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Abstract

The Morse/Long Range (MLR) potential has become one of the most reliable and highly

used potential energy functions for diatomic molecules. It includes the theoretical long range

behaviour that diatomic molecules are known to exhibit as they approach the dissociation

limit. Heavy alkali metals with adjacent electronic states often exhibit strong coupling

between the spin and orbital angular momentum. The ground state X 1Σ+
g and the lowest

lying triplet state a 3Σ+
u of Cs2 exhibit such coupling effects and as a result, modeling the

highest vibrational states of these states is a non-trivial problem. Utilizing scattering length

values obtained from published analysis of 60 Feshbach resonances, the correct form of the

potential energy function was determined. Moreover, the scattering length values were used

to determine the correct leading dispersion coefficient that describes the true form of the

long-range potential energy functions. All previous attempts to determine global potential

energy functions for these states have considered only the optical spectroscopic data. This is

the first ever effort attempting to use scattering lengths determined from cold atom collision

experiments in a combined analysis with conventional spectroscopic data.
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Chapter 1

Introduction

The cesium dimer has been receiving increasing attention recently because of interest in

cold atom collision phenomena [3, 4, 5]. Particular interest is focused on the two electronic

states that are formed from ground state atoms: the ground singlet state X 1Σ+
g and the

lowest triplet state a 3Σ+
u , whose potential energy curves are shown schematically in Fig. 1.1.

Previous empirical work on these states considered either conventional spectroscopic data for

bound vibrational-rotational levels [5, 6, 7], or Feshbach resonances observed in collisional

studies of cold atoms [3, 4, 5]. The cesium atom has a nuclear spin angular momentum I of

magnitude 7/2, spin angular momentum S of magnitude 1/2 with two possible orientations,

and orbital angular momentum L of 0. The total angular momentum F is the vector sum of

these three individual angular momenta. Thus, atomic cesium has a total angular momentum

quantum number F of 3 or 4, depending on the orientation of the electron spin angular

momentum vector relative to the nuclear spin angular momentum vector. Studies of the

Feshbach resonances of colliding cesium atoms focus on the resonances at collision energies
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CHAPTER 1. INTRODUCTION

between the limits where the total angular momenta for atom a and b are Fa + Fb = 3 + 3,

3+4, and 4+4. The resonances are of particular interest in this work as they define the three

most probable asymptotic limits when a cesium dimer breaks apart to yield a pair of ground

state Cs atoms. These three asymptotic limits are not statistically equivalent. The average

that is weighted by the sum of the degeneracies for the individual energies yields the so-

called “hyperfine-free limit” shown schematically in Fig. 1.1 with dash-dot lines. Associated

with each of these four limits are s-wave scattering lengths as, a property of the continuum

wavefunction at zero collision energy. Modelling the potential energy functions of the X 1Σ+
g

and a 3Σ+
u states of Cs2 by fitting to both the conventional spectroscopic data and to the

experimental scattering lengths is the central objective of this work.

The conventional spectroscopic data for this system has been subjected to parameter-fit

analyses [8, 6] and to direct-potential fit (DPF) analyses [7, 2], in which transition energy pre-

dictions generalized from a parametrized potential function are compared with experiment,

and least-squares fitting to minimize discrepancies is used to optimize potential function

parameters. The Feshbach resonances were analyzed using a coupled-channel method that

yielded estimates of the scattering lengths at the hyperfine-free limit for both the singlet

and triplet states [4]. The scattering length is related to the binding energy of the highest

bound vibrational level υmax, and it is sensitive to the overall well-capacity. In this work, the

well-capacity, and hence the binding energy of the highest vibrational levels, are determined

by matching the scattering length of an analytical potential defined by a DPF analysis to

the values determined by Chin et al. [4]. The highest vibrational levels that the analytical

potential yield are then compared to those determined using a couple-channel potential that

was fitted to the Feshbach resonances [9].

2
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Figure 1.1: Plots of the potentials for the X 1Σ+
g and a 3Σ+

u states of Cs2. The horizontal

dash-dot lines correspond to the hyperfine-free limit.

3



CHAPTER 1. INTRODUCTION

Chapter 2 of this document will outline the nature of the computational problem as-

sociated with modelling the spectroscopic data for the cesium dimer. In particular, the

long-range interaction between two cesium atoms will be described. The direct-potential fit

method as it applies to a generalized potential energy function is described, as well as types

of commonly used potential energy functions. Lastly, Chapter 2 will describe the data set

that the selected potential energy function will be fitted to.

Next, Chapter 3 will outline the techniques by which the parameters of a fitted potential

are chosen. Moreover, Chapter 3 explains how the various domains of a potential energy curve

are evaluated analytically, and in particular, how the optimal direct-potential fit is obtained,

how the extrapolation region or long-range tail is evaluated, and how the potential energy

function model may be modified so that its scattering length matches an experimental value

using two different potential function parameters, one a physical parameter and the other a

non-physical parameter of the model used for the potential energy curve. In addition, the

relationship that the singlet-state potential has with the triplet-state potential at long-range

will be described and compared to the theoretical model of Vanhaecke et al. [3].

Chapter 4 will outline the most recent potential fit that was done on the X 1Σ+
g state of

the cesium dimer by Coxon and Hajigeorgiou [2], and it will present the potential fit results

in the present analysis. Chapter 5 will then outline the previous potential fit work done on

the a 3Σ+
u state of the cesium dimer by Xie et al. [7], and it will present the potential fit

results of the present analysis. Chapter 6 will present the implications of the results for the

X 1Σ+
g and a 3Σ+

u states of the cesium dimer.

4



Chapter 2

Modelling the Potential Energy Curve

of Diatomic Molecules

2.1 Long-Range Behaviour of Diatomic Molecules

Molecules exhibit qualities in their long-range interaction that are very distinct, and these

forces can be described mathematically. The forces that govern the long-range interaction

between S-state atoms are referred to as dispersion forces [10]. All homonuclear diatomic

species exhibit dispersion forces that have the same functional form, but differ in the values

of the coefficients that determine the strength of the interaction. These interactions are

discussed by Margenau [10], who shows that the leading long-range term is proportional

to −1/r6. Thus, the basic functional form for dispersion interaction energy of diatomic

molecules is:

5



CHAPTER 2. MODELLING THE POTENTIAL ENERGY CURVE OF DIATOMIC
MOLECULES

V (r) = −C6

r6
(2.1)

where C6 is the leading van der Waals coefficient and has a unique value for each molecular

system. It was shown through a simplistic derivation that the basic form of the dispersion

forces contributing to the potential energy of a diatomic molecule is [10]:

V (r) = −C6

r6
− C8

r8
− C10

r10
+ · · · (2.2)

This functional form has been expanded to include higher-order terms −Cm/r
m where m >

10 so that the complete representation of the long-range potential interaction derived from

second-order perturbation theory is:

V (r) = −
∞∑

m=6(2)

Cm

rm
(2.3)

For interactions between ground-state atoms, all of the terms contributing to the potential

energy function are attractive and thus, the associated Cm coefficients are positive.

This functional form has provided an accurate description for the attractive dispersion

forces of diatomic molecules. However, there also exists repulsive dispersion forces that arise

in third-order perturbation theory. If the second- and third-order terms are included in

Eq. (2.2) then the long range expression for the X 1Σ+
g and a 3Σ+

u states of Cs2 is:

V (r) = De −
C6

r6
− C8

r8
− C10

r10
+
C11

r11
− C12

r12
+
C13

r13
− C14

r14
(2.4)

For the molecular species Cs2, many groups have worked to determine the long-range

potential coefficients [8, 11, 12, 13, 14, 15, 16, 6, 2]. However, optimum values of the higher-
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MOLECULES

order van der Waals coefficients contributing to the long-range interaction potential of Cs2

are still uncertain. Tables 2.1 and 2.2 contain all reported values of the second- and third-

order dispersion coefficients for the X 1Σ+
g and a 3Σ+

u states of Cs2.
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MOLECULES

Table 2.1: Second-order dispersion coefficients Cm for the X 1Σ+
g and a 3Σ+

u states of Cs2 in

units of cm−1 Åm

Year Author(s) 10−7C6 10−9C8 10−10C10 10−12C12 10−14C14

1985 Weickenmeier et al. [8] 3.298 1.254 5.525 3.07 2.151

1994 Marinescu [11] 3.051 1.300 5.7443

1997 Patil and Tang [12] 3.206 1.289 5.132 2.677 1.87

1999 Patil and Tang [13] 3.088 1.227 4.924 2.585

1999 Derevianko et al. [14] 3.302

2000 Kotochigovaet al. [15] 3.306

2000 Leo et al. [16] 3.321

2000 Drag et al. [17] 3.137

2002 Amiot and Dulieu [6] 3.295 1.296 5.744 3.07

2003 Derevianko and Porsev [18] 1.38 6.01

2010 Coxon and Hajigeorgiou [2] 3.31 1.2996 5.1363 2.677 1.87

2012 Hutson [19] 3.3209 1.3621

2012 Mitroy [20] 3.2619 1.2955 5.3659 3.16338* 3.0407*

*sum of second- and fourth-order terms.

8
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MOLECULES

Table 2.2: Third-order dispersion coefficients Cm for the X 1Σ+
g and a 3Σ+

u states of Cs2 in

units of cm−1 Åm.

Year Author(s) 10−11C11 10−13C13

1985 Weickenmeier et al. [8] -2.378

1999 Patil and Tang [13] -2.064 -2.677

2010 Coxon and Hajigeorgiou [2] -2.378 -2.677

2012 Mitroy [20] -2.1586492 -3.0032639

9
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MOLECULES

2.2 Direct-Potential-Fit Methods

A modern approach for analyzing diatomic molecular spectroscopic data is to perform a

“direct potential fit” (DPF) to experimental data. This method compares experimental tran-

sition energies with eigenvalue differences calculated from a version of the one-dimensional

Schrödinger equation [21]:

− ~2

2µ

d2ψυ,J(r)

dr2
+ [V (r) + VC(r)] ψυ,J(r) = Eυ,J ψυ,J(r) (2.5)

in which

VC(r) =
J(J + 1)~2

2µr2
(2.6)

in which ~ is Planck’s constant divided by 2π, µ is the reduced mass of the two atoms

being considered, J is the rotational quantum number, V (r) is the potential energy, VC(r) is

centrifugal potential, Eυ,J is the total energy, r is the internuclear distance and ψυ,J(r) is the

unknown wavefunction to be solved for. The Schrödinger equation in Eq. (2.5) pertaining to

a DPF is based on some parametrized potential energy function.

The rigid rotor description of diatomic molecules offers insight into the fundamental

physical and mathematical problems associated with rotational and vibrational motion. In

this approximation the rotations and vibrations are independent of one another. That is

to say, the magnitude of the energies associated with a given rotation or vibration is not

influenced by the other’s motion. However, real molecules are not rigid and exhibit what is

called centrifugal distortion. The vibrational energy level spacings are of larger magnitude

than the rotational energy level spacings, so it is the magnitude of the rotational energy

10
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level spacings that is affected by the vibrational motion of the molecule. The energy of a

molecule in a given vibrational state υ can be described by a power series in J(J + 1):

Eυ,J = Gυ +Bυ[J(J + 1)]−Dυ[J(J + 1)]2 +Hυ[J(J + 1)]3 + Lυ[J(J + 1)]4 + · · · (2.7)

By treating the centrifugal potential as a perturbation, the perturbed wavefunction can be

determined as the solution of an inhomogeneous version of Eq. (2.5), centrifugal distortion

constants {Dυ, Hυ, Lυ, ...} can be calculated for all vibrational levels for a particular potential

[22]. With the advent of Hutson’s technique [22], calculating the rotational constants for all

levels of any given potential well became a routine procedure.

Using the energies from Eq. (2.7) as trial energies, an ansatz of the potential energy

function can be obtained. The parameters defining the potential are then optimized by a non-

linear least-squares fit. Effects due to atomic-mass-dependent adiabatic and non-adiabatic

Born-Oppenheimer Breakdown (BOB) functions [21], and radial strength functions that

account for splittings as a result of angular momentum coupling between electronic states

[23, 24], are included in the appropriate effective radial Hamiltonian. This method was

originally introduced for atom-diatom van der Waals molecules [25], but is now extensively

used for diatomic molecule data analyses. For any spectroscopic transition, the energies of

the lower and upper levels are eigenvalues of Eq. (2.5) for the appropriate potential energy

function. Since Eq. (2.5) is an ordinary differential equation, it is solved by conventional

methods, and the eigenvalue Ev,J and eigenfunction ψv,J may be readily determined for any

specified vibration-rotation level {v, J} of any given potential. The partial derivative of any

eigenvalue with respect to any given potential function parameter can then be obtained from

11
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the Hellman-Feynmann theorem [26]:

∂Ev,J

∂pj
=

⟨
ψv,J(r)

∣∣∣∣∂V (r)

∂pj

∣∣∣∣ψv,J(r)

⟩
(2.8)

The differences between these partial derivatives for the upper and lower level of each ob-

served transition are the partial derivatives of that transition energy with respect to the

parameters {pj} required for the least squares fitting procedure.

Since a given data set usually consists of many transitions, an efficient algorithm for

solving Eq. (2.5) is of tremendous value. In the present work, Eq. (2.5) is solved using the

Numerov method, so a realistic trial energy for each vibration-rotational level in the system

is of vital importance to the Schrödinger-solver subroutine. To address this problem, the

subroutine must be supplemented with a procedure that identifies the highest vibrational

level in the data set for each electronic state. Then, as the potential function parameters are

optimized cyclically in the non-linear least squares fit, an automatic procedure will locate

each pure vibrational level. An efficient way for performing this procedure is to use the

semi-classical expression for the density of states [27]:

dv

dGv

=
1

2π

√
2µ

~2

∫ r2(v)

r1(v)

dr√
Gv − V (r)

(2.9)

The inverse of these derivatives provides a good approximation for distances between neigh-

bouring vibrational levels. When the pure vibrational levels are known, Hutson’s method

can be employed to calculate the rotational band constants {Bv, Dv, Hv, Lv, ...} appearing

in Eq. (2.7). The fitting procedure considers each datum individually, and then uses the

stored band constants to generate good trial eigenvalues for any desired {v, J} state. Two
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additional problems exist for using the DPF method: (i) choosing a flexible and physically

sensible potential function form, and (ii) obtaining realistic trial potential function parame-

ters for starting the fit. These are discussed in the following sections.

2.3 Potential Function Forms

Although the DPF method has been shown to be quite efficient for modeling simple

single-well diatomic potential energy functions, the choice of the ‘best’ potential function

form is still being contested [26]. The most popular potential forms have been: (i) poly-

nomial potential forms, (ii) the Extended Morse Oscillator (EMO) potential form, (iii) the

Morse/Long-Range (MLR) potential form, and (iv) the Spline-Pointwise Potential (SPP).

2.3.1 Polynomial Potential Functions

This type of potential function form is a simple polynomial expansion in some radial-

coordinate. A polynomial potential function from early literature is the Dunham expansion

[28]:

V (r) = a0ξ
2(1 + a1ξ + a2ξ

2 + a3ξ
3 + ...) in which ξ = ξDun =

r− re
re

(2.10)

The fundamental problem with this potential form is that it always diverges outside the

range of data used to determine it. In particular, VDun(r) → +∞ or −∞ as r → ∞, which

is clearly an unphysical property inherent in this type of function. To rectify this unphysical

property of such expansions, Ogilvie proposed use of an alternative expansion variable that
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approaches a finite limit when r → 0 and r →∞ [29]:

ξOT(r) = 2

(
r − re
r + re

)
(2.11)

Although this variable does not diverge at very large or very small distances, polynomial

functions of this variable can still behave nonphysically there [29].

It is possible to constrain such polynomial potential function forms such that they both

incorporate the appropriate inverse-power long-range terms and approach the correct asymp-

totic limit [30]. However, to force such functions to incorporate such behaviour necessarily

requires the use of much higher-order polynomials than would be required merely to repre-

sent the data. Introducing appropriate mathematical constraints into the potential function

form may appear trivial [30], but the altered potential function has a tendency to oscillate

above and below the dissociation limit in the long-range extrapolation region before eventu-

ally achieving the correct limiting behaviour. This kind of unphysical behaviour of simple

expansions in the ξOT(r) variable suggests that a better radial variable and potential form

should be sought after.

The divergent and/or oscillatory behaviour exhibited by simple power series expansion

in ξDUN or ξOT are somewhat mitigated by using the radial variable introduced by Šurkus et

al. [31]:

ξ
(p)

Šur
(r) =

rp − (re)
p

rp + (re)p
≡ yeqp (r) (2.12)

with p > 1. The Šurkus radial variable is confined to the range [-1,1] on the domain [0,∞).

At large internuclear distances this variable can be expanded such that:
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ξ
(p)

Šur
(r) ≃ 1− 2

(
re
r

)p

+O
(
re
r

)2p

(2.13)

Therefore, if p = n, where n is the power of the leading inverse-power term in the long-range

potential, a potential function expressed as a power series in ξ
(p)

Šur
(r) may be constrained to

have the theoretical value of the leading term from the long-range:

V (r)−De ∝ −Cp

(
re
r

)p

+O
(
re
r

)2p

(2.14)

where the constant Cp is defined in terms of the coefficients of the power series. The pa-

rameter p is often constrained to equal 6, because this leading van der Waals dispersion

term is proportional to 1/r6. This leads the potential expressed as a simple power series

in the Šurkus variable to lose its flexibility [32], since when p is large, the full range of

ξ
(p)

Šur
(r) is attained on a smaller r domain. With such limited flexibility for large p, it also be-

comes impossible to model long-range limiting behaviour where there are several long-range

inverse-power terms.

A practical way to avoid incorrect long-range potential behaviour is to attach a tail to

the potential that forces it to exhibit the correct limiting long-range behaviour. This added

component of the potential is a long-range inverse-power-sum of the form shown in Eq. (2.3)

[10].

This is the approach used by a group at the University of Hanover in Germany [33]. They

represented the potential energy function on a specified region between chosen inner r− and

outer r+ turning points by a simple polynomial in the variable ξHan:
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ξHan(r) =
r − rm
r + brm

(2.15)

where b is another fitted parameter. Although this modification includes the proper long-

range limiting behaviour, the points of attachment r− and r+ are ad hoc choices and do not

necessarily represent anything that is physically meaningful. Moreover, imposing smooth

connections requires the assumption that polynomial potential function and its derivatives

at the beginning and end of the selected data region are correct. This assumption may be

questionable because the polynomial naturally exhibits unpredictable behaviour outside, and

hence probably at the edges of, the data region. Therefore, this is an approach that one

should avoid, if other options exist.

Ultimately, polynomial potential function forms have enough shortcomings that more

sophisticated models became a necessity. In particular, fits to data that span a large fraction

of the potential well typically require relatively high-order polynomials, and in fits to high-

order polynomials, the coefficients are highly correlated, which makes convergence difficult

to achieve. In practical work with polynomial potentials, these coefficients have often been

reported to 18 significant digits, and using them would require quadruple precision arithmetic

on most computers [33]. This attribute will obviously make the model less convenient for

practical use. Moreover, since experimental transition energies are typically reported to only

8-10 significant digits, it seems unreasonable that numerous 18-digit polynomial coefficients

be required to describe them.
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2.3.2 Extended Morse Oscillator (EMO) Potential

Since polynomial potential function forms always behave nonphysically outside the exper-

imental data region, theoreticians returned to the Morse potential. Replacing the constant

coefficient in the exponential term by a polynomial in r, Coxon and Hajigeorgiou were able

to devise a potential function form that not only fit experimental data accurately using a

relatively modest number of expansion parameters, but could also provide a realistic descrip-

tion of the approach to the dissociation limit [34]. They called this function the “Generalized

Morse Oscillator” (GMO), and it has the form:

VGMO(r) = De(1− e−β(r)·(r−re))2 (2.16)

in which β = β(r) is a simple polynomial function centered at re. However, this potential

form suffered from the same divergence problem as the Dunham potential did: i.e., β(r)→

±∞ as r → ∞. Lee et al. [35] introduced the following potential which was later applied

by Seto et al. [36]:

VEMO(r) = De(1− e−β(r)(r−re))2 (2.17)

in which

β(r) = βEMO(r) =
N∑
ı=0

βi(y
eq
p (r))i (2.18)

and

yeq(r) = y(r; re) =
r − re
r + re

(2.19)
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Eq. (2.20) was later generalized to include powers of r and re greater than 1:

yeqp (r) = yp(r; re) =
rp − (re)

p

rp + (re)p
(2.20)

Since the potential function is based around an exponential term, a small change in the

exponent coefficient makes a large change in the function itself. Thus, for a given data

intermolecular potential β(r) is a relatively slowly varying function, and a relatively modest

number of parameters can be used to represent it.

If the polynomial order in Eq. (2.18) is large, then Eq. (2.17) may still behave nonphys-

ically on the interval between the data region and the lower and upper limits of yp, -1 and

+1, respectively. However, as the variable p increases, the opportunity for such behaviour

is suppressed because of the nature of the functional mapping of yp(r) onto r [37, 24]. In

particular, as p increases, the yp(r) values associated with the end points of the data region

move closer to the endpoints of the domain of the expansion variable yp(r), +1 and −1 [24].

This potential function form has been used in a number of experimental data analyses

[35, 37, 38]. It successfully reproduces the experimental data, yields accurate values of re, and

yields realistic estimates of the well depth, when De is a fitting parameter. The key feature of

the Coxon and Hajigeorgiou innovation was that the potential well shape parameters would

be controlled by a relatively slowly varying exponent coefficient function.

This modified version of this function created by Lee et al. is flexible, and can represent

high-resolution data sets within experimental uncertainties; it extrapolates reasonably well

outside the data region; it is continuous on r ∈ R, and it can usually be defined by a modest

number of variables. However, it does not have the correct long-range limiting behaviour.

For the function to have the correct long-range limiting behaviour, the potential function
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form needs to incorporate Eq. (2.3). However, reliable values for Cm coefficients are not

always available, and if this is the case, the EMO model is perhaps the best potential energy

function available for diatomic molecules.

2.3.3 Spline-Pointwise Potential (SPP)

The Spline-Pointwise Potential (SPP) is defined by a cubic spline function that passes

through potential function values at a specified set of distances. The energies that define

the individual points are varied during the DPF procedure. Tiemann and Wolf first used

spline-pointwise potentials to model systems with shallow wells and quasi-bound levels [39,

40, 41, 42]. However, their original SPP methodology was quite capable of being unstable,

and as such, had to be used with caution. Later Pashov et al. improved the SPP method

by incorporating singular-value decomposition and proper partial derivatives into the least-

squares procedure, and the resulting procedure was stable [43, 44, 45]. They also showed

that the spline function could be written as a linear combination of basis functions associated

with the N data points:

VSPP(r) =
N∑
i=1

V (ri)S
N
i (r) (2.21)

where V (ri) are the potential function values, ri are the grid points in r, and SN
i (r) are

parameter-independent functions that also serve to define the values of the partial derivatives

with respect to the parameters V (ri) in the least-squares procedure.

The SPP function works well for fitting experimental data for single-minimum potentials

[43, 44], and is as yet the only potential function form shown to be able to treat double-
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minimum potentials [45]. This function does not, however, incorporate the correct theoretical

long-range behaviour of Eq. (2.3) in any way. Moreover, this potential function form cannot

extrapolate reliably outside the experimental data region, so its ability to make predictions

is limited. As usually implemented, the spline function is constrained to have zero curvature

at the endpoints of the spline region, and attaching a long-range term requires some ad hoc

mathematics to achieve sensible attachment. This model cannot readily determine reliable

estimates of Cm coefficients, since they are not explicit parameters of the model, nor can it

provide accurate extrapolations to the dissociation limit. Additionally, even though physi-

cally interesting parameters such as re and De can be determined with this potential, they

are not explicit parameters of the potential function itself.

2.3.4 Morse/Long-Range (MLR) Potential

The major shortcoming of the EMO potential is its inability to represent the true, the-

oretically known long-range behaviour of molecular interactions given by Eq. (2.3). It has

been mentioned that if the EMO potential included Eq. (2.3), that it would then have the

correct long-range limiting behaviour. The Morse/Long-Range potential (MLR) has essen-

tially the same algebraic structure as the EMO, except that two modifications allow it to

incorporate the correct limiting long-range behaviour. This new function has the form [32]:

VMLR(r) = De

[
1− uLR(r)

uLR(re)
e−β(r)·yeqp

]2
(2.22)

in which De is the well-depth, re is the equilibrium internuclear distance, and uLR is damped

version of the inverse power sum of Eq. (2.3):

20



CHAPTER 2. MODELLING THE POTENTIAL ENERGY CURVE OF DIATOMIC
MOLECULES

uLR(r) =
last∑
mi

Dmi
(r)

Cmi

rmi
(2.23)

The exponent coefficient function β(r) is designed to force potential energy function to have

the form of Eq. (2.3) when r becomes large. It has the form:

β(r) = yrefp (r)β∞ + [1− yrefp (r)]

Nβ∑
i=0

βi y
ref
q (r)i (2.24)

in which

yrefp (r) = yp(r, rref) =
rp − (rref)

p

rp + (rref)p
, yrefq (r) = yq(r, rref) =

rq − (rref)
q

rq + (rref)q
(2.25)

and rref is non-physical parameter such that re < rref .

When r = re, y
eq
p = 0 and uLR(r) = uLR(re), and hence the potential energy function is at its

minimum with a well depth of De. This is a central feature of this potential function form.

The coefficient β(r) is normally represented as a constrained polynomial in the variables

yrefp (r) and yrefq (r), and the nature of these variables means that it must approach a finite

value as r →∞. The limiting value of this exponent β∞ is then defined as:

β∞ ≡ lim
r→∞
{β(r) yeqp (r)} = lim

r→∞
{β(r)} = ln

(
2De

uLR(re)

)
(2.26)

Since β∞ represents the limit at long-range for the argument of the exponential, the
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long-range limit of the MLR is:

VMLR(r) ≃ De

[
1− uLR(r)

uLR(re)
e
− ln
(

2De
uLR(re)

)]2
(2.27)

≃ De − uLR +O
(
uLR

2

4De

)
≃ De −Dm1

Cm1

rm1
−Dm2

Cm2

rm2
− · · ·+O

(
uLR

2

4De

)
+ · · ·

Therefore, the MLR potential form incorporates the appropriate long-range behaviour.

Because the limiting long-range behaviour of the exponential term in the MLR is approx-

imately equal to 1 − A/rp, where A is a constant, the power p must satisfy the condition

p > mn−m1, where mlast is the last long-range power in uLR and m1 is the power of its first

long-range term [46]. For example, for diatomic molecular states that are formed from S-state

atoms, the leading contributions to the long-range potential correspond to m = {6, 8, 10},

and to satisfy this condition, necessarily p > 5 [46, 32]. However, there is no analogous

constraint on the value of q.

Both the EMO and MLR functions have their greatest strength in the fact that the

empirical component governing the detailed shape of the function is contained within the

argument of the exponential argument. This feature allows both models to describe so-

phisticated potential energy functions, with only a modest number of parameters. Both

models explicitly depend on the equilibrium internuclear distance re and the well depth De.

However, only the MLR function effectively incorporates the correct, theoretically-known

inverse-power long-range behaviour [10]. By its exponential form and incorporation of this

correct long-range behaviour, this potential energy function requires many fewer parame-

ters than do conventional polynomial potentials [46]. Arguably, the MLR form is the best

potential energy function form yet devised for diatomic molecules. However, it has not yet
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been shown to be capable of modeling potential energy functions that have abrupt changes

in shape, such as a double minimum or a “shelf”.

Damping Functions

The inverse-power sum used in the preceding section to represent the long-range potential

energy curve of Cs2 is known to diverge for all internuclear distances. That is to say, the

simple inverse-power sum of Eq. (2.3), has singularities at both the short and long-range.

Damping functions Dm(r) that remove the singularities were introduced into the long-range

potential energy function of the MLR in Eq. (2.22) [47]:

uLR(r) =

mlast∑
m=m1

Dm(r)
Cm

rm
(2.28)

Following the recommendation of Le Roy et al. [47], this work uses the s = −1 version of a

generalized Douketis et al. type of damping function:

DDS(−1)
m (r) =

(
1− exp

(
− bds(−1)(ρr)

m
− cds(−1)(ρr)2

m1/2

))m+s

(2.29)

with ρ defined as:

ρ =
2ρAρB
ρA + ρB

(2.30)

in which ρA and ρB correspond to atom A and B, respectively, and ρA is defined as:

ρA =

(
IAp
IHp

) 2
3

(2.31)
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where IAp is the ionization potential of atom A and IHp is the ionization potential of atomic

hydrogen. For the cesium dimer the value ρ is 0.434. At very small r, Dm(r)/r
m ∝ r−1

and the quadratic term in the second line of Eq. (2.22) will dominate the potential energy

function with a 1/r2 functional behaviour.

Theoretical C1 coefficients

At very small internuclear distances, the potential curve of diatomic molecules is described

coherently by the united atom (UA) approximation. The potential energy function has four

physical contributions and can be approximated with [47]:

VUA(r) w
ZAZBC

pp
1

r
+ Eel

AB(r)− Eel
A − Eel

B (2.32)

in which

Cpp
1 =

e2

4πϵ0
= 116149.97 cm−1 (2.33)

ZA and ZB are atomic numbers for atoms A and B, Eel
AB(r) is the electronic energy of the

united atom, and Eel
A and Eel

B are the total electronic energies of the individual atoms. The

atomic number for the united atom is the sum of the atomic numbers of the individual atoms.

The functional form of VUA(r) dictates that the first contribution will become infinitely large

as r → 0. In the case of Cs2, ZA = ZB = 55 so that the first contribution to VUA(r) has a

coefficient of ZAZBC
pp
1 = 3.5135366 x 108 cm−1.

The very short-range behaviour of a diatomic potential energy function can be charac-

terized using the first term of VUA(r). On a plot of V (r) vs. r, a linear equation with slope
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Cpp
1 is easily constructed by choosing two arbitrary values of r. A plot containing this linear

function and a potential energy function on a logarithmic scale should exhibit one of two

relationships. When s = −1/2 and as r → 0, VMLR(r) ∝ 1/r. Therefore, when s = −1/2

in the MLR damping function in Eq. (2.29), the potential energy curve should approach the

same limiting behaviour as the first term in VUA(r).

Fig. 2.1 displays the limiting short-range behaviour potential energy functions with in-

creasing long-range complexity, as well as the theoretical coulombic behaviour. Potential

energy functions for which p = 1 contain uLR(r) functions that include only the leading

term in the long-range function uLR(r) of Eq. (2.23). Potentials that include the first two,

three, four, five, and six terms in the long-range are labelled by p values of 3, 5, 6, 7, and

8, respectively. Table 2.3 lists the dispersion coefficients used to generate Fig. 2.1. The fig-

ure also includes a potential energy function for both states in which the value of s in the

damping function is -1/2. All of the potential energy functions where p ≥ 5 with s = −1

sho reasonable behaviour in the short-range region except the p = 1 potential for the triplet

state.
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Table 2.3: Dispersion coefficients used in the tests of the short-range behaviour for theX 1Σ+
g

and a 3Σ+
u states of Cs2.

Dispersion Value

coefficient

C6 [19] 3.3207822 x 107 cm−1 Å6

C8 [19] 1.3621006 x 109 cm−1 Å8

C10 [2] 5.1363 x 1010 cm−1 Å10

C11 [2] −2.378 x 1011 cm−1 Å11

C12 [12] 2.68 x 1012 cm−1 Å12

C13 [13] −2.68 x 1013 cm−1 Å13
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Figure 2.1: Plot of the short-range of various q = 5 potentials for the X 1Σ+
g (bottom) and

the a 3Σ+
u (top) states of Cs2.
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2.4 Data for the X 1Σ+
g and a 3Σ+

u States of Cs2

The first extensive high resolution observations of rovibrational transitions of the cesium

dimer were obtained by Weickenmeier et al. utilizing optical double-resonance polarization

spectroscopy [8]. In this study, transitions were observed involving levels up to υ = 140,

although vibrational energies are only reported up to υ = 137. Approximately 2500 lines

were observed from the transitions of the C 1Πu ← X 1Σ+
g system including lines obtained

from Raab et al. [48]. Weickenmeier’s data set also included 400 Λ-type double-resonance

signals from the D 1Π+
u ← X 1Σ+

g system [48], 80 V -type double-resonance signals from the

C 1Πu ← X 1Σ+
g system, and 450 fluorescence series lines [49]. The value determined for De

was 3649.5 ± 0.8 cm−1. Unfortunately, the original data set from this study is no longer

available.

In 2002, Amiot and Dulieu determined a potential energy curve for the X 1Σ+
g state of

Cs2 using high-resolution laser-induced emission spectra, which comprises the core of the

data used in the present analysis [6]. It consists of and includes 16 900 transitions from

113 main fluorescence series including observation of vibrational levels up to υ = 136, which

is bound by 24.1 cm−1. However, only 16 668 transitions were made available for public

use. It was determined that the most efficient way to obtain emission into the X 1Σ+
g state

was to pump the first excited state, A 1Σ+
u . Transitions in this data set have experimental

uncertainties ranging from 0.001 − 0.003 cm−1 with the majority having uncertainties of

0.001 cm−1. Amiot and Dulieu determine an estimate of De 3649.88± 0.45 cm−1 by fitting

Rydberg-Klein-Rees turning points to a version of Eq. (2.4) [27, 50, 51, 52], and they suggest

that a reason for the large uncertainty is the influence of the hyperfine structure of Cs2 which
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broadens line widths up to 0.3 cm−1 at high υ. Their data set also has multiple differing

estimates for the energies of the highest vibrational levels, and they also mainly observed

even values for J at these levels. In contrast, Weickenmeier et al. observed 4 series with

odd J values and reported only one series with an even J value. Amiot and Dulieu argued

that the observed difference in De was due to the differences in estimates of the energies

associated with the highest observed levels for even and odd values of J . In 2008, Danzl

al. determined binding energies for υ =73, 72, and 71 with uncertainties of 0.001 cm−1, and

estimated the dissociation for the X 1Σ+
g state very accurately [5].

In 2008, Xie et al observed the first 40 vibrational levels of the a 3Σ+
u state of Cs2 [7].

Using perturbation facilitated infrared-infrared double resonance excitation into the 3 3Πg

state, resolved fluorescence into the a 3Σ+
u state was observed. The a 3Σ+

u and the X 1Σ+
g

state approach the same asymptote as r →∞, and they exhibit hyper-fine splitting due to

spin-orbit coupling effects. The very highest vibrational levels of the X 1Σ+
g and the a 3Σ+

u

states of Cs2 cannot be predicted using one-dimensional conventional models. Accurate

determination of the highest vibrational levels of the respective states is of grave importance

for obtaining potentials able to yield accurate scattering lengths.

Chin et al. observed more than 60 magnetic field-induced Feshbach resonances for both

the X 1Σ+
g and a 3Σ+

u states of Cs2 [4]. Coupled-states analyses of those resonances yielded

the effective single-channel scattering length associated with the hyperfine-free limit for both

states: 148.3 Å for the X 1Σ+
g state, and 1273 Å for the a 3Σ+

u state. The present work

combines automated direct-potential fits to the above data sets with manual fits to these

scattering lengths to obtain optimum effective potential energy functions for the X 1Σ+
g and

a 3Σ+
u states of Cs2.
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With the data sets associated with the X 1Σ+
g and a 3Σ+

u states, along with the scattering

lengths from coupled channel analyses, an optimal uncoupled channel potential for the two

electronic states will be defined.
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Potential Parameter Determination

3.1 Optimization of the rref Parameter

The parameters that define the the MLR potential energy function each serve distinct pur-

poses. The parameters De and re are of physical significance, and their values are accurately

determined when an extensive and accurate data set is available for the potential fit. The

quantity rref is non-physical parameter for which a rough preliminary value can be estimated

from rref =
√
r− · r+, where r− and r+ are the inner- and outermost turning points of the

highest observed vibrational level. While this geometric mean of the two turning points

that define the highest observed vibrational level offer a reasonable ansatz for rref , it is not

necessarily optimal.

A way of ascertaining the quality of a given potential energy function is by calculating

the dimensionless root mean square (DRMS) deviation dd:
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dd ≡
{

1

N

N∑
i=1

[
ycalc(i)− yobs(i)

u(i)

]2} 1
2

(3.1)

in which ycalc(i) is the calculated energy, yobs(i) is the observed energy, u(i) is the uncertainty

of the observed energy, and N is the number of experimental data. Minimization of the dd

value implies an optimal direct-potential fit. In particular, it implies that the calculated

energy values obtained from the molecular potential are very close to the observed energy

values.

The parameters that have no physical significance offer an avenue for minimizing the

value of dd. To this end, rref is selected solely on it’s ability to improve the quality of fit for

the molecular potential. Given the form of the MLR potential energy function and curvature

of the general shape of a diatomic potential energy curve, the other mathematical entity to

consider is the polynomial in the exponent of the MLR defined in Eq. (2.24). The polynomial

β(r) is comprised of Nβ+2 terms with Nβ+1 free parameters, and these parameters allow the

shape of a sophisticated potential energy function to be represented accurately. However, a

potential energy function is considered compact when few parameters are needed to represent

a potential curve, and compactness is desirable. The figures below capture the essence of

parameter optimization as it applies to selecting polynomial-order and determining what rref

value offers the minimal value of dd for a given polynomial-order. It is desirable to minimize

the polynomial order, while the value of rref is seen to be arbitrary. Ideally, the order of the

polynomial should offer a domain of stability for dd with respect to changes in the value of

rref . Moreover, if a small change in rref leads to a large change in the value of dd, then rref is

not in a domain of stability. A domain of instability infers that the order of the polynomial

should be increased until such a domain is found. Thus, minimizing dd is a problem that
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spans two dimensions; the polynomial order and the value of rref . The final consideration

are the contributions of the parameters p and q in their respective radial expansion variables

defined in Eq. (2.25). The minimum value p can have is determined by the the number of

terms in Eq. (2.23). The value of p must be greater than the absolute difference of the powers

of the first and last terms in Eq. (2.23). For example, if Eq. (2.23) includes C6, C8, and C10,

the absolute difference of the first and last terms is |mlast−m1| = |10−6| = 4, so p ≥ 5. The

chosen form of Eq. (2.23), and thus p, typically has little or no effect on dd. The parameter q

is not constrained to certain values; however, as q gets large, the range of yrefq is restricted to

a narrower domain of r. As a result, choosing large value of q results in the potential energy

function as a whole losing its ability to fit the data set as well as it could when a smaller

value of q is selected.

Fig. 3.1-3.3 show how dd varies with rref for a number of families of potential energy

functions, the associated with different polynomial orders and different values of p and q.

Fig. 3.1 shows plots of dd as a function of rref when {p, q} = {5, 4} and {p, q} = {5, 3} for

potential functions that include the first three terms of the long range. Fig. 3.2 shows results

obtained for models with {p, q} = {6, 4} and {p, q} = {6, 3} that include the first four terms

of the long range tail. Fig. 3.3 shows analogous plots for {p, q} = {7, 4} and {p, q} = {7, 3}

potentials that include the first five terms of the long range. Table 3.1 lists the values of the

dispersion coefficients used in the potentials used to generate Fig. 3.1-3.3.

In the bottom panel of Fig. 3.1, it can be seen that when N = 11 there is a very narrow

domain of stability in rref . Moreover, for a small change in rref , there is a significant increase

in dd. For N = 12, the domain of stability is much larger than for N = 11, but its minimum

does not correspond to the absolute minimum. When N = 13, a wide domain of stability
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is obtained, as well as a minimum that matches the absolute minimum ddmin. There is no

benefit to move from N = 13 to N = 14 thus, the chosen potential is N = 13 at the rref

value that corresponds to the minimum. In the top panel of Fig. 3.1, it can be seen that

when N = 14 the minimum of dd differs significantly from the minimum attained when

{p, q} = {5, 4}. This significant decrease in fit quality from the bottom panel for N = 14

is due to the use of q = 4. For N = 15 and N = 16 domains of stability are obtained,

but neither family of potentials reaches the absolute minimum that N = 17 reaches. Thus,

N = 17 with q = 4 is the appropriate potential to choose at the rref value that corresponds

to the absolute minimum.

In Fig. 3.2 and Fig. 3.3, similar trends are observed. In particular, both figures show that

a larger polynomial order N is needed for both p = 6 and p = 7 when q is increased from 3

to 4. In Fig. 3.2, domains of stability and absolute minima are achieved with N = 13 and

N = 17 for q = 3 and q = 4, respectively. In Fig. 3.3, domains of stability and absolute

minima are achieved with N = 13 and N = 17 for q = 3 and q = 4, respectively. The long-

range behaviours of the recommended models for each of the six potential energy function

types considered in Fig. 3.1-3.3 are compared in Fig. 3.4.
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Table 3.1: Dispersion coefficients used in the preliminary fits for the X 1Σ+
g of Cs2 [2].

Dispersion Value

coefficient

C6 3.31 x 107 cm−1 Å6

C8 1.2996 x 109 cm−1 Å8

C10 5.1363 x 1010 cm−1 Å10

C11 −2.378 x 1011 cm−1 Å11

C12 2.677 x 1012 cm−1 Å12
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Figure 3.1: Plot of dd as a function of rref for MLR function models with three inverse power

terms in uLR(r) (m = 6, 8, and 10) and {p, q} = {5, 4} (top) and {p, q} = {5, 3} (bottom).
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Figure 3.2: Plot of dd as a function of rref for MLR function models with four inverse power

terms in uLR(r) (m = 6, 8, 10, and 11) and {p, q} = {6, 4} (top) and {p, q} = {6, 3} (bottom).
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Figure 3.3: Plot of dd as a function of rref for MLR function models with five inverse power

terms in uLR(r) (m = 6, 8, 10, 11, and 12) and {p, q} = {7, 4} (top) and {p, q} = {7, 3}

(bottom).
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3.2 The Long-Range Tail of Diatomic Potentials and

Scattering Lengths

3.2.1 Analysis of the Extrapolation Region

In order to examine the extrapolation behaviour of a molecular potential on the interval

between the end of the data region and the asymptotic limit, it is useful to examine the

behaviour of the function defined in terms of the fitted potential V (r) and the leading long-

range coefficients Cm. The fundamental requirement for rearranging Eq. (2.27) to isolate a

particular Cm coefficient is that the coefficient actually be present in the potential energy

function model. We can rearrange Eq. (2.27) to obtain an effective C6 coefficient, which

we denote by Ceff
6 (r) which would define the full interaction potential if it was written as

V (r) = De − C6(r)/r
6:

Ceff
6 (r) ≡ r6[De − V (r)] ≃ C6 +

C8

r2
+

C10

r4
. . . (3.2)

Similarly, Ceff
8 (r) would characterize the deviation of the full potential from the limiting

V (r) = De − C6/r
6 behaviour, and at long-range it should take on the form:

Ceff
8 (r) ≡ r8

[
De − V (r)− C6

r6

]
≃ C8 +

C10

r2
+

C11

r3
. . . (3.3)

Similarly for C10 and C11:
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Ceff
10 (r) ≡ r10

[
De − V (r) − C6

r6
− C8

r8

]
≃ C10 +

C11

r
+ . . . (3.4)

Ceff
11 (r) ≡ r11

[
De − V (r) − C6

r6
− C8

r8
− C10

r10

]
≃ C11 +

C12

r
+ . . . (3.5)

From the form of the functions of Ceff
6 (r), Ceff

8 (r), and Ceff
11 (r), when C

eff
6 (r) and Ceff

8 (r) are

plotted against 1/r2 and Ceff
11 (r) is plotted against 1/r, the limiting slopes are C8, C10 and

C12, respectively. Thus, as r →∞ the functions Ceff
6 , Ceff

8 , and C11, should exhibit a positive

slope in the limit when r → ∞. The curvature of these functions should be positive or

negative, depending on the sign of the second succeeding term. For example, the curvature

of Ceff
6 versus 1/r2 should be positive, as the second term to succeed it in the extrapolation

region is a positive C10. Similarly, the limiting curvature of Ceff
8 versus 1/r2 should be

negative or positive, depending on whether the C11 or C12 term is dominant. Conversely,

the function Ceff
10 versus 1/r should exhibit a negative slope of C11. Using Ceff

m plots we are

able to test whether or not our potential behaves correctly in the extrapolation region.

Preliminary work on Cs2 used potential energy functions with various uLR forms. In par-

ticular, the first potential energy functions developed to fit to the X 1Σ+
g and a 3Σ+

u states of

Cs2 used uLR functions that were comprised of the first three, four and five dispersion coeffi-

cients known from theory. MLR potentials that have uLR functions that are comprised of the

first γ dispersion coefficients from Eq. (2.4) will be denoted as “MγLR” or “MγLRref
p,q(Nβ)”.

The Ceff
6 (r) plots shown in the lower panel of Fig. 3.4 show that all of the potentials consid-

40



CHAPTER 3. POTENTIAL PARAMETER DETERMINATION

ered here display the correct limiting slope and curvature inside the extrapolation region.

Each potential approaches a limit of C6 as r → ∞, while simultaneously approaching a

slope of C8. The curvature is also positive which is consistent with a positive C10 being the

next leading term in uLR. Our model form predicts that curvature should be negative or

positive, respectively, on M4LR and M5LR plots for 1/r2 < 0.008 Å
−2
. The Ceff

8 (r) plots

in Fig. 3.4 depict a variation of curvature with a change in the form of the potential energy

function. Differences in curvature begin well before the extrapolation region begins and an

increase divergence is more dramatic for certain potential energy functions. Each potential

shown contains a C10 in its uLR, but all but one function exhibits an inflection point. While

these potentials approach the correct asymptotic limit, and delineation from theoretically

predicted curvature necessitates choosing a different potential model. Moreover, our M3LR,

M4LR, and M5LR models need q > 4 to impose initial negative curvature.

In principle, all of the curves in the Ceff
8 (r) plots in Fig. 3.4 should approach an intercept

of of C8 with a limiting slope of C10 and weak negative curvature due to the small negative

C11 value. However, for most of these potentials, the plots deviate drastically from the

predicted limiting slope, which shows that they are unreliable models for the true potential.

Ultimately, the recommended model is M5LR5.7
7,5(18).
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Figure 3.4: Plot of Ceff
6 (r) and Ceff

8 (r) as a function of 1/r2 for the X 1Σ+
g state of Cs2 for

the seven fitted potentials labelled in the Ceff
8 panel.
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3.2.2 The C6 Dispersion Coefficient as a Variable

Collisional properties are of fundamental importance to the study of ultra cold Cs2. The

collisional cross section of a gas comprised of atoms approaches σ = 4πa2s as E → 0, where

as is the s-wave scattering length [1]. From scattering theory we get the formal definition of

the scattering length:

as = lim
k→0

1

k
cot [ηs(k)] (3.6)

in which ηs is the s-wave scattering phase shift at collision wavenumber k =
√
2µE/~2 where

µ =M/2 for identical atoms of mass M .

As r →∞, the wavefunction for a given vibrational level dies off exponentially. Fig. 3.5

shows that when E → De, E − V (r) in the Schrödinger equation goes to zero, so:

ψ′′(r) =
2µ

~2
[E − V (r)] ψ(r) → 0 (3.7)

and the wavefunction curvature, goes to zero. Thus, the limiting behaviour of the wavefunc-

tion is a linear function, a tangent line. This wavefunction is of particular significance for

a quantum mechanical understanding of the scattering length of a given electronic state. If

the limiting slope of the wavefunction at zero collision energy has a tangent line drawn to

it, there is a fixed point in which the tangent line for ψ(r) will go to zero. The internuclear

distance corresponding to the fixed point where the tangent line goes to zero is equal to the

s-wave scattering length. If the limiting slope of the wavefunction at the dissociation limit is

0, then the line will be parallel to the axis and the scattering length will be of infinite magni-

tude. This concept can be developed further by invoking semi-classical theory which shows
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that as ∝ 1/
√
Eυmax [53], in which Eυmax is the binding energy of the highest vibrational

level of the molecular potential. When Eυmax → 0, the highest vibrational is coincident with

the dissociation limit. Furthermore, as →∞ as Eυmax → 0.
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Figure 3.5: Plot of wavefunctions Ψ(r) at collision energy E = 0 for Lennard-Jones (12,6)

potentials as functions of r/re with a range of different well-depths in cm−1, and their

associated scattering lengths [1].
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Fig. 3.5 shows that as becomes increasingly negative as the capacity of the potential

to support vibrational levels increases. By extrapolation, it is clear that after as → −∞,

increasing well-capacity further will give as a very large positive value (in the limit +∞),

and as as decreases from +∞, the potential well will support another bound level. Thus,

as well capacity systematically increases or decreases, as will pass through a succession of

singularities as additional vibrational levels are added to or removed from the system. Just as

varying well-capacity by changing De can add vibrational levels, increasing C6 will increase

well-capacity and add vibrational levels.

In the case of the X 1Σ+
g of Cs2, the value of the well-depth is largely fixed by the

photoassociation data for υ =73, 72, and 71, so the net well-capacity may only be modified

by changing well-width at energies above those levels, and in practice this may be done by

varying one or more of the Cm long-range coefficients. Since the fluorescence series data of

Amiot and Dulieu [6] allows the vibrational levels within the data region to be determined

quite accurately, changing the potential in this region would cause an undesirable increase in

the value of dd. Therefore, it is most desirable to change the potential in the extrapolation

region, as it will have a smaller effect on the overall dd value of the potential. Chapter 2

outlines the various literature values that exist for the dispersion coefficients of Cs2. It also

outlines the disagreement in the scientific community regarding what are the true values of

these various coefficients. Given the variation in the literature and its overall contribution to

uLR, it is sensible to assume that a small change in C6 will create a significant change to the

position of the highest vibrational levels, and thus, change the scattering length. Increasing

the magnitude of the term −C6/r
6 causes the potential to become deeper on the outer

potential wall as C6 becomes larger. As the potential wall is moved further from the vertical
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axis with increasing C6, the highest vibrational level moves further from the asymptotic

limit. If the value of C6 is increased yet further, the molecular potential adds a vibrational

level whose wavefunction has one more loop (and node) than for the level that was previously

the last υmax. Assuming a small change in C6 has a small affect on dd, modifying C6 in this

analysis will force the potential to have a scattering length that matches the value of Chin

et al. work [4].
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Figure 3.6: Plot of the scattering length and dd as a function of C6 for the X 1Σ+
g (bottom)

and the a 3Σ+
u (top) states of Cs2 with M5LR5.7

7,5(18) and M5LR7.2
7,5(3), respectively.
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Fig. 3.6 is constructed from the results of 5000 potential fits, 2500 for each electronic state.

The dispersion coefficients in the long-range of these potential fits are held fixed, however,

for each distinct potential fit, a different value of C6 is chosen. The domain of the x-axis

is [20000,50000000] with a mesh size of 20000. Fig. 3.6 shows the influence that C6 has

on the scattering lengths and the dd values for associated fits to spectroscopic data of the

X 1Σ+
g and the a 3Σ+

u states of Cs2. Sharp spikes in the scattering length plots show that

as the highest vibrational level moves further from asymptotic limit, the scattering length

goes to −∞ with increasing C6. The υmax values indicate the highest vibrational level of the

potential between adjacent singularities.

Figure 3.7 is a companion to Fig. 3.6 which shows how the number of vibrational levels,

and hence the υmax values vary with C6 for both potentials. Each “step”, or unit increase in

υmax in Fig. 3.7 corresponds to a “spike” or singularity in Fig. 3.6. There is evidently a point

where dd reaches a minimum value and it lies near a singularity for both states. However,

Fig. 3.7 shows instability for the fitted X 1Σ+
g state potentials when C6 < 2.4 x 107 cm−1 Å

due to the unphysical addition of vibrational levels. The absence of spikes in the aS plot

Fig. 3.6 is due to the high density of singularities and the scale of the x-axis. Fig. 3.9 shows

thatX 1Σ+
g state potentials, where C6 < 2.4 x 107 cm−1 Å, have additional potential minima.

The potentials in Fig. 3.6 exhibit far more singularities than can be visibly discerned on

the chosen mesh size. This result infers that the width of a potential can only decrease

so much before the potential has to change drastically to accommodate the uLR function.

These potentials where C6 < 2.4 x 107 cm−1 Å
6
accommodate this drastic decrease of C6 by

adding potential minima. Fig. 3.8, confirms the hypothesis that the unphysical nature of the

potentials with C6 < 2.4 x 107 cm−1 Å
6
for the X 1Σ+

g state of Cs2 is due to the presence
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of photoassociation spectroscopy data in the potential fit. The unphysical nature and low

quality of fit suggests that the X 1Σ+
g state of Cs2 should have minimal change of C6 to

obtain the desired scattering length. Ideally then, the decision to decrease or increase C6

should be determined by which change offers the best minimization of dd.

At the end of the C6 domain in Fig. 3.6, the triplet state exhibits convoluted structure

on its dd plot. The few fitted potentials that actually converge near the end of the domain

have dd values that essentially oscillate from one fitted potential to the next. Moreover, the

first fitted potential at C6 < 4.8 x 107 cm−1 Å has a dd value that is much greater than the

dd value that precedes it.

Changing the value of C6 to force the X
1Σ+

g state of Cs2 to yield the correct experimental

scattering length has one obvious implication. The value of C6 chosen for the X 1Σ+
g is not

necessarily going to be the ideal C6 to give the correct scattering length for the a 3Σ+
u state

of Cs2. Thus, a different procedure is necessary to force the a 3Σ+
u state of Cs2 to have the

correct scattering length if C6 is to be used to yield the correct scattering length for the

X 1Σ+
g state. Section 3.3.3 discusses how the rref parameter from Eq. (2.25) can be varied to

alter the well-capacity of the a 3Σ+
u state potential and thus, the scattering length. Moreover,

Section 3.3.3 will discuss why the rref parameter cannot be used to yield the desired scattering

length for the X 1Σ+
g state of Cs2.
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Figure 3.7: Plot of υmax as a function of C6 for the X
1Σ+

g (right vertical axis) and the a 3Σ+
u

(left vertical axis) states of Cs2 for the same potential models considered in Fig. 3.6.
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Figure 3.8: Plot of υmax as a function of C6 for potentials obtained for the X 1Σ+
g state of

Cs2 with the photoassociation spectroscopy data omitted.
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53



CHAPTER 3. POTENTIAL PARAMETER DETERMINATION

3.2.3 Fitting to Scattering Lengths with rref

The preceding section discussed the obvious problem that exists with altering the value of C6

while minimizing dd. In particular, if the value of C6 is used to obtain the correct scattering

length for one molecular state, it cannot then be altered for the second state if both states

are to have identical long-range tails. Since the other non-physical parameters p, q, and C6

are constrained for reasons already discussed, the only parameter that can be used to alter

the scattering length of the other electronic state is rref . Fortunately, Fig. 3.10 shows that

changing rref can alter the scattering length in a way similar to the way C6 does. However,

most scattering length singularities on this rref plot do not display the full tangent function

shape because the rref mesh size was too large. The scattering length becomes increasingly

negative as rref increases, and approaches a singularity as another bound level is admitted

to the well. This shows that for this case, increasing rref increases well capacity.

An analogous plot to Fig. 3.10 for the X 1Σ+
g state of Cs2 in Fig. 3.11 shows instability as

rref is increased. In particular, as rref is varied for the singlet state, an optimal value of dd

exists on a small domain of rref . In addition to this confined domain of stability, the optimal

value of dd is not coincident with the singularity. When Nβ is odd, as it is in Fig. 3.10,

it exhibits behaviour similar to that in Fig. 3.6, but when Nβ is even, the value of the

scattering length increases as it approaches a singularity and it loses a vibrational level with

increasing rref after passing through the singularity. While the physical implications of the

rref parameter are not understood completely, the scattering length for an MLR potential

always increases with rref when Nβ is even, and always decreases when Nβ is odd. This

trend in the scattering length occurs for both the X 1Σ+
g and a 3Σ+

u state of Cs2. This is
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of great consequence as it implies that the way in which rref affects well-capacity can be

controlled. In particular, for odd values of Nβ, increasing rref increases well capacity as

shown by the addition of vibrational level, and for even values of Nβ, decreasing rref then

decreases well-capacity as seen in Fig. 5.1.
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Figure 3.10: Plot of the scattering length for the a 3Σ+
u state of Cs2 as function of rref with

M5LRrref
7,5 (3) and C6 = 3.31 x 10 7.
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Figure 3.11: Plot of the scattering length for the X 1Σ+
g state of Cs2 as function of rref for

Nβ = {21, 22, 23, 24} with M5LRrref
7,5 (Nβ) and C6 = 3.320782 x 10 7.
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3.3 Exchange Interaction Energy

Experimental determination of fluorescence series transitions for Cs2 has not exceeded υ =

140. Moreover, experimental data of Weickenmeier et al. [8] is not available, so levels above

υ = 136 can not be used in direct potential fits [2]. Work by Vanhaecke et al. sought to

characterize high lying levels of X 1Σ+
g and a 3Σ+

u utilizing a coupled channel asymptotic

approach using “nodal lines” to define the inner turning points. The short-range behaviour

of the levels of both potentials was defined by a “nodal wall” located near 7.9 Å , and allowed

for an analysis that considered exclusively the vibrational levels where spin-orbit coupling is

observed. Their potential in this region has the form:

V (r) = −
∑

n=6,8,10,12

fn(r)Cn

rn
+ (−1 + 2S)D rγ e−2αr (3.8)

in which the exponential “exchange” term is attractive for the X 1Σ+
g state, S = 0, and

repulsive for the a 3Σ+
u state, S = 1, while the inverse-power terms are all attractive with

identical coefficients for both electronic states. Here V (r) is in units of wavenumbers (cm−1).

The damping coefficients fn(r) are given by:

fn(r) =
[
1− e−a(r−nb)

]n
(3.9)

Vanhaecke et al. were not interested in determining absolute quantum numbers for the

vibrational levels that they observed, and as a result the potential needed to be recreated to

definitively define the vibrational levels. Table 3.2 lists the values of the parameters used to

recreate this asymptotic potential energy for Cs2. Our calculated vibrational levels for this

potential are in Table 3.3, and are denoted with negative quantum numbers. For example,
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for υ = −1, this vibrational level is the last bound level, but an absolute assignment label

for the quantum numbers cannot be made. The single positive vibrational level denoted by

an asterisk lies above the asymptotic limit. The fact that Vanhaecke et al. used this model

led to the consideration of of incorporating their exchange energy function in the long-range

tail of the MLR used in this analysis.
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Table 3.2: Parameters defining the dispersion-exchange potential of Vanhaecke et al. [3] for

the X 1Σ+
g and a 3Σ+

u states of Cs2.

Parameter Value

C6 3.299429048893501x107 cm−1 Å6

C8 1.2996298086453866x109 cm−1 Å8

C10 5.1363361927233055x1010 cm−1 Å10

C12 3.0700512808022114x1012 cm−1 Å12

D 8214.469945 cm−1 Å−γ

a 0.91286 Å−1

b 0.37595 Å

α 1.011003481

γ 5.542

60



CHAPTER 3. POTENTIAL PARAMETER DETERMINATION

Table 3.3: Calculated vibrational levels for the X 1Σ+
g state of Cs2 using the Vanhaecke et

al. “nodal wall” potential.

υ Gυ υ Gυ υ Gυ

-35 -274.46038 -23 -46.21481 -11 -3.98210

-34 -229.89394 -22 -39.40567 -10 -2.95808

-33 -196.75091 -21 -33.42666 -9 -2.13576

-32 -169.93282 -20 -28.19118 -8 -1.48852

-31 -147.41986 -19 -23.62220 -7 -0.99188

-30 -128.13636 -18 -19.65055 -6 -0.62321

-29 -111.41648 -17 -16.21376 -5 -0.36142

-28 -96.80764 -16 -13.25509 -4 -0.18674

-27 -83.98172 -15 -10.72294 -3 -0.08054

-26 -72.68913 -14 -8.57035 -2 -0.02514

-25 -62.73285 -13 -6.75462 -1 -0.00368

-24 -53.95262 -12 -5.23695
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However, incorporating the theoretical exchange function into Eq. (2.23) proved to be im-

possible because it caused uLR(re) to be negative for the a 3Σ+
u state. This in turn causes

β∞ to be undefined thus, destroying the most fundamental component of the MLR potential

energy function.

In the case of Cs2, exchange energy can qualitatively be interpreted as an energy function

that governs the onset of the difference between the X 1Σ+
g and a 3Σ+

u states. In particular,

the exchange energy VEX(r) can be defined as:

VEX(r) ≡
VT(r)− VS(r)

2
= D rγ e−2αr (3.10)

in which VT(r) is the potential energy of the a 3Σ+
u state and VS(r) is the potential energy

of the X 1Σ+
g state. In an attempt to see whether this potential energy contribution was

implicitly included in the overall fitted potentials for both states, a series of fits to the

data were performed for both states in which otherwise identical models with increasingly

sophisticated uLR(r) functions were used for the long-range tails of the two states. Table 2.3

presents the dispersion coefficients used for these models.

In Fig. 3.12, the theoretical exchange, the right-hand side of Eq. (3.10), is represented by

the solid black curve. Fig. 3.12 depicts that for increasingly complex MγLR potentials, or

for each additional long-range coefficient included in Eq. (2.23), the theoretical exchange is

included when γ > 2. Moreover, MLR potentials that include the first three leading terms

in Eq. (2.3) adhere to behaviour predicted by the theoretical exchange.
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Figure 3.12: Plot of the exchange interaction energy derived from MLR potential fits and a

theoretical exchange function.
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Chapter 4

The X 1Σ+
g State of the Cesium Dimer

4.1 Previous Work on the X 1Σ+
g State of Cs2

The most recent detailed study of the X 1Σ+
g state of the Cs2 dimer was the DPF analysis by

Coxon and Hajigeorgiou reported in 2010 [2]. The data set that they used was a collection

of 16 544 fluorescence series line positions associated with the A1Σ+
u → X1Σ+

g electronic

transition. Their study used a modified version of the MLR in which two new parameters

are introduced:

VMLR3(r) = De

(
1− uLR(r)

uLR(re)
e−βMLR3(r) yp,a(r,re)

)2

(4.1)

where

βMLR3 = [1− yr,m(r, rref)]
Nβ∑
i=0

βi[yq(r; rref)]
i + ym(r; rref)β(∞) (4.2)

and
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yeqp,a(r, re) =

(
rp − rep

rp + arep

)
(4.3)

This model differs from that of Eq. (2.22) in that the integer parameter p of Eq. (2.25) is

replaced by two parameters, m and p, and by the introduction of the parameter a in the

denominator of the right hand side of Eq. (4.3). Coxon and Hajigeorgiou’s best fit used an

18-order polynomial with {p,m, q} = {5, 6, 4}, rref=5.47 Å and a = 1.79, and this model

generated a reported dd = 0.6063. However, they did not present any results to justify a

need for the new parameters m and a.

In Coxon and Hajigeorgiou’s work, they report removing 122 lines from the original data

set. They also fit their potential to data up to υ = 135 rather than υ = 136, thus removing 2

additional lines. It has proved to be impossible to determine which lines were removed, so it

was necessary to generate Coxon and Hajigeorgiou’s potential and run a fit to the same data

set used for the potential fits in this work. Moreover, the reproduction of Coxon’s potential

used the complete data set rather than a modified data set that removed 124 transitions.

This potential was generated by modifying the code to the program DPotFit to include

the extra parameters m and a. The result of this fit was a potential with dd = 0.670679.

Subsequently, this potential had its long-range tail analyzed by utilizing Ceff
m plots.

4.2 Fitting Results and Analysis

The fluorescence series transitions reported by Amiot and Dulieu [6] naturally guide a fitted

MLR potential energy function to approach the Fa + Fb = 3 + 3 limit of Danzl et al. which

is reported as 3649.6874 cm−1 [5]. The two energy spacings that separate the 3+3 and 4+4
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limits from the 3+4 limit are spaced equally by 0.3066332 cm−1. Each atom has a total

spin degeneracy of 2F + 1, thus atoms with F = 3 and F = 4 have degeneracies of 7 and

9, respectively. Therefore, the hyperfine limits Fa + Fb = 3 + 3, 3 + 4, and 4 + 4 have total

degeneracies of (7)(7) = 49, (7)(9) = 63, and (9)(9) = 81. If the 3+3 limit is taken as the

zero of energy, the energy difference between the 3+3 limit and the hyperfine-free limit is

given by:

[63 + (2)(81)] · [0.3066332 cm−1]

49 + 63 + 81
= 0.357473806 cm−1

≈ 0.3575 cm−1

This gives a predicted hyperfine-free dissociation limit of 3649.6874 cm−1 + 0.3575 cm−1 =

3650.0449 cm−1. The spacing from the 3+3 limit to the hyperfine-free limit is used to adjust

the three binding energies for υ = 73, 72, and 71 reported by Danzl et al. [5]. With the

addition of this energy spacing to these three binding energies, a DPF using the MLR will

be constrained to extrapolate to the hyperfine-free limit.

Section 3.3.2 describes how the limiting slope of the wavefunction influences the magni-

tude of the scattering length. Moreover, due to the influence the long-range function uLR has

on the curvature of the continuum wavefunction at the dissociation limit, the parameters

that define the potential energy function can be varied until the desired wavefunction is

acquired. It is most logical to vary the leading term in uLR as it has the largest contribution

to the long-range of the potential energy function. As discussed earlier, for the X 1Σ+
g and

a 3Σ+
u states of Cs2 the leading dispersion coefficient is C6.
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The fitted potential presented in this section has parameters that were chosen based on

the selection methods presented Chapter 3. In particular, the value of p was selected based

on the first and last terms in uLR(r), the value of q was selected based on the results from

Fig. 3.4, and rref and Nβ were selected based on their ability to minimize the value of dd.

Fig. 4.1 plots the scattering length aS as a function of C6 for the X 1Σ+
g state. This figure

was constructed with 100 different M3LR6.2
5,5(22) potentials, each optimized with respect to

all other parameters while fixing the value of C6. The other parameters used as input for

the potential fit were identical for each potential fit. However, when the fit is complete,

and the best potential fit is found for the parameters that are held fixed, the parameters

that are allowed to vary change to optimize the quality of fit i.e. De, re, and the set of

βi. The functionality of aS exhibits cotangent-like behaviour as a function of the leading

dispersion coefficient C6. As C6 increases, so does the attractive force of the overall uLR

function. In particular, the potential well capacity increases and the binding energy of

level υmax decreases. The singular behaviour of the cotangent function is exhibited, and

aS becomes increasingly negative. When the scattering length reaches +∞, the molecular

potential gains a vibrational level i.e. υmax increases by 1. In Fig. 4.1, only one singularity

is visible, however, Fig. 3.6 shows that on the domain of 0 < C6 < 4 x 107 other singularities

were observed. The importance of observing additional singularities is the insight it provides

into what is an appropriate value C6. Between adjacent singularities aS becomes small and

passes through a value of 0. If the uLR function represents the true long-range behaviour of

a particular molecular potential, then it must impart the true scattering length.

The components of the uLR(r) function in this analysis are a C6, C8, and C10. Initially, the

values used for each coefficient came from studies completed by Derevianko et al. [14, 18]
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that employ a rigourous technique using electronic structure theory, and there has been

no study since theirs that offers improved values. Their C6 coefficient from 1999 is equal to

3.302 x 10−8 cm−1 Å
7
[14], and is of similar magnitude to other values in the literature. Their

C8 and C10 coefficients from 2003 are equal to 1.38 x 109 cm−1 Å
8
and 6.01 x 1010 cm−1 Å

10
,

respectively [18]. By varying the value of C6 on the domain of [30000000,40000000], the sin-

gularity corresponding to an analytical potential with an infinite scattering length is located.

With an appropriate mesh size of C6, one can see both the curvature of the singularity and

“find” the desired scattering length. Figure 4.1 illustrates how the scattering length becomes

increasingly negative as C6 is increased from 30000000 cm−1 Å
6
to larger values. At approx-

imately 32600000 cm−1 Å
6
, a singularity is observed where the potential has a scattering

length of infinite magnitude and Eυmax = De. As C6 is increased beyond its singular value,

the scattering length has large positive values. After sufficiently increasing the value of C6

beyond the singularity, an analytical potential with the desired scattering length is deter-

mined. The final C6 obtained from Fig. 4.1 is 3.3164 x 107 cm−1 Å
6
, and is reported in table

4.1.

Section 3.3.1 outlined the procedure by which the behaviour of a potential in the ex-

trapolation region is analyzed. It was also shown that models using {p, q} = {7, 3}, {6, 3},

{5, 3}, {7, 4}, {6, 4}, {5, 4} produced unphysical extrapolation behaviour. Moreover, poten-

tial energy functions with q = 4 require higher-order polynomial functions than did potential

energy functions with q = 3 to obtain an equivalent value of dd. One of the original ob-

jectives of this work was to generate a simpler and more compact potential energy function

than Coxon’s, while modelling all of the data accurately and obtaining a potential whose

scattering length matched the value Chin et al. [4] determined. However, the latter objec-
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tive required us to relax the preference to achieve compactness, and as a result, additional

parameters are added to the potential energy function in order to make the extrapolation

region of the potential consistent with theory.

To remove unnatural curvature from the extrapolation region of the potential seen in

Fig. 3.4, the parameter q in our model was raised 5. As can be seen from Fig. 4.2, the Ceff
6 (r)

and Ceff
8 (r) plots for our recommended potential deviate negligibly from the theoretical

limiting slope of of C8 and C10, respectively. A less desirable effect of the use of q = 5 on

the potential energy function is the need to increase the order of the exponent polynomial

function in order to minimize dd. The integer parameter q determines the range for which

the yq is defined on. This fundamental quality q has an indirect impact on the polynomial

order of the potential Nβ. Moreover, there is a loss in the quality of fit, such that there is

an increase in the value of dd. While it is important and desirable to minimize the number

of potential parameters used when generating a potential energy function, it is of greater

importance for the potential energy function to be as consistent as possible with experimental

data i.e. to yield a minimum dd. If a C6 equal to 4.0 x 107 is used, the minimal value of the

dimensionless root mean square deviation ddmin that is associated with the potential where

C6 = 4.0 x 107 cm−1 Å
6
is 0.671229. The percent difference of the dd associated with chosen

potential is:

∣∣dd− ddmin

∣∣
ddmin

x 100% =
|0.673689− 0.671229|

0.671229
x 100%

= 0.365%

Thus, the percent difference between the dd value used in the final fitted potential and the
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fitted potential associated with ddmin is quite small. Table 4.1 lists all of the parameters

used to generate the potential energy function used in the analysis of X 1Σ+
g state of Cs2.

The origin of the potential used in this analysis is rooted in the inability of preliminary

potential energy functions with q = 3, 4 to extrapolate realistically from the outermost

turning point of the last observed vibrational level to the dissociation limit. By setting

q = 5, the resulting increase of dd is counteracted by increasing the polynomial order from

Nβ = 17 to Nβ = 22. To obtain the desired scattering length by increasing or decreasing

C6 would mean moving further away from the minimal dd. Fig. 4.2 shows the resulting

Ceff
6 (r) and Ceff

8 (r) plots for the extrapolation region of the recommended MLR model for

theX 1Σ+
g state of Cs2. The potentials shown in section 3.2.1 use a different uLR(r) form than

the potential shown in Fig. 4.2. However, the potential energy function whose parameters

are in Table 4.1 adheres to theory. Moreover, the Ceff
6 (r) plots has a y-intercept of C6 and

a limiting slope equal to C8. However, unlike the plots in Fig. 3.4 with q = 3, 4, the Ceff
8 (r)

plot in Fig. 4.2 not only exhibits a y-intercept of C8, it also exhibits the correct limiting slope

which is equal to C10. Table 4.2 and 4.3 present the calculated energies Gυ for each of the

156 bound vibrational levels that define this potential.

Table 4.4 collects the highest three vibrational levels υ = 154, 155, 156 and compares their

binding energies to those calculated by Jeremy Hutson of Durham University, England,

based on a molecular potential fit to the Feshbach resonances of Chin et al. [4]. Table

4.4 verifies that our highest vibrational levels are consistent with those determined using

cold atom calculations. If the potential in this analysis did not impart the true scattering

length, then reproducing the vibrational determined from cold atom calculations would have

been highly improbable. Matching the binding energies in this analysis to those from cold

70



CHAPTER 4. THE X 1Σ+
g STATE OF THE CESIUM DIMER

atom calculations offers an independent validation of the quality of the extrapolation of our

empirical potentials.

A minimized value for dd indicates that the calculated vibrational levels inside the data

region are accurate and thus, consistent with experiment. Plots of Ceff
6 (r) and Ceff

8 (r) indicate

that extrapolation from the outermost turning point of the highest observed vibrational level

υ = 136 to the asymptotic limit De adheres to the theoretical inverse power sum. Inclusion

of the high quality PAS data measured by Danzl et al. [5] forces the potential to approach

the desired “hyperfine-free” asymptotic limit. Finally, the comparison of the three highest

vibrational levels calculated in this analysis to those calculated using cold atom calculations

implies accuracy in the vibrational levels that are, in general, the most uncertain.
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Figure 4.1: Plot of the scattering length aS (top) and dd (bottom) as a function of C6 for

the X 1Σ+
g state of Cs2 with M3LR6.2

5,5(22).
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Table 4.1: Fit parameters used to generate the molecular potential for the X 1Σ+
g state.

Parameter Value Parameter Value

β0 9.49905 x 10−2 β19 1.175 x 10 2

β1 -3.72698 x 10−1 β20 -7.5 x 10 1

β2 -4.090736 x 10−2 β21 -3.67 x 10 1

β3 1.29657 x 10−1 β22 1.3 x 10 1

β4 1.486696 x 10−1 β∞ 0.9469102524695 *

β5 1.71395 x 10−1 re/Å 4.647967771

β6 2.95883 x 10−1 De/cm
−1 3650.041851

β7 5.47375 x 10−1 C6/(10
7 cm−1 Å6) 3.3164

β8 -1.14615 C8/(10
9 cm−1 Å8) 1.38

β9 -2.7883 C10/(10
10 cm−1 Å10) 6.01

β10 9.98557 MCs/a.u. 132.905451933 [54]

β11 1.69149 x 10 1 rref/Å 6.2

β12 -4.17899 x 10 1 rmin/Å 3.0

β13 -5.76544 x 10 1 rmax/Å 99.5

β14 1.08881 x 10 2 ∆r/Å 0.001

β15 1.24037 x 10 2 p 5

β16 -1.716 x 10 2 q 5

β17 -1.6159 x 10 2 ρAB 0.434

β18 1.5781 x 10 2 aS/Å 148.3

dd 0.673689

*This parameter value is derived from others using Eq. (2.26)
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Figure 4.2: Plot of Ceff
6 (r) and Ceff

8 (r) as a function of 1/r2 for the X 1Σ+
g state of Cs2 using

the recommended M3LR6.2
5,5(22) in table 4.1.
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Table 4.2: Vibrational energies for the X 1Σ+
g state of Cs2 expressed relative to the dissoci-

ation limit for the recommended M3LR6.2
5,5(22) potential of Table 4.1.

υ Gυ / cm−1 υ Gυ / cm−1 υ Gυ / cm−1 υ Gυ / cm−1

0 -3629.0599 20 -2823.9308 40 -2090.1202 60 -1436.6084

1 -3587.2046 21 -2785.4887 41 -2055.4438 61 -1406.2678

2 -3545.5140 22 -2747.2249 42 -2020.9685 62 -1376.1640

3 -3503.9886 23 -2709.1405 43 -1986.6957 63 -1346.2994

4 -3462.6290 24 -2671.2363 44 -1952.6269 64 -1316.6760

5 -3421.4359 25 -2633.5133 45 -1918.7636 65 -1287.2964

6 -3380.4096 26 -2595.9724 46 -1885.1074 66 -1258.1628

7 -3339.5510 27 -2558.6146 47 -1851.6598 67 -1229.2777

8 -3298.8605 28 -2521.4409 48 -1818.4224 68 -1200.6436

9 -3258.3387 29 -2484.4524 49 -1785.3969 69 -1172.2628

10 -3217.9863 30 -2447.6501 50 -1752.5849 70 -1144.1381

11 -3177.8040 31 -2411.0350 51 -1719.9882 71 -1116.2721

12 -3137.7924 32 -2374.6084 52 -1687.6085 72 -1088.6673

13 -3097.9522 33 -2338.3713 53 -1655.4477 73 -1061.3266

14 -3058.2840 34 -2302.3249 54 -1623.5075 74 -1034.2527

15 -3018.7887 35 -2266.4704 55 -1591.7899 75 -1007.4485

16 -2979.4669 36 -2230.8090 56 -1560.2967 76 -980.9168

17 -2940.3194 37 -2195.3420 57 -1529.0299 77 -954.6606

18 -2901.3471 38 -2160.0706 58 -1497.9916 78 -928.6829

19 -2862.5506 39 -2124.9963 59 -1467.1837 79 -902.9868
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Table 4.3: Vibrational energies for the X 1Σ+
g state of Cs2, expressed relative to the dissoci-

ation limit for the recommended M3LR6.2
5,5(22) potential of Table 4.1 continued.

υ Gυ / cm−1 υ Gυ / cm−1 υ Gυ / cm−1 υ Gυ / cm−1

80 -877.5754 100 -434.4727 120 -137.3900 140 -12.2271

81 -852.4518 101 -415.8674 121 -126.9741 141 -10.0498

82 -827.6194 102 -397.6304 122 -117.0064 142 -8.1537

83 -803.0814 103 -379.7663 123 -107.4885 143 -6.5181

84 -778.8411 104 -362.2793 124 -98.4217 144 -5.1221

85 -754.9021 105 -345.1741 125 -89.8068 145 -3.9452

86 -731.2677 106 -328.4551 126 -81.6438 146 -2.9674

87 -707.9416 107 -312.1268 127 -73.9317 147 -2.1688

88 -684.9273 108 -296.1936 128 -66.6689 148 -1.5303

89 -662.2285 109 -280.6601 129 -59.8526 149 -1.0330

90 -639.8489 110 -265.5307 130 -53.4791 150 -0.65837771

91 -617.7923 111 -250.8098 131 -47.5432 151 -0.38835947

92 -596.0626 112 -236.5017 132 -42.0385 152 -0.20519699

93 -574.6637 113 -222.6108 133 -36.9572 153 -0.09152481

94 -553.5994 114 -209.1413 134 -32.2896 154 -0.03038252

95 -532.8740 115 -196.0973 135 -28.0246 155 -0.00524231

96 -512.4914 116 -183.4826 136 -24.1493 156 -0.00003238

97 -492.4557 117 -171.3011 137 -20.6489

98 -472.7712 118 -159.5563 138 -17.5072

99 -453.4421 119 -148.2516 139 -14.7063

76



CHAPTER 4. THE X 1Σ+
g STATE OF THE CESIUM DIMER

Table 4.4: Comparison of the highest vibrational energies of the fitted X 1Σ+
g state potential

from this analysis with those calculated by Hutson.

υ Gυ / cm−1 Gυ (Hutson) / cm−1

154 -0.0303 -0.0303

155 -0.00524 -0.00524

156 -0.0000323 -0.0000323
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Chapter 5

The a 3Σ+
u State of the Cesium Dimer

5.1 Previous Work on the a 3Σ+
u State of Cs2

A recent DPF analysis of the a 3Σ+
u state of Cs2 used the following modified version of the

MLR potential energy function [7]:

VMLR−Xie(r) = V∞ −De +De

{
1−

[
(1− a)

(re
r

)Nβ

+ a
(re
r

)M]
e−β(y)·yeqp (r)

}2

(5.1)

in which Nβ is the inverse-power characterizing the leading term in the long-range tail of this

potential,M is the inverse power associated with second longest-range term in the long-range

potential, V∞ is the absolute energy at the dissociation limit, and:

β(y) = β0 + β1y + β2y
2 + β3y

3 + · · · (5.2)

in which
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y =
rp − rpe
rp + rpe

(5.3)

As r →∞, y → 1 such that β(1) is equal to the sum of all β values in Eq. (5.2). The term

β(1) is analogous to β∞ of Eq. (2.26), but the algebraic structure does not constrain Eq. (5.1)

to adopt the correct long-range form without altering the β-parameters ad hoc. The Xie et

al. potential analysis acknowledges that the theoretically predicted inverse-power sum is the

correct representation of a molecular potential at long-range:

VMLR−Xie(r) ≃ V∞ −
CN

rN
− CM

rM
(5.4)

in which N = 6 and M = 8. The authors quote the C6 value from the work of Leo et al.,

see Table 2.1, and a C8 equal to 1.288 x 109 cm−1 Å
8
from a private communication with

Bergeman and deMille. The authors show that the long-range coefficients in Eq. (5.4) may

be expressed in terms of the non-physical β-parameters of their potential energy function:

C6 = 2De (1− a) exp (−β(1)) r6e (5.5)

and

C8 = 2De a exp (−β(1)) r8e (5.6)

However, the values of C6 and C8 that they present from literature and a personal commu-

nication do not match the values that Eq. (5.5) and (5.6) yield from the parameter values

published for their potential, which are 3.748 x 107 cm−1 Å
6
and 1.452 x 109 cm−1 Å

8
, re-

spectively. That is to say, the first and second leading dispersion coefficients that Xie et al.
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calculate from their potential parameters do not agree with the theoretical values they claim

to be emulating. Furthermore, the empirical C6 and C8 from the work of Xie et al. differ in

magnitude greatly from all of the various values that are in the literature and collected in

Table 2.1.

Xie et al. fitted their modified version of the MLR to term values they derived from

fluorescence series transitions they observed from experiment. They do not present a quan-

titative measure to indicate how well the calculated potential represents the experimental

data. Their modification to the MLR potential is counterintuitive because they relinquish

the ability to constrain C6 and C8 to match theoretical values, which are often much more

accurate than any values that may be obtained empirically. Modifications to a potential

energy function should provide global improvement to the function’s ability to fit to ex-

perimental data, or the function’s ability to extrapolate from υmax to the asymptotic limit.

Furthermore, analytic potential energy functions should be able to represent many different

species and electronic states. Since there is no provision of a residual, their potential en-

ergy function cannot be said to improve or diminish the quality of fit relative to the MLR.

The innovative feature of Eq. (2.22) is the introduction of β∞ because it insures that the

potential energy function is the appropriate inverse-power sum at long-range. By explicitly

removing β∞, the potential energy function of Xie et al. cannot be guaranteed to exhibit

the correct theoretical behaviour as it approaches the asymptotic limit. While this potential

energy function may have utility for the authors, it does not offer coherent control of the

extrapolation region, and it was not been shown to offer an improved ability to represent

experimental data.
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5.2 Fitting Results and Analysis

Xie et al. determined term values from the fluorescence transitions they observed from

experiment, which they fitted Eq. (5.1) to. They used the ground singlet state De value

observed by Danzl et al. [5] as their V∞ in Eq. (5.1). In this analysis the term values were

expressed relative to the hyperfine-free limit of 3650.0449 cm−1, see Section 4.2, from the

singlet state to insure that the triplet state went to the same asymptotic limit as the singlet

state, and to allow the term values to be treated as photoassociation data.

As mentioned previously, the X 1Σ+
g and a 3Σ+

u states of Cs2 approach the same asymp-

totic limit, dissociating to identical ground-state atoms, and have identical inverse-power

long-range functions that describe the behaviour of these diatomic potentials as they ap-

proach the asymptotic limit. Chapter 4 described the technique by which an accurate po-

tential energy function was generated in this work for the X 1Σ+
g of Cs2. Moreover, the

technique used to generate a molecular potential that would impart a scattering length that

is in agreement with experiment was dependent on the numerical value of the dispersion

coefficient that corresponds to the leading term of the long-range function. To coherently

describe the long-range of both molecular states simultaneously, the very same form of uLR

must be used for the triplet state. A significant consequence of this is the inherent inability

to vary the long-range coefficients for the a 3Σ+
u state.

In Fig. 5.1, the scattering length and dd are plotted as a function of rref . As the value

of rref is increased from 7.0 Å to larger values, the scattering length gets increasingly larger

until a scattering length of infinite magnitude is acheived. The desired scattering length is

1273 Å, thus the desired rref value is found to be smaller than the rref value that corresponds
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to the singularity. Fig. 5.1 shows that using rref = 8.7005 Å allows the molecular potential

to have a scattering length of aT of 1273 Å thus, matching the value of Chin et al. [4]. The

non-physical parameter rref is the centre for the radial expansion variable of Eq. (2.25). The

value chosen for rref is shown to be of consequence to the molecular potential’s ability to

represent the experimental data set with a modest number of parameters. In particular,

there usually exists a value of rref that will minimize the dd value that corresponds to a

given potential and its corresponding potential parameters. For a given experimental da-

tum, the molecular potential should be able to impart a calculated value that is within the

experimental uncertainty. That is to say, when the difference is taken between the experi-

mental and calculated values, its absolute value should not exceed that of the experimental

uncertainty. The uncertainty on each of the 1440 term values that are treated as binding

energies is 0.2 cm−1. The final fitted potential used rref = 8.7005 Å, which has a dd value

of 1.41784. This implies that on average the calculated values are outside the experimental

uncertainties. The minimum value of the dimensionless root mean square deviation ddmin is

obtained when rref = 9.1 Å, p = q = 5, Nβ = 4, and is 1.41736. The percent difference is

given by:

∣∣dd− ddmin

∣∣
ddmin

x 100% =
|1.41784− 1.41736|

1.41736
x 100%

= 0.0339%

Thus, the dd value associated with the final fitted potential is within 0.0339% of the most

optimal fitted potential. This percent difference indicates that the fitted potential that

imparts a scattering length that is in agreement with experiment does not result in a sig-
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nificant decrease in the overall fit quality. Tests showed that for the X 1Σ+
g state that our

MLR model potentials require q to equal 5 to insure the extrapolation region adheres to

the proper behaviour dictated by theory. For the a 3Σ+
u state of Cs2, the quality of fit was

equivalent for q = 3, q = 4, and q = 5 for a given Nβ, so it was convenient to simply use

q = 5 for this potential energy model since it was also used for the singlet state. The a 3Σ+
u

state adheres to the correct limiting behaviour when q = 5. Fig. 5.2 shows Ceff
m for m = 6, 8.

However, the Ceff
8 plot does show changes in curvature midway between the asymptotic limit

and 1/r2 = 0.006. This change in curvature is unphysical because the curvature should be

positive due to the next leading term in the uLR(r) being a positive C10. The potential for

the singlet state uses the same form for uLR(r) and it yields the correct scattering length,

has a small dd, Ceff
m plots that agree with theory, and the calculated values for the three

highest vibrational levels agree with the vibrational levels calculated from the independent

analysis of Hutson. Given the result for the singlet state, it seems the dispersion part of the

potential is not the cause of this unphysical behaviour, but rather, it is perhaps due to the

absolute placement of the term values. The potential parameters for the final fitted potential

determined from the present analysis for the a 3Σ+
u state of Cs2 are presented in Table 5.1.

Table 5.2 lists the calculated level energies of the final fitted potential of the a 3Σ+
u state

of Cs2. Table 5.3 lists the binding energies for the three highest vibrational levels, and

the binding energies attributed to the three highest calculated vibrational levels associated

with a potential energy function that was fitted to the Feshbach resonances of Chin et al.

[4], derived by Jeremy Hutson of Durham University, England [9]. The values from the

fitted potential in this analysis are in excellent agreement with those determined by Hutson

[9]. Varying the rref parameter to obtain a potential whose scattering length agrees with
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the experimental value necessarily moves the highest vibrational levels of this molecular

potential. This is, of course, analogous to varying the value of C6 coefficient to obtain a

scattering length for the X 1Σ+
g state that matches experiment. However, the noteworthy

difference in varying rref for the a
3Σ+

u state is the unpredictable and oscillatory variation of

the fitted well-depth De as shown in Fig. 5.3.
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rref / Å
7.0 7.5 8.0 8.5 9.0 9.5

1.418

1.419

1.420

1.421


dd

1.41784

8.7005

0

4000

8000

aT / Å
aT

exp=1272.7 Å

υmax=55υmax=56

Figure 5.1: Plot of the scattering length aT (top) and dd (bottom) as a function of rref for

the a 3Σ+
u state of Cs2 with M3LRref

5,5(3).
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Table 5.1: Fit parameters used to generate the molecular potential for the a 3Σ+
u state.

Parameter Value Parameter Value

β0 -4.324429443667 x 10−1 MCs/a.u. 132.905451933 [54]

β1 -9.206933982533 x 10−2 rref/Å 8.7005

β2 -6.845846740405 x 10−2 rmin/Å 3.0

β3 -1.308218973148 x 10−2 rmax/Å 99.5

β4 3.457944786933 x 10−1 ∆r/Å 0.001

β∞ -3.971077022867 x 10−1 p 5

re/Å 6.226182057299 q 5

De/cm
−1 279.2222367314 ρAB 0.434

C6/(10
7 cm−1 Å6) 3.3164 aT/Å 1273

C8/(10
9 cm−1 Å8) 1.38 dd 1.41784

C10/(10
10 cm−1 Å10) 6.01
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Figure 5.2: Plot of Ceff
6 (r) and Ceff

8 (r) as a function of 1/r2 for the a 3Σ+
u state of Cs2 with

M3LR8.7005
5,5 (3).
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Table 5.2: Vibrational energies for the a 3Σ+
u state of Cs2 for the recommended M3LR8.7005

5,5 (3)

potential of Table 5.1.

υ Gυ / cm−1 υ Gυ / cm−1 υ Gυ / cm−1

0 -273.5056 20 -95.2092 40 -10.7899

1 -262.3059 21 -88.7564 41 -8.9566

2 -251.3769 22 -82.5423 42 -7.3305

3 -240.7067 23 -76.5669 43 -5.9043

4 -230.2862 24 -70.8299 44 -4.6690

5 -220.1079 25 -65.3306 45 -3.6143

6 -210.1664 26 -60.0685 46 -2.7284

7 -200.4577 27 -55.0426 47 -1.9987

8 -190.9792 28 -50.2522 48 -1.4111

9 -181.7294 29 -45.6962 49 -0.95111378

10 -172.7076 30 -41.3738 50 -0.60362557

11 -163.9139 31 -37.2843 51 -0.35309399

12 -155.3490 32 -33.4267 52 -0.18375471

13 -147.0138 33 -29.8003 53 -0.07970205

14 -138.9096 34 -26.4044 54 -0.02497799

15 -131.0377 35 -23.2379 55 -0.00366536

16 -123.3996 36 -20.2997 56 -0.00000017621776

17 -115.9966 37 -17.5882

18 -108.8299 38 -15.1015

19 -101.9005 39 -12.8366
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Table 5.3: Comparison of the highest vibrational energies of the fitted a 3Σ+
u state potential

from this analysis with those calculated by Hutson.

υ Gυ / cm−1 Gυ (Hutson) / cm−1

54 -0.0249 -0.0249

55 -0.00366 -0.00366

56 -0.000000176 -0.000000171
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279.0

279.1

279.2

279.22 cm-1

De cm-1

rref /Å

7 8 9 10 11 12 13

1.42

1.43


dd 1.41784

Figure 5.3: Plot of De and dd as a function of rref for the a
3Σ+

u state of Cs2.
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Summary

New potential energy functions have been developed for the a 3Σ+
u and X 1Σ+

g states of

Cs2. The long-range tails for both electronic states have been modelled to consist of sums

of inverse-power terms from theory. The extrapolation behaviour of these potentials were

examined using the Ceff
m plots of Figs. 4.2 and 5.2. On a Ceff

m plot, the fitted potential

curve is predicted from theory to approach a y-intercept of Cm and have a slope equal to

the next leading dispersion coefficient in the inverse-power sum. For the triplet state, this

requirement was met only when q in Eq. (2.25) was equal to 5. The use of q = 5 necessitates

incorporating a higher-order polynomial in Eq. (2.24) than would be necessary to obtain an

equivalent quality of fit using q < 5.

It has been shown that including the theoretical exchange energy function used by Van-

haecke et al. [3] for Cs2 in the MLR potential energy function is both unnecessary and

impossible. The theoretical exchange energy function proved to be unnecessary when the

fitted potential energy curves from the triplet and singlet states were used in Eq. (3.10) to
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verify that the extrapolation regions of the two respective states agree with the theoretical

exchange function. Fig. 3.12 shows that our two MLR potential energy functions effectively

incorporate the theoretical exchange energy function as long as uLR(r) includes at least the

first three inverse-power terms predicted from theory. The MLR β∞ parameter is defined

by a logarithmic term that includes the value of uLR(r) at r = re. Consequently, Eq. (2.26)

requires that 0 < uLR(r) for it to be defined. For the triplet state, the theoretical exchange

is a large negative value at r = re that makes uLR(re) < 0, which makes it impossible to

define Eq. (2.26), and thus, the MLR potential energy function.

The extrapolation region of our a 3Σ+
u and X 1Σ+

g potentials for Cs2 can be further ex-

amined by comparing the scattering length of the recommended molecular potential to their

respective experimental values. The structure of the outer-wall of a molecular potential was

shown to be very sensitive to the leading dispersion coefficient C6, and the non-physical pa-

rameter rref that defines the dimensionless radial variable of Eq. (2.25). Variation of the C6

coefficient for the singlet state allowed the scattering length of the MLR potential in table

4.1 to match the experimental value of Chin et al. [4]. Determining an accurate potential

well for the singlet state in the well region and near the asymptotic limit by matching the

scattering length of the calculated potential to the experimental value provides confidence in

the chosen parameters. The same dispersion coefficients used to define uLR(r) of the singlet

state were used to define uLR(r) of the triplet state. The radial variable expansion centre

rref was the only other parameter available for varying the well capacity of the triplet state

potential energy function such that the final potential could yield a scattering length that

matched the experimental value.

In a private communication with Jeremy Hutson of Durham University, England, calcu-
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lated vibrational levels were provided for the three highest bound vibrational levels for the

a 3Σ+
u and X 1Σ+

g states of Cs2. These vibrational levels were not given absolute quantum

number labels, but Tables 4.4 and 5.3 show that they are in close agreement with the vi-

brational levels that correspond to υ = 156, 155, and 154 for the singlet state and υ = 56,

55, and 54 for the triplet state. The molecular potentials determined by Hutson are derived

from cold-atom physics calculations, and use the Feshbach resonance data observed by Chin

et al. [4]. The molecular potentials described in sections 4.2 and 5.2 were derived using

direct potential fits to the fluorescence series and photoassociation data of the singlet state,

and the reported term values of the triplet state. Therefore, the observed agreement in the

two analyses in Tables 4.4 and 5.3 can be seen as two independent results, giving validity to

the binding energies of these vibrational levels.

A shortcoming of the molecular potential determined in sections 4.2 and 5.2 are that the

fits to spectroscopic data were not really optimal. That is to say, the values of dd for both

electronic states are not minimized. In particular, Figs. 4.1 and 5.1 clearly show that the

respective C6 and rref values chosen for the singlet and triplet states are not coincident with

the minima of dd. While the very highest vibrational levels agree well with the independent

predictions of Hutson, the levels that are slightly more strongly bound at the beginning of

the extrapolation region could be inaccurate as there is no analogous way of determining the

binding energies. It is conceivable that the inclusion of the higher-order dispersion coefficients

could contribute to a greater level of accuracy at the beginning of the extrapolation region.

If the inverse-power sum is incongruent with the highest observed vibrational levels, it can

lead to larger residuals and thus, a larger value for dd.

Future outlook on diatomic molecules should include the use of high-resolution PAS
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data if it is available. Examples of systems of interest include the the rubidium dimer, and

heternuclear diatomic molecules like rubidium cesium and potassium cesium. If PAS data is

unavailable, analyses of diatomic potentials should focus on ensuring that the dissociation

limit is held fixed using an alternative approach. This can be achieved by determining an

accurate dissociation energy using some other computational method, and then holding the

dissociation energy fixed during the potential fit. By fixing the dissociation limit and, by

matching the scattering length with an accurate experimental value, the highest vibrational

levels can be determined with accuracy without being spectroscopically observed.
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Appendix

I DPotFit Input

I.1 X 1Σ+
g State of Cs2

55 55 0 1 1

’revdataCoxon.4’

’iround_33164000’

0.003 1 -2 0 5 0

133 133

’X0’ 0 0 155 300 0

2 0.0d0 0 20

3.0 99.5 0.0010

3 0.434d0 -2 1

6 33164000 1
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8 1.38D+09 1

10 6.01D+10 1

3650.0449d0 0

4.647972d0 0

22 22 5 5 6.200000000000D+00

9.567420826492D-02 0

-3.567866384433D-01 0

-2.377652483493D-02 0

1.466734317858D-01 0

1.609387591733D-01 0

2.300492780357D-01 0

4.859674345663D-01 0

-7.669309796208D-02 0

-3.291589176137D+00 0

2.952740674404D+00 0

2.563198939463D+01 0

-1.292719803845D+01 0

-1.104063728957D+02 0

3.797179900595D+01 0

2.992441977465D+02 0

-6.554504343300D+01 0

-5.068466637544D+02 0
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6.566623853793D+01 0

5.222080116442D+02 0

-3.349799200872D+01 0

-2.983092408679D+02 0

6.220033634041D+00 0

7.229612913783D+01 0

-1 -1 5 3 -1.000D+00 2.200D+00

-1 -1 3 3

I.2 a 3Σ+
u State of Cs2

55 55 0 1 1

’data_danzl.4’

’8_7005’

0.2 1 0 0 5 0

133 133

’a1’ 0 0 50 48 0

2 0.0d0 0 20

3.0 99.5 0.0010

3 0.434d0 -2 1

6 33164000 1

8 1.38D+09 1

10 6.01D+10 1
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279.349d0 0

6.23540d0 0

4 4 5 5 8.7005D+00

-4.142960251327D-01 0

-1.431708097381D-01 0

2.407722980732D-01 0

-3.688917032456D-01 0

-5.097715765462D-01 0

-1 -1 5 3 -1.000D+00 2.200D+00

-1 -1 3 3

II LEVEL Input

II.1 X 1Σ+
g State of Cs2

55 133 55 133 0 1

’ Level test using Cs2 data ’

0.00001 0.5d0 1.0d0 1.0d0 1.d-08

-1 0 0 0.d0
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4 5 5 22 22 -0

3.650041851127D+03 4.647967775597D+00 6.200000000000D+00

3 -2 1 0.434d0

6 3.316400000000D+07 8 1.380000000000D+09 10 6.010000000000D+10

9.499051111491D-02

-3.726981674982D-01

-4.090806023496D-02

1.296392919089D-01

1.486895184395D-01

1.720230882839D-01

2.957077951625D-01

5.376539536162D-01

-1.147130576653D+00

-2.708427676798D+00

1.001316741585D+01

1.652892997773D+01

-4.199122951214D+01

-5.650348519869D+01

1.096312550177D+02
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1.218986666297D+02

-1.732018584113D+02

-1.591845470976D+02

1.597880613068D+02

1.160039628294D+02

-7.631357364144D+01

-3.630597053826D+01

1.336289024969D+01

1 0 0 0 0 1 -1 0

0 0 0

II.2 a 3Σ+
u State of Cs2

55 133 55 133 0 1

’ Level test using Cs2 data ’

0.00001 0.5d0 1.0d0 1.0d0 1.d-08

-1 0 0 0.d0

4 5 5 4 4 -0

2.792222367314D+02 6.226182057299D+00 8.700500000000D+00

3 -2 1 0.434d0
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6 3.316400000000D+07 8 1.380000000000D+09 10 6.010000000000D+10

-4.324429443667D-01

-9.206933982533D-02

-6.845846740405D-02

-1.308218973148D-02

3.457944786933D-01

1 0 0 0 0 1 -1 0

0 0 0
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A 63, 012710 (2000).

[34] J. A. Coxon and P. G. Hajigeorgiou, 49th Ohio State University International Sympo-

sium on Molecular Spectroscopy (Columbus, Ohio, 1994), paper WE05.

104



[35] E. G. Lee, J. Y. Seto, T. Hirao, P. F. Bernath, and R. J. Le Roy, J. Mol. Spectrosc.

194, 197 (1999).

[36] J. Y. Seto, R. J. Le Roy, J. Vergès, and C. Amiot, J. Chem. Phys. 113, 3067 (2000).

[37] R. J. Le Roy, D. R. T. Appadoo, K. Anderson, A. Shayesteh, I. E. Gordon, and P. F.

Bernath, J. Chem. Phys. 123, 204304 (2005).

[38] J. Y. Seto, Z. Morbi, F. Charron, S. K. Lee, P. F. Bernath, and R. J. Le Roy, J. Chem.

Phys. 110, 11756 (1999).

[39] E. Tiemann, Z. Phys. D – Atoms, Molecules and Clusters 5, 77 (1987).

[40] U. Wolf and E. Tiemann, Chem. Phys. Lett. 133, 116 (1987).

[41] U. Wolf and E. Tiemann, Chem. Phys. Lett. 139, 191 (1987).

[42] E. Tiemann, Mol. Phys. 65, 359 (1988).
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