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Abstract

Image processing applications such as image denoising, image segmentation, object de-
tection, object recognition and texture synthesis often require a multi-scale analysis of
images. This is useful because different features in the image become prominent at differ-
ent scales. Traditional imaging models, which have been used for multi-scale analysis of
images, have several limitations such as high sensitivity to noise and structural degradation
observed at higher scales. Parametric models make certain assumptions about the image
structure which may or may not be valid in several situations. Non-parametric methods,
on the other hand, are very flexible and adapt to the underlying image structure more eas-
ily. It is highly desirable to have efficient non-parametric models for image analysis, which
can be used to build robust image processing algorithms with little or no prior knowledge
of the underlying image content. In this thesis, we propose a non-parametric pixel neigh-
bourhood based framework for multi-scale image analysis and apply the model to build
image denoising and saliency detection algorithms for the purpose of illustration. It has
been shown that the algorithms based on this framework give competitive results without
using any prior information about the image statistics.
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Chapter 1

Introduction

In this thesis, we attempt to study and compare different multi-scale frameworks for im-
age analysis and propose our own non-parametric neighbourhood based image analysis
model. Based on this model, image saliency detection and image denoising algorithms are
developed and their results are discussed.

1.1 Motivation

Parametric multi-scale image analysis methods such as scale space model (explained in [1])
have several shortcomings (discussed in [2]) such as degradation of the image at higher
scales and loss of structural details in the multi-scale representations. The parametric
methods suffer from these limitations because they use fixed parameters for deriving the
multi-scale representations without taking into account the underlying image statistics.
This may or may not be valid in different situations. For example, in the scale space
model, the given image is convolved with a series of Gaussian kernels with varying standard
deviations, with the standard deviations behaving as the fixed scale parameters. This
representation gives highly blurred images at the coarser scales (large values of standard
deviations) leading to loss of structural details at these scales. It is desirable to have
image analysis methods which adapt themselves to the underlying image content without
requiring any prior information or assumptions about the image. We attempt to address
this problem in our thesis by presenting an alternate framework based on non-parametric
neighbourhood based methods. These methods are flexible and adapt themselves to the
underlying image content more easily. It will be shown through experimental results that
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the proposed techniques are very efficient for multi-scale image modelling and have also
been shown to be robust to various noise characteristics.

1.2 Thesis Outline

In chapter 2, we present a brief summary of the conventional approaches which have been
used in the recent years for multi-scale image understanding and analysis. We also give a
theoretical overview of the wavelet theory, both decimated and undecimated wavelets and
how they serve as a powerful tool in multi-scale image modelling. In chapter 3, we describe
the development of the non-parametric neighbourhood based framework. In chapter 4, we
discuss the application of the approach developed to saliency detection in natural images,
including experimental results and performance comparison with other methods. In chapter
5, we discuss the application of the approach to image denoising. In chapter 6, we conclude
and give some final remarks about the method including the possible further applications
of the method proposed and the advantages presented by the method.
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Chapter 2

Background

In this section, we will be discussing some multi-scale imaging models which have been
proposed in recent years [1, 2, 3, 4, 5] and have been used in image processing applications
like image denoising, texture synthesis, image segmentation and image saliency detection.
In section 2.1, we will discuss parametric models, their development, advantages and dis-
advantages. In section 2.2, we will talk about the more recent non-parametric models and
their advantages over parametric models.

2.1 Parametric Models for Image Processing

Parametric methods [1, 6, 7] require assumptions to be made about the image data which
are implicitly captured in the “parameters” used to derive these models. For example in
the scale space model proposed in [1], the images are convolved with a series of Gaussian
kernels with varying standard deviations, with the standard deviations behaving as the
scale parameters. This section describes the development of parametric methods which
are popular and have been used in several image processing applications [8, 9, 10]. In
section 2.1.1, we discuss the scale space models and in section 2.1.2, we discuss multi-scale
models based on the wavelet decomposition of images.

2.1.1 Scale Space Model (linear)

In [1, 6, 7], linear scale space models have been discussed which can be used for describing
the structural features in an image at different scales. In this technique, the original signal
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is convolved with a series of Gaussian kernels with a set of different standard deviations.
The scale-parametric representation is given by

Lσ(x) = f(x) ∗ g(x, σ) (2.1)

where f(x) is the original image, g(x, σ) is the Gaussian kernel with standard deviation σ,
and Lσ is the image representation corresponding to the scale parameter σ. The Gaussian
convolution of a signal f(x) is defined as

Lσ(x) = f(x) ∗ g(x, σ) =

∫ ∞
−∞

f(u)
1

σ
√

2π
e
−(x−u)2

2σ2 du (2.2)

The (x, σ) plane is called the scale space plane [1], and each value of σ gives us a Gaussian
smoothed version of the original image f(x), the amount of smoothing increasing with σ.
This set of Gaussian smoothed functions is called the scale space image [1].

In this case, the standard deviation of the Gaussian kernels behaves as the scale pa-
rameter, which proves to be an important parameter for the description of the given image
as different features in the image are observed at different scales, giving us an idea about
the underlying structure of the image. Large values of σ give a smoothed signal and
small values give signals with more local structural variations. Gaussian kernels are used
for convolution because of their useful properties. The Gaussian kernels satisfy a “well-
behavedness” criterion (explained in [1]), i.e., they are symmetric and strictly decreasing
about the mean, which implies that the weighting assigned to pixels decreases smoothly
with distance from the central pixel.

The approach discussed above uses fixed parameters, independent of the image struc-
ture, hence local structural information in the signal may be ignored. The method also
gives high smoothing at higher (coarser) scales. This gives multi-scale image models where
we observe structural degradation of images, particularly at coarser scales. The method
has also been shown to be sensitive to noise in [2]. An example of the application of this
model has been shown in Figure 2.1. The first row of the figure shows the scale-space
multi-scale representation for a noiseless image and the second row shows the same for an
image with additive Gaussian noise (σ = 0.3). We can see in this example that there is
more smoothing observed at higher scales, which results in the blurring of edges. At these
scales, the spatial location of the edges does not sharply coincide with their corresponding
locations in the original image. It is important to observe here that the linear scale space
model is sensitive to noise (as we observe more degradation of the scale-space structure
in the noisy image). These factors motivate us to study other non-parametric models for
image analysis. In section 2.2.1, we discuss a non-linear scale space approach which takes
the local image structure into account while deriving the multi-scale model for the image.
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2.1.2 Wavelet Based Multi-scale Models

In recent years, wavelets have become an important part of transform based image pro-
cessing [11, 12, 13] and have been used in applications like image compression [14, 15],
image segmentation [16, 17] and image denoising [9, 10]. Wavelets are the foundation of
multi-resolution theory [11, 12], which makes them important for the analysis of images at
multiple scales. In chapter 4 and chapter 5, where we propose saliency detection and image
denoising algorithms based on our proposed framework, we have used wavelet decomposi-
tions extensively. This chapter explains the mathematics behind the wavelet theory and
serves as a foundation for the subsequent chapters.

We define an inner product between two real signals f(x) and g(x) as

<f, g> =

∞∫
−∞

f(x)g(x)dx (2.3)

Let Vj denote a vector space, which is a set of all possible signals at resolution 2j. Then
[Vj]j∈Z denotes a multi-resolution vector space [11]. The multi-resolution vector space
satisfies the causality property, i.e., ∀j ∈ Z, Vj ⊂ Vj+1. We define the orthonormal basis
for a vector space Vj, which characterizes the multi-resolution vector space sequence [Vj]j∈Z .
For the vector space sequence [Vj]j∈Z , there exists a unique scaling function φ(x) such that
for any j ∈ Z,

φj(x) =
√

2jφ(2jx) (2.4)

then [φj(x− 2−jn)]n∈Z is an orthonormal basis of vector space Vj. The proofs for these
derivations are given in [11]. From the scaling function φ(x), an orthonormal basis can be
derived for Vj, for any j ∈ Z, by scaling and translating φ(x). An approximation of the
signal f(x) at resolution of 2j is essentially a projection of the signal f(x) on the vector
space Vj, which can be defined in terms of the orthonormal basis vectors of the vector
space Vj. Let fVj(x) denote a projection of signal f(x) on the vector space Vj

fVj(x) =
∞∑

n=−∞

< f, φjn > φjn(x) (2.5)

Thus fVj(x), i.e., the approximation at resolution 2j, is characterized by the coefficients
[< f, φjn >]n∈Z . < f, φjn > simplifies to

< f, φjn >=
(
f(x) ∗ φj(x)

)
(2−jn) (2.6)
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This is equivalent to the convolution of f(x) with φj(−x) followed by sampling with a
factor of 2−j. Let Aj denote the approximation coefficients for the resolution 2j. Aj can
be defined as

Aj =
[√

2j
(
f(x) ∗ φj(−x)

)
(2−jn)

]
n∈Z (2.7)[

φj+1
n

]
n∈Z defines an orthonormal basis for the vector space Vj+1 and

[
φjn
]
n∈Z defines an

orthonormal basis for the vector space Vj. Now Vj ⊂ Vj+1. This implies that for any
p(x) ∈ Vj, p(x) ∈ Vj+1 and hence p(x) can be defined in terms of the orthonormal basis of
the vector space Vj+1.

p(x) =
∞∑

k=−∞

< p, φj+1
k > φj+1

k (x) (2.8)

This is a useful property as it implies that an approximation at a lower resolution, i.e., Aj
can be derived from an approximation at a higher resolution, i.e., Aj+1. The approximation
Aj at resolution 2j is given by an orthogonal projection of the signal on the vector space
Vj. The detail at resolution 2j is given by an orthogonal projection of the signal on Oj

where Oj is orthogonal to Vj [11] such that

Oj ⊕ Vj = Vj+1 (2.9)

The projection of f(x) on Oj is denoted by fOj(x). This projection describes the differences
between the approximations at resolutions 2j and 2j+1. Let ψ(x) be a wavelet function.
Then

[
ψj(x− 2−jn)

]
n∈Z is an orthonormal basis of Oj.

fOj(x) =
∞∑

n=−∞

< f, ψjn > ψjn(x) (2.10)

In a way similar to the one described for the approximation coefficients Aj above, the detail
coefficients Dj at resolution 2j can be defined as

Dj =
[√

2
(
f(x) ∗ ψj(−x)

)
(2−jn)

]
n∈Z (2.11)

The wavelet representation is given by[
AJ , (Dj)J≤j≤−1

]
(2.12)

where L is the number of levels being considered in the decomposition and J = −L. In
the wavelet decomposition the approximation coefficients are defined only for the lowest
resolution and for all other resolutions, detail coefficients are defined to describe the dif-
ference between the resolution levels. Aj and Dj can be obtained from Aj+1 by filtering
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and downsampling by a factor of 2, as shown in Figure 2.2. Filtering Aj+1 with a band

pass filter
∼
G and downsampling gives us the detail coefficients at resolution 2j, i.e., Dj.

Filtering Aj+1 with a low pass filter
∼
H and downsampling gives the approximation coeffi-

cients at resolution 2j, i.e., Aj. The discrete filters
∼
G and

∼
H can be defined in terms of the

wavelet function ψ(x) and the scaling function φ(x). H is a discrete filter with the impulse
response

h(n) =
1√
2
< φ−10 , φ0

n > (2.13)

and
∼
H has an impulse response

∼
h(n) = h(−n). G is a discrete filter with the impulse

response

g(n) =
1√
2
< ψ−10 , φ0

n > (2.14)

and
∼
G has an impulse response

∼
g(n) = g(−n). H and G are quadrature mirror filters [11].

Just as Aj+1 can be decomposed to obtain Aj and Dj, Aj+1 can be resynthesized from Aj
and Dj as shown in Figure 2.3.

The wavelet decomposition model discussed above can be extended to two dimensions
using separable filters [11]. We now work on a two dimensional signal f(x, y). [Vj]j∈Z is
still a series of vector spaces, but in this context contains two dimensional signals instead
of one dimensional signals. In the 2-D case, the scaling function is defined as

Φ(x, y) = φ(x)φ(y) (2.15)

where φ(x) is a 1-D scaling function. In the 2-D case, the approximation coefficients (Aj)
are defined as

Aj =
[
< f(x, y), φjn(x)φjm(y) >

]
(n,m)∈Z2 (2.16)

We have a 1-D wavelet function ψ(x). The orthonormal basis of Oj is given by the family
of functions [

φjn(x)ψjm(y), ψjn(x)φjm(y), ψjn(x)ψjm(y)
]
(n,m)∈Z2 (2.17)

In the 2-D case, the detail coefficients are given by three detail signal images. The hori-
zontal detail coefficients Hj at resolution 2j are defined as

Hj =
[
< f(x, y), ψjn(x)φjm(y) >

]
(n,m)∈Z2 (2.18)

The horizontal detail coefficients represent the variations along columns (horizontal edges).
Similarly the vertical detail coefficients Vj represent the changes in variations along rows
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(vertical edges)
Vj =

[
< f(x, y), φjn(x)ψjm(y) >

]
(n,m)∈Z2 (2.19)

and the diagonal details Dj represent the changes in the diagonal direction.

Dj =
[
< f(x, y), ψjn(x)ψjm(y) >

]
(n,m)∈Z2 (2.20)

Thus a wavelet decomposition for a 2-D signal for L levels is given by[
AJ , (Hj)J≤j≤−1, (Vj)J≤j≤−1, (Dj)J≤j≤−1

]
(2.21)

where J = −L. The coefficients Aj, Hj, Vj and Dj can be derived from Aj+1 using separable

functions
∼
H and

∼
G. The filters are successively applied in the two different dimensions

to get the set of coefficients as shown in Figure 2.4. The reconstruction of Aj+1 from
the coefficients Aj, Hj, Vj and Dj is also achieved by the application of upsampling and
successive filter operations as shown in the Figure 2.5.

Decimated Wavelet Based Models

The two-dimensional DWT (Discrete Wavelet Transform) can be implemented using digital
filters and downsamplers as shown in Figure 2.4. The sub-bands obtained after applying
the wavelet transforms can be used for the reconstruction of the original image by applying
an inverse wavelet transform as shown in the diagram in Figure 2.5. It is important to
observe that in a DWT, the filtering operations are followed by downsampling, hence it is
a decimated multi-scale representation. Starting from an original signal f(x, y) we obtain
a set of coefficients as which defines the wavelet decomposition of the signal completely(

AJ , (Hj)J≤j≤−1, (Vj)J≤j≤−1, (Dj)J≤j≤−1
)

(2.22)

where L is the number of resolution levels for which the wavelet decomposition is defined
and J = −L. When we apply the transform on the approximation Aj+1(x, y) at resolution
level 2j we get a set of four signals, Aj(x, y), Hj(x, y), Vj(x, y) and Dj(x, y), and the number

of pixels in each of these signals is 1
4

th
the number of pixels in the signal Aj+1(x, y). Thus,

the number of samples in all the signals together at resolution level 2j is the same as the
number of samples in the approximation at the level 2j+1. At end of the decomposition,
the number of samples in the wavelet decomposition, as shown in equation 2.22 is equal to
the total number of samples in the original signal f(x, y). Thus, this is a non-redundant
transform on a 2-D signal where the number of samples remain preserved.
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Figure 2.6 shows the result of applying the 2-D DWT (at one level) for a natural image.
The four coefficient sets obtained after the decomposition have been shown. We can see
that the approximation coefficients largely resemble the original image whereas the detail
coefficients highlight the directional changes in energy. The horizontal detail coefficients
represent the horizontal edges in the image, and the vertical detail coefficients and the
diagonal detail coefficients represent the vertical and diagonal edges respectively.

The two-dimensional DWT has been used in several image processing algorithms [9,
10, 14, 15, 16, 17]. The conventional DWT, in which every filtering operation is followed
by a downsampling step suffers from some limitations. It exhibits aliasing and there might
be information loss while reconstructing the original signal from the decomposition [18].
The transform is rotation-variant and lacks directional sensitivity [18]. These properties
make it difficult to build robust image processing algorithms based on the DWT model. It
is desirable to use a wavelet decomposition model in which the advantages of wavelets can
be retained while resolving the mentioned limitations.

Undecimated Wavelet Based Models

The Undecimated Wavelet Transform or the Stationary Wavelet Transform (SWT) is a
modified version of the Discrete Wavelet Transform which leads to an overdetermined or
redundant representation of the original data. The filtering step in SWT is similar to that
in the DWT, however we do not decimate or downsample the sub-bands after the filtering
step and each of the resulting decompositions has the same size as the input images.
The number of samples in all the decompositions together is more than the number of
samples in the original image f(x, y). Though this transform introduces redundancy and
increases the computational intensity of the algorithms, it leads to much better structural
preservation, fewer artefacts and rotation invariance [19, 20, 21, 22]. These properties are
highly desirable in many applications where high accuracy is required.

Figure 2.7 shows the effect of application of 2-D DWT and SWT (on 2 decomposition
levels) to the same image used in Figure 2.6. The figure shows the detail coefficients for
both, DWT and SWT at the two decomposition levels. We can see that there is more
structural preservation (more well defined edges) in the detail coefficients in the case of
the SWT. The difference between the coefficients is more significant at level 2, which is
in accordance with expectations as the DWT level 2 coefficients have been obtained after
downsampling and the coefficients for SWT are at the same resolution as the original image.
Thus for multi-scale non-parametric models, the stationary wavelets are an excellent tool
as they provide multi-scale information about the image and the structural preservation is
significantly better than the DWT. It will be shown in chapter 3 that SWT decomposition
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gives more redundancy in terms of pixel neighbourhoods. In chapter 4 and 5, it will be
illustrated how the SWT based algorithms (saliency detection and image denoising) give
much better performance than the corresponding DWT based algorithms.
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Scale 0 (original image) Scale 1 Scale 2 Scale 3

Scale 0 (noisy image) Scale 1 Scale 2 Scale 3

Figure 2.1: Multi-scale representation of an image without noise (top) and with noise
(bottom) (additive Gaussian noise, σ = 0.3). It can be seen that at higher scales, the
edges become blurred. In the case of the noisy image, the spatial distortion of the image
is more prominent.
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Figure 2.2: A two-level discrete wavelet decomposition is shown. The filtering operations
are followed by downsampling to get the appropriate wavelet coefficients, i.e., approxima-
tion and detail coefficients.

Figure 2.3: A two-level discrete wavelet reconstruction is shown. The wavelet coefficients
(which are obtained using the process depicted in Figure 2.2) undergo upsampling (inserting
zeros after every sample in the original signal) and filtering to reconstruct an estimate of
the original signal.
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Figure 2.4: This figure shows the decomposition of an approximation coefficient set at a
higher resolution level (Aj+1) to obtain the set of four coefficients (approximation coeffi-
cients and the three direction detail coefficients) at a lower resolution level.

Figure 2.5: This figure shows the reconstruction of the higher resolution level approxima-
tion coefficient set from the lower resolution level coefficients. This process is the reverse
of the process illustrated in Figure 2.4.
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Original Image

Approximation Coefficients Horizontal Detail Coefficients

Vertical Detail Coefficients Diagonal Detail Coefficients

Figure 2.6: DWT (1 level) decomposition for a natural image. The detail coefficients
(horizontal, vertical and detail) highlight the horizontal, vertical and diagonal edges re-
spectively (the detail coefficients have been scaled (range 0 to 1) and inverted for visual
representation).

14



DWT Horizontal 1 SWT Horizontal 1 DWT Horizontal 2 SWT Horizontal 2

DWT Vertical 1 SWT Vertical 1 DWT Vertical 2 SWT Vertical 2

DWT Diagonal 1 SWT Diagonal 1 DWT Diagonal 2 SWT Diagonal 2

Figure 2.7: Comparison of level 2 detail coefficients in DWT and SWT. It can be clearly
noticed that in the detail coefficients corresponding to the SWT, the structural features
(edges in this case) are more clearly defined as compared to the coefficients corresponding
to the DWT, in all directions (the detail coefficients have been scaled (range 0 to 1) and
inverted for visual representation).
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2.2 Non-parametric Models for Image Processing

2.2.1 Anisotropic (non-linear) Scale Space Model

A major drawback of the linear scale space model discussed in section 2.1.1 is that at
higher scales significant blurring is observed, as can be seen in Figure 2.1. This results
in loss of structural details at these scales. For the preservation of structural details at
all scales in the multi-scale representation, it is desirable to have a filtering process where
these details would not have to undergo blurring. Also in Figure 2.1, the spatial location
of edges in the image at higher scales does not coincide with their corresponding location
in the original image. Thus, in addition to blurring, spatial distortion is also observed
at higher scales in the linear scale space representation [2, 3]. These details have to be
traced from their coarse scale representations to the original image through the entire scale
space image, making the process computationally intensive and inefficient [3]. In a multi-
scale representation of a signal, it is expected that while moving from the finer scales to
coarser scales, no new features would be observed [7], while it is acceptable for existing
features to disappear. This condition, known as the causality condition has been stated
as an important feature in multi-scale image models [3, 6, 7], and is satisfied in the linear
scale space approach model in [1, 6, 7]. The nonlinear multi-scale model described in [3]
satisfies this causality condition along with two other conditions which have been shown
to contribute to the structural preservation in images, and which are discussed below.

We want region boundaries or edges to be preserved at all scales, i.e., when we move
from finer scales to coarser scales, we want blurring to take place within the region bound-
aries, without blurring the boundaries themselves (piecewise smoothing) [3, 23, 24, 25].
Also, the position of the structural details at all scales should coincide with their positions
in the original image (immediate localization). In [3, 24], nonlinear scale space models
have been proposed which satisfy these two properties along with the causality property
mentioned above.

The convolution kernels (g(x, σ)) as discussed in equation 2.2 used in the linear scale
space approach are based on fixed parameters which do not take into account the underlying
structure of the original image. This is responsible for the structural degradation of the
images in that model [2, 3, 7]. We consider the diffusion equation as explained in [3]

∂Lt
∂t

= ct(x)∇2Lt +∇(c∇Lt) (2.23)

where ct(x) is the diffusion coefficient, ∇ is the gradient operator and Lt is the represen-
tation of the image at scale t.
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If at a particular pixel, ct(x) = 0, we would not observe blurring at that pixel and if
ct(x) = 1, we would observe blurring. In an ideal situation, we want ct(x) to take a value
of 0 at the pixels corresponding to the boundaries and a value of 1 for pixels corresponding
to interior regions in the image. Hence, an appropriate function has to be chosen for ct(x)
which would satisfy this property. In [3], it has been shown that the diffusion coefficient
should be a binary valued function of the gradient of Lt(x), i.e.,

ct(x) = g(‖∇Lt(x)‖) (2.24)

The gradient of intensity values of the pixels has been used for the estimation of boundary
pixels in the image, under the assertion that the magnitude of the gradient would be large
at boundaries in the image, and small within the regions in the image. Since this is an
approach based on non-linear or anisotropic filters, the blurring which happens in each
pixel region in the image depends on the local structure around the pixel region, i.e., the
anisotropic filter “adapts” to the local structure hence preserving the structural details.
In this approach the boundaries / edges remain preserved even at coarser scales, without
undergoing any spatial shift. The multi-scale representation can be described as follows

Lt(x) = Lt−1(x) + dt(x) (2.25)

where L0(x) = f(x). The relationship between two successive scales is defined by dt(x)
which is defined in terms of the gradient ∇ and the diffusion coefficient ct(x) as given below

dt(x) =
∑
i

ct(x+ i)∇Lt−1(x+ i) (2.26)

Although the non-linear scale space approach satisfies the three conditions mentioned above
and the structural preservation is better than the traditional linear scale space approach,
there is still scope for improvement, as significant structural degradation and sensitivity to
noise can still be observed, as has been illustrated in [2].

2.2.2 Non-parametric Sample Based Model for Image Under-
standing

We have seen in section 2.1.1 that the linear scale space approach does not use the un-
derlying structural content whereas the non-linear approach uses the local structural in-
formation for “adapting” the anisotropic filter for blurring of images. In both cases, we
observe structural degradation and sensitivity to noise, as has been illustrated in [2]. In
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[2], a non-parametric scale space model has been proposed which uses global information
in the original image and hence gives a model better satisfying the immediate localization
property. The model uses global information from the original image without significantly
increasing the computational complexity by using a sampling based approach. The multi-
scale model is described as

Lt(x) = Lt−1(x) + ct(x) (2.27)

where Lt(x) is the representation at scale t, L0(x) = f(x) i.e. the original signal and
ct(x) is the residual inter-scale structure at scale t. The scale representations Lt, Lt−1.....L0

are assumed to follow the Markov chain property where Lt (at an arbitrary scale t) de-
pends only on the scale immediately below it, i.e., Lt−1 and is independent of all other
scale representations. Lt(x) at an arbitrary scale t is estimated from Lt−1(x) and a condi-
tional probability distribution p

(
Lt(x)/Lt−1(x)

)
using the Bayesian least squares solution

as shown in equation below

L̂t(x) =

∫
Lt(x)p

(
Lt(x)/Lt−1(x)

)
dLt(x) (2.28)

The conditional probability distribution p
(
Lt(x)/Lt−1(x)

)
at an arbitrary scale t is obtained

from a quasi-random density estimation approach, for which samples from Lt−1(x) have
to be drawn. A set of m samples is drawn from a Sobol quasi-random sequence [2] with
respect to x. From these samples, a distribution p

(
Lt−1(x)

)
is created. These distributions

for different scales t are used for deriving a Gaussian mixture distribution, which is used
for determining samples to be used to estimate p

(
Lt(x)/Lt−1(x)

)
. From the Gaussian

mixture model, the samples which belong to the Gaussian distribution corresponding to
Lt−1(x) form the sample set S. Given this set S, the estimate of the conditional probability
distribution can be computed as shown below

p̂
(
Lt(x)/Lt−1(x)

)
=

q
(
Lt(x)/Lt−1(x)

)∫ 1

0
q
(
Lt(x)/Lt−1(x)

)
dLt(x)

(2.29)

where q
(
Lt(x)/Lt−1(x)

)
quantifies the sample relevancy. It can be defined as

q
(
Lt(x)/Lt−1(x)

)
=

1√
2πσLt

∑
k∈S

fT (k) exp

(
−1

2

(
Lt − Lt−1(xk)

σLt−1

)2
)

(2.30)

fT (k) is an assessment measure of sample relevancy, which includes three important factors;
image intensities, image gradient magnitudes and spatial closeness. Taking all these factors
into account while assuming the sample relevancy is important. Taking image intensities as
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a factor takes care of the immediate localization and piecewise smoothing properties. Using
image gradients contributes to the preservation of structural details. This non-parametric
multi-scale model takes global image information and satisfies all three properties of a good
multi-scale model, i.e., causality, immediate localization and piecewise smoothing.
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Chapter 3

Non Parametric Neighbourhood
Based Model

In this chapter we develop a non-parametric framework for image understanding which
is based on the pixel neighbourhoods in the image. In section 3.1, we define the neigh-
bourhood based theory in image processing with a mathematical model. In section 3.2, we
discuss the concept of statistical non-redundancy in image pixel intensities (spatial domain)
and in section 3.3, we extend this concept of statistical non-redundancy to the multi-scale
transforms. In section 3.4, we discuss some neighbourhood based statistics observed in
natural images. In section 3.5, a non-parametric neighbourhood based model is then pro-
posed for image understanding which is used in the following chapters for applications in
image saliency detection (chapter 4) and image denoising (chapter 5).

3.1 Neighbourhood Based Theory in Image Modelling

Let χ be a set of pixels which define an image f = {f(i)|i ∈ χ}. At any arbitrary pixel
i ∈ χ, the intensity at the pixel can be defined as f(i). For any pixel i ∈ χ, we define Ni,
the neighbourhood around the pixel i, as the set of pixels surrounding pixel i in the image
such that Ni ⊂ χ. Nk

i is a pixel in the neighbourhood Ni at an offset k from the central
pixel i. The offset k is a two dimensional spatial offset which specifies the horizontal and
the vertical distance (in terms of the number of pixels) from the central pixel i. We denote
this offset as k = (x, y), where x denotes the horizontal offset and y denotes the vertical
offset from the central pixel. The intensity at this arbitrary site Nk

i is denoted as f(Nk
i ).

This is illustrated in Figure 3.1.
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Figure 3.1: This figure illustrates the concept of a pixel neighbourhood and the offsets used
to describe the sites in the pixel neighbourhoods.

3.2 Non-redundancy in Image Pixel Intensities (Spa-

tial Domain)

We assert that in any image, a large number of pixel neighbourhoods are statistically
redundant because they are similar to each other, and the pixel neighbourhoods which
are statistically non-redundant define the image statistics. Thus, in this framework, we
want to quantify the statistical non-redundancy of the pixel neighbourhoods to derive the
image statistics. In chapter 4 and chapter 5, we use these derived image statistics to develop
saliency detection and image denoising algorithms respectively. We define P

(
f(Nk

i )|f(Nk
j )
)

as the probability of a site k in the pixel neighbourhood Ni being statistically redundant
with respect to the corresponding site in the pixel neighbourhood Nj. The probability
distribution for each such site is assumed to be independent of other sites, therefore, the
probability P

(
f(Ni)|f(Nj)

)
of a pixel neighbourhood Ni being statistically redundant with

respect to the pixel neighbourhood Nj can be defined as

P
(
f(Ni)|f(Nj)

)
=
∏
k

P
(
f(Nk

i )|f(Nk
j )
)

(3.1)
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Figure 3.2: This figure shows the probability distribution (P (αij|f)) of statistical non-
redundancy (αij) of a pixel neighbourhood Ni with respect to all other pixel neighbour-
hoods Nj in the image. This gives an overall picture of the statistical non-redundancy of
the site i with respect to the given image f .

We denote the statistical non-redundancy between two neighbourhoods Ni and Nj as αij
which can be defined as

αij = 1− P
(
f(Ni)|f(Nj)

)
= 1−

∏
k

P
(
f(Nk

i )|f(Nk
j )
)

(3.2)

We now wish to quantify the statistical non-redundancy of a pixel neighbourhood Ni with
respect to a given image f . If for a particular pixel i we compute αij over all possible
pixels j within the given image, we can compute the probability distribution of αij given
the image f (denoted as P (αij|f)), which gives an overall picture of the statistical non-
redundancy of site i given the image f . This is represented in the Figure 3.2. We then
further define the overall statistical non-redundancy Si of a pixel i as the expected value
of αij given an image f . That is

Si = E
j

(αij|f) (3.3)

Thus for any arbitrary pixel i ∈ χ in the image f , we can define a mapping Si which gives
the overall statistical non-redundancy of the pixel i with respect to the given image f . This
non-redundancy map gives us statistical information about the image in a non-parametric
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way, and can be used to derive important information about the structure of the image.
Extending the concept of statistical non-redundancy to the wavelet domain can be useful
in deriving multi-scale structural information of a given image.

3.3 Multi-scale Transform Non-redundancy

In the previous section we discussed the concept of statistical non-redundancy of a pixel
with respect to a given image. If we extend this concept to the wavelet domain, and evaluate
the statistical non-redundancy of wavelet coefficients at different sub-bands instead of
pixels in the spatial domain, we can get different structural details present in the image, at
multiple scales. The non-redundancy map discussed in section 3.2 can be obtained for each
of the wavelet sub-bands, i.e., the approximation and detail coefficients at all resolution
levels. Different structural characteristics of the image can be obtained from these non-
redundancy maps. Non-redundancy map for the approximation coefficients corresponding
to DWT, at resolution level j, is denoted by nrDAj. Similarly, nrDHj, nrDV j and
nrDDj represent the non-redundancy maps for the horizontal, vertical and diagonal detail
coefficients at resolution level j for DWT, and nrSHj, nrSV j and nrSDj represent the
non-redundancy maps for the corresponding detail coefficients for SWT. In this context,
the resolution levels denote the decomposition levels in the wavelet decomposition, i.e.,
coefficients at resolution level 1 are obtained on application of the wavelet transform to the
original image, coefficients at resolution level 2 are obtained on application of the wavelet
transform to approximation coefficients at level 1 and so on.

These maps can give us the structural features in the image at different scales. Figure
3.4 shows these non-redundancy maps for the wavelet coefficients (decimated as well as
undecimated) for three successive resolution levels. The test image used is the same as
that used in Figure 2.6. From the figure we can see that there is a significant difference
between the non-redundancy maps for the decimated and the undecimated cases, partic-
ularly at resolution levels 2 and 3. The non-redundancy maps shown in this figure give
us an idea of the distribution of pixel neighbourhoods in the wavelet transform domain.
In these maps, the high intensity points correspond to the pixel neighbourhoods which
are statistically non-redundant and vice versa. The non-redundancy maps for the approx-
imation coefficients highlight the unique objects in the image, and the detail coefficients
highlight the edges in the image. The maps for the lower resolution levels highlight the
coarse features and those for higher resolution levels highlight the finer features in the
image, e.g., in case of the vertical detail coefficients, nrSV 1 highlights the edges of only
the animal figures whereas nrSV 3 also highlights the edges present in the background. It
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Figure 3.3: Statistical Non-redundancy Distribution for Wavelet Sub-bands. This figure
shows a general multi-scale non-redundancy model and the wavelet coefficients could cor-
respond to DWT or SWT.

can be seen from the figure that these features are very well defined in the maps for the
undecimated wavelet coefficients, and are very blurred in case of the decimated wavelets.
Clearly, the decimation step in the decimated wavelets affects the statistical distribution
of pixel neighbourhoods of the wavelet coefficients. Thus, for a multi-scale model based on
non-redundancy of coefficient neighbourhoods, undecimated wavelets are more useful.
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DWT nrDA1 DWT nrDA2 DWT nrDA3 SWT nrSA1 SWT nrSA2 SWT nrSA3

DWT nrDH1 DWT nrDH2 DWT nrDH3 SWT nrSH1 SWT nrSH2 SWT nrSH3

DWT nrDV 1 DWT nrDV 2 DWT nrDV 3 SWT nrSV 1 SWT nrSV 2 SWT nrSV 3

DWT nrDD1 DWT nrDD2 DWT nrDD3 SWT nrSD1 SWT nrSD2 SWT nrSD3

Figure 3.4: This figure compares the non-redundancy distribution for the decimated as
well as undecimated wavelet coefficients at three different decomposition levels. We can
see more structural details in the non-redundancy maps for the undecimated wavelets.
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3.4 Redundancy Statistics in Multi-scale Transform

Domain

We want to develop a non-parametric neighbourhood based model for image understanding
at multiple scales. For this, we need to understand the statistical distribution of neigh-
bourhoods in natural images. The neighbourhood similarity or dissimilarity statistics can
be used for extracting useful information about the image statistics without any prior
knowledge. To understand neighbourhood statistics, we need to define the concept of
neighbourhood similarity. We denote a distance metric between two arbitrary neighbour-
hoods Ni and Nj as ρ(Ni, Nj). The definition of the distance metric could depend on the
application. For the case of natural images, we have selected the distance metric as

ρ(Ni, Nj) = 1− e−
∑
k(f(N

k
i )−f(Nkj )2

σ2 (3.4)

where σ2 is the variance of all combinations of
√∑

k (f(Nk
i )− f(Nk

j ))2. Two neighbour-

hoods Ni and Nj are said to be similar if

ρ(Ni, Nj) < τ (3.5)

where τ is a threshold value. The distance metric ρ gives a measure of how similar two
image neighbourhoods are. Using this we can define a similarity index between two neigh-
bourhoods Ni and Nj as

ηij = 1 if ρ(Ni, Nj) < τ (3.6)

= 0 otherwise (3.7)

ηij = 1 implies that neighbourhood Ni is similar to neighbourhood Nj. τ is the cut-off
threshold which is used for deciding how close the neighbourhoods need to be in order to
be considered similar. Given the similarity metric for two arbitrary neighbourhoods Ni

and Nj, for every pixel i in the image, we can determine how many neighbourhoods in the
image are similar to the neighbourhood Ni corresponding to the pixel i. Let us define γi
as the similarity ratio for a pixel neighbourhood Ni

γi =

∑
j ηij

T
(3.8)

where T is the total number of pixels in the image under consideration. Thus, γi gives us
the expected number of neighbourhoods in the image which match with the given neigh-
bourhood Ni. The similarity ratio also gives a measure of how redundant a neighbourhood
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is, where higher values of γi imply higher redundancy of neighbourhood Ni. We now intro-
duce a redundancy factor β which decides the cut-off for the similarity ratio beyond which
a pixel neighbourhood would be considered statistically redundant, i.e., if γi > β, pixel
neighbourhood Ni is considered as a redundant neighbourhood. We define a redundancy
index

δi = 1 if γi > β (3.9)

= 0 otherwise (3.10)

where a value of 1 for the redundancy index δi implies that the pixel neighbourhood Ni

is statistically redundant. For any image, the redundancy ratio Θ can be defined as the
ratio of redundant pixel neighbourhoods to the total number of pixel neighbourhoods in
the image, i.e.,

Θ =

∑
i δi
T

(3.11)

where T is the total number of pixel neighbourhoods in the image (which is the same as
the total number of pixels in the image). The redundancy ratio Θ discussed above can be
defined for a set of pixels χ. This set of pixels χ could represent the original image (spatial
domain) or the wavelet coefficient sub-bands (at different decomposition levels and differ-
ent orientations). The redundancy ratio Θχ is a function of τ (neighbourhood similarity
threshold) and β (neighbourhood redundancy factor). To understand the neighbourhood
redundancy statistics of an image, we want to see how Θχ(τ, β) varies

1. along τ , with fixed β, across different pixel sets χ

2. along β, with fixed τ , across different pixel sets χ

We want to see how Θ(τ, β) varies for different sets of pixels, for comparison across
different wavelet decomposition levels and also for comparison between decimated and un-
decimated wavelets. In this section, we discuss results of an experiment where we have
considered several natural images. Each of these natural images was subjected to 3 level
wavelet decompositions, both decimated as well as undecimated. For the rest of the section,
the decimated wavelet coefficients will be denoted as DA1 (decimated, approximation co-
efficients, decomposition level 1), DH1 (decimated, horizontal coefficients, decomposition
level 1) and so on. The undecimated wavelet coefficients will be denoted as SA1 (undeci-
mated, approximation coefficients, level 1) and so on. For each of these sets of coefficients,
we compute Θ(τ, β) varying τ and β. We then take an average of these Θ(τ, β) values
across all the images considered, and use these average values to study the behaviour of
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Figure 3.5: This figure shows the redundancy distribution for DWT. For a fixed neighbour-
hood similarity threshold, τ = 0.1294, we plot the variation of the redundancy ratio Θ(τ, β)
with varying β. The redundancy ratio is a non-increasing function of β. The redundancy
ratio decreases at higher decomposition levels.

neighbourhood redundancy in the wavelet domain. For the fixed τ , varying β case, we have
fixed the value of τ to τ = 0.1294, and for the fixed β, varying τ case, we have fixed the
value of β tp β = 0.0774. In our experiments, the values of τ were varied exponentially (10
values were considered) from 0 to 1 and the β was varied exponentially (again, 10 values
were considered) from 0 to 0.4. We selected the values of τ and β which were in the middle
of their respective exponential ranges.

In Figure 3.5, we show the redundancy distribution for decimated wavelet coefficients,
for all the three decomposition levels, for all orientations (A,H,V,D). In this case, the neigh-
bourhood similarity threshold, i.e., τ is kept constant at τ = 0.1294 and Θ(τ, β) is varied
along β (varying exponentially in the range [0.01, 0.4]). We can see that Θ(τ, β) is a non-
increasing function of β, which is in accordance with the theoretical expectation, i.e., with
a stricter definition of redundancy, we cannot have more neighbourhoods satisfying the
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Figure 3.6: This figure shows the redundancy distribution for SWT. For a fixed neighbour-
hood similarity threshold, τ = 0.1294, we plot the variation of the redundancy ratio Θ(τ, β)
with varying β. It can be seen that the neighbourhood redundancy does not decrease at
higher decomposition levels, unlike the DWT case shown in Figure 3.5.

redundancy criterion. We can see that for every orientation (A,H,V,D), the redundancy
ratio decreases as we progress along the decomposition levels.This makes sense because
when we decimate or downsample the coefficients after applying the respective filters, we
eliminate every alternate pixel in the pixel set, and this effects the neighbourhood simi-
larity statistics leading to fewer matching neighbourhoods. Also, if we compare across the
different orientations (A,H,V,D), we see more redundancy in detail coefficients as compared
to the approximation coefficients. This is reasonable because detail coefficients essentially
have a dark (and largely homogeneous) background with relatively few pixels in the pixel
set representing the orientation specific details. This can be seen in Figure 3.4. Hence, we
get a large number of matching neighbourhoods giving higher redundancy. Also, the detail
coefficients show more stability in their redundancy characteristics with respect to β.
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In Figure 3.6, we show the redundancy distribution for the undecimated wavelet coef-
ficients, for all orientations and for all decomposition levels. Just like in the case of Figure
3.5, the threshold τ has been fixed to τ = 0.1294 and β is varied. In this case, we observe
that for the approximation coefficients, unlike in the case of decimated wavelets, the re-
dundancy does not decrease with progressing decomposition levels. However, for the detail
coefficient sub-bands, the redundancy decreases with the progressing decomposition levels.
For the undecimated wavelet coefficients, we perform the same filtering operations as in
the decimated case, but skip the downsampling step. The approximation coefficients are
obtained by successive low pass filtering operations and the directional detail coefficients
are obtained by using high pass filters in the corresponding orientation. This low pass
filtering makes the pixel neighbourhoods in the approximation coefficients more similar,
hence we observe more redundancy with progressing decomposition levels. Also, there is a
significant difference in the redundancy distribution observed in approximation coefficients
and detail coefficients.

In Figure 3.7, we compare the redundancy characteristics of the decimated and undeci-
mated wavelet coefficients for all decomposition levels. Similar to the case of Figure 3.5 and
Figure 3.6, the neighbourhood similarity threshold τ is fixed at τ = 0.1294. In these figures
it can be seen that at all decomposition levels, more redundancy is observed in the case of
undecimated wavelet coefficients as compared to the decimated wavelet coefficients. The
difference in these redundancy characteristics becomes more significant with progressing
decomposition levels.

In Figure 3.8a, we fix the redundancy ratio β to a value β = 0.0774 and vary τ exponen-
tially in the range [0.01, 1] to get corresponding values of Θ(τ, β) for the decimated wavelet
coefficients. The redundancy of the pixel sets increases with increasing neighbourhood
similarity threshold τ , which is reasonable because more pixel neighbourhoods would now
satisfy the neighbourhood similarity criterion. Similar to the case of Figure 3.5, we observe
that for the decimated wavelet coefficients the redundancy decreases with progressing de-
composition levels. Also, the detail coefficients exhibit more redundancy as compared to
the approximation coefficients. Figure 3.8b shows redundancy distribution (with varying
τ and fixed β) for the undecimated wavelet coefficients. Again, similar to Figure 3.6, the
redundancy of approximation coefficients increases with decomposition levels and that of
the detail coefficients decreases with the levels. Figure 3.9 compares the DWT redundancy
characteristics with the SWT redundancy characteristics (with fixed β and varying τ) for
the three different decomposition levels. The results are similar to those in Figure 3.7, i.e.,
more redundancy is seen in case of the undecimated wavelet coefficients with the difference
becoming more significant with the increasing decomposition levels. This is in accordance
with expectations; the decimated wavelet coefficients undergo downsampling with each
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Level 1 Decompositions (DWT-SWT Comparison)

Level 2 Decompositions (DWT-SWT Comparison)

Level 3 Decompositions (DWT-SWT Comparison)

Figure 3.7: The undecimated wavelet coefficients exhibit more redundancy than the deci-
mated wavelet coefficients, with the difference increasing with the levels (τ = 0.1294).
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successive wavelet decomposition level, losing redundancy unlike the undecimated wavelet
coefficients. Thus for image processing applications where higher pixel neighbourhood re-
dundancy is useful, the undecimated wavelet transform serves as a more powerful tool. We
will illustrate this in chapter 5, where we use a Markov-Chain Monte Carlo sampling based
technique for image denoising.

3.5 Non-parametric Neighbourhood Based Framework

In section 3.1, we defined the neighbourhood theory in image modelling. In this section, we
use this theory to propose a neighbourhood based framework which exploits the relation
between pixel neighbourhoods in the image to derive statistical information about the im-
age. For two arbitrary neighbourhoods Ni and Nj in an image f = {f(i)|i ∈ χ}, we define
the distance or the degree of dissimilarity between the neighbourhoods (or neighbourhoods)
using as ρ(Ni, Nj). The choice of ρ could vary on several factors including expected im-
age statistics, the application for which the framework is being used, etc. This degree
of dissimilarity between two pixels can be used for deriving statistical information from
the image based purely on the image measurement given to us, without using any other
information, as will be shown with a simple example below where the pixel neighbourhood
theory is applied for texture synthesis.

To explain the pixel neighbourhood based non-parametric framework in detail, we use
the example of texture synthesis for illustration [26, 27]. In this approach a neighbourhood
similarity metric has been defined and has then been used to generate textures from a
given sample texture. We start with a sample texture

f = {f(i)|i ∈ γ} (3.12)

where γ denotes the set of pixels forming the original sample texture f from which we try
and synthesize a complete texture image

g = {g(j)|j ∈ χ} (3.13)

where χ denotes the set of pixels representing the texture image g which we wish to
synthesize. To synthesize an arbitrary pixel i ∈ χ, in the texture image g, we consider a
neighbourhood Ni (which is an NxN window around pixel i in this context). The process
involves creation of a conditional probability distribution P (i|Ni) [27] from which sampling
is done [27] to obtain a value for the pixel i which we want to synthesize. The image is
assumed to be a Markov Random Field [5, 27, 28] such that the value of an arbitrary pixel
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i ∈ χ depends only on the neighbourhood Ni, and is independent of ∀j ∈ χ, j /∈ Ni. From
the given sample texture f , we find an optimum neighbourhood, i.e., a neighbourhood
Niopt s.t.

Niopt = arg min
j∈γ

ρ(Ni, Nj) (3.14)

Using this optimum neighbourhood from the sample texture f , we create a set of pixels

ζ =
{
j|ρ(Niopt , Nj) < ε,∀j ∈ γ

}
(3.15)

from which sampling is done (as explained in [26]), and the value of the sampled pixel is
assigned to pixel i, which had to be synthesized. In this algorithm, the distance metric ρ
has been defined as follows -

ρ(Ni, Nj) = dSSD(Ni, Nj) ∗G (3.16)

where dSSD is the normalized sum of squared differences

dSSD(x, y) =
∑
k

(xk − yk)2 (3.17)

and G represents a Gaussian kernel, which was defined in equation 2.2. The convolution
with a Gaussian kernel is done to give more importance to neighbourhoods which are closer
to each other [27].

The approach discussed above is an example of how neighbourhood-based methods
can be used in non-parametric image processing. The important thing to note is that
neighbourhood similarity / dissimilarity in images can be used for capturing the image
statistics and this makes the approach very attractive for non-parametric methods in image
processing.
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Redundancy Distribution for DWT (fixed redundancy factor)

Redundancy Distribution for SWT(fixed redundancy factor)

Figure 3.8: For a redundancy factor, β = 0.0774, we plot the variation of the redundancy
ratio Θ(τ, β) with varying τ . It can be seen that the neighbourhood redundancy decreases
with higher decomposition levels for the DWT approximation coefficients, but for the SWT
approximation coefficients this is not the case.
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Level 1 Decompositions (DWT-SWT Comparison)

Level 2 Decompositions (DWT-SWT Comparison)

Level 3 Decompositions (DWT-SWT Comparison)

Figure 3.9: The undecimated wavelet coefficients exhibit more redundancy than the deci-
mated wavelet coefficients, with the difference increasing with the levels (β = 0.0774).
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Chapter 4

Application to Saliency Detection in
Natural Images

The automatic detection of saliency in images forms an important step in computer vision
tasks such as image segmentation [29] and object recognition [30]. Traditional models
of saliency detection are based on training, which makes them unsuitable for generalized
tasks. As such, it is much desired to develop automatic methods for detecting saliency in
images, without the need for prior knowledge of image content.

An observation that can be made with regards to saliency in images is that it is closely
related to visual uniqueness in image attributes such as colours, edges, and boundaries.
For example, in natural images such as that shown in Figure 4.1a, the salient objects of
interest (e.g., giraffes) exhibit very different visual characteristics than the rest of the scene
(the forest). From an information-driven perspective, one can also say that the object of
interest is unique as it has low information redundancy within the given image compared
to the rest of the scene, which is highly redundant. Motivated by this observation, our
proposed work aims to detect saliency within an image without prior knowledge regarding
the underlying image content by quantifying this non-redundant nature of salient objects
using a statistical modelling approach. This quantification is accomplished in the proposed
method by computing the statistical non-redundancy of each site in the image, given the
other sites in the image based on site neighbourhoods. The resulting non-redundancy gives
a saliency map that provides a rough classification of the image into regions which are
salient (high statistical non-redundancy) and non-salient (low statistical non-redundancy),
and can be used to identify the salient objects of interest.

This chapter is organized as follows. Previous methods used in saliency detection are
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original image object image

Figure 4.1: In this example, the giraffes are the salient (unique) objects of interest that we
wish to detect, as shown in the object image, relative to the background. In this figure the
object image is based on ground truth.

discussed in section 4.1. The proposed method is described in section 4.2. Experimental
results are presented in section 4.3 with conclusions drawn in section 4.4.

4.1 Previous Methods in Image Saliency

In recent years many general purpose saliency detection algorithms have been proposed.
Itti and Koch proposed a saliency model based on the human visual search process [31, 32,
33, 34, 35]. Hou and Zhang proposed a spectral residual model [36], where the log-spectrum
of an input image is analysed and the residual of the image is extracted in the spectral
domain, which is then used to construct a saliency map in the spatial domain. This method
simulates the behaviour of pre-attentive visual search and is an efficient method for early

38



stage visual processing. Wang et al. proposed a context-based model [37], where saliency
is viewed as an anomaly relative to a context, which could be local or global, however this
method needs a database of images for obtaining the extrinsic saliency map. Murray et
al. [38] proposed an efficient model of colour appearance in human vision, which contains a
principled selection of parameters as well as innate spatial pooling mechanism and can be
generalized to obtain a saliency model, with scale integrated via a simple inverse wavelet
transform over the set of weighted center-surround outputs and the reduction of ad-hoc
parameters. Other methods include the frequency-tuned approach proposed by Achanta et
al. [39], and the context-aware approach proposed by Goferman et al. [40]. In this section,
we will discuss in detail the saliency detection methods which we have used for performance
comparison with the proposed method.

4.1.1 Frequency Tuned Salient Region Detection

In [39], a frequency tuned saliency detection approach has been proposed, which will be
referred to as the FT approach in subsequent parts of this chapter. The approach uses
Difference of Gaussian filters for band pass filtering. This method retains the frequency
content of the original image in the saliency maps. It gives full resolution saliency maps
and the boundary information of the image is preserved. A DoG filter can be defined as

DoG(x, y) = G(x, y, σ1)−G(x, y, σ2) (4.1)

where

G(x, y, σ) =
1

2πσ2
e
−(x2+y2)

σ2 (4.2)

In equation 4.1, σ1 and σ2 are the standard deviations of the Gaussians. The band pass
width for the DoG filter is determined by the σ1/σ2 ratio. It has been shown in [39] that
the combined result of applying several band pass filters can be equivalently obtained by
choosing a DoG with a large σ1/σ2 ratio. We define ρ = σ1/σ2, σ2 = σ and σ1 = ρσ. A
summation over DoG with standard deviations in the ratio ρ results in

Gcombined =
N−1∑
n=0

[
G(x, y, ρn+1σ)−G(x, y, ρnσ)

]
(4.3)

which results in
Gcombined = G(x, y, ρNσ)−G(x, y, σ) (4.4)

for an integer N ≥ 0, which is equivalent to difference of two Gaussians, i.e., a band
pass filter with σ1/σ2 ratio equal to ρN . This is essentially a parametric method where
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parameter selection of σ1 and σ2 has to be done to retain the desired frequency range in
the saliency maps. The saliency map S can be defined as

S(x, y) = |µ−Gcombined(x, y)| (4.5)

where µ is the mean value of the image pixel intensities. There is no downsampling involved
in the computation of saliency maps in this method. Hence we obtain full resolution
saliency maps.

4.1.2 Global Contrast Based Salient Region Detection

Local contrast saliency extraction methods evaluate saliency of a region with respect to
small neighbourhoods [33, 40, 41, 42, 43, 44]. These methods essentially focus on the edges
in the image rather than uniformly highlighting the salient region. The global contrast
method proposed in [45] computes saliency of an image region using its contrast with
respect to the entire image. In the histogram-contrast based method (the method will
be referred to as the HC method), colour statistics of the input image are used to define
saliency values for image pixels. The colour of any arbitrary pixel i in the image is compared
and contrasted to all other pixels in the image. The saliency map is defined as

Si =
∑
j∈χ

D(i, j) (4.6)

where Si denotes the saliency value at pixel i, χ is the set of pixels comprising the image
and D(i, j) represents the colour distance metric between pixels i and j in the L*a*b*
colour space [46]. From equation 4.6, it can be seen that pixels with the same colour would
have same saliency value since spatial relationships between the pixels are not being taken
into account at this stage. Grouping together pixels with the same colour value we get

Si = S(cl) =
n∑
j=1

D(cl, cj) (4.7)

where n is the number of possible colours in the image. In [45], a quantization and smooth-
ing process is employed to refine the saliency value for each pixel, where the weighted av-
erage of saliency values of similar colours is used. This saliency algorithm is closely related
to an algorithm proposed in [46], where only luminance values of the pixels are considered,
and the colour information is not taken into account. The method proposed in [46] is
known as the luminance contrast method and will be referred to as the LC method for the
remainder of this chapter.
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In the region-contrast approach (which will be referred to as the RC approach), in
addition to contrast, the spatial relationships of pixels are also taken into account. In this
approach, the authors first segment the input image into regions, then compute the colour
contrast at the region level, and define the saliency for each region as the weighted sum
of region’s contrasts to all other regions in the image. The weights are assigned in order
of spatial distances with closer regions being assigned more weight and vice versa. The
mathematical details for both the methods are given in [45].

4.1.3 Spectral Residual Based Saliency Detection

In [36], the authors have claimed that natural images are not completely random, they
obey highly predictable distributions. If these statistically redundant parts of the image
are removed, the “unique” part of an image can be highlighted. It has been observed
that log spectra of different images share similar trends though they do contain statistical
singularities [36]. These singularities in the spectrum may be responsible for unique or
salient regions in the image. In the saliency detection method proposed in [36], the input
image is downsampled to a 64 x 64 size and its log spectrum L(f) is computed. The
general shape of the log spectra A(f) is computed by convolution of the log spectra L(f)
with an N x N averaging filter hn(f). A(f) and L(f) can be used to extract R(f), i.e.,
the statistical singularities particular to the input image. R(f) has been defined as the
spectral residual of the image

R(f) = L(f)− A(f) (4.8)

Using an Inverse Fourier Transform on R(f) gives a saliency map in the spatial domain,
which contains the unique part of the scene. In [36], the saliency maps have been smoothed
with a Gaussian filter. The saliency detection algorithm discussed is known as the spectral
residual algorithm, and will be referred to as the SR method in the rest of the chapter.

4.2 Image Saliency Based on Non-parametric Neigh-

bourhood Based Methods

In natural images, salient objects of interest can be characterised by their statistical non-
redundancy with respect to a given image. Our method aims to quantify the statistical
non-redundancy (sections 4.2.1 and 4.2.2) to obtain a saliency map (section 4.2.3) which
divides the image into salient and non salient regions, which can then be used to obtain
object maps (section 4.2.4). The method has also been discussed in [47].
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4.2.1 Statistical Non-redundancy Between Sites

Let Ni be a set of image pixels in the neighbourhood of site i. Suppose that the neigh-
bourhood around an arbitrary site i in an image can be seen as a realization of the neigh-
bourhood around some other site j:

Ni = Nj + ηij, (4.9)

where ηij is a noise process between the two site neighbourhoods following some distribution
P (ηij). Suppose we model P (ηij) as an independent and identically distributed Gaussian
process with zero-mean and variance σ. Therefore, the probability of an arbitrary site k in
the neighbourhood Ni being a realization of the corresponding site in the neighbourhood
Nj (can also be defined as the probability of a site in Ni being statistically redundant with
respect to Nj, as was defined in section 3.2) can be defined as:

P
(
f(Nk

i )|f(Nk
j )
)

= e
−
(
f(Nki )−f(Nkj )

)2
σ2 (4.10)

Therefore, one can quantify the statistical redundancy between the neighbourhoods as:

P
(
f(Ni)|f(Nj)

)
=
∏
k

P
(
f(Nk

i )|f(Nk
j )
)
. (4.11)

The statistical non-redundancy αij between two neighbourhoods Ni and Nj has been de-
fined in equation 3.2 in chapter 3.

4.2.2 Statistical Non-redundancy Within the Image

We had discussed in section 3.2 that P (αij|f) gives us an overall picture of the statistical
non-redundancy of site i given the image f . Figure. 4.2 shows P (αij|f) for two different
sites within the same image. We can see that the salient site has a higher degree of
non-redundancy as compared to the non-salient site. This observation agrees with our
expectation as the salient sites would have fewer matching neighbourhoods. Therefore, it
can be observed that the overall statistical non-redundancy trend of a site gives us a good
indicator of image saliency.

4.2.3 Saliency Map

We have shown that salient sites in the image have a higher overall statistical non-
redundancy than non-salient sites. Salient regions in the image are unique and the neigh-
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salient site

non-salient site

Figure 4.2: P (αij|f) for two sites in the same image. As expected, the distribution shows
a significant saliency sensitivity.
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bourhoods centred around the salient sites have fewer matching neighbourhoods as com-
pared to the non-salient sites. We can use this fact to quantify the statistical non-
redundancy of every site in the image and thus generate a saliency map, where the intensity
at each site is proportional to the statistical non-redundancy of the corresponding site in
the original image. In the proposed method, for each site i in image f , we compute P (αij|f)
based on all sites j in f . The non-redundancy map defined in equation 3.3 can be used as
a saliency map for a given image. The saliency map divides the image into high intensity
and low intensity sites. The high intensity points in the saliency map correspond to the
salient sites in the original image. This intuitively makes sense as a site corresponding to a
unique region would have low information redundancy within the image and hence a higher
value for statistical non-redundancy. For colour images, the saliency map is based on the
aggregate expectation across all colour channels. While deriving the saliency maps for
images of high resolution, using the proposed method, it was observed that computing the
expected saliency value over all possible pixel pairs makes the algorithm computationally
intensive. Instead of averaging αij over all possible j, if we sample a set of pixels randomly
and average αij over the sampled set of pixels, we get saliency maps without much loss of
accuracy with significantly better computational intensity.

Si = E
j∈ψ

(αij|f) (4.12)

where ψ represents the sampled set of pixels. The algorithm proposed above will be referred
to as the NR (Non-redundancy) algorithm in the rest of this chapter.

4.2.4 Generating the Object Image

Given the computed saliency map, one can get a rough idea of where the salient objects
of interest are by applying an appropriate threshold on a saliency map, which can then be
used to generate an object image. Choosing a low threshold would unnecessarily include
sites from the background (false positives) in the salient object region of the object image.
On the other hand choosing a high threshold would lead to sites from the object region
being neglected in the object image (false negatives). For illustrative purposes, we generate
an object image by applying a threshold to the original image using the mean absolute
deviation of the saliency map as the threshold (denoted by T ):

T = E
(
|X − E(X)|

)
(4.13)

For our purposes, X is the vector containing all sites in the saliency map. Figure 4.3 shows
the object images derived from saliency maps for some natural images.
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Original Image Saliency Map (NR) Object Image Objects

Figure 4.3: A threshold has been applied to the saliency maps to obtain the object images
for the natural images. The algorithm marks out the salient objects in the images with a
good precision.
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Figure 4.4: This figure illustrates the steps involved in the Multi-scale saliency detection
algorithm.

4.2.5 Multi-scale Saliency Detection

In section 4.2.3, we proposed a saliency detection algorithm which exploits the non-
redundancy statistics of the pixel neighbourhoods to obtain saliency maps. We now extend
this concept to the multi-scale non-parametric model discussed in chapter 3. In the multi-
scale saliency detection algorithm, we exploit the non-redundancy statistics of the wavelet
sub-band coefficients to obtain non-redundancy maps for the different sub-bands. We then
compute a weighted average of these non-redundancy maps to get our saliency map. This
process is illustrated in Figure 4.4. In our experiments, we have considered the sub-bands
A1, A2 and A3 (the approximation coefficients at three decomposition levels) as the approx-
imation coefficients give us the overall picture of the salient objects in the image, whereas
the detail coefficients would highlight the edges as can be seen in Figure 3.4. From Figure
3.4, we can see that the non-redundancy maps at higher decomposition levels highlight
salient regions at coarse scales. Computing a weighted average of the approximation sub-
bands at all the levels and assigning more weights to sub-bands at higher decomposition
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levels ensures that the entire salient object is highlighted in the saliency maps, and salient
regions at all scales are considered.

The multi-scale approach helps capture saliency in the image at different scales, where
the fine sub-bands give fine saliency maps and the coarse sub-bands give coarse saliency
maps. Also, the multi-scale saliency approach based on weighted averages discussed above
is very robust to noise. This can be attributed to the fact that noise components of an
image are filtered out in the approximation coefficients at higher decomposition levels.
This fact is validated in section 4.3 where we discuss the performance comparison of the
saliency algorithms proposed, with each other and with other popular saliency detection
algorithms.

4.3 Performance Comparison with Other Methods

In this section we use a quantitative measure for performance evaluation of the proposed
algorithm against the current state-of-the-art in saliency detection. We also compare the
different configurations of our proposed algorithm. We use the precision-recall curves [48]
for evaluating the quality of saliency maps produced by these algorithms. In our tests,
we have taken images from the Achanta database [39] and from the database used in the
spectral residual paper [36]. For each experiment, we have considered 20 images from these
databases and have computed and plotted the average precision-recall characteristics for
these images. In the rest of the section, we refer to our non-redundancy based saliency
detection method as the NR method, and the other methods follow the same abbreviations
as discussed in section 4.1. In these experiments, we have used 300 random samples
(uniformly distributed over the whole image) for generating the saliency maps. Also, for
computing the saliency maps of coloured images using our NR method, we calculate the
NR based saliency maps for each of the channels (Hue, Saturation and Value) and then
take the average of these maps.

4.3.1 Comparison of Non-redundancy Algorithms

The statistical non-redundancy algorithm proposed in section 4.2 can have different con-
figurations. The saliency map might be produced directly from the image in the spatial
domain, as is done in section 4.2.3, or it can be produced from the weighted average of
the non-redundancy maps of the wavelet sub-bands, as discussed in section 4.2.5. When
we consider the multi-scale case, the wavelet sub-bands chosen for the generation of the
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saliency maps affect the performance of the algorithm. In this experiment, we consider
three configurations for the decimated wavelet case

1. D1: In this configuration we take a level 1 DWT decomposition of an image and use
the DWT level 1 approximation coefficients (DA1) for getting the saliency map, i.e.,
the saliency map in this case is nrDA1, i.e., the non-redundancy map for DA1.

2. D2: In this configuration, we take a level 2 DWT decomposition of the image and
use the weighted average of the non-redundancy maps of level 1 approximation coef-
ficients (nrDA1) and level 2 approximation coefficients (nrDA2) for producing the
saliency map, i.e., the saliency map can be defined as

D2 = (w1 ∗ nrDA1 + w2 ∗ nrDA2) /(w1 + w2) (4.14)

where w1 and w2 are the weights assigned to the non-redundancy maps obtained
from DA1 and DA2 respectively. In our experiments, we have fixed w1 = 1, and
w2 = 100, to give more importance to the non-redundancy maps corresponding to
coarser scales.

3. D3: Similar to the above cases, the saliency map for this case is the weighted average
of DA1,DA2 and DA3. It can be defined as

D3 = (w1 ∗ nrDA1 + w2 ∗ nrDA2 + w3 ∗ nrDA3) /(w1 + w2 + w3) (4.15)

where w1, w2 and w3 are the weights assigned to the non-redundancy maps obtained
from DA1, DA2 and DA3 respectively. In our experiments, we have fixed w1 =
1,w2 = 100 and w3 = 1, 000, 000 to give more importance to the wavelet sub-bands
corresponding to the coarser scales.

Similar to the case of decimated wavelets, we have three configurations of our algorithm for
the undecimated wavelet case; S1, S2 and S3 which represent the saliency maps correspond-
ing to the level 1, level 2 and level 3 approximation coefficients of the SWT decomposition
of the image. We compute the saliency maps for these configurations for 20 different images
for performance comparison. In Figure 4.5, we have shown the saliency maps for the NR
based algorithms for seven selected images. In Figure 4.6, we can see the precision-recall
characteristics for the different configurations of the NR algorithm. The precision-recall
characteristics shown in this image are the average of 20 different images taken from the
Achanta [39] database. It can be seen that the S3 configuration of the NR algorithm shows
the best performance. In the next section, we will see the effect of additive noise on the
performance of the NR algorithm in its various configurations.
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Original Spatial D1 D2 D3 S1 S2 S3 Ground
Truth

Figure 4.5: This figure shows the saliency maps for seven different images produced using
the different configurations of the NR algorithm.
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Figure 4.6: This figure shows the precision-recall characteristics for the NR saliency algo-
rithms taken over 20 different images. We can see that the S3 configuration of the NR
algorithm gives the best performance.

4.3.2 Effect of Noise to Non-redundancy Algorithms

In this section, we use the same image set of 20 images used in the previous section and
corrupt the images with an additive white Gaussian noise of standard deviation σ = 0.05
(on a scale of 1). The NR saliency detection algorithm, in all its configurations, is then
applied to these noisy images and the performance is evaluated. In Figure 4.7, we can
see the saliency maps for seven images obtained using the different configurations of the
NR algorithms. It can be seen that the saliency maps obtained from the undecimated
wavelet based approach give sharper and more well defined saliency maps. In Figure
4.8, we see the corresponding precision-recall characteristics. It can be seen that the
wavelet based configurations have a significantly better performance in presence of noise.
The undecimated wavelet based configuration outperforms the decimated wavelet based
configuration in the noisy as well as the noiseless cases. This proves that undecimated
wavelet based saliency approach is robust to noise and also gives more detailed saliency
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maps.

4.3.3 Performance Comparison with State-of-the-art

In the above sections we concluded that the S3 configuration of the proposed NR algorithm
gives the best performance in terms of precision-recall characteristics. In this section, we
will consider the saliency maps produced by this configuration and compare them to the
saliency maps produced by the current state-of-the-art in saliency detection; Frequency
Tuned (FT) [39], Histogram Contrast (HC) and Region Contrast (RC) [45], Luminance
Contrast (LC) [46] and Spectral Residual (SR) [36].
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Noisy
Image

Spatial D1 D2 D3 S1 S2 S3 Ground
Truth

Figure 4.7: This figure shows the saliency maps for the seven noisy images (additive Gaus-
sian noise, σ = 0.05) produced using the different configurations of the NR algorithm. The
image database is same as the one used in Figure 4.5. We can see the undecimated wavelet
based saliency maps (S1,S2 and S3) mark out the salient regions from the background
much more clearly.
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Figure 4.8: This figure shows the precision-recall characteristics for the NR saliency al-
gorithms taken over 20 different noisy (additive Gaussian noise, σ = 0.05) images. The
image set is the same as that considered in the case of Figure 4.6. We can see that the
S3 configuration of the NR algorithm gives the best performance, and there is significant
difference in the performance of the spatial and wavelet based configurations.
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Original FT RC HC LC SR SWT3 Ground
Truth

Figure 4.9: This figure shows the saliency maps for the state-of-the-art in saliency detection
algorithms and the S3 configuration of our proposed NR algorithm (denoted as SWT3).
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Original FT RC HC LC SR SWT3 Ground
Truth

Figure 4.10: This figure shows the saliency maps for the state-of-the-art in saliency de-
tection algorithms and the S3 configuration of our proposed NR algorithm (denoted as
SWT3) for noisy images (additive Gaussian noise, σ = 0.05). For most algorithms, we can
see a significant degradation in saliency maps when compared to Figure 4.5.
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Figure 4.11: This figure shows the average precision-recall characteristics (taken over 20
images) of some popular saliency detection algorithms along with the proposed NR algo-
rithm with S3 configuration (labelled as SWT3).

Figure 4.12: Similar to Figure 4.11, this figure shows precision-recall characteristics for 20
noisy images (additive Gaussian noise, σ = 0.05).
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4.4 Conclusions and Further Work

We have used the non-parametric multi-scale framework proposed in chapter 3 to develop
a statistical non-redundancy based saliency detection algorithm. We have compared the
different configurations of the proposed algorithm and have observed that the S3 config-
uration of the algorithm gives the best results in terms of precision-recall characteristics.
This can be attributed to the fact that in this configuration, we are using full resolution
non-redundancy maps which captures the non-redundancy statistics of the image at mul-
tiple scales. Also, this configuration is the most robust to noise, which can be attributed
to the fact that most of the noise is captured in the detail coefficients of the wavelet de-
compositions, and the level 2 and level 3 approximation coefficients do not have much
noise.

The proposed algorithm outperforms the SR algorithm and the LC algorithm. However,
in the present configuration it does not outperform the other methods, i.e., FT, HC and
LC methods. The performance of the proposed algorithm can be improved in several ways

1. Instead of the random sampling approach which we have used in equation 4.12, we
can use guided sampling approaches

2. Different weights can be assigned to the non-redundancy maps while computing the
saliency maps.

3. In the proposed approach, we take a simple average of the saliency maps obtained
from the different channels (Hue, Saturation and Value). Instead of taking a simple
average, a weighted average approach could give better saliency maps.

4. Use of rotation invariant filters while computing the statisical non-redundancy can
give better results.

The proposed approach for saliency detection has scope for improvement but it gives
promising results for the non-parametric multi-scale framework developed in chapter 3,
as it shows that the application of the framework can give better algorithms with more
detail preservation and robustness to noise.
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Chapter 5

Application to Image Denoising

Digital images could be corrupted by noise due to various reasons which are affected by
the way images are captured and transmitted, e.g., images transmitted through a wireless
medium might be corrupted by noise due to atmospheric conditions. In all applications
involving images, it is desirable to extract images in their denoised form, i.e., to get an
estimate of the original image. This requires an understanding of the image statistics and
the noise statistics. The understanding can be used to model the degradation process
and apply the inverse process in order to recover the original image. The non-parametric
multi-scale framework developed in chapter 3 of the thesis has been applied to the problem
of image denoising. In section 5.1, we discuss some denoising algorithms which employ the
multi-scale wavelet transforms and have been proposed in recent years. In section 5.2, we
discuss the proposed denoising algorithm. In section 5.3, we compare the proposed method
with the state-of-the-art in image denoising, followed by results and conclusions in section
5.4.

5.1 Use of Wavelets in Image Denoising

Wavelet based image denoising methods [10, 19, 49, 50, 51] have recently gained a lot of
popularity. Wavelets are powerful signal processing tools as they enable efficient removal
of noise without losing much of the signal information. This can be done because in a
wavelet decomposition, in the detail coefficients, the small coefficients are mostly due to
noise and the large coefficients are due to important signal features. Modifying these small
detail coefficients can suppress the noisy component of the image without significant effect
on the underlying structure of the image.
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Wavelet shrinkage methods are very simple to implement. We consider an image f and
apply a J level wavelet transform to it. We thus obtain the approximation coefficients AJ
and the detail coefficients {Hi, Vi, Di}i={1,2..J}. To each detail coefficient, a threshold rule is
applied. Soft thresholding [49] involves shrinkage of each coefficient and can be represented
as

ηs(w, t) = w − t w ≥ t (5.1)

ηs(w, t) = 0 |w| < t (5.2)

ηs(w, t) = w + t w ≤ −t (5.3)

where w represents an individual detail coefficient and η represents the value of the detail
coefficient after the application of the thresholding rule. Hard thresholding [49] shrinks only
those coefficients which are lower than the specified threshold and leaves other coefficients
unaffected. It can be represented as follows

ηh(w, t) = w |w| ≥ t (5.4)

ηh(w, t) = 0 |w| < t (5.5)

The inverse wavelet transform is then applied on these modified wavelet coefficients to
obtain a denoised image. The threshold chosen could be the same for all the resolution
levels (1, 2...J) or could be different for each level. The way the threshold is selected gives
rise to a number of wavelet shrinkage methods such as SureShrink [49], VisuShrink [49],
NeighShrink etc. [49, 52, 53, 54].

5.1.1 VisuShrink

In the VisuShrink thresholding method [49], a common threshold t is proposed for all
resolution levels.

t =
√

2logn (5.6)

where n is the total number of transform coefficients in the decomposition [49]. This
approach assumes the noise in the image to be additive white Gaussian noise. If soft
thresholding is done with this threshold, the noise in the image is removed, but at the cost
of important features in the image [49]. Hard thresholding is better at feature preservation
but does not give smooth fits [49]. This can be attributed to the fact that a limited number
of coefficients are pushed down to zero without affecting the other coefficients.
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5.1.2 SureShrink

SureShrink [49] is a level-dependent thresholding technique in which tj is estimated from
the detail coefficients at the corresponding resolution level.

5.1.3 NeighShrinkSURE

NeighShrinkSURE [55] is an improvement over the NeighShrink [56] method proposed
for wavelet shrinkage. The NeighShrink method uses universal thresholds and identical
neighbourhood window sizes for all wavelet sub-bands. In the NeighShrinkSURE method,
an optimal procedure is used for the selection of neighbourhood window sizes and thresholds
for each wavelet subband. The optimal threshold and neighbouring window size for every
wavelet sub-band is determined using Stein’s Unbiased Risk Estimate (SURE) [57]. This
method gives the best PSNRs among all the current wavelet shrinkage methods [55].

5.2 Non-parametric Approach Based Denoising

In this chapter, we propose and discuss a wavelet based non-parametric multi-scale ap-
proach for image denoising. Given a noisy image, we want to obtain an estimate of the
denoised image, without using any prior information about the image. In the proposed ap-
proach, we exploit MCMC (Markov-Chain Monte Carlo) sampling of wavelet coefficients at
each sub-band to derive a non-parametric multi-scale description of the noisy image, which
is then used for the estimation of the denoised image. In section 5.2.1 we the stochastic
denoising approach based on the MCMC sampling. In section 5.2.2 we apply this concept
to the wavelet domain based on the non-parametric framework developed in chapter 3.

5.2.1 MCMC Sampling Based Non-parametric Image Denoising

The image denoising problem can be seen as the estimation of the original image given the
noisy image measurements and some image or noise statistics, based on which a mathe-
matical model can be developed [58]. Information redundancy in small local neighbour-
hoods has proved to be useful in several image denoising algorithms, e.g, box filtering and
Gaussian filtering [59], Lee filtering [60], total variation [61], Bayesian Estimation [62],
anisotropic filtering [63], bilateral filtering [64] and trilateral filtering [65]. A number of
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algorithms which exploit information redundancy over the whole image have also been
proposed [66, 67, 68, 69].

Let χ denote a set of pixel (locations) representing an image g such that g = {g(i)|i ∈ χ},
where i ∈ χ represents any arbitrary pixel in the set. Let f = {f(i)|i ∈ χ} denote the noise
contaminated image, and n = {n(i)|i ∈ χ} denote the noise. In an additive image noise
model, the relationship between g, n and f can be represented as

f(i) = g(i) + n(i) ∀ i ∈ χ (5.7)

In chapter 3, we had proposed a multi-scale non-parametric model in which pixel neigh-
bourhood interactions of the image are used for capturing the image statistics. In section
3.2, we use the pixel neighbourhood interactions to derive the non-redundancy statistics of
an image. For each pixel in the image, we derive a probability distribution of the statistical
non-redundancy of that pixel neighbourhood with respect to other pixel neighbourhoods
in the image, which is used for deriving the saliency map. The denoising algorithm uses
the same framework, but instead of using the non-redundancy distributions of the pixel
neighbourhoods in the image, we use the redundancy distributions of the pixel neighbour-
hoods. In equation 3.1 we define the probability P

(
f(Ni)|f(Nj)

)
of a pixel neighbourhood

Ni being a realization of another pixel neighbourhood Nj. This gives a measure of the
redundancy βij of the pixel neighbourhood Ni with respect to the pixel neighbourhood Nj

βij = P
(
f(Ni)|f(Nj)

)
. (5.8)

Computing βij for all possible values of j gives an overall redundancy distribution of the
pixel i with respect to the given image f . This redundancy distribution of each pixel is used
for the generation of MCMC samples [58], which can be used for deriving a conditional
distribution p (g(i)|f(i)) of the spatial intensity for each pixel g(i), i ∈ χ in the denoised
image g, given the noisy image f . The expected value of each of these conditional distribu-
tions gives an estimate ĝ(i) of the pixel i in the noise-free image. The process is explained
in detail in [58]. The pixel neighbourhood redundancy is captured in the objective function
used in the MCMC sampling process in [58]. The objective function used in [58] is defined
as

φ(i′k|i1) = Π
j
exp

− ρ(i′k, i1)
σ4
n

σ2
l

+ ρ(i′k, i1)

 (5.9)

where σn is the noise variance and σl is the local variance around site i1 respectively. We
define ρ as

ρ(i′k, ik−1) =
(
N j
i′k
−N j

i1

)2
. (5.10)
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Figure 5.1: The figure shows the model used for the denoising of images using the MCMC
sampling. For each site, MCMC sampling is done to obtain a distribution which gives the
expected value for the corresponding site in the noise free image.

The objective function discussed in equation 5.9 ensures that sites which have close spatial
interactions with a given site have a higher probability of being accepted as samples for
MCMC sampling [58]. Thus, redundancy of pixel neighbourhoods implies more sites with
close spatial interactions and higher density of samples. For each site i ∈ χ in the noisy
image measurement f , we have an estimated distribution p̂(g(i)|f(i)), and the expected
value of this distribution gives us the estimate of the intensity ĝ(i) of the corresponding
site in the noise free image g. This process is represented in Figure 5.1.

5.2.2 Multi-scale Framework based Denoising

In section 5.2.1, we discussed stochastic denoising based on MCMC sampling. In this sec-
tion, we discuss the extension of this concept to the non-parametric multi-scale framework
developed in chapter 3, for the development of a new image denoising algorithm. In the
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proposed denoising algorithm, which we refer to as DWTMCMC (MCMC sampling based
denoising with decimated wavelets) and SWTMCMC(MCMC sampling based denoising
with undecimated wavelets), we perform estimation of the wavelet coefficients of the noise
free image given the wavelet coefficients of a noisy image using the MCMC approach ex-
plained in section 5.2.1. Thus, in this approach, we use the MCMC method to learn a
non-parametric distribution for each pixel in each sub-band and use this to obtain an es-
timate of the denoised image. This process is illustrated in Figure 5.2 and is summarized
below.

1. Apply a J-level wavelet transform (DWT or SWT) to the given noisy image f to
obtain the wavelet sub-bands fAJ and {fHi, fVi, fDi}.

2. Use the noisy image wavelet coefficients and the MCMC estimation approach dis-
cussed in section 5.2.1 to estimate the wavelet coefficients for the denoised image.
This gives wavelet sub-bands ĝAJ and {ĝHi, ĝVi, ĝDi}.

3. Apply the inverse wavelet transform on these estimated wavelet coefficients to obtain
the estimate ĝ of the noise free image.

The main difference in these two methods is that instead of exploiting the local spatial
intensity interactions of the pixels in the image, we now exploit the local interactions of the
wavelet coefficients. The wavelet transform used for this algorithm could be the decimated
(DWT) or the undecimated (SWT) wavelet transform. The undecimated wavelets exhibit
more redundancy, hence it can be expected that the coefficients would show more local
spatial interactions, and we can expect to observe more structural preservation. This will
be validated in the next section where we discuss and compare the results of the denoising
experiments based on the algorithm proposed.
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Figure 5.2: The stochastic denoising process illustrated in Figure 5.1 is applied to the
multi-scale wavelet transforms in this figure. For each wavelet coefficient, MCMC sampling
is done to obtain a distribution which gives the expected value for the corresponding
wavelet coefficient for the noise free image. Applying the inverse wavelet transform to
these estimated wavelet coefficients gives an estimate of the noise free image.
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5.3 Performance comparison across different methods

We have compared the performance of our proposed denoising algorithms (both DWT
based and SWT based) with the spatial MCMCD method [58], the NeighShrinkSURE
method [55] (denoted as NSS), which is the current state-of-the-art in wavelet based im-
age denoising and BM3D [69] which is the current state-of-the-art in image denoising.
The quantitative measures we have used for performance comparison are PSNR [70] and
MSSIM [71, 72]. For comparing the robustness of the denoising algorithms we use several
different noise characteristics, i.e., the simple additive white Gaussian noise, mixed addi-
tive Gaussian noise, speckle noise and convoluted Gaussian noise. In these experiments,
we have used a neighbourhood size of 7 x 7 and a search spread size of 21 for the MCMC
based denoising algorithms.

5.3.1 Simple Additive Gaussian Noise

In this section, we have considered the case of simple additive Gaussian noise. The noise
model can be represented as discussed in equation 5.7 where n represents the Gaussian
noise. The additive Gaussian noise is assumed to be zero mean and is characterised by its
standard deviation (σ). In our experiments, we have added noise to the image in varying
degrees and have applied denoising algorithms to the noisy images. The σ has been varied
from σ = 20 to σ = 200 (on a scale of 255) in steps of 20. For all these denoised images,
we have computed the PSNR (Peak Signal to Noise Ratio) and MSSIM (Mean Structural
Similarity Index) values, and have computed the average PSNR and MSSIM values for
10 natural images. The images denoised with the different denoising algorithms in con-
sideration are shown in Figure 5.3. In Figure 5.3, NSS refers to the NeighShrinkSURE
algorithm, MCMCD refers to the Stochastic Denoising algorithm based on MCMC sam-
pling [58], DWTMCMC and SWTMCMC refer to the DWT and SWT based algorithms
proposed in section 5.2.2 respectively. It can be seen that the SWTMCMC is success-
ful in denoising the images effectively without any introduction of artefacts. Particularly
in images with textured backgrounds, we can see more well defined structure in case of
SWTMCMC as compared to NSS, MCMCD and DWTMCMC. This is a promising result
as we can remove noise without losing important structural details of the image. Figure
5.4 shows the performance comparison of the denoising algorithms based on the PSNR and
MSSIM measures. It can be seen that after the BM3D (which has the best performance
for all noise levels), the SWTMCMC shows the best performance. Also, the performance
of SWTMCMC is significantly better than NSS which is the current state-of-the-art in
wavelet based denoising of images.
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5.3.2 Mixed Additive Noise

The simple additive Gaussian noise model discussed above is a very simple model which
may not be valid for various situations [73, 74, 75]. We have considered different types of
noise distributions to comprehensively evaluate the denoising performance of the algorithms
in consideration. In this section we discuss the mixed additive Gaussian noise in which
noise is assumed to come from two different sources, giving two Gaussian noise components
with their own noise levels. The mixed additive Gaussian noise model which we have used
in our experiments can be represented as

f(i) = g(i) + n1(i) + n2(i) ∀i ∈ χ (5.11)

where n1 is a Gaussian noise component with noise level σ1 = 2σ/3 and n2 is the second
noise component with noise level σ2 = σ/4. For our experiments, we have varied σ from
σ = 20 to σ = 180 in steps of 40. Figure 5.5 shows the denoised images for the case in which
we set σ = 100. In Figure 5.5, we can see that the NSS algorithm is not able to remove
the noise effectively. The MCMCD and DWTMCMCD remove the noise components to a
large extent but result in blurring of the backgrounds, i.e., we lose structural details in the
background. BM3D and SWTMCMC both give good denoising results without blurring
the background or introducing artefacts. Figure 5.6 shows the denoising performance of
the algorithms for the mixed additive noise. In terms of PSNR, the performance of the
SWTMCMC algorithm closely follows that of BM3D and outperforms all other algorithms.
An important observation is that for this type of noise, the DWTMCMC outperforms the
NSS. This can be attributed to the fact that NSS assumes the noise to be simple additive
Gaussian noise whereas the stochastic denoising algorithms, i.e., MCMCD, DWTMCMC
and SWMCMC make no such assumptions. In terms of MSSIM, the performance trends
are similar to those of PSNR based performance trends.

5.3.3 Rayleigh Noise

In many applications of image processing [76, 77, 78], we come across noisy images where
the noise component follows a Rayleigh distribution [79]. The additive Rayleigh noise
model can be represented as

f(i) = g(i) + n(i) ∀i ∈ χ (5.12)

where n follows a Rayleigh distribution with mean µ = 0 and standard deviation σ. In our
experiments we have varied σ from σ = 20 to σ = 200 in steps of 20 (on a scale of 255).
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Figure 5.7 shows the denoised images for σ = 140. It can be seen that NSS is not able
to remove noise from the noisy images. There is significant blurring of the background
in case of MCMCD and DWTMCMC. The BM3D and SWTMCMC give good denoising
results without loss of structural details in the image. In terms of PSNR and MSSIM,
the denoising performance follows similar trends as in the case of mixed additive Gaussian
noise.

5.3.4 Speckle Noise

Speckle noise is multiplicative noise which can be represented by the following model

f = g + g ∗ n (5.13)

where g is the original image, f is the noise contaminated image and n is a uniformly
distributed noise with mean µ = 0 and standard deviation σ. Figure 5.9 shows denoised
images for σ = 100. Again, we see that the SWTMCMC and BM3D give the best denoising
performance and preservation of structural details. Figure 5.10 shows the denoising perfor-
mance in terms of PSNR and MSSIM. It can be seen that for low noise levels, SWTMCMC
outperforms BM3D, which is a promising result.

5.3.5 Convoluted Gaussian Noise

The convoluted Gaussian noise model can be represented as

f = g ? n (5.14)

where g is the original image, f is the noise contaminated image and n is the noise compo-
nent, i.e., the noise is convoluted with the original image. The noise component n follows
a Gaussian distribution. The noise is characterized by the peak amplitude of the noise
signal β which we call the noise level and the standard deviation σ which we call the blur
level. Figure 5.11 shows the denoising performance of the algorithms when each of these
quantities is varied keeping the other one fixed.In the first plot, the blur level is fixed at
σ = 100 and the noise level β is varied from β = 20 to β = 200 in steps of 20. We can
see that the SWTMCMC denoising performance very closely follows that of BM3D and
outperforms all the other algorithms. In the second plot, the noise level is fixed at β = 100
and the blur level σ is varied from σ = 20 to σ = 200 in steps of 20. As the blur is
increased, the denoising performance of SWTMCMC gets better than that of BM3D. This
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can also be attributed to the fact that increasing the blur level while keeping noise level
constant reduces the effect of noise, which can be validated by the increase in PSNR of the
noisy image with the increase in blur level.

5.4 Conclusions

The denoising results which we have discussed above show us that the proposed algorithms
give very promising results. The performance of the SWTMCMC algorithm closely follows
that of the BM3D which is the current state-of-the-art in image denoising and significantly
outperforms the NSS, which is the current state-of-the-art in wavelet based image denoising.
There is a significant difference in the performance of the MCMCD and SWTMCMC
algorithm, which proves that the multi-scale framework proposed in chapter 3 gives a very
effective multi-scale description of the image based on which effective image processing
algorithms can be developed. The SWTMCMC shows significantly more image detail
preservation when compared to the DWTMCMC and MCMCD. This can be attributed to
the redundancy characteristics of the wavelet decompositions of the images discussed in
chapter 3, i.e., the SWT coefficients exhibit close local spatial interactions, giving better
MCMC sampling results and better denoising. The proposed algorithm performs well
for a variety of noise characteristics. An important advantage of the proposed denoising
technique is that it does not require any information about the image statistics or the
noise statistics. The algorithm is very flexible and adapts itself to the underlying image
statistics. This makes it a very useful general purpose algorithm which can be used in a
variety of image processing applications, from remote sensing to medical imaging.
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Original Im-
age

Noisy Image NSS MCMCD BM3D DWTM-
CMC

SWTMCMC

Figure 5.3: Simple additive Gaussian noise of σ = 60 is considered. It can be seen that the
SWT based MCMC algorithm (proposed algorithm) is successful in denoising the images
without the introduction of any artefacts in the images. For the textured images, the
background structure is well preserved by the SWTMCMC algorithm.
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PSNR based Performance Comparison

MSSIM based Performance Comparison

Figure 5.4: This figure shows performance of the denoising algorithms in case of simple
additive Gaussian noise. In both the plots, we see that the SWTMCMC has the best
performance after the BM3D and it outperforms the NeighShrinkSURE (NSS) algorithm
(the current state of the art in wavelet based denoising) by a significant margin.
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Original Im-
age

Noisy Image NSS MCMCD BM3D DWTM-
CMC

SWTMCMC

Figure 5.5: Mixed additive Gaussian noise of σ = 100 is considered. The SWTMCMC
(proposed algorithm) and BM3D give denoised images without introduction of artefacts.
The NSS algorithm is not able to remove the noise in the images.
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PSNR based Performance Comparison

MSSIM based Performance Comparison

Figure 5.6: In this figure, mixed additive Gaussian noise is considered. The SWTMCMC
outperforms the NSS by a more significant margin in this case as compared to the simple
additive Gaussian noise case shown in Figure 5.4.
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Original Im-
age

Noisy Image NSS MCMCD BM3D DWTM-
CMC

SWTMCMC

Figure 5.7: Additive Rayleigh noise of σ = 140 is considered. It can be seen that SWTM-
CMC (proposed algorithm) is successful in denoising the images without the introduction
of any artefacts in the images, but the NSS is not able to remove noise and MCMCD
results in excessive blurring of the images.
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PSNR based Performance Comparison

MSSIM based Performance Comparison

Figure 5.8: In this figure, additive Rayleigh noise is considered. The performance trends
are the same as those in Figure 5.6.
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Original Im-
age

Noisy Image NSS MCMCD BM3D DWTM-
CMC

SWTMCMC

Figure 5.9: Speckle noise of σ = 100 is considered. In some cases (e.g., girraffe image), the
structural preservation in SWTMCMC (proposed algorithm) is better than that in BM3D.
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PSNR based Performance Comparison

MSSIM based Performance Comparison

Figure 5.10: In this figure, speckle noise is considered. The SWTMCMC (proposed algo-
rithm) outperforms the NSS, which assumes a simple additive Gaussian noise model.
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PSNR vs Noise Levels (Convoluted Gaussian Noise)

PSNR vs Blur Levels (Convoluted Gaussian Noise)

Figure 5.11: The plot at the top shows the PSNR vs Noise level characteristics for images
are corrupted with Convoluted Gaussian Noise with varying noise levels and fixed blur level
σ = 100. The plot at the bottom shows the PSNR vs Blur characteristics for denoised
images with varying blur levels and fixed noise level β = 100.
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Chapter 6

Conclusions and Further Applications

In this thesis, a multi-scale non-parametric framework was proposed for image analysis and
understanding. The framework was used for the development of two image processing al-
gorithms; a saliency detection algorithm, i.e., the non-redundancy based saliency detection
algorithm and an image denoising algorithm, i.e., the SWTMCMC algorithm. Both these
algorithms give competitive results when compared with the state-of-the-art in their respec-
tive domains. Thus we can conclude that the framework is effective at multi-scale analysis
of images and can be used for the development of several image processing applications
like image segmentation, image compression, texture synthesis etc. The framework offers
several advantages over the traditional multi-scale representations which were discussed in
chapter 2.

1. Algorithms based on the framework do not require any prior knowledge about the
image, and this makes it a good choice for many applications where automated image
analysis is required and prior information about the image statistics is not known
beforehand.

2. Algorithms based on the proposed framework are very flexible and adapt themselves
to the underlying image statistics, as opposed to the parametric models discussed in
section 2.1.1, where fixed parameters were used for the analysis of the image.

3. It is robust to a variety of noise characteristics as can be seen from the performance of
the denoising algorithm discussed in section 5.3. The denoising algorithm developed
based on this framework gives high PSNR values for a variety of noise characteristics.
This makes the proposed framework suitable for use in a variety of image processing
applications.
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4. In the traditional multi-scale frameworks, significant structural degradation is ob-
served at higher scales. The framework proposed in the thesis addresses this limi-
tation as can be seen from the results of the denoising algorithm, where we achieve
high PSNR values and retain the structural details in the denoised images.

5. The immediate localization property discussed in section 2.2.1 is well satisfied by
the proposed multi-scale framework as can be seen from the results of the proposed
algorithms.

The framework developed in the thesis is flexible and robust and can be used for solving
many image processing challenges ranging from remote sensing to medical imaging. Future
work related to the thesis would involve the application of the framework to address specific
image processing problems.

The present framework has some limitations which need to be addressed to improve the
framework. The algorithms consider the pixel neighbourhood interactions over the entire
image which makes the algorithms computationally intensive. In chapter 4, section 4.2.3,
we introduced the use of random sampling to improve the computational intensity of the
saliency detection algorithm. However, the results of the algorithm still remain dependent
on the sample selection to some extent, and using guided samples instead of random
samples can potentially give better results. The saliency algorithm developed in chapter 4
was applied to a number of images from the Achanta database [39], and it was observed that
they produce good saliency maps for images with homogeneous backgrounds. However,
the saliency maps for images with cluttered backgrounds are not very good in terms of
highlighting the object of interest. The way the different wavelet sub-bands are analysed
and interpreted affects the performance of the algorithms based on this framework, hence
more experimentation in this direction can give algorithms with better performance. In
our experiments, for coloured images, we separated the image into the three channels, hue,
saturation and value, and applied the framework independently to all these channels. For
the generation of saliency maps for coloured images, we have taken the simple average of
the saliency maps of individual channels. However, the spatial interactions between pixels
in these different channels can be different, and if we adapt our analysis of sub-bands to
the channel characteristics, we can get better results.

Future work in this direction should involve more experiments on the spatial interactions
of the wavelet sub-bands, and development of algorithms which take the differences in
the spatial interactions of the different sub-bands into account. The framework proposed
has been applied to saliency detection and image denoising in this thesis. However, it
is a generic multi-scale framework and can be used in a variety of applications in image
processing, e.g., image segmentation, image compression, object detection, etc.
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