on right hand side of (B.1.289):

clearly

|(xiJ(t,1:,y))TA(t,x, y)| S |XiJ(ta-ry y)l |A(tv z, y)l . (B‘1‘291)



APPENDIX B. PROOFS FOR SECTION 3.4 195

Y(t,z,y) € [0,00) ® R ® RP. Now, from (B.1.291), (B.1.274), (B.1.247), and
Condition 3.4.4, there is a constant C,(R) € [0, 00) such that

|(x‘-d(t,z,y))r.—1(t,z,y)| < CI(R”Xi.j(tvI!y)l|(aw€)(t!'r'y)||(ay'5)(t"r~y)|
= Ci(R) |xig(ts 2, 9)] |95(t, 2, y)| [Fi(t. 2. )] .
(B.1.292)

V(t,z,y) € [0,00) ® S3 ® RP. By (B.1.292), the Cauchy-Schwarz inequality. and
(B.1.245) one finds that

E|(xi;(t,z,9)TAlt, z.y)|
< CUR)E [|xiy(t. 2. 9) 19;(t, 2, y)19:(t, 7, 9)]]
< C(R)EV? [[xuy(t,z,9)*] EV* (19, (t, 2, 9)I*] EY* 10t 2, 9)"]
< Ci(R)e™H™ (By(t. 2, y))' 2,
(B.1.293)

Y(t,z.y) € [0.20)® S% ® RP. As for the third term on right hand side of (B.1.289)

we have

Trace [(B(t) +C(1) (B() + C(t))T]
= Trace [B(t)(B(t))T + B(t)(C(t))T + C(t)(B(t)T + C(t)(C(t)T]
= Trace [B(t)(B(t))7] + 2Trace [B{t)(C(t))T] + Trace [C(t)(C(t))7]
(B.1.294)

Now evaluate the terms on right hand side of (B.1.294): Exactly as in (B.1.266),
for the first term on right hand side of (B.1.294) we get

Trace [B(t)(B(t))"] = Trace [B (z,£(t), Xi () (B (z.£(2), X:,(1))"]
< AR g1 (B.1.295)
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As for second term on right hand side of (B.1.294) we can write:

D N
Trace [B(t)(C(t))T] = Z{ZB"'"(t)C’"'"(t)}. (B.1.296)

k=1 n=1

Now, by (B.1.275) and Condition 3.4.4, there is a Constant Cy(R) € [0. ) such
that

|C™(1)] < Ca(R)[(8,,€)(t)] |(8,:8)(2)] (B.1.297)
Moreover, from (B.1.248), (B.1.285), and using Condition 3.4.4 one has
|B*"(t)| < C3(R) Ixis (Bl (B.1.298)

for some constant C3(R) € [0,0c). Thus, by (B.1.298), (B.1.297), (B.1.296), and
(B.1.247) there is a constant C4(R) € [0, o) such that

Trace [B(t)(C(t)T] < Ca(R) |x.,;(8)]15,(2)[10.(8)] (B.1.299)

Upon taking expectation in (B.1.299), using the Cauchy-Schwarz inequality and
(B.1.245) we have

ETrace [B(t)(C(t))"] < Cu(R)E {Ixuy (1) 19,()II18:(2)]}

Cs(R)VEV? [|xas (0)1%] EM [19;(O1'] EV2 [19:(0)1*]
Cs(R)e™ ™ R(g,(t, 2, y))'/?,

IN

IA

(B.1.300)

where v3( R) = "’—1(5&. From (B.1.297) and (B.1.247) one sees that

N D

PID I [=lO1

n=1 k=1

< Cs(R)[9;(0)F 19:(t))°

Trace [C(t)(C(t)T]

(B.1.301)
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Thus, from (B.1.301), (B.1.245) and the Cauchy - Schwarz inequality one has

ETrace [C(t)(C(t)T] < Cs(R)E'? [|[9;(t)['] EV? [19:(t)]"]
< Cs(R)em(Re (B.1.302)

for constant Cs(R) € [0, oc). Combining (B.1.287), (B.1.294), (B.1.295). (B.1.300)
and (B.1.302) we get

E {Trace [(B(t) + C()) (B(t) + C(2))7] }
< A3(R)Oy(t, 2, y) + 2C4(R)e ™R (9y(t, 2, y)) /% + Cs(R)e ™ RM
(B.1.303)

Thus, from (B.1.287). (B.1.289), (B.1.290), (B.1.293) and (B.1.303) it follows that

(8:62)(t, 2. y)
< 201 (R)8a(t, T, y) + 2C1 (R)e™ ™R (G,(t. 2, y))"/?
+AZ(R)Gy(t. z.y) + 2C3(R)e™ ™R (9,(t, .y))/? + Cs(R)e~ MR,
(B.1.304)

Y(t,z,y) € [0.00) ® S ® RP. Simplifying (B.1.304) and using the fact that §'/2 <

1+, for § € [0, 2¢c), it is easily seen that
(atGZ)(thv y)
< [QAI(R) + A§(R}] 85(t.z.y) + Ce(R)e" ™R (,(¢, z,y))'/? + Cs(R)e~(R!
< [2A1(R) + A3(R)] 6a(t. z.y) + Co(R)e P [1 + 85(¢, z, y)] + Cs(R)e (R
< [2A1(R) + A3(R) + Cs(R)e ™®*] Gy(t,z,y) + C2(R)e ™R*,  (B.1.305)

VY(t,z,y) € [0,00) ® S& ® RP, for some constants Cg(R), C7(R) € [0,00). Clearly
Condition 3.4.7 implies that

0 < [g—2JAJ(R) < — [2Mi(R) + A}(R)] . (B.1.306)
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Now fix some t9(R) € [0, oc) such that

[2A1(R) + A3(R) + Co(R)e- ] < 21(R) : AR vt ¢ to(R). )
(B.1.307)
From (B.1.306)
w(R) & ~H(R) ;’ ASR) ¢ (6,00). (B.1.308)
By (B.1.305), (B.1.307) and (B.1.308) we have
(0:82)(t, 2,y) < —15(R)8a(t, 2, y) + C3(R)e™™*Y, Vit € [to(R), ).
(B.1.309)
Y(t,z,y) € [0,00) ® S% ® RP. Now fix v6(R) such that
0 < 6(R) < min {7s(R), v3(R)}. (B.1.310)
Then 0 < 76(R) < 43(R) hence from (B.1.309), we have
(8:62)(t, 7, y) < —75(R)8a(t, z,y) + C:(R)e (R, (B.1.311)

Then, by (B.1.311) one gets

dit [e"’(R)'Og(t,r,y)]
= 15(R)e™ ™, (¢, z,y) + e B4 3,8,)(t, z, y)

< 1s(R)e™POy(t, 2, y) + [—15(R)e™R1y(t, 2, y) + Cr(R)ee(RI-ms(RI]
< Cr(R)e~ (R - (Rt

(B.1.312)
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V(t, z,y) € [to(R).oc) ® 5% RP. Now by (B.1.312), for all t € [to(R), oc). we have

R4, 2.) ~ R g1 (R). .
t
=/ )Ed; [e"s(ﬂlsgz(s,x,y)] ds
to(R

C:(R) [e('rs(R)—we(R))t - e(‘?s(R)-ws(R})tg(R)]
<
- '75(R) - ’7’5(3.)

(B.1.313)
V(t,z,y) € [to(R),oc) ® S% ® RP. Hence, since v5(R) > 16(R). we get

02(t, r, y) S evs(R)to(R)OQ(to(R). z, y)e"75(ﬂ]!
Cz(R) [e"™R1]  C:(R)etm(RI=rs(R)(R

-vs(R)t
TR - B | B =R

€ )

(B.1.314)

Y(t,z,y) € [to(R). x)@Sﬁ@BD. Thus there are constants C3( R), Co(R), Cio(R) €

[0, o¢) such that

82(t. 2. y) < Co(R)s(to(R), 2. y)e™™ R + Cy(R)e ™R + Cyp(R)e™ ™R,

(B.1.315)
V(t,z.y) € [to(R).oc) ® S% ® RP. We next show that
sup B2(t. z,y) < . (B.1.316)
(t.z.y)€l0.Lo( R)SSELORP
Let ¥(t) solve the ordinary differential equation
(8¥)(t) = aft,R)¥(t) + C:(R)e ™R (B.1.317)
¥ = 0 (B.1.318)

for

a(t, R) £ 2A,(R) + AX(R) + Cs(R)e ™R (B.1.319)
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and fix arbitrary (z,y) € 54 ® RP. Put
£(t) £ () — (L. 2, y). (B.1.320)
Then, from (B.1.320), (B.1.319), (B.1.317), and (B.1.305) we have
(8:£)(¢) = alt, R)E(t) (B.1.321)
with
£(0) = ¥(0) - 6,(0.z,y) =0 (B.1.322)

(see (B.1.288)). Thus, from (B.1.321)
2 [exp { /0 e, R)d‘r} g(:)]
—a(t, R)exp { /0 _a(r, R)d } £(t) + exp { /0 a(rn, R)dr} (@E)(t)
> —a(t, R)jexp { /0 _a(r R)dr} £(t)

talt. Rexp { [ a(n R)dr} )
1]
> 0. (B.1.323)

From (B.1.323) and (B.1.322) we get

exp U: —a(r, R)dr] §(t) 20, Vte[0,00), (B.1.324)
hence £(t) > 0,Vt € [0, 00), hence by (B.1.320)
U(t) > ba(t.z,y), V(t,z,y) € [0,00) ® S ® RP. (B.1.325)
Thus
sup 6a(t,z.y) < sup W(t). (B.1.326)
(tz.y)€0to(R)@SESRP t€{0.ta(R)|

But (B.1.317) is a linear ordinary differential equation thus ¥(.) exists over all ¢t €
[0, 20) hence the right hand side of (B.1.326) is finite, as required for (B.1.316). Now
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it follows from (B.1.315) and (B.1.316) that there are constants Cy;(R) € [0. )
and y(R) € (0, 00) such that

02(t,z,y) < Cii(R)e™ "R, v(t, z,y) € [to(R),00) ® S& ® RP.
(B.1.327)

Also, again by (B.1.326), there is a constant Cj2(R) € [0, o0) such that

Bx(t,2.y) < Cia(R) < Crap(R)eMRNetRem(R)

(B.1.328)

for all (¢, z,y) € [0,%(R)]® S%® RP. Now (B.1.327) and (B.1.328) gives a constant
C(R) € [0.00) such that

Ba(t.z,y) < C(R)e®  V(t,1.y)€[0,00)® S4® R,
(B.1.329)

and this gives (B.1.246).



Appendix C

Miscellaneous Technical Results

Here we list for easy reference a miscellany of simple technical results that are

needed for the thesis.

Fact C.0.4. If (A.1.16) holds for T(X,Z) given by (A.1.15) when the h, : R*®

R® — R are uniformly bounded and continuous, then

EP" [(Ag(X, Z)(r2) - Ag(X.Z)(m)); B]=0, VBe€B(n) (C.0.1)

Proof: To show (C.0.1) it is enough to show that (A.1.16) holds for ['(X, Z)
given by (A.1.15) when the h; have the form

hi = IF.! (C.O.?)

for closed sets F, ¢ R® ® IR%, since B(IR® ® IR%) is the minimal ¢-algebra which
includes all of the closed subsets of R ® IR®. But for closed set F; ¢ IR® ® R,
there is a sequence of bounded and continuous functions g} : R? ® R* — R such
that 0 < gi <1, Vk € N, and

kligxo 9i(z) = Ig(z), vz e R‘® R ' (C.0.3)
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Hence, by the dominated convergence theorem, we see that (A.1.16) holds for A,
given by Ir,, F; closed.

a

Fact C.0.5. Suppose {z,} is a sequence in a metric space S. If each subsequence
{zaw)}x of {za} contains a further subsequence {zn,,,, }- such that

lim z,, ., =z, (C.0.4)
then lim, o z, = z°.
Lemma C.0.6. (Problem 3.15 on page 306 of Karatzas and Shreve [19]).
Suppose that the following holds:

(i) The mappings b*(€) and 0" (£), 1 <1 < D, 1 < j < N, are Borel measurable
functions from R® into R satisfying

BE)N + 0@ <K(1+€(s)), VEe RP, (C.0.5)

where K € [0,00) is a constant.
(ii) {(3(t), F.), t € [0.00)} is an R" -valued standard Wiener process on (Q, F, P)
and

{(&(t,y),F.), t € [0,00)} is an RP-valued adapted process on (Q, F, P) such that

t t
Ety) =y + /0 b(E(s,y))ds + [0 o(E(s,y))dB(s). 0<t<om,  (CO6)

for some(non-random) y € RP. Then, for each T € (0,00) and m =1,2,3... we

have

E (max I€(s, y)|2"‘> SCQ+yPm)efy 0<t<T, (C.0.7)

0<s<t
and

ElE(t,y) - &) <C1+ ™) (t—s)™ 0<s<t<T, (C.0.8)

where C is a positive constant depending only on m,T, K, and D.
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Remark C.0.7. Let {X,, n € N} be a sequence of processes from (2, F, P) into
(C[0,1],B(C[0,1])). The sequence {X,, n € N} is by definition tight when the
sequence of corresponding distribution is tight. According to Theorem 8.2 on page

55 and Theorem 8.3 on 56 of Billingsley (4], we establish the following results.

Theorem C.0.8. The sequence L(X,) is tight if and only if the following two

conditions hold:

(i) For each n € (0,1], there is a { € (0,0c) such that

P{|X.(0)] >¢}<n, n=123,.. (C.0.9)

(ii) For each € € (0,00) and n € (0,1], there ezists a v € (0.1] and a positive

integer ng such that
P4 sup |Xn(s)-Xa(t)l 2ep <n, n2=ne (C.0.10)
Js—-tj<y

Remark C.0.9. Condition (i} stipulates that {£(X,(0)), n € N} be tight. Con-
dition (ii) says that the processes {X,(t), t € [0,00)} do not vary too rapidly.
Next theorem can be stated similar to Theorem 8.2, assuming a stronger assumption
in Condition (ii).
Theorem C.0.10. The sequence £(X,) is tight if these conditions are satisfied:

(i) For each n € (0,1], there is a { = (0,00) such that

P{X.0)>¢}<n n=123,.. (C.0.11)

(ii) For each € € (0,00) and n € (0, 1], there ezxists a ¥ € (0,1) and a positive
integer ng such that

%P{ sup |Xn(s) — Xa(t)| > e} <7, n>ng (C.0.12)

t<s<t+y

i

for each t € [0,1].
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Lemma C.0.11. (Problem 6 on page 41 of Billingsley [4]) Let S and S»
be metric spaces, and {P,} be the collection of probability measures on S, ® Sz. Let
P! be the marginal of P, on Sy ( i.e. Pi(A;) = P,(A; ® S,), VA, € B(S)) ) and
let P? be the marginal of P, on Sa2. Then, the family {P,} of probability measures
on S, ® S, is tight if and only if the family {Pl} of probability measures on S, is
tight and the family {Pl} of probability measures on S is tight.

In this thesis we repeatedly use the following result which is a special case of

“Rayleigh’s Principle” in linear algebra:

Lemma C.0.12. ( see Theorem 10.25 of Noble and Daniel [27] )

Let M be a D x D symmetric matriz with eigenvalues (necessarily real)
'\min=/\l <A <... <A = Amax
Then we have

Amiallzl? < 27Mz < Amadllel?, ¥z € RP. (C.0.13)



Appendix D
Ergodicity and Mixing

In this appendix we summarize, for the sake of completeness, some of the most
basic definitions and results on ergodicity and mixing in stochastic processes. Let
(X,B,m) be a probability space, and let T : X — X be a transformation. T is

measurable when
T-'(A)e B, VAeB. (D.0.1)

Definition D.0.13. A measurable transformation T : X — X is said to be mea-

sure preserving when
P(T'A) = P(A), VA€ B. (D.0.2)
Definition D.0.14. A set B € B is said to be an invariant set when
T-!(B)=B. (D.0.3)
Remark D.0.15. let B; be the family of invariant sets in B, namely
Bi£{AeB: T'(4) = A}. (D.0.4)
We see easily that By is a o-algebra.
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Definition D.0.16. A measure preserving transformation 7 : X — X is said to

be ergodic when

P(B)=0or P(B) =1, foreach B € B,. (D.0.5)

D.0.1 Ergodicity of Strictly Stationary Processes

We now formulate the notion of ergodicity in the context of a strictly stationary
IRP-valued process.

Let = denote the set of all functions from [0, o) to R?, namely

== @ R°. (D.0.6)

Also, let G be the minimal o-algebra generated by the cylindrical subsets of =. Let
{£(t), t € [0,o0)} be a strictly stationary R”-valued process on the probability
space (§), , P) (whose paths are therefore members of ). It is elementary to show-

that the mapping
& E,0): (QF P = (D.0.7)
is F/G-measurable, hence we can define a probability measure P! on (Z.G) by
(Pg-l) (T2 P{ceT}, VT eg. (D.0.8)
For each t € [0, 00) define a shift operator T} : = — = by
(Tww) (s) S w(t +s), Vse€[0,00), ve-:. (D.0.9)

One trivially sees that T, is G/G measurable and the family {T}, t € [0,00)} is a

semi-group of operators, meaning that

T'h‘f-t: = Tc;Ttg = Tth:'.l (DO'IO)
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for all ¢t;,t, € [0,00). Also, since {£(t), t € [0,00)} is strictly stationary, it follows

that each T; is measure preserving, in the sense that, for each t € [0, o0), we have
(Pe) (T71(T) = (Pe) (D), Ve (D.0.11)

An additional property which the strictly stationary process {£(t), ¢t € [0, o)} may
possibly have, is that of ergodicity. To formulate this property, define the so-called

invariant o-algebra (of the sets in G) by
IS{reG: T/Y(T) =T, vte [0,0)}. (D.0.12)

(it is trivially verified that 7 is indeed a o-algebra).

If, for each I" € Z, we have

(Pe)(my=0, or (Pe)(D)=1, (D.0.13)

then the stationary process {£(t), t € [0,00)} is an ergodic process, or ergedic. To
understand what it means for the stationary process to be ergodic, suppose that
the property asserted by ergodicity fails to hold. Then there is some set I' € Z such
that

(13‘5”1) (T) = a, for somea € (0,1). (D.0.14)

Since T, '(T") = I, vt € [0,00) we see that if ¥ € T, then T,y € T, Vt € [0,00).
Likewise if ¢ ¢ T, then since ' € I, we have T,y ¢ T,¥t € [0,0c). Thus the
space of paths = can be partitioned into two sets I and I'¢, each of strictly positive
probability, but isolated from each other in that one can never transfer a path ¢
inside I into a path T,y outside I' by some shift operator T;. Ergodicity eliminates
this type of “non-mixing” behavior, and asserts the property that, foreach I' € G
with (135'1) (T') > 0, the sets T,”*(T'), t € [0, o0) effectively “cover” the whole space
=. (More precisely it can be shown that ergodicity of {£(t), t € [0,00)} actually
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implies the following; if (135“) (T) > 0 then

(f’f“) [UT,:‘(F)] =1, (D.0.15)
for any sequence 0 <t <t; <t3 < ... witht, = 00 ).

It is generally difficult to check when a given strictly stationary process {£(t)} is
ergodic. However, two exceptions are when {£(t)} is a strictly stationary Markov
process and when {£(t)} is a strictly stationary mixing process. We consider each

of these cases next.

D.0.2 The Markov case

Let {£(t), t € [0,00)} be an R°-valued Markov process on probability space
(Q, F, P) with homogeneous transition probability function P,(z, 4) for t € [0, 00),
z € R?, A€ B(RP), that is

Plg(t) € A| £(0) = z] = P(z, A), for PE(0)~" — almost all z € R®. (D.0.16)

Let 7 be an invariant probability measure on (IR?, B(IR?)) for the transition prob-

ability function P,(z, A), in the sense that, for each t € [0,0), we have
m(A) = / Pz, A) n(dz), YA € B(RP). (D.0.17)
RD

We would like some characterization of the invariant probability measures 7 with
the property that the corresponding strictly stationary Markov process {£(t), t €
[0,00)} is ergodic. This is given by the next result. We write P(IR?) for the set of
probability measures on (RP, B(IRP)). We also need the following terminology:

Definition D.0.17. Given a homogeneous transition probability function
Pz, A),t € [0,00),z € RP A€ B(RP), a measure T € P(RP) is called ergodic

when
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(i) = is an invariant probability measure for the transition probability function

Py(z, A).

(ii) The RP-valued strictly stationary Markov process {£(t), t € [0,00)} with

initial distribution m and transition probability P.(z, A) is ergodic.

Theorem D.0.18. (see Theorem 7.4.8 in Stroock [34]) Suppose that P,(r. A),t €
[0,00),z € RP, A € B(IRP) is a homogeneous transition probability function, and
let M, be the collection of all # € P(RP) such that (D.0.17) holds (i.e. M, is
the collection of all invariant probability measures). If M, is not empty, then M,
is a convez subset of P(IRP). Moreover, 7 € M, is ergodic if and only if 7 is an
eztreme point of M,. Finally, if =\ and m2 are ergodic, then either m, = 7 or m,

and my are mutually singular.

The next result is immediate from the preceding:

Corollary D.0.19. Suppose that the homogeneous transition probability function
P(z,A),t € [0,00),z € RP, A € B(IRP), has a unique invariant probability mea-

sure . Then 7 is ergodic.

Remark D.0.20. Corollary D.0.19 is also established in 4.11.43 on page 271 of
Ethier and Kurtz [10].

Remark D.0.21. In order to use Corollary D.0.19 it is necessary to have condi-
tions which ensure existence and uniqueness of an invariant probability measure.
This is typically ensured by conditions such as the Doeblin condition which, in
the context of an RP-valued Markov process with transition probability P,(z, A),
goes as follows: there exists a finite measure ¢ on (IR?, B(IRP), a (small) number
e € (0,1), and some ty € (0, 00) such that for each A € B(IRP) with p(A) < € we

have

P,(zr,A)<1—-¢ VzeR°. (D.0.18)
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If Pz, A) is non-degenerate in the sense that there exists a jointly continuous

mapping
p:(0,00) ® R ® RP - (0, x) (D.0.19)

such that
Pi(z,A) = Ap(t,:c,:) dz, Vte[0,00), Yz € RP, YA€ B(RP). (D.0.20)

and the preceding Doeblin condition holds, then it can be shown that there exists
a unique invariant probability measure 7, together with numbers a € (0, 20) and

v € (0,00) such that
sup [|P(z,.) = 7()llrv < ae™™, (D.0.21)

where ||ullTv denotes total variation of a signed measure g (this is a “continuous
parameter” version of Theorem 16.0.2 of Meyn and Tweedie {26]). There are several
objections to using this condition when the RP-valued Markov process {£(t)} is a

solution of an It stochastic differential equation of the form

dé(t) = b(§(t))dt + o (£(¢))dB(t). (D.0.22)

First, we do not usually know the transition probability function for the the Markov
process given by (D.0.22). Second, we can never use Lebesgue measure on R? for
¢ in achieving the Doeblin’s condition, (since it is not a finite measure), and there
appear to be no guidelines indicating a reasonable choice for the finite measure
¢(.). Finally, we really have no need for the very strong convergence in (D.0.21).
For these reasons we prefer to verify the existence of a unique invariant probability
measure by following the approach of Bhattacharya and Waymire [3] to Markov
process arising as solutions of Ito stochastic differential equations(see Theorem

3.4.1 on page 43).
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D.0.3 The Mixing case

In this thesis we are concerned with an intrinsically Markovian situation and do
not require any ideas from the classical theory of mixing processes. Nevertheless,
for background information only, in this subsection we briefly indicate the links
that exist between ergodicity and the classical notions of mixing. Let {£(¢)} be an
RP-valued process on (Q,.f-' , 13) and define

e

Feo
Fa

o {§(u), u€t.oo)}, Vte|[0,x)

e

o{(u), ue[s.t]}, 0<s<t<oo. (D.0.23)

The mapping a : [0.20) — {0, oc) defined by

a(u) £ sup sup |P(AB) - P(4)P(B), (D.0.24)
tel0,00) A;_fo.:
€Ftru.x

is called the strong mizing function of the IRP-valued process {£(t)}. Then the

RRP-valued process {£(t)} is said to be a strong mizing process when

lim a(u) =0. (D.0.25)

U—0
Remark D.0.22. Observe that we have not assumed that {£(t)} is strictly station-
ary, hence the niotion of strong mixing of {£(¢)} makes sense even when {£(t)} is not
strictly stationary. Compare this with ergodicity, which requires strict stationarity

as a prior condition for ergodicity to make sense.

Next, define the tail o-algebra of {£(t)} as

Fow= [] Fuso (D.0.26)

te(0,00)

The RP-valued process {£(t)} is called regular when, for each A € F o, We have

P(A)=0 or P(A)=1. (D.0.27)
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By adapting the arguments for Theorem 17.1.1 on page 302 of Ibraginov and Linnik
(15], we obtain:

Theorem D.0.23. The stationary IR -valued process {£(t). t € [0.00)} is regular
if and only if

lim sup P(AB) - P(A)P(B)| =0, foreach B € Fo.00- (D.0.28)

t—oo AEF o

Thus Theorem D.0.23 on page 213 gives an alternative characterization of {£(t), t €
[0,00)} being regular. The relation between ergodicity and regularity of a process
is given by Corollary 17.1.1 on page 302 of Ibraginov and Linnik {15], which we

state as follows:

Theorem D.0.24. If the R”-valued process {£(t), t € [0,00)} is regular and

strictly stationary, then it is ergodic.

Finally, the relation between strong mixing and regularity is given by the fol-

lowing simple result:

Theorem D.0.25. If the IRP -valued process {£(t), t € [0.00)} is strictly station-
ary and strong mizing, then (D.0.28) holds.

Proof: Define

D= Fo (D.0.29)

Then D is a 7-class and we easily see that
Foe = c{D}. (D.0.30)
Put

c2 {A € Fom: lim sup lP(AB) -~ P(A)P(B)| = o} (D.0.31)

U=® BeFu,x
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Fix A € D. From (D.0.29) we have
A€ Fy,,, forsomet, €[0,). (D.0.32)
Since {£(t)} is strong mixing we know that

lim sup [|P(AB)- P(A)P(B)|=0, (D.0.33)

u=aC geF, 1 +u,00

hence A € C. It follows that
Dcc. (D.0.34)

It remains to see that C is a A-class: From (D.0.31) we have € C. Next, fix

A1, A €C, Ay C A,. One easily sees that

lim sup |1r‘>((A1 — A;)B) - P(A, - AQ)P(B)! =0, (D.0.35)

U=® BeFu.x

hence A; — A; € C. Finally, fix A, € C, with A, C A,4; and put A =, An. One

easily shows that

lim sup |P(AB)-P(.4)I5(B)'=O. (D.0.36)

U—X BeFu

hence 4 € C. It follows that C is a A-class, hence (D.0.34), (D.0.30) and Dynkin’s

A-7 theorem gives

C = Fore, (D.0.37)

which establishes the result.



Appendix E

Solvability of Poisson-type

Equations

The Case of Discrete-time Markov Chains

In this appendix we give an adaptation due to Benveniste, Métivier and Priouret
[1] of a result originally due to Sunyach [35] on stability properties of discrete-
parameter Markov chains, since this result is an important motivation for the ap-
proach that we take in Section 3.4. Basically, the result says the following: If II
is the transition probability function of a discrete-parameter R”-valued Markov
chain, and its r-th iterate II" is a strict contraction on a properly defined collection
of locally Lipschitz functions on R? for some positive integer r, then the Markov
chain has a unique invariant probability measure and the Poisson equation defined
by the operator 1 — II is uniquely solvable to within constants. Before giving this
result we formulate the “ properly defined collection of Lipschitz continuous func-

tions” mentioned previously.

Remark E.0.26. Fix some p € [0,00), and let A : IR? = IR be a Borel-measurable

215
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function. Define
Il 2 sup ol
Wy 2 e e
Lip) & {h:R° > R| [h], <}. (E.0.1)
One easily sees that
Ihllp+1 < [h(0)] +2[h], < 00, for h € Li(p). (E.0.2)

Thus, if [h], < oo, then we have |[h[l,-1 < oo. Hence, for each h € Li(p), we see
that

M, (h) = max {||Allpr1. [R]p} (E.0.3)

is finite, and
lh(z)] € My(h)[1+|zf~'], Vze RP,
|h(9:1) - h(.‘L‘g)l < .-l‘!p(h)il'l - .1'2| [1 + |l'1|p + llepl , VI, 29 € RD(EO‘l)

For every Borel-measurable h : R® — IR such that

fﬂ @) Tz, dy) < 0, Vze€ RP®, (E.0.5)
let ITh be defined by

h(z) £ /R _h(y)li(z.dy). ¥z e R. (E.0.6)

where 1 denotes the transition probability function of a discrete - parameter Markov

chain on RP.

Proposition E.0.27. (see Proposition 3 on page 255 of Benveniste, Métivier and
Priouret [1]) Suppose I1(z, A) is one-step transition probability function of a discrete-
parameter Markov chain on R®, and p € [0,00) is a constant, such that the fol-

lowing hold:
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(i) We have
/R . IEIP (2, d€) < ¢, Yz € RP. (E.0.7)
(ii) For each h € Li(p) we have II"h € Li(p),Vn =1,2,3,....
(iii) There ezists some integer r > 1, with some constant p € (0.1) such that
[[I"h], < plh],. ¥h € Li(p). (E.0.8)
Then:
(a) II has e unique invariant probability measure m on R such that
[R . 1€ dm(€) < oo. (E.0.9)

(b) There ezist constants Ky >0, 0 < p; < 1 such that

M"h(z) —/ hdm’ <Kt (h], [1+izY], vn=1,2,3,.... (E.0.10)
RD
for each h € Li(p) and = € RP.

(c) For each h € Li(p), the function

u(z) & Y {H"h(r) - /h dm] . Vz € RP. (E.0.11)

n>0

is a member of Li(p), and solves the operator equation

(1 -Tu)(z) = h(z) - /h dm, vz € R". (E.0.12)
Furthermore, if uy is another member of Li(p) which solves this operator equa-
tion, i.e.
(11 = M) (z) = h(z) - / hdm, vze RP, (E.0.13)
then

u(z) — ui(z) = a constant, Vzr € RP. (E.0.14)
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Remark E.0.28. The crucial condition in Proposition E.0.27 on page 216 is (iii)
which says that, for some integer r > 1, the r-th iterate II" is a strict contraction on
Li(p), where we measure the “size” of h € Li(p) by the quantity [h],. This condition
is strong enough to ensure existence of a unique invariant probability measure for II,
together with solvability of the Poisson-type operator equation (E.0.12) uniquely
within constants. The nice feature of this result is that it applies even to Markov
chains which fail to be recurrent in the Harris sense (examples are given in the paper
of Sunyach [35]). In Section 3.4 of the thesis we will establish a related result for RP-
valued Markov processes {£(t,z)} defined by the Ité stochastic differential equation
(3.1.3), which will give us existence of a unique invariant probability measure as
in Condition 3.2.3 of Section 3.2, together with solvability of the Poisson-type

equations in Conditions 3.2.8 and 3.2.15 of Section 3.2.

Remark E.0.29. Proposition E.0.27 on page 216 is formulated in terms of func-
tions in Li(p), which are locally Lipschitz continuous and have “polynomial growth”
of order 1 + p. The reason for introducing this space is that, subject to Conditions
(), (¢1) and (iZi) of Proposition E.0.27 on page 216, we are guaranteed solvability to
within constants of the Poisson equation (E.0.12) for each and every h that belongs

to Li(p).



Appendix F

Lo-Derivatives and the Backward

Equation

In this appendix we discuss the issue of smoothness of the solutions of stochastic
differential equations with respect to a parameter in the L,-sense and then introduce
the Kolmogorov Backward Equation for diffusions defined by classical Itd stochastic
differential equations. These ideas will be needed in the course of establishing
Proposition 3.4.16 on page 51, and we summarize them here for easy reference.

First we need the following general definition:

Definition F.0.30. Suppose that (2, F. P) is a probability space, and let g, f :
RP ® @ = R be B(R®) ® F measurable mappings. If

h—0 h
(where e; 2 (0,...,0,1,0,... ,0) is i-th basis vector for RP), then g(.) is said to

(F.0.1)

have a partial derivative with respect to its i-th argument in the L,-sense at y, and

this partial derivative is given by f(y).

219
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Remark F.0.31. Notice that this partial derivative is itself a random variable on
(Q,F, P). We will use classical calculus notation to indicate partial derivatives in

the L,-sense, so we put

(89)(¥) £ fly), Vye RP. (F.0.2)

By replacing g with (9,.9) in the preceding definition we can obviously also define

the notion of the double partial derivative (8,,3,:g) in the L,-sense.

Remark F.0.32. The notion of L, - derivatives set forth previously is due to
Gihman and Skorohod [14], as are the results on differentiability in the L,-sense of
solutions of stochastic differential equations that we summarize next. Recall the

stochastic differential equation

Etzy) =y + /0 b(z.&(s, 7, y))ds + /0 o(z.6(s,z.9)dB(s),  (F-0.3)

which defines the process {£(t,z,y)} (see (3.4.74)). Then, it follows from Condition
3.4.4 and Theorem 1 on page 61 of Gihman and Skorohod [14], that the derivative

(8,,€%)(t. z,y) exists in the L, - sense of Definition F.0.30 and satisfies the relation
D t
BuENtzy) = et Y [ (05,2108 s, . y)ds
1=1 Y0

N D
+ 23 [ @0tz 605,240 @ ), 2, 4148°6),

n=1 (=1

(F.0.4)

(see (3) on page 59 of Gihman and Skorohod [14]). Also, the double derivative
(8,:8,:£*)(t, z,y) exists in the L, - sense of Definition F.0.30 and satisfies the rela-
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D ¢
(3,;3,,.5") (t,z,y) = Z/ (35«b")(z,§(s, z,y)) (6,,.-6,,-5‘) (s.z.y) ds

+ZZ/ (OerBerb) (2, £(s, 2. y)) %
=1 p=1
(8y:€7) (5.2, Y) (B€") (s.7,y)] ds

N D ¢
+E Z/ (Be*™) (z,€(s. 7, ¥)) (8,:0,:€') (s.2.y) d3"(s)

n=1 (=1

N D t
+ZZZ/ agvaefakm) (:r,&(s,:c,y))x

n=] [=]1 p=1 0
( yJEP)(S»Iay) (ay‘sl)(s»xvy)] dj"(s),
(F.0.5)

o o

(see (4) on page 60 of Gihman and Skorohod [14]).

Remark F.0.33. The significance of the preceding results of Gihman and Skoro-
hod [14] is that the first and second derivatives (8,,£*)(¢, z, y) and (8,,(8,:£*)(t, z, y)
exist in the L, -sense and can be calculated by formally taking the first and second
derivatives with respect to y of (F.0.3). The L, - derivatives are useful for the fol-
lowing reason. Suppose we have a smooth mapping f : R? — R, which is used to
define another (non-random) mapping o(t, z, y) SE [f(&(t,z,y))]. It is frequently
necessary to calculate the partial derivatives (9,,8)(t,z,y) and (9,,0,,9)(t, z,y).
Indeed, such derivatives must be computed several times in the course of estab-
lishing Proposition 3.4.16 on page 51. The next result is a type of “chain rule”
which clearly illustrates the key role played by the L, - derivatives (9,,§)(¢, z,)
and (0,,0,:§)(t,z,y) in the computation of the first and second partial derivatives
of y = ¢(t,z,y).
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Corollary F.0.34. ( Corollary 1 on page 62 of Gihman and Skorohod (14})
Suppose condition 3.4.4 holds, and let f : R® = R be a C*-mapping such that

£+ (B /)E)| + |(B0e£)(E)] S C(L+ 1) Ve RP.
for constants C,r € [0,0c). Then the mapping
(t,2,9) = 8(t,2.y) = E[f(€(t. 7, )

exists for each (t,z.y) € [0,00) ® R*® RP. is twice - continuously differentiable
in y for each (t.z) € [0,00) ® R?, and has first and second y - derivatives given by

Opo(t,z,y) = E

D
3 (B F)E(E. 2.9))(BpE¥) (. 2. y)] (F.0.6)

k=1

and

(8,.9,0)(t. z.y)
D

t
E[ (Gex £)(&(t. 2. 4)) (8,8, E5)(t. 1. y)
k=1

D

“+

Mo

!

1 &

—

(BerBex f)(§(t. .9)) (B ') (8, . y) (B, €¥) (8, <. y)]
(F.0.7)
for all (t,z,y) € 0.o¢c) ® R*® RP.

Remark F.0.35. Observe that (F.0.6) and (F.0.7) are really a “stochastic chain
rule”, and are reasonably consistent with what one would expect on the basis of
the ordinary chain rule of calculus, except that (8,:£*)(t, z, y) and (8,.8,:£%)(t, z,y)

are derivatives in the L, - sense.

Remark F.0.36. Corollary F.0.34 is also useful for establishing the following re-

sult, which is a trivial variant of Theorem 5 on page 297 of Gihman and Skorohod
[14]:
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Theorem F.0.37. Suppose Condition 3.4.4 holds, and let h: R® — IR be a C? -
mapping such that

|R(&)] + [(Beh)(€)] + (B B R)(E < C 1+ 1€]7]. (F.0.8)
for some constants C,r € [0,00). Put
8(t,z,y) £ E[h((t,z,y))], Y(t.z.y) €[0,00) ® R ® RP. (F.0.9)

Then y — 6(t,z,y) : R? — R is a C* - mapping for each (t.z) € [0,) & R°.
while t - 8(t,z,y) : [0,00) = R is a C* - mapping for each (z,y) € R* & R”,

and

(8:8)(t, z,y) = Ab(t, z,y), (F.0.10)

Y(t.z,y) €[0,00) ® R®*® RP, where ( c.f (3.2.14))

Ab(t, z,y) = Z Nz, y) (B 0)(t, T, y) + (1) ZZ oo’ (z y 6y.8y,0)(t I.y).

i=1 ;=1

(F.0.11)

Remark F.0.38. The relation (F.0.10) is of course the well - known Kolmogorov
Backward Equation for the diffusion {£(t, z,y)} given by (3.4.74).
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