
Flocking for Multi-Agent Dynamical
Systems

by

Zhaoxin Wan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2012

c© Zhaoxin Wan 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In this thesis, we discuss models for multi-agent dynamical systems. We study the
tracking/migration problem for flocks and a theoretical framework for design and analysis
of flocking algorithm is presented. The interactions between agents in the systems are
denoted by potential functions that act as distance functions, hence, the design of proper
potential functions are crucial in modelling and analyzing the flocking problem for multi-
agent dynamical systems. Constructions for both non-smooth potential functions and
smooth potential functions with finite cut-off are investigated in detail.

The main contributions of this thesis are to extend the literature of continuous flocking
models with impulsive control and delay. Lyapunov function techniques and techniques for
stability of continuous and impulsive switching system are used, we study the asymptotic
stability of the equilibrium of our models with impulsive control and discovery that by
applying impulsive control to Olfati-Saber’s continuous model, we can remove the damping
term and improve the performance by avoiding the deficiency caused by time delay in
velocity sensing.

Additionally, we discuss both free-flocking and constrained-flocking algorithm for multi-
agent dynamical system, we extend literature results by applying velocity feedbacks which
are given by the dynamical obstacles in the environment to our impulsive control and
successfully lead to flocking with obstacle avoidance capability in a more energy-efficient
way.

Simulations are given to support our results, some conclusions are made and future
directions are given.
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Chapter 1

Introduction

The beautiful collective behaviour of swarming species such as some bacteria, ant colonies,
bee colonies, flocks of birds, schools of fish and other have attracted and fascinated the
interest of researchers [19, 42, 41, 40, 37, 47, 59, 56, 52, 35, 27, 57, 39, 45] for many
years. Collaborative flocking behaviour that we observe in these groups provides several
advantages. The behaviour results in what is sometimes called “collective intelligence” or
“swarm intelligence”, where groups of relatively simple and “unintelligent” individuals can
accomplish very complex tasks using only limited local information and simple rules of
behaviour [23]. With the development of technology, including the technology on sensing,
computation, information processing, power storage and others, it has become feasible to
develop engineered autonomous multi-agent dynamical systems such as systems composed
of multi robots, satellites, or ground, air, surface, underwater or deep space vehicles.

The terminology of “swarms” has come to mean a set of agents possessing independent
individual dynamics but exhibiting intimately coupled behaviours and collectively perform-
ing some tasks [23]. Another terminology to describe such system is the term “multi-agent
dynamical systems”. Multi-agent dynamical systems have many potential commercial ap-
plications such as pollution clear up, search and rescue operations, fire-fighter assistance,
surveillance, demining operations and others. These applications range in many different
areas such as agriculture (for cultivation or applying pesticides for protection), forestry (for
surveillance and early detection of forest fires), in disaster areas (such as for search in ar-
eas with radioactive release after a nuclear disaster), border patrol and homeland security,
search and coverage in warehouses under fires, fire distinction, health care, etc [45].

In multi-agent dynamical systems, flocking is a form of collective behaviour of a large
number of interacting agents with a common group objective [45]. In biology it is reserved
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for certain species when they are in certain behavioural modes (e.g., honey bees after
hive fission occurs and the swarm of bees is searching for, or flying to a new home) [42].
From engineering perspective it is sometimes useful to use biological swarms as examples
of behaviour that are achievable in multi-agent dynamical systems technologies. Moreover,
operational principles from such biological systems can be used as guidelines in engineering
for developing distributed cooperative control, coordination, and learning strategies for
autonomous multi-agent dynamical systems. In other words, development of such highly
automated systems is likely to benefit from biological principles including modelling of
biological swarms, coordination strategy specification, and analysis to show that group
dynamics achieve group goals [37].

Multi-agent dynamical systems possess various potential advantages over single-agent
systems. First of all, multi-agent systems are more flexible and they can readjust and
reorganiz based on the needs of the task under consideration, whereas single-agent systems
do not have this capability [23]. Multi-agent dynamical systems can operate in parallel
(different agents can concurrently perform different tasks) and therefor in a more effi-
cient manner (provided that appropriate cooperation algorithms are developed), whereas
in single-agent systems the agent usually has to finish its current task before starting an-
other task. Multi-agent dynamical systems possess improved robustness properties since
if one agent fails the other agents can continue (after reorganization and re-planning if
needed) and complete the task, whereas for a single-agent system if the agent fails the task
will fail as well [48]. Moreover, multi-agent systems can have improved task capabilities
compared to single-agent systems and perform tasks which are not achievable by a single
agent. In other words, the set of tasks a multi-agent dynamical system can perform is
much larger than those of a single agent, and the range of possible applications and areas
of use of a multi-agent dynamical system can be wider compared to those for a single-agent
system.

There are several multi-agent dynamical system behaviours and task achievement goals
that have been studied in the literature. Early works on understanding and modelling co-
ordinated animal behaviour as well as empirically verifying the developed/proposed models
has been performed by biologists. The work in [22] classified the work of biologists into
the individual-based (Lagrangian) and continuum (Eulerean) frameworks. Another work
which presented a useful background and a review of the swarm modelling concepts and
literature such as spatial and non-spatial models, individual-based versus continuum mod-
els can be found in [37]. One of the early works within the individual-based framework is
done by Breder in [6], where it suggested a simple model composed of a constant attraction
term and a repulsion term which is inversely proportional to the square of the distance
between two individuals. Similar work was performed by Warburton and Lazarus in [60]
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where the authors studied also the effect of a family of attraction/repulsion functions on
swarm cohesion. An example work within the continuum framework in [35] where it pre-
sented a swarm model which is based on non-local interactions of the individuals in the
flocks. In [26], a general continuous model for animal group size distribution, which is a
non-spatial patch model and constitutes an example work on non-spatial approaches was
presented. Other works on model development for biological swarms by mathematical biol-
ogists include [21, 34]. The work by Grindrod in [21] was an effort to generate a model for
aggregation and clustering of species and considered its stability. While [21] considering a
continuum model of a flock, the article in [34] describes a spatially discrete model, showing
that the model can describe the flocking behaviour.

There are related studies performed by physicists investigating flocking behaviour. The
general approach they take is to model each individual as a particle, which they usually
call a self-driven or self-propelled particle, and study the collective behaviour due to their
interaction. In particular, they analyze either the dynamic model of the density function or
perform simulations based on a model for each individual particle. In [46] Rauch explored a
simplified set of swarm models, which were driven by the collective motion of social insects
such as ants. In this model the swarm members move in an energy field that models the
nutrient or chemotactic profile in biology. In [55] Toner and Tu proposed a non equilibrium
continuum model for collective motion of large groups of biological organisms and later in
[56] they developed a quantitative continuum theory of flocking. They showed that their
model can predict the existence of an ordered phase of flocks, in which all individuals in
even arbitrarily large flocks move together [56].

In [9] a simple self-driven lattice-gas model for collective biological motion was intro-
duced, it showed the existence of a transition from individual random walks to collective
migration. Similarly, Vicsek in [59], which is a work that has caught attention of the en-
gineering community in the recent years, introduced a simple simulation model for system
of self-driven particles. They assumed that particles are moving with constant absolute
velocity and at each time step assumed the average direction of motion of the particles in
its neighbourhood with some random perturbation. They showed that high noise and low
particle density leads to a no transport phase, where the average velocity is zero, whereas
in low noise and high particle density the swarm is moving in a particular direction. They
called this transition from a stationary state to a mobile state kinetic phase transition.
Similarly in [11], they presented experimental results and mathematical model for forming
bacterial colonies and collective motion of bacteria. Other results in the same spirit include
[10, 12, 13, 58], in [12] a nonequilibrium model was compared to some equilibrium model
in ferromagents, in [10] the authors demonstrated similar results in one dimension, in [58]
the effect of fluctuations on the collective motion of self-propelled particles was investi-
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gated, and in [13] the effect of noise and dimensionality on the scaling behaviour of flocks
of self-propelled particles was studied.

The field of coordinated multi-agent dynamical systems has become popular in the past
decade in the engineering community as well. One of the earliest works in this field is the
work by Reynolds [47] on simulation of a flock of birds in flight using a behavioural model
based on few simple rules and only local interactions. Reynolds introduced three heuristic
rules that led to flocking. here are three quotes from [47] that describe these rules:

1. Flock Centering: attempt to stay close to nearby flock mates.

2. Obstacle Avoidance: avoid collisions with nearby flock mates.

3. Velocity Matching: attempt to match velocity with nearby flock mates.

These three rules are also known as cohesion, separation and alignment rules in the liter-
ature. The main problem with implementation or analysis of the above rules is that they
have broad interpretations. The issue of how to interpret Reynolds rules was resolved after
publication of more recent papers by Reynolds [48, 49].

Early work on swarm stability is given by Beni and coworkers in [31] and [4]. In [31]
they considered a synchronous distributed control method for discrete one and two dimen-
sional swarm structures and prove stability in the presence of disturbances using Lyapunov
methods. In [4] they considered a linear model and provided sufficient conditions for asyn-
chronous convergence (without time delays) of the flocks to a synchronously achievable
configuration.

Coordinated motion and distributed formation control of agents are important problems
in the multi-agent formation control literature. In systems under minimalistic assumptions
it might be difficult to achieve even simple formations. In [53] the authors considered
asynchronous distributed control and geometric pattern formation of multiple anonymous
agents. Other important studies on cooperative control and coordination of swarms of
agents and in particular formation control of autonomous air or land vehicles using various
different approaches can be found in [61, 43, 24, 3]. In [61] the authors considered coop-
erative control and coordination of a group of holonomic mobile robots to capture/enclose
a target by making group formations. Results of a similar nature using behaviour based
strategy can be found also in [3], where they considered a strategy in which the formation
behaviour is integrated with other navigational behaviour and present both simulation and
implementation results for various types of formations and formation strategies. In [24],
the authors described formation control strategies for autonomous air vehicles. They used
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optimization and graph theory approach to find the best set of communication channels
that will keep the aircraft in the desired formation.

Other work on formation control and coordination of multi-agent systems can be found
in [2, 14, 15, 17, 33, 36]. In [14, 15], a feedback linearization technique using only local in-
formation for controller design to exponentially stabilize the relative distances of the robots
in the formation was proposed. Similarly, in [17, 36], the concept of control Lyapunov func-
tions together with formation constraints was used to develop a formation control strategy
and prove stability of the formation (formation maintenance). The results in [33], on the
other hand, were based on using virtual leaders and artificial potentials for agent interac-
tions in a group of agents for maintenance of a predefined group geometry. By using the
system kinetic energy energy and the artificial potential energy as a Lyapunov function
closed loop stability was shown. Moreover, a dissipative term was employed in order to
achieve asymptotic stability of the formation. In [2], the results in [33] were extended to
the case in which the group is moving in a sampled gradient fields.

In comparison with continuous control which had been well studied before, there are
not many reports on the design of impulsive control for multi-agent systems with switching
topologies. It has been proved that impulsive control approach is effective and robust
in synchronization of chaotic systems and complex networks [63], and the advantage of
applying impulsive control in a self-driven, communicating multi-agent systems is to reduce
energy and communication cost. We can imagine that a bird in a flock will not flap its
wings all the time. Motivated by the above discussions, we consider the flocking/formation
control problem of multi-agent dynamical systems with switching topologies by hybrid
control method, numerical examples and simulations are provided to illustrate the results.

The thesis is organized as follows:

Chapter 2 In this chapter, we give a general background to multi-agent system mod-
elling, some basic concepts of graph theory are introduced and a particle-based framework
is presented to describe our problem. Construction for potential functions is investigated
in detail.

Chapter 3 In this chapter, we discuss the continuous models for flocking for multi-agent
dynamical systems. The concepts of fixed and switching topologies are introduced, a virtual
leader is applied into our flocking algorithm and successfully leads to flocking. Stability
problem for free-flocking is discussed in detail, furthermore, models for constrained-flocking
are also provided.

Chapter 4 In this chapter, we extend the existing continuous flocking models with
impulsive control and delay, techniques for stability of impulsive systems are used to analyze
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the asymptotic stability of the equilibrium of our hybrid flocking models, additionally
algorithms for flocking with dynamical obstacle avoidance capability are proposed.

Chapter 5 In this chapter, we give our conclusions and directions for future work.
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Chapter 2

Muti-Agent Dynamical System
Modelling

In order to model multi-agent dynamical systems and study the flocking behaviour and
interconnection between agents in the model, one can begin by defining agents to have
sensory capabilities (i.e., to sense position or velocity of other agents or sense environmen-
tal characteristics), processing ability (a brain or an on-board computer), the ability to
communicate or exchange information and the ability to take actions via actuators [23].
Physical agent characteristics along with agent motion dynamics and its sensory and pro-
cessing capabilities constrain how the agent can move in its environment and the rates at
which it can sense and act in spatially distributed areas and interact with the other agents.

Regardless, it is useful to think of the agents as nodes, and arcs between nodes as
representing abilities to sense or communicate with other agents. The existence of an arc
may depend on sensing range of agents, the properties of the environment, communication
network and link imperfections, along with local agent abilities and goals. One can view a
multi-agent dynamical system as a set of such communicating agents that work collectively
to solve a task.

In this chapter we will focus on how to establish this theoretical framework. We begin
by introducing some basic concepts in graph theory [5, 16, 29] to describe agents as nodes
and the interconnection between them as edges of a graph. The foundation of graph
theory was influenced by the Konigsberg bridge puzzle introduced by Euler in 1736. Later,
investigations of social problems by Erdos were a benchmark for the start of formal graph
theory [18]. Here we first look into some basic notions of the subject.
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Figure 2.1: (a) A simple graph. (b) A graph with a loop

2.1 Basics of Graph Theory

Definition 2.1. A graph G (typically written as G = (V,E)) is an ordered pair of two
sets, a non-empty set V = V (G), called vertex set, consisting of objects {i, j, . . . } that are
called vertices (sometime also called nodes). Another set E = E(G), called edge set which
consists of edges.

One edge connects two vertices, two vertices can be connected by multiple edges and
one edge can connect one vertex to itself. The cardinality of the set of vertices V is called
the order of the graph, and the cardinality of the set of edges E is called the size of the
graph.

Definition 2.2. If e = {(i, j) : i and j ∈ V (G)} ∈ E(G), we call the vertices i and j
adjacent to each other or connected to each other or neighbours of one another. The edge
e can be represented as a pair of vertices (i, j) or denoted by ij.

Definition 2.3. An edge (i, i) is called a self-loop or simply a loop. There could be more
than one edge with the same vertices, these edges are called parallel edges or multi-edges.

Fig.2.1(b) shows a graph in which edges e8 is a self-loop. A graph with no self-loops or
multi-edges is called a simple graph. Fig.2.1(a) is an example of a simple graph.

Definition 2.4. For a simple graph, the degree ni of a vertex i is the number of vertices
which are adjacent to i. The monotonic sequence of degrees of V = V (G) is called degree
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Figure 2.2: Graph (b) is a subgraph of graph (a)

sequence of the graph G. A vertex with degree zero is called an isolated vertex. A vertex
with degree 1 is called a pendant vertex.

In Fig.2.1(a), the vertices v1, v2, v3, v4 are adjacent to vertex v5. So the degree of the
vertex v5 is 4.

Definition 2.5. A graph G∗ = (V ∗, E∗) is called a subgraph of a graph G = (V,E), if
V ∗ ⊆ V and E∗ ⊆ E.

In Fig.2.2 graph (b) is a subgraph of graph (a).

Definition 2.6. A path in a graph is a sequence of vertices such that from each of its
vertices there is an edge to the next vertex in the sequence.

Definition 2.7. A graph is called connected if for every pair of vertices i and j, there
exists a path where i and j are end vertices. Otherwise, the graph is called disconnected.

Definition 2.8. A directed graph or digraph consists of a set V of vertices {i, j, . . . } and
a set of edges E which are ordered pairs (i, j) of vertices. We write the edge with ordered
pair (i, j) as i→ j. i is called the head or initial vertex and j is called the tail or terminal
vertex of the edge. The number of edges with i as the initial vertex(resp. terminal vertex)
is call the outdegree(resp. indegree) of the vertex i.

Definition 2.9. A spanning tree T of a connected, undirected graph G is a tree composed
of all the vertices and some (or perhaps all) of the edges of G. A spanning tree of G is a
selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in
the tree, but no cycles (or loops) are formed.
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2.1.1 Adjacency Matrix

The adjacency matrix of a graph G of n vertices is a n× n matrix where the non-diagonal
entry aij is the number of edges connecting from vertex i to vertex j, and the diagonal
entry aii, depending on the convention, is either once or twice the number of edges(loops)
from vertex i to itself. Undirected graphs often use the former convention of counting loops
twice, whereas directed graphs typically use the latter convention. If a graph is undirected,
the adjacency matrix is symmetric, and therefore has a complete set of real eigenvalues
and an orthogonal eigenvector basis. The set of eigenvalues of the adjacency matrix of a
graph is the spectrum of the graph.

Adjacency Matrix: The matrix A = [aij] with the form

aij =

{
1, if ij is an edge

0, otherwise

is the adjacency matrix of the most common simple undirected graph.

Following is the adjacency matrix of the graph in Fig.2.1(b)
0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 1


2.1.2 Graph Laplacian

The graph Laplacian matrix is important for analyzing the graph’s structure, (which later
will be useful in analysis of velocity matching in multi-agent dynamical systems). It is
defined in the following way:

Laplacian Matrix: The matrix L = [aij] with the form

aij =


ni, if i = j

−1, if ij is an edge

0, otherwise

10



is called the Laplacian matrix of a graph, where ni denotes the degrees of the vertices i.
Following is an example of the corresponding Laplacian of the graph in Fig.2.1(b)

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1


Relationship between adjacency matrix and Laplacian martix

For a graph G, let D be the diagonal matrix with entries which are the degrees of
vertices, i.e.,

D(i, j) =

{
ni, if i = j

0, otherwise

where ni denotes the degrees of the vertices i. The relation between the adjacency matrix
A and the graph Laplacian L is

L = D − A

Laplacian matrix L always has a right eigenvector of 1n = (1, . . . , 1)T associated with
eigenvalue λ1 = 0. The following lemma from [38] summarizes the basic properties of
graph Laplacians:

Lemma 2.1. Let G(V,E) be an undirected graph of order n with a non-negative adjacency
matrix A = AT . Then, the following statements hold:

1. L is a positive semidefinite matrix that satisfies the follow sum-of-squares (SOS)
property:

zTLz =
1

2

∑
i,j∈E

aij(zj − zi)2, z ∈ Rn;

2. The graph G has c ≥ 1 connected components if and only if rank(L) = n − c.
Particularly, G is connected if and only if rank(L) = n− 1;

3. Let G be a connected graph, then

λ2(L) = minz⊥1n
zTLz

‖z‖2
> 0,
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Proof. All three results are well-known in the field of algebraic graph theory and their
proofs can be found in Godsil and Royle [25].

The quantity λ2(L) is known as algebraic connectivity of a graph [20]. Particularly, we
use m-dimensional graph Laplacians defined by

L̂ = L⊗ 1m

where ⊗ denotes the Kronecker product. This multi-dimensional Laplacian satisfies the
following SOS property:

zT L̂z =
1

2

∑
(i,j)∈E

aij‖zj − zi‖2, z ∈ Rmn

where z = (z1, z2, . . . , zn)T and zi ∈ R for all i. Matrix L̂ can be viewed as the Laplacian
of a graph with adjacency matrix Â = A⊗ 1m.

We can use the graph Laplacian to evaluate the graph/network connectivity mainte-
nance. We know that the link/connection between vertex i and vertex j is maintained
if ij ∈ e, otherwise this link is considered to be broken. For graph connectivity, a dy-
namic graph G(V,E) is said to be connected at time t only if there exists a path between
any two vertices at time t. To analyze the connectivity of the graph/network, we define

c(t) = Rank(L(t))
n−1 ; if 0 ≤ c(t) < 1, the network is broken; if c(t) = 1, the network is con-

nected. This property of the Laplacian is very useful to analyze the flocking behaviour of
multi-agent dynamical systems.

2.1.3 Particle-Based System

After introducing the basic knowledge of graph theory, now we need to set up a theoretical
model to analyze the flocking behaviour of multi-agent dynamical systems. We propose a
particle-based model assuming agents in the system are self-driven or self-propelled parti-
cles, and possess sensing ability to perceive the position and velocity information of other
agents which are within their interaction/communication range. The concept of spatial
neighbour of an agent is also introduced.

Let G = (V,E) be a graph and ri ∈ Rm denote the position of agent i for all i ∈ V .
The vector r = (r1, . . . , rn) ∈ Rmn is called the configuration of all nodes of the graph. A
framework (or structure) is a pair (G,r) that consists of a graph and the configuration of
its nodes.
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Figure 2.3: An agent and its neighbours in a spherical neighbourhood

Let R > 0 denote the interaction range between two agents. An open ball with radius
R (indicate in Fig.2.3) determining the set of spatial neighbours of agent i is denoted by

Ni = {j ∈ V : ‖rj − ri‖ < R}

where ‖ · ‖ is the Euclidean norm in Rm. Given an interaction range R > 0, a spatially
induced graph G(r) = (V,E(r)) can be specified by V and the set of edges

E(r) = {(i, j) ∈ V × V : ‖rj − ri‖ < R, i 6= j}

that clearly depends on R. We refer to the graph G(r) as a net and to the structure
(G(r), r) as a frame net. The topology of a wireless sensor network with a radio range r
is an example of a net [1]. If the interaction range of all agents is the same, the net G(r)
becomes an undirected graph. All nets are undirected graphs in this thesis. A net G(r) is
generically a digraph under either of the following assumptions [38, 47]:

1. The spherical neighbourhoods of agents do not have the same radius.

2. Every agent uses a conic neighbourhood to determine its neighbours.

13



2.2 Vicsek’s Discrete Model

Among the first groups of physicists who studied flocking from a theoretical perspective
were Vicsek. In [57] Vicsek introduced a simple discrete time model with a novel type
of dynamics in order to investigate the emergence of self-ordered motion in systems of
particles with biologically motivated interaction. In Vicsek’s model, particles were driven
with a constant absolute velocity and at each time step assumed the average direction of
motion of the particles in their neighbourhood with some random perturbation in analogy
with the temperature. Numerical simulations were provided to indicate that this model
results in rich, realistic dynamics, including a kinetic phase transition. Vicsek’s work has an
important influence on the later researches of flocking for multi-agent systems since flocking
is the kind of coordinated behaviour which combines both position (phase) transition and
velocity alignment.

The model is carried out in a square shaped cell of linear size L with periodic boundary
conditions. The particles are represented by points moving continuously on this plane. We
use the interaction range R as the unit to measure distances (R = 1), while the time unit
∆t = 1 is the time interval between two updates of the velocity directions and positions.
In most of the simulations we use the simplest initial conditions:

1. At time t = 0, all particles’ position are randomly distributed in the plane.

2. At time t = 0, all particles have the same absolute velocity v.

3. At time t = 0, the directions θ of all particles’ velocity are randomly distributed.

The velocities v of the particles are determined simultaneously at each time step, and the
position of the ith particle updates according to a simple rule which can be described as
follow:

xi(t+ 1) = xi(t) + vi(t)∆t

where the velocity of a particle vi(t + 1) is constructed to have an absolute value v and a
direction given by the angle θ(t+ 1). This angle is given by the following expression:

θ(t+ 1) =< θ(t) >R +∆θ

where < θ(t)R > denotes the average direction of the velocities of particles (including
particle i) which are in a circle of radius R centering at the given particle. The average

direction is given by the angle arctan[<sin(θ(t))>R
<cos(θ(t))>R

] and ∆θ is a random number chosen with
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a uniform probability from the interval [−η/2, η/2]. Thus the term ∆θ represents noise
which we shall use as a temperaturelike variable. Correspondingly, there are three free
parameters for a given system size: η, ρ, and v where v is the distance a particle travels
between two updates, and ρ = v/L2 is the density.

We need to investigate the nontrivial behaviour of the transport properties as the two
basic parameters of the model, the noise η and the density ρ are varied. We use v = 0.2
in the simulations, as v → 0 the particles do not move. For v → ∞ the particles become
completely mixed between two updates, and this limit corresponds to the so-called mean-
field behaviour of a ferromagnet. We use v = 0.2 for which the particles always interact
with their actual neighbours and move fast enough to change the configuration after a
few updates of the directions. According to the simulations, in a range of the interval
(0.03 < v < 0.3), the actual value of v does not affect the results. Figures2.4(a)-(d)
demonstrate the velocity fields during runs with various selections for the value of the
parameter ρ and η. The actual velocity of a particle is indicated by a small arrow. (a) At
t=0 the positions and the directions of velocities are distributed randomly. (b) For small
noise the particles tend to form groups moving coherently in random directions. (c) At
higher noise the directions of velocities are distributed randomly at t=0 and (d) After 100
time steps the particles still move randomly in random direction.

The emergence of cooperative motion in this model has analogies with the appearance
of spatial order in equilibrium systems. This fact and the simplicity of this model suggests
that with appropriate modifications, the theoretical methods for describing critical phe-
nomena may be applicable to other kind of equilibrium phase transition such as flocking
behaviour. A rigorous proof of convergence by Jadbabaie [30] for Vicseks model was given
in Appendix A.

2.3 Double Integrator Agents

In this section we consider a double integrator model for agents. As in the last section, we
have introduced some basic background of modelling and Vicsek’s discrete velocity con-
sensus model, here we will propose the model of double integrator agents and a systematic
method is provided for construction of inter-agent potential function to investigate the
flocking behaviour for multi-agent dynamical systems.
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Figure 2.4: (a) low noise at t=0 (b) low noise after 30 time steps (c) high noise at t=0 (d)
high noise after 100 time steps
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2.3.1 Equation of Motion

We consider a system consists of N interconnecting agents, each with point mass dynamics
given by {

ṙi = vi

v̇i = 1
Mi
ui

(2.1)

where ri ∈ Rn is the position, vi ∈ Rn is the velocity, Mi is the mass and ui ∈ Rn is the
(force) control input for the ith agent. The above equations imply that ui = Mir̈i (force
is mass times acceleration). Integrating acceleration once we get velocity, twice and we
get position; hence, we use the term “double integrator model.” It is assumed that all
agents know their own dynamics. For some organisms like bacteria that move in highly
viscous environments it can be assumed that Mi = 0. If a velocity damping term is used
in ui, we obtain the model proposed by Olfati-Saber [45] which will be studied in Chapter
3 (assuming that Mi = 1).

2.3.2 Potential Function Design

Given the agent dynamics in (2.3.1), in this section we will discuss developing control
algorithms for obtaining coordinated behaviour for multi-agent dynamical systems. We
will solve this problem by using a potential function based approach. We assume all
individuals in the system move simultaneously and know the exact relative position of the
other individuals. Let rT = [rT1 , r

T
2 . . . r

T
n ] ∈ Rnn denote the vector of concatenated states

of all the agents. In this section the control input ui of individual i will have the form

ui = −∇riJ(r)

where J : Rnn → R is a potential function which represents the interaction (i.e., the
attraction and repulsion relationship) between the individual agents and needs to be chosen
by the designer based on the flocking application under consideration and the desired
behaviour from the system. We will discuss which properties the potential functions should
satisfy for different problems and present results for some potential functions.

Aggregation is one of the most basic behaviour seen in flocks in nature (such as insect
colonies) and is sometimes the initial phase in collective tasks performed by a flock. Below,
we discuss how to achieve aggregation for the single integrator model in (2.3.1). If only
simple aggregation is desired from the multi-agent dynamical system, then the potential
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function J can be selected as J(r) = Jaggregation(r) where

Jaggregation =
n−1∑
i=1

n∑
j=i+1

[Ja(‖ri − rj‖)− Jr(‖ri − rj‖)].

Here, Ja : R+ → R represents the attraction component, whereas Jr : R+ → R represents
the repulsion component of the potential function. Although not the only choice, the above
potential function is very intuitive since it represents an interplay between attraction and
repulsion components. Note also that it is based only on the relative distances between
the agents and not the absolute agent positions.

Given the above type of potential function, the control input of individual i, j =
1, . . . , N can be calculated as

ui = −
n∑

j=1,j 6=i

[∇riJa(‖ri − rj‖)−∇riJr(‖ri − rj‖)]

Note that since v̇i = ui, the motion of the individual is along the negative gradient and
leads to a descent motion towards a minimum of the potential function J . Moreover, since
the function Ja(‖r‖) and Jr(‖r‖) create a potential field of attraction and repulsion, respec-
tively, around each individual, the above property restricts the motion of the individuals
toward each other along the gradient of these potentials (i.e., along the combined gradient
field of Ja(‖r‖) and Jr(‖r‖)).

One can show that, because of the chain rule and the definition of the functions Ja and
Jr, the equalities

∇rJa(‖r‖) = rga(‖r‖)
∇rJr(‖r‖) = rgr(‖r‖)

are always satisfied for some some function ga : R+ → R and gr : R+ → R. Here ga : R+ →
R+ represents the attraction term, whereas gr : R+ → R+ represents the repulsion term.
Note also that the combined term −rga(‖r‖) represents the actual attraction whereas
the combined term rgr(‖r‖) represents the actual repulsion, and they both act on the
line connecting the two interaction individuals, but in opposite directions. The vector
r determines the alignment, it guarantees that the interaction vector is along the line
on which r is located), and it also affects the magnitude of the attraction and repulsion
components. The terms ga(‖r‖) and gr(‖r‖), on the other hand, affect correspondingly
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only the magnitude of the attraction and repulsion, whereas their difference determine the
direction of the interaction along vector r. Let’s define the function g(·) as

g(r) = −r[ga(‖r‖)− gr(‖r‖)]. (2.2)

We call the function g(·) an attraction/repulsion function and assume that on large dis-
tances attraction dominates, while on short distances repulsion dominates, and that there
is a unique distance at which the attraction and the repulsion balance. In other words, we
assume that g(·) satisfies the following assumptions.

Definition 2.10. The function g(·) in (2.2) and the corresponding ga(·) and gr(·) are such
that there exist a unique distance d at which we have ga(d) = gr(d). Moreover, we have
ga(‖r‖) > gr(‖r‖) for ‖r‖ > d and gr(‖r‖) > ga(‖r‖) for ‖r‖ < d.

Moreover for the attraction/repulsion function g(·) defined as above we have g(r) =
−g(−r), in other words, the above g(·) functions are odd. This is an important feature of
the g(·) functions that lead to reciprocity in the inter-agent relations and interactions.

Non-smooth Potential Fucntion

In order to satisfy the above assumptions, the potential function designer should choose
the attraction and repulsion potential such that the minimum of Ja(‖ri − rj‖) occurs on
‖ri − rj‖ = 0, whereas the minimum of −Jr(‖ri − rj‖) occurs on ‖ri − rj‖ → ∞, and
the minimum of the combined Ja(‖ri − rj‖) − Jr(‖ri − rj‖) occurs at ‖ri − rj‖ = d. In
other words, at ‖ri − rj‖ = d the attraction/repulsion potential between two interacting
individuals has a global minimum, however, when there are more than two individuals, the
minimum of the combined potential does not necessarily occur at ‖ri−rj‖ = d for all j 6= i.
Moreover, there exist a family of minima. So we can view J(r) as the potential average of
the multi-agents system, whose value depends on the inter-individual distances (such that
it’s high when the agents are either far from each other or too close to each other) and the
motion of all the agents is towards a unique global minimum energy configuration.

One potential function which satisfies the above conditions, including Assumption 2.10,
and has been used in Tanner’s model [28] is:

Jij =

{
1

‖ri−rj‖2 + log‖ri − rj‖2, ‖ri − rj‖ < R

VR ‖ri − rj‖ ≥ R
(2.3)

where R denotes the interaction range between two agents and VR = 1/R2 + logR2 is a
positive constant. Its corresponding attraction/repulsion function can be calculates as
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Figure 2.5: (a) A Discontinuous Attraction/Repulsion Function. (b) A Non-Smooth
Potential Function with R=2

uij =
−2

‖ri − rj‖3
+

2

‖ri − rj‖
(2.4)

which is indicated in Fig.2.5(a). We can see that the attraction/repulsion function
is zero at r = 1 which is the global minimum of the corresponding potential function,
indicating that the attraction and repulsion are balance at this equilibrium position. Also
notice that due to the property that the potential function is not smooth at R = 2, so in
the Fig.2.5(a) of the attraction/repulsion function we can see there is a jump at R = 2,
which implies that the interaction between two agents is suddenly disappear when they are
out of their interaction range. Moreover, from Fig.2.5(b) we notice that this non-smooth
potential function is not differentiable and goes to infinity at 0, which means we need to
apply an unbounded repulsive force to avoid collision between two agents.
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Smooth Potential Function

The non-smooth potential function introduced in Tanner’s model is not differentiable at 0,
this is due to the fact that the map ‖r‖ is not differentiable at r = 0. Moreover, we want to
construct a potential function with a finite cut-off at R, which mean the potential function
is zero for all r ≥ R. Hence, in order to construct a new smooth potential function with a
finite cut-off, we need to introduce σ-Norms and Bump functions.

Definition 2.11. The σ-norm of a vector is a map Rm → R+ defined as

‖r‖σ =
1

ε
[
√

1 + ε‖r‖2 − 1]

with a parameter ε > 0 and a gradient σε(r) = ∇‖r‖σ given by

σε(r) =
r√

1 + ε‖r‖2
=

r

1 + ε‖r‖σ

Notice the map ‖r‖σ is differentiable everywhere whereas ‖r‖ is not differentiable at
r = 0. Later this property of σ-norms is used for construction of smooth collective potential
functions for multi-agent dynamical system.

Definition 2.12. A bump function is a scalar function ph(r) that smoothly varies between
0 and 1.

Here we use bump functions for construction of smooth potential functions with finite
cut-offs, one possible choice is the following bump function introduced in [50]

ph(r) =


1, r ∈ [0, h)
1
2
[1 + cos(π r−h

1−h)], r ∈ [h, 1]

0 otherwise

(2.5)

where h ∈ (0, 1). One can show that ph(r) is a C1-smooth function with the property that
ph
′
(r) = 0 over the interval [1,∞) and |ph′(r)| is uniformly bounded in r. A example of

(2.5) with h = 0.2 is given is Fig.2.6

A collective potential function ψ(r) is a smooth version of a deviation energy function[45]
with a scalar pairwise potential that has a finite cut-off. This means that there exists a
finite interaction range R > 0 such that ψ′(r) = 0,∀r > R. This feature turns out to be
the fundamental source of scalability of our flocking algorithms. A common approach to
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Figure 2.6: A Bump Function with h=0.2

create a pairwise potential with a finite cut-off is “soft cutting” in which a pairwise poten-
tial is multiplied by a bump function [38]. Here we use an alternative approach by softly
cutting attraction/repulsion functions and then using their integrals as pairwise potentials.
This way the derivative of the bump function never appears in the attraction/repulsion
function, and thereby a negative bump in the action function near r = R is avoided.

Let ψ(r) : R+ → R+ be an attraction/repulsion pairwise potential function with a
global minimum at r = d and a finite cut-off at R. Then the following function

ϕ(r) =
1

2

n∑
i=1

∑
j 6=i

ψ(‖ri − rj‖ − d)

is a collective potential function that is not differentiable at singular configurations in
which two distinct nodes coincide, or ri = rj. To resolve this problem, we use the set of
algebraic constraints that are written in terms of σ-norms as

‖ri − rj‖σ = dα, ∀j ∈ Ni(r)
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where Ni(r) denotes all the neighbours of agent i, dα = ‖d‖σ. These constraints induce a
smooth collective potential function of the form:

V (r) =
1

2

∑
i

∑
j 6=i

ψα(‖ri − rj‖σ) (2.6)

where ψα(r) is a smooth pairwise attraction/repulsion potential with a finite cut-off at
rα = ‖r‖σ and a global minimum at r = dα.

To construct a smooth pairwise potential with finite cut-off, we integrate an attrac-
tion/repulsion function φα(r) that vanishes for all r ≥ Rα. Define this attraction/repulsion
function as

φα(r) = ph(
r

Rα

)φ(r − dα) (2.7)

φ(r) =
1

2
[(a+ b)σ1(r + c) + (a− b)] (2.8)

where σ1(r) = r/
√

1 + r2 and φ(r) is an uneven sigmoidal function with parameters
that satisfy 0 < a ≤ b, c = |a − b|/

√
4ab to guarantee φ(0) = 0. The pairwise attrac-

tion/repulsion potential ψα(r) is defined as

ψα(r) =

∫ r

dα

φα(s)ds (2.9)

Functions φα and ψα(r) are indicated in Fig.2.7
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Chapter 3

Flocking via Continuous Control

In last chapter we propose a double integrator model, we consider a system consists of N
interacting agents with point mass dynamics given by{

ṙi = vi

v̇i = 1
Mi
ui

(3.1)

where ri ∈ Rn is the position, vi ∈ Rn is the velocity, here we assume the mass Mi of every
agent in the model to be 1. In this chapter we will focus on using the potential function
and navigational feedback(a global objective of all the agents) to design the term ui to
control the agents in order to achieve the flocking phenomenon. One essential rule which
leads to flocking is that our control algorithms have to maintain the network connectivity
of the system, which means all agents in the system can interact with at least one of its
neighbours. Hence, in this chapter we will first give the definition of α-Lattices which is
convenient for us to analyze the formation of the flocks, then we will provide a control rule
ui without any navigational feedback for both fixed topologies and switching topologies. We
will show that navigational feedback is necessary to avoid fragmentation of the flock. Then
we will investigate the model proposed by Olfati-Saber [45] which includes a navigational
feedback in the control input term that successfully lead to flocking. Stability analysis for
Olfati-Saber’s model is provided and time delay and obstacle avoidance ability of agents
are also considered.
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Figure 3.1: Example of 2D α-lattices

3.1 α-Lattices and Quasi α-Lattices

One of our objectives is to design a flocking algorithm with abilities that allow the group
of dynamical agents to maintain rigid inter-agents distances over a net G(r). Hence we
should consider the following set of inter-agent algebraic constraints:

‖rj − ri‖ = d, ∀j ∈ Ni(r) (3.2)

Definition 3.1. (α-lattice) An α-lattice is a configuration r satisfying the set of constraints
in 3.2. We refer to d and k = R/d as the scale and ratio of an α-lattice respectively.

All edges of a structure (G(r), r) that are induced by an α-lattice have the same length.
One common examples of 2D α-lattice is illustrated in Fig.3.1

We also need to use a slightly deformed version of α-lattice that is defined as follows:
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Definition 3.2. (quasi α-lattice) A quasi α-lattice is a configuration r satisfying the fol-
lowing set of inequality constraints:

−δ ≤ ‖rj − ri‖ − d ≤ δ, ∀(i, j) ∈ E(r)

where δ << d is the edge-length uncertainty, d is the scale and k = r/d is the ratio of the
quasi α-lattice.

3.2 Flocking Without Navigational Feedback

In this section we will study a well-known model without navigational feedback which is
proposed by Tanner in [54] in 2003. In this model Tanner used a damping term and an
artificial potential function which describes the attractive and repulsive behaviour between
agents in the system. The motion of each agent is determined by two factors:

1. Attraction to the other agents over long distances.

2. Repulsion from the other agents over short distances.

Tanner’s model can be described as follows:{
ṙi = vi

v̇i = ui i = 1, . . . , N

The control input can be divided into two components:

ui = ai + αi.

The first component ai is attributed to an artificial potential function Vi, which depends
on the relative position information between agent i and its neighbours. The second com-
ponent αi regulates the velocity vectors of agent i to the average of that of its neighbours.

And the potential function is defined as follows:

Vij =

{
1

‖rij‖2 + log ‖rij‖2, ‖rij‖ < R

VR, ‖rij‖ ≥ R
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where rij = ri − rj. For agent i the (total) potential Vi is formed by summing the
potentials due to each of its neighbours:

Vi , (N − |Ni|)VR +
∑
j∈Ni

Vij(‖rij‖) (3.3)

where |Ni| is number of neighbours of agent i. The control law ui is defined as:

ui = −
∑
j∈Ni

(vi − vj)−
∑
j∈Ni

∇riVij (3.4)

Tanner considered two different situations. One is that the topology of the group of
agents is fixed, which means the interacting neighbours of each agent is fixed. The second
situation is that the topologies of the group of agents are changing with time (dynamical).
The analysis of those two situations are discussed in following sections.

3.2.1 Stable Flocking With Fixed Topology

In this section we will give the stability analysis for Tanner’s model in [54] with fixed
topologies. Let us consider the following positive semi-definite function

W =
1

2

N∑
i=1

(Vi + vTi vi)

The following sets
Ω = {(vi, rij)|W ≤ c} (3.5)

are compact sets in the space of agent velocities and relative distances. This is because the
set {rij, vi} such that W ≤ c, for c > 0, is closed by continuity. Boundedness, on the other
hand, follows from connectivity: from W ≤ c we have that Vij ≤ c. Connectivity ensures
that a path connecting nodes i and j has length at most N−1. Thus ‖rij‖ ≤ V −1ij (c(N−1)).
Similarly, vTi vi ≤ c yielding ‖v‖i ≤

√
c. Due to Vi being symmetric with respect to rij and

the fact that rij = −rji,
∂Vij
∂rij

=
∂Vij
∂ri

= −∂Vij
∂rj

(3.6)

and therefore it follows:
d

dt

N∑
i=1

1

2
Vi =

N∑
i=1

∇riVivi (3.7)
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Theorem 3.1. (Tanner et al.(2003) [54]) Consider a system of N mobile agents with
dynamics (3.2), each steered by control law (3.4) and assume that the graph is connected.
Then all agent velocity vectors become asymptotically the same, collisions between inter-
connected agents are avoided and the system approaches a configuration that minimizes all
agent potentials.

Proof. Taking the time derivative of W , we have:

Ẇ =
1

2

N∑
i=1

V̇i −
N∑
i=1

vTi (
∑
j∈Ni

(vi − vj) +∇riVi) (3.8)

due to the symmetric nature of Vij, this can be simplified to

Ẇ =
N∑
i=1

vTi ∇riVi −
N∑
i=1

vTi (
∑
j∈Ni

(vi − vj) +∇riVi)

= −
N∑
i=1

vTi
∑
j∈Ni

(vi − vj)

= −vT (L⊗ I2)v

where v is the state vector of all agent velocity vectors, L is the Laplacian of the
neighbouring graph and ⊗ denotes the Kronecker matrix product. Writing the quadratic
form explicitly,

Ẇ = −vTxLvx − vTy Lvy (3.9)

where vx and vy are the state vectors of the components of the agent velocities along x
and y directions respectively. For a connected graph G, L is positive semidefinite and
the eigenvector associated with the single zero eigenvalue is 1. Thus Ẇ = 0 implies that
both vx and vy belong to span{1}. This means that all agent velocities have the same
components and are therefore equal. It follows immediately that ṙij = 0, ∀(i, j) ∈ N ×N .
Application of Lasalle’s invariance principle establishes convergence of system trajectories
to S = {v|Ẇ = 0}. In S, the agent velocity dynamics become:

v̇ = −

 ∇r1V1
...

∇rNVN

 = −(A⊗ I2)


...

∇rijVij
...

 (3.10)
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where A is the adjacency matrix of the fixed graph. v̇ can be expanded to

v̇x = −A[∇rijVij]x

v̇y = −A[∇rijVij]y

Thus, v̇x and v̇y belong in the range of the adjacency matrix A. For a connected graph,
range(A) =span{1}⊥ and therefore

v̇x, v̇y ∈ span{1}⊥ (3.11)

In an invariant set within S,

vx, vy ∈ span{1} ⇒ v̇x, v̇y ∈ span{1}. (3.12)

Combining (3.11) and (3.12), we have

v̇x, v̇y ∈ span{1} ∩ span{1}⊥ = {0}. (3.13)

Thus, in steady state agent velocities must not change. Furthermore, from (3.10) it follows
that in steady state the potential Vi of each agent i is minimized. Interconnected agents
cannot collide since this will result in Vi → ∞ and the system departing Ω, which is a
contradiction since Ω is positively invariant.

3.2.2 Stable Flocking With Switching Topologies

In this section, the topologies of the group of agents in the system are no longer fixed.
We begin by proposing a similar theorem for flocking with switching topologies as in last
section,

Theorem 3.2. (Tanner et al.(2003) [54]) Consider a system of N mobile agents with
dynamics (3.2), each steered by control law (3.4) and assume that the neighbouring graph is
connected. Then all pairwise velocity differences converge asymptotically to zero, collisions
between the agents are avoided, and the system approaches a configuration that minimizes
all agent potentials.

The proof for flocking with switching topologies is similar to the case of fixed topology
and is omitted here, a detailed proof given by Tanner can be found in [54].

One thing that needs to be mentioned is that in both cases of Tanner’s model, an im-
portant assumption which must be satisfied for successful flocking is that the neighbouring
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Figure 3.2: Fragmentation Phenomenon

graph G must remain connected. This guarantees that the network is always connected
in both cases. If this crucial assumption is not satisfied, one possible situation is that
the initial positions of some agents are too far away from the rest, then the neighbour set
of those agents are empty, which means they cannot interact with any other agents and
leads to fragmentation of the flock. An example of fragmentation phenomenon is given in
Fig.3.2.

3.3 Flocking With Navigational Feeback

The model without navigational feedback can only lead to flocking for a very restricted
set of initial states, if the network connectivity assumption is not satisfied it may lead to
fragmentation. In [45], Olfati-Saber introduced three kinds of agents based on Tanner’s
model: α− agents, β − agents and γ − agents. α− agent refer to a physical agent which
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has the same meaning as previous model, while β−agent is introduced as a representation
of all nearby obstacles whenever the α − agent is in close proximity of an obstacle , and
γ−agent denotes a common group objective or virtual leader of the flock, which eliminates
the fragmentation phenomenon. By applying these three new terms in the control inputs,
Olfati-Saber’s algorithm has successfully led to flocking with obstacles avoidance ability.

One significant capability of Olfati-Saber’s algorithm is to allow a group of dynamic
agents to maintain identical/quasi-identical inter-agent distances between interacting agents,
i.e. group dynamics that satisfy the algebraic constrains in (3.2). We will present a dis-
tributed algorithm for flocking in free-space, or free-flocking. (The flocking algorithm with
obstacle avoidance capabilities is presented in section 3.5.) We refer to a physical agent
with equation of motion r̈i = ui as an α-agent. α-agents correspond to birds, or member of
a flock. An α-agent has a tendency to stay at a distance d > 0 from all of its neighbouring
α-agents, this is the reason behind the name α-lattice. In free-flocking, each α-agent has
a control input that consists of three components:{

ṙi = vi,

v̇i = ui, i = 1, . . . , N,
(3.14)

ui = f gi + fdi + fγi (3.15)

where f gi = −∇riV (r) is a gradient-based term, fdi is a velocity consensus/alignment term
that acts as damping force, and fγi is a navigational feedback due to a group objective.
Example of a group objective is a destination where a flock moves towards during migration.
Olfati-Saber proposed an algorithm that can be used for creation of flocking motion in Rm

as follows:

ui = uαi + uγi , or

ui =
∑
j∈Ni

φα(‖rj − ri‖σ)nij +
∑
j∈Ni

aij(r)(vj − vi) + fγi (ri, vi) (3.16)

where nij is a vector along the line connecting ri to rj and is given by

nij =
rj − ri√

1 + ε‖rj − ri‖2
(3.17)

and φα is defined as in (2.8), [aij] is the adjacency matrix of the net G(r) and fγi is the
navigational feedback is given by:

fγi (ri, vi, rγ, vγ) = −c1(ri − rγ)− c2(vi − vγ), c1, c2 > 0. (3.18)
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The pair (rγ, vγ) ∈ Rm×Rm is the state of a γ-agent. A γ-agent is a dynamic/static agent
that represents a group objective. Let (rd, vd) be a fixed pair of m-vectors that denote the
initial position and velocity of a γ-agent. A dynamic γ-agent has the following model{

ṙγ = vγ

v̇γ = fγ(rγ, vγ)
(3.19)

with (rγ(0), vγ(0)) = (rd, vd). A static γ-agent has a fixed state that is equal to (rd, vd) for
all time. The design of fγ(rγ, vγ) for a dynamic γ-agent is part of tracking control design
for a group of agents. For example, the choice of fγ = 0 leads to a γ-agent that moves
along a straight line with a desired velocity vd.

3.3.1 Collective Dynamics

The collective dynamics of a group of α-agents applying protocol (3.16) is in the form:

collective dynamics :

{
ṙ = v

v̇ = −∇V (r)− L̂(r)v + fγ(r, v, rγ, vγ)
(3.20)

where V (r) is a smooth collective potential function given in (2.6) and L̂(r) is the m-
dimensional Laplacian of the net G(r) with a position-dependent adjacency matrix A(r) =
[aij(r)], r, v are the state vector of ri, vi respectively.

The first expected result is that with fγ = 0, system (3.20) is a dissipative particle
system with Hamiltonian:

H(r, v) = V (r) +
N∑
i=1

‖vi‖2 (3.21)

This is due to Ḣ = −vT L̂(r)v ≤ 0 and the fact that the multi-dimensional graph Laplacian
L̂(r) is a positive semidefinite matrix for all r. The key in stability analysis of collective dy-
namics is employing a correct coordinate system that allows the use of LaSalle’s invariance
principle. One naive approach is to use H(r, v) in the (r, v)-coordinates. The reason such
an approach does not work is that one cannot establish the boundedness of solutions. Dur-
ing fragmentation, the solution cannot remain bounded. Therefore, Olfati-Saber proposed
the use of a moving frame to analyze the stability of flocking motion.
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3.3.2 Decomposition Dynamics

Consider a moving frame that is centred at rc, the centre of mass of all agents. Let
Ave(z) = 1

n

∑n
i=1 zi denote the average of the zi’s with z = col(z1, . . . , zn). Let rc = Ave(r)

and vc = Ave(v) denote the position and velocity of the origin of the moving frame. Then
ṙc(t) = vc(t) and v̇c(t) = Ave(u(t)). Our objective is to separate the analysis of the motion
of the centre of the group with respect to the reference frame from the collective motion of
the agents in the moving frame. The position and velocity of agent i in the moving frame
are given by {

r̂i = ri − rc
v̂i = vi − vc

(3.22)

The relative position and velocities remain the same in the moving frame, i.e. r̂j−r̂i = rj−ri
and v̂j − v̂i = vj − vi. Thus, V (r) = V (r̂) and ∇V (r) = ∇V (r̂). The control input in the
moving frame can be expressed as

uαi =
∑
j∈Ni

φα(‖r̂j − r̂i‖σ)nij +
∑
j∈Ni

aij(r̂)(v̂j − v̂i) (3.23)

with aij(r̂) = ph(‖r̂j − r̂i‖σ)/rα. Now we will present a decomposition lemma that is the
basis for posing a structural stability problem for “dynamic flocks” (a dynamic network
with a topology that is a connected net and nodes that are particles).

Lemma 3.1. (Decomposition) (Olfati-Saber et al.(2004) [45]) Suppose that the naviga-
tional feedback fγ(r, v) is linear, i.e. there exists a decomposition of fγ(r, v) of the following
form:

fγ(r, v, rγ, vγ) = g(r̂, v̂) + h(rc, vc, rγ, vγ). (3.24)

Then, the collective dynamics of a group of agents can be decomposed as n second-order
systems in the moving frame:

structural dynamics :

{
˙̂r = v̂
˙̂v = −∇V (r̂)− L(v̂) + g(r̂, v̂)

(3.25)

and one second-order system in the reference frame:

translational dynamics :

{
ṙc = vc

v̇c = h(rc, vc, rγ, vγ)
(3.26)
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where

g(r̂, v̂) =− c1r̂ − c2v̂ (3.27)

h(rc, vc, rγ, vγ) =− c1(rc − rγ)− c2(vc − vγ) (3.28)

and (rγ, vγ) is the state of γ-agent.

A detailed proof of this lemma is given by Olfati-Saber in [45].

3.3.3 Stability Analysis

According to the decomposition lemma, we are now at the position to define stable flocking
motion as the combination of the following forms of stability properties:

1. Stability of certain equilibria of the structural dynamics in the moving frame.

2. Stability of a desired equilibrium of the translational dynamics in the reference frame.

The challenging part of stability analysis for a flocking algorithm is to establish part 1.
Analysis of part 2 is far more simple than part 1. As far as animal behaviour is concerned,
the translational dynamics of a flock does not necessarily have to possess an equilibrium
point that is stable or asymptotically stable. A flock of birds could circle an area over
and over or move in a erratic and unpredictable manner. However, from an engineering
perspective, an overall control over the collective behaviour of a flock is highly desired. In
fact, the reason to perform flocking for UAVs is to steer a group of vehicles from point A
to B as a whole. Thus, in robotics or engineering applications, performing the second task
becomes very crucial. As a consequence, flocking protocols such as (3.16) that account for
the group objective are beneficial for engineering applications.

The significant differences between Tanner’s model and Olfati-Saber’s model are due
to the differences in their perspective structural dynamics. Given Tanner’s model which
has no navigational feedback, one obtains the following structural dynamics:

Σ1 :

{
˙̂r = v̂
˙̂v = −∇V (r̂)− L(r̂)v̂

(3.29)

with a positive semidefinite Laplacian matrix L̂(r). In comparison, the structural dynamics
of a group of agents with a γ-agent (navigational feedback) in Olfati-Saber’s model is in
the form:
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Σ2 :

{
˙̂r = v̂
˙̂v = −∇Uλ(r̂)−D(r̂)v̂

(3.30)

where Uλ is called the aggregate potential function and is defined by

Uλ(r̂) = V (r̂) + λJ(r̂). (3.31)

The map J(r̂) = 1
2

∑n
i=1 ‖r̂i‖2 is the moment of inertia of all agents and λ = c1 > 0 is a

parameter of the navigational feedback, and the matrix D(r̂) = c2Im + L(r̂) is a positive
definite matrix with c2 > 0.

Define the structural dynamics of system (3.29) and (3.30) as follows:

H(r̂, v̂) = V (r̂) +K(v̂) (3.32)

Hλ(r̂, v̂) = Uλ(r̂) +K(v̂) (3.33)

where K(v̂) = 1
2

∑n
i ‖v̂i‖2 is the kinetic energy of the agents in the moving frame. We now

need to define “cohesion of a group” and “flocks”.

Definition 3.3. (a cohesive group) Let (r̂(t), v̂(t)) be the state trajectory of a group of
dynamic agents over the time interval [t0, tf ]. We say the group is cohesive for all t ∈ [t0, tf ]
if there exists a ball of radius R > 0 centred at rc(t) = Ave(r(t)) that contains all the agents
for all time t ∈ [t0, tf ], i.e. ∃R > 0 : ‖r̂‖ ≤ R, ∀t ∈ [t0, tf ].

Definition 3.4. (flocks, quasi-flocks, dynamic flocks) The configuration r of a set of points
ν is called a flock with interaction range R if the net G(r) is connected. r is called a quasi-
flock if G(r) has a giant component (i.e. a connected subgraph with relatively large number
of nodes). A group of α-agents are called a dynamic flock over the time interval [t0, tf ) if
at every moment t ∈ [t0, tf ), they are a flock.

Theorem 3.3. (Olfati-Saber et al.(2004) [45]) Consider a group of α-agents with structural
dynamics Σ1 (3.29). Let ωc = {(r̂, v̂)|H(r̂, v̂) ≤ c} be a set of the Hamiltonian H(r̂, v̂) of
(3.29) such that for any solution starting in ωc, the group of agents is cohesive for all t ≥ 0.
Then, the follow statements hold:

1. Solution of the structural dynamics converges to an equilibrium (r̂∗, 0) with a config-
uration r̂∗ that is an α-lattice.

2. The velocity of all agents asymptotically match in the reference frame.
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3. Given c < c∗ = Ψα(0), no inter-agent collisions occur for all t ≤ 0.

Proof. Any solution (r(t), v(t)) of the collective dynamics of α-agents with structural dy-
namics Σ1 is uniquely mapped to a solution (r̂(t), v̂(t)) of the structural dynamics. We
have

Ḣ(r̂, v̂) = −v̂T L̂(r̂)v̂ = −1

2

∑
(i,j)∈ε(r̂)

aij(r̂)‖v̂j − v̂i‖2 ≤ 0 (3.34)

which means the structural energy H(r̂, v̂) is non-increasing for all t ≥ 0. In addition,
H(r̂(t), v̂(t)) ≤ c for all t ≥ 0 implies Ωc is an invariant set. This guarantees that the
velocity mismatch is upper bounded by c because of

K(v̂(t)) ≤ H(r̂(t), v̂(t)) ≤ c, ∀t ≥ 0.

By assumption, for any solution starting in Ωc, the group is cohesive in all time t ≥
0. Hence, there exists an R > 0 such that ‖r̂(t)‖ ≤ R, ∀t ≥ 0. The combination of
boundedness of velocity mismatch and group cohesion guarantees boundedness of solution
of Σ1 starting in Ωc. This fact is the result of the following inequality:

‖(r̂(t), v̂(t))‖2 = ‖r̂(t)‖2 + ‖v̂(t)‖2 ≤ R2 + 2c = C (3.35)

where C > 0 is a constant.

From LaSalle’s invariance principle, all the solutions of Σ1 starting in Ω1 converge to
the largest invariant set in E = {(r̂, v̂) ∈ Ωc : Ḣ = 0}. However since the group of α-agents
constitutes a dynamic flock for all t ≥ 0, G(r(t)) is a connected graph for all t ≥ 0. Thus,
based on equation (3.34), we know that the velocities of all agents match in the moving
frame, i.e. v̂1 = · · · = v̂n. But

∑
i v̂i = 0, therefor, v̂i = 0 for all i. This means that

the velocity of all agents asymptotically match in the reference frame, or v1 = · · · = vn,
which proves part 2. Moreover, the configuration r̂ asymptotically converges to a fixed
configuration r̂∗ that is an extrema of V (x), which means ∇V (r̂∗) = 0.

Since any solution of the system starting at certain equilibria such as local maxima
or saddle points remain in those equilibria for all time, not all solutions of the system
converge to a local minima. However, anything but a local minima is an unstable equilibria.
Thus, almost every solution of the system converges to an equilibrium (r̂∗, 0) where r̂∗ is
a local minima of V (r̂). According to Theorem 3.4, every local minima of V (r̂) is an α-
lattice. Therefore, r̂∗ is an α-lattice and asymptotically all inter-agent distances between
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neighbouring α-agents become equal to d. This finishes the proof of parts 1 and 2. We
prove part 3 by contradiction. Assume there exists a time t = t1 > 0 so that two distinct
agents k, l collide, or rk(t1) = rl(t1). for all t ≥ 0, we have

V (r(t)) =
1

2

∑
i

∑
j 6=i

ψα(‖rj − ri‖σ)

= ψα(‖rk(t)− rl(t)‖σ) +
1

2

∑
i∈ν\{k,l}

∑
j∈ν\{i,k,l}

ψα(‖rj − ri‖σ)

≥ ψα(‖rk(t)− rl(t)‖σ).

Hence, V (r(t1)) ≥ ψα(0) = c∗. But the velocity mismatch is a non-negative quantity and
Ωc is an invariant set of H. This yields:

V (r(t)) = H(r̂(t), v̂(t))−K(v̂(t)) ≤ H(r̂(t), v̂(t)) ≤ c ≤ c∗, ∀t ≥ 0

which is in contradiction with an earlier inequality V (r(t1)) ≥ c∗. Therefore, no two agents
collide at any time t ≥ 0.

Theorem 3.4. Every local minima of V (r) is an α-lattice and vice versa.

A detailed proof given by Olfati-Saber can be found in [45].

The following result provides a global stability analysis with structural dynamics Σ2

(3.30) that is useful for creation of flocking motion for generic sets of initial conditions. In
comparison to Theorem 3.3, no assumptions regarding group cohesion or connectivity of
the net are made in the following theorem:

Theorem 3.5. (Olfati-Saber et al.(2004) [45]) Consider a group of α-agents with structural
dynamics Σ2 (3.30) and c1, c2 > 0. Assume that the initial kinetic function K(v̂(0)) and
inertia J(r̂(0)) are finite. Then, the following statements hold:

1. The group of agents remain cohesive for all t ≥ 0.

2. Solution of Σ2 (3.30) asymptotically converges to an equilibrium (r̂∗λ, 0) where r̂∗λ is a
local minima of Uλ(r̂).

3. The velocity of all agents asymptotically match in the reference frame.
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4. Assume the initial structural energy of the agents is less than (k+1)c∗ with c∗ = ψα(0)
and k > 0. Then, at most k distinct pairs of α-agents could possibly collide (k = 0
guarantees a collision-free motion).

Proof. First, note that the multi-agent system with structural dynamics Σ2 and Hamilto-
nian Hλ(r̂, v̂) = Uλ(r̂) +K(v̂) is a strictly dissipative particle system in the moving frame
because it satisfies

Ḣλ(r̂, v̂) = −v̂T (c2Im + L̂(r̂))v̂ = −c2(v̂T v̂)− v̂T L̂(r̂)v̂ < 0, ∀v̂ 6= 0. (3.36)

Hence, the structural energy H(r̂, v̂) is monotonically decreasing for all (r̂, v̂) and

Hλ(r̂(t), v̂(t)) ≤ H0 = Hλ(r̂(0), v̂(0)) <∞.

The finiteness of H0 = V (r̂(0)) +λJ(r̂(0)) +K(v̂(0)) follows from the assumption that the
collective potential, the inertia and the velocity mismatch are all initially finite. Thus for
all t ≥ 0, we have

Uλ(r̂(t)) ≤ H0

K(v̂(t)) ≤ H0

But Uλ = V (r̂) + λ
2
r̂T r̂ with λ > 0 and V (r̂) ≥ 0 for all r̂, therefore

r̂T (t)r̂(t) ≤ 2H0

λ
, ∀t ≥ 0.

This guarantees the cohesion of the group of α-agents for all t ≥ 0 because the position of
all agents remains in a ball of radius R =

√
2H0/λ centred at rc. This cohesion property

together with boundedness of velocity mismatch, or K(v̂(t)) ≤ H0, guarantees boundedness
of solutions of the structural dynamics Σ2. To see this, let z = col(r̂, v̂), then

‖z(t)‖2 = r̂T (t)r̂(t) + v̂T (t)v̂(t) ≤ 2(
1

λ
+ 1)H0 = C(λ) <∞.

Part 2 follows from LaSalle’s invariance principle. Notice that Ḣλ(r̂, v̂) = 0 implies v̂ = 0.
Thus similar to the argument in the proof of Theorem 3.3, almost every solution of the
multi-agent system asymptotically converges to an equilibrium point z∗λ = (r̂∗λ, 0) where r̂∗λ
is a local minima of the aggregate potential function Uλ(r̂).
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Part 3 follows from the fact that v̂ asymptotically vanishes. Thus, the velocities of all
agents asymptotically match in the reference frame.

To prove part 4, suppose H0 < (k + 1)c∗ and there are more than k distinct pairs of
agents that collide at a given time t1 ≥ 0. Hence, there must be at least k + 1 distinct
pairs of agents that collide at time t1. This implies the collective potential of the particle
system at time t = t1 is at least (k + 1)ψα(0). However, we have

H0 = V (r̂(0)) + λJ(r̂(0)) +K(v̂(0)) ≥ V (r̂(0)) ≥ (k + 1)ψα(0).

This contradicts the assumption that H0 < (k+1)c∗. Hence, no more than k distinct pairs
of agents can possibly collide at any time t ≥ 0. Finally, with k = 0, no two agents can
collide.

Theorem 3.5 establishes some critical properties of collective behaviour of a group
of agents with structural dynamic Σ2 (3.30) including cohesion, convergence, asymptotic
velocity matching and collision avoidance without the network connectivity assumption.

3.3.4 Simulation

In this section we will present a simulation result for Olfati-Saber’s model with structural
dynamic Σ2 (3.30), a computer animation is available and the following parameters remain
fixed throughout the simulation: d = 12, R = 1.2d, ε = 0.1 (for σ-norm), a = b = 5
for φ(z), h = 0.2 for the bump function of φα(z), and the step-size in the simulation is
0.01s. In addition, the position of a static γ-agent is marked with a ∗ sign. The initial
positions and velocity of all 50 α-agents are uniformly chosen at random form the box
[−10, 10]2. A flock is formed in Fig. 3.3 (d) and maintained thereafter. The number of
edges of the dynamic graph G(r(t)) increases in time and has a tendency to render the net
connected. Numerical measurements indicate that the final conformation is a low-energy
quasi α-lattice that induces a flock. These observations are in close agreement with our
analysis in last section.

Moreover, we define a velocity mismatch function with respect to all α-agents and the
γ-agent as :M(t) =

∑N
i=1(‖vi − vγ‖)2 and plot it in Fig.3.4, we can see that the difference

between α-agents and the γ-agent asymptotically converges to zero, which also denotes
that the velocity mismatch between all α-agents asymptotically converge to zero. We can
see that our simulation is consistent with our study in last section.
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Figure 3.3: Flocking in Free-Space for n=50 agents.
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Figure 3.4: Velocity Mismatch

3.4 Communication Time Delay

In this section, we will study flocking for multi-agent dynamical system with time delay.
Due to the finite speed of transmission and spreading as well as traffic congestions, there are
usually time delay in spreading and communication in reality. Therefore, time delay should
be considered in designing controls for multi-agent systems. For consensus problems, the
influence of communication delay has been studied (Moreau 2004; Reza Olfati-Saber and
Murray 2004; Xiao and Wang 2006; Hu and Hong 2007). For formation problems, the
effect of communication delays has also been studied in Liu and Tian (2008), Ristian and
Cesare (2008). It’s remarkable that there are few results for flocking of multi-agent system
with time delay in communication (Yang and Zhang 2010). So in this section we will first
study a set of control laws with time delay for multi-agent system without leader, and the
control laws applied to each agent relies on the state information. Then we will show that
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all agent velocities become asymptotically the same and avoidance of collision between
agents is ensured. Next, we will study a set of control laws with time delay for multi-agent
dynamical systems with a virtual leader. In this case the control law applied to each agent
relies on the state information and the navigational feedback which is similar with our
discussion in previous two sections. With this control law all agents can follow the virtual
leader and collision-free can also be ensured.

3.4.1 Without Navigational Feedback

Given any dynamic graph G(r(t)) = (ν, E(t)), define the set of control laws as following:

ui = −
N∑
i=1

aij(vi − vj(t− τ))−
N∑
i=1

aij∇riVij (3.37)

where τ is the coupling time delay and [aij] is the adjacency matrix. ∇riVij corresponds to
a vector in the direction of the negative gradient of an artificial potential function defined
as follows:

Vij(rij) =
1

R2 − ‖rij‖2
, ‖rij‖2 ∈ (0, R) (3.38)

with rij = ri − rj. This allows both collision free and maintenance of the connectivity of
the network. Notice that Vij grows unbounded when ‖rij‖ → R−, which means we apply
an unbounded force to ensure that if an agent a is a neighbour of the other agent b, then
a can never move out of the neighbourhood of agent b.

For the multi-agent dynamical system under consideration here, the relationship be-
tween neighbouring agents (the interconnection topology) changes over time. Hence, the
system under control inputs (3.37) result in a dynamical switching system. Let tp for
p = 1, 2, . . . denote the switching times when the topology of G(r(t)) changes, and define
a switching signal σ(t) : [t0 : ∞) → CN associated with connected graphs, we have the
following theorem.

Theorem 3.6. (Zhengquan et al.(2011) [62]) Assume a multi-agent dynamical system with
control law (3.37), then for any pair of switching times tp < tq the switching signal σ(t)
satisfies E(tp) ⊆ E(tq) and the collision avoidance can always be guaranteed.

Proof. Consider the following positive semidefinite Lyapunov function:

Vg =
N∑
i=1

vTi vi +
N∑
i=1

N∑
j=1

aijVij +
N∑
i=1

N∑
j=1

aij

∫ 0

−τ
vTi (t+ η)vi(t+ η)dη
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For any c > 0, let ωc = {(rij, vi)|Vg ≤ c} denote the level sets of Vg and observe that

V̇g = 2
N∑
i=1

vTi (−
N∑
i=1

aij(vi − vj(t− τ))−
N∑
j=1

aij∇riVij)

+
N∑
i=1

N∑
j=1

aijV̇ij +
N∑
i=1

N∑
j=1

aij[v
T
i vi − vTi (t− τ)vi(t− τ)]

= −2
N∑
i=1

N∑
j=1

aijv
T
i (vi − vj(t− τ))− 2

N∑
i=1

N∑
j=1

aijv
T
i ∇riVij

+
N∑
i=1

N∑
j=1

aijV̇ij +
N∑
i=1

N∑
j=1

aij[v
T
i vi − vTi (t− τ)vi(t− τ)].

Note however that due to the symmetric nature of Vij,

N∑
i=1

N∑
j=1

aijV̇ij =
N∑
i=1

N∑
j=1

aij ṙ
T
ij∇rijVij

=
N∑
i=1

N∑
j=1

aij(ṙ
T
i ∇rijVij − ṙTj ∇rijVij)

=
N∑
i=1

N∑
j=1

aij(ṙ
T
i ∇rijVij + ṙTj ∇rijVji)

= 2
N∑
i=1

N∑
j=1

aij ṙ
T
i ∇rijVij

= 2
N∑
i=1

N∑
j=1

aijv
T
i ∇rijVij.

Thus, V̇g can be simplified to
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V̇g = −2
N∑
i=1

N∑
j=1

aijv
T
i (vi − vj(t− τ)) +

N∑
i=1

N∑
j=1

aij[v
T
i vi − vTi (t− τ)vi(t− τ)]

= −
N∑
i=1

N∑
j=1

aijv
T
i vi + 2

N∑
i=1

N∑
j=1

aijv
T
i vj(t− τ)−

N∑
i=1

N∑
j=1

aijv
T
i (t− τ)vi(t− τ)

= −
N∑
i=1

N∑
j=1

aij[v
T
i vi − 2vTi vj(t− τ) + vTj (t− τ)vj(t− τ)]

= −
N∑
i=1

N∑
j=1

aij[vi − vj(t− τ)]T [vi − vj(t− τ)]

≤ 0.

Hence, for any switching signal σ(t), V̇g is negative semidefinite. The negative semidefi-
niteness of V̇g ensures Vg is non-increasing for all time. In addition, the boundedness of Vg
implies that for any (i, j) ∈ E, Vij is bounded by c and

Vij ≤ Vg ≤ c <<∞
However, if for some (i, j) ∈ E, ‖rij‖ → R or ‖rij‖ → R imply Vij(rij) → ∞. Thus it
follows that ‖rij‖ < R for all (i, j) ∈ E and t ∈ [tp, tp+1). In other words, all links in net
G(r(t)) maintained between any switching times, this implies that E(tp) ⊆ E(tp+1). At
the same time, the collision between any two interacting agents can be avoided.

Theorem 3.7. (Zhengquan et al.(2011) [62]) By taking the control law in (3.37) and
assume that the initial net G(r(t0)) is connected, velocities of all agents in the multi-
agent dynamical system become asymptotically the same and avoidance of collisions between
agents is ensured.

Proof. Notice that in a net G(r(t)) the total number of vertices is finite so the total number
of switching times of the multi-agent system is also finite. Hence the switching signal σ(t)
eventually becomes constant, i.e. σ(t) → σ. It follows from Theorem 3.6 that if G(r(t0))
is connected, G(r(t)) is connected for all time t ≥ t0 and eventually σ(t) → σ ∈ CN .
So we can essentially study the convergence of the system once the switching signal has
converged and the network topology is fixed. As in theorem 3.6, for any switching signal
σ the potential Vg is positive definite and

V̇g = −
N∑
i=1

N∑
j=1

aij[vi − vj(t− τ)]T [vi − vj(t− τ)] ≤ 0.
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The level set ωc = {(rij, vi)|Vg ≤ c, c > 0} is closed by continuity and is bounded by the
connectivity of the position neighbouring graph. By LaSalles’ invariance principle, every
solution starting in ωc asymptotically converges to the largest invariant set in {(rij, vi)|V̇g =
0}. V̇g = 0 implies that v1 = · · · = vN . This means that the velocities of all agents
asymptotically become the same. Therefor we have

d

dt
‖ri − rj‖2 = 2(ri − rj)T (vi − vj) = 0,

and the distances between agents remain the same.

3.4.2 With Navigational Feedback

Similar to our discussion in last two sections, now we will apply the communication time
delay to the control with navigational feedback. Our objective is to enable the entire group
move at a desired velocity v0 and maintain constant distances between agents. Remember
that the desired velocity v0 is supposed to be a constant. We take the control law ui for
agent i to be the following:

ui = −
N∑
i=1

aij(vi − vj(t− τ))−
N∑
i=1

aij∇riVij − bi(vi − v0) (3.39)

where bi > 0 denotes the weight of influence of the reference signal on the motion of agent
i.

Define the error vectors as follows:{
epi = ri − v0t
evi = vi − v0

where t is the time variable, evi represents the velocity difference vector between the actual
velocity and the desired velocity (velocity of the virtual leader) of agent i. It is easy to see
that ėpi = evi and ėvi = v̇i. Hence, the error dynamics is given by{

ėpi = evi
ėvi = ui, i = 1, 2, . . . , N.

(3.40)

By the definition of Vij, it follows that Vij(‖rij‖) = Vij(‖epij‖)
.
= V̂ij, where epij = epi e

p
j .

Thus, the control input for agent i in the error system has the following form:
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ui = −
N∑
i=1

aij([e
v
i − evj (t− τ)] +∇epi

V̂ij)− bievi . (3.41)

Similar to the discussion for no leader’s case, we have the following theorem:

Theorem 3.8. (Zhengquan et al.(2011) [62]) Assume the multi-agent system with control
rule (3.41), for any pair of switching times tp < tq, the switching signal σ(t) satisfies
ε(tp) ⊆ ε(tq) and the collision avoidance can be always guaranteed.

Proof. Consider the following positive semidefinite function:

Wg =
N∑
i=1

evTi evi +
N∑
i=1

N∑
j=1

aijV̂ij

+
N∑
i=1

N∑
j=1

aij

∫ 0

−τ
evTi (t+ η)evi (t+ η)dη.

For any c > 0, let ωc = {(epij, evi )|WG ≤ c} denote the level sets of Vg and observe that

Ẇg = −2
N∑
i=1

evTi {
N∑
j=1

aij([e
v
i − evj (t− τ)] +∇epi

V̂ij) + bie
v
i }

+
N∑
i=1

N∑
j=1

aij
˙̂
Vij +

N∑
i=1

∑
j=1

aij[e
vT
i evi − evTi (t− τ)ei(t− τ)]

= −2
N∑
i=1

N∑
j=1

aije
vT
i [evi − evj (t− τ)]− 2

N∑
i=1

N∑
j=1

aije
vT
i ∇epi

V̂ij

− 2
N∑
i=1

bie
vT
i evi +

N∑
i=1

N∑
j=1

aij
˙̂
Vij +

N∑
i=1

N∑
j=1

aij[e
vT
i evi − evTi (t− τ)ei(t− τ)].

Notice that due to the symmetric nature of Vij

N∑
i=1

N∑
j=1

aij
˙̂
Vij = 2

N∑
i=1

N∑
j=1

aije
vT
i ∇epi

V̂ij
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Thus Ẇg can be simplified to

Ẇg = −2
N∑
i=1

N∑
j=1

aije
vT
i [evi − evj (t− τ)]

+
N∑
i=1

N∑
j=1

aij[e
vT
i evi − evTi (t− τ)ei(t− τ)]− 2

N∑
i=1

bie
vT
i evi

= −
N∑
i=1

N∑
j=1

aije
vT
i evi + 2

N∑
i=1

N∑
j=1

aije
vT
i evj (t− τ)

−
N∑
i=1

N∑
j=1

aije
vT
i (t− τ)ei(t− τ)− 2

N∑
i=1

bie
vT
i evi

= −
N∑
i=1

N∑
j=1

aij[e
vT
i evi − 2evTi evj (t− τ) + evTj (t− τ)ej(t− τ)]− 2

N∑
i=1

bie
vT
i evi

= −
N∑
i=1

N∑
j=1

aij[e
v
i − evj (t− τ)]T [evi − evj (t− τ)]− 2

N∑
i=1

bie
vT
i evi

≤ 0

Hence, for any switching signal σ(t), Ẇg is negative semidefinite. The negative semidefi-
niteness of Ẇg ensures Wg is non-increasing for all time. Moreover, the boundedness of Wg

implies that for any (i, j) ∈ E, V̂ij is bounded by c

V̂ij ≤ Wg ≤ c <<∞.

However, if for some (i, j) ∈ E, ‖rij‖ → R or ‖epij‖ → 0, then V̂ij(e
p
ij)→∞. Thus it follows

that ‖epij‖ < R for all (i, j) ∈ E and t ∈ [tp, tp+1). In other words, all links in G(r(t)) are
maintained between switching times, which implies that E(tp) ⊆ E(tp+1). At the same
time, the collision between any two interacting agents can be avoided.

Theorem 3.9. (Zhengquan et al.(2011) [62]) By taking the control law (3.41), assume
that the initial net G(r(t0)) is connected, velocities of all agents in the multi-agent system
approach asymptotically the leader’s velocity and avoidance of collisions between agents is
ensured.
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Proof. Notice that in a net G(r(t)) the total number of vertices is finite so the total number
of switching times of the multi-agent system is also finite. Hence the switching signal σ(t)
eventually becomes constant, i.e. σ(t)→ σ. It follows from Theorem 3.8 that if G(r(t0)) is
connected, G(r(t)) is connected for all time t ≥ t0 and eventually σ(t) → σ ∈ CN . So we
can essentially study the convergence of the system once the switching signal has converged
and the network topology is fixed. As in theorem 3.8, for any switching signal σ(t) the
potential Wg is positive definite and

Ẇg = −
N∑
i=1

N∑
j=1

aij[e
v
i − evj (t− τ)]T [evi − evj (t− τ)]− 2

N∑
i=1

bie
vT
i evi

≤ 0.

The level set ωc = {(epij, e
p
i )|Wg ≤ c, c > 0} is closed by continuity and is bounded

by the connectivity of the position neighbouring graph. By LaSalle’s invariance princi-
ple, every solution starting in ωc asymptotically converges to the largest invariant set in
{(epij, evi )|Ẇg = 0}. Ẇg = 0 implies that ev1 = · · · = evN = 0. This occurs only when
v1 = · · · = vN = v0 for i = 1, 2, . . . , N . Thus all agents’ velocities in the error system
remain the same and all equal to zero in the steady-state. Moreover, we have

d

dt
‖epi − e

p
j‖2 = 2(epi − e

p
j)
T (evi − evj ) = 0,

which implies the distances between agents are invariant.

3.5 Obstacle Avoidance Ability

In this section, we will present a distributed flocking algorithm with multiple obstacle-
avoidance capability. The main idea is to use agent-based representation of all nearby
obstacles by creating a new species of agents called β-agents [38]. A β-agent is a kinematic
agent that is induced by an α-agent whenever the α-agent is in close proximity of an
obstacle. In the following, we will define the notion of a β-agent and specify the interaction
protocol between an α-agent and a β-agent. Moreover, we restrict our study to obstacles
that lie in a connected convex region of Rm with boundaries that are smooth manifolds.
More explicitly we mainly focus on obstacles that are either spheres or infinite walls as
shown in Fig.3.5. We can approach to obstacle avoidance by summarizing in the following
steps:
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Unit Normal

Interation Range

β-Agent

α-Agent

(a)

α-Agent

Interation Range

β-Agent

(b)

Figure 3.5: β-agent representation of obstacles: (a) a wall and (b) a spherical obstacle.

1. Determine the indices Nβ
i of the set of obstacles Ok that are neighbours of α-agent i.

2. Create a (virtual) β-agent at rβi,k on the boundary of a neighbouring obstacle Ok by

projection. rβi,k satisfies

rβi,k = argminx∈Ok‖x− ri‖ (3.42)

and Ok is either a closed ball or a closed half space on one side of a hyperplane.

3. Add a term ψβ(‖rβi,k − ri‖σ) to the potential function of a group of α-agents corre-

sponding to each β-agent at rβi,k (ψβ(z) to be defined).

Let να = {1, 2, . . . , n} and νβ = {1′, 2′, . . . , l′} denote the set of indices of α-agents
and obstacles (β-agents), respectively. Notice that the prime in elements of νβ is used to
guarantee that να ∩ νβ = ø. An α-agent is called a neighbour of an obstacle Ok(k ∈ νβ) if
and only if the ball Br′(ri) and Ok overlap as shown in Fig.3.5. This form of neighbourhood
between an α-agent and an obstacle is a mutual property. Moreover, an α-agent could have
multiple neighbouring obstacles. Particularly, this occurs when a group of agents intend
to pass through a narrow pathway so that an agent might come within close proximity of
multiple obstacles.
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We define the sets of α-neighbours and β-neighbours of an α-agent i ∈ να as follows:

Nα
i = {j ∈ να : ‖rj − ri‖ < R}

Nβ
i = {k ∈ νβ : ‖rβi,k − ri‖ < Rβ}

where R,Rβ > 0 are interaction ranges of an α-agent with neighbouring α-agents and
β-agents, respectively. Here we choose Rβ < R.

The sets of α-neighbours and β-neighbours of an α-agent i ∈ να naturally define an
(α, β)-net that is a spatially induced graph in the form

Gα,β(r) = Gα(r) +Gβ(r)

where Gα(r) = (να, εα(r)) is a net induced by configuration of all α-agents and Gβ(r) =
(νβ, εβ(r)) is a directed bipartite graph induced by r and the set of obstacles O = {Ok :
k ∈ νβ} where εβ(r) ⊆ να × νβ. The condition να ∩ νβ = ø guarantees well-posedness of
the definition of the bipartite graph Gβ(r). More explicitly we have:

εα(r) = {(i, j) : i ∈ να, j ∈ Nα
i }

εβ(r) = {(i, k) : i ∈ να, k ∈ Nβ
i }

and Gα,β(r) = (να ∪ νβ, εα(r) ∪ εβ(r)). Similarly, an (α, β)-frame net is a structure
(Gα,β(r), r, r̂) where r̂ denotes the configuration of all β-agents.

The new set of inter-agent and agent-to-obstacle algebraic constraints for an α-agent is
specifies as follows: {

‖rj − ri‖ = d, ∀j ∈ Nα
i

‖rβi,k − ri‖ = dβ, ∀k ∈ Nβ
i

(3.43)

A constrained α-lattice denoted by (r, O) consists of an α-lattice r and a set of obstacles O
that satisfy the set of constraints in (3.43). The relevant ratios of a constrained α-lattice
are k = R/d and kβ = dβ/d = Rβ/R.

To achieve flocking in presence of obstacles, we use the following multi-species collective
potential function for the multi-agent system:

V (r) = cα1Vα(r) + cβ1Vβ(r) + cγ1Vγ(r) (3.44)
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dβ=6

Out of Interaction

Range

r

Figure 3.6: A Repulsive Action Function with dβ = 6

where the cα1 , c
β
1 , c

γ
1 are positive constants and (α, α), (α, β), (α, γ) interaction potentials

are defined as follows:

Vα(r) =
∑
i∈να

∑
j∈να\{i}

ψα(‖rj − ri‖σ) (3.45)

Vβ(r) =
∑
i∈να

∑
k∈Nβ

i

ψβ(‖rβi,k − ri‖σ) (3.46)

Vγ(r) =
∑
i∈να

(
√

1 + ‖ri − rγ‖2 − 1). (3.47)

The function Vγ(r) relates to the navigational feedback of a group of α-agents. The het-

erogeneous adjacency matrix between an α-agent at ri and its neighbouring β-agent at rβi,k
is defined as
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bi,k(r) = ph(‖rβi,k − ri‖σ/dβ)

where dβ < Rβ with dβ = ‖dβ‖σ, Rβ = ‖Rβ‖σ. Define the repulsive action function as
follows:

φβ(z) = ρh(z/dβ)(σ1(z − dβ)− 1) (3.48)

with σ1(z) = z√
1+z2

. Notice that φβ(z) vanishes smoothly to zero at z = dβ and remains
zero for all z ≥ dβ as shown in Fig 3.6. Similarly define a repulsive pairwise potential
ψβ(z) in the form

ψβ(z) =

∫ z

dβ

φβ(s)ds ≥ 0. (3.49)

From the point-of view of application, it is unreasonable to apply unbounded forces
to α-agents (vehicles/robots/animals). We avoid the use of repulsive potential functions
with unbounded derivatives such as 1/z or log(z) that are well-known examples of barrier
functions. Clearly, −2 < ψ′β(z) ≤ 0 for all z ∈ R and thereby the derivative of ψβ(z) is
uniformly bounded. Then we are ready to present the flocking algorithm with obstacle-
avoidance capability:

We can divide the control input into three terms:

ui = uαi + uβi + uγi (3.50)

where uαi denotes the (α, α) interaction terms, uβi denotes the (α, β) interaction terms and
uγi is a distributed navigational feedback. We explicitly specify each term as follows:

uαi =− cα1∇riVα(r) + cα2
∑
j∈Nα

i

aij(r)(vj − vi) (3.51)

=cα1
∑
j∈Nα

i

φα(‖rj − ri‖σ)nij + cα2
∑
j∈Nα

i

aij(vj − vi) (3.52)

uβi =− cβ1∇riVβ(r) + cβ2
∑
k∈Nβ

i

bi,k(r)(v
β
i,k − vi) (3.53)

=cβ1
∑
k∈N̂i

φβ(‖rβi,k − ri‖σ)nβi,k + cβ2
∑
k∈Nβ

i

bi,k(r)(v
β
i,k − vi) (3.54)

uγi =− cγ1(ri − rγ)− cγ2(vi − vγ) (3.55)
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where σ1(z) = z/
√

1 + ‖z‖2 and cνη are positive constants for all η = 1, 2 and ν = α, β, γ.

The pair (rγ, vγ) is the state of a static/dynamic γ-agent. The vectors nij and nβi,k are
given by

nij =
rj − ri√

1 + ε‖rj − ri‖2

nβi,k =
rβi,k − ri√

1 + ε‖rβi,k − ri‖2
.

In terms of sensing requirements, we assume that every α-agent is equipped with range
sensors that allow the agent to measure the relative position between the closest point on
an obstacle and itself. Both radars and laser radars can be used as range sensors, therefore
this assumption is feasible in practice. For the purpose of simulation of flocking motion,
we use the projection of the position of an α-agent on the boundary of an obstacle.

Given an obstacle Ok and its neighbouring α-agent with state (ri, vi), the position and
velocity of a β-agent on a wall or a sphere is given by the following lemma:

Lemma 3.2. (Olfati-Saber et al.(2004) [45]) Let rβi,k, v
β
i,k with (i, k) ∈ να × νβ denote the

position and velocity of a β-agent generated by an α-agent with state (ri, vi) on an obstacle
Ok. Then

1. For an obstacle with a hyperplane boundary that has a unit normal ak and passes
through the point yk, the position and velocity of the β-agent are determined by

rβi,k = Pri + (I − P )yk, v
β
i,k = Pvi

2. For a spherical obstacle with radius Rk centred at yk, the position and velocity of the
β-agent are given by

rβi,k = µri + (1− µ)yk, r
β
i,k = µPvi

where µ = Rk/‖ri − yk‖, ak = (ri − yk)/‖ri − yk‖, and P = I − akaTk

The following lemma demonstrates that the second term in uβi is in fact a valid damping
force. This fact indicates that the overall particle system is dissipative.
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Lemma 3.3. (Olfati-Saber et al.(2004) [45]) The force fβ between α-agents and β-agents
with elements fβi =

∑
k∈Nβ

i
bi,k(ri− rβi,k) is a valid damping force, i.e. Let Kr = 1

2

∑
i ‖vi‖2

and suppose ṙi = fβi , the K̇r ≤ 0.

Another question is whether the particle system obtained by applying control input
(3.50) is dissipative. The answer in this case is not as predictable as the case of interactions
among α-agents. The reason is that in free-flocking , every α-agent reciprocates the action
of its neighbouring α-agents, but in constrained flocking the (α, β)-net is a unidirectional
graph.

Theorem 3.10. (Olfati-Saber et al.(2004) [45]) Consider a multi-agent system applying
control input (3.50). Assume that the γ-agent is a static agent with a fixed state (rγ, vγ) =
(rd, vd). Define the energy function H(r, v) = V (r) + T (r, v) with kinetic energy T (r, v) =
1
2

∑N
i=1 ‖vi‖. Suppose there exists a finite time t0 ≥ 0 such that the average velocity of all

agents satisfies the following condition

n

2
< vc(t), vd >≤ T (r(t), v(t)), ∀t ≥ t0. (3.56)

Then, the energy of the system is non-increasing (i.e. Ḣ(r(t), v(t)) ≤ 0) along the trajectory
of the collective dynamics of the multi-agent system for all t ≥ t0

Proof. By direct differentiation, we have

Ḣ(r, v) =< ∇Vα(r), v > + < ∇rVβ(r), v > + < ∇rβ , v
β > +

∑
i∈να

< vi, u
α
i + uβi + uγi >

cβ1 < ∇rβVβ(r), vβ > +cα2
∑

(i,j)∈εα(r)

aij(r) < vi, vj − vi >

+ cβ2
∑
i∈να

∑
k∈Nβ

i

bi,k < vi, v
β
i,k − vi > −c

γ
2

∑
i∈να

< vi, vi − vd >

But

< ∇rβVβ(r), vβ > =
∑
i∈να

∑
k∈Nβ

i

< ∇rβi,k
Vβ(r), vβi,k >

=
∑
i∈να

∑
k∈Nβ

i

φβ(‖rj − ri‖σ) < nβi,k, v
β
i,k >

= 0
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because vβi,k is tangent to the surface of the obstacle, whereas nβi,k is orthogonal to the

surface of the obstacle. Thus, Ḣ(r, v) satisfies

Ḣ(r, v) = −cα2 (vT L̂(r)v)+cβ2
∑
i∈να

∑
k∈Nβ

i

bi,k < vi, v
β
i,k−vi > −2cγ2(T (r, v)−n

2
(vTd v̇c)) ≤ 0, ∀t ≥ t0

where the second term in the last inequality is negative semidefinite based on Lemma. 3.3
and the term T (r, v)− n

2
(vTd v̇c) is by assumption non-negative for all t ≥ t0.

The interpretation of condition (3.56) for a group of particles with equal velocities is
interesting. In this case, vc = vi for all i, and therefore (3.56) reduces to the inequality
vTc vd ≤ ‖vc‖2. Let θc,d denote the misalignment angle between vectors vc and vd in Rm, i.e.
cos(θc,d) =< vc, v̇d > /(‖vc‖‖v̇d‖). Suppose vc, vd 6= 0, then the group has to by sufficiently
agile, or ‖vc‖ ≥ v0 = ‖vd‖cos(θc,d). Intuitively, this can be interpreted as a collective effort
by the group to keep up with the desired velocity vd. For a γ-agent with vd = 0, condition
(3.56) trivially holds.

3.5.1 Simulation

In Fig.3.7 we present a simulation result for a multi-agent system with input control (3.50),
a computer animation is available and the following parameters remain fixed throughout
the simulation: d = 12, R = 1.2d, ε = 0.1 (for σ-norm), a = b = 5 for φ(z), h = 0.2 for
the bump function of φα(z) and h = 0.8 for φβ(z), and the step-size in the simulation is
0.01s. In addition, the position of a static γ-agent is marked with a o sign, a spherical
obstacle which centred at (50, 50) with radius R = 20 is denoted by a red circle. The
initial positions and velocity of all 15 α-agents are uniformly chosen at random form the
box [−20, 20]2. One can observe that the agents avoid collision with both other agents and
the spherical obstacle as moving forward, finally form an α-lattice shape around the γ-
agent (navigational feedback). This has been numerically verified for the entire trajectory
of the agents and it is consistent with our analysis.
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Figure 3.7: Flocking in Presence of Obstacles for n=15 Agents and A Spherical Obstacle.
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Chapter 4

Flocking via Impulsive Control

In comparison with continuous control which had been studied in last two chapters, there
has been little work done on the design of impulsive control for multi-agent systems with
switching topologies. Impulsive control has some advantages compared with continuous
control, e.g., it is more flexible and energy-efficient than continuous control. Moreover, it
has been proved that impulsive control approach is effective and robust in synchronization
of chaotic systems and complex networks [63], and the controllers used in impulsive method
usually have relatively simple structure. The advantage of applying impulsive control in
a self-driven, communicating multi-agent systems is to reduce energy and communication
cost. We can imagine that a bird in a flock is not flapping its wings all the time. Inspired by
this idea, we will propose a model which consists of both continuous and impulsive controls
in this chapter. For the continuous part, we will apply a smooth potential function which
guarantees cohesive and collision-free capabilities of agents in the system. Additionally, we
apply impulsive controls to the system for the velocity alignment and consensus with the
virtual leader (navigational feedback).

4.1 Impulsive Consensus Problem

In this section we will start with studying the consensus problem for the multi-agent
dynamical system. It can be described as multi-agent systems to develop distributed
control rules based on local information that enable all agents to reach a global agreement
on certain interest [44], which can be understood as a special case of flocking problem for
multi-agent dynamical systems.
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We will consider the system with switching interconnection topologies in the prob-
lem. Suppose that there is an infinite sequence of bounded, non-overlapping, contiguous
time-intervals [ti−1, ti), i = 1, 2, . . . , starting at t0 = 0. As we introduced in last chapter,
G = {G1, G2, . . . , Gn} is a set of the graphs with all possible topologies, which includes all
possible interconnection graphs including n agents and a leader. Denote P = {1, 2, . . . , n}
as its index set. To describe the variable interconnection topology, we define a switching
signal σ : [0,+∞) → P , which is piecewise-constant. Therefore, Ni(t), aij(t) are all time
varying, i = 1, 2, . . . , n, j = 1, 2, . . . , n. Moreover, in each time interval, Lp, p ∈ P associ-
ated with the switching interconnection topology is also switching. However, in each time
interval, Lp are time-invariant for some p ∈ P .

In this section, all the considered agents share a common state space Rm, which is
ri = (r1i , r

2
i , . . . , r

m
i )T and vi = (v1i , v

2
i , . . . , v

m
i )T . The leader of the multi-agent dynamical

system is assumed to be dynamic. Its underlying dynamics can be expressed as follows:{
ṙ0 = v0

v̇0 = a(t) = a0(t) + δ(t)
(4.1)

where a(t) is the input (accelaration). We assume that a0(t) is known and δ(t) is unknown
but bounded by a given upper bound L, i.e. ‖δ(t)‖ ≤ L.

The dynamics of each agent are described as follows:{
ṙi = vi + uri
v̇i = a0(t) + uvi

(4.2)

where uri , u
v
i ∈ Rm, i = 1, 2, . . . , n are control inputs.

Our object is to design appropriate control inputs of follower agents to track the leader.
Applying impulsive control to (4.1), we have the following consensus algorithm for the
multi-agent system,
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

ṙi = vi, (t 6= tk)

∆ri(tk) = ri(t
+
k )− ri(t−k )

= Ck(
∑

j∈Ni(t−k ) aij(t
−
k )(ri(t

−
k )− rj(t−k ))), (t = tk)

ri(t
+
0 ) = ri(t0), (t0 ≥ 0)

v̇i = a0(t), (t 6= tk)

∆vi(tk) = vi(t
+
k )− vi(t−k )

= Ck(
∑

j∈Ni(t−k ) aij(t
−
k )(vi(t

−
k )− vj(t−k ))), (t = tk)

vi(t
+
0 ) = vi(t0), (t0 ≥ 0)

(4.3)

where ∆ri(tk),∆vi(tk) are the jump of the state and velocity of following agent i at the time
instant tk, vi(t

+
k ) = limh→0+ vi(tk+h) and vi(t

−
k ) = limh→0− vi(tk+h), we let vi(t

−
k ) = vi(tk)

for simplicity. Ck ∈ Rm×m is the impulsive controller gain at the moment tk. The moments
of impulse satisfy

0 ≤ t0 < t1 < t2 < · · · < tk < tk+1 < · · · , lim
k→∞

tk =∞,

where ∆tk is the impulsive interval and satisfy

∆tk = tk − tk−1 ≤ τ <∞, (k = 1, 2, . . . )

Denote {
ri − r0 = ξi

vi − v0 = ηi

where ξi, ηi ∈ Rm and denote

e = (ξT1 , ξ
T
2 , · · · , ξTn , ηT1 , ηT2 , · · · , ηTn ) ∈ R2mn.

Then the error system with (4.1) and (4.1) can be written as:
ė(t) = Fe(t) + δ̂, (t 6= tk)

∆e(tk) = Ĉke(tk), (t = tk)

e(t+0 ) = e(t0)

(4.4)

where

F =

(
0 I
0 0

)
⊗ Im, Ĉk =

(
(Lτk +Bτk)⊗ Ck 0

0 (Lτk +Bτk)⊗ Ck

)
, δ̂ =

(
0

1n × δ(t)

)
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and ∆e = (∆ξT1 , . . . ,∆ξ
T
n ,∆η

T
1 , . . . ,∆η

T
n )T , 1n = (1, 1, . . . , 1) ∈ Rm and ⊗ denotes the

Kronecker product. Lτk and Bτk are associated with the switching interconnection graph
at time tk.

Lemma 4.1. Suppose that the directed graph G has a directed spanning tree and the root
of such tree has access to the leader. Then, all the eigenvalues of the matrix L + B have
positive real parts.

Now we are ready to provide the analysis of the impulsive consensus problem for multi-
agent system with fixed and switching topologies. Firstly, we consider the graph with fixed
topology. Let βk be the maximum eigenvalue of matrix (I + Ĉk)

T (I + Ĉk), where Ĉk is
associated with the impulsive moment tk.

Theorem 4.1. (Qing et al.(2012) [44]) Assume that the interconnection graph among the
agents is fixed and the graph G has a directed spanning tree. If βk and ∆tk satisfy the
condition that there exists ξ > 1 such that

η(tk − tk−1) + ln(ξ · βk) < 0

then the impulsive controlled multi-agent system (4.4) is asymptotically stable at origin.

Proof. Choose the candidate Lyapunov functional as

V (e(t)) = (e(t))T e(t)

For any t ∈ (tk−1, tk], the right and upper Dini’s derivative of V (e(t)) along the trajectory
of (4.4) is

D+V (e(t)) = (ė(t))T e(t) + (e(t))T ė(t)

= (e(t))T (F + F T )e(t) + 2δ̂e(t)

= (e(t))T (F + F T )e(t) + 2L‖e(t)‖
≤ (1 + 2L)V (e(t)) = ηV (e(t))

For L > 0, we have η > 1. Moreover, for any t ∈ (tk−1, tk],

V (e(t)) ≤ V (e(t+k−1))exp{η(t− tk−1)} (4.5)

On the other hand, it follows from the second equation of system 4.4 that

V (e(t+k )) = e(tk)
T e(tk)

= (e(tk))
T (I + Ĉτk)

T (I + Ĉτk)e(tk)

≤ βkV (e(tk)), (k = 1, 2, . . . )

(4.6)
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Let k = 1 in inequality (4.5), we have

V (e(t)) ≤ V (e(t0))exp{η(t− t0)}, t ∈ (t0, t1],

which lead to
V (e(t1)) ≤ V (e(t0))exp{η(t1 − t0)}

Let k = 1 in inequality (4.6), we have

V (e(t+1 )) ≤ β1V (e(t1)) ≤ β1V (e(t0))exp{η(t1 − t0)}

Therefore, for t ∈ (t1, t2],

V (e(t)) ≤ V (e(t+1 ))exp{η(t− t1)} ≤ β1V (e(t0))exp{η(t− t0)},
V (e(t2)) ≤ β1V (e(t0))exp{η(t2 − t0)}
V (e(t+2 )) ≤ β2V (e(t2)) ≤ β1β2V (e(t0))exp{η(t2 − t0)}

Generally for t ∈ (tk, tk+1],

V (e(t)) ≤ β1 · · · βkV (e(t0))exp(η(t− t0))

From the condition η(tk − tk−1) + ln(ξ · βk) < 0, we have

βk · exp(η(tk − tk−1)) <
1

ξ
, (k = 1, 2, . . . ).

So we have

V (e(t)) ≤ β1 · · · βkV (e(t0)) · exp(η(t− tk)) · exp(η(tk − t0))

≤ 1

ξk
V (e(t0)) · exp(η(t− tk)), t ∈ (tk, tk+1].

(4.7)

Notice that η > 0, ‖t− tk‖ is a finite constant, 1
ξk
→ 0 when k → ∞, hence, the origin is

globally asymptotically stable.

When the interconnection graph is switching, let βτk be the maximum eigenvalue of

matrix (I + Ĉτk)
T (I + Ĉτk), where Ĉτk is associated with the impulsive gain Ck and ma-

trix Lτk + Bτk . Because there are finite possible interconnection graphs, we can take
βk =max{βτk : τk ∈ P}. Following the similar proof of theorem 4.1, we can get the
theorem below.
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Theorem 4.2. (Qing et al.(2012) [44]) Assume that the interconnection graph among the
agents is switching and the graphs G1, G2, . . . , Gn all have directed spanning tree. If βk and
∆tk satisfy the same condition as in theorem 4.1, then the impulsive controlled multi-agent
system (4.4) is asymptotically stable at origin.

Remark 1. If ξ = 1, 4.7 can be written as

V (e(t)) ≤ V (e(t0)) · exp(η(t− tk))
≤ V (e(t0))e

τ ·η

where τ is the maximum impulsive interval. So V (e(t)) < A as k → ∞, where A is a
constant. That is to say, the origin is stable but not asymptotically stable.

Remark 2. When the graphs G1, G2, . . . , Gn have spanning trees, from Lemma.4.1, all
eigenvalues of matrix Lτk+Bτk have positive real part. Choose Ck = diag{c1k, c2k, . . . , cmk }, cik ∈
(−1, 0), then the eigenvalues of matrix Ĉk have negative real part. By this means, the con-
dition in theorem 4.1 will be satisfied.

4.2 Impulsive Flocking Problem

In last section we have studied the impulsive consensus problem for multi-agent system
and proven that with the impulsive controller under certain conditions, the error between
the following agents and the leader will asymptotically converged to zero. Notice that
this kind of impulsive control will result in a jump of both the state and velocity of all
follower agents. For the flocking problem for multi-agent dynamical systems, it is not
reasonable or applicable to apply a jump of the state of the agents from both engineering
and biological perspectives. Hence, what we can do is to apply such impulsive control
to only the velocities of agents in the systems as velocity pulses, which may be caused
by a suddenly acceleration by a high-pressure jet engine of an unmanned vehicle from an
engineering perspective, or a bird flapping its wings during a long-distant migration from
an biological perspective.

Inspired by these ideas, in this section we will propose a hybrid system model, in which
we apply continuous controls to the states of agents in the multi-agent dynamical system
in order to regulate the formation of the flock. Moreover, we apply impulsive controls to
the velocities of agents to achieve velocity alignment and consensus of all agents with the
virtual leader (navigational feedback). For the continuous control part, we will generate
a smooth potential function and use the negative gradient of this potential function as
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the acceleration inputs, which is similar with our discussion in Chapter 3, while at every
moment tk we apply a impulsive control to the velocity which is similar with our discussion
in the impulsive consensus problem.

4.2.1 Without Damping

In this section, we will propose a hybrid system model without damping, the dynamics of
all agents in the multi-agent dynamical system can be described as follows,

ṙi = vi

v̇i = −∇riV (r)− c1(ri − r0) t 6= tk

∆vi(tk) = c2(vi(t
−
k )− v0(t−k )) t = tk

(4.8)

where ∆vi(tk) is the jump of the velocity of agent i at the time instant tk, for simplicity
we let vi(t

+
k ) = vi(tk), c2 ∈ Rm×m is the impulsive controller gain at the moment tk. The

moments of impulse satisfy

0 ≤ t0 < t1 < t2 < · · · < tk < tk+1 < · · · , lim
k→∞

tk =∞,

where ∆tk is the impulsive interval and satisfy

∆tk = tk − tk−1 ≤ τ <∞, (k = 1, 2, . . . )

For the potential function V (r) we will use the same definition as in (2.6).

As our discussion for continuous control in Chapter 3, we can analyze stability by
studying the collective dynamics of the model, firstly we can write the collective dynamics
of system (4.8) in the following form:


ṙ = v

v̇ = −∇V (r) + f1(r, r0) t 6= tk

∆v = f2(v(t−k ), v0(t
−
k )) t = tk

(4.9)

where f1(r, r0) and f2(v, v0) are position and velocity feedback given by the virtual leader
respectively.

Our objective is to separate the analysis of the motion of the centre of the group with
respect to the reference frame from the collective motion of the particles in the moving
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frame. The position and velocity of agent i in the moving frame is given by:{
r̂i = ri − rc
v̂i = vi − vc

The relative position and velocities remain the same in the moving frame, i.e. r̂j−r̂i = rj−ri
and v̂j − v̂i = vj − vi. Thus, V (r) = V (r̂) and ∇V (r) = ∇V (r̂).

Lemma 4.2. Suppose that the navigational feedback f1(r, r0) and f2(v, v0) are linear, i.e.,
there exists decompositions of f1(r, r0) and f2(v, v0) in the following form:{

f1(r, r0) = g1(r̂) + 1n ⊗ h1(rc, r0)
f2(v, v0) = g2(v̂) + 1n ⊗ h2(vc, v0)

Then, the collective dynamics of a group of agents can be decomposed as n second-order
systems in the moving frame:

structural dynamics :


˙̂r = v̂
˙̂v = −∇V (r̂) + g1(r̂) t 6= tk

∆v̂ = g2(v̂(t−k )) t = tk

(4.10)

and one second-order system in the reference frame:

translational dynamics


ṙc = vc

v̇c = h1(rc, r0) t 6= tk

∆v̂c = h2(rc(t
−
k ), v0(t

−
k )) t = tk

where 
g1(r̂) = −c1r̂
g2(v̂) = −c2v̂
h1(rc, r0) = −c1(rc − r0)
h2(vc, v0) = −c2(vc − v0)

(4.11)

and (r0, v0) is the state of the virtual leader (navigational feedback).

Proof. By definition, ẋc = vc and ˙̂x = v̂. Given system 4.9 we have{
r̈ = −∇V (r) + f1(r, r0) t 6= tk

∆v = f2(v(t−k ), v0(t
−
k )) t = tk
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Due to the fact that G(r) is an undirected graph,we can get

Ave(∇V (r)) =
1

n

n∑
i=1

∂V (r)

∂ri

=
1

n

n∑
i=1

[
∑
j∈Ni

φα(‖rj − ri‖)(rj − ri)] = 0

for all r, where φα is defined in (2.8). Assume f1(r, r0) and f2(v, v0) are linear controllers
in the form: {

f1(r, r0) = −c1(r − 1n ⊗ r0)
f2(v, v0) = −c2(v − 1n ⊗ v0)

where 1n = (1, . . . , 1)T ∈ Rn. Then f1(r, r0) can be decomposed into two terms:

f1(r, r0) = −c1(r − 1n ⊗ r0)
= −c1(r − 1n ⊗ rc + 1n ⊗ rc − 1n ⊗ r0)
= −c1(r̂ + 1n ⊗ rc − 1n ⊗ r0)
= −c1(r̂ + 1n ⊗ (rc − r0))
= g1(r̂) + 1n ⊗ h1(rc, r0)

similarly,
f2(v, v0) = g2(v̂) + 1n ⊗ h2(vc, v0) (4.12)

where g1(r̂), g2(v̂), h1(rc, r0), h2(vc, v0) are defined in (4.11). Notice that Ave(r̂) = Ave(v̂) =
0, hence, Ave(g1(r̂)) = Ave(g2(v̂)) = 0, moreover

r̈c = ¨Ave(r) = Ave(r̈)

= Ave(−∇V (r) + f1(r, r0))

= Ave(−∇V (r)) + Ave(f1(r, r0))

= Ave(g1(r̂)) + Ave(1n ⊗ h1(rc, r0))
= h1(rc, r0)
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and

∆vc = ∆(Ave(v)) = Ave(∆(v))

= Ave(f2(v, v0))

= Ave(g2(v̂) + 1n ⊗ h2(vc, v0))
= h2(vc, v0).

The translational dynamics can be written as follows:{
r̈c = h1(rc, r0) t 6= tk

∆v̂c = h2(rc(t
−
k ), v0(t

−
k )) t = tk

. (4.13)

On the other hand, r̂ = r − 1n ⊗ rc which gives

¨̂r = −∇V (r) + f1(r, r0)− 1n ⊗ h1(rc, r0)
= −∇V (r̂) + g1(r̂), t 6= tk

Similarly,
∆v̂ = f2(v, v0)− 1n ⊗ h2(vc, v0) = g2(v̂), t = tk (4.14)

Then we can analyze the stability of the structural dynamics. Define the Hamiltonian
H(r̂(t), v̂(t)) = Uλ(r) +K(v̂) where

Uλ(r̂) = V (r̂) + λJ(r̂)

where J(r̂) = 1
2
r̂(t)T r̂(t) is the moment of inertia of all agents and λ = c1 > 0 is the pa-

rameter of the navigational feedback, K(v̂) = 1
2
v̂(t)T v̂(t) is the velocity mismatch function,

or the kinetic energy of the agents in the moving frame.

Theorem 4.3. Consider a group of agents applying protocol (4.8) with c1, c2 > 0 and
structural dynamics (4.10). Assume that the initial velocity mismatch K(v̂(0)) and inertia
J(r̂(0)) are finite. Then, the following statements hold:

1. The group of agents remain cohesive for all t > 0.

2. Almost every solution of (4.10) asymptotically converges to an equilibrium point
(r̂∗λ, 0) where r̂∗λ is a local minima of Uλ(r̂).
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3. The velocity of all agents asymptotically match in the reference frame.

4. Assume the initial structural energy of the particle system is less than c∗ with c∗ =
ψα(0) and k ∈ Z+. Then, no two agents ever collide.

Proof. First, note that the multi-agent system with structural dynamics (4.10) and Hamil-
tonian H(r̂(t), v̂(t)) = Uλ(r) + K(v̂) is a strictly dissipative system in the moving frame
because for any t ∈ [tk−1, tk), the right and upper Dini’s derivative of H(r̂(t), v̂(t)) along
the trajectory of (4.10) is:

D+H(r̂(t), v̂(t)) = ∇V (r̂(t))T ˙̂r(t) +
1

2
c1( ˙̂r(t)T r̂(t) + r̂(t)T ˙̂r(t)) +

1

2
( ˙̂v(t)T v̂(t) + v̂(t)T ˙̂v(t))

= ∇V (r̂(t))T v̂(t) +
1

2
c1(v̂(t)T r̂(t) + r̂(t)T v̂(t))

+
1

2
((−∇V (r̂(t))− c1r̂(t))T v̂(t) + v̂(t)T (−∇V (r̂(t))− c1r̂(t)))

= 0.

Hence, for any t ∈ [tk−1, tk),
H(r̂(t), v̂(t)) = Lk, (4.15)

on the other hand, it follows from the third equation of (4.10) that:

H(r̂(tk), v̂(tk)) = V (r̂)(t−k ) +
1

2
c1r̂(t

−
k )T r̂(t−k ) +

1

2
(v̂(t−k ) + ∆v̂)T (v̂(t−k ) + ∆v̂)

= V (r̂)(t−k ) +
1

2
c1r̂(t

−
k )T r̂(t−k ) +

1

2
(1− c2)2v̂(t−k )T v̂(t−k ).

Choose (1− c2)2 < 1, we have H(r̂(tk), v̂(tk)) < H(r̂(t−k ), v̂(t−k )), ∀v̂ 6= 0, so there exists
a βk ∈ [0, 1] that:

H(r̂(tk), v̂(tk)) < βkH(r̂(t−k ), v̂(t−k )), ∀v̂ 6= 0, k = 1, 2, · · · (4.16)

Let k=1 in (4.15), we have

H(r̂(t), v̂(t)) = L1, t ∈ [t0, t1).
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Let k=1 in inequality (4.16), we have

H(r̂(t1), v̂(t1)) < β1H(r̂(t−1 ), v̂(t−1 )) = β1L1, ∀v̂ 6= 0.

Let k=2 in (4.15) and (4.16), which gives

H(r̂(t2), v̂(t2)) < β2H(r̂(t−2 ), v̂(t−2 )) = β2H(r̂(t1), v̂(t1)) < β2β1L1, ∀v̂ 6= 0.

Generally, for t ∈ [tk, tk+1),

H(r̂(t), v̂(t)) < β1β2 · · · βkL1, ∀v̂ 6= 0,

since βk ∈ [0, 1], choose η = max(βk) ≤ 1, so that

H(r̂(t), v̂(t)) < ηkL1 < L1 t ∈ [tk, tk+1), ∀v̂ 6= 0 ∀k.

Hence, the structural energy H(r̂, v̂) is non-increasing for all (r̂, v̂) and

H(r̂(t), v̂(t)) ≤ H0 = H(r̂(0), v̂(0)) <∞.

The finiteness of H0 = V (r̂(0)) + λJ(r̂(0)) +K(v̂(0)) follows from the assumption that
the collective potential, the inertia and the velocity mismatch are all initially finite. Thus,
for all t ≥ 0, we have

Uλ(r̂(t)) ≤ H0, K(v̂(0)) ≤ H0.

But Uλ(r̂) = V (r̂) + λ
2
r̂T r̂ with λ > 0 and V (r̂) ≥ 0 for all r̂, therefore

r̂T (t)r̂(t) ≤ 2H0

λ
,∀t ≥ 0.

This guarantees the cohesion of the group of all agents for all t ≥ 0 because the position of
all agents remains in a ball of radius R =

√
2H0/λ centred at r̂c. This cohesion property

together with boundedness of velocity mismatch, or K(v̂(t)) ≤ H0, guarantees boundedness
of solution of the structural dynamics (4.10). To see this, let z = (r̂, v̂)T , then

‖z(t)‖2 = r̂T (t)r̂(t) + v̂T (t)v̂(t) ≤ 2(
1

λ
+ 1)H0 <∞.

Part 2. follows from that H(r̂, v̂) is always decreasing for all v̂ 6= 0 due to the velocity
impulsive control, hence, H(r̂, v̂) is invariant only if v̂ = 0, i.e., H(r̂∗λ, 0) = Uλ(r̂

∗
λ), where
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r̂∗λ is a local minima of the aggregate potential function Uλ(r̂), thus, almost every solution
of the multi-agent system asymptotically converges to an equilibrium point (r̂∗λ, 0).

Part 3. follows from the fact that v̂ asymptotically vanishes. Thus, the velocities of all
agents asymptotically match in the reference frame.

To prove part 4., suppose H0 < c∗ and there are two agents collide at a given time
t∗ ≥ 0. This implies the collective potential of the multi-agent system at time t = t∗ is at
least ψα(0). However, we have

H0 = V (r̂(0)) + λJ(r̂(0)) +K(v̂(0)) ≥ V (r̂(0)) ≥ ψα(0).

This contradicts the assumption that H0 < c∗. Hence, no two agents can possibly collide
at any time t ≥ 0.

4.2.2 Simulation

Here we present a simulation result for the hybrid system model without damping, the
structural dynamics is defined in (4.10), a computer animation is available and the following
parameters remain fixed throughout the simulation: d = 12, R = 1.2d, ε = 0.1 (for σ-
norm), a = b = 5 for φ(z), h = 0.2 for the bump function of φα(z), and the step-size in
the simulation is 0.01s and the length of the impulsive interval τ = 1s. In addition, the
position of a static virtual leader is marked with a o sign. The initial positions and velocity
of all 50 agents are uniformly chosen at random form the box [−10, 10]2. A flock is formed
in Fig.4.1(e) and maintained thereafter. The number of edges of the dynamic graph G(r(t))
increases by time and has a tendency to render the net connected. Numerical measurements
indicate that the final conformation is a low-energy quasi α-lattice that induces a flock.
These observations are in close agreement with our analysis in last section.

Moreover, we define a velocity mismatch function with respect to all agents and the
virtual agent as :M(t) =

∑N
i=1(‖vi − v0‖)2 and plot it in Fig.4.2, we can see clearly the

velocity pulse effect at every impulsive moment tk = 100 time-steps, and the velocity
difference between all agents and the virtual leader asymptotically converges to zero, which
also denotes that the velocity mismatch between all agents asymptotically converge to zero,
we can see that our simulation is consistent with our study.
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Figure 4.1: Flocking via Impulsive Control without Damping for n=50 agents.
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Figure 4.2: Velocity Mismatch

4.3 Coupling Time Delay

In last section we have discussed a hybrid system model without damping, which success-
fully leads to flocking. In this section, we introduce a damping term into our control rule.
Due to the limitation of velocity sensors on agents, (we assume that the position sensors
are more effective and accurate than velocity sensors so there’s no delay in position sen-
sors), we need to consider the coupling time delay in our control law while introducing the
damping term. The dynamics of a flock of agents can be described in following form:


ṙi = vi

v̇i = −∇riV (r)− c1(ri − r0)−
∑

j∈Ni aij(r)(vi − vj(t− τ)) t 6= tk

∆vi(tk) = c2(vi(t
−
k )− v0(t−k )) t = tk

(4.17)
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where V (r) =
∑n

i=1

∑n
j=1 Vij(‖ri− rj‖) is defined in (2.6), ∇riV (r) corresponds to a vector

in the direction of the gradient of an artificial potential function, and τ is the coupling
communication time delay due to the velocity sensors. ∆vi(tk) is the jump of the velocity
of agent i at the time instant tk, for simplicity we let vi(t

+
k ) = vi(tk), c2 ∈ Rm×m is the

impulsive controller gain at the moment tk. The moments of impulsive satisfy

0 ≤ t0 < t1 < t2 < · · · < tk < tk+1 < · · · , lim
k→∞

tk =∞,

where ∆tk is the impulsive interval and satisfy

∆tk = tk − tk−1 ≤ τ̂ <∞, (k = 1, 2, . . . )

r0, v0, a0 are the state of the virtual leader of all agents which satisfy the following:{
ṙ0 = v0

v̇0 = 0

Our objective is to control the entire group move at a desired velocity v0 and maintain
constant distance between agents. Notice that the desired velocity is that v0(t) = v0(t−τ).
Define the error vectors eri = ri − r0, evi = vi − v0 where eri , e

v
i represent the position and

velocity difference between agent i and virtual leader, notice that

ėvi = −∇riV (r)− c1(ri − r0)−
∑
j∈Ni

aij(r)(vi − vj(t− τ))

= −∇eri
V (er)− c1(eri )−

∑
j∈Ni

aij(r)((vi − v0)− (vj(t− τ)− v0(t− τ)))

= −∇eri
V (er)− c1(eri )−

∑
j∈Ni

aij(r)(e
v
i − evj (t− τ)),

hence, the error dynamics is given by:
ėri = evi
ėvi = −∇eri

V (er)− c1(eri )−
∑

j∈Ni aij(r)(e
v
i − evj (t− τ)) t 6= tk

∆evi (tk) = −c2evi (t−k ) t = tk

. (4.18)

Theorem 4.4. Consider a group of agents applying control rule (4.17) with error dynamics
(4.18). Then the solution of (4.17) asymptotically converges to an equilibrium point (r∗, v0)
where r∗ is a local minima of Uλ(r) and v0 is the velocity of the virtual leader.
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Proof. For t ∈ [tk−1, tk), consider the following positive semi-definite Lyapunov function:

W =
1

2

N∑
i=1

(evi )
T evi + V (er) +

c1
2

N∑
i=1

(eri )
T (eri ) +

1

2

N∑
i=1

N∑
j=1

aij(r)

∫ t

t−τ
(evi (s))

T (evi (s))ds,

for any t ∈ [tk−1, tk), the right and upper Dini’s derivative of W along the trajectory of
(4.18) is:

D+W =
N∑
i=1

(evi )
T [−∇eri

V (er)− c1eri −
∑
j∈Ni

aij(r)(e
v
i − evj (t− τ))] +

N∑
i=1

(∇eri
V (er))T evi

+ c1

N∑
i=1

(eri )
T evi +

1

2

N∑
i=1

N∑
j=1

aij(r)[(e
v
i (t))

T evi (t)− (evi (t− τ))T evi (t− τ)]

=−
N∑
i=1

N∑
j=1

aij(r)[(e
v
i (t))

T (evi (t)− evj (t− τ))]

+
1

2

N∑
i=1

N∑
j=1

aij(r)[(e
v
i (t)

T )(evi (t))− (evi (t− τ))T (evi (t− τ))]

=
N∑
i=1

N∑
j=1

aij(r)[−
1

2
(evi (t))

T (evi (t)) + (evi (t))
T (evj (t− τ))− 1

2
(evi (t− τ))T (evi (t− τ))]

= −1

2

N∑
i=1

N∑
j=1

aij(r)[e
v
i (t)− evj (t− τ)]T [evi (t)− evj (t− τ)] ≤ 0.

Hence, for all t ∈ [tk−1, tk), W (t) < W (tk−1) for all evi (t) 6= evj (t − τ), moreover, it follows
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from the third equation of (4.18) that:

W (tk) =
1

2

N∑
i=1

(evi (tk))
T evi (tk) + V (er(tk)) +

c1
2

N∑
i=1

(eri (tk))
T (eri (tk))

+
1

2

N∑
i=1

N∑
j=1

aij(r)

∫ tk

tk−τ
(evi (s))

T (evi (s))ds

=
1

2
(1− c2)2

N∑
i=1

(evi (t
−
k ))T evi (t

−
k ) + V (er(t−k )) +

c1
2

N∑
i=1

(eri (t
−
k ))T (eri (t

−
k ))

+
1

2

N∑
i=1

N∑
j=1

aij(r)

∫ t−k

t−k −τ
(evi (s))

T (evi (s))ds.

Choose (1− c2)2 < 1, i.e. 0 < c2 < 2, we have W (tk) < W (t−k ) for all evi (t) 6= 0. Therefor,
for t ∈ [tk−1, tk],∀k

W (tk) < W (t−k ) < W (tk−1), ∀k

which indicates that the Lyapunov function is decreasing along the solution trajectory when
evi (t) 6= evj (t− τ), evi (t) 6= 0. Hence, the solution must converge to the set {(er∗ , ev) |evi (t) =
evj (t−τ) = 0,∇er∗Uλ(e

r∗(t)) = 0}, where Uλ(e
r) = V (er)+ c1

2
(er)T (er) denotes the aggregate

potential function, so the entire group of agents will asymptotically move at desired velocity
v0 and the solution of (4.17) will asymptotically converges to an equilibrium point (r∗, v0).

Notice that to achieve our goal, we have the assumption that v0(t) = v0(t − τ) which
requires the velocity function of the virtual leader to be a constant or periodic with period
τ , when this assumption is not satisfied, an alternative way to achieve the same goal is to
apply the same coupling communication time delay to the agent itself, i.e.

ṙi = vi

v̇i = −∇riV (r)− c1(ri − r0)−
∑

j∈Ni aij(r)(vi(t− τ)− vj(t− τ)) + a0 t 6= tk

∆vi(tk) = c2(vi(t
−
k )− v0(t−k ))) t = tk

the proof is similar to previous one and is omitted here.
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4.3.1 Simulation

Here we present a simulation result for the hybrid system model with communication time
delay in velocity, the dynamics is defined in 4.17 , a serial of snapshots is provided and the
following parameters remain fixed throughout the simulation: d = 12, R = 1.2d, ε = 0.1
(for σ-norm), a = b = 5 for φ(z), h = 0.2 for the bump function of φα(z), and the step-
size in the simulation is 0.01s and the length of the impulsive interval 0.3s and the delay
τ = 0.1s. In addition, the position of a static virtual leader is marked with a o sign. The
initial positions and velocity of all 50 agents are uniformly chosen at random form the
box [−10, 10]2. A flock is formed in Fig.4.3(d) and maintained thereafter. The number of
edges of the dynamic graph G(r(t)) increases by time and has a tendency to render the net
connected. Numerical measurements indicate that the final conformation is a low-energy
quay α-lattice that induces a flock. These observations are in close agreement with our
analysis in last section.

Moreover, we define a velocity mismatch function with respect to all agents and the
virtual agent as :M(t) =

∑N
i=1(‖vi − v0‖)2 and plot it in Fig.4.4, we can see clearly the

velocity pulse effect at every impulsive moment tk = 30 time-steps, and the velocity differ-
ence between all agents and the virtual leader asymptotically converges to zero, which also
denotes that the velocity mismatch between all agents asymptotically converge to zero, we
can see that our simulation is consistent with our study.
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Figure 4.3: Flocking via Impulsive Control with Time Delay for n=50 agents.
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Figure 4.4: Velocity Mismatch

4.4 Dynamic Obstacle Avoidance

In this section, we will present our hybrid control flocking algorithm with dynamic obstacle
avoidance capability. Recall in Chapter 3 we have defined agent-based representation of
all nearby obstacle by creating a new species of agents called β-agents. Here we will divide
the feedback control which is based on the information given by all nearby obstacles to
a continuous control and an impulsive control. For the continuous control we create a
position-based potential function between obstacles and agents as we did in Chapter 3,
while for the impulsive control we add the velocity difference between dynamic obstacles
and agents as a damping term. Our hybrid control algorithm can be described as following:
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
ṙi = vi

v̇i = −∇riVα(r)−∇riVβ(r)− cγ1(ri − r0) t 6= tk

∆vi(tk) = cγ2(vi(t
−
k )− v0(t−k )) + cβ2

∑
k∈Nβ

i
bi,k(r)(v

β
i,k(t

−
k )− vi(t−k )) t = tk

(4.19)

where Vα is the potential function between inter-agents and Vβ is the potential function
between agents and obstacles respectively, which can be define as following:

Vα(r) =
∑
i∈να

∑
j∈να\{i}

ψα(‖rj − ri‖σ)

Vβ(r) =
∑
i∈να

∑
k∈Nβ

i

ψβ(‖rβi,k − ri‖σ)

The adjacency matrix between an α-agent at ri and its neighbouring obstacle (β-agent) at
rβi,k is defined as

bi,k(r) = ph(‖rβi,k − ri‖σ/dβ)

where dβ < rβ with dβ = ‖dβ‖σ, rβ = ‖rβ‖σ. cγ1 , c
γ
2 , c

β
2 are positive constants and (r0, v0) is

the state of the virtual leader (navigational feedback).

We assume that every agent is equipped with a radar sensor that allows the agent to
measure the relative position and velocity between the closest point on an obstacle and
itself, given a spherical obstacle with radius Rk centred at ok, the position and velocity of
the obstacle (β-agent) are given by

rβi,k = µri + (i− µ)yk, r
β
i,k = µPri

where µ = Rk/‖ri − yk‖, ak = (ri − yk)/‖ri − yk‖, and P = I − akaTk .

Analysis of an equilibrium state of a group of dynamic agents that perform flocking
in presence of dynamic obstacle makes less sense when the flock does not pass around
all the obstacles. To be more precise, it is less interesting to analyze the stability of the
equilibrium of collective dynamics of a flock while some obstacles are permanently present.
This assumes that after some finite time t1 > 0, no α-agent ever comes near an obstacle,
the case reduces to analysis of free-flocking that has already been presented. Hence, we
only present several simulation results here for our hybrid control algorithm with dynamic
obstacle avoidance capabilities.

In the simulation, we introduce two spherical dynamic obstacles which are indicated in
Fig.4.5, one centre at (50, 50) with radius r = 15 at t = 0s and it’s moving in horizontal
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position reciprocally with velocity v = 0.5 between (30, 50) and (70, 50), while the other
one centre at (150, 50) with radius r = 20 at t = 0s and it’s moving in vertical position
reciprocally with velocity v = 1.1 between (150, 20) and (150, 80). Also the virtual leader
which is indicated by a small dot is moving at velocity v = 1 along a circle centre at
(200, 100) with radius r = 20. Simulations show that our hybrid control algorithm has
successfully led to flocking and the group of agents can avoid collision with nearby obstacles
and finally converge to the same velocity of the virtual leader and maintain the network
connectivity.
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Figure 4.5: Flocking with dynamic obstacle avoidance
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Chapter 5

Conclusion and Future Direction

Flocking is a form of collective behaviour of large number of interacting agents with a
common group objective. For many decades, scientists from many diverse disciplines in-
cluding animal behaviour, physics and biophysics, social sciences, and computer science
have been fascinated by the emergence of flocking in groups of agents via local interactions
[19, 42, 41, 40, 37, 47, 59, 56, 52, 35, 27, 57, 39, 45]. Coordinated motion has received
significant recent attention in cooperative robotics (i.e., to make the agents to aggregate
and stay in a tight group, achieve a spatial pattern or a geometric formation, or tack a
moving object [45]) and biology (i.e., formation of fruiting bodies by bacteria, foraging
behaviour of ants, or cohesive flight of warms of bees [41, 37]). Such problems are also
closely related to a group reaching a consensus or agreement (since often preference can
be linked to position[44]). The problem of distributed agreement is a problem which has
been popular in the multi-agent dynamical systems community.

Dynamics of multi-agent systems can exhibit rich and complex characteristics. Com-
bining agent, sensing, and communication characteristics results in a multi-scale system
with local spatio-temporal agent action dynamically combining into an “emergent” global
pattern of group behaviour [23]. There are other problems such as task allocation or
scheduling, executing spatially distributed tasks, or task execution under time or energy or
other constraints. For example, task allocation often raised in multi-agent dynamical sys-
tem problems where the “tasks” arise via interactions with the environment, and the tasks
must be allocated across the agents and properly scheduled in time for efficient execution,
methods from distributed scheduling, load balancing, and assignment are integrated into
coordinated motion methods to achieve a multi-objective method that mush balance tight
group cohesion with the pressing need to complete tasks. This thesis is concerned with
the coordinated motion of the group of agents to migrate to certain destination, or track a
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group leader,while network connectivity is maintained and both inter-agent and obstacles
collision avoidance capabilities are ensured, both continuous and impulsive control have
been considered to achieve these goals.

In chapter 2, we firstly introduce some basic concepts in graph theory in order to estab-
lish a theoretical framework for modelling the flocking problem for multi-agent dynamical
system, then we study the discrete model given by Vicsek [59], in which the agents of the
system applying a very simple rule by averaging the velocity of their neighbouring agents
plus some random noise, simulation results show that under low noise and high density
situation agents can achieve a global consensus of velocity by using only local information
of neighbours, this discrete model gives us a first impression of what consists flocking for
multi-agent dynamical systems. Moreover, we present a continuous model of double inte-
grator agents using the Newton’s law, and how to design the potential function between
the agents, which is main method we use to denote the inter-agent interactions in this
thesis. In chapter 3, we study the continuous model for flocking for multi-agent dynamical
systems, by introducing a virtual leader into our model, we successfully eliminate the frag-
mentation phenomenon and ensure network connectivity of the system at the same time.
Lyapunov techniques for continuous system has been used to prove the asymptotic sta-
bility of the equilibrium state of the system, communication time delay is also considered
in our model. At the end of chapter 2 we give a detailed investigation on how to model
the obstacles in the environment and present an algorithm to allow the agents to possess
obstacle avoidance capabilities. In chapter 4, we further extend the existing continuous
model to a hybrid control model, which is a more general model for flocking problem for
multi-agent dynamical systems, and this chapter is the main contribution of this thesis.
We use the velocity feedbacks given by the virtual leader as impulsive controls while the
potential function between agents as the continuous controls, and our model successfully
lead to flocking, by applying this hybrid control method we find out that we can remove
the damping terms which appear in the continuous control model in chapter 3, hence, we
can effectively reduce the influence subjected to sensing time delay in velocity and reduce
the cost as well. Lyapunov techniques for continuous and impulsive systems is used and
stability analysis is also provided. At the end of this chapter we present a hybrid control
algorithm to allow agents to possess dynamic obstacle avoidance capabilities, simulation
results illustrate our algorithm is in agreement with our analysis.

Further, we can study the stability criteria for our hybrid control model for flocking
with dynamic obstacle avoidance capabilities, and obstacles other than a stripe or spherical
can be constructed in the future. It is not difficult to imagine that given a non-convex
obstacle there might be multiple β-agents which are equally close to an agent. Assuming
that all of these β-agents repel an agent in the system, one might expect that in certain
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situations there would be a conflict of tasks between obstacle avoidance by a group of
agents and achieving a group objective by a virtual leader. An example of this might be
the agent, obstacle (β-agent) and the virtual are located on a same line, or the agents
are trapped by a convex obstacle. In these cases, the agents can not pass through the
“wall” and reach their destination. Hence, further study of using a more sophisticated
obstacle avoidance approach eliminates getting trapped behind an obstacle can be done
in the future. A successful example of such approach is the use of gyroscopic forces for
obstacle avoidance in [7, 8]. The influence of random perturbation in the environment can
also be considered in the future.

Study on flocking with predictive mechanisms can also be investigated in the future.
In [32] the authors present a discrete-time MPC flocking protocol to estimated future
position of neighbours. This model successfully improve the convergent speed compared
with Olfati-Saber’s model and achieve a better quasi α-lattice structure. In [51] the authors
use a game theory approach to multi-agent team cooperation to ensure team cooperation
by considering a combination of individual costs as a team cost function. Optimization
algorithms and formation controls other than α-lattice can also be considered.
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Appendix A

Convergent Analysis for Vicsek’s
Model

Before studying the stability of Vicsek’s model, we need to introduce some concepts in
matrix analysis which will be very useful in the later on proof.

Definition A.1. Nonegative Matrix Let A = [aij]m×n, A is said to be a nonnegative
matrix (A ≥ 0) if all aij ≥ 0, positive matrix (A > 0) if all aij > 0.

Definition A.2. Primitive Matrix A nonnegative matrix A ∈ Rn×n is said to be
primitive if and only if Am > 0 for some m ≥ 1.

Definition A.3. Stochastic Matrix A nonnegative matrix A ∈ Rn×n with the property
that all its row sums are 1 is said to be a (row) stochastic matrix. (since each row may be
thought of as a discrete probability distribution on a sample space with n points).

Definition A.4. Ergodic A stochastic matrix A ∈ Rn×n with the property that limi→∞M
i

is a matrix of rank 1 is called ergodic.

Theorem A.1. Primitive stochastic matrices are ergodic.

Theorem A.2. Let M1,M2, . . . ,Mm be a finite set of ergodic matrices with the property
that for each sequence Mi1 ,Mi2 , . . . ,Mij of positive length, the matrix product MijMij−1

, . . . ,Mi1

is ergodic. Then for each infinite sequence, Mi1 ,Mi2 , . . . there exist a row vector c such
that

limj→∞MijMij−1
· · ·Mi1 = 1c
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Recall Vicsek’s model which is a simple discete-time model of n autonomous agents all
moving in the plane with the same velocity but different direction. Each agent’s direction is
updated based on the rule that taking the average of its own direction plus its neighbours.
The mathematical model without noise can be described as followed:

θi(t+ 1) =< θi(t) >r (A.1)

where t is a discrete-time index taking values in the nonnegative integers, and < θi(t) >r

is the average of the directions of agent i and its neighbours neighbours at time t, we can
it explicitly as

< θi(t) >r=
1

1 + ni(t)
(θi(t) +

∑
j∈Ni(t)

θj(t)) (A.2)

where ni(t) denotes the number of neighbours of agent i at time t. The discrete update
equations determined by (A.1) and (A.2) depends on the relationships between neighbours
at every time t. These relationship can be described as a simple, undirected graph with
vertex set {1, 2, . . . , n} which is determined so that the edge (i, j) describe the relationship
between agent i and j. Since the relationship between neighbours is time variant, so the
graph with describes them, or more explicitly, the adjacency matrix [aij]n×n is also time
change over time. To deal with this we will need to consider all the possibilities of such
graphs or adjacency matrices [aij]n×n. Here we will use the symbol P to denote a suitably
defined set, indexing the class of all simple graph GP define on n vertices. The update
rules determined by (1) and (2) can be written in vector form. For each p ∈ P , define

Fp = (I +Dp)
−1(Ap + I) (A.3)

where Ap is the adjacency matrix of graph Gp and Dp is the diagonal matrix whose ith
diagonal element is the degree of vertex i within the graph, which denotes the number of
edges incident to vertex i.

Notice that fij = (aij + δij)/(1 + di), where fij denotes the elements of Fp, δij = 0
for all i 6= j, δij = 1 only if i = j, di is the degree of vertex i. So we have

∑n
j=1 fij =∑n

j=1(aij + δij)/(1 + di) = (di + 1)/(di + 1) = 1, which indicates that Fp is a stochastic
matrix. Moreover, if Ap is connected, it is known that (I+Ap)

m becomes a positive matrix
for m sufficiently large

it’s easy to show if (I+Ap)
m has all positive entries, then so does Fm

p . Hence Fp is also
a primitive matrix if Ap is connected. By theorem 1, Fp is ergodic.

Then the system can be written as

θ(t+ 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (A.4)
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where θ is the direction vector θ = [θ1 θ2 · · · θn]′and σ : {0, 1, . . .} → P is a switching signal
whose value at time t denotes the index of the graph representing the agents’ relationship
at time t.

In our stability analysis we want to show that for a large class of switching signals, or
any initial condition, the directions of all the agents in the systems will finally converge to
a same steady state direction θss, which is equivalent to write

lim
t→∞

θ(t) = θss1 (A.5)

where 1 = [1 1 · · · 1]′n×1 . Intuitively this can not always be true unless we have some
additional conditions on the connectivity of the Graph Gσ(t) , to show this let’s consider
two extreme situations:

1. the interaction range r is very small so that there is at least one agent, say i, which
never acquires any neighbours. Mathematically this means the graph Gσ(t) is never
connected and vertex i is isolated for all t.

2. the interaction range r is large enough that it ensures every agent in the system can
interact with all other agents for all t. Mathematically this means the graph Gσ(t) is
connected and σ(t) is fixed for all t.

In situation 1, since there’s at least one agent can never interact with any other agents,
such that the systems state θ can not converge to the steady state θss for certain initial
conditions, in situation 2 convergence of of θ to θss1 can easily be established because with
σ fixed, (A.5) is a linear, time-invariant, discrete-time system. So the most interesting
situation is between these two extremes when σ changes with time, Gσ(t) is not necessarily
connected for all t, but no strictly proper subsets of Gσ(t)’s vertices is isolated from the rest
for all t. Motivated by this idea, we will introduce a new concept called jointly connected,
which is a weaker condition than connected of a graph.

Definition A.5. Jointly Connected Let G be the union of a collection of simply graphs
{Gp1 , Gp2 , . . . , Gpm}, which means G with vertex set V and edge set E equaling the union of
the edge sets of all the graphs in the collection. We say that such a collection {Gp1 , Gp2 , . . . , Gpm}
is jointly connected if the union G of its members is a connected graph.

Definition A.6. Linked Together N agents are called linked together across a time inter-
val [t, τ ] if the collection of graph {Gσ(t), Gσ(t+1), . . . , Gσ(τ)} encountered along the interval
is jointly connected.
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Notice that if n agents is jointly connected, then situation 1 is included while situation
2 is eliminated, then we can establish the sufficient condition for the convergence of the
system to a stead state.

Theorem A.3. Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P be a switching signal for
which there exists an infinite sequence of contiguous, nonempty, bounded, time-intervals
[ti, ti+1), i ≥ 0, starting at t0 = 0, with the property that across each such interval, the n
agents are linked together. Then

lim
t→∞

θ(t) = θss1 (A.6)

where θss is a number depending only on θ(0) and σ.

Before proving theorem 3, we need two more lemmas.

Lemma A.1. Let m ≥ 2 be a positive integer and let A1, A2, . . . , Am be nonnegative n×n
matrices. Suppose that the diagonal elements of all of the Ai are positive and let u and ρ
denote the smallest and largest of these, respectively. Then

A1A2 · · ·Am ≥ (
µ2

2ρ
)m−1(A1 + A2 + · · ·+ Am). (A.7)

Proof. Let δ = µ2/2ρ. It will be shown by induction that

A1A2 · · ·Am ≥ δi−1(A1 + A2 + · · ·+ Ai) (A.8)

holds for i ∈ {2, 3, . . . ,m}. Toward this end, note that it’s possible to write each Ai as
Ai = µI +Bi where Bi is nonnegative. Then, for any j, k ∈ {1, 2, . . . ,m}

AjAk = (µI +Bj)(µI +Bk) = µ2I + µ(Bj +Bk) +BjBk.

Hence

AjAk ≥ µ2I + µ(Bj +Bk) ≥ µ2I + µ2

2ρ
(BjBk) = δ((ρI +Bj) + (ρI +Bk))

Since (ρI +Bj) ≥ Aj and (ρI +Bk) ≥ Ak it follows that

AjAk ≥ δ(Aj + Ak) ∀j, k ∈ {1, 2, . . . ,m}. (A.9)
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Setting j = 1 and k = 2 proves that (A.8) holds for i = 2. Now suppose that m > 2
and that (8) hold for i ∈ {2, 3, . . . , l} where l is some integer in {2, 3, . . . ,m − 1}. Then
A1A2 · · ·Al+1 = (A1, . . . , Al)Al+1 so by the inductive hypothesis

A1A2 · · ·Al+1 ≥ δl−1(A1 + A2 + · · ·+ Al)Al+1 (A.10)

However, using (A.9) l times, we can write

(A1 + A2 + · · ·+ Al)Al+1 ≥ δ((A1 + Al+1) + (A2 + Al+1) + · · ·+ (Al + Al+1)).

Thus

(A1 + A2 + · · ·+ Al)Al+1 ≥ δ(A1 + A2 + · · ·+ Al+1)

This and (A.10) imply that (A.8) holds for i = l+1. Therefore, by induction the statement
is true for all i ∈ {2, 3, . . . ,m}

Lemma A.2. Let {p1, p2, . . . , pm} be a set of indices in P for which {Gp1 , Gp2 , . . . , Gpm}
is a jointly connected collection of graphs. Then the matrix product Fp1Fp2 , · · · , Fpm is
ergodic.

Proof. Let F = (I + D)−1(I + A) where A and D are respectively the adjacency ma-
trix and diagonal degree matrix of the union of the collection of graphs P for which
{Gp1 , Gp2 , . . . , Gpm}. Since the collection is jointly connected, its union is connected which
means F is connected, so F is primitive. By Lemma 1,

Fp1Fp2 · · ·Fpm ≥ γ(Fp1 + Fp2 + · · ·+ Fpm) (A.11)

where γ is a positive constant depending on the matrices in the product. Since for i ∈
{1, 2, . . . ,m}, Fpi = (I + Dpi)

−1(I + Api) and D > Dpi , it must have that Fpi ≥ (I +
D)−1(I + Api), i ∈ {1, 2, . . . ,m}. From this and (A.11) it follows that

Fp1Fp1 · · ·Fpm ≥ γ(I +D)−1(mI + Ap1 + Ap2 + · · ·+ Apm) (A.12)

However, Ap1 + Ap2 + · · ·+ Apm ≥ A and mI ≥ I so

Fp1Fp1 · · ·Fpm ≥ γF

Since the product Fp1Fp1 · · ·Fpm is bounded below by a primitive matrix γF , the product
must be primitive as well, moreover, Fp1Fp1 · · ·Fpm is also a stochastic matrix, so it must
be ergodic.
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Then we can are ready to prove theorem 3 now,

Proof. Let T denote the least upper bound on the lengths of the intervals [ti, ti+1), i ≥ 0.
By assumption T < ∞. Let Φ(t, t) = I, t ≥ 0, and Φ(t, τ) , Fσt−1 · · ·Fστ+1Fστ , t > τ ≥ 0.
Clearly θ(t) = Φ(t, 0)θ(0). To complete the theorem’s proof, it’s enough to show that

lim
t→∞

Φ(t, 0) = 1c (A.13)

for some row vector c since this would imply (A.6) with θss , cθ(0). In view of Lemma
2, the constraints on σ imply that each such matrix product Φ(tj+1, tj), j ≥ 0, is ergodic.
Moreover the set of possible Φ(tj+1, tj), j ≥ 0, must be finite because each Φ(tj+1, tj) is
a product of at most T matrices from {Fp : p ∈ P} which is a finite set. But Φ(tj, 0) =
Φ(tj, tj−1)Φ(tj−1, tj−2), . . . ,Φ(t1, t0). Therefor by theorem 2

lim
j→∞

Φ(tj, 0) = 1c (A.14)

which is equivalent to (A.13).
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