Saving Electrical Energy in
Commercial Buildings

by

Ryan Case

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2012

(© Ryan Case 2012



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Abstract

With the commercial and institutional building sectors using approximately 29% and 34%
of all electrical energy consumption in Canada and the United States, respectively, saving
electrical energy in commercial and institutional buildings represents an important chal-
lenge for both the environment and the energy consumer. Concurrently, a rapid decline in
the cost of microprocessing and communication has enabled the profileration of smart me-
ters, which allow a customer to monitor energy usage every hour, 15 minutes or even every
minute. Algorithmic analysis of this stream of meter readings would allow 1) a building
operator to predict the potential cost savings from implemented energy savings measures
without engaging the services of an expensive energy expert; and 2) an energy expert to
quickly obtain a high-level understanding of a building’s operating parameters without a
time-consuming and expensive site visit. This thesis develops an algorithm that takes as
input a stream of building meter data and outputs a building’s operating parameters. This
output can be used directly by an energy expert to assess a building’s performance; it
can also be used as input to other algorithms or systems, such as systems that 1) predict
the cost savings from a change in these operating parameters; 2) benchmark a portfolio of
building; 3) create baseline models for measurement and verification programs; 4) detect
anomalous building behaviour; 5) provide novel data visualization methods; or 6) assess
the applicability of demand response programs on a given building. To illustrate this, we
show how operating parameters can be used to estimate potential energy savings from
energy savings measures and predict building energy consumption. We validate our ap-
proach on a range of commercial and institutional buildings in Canada and the United
States; our dataset consists of 10 buildings across a variety of geographies and industries
and comprises over 21 years of meter data. We use K-fold cross-validation and benchmark
our work against a leading black-box prediction algorithm; our model offers comparable
prediction accuracy while being far less complex.
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Chapter 1

Introduction

Three hundred and fifty three billion dollars (U.S.) was spent on 3,724 TWh of electricity in
the United States in 2009 [1]. In Canada during the same year, approximately 500 TWh of
electricity was consumed, producing a total of 85.61 megatonnes of carbon dioxide [2] [3].
With commercial and institutional buildings responsible for 29% of 2009 electricity use
in Canada [2] and 34% in the United States [!], saving energy in the commercial and
institutional building sectors represents an important challenge for both the environment
and the energy consumer.

This challenge coincides with the rapid decline in the cost of microprocessing and
communication that has enabled the recent proliferation of advanced (“smart”) meter-
ing infrastructure: as of 2010, approximately 14% of residential and 11% of commercial
customers had smart meter installations in the United States [1]. In Ontario alone, 3.36
million customers out of a total of 4.75 million had smart meters in 2009, with the installed
capacity rising to 4.57 million by 2010 [5]. Instead of receiving a consolidated bill from the
utility each month, the customer can now learn of his or her usage every hour, every 15
minutes or even every minute. We believe an algorithmic analysis of this stream of meter
readings can enable energy savings in commercial and institutional buildings. This thesis
contains the development, validation and results of such analysis.

1.1 Definitions

We define the output of a stream of meter readings to be meter data, a plot of meter
data over time to be a load profile, and a load profile over the course of one day to be
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a daily load profile. Consider the load profile in Figure 1.1. This building’s daily load
profile is relatively consistent during each weekday, and assumes a different shape on the
weekend. If this sample is an indication of the building’s overall electrical energy con-
sumption pattern, then the building appears to have two operating modes, or groups of
days which, given the same weather pattern, have similar daily load profiles. Recognizing
operating modes is fundamental to understanding the building’s energy consumption pat-
terns, and can be used to identify energy savings measures (ESMs). ESMs are actionable
items which can be undertaken to conserve electrical energy in a building. Categories of
ESMs are retrofits (upgrading equipment), operational (changing equipment operation),
or behavioural (changing the occupants’ behaviour). The process of undertaking ESMs
involves several stakeholders, which we discuss in Section 1.3.

1.2 Building Operating Modes

Consider Figure 1.2, which shows different daily load profiles. Are there four modes of
operation, or three? Identifying the operating modes of a building is an ill-posed clustering
problem. Arguably there are three modes, implying the statuatory holiday is in the same
mode as the weekend. This in itself may be an insight: how similar are statuatory holidays
to weekends from the perspective of energy consumption? The statuatory holiday in this
case is similar to the weekend, but there is a deviation in demand during the morning.
Identifying the root cause of this difference could lead to an energy savings opportunity.

1.3 Stakeholders

The process of saving electrical energy in commercial and industrial buildings in the United
States and Canada can involve many roles and stakeholders, each of which may be fulfilled
by separate, or even multiple, parties. The following is a list of roles that may be filled
during the energy saving process:

e Meter operator: installs and maintains the metering equipment.

e Data warehouse: stores and provides access to the meter data.

e Building operator: maintains the building, its equipment, and manages the corre-
sponding budget.
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e Energy expert: uses its domain knowledge, proprietary tools, tools provided by the
software provider, and knowledge of the building provided by the building operator
to create a list of candidate ESMs or “recommendations” for the building operator.

e Software provider: provides software tools for meter data visualization, analysis and
reporting for use by energy experts or building operators.

e ESM implementor: implements the chosen ESM(s).

We assume any omitted roles will have a negligible effect on the discussion. Examples
of omitted roles could be the owner of the building, or the party which evaluates the results
of the ESM.

We illustrate how these roles might be fulfilled with an example: a case study [0]
from B.C. Hydro’s “Continuous Optimization” program [7]. This program focuses on re-
commissioning and improving efficiency in commercial buildings:

e Meter operator: B.C. Hydro, a Canadian electric utility, upgrades metering equip-
ment at the building and connects the meter to its metering infrastructure; alterna-
tively the building operator installs the meter if a BC Hydro meter is not already in
place [3].

e Data warehouse: BC Hydro accesses the data through its metering infrastructure;
alternatively, the customer may be required to provide data collection services, eg.
through their Internet connection. The data is then stored and used by the energy
expert or software provider, and potentially by BC Hydro itself.

e Building operator: Jawl Properties, who also own the building(s)
e Energy expert: SES Consulting

e Software provider: SES Consulting, sub-contracts the software requirements to Pulse
Energy

e ESM implementor: SES Consulting oversees the implementation process, which is
paid for by the building operator



1.4 Problem Statement

The current practice for identifying energy savings involves two primary parties: 1) building
operators, who have a deep knowledge of the building’s operation but lack the resources,
such as time or expertise, to investigate energy savings; and 2) energy experts, who provide
expertise and resources as a service, and may lack detailed knowledge of how a particular
building is run. We propose to analyze a stream of meter readings that would allow:

1. A building operator to determine the potential cost savings from implementating
energy savings measures (ESMs) without engaging the services of an expensive energy
expert

2. An energy expert to quickly obtain a high-level understanding of a building’s oper-
ating parameters without a time-consuming and expensive site visit

Therefore, although the selection of appropriate ESMs for a particular building requires a
degree of understanding of its operations that is beyond the scope of this work, we believe
that there are still substantial benefits from an algorithmic approach to meter stream data
analysis.

Importantly, such an approach must take into account the fact that a building oper-
ates in one of several modes, and that its energy consumption varies dramatically with
operating mode. Moreover, the approach must model building energy use in terms of
human-understandable operating parameters (such as base and peak load as a function of
the ambient temperature) so that an energy expert can assess the gains from changes in
these operating parameters due to an ESM. These two criteria serve to motivate the work
presented in this thesis.

In summary, the goal of this thesis, as illustrated in Figure 1.3 is to develop an algorithm
that takes as input a stream of building meter data and that outputs the building’s operat-
ing parameters. This output can be used directly by an energy expert to rapidly assess the
building’s performance. It can also be used as input to other systems, for example systems
that 1) predict the cost savings from a change in these operating parameters; 2) bench-
mark a portfolio of building; &) create baseline models for measurement and verification
programs; 4) detect anomalous building behaviour; 5) provide novel data visualization
methods; or 6) assess the applicability of demand response programs on a given building.
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1.5 Assumptions
We assume that:

1. For sake of simplicity, meter readings are taken at an hourly interval. There are no
technical limitations preventing this work to being extended to meter readings at
other intervals.

2. The outdoor weather can be approximated with hourly dry-bulb temperature mea-
surements from a nearby weather station.

3. If the building parameters are being used for prediction, temperature data can also
be predicted for the corresponding period.

4. Predictions need not be made for operating modes that are not in the input data

1.6 Solution Overview

We propose an algorithm, Enerlytic, which partitions meter data into operating modes
using a process we call labelling, and creates a model of a building’s electrical energy
use during each operating mode as a function of the outdoor air temperature. The model
parameters are amenable to human interpretation. We develop a novel algorithm to extract
the peak and base periods of each day, and model these loads as a function of the outdoor
temperature using piecewise linear regressions. We validate the output of Enerlytic, the
building’s operating parameters, by using them to predict over 21 years of meter data on
10 different buildings across North America. Our prediction accuracy is comparable to a
competitive black-box method [9]. We also show how these operating parameters can be
used as input to other algorithms, for example to estimate the potential for energy savings
in a building.

1.7 Thesis Organization

In Chapter 2 we provide an overview of the related literature. Chapter 3 describes the
development of our solution, and Chapter 4 discusses the results. Chapter 5 provides
additional discussion, and Chapter 6 provides concluding remarks, as well as limitations
to our solution and areas of future work.



Chapter 2

Related Work

This thesis develops an algorithm that takes as input a stream of building meter data and
outputs a model which can provide an energy expert with a high-level understanding of a
building. The output also serves as input to other algorithms, for example for estimating
the potential cost savings from implementing energy savings measures, or for predicting a
building’s energy use. We now survey prior work with similar goals.

Advanced tools for building modelling and simulation, such as EnergyPlus [10] [11] are
well established in the building design and efficiency community. These tools are useful
for advanced analysis of building energy consumption, particularly when no meter data
is available. However, their complexity and need for physical building data make them
difficult to calibrate [12] and ill-suited to meet our goals.

Creating energy models from meter data and weather parameters—such as temperature
and humidity—for predicting energy consumption has also been well studied. This problem
was investigated in detail for the 1993 ASHRAE “Great Energy Predictor Shootout” [13],
which resulted in many robust methods for predicting energy use. Some entries, such as the
winning entry from David MacKay [11], involved systems to determine which inputs were
most relevant for accurate prediction, illustrating possible correlations between inputs and
output. Many of the top performers, including the winning entry, are neural-network-based
models that provide little insight into the building’s energy consumption patterns. The
black-box nature of these prediction algorithms make them unsuitable for our purpose;
however, we use a more recently developed black-box prediction model for benchmarking
the prediction accuracy of our work. This model is based on kernel regression [9], and
performs comparably to the top prediction models in the ASHRAE shootout based on
prediction accuracy.



“Grey-box” models, which contrast with “black-box” models, use the most similar ap-
proach to our own. These models use parameters that are related to the physics of the
building or its energy consumption patterns. Some, like Lee and Brown [15], do not use
meter data as input but instead require other parameters of the physical building, such
as the floor plan. Others use well established methodology for fitting piecewise linear re-
gression models to the relationship between outdoor dry-bulb air temperature and average
daily energy consumption; for example, the work by Kissock et al [I6]. The piecewise
linear regression model fits two linear regressions which are continuous at a single change-
point—the point where one regression changes to the other, as illustrated in Figure 2.1.
The resulting regression is in a shape similar to a hockey stick, with the bend occurring
at the change-point. If a building has electric heating or cooling, a building’s energy
consumption follows a linear or uncorrelated relationship with outdoor temperature until
some temperature, known as the “base temperature” is reached, and then this relation-
ship changes, becoming strongly correlated with temperature. The base temperature has
a direct relationship with the set point of the building’s heating or cooling system, so this
can be a useful parameter to identify. Further, the slopes of the regressions indicate the
increase in the amount of energy expended per degree increase in the outdoor air temper-
ature. These slopes, known as the heating and cooling gradients, serve to identify physical
elements of the building, such as thermal components (the building envelope, and heating
and cooling systems).

Sever et al [17] show how grey box models can be used to estimate energy savings from
model parameters. However, they make two assumptions that are not compatible with our
goals. First, the building is assumed to have a single operating mode. This dramatically
limits the insight which the model can provide, since it does not capture this fundamental
aspect of the building’s energy consumption. Second, and most importantly, their model
input is the average daily energy consumption as opposed to hourly data. This prevents
analysis of the daily load profile, such as the identification of peak or base periods, and
makes it impossible, for example, to estimate the energy savings due to an adjustment in
the average peak load or by shortening the peak load period.

Other grey-box methods also identify the peak or base periods (or “occupied and un-
occupied” periods) but do not derive insight from the building’s energy consumption with
temperature, limiting the insight the models are able to provide. Mathieu et al [13] predict
hourly power using a time-of-week indicator variable and either a linear or local linear
regression with outdoor temperature. They demonstrate how their model can be used to
estimate the effectiveness of different demand-response strategies through peak-load shift-
ing. However, there are several limitations in their work. The user must manually separate
a building’s “occupied” mode from its “unoccupied” mode. There is no modelling of the

10
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different operating modes of the building, and the temperature modelling cannot be used
to estimate energy savings.

Cherkassky et al [19] cluster a building’s daily load profile into four periods, then use
either a bin-based [20] or non-linear regression with temperature data to predict future
consumption. They also separate weekends from weekdays to improve the accuracy of
their predictions, thus identifying different operating modes in the two buildings in their
test set. However, although the output of their model could potentially be adapted to
provide some insight into the building’s energy consumption patterns, it is not clear how
to manipulate such a model to obtain energy savings estimates or use it as input for other
systems.

In summary, although there is no prior work which is directly suitable for our problem
statement, our work does extend several prior approaches. We partition the daily load pro-
file similar to Cherkassky et al [19], but instead of using Lloyd’s algorithm [21] we develop
non-iterative algorithm. We use temperature models like those proposed by Kissock et
al [10] for estimating energy savings like Sever et al [17]. The output of our algorithm can
be used as an input for estimating energy savings opportunities such as demand response,
like Mathieu et al [18]. We now discuss the development of our algorithm, Enerlytic, which
makes use of these concepts.

12



Chapter 3

Enerlytic

This chapter describes Enerlytic, an algorithm that takes as input hourly meter data and
outputs a building’s operating parameters. These parameters can be used by an energy
expert to quickly gain a high-level understanding of a building’s electrical energy consump-
tion, and can be used as input to other algorithms and systems.

Enerlytic obtains information about a building’s operating modes through a labeller—a
function that maps a date into an operating mode based on a set of rules. If no labeller
is given, Enerlytic uses a default labeller that labels weekdays and weekends; Enerlytic
partitions the days in the meter data based on their operating mode. Enerlytic models
hourly power consumption as a function of outdoor air temperature using piecewise linear
regressions and a pre-processing algorithm we call summarizing. Summarizing divides each
daily load profile into peak, base, and ramping periods and computes the mean of the peak
and base periods, ignoring the ramping period. This acts as a de-noising process, which is
illustrated in Figure 3.1.

Enerlytic runs an outlier detection algorithm to verify that the labelling process ade-
quately partitioned the building’s operating modes for the subsequent regression fitting.
This removes the outliers and alerts the expert that outliers were removed. We use the
output of Enerlytic, the building’s operating parameters, to create predictions and esti-
mate energy savings in Sections 3.4 and 3.5, respectively. The entire Enerlytic algorithm
is displayed in Figures 3.2-3.5.

13
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Figure 3.1: Effect of summarizing. Each hourly measurement creates one data point, shown
in Figure 3.1(a). Summarizing separates peak and base periods based on the time of day,
and averages the measurements during these periods. Figure 3.1(b) shows the effect of this
process, which is to de-noise the data for subsequent regression fitting.
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3.1 Summarizing

Summarizing is a pre-processing algorithm that takes hourly meter and temperature data
and summarizes each day into peak, base, and ramping periods; these names are inspired
by Cherkassy et al [19]. The periods have the following physical interpretation:

e Peak: the building is active
e Base: the building is inactive

e Ramping: the building is changing from active to inactive or vice-versa.

The summarizing algorithm defines the peak, base and ramping periods by dividing each
daily load profile into a high and low period, ignoring mid-range values; this corresponds
to the peak, base and ramping periods of a building, respectively. We refer to the range of
power values in each period as a bin. For simplicity, we assume equal bin widths for each
of the periods. The output of the algorithm is a list of daily summaries; these summaries
contain the start and end time and the average power and temperature for both the base
and peak periods. A building may oscillate between two periods (bins). We adjust for this
by defining the peak period to start the first time a building enters the peak period and the
last time it leaves the peak period; similarly for the base period. In the event that there is
an oscillation between a peak and a base period, peak periods take precedence over base
periods.

3.2 Labelling

Enerlytic obtains information about the building’s operating modes through auxiliary la-
bellers. Labellers assign each input date to a label corresponding to a building’s operating
mode. Enerlytic applies a labeller to each date in the training input to obtain the operating
mode for that date. A labeller can be created a priori by a user and input to Enerlytic;
there is also a default labeller that merely labels weekends and weekdays. Enerlytic then
partitions the input, grouping the dates by operating mode. For each operating mode,
Enerlytic converts the set of daily summaries into energy signatures—Ilists of average tem-
perature and average power—for both the peak and base periods. Enerlytic also averages
the start and end times in the peak and base periods; these average start and end times
indicate when the peak or base periods typically start and end when a building is in a
particular operating mode. The creation of the energy signatures can be seen in Figure
3.4.

19



Table 3.1: Regression parameter definitions.

Parameter Definition

15} Y-intercept

T Base temperature
mp Heating gradient
me Cooling gradient
My, Neutral gradient

3.3 Regression

If the data is not partitioned appropriately, Enerlytic may fit regressions incorrectly due to
Simpson’s Paradox [22]. If two separate populations are combined because of inadequate
partitioning, for example, due to inadequate labelling, the apparent correlation between
temperature and power may be distorted. By testing for multiple populations before
fitting the regressions, Enerlytic aims to provide a single meaningful regression model and
exclude a set of outliers, instead of outputting a potentially meaningless regression model.
We implement a method to test for multiple populations using Density-Based Spatial
Clustering with Applications with Noise (DBSCAN) [23], a spatial clustering technique
which does not require the number of clusters a priori. DBSCAN:

1. Finds regions where a given number of points occur within a given density;
2. Uses these regions as the seeds for the clusters;
3. Grows these clusters by adding points which are within the given density; and

4. Labels any points which are not clustered as outliers.

If DBSCAN identifies multiple clusters, Enerlytic chooses the cluster with the greatest
number of points, and labels any other clusters as outliers. If any points are labelled as out-
liers, Enerlytic discards these data and provides a notification. Following outlier detection,
Enerlytic fits a piecewise linear regression model to each energy signature. Figures 3.6(a)
and 3.6(b) show examples of buildings with electric cooling and heating piecewise linear
regression parameters, respectively. The regression parameters are tabulated in Table 3.1,
and the piecewise linear regressions are defined in Equations 3.1 and 3.2 for heating and
cooling, respectively.
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Figure 3.6: Piecewise linear regression parameters. Figure 3.6(a) is taken from a hospital
in our dataset (Hospital 1), and Figure 3.6(b) is from an Office building (Office 5).
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Table 3.2: Acceptable piecewise parameter ranges

Heating Cooling
0< Ty, <15 10 < T} < 22
—0.15 < % < —0.006 —0.007 < % < —0.007
—0.1< % < 0.006 0.007 < ’% < 0.06

B+ mpx; + e it x; <1
B+ (mp—mp)r; +e; ifx; >T,

. b+ mux; +e 1:E b (3.2)
B+ (me—my)x; +e; if x; > T,

where y; is the ith observation, x; is the corresponding independent variable and e;
is the residual or error, assumed to be independent and additive with zero mean and
constant variance. This formulation is similar to Toms et al [24]. Enerlytic choses regression
parameters that minimize the squared prediction error on the training set using the SiZer
package [25] in R.

Enerlytic performs a parameter verification process, rejecting piecewise linear models
which are unlikely to correspond to electric heating or cooling. For example, if the base
temperature of a piecewise model is 0°C, it is unlikely this parameter corresponds to a set
point. We reject the model if the parameters fall outside of the ranges tabulated in Table
3.2. p represents the average power value of the energy signature. If the parameter check
fails and the piecewise model is rejected, Enerlytic fits a linear model.

After fitting the regression models, Enerlytic creates the building operating parameters.
This is a set of operating modes, each containing a peak and a base with average start and
end times, and a regression model.

3.4 Prediction

The building operating parameters can be used for predicting a building’s hourly power
usage; these predictions can in turn be used for ESM estimation, discussed in Section
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3.5, for validating the building operating parameters themselves, for forecasting electrical
power demand, or creating baseline models to evaluate the effectiveness of an ESM. An
overview of the prediction process can be seen in Figure 3.7.

The prediction mechanism takes as input:

1. The building operating parameters

2. A list of dates for which we would like to generate predictions, referred to as the
prediction dates

3. The hourly temperatures for the prediction dates

The prediction algorithm generates a prediction for each prediction date, and later concate-
nates the results. It uses the labeller to determine the operating mode of each prediction
date, and retrieves the operating parameters corresponding to that operating mode. The
peak and base regression models are then evaluated using the temperature input. Once
the prediction algorithm has predicted the peak and base power value for each day, it
re-creates each daily load profile by filling the peak and base periods with the predicted
peak and base values, respectively, and linearly interpolating during the ramping periods.

3.5 ESM Estimation

The building operating parameters can be used to estimate energy savings; this is done
by changing the building operating parameters. The energy savings estimates do not
correspond to savings from a particular action or ESM. Instead, the savings correspond
to a category of possible ESMs, which we call ESM scenarios. This provides a building
operator or an energy expert with the ability to estimate the potential energy savings due
to a change in energy consumption patterns. Relating the changes in the building operating
parameters to the building’s equipment and operation requires a deep knowledge of how
a specific building is run. The building operator or energy expert must generate a list
of building-specific actions or ESMs which will accompany the ESM scenario. Estimates
are obtained by substracting the predicted usage obtained using learned model parameters
from the predicted usage under the modified model parameters. We demonstrate five ESM
scenarios:

1. Peak or base average power reduction
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2. Peak or base period reduction
3. Change of base temperature
4. Change of cooling or heating gradient

5. Change of operating mode

Figures 3.8 and 3.9 illustrate ESM scenarios 1-4, assuming a fixed cost of electricity of
$0.05 per kWh. The first two ESM scenarios result from changing the parameters of the
daily load profile. For each predicted daily profile, we reduce the average peak by 10%, or
decreasing the length of the peak period by one hour. An overview of the ESM estimation
process can be seen in Figure 3.10.

Scenarios three and four arise from changing the parameters of the regression models.
Here, we adjust any piecewise linear regressions according to the ESM scenario: for example
increasing, the cooling base temperature by 1°C, or by reducing the cooling gradient by
10%. The final what-if scenario arises from creating a new labeller and changing the
predicted operating mode of the building. For example, assuming we have data to support
the ESM scenario, we could estimate the difference in energy consumption if: a) a retrofit
had not taken place, for example to verify energy savings; b) an anomalous event had not
occurred, such as equipment malfunctioning or being left on; or ¢) a low-power period,
such as a holiday period, was extended.

3.6 Concluding Remarks

In this chapter we developed an algorithm, Enerlytic, which takes as input hourly power
consumption, temperature data, and an optional labeller containing information about
the building’s operating modes, and creates a set of building operating parameters. We
demonstrated how a building’s operating parameters can be used for prediction and to
estimate energy savings. We believe there are many ways to extend this model, and we
continue this discussion in Chapter 5, after presenting the model validation in Chapter 4.
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Figure 3.10: ESM estimation overview.
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Chapter 4

Evaluation

We evaluate the building operating parameters by testing the prediction algorithm on a
dataset provided by Pulse Energy, a leading Energy Information System (EIS) provider [26].
The dataset contains:

e Two schools, two hospitals, one grocery store and five office buildings

e Buildings in Western and Eastern Canada, and North-Western and South-Eastern
United States.

e An average of over two years of data per building for a total of over 21 years of meter
data

e Hourly average power consumption and accompanying hourly outdoor temperature
data

Table A.1 contains a more detailed description of the dataset. We use buildings that
span a variety of commercial areas and geographies and use several years of data for each
building to evaluate Enerlytic under a range of seasons, climatic zones, and electrical
demand patterns.

We measure the accuracy of our predictions using K=4 fold cross validation on each
building. The partitions for each fold are chosen at random. The default labeller is used
to label and partition the data for each building into weekdays and weekends. We measure
prediction accuracy using the coefficient-of-variation of the root-mean-squared-error (CV-
RMSE) and mean-bias-error (MBE); these are standard metrics in the building energy
prediction literature [14] [9] [13]. We benchmark our prediction algorithm against a state-
of-the-art prediction algorithm that uses kernel regression [9].
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4.1 Results

Figures 4.1 and 4.2 show, respectively, a summary of the CV-RMSE and MBE perfor-
mance of our method (“Enerlytic”) and the benchmark (“Kernel Regression”). The 90%
confidence intervals represent the contributions from each of the four folds.

Enerlytic is less accurate at prediction than the benchmark; this is to be expected
due to the relative simplicity and restrictive parameterization of the building operating
parameters, and because the primary goal of the building operating parameters is to gain
insight and be used as input to other systems, not solely to create an accurate prediction
algorithm. We believe the prediction error is comparable enough to current practice to
enable the building operating parameters to be used for prediction, and also as input to
other systems such as ESM estimation and benchmarking.

The results shown in Figures 4.1 and 4.2 fall into two categories: buildings where the
default labeller identifies the building’s operating modes, and buildings where the default
labeller misses significant operating modes of a building. When a building primarily has
weekend and weekday operating modes (Hospitals 1, 2; Offices 1, 2, 4; Store), the prediction
performance of their building operating parameters is quite similar to the benchmark. An
example of this can be seen in the detailed results of Office 1, shown in Figures 4.3-4.6.
Figure 4.3 shows the actual and predicted demand during the prediction period, Figure
4.4 shows the prediction error (residual) and the data used to create (train) the building
operating parameters. Figures 4.5 and 4.6 show the energy signatures for the weekday and
weekend operating modes, respectively. Statutory holidays are a primary source of error,
as seen in Figure 4.4(b) where holidays appear as spikes in the residual, and in Figure
4.5(a), where holidays are classified as outliers. Creating a labeller that labels statuatory
holidays may further improve prediction performance.

The remaining buildings (Schools 1, 2; Offices 3, 5) have significant operating modes
that were not identified by the default labeller. The schools had summer holiday periods
that caused poor regression fits due to Simpson’s paradox [22]; an example of this can be
seen in Figures 4.7-4.10. Outlier detection was not effective. An improved outlier detec-
tion strategy may improve prediction performance, but we suggest future work investigate
default labellers that create labels based on the underlying statistics of the data. Figures
4.11-4.14 show an example of the prediction performance for Office 5. Figure 4.13(a) shows
there are shifts in the consumption patterns of the building’s electric heating system; there
are small translations between the “training” and “actual” data, causing a systemic bias
in prediction error. These changes in the building’s electric heating system can be inter-
preted as a change in operating mode. This could be captured by labelling the building
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as being in different operating modes during these two periods. This result also shows
the building operating parameters generalize poorly compared to the benchmark. Another
example of poor generalization (overfitting) can been seen in Figure 4.14(a), where the
building operating parameters do not anticipate the use of electric heating on weekends.
Future work may improve the model’s ability to generalize by considering the underlying
distribution of the data: if the variance is sufficiently high, a stochastic process could be
used for prediction instead of linear regressions.

Office 3 had gradual changes in the load profile throughout its measurement period;
this can be seen by comparing Figure 4.15(a), which shows the data in the first fold,
to Figure 4.16(a), which shows the data in the final three folds. Figures 4.15-4.18 show
detailed prediction performance for the first fold of Office 3. Figure 4.15(a) shows Office
3 initially had relatively high electric energy consumption; Figure 4.16(a) indicates this
consumption level fell and remained relatively low during the rest of the measurement
period. When the data from Figure 4.16(a) was used to predict the period shown in Figure
4.15(a), the prediction error was high since the training data was not representative of
the demand during the prediction period—the building was in a different operating mode.
When predicting folds 2, 3, and 4, the high consumption period fell in the training period
instead of the prediction period; the outlier detection mechanism typically labelled the
high consumption days as outliers. Figures 4.19-4.22 show the prediction performance of
the second fold of Office 3. As seen in Figures 4.21 and 4.22, data in the high consumption
period were labelled as outliers. The transient period of high consumption, combined
with the outlier detection, led to relatively low prediction error for folds 2, 3, and 4,
while the error from fold 1 remained high. This caused a large variation in prediction
performance for this building, despite the mean prediction performance being comparable
to the benchmark. Like Office 5, prediction performance may be improved by partitioning
the dataset into different operating modes using a more advanced labelling scheme, or by
using a regression model that is less prone to overfitting.

In summary, Enerlytic predicts well when the operating modes in the training data and
prediction period have been identified. The non-linear kernel regression generalizes more
effectively than the piecewise linear models, particularly when operating modes are not
identified by the labeller. Future work could address these limitations by creating more
advanced labellers and by investigating regression methods that are able to both provide
insight and also avoid overfitting.
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Figure 4.3: Office 1 actual and predicted demand during predicted period (fold 1).
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Figure 4.4: Office 1 training and residual demand during predicted period (fold 1).
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Figure 4.5: Office 1 weekday energy signatures (fold 1).
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Figure 4.6: Office 1 weekend energy signatures (fold 1).
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Figure 4.7: School 1 actual and predicted demand during predicted period (fold 4).
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Figure 4.8: School 1 training and residual demand during predicted period (fold 4).
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Figure 4.9: School 1 weekday energy signatures (fold 4).
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Figure 4.10: School 1 weekend energy signatures (fold 4).
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Figure 4.11: Office 5 actual and predicted demand during predicted period (fold 1).
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Figure 4.12: Office 5 training and residual demand during predicted period (fold 1).
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Figure 4.13: Office 5 weekday energy signatures (fold 1).
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Figure 4.14: Office 5 weekend energy signatures (fold 1).
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Figure 4.15: Office 3 actual and predicted demand during predicted period (fold 1).
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Figure 4.17: Office 3 weekday energy signatures (fold 1).
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Figure 4.18: Office 3 weekend energy signatures (fold 1).
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Figure 4.19: Office 3 actual and predicted demand during predicted period (fold 2).
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Figure 4.20: Office 3 training and residual demand during predicted period (fold 2).
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Figure 4.21: Office 3 weekday energy signatures (fold 2).
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Figure 4.22: Office 3 weekend energy signatures (fold 2).
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Chapter 5

Implementation

The software for this thesis, written in the Python programming language [27], has been
documented, packaged and distributed to our industry partner. Developing this thesis in
a popular, open-source, object-oriented programming language means that this work can
be more easily deployed and integrated into a production system. To demonstrate this,
we used the Numpy [28], Scipy [29], and SK-Learn [30] scientific libraries for Python to
develop the core numeric functionality of this thesis; these libraries have fast and efficient
C data structures and functions. We extended this core functionality by implementing the
data store with PostgreSQL [31], and developing a web-based user interface (UI) using the
Django web framework [32]. This architecture is illustrated in Figure 5.1.

The web-based Ul was used to generate many of the plots in this thesis. In addition to
the web-based UI, we created an Application Programming Interface (API) web service that
allowed us to programmatically generate plots using Matplotlib [33] and Highcharts [34];
this provided a useful platform for rapid prototyping and experimentation. Screenshots
of the web-based user interface can be seen in Figures 5.2-5.4. It is our hope that this
implementation will assist in the adoption of the algorithms described in this thesis.
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Figure 5.1: Implementation architecture.
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Chapter 6

Conclusion

This thesis describes the development, implementation, and evaluation of Enerlytic, an
algorithm that takes as input electrical meter data from a commercial building and outputs
its operating parameters. These operating parameters can be used by an energy expert
to rapidly assess the building’s energy consumption patterns without a time consuming
and expensive site visit. Moreover, we have shown how these operating parameters can be
used as input to other systems for prediction and estimating possible energy savings. A
building operator can use Enerlytic to determine potential cost savings from implementing
energy savings measures without engaging the services of an expensive energy expert.

Prior work includes the use of piecewise linear models for estimating energy savings
in buildings [10] [L7], and partitioning the daily load profile for prediction [19] or demand
response [18]. However, this work either uses daily averages of energy useage, or does
not develop a model which can be manipulated to obtain energy savings estimates. Our
approach takes into account the various operating modes of a building through labelling.
It models the peak and base load as a function of outdoor air temperature using piecewise
linear regressions. The algorithmic creation of the building operating parameters enables
future work, such as benchmarking a portfolio of buildings, demand response, and novel
visualization methods, as discussed below.

We tested our approach on a dataset containing 10 buildings and 21 years of meter
data; we show that the building operating parameters offer comparable performance to a
black-box prediction method used in the industry [9]. This thesis is the product of a year
long collaboration with Pulse Energy. The formulation of this problem is a direct result of
working with the energy experts at Pulse Energy and from conversations with commercial
building operators. The software for this thesis has been documented, packaged, and
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distributed to an industry partner. We hope that this thesis will allow energy experts and
building operators to easily realize financial and environmental benefit from the algorithmic
analysis of commercial meter data.

6.1 Limitations
There are several limitations to this thesis.

1. The prediction accuracy of the building operating parameters is comparable to the
benchmark model in the majority of buildings in our dataset; in some buildings,
however, the prediction accuracy is significantly lower. We attribute this to poor
regression fits. To address this, we suggest an iterative regression mechanism that
fits a set of regression models and considers the tradeoff between model complexity
versus an error metric, such as the CV-RMSE prediction error. Models in this set
could include non-linear or bin-based [20] models.

2. We use only one benchmark for the accuracy of Enerlytic’s predictions; this bench-
mark is not the most accurate prediction method available [9]. Future work could
consider evaluating the prediction accuracy of the building operating parameters
against other prediction models such as those described in references [141] [18] [19].

3. Our work considers only electrical energy; it is possible to apply Enerlytic to other
fuel sources, such as natural gas.

4. We have not verified that energy savings measures estimates lead to energy savings
in buildings. Future work could verify this with help from industry partners.

5. We introduce a mechanism for labelling the operating modes of a building, but test
the prediction accuracy using only the default labeller. We hope that future work
will create case studies evaluating the effect of labelling on both prediction accuracy
and providing insight into energy consumption patterns.

6. Enerlytic uses a piecewise regression with a single change-point, so that it is applicable
to buildings with either electric heating or cooling or neither. Future work can
investigate buildings with both electric heating and cooling.

7. We have evaluated our work using only hourly meter data; we encourage future work
to investigate the effects of different data resolutions.
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6.2 Future Work

In addition to addressing the limitations of this thesis, we believe there are many op-
portunities for extending our work. We would like to quantify the computational cost of
Enerlytic compared with other models such as Brown et al [9]. We suspect Enerlytic, due
to its relative simplicity, is considerably faster. If true, we believe this is a significant
opportunity. If predictions can be generated on-the-fly, they do not need to be cached or
persisted; this greatly simplifies the implementation, maintenance and scalability of any
production system that uses Enerlytic. On-the-fly predictions may also lead to improved
user experience by allowing a user to interact with the building’s operating parameters in
real time.

We believe the building operating parameters can be used for many other applications.
Several that are not explored in this thesis include: novel methods for visualization, such
as visualizing the average peak and base start times for an operating mode; evaluating
demand-response opportunities using peak-load shifting; and benchmarking a portfolio of
buildings. Future work should formalize the building operating parameters by specifying
an application programming interface (API).
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Appendix A

Description of the Dataset

The algorithm presented in this thesis is evaluated on a dataset that spans a variety of
commercial areas and geographies. Table A.1 tabulates the details of this dataset.

Table A.1: Description of the dataset

Building  Location Duration
Hospital 1 Western Canada 2 years, 29 days
Hospital 2 Western Canada 2 years, 104 days
Office 1 Western Canada 2 years, 104 days
Office 2 Eastern Canada 3 years, 60 days

Office 3 South-Eastern United States 2 years, 14 days
Office 4 South-Eastern United States 1 year, 227 days
Office 5 North-Western United States 1 year, 222 days

School 1 Western Canada 1 years, 363 days
School 2 Western Canada 2 years, 104 days
Store Western Canada 2 years, 102 days
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